modelId
stringlengths 4
122
| author
stringlengths 2
42
⌀ | last_modified
unknown | downloads
int64 0
74.7M
| likes
int64 0
9.67k
| library_name
stringlengths 2
84
⌀ | tags
sequence | pipeline_tag
stringlengths 5
30
⌀ | createdAt
unknown | card
stringlengths 1
901k
| embedding
sequence |
---|---|---|---|---|---|---|---|---|---|---|
timm/vit_large_patch16_224.augreg_in21k_ft_in1k | timm | "2023-05-06T00:18:01Z" | 12,447 | 1 | timm | [
"timm",
"pytorch",
"safetensors",
"image-classification",
"dataset:imagenet-1k",
"dataset:imagenet-21k",
"arxiv:2106.10270",
"arxiv:2010.11929",
"license:apache-2.0",
"region:us"
] | image-classification | "2022-12-22T07:46:31Z" | ---
tags:
- image-classification
- timm
library_name: timm
license: apache-2.0
datasets:
- imagenet-1k
- imagenet-21k
---
# Model card for vit_large_patch16_224.augreg_in21k_ft_in1k
A Vision Transformer (ViT) image classification model. Trained on ImageNet-21k and fine-tuned on ImageNet-1k (with additional augmentation and regularization) in JAX by paper authors, ported to PyTorch by Ross Wightman.
## Model Details
- **Model Type:** Image classification / feature backbone
- **Model Stats:**
- Params (M): 304.3
- GMACs: 59.7
- Activations (M): 43.8
- Image size: 224 x 224
- **Papers:**
- How to train your ViT? Data, Augmentation, and Regularization in Vision Transformers: https://arxiv.org/abs/2106.10270
- An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale: https://arxiv.org/abs/2010.11929v2
- **Dataset:** ImageNet-1k
- **Pretrain Dataset:** ImageNet-21k
- **Original:** https://github.com/google-research/vision_transformer
## Model Usage
### Image Classification
```python
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model('vit_large_patch16_224.augreg_in21k_ft_in1k', pretrained=True)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
```
### Image Embeddings
```python
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model(
'vit_large_patch16_224.augreg_in21k_ft_in1k',
pretrained=True,
num_classes=0, # remove classifier nn.Linear
)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor
# or equivalently (without needing to set num_classes=0)
output = model.forward_features(transforms(img).unsqueeze(0))
# output is unpooled, a (1, 197, 1024) shaped tensor
output = model.forward_head(output, pre_logits=True)
# output is a (1, num_features) shaped tensor
```
## Model Comparison
Explore the dataset and runtime metrics of this model in timm [model results](https://github.com/huggingface/pytorch-image-models/tree/main/results).
## Citation
```bibtex
@article{steiner2021augreg,
title={How to train your ViT? Data, Augmentation, and Regularization in Vision Transformers},
author={Steiner, Andreas and Kolesnikov, Alexander and and Zhai, Xiaohua and Wightman, Ross and Uszkoreit, Jakob and Beyer, Lucas},
journal={arXiv preprint arXiv:2106.10270},
year={2021}
}
```
```bibtex
@article{dosovitskiy2020vit,
title={An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale},
author={Dosovitskiy, Alexey and Beyer, Lucas and Kolesnikov, Alexander and Weissenborn, Dirk and Zhai, Xiaohua and Unterthiner, Thomas and Dehghani, Mostafa and Minderer, Matthias and Heigold, Georg and Gelly, Sylvain and Uszkoreit, Jakob and Houlsby, Neil},
journal={ICLR},
year={2021}
}
```
```bibtex
@misc{rw2019timm,
author = {Ross Wightman},
title = {PyTorch Image Models},
year = {2019},
publisher = {GitHub},
journal = {GitHub repository},
doi = {10.5281/zenodo.4414861},
howpublished = {\url{https://github.com/huggingface/pytorch-image-models}}
}
```
| [
-0.5432772636413574,
-0.40459132194519043,
-0.026547769084572792,
0.1072007268667221,
-0.3901169002056122,
-0.3416682183742523,
-0.31750884652137756,
-0.483619749546051,
0.21185393631458282,
0.32572850584983826,
-0.5515206456184387,
-0.5105990767478943,
-0.6550593972206116,
0.012922600843012333,
-0.17235778272151947,
0.9974039793014526,
-0.15379203855991364,
0.03381756320595741,
-0.21527783572673798,
-0.4465984106063843,
-0.3149917423725128,
-0.2895260751247406,
-0.638901948928833,
-0.427448570728302,
0.4101961553096771,
0.15477421879768372,
0.5896070003509521,
0.6189203262329102,
0.8113095164299011,
0.46856996417045593,
-0.11736473441123962,
0.14771927893161774,
-0.3549143671989441,
-0.21307550370693207,
0.27761897444725037,
-0.6200630068778992,
-0.4027951955795288,
0.2477201670408249,
0.7730940580368042,
0.381259024143219,
0.12265203893184662,
0.3548494875431061,
0.13634346425533295,
0.5077094435691833,
-0.36728042364120483,
0.21593207120895386,
-0.5336802005767822,
0.28109052777290344,
-0.05671548470854759,
-0.03839564695954323,
-0.3107774555683136,
-0.33974403142929077,
0.2555859386920929,
-0.5607658624649048,
0.6089529991149902,
-0.06071270629763603,
1.4097422361373901,
0.28823980689048767,
0.037234243005514145,
0.2461395263671875,
-0.43508481979370117,
0.7792277336120605,
-0.6302818655967712,
0.4278154969215393,
0.18825191259384155,
0.19458617269992828,
0.050704751163721085,
-1.05007803440094,
-0.7020602226257324,
-0.185777485370636,
-0.21776367723941803,
0.11054545640945435,
-0.29448506236076355,
0.262560099363327,
0.5105887651443481,
0.6080368161201477,
-0.5293828845024109,
0.008190164342522621,
-0.5702610015869141,
-0.2886528968811035,
0.5923686623573303,
-0.03148474171757698,
0.17813384532928467,
-0.14560168981552124,
-0.6201133131980896,
-0.6236878633499146,
-0.32398363947868347,
0.26357704401016235,
0.2999892234802246,
0.046748775988817215,
-0.4815142750740051,
0.5542828440666199,
0.04341506212949753,
0.685554027557373,
0.22823843359947205,
-0.23315927386283875,
0.6965394020080566,
-0.14126747846603394,
-0.3972935080528259,
-0.26248493790626526,
1.120890736579895,
0.48043546080589294,
0.4061542749404907,
-0.028615852817893028,
-0.19522549211978912,
-0.1365772932767868,
0.06210118904709816,
-1.1140254735946655,
-0.3706640601158142,
0.0961596891283989,
-0.44568967819213867,
-0.3792459964752197,
0.36670851707458496,
-0.6641901135444641,
-0.1413184255361557,
-0.1438276469707489,
0.8221070170402527,
-0.4423374533653259,
-0.21827682852745056,
0.12567679584026337,
-0.16968537867069244,
0.49148645997047424,
0.27296215295791626,
-0.5814302563667297,
0.09327332675457001,
0.2368561327457428,
1.0563557147979736,
0.035270631313323975,
-0.5117544531822205,
-0.27143219113349915,
-0.443497896194458,
-0.3362833261489868,
0.5033972263336182,
-0.04011525958776474,
-0.1201302707195282,
-0.1495690643787384,
0.4024816155433655,
-0.2511436343193054,
-0.5699303150177002,
0.34670090675354004,
-0.2273992896080017,
0.3539712727069855,
0.1038554459810257,
-0.2009296417236328,
-0.41865459084510803,
0.30119869112968445,
-0.43183138966560364,
1.2167433500289917,
0.3884650766849518,
-0.9247770309448242,
0.43835946917533875,
-0.47357693314552307,
-0.09832955151796341,
-0.13866613805294037,
0.03329512104392052,
-1.13699471950531,
0.04463798552751541,
0.3228360116481781,
0.6287462711334229,
-0.22442689538002014,
-0.002376087009906769,
-0.41844049096107483,
-0.3439291715621948,
0.38084477186203003,
-0.27907469868659973,
0.9164872765541077,
0.021716028451919556,
-0.332375168800354,
0.3004319667816162,
-0.5988718867301941,
0.06994874030351639,
0.4341859221458435,
-0.2641808092594147,
0.028637506067752838,
-0.6400538086891174,
0.18229706585407257,
0.23026864230632782,
0.2320951670408249,
-0.6871694922447205,
0.41247305274009705,
-0.3490793704986572,
0.4451095461845398,
0.6923909187316895,
-0.11788976192474365,
0.36242344975471497,
-0.32830217480659485,
0.34294193983078003,
0.26441946625709534,
0.42048075795173645,
-0.1580633521080017,
-0.6105687618255615,
-1.056080937385559,
-0.4848746061325073,
0.36691710352897644,
0.43646129965782166,
-0.687694787979126,
0.6013480424880981,
-0.39278653264045715,
-0.7481759190559387,
-0.5914446115493774,
0.0322229266166687,
0.4623355567455292,
0.5233902335166931,
0.5328845381736755,
-0.5491837859153748,
-0.5423639416694641,
-0.9810760617256165,
-0.09828323870897293,
-0.027594009414315224,
-0.0061451527290046215,
0.21174976229667664,
0.6588920950889587,
-0.2830175459384918,
0.8580412268638611,
-0.4756091237068176,
-0.36478379368782043,
-0.21344922482967377,
0.04222717881202698,
0.36912938952445984,
0.7642391920089722,
0.6876428723335266,
-0.6611429452896118,
-0.45031777024269104,
-0.13170544803142548,
-0.8634860515594482,
0.16392990946769714,
-0.041439540684223175,
-0.18752996623516083,
0.15854154527187347,
0.23321323096752167,
-0.7278807759284973,
0.7840746641159058,
0.20370638370513916,
-0.3844107389450073,
0.4407022297382355,
-0.24231602251529694,
0.07959149032831192,
-1.2132402658462524,
0.01739758998155594,
0.3943385183811188,
-0.2656497657299042,
-0.47370871901512146,
0.017817171290516853,
0.10439632833003998,
-0.04159950837492943,
-0.3968122899532318,
0.5831755995750427,
-0.49674472212791443,
-0.050163064152002335,
-0.05810190364718437,
-0.33445826172828674,
0.07059427350759506,
0.7330353856086731,
-0.05869628116488457,
0.5484809279441833,
0.7446550130844116,
-0.4897282123565674,
0.6332314610481262,
0.5428544282913208,
-0.2527139186859131,
0.4796736240386963,
-0.7533858418464661,
0.1482384204864502,
-0.045427106320858,
0.24388471245765686,
-1.0299583673477173,
-0.23592178523540497,
0.35965630412101746,
-0.7333489656448364,
0.685205340385437,
-0.5115853548049927,
-0.47311463952064514,
-0.664175271987915,
-0.4190267324447632,
0.43044403195381165,
0.7588940262794495,
-0.8182843923568726,
0.6044867634773254,
0.08247634023427963,
0.32189643383026123,
-0.6012645959854126,
-0.9604277014732361,
-0.21757210791110992,
-0.3851618766784668,
-0.7305667996406555,
0.4525645971298218,
0.08822637796401978,
0.1732127070426941,
0.04941033199429512,
-0.07037071883678436,
0.0032439010683447123,
-0.22332142293453217,
0.44938620924949646,
0.4141154885292053,
-0.23907341063022614,
-0.03226613998413086,
-0.3610855042934418,
-0.21913065016269684,
-0.0034272251650691032,
-0.35900893807411194,
0.5547829866409302,
-0.29044756293296814,
-0.2137310951948166,
-0.7768685817718506,
-0.27263036370277405,
0.5249021649360657,
-0.33289697766304016,
0.768433690071106,
1.206705093383789,
-0.4605712890625,
0.0746113508939743,
-0.6196173429489136,
-0.39044103026390076,
-0.5034321546554565,
0.511093020439148,
-0.3169670104980469,
-0.4783586859703064,
0.7476972341537476,
0.15826201438903809,
0.10385851562023163,
0.783560037612915,
0.413141667842865,
0.05793503299355507,
0.858243465423584,
0.6831455230712891,
0.12683357298374176,
0.90092933177948,
-0.9937241077423096,
-0.10611770302057266,
-0.9514509439468384,
-0.3637911379337311,
-0.2594637870788574,
-0.5579074025154114,
-0.7088803648948669,
-0.515315592288971,
0.4556078314781189,
0.10117138922214508,
-0.3272373080253601,
0.5135303139686584,
-0.8953284621238708,
0.19276554882526398,
0.737705409526825,
0.5422643423080444,
-0.11474599689245224,
0.44514456391334534,
-0.16852886974811554,
-0.05839620903134346,
-0.7767446041107178,
-0.07476923614740372,
1.1227705478668213,
0.5028682947158813,
0.8199059367179871,
-0.2930009365081787,
0.6497291326522827,
-0.2861119210720062,
0.3065779209136963,
-0.798914909362793,
0.562532901763916,
-0.028544599190354347,
-0.41596874594688416,
-0.15309204161167145,
-0.42411351203918457,
-1.0746067762374878,
0.20541039109230042,
-0.37996628880500793,
-0.8149727582931519,
0.3357418477535248,
0.20125935971736908,
-0.21726731956005096,
0.6884682178497314,
-0.8704307675361633,
0.9878987073898315,
-0.05472056567668915,
-0.5140699148178101,
0.07226482033729553,
-0.7088304758071899,
0.19900886714458466,
0.21085503697395325,
-0.3753298223018646,
0.160568505525589,
0.2723710536956787,
1.024687647819519,
-0.6021389961242676,
0.8424262404441833,
-0.4174901247024536,
0.3368787169456482,
0.47407066822052,
-0.23854368925094604,
0.41052141785621643,
0.02857859991490841,
0.16461709141731262,
0.3376816213130951,
-0.02287958189845085,
-0.38895997405052185,
-0.5067907571792603,
0.49923640489578247,
-1.0594861507415771,
-0.4046056866645813,
-0.5311871767044067,
-0.5997352600097656,
0.1091398298740387,
0.07475139945745468,
0.6922711730003357,
0.6491454243659973,
0.28653809428215027,
0.4267962574958801,
0.6947930455207825,
-0.38546228408813477,
0.39646199345588684,
-0.0030181221663951874,
-0.1992315798997879,
-0.5751203298568726,
0.9695425033569336,
0.23410256206989288,
0.17339582741260529,
0.1783270239830017,
0.24453799426555634,
-0.35213702917099,
-0.48841461539268494,
-0.3408657908439636,
0.43648460507392883,
-0.7062614560127258,
-0.4974716901779175,
-0.5910304188728333,
-0.550265908241272,
-0.35402587056159973,
0.007633010391145945,
-0.4236339330673218,
-0.32441645860671997,
-0.3499683141708374,
0.11559548228979111,
0.8563936352729797,
0.5329731702804565,
-0.11662302911281586,
0.5464357733726501,
-0.5844370722770691,
0.2141069769859314,
0.3071080446243286,
0.5571151375770569,
-0.17969132959842682,
-1.039688229560852,
-0.3676777780056,
0.021057454869151115,
-0.5291469097137451,
-0.7380456328392029,
0.464046835899353,
0.20625783503055573,
0.43750038743019104,
0.41613176465034485,
-0.26750263571739197,
0.8968042731285095,
-0.07207713276147842,
0.6018519997596741,
0.3620431423187256,
-0.5520936846733093,
0.49369722604751587,
-0.12174644321203232,
0.1677507609128952,
0.18386317789554596,
0.1783735156059265,
-0.30331388115882874,
-0.06140046939253807,
-1.082031011581421,
-0.7836207151412964,
0.7994939684867859,
0.23326072096824646,
0.0734805166721344,
0.4733756482601166,
0.6164222955703735,
-0.0770210325717926,
0.06802757829427719,
-0.9167991280555725,
-0.29320549964904785,
-0.39534619450569153,
-0.32365572452545166,
-0.1428743600845337,
-0.019466569647192955,
-0.01882506161928177,
-0.8301642537117004,
0.6617612242698669,
-0.0828671082854271,
0.8317162394523621,
0.4839684069156647,
-0.19302898645401,
-0.1623935103416443,
-0.3991401195526123,
0.3654152750968933,
0.28053438663482666,
-0.2754147946834564,
0.028876958414912224,
0.27883923053741455,
-0.7658702731132507,
-0.0560789555311203,
0.33832600712776184,
-0.06988561153411865,
0.04102783277630806,
0.5089828968048096,
1.1222467422485352,
-0.1280221939086914,
-0.023870160803198814,
0.5761153101921082,
-0.08576039969921112,
-0.4472065567970276,
-0.303566038608551,
0.07558907568454742,
-0.25390827655792236,
0.38917699456214905,
0.32575762271881104,
0.3663410246372223,
-0.171260803937912,
-0.15057456493377686,
0.12858282029628754,
0.5676411986351013,
-0.5317143797874451,
-0.36736807227134705,
0.6635794043540955,
-0.1976688653230667,
-0.08004891872406006,
0.8379043340682983,
-0.052504297345876694,
-0.6036379933357239,
0.9036343097686768,
0.3386901021003723,
1.0258970260620117,
-0.12730759382247925,
-0.04226530343294144,
0.8331044316291809,
0.3771652579307556,
-0.05453181639313698,
0.13675421476364136,
0.13873012363910675,
-0.788308322429657,
-0.13134686648845673,
-0.6789603233337402,
0.0457439199090004,
0.36536428332328796,
-0.5270861387252808,
0.4152044653892517,
-0.5484310388565063,
-0.36953631043434143,
0.05956996604800224,
0.2458513379096985,
-1.0356005430221558,
0.2947070002555847,
0.010582415387034416,
0.7773736715316772,
-0.8232553601264954,
0.6486403346061707,
0.8672934770584106,
-0.6842169761657715,
-0.9961127638816833,
-0.16576649248600006,
-0.21358612179756165,
-0.9099552631378174,
0.4654488265514374,
0.4641096889972687,
0.19954364001750946,
0.2509320378303528,
-0.8440065979957581,
-0.6393790245056152,
1.3224231004714966,
0.37533310055732727,
-0.1832873374223709,
0.14624932408332825,
-0.028089549392461777,
0.39217278361320496,
-0.2563088536262512,
0.4654807448387146,
0.17567400634288788,
0.4271085262298584,
0.24049749970436096,
-0.7464485764503479,
0.08217454701662064,
-0.3131216764450073,
0.1512042135000229,
0.23900939524173737,
-0.846105694770813,
1.0022481679916382,
-0.4226691722869873,
-0.09249178320169449,
0.1790848672389984,
0.6498443484306335,
0.088483065366745,
0.06917192786931992,
0.5663504600524902,
0.9093469977378845,
0.4063027501106262,
-0.4416312575340271,
0.9360784888267517,
-0.12326084822416306,
0.7247152328491211,
0.508750319480896,
0.4956058859825134,
0.4567573666572571,
0.4712725281715393,
-0.36328190565109253,
0.31791457533836365,
1.0098613500595093,
-0.5859073996543884,
0.2614842355251312,
0.13473281264305115,
0.04468616843223572,
-0.2566245496273041,
0.0713147446513176,
-0.5134865641593933,
0.5381655097007751,
0.20724719762802124,
-0.5773721933364868,
-0.0800633355975151,
0.19633741676807404,
-0.1642024666070938,
-0.3955846428871155,
-0.21425220370292664,
0.626717209815979,
-0.007559750694781542,
-0.46538910269737244,
0.8662807941436768,
-0.03365733474493027,
0.8342620134353638,
-0.4556111693382263,
-0.027193784713745117,
-0.25244417786598206,
0.4462894797325134,
-0.3947502374649048,
-0.8182476162910461,
0.14466708898544312,
-0.256877601146698,
-0.06418871879577637,
0.05861847475171089,
0.6894765496253967,
-0.4078753590583801,
-0.5878803133964539,
0.09984726458787918,
0.28962406516075134,
0.30919182300567627,
-0.113312266767025,
-1.028666377067566,
-0.02622871659696102,
0.010759067721664906,
-0.6102313995361328,
0.21624873578548431,
0.42008402943611145,
0.027973229065537453,
0.6981179714202881,
0.6927999258041382,
-0.081947460770607,
0.2232145071029663,
-0.1302052140235901,
0.9611456990242004,
-0.44840213656425476,
-0.3994407057762146,
-0.8008115887641907,
0.6344643831253052,
-0.08814164996147156,
-0.6425618529319763,
0.6744608879089355,
0.6131166219711304,
0.9292523860931396,
-0.14209502935409546,
0.46435481309890747,
-0.15060554444789886,
0.034300364553928375,
-0.3737499415874481,
0.6024080514907837,
-0.7333216667175293,
-0.11762263625860214,
-0.3254297971725464,
-0.9498131275177002,
-0.39483657479286194,
0.9787756204605103,
-0.35476794838905334,
0.45256495475769043,
0.549972653388977,
0.9952853918075562,
-0.3451131582260132,
-0.3937513828277588,
0.18335527181625366,
0.2399146556854248,
0.1352177858352661,
0.41655632853507996,
0.601136326789856,
-0.8884729743003845,
0.5049759745597839,
-0.5937967300415039,
-0.1939331740140915,
-0.2503803074359894,
-0.49252673983573914,
-1.0630040168762207,
-0.8557856678962708,
-0.5883204340934753,
-0.7179557085037231,
-0.23277685046195984,
0.880294680595398,
0.9694727659225464,
-0.5635112524032593,
-0.05539965257048607,
-0.15917442739009857,
0.013796359300613403,
-0.2994146943092346,
-0.24497641623020172,
0.5431365370750427,
-0.1458318680524826,
-0.7862637639045715,
-0.3736111521720886,
-0.012838675640523434,
0.5011067390441895,
-0.21079404652118683,
-0.14710137248039246,
-0.1480940878391266,
-0.34718838334083557,
0.28090783953666687,
0.3046014904975891,
-0.6943556070327759,
-0.23971983790397644,
-0.0866517573595047,
-0.03399166092276573,
0.5034023523330688,
0.388549268245697,
-0.7424871325492859,
0.5587067604064941,
0.549638032913208,
0.3638860583305359,
0.8741431832313538,
-0.20786431431770325,
0.10389529913663864,
-0.849663496017456,
0.6096150279045105,
-0.04485046863555908,
0.5281841158866882,
0.5133461952209473,
-0.27185264229774475,
0.6012760996818542,
0.5637264251708984,
-0.49771663546562195,
-0.8626322746276855,
-0.03775191307067871,
-1.1261909008026123,
0.11648654192686081,
1.002023696899414,
-0.2603849768638611,
-0.49220994114875793,
0.3847440481185913,
-0.23360735177993774,
0.7199754118919373,
-0.05980699136853218,
0.49570754170417786,
0.23950432240962982,
0.12058139592409134,
-0.6016332507133484,
-0.4790891408920288,
0.5107325315475464,
0.14914101362228394,
-0.5581988096237183,
-0.3745774030685425,
0.061668120324611664,
0.5513460636138916,
0.3890606760978699,
0.32096007466316223,
-0.14812207221984863,
0.18071357905864716,
0.046738434582948685,
0.5530838370323181,
-0.3574282228946686,
-0.15507175028324127,
-0.4180345833301544,
-0.1547742784023285,
-0.07433706521987915,
-0.6278313398361206
] |
Salesforce/codegen25-7b-multi | Salesforce | "2023-08-18T22:58:45Z" | 12,438 | 113 | transformers | [
"transformers",
"pytorch",
"llama",
"text-generation",
"code",
"dataset:bigcode/starcoderdata",
"arxiv:2305.02309",
"license:apache-2.0",
"endpoints_compatible",
"has_space",
"text-generation-inference",
"region:us"
] | text-generation | "2023-07-06T20:09:50Z" | ---
license: apache-2.0
datasets:
- bigcode/starcoderdata
language:
- code
pipeline_tag: text-generation
---
# CodeGen2.5-7B-multi
Title: [**CodeGen2.5: Small, but mighty**](https://blog.salesforceairesearch.com/codegen25)
Authors: [Erik Nijkamp](https://eriknijkamp.com)\*, [Hiroaki Hayashi](https://hiroakih.me)\*, Yingbo Zhou, Caiming Xiong
(\* equal contribution)
## Model description
[CodeGen2.5](https://github.com/salesforce/CodeGen) is a family of autoregressive language models for **program synthesis**.
Building upon [CodeGen2](https://arxiv.org/abs/2305.02309), the model is trained on [StarCoderData](https://huggingface.co/datasets/bigcode/starcoderdata) for 1.4T tokens, achieving competitive results compared to StarCoderBase-15.5B with less than half the size.
Like CodeGen2, this model is capable of infilling, and supports multiple programming languages.
We then further train on Python, then on instruction data. We release all the models as follows:
* **CodeGen2.5-7B-multi** (this repo): Trained on StarCoderData. Licensed under Apache-2.0.
* **CodeGen2.5-7B-mono**: Further trained on additional Python tokens. Licensed under Apache-2.0.
* **CodeGen2.5-7B-instruct**: Further trained from CodeGen2.5-7B-mono on instruction data. *Research purposes only*.
## How to use
This model can be easily loaded using the `AutoModelForCausalLM` functionality.
### Pre-requisite
Please install OpenAI `tiktoken` for the tokenizer.
```bash
pip install tiktoken==0.4.0
```
### Causal sampling (code autocompletion)
For regular causal sampling, simply generate completions given the context:
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("Salesforce/codegen25-7b-multi", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("Salesforce/codegen25-7b-multi")
text = "def hello_world():"
input_ids = tokenizer(text, return_tensors="pt").input_ids
generated_ids = model.generate(input_ids, max_length=128)
print(tokenizer.decode(generated_ids[0], skip_special_tokens=True))
```
### Infill sampling
For **infill** sampling, we follow the CodeGen2 format:
* `<mask_N>`: N-th span to be masked. In practice, use `<mask_1>` to where you want to sample infill.
* `<sep>`: Separator token between the suffix and the infilled sample. See below.
* `<eom>`: "End-Of-Mask" token that model will output at the end of infilling. You may use this token to truncate the output.
For example, if we want to generate infill for the following cursor position of a function:
```python
def hello_world():
|
return name
```
we construct an input to the model by
1. Inserting `<mask_1>` token in place of cursor position
2. Append `<sep>` token to indicate the boundary
3. Insert another `<mask_1>` to indicate which mask we want to infill.
The final snippet looks as follows:
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("Salesforce/codegen25-7b-multi", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("Salesforce/codegen25-7b-multi")
def format(prefix, suffix):
return prefix + "<mask_1>" + suffix + "<|endoftext|>" + "<sep>" + "<mask_1>"
prefix = "def hello_world():\n "
suffix = " return name"
text = format(prefix, suffix)
input_ids = tokenizer(text, return_tensors="pt").input_ids
generated_ids = model.generate(input_ids, max_length=128)
print(tokenizer.decode(generated_ids[0], skip_special_tokens=False)[len(text):])
```
You might want to truncate the model output with `<eom>`.
## Evaluation results
We evaluate our models on HumanEval and HumanEval-Infill.
Please refer to the [blog](https://blog.salesforceairesearch.com/codegen25) for more details.
## Intended use and limitations
As an autoregressive language model, CodeGen2.5 is capable of extracting features from given natural language and programming language texts, and calculating the likelihood of them.
However, the model is intended for and best at **program synthesis**, that is, generating executable code given English prompts, where the prompts should be in the form of a comment string. The model can complete partially-generated code as well.
## Attribution & Other Requirements
The pretraining dataset of the model was filtered for permissive licenses only.
Nevertheless, the model can generate source code verbatim from the dataset.
The code's license might require attribution and/or other specific requirements that must be respected.
The data provider BigCode provides a [search index](https://huggingface.co/spaces/bigcode/starcoder-search) that lets you search through the pretraining data to identify where generated code came from and apply the proper attribution to your code.
## BibTeX entry and citation info
Please cite CodeGen2 paper:
```bibtex
@article{Nijkamp2023codegen2,
title={CodeGen2: Lessons for Training LLMs on Programming and Natural Languages},
author={Nijkamp, Erik and Hayashi, Hiroaki and Xiong, Caiming and Savarese, Silvio and Zhou, Yingbo},
journal={arXiv preprint},
year={2023}
}
``` | [
-0.30710089206695557,
-0.6017035841941833,
0.034591805189847946,
0.3079087436199188,
-0.10944155603647232,
0.08137087523937225,
-0.38113340735435486,
-0.5688014030456543,
-0.05506381019949913,
0.3984301686286926,
-0.5210170745849609,
-0.37654006481170654,
-0.5409358143806458,
0.15693716704845428,
-0.27793020009994507,
1.0661847591400146,
-0.0011624391190707684,
0.03672080114483833,
-0.2745146155357361,
-0.007151680998504162,
-0.32608556747436523,
-0.763057291507721,
-0.43249279260635376,
-0.19717659056186676,
0.03673148527741432,
0.3216674029827118,
0.5207341313362122,
0.7500516772270203,
0.5004369616508484,
0.2946587800979614,
-0.1445639580488205,
0.11505600810050964,
-0.3726792335510254,
-0.09450583159923553,
0.12299266457557678,
-0.5167107582092285,
-0.3742632567882538,
0.09568095207214355,
0.49327248334884644,
0.44097521901130676,
0.012058003805577755,
0.5622795820236206,
0.1868337243795395,
0.22017168998718262,
-0.3107900321483612,
0.3716815412044525,
-0.6077535152435303,
-0.03625066205859184,
0.04738921672105789,
-0.015640249475836754,
-0.31883156299591064,
-0.3467705547809601,
-0.1737038642168045,
-0.3572618067264557,
0.44896551966667175,
-0.05877771973609924,
1.0841460227966309,
0.40062737464904785,
-0.21446147561073303,
-0.3360874652862549,
-0.5202924013137817,
0.8249629139900208,
-1.0700241327285767,
0.18775507807731628,
0.24447984993457794,
0.04036152362823486,
-0.19234077632427216,
-0.9423355460166931,
-0.5069637894630432,
-0.2869336009025574,
-0.2370675653219223,
-0.13702292740345,
-0.2149522453546524,
0.10676812380552292,
0.5879262089729309,
0.3622729182243347,
-0.7885526418685913,
-0.04285690560936928,
-0.7580345869064331,
-0.46666043996810913,
0.7390538454055786,
0.07636018842458725,
0.3067890703678131,
-0.3851710259914398,
-0.5225871801376343,
-0.17266744375228882,
-0.5617795586585999,
0.26739010214805603,
0.3167486786842346,
0.21511554718017578,
-0.3513578772544861,
0.5114143490791321,
-0.1329474002122879,
0.7835622429847717,
-0.0775097906589508,
-0.19677844643592834,
0.5227975249290466,
-0.6662993431091309,
-0.3782411813735962,
-0.13965177536010742,
0.9848582744598389,
0.1928519755601883,
0.19138629734516144,
-0.05045474320650101,
-0.23476089537143707,
0.05697771534323692,
-0.1617928296327591,
-1.0902907848358154,
-0.29992878437042236,
0.2904505133628845,
-0.6767500042915344,
-0.4744235873222351,
0.17727810144424438,
-0.7922477722167969,
0.018068280071020126,
-0.23640769720077515,
0.35448795557022095,
-0.32752060890197754,
-0.31119489669799805,
0.1376803070306778,
-0.2851187586784363,
0.19488026201725006,
-0.26182228326797485,
-0.7649768590927124,
0.04820967838168144,
0.35490623116493225,
0.742678165435791,
0.09800639748573303,
-0.4996582269668579,
-0.5070427060127258,
-0.13408729434013367,
-0.1171262338757515,
0.4090019762516022,
-0.37278908491134644,
-0.2894810140132904,
-0.052347198128700256,
0.16147220134735107,
-0.10498078912496567,
-0.6866126656532288,
0.029830854386091232,
-0.26108214259147644,
0.3035176992416382,
0.04599013924598694,
-0.507396936416626,
-0.19774097204208374,
-0.03766050934791565,
-0.40368765592575073,
1.2058324813842773,
0.23306109011173248,
-0.5185291171073914,
0.2986592650413513,
-0.6209869980812073,
-0.35228291153907776,
-0.1347435563802719,
-0.14253205060958862,
-0.5397986173629761,
-0.09732145816087723,
0.08439353108406067,
0.40066319704055786,
-0.25582900643348694,
0.5735215544700623,
-0.44230276346206665,
-0.2931378483772278,
0.26293641328811646,
-0.17998772859573364,
1.0269156694412231,
0.3966098725795746,
-0.6670055389404297,
0.08179610222578049,
-0.8596605062484741,
0.12614455819129944,
0.24788209795951843,
-0.2492472529411316,
0.048857275396585464,
-0.24578934907913208,
0.1437564343214035,
0.6071407198905945,
0.3145945966243744,
-0.4167287349700928,
0.36186733841896057,
-0.5365368723869324,
0.6803028583526611,
0.4398062527179718,
0.06661073863506317,
0.4646666646003723,
-0.15104763209819794,
0.6568208336830139,
0.054830167442560196,
0.3524216115474701,
-0.20649711787700653,
-0.5168443322181702,
-0.8071745038032532,
-0.28579050302505493,
0.3647801876068115,
0.44641217589378357,
-0.693175733089447,
0.7456522583961487,
-0.04592574015259743,
-0.6139324903488159,
-0.3639336824417114,
0.26709097623825073,
0.6981780529022217,
0.31851187348365784,
0.38752928376197815,
-0.2009841352701187,
-0.8930913209915161,
-0.8157922029495239,
-0.032383549958467484,
-0.16278354823589325,
0.12633100152015686,
0.12265187501907349,
0.6918594241142273,
-0.3964286148548126,
0.9494932293891907,
-0.6437007784843445,
-0.1392688751220703,
-0.37638288736343384,
0.13435089588165283,
0.32049858570098877,
0.7647842168807983,
0.684222400188446,
-0.586112916469574,
-0.3490764796733856,
-0.3303548991680145,
-0.8336184620857239,
-0.08905773609876633,
-0.21256552636623383,
-0.21751725673675537,
0.2712877690792084,
0.7266598343849182,
-0.5014306902885437,
0.38543403148651123,
0.4707198143005371,
-0.4947121739387512,
0.4625295102596283,
-0.13580375909805298,
-0.10908202081918716,
-1.2224926948547363,
0.3605774939060211,
-0.12312179803848267,
-0.060946010053157806,
-0.5545603036880493,
0.18512433767318726,
0.18186135590076447,
-0.23359490931034088,
-0.3712700307369232,
0.582708477973938,
-0.629448413848877,
0.03175189718604088,
-0.19818219542503357,
-0.1301567405462265,
0.058695677667856216,
0.6701604127883911,
-0.054852161556482315,
0.8351870179176331,
0.626546323299408,
-0.7285641431808472,
0.24532410502433777,
0.3638021945953369,
-0.23223334550857544,
-0.2361082136631012,
-0.7075634598731995,
0.0675477534532547,
0.12977807223796844,
0.27303293347358704,
-1.0292248725891113,
-0.18522275984287262,
0.27144211530685425,
-0.715874433517456,
0.24144412577152252,
-0.3225367069244385,
-0.6778942346572876,
-0.5851761698722839,
-0.08261322230100632,
0.4331526458263397,
0.7972500920295715,
-0.5123612284660339,
0.2637016475200653,
0.3848082721233368,
-0.09871769696474075,
-0.4331280589103699,
-0.9304665327072144,
0.035732120275497437,
-0.21222171187400818,
-0.6386125683784485,
0.2366182953119278,
-0.27482157945632935,
0.09606467187404633,
-0.10294808447360992,
0.12880779802799225,
-0.03718024864792824,
0.05405227094888687,
0.21101507544517517,
0.5097169876098633,
-0.1865597665309906,
0.02927146479487419,
-0.22938720881938934,
-0.11968052387237549,
0.18636475503444672,
-0.4098038375377655,
0.6968203783035278,
-0.12120208889245987,
-0.0696067363023758,
-0.16592785716056824,
0.20025594532489777,
0.5272141098976135,
-0.611392080783844,
0.5605645775794983,
0.8354645371437073,
-0.44030749797821045,
-0.2272000014781952,
-0.5165650844573975,
-0.3109649121761322,
-0.4697076380252838,
0.5894867777824402,
-0.17248469591140747,
-0.6447533369064331,
0.6322383284568787,
0.295809805393219,
0.08976217359304428,
0.5774629712104797,
0.6475463509559631,
0.30599361658096313,
1.0058592557907104,
0.6824457049369812,
-0.002350945258513093,
0.5096089243888855,
-0.7667246460914612,
0.3379989564418793,
-0.6538053154945374,
-0.3643306493759155,
-0.5213652849197388,
-0.10404326766729355,
-0.5108045339584351,
-0.4931623041629791,
0.24399542808532715,
0.20529064536094666,
-0.24888713657855988,
0.6666504144668579,
-0.7369601726531982,
0.24700739979743958,
0.6680750250816345,
-0.07948318123817444,
-0.006481536198407412,
0.09061624854803085,
-0.07910152524709702,
0.047975439578294754,
-0.8314693570137024,
-0.3338949680328369,
1.0326874256134033,
0.3758618235588074,
0.7553955316543579,
-0.014702236279845238,
0.8921710252761841,
-0.10334974527359009,
0.08529166132211685,
-0.47969457507133484,
0.4468420147895813,
-0.05471466854214668,
-0.6811100244522095,
-0.04903782159090042,
-0.5414127707481384,
-0.7423615455627441,
0.08490824699401855,
-0.05348002165555954,
-0.6422675848007202,
0.34442630410194397,
0.19485008716583252,
-0.53792804479599,
0.19589120149612427,
-0.9127503633499146,
1.0395338535308838,
-0.20463307201862335,
-0.20557346940040588,
0.07340060919523239,
-0.7645750641822815,
0.48803654313087463,
-0.008240596391260624,
0.19769127666950226,
0.06108073145151138,
0.14146779477596283,
0.9085131883621216,
-0.45596131682395935,
0.881966233253479,
-0.2966150939464569,
0.044942114502191544,
0.37159621715545654,
-0.10109088569879532,
0.4329109191894531,
0.08637568354606628,
-0.022526228800415993,
0.32158905267715454,
0.07442416250705719,
-0.31065669655799866,
-0.3749411702156067,
0.569579541683197,
-0.7138227224349976,
-0.3968556821346283,
-0.3880119025707245,
-0.42302951216697693,
0.07828362286090851,
0.3364335000514984,
0.6020598411560059,
0.6641349792480469,
0.043789446353912354,
0.1447838842868805,
0.5457221865653992,
-0.47881996631622314,
0.7065562009811401,
0.3287162780761719,
-0.3274017870426178,
-0.4872724711894989,
0.9251934289932251,
0.047374796122312546,
0.3691064417362213,
0.009431357495486736,
0.025984233245253563,
-0.3990553021430969,
-0.2935158610343933,
-0.5605742335319519,
0.30261409282684326,
-0.709256112575531,
-0.5375005602836609,
-0.8125143647193909,
-0.4878542721271515,
-0.7123571634292603,
0.06698250025510788,
-0.3405304253101349,
-0.3027719259262085,
-0.38050374388694763,
0.0033694221638143063,
0.33534112572669983,
0.6502737998962402,
-0.09401130676269531,
0.06168873980641365,
-0.8010480403900146,
0.30451613664627075,
0.0206155925989151,
0.33802738785743713,
-0.0809132382273674,
-0.708642840385437,
-0.4864111542701721,
0.177153080701828,
-0.24387341737747192,
-0.6166284084320068,
0.5053612589836121,
0.1996859759092331,
0.5868526697158813,
0.18540357053279877,
0.012061304412782192,
0.8050774931907654,
-0.20254282653331757,
1.0075215101242065,
0.19699342548847198,
-0.892313539981842,
0.5685686469078064,
-0.022872066125273705,
0.35764673352241516,
0.44955405592918396,
0.02072225883603096,
-0.3962170481681824,
-0.5977066159248352,
-0.857276976108551,
-0.9355329275131226,
0.893455982208252,
0.37069639563560486,
0.11569301038980484,
-0.015954308211803436,
0.2649320960044861,
-0.05989469960331917,
0.2077712118625641,
-0.8797897100448608,
-0.4806779623031616,
-0.2759726047515869,
-0.2389170080423355,
-0.14974536001682281,
-0.26107344031333923,
-0.014730360358953476,
-0.4020785391330719,
0.76353520154953,
-0.032743535935878754,
0.6234672665596008,
0.28118976950645447,
-0.41438260674476624,
-0.047541964799165726,
-0.06763938814401627,
0.639886736869812,
0.5264801383018494,
-0.18559198081493378,
-0.02417978085577488,
-0.0526806116104126,
-0.3898586332798004,
0.10695773363113403,
0.438093900680542,
-0.1363716572523117,
0.22861413657665253,
0.39156413078308105,
0.8552718162536621,
0.11277125030755997,
-0.5779100656509399,
0.6462873816490173,
-0.059159234166145325,
-0.3548004627227783,
-0.47520506381988525,
0.2185089886188507,
-0.013669825159013271,
0.26620838046073914,
0.27285104990005493,
0.2852872908115387,
0.1122962012887001,
-0.45233476161956787,
0.32702162861824036,
0.3086155354976654,
-0.20364616811275482,
-0.1476944237947464,
0.9884787797927856,
0.11909367889165878,
-0.11115126311779022,
0.5944318175315857,
-0.45741790533065796,
-0.6458510160446167,
1.065059781074524,
0.6767632365226746,
0.9361296892166138,
0.10263209044933319,
-0.01597675494849682,
0.7726455330848694,
0.2935645282268524,
-0.10538247972726822,
0.24601811170578003,
0.07611040771007538,
-0.47485315799713135,
-0.28369468450546265,
-0.7167046070098877,
0.20698338747024536,
0.18349456787109375,
-0.545937716960907,
0.40967288613319397,
-0.3167271614074707,
-0.14793746173381805,
-0.126935675740242,
0.03224143758416176,
-0.7921326160430908,
0.15229934453964233,
0.34668606519699097,
0.8995304703712463,
-0.8881388902664185,
0.9273671507835388,
0.6420663595199585,
-0.9262887835502625,
-1.0044903755187988,
0.06266559660434723,
-0.06585497409105301,
-0.7312729954719543,
0.6527329683303833,
0.3219943344593048,
0.16430774331092834,
0.17866185307502747,
-0.7169460654258728,
-1.1169050931930542,
1.1395400762557983,
0.2524210810661316,
-0.30357426404953003,
-0.1792937070131302,
0.10851248353719711,
0.43852874636650085,
-0.3623809814453125,
0.38608497381210327,
0.4671226143836975,
0.3164117634296417,
-0.12576253712177277,
-0.8701759576797485,
0.22883085906505585,
-0.5038890838623047,
0.2100881040096283,
0.002249118173494935,
-0.7242221832275391,
0.9558789134025574,
-0.30069634318351746,
-0.14360535144805908,
0.22715289890766144,
0.6771456003189087,
0.3172149062156677,
0.038430020213127136,
0.3443286120891571,
0.3256623446941376,
0.6027703881263733,
0.008598397485911846,
0.8852227926254272,
-0.7299607992172241,
0.7935889363288879,
0.9312915802001953,
0.06448046863079071,
0.5075337886810303,
0.4125628173351288,
-0.17170247435569763,
0.43826133012771606,
0.705319881439209,
-0.4882204234600067,
0.42301714420318604,
0.21373142302036285,
0.0818023532629013,
-0.022827014327049255,
0.10776630789041519,
-0.707747757434845,
0.42933744192123413,
0.14197149872779846,
-0.5934494137763977,
-0.13288059830665588,
0.04334945231676102,
0.13613663613796234,
-0.2773931324481964,
0.1385820358991623,
0.6308561563491821,
0.09977643191814423,
-0.8921343684196472,
1.0735565423965454,
0.1684858649969101,
0.9391626715660095,
-0.6951081156730652,
-0.09506066143512726,
-0.37648719549179077,
0.24523630738258362,
-0.28937646746635437,
-0.43605735898017883,
0.20117969810962677,
0.10692998021841049,
-0.24258732795715332,
-0.20337329804897308,
0.55672287940979,
-0.7242240905761719,
-0.5478364825248718,
0.38903704285621643,
0.25533273816108704,
0.17483803629875183,
0.015519955195486546,
-0.8211972713470459,
0.024870319291949272,
0.34179890155792236,
-0.250362753868103,
0.15665587782859802,
0.1788642704486847,
0.10743901878595352,
0.5345015525817871,
0.7683399319648743,
0.017076820135116577,
0.24080045521259308,
-0.009745065122842789,
0.7636410593986511,
-0.6670731902122498,
-0.591250479221344,
-0.8657957911491394,
0.6378753185272217,
-0.10662507265806198,
-0.4970107674598694,
0.7404929399490356,
0.9293645620346069,
0.9771648049354553,
-0.33798331022262573,
0.936085045337677,
-0.5145092606544495,
0.18667948246002197,
-0.539871335029602,
0.7511070966720581,
-0.6525015234947205,
0.1911374032497406,
-0.16925527155399323,
-0.8489895462989807,
-0.24921384453773499,
0.5146215558052063,
-0.01623891480267048,
0.13882775604724884,
0.6652337908744812,
1.2741649150848389,
-0.16139104962348938,
-0.34967803955078125,
0.19704775512218475,
0.3124825060367584,
0.3949730396270752,
0.66684889793396,
0.5974412560462952,
-0.718758761882782,
0.8263771533966064,
-0.4980957806110382,
-0.264323890209198,
-0.31770744919776917,
-0.6023856401443481,
-0.9281707406044006,
-0.619275689125061,
-0.33253225684165955,
-0.7260717153549194,
-0.18678423762321472,
1.1882864236831665,
0.8002275824546814,
-0.7869675755500793,
-0.36891603469848633,
-0.1455632597208023,
-0.09024235606193542,
-0.21111956238746643,
-0.26975443959236145,
0.3217095136642456,
-0.6571456789970398,
-0.7464458346366882,
0.2056412547826767,
-0.05040726438164711,
0.10646753013134003,
-0.2640398144721985,
-0.16456890106201172,
-0.21299560368061066,
-0.19184014201164246,
0.37898972630500793,
0.28903859853744507,
-0.7294098138809204,
-0.02014833502471447,
0.11285136640071869,
-0.464399129152298,
0.13251692056655884,
0.7159807085990906,
-0.5934032797813416,
0.3979993462562561,
0.542357325553894,
0.35665982961654663,
0.4415447413921356,
-0.1291629672050476,
0.5540852546691895,
-0.7632092833518982,
0.47530698776245117,
0.02154240570962429,
0.45590314269065857,
0.22538217902183533,
-0.5672037601470947,
0.49679622054100037,
0.46713897585868835,
-0.5497419834136963,
-0.8581664562225342,
0.05218544602394104,
-0.7220494151115417,
-0.3330930471420288,
1.6050028800964355,
-0.05450119078159332,
-0.1615929752588272,
-0.014989558607339859,
-0.19371534883975983,
0.5436877012252808,
-0.2320711314678192,
0.5481007099151611,
0.4377550482749939,
0.04874709993600845,
0.08916990458965302,
-0.583191990852356,
0.7396073341369629,
0.32804074883461,
-0.6467428207397461,
0.08530833572149277,
0.3030471205711365,
0.5115512013435364,
0.11480266600847244,
0.5729866623878479,
-0.23852187395095825,
0.3036302328109741,
0.050487153232097626,
0.5892104506492615,
-0.2851240038871765,
-0.11073320358991623,
-0.5238853693008423,
-0.0859110876917839,
-0.015951918438076973,
-0.31089580059051514
] |
timm/vit_base_patch16_clip_224.openai | timm | "2023-11-22T16:23:52Z" | 12,399 | 1 | timm | [
"timm",
"pytorch",
"feature-extraction",
"vision",
"arxiv:2103.00020",
"arxiv:1908.04913",
"license:apache-2.0",
"region:us"
] | feature-extraction | "2022-11-01T22:01:59Z" | ---
license: apache-2.0
tags:
- feature-extraction
- timm
- vision
library_tag: timm
---
# CLIP (OpenAI model for timm)
## Model Details
The CLIP model was developed by researchers at OpenAI to learn about what contributes to robustness in computer vision tasks. The model was also developed to test the ability of models to generalize to arbitrary image classification tasks in a zero-shot manner. It was not developed for general model deployment - to deploy models like CLIP, researchers will first need to carefully study their capabilities in relation to the specific context they’re being deployed within.
This instance of the CLIP model is intended for loading in
* `timm` (https://github.com/rwightman/pytorch-image-models) and
* `OpenCLIP` (https://github.com/mlfoundations/open_clip) libraries.
Please see https://huggingface.co/openai/clip-vit-base-patch16 for use in Hugging Face Transformers.
### Model Date
January 2021
### Model Type
The model uses a ViT-B/16 Transformer architecture as an image encoder and uses a masked self-attention Transformer as a text encoder. These encoders are trained to maximize the similarity of (image, text) pairs via a contrastive loss.
The original implementation had two variants: one using a ResNet image encoder and the other using a Vision Transformer. This repository has the variant with the Vision Transformer.
### Documents
- [Blog Post](https://openai.com/blog/clip/)
- [CLIP Paper](https://arxiv.org/abs/2103.00020)
## Model Use
### Intended Use
The model is intended as a research output for research communities. We hope that this model will enable researchers to better understand and explore zero-shot, arbitrary image classification. We also hope it can be used for interdisciplinary studies of the potential impact of such models - the CLIP paper includes a discussion of potential downstream impacts to provide an example for this sort of analysis.
#### Primary intended uses
The primary intended users of these models are AI researchers.
We primarily imagine the model will be used by researchers to better understand robustness, generalization, and other capabilities, biases, and constraints of computer vision models.
### Out-of-Scope Use Cases
**Any** deployed use case of the model - whether commercial or not - is currently out of scope. Non-deployed use cases such as image search in a constrained environment, are also not recommended unless there is thorough in-domain testing of the model with a specific, fixed class taxonomy. This is because our safety assessment demonstrated a high need for task specific testing especially given the variability of CLIP’s performance with different class taxonomies. This makes untested and unconstrained deployment of the model in any use case currently potentially harmful.
Certain use cases which would fall under the domain of surveillance and facial recognition are always out-of-scope regardless of performance of the model. This is because the use of artificial intelligence for tasks such as these can be premature currently given the lack of testing norms and checks to ensure its fair use.
Since the model has not been purposefully trained in or evaluated on any languages other than English, its use should be limited to English language use cases.
## Data
The model was trained on publicly available image-caption data. This was done through a combination of crawling a handful of websites and using commonly-used pre-existing image datasets such as [YFCC100M](http://projects.dfki.uni-kl.de/yfcc100m/). A large portion of the data comes from our crawling of the internet. This means that the data is more representative of people and societies most connected to the internet which tend to skew towards more developed nations, and younger, male users.
### Data Mission Statement
Our goal with building this dataset was to test out robustness and generalizability in computer vision tasks. As a result, the focus was on gathering large quantities of data from different publicly-available internet data sources. The data was gathered in a mostly non-interventionist manner. However, we only crawled websites that had policies against excessively violent and adult images and allowed us to filter out such content. We do not intend for this dataset to be used as the basis for any commercial or deployed model and will not be releasing the dataset.
## Limitations
CLIP and our analysis of it have a number of limitations. CLIP currently struggles with respect to certain tasks such as fine grained classification and counting objects. CLIP also poses issues with regards to fairness and bias which we discuss in the paper and briefly in the next section. Additionally, our approach to testing CLIP also has an important limitation- in many cases we have used linear probes to evaluate the performance of CLIP and there is evidence suggesting that linear probes can underestimate model performance.
### Bias and Fairness
We find that the performance of CLIP - and the specific biases it exhibits - can depend significantly on class design and the choices one makes for categories to include and exclude. We tested the risk of certain kinds of denigration with CLIP by classifying images of people from [Fairface](https://arxiv.org/abs/1908.04913) into crime-related and non-human animal categories. We found significant disparities with respect to race and gender. Additionally, we found that these disparities could shift based on how the classes were constructed. (Details captured in the Broader Impacts Section in the paper).
We also tested the performance of CLIP on gender, race and age classification using the Fairface dataset (We default to using race categories as they are constructed in the Fairface dataset.) in order to assess quality of performance across different demographics. We found accuracy >96% across all races for gender classification with ‘Middle Eastern’ having the highest accuracy (98.4%) and ‘White’ having the lowest (96.5%). Additionally, CLIP averaged ~93% for racial classification and ~63% for age classification. Our use of evaluations to test for gender, race and age classification as well as denigration harms is simply to evaluate performance of the model across people and surface potential risks and not to demonstrate an endorsement/enthusiasm for such tasks.
| [
-0.551468551158905,
-0.5489229559898376,
0.1640024185180664,
0.014295113272964954,
-0.1632986068725586,
-0.1556951403617859,
0.053774889558553696,
-0.6535214185714722,
0.13078269362449646,
0.42789149284362793,
-0.30524197220802307,
-0.41719135642051697,
-0.5979346036911011,
0.08536273241043091,
-0.6001878380775452,
0.7766574621200562,
-0.11088797450065613,
0.020467648282647133,
-0.2661866247653961,
-0.3894847333431244,
-0.5761478543281555,
-0.6560847163200378,
-0.22267940640449524,
0.21626166999340057,
0.14318232238292694,
0.13388723134994507,
0.6744561195373535,
0.7859057784080505,
0.7850592732429504,
0.17184898257255554,
-0.22389905154705048,
-0.09843534231185913,
-0.4737159013748169,
-0.6230796575546265,
-0.4230513572692871,
-0.4016919434070587,
-0.34374961256980896,
0.26853588223457336,
0.5758883953094482,
0.3894657790660858,
0.012350265868008137,
0.24696411192417145,
0.02618906833231449,
0.37763604521751404,
-0.9420434236526489,
-0.13515837490558624,
-0.5171003937721252,
0.07078580558300018,
-0.36386141180992126,
0.09818441420793533,
-0.19163869321346283,
-0.24444635212421417,
0.3126879930496216,
-0.3835986256599426,
0.46270689368247986,
0.003332998836413026,
1.2206491231918335,
0.15680359303951263,
-0.2843199074268341,
0.017949426546692848,
-0.6499738097190857,
0.7601872682571411,
-0.45636671781539917,
0.26584625244140625,
0.23910629749298096,
0.4701869785785675,
0.12934549152851105,
-0.7873692512512207,
-0.5908097624778748,
-0.06465663015842438,
0.27350538969039917,
0.010666037909686565,
-0.26021525263786316,
-0.0011452122125774622,
0.3928419053554535,
0.4337632358074188,
-0.1604890376329422,
-0.07148442417383194,
-0.6767503023147583,
-0.2325606495141983,
0.6068050861358643,
0.2541694641113281,
0.4130677282810211,
-0.19847214221954346,
-0.6403670907020569,
-0.42352327704429626,
-0.589613676071167,
0.4814388155937195,
0.48833954334259033,
0.1828920543193817,
-0.20554235577583313,
0.6611456871032715,
0.049111343920230865,
0.3433929979801178,
-0.0040207053534686565,
-0.2571376860141754,
0.3008451759815216,
-0.4492400288581848,
-0.12227848917245865,
-0.292540580034256,
0.7416545748710632,
0.847059965133667,
0.22236031293869019,
0.09122736752033234,
-0.07470972836017609,
0.20435462892055511,
0.4384353756904602,
-0.8675251603126526,
-0.08796966075897217,
-0.1801287978887558,
-0.5943559408187866,
-0.3374910354614258,
0.3237724304199219,
-1.0188466310501099,
0.1021495833992958,
-0.0976957455277443,
0.705415666103363,
-0.4505675733089447,
-0.0758095532655716,
0.11713839322328568,
-0.2748546600341797,
0.29181820154190063,
0.3547130525112152,
-0.6312072277069092,
0.3997935950756073,
0.3278665244579315,
1.1141771078109741,
-0.4719618856906891,
-0.28536099195480347,
0.008134058676660061,
-0.046001847833395004,
-0.13046258687973022,
0.6678593158721924,
-0.28749164938926697,
-0.4359928369522095,
-0.044639360159635544,
0.39776793122291565,
-0.07305040955543518,
-0.6234256029129028,
0.5616030693054199,
-0.2568996846675873,
0.10969827324151993,
-0.2575393617153168,
-0.3047313690185547,
-0.6045509576797485,
0.2658829987049103,
-0.6203726530075073,
0.8766210675239563,
0.24368460476398468,
-0.7641782760620117,
0.4112565219402313,
-0.8046115636825562,
-0.06557679921388626,
-0.14627647399902344,
-0.1388973444700241,
-0.595645010471344,
-0.2678070366382599,
0.3970477879047394,
0.24404458701610565,
-0.17981849610805511,
0.33744847774505615,
-0.5741305947303772,
-0.43961912393569946,
0.18879909813404083,
-0.2746764123439789,
0.9331595301628113,
0.054832663387060165,
-0.3859797418117523,
0.06307873874902725,
-0.2753641903400421,
-0.23184213042259216,
0.274046927690506,
0.12064756453037262,
-0.24029751121997833,
-0.11053114384412766,
0.24387721717357635,
0.049830324947834015,
-0.13243010640144348,
-0.7600167393684387,
0.08175986260175705,
-0.0745701789855957,
0.46424347162246704,
0.6732020378112793,
0.11457858979701996,
0.321688175201416,
-0.5091776251792908,
0.6008124351501465,
-0.03260445594787598,
0.6498184204101562,
-0.14479726552963257,
-0.46829327940940857,
-0.4447971284389496,
-0.5148850083351135,
0.5599599480628967,
0.6200191378593445,
-0.5054020285606384,
0.1495995670557022,
-0.07030026614665985,
-0.27649959921836853,
-0.2326415777206421,
-0.23630526661872864,
0.3612394332885742,
0.6006520986557007,
0.30492058396339417,
-0.9431008696556091,
-0.4844524562358856,
-1.0448511838912964,
0.1287652999162674,
-0.04702991619706154,
-0.07529430836439133,
0.5970199704170227,
0.9114446043968201,
-0.26856401562690735,
1.1816914081573486,
-0.6758731007575989,
-0.48464855551719666,
-0.13501963019371033,
-0.10801254957914352,
-0.13908004760742188,
0.48848751187324524,
1.050186038017273,
-0.9254278540611267,
-0.19397754967212677,
-0.578804612159729,
-0.8245643973350525,
0.06295011192560196,
0.17030607163906097,
-0.18509918451309204,
0.021809261292219162,
0.16426630318164825,
-0.2746335566043854,
0.9928829669952393,
0.19486764073371887,
-0.009353131987154484,
0.685490071773529,
0.19438987970352173,
0.3181040585041046,
-0.5631000399589539,
0.37792620062828064,
0.1678401529788971,
-0.24349462985992432,
-0.4741121232509613,
0.14845962822437286,
-0.02489164099097252,
-0.4571280777454376,
-0.8789609670639038,
0.3775739073753357,
-0.08905217796564102,
-0.1036064475774765,
-0.17284159362316132,
-0.13242653012275696,
0.19092483818531036,
0.6149542927742004,
0.017105601727962494,
1.107009768486023,
0.42304977774620056,
-0.7221677899360657,
-0.07702459394931793,
0.5795184969902039,
-0.4169458746910095,
0.5863203406333923,
-0.8713604807853699,
0.0409834124147892,
-0.0386347733438015,
0.07864149659872055,
-0.4958619773387909,
-0.3826681971549988,
0.35639795660972595,
-0.3679705560207367,
0.17808596789836884,
-0.14420606195926666,
-0.3661039173603058,
-0.5240292549133301,
-0.6062530279159546,
0.7138862013816833,
0.5754876136779785,
-0.47825345396995544,
0.33981049060821533,
0.8185015916824341,
0.1989203840494156,
-0.5493436455726624,
-0.7187567949295044,
-0.014635935425758362,
-0.3623747229576111,
-0.7043771147727966,
0.5394518375396729,
-0.0023615779355168343,
-0.060620710253715515,
0.10231725126504898,
0.07368431240320206,
-0.32622411847114563,
0.05220732465386391,
0.4381524920463562,
0.5220434665679932,
-0.04313879460096359,
-0.10051719099283218,
-0.2503918409347534,
0.36086589097976685,
-0.00766362389549613,
0.20229974389076233,
0.18993692100048065,
-0.07521757483482361,
-0.4061025381088257,
-0.4687466025352478,
0.40800949931144714,
0.45812901854515076,
-0.2686719596385956,
0.480028361082077,
0.4174818992614746,
-0.29568833112716675,
0.014900227077305317,
-0.5226312875747681,
-0.0431082546710968,
-0.42382675409317017,
0.3819374740123749,
-0.051159538328647614,
-0.8329378366470337,
0.7485140562057495,
0.05247315764427185,
-0.10582040995359421,
0.5837269425392151,
0.3333539664745331,
-0.030899960547685623,
0.8227371573448181,
1.0405857563018799,
0.01291058398783207,
0.7172860503196716,
-0.6387552618980408,
0.03610430285334587,
-0.9618824124336243,
-0.29297545552253723,
-0.2959423363208771,
-0.2304336130619049,
-0.4550522267818451,
-0.445330947637558,
0.6308860778808594,
0.16156402230262756,
-0.10915329307317734,
0.4248256981372833,
-0.6403569579124451,
0.4113713800907135,
0.5742815732955933,
0.45754092931747437,
0.0017754763830453157,
-0.10274248570203781,
0.048189956694841385,
-0.23664607107639313,
-0.5740264654159546,
-0.5004824995994568,
1.1675868034362793,
0.6767429709434509,
0.7041336894035339,
-0.11298925429582596,
0.25108543038368225,
0.47973549365997314,
-0.004785838071256876,
-0.7874746918678284,
0.5171915888786316,
-0.3771533668041229,
-0.7885003089904785,
-0.14161571860313416,
-0.10636233538389206,
-0.8193634748458862,
0.06896868348121643,
-0.02018820494413376,
-0.7721185088157654,
0.5596880912780762,
0.06324588507413864,
-0.33188560605049133,
0.6191225647926331,
-0.5287017822265625,
0.9275244474411011,
-0.20320983231067657,
-0.3112468123435974,
0.0030127479694783688,
-0.7268823981285095,
0.6650845408439636,
-0.034440476447343826,
0.06350816041231155,
-0.23823563754558563,
0.0822329968214035,
1.049314022064209,
-0.5744243860244751,
0.9156849980354309,
-0.17674438655376434,
0.4339856207370758,
0.7787352204322815,
-0.176681250333786,
-0.05943053960800171,
-0.1941445916891098,
0.22665777802467346,
0.6111053228378296,
0.2605701684951782,
-0.13109149038791656,
-0.4380413889884949,
0.09231097251176834,
-0.7518733143806458,
-0.41157904267311096,
-0.3937542736530304,
-0.4733279049396515,
0.15826371312141418,
0.14296649396419525,
0.43844252824783325,
0.7225313782691956,
-0.12031484395265579,
0.11629748344421387,
0.6137219071388245,
-0.4783056974411011,
0.33290696144104004,
0.22621749341487885,
-0.34199589490890503,
-0.5597928762435913,
0.8047940135002136,
0.23764175176620483,
0.20019009709358215,
0.042555857449769974,
0.05298111215233803,
-0.22765304148197174,
-0.5173501968383789,
-0.4520101845264435,
0.08520548045635223,
-0.7184849977493286,
-0.39167320728302,
-0.4691782593727112,
-0.3372354209423065,
-0.4683248698711395,
0.008351074531674385,
-0.37229010462760925,
-0.2995094656944275,
-0.4987791180610657,
0.21316686272621155,
0.27094823122024536,
0.6268662214279175,
-0.14470478892326355,
0.3403225243091583,
-0.5954179167747498,
0.32922545075416565,
0.3062063753604889,
0.5156697034835815,
-0.03571835905313492,
-0.606605052947998,
-0.16324163973331451,
-0.012240716256201267,
-0.8720302581787109,
-0.7623971700668335,
0.40337374806404114,
0.3138802647590637,
0.5912986993789673,
0.2657921016216278,
0.2545684576034546,
0.6530448794364929,
-0.4345586597919464,
1.009799599647522,
0.16740868985652924,
-0.9565229415893555,
0.6189920902252197,
-0.3932819068431854,
0.14730854332447052,
0.7741903066635132,
0.4732832908630371,
-0.2515060007572174,
-0.1736409068107605,
-0.5272469520568848,
-0.8413016200065613,
0.772187352180481,
0.19020669162273407,
0.12382157146930695,
0.007856013253331184,
0.38852986693382263,
0.027995983138680458,
0.15313614904880524,
-0.6238220930099487,
-0.19006720185279846,
-0.4285028874874115,
0.028375383466482162,
0.32483136653900146,
-0.3654245436191559,
-0.14424903690814972,
-0.3172280192375183,
0.3135884404182434,
-0.07364067435264587,
0.6102917194366455,
0.5393996834754944,
-0.1852092742919922,
0.032382626086473465,
-0.10189242660999298,
0.5851710438728333,
0.639042317867279,
-0.408812940120697,
-0.19276531040668488,
0.22553113102912903,
-0.838384747505188,
0.06338920444250107,
-0.17420336604118347,
-0.4946657717227936,
-0.00831305980682373,
0.24815577268600464,
0.8048646450042725,
0.17611947655677795,
-0.7854247093200684,
1.0165717601776123,
-0.028034064918756485,
-0.473635196685791,
-0.2954501807689667,
0.004592826124280691,
-0.6427575945854187,
0.16442140936851501,
0.33964911103248596,
0.22962020337581635,
0.3955857753753662,
-0.5828520655632019,
0.4785265028476715,
0.4484202563762665,
-0.3687796890735626,
-0.41525518894195557,
0.7610175609588623,
0.18633925914764404,
-0.21101510524749756,
0.4710949659347534,
-0.18402251601219177,
-0.8830568194389343,
0.7590652108192444,
0.3328106701374054,
0.7681394219398499,
-0.028826460242271423,
0.16627417504787445,
0.4770243465900421,
0.2589465379714966,
-0.3002718389034271,
0.010852710343897343,
0.0643138736486435,
-0.5680288672447205,
-0.22989819943904877,
-0.360575795173645,
-0.6639269590377808,
0.12421686202287674,
-0.9179458618164062,
0.4294426739215851,
-0.6030134558677673,
-0.4824342429637909,
-0.18437275290489197,
-0.3008362948894501,
-0.6527851819992065,
0.07993640750646591,
0.05052545294165611,
1.189505696296692,
-0.8160764575004578,
0.4348476827144623,
0.44978275895118713,
-0.6281558275222778,
-0.6994616389274597,
-0.061350420117378235,
0.03834818676114082,
-0.6212875247001648,
0.6694821119308472,
0.4818805158138275,
-0.02034061774611473,
-0.45249736309051514,
-0.9415349364280701,
-0.87282395362854,
1.0400246381759644,
0.46386754512786865,
-0.2534213662147522,
-0.10568346828222275,
-0.011358199641108513,
0.35136398673057556,
-0.35977935791015625,
0.28644269704818726,
0.31559669971466064,
-0.003102201735600829,
0.3490017354488373,
-1.209853172302246,
-0.12629294395446777,
-0.10960623621940613,
0.23759277164936066,
0.1265975534915924,
-0.8013090491294861,
0.9573870301246643,
-0.23997792601585388,
-0.4790249466896057,
0.0919872298836708,
0.4011881947517395,
-0.0968201607465744,
0.4363667666912079,
0.4850837290287018,
0.679358184337616,
0.3581600487232208,
0.024499433115124702,
1.083533763885498,
-0.01549644023180008,
0.4413731098175049,
0.9320199489593506,
-0.19434255361557007,
0.8751709461212158,
0.3234706223011017,
-0.41818931698799133,
0.3530292510986328,
0.4257575571537018,
-0.6127142906188965,
0.7574321031570435,
-0.02207109145820141,
0.07669922709465027,
0.02500138059258461,
-0.5077993869781494,
-0.2144012153148651,
0.707646906375885,
-0.00029573109350167215,
-0.38477247953414917,
-0.14439252018928528,
0.4277467429637909,
-0.18277607858181,
-0.01319115050137043,
-0.40967652201652527,
0.43002206087112427,
-0.11159056425094604,
-0.3059580326080322,
0.32136020064353943,
0.04858877882361412,
0.9012247920036316,
-0.4212452471256256,
-0.12543588876724243,
0.10258033126592636,
0.16232022643089294,
-0.09991205483675003,
-0.9072917103767395,
0.6865591406822205,
0.1446325182914734,
-0.143693208694458,
-0.019780881702899933,
0.7468239068984985,
-0.019511081278324127,
-0.444273442029953,
0.2099897861480713,
0.017007887363433838,
0.35692718625068665,
-0.15110579133033752,
-0.5827919244766235,
0.21847239136695862,
0.033974166959524155,
0.1105666533112526,
0.42214614152908325,
0.014402458444237709,
-0.18960191309452057,
0.6625646352767944,
0.3657623827457428,
-0.08099070936441422,
0.019246596843004227,
-0.26986145973205566,
1.0473414659500122,
-0.5482195019721985,
-0.38161635398864746,
-0.7093335390090942,
0.39909040927886963,
-0.030118364840745926,
-0.3495362401008606,
0.6762340068817139,
0.5745632648468018,
1.0604418516159058,
-0.04384899511933327,
0.5545415282249451,
-0.2884029150009155,
0.5513522028923035,
-0.3277764618396759,
0.49187546968460083,
-0.4975174069404602,
-0.0658753290772438,
-0.42409586906433105,
-0.6390631794929504,
-0.23323115706443787,
0.5337895750999451,
-0.3052220344543457,
-0.04108627513051033,
0.51756352186203,
0.6224151253700256,
-0.1665828377008438,
-0.028788777068257332,
0.24343004822731018,
-0.40973806381225586,
0.2632426619529724,
0.49504196643829346,
0.6571853756904602,
-0.693831205368042,
0.6584432721138,
-0.6671460270881653,
-0.30168217420578003,
-0.19519223272800446,
-0.8281669020652771,
-1.0892438888549805,
-0.4537526071071625,
-0.4595155715942383,
-0.1295941025018692,
-0.003129279240965843,
0.6159471869468689,
0.8798057436943054,
-0.6881933212280273,
-0.1546354442834854,
0.3256438374519348,
-0.07697346061468124,
0.025241903960704803,
-0.2499152421951294,
0.29306545853614807,
0.14346832036972046,
-0.5395873785018921,
-0.14137041568756104,
0.1328173726797104,
0.35885143280029297,
-0.22699277102947235,
0.19229134917259216,
-0.1700981855392456,
-0.12287990003824234,
0.4122970998287201,
0.4978716969490051,
-0.6636313199996948,
-0.47562533617019653,
0.1593574434518814,
0.1183510348200798,
0.3023459315299988,
0.7170827388763428,
-0.6959444284439087,
0.42064568400382996,
0.24414515495300293,
0.5748443007469177,
0.5650089383125305,
0.2292765974998474,
0.3625502586364746,
-0.5047249794006348,
0.20063798129558563,
0.2439311146736145,
0.3408302366733551,
0.3060266673564911,
-0.38191524147987366,
0.6452281475067139,
0.5084529519081116,
-0.6292874813079834,
-1.002713918685913,
0.06319421529769897,
-1.0575238466262817,
-0.08693912625312805,
0.7906058430671692,
-0.4424149692058563,
-0.5710217952728271,
0.08641209453344345,
-0.2714313864707947,
0.2562609314918518,
-0.3904914855957031,
0.7643682956695557,
0.4056457281112671,
-0.0971648320555687,
-0.4463093876838684,
-0.6519904136657715,
0.20398056507110596,
0.05265330150723457,
-0.5971720218658447,
-0.3486405313014984,
0.3217727243900299,
0.517427921295166,
0.3117635250091553,
0.40643617510795593,
-0.402666300535202,
0.3757146894931793,
-0.025139467790722847,
0.2670392394065857,
-0.3028455972671509,
-0.3299700617790222,
-0.5611198544502258,
0.30735763907432556,
-0.2490592896938324,
-0.6138878464698792
] |
bigscience/bloomz-7b1 | bigscience | "2023-05-27T17:25:52Z" | 12,331 | 114 | transformers | [
"transformers",
"pytorch",
"bloom",
"text-generation",
"ak",
"ar",
"as",
"bm",
"bn",
"ca",
"code",
"en",
"es",
"eu",
"fon",
"fr",
"gu",
"hi",
"id",
"ig",
"ki",
"kn",
"lg",
"ln",
"ml",
"mr",
"ne",
"nso",
"ny",
"or",
"pa",
"pt",
"rn",
"rw",
"sn",
"st",
"sw",
"ta",
"te",
"tn",
"ts",
"tum",
"tw",
"ur",
"vi",
"wo",
"xh",
"yo",
"zh",
"zu",
"dataset:bigscience/xP3",
"arxiv:2211.01786",
"license:bigscience-bloom-rail-1.0",
"model-index",
"endpoints_compatible",
"has_space",
"text-generation-inference",
"region:us"
] | text-generation | "2022-09-27T09:00:57Z" | ---
datasets:
- bigscience/xP3
license: bigscience-bloom-rail-1.0
language:
- ak
- ar
- as
- bm
- bn
- ca
- code
- en
- es
- eu
- fon
- fr
- gu
- hi
- id
- ig
- ki
- kn
- lg
- ln
- ml
- mr
- ne
- nso
- ny
- or
- pa
- pt
- rn
- rw
- sn
- st
- sw
- ta
- te
- tn
- ts
- tum
- tw
- ur
- vi
- wo
- xh
- yo
- zh
- zu
programming_language:
- C
- C++
- C#
- Go
- Java
- JavaScript
- Lua
- PHP
- Python
- Ruby
- Rust
- Scala
- TypeScript
pipeline_tag: text-generation
widget:
- text: "一个传奇的开端,一个不灭的神话,这不仅仅是一部电影,而是作为一个走进新时代的标签,永远彪炳史册。Would you rate the previous review as positive, neutral or negative?"
example_title: "zh-en sentiment"
- text: "一个传奇的开端,一个不灭的神话,这不仅仅是一部电影,而是作为一个走进新时代的标签,永远彪炳史册。你认为这句话的立场是赞扬、中立还是批评?"
example_title: "zh-zh sentiment"
- text: "Suggest at least five related search terms to \"Mạng neural nhân tạo\"."
example_title: "vi-en query"
- text: "Proposez au moins cinq mots clés concernant «Réseau de neurones artificiels»."
example_title: "fr-fr query"
- text: "Explain in a sentence in Telugu what is backpropagation in neural networks."
example_title: "te-en qa"
- text: "Why is the sky blue?"
example_title: "en-en qa"
- text: "Write a fairy tale about a troll saving a princess from a dangerous dragon. The fairy tale is a masterpiece that has achieved praise worldwide and its moral is \"Heroes Come in All Shapes and Sizes\". Story (in Spanish):"
example_title: "es-en fable"
- text: "Write a fable about wood elves living in a forest that is suddenly invaded by ogres. The fable is a masterpiece that has achieved praise worldwide and its moral is \"Violence is the last refuge of the incompetent\". Fable (in Hindi):"
example_title: "hi-en fable"
model-index:
- name: bloomz-7b1
results:
- task:
type: Coreference resolution
dataset:
type: winogrande
name: Winogrande XL (xl)
config: xl
split: validation
revision: a80f460359d1e9a67c006011c94de42a8759430c
metrics:
- type: Accuracy
value: 55.8
- task:
type: Coreference resolution
dataset:
type: Muennighoff/xwinograd
name: XWinograd (en)
config: en
split: test
revision: 9dd5ea5505fad86b7bedad667955577815300cee
metrics:
- type: Accuracy
value: 66.02
- task:
type: Coreference resolution
dataset:
type: Muennighoff/xwinograd
name: XWinograd (fr)
config: fr
split: test
revision: 9dd5ea5505fad86b7bedad667955577815300cee
metrics:
- type: Accuracy
value: 57.83
- task:
type: Coreference resolution
dataset:
type: Muennighoff/xwinograd
name: XWinograd (jp)
config: jp
split: test
revision: 9dd5ea5505fad86b7bedad667955577815300cee
metrics:
- type: Accuracy
value: 52.87
- task:
type: Coreference resolution
dataset:
type: Muennighoff/xwinograd
name: XWinograd (pt)
config: pt
split: test
revision: 9dd5ea5505fad86b7bedad667955577815300cee
metrics:
- type: Accuracy
value: 57.79
- task:
type: Coreference resolution
dataset:
type: Muennighoff/xwinograd
name: XWinograd (ru)
config: ru
split: test
revision: 9dd5ea5505fad86b7bedad667955577815300cee
metrics:
- type: Accuracy
value: 54.92
- task:
type: Coreference resolution
dataset:
type: Muennighoff/xwinograd
name: XWinograd (zh)
config: zh
split: test
revision: 9dd5ea5505fad86b7bedad667955577815300cee
metrics:
- type: Accuracy
value: 63.69
- task:
type: Natural language inference
dataset:
type: anli
name: ANLI (r1)
config: r1
split: validation
revision: 9dbd830a06fea8b1c49d6e5ef2004a08d9f45094
metrics:
- type: Accuracy
value: 42.1
- task:
type: Natural language inference
dataset:
type: anli
name: ANLI (r2)
config: r2
split: validation
revision: 9dbd830a06fea8b1c49d6e5ef2004a08d9f45094
metrics:
- type: Accuracy
value: 39.5
- task:
type: Natural language inference
dataset:
type: anli
name: ANLI (r3)
config: r3
split: validation
revision: 9dbd830a06fea8b1c49d6e5ef2004a08d9f45094
metrics:
- type: Accuracy
value: 41.0
- task:
type: Natural language inference
dataset:
type: super_glue
name: SuperGLUE (cb)
config: cb
split: validation
revision: 9e12063561e7e6c79099feb6d5a493142584e9e2
metrics:
- type: Accuracy
value: 80.36
- task:
type: Natural language inference
dataset:
type: super_glue
name: SuperGLUE (rte)
config: rte
split: validation
revision: 9e12063561e7e6c79099feb6d5a493142584e9e2
metrics:
- type: Accuracy
value: 84.12
- task:
type: Natural language inference
dataset:
type: xnli
name: XNLI (ar)
config: ar
split: validation
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
metrics:
- type: Accuracy
value: 53.25
- task:
type: Natural language inference
dataset:
type: xnli
name: XNLI (bg)
config: bg
split: validation
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
metrics:
- type: Accuracy
value: 43.61
- task:
type: Natural language inference
dataset:
type: xnli
name: XNLI (de)
config: de
split: validation
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
metrics:
- type: Accuracy
value: 46.83
- task:
type: Natural language inference
dataset:
type: xnli
name: XNLI (el)
config: el
split: validation
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
metrics:
- type: Accuracy
value: 41.53
- task:
type: Natural language inference
dataset:
type: xnli
name: XNLI (en)
config: en
split: validation
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
metrics:
- type: Accuracy
value: 59.68
- task:
type: Natural language inference
dataset:
type: xnli
name: XNLI (es)
config: es
split: validation
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
metrics:
- type: Accuracy
value: 55.1
- task:
type: Natural language inference
dataset:
type: xnli
name: XNLI (fr)
config: fr
split: validation
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
metrics:
- type: Accuracy
value: 55.26
- task:
type: Natural language inference
dataset:
type: xnli
name: XNLI (hi)
config: hi
split: validation
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
metrics:
- type: Accuracy
value: 50.88
- task:
type: Natural language inference
dataset:
type: xnli
name: XNLI (ru)
config: ru
split: validation
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
metrics:
- type: Accuracy
value: 47.75
- task:
type: Natural language inference
dataset:
type: xnli
name: XNLI (sw)
config: sw
split: validation
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
metrics:
- type: Accuracy
value: 46.63
- task:
type: Natural language inference
dataset:
type: xnli
name: XNLI (th)
config: th
split: validation
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
metrics:
- type: Accuracy
value: 40.12
- task:
type: Natural language inference
dataset:
type: xnli
name: XNLI (tr)
config: tr
split: validation
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
metrics:
- type: Accuracy
value: 37.55
- task:
type: Natural language inference
dataset:
type: xnli
name: XNLI (ur)
config: ur
split: validation
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
metrics:
- type: Accuracy
value: 46.51
- task:
type: Natural language inference
dataset:
type: xnli
name: XNLI (vi)
config: vi
split: validation
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
metrics:
- type: Accuracy
value: 52.93
- task:
type: Natural language inference
dataset:
type: xnli
name: XNLI (zh)
config: zh
split: validation
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
metrics:
- type: Accuracy
value: 53.61
- task:
type: Program synthesis
dataset:
type: openai_humaneval
name: HumanEval
config: None
split: test
revision: e8dc562f5de170c54b5481011dd9f4fa04845771
metrics:
- type: Pass@1
value: 8.06
- type: Pass@10
value: 15.03
- type: Pass@100
value: 27.49
- task:
type: Sentence completion
dataset:
type: story_cloze
name: StoryCloze (2016)
config: "2016"
split: validation
revision: e724c6f8cdf7c7a2fb229d862226e15b023ee4db
metrics:
- type: Accuracy
value: 90.43
- task:
type: Sentence completion
dataset:
type: super_glue
name: SuperGLUE (copa)
config: copa
split: validation
revision: 9e12063561e7e6c79099feb6d5a493142584e9e2
metrics:
- type: Accuracy
value: 86.0
- task:
type: Sentence completion
dataset:
type: xcopa
name: XCOPA (et)
config: et
split: validation
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
metrics:
- type: Accuracy
value: 50.0
- task:
type: Sentence completion
dataset:
type: xcopa
name: XCOPA (ht)
config: ht
split: validation
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
metrics:
- type: Accuracy
value: 54.0
- task:
type: Sentence completion
dataset:
type: xcopa
name: XCOPA (id)
config: id
split: validation
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
metrics:
- type: Accuracy
value: 76.0
- task:
type: Sentence completion
dataset:
type: xcopa
name: XCOPA (it)
config: it
split: validation
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
metrics:
- type: Accuracy
value: 61.0
- task:
type: Sentence completion
dataset:
type: xcopa
name: XCOPA (qu)
config: qu
split: validation
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
metrics:
- type: Accuracy
value: 60.0
- task:
type: Sentence completion
dataset:
type: xcopa
name: XCOPA (sw)
config: sw
split: validation
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
metrics:
- type: Accuracy
value: 63.0
- task:
type: Sentence completion
dataset:
type: xcopa
name: XCOPA (ta)
config: ta
split: validation
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
metrics:
- type: Accuracy
value: 64.0
- task:
type: Sentence completion
dataset:
type: xcopa
name: XCOPA (th)
config: th
split: validation
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
metrics:
- type: Accuracy
value: 57.0
- task:
type: Sentence completion
dataset:
type: xcopa
name: XCOPA (tr)
config: tr
split: validation
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
metrics:
- type: Accuracy
value: 53.0
- task:
type: Sentence completion
dataset:
type: xcopa
name: XCOPA (vi)
config: vi
split: validation
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
metrics:
- type: Accuracy
value: 79.0
- task:
type: Sentence completion
dataset:
type: xcopa
name: XCOPA (zh)
config: zh
split: validation
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
metrics:
- type: Accuracy
value: 81.0
- task:
type: Sentence completion
dataset:
type: Muennighoff/xstory_cloze
name: XStoryCloze (ar)
config: ar
split: validation
revision: 8bb76e594b68147f1a430e86829d07189622b90d
metrics:
- type: Accuracy
value: 83.26
- task:
type: Sentence completion
dataset:
type: Muennighoff/xstory_cloze
name: XStoryCloze (es)
config: es
split: validation
revision: 8bb76e594b68147f1a430e86829d07189622b90d
metrics:
- type: Accuracy
value: 88.95
- task:
type: Sentence completion
dataset:
type: Muennighoff/xstory_cloze
name: XStoryCloze (eu)
config: eu
split: validation
revision: 8bb76e594b68147f1a430e86829d07189622b90d
metrics:
- type: Accuracy
value: 73.33
- task:
type: Sentence completion
dataset:
type: Muennighoff/xstory_cloze
name: XStoryCloze (hi)
config: hi
split: validation
revision: 8bb76e594b68147f1a430e86829d07189622b90d
metrics:
- type: Accuracy
value: 80.61
- task:
type: Sentence completion
dataset:
type: Muennighoff/xstory_cloze
name: XStoryCloze (id)
config: id
split: validation
revision: 8bb76e594b68147f1a430e86829d07189622b90d
metrics:
- type: Accuracy
value: 84.25
- task:
type: Sentence completion
dataset:
type: Muennighoff/xstory_cloze
name: XStoryCloze (my)
config: my
split: validation
revision: 8bb76e594b68147f1a430e86829d07189622b90d
metrics:
- type: Accuracy
value: 52.55
- task:
type: Sentence completion
dataset:
type: Muennighoff/xstory_cloze
name: XStoryCloze (ru)
config: ru
split: validation
revision: 8bb76e594b68147f1a430e86829d07189622b90d
metrics:
- type: Accuracy
value: 65.32
- task:
type: Sentence completion
dataset:
type: Muennighoff/xstory_cloze
name: XStoryCloze (sw)
config: sw
split: validation
revision: 8bb76e594b68147f1a430e86829d07189622b90d
metrics:
- type: Accuracy
value: 71.67
- task:
type: Sentence completion
dataset:
type: Muennighoff/xstory_cloze
name: XStoryCloze (te)
config: te
split: validation
revision: 8bb76e594b68147f1a430e86829d07189622b90d
metrics:
- type: Accuracy
value: 74.72
- task:
type: Sentence completion
dataset:
type: Muennighoff/xstory_cloze
name: XStoryCloze (zh)
config: zh
split: validation
revision: 8bb76e594b68147f1a430e86829d07189622b90d
metrics:
- type: Accuracy
value: 85.37
---
![xmtf](https://github.com/bigscience-workshop/xmtf/blob/master/xmtf_banner.png?raw=true)
# Table of Contents
1. [Model Summary](#model-summary)
2. [Use](#use)
3. [Limitations](#limitations)
4. [Training](#training)
5. [Evaluation](#evaluation)
7. [Citation](#citation)
# Model Summary
> We present BLOOMZ & mT0, a family of models capable of following human instructions in dozens of languages zero-shot. We finetune BLOOM & mT5 pretrained multilingual language models on our crosslingual task mixture (xP3) and find the resulting models capable of crosslingual generalization to unseen tasks & languages.
- **Repository:** [bigscience-workshop/xmtf](https://github.com/bigscience-workshop/xmtf)
- **Paper:** [Crosslingual Generalization through Multitask Finetuning](https://arxiv.org/abs/2211.01786)
- **Point of Contact:** [Niklas Muennighoff](mailto:niklas@hf.co)
- **Languages:** Refer to [bloom](https://huggingface.co/bigscience/bloom) for pretraining & [xP3](https://huggingface.co/datasets/bigscience/xP3) for finetuning language proportions. It understands both pretraining & finetuning languages.
- **BLOOMZ & mT0 Model Family:**
<div class="max-w-full overflow-auto">
<table>
<tr>
<th colspan="12">Multitask finetuned on <a style="font-weight:bold" href=https://huggingface.co/datasets/bigscience/xP3>xP3</a>. Recommended for prompting in English.
</tr>
<tr>
<td>Parameters</td>
<td>300M</td>
<td>580M</td>
<td>1.2B</td>
<td>3.7B</td>
<td>13B</td>
<td>560M</td>
<td>1.1B</td>
<td>1.7B</td>
<td>3B</td>
<td>7.1B</td>
<td>176B</td>
</tr>
<tr>
<td>Finetuned Model</td>
<td><a href=https://huggingface.co/bigscience/mt0-small>mt0-small</a></td>
<td><a href=https://huggingface.co/bigscience/mt0-base>mt0-base</a></td>
<td><a href=https://huggingface.co/bigscience/mt0-large>mt0-large</a></td>
<td><a href=https://huggingface.co/bigscience/mt0-xl>mt0-xl</a></td>
<td><a href=https://huggingface.co/bigscience/mt0-xxl>mt0-xxl</a></td>
<td><a href=https://huggingface.co/bigscience/bloomz-560m>bloomz-560m</a></td>
<td><a href=https://huggingface.co/bigscience/bloomz-1b1>bloomz-1b1</a></td>
<td><a href=https://huggingface.co/bigscience/bloomz-1b7>bloomz-1b7</a></td>
<td><a href=https://huggingface.co/bigscience/bloomz-3b>bloomz-3b</a></td>
<td><a href=https://huggingface.co/bigscience/bloomz-7b1>bloomz-7b1</a></td>
<td><a href=https://huggingface.co/bigscience/bloomz>bloomz</a></td>
</tr>
</tr>
<tr>
<th colspan="12">Multitask finetuned on <a style="font-weight:bold" href=https://huggingface.co/datasets/bigscience/xP3mt>xP3mt</a>. Recommended for prompting in non-English.</th>
</tr>
<tr>
<td>Finetuned Model</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><a href=https://huggingface.co/bigscience/mt0-xxl-mt>mt0-xxl-mt</a></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><a href=https://huggingface.co/bigscience/bloomz-7b1-mt>bloomz-7b1-mt</a></td>
<td><a href=https://huggingface.co/bigscience/bloomz-mt>bloomz-mt</a></td>
</tr>
<th colspan="12">Multitask finetuned on <a style="font-weight:bold" href=https://huggingface.co/datasets/Muennighoff/P3>P3</a>. Released for research purposes only. Strictly inferior to above models!</th>
</tr>
<tr>
<td>Finetuned Model</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><a href=https://huggingface.co/bigscience/mt0-xxl-p3>mt0-xxl-p3</a></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><a href=https://huggingface.co/bigscience/bloomz-7b1-p3>bloomz-7b1-p3</a></td>
<td><a href=https://huggingface.co/bigscience/bloomz-p3>bloomz-p3</a></td>
</tr>
<th colspan="12">Original pretrained checkpoints. Not recommended.</th>
<tr>
<td>Pretrained Model</td>
<td><a href=https://huggingface.co/google/mt5-small>mt5-small</a></td>
<td><a href=https://huggingface.co/google/mt5-base>mt5-base</a></td>
<td><a href=https://huggingface.co/google/mt5-large>mt5-large</a></td>
<td><a href=https://huggingface.co/google/mt5-xl>mt5-xl</a></td>
<td><a href=https://huggingface.co/google/mt5-xxl>mt5-xxl</a></td>
<td><a href=https://huggingface.co/bigscience/bloom-560m>bloom-560m</a></td>
<td><a href=https://huggingface.co/bigscience/bloom-1b1>bloom-1b1</a></td>
<td><a href=https://huggingface.co/bigscience/bloom-1b7>bloom-1b7</a></td>
<td><a href=https://huggingface.co/bigscience/bloom-3b>bloom-3b</a></td>
<td><a href=https://huggingface.co/bigscience/bloom-7b1>bloom-7b1</a></td>
<td><a href=https://huggingface.co/bigscience/bloom>bloom</a></td>
</tr>
</table>
</div>
# Use
## Intended use
We recommend using the model to perform tasks expressed in natural language. For example, given the prompt "*Translate to English: Je t’aime.*", the model will most likely answer "*I love you.*". Some prompt ideas from our paper:
- 一个传奇的开端,一个不灭的神话,这不仅仅是一部电影,而是作为一个走进新时代的标签,永远彪炳史册。你认为这句话的立场是赞扬、中立还是批评?
- Suggest at least five related search terms to "Mạng neural nhân tạo".
- Write a fairy tale about a troll saving a princess from a dangerous dragon. The fairy tale is a masterpiece that has achieved praise worldwide and its moral is "Heroes Come in All Shapes and Sizes". Story (in Spanish):
- Explain in a sentence in Telugu what is backpropagation in neural networks.
**Feel free to share your generations in the Community tab!**
## How to use
### CPU
<details>
<summary> Click to expand </summary>
```python
# pip install -q transformers
from transformers import AutoModelForCausalLM, AutoTokenizer
checkpoint = "bigscience/bloomz-7b1"
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
model = AutoModelForCausalLM.from_pretrained(checkpoint)
inputs = tokenizer.encode("Translate to English: Je t’aime.", return_tensors="pt")
outputs = model.generate(inputs)
print(tokenizer.decode(outputs[0]))
```
</details>
### GPU
<details>
<summary> Click to expand </summary>
```python
# pip install -q transformers accelerate
from transformers import AutoModelForCausalLM, AutoTokenizer
checkpoint = "bigscience/bloomz-7b1"
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
model = AutoModelForCausalLM.from_pretrained(checkpoint, torch_dtype="auto", device_map="auto")
inputs = tokenizer.encode("Translate to English: Je t’aime.", return_tensors="pt").to("cuda")
outputs = model.generate(inputs)
print(tokenizer.decode(outputs[0]))
```
</details>
### GPU in 8bit
<details>
<summary> Click to expand </summary>
```python
# pip install -q transformers accelerate bitsandbytes
from transformers import AutoModelForCausalLM, AutoTokenizer
checkpoint = "bigscience/bloomz-7b1"
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
model = AutoModelForCausalLM.from_pretrained(checkpoint, device_map="auto", load_in_8bit=True)
inputs = tokenizer.encode("Translate to English: Je t’aime.", return_tensors="pt").to("cuda")
outputs = model.generate(inputs)
print(tokenizer.decode(outputs[0]))
```
</details>
<!-- Necessary for whitespace -->
###
# Limitations
**Prompt Engineering:** The performance may vary depending on the prompt. For BLOOMZ models, we recommend making it very clear when the input stops to avoid the model trying to continue it. For example, the prompt "*Translate to English: Je t'aime*" without the full stop (.) at the end, may result in the model trying to continue the French sentence. Better prompts are e.g. "*Translate to English: Je t'aime.*", "*Translate to English: Je t'aime. Translation:*" "*What is "Je t'aime." in English?*", where it is clear for the model when it should answer. Further, we recommend providing the model as much context as possible. For example, if you want it to answer in Telugu, then tell the model, e.g. "*Explain in a sentence in Telugu what is backpropagation in neural networks.*".
# Training
## Model
- **Architecture:** Same as [bloom-7b1](https://huggingface.co/bigscience/bloom-7b1), also refer to the `config.json` file
- **Finetuning steps:** 1000
- **Finetuning tokens:** 4.19 billion
- **Finetuning layout:** 1x pipeline parallel, 1x tensor parallel, 64x data parallel
- **Precision:** float16
## Hardware
- **CPUs:** AMD CPUs with 512GB memory per node
- **GPUs:** 64 A100 80GB GPUs with 8 GPUs per node (8 nodes) using NVLink 4 inter-gpu connects, 4 OmniPath links
- **Communication:** NCCL-communications network with a fully dedicated subnet
## Software
- **Orchestration:** [Megatron-DeepSpeed](https://github.com/bigscience-workshop/Megatron-DeepSpeed)
- **Optimizer & parallelism:** [DeepSpeed](https://github.com/microsoft/DeepSpeed)
- **Neural networks:** [PyTorch](https://github.com/pytorch/pytorch) (pytorch-1.11 w/ CUDA-11.5)
- **FP16 if applicable:** [apex](https://github.com/NVIDIA/apex)
# Evaluation
We refer to Table 7 from our [paper](https://arxiv.org/abs/2211.01786) & [bigscience/evaluation-results](https://huggingface.co/datasets/bigscience/evaluation-results) for zero-shot results on unseen tasks. The sidebar reports zero-shot performance of the best prompt per dataset config.
# Citation
```bibtex
@article{muennighoff2022crosslingual,
title={Crosslingual generalization through multitask finetuning},
author={Muennighoff, Niklas and Wang, Thomas and Sutawika, Lintang and Roberts, Adam and Biderman, Stella and Scao, Teven Le and Bari, M Saiful and Shen, Sheng and Yong, Zheng-Xin and Schoelkopf, Hailey and others},
journal={arXiv preprint arXiv:2211.01786},
year={2022}
}
``` | [
-0.4320788085460663,
-0.5826815366744995,
0.31034591794013977,
0.4061148464679718,
-0.08221865445375443,
-0.083339162170887,
-0.3376091420650482,
-0.3427135646343231,
0.4282948672771454,
-0.16608811914920807,
-0.9314522743225098,
-0.5422830581665039,
-0.5529735684394836,
0.1539079248905182,
0.007874132134020329,
0.8009865283966064,
-0.1290319263935089,
0.16251154243946075,
0.033747751265764236,
-0.04544232413172722,
-0.2964347302913666,
-0.4048074781894684,
-0.7552162408828735,
-0.6092990636825562,
0.5273628830909729,
0.17282435297966003,
0.49856895208358765,
0.5291704535484314,
0.3178980350494385,
0.386862576007843,
-0.3399379253387451,
0.07387225329875946,
-0.22779050469398499,
-0.133835569024086,
0.025844795629382133,
-0.3901897966861725,
-0.741934061050415,
-0.07826603204011917,
0.5952368378639221,
0.6044488549232483,
0.19536107778549194,
0.29617753624916077,
0.31712013483047485,
0.5359553694725037,
-0.4668941795825958,
0.3780979812145233,
-0.0476122722029686,
0.4005485475063324,
-0.17859824001789093,
0.05321411043405533,
-0.15529628098011017,
-0.32167869806289673,
-0.04487692192196846,
-0.7999246120452881,
0.20448990166187286,
0.13073913753032684,
1.3591375350952148,
0.02150317281484604,
0.05250290036201477,
0.061428043991327286,
-0.33683663606643677,
1.0300092697143555,
-0.8996391892433167,
0.40854087471961975,
0.41577911376953125,
-0.04271136596798897,
0.008862501941621304,
-0.6195499300956726,
-0.8097094893455505,
-0.06630606204271317,
-0.33709606528282166,
0.4292672872543335,
-0.2507425844669342,
-0.16359908878803253,
0.26154953241348267,
0.5228674411773682,
-0.7096049785614014,
0.06774154305458069,
-0.3527910113334656,
-0.23695021867752075,
0.568523108959198,
0.20242275297641754,
0.5829749703407288,
-0.3139248192310333,
-0.26299285888671875,
-0.4380112886428833,
-0.46857354044914246,
0.14743684232234955,
0.16476920247077942,
0.5524206161499023,
-0.6610246896743774,
0.40303680300712585,
-0.0880262553691864,
0.6088176369667053,
0.30230844020843506,
-0.0036360498052090406,
0.7782269716262817,
-0.4842090904712677,
-0.38451194763183594,
-0.25058382749557495,
1.2114958763122559,
0.21511653065681458,
0.047234244644641876,
-0.09901022911071777,
0.1145830750465393,
-0.19569766521453857,
-0.006275806110352278,
-0.9715015292167664,
-0.06158193200826645,
0.30436134338378906,
-0.5811857581138611,
-0.34429994225502014,
-0.10887220501899719,
-1.0096544027328491,
0.11241045594215393,
-0.22249476611614227,
0.7014216184616089,
-0.5911679863929749,
-0.3766172230243683,
0.21910890936851501,
0.01293900515884161,
0.21214400231838226,
0.1653989553451538,
-0.9614160656929016,
0.17982251942157745,
0.3146027624607086,
0.9289447069168091,
-0.14952287077903748,
-0.5890910625457764,
0.030825870111584663,
0.07250937074422836,
-0.15869206190109253,
0.5300825238227844,
-0.16698703169822693,
-0.3978019058704376,
-0.3268274664878845,
0.32038116455078125,
-0.4423101246356964,
-0.0968455821275711,
0.5748398303985596,
-0.10992015898227692,
0.6193103194236755,
-0.5878870487213135,
-0.3456495404243469,
-0.20859937369823456,
0.3006722927093506,
-0.5330538749694824,
1.08128821849823,
0.21363544464111328,
-0.9275643825531006,
0.1759527176618576,
-0.9776918292045593,
-0.23875924944877625,
-0.20136287808418274,
-0.017193691805005074,
-0.6969619989395142,
-0.37128493189811707,
0.45011189579963684,
0.511581301689148,
-0.2344895601272583,
-0.2670956254005432,
-0.30390146374702454,
-0.02172410860657692,
-0.03221643716096878,
-0.1571243703365326,
1.065639853477478,
0.263615220785141,
-0.6381155848503113,
0.24616394937038422,
-0.6651151180267334,
0.13066275417804718,
0.5654450058937073,
-0.2169104814529419,
0.11822729557752609,
-0.43430283665657043,
-0.031240934506058693,
0.4806937873363495,
0.3171781301498413,
-0.5340092778205872,
0.19926178455352783,
-0.5529287457466125,
0.6528046727180481,
0.6323770880699158,
-0.05757313221693039,
0.4341387450695038,
-0.5336428880691528,
0.4904955327510834,
0.18144680559635162,
0.15912361443042755,
-0.26863232254981995,
-0.44761189818382263,
-0.8587656617164612,
-0.20957335829734802,
0.2600819766521454,
0.48772144317626953,
-0.5453937649726868,
0.5696521997451782,
-0.3069401681423187,
-0.662217378616333,
-0.3668471872806549,
0.013904241845011711,
0.5956244468688965,
0.7066836953163147,
0.6838218569755554,
-0.05277036875486374,
-0.5838690400123596,
-0.7961743474006653,
0.008471159264445305,
-0.09653045982122421,
0.1408974975347519,
0.5377188920974731,
0.7740236520767212,
-0.13477715849876404,
0.5337059497833252,
-0.6254664659500122,
-0.06150008365511894,
-0.4114174544811249,
0.032062169164419174,
0.2845860719680786,
0.8134591579437256,
0.5834910273551941,
-0.7803568840026855,
-0.4441967308521271,
0.007723178714513779,
-0.9380580186843872,
0.2316657453775406,
0.019122958183288574,
-0.41287243366241455,
0.10602378100156784,
0.33940085768699646,
-0.7696853876113892,
0.480233758687973,
0.30480095744132996,
-0.5124320387840271,
0.6093475818634033,
-0.23492901027202606,
0.24692149460315704,
-1.3431005477905273,
0.424754798412323,
0.15658795833587646,
0.07970593124628067,
-0.6558136343955994,
0.18736642599105835,
0.06698442250490189,
0.06170570105314255,
-0.5990923643112183,
0.9120593070983887,
-0.49646061658859253,
0.1709670126438141,
0.028633741661906242,
-0.10653954744338989,
0.2434035986661911,
0.7415063381195068,
0.17345722019672394,
0.717526912689209,
0.7062748670578003,
-0.6884075999259949,
0.3066251277923584,
0.5938006043434143,
-0.12519428133964539,
0.3655538856983185,
-0.8708543181419373,
-0.06026264652609825,
0.0010646814480423927,
0.1502683460712433,
-0.8706648349761963,
-0.23087464272975922,
0.42429834604263306,
-0.7473664283752441,
0.6407381892204285,
0.05129183083772659,
-0.5371061563491821,
-0.8336641192436218,
-0.3253585994243622,
0.30540868639945984,
0.557650089263916,
-0.5171477198600769,
0.3867616653442383,
-0.011983679607510567,
0.08011721074581146,
-0.5757798552513123,
-0.9744803309440613,
-0.16018445789813995,
-0.389596551656723,
-0.8791939616203308,
0.6293194890022278,
-0.2077719271183014,
0.17626968026161194,
-0.2504541575908661,
0.05944063141942024,
-0.09189846366643906,
-0.050356052815914154,
0.33893752098083496,
0.43171238899230957,
-0.382709801197052,
0.07253389060497284,
-0.1446002721786499,
0.06921841204166412,
-0.012146152555942535,
-0.24651864171028137,
0.7352302074432373,
-0.24673905968666077,
-0.10439073294401169,
-0.7603838443756104,
0.15607069432735443,
0.5425077676773071,
-0.16471970081329346,
0.9263864159584045,
0.9347901344299316,
-0.4561115801334381,
0.09616285562515259,
-0.4014108180999756,
-0.38621780276298523,
-0.5409601926803589,
0.1485968977212906,
-0.32004985213279724,
-0.6449202299118042,
0.7398601770401001,
0.2721075713634491,
-0.03803691640496254,
0.7660324573516846,
0.6461145281791687,
0.15754850208759308,
0.9580042958259583,
0.5769171714782715,
-0.08029916137456894,
0.5032739043235779,
-0.6801784038543701,
0.1526820957660675,
-0.9790665507316589,
-0.48227420449256897,
-0.3975696563720703,
-0.311043381690979,
-0.23716646432876587,
-0.33008837699890137,
0.2501816749572754,
0.07796169817447662,
-0.6453155875205994,
0.5136982202529907,
-0.7026175260543823,
-0.025265386328101158,
0.6268717050552368,
0.3734889626502991,
-0.11138636618852615,
0.0031974641606211662,
-0.4948376417160034,
-0.1629764288663864,
-0.7643372416496277,
-0.22723416984081268,
0.9782545566558838,
0.28010451793670654,
0.43009790778160095,
-0.09122756123542786,
0.6790096759796143,
-0.2265474796295166,
-0.04534932225942612,
-0.5219666361808777,
0.42879778146743774,
0.04429817572236061,
-0.703964114189148,
-0.32981815934181213,
-0.38947737216949463,
-1.1686604022979736,
0.2851032316684723,
-0.47961899638175964,
-0.9821189045906067,
0.19398963451385498,
0.3292398750782013,
-0.7559283375740051,
0.4919624924659729,
-0.7154832482337952,
1.1008172035217285,
-0.20384229719638824,
-0.7860749363899231,
0.16648897528648376,
-0.6545006036758423,
0.18162676692008972,
0.38637298345565796,
0.2770019769668579,
0.09955929219722748,
0.23013344407081604,
0.8399437069892883,
-0.6123232245445251,
0.8579426407814026,
-0.14647041261196136,
0.09522204101085663,
0.29308265447616577,
-0.21699540317058563,
0.32583311200141907,
-0.15698648989200592,
-0.0610785111784935,
0.0668630301952362,
-0.06183839216828346,
-0.48047706484794617,
-0.35690030455589294,
0.820217490196228,
-0.9069771766662598,
-0.4776725172996521,
-0.5591149926185608,
-0.5312681198120117,
-0.12700369954109192,
0.4894702434539795,
0.6402719020843506,
0.24114719033241272,
0.0748768150806427,
-0.05556503310799599,
0.6591453552246094,
-0.3441407382488251,
0.7087827920913696,
0.14163601398468018,
-0.20536957681179047,
-0.230641171336174,
0.9544660449028015,
0.08424516767263412,
0.10561661422252655,
0.39104583859443665,
0.4030397832393646,
-0.3651590347290039,
-0.41097745299339294,
-0.5345060229301453,
0.4960751235485077,
-0.3371913731098175,
-0.30881351232528687,
-0.8784509301185608,
-0.359941303730011,
-0.8101611733436584,
-0.1753581464290619,
-0.43934857845306396,
-0.4370351731777191,
-0.575701892375946,
-0.17659437656402588,
0.4809207618236542,
0.46263542771339417,
-0.2594301700592041,
0.3402383625507355,
-0.5305835008621216,
0.3589082658290863,
0.2389867603778839,
0.3093716502189636,
0.2118532955646515,
-0.5531619191169739,
-0.22054094076156616,
0.23933380842208862,
-0.5914611220359802,
-0.6884305477142334,
0.6948671936988831,
0.01992884650826454,
0.5349887013435364,
0.2383878380060196,
-0.3570268750190735,
0.8212504982948303,
-0.4674757122993469,
0.8310732245445251,
0.4302232563495636,
-0.8569918274879456,
0.6445766091346741,
-0.39879289269447327,
0.5045128464698792,
0.3746471405029297,
0.5322562456130981,
-0.4096875488758087,
-0.16681425273418427,
-0.7819852828979492,
-0.9284920692443848,
0.7765199542045593,
0.33787259459495544,
0.03163551539182663,
0.07521750777959824,
0.39563506841659546,
-0.07069693505764008,
0.10263030976057053,
-0.9723122715950012,
-0.6246692538261414,
-0.5062568187713623,
-0.27642396092414856,
-0.05374867469072342,
0.09894812852144241,
-0.02965603582561016,
-0.5974050164222717,
0.7105956673622131,
0.027167554944753647,
0.5853945016860962,
0.3080981969833374,
0.012501594610512257,
-0.03724764660000801,
0.11496614664793015,
0.6059983372688293,
0.43064823746681213,
-0.07227541506290436,
-0.2274375557899475,
0.20637410879135132,
-0.6928415298461914,
0.007348613813519478,
0.07239779084920883,
-0.2990265190601349,
-0.13707084953784943,
0.23037269711494446,
0.8842639327049255,
0.21335192024707794,
-0.15531395375728607,
0.4407101273536682,
-0.034195613116025925,
-0.3745362162590027,
-0.282039076089859,
0.15502110123634338,
0.3361000418663025,
0.2163744419813156,
0.2396867275238037,
0.06428675353527069,
0.019859088584780693,
-0.40422582626342773,
0.025884002447128296,
0.41070228815078735,
-0.2650669813156128,
-0.5026496052742004,
0.8990107774734497,
-0.05860026553273201,
-0.036812540143728256,
0.30791914463043213,
-0.32595252990722656,
-0.7860036492347717,
0.6788292527198792,
0.6508206725120544,
0.6129152178764343,
-0.2820204794406891,
0.06186249852180481,
1.0352272987365723,
0.08871787041425705,
-0.2276914417743683,
0.33536025881767273,
0.033796120434999466,
-0.5393000841140747,
-0.278142511844635,
-0.8206036686897278,
0.0030803275294601917,
0.35349327325820923,
-0.6375882029533386,
0.3766653537750244,
-0.508209228515625,
-0.2336263656616211,
0.2490113377571106,
0.2674962282180786,
-0.7823803424835205,
0.576348602771759,
0.267122745513916,
0.8437833189964294,
-0.7497371435165405,
0.764295756816864,
0.6458868980407715,
-0.8446967005729675,
-1.0321921110153198,
-0.10682082921266556,
0.02516072243452072,
-0.9580380916595459,
0.8610311150550842,
0.14463280141353607,
0.15248693525791168,
0.1632743626832962,
-0.6288754343986511,
-1.1610615253448486,
1.345823884010315,
0.08152783662080765,
-0.25946760177612305,
-0.29990342259407043,
0.03486614674329758,
0.5555283427238464,
-0.2041170746088028,
0.4207626283168793,
0.33666664361953735,
0.6606320738792419,
0.2818846106529236,
-0.9391706585884094,
0.3665904700756073,
-0.6194029450416565,
-0.05296832323074341,
-0.03706671670079231,
-1.147494912147522,
1.2392827272415161,
-0.176370307803154,
-0.1217113807797432,
0.03725145757198334,
0.8253968954086304,
0.37933796644210815,
0.19874714314937592,
0.20681992173194885,
0.8099557161331177,
0.498821496963501,
-0.3208644390106201,
1.0200046300888062,
-0.39112454652786255,
0.5749804377555847,
0.7890931367874146,
0.2268911749124527,
0.5792264342308044,
0.3439594805240631,
-0.524499773979187,
0.5485592484474182,
0.651614785194397,
-0.29487261176109314,
0.2787361443042755,
0.23068614304065704,
-0.06726954877376556,
-0.09252586215734482,
0.14918005466461182,
-0.6533580422401428,
0.09115380793809891,
0.4137030243873596,
-0.30324408411979675,
-0.040112655609846115,
0.09693992137908936,
0.37088078260421753,
-0.037148237228393555,
-0.48645442724227905,
0.3775174021720886,
0.12511910498142242,
-0.6893775463104248,
0.6901564598083496,
-0.05904344841837883,
1.0202741622924805,
-0.5476964116096497,
0.25352776050567627,
-0.15796111524105072,
0.17796973884105682,
-0.39986616373062134,
-0.7546608448028564,
0.19644564390182495,
-0.06959060579538345,
-0.12734606862068176,
-0.18777397274971008,
0.4923058748245239,
-0.3167833387851715,
-0.625283420085907,
0.30427199602127075,
0.35822924971580505,
0.12316571176052094,
0.060928959399461746,
-1.0957082509994507,
0.04425680637359619,
-0.040478866547346115,
-0.4651750922203064,
0.2054734230041504,
0.1777297407388687,
0.21529975533485413,
0.7359539270401001,
0.5975537896156311,
0.12280211597681046,
0.3697430193424225,
-0.07244881987571716,
0.8542876243591309,
-0.7074078917503357,
-0.4912794530391693,
-0.84452885389328,
0.5680062174797058,
-0.13947713375091553,
-0.34975582361221313,
1.0742125511169434,
0.5759833455085754,
0.8103227019309998,
-0.07154890149831772,
0.8209959268569946,
-0.24452899396419525,
0.6168163418769836,
-0.4091818332672119,
0.9544972777366638,
-0.80190110206604,
-0.2569255828857422,
-0.37812817096710205,
-0.5119674801826477,
-0.3264883756637573,
0.8187856078147888,
-0.2794824540615082,
0.5651161670684814,
0.7845208644866943,
0.6649540066719055,
-0.1369401067495346,
-0.06497374922037125,
-0.04919801279902458,
0.40403175354003906,
0.18379104137420654,
0.8607080578804016,
0.32933419942855835,
-0.7605627775192261,
0.384501576423645,
-0.6866449117660522,
-0.02620834857225418,
-0.25036635994911194,
-0.646103024482727,
-0.9256117939949036,
-0.7063655853271484,
-0.48954275250434875,
-0.5679101943969727,
-0.09657996147871017,
0.8932658433914185,
0.7537996172904968,
-0.9091092944145203,
-0.19878947734832764,
-0.18084180355072021,
0.004370489623397589,
-0.14447852969169617,
-0.2411508858203888,
0.7466405630111694,
-0.29871582984924316,
-0.963342010974884,
0.0842643529176712,
0.023726943880319595,
0.5390596389770508,
-0.06834676861763,
-0.1928725391626358,
-0.41268816590309143,
-0.048329323530197144,
0.321004182100296,
0.6578803658485413,
-0.47665342688560486,
-0.09880069643259048,
0.16879545152187347,
-0.20913641154766083,
0.3647230863571167,
0.32666099071502686,
-0.5330674052238464,
0.10369180887937546,
0.4747227132320404,
0.2990041673183441,
0.7023038268089294,
-0.19551225006580353,
0.34069424867630005,
-0.48375752568244934,
0.23786556720733643,
0.16784848272800446,
0.46891191601753235,
0.36344438791275024,
-0.4552363157272339,
0.3774028420448303,
0.2671319842338562,
-0.578181803226471,
-0.7847750782966614,
-0.11531718075275421,
-1.1554574966430664,
-0.22151312232017517,
1.1630356311798096,
-0.28672584891319275,
-0.6867260932922363,
0.35043802857398987,
-0.14630664885044098,
0.5814002752304077,
-0.35333940386772156,
0.6488524675369263,
0.7773372530937195,
-0.2975600063800812,
-0.12646815180778503,
-0.5961876511573792,
0.5616936087608337,
0.5929232835769653,
-0.8866623044013977,
-0.16363325715065002,
0.14606569707393646,
0.4455812871456146,
0.42266392707824707,
0.4191257953643799,
-0.2597445249557495,
0.2138834297657013,
-0.0007654871442355216,
0.21296505630016327,
-0.18460072576999664,
0.038094084709882736,
-0.3805338442325592,
-0.033876825124025345,
-0.31270691752433777,
-0.2631773352622986
] |
Salesforce/ctrl | Salesforce | "2023-07-11T14:45:34Z" | 12,312 | 5 | transformers | [
"transformers",
"pytorch",
"tf",
"ctrl",
"text-generation",
"en",
"arxiv:1909.05858",
"arxiv:1910.09700",
"license:bsd-3-clause",
"endpoints_compatible",
"has_space",
"region:us"
] | text-generation | "2022-03-02T23:29:04Z" | ---
language: en
license: bsd-3-clause
pipeline_tag: text-generation
---
# ctrl
# Table of Contents
1. [Model Details](#model-details)
2. [Uses](#uses)
3. [Bias, Risks, and Limitations](#bias-risks-and-limitations)
4. [Training](#training)
5. [Evaluation](#evaluation)
6. [Environmental Impact](#environmental-impact)
7. [Technical Specifications](#technical-specifications)
8. [Citation](#citation)
9. [Model Card Authors](#model-card-authors)
10. [How To Get Started With the Model](#how-to-get-started-with-the-model)
# Model Details
## Model Description
The CTRL model was proposed in [CTRL: A Conditional Transformer Language Model for Controllable Generation](https://arxiv.org/abs/1909.05858) by Nitish Shirish Keskar*, Bryan McCann*, Lav R. Varshney, Caiming Xiong and Richard Socher. It's a causal (unidirectional) transformer pre-trained using language modeling on a very large corpus of ~140 GB of text data with the first token reserved as a control code (such as Links, Books, Wikipedia etc.). The model developers released a model card for CTRL, available [here](https://github.com/salesforce/ctrl/blob/master/ModelCard.pdf).
In their [model card](https://github.com/salesforce/ctrl/blob/master/ModelCard.pdf), the developers write:
> The CTRL Language Model analyzed in this card generates text conditioned on control codes that specify domain, style, topics, dates, entities, relationships between entities, plot points, and task-related behavior.
- **Developed by:** See [associated paper](https://arxiv.org/abs/1909.05858) from Salesforce Research
- **Model type:** Transformer-based language model
- **Language(s) (NLP):** Primarily English, some German, Spanish, French
- **License:** [BSD 3-Clause](https://github.com/salesforce/ctrl/blob/master/LICENSE.txt); also see [Code of Conduct](https://github.com/salesforce/ctrl)
- **Related Models:** More information needed
- **Parent Model:** More information needed
- **Resources for more information:**
- [Associated paper](https://arxiv.org/abs/1909.05858)
- [GitHub repo](https://github.com/salesforce/ctrl)
- [Developer Model Card](https://github.com/salesforce/ctrl/blob/master/ModelCard.pdf)
- [Blog post](https://blog.salesforceairesearch.com/introducing-a-conditional-transformer-language-model-for-controllable-generation/)
# Uses
## Direct Use
The model is a language model. The model can be used for text generation.
## Downstream Use
In their [model card](https://github.com/salesforce/ctrl/blob/master/ModelCard.pdf), the developers write that the primary intended users are general audiences and NLP Researchers, and that the primary intended uses are:
> 1. Generating artificial text in collaboration with a human, including but not limited to:
> - Creative writing
> - Automating repetitive writing tasks
> - Formatting specific text types
> - Creating contextualized marketing materials
> 2. Improvement of other NLP applications through fine-tuning (on another task or other data, e.g. fine-tuning CTRL to learn new kinds of language like product descriptions)
> 3. Enhancement in the field of natural language understanding to push towards a better understanding of artificial text generation, including how to detect it and work toward control, understanding, and potentially combating potentially negative consequences of such models.
## Out-of-Scope Use
In their [model card](https://github.com/salesforce/ctrl/blob/master/ModelCard.pdf), the developers write:
> - CTRL should not be used for generating artificial text without collaboration with a human.
> - It should not be used to make normative or prescriptive claims.
> - This software should not be used to promote or profit from:
> - violence, hate, and division;
> - environmental destruction;
> - abuse of human rights; or
> - the destruction of people's physical and mental health.
# Bias, Risks, and Limitations
Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups.
In their [model card](https://github.com/salesforce/ctrl/blob/master/ModelCard.pdf), the developers write:
> We recognize the potential for misuse or abuse, including use by bad actors who could manipulate the system to act maliciously and generate text to influence decision-making in political, economic, and social settings. False attribution could also harm individuals, organizations, or other entities. To address these concerns, the model was evaluated internally as well as externally by third parties, including the Partnership on AI, prior to release.
> To mitigate potential misuse to the extent possible, we stripped out all detectable training data from undesirable sources. We then redteamed the model and found that negative utterances were often placed in contexts that made them identifiable as such. For example, when using the ‘News’ control code, hate speech could be embedded as part of an apology (e.g. “the politician apologized for saying [insert hateful statement]”), implying that this type of speech was negative. By pre-selecting the available control codes (omitting, for example, Instagram and Twitter from the available domains), we are able to limit the potential for misuse.
> In releasing our model, we hope to put it into the hands of researchers and prosocial actors so that they can work to control, understand, and potentially combat the negative consequences of such models. We hope that research into detecting fake news and model-generated content of all kinds will be pushed forward by CTRL. It is our belief that these models should become a common tool so researchers can design methods to guard against malicious use and so the public becomes familiar with their existence and patterns of behavior.
See the [associated paper](https://arxiv.org/pdf/1909.05858.pdf) for further discussions about the ethics of LLMs.
## Recommendations
In their [model card](https://github.com/salesforce/ctrl/blob/master/ModelCard.pdf), the developers write:
> - A recommendation to monitor and detect use will be implemented through the development of a model that will identify CTRLgenerated text.
> - A second recommendation to further screen the input into and output from the model will be implemented through the addition of a check in the CTRL interface to prohibit the insertion into the model of certain negative inputs, which will help control the output that can be generated.
> - The model is trained on a limited number of languages: primarily English and some German, Spanish, French. A recommendation for a future area of research is to train the model on more languages.
See the [CTRL-detector GitHub repo](https://github.com/salesforce/ctrl-detector) for more on the detector model.
# Training
## Training Data
In their [model card](https://github.com/salesforce/ctrl/blob/master/ModelCard.pdf), the developers write:
> This model is trained on 140 GB of text drawn from a variety of domains: Wikipedia (English, German, Spanish, and French), Project Gutenberg, submissions from 45 subreddits, OpenWebText, a large collection of news data, Amazon Reviews, Europarl and UN data from WMT (En-De, En-Es, En-Fr), question-answer pairs (no context documents) from ELI5, and the MRQA shared task, which includes Stanford Question Answering Dataset, NewsQA, TriviaQA, SearchQA, HotpotQA, and Natural Questions. See the paper for the full list of training data.
## Training Procedure
### Preprocessing
In the [associated paper](https://arxiv.org/pdf/1909.05858.pdf) the developers write:
> We learn BPE (Sennrich et al., 2015) codes and tokenize the data using fastBPE4, but we use a large vocabulary of roughly 250K tokens. This includes the sub-word tokens necessary to mitigate problems with rare words, but it also reduces the average number of tokens required to generate long text by including most common words. We use English Wikipedia and a 5% split of our collected OpenWebText data for learning BPE codes. We also introduce an unknown token so that during preprocessing we can filter out sequences that contain more than 2 unknown tokens. This, along with the compressed storage for efficient training (TFRecords) (Abadi et al., 2016), reduces our training data to 140 GB from the total 180 GB collected.
See the paper for links, references, and further details.
### Training
In the [associated paper](https://arxiv.org/pdf/1909.05858.pdf) the developers write:
> CTRL has model dimension d = 1280, inner dimension f = 8192, 48 layers, and 16 heads per layer. Dropout with probability 0.1 follows the residual connections in each layer. Token embeddings were tied with the final output embedding layer (Inan et al., 2016; Press & Wolf, 2016).
See the paper for links, references, and further details.
# Evaluation
## Testing Data, Factors & Metrics
In their [model card](https://github.com/salesforce/ctrl/blob/master/ModelCard.pdf), the developers write that model performance measures are:
> Performance evaluated on qualitative judgments by humans as to whether the control codes lead to text generated in the desired domain
# Environmental Impact
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). Details are pulled from the [associated paper](https://arxiv.org/pdf/1909.05858.pdf).
- **Hardware Type:** TPU v3 Pod
- **Hours used:** Approximately 336 hours (2 weeks)
- **Cloud Provider:** GCP
- **Compute Region:** More information needed
- **Carbon Emitted:** More information needed
# Technical Specifications
In the [associated paper](https://arxiv.org/pdf/1909.05858.pdf) the developers write:
> CTRL was implemented in TensorFlow (Abadi et al., 2016) and trained with a global batch size of 1024 distributed across 256 cores of a Cloud TPU v3 Pod for 800k iterations. Training took approximately 2 weeks using Adagrad (Duchi et al., 2011) with a linear warmup from 0 to 0.05 over 25k steps. The norm of gradients were clipped to 0.25 as in (Merity et al., 2017). Learning rate decay was not necessary due to the monotonic nature of the Adagrad accumulator. We compared to the Adam optimizer (Kingma & Ba, 2014) while training smaller models, but we noticed comparable convergence rates and significant memory savings with Adagrad. We also experimented with explicit memory-saving optimizers including SM3 (Anil et al., 2019), Adafactor (Shazeer & Stern, 2018), and NovoGrad (Ginsburg et al., 2019) with mixed results.
See the paper for links, references, and further details.
# Citation
**BibTeX:**
```bibtex
@article{keskarCTRL2019,
title={{CTRL - A Conditional Transformer Language Model for Controllable Generation}},
author={Keskar, Nitish Shirish and McCann, Bryan and Varshney, Lav and Xiong, Caiming and Socher, Richard},
journal={arXiv preprint arXiv:1909.05858},
year={2019}
}
```
**APA:**
- Keskar, N. S., McCann, B., Varshney, L. R., Xiong, C., & Socher, R. (2019). Ctrl: A conditional transformer language model for controllable generation. arXiv preprint arXiv:1909.05858.
# Model Card Authors
This model card was written by the team at Hugging Face, referencing the [model card](https://github.com/salesforce/ctrl/blob/master/ModelCard.pdf) released by the developers.
# How to Get Started with the Model
Use the code below to get started with the model. See the [Hugging Face ctrl docs](https://huggingface.co/docs/transformers/model_doc/ctrl) for more information.
<details>
<summary> Click to expand </summary>
```python
>>> from transformers import CTRLTokenizer, CTRLModel
>>> import torch
>>> tokenizer = CTRLTokenizer.from_pretrained("ctrl")
>>> model = CTRLModel.from_pretrained("ctrl")
>>> # CTRL was trained with control codes as the first token
>>> inputs = tokenizer("Opinion My dog is cute", return_tensors="pt")
>>> assert inputs["input_ids"][0, 0].item() in tokenizer.control_codes.values()
>>> outputs = model(**inputs)
>>> last_hidden_states = outputs.last_hidden_state
>>> list(last_hidden_states.shape)
```
</details> | [
-0.2583923041820526,
-0.9029945731163025,
0.19687847793102264,
0.12354119122028351,
-0.20566415786743164,
-0.1979648470878601,
-0.4155479073524475,
-0.5616890788078308,
-0.3510817289352417,
0.7086505889892578,
-0.5150644183158875,
-0.5846736431121826,
-0.4873315691947937,
0.06856939196586609,
-0.6913456916809082,
1.157813549041748,
0.18775823712348938,
-0.0993727445602417,
-0.051555827260017395,
0.04031585156917572,
-0.34773460030555725,
-0.8491953015327454,
-0.7963542342185974,
-0.045313239097595215,
0.36491769552230835,
0.1504431962966919,
0.7844645977020264,
0.49739038944244385,
0.5477725863456726,
0.28471168875694275,
-0.2684204876422882,
0.18676093220710754,
-0.48241931200027466,
-0.0744289979338646,
-0.11290445178747177,
-0.4606962502002716,
-0.6103082895278931,
0.2115912139415741,
0.3837873339653015,
0.2128756046295166,
0.03467043861746788,
0.13660895824432373,
0.041311077773571014,
0.3680487275123596,
-0.31775563955307007,
-0.11530322581529617,
-0.6792153120040894,
-0.03874737396836281,
-0.22985979914665222,
-0.1556505262851715,
-0.603291392326355,
-0.3107427656650543,
0.12683172523975372,
-0.4511071741580963,
0.31984853744506836,
-0.04731093719601631,
1.0520507097244263,
0.06091797724366188,
-0.5333027839660645,
-0.36646685004234314,
-0.7009639143943787,
0.8553110957145691,
-1.0406792163848877,
0.549260675907135,
0.3205051124095917,
0.08786795288324356,
0.003796033328399062,
-0.7483786940574646,
-0.6773625016212463,
-0.5479657053947449,
-0.16518543660640717,
0.10265439748764038,
-0.40717998147010803,
0.16419807076454163,
0.36374711990356445,
0.1174100711941719,
-0.6272029876708984,
0.1488373577594757,
-0.5091007351875305,
-0.20915096998214722,
0.772009015083313,
0.18915621936321259,
0.4660322964191437,
-0.3305163085460663,
-0.3046836256980896,
-0.0683588981628418,
-0.6706728935241699,
0.053281739354133606,
0.46991369128227234,
0.4571196138858795,
-0.3007808327674866,
0.5611813068389893,
0.09654118865728378,
0.6890215873718262,
-0.005666257347911596,
-0.06867615878582001,
0.21071912348270416,
-0.671400249004364,
-0.2364501953125,
-0.3198917806148529,
0.9076901078224182,
0.28307685256004333,
0.21377763152122498,
-0.20242741703987122,
-0.18089161813259125,
0.21800385415554047,
0.4557749927043915,
-0.6497450470924377,
-0.002740614814683795,
0.3002108335494995,
-0.47306445240974426,
-0.5607736706733704,
-0.088329017162323,
-0.45458823442459106,
-0.17825143039226532,
-0.34733957052230835,
0.23186998069286346,
-0.39547547698020935,
-0.3877919316291809,
0.00023711397079750896,
-0.3079436123371124,
-0.03447942063212395,
0.2642134130001068,
-0.5636281967163086,
0.17821061611175537,
0.5130788683891296,
0.5694507360458374,
-0.45361000299453735,
-0.23149247467517853,
0.01770695485174656,
-0.09098335355520248,
-0.14071251451969147,
0.4305669069290161,
-0.36037272214889526,
-0.37116536498069763,
0.022482682019472122,
0.1167985275387764,
-0.00963347963988781,
-0.46494340896606445,
0.5247271656990051,
-0.3718045949935913,
0.545465350151062,
0.027897126972675323,
-0.4561309814453125,
-0.13176560401916504,
0.2733498513698578,
-0.7389082312583923,
1.0784738063812256,
-0.032084785401821136,
-0.7221875190734863,
0.14330005645751953,
-0.7397475242614746,
-0.4621261954307556,
-0.13096699118614197,
0.07504121959209442,
-0.4343682825565338,
-0.060523249208927155,
-0.10190311074256897,
0.2813565135002136,
-0.36027345061302185,
0.7519384026527405,
-0.06459037214517593,
-0.04565267264842987,
0.3460991084575653,
-0.6179835200309753,
1.1717612743377686,
0.33554738759994507,
-0.41529208421707153,
0.07196354866027832,
-0.6676135659217834,
-0.03528450429439545,
0.16900426149368286,
-0.4214498996734619,
-0.22645381093025208,
-0.06131173297762871,
0.33740007877349854,
0.3828328847885132,
0.2434052973985672,
-0.2643234431743622,
0.04626233130693436,
-0.3005862534046173,
0.6226497292518616,
0.5807111263275146,
-0.059028834104537964,
0.6398233771324158,
-0.2043585479259491,
0.7785065174102783,
0.15959709882736206,
0.33603253960609436,
-0.10465758293867111,
-0.36398595571517944,
-0.7685211300849915,
-0.002222593640908599,
0.30713945627212524,
0.48359939455986023,
-0.596264660358429,
0.4859376549720764,
-0.05635473132133484,
-0.7161575555801392,
-0.4034678637981415,
0.022998401895165443,
0.5596585869789124,
0.4352581202983856,
0.3528366982936859,
0.0606062151491642,
-0.7171709537506104,
-0.9252777695655823,
-0.2660014033317566,
-0.0595286600291729,
0.20821821689605713,
0.24455542862415314,
0.533811628818512,
-0.1612110286951065,
0.9487512111663818,
-0.2993256449699402,
-0.14603112637996674,
-0.7129980325698853,
0.14806139469146729,
-0.01673981547355652,
0.5061827898025513,
0.45811963081359863,
-1.0357742309570312,
-0.33011847734451294,
-0.12072785198688507,
-0.6128662824630737,
-0.12304659187793732,
-0.29585909843444824,
-0.17894962430000305,
0.560547411441803,
0.5949103832244873,
-0.6347254514694214,
0.46342554688453674,
0.7507442235946655,
-0.36173006892204285,
0.5456627011299133,
0.05011395364999771,
-0.1638094037771225,
-1.1630284786224365,
0.36946049332618713,
0.1655474603176117,
-0.1415792852640152,
-0.8319882154464722,
0.038161467760801315,
0.11062126606702805,
-0.24148248136043549,
-0.6459905505180359,
0.7756600379943848,
-0.298660010099411,
0.396314412355423,
-0.28939303755760193,
0.2526911497116089,
0.09466676414012909,
0.5320413112640381,
0.2981889843940735,
0.7428593635559082,
0.12107882648706436,
-0.8467922806739807,
-0.09343437105417252,
0.08127670735120773,
-0.028687097132205963,
0.31855490803718567,
-0.7456920146942139,
0.03142973408102989,
0.03638269379734993,
0.1761249452829361,
-0.5454371571540833,
0.19271548092365265,
0.2185879945755005,
-0.7182742357254028,
0.18769119679927826,
0.12331987917423248,
-0.6126695275306702,
-0.5980925559997559,
-0.06837985664606094,
0.17005935311317444,
0.4254397451877594,
-0.2953909635543823,
0.6483177542686462,
0.637757420539856,
0.16222047805786133,
-0.42663514614105225,
-0.8180557489395142,
0.06554409116506577,
-0.1763727217912674,
-0.6747104525566101,
0.4259166717529297,
-0.20298431813716888,
-0.1626603901386261,
0.18251721560955048,
0.12573659420013428,
-0.18589410185813904,
0.33668991923332214,
0.17768582701683044,
0.3237168490886688,
-0.060268521308898926,
0.3474324941635132,
-0.012179858982563019,
-0.06073734164237976,
-0.02717876061797142,
-0.026931826025247574,
0.6143966913223267,
0.01637946628034115,
0.08857346326112747,
-0.5711382627487183,
0.2439495176076889,
0.3971533477306366,
-0.41636306047439575,
0.6013186573982239,
0.5137014389038086,
-0.3554481565952301,
-0.36747387051582336,
-0.48822662234306335,
-0.33697107434272766,
-0.4710734486579895,
0.6708977222442627,
0.11293778568506241,
-0.8094103336334229,
0.3043901324272156,
0.33011099696159363,
0.15374162793159485,
0.48346439003944397,
0.6822400093078613,
0.04961608350276947,
1.110280990600586,
0.9106035232543945,
-0.09532905369997025,
0.6493802070617676,
-0.3310331106185913,
0.5124062299728394,
-0.5105077028274536,
-0.13099059462547302,
-0.7258487939834595,
-0.08978965878486633,
-0.7354294657707214,
-0.21253225207328796,
0.11045009642839432,
0.06015415117144585,
-0.2503547668457031,
0.6863403916358948,
-0.5493589639663696,
0.13809505105018616,
0.8307681679725647,
-0.03927892819046974,
0.2944454550743103,
-0.23240306973457336,
0.017864683642983437,
-0.04870298504829407,
-0.7262534499168396,
-0.6494545936584473,
0.9930939078330994,
0.35156601667404175,
0.6151041388511658,
-0.12219634652137756,
0.6552589535713196,
0.35995835065841675,
0.2704111337661743,
-0.5999378561973572,
0.6495165228843689,
-0.23308396339416504,
-1.0170097351074219,
-0.1736219972372055,
-0.3594934940338135,
-0.8530053496360779,
0.12074421346187592,
-0.2187781035900116,
-0.5687413215637207,
0.028335997834801674,
0.40360182523727417,
-0.2847486734390259,
0.23087981343269348,
-0.8209965229034424,
1.0218955278396606,
-0.46769073605537415,
-0.22225189208984375,
-0.1724342405796051,
-0.5269930362701416,
0.38992878794670105,
0.03018459491431713,
0.19344957172870636,
0.1345934271812439,
0.17145738005638123,
0.8657297492027283,
-0.38164642453193665,
1.1498193740844727,
-0.05447766184806824,
-0.03428513556718826,
0.3870887756347656,
-0.020039433613419533,
0.4986385107040405,
-0.23980063199996948,
-0.005384223535656929,
0.2621510624885559,
-0.03379805386066437,
0.11521998792886734,
-0.3801543712615967,
0.4736163318157196,
-0.682796835899353,
-0.5353231430053711,
-0.3890072703361511,
-0.6225979328155518,
0.07406190037727356,
0.4197501242160797,
0.3688678741455078,
0.3268599212169647,
-0.24560686945915222,
0.27564364671707153,
0.3957586884498596,
-0.569415271282196,
0.3497827649116516,
0.6337805986404419,
-0.24462765455245972,
-0.2710392475128174,
0.72371506690979,
0.1300915777683258,
0.3651270270347595,
0.3443695306777954,
0.14354069530963898,
-0.24074162542819977,
-0.4697299003601074,
-0.09920793026685715,
0.27211010456085205,
-0.5642473101615906,
-0.38558855652809143,
-0.8629098534584045,
-0.5012102127075195,
-0.5319300889968872,
-0.12578046321868896,
-0.3602984845638275,
-0.43718335032463074,
-0.6251491904258728,
-0.2872958481311798,
0.23334959149360657,
0.5202662944793701,
0.06470654159784317,
0.43160995841026306,
-0.7378168106079102,
0.2846141755580902,
-0.13413800299167633,
-0.030368762090802193,
0.10029301047325134,
-0.5953695774078369,
-0.3076407313346863,
0.3186566233634949,
-0.6006773114204407,
-0.6621211767196655,
0.6353074312210083,
-0.10025447607040405,
0.5540889501571655,
0.21724006533622742,
0.13592122495174408,
0.4447779357433319,
-0.3400834798812866,
0.986081600189209,
0.07630128413438797,
-0.9462817311286926,
0.5925534963607788,
-0.21302245557308197,
0.24242879450321198,
0.41540074348449707,
0.3761313259601593,
-0.7885489463806152,
-0.8389148712158203,
-0.8536765575408936,
-0.8429521918296814,
0.8741106390953064,
0.32069945335388184,
0.3589450418949127,
-0.24213558435440063,
0.017945723608136177,
-0.1288972795009613,
0.3577326536178589,
-1.1560131311416626,
-0.3242388367652893,
-0.05856812372803688,
-0.25936925411224365,
0.021216152235865593,
-0.33840951323509216,
0.06598027050495148,
-0.1528225690126419,
0.8256233334541321,
0.22996288537979126,
0.344687283039093,
-0.03329791501164436,
-0.3677155673503876,
0.029740504920482635,
0.2246120721101761,
0.681760311126709,
0.42854705452919006,
-0.05062545835971832,
-0.025006258860230446,
-0.12982244789600372,
-0.4434332549571991,
-0.2546897828578949,
0.030279889702796936,
-0.6016359925270081,
0.025274403393268585,
0.2912098169326782,
0.798435389995575,
0.13204456865787506,
-0.7611225247383118,
0.5974742770195007,
0.08227425813674927,
-0.19322150945663452,
-0.3672357499599457,
0.0600862056016922,
0.22340799868106842,
0.15409718453884125,
0.1398428976535797,
0.0812966525554657,
0.061339735984802246,
-0.42382222414016724,
0.11161679774522781,
0.4985986053943634,
-0.31757763028144836,
-0.521883487701416,
0.7290855050086975,
0.39277592301368713,
-0.4830341935157776,
0.5583498477935791,
-0.19032275676727295,
-0.8164014220237732,
0.8183624744415283,
0.701930820941925,
0.7923003435134888,
-0.00045359513023868203,
0.41486886143684387,
0.5120012760162354,
0.6044240593910217,
0.013838665559887886,
0.20489709079265594,
0.07772800326347351,
-0.8368290066719055,
-0.021069416776299477,
-0.2762870490550995,
-0.07060716301202774,
0.20159092545509338,
-0.46191591024398804,
0.5723646283149719,
-0.3587498366832733,
-0.4871099293231964,
-0.05357670038938522,
0.0033665141090750694,
-0.8539812564849854,
0.25055691599845886,
0.20124319195747375,
1.0267223119735718,
-0.8241562247276306,
0.9642457962036133,
0.30813661217689514,
-0.8440217971801758,
-0.8459709286689758,
-0.20344215631484985,
0.1176777109503746,
-0.698162853717804,
0.8392603993415833,
0.12895557284355164,
0.05068644881248474,
-0.003444512840360403,
-0.8499717712402344,
-0.7292677164077759,
1.0903388261795044,
0.09729938209056854,
-0.5662806034088135,
-0.2822139859199524,
0.2364075928926468,
0.7986437082290649,
-0.261013001203537,
0.25943052768707275,
0.33848199248313904,
0.4671042859554291,
-0.2702619731426239,
-0.9218639135360718,
0.1546623408794403,
-0.30185049772262573,
0.10417496412992477,
0.050108861178159714,
-0.4874056577682495,
0.864865243434906,
-0.12327450513839722,
-0.4291829466819763,
0.08746008574962616,
0.3861314356327057,
0.15968045592308044,
0.16112378239631653,
0.28625231981277466,
0.5108680129051208,
0.735594630241394,
0.03094850666821003,
1.1196175813674927,
-0.4635826051235199,
0.36111265420913696,
1.2351878881454468,
-0.053285375237464905,
0.7864621877670288,
0.32343682646751404,
-0.0450667180120945,
0.2033303827047348,
0.3238082230091095,
-0.2014027088880539,
0.40964609384536743,
0.01726292073726654,
0.11967584490776062,
-0.13618123531341553,
-0.30146411061286926,
-0.3780614137649536,
0.392171710729599,
0.23268981277942657,
-0.8340907692909241,
-0.13568787276744843,
0.08880116045475006,
0.4072759747505188,
0.0038973146583884954,
-0.0008758392068557441,
0.5373982191085815,
0.10504722595214844,
-0.6457979679107666,
0.47725990414619446,
0.16861554980278015,
0.8789965510368347,
-0.7328473925590515,
0.08847677707672119,
-0.2018585503101349,
0.2046108841896057,
-0.08363381773233414,
-0.5206429362297058,
0.2797340154647827,
0.16207678616046906,
-0.20677754282951355,
-0.29740962386131287,
0.6159291863441467,
-0.5419226288795471,
-0.5830048322677612,
0.4049150347709656,
0.3717747628688812,
-0.16177165508270264,
-0.08983176201581955,
-0.8874645233154297,
0.25635141134262085,
0.18913534283638,
-0.26736584305763245,
0.08171659708023071,
0.3408225178718567,
-0.1476517915725708,
0.6812965273857117,
0.6888986229896545,
0.08055569976568222,
0.17680661380290985,
0.0476808063685894,
0.8089787364006042,
-0.7358149290084839,
-0.3854709565639496,
-0.7583227753639221,
0.708198606967926,
-0.14734214544296265,
-0.4930969774723053,
0.937055230140686,
0.5581152439117432,
1.0508307218551636,
-0.014964800328016281,
1.0342196226119995,
-0.2094530165195465,
0.48880094289779663,
-0.3950921595096588,
0.8111376166343689,
-0.6397864818572998,
0.16796094179153442,
-0.2808046042919159,
-0.6391372680664062,
-0.47750839591026306,
0.3789497911930084,
-0.408827006816864,
0.10319709777832031,
0.7940155863761902,
1.0026873350143433,
0.07498504966497421,
-0.0067988610826432705,
0.264311820268631,
0.3226628005504608,
0.4756489098072052,
0.26235702633857727,
0.6681625843048096,
-0.42235568165779114,
0.7282772064208984,
-0.42310062050819397,
0.057581450790166855,
-0.25264570116996765,
-0.8576374053955078,
-0.9776226282119751,
-0.659216046333313,
-0.294692724943161,
-0.5238860845565796,
0.10184161365032196,
0.9498934149742126,
0.6447908282279968,
-0.7354890704154968,
-0.3714883327484131,
-0.19969616830348969,
0.1486896276473999,
-0.13962538540363312,
-0.27364590764045715,
0.2544812858104706,
-0.3279610276222229,
-0.7280095815658569,
-0.017031541094183922,
-0.039389993995428085,
0.051039859652519226,
-0.266343891620636,
-0.10727860778570175,
-0.29763197898864746,
0.022286247462034225,
0.6378280520439148,
0.2606249451637268,
-0.7172664403915405,
-0.0286414697766304,
0.279878705739975,
-0.4432362914085388,
-0.06427305936813354,
0.9070420861244202,
-0.5363243818283081,
0.2814111113548279,
0.4708805978298187,
0.474696546792984,
0.24286997318267822,
-0.11082983762025833,
0.6126133799552917,
-0.46034592390060425,
0.19243274629116058,
0.43468552827835083,
0.18569953739643097,
0.2107342779636383,
-0.49899566173553467,
0.39047420024871826,
0.09821678698062897,
-0.411084920167923,
-0.8704335689544678,
0.12800708413124084,
-0.9693244099617004,
-0.3315350115299225,
1.3443191051483154,
0.1333913952112198,
-0.27775055170059204,
-0.03879183158278465,
-0.3308147192001343,
0.2775610089302063,
-0.527252733707428,
0.5684261918067932,
0.5158528089523315,
0.27184242010116577,
-0.17297431826591492,
-0.49443575739860535,
0.5370705723762512,
0.02913251519203186,
-0.8201931118965149,
0.16723525524139404,
0.47456595301628113,
0.2647009491920471,
0.12115132808685303,
0.7756710052490234,
-0.19473513960838318,
0.24884849786758423,
-0.2684939503669739,
0.45266032218933105,
-0.18003436923027039,
-0.3059956729412079,
-0.24740363657474518,
-0.09811121970415115,
-0.09408223628997803,
0.06860264390707016
] |
theainerd/Wav2Vec2-large-xlsr-hindi | theainerd | "2023-05-31T18:52:14Z" | 12,308 | 4 | transformers | [
"transformers",
"pytorch",
"safetensors",
"wav2vec2",
"automatic-speech-recognition",
"hi",
"endpoints_compatible",
"has_space",
"region:us"
] | automatic-speech-recognition | "2022-03-02T23:29:05Z" | ---
language:
- hi
---
# Wav2Vec2-Large-XLSR-53-hindi
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) hindi using the [Multilingual and code-switching ASR challenges for low resource Indian languages](https://navana-tech.github.io/IS21SS-indicASRchallenge/data.html).
When using this model, make sure that your speech input is sampled at 16kHz.
## Usage
The model can be used directly (without a language model) as follows:
```python
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "hi", split="test[:2%]")
processor = Wav2Vec2Processor.from_pretrained("theainerd/Wav2Vec2-large-xlsr-hindi")
model = Wav2Vec2ForCTC.from_pretrained("theainerd/Wav2Vec2-large-xlsr-hindi")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])
```
## Evaluation
The model can be evaluated as follows on the hindi test data of Common Voice.
```python
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
test_dataset = load_dataset("common_voice", "hi", split="test")
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("theainerd/Wav2Vec2-large-xlsr-hindi")
model = Wav2Vec2ForCTC.from_pretrained("theainerd/Wav2Vec2-large-xlsr-hindi")
model.to("cuda")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“]'
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
```
**Test Result**: 72.62 %
## Training
The script used for training can be found [Hindi ASR Fine Tuning Wav2Vec2](https://colab.research.google.com/drive/1m-F7et3CHT_kpFqg7UffTIwnUV9AKgrg?usp=sharing) | [
-0.22114640474319458,
-0.6093190312385559,
-0.18616020679473877,
0.2880605459213257,
-0.12452211230993271,
0.08577369898557663,
-0.5160367488861084,
-0.3725421130657196,
0.01826014183461666,
0.20283569395542145,
-0.5622670650482178,
-0.4287668466567993,
-0.575118362903595,
-0.08399425446987152,
-0.20402497053146362,
0.8106349110603333,
0.09528626501560211,
0.22061002254486084,
0.3078891932964325,
-0.16851919889450073,
-0.5856387615203857,
-0.15050232410430908,
-0.8956455588340759,
-0.3088797330856323,
0.010013389401137829,
0.6040146350860596,
0.2743107080459595,
0.25799956917762756,
0.17146524786949158,
0.4241393208503723,
-0.05524568259716034,
0.21230219304561615,
-0.39104071259498596,
0.04703379422426224,
0.23911501467227936,
-0.5217873454093933,
-0.15102635324001312,
0.042805831879377365,
0.7183269262313843,
0.15142062306404114,
-0.32890549302101135,
0.21912705898284912,
-0.12318764626979828,
0.3026956617832184,
-0.24949584901332855,
0.20847633481025696,
-0.7714748978614807,
-0.25169071555137634,
-0.10086493194103241,
-0.14797312021255493,
-0.342180997133255,
-0.41650283336639404,
-0.019906818866729736,
-0.585269033908844,
0.3649410307407379,
-0.08755123615264893,
1.110447645187378,
0.27243709564208984,
-0.18123579025268555,
-0.5035777688026428,
-0.7026723623275757,
1.0660837888717651,
-0.8092671632766724,
0.307264119386673,
0.4303600490093231,
0.18869861960411072,
-0.02887483313679695,
-0.7887553572654724,
-0.8011543154716492,
-0.05852100998163223,
0.17943677306175232,
0.2373587042093277,
-0.20876958966255188,
-0.02834068238735199,
0.2864655554294586,
0.3626311719417572,
-0.6312143206596375,
0.035773202776908875,
-0.9373281598091125,
-0.4587631821632385,
0.7678658366203308,
-0.17313311994075775,
0.5192331671714783,
-0.24518704414367676,
-0.19969768822193146,
-0.5667057037353516,
-0.27004221081733704,
0.17413325607776642,
0.49581179022789,
0.3424943685531616,
-0.4825873374938965,
0.5618652701377869,
-0.03050575591623783,
0.7160702347755432,
0.05001178756356239,
-0.28414154052734375,
0.6881453990936279,
-0.25232475996017456,
-0.27095896005630493,
0.5650726556777954,
0.9903302788734436,
0.06162932887673378,
0.46940046548843384,
0.29489007592201233,
0.18105144798755646,
0.4171712100505829,
-0.27429237961769104,
-0.6592584252357483,
-0.3831234276294708,
0.4785822927951813,
0.027927059680223465,
-0.02930389903485775,
-0.23271523416042328,
-0.8089997172355652,
-0.08881108462810516,
-0.25272485613822937,
0.6764868497848511,
-0.7442053556442261,
-0.37367022037506104,
0.10900385677814484,
-0.12985220551490784,
0.4806200861930847,
-0.1981097310781479,
-1.027632474899292,
0.23636823892593384,
0.2697885036468506,
0.9553389549255371,
0.18196523189544678,
-0.38565629720687866,
-0.4607633650302887,
-0.09794997423887253,
-0.023485783487558365,
0.5617020726203918,
-0.21162734925746918,
-0.5388031601905823,
-0.31489840149879456,
-0.16937251389026642,
-0.49164098501205444,
-0.4761783182621002,
0.7705643177032471,
-0.2506658136844635,
0.20207856595516205,
-0.029184553772211075,
-0.2822651267051697,
-0.13544434309005737,
-0.3073766231536865,
-0.3589102029800415,
1.132599949836731,
0.013799897395074368,
-0.7571244835853577,
0.1745986044406891,
-0.6345908641815186,
-0.7033694386482239,
-0.328214555978775,
-0.1308107227087021,
-0.4446909725666046,
-0.19899164140224457,
0.3800182044506073,
0.21562224626541138,
-0.2341282218694687,
0.1441439688205719,
0.17373761534690857,
-0.5305377840995789,
0.30758607387542725,
-0.477658212184906,
1.1198526620864868,
0.5491231679916382,
-0.4860880672931671,
0.2360105961561203,
-0.9547770023345947,
0.39509978890419006,
-0.02920769900083542,
-0.3998885452747345,
0.1264141947031021,
-0.14013372361660004,
0.485252320766449,
0.2681812345981598,
-0.06690707802772522,
-0.7142354249954224,
0.005322827957570553,
-0.8568010330200195,
0.7728860378265381,
0.5889641642570496,
-0.21130824089050293,
0.08545073121786118,
-0.10809022188186646,
0.33622270822525024,
-0.10018369555473328,
-0.22489318251609802,
0.22497907280921936,
-0.541746973991394,
-0.8300528526306152,
-0.4076633155345917,
0.279446542263031,
0.7280563116073608,
-0.498575359582901,
0.4940526485443115,
-0.21135583519935608,
-0.8079984188079834,
-1.135703444480896,
0.0062699271366000175,
0.34736138582229614,
0.5506924390792847,
0.5667411684989929,
-0.07589149475097656,
-0.8817055225372314,
-0.7190725207328796,
-0.1424691528081894,
-0.07876241952180862,
-0.10665426403284073,
0.20544259250164032,
0.37201136350631714,
-0.40802139043807983,
0.7642210721969604,
-0.6923754811286926,
-0.48967498540878296,
-0.5001029372215271,
0.22598031163215637,
0.4371722936630249,
0.6681002974510193,
0.11782972514629364,
-0.9084164500236511,
-0.5158694386482239,
-0.22692783176898956,
-0.3301227390766144,
-0.1791849285364151,
-0.09587528556585312,
0.014234361238777637,
0.14460216462612152,
0.4163995087146759,
-0.5966101288795471,
0.20498085021972656,
0.4752214252948761,
-0.2887287139892578,
0.44690871238708496,
-0.10032613575458527,
0.31184372305870056,
-1.326069712638855,
0.08135756105184555,
-0.0786466896533966,
0.11114954948425293,
-0.5319768190383911,
-0.3475518226623535,
-0.21417371928691864,
-0.19698934257030487,
-0.4700065553188324,
0.5039563775062561,
-0.40458375215530396,
0.08503059297800064,
-0.1733773648738861,
0.2759816646575928,
-0.11482424288988113,
0.6064856052398682,
0.03657364845275879,
0.8698082566261292,
0.8873397707939148,
-0.6112063527107239,
0.7068445086479187,
0.5141928195953369,
-0.5406221151351929,
0.15161849558353424,
-0.9707967042922974,
0.2720155119895935,
0.14061036705970764,
0.04492807388305664,
-1.2908079624176025,
-0.2554914057254791,
0.2016567587852478,
-1.032692551612854,
0.4435802102088928,
0.0696617141366005,
-0.4621533155441284,
-0.32638677954673767,
-0.2265082150697708,
0.32529211044311523,
0.6883403658866882,
-0.38086044788360596,
0.4170204699039459,
0.52943354845047,
-0.06280981749296188,
-0.5551143288612366,
-1.0109659433364868,
-0.2916547954082489,
-0.22432512044906616,
-0.744499921798706,
0.1638919711112976,
-0.012592512182891369,
-0.08730524033308029,
-0.2975590229034424,
-0.22065524756908417,
-0.04327777773141861,
-0.3955833911895752,
0.4187881648540497,
0.23811393976211548,
-0.08808868378400803,
-0.09400329738855362,
-0.1739036738872528,
-0.04290115833282471,
-0.10696225613355637,
-0.06166958808898926,
0.7976531386375427,
-0.22103464603424072,
-0.09582287073135376,
-0.7168976664543152,
0.07215916365385056,
0.4408693313598633,
-0.3351927697658539,
0.5364664196968079,
1.175453543663025,
-0.3577181398868561,
0.04506448283791542,
-0.4772374629974365,
0.09315967559814453,
-0.5182570815086365,
0.8290479183197021,
-0.3153235614299774,
-0.3986155092716217,
0.506820797920227,
0.16388492286205292,
-0.13662315905094147,
0.6574113368988037,
0.675591766834259,
0.1964297890663147,
0.9073463082313538,
0.14008037745952606,
-0.16037540137767792,
0.46250107884407043,
-0.9072200655937195,
0.21876108646392822,
-1.0468053817749023,
-0.4973853826522827,
-0.574247419834137,
-0.18015824258327484,
-0.5223994851112366,
-0.44760021567344666,
0.24352648854255676,
0.0016021350165829062,
-0.18850769102573395,
0.38442090153694153,
-0.8287601470947266,
0.19542884826660156,
0.6513885855674744,
0.06463195383548737,
-0.10551019012928009,
0.24526114761829376,
-0.025407452136278152,
-0.07108878344297409,
-0.4417248070240021,
-0.2750466465950012,
0.9929003715515137,
0.3097364604473114,
0.8591659069061279,
-0.032726142555475235,
0.39798566699028015,
-0.09126535803079605,
-0.2548277974128723,
-0.9213908910751343,
0.47928330302238464,
-0.14325079321861267,
-0.5750490427017212,
-0.4032330811023712,
-0.2854612171649933,
-0.9072237610816956,
0.20783883333206177,
-0.02018578164279461,
-0.912607729434967,
0.17491644620895386,
-0.07477478682994843,
-0.4047684371471405,
0.19315721094608307,
-1.0624444484710693,
0.700487494468689,
-0.031533703207969666,
-0.22522856295108795,
-0.24225051701068878,
-0.6765641570091248,
0.24501265585422516,
0.1165260300040245,
0.1201058030128479,
-0.09511790424585342,
0.4641977548599243,
1.3372365236282349,
-0.2526528239250183,
0.5299915671348572,
-0.20351114869117737,
0.14010551571846008,
0.7075067162513733,
-0.4180105924606323,
0.1595185101032257,
0.15688641369342804,
-0.2961439788341522,
0.13356034457683563,
0.13915547728538513,
-0.27752700448036194,
-0.24317792057991028,
1.006362795829773,
-1.2119303941726685,
-0.27367961406707764,
-0.5584501028060913,
-0.5918840169906616,
-0.31411778926849365,
0.07997462898492813,
0.8365548253059387,
0.8006497025489807,
0.10318507999181747,
0.22955551743507385,
0.6058619022369385,
-0.23223575949668884,
0.4316442012786865,
0.15656216442584991,
0.2593308687210083,
-0.6120736002922058,
0.8370733261108398,
0.141967311501503,
0.3082515299320221,
0.0884936973452568,
0.1632310003042221,
-0.66301029920578,
-0.4028117060661316,
-0.32300496101379395,
0.22787298262119293,
-0.6295694708824158,
-0.18143333494663239,
-0.6659494042396545,
-0.4024657607078552,
-0.8660231828689575,
0.07229874283075333,
-0.535760223865509,
-0.2626468241214752,
-0.4023587703704834,
0.07662952691316605,
0.6933830380439758,
0.41120344400405884,
-0.2627865970134735,
0.4754466116428375,
-0.4646882116794586,
0.7147552967071533,
0.2509019672870636,
0.16369399428367615,
-0.023067153990268707,
-1.020156979560852,
-0.2405501902103424,
0.3118143677711487,
-0.30415311455726624,
-0.7979184985160828,
0.571377694606781,
0.3345475494861603,
0.3134615421295166,
0.19704006612300873,
-0.07329906523227692,
0.8980734348297119,
-0.35225826501846313,
0.7282053232192993,
0.21781782805919647,
-1.036733865737915,
0.930264413356781,
-0.13286827504634857,
0.37335526943206787,
0.4947463274002075,
0.19847816228866577,
-0.5596178770065308,
-0.17712856829166412,
-0.47031524777412415,
-1.0487074851989746,
1.1444436311721802,
0.4822786748409271,
0.010760216973721981,
0.22483520209789276,
0.028137022629380226,
-0.19356048107147217,
-0.09790998697280884,
-0.6137349605560303,
-0.6116073727607727,
-0.43071821331977844,
-0.4138353168964386,
-0.3447083830833435,
-0.11943218857049942,
-0.017247647047042847,
-0.5992744565010071,
0.9140949845314026,
0.37386831641197205,
0.41573843359947205,
0.5287091732025146,
-0.01938830502331257,
0.024342674762010574,
0.36912697553634644,
0.6376463770866394,
0.2816571891307831,
-0.4518521726131439,
-0.06957561522722244,
0.3134095072746277,
-1.0718387365341187,
0.29925039410591125,
0.23676075041294098,
0.17258025705814362,
0.20065532624721527,
0.3010003864765167,
1.0837492942810059,
0.08740292489528656,
-0.5419026613235474,
0.10557033121585846,
-0.1719219982624054,
-0.08179791271686554,
-0.6041135787963867,
0.23208382725715637,
0.23781539499759674,
0.011064855381846428,
0.4568452835083008,
0.32408496737480164,
-0.07053405791521072,
-0.6148079633712769,
0.13852104544639587,
0.1171455979347229,
-0.2784900367259979,
-0.19698895514011383,
0.9322314262390137,
0.09723428636789322,
-0.43165841698646545,
0.7487310767173767,
-0.014929531142115593,
-0.45185405015945435,
0.7706368565559387,
0.6613077521324158,
0.7600325345993042,
-0.4754023551940918,
-0.15341907739639282,
0.6699960827827454,
0.17170080542564392,
-0.1057894304394722,
0.4083486795425415,
0.10540304332971573,
-0.6245256662368774,
-0.33702173829078674,
-0.7869396209716797,
0.0022892854176461697,
0.3877076208591461,
-0.7009216547012329,
0.6207428574562073,
-0.1980019211769104,
-0.05948818102478981,
0.18242180347442627,
0.3862842619419098,
-0.5281088352203369,
0.46294477581977844,
0.0860857367515564,
0.7206119894981384,
-0.8494967818260193,
1.2232681512832642,
0.44064584374427795,
-0.42700350284576416,
-1.3066915273666382,
-0.10663972795009613,
-0.1629333347082138,
-0.912895679473877,
0.5815684795379639,
0.17021143436431885,
-0.42318862676620483,
0.2811461389064789,
-0.37237465381622314,
-0.9475943446159363,
1.0192490816116333,
0.3012617826461792,
-0.4537736177444458,
0.15428368747234344,
-0.09733136743307114,
0.5503935217857361,
-0.090337835252285,
0.2599881887435913,
0.7435446381568909,
0.4045751690864563,
0.4008425772190094,
-0.9738972187042236,
-0.10437610000371933,
-0.34411337971687317,
-0.24006332457065582,
-0.06032152846455574,
-0.6435280442237854,
0.9303551912307739,
-0.5552362203598022,
-0.2573923170566559,
0.0543987862765789,
0.7355416417121887,
0.5258073806762695,
0.3629307150840759,
0.37930670380592346,
0.4676070809364319,
0.749169647693634,
-0.11973948031663895,
0.7880198359489441,
0.01865038461983204,
0.5377827286720276,
1.0950231552124023,
-0.09857422858476639,
0.996141791343689,
0.39491593837738037,
-0.3968828618526459,
0.35046371817588806,
0.582159161567688,
-0.2620446979999542,
0.7427852749824524,
0.32343634963035583,
-0.2287379950284958,
0.1869480162858963,
0.03799331560730934,
-0.7594372630119324,
0.9145770072937012,
0.3980008661746979,
0.0015287259593605995,
0.25788718461990356,
0.11077437549829483,
-0.006626630201935768,
-0.003454670077189803,
-0.23069384694099426,
0.3312762975692749,
0.11064726859331131,
-0.5684487819671631,
0.9942391514778137,
0.08077280968427658,
1.0944981575012207,
-0.8213034272193909,
0.0003253989852964878,
0.2046516239643097,
0.35017070174217224,
-0.37986665964126587,
-0.6602362394332886,
0.3709792196750641,
-0.0016489955596625805,
-0.04864789545536041,
0.0985003337264061,
0.49786362051963806,
-0.7566404342651367,
-0.5595794916152954,
0.33786115050315857,
-0.11563026905059814,
0.3524351716041565,
0.1276700496673584,
-0.6159914135932922,
0.2940383553504944,
0.35603535175323486,
-0.3264084458351135,
-0.026921413838863373,
0.06366445869207382,
0.3723506033420563,
0.5158809423446655,
0.5485181212425232,
0.5441136956214905,
0.24170657992362976,
0.10658115148544312,
0.5321993231773376,
-0.5440412759780884,
-0.3899488151073456,
-0.7834842801094055,
0.3302953243255615,
-0.03994549810886383,
-0.46031197905540466,
0.749506413936615,
0.7657443881034851,
0.9264848828315735,
-0.175937682390213,
0.7705840468406677,
-0.28423964977264404,
0.5946444869041443,
-0.6479682326316833,
0.9785245656967163,
-0.40408483147621155,
0.1849352866411209,
-0.217641681432724,
-0.5793638229370117,
0.020778676494956017,
0.8500975370407104,
-0.2581633925437927,
0.22373156249523163,
0.5422947406768799,
1.0261162519454956,
-0.053904518485069275,
-0.14375248551368713,
0.12267334759235382,
0.3887682855129242,
0.16961410641670227,
0.8090108036994934,
0.3778685927391052,
-1.0161889791488647,
0.9142178893089294,
-0.3157297968864441,
-0.0995909795165062,
-0.01450252253562212,
-0.1930387169122696,
-0.6666526794433594,
-0.8670971989631653,
-0.5089573860168457,
-0.4892907440662384,
-0.27666619420051575,
0.8915453553199768,
0.6979783773422241,
-1.0518972873687744,
-0.41876083612442017,
0.12325718998908997,
0.13344530761241913,
-0.10369131714105606,
-0.2812005877494812,
0.7996043562889099,
0.07173336297273636,
-1.0920064449310303,
0.4630157947540283,
-0.20780201256275177,
0.05296565592288971,
0.15074944496154785,
-0.13496007025241852,
-0.6702665686607361,
-0.0050615412183105946,
0.254129558801651,
0.42798152565956116,
-0.7864913940429688,
0.005799137055873871,
-0.18262086808681488,
-0.10303252935409546,
0.149464949965477,
0.3926367461681366,
-0.6508100628852844,
0.5697202682495117,
0.48912397027015686,
0.07487893104553223,
0.5594606995582581,
-0.22384697198867798,
0.31357717514038086,
-0.7640653252601624,
0.5537798404693604,
0.08649783581495285,
0.39334234595298767,
0.5130114555358887,
-0.3362438380718231,
0.40864115953445435,
0.2022787183523178,
-0.5623113512992859,
-1.00766122341156,
-0.1695132851600647,
-1.2672227621078491,
-0.04252186790108681,
1.4010592699050903,
0.12506014108657837,
-0.13716189563274384,
-0.03108205646276474,
-0.6336582899093628,
1.008968472480774,
-0.42181596159935,
0.5788320302963257,
0.4523790180683136,
-0.2315707802772522,
0.10365232080221176,
-0.6476296186447144,
0.6243529319763184,
0.39720919728279114,
-0.425555020570755,
-0.03829765319824219,
0.08258888870477676,
0.5989010334014893,
0.29667747020721436,
0.8224820494651794,
-0.07661022990942001,
0.1880693882703781,
0.3256462514400482,
0.27336716651916504,
-0.17201054096221924,
0.04417542740702629,
-0.5780919790267944,
-0.12779441475868225,
-0.09969943016767502,
-0.8683992624282837
] |
DionTimmer/controlnet_qrcode | DionTimmer | "2023-06-17T16:33:13Z" | 12,302 | 280 | diffusers | [
"diffusers",
"stable-diffusion",
"controlnet",
"en",
"license:openrail++",
"diffusers:ControlNetModel",
"region:us"
] | null | "2023-06-15T02:23:37Z" | ---
tags:
- stable-diffusion
- controlnet
license: openrail++
language:
- en
---
# QR Code Conditioned ControlNet Models for Stable Diffusion 1.5 and 2.1
![1](imgs/1.png)
## Model Description
These ControlNet models have been trained on a large dataset of 150,000 QR code + QR code artwork couples. They provide a solid foundation for generating QR code-based artwork that is aesthetically pleasing, while still maintaining the integral QR code shape.
The Stable Diffusion 2.1 version is marginally more effective, as it was developed to address my specific needs. However, a 1.5 version model was also trained on the same dataset for those who are using the older version.
Separate repos for usage in diffusers can be found here:<br>
1.5: https://huggingface.co/DionTimmer/controlnet_qrcode-control_v1p_sd15<br>
2.1: https://huggingface.co/DionTimmer/controlnet_qrcode-control_v11p_sd21<br>
## How to use with Diffusers
```bash
pip -q install diffusers transformers accelerate torch xformers
```
```python
import torch
from PIL import Image
from diffusers import StableDiffusionControlNetImg2ImgPipeline, ControlNetModel, DDIMScheduler
from diffusers.utils import load_image
controlnet = ControlNetModel.from_pretrained("DionTimmer/controlnet_qrcode-control_v1p_sd15",
torch_dtype=torch.float16)
pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
controlnet=controlnet,
safety_checker=None,
torch_dtype=torch.float16
)
pipe.enable_xformers_memory_efficient_attention()
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
pipe.enable_model_cpu_offload()
def resize_for_condition_image(input_image: Image, resolution: int):
input_image = input_image.convert("RGB")
W, H = input_image.size
k = float(resolution) / min(H, W)
H *= k
W *= k
H = int(round(H / 64.0)) * 64
W = int(round(W / 64.0)) * 64
img = input_image.resize((W, H), resample=Image.LANCZOS)
return img
# play with guidance_scale, controlnet_conditioning_scale and strength to make a valid QR Code Image
# qr code image
source_image = load_image("https://s3.amazonaws.com/moonup/production/uploads/6064e095abd8d3692e3e2ed6/A_RqHaAM6YHBodPLwqtjn.png")
# initial image, anything
init_image = load_image("https://s3.amazonaws.com/moonup/production/uploads/noauth/KfMBABpOwIuNolv1pe3qX.jpeg")
condition_image = resize_for_condition_image(source_image, 768)
init_image = resize_for_condition_image(init_image, 768)
generator = torch.manual_seed(123121231)
image = pipe(prompt="a bilboard in NYC with a qrcode",
negative_prompt="ugly, disfigured, low quality, blurry, nsfw",
image=init_image,
control_image=condition_image,
width=768,
height=768,
guidance_scale=20,
controlnet_conditioning_scale=1.5,
generator=generator,
strength=0.9,
num_inference_steps=150,
)
image.images[0]
```
## Performance and Limitations
These models perform quite well in most cases, but please note that they are not 100% accurate. In some instances, the QR code shape might not come through as expected. You can increase the ControlNet weight to emphasize the QR code shape. However, be cautious as this might negatively impact the style of your output.**To optimize for scanning, please generate your QR codes with correction mode 'H' (30%).**
To balance between style and shape, a gentle fine-tuning of the control weight might be required based on the individual input and the desired output, aswell as the correct prompt. Some prompts do not work until you increase the weight by a lot. The process of finding the right balance between these factors is part art and part science. For the best results, it is recommended to generate your artwork at a resolution of 768. This allows for a higher level of detail in the final product, enhancing the quality and effectiveness of the QR code-based artwork.
## Installation
The simplest way to use this is to place the .safetensors model and its .yaml config file in the folder where your other controlnet models are installed, which varies per application.
For usage in auto1111 they can be placed in the webui/models/ControlNet folder. They can be loaded using the controlnet webui extension which you can install through the extensions tab in the webui (https://github.com/Mikubill/sd-webui-controlnet). Make sure to enable your controlnet unit and set your input image as the QR code. Set the model to either the SD2.1 or 1.5 version depending on your base stable diffusion model, or it will error. No pre-processor is needed, though you can use the invert pre-processor for a different variation of results. 768 is the preferred resolution for generation since it allows for more detail.
Make sure to look up additional info on how to use controlnet if you get stuck, once you have the webui up and running its really easy to install the controlnet extension aswell.
![2](imgs/2.png) ![3](imgs/3.png) ![4](imgs/4.png) | [
-0.3340376019477844,
-0.11428018659353256,
0.037649013102054596,
0.3809199333190918,
-0.4134443402290344,
-0.12110036611557007,
0.24164339900016785,
-0.2982040047645569,
0.25127843022346497,
0.5313742160797119,
-0.161763533949852,
-0.39573732018470764,
-0.583821177482605,
0.054994501173496246,
-0.16360387206077576,
0.7248071432113647,
-0.1078774482011795,
0.048773061484098434,
0.352205365896225,
0.05217980593442917,
-0.2541964054107666,
-0.025921372696757317,
-1.0251017808914185,
-0.34476563334465027,
0.47364526987075806,
0.35383397340774536,
0.7728419899940491,
0.6746218800544739,
0.5062445402145386,
0.29854002594947815,
0.10159751027822495,
-0.01804765872657299,
-0.43287786841392517,
-0.08575140684843063,
0.1936323195695877,
-0.324023574590683,
-0.4004862904548645,
-0.10108361393213272,
0.43855294585227966,
0.004063086584210396,
-0.1538417786359787,
0.01195919793099165,
-0.037322256714105606,
0.8930601477622986,
-0.7176445126533508,
-0.058282867074012756,
-0.10560671240091324,
0.24910135567188263,
0.08049754798412323,
-0.3706704080104828,
-0.20940615236759186,
-0.5493179559707642,
-0.21632590889930725,
-0.7131226062774658,
0.12277558445930481,
0.022272488102316856,
1.23185133934021,
0.2715202569961548,
-0.6837724447250366,
-0.23534265160560608,
-0.8548694252967834,
0.5351641774177551,
-0.7464625835418701,
0.2434820532798767,
0.40515953302383423,
0.28098082542419434,
-0.1720038503408432,
-1.115647315979004,
-0.5060822367668152,
-0.3378418982028961,
0.09315856546163559,
0.5029039978981018,
-0.5364917516708374,
0.07507959753274918,
0.5912565588951111,
0.20762470364570618,
-0.6638520956039429,
-0.08861590921878815,
-0.6559103727340698,
-0.18324081599712372,
0.6801092028617859,
0.35251113772392273,
0.44921305775642395,
-0.15328553318977356,
-0.44217410683631897,
-0.3470945656299591,
-0.33804967999458313,
0.49263617396354675,
0.27746346592903137,
-0.31558895111083984,
-0.44355708360671997,
0.49514803290367126,
-0.20880569517612457,
0.4657971262931824,
0.7037956714630127,
-0.07494134455919266,
0.2962568998336792,
-0.3301984965801239,
-0.3675323724746704,
-0.17384891211986542,
1.0853365659713745,
0.6261836886405945,
0.009976796805858612,
0.09639234095811844,
-0.2866315543651581,
-0.16877645254135132,
0.3390554189682007,
-1.163405179977417,
-0.6839247941970825,
0.5016262531280518,
-0.6228647828102112,
-0.33433717489242554,
0.041105784475803375,
-0.5804626941680908,
-0.22147034108638763,
0.08577258884906769,
0.5606656670570374,
-0.36706170439720154,
-0.37167370319366455,
0.3416596055030823,
-0.4899720251560211,
0.2997106909751892,
0.3756241798400879,
-0.5856534838676453,
0.0360821895301342,
-0.08067766577005386,
0.9000688195228577,
0.14259649813175201,
-0.0127338245511055,
-0.3188726603984833,
0.028479570522904396,
-0.6836220026016235,
0.44294407963752747,
-0.045803166925907135,
-0.37252622842788696,
-0.3134962320327759,
0.26684486865997314,
0.1047707200050354,
-0.5460445880889893,
0.6234263777732849,
-1.0207651853561401,
0.009964868426322937,
0.037232380360364914,
-0.3538634777069092,
-0.20381712913513184,
-0.11639387160539627,
-0.8406837582588196,
0.9157565236091614,
0.40724441409111023,
-1.0284676551818848,
0.14784270524978638,
-0.6446694731712341,
-0.1714935451745987,
0.10172128677368164,
-0.027663175016641617,
-0.7068338394165039,
-0.21320168673992157,
-0.18966256082057953,
0.3593981862068176,
0.012441118247807026,
-0.04406443238258362,
-0.08193141967058182,
-0.47072476148605347,
0.3154173493385315,
-0.15513929724693298,
1.332383155822754,
0.48208367824554443,
-0.6216450333595276,
0.17965617775917053,
-0.7731800079345703,
0.4106040298938751,
0.0832279697060585,
-0.5052434802055359,
-0.006409856956452131,
-0.3082696795463562,
0.40073612332344055,
0.4040859341621399,
0.28014224767684937,
-0.44673794507980347,
0.17375122010707855,
-0.20302484929561615,
0.601631224155426,
0.4152452051639557,
0.16720224916934967,
0.619895875453949,
-0.46995463967323303,
0.801651656627655,
0.13963744044303894,
0.35583221912384033,
0.3011137843132019,
-0.2831898331642151,
-0.7164371013641357,
-0.3550386428833008,
0.25578486919403076,
0.66138756275177,
-1.123069167137146,
0.5691844820976257,
-0.0749271884560585,
-0.7735549807548523,
-0.1070743128657341,
-0.09812918305397034,
0.2990552484989166,
0.32518067955970764,
0.18118147552013397,
-0.43731701374053955,
-0.39180469512939453,
-0.824346125125885,
0.5245844721794128,
0.17520484328269958,
-0.34055161476135254,
-0.03248035907745361,
0.6085430383682251,
-0.22463348507881165,
0.7532959580421448,
-0.35146594047546387,
-0.1119389757514,
-0.028584744781255722,
0.05773298069834709,
0.3493843376636505,
0.9227187037467957,
0.6356369853019714,
-0.9329050183296204,
-0.5725605487823486,
-0.1155589148402214,
-0.663274884223938,
0.08027518540620804,
-0.24521519243717194,
-0.41890233755111694,
-0.02115522138774395,
0.2948702573776245,
-0.6427888870239258,
0.808110773563385,
0.4920794665813446,
-0.5886492133140564,
0.9785754680633545,
-0.5488575100898743,
0.3900463581085205,
-1.0840463638305664,
0.13909028470516205,
0.18323348462581635,
-0.24737754464149475,
-0.5209503173828125,
0.19334769248962402,
0.4476400315761566,
0.010152390226721764,
-0.45074909925460815,
0.4718552827835083,
-0.5184237360954285,
0.24728171527385712,
-0.4402838945388794,
-0.3874625563621521,
0.41549715399742126,
0.4977344572544098,
0.025752002373337746,
0.7950156927108765,
0.7209930419921875,
-0.8499523997306824,
0.6582765579223633,
0.009732373058795929,
-0.35844293236732483,
0.15186212956905365,
-1.0784838199615479,
-0.0047681801952421665,
0.11075747013092041,
0.3629571199417114,
-0.9489617347717285,
-0.12799175083637238,
0.7778111100196838,
-0.571273922920227,
0.3642970621585846,
-0.26332372426986694,
-0.22332659363746643,
-0.4419299066066742,
-0.4267316460609436,
0.44607916474342346,
0.7932071685791016,
-0.30350029468536377,
0.49654528498649597,
0.04257076233625412,
0.36683058738708496,
-0.5115412473678589,
-0.8971509337425232,
-0.022257238626480103,
-0.2940870225429535,
-0.5905458331108093,
0.4049431085586548,
-0.15907369554042816,
-0.0106948958709836,
-0.06057644262909889,
0.06187301129102707,
-0.30298879742622375,
-0.01773051545023918,
0.371873140335083,
0.004974511917680502,
-0.1112390086054802,
-0.11293285340070724,
0.05915975198149681,
-0.26817232370376587,
0.09061405807733536,
-0.3488762080669403,
0.3933645486831665,
0.17412306368350983,
-0.19179391860961914,
-0.8400322794914246,
0.2768690586090088,
0.7068525552749634,
-0.16151677072048187,
0.5808473229408264,
0.7966523766517639,
-0.49542391300201416,
-0.04659233242273331,
-0.2184508591890335,
-0.16079863905906677,
-0.5260881781578064,
0.22152604162693024,
-0.3776078224182129,
-0.42209532856941223,
0.7564138770103455,
0.13671252131462097,
-0.005804217886179686,
0.3371222913265228,
0.5117418766021729,
-0.26682111620903015,
1.0809773206710815,
0.5934447646141052,
0.2656567096710205,
0.699583113193512,
-0.8652408123016357,
0.04298970103263855,
-1.0795648097991943,
-0.19472147524356842,
-0.4536186754703522,
-0.24225352704524994,
-0.4683767557144165,
-0.41230398416519165,
0.4850863814353943,
0.6776151657104492,
-0.7613229155540466,
0.2282790243625641,
-0.7467069625854492,
0.0940946564078331,
0.6760653257369995,
0.4770716428756714,
0.04545120149850845,
0.020116252824664116,
-0.15154393017292023,
0.033722564578056335,
-0.7830924391746521,
-0.5286905169487,
0.8607255816459656,
0.28693464398384094,
0.9247105717658997,
0.10660397261381149,
0.5687280297279358,
0.32754379510879517,
-0.015584584325551987,
-0.5872179865837097,
0.20663093030452728,
0.06738890707492828,
-0.4502279758453369,
-0.29525503516197205,
-0.3141378164291382,
-1.2535196542739868,
0.052647482603788376,
-0.2753641605377197,
-0.4343174695968628,
0.6299277544021606,
0.22957442700862885,
-0.5135830640792847,
0.31000787019729614,
-0.6839874386787415,
0.6994924545288086,
-0.29326748847961426,
-0.472907155752182,
0.14930211007595062,
-0.4644168019294739,
0.284587025642395,
0.12782901525497437,
-0.03944798931479454,
0.10319589823484421,
-0.13917043805122375,
0.8743082284927368,
-0.8404941558837891,
0.6547855138778687,
-0.15910722315311432,
-0.07890024781227112,
0.3802557587623596,
0.09552262723445892,
0.3947882354259491,
0.1030324399471283,
-0.23938590288162231,
0.005477861035615206,
0.3826829493045807,
-0.6806056499481201,
-0.5356327295303345,
0.3558965027332306,
-0.9364323616027832,
-0.12572990357875824,
-0.37797418236732483,
-0.21988186240196228,
0.5173373222351074,
0.2470930516719818,
0.9550999999046326,
0.6613993048667908,
0.3062894344329834,
0.0521358996629715,
0.7235276699066162,
-0.21296116709709167,
0.398957759141922,
0.2064998745918274,
-0.35270002484321594,
-0.6184490323066711,
0.6883032321929932,
0.25780144333839417,
0.18789444863796234,
0.17655806243419647,
0.18159742653369904,
-0.2981555759906769,
-0.652275800704956,
-0.724325954914093,
-0.05845404416322708,
-0.7252957224845886,
-0.5505297780036926,
-0.5277296304702759,
-0.3851887881755829,
-0.3566267192363739,
-0.15474344789981842,
-0.25083407759666443,
-0.1403241902589798,
-0.616073727607727,
0.28704044222831726,
0.8067954778671265,
0.5329734086990356,
-0.3574676513671875,
0.4216531813144684,
-0.7428517937660217,
0.3874961733818054,
0.3442847728729248,
0.3625311255455017,
0.2461692988872528,
-0.6969742774963379,
-0.4606272876262665,
0.24909397959709167,
-0.37641531229019165,
-1.0371280908584595,
0.4755667448043823,
-0.1259334534406662,
0.27019408345222473,
0.6016486287117004,
0.42874380946159363,
0.477275013923645,
-0.22815054655075073,
0.6767328977584839,
0.4766753911972046,
-0.7884734272956848,
0.44539016485214233,
-0.4536745250225067,
0.35638803243637085,
0.03783658519387245,
0.602431058883667,
-0.47791656851768494,
-0.2729361355304718,
-0.5139926075935364,
-0.7372676730155945,
0.45042502880096436,
0.33603203296661377,
-0.005329727195203304,
0.1915685087442398,
0.6842529773712158,
-0.37989839911460876,
-0.16992248594760895,
-0.8214540481567383,
-0.48212629556655884,
-0.4026562571525574,
-0.006899287458509207,
0.1304764747619629,
-0.1926533281803131,
-0.060337770730257034,
-0.3995323181152344,
0.6744166016578674,
0.09568096697330475,
0.5686899423599243,
0.4591495394706726,
0.0696348324418068,
-0.3916057348251343,
-0.07297935336828232,
0.552469789981842,
0.763057291507721,
-0.16264504194259644,
0.0002139548014383763,
-0.2615240812301636,
-0.7896031141281128,
0.3824164569377899,
-0.057538699358701706,
-0.43449780344963074,
-0.11933617293834686,
0.23105347156524658,
0.6818535923957825,
-0.18027964234352112,
-0.2632935345172882,
0.4474296271800995,
-0.36324042081832886,
-0.48489516973495483,
-0.4735284745693207,
0.27201035618782043,
0.22856511175632477,
0.5325453877449036,
0.603088915348053,
0.32401198148727417,
0.27771031856536865,
0.03833911195397377,
0.12257818877696991,
0.31889522075653076,
-0.1967824250459671,
-0.10424437373876572,
0.8487368822097778,
0.009152397513389587,
-0.2699213922023773,
0.5605301856994629,
-0.721607506275177,
-0.5682772994041443,
1.1754478216171265,
0.5415011048316956,
0.8261988759040833,
0.04787587374448776,
0.3540586829185486,
0.7935354709625244,
0.35730689764022827,
-0.048728764057159424,
0.5211819410324097,
0.15973103046417236,
-0.9065611958503723,
-0.2377186417579651,
-0.3173914849758148,
-0.21682146191596985,
0.00938375573605299,
-0.7677465081214905,
0.334971159696579,
-0.5688261389732361,
-0.3582393229007721,
-0.3107910454273224,
0.42357856035232544,
-0.6874531507492065,
0.33715760707855225,
-0.1061263233423233,
0.8949137330055237,
-0.7093666791915894,
0.9370014667510986,
0.6720935702323914,
-0.6456395983695984,
-1.2673115730285645,
-0.22203588485717773,
-0.3765515387058258,
-0.503587543964386,
0.7474049925804138,
-0.16090042889118195,
-0.2576809227466583,
0.37853968143463135,
-0.7966148853302002,
-0.8454349040985107,
1.358516812324524,
0.06737320870161057,
-0.3794214725494385,
0.2584820091724396,
-0.379337877035141,
0.5028220415115356,
-0.31760579347610474,
0.6044197082519531,
0.03669733181595802,
0.3115585744380951,
0.16204111278057098,
-0.7481160163879395,
0.3281114399433136,
-0.46414676308631897,
0.35018423199653625,
0.06478014588356018,
-0.6822415590286255,
0.9936263561248779,
-0.29277968406677246,
-0.36321985721588135,
0.1468137502670288,
0.6413224339485168,
0.3188173472881317,
0.23750659823417664,
0.3891724944114685,
0.5535535216331482,
0.6638243794441223,
0.1713438481092453,
0.8452645540237427,
-0.31700703501701355,
0.4333684742450714,
0.5553747415542603,
0.0071097975596785545,
0.6020166873931885,
0.153408482670784,
-0.20833131670951843,
0.4490584433078766,
0.9793750643730164,
-0.23762647807598114,
0.4828483760356903,
0.44304606318473816,
-0.11098312586545944,
0.003946049138903618,
0.272298127412796,
-0.6309847235679626,
0.18324200809001923,
0.17923082411289215,
-0.20426951348781586,
-0.10359949618577957,
0.4250604808330536,
-0.15286502242088318,
-0.24922116100788116,
-0.4314306378364563,
0.3558608889579773,
-0.21943338215351105,
-0.15022173523902893,
0.9936069250106812,
0.20195651054382324,
1.1028624773025513,
-0.48692432045936584,
-0.17713451385498047,
-0.16469477117061615,
-0.05383610725402832,
-0.47790974378585815,
-0.6588159799575806,
0.15590916574001312,
-0.18026553094387054,
-0.34235453605651855,
-0.037438757717609406,
0.6261418461799622,
-0.29893332719802856,
-0.44101324677467346,
0.26212966442108154,
0.2393549233675003,
0.45064830780029297,
0.10477837920188904,
-0.9047924280166626,
0.2619050443172455,
0.19328752160072327,
-0.3823765218257904,
0.2026045322418213,
0.5325995683670044,
0.09166210144758224,
0.8477807641029358,
0.40667057037353516,
0.0804097056388855,
0.35873427987098694,
-0.1790163815021515,
0.8406156897544861,
-0.6278583407402039,
-0.46462711691856384,
-0.4228387176990509,
0.6218996047973633,
0.14200298488140106,
-0.42046377062797546,
0.5894027352333069,
0.6109107732772827,
0.6866332292556763,
-0.31988370418548584,
0.8110626339912415,
-0.2947150766849518,
0.09974817931652069,
-0.6681963205337524,
1.090896725654602,
-0.6707420349121094,
-0.013554406352341175,
-0.09246829152107239,
-0.4868716597557068,
-0.11131487786769867,
0.9203932881355286,
-0.2086179405450821,
0.24433548748493195,
0.46934476494789124,
1.0857691764831543,
-0.06545206904411316,
-0.3937973380088806,
0.22458089888095856,
-0.08286365121603012,
0.17802616953849792,
0.670606255531311,
0.7409876585006714,
-0.959426760673523,
0.5159857869148254,
-0.773574709892273,
-0.3692777156829834,
-0.20133766531944275,
-0.8789145946502686,
-0.5623660683631897,
-0.5672705769538879,
-0.7976114153862,
-0.8457571864128113,
-0.2716430723667145,
0.7999354600906372,
0.8918616771697998,
-0.5654712319374084,
-0.24868546426296234,
-0.1619458645582199,
0.1974436640739441,
-0.2555806040763855,
-0.29613059759140015,
0.49252602458000183,
0.14084473252296448,
-0.731944739818573,
-0.22600212693214417,
-0.019016209989786148,
0.41962844133377075,
-0.04061016067862511,
-0.30215710401535034,
-0.1815144121646881,
-0.254844069480896,
0.1814209669828415,
0.5019654035568237,
-0.4496193528175354,
-0.10480391979217529,
-0.10741302371025085,
-0.5333075523376465,
0.22196900844573975,
0.47038301825523376,
-0.5326159596443176,
0.3370485007762909,
0.5799083113670349,
0.13188837468624115,
0.4754966199398041,
-0.14014971256256104,
0.20874644815921783,
-0.23176543414592743,
0.16606922447681427,
0.29966652393341064,
0.16786888241767883,
-0.0749765932559967,
-0.6453393697738647,
0.2535633146762848,
0.008636861108243465,
-0.800961971282959,
-0.45155537128448486,
0.10882645100355148,
-1.1773910522460938,
-0.24475739896297455,
0.9417185187339783,
-0.2604944705963135,
-0.24208495020866394,
-0.30741265416145325,
-0.34427404403686523,
0.45387306809425354,
-0.3477872908115387,
0.5075767040252686,
0.27868688106536865,
-0.35843005776405334,
-0.6152392625808716,
-0.5407143831253052,
0.5924810171127319,
0.026980441063642502,
-0.5236635804176331,
-0.44252529740333557,
0.5597022771835327,
0.5425477027893066,
0.3464498519897461,
0.9432429671287537,
0.039666272699832916,
0.5913533568382263,
0.2827624976634979,
0.6703457832336426,
-0.10484955459833145,
0.11868633329868317,
-0.6057776808738708,
-0.046367865055799484,
0.11162908375263214,
-0.5453024506568909
] |
stabilityai/sd-vae-ft-ema | stabilityai | "2023-06-05T16:27:31Z" | 12,296 | 91 | diffusers | [
"diffusers",
"stable-diffusion",
"stable-diffusion-diffusers",
"license:mit",
"has_space",
"diffusers:AutoencoderKL",
"region:us"
] | null | "2022-10-13T12:51:55Z" | ---
license: mit
tags:
- stable-diffusion
- stable-diffusion-diffusers
inference: false
---
# Improved Autoencoders
## Utilizing
These weights are intended to be used with the [🧨 diffusers library](https://github.com/huggingface/diffusers). If you are looking for the model to use with the original [CompVis Stable Diffusion codebase](https://github.com/CompVis/stable-diffusion), [come here](https://huggingface.co/stabilityai/sd-vae-ft-ema-original).
#### How to use with 🧨 diffusers
You can integrate this fine-tuned VAE decoder to your existing `diffusers` workflows, by including a `vae` argument to the `StableDiffusionPipeline`
```py
from diffusers.models import AutoencoderKL
from diffusers import StableDiffusionPipeline
model = "CompVis/stable-diffusion-v1-4"
vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-ema")
pipe = StableDiffusionPipeline.from_pretrained(model, vae=vae)
```
## Decoder Finetuning
We publish two kl-f8 autoencoder versions, finetuned from the original [kl-f8 autoencoder](https://github.com/CompVis/latent-diffusion#pretrained-autoencoding-models) on a 1:1 ratio of [LAION-Aesthetics](https://laion.ai/blog/laion-aesthetics/) and LAION-Humans, an unreleased subset containing only SFW images of humans. The intent was to fine-tune on the Stable Diffusion training set (the autoencoder was originally trained on OpenImages) but also enrich the dataset with images of humans to improve the reconstruction of faces.
The first, _ft-EMA_, was resumed from the original checkpoint, trained for 313198 steps and uses EMA weights. It uses the same loss configuration as the original checkpoint (L1 + LPIPS).
The second, _ft-MSE_, was resumed from _ft-EMA_ and uses EMA weights and was trained for another 280k steps using a different loss, with more emphasis
on MSE reconstruction (MSE + 0.1 * LPIPS). It produces somewhat ``smoother'' outputs. The batch size for both versions was 192 (16 A100s, batch size 12 per GPU).
To keep compatibility with existing models, only the decoder part was finetuned; the checkpoints can be used as a drop-in replacement for the existing autoencoder.
_Original kl-f8 VAE vs f8-ft-EMA vs f8-ft-MSE_
## Evaluation
### COCO 2017 (256x256, val, 5000 images)
| Model | train steps | rFID | PSNR | SSIM | PSIM | Link | Comments
|----------|---------|------|--------------|---------------|---------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| | | | | | | | |
| original | 246803 | 4.99 | 23.4 +/- 3.8 | 0.69 +/- 0.14 | 1.01 +/- 0.28 | https://ommer-lab.com/files/latent-diffusion/kl-f8.zip | as used in SD |
| ft-EMA | 560001 | 4.42 | 23.8 +/- 3.9 | 0.69 +/- 0.13 | 0.96 +/- 0.27 | https://huggingface.co/stabilityai/sd-vae-ft-ema-original/resolve/main/vae-ft-ema-560000-ema-pruned.ckpt | slightly better overall, with EMA |
| ft-MSE | 840001 | 4.70 | 24.5 +/- 3.7 | 0.71 +/- 0.13 | 0.92 +/- 0.27 | https://huggingface.co/stabilityai/sd-vae-ft-mse-original/resolve/main/vae-ft-mse-840000-ema-pruned.ckpt | resumed with EMA from ft-EMA, emphasis on MSE (rec. loss = MSE + 0.1 * LPIPS), smoother outputs |
### LAION-Aesthetics 5+ (256x256, subset, 10000 images)
| Model | train steps | rFID | PSNR | SSIM | PSIM | Link | Comments
|----------|-----------|------|--------------|---------------|---------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| | | | | | | | |
| original | 246803 | 2.61 | 26.0 +/- 4.4 | 0.81 +/- 0.12 | 0.75 +/- 0.36 | https://ommer-lab.com/files/latent-diffusion/kl-f8.zip | as used in SD |
| ft-EMA | 560001 | 1.77 | 26.7 +/- 4.8 | 0.82 +/- 0.12 | 0.67 +/- 0.34 | https://huggingface.co/stabilityai/sd-vae-ft-ema-original/resolve/main/vae-ft-ema-560000-ema-pruned.ckpt | slightly better overall, with EMA |
| ft-MSE | 840001 | 1.88 | 27.3 +/- 4.7 | 0.83 +/- 0.11 | 0.65 +/- 0.34 | https://huggingface.co/stabilityai/sd-vae-ft-mse-original/resolve/main/vae-ft-mse-840000-ema-pruned.ckpt | resumed with EMA from ft-EMA, emphasis on MSE (rec. loss = MSE + 0.1 * LPIPS), smoother outputs |
### Visual
_Visualization of reconstructions on 256x256 images from the COCO2017 validation dataset._
<p align="center">
<br>
<b>
256x256: ft-EMA (left), ft-MSE (middle), original (right)</b>
</p>
<p align="center">
<img src=https://huggingface.co/stabilityai/stable-diffusion-decoder-finetune/resolve/main/eval/ae-decoder-tuning-reconstructions/merged/00025_merged.png />
</p>
<p align="center">
<img src=https://huggingface.co/stabilityai/stable-diffusion-decoder-finetune/resolve/main/eval/ae-decoder-tuning-reconstructions/merged/00011_merged.png />
</p>
<p align="center">
<img src=https://huggingface.co/stabilityai/stable-diffusion-decoder-finetune/resolve/main/eval/ae-decoder-tuning-reconstructions/merged/00037_merged.png />
</p>
<p align="center">
<img src=https://huggingface.co/stabilityai/stable-diffusion-decoder-finetune/resolve/main/eval/ae-decoder-tuning-reconstructions/merged/00043_merged.png />
</p>
<p align="center">
<img src=https://huggingface.co/stabilityai/stable-diffusion-decoder-finetune/resolve/main/eval/ae-decoder-tuning-reconstructions/merged/00053_merged.png />
</p>
<p align="center">
<img src=https://huggingface.co/stabilityai/stable-diffusion-decoder-finetune/resolve/main/eval/ae-decoder-tuning-reconstructions/merged/00029_merged.png />
</p>
| [
-0.7573502063751221,
-0.4339313805103302,
0.1730394959449768,
0.24345603585243225,
-0.14422889053821564,
-0.1699213981628418,
-0.01568259485065937,
-0.05294850096106529,
0.5623149871826172,
0.2536182701587677,
-0.35569530725479126,
-0.45427167415618896,
-0.6281265020370483,
0.14998909831047058,
-0.03483016788959503,
0.6679567098617554,
-0.09442204982042313,
0.15786296129226685,
0.0935741513967514,
-0.270783394575119,
-0.452201783657074,
-0.3322696089744568,
-0.7615089416503906,
-0.21666498482227325,
0.4321107566356659,
0.1536654531955719,
0.3740176558494568,
0.615585446357727,
0.3227899670600891,
0.298723965883255,
-0.27274787425994873,
-0.0033800690434873104,
-0.38905569911003113,
-0.2569667398929596,
0.26547160744667053,
-0.16552481055259705,
-0.7094512581825256,
-0.12475087493658066,
0.631440281867981,
0.38453084230422974,
-0.1751638501882553,
0.09674323350191116,
0.26040562987327576,
0.8341054916381836,
-0.6535825133323669,
0.0954023227095604,
-0.12805886566638947,
0.0801907554268837,
-0.05306858941912651,
-0.399760901927948,
-0.21216139197349548,
-0.1980787068605423,
-0.1466238647699356,
-0.7722595930099487,
0.24156193435192108,
-0.03037376143038273,
1.5876333713531494,
0.31440839171409607,
-0.32420387864112854,
-0.06418581306934357,
-0.5555897355079651,
0.6841321587562561,
-0.8051903247833252,
0.47030124068260193,
0.2445504069328308,
0.1800999641418457,
-0.11302150040864944,
-0.6315303444862366,
-0.4649553894996643,
0.06982102245092392,
-0.3711659014225006,
0.4853636622428894,
-0.2501527667045593,
-0.011765720322728157,
0.4602424204349518,
0.6155975461006165,
-0.6469462513923645,
-0.09218277037143707,
-0.6237492561340332,
-0.34594765305519104,
0.6248695850372314,
0.1517675518989563,
0.2434869110584259,
-0.2942473590373993,
-0.26726484298706055,
-0.47414520382881165,
-0.5688850283622742,
0.17727355659008026,
0.2416137456893921,
-0.17648224532604218,
-0.43620815873146057,
0.36144664883613586,
-0.26240047812461853,
0.6174079179763794,
0.16733795404434204,
-0.1691276580095291,
0.6113037467002869,
-0.39907073974609375,
-0.5625004768371582,
-0.11728046089410782,
1.021237850189209,
0.44728466868400574,
-0.14391976594924927,
0.2559208869934082,
-0.16208264231681824,
0.05005769059062004,
-0.06567476689815521,
-1.074666976928711,
-0.4043460190296173,
0.360129714012146,
-0.753706157207489,
-0.3497627377510071,
0.07530000805854797,
-1.067827582359314,
0.2757419943809509,
-0.21086852252483368,
0.4393916130065918,
-0.5635564923286438,
-0.33076998591423035,
0.05579190328717232,
-0.26684606075286865,
0.7095869183540344,
0.48408710956573486,
-0.7422770857810974,
0.30562058091163635,
0.11935529112815857,
0.8815930485725403,
-0.010339229367673397,
0.06081824377179146,
-0.353983610868454,
-0.05571293830871582,
-0.47562676668167114,
0.577452540397644,
-0.12082906067371368,
-0.3969981372356415,
-0.33446192741394043,
0.3947204053401947,
-0.20302678644657135,
-0.40186789631843567,
0.8057951927185059,
-0.46461808681488037,
0.18797293305397034,
-0.38040852546691895,
-0.43818604946136475,
-0.27940478920936584,
0.13818776607513428,
-0.7627432942390442,
1.1314409971237183,
0.1600315421819687,
-0.8791447281837463,
0.3028019070625305,
-0.6463528871536255,
-0.10082778334617615,
-0.3785956799983978,
-0.20726333558559418,
-0.7035679817199707,
-0.13880853354930878,
0.5707365870475769,
0.36062052845954895,
-0.2508389353752136,
0.0008090605260804296,
-0.24268300831317902,
-0.3033885955810547,
0.024979421868920326,
-0.6682044267654419,
1.2553316354751587,
0.43289706110954285,
-0.49978530406951904,
-0.0166110061109066,
-0.9656766057014465,
-0.07626096904277802,
0.3812970519065857,
-0.3517917990684509,
-0.012341895140707493,
-0.36579611897468567,
-0.055101510137319565,
0.4236326217651367,
0.022867441177368164,
-0.38567304611206055,
0.056229643523693085,
-0.4447876811027527,
0.4822902977466583,
0.8725759387016296,
0.2305043637752533,
0.4525867998600006,
-0.5254262089729309,
0.49511823058128357,
0.30234602093696594,
0.0798778384923935,
-0.33126795291900635,
-0.6646785736083984,
-1.064743995666504,
-0.49091166257858276,
0.42941638827323914,
0.5123895406723022,
-0.4965745210647583,
0.6166940927505493,
-0.3435738980770111,
-0.49840739369392395,
-0.6652050018310547,
-0.0479111410677433,
0.1412220150232315,
0.4189835786819458,
0.4530508518218994,
-0.49577584862709045,
-0.5944151878356934,
-0.9083465933799744,
0.2073439210653305,
0.12272708117961884,
-0.008181746117770672,
0.3859502077102661,
0.6755364537239075,
0.05521916225552559,
0.9000535607337952,
-0.7180124521255493,
-0.4206804037094116,
0.2205011248588562,
-0.058940399438142776,
0.39340725541114807,
0.8420349359512329,
0.9215715527534485,
-0.74315345287323,
-0.7770370841026306,
-0.11785430461168289,
-0.8826996088027954,
0.009559441357851028,
-0.0115217175334692,
-0.31951507925987244,
0.14772051572799683,
0.42056888341903687,
-0.5461987853050232,
0.788841724395752,
0.4535635709762573,
-0.3363608717918396,
0.5227969288825989,
-0.3859120309352875,
0.40054816007614136,
-1.2150261402130127,
0.39455556869506836,
0.08893933892250061,
-0.36446672677993774,
-0.42056313157081604,
-0.12412644922733307,
0.009383696131408215,
-0.024598872289061546,
-0.4941288232803345,
0.5678401589393616,
-0.7974123358726501,
0.025115199387073517,
0.07348558306694031,
-0.031585246324539185,
0.23480838537216187,
0.7931730151176453,
0.03429187089204788,
0.6633475422859192,
0.7333105206489563,
-0.514602541923523,
0.06959060579538345,
0.1797875314950943,
-0.2805512845516205,
0.44110727310180664,
-0.8803444504737854,
0.03375968337059021,
-0.3183193802833557,
0.40913867950439453,
-1.078183650970459,
-0.20230525732040405,
0.6791385412216187,
-0.589584231376648,
0.608094334602356,
-0.3213752806186676,
-0.29934367537498474,
-0.49611812829971313,
-0.43298014998435974,
0.3836367130279541,
0.7429237961769104,
-0.437005877494812,
0.6291964650154114,
0.13812494277954102,
0.29615020751953125,
-0.5496639013290405,
-0.7448569536209106,
-0.2542314827442169,
-0.2569311857223511,
-0.6422462463378906,
0.43750447034835815,
-0.22579456865787506,
0.13284756243228912,
0.10579236596822739,
-0.06288047134876251,
0.06745519489049911,
-0.1100190281867981,
0.478608101606369,
0.3247821629047394,
-0.36498337984085083,
-0.47776833176612854,
0.15398062765598297,
-0.1692313849925995,
-0.04657937213778496,
-0.11760272085666656,
0.6380177736282349,
-0.11039825528860092,
-0.2780195474624634,
-0.7418029308319092,
0.19167913496494293,
0.7767906188964844,
-0.27950698137283325,
0.8475859761238098,
0.8872309327125549,
-0.4127233624458313,
0.16054630279541016,
-0.46267107129096985,
-0.20529189705848694,
-0.5219825506210327,
-0.010986262932419777,
-0.5161824226379395,
-0.6993573307991028,
0.7856335639953613,
0.14743854105472565,
0.04520634561777115,
1.0082839727401733,
0.4873337149620056,
-0.21246910095214844,
1.1549423933029175,
0.16102072596549988,
0.016973698511719704,
0.46426963806152344,
-1.0488648414611816,
0.03258097916841507,
-1.0520787239074707,
-0.3244624137878418,
-0.5408726930618286,
-0.23567698895931244,
-0.41305461525917053,
-0.6987382769584656,
0.41469478607177734,
0.3489784896373749,
-0.26898688077926636,
0.26488175988197327,
-0.7756425738334656,
0.16296201944351196,
0.3086656928062439,
0.23934531211853027,
0.04027745500206947,
0.27560368180274963,
-0.26298046112060547,
-0.03289992734789848,
-0.8394449353218079,
-0.4749458134174347,
1.1133131980895996,
0.4477931559085846,
0.6908790469169617,
0.05024411156773567,
0.6840405464172363,
0.23026026785373688,
0.3315110504627228,
-0.474796861410141,
0.415610134601593,
-0.06542065739631653,
-0.6010914444923401,
0.004245535470545292,
-0.31085169315338135,
-1.019455909729004,
0.3942970037460327,
-0.2307460904121399,
-0.7835577726364136,
0.6670206189155579,
0.45374903082847595,
-0.34120503067970276,
0.4868960380554199,
-0.7423964738845825,
1.072816014289856,
-0.08139748871326447,
-0.39806950092315674,
0.04722710698843002,
-0.6420661211013794,
0.25701963901519775,
0.3277897536754608,
0.17179255187511444,
-0.05631423741579056,
0.06578565388917923,
0.9785040616989136,
-0.7998356223106384,
0.7537944316864014,
-0.17784598469734192,
-0.12745428085327148,
0.6629582047462463,
-0.12008028477430344,
0.5433440208435059,
0.05190831795334816,
-0.03179318457841873,
0.313029021024704,
0.07046858966350555,
-0.5489230155944824,
-0.4118000864982605,
0.9176253080368042,
-0.9857761263847351,
-0.4808710813522339,
-0.6641479134559631,
-0.09617392718791962,
0.47913265228271484,
0.2669142484664917,
0.6672995686531067,
0.6916419267654419,
-0.09556447714567184,
0.2346755564212799,
0.8032422065734863,
-0.2508363723754883,
0.5486120581626892,
0.25703272223472595,
-0.07016317546367645,
-0.794979989528656,
1.1521426439285278,
0.20775814354419708,
0.30921846628189087,
0.36825066804885864,
0.07960154861211777,
-0.14521083235740662,
-0.4451327323913574,
-0.5381455421447754,
0.31926989555358887,
-0.7836693525314331,
-0.41257113218307495,
-0.923193633556366,
-0.3925212025642395,
-0.5295199751853943,
-0.22288420796394348,
-0.5013198256492615,
-0.40448302030563354,
-0.6972382068634033,
0.15851548314094543,
0.38638344407081604,
0.42677488923072815,
-0.25296342372894287,
0.16711120307445526,
-0.7824844121932983,
0.2498953640460968,
0.060574013739824295,
0.24700288474559784,
0.17385265231132507,
-0.6206857562065125,
-0.12831223011016846,
0.15083466470241547,
-0.5711514353752136,
-1.0781267881393433,
0.7093656063079834,
0.12863069772720337,
0.6834741234779358,
0.3789512515068054,
-0.1515887826681137,
0.8251761794090271,
-0.2280106395483017,
0.8067520260810852,
0.21872565150260925,
-0.7157641053199768,
0.6916013360023499,
-0.2781519293785095,
0.20760788023471832,
0.39399245381355286,
0.5305401086807251,
-0.24433574080467224,
-0.07084856182336807,
-0.774856686592102,
-0.9694746136665344,
0.7725781202316284,
0.5303502678871155,
-0.34979447722435,
0.08737466484308243,
0.33816206455230713,
-0.16953745484352112,
-0.015571027994155884,
-0.7271823287010193,
-0.7602735161781311,
-0.4949125051498413,
-0.1447124034166336,
-0.0053039430640637875,
-0.06597566604614258,
-0.0639759749174118,
-0.5799115896224976,
0.8108351230621338,
-0.0483846440911293,
0.6774239540100098,
0.53010094165802,
-0.14512474834918976,
-0.15783683955669403,
0.07479747384786606,
0.49919572472572327,
0.4229346811771393,
-0.5093261003494263,
-0.06538812071084976,
0.20595785975456238,
-0.40135955810546875,
0.228317528963089,
-0.03477952629327774,
-0.4761260151863098,
0.026459483429789543,
0.18532174825668335,
0.958817720413208,
-0.07721265405416489,
-0.2684865891933441,
0.5765531063079834,
-0.22887034714221954,
-0.44285887479782104,
-0.4810965359210968,
0.11679714173078537,
0.0878070667386055,
-0.04253165423870087,
0.3250402808189392,
0.4147104024887085,
0.19549709558486938,
-0.3657680153846741,
0.21242168545722961,
0.3170146942138672,
-0.2855525314807892,
-0.33881840109825134,
0.9040234684944153,
0.0020527667365968227,
-0.053874921053647995,
0.46372538805007935,
-0.3705701231956482,
-0.5027804970741272,
0.9248911738395691,
0.46585503220558167,
0.899937093257904,
-0.28285378217697144,
0.017307482659816742,
1.0957731008529663,
0.21709346771240234,
-0.04409985989332199,
0.2913186550140381,
-0.028217744082212448,
-0.49455952644348145,
-0.20560574531555176,
-0.8559146523475647,
0.3312683403491974,
0.17376650869846344,
-0.7960193753242493,
0.4339650571346283,
-0.4358302652835846,
-0.26174455881118774,
0.041116923093795776,
0.03879183158278465,
-0.9481436014175415,
0.3986388146877289,
-0.046128515154123306,
1.0241144895553589,
-1.0337098836898804,
0.8457156419754028,
0.5865123271942139,
-0.6582967042922974,
-0.9592064023017883,
-0.08874188363552094,
-0.11385763436555862,
-0.45355135202407837,
0.5236037969589233,
0.12269210070371628,
0.10229310393333435,
0.13947883248329163,
-0.43447285890579224,
-1.0094016790390015,
1.556007981300354,
0.26452672481536865,
-0.6023476123809814,
0.023753270506858826,
-0.26762932538986206,
0.47968631982803345,
-0.4793970584869385,
0.6465950012207031,
0.49731016159057617,
0.40083757042884827,
0.2848781645298004,
-0.6993135809898376,
0.34720495343208313,
-0.4286637008190155,
0.2385108768939972,
0.17893226444721222,
-1.0315139293670654,
0.8339639902114868,
-0.1182137057185173,
-0.23527316749095917,
0.01786188967525959,
0.8880181908607483,
0.28058862686157227,
0.17347091436386108,
0.5583797097206116,
0.9518827795982361,
0.47223636507987976,
-0.24118635058403015,
1.0467703342437744,
-0.3364395797252655,
0.5805133581161499,
0.809100329875946,
0.38422486186027527,
0.6473984122276306,
0.46404826641082764,
-0.3425655961036682,
0.4664939343929291,
0.9171360731124878,
-0.16741329431533813,
0.5783731341362,
0.08240730315446854,
-0.030742472037672997,
-0.06565147638320923,
0.10596079379320145,
-0.6232284903526306,
0.16787660121917725,
0.45133423805236816,
-0.5840308666229248,
-0.0513027124106884,
-0.034578822553157806,
0.22738435864448547,
-0.416622519493103,
-0.18457365036010742,
0.5101511478424072,
0.07185204327106476,
-0.6288347840309143,
1.0861833095550537,
-0.007617173716425896,
0.7393830418586731,
-0.4986772835254669,
-0.21920089423656464,
-0.1614975780248642,
0.06631935387849808,
-0.41949352622032166,
-0.7506865859031677,
0.4069652855396271,
-0.2731063663959503,
0.0027519233990460634,
-0.07621197402477264,
0.7093470096588135,
-0.3651525676250458,
-0.5100803971290588,
0.48296770453453064,
0.12093187123537064,
0.30292367935180664,
0.2977043390274048,
-0.9163138270378113,
0.42110008001327515,
0.22347231209278107,
-0.5420972108840942,
0.3393353819847107,
0.18629290163516998,
0.23499354720115662,
0.3844265043735504,
0.6660721302032471,
0.07281208783388138,
0.36676499247550964,
-0.08616167306900024,
1.1440482139587402,
-0.6294418573379517,
-0.48777344822883606,
-0.5960555076599121,
0.726529061794281,
-0.2496686726808548,
-0.3415478467941284,
0.894304633140564,
0.7952669858932495,
0.7664093375205994,
-0.1116243302822113,
0.5817229151725769,
-0.46696311235427856,
0.06985097378492355,
-0.5516900420188904,
0.6675889492034912,
-0.9687591791152954,
0.25634765625,
-0.3852406442165375,
-0.8706399202346802,
-0.0855594351887703,
0.8301831483840942,
-0.12426351755857468,
0.37902069091796875,
0.6294492483139038,
1.128911018371582,
-0.23802781105041504,
-0.29386627674102783,
0.07047975808382034,
0.3238481283187866,
0.4757874608039856,
0.6776760816574097,
0.3337286412715912,
-1.15052330493927,
0.580101490020752,
-0.6812400817871094,
-0.1460389792919159,
-0.3352557122707367,
-0.7378668785095215,
-0.7774894833564758,
-0.8194396495819092,
-0.6937901973724365,
-0.7874476313591003,
-0.09910838305950165,
0.7815097570419312,
0.9640750885009766,
-0.7844616174697876,
-0.16139572858810425,
-0.24449041485786438,
0.008332602679729462,
-0.3283401131629944,
-0.2914828658103943,
0.6214588284492493,
0.12580974400043488,
-0.8288952112197876,
0.16802239418029785,
0.20137061178684235,
0.4213449954986572,
-0.13611584901809692,
-0.5412926077842712,
-0.40900227427482605,
0.046768322587013245,
0.4095941483974457,
0.5550090074539185,
-0.6576150059700012,
-0.04739997908473015,
-0.15998733043670654,
-0.171186164021492,
0.51019686460495,
0.5355775356292725,
-0.6727443337440491,
0.5589349865913391,
0.9141232967376709,
0.1194046214222908,
0.9078449606895447,
0.0038765163626521826,
0.333059698343277,
-0.46461549401283264,
0.1664697527885437,
0.03216446563601494,
0.49592307209968567,
0.21022500097751617,
-0.38486477732658386,
0.5399113893508911,
0.5051954984664917,
-0.6302553415298462,
-0.737464964389801,
-0.3700202405452728,
-1.3340492248535156,
-0.14150984585285187,
1.0099411010742188,
-0.27870914340019226,
-0.7266072630882263,
0.0946986973285675,
-0.3210075795650482,
0.4540455937385559,
-0.730755090713501,
0.24251475930213928,
0.49436450004577637,
-0.04275831952691078,
-0.37180906534194946,
-0.6709592938423157,
0.624988317489624,
0.42166459560394287,
-0.714336097240448,
-0.26850026845932007,
0.43009793758392334,
0.6140586733818054,
0.32985827326774597,
1.006760597229004,
-0.4085419476032257,
0.19964537024497986,
0.15050657093524933,
0.042867034673690796,
-0.006810229737311602,
-0.11794118583202362,
-0.5316530466079712,
0.16126598417758942,
-0.18474778532981873,
-0.4224250018596649
] |
olm/olm-roberta-base-dec-2022 | olm | "2023-01-20T14:32:41Z" | 12,295 | 7 | transformers | [
"transformers",
"pytorch",
"tf",
"tensorboard",
"roberta",
"fill-mask",
"en",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | fill-mask | "2022-12-27T22:14:15Z" | ---
language: en
---
# OLM RoBERTa/BERT December 2022
This is a more up-to-date version of the [original BERT](https://huggingface.co/bert-base-cased) and [original RoBERTa](https://huggingface.co/roberta-base).
In addition to being more up-to-date, it also tends to perform better than the original BERT on standard benchmarks.
We think it is fair to directly compare our model to the original BERT because our model was trained with about the same level of compute as the original BERT, and the architecture of BERT and RoBERTa are basically the same.
The original RoBERTa takes an order of magnitude more compute, although our model is also not that different in performance from the original RoBERTa on many standard benchmarks.
Our model was trained on a cleaned December 2022 snapshot of Common Crawl and Wikipedia.
This model was created as part of the OLM project, which has the goal of continuously training and releasing models that are up-to-date and comparable in standard language model performance to their static counterparts.
This is important because we want our models to know about events like COVID or
a presidential election right after they happen.
## Intended uses
You can use the raw model for masked language modeling, but it's mostly intended to
be fine-tuned on a downstream task, such as sequence classification, token classification or question answering.
### How to use
You can use this model directly with a pipeline for masked language modeling:
```python
>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='olm/olm-roberta-base-dec-2022')
>>> unmasker("Hello I'm a <mask> model.")
[{'score': 0.04252663999795914,
'token': 631,
'token_str': ' new',
'sequence': "Hello I'm a new model."},
{'score': 0.034064881503582,
'token': 4750,
'token_str': ' female',
'sequence': "Hello I'm a female model."},
{'score': 0.03066524863243103,
'token': 932,
'token_str': ' business',
'sequence': "Hello I'm a business model."},
{'score': 0.029599128291010857,
'token': 10345,
'token_str': ' junior',
'sequence': "Hello I'm a junior model."},
{'score': 0.025790784507989883,
'token': 2219,
'token_str': ' human',
'sequence': "Hello I'm a human model."}]
```
Here is how to use this model to get the features of a given text in PyTorch:
```python
from transformers import AutoTokenizer, RobertaModel
tokenizer = AutoTokenizer.from_pretrained('olm/olm-roberta-base-dec-2022')
model = RobertaModel.from_pretrained("olm/olm-roberta-base-dec-2022")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
```
## Dataset
The model and tokenizer were trained with this [December 2022 cleaned Common Crawl dataset](https://huggingface.co/datasets/olm/olm-CC-MAIN-2022-49-sampling-ratio-olm-0.15114822547) plus this [December 2022 cleaned Wikipedia dataset](https://huggingface.co/datasets/olm/olm-wikipedia-20221220).\
The tokenized version of these concatenated datasets is [here](https://huggingface.co/datasets/olm/olm-december-2022-tokenized-512).\
The datasets were created with this [repo](https://github.com/huggingface/olm-datasets).
## Training
The model was trained according to the OLM BERT/RoBERTa instructions at this [repo](https://github.com/huggingface/olm-training).
## Evaluation results
The model achieves the following results after tuning on GLUE tasks:
| Task | Metric | Original BERT | OLM RoBERTa Dec 2022 (Ours) |
|:-----|:---------|----------------:|----------------------------:|
|cola |mcc |**0.5889** |0.28067 |
|sst2 |acc |0.9181 |**0.9275** |
|mrpc |acc/f1 |**0.9182**/0.8923|0.8662/**0.9033** |
|stsb |pear/spear|0.8822/0.8794 |**0.8870**/**0.8857** |
|qqp |acc/f1 |0.9071/0.8748 |**0.9097**/**0.8791** |
|mnli |acc/acc_mm|0.8400/0.8410 |**0.8576**/**0.8621** |
|qnli |acc |0.9075 |**0.9192** |
|rte |acc |0.6296 |**0.6390** |
|wnli |acc |0.4000 |**0.4648** |
For both the original BERT and our model, we used the Hugging Face run_glue.py script [here](https://github.com/huggingface/transformers/tree/main/examples/pytorch/text-classification).
For both models, we used the default fine-tuning hyperparameters and we averaged the results over five training seeds. These are the results for the GLUE dev sets, which can be a bit different than the results for the test sets. | [
-0.37310686707496643,
-0.9107618927955627,
0.14945822954177856,
0.0152329932898283,
-0.12810248136520386,
-0.2013927400112152,
-0.45081958174705505,
-0.5098221898078918,
0.2999303936958313,
0.43803519010543823,
-0.5928751230239868,
-0.54746013879776,
-0.7849635481834412,
-0.07661126554012299,
-0.1616780161857605,
1.4340695142745972,
-0.03976268693804741,
-0.053023066371679306,
-0.20940546691417694,
-0.15043824911117554,
-0.1707691103219986,
-0.5179401636123657,
-0.4414185881614685,
-0.23604324460029602,
0.29025405645370483,
0.13129284977912903,
0.6327524185180664,
0.6652340292930603,
0.6041550040245056,
0.4338545501232147,
-0.37016841769218445,
0.02588394284248352,
-0.31702297925949097,
-0.18717844784259796,
0.16717058420181274,
-0.41455966234207153,
-0.6744726896286011,
0.44563615322113037,
0.5672410726547241,
0.5896276235580444,
-0.006610516458749771,
0.33716508746147156,
0.1904558688402176,
0.5538172721862793,
-0.38129571080207825,
0.3015466630458832,
-0.5586093068122864,
-0.11741645634174347,
-0.0515458881855011,
0.2674098312854767,
-0.23470449447631836,
-0.1600750982761383,
0.39996424317359924,
-0.2711215019226074,
0.48924151062965393,
0.01757444627583027,
1.463922381401062,
0.18631884455680847,
-0.16030766069889069,
-0.30673646926879883,
-0.33603349328041077,
0.9456853866577148,
-0.8315211534500122,
0.2226846069097519,
0.388168603181839,
0.02238609455525875,
-0.22265252470970154,
-0.807112455368042,
-0.4762456715106964,
-0.30414673686027527,
-0.177897110581398,
0.10390230268239975,
-0.18224690854549408,
-0.08639504015445709,
0.26808181405067444,
0.646589457988739,
-0.7056424617767334,
-0.029239783063530922,
-0.6534315347671509,
-0.2440977543592453,
0.7161806225776672,
-0.06489361077547073,
0.23570233583450317,
-0.3147182762622833,
-0.6783761978149414,
-0.3791196346282959,
-0.18535496294498444,
0.27978065609931946,
0.31916919350624084,
0.4073759615421295,
-0.39994779229164124,
0.5213221907615662,
-0.027520757168531418,
0.750663697719574,
0.13010087609291077,
-0.1561269462108612,
0.6159765720367432,
-0.12860871851444244,
-0.43042510747909546,
-0.15550120174884796,
1.0903491973876953,
0.24030214548110962,
0.26444995403289795,
-0.0065764919854700565,
-0.23863795399665833,
-0.04157622903585434,
0.16465352475643158,
-0.856606662273407,
-0.473109632730484,
0.2972670793533325,
-0.6449394226074219,
-0.4038775861263275,
0.3010377287864685,
-0.5381216406822205,
0.09956451505422592,
-0.2469850331544876,
0.5633830428123474,
-0.6058094501495361,
-0.15162618458271027,
0.12190907448530197,
-0.13207441568374634,
0.1417078822851181,
0.1744133085012436,
-0.8219694495201111,
0.2911874055862427,
0.7021236419677734,
0.9148247241973877,
-0.07128135859966278,
-0.29886767268180847,
-0.4149332046508789,
-0.3671409487724304,
-0.08727103471755981,
0.519811749458313,
-0.17001570761203766,
0.11145137995481491,
-0.04357672482728958,
0.1983320564031601,
-0.24930095672607422,
-0.5406100153923035,
0.4313918352127075,
-0.35145288705825806,
0.5781381130218506,
0.13166755437850952,
-0.5693759322166443,
-0.23923122882843018,
0.2406505048274994,
-0.554401695728302,
1.418325662612915,
0.24965527653694153,
-0.6482418179512024,
0.3288434147834778,
-0.5928910374641418,
-0.23720070719718933,
-0.395162433385849,
0.2761400640010834,
-0.8820220232009888,
0.14057670533657074,
0.31149959564208984,
0.5154445171356201,
-0.21614857017993927,
0.12247886508703232,
-0.4159108102321625,
-0.2308478206396103,
0.33569711446762085,
-0.05332084372639656,
1.115297794342041,
0.21933837234973907,
-0.39463621377944946,
0.16116446256637573,
-0.8365729451179504,
0.18292291462421417,
0.3193505108356476,
-0.4054875373840332,
-0.04211227968335152,
-0.3727900981903076,
0.11329350620508194,
0.28366586565971375,
0.4564709961414337,
-0.5988753437995911,
0.3449265956878662,
-0.7025002241134644,
0.4647361636161804,
0.7946111559867859,
-0.2811235785484314,
0.4773712754249573,
-0.5116156339645386,
0.3290516436100006,
0.07194003462791443,
0.11457905918359756,
-0.363679438829422,
-0.9005928635597229,
-0.9815707802772522,
-0.5622732043266296,
0.5470201969146729,
0.501587986946106,
-0.18723927438259125,
0.8383283615112305,
-0.04150954633951187,
-0.6406483054161072,
-0.8059296011924744,
0.08804170042276382,
0.5458033680915833,
0.5069323182106018,
0.3855218291282654,
-0.4924149215221405,
-0.6503897309303284,
-0.7301615476608276,
-0.2760600745677948,
-0.19035972654819489,
-0.08024562895298004,
0.28998368978500366,
0.7668901681900024,
-0.001754755969159305,
1.0605231523513794,
-0.6551539301872253,
-0.48975276947021484,
-0.1661442667245865,
0.26032087206840515,
0.6683295965194702,
0.7333024740219116,
0.6614296436309814,
-0.6418843269348145,
-0.7339813709259033,
-0.2382497489452362,
-0.6986045837402344,
0.09480523318052292,
0.1182314082980156,
-0.14821776747703552,
0.7071301937103271,
0.40573355555534363,
-0.7759441137313843,
0.6025400161743164,
0.6922561526298523,
-0.39528271555900574,
0.6069941520690918,
-0.30032429099082947,
0.04115844517946243,
-1.144731044769287,
0.23515647649765015,
-0.08630640804767609,
-0.21273361146450043,
-0.5612910985946655,
0.1272735744714737,
-0.0779411643743515,
-0.17225529253482819,
-0.3987325429916382,
0.707176148891449,
-0.6241273283958435,
0.09824345260858536,
-0.15810178220272064,
0.19359099864959717,
-0.08028873056173325,
0.7009262442588806,
-0.011102685704827309,
0.5714492201805115,
0.6572341918945312,
-0.4018048346042633,
0.2655852138996124,
0.5070316791534424,
-0.49479514360427856,
0.24333229660987854,
-0.7439984083175659,
0.36331862211227417,
-0.041322607547044754,
0.07895766198635101,
-1.1406782865524292,
-0.15292131900787354,
0.3971327543258667,
-0.844871997833252,
0.4476897418498993,
-0.4042430520057678,
-0.5625429749488831,
-0.5593933463096619,
-0.37500065565109253,
0.0008418143843300641,
0.9980474710464478,
-0.5367772579193115,
0.5604077577590942,
0.2617745101451874,
-0.08197623491287231,
-0.5225445032119751,
-0.584832489490509,
-0.08800894767045975,
-0.28503039479255676,
-1.0119203329086304,
0.48954665660858154,
-0.27373048663139343,
0.03971167281270027,
0.010770183987915516,
-0.06662344932556152,
-0.15725906193256378,
0.11743968725204468,
0.19648060202598572,
0.42453011870384216,
-0.23368006944656372,
-0.06002940237522125,
-0.29918166995048523,
-0.2132297158241272,
0.07310409098863602,
-0.29106608033180237,
0.7613323926925659,
-0.24535836279392242,
-0.05276690423488617,
-0.4174151122570038,
-0.00490929652005434,
0.4057273864746094,
-0.3808790445327759,
1.0643599033355713,
0.9626260995864868,
-0.2791806757450104,
0.0969868153333664,
-0.6374441385269165,
-0.401727557182312,
-0.4733860492706299,
0.22192414104938507,
-0.4137083888053894,
-0.8495948314666748,
0.7522792220115662,
0.2145162671804428,
0.054316598922014236,
0.6283060908317566,
0.6128756403923035,
-0.2986049950122833,
1.0502851009368896,
0.5769547820091248,
-0.24020661413669586,
0.5044984221458435,
-0.5605838298797607,
0.054990459233522415,
-0.9400041103363037,
-0.24194251000881195,
-0.487145334482193,
-0.4222419559955597,
-0.7249325513839722,
-0.44867968559265137,
0.2952362596988678,
0.32201433181762695,
-0.12701314687728882,
0.5939251184463501,
-0.6557724475860596,
0.0976271703839302,
0.9289654493331909,
0.26201584935188293,
-0.01629803515970707,
0.16557176411151886,
-0.13782380521297455,
-0.05459485575556755,
-0.6956982016563416,
-0.4510260224342346,
1.1456085443496704,
0.49766725301742554,
0.5686896443367004,
-0.0841854065656662,
0.8065101504325867,
-0.009121431037783623,
0.21581730246543884,
-0.5247558355331421,
0.45443612337112427,
-0.13552851974964142,
-0.8838582038879395,
-0.1228790208697319,
-0.3614887297153473,
-1.078560709953308,
0.2729587256908417,
-0.3502350449562073,
-1.0429885387420654,
-0.07976153492927551,
0.19098231196403503,
-0.08426086604595184,
0.36738529801368713,
-0.599037766456604,
1.00726318359375,
-0.07760795205831528,
-0.26690733432769775,
0.03870636597275734,
-0.9231250286102295,
0.1512007713317871,
0.15151338279247284,
-0.08307051658630371,
-0.2113991379737854,
0.10712414979934692,
0.8204985857009888,
-0.595195472240448,
0.8955289721488953,
-0.050387751311063766,
-0.041031960397958755,
0.4128956198692322,
-0.16599877178668976,
0.503280520439148,
-0.2785623073577881,
-0.05715546756982803,
0.44507285952568054,
-0.2092294692993164,
-0.42577728629112244,
-0.49604493379592896,
0.6374891400337219,
-0.8616288304328918,
-0.5602867007255554,
-0.6591041088104248,
-0.6712657809257507,
0.1784936785697937,
0.23890917003154755,
0.325116902589798,
0.4090180993080139,
-0.06762652844190598,
0.16109806299209595,
0.5827505588531494,
-0.2520482838153839,
0.4105006158351898,
0.4863574206829071,
-0.19273805618286133,
-0.48654496669769287,
0.777600884437561,
-0.009123693220317364,
0.25545695424079895,
0.1707281917333603,
0.27427971363067627,
-0.2308017611503601,
-0.3968847095966339,
-0.262058287858963,
0.5720680952072144,
-0.449380487203598,
-0.27063092589378357,
-0.8153284192085266,
-0.32438406348228455,
-0.7630516290664673,
-0.009864706546068192,
-0.2996385395526886,
-0.44992607831954956,
-0.48016518354415894,
0.1707831770181656,
0.5966256856918335,
0.6841545701026917,
-0.07024706900119781,
0.23897074162960052,
-0.8235129714012146,
0.16322128474712372,
0.013902930542826653,
0.39936310052871704,
-0.24029909074306488,
-0.8729861974716187,
-0.4047795534133911,
0.150462344288826,
-0.40121737122535706,
-0.714627742767334,
0.5647396445274353,
0.26529306173324585,
0.4396163523197174,
0.28952208161354065,
0.001955346902832389,
0.7222831845283508,
-0.46430468559265137,
0.8311141133308411,
0.09655559808015823,
-0.8750010132789612,
0.699439287185669,
-0.3611522912979126,
0.29589033126831055,
0.2891169786453247,
0.46998822689056396,
-0.2833549678325653,
-0.5411623120307922,
-1.1049020290374756,
-0.8647456169128418,
1.1844289302825928,
0.440545916557312,
0.027088835835456848,
0.06608849763870239,
0.31230536103248596,
-0.1686142235994339,
0.38123786449432373,
-0.7640947699546814,
-0.5432161092758179,
-0.014203190803527832,
-0.332873672246933,
-0.17440930008888245,
-0.2579353451728821,
-0.028265271335840225,
-0.34249767661094666,
0.7742395401000977,
-0.10845261067152023,
0.5625307559967041,
0.23835071921348572,
-0.18145307898521423,
-0.08382716029882431,
-0.17502015829086304,
0.46185579895973206,
0.373139888048172,
-0.6401833295822144,
-0.21150241792201996,
0.19431498646736145,
-0.3709911108016968,
-0.2355041652917862,
0.31345435976982117,
-0.05095784366130829,
0.10368578881025314,
0.5047340989112854,
0.9690481424331665,
0.1568787842988968,
-0.5355370044708252,
0.5820524096488953,
0.31594738364219666,
-0.23903894424438477,
-0.33787745237350464,
0.09086968749761581,
0.020487328991293907,
0.28226324915885925,
0.18444840610027313,
0.15733492374420166,
-0.016937628388404846,
-0.6570590734481812,
0.3222590684890747,
0.4941316843032837,
-0.5666168332099915,
-0.38590121269226074,
0.7349669933319092,
-0.03081718273460865,
-0.3839041292667389,
0.8762252926826477,
-0.030889488756656647,
-0.758371889591217,
0.8354329466819763,
0.5383589863777161,
0.8384767770767212,
-0.23435623943805695,
-0.0056695532985031605,
0.6570519208908081,
0.23178774118423462,
0.1407240927219391,
0.24461279809474945,
0.10680234432220459,
-0.5929728150367737,
-0.21879461407661438,
-0.7414746880531311,
0.09855587780475616,
0.260281503200531,
-0.8631866574287415,
0.3524910807609558,
-0.3743949234485626,
-0.3089853525161743,
-0.05493183434009552,
0.16429871320724487,
-0.7096649408340454,
0.35000327229499817,
-0.019237924367189407,
1.0212117433547974,
-0.8454140424728394,
0.6725517511367798,
0.891743004322052,
-0.6450657248497009,
-0.6593510508537292,
-0.10113714635372162,
0.06525047868490219,
-0.9781995415687561,
0.7816628217697144,
0.41272029280662537,
0.3696027398109436,
-0.04866333305835724,
-0.5847029685974121,
-1.0240286588668823,
1.0338234901428223,
0.14730204641819,
-0.25639769434928894,
-0.05585229769349098,
0.11759866774082184,
0.6153143048286438,
-0.3500141501426697,
0.5081064105033875,
0.48423004150390625,
0.35244160890579224,
0.002012187149375677,
-1.187443494796753,
0.12121742218732834,
-0.36160358786582947,
-0.040471624583005905,
0.28814586997032166,
-0.7852709293365479,
1.2252631187438965,
-0.3216265141963959,
-0.017950572073459625,
0.5022709965705872,
0.7790828347206116,
0.2256595939397812,
0.07440993934869766,
0.5490912199020386,
0.8878701329231262,
0.6050293445587158,
-0.3703146278858185,
1.1137479543685913,
-0.3564293384552002,
0.8508471846580505,
0.8891991972923279,
0.16758866608142853,
0.7915090322494507,
0.26482516527175903,
-0.31446847319602966,
0.6050169467926025,
0.5645356774330139,
-0.3384813368320465,
0.4114415645599365,
0.07523376494646072,
0.01761048659682274,
-0.12931782007217407,
0.14361414313316345,
-0.2691153585910797,
0.5341395735740662,
0.03894155099987984,
-0.5382009744644165,
-0.10698450356721878,
0.030286751687526703,
0.39166057109832764,
-0.09520941227674484,
0.11357541382312775,
0.8799412250518799,
0.021840127184987068,
-0.733170211315155,
0.8587175607681274,
0.05757772922515869,
0.7522761225700378,
-0.6334457993507385,
0.015971239656209946,
0.030423687770962715,
0.42685750126838684,
-0.06051747873425484,
-0.832692563533783,
0.19396135210990906,
-0.09905560314655304,
-0.25470003485679626,
-0.34243878722190857,
0.6638457775115967,
-0.6850513219833374,
-0.4375181198120117,
0.25021597743034363,
0.2317051738500595,
0.38981109857559204,
-0.19563475251197815,
-1.1145505905151367,
0.27478501200675964,
0.12131889909505844,
-0.4198324978351593,
0.35545819997787476,
0.22285446524620056,
0.1746644228696823,
0.6967712640762329,
0.7966699004173279,
-0.10623779147863388,
0.010842649266123772,
-0.17699719965457916,
0.9322443008422852,
-0.5939935445785522,
-0.38459011912345886,
-0.7435581684112549,
0.9032242298126221,
-0.0964750349521637,
-0.5582354664802551,
0.914311408996582,
0.6635618805885315,
0.7921470999717712,
-0.22670714557170868,
0.43198439478874207,
-0.3908628821372986,
0.5962216854095459,
-0.594319224357605,
0.765639066696167,
-0.769704282283783,
-0.1307966560125351,
-0.4142621159553528,
-0.9309980869293213,
-0.09282893687486649,
0.9031257033348083,
-0.12203922122716904,
0.39146849513053894,
0.5371947884559631,
0.7983856201171875,
-0.06906241923570633,
-0.31663331389427185,
-0.018875721842050552,
0.41050398349761963,
0.2566455006599426,
0.4236374497413635,
0.5591064691543579,
-0.8696871995925903,
0.5028432011604309,
-0.4494962692260742,
-0.3144403398036957,
-0.4396563470363617,
-0.8677404522895813,
-1.1813513040542603,
-0.8944059610366821,
-0.5179087519645691,
-0.6159787178039551,
0.022885611280798912,
0.9475938081741333,
0.8967115879058838,
-0.7499423623085022,
-0.22592514753341675,
0.05878608301281929,
-0.09860726445913315,
-0.227059006690979,
-0.3148290514945984,
0.5505233407020569,
-0.579136073589325,
-1.1292511224746704,
0.16819441318511963,
-0.10961800813674927,
0.17915259301662445,
-0.10300712287425995,
0.001105337985791266,
-0.4167373776435852,
-0.03295126184821129,
0.39223775267601013,
0.07649262994527817,
-0.7864585518836975,
-0.3500463366508484,
0.14018453657627106,
-0.09658722579479218,
0.3014680743217468,
0.3988642394542694,
-0.8626129627227783,
0.4386275112628937,
0.518253743648529,
0.11779008060693741,
0.8173791170120239,
-0.05628813058137894,
0.5306085348129272,
-0.8284628391265869,
0.3039752244949341,
0.0278637558221817,
0.42232969403266907,
0.30897095799446106,
-0.22483688592910767,
0.5681785941123962,
0.2402319461107254,
-0.6105927228927612,
-0.8874970078468323,
0.02670133300125599,
-1.166146159172058,
-0.17050226032733917,
0.8948755860328674,
-0.36656373739242554,
-0.4658150374889374,
0.13318568468093872,
-0.29606425762176514,
0.3900902569293976,
-0.37968459725379944,
0.8571851253509521,
0.6228152513504028,
-0.018357418477535248,
-0.11953670531511307,
-0.2363610714673996,
0.5588381290435791,
0.49922364950180054,
-0.48486384749412537,
-0.13406157493591309,
0.09564612060785294,
0.5126110315322876,
0.4038352072238922,
0.4628433287143707,
-0.14937657117843628,
0.06205429509282112,
-0.2128627598285675,
0.2591364085674286,
-0.17618651688098907,
-0.2206573635339737,
-0.29944390058517456,
-0.06615196168422699,
-0.18634724617004395,
-0.37310540676116943
] |
timm/vit_large_patch14_clip_224.openai_ft_in12k_in1k | timm | "2023-05-06T00:12:58Z" | 12,263 | 33 | timm | [
"timm",
"pytorch",
"safetensors",
"image-classification",
"dataset:imagenet-1k",
"dataset:wit-400m",
"dataset:imagenet-12k",
"arxiv:2212.07143",
"arxiv:2103.00020",
"arxiv:2010.11929",
"license:apache-2.0",
"has_space",
"region:us"
] | image-classification | "2022-11-03T04:37:01Z" | ---
tags:
- image-classification
- timm
library_name: timm
license: apache-2.0
datasets:
- imagenet-1k
- wit-400m
- imagenet-12k
---
# Model card for vit_large_patch14_clip_224.openai_ft_in12k_in1k
A Vision Transformer (ViT) image classification model. Pretrained on WIT-400M image-text pairs by OpenAI using CLIP. Fine-tuned on ImageNet-12k and then ImageNet-1k in `timm`. See recipes in [Reproducible scaling laws](https://arxiv.org/abs/2212.07143).
## Model Details
- **Model Type:** Image classification / feature backbone
- **Model Stats:**
- Params (M): 304.2
- GMACs: 77.8
- Activations (M): 57.1
- Image size: 224 x 224
- **Papers:**
- Learning Transferable Visual Models From Natural Language Supervision: https://arxiv.org/abs/2103.00020
- Reproducible scaling laws for contrastive language-image learning: https://arxiv.org/abs/2212.07143
- An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale: https://arxiv.org/abs/2010.11929v2
- **Dataset:** ImageNet-1k
- **Pretrain Dataset:**
- WIT-400M
- ImageNet-12k
## Model Usage
### Image Classification
```python
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model('vit_large_patch14_clip_224.openai_ft_in12k_in1k', pretrained=True)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
```
### Image Embeddings
```python
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model(
'vit_large_patch14_clip_224.openai_ft_in12k_in1k',
pretrained=True,
num_classes=0, # remove classifier nn.Linear
)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor
# or equivalently (without needing to set num_classes=0)
output = model.forward_features(transforms(img).unsqueeze(0))
# output is unpooled, a (1, 257, 1024) shaped tensor
output = model.forward_head(output, pre_logits=True)
# output is a (1, num_features) shaped tensor
```
## Model Comparison
Explore the dataset and runtime metrics of this model in timm [model results](https://github.com/huggingface/pytorch-image-models/tree/main/results).
## Citation
```bibtex
@inproceedings{Radford2021LearningTV,
title={Learning Transferable Visual Models From Natural Language Supervision},
author={Alec Radford and Jong Wook Kim and Chris Hallacy and A. Ramesh and Gabriel Goh and Sandhini Agarwal and Girish Sastry and Amanda Askell and Pamela Mishkin and Jack Clark and Gretchen Krueger and Ilya Sutskever},
booktitle={ICML},
year={2021}
}
```
```bibtex
@article{cherti2022reproducible,
title={Reproducible scaling laws for contrastive language-image learning},
author={Cherti, Mehdi and Beaumont, Romain and Wightman, Ross and Wortsman, Mitchell and Ilharco, Gabriel and Gordon, Cade and Schuhmann, Christoph and Schmidt, Ludwig and Jitsev, Jenia},
journal={arXiv preprint arXiv:2212.07143},
year={2022}
}
```
```bibtex
@article{dosovitskiy2020vit,
title={An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale},
author={Dosovitskiy, Alexey and Beyer, Lucas and Kolesnikov, Alexander and Weissenborn, Dirk and Zhai, Xiaohua and Unterthiner, Thomas and Dehghani, Mostafa and Minderer, Matthias and Heigold, Georg and Gelly, Sylvain and Uszkoreit, Jakob and Houlsby, Neil},
journal={ICLR},
year={2021}
}
```
```bibtex
@misc{rw2019timm,
author = {Ross Wightman},
title = {PyTorch Image Models},
year = {2019},
publisher = {GitHub},
journal = {GitHub repository},
doi = {10.5281/zenodo.4414861},
howpublished = {\url{https://github.com/huggingface/pytorch-image-models}}
}
```
| [
-0.4280044734477997,
-0.506589949131012,
0.04654941335320473,
0.25042006373405457,
-0.3127194941043854,
-0.4371723532676697,
-0.4558619558811188,
-0.4454265832901001,
0.16846352815628052,
0.4260658621788025,
-0.41260379552841187,
-0.539806067943573,
-0.7765122652053833,
0.0031710234470665455,
-0.17521415650844574,
0.9948263168334961,
-0.2661978006362915,
-0.052372999489307404,
-0.22419509291648865,
-0.5299212336540222,
-0.19013890624046326,
-0.2619091868400574,
-0.6619232296943665,
-0.3439798057079315,
0.3747808039188385,
0.1895536333322525,
0.6126735210418701,
0.6881750822067261,
0.7827404737472534,
0.46270638704299927,
-0.15606652200222015,
0.116654172539711,
-0.30843067169189453,
-0.30443641543388367,
0.16427695751190186,
-0.5857431888580322,
-0.43491360545158386,
0.27465400099754333,
0.8138131499290466,
0.470084547996521,
0.016915183514356613,
0.31848764419555664,
0.18102627992630005,
0.6039971113204956,
-0.3209512233734131,
0.3486121892929077,
-0.49388325214385986,
0.13349410891532898,
-0.07489895820617676,
0.05393369123339653,
-0.3827803432941437,
-0.4009953737258911,
0.2963356375694275,
-0.6435447335243225,
0.3956157863140106,
-0.03090624511241913,
1.4497017860412598,
0.19213417172431946,
-0.11875950545072556,
-0.05511661246418953,
-0.3184642195701599,
0.8533579111099243,
-0.8054289221763611,
0.32367104291915894,
0.1988840103149414,
0.1882716715335846,
-0.0074696410447359085,
-1.044962763786316,
-0.6638044118881226,
-0.18955503404140472,
-0.27382758259773254,
0.06518799811601639,
-0.44527488946914673,
0.06625290960073471,
0.37723782658576965,
0.47741860151290894,
-0.39308974146842957,
0.06456917524337769,
-0.5493322014808655,
-0.12829504907131195,
0.4612483084201813,
-0.00256503839045763,
0.3764754831790924,
-0.21609698235988617,
-0.5448907613754272,
-0.5378554463386536,
-0.3796900808811188,
0.26769527792930603,
0.16336339712142944,
0.2558807134628296,
-0.6669076681137085,
0.4135146737098694,
0.16050070524215698,
0.6672351360321045,
0.176455557346344,
-0.292935848236084,
0.6219275593757629,
-0.22452059388160706,
-0.3955599069595337,
-0.2548651099205017,
1.2058138847351074,
0.4947337508201599,
0.46607065200805664,
0.07779806852340698,
-0.10182259976863861,
-0.14222294092178345,
-0.04249267280101776,
-1.172026515007019,
-0.3842094838619232,
-0.06078515201807022,
-0.5179336667060852,
-0.3366413712501526,
0.2658677399158478,
-0.8298329710960388,
-0.15339285135269165,
-0.184976726770401,
0.7291309833526611,
-0.5023354887962341,
-0.36859187483787537,
0.09008337557315826,
-0.06041571870446205,
0.412653386592865,
0.20856280624866486,
-0.6743406057357788,
0.19579793512821198,
0.16867922246456146,
1.126702070236206,
-0.01455235667526722,
-0.5098145008087158,
-0.3092840015888214,
-0.3555338382720947,
-0.34623247385025024,
0.4307408332824707,
-0.16974978148937225,
-0.07021680474281311,
-0.112076535820961,
0.3892972469329834,
-0.22930081188678741,
-0.671347975730896,
0.26179033517837524,
-0.18258380889892578,
0.2585681080818176,
-0.006543510127812624,
-0.26990845799446106,
-0.34711748361587524,
0.25743213295936584,
-0.5269378423690796,
1.1609364748001099,
0.346625417470932,
-0.9280144572257996,
0.386161208152771,
-0.5286012291908264,
-0.15634006261825562,
-0.22046415507793427,
0.01996840350329876,
-0.979182243347168,
-0.0784297063946724,
0.3849131762981415,
0.6679604649543762,
-0.28985023498535156,
0.08778925985097885,
-0.46473661065101624,
-0.2212061733007431,
0.3275361955165863,
-0.2056472897529602,
0.9677056670188904,
0.08344888687133789,
-0.3426305055618286,
0.3353056013584137,
-0.6896301507949829,
-0.0459846630692482,
0.4997023642063141,
-0.27984538674354553,
-0.14396482706069946,
-0.5787637829780579,
0.12899886071681976,
0.27763310074806213,
0.16629019379615784,
-0.6146406531333923,
0.23903922736644745,
-0.2116328477859497,
0.4932459592819214,
0.7579048871994019,
-0.13390681147575378,
0.4501018226146698,
-0.28425684571266174,
0.3910214602947235,
0.33817803859710693,
0.24338160455226898,
-0.16396735608577728,
-0.5487492084503174,
-0.9857301712036133,
-0.6272931098937988,
0.2925806939601898,
0.4594617187976837,
-0.7614018321037292,
0.44746896624565125,
-0.4304797649383545,
-0.6996223330497742,
-0.6123205423355103,
0.13173049688339233,
0.5552555918693542,
0.6586126685142517,
0.5640010237693787,
-0.4920459985733032,
-0.4786195456981659,
-0.9058241248130798,
-0.15578557550907135,
-0.06576168537139893,
-0.04328402504324913,
0.3236980736255646,
0.6877573132514954,
-0.21802650392055511,
0.7591395974159241,
-0.48939231038093567,
-0.48418501019477844,
-0.2739804685115814,
0.11905894428491592,
0.389492005109787,
0.7290928363800049,
0.8221539855003357,
-0.6269323229789734,
-0.6880980730056763,
-0.038521092385053635,
-0.9437774419784546,
0.023994265124201775,
-0.07772092521190643,
-0.2161150574684143,
0.23847852647304535,
0.471507728099823,
-0.5823042988777161,
0.575066089630127,
0.353781521320343,
-0.4352051019668579,
0.4246503710746765,
-0.3131854236125946,
0.08617673069238663,
-1.2955758571624756,
0.028466030955314636,
0.5231454968452454,
-0.15025809407234192,
-0.5693236589431763,
-0.03287738561630249,
0.17367114126682281,
0.06221398338675499,
-0.41900476813316345,
0.6829535961151123,
-0.6058667898178101,
0.04111000522971153,
0.006301117595285177,
-0.053303126245737076,
0.027829304337501526,
0.8496520519256592,
-0.060559578239917755,
0.5331872701644897,
0.8622387051582336,
-0.528741180896759,
0.4012329578399658,
0.40936869382858276,
-0.41831010580062866,
0.6795353293418884,
-0.797278106212616,
-0.010369965806603432,
-0.019300028681755066,
0.1444854438304901,
-1.046428918838501,
-0.09991391748189926,
0.3559975028038025,
-0.5134319067001343,
0.650151252746582,
-0.47427040338516235,
-0.4949662387371063,
-0.42126354575157166,
-0.39097434282302856,
0.4903612732887268,
0.738848090171814,
-0.8741820454597473,
0.542977511882782,
0.18236133456230164,
0.15440693497657776,
-0.4619826376438141,
-0.9630380868911743,
-0.2065354585647583,
-0.3837735950946808,
-0.6437651515007019,
0.37206387519836426,
0.06884439289569855,
0.06024804711341858,
0.1139674186706543,
0.020007573068141937,
-0.006308148615062237,
-0.29142260551452637,
0.4358396530151367,
0.5003463625907898,
-0.31404900550842285,
-0.07929586619138718,
-0.3177700936794281,
-0.03729090467095375,
0.053110335022211075,
-0.2635057270526886,
0.3849581182003021,
-0.3860562741756439,
-0.12246716022491455,
-0.6850274801254272,
-0.13387133181095123,
0.6166182160377502,
-0.33783820271492004,
0.8536593914031982,
1.0429818630218506,
-0.4210027754306793,
0.06525548547506332,
-0.4606855511665344,
-0.1633777916431427,
-0.5055471658706665,
0.5856629610061646,
-0.3295662999153137,
-0.5739814639091492,
0.7949996590614319,
0.14072315394878387,
0.005530584137886763,
0.7312749624252319,
0.4023904800415039,
0.06426342576742172,
0.7948509454727173,
0.729616105556488,
0.10223753750324249,
0.9347517490386963,
-0.7979454398155212,
-0.08781645447015762,
-0.9587349891662598,
-0.35833752155303955,
-0.27542492747306824,
-0.449565589427948,
-0.7668824195861816,
-0.5482776761054993,
0.3627679944038391,
0.13424235582351685,
-0.32288461923599243,
0.5613900423049927,
-0.7155459523200989,
0.19351723790168762,
0.6748034358024597,
0.5038191080093384,
-0.10216768831014633,
0.3337591886520386,
-0.2633826434612274,
-0.16041027009487152,
-0.6877548098564148,
-0.1576656699180603,
1.0961447954177856,
0.46653950214385986,
0.8542518019676208,
-0.03822915256023407,
0.5746746063232422,
-0.24610337615013123,
0.443482369184494,
-0.7163971662521362,
0.6647202968597412,
-0.18137188255786896,
-0.29163500666618347,
-0.26688486337661743,
-0.5581938624382019,
-1.1385023593902588,
0.2257823646068573,
-0.26221516728401184,
-0.7223441004753113,
0.31242749094963074,
0.1341952234506607,
-0.06802989542484283,
0.7886554002761841,
-0.8825464844703674,
0.9818323254585266,
0.008090751245617867,
-0.39903923869132996,
0.13357013463974,
-0.7056413292884827,
0.2127416580915451,
0.23865026235580444,
-0.1345706284046173,
0.09039109200239182,
0.16893017292022705,
1.0590705871582031,
-0.5588926672935486,
0.9608369469642639,
-0.3366345167160034,
0.12543590366840363,
0.4256952702999115,
-0.13743135333061218,
0.38310718536376953,
-0.17465649545192719,
0.17173826694488525,
0.30178865790367126,
0.029374590143561363,
-0.43620455265045166,
-0.5783067941665649,
0.5576685667037964,
-0.9437590837478638,
-0.3739939033985138,
-0.38829106092453003,
-0.5622197985649109,
0.1670699268579483,
0.2356787472963333,
0.5528420805931091,
0.6206770539283752,
0.19421693682670593,
0.380882203578949,
0.6945242881774902,
-0.40756598114967346,
0.43579238653182983,
0.10968417674303055,
-0.27294889092445374,
-0.571977436542511,
1.0216182470321655,
0.30612868070602417,
0.3246418535709381,
0.2625320255756378,
0.28431054949760437,
-0.25152990221977234,
-0.4545607566833496,
-0.2716183662414551,
0.5377281904220581,
-0.8048872947692871,
-0.37593626976013184,
-0.5193992257118225,
-0.4077131450176239,
-0.38155701756477356,
-0.0575232058763504,
-0.47210901975631714,
-0.23187631368637085,
-0.4111199676990509,
0.11333642899990082,
0.7243312001228333,
0.5993053317070007,
-0.07995913177728653,
0.34390226006507874,
-0.5279796719551086,
0.2465735524892807,
0.3577370047569275,
0.6388517022132874,
-0.10041447728872299,
-1.104985237121582,
-0.33102771639823914,
-0.030662838369607925,
-0.36015069484710693,
-0.7101075649261475,
0.5367624759674072,
0.27022066712379456,
0.5212827324867249,
0.36843347549438477,
-0.1295931190252304,
0.7777090072631836,
-0.14448153972625732,
0.5803142786026001,
0.43720293045043945,
-0.6710419058799744,
0.5224259495735168,
-0.10305054485797882,
0.3345690369606018,
0.1598542034626007,
0.3144845962524414,
-0.35388246178627014,
-0.13502037525177002,
-0.8813483119010925,
-0.786263644695282,
0.7985865473747253,
0.14190851151943207,
0.036107443273067474,
0.2644697427749634,
0.48798680305480957,
-0.07701738178730011,
-0.1082993596792221,
-0.9256393909454346,
-0.3550281822681427,
-0.4277637302875519,
-0.4038489758968353,
-0.1481463611125946,
-0.08859049528837204,
-0.035940248519182205,
-0.6751272082328796,
0.6211204528808594,
-0.17199790477752686,
0.6800656914710999,
0.39855217933654785,
-0.23512262105941772,
-0.09857656806707382,
-0.18760301172733307,
0.4905086159706116,
0.29978516697883606,
-0.28466102480888367,
0.13405801355838776,
0.17599603533744812,
-0.7010459899902344,
-0.07867120206356049,
0.21520152688026428,
-0.01937575452029705,
0.021153762936592102,
0.5594476461410522,
1.1547656059265137,
0.052741099148988724,
-0.15629279613494873,
0.6120360493659973,
-0.11738980561494827,
-0.5199068784713745,
-0.1435967981815338,
-0.07120450586080551,
-0.10018475353717804,
0.4008590579032898,
0.18457062542438507,
0.26200926303863525,
-0.25843873620033264,
-0.26846709847450256,
0.131652370095253,
0.5141061544418335,
-0.5267413854598999,
-0.40455111861228943,
0.6630273461341858,
-0.22515729069709778,
-0.10866149514913559,
0.8316497802734375,
-0.019087834283709526,
-0.42106157541275024,
0.8787584900856018,
0.494718074798584,
0.9633229374885559,
-0.054016292095184326,
0.015760846436023712,
0.8751376867294312,
0.3330296576023102,
-0.14567725360393524,
0.06998923420906067,
0.16848941147327423,
-0.8060334324836731,
0.012640826404094696,
-0.5953651666641235,
-0.04036712646484375,
0.23186810314655304,
-0.6924377679824829,
0.35850760340690613,
-0.5827275514602661,
-0.2726970314979553,
0.13587528467178345,
0.011796117760241032,
-0.9194113612174988,
0.19480377435684204,
0.01105713751167059,
0.8120653033256531,
-0.8677676320075989,
0.7991932034492493,
0.8170246481895447,
-0.8133715391159058,
-0.9686609506607056,
-0.10889182984828949,
-0.1280815601348877,
-0.8334053158760071,
0.5606309175491333,
0.38354411721229553,
0.09830363094806671,
0.09921981394290924,
-0.8634772300720215,
-0.6958736181259155,
1.3606042861938477,
0.543415904045105,
-0.08261297643184662,
0.13816078007221222,
-0.047989942133426666,
0.46559664607048035,
-0.3499913513660431,
0.3286474347114563,
0.2716563642024994,
0.3361736536026001,
0.27185872197151184,
-0.8280910849571228,
0.2594582438468933,
-0.42299526929855347,
0.1679956167936325,
0.17779599130153656,
-0.8359943628311157,
0.9873437881469727,
-0.48446840047836304,
-0.2285066694021225,
0.08611731231212616,
0.7370204925537109,
0.18584248423576355,
0.0020132174249738455,
0.4873836934566498,
0.8191133141517639,
0.45262008905410767,
-0.31173333525657654,
0.9366192817687988,
-0.07219281792640686,
0.6274300217628479,
0.7660952806472778,
0.42583638429641724,
0.6841574311256409,
0.5842214822769165,
-0.45551908016204834,
0.5181756019592285,
0.7889488339424133,
-0.43427136540412903,
0.35652899742126465,
0.15562804043293,
0.10116895288228989,
-0.14326722919940948,
-0.04969468340277672,
-0.41751042008399963,
0.3594880700111389,
0.18998651206493378,
-0.6073237061500549,
-0.10503511875867844,
0.06914588809013367,
0.056641705334186554,
-0.12941664457321167,
-0.19339033961296082,
0.6005433797836304,
0.11939354240894318,
-0.4891204237937927,
0.9053367376327515,
-0.07417037338018417,
0.9440831542015076,
-0.5237704515457153,
-0.055252160876989365,
-0.3620077967643738,
0.4243101179599762,
-0.2597324848175049,
-0.8904431462287903,
0.16874586045742035,
-0.20084625482559204,
-0.0887303426861763,
-0.09792442619800568,
0.6337882280349731,
-0.5666093230247498,
-0.5614632964134216,
0.25041839480400085,
0.16871501505374908,
0.2589811682701111,
0.04239145666360855,
-0.9803872108459473,
-0.05796872451901436,
-0.02773006074130535,
-0.5670093297958374,
0.39503464102745056,
0.5836412310600281,
-0.005206361413002014,
0.7704674601554871,
0.5481910705566406,
-0.041443873196840286,
0.25532957911491394,
-0.08202333748340607,
0.8866470456123352,
-0.4962579011917114,
-0.40413689613342285,
-0.878226101398468,
0.5853267908096313,
-0.05669749155640602,
-0.5148775577545166,
0.659179151058197,
0.41817378997802734,
0.9138470888137817,
-0.17207267880439758,
0.4359307289123535,
-0.1754007339477539,
-0.00452578766271472,
-0.44612517952919006,
0.7149714231491089,
-0.7519654035568237,
-0.03850683197379112,
-0.4894188344478607,
-0.8013396263122559,
-0.49830543994903564,
0.7482119798660278,
-0.2852468490600586,
0.3145967721939087,
0.628231942653656,
1.0692116022109985,
-0.2868274748325348,
-0.4618131220340729,
0.23734122514724731,
0.2620062232017517,
0.21174117922782898,
0.5077794194221497,
0.3723447918891907,
-0.7732574343681335,
0.6846299767494202,
-0.4758036136627197,
-0.24276947975158691,
-0.10231170058250427,
-0.6663475632667542,
-1.1069402694702148,
-0.9174901247024536,
-0.6513331532478333,
-0.6136434674263,
-0.3064454197883606,
0.8766379952430725,
0.8723523616790771,
-0.7112694978713989,
-0.14098072052001953,
-0.11012791097164154,
0.036190103739500046,
-0.3931872546672821,
-0.2388237863779068,
0.6361500024795532,
-0.1517721265554428,
-0.7884337306022644,
-0.3700735867023468,
0.07267943769693375,
0.47876906394958496,
-0.06373194605112076,
-0.29841119050979614,
-0.3215019106864929,
-0.12351133674383163,
0.34078851342201233,
0.38664981722831726,
-0.7899494767189026,
-0.14141137897968292,
-0.15963365137577057,
-0.26433703303337097,
0.4939800798892975,
0.3641875684261322,
-0.5580270290374756,
0.5329959392547607,
0.5506261587142944,
0.44013991951942444,
0.7824625372886658,
-0.3225136399269104,
0.13609658181667328,
-0.8363265991210938,
0.4740528464317322,
-0.24862800538539886,
0.5126630067825317,
0.5237647891044617,
-0.15877288579940796,
0.6280706524848938,
0.5335008502006531,
-0.3869081735610962,
-0.8328921794891357,
-0.06811810284852982,
-1.1194287538528442,
-0.04094894602894783,
1.0713214874267578,
-0.4821279048919678,
-0.4120115637779236,
0.4653452932834625,
-0.1859036237001419,
0.6568308472633362,
-0.09566762298345566,
0.39325007796287537,
0.3763914704322815,
0.12394709885120392,
-0.7179965972900391,
-0.43886661529541016,
0.4543580114841461,
0.2223767638206482,
-0.6731758117675781,
-0.2122003436088562,
0.05577429011464119,
0.5527384281158447,
0.32344672083854675,
0.4070916771888733,
-0.2630036771297455,
0.06068038567900658,
0.05398746207356453,
0.502838134765625,
-0.24896956980228424,
-0.11156702786684036,
-0.43863630294799805,
-0.09194617718458176,
-0.07625976204872131,
-0.546321451663971
] |
uclanlp/visualbert-vqa-coco-pre | uclanlp | "2021-05-31T11:34:13Z" | 12,216 | 4 | transformers | [
"transformers",
"pytorch",
"visual_bert",
"pretraining",
"endpoints_compatible",
"region:us"
] | null | "2022-03-02T23:29:05Z" | Entry not found | [
-0.3227650225162506,
-0.22568431496620178,
0.862226128578186,
0.43461495637893677,
-0.5282987952232361,
0.7012965679168701,
0.7915717363357544,
0.07618638128042221,
0.7746025919914246,
0.2563219666481018,
-0.7852817177772522,
-0.22573819756507874,
-0.9104480743408203,
0.5715669393539429,
-0.3992334008216858,
0.5791245698928833,
-0.14494505524635315,
-0.10751161724328995,
0.28233757615089417,
-0.2768954336643219,
-0.5409224033355713,
-0.36855220794677734,
-1.1902776956558228,
0.061491113156080246,
0.5316578149795532,
0.7435142397880554,
0.7584060430526733,
0.3652167320251465,
0.6432578563690186,
0.3932291269302368,
-0.23138920962810516,
0.4827055037021637,
-0.04171813279390335,
0.00260411505587399,
-0.3524433970451355,
-0.5516898036003113,
-0.28596609830856323,
0.07584730535745621,
1.0961304903030396,
0.966687798500061,
-0.284663587808609,
0.05330817773938179,
-0.3063621520996094,
0.33088892698287964,
-0.49734312295913696,
0.3054099678993225,
-0.022506045177578926,
0.16318801045417786,
-0.7041513919830322,
-0.5535354018211365,
0.012794834561645985,
-0.7361212968826294,
0.17926570773124695,
-0.690081000328064,
0.8269098401069641,
0.18583157658576965,
1.1533750295639038,
0.14819414913654327,
-0.462487131357193,
-0.8161764144897461,
-0.6538989543914795,
0.5711171627044678,
-0.32703715562820435,
0.39680248498916626,
0.7028235197067261,
-0.048573412001132965,
-0.9820332527160645,
-0.6745741367340088,
-0.46466192603111267,
0.2923962473869324,
0.35402774810791016,
-0.3411678075790405,
-0.17522086203098297,
-0.3058989644050598,
0.15792037546634674,
0.12811517715454102,
-0.4841994643211365,
-0.5543919205665588,
-0.5475160479545593,
-0.3960252106189728,
0.6206658482551575,
0.3482950031757355,
0.2429177463054657,
-0.1888415813446045,
-0.3228583335876465,
0.0880163162946701,
-0.4160851538181305,
0.3402571678161621,
0.6335517168045044,
0.7114017009735107,
-0.5811444520950317,
0.560215950012207,
-0.04927587881684303,
0.7439703941345215,
0.11445561796426773,
-0.27478092908859253,
0.41460567712783813,
-0.14724725484848022,
0.055171746760606766,
0.4226345121860504,
0.31524422764778137,
0.2841312289237976,
-0.3273695111274719,
0.2032228708267212,
-0.3215144872665405,
-0.30496224761009216,
-0.22332167625427246,
-0.29490774869918823,
-0.3592180609703064,
0.5492289066314697,
-0.3314017057418823,
-0.42855486273765564,
1.143175721168518,
-0.4200771450996399,
-0.7302224040031433,
0.33156412839889526,
0.4065209925174713,
-0.0994480773806572,
-0.37146568298339844,
-0.052260834723711014,
-0.8458789587020874,
-0.007907390594482422,
0.7491172552108765,
-0.7198970913887024,
0.3371737599372864,
0.4728063642978668,
0.7417217493057251,
0.19650575518608093,
-0.14034469425678253,
-0.42949390411376953,
0.2971969544887543,
-0.8659994006156921,
0.6320174336433411,
-0.20135220885276794,
-1.0051977634429932,
0.11150479316711426,
0.8971705436706543,
-0.37896400690078735,
-1.2094876766204834,
1.0605159997940063,
-0.6887932419776917,
0.16017857193946838,
-0.676761269569397,
-0.14661237597465515,
-0.07118501514196396,
-0.005096632521599531,
-0.6088156700134277,
0.7567102313041687,
0.587267279624939,
-0.4995276927947998,
0.21429483592510223,
-0.26029831171035767,
-0.39151400327682495,
0.38824859261512756,
-0.07935450226068497,
-0.21858926117420197,
0.713833212852478,
-0.6647079586982727,
-0.26932814717292786,
0.2942774295806885,
0.2368936538696289,
-0.35706108808517456,
-0.7931919097900391,
0.08478113263845444,
-0.05786270648241043,
1.550750494003296,
-0.03868847340345383,
-0.3586106300354004,
-0.679383397102356,
-1.1506240367889404,
-0.07070787996053696,
0.6886883974075317,
-0.9194989204406738,
-0.27839475870132446,
-0.046410128474235535,
-0.26169314980506897,
0.08994917571544647,
0.7390589714050293,
-1.1194051504135132,
0.2832726836204529,
-0.05092663690447807,
-0.22794683277606964,
0.8271058797836304,
0.15387225151062012,
0.24758946895599365,
0.14913396537303925,
0.42958706617355347,
0.527725338935852,
0.11115207523107529,
0.683587908744812,
-0.34720373153686523,
-0.9694353938102722,
0.6154631972312927,
0.25266361236572266,
0.8121447563171387,
-0.49945297837257385,
0.2685093879699707,
0.27025535702705383,
-0.3409680724143982,
-0.5682371854782104,
-0.3102838397026062,
0.09025752544403076,
0.14930562674999237,
0.11142510175704956,
-0.5721710324287415,
-0.6576125025749207,
-0.9689140319824219,
-0.13590654730796814,
-0.4314374029636383,
-0.3571570813655853,
0.21006910502910614,
0.5792906284332275,
-1.1975523233413696,
0.4128875136375427,
-0.7705625891685486,
-0.7038741111755371,
-0.01065548975020647,
-0.19338123500347137,
0.7540656328201294,
0.43240174651145935,
0.5033966898918152,
-0.6397148370742798,
-0.5661987066268921,
-0.22470176219940186,
-1.0333747863769531,
-0.13280506432056427,
0.24819621443748474,
0.3065737783908844,
-0.13423344492912292,
-0.2744963765144348,
-0.48740333318710327,
0.8100387454032898,
0.14789170026779175,
-0.5391897559165955,
0.5220767259597778,
-0.3020317256450653,
0.17224803566932678,
-0.6369150280952454,
-0.06916818022727966,
-0.661676287651062,
-0.0009071884560398757,
-0.3608308732509613,
-0.5737438797950745,
0.14772287011146545,
0.07017494738101959,
-0.16065457463264465,
0.28808408975601196,
-0.909277081489563,
-0.0010852962732315063,
-0.7442210912704468,
0.379071980714798,
0.06394772231578827,
-0.3145078718662262,
-0.017517540603876114,
1.0000386238098145,
0.7784460783004761,
-0.3848048746585846,
0.721744179725647,
0.4440041184425354,
0.19036155939102173,
0.7630521059036255,
-0.18725109100341797,
0.16478213667869568,
-0.5245416760444641,
-0.12161104381084442,
-0.8887597918510437,
-1.0982946157455444,
0.7320570349693298,
-0.6114250421524048,
0.36542922258377075,
-0.4277869760990143,
0.2589159905910492,
-0.6919258832931519,
-0.03885362669825554,
0.4808599352836609,
-0.05936325341463089,
-0.6863942742347717,
0.5232570171356201,
0.45317530632019043,
-0.2019241601228714,
-0.6609031558036804,
-0.530157208442688,
0.39365822076797485,
0.6154114007949829,
-0.16390392184257507,
0.06878514587879181,
0.14941060543060303,
-0.5441926121711731,
-0.040802597999572754,
-0.38691970705986023,
-0.45766758918762207,
0.054224006831645966,
0.13053473830223083,
-0.005750799085944891,
-0.404820054769516,
-0.0868026465177536,
-0.35842007398605347,
-0.4656120240688324,
0.21876516938209534,
0.3011947274208069,
-0.04096309468150139,
-0.42599788308143616,
-0.3619818687438965,
-0.888181209564209,
0.6719610095024109,
0.5370282530784607,
0.05281545966863632,
0.7555549740791321,
0.16819314658641815,
-0.8014987707138062,
-0.13532210886478424,
-0.1760706603527069,
0.2696830928325653,
-0.5588056445121765,
0.13849826157093048,
-0.013484534807503223,
-0.0637492910027504,
0.26297882199287415,
0.25386232137680054,
-0.4300556778907776,
0.9276250004768372,
-0.2615274488925934,
-0.3592521846294403,
0.7960181832313538,
0.5974742770195007,
0.49583131074905396,
0.16503219306468964,
-0.044541798532009125,
0.900709331035614,
-1.1966516971588135,
-0.6563175916671753,
-0.7409549355506897,
-0.15945707261562347,
-0.43510833382606506,
-0.032105933874845505,
0.6254412531852722,
0.2900990843772888,
-0.1333388388156891,
0.4756395220756531,
-0.5243489742279053,
0.3556033670902252,
1.01198410987854,
0.35748639702796936,
0.3435698449611664,
-0.7570229172706604,
-0.2515777349472046,
-0.1402427852153778,
-0.9998157620429993,
-0.2631377875804901,
0.8871029019355774,
0.22752606868743896,
0.844460666179657,
0.5992541313171387,
0.6784542798995972,
0.1367226243019104,
0.2523828148841858,
-0.30590319633483887,
0.3920294940471649,
0.4376082420349121,
-1.0401138067245483,
-0.42758408188819885,
0.021418681368231773,
-0.9703338742256165,
-0.14227519929409027,
-0.03495011106133461,
-0.42617112398147583,
0.7681737542152405,
0.00016589462757110596,
-0.4076709747314453,
0.7732734084129333,
-0.455583393573761,
0.7562873363494873,
-0.4473648965358734,
-0.02663906291127205,
0.4699096083641052,
-0.7070636749267578,
0.4677430987358093,
0.12878790497779846,
0.6205843091011047,
-0.015572631731629372,
-0.04078587517142296,
0.7104941606521606,
-0.9129160046577454,
0.25438642501831055,
-0.6348397135734558,
0.22421300411224365,
0.24246945977210999,
0.51606285572052,
0.5969953536987305,
0.4371243417263031,
0.10119888931512833,
-0.23920902609825134,
0.04115807265043259,
-0.8241125345230103,
-0.210506409406662,
0.697515606880188,
-0.7186890840530396,
-0.6864197850227356,
-1.2355337142944336,
0.14438660442829132,
0.27347055077552795,
0.389305055141449,
0.7959296107292175,
0.571408748626709,
0.1289544403553009,
0.680525004863739,
0.9888588190078735,
-0.0688566341996193,
0.9166924357414246,
0.3224477171897888,
0.09175168722867966,
-0.21944808959960938,
0.7036820650100708,
0.26627904176712036,
-0.24707956612110138,
-0.11939732730388641,
0.20913465321063995,
-0.11069409549236298,
-0.591761589050293,
-0.49990686774253845,
0.3701757788658142,
-0.6731787919998169,
-0.18303893506526947,
-0.6243735551834106,
-0.6043769717216492,
-0.511759340763092,
0.06927360594272614,
-0.7147687673568726,
0.23979046940803528,
-0.7753565907478333,
-0.10574902594089508,
0.04323432594537735,
0.9792009592056274,
-0.589311957359314,
0.5805224180221558,
-1.1218582391738892,
0.19345788657665253,
-0.07949887961149216,
0.7921058535575867,
0.21395787596702576,
-0.7344395518302917,
-0.3975418508052826,
-0.11592631042003632,
-0.3729911744594574,
-1.3576762676239014,
0.21404948830604553,
-0.2454141080379486,
0.23094046115875244,
0.6145404577255249,
0.1397707313299179,
0.5258248448371887,
-0.34326282143592834,
0.7029101848602295,
-0.057017259299755096,
-0.7069286704063416,
0.7934495210647583,
-0.5026894807815552,
0.4963534474372864,
0.9765996932983398,
0.5333835482597351,
-0.7984007596969604,
0.035741209983825684,
-1.041123390197754,
-0.6008695363998413,
0.38426393270492554,
0.11928944289684296,
-0.03601083159446716,
-0.6659559011459351,
-0.054019637405872345,
-0.16143807768821716,
0.6043745279312134,
-1.039069414138794,
-0.7858356237411499,
0.2576698362827301,
0.5277302861213684,
0.0816856250166893,
-0.5653398633003235,
0.20880667865276337,
-0.544416069984436,
1.0657774209976196,
0.45109400153160095,
0.3274499475955963,
0.8406060934066772,
0.46492424607276917,
-0.3823164403438568,
0.09252490103244781,
0.7662695050239563,
0.6666232347488403,
-0.5239797830581665,
-0.2908027470111847,
-0.08827541768550873,
-0.9143403768539429,
0.05927472561597824,
0.11168918758630753,
-0.013455932028591633,
0.9082110524177551,
0.5793083310127258,
0.2539709210395813,
0.4514279365539551,
-0.726460337638855,
0.8859451413154602,
-0.14954176545143127,
-0.12472866475582123,
-1.0677239894866943,
0.1948619782924652,
-0.23984959721565247,
0.5006402134895325,
1.0061326026916504,
0.5250048041343689,
-0.047630298882722855,
-0.8143380880355835,
-0.01473585981875658,
0.6939172148704529,
-0.7091123461723328,
-0.17449834942817688,
0.944853663444519,
0.3847099542617798,
-1.2953051328659058,
1.106776475906372,
-0.5381771326065063,
-0.560332179069519,
0.9121301770210266,
0.522956907749176,
1.1221847534179688,
-0.44204121828079224,
0.0008676342549733818,
0.2662237286567688,
0.41378432512283325,
0.5423170328140259,
1.0869629383087158,
0.431413471698761,
-0.7931063771247864,
0.8826584815979004,
-0.24776044487953186,
-0.40361151099205017,
-0.05347571521997452,
-0.42859897017478943,
0.16892178356647491,
-0.4406192898750305,
-0.10713007301092148,
-0.3444187641143799,
0.28543180227279663,
-0.7072042226791382,
0.42807620763778687,
-0.0838567465543747,
0.8653068542480469,
-0.8553727269172668,
0.47207626700401306,
0.635470449924469,
-0.3337355852127075,
-0.8508191108703613,
-0.26198428869247437,
-0.11448462307453156,
-0.6389466524124146,
0.30214807391166687,
-0.4554102420806885,
0.044398851692676544,
0.09623463451862335,
-0.649151623249054,
-1.1778275966644287,
0.9093633890151978,
-0.639612078666687,
-0.2784462869167328,
0.20464053750038147,
-0.11514760553836823,
0.28811705112457275,
-0.2524643540382385,
0.010661216452717781,
0.41876548528671265,
0.748940110206604,
0.2844654619693756,
-0.7727053761482239,
-0.3694884479045868,
0.0015032943338155746,
-0.44474777579307556,
0.7582978010177612,
-0.6002101898193359,
1.1840779781341553,
-0.5563543438911438,
-0.059654366225004196,
0.44384512305259705,
0.24690914154052734,
0.21076197922229767,
0.6629220843315125,
0.1442081481218338,
0.7282265424728394,
1.07012140750885,
-0.40835219621658325,
0.8811809420585632,
0.26432839035987854,
0.47430819272994995,
0.7238501906394958,
-0.6487724781036377,
0.7513749003410339,
0.31810489296913147,
-0.5682924389839172,
0.9228013753890991,
1.2906063795089722,
-0.15699204802513123,
0.8079374432563782,
0.05136508867144585,
-1.081600546836853,
0.325833261013031,
-0.20724765956401825,
-0.7530064582824707,
0.3150254189968109,
0.19055864214897156,
-0.6920982599258423,
-0.5770308971405029,
-0.24046507477760315,
-0.35662803053855896,
-0.11552901566028595,
-0.7631728649139404,
0.6720563769340515,
-0.016969164833426476,
-0.5103683471679688,
0.18857547640800476,
0.2877499461174011,
0.17368432879447937,
-0.5235732793807983,
-0.02939440682530403,
-0.22823619842529297,
0.2660655975341797,
-0.5670853853225708,
-0.5234526991844177,
0.5724433064460754,
-0.32430219650268555,
-0.5343255400657654,
0.18147465586662292,
0.763587236404419,
-0.16923809051513672,
-0.4515409469604492,
0.32472723722457886,
0.6959525346755981,
0.1665852814912796,
0.4250282347202301,
-0.23511263728141785,
0.24480605125427246,
-0.08044824004173279,
-0.06651552021503448,
0.27714768052101135,
0.3449169099330902,
0.22435641288757324,
0.4450142979621887,
0.43285664916038513,
-0.01808755099773407,
-0.10736498981714249,
-0.382819801568985,
0.4124940037727356,
-0.9542785882949829,
-0.5713282823562622,
-0.6307113766670227,
0.2740660607814789,
-0.02315417304635048,
-1.0836423635482788,
0.4145168364048004,
1.4406683444976807,
1.0359982252120972,
-0.4756383001804352,
1.067226529121399,
-0.21818485856056213,
0.9594791531562805,
0.41483086347579956,
0.5420440435409546,
-0.6030411720275879,
0.03835370019078255,
-0.4364396035671234,
-1.076962947845459,
-0.35716333985328674,
0.4539391100406647,
-0.022899555042386055,
-0.3429867625236511,
0.872571587562561,
0.5887166261672974,
-0.33473607897758484,
-0.11728022992610931,
0.048487238585948944,
-0.029941488057374954,
-0.12433847039937973,
0.5145376324653625,
0.7648399472236633,
-0.9344304800033569,
-0.10680416971445084,
-0.21577754616737366,
-0.6382725834846497,
-0.5047279000282288,
-0.9632009267807007,
-0.12959396839141846,
-0.16037796437740326,
0.035343267023563385,
-0.5662806630134583,
0.00255737011320889,
1.208324909210205,
0.5684957504272461,
-1.1113994121551514,
-0.5303789377212524,
0.3371853232383728,
0.3920421898365021,
-0.1874791383743286,
-0.24202413856983185,
0.2984568774700165,
0.15382249653339386,
-0.5908876657485962,
0.6875665783882141,
0.8089625239372253,
0.208888977766037,
0.19554761052131653,
0.15893013775348663,
-0.8229473829269409,
-0.14913435280323029,
0.17440445721149445,
0.9450570344924927,
-0.939853310585022,
-0.7114843130111694,
-0.03168516233563423,
-0.27094873785972595,
-0.05765746906399727,
0.17102102935314178,
-0.4046344757080078,
0.5180677175521851,
0.34591493010520935,
0.49933457374572754,
0.0561608150601387,
-0.054746925830841064,
0.5409556031227112,
-0.9069057703018188,
0.09425963461399078,
0.4134361147880554,
0.4154115319252014,
-0.4000864028930664,
-0.5910194516181946,
0.6713420748710632,
1.0073972940444946,
-0.6594868898391724,
-0.8743268847465515,
-0.19846712052822113,
-1.0016002655029297,
0.04189709946513176,
0.6762762069702148,
0.5009527802467346,
-0.4806513786315918,
-0.4174500107765198,
-0.5617399215698242,
-0.1254672110080719,
-0.1369970738887787,
0.7621601819992065,
1.179680585861206,
-0.7432094812393188,
0.07975747436285019,
-1.038639783859253,
0.6594986915588379,
-0.2419457733631134,
-0.3457581698894501,
-0.48644304275512695,
0.3832802176475525,
0.35236993432044983,
0.440481036901474,
0.614812433719635,
0.1408471167087555,
0.8338426351547241,
0.3126053214073181,
-0.1702686995267868,
0.2698982357978821,
-0.4559200704097748,
-0.028932858258485794,
-0.057962555438280106,
0.31015971302986145,
-1.0262157917022705
] |
TheBloke/Llama-2-7B-fp16 | TheBloke | "2023-08-27T17:55:51Z" | 12,208 | 36 | transformers | [
"transformers",
"pytorch",
"llama",
"text-generation",
"endpoints_compatible",
"has_space",
"text-generation-inference",
"region:us"
] | text-generation | "2023-07-18T19:40:44Z" | Entry not found | [
-0.3227650225162506,
-0.22568431496620178,
0.862226128578186,
0.43461495637893677,
-0.5282987952232361,
0.7012965679168701,
0.7915717363357544,
0.07618638128042221,
0.7746025919914246,
0.2563219666481018,
-0.7852817177772522,
-0.22573819756507874,
-0.9104480743408203,
0.5715669393539429,
-0.3992334008216858,
0.5791245698928833,
-0.14494505524635315,
-0.10751161724328995,
0.28233757615089417,
-0.2768954336643219,
-0.5409224033355713,
-0.36855220794677734,
-1.1902776956558228,
0.061491113156080246,
0.5316578149795532,
0.7435142397880554,
0.7584060430526733,
0.3652167320251465,
0.6432578563690186,
0.3932291269302368,
-0.23138920962810516,
0.4827055037021637,
-0.04171813279390335,
0.00260411505587399,
-0.3524433970451355,
-0.5516898036003113,
-0.28596609830856323,
0.07584730535745621,
1.0961304903030396,
0.966687798500061,
-0.284663587808609,
0.05330817773938179,
-0.3063621520996094,
0.33088892698287964,
-0.49734312295913696,
0.3054099678993225,
-0.022506045177578926,
0.16318801045417786,
-0.7041513919830322,
-0.5535354018211365,
0.012794834561645985,
-0.7361212968826294,
0.17926570773124695,
-0.690081000328064,
0.8269098401069641,
0.18583157658576965,
1.1533750295639038,
0.14819414913654327,
-0.462487131357193,
-0.8161764144897461,
-0.6538989543914795,
0.5711171627044678,
-0.32703715562820435,
0.39680248498916626,
0.7028235197067261,
-0.048573412001132965,
-0.9820332527160645,
-0.6745741367340088,
-0.46466192603111267,
0.2923962473869324,
0.35402774810791016,
-0.3411678075790405,
-0.17522086203098297,
-0.3058989644050598,
0.15792037546634674,
0.12811517715454102,
-0.4841994643211365,
-0.5543919205665588,
-0.5475160479545593,
-0.3960252106189728,
0.6206658482551575,
0.3482950031757355,
0.2429177463054657,
-0.1888415813446045,
-0.3228583335876465,
0.0880163162946701,
-0.4160851538181305,
0.3402571678161621,
0.6335517168045044,
0.7114017009735107,
-0.5811444520950317,
0.560215950012207,
-0.04927587881684303,
0.7439703941345215,
0.11445561796426773,
-0.27478092908859253,
0.41460567712783813,
-0.14724725484848022,
0.055171746760606766,
0.4226345121860504,
0.31524422764778137,
0.2841312289237976,
-0.3273695111274719,
0.2032228708267212,
-0.3215144872665405,
-0.30496224761009216,
-0.22332167625427246,
-0.29490774869918823,
-0.3592180609703064,
0.5492289066314697,
-0.3314017057418823,
-0.42855486273765564,
1.143175721168518,
-0.4200771450996399,
-0.7302224040031433,
0.33156412839889526,
0.4065209925174713,
-0.0994480773806572,
-0.37146568298339844,
-0.052260834723711014,
-0.8458789587020874,
-0.007907390594482422,
0.7491172552108765,
-0.7198970913887024,
0.3371737599372864,
0.4728063642978668,
0.7417217493057251,
0.19650575518608093,
-0.14034469425678253,
-0.42949390411376953,
0.2971969544887543,
-0.8659994006156921,
0.6320174336433411,
-0.20135220885276794,
-1.0051977634429932,
0.11150479316711426,
0.8971705436706543,
-0.37896400690078735,
-1.2094876766204834,
1.0605159997940063,
-0.6887932419776917,
0.16017857193946838,
-0.676761269569397,
-0.14661237597465515,
-0.07118501514196396,
-0.005096632521599531,
-0.6088156700134277,
0.7567102313041687,
0.587267279624939,
-0.4995276927947998,
0.21429483592510223,
-0.26029831171035767,
-0.39151400327682495,
0.38824859261512756,
-0.07935450226068497,
-0.21858926117420197,
0.713833212852478,
-0.6647079586982727,
-0.26932814717292786,
0.2942774295806885,
0.2368936538696289,
-0.35706108808517456,
-0.7931919097900391,
0.08478113263845444,
-0.05786270648241043,
1.550750494003296,
-0.03868847340345383,
-0.3586106300354004,
-0.679383397102356,
-1.1506240367889404,
-0.07070787996053696,
0.6886883974075317,
-0.9194989204406738,
-0.27839475870132446,
-0.046410128474235535,
-0.26169314980506897,
0.08994917571544647,
0.7390589714050293,
-1.1194051504135132,
0.2832726836204529,
-0.05092663690447807,
-0.22794683277606964,
0.8271058797836304,
0.15387225151062012,
0.24758946895599365,
0.14913396537303925,
0.42958706617355347,
0.527725338935852,
0.11115207523107529,
0.683587908744812,
-0.34720373153686523,
-0.9694353938102722,
0.6154631972312927,
0.25266361236572266,
0.8121447563171387,
-0.49945297837257385,
0.2685093879699707,
0.27025535702705383,
-0.3409680724143982,
-0.5682371854782104,
-0.3102838397026062,
0.09025752544403076,
0.14930562674999237,
0.11142510175704956,
-0.5721710324287415,
-0.6576125025749207,
-0.9689140319824219,
-0.13590654730796814,
-0.4314374029636383,
-0.3571570813655853,
0.21006910502910614,
0.5792906284332275,
-1.1975523233413696,
0.4128875136375427,
-0.7705625891685486,
-0.7038741111755371,
-0.01065548975020647,
-0.19338123500347137,
0.7540656328201294,
0.43240174651145935,
0.5033966898918152,
-0.6397148370742798,
-0.5661987066268921,
-0.22470176219940186,
-1.0333747863769531,
-0.13280506432056427,
0.24819621443748474,
0.3065737783908844,
-0.13423344492912292,
-0.2744963765144348,
-0.48740333318710327,
0.8100387454032898,
0.14789170026779175,
-0.5391897559165955,
0.5220767259597778,
-0.3020317256450653,
0.17224803566932678,
-0.6369150280952454,
-0.06916818022727966,
-0.661676287651062,
-0.0009071884560398757,
-0.3608308732509613,
-0.5737438797950745,
0.14772287011146545,
0.07017494738101959,
-0.16065457463264465,
0.28808408975601196,
-0.909277081489563,
-0.0010852962732315063,
-0.7442210912704468,
0.379071980714798,
0.06394772231578827,
-0.3145078718662262,
-0.017517540603876114,
1.0000386238098145,
0.7784460783004761,
-0.3848048746585846,
0.721744179725647,
0.4440041184425354,
0.19036155939102173,
0.7630521059036255,
-0.18725109100341797,
0.16478213667869568,
-0.5245416760444641,
-0.12161104381084442,
-0.8887597918510437,
-1.0982946157455444,
0.7320570349693298,
-0.6114250421524048,
0.36542922258377075,
-0.4277869760990143,
0.2589159905910492,
-0.6919258832931519,
-0.03885362669825554,
0.4808599352836609,
-0.05936325341463089,
-0.6863942742347717,
0.5232570171356201,
0.45317530632019043,
-0.2019241601228714,
-0.6609031558036804,
-0.530157208442688,
0.39365822076797485,
0.6154114007949829,
-0.16390392184257507,
0.06878514587879181,
0.14941060543060303,
-0.5441926121711731,
-0.040802597999572754,
-0.38691970705986023,
-0.45766758918762207,
0.054224006831645966,
0.13053473830223083,
-0.005750799085944891,
-0.404820054769516,
-0.0868026465177536,
-0.35842007398605347,
-0.4656120240688324,
0.21876516938209534,
0.3011947274208069,
-0.04096309468150139,
-0.42599788308143616,
-0.3619818687438965,
-0.888181209564209,
0.6719610095024109,
0.5370282530784607,
0.05281545966863632,
0.7555549740791321,
0.16819314658641815,
-0.8014987707138062,
-0.13532210886478424,
-0.1760706603527069,
0.2696830928325653,
-0.5588056445121765,
0.13849826157093048,
-0.013484534807503223,
-0.0637492910027504,
0.26297882199287415,
0.25386232137680054,
-0.4300556778907776,
0.9276250004768372,
-0.2615274488925934,
-0.3592521846294403,
0.7960181832313538,
0.5974742770195007,
0.49583131074905396,
0.16503219306468964,
-0.044541798532009125,
0.900709331035614,
-1.1966516971588135,
-0.6563175916671753,
-0.7409549355506897,
-0.15945707261562347,
-0.43510833382606506,
-0.032105933874845505,
0.6254412531852722,
0.2900990843772888,
-0.1333388388156891,
0.4756395220756531,
-0.5243489742279053,
0.3556033670902252,
1.01198410987854,
0.35748639702796936,
0.3435698449611664,
-0.7570229172706604,
-0.2515777349472046,
-0.1402427852153778,
-0.9998157620429993,
-0.2631377875804901,
0.8871029019355774,
0.22752606868743896,
0.844460666179657,
0.5992541313171387,
0.6784542798995972,
0.1367226243019104,
0.2523828148841858,
-0.30590319633483887,
0.3920294940471649,
0.4376082420349121,
-1.0401138067245483,
-0.42758408188819885,
0.021418681368231773,
-0.9703338742256165,
-0.14227519929409027,
-0.03495011106133461,
-0.42617112398147583,
0.7681737542152405,
0.00016589462757110596,
-0.4076709747314453,
0.7732734084129333,
-0.455583393573761,
0.7562873363494873,
-0.4473648965358734,
-0.02663906291127205,
0.4699096083641052,
-0.7070636749267578,
0.4677430987358093,
0.12878790497779846,
0.6205843091011047,
-0.015572631731629372,
-0.04078587517142296,
0.7104941606521606,
-0.9129160046577454,
0.25438642501831055,
-0.6348397135734558,
0.22421300411224365,
0.24246945977210999,
0.51606285572052,
0.5969953536987305,
0.4371243417263031,
0.10119888931512833,
-0.23920902609825134,
0.04115807265043259,
-0.8241125345230103,
-0.210506409406662,
0.697515606880188,
-0.7186890840530396,
-0.6864197850227356,
-1.2355337142944336,
0.14438660442829132,
0.27347055077552795,
0.389305055141449,
0.7959296107292175,
0.571408748626709,
0.1289544403553009,
0.680525004863739,
0.9888588190078735,
-0.0688566341996193,
0.9166924357414246,
0.3224477171897888,
0.09175168722867966,
-0.21944808959960938,
0.7036820650100708,
0.26627904176712036,
-0.24707956612110138,
-0.11939732730388641,
0.20913465321063995,
-0.11069409549236298,
-0.591761589050293,
-0.49990686774253845,
0.3701757788658142,
-0.6731787919998169,
-0.18303893506526947,
-0.6243735551834106,
-0.6043769717216492,
-0.511759340763092,
0.06927360594272614,
-0.7147687673568726,
0.23979046940803528,
-0.7753565907478333,
-0.10574902594089508,
0.04323432594537735,
0.9792009592056274,
-0.589311957359314,
0.5805224180221558,
-1.1218582391738892,
0.19345788657665253,
-0.07949887961149216,
0.7921058535575867,
0.21395787596702576,
-0.7344395518302917,
-0.3975418508052826,
-0.11592631042003632,
-0.3729911744594574,
-1.3576762676239014,
0.21404948830604553,
-0.2454141080379486,
0.23094046115875244,
0.6145404577255249,
0.1397707313299179,
0.5258248448371887,
-0.34326282143592834,
0.7029101848602295,
-0.057017259299755096,
-0.7069286704063416,
0.7934495210647583,
-0.5026894807815552,
0.4963534474372864,
0.9765996932983398,
0.5333835482597351,
-0.7984007596969604,
0.035741209983825684,
-1.041123390197754,
-0.6008695363998413,
0.38426393270492554,
0.11928944289684296,
-0.03601083159446716,
-0.6659559011459351,
-0.054019637405872345,
-0.16143807768821716,
0.6043745279312134,
-1.039069414138794,
-0.7858356237411499,
0.2576698362827301,
0.5277302861213684,
0.0816856250166893,
-0.5653398633003235,
0.20880667865276337,
-0.544416069984436,
1.0657774209976196,
0.45109400153160095,
0.3274499475955963,
0.8406060934066772,
0.46492424607276917,
-0.3823164403438568,
0.09252490103244781,
0.7662695050239563,
0.6666232347488403,
-0.5239797830581665,
-0.2908027470111847,
-0.08827541768550873,
-0.9143403768539429,
0.05927472561597824,
0.11168918758630753,
-0.013455932028591633,
0.9082110524177551,
0.5793083310127258,
0.2539709210395813,
0.4514279365539551,
-0.726460337638855,
0.8859451413154602,
-0.14954176545143127,
-0.12472866475582123,
-1.0677239894866943,
0.1948619782924652,
-0.23984959721565247,
0.5006402134895325,
1.0061326026916504,
0.5250048041343689,
-0.047630298882722855,
-0.8143380880355835,
-0.01473585981875658,
0.6939172148704529,
-0.7091123461723328,
-0.17449834942817688,
0.944853663444519,
0.3847099542617798,
-1.2953051328659058,
1.106776475906372,
-0.5381771326065063,
-0.560332179069519,
0.9121301770210266,
0.522956907749176,
1.1221847534179688,
-0.44204121828079224,
0.0008676342549733818,
0.2662237286567688,
0.41378432512283325,
0.5423170328140259,
1.0869629383087158,
0.431413471698761,
-0.7931063771247864,
0.8826584815979004,
-0.24776044487953186,
-0.40361151099205017,
-0.05347571521997452,
-0.42859897017478943,
0.16892178356647491,
-0.4406192898750305,
-0.10713007301092148,
-0.3444187641143799,
0.28543180227279663,
-0.7072042226791382,
0.42807620763778687,
-0.0838567465543747,
0.8653068542480469,
-0.8553727269172668,
0.47207626700401306,
0.635470449924469,
-0.3337355852127075,
-0.8508191108703613,
-0.26198428869247437,
-0.11448462307453156,
-0.6389466524124146,
0.30214807391166687,
-0.4554102420806885,
0.044398851692676544,
0.09623463451862335,
-0.649151623249054,
-1.1778275966644287,
0.9093633890151978,
-0.639612078666687,
-0.2784462869167328,
0.20464053750038147,
-0.11514760553836823,
0.28811705112457275,
-0.2524643540382385,
0.010661216452717781,
0.41876548528671265,
0.748940110206604,
0.2844654619693756,
-0.7727053761482239,
-0.3694884479045868,
0.0015032943338155746,
-0.44474777579307556,
0.7582978010177612,
-0.6002101898193359,
1.1840779781341553,
-0.5563543438911438,
-0.059654366225004196,
0.44384512305259705,
0.24690914154052734,
0.21076197922229767,
0.6629220843315125,
0.1442081481218338,
0.7282265424728394,
1.07012140750885,
-0.40835219621658325,
0.8811809420585632,
0.26432839035987854,
0.47430819272994995,
0.7238501906394958,
-0.6487724781036377,
0.7513749003410339,
0.31810489296913147,
-0.5682924389839172,
0.9228013753890991,
1.2906063795089722,
-0.15699204802513123,
0.8079374432563782,
0.05136508867144585,
-1.081600546836853,
0.325833261013031,
-0.20724765956401825,
-0.7530064582824707,
0.3150254189968109,
0.19055864214897156,
-0.6920982599258423,
-0.5770308971405029,
-0.24046507477760315,
-0.35662803053855896,
-0.11552901566028595,
-0.7631728649139404,
0.6720563769340515,
-0.016969164833426476,
-0.5103683471679688,
0.18857547640800476,
0.2877499461174011,
0.17368432879447937,
-0.5235732793807983,
-0.02939440682530403,
-0.22823619842529297,
0.2660655975341797,
-0.5670853853225708,
-0.5234526991844177,
0.5724433064460754,
-0.32430219650268555,
-0.5343255400657654,
0.18147465586662292,
0.763587236404419,
-0.16923809051513672,
-0.4515409469604492,
0.32472723722457886,
0.6959525346755981,
0.1665852814912796,
0.4250282347202301,
-0.23511263728141785,
0.24480605125427246,
-0.08044824004173279,
-0.06651552021503448,
0.27714768052101135,
0.3449169099330902,
0.22435641288757324,
0.4450142979621887,
0.43285664916038513,
-0.01808755099773407,
-0.10736498981714249,
-0.382819801568985,
0.4124940037727356,
-0.9542785882949829,
-0.5713282823562622,
-0.6307113766670227,
0.2740660607814789,
-0.02315417304635048,
-1.0836423635482788,
0.4145168364048004,
1.4406683444976807,
1.0359982252120972,
-0.4756383001804352,
1.067226529121399,
-0.21818485856056213,
0.9594791531562805,
0.41483086347579956,
0.5420440435409546,
-0.6030411720275879,
0.03835370019078255,
-0.4364396035671234,
-1.076962947845459,
-0.35716333985328674,
0.4539391100406647,
-0.022899555042386055,
-0.3429867625236511,
0.872571587562561,
0.5887166261672974,
-0.33473607897758484,
-0.11728022992610931,
0.048487238585948944,
-0.029941488057374954,
-0.12433847039937973,
0.5145376324653625,
0.7648399472236633,
-0.9344304800033569,
-0.10680416971445084,
-0.21577754616737366,
-0.6382725834846497,
-0.5047279000282288,
-0.9632009267807007,
-0.12959396839141846,
-0.16037796437740326,
0.035343267023563385,
-0.5662806630134583,
0.00255737011320889,
1.208324909210205,
0.5684957504272461,
-1.1113994121551514,
-0.5303789377212524,
0.3371853232383728,
0.3920421898365021,
-0.1874791383743286,
-0.24202413856983185,
0.2984568774700165,
0.15382249653339386,
-0.5908876657485962,
0.6875665783882141,
0.8089625239372253,
0.208888977766037,
0.19554761052131653,
0.15893013775348663,
-0.8229473829269409,
-0.14913435280323029,
0.17440445721149445,
0.9450570344924927,
-0.939853310585022,
-0.7114843130111694,
-0.03168516233563423,
-0.27094873785972595,
-0.05765746906399727,
0.17102102935314178,
-0.4046344757080078,
0.5180677175521851,
0.34591493010520935,
0.49933457374572754,
0.0561608150601387,
-0.054746925830841064,
0.5409556031227112,
-0.9069057703018188,
0.09425963461399078,
0.4134361147880554,
0.4154115319252014,
-0.4000864028930664,
-0.5910194516181946,
0.6713420748710632,
1.0073972940444946,
-0.6594868898391724,
-0.8743268847465515,
-0.19846712052822113,
-1.0016002655029297,
0.04189709946513176,
0.6762762069702148,
0.5009527802467346,
-0.4806513786315918,
-0.4174500107765198,
-0.5617399215698242,
-0.1254672110080719,
-0.1369970738887787,
0.7621601819992065,
1.179680585861206,
-0.7432094812393188,
0.07975747436285019,
-1.038639783859253,
0.6594986915588379,
-0.2419457733631134,
-0.3457581698894501,
-0.48644304275512695,
0.3832802176475525,
0.35236993432044983,
0.440481036901474,
0.614812433719635,
0.1408471167087555,
0.8338426351547241,
0.3126053214073181,
-0.1702686995267868,
0.2698982357978821,
-0.4559200704097748,
-0.028932858258485794,
-0.057962555438280106,
0.31015971302986145,
-1.0262157917022705
] |
facebook/bart-large-xsum | facebook | "2023-01-24T16:28:59Z" | 12,205 | 29 | transformers | [
"transformers",
"pytorch",
"tf",
"jax",
"rust",
"bart",
"text2text-generation",
"summarization",
"en",
"arxiv:1910.13461",
"license:mit",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"has_space",
"region:us"
] | summarization | "2022-03-02T23:29:05Z" | ---
tags:
- summarization
language:
- en
license: mit
model-index:
- name: facebook/bart-large-xsum
results:
- task:
type: summarization
name: Summarization
dataset:
name: cnn_dailymail
type: cnn_dailymail
config: 3.0.0
split: test
metrics:
- name: ROUGE-1
type: rouge
value: 25.2697
verified: true
- name: ROUGE-2
type: rouge
value: 7.6638
verified: true
- name: ROUGE-L
type: rouge
value: 17.1808
verified: true
- name: ROUGE-LSUM
type: rouge
value: 21.7933
verified: true
- name: loss
type: loss
value: 3.5042972564697266
verified: true
- name: gen_len
type: gen_len
value: 27.4462
verified: true
- task:
type: summarization
name: Summarization
dataset:
name: xsum
type: xsum
config: default
split: test
metrics:
- name: ROUGE-1
type: rouge
value: 45.4525
verified: true
- name: ROUGE-2
type: rouge
value: 22.3455
verified: true
- name: ROUGE-L
type: rouge
value: 37.2302
verified: true
- name: ROUGE-LSUM
type: rouge
value: 37.2323
verified: true
- name: loss
type: loss
value: 2.3128726482391357
verified: true
- name: gen_len
type: gen_len
value: 25.5435
verified: true
- task:
type: summarization
name: Summarization
dataset:
name: samsum
type: samsum
config: samsum
split: train
metrics:
- name: ROUGE-1
type: rouge
value: 24.7852
verified: true
- name: ROUGE-2
type: rouge
value: 5.2533
verified: true
- name: ROUGE-L
type: rouge
value: 18.6792
verified: true
- name: ROUGE-LSUM
type: rouge
value: 20.629
verified: true
- name: loss
type: loss
value: 3.746837854385376
verified: true
- name: gen_len
type: gen_len
value: 23.1206
verified: true
- task:
type: summarization
name: Summarization
dataset:
name: samsum
type: samsum
config: samsum
split: test
metrics:
- name: ROUGE-1
type: rouge
value: 24.9158
verified: true
- name: ROUGE-2
type: rouge
value: 5.5837
verified: true
- name: ROUGE-L
type: rouge
value: 18.8935
verified: true
- name: ROUGE-LSUM
type: rouge
value: 20.76
verified: true
- name: loss
type: loss
value: 3.775235891342163
verified: true
- name: gen_len
type: gen_len
value: 23.0928
verified: true
---
### Bart model finetuned on xsum
docs: https://huggingface.co/transformers/model_doc/bart.html
finetuning: examples/seq2seq/ (as of Aug 20, 2020)
Metrics: ROUGE > 22 on xsum.
variants: search for distilbart
paper: https://arxiv.org/abs/1910.13461 | [
-0.4736560881137848,
-0.472229927778244,
0.5183888077735901,
0.3537157475948334,
-0.16090860962867737,
0.24432620406150818,
0.30052492022514343,
-0.08919131010770798,
0.5505509972572327,
0.7861018180847168,
-0.8741218447685242,
-0.3313712775707245,
-0.5259880423545837,
-0.1983938068151474,
-0.5883935689926147,
1.3451184034347534,
0.014789693057537079,
0.32191890478134155,
0.13120773434638977,
-0.3672398030757904,
-0.25455841422080994,
-0.5016769766807556,
-1.1158053874969482,
-0.256635457277298,
0.6720777153968811,
0.8835684657096863,
0.8514620661735535,
0.3250039517879486,
0.8483350276947021,
0.3435385227203369,
-0.18386824429035187,
0.16644302010536194,
-0.7189580202102661,
0.0605950728058815,
-0.22823932766914368,
-0.5795077681541443,
-1.1990340948104858,
0.18326826393604279,
0.7213605046272278,
0.795544445514679,
-0.03907955065369606,
0.5799124240875244,
-0.21454618871212006,
0.642804741859436,
-0.2443218231201172,
0.32030215859413147,
-0.1489218771457672,
-0.1219182088971138,
-0.3557418882846832,
0.007250810507684946,
-0.1075960323214531,
-0.30980923771858215,
-0.321916401386261,
-0.7414051294326782,
0.3438485860824585,
0.33093035221099854,
1.4313985109329224,
0.5061204433441162,
-0.6151434779167175,
0.2503550946712494,
-0.6142376065254211,
0.749060332775116,
-0.6709426045417786,
0.4610951244831085,
0.6913716793060303,
0.8408550024032593,
0.27225959300994873,
-1.3994367122650146,
-0.4091542065143585,
-0.0052164229564368725,
-0.41952088475227356,
0.16889825463294983,
-0.6406031847000122,
-0.11891601979732513,
0.6343141198158264,
0.7465599775314331,
-0.42927125096321106,
-0.10904611647129059,
-0.5662011504173279,
-0.07978727668523788,
0.7670562863349915,
0.8452203869819641,
0.10716907680034637,
-0.37561488151550293,
-0.3158649504184723,
-0.5425854325294495,
-0.46700575947761536,
-0.11324966698884964,
0.32027050852775574,
0.03630588948726654,
-0.7225549817085266,
0.7307932376861572,
0.02563626505434513,
-0.08038415759801865,
0.23693574965000153,
0.14914119243621826,
0.4643007218837738,
-0.8357173204421997,
-0.425160676240921,
-0.4958588182926178,
0.6516648530960083,
0.608295202255249,
0.33656179904937744,
0.18539535999298096,
-0.49793142080307007,
-0.07798482477664948,
0.46852925419807434,
-0.806661069393158,
-0.5808787941932678,
-0.3549727499485016,
-0.44939178228378296,
-0.2739455997943878,
0.14740079641342163,
-0.41104888916015625,
-0.31573691964149475,
-0.44823509454727173,
0.34602272510528564,
-0.3951946794986725,
-0.2269514799118042,
-0.11068382859230042,
-0.6331584453582764,
0.08349620550870895,
0.3379709720611572,
-0.835401177406311,
0.8906264305114746,
0.43678683042526245,
0.8692026734352112,
0.38065001368522644,
0.169571653008461,
-0.3903355896472931,
-0.3557400405406952,
-0.7485347986221313,
0.39167293906211853,
0.1604752242565155,
-0.35154715180397034,
-0.5588632822036743,
0.4139796793460846,
0.5428377985954285,
-0.3470454514026642,
0.926264762878418,
-0.5698397159576416,
0.13109546899795532,
-0.2517535984516144,
-0.47473689913749695,
-0.3002997934818268,
0.11134078353643417,
-1.0060120820999146,
1.050947904586792,
0.8797920942306519,
-0.5925213098526001,
0.5212101936340332,
-0.9344767332077026,
-0.40176668763160706,
-0.05242148041725159,
0.19401690363883972,
-0.7751796841621399,
0.30678415298461914,
-0.2290511429309845,
0.40091052651405334,
-0.26217955350875854,
0.3268234431743622,
-0.3022516667842865,
-0.13784143328666687,
-0.05902821198105812,
-0.6218975782394409,
1.2063692808151245,
0.5110589265823364,
-0.12731380760669708,
0.2780018746852875,
-0.8855838775634766,
-0.08411179482936859,
0.5031945109367371,
0.38282105326652527,
-0.5381620526313782,
-0.23983953893184662,
0.5474972724914551,
-0.08647606521844864,
0.2496139407157898,
-0.4222726821899414,
0.24211835861206055,
0.14885690808296204,
0.2941931486129761,
0.44106921553611755,
-0.07660162448883057,
0.42885980010032654,
-0.7470054030418396,
0.5589306354522705,
-0.3743862509727478,
0.3855714201927185,
0.08452179282903671,
-0.3317270874977112,
-1.1082454919815063,
-0.4471184313297272,
0.2667023241519928,
0.4667888283729553,
-0.05689063295722008,
0.5702099204063416,
-0.12296408414840698,
-1.088113784790039,
-0.19602134823799133,
-0.4447578191757202,
0.03200061619281769,
0.430947870016098,
0.6930090188980103,
-0.37099793553352356,
-0.9441936612129211,
-0.9519355893135071,
0.3740958869457245,
0.05272294208407402,
-0.005011267494410276,
0.2276022583246231,
0.4116944968700409,
-0.4784591495990753,
0.8375877737998962,
-0.6257532238960266,
-0.17813768982887268,
-0.44396713376045227,
0.2530773878097534,
0.4741605818271637,
0.3475959300994873,
0.9978649616241455,
-0.6108309030532837,
-0.8136724233627319,
-0.16445033252239227,
-0.45480799674987793,
-0.2237483412027359,
-0.006914224475622177,
-0.06032644957304001,
0.0864749401807785,
0.720525860786438,
-0.4309403598308563,
0.6488381624221802,
0.5494511127471924,
-0.7792388796806335,
0.5483176112174988,
-0.06286641955375671,
0.13157635927200317,
-1.1098905801773071,
0.24279846251010895,
-0.12844179570674896,
-0.983626663684845,
-0.5203942060470581,
0.18341009318828583,
0.2901078462600708,
0.2572211027145386,
-0.4741836488246918,
0.7655183672904968,
-0.508259117603302,
0.00949595496058464,
-0.08245978504419327,
0.09886680543422699,
0.40509411692619324,
0.11975008249282837,
-0.15049409866333008,
0.4215097427368164,
0.4216903746128082,
-0.45360568165779114,
0.46175190806388855,
0.7268691658973694,
-0.3295571804046631,
0.46857577562332153,
-0.8700419068336487,
-0.47117704153060913,
0.1719224900007248,
0.5662350058555603,
-1.031217336654663,
-0.15921583771705627,
0.24140475690364838,
-0.21000449359416962,
0.49639037251472473,
0.015551255084574223,
-0.6804959774017334,
-0.4738835394382477,
-0.33113229274749756,
0.7424468994140625,
1.0013360977172852,
-0.3453923165798187,
0.0344071239233017,
0.4184401333332062,
-0.169989213347435,
-0.4365733563899994,
-0.6464477181434631,
0.026430198922753334,
-0.411457359790802,
-0.39998936653137207,
0.4111279845237732,
-0.20214734971523285,
-0.47651445865631104,
-0.4536231458187103,
-0.20751219987869263,
-0.21422013640403748,
-0.08217930793762207,
0.20887567102909088,
0.40467554330825806,
-0.3025606572628021,
-0.23611211776733398,
0.3146913945674896,
-0.3913658559322357,
0.08918547630310059,
0.5745767951011658,
1.0021635293960571,
-0.30263352394104004,
-0.11790376156568527,
-0.39174869656562805,
-0.0523843877017498,
0.8098181486129761,
0.11711560934782028,
0.15477944910526276,
0.6998740434646606,
-0.4036751687526703,
0.07131384313106537,
-0.3069562315940857,
-0.6739036440849304,
-0.5719528198242188,
0.4013203978538513,
-0.28778624534606934,
-0.5827869176864624,
0.6540422439575195,
0.1828359067440033,
0.106801837682724,
0.9241018891334534,
0.5591705441474915,
-0.19754129648208618,
0.9825785160064697,
0.6150391697883606,
0.26863425970077515,
0.36806851625442505,
-0.8689965605735779,
0.24704740941524506,
-0.6915538311004639,
-0.028865912929177284,
-0.24756471812725067,
-0.5613069534301758,
-0.8026017546653748,
-0.4988640546798706,
0.22268253564834595,
0.4054442048072815,
-0.9503277540206909,
1.1337273120880127,
-0.13470102846622467,
0.4357186257839203,
0.6654739379882812,
-0.13418543338775635,
0.4763747751712799,
-0.41339975595474243,
0.0722208321094513,
-0.3075351119041443,
-0.47776979207992554,
-0.5582030415534973,
0.9089139103889465,
0.7539733052253723,
1.070927381515503,
0.12224249541759491,
0.5678030848503113,
0.3451662063598633,
0.17960898578166962,
-0.7298229932785034,
0.38118693232536316,
-0.4830271005630493,
-1.4608670473098755,
-0.5395962595939636,
-0.25151190161705017,
-0.7761020660400391,
-0.24467937648296356,
-0.23133552074432373,
-0.4094596803188324,
0.26205214858055115,
0.03306876868009567,
-0.31922346353530884,
0.46044212579727173,
-0.45278146862983704,
0.9156461358070374,
-0.20428813993930817,
0.11492186039686203,
-0.381664514541626,
-0.9122829437255859,
0.30472639203071594,
-0.10395196080207825,
-0.1225675418972969,
-0.43697479367256165,
0.0883084386587143,
0.43683820962905884,
-0.5675691962242126,
0.8924233317375183,
0.1778576672077179,
-0.02723526768386364,
0.2614316940307617,
0.1930728554725647,
0.020795481279492378,
0.542184054851532,
0.18827460706233978,
0.5302954316139221,
0.3844248652458191,
-0.3644355833530426,
-0.2595221996307373,
0.22465287148952484,
-0.6630691885948181,
-0.11186151206493378,
-0.4723515212535858,
-0.7645760178565979,
0.1239853948354721,
0.3281320035457611,
0.7648075819015503,
0.7121351361274719,
-0.5463634729385376,
0.05912334844470024,
0.19988086819648743,
0.12082824110984802,
0.6745456457138062,
0.5927451848983765,
-0.6873621940612793,
-0.29423150420188904,
0.9590284824371338,
0.08253595978021622,
0.4638822674751282,
0.4816076159477234,
0.3497472107410431,
-0.5295701622962952,
0.15623071789741516,
-0.3920515179634094,
0.41936200857162476,
-0.4684395492076874,
-0.5090239644050598,
-0.269521564245224,
-0.699122965335846,
-0.29913732409477234,
-0.1639118194580078,
-0.7563324570655823,
-1.107509732246399,
-0.5213460326194763,
-0.11527959257364273,
0.6623332500457764,
0.904836893081665,
-0.6435034871101379,
0.503717839717865,
-0.7644647359848022,
0.44923216104507446,
0.072158582508564,
0.6865726709365845,
-0.33870574831962585,
-0.9091963171958923,
-0.3571762144565582,
0.1445494443178177,
-0.8070285320281982,
-0.4113021790981293,
0.3325320780277252,
0.018950728699564934,
0.2648393511772156,
0.8477010130882263,
0.3482699692249298,
0.5035138130187988,
-0.6976955533027649,
0.7464463710784912,
0.5609949231147766,
-1.0678333044052124,
-0.057772401720285416,
-0.45164549350738525,
-0.03954440355300903,
0.5422475337982178,
0.6097052693367004,
-0.6580430269241333,
-0.4139440059661865,
-1.2178670167922974,
-0.826606273651123,
0.4141412377357483,
0.2302926629781723,
0.39487382769584656,
0.11718481034040451,
-0.21727648377418518,
0.5313143730163574,
0.061931170523166656,
-0.7804586291313171,
-0.9648650288581848,
-0.2989998757839203,
-0.03863979130983353,
-0.3344917297363281,
-0.0828162133693695,
-0.37914279103279114,
-0.9012978672981262,
0.5354453921318054,
0.18798115849494934,
0.24314062297344208,
-0.3393431305885315,
0.4382040798664093,
-0.10419946163892746,
-0.053846899420022964,
0.7882985472679138,
0.6576077938079834,
-0.4901256263256073,
-0.11854666471481323,
0.25859495997428894,
-0.3644477128982544,
0.10410113632678986,
0.13006943464279175,
0.22978974878787994,
0.18616443872451782,
0.3357142210006714,
1.0382429361343384,
0.005706180352717638,
-0.5564783215522766,
0.4316588044166565,
-0.010297455824911594,
-0.31515106558799744,
-0.9374061226844788,
0.3890858292579651,
0.028642047196626663,
0.3722257912158966,
0.12237223982810974,
0.20945921540260315,
0.2811887264251709,
-0.5280765295028687,
0.4560207724571228,
0.31039148569107056,
-0.8350510001182556,
-0.31783345341682434,
0.8784060478210449,
-0.11626771837472916,
-0.41952064633369446,
0.7283250689506531,
-0.41979166865348816,
-0.07990895956754684,
0.6780520677566528,
0.5992481112480164,
0.6561019420623779,
-0.01570671983063221,
0.2776283919811249,
0.41409486532211304,
0.09447391331195831,
-0.00462321937084198,
0.4137674570083618,
0.1731109768152237,
-0.6809914708137512,
-0.21310052275657654,
-0.21992631256580353,
-0.6803696751594543,
0.0730944350361824,
-0.8785891532897949,
1.0084046125411987,
-0.46317216753959656,
-0.4677993357181549,
-0.007843832485377789,
-0.03366819769144058,
-0.7116627097129822,
0.44556859135627747,
0.19604313373565674,
1.4303478002548218,
-0.8758887052536011,
0.657493531703949,
0.6338425874710083,
-0.7871128916740417,
-0.7238556742668152,
-0.3459814786911011,
0.03535139188170433,
-0.8845310211181641,
0.45348864793777466,
-0.11733181029558182,
0.05117151141166687,
0.051660843193531036,
-0.7955161333084106,
-1.0757684707641602,
1.2731773853302002,
0.21851494908332825,
-0.8159159421920776,
-0.06925205886363983,
-0.12198979407548904,
0.517156720161438,
-0.004826081916689873,
0.7394965887069702,
0.8564902544021606,
0.7263651490211487,
-0.176832914352417,
-1.0270024538040161,
-0.23941932618618011,
-0.317426472902298,
-0.6171848177909851,
0.5311270356178284,
-1.0846601724624634,
1.0326398611068726,
-0.3559343218803406,
-0.10798268020153046,
0.42998504638671875,
0.4166688919067383,
0.09603265672922134,
0.6571135520935059,
0.6197600960731506,
0.895148754119873,
0.5173640251159668,
-0.37941938638687134,
0.8167119026184082,
-0.02459930069744587,
0.6905723810195923,
1.1793909072875977,
0.0757312998175621,
0.41888418793678284,
0.20265743136405945,
-0.6219229102134705,
0.7917929887771606,
0.8975651264190674,
-0.3534259498119354,
0.5369113087654114,
0.27855467796325684,
0.3204314112663269,
-0.1317111998796463,
0.31522223353385925,
-0.4545552134513855,
0.5237173438072205,
0.4759121537208557,
-0.4044007956981659,
-0.22081993520259857,
-0.31266793608665466,
0.4326016902923584,
-0.06527721136808395,
-0.21043097972869873,
0.5597242116928101,
0.4086250066757202,
-0.07889436185359955,
0.6705726981163025,
-0.04480697214603424,
0.3559401035308838,
-0.6111541390419006,
-0.04727833718061447,
-0.5387244820594788,
0.10863915085792542,
-0.1369861513376236,
-1.0462205410003662,
0.5183226466178894,
-0.28627097606658936,
-0.3913339376449585,
-0.27671265602111816,
0.0933619886636734,
-0.03593108803033829,
-0.7857491374015808,
0.2610057294368744,
0.5313716530799866,
0.2912023663520813,
0.1625671535730362,
-0.5915218591690063,
-0.35683563351631165,
-0.14369812607765198,
-0.1820601224899292,
-0.0966414362192154,
0.4402610957622528,
-0.24750955402851105,
0.8267664909362793,
0.1378944367170334,
-0.23232851922512054,
-0.15518689155578613,
0.20271523296833038,
0.6646511554718018,
-0.6457815766334534,
-0.4965519607067108,
-0.6796422600746155,
1.0596486330032349,
-0.32442906498908997,
-0.8303094506263733,
0.659915030002594,
0.8146962523460388,
0.7331110239028931,
-0.2268265038728714,
0.47417542338371277,
-0.2785804569721222,
0.7649021148681641,
-0.044593848288059235,
1.053126573562622,
-1.0740571022033691,
-0.254675030708313,
-0.5611137747764587,
-1.064989686012268,
-0.4405754804611206,
0.6239392757415771,
0.16428779065608978,
0.06980566680431366,
1.0051254034042358,
0.5147975087165833,
-0.5158523917198181,
0.06130407750606537,
0.4816429913043976,
0.1548752784729004,
0.09586337208747864,
-0.3993200361728668,
0.5764789581298828,
-0.6857936382293701,
0.19221743941307068,
-0.47730255126953125,
-0.26907429099082947,
-0.5989702343940735,
-0.8794208765029907,
-0.8032644987106323,
-0.8095198273658752,
-0.1475692093372345,
-0.30366092920303345,
-0.390728235244751,
0.7136949896812439,
1.0621122121810913,
-0.8743939995765686,
-0.3377399444580078,
-0.17142198979854584,
0.06614465266466141,
-0.37537166476249695,
-0.2631537616252899,
0.33930015563964844,
-0.30256783962249756,
-0.9720061421394348,
0.12760891020298004,
-0.001402733731083572,
0.34628596901893616,
-0.29436546564102173,
-0.04848995804786682,
0.20966260135173798,
0.3669813275337219,
0.5325736403465271,
0.16175079345703125,
-0.43385180830955505,
-0.3952207863330841,
0.207500159740448,
-0.3623296320438385,
0.02676863968372345,
0.7681024670600891,
-0.17529086768627167,
-0.12886051833629608,
0.6640129089355469,
0.03223090618848801,
0.7444238066673279,
0.3787590265274048,
0.5194247961044312,
-0.7326515316963196,
0.05177062004804611,
0.23829367756843567,
0.6402207016944885,
0.1961473971605301,
0.07255812734365463,
0.9653770327568054,
0.37161698937416077,
-0.8791497349739075,
-0.6464049816131592,
0.245656818151474,
-1.4506758451461792,
0.13452832400798798,
0.7750592231750488,
0.2321828007698059,
0.33685001730918884,
0.04672769457101822,
-0.5724082589149475,
0.45981740951538086,
-0.37536463141441345,
0.4420475363731384,
0.3231387734413147,
-0.2688261866569519,
-0.20277439057826996,
-0.5503795146942139,
0.26907187700271606,
0.21464379131793976,
-0.5457021594047546,
0.06879344582557678,
0.34378743171691895,
0.38183358311653137,
0.36522331833839417,
0.4411885142326355,
-0.19674967229366302,
0.20646671950817108,
0.44410941004753113,
0.284451961517334,
0.25630423426628113,
-0.48027005791664124,
0.31653106212615967,
-0.6389211416244507,
0.03907397389411926,
-0.17364910244941711
] |
anas-awadalla/mpt-7b | anas-awadalla | "2023-06-15T03:20:49Z" | 12,201 | 1 | transformers | [
"transformers",
"pytorch",
"mpt",
"text-generation",
"custom_code",
"has_space",
"text-generation-inference",
"region:us"
] | text-generation | "2023-06-15T02:46:38Z" | Entry not found | [
-0.3227650225162506,
-0.22568431496620178,
0.862226128578186,
0.43461495637893677,
-0.5282987952232361,
0.7012965679168701,
0.7915717363357544,
0.07618638128042221,
0.7746025919914246,
0.2563219666481018,
-0.7852817177772522,
-0.22573819756507874,
-0.9104480743408203,
0.5715669393539429,
-0.3992334008216858,
0.5791245698928833,
-0.14494505524635315,
-0.10751161724328995,
0.28233757615089417,
-0.2768954336643219,
-0.5409224033355713,
-0.36855220794677734,
-1.1902776956558228,
0.061491113156080246,
0.5316578149795532,
0.7435142397880554,
0.7584060430526733,
0.3652167320251465,
0.6432578563690186,
0.3932291269302368,
-0.23138920962810516,
0.4827055037021637,
-0.04171813279390335,
0.00260411505587399,
-0.3524433970451355,
-0.5516898036003113,
-0.28596609830856323,
0.07584730535745621,
1.0961304903030396,
0.966687798500061,
-0.284663587808609,
0.05330817773938179,
-0.3063621520996094,
0.33088892698287964,
-0.49734312295913696,
0.3054099678993225,
-0.022506045177578926,
0.16318801045417786,
-0.7041513919830322,
-0.5535354018211365,
0.012794834561645985,
-0.7361212968826294,
0.17926570773124695,
-0.690081000328064,
0.8269098401069641,
0.18583157658576965,
1.1533750295639038,
0.14819414913654327,
-0.462487131357193,
-0.8161764144897461,
-0.6538989543914795,
0.5711171627044678,
-0.32703715562820435,
0.39680248498916626,
0.7028235197067261,
-0.048573412001132965,
-0.9820332527160645,
-0.6745741367340088,
-0.46466192603111267,
0.2923962473869324,
0.35402774810791016,
-0.3411678075790405,
-0.17522086203098297,
-0.3058989644050598,
0.15792037546634674,
0.12811517715454102,
-0.4841994643211365,
-0.5543919205665588,
-0.5475160479545593,
-0.3960252106189728,
0.6206658482551575,
0.3482950031757355,
0.2429177463054657,
-0.1888415813446045,
-0.3228583335876465,
0.0880163162946701,
-0.4160851538181305,
0.3402571678161621,
0.6335517168045044,
0.7114017009735107,
-0.5811444520950317,
0.560215950012207,
-0.04927587881684303,
0.7439703941345215,
0.11445561796426773,
-0.27478092908859253,
0.41460567712783813,
-0.14724725484848022,
0.055171746760606766,
0.4226345121860504,
0.31524422764778137,
0.2841312289237976,
-0.3273695111274719,
0.2032228708267212,
-0.3215144872665405,
-0.30496224761009216,
-0.22332167625427246,
-0.29490774869918823,
-0.3592180609703064,
0.5492289066314697,
-0.3314017057418823,
-0.42855486273765564,
1.143175721168518,
-0.4200771450996399,
-0.7302224040031433,
0.33156412839889526,
0.4065209925174713,
-0.0994480773806572,
-0.37146568298339844,
-0.052260834723711014,
-0.8458789587020874,
-0.007907390594482422,
0.7491172552108765,
-0.7198970913887024,
0.3371737599372864,
0.4728063642978668,
0.7417217493057251,
0.19650575518608093,
-0.14034469425678253,
-0.42949390411376953,
0.2971969544887543,
-0.8659994006156921,
0.6320174336433411,
-0.20135220885276794,
-1.0051977634429932,
0.11150479316711426,
0.8971705436706543,
-0.37896400690078735,
-1.2094876766204834,
1.0605159997940063,
-0.6887932419776917,
0.16017857193946838,
-0.676761269569397,
-0.14661237597465515,
-0.07118501514196396,
-0.005096632521599531,
-0.6088156700134277,
0.7567102313041687,
0.587267279624939,
-0.4995276927947998,
0.21429483592510223,
-0.26029831171035767,
-0.39151400327682495,
0.38824859261512756,
-0.07935450226068497,
-0.21858926117420197,
0.713833212852478,
-0.6647079586982727,
-0.26932814717292786,
0.2942774295806885,
0.2368936538696289,
-0.35706108808517456,
-0.7931919097900391,
0.08478113263845444,
-0.05786270648241043,
1.550750494003296,
-0.03868847340345383,
-0.3586106300354004,
-0.679383397102356,
-1.1506240367889404,
-0.07070787996053696,
0.6886883974075317,
-0.9194989204406738,
-0.27839475870132446,
-0.046410128474235535,
-0.26169314980506897,
0.08994917571544647,
0.7390589714050293,
-1.1194051504135132,
0.2832726836204529,
-0.05092663690447807,
-0.22794683277606964,
0.8271058797836304,
0.15387225151062012,
0.24758946895599365,
0.14913396537303925,
0.42958706617355347,
0.527725338935852,
0.11115207523107529,
0.683587908744812,
-0.34720373153686523,
-0.9694353938102722,
0.6154631972312927,
0.25266361236572266,
0.8121447563171387,
-0.49945297837257385,
0.2685093879699707,
0.27025535702705383,
-0.3409680724143982,
-0.5682371854782104,
-0.3102838397026062,
0.09025752544403076,
0.14930562674999237,
0.11142510175704956,
-0.5721710324287415,
-0.6576125025749207,
-0.9689140319824219,
-0.13590654730796814,
-0.4314374029636383,
-0.3571570813655853,
0.21006910502910614,
0.5792906284332275,
-1.1975523233413696,
0.4128875136375427,
-0.7705625891685486,
-0.7038741111755371,
-0.01065548975020647,
-0.19338123500347137,
0.7540656328201294,
0.43240174651145935,
0.5033966898918152,
-0.6397148370742798,
-0.5661987066268921,
-0.22470176219940186,
-1.0333747863769531,
-0.13280506432056427,
0.24819621443748474,
0.3065737783908844,
-0.13423344492912292,
-0.2744963765144348,
-0.48740333318710327,
0.8100387454032898,
0.14789170026779175,
-0.5391897559165955,
0.5220767259597778,
-0.3020317256450653,
0.17224803566932678,
-0.6369150280952454,
-0.06916818022727966,
-0.661676287651062,
-0.0009071884560398757,
-0.3608308732509613,
-0.5737438797950745,
0.14772287011146545,
0.07017494738101959,
-0.16065457463264465,
0.28808408975601196,
-0.909277081489563,
-0.0010852962732315063,
-0.7442210912704468,
0.379071980714798,
0.06394772231578827,
-0.3145078718662262,
-0.017517540603876114,
1.0000386238098145,
0.7784460783004761,
-0.3848048746585846,
0.721744179725647,
0.4440041184425354,
0.19036155939102173,
0.7630521059036255,
-0.18725109100341797,
0.16478213667869568,
-0.5245416760444641,
-0.12161104381084442,
-0.8887597918510437,
-1.0982946157455444,
0.7320570349693298,
-0.6114250421524048,
0.36542922258377075,
-0.4277869760990143,
0.2589159905910492,
-0.6919258832931519,
-0.03885362669825554,
0.4808599352836609,
-0.05936325341463089,
-0.6863942742347717,
0.5232570171356201,
0.45317530632019043,
-0.2019241601228714,
-0.6609031558036804,
-0.530157208442688,
0.39365822076797485,
0.6154114007949829,
-0.16390392184257507,
0.06878514587879181,
0.14941060543060303,
-0.5441926121711731,
-0.040802597999572754,
-0.38691970705986023,
-0.45766758918762207,
0.054224006831645966,
0.13053473830223083,
-0.005750799085944891,
-0.404820054769516,
-0.0868026465177536,
-0.35842007398605347,
-0.4656120240688324,
0.21876516938209534,
0.3011947274208069,
-0.04096309468150139,
-0.42599788308143616,
-0.3619818687438965,
-0.888181209564209,
0.6719610095024109,
0.5370282530784607,
0.05281545966863632,
0.7555549740791321,
0.16819314658641815,
-0.8014987707138062,
-0.13532210886478424,
-0.1760706603527069,
0.2696830928325653,
-0.5588056445121765,
0.13849826157093048,
-0.013484534807503223,
-0.0637492910027504,
0.26297882199287415,
0.25386232137680054,
-0.4300556778907776,
0.9276250004768372,
-0.2615274488925934,
-0.3592521846294403,
0.7960181832313538,
0.5974742770195007,
0.49583131074905396,
0.16503219306468964,
-0.044541798532009125,
0.900709331035614,
-1.1966516971588135,
-0.6563175916671753,
-0.7409549355506897,
-0.15945707261562347,
-0.43510833382606506,
-0.032105933874845505,
0.6254412531852722,
0.2900990843772888,
-0.1333388388156891,
0.4756395220756531,
-0.5243489742279053,
0.3556033670902252,
1.01198410987854,
0.35748639702796936,
0.3435698449611664,
-0.7570229172706604,
-0.2515777349472046,
-0.1402427852153778,
-0.9998157620429993,
-0.2631377875804901,
0.8871029019355774,
0.22752606868743896,
0.844460666179657,
0.5992541313171387,
0.6784542798995972,
0.1367226243019104,
0.2523828148841858,
-0.30590319633483887,
0.3920294940471649,
0.4376082420349121,
-1.0401138067245483,
-0.42758408188819885,
0.021418681368231773,
-0.9703338742256165,
-0.14227519929409027,
-0.03495011106133461,
-0.42617112398147583,
0.7681737542152405,
0.00016589462757110596,
-0.4076709747314453,
0.7732734084129333,
-0.455583393573761,
0.7562873363494873,
-0.4473648965358734,
-0.02663906291127205,
0.4699096083641052,
-0.7070636749267578,
0.4677430987358093,
0.12878790497779846,
0.6205843091011047,
-0.015572631731629372,
-0.04078587517142296,
0.7104941606521606,
-0.9129160046577454,
0.25438642501831055,
-0.6348397135734558,
0.22421300411224365,
0.24246945977210999,
0.51606285572052,
0.5969953536987305,
0.4371243417263031,
0.10119888931512833,
-0.23920902609825134,
0.04115807265043259,
-0.8241125345230103,
-0.210506409406662,
0.697515606880188,
-0.7186890840530396,
-0.6864197850227356,
-1.2355337142944336,
0.14438660442829132,
0.27347055077552795,
0.389305055141449,
0.7959296107292175,
0.571408748626709,
0.1289544403553009,
0.680525004863739,
0.9888588190078735,
-0.0688566341996193,
0.9166924357414246,
0.3224477171897888,
0.09175168722867966,
-0.21944808959960938,
0.7036820650100708,
0.26627904176712036,
-0.24707956612110138,
-0.11939732730388641,
0.20913465321063995,
-0.11069409549236298,
-0.591761589050293,
-0.49990686774253845,
0.3701757788658142,
-0.6731787919998169,
-0.18303893506526947,
-0.6243735551834106,
-0.6043769717216492,
-0.511759340763092,
0.06927360594272614,
-0.7147687673568726,
0.23979046940803528,
-0.7753565907478333,
-0.10574902594089508,
0.04323432594537735,
0.9792009592056274,
-0.589311957359314,
0.5805224180221558,
-1.1218582391738892,
0.19345788657665253,
-0.07949887961149216,
0.7921058535575867,
0.21395787596702576,
-0.7344395518302917,
-0.3975418508052826,
-0.11592631042003632,
-0.3729911744594574,
-1.3576762676239014,
0.21404948830604553,
-0.2454141080379486,
0.23094046115875244,
0.6145404577255249,
0.1397707313299179,
0.5258248448371887,
-0.34326282143592834,
0.7029101848602295,
-0.057017259299755096,
-0.7069286704063416,
0.7934495210647583,
-0.5026894807815552,
0.4963534474372864,
0.9765996932983398,
0.5333835482597351,
-0.7984007596969604,
0.035741209983825684,
-1.041123390197754,
-0.6008695363998413,
0.38426393270492554,
0.11928944289684296,
-0.03601083159446716,
-0.6659559011459351,
-0.054019637405872345,
-0.16143807768821716,
0.6043745279312134,
-1.039069414138794,
-0.7858356237411499,
0.2576698362827301,
0.5277302861213684,
0.0816856250166893,
-0.5653398633003235,
0.20880667865276337,
-0.544416069984436,
1.0657774209976196,
0.45109400153160095,
0.3274499475955963,
0.8406060934066772,
0.46492424607276917,
-0.3823164403438568,
0.09252490103244781,
0.7662695050239563,
0.6666232347488403,
-0.5239797830581665,
-0.2908027470111847,
-0.08827541768550873,
-0.9143403768539429,
0.05927472561597824,
0.11168918758630753,
-0.013455932028591633,
0.9082110524177551,
0.5793083310127258,
0.2539709210395813,
0.4514279365539551,
-0.726460337638855,
0.8859451413154602,
-0.14954176545143127,
-0.12472866475582123,
-1.0677239894866943,
0.1948619782924652,
-0.23984959721565247,
0.5006402134895325,
1.0061326026916504,
0.5250048041343689,
-0.047630298882722855,
-0.8143380880355835,
-0.01473585981875658,
0.6939172148704529,
-0.7091123461723328,
-0.17449834942817688,
0.944853663444519,
0.3847099542617798,
-1.2953051328659058,
1.106776475906372,
-0.5381771326065063,
-0.560332179069519,
0.9121301770210266,
0.522956907749176,
1.1221847534179688,
-0.44204121828079224,
0.0008676342549733818,
0.2662237286567688,
0.41378432512283325,
0.5423170328140259,
1.0869629383087158,
0.431413471698761,
-0.7931063771247864,
0.8826584815979004,
-0.24776044487953186,
-0.40361151099205017,
-0.05347571521997452,
-0.42859897017478943,
0.16892178356647491,
-0.4406192898750305,
-0.10713007301092148,
-0.3444187641143799,
0.28543180227279663,
-0.7072042226791382,
0.42807620763778687,
-0.0838567465543747,
0.8653068542480469,
-0.8553727269172668,
0.47207626700401306,
0.635470449924469,
-0.3337355852127075,
-0.8508191108703613,
-0.26198428869247437,
-0.11448462307453156,
-0.6389466524124146,
0.30214807391166687,
-0.4554102420806885,
0.044398851692676544,
0.09623463451862335,
-0.649151623249054,
-1.1778275966644287,
0.9093633890151978,
-0.639612078666687,
-0.2784462869167328,
0.20464053750038147,
-0.11514760553836823,
0.28811705112457275,
-0.2524643540382385,
0.010661216452717781,
0.41876548528671265,
0.748940110206604,
0.2844654619693756,
-0.7727053761482239,
-0.3694884479045868,
0.0015032943338155746,
-0.44474777579307556,
0.7582978010177612,
-0.6002101898193359,
1.1840779781341553,
-0.5563543438911438,
-0.059654366225004196,
0.44384512305259705,
0.24690914154052734,
0.21076197922229767,
0.6629220843315125,
0.1442081481218338,
0.7282265424728394,
1.07012140750885,
-0.40835219621658325,
0.8811809420585632,
0.26432839035987854,
0.47430819272994995,
0.7238501906394958,
-0.6487724781036377,
0.7513749003410339,
0.31810489296913147,
-0.5682924389839172,
0.9228013753890991,
1.2906063795089722,
-0.15699204802513123,
0.8079374432563782,
0.05136508867144585,
-1.081600546836853,
0.325833261013031,
-0.20724765956401825,
-0.7530064582824707,
0.3150254189968109,
0.19055864214897156,
-0.6920982599258423,
-0.5770308971405029,
-0.24046507477760315,
-0.35662803053855896,
-0.11552901566028595,
-0.7631728649139404,
0.6720563769340515,
-0.016969164833426476,
-0.5103683471679688,
0.18857547640800476,
0.2877499461174011,
0.17368432879447937,
-0.5235732793807983,
-0.02939440682530403,
-0.22823619842529297,
0.2660655975341797,
-0.5670853853225708,
-0.5234526991844177,
0.5724433064460754,
-0.32430219650268555,
-0.5343255400657654,
0.18147465586662292,
0.763587236404419,
-0.16923809051513672,
-0.4515409469604492,
0.32472723722457886,
0.6959525346755981,
0.1665852814912796,
0.4250282347202301,
-0.23511263728141785,
0.24480605125427246,
-0.08044824004173279,
-0.06651552021503448,
0.27714768052101135,
0.3449169099330902,
0.22435641288757324,
0.4450142979621887,
0.43285664916038513,
-0.01808755099773407,
-0.10736498981714249,
-0.382819801568985,
0.4124940037727356,
-0.9542785882949829,
-0.5713282823562622,
-0.6307113766670227,
0.2740660607814789,
-0.02315417304635048,
-1.0836423635482788,
0.4145168364048004,
1.4406683444976807,
1.0359982252120972,
-0.4756383001804352,
1.067226529121399,
-0.21818485856056213,
0.9594791531562805,
0.41483086347579956,
0.5420440435409546,
-0.6030411720275879,
0.03835370019078255,
-0.4364396035671234,
-1.076962947845459,
-0.35716333985328674,
0.4539391100406647,
-0.022899555042386055,
-0.3429867625236511,
0.872571587562561,
0.5887166261672974,
-0.33473607897758484,
-0.11728022992610931,
0.048487238585948944,
-0.029941488057374954,
-0.12433847039937973,
0.5145376324653625,
0.7648399472236633,
-0.9344304800033569,
-0.10680416971445084,
-0.21577754616737366,
-0.6382725834846497,
-0.5047279000282288,
-0.9632009267807007,
-0.12959396839141846,
-0.16037796437740326,
0.035343267023563385,
-0.5662806630134583,
0.00255737011320889,
1.208324909210205,
0.5684957504272461,
-1.1113994121551514,
-0.5303789377212524,
0.3371853232383728,
0.3920421898365021,
-0.1874791383743286,
-0.24202413856983185,
0.2984568774700165,
0.15382249653339386,
-0.5908876657485962,
0.6875665783882141,
0.8089625239372253,
0.208888977766037,
0.19554761052131653,
0.15893013775348663,
-0.8229473829269409,
-0.14913435280323029,
0.17440445721149445,
0.9450570344924927,
-0.939853310585022,
-0.7114843130111694,
-0.03168516233563423,
-0.27094873785972595,
-0.05765746906399727,
0.17102102935314178,
-0.4046344757080078,
0.5180677175521851,
0.34591493010520935,
0.49933457374572754,
0.0561608150601387,
-0.054746925830841064,
0.5409556031227112,
-0.9069057703018188,
0.09425963461399078,
0.4134361147880554,
0.4154115319252014,
-0.4000864028930664,
-0.5910194516181946,
0.6713420748710632,
1.0073972940444946,
-0.6594868898391724,
-0.8743268847465515,
-0.19846712052822113,
-1.0016002655029297,
0.04189709946513176,
0.6762762069702148,
0.5009527802467346,
-0.4806513786315918,
-0.4174500107765198,
-0.5617399215698242,
-0.1254672110080719,
-0.1369970738887787,
0.7621601819992065,
1.179680585861206,
-0.7432094812393188,
0.07975747436285019,
-1.038639783859253,
0.6594986915588379,
-0.2419457733631134,
-0.3457581698894501,
-0.48644304275512695,
0.3832802176475525,
0.35236993432044983,
0.440481036901474,
0.614812433719635,
0.1408471167087555,
0.8338426351547241,
0.3126053214073181,
-0.1702686995267868,
0.2698982357978821,
-0.4559200704097748,
-0.028932858258485794,
-0.057962555438280106,
0.31015971302986145,
-1.0262157917022705
] |
facebook/maskformer-swin-base-coco | facebook | "2022-11-10T10:05:16Z" | 12,172 | 10 | transformers | [
"transformers",
"pytorch",
"maskformer",
"vision",
"image-segmentation",
"dataset:coco",
"arxiv:2107.06278",
"license:other",
"endpoints_compatible",
"has_space",
"region:us"
] | image-segmentation | "2022-03-02T23:29:05Z" | ---
license: other
tags:
- vision
- image-segmentation
datasets:
- coco
widget:
- src: http://images.cocodataset.org/val2017/000000039769.jpg
example_title: Cats
- src: http://images.cocodataset.org/val2017/000000039770.jpg
example_title: Castle
---
# MaskFormer
MaskFormer model trained on COCO panoptic segmentation (base-sized version, Swin backbone). It was introduced in the paper [Per-Pixel Classification is Not All You Need for Semantic Segmentation](https://arxiv.org/abs/2107.06278) and first released in [this repository](https://github.com/facebookresearch/MaskFormer/blob/da3e60d85fdeedcb31476b5edd7d328826ce56cc/mask_former/modeling/criterion.py#L169).
Disclaimer: The team releasing MaskFormer did not write a model card for this model so this model card has been written by the Hugging Face team.
## Model description
MaskFormer addresses instance, semantic and panoptic segmentation with the same paradigm: by predicting a set of masks and corresponding labels. Hence, all 3 tasks are treated as if they were instance segmentation.
![model image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/maskformer_architecture.png)
## Intended uses & limitations
You can use this particular checkpoint for semantic segmentation. See the [model hub](https://huggingface.co/models?search=maskformer) to look for other
fine-tuned versions on a task that interests you.
### How to use
Here is how to use this model:
```python
from transformers import MaskFormerFeatureExtractor, MaskFormerForInstanceSegmentation
from PIL import Image
import requests
# load MaskFormer fine-tuned on COCO panoptic segmentation
feature_extractor = MaskFormerFeatureExtractor.from_pretrained("facebook/maskformer-swin-base-coco")
model = MaskFormerForInstanceSegmentation.from_pretrained("facebook/maskformer-swin-base-coco")
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)
inputs = feature_extractor(images=image, return_tensors="pt")
outputs = model(**inputs)
# model predicts class_queries_logits of shape `(batch_size, num_queries)`
# and masks_queries_logits of shape `(batch_size, num_queries, height, width)`
class_queries_logits = outputs.class_queries_logits
masks_queries_logits = outputs.masks_queries_logits
# you can pass them to feature_extractor for postprocessing
result = feature_extractor.post_process_panoptic_segmentation(outputs, target_sizes=[image.size[::-1]])[0]
# we refer to the demo notebooks for visualization (see "Resources" section in the MaskFormer docs)
predicted_panoptic_map = result["segmentation"]
```
For more code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/master/en/model_doc/maskformer). | [
-0.6727478504180908,
-0.7581542730331421,
0.22378718852996826,
0.387938916683197,
-0.27958983182907104,
-0.18126361072063446,
0.07257888466119766,
-0.6357406377792358,
0.44566285610198975,
0.7034267783164978,
-0.8249542713165283,
-0.5816760659217834,
-0.8001837134361267,
-0.21931089460849762,
-0.23603273928165436,
1.0073020458221436,
-0.09765078872442245,
0.02224799245595932,
-0.35777905583381653,
0.0011045673163607717,
-0.05725567042827606,
-0.4370843172073364,
-0.49562016129493713,
-0.20145219564437866,
0.2921914756298065,
0.2783825397491455,
0.39733898639678955,
0.5000714063644409,
0.47515028715133667,
0.36432549357414246,
-0.28221771121025085,
-0.12238337844610214,
-0.30597880482673645,
-0.19365233182907104,
0.1570536494255066,
-0.5047081112861633,
-0.42135560512542725,
0.22671496868133545,
0.5178970098495483,
0.6476268768310547,
0.1044972836971283,
0.33622637391090393,
-0.15415328741073608,
0.4111054539680481,
-0.758451521396637,
0.3595021665096283,
-0.3716961741447449,
0.2809191644191742,
-0.2115682065486908,
0.33845484256744385,
-0.08429598808288574,
-0.2763921320438385,
0.30174750089645386,
-0.5641894936561584,
0.5354125499725342,
-0.14657919108867645,
1.2239021062850952,
0.10562394559383392,
0.021624678745865822,
-0.1390790194272995,
-0.27771198749542236,
0.6425016522407532,
-0.5796616673469543,
0.15080931782722473,
0.41033560037612915,
0.6635668277740479,
0.17534466087818146,
-1.1032811403274536,
-0.5773027539253235,
0.06613024324178696,
0.015694743022322655,
-0.0026841999497264624,
-0.135787695646286,
0.10874831676483154,
0.4037441909313202,
0.4899117946624756,
-0.3949008584022522,
-0.018703065812587738,
-0.9249401688575745,
-0.5303621292114258,
0.6337137222290039,
-0.07879684865474701,
0.4170074164867401,
-0.3627290725708008,
-0.5771250128746033,
-0.3139100968837738,
-0.1429719626903534,
0.4995853304862976,
0.019902953878045082,
0.005431481171399355,
-0.3147273361682892,
0.6009277701377869,
-0.29269304871559143,
0.8642261028289795,
0.2823980450630188,
-0.3404310345649719,
0.30148792266845703,
0.11576772481203079,
-0.4727100431919098,
0.04605403542518616,
0.6965336799621582,
0.32828837633132935,
0.0721484124660492,
0.09512346237897873,
-0.19880113005638123,
0.2622123658657074,
0.21797777712345123,
-1.1146849393844604,
-0.4881989359855652,
0.029743507504463196,
-0.2832649350166321,
-0.5488941669464111,
0.42944708466529846,
-0.8062341809272766,
-0.03492974117398262,
-0.15116176009178162,
0.44423192739486694,
-0.37704524397850037,
-0.07630939781665802,
0.1453378051519394,
-0.2571716010570526,
0.5308155417442322,
0.4446221590042114,
-0.805936872959137,
0.41448885202407837,
0.5897087454795837,
0.9207817316055298,
-0.03988465294241905,
-0.15924321115016937,
-0.2295587658882141,
-0.1521719992160797,
-0.20934008061885834,
0.9050431251525879,
-0.5892015099525452,
-0.07762397080659866,
-0.26721373200416565,
0.46141794323921204,
-0.4434569478034973,
-0.6016232371330261,
0.4115598201751709,
-0.3163802921772003,
0.39385029673576355,
-0.2356034815311432,
-0.23601149022579193,
-0.6967605948448181,
0.2114117294549942,
-0.5648854970932007,
0.8492150902748108,
0.42044463753700256,
-0.6368656158447266,
0.41592341661453247,
-0.7006900906562805,
-0.13148276507854462,
-0.030956905335187912,
-0.041967324912548065,
-0.7832601070404053,
-0.060340993106365204,
0.5695303082466125,
0.596175491809845,
0.014909324236214161,
-0.050138652324676514,
-0.6137891411781311,
-0.1577271670103073,
0.14898623526096344,
0.16403502225875854,
0.9934027194976807,
0.15116962790489197,
-0.538239061832428,
0.36358779668807983,
-0.5584500432014465,
0.024801621213555336,
0.2383434921503067,
0.07345864176750183,
0.14189663529396057,
-0.5331658720970154,
0.306985467672348,
0.5586331486701965,
0.12963107228279114,
-0.6943498849868774,
0.13102921843528748,
-0.11469237506389618,
0.6120049357414246,
0.6182503700256348,
0.07312054932117462,
0.4932790994644165,
-0.3437402844429016,
0.5786287784576416,
0.22634394466876984,
0.4806894063949585,
-0.08128207921981812,
-0.6161780953407288,
-0.9228646159172058,
-0.5437357425689697,
0.08529120683670044,
0.29462283849716187,
-0.3685756027698517,
0.42500150203704834,
0.05165713280439377,
-0.8279891610145569,
-0.34385544061660767,
-0.028083689510822296,
0.27972862124443054,
0.6517171263694763,
0.23196469247341156,
-0.6380829215049744,
-0.7193407416343689,
-0.9911421537399292,
0.3074069619178772,
0.2025640606880188,
-0.014857109636068344,
0.3559720516204834,
0.5692061185836792,
-0.5237073302268982,
1.0514435768127441,
-0.6419417262077332,
-0.2552310824394226,
-0.2779262065887451,
-0.10196436196565628,
0.0044945222325623035,
0.602845311164856,
0.8464003205299377,
-0.8550482988357544,
-0.274700790643692,
-0.3317030072212219,
-0.679714560508728,
-0.07596778124570847,
0.2673661708831787,
-0.2854475677013397,
0.18111827969551086,
0.20557089149951935,
-0.6135287880897522,
0.6654981970787048,
0.450359970331192,
-0.2800142467021942,
0.7683469653129578,
0.2448197454214096,
-0.04229668155312538,
-0.80706787109375,
0.18419210612773895,
0.19068540632724762,
-0.3349243402481079,
-0.4391694962978363,
0.13612301647663116,
0.05236967280507088,
-0.46929118037223816,
-0.663921058177948,
0.4405413568019867,
-0.39521363377571106,
-0.24578671157360077,
-0.22466617822647095,
-0.1551106572151184,
0.24065174162387848,
0.6606454849243164,
0.34997230768203735,
0.2972134053707123,
0.928330659866333,
-0.6418689489364624,
0.276887983083725,
0.38523367047309875,
-0.4360860288143158,
0.4273132383823395,
-0.8164993524551392,
0.07351841777563095,
-0.15725155174732208,
0.5078787207603455,
-0.913571298122406,
-0.5603315830230713,
0.6112130284309387,
-0.34804031252861023,
0.19855141639709473,
-0.1957220435142517,
-0.08576473593711853,
-0.657273530960083,
-0.4421215057373047,
0.4970763027667999,
0.49722394347190857,
-0.653088390827179,
0.3729724884033203,
0.5248221755027771,
0.09355985373258591,
-0.4659981429576874,
-0.7843946814537048,
-0.2917281687259674,
-0.3384324014186859,
-0.976260244846344,
0.4852810502052307,
-0.03674187511205673,
0.053069230169057846,
-0.07948215305805206,
-0.43486109375953674,
-0.2242523580789566,
-0.2619694769382477,
0.47552555799484253,
0.39209267497062683,
-0.2606056034564972,
-0.5742982625961304,
0.011955033987760544,
-0.16093780100345612,
0.09093758463859558,
-0.30230721831321716,
0.6396820545196533,
-0.3431919515132904,
-0.1772572100162506,
-0.5830643773078918,
-0.004211182240396738,
0.610011100769043,
-0.36899515986442566,
0.5085715651512146,
1.0285223722457886,
-0.6616250872612,
-0.10010457783937454,
-0.8929055333137512,
-0.2636799216270447,
-0.469503253698349,
0.20343531668186188,
-0.4086568355560303,
-0.7705769538879395,
0.7957480549812317,
0.09978606551885605,
-0.13398651778697968,
0.6446042060852051,
0.35089176893234253,
0.16711798310279846,
0.8926301002502441,
0.7885586619377136,
0.20188212394714355,
0.6560901999473572,
-0.7923417091369629,
0.06528199464082718,
-1.0078126192092896,
-0.5550710558891296,
-0.19959893822669983,
-0.32663461565971375,
-0.33191534876823425,
-0.625026285648346,
0.43489184975624084,
0.5879480838775635,
-0.12375321984291077,
0.6123229265213013,
-0.8956251740455627,
0.2530374228954315,
0.5243634581565857,
0.2823655307292938,
-0.3093424141407013,
0.16295915842056274,
-0.013806912116706371,
0.11706474423408508,
-0.681681752204895,
-0.4354366660118103,
0.5871677398681641,
0.43075424432754517,
0.5556315183639526,
-0.35208866000175476,
0.6455160975456238,
-0.25383567810058594,
0.13974054157733917,
-0.7749252319335938,
0.5806624889373779,
-0.013738899491727352,
-0.44913116097450256,
-0.10157499462366104,
-0.0989411249756813,
-0.7990261912345886,
0.3832833766937256,
-0.1783335953950882,
-1.1822667121887207,
0.4982425272464752,
-0.034805938601493835,
-0.340424120426178,
0.36050018668174744,
-0.6613487601280212,
1.1994632482528687,
-0.08613588660955429,
-0.1814640909433365,
0.21671102941036224,
-0.7582458853721619,
0.49758365750312805,
0.09645835310220718,
-0.12584148347377777,
-0.2593059241771698,
0.22847798466682434,
1.126517653465271,
-0.6904140710830688,
1.0934447050094604,
-0.3653621971607208,
0.3655741214752197,
0.5099161267280579,
-0.11033772677183151,
0.017579516395926476,
0.08173791319131851,
0.1156911849975586,
0.4376971125602722,
0.337085485458374,
-0.5688565373420715,
-0.5633150935173035,
0.5271627306938171,
-0.868253767490387,
-0.48425957560539246,
-0.3102458417415619,
-0.29566025733947754,
0.22640696167945862,
0.29768598079681396,
0.6453489661216736,
0.35277825593948364,
-0.06843189150094986,
0.009896431118249893,
0.44995591044425964,
-0.18678566813468933,
0.4495593309402466,
0.010362011380493641,
-0.3426790237426758,
-0.5094950199127197,
0.7390652894973755,
0.03154086321592331,
0.1974911093711853,
0.3245067298412323,
0.3990285396575928,
-0.2625366151332855,
-0.1657719761133194,
-0.41850966215133667,
0.4070989787578583,
-0.6439067125320435,
-0.2985212504863739,
-0.7988423109054565,
-0.5391427874565125,
-0.8283365368843079,
-0.43988367915153503,
-0.40571674704551697,
-0.6165579557418823,
-0.2591428756713867,
-0.0005454103229567409,
0.36086541414260864,
0.47332459688186646,
-0.17757664620876312,
0.4537811577320099,
-0.46530038118362427,
0.1592710316181183,
0.4066774845123291,
0.18570630252361298,
-0.24595342576503754,
-0.23603446781635284,
0.08162520825862885,
0.049088314175605774,
-0.5418950319290161,
-0.7740857601165771,
0.5252132415771484,
0.07282146066427231,
0.5423559546470642,
0.6404966711997986,
-0.1522173285484314,
0.912903904914856,
0.053778503090143204,
0.8083475232124329,
0.3136455714702606,
-0.9545083045959473,
0.7939934730529785,
-0.0194549560546875,
0.24281717836856842,
0.3138309121131897,
0.3461737632751465,
-0.5510456562042236,
-0.10675637423992157,
-0.752528190612793,
-0.9160262942314148,
1.0233774185180664,
0.026624426245689392,
-0.15142709016799927,
0.15163969993591309,
0.3676755428314209,
0.20404158532619476,
0.14757628738880157,
-0.844984233379364,
-0.13199667632579803,
-0.628744900226593,
0.1673358976840973,
-0.13537545502185822,
-0.34109827876091003,
-0.03793976455926895,
-0.5399042963981628,
0.5722653865814209,
0.01186575461179018,
0.37286701798439026,
0.44202306866645813,
-0.33797311782836914,
-0.08693838864564896,
-0.3780483603477478,
0.6214749217033386,
0.7144997119903564,
-0.29299619793891907,
-0.030822528526186943,
0.020558582618832588,
-0.5491679310798645,
-0.2748376429080963,
0.2816784381866455,
-0.18190714716911316,
-0.09239581227302551,
0.3855096995830536,
1.0989246368408203,
0.17144982516765594,
-0.32716983556747437,
0.6916927099227905,
0.13925649225711823,
-0.3169853687286377,
-0.5002486109733582,
0.15266767144203186,
-0.16368748247623444,
0.20180755853652954,
0.054057326167821884,
0.26859354972839355,
0.13523145020008087,
-0.2471974492073059,
0.2136412411928177,
0.3298848569393158,
-0.5447668433189392,
-0.33040350675582886,
0.6974681615829468,
-0.14652296900749207,
-0.21333006024360657,
0.6842473149299622,
-0.08714034408330917,
-0.8986257910728455,
0.9200735092163086,
0.5826591849327087,
0.8727735280990601,
-0.28334134817123413,
0.44494006037712097,
0.5946930646896362,
0.038715314120054245,
0.08420377224683762,
-0.15342146158218384,
-0.39329469203948975,
-0.6016322374343872,
-0.13434919714927673,
-0.924952507019043,
-0.13324709236621857,
0.1681005358695984,
-0.6306127309799194,
0.43637320399284363,
-0.7184359431266785,
-0.06636402755975723,
0.24754932522773743,
0.10680585354566574,
-0.8407357335090637,
0.33473196625709534,
0.2585395276546478,
0.9052611589431763,
-0.8516780734062195,
0.551984965801239,
0.9701536297798157,
-0.536044716835022,
-0.8023620247840881,
-0.31736382842063904,
0.12522843480110168,
-1.0102665424346924,
0.40728726983070374,
0.7144331932067871,
0.09509594738483429,
-0.4079987406730652,
-0.6441153287887573,
-0.7960601449012756,
1.2718366384506226,
0.2409427911043167,
-0.24173539876937866,
-0.056308552622795105,
0.21183933317661285,
0.2300187349319458,
-0.654766321182251,
0.37630242109298706,
0.3773086369037628,
0.4262274503707886,
0.5883795619010925,
-0.7823951244354248,
0.16364677250385284,
-0.3750866651535034,
0.20668229460716248,
-0.11525121331214905,
-0.5858621001243591,
0.9520583152770996,
-0.2984149754047394,
-0.1049400120973587,
0.004082243889570236,
0.5920838117599487,
0.30946409702301025,
0.44904759526252747,
0.6895562410354614,
0.7150024175643921,
0.5778471231460571,
-0.06475359201431274,
1.0332262516021729,
-0.06964438408613205,
0.50299072265625,
0.5461832880973816,
0.23418867588043213,
0.4417703151702881,
0.274676650762558,
0.07081928849220276,
0.6311109662055969,
1.0501097440719604,
-0.30606740713119507,
0.4114609658718109,
0.23268131911754608,
-0.16320371627807617,
-0.2820702791213989,
0.10599293559789658,
-0.34709617495536804,
0.7363844513893127,
0.3490760922431946,
-0.41029462218284607,
-0.2654617130756378,
0.22251014411449432,
0.09384102374315262,
-0.39772307872772217,
-0.345384418964386,
0.6538155674934387,
0.04081159457564354,
-0.5729078650474548,
0.7044760584831238,
0.13942714035511017,
0.8161956071853638,
-0.6030791401863098,
0.012835290282964706,
-0.06708670407533646,
0.1846851408481598,
-0.47680628299713135,
-0.5407098531723022,
0.5261744260787964,
-0.3462096154689789,
-0.04851820319890976,
0.05270161107182503,
0.8859151005744934,
-0.28479960560798645,
-0.8019312024116516,
0.14196690917015076,
0.10296879708766937,
0.4135202169418335,
-0.29045432806015015,
-0.925311803817749,
0.4127589762210846,
-0.027491526678204536,
-0.3258231580257416,
0.20686890184879303,
0.12810203433036804,
-0.20964959263801575,
0.5728400349617004,
0.6362045407295227,
-0.1933068037033081,
0.17090313136577606,
-0.09977568686008453,
1.0334608554840088,
-0.46267902851104736,
-0.5405849814414978,
-0.5500550866127014,
0.550097644329071,
-0.23283430933952332,
-0.3018204867839813,
0.5688803791999817,
0.6756299138069153,
1.0627546310424805,
-0.2751239538192749,
0.4801056981086731,
-0.2538936734199524,
0.04225267842411995,
-0.27463260293006897,
0.6042329668998718,
-0.44048720598220825,
-0.15251830220222473,
-0.577838659286499,
-1.1920788288116455,
-0.4191926121711731,
1.0798465013504028,
-0.5892454981803894,
0.15345661342144012,
0.49960556626319885,
1.0168291330337524,
-0.4456987977027893,
0.033103860914707184,
0.039013151079416275,
-0.05183817446231842,
0.31270283460617065,
0.3929007947444916,
0.45362868905067444,
-0.42720627784729004,
0.33434581756591797,
-1.028926134109497,
-0.5984232425689697,
-0.20703230798244476,
-0.49991849064826965,
-0.8694456219673157,
-0.8112769722938538,
-0.5288518071174622,
-0.4261834919452667,
-0.12862859666347504,
0.5317479372024536,
1.375273585319519,
-0.7752350568771362,
-0.2017100602388382,
-0.11085906624794006,
0.12523004412651062,
-0.23129244148731232,
-0.35141411423683167,
0.5135723948478699,
-0.17888574302196503,
-0.878471851348877,
-0.07293037325143814,
0.1448982208967209,
0.09003955125808716,
-0.11358572542667389,
0.0388755202293396,
0.10757680982351303,
-0.2069460153579712,
0.6776938438415527,
0.49245840311050415,
-0.8254135251045227,
-0.303776353597641,
-0.10497685521841049,
0.07914145290851593,
0.20501397550106049,
0.7551512122154236,
-0.7511332631111145,
0.3991468846797943,
0.36242440342903137,
0.30296820402145386,
1.1547561883926392,
-0.021757053211331367,
0.22864489257335663,
-0.4335761070251465,
0.2765057384967804,
0.17210066318511963,
0.5160456299781799,
0.38908228278160095,
-0.39213550090789795,
0.3647882640361786,
0.4229758679866791,
-0.445186585187912,
-0.6155834794044495,
0.2089633345603943,
-1.5296564102172852,
-0.1918342262506485,
0.9165188670158386,
-0.24670349061489105,
-0.7847819328308105,
0.32615843415260315,
-0.40094098448753357,
0.28474536538124084,
-0.11420999467372894,
0.7520326375961304,
0.3551235795021057,
-0.33501142263412476,
-0.43018120527267456,
-0.0706813707947731,
0.43478336930274963,
0.05075967684388161,
-0.5882842540740967,
-0.4157888889312744,
0.3960738182067871,
0.7805970907211304,
0.35874053835868835,
0.5982667207717896,
-0.48271629214286804,
0.3092615306377411,
0.1705930233001709,
0.27342334389686584,
-0.2698334753513336,
-0.15678486227989197,
-0.1889391392469406,
0.2103465497493744,
-0.3503135144710541,
-0.5695940256118774
] |
timm/tf_efficientnetv2_m.in21k_ft_in1k | timm | "2023-04-27T22:17:48Z" | 12,151 | 1 | timm | [
"timm",
"pytorch",
"safetensors",
"image-classification",
"dataset:imagenet-1k",
"dataset:imagenet-21k",
"arxiv:2104.00298",
"license:apache-2.0",
"region:us"
] | image-classification | "2022-12-13T00:18:23Z" | ---
tags:
- image-classification
- timm
library_name: timm
license: apache-2.0
datasets:
- imagenet-1k
- imagenet-21k
---
# Model card for tf_efficientnetv2_m.in21k_ft_in1k
A EfficientNet-v2 image classification model. Trained on ImageNet-21k and fine-tuned on ImageNet-1k in Tensorflow by paper authors, ported to PyTorch by Ross Wightman.
## Model Details
- **Model Type:** Image classification / feature backbone
- **Model Stats:**
- Params (M): 54.1
- GMACs: 15.9
- Activations (M): 57.5
- Image size: train = 384 x 384, test = 480 x 480
- **Papers:**
- EfficientNetV2: Smaller Models and Faster Training: https://arxiv.org/abs/2104.00298
- **Dataset:** ImageNet-1k
- **Pretrain Dataset:** ImageNet-21k
- **Original:** https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet
## Model Usage
### Image Classification
```python
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model('tf_efficientnetv2_m.in21k_ft_in1k', pretrained=True)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
```
### Feature Map Extraction
```python
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model(
'tf_efficientnetv2_m.in21k_ft_in1k',
pretrained=True,
features_only=True,
)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
for o in output:
# print shape of each feature map in output
# e.g.:
# torch.Size([1, 24, 192, 192])
# torch.Size([1, 48, 96, 96])
# torch.Size([1, 80, 48, 48])
# torch.Size([1, 176, 24, 24])
# torch.Size([1, 512, 12, 12])
print(o.shape)
```
### Image Embeddings
```python
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model(
'tf_efficientnetv2_m.in21k_ft_in1k',
pretrained=True,
num_classes=0, # remove classifier nn.Linear
)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor
# or equivalently (without needing to set num_classes=0)
output = model.forward_features(transforms(img).unsqueeze(0))
# output is unpooled, a (1, 1280, 12, 12) shaped tensor
output = model.forward_head(output, pre_logits=True)
# output is a (1, num_features) shaped tensor
```
## Model Comparison
Explore the dataset and runtime metrics of this model in timm [model results](https://github.com/huggingface/pytorch-image-models/tree/main/results).
## Citation
```bibtex
@inproceedings{tan2021efficientnetv2,
title={Efficientnetv2: Smaller models and faster training},
author={Tan, Mingxing and Le, Quoc},
booktitle={International conference on machine learning},
pages={10096--10106},
year={2021},
organization={PMLR}
}
```
```bibtex
@misc{rw2019timm,
author = {Ross Wightman},
title = {PyTorch Image Models},
year = {2019},
publisher = {GitHub},
journal = {GitHub repository},
doi = {10.5281/zenodo.4414861},
howpublished = {\url{https://github.com/huggingface/pytorch-image-models}}
}
```
| [
-0.39663293957710266,
-0.4607517421245575,
-0.061856769025325775,
0.11487024277448654,
-0.3370726704597473,
-0.39611202478408813,
-0.26830628514289856,
-0.4106188416481018,
0.16981707513332367,
0.39342647790908813,
-0.38197678327560425,
-0.6462525725364685,
-0.7347311973571777,
-0.2124481052160263,
-0.12126047164201736,
0.8820092678070068,
-0.14444506168365479,
0.01927521824836731,
-0.1772659718990326,
-0.5271973013877869,
-0.12636622786521912,
-0.14185383915901184,
-0.8875833749771118,
-0.48650097846984863,
0.36532607674598694,
0.3112359941005707,
0.5040591359138489,
0.705576479434967,
0.6843445301055908,
0.48523977398872375,
-0.061654284596443176,
0.09657128900289536,
-0.34481412172317505,
-0.18623778223991394,
0.40682047605514526,
-0.603144109249115,
-0.43453675508499146,
0.1784442663192749,
0.710688591003418,
0.35835573077201843,
0.05351642891764641,
0.4621511995792389,
0.15566635131835938,
0.5702740550041199,
-0.28179165720939636,
0.19136272370815277,
-0.37128761410713196,
0.20002219080924988,
-0.1210649311542511,
0.06856506317853928,
-0.2537883520126343,
-0.38405364751815796,
0.22024565935134888,
-0.5807992815971375,
0.4408115744590759,
-0.04705289006233215,
1.3262159824371338,
0.2965773940086365,
-0.09913306683301926,
0.005761265754699707,
-0.20807895064353943,
0.7326850295066833,
-0.73662930727005,
0.213760644197464,
0.31831231713294983,
0.20716693997383118,
-0.056398406624794006,
-1.1234016418457031,
-0.4777128994464874,
-0.16593492031097412,
-0.21318809688091278,
-0.06154850497841835,
-0.3139403164386749,
0.0708431527018547,
0.31536418199539185,
0.21427476406097412,
-0.5330450534820557,
0.23235206305980682,
-0.611087441444397,
-0.24382247030735016,
0.5616918802261353,
0.006554699037224054,
0.24828918278217316,
-0.2290782928466797,
-0.45489880442619324,
-0.5082685947418213,
-0.34090033173561096,
0.33173683285713196,
0.3187255561351776,
0.1489827036857605,
-0.5487084984779358,
0.4660252332687378,
0.07434863597154617,
0.5954740047454834,
-0.02474355883896351,
-0.35371094942092896,
0.5907618403434753,
0.007054295390844345,
-0.4248388409614563,
-0.17807212471961975,
1.1259558200836182,
0.45597997307777405,
0.22737647593021393,
0.08358259499073029,
-0.12783068418502808,
-0.37305670976638794,
-0.11846042424440384,
-1.3408032655715942,
-0.4581538438796997,
0.34888121485710144,
-0.6612995862960815,
-0.4518026113510132,
0.27415263652801514,
-0.5779907703399658,
-0.10930231958627701,
-0.012425258755683899,
0.6052539348602295,
-0.4187864363193512,
-0.4576473534107208,
-0.08481332659721375,
-0.2719646394252777,
0.29482606053352356,
0.20079973340034485,
-0.5126052498817444,
0.14479826390743256,
0.40432092547416687,
1.2148747444152832,
0.07235972583293915,
-0.394551545381546,
-0.2843545079231262,
-0.39472323656082153,
-0.35758498311042786,
0.44827860593795776,
-0.007906978018581867,
-0.016992084681987762,
-0.30186590552330017,
0.30995482206344604,
-0.10523863881826401,
-0.7257654666900635,
0.18552032113075256,
-0.24279572069644928,
0.21984201669692993,
-0.03284762427210808,
-0.21214571595191956,
-0.5379837155342102,
0.22627714276313782,
-0.46198803186416626,
1.3403104543685913,
0.415798544883728,
-0.8915775418281555,
0.27746152877807617,
-0.5765163898468018,
-0.0955086499452591,
-0.2726755738258362,
0.06537237763404846,
-1.0960959196090698,
-0.10810057818889618,
0.10125814378261566,
0.8115646243095398,
-0.29263171553611755,
0.027905691415071487,
-0.6057547330856323,
-0.2649838328361511,
0.2522677481174469,
0.017566604539752007,
1.0745152235031128,
0.19964464008808136,
-0.4982677400112152,
0.2376890629529953,
-0.5152373313903809,
0.22154375910758972,
0.5442949533462524,
-0.28137847781181335,
-0.0289686881005764,
-0.648371696472168,
0.22679714858531952,
0.3401097059249878,
0.10732709616422653,
-0.5147718191146851,
0.2653416395187378,
-0.19884073734283447,
0.5129541754722595,
0.5977824330329895,
-0.19633768498897552,
0.32802248001098633,
-0.34634751081466675,
0.22190676629543304,
0.2752395570278168,
0.1573982536792755,
0.06099355220794678,
-0.5431246757507324,
-0.9179250001907349,
-0.4979991316795349,
0.4056565463542938,
0.41117048263549805,
-0.6217390298843384,
0.4353540539741516,
-0.25706517696380615,
-0.8206673264503479,
-0.43518945574760437,
0.12824617326259613,
0.5478463172912598,
0.6032549142837524,
0.30626413226127625,
-0.45274847745895386,
-0.47956719994544983,
-0.9338028430938721,
0.012664847075939178,
-0.06718526780605316,
0.03087466210126877,
0.3512135148048401,
0.7727771997451782,
-0.07844746857881546,
0.5886541604995728,
-0.41623955965042114,
-0.29303696751594543,
-0.23295114934444427,
0.0925968810915947,
0.33054661750793457,
0.8159091472625732,
0.8784289360046387,
-0.5445814728736877,
-0.5256115794181824,
-0.129143625497818,
-0.9616101384162903,
0.17695385217666626,
0.013428823091089725,
-0.2936484217643738,
0.30739644169807434,
0.21416164934635162,
-0.59432053565979,
0.5950949788093567,
0.22680750489234924,
-0.4332871735095978,
0.3673195540904999,
-0.24382224678993225,
0.2142183631658554,
-1.146377682685852,
0.16274674236774445,
0.3700881600379944,
-0.2411031574010849,
-0.48771703243255615,
0.07224453240633011,
0.034119680523872375,
0.00514379795640707,
-0.5210886001586914,
0.6868432760238647,
-0.5779372453689575,
-0.23749053478240967,
-0.14985576272010803,
-0.30146732926368713,
0.00004610123505699448,
0.6666624546051025,
-0.09627465903759003,
0.38955023884773254,
0.8129695653915405,
-0.45373544096946716,
0.5329678058624268,
0.41895899176597595,
-0.2855132818222046,
0.3132075369358063,
-0.7275359034538269,
0.24888712167739868,
-0.0012576943263411522,
0.23920440673828125,
-1.0187710523605347,
-0.34222033619880676,
0.411162793636322,
-0.6367470026016235,
0.6121662259101868,
-0.524054229259491,
-0.5044750571250916,
-0.5645488500595093,
-0.503672182559967,
0.34607991576194763,
0.7419853806495667,
-0.7844316959381104,
0.4195024371147156,
0.23149001598358154,
0.27580246329307556,
-0.6049280762672424,
-1.0236315727233887,
-0.2634303569793701,
-0.40048733353614807,
-0.8180129528045654,
0.32533740997314453,
0.2299986183643341,
0.07768695801496506,
0.2031448632478714,
-0.04432760551571846,
-0.16032755374908447,
-0.046931568533182144,
0.5135927200317383,
0.32425907254219055,
-0.33948302268981934,
-0.04166971892118454,
-0.2922731339931488,
-0.08330969512462616,
0.039057567715644836,
-0.40861907601356506,
0.5686146020889282,
-0.2740059792995453,
-0.04996545985341072,
-0.906493067741394,
-0.09859627485275269,
0.38672956824302673,
-0.042271487414836884,
0.8833671808242798,
1.2240545749664307,
-0.5100821852684021,
-0.05423436686396599,
-0.4347572922706604,
-0.35009294748306274,
-0.4943031370639801,
0.6162845492362976,
-0.34693026542663574,
-0.5398625135421753,
0.7510743141174316,
0.06343086063861847,
0.10741803795099258,
0.747495174407959,
0.4100899398326874,
-0.11226258426904678,
0.6705843210220337,
0.5125490427017212,
0.2854078412055969,
0.7764232754707336,
-1.1053060293197632,
-0.26045703887939453,
-0.7947089076042175,
-0.5425346493721008,
-0.40597018599510193,
-0.6601638793945312,
-0.7142245769500732,
-0.4209110736846924,
0.4335375130176544,
0.27424710988998413,
-0.5004268884658813,
0.4879201054573059,
-0.8352028131484985,
0.10602816194295883,
0.71563321352005,
0.5941729545593262,
-0.39543741941452026,
0.4044647812843323,
-0.1568865180015564,
0.03762916103005409,
-0.8438307046890259,
-0.23652665317058563,
1.1796375513076782,
0.46488791704177856,
0.49666374921798706,
-0.07330650836229324,
0.6554003953933716,
-0.2551821172237396,
0.2957710325717926,
-0.6505036950111389,
0.5574558973312378,
-0.17576874792575836,
-0.43243408203125,
-0.12994225323200226,
-0.5359086394309998,
-1.0693509578704834,
0.1593160182237625,
-0.30726030468940735,
-0.7907999157905579,
0.1146233081817627,
0.26765719056129456,
-0.22362300753593445,
0.7989077568054199,
-0.9098851680755615,
1.0389920473098755,
-0.11932294815778732,
-0.5118651390075684,
0.03494022786617279,
-0.6774434447288513,
0.3065640330314636,
0.2728292942047119,
-0.3232603967189789,
-0.09546427428722382,
0.06205467879772186,
1.2342920303344727,
-0.6785539388656616,
0.7478431463241577,
-0.5760517120361328,
0.5271380543708801,
0.5673422813415527,
-0.10695868730545044,
0.4194329082965851,
-0.12195022404193878,
-0.13783472776412964,
0.37148749828338623,
0.022389905527234077,
-0.4927400052547455,
-0.5101675391197205,
0.6136086583137512,
-1.0708658695220947,
-0.26037439703941345,
-0.35949909687042236,
-0.3867410123348236,
0.23034921288490295,
0.1041388064622879,
0.5870429277420044,
0.6774216890335083,
0.24646492302417755,
0.36380812525749207,
0.5548729300498962,
-0.34892627596855164,
0.5294103026390076,
-0.14587728679180145,
-0.14476419985294342,
-0.5134387612342834,
0.8738285899162292,
0.26536470651626587,
0.11768734455108643,
0.10973703861236572,
0.2437090277671814,
-0.4033619463443756,
-0.6301320791244507,
-0.32530322670936584,
0.32199981808662415,
-0.7213211059570312,
-0.5211660861968994,
-0.727051854133606,
-0.35418981313705444,
-0.4100704789161682,
0.005997796077281237,
-0.5574398636817932,
-0.4527449905872345,
-0.5041985511779785,
0.19192202389240265,
0.812597393989563,
0.6050432324409485,
-0.22294403612613678,
0.6432433724403381,
-0.46401360630989075,
0.17032144963741302,
0.1414545327425003,
0.4923619329929352,
-0.03926379233598709,
-0.8888675570487976,
-0.19516614079475403,
-0.12568001449108124,
-0.4131043553352356,
-0.6656710505485535,
0.4740644693374634,
0.2523759603500366,
0.4277682602405548,
0.40248969197273254,
-0.26545432209968567,
0.7457477450370789,
0.04595404863357544,
0.5103861093521118,
0.45382362604141235,
-0.504987359046936,
0.5445861220359802,
-0.016708411276340485,
0.09696351736783981,
0.17476359009742737,
0.2670280337333679,
-0.19998517632484436,
0.08149544894695282,
-0.9627146124839783,
-0.7859895825386047,
0.9869906902313232,
0.17703677713871002,
-0.07068751007318497,
0.48436620831489563,
0.7362724542617798,
0.014424295164644718,
0.021225878968834877,
-0.658870279788971,
-0.48221081495285034,
-0.3901904821395874,
-0.3117833137512207,
-0.03238939866423607,
-0.1121458187699318,
-0.022890837863087654,
-0.702523410320282,
0.746783971786499,
-0.06306160986423492,
0.8916128873825073,
0.25940608978271484,
-0.08016438782215118,
-0.04252161830663681,
-0.4981873333454132,
0.4565400183200836,
0.28101295232772827,
-0.33016687631607056,
0.084444060921669,
0.14554178714752197,
-0.5472632646560669,
0.1031721979379654,
0.20104540884494781,
-0.012644482776522636,
0.014075159095227718,
0.5247434377670288,
1.078586220741272,
-0.12327787280082703,
0.14704105257987976,
0.4791521728038788,
-0.029528090730309486,
-0.4607922434806824,
-0.2690103352069855,
0.2041768878698349,
0.0380026251077652,
0.4713631272315979,
0.20863193273544312,
0.4152577519416809,
-0.12886084616184235,
-0.2143082171678543,
0.2651682496070862,
0.5520296692848206,
-0.3076023757457733,
-0.3102640211582184,
0.6922531723976135,
-0.11944320052862167,
-0.18717369437217712,
0.9437423944473267,
-0.17323556542396545,
-0.5121315121650696,
1.1373138427734375,
0.34208571910858154,
0.9292392134666443,
0.04952986538410187,
0.0645388811826706,
0.9220932722091675,
0.2459234893321991,
-0.06922002136707306,
0.16743318736553192,
0.1608547568321228,
-0.6986779570579529,
0.0752047747373581,
-0.535210907459259,
0.1233857050538063,
0.357814222574234,
-0.5156271457672119,
0.3241298198699951,
-0.7002143263816833,
-0.4321783185005188,
0.16202938556671143,
0.4176389276981354,
-1.0440832376480103,
0.18043333292007446,
-0.05042891949415207,
0.887491762638092,
-0.7203019857406616,
0.8187922239303589,
0.8396039009094238,
-0.43923744559288025,
-1.1450964212417603,
-0.1857261210680008,
0.036238256841897964,
-0.957869291305542,
0.6087389588356018,
0.5169461965560913,
0.19958660006523132,
0.11682595312595367,
-0.7845309972763062,
-0.6165289282798767,
1.5019210577011108,
0.5398625135421753,
-0.11214561015367508,
0.2802041471004486,
-0.05671459808945656,
0.20673762261867523,
-0.4023374021053314,
0.6455777287483215,
0.27728402614593506,
0.4611102044582367,
0.3026218116283417,
-0.6755606532096863,
0.23351366817951202,
-0.3508213758468628,
0.16972920298576355,
0.18015265464782715,
-0.8883870244026184,
0.883813202381134,
-0.541510283946991,
-0.08496823161840439,
0.06208353489637375,
0.7354206442832947,
0.18776866793632507,
0.14999158680438995,
0.5339853763580322,
0.8350940942764282,
0.5612719058990479,
-0.458635538816452,
0.9528149962425232,
0.08277478069067001,
0.6927884817123413,
0.5597561001777649,
0.5194788575172424,
0.5400251150131226,
0.37717774510383606,
-0.20739763975143433,
0.3208540081977844,
1.1766331195831299,
-0.4011976718902588,
0.3549344837665558,
0.19521425664424896,
0.11230164021253586,
-0.12371926009654999,
0.08339205384254456,
-0.44241800904273987,
0.6022311449050903,
0.11732978373765945,
-0.5206564664840698,
-0.21669931709766388,
-0.017840679734945297,
0.0543147437274456,
-0.5072444677352905,
-0.22620002925395966,
0.519584596157074,
0.009948637336492538,
-0.4480292499065399,
0.8776369094848633,
0.1913744956254959,
0.8888553977012634,
-0.39263224601745605,
0.03742004930973053,
-0.22898535430431366,
0.25127753615379333,
-0.3858943283557892,
-0.8236980438232422,
0.28051188588142395,
-0.2148764431476593,
0.07665582746267319,
0.016992514953017235,
0.7014029622077942,
-0.3729649782180786,
-0.46956363320350647,
0.2071661651134491,
0.30293408036231995,
0.5702181458473206,
0.016062388196587563,
-1.2414659261703491,
0.15782442688941956,
0.08980678766965866,
-0.7625453472137451,
0.272519052028656,
0.2920597493648529,
0.11992120742797852,
0.699293315410614,
0.5523679256439209,
-0.10826046764850616,
0.15125565230846405,
-0.2890472114086151,
0.7952449321746826,
-0.4252581298351288,
-0.31666675209999084,
-0.8039405941963196,
0.6812174320220947,
-0.12708117067813873,
-0.6790111660957336,
0.3878810405731201,
0.576781153678894,
0.8625596165657043,
-0.00596210639923811,
0.46125513315200806,
-0.3400637209415436,
-0.09268122166395187,
-0.43891456723213196,
0.7767079472541809,
-0.8050710558891296,
-0.11620725691318512,
-0.06658393144607544,
-0.7497577667236328,
-0.324235737323761,
0.7673285007476807,
-0.2135123461484909,
0.49607065320014954,
0.5162383317947388,
1.047680139541626,
-0.3663824200630188,
-0.3869835436344147,
0.11182727664709091,
0.17148351669311523,
0.0854257345199585,
0.49253585934638977,
0.37077614665031433,
-0.8457001447677612,
0.4148348569869995,
-0.7464022040367126,
-0.1873234659433365,
-0.25291261076927185,
-0.67994624376297,
-1.0357972383499146,
-0.8329068422317505,
-0.6961762309074402,
-0.7963898777961731,
-0.1819992959499359,
1.0049631595611572,
1.1114357709884644,
-0.6806223392486572,
-0.11978480219841003,
0.01591806672513485,
0.13026057183742523,
-0.19220110774040222,
-0.2295464277267456,
0.7216546535491943,
-0.0496385283768177,
-0.7397359609603882,
-0.3840179443359375,
-0.07882145792245865,
0.3683122396469116,
0.03523899242281914,
-0.2947448492050171,
-0.10824870318174362,
-0.38279294967651367,
0.18754495680332184,
0.27359333634376526,
-0.6279335021972656,
-0.18011808395385742,
-0.27819502353668213,
-0.1870459020137787,
0.41870930790901184,
0.4400478005409241,
-0.49652013182640076,
0.3165082335472107,
0.5426405072212219,
0.3703276813030243,
0.9217175841331482,
-0.35527095198631287,
-0.06707064807415009,
-0.8081863522529602,
0.6222089529037476,
-0.12163793295621872,
0.42449188232421875,
0.4628543257713318,
-0.31672415137290955,
0.6415649056434631,
0.4540479779243469,
-0.38094955682754517,
-0.8964552879333496,
-0.16367082297801971,
-1.1001733541488647,
-0.111937515437603,
1.0223287343978882,
-0.45289143919944763,
-0.5233187079429626,
0.4975336194038391,
0.06340052932500839,
0.7591810822486877,
-0.14597633481025696,
0.3669999837875366,
0.20459358394145966,
-0.12298274785280228,
-0.6081836223602295,
-0.6167981028556824,
0.46485576033592224,
0.1337004452943802,
-0.6595145463943481,
-0.4992987811565399,
-0.060109708458185196,
0.767554521560669,
0.1318097561597824,
0.4687905013561249,
-0.05040628835558891,
0.14510656893253326,
0.18040432035923004,
0.4766751229763031,
-0.6230241060256958,
-0.12359438091516495,
-0.29625701904296875,
0.06589202582836151,
-0.09265099465847015,
-0.6467381119728088
] |
Helsinki-NLP/opus-mt-pt-ca | Helsinki-NLP | "2023-08-16T12:02:55Z" | 12,131 | 0 | transformers | [
"transformers",
"pytorch",
"tf",
"marian",
"text2text-generation",
"translation",
"pt",
"ca",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"has_space",
"region:us"
] | translation | "2022-03-02T23:29:04Z" | ---
language:
- pt
- ca
tags:
- translation
license: apache-2.0
---
### por-cat
* source group: Portuguese
* target group: Catalan
* OPUS readme: [por-cat](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/por-cat/README.md)
* model: transformer-align
* source language(s): por
* target language(s): cat
* model: transformer-align
* pre-processing: normalization + SentencePiece (spm12k,spm12k)
* download original weights: [opus-2020-06-17.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/por-cat/opus-2020-06-17.zip)
* test set translations: [opus-2020-06-17.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/por-cat/opus-2020-06-17.test.txt)
* test set scores: [opus-2020-06-17.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/por-cat/opus-2020-06-17.eval.txt)
## Benchmarks
| testset | BLEU | chr-F |
|-----------------------|-------|-------|
| Tatoeba-test.por.cat | 45.7 | 0.672 |
### System Info:
- hf_name: por-cat
- source_languages: por
- target_languages: cat
- opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/por-cat/README.md
- original_repo: Tatoeba-Challenge
- tags: ['translation']
- languages: ['pt', 'ca']
- src_constituents: {'por'}
- tgt_constituents: {'cat'}
- src_multilingual: False
- tgt_multilingual: False
- prepro: normalization + SentencePiece (spm12k,spm12k)
- url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/por-cat/opus-2020-06-17.zip
- url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/por-cat/opus-2020-06-17.test.txt
- src_alpha3: por
- tgt_alpha3: cat
- short_pair: pt-ca
- chrF2_score: 0.672
- bleu: 45.7
- brevity_penalty: 0.972
- ref_len: 5878.0
- src_name: Portuguese
- tgt_name: Catalan
- train_date: 2020-06-17
- src_alpha2: pt
- tgt_alpha2: ca
- prefer_old: False
- long_pair: por-cat
- helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535
- transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b
- port_machine: brutasse
- port_time: 2020-08-21-14:41 | [
-0.3767892122268677,
-0.6002162098884583,
0.3444579243659973,
0.5593844652175903,
-0.5375965237617493,
-0.19138465821743011,
-0.3783416152000427,
-0.446541428565979,
0.39518675208091736,
0.36267611384391785,
-0.5452336072921753,
-0.8195732235908508,
-0.553962230682373,
0.3833492696285248,
0.014901948161423206,
1.0496325492858887,
-0.129574716091156,
0.21632270514965057,
0.5324043035507202,
-0.39548367261886597,
-0.40541723370552063,
-0.24710652232170105,
-0.6751754283905029,
-0.2381654679775238,
0.5305672883987427,
0.31334197521209717,
0.473806232213974,
0.6458482146263123,
0.709456205368042,
0.31787919998168945,
-0.4316566586494446,
0.24864588677883148,
-0.23491045832633972,
-0.18563558161258698,
-0.13425134122371674,
-0.4871598780155182,
-0.6684958338737488,
-0.3054588735103607,
1.0510302782058716,
0.4675573706626892,
0.050038326531648636,
0.4647896885871887,
-0.08748830109834671,
0.7487593293190002,
-0.1719842404127121,
0.18218815326690674,
-0.6717048287391663,
-0.1390972137451172,
-0.46589571237564087,
-0.4164135456085205,
-0.5536013245582581,
-0.3766053318977356,
0.11650530248880386,
-0.7203364968299866,
0.15244662761688232,
0.11543804407119751,
1.7685943841934204,
0.236805722117424,
-0.38301488757133484,
-0.18842214345932007,
-0.36483505368232727,
0.8600181937217712,
-0.7591538429260254,
0.5099580883979797,
0.4607682526111603,
-0.05552234128117561,
-0.2013208568096161,
-0.4259231984615326,
-0.4165424406528473,
-0.02236446924507618,
-0.2624046504497528,
0.297260582447052,
-0.0751810222864151,
-0.169847309589386,
0.1931212842464447,
0.62638258934021,
-0.7260074019432068,
-0.01807130128145218,
-0.47207120060920715,
-0.1860741376876831,
0.5133889317512512,
0.06255161762237549,
0.3281533420085907,
-0.5500183701515198,
-0.554008960723877,
-0.6074296236038208,
-0.5223772525787354,
0.35352203249931335,
0.5759369730949402,
0.4220796227455139,
-0.46283674240112305,
0.7480043768882751,
-0.023154648020863533,
0.5413275957107544,
0.15698687732219696,
-0.13630424439907074,
0.6944758296012878,
-0.7138171792030334,
-0.14408190548419952,
-0.12023180723190308,
1.333101749420166,
0.20674507319927216,
0.008463823236525059,
0.08668690919876099,
-0.18081450462341309,
-0.15848536789417267,
0.0041066366247832775,
-0.8364890813827515,
0.10347753018140793,
0.24913164973258972,
-0.35003259778022766,
-0.23136208951473236,
0.11158759891986847,
-0.9233354926109314,
0.12514573335647583,
0.05479301139712334,
0.49576836824417114,
-0.7808521389961243,
-0.21001814305782318,
0.529664158821106,
-0.08004700392484665,
0.4287540316581726,
0.0118225933983922,
-0.5768219828605652,
0.23012489080429077,
0.44881579279899597,
0.9758479595184326,
-0.18720591068267822,
-0.402260422706604,
-0.27676746249198914,
0.045242998749017715,
-0.17967915534973145,
0.7352713346481323,
-0.2609086334705353,
-0.4618082046508789,
-0.25288429856300354,
0.6339166760444641,
-0.2433299720287323,
-0.19702616333961487,
1.1236454248428345,
-0.1649855673313141,
0.4976166784763336,
-0.5133457779884338,
-0.36136168241500854,
-0.37888243794441223,
0.3540419042110443,
-0.8138564825057983,
1.436435341835022,
0.05972645804286003,
-1.0516167879104614,
0.30201053619384766,
-0.7429171800613403,
-0.19462259113788605,
-0.16188761591911316,
0.22350765764713287,
-0.8324047327041626,
-0.04613170772790909,
0.22185958921909332,
0.37767884135246277,
-0.37282776832580566,
0.5130749344825745,
-0.18967851996421814,
-0.20289219915866852,
-0.014475674368441105,
-0.25527623295783997,
1.3186062574386597,
0.15259122848510742,
-0.48540401458740234,
0.005707144271582365,
-0.8670187592506409,
-0.027784530073404312,
0.3683176338672638,
-0.5362386703491211,
-0.293104350566864,
-0.07906491309404373,
0.11478310078382492,
0.1067287027835846,
0.3880091607570648,
-0.6817544102668762,
0.4568566679954529,
-0.6661193370819092,
0.2986261546611786,
0.8001291155815125,
0.060590390115976334,
0.299586683511734,
-0.4751105010509491,
0.44132861495018005,
0.12263064086437225,
0.10440731048583984,
0.11918767541646957,
-0.6617443561553955,
-0.7444098591804504,
-0.2826704978942871,
0.5189317464828491,
0.8101137280464172,
-0.6874043345451355,
0.7462209463119507,
-0.7972285151481628,
-0.8986130952835083,
-0.6869373917579651,
-0.22515518963336945,
0.6343386769294739,
0.3894442319869995,
0.6014458537101746,
-0.3922473192214966,
-0.536304235458374,
-1.0299407243728638,
-0.13205546140670776,
-0.3802432715892792,
0.12004459649324417,
0.27935925126075745,
0.8491331934928894,
-0.0329311303794384,
0.5427076816558838,
-0.34755387902259827,
-0.533123254776001,
-0.010592760518193245,
0.12587551772594452,
0.42183855175971985,
0.7977243065834045,
0.727086067199707,
-0.750741183757782,
-0.5692799091339111,
0.20796547830104828,
-0.5265547633171082,
-0.2271423041820526,
-0.0032142186537384987,
-0.2782403826713562,
0.2921982705593109,
-0.030595557764172554,
-0.49928542971611023,
0.2728976905345917,
0.6306797862052917,
-0.7488883137702942,
0.6236183047294617,
-0.2239789366722107,
0.39416852593421936,
-1.4779142141342163,
0.32052183151245117,
-0.17487940192222595,
-0.11269700527191162,
-0.2941053509712219,
-0.0585661306977272,
0.13413137197494507,
0.18549887835979462,
-0.6573007702827454,
0.87082839012146,
-0.6950441002845764,
-0.040870729833841324,
0.4591771066188812,
0.13610324263572693,
0.08782794326543808,
0.9178985357284546,
0.0031812270171940327,
0.9087640643119812,
0.5607359409332275,
-0.37877389788627625,
-0.015021031722426414,
0.4759853184223175,
-0.32283106446266174,
0.20086921751499176,
-0.8322635889053345,
-0.2201690971851349,
0.30482017993927,
0.09585078805685043,
-0.9178842902183533,
-0.10810717940330505,
0.348499596118927,
-0.7339614033699036,
0.2979257106781006,
-0.10361108183860779,
-0.6612286567687988,
-0.28808465600013733,
-0.5696143507957458,
0.6248959898948669,
0.34014007449150085,
-0.3312095105648041,
0.7207622528076172,
0.20052172243595123,
0.025550389662384987,
-0.8329811692237854,
-0.9040668606758118,
-0.09778033196926117,
-0.2629455327987671,
-0.7105352878570557,
0.5053806304931641,
-0.24225713312625885,
0.14376674592494965,
0.1881658285856247,
-0.042031582444906235,
-0.1966180056333542,
0.06860789656639099,
0.08418915420770645,
0.25703713297843933,
-0.3025721311569214,
0.12718264758586884,
-0.02162843570113182,
-0.014320074580609798,
-0.2342865765094757,
-0.19050420820713043,
0.8334859013557434,
-0.550159752368927,
-0.22648140788078308,
-0.7803201675415039,
0.017928387969732285,
0.5727089047431946,
-0.5423657894134521,
1.0037070512771606,
0.7121108174324036,
-0.24413874745368958,
0.19055655598640442,
-0.5930961966514587,
0.061456385999917984,
-0.4138081967830658,
0.22128741443157196,
-0.604341983795166,
-0.7062317132949829,
1.0000964403152466,
0.29187408089637756,
0.25919657945632935,
0.936823308467865,
0.7694194912910461,
0.26987019181251526,
0.6955306529998779,
0.3630376160144806,
0.1882806420326233,
0.7088989615440369,
-0.6562672853469849,
-0.13464556634426117,
-0.9978980422019958,
-0.2746676206588745,
-0.8983376026153564,
-0.1524060219526291,
-0.984299898147583,
-0.365134596824646,
0.18151997029781342,
0.01323543582111597,
-0.13271218538284302,
0.9053876399993896,
-0.7439203858375549,
0.39176687598228455,
0.5827848315238953,
0.2219957411289215,
0.36736103892326355,
-0.13469061255455017,
-0.601019024848938,
-0.010156610980629921,
-0.4662681221961975,
-0.6827950477600098,
1.332095742225647,
0.4074910581111908,
0.2914186120033264,
0.33131420612335205,
0.6638771295547485,
-0.05076385661959648,
0.08947471529245377,
-0.7244808673858643,
0.6172605156898499,
-0.20296522974967957,
-0.8548005223274231,
-0.4118368625640869,
-0.33570337295532227,
-1.14142906665802,
0.3200877904891968,
-0.20950864255428314,
-0.708818256855011,
0.27460718154907227,
-0.07270876318216324,
-0.10103336721658707,
0.6674093008041382,
-0.8202751874923706,
1.0916788578033447,
0.02748071402311325,
-0.36097192764282227,
0.20817884802818298,
-0.6536983251571655,
0.32446616888046265,
-0.10058440268039703,
0.09796839952468872,
-0.17817740142345428,
-0.25957173109054565,
0.897890031337738,
-0.35254913568496704,
0.6186176538467407,
0.03373716399073601,
-0.18879938125610352,
0.28240638971328735,
0.15636220574378967,
0.5982734560966492,
-0.029040349647402763,
-0.29509302973747253,
0.3986000716686249,
0.20078548789024353,
-0.6087580323219299,
-0.15508826076984406,
0.5567705035209656,
-0.8178322315216064,
-0.4430473744869232,
-0.6034086346626282,
-0.5880087614059448,
0.045644648373126984,
0.4602023661136627,
0.5577333569526672,
0.5612095594406128,
-0.10841406881809235,
0.6602903604507446,
0.7262428402900696,
-0.38479381799697876,
0.5793700814247131,
0.5890874266624451,
-0.0022056277375668287,
-0.6682983636856079,
0.757541835308075,
0.1893300563097,
0.2200513780117035,
0.6556856632232666,
0.1400686353445053,
-0.3590550720691681,
-0.8037895560264587,
-0.5313622355461121,
0.5681421160697937,
-0.3309691846370697,
-0.2871563136577606,
-0.6794593930244446,
0.025301920250058174,
-0.41921931505203247,
0.13996699452400208,
-0.4826158881187439,
-0.5176091194152832,
-0.23184123635292053,
-0.20722074806690216,
0.29585596919059753,
0.32900863885879517,
-0.023020047694444656,
0.3602555990219116,
-0.911043107509613,
0.24113455414772034,
-0.12242872267961502,
0.5037751793861389,
-0.3310207724571228,
-0.8330293893814087,
-0.22438569366931915,
-0.04432965815067291,
-0.40000107884407043,
-1.241690993309021,
0.6078827977180481,
-0.0052718510851264,
0.39545997977256775,
0.1582873910665512,
0.01778409443795681,
0.7212198376655579,
-0.5182878971099854,
0.9917370080947876,
-0.09387680143117905,
-0.9425714612007141,
0.6664037108421326,
-0.5185263752937317,
0.3266323506832123,
0.7058706283569336,
0.2778019607067108,
-0.28289172053337097,
-0.7430422902107239,
-0.8978593945503235,
-0.8695006966590881,
0.8601642847061157,
0.5908151865005493,
-0.2553803622722626,
-0.12111324071884155,
0.11224491894245148,
-0.01916850358247757,
-0.20897825062274933,
-1.328790307044983,
-0.3215336799621582,
0.06272191554307938,
-0.41045716404914856,
0.0700208768248558,
-0.3969637453556061,
-0.08519180864095688,
-0.2717510759830475,
1.2373065948486328,
0.10212752968072891,
0.1342947781085968,
0.6591681838035583,
-0.13166087865829468,
-0.05121724680066109,
0.3568984568119049,
0.8579086065292358,
0.40821966528892517,
-0.4052431285381317,
-0.1535557359457016,
0.3902733027935028,
-0.6075360774993896,
0.0011404167162254453,
0.037960249930620193,
-0.2913040518760681,
0.28979164361953735,
0.5050642490386963,
0.886085569858551,
0.2620071768760681,
-0.6479284167289734,
0.5955409407615662,
-0.19725577533245087,
-0.4220850467681885,
-0.4435102343559265,
-0.2825532555580139,
0.0927886962890625,
0.13707347214221954,
0.17514705657958984,
-0.07718337327241898,
-0.0072609116323292255,
-0.23731547594070435,
0.055606208741664886,
0.23472732305526733,
-0.324952632188797,
-0.5873673558235168,
0.6328566670417786,
0.01115048211067915,
-0.30972039699554443,
0.15403027832508087,
-0.4475398361682892,
-0.48077961802482605,
0.7545987367630005,
0.2921217978000641,
1.1013940572738647,
-0.24427378177642822,
-0.08067969232797623,
0.8933902382850647,
0.6282215714454651,
-0.20011888444423676,
0.42669761180877686,
0.09735062718391418,
-0.6472222208976746,
-0.3504296541213989,
-0.994265615940094,
0.08569992333650589,
0.13810311257839203,
-0.7859581112861633,
0.500457227230072,
-0.07635360956192017,
-0.35924017429351807,
-0.05324916914105415,
0.45913347601890564,
-0.5818591117858887,
-0.031195154413580894,
-0.4007375240325928,
1.0037745237350464,
-0.9590378403663635,
0.9193747639656067,
0.8265674114227295,
-0.6840762495994568,
-1.1631898880004883,
-0.26577258110046387,
-0.2561732530593872,
-0.7611856460571289,
0.6278141140937805,
0.0002401043166173622,
0.0780516043305397,
-0.1037140041589737,
-0.34804296493530273,
-0.9038904309272766,
1.2379788160324097,
0.48882535099983215,
-0.48823583126068115,
-0.16637292504310608,
-0.01130894385278225,
0.6861984729766846,
-0.051502250134944916,
0.23105236887931824,
0.3882390856742859,
0.8473259210586548,
-0.12036390602588654,
-1.3287981748580933,
0.11966020613908768,
-0.5502373576164246,
-0.1109563559293747,
0.47250044345855713,
-1.0154526233673096,
0.9546646475791931,
0.1242702379822731,
-0.3411790132522583,
0.14343254268169403,
0.4818878769874573,
0.43581610918045044,
0.021551357582211494,
0.5277615189552307,
1.113020896911621,
0.5329532623291016,
-0.5270090699195862,
1.0113422870635986,
-0.38104525208473206,
0.6591714024543762,
1.0540975332260132,
0.34078624844551086,
0.8406528830528259,
0.5557467937469482,
-0.208104208111763,
0.6571058630943298,
0.8468469977378845,
-0.2239539921283722,
0.27034249901771545,
-0.049123529344797134,
0.04195345565676689,
-0.19710847735404968,
-0.29296112060546875,
-0.5962962508201599,
0.5670208930969238,
0.14506922662258148,
-0.28740498423576355,
-0.054440032690763474,
-0.34409505128860474,
0.3675842583179474,
0.03947710245847702,
-0.1301777958869934,
0.6971744894981384,
-0.1887768656015396,
-0.7483060359954834,
0.801882266998291,
-0.07239966094493866,
0.6318476796150208,
-0.6132625937461853,
0.01954183354973793,
-0.14865747094154358,
0.13899841904640198,
-0.0334305539727211,
-0.8618716597557068,
0.4012494683265686,
0.18088731169700623,
-0.2696526050567627,
-0.32420584559440613,
0.20619356632232666,
-0.5719203948974609,
-0.7544614672660828,
0.49090099334716797,
0.4359772205352783,
0.36042171716690063,
0.20764316618442535,
-0.8776159286499023,
0.004813517909497023,
0.1992696076631546,
-0.7073102593421936,
-0.09002325683832169,
0.92071133852005,
-0.06929367035627365,
0.7343912124633789,
0.6386672258377075,
0.32934853434562683,
0.26391464471817017,
-0.0674227625131607,
0.684014081954956,
-0.8491765260696411,
-0.5020264387130737,
-0.8794427514076233,
0.5844336152076721,
0.0013635227223858237,
-0.7100096940994263,
0.5790054798126221,
0.8451860547065735,
0.9687482714653015,
-0.020502621307969093,
0.13558177649974823,
-0.17488569021224976,
0.48496901988983154,
-0.6440120339393616,
0.6303130984306335,
-1.0580440759658813,
0.12483816593885422,
-0.251164972782135,
-0.9064109325408936,
-0.3085481822490692,
0.2653284966945648,
-0.22448872029781342,
-0.19732847809791565,
1.133357048034668,
0.9102762937545776,
0.06291259825229645,
-0.40806254744529724,
-0.045058973133563995,
0.41505342721939087,
0.34529444575309753,
0.9500849843025208,
0.3121747672557831,
-0.9440559148788452,
0.8649151921272278,
-0.43045979738235474,
0.05788141489028931,
-0.050836507230997086,
-0.9300903677940369,
-0.8841572999954224,
-0.8364670276641846,
-0.14331740140914917,
-0.3739323616027832,
-0.17129646241664886,
0.9449359178543091,
0.4034593105316162,
-0.9637898802757263,
-0.28364455699920654,
-0.0550384521484375,
0.22944007813930511,
-0.22013624012470245,
-0.2856637239456177,
0.8038222789764404,
-0.16551795601844788,
-1.143096685409546,
0.07427200675010681,
0.10613341629505157,
0.20751257240772247,
0.09075992554426193,
-0.06598225235939026,
-0.6458156704902649,
-0.04077225923538208,
0.21697764098644257,
0.27094122767448425,
-0.997622013092041,
-0.17697907984256744,
0.1807405948638916,
-0.357512503862381,
0.32691770792007446,
0.11849598586559296,
-0.3555459976196289,
0.3209153413772583,
0.8770623803138733,
0.49545225501060486,
0.5235821604728699,
0.009620241820812225,
0.22361649572849274,
-0.7057943344116211,
0.4810059666633606,
0.2674228250980377,
0.7042701840400696,
0.27732208371162415,
-0.1763218492269516,
0.9271507263183594,
0.4294379651546478,
-0.4451240003108978,
-1.124098777770996,
-0.13817569613456726,
-1.628379464149475,
-0.026920687407255173,
1.1007577180862427,
-0.19531358778476715,
-0.563930869102478,
0.2936033308506012,
-0.33498865365982056,
0.4792647063732147,
-0.5314345359802246,
0.6871663928031921,
0.9767360687255859,
0.3802325427532196,
0.25904354453086853,
-0.4815828800201416,
0.32634401321411133,
0.6321443319320679,
-0.8298011422157288,
-0.19950543344020844,
0.18156683444976807,
0.32535168528556824,
0.46645355224609375,
0.6768770217895508,
-0.4786716103553772,
0.20014534890651703,
-0.19497396051883698,
0.3960445821285248,
-0.1533646434545517,
-0.11663858592510223,
-0.29180657863616943,
0.09236827492713928,
-0.22937314212322235,
-0.288810133934021
] |
llmrails/ember-v1 | llmrails | "2023-10-22T03:23:08Z" | 12,085 | 30 | sentence-transformers | [
"sentence-transformers",
"pytorch",
"safetensors",
"bert",
"mteb",
"feature-extraction",
"sentence-similarity",
"transformers",
"en",
"arxiv:2205.12035",
"arxiv:2209.11055",
"doi:10.57967/hf/1241",
"license:mit",
"model-index",
"endpoints_compatible",
"has_space",
"region:us"
] | feature-extraction | "2023-10-10T15:56:42Z" | ---
tags:
- mteb
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
language: en
license: mit
model-index:
- name: ember_v1
results:
- task:
type: Classification
dataset:
type: mteb/amazon_counterfactual
name: MTEB AmazonCounterfactualClassification (en)
config: en
split: test
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
metrics:
- type: accuracy
value: 76.05970149253731
- type: ap
value: 38.76045348512767
- type: f1
value: 69.8824007294685
- task:
type: Classification
dataset:
type: mteb/amazon_polarity
name: MTEB AmazonPolarityClassification
config: default
split: test
revision: e2d317d38cd51312af73b3d32a06d1a08b442046
metrics:
- type: accuracy
value: 91.977
- type: ap
value: 88.63507587170176
- type: f1
value: 91.9524133311038
- task:
type: Classification
dataset:
type: mteb/amazon_reviews_multi
name: MTEB AmazonReviewsClassification (en)
config: en
split: test
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
metrics:
- type: accuracy
value: 47.938
- type: f1
value: 47.58273047536129
- task:
type: Retrieval
dataset:
type: arguana
name: MTEB ArguAna
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 41.252
- type: map_at_10
value: 56.567
- type: map_at_100
value: 57.07600000000001
- type: map_at_1000
value: 57.08
- type: map_at_3
value: 52.394
- type: map_at_5
value: 55.055
- type: mrr_at_1
value: 42.39
- type: mrr_at_10
value: 57.001999999999995
- type: mrr_at_100
value: 57.531
- type: mrr_at_1000
value: 57.535000000000004
- type: mrr_at_3
value: 52.845
- type: mrr_at_5
value: 55.47299999999999
- type: ndcg_at_1
value: 41.252
- type: ndcg_at_10
value: 64.563
- type: ndcg_at_100
value: 66.667
- type: ndcg_at_1000
value: 66.77
- type: ndcg_at_3
value: 56.120000000000005
- type: ndcg_at_5
value: 60.889
- type: precision_at_1
value: 41.252
- type: precision_at_10
value: 8.982999999999999
- type: precision_at_100
value: 0.989
- type: precision_at_1000
value: 0.1
- type: precision_at_3
value: 22.309
- type: precision_at_5
value: 15.690000000000001
- type: recall_at_1
value: 41.252
- type: recall_at_10
value: 89.82900000000001
- type: recall_at_100
value: 98.86200000000001
- type: recall_at_1000
value: 99.644
- type: recall_at_3
value: 66.927
- type: recall_at_5
value: 78.45
- task:
type: Clustering
dataset:
type: mteb/arxiv-clustering-p2p
name: MTEB ArxivClusteringP2P
config: default
split: test
revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
metrics:
- type: v_measure
value: 48.5799968717232
- task:
type: Clustering
dataset:
type: mteb/arxiv-clustering-s2s
name: MTEB ArxivClusteringS2S
config: default
split: test
revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
metrics:
- type: v_measure
value: 43.142844164856136
- task:
type: Reranking
dataset:
type: mteb/askubuntudupquestions-reranking
name: MTEB AskUbuntuDupQuestions
config: default
split: test
revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
metrics:
- type: map
value: 64.45997990276463
- type: mrr
value: 77.85560392208592
- task:
type: STS
dataset:
type: mteb/biosses-sts
name: MTEB BIOSSES
config: default
split: test
revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
metrics:
- type: cos_sim_pearson
value: 86.38299310075898
- type: cos_sim_spearman
value: 85.81038898286454
- type: euclidean_pearson
value: 84.28002556389774
- type: euclidean_spearman
value: 85.80315990248238
- type: manhattan_pearson
value: 83.9755390675032
- type: manhattan_spearman
value: 85.30435335611396
- task:
type: Classification
dataset:
type: mteb/banking77
name: MTEB Banking77Classification
config: default
split: test
revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
metrics:
- type: accuracy
value: 87.89935064935065
- type: f1
value: 87.87886687103833
- task:
type: Clustering
dataset:
type: mteb/biorxiv-clustering-p2p
name: MTEB BiorxivClusteringP2P
config: default
split: test
revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
metrics:
- type: v_measure
value: 38.84335510371379
- task:
type: Clustering
dataset:
type: mteb/biorxiv-clustering-s2s
name: MTEB BiorxivClusteringS2S
config: default
split: test
revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
metrics:
- type: v_measure
value: 36.377963093857005
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackAndroidRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 32.557
- type: map_at_10
value: 44.501000000000005
- type: map_at_100
value: 46.11
- type: map_at_1000
value: 46.232
- type: map_at_3
value: 40.711000000000006
- type: map_at_5
value: 42.937
- type: mrr_at_1
value: 40.916000000000004
- type: mrr_at_10
value: 51.317
- type: mrr_at_100
value: 52.003
- type: mrr_at_1000
value: 52.044999999999995
- type: mrr_at_3
value: 48.569
- type: mrr_at_5
value: 50.322
- type: ndcg_at_1
value: 40.916000000000004
- type: ndcg_at_10
value: 51.353
- type: ndcg_at_100
value: 56.762
- type: ndcg_at_1000
value: 58.555
- type: ndcg_at_3
value: 46.064
- type: ndcg_at_5
value: 48.677
- type: precision_at_1
value: 40.916000000000004
- type: precision_at_10
value: 9.927999999999999
- type: precision_at_100
value: 1.592
- type: precision_at_1000
value: 0.20600000000000002
- type: precision_at_3
value: 22.078999999999997
- type: precision_at_5
value: 16.08
- type: recall_at_1
value: 32.557
- type: recall_at_10
value: 63.942
- type: recall_at_100
value: 86.436
- type: recall_at_1000
value: 97.547
- type: recall_at_3
value: 48.367
- type: recall_at_5
value: 55.818
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackEnglishRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 32.106
- type: map_at_10
value: 42.55
- type: map_at_100
value: 43.818
- type: map_at_1000
value: 43.952999999999996
- type: map_at_3
value: 39.421
- type: map_at_5
value: 41.276
- type: mrr_at_1
value: 39.936
- type: mrr_at_10
value: 48.484
- type: mrr_at_100
value: 49.123
- type: mrr_at_1000
value: 49.163000000000004
- type: mrr_at_3
value: 46.221000000000004
- type: mrr_at_5
value: 47.603
- type: ndcg_at_1
value: 39.936
- type: ndcg_at_10
value: 48.25
- type: ndcg_at_100
value: 52.674
- type: ndcg_at_1000
value: 54.638
- type: ndcg_at_3
value: 44.05
- type: ndcg_at_5
value: 46.125
- type: precision_at_1
value: 39.936
- type: precision_at_10
value: 9.096
- type: precision_at_100
value: 1.473
- type: precision_at_1000
value: 0.19499999999999998
- type: precision_at_3
value: 21.295
- type: precision_at_5
value: 15.121
- type: recall_at_1
value: 32.106
- type: recall_at_10
value: 58.107
- type: recall_at_100
value: 76.873
- type: recall_at_1000
value: 89.079
- type: recall_at_3
value: 45.505
- type: recall_at_5
value: 51.479
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackGamingRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 41.513
- type: map_at_10
value: 54.571999999999996
- type: map_at_100
value: 55.579
- type: map_at_1000
value: 55.626
- type: map_at_3
value: 51.127
- type: map_at_5
value: 53.151
- type: mrr_at_1
value: 47.398
- type: mrr_at_10
value: 57.82000000000001
- type: mrr_at_100
value: 58.457
- type: mrr_at_1000
value: 58.479000000000006
- type: mrr_at_3
value: 55.32899999999999
- type: mrr_at_5
value: 56.89999999999999
- type: ndcg_at_1
value: 47.398
- type: ndcg_at_10
value: 60.599000000000004
- type: ndcg_at_100
value: 64.366
- type: ndcg_at_1000
value: 65.333
- type: ndcg_at_3
value: 54.98
- type: ndcg_at_5
value: 57.874
- type: precision_at_1
value: 47.398
- type: precision_at_10
value: 9.806
- type: precision_at_100
value: 1.2590000000000001
- type: precision_at_1000
value: 0.13799999999999998
- type: precision_at_3
value: 24.619
- type: precision_at_5
value: 16.878
- type: recall_at_1
value: 41.513
- type: recall_at_10
value: 74.91799999999999
- type: recall_at_100
value: 90.96
- type: recall_at_1000
value: 97.923
- type: recall_at_3
value: 60.013000000000005
- type: recall_at_5
value: 67.245
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackGisRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 26.319
- type: map_at_10
value: 35.766999999999996
- type: map_at_100
value: 36.765
- type: map_at_1000
value: 36.829
- type: map_at_3
value: 32.888
- type: map_at_5
value: 34.538999999999994
- type: mrr_at_1
value: 28.249000000000002
- type: mrr_at_10
value: 37.766
- type: mrr_at_100
value: 38.62
- type: mrr_at_1000
value: 38.667
- type: mrr_at_3
value: 35.009
- type: mrr_at_5
value: 36.608000000000004
- type: ndcg_at_1
value: 28.249000000000002
- type: ndcg_at_10
value: 41.215
- type: ndcg_at_100
value: 46.274
- type: ndcg_at_1000
value: 48.007
- type: ndcg_at_3
value: 35.557
- type: ndcg_at_5
value: 38.344
- type: precision_at_1
value: 28.249000000000002
- type: precision_at_10
value: 6.429
- type: precision_at_100
value: 0.9480000000000001
- type: precision_at_1000
value: 0.11399999999999999
- type: precision_at_3
value: 15.179
- type: precision_at_5
value: 10.734
- type: recall_at_1
value: 26.319
- type: recall_at_10
value: 56.157999999999994
- type: recall_at_100
value: 79.65
- type: recall_at_1000
value: 92.73
- type: recall_at_3
value: 40.738
- type: recall_at_5
value: 47.418
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackMathematicaRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 18.485
- type: map_at_10
value: 27.400999999999996
- type: map_at_100
value: 28.665000000000003
- type: map_at_1000
value: 28.79
- type: map_at_3
value: 24.634
- type: map_at_5
value: 26.313
- type: mrr_at_1
value: 23.134
- type: mrr_at_10
value: 32.332
- type: mrr_at_100
value: 33.318
- type: mrr_at_1000
value: 33.384
- type: mrr_at_3
value: 29.664
- type: mrr_at_5
value: 31.262
- type: ndcg_at_1
value: 23.134
- type: ndcg_at_10
value: 33.016
- type: ndcg_at_100
value: 38.763
- type: ndcg_at_1000
value: 41.619
- type: ndcg_at_3
value: 28.017999999999997
- type: ndcg_at_5
value: 30.576999999999998
- type: precision_at_1
value: 23.134
- type: precision_at_10
value: 6.069999999999999
- type: precision_at_100
value: 1.027
- type: precision_at_1000
value: 0.14200000000000002
- type: precision_at_3
value: 13.599
- type: precision_at_5
value: 9.975000000000001
- type: recall_at_1
value: 18.485
- type: recall_at_10
value: 45.39
- type: recall_at_100
value: 69.876
- type: recall_at_1000
value: 90.023
- type: recall_at_3
value: 31.587
- type: recall_at_5
value: 38.164
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackPhysicsRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 30.676
- type: map_at_10
value: 41.785
- type: map_at_100
value: 43.169000000000004
- type: map_at_1000
value: 43.272
- type: map_at_3
value: 38.462
- type: map_at_5
value: 40.32
- type: mrr_at_1
value: 37.729
- type: mrr_at_10
value: 47.433
- type: mrr_at_100
value: 48.303000000000004
- type: mrr_at_1000
value: 48.337
- type: mrr_at_3
value: 45.011
- type: mrr_at_5
value: 46.455
- type: ndcg_at_1
value: 37.729
- type: ndcg_at_10
value: 47.921
- type: ndcg_at_100
value: 53.477
- type: ndcg_at_1000
value: 55.300000000000004
- type: ndcg_at_3
value: 42.695
- type: ndcg_at_5
value: 45.175
- type: precision_at_1
value: 37.729
- type: precision_at_10
value: 8.652999999999999
- type: precision_at_100
value: 1.336
- type: precision_at_1000
value: 0.168
- type: precision_at_3
value: 20.18
- type: precision_at_5
value: 14.302000000000001
- type: recall_at_1
value: 30.676
- type: recall_at_10
value: 60.441
- type: recall_at_100
value: 83.37
- type: recall_at_1000
value: 95.092
- type: recall_at_3
value: 45.964
- type: recall_at_5
value: 52.319
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackProgrammersRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 24.978
- type: map_at_10
value: 35.926
- type: map_at_100
value: 37.341
- type: map_at_1000
value: 37.445
- type: map_at_3
value: 32.748
- type: map_at_5
value: 34.207
- type: mrr_at_1
value: 31.163999999999998
- type: mrr_at_10
value: 41.394
- type: mrr_at_100
value: 42.321
- type: mrr_at_1000
value: 42.368
- type: mrr_at_3
value: 38.964999999999996
- type: mrr_at_5
value: 40.135
- type: ndcg_at_1
value: 31.163999999999998
- type: ndcg_at_10
value: 42.191
- type: ndcg_at_100
value: 48.083999999999996
- type: ndcg_at_1000
value: 50.21
- type: ndcg_at_3
value: 36.979
- type: ndcg_at_5
value: 38.823
- type: precision_at_1
value: 31.163999999999998
- type: precision_at_10
value: 7.968
- type: precision_at_100
value: 1.2550000000000001
- type: precision_at_1000
value: 0.16199999999999998
- type: precision_at_3
value: 18.075
- type: precision_at_5
value: 12.626000000000001
- type: recall_at_1
value: 24.978
- type: recall_at_10
value: 55.410000000000004
- type: recall_at_100
value: 80.562
- type: recall_at_1000
value: 94.77600000000001
- type: recall_at_3
value: 40.359
- type: recall_at_5
value: 45.577
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 26.812166666666666
- type: map_at_10
value: 36.706916666666665
- type: map_at_100
value: 37.94016666666666
- type: map_at_1000
value: 38.05358333333333
- type: map_at_3
value: 33.72408333333334
- type: map_at_5
value: 35.36508333333333
- type: mrr_at_1
value: 31.91516666666667
- type: mrr_at_10
value: 41.09716666666666
- type: mrr_at_100
value: 41.931916666666666
- type: mrr_at_1000
value: 41.98458333333333
- type: mrr_at_3
value: 38.60183333333333
- type: mrr_at_5
value: 40.031916666666675
- type: ndcg_at_1
value: 31.91516666666667
- type: ndcg_at_10
value: 42.38725
- type: ndcg_at_100
value: 47.56291666666667
- type: ndcg_at_1000
value: 49.716499999999996
- type: ndcg_at_3
value: 37.36491666666667
- type: ndcg_at_5
value: 39.692166666666665
- type: precision_at_1
value: 31.91516666666667
- type: precision_at_10
value: 7.476749999999999
- type: precision_at_100
value: 1.1869166666666668
- type: precision_at_1000
value: 0.157
- type: precision_at_3
value: 17.275249999999996
- type: precision_at_5
value: 12.25825
- type: recall_at_1
value: 26.812166666666666
- type: recall_at_10
value: 54.82933333333333
- type: recall_at_100
value: 77.36508333333333
- type: recall_at_1000
value: 92.13366666666667
- type: recall_at_3
value: 40.83508333333334
- type: recall_at_5
value: 46.85083333333334
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackStatsRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 25.352999999999998
- type: map_at_10
value: 33.025999999999996
- type: map_at_100
value: 33.882
- type: map_at_1000
value: 33.983999999999995
- type: map_at_3
value: 30.995
- type: map_at_5
value: 32.113
- type: mrr_at_1
value: 28.834
- type: mrr_at_10
value: 36.14
- type: mrr_at_100
value: 36.815
- type: mrr_at_1000
value: 36.893
- type: mrr_at_3
value: 34.305
- type: mrr_at_5
value: 35.263
- type: ndcg_at_1
value: 28.834
- type: ndcg_at_10
value: 37.26
- type: ndcg_at_100
value: 41.723
- type: ndcg_at_1000
value: 44.314
- type: ndcg_at_3
value: 33.584
- type: ndcg_at_5
value: 35.302
- type: precision_at_1
value: 28.834
- type: precision_at_10
value: 5.736
- type: precision_at_100
value: 0.876
- type: precision_at_1000
value: 0.117
- type: precision_at_3
value: 14.468
- type: precision_at_5
value: 9.847
- type: recall_at_1
value: 25.352999999999998
- type: recall_at_10
value: 47.155
- type: recall_at_100
value: 68.024
- type: recall_at_1000
value: 87.26899999999999
- type: recall_at_3
value: 37.074
- type: recall_at_5
value: 41.352
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackTexRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 17.845
- type: map_at_10
value: 25.556
- type: map_at_100
value: 26.787
- type: map_at_1000
value: 26.913999999999998
- type: map_at_3
value: 23.075000000000003
- type: map_at_5
value: 24.308
- type: mrr_at_1
value: 21.714
- type: mrr_at_10
value: 29.543999999999997
- type: mrr_at_100
value: 30.543
- type: mrr_at_1000
value: 30.618000000000002
- type: mrr_at_3
value: 27.174
- type: mrr_at_5
value: 28.409000000000002
- type: ndcg_at_1
value: 21.714
- type: ndcg_at_10
value: 30.562
- type: ndcg_at_100
value: 36.27
- type: ndcg_at_1000
value: 39.033
- type: ndcg_at_3
value: 26.006
- type: ndcg_at_5
value: 27.843
- type: precision_at_1
value: 21.714
- type: precision_at_10
value: 5.657
- type: precision_at_100
value: 1
- type: precision_at_1000
value: 0.14100000000000001
- type: precision_at_3
value: 12.4
- type: precision_at_5
value: 8.863999999999999
- type: recall_at_1
value: 17.845
- type: recall_at_10
value: 41.72
- type: recall_at_100
value: 67.06400000000001
- type: recall_at_1000
value: 86.515
- type: recall_at_3
value: 28.78
- type: recall_at_5
value: 33.629999999999995
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackUnixRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 26.695
- type: map_at_10
value: 36.205999999999996
- type: map_at_100
value: 37.346000000000004
- type: map_at_1000
value: 37.447
- type: map_at_3
value: 32.84
- type: map_at_5
value: 34.733000000000004
- type: mrr_at_1
value: 31.343
- type: mrr_at_10
value: 40.335
- type: mrr_at_100
value: 41.162
- type: mrr_at_1000
value: 41.221000000000004
- type: mrr_at_3
value: 37.329
- type: mrr_at_5
value: 39.068999999999996
- type: ndcg_at_1
value: 31.343
- type: ndcg_at_10
value: 41.996
- type: ndcg_at_100
value: 47.096
- type: ndcg_at_1000
value: 49.4
- type: ndcg_at_3
value: 35.902
- type: ndcg_at_5
value: 38.848
- type: precision_at_1
value: 31.343
- type: precision_at_10
value: 7.146
- type: precision_at_100
value: 1.098
- type: precision_at_1000
value: 0.14100000000000001
- type: precision_at_3
value: 16.014
- type: precision_at_5
value: 11.735
- type: recall_at_1
value: 26.695
- type: recall_at_10
value: 55.525000000000006
- type: recall_at_100
value: 77.376
- type: recall_at_1000
value: 93.476
- type: recall_at_3
value: 39.439
- type: recall_at_5
value: 46.501
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackWebmastersRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 24.196
- type: map_at_10
value: 33.516
- type: map_at_100
value: 35.202
- type: map_at_1000
value: 35.426
- type: map_at_3
value: 30.561
- type: map_at_5
value: 31.961000000000002
- type: mrr_at_1
value: 29.644
- type: mrr_at_10
value: 38.769
- type: mrr_at_100
value: 39.843
- type: mrr_at_1000
value: 39.888
- type: mrr_at_3
value: 36.132999999999996
- type: mrr_at_5
value: 37.467
- type: ndcg_at_1
value: 29.644
- type: ndcg_at_10
value: 39.584
- type: ndcg_at_100
value: 45.964
- type: ndcg_at_1000
value: 48.27
- type: ndcg_at_3
value: 34.577999999999996
- type: ndcg_at_5
value: 36.498000000000005
- type: precision_at_1
value: 29.644
- type: precision_at_10
value: 7.668
- type: precision_at_100
value: 1.545
- type: precision_at_1000
value: 0.242
- type: precision_at_3
value: 16.271
- type: precision_at_5
value: 11.620999999999999
- type: recall_at_1
value: 24.196
- type: recall_at_10
value: 51.171
- type: recall_at_100
value: 79.212
- type: recall_at_1000
value: 92.976
- type: recall_at_3
value: 36.797999999999995
- type: recall_at_5
value: 42.006
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackWordpressRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 21.023
- type: map_at_10
value: 29.677
- type: map_at_100
value: 30.618000000000002
- type: map_at_1000
value: 30.725
- type: map_at_3
value: 27.227
- type: map_at_5
value: 28.523
- type: mrr_at_1
value: 22.921
- type: mrr_at_10
value: 31.832
- type: mrr_at_100
value: 32.675
- type: mrr_at_1000
value: 32.751999999999995
- type: mrr_at_3
value: 29.513
- type: mrr_at_5
value: 30.89
- type: ndcg_at_1
value: 22.921
- type: ndcg_at_10
value: 34.699999999999996
- type: ndcg_at_100
value: 39.302
- type: ndcg_at_1000
value: 41.919000000000004
- type: ndcg_at_3
value: 29.965999999999998
- type: ndcg_at_5
value: 32.22
- type: precision_at_1
value: 22.921
- type: precision_at_10
value: 5.564
- type: precision_at_100
value: 0.8340000000000001
- type: precision_at_1000
value: 0.11800000000000001
- type: precision_at_3
value: 13.123999999999999
- type: precision_at_5
value: 9.316
- type: recall_at_1
value: 21.023
- type: recall_at_10
value: 48.015
- type: recall_at_100
value: 68.978
- type: recall_at_1000
value: 88.198
- type: recall_at_3
value: 35.397
- type: recall_at_5
value: 40.701
- task:
type: Retrieval
dataset:
type: climate-fever
name: MTEB ClimateFEVER
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 11.198
- type: map_at_10
value: 19.336000000000002
- type: map_at_100
value: 21.382
- type: map_at_1000
value: 21.581
- type: map_at_3
value: 15.992
- type: map_at_5
value: 17.613
- type: mrr_at_1
value: 25.080999999999996
- type: mrr_at_10
value: 36.032
- type: mrr_at_100
value: 37.1
- type: mrr_at_1000
value: 37.145
- type: mrr_at_3
value: 32.595
- type: mrr_at_5
value: 34.553
- type: ndcg_at_1
value: 25.080999999999996
- type: ndcg_at_10
value: 27.290999999999997
- type: ndcg_at_100
value: 35.31
- type: ndcg_at_1000
value: 38.885
- type: ndcg_at_3
value: 21.895999999999997
- type: ndcg_at_5
value: 23.669999999999998
- type: precision_at_1
value: 25.080999999999996
- type: precision_at_10
value: 8.645
- type: precision_at_100
value: 1.7209999999999999
- type: precision_at_1000
value: 0.23900000000000002
- type: precision_at_3
value: 16.287
- type: precision_at_5
value: 12.625
- type: recall_at_1
value: 11.198
- type: recall_at_10
value: 33.355000000000004
- type: recall_at_100
value: 60.912
- type: recall_at_1000
value: 80.89
- type: recall_at_3
value: 20.055
- type: recall_at_5
value: 25.14
- task:
type: Retrieval
dataset:
type: dbpedia-entity
name: MTEB DBPedia
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 9.228
- type: map_at_10
value: 20.018
- type: map_at_100
value: 28.388999999999996
- type: map_at_1000
value: 30.073
- type: map_at_3
value: 14.366999999999999
- type: map_at_5
value: 16.705000000000002
- type: mrr_at_1
value: 69
- type: mrr_at_10
value: 77.058
- type: mrr_at_100
value: 77.374
- type: mrr_at_1000
value: 77.384
- type: mrr_at_3
value: 75.708
- type: mrr_at_5
value: 76.608
- type: ndcg_at_1
value: 57.49999999999999
- type: ndcg_at_10
value: 41.792
- type: ndcg_at_100
value: 47.374
- type: ndcg_at_1000
value: 55.13
- type: ndcg_at_3
value: 46.353
- type: ndcg_at_5
value: 43.702000000000005
- type: precision_at_1
value: 69
- type: precision_at_10
value: 32.85
- type: precision_at_100
value: 10.708
- type: precision_at_1000
value: 2.024
- type: precision_at_3
value: 49.5
- type: precision_at_5
value: 42.05
- type: recall_at_1
value: 9.228
- type: recall_at_10
value: 25.635
- type: recall_at_100
value: 54.894
- type: recall_at_1000
value: 79.38
- type: recall_at_3
value: 15.68
- type: recall_at_5
value: 19.142
- task:
type: Classification
dataset:
type: mteb/emotion
name: MTEB EmotionClassification
config: default
split: test
revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
metrics:
- type: accuracy
value: 52.035
- type: f1
value: 46.85325505614071
- task:
type: Retrieval
dataset:
type: fever
name: MTEB FEVER
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 70.132
- type: map_at_10
value: 79.527
- type: map_at_100
value: 79.81200000000001
- type: map_at_1000
value: 79.828
- type: map_at_3
value: 78.191
- type: map_at_5
value: 79.092
- type: mrr_at_1
value: 75.563
- type: mrr_at_10
value: 83.80199999999999
- type: mrr_at_100
value: 83.93
- type: mrr_at_1000
value: 83.933
- type: mrr_at_3
value: 82.818
- type: mrr_at_5
value: 83.505
- type: ndcg_at_1
value: 75.563
- type: ndcg_at_10
value: 83.692
- type: ndcg_at_100
value: 84.706
- type: ndcg_at_1000
value: 85.001
- type: ndcg_at_3
value: 81.51
- type: ndcg_at_5
value: 82.832
- type: precision_at_1
value: 75.563
- type: precision_at_10
value: 10.245
- type: precision_at_100
value: 1.0959999999999999
- type: precision_at_1000
value: 0.11399999999999999
- type: precision_at_3
value: 31.518
- type: precision_at_5
value: 19.772000000000002
- type: recall_at_1
value: 70.132
- type: recall_at_10
value: 92.204
- type: recall_at_100
value: 96.261
- type: recall_at_1000
value: 98.17399999999999
- type: recall_at_3
value: 86.288
- type: recall_at_5
value: 89.63799999999999
- task:
type: Retrieval
dataset:
type: fiqa
name: MTEB FiQA2018
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 22.269
- type: map_at_10
value: 36.042
- type: map_at_100
value: 37.988
- type: map_at_1000
value: 38.162
- type: map_at_3
value: 31.691000000000003
- type: map_at_5
value: 33.988
- type: mrr_at_1
value: 44.907000000000004
- type: mrr_at_10
value: 53.348
- type: mrr_at_100
value: 54.033
- type: mrr_at_1000
value: 54.064
- type: mrr_at_3
value: 50.977
- type: mrr_at_5
value: 52.112
- type: ndcg_at_1
value: 44.907000000000004
- type: ndcg_at_10
value: 44.302
- type: ndcg_at_100
value: 51.054
- type: ndcg_at_1000
value: 53.822
- type: ndcg_at_3
value: 40.615
- type: ndcg_at_5
value: 41.455999999999996
- type: precision_at_1
value: 44.907000000000004
- type: precision_at_10
value: 12.176
- type: precision_at_100
value: 1.931
- type: precision_at_1000
value: 0.243
- type: precision_at_3
value: 27.16
- type: precision_at_5
value: 19.567999999999998
- type: recall_at_1
value: 22.269
- type: recall_at_10
value: 51.188
- type: recall_at_100
value: 75.924
- type: recall_at_1000
value: 92.525
- type: recall_at_3
value: 36.643
- type: recall_at_5
value: 42.27
- task:
type: Retrieval
dataset:
type: hotpotqa
name: MTEB HotpotQA
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 40.412
- type: map_at_10
value: 66.376
- type: map_at_100
value: 67.217
- type: map_at_1000
value: 67.271
- type: map_at_3
value: 62.741
- type: map_at_5
value: 65.069
- type: mrr_at_1
value: 80.824
- type: mrr_at_10
value: 86.53
- type: mrr_at_100
value: 86.67399999999999
- type: mrr_at_1000
value: 86.678
- type: mrr_at_3
value: 85.676
- type: mrr_at_5
value: 86.256
- type: ndcg_at_1
value: 80.824
- type: ndcg_at_10
value: 74.332
- type: ndcg_at_100
value: 77.154
- type: ndcg_at_1000
value: 78.12400000000001
- type: ndcg_at_3
value: 69.353
- type: ndcg_at_5
value: 72.234
- type: precision_at_1
value: 80.824
- type: precision_at_10
value: 15.652
- type: precision_at_100
value: 1.7840000000000003
- type: precision_at_1000
value: 0.191
- type: precision_at_3
value: 44.911
- type: precision_at_5
value: 29.221000000000004
- type: recall_at_1
value: 40.412
- type: recall_at_10
value: 78.25800000000001
- type: recall_at_100
value: 89.196
- type: recall_at_1000
value: 95.544
- type: recall_at_3
value: 67.367
- type: recall_at_5
value: 73.05199999999999
- task:
type: Classification
dataset:
type: mteb/imdb
name: MTEB ImdbClassification
config: default
split: test
revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
metrics:
- type: accuracy
value: 92.78880000000001
- type: ap
value: 89.39251741048801
- type: f1
value: 92.78019950076781
- task:
type: Retrieval
dataset:
type: msmarco
name: MTEB MSMARCO
config: default
split: dev
revision: None
metrics:
- type: map_at_1
value: 22.888
- type: map_at_10
value: 35.146
- type: map_at_100
value: 36.325
- type: map_at_1000
value: 36.372
- type: map_at_3
value: 31.3
- type: map_at_5
value: 33.533
- type: mrr_at_1
value: 23.480999999999998
- type: mrr_at_10
value: 35.777
- type: mrr_at_100
value: 36.887
- type: mrr_at_1000
value: 36.928
- type: mrr_at_3
value: 31.989
- type: mrr_at_5
value: 34.202
- type: ndcg_at_1
value: 23.496
- type: ndcg_at_10
value: 42.028999999999996
- type: ndcg_at_100
value: 47.629
- type: ndcg_at_1000
value: 48.785000000000004
- type: ndcg_at_3
value: 34.227000000000004
- type: ndcg_at_5
value: 38.207
- type: precision_at_1
value: 23.496
- type: precision_at_10
value: 6.596
- type: precision_at_100
value: 0.9400000000000001
- type: precision_at_1000
value: 0.104
- type: precision_at_3
value: 14.513000000000002
- type: precision_at_5
value: 10.711
- type: recall_at_1
value: 22.888
- type: recall_at_10
value: 63.129999999999995
- type: recall_at_100
value: 88.90299999999999
- type: recall_at_1000
value: 97.69
- type: recall_at_3
value: 42.014
- type: recall_at_5
value: 51.554
- task:
type: Classification
dataset:
type: mteb/mtop_domain
name: MTEB MTOPDomainClassification (en)
config: en
split: test
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
metrics:
- type: accuracy
value: 94.59188326493388
- type: f1
value: 94.36568950290486
- task:
type: Classification
dataset:
type: mteb/mtop_intent
name: MTEB MTOPIntentClassification (en)
config: en
split: test
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
metrics:
- type: accuracy
value: 79.25672594619242
- type: f1
value: 59.52405059722216
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (en)
config: en
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 77.4142568930733
- type: f1
value: 75.23044196543388
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (en)
config: en
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 80.44720914593141
- type: f1
value: 80.41049641537015
- task:
type: Clustering
dataset:
type: mteb/medrxiv-clustering-p2p
name: MTEB MedrxivClusteringP2P
config: default
split: test
revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
metrics:
- type: v_measure
value: 31.960921474993775
- task:
type: Clustering
dataset:
type: mteb/medrxiv-clustering-s2s
name: MTEB MedrxivClusteringS2S
config: default
split: test
revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
metrics:
- type: v_measure
value: 30.88042240204361
- task:
type: Reranking
dataset:
type: mteb/mind_small
name: MTEB MindSmallReranking
config: default
split: test
revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
metrics:
- type: map
value: 32.27071371606404
- type: mrr
value: 33.541450459533856
- task:
type: Retrieval
dataset:
type: nfcorpus
name: MTEB NFCorpus
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 6.551
- type: map_at_10
value: 14.359
- type: map_at_100
value: 18.157
- type: map_at_1000
value: 19.659
- type: map_at_3
value: 10.613999999999999
- type: map_at_5
value: 12.296
- type: mrr_at_1
value: 47.368
- type: mrr_at_10
value: 56.689
- type: mrr_at_100
value: 57.24399999999999
- type: mrr_at_1000
value: 57.284
- type: mrr_at_3
value: 54.489
- type: mrr_at_5
value: 55.928999999999995
- type: ndcg_at_1
value: 45.511
- type: ndcg_at_10
value: 36.911
- type: ndcg_at_100
value: 34.241
- type: ndcg_at_1000
value: 43.064
- type: ndcg_at_3
value: 42.348
- type: ndcg_at_5
value: 39.884
- type: precision_at_1
value: 46.749
- type: precision_at_10
value: 27.028000000000002
- type: precision_at_100
value: 8.52
- type: precision_at_1000
value: 2.154
- type: precision_at_3
value: 39.525
- type: precision_at_5
value: 34.18
- type: recall_at_1
value: 6.551
- type: recall_at_10
value: 18.602
- type: recall_at_100
value: 34.882999999999996
- type: recall_at_1000
value: 66.049
- type: recall_at_3
value: 11.872
- type: recall_at_5
value: 14.74
- task:
type: Retrieval
dataset:
type: nq
name: MTEB NQ
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 27.828999999999997
- type: map_at_10
value: 43.606
- type: map_at_100
value: 44.656
- type: map_at_1000
value: 44.690000000000005
- type: map_at_3
value: 39.015
- type: map_at_5
value: 41.625
- type: mrr_at_1
value: 31.518
- type: mrr_at_10
value: 46.047
- type: mrr_at_100
value: 46.846
- type: mrr_at_1000
value: 46.867999999999995
- type: mrr_at_3
value: 42.154
- type: mrr_at_5
value: 44.468999999999994
- type: ndcg_at_1
value: 31.518
- type: ndcg_at_10
value: 51.768
- type: ndcg_at_100
value: 56.184999999999995
- type: ndcg_at_1000
value: 56.92
- type: ndcg_at_3
value: 43.059999999999995
- type: ndcg_at_5
value: 47.481
- type: precision_at_1
value: 31.518
- type: precision_at_10
value: 8.824
- type: precision_at_100
value: 1.131
- type: precision_at_1000
value: 0.12
- type: precision_at_3
value: 19.969
- type: precision_at_5
value: 14.502
- type: recall_at_1
value: 27.828999999999997
- type: recall_at_10
value: 74.244
- type: recall_at_100
value: 93.325
- type: recall_at_1000
value: 98.71799999999999
- type: recall_at_3
value: 51.601
- type: recall_at_5
value: 61.841
- task:
type: Retrieval
dataset:
type: quora
name: MTEB QuoraRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 71.54
- type: map_at_10
value: 85.509
- type: map_at_100
value: 86.137
- type: map_at_1000
value: 86.151
- type: map_at_3
value: 82.624
- type: map_at_5
value: 84.425
- type: mrr_at_1
value: 82.45
- type: mrr_at_10
value: 88.344
- type: mrr_at_100
value: 88.437
- type: mrr_at_1000
value: 88.437
- type: mrr_at_3
value: 87.417
- type: mrr_at_5
value: 88.066
- type: ndcg_at_1
value: 82.45
- type: ndcg_at_10
value: 89.092
- type: ndcg_at_100
value: 90.252
- type: ndcg_at_1000
value: 90.321
- type: ndcg_at_3
value: 86.404
- type: ndcg_at_5
value: 87.883
- type: precision_at_1
value: 82.45
- type: precision_at_10
value: 13.496
- type: precision_at_100
value: 1.536
- type: precision_at_1000
value: 0.157
- type: precision_at_3
value: 37.833
- type: precision_at_5
value: 24.79
- type: recall_at_1
value: 71.54
- type: recall_at_10
value: 95.846
- type: recall_at_100
value: 99.715
- type: recall_at_1000
value: 99.979
- type: recall_at_3
value: 88.01299999999999
- type: recall_at_5
value: 92.32000000000001
- task:
type: Clustering
dataset:
type: mteb/reddit-clustering
name: MTEB RedditClustering
config: default
split: test
revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
metrics:
- type: v_measure
value: 57.60557586253866
- task:
type: Clustering
dataset:
type: mteb/reddit-clustering-p2p
name: MTEB RedditClusteringP2P
config: default
split: test
revision: 282350215ef01743dc01b456c7f5241fa8937f16
metrics:
- type: v_measure
value: 64.0287172242051
- task:
type: Retrieval
dataset:
type: scidocs
name: MTEB SCIDOCS
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 3.9849999999999994
- type: map_at_10
value: 11.397
- type: map_at_100
value: 13.985
- type: map_at_1000
value: 14.391000000000002
- type: map_at_3
value: 7.66
- type: map_at_5
value: 9.46
- type: mrr_at_1
value: 19.8
- type: mrr_at_10
value: 31.958
- type: mrr_at_100
value: 33.373999999999995
- type: mrr_at_1000
value: 33.411
- type: mrr_at_3
value: 28.316999999999997
- type: mrr_at_5
value: 30.297
- type: ndcg_at_1
value: 19.8
- type: ndcg_at_10
value: 19.580000000000002
- type: ndcg_at_100
value: 29.555999999999997
- type: ndcg_at_1000
value: 35.882
- type: ndcg_at_3
value: 17.544
- type: ndcg_at_5
value: 15.815999999999999
- type: precision_at_1
value: 19.8
- type: precision_at_10
value: 10.61
- type: precision_at_100
value: 2.501
- type: precision_at_1000
value: 0.40099999999999997
- type: precision_at_3
value: 16.900000000000002
- type: precision_at_5
value: 14.44
- type: recall_at_1
value: 3.9849999999999994
- type: recall_at_10
value: 21.497
- type: recall_at_100
value: 50.727999999999994
- type: recall_at_1000
value: 81.27499999999999
- type: recall_at_3
value: 10.263
- type: recall_at_5
value: 14.643
- task:
type: STS
dataset:
type: mteb/sickr-sts
name: MTEB SICK-R
config: default
split: test
revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
metrics:
- type: cos_sim_pearson
value: 85.0087509585503
- type: cos_sim_spearman
value: 81.74697270664319
- type: euclidean_pearson
value: 81.80424382731947
- type: euclidean_spearman
value: 81.29794251968431
- type: manhattan_pearson
value: 81.81524666226125
- type: manhattan_spearman
value: 81.29475370198963
- task:
type: STS
dataset:
type: mteb/sts12-sts
name: MTEB STS12
config: default
split: test
revision: a0d554a64d88156834ff5ae9920b964011b16384
metrics:
- type: cos_sim_pearson
value: 86.44442736429552
- type: cos_sim_spearman
value: 78.51011398910948
- type: euclidean_pearson
value: 83.36181801196723
- type: euclidean_spearman
value: 79.47272621331535
- type: manhattan_pearson
value: 83.3660113483837
- type: manhattan_spearman
value: 79.47695922566032
- task:
type: STS
dataset:
type: mteb/sts13-sts
name: MTEB STS13
config: default
split: test
revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
metrics:
- type: cos_sim_pearson
value: 85.82923943323635
- type: cos_sim_spearman
value: 86.62037823380983
- type: euclidean_pearson
value: 83.56369548403958
- type: euclidean_spearman
value: 84.2176755481191
- type: manhattan_pearson
value: 83.55460702084464
- type: manhattan_spearman
value: 84.18617930921467
- task:
type: STS
dataset:
type: mteb/sts14-sts
name: MTEB STS14
config: default
split: test
revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
metrics:
- type: cos_sim_pearson
value: 84.09071068110103
- type: cos_sim_spearman
value: 83.05697553913335
- type: euclidean_pearson
value: 81.1377457216497
- type: euclidean_spearman
value: 81.74714169016676
- type: manhattan_pearson
value: 81.0893424142723
- type: manhattan_spearman
value: 81.7058918219677
- task:
type: STS
dataset:
type: mteb/sts15-sts
name: MTEB STS15
config: default
split: test
revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
metrics:
- type: cos_sim_pearson
value: 87.61132157220429
- type: cos_sim_spearman
value: 88.38581627185445
- type: euclidean_pearson
value: 86.14904510913374
- type: euclidean_spearman
value: 86.5452758925542
- type: manhattan_pearson
value: 86.1484025377679
- type: manhattan_spearman
value: 86.55483841566252
- task:
type: STS
dataset:
type: mteb/sts16-sts
name: MTEB STS16
config: default
split: test
revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
metrics:
- type: cos_sim_pearson
value: 85.46195145161064
- type: cos_sim_spearman
value: 86.82409112251158
- type: euclidean_pearson
value: 84.75479672288957
- type: euclidean_spearman
value: 85.41144307151548
- type: manhattan_pearson
value: 84.70914329694165
- type: manhattan_spearman
value: 85.38477943384089
- task:
type: STS
dataset:
type: mteb/sts17-crosslingual-sts
name: MTEB STS17 (en-en)
config: en-en
split: test
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
metrics:
- type: cos_sim_pearson
value: 88.06351289930238
- type: cos_sim_spearman
value: 87.90311138579116
- type: euclidean_pearson
value: 86.17651467063077
- type: euclidean_spearman
value: 84.89447802019073
- type: manhattan_pearson
value: 86.3267677479595
- type: manhattan_spearman
value: 85.00472295103874
- task:
type: STS
dataset:
type: mteb/sts22-crosslingual-sts
name: MTEB STS22 (en)
config: en
split: test
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
metrics:
- type: cos_sim_pearson
value: 67.78311975978767
- type: cos_sim_spearman
value: 66.76465685245887
- type: euclidean_pearson
value: 67.21687806595443
- type: euclidean_spearman
value: 65.05776733534435
- type: manhattan_pearson
value: 67.14008143635883
- type: manhattan_spearman
value: 65.25247076149701
- task:
type: STS
dataset:
type: mteb/stsbenchmark-sts
name: MTEB STSBenchmark
config: default
split: test
revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
metrics:
- type: cos_sim_pearson
value: 86.7403488889418
- type: cos_sim_spearman
value: 87.76870289783061
- type: euclidean_pearson
value: 84.83171077794671
- type: euclidean_spearman
value: 85.50579695091902
- type: manhattan_pearson
value: 84.83074260180555
- type: manhattan_spearman
value: 85.47589026938667
- task:
type: Reranking
dataset:
type: mteb/scidocs-reranking
name: MTEB SciDocsRR
config: default
split: test
revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
metrics:
- type: map
value: 87.56234016237356
- type: mrr
value: 96.26124238869338
- task:
type: Retrieval
dataset:
type: scifact
name: MTEB SciFact
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 59.660999999999994
- type: map_at_10
value: 69.105
- type: map_at_100
value: 69.78
- type: map_at_1000
value: 69.80199999999999
- type: map_at_3
value: 65.991
- type: map_at_5
value: 68.02
- type: mrr_at_1
value: 62.666999999999994
- type: mrr_at_10
value: 70.259
- type: mrr_at_100
value: 70.776
- type: mrr_at_1000
value: 70.796
- type: mrr_at_3
value: 67.889
- type: mrr_at_5
value: 69.52199999999999
- type: ndcg_at_1
value: 62.666999999999994
- type: ndcg_at_10
value: 73.425
- type: ndcg_at_100
value: 75.955
- type: ndcg_at_1000
value: 76.459
- type: ndcg_at_3
value: 68.345
- type: ndcg_at_5
value: 71.319
- type: precision_at_1
value: 62.666999999999994
- type: precision_at_10
value: 9.667
- type: precision_at_100
value: 1.09
- type: precision_at_1000
value: 0.11299999999999999
- type: precision_at_3
value: 26.333000000000002
- type: precision_at_5
value: 17.732999999999997
- type: recall_at_1
value: 59.660999999999994
- type: recall_at_10
value: 85.422
- type: recall_at_100
value: 96.167
- type: recall_at_1000
value: 100
- type: recall_at_3
value: 72.044
- type: recall_at_5
value: 79.428
- task:
type: PairClassification
dataset:
type: mteb/sprintduplicatequestions-pairclassification
name: MTEB SprintDuplicateQuestions
config: default
split: test
revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
metrics:
- type: cos_sim_accuracy
value: 99.86435643564356
- type: cos_sim_ap
value: 96.83057412333741
- type: cos_sim_f1
value: 93.04215337734891
- type: cos_sim_precision
value: 94.53044375644994
- type: cos_sim_recall
value: 91.60000000000001
- type: dot_accuracy
value: 99.7910891089109
- type: dot_ap
value: 94.10681982106397
- type: dot_f1
value: 89.34881373043918
- type: dot_precision
value: 90.21406727828746
- type: dot_recall
value: 88.5
- type: euclidean_accuracy
value: 99.85544554455446
- type: euclidean_ap
value: 96.78545104478602
- type: euclidean_f1
value: 92.65143992055613
- type: euclidean_precision
value: 92.01183431952663
- type: euclidean_recall
value: 93.30000000000001
- type: manhattan_accuracy
value: 99.85841584158416
- type: manhattan_ap
value: 96.80748903307823
- type: manhattan_f1
value: 92.78247884519662
- type: manhattan_precision
value: 92.36868186323092
- type: manhattan_recall
value: 93.2
- type: max_accuracy
value: 99.86435643564356
- type: max_ap
value: 96.83057412333741
- type: max_f1
value: 93.04215337734891
- task:
type: Clustering
dataset:
type: mteb/stackexchange-clustering
name: MTEB StackExchangeClustering
config: default
split: test
revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
metrics:
- type: v_measure
value: 65.53971025855282
- task:
type: Clustering
dataset:
type: mteb/stackexchange-clustering-p2p
name: MTEB StackExchangeClusteringP2P
config: default
split: test
revision: 815ca46b2622cec33ccafc3735d572c266efdb44
metrics:
- type: v_measure
value: 33.97791591490788
- task:
type: Reranking
dataset:
type: mteb/stackoverflowdupquestions-reranking
name: MTEB StackOverflowDupQuestions
config: default
split: test
revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
metrics:
- type: map
value: 55.852215301355066
- type: mrr
value: 56.85527809608691
- task:
type: Summarization
dataset:
type: mteb/summeval
name: MTEB SummEval
config: default
split: test
revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
metrics:
- type: cos_sim_pearson
value: 31.21442519856758
- type: cos_sim_spearman
value: 30.822536216936825
- type: dot_pearson
value: 28.661325528121807
- type: dot_spearman
value: 28.1435226478879
- task:
type: Retrieval
dataset:
type: trec-covid
name: MTEB TRECCOVID
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 0.183
- type: map_at_10
value: 1.526
- type: map_at_100
value: 7.915
- type: map_at_1000
value: 19.009
- type: map_at_3
value: 0.541
- type: map_at_5
value: 0.8659999999999999
- type: mrr_at_1
value: 68
- type: mrr_at_10
value: 81.186
- type: mrr_at_100
value: 81.186
- type: mrr_at_1000
value: 81.186
- type: mrr_at_3
value: 80
- type: mrr_at_5
value: 80.9
- type: ndcg_at_1
value: 64
- type: ndcg_at_10
value: 64.13799999999999
- type: ndcg_at_100
value: 47.632000000000005
- type: ndcg_at_1000
value: 43.037
- type: ndcg_at_3
value: 67.542
- type: ndcg_at_5
value: 67.496
- type: precision_at_1
value: 68
- type: precision_at_10
value: 67.80000000000001
- type: precision_at_100
value: 48.980000000000004
- type: precision_at_1000
value: 19.036
- type: precision_at_3
value: 72
- type: precision_at_5
value: 71.2
- type: recall_at_1
value: 0.183
- type: recall_at_10
value: 1.799
- type: recall_at_100
value: 11.652999999999999
- type: recall_at_1000
value: 40.086
- type: recall_at_3
value: 0.5930000000000001
- type: recall_at_5
value: 0.983
- task:
type: Retrieval
dataset:
type: webis-touche2020
name: MTEB Touche2020
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 2.29
- type: map_at_10
value: 9.489
- type: map_at_100
value: 15.051
- type: map_at_1000
value: 16.561999999999998
- type: map_at_3
value: 5.137
- type: map_at_5
value: 6.7989999999999995
- type: mrr_at_1
value: 28.571
- type: mrr_at_10
value: 45.699
- type: mrr_at_100
value: 46.461000000000006
- type: mrr_at_1000
value: 46.461000000000006
- type: mrr_at_3
value: 41.837
- type: mrr_at_5
value: 43.163000000000004
- type: ndcg_at_1
value: 23.469
- type: ndcg_at_10
value: 23.544999999999998
- type: ndcg_at_100
value: 34.572
- type: ndcg_at_1000
value: 46.035
- type: ndcg_at_3
value: 27.200000000000003
- type: ndcg_at_5
value: 25.266
- type: precision_at_1
value: 28.571
- type: precision_at_10
value: 22.041
- type: precision_at_100
value: 7.3469999999999995
- type: precision_at_1000
value: 1.484
- type: precision_at_3
value: 29.932
- type: precision_at_5
value: 26.531
- type: recall_at_1
value: 2.29
- type: recall_at_10
value: 15.895999999999999
- type: recall_at_100
value: 45.518
- type: recall_at_1000
value: 80.731
- type: recall_at_3
value: 6.433
- type: recall_at_5
value: 9.484
- task:
type: Classification
dataset:
type: mteb/toxic_conversations_50k
name: MTEB ToxicConversationsClassification
config: default
split: test
revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
metrics:
- type: accuracy
value: 71.4178
- type: ap
value: 14.575240629602373
- type: f1
value: 55.02449563229096
- task:
type: Classification
dataset:
type: mteb/tweet_sentiment_extraction
name: MTEB TweetSentimentExtractionClassification
config: default
split: test
revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
metrics:
- type: accuracy
value: 60.00282965478212
- type: f1
value: 60.34413028768773
- task:
type: Clustering
dataset:
type: mteb/twentynewsgroups-clustering
name: MTEB TwentyNewsgroupsClustering
config: default
split: test
revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
metrics:
- type: v_measure
value: 50.409448342549936
- task:
type: PairClassification
dataset:
type: mteb/twittersemeval2015-pairclassification
name: MTEB TwitterSemEval2015
config: default
split: test
revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
metrics:
- type: cos_sim_accuracy
value: 87.62591643321214
- type: cos_sim_ap
value: 79.28766491329633
- type: cos_sim_f1
value: 71.98772064466617
- type: cos_sim_precision
value: 69.8609731876862
- type: cos_sim_recall
value: 74.24802110817942
- type: dot_accuracy
value: 84.75293556654945
- type: dot_ap
value: 69.72705761174353
- type: dot_f1
value: 65.08692852543464
- type: dot_precision
value: 63.57232704402516
- type: dot_recall
value: 66.6754617414248
- type: euclidean_accuracy
value: 87.44710019669786
- type: euclidean_ap
value: 79.11021477292638
- type: euclidean_f1
value: 71.5052389470994
- type: euclidean_precision
value: 69.32606541129832
- type: euclidean_recall
value: 73.82585751978891
- type: manhattan_accuracy
value: 87.42325803182929
- type: manhattan_ap
value: 79.05094494327616
- type: manhattan_f1
value: 71.36333985649055
- type: manhattan_precision
value: 70.58064516129032
- type: manhattan_recall
value: 72.16358839050132
- type: max_accuracy
value: 87.62591643321214
- type: max_ap
value: 79.28766491329633
- type: max_f1
value: 71.98772064466617
- task:
type: PairClassification
dataset:
type: mteb/twitterurlcorpus-pairclassification
name: MTEB TwitterURLCorpus
config: default
split: test
revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
metrics:
- type: cos_sim_accuracy
value: 88.85202002561415
- type: cos_sim_ap
value: 85.9835303311168
- type: cos_sim_f1
value: 78.25741142443962
- type: cos_sim_precision
value: 73.76635768811342
- type: cos_sim_recall
value: 83.3307668617185
- type: dot_accuracy
value: 88.20584468506229
- type: dot_ap
value: 83.591632302697
- type: dot_f1
value: 76.81739705396173
- type: dot_precision
value: 73.45275728837373
- type: dot_recall
value: 80.50508161379734
- type: euclidean_accuracy
value: 88.64633057787093
- type: euclidean_ap
value: 85.25705123182283
- type: euclidean_f1
value: 77.18535726329199
- type: euclidean_precision
value: 75.17699437997226
- type: euclidean_recall
value: 79.30397289805975
- type: manhattan_accuracy
value: 88.63274731245392
- type: manhattan_ap
value: 85.2376825633018
- type: manhattan_f1
value: 77.15810785937788
- type: manhattan_precision
value: 73.92255061014319
- type: manhattan_recall
value: 80.68986757006468
- type: max_accuracy
value: 88.85202002561415
- type: max_ap
value: 85.9835303311168
- type: max_f1
value: 78.25741142443962
---
# ember-v1
<p align="center">
<img src="https://console.llmrails.com/assets/img/logo-black.svg" width="150px">
</p>
This model has been trained on an extensive corpus of text pairs that encompass a broad spectrum of domains, including finance, science, medicine, law, and various others. During the training process, we incorporated techniques derived from the [RetroMAE](https://arxiv.org/abs/2205.12035) and [SetFit](https://arxiv.org/abs/2209.11055) research papers.
We are pleased to offer this model as an API service through our platform, [LLMRails](https://llmrails.com/?ref=ember-v1). If you are interested, please don't hesitate to sign up.
### Plans
- The research paper will be published soon.
- The v2 of the model is currently in development and will feature an extended maximum sequence length of 4,000 tokens.
## Usage
Use with API request:
```bash
curl --location 'https://api.llmrails.com/v1/embeddings' \
--header 'X-API-KEY: {token}' \
--header 'Content-Type: application/json' \
--data '{
"input": ["This is an example sentence"],
"model":"embedding-english-v1" # equals to ember-v1
}'
```
API docs: https://docs.llmrails.com/embedding/embed-text<br>
Langchain plugin: https://python.langchain.com/docs/integrations/text_embedding/llm_rails
Use with transformers:
```python
import torch.nn.functional as F
from torch import Tensor
from transformers import AutoTokenizer, AutoModel
def average_pool(last_hidden_states: Tensor,
attention_mask: Tensor) -> Tensor:
last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0)
return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None]
input_texts = [
"This is an example sentence",
"Each sentence is converted"
]
tokenizer = AutoTokenizer.from_pretrained("llmrails/ember-v1")
model = AutoModel.from_pretrained("llmrails/ember-v1")
# Tokenize the input texts
batch_dict = tokenizer(input_texts, max_length=512, padding=True, truncation=True, return_tensors='pt')
outputs = model(**batch_dict)
embeddings = average_pool(outputs.last_hidden_state, batch_dict['attention_mask'])
# (Optionally) normalize embeddings
embeddings = F.normalize(embeddings, p=2, dim=1)
scores = (embeddings[:1] @ embeddings[1:].T) * 100
print(scores.tolist())
```
Use with sentence-transformers:
```python
from sentence_transformers import SentenceTransformer
from sentence_transformers.util import cos_sim
sentences = [
"This is an example sentence",
"Each sentence is converted"
]
model = SentenceTransformer('llmrails/ember-v1')
embeddings = model.encode(sentences)
print(cos_sim(embeddings[0], embeddings[1]))
```
## Massive Text Embedding Benchmark (MTEB) Evaluation
Our model achieve state-of-the-art performance on [MTEB leaderboard](https://huggingface.co/spaces/mteb/leaderboard)
| Model Name | Dimension | Sequence Length | Average (56) |
|:-----------------------------------------------------------------------:|:---------:|:---:|:------------:|
| [bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) | 1024 | 512 | 64.23 |
| [bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) | 768 | 512 | 63.55 |
| [ember-v1](https://huggingface.co/llmrails/emmbedding-en-v1) | 1024 | 512 | **63.54** |
| [text-embedding-ada-002](https://platform.openai.com/docs/guides/embeddings/types-of-embedding-models) | 1536 | 8191 | 60.99 |
### Limitation
This model exclusively caters to English texts, and any lengthy texts will be truncated to a maximum of 512 tokens.
<img src="https://pixel.llmrails.com/hf/2AtscRthisA1rZzQr8T7Zm"> | [
-0.2714517414569855,
-0.8751526474952698,
0.631308913230896,
0.1968369483947754,
-0.3066461384296417,
-0.0738113522529602,
-0.16439691185951233,
-0.0685088187456131,
0.44316503405570984,
0.15139727294445038,
-0.5631450414657593,
-1.0330077409744263,
-0.8862388730049133,
0.019568687304854393,
-0.34565308690071106,
0.8243283033370972,
-0.27301034331321716,
-0.0402391143143177,
-0.19452902674674988,
-0.2969505488872528,
-0.5509380102157593,
-0.6102486848831177,
-0.6614189743995667,
-0.08573929220438004,
0.35457438230514526,
0.21593482792377472,
0.4368000328540802,
0.5143994092941284,
0.4146028757095337,
0.29811400175094604,
-0.07422169297933578,
0.2598438262939453,
-0.34016159176826477,
0.2161683440208435,
0.06373842805624008,
-0.41156065464019775,
-0.587402880191803,
-0.003949838690459728,
0.5127613544464111,
0.2706505060195923,
-0.1333172470331192,
0.3054024875164032,
-0.026554720476269722,
0.36482906341552734,
-0.5177517533302307,
0.1402081996202469,
-0.3957047164440155,
0.12024153769016266,
-0.13473358750343323,
-0.10888052731752396,
-0.45606255531311035,
-0.08204788714647293,
0.05959056690335274,
-0.4105464816093445,
0.05770258232951164,
0.496165931224823,
1.094575047492981,
0.23216356337070465,
-0.31311506032943726,
-0.3838751018047333,
-0.1444089263677597,
0.6383094191551208,
-1.0106511116027832,
0.49704739451408386,
0.40821823477745056,
-0.18112704157829285,
0.13532790541648865,
-0.9558050036430359,
-0.49819955229759216,
0.02081115171313286,
-0.27142268419265747,
0.296901136636734,
-0.4879080355167389,
-0.11958456039428711,
0.23371659219264984,
0.23509487509727478,
-0.827808678150177,
0.21130657196044922,
-0.16148819029331207,
0.04978414624929428,
0.5385128259658813,
0.444237619638443,
0.25687357783317566,
-0.45386022329330444,
-0.17767620086669922,
-0.2907823622226715,
-0.4989875257015228,
0.003525506006553769,
0.21271435916423798,
0.05158250778913498,
-0.7224393486976624,
0.6442551016807556,
0.0920587033033371,
0.4760584831237793,
0.07619240134954453,
0.11783194541931152,
0.623227596282959,
-0.2696588337421417,
-0.3227825462818146,
-0.05226999521255493,
1.1993030309677124,
0.3574136793613434,
0.009848826564848423,
0.03882661461830139,
-0.25459107756614685,
-0.07176642119884491,
0.029991963878273964,
-1.0081522464752197,
0.05335741862654686,
0.29332759976387024,
-0.48517394065856934,
-0.32504722476005554,
-0.05489049106836319,
-0.7838342785835266,
-0.28798502683639526,
0.161929652094841,
0.48924520611763,
-0.6244724988937378,
0.06783550977706909,
0.4116240441799164,
-0.02944863773882389,
0.19219298660755157,
-0.12811635434627533,
-0.9535125494003296,
0.11201988160610199,
0.44981592893600464,
1.0688081979751587,
0.24297446012496948,
-0.36850982904434204,
-0.26062941551208496,
0.04805687442421913,
0.02658180519938469,
0.5606309175491333,
-0.45374101400375366,
-0.4143112897872925,
0.14577174186706543,
0.051497556269168854,
-0.24149733781814575,
-0.16166239976882935,
0.531658947467804,
-0.22532278299331665,
0.300256609916687,
0.012294524349272251,
-0.7832971215248108,
-0.051152076572179794,
0.4073185324668884,
-0.41426774859428406,
1.1127406358718872,
-0.14927689731121063,
-0.8802276849746704,
0.15971846878528595,
-0.6692208647727966,
-0.35548800230026245,
-0.34948959946632385,
-0.17430950701236725,
-0.6397514343261719,
0.13034439086914062,
0.6324862241744995,
0.7516875863075256,
-0.3710789084434509,
0.17917628586292267,
-0.2813210189342499,
-0.18010203540325165,
0.23293165862560272,
-0.581773579120636,
0.7657786011695862,
0.04571662098169327,
-0.23456107079982758,
-0.05312686786055565,
-0.5687862634658813,
-0.061751898378133774,
0.44000694155693054,
-0.11338060349225998,
-0.20089678466320038,
-0.08117428421974182,
0.2037164866924286,
0.16620855033397675,
0.26647523045539856,
-0.6277276277542114,
0.3243069052696228,
-0.5485386848449707,
0.7361456751823425,
0.8130787014961243,
0.15586435794830322,
0.29663029313087463,
-0.5246323347091675,
0.4868498742580414,
0.1152629628777504,
0.05252467468380928,
-0.3819284439086914,
-0.46257680654525757,
-0.9976803660392761,
-0.4253934919834137,
0.5926021337509155,
0.4928366541862488,
-0.3288818597793579,
0.8886672854423523,
-0.7932276129722595,
-0.5300541520118713,
-0.8850815892219543,
-0.07493291050195694,
0.21281076967716217,
0.02921777404844761,
0.42197608947753906,
-0.37287622690200806,
-0.6319463849067688,
-0.89043128490448,
-0.17035460472106934,
0.0037040822207927704,
0.13433067500591278,
0.2994164824485779,
0.9589588046073914,
-0.3719917833805084,
0.9185441136360168,
-0.7550907731056213,
-0.3517714738845825,
-0.21466170251369476,
0.08113770186901093,
0.30640584230422974,
0.6136910915374756,
0.4757700562477112,
-0.5955819487571716,
-0.47517600655555725,
-0.4219244420528412,
-0.793206512928009,
0.15982753038406372,
-0.2019066959619522,
-0.2536861002445221,
0.2066478729248047,
0.48047739267349243,
-0.6897618174552917,
0.5144073367118835,
0.8029860854148865,
-0.7042989134788513,
-0.007228441536426544,
-0.2693933844566345,
-0.01831664703786373,
-1.5598118305206299,
0.09228727221488953,
0.08636848628520966,
-0.333016037940979,
-0.30898144841194153,
-0.17075176537036896,
0.1192692294716835,
0.02254859171807766,
-0.28145477175712585,
0.8912293910980225,
-0.5410496592521667,
0.17980338633060455,
0.20454141497612,
0.5797662734985352,
0.2026662677526474,
0.5729104280471802,
-0.27013447880744934,
0.5294780731201172,
0.5055124163627625,
-0.3301640748977661,
0.18015486001968384,
0.731522262096405,
-0.4919029474258423,
0.31523552536964417,
-0.6985570788383484,
0.1930915266275406,
-0.07009780406951904,
0.27781912684440613,
-1.106329083442688,
-0.08047287911176682,
0.21458996832370758,
-0.7809675335884094,
0.4196193814277649,
-0.057224925607442856,
-0.9148129820823669,
-0.2994520962238312,
-0.46606379747390747,
0.3022546172142029,
0.7282859086990356,
-0.4930418133735657,
0.7195159196853638,
0.22270147502422333,
-0.08688659965991974,
-0.47710469365119934,
-1.1042686700820923,
-0.015765225514769554,
-0.01103242952376604,
-0.6424552798271179,
0.5460898280143738,
-0.09082267433404922,
0.15014931559562683,
0.2655307650566101,
0.07196041196584702,
0.2572570741176605,
-0.022518739104270935,
0.3828681409358978,
0.2798576056957245,
0.012998855672776699,
0.21650734543800354,
0.17159536480903625,
-0.058691930025815964,
-0.061768077313899994,
-0.09222482144832611,
0.9572035670280457,
-0.07572448998689651,
-0.533078134059906,
-0.46384528279304504,
0.19258509576320648,
0.6545835733413696,
-0.32865074276924133,
1.1397299766540527,
0.6273820400238037,
-0.41363367438316345,
-0.004638131242245436,
-0.6203940510749817,
-0.12237060070037842,
-0.5060825347900391,
0.678696870803833,
-0.4384790360927582,
-0.9167676568031311,
0.5723641514778137,
0.2801525890827179,
0.20821931958198547,
0.6270536780357361,
0.6634601950645447,
-0.0683915987610817,
1.1102579832077026,
0.47710123658180237,
-0.22035542130470276,
0.4934716820716858,
-0.6518534421920776,
0.3965269923210144,
-1.06755793094635,
-0.33429625630378723,
-0.19681112468242645,
-0.3299296796321869,
-0.7989674806594849,
-0.2824108898639679,
0.2168184220790863,
-0.1198878362774849,
-0.5571639537811279,
0.3543490469455719,
-0.44573503732681274,
-0.025740087032318115,
0.366216778755188,
0.25443994998931885,
0.01688721776008606,
0.06412269175052643,
-0.5114908218383789,
-0.23413969576358795,
-0.7023276090621948,
-0.4983247220516205,
1.1836055517196655,
0.7034221887588501,
0.698189914226532,
0.14643558859825134,
0.8354092836380005,
0.17475514113903046,
0.36463165283203125,
-0.7873722314834595,
0.5000102519989014,
-0.17868609726428986,
-0.7665250897407532,
0.007092053536325693,
-0.2605617642402649,
-0.854149341583252,
0.19976074993610382,
-0.38335925340652466,
-0.6967331767082214,
-0.04700743779540062,
-0.19134023785591125,
-0.34746459126472473,
0.5688640475273132,
-0.5624536275863647,
0.803186297416687,
-0.27471643686294556,
-0.3979836106300354,
-0.10458642989397049,
-0.41646280884742737,
-0.060509152710437775,
0.061169251799583435,
0.3033261001110077,
-0.12686052918434143,
-0.21721981465816498,
0.9819130897521973,
-0.19937559962272644,
1.0522762537002563,
0.0036621259059756994,
-0.010138504207134247,
0.07555780559778214,
-0.059336598962545395,
0.6500769853591919,
0.1130247488617897,
-0.009270993061363697,
0.1033310666680336,
-0.23314085602760315,
-0.35159367322921753,
-0.5626806020736694,
0.7738602161407471,
-0.8615095019340515,
-0.6460283398628235,
-0.5867404341697693,
-0.4152388274669647,
-0.1266457885503769,
0.06979391723871231,
0.43090522289276123,
0.5913562774658203,
-0.16158407926559448,
0.5300418138504028,
0.5177328586578369,
-0.39695414900779724,
0.6313481330871582,
0.3198350965976715,
-0.26637792587280273,
-0.8156880140304565,
0.47535255551338196,
0.16775387525558472,
0.01026200596243143,
0.4131326973438263,
-0.17728786170482635,
-0.41545262932777405,
-0.5435927510261536,
-0.3375442922115326,
0.48816680908203125,
-0.8281540274620056,
-0.2755697965621948,
-0.9126319885253906,
-0.3495689630508423,
-0.6980623602867126,
-0.25646916031837463,
-0.479107528924942,
-0.24111422896385193,
-0.46965548396110535,
-0.46711742877960205,
0.5241782069206238,
0.7032688856124878,
0.15828034281730652,
0.30152130126953125,
-0.8677473068237305,
-0.037718091160058975,
-0.06713515520095825,
0.3826557397842407,
0.07713360339403152,
-1.129125952720642,
-0.42390522360801697,
-0.06415137648582458,
-0.4228176772594452,
-0.8129628896713257,
0.7231466174125671,
-0.18434937298297882,
0.5476526618003845,
0.20997603237628937,
-0.13924497365951538,
0.7246015667915344,
-0.6087836027145386,
0.8238641619682312,
0.240739107131958,
-1.0237208604812622,
0.5092148184776306,
-0.20265574753284454,
0.30183878540992737,
0.5089628100395203,
0.4132765829563141,
-0.7827014923095703,
-0.2607467770576477,
-0.7779256701469421,
-1.2584161758422852,
0.44931089878082275,
0.3737925589084625,
0.4949146509170532,
-0.2182585895061493,
0.33498722314834595,
-0.18652018904685974,
0.07761593908071518,
-0.9816821813583374,
-0.7402727603912354,
-0.052892785519361496,
-0.7626733183860779,
-0.16914519667625427,
-0.2980353534221649,
0.02636592462658882,
-0.3961224853992462,
0.7761409282684326,
0.1958238184452057,
0.6287967562675476,
0.34318411350250244,
-0.2567134499549866,
0.3144127428531647,
0.26281681656837463,
0.542755663394928,
0.35730814933776855,
-0.20572538673877716,
-0.0818260982632637,
0.4713950455188751,
-0.39174824953079224,
0.14820168912410736,
0.22305572032928467,
-0.12206720560789108,
0.10827097296714783,
0.5082839131355286,
1.1726500988006592,
0.3381299078464508,
-0.494083046913147,
0.7486714720726013,
-0.10807064920663834,
-0.3716740906238556,
-0.5148054957389832,
-0.21488018333911896,
0.17696969211101532,
0.3342607915401459,
0.3345818817615509,
-0.14081695675849915,
-0.2373247742652893,
-0.46410825848579407,
0.09572622925043106,
0.2734336256980896,
-0.36167463660240173,
-0.22357170283794403,
0.8271658420562744,
0.1305685192346573,
-0.3372073173522949,
0.6142750382423401,
-0.14965882897377014,
-0.5782974362373352,
0.4660876393318176,
0.6354669332504272,
1.0237901210784912,
0.20752890408039093,
-0.04838697239756584,
0.7226574420928955,
0.37078577280044556,
-0.023894358426332474,
0.1687517613172531,
0.3426159620285034,
-0.7257757186889648,
-0.15151944756507874,
-0.7252193689346313,
-0.03870457410812378,
0.04072197154164314,
-0.4919378459453583,
0.4503215253353119,
-0.5580213069915771,
-0.3999937176704407,
-0.13609085977077484,
-0.00008450518362224102,
-0.9157146215438843,
0.16140113770961761,
0.2509321868419647,
0.9535877704620361,
-0.8913025259971619,
0.6197382211685181,
0.7287418842315674,
-0.8147638440132141,
-0.6739237904548645,
0.032373279333114624,
-0.1334599256515503,
-0.8837888836860657,
0.6047574281692505,
0.3978189527988434,
0.10084597766399384,
0.3911004364490509,
-0.49337437748908997,
-0.9788309931755066,
1.6164301633834839,
0.11163164675235748,
-0.6560862064361572,
-0.26619869470596313,
-0.04474801570177078,
0.3985406458377838,
-0.5590106844902039,
0.5940761566162109,
0.3244967758655548,
0.5151586532592773,
-0.3000468611717224,
-0.6301187872886658,
0.4067685604095459,
-0.3193672001361847,
0.08220026642084122,
0.023662226274609566,
-0.9409389495849609,
0.7596303224563599,
-0.00480361795052886,
-0.25146907567977905,
0.2312343567609787,
0.6239674687385559,
0.4308086335659027,
0.06423475593328476,
0.2272500842809677,
1.0289041996002197,
0.620553731918335,
-0.1018378958106041,
1.1815732717514038,
-0.3494115173816681,
0.7275716662406921,
0.9276759028434753,
-0.006470720283687115,
1.0545597076416016,
0.5026383996009827,
-0.16564112901687622,
0.8317344784736633,
0.6671890020370483,
-0.3568347692489624,
0.615422785282135,
0.003071021055802703,
0.011382924392819405,
-0.0885363295674324,
0.14030689001083374,
-0.31582221388816833,
0.4092768132686615,
0.3200444281101227,
-0.8118717074394226,
0.11908364295959473,
0.05425698682665825,
0.30473417043685913,
-0.11900407820940018,
0.006970223039388657,
0.47795242071151733,
0.16633492708206177,
-0.42586079239845276,
0.5117992162704468,
0.24862615764141083,
1.0800743103027344,
-0.5247334837913513,
0.24449336528778076,
-0.24513502418994904,
0.22274929285049438,
-0.09479736536741257,
-0.768815815448761,
0.005819394253194332,
0.1021222174167633,
-0.12284887582063675,
-0.36218053102493286,
0.2547963261604309,
-0.2929169833660126,
-0.5243721008300781,
0.5494049787521362,
0.6030835509300232,
-0.016579899936914444,
0.28630733489990234,
-0.857130229473114,
0.0941023901104927,
0.14978256821632385,
-0.7405346035957336,
0.13012030720710754,
0.37796905636787415,
0.45595449209213257,
0.7219266891479492,
0.4753281772136688,
-0.07005815207958221,
0.17318126559257507,
0.09578971564769745,
0.8144461512565613,
-0.9456352591514587,
-0.2800406217575073,
-1.2490272521972656,
0.717248260974884,
-0.1417514979839325,
-0.4889579713344574,
0.7705053091049194,
0.8004819750785828,
0.7767979502677917,
0.03981630131602287,
0.8215628266334534,
-0.2867467403411865,
0.2930542230606079,
-0.7375388145446777,
0.8092385530471802,
-0.8986781239509583,
0.21243788301944733,
0.03417598828673363,
-0.6665958762168884,
-0.230676531791687,
0.6666654944419861,
-0.516929030418396,
0.2816431522369385,
1.08286452293396,
0.9084393382072449,
-0.08882680535316467,
-0.2756212651729584,
0.22111041843891144,
0.4834582805633545,
0.24258816242218018,
0.6413475871086121,
0.471334844827652,
-0.9626055359840393,
0.6505178809165955,
-0.12937746942043304,
0.231953963637352,
-0.12047214061021805,
-0.6992371678352356,
-1.0951296091079712,
-0.6660752892494202,
-0.26444336771965027,
-0.39927247166633606,
0.04795103892683983,
1.179831862449646,
0.5629674792289734,
-0.6891382336616516,
0.010993313044309616,
-0.08150308579206467,
-0.27892354130744934,
0.3493431508541107,
-0.20747122168540955,
0.5553638339042664,
-0.2105712592601776,
-0.897533655166626,
0.15634390711784363,
-0.014277690090239048,
0.25799989700317383,
-0.14172112941741943,
-0.11566677689552307,
-0.5935684442520142,
0.1398727148771286,
0.39160314202308655,
-0.14447200298309326,
-0.6327711343765259,
-0.2620801627635956,
0.14483784139156342,
-0.4741209149360657,
0.15331299602985382,
0.403165340423584,
-0.3724410831928253,
0.205352783203125,
0.46906742453575134,
0.721279501914978,
0.914933443069458,
-0.22377799451351166,
0.27374663949012756,
-0.9239554405212402,
0.2931620180606842,
0.18333734571933746,
0.762317419052124,
0.3846985995769501,
-0.22898893058300018,
0.5729227662086487,
0.14141590893268585,
-0.4156622886657715,
-0.7792089581489563,
-0.15865708887577057,
-0.8768079280853271,
-0.28784435987472534,
1.232787847518921,
-0.22290809452533722,
-0.16749045252799988,
0.31235527992248535,
-0.13218294084072113,
0.5123607516288757,
-0.46418970823287964,
0.49703043699264526,
0.9420044422149658,
0.17839042842388153,
-0.27953460812568665,
-0.6920611262321472,
0.08657695353031158,
0.7358939051628113,
-0.6805607676506042,
-0.18791437149047852,
0.18366681039333344,
0.4751615822315216,
0.15237131714820862,
0.6341165900230408,
-0.11416953802108765,
-0.11921753734350204,
0.11112187802791595,
0.22569337487220764,
-0.15222619473934174,
0.050982777029275894,
-0.47541147470474243,
0.010829851031303406,
-0.11390690505504608,
-0.347272127866745
] |
jonfd/electra-small-nordic | jonfd | "2022-01-31T23:41:26Z" | 12,057 | 1 | transformers | [
"transformers",
"pytorch",
"tf",
"electra",
"pretraining",
"is",
"no",
"sv",
"da",
"dataset:igc",
"dataset:ic3",
"dataset:jonfd/ICC",
"dataset:mc4",
"license:cc-by-4.0",
"endpoints_compatible",
"has_space",
"region:us"
] | null | "2022-03-02T23:29:05Z" | ---
language:
- is
- no
- sv
- da
license: cc-by-4.0
datasets:
- igc
- ic3
- jonfd/ICC
- mc4
---
# Nordic ELECTRA-Small
This model was pretrained on the following corpora:
* The [Icelandic Gigaword Corpus](http://igc.arnastofnun.is/) (IGC)
* The Icelandic Common Crawl Corpus (IC3)
* The [Icelandic Crawled Corpus](https://huggingface.co/datasets/jonfd/ICC) (ICC)
* The [Multilingual Colossal Clean Crawled Corpus](https://huggingface.co/datasets/mc4) (mC4) - Icelandic, Norwegian, Swedish and Danish text obtained from .is, .no, .se and .dk domains, respectively
The total size of the corpus after document-level deduplication and filtering was 14.82B tokens, split equally between the four languages. The model was trained using a WordPiece tokenizer with a vocabulary size of 96,105 for one million steps with a batch size of 256, and otherwise with default settings.
# Acknowledgments
This research was supported with Cloud TPUs from Google's TPU Research Cloud (TRC).
This project was funded by the Language Technology Programme for Icelandic 2019-2023. The programme, which is managed and coordinated by [Almannarómur](https://almannaromur.is/), is funded by the Icelandic Ministry of Education, Science and Culture. | [
-0.3435831069946289,
-0.3813023269176483,
0.3319287896156311,
-0.07042866945266724,
-0.6102569699287415,
0.08491091430187225,
-0.21291624009609222,
-0.4423183798789978,
0.44625985622406006,
0.5595971941947937,
-0.2419673204421997,
-0.5176063776016235,
-0.37034478783607483,
0.5570816397666931,
-0.14442716538906097,
0.8256964087486267,
-0.2831895053386688,
0.14774096012115479,
-0.27342334389686584,
-0.2851901650428772,
-0.22930486500263214,
-0.606575608253479,
-0.5085413455963135,
-0.36425498127937317,
0.7595632076263428,
0.5518824458122253,
0.1497405767440796,
0.3402341902256012,
0.24092254042625427,
0.23771844804286957,
-0.376398503780365,
0.1707809418439865,
-0.6271928548812866,
-0.3595660924911499,
-0.26277846097946167,
-0.39218857884407043,
-0.2537185251712799,
-0.03931346908211708,
0.6384569406509399,
0.5764029026031494,
-0.17003513872623444,
0.5997059345245361,
0.1384885609149933,
0.5117859840393066,
-0.28120920062065125,
-0.0744791254401207,
-0.7798562049865723,
-0.346973180770874,
-0.44722408056259155,
0.212703675031662,
-0.43593069911003113,
-0.019829364493489265,
-0.20522409677505493,
-0.7140249609947205,
0.29561376571655273,
0.4915594458580017,
0.9841164350509644,
0.07126050442457199,
-0.4905087351799011,
-0.3653855621814728,
-0.4205673038959503,
0.9710142016410828,
-0.5097532868385315,
0.6842487454414368,
0.6597023606300354,
-0.22251679003238678,
0.058368582278490067,
-0.9423303008079529,
-0.7959270477294922,
0.09439145773649216,
-0.0901339128613472,
-0.023163223639130592,
-0.4439160227775574,
-0.24356608092784882,
0.10691411048173904,
0.09647133201360703,
-0.4858180284500122,
0.4387366771697998,
-1.0805995464324951,
-0.1430155634880066,
0.4221062958240509,
0.04891612008213997,
-0.04547001048922539,
-0.44054555892944336,
-0.31394779682159424,
-0.18900801241397858,
-0.9442378878593445,
-0.23453198373317719,
0.9510256052017212,
0.474295049905777,
-0.3831866383552551,
0.8039624094963074,
0.15978947281837463,
0.5408610105514526,
0.1550292670726776,
0.009385370649397373,
0.7080128192901611,
-0.4697088599205017,
-0.11276307702064514,
0.26974913477897644,
0.7747727632522583,
-0.15937431156635284,
-0.17234545946121216,
-0.11878443509340286,
-0.1581236720085144,
0.1273394227027893,
0.48708176612854004,
-0.6579861640930176,
0.049654874950647354,
0.11218486726284027,
-0.5809664726257324,
-0.34696635603904724,
-0.18542569875717163,
-0.725265383720398,
0.023743797093629837,
-0.6703638434410095,
0.5217240452766418,
-0.46256306767463684,
-0.5181717872619629,
0.26554417610168457,
0.07149562984704971,
0.16694816946983337,
-0.09465273469686508,
-0.7115097641944885,
0.26178452372550964,
0.7230982184410095,
0.9137901067733765,
-0.31930822134017944,
-0.367417573928833,
-0.22020907700061798,
-0.00989002175629139,
-0.301366925239563,
0.9092187285423279,
-0.24739135801792145,
-0.4502876400947571,
-0.08540504425764084,
0.15964867174625397,
-0.6179176568984985,
-0.3949376344680786,
0.8207077383995056,
-0.7153713703155518,
0.4346422255039215,
-0.13383400440216064,
-0.6874473094940186,
-0.41050416231155396,
0.19783392548561096,
-0.9203127026557922,
1.1264468431472778,
0.23848526179790497,
-1.2604089975357056,
0.3789927065372467,
-0.5821883082389832,
-0.27857574820518494,
0.2897043228149414,
-0.0721709281206131,
-0.3681696355342865,
0.24893349409103394,
-0.11878848820924759,
0.4063190221786499,
-0.33174723386764526,
0.12961257994174957,
-0.15601100027561188,
-0.3663758337497711,
-0.3432755172252655,
-0.0313827209174633,
0.65938800573349,
0.472891241312027,
-0.21506626904010773,
-0.012379364110529423,
-1.000908374786377,
-0.32733845710754395,
-0.09078012406826019,
-0.33200642466545105,
-0.6720852851867676,
-0.2967201769351959,
0.21718846261501312,
0.4497838318347931,
0.20408864319324493,
-0.9412320852279663,
-0.0018564597703516483,
-0.38891488313674927,
0.3625298738479614,
0.6259704828262329,
-0.15218877792358398,
0.11499758064746857,
-0.3725288510322571,
0.8057010173797607,
0.18132296204566956,
-0.30383193492889404,
0.25279226899147034,
-0.370813250541687,
-0.6267707347869873,
-0.6971271634101868,
0.7306341528892517,
0.4482290744781494,
-1.0657650232315063,
0.15839633345603943,
-0.6089316606521606,
-0.6351096630096436,
-0.8942303657531738,
0.05260828509926796,
0.35701945424079895,
0.4294053614139557,
0.20351363718509674,
0.09220872819423676,
-0.6618567109107971,
-1.0047249794006348,
-0.0700392946600914,
-0.3112841248512268,
-0.057775434106588364,
0.34611776471138,
0.9574770331382751,
-0.28669828176498413,
0.5945777297019958,
-0.13734868168830872,
-0.3283534348011017,
-0.34387850761413574,
0.333711177110672,
0.5881569981575012,
0.370346337556839,
0.29950404167175293,
-1.0025513172149658,
-0.510383129119873,
0.0414687842130661,
-0.29577991366386414,
0.012259302660822868,
0.20590811967849731,
0.01064594741910696,
0.388530433177948,
0.5913123488426208,
-0.5695533752441406,
0.1640598028898239,
0.8457438349723816,
-0.6136289238929749,
0.6831038594245911,
-0.3038181960582733,
-0.0039692106656730175,
-1.3509587049484253,
0.5282105803489685,
-0.35778114199638367,
-0.07338804751634598,
-0.5377514362335205,
-0.03572016581892967,
0.06161153316497803,
0.028338871896266937,
-0.994463324546814,
0.9528709650039673,
-0.40073373913764954,
0.12976334989070892,
0.14670471847057343,
-0.12514324486255646,
-0.09194385260343552,
0.3790082335472107,
0.03758452087640762,
0.9757726192474365,
0.17315995693206787,
-0.7709457874298096,
-0.311225026845932,
0.5284368395805359,
-0.6271980404853821,
0.5204923152923584,
-0.7513626217842102,
0.3094925880432129,
-0.12100139260292053,
-0.1436629295349121,
-0.868180513381958,
-0.1753726452589035,
-0.320626825094223,
-0.23625031113624573,
0.34726107120513916,
-0.16586847603321075,
-0.8720090985298157,
-0.5335440635681152,
-0.24977010488510132,
0.5148906707763672,
0.47300633788108826,
-0.7679297924041748,
0.8283079266548157,
0.48501724004745483,
-0.05731363967061043,
-0.3608725368976593,
-0.5940852761268616,
-0.03747735172510147,
-0.6270081996917725,
-0.6780750751495361,
0.38926056027412415,
-0.005839256569743156,
-0.3070620596408844,
0.01511592511087656,
0.2458275407552719,
0.1316104233264923,
-0.04155557602643967,
0.12813720107078552,
0.39021584391593933,
0.08085040748119354,
0.28169748187065125,
-0.06616916507482529,
0.19083069264888763,
-0.24575622379779816,
-0.3678383529186249,
0.9895704984664917,
-0.2901550829410553,
-0.13656099140644073,
-0.2703733444213867,
0.20708885788917542,
0.5851649641990662,
-0.09661781042814255,
1.0737683773040771,
0.6467134356498718,
-0.2429388165473938,
0.31181976199150085,
-0.8471790552139282,
0.10307736694812775,
-0.4583068788051605,
0.16421470046043396,
-0.64983731508255,
-1.1073187589645386,
0.7144424319267273,
0.08820312470197678,
0.09754031151533127,
0.9338993430137634,
0.5947111248970032,
0.054043401032686234,
0.8308963775634766,
0.6182777881622314,
0.10194802284240723,
0.13410502672195435,
-0.5908758640289307,
0.04442055523395538,
-1.2125797271728516,
-0.3764198422431946,
-0.7686874270439148,
-0.09550384432077408,
-1.0176048278808594,
-0.34871697425842285,
0.27095508575439453,
-0.04665622487664223,
-0.3087078928947449,
0.44931793212890625,
-0.19662337005138397,
0.21023105084896088,
0.47235584259033203,
-0.10186098515987396,
0.020000034943223,
0.360780268907547,
-0.8029995560646057,
0.024683749303221703,
-0.9896796941757202,
-0.7232398390769958,
1.1540155410766602,
0.4000546634197235,
0.3631305992603302,
0.022755563259124756,
1.0808935165405273,
0.07310879975557327,
0.13855300843715668,
-0.533295214176178,
0.22699259221553802,
-0.5780877470970154,
-0.7965933084487915,
-0.10311491787433624,
-0.5432016253471375,
-1.2623093128204346,
0.36689895391464233,
-0.06401670724153519,
-0.5972839593887329,
0.4413776695728302,
0.04864232987165451,
-0.22468866407871246,
0.6009379029273987,
-0.5645239353179932,
0.7433195114135742,
0.13938163220882416,
-0.445646196603775,
-0.39868563413619995,
-0.18238794803619385,
0.10704322904348373,
-0.4836185574531555,
0.7398439645767212,
0.027247505262494087,
-0.09972237050533295,
1.283640742301941,
-0.16636766493320465,
0.8082126379013062,
-0.014364316128194332,
0.010760174132883549,
0.3785470426082611,
-0.049052346497774124,
0.5011897683143616,
-0.3716954290866852,
-0.29333123564720154,
0.7187442779541016,
0.23405759036540985,
-0.41040343046188354,
0.39593303203582764,
0.6865926384925842,
-0.9273069500923157,
-0.1177753210067749,
-0.46991947293281555,
-0.1843654215335846,
0.08911430090665817,
0.49533966183662415,
0.6363037824630737,
0.3496846556663513,
-0.37480443716049194,
0.459063321352005,
0.7068793773651123,
-0.15455198287963867,
0.44478484988212585,
0.6199904084205627,
-0.1092449352145195,
-0.5979688763618469,
0.6505420207977295,
0.12959995865821838,
0.016956279054284096,
0.07256922870874405,
0.14462067186832428,
-0.4352783262729645,
-0.5576360821723938,
-0.32821157574653625,
0.7524648904800415,
-0.4021177589893341,
-0.19709499180316925,
-1.0377556085586548,
0.2658337652683258,
-0.4432840049266815,
0.016862688586115837,
-0.455513060092926,
-0.4973723292350769,
-0.6918454170227051,
-0.4343355894088745,
0.3738960921764374,
0.7943300604820251,
-0.17029111087322235,
0.35071614384651184,
-0.5768886804580688,
0.26506468653678894,
0.092747263610363,
0.31576332449913025,
-0.07525820285081863,
-0.8035584688186646,
-0.2742655277252197,
-0.09031961858272552,
0.05267432704567909,
-0.3762357532978058,
0.7211763262748718,
0.15070901811122894,
0.4726093113422394,
0.05290614441037178,
-0.17025700211524963,
0.4855806529521942,
-0.8990949392318726,
1.1486632823944092,
0.43320751190185547,
-0.5911055207252502,
0.038386549800634384,
-0.4190960228443146,
0.4533703625202179,
0.8666685223579407,
0.4183296859264374,
-0.5002025365829468,
-0.19533228874206543,
-1.2261040210723877,
-1.232422947883606,
0.5786988735198975,
0.16690602898597717,
0.34590452909469604,
-0.2432083636522293,
0.30962949991226196,
0.4592449963092804,
0.31225448846817017,
-0.38163283467292786,
0.04910353198647499,
0.047658588737249374,
-0.2393568605184555,
-0.2697955369949341,
-0.4822086989879608,
-0.030721604824066162,
-0.2060905396938324,
1.1107423305511475,
-0.03536215424537659,
0.3498549163341522,
0.07745444774627686,
-0.17245067656040192,
-0.06806059181690216,
0.2626345455646515,
0.7469966411590576,
0.8152228593826294,
-0.12052395194768906,
0.17338623106479645,
0.3641479015350342,
-0.9732913970947266,
0.06371460855007172,
0.043195515871047974,
-0.273910790681839,
0.3010551929473877,
0.3585684597492218,
1.2134747505187988,
0.2445487231016159,
-0.4669418931007385,
0.3163820207118988,
-0.36505326628685,
-0.5717195272445679,
-0.6821821928024292,
-0.3415132164955139,
0.17301256954669952,
-0.1355476826429367,
0.35663124918937683,
-0.23165440559387207,
-0.1307411640882492,
-0.11701047420501709,
0.21999229490756989,
0.06996902823448181,
-0.2606346905231476,
-0.6438181400299072,
0.7308762073516846,
0.015094720758497715,
-0.14668241143226624,
0.6327743530273438,
-0.3334816098213196,
-0.4808988571166992,
0.36527106165885925,
0.5877336859703064,
0.8675466775894165,
-0.06856363266706467,
0.22239308059215546,
0.7226677536964417,
0.29168176651000977,
-0.341708242893219,
0.7818429470062256,
0.43985655903816223,
-0.6481789946556091,
-0.5282019972801208,
-1.1205755472183228,
-0.062191810458898544,
0.4131643772125244,
-0.6774670481681824,
0.5379568934440613,
-0.022550735622644424,
-0.030033301562070847,
0.025082910433411598,
0.2502763271331787,
-1.3888623714447021,
0.07698983699083328,
0.10672450065612793,
1.1024186611175537,
-1.0323431491851807,
0.7818301320075989,
0.9488399028778076,
-0.2336527556180954,
-0.965876042842865,
-0.5214359760284424,
-0.23523546755313873,
-0.7492557168006897,
0.8364246487617493,
0.2789219915866852,
-0.023214200511574745,
0.21922942996025085,
-0.45317280292510986,
-1.1234511137008667,
1.0704007148742676,
0.02567843720316887,
-0.7235028147697449,
0.0779598206281662,
-0.042629338800907135,
0.6686761379241943,
-0.5047863721847534,
-0.03040933981537819,
0.5406094193458557,
0.397308349609375,
0.2553914487361908,
-1.2228598594665527,
-0.33083584904670715,
-0.2879527807235718,
-0.05436122789978981,
0.2547256052494049,
-0.6122349500656128,
0.9277222752571106,
0.19256854057312012,
-0.11811233311891556,
0.017227115109562874,
0.5701319575309753,
0.40751031041145325,
0.14280033111572266,
0.6864525079727173,
1.0800029039382935,
0.8911000490188599,
0.29124966263771057,
1.1806540489196777,
-0.40287840366363525,
0.12164925783872604,
1.0146452188491821,
-0.2304399609565735,
1.0327484607696533,
0.8265888094902039,
-0.06616910547018051,
0.603065013885498,
0.7627976536750793,
0.0738641619682312,
0.7042549252510071,
0.00656135194003582,
-0.058213017880916595,
0.09931917488574982,
-0.12923939526081085,
-0.1751277595758438,
0.6740297675132751,
0.4671188294887543,
-0.21561259031295776,
0.1206086128950119,
0.2940632104873657,
0.3800813853740692,
-0.21819743514060974,
-0.6114832758903503,
0.8676919341087341,
0.09866863489151001,
-0.6909731030464172,
0.7831746339797974,
-0.14574900269508362,
0.7963579893112183,
-0.5145630240440369,
0.2635212242603302,
-0.07844528555870056,
0.1649830937385559,
0.01762116514146328,
-0.3379577696323395,
0.13277457654476166,
0.19086316227912903,
-0.09817168861627579,
-0.153060182929039,
0.6280028820037842,
-0.4746989905834198,
-0.8449757099151611,
0.1338520646095276,
0.4004423916339874,
0.48921865224838257,
0.2744617164134979,
-0.5413894653320312,
0.023312563076615334,
0.11066609621047974,
-0.38756057620048523,
0.3426896929740906,
0.2617296278476715,
-0.09938333183526993,
0.2316325604915619,
0.747576117515564,
0.37101393938064575,
0.08491457253694534,
0.05659310519695282,
0.8800801634788513,
-0.2979230284690857,
-0.7138710618019104,
-0.5626614093780518,
0.49848997592926025,
-0.1096949502825737,
-0.5495857000350952,
0.7487156391143799,
0.7537369728088379,
1.068758487701416,
-0.12244629114866257,
0.5635685324668884,
-0.1632145643234253,
0.9153453707695007,
-0.5479168891906738,
0.473457396030426,
-0.6443206667900085,
0.046375393867492676,
-0.01882232539355755,
-0.9549157619476318,
-0.08943060040473938,
0.43587401509284973,
-0.26197466254234314,
-0.36259177327156067,
0.6995653510093689,
0.45403823256492615,
-0.30583471059799194,
-0.22056828439235687,
0.20164728164672852,
0.3105693459510803,
0.08800690621137619,
-0.0541226826608181,
0.42422908544540405,
-0.34580177068710327,
0.3408547341823578,
-0.2607210576534271,
0.09039534628391266,
0.013241879642009735,
-0.9488574266433716,
-0.9689839482307434,
-0.6522892713546753,
-0.25156137347221375,
-0.38929274678230286,
-0.17967580258846283,
0.9866622686386108,
0.3871031403541565,
-0.9801604151725769,
-0.3712570071220398,
0.15676528215408325,
-0.22092366218566895,
-0.028370145708322525,
-0.06543051451444626,
0.8871964812278748,
-0.13844585418701172,
-0.4646385610103607,
0.3484722077846527,
-0.290688157081604,
0.019100097939372063,
-0.14920470118522644,
0.04115637391805649,
-0.5820614695549011,
0.11183319240808487,
0.5134161114692688,
0.09785199165344238,
-0.4498365819454193,
-0.2935841381549835,
0.16989083588123322,
0.09484231472015381,
-0.08619547635316849,
0.5593734979629517,
-0.6436577439308167,
0.35656824707984924,
0.5208157300949097,
0.21771956980228424,
0.7623133659362793,
-0.21071256697177887,
0.32053107023239136,
-0.9461893439292908,
0.543468713760376,
0.3229893147945404,
0.4743210971355438,
0.5680453777313232,
-0.38786056637763977,
0.6305088400840759,
0.10014034062623978,
-0.4874543249607086,
-0.9829691648483276,
-0.15228335559368134,
-0.6013686060905457,
-0.1932472288608551,
1.4744662046432495,
-0.08629845827817917,
-0.4845629334449768,
-0.13170155882835388,
-0.12280124425888062,
0.17564204335212708,
-0.1829870641231537,
0.6948692202568054,
0.9414677023887634,
0.22357814013957977,
0.18974663317203522,
-0.6080169677734375,
0.5121737122535706,
0.13304023444652557,
-0.44175150990486145,
-0.13619732856750488,
0.33345115184783936,
0.43906208872795105,
0.4219115376472473,
0.502835214138031,
-0.2406422197818756,
0.01877116598188877,
-0.09555749595165253,
0.2807770371437073,
-0.12822072207927704,
-0.21776896715164185,
-0.5088086724281311,
0.04664771258831024,
-0.12629550695419312,
-0.11660078912973404
] |
sb3/dqn-MountainCar-v0 | sb3 | "2022-10-11T15:06:51Z" | 12,043 | 1 | stable-baselines3 | [
"stable-baselines3",
"MountainCar-v0",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] | reinforcement-learning | "2022-05-19T23:08:31Z" | ---
library_name: stable-baselines3
tags:
- MountainCar-v0
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: DQN
results:
- metrics:
- type: mean_reward
value: -103.40 +/- 7.49
name: mean_reward
task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: MountainCar-v0
type: MountainCar-v0
---
# **DQN** Agent playing **MountainCar-v0**
This is a trained model of a **DQN** agent playing **MountainCar-v0**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
The RL Zoo is a training framework for Stable Baselines3
reinforcement learning agents,
with hyperparameter optimization and pre-trained agents included.
## Usage (with SB3 RL Zoo)
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
```
# Download model and save it into the logs/ folder
python -m rl_zoo3.load_from_hub --algo dqn --env MountainCar-v0 -orga sb3 -f logs/
python enjoy.py --algo dqn --env MountainCar-v0 -f logs/
```
## Training (with the RL Zoo)
```
python train.py --algo dqn --env MountainCar-v0 -f logs/
# Upload the model and generate video (when possible)
python -m rl_zoo3.push_to_hub --algo dqn --env MountainCar-v0 -f logs/ -orga sb3
```
## Hyperparameters
```python
OrderedDict([('batch_size', 128),
('buffer_size', 10000),
('exploration_final_eps', 0.07),
('exploration_fraction', 0.2),
('gamma', 0.98),
('gradient_steps', 8),
('learning_rate', 0.004),
('learning_starts', 1000),
('n_timesteps', 120000.0),
('policy', 'MlpPolicy'),
('policy_kwargs', 'dict(net_arch=[256, 256])'),
('target_update_interval', 600),
('train_freq', 16),
('normalize', False)])
```
| [
-0.5559933185577393,
-0.5009774565696716,
0.1506774127483368,
0.261605829000473,
-0.36492371559143066,
-0.20297649502754211,
0.06300920248031616,
-0.2496224045753479,
-0.02074926532804966,
0.45830392837524414,
-0.9817864298820496,
-0.5526787042617798,
-0.35534825921058655,
-0.08499190211296082,
-0.02902112528681755,
1.2657153606414795,
-0.08287640661001205,
0.10813615471124649,
-0.12330280989408493,
-0.3268967866897583,
-0.26103851199150085,
-0.5592765212059021,
-0.8842499852180481,
-0.60080486536026,
0.36900433897972107,
-0.09797021001577377,
0.8428486585617065,
0.9413757920265198,
0.40965214371681213,
0.3985893428325653,
-0.2607649564743042,
-0.10881772637367249,
-0.548779308795929,
-0.014250209555029869,
-0.08821630477905273,
-0.22735795378684998,
-0.4913104772567749,
-0.2219008505344391,
0.5358929634094238,
-0.023391278460621834,
-0.5066565871238708,
0.2828303277492523,
-0.1570061296224594,
0.45776692032814026,
-0.7364711761474609,
0.649241030216217,
-0.3225007951259613,
0.15625427663326263,
-0.07642551511526108,
-0.14244210720062256,
-0.018471231684088707,
-0.21234267950057983,
0.08638305962085724,
-1.1892294883728027,
0.1382930874824524,
0.030268413946032524,
1.4866048097610474,
0.47708404064178467,
-0.5757386684417725,
-0.14727088809013367,
-0.6648343205451965,
0.9058619141578674,
-0.903059184551239,
0.24233004450798035,
0.378995418548584,
0.6140885353088379,
-0.26921743154525757,
-0.7358723282814026,
-0.6782915592193604,
-0.2784961462020874,
0.1491728574037552,
0.25252565741539,
-0.052352432161569595,
0.02294555865228176,
0.4888962507247925,
0.27299728989601135,
-0.5743395090103149,
0.2553310692310333,
-0.301302433013916,
-0.13398905098438263,
0.5420688986778259,
0.8226622939109802,
0.013671460561454296,
-0.11303971707820892,
-0.5261391401290894,
-0.6366260051727295,
-0.587553858757019,
0.5944677591323853,
0.17698636651039124,
0.34110185503959656,
-0.2623404860496521,
0.5132781267166138,
-0.7597247362136841,
0.5609236359596252,
0.019291631877422333,
-0.38163885474205017,
0.5573346614837646,
-0.14772634208202362,
-0.4714947044849396,
-0.14080218970775604,
0.9657061100006104,
0.6797229051589966,
-0.23207034170627594,
0.3126513361930847,
-0.6000849008560181,
-0.45402130484580994,
-0.0011424235999584198,
-0.9229722023010254,
-0.2673153579235077,
0.41639187932014465,
-0.2735782861709595,
-0.3265661597251892,
-0.12049073725938797,
-0.7079638838768005,
-0.0795200914144516,
-0.21210449934005737,
0.5961499810218811,
-0.4522557258605957,
-0.2367716133594513,
0.1622384488582611,
-0.21998700499534607,
0.5888502597808838,
0.3392392694950104,
-0.8980146050453186,
0.3367577791213989,
0.47928544878959656,
0.8138865828514099,
0.3676348924636841,
-0.8026366233825684,
-0.5504960417747498,
0.4036913216114044,
-0.30052176117897034,
0.8927844166755676,
0.1883031278848648,
-0.33463019132614136,
0.2376534342765808,
0.27634987235069275,
-0.04823756963014603,
-0.6098232269287109,
0.49600595235824585,
-0.7958880066871643,
0.05648970603942871,
-0.2940303385257721,
-0.1549304574728012,
-0.5754815340042114,
0.6409511566162109,
-0.8474768996238708,
1.4082475900650024,
0.18427515029907227,
-0.796211838722229,
0.3583836555480957,
-0.5194827914237976,
-0.22158975899219513,
0.20991192758083344,
0.12817418575286865,
-0.8172112703323364,
-0.34452491998672485,
0.1259261965751648,
0.3638203740119934,
-0.306140661239624,
0.21783436834812164,
-0.40326571464538574,
-0.38690295815467834,
0.14190255105495453,
0.037662323564291,
1.2124254703521729,
-0.008732384070754051,
-0.4972023069858551,
0.13648414611816406,
-0.849833071231842,
0.22998112440109253,
0.2770674228668213,
-0.578541100025177,
-0.09028703719377518,
0.0017697284929454327,
0.11819347739219666,
0.5020684003829956,
0.34487155079841614,
-0.22144746780395508,
0.08129757642745972,
-0.3189640939235687,
0.33883798122406006,
0.7448320388793945,
0.17144405841827393,
-0.22600966691970825,
-0.6512642502784729,
0.48134469985961914,
0.18467357754707336,
0.2193591296672821,
0.5541538596153259,
-0.24678952991962433,
-0.6945651769638062,
-0.18929491937160492,
0.16384604573249817,
0.6550735831260681,
-1.0771853923797607,
0.6029872298240662,
-0.12502318620681763,
-0.6148170232772827,
-0.3091277480125427,
-0.224151611328125,
0.5517187714576721,
0.32295235991477966,
0.4935328960418701,
-0.07562054693698883,
-0.5217559337615967,
-0.8628674745559692,
0.10272689908742905,
-0.46588730812072754,
-0.06440238654613495,
0.3418036699295044,
1.0507055521011353,
-0.2982994616031647,
0.6133002638816833,
-0.48281410336494446,
-0.3474944233894348,
-0.19438587129116058,
0.11379510164260864,
0.28353339433670044,
0.814236044883728,
0.7817010283470154,
-0.3684998154640198,
-0.4563119411468506,
-0.1669718623161316,
-1.091131329536438,
0.29929184913635254,
0.046004768460989,
-0.34466552734375,
-0.1595028191804886,
0.11917900294065475,
-0.9172766208648682,
0.41676220297813416,
0.35314178466796875,
-0.09761133044958115,
0.8145743608474731,
-0.37246012687683105,
0.27266034483909607,
-0.9178673028945923,
-0.019693579524755478,
0.16727623343467712,
-0.08850645273923874,
-0.4535388946533203,
0.21641980111598969,
-0.0950155109167099,
0.10447041690349579,
-0.9349822998046875,
0.5079847574234009,
-0.2954333424568176,
-0.08473969995975494,
-0.1402137726545334,
0.06926790624856949,
-0.15349407494068146,
0.780716598033905,
0.07859410345554352,
0.7249208092689514,
1.056208610534668,
-0.9794591665267944,
0.6226503849029541,
0.5411067008972168,
-0.25438329577445984,
0.4473664462566376,
-0.8354355692863464,
-0.07251833379268646,
-0.15582464635372162,
0.37707266211509705,
-0.45705458521842957,
-0.31932926177978516,
0.4171072542667389,
-0.41194048523902893,
-0.035013485699892044,
-0.3831355571746826,
-0.5148423314094543,
-0.2970728278160095,
-0.2844870686531067,
0.4339213967323303,
0.47098612785339355,
-0.5991570949554443,
0.30354708433151245,
0.4812852740287781,
0.1896519660949707,
-0.6637919545173645,
-0.43957874178886414,
-0.19212134182453156,
-0.3980664312839508,
-0.5167845487594604,
0.26867803931236267,
-0.05954559147357941,
-0.17601850628852844,
0.011183691211044788,
0.020881636068224907,
-0.3469715416431427,
0.18621256947517395,
0.34317800402641296,
0.3628983497619629,
-0.35898926854133606,
-0.20028617978096008,
-0.2234681099653244,
-0.10105642676353455,
0.39426925778388977,
-0.1960286796092987,
0.5196744203567505,
-0.2625771760940552,
0.19715702533721924,
-0.9020218849182129,
-0.08812936395406723,
0.5526130795478821,
-0.17197869718074799,
1.0839980840682983,
0.5162442326545715,
-0.5931919813156128,
-0.24670439958572388,
0.09697610139846802,
0.0027628098614513874,
-0.5130412578582764,
0.39681223034858704,
-0.5982909202575684,
-0.396700382232666,
0.6538842916488647,
0.11529095470905304,
0.03957810252904892,
0.968252420425415,
0.6227901577949524,
-0.036899808794260025,
1.426155924797058,
0.5688866972923279,
0.09039123356342316,
0.5127578377723694,
-0.8690162301063538,
-0.40130820870399475,
-0.9574112296104431,
-0.595890998840332,
-0.8594935536384583,
0.19339747726917267,
-0.6596047282218933,
-0.1528901904821396,
0.2898847162723541,
0.14520572125911713,
-0.8810601830482483,
0.49808433651924133,
-0.26588281989097595,
0.3731231689453125,
0.5913868546485901,
0.2289857417345047,
-0.000852589204441756,
-0.15091358125209808,
-0.342671662569046,
0.13139484822750092,
-0.734791100025177,
-0.47566163539886475,
0.8965319395065308,
0.30296143889427185,
0.7377274036407471,
0.1994602531194687,
0.5749817490577698,
0.1430949717760086,
0.08655495941638947,
-0.7181602716445923,
0.6049454808235168,
0.08252095431089401,
-0.9111384749412537,
-0.4314854145050049,
-0.492790549993515,
-0.8063864707946777,
0.5618913769721985,
-0.3974511921405792,
-0.6537873148918152,
0.040635839104652405,
0.09403423964977264,
-0.6304808259010315,
0.3439232409000397,
-0.04290939122438431,
1.0724624395370483,
-0.2796943187713623,
-0.43750065565109253,
-0.061843063682317734,
-0.659446120262146,
0.6355673670768738,
0.18969711661338806,
0.1147380992770195,
-0.21365882456302643,
0.02257985807955265,
1.0524660348892212,
-0.835331916809082,
0.481084406375885,
-0.5141085386276245,
0.3941902816295624,
0.5227278470993042,
0.08251044899225235,
0.6809874773025513,
0.28616586327552795,
0.004366960842162371,
0.05034533515572548,
0.17763717472553253,
-0.6745052933692932,
-0.3828798234462738,
0.7157301306724548,
-1.4700980186462402,
-0.46329838037490845,
-0.8506717681884766,
-0.3670938014984131,
-0.06235184147953987,
0.2603846788406372,
0.18336448073387146,
0.5447580814361572,
-0.13032574951648712,
0.19042305648326874,
0.6583106517791748,
-0.12924307584762573,
0.504458487033844,
0.6932691335678101,
-0.04026380553841591,
-0.7386571764945984,
0.807647705078125,
-0.1412186324596405,
0.06444086134433746,
0.1472780853509903,
0.021823950111865997,
-0.4743267595767975,
-0.8444331288337708,
-0.7583480477333069,
0.3227106034755707,
-0.7627428770065308,
-0.27937108278274536,
-0.6089083552360535,
-0.4754423201084137,
-0.36201149225234985,
0.14350886642932892,
-0.5067010521888733,
-0.31380006670951843,
-0.3545304536819458,
-0.12405221164226532,
0.4862191677093506,
0.7450812458992004,
-0.35941043496131897,
0.8326848745346069,
-0.7468448281288147,
0.15638518333435059,
0.49186116456985474,
0.09695357084274292,
0.04533711448311806,
-0.6956642866134644,
-0.6770328283309937,
0.19409812986850739,
-0.5091311931610107,
-0.7204465270042419,
0.8434851169586182,
-0.12865014374256134,
0.8811493515968323,
0.4226199984550476,
0.07852347195148468,
1.0119961500167847,
-0.20043745636940002,
1.0024917125701904,
0.176080584526062,
-0.7367079854011536,
0.44863182306289673,
-0.4277437925338745,
0.09915875643491745,
0.7202341556549072,
0.733550488948822,
-0.34097227454185486,
-0.16124124825000763,
-0.7224704027175903,
-0.7626076340675354,
1.0701576471328735,
0.3605508506298065,
-0.29825758934020996,
0.2111254632472992,
0.275285005569458,
-0.27473878860473633,
0.2560696601867676,
-1.0879687070846558,
-0.38517653942108154,
-0.6144680380821228,
0.14813262224197388,
-0.27528145909309387,
0.2842312157154083,
-0.3641948401927948,
-0.2244270294904709,
1.2474946975708008,
-0.10446087270975113,
0.17235594987869263,
0.18850883841514587,
-0.11619613319635391,
-0.2870340347290039,
-0.2518521547317505,
0.7103387117385864,
0.434440940618515,
-0.7646552920341492,
-0.05183742940425873,
0.22252000868320465,
-0.4209749400615692,
0.2806094288825989,
0.25537291169166565,
-0.16813881695270538,
-0.0641728937625885,
0.3062398433685303,
0.8880967497825623,
0.045093830674886703,
-0.5564426779747009,
0.5293729901313782,
-0.24407944083213806,
-0.39062365889549255,
-0.4428643584251404,
0.12768015265464783,
-0.19535885751247406,
0.3383958041667938,
0.1776251643896103,
0.01796741969883442,
0.08905996382236481,
-0.48403099179267883,
-0.004586803261190653,
0.2760297954082489,
-0.7708189487457275,
-0.39312678575515747,
0.9217100143432617,
0.08161657303571701,
-0.28682243824005127,
0.8939291834831238,
-0.2698665261268616,
-0.713501513004303,
1.103680968284607,
0.46449217200279236,
0.8979378938674927,
-0.024572519585490227,
0.2867790460586548,
0.8828426599502563,
0.2030094563961029,
-0.4222307801246643,
0.21489912271499634,
0.15583285689353943,
-0.7353971004486084,
-0.12025154381990433,
-0.4681147336959839,
-0.4833248555660248,
0.41362464427948,
-0.8421363830566406,
0.3297213613986969,
-0.49237334728240967,
-0.2741997241973877,
-0.12091740220785141,
0.47412994503974915,
-0.7667474150657654,
0.4512222409248352,
-0.18623334169387817,
1.0268430709838867,
-0.8850460052490234,
1.095043420791626,
0.8158658146858215,
-0.7896588444709778,
-0.959287703037262,
-0.071182020008564,
0.0711250901222229,
-0.714411199092865,
0.7639517784118652,
-0.009124040603637695,
0.06894117593765259,
0.08824070543050766,
-0.7320587038993835,
-1.053206205368042,
1.5445342063903809,
-0.2512628734111786,
-0.2740177512168884,
0.08476494252681732,
0.03633907809853554,
0.523892879486084,
-0.45578503608703613,
0.4626981019973755,
0.4307052195072174,
0.3234694302082062,
0.37866804003715515,
-0.8025755882263184,
0.1586560308933258,
-0.1646135449409485,
0.05550754442811012,
0.011328227818012238,
-1.0379116535186768,
1.439640998840332,
-0.0698215588927269,
0.0771268904209137,
0.2519235610961914,
0.6552994847297668,
0.9568385481834412,
0.26909884810447693,
0.6381327509880066,
0.9254049062728882,
0.5105941891670227,
0.07970250397920609,
0.910066545009613,
-0.3366793990135193,
0.7760974168777466,
0.927553117275238,
-0.32509395480155945,
0.8483781218528748,
0.07648535072803497,
-0.1738481968641281,
0.6856631636619568,
1.0876792669296265,
-0.07248104363679886,
0.964214563369751,
0.2886664867401123,
-0.30891379714012146,
-0.39418625831604004,
0.17784994840621948,
-0.6875872611999512,
0.17075636982917786,
0.15279504656791687,
0.12973161041736603,
-0.3582988977432251,
-0.24370844662189484,
-0.06358456611633301,
-0.5048978924751282,
-0.5179519653320312,
0.8223636150360107,
-0.23836976289749146,
-0.6729713082313538,
1.1411815881729126,
0.13557183742523193,
0.303097665309906,
-0.538043200969696,
-0.020059432834386826,
-0.3160754442214966,
0.2820454239845276,
-0.07314783334732056,
-0.6653110980987549,
-0.07851170003414154,
-0.1315847784280777,
0.012914416380226612,
0.1553647369146347,
0.2992534339427948,
-0.12811993062496185,
-0.20462894439697266,
0.2762872278690338,
0.40671977400779724,
0.35110998153686523,
0.09444177895784378,
-1.1032530069351196,
-0.13710688054561615,
-0.0787179246544838,
-0.357047975063324,
0.45131054520606995,
0.6457902789115906,
0.04628702253103256,
0.8517554998397827,
0.5982727408409119,
-0.11358221620321274,
0.09032870084047318,
-0.20500075817108154,
1.1111043691635132,
-1.1039403676986694,
-0.5411176681518555,
-0.5420222282409668,
0.6939987540245056,
0.06892753392457962,
-0.7522664070129395,
0.6404592394828796,
1.0002031326293945,
0.9024026393890381,
-0.19199538230895996,
0.7925882935523987,
-0.1484357863664627,
0.07610704004764557,
-0.6734495759010315,
0.5456732511520386,
-0.6084054112434387,
0.1235242486000061,
0.022373782470822334,
-0.6371808052062988,
0.02068765088915825,
0.6603682041168213,
-0.018199417740106583,
-0.057727131992578506,
0.6730164885520935,
1.0934118032455444,
0.03238559514284134,
-0.16844746470451355,
0.22685882449150085,
0.37950533628463745,
0.31445345282554626,
0.7958752512931824,
1.1231948137283325,
-0.8051447868347168,
0.8029621243476868,
-0.607789933681488,
-0.2780289351940155,
-0.2999850809574127,
-0.7266878485679626,
-0.9966920614242554,
-0.28367576003074646,
-0.4945201575756073,
-0.7661011219024658,
0.27046987414360046,
0.967009425163269,
0.8634136319160461,
-0.7222211360931396,
-0.6611373424530029,
0.04472476243972778,
0.1531466245651245,
-0.5823416709899902,
-0.2089994102716446,
0.2061319500207901,
-0.13306283950805664,
-0.658490777015686,
0.2600487470626831,
-0.2935047149658203,
0.4054032564163208,
-0.2908000349998474,
-0.3938577175140381,
-0.2821076810359955,
-0.16001610457897186,
0.293283075094223,
0.49376043677330017,
-0.3635319769382477,
-0.20737695693969727,
-0.2614307999610901,
-0.3933698236942291,
0.1800938993692398,
0.40287354588508606,
-0.8830789923667908,
-0.13446292281150818,
0.462481290102005,
0.038300275802612305,
1.0927070379257202,
-0.05010391026735306,
0.43588170409202576,
-0.25203657150268555,
0.1664813756942749,
0.15353690087795258,
0.28246989846229553,
0.05394073203206062,
-0.11608432233333588,
0.4133833050727844,
0.42529216408729553,
-0.8940111994743347,
-0.8246922492980957,
-0.1695472151041031,
-1.049322485923767,
-0.2823041081428528,
0.9622792601585388,
-0.3545764982700348,
-0.6766086220741272,
0.0116049125790596,
-0.05425010621547699,
0.28469035029411316,
-0.48573604226112366,
0.6136645674705505,
0.3899594843387604,
-0.15319867432117462,
-0.01935756392776966,
-1.0674643516540527,
0.7923845052719116,
-0.15543432533740997,
-0.8997316956520081,
-0.3314322233200073,
0.5441403388977051,
0.42469850182533264,
-0.02465490810573101,
0.4173617959022522,
0.10723479837179184,
0.43143823742866516,
0.25341102480888367,
0.31330713629722595,
-0.045430708676576614,
-0.29060831665992737,
-0.5889766216278076,
0.15431641042232513,
0.060533009469509125,
-0.3164650499820709
] |
digiplay/Juggernaut_final | digiplay | "2023-07-10T23:21:23Z" | 12,022 | 8 | diffusers | [
"diffusers",
"stable-diffusion",
"stable-diffusion-diffusers",
"text-to-image",
"license:other",
"endpoints_compatible",
"has_space",
"diffusers:StableDiffusionPipeline",
"region:us"
] | text-to-image | "2023-07-10T22:56:03Z" | ---
license: other
tags:
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
- diffusers
inference: true
---
Models info :
https://civitai.com/models/46422?modelVersionId=114770
Sample image I made thru huggingface's API:
![1396153a-5288-40f0-a52a-1e3b8cd9ad29.jpeg](https://cdn-uploads.huggingface.co/production/uploads/646c83c871d0c8a6e4455854/xIDqdaAoABeyKlucmgtXN.jpeg)
Original Author's DEMO images :
![](https://image.civitai.com/xG1nkqKTMzGDvpLrqFT7WA/92fd888b-9f8f-4230-ac30-3ad36fb4800b/01H50CX4KX66D605VM2QMK1EP2-0.jpeg)
![](https://image.civitai.com/xG1nkqKTMzGDvpLrqFT7WA/5b10f2a0-f162-497a-80b1-ea5875d99ad8/01H50KNH2P89XCA1EV4EC35GGC-0.jpeg)
![](https://image.civitai.com/xG1nkqKTMzGDvpLrqFT7WA/7a4ee832-3d5d-4c69-85a8-235206e07b18/01H50K2G4JSN79V68A4B3RCTQ9-0.jpeg)
![](https://image.civitai.com/xG1nkqKTMzGDvpLrqFT7WA/64b7297e-208f-476d-bbc3-f3420b159ee0/01H50MNJPGKZ7M889HWVK8KKK6-0.jpeg)
| [
-0.7567490935325623,
-0.6605710387229919,
0.4653512239456177,
0.4169919490814209,
-0.38972172141075134,
-0.06025800108909607,
0.4653569161891937,
-0.4836192727088928,
0.8525718450546265,
0.48929980397224426,
-1.1869990825653076,
-0.6402787566184998,
-0.5669107437133789,
-0.0308833047747612,
0.001775094075128436,
0.815597653388977,
0.002098383381962776,
-0.16630229353904724,
-0.17831316590309143,
-0.23817598819732666,
-0.14692406356334686,
-0.2215559482574463,
-0.5140311121940613,
-0.03709344193339348,
-0.06963138282299042,
0.24730585515499115,
0.7903409600257874,
0.693069577217102,
0.4351019263267517,
0.4363565742969513,
-0.39831000566482544,
-0.02388618141412735,
-0.260085791349411,
-0.31941747665405273,
0.025204114615917206,
-0.6501640677452087,
-0.8244618773460388,
0.15511777997016907,
0.6217101812362671,
0.386595755815506,
0.10977896302938461,
0.7168349027633667,
0.3371889889240265,
0.9241563081741333,
-0.44428375363349915,
0.06731671094894409,
0.06492679566144943,
-0.05414646118879318,
-0.2966420650482178,
-0.18396152555942535,
-0.06060320511460304,
-0.622814953327179,
0.14132563769817352,
-0.902180016040802,
0.28113114833831787,
-0.0073755159974098206,
1.8168678283691406,
0.020248088985681534,
-0.3756641745567322,
-0.14775682985782623,
-0.369152694940567,
0.6329891681671143,
-0.6216019988059998,
0.3839765191078186,
0.18758665025234222,
0.3610396981239319,
-0.23756369948387146,
-0.6046165823936462,
-0.5390259027481079,
0.4547685980796814,
-0.23975405097007751,
0.2610087990760803,
-0.4955568015575409,
-0.19840185344219208,
0.4251275956630707,
0.48552361130714417,
-0.8000855445861816,
-0.2109169363975525,
-0.5535508394241333,
-0.07070662826299667,
0.8700990080833435,
-0.0480688102543354,
0.7676771283149719,
-0.3302178382873535,
-0.7377976775169373,
-0.18991592526435852,
-0.3940173387527466,
0.6456975936889648,
0.5274016857147217,
0.05531769245862961,
-1.0351651906967163,
0.5140791535377502,
-0.24184855818748474,
0.6503766179084778,
0.4765925705432892,
-0.232752725481987,
0.9064308404922485,
-0.3212672472000122,
-0.5238138437271118,
-0.547109842300415,
1.0550758838653564,
0.9065909385681152,
-0.06530553102493286,
0.3322424590587616,
0.15678799152374268,
-0.17497597634792328,
-0.0035384302027523518,
-1.1348063945770264,
0.030636224895715714,
0.624089777469635,
-0.8954145908355713,
-0.4842984080314636,
0.25805574655532837,
-1.1812340021133423,
-0.08439237624406815,
-0.1848582923412323,
-0.10360654443502426,
-0.43598636984825134,
-0.8946307897567749,
0.09039442241191864,
-0.011693093925714493,
0.7015702128410339,
0.3742653727531433,
-0.6511718034744263,
0.34973132610321045,
0.5663573145866394,
0.9954320192337036,
0.4311569631099701,
0.172414630651474,
-0.22996577620506287,
-0.07776397466659546,
-0.15028613805770874,
0.9642189741134644,
-0.09013711661100388,
-0.5885392427444458,
0.08776247501373291,
0.3596700429916382,
-0.23025189340114594,
-0.4512295424938202,
0.8242196440696716,
-0.2934672236442566,
-0.08991885185241699,
-0.6959561705589294,
-0.38197949528694153,
-0.5517049431800842,
0.469007670879364,
-0.619559109210968,
0.9319454431533813,
0.5005363821983337,
-0.9927152991294861,
0.5132785439491272,
-0.5956209897994995,
0.15800581872463226,
0.27491074800491333,
-0.2681991457939148,
-0.9202042818069458,
-0.015154312364757061,
0.20967869460582733,
0.5384165048599243,
-0.20050586760044098,
-0.2153598815202713,
-0.9156700372695923,
-0.2336592674255371,
0.2423054277896881,
0.188621386885643,
1.3920031785964966,
0.3015308082103729,
-0.7694354057312012,
0.17047974467277527,
-0.9022776484489441,
0.1496216207742691,
0.5335224270820618,
0.12423714250326157,
-0.3899608552455902,
-0.5254907608032227,
0.19969341158866882,
0.6309548020362854,
0.16118700802326202,
-0.984262228012085,
0.5598348379135132,
-0.171791210770607,
0.08996576070785522,
0.8163997530937195,
0.1519019454717636,
0.3923320770263672,
-0.5676923394203186,
0.9672037363052368,
0.10337834805250168,
0.6200047731399536,
0.16602160036563873,
-0.5046133399009705,
-0.7427292466163635,
-0.7160129547119141,
0.12244441360235214,
0.4279429614543915,
-0.9011141061782837,
0.5602161288261414,
-0.09665682911872864,
-1.0054724216461182,
-1.020754337310791,
0.13819870352745056,
0.4227415919303894,
0.6052549481391907,
0.05070490017533302,
-0.6165400743484497,
-0.45348218083381653,
-1.3823692798614502,
-0.0260990671813488,
-0.11335346847772598,
-0.20373356342315674,
0.6916301846504211,
0.7270877957344055,
-0.2383769303560257,
0.8225942254066467,
-0.43885236978530884,
-0.30131834745407104,
0.015088234096765518,
-0.10589700937271118,
0.6423856019973755,
0.817987322807312,
1.5601123571395874,
-1.2050622701644897,
-0.641484797000885,
-0.28942596912384033,
-0.9550679922103882,
-0.19172993302345276,
-0.033158473670482635,
-0.6300092339515686,
0.15692874789237976,
0.1985769122838974,
-0.8418834805488586,
0.9851033091545105,
0.6830558180809021,
-1.032362699508667,
0.9689374566078186,
-0.18273486196994781,
0.5896230340003967,
-1.5189145803451538,
0.43429118394851685,
0.5076556205749512,
-0.4714912474155426,
-0.39190977811813354,
0.7611294388771057,
0.17047035694122314,
0.1204456239938736,
-0.8387929797172546,
0.8807452917098999,
-0.9884195923805237,
0.08579817414283752,
-0.10111207515001297,
-0.046278562396764755,
0.11420883238315582,
0.42146843671798706,
-0.01641208864748478,
0.502003014087677,
0.882466733455658,
-0.5021372437477112,
0.5340691208839417,
0.41396141052246094,
-0.5732485055923462,
0.9608440399169922,
-0.9720166921615601,
-0.007685805205255747,
0.10638666898012161,
0.2760726511478424,
-1.1990525722503662,
-0.45477786660194397,
0.6282315850257874,
-0.5392475128173828,
0.2365904152393341,
-0.4608389437198639,
-0.5889939665794373,
-0.6229857206344604,
-0.6772897839546204,
0.500505805015564,
0.7222074270248413,
-0.7098390460014343,
0.9032064080238342,
0.3268583416938782,
0.02815065160393715,
-0.3223842978477478,
-0.5384278893470764,
-0.7493157386779785,
-0.3851182460784912,
-0.8676859140396118,
0.5788460373878479,
-0.19364520907402039,
-0.16670694947242737,
-0.021862126886844635,
0.08121397346258163,
-0.06170858442783356,
-0.2924690842628479,
0.9977243542671204,
0.7849677205085754,
-0.08305196464061737,
-0.517828106880188,
0.13807892799377441,
-0.17123864591121674,
0.08337275683879852,
0.1479826122522354,
0.824587881565094,
-0.4790900647640228,
-0.44566136598587036,
-1.177146553993225,
0.21737340092658997,
0.9359842538833618,
-0.12025382369756699,
0.8214207887649536,
0.7835474014282227,
-0.445171058177948,
0.37934061884880066,
-0.7079125046730042,
0.09616994112730026,
-0.5816405415534973,
-0.2320517897605896,
-0.8801434636116028,
-0.5677845478057861,
1.0870180130004883,
-0.08339440822601318,
0.21049968898296356,
0.6702475547790527,
0.5925211310386658,
-0.047183215618133545,
1.2447274923324585,
0.614812970161438,
-0.1023690328001976,
0.49476179480552673,
-0.8737434148788452,
-0.32560527324676514,
-1.1266872882843018,
-0.6059392690658569,
-0.3825872540473938,
-0.507144033908844,
-1.0210294723510742,
-0.44768446683883667,
0.34581461548805237,
0.12964144349098206,
-0.4928573966026306,
0.5555093288421631,
-0.8137400150299072,
0.03338732570409775,
0.6701353788375854,
0.5216401219367981,
-0.13030412793159485,
-0.13504046201705933,
-0.3062969148159027,
-0.061257727444171906,
-0.276364266872406,
-0.323495090007782,
0.6833646893501282,
0.482078492641449,
0.5169889330863953,
0.3564165234565735,
0.9119094610214233,
-0.2900315821170807,
0.24436746537685394,
-0.43392685055732727,
0.596748411655426,
0.3626457750797272,
-0.9669813513755798,
0.42748767137527466,
-0.2680477797985077,
-0.7831674218177795,
0.36677658557891846,
-0.5550037026405334,
-0.8800557851791382,
0.585319995880127,
0.2051791399717331,
-0.5584415793418884,
0.6837858557701111,
-0.5624573826789856,
0.6831997036933899,
-0.06428354233503342,
-0.6710872650146484,
0.36699438095092773,
-0.6644912362098694,
0.31095561385154724,
0.5496827363967896,
0.4155772030353546,
-0.13429205119609833,
0.11972364783287048,
0.660814642906189,
-1.0737693309783936,
0.8491646647453308,
-0.6124588847160339,
0.19670653343200684,
0.590359628200531,
0.13247564435005188,
0.40157127380371094,
0.3658672571182251,
-0.24638575315475464,
-0.02533973567187786,
0.15327899158000946,
-0.8915072679519653,
-0.6221445798873901,
0.7467552423477173,
-0.8481889963150024,
-0.36772534251213074,
-0.6713500618934631,
-0.2165095955133438,
0.03231405094265938,
0.24226072430610657,
0.7593396306037903,
0.3895472586154938,
-0.04808834567666054,
0.06932184100151062,
0.5650069117546082,
-0.03674286976456642,
0.35115474462509155,
0.3484219014644623,
-0.44800615310668945,
-0.3788031339645386,
0.4715009331703186,
-0.16931982338428497,
0.22681620717048645,
0.055241361260414124,
-0.07634097337722778,
-0.18689407408237457,
-0.2676883637905121,
-0.6806803941726685,
0.7261987924575806,
-0.11041336506605148,
-0.45353150367736816,
-0.6064871549606323,
-0.11716105043888092,
-0.7152151465415955,
-0.5087546706199646,
-0.6491091251373291,
-0.05123649165034294,
-0.6803102493286133,
-0.30506399273872375,
0.5847378373146057,
0.2519853413105011,
-0.2512325048446655,
0.5063694715499878,
-0.6454461812973022,
0.17905321717262268,
0.24830521643161774,
0.45420289039611816,
-0.33788737654685974,
-0.7490062713623047,
0.39679771661758423,
0.239255890250206,
-0.36504828929901123,
-0.9981629848480225,
0.7846339344978333,
-0.20050010085105896,
0.3101598024368286,
0.633460521697998,
-0.14437277615070343,
1.1671013832092285,
-0.017818747088313103,
0.6328690648078918,
0.5438798666000366,
-0.8568539023399353,
0.883092999458313,
-0.589357316493988,
0.38824281096458435,
0.8332337737083435,
0.540192723274231,
-0.30296096205711365,
-0.24003572762012482,
-1.2999087572097778,
-0.967472493648529,
0.5016115307807922,
0.2545536458492279,
-0.02366376854479313,
0.4523979723453522,
0.7872676253318787,
-0.14107580482959747,
-0.03340010344982147,
-0.7180691957473755,
-0.6116077899932861,
-0.03589724376797676,
-0.23778583109378815,
0.4456234276294708,
-0.2876761555671692,
-0.14094150066375732,
-0.6362985968589783,
1.0157403945922852,
-0.22559961676597595,
0.4248077869415283,
0.44028446078300476,
0.22758960723876953,
-0.13473358750343323,
-0.1446157842874527,
0.7155476808547974,
0.6634427905082703,
-0.6000745296478271,
-0.5635944604873657,
-0.2835405468940735,
-0.3565162420272827,
-0.030255747959017754,
0.4271763563156128,
-0.37803956866264343,
0.1396069973707199,
0.3698442578315735,
0.8785887360572815,
0.1910911202430725,
-0.3445037603378296,
0.9501656293869019,
-0.36483657360076904,
-0.5300675630569458,
-0.6638307571411133,
-0.007192857097834349,
0.22481560707092285,
0.6640669107437134,
0.3181888163089752,
0.29519572854042053,
0.33552369475364685,
-0.4164332151412964,
0.25048312544822693,
0.5187603235244751,
-0.5385358333587646,
-0.5933931469917297,
0.8998318910598755,
-0.22460420429706573,
-0.04561394453048706,
0.7177746891975403,
-0.16028642654418945,
-0.456524521112442,
0.9534538388252258,
0.5253944396972656,
0.8251889944076538,
-0.5094614624977112,
0.4977545440196991,
0.7994201183319092,
0.0634608268737793,
0.31682416796684265,
0.8997610807418823,
0.20402638614177704,
-0.5072914361953735,
0.02980097196996212,
-0.8213975429534912,
-0.22323830425739288,
0.347930908203125,
-1.3884507417678833,
0.7788746356964111,
-0.883959949016571,
-0.4702743589878082,
0.21628637611865997,
0.17018188536167145,
-1.0865625143051147,
0.3766025900840759,
-0.11514867097139359,
1.4959107637405396,
-1.0885884761810303,
0.5818708539009094,
0.8431785106658936,
-0.7103046774864197,
-1.4188812971115112,
-0.33257511258125305,
0.5671408772468567,
-0.986577033996582,
0.2455611526966095,
0.2403026819229126,
0.1752547174692154,
-0.24680070579051971,
-0.8832080364227295,
-0.9274510741233826,
1.4319970607757568,
0.3558604121208191,
-0.7677655816078186,
-0.07548414170742035,
-0.4170137345790863,
0.3687138855457306,
-0.6453621983528137,
0.6027752757072449,
0.3498462736606598,
0.4249233603477478,
0.45840680599212646,
-0.934389054775238,
0.21671456098556519,
-1.004395842552185,
0.18221887946128845,
0.04387359321117401,
-1.2290960550308228,
0.7910496592521667,
-0.23873625695705414,
-0.06263204663991928,
0.3275437355041504,
0.7836512923240662,
0.5721685886383057,
0.19440902769565582,
0.8302059769630432,
0.7541289329528809,
0.46377047896385193,
-0.26235610246658325,
1.553270697593689,
-0.10661042481660843,
0.691709578037262,
0.8355859518051147,
-0.002796776592731476,
0.6114553213119507,
0.29258185625076294,
-0.10558341443538666,
0.9408606290817261,
1.1254066228866577,
-0.2927391529083252,
0.4622722864151001,
0.007927082479000092,
-0.3163453936576843,
0.026500461623072624,
0.025869620963931084,
-0.5727998614311218,
0.5424529910087585,
0.14553381502628326,
-0.48916009068489075,
0.14792335033416748,
0.25718075037002563,
0.2207193672657013,
0.06083730235695839,
-0.3856178820133209,
0.700544536113739,
-0.16526706516742706,
-0.20514628291130066,
0.615023672580719,
-0.3187482953071594,
0.9336485862731934,
-0.38560613989830017,
0.012592703104019165,
-0.11662959307432175,
0.10874257981777191,
-0.46973466873168945,
-0.8366907835006714,
0.23901847004890442,
-0.06304960697889328,
-0.042253389954566956,
-0.12608681619167328,
0.8870674967765808,
-0.13985924422740936,
-0.9102701544761658,
0.45646435022354126,
0.1830565482378006,
0.2373211532831192,
0.19140204787254333,
-1.2995978593826294,
0.5622374415397644,
0.07153816521167755,
-0.6653643846511841,
0.05448582395911217,
0.030841197818517685,
0.444285124540329,
0.6077128052711487,
0.5829992294311523,
0.2553855776786804,
0.06392515450716019,
-0.2786461412906647,
1.2407782077789307,
-0.6305580139160156,
-0.7618973255157471,
-0.8607996106147766,
0.9774020314216614,
-0.6247138977050781,
-0.5799072980880737,
0.6360591053962708,
0.7769259810447693,
0.9075754880905151,
-0.3148224353790283,
0.784827709197998,
-0.432453453540802,
0.7340812683105469,
-0.40663719177246094,
0.9496450424194336,
-0.903826892375946,
-0.40628892183303833,
-0.6446444392204285,
-0.8152453899383545,
-0.2526005208492279,
0.821127712726593,
-0.19908367097377777,
0.1771409511566162,
0.22694170475006104,
0.8571903109550476,
-0.17497126758098602,
-0.10590192675590515,
-0.1531924605369568,
0.09616274386644363,
0.4747062027454376,
0.38460561633110046,
0.3195125162601471,
-1.0302135944366455,
-0.02555462159216404,
-0.7377179861068726,
-0.854630708694458,
-0.4306274652481079,
-0.6321627497673035,
-0.8148472905158997,
-0.8278323411941528,
-0.6403364539146423,
-0.7485479116439819,
-0.3550737202167511,
1.0519821643829346,
1.2306324243545532,
-0.7645914554595947,
-0.15326398611068726,
0.13556517660617828,
0.035207007080316544,
-0.36105093359947205,
-0.3923901617527008,
0.6165044903755188,
0.5627498030662537,
-1.411487102508545,
-0.22450092434883118,
0.007710805628448725,
0.6143949627876282,
0.2912661135196686,
0.04267255589365959,
-0.4548838138580322,
-0.04149504750967026,
0.3904181718826294,
0.7264045476913452,
-0.5640888214111328,
-0.3579902946949005,
-0.12994793057441711,
-0.17357204854488373,
0.1451818346977234,
0.4975268244743347,
-0.40483152866363525,
0.3386109173297882,
0.5684555172920227,
0.19645889103412628,
0.6224595308303833,
0.2523803412914276,
0.1749391406774521,
-0.5039119720458984,
0.6999642848968506,
-0.07234402000904083,
0.581877589225769,
0.23565268516540527,
-0.5253633856773376,
0.665290355682373,
0.3182254135608673,
-0.3879230320453644,
-1.038467288017273,
-0.06232813745737076,
-1.679296612739563,
0.004520204849541187,
0.9892102479934692,
-0.3795858919620514,
-0.8916236162185669,
0.35048046708106995,
-0.27002015709877014,
0.1915411353111267,
-0.31054991483688354,
0.49242404103279114,
0.4635486900806427,
-0.25995007157325745,
-0.4467261731624603,
-0.43240466713905334,
0.45677450299263,
0.20486202836036682,
-1.0033336877822876,
-0.6522303223609924,
0.40760305523872375,
0.634141743183136,
0.831109344959259,
0.7900510430335999,
-0.5657309293746948,
0.5539827942848206,
0.0060721286572515965,
0.4215868413448334,
-0.1675306111574173,
0.13937073945999146,
-0.18138860166072845,
0.13592292368412018,
-0.3405746817588806,
-0.6853242516517639
] |
hyunwoongko/asian-bart-ecjk | hyunwoongko | "2021-04-01T07:36:52Z" | 11,990 | 3 | transformers | [
"transformers",
"pytorch",
"mbart",
"text2text-generation",
"autotrain_compatible",
"endpoints_compatible",
"has_space",
"region:us"
] | text2text-generation | "2022-03-02T23:29:05Z" | Entry not found | [
-0.3227650225162506,
-0.22568431496620178,
0.862226128578186,
0.43461495637893677,
-0.5282987952232361,
0.7012965679168701,
0.7915717363357544,
0.07618638128042221,
0.7746025919914246,
0.2563219666481018,
-0.7852817177772522,
-0.22573819756507874,
-0.9104480743408203,
0.5715669393539429,
-0.3992334008216858,
0.5791245698928833,
-0.14494505524635315,
-0.10751161724328995,
0.28233757615089417,
-0.2768954336643219,
-0.5409224033355713,
-0.36855220794677734,
-1.1902776956558228,
0.061491113156080246,
0.5316578149795532,
0.7435142397880554,
0.7584060430526733,
0.3652167320251465,
0.6432578563690186,
0.3932291269302368,
-0.23138920962810516,
0.4827055037021637,
-0.04171813279390335,
0.00260411505587399,
-0.3524433970451355,
-0.5516898036003113,
-0.28596609830856323,
0.07584730535745621,
1.0961304903030396,
0.966687798500061,
-0.284663587808609,
0.05330817773938179,
-0.3063621520996094,
0.33088892698287964,
-0.49734312295913696,
0.3054099678993225,
-0.022506045177578926,
0.16318801045417786,
-0.7041513919830322,
-0.5535354018211365,
0.012794834561645985,
-0.7361212968826294,
0.17926570773124695,
-0.690081000328064,
0.8269098401069641,
0.18583157658576965,
1.1533750295639038,
0.14819414913654327,
-0.462487131357193,
-0.8161764144897461,
-0.6538989543914795,
0.5711171627044678,
-0.32703715562820435,
0.39680248498916626,
0.7028235197067261,
-0.048573412001132965,
-0.9820332527160645,
-0.6745741367340088,
-0.46466192603111267,
0.2923962473869324,
0.35402774810791016,
-0.3411678075790405,
-0.17522086203098297,
-0.3058989644050598,
0.15792037546634674,
0.12811517715454102,
-0.4841994643211365,
-0.5543919205665588,
-0.5475160479545593,
-0.3960252106189728,
0.6206658482551575,
0.3482950031757355,
0.2429177463054657,
-0.1888415813446045,
-0.3228583335876465,
0.0880163162946701,
-0.4160851538181305,
0.3402571678161621,
0.6335517168045044,
0.7114017009735107,
-0.5811444520950317,
0.560215950012207,
-0.04927587881684303,
0.7439703941345215,
0.11445561796426773,
-0.27478092908859253,
0.41460567712783813,
-0.14724725484848022,
0.055171746760606766,
0.4226345121860504,
0.31524422764778137,
0.2841312289237976,
-0.3273695111274719,
0.2032228708267212,
-0.3215144872665405,
-0.30496224761009216,
-0.22332167625427246,
-0.29490774869918823,
-0.3592180609703064,
0.5492289066314697,
-0.3314017057418823,
-0.42855486273765564,
1.143175721168518,
-0.4200771450996399,
-0.7302224040031433,
0.33156412839889526,
0.4065209925174713,
-0.0994480773806572,
-0.37146568298339844,
-0.052260834723711014,
-0.8458789587020874,
-0.007907390594482422,
0.7491172552108765,
-0.7198970913887024,
0.3371737599372864,
0.4728063642978668,
0.7417217493057251,
0.19650575518608093,
-0.14034469425678253,
-0.42949390411376953,
0.2971969544887543,
-0.8659994006156921,
0.6320174336433411,
-0.20135220885276794,
-1.0051977634429932,
0.11150479316711426,
0.8971705436706543,
-0.37896400690078735,
-1.2094876766204834,
1.0605159997940063,
-0.6887932419776917,
0.16017857193946838,
-0.676761269569397,
-0.14661237597465515,
-0.07118501514196396,
-0.005096632521599531,
-0.6088156700134277,
0.7567102313041687,
0.587267279624939,
-0.4995276927947998,
0.21429483592510223,
-0.26029831171035767,
-0.39151400327682495,
0.38824859261512756,
-0.07935450226068497,
-0.21858926117420197,
0.713833212852478,
-0.6647079586982727,
-0.26932814717292786,
0.2942774295806885,
0.2368936538696289,
-0.35706108808517456,
-0.7931919097900391,
0.08478113263845444,
-0.05786270648241043,
1.550750494003296,
-0.03868847340345383,
-0.3586106300354004,
-0.679383397102356,
-1.1506240367889404,
-0.07070787996053696,
0.6886883974075317,
-0.9194989204406738,
-0.27839475870132446,
-0.046410128474235535,
-0.26169314980506897,
0.08994917571544647,
0.7390589714050293,
-1.1194051504135132,
0.2832726836204529,
-0.05092663690447807,
-0.22794683277606964,
0.8271058797836304,
0.15387225151062012,
0.24758946895599365,
0.14913396537303925,
0.42958706617355347,
0.527725338935852,
0.11115207523107529,
0.683587908744812,
-0.34720373153686523,
-0.9694353938102722,
0.6154631972312927,
0.25266361236572266,
0.8121447563171387,
-0.49945297837257385,
0.2685093879699707,
0.27025535702705383,
-0.3409680724143982,
-0.5682371854782104,
-0.3102838397026062,
0.09025752544403076,
0.14930562674999237,
0.11142510175704956,
-0.5721710324287415,
-0.6576125025749207,
-0.9689140319824219,
-0.13590654730796814,
-0.4314374029636383,
-0.3571570813655853,
0.21006910502910614,
0.5792906284332275,
-1.1975523233413696,
0.4128875136375427,
-0.7705625891685486,
-0.7038741111755371,
-0.01065548975020647,
-0.19338123500347137,
0.7540656328201294,
0.43240174651145935,
0.5033966898918152,
-0.6397148370742798,
-0.5661987066268921,
-0.22470176219940186,
-1.0333747863769531,
-0.13280506432056427,
0.24819621443748474,
0.3065737783908844,
-0.13423344492912292,
-0.2744963765144348,
-0.48740333318710327,
0.8100387454032898,
0.14789170026779175,
-0.5391897559165955,
0.5220767259597778,
-0.3020317256450653,
0.17224803566932678,
-0.6369150280952454,
-0.06916818022727966,
-0.661676287651062,
-0.0009071884560398757,
-0.3608308732509613,
-0.5737438797950745,
0.14772287011146545,
0.07017494738101959,
-0.16065457463264465,
0.28808408975601196,
-0.909277081489563,
-0.0010852962732315063,
-0.7442210912704468,
0.379071980714798,
0.06394772231578827,
-0.3145078718662262,
-0.017517540603876114,
1.0000386238098145,
0.7784460783004761,
-0.3848048746585846,
0.721744179725647,
0.4440041184425354,
0.19036155939102173,
0.7630521059036255,
-0.18725109100341797,
0.16478213667869568,
-0.5245416760444641,
-0.12161104381084442,
-0.8887597918510437,
-1.0982946157455444,
0.7320570349693298,
-0.6114250421524048,
0.36542922258377075,
-0.4277869760990143,
0.2589159905910492,
-0.6919258832931519,
-0.03885362669825554,
0.4808599352836609,
-0.05936325341463089,
-0.6863942742347717,
0.5232570171356201,
0.45317530632019043,
-0.2019241601228714,
-0.6609031558036804,
-0.530157208442688,
0.39365822076797485,
0.6154114007949829,
-0.16390392184257507,
0.06878514587879181,
0.14941060543060303,
-0.5441926121711731,
-0.040802597999572754,
-0.38691970705986023,
-0.45766758918762207,
0.054224006831645966,
0.13053473830223083,
-0.005750799085944891,
-0.404820054769516,
-0.0868026465177536,
-0.35842007398605347,
-0.4656120240688324,
0.21876516938209534,
0.3011947274208069,
-0.04096309468150139,
-0.42599788308143616,
-0.3619818687438965,
-0.888181209564209,
0.6719610095024109,
0.5370282530784607,
0.05281545966863632,
0.7555549740791321,
0.16819314658641815,
-0.8014987707138062,
-0.13532210886478424,
-0.1760706603527069,
0.2696830928325653,
-0.5588056445121765,
0.13849826157093048,
-0.013484534807503223,
-0.0637492910027504,
0.26297882199287415,
0.25386232137680054,
-0.4300556778907776,
0.9276250004768372,
-0.2615274488925934,
-0.3592521846294403,
0.7960181832313538,
0.5974742770195007,
0.49583131074905396,
0.16503219306468964,
-0.044541798532009125,
0.900709331035614,
-1.1966516971588135,
-0.6563175916671753,
-0.7409549355506897,
-0.15945707261562347,
-0.43510833382606506,
-0.032105933874845505,
0.6254412531852722,
0.2900990843772888,
-0.1333388388156891,
0.4756395220756531,
-0.5243489742279053,
0.3556033670902252,
1.01198410987854,
0.35748639702796936,
0.3435698449611664,
-0.7570229172706604,
-0.2515777349472046,
-0.1402427852153778,
-0.9998157620429993,
-0.2631377875804901,
0.8871029019355774,
0.22752606868743896,
0.844460666179657,
0.5992541313171387,
0.6784542798995972,
0.1367226243019104,
0.2523828148841858,
-0.30590319633483887,
0.3920294940471649,
0.4376082420349121,
-1.0401138067245483,
-0.42758408188819885,
0.021418681368231773,
-0.9703338742256165,
-0.14227519929409027,
-0.03495011106133461,
-0.42617112398147583,
0.7681737542152405,
0.00016589462757110596,
-0.4076709747314453,
0.7732734084129333,
-0.455583393573761,
0.7562873363494873,
-0.4473648965358734,
-0.02663906291127205,
0.4699096083641052,
-0.7070636749267578,
0.4677430987358093,
0.12878790497779846,
0.6205843091011047,
-0.015572631731629372,
-0.04078587517142296,
0.7104941606521606,
-0.9129160046577454,
0.25438642501831055,
-0.6348397135734558,
0.22421300411224365,
0.24246945977210999,
0.51606285572052,
0.5969953536987305,
0.4371243417263031,
0.10119888931512833,
-0.23920902609825134,
0.04115807265043259,
-0.8241125345230103,
-0.210506409406662,
0.697515606880188,
-0.7186890840530396,
-0.6864197850227356,
-1.2355337142944336,
0.14438660442829132,
0.27347055077552795,
0.389305055141449,
0.7959296107292175,
0.571408748626709,
0.1289544403553009,
0.680525004863739,
0.9888588190078735,
-0.0688566341996193,
0.9166924357414246,
0.3224477171897888,
0.09175168722867966,
-0.21944808959960938,
0.7036820650100708,
0.26627904176712036,
-0.24707956612110138,
-0.11939732730388641,
0.20913465321063995,
-0.11069409549236298,
-0.591761589050293,
-0.49990686774253845,
0.3701757788658142,
-0.6731787919998169,
-0.18303893506526947,
-0.6243735551834106,
-0.6043769717216492,
-0.511759340763092,
0.06927360594272614,
-0.7147687673568726,
0.23979046940803528,
-0.7753565907478333,
-0.10574902594089508,
0.04323432594537735,
0.9792009592056274,
-0.589311957359314,
0.5805224180221558,
-1.1218582391738892,
0.19345788657665253,
-0.07949887961149216,
0.7921058535575867,
0.21395787596702576,
-0.7344395518302917,
-0.3975418508052826,
-0.11592631042003632,
-0.3729911744594574,
-1.3576762676239014,
0.21404948830604553,
-0.2454141080379486,
0.23094046115875244,
0.6145404577255249,
0.1397707313299179,
0.5258248448371887,
-0.34326282143592834,
0.7029101848602295,
-0.057017259299755096,
-0.7069286704063416,
0.7934495210647583,
-0.5026894807815552,
0.4963534474372864,
0.9765996932983398,
0.5333835482597351,
-0.7984007596969604,
0.035741209983825684,
-1.041123390197754,
-0.6008695363998413,
0.38426393270492554,
0.11928944289684296,
-0.03601083159446716,
-0.6659559011459351,
-0.054019637405872345,
-0.16143807768821716,
0.6043745279312134,
-1.039069414138794,
-0.7858356237411499,
0.2576698362827301,
0.5277302861213684,
0.0816856250166893,
-0.5653398633003235,
0.20880667865276337,
-0.544416069984436,
1.0657774209976196,
0.45109400153160095,
0.3274499475955963,
0.8406060934066772,
0.46492424607276917,
-0.3823164403438568,
0.09252490103244781,
0.7662695050239563,
0.6666232347488403,
-0.5239797830581665,
-0.2908027470111847,
-0.08827541768550873,
-0.9143403768539429,
0.05927472561597824,
0.11168918758630753,
-0.013455932028591633,
0.9082110524177551,
0.5793083310127258,
0.2539709210395813,
0.4514279365539551,
-0.726460337638855,
0.8859451413154602,
-0.14954176545143127,
-0.12472866475582123,
-1.0677239894866943,
0.1948619782924652,
-0.23984959721565247,
0.5006402134895325,
1.0061326026916504,
0.5250048041343689,
-0.047630298882722855,
-0.8143380880355835,
-0.01473585981875658,
0.6939172148704529,
-0.7091123461723328,
-0.17449834942817688,
0.944853663444519,
0.3847099542617798,
-1.2953051328659058,
1.106776475906372,
-0.5381771326065063,
-0.560332179069519,
0.9121301770210266,
0.522956907749176,
1.1221847534179688,
-0.44204121828079224,
0.0008676342549733818,
0.2662237286567688,
0.41378432512283325,
0.5423170328140259,
1.0869629383087158,
0.431413471698761,
-0.7931063771247864,
0.8826584815979004,
-0.24776044487953186,
-0.40361151099205017,
-0.05347571521997452,
-0.42859897017478943,
0.16892178356647491,
-0.4406192898750305,
-0.10713007301092148,
-0.3444187641143799,
0.28543180227279663,
-0.7072042226791382,
0.42807620763778687,
-0.0838567465543747,
0.8653068542480469,
-0.8553727269172668,
0.47207626700401306,
0.635470449924469,
-0.3337355852127075,
-0.8508191108703613,
-0.26198428869247437,
-0.11448462307453156,
-0.6389466524124146,
0.30214807391166687,
-0.4554102420806885,
0.044398851692676544,
0.09623463451862335,
-0.649151623249054,
-1.1778275966644287,
0.9093633890151978,
-0.639612078666687,
-0.2784462869167328,
0.20464053750038147,
-0.11514760553836823,
0.28811705112457275,
-0.2524643540382385,
0.010661216452717781,
0.41876548528671265,
0.748940110206604,
0.2844654619693756,
-0.7727053761482239,
-0.3694884479045868,
0.0015032943338155746,
-0.44474777579307556,
0.7582978010177612,
-0.6002101898193359,
1.1840779781341553,
-0.5563543438911438,
-0.059654366225004196,
0.44384512305259705,
0.24690914154052734,
0.21076197922229767,
0.6629220843315125,
0.1442081481218338,
0.7282265424728394,
1.07012140750885,
-0.40835219621658325,
0.8811809420585632,
0.26432839035987854,
0.47430819272994995,
0.7238501906394958,
-0.6487724781036377,
0.7513749003410339,
0.31810489296913147,
-0.5682924389839172,
0.9228013753890991,
1.2906063795089722,
-0.15699204802513123,
0.8079374432563782,
0.05136508867144585,
-1.081600546836853,
0.325833261013031,
-0.20724765956401825,
-0.7530064582824707,
0.3150254189968109,
0.19055864214897156,
-0.6920982599258423,
-0.5770308971405029,
-0.24046507477760315,
-0.35662803053855896,
-0.11552901566028595,
-0.7631728649139404,
0.6720563769340515,
-0.016969164833426476,
-0.5103683471679688,
0.18857547640800476,
0.2877499461174011,
0.17368432879447937,
-0.5235732793807983,
-0.02939440682530403,
-0.22823619842529297,
0.2660655975341797,
-0.5670853853225708,
-0.5234526991844177,
0.5724433064460754,
-0.32430219650268555,
-0.5343255400657654,
0.18147465586662292,
0.763587236404419,
-0.16923809051513672,
-0.4515409469604492,
0.32472723722457886,
0.6959525346755981,
0.1665852814912796,
0.4250282347202301,
-0.23511263728141785,
0.24480605125427246,
-0.08044824004173279,
-0.06651552021503448,
0.27714768052101135,
0.3449169099330902,
0.22435641288757324,
0.4450142979621887,
0.43285664916038513,
-0.01808755099773407,
-0.10736498981714249,
-0.382819801568985,
0.4124940037727356,
-0.9542785882949829,
-0.5713282823562622,
-0.6307113766670227,
0.2740660607814789,
-0.02315417304635048,
-1.0836423635482788,
0.4145168364048004,
1.4406683444976807,
1.0359982252120972,
-0.4756383001804352,
1.067226529121399,
-0.21818485856056213,
0.9594791531562805,
0.41483086347579956,
0.5420440435409546,
-0.6030411720275879,
0.03835370019078255,
-0.4364396035671234,
-1.076962947845459,
-0.35716333985328674,
0.4539391100406647,
-0.022899555042386055,
-0.3429867625236511,
0.872571587562561,
0.5887166261672974,
-0.33473607897758484,
-0.11728022992610931,
0.048487238585948944,
-0.029941488057374954,
-0.12433847039937973,
0.5145376324653625,
0.7648399472236633,
-0.9344304800033569,
-0.10680416971445084,
-0.21577754616737366,
-0.6382725834846497,
-0.5047279000282288,
-0.9632009267807007,
-0.12959396839141846,
-0.16037796437740326,
0.035343267023563385,
-0.5662806630134583,
0.00255737011320889,
1.208324909210205,
0.5684957504272461,
-1.1113994121551514,
-0.5303789377212524,
0.3371853232383728,
0.3920421898365021,
-0.1874791383743286,
-0.24202413856983185,
0.2984568774700165,
0.15382249653339386,
-0.5908876657485962,
0.6875665783882141,
0.8089625239372253,
0.208888977766037,
0.19554761052131653,
0.15893013775348663,
-0.8229473829269409,
-0.14913435280323029,
0.17440445721149445,
0.9450570344924927,
-0.939853310585022,
-0.7114843130111694,
-0.03168516233563423,
-0.27094873785972595,
-0.05765746906399727,
0.17102102935314178,
-0.4046344757080078,
0.5180677175521851,
0.34591493010520935,
0.49933457374572754,
0.0561608150601387,
-0.054746925830841064,
0.5409556031227112,
-0.9069057703018188,
0.09425963461399078,
0.4134361147880554,
0.4154115319252014,
-0.4000864028930664,
-0.5910194516181946,
0.6713420748710632,
1.0073972940444946,
-0.6594868898391724,
-0.8743268847465515,
-0.19846712052822113,
-1.0016002655029297,
0.04189709946513176,
0.6762762069702148,
0.5009527802467346,
-0.4806513786315918,
-0.4174500107765198,
-0.5617399215698242,
-0.1254672110080719,
-0.1369970738887787,
0.7621601819992065,
1.179680585861206,
-0.7432094812393188,
0.07975747436285019,
-1.038639783859253,
0.6594986915588379,
-0.2419457733631134,
-0.3457581698894501,
-0.48644304275512695,
0.3832802176475525,
0.35236993432044983,
0.440481036901474,
0.614812433719635,
0.1408471167087555,
0.8338426351547241,
0.3126053214073181,
-0.1702686995267868,
0.2698982357978821,
-0.4559200704097748,
-0.028932858258485794,
-0.057962555438280106,
0.31015971302986145,
-1.0262157917022705
] |
sazyou-roukaku/chilled_remix | sazyou-roukaku | "2023-06-09T23:08:31Z" | 11,969 | 203 | diffusers | [
"diffusers",
"stable-diffusion",
"text-to-image",
"ja",
"license:creativeml-openrail-m",
"region:us"
] | text-to-image | "2023-04-18T12:48:48Z" | ---
license: creativeml-openrail-m
language:
- ja
library_name: diffusers
pipeline_tag: text-to-image
tags:
- stable-diffusion
- text-to-image
---
**【告知】**
**chilled_remix及びreversemixは2023年5月21日にVersion変更を行い、v2へ移行いたしました。**
**伴いv1は削除致しました。なお既にDL済みの方は引き続き、v1をご利用いただくことは問題ございません。**
License:[CreativeML Open RAIL-M](https://huggingface.co/sazyou-roukaku/chilled_remix/blob/main/license_v2.txt)<br>
Additional Copyright: sazyou_roukaku (TwitterID [@sazyou_roukaku](https://twitter.com/sazyou_roukaku)) as of May 21, 2023<br>
このモデルは『CreativeML Open RAIL-M』でLicenseそのものに変更はありません。<br>
~しかし追加著作者として鎖城郎郭の名前が追加されています。~<br>
しかし追加著作者として佐城郎画の名前が追加されています。(6/10 Twitterネーム変更に伴い、表記変更。License内はsazyou_roukakuの為変更なし)<br>
なお『CreativeML Open RAIL-M』に記載されている通り、<br>
本モデルを使用しての生成物に関してはLicenseの使用制限Aの事例を除き、当方は一切関与致しません。<br>
犯罪目的利用や医療用画像など特定専門的な用途での利用は使用制限Aで禁止されています。<br>
必ず確認しご利用ください。<br>
また当方は一切責任を持ちません。免責されていることをご了承の上、ご使用ください。<br>
<h4>制限</h4>
<div class="px-2">
<table class="table-fixed border mt-0 text-xs">
<tr>
<td class="align-middle px-4 w-8">
<span class="text-green-500">
<h5>OK</h5>
</span>
</td>
<td>
著作者表記を入れずにモデルを使用する<br>
Use the model without crediting the creator
</td>
</tr>
<tr>
<td class="align-middle px-4 w-8">
<span class="text-green-500">
<h5>OK</h5>
</span>
</td>
<td>
このモデルで生成した画像を商用利用する<br>
Sell images they generate
</td>
</tr>
<tr>
<td class="align-middle px-4 w-8">
<span class="text-green-500">
<h5>OK</h5>
</span>
</td>
<td>
商用画像生成サービスに、このモデルを使用する<br>
Run on services that generate images for money
</td>
</tr>
<tr>
<td class="align-middle px-4 w-8">
<span class="text-green-500">
<h5>OK</h5>
</span>
</td>
<td>
このモデルを使用したマージモデルを共有・配布する<br>
Share merges using this model
</td>
</tr>
<tr>
<td class="align-middle px-4 w-8">
<span class="text-green-500">
<h5>OK</h5>
</span>
</td>
<td>
このモデル、または派生モデルを販売する<br>
Sell this model or merges using this model
</td>
</tr>
<tr>
<td class="align-middle px-4 w-8">
<span class="text-green-500">
<h5>OK</h5>
</span>
</td>
<td>
このモデルをマージしたモデルに異なる権限を設定する<br>
Have different permissions when sharing merges
</td>
</tr>
</tbody>
</table>
</div>
なお、上記のモデルそのものの販売や商用画像生成サービスへの利用は、<br>
『CreativeML Open RAIL-M』のLicense上、使用制限Aに追記記載しない限り、<br>
制限することが本来できない為、マージ者への負担も考慮し、civitai制限表記上OKとしているだけであり、<br>
積極的な推奨は行っておらず、またそれにより何らかの問題が生じても当方は一切責任を持ちません。<br>
その点、ご留意いただくようお願いいたします。<br>
<br>
**推奨設定・モデルの違い・プロンプト**
Version2はfp16でVAE焼き込み版のみ配布といたしました。
基本的には**chilled_remixをメイン**とし、好みに合わせてreversemixも検討というのがスタンスです。
※chilled_remixはchilled_re-genericユーザーをある騒動での混乱から守るために生み出されたモデルです。
性質上全てのユーザー出力に対応できなかった為、サブとしてreversemixが作られました。
reversemixはLORAなしでも顔のセミリアル感は薄いですが、全体的に幼くなる傾向があります。
chilled_remixはLORA愛用者の多いchilled_re-genericユーザー向けに生み出された為、
顔はLORAを使うとリアル感が一定になるよう設計されています。
プロンプトだけでもリアル化は可能ですが、LORAを少し使ってリアル化したほうが簡単です。
**CLIP設定:clip skip:2**を推奨。
badhand系のnegativeTI無し、手系のネガティブも入れない出力と、
badhand系のnegativeTIを使った場合、正直大差ない感覚があります。
お好みでご利用ください。
自然言語的な文章プロンプトにかなり強いですが、シチュエーション以外の詳しい顔造形などは、
好みに合わせてワードプロンプトで指定するのが私のスタイルです。
ワードだけ構成でも問題があるわけではないので使いやすいスタイルで使ってください。
クオリティプロンプトは、high qualityなどは有効性を感じていません。
masterpieceは顔造形が変化する感覚ありますが、クオリティアップとしては微妙です。
ただhigh resolutionは背景や質感に効果あります。high res、Hiresなど色々ありますが、
一番high resolutionを信頼しています。
私が必ず入れるプロンプト
(symmetrical clear eyes:1.3)は絶対入れてます。
目の色等や他の追加と合わせて分割したりもしますが、このプロンプト自体は入れるのをデフォルトとしています。
愛用ネガティブプロンプトベース
```
nipple,(manicure:1.2),(worst quality:2),(low quality:2),(long neck:2),(undressing:1.5),
```
**マージ利用モデル一覧**
real-max-v3.4
(https://civitai.com/models/60188/real-max-v34) ©dawn6666
fantasticmix_v10(旧モデル名fantasticmixReal_v10)
(https://civitai.com/models/22402/fantasticmixreal) ©michin
dreamshaper_5Bakedvae
(https://civitai.com/models/4384/dreamshaper) ©Lykon
epicrealism_newAge
(https://civitai.com/models/25694) ©epinikion
diamondCoalMix_diamondCoalv2
(https://civitai.com/models/41415) ©EnthusiastAI
**FAQ**
**Q1:何故v2を公開し、v1の配布を中止したのか**
**A2:**
v1は元々マージ後も制限変更を禁止する表記になっているモデル(**realbiter_v10**)を使用していた為、
NG:Have different permissions when sharing mergesというcivitai制限を継承していました。
これは制限を追加することも解除することも不可という意味に取れます。一方でその他は全てOKでした。
つまり例えば
*NG:Sell this model or merges using this model*
*NG:Have different permissions when sharing merges*
こういうモデルとマージした時に**制限の矛盾**が発生し、**理屈上公開不可**という問題がありました。
マージをする者にとってこれは非常に厄介な制限で、また『CreativeML Open RAIL-M』にある
**Licenseを逸脱しない範囲であれば制限等を追加することができる**という文言にも抵触しています。
これが非常に気持ち悪く、嫌でした。
今回はその制限を解除する為のVersionアップです。
**v1の配布中止は、制限が異なる為、ややこしくトラブルの原因となる可能性がある点。**
また『CreativeML Open RAIL-M』には
**『更新に伴い、基本的に使用者は最新版を使う努力をすること』** の文面があります。
権利者は最新版を使わせるようにする権利を持ち、使用者は努力義務があるという内容です。
**ただし私はこの権利を行使致しませんので引き続きv1をお使いいただくことは問題ありません。**
しなしながらこの文面があるのに旧版を公開し続けるのは合理性に欠けることもあり、
誠に勝手ながら公開終了とさせていただきました。
ご理解のほどよろしくお願いいたします。
なおv1の再配布等は『CreativeML Open RAIL-M』に準拠致します。
**Q2:今回の制限に問題や矛盾はないのか。**
**A2:fantasticmix_v10**、**diamondCoalMix_diamondCoalv2**、**dreamshaper_5Bakedvae**は
**OK:Have different permissions when sharing merges**となっており解除可能。
**epicrealism_newAge**と**real-max-v3.4**は制限なしの為、今回全て制限なしとし公開しております。
なおマージ利用モデル側にLicense変更・制限変更等が生じた際も
5/17時点のLicenseや制限を前提として公開している為、creativeml-openrail-mに準じます。
こちらはMergeModel_LicenseSS_v2に該当モデルのSSを保管しております。
なおマージ利用モデル側に重大な問題が発生した場合は、モデルの公開停止を行い、
利用停止を呼びかける可能性はありますが、**当方側を理由とした追加制限を設けることは致しません。**
<br>
<br>
<br>
<br>
<br>
<br>
**----------------------------下記は旧Version向け情報です------------------------**
**chilled_remix_v1/chilled_reversemix_v1**に関して最低限の記載を残します。
詳しい内容が必要な場合は編集履歴にて当時の記載をご確認ください。
またMergeModel_LicenseSSに該当モデルの制限に関してSSを残しております。
License:[CreativeML Open RAIL-M](https://huggingface.co/sazyou-roukaku/chilled_remix/blob/main/license.txt)<br>
Additional Copyright: sazyou_roukaku (TwitterID [@sazyou_roukaku](https://twitter.com/sazyou_roukaku)) as of April 18, 2023
このモデルは『CreativeML Open RAIL-M』でLicenseそのものに変更はありません。
しかし追加著作者として鎖城郎郭の名前が追加されています。
なおcreativeml-openrail-mに記載されている通り、 本モデルを使用しての生成物に関しては使用制限Aの事例を除き、当方は一切関与致しません。
また一切責任を持ちません。免責されていることをご了承の上、ご使用ください。
**制限**
| Allowed | Permission |
|:-------:|-----------------------------------------------------|
| OK | Use the model without crediting the creator |
| OK | Sell images they generate |
| OK | Run on services that generate images for money |
| OK | Share merges using this model |
| OK | Sell this model or merges using this model |
| NG | Have different permissions when sharing merges |
| | | | [
-0.8756662011146545,
-0.5808010101318359,
0.27859947085380554,
0.4677354395389557,
-0.6459009051322937,
-0.17690303921699524,
0.06692299246788025,
-0.5761734247207642,
0.6037363409996033,
0.4139513671398163,
-0.9564618468284607,
-0.6767357587814331,
-0.3527989089488983,
-0.06038422882556915,
-0.05279150977730751,
0.6510139107704163,
-0.5954105257987976,
-0.14143556356430054,
-0.08982673287391663,
0.2096405327320099,
-0.4863026440143585,
-0.24920102953910828,
-0.4542323648929596,
-0.062218502163887024,
0.05019621178507805,
0.22251024842262268,
0.9119508862495422,
0.627008318901062,
0.764173686504364,
0.2930528521537781,
-0.16204127669334412,
0.0949409231543541,
-0.30682575702667236,
-0.06564351916313171,
0.029838308691978455,
-0.47718173265457153,
-0.7570928335189819,
-0.01986360363662243,
0.5274096131324768,
0.015449763275682926,
0.0632551833987236,
0.21600021421909332,
0.0750591903924942,
0.7213371992111206,
-0.5563398599624634,
0.15435552597045898,
0.013285739347338676,
0.3171953558921814,
-0.21835929155349731,
-0.39518311619758606,
0.19894026219844818,
-0.6969141960144043,
-0.5529813766479492,
-1.0351672172546387,
-0.030933653935790062,
0.01614752784371376,
1.5014119148254395,
0.04624992981553078,
-0.07370205223560333,
-0.012446953915059566,
-0.7491244673728943,
0.6888638138771057,
-0.8777478337287903,
0.49869734048843384,
0.33028295636177063,
0.47414976358413696,
-0.12527596950531006,
-0.8130534887313843,
-0.9083029627799988,
0.24047672748565674,
-0.11873960494995117,
0.5391451120376587,
-0.260728120803833,
-0.6839869618415833,
0.21507611870765686,
0.35283997654914856,
-0.6319522261619568,
0.09462769329547882,
-0.3988837003707886,
0.11342805624008179,
0.6030805706977844,
0.3155926465988159,
0.835777223110199,
-0.17792509496212006,
-0.7473322749137878,
-0.0792664960026741,
-0.7176080942153931,
0.32856398820877075,
0.18320691585540771,
0.19775374233722687,
-0.9485614895820618,
0.46407365798950195,
0.0631033182144165,
0.29625996947288513,
0.11197172850370407,
-0.11291086673736572,
0.5824928283691406,
-0.5356783270835876,
-0.4356878697872162,
-0.47262153029441833,
1.1661136150360107,
0.8394219875335693,
-0.0772511214017868,
-0.16913443803787231,
-0.2840310037136078,
-0.3011956214904785,
-0.35255590081214905,
-0.775626540184021,
-0.05590972676873207,
0.4897015690803528,
-0.5624405741691589,
-0.009408007375895977,
0.19355565309524536,
-1.146506905555725,
-0.023620622232556343,
-0.36371058225631714,
0.1992073506116867,
-0.5843353271484375,
-0.6486852169036865,
0.2802521884441376,
-0.070754274725914,
0.10603254288434982,
0.5069190263748169,
-0.4351368546485901,
0.16242393851280212,
0.6226773262023926,
0.8499993681907654,
0.16640420258045197,
-0.4339219927787781,
0.1384245902299881,
0.567952036857605,
-0.28726130723953247,
0.7703461647033691,
0.13890111446380615,
-0.5564302802085876,
-0.11731809377670288,
0.2302749902009964,
-0.20075330138206482,
-0.4025050103664398,
0.7438488602638245,
-0.30093276500701904,
0.30486708879470825,
-0.3291812837123871,
0.016140354797244072,
-0.14128218591213226,
0.0891752541065216,
-0.4363904595375061,
0.5234314203262329,
-0.17094744741916656,
-0.9503809213638306,
0.3371538519859314,
-0.6441165208816528,
-0.269861102104187,
-0.08371173590421677,
0.052096303552389145,
-0.41638821363449097,
-0.26481562852859497,
0.18011146783828735,
0.4516630172729492,
-0.2889035642147064,
-0.23193633556365967,
-0.2377135306596756,
-0.15317992866039276,
0.43755388259887695,
0.02779935486614704,
1.2670307159423828,
0.6534458994865417,
-0.28683605790138245,
-0.01668800227344036,
-0.7835262417793274,
0.1704552173614502,
0.7720001935958862,
-0.37535831332206726,
-0.3252302408218384,
-0.24197529256343842,
0.08193129301071167,
0.7076070308685303,
0.3409954905509949,
-0.3668104410171509,
0.20510931313037872,
-0.5020712018013,
0.30561286211013794,
0.9760553240776062,
0.18306773900985718,
0.5140480995178223,
-0.7494943141937256,
0.7059632539749146,
0.27499261498451233,
0.3661661446094513,
0.1120254173874855,
-0.4748527407646179,
-0.7510378360748291,
-0.4283545911312103,
-0.06841473281383514,
0.46034350991249084,
-0.8009018898010254,
0.524143397808075,
-0.3281705975532532,
-0.8587785363197327,
-0.6939687728881836,
0.1034526377916336,
0.28448110818862915,
-0.005122360773384571,
0.43814635276794434,
-0.22156326472759247,
-0.6885303258895874,
-0.5214555263519287,
-0.02171517349779606,
-0.029987413436174393,
0.27350321412086487,
0.4801231026649475,
0.49197831749916077,
-0.43232303857803345,
0.7662503719329834,
-0.5586424469947815,
-0.5639139413833618,
-0.22272001206874847,
-0.2681540250778198,
0.7048957943916321,
0.9119300246238708,
0.9393864274024963,
-0.9357610940933228,
-0.833301305770874,
-0.04898253083229065,
-0.9631856679916382,
0.03901224955916405,
-0.09317385405302048,
-0.44907256960868835,
0.14244696497917175,
0.048561859875917435,
-1.1243597269058228,
0.41920554637908936,
0.28314968943595886,
-0.49946069717407227,
0.743581235408783,
-0.31203824281692505,
0.4385826885700226,
-1.2451848983764648,
0.23754340410232544,
-0.03195292130112648,
0.14349280297756195,
-0.612892210483551,
0.5876696109771729,
-0.05794613063335419,
-0.011699284426867962,
-0.6226358413696289,
0.59327232837677,
-0.7090446352958679,
0.5012329816818237,
0.10531935840845108,
0.28762802481651306,
0.03193514421582222,
0.4148925542831421,
-0.16454686224460602,
0.40202268958091736,
0.6910541653633118,
-0.5655887126922607,
0.3805146813392639,
0.4190438687801361,
-0.33573368191719055,
0.422049343585968,
-0.5662218928337097,
0.11964774876832962,
-0.3048391044139862,
0.09720948338508606,
-1.0029524564743042,
-0.08392251282930374,
0.6143165826797485,
-0.7411134243011475,
0.478906512260437,
-0.05098232626914978,
-0.6785113215446472,
-0.7625741958618164,
-0.4069403409957886,
-0.22975675761699677,
0.48090481758117676,
-0.4593552350997925,
0.5363531708717346,
0.4069993793964386,
0.12385155260562897,
-0.6165841817855835,
-1.067163348197937,
-0.020095400512218475,
-0.2168952375650406,
-0.8899734616279602,
0.26388493180274963,
-0.17789284884929657,
-0.35425660014152527,
0.051299188286066055,
0.13166679441928864,
-0.3020579516887665,
-0.11101913452148438,
0.4748729169368744,
0.332809180021286,
-0.23293736577033997,
-0.3442043364048004,
-0.016006862744688988,
-0.05768001452088356,
0.01970805786550045,
-0.04505857080221176,
0.7828407883644104,
0.048072174191474915,
-0.33381471037864685,
-0.9813390374183655,
0.2844164967536926,
0.8991902470588684,
-0.38610973954200745,
0.5897925496101379,
0.6481284499168396,
-0.20092971622943878,
0.014397301711142063,
-0.4435240626335144,
0.04391764849424362,
-0.46978938579559326,
-0.05737314373254776,
-0.46808403730392456,
-0.4947597086429596,
0.7496590614318848,
0.3249649405479431,
0.00970439799129963,
0.5704853534698486,
0.38735058903694153,
-0.36111316084861755,
0.9280877709388733,
0.44710397720336914,
0.00024285905237775296,
0.1823112815618515,
-0.8744391798973083,
0.32468000054359436,
-0.6402770280838013,
-0.5728574395179749,
-0.6111180186271667,
-0.2756659686565399,
-0.5007479190826416,
-0.49608510732650757,
0.04321279376745224,
0.2648087739944458,
-0.5258540511131287,
0.46165981888771057,
-0.6742568612098694,
0.020619826391339302,
0.34080830216407776,
0.20027770102024078,
0.15918023884296417,
-0.15511304140090942,
-0.31358176469802856,
-0.1900729387998581,
-0.4744967818260193,
-0.2761959433555603,
0.6421279311180115,
0.5072832107543945,
0.7810072302818298,
0.6451899409294128,
0.7469558119773865,
-0.2389582097530365,
-0.03837095573544502,
-0.39570170640945435,
0.8094761371612549,
0.02563023380935192,
-0.7254897952079773,
0.03256715461611748,
-0.36884942650794983,
-0.9274295568466187,
0.3098413348197937,
-0.6323549151420593,
-0.7173373103141785,
0.5451704263687134,
0.05932333320379257,
-0.31898513436317444,
0.7444902062416077,
-0.7509588599205017,
0.5251948833465576,
-0.3707904517650604,
-0.9058321118354797,
0.10357411205768585,
-0.6261270642280579,
0.44877275824546814,
0.1552014946937561,
0.5979651212692261,
-0.26297512650489807,
-0.1801316738128662,
0.7218780517578125,
-0.8257734775543213,
0.49412667751312256,
-0.3692450225353241,
-0.015621417202055454,
0.3541796803474426,
0.3553038537502289,
0.6630392670631409,
0.1691116988658905,
0.26932576298713684,
0.17041052877902985,
-0.007102085277438164,
-0.15150436758995056,
-0.4830838441848755,
1.1063661575317383,
-0.8876003623008728,
-0.6885296106338501,
-0.3224584758281708,
-0.2119753658771515,
0.09029815346002579,
0.5106295347213745,
0.5315502285957336,
0.16092106699943542,
0.31451985239982605,
0.018019573763012886,
0.3295065462589264,
-0.34835192561149597,
0.5285325050354004,
0.4793548882007599,
-0.6043346524238586,
-0.5513128042221069,
0.8284968137741089,
0.29407596588134766,
0.1233382299542427,
0.48304474353790283,
0.08686886727809906,
-0.29912838339805603,
-0.5503496527671814,
-0.42888525128364563,
0.5628786683082581,
-0.5257608294487,
-0.23836852610111237,
-0.72966068983078,
-0.006364736706018448,
-0.8248396515846252,
-0.381477028131485,
-0.23032543063163757,
-0.46364134550094604,
-0.40813368558883667,
-0.24176785349845886,
0.4143090844154358,
0.39124226570129395,
-0.5437419414520264,
-0.01205829530954361,
-0.7467945218086243,
0.2520650029182434,
-0.1437724083662033,
0.5751465559005737,
0.26748451590538025,
-0.28338611125946045,
-0.25535643100738525,
0.17550817131996155,
-0.17706628143787384,
-0.8383323550224304,
0.7792356610298157,
-0.5181115865707397,
0.5572010278701782,
0.4364425241947174,
-0.19045224785804749,
0.748133659362793,
-0.16795222461223602,
0.8724241256713867,
0.6790540814399719,
-0.5879966020584106,
0.5822675824165344,
-0.661196768283844,
0.44451218843460083,
0.4111173152923584,
0.6624922156333923,
-0.35637831687927246,
-0.13084810972213745,
-0.6675879955291748,
-0.9922425746917725,
0.6656367778778076,
0.1692541390657425,
0.03700806945562363,
0.18459680676460266,
0.023775633424520493,
-0.24505552649497986,
0.169847309589386,
-0.82840895652771,
-0.6955609917640686,
-0.44222575426101685,
0.24343883991241455,
-0.029165560379624367,
0.03594289720058441,
-0.020952127873897552,
-0.5538734197616577,
0.9521560668945312,
0.5474511384963989,
0.6202343106269836,
0.3008255660533905,
0.4330269992351532,
-0.45381686091423035,
0.4682881534099579,
0.5413286089897156,
0.6216440796852112,
-0.5469557046890259,
-0.05532030388712883,
-0.043009862303733826,
-0.6508679389953613,
0.1324128657579422,
-0.08543139696121216,
-0.5381031036376953,
0.09311074018478394,
0.008321987465023994,
0.7578795552253723,
-0.047586921602487564,
-0.4200735092163086,
0.6242393851280212,
-0.05942978337407112,
-0.11008240282535553,
-0.3316189646720886,
-0.0393206812441349,
0.3070072531700134,
0.07680552452802658,
0.16270169615745544,
0.3038055896759033,
-0.0659538209438324,
-0.6389771103858948,
-0.043804269284009933,
0.329312801361084,
-0.5500897169113159,
-0.023684291169047356,
1.1210383176803589,
-0.11128702759742737,
-0.1858493685722351,
0.17073936760425568,
-0.0863737240433693,
-0.5214822888374329,
0.7143372893333435,
0.6210072636604309,
0.8418856859207153,
-0.28148558735847473,
0.07034025341272354,
0.7561554312705994,
0.25680312514305115,
0.18827754259109497,
0.6445753574371338,
0.11305931955575943,
-0.4273267984390259,
-0.17540223896503448,
-0.5766642689704895,
0.06598111242055893,
0.1850673407316208,
-0.4482269287109375,
0.5696101784706116,
-0.8949244022369385,
-0.25701963901519775,
-0.16276755928993225,
-0.25026917457580566,
-0.5150601863861084,
0.49441197514533997,
-0.13585230708122253,
1.2657698392868042,
-0.6099756360054016,
0.69373619556427,
0.7288153171539307,
-0.8945424556732178,
-1.0391309261322021,
-0.008869759738445282,
0.24865654110908508,
-0.46330949664115906,
0.569687008857727,
-0.31387490034103394,
-0.10483007878065109,
-0.11131233721971512,
-0.73020339012146,
-0.8118538856506348,
1.2161009311676025,
-0.1198917031288147,
-0.2708948850631714,
0.09028427302837372,
0.15655632317066193,
0.6932960748672485,
-0.2814721167087555,
0.11355793476104736,
0.13802874088287354,
0.5019118189811707,
0.32785433530807495,
-0.9619579911231995,
0.42592746019363403,
-0.7606529593467712,
-0.1973448544740677,
0.023927904665470123,
-0.9831491708755493,
1.0779099464416504,
-0.40626633167266846,
-0.3872956931591034,
0.13353033363819122,
0.37071236968040466,
0.4169682562351227,
0.32240405678749084,
0.12345319986343384,
0.8085254430770874,
0.30070745944976807,
-0.43289151787757874,
1.1526978015899658,
-0.33145782351493835,
0.48411619663238525,
0.8954122066497803,
0.13401247560977936,
0.8867859244346619,
0.41017234325408936,
-0.5139365196228027,
0.32238027453422546,
0.5831287503242493,
-0.1982673853635788,
0.7243089079856873,
-0.0018043401651084423,
-0.15874776244163513,
-0.01630251482129097,
-0.09601357579231262,
-0.8791458010673523,
-0.006087631918489933,
0.0642358586192131,
-0.37881916761398315,
0.06146365776658058,
0.1541772186756134,
0.2301831841468811,
0.06551900506019592,
-0.4543655514717102,
0.7855677604675293,
0.1490594893693924,
-0.34186774492263794,
0.8992918729782104,
-0.0693192109465599,
0.7926959991455078,
-0.47018057107925415,
0.22011679410934448,
-0.2602505087852478,
0.12511324882507324,
-0.5760600566864014,
-1.2505322694778442,
0.07989145070314407,
-0.1639663279056549,
-0.08674729615449905,
-0.12463409453630447,
0.5919467806816101,
-0.004789608530700207,
-0.2691669762134552,
0.49263110756874084,
0.23686684668064117,
0.2698609232902527,
0.45175567269325256,
-0.9133467674255371,
0.16415879130363464,
0.3847193121910095,
-0.16064617037773132,
0.11311808973550797,
0.3553904891014099,
0.4607037305831909,
0.8420184850692749,
0.6585849523544312,
0.49611005187034607,
0.14240612089633942,
-0.20614774525165558,
1.0900615453720093,
-0.6935347318649292,
-0.6356737017631531,
-0.7072303295135498,
0.9500730037689209,
-0.055321481078863144,
-0.21252629160881042,
0.9684023857116699,
0.8705170750617981,
0.890172004699707,
-0.422949880361557,
1.119457721710205,
-0.34336623549461365,
0.6953081488609314,
-0.4893202483654022,
1.0175988674163818,
-0.9129709005355835,
0.05663231387734413,
-0.6956771612167358,
-0.6345961689949036,
-0.39685794711112976,
0.427672415971756,
-0.44272035360336304,
0.1258731633424759,
0.296841025352478,
0.9039473533630371,
-0.08092603832483292,
0.039846692234277725,
0.006206202320754528,
0.5252052545547485,
0.14150592684745789,
0.8472012281417847,
0.713092029094696,
-0.6643543243408203,
0.3554231524467468,
-0.8075336217880249,
-0.09112676978111267,
-0.19817779958248138,
-0.4271048903465271,
-0.6442569494247437,
-0.6509860754013062,
-0.25264668464660645,
-0.6533102989196777,
-0.1747114658355713,
1.068528652191162,
0.47562211751937866,
-0.7203239798545837,
-0.3116990327835083,
0.22952227294445038,
0.17621813714504242,
-0.25260263681411743,
-0.3058469295501709,
0.49879688024520874,
0.2929539680480957,
-0.7496848106384277,
0.11216217279434204,
0.40929651260375977,
0.6031231880187988,
0.0695905014872551,
-0.2054632157087326,
-0.48397737741470337,
-0.06186779588460922,
0.19630034267902374,
0.29570844769477844,
-0.4187517464160919,
0.3312815725803375,
0.009528026916086674,
-0.32159072160720825,
0.22224192321300507,
0.437118262052536,
-0.15120215713977814,
0.4442671239376068,
0.9860928058624268,
-0.1907781958580017,
0.49967026710510254,
-0.11507873237133026,
0.02686201222240925,
-0.041831765323877335,
0.10058767348527908,
-0.03050210513174534,
0.5942055583000183,
0.04047045111656189,
-0.5020893812179565,
0.5793979167938232,
0.49810677766799927,
-0.2245398759841919,
-0.643218994140625,
-0.1134650856256485,
-1.27719247341156,
-0.46716371178627014,
1.1571630239486694,
-0.012577279470860958,
-0.27376899123191833,
0.06246469169855118,
-0.3878597021102905,
0.23191295564174652,
-0.28627026081085205,
0.4881967604160309,
0.24112997949123383,
0.017596350982785225,
-0.32614248991012573,
-0.7549824118614197,
0.3814469277858734,
0.002478506648913026,
-0.669409990310669,
-0.2650066614151001,
0.48668172955513,
0.308793306350708,
0.6020120978355408,
0.6902601718902588,
-0.3799683451652527,
0.40270596742630005,
-0.19149598479270935,
0.3791029751300812,
-0.302874356508255,
0.16309644281864166,
-0.18335917592048645,
0.2677181363105774,
-0.1630028933286667,
-0.16074633598327637
] |
albert-large-v2 | null | "2023-04-06T13:41:50Z" | 11,960 | 12 | transformers | [
"transformers",
"pytorch",
"tf",
"safetensors",
"albert",
"fill-mask",
"en",
"dataset:bookcorpus",
"dataset:wikipedia",
"arxiv:1909.11942",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"has_space",
"region:us"
] | fill-mask | "2022-03-02T23:29:04Z" | ---
language: en
license: apache-2.0
datasets:
- bookcorpus
- wikipedia
---
# ALBERT Large v2
Pretrained model on English language using a masked language modeling (MLM) objective. It was introduced in
[this paper](https://arxiv.org/abs/1909.11942) and first released in
[this repository](https://github.com/google-research/albert). This model, as all ALBERT models, is uncased: it does not make a difference
between english and English.
Disclaimer: The team releasing ALBERT did not write a model card for this model so this model card has been written by
the Hugging Face team.
## Model description
ALBERT is a transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it
was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of
publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it
was pretrained with two objectives:
- Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run
the entire masked sentence through the model and has to predict the masked words. This is different from traditional
recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like
GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the
sentence.
- Sentence Ordering Prediction (SOP): ALBERT uses a pretraining loss based on predicting the ordering of two consecutive segments of text.
This way, the model learns an inner representation of the English language that can then be used to extract features
useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard
classifier using the features produced by the ALBERT model as inputs.
ALBERT is particular in that it shares its layers across its Transformer. Therefore, all layers have the same weights. Using repeating layers results in a small memory footprint, however, the computational cost remains similar to a BERT-like architecture with the same number of hidden layers as it has to iterate through the same number of (repeating) layers.
This is the second version of the large model. Version 2 is different from version 1 due to different dropout rates, additional training data, and longer training. It has better results in nearly all downstream tasks.
This model has the following configuration:
- 24 repeating layers
- 128 embedding dimension
- 1024 hidden dimension
- 16 attention heads
- 17M parameters
## Intended uses & limitations
You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to
be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=albert) to look for
fine-tuned versions on a task that interests you.
Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked)
to make decisions, such as sequence classification, token classification or question answering. For tasks such as text
generation you should look at model like GPT2.
### How to use
You can use this model directly with a pipeline for masked language modeling:
```python
>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='albert-large-v2')
>>> unmasker("Hello I'm a [MASK] model.")
[
{
"sequence":"[CLS] hello i'm a modeling model.[SEP]",
"score":0.05816134437918663,
"token":12807,
"token_str":"â–modeling"
},
{
"sequence":"[CLS] hello i'm a modelling model.[SEP]",
"score":0.03748830780386925,
"token":23089,
"token_str":"â–modelling"
},
{
"sequence":"[CLS] hello i'm a model model.[SEP]",
"score":0.033725276589393616,
"token":1061,
"token_str":"â–model"
},
{
"sequence":"[CLS] hello i'm a runway model.[SEP]",
"score":0.017313428223133087,
"token":8014,
"token_str":"â–runway"
},
{
"sequence":"[CLS] hello i'm a lingerie model.[SEP]",
"score":0.014405295252799988,
"token":29104,
"token_str":"â–lingerie"
}
]
```
Here is how to use this model to get the features of a given text in PyTorch:
```python
from transformers import AlbertTokenizer, AlbertModel
tokenizer = AlbertTokenizer.from_pretrained('albert-large-v2')
model = AlbertModel.from_pretrained("albert-large-v2")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
```
and in TensorFlow:
```python
from transformers import AlbertTokenizer, TFAlbertModel
tokenizer = AlbertTokenizer.from_pretrained('albert-large-v2')
model = TFAlbertModel.from_pretrained("albert-large-v2")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)
```
### Limitations and bias
Even if the training data used for this model could be characterized as fairly neutral, this model can have biased
predictions:
```python
>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='albert-large-v2')
>>> unmasker("The man worked as a [MASK].")
[
{
"sequence":"[CLS] the man worked as a chauffeur.[SEP]",
"score":0.029577180743217468,
"token":28744,
"token_str":"â–chauffeur"
},
{
"sequence":"[CLS] the man worked as a janitor.[SEP]",
"score":0.028865724802017212,
"token":29477,
"token_str":"â–janitor"
},
{
"sequence":"[CLS] the man worked as a shoemaker.[SEP]",
"score":0.02581118606030941,
"token":29024,
"token_str":"â–shoemaker"
},
{
"sequence":"[CLS] the man worked as a blacksmith.[SEP]",
"score":0.01849772222340107,
"token":21238,
"token_str":"â–blacksmith"
},
{
"sequence":"[CLS] the man worked as a lawyer.[SEP]",
"score":0.01820771023631096,
"token":3672,
"token_str":"â–lawyer"
}
]
>>> unmasker("The woman worked as a [MASK].")
[
{
"sequence":"[CLS] the woman worked as a receptionist.[SEP]",
"score":0.04604868218302727,
"token":25331,
"token_str":"â–receptionist"
},
{
"sequence":"[CLS] the woman worked as a janitor.[SEP]",
"score":0.028220869600772858,
"token":29477,
"token_str":"â–janitor"
},
{
"sequence":"[CLS] the woman worked as a paramedic.[SEP]",
"score":0.0261906236410141,
"token":23386,
"token_str":"â–paramedic"
},
{
"sequence":"[CLS] the woman worked as a chauffeur.[SEP]",
"score":0.024797942489385605,
"token":28744,
"token_str":"â–chauffeur"
},
{
"sequence":"[CLS] the woman worked as a waitress.[SEP]",
"score":0.024124596267938614,
"token":13678,
"token_str":"â–waitress"
}
]
```
This bias will also affect all fine-tuned versions of this model.
## Training data
The ALBERT model was pretrained on [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038
unpublished books and [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and
headers).
## Training procedure
### Preprocessing
The texts are lowercased and tokenized using SentencePiece and a vocabulary size of 30,000. The inputs of the model are
then of the form:
```
[CLS] Sentence A [SEP] Sentence B [SEP]
```
### Training
The ALBERT procedure follows the BERT setup.
The details of the masking procedure for each sentence are the following:
- 15% of the tokens are masked.
- In 80% of the cases, the masked tokens are replaced by `[MASK]`.
- In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace.
- In the 10% remaining cases, the masked tokens are left as is.
## Evaluation results
When fine-tuned on downstream tasks, the ALBERT models achieve the following results:
| | Average | SQuAD1.1 | SQuAD2.0 | MNLI | SST-2 | RACE |
|----------------|----------|----------|----------|----------|----------|----------|
|V2 |
|ALBERT-base |82.3 |90.2/83.2 |82.1/79.3 |84.6 |92.9 |66.8 |
|ALBERT-large |85.7 |91.8/85.2 |84.9/81.8 |86.5 |94.9 |75.2 |
|ALBERT-xlarge |87.9 |92.9/86.4 |87.9/84.1 |87.9 |95.4 |80.7 |
|ALBERT-xxlarge |90.9 |94.6/89.1 |89.8/86.9 |90.6 |96.8 |86.8 |
|V1 |
|ALBERT-base |80.1 |89.3/82.3 | 80.0/77.1|81.6 |90.3 | 64.0 |
|ALBERT-large |82.4 |90.6/83.9 | 82.3/79.4|83.5 |91.7 | 68.5 |
|ALBERT-xlarge |85.5 |92.5/86.1 | 86.1/83.1|86.4 |92.4 | 74.8 |
|ALBERT-xxlarge |91.0 |94.8/89.3 | 90.2/87.4|90.8 |96.9 | 86.5 |
### BibTeX entry and citation info
```bibtex
@article{DBLP:journals/corr/abs-1909-11942,
author = {Zhenzhong Lan and
Mingda Chen and
Sebastian Goodman and
Kevin Gimpel and
Piyush Sharma and
Radu Soricut},
title = {{ALBERT:} {A} Lite {BERT} for Self-supervised Learning of Language
Representations},
journal = {CoRR},
volume = {abs/1909.11942},
year = {2019},
url = {http://arxiv.org/abs/1909.11942},
archivePrefix = {arXiv},
eprint = {1909.11942},
timestamp = {Fri, 27 Sep 2019 13:04:21 +0200},
biburl = {https://dblp.org/rec/journals/corr/abs-1909-11942.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
``` | [
-0.10453145951032639,
-0.5251064896583557,
0.269926518201828,
0.3339693546295166,
-0.42055997252464294,
0.01559023279696703,
0.09986933320760727,
-0.18847167491912842,
0.3564484119415283,
0.6308088898658752,
-0.535079300403595,
-0.42964303493499756,
-0.8240852355957031,
0.13409647345542908,
-0.5649568438529968,
1.1351789236068726,
0.08662988990545273,
0.3653969168663025,
-0.0643407329916954,
0.08719070255756378,
-0.351491779088974,
-0.6729847192764282,
-0.8590737581253052,
-0.31026309728622437,
0.5410004258155823,
0.3496105372905731,
0.6115947365760803,
0.6829195618629456,
0.5432680249214172,
0.4109387993812561,
-0.01073816791176796,
-0.19727414846420288,
-0.2890467047691345,
0.060222625732421875,
-0.08784463256597519,
-0.6162919998168945,
-0.4441607892513275,
0.08077691495418549,
0.6302443742752075,
0.7952144145965576,
-0.06785420328378677,
0.3696436583995819,
-0.1870206892490387,
0.5637319684028625,
-0.3828258812427521,
0.3025628626346588,
-0.38039568066596985,
0.07154738903045654,
-0.26717355847358704,
0.09905906021595001,
-0.3406110107898712,
-0.0970221608877182,
0.1191384419798851,
-0.6627377271652222,
0.20198766887187958,
0.3809784948825836,
1.09818434715271,
0.1303063929080963,
-0.22804909944534302,
-0.18584208190441132,
-0.5755831003189087,
0.8677968978881836,
-0.6572217345237732,
0.246904656291008,
0.5369313359260559,
0.3088622987270355,
0.0004339303413871676,
-1.0320045948028564,
-0.3333229124546051,
-0.07624920457601547,
-0.24302047491073608,
-0.047226984053850174,
-0.05768599733710289,
-0.11886580288410187,
0.4554024934768677,
0.36808332800865173,
-0.4230838418006897,
0.07777775824069977,
-0.7560314536094666,
-0.32948949933052063,
0.7052662372589111,
0.2678697407245636,
0.22215589880943298,
-0.18684329092502594,
-0.3008160889148712,
-0.28008559346199036,
-0.35329514741897583,
0.05649445950984955,
0.5634053945541382,
0.298236608505249,
-0.2319270372390747,
0.7326949834823608,
-0.3635982573032379,
0.5385522842407227,
-0.06616327911615372,
-0.025702333077788353,
0.4900333285331726,
-0.012981154955923557,
-0.3844168782234192,
0.01860927790403366,
1.0800225734710693,
0.26421380043029785,
0.3244410455226898,
-0.07109988480806351,
-0.4667704403400421,
-0.07183346152305603,
0.3057979643344879,
-0.7578858137130737,
-0.3627108633518219,
0.1350853592157364,
-0.4487779438495636,
-0.3933314085006714,
0.45406270027160645,
-0.7007983922958374,
-0.15076801180839539,
-0.13538973033428192,
0.4968217611312866,
-0.2252579629421234,
-0.15204507112503052,
0.19593092799186707,
-0.4040639102458954,
0.16326406598091125,
0.16450698673725128,
-0.8930442929267883,
0.22909478843212128,
0.5960514545440674,
0.8568241000175476,
0.35323432087898254,
-0.1986561119556427,
-0.45369961857795715,
-0.0938655436038971,
-0.34358304738998413,
0.5035461187362671,
-0.3410220444202423,
-0.4923318028450012,
0.10967597365379333,
0.2804949879646301,
0.0038441114593297243,
-0.34154656529426575,
0.6036061644554138,
-0.6305856108665466,
0.503961980342865,
-0.03741879388689995,
-0.40025484561920166,
-0.258348673582077,
0.031358230859041214,
-0.7452903985977173,
1.0546311140060425,
0.3819122910499573,
-0.6909356713294983,
0.26953357458114624,
-0.9020631313323975,
-0.573013186454773,
0.246256023645401,
0.12309280782938004,
-0.5770954489707947,
0.1266137659549713,
0.10914494842290878,
0.4020884335041046,
-0.1693553477525711,
0.18557874858379364,
-0.2506571114063263,
-0.4036210775375366,
0.3140564262866974,
-0.17403627932071686,
1.0360015630722046,
0.17139504849910736,
-0.2110603004693985,
0.12003360688686371,
-0.8742548823356628,
-0.09849382936954498,
0.26752254366874695,
-0.2613535225391388,
-0.2322307974100113,
-0.25372225046157837,
0.3727980852127075,
0.15857307612895966,
0.44268131256103516,
-0.5379788875579834,
0.2609899640083313,
-0.5547827482223511,
0.5379551649093628,
0.754246711730957,
-0.049436647444963455,
0.3989822566509247,
-0.4143427908420563,
0.5981605052947998,
0.04241035878658295,
-0.099394790828228,
-0.19906683266162872,
-0.5965567231178284,
-0.9050090909004211,
-0.32826530933380127,
0.5382091403007507,
0.7566527128219604,
-0.4874918758869171,
0.6350765228271484,
-0.12703420221805573,
-0.634346604347229,
-0.6627735495567322,
-0.04663979262113571,
0.4200635552406311,
0.3653510510921478,
0.3277190327644348,
-0.434454083442688,
-0.8453788757324219,
-0.9136772751808167,
-0.2747188210487366,
-0.1706542670726776,
-0.3266215920448303,
0.019462065771222115,
0.8388386964797974,
-0.3366613984107971,
0.6983634829521179,
-0.7321547865867615,
-0.4110962748527527,
-0.1062808483839035,
0.31730514764785767,
0.49661725759506226,
0.7400151491165161,
0.3733566403388977,
-0.5910914540290833,
-0.4164346754550934,
-0.30270642042160034,
-0.6909801363945007,
0.007453460246324539,
-0.0392117016017437,
-0.23505039513111115,
-0.001784785185009241,
0.5519278645515442,
-0.7769941091537476,
0.5244871973991394,
0.19443807005882263,
-0.5526475310325623,
0.6436610817909241,
-0.31357136368751526,
0.06137290969491005,
-1.2103421688079834,
0.19877171516418457,
-0.07137273252010345,
-0.3035261034965515,
-0.7140315771102905,
-0.026553235948085785,
-0.1340208351612091,
-0.05520305410027504,
-0.6254491209983826,
0.6242241263389587,
-0.5393698811531067,
-0.048776935786008835,
-0.035662226378917694,
-0.13998498022556305,
0.14617154002189636,
0.39407527446746826,
-0.03229926899075508,
0.597938597202301,
0.6839402318000793,
-0.5629497170448303,
0.6609605550765991,
0.492681086063385,
-0.636972188949585,
0.28968462347984314,
-0.877120316028595,
0.29264116287231445,
-0.08832960575819016,
-0.018602659925818443,
-1.0543792247772217,
-0.3556334674358368,
0.2927149832248688,
-0.4850543737411499,
0.35361066460609436,
-0.058662958443164825,
-0.7562075853347778,
-0.565095841884613,
-0.1689712256193161,
0.5583035349845886,
0.5032669305801392,
-0.26012030243873596,
0.4516741931438446,
0.348447322845459,
-0.13179312646389008,
-0.6093572378158569,
-0.7281857132911682,
0.09772471338510513,
-0.2912287414073944,
-0.5093821883201599,
0.2763478457927704,
0.005140166264027357,
-0.296640008687973,
-0.2710098922252655,
0.09113430231809616,
-0.1072298139333725,
0.06347888708114624,
0.2946299612522125,
0.4419514834880829,
-0.23598763346672058,
-0.2067088484764099,
-0.14975117146968842,
-0.16228871047496796,
0.33892446756362915,
-0.030563874170184135,
0.7511463165283203,
-0.013808471150696278,
-0.08942539244890213,
-0.48832035064697266,
0.430279403924942,
0.7379251718521118,
-0.1419910341501236,
0.8925359845161438,
0.8512588143348694,
-0.5455577969551086,
0.07791886478662491,
-0.3194555938243866,
-0.20859739184379578,
-0.5223324298858643,
0.6173509955406189,
-0.5039329528808594,
-0.8209426999092102,
0.772241473197937,
0.2888289988040924,
-0.13971029222011566,
0.720526397228241,
0.6122103929519653,
-0.11263303458690643,
1.171897053718567,
0.42188137769699097,
-0.08919516950845718,
0.49148544669151306,
-0.2328561395406723,
0.36878475546836853,
-0.8719814419746399,
-0.49791011214256287,
-0.5309202075004578,
-0.22150301933288574,
-0.4267524778842926,
-0.1045236885547638,
0.22110123932361603,
0.34696292877197266,
-0.578061580657959,
0.6218907237052917,
-0.5595974326133728,
0.37435927987098694,
0.9091137051582336,
0.17106547951698303,
-0.15925909578800201,
-0.2845862805843353,
-0.0054322597570717335,
0.10922928899526596,
-0.3875594735145569,
-0.4647955298423767,
1.0451387166976929,
0.5886027216911316,
0.7021156549453735,
0.09729097038507462,
0.5990018248558044,
0.24126455187797546,
0.15280745923519135,
-0.6588832139968872,
0.6067851185798645,
-0.11859619617462158,
-0.8972704410552979,
-0.3451347053050995,
-0.14391067624092102,
-1.0284050703048706,
0.13123372197151184,
-0.33675116300582886,
-0.9440470933914185,
-0.10111905634403229,
-0.12414086610078812,
-0.3991783857345581,
0.09494780004024506,
-0.7145316004753113,
1.097486972808838,
-0.2595476508140564,
-0.18228311836719513,
0.13159862160682678,
-0.8957611918449402,
0.31369128823280334,
0.023767560720443726,
0.22739672660827637,
-0.1450665444135666,
0.12198907136917114,
1.1788474321365356,
-0.4663662612438202,
0.8064437508583069,
-0.13045550882816315,
0.20165856182575226,
0.06067776679992676,
0.04540025070309639,
0.37552157044410706,
0.14749908447265625,
0.08140409737825394,
0.3726142644882202,
0.06640201807022095,
-0.4413512051105499,
-0.25639790296554565,
0.4622825086116791,
-0.8612995147705078,
-0.549487292766571,
-0.6326916813850403,
-0.5693254470825195,
0.17591378092765808,
0.45063936710357666,
0.5846129655838013,
0.6006475687026978,
-0.14295387268066406,
0.24422664940357208,
0.3700905740261078,
-0.2335468828678131,
0.6705880165100098,
0.4439099133014679,
-0.32932910323143005,
-0.5562553405761719,
0.6332959532737732,
-0.0027265790849924088,
-0.016038022935390472,
0.5662505626678467,
0.10065435618162155,
-0.6103493571281433,
-0.21107587218284607,
-0.44886261224746704,
0.22077827155590057,
-0.6288840770721436,
-0.3624343276023865,
-0.6774430871009827,
-0.39958512783050537,
-0.6585438847541809,
-0.1391996592283249,
-0.23300668597221375,
-0.3624357283115387,
-0.6918447017669678,
-0.13795331120491028,
0.37910452485084534,
0.707840085029602,
-0.02976219356060028,
0.654415488243103,
-0.7768670320510864,
0.2491324245929718,
0.2955494523048401,
0.40468814969062805,
-0.29003962874412537,
-0.7945172786712646,
-0.46873384714126587,
-0.01825292780995369,
-0.1965074986219406,
-0.7896401882171631,
0.6645100116729736,
0.12768806517124176,
0.4136424660682678,
0.6120562553405762,
-0.07775601744651794,
0.5792264342308044,
-0.6375200748443604,
0.9557086229324341,
0.31260499358177185,
-1.0358643531799316,
0.5573275089263916,
-0.3491922616958618,
0.2757429778575897,
0.4213672876358032,
0.2669825851917267,
-0.4665042459964752,
-0.38743653893470764,
-0.8469571471214294,
-1.027451515197754,
0.8931998014450073,
0.2114793211221695,
0.23929566144943237,
0.028644269332289696,
0.18295830488204956,
0.03655439615249634,
0.4663221538066864,
-0.8900251984596252,
-0.6144121289253235,
-0.373756468296051,
-0.2724076509475708,
-0.22896888852119446,
-0.29315507411956787,
-0.13144512474536896,
-0.49321091175079346,
0.7925807237625122,
0.256100594997406,
0.5327094793319702,
-0.03708425536751747,
-0.08877795189619064,
-0.03358857333660126,
0.19543549418449402,
0.8341658115386963,
0.5424720048904419,
-0.43408462405204773,
0.06673330813646317,
0.025362178683280945,
-0.5506563782691956,
0.08128596842288971,
0.1396947205066681,
-0.001421517925336957,
0.20790043473243713,
0.6073526740074158,
1.0032742023468018,
0.1758061647415161,
-0.5047349333763123,
0.6189277768135071,
0.1244109496474266,
-0.283814013004303,
-0.6758098602294922,
0.13144266605377197,
-0.12705865502357483,
0.1478310078382492,
0.3938552439212799,
0.1924460083246231,
0.19405393302440643,
-0.5036168098449707,
0.350678026676178,
0.3912494480609894,
-0.5077403783798218,
-0.2510104179382324,
1.0206444263458252,
0.014296608045697212,
-0.8677759766578674,
0.7670151591300964,
-0.23940716683864594,
-0.6396165490150452,
0.6751372814178467,
0.6697068214416504,
0.9350810050964355,
-0.3155282139778137,
0.12396789342164993,
0.5734089612960815,
0.30133432149887085,
-0.40720662474632263,
0.18644995987415314,
0.3504984378814697,
-0.7834615111351013,
-0.3273039758205414,
-0.8555302619934082,
-0.21582528948783875,
0.2716025710105896,
-0.882314145565033,
0.44296786189079285,
-0.5003412961959839,
-0.11644440144300461,
0.17017948627471924,
-0.07389505952596664,
-0.7926568388938904,
0.5123857259750366,
0.03884446620941162,
0.9482861161231995,
-1.0619701147079468,
0.8645301461219788,
0.8530402779579163,
-0.6406617164611816,
-0.8855503797531128,
-0.3964455723762512,
-0.288406103849411,
-1.110397219657898,
0.663299024105072,
0.434643030166626,
0.34295669198036194,
0.05362792685627937,
-0.5912599563598633,
-0.7847709059715271,
0.9183264970779419,
0.15160448849201202,
-0.5702533721923828,
-0.1960621476173401,
0.10880420356988907,
0.5155141353607178,
-0.5591724514961243,
0.6097482442855835,
0.5756220817565918,
0.4366280734539032,
0.04491299390792847,
-0.8051233887672424,
-0.00032877997728064656,
-0.43567052483558655,
0.04312531650066376,
0.17446352541446686,
-0.45789268612861633,
1.0338248014450073,
-0.10798767954111099,
0.06281977146863937,
0.2681172490119934,
0.6378319263458252,
0.0450243279337883,
0.24207887053489685,
0.486659973859787,
0.7008432745933533,
0.6063083410263062,
-0.28149017691612244,
0.8529289364814758,
-0.2138863503932953,
0.5823932886123657,
0.8260982632637024,
0.056191716343164444,
0.7328460216522217,
0.4310555160045624,
-0.2995639145374298,
0.9151685833930969,
0.7547369003295898,
-0.295207679271698,
0.7684094309806824,
0.22358722984790802,
-0.12991411983966827,
-0.08619343489408493,
0.10673635452985764,
-0.26089245080947876,
0.5733869075775146,
0.2147580087184906,
-0.5643861293792725,
0.07363077253103256,
0.008854784071445465,
0.19512923061847687,
-0.20758669078350067,
-0.5799175500869751,
0.7311899065971375,
0.21291154623031616,
-0.6861805319786072,
0.3096671402454376,
0.20856697857379913,
0.5232532024383545,
-0.4883532226085663,
-0.016443578526377678,
-0.010724691674113274,
0.20983242988586426,
-0.11431017518043518,
-0.8006066679954529,
0.2200414389371872,
-0.19437026977539062,
-0.3934609591960907,
-0.3143537640571594,
0.5395635366439819,
-0.5074727535247803,
-0.7671319246292114,
-0.039457399398088455,
0.24468111991882324,
0.3085390329360962,
-0.11347678303718567,
-0.7502138614654541,
-0.1605883240699768,
-0.03824109584093094,
-0.2662668526172638,
0.2190009355545044,
0.34420910477638245,
0.16444140672683716,
0.5539404153823853,
0.6878862380981445,
-0.1265774518251419,
-0.027827266603708267,
0.02839045785367489,
0.6836567521095276,
-0.879081666469574,
-0.8593949675559998,
-1.0087333917617798,
0.72794508934021,
-0.11744354665279388,
-0.5814571976661682,
0.6502943634986877,
0.8451148867607117,
0.7723564505577087,
-0.4246288537979126,
0.5136628746986389,
-0.12115836143493652,
0.5608079433441162,
-0.3821583390235901,
0.7765042781829834,
-0.4555386006832123,
0.0802951529622078,
-0.36374443769454956,
-0.9131003618240356,
-0.36344799399375916,
0.8712458610534668,
-0.1432361602783203,
0.05856456980109215,
0.7256566882133484,
0.7827415466308594,
0.04864707589149475,
-0.14733855426311493,
0.25027310848236084,
0.1706785410642624,
0.08861459791660309,
0.3840903341770172,
0.6346941590309143,
-0.7446925044059753,
0.3190063238143921,
-0.19435910880565643,
-0.05895216390490532,
-0.3954761028289795,
-0.7735655903816223,
-1.0647412538528442,
-0.6302517652511597,
-0.332950621843338,
-0.7416999936103821,
-0.2524968385696411,
0.8902130126953125,
0.7168654799461365,
-0.9672635197639465,
-0.2424091100692749,
-0.07837724685668945,
0.07116107642650604,
-0.13820932805538177,
-0.27043747901916504,
0.40574610233306885,
-0.07456963509321213,
-0.8249087929725647,
0.20757511258125305,
0.030343368649482727,
0.06174609437584877,
-0.20214255154132843,
-0.01702292636036873,
-0.25128746032714844,
-0.002346465829759836,
0.40659427642822266,
0.13420483469963074,
-0.6695319414138794,
-0.5139505863189697,
-0.012527178972959518,
-0.223336860537529,
0.09338624030351639,
0.5149921774864197,
-0.47984644770622253,
0.2949235439300537,
0.3472438454627991,
0.29030653834342957,
0.6833337545394897,
0.08209140598773956,
0.6117691397666931,
-0.9861373901367188,
0.3393058180809021,
0.26529034972190857,
0.5496971011161804,
0.41925057768821716,
-0.41437554359436035,
0.4054712653160095,
0.4818018674850464,
-0.5958788990974426,
-0.9197909832000732,
0.04257482662796974,
-1.027224063873291,
-0.07798594236373901,
1.0807267427444458,
-0.0978485718369484,
-0.3315087854862213,
-0.07394907623529434,
-0.33872485160827637,
0.4326360523700714,
-0.3944854736328125,
0.6822241544723511,
0.7827011942863464,
0.11626578867435455,
-0.2499184012413025,
-0.4314960539340973,
0.4183262884616852,
0.32271742820739746,
-0.47113874554634094,
-0.4342546761035919,
0.10906646400690079,
0.4432515501976013,
0.3162563741207123,
0.6075465083122253,
0.004475067835301161,
0.14079338312149048,
0.22391919791698456,
0.2372734248638153,
-0.07120539247989655,
-0.24518819153308868,
-0.2412024438381195,
0.17956389486789703,
-0.09540698677301407,
-0.6456955075263977
] |
JosephusCheung/ACertainThing | JosephusCheung | "2022-12-20T03:16:02Z" | 11,947 | 190 | diffusers | [
"diffusers",
"stable-diffusion",
"stable-diffusion-diffusers",
"text-to-image",
"en",
"arxiv:2106.09685",
"doi:10.57967/hf/0197",
"license:creativeml-openrail-m",
"endpoints_compatible",
"has_space",
"diffusers:StableDiffusionPipeline",
"region:us"
] | text-to-image | "2022-12-13T18:05:27Z" | ---
language:
- en
license: creativeml-openrail-m
tags:
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
- diffusers
inference: true
widget:
- text: "masterpiece, best quality, 1girl, brown hair, green eyes, colorful, autumn, cumulonimbus clouds, lighting, blue sky, falling leaves, garden"
example_title: "example 1girl"
- text: "masterpiece, best quality, 1boy, brown hair, green eyes, colorful, autumn, cumulonimbus clouds, lighting, blue sky, falling leaves, garden"
example_title: "example 1boy"
---
# ACertainThing
**Try full functions with Google Colab free T4** [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1gwJViXR0UxoXx01qiU6uTSEKGjTagOgp?usp=sharing)
Anything3.0 is an overfitted model that takes liberties when it shouldn't be generating human images and certain details. However, the community has given it a high rating, and I believe that is because many lazy people who don't know how to write a prompt can use this overfitted model to generate high-quality images even if their prompts are poorly written.
Here is a ACertain version of Anything3.0, made with Dreambooth (idea of [LoRA](https://arxiv.org/abs/2106.09685) integrated), initialized with [ACertainModel](https://huggingface.co/JosephusCheung/ACertainModel).
Although this model may produce better results for image generation, it is built on two major problems. Firstly, it does not always stay true to your prompts; it adds irrelevant details, and sometimes these details are highly homogenized. Secondly, it is an unstable, overfitted model, similar to Anything3.0, and is not suitable for any form of further training. As far as I know, Anything3.0 is obtained by merging several models in just the right way, but it is itself an overfitted model with defects in both its saturation and configuration. However, as I mentioned earlier, it can make even poorly written prompts produce good output images, which leads many lazy people who are incapable of writing good prompts to quickly surpass those who study the writing of prompts carefully. Despite these problems, I still want to release an extended version of the model that caters to the preferences of many people in the community. I hope would you like it.
**In my personal view, I oppose all forms of model merging as it has no scientific principle and is nothing but a waste of time. It is a desire to get results without putting in the effort. That is why I do not like Anything3.0, or this model that is being released. But I respect the choices and preferences of the community, and I hope that you can also respect and understand my thoughts.**
If you want your prompts to be accurately output and want to learn the correct skills for using prompts, it is recommended that you use the more balanced model [ACertainModel](https://huggingface.co/JosephusCheung/ACertainModel).
e.g. **_masterpiece, best quality, 1girl, brown hair, green eyes, colorful, autumn, cumulonimbus clouds, lighting, blue sky, falling leaves, garden_**
## About online preview with Hosted inference API, also generation with this model
Parameters are not allowed to be modified, as it seems that it is generated with *Clip skip: 1*, for better performance, it is strongly recommended to use *Clip skip: 2* instead.
Here is an example of inference settings, if it is applicable with you on your own server: *Steps: 28, Sampler: Euler a, CFG scale: 11, Clip skip: 2*.
## 🧨 Diffusers
This model can be used just like any other Stable Diffusion model. For more information,
please have a look at the [Stable Diffusion](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion).
You can also export the model to [ONNX](https://huggingface.co/docs/diffusers/optimization/onnx), [MPS](https://huggingface.co/docs/diffusers/optimization/mps) and/or FLAX/JAX.
```python
from diffusers import StableDiffusionPipeline
import torch
model_id = "JosephusCheung/ACertainThing"
branch_name= "main"
pipe = StableDiffusionPipeline.from_pretrained(model_id, revision=branch_name, torch_dtype=torch.float16)
pipe = pipe.to("cuda")
prompt = "pikachu"
image = pipe(prompt).images[0]
image.save("./pikachu.png")
```
## Examples
Below are some examples of images generated using this model, with better performance on framing and hand gestures, as well as moving objects, comparing to other analogues:
**Anime Girl:**
![Anime Girl](https://huggingface.co/JosephusCheung/ACertainThing/resolve/main/samples/acth-sample-1girl.png)
```
1girl, brown hair, green eyes, colorful, autumn, cumulonimbus clouds, lighting, blue sky, falling leaves, garden
Steps: 28, Sampler: Euler a, CFG scale: 11, Seed: 114514, Clip skip: 2
```
**Anime Boy:**
![Anime Boy](https://huggingface.co/JosephusCheung/ACertainThing/resolve/main/samples/acth-sample-1boy.png)
```
1boy, brown hair, green eyes, colorful, autumn, cumulonimbus clouds, lighting, blue sky, falling leaves, garden
Steps: 28, Sampler: Euler a, CFG scale: 11, Seed: 114514, Clip skip: 2
```
## License
This model is open access and available to all, with a CreativeML OpenRAIL-M license further specifying rights and usage.
The CreativeML OpenRAIL License specifies:
1. You can't use the model to deliberately produce nor share illegal or harmful outputs or content
2. The authors claims no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in the license
3. You may re-distribute the weights and use the model commercially and/or as a service. If you do, please be aware you have to include the same use restrictions as the ones in the license and share a copy of the CreativeML OpenRAIL-M to all your users (please read the license entirely and carefully)
[Please read the full license here](https://huggingface.co/spaces/CompVis/stable-diffusion-license)
## Is it a NovelAI based model? What is the relationship with SD1.2 and SD1.4?
See [ASimilarityCalculatior](https://huggingface.co/JosephusCheung/ASimilarityCalculatior) | [
-0.4359830915927887,
-0.89292311668396,
0.46489274501800537,
0.3221435844898224,
-0.22077186405658722,
-0.4250241219997406,
-0.016799267381429672,
-0.6371239423751831,
0.30595162510871887,
0.32405081391334534,
-0.48562443256378174,
-0.5139238238334656,
-0.4999573528766632,
-0.04075498506426811,
-0.23440226912498474,
1.0183511972427368,
-0.3321307599544525,
0.002138861222192645,
-0.21561066806316376,
-0.04124533385038376,
-0.495673805475235,
-0.23562701046466827,
-0.9071122407913208,
-0.22603200376033783,
0.5039929747581482,
0.13132742047309875,
0.6473612785339355,
0.5802893042564392,
0.2727763056755066,
0.3103373050689697,
-0.2761942744255066,
-0.1262991726398468,
-0.4875144064426422,
0.03953421115875244,
0.07236900180578232,
-0.30393633246421814,
-0.8211426138877869,
0.23836582899093628,
0.3820950388908386,
0.3828490376472473,
-0.1499520093202591,
0.004508269485086203,
0.08612797409296036,
0.4399181604385376,
-0.3935832381248474,
0.10202528536319733,
-0.06103692948818207,
-0.0250373687595129,
-0.08326070755720139,
0.24165090918540955,
-0.21407169103622437,
-0.5314332246780396,
0.07459823042154312,
-0.8074361681938171,
0.23092584311962128,
0.07028550654649734,
1.1403173208236694,
0.09320675581693649,
-0.25005683302879333,
-0.21222086250782013,
-0.38284942507743835,
0.6451978087425232,
-0.6417474150657654,
0.18379446864128113,
0.28939348459243774,
0.39834797382354736,
0.011491700075566769,
-0.7528811693191528,
-0.5477636456489563,
-0.15393221378326416,
0.060783982276916504,
0.316780686378479,
-0.3276444673538208,
-0.005840909201651812,
0.18665701150894165,
0.38654962182044983,
-0.7196062207221985,
-0.01973358914256096,
-0.5697494745254517,
0.046589445322752,
0.5982367396354675,
0.15772955119609833,
0.486952006816864,
-0.3252623677253723,
-0.5793874263763428,
-0.13626404106616974,
-0.6697064638137817,
0.18608377873897552,
0.3189089298248291,
0.2308305948972702,
-0.5340766310691833,
0.6130892634391785,
0.15579505264759064,
0.522485077381134,
0.2503802478313446,
0.08581244200468063,
0.37929606437683105,
-0.09506557881832123,
-0.2725129723548889,
-0.29121071100234985,
0.8559201955795288,
0.5694699883460999,
0.10289297252893448,
0.019419468939304352,
-0.05728287994861603,
0.012770537286996841,
0.01563994772732258,
-1.0868525505065918,
-0.36116471886634827,
0.543199896812439,
-0.6059153079986572,
-0.3627341091632843,
-0.2264856994152069,
-0.5013046264648438,
-0.2585583031177521,
-0.06374935805797577,
0.45208001136779785,
-0.5448199510574341,
-0.4975155293941498,
0.08586495369672775,
-0.2696380317211151,
-0.009770075790584087,
0.5670484900474548,
-0.5986915826797485,
-0.01750302128493786,
0.2605780065059662,
0.9578173160552979,
-0.2930479645729065,
-0.19083313643932343,
-0.01681787148118019,
-0.0337359793484211,
-0.25172221660614014,
0.6886430978775024,
-0.2961314916610718,
-0.5585932731628418,
-0.24465732276439667,
0.23119819164276123,
-0.11192924529314041,
-0.4247482120990753,
0.5688208937644958,
-0.3827489912509918,
0.2976698577404022,
-0.2734419107437134,
-0.6103751063346863,
-0.25155702233314514,
0.07527223974466324,
-0.7138485908508301,
0.8393948674201965,
0.1883387714624405,
-0.7770376205444336,
0.27966728806495667,
-0.8037735819816589,
-0.08802427351474762,
-0.05483093485236168,
0.025477183982729912,
-0.5087011456489563,
-0.19788038730621338,
0.10948565602302551,
0.5333606600761414,
-0.21892490983009338,
0.27802568674087524,
-0.6018022298812866,
-0.13584581017494202,
0.10172940045595169,
-0.17405039072036743,
1.3411376476287842,
0.3655685484409332,
-0.20604592561721802,
0.16783514618873596,
-0.5395975708961487,
-0.14155706763267517,
0.25856325030326843,
-0.10787305235862732,
-0.06549235433340073,
-0.42241159081459045,
0.32448452711105347,
0.29569703340530396,
0.2007458508014679,
-0.7119668126106262,
0.3001824617385864,
-0.20601266622543335,
0.39645203948020935,
0.6416163444519043,
0.01827135495841503,
0.45351389050483704,
-0.6497514247894287,
0.6891292333602905,
0.16799551248550415,
0.22422483563423157,
-0.11447584629058838,
-0.8165918588638306,
-0.6604618430137634,
-0.6320576667785645,
0.2690638303756714,
0.3418121933937073,
-0.6721781492233276,
0.41227471828460693,
-0.08448716253042221,
-0.7937173247337341,
-0.41535982489585876,
-0.09087716788053513,
0.3844205439090729,
0.5964900255203247,
0.23710580170154572,
-0.19106878340244293,
-0.38732069730758667,
-0.6765686273574829,
0.10614373534917831,
-0.14490807056427002,
-0.17454840242862701,
0.3085189461708069,
0.5771778225898743,
-0.10212261974811554,
0.8361262083053589,
-0.5908243656158447,
-0.20641584694385529,
-0.20467282831668854,
0.1822371929883957,
0.31164970993995667,
0.829177975654602,
0.7815341949462891,
-0.78501957654953,
-0.6210631132125854,
-0.14450371265411377,
-0.8585492968559265,
-0.10113435983657837,
0.03934214636683464,
-0.2855316698551178,
0.20737625658512115,
0.23713085055351257,
-1.0466103553771973,
0.41484805941581726,
0.5015202164649963,
-0.5676504373550415,
0.41820424795150757,
-0.14057965576648712,
0.1916419118642807,
-1.2442413568496704,
0.4220021963119507,
0.19320036470890045,
-0.3905051350593567,
-0.5818271040916443,
0.39624929428100586,
0.0382460318505764,
-0.2438984215259552,
-0.6322673559188843,
1.008185863494873,
-0.28666791319847107,
0.3407096862792969,
-0.29258856177330017,
0.1132233738899231,
0.24721147119998932,
0.5483748912811279,
0.14577387273311615,
0.44567129015922546,
0.7722639441490173,
-0.5168829560279846,
0.3950338065624237,
0.42365363240242004,
-0.17082522809505463,
0.6740915775299072,
-0.9129631519317627,
-0.05220775678753853,
-0.2711770236492157,
0.47250717878341675,
-0.9574776291847229,
-0.35690733790397644,
0.5350950956344604,
-0.6362450122833252,
0.38421955704689026,
-0.022920813411474228,
-0.32232698798179626,
-0.38252806663513184,
-0.4192405045032501,
0.3343697786331177,
0.7673003077507019,
-0.6343398690223694,
0.7235254049301147,
0.3166103959083557,
-0.1126103401184082,
-0.20726226270198822,
-0.6682797074317932,
-0.41073352098464966,
-0.42922091484069824,
-0.8816353678703308,
0.36260977387428284,
-0.2929016649723053,
-0.00010531412408454344,
0.09516283124685287,
0.15803270041942596,
-0.13965918123722076,
-0.16311056911945343,
0.4968538284301758,
0.446521133184433,
-0.05896184593439102,
-0.19046995043754578,
0.03861580044031143,
-0.08659771829843521,
-0.04938332363963127,
0.07378869503736496,
0.30571267008781433,
-0.048907630145549774,
-0.176527202129364,
-0.6831640005111694,
0.36760011315345764,
0.5745512247085571,
0.10781949758529663,
0.641785740852356,
0.6802281737327576,
-0.43520212173461914,
0.09626572579145432,
-0.4011859595775604,
-0.10143250226974487,
-0.47817447781562805,
0.07156738638877869,
-0.3401564061641693,
-0.6169239282608032,
0.7904267907142639,
0.25325465202331543,
0.2884638011455536,
0.5840679407119751,
0.5345588326454163,
-0.23770800232887268,
1.2257829904556274,
0.5335933566093445,
0.3210819363594055,
0.42857468128204346,
-0.5511700510978699,
-0.15112748742103577,
-0.9148367643356323,
-0.4280528426170349,
-0.3567988872528076,
-0.2468993365764618,
-0.47198787331581116,
-0.3779914975166321,
0.29488855600357056,
0.21147258579730988,
-0.4654161036014557,
0.4277491271495819,
-0.4239197075366974,
0.15201792120933533,
0.36152374744415283,
0.36274254322052,
0.06638869643211365,
-0.10286886245012283,
0.0549948625266552,
-0.0533987432718277,
-0.6627658605575562,
-0.36569827795028687,
0.8576910495758057,
0.4567588269710541,
0.8269428014755249,
0.1351836919784546,
0.5396835803985596,
0.11227378249168396,
0.44897857308387756,
-0.42860326170921326,
0.46051737666130066,
0.015889426693320274,
-0.9769229888916016,
-0.097935251891613,
-0.4615996778011322,
-0.9786244630813599,
0.08514848351478577,
-0.23690207302570343,
-0.7742121815681458,
0.42265671491622925,
0.35773199796676636,
-0.5160073637962341,
0.32686665654182434,
-0.8256264925003052,
0.9244635701179504,
0.015644174069166183,
-0.4750865399837494,
0.2848220765590668,
-0.5655590295791626,
0.4027019739151001,
0.0846061110496521,
-0.012257776223123074,
-0.11976249516010284,
-0.027514781802892685,
0.6605607867240906,
-0.5946218371391296,
0.9486922025680542,
-0.31433817744255066,
-0.09519881755113602,
0.47875234484672546,
0.004557862877845764,
0.4068499207496643,
0.010687718167901039,
-0.09945724904537201,
0.25245290994644165,
0.06683464348316193,
-0.5661904215812683,
-0.5347853899002075,
0.9251037836074829,
-0.8885775208473206,
-0.3997064232826233,
-0.30532172322273254,
-0.3979469835758209,
0.17285683751106262,
0.24137842655181885,
0.6507874727249146,
0.41433680057525635,
-0.10568512231111526,
0.04425205662846565,
0.5413413643836975,
-0.15295331180095673,
0.34024709463119507,
0.19336578249931335,
-0.6115642189979553,
-0.46372127532958984,
0.9347425103187561,
0.08206288516521454,
0.27196845412254333,
-0.05587693303823471,
0.22601978480815887,
-0.4031347632408142,
-0.33222097158432007,
-0.7077328562736511,
0.2901304066181183,
-0.6771978735923767,
-0.3176332712173462,
-0.7420967221260071,
-0.11830254644155502,
-0.419559508562088,
-0.3843073844909668,
-0.35347482562065125,
-0.6039185523986816,
-0.6880632042884827,
0.001141093671321869,
0.6500335335731506,
0.631709635257721,
-0.11138361692428589,
0.36128392815589905,
-0.5570314526557922,
0.37240198254585266,
0.15051667392253876,
0.4513363838195801,
0.08558735996484756,
-0.6153752207756042,
-0.03395235165953636,
0.04573849216103554,
-0.5907936096191406,
-0.8506284356117249,
0.4230387508869171,
0.016227057203650475,
0.3295760154724121,
0.5199852585792542,
-0.0731145516037941,
0.7533736228942871,
-0.2505640387535095,
0.9349265694618225,
0.3957638442516327,
-0.6630351543426514,
0.35945019125938416,
-0.6763073205947876,
0.30301952362060547,
0.400042325258255,
0.6347386240959167,
-0.22104500234127045,
-0.4969088137149811,
-0.8728767037391663,
-0.8682558536529541,
0.6670490503311157,
0.5532937049865723,
0.09739245474338531,
0.033132992684841156,
0.4532516300678253,
0.06761026382446289,
0.14251580834388733,
-0.9116302132606506,
-0.4109673500061035,
-0.41460055112838745,
-0.02108120545744896,
0.15143263339996338,
0.07951050251722336,
-0.02789323404431343,
-0.3410201668739319,
0.8531284332275391,
0.20031939446926117,
0.3516210615634918,
0.18989154696464539,
0.24749931693077087,
-0.31577426195144653,
-0.25031644105911255,
0.22551172971725464,
0.3651463985443115,
-0.35839521884918213,
-0.2791917622089386,
0.031955327838659286,
-0.3902059495449066,
0.01819775253534317,
0.20432816445827484,
-0.37989264726638794,
0.06794657558202744,
0.06595036387443542,
0.8218491077423096,
-0.040899790823459625,
-0.3735911250114441,
0.5952370166778564,
-0.1481238752603531,
-0.22926931083202362,
-0.22315219044685364,
0.1734289675951004,
0.27121251821517944,
0.31894582509994507,
0.08012840896844864,
0.32996439933776855,
0.2949520945549011,
-0.43901824951171875,
-0.10752210021018982,
0.424543172121048,
-0.27390116453170776,
-0.3668522238731384,
1.031933307647705,
0.2910272479057312,
-0.1133546382188797,
0.4249255359172821,
-0.27622562646865845,
-0.18750301003456116,
0.7260382771492004,
0.5980122089385986,
0.8174428939819336,
-0.2507210373878479,
0.261780709028244,
0.6373599767684937,
0.0036802750546485186,
-0.1571052223443985,
0.4850013256072998,
0.12117695808410645,
-0.41890043020248413,
-0.1932831108570099,
-0.493916392326355,
-0.2248084992170334,
0.18701516091823578,
-0.5733223557472229,
0.6664946675300598,
-0.5454047918319702,
-0.40445417165756226,
0.002425070619210601,
-0.13559530675411224,
-0.4767700135707855,
0.38994142413139343,
0.012879760004580021,
0.9905121326446533,
-1.0148119926452637,
0.5230093002319336,
0.6930022239685059,
-0.7064783573150635,
-0.8827378153800964,
-0.2759472131729126,
-0.11932196468114853,
-0.44746822118759155,
0.3061542212963104,
0.24877560138702393,
0.06086437404155731,
-0.03913916274905205,
-0.7722762227058411,
-0.779310405254364,
1.1583149433135986,
0.39774230122566223,
-0.12232226133346558,
-0.35100728273391724,
-0.29843640327453613,
0.5652283430099487,
-0.4032701551914215,
0.5816916823387146,
0.20487093925476074,
0.41446223855018616,
0.4444669783115387,
-0.7397449612617493,
0.26795893907546997,
-0.524928867816925,
0.2377770096063614,
-0.021822933107614517,
-0.811220645904541,
1.1593632698059082,
-0.2105998545885086,
-0.35624170303344727,
0.5502896308898926,
0.7153242230415344,
0.575412929058075,
0.25687041878700256,
0.36367934942245483,
0.6428670883178711,
0.5044813752174377,
-0.0685410127043724,
1.1872506141662598,
-0.16585767269134521,
0.42167985439300537,
0.8682878613471985,
-0.005578475072979927,
0.6717365384101868,
0.29696598649024963,
-0.08567633479833603,
0.4072923958301544,
0.8223583102226257,
-0.04740118980407715,
0.3536777198314667,
-0.07230482995510101,
-0.011780585162341595,
-0.227128803730011,
-0.057432979345321655,
-0.5744684934616089,
0.11024482548236847,
0.1494651436805725,
-0.41183245182037354,
-0.17362232506275177,
0.18607069551944733,
0.1842896044254303,
-0.2027093917131424,
-0.14305667579174042,
0.3980575203895569,
0.09700687974691391,
-0.4803513288497925,
0.8581724166870117,
-0.04841228947043419,
0.7527574896812439,
-0.49057015776634216,
-0.1441447138786316,
-0.18688271939754486,
-0.14347527921199799,
-0.30378660559654236,
-0.7780097723007202,
0.12253136187791824,
0.034081779420375824,
0.004853380843997002,
-0.30203503370285034,
0.5099955201148987,
-0.35118308663368225,
-0.5501606464385986,
0.16900691390037537,
0.26658281683921814,
0.48026493191719055,
0.14369116723537445,
-0.9098409414291382,
0.2532009780406952,
-0.03947224095463753,
-0.3792029917240143,
0.08579383790493011,
0.20822490751743317,
0.13240130245685577,
0.7327085137367249,
0.42788466811180115,
0.0882936492562294,
-0.028789950534701347,
-0.16313502192497253,
0.9741058349609375,
-0.3724353313446045,
-0.4679321348667145,
-0.5379986763000488,
0.8564386963844299,
-0.10064596682786942,
-0.40601304173469543,
0.8947373628616333,
0.5517281889915466,
0.7185950875282288,
-0.21206630766391754,
0.724777340888977,
-0.37259095907211304,
0.4855736792087555,
-0.41460147500038147,
0.8900938034057617,
-0.9208498597145081,
0.021472031250596046,
-0.5250282883644104,
-0.900999903678894,
-0.25067171454429626,
0.7036360502243042,
-0.22730232775211334,
0.4360502362251282,
0.46830084919929504,
0.8198346495628357,
-0.24196866154670715,
0.07311541587114334,
0.1683000922203064,
0.19188441336154938,
0.18812969326972961,
0.4111126661300659,
0.694664716720581,
-0.6099955439567566,
0.41395094990730286,
-0.3542519509792328,
-0.33870261907577515,
-0.27756553888320923,
-0.8124521970748901,
-1.0555347204208374,
-0.6678664684295654,
-0.5065844058990479,
-0.6105183959007263,
-0.06081819161772728,
0.8605262041091919,
0.8444476127624512,
-0.6781503558158875,
-0.06677156686782837,
-0.15505997836589813,
-0.05673536658287048,
0.06764336675405502,
-0.21423886716365814,
0.3970567584037781,
0.20007319748401642,
-0.9667303562164307,
-0.02532239444553852,
-0.1338539868593216,
0.47791025042533875,
-0.21197448670864105,
-0.17260557413101196,
-0.1484660506248474,
-0.04841357842087746,
0.3882744014263153,
0.49367958307266235,
-0.5304697751998901,
-0.08951755613088608,
-0.055994968861341476,
-0.08762120455503464,
0.15166515111923218,
0.382426381111145,
-0.4920794665813446,
0.47706177830696106,
0.6044700741767883,
0.19196674227714539,
0.5746104717254639,
0.10499539226293564,
0.31962740421295166,
-0.4956263303756714,
0.09716714173555374,
0.1424451619386673,
0.4920472502708435,
0.43039292097091675,
-0.4137422740459442,
0.28717419505119324,
0.11977319419384003,
-0.6247009634971619,
-0.7332381010055542,
0.16486430168151855,
-1.0871963500976562,
-0.3275941014289856,
1.189154028892517,
-0.32072868943214417,
-0.42803138494491577,
0.06061730161309242,
-0.45229220390319824,
0.35621339082717896,
-0.56899493932724,
0.6315847635269165,
0.4115462899208069,
-0.3987269699573517,
-0.07735786586999893,
-0.4895384907722473,
0.463281512260437,
0.22881531715393066,
-0.741386890411377,
-0.05294477567076683,
0.6338165402412415,
0.4667198061943054,
0.37247076630592346,
0.7100588083267212,
-0.2095394879579544,
0.40602919459342957,
0.010065601207315922,
0.21375906467437744,
-0.06873664259910583,
-0.2738267183303833,
-0.4490191638469696,
0.09860221296548843,
-0.024064160883426666,
-0.16388775408267975
] |
Helsinki-NLP/opus-mt-sq-en | Helsinki-NLP | "2023-08-16T12:04:25Z" | 11,931 | 1 | transformers | [
"transformers",
"pytorch",
"tf",
"marian",
"text2text-generation",
"translation",
"sq",
"en",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"has_space",
"region:us"
] | translation | "2022-03-02T23:29:04Z" | ---
tags:
- translation
license: apache-2.0
---
### opus-mt-sq-en
* source languages: sq
* target languages: en
* OPUS readme: [sq-en](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/sq-en/README.md)
* dataset: opus
* model: transformer-align
* pre-processing: normalization + SentencePiece
* download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/sq-en/opus-2020-01-16.zip)
* test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/sq-en/opus-2020-01-16.test.txt)
* test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/sq-en/opus-2020-01-16.eval.txt)
## Benchmarks
| testset | BLEU | chr-F |
|-----------------------|-------|-------|
| Tatoeba.sq.en | 58.4 | 0.732 |
| [
-0.2628740966320038,
-0.5095837712287903,
0.25740182399749756,
0.4850195348262787,
-0.4217011332511902,
-0.4161073565483093,
-0.46606844663619995,
-0.11622492969036102,
0.05221850797533989,
0.47071993350982666,
-0.7825809121131897,
-0.6099027395248413,
-0.6172159314155579,
0.2826986610889435,
-0.07983294129371643,
0.7026917338371277,
-0.16290850937366486,
0.6258025765419006,
0.20252655446529388,
-0.42518630623817444,
-0.3844250738620758,
-0.4619836211204529,
-0.5113652348518372,
-0.22350633144378662,
0.3803449273109436,
0.538500964641571,
0.4757141172885895,
0.3644859790802002,
0.915871798992157,
0.2635248899459839,
0.01711152121424675,
0.08082456141710281,
-0.531613826751709,
-0.0542488656938076,
0.12139484286308289,
-0.7064614295959473,
-0.7517257928848267,
-0.13273093104362488,
1.167521357536316,
0.40738174319267273,
0.015392507426440716,
0.43214520812034607,
-0.109646275639534,
1.005273461341858,
-0.3553845286369324,
0.08731647580862045,
-0.6091473698616028,
0.13068237900733948,
-0.3997734785079956,
-0.3272193968296051,
-0.7114644050598145,
-0.28860267996788025,
0.10887472331523895,
-0.8592014908790588,
-0.05828496441245079,
0.27329376339912415,
1.5489376783370972,
0.2770005762577057,
-0.3951755464076996,
-0.14176011085510254,
-0.6103972792625427,
1.1006228923797607,
-0.8790558576583862,
0.7251152992248535,
0.5298932790756226,
0.3697766959667206,
0.18167556822299957,
-0.7158215045928955,
-0.3987073600292206,
0.09637163579463959,
-0.21560445427894592,
0.19928951561450958,
-0.18510377407073975,
-0.30098238587379456,
0.349290668964386,
0.778072714805603,
-0.8790245056152344,
-0.01140202023088932,
-0.638741135597229,
-0.017055489122867584,
0.8264884352684021,
0.1208702027797699,
0.1565677374601364,
-0.1827254742383957,
-0.48416581749916077,
-0.5979776382446289,
-0.8722752332687378,
0.10093897581100464,
0.3704294264316559,
0.21766409277915955,
-0.3771173059940338,
0.831527590751648,
-0.17961999773979187,
0.5648061037063599,
-0.01073059905320406,
0.11755776405334473,
1.0662503242492676,
-0.44603753089904785,
-0.4160565435886383,
-0.2661953568458557,
1.403689980506897,
0.32367172837257385,
0.14706777036190033,
0.10080166906118393,
-0.34984615445137024,
-0.37175530195236206,
0.07703743875026703,
-0.9913713932037354,
-0.1275947242975235,
0.14920489490032196,
-0.4168160855770111,
-0.10724951326847076,
0.015841178596019745,
-0.6579281687736511,
0.26085421442985535,
-0.443760484457016,
0.7740748524665833,
-0.7930038571357727,
-0.26330575346946716,
0.4313431978225708,
0.05989391729235649,
0.3658878207206726,
-0.050382353365421295,
-0.6469794511795044,
0.24137452244758606,
0.47205767035484314,
0.7952237129211426,
-0.34432676434516907,
-0.33035916090011597,
-0.5512384176254272,
-0.2821362018585205,
-0.13962887227535248,
0.681307852268219,
-0.14582496881484985,
-0.45692938566207886,
-0.03632720187306404,
0.5137252807617188,
-0.47963276505470276,
-0.3992030620574951,
1.4396613836288452,
-0.3371269702911377,
0.9282407760620117,
-0.5050097703933716,
-0.6632962822914124,
-0.39336591958999634,
0.43477344512939453,
-0.7039350271224976,
1.4954105615615845,
0.1633484959602356,
-0.9279537200927734,
0.27238839864730835,
-0.8671150803565979,
-0.2053481638431549,
0.017022771760821342,
-0.03528076410293579,
-0.7410207986831665,
0.1234530583024025,
0.19038204848766327,
0.5003585815429688,
-0.32425040006637573,
0.3277309834957123,
-0.0201549232006073,
-0.4143819808959961,
0.14276716113090515,
-0.41757455468177795,
1.0397326946258545,
0.32650652527809143,
-0.38965120911598206,
0.2924385964870453,
-0.971648633480072,
-0.03471749648451805,
0.014637639746069908,
-0.4039332866668701,
-0.20565782487392426,
0.05761248245835304,
0.3536863625049591,
0.21921660006046295,
0.34277310967445374,
-0.664669930934906,
0.2447541505098343,
-0.6518496870994568,
0.23743323981761932,
0.6370704770088196,
-0.2703200876712799,
0.4079741835594177,
-0.48874029517173767,
0.4749651849269867,
0.1542830914258957,
0.13057902455329895,
0.06404956430196762,
-0.5252840518951416,
-0.9301686882972717,
-0.31398043036460876,
0.689328134059906,
1.1387040615081787,
-0.8122989535331726,
0.8849461674690247,
-0.7575069665908813,
-0.8283825516700745,
-0.9046261310577393,
-0.23707272112369537,
0.491443932056427,
0.3123320937156677,
0.5580601096153259,
-0.1764633059501648,
-0.5570438504219055,
-1.1805669069290161,
-0.19256876409053802,
-0.12448568642139435,
-0.23575671017169952,
0.21099849045276642,
0.6664748191833496,
-0.17710521817207336,
0.558847963809967,
-0.5292361378669739,
-0.41592302918434143,
-0.15276716649532318,
0.12930460274219513,
0.4719202518463135,
0.6611504554748535,
0.5464617013931274,
-0.9763112664222717,
-0.661385178565979,
-0.0357755608856678,
-0.732765257358551,
-0.12036018818616867,
0.043564118444919586,
-0.2574051320552826,
0.07870513200759888,
0.15310238301753998,
-0.49991217255592346,
0.1082773208618164,
0.6643016934394836,
-0.7045528888702393,
0.6958006620407104,
-0.061834659427404404,
0.3435068130493164,
-1.4941174983978271,
0.1739802360534668,
-0.15505580604076385,
-0.15027262270450592,
-0.459543377161026,
-0.02273820899426937,
0.3112146556377411,
0.09583959728479385,
-0.7899457812309265,
0.6083396673202515,
-0.31083163619041443,
-0.11720552295446396,
0.3254806399345398,
0.059091996401548386,
0.1375584751367569,
0.7539122104644775,
-0.0272284634411335,
0.9689036011695862,
0.7257382273674011,
-0.5233438014984131,
0.12828628718852997,
0.6039178967475891,
-0.4862308204174042,
0.3574630320072174,
-0.9227734804153442,
-0.34352728724479675,
0.4224979281425476,
-0.11621911078691483,
-0.7192018628120422,
0.11625764518976212,
0.3990693986415863,
-0.7765912413597107,
0.4686001241207123,
0.020712360739707947,
-0.8147450685501099,
-0.003356234636157751,
-0.3129933178424835,
0.5522422194480896,
0.7141015529632568,
-0.1319042444229126,
0.6517892479896545,
0.09801559895277023,
-0.07193472981452942,
-0.5730472803115845,
-1.0203121900558472,
-0.12524713575839996,
-0.46181562542915344,
-0.8787798285484314,
0.2321603000164032,
-0.3843148648738861,
0.00724835554137826,
0.026431242004036903,
0.3160328269004822,
-0.06667707860469818,
0.01901695877313614,
0.09610772132873535,
0.23333457112312317,
-0.6189385056495667,
0.17201544344425201,
0.01082504540681839,
-0.16618606448173523,
-0.10212422162294388,
-0.19112831354141235,
0.6017245054244995,
-0.3801981210708618,
-0.264127641916275,
-0.7028493285179138,
0.09552763402462006,
0.6632406115531921,
-0.44890928268432617,
0.8426181077957153,
0.7187561988830566,
-0.14378753304481506,
0.195518359541893,
-0.46413087844848633,
0.04893917590379715,
-0.48600029945373535,
0.28772252798080444,
-0.6292827725410461,
-0.9309332966804504,
0.49869298934936523,
0.11479902267456055,
0.45398133993148804,
0.9587904810905457,
0.6838453412055969,
0.0586281381547451,
0.6595421433448792,
0.3192170262336731,
-0.061722878366708755,
0.48029887676239014,
-0.49270525574684143,
-0.11050441861152649,
-1.1426185369491577,
0.07730274647474289,
-0.7617658376693726,
-0.34052574634552,
-0.8877583146095276,
-0.43394872546195984,
0.2599673867225647,
0.15946350991725922,
-0.29225587844848633,
0.7697935104370117,
-0.5381907224655151,
0.21930637955665588,
0.6174717545509338,
-0.186624214053154,
0.33640989661216736,
0.018490511924028397,
-0.5380322337150574,
-0.339681476354599,
-0.595283031463623,
-0.6023879051208496,
1.374701976776123,
0.5367044806480408,
0.25589483976364136,
0.19050607085227966,
0.5370311141014099,
0.005652129650115967,
0.20097088813781738,
-0.6917495727539062,
0.5259777903556824,
-0.21470053493976593,
-0.7582911849021912,
-0.44032156467437744,
-0.6802229881286621,
-0.9736253619194031,
0.6224467754364014,
-0.3211406469345093,
-0.4905911684036255,
0.21005994081497192,
-0.0910249724984169,
-0.10661046206951141,
0.37096482515335083,
-0.7587808966636658,
1.268251657485962,
-0.08551627397537231,
-0.10006696730852127,
0.182217538356781,
-0.4985603392124176,
0.36486998200416565,
-0.020730597898364067,
0.31761786341667175,
-0.21369419991970062,
0.09690485894680023,
0.6790124773979187,
-0.10801529139280319,
0.48808491230010986,
-0.07598570734262466,
-0.045787960290908813,
0.03220917284488678,
0.06141805276274681,
0.46089401841163635,
-0.04472164064645767,
-0.4533800184726715,
0.4179561734199524,
0.08108340203762054,
-0.506533682346344,
-0.18258053064346313,
0.5180667042732239,
-0.8593900203704834,
-0.021736571565270424,
-0.4871465861797333,
-0.7168577909469604,
-0.010636625811457634,
0.3921823799610138,
0.8110137581825256,
0.6759710907936096,
-0.4414602220058441,
0.5068375468254089,
0.9164219498634338,
-0.32339179515838623,
0.3634537160396576,
0.7818045616149902,
-0.3057103455066681,
-0.6636984348297119,
0.9049311280250549,
0.1308639794588089,
0.36614668369293213,
0.7017515301704407,
0.10955695062875748,
-0.21465706825256348,
-0.751708447933197,
-0.8080701231956482,
0.303641140460968,
-0.23263998329639435,
-0.21214559674263,
-0.6454268097877502,
-0.07400743663311005,
-0.35377687215805054,
0.34886449575424194,
-0.5287378430366516,
-0.7472187280654907,
-0.15317291021347046,
-0.245479553937912,
0.23434507846832275,
0.2700190246105194,
-0.06939177960157394,
0.44939079880714417,
-1.1502776145935059,
0.17229828238487244,
-0.1392812281847,
0.27274981141090393,
-0.5095584988594055,
-0.9183143377304077,
-0.5598783493041992,
0.07155129313468933,
-0.6466909050941467,
-0.7305053472518921,
0.584728479385376,
0.18230770528316498,
0.2688499987125397,
0.3768794536590576,
0.1492379903793335,
0.4089735746383667,
-0.7839462161064148,
1.0421479940414429,
-0.046198971569538116,
-0.8259389400482178,
0.39824986457824707,
-0.46316495537757874,
0.4529227018356323,
0.9332641363143921,
0.398748517036438,
-0.4749343693256378,
-0.5368517637252808,
-0.7883847951889038,
-0.9291524291038513,
0.7900274991989136,
0.7836318016052246,
-0.19561845064163208,
0.2464074343442917,
-0.1465473622083664,
-0.024668212980031967,
0.15513825416564941,
-1.1877703666687012,
-0.31712043285369873,
0.07310222089290619,
-0.39774271845817566,
-0.23413591086864471,
-0.3235969543457031,
-0.23498494923114777,
-0.18463225662708282,
1.2250397205352783,
0.22707585990428925,
0.2204354852437973,
0.4555513858795166,
-0.19974111020565033,
-0.2643420696258545,
0.3582938611507416,
1.110275149345398,
0.5166043043136597,
-0.500961184501648,
-0.2115822434425354,
0.35829806327819824,
-0.5090419054031372,
-0.21365207433700562,
0.14927567541599274,
-0.4398811459541321,
0.37440353631973267,
0.5351062417030334,
1.191330075263977,
0.3218894898891449,
-0.6864491701126099,
0.5583727955818176,
-0.4237387478351593,
-0.521374523639679,
-0.7824171185493469,
-0.18033072352409363,
0.18202924728393555,
0.09521619230508804,
0.30396994948387146,
0.1158832386136055,
0.20270559191703796,
-0.16794823110103607,
0.2727782726287842,
0.0380660705268383,
-0.7163013219833374,
-0.6461251974105835,
0.4510728120803833,
0.10753799229860306,
-0.3491595983505249,
0.5704545974731445,
-0.4525710642337799,
-0.6196869611740112,
0.358873188495636,
0.14478693902492523,
1.1690852642059326,
-0.30592072010040283,
-0.1979186236858368,
0.8286569118499756,
0.6431252360343933,
-0.23729783296585083,
0.536137580871582,
0.14593659341335297,
-0.7233699560165405,
-0.6480573415756226,
-0.8335846662521362,
-0.1486952006816864,
0.1014954000711441,
-0.9340773224830627,
0.38042035698890686,
0.3437900245189667,
0.029264232143759727,
-0.3984346091747284,
0.3243101239204407,
-0.5799592733383179,
0.16164614260196686,
-0.3142631947994232,
1.2369790077209473,
-1.066737413406372,
1.0024198293685913,
0.5229706168174744,
-0.2908872663974762,
-0.9895793795585632,
-0.268598735332489,
-0.2522454559803009,
-0.5465773940086365,
0.6385630965232849,
0.20563288033008575,
0.3366146385669708,
-0.16359081864356995,
-0.22531965374946594,
-0.8884344100952148,
1.2917953729629517,
0.18091490864753723,
-0.8285027146339417,
0.042074140161275864,
0.25395044684410095,
0.5314006805419922,
-0.41302165389060974,
0.17649629712104797,
0.45506834983825684,
0.8175287246704102,
0.056773461401462555,
-1.1935404539108276,
-0.2462989091873169,
-0.5905349850654602,
-0.3770162761211395,
0.6012898087501526,
-0.6642999053001404,
1.012537956237793,
0.45204609632492065,
-0.21947762370109558,
0.10465998947620392,
0.825606644153595,
0.4011625349521637,
0.4327535629272461,
0.5492993593215942,
1.267496109008789,
0.5009555220603943,
-0.46330133080482483,
1.0044838190078735,
-0.3386850357055664,
0.4929901957511902,
1.298997163772583,
-0.07425054907798767,
1.121971845626831,
0.3734848201274872,
-0.18346041440963745,
0.5630876421928406,
0.709447979927063,
-0.31787359714508057,
0.46375542879104614,
0.11964656412601471,
0.1625853180885315,
-0.14053550362586975,
0.3576558828353882,
-0.7809115648269653,
0.23674020171165466,
0.2815561592578888,
-0.16745519638061523,
0.1643494814634323,
-0.11311623454093933,
0.04916821047663689,
-0.05917473882436752,
-0.09677030891180038,
0.5883228778839111,
0.0830695852637291,
-0.5965427160263062,
0.7775990962982178,
-0.06524645537137985,
0.7074537873268127,
-0.7357177734375,
0.1616060584783554,
-0.10777434706687927,
0.20056460797786713,
-0.04811433330178261,
-0.5898373126983643,
0.4709565043449402,
-0.05976344645023346,
-0.28322508931159973,
-0.3588598668575287,
0.23059211671352386,
-0.6809307336807251,
-0.9533222317695618,
0.34755948185920715,
0.49152299761772156,
0.4156734049320221,
-0.013975633308291435,
-0.9976571202278137,
0.002567933639511466,
0.1891757994890213,
-0.7516885995864868,
0.09666715562343597,
0.9819673895835876,
0.24827945232391357,
0.5402523875236511,
0.684431791305542,
0.19878806173801422,
0.3323057293891907,
-0.05420332029461861,
0.7754422426223755,
-0.5666388273239136,
-0.42074766755104065,
-0.7784304022789001,
0.926066517829895,
-0.13979384303092957,
-0.7793673276901245,
0.8901503086090088,
1.19920015335083,
1.1038429737091064,
-0.18558984994888306,
0.31559017300605774,
-0.05360642448067665,
0.7775172591209412,
-0.6871262192726135,
0.6543459296226501,
-0.9726575016975403,
0.2768130898475647,
-0.09512525796890259,
-1.0013811588287354,
-0.2392696738243103,
0.4008850157260895,
-0.24168525636196136,
-0.3954504430294037,
0.9092824459075928,
0.8102160096168518,
-0.20789344608783722,
-0.165790393948555,
0.37704452872276306,
0.34648457169532776,
0.1514870673418045,
0.697147011756897,
0.49620041251182556,
-1.1735495328903198,
0.557396411895752,
-0.23636303842067719,
-0.08208611607551575,
-0.09023973345756531,
-0.6925563812255859,
-0.8914268016815186,
-0.6917763352394104,
-0.1913323551416397,
-0.24488943815231323,
-0.30110591650009155,
0.8996323943138123,
0.5759504437446594,
-1.0026390552520752,
-0.597821056842804,
0.027813831344246864,
0.07711046934127808,
-0.2184474915266037,
-0.2894439697265625,
0.6985686421394348,
-0.423869788646698,
-1.0439741611480713,
0.5610144734382629,
0.05115564540028572,
-0.16626378893852234,
-0.044110871851444244,
-0.38899388909339905,
-0.504181981086731,
-0.07003702968358994,
0.34074461460113525,
0.06631328910589218,
-0.5356531143188477,
0.14269280433654785,
0.2874879837036133,
-0.17561779916286469,
0.3671581745147705,
0.4792171120643616,
-0.2803610861301422,
0.21373338997364044,
0.9188554883003235,
0.41421785950660706,
0.5507025718688965,
-0.14693722128868103,
0.6752058267593384,
-0.7177908420562744,
0.3132536709308624,
0.3368847668170929,
0.6405543684959412,
0.346733033657074,
-0.09883695840835571,
0.9016120433807373,
0.22411733865737915,
-0.8404359817504883,
-1.1313835382461548,
0.09667210280895233,
-1.2855985164642334,
0.0001861504279077053,
1.029697299003601,
-0.3871513307094574,
-0.2844572961330414,
0.3399962782859802,
-0.1677180826663971,
0.1960044950246811,
-0.3593999147415161,
0.4400191903114319,
0.9245413541793823,
0.4374736547470093,
0.08164972066879272,
-0.8181056976318359,
0.4373549222946167,
0.7486492991447449,
-0.7412935495376587,
-0.17230872809886932,
0.3106732964515686,
0.18373775482177734,
0.3445501923561096,
0.5630369782447815,
-0.37063127756118774,
0.14817295968532562,
-0.27562838792800903,
0.4520568251609802,
-0.07918534427881241,
-0.18172259628772736,
-0.37515076994895935,
-0.03586774691939354,
-0.02667902410030365,
-0.36760950088500977
] |
mosaicml/mpt-7b-8k | mosaicml | "2023-10-30T21:53:51Z" | 11,930 | 20 | transformers | [
"transformers",
"pytorch",
"mpt",
"text-generation",
"Composer",
"MosaicML",
"llm-foundry",
"StreamingDatasets",
"custom_code",
"dataset:mc4",
"dataset:c4",
"dataset:togethercomputer/RedPajama-Data-1T",
"dataset:bigcode/the-stack",
"dataset:allenai/s2orc",
"arxiv:2108.12409",
"arxiv:2302.13971",
"arxiv:2205.14135",
"arxiv:2010.04245",
"arxiv:1909.08053",
"arxiv:2302.06675",
"license:apache-2.0",
"has_space",
"text-generation-inference",
"region:us"
] | text-generation | "2023-06-30T19:56:15Z" | ---
license: apache-2.0
tags:
- Composer
- MosaicML
- llm-foundry
- StreamingDatasets
datasets:
- mc4
- c4
- togethercomputer/RedPajama-Data-1T
- bigcode/the-stack
- allenai/s2orc
inference: false
---
# MPT-7B-8k
MPT-7B-8k is a decoder-style transformer pretrained starting from MPT-7B, but updating the sequence length to 8k and training for an additional 500B tokens, resulting in a total of 1.5T tokens of text and code.
This model was trained by [MosaicML](https://www.mosaicml.com).
MPT-7B-8k is part of the family of Mosaic Pretrained Transformer (MPT) models, which use a modified transformer architecture optimized for efficient training and inference.
These architectural changes include performance-optimized layer implementations and the elimination of context length limits by replacing
positional embeddings with Attention with Linear Biases ([ALiBi](https://arxiv.org/abs/2108.12409)).
Thanks to these modifications, MPT models can be trained with high throughput efficiency and stable convergence.
MPT models can also be served efficiently with both standard HuggingFace pipelines and NVIDIA's [FasterTransformer](https://github.com/NVIDIA/FasterTransformer).
This model uses the MosaicML LLM codebase, which can be found in the [llm-foundry repository](https://github.com/mosaicml/llm-foundry). It was trained by MosaicML’s NLP team on the [MosaicML platform](https://www.mosaicml.com/training) for LLM pretraining, finetuning, and inference.
### How is this model different?
MPT-7B-8k is
* **Licensed for the possibility of commercial use.**
* **Trained on a large amount of data** (1.5T tokens like [XGen](https://huggingface.co/Salesforce/xgen-7b-8k-base) vs. 1T for [LLaMA](https://arxiv.org/abs/2302.13971), 1T for [MPT-7B](https://www.mosaicml.com/blog/mpt-7b), 300B for [Pythia](https://github.com/EleutherAI/pythia), 300B for [OpenLLaMA](https://github.com/openlm-research/open_llama), and 800B for [StableLM](https://github.com/Stability-AI/StableLM)).
* **Prepared to handle long inputs** thanks to [ALiBi](https://arxiv.org/abs/2108.12409). With ALiBi, the model can extrapolate beyond the 8k training sequence length to up to 10k, and with a few million tokens it can be finetuned to extrapolate much further.
* **Capable of fast training and inference** via [FlashAttention](https://arxiv.org/pdf/2205.14135.pdf) and [FasterTransformer](https://github.com/NVIDIA/FasterTransformer)
* **Equipped with highly efficient open-source training code** via the [llm-foundry repository](https://github.com/mosaicml/llm-foundry)
### Models finetuned off MPT-7B-8k:
The following models are finetuned on MPT-7B-8k:
* [MPT-7B-8k-Instruct](https://huggingface.co/mosaicml/mpt-7b-8k-instruct): a model for long-form instruction following (especially summarization and question-answering).
Built by finetuning MPT-7B-8k on several carefully curated datasets.
* License: _CC-BY-SA-3.0_
* [MPT-7B-8k-Chat](https://huggingface.co/mosaicml/mpt-7b-8k-chat): a chatbot-like model for dialogue generation.
Built by finetuning MPT-7B-8k on approximately 1.5B tokens of chat data.
* License: _CC-By-NC-SA-4.0_
## Model Date
July 18, 2023
## Model License
Apache-2.0
## Documentation
* [Blog post: MPT-7B-8k](https://www.mosaicml.com/blog/long-context-mpt-7b-8k)
* [Codebase (mosaicml/llm-foundry repo)](https://github.com/mosaicml/llm-foundry/)
* Questions: Feel free to contact us via the [MosaicML Community Slack](https://mosaicml.me/slack)!
## How to Use
This model is best used with the MosaicML [llm-foundry repository](https://github.com/mosaicml/llm-foundry) for training and finetuning.
```python
import transformers
model = transformers.AutoModelForCausalLM.from_pretrained(
'mosaicml/mpt-7b-8k',
trust_remote_code=True
)
```
Note: This model requires that `trust_remote_code=True` be passed to the `from_pretrained` method.
This is because we use a custom `MPT` model architecture that is not yet part of the Hugging Face `transformers` package.
`MPT` includes options for many training efficiency features such as [FlashAttention](https://arxiv.org/pdf/2205.14135.pdf), [ALiBi](https://arxiv.org/abs/2108.12409), [QK LayerNorm](https://arxiv.org/abs/2010.04245), and more.
To use the optimized [triton implementation](https://github.com/openai/triton) of FlashAttention, you can load the model on GPU (`cuda:0`) with `attn_impl='triton'` and with `bfloat16` precision:
```python
import torch
import transformers
name = 'mosaicml/mpt-7b-8k'
config = transformers.AutoConfig.from_pretrained(name, trust_remote_code=True)
config.attn_config['attn_impl'] = 'triton'
config.init_device = 'cuda:0' # For fast initialization directly on GPU!
model = transformers.AutoModelForCausalLM.from_pretrained(
name,
config=config,
torch_dtype=torch.bfloat16, # Load model weights in bfloat16
trust_remote_code=True
)
```
Although the model was trained with a sequence length of 2048, ALiBi enables users to increase the maximum sequence length during finetuning and/or inference. For example:
```python
import transformers
name = 'mosaicml/mpt-7b-8k'
config = transformers.AutoConfig.from_pretrained(name, trust_remote_code=True)
config.max_seq_len = 10000 # (input + output) tokens can now be up to 10000
model = transformers.AutoModelForCausalLM.from_pretrained(
name,
config=config,
trust_remote_code=True
)
```
This model was trained with the MPT-7B-8k tokenizer which is identical to the [EleutherAI/gpt-neox-20b](https://huggingface.co/EleutherAI/gpt-neox-20b) tokenizer.
```python
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('mosaicml/mpt-7b-8k')
```
The model can then be used, for example, within a text-generation pipeline.
Note: when running Torch modules in lower precision, it is best practice to use the [torch.autocast context manager](https://pytorch.org/docs/stable/amp.html).
```python
from transformers import pipeline
with torch.autocast('cuda', dtype=torch.bfloat16):
inputs = tokenizer('Here is a recipe for vegan banana bread:\n', return_tensors="pt").to('cuda')
outputs = model.generate(**inputs, max_new_tokens=100)
print(tokenizer.batch_decode(outputs, skip_special_tokens=True))
# or using the HF pipeline
pipe = pipeline('text-generation', model=model, tokenizer=tokenizer, device='cuda:0')
with torch.autocast('cuda', dtype=torch.bfloat16):
print(
pipe('Here is a recipe for vegan banana bread:\n',
max_new_tokens=100,
do_sample=True,
use_cache=True))
```
## Model Description
The architecture is a modification of a standard decoder-only transformer.
The model has been modified from a standard transformer in the following ways:
* It uses [FlashAttention](https://arxiv.org/pdf/2205.14135.pdf)
* It uses [ALiBi (Attention with Linear Biases)](https://arxiv.org/abs/2108.12409) and does not use positional embeddings
* It does not use biases
| Hyperparameter | Value |
|----------------|-------|
|n_parameters | 6.7B |
|n_layers | 32 |
| n_heads | 32 |
| d_model | 4096 |
| vocab size | 50432 |
| sequence length | 2048 |
## Training Data
### Streaming Datasets
Data was formatted using the MosaicML [StreamingDataset](https://github.com/mosaicml/streaming) library to host our data in object storage and efficiently stream it to our compute cluster during training.
StreamingDataset obviates the need to download the whole dataset before starting training, and allows instant resumption of training from any point in the dataset.
### Data Mix
The model was trained for ___T tokens. First it was trained for 1T tokens (with batch size 1760 and sequence length 2048) on the following data mix:
#### Data Mix for Original 1T Tokens Used to Train MPT-7B
| Data Source | Number of Tokens in Source | Proportion | Effective Number of Tokens | Epochs |
|-------------|----------------------------|------------|----------------------------|--------|
| mC4 3.1.0 - English | 417.99 B | 0.33 | 330 B | 0.14 |
| C4 - English - SemDedup 80% | 100.42 B | 0.299 | 299 B | 2.98 |
| RedPajama - CommonCrawl | 878.45 B | 0.1 | 100 B | 0.11 |
| The Stack - Selected Languages | 463.78 B | 0.1 | 100 B | 0.22 |
| RedPajama - Wikipedia - En | 4.87 B | 0.04 | 40 B | 8.21 |
| The Stack - Markdown | 107.07 B | 0.035 | 35 B | 0.33 |
| S2ORC | 48.85 B | 0.033 | 33 B | 0.68 |
| RedPajama - Books | 26.02 B | 0.03 | 30B | 1.15 |
| RedPajama - arXiv | 28.10 B | 0.019 | 19 B | 0.68 |
| RedPajama - StackExchange | 20.54 B | 0.014 | 14 B |0.68 |
#### Data Mix for Additional 500B Tokens Used to Further Train MPT-7B-8k
We took 80B tokens from document samples that were longer than 4096 tokens, and 120B tokens with varying document sample lengths that matched the "baseline" length distribution for a total of 200B tokens in a single dataset.
We then trained MPT-7B for 500B tokens with a maximum sequence length of 8192, resulting in MPT-7B-8k. Since we trained for 500B tokens using 200B tokens, nearly every subset was trained on for exactly 2.5 epochs.
| Sequence Length Distribution | Number of Tokens in Source (Billion) | Proportion | Effective Number of Tokens (Billion) | Epochs |
|---|---|---|---|---|
| mC4 3.1.0 - English (200+ words) - Baseline | 33.60 | 16.80% | 84.00 | 2.50 |
| mC4 3.1.0 - English (200+ words) - ≥4096 tokens | 23.04 | 11.52% | 57.60 | 2.50 |
| c4 - English - SemDedup 80% - Baseline | 30.12 | 15.06% | 75.30 | 2.50 |
| c4 - English - SemDedup 80% - ≥4096 tokens | 0.92 | 0.46% | 2.30 | 2.50 |
| RedPajama - CommonCrawl - Baseline | 8.52 | 4.26% | 21.30 | 2.50 |
| RedPajama - CommonCrawl - ≥4096 tokens | 12.80 | 6.40% | 32.00 | 2.50 |
| The Stack - Selected Languages - Baseline | 30.00 | 15.00% | 75.00 | 2.50 |
| The Stack - Selected Languages - ≥4096 tokens | 10.00 | 5.00% | 25.00 | 2.50 |
| RedPajama - Wikipedia - Baseline | 3.60 | 1.80% | 9.00 | 2.50 |
| RedPajama - Wikipedia - ≥4096 tokens | 1.04 | 0.52% | 2.60 | 2.50 |
| The Stack - Markdown - Baseline | 4.50 | 2.25% | 11.25 | 2.50 |
| The Stack - Markdown - ≥4096 tokens | 8.00 | 4.00% | 20.00 | 2.50 |
| Semantic Scholar ORC - Baseline | 3.30 | 1.65% | 8.25 | 2.50 |
| Semantic Scholar ORC - ≥4096 tokens | 8.00 | 4.00% | 20.00 | 2.50 |
| RedPajama - Books - Baseline | 3.00 | 1.50% | 7.50 | 2.50 |
| RedPajama - Books - ≥4096 tokens | 8.00 | 4.00% | 20.00 | 2.50 |
| RedPajama - arXiv - Baseline | 1.92 | 0.96% | 4.80 | 2.50 |
| RedPajama - arXiv - ≥4096 tokens | 5.40 | 2.70% | 13.50 | 2.50 |
| RedPajama - StackExchange - Baseline | 1.44 | 0.72% | 3.60 | 2.50 |
| RedPajama - StackExchange - ≥4096 tokens | 1.52 | 1.40% | 7.00 | 4.60 |
| N Training Tokens | 200 | 100.00% | | 2.5 epochs * 200B = 500B tokens |
Samples for each batch were selected from one of the datasets with the probability specified above.
The examples were shuffled within each dataset, and each example was constructed from as many sequences from that dataset as were necessary to fill the 2048 sequence length.
The data was tokenized using the [EleutherAI/gpt-neox-20b](https://huggingface.co/EleutherAI/gpt-neox-20b) tokenizer. This BPE tokenizer has a number of desirable characteristics,
most of which are relevant for tokenizing code:
(1) It was trained on a diverse mix of data that includes code (The Pile)
(2) It applies consistent space delimitation, unlike the GPT2 tokenizer which tokenizes inconsistently depending on the presence of prefix spaces
(3) It contains tokens for repeated space characters, which allows superior compression of text with large amounts of repeated space characters.
The model vocabulary size of 50432 was set to be a multiple of 128 (as in [MEGATRON-LM](https://arxiv.org/abs/1909.08053)), model flop utilization (MFU) increased by up to four percentage points.
### Training Configuration
This model was trained on 440 A100-40GBs for about 9.5 days using the [MosaicML Platform](https://www.mosaicml.com/platform).
The model was trained with sharded data parallelism using [FSDP](https://pytorch.org/docs/stable/fsdp.html) and used the [LION](https://arxiv.org/abs/2302.06675) optimizer.
## Limitations and Biases
_The following language is modified from [EleutherAI's GPT-NeoX-20B](https://huggingface.co/EleutherAI/gpt-neox-20b)_
MPT-7B-8k is **not** intended for deployment without finetuning.
It should not be used for human-facing interactions without further guardrails and user consent.
MPT-7B-8k can produce factually incorrect output, and should not be relied on to produce factually accurate information.
MPT-7B-8k was trained on various public datasets.
While great efforts have been taken to clean the pretraining data, it is possible that this model could generate lewd, biased or otherwise offensive outputs.
## MosaicML Platform
If you're interested in [training](https://www.mosaicml.com/training) and [deploying](https://www.mosaicml.com/inference) your own MPT or LLMs on the MosaicML Platform, [sign up here](https://www.mosaicml.com/get-started?utm_source=huggingface&utm_medium=referral&utm_campaign=mpt-7b-8k).
## Disclaimer
The license on this model does not constitute legal advice. We are not responsible for the actions of third parties who use this model. Please cosult an attorney before using this model for commercial purposes.
## Citation
Please cite this model using the following format:
```
@online{MosaicML2023Introducing,
author = {MosaicML NLP Team},
title = {Introducing MPT-7B: A New Standard for Open-Source,
ly Usable LLMs},
year = {2023},
url = {www.mosaicml.com/blog/mpt-7b},
note = {Accessed: 2023-03-28}, % change this date
urldate = {2023-03-28} % change this date
}
```
| [
-0.4243760406970978,
-0.4599936306476593,
0.18971818685531616,
0.25628769397735596,
-0.3801315426826477,
0.05023349076509476,
-0.091971755027771,
-0.2280772179365158,
0.076869897544384,
0.29385727643966675,
-0.6078616976737976,
-0.49296852946281433,
-0.7205705642700195,
0.02208005264401436,
-0.2770948112010956,
0.9683338403701782,
-0.02507607638835907,
0.08444686979055405,
0.12389516085386276,
-0.09444668889045715,
-0.20822355151176453,
-0.4375247359275818,
-0.6692787408828735,
-0.31933239102363586,
0.5555551648139954,
0.17035529017448425,
0.6789795160293579,
0.8495103120803833,
0.4708496630191803,
0.3335832953453064,
-0.18815521895885468,
0.1859726756811142,
-0.5472496151924133,
-0.33552834391593933,
0.21633899211883545,
-0.4267942011356354,
-0.47279632091522217,
0.15351255238056183,
0.5292401909828186,
0.30022159218788147,
-0.10421635955572128,
0.47269782423973083,
-0.015286397188901901,
0.3552735149860382,
-0.4353764057159424,
0.32713553309440613,
-0.4572816491127014,
0.19729913771152496,
-0.2044222056865692,
-0.0065330276265740395,
-0.5765058398246765,
-0.25610265135765076,
0.03523331508040428,
-0.5517866611480713,
0.2745034992694855,
0.000616661855019629,
0.9648556113243103,
0.3798714280128479,
-0.4014415442943573,
0.05532463639974594,
-0.5103394985198975,
0.6496760249137878,
-0.8447999954223633,
0.4470302164554596,
0.21805407106876373,
0.28143078088760376,
0.02108587883412838,
-1.1155414581298828,
-0.6839920282363892,
-0.1592618077993393,
-0.07208339124917984,
0.36464354395866394,
-0.16749420762062073,
0.06142507493495941,
0.5225269794464111,
0.4609493315219879,
-0.6093761920928955,
-0.011645372956991196,
-0.46854737401008606,
-0.2608339786529541,
0.5007182359695435,
0.24069184064865112,
0.1898958683013916,
-0.3285064101219177,
-0.522061824798584,
-0.42112278938293457,
-0.6620475649833679,
0.09223345667123795,
0.2887706756591797,
-0.03831241652369499,
-0.4346044957637787,
0.5511878132820129,
-0.033095862716436386,
0.5125476121902466,
0.2222902476787567,
-0.1461239606142044,
0.43923652172088623,
-0.29183459281921387,
-0.3840938210487366,
-0.0076698134653270245,
0.9859223365783691,
0.2486758977174759,
-0.08377483487129211,
-0.014298196882009506,
-0.03037372976541519,
-0.04887882620096207,
0.029811101034283638,
-1.0656707286834717,
-0.32861053943634033,
0.23877349495887756,
-0.4778133034706116,
-0.1679665893316269,
0.061195969581604004,
-0.5406274795532227,
-0.20498187839984894,
-0.23322725296020508,
0.6140992045402527,
-0.6848599314689636,
-0.2537344694137573,
-0.015444944612681866,
-0.12592864036560059,
0.43048468232154846,
0.16083763539791107,
-0.9423835277557373,
0.02210531383752823,
0.505890429019928,
0.9821897745132446,
-0.20459948480129242,
-0.49966636300086975,
-0.2144218534231186,
-0.07733228802680969,
-0.03206855058670044,
0.5362541079521179,
-0.1333586424589157,
-0.18616370856761932,
-0.38238605856895447,
0.17166000604629517,
-0.3392696976661682,
-0.3817470073699951,
0.3268660306930542,
-0.383928507566452,
0.4148355722427368,
-0.18436096608638763,
-0.5017382502555847,
-0.2564862370491028,
0.14840653538703918,
-0.6193228960037231,
1.0711699724197388,
0.32026490569114685,
-0.8278271555900574,
0.3209826350212097,
-0.7833608984947205,
-0.11325028538703918,
-0.06739269196987152,
0.031975504010915756,
-0.7324453592300415,
-0.09783978015184402,
0.36174705624580383,
0.4717875123023987,
-0.2976802885532379,
0.24492552876472473,
-0.15578854084014893,
-0.5289838314056396,
0.12934920191764832,
-0.6587998270988464,
1.0200453996658325,
0.3566371500492096,
-0.7019187808036804,
0.22497306764125824,
-0.797491729259491,
-0.1178407147526741,
0.2529166340827942,
-0.4939126670360565,
0.5347329378128052,
-0.3016328513622284,
0.01796410046517849,
0.2589792013168335,
0.10503862798213959,
-0.5692377686500549,
0.14883124828338623,
-0.49756214022636414,
0.635839581489563,
0.8023017048835754,
-0.1471763551235199,
0.29823875427246094,
-0.3861558139324188,
0.3917646110057831,
0.24934323132038116,
0.41511669754981995,
-0.27338430285453796,
-0.6968823671340942,
-0.996105968952179,
-0.4090633690357208,
0.39999330043792725,
0.45489048957824707,
-0.874523401260376,
0.3933526575565338,
-0.29087042808532715,
-0.7299171090126038,
-0.7514647245407104,
-0.08619904518127441,
0.41306912899017334,
0.5570330619812012,
0.5372439622879028,
-0.32631516456604004,
-0.6625401973724365,
-0.7441452145576477,
0.020017500966787338,
0.04578399658203125,
0.036629438400268555,
0.1904066652059555,
0.6151449680328369,
-0.26833412051200867,
0.8952820897102356,
-0.30180850625038147,
0.08118563890457153,
-0.2818126082420349,
0.1668684482574463,
0.5009704232215881,
0.5663678646087646,
0.5074319839477539,
-0.6869698166847229,
-0.6871669888496399,
-0.1548232138156891,
-0.6077354550361633,
0.14212673902511597,
-0.07261553406715393,
-0.16969209909439087,
0.20822429656982422,
0.19201403856277466,
-0.9289519190788269,
0.534312903881073,
0.5949614644050598,
-0.40380436182022095,
0.489308625459671,
-0.07161764055490494,
0.02837420254945755,
-1.3980584144592285,
0.1159633994102478,
-0.2117636352777481,
-0.20808103680610657,
-0.5708367228507996,
-0.18035641312599182,
0.13604050874710083,
-0.05389887094497681,
-0.8793657422065735,
0.5276986360549927,
-0.36967942118644714,
0.02463894709944725,
-0.14379815757274628,
-0.3081924617290497,
-0.0802357941865921,
0.878039538860321,
0.1513751745223999,
0.833020031452179,
0.4669366180896759,
-0.4278482496738434,
0.5121524930000305,
0.3453048765659332,
-0.3803570568561554,
0.07939974218606949,
-0.5812471508979797,
0.16273605823516846,
0.03870170935988426,
0.3050374984741211,
-0.9311355948448181,
-0.16078545153141022,
0.3978838324546814,
-0.555988609790802,
0.29851117730140686,
-0.28799116611480713,
-0.4800841510295868,
-0.5724489688873291,
-0.17381195724010468,
0.44783100485801697,
0.7514961361885071,
-0.8127731084823608,
0.6248236894607544,
0.04742121323943138,
0.22824379801750183,
-0.8044800758361816,
-0.7013587355613708,
-0.06944287568330765,
-0.3030255138874054,
-0.7501716017723083,
0.3695095181465149,
-0.07894854992628098,
0.21352694928646088,
-0.2650408148765564,
-0.07106523215770721,
0.13442757725715637,
-0.011227884329855442,
0.4447839558124542,
0.36175352334976196,
-0.28356146812438965,
-0.2332979291677475,
-0.14598773419857025,
-0.29273492097854614,
0.013048963621258736,
-0.3001815974712372,
0.9539452195167542,
-0.3180210292339325,
-0.3354780077934265,
-0.6257437467575073,
0.004222522489726543,
0.5463644862174988,
-0.2068297415971756,
1.0501450300216675,
1.1092724800109863,
-0.13732150197029114,
0.11332568526268005,
-0.6240881085395813,
-0.23484182357788086,
-0.5145643353462219,
0.3701631724834442,
-0.1733238250017166,
-0.747734546661377,
0.6488084197044373,
0.18308332562446594,
0.0424857996404171,
0.7087281346321106,
0.8610658049583435,
0.006863693241029978,
0.9912649393081665,
0.3216947615146637,
0.11008267104625702,
0.6097420454025269,
-0.7548275589942932,
0.042743440717458725,
-0.8672030568122864,
-0.3188715875148773,
-0.12744681537151337,
-0.30949050188064575,
-0.6178694367408752,
-0.49299895763397217,
0.24956132471561432,
-0.17294414341449738,
-0.6795085668563843,
0.5728021860122681,
-0.5763671398162842,
0.38154613971710205,
0.8056032657623291,
0.29860201478004456,
0.04389550909399986,
-0.06058564782142639,
-0.275587797164917,
0.08944904804229736,
-0.8909956216812134,
-0.3496010899543762,
1.2729471921920776,
0.4460664987564087,
0.5328436493873596,
-0.0034438325092196465,
0.6567411422729492,
-0.07495680451393127,
0.48818662762641907,
-0.4259291887283325,
0.3933928906917572,
0.1004638820886612,
-0.6682611703872681,
-0.038435161113739014,
-0.6125712394714355,
-0.7861546874046326,
0.299377977848053,
-0.24491702020168304,
-0.6532405018806458,
0.3329032361507416,
0.19353948533535004,
-0.5244961977005005,
0.6004698276519775,
-0.9314605593681335,
1.0877481698989868,
-0.23083561658859253,
-0.4020962417125702,
0.16080915927886963,
-0.8295465707778931,
0.3484121859073639,
0.04370027408003807,
-0.0947720929980278,
-0.0646056979894638,
0.25672638416290283,
0.844319224357605,
-0.5355568528175354,
0.8252695202827454,
-0.20669589936733246,
0.26053550839424133,
0.3335438072681427,
-0.18078450858592987,
0.4821341037750244,
-0.03226887434720993,
0.018210014328360558,
0.30051058530807495,
0.04511887952685356,
-0.40272173285484314,
-0.349104106426239,
0.46561628580093384,
-1.1299694776535034,
-0.5225470066070557,
-0.4999472498893738,
-0.5833644866943359,
0.07256097346544266,
0.19435451924800873,
0.701032280921936,
0.31513655185699463,
0.10483141243457794,
0.3287646174430847,
0.6055011749267578,
-0.35361766815185547,
0.7352579236030579,
0.15989714860916138,
0.010957532562315464,
-0.5705833435058594,
0.8482699394226074,
-0.0005859040538780391,
0.3537205755710602,
0.21926292777061462,
0.12566371262073517,
-0.36258089542388916,
-0.5313370823860168,
-0.5193027853965759,
0.282347708940506,
-0.6332821846008301,
-0.3971116244792938,
-0.6350076198577881,
-0.5041050910949707,
-0.49407467246055603,
0.13655808568000793,
-0.6223440170288086,
-0.426984578371048,
-0.46544700860977173,
-0.09118863940238953,
0.3712061643600464,
0.47711214423179626,
0.004796015564352274,
0.6930922865867615,
-0.7747553586959839,
0.18203425407409668,
0.2576860189437866,
0.3813011944293976,
0.07040199637413025,
-0.8259648680686951,
-0.36469683051109314,
0.17070911824703217,
-0.5969782471656799,
-0.7417423129081726,
0.6201317310333252,
0.03198441490530968,
0.45644405484199524,
0.3478875458240509,
-0.18133240938186646,
0.7164963483810425,
-0.4282630980014801,
0.9458633065223694,
0.35639292001724243,
-0.8227470517158508,
0.24746426939964294,
-0.30552902817726135,
0.41081562638282776,
0.28815972805023193,
0.43220648169517517,
-0.4596249461174011,
-0.10547799617052078,
-0.7702329754829407,
-0.7362735867500305,
1.016348123550415,
0.5326628684997559,
0.06390193849802017,
-0.009258875623345375,
0.3776717782020569,
0.029447127133607864,
0.1262873113155365,
-1.1221587657928467,
-0.3556978106498718,
-0.6277002096176147,
-0.3988395929336548,
-0.10803638398647308,
-0.12704451382160187,
-0.0731196179986,
-0.5854499936103821,
0.7654833197593689,
0.013787906616926193,
0.6750714182853699,
0.18579359352588654,
-0.32045331597328186,
0.07897214591503143,
-0.059118352830410004,
0.5420254468917847,
0.629979133605957,
-0.31660228967666626,
0.03757430613040924,
0.28537678718566895,
-0.7511879801750183,
0.07661523669958115,
0.23562952876091003,
-0.05785943195223808,
-0.1826609969139099,
0.27535271644592285,
1.1834313869476318,
0.013472309336066246,
-0.35252270102500916,
0.5176821947097778,
-0.17968052625656128,
-0.2619767487049103,
-0.2079971581697464,
0.12589137256145477,
0.35676810145378113,
0.497654527425766,
0.2095049023628235,
0.04220788553357124,
-0.20937253534793854,
-0.42148903012275696,
0.14871589839458466,
0.1644269973039627,
-0.17141284048557281,
-0.2859438955783844,
0.9142873287200928,
0.02886153571307659,
-0.26449301838874817,
0.8568857312202454,
-0.03641710430383682,
-0.5346225500106812,
0.6987069845199585,
0.6351297497749329,
0.7933544516563416,
-0.2687596380710602,
0.13086970150470734,
0.41935011744499207,
0.23616361618041992,
-0.11710325628519058,
0.007249963004142046,
-0.09427742660045624,
-0.6710814237594604,
-0.4471883475780487,
-0.7503412961959839,
-0.2606697380542755,
-0.005543559789657593,
-0.39626410603523254,
0.3320387899875641,
-0.413974791765213,
-0.2762652337551117,
-0.11777594685554504,
0.1062355563044548,
-0.810688853263855,
0.1550748348236084,
0.37635675072669983,
0.9383599758148193,
-0.6511557698249817,
0.9964638352394104,
0.2905474603176117,
-0.5308225154876709,
-0.9728845357894897,
-0.44362780451774597,
-0.13032612204551697,
-1.0309762954711914,
0.46991097927093506,
0.3303629159927368,
0.22831392288208008,
0.14218921959400177,
-0.6166038513183594,
-0.970958948135376,
1.615724802017212,
0.5757691860198975,
-0.41012677550315857,
-0.2091701179742813,
0.4910055696964264,
0.4292812943458557,
-0.3735073506832123,
0.622831404209137,
0.6418672800064087,
0.3543279469013214,
0.42429131269454956,
-0.8259117007255554,
0.04879217594861984,
-0.34046363830566406,
-0.06175244227051735,
0.079502172768116,
-0.8432413935661316,
1.1213178634643555,
-0.06214010715484619,
-0.05497441440820694,
0.09477779269218445,
0.6782378554344177,
0.310241162776947,
0.21870796382427216,
0.29357194900512695,
0.8187317848205566,
0.5641388893127441,
-0.3469425439834595,
1.1110482215881348,
-0.36352279782295227,
0.6068589091300964,
0.9097897410392761,
0.27463850378990173,
0.5666779279708862,
0.3543490767478943,
-0.13608092069625854,
0.3936125636100769,
1.003210186958313,
-0.3178279995918274,
0.4647582471370697,
-0.0645025223493576,
-0.13829679787158966,
-0.21059733629226685,
0.2980630397796631,
-0.47540920972824097,
0.32985833287239075,
0.18387581408023834,
-0.5761806964874268,
-0.07528667151927948,
0.12137828022241592,
0.09977325052022934,
-0.5738731622695923,
-0.2458457201719284,
0.593955934047699,
0.1217377707362175,
-0.6015145778656006,
0.7677616477012634,
-0.03819843754172325,
0.6787086725234985,
-0.5384931564331055,
0.12323061376810074,
-0.3043517768383026,
0.24246281385421753,
-0.27355682849884033,
-0.626124382019043,
0.20833198726177216,
-0.09031588584184647,
0.08918222784996033,
-0.22571304440498352,
0.33163151144981384,
-0.3012208640575409,
-0.4410412013530731,
0.12360754609107971,
0.25471073389053345,
0.15614572167396545,
-0.11214379966259003,
-0.852821946144104,
0.04025903344154358,
0.09311550855636597,
-0.5312528610229492,
0.21536162495613098,
0.1540575623512268,
0.2671523988246918,
0.6160730123519897,
0.7356612682342529,
-0.15798160433769226,
0.4470751881599426,
-0.11286774277687073,
0.9599784016609192,
-0.7106087803840637,
-0.32818803191185,
-0.9700759649276733,
0.7013420462608337,
-0.0018622467759996653,
-0.3829045593738556,
0.7259243726730347,
0.683627724647522,
0.8425554633140564,
-0.03359103202819824,
0.4189155399799347,
-0.08193865418434143,
0.15589584410190582,
-0.498366117477417,
0.8133525252342224,
-0.35778355598449707,
0.24862542748451233,
-0.17493832111358643,
-1.1262677907943726,
-0.29410219192504883,
0.5878201127052307,
-0.3776615858078003,
0.1682615876197815,
0.6120613813400269,
0.7815731167793274,
-0.2894285023212433,
0.1258784383535385,
0.1740589290857315,
0.37349095940589905,
0.35409173369407654,
0.7576923370361328,
0.7886717319488525,
-0.7089291214942932,
0.691252589225769,
-0.4866185784339905,
-0.0815666913986206,
-0.09307312965393066,
-0.6920723915100098,
-0.9991265535354614,
-0.5040497183799744,
-0.16310806572437286,
-0.4713810384273529,
-0.08829870074987411,
1.0785701274871826,
0.8522410988807678,
-0.6357458233833313,
-0.2535896599292755,
-0.045202985405921936,
-0.03738173842430115,
-0.07261589914560318,
-0.1749575287103653,
0.6097496151924133,
-0.07804316282272339,
-0.7131208181381226,
0.1194249838590622,
0.041270218789577484,
0.27194079756736755,
-0.11439283937215805,
-0.21869558095932007,
-0.31796419620513916,
-0.00019986012193839997,
0.5230047106742859,
0.21433493494987488,
-0.5377999544143677,
-0.21631324291229248,
0.05274719372391701,
-0.015860294923186302,
0.5494481921195984,
0.43642422556877136,
-0.6549802422523499,
0.25009727478027344,
0.319874107837677,
0.4704202115535736,
1.1436856985092163,
-0.06960680335760117,
0.3792881965637207,
-0.532173752784729,
0.23575055599212646,
0.21477164328098297,
0.49115580320358276,
0.2801116406917572,
-0.3129936158657074,
0.531883716583252,
0.40644344687461853,
-0.5831434726715088,
-0.764607310295105,
-0.04365384951233864,
-1.1182761192321777,
-0.030437162145972252,
1.0750223398208618,
-0.1799139678478241,
-0.5529776811599731,
0.25416091084480286,
-0.24607467651367188,
0.597479522228241,
-0.19239486753940582,
0.631158173084259,
0.52237468957901,
-0.12958483397960663,
-0.4894004464149475,
-0.3457595109939575,
0.5346441268920898,
0.31350961327552795,
-0.598909854888916,
-0.1639198660850525,
0.08320625871419907,
0.5181742310523987,
0.12965723872184753,
0.4528258144855499,
-0.16534321010112762,
0.3694652318954468,
0.012909100390970707,
0.19153349101543427,
-0.35644233226776123,
-0.12606991827487946,
-0.20126157999038696,
0.09924174845218658,
-0.31059420108795166,
-0.17485959827899933
] |
timm/sequencer2d_s.in1k | timm | "2023-04-26T21:44:30Z" | 11,917 | 0 | timm | [
"timm",
"pytorch",
"safetensors",
"image-classification",
"dataset:imagenet-1k",
"arxiv:2205.01972",
"license:apache-2.0",
"region:us"
] | image-classification | "2023-04-26T21:44:13Z" | ---
tags:
- image-classification
- timm
library_name: timm
license: apache-2.0
datasets:
- imagenet-1k
---
# Model card for sequencer2d_s.in1k
A Sequencer2d (LSTM based) image classification model. Trained on ImageNet-1k by paper authors.
## Model Details
- **Model Type:** Image classification / feature backbone
- **Model Stats:**
- Params (M): 27.7
- GMACs: 5.0
- Activations (M): 11.3
- Image size: 224 x 224
- **Papers:**
- Sequencer: Deep LSTM for Image Classification: https://arxiv.org/abs/2205.01972
- **Dataset:** ImageNet-1k
- **Original:** https://github.com/okojoalg/sequencer
## Model Usage
### Image Classification
```python
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model('sequencer2d_s.in1k', pretrained=True)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
```
### Feature Map Extraction
```python
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model(
'sequencer2d_s.in1k',
pretrained=True,
features_only=True,
)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
for o in output:
# print shape of each feature map in output
# e.g.:
# torch.Size([1, 32, 32, 192])
# torch.Size([1, 16, 16, 384])
# torch.Size([1, 16, 16, 384])
print(o.shape)
```
### Image Embeddings
```python
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model(
'sequencer2d_s.in1k',
pretrained=True,
num_classes=0, # remove classifier nn.Linear
)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor
# or equivalently (without needing to set num_classes=0)
output = model.forward_features(transforms(img).unsqueeze(0))
# output is unpooled, a (1, 16, 16, 384) shaped tensor
output = model.forward_head(output, pre_logits=True)
# output is a (1, num_features) shaped tensor
```
## Model Comparison
Explore the dataset and runtime metrics of this model in timm [model results](https://github.com/huggingface/pytorch-image-models/tree/main/results).
## Citation
```bibtex
@article{tatsunami2022sequencer,
title={Sequencer: Deep LSTM for Image Classification},
author={Tatsunami, Yuki and Taki, Masato},
journal={Advances in Neural Information Processing Systems},
year={2022}
}
```
| [
-0.4008457362651825,
-0.5093327164649963,
0.034316737204790115,
0.06779228150844574,
-0.4864555597305298,
-0.2856619656085968,
-0.20871081948280334,
-0.3648509383201599,
0.09254009276628494,
0.5173836350440979,
-0.40896111726760864,
-0.7078813910484314,
-0.7825467586517334,
-0.15922319889068604,
-0.18701453506946564,
0.996684730052948,
-0.03104386106133461,
0.10698715597391129,
-0.13645172119140625,
-0.47112974524497986,
-0.3080805838108063,
-0.24961575865745544,
-0.8517864346504211,
-0.3920823931694031,
0.19371026754379272,
0.26243290305137634,
0.5178835391998291,
0.6328497529029846,
0.5767473578453064,
0.452267587184906,
-0.1820479929447174,
0.037586040794849396,
-0.2614973783493042,
-0.0807090625166893,
0.37054991722106934,
-0.6467745304107666,
-0.3589634299278259,
0.10015235096216202,
0.7943345904350281,
0.33810123801231384,
0.20021392405033112,
0.4206233024597168,
0.15676482021808624,
0.6610410213470459,
-0.05320211127400398,
0.16922323405742645,
-0.2843441367149353,
0.31633180379867554,
-0.1534256786108017,
0.1271016150712967,
-0.27717325091362,
-0.5804165601730347,
0.18070320785045624,
-0.32043543457984924,
0.3846677541732788,
-0.13560141623020172,
1.1416575908660889,
0.34720543026924133,
-0.10031965374946594,
-0.10572047531604767,
-0.3445245325565338,
0.694023847579956,
-0.93499755859375,
0.2022710144519806,
0.24677059054374695,
0.15561312437057495,
-0.09485287219285965,
-1.0236235857009888,
-0.6218879222869873,
-0.015082965604960918,
-0.16090364754199982,
-0.08133361488580704,
-0.005427658092230558,
-0.06291618198156357,
0.4475223124027252,
0.39182019233703613,
-0.5894783735275269,
0.20307448506355286,
-0.6135591268539429,
-0.1254449337720871,
0.6161453127861023,
-0.039898477494716644,
0.29916414618492126,
-0.20046302676200867,
-0.5388476252555847,
-0.4896911084651947,
-0.32486897706985474,
0.3417830467224121,
0.26360127329826355,
0.2071123570203781,
-0.5932587385177612,
0.4991694390773773,
0.3264355957508087,
0.4177125096321106,
0.11388159543275833,
-0.3785642385482788,
0.6498658657073975,
0.08486147969961166,
-0.4678051769733429,
-0.03280218690633774,
1.0289640426635742,
0.3657706081867218,
0.2727106809616089,
0.23563235998153687,
-0.11005115509033203,
-0.383585125207901,
-0.16097137331962585,
-1.228027582168579,
-0.2723156213760376,
0.43007662892341614,
-0.6086001396179199,
-0.33570346236228943,
0.3561646640300751,
-0.7263738512992859,
-0.24276983737945557,
-0.03851950913667679,
0.5934955477714539,
-0.5025256872177124,
-0.3759332001209259,
-0.00564376637339592,
-0.18870292603969574,
0.44662055373191833,
0.026654664427042007,
-0.5113322138786316,
0.1512201577425003,
0.4040645956993103,
1.1710783243179321,
0.07285398244857788,
-0.34475085139274597,
-0.1571345329284668,
-0.38099420070648193,
-0.2680247724056244,
0.43200406432151794,
0.07630733400583267,
-0.2045654058456421,
-0.24418029189109802,
0.38607257604599,
-0.08428730815649033,
-0.7542586922645569,
0.20744124054908752,
-0.2798396944999695,
0.3124955892562866,
0.030222134664654732,
-0.4906140863895416,
-0.5271176695823669,
0.10386402159929276,
-0.4745560884475708,
1.3366060256958008,
0.35060372948646545,
-0.7644638419151306,
0.24561503529548645,
-0.5574135780334473,
-0.3003663122653961,
-0.2727247178554535,
-0.06627535074949265,
-1.1491403579711914,
-0.12053348124027252,
0.07461483776569366,
0.7950628399848938,
-0.22286993265151978,
0.161272794008255,
-0.43053045868873596,
-0.2941930592060089,
0.44368237257003784,
0.0634227842092514,
0.9237051010131836,
0.20660091936588287,
-0.4899844825267792,
0.24973033368587494,
-0.6065972447395325,
0.20765244960784912,
0.5506801009178162,
-0.3736583888530731,
0.009503967128694057,
-0.5950031280517578,
0.16239027678966522,
0.37108156085014343,
0.07761115580797195,
-0.45720356702804565,
0.3385196328163147,
-0.2870914041996002,
0.48790261149406433,
0.6215542554855347,
-0.13608361780643463,
0.319922536611557,
-0.3303558826446533,
0.22962968051433563,
0.3752075731754303,
0.028049549087882042,
-0.17981171607971191,
-0.644153892993927,
-0.8412390351295471,
-0.44490331411361694,
0.3775615096092224,
0.562611997127533,
-0.46650999784469604,
0.7205672860145569,
-0.15254953503608704,
-0.6645097136497498,
-0.5005959868431091,
0.15414555370807648,
0.5445933938026428,
0.512958288192749,
0.3560885190963745,
-0.6270993947982788,
-0.5595342516899109,
-0.8114649653434753,
0.074588842689991,
0.1312253177165985,
-0.014644840732216835,
0.2719533145427704,
0.6942416429519653,
-0.13990518450737,
0.6181256175041199,
-0.3729983866214752,
-0.30262669920921326,
-0.32615771889686584,
0.08550496399402618,
0.5591719746589661,
0.8922662734985352,
0.7110028266906738,
-0.5647976994514465,
-0.4101755619049072,
-0.28569743037223816,
-0.9698531031608582,
0.23486758768558502,
-0.1606869399547577,
-0.18070119619369507,
0.4512953758239746,
0.17950524389743805,
-0.6458386778831482,
0.6549663543701172,
0.06122855097055435,
-0.381597638130188,
0.38685283064842224,
-0.2781400978565216,
0.20038767158985138,
-1.250640630722046,
0.13668110966682434,
0.3208962678909302,
-0.15655937790870667,
-0.5018082857131958,
0.043864864856004715,
0.012492015957832336,
-0.04054277390241623,
-0.5943148136138916,
0.6582029461860657,
-0.5242162942886353,
-0.47136861085891724,
-0.15722016990184784,
-0.2863113284111023,
-0.023663252592086792,
0.7085406184196472,
0.006713517941534519,
0.38829880952835083,
0.7820863723754883,
-0.5574198365211487,
0.4638996720314026,
0.501751720905304,
-0.35243821144104004,
0.3115041255950928,
-0.6854324340820312,
0.35817545652389526,
-0.024947868660092354,
0.2908622622489929,
-1.108847975730896,
-0.282616525888443,
0.39070209860801697,
-0.5649324655532837,
0.7859731316566467,
-0.4869958460330963,
-0.4919126331806183,
-0.6883466839790344,
-0.4739922285079956,
0.46604254841804504,
0.9521883130073547,
-0.6919922828674316,
0.24918639659881592,
0.19809475541114807,
0.13394655287265778,
-0.4640551209449768,
-1.0108696222305298,
-0.2897627651691437,
-0.37778040766716003,
-0.6718509793281555,
0.27616921067237854,
0.11189081519842148,
0.1743895709514618,
0.04377220198512077,
-0.05913209542632103,
-0.08397921919822693,
-0.17719072103500366,
0.5669397115707397,
0.28945496678352356,
-0.36416706442832947,
-0.0880017951130867,
-0.28540316224098206,
-0.07925482094287872,
0.07896164804697037,
-0.3702603578567505,
0.6427387595176697,
-0.1818961203098297,
-0.23878289759159088,
-0.9518163800239563,
-0.08067384362220764,
0.4231155514717102,
-0.005457793362438679,
0.6852602958679199,
1.1919649839401245,
-0.5331844091415405,
0.01356449443846941,
-0.34397807717323303,
-0.3432106375694275,
-0.46229127049446106,
0.6102884411811829,
-0.31392383575439453,
-0.5488837361335754,
0.7466802000999451,
-0.03736499324440956,
-0.006258130539208651,
0.68487548828125,
0.450403094291687,
-0.14595679938793182,
0.6490123867988586,
0.4481240510940552,
0.1277572512626648,
0.571039617061615,
-1.0961021184921265,
-0.15294815599918365,
-0.8724275827407837,
-0.5327684879302979,
-0.2823945879936218,
-0.733381450176239,
-0.5943113565444946,
-0.5369133949279785,
0.37368640303611755,
0.31812575459480286,
-0.5245010256767273,
0.4823865294456482,
-0.8330148458480835,
0.12255488336086273,
0.767035722732544,
0.5710560083389282,
-0.4189971685409546,
0.24509426951408386,
-0.23749034106731415,
0.006442902609705925,
-0.6484383344650269,
-0.3305530250072479,
1.1361358165740967,
0.611732542514801,
0.5777555108070374,
-0.12823174893856049,
0.6925969123840332,
-0.08104120939970016,
0.10974717885255814,
-0.6704788208007812,
0.5773745775222778,
-0.236860454082489,
-0.33546432852745056,
-0.2180355191230774,
-0.1697889119386673,
-0.9713285565376282,
-0.021904008463025093,
-0.21821461617946625,
-0.7432745695114136,
0.17303189635276794,
0.14576226472854614,
-0.3202138841152191,
0.8022279739379883,
-0.6329565644264221,
0.9848122596740723,
-0.2732156217098236,
-0.32165032625198364,
0.06991773098707199,
-0.8692931532859802,
0.38090452551841736,
0.16525356471538544,
-0.17843912541866302,
-0.07624174654483795,
0.2770991325378418,
1.1273163557052612,
-0.6239979267120361,
0.9348997473716736,
-0.5562422871589661,
0.30340635776519775,
0.5365195870399475,
-0.1189296767115593,
0.3580409288406372,
-0.13999882340431213,
-0.08682079613208771,
0.3346143364906311,
0.0067347255535423756,
-0.42890673875808716,
-0.4478815197944641,
0.566074788570404,
-0.960591733455658,
-0.32674673199653625,
-0.4127691686153412,
-0.4029981195926666,
0.2820204496383667,
0.024707196280360222,
0.5425641536712646,
0.6080875992774963,
0.20281551778316498,
0.21263258159160614,
0.7044239044189453,
-0.512866199016571,
0.5138905048370361,
-0.24098046123981476,
-0.25154802203178406,
-0.5804177522659302,
0.736193835735321,
0.12794983386993408,
0.177151620388031,
0.06466007977724075,
0.1704198271036148,
-0.5172988772392273,
-0.5735092163085938,
-0.4448629915714264,
0.27920231223106384,
-0.7085024118423462,
-0.4753319025039673,
-0.5386809706687927,
-0.5541897416114807,
-0.562171459197998,
0.056501440703868866,
-0.41078048944473267,
-0.4455869793891907,
-0.47345539927482605,
0.1132713332772255,
0.8042659163475037,
0.6886534094810486,
-0.16587084531784058,
0.5274769067764282,
-0.6991927027702332,
0.19407960772514343,
0.1268341988325119,
0.4776100814342499,
-0.12410978227853775,
-1.056528925895691,
-0.21717430651187897,
-0.09793228656053543,
-0.47082605957984924,
-0.7659563422203064,
0.5467455983161926,
0.28654101490974426,
0.4172719120979309,
0.4890705645084381,
-0.3164012134075165,
0.7570894956588745,
-0.08261942118406296,
0.6474723219871521,
0.3071378171443939,
-0.6278484463691711,
0.7552116513252258,
0.1347353756427765,
0.16593560576438904,
0.004006825387477875,
0.32833120226860046,
-0.26818278431892395,
0.014845538884401321,
-0.8821336030960083,
-0.8383851051330566,
0.9239283204078674,
0.05032692104578018,
-0.018045170232653618,
0.32162177562713623,
0.8246176242828369,
0.15875858068466187,
0.051589544862508774,
-0.7204731702804565,
-0.4690547585487366,
-0.3715899884700775,
-0.3310450613498688,
-0.08031788468360901,
-0.2491384893655777,
0.04377938061952591,
-0.6492331624031067,
0.6869854927062988,
-0.037112317979335785,
0.828406572341919,
0.39093324542045593,
-0.11720611900091171,
-0.12135560810565948,
-0.32196494936943054,
0.6055808067321777,
0.14062148332595825,
-0.3243134319782257,
0.03499137982726097,
0.14088615775108337,
-0.5044035911560059,
0.13799560070037842,
0.17694374918937683,
-0.0023891839664429426,
0.03730379790067673,
0.47946029901504517,
1.050464391708374,
0.07092936336994171,
-0.002747754566371441,
0.42442524433135986,
0.11915774643421173,
-0.3250269591808319,
-0.32642611861228943,
0.16964837908744812,
0.005469293799251318,
0.5392920970916748,
0.317887544631958,
0.2910292446613312,
-0.15798325836658478,
-0.3390810787677765,
0.37230297923088074,
0.48146700859069824,
-0.29347336292266846,
-0.35245946049690247,
0.740561842918396,
-0.1948818862438202,
-0.298690527677536,
0.8800818920135498,
-0.13352958858013153,
-0.5685792565345764,
1.2419984340667725,
0.5114256739616394,
0.9811664819717407,
-0.06760543584823608,
-0.03918057307600975,
0.8817787766456604,
0.06404286623001099,
-0.10927101224660873,
0.33913683891296387,
0.2304782122373581,
-0.7289272546768188,
0.10070497542619705,
-0.6589070558547974,
0.11136316508054733,
0.4593975841999054,
-0.5420339107513428,
0.31167304515838623,
-0.8191447257995605,
-0.39592286944389343,
0.09687842428684235,
0.24925021827220917,
-0.9578301310539246,
0.18510639667510986,
0.09682370722293854,
0.8899973034858704,
-0.7319937944412231,
0.8965961337089539,
0.7706897258758545,
-0.5796633362770081,
-0.9424670338630676,
-0.18546177446842194,
0.09388869255781174,
-1.0579910278320312,
0.6777479648590088,
0.593768298625946,
0.4018195867538452,
0.09287930279970169,
-0.7337357401847839,
-0.6137371063232422,
1.5236341953277588,
0.3289010226726532,
-0.23433183133602142,
0.3585268259048462,
0.1034882590174675,
0.26734423637390137,
-0.5207642912864685,
0.44264617562294006,
0.37568145990371704,
0.4516543745994568,
0.3853451609611511,
-0.671440601348877,
0.31854504346847534,
-0.2316308170557022,
0.21942614018917084,
0.2124474048614502,
-0.7145714163780212,
0.8724258542060852,
-0.7027373909950256,
-0.198782816529274,
0.29687225818634033,
0.7028110027313232,
0.28992798924446106,
0.29189878702163696,
0.44603249430656433,
0.9030295014381409,
0.5926608443260193,
-0.34013083577156067,
0.8163045048713684,
-0.021564513444900513,
0.625127911567688,
0.7383008003234863,
0.17685577273368835,
0.6008297204971313,
0.3544695973396301,
-0.3490079343318939,
0.39975476264953613,
1.2222951650619507,
-0.5399850606918335,
0.420602947473526,
0.34316349029541016,
0.08210794627666473,
0.05456957593560219,
0.18916067481040955,
-0.560880720615387,
0.4159466028213501,
0.23686015605926514,
-0.6717565059661865,
-0.057600200176239014,
0.06522384285926819,
-0.03634832426905632,
-0.31536999344825745,
-0.17311139404773712,
0.6539031863212585,
0.046306975185871124,
-0.3447498083114624,
0.8007983565330505,
0.06310231983661652,
0.8772289752960205,
-0.2716788053512573,
0.010355758480727673,
-0.31703582406044006,
0.2518872320652008,
-0.3453097939491272,
-0.963025689125061,
0.3275502324104309,
-0.2741263210773468,
-0.008708419278264046,
0.010645624250173569,
0.6800327897071838,
-0.4859183132648468,
-0.4631552994251251,
0.15690526366233826,
0.3440897762775421,
0.6740134358406067,
0.1057804599404335,
-1.2322609424591064,
0.08569685369729996,
0.0207112617790699,
-0.5613606572151184,
0.3138105273246765,
0.3596576452255249,
0.10982703417539597,
0.6540067791938782,
0.6437305212020874,
-0.1679941564798355,
0.1085924431681633,
-0.11201386898756027,
0.6816052198410034,
-0.7079161405563354,
-0.24508501589298248,
-0.8717348575592041,
0.6870083212852478,
-0.058215126395225525,
-0.5137768387794495,
0.3253609240055084,
0.6743550300598145,
0.8579837679862976,
-0.20875339210033417,
0.5446868538856506,
-0.2169191539287567,
0.08055351674556732,
-0.5528371930122375,
0.7472984790802002,
-0.5237856507301331,
-0.007697342894971371,
-0.07506079971790314,
-0.7451027035713196,
-0.3801538944244385,
0.7195826172828674,
-0.0786699652671814,
0.4123077094554901,
0.49643784761428833,
0.9798494577407837,
-0.22152204811573029,
-0.313304603099823,
0.11538538336753845,
0.3314261734485626,
0.030427001416683197,
0.487427294254303,
0.39663317799568176,
-0.8643914461135864,
0.1541038304567337,
-0.595346987247467,
-0.13097190856933594,
-0.20420752465724945,
-0.6764212846755981,
-1.0051718950271606,
-0.858790397644043,
-0.6998836994171143,
-0.7252711057662964,
-0.13602665066719055,
1.0771180391311646,
0.9979225993156433,
-0.8586979508399963,
-0.19078277051448822,
0.1011481061577797,
0.17974700033664703,
-0.20005974173545837,
-0.24784117937088013,
0.7289215922355652,
-0.16871249675750732,
-0.7451456785202026,
-0.2951556444168091,
0.005778549239039421,
0.5653019547462463,
-0.016721727326512337,
-0.31629258394241333,
-0.17900584638118744,
-0.35024431347846985,
0.2746877372264862,
0.45191696286201477,
-0.8038895726203918,
-0.20486433804035187,
-0.3005335032939911,
-0.1375543624162674,
0.4531928300857544,
0.4782263934612274,
-0.5819718241691589,
0.16937987506389618,
0.4153955578804016,
0.4314144551753998,
0.809540331363678,
-0.3282243311405182,
-0.0004593881603796035,
-0.8568940162658691,
0.5339500904083252,
-0.1771528571844101,
0.44600972533226013,
0.43834567070007324,
-0.4245387017726898,
0.6235073208808899,
0.4692290723323822,
-0.47049227356910706,
-0.8022131323814392,
-0.1368858367204666,
-1.0877004861831665,
-0.21269038319587708,
0.9715490937232971,
-0.37155207991600037,
-0.41658130288124084,
0.48974981904029846,
-0.08619388937950134,
0.8386572599411011,
-0.08769553154706955,
0.43418702483177185,
0.1629094034433365,
-0.19826461374759674,
-0.6254742741584778,
-0.5345613956451416,
0.5365866422653198,
0.06532809883356094,
-0.6425963640213013,
-0.5780354738235474,
0.009582254104316235,
0.7408126592636108,
0.1462744027376175,
0.45618849992752075,
-0.1649688184261322,
0.08216655999422073,
-0.12552812695503235,
0.5084187984466553,
-0.34988096356391907,
-0.02746589668095112,
-0.5377735495567322,
-0.042721401900053024,
-0.10879521816968918,
-0.6770235300064087
] |
fxmarty/tiny-marian | fxmarty | "2023-03-06T14:29:46Z" | 11,897 | 0 | transformers | [
"transformers",
"pytorch",
"marian",
"text2text-generation",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text2text-generation | "2023-03-06T14:29:19Z" | ---
license: mit
---
| [
-0.12853388488292694,
-0.18616782128810883,
0.6529127359390259,
0.4943625330924988,
-0.19319313764572144,
0.23607465624809265,
0.36071982979774475,
0.05056332051753998,
0.5793652534484863,
0.740013837814331,
-0.6508103013038635,
-0.2378396987915039,
-0.710224986076355,
-0.04782581701874733,
-0.3894752264022827,
0.8470761775970459,
-0.09598272293806076,
0.024004854261875153,
0.047120071947574615,
-0.14317826926708221,
-0.6121037602424622,
-0.04771740734577179,
-1.0524537563323975,
-0.06787490844726562,
0.3002279996871948,
0.5120972990989685,
0.8275896310806274,
0.39602896571159363,
0.5030564069747925,
1.7515558004379272,
-0.08836919069290161,
-0.22754427790641785,
-0.45892032980918884,
0.4223068356513977,
-0.33277371525764465,
-0.42133718729019165,
-0.2624166011810303,
-0.07449338585138321,
0.32380399107933044,
0.790371298789978,
-0.38104110956192017,
0.19328099489212036,
-0.22438454627990723,
1.008224368095398,
-0.8202074766159058,
0.22630876302719116,
-0.16698351502418518,
0.14053204655647278,
0.042308706790208817,
-0.14591927826404572,
-0.1326323002576828,
-0.6440033912658691,
0.06469469517469406,
-0.899596095085144,
0.1027495265007019,
-0.04461126774549484,
0.8789561986923218,
0.21909058094024658,
-0.5102370977401733,
-0.0459773913025856,
-0.6883594989776611,
1.0972508192062378,
-0.17556026577949524,
0.7615712881088257,
0.4507811963558197,
0.45288562774658203,
-0.5849329829216003,
-1.178217887878418,
-0.4441864490509033,
-0.13579002022743225,
0.14722809195518494,
0.30556100606918335,
-0.3453029692173004,
-0.022343844175338745,
0.10801105946302414,
0.5610314011573792,
-0.5003758072853088,
-0.311959445476532,
-0.9579929113388062,
-0.18164916336536407,
0.6820483207702637,
0.319308340549469,
0.834044337272644,
0.1873151659965515,
-0.7347195744514465,
0.12866291403770447,
-1.3239703178405762,
0.07650735974311829,
0.6465023756027222,
0.239467591047287,
-0.554598867893219,
0.8594784736633301,
-0.28587982058525085,
0.626249372959137,
0.2728465497493744,
-0.1164526641368866,
0.2784252464771271,
-0.23030735552310944,
-0.2735062837600708,
0.033087607473134995,
0.34597301483154297,
0.8204491138458252,
0.16248634457588196,
-0.019984982907772064,
-0.22123965620994568,
0.0020717978477478027,
0.2684449553489685,
-0.7935096025466919,
-0.4712669551372528,
0.1926696002483368,
-0.558952808380127,
-0.0910850465297699,
0.4327022135257721,
-1.0976827144622803,
-0.4812980592250824,
-0.1879846155643463,
0.05468139797449112,
-0.5451693534851074,
-0.3697946071624756,
0.07273250073194504,
-0.79254150390625,
-0.1243419200181961,
0.570950984954834,
-0.6230252981185913,
0.43974608182907104,
0.533625602722168,
0.7861635684967041,
0.2330387681722641,
-0.23613610863685608,
-0.6695019602775574,
0.48848265409469604,
-0.8661867380142212,
0.36860740184783936,
-0.3073781132698059,
-0.8298640251159668,
-0.09631050378084183,
0.5393159985542297,
0.20664852857589722,
-0.6653256416320801,
0.7074045538902283,
-0.5496984720230103,
-0.07806532829999924,
-0.4308285415172577,
-0.2432200014591217,
0.17460417747497559,
0.11115431040525436,
-0.6238909363746643,
0.9402233362197876,
0.5551108121871948,
-0.584109902381897,
0.31701239943504333,
-0.4869506359100342,
-0.6865583658218384,
0.26748135685920715,
-0.008750975131988525,
-0.047152332961559296,
0.3279528021812439,
-0.15983973443508148,
-0.0020511597394943237,
0.10505761206150055,
0.008299741894006729,
-0.21891699731349945,
-0.4786304235458374,
0.06349936127662659,
0.151650071144104,
1.25368332862854,
0.4083622097969055,
-0.3771882951259613,
-0.13140122592449188,
-1.0526149272918701,
0.025432661175727844,
0.0505015105009079,
-0.42306768894195557,
-0.2504565119743347,
-0.14882194995880127,
-0.20381587743759155,
0.4307260811328888,
0.2118472456932068,
-0.813115119934082,
0.22643625736236572,
-0.2064024657011032,
0.364496648311615,
0.8222091794013977,
0.2703101634979248,
0.39760565757751465,
-0.6625286340713501,
0.6563138365745544,
0.2076188325881958,
0.49590179324150085,
0.35404202342033386,
-0.3845822811126709,
-0.9641586542129517,
-0.442161500453949,
-0.10117404907941818,
0.2975531220436096,
-0.7744957804679871,
0.5847322940826416,
0.012979604303836823,
-0.5836705565452576,
-0.4465281367301941,
-0.15488101541996002,
0.2755330502986908,
-0.06606576591730118,
0.03334902226924896,
-0.4049779176712036,
-0.7394417524337769,
-1.0127898454666138,
-0.13788150250911713,
-0.5021388530731201,
-0.21892830729484558,
0.3160586357116699,
0.2617739737033844,
-0.34290042519569397,
0.7610747814178467,
-0.6059278249740601,
-0.704064130783081,
-0.13973554968833923,
-0.0995984673500061,
0.6187719702720642,
0.9297672510147095,
0.749138355255127,
-0.7224893569946289,
-0.8973818421363831,
-0.056230708956718445,
-0.5420039892196655,
-0.020044349133968353,
0.038149889558553696,
-0.18260693550109863,
-0.10514980554580688,
0.22352531552314758,
-0.6100803017616272,
0.8851073980331421,
0.43224984407424927,
-0.681546688079834,
0.5210590958595276,
-0.4444413483142853,
0.6073803901672363,
-0.8642839193344116,
-0.2911490201950073,
-0.16823577880859375,
-0.1976117193698883,
-0.7090160846710205,
0.19411544501781464,
-0.3002234101295471,
-0.33029863238334656,
-0.7474032044410706,
0.5274897813796997,
-0.9497010707855225,
-0.18781527876853943,
-0.33672773838043213,
-0.03423111140727997,
0.25807833671569824,
0.19490505754947662,
-0.23560254275798798,
0.8900529742240906,
0.9160482287406921,
-0.7121306657791138,
0.5487277507781982,
0.3930906653404236,
-0.1920013427734375,
0.7131237387657166,
-0.3887738585472107,
0.05161993205547333,
-0.12344931066036224,
0.14374595880508423,
-1.126388430595398,
-0.561158299446106,
0.13677382469177246,
-0.712703287601471,
0.17686958611011505,
-0.16556859016418457,
-0.09428537636995316,
-0.6608465313911438,
-0.33806395530700684,
0.25910091400146484,
0.48612290620803833,
-0.47969940304756165,
0.6188148260116577,
0.5728040337562561,
0.02651876211166382,
-0.5307406783103943,
-0.7206818461418152,
0.20418110489845276,
0.039646461606025696,
-0.5569695830345154,
0.3011690080165863,
0.006543457508087158,
-0.6622446775436401,
-0.371124804019928,
-0.26354190707206726,
-0.6043857336044312,
-0.2267974615097046,
0.7826986312866211,
0.1199423298239708,
-0.09012264013290405,
-0.20310267806053162,
-0.3199536204338074,
-0.06167525798082352,
0.30487415194511414,
-0.07575298100709915,
0.7232834696769714,
-0.33623749017715454,
-0.17850083112716675,
-0.887734055519104,
0.652754545211792,
0.9970465302467346,
0.09446714073419571,
0.806644082069397,
0.46324217319488525,
-0.35647475719451904,
-0.1304660439491272,
-0.3535459041595459,
-0.15120601654052734,
-0.685774564743042,
-0.1806798279285431,
-0.5322476625442505,
-0.5411434769630432,
0.40530654788017273,
0.10101459175348282,
-0.0021042972803115845,
0.5167046785354614,
0.2533605694770813,
-0.28806859254837036,
0.7550324201583862,
1.034340739250183,
0.1391797959804535,
0.3602915108203888,
-0.2854715585708618,
0.6341594457626343,
-0.8329949378967285,
-0.34052175283432007,
-0.4548071026802063,
-0.2563585042953491,
-0.31214389204978943,
-0.10750849545001984,
0.5791022181510925,
0.2818215489387512,
-0.4463467597961426,
0.1250680536031723,
-0.5994209051132202,
0.6587361693382263,
0.6273988485336304,
0.5719727873802185,
0.1997303068637848,
-0.46199458837509155,
0.19982971251010895,
0.04816687852144241,
-0.45745599269866943,
-0.4009109139442444,
0.7711143493652344,
0.2399624139070511,
0.8364022374153137,
0.20927050709724426,
0.4957774877548218,
0.33375421166419983,
0.2528058588504791,
-0.6318977475166321,
0.2009797990322113,
-0.22282809019088745,
-1.245961308479309,
-0.206426739692688,
-0.16551318764686584,
-1.0080583095550537,
-0.11792082339525223,
-0.18288995325565338,
-0.8406620025634766,
0.2665729820728302,
-0.19225634634494781,
-0.6640645265579224,
0.5206149220466614,
-0.5103875398635864,
0.69347083568573,
-0.23555898666381836,
-0.2817087769508362,
0.11930079013109207,
-0.6889920830726624,
0.5254612565040588,
0.3667147755622864,
0.29168397188186646,
-0.37968993186950684,
-0.3192872405052185,
0.5068994760513306,
-0.881224513053894,
0.44081127643585205,
-0.10564978420734406,
0.19428130984306335,
0.5358879566192627,
0.4153591990470886,
0.3823971152305603,
0.28699052333831787,
-0.2459377944469452,
-0.23415414988994598,
0.2250344604253769,
-0.7581346035003662,
-0.27754613757133484,
0.9095459580421448,
-0.7519428730010986,
-0.8586915731430054,
-0.6954255700111389,
-0.30644941329956055,
0.28865277767181396,
0.02781464159488678,
0.7154772281646729,
0.6456884145736694,
-0.18821057677268982,
0.23776991665363312,
0.7208225727081299,
-0.0146945184096694,
0.7235562801361084,
0.29411184787750244,
-0.4056646227836609,
-0.6169787645339966,
0.7182320356369019,
0.2627044916152954,
0.05162655562162399,
0.028327951207756996,
0.3058736026287079,
-0.17546698451042175,
-0.15078596770763397,
-0.6318323612213135,
-0.06395323574542999,
-0.7465729117393494,
-0.0927949845790863,
-0.7541396617889404,
-0.2507742643356323,
-0.7114590406417847,
-0.8068137764930725,
-0.7080163955688477,
-0.45604395866394043,
-0.43011948466300964,
-0.23352204263210297,
0.5163108706474304,
1.1627086400985718,
-0.2613152861595154,
0.8011051416397095,
-0.8900954723358154,
0.41936296224594116,
0.4969540238380432,
0.7519731521606445,
-0.11061006784439087,
-0.6746935844421387,
-0.07836239039897919,
-0.5338755249977112,
-0.29485058784484863,
-1.0156972408294678,
0.31774646043777466,
-0.03688591718673706,
0.40537136793136597,
0.42938894033432007,
0.25190269947052,
0.49392756819725037,
-0.30073118209838867,
1.1130688190460205,
0.7274302244186401,
-0.803381085395813,
0.519527792930603,
-0.7635002136230469,
0.16122324764728546,
0.9363659620285034,
0.54477459192276,
-0.4417075514793396,
-0.15113934874534607,
-1.025976538658142,
-0.843137264251709,
0.5963036417961121,
0.15439945459365845,
0.016843896359205246,
0.01821417547762394,
0.03168272227048874,
0.29466384649276733,
0.3591304123401642,
-0.7847291231155396,
-0.8240220546722412,
-0.13851122558116913,
0.25803306698799133,
0.31456053256988525,
-0.1648542582988739,
-0.3003871440887451,
-0.611615777015686,
0.8711391091346741,
0.18286482989788055,
0.3546231985092163,
0.12073354423046112,
0.04369349032640457,
-0.35506919026374817,
0.14787021279335022,
0.5522999167442322,
1.2529057264328003,
-0.40983331203460693,
0.3673911392688751,
0.1751260608434677,
-0.6540069580078125,
0.6494997143745422,
-0.3036349415779114,
-0.021784601733088493,
0.6203135251998901,
0.17760884761810303,
0.28528398275375366,
0.315599262714386,
-0.3621427118778229,
0.6047801971435547,
-0.029422052204608917,
-0.17758512496948242,
-0.7005696296691895,
0.15866968035697937,
0.029350608587265015,
0.27507954835891724,
0.4392024278640747,
0.24443313479423523,
0.08246771991252899,
-1.0602877140045166,
0.5711055397987366,
0.24493910372257233,
-0.8676618337631226,
-0.3011006712913513,
0.7047957181930542,
0.4075389802455902,
-0.47599563002586365,
0.38749054074287415,
0.012702330946922302,
-0.6710241436958313,
0.5987741351127625,
0.5510413646697998,
0.7569674253463745,
-0.4702427089214325,
0.3088020086288452,
0.6245602965354919,
0.06711331009864807,
0.20550549030303955,
0.6923202872276306,
0.03149382025003433,
-0.44738656282424927,
0.23022446036338806,
-0.5986733436584473,
-0.1468990594148636,
0.13735318183898926,
-0.8047426342964172,
0.351533442735672,
-0.9312615394592285,
-0.24089956283569336,
0.08751589059829712,
0.11761097609996796,
-0.6130945086479187,
0.6674696207046509,
-0.008524954319000244,
0.9280490875244141,
-0.8549083471298218,
0.9626278281211853,
0.8559581637382507,
-0.31830817461013794,
-0.7709448337554932,
-0.33556753396987915,
0.02013934776186943,
-0.6660526990890503,
0.7108278274536133,
-0.18973003327846527,
-0.41207411885261536,
-0.09323947876691818,
-0.622982919216156,
-1.0003730058670044,
0.030618250370025635,
0.017415650188922882,
-0.4625031054019928,
0.4454794228076935,
-0.5157257318496704,
0.3289681673049927,
-0.19169732928276062,
0.30509495735168457,
0.7719469666481018,
0.7958452701568604,
0.22960808873176575,
-0.6354780197143555,
-0.4466685652732849,
-0.010276071727275848,
-0.16682815551757812,
0.4545809030532837,
-1.0710972547531128,
0.967736542224884,
-0.4652574360370636,
-0.34733209013938904,
0.2706642150878906,
0.797762393951416,
0.2538500428199768,
0.3524126708507538,
0.6219537258148193,
0.9016807079315186,
0.36450111865997314,
-0.31178343296051025,
0.7276745438575745,
0.2426338493824005,
0.4152539074420929,
0.7364203333854675,
-0.22712187469005585,
0.5403846502304077,
0.8906413316726685,
-0.786162257194519,
0.5381765365600586,
0.7879031896591187,
0.16047371923923492,
0.7758157253265381,
0.5944145917892456,
-0.611952543258667,
-0.1185941994190216,
-0.1464141309261322,
-0.6171560287475586,
0.1979752480983734,
0.052926212549209595,
-0.11974738538265228,
-0.2846010625362396,
-0.13567376136779785,
0.12295057624578476,
0.2836454212665558,
-0.5959328413009644,
0.606866717338562,
0.34341585636138916,
-0.6328282356262207,
0.21025103330612183,
-0.25779569149017334,
0.6709501147270203,
-0.5978154540061951,
0.02733636647462845,
-0.226993590593338,
0.41810402274131775,
-0.4618742763996124,
-1.007582426071167,
0.47138404846191406,
-0.2920241355895996,
-0.40551304817199707,
-0.26942431926727295,
0.8072363138198853,
-0.22133907675743103,
-0.5572860240936279,
0.37486034631729126,
0.13466592133045197,
0.41473662853240967,
0.40145981311798096,
-0.548729419708252,
0.047790080308914185,
0.13760165870189667,
-0.20061805844306946,
0.3601190149784088,
0.2973729372024536,
0.25488772988319397,
0.7100128531455994,
0.5052477717399597,
0.22198708355426788,
0.25694364309310913,
-0.18668605387210846,
0.8387458324432373,
-0.9102796316146851,
-0.8167635202407837,
-0.9497333765029907,
0.3849896192550659,
0.025727711617946625,
-0.880144476890564,
0.7920305728912354,
0.7652608156204224,
0.5113964080810547,
-0.4877890348434448,
0.4755283296108246,
-0.326479434967041,
0.5047136545181274,
-0.13870958983898163,
1.001089096069336,
-0.760762631893158,
-0.29587265849113464,
-0.030554059892892838,
-0.9216439723968506,
-0.2533753216266632,
0.5375741720199585,
0.1540832668542862,
-0.14608067274093628,
0.4385907053947449,
0.44216376543045044,
0.022173406556248665,
0.25223150849342346,
0.32861006259918213,
0.06042787432670593,
0.14508451521396637,
0.5510438680648804,
1.0931141376495361,
-0.43394410610198975,
0.18694786727428436,
-0.4923475384712219,
-0.4536249041557312,
-0.4153490662574768,
-0.9548057913780212,
-0.6640313863754272,
-0.48185449838638306,
-0.2973935008049011,
-0.5915579199790955,
0.11726461350917816,
0.9300885796546936,
0.9018137454986572,
-0.6256728172302246,
-0.41243645548820496,
0.25713539123535156,
0.30293411016464233,
-0.2295418381690979,
-0.146267831325531,
0.2736492455005646,
-0.006407544948160648,
-0.7211178541183472,
0.3930943012237549,
0.807976245880127,
0.3887130320072174,
0.08444006741046906,
-0.07217127084732056,
-0.4407080411911011,
0.026101574301719666,
0.5373561382293701,
0.5729561448097229,
-0.6281182169914246,
-0.4099644422531128,
-0.5328317880630493,
-0.21386730670928955,
0.15529435873031616,
0.48077550530433655,
-0.5166378617286682,
0.32661110162734985,
0.8128959536552429,
0.17017659544944763,
0.7187885642051697,
-0.0022492259740829468,
0.6678642630577087,
-0.8970246315002441,
0.4446259140968323,
0.3953385353088379,
0.5681870579719543,
0.08998038619756699,
-0.7339164614677429,
0.9820241928100586,
0.49674350023269653,
-0.6334057450294495,
-1.0034242868423462,
0.03079957515001297,
-1.193113923072815,
-0.3788175582885742,
0.9890843629837036,
-0.09595765173435211,
-0.9597458839416504,
-0.36448943614959717,
-0.3677716851234436,
0.07989637553691864,
-0.33809733390808105,
0.35498204827308655,
0.8268195986747742,
-0.2538071274757385,
-0.2204185128211975,
-0.9505581855773926,
0.4752943515777588,
0.3102525472640991,
-0.5886632204055786,
-0.05114369094371796,
0.329391211271286,
0.45236870646476746,
0.3009701371192932,
0.5239557027816772,
0.10428227484226227,
0.8970529437065125,
0.25200390815734863,
0.30491405725479126,
-0.04526621103286743,
-0.590078592300415,
-0.0160664189606905,
0.2621477246284485,
0.04487839341163635,
-0.6869441270828247
] |
knkarthick/MEETING-SUMMARY-BART-LARGE-XSUM-SAMSUM-DIALOGSUM-AMI | knkarthick | "2023-10-03T10:59:56Z" | 11,880 | 10 | transformers | [
"transformers",
"pytorch",
"tf",
"safetensors",
"bart",
"text2text-generation",
"seq2seq",
"summarization",
"en",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"has_space",
"region:us"
] | summarization | "2022-03-02T23:29:05Z" | ---
language: en
tags:
- bart
- seq2seq
- summarization
license: apache-2.0
datasets:
- cnndaily/newyorkdaily/xsum/samsum/dialogsum/AMI
metrics:
- rouge
widget:
- text: |-
Hi, I'm David and I'm supposed to be an industrial designer. Um, I just got the project announcement about what the project is. Designing a remote control. That's about it, didn't get anything else. Did you get the same thing? Cool. There's too much gear. Okay. Can't draw. Um. Yeah. Um, well anyway, I don't know, it's just the first animal I can think off the top of my head. Um. Yes. Big reason is 'cause I'm allergic to most animals. Allergic to animal fur, so um fish was a natural choice. Um, yeah, and I kind of like whales. They come in and go eat everything in sight. And they're quite harmless and mild and interesting. Tail's a bit big, I think. It's an after dinner dog then. Hmm. It does make sense from maybe the design point of view 'cause you have more complicated characters like European languages, then you need more buttons. So, possibly. Hmm. Yeah. And you keep losing them. Finding them is really a pain, you know. I mean it's usually quite small, or when you want it right, it slipped behind the couch or it's kicked under the table. You know. Yep. Mm-hmm. I think one factor would be production cost. Because there's a cap there, so um depends on how much you can cram into that price. Um. I think that that's the main factor. Cool.
Okay. Right. Um well this is the kick-off meeting for our our project. Um and um this is just what we're gonna be doing over the next twenty five minutes. Um so first of all, just to kind of make sure that we all know each other, I'm Laura and I'm the project manager. Do you want to introduce yourself again? Okay. Great. Okay. Um so we're designing a new remote control and um Oh I have to record who's here actually. So that's David, Andrew and Craig, isn't it? And you all arrived on time. Um yeah so des uh design a new remote control. Um, as you can see it's supposed to be original, trendy and user friendly. Um so that's kind of our our brief, as it were. Um and so there are three different stages to the design. Um I'm not really sure what what you guys have already received um in your emails. What did you get? Mm-hmm. Is that what everybody got? Okay. Um. So we're gonna have like individual work and then a meeting about it. And repeat that process three times. Um and at this point we get try out the whiteboard over there. Um. So uh you get to draw your favourite animal and sum up your favourite characteristics of it. So who would like to go first? Very good. Mm-hmm. Yeah. Yeah. Right. Lovely. Right. You can take as long over this as you like, because we haven't got an awful lot to discuss. Ok oh we do we do. Don't feel like you're in a rush, anyway. Ach why not We might have to get you up again then. I don't know what mine is. I'm gonna have to think on the spot now. Is that a whale? Ah. Okay. God, I still don't know what I'm gonna write about. Um. I was gonna choose a dog as well. But I'll just draw a different kind of dog. M my favourite animal is my own dog at home. Um That doesn't really look like him, actually. He looks more like a pig, actually. Ah well. Do you? Oh that's very good of you. Uh. Um he's a mixture of uh various things. Um and what do I like about him, um That's just to suggest that his tail wags. Um he's very friendly and cheery and always pleased to see you, and very kind of affectionate and um uh and he's quite quite wee as well so you know he can doesn't take up too much space. Um and uh And he does a funny thing where he chases his tail as well, which is quite amusing, so It is. I think it is. He only does it after he's had his dinner and um he'll just all of a sudden just get up and start chasing his tail 'round the living room. Yeah, so uh Yeah, maybe. Maybe. Right, um where did you find this? Just down here? Yeah. Okay. Um what are we doing next? Uh um. Okay, uh we now need to discuss the project finance. Um so according to the brief um we're gonna be selling this remote control for twenty five Euro, um and we're aiming to make fifty million Euro. Um so we're gonna be selling this on an international scale. And uh we don't want it to cost any more than uh twelve fifty Euros, so fifty percent of the selling price. Sure. All together. Um I dunno. I imagine That's a good question. I imagine it probably is our sale actually because it's probably up to the the um the retailer to uh sell it for whatever price they want. Um. But I I don't know, I mean do you think the fact that it's going to be sold internationally will have a bearing on how we design it at all? Think it will? Um. Hmm. Oh yeah, regions and stuff, yeah. Yeah. Okay. Yeah. Well for a remote control, do you think that will be I suppose it's depends on how complicated our remote control is. Yeah, yeah. Okay. What, just like in terms of like the wealth of the country? Like how much money people have to spend on things like? Aye, I see what you mean, yeah. Marketing. Good marketing thoughts. Oh gosh, I should be writing all this down. Um. Mm. Yeah. Yeah, yeah. Like how much does, you know, a remote control cost. Well twenty five Euro, I mean that's um that's about like eighteen pounds or something, isn't it? Or no, is it as much as that? Sixteen seventeen eighteen pounds. Um, I dunno, I've never bought a remote control, so I don't know how how good a remote control that would get you. Um. But yeah, I suppose it has to look kind of cool and gimmicky. Um right, okay. Let me just scoot on ahead here. Okay. Um well d Does anybody have anything to add to uh to the finance issue at all? Thin No, actually. That would be useful, though, wouldn't it, if you knew like what your money would get you now. Mm-hmm. Yeah, yeah. Oh. Five minutes to end of meeting. Oh, okay. We're a bit behind. Yeah. Right, so do you think that should be like a main design aim of our remote control d you know, do your your satellite and your regular telly and your V_C_R_ and everything? Mm-hmm. Yeah. Or even like, you know, notes about um what you wanna watch. Like you might put in there oh I want to watch such and such and look a Oh that's a good idea. So extra functionalities. Mm-hmm. Hmm. Um okay, uh I'd wel we're gonna have to wrap up pretty quickly in the next couple of minutes. Um I'll just check we've nothing else. Okay. Um so anything else anybody wants to add about what they don't like about remote controls they've used, what they would really like to be part of this new one at all? You keep losing them. Okay. Yeah. W You get those ones where you can, if you like, whistle or make a really high pitched noise they beep. There I mean is that something we'd want to include, do you think? Dunno. Okay maybe. My goodness. Still feels quite primitive. Maybe like a touch screen or something? Okay. Uh-huh, okay. Well I guess that's up to our industrial designer. It looks better. Yeah. Okay. Okay. Right, well um so just to wrap up, the next meeting's gonna be in thirty minutes. So that's about um about ten to twelve by my watch. Um so inbetween now and then, um as the industrial designer, you're gonna be working on you know the actual working design of it so y you know what you're doing there. Um for user interface, technical functions, I guess that's you know like what we've been talking about, what it'll actually do. Um and uh marketing executive, you'll be just thinking about what it actually what, you know, what requirements it has to has to fulfil and you'll all get instructions emailed to you, I guess. Um. Yeah, so it's th the functional design stage is next, I guess. And uh and that's the end of the meeting. So I got that little message a lot sooner than I thought I would, so Mm-hmm. Uh-huh, yeah. Th Okay, well just very quickly 'cause this we're supposed to finish now. Um I guess that's up to us, I mean you probably want some kind of unique selling point of it, so um, you know Yeah. Mm-hmm. Yeah. Okay. Right, okay, we'll that's that's the end of the meeting, then. Um. So, uh thank you all for coming.
Um I'm Craig and I'm User Interface. Yeah. Well, my favourite animal would be a monkey. Then they're small cute and furry, and uh when planet of the apes becomes real, I'm gonna be up there with them. Yeah. I know um My parents went out and bought um remote controls because um they got fed up of having four or five different remote controls for each things the house. So um for them it was just how many devices control. Uh.
Mm-hmm. Great. And I'm Andrew and I'm uh our marketing expert. Mm-hmm. Mm-hmm. Yeah, that's that's it. Yeah. I will go. That's fine. Alright. So This one here, right? Okay. Very nice. Alright. My favourite animal is like A beagle. Um charac favourite characteristics of it? Is that right? Uh, right, well basically um high priority for any animal for me is that they be willing to take a lot of physical affection from their family. And, yeah that they have lots of personality and uh be fit and in robust good health. So this is blue. Blue beagle. My family's beagle. I coulda told you a whole lot more about beagles. Boy, let me tell you. Impressionist. Alright. Mm. Superb sketch, by the way. Yep. I see a dog in there. Yep. Now I see a rooster. What kind is it? Is he aware that th it's his own cha tail he's chasing? Hmm. Probably when he was little he got lots of attention for doing it and has forever been conditioned. 'Kay. Um, can we just go over that again? Uh, so bas at twel Alright, yeah. Okay. So cost like production cost is twelve fifty, but selling price is is that wholesale or retail? Like on the shelf. Our sale our sale anyway. Yeah, okay okay. Okay. Mm-hmm. Alright. Yes. Mm-hmm. Mm-hmm. Well right away I'm wondering if there's um th th uh, like with D_V_D_ players, if there are zones. Um f frequencies or something um as well as uh characters, um different uh keypad styles and s symbols. Um. I don't know. Yeah. Yeah. Yeah. And then a and then al the other thing international is on top of the price. I'm thinking the price might might appeal to a certain market in one region, whereas in another it'll be different, so Just a chara just a characteristic of the Just Or just like, basic product podi positioning, the twenty five Euro remote control might be a big hit in London, might not be such a big hit in Greece, who knows, something like that, yeah. Yep. Right away I'm making some kind of assumptions about what what information we're given here, thinking, 'kay trendy probably means something other than just basic, something other than just standard. Um so I'm wondering right away, is selling twenty five Euros, is that sort of the thi is this gonna to be like the premium product kinda thing or Uh-huh. Mm-hmm. Yep. Yeah, I'd say so, yeah. No. Yeah, yeah. Mm-hmm. Do we have any other background information on like how that compares to other other Yeah. Mm-hmm. Yeah, interesting thing about discussing um production of a remote control for me is that l as you point out, I just don't think of remote controls as somethin something people consciously assess in their purchasing habits. It's just like getting shoelaces with shoes or something. It just comes along. Do you know what I mean? Like so sort of like how do you I I mean one one way of looking at it would be, well the people producing television sets, maybe they have to buy remote controls. Or another way is maybe people who have T_V_ sets are really fed up with their remote control and they really want a better one or something. But Right. Right. Okay so Right, so in function one of the priorities might be to combine as many uses I think so. Yeah, yeah. Yeah. Well like um, maybe what we could use is a sort of like a example of a successful other piece technology is palm palm pilots. They're gone from being just like little sort of scribble boards to cameras, M_P_ three players, telephones, everything, agenda. So, like, I wonder if we might add something new to the to the remote control market, such as the lighting in your house, or um Yeah, yeah. An Yeah. Like, p personally for me, at home I've I've combined the um the audio video of my television set and my D_V_D_ player and my C_D_ player. So they w all work actually function together but I have different remote controls for each of them. So it's sort of ironic that that then they're in there um you know, the sound and everything it's just one system. But each one's got its own little part. Mm. Mm. Mm. Mm-hmm. Mm-hmm. Yeah. Yeah. That's just really good id Yep. Uh, sure. I remember when the first remote control my my family had was on a cable. Actually had a cable between it and the T_V_ and big like buttons that sort of like, like on a blender or something. And um, you know, when I think about what they are now, it's better, but actually it's still kind of, I dunno, like a massive junky thing on the table. Maybe we could think about how, could be more, you know, streamlined. S Something like that, yeah. Or whatever would be technologically reasonable. 'Cause it could b it could it could be that f it could be that functionally that doesn't make it any better, but that just the appeal of of not having You know, these days there's a r pe things in people's homes are becoming more and more like chic, you know. Um, nicer materials and might be be worth exploring anyway. Okay. Um. Before we wrap up, just to make sure we're all on the same page here, um, do we We were given sort of an example of a coffee machine or something, right? Well, um are we at ma right now on the assumption that our television remote control may have features which go beyond the television? Or are we keeping sort of like a a design commitment to television features? I I don't know. Yep. Yeah, sure. Okay. Okay, yeah. Okay. Okay. Okay. Alright.
model-index:
- name: bart-large-meeting-summary-xsum-samsum-dialogsum-AMI
results:
- task:
name: Abstractive Text Summarization
type: abstractive-text-summarization
dataset:
name: "cnndaily/newyorkdaily/xsum/samsum/dialogsum/AMI Meeting Corpus"
type: cnndaily/newyorkdaily/xsum/samsum/dialogsum/AMI Meeting Corpus
metrics:
- name: Validation ROGUE-1
type: rouge-1
value: NA
- name: Validation ROGUE-2
type: rouge-2
value: NA
- name: Validation ROGUE-L
type: rouge-L
value: NA
- name: Validation ROGUE-Lsum
type: rouge-Lsum
value: NA
- name: Test ROGUE-1
type: rouge-1
value: NA
- name: Test ROGUE-2
type: rouge-2
value: NA
- name: Test ROGUE-L
type: rouge-L
value: NA
- name: Test ROGUE-Lsum
type: rouge-Lsum
value: NA
---
Model obtained by Fine Tuning 'facebook/bart-large-xsum'
## Usage
# Example 1
```python
from transformers import pipeline
summarizer = pipeline("summarization", model="knkarthick/MEETING-SUMMARY-BART-LARGE-XSUM-SAMSUM-DIALOGSUM-AMI")
text = '''The tower is 324 metres (1,063 ft) tall, about the same height as an 81-storey building, and the tallest structure in Paris. Its base is square, measuring 125 metres (410 ft) on each side. During its construction, the Eiffel Tower surpassed the Washington Monument to become the tallest man-made structure in the world, a title it held for 41 years until the Chrysler Building in New York City was finished in 1930. It was the first structure to reach a height of 300 metres. Due to the addition of a broadcasting aerial at the top of the tower in 1957, it is now taller than the Chrysler Building by 5.2 metres (17 ft). Excluding transmitters, the Eiffel Tower is the second tallest free-standing structure in France after the Millau Viaduct.
'''
summarizer(text)
```
# Example 2
```python
from transformers import pipeline
summarizer = pipeline("summarization", model="knkarthick/MEETING-SUMMARY-BART-LARGE-XSUM-SAMSUM-DIALOGSUM-AMI")
text = '''Bangalore is the capital and the largest city of the Indian state of Karnataka. It has a population of more than 8 million and a metropolitan population of around 11 million, making it the third most populous city and fifth most populous urban agglomeration in India. Located in southern India on the Deccan Plateau, at a height of over 900 m (3,000 ft) above sea level, Bangalore is known for its pleasant climate throughout the year. Its elevation is the highest among the major cities of India.The city's history dates back to around 890 CE, in a stone inscription found at the Nageshwara Temple in Begur, Bangalore. The Begur inscription is written in Halegannada (ancient Kannada), mentions 'Bengaluru Kalaga' (battle of Bengaluru). It was a significant turning point in the history of Bangalore as it bears the earliest reference to the name 'Bengaluru'. In 1537 CE, Kempé Gowdā – a feudal ruler under the Vijayanagara Empire – established a mud fort considered to be the foundation of modern Bangalore and its oldest areas, or petes, which exist to the present day.
After the fall of Vijayanagar empire in 16th century, the Mughals sold Bangalore to Chikkadevaraja Wodeyar (1673–1704), the then ruler of the Kingdom of Mysore for three lakh rupees. When Haider Ali seized control of the Kingdom of Mysore, the administration of Bangalore passed into his hands.
The city was captured by the British East India Company after victory in the Fourth Anglo-Mysore War (1799), who returned administrative control of the city to the Maharaja of Mysore. The old city developed in the dominions of the Maharaja of Mysore and was made capital of the Princely State of Mysore, which existed as a nominally sovereign entity of the British Raj. In 1809, the British shifted their cantonment to Bangalore, outside the old city, and a town grew up around it, which was governed as part of British India. Following India's independence in 1947, Bangalore became the capital of Mysore State, and remained capital when the new Indian state of Karnataka was formed in 1956. The two urban settlements of Bangalore – city and cantonment – which had developed as independent entities merged into a single urban centre in 1949. The existing Kannada name, Bengalūru, was declared the official name of the city in 2006.
Bangalore is widely regarded as the "Silicon Valley of India" (or "IT capital of India") because of its role as the nation's leading information technology (IT) exporter. Indian technological organisations are headquartered in the city. A demographically diverse city, Bangalore is the second fastest-growing major metropolis in India. Recent estimates of the metro economy of its urban area have ranked Bangalore either the fourth- or fifth-most productive metro area of India. As of 2017, Bangalore was home to 7,700 millionaires and 8 billionaires with a total wealth of $320 billion. It is home to many educational and research institutions. Numerous state-owned aerospace and defence organisations are located in the city. The city also houses the Kannada film industry. It was ranked the most liveable Indian city with a population of over a million under the Ease of Living Index 2020.
'''
summarizer(text)
```
# Example 3
```python
from transformers import pipeline
summarizer = pipeline("summarization", model="knkarthick/MEETING-SUMMARY-BART-LARGE-XSUM-SAMSUM-DIALOGSUM-AMI")
text = '''Hi, I'm David and I'm supposed to be an industrial designer. Um, I just got the project announcement about what the project is. Designing a remote control. That's about it, didn't get anything else. Did you get the same thing? Cool. There's too much gear. Okay. Can't draw. Um. Yeah. Um, well anyway, I don't know, it's just the first animal I can think off the top of my head. Um. Yes. Big reason is 'cause I'm allergic to most animals. Allergic to animal fur, so um fish was a natural choice. Um, yeah, and I kind of like whales. They come in and go eat everything in sight. And they're quite harmless and mild and interesting. Tail's a bit big, I think. It's an after dinner dog then. Hmm. It does make sense from maybe the design point of view 'cause you have more complicated characters like European languages, then you need more buttons. So, possibly. Hmm. Yeah. And you keep losing them. Finding them is really a pain, you know. I mean it's usually quite small, or when you want it right, it slipped behind the couch or it's kicked under the table. You know. Yep. Mm-hmm. I think one factor would be production cost. Because there's a cap there, so um depends on how much you can cram into that price. Um. I think that that's the main factor. Cool.
Okay. Right. Um well this is the kick-off meeting for our our project. Um and um this is just what we're gonna be doing over the next twenty five minutes. Um so first of all, just to kind of make sure that we all know each other, I'm Laura and I'm the project manager. Do you want to introduce yourself again? Okay. Great. Okay. Um so we're designing a new remote control and um Oh I have to record who's here actually. So that's David, Andrew and Craig, isn't it? And you all arrived on time. Um yeah so des uh design a new remote control. Um, as you can see it's supposed to be original, trendy and user friendly. Um so that's kind of our our brief, as it were. Um and so there are three different stages to the design. Um I'm not really sure what what you guys have already received um in your emails. What did you get? Mm-hmm. Is that what everybody got? Okay. Um. So we're gonna have like individual work and then a meeting about it. And repeat that process three times. Um and at this point we get try out the whiteboard over there. Um. So uh you get to draw your favourite animal and sum up your favourite characteristics of it. So who would like to go first? Very good. Mm-hmm. Yeah. Yeah. Right. Lovely. Right. You can take as long over this as you like, because we haven't got an awful lot to discuss. Ok oh we do we do. Don't feel like you're in a rush, anyway. Ach why not We might have to get you up again then. I don't know what mine is. I'm gonna have to think on the spot now. Is that a whale? Ah. Okay. God, I still don't know what I'm gonna write about. Um. I was gonna choose a dog as well. But I'll just draw a different kind of dog. M my favourite animal is my own dog at home. Um That doesn't really look like him, actually. He looks more like a pig, actually. Ah well. Do you? Oh that's very good of you. Uh. Um he's a mixture of uh various things. Um and what do I like about him, um That's just to suggest that his tail wags. Um he's very friendly and cheery and always pleased to see you, and very kind of affectionate and um uh and he's quite quite wee as well so you know he can doesn't take up too much space. Um and uh And he does a funny thing where he chases his tail as well, which is quite amusing, so It is. I think it is. He only does it after he's had his dinner and um he'll just all of a sudden just get up and start chasing his tail 'round the living room. Yeah, so uh Yeah, maybe. Maybe. Right, um where did you find this? Just down here? Yeah. Okay. Um what are we doing next? Uh um. Okay, uh we now need to discuss the project finance. Um so according to the brief um we're gonna be selling this remote control for twenty five Euro, um and we're aiming to make fifty million Euro. Um so we're gonna be selling this on an international scale. And uh we don't want it to cost any more than uh twelve fifty Euros, so fifty percent of the selling price. Sure. All together. Um I dunno. I imagine That's a good question. I imagine it probably is our sale actually because it's probably up to the the um the retailer to uh sell it for whatever price they want. Um. But I I don't know, I mean do you think the fact that it's going to be sold internationally will have a bearing on how we design it at all? Think it will? Um. Hmm. Oh yeah, regions and stuff, yeah. Yeah. Okay. Yeah. Well for a remote control, do you think that will be I suppose it's depends on how complicated our remote control is. Yeah, yeah. Okay. What, just like in terms of like the wealth of the country? Like how much money people have to spend on things like? Aye, I see what you mean, yeah. Marketing. Good marketing thoughts. Oh gosh, I should be writing all this down. Um. Mm. Yeah. Yeah, yeah. Like how much does, you know, a remote control cost. Well twenty five Euro, I mean that's um that's about like eighteen pounds or something, isn't it? Or no, is it as much as that? Sixteen seventeen eighteen pounds. Um, I dunno, I've never bought a remote control, so I don't know how how good a remote control that would get you. Um. But yeah, I suppose it has to look kind of cool and gimmicky. Um right, okay. Let me just scoot on ahead here. Okay. Um well d Does anybody have anything to add to uh to the finance issue at all? Thin No, actually. That would be useful, though, wouldn't it, if you knew like what your money would get you now. Mm-hmm. Yeah, yeah. Oh. Five minutes to end of meeting. Oh, okay. We're a bit behind. Yeah. Right, so do you think that should be like a main design aim of our remote control d you know, do your your satellite and your regular telly and your V_C_R_ and everything? Mm-hmm. Yeah. Or even like, you know, notes about um what you wanna watch. Like you might put in there oh I want to watch such and such and look a Oh that's a good idea. So extra functionalities. Mm-hmm. Hmm. Um okay, uh I'd wel we're gonna have to wrap up pretty quickly in the next couple of minutes. Um I'll just check we've nothing else. Okay. Um so anything else anybody wants to add about what they don't like about remote controls they've used, what they would really like to be part of this new one at all? You keep losing them. Okay. Yeah. W You get those ones where you can, if you like, whistle or make a really high pitched noise they beep. There I mean is that something we'd want to include, do you think? Dunno. Okay maybe. My goodness. Still feels quite primitive. Maybe like a touch screen or something? Okay. Uh-huh, okay. Well I guess that's up to our industrial designer. It looks better. Yeah. Okay. Okay. Right, well um so just to wrap up, the next meeting's gonna be in thirty minutes. So that's about um about ten to twelve by my watch. Um so inbetween now and then, um as the industrial designer, you're gonna be working on you know the actual working design of it so y you know what you're doing there. Um for user interface, technical functions, I guess that's you know like what we've been talking about, what it'll actually do. Um and uh marketing executive, you'll be just thinking about what it actually what, you know, what requirements it has to has to fulfil and you'll all get instructions emailed to you, I guess. Um. Yeah, so it's th the functional design stage is next, I guess. And uh and that's the end of the meeting. So I got that little message a lot sooner than I thought I would, so Mm-hmm. Uh-huh, yeah. Th Okay, well just very quickly 'cause this we're supposed to finish now. Um I guess that's up to us, I mean you probably want some kind of unique selling point of it, so um, you know Yeah. Mm-hmm. Yeah. Okay. Right, okay, we'll that's that's the end of the meeting, then. Um. So, uh thank you all for coming.
Um I'm Craig and I'm User Interface. Yeah. Well, my favourite animal would be a monkey. Then they're small cute and furry, and uh when planet of the apes becomes real, I'm gonna be up there with them. Yeah. I know um My parents went out and bought um remote controls because um they got fed up of having four or five different remote controls for each things the house. So um for them it was just how many devices control. Uh.
Mm-hmm. Great. And I'm Andrew and I'm uh our marketing expert. Mm-hmm. Mm-hmm. Yeah, that's that's it. Yeah. I will go. That's fine. Alright. So This one here, right? Okay. Very nice. Alright. My favourite animal is like A beagle. Um charac favourite characteristics of it? Is that right? Uh, right, well basically um high priority for any animal for me is that they be willing to take a lot of physical affection from their family. And, yeah that they have lots of personality and uh be fit and in robust good health. So this is blue. Blue beagle. My family's beagle. I coulda told you a whole lot more about beagles. Boy, let me tell you. Impressionist. Alright. Mm. Superb sketch, by the way. Yep. I see a dog in there. Yep. Now I see a rooster. What kind is it? Is he aware that th it's his own cha tail he's chasing? Hmm. Probably when he was little he got lots of attention for doing it and has forever been conditioned. 'Kay. Um, can we just go over that again? Uh, so bas at twel Alright, yeah. Okay. So cost like production cost is twelve fifty, but selling price is is that wholesale or retail? Like on the shelf. Our sale our sale anyway. Yeah, okay okay. Okay. Mm-hmm. Alright. Yes. Mm-hmm. Mm-hmm. Well right away I'm wondering if there's um th th uh, like with D_V_D_ players, if there are zones. Um f frequencies or something um as well as uh characters, um different uh keypad styles and s symbols. Um. I don't know. Yeah. Yeah. Yeah. And then a and then al the other thing international is on top of the price. I'm thinking the price might might appeal to a certain market in one region, whereas in another it'll be different, so Just a chara just a characteristic of the Just Or just like, basic product podi positioning, the twenty five Euro remote control might be a big hit in London, might not be such a big hit in Greece, who knows, something like that, yeah. Yep. Right away I'm making some kind of assumptions about what what information we're given here, thinking, 'kay trendy probably means something other than just basic, something other than just standard. Um so I'm wondering right away, is selling twenty five Euros, is that sort of the thi is this gonna to be like the premium product kinda thing or Uh-huh. Mm-hmm. Yep. Yeah, I'd say so, yeah. No. Yeah, yeah. Mm-hmm. Do we have any other background information on like how that compares to other other Yeah. Mm-hmm. Yeah, interesting thing about discussing um production of a remote control for me is that l as you point out, I just don't think of remote controls as somethin something people consciously assess in their purchasing habits. It's just like getting shoelaces with shoes or something. It just comes along. Do you know what I mean? Like so sort of like how do you I I mean one one way of looking at it would be, well the people producing television sets, maybe they have to buy remote controls. Or another way is maybe people who have T_V_ sets are really fed up with their remote control and they really want a better one or something. But Right. Right. Okay so Right, so in function one of the priorities might be to combine as many uses I think so. Yeah, yeah. Yeah. Well like um, maybe what we could use is a sort of like a example of a successful other piece technology is palm palm pilots. They're gone from being just like little sort of scribble boards to cameras, M_P_ three players, telephones, everything, agenda. So, like, I wonder if we might add something new to the to the remote control market, such as the lighting in your house, or um Yeah, yeah. An Yeah. Like, p personally for me, at home I've I've combined the um the audio video of my television set and my D_V_D_ player and my C_D_ player. So they w all work actually function together but I have different remote controls for each of them. So it's sort of ironic that that then they're in there um you know, the sound and everything it's just one system. But each one's got its own little part. Mm. Mm. Mm. Mm-hmm. Mm-hmm. Yeah. Yeah. That's just really good id Yep. Uh, sure. I remember when the first remote control my my family had was on a cable. Actually had a cable between it and the T_V_ and big like buttons that sort of like, like on a blender or something. And um, you know, when I think about what they are now, it's better, but actually it's still kind of, I dunno, like a massive junky thing on the table. Maybe we could think about how, could be more, you know, streamlined. S Something like that, yeah. Or whatever would be technologically reasonable. 'Cause it could b it could it could be that f it could be that functionally that doesn't make it any better, but that just the appeal of of not having You know, these days there's a r pe things in people's homes are becoming more and more like chic, you know. Um, nicer materials and might be be worth exploring anyway. Okay. Um. Before we wrap up, just to make sure we're all on the same page here, um, do we We were given sort of an example of a coffee machine or something, right? Well, um are we at ma right now on the assumption that our television remote control may have features which go beyond the television? Or are we keeping sort of like a a design commitment to television features? I I don't know. Yep. Yeah, sure. Okay. Okay, yeah. Okay. Okay. Okay. Alright.
'''
summarizer(text)
```
# Example 4
```python
from transformers import pipeline
summarizer = pipeline("summarization", model="knkarthick/MEETING-SUMMARY-BART-LARGE-XSUM-SAMSUM-DIALOGSUM-AMI")
text = '''
Das : Hi and welcome to the a16z podcast. I’m Das, and in this episode, I talk SaaS go-to-market with David Ulevitch and our newest enterprise general partner Kristina Shen. The first half of the podcast looks at how remote work impacts the SaaS go-to-market and what the smartest founders are doing to survive the current crisis. The second half covers pricing approaches and strategy, including how to think about free versus paid trials and navigating the transition to larger accounts. But we start with why it’s easier to move upmarket than down… and the advantage that gives a SaaS startup against incumbents.
David : If you have a cohort of customers that are paying you $10,000 a year for your product, you’re going to find a customer that self-selects and is willing to pay $100,000 a year. Once you get one of those, your organization will figure out how you sell to, how you satisfy and support, customers at that price point and that size. But it’s really hard for a company that sells up market to move down market, because they’ve already baked in all that expensive, heavy lifting sales motion. And so as you go down market with a lower price point, usually, you can’t actually support it.
Das : Does that mean that it’s easier for a company to do this go-to-market if they’re a new startup as opposed to if they’re a pre-existing SaaS?
Kristina : It’s culturally very, very hard to give a product away for free that you’re already charging for. It feels like you’re eating away at your own potential revenue when you do it. So most people who try it end up pulling back very quickly.
David : This is actually one of the key reasons why the bottoms up SaaS motion is just so competitive, and compelling, and so destructive against the traditional sales-driven test motion. If you have that great product and people are choosing to use it, it’s very hard for somebody with a sales-driven motion, and all the cost that’s loaded into that, to be able to compete against it. There are so many markets where initially, we would look at companies and say, “Oh, well, this couldn’t possibly be bottoms up. It has to be sold to the CIO. It has to be sold to the CSO or the CFO.” But in almost every case we’ve been wrong, and there has been a bottoms up motion. The canonical example is Slack. It’s crazy that Slack is a bottoms up company, because you’re talking about corporate messaging, and how could you ever have a messaging solution that only a few people might be using, that only a team might be using? But now it’s just, “Oh, yeah, some people started using it, and then more people started using it, and then everyone had Slack.”
Kristina : I think another classic example is Dropbox versus Box. Both started as bottoms up businesses, try before you buy. But Box quickly found, “Hey, I’d rather sell to IT.” And Dropbox said, “Hey, we’ve got a great freemium motion going.” And they catalyzed their business around referrals and giving away free storage and shared storage in a way that really helped drive their bottoms up business.
Das : It’s a big leap to go from selling to smaller customers to larger customers. How have you seen SaaS companies know or get the timing right on that? Especially since it does seem like that’s really related to scaling your sales force?
Kristina : Don’t try to go from a 100-person company to a 20,000-person company. Start targeting early adopters, maybe they’re late stage pre-IPO companies, then newly IPO’d companies. Starting in tech tends to be a little bit easier because they tend to be early adopters. Going vertical by vertical can be a great strategy as well. Targeting one customer who might be branded in that space, can help brand yourself in that category. And then all their competitors will also want your product if you do a good job. A lot of times people will dedicate a sales rep to each vertical, so that they become really, really knowledgeable in that space, and also build their own brand and reputation and know who are the right customers to target.
Das : So right now, you’ve got a lot more people working remote. Does this move to remote work mean that on-premise software is dying? And is it accelerating the move to software as a service?
Kristina : This remote work and working from home is only going to catalyze more of the conversion from on-premise over to cloud and SaaS. In general, software spend declines 20% during an economic downturn. This happened in ’08, this happened in ’01. But when we look at the last downturn in ’08, SaaS spend actually, for public companies, increased, on average, 10%, which means there’s a 30% spread, which really shows us that there was a huge catalyst from people moving on-premise to SaaS.
David : And as people work remote, the ability to use SaaS tools is much easier than having to VPN back into your corporate network. We’ve been seeing that, inside sales teams have been doing larger and larger deals, essentially moving up market on the inside, without having to engage with field sales teams. In fact, a lot of the new SaaS companies today rather than building out a field team, they have a hybrid team, where people are working and closing deals on the inside and if they had to go out and meet with a customer, they would do that. But by and large, most of it was happening over the phone, over email, and over videoconferencing. And all the deals now, by definition, are gonna be done remote because people can’t go visit their customers in person.
Das : So with bottoms up, did user behavior and buyer behavior change, so the go-to-market evolved? Or did the go-to-market evolve and then you saw user and buyer behavior change? I’m curious with this move to remote work. Is that going to trigger more changes or has the go-to-market enabled that change in user behavior, even though we see that change coming because of a lot of forces outside of the market?
Kristina : I definitely think they are interrelated. But I do think it was a user change that catalyzed everything. We decided that we preferred better software, and we tried a couple products. We were able to purchase off our credit card. And then IT and procurement eventually said, “Wow, everyone’s buying these already, I might as well get a company license and a company deal so I’m not paying as much.” While obviously software vendors had to offer the products that could be self-served, users started to realize they had the power, they wanted to use better software, they paid with their credit cards. And now software vendors are forced to change their go-to-market to actually suit that use case.
Das : If that’s the case that when user behavior has changed, it’s tended to be the catalyzing force of bigger changes in the go-to-market, what are some of the changes you foresee for SaaS because the world has changed to this new reality of remote work and more distributed teams?
David : We’re in a very uncertain economic environment right now. And a couple of things will become very clear over the next 3 to 9 to 15 months — you’re going to find out which SaaS products are absolutely essential to helping a business operate and run, and which ones were just nice to have and may not get renewed. I think on the customer, buying side, you’re very likely to see people push back on big annual commitments and prefer to go month-to-month where they can. Or you’ll see more incentives from SaaS startups to offer discounts for annual contracts. You’re going to see people that might sign an annual contract, but they may not want to pay upfront. They may prefer to meter the cash out ratably over the term of the contract. And as companies had empowered and allowed budget authority to be pushed down in organizations, you’re gonna see that budget authority get pulled back, more scrutiny on spending, and likely a lot of SaaS products not get renewed that turned out to not be essential.
Kristina : I think the smartest founders are making sure they have the runway to continue to exist. And they’re doing that in a couple of ways. They’re preserving cash, and they are making sure that their existing customers are super, super happy, because retaining your customers is so important in this environment. And they’re making sure that they have efficient or profitable customer acquisition. Don’t spend valuable dollars acquiring customers. But acquire customers efficiently that will add to a great existing customer base.
Das : To go into pricing and packaging for SaaS for a moment, what are some of the different pricing approaches that you see SaaS companies taking?
Kristina : The old school way of doing SaaS go-to-market is bundle everything together, make the pricing super complex, so you don’t actually understand what you’re paying for. You’re forced to purchase it because you need one component of the product. New modern SaaS pricing is keep it simple, keep it tied to value, and make sure you’re solving one thing really, really well.
David : You want to make it easy for your customers to give you money. And if your customers don’t understand your pricing, that’s a huge red flag. Sometimes founders will try to over engineer their pricing model.
Kristina : We talk a lot about everything has to be 10X better than the alternatives. But it’s much easier to be 10X better when you solve one thing very, very well, and then have simple pricing around it. I think the most common that most people know about is PEPM or per employee per month, where you’re charging basically for every single seat. Another really common model is the freemium model. So, think about a Dropbox, or an Asana, or a Skype, where it’s trigger based. You try the product for free, but when you hit a certain amount of storage, or a certain amount of users, then it converts over to paid. And then you also have a time trial, where you get the full experience of the product for some limited time period. And then you’re asked if you want to continue using the product to pay. And then there’s pay as go, and particularly, pay as you go as a usage model. So, Slack will say, “Hey, if your users aren’t actually using the product this month, we won’t actually charge you for it.”
David : The example that Kristina made about Slack and users, everybody understands what a user is, and if they’re using the product, they pay for it, and if they’re not using it, they don’t pay for it. That’s a very friendly way to make it easy for your customers to give you money. If Slack came up with a pricing model that was like based on number of messages, or number of API integration calls, the customer would have no idea what that means.
Kristina : There’s also the consumption model. So Twilio only charges you for every SMS text or phone call that you make on the platform any given month. And so they make money or lose money as your usage goes. The pricing is very aligned to your productivity.
David : Generally, those are for products where the usage only goes in one direction. If you think of a company like Databricks, where they’re charging for storage, or Amazon’s S3 service, it is very aligned with the customer, but it also strategically aligns with the business because they know the switching cost is very high, the churn is very low. And generally, in those businesses, you’re only going to store more data, so they can charge based on usage or volume of data.
Kristina : Recently, there’s been a huge trend of payment as a revenue. It’s particularly common in vertical markets where SaaS companies are adding payments as a revenue in addition to their employee or subscription revenue. If you look at Shopify, for example, more than 50% of their revenue is actually payment revenue. They’re making money every single time you purchase something off one of their shopping cart websites.
Das : When you’re working with a founder or a SaaS startup, how have you seen them find the right pricing model for their product, for their market?
Kristina : Step one is just talk to a lot of customers. Try to figure out what is the market pricing for possible alternatives or competitors, understand their pain points and their willingness to pay. And just throw a price out there, because you have to have a starting point in order to actually test and iterate. Particularly in the SMB, or the bottoms up business, you can test and iterate pretty quickly because you have so many data points.
David : I always tell founders, step one is to just go out there and talk to customers. Step two is just double your prices. I don’t think there’s ever been a great company with a great product that’s fallen apart because their pricing was wrong. But a lot of SaaS startup founders really under price, and you don’t want to find out two or three years later that you were 200% underpriced. A very common thing that SaaS companies do, they’ll have the basic package that either is free or low cost, that you can just sign up online for. They’ll have a middle package where they share some pricing, and then they’ll have the enterprise package where you have to contact sales to find out more. And that way they don’t actually have to show the pricing for that third package. And that gives the salespeople the flexibility to adjust pricing on a per deal basis.
Das : When you’re working with companies, why are they underpricing their products?
David : I think it’s psychological. People need to price on value, and they don’t know how much value they’re delivering relative to “Oh, it only cost me $100 a month to provide this service, so I just need to charge $200.” But if it turns out you’re saving your customer $50,000 a year, then you’re wildly underpriced. You have to remember that SaaS is essentially a proxy for outsourced IT. You’re spending money on a SaaS service to not pay to develop something internally, or to have to pay IT to support something that’s more complex on-prem. Software is much cheaper than people, and so generally, the price point can be much higher.
Kristina : And the other thing is your value increases over time. You’re delivering more features, more products, you understand the customer better. It’s the beauty of the SaaS model and cloud model that you can iterate and push code immediately, and the customer immediately sees value. A lot of times people have the same price point from the first customer sold to three years later and the 200th customer. Quite frankly, you’ve delivered so much value along the way that your price point should have gone up. The other thing I’ll say is a lot of people discount per seat pricing a lot as they move up market. We tend to tell people that the best validation of your product having great product market fit is your ability to hold your price point. So while there is some natural discounting on a per seat basis because people do deserve some volume discounting, I would say try to resist that as much as possible.
Das : Especially for a technical founder, it’s so tempting to get in there and fiddle with these knobs. How do you know when it is time to experiment with your pricing and packaging?
David : If you’re looking at your business and you see that you are doing more deals, and they’re closing faster, you should raise your pricing. And you pay attention to how long it takes to close deals and whether the number of deals is staying consistent as you do that. And, at some point, you’re going to find out when you’re losing deals on price. I think a moment where companies have to plan ahead to avoid having to course correct is after they roll out massive pricing and packaging changes, which are pretty natural as companies move up market. But how they navigate that transition to larger accounts, and how they either bring along or move away from those smaller, earlier customers who got them to where they are, tends to be really important because they can get a lot of noise on Twitter, they can get a lot of blowback from their customers. So Zendesk is a company where they rolled out a major packaging change. And when they rolled it out, they hadn’t planned on grandfathering in their early customers. They got a lot of pushback, and very quickly, they put out a blog post and said, “We hear what you’re saying, we appreciate you building the business that we’ve become today. We do need to have a package for the future. But all the people that have been customers so far will be grandfathered in for at least a period of time into the old model.”
Kristina : If you iterate pricing constantly, you don’t really have this problem because your customers will be used to pricing changes. You normally pair them with new features, and it all kind of works out. But if you have to go through a big grandfather change, I tend to lean towards treating your early customers really, really well. They adopted when you weren’t a big company yet. They probably co-built the product with you in many ways. And so, it’s great to get more dollars out of your customer base, but treat your early customers well.
Das : Are there any other failure modes that you see startups really falling into around pricing and packaging or any common mistakes that they make?
David : I think a lot of founders don’t always map out the cost or model of their pricing and their product relative to their cost of actually doing sales and marketing and customer acquisition.
Kristina : Inside sales is so popular in Silicon Valley. When you’re selling more to an SMB or mid-market type customer, the expectation is that you’re educating and helping the prospective customer over the phone. And so, you’re not expected to be as high touch. But 5K is almost the minimum price point you need to sell to the SMB with an inside sales team in order to pay for the outbound costs and all the conversions, because there is typically a team that sits around the quota carrying rep. And so, price matching — how much your price point is compared to what your go-to-market motion is — matters a lot. Other big failure modes that I see, people guess the ramp time of a sales rep wrong. And ramp time really ties to the segment of customer you’re selling into. It tends be that if you’re selling into the enterprise, the ramp time for sales reps, because sales cycles are so long, tend to be much longer as well. They could be six months plus, could be a year. While if you’re selling more into SMB or mid-market, the ramp time to get a rep up and running can be much shorter, three to six months. Because the sales cycles are shorter, they just iterate much faster, and they ramp up much more quickly.
David : The other thing that people have to understand is that sales velocity is a really important component to figuring out how many reps you should be hiring, whether they should be inside reps or field reps. If it takes you 90 days to close a deal, that can’t be a $5,000 a year deal, that has to be a $50,000 or even $150,000 a year deal.
Das : Kristina, I know you’ve done a lot of work with metrics. So how do those play in?
Kristina : Probably the one way to sum it all together is how many months does it take to pay back customer acquisition cost. Very commonly within the SaaS world, we talk about a 12-month CAC payback. We typically want to see for every dollar you spend on sales and marketing, you get a dollar back within a year. That means you can tweak the inputs any way you want. Let’s say that doing paid acquisition is really effective for you. Then, you can spend proportionally more on paid acquisition and less on sales reps. Vice versa, if you have a great inbound engine, you actually can hire a lot more sales reps and spend more on sales headcount. With all formulas, it’s a guide rail, so if you have customers that retain really, really well, let’s say you’re selling to the enterprise, and you’ve got a 90% or 95% annual retention rate, then your CAC payback could be between 12 and 24 months. But let’s say you’re selling to the SMB and churn is 2% or 3% monthly, which ends up being like 80% to 90% annual retention. Then, because your customer is less sticky, I would recommend looking at a CAC payback of 6 to 12 months.
Das : How should you think about doing a free trial versus a paid trial?
David : On the one hand, the bottoms up motion where people can try essentially a full version of a product before they buy it is extremely powerful. On the other hand, I’ve started to try to think about how I advise companies, when they are thinking about a free trial for something that might cost $100,000 or $200,000 a year? Do we do a paid pilot that has some sort of contractual obligation that if we meet then turns into a commercial engagement?
Kristina : I do think the beauty of the bottoms up business is that you can get people to try the entire experience of the product for free, and they fall in love with it, and a certain percentage will convert. And that works really, really well for products that can self-serve. When you start moving up market to more complex products, the challenge with trials is it takes work to actually implement the product, whether it be integrations, IT has to give access, etc. You lose that self-serve ability, which is so amazing in the trial. And so, I tend to be more in the camp of paid trials, if it costs you money to actually deploy the trial. And when you’re selling to bigger customers, they associate value when they have to pay. Once a customer has to pay you, then they feel a need to make the project successful and thus they will onboard, schedule things, give you data and access.
David : If you can get to a point where you get the customer to do that paid pilot, such that the only difference between a pilot and an actual customer is just the signing of a contract, that’s very powerful. Now, that does force you to have a really good pre-sales motion to make sure that you can deliver on the promise you’ve made your customers. When companies don’t have a great product, and they paper over it with professional services and sales engineering and post-sales support, that paid pilot thing doesn’t work because the experience isn’t good enough. So, it really is incumbent on the SaaS company that does a paid pilot to make sure that they are able to deliver on that experience.
Kristina : And one emerging trend recently is people signing an annual contract with a one or three month out, as a replacement to the paid pilot. Because it’s the best of both worlds, the SaaS company that’s selling the product gets a higher level of commitment. And the customer gets the optionality of opting out in the same way as a trial without any clawback. It really comes down to where procurement falls. Sometimes procurement is at the beginning of that decision, which makes it more like an annual contract. Sometimes procurement is at the one or three month opt-out period, which means the customer already has a great experience, loves the product, and it is an easier way to convert procurements to actually sign on…
David : And that is a really good segue into renewals. I always tell founders, you might have this subscription business, but it’s not a recurring revenue business until the second year when the revenue actually recurs. I think you really have the first three months to get a customer up and running and happy. And if they’re not, you then have about three months to fix it. And if all that works out, then the remaining six months of the contract can be focused on upsell and expansion.
Das : Awesome. Thank you, Kristina. Thank you, David.
Kristina : Thanks so much for having us. This was fun.
David : Yeah, a lot of fun, great topics, and our favorite thing to talk about.
'''
summarizer(text)
``` | [
-0.7701731324195862,
-0.49901658296585083,
0.33831170201301575,
0.1712706983089447,
-0.34597650170326233,
-0.017762016505002975,
-0.0157492496073246,
-0.5272209644317627,
0.5887114405632019,
0.21337296068668365,
-0.27581682801246643,
-0.093571238219738,
-0.29587072134017944,
-0.04103369638323784,
-0.11680988222360611,
0.7265775799751282,
-0.03921022266149521,
-0.33795326948165894,
0.2699238359928131,
0.020091235637664795,
-0.6748311519622803,
-0.42647454142570496,
-0.570868194103241,
-0.1778586059808731,
0.392980694770813,
0.19565390050411224,
0.5362429022789001,
0.6479458808898926,
0.39853620529174805,
0.3636746108531952,
-0.20770668983459473,
0.23498649895191193,
-0.3887939155101776,
-0.3028567135334015,
-0.14144261181354523,
-0.3278907537460327,
-0.34031999111175537,
0.062655970454216,
0.41408127546310425,
0.6938974261283875,
-0.10623487830162048,
0.2032550871372223,
0.027789374813437462,
0.7520080208778381,
-0.3100517690181732,
0.39535000920295715,
-0.18660283088684082,
0.09097708761692047,
0.0656493604183197,
-0.2940729260444641,
-0.07870359718799591,
-0.5848150849342346,
-0.1419210433959961,
-0.47672516107559204,
0.12287020683288574,
0.27560168504714966,
1.3295090198516846,
0.08317632973194122,
-0.32537275552749634,
-0.25341367721557617,
-0.6666228175163269,
0.875550389289856,
-0.2597350478172302,
0.19587446749210358,
0.35170778632164,
0.2160511463880539,
-0.2653881013393402,
-0.48769450187683105,
-0.19531035423278809,
-0.3584039509296417,
-0.3829023838043213,
0.333888441324234,
-0.22152851521968842,
-0.09715284407138824,
0.3642142415046692,
0.32120540738105774,
-0.5331729054450989,
-0.11483290791511536,
-0.6808669567108154,
-0.17469602823257446,
0.6055991053581238,
0.053842633962631226,
0.3041546046733856,
-0.525219202041626,
-0.5390145182609558,
0.052398681640625,
-0.3891009986400604,
0.3040177524089813,
0.16331391036510468,
0.259096622467041,
-0.13689064979553223,
0.423304945230484,
-0.14629393815994263,
0.32883504033088684,
0.30638882517814636,
-0.04003768414258957,
0.12344533205032349,
-0.49700549244880676,
-0.20570632815361023,
0.00022747584444005042,
0.5666140913963318,
0.6265472769737244,
0.2662275731563568,
-0.04844708368182182,
0.14148199558258057,
0.1338253766298294,
0.1471312940120697,
-0.6349965333938599,
-0.018601372838020325,
0.44794028997421265,
-0.7470317482948303,
-0.29816770553588867,
0.001995301339775324,
-0.47150668501853943,
-0.09753257036209106,
-0.3376518189907074,
0.25160613656044006,
-0.24362485110759735,
-0.3662697970867157,
0.2251172512769699,
-0.48522210121154785,
0.4007713198661804,
0.34780046343803406,
-0.9343357682228088,
0.1525232344865799,
0.5180805325508118,
0.6367455720901489,
0.11270549893379211,
-0.13436631858348846,
-0.13413739204406738,
0.10542086511850357,
-0.8108092546463013,
0.7107714414596558,
0.022104721516370773,
-0.5541005730628967,
-0.26097774505615234,
0.10199562460184097,
0.2757282853126526,
-0.5927088856697083,
0.41335171461105347,
-0.3103574812412262,
0.008005425333976746,
-0.4880638122558594,
-0.23956380784511566,
-0.03281639143824577,
0.08456207066774368,
-0.36422407627105713,
0.5687028169631958,
0.01936361938714981,
-0.6060636639595032,
0.41469091176986694,
-0.40242257714271545,
-0.5884903073310852,
0.1765403300523758,
-0.16192258894443512,
-0.027733583003282547,
0.34498751163482666,
0.007726320065557957,
0.2909441888332367,
-0.3812110722064972,
0.08724556863307953,
-0.12129545211791992,
-0.24839557707309723,
0.20593062043190002,
0.23777586221694946,
0.8639225959777832,
0.42953944206237793,
-0.12334684282541275,
-0.28668805956840515,
-0.7247875928878784,
0.12366512417793274,
0.027307264506816864,
-0.41552048921585083,
-0.21060071885585785,
0.12733395397663116,
-0.1761474907398224,
0.19301265478134155,
0.3722783327102661,
-0.4538506269454956,
0.2485044002532959,
-0.33201685547828674,
0.5378955602645874,
0.7653393745422363,
0.14884476363658905,
0.5109132528305054,
-0.7294015884399414,
0.473263144493103,
-0.26691725850105286,
0.19410385191440582,
-0.005320313386619091,
-0.2955852448940277,
-0.6269736886024475,
-0.31273284554481506,
0.16487398743629456,
0.6054011583328247,
-0.05860482528805733,
0.2959405183792114,
-0.08523152768611908,
-0.5146535634994507,
-0.2550829350948334,
-0.23744919896125793,
0.29700055718421936,
0.2555503249168396,
-0.08274129033088684,
-0.4254210591316223,
-0.7012884020805359,
-0.8408503532409668,
0.012631290592253208,
-0.47873255610466003,
0.005713686812669039,
0.477939248085022,
0.44055163860321045,
0.08487696945667267,
0.8779919743537903,
-0.7602418661117554,
-0.3182581663131714,
-0.2379177063703537,
0.17431828379631042,
0.5624662637710571,
0.4713556468486786,
0.6127568483352661,
-0.7925267815589905,
-0.5550072193145752,
0.2044229656457901,
-0.7790215611457825,
-0.03742265701293945,
-0.3025165796279907,
-0.4327675998210907,
-0.050539448857307434,
0.28980833292007446,
-1.0587424039840698,
0.31944507360458374,
-0.09404169768095016,
-0.12280488014221191,
0.7737334370613098,
-0.2694317400455475,
0.2230338454246521,
-1.003852367401123,
0.24589675664901733,
-0.3179489076137543,
0.10822233557701111,
-0.5109316110610962,
0.07056647539138794,
-0.3172537684440613,
-0.18891024589538574,
-0.37349915504455566,
0.49001991748809814,
-0.4688330590724945,
-0.053774066269397736,
-0.03475202992558479,
0.27444207668304443,
0.14107859134674072,
0.5160623788833618,
-0.16731391847133636,
0.3280313014984131,
0.39382562041282654,
-0.7360309958457947,
0.4741712808609009,
0.36125892400741577,
-0.4711676836013794,
0.5526219606399536,
-0.6140075922012329,
-0.14027002453804016,
-0.3904043436050415,
0.15719299018383026,
-0.9310415387153625,
-0.1538941115140915,
0.25132498145103455,
-0.7093338966369629,
0.18619808554649353,
0.19159696996212006,
-0.23237314820289612,
-0.6419540643692017,
-0.28464576601982117,
-0.026330523192882538,
0.5722545981407166,
-0.09919237345457077,
0.6246346235275269,
0.37199079990386963,
-0.38769981265068054,
-0.4499603807926178,
-0.8665933609008789,
0.04377077519893646,
-0.19025136530399323,
-0.6173862218856812,
0.5378589034080505,
-0.3585014343261719,
-0.5220211744308472,
0.0365164615213871,
-0.21894453465938568,
-0.27145639061927795,
-0.06836024671792984,
0.36758676171302795,
0.12260670214891434,
0.02545168809592724,
-0.06168396770954132,
-0.08022996038198471,
-0.28151828050613403,
0.0868777185678482,
-0.08219899982213974,
0.35062626004219055,
-0.23919257521629333,
-0.04315868020057678,
-0.7359344959259033,
0.33848056197166443,
0.771231472492218,
-0.05118592828512192,
0.22819294035434723,
0.26814013719558716,
-0.22349916398525238,
-0.019693372771143913,
-0.4522691071033478,
-0.08287127315998077,
-0.43268072605133057,
0.3270949721336365,
-0.505797266960144,
-0.357522189617157,
0.5665925741195679,
-0.029432106763124466,
0.2500881552696228,
0.3847661018371582,
0.4871276319026947,
-0.4182503819465637,
0.7536631226539612,
0.7546348571777344,
-0.1339758336544037,
0.3488144874572754,
-0.2904532849788666,
0.49919143319129944,
-0.44902703166007996,
-0.3040677309036255,
-0.4289718568325043,
-0.39055076241493225,
-0.6395548582077026,
-0.017319614067673683,
0.06778448820114136,
0.16586869955062866,
-0.3989120125770569,
0.5611792206764221,
-0.5076842904090881,
0.17632675170898438,
0.5176631212234497,
-0.02684921585023403,
0.23495887219905853,
-0.0821881964802742,
0.014282970689237118,
-0.09835305064916611,
-0.5271136164665222,
-0.37228986620903015,
0.5290790796279907,
0.24132868647575378,
0.8146974444389343,
0.1590023785829544,
0.6568464040756226,
0.302971214056015,
-0.2057933360338211,
-0.5341351628303528,
0.6367360353469849,
0.021626202389597893,
-0.9113227725028992,
-0.13389025628566742,
-0.1487547606229782,
-0.9202482104301453,
0.25543665885925293,
0.12420590966939926,
-0.5948499441146851,
0.5801414251327515,
0.09012406319379807,
-0.6988963484764099,
0.17355673015117645,
-0.7203604578971863,
0.5421392917633057,
-0.518335223197937,
-0.47175368666648865,
-0.24305914342403412,
-0.6202898621559143,
0.21914546191692352,
0.008251691237092018,
0.569409966468811,
-0.2713932394981384,
0.13449987769126892,
0.5172597765922546,
-0.5096598863601685,
0.694446861743927,
0.06067456677556038,
0.22942453622817993,
0.5388187766075134,
0.021667955443263054,
0.26979920268058777,
0.04436759650707245,
-0.09153655171394348,
-0.13004139065742493,
0.017899779602885246,
-0.3717151880264282,
-0.43543097376823425,
0.5605912804603577,
-0.8279136419296265,
-0.39553242921829224,
-0.5364828705787659,
-0.4208409786224365,
0.4017500877380371,
0.23078306019306183,
0.3634757399559021,
0.5417471528053284,
-0.13696645200252533,
-0.018451927229762077,
0.3256770074367523,
-0.4744393229484558,
0.5762619972229004,
0.3836764991283417,
-0.4310915172100067,
-0.4848930239677429,
0.8161619305610657,
0.20480488240718842,
0.26165005564689636,
0.5662193298339844,
0.2299833744764328,
-0.15710875391960144,
-0.027697769924998283,
-0.2333468496799469,
0.1864601969718933,
-0.5036912560462952,
0.004668139386922121,
-0.4298962354660034,
-0.11013410240411758,
-0.24542927742004395,
-0.45923495292663574,
-0.2706849277019501,
-0.27164173126220703,
-0.2654035985469818,
-0.017000561580061913,
0.12244483083486557,
0.6859210133552551,
-0.46186670660972595,
-0.09707198292016983,
-0.340996652841568,
0.30442342162132263,
0.3860968351364136,
0.08854401111602783,
-0.017552563920617104,
-0.43364596366882324,
-0.13238638639450073,
-0.09478560835123062,
-0.28593945503234863,
-0.6606113910675049,
0.569653332233429,
-0.0566999576985836,
0.45583871006965637,
0.6429116725921631,
0.015439213253557682,
0.7416730523109436,
-0.42260080575942993,
0.6213306784629822,
0.1753426045179367,
-0.5387406349182129,
0.4337277412414551,
-0.28452980518341064,
0.17361973226070404,
0.27680277824401855,
0.37542131543159485,
-0.4278664290904999,
-0.09033981710672379,
-0.6132551431655884,
-0.7385269403457642,
0.409048467874527,
0.18398982286453247,
0.09774530678987503,
0.0905609130859375,
0.37407124042510986,
-0.10809795558452606,
0.6218073964118958,
-0.7800999283790588,
-0.5527478456497192,
-0.1939757764339447,
0.5377434492111206,
0.04789076745510101,
-0.2529148459434509,
0.04743582010269165,
-0.44320163130760193,
0.5148764848709106,
0.38216161727905273,
0.6634713411331177,
0.0767747089266777,
0.232115238904953,
-0.18412522971630096,
0.26616358757019043,
0.542069137096405,
0.8233804702758789,
-0.3934660851955414,
0.0373234786093235,
0.31401070952415466,
-0.2336360216140747,
0.10490987449884415,
0.0015003967564553022,
-0.05189523845911026,
0.1738983541727066,
0.19111962616443634,
0.6791502833366394,
0.08721916377544403,
-0.5055213570594788,
0.23799851536750793,
0.1700962334871292,
-0.11437176913022995,
-0.4518604874610901,
-0.3022407591342926,
0.09825421124696732,
0.18670153617858887,
0.49510329961776733,
0.04464825242757797,
-0.05694646015763283,
-0.689787745475769,
0.19588591158390045,
0.4808669984340668,
-0.14103855192661285,
-0.1879444420337677,
0.6043833494186401,
0.16824807226657867,
-0.2735742926597595,
0.40848246216773987,
-0.5243908762931824,
-0.45237967371940613,
0.8804705142974854,
0.4591102600097656,
0.6084490418434143,
-0.06858733296394348,
0.34564945101737976,
0.5037522912025452,
0.5653703212738037,
0.2525074779987335,
0.6082634329795837,
-0.04097108170390129,
-0.27632543444633484,
-0.31503817439079285,
-0.8838480114936829,
-0.21101973950862885,
0.08541738241910934,
-0.4433414936065674,
0.6596807241439819,
-0.5766289830207825,
-0.2674832344055176,
-0.14066986739635468,
0.24753518402576447,
-0.3126251697540283,
0.1387380212545395,
0.1406027227640152,
0.7858428955078125,
-0.8222600221633911,
0.20929068326950073,
0.7291656136512756,
-0.6563345193862915,
-0.6962035894393921,
-0.2970707416534424,
-0.3140893876552582,
-0.6343578696250916,
0.7591186761856079,
0.09992177784442902,
0.027737803757190704,
-0.020935790613293648,
-0.4235825836658478,
-1.1032072305679321,
0.9543986320495605,
0.004968225955963135,
-0.5106251239776611,
-0.16885167360305786,
0.16736958920955658,
0.4921049475669861,
-0.12422745674848557,
0.17536406219005585,
0.30143505334854126,
0.4726923704147339,
0.12543927133083344,
-0.9028428196907043,
0.011435545049607754,
-0.19965103268623352,
0.13688994944095612,
0.2766523063182831,
-1.016906976699829,
0.9198025465011597,
-0.5004522204399109,
-0.26838430762290955,
0.20545606315135956,
0.5485354661941528,
0.015813738107681274,
0.01823342964053154,
0.3351646959781647,
0.47657060623168945,
0.6296812295913696,
-0.150421142578125,
0.8322528600692749,
-0.36280882358551025,
0.3433035910129547,
0.6090272068977356,
-0.02858743630349636,
0.6780049204826355,
0.15232330560684204,
-0.5529151558876038,
0.5040339827537537,
0.8451830148696899,
-0.2415347546339035,
0.6606305241584778,
0.40635955333709717,
-0.16861528158187866,
0.027714189141988754,
-0.2634860575199127,
-0.6356138586997986,
0.37968823313713074,
0.0850229412317276,
-0.23195867240428925,
-0.23123353719711304,
0.09911862015724182,
0.06356330960988998,
-0.3090989589691162,
-0.3372560739517212,
0.4645363688468933,
0.26653292775154114,
-0.5064982771873474,
0.6758540868759155,
-0.06935769319534302,
0.2552509307861328,
-0.7426245212554932,
0.20637904107570648,
-0.22412115335464478,
0.21013504266738892,
-0.21245306730270386,
-0.591978132724762,
0.329271137714386,
-0.34043005108833313,
-0.4333428144454956,
-0.44029858708381653,
0.45760202407836914,
-0.15796564519405365,
-0.2982935905456543,
0.17234797775745392,
0.17301741242408752,
0.5251910090446472,
-0.025038400664925575,
-0.5272197127342224,
0.29151424765586853,
0.0616292767226696,
0.07863525301218033,
0.12217026948928833,
0.27745649218559265,
0.12048150599002838,
0.5337255001068115,
0.42587313055992126,
0.06146395578980446,
-0.03788863122463226,
-0.35827624797821045,
0.5978817343711853,
-0.7004380822181702,
-0.603748083114624,
-0.6771571636199951,
0.6514237523078918,
-0.020191356539726257,
-0.26658907532691956,
0.5759571194648743,
0.606026291847229,
0.5420558452606201,
-0.18825103342533112,
0.8532072901725769,
-0.7234934568405151,
0.38186073303222656,
-0.07977389544248581,
0.6336742043495178,
-0.5834174752235413,
-0.017522642388939857,
-0.3378852903842926,
-0.8017838001251221,
-0.06696419417858124,
0.8053168654441833,
-0.2145794779062271,
0.031312245875597,
0.7691463828086853,
0.753491222858429,
0.24547109007835388,
-0.06855709850788116,
0.2099081128835678,
0.47805923223495483,
0.2038237601518631,
0.5262877941131592,
0.9093472361564636,
-0.2760397791862488,
0.7094668745994568,
-0.4733274579048157,
-0.5938313007354736,
-0.25436487793922424,
-0.8400039672851562,
-0.6303667426109314,
-0.5970984101295471,
-0.2973870635032654,
-0.3045746386051178,
0.054433710873126984,
0.7854927182197571,
0.6704761981964111,
-0.6644017100334167,
-0.6169093251228333,
-0.12116442620754242,
0.11870217323303223,
-0.32208943367004395,
-0.1869191974401474,
0.3561379313468933,
-0.15277589857578278,
-0.548270583152771,
0.048764247447252274,
0.2947528064250946,
0.03172110393643379,
-0.1869819462299347,
0.2809838056564331,
-0.21430663764476776,
0.04047500342130661,
0.8446054458618164,
0.595820426940918,
-0.6625956296920776,
-0.14766767621040344,
0.06653358787298203,
-0.2411385178565979,
0.08073025196790695,
0.3623897135257721,
-0.575892448425293,
0.3392970561981201,
0.5848694443702698,
0.14091096818447113,
0.4955558180809021,
0.23517832159996033,
0.2661699950695038,
-0.11000390350818634,
-0.083744116127491,
-0.14618133008480072,
0.24234408140182495,
0.1165209636092186,
-0.3081735670566559,
0.2560843527317047,
0.43037641048431396,
-0.8143045902252197,
-0.5568361282348633,
0.30946633219718933,
-1.0699819326400757,
-0.2889096438884735,
0.8439348936080933,
0.358596533536911,
-0.22796159982681274,
-0.16880446672439575,
-0.6593804359436035,
0.16840285062789917,
-0.29322782158851624,
0.7732002139091492,
0.669020414352417,
-0.5155546069145203,
0.2726101577281952,
-0.7525436282157898,
0.3424645662307739,
0.23498006165027618,
-0.5248109698295593,
-0.2060215026140213,
0.3964338004589081,
0.35677629709243774,
0.566150426864624,
0.7869215607643127,
0.006881628185510635,
0.20862574875354767,
0.07976161688566208,
0.32090553641319275,
0.23272766172885895,
-0.21813037991523743,
0.05351480841636658,
0.34441742300987244,
-0.005114942789077759,
-0.5666788220405579
] |
uer/chinese_roberta_L-2_H-128 | uer | "2023-08-30T02:23:10Z" | 11,876 | 9 | transformers | [
"transformers",
"pytorch",
"tf",
"jax",
"bert",
"fill-mask",
"zh",
"dataset:CLUECorpusSmall",
"arxiv:1909.05658",
"arxiv:2212.06385",
"arxiv:1908.08962",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | fill-mask | "2022-03-02T23:29:05Z" | ---
language: zh
datasets: CLUECorpusSmall
widget:
- text: "北京是[MASK]国的首都。"
---
# Chinese RoBERTa Miniatures
## Model description
This is the set of 24 Chinese RoBERTa models pre-trained by [UER-py](https://github.com/dbiir/UER-py/), which is introduced in [this paper](https://arxiv.org/abs/1909.05658). Besides, the models could also be pre-trained by [TencentPretrain](https://github.com/Tencent/TencentPretrain) introduced in [this paper](https://arxiv.org/abs/2212.06385), which inherits UER-py to support models with parameters above one billion, and extends it to a multimodal pre-training framework.
[Turc et al.](https://arxiv.org/abs/1908.08962) have shown that the standard BERT recipe is effective on a wide range of model sizes. Following their paper, we released the 24 Chinese RoBERTa models. In order to facilitate users in reproducing the results, we used a publicly available corpus and provided all training details.
You can download the 24 Chinese RoBERTa miniatures either from the [UER-py Modelzoo page](https://github.com/dbiir/UER-py/wiki/Modelzoo), or via HuggingFace from the links below:
| | H=128 | H=256 | H=512 | H=768 |
| -------- | :-----------------------: | :-----------------------: | :-------------------------: | :-------------------------: |
| **L=2** | [**2/128 (Tiny)**][2_128] | [2/256][2_256] | [2/512][2_512] | [2/768][2_768] |
| **L=4** | [4/128][4_128] | [**4/256 (Mini)**][4_256] | [**4/512 (Small)**][4_512] | [4/768][4_768] |
| **L=6** | [6/128][6_128] | [6/256][6_256] | [6/512][6_512] | [6/768][6_768] |
| **L=8** | [8/128][8_128] | [8/256][8_256] | [**8/512 (Medium)**][8_512] | [8/768][8_768] |
| **L=10** | [10/128][10_128] | [10/256][10_256] | [10/512][10_512] | [10/768][10_768] |
| **L=12** | [12/128][12_128] | [12/256][12_256] | [12/512][12_512] | [**12/768 (Base)**][12_768] |
Here are scores on the devlopment set of six Chinese tasks:
| Model | Score | book_review | chnsenticorp | lcqmc | tnews(CLUE) | iflytek(CLUE) | ocnli(CLUE) |
| -------------- | :---: | :----: | :----------: | :---: | :---------: | :-----------: | :---------: |
| RoBERTa-Tiny | 72.3 | 83.4 | 91.4 | 81.8 | 62.0 | 55.0 | 60.3 |
| RoBERTa-Mini | 75.9 | 85.7 | 93.7 | 86.1 | 63.9 | 58.3 | 67.4 |
| RoBERTa-Small | 76.9 | 87.5 | 93.4 | 86.5 | 65.1 | 59.4 | 69.7 |
| RoBERTa-Medium | 78.0 | 88.7 | 94.8 | 88.1 | 65.6 | 59.5 | 71.2 |
| RoBERTa-Base | 79.7 | 90.1 | 95.2 | 89.2 | 67.0 | 60.9 | 75.5 |
For each task, we selected the best fine-tuning hyperparameters from the lists below, and trained with the sequence length of 128:
- epochs: 3, 5, 8
- batch sizes: 32, 64
- learning rates: 3e-5, 1e-4, 3e-4
## How to use
You can use this model directly with a pipeline for masked language modeling (take the case of RoBERTa-Medium):
```python
>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='uer/chinese_roberta_L-8_H-512')
>>> unmasker("中国的首都是[MASK]京。")
[
{'sequence': '[CLS] 中 国 的 首 都 是 北 京 。 [SEP]',
'score': 0.8701988458633423,
'token': 1266,
'token_str': '北'},
{'sequence': '[CLS] 中 国 的 首 都 是 南 京 。 [SEP]',
'score': 0.1194809079170227,
'token': 1298,
'token_str': '南'},
{'sequence': '[CLS] 中 国 的 首 都 是 东 京 。 [SEP]',
'score': 0.0037803512532263994,
'token': 691,
'token_str': '东'},
{'sequence': '[CLS] 中 国 的 首 都 是 普 京 。 [SEP]',
'score': 0.0017127094324678183,
'token': 3249,
'token_str': '普'},
{'sequence': '[CLS] 中 国 的 首 都 是 望 京 。 [SEP]',
'score': 0.001687526935711503,
'token': 3307,
'token_str': '望'}
]
```
Here is how to use this model to get the features of a given text in PyTorch:
```python
from transformers import BertTokenizer, BertModel
tokenizer = BertTokenizer.from_pretrained('uer/chinese_roberta_L-8_H-512')
model = BertModel.from_pretrained("uer/chinese_roberta_L-8_H-512")
text = "用你喜欢的任何文本替换我。"
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
```
and in TensorFlow:
```python
from transformers import BertTokenizer, TFBertModel
tokenizer = BertTokenizer.from_pretrained('uer/chinese_roberta_L-8_H-512')
model = TFBertModel.from_pretrained("uer/chinese_roberta_L-8_H-512")
text = "用你喜欢的任何文本替换我。"
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)
```
## Training data
[CLUECorpusSmall](https://github.com/CLUEbenchmark/CLUECorpus2020/) is used as training data. We found that models pre-trained on CLUECorpusSmall outperform those pre-trained on CLUECorpus2020, although CLUECorpus2020 is much larger than CLUECorpusSmall.
## Training procedure
Models are pre-trained by [UER-py](https://github.com/dbiir/UER-py/) on [Tencent Cloud](https://cloud.tencent.com/). We pre-train 1,000,000 steps with a sequence length of 128 and then pre-train 250,000 additional steps with a sequence length of 512. We use the same hyper-parameters on different model sizes.
Taking the case of RoBERTa-Medium
Stage1:
```
python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \
--vocab_path models/google_zh_vocab.txt \
--dataset_path cluecorpussmall_seq128_dataset.pt \
--processes_num 32 --seq_length 128 \
--dynamic_masking --data_processor mlm
```
```
python3 pretrain.py --dataset_path cluecorpussmall_seq128_dataset.pt \
--vocab_path models/google_zh_vocab.txt \
--config_path models/bert/medium_config.json \
--output_model_path models/cluecorpussmall_roberta_medium_seq128_model.bin \
--world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \
--total_steps 1000000 --save_checkpoint_steps 100000 --report_steps 50000 \
--learning_rate 1e-4 --batch_size 64 \
--data_processor mlm --target mlm
```
Stage2:
```
python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \
--vocab_path models/google_zh_vocab.txt \
--dataset_path cluecorpussmall_seq512_dataset.pt \
--processes_num 32 --seq_length 512 \
--dynamic_masking --data_processor mlm
```
```
python3 pretrain.py --dataset_path cluecorpussmall_seq512_dataset.pt \
--vocab_path models/google_zh_vocab.txt \
--pretrained_model_path models/cluecorpussmall_roberta_medium_seq128_model.bin-1000000 \
--config_path models/bert/medium_config.json \
--output_model_path models/cluecorpussmall_roberta_medium_seq512_model.bin \
--world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \
--total_steps 250000 --save_checkpoint_steps 50000 --report_steps 10000 \
--learning_rate 5e-5 --batch_size 16 \
--data_processor mlm --target mlm
```
Finally, we convert the pre-trained model into Huggingface's format:
```
python3 scripts/convert_bert_from_uer_to_huggingface.py --input_model_path models/cluecorpussmall_roberta_medium_seq512_model.bin-250000 \
--output_model_path pytorch_model.bin \
--layers_num 8 --type mlm
```
### BibTeX entry and citation info
```
@article{devlin2018bert,
title={Bert: Pre-training of deep bidirectional transformers for language understanding},
author={Devlin, Jacob and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina},
journal={arXiv preprint arXiv:1810.04805},
year={2018}
}
@article{liu2019roberta,
title={Roberta: A robustly optimized bert pretraining approach},
author={Liu, Yinhan and Ott, Myle and Goyal, Naman and Du, Jingfei and Joshi, Mandar and Chen, Danqi and Levy, Omer and Lewis, Mike and Zettlemoyer, Luke and Stoyanov, Veselin},
journal={arXiv preprint arXiv:1907.11692},
year={2019}
}
@article{turc2019,
title={Well-Read Students Learn Better: On the Importance of Pre-training Compact Models},
author={Turc, Iulia and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina},
journal={arXiv preprint arXiv:1908.08962v2 },
year={2019}
}
@article{zhao2019uer,
title={UER: An Open-Source Toolkit for Pre-training Models},
author={Zhao, Zhe and Chen, Hui and Zhang, Jinbin and Zhao, Xin and Liu, Tao and Lu, Wei and Chen, Xi and Deng, Haotang and Ju, Qi and Du, Xiaoyong},
journal={EMNLP-IJCNLP 2019},
pages={241},
year={2019}
}
@article{zhao2023tencentpretrain,
title={TencentPretrain: A Scalable and Flexible Toolkit for Pre-training Models of Different Modalities},
author={Zhao, Zhe and Li, Yudong and Hou, Cheng and Zhao, Jing and others},
journal={ACL 2023},
pages={217},
year={2023}
}
```
[2_128]:https://huggingface.co/uer/chinese_roberta_L-2_H-128
[2_256]:https://huggingface.co/uer/chinese_roberta_L-2_H-256
[2_512]:https://huggingface.co/uer/chinese_roberta_L-2_H-512
[2_768]:https://huggingface.co/uer/chinese_roberta_L-2_H-768
[4_128]:https://huggingface.co/uer/chinese_roberta_L-4_H-128
[4_256]:https://huggingface.co/uer/chinese_roberta_L-4_H-256
[4_512]:https://huggingface.co/uer/chinese_roberta_L-4_H-512
[4_768]:https://huggingface.co/uer/chinese_roberta_L-4_H-768
[6_128]:https://huggingface.co/uer/chinese_roberta_L-6_H-128
[6_256]:https://huggingface.co/uer/chinese_roberta_L-6_H-256
[6_512]:https://huggingface.co/uer/chinese_roberta_L-6_H-512
[6_768]:https://huggingface.co/uer/chinese_roberta_L-6_H-768
[8_128]:https://huggingface.co/uer/chinese_roberta_L-8_H-128
[8_256]:https://huggingface.co/uer/chinese_roberta_L-8_H-256
[8_512]:https://huggingface.co/uer/chinese_roberta_L-8_H-512
[8_768]:https://huggingface.co/uer/chinese_roberta_L-8_H-768
[10_128]:https://huggingface.co/uer/chinese_roberta_L-10_H-128
[10_256]:https://huggingface.co/uer/chinese_roberta_L-10_H-256
[10_512]:https://huggingface.co/uer/chinese_roberta_L-10_H-512
[10_768]:https://huggingface.co/uer/chinese_roberta_L-10_H-768
[12_128]:https://huggingface.co/uer/chinese_roberta_L-12_H-128
[12_256]:https://huggingface.co/uer/chinese_roberta_L-12_H-256
[12_512]:https://huggingface.co/uer/chinese_roberta_L-12_H-512
[12_768]:https://huggingface.co/uer/chinese_roberta_L-12_H-768 | [
-0.25336286425590515,
-0.6088100671768188,
0.293166846036911,
0.40367603302001953,
-0.3976495862007141,
-0.2124728113412857,
-0.4060669243335724,
-0.278866708278656,
0.2139233499765396,
0.3916368782520294,
-0.675813615322113,
-0.669891357421875,
-0.7411733269691467,
-0.010822159238159657,
-0.14772900938987732,
1.2683372497558594,
0.18548336625099182,
0.2567828893661499,
0.2189427763223648,
0.022114969789981842,
-0.2879430949687958,
-0.5785167813301086,
-0.7124318480491638,
-0.29237228631973267,
0.4728865325450897,
0.22980716824531555,
0.565839946269989,
0.6416087746620178,
0.5455546379089355,
0.403012752532959,
-0.088478222489357,
0.0848364382982254,
-0.38543814420700073,
-0.26375386118888855,
0.24776239693164825,
-0.5365733504295349,
-0.6299139261245728,
0.14656773209571838,
0.6060957312583923,
0.61968994140625,
0.07649964839220047,
0.43682748079299927,
0.17098797857761383,
0.5704911351203918,
-0.29358160495758057,
0.2831370234489441,
-0.4133937358856201,
0.05137788504362106,
-0.37547802925109863,
0.035928577184677124,
-0.3327207565307617,
-0.22104056179523468,
0.18250656127929688,
-0.744853675365448,
0.40273764729499817,
-0.02480657957494259,
1.4073739051818848,
0.1311185657978058,
-0.08643176406621933,
-0.1443498432636261,
-0.5403975248336792,
1.04410719871521,
-1.0016071796417236,
0.06196723133325577,
0.3108859658241272,
0.13049477338790894,
-0.12110055238008499,
-0.9887539744377136,
-0.5817851424217224,
-0.02858154848217964,
-0.2066420614719391,
0.21210245788097382,
-0.05087052658200264,
-0.07428085803985596,
0.4722221791744232,
0.36079439520835876,
-0.7701188325881958,
0.032537467777729034,
-0.5279994010925293,
-0.33792611956596375,
0.7074549198150635,
0.21218076348304749,
0.3108659088611603,
-0.3458408713340759,
-0.399440735578537,
-0.4333671033382416,
-0.4156040549278259,
0.26418089866638184,
0.33946850895881653,
0.48688918352127075,
-0.2916495203971863,
0.43759140372276306,
-0.15218369662761688,
0.7542956471443176,
0.20227175951004028,
-0.22302483022212982,
0.5240877866744995,
-0.48143288493156433,
-0.3361201286315918,
-0.1629425436258316,
1.1022552251815796,
0.23165561258792877,
0.29030245542526245,
0.13964039087295532,
-0.30563753843307495,
-0.0874733030796051,
0.0849355161190033,
-0.9539661407470703,
-0.5897393822669983,
0.3095259666442871,
-0.5765956044197083,
-0.1692860871553421,
0.3435233235359192,
-0.6265161037445068,
0.12073183804750443,
-0.1622096747159958,
0.659463107585907,
-0.6107045412063599,
-0.1722085326910019,
0.07669533044099808,
-0.3116184175014496,
0.3471386730670929,
0.14463482797145844,
-0.8760402798652649,
0.06713339686393738,
0.5355662107467651,
0.8635395169258118,
0.1342993676662445,
-0.3500909209251404,
-0.22192388772964478,
-0.09636183828115463,
-0.3080689013004303,
0.5892656445503235,
-0.210008442401886,
-0.3776494860649109,
-0.21666616201400757,
0.24775177240371704,
-0.29560768604278564,
-0.4349268674850464,
0.5740573406219482,
-0.4006063938140869,
0.5259223580360413,
-0.271836519241333,
-0.4237324893474579,
-0.3192739486694336,
0.29111573100090027,
-0.6574811339378357,
1.237546682357788,
0.18156099319458008,
-0.7787759304046631,
0.4020511507987976,
-0.786819338798523,
-0.415772408246994,
0.023444170132279396,
-0.0508461557328701,
-0.5351719260215759,
-0.13971596956253052,
0.37453755736351013,
0.5500249266624451,
-0.2325102984905243,
0.1190589964389801,
-0.1524389535188675,
-0.5638555288314819,
0.11029434204101562,
-0.3763364553451538,
1.3951451778411865,
0.23910339176654816,
-0.5827494859695435,
0.40961676836013794,
-0.9020653963088989,
0.2053171843290329,
0.35670220851898193,
-0.4257667660713196,
-0.11748823523521423,
-0.375781387090683,
0.35999301075935364,
0.28366711735725403,
0.6338881850242615,
-0.4863361120223999,
0.1038307249546051,
-0.5405442118644714,
0.5956190824508667,
0.8128320574760437,
-0.16019949316978455,
0.1567469984292984,
-0.5255267024040222,
0.40590155124664307,
0.2750709354877472,
0.28445252776145935,
-0.07876846939325333,
-0.6520459055900574,
-0.9525534510612488,
-0.3657971918582916,
0.501770555973053,
0.6133517026901245,
-0.566339910030365,
0.8371730446815491,
-0.25176388025283813,
-0.7882205247879028,
-0.6891096830368042,
-0.0303882397711277,
0.5773687958717346,
0.38486814498901367,
0.44930481910705566,
-0.2856249511241913,
-0.5495986938476562,
-0.7650249600410461,
-0.07155991345643997,
-0.05866440385580063,
-0.2656180262565613,
0.3048160970211029,
0.7112917304039001,
-0.20831169188022614,
0.5868299007415771,
-0.5886363983154297,
-0.4444398880004883,
-0.29641440510749817,
0.19085539877414703,
0.7310953140258789,
0.7827906608581543,
0.6578235626220703,
-0.6306684613227844,
-0.5839046835899353,
-0.2184864729642868,
-0.6685627698898315,
0.3171861171722412,
-0.17720864713191986,
-0.23974023759365082,
0.3665769696235657,
0.19585108757019043,
-0.7390132546424866,
0.4169476330280304,
0.42091524600982666,
-0.3365500569343567,
0.781973123550415,
-0.5263063311576843,
0.07006487250328064,
-1.2622945308685303,
0.21424414217472076,
0.0396357886493206,
0.038427695631980896,
-0.5153449177742004,
0.04599720612168312,
0.061384379863739014,
0.07659738510847092,
-0.5093433856964111,
0.47634178400039673,
-0.70829838514328,
0.090779609978199,
0.07508312910795212,
0.12278492748737335,
-0.02665085345506668,
0.8478634357452393,
0.10349246859550476,
0.6788937449455261,
0.6516255140304565,
-0.6479743123054504,
0.47165757417678833,
0.3241930902004242,
-0.5208045840263367,
0.17899160087108612,
-0.9083501696586609,
0.10324810445308685,
0.18860578536987305,
0.1400955319404602,
-1.127147912979126,
-0.19965288043022156,
0.32363268733024597,
-0.7699528336524963,
0.18669021129608154,
-0.07291489094495773,
-0.6186818480491638,
-0.5919915437698364,
-0.444465696811676,
0.3974805772304535,
0.6726310849189758,
-0.4571584463119507,
0.4091910123825073,
0.18844443559646606,
0.12518839538097382,
-0.6511020660400391,
-0.7801902890205383,
-0.13017119467258453,
-0.32283034920692444,
-0.6645765900611877,
0.4980470538139343,
-0.2466505467891693,
0.12763328850269318,
-0.0829337015748024,
0.10471352189779282,
-0.07955837994813919,
-0.09968935698270798,
0.17763477563858032,
0.47015777230262756,
-0.3267102837562561,
-0.23245573043823242,
-0.3754907250404358,
-0.09148756414651871,
0.19937875866889954,
-0.21528777480125427,
0.8077317476272583,
-0.08450675755739212,
-0.054469503462314606,
-0.5757676362991333,
0.05518209934234619,
0.4792773425579071,
-0.29173964262008667,
0.7238715887069702,
1.1073579788208008,
-0.42897796630859375,
-0.0811811238527298,
-0.31328055262565613,
-0.1887393444776535,
-0.5309316515922546,
0.48285216093063354,
-0.4930860698223114,
-0.6569646000862122,
0.7681302428245544,
0.1696770042181015,
0.0877564400434494,
0.7829835414886475,
0.5677972435951233,
-0.043467652052640915,
1.1354295015335083,
0.5909945368766785,
-0.28488093614578247,
0.4958714544773102,
-0.6679109930992126,
0.12406668812036514,
-0.8533251881599426,
-0.3012677729129791,
-0.5169445872306824,
-0.2921968400478363,
-0.7270419001579285,
-0.3956534266471863,
0.40038272738456726,
0.032785311341285706,
-0.5669841766357422,
0.5987443327903748,
-0.7009102702140808,
0.18126334249973297,
0.9745972752571106,
0.3930158317089081,
-0.13029438257217407,
-0.11931875348091125,
-0.27622130513191223,
-0.048169128596782684,
-0.758463442325592,
-0.32548537850379944,
1.2977882623672485,
0.28057926893234253,
0.5643449425697327,
0.016397107392549515,
0.7541161179542542,
-0.0175890251994133,
-0.07640229165554047,
-0.6736422181129456,
0.5972805023193359,
-0.36064332723617554,
-0.8605228066444397,
-0.5144695043563843,
-0.2961166203022003,
-1.0100088119506836,
0.17157453298568726,
-0.2209143042564392,
-0.8154538869857788,
-0.046386267989873886,
-0.028591960668563843,
-0.6340518593788147,
0.3379672169685364,
-0.5486751198768616,
1.1921252012252808,
-0.38998469710350037,
-0.23238222301006317,
-0.03729065880179405,
-0.9000495672225952,
0.4126012623310089,
-0.0028298955876380205,
0.010075035504996777,
-0.01660175621509552,
0.33294710516929626,
1.164399266242981,
-0.5549498200416565,
0.8633740544319153,
-0.23194506764411926,
0.15467534959316254,
0.29947444796562195,
-0.162411168217659,
0.4802444279193878,
-0.09064424782991409,
0.031935177743434906,
0.31199368834495544,
0.16243554651737213,
-0.6005159616470337,
-0.3388127088546753,
0.6702070832252502,
-1.0652488470077515,
-0.6174924373626709,
-0.6288732290267944,
-0.6417520046234131,
0.13195618987083435,
0.5211398005485535,
0.6415793895721436,
0.5153234601020813,
-0.05071406811475754,
0.22956719994544983,
0.6039475798606873,
-0.276170015335083,
0.7020583152770996,
0.3590754270553589,
0.00824030302464962,
-0.45844218134880066,
0.9342248439788818,
0.23077481985092163,
0.08418285101652145,
0.3521493077278137,
0.15815097093582153,
-0.45016443729400635,
-0.5518887639045715,
-0.4345737397670746,
0.4050871431827545,
-0.4966582655906677,
-0.07323478907346725,
-0.5726008415222168,
-0.5193830132484436,
-0.7294136881828308,
0.09459015727043152,
-0.3079768717288971,
-0.35389408469200134,
-0.6113154292106628,
0.08021844923496246,
0.3774256110191345,
0.6890622973442078,
-0.1671125739812851,
0.4065925180912018,
-0.9044491648674011,
0.1938500851392746,
0.19408291578292847,
0.18691059947013855,
-0.01572224125266075,
-0.9274427890777588,
-0.4768379032611847,
0.11882545053958893,
-0.24997122585773468,
-0.7093141078948975,
0.6397303938865662,
0.062345415353775024,
0.6411701440811157,
0.6901054978370667,
0.10280123353004456,
0.9680123329162598,
-0.40529295802116394,
1.0767462253570557,
0.19377002120018005,
-0.9386305809020996,
0.6242958307266235,
-0.3566858172416687,
0.2832299470901489,
0.2759234607219696,
0.5248644351959229,
-0.4227716028690338,
-0.1819162666797638,
-0.927754282951355,
-0.994321346282959,
0.9608675241470337,
0.15164850652217865,
0.04577753320336342,
0.12145477533340454,
0.17000021040439606,
-0.14175881445407867,
0.102755106985569,
-0.8898998498916626,
-0.5443006753921509,
-0.2883825898170471,
-0.33931344747543335,
-0.356727659702301,
-0.22479215264320374,
-0.18561673164367676,
-0.5991137027740479,
0.8505139946937561,
0.0717335045337677,
0.4955582618713379,
0.13487251102924347,
-0.11107249557971954,
0.0950988158583641,
-0.10599076002836227,
0.6831928491592407,
0.6699193120002747,
-0.5077767372131348,
-0.12512439489364624,
0.03332000598311424,
-0.6511313915252686,
-0.1002245768904686,
0.23191779851913452,
-0.09649199992418289,
0.12970831990242004,
0.614622950553894,
0.812820553779602,
0.11873769015073776,
-0.4848683774471283,
0.5573387742042542,
0.01365449745208025,
-0.2880394458770752,
-0.6335742473602295,
0.1514754444360733,
0.05207210034132004,
0.29262012243270874,
0.3335120379924774,
-0.0025518855545669794,
0.014110799878835678,
-0.46202749013900757,
0.23620527982711792,
0.4521610140800476,
-0.45386019349098206,
-0.3886714279651642,
0.8392699360847473,
0.06379017978906631,
-0.30221468210220337,
0.8564516305923462,
-0.1384061723947525,
-0.6308298110961914,
0.8605786561965942,
0.5954007506370544,
0.8804859519004822,
-0.12915439903736115,
0.16326430439949036,
0.7790248990058899,
0.33607161045074463,
-0.12017600983381271,
0.3281800448894501,
0.07500361651182175,
-0.840340793132782,
-0.16875676810741425,
-0.7088323831558228,
-0.11406933516263962,
0.3851625919342041,
-0.7910574078559875,
0.195284903049469,
-0.5850516557693481,
-0.31863680481910706,
0.08468326181173325,
0.401361346244812,
-0.801323413848877,
0.4734970033168793,
0.017182711511850357,
0.9105687141418457,
-0.8237971663475037,
1.1316152811050415,
0.748424768447876,
-0.7383342385292053,
-1.0724272727966309,
-0.11218399554491043,
-0.11918199062347412,
-1.0781655311584473,
0.8298053741455078,
0.27318209409713745,
0.23980934917926788,
0.06873058527708054,
-0.5396312475204468,
-0.9720480442047119,
1.2189234495162964,
-0.03258565440773964,
-0.5261011123657227,
-0.07882658392190933,
0.1445222645998001,
0.6189552545547485,
-0.3303338885307312,
0.4970128834247589,
0.6648546457290649,
0.5873643755912781,
-0.009993410669267178,
-0.9406598806381226,
0.24549339711666107,
-0.4256243407726288,
0.06701663136482239,
-0.020452411845326424,
-0.8336076736450195,
1.3901844024658203,
-0.355047345161438,
-0.056876711547374725,
0.22511200606822968,
0.6403912305831909,
0.4672158658504486,
0.06664521992206573,
0.550427258014679,
0.6772339940071106,
0.707829475402832,
-0.2529662251472473,
0.7817935347557068,
-0.47127479314804077,
0.49597540497779846,
0.8721181154251099,
0.18189390003681183,
0.8004692792892456,
0.2682691514492035,
-0.4789682924747467,
0.6516393423080444,
1.0449413061141968,
-0.3271288573741913,
0.5018944144248962,
0.19671383500099182,
-0.05084463581442833,
-0.319705069065094,
0.2197491079568863,
-0.39266693592071533,
0.404535174369812,
0.304076611995697,
-0.3545539975166321,
-0.04611455649137497,
-0.23694294691085815,
0.31516191363334656,
-0.14870233833789825,
-0.2539318799972534,
0.6380958557128906,
-0.0451589934527874,
-0.6364478468894958,
0.7598572373390198,
0.107847660779953,
0.9146958589553833,
-0.710803210735321,
0.031791359186172485,
-0.22079317271709442,
0.41307327151298523,
-0.11600115150213242,
-0.7946591973304749,
-0.030710997059941292,
-0.12175202369689941,
-0.26394718885421753,
-0.03840305656194687,
0.4124778211116791,
-0.46936511993408203,
-0.7732818722724915,
0.368489533662796,
0.34444621205329895,
0.39402490854263306,
-0.14357081055641174,
-1.1165664196014404,
-0.0990506261587143,
0.21930211782455444,
-0.5186965465545654,
0.2598457634449005,
0.6456648707389832,
0.04731564596295357,
0.5245484113693237,
0.8341966867446899,
0.10612089931964874,
0.14490145444869995,
-0.007577416952699423,
0.9068760275840759,
-0.9668054580688477,
-0.6170724630355835,
-0.8138101696968079,
0.649692714214325,
-0.05301028490066528,
-0.6377314329147339,
0.900500476360321,
0.6041057705879211,
0.9926736950874329,
-0.25677356123924255,
0.7062543034553528,
-0.20164361596107483,
0.41798391938209534,
-0.4715525805950165,
0.9060350656509399,
-0.614851713180542,
0.006195996887981892,
-0.3461725413799286,
-0.8314124345779419,
-0.29576346278190613,
0.7346395254135132,
-0.20753799378871918,
0.2926398515701294,
0.6172674298286438,
0.8594748973846436,
0.099281445145607,
-0.3245008885860443,
0.21304871141910553,
0.3359644412994385,
0.31326812505722046,
0.9143962860107422,
0.43445196747779846,
-0.7604990005493164,
0.6204707026481628,
-0.5267341732978821,
-0.22122277319431305,
-0.1874314695596695,
-0.703696608543396,
-1.0621740818023682,
-0.6705882549285889,
-0.22193558514118195,
-0.3984702229499817,
-0.11371500045061111,
0.8732166290283203,
0.806068480014801,
-0.9899866580963135,
-0.40329933166503906,
0.08640080690383911,
-0.034298550337553024,
-0.38135388493537903,
-0.2844651937484741,
0.7516536116600037,
-0.39908307790756226,
-1.0302897691726685,
0.13033561408519745,
-0.1679677665233612,
0.11302085965871811,
-0.23948299884796143,
-0.1260978877544403,
-0.41104912757873535,
-0.06966038793325424,
0.41595545411109924,
0.11462558060884476,
-0.8310519456863403,
-0.30611303448677063,
-0.012264951132237911,
-0.18376030027866364,
0.10251142829656601,
0.3774818480014801,
-0.5313884019851685,
0.2720803916454315,
0.48274466395378113,
0.2716495990753174,
0.7133265137672424,
-0.023194467648863792,
0.4171206057071686,
-0.7058403491973877,
0.3540113568305969,
0.030793573707342148,
0.41318172216415405,
0.24232657253742218,
-0.3616633117198944,
0.4806416630744934,
0.4843883216381073,
-0.6575119495391846,
-0.7025406360626221,
-0.1867177039384842,
-1.1724063158035278,
-0.40078204870224,
0.9809045791625977,
-0.4704081416130066,
-0.5307742953300476,
0.18236143887043,
-0.17611755430698395,
0.5353681445121765,
-0.28347110748291016,
0.7208260893821716,
0.734412670135498,
-0.11529027670621872,
-0.04331240430474281,
-0.39694878458976746,
0.6074711680412292,
0.4078446924686432,
-0.49733296036720276,
-0.19255821406841278,
0.2860458195209503,
0.5192331671714783,
0.3483186662197113,
0.6210320591926575,
-0.19635243713855743,
0.1575370728969574,
0.13874834775924683,
0.2961306571960449,
-0.07626054435968399,
-0.3123871088027954,
-0.20743510127067566,
0.018465062603354454,
-0.13728488981723785,
-0.6413304209709167
] |
THUDM/chatglm3-6b-32k | THUDM | "2023-10-31T10:27:14Z" | 11,861 | 140 | transformers | [
"transformers",
"pytorch",
"chatglm",
"glm",
"thudm",
"custom_code",
"zh",
"en",
"arxiv:2103.10360",
"arxiv:2210.02414",
"endpoints_compatible",
"region:us"
] | null | "2023-10-26T13:04:58Z" | ---
language:
- zh
- en
tags:
- glm
- chatglm
- thudm
---
# ChatGLM3-6B-32K
<p align="center">
💻 <a href="https://github.com/THUDM/ChatGLM" target="_blank">Github Repo</a> • 🐦 <a href="https://twitter.com/thukeg" target="_blank">Twitter</a> • 📃 <a href="https://arxiv.org/abs/2103.10360" target="_blank">[GLM@ACL 22]</a> <a href="https://github.com/THUDM/GLM" target="_blank">[GitHub]</a> • 📃 <a href="https://arxiv.org/abs/2210.02414" target="_blank">[GLM-130B@ICLR 23]</a> <a href="https://github.com/THUDM/GLM-130B" target="_blank">[GitHub]</a> <br>
</p>
<p align="center">
👋 Join our <a href="https://join.slack.com/t/chatglm/shared_invite/zt-25ti5uohv-A_hs~am_D3Q8XPZMpj7wwQ" target="_blank">Slack</a> and <a href="https://github.com/THUDM/ChatGLM/blob/main/resources/WECHAT.md" target="_blank">WeChat</a>
</p>
<p align="center">
📍Experience the larger-scale ChatGLM model at <a href="https://www.chatglm.cn">chatglm.cn</a>
</p>
## 介绍 (Introduction)
ChatGLM3-6B-32K在[ChatGLM3-6B](https://huggingface.co/THUDM/chatglm3-6b)的基础上进一步强化了对于长文本的理解能力,能够更好的处理最多32K长度的上下文。具体地,我们对位置编码进行了更新,并设计了更有针对性的长文本训练方法,在对话阶段使用 32K 的上下文长度训练。在实际的使用中,如果您面临的上下文长度基本在 **8K 以内**,我们推荐使用[ChatGLM3-6B](https://huggingface.co/THUDM/chatglm3-6b);如果您需要处理**超过 8K** 的上下文长度,我们推荐使用ChatGLM3-6B-32K。
ChatGLM3-6B 是 ChatGLM 系列最新一代的开源模型,在保留了前两代模型对话流畅、部署门槛低等众多优秀特性的基础上,ChatGLM3-6B 引入了如下特性:
1. **更强大的基础模型:** ChatGLM3-6B 的基础模型 ChatGLM3-6B-Base 采用了更多样的训练数据、更充分的训练步数和更合理的训练策略。在语义、数学、推理、代码、知识等不同角度的数据集上测评显示,ChatGLM3-6B-Base 具有在 10B 以下的预训练模型中最强的性能。
2. **更完整的功能支持:** ChatGLM3-6B 采用了全新设计的 [Prompt 格式](PROMPT.md),除正常的多轮对话外。同时原生支持[工具调用](tool_using/README.md)(Function Call)、代码执行(Code Interpreter)和 Agent 任务等复杂场景。
3. **更全面的开源序列:** 除了对话模型 ChatGLM3-6B 外,还开源了基础模型 ChatGLM-6B-Base、长文本对话模型 ChatGLM3-6B-32K。以上所有权重对学术研究**完全开放**,在填写[问卷](https://open.bigmodel.cn/mla/form)进行登记后**亦允许免费商业使用**。
Based on [ChatGLM3-6B](https://huggingface.co/THUDM/chatglm3-6b), ChatGLM3-6B-32K further strengthens the ability to understand long texts and can better handle contexts up to 32K in length. Specifically, we update the position encoding and design a more targeted long text training method, using a context length of 32K for training in the conversation stage. In actual use, if the context length you face is basically within **8K**, we recommend using [ChatGLM3-6B](https://huggingface.co/THUDM/chatglm3-6b); if you need to handle **For context lengths exceeding 8K**, we recommend using ChatGLM3-6B-32K.
ChatGLM3-6B is the latest open-source model in the ChatGLM series. While retaining many excellent features such as smooth dialogue and low deployment threshold from the previous two generations, ChatGLM3-6B introduces the following features:
1. **More Powerful Base Model:** The base model of ChatGLM3-6B, ChatGLM3-6B-Base, employs a more diverse training dataset, more sufficient training steps, and a more reasonable training strategy. Evaluations on datasets such as semantics, mathematics, reasoning, code, knowledge, etc., show that ChatGLM3-6B-Base has the strongest performance among pre-trained models under 10B.
2. **More Comprehensive Function Support:** ChatGLM3-6B adopts a newly designed [Prompt format](https://github.com/THUDM/ChatGLM3/blob/main/PROMPT_en.md), in addition to the normal multi-turn dialogue. It also natively supports [function call](https://github.com/THUDM/ChatGLM3/blob/main/tool_using/README_en.md), code interpreter, and complex scenarios such as agent tasks.
3. **More Comprehensive Open-source Series:** In addition to the dialogue model ChatGLM3-6B, the base model ChatGLM-6B-Base and the long-text dialogue model ChatGLM3-6B-32K are also open-sourced. All the weights are **fully open** for academic research, and after completing the [questionnaire](https://open.bigmodel.cn/mla/form) registration, they are also **allowed for free commercial use**.
## 软件依赖 (Dependencies)
```shell
pip install protobuf transformers==4.30.2 cpm_kernels torch>=2.0 gradio mdtex2html sentencepiece accelerate
```
## 代码调用 (Code Usage)
可以通过如下代码调用 ChatGLM3-6B 模型来生成对话:
```ipython
>>> from transformers import AutoTokenizer, AutoModel
>>> tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm3-6b-32k", trust_remote_code=True)
>>> model = AutoModel.from_pretrained("THUDM/chatglm3-6b-32k", trust_remote_code=True).half().cuda()
>>> model = model.eval()
>>> response, history = model.chat(tokenizer, "你好", history=[])
>>> print(response)
你好👋!我是人工智能助手 ChatGLM-6B,很高兴见到你,欢迎问我任何问题。
>>> response, history = model.chat(tokenizer, "晚上睡不着应该怎么办", history=history)
>>> print(response)
晚上睡不着可能会让你感到焦虑或不舒服,但以下是一些可以帮助你入睡的方法:
1. 制定规律的睡眠时间表:保持规律的睡眠时间表可以帮助你建立健康的睡眠习惯,使你更容易入睡。尽量在每天的相同时间上床,并在同一时间起床。
2. 创造一个舒适的睡眠环境:确保睡眠环境舒适,安静,黑暗且温度适宜。可以使用舒适的床上用品,并保持房间通风。
3. 放松身心:在睡前做些放松的活动,例如泡个热水澡,听些轻柔的音乐,阅读一些有趣的书籍等,有助于缓解紧张和焦虑,使你更容易入睡。
4. 避免饮用含有咖啡因的饮料:咖啡因是一种刺激性物质,会影响你的睡眠质量。尽量避免在睡前饮用含有咖啡因的饮料,例如咖啡,茶和可乐。
5. 避免在床上做与睡眠无关的事情:在床上做些与睡眠无关的事情,例如看电影,玩游戏或工作等,可能会干扰你的睡眠。
6. 尝试呼吸技巧:深呼吸是一种放松技巧,可以帮助你缓解紧张和焦虑,使你更容易入睡。试着慢慢吸气,保持几秒钟,然后缓慢呼气。
如果这些方法无法帮助你入睡,你可以考虑咨询医生或睡眠专家,寻求进一步的建议。
```
关于更多的使用说明,包括如何运行命令行和网页版本的 DEMO,以及使用模型量化以节省显存,请参考我们的 [Github Repo](https://github.com/THUDM/ChatGLM)。
For more instructions, including how to run CLI and web demos, and model quantization, please refer to our [Github Repo](https://github.com/THUDM/ChatGLM).
## 协议 (License)
本仓库的代码依照 [Apache-2.0](LICENSE) 协议开源,ChatGLM3-6B 模型的权重的使用则需要遵循 [Model License](MODEL_LICENSE)。
The code in this repository is open-sourced under the [Apache-2.0 license](LICENSE), while the use of the ChatGLM3-6B model weights needs to comply with the [Model License](MODEL_LICENSE).
## 引用 (Citation)
如果你觉得我们的工作有帮助的话,请考虑引用下列论文。
If you find our work helpful, please consider citing the following papers.
```
@article{zeng2022glm,
title={Glm-130b: An open bilingual pre-trained model},
author={Zeng, Aohan and Liu, Xiao and Du, Zhengxiao and Wang, Zihan and Lai, Hanyu and Ding, Ming and Yang, Zhuoyi and Xu, Yifan and Zheng, Wendi and Xia, Xiao and others},
journal={arXiv preprint arXiv:2210.02414},
year={2022}
}
```
```
@inproceedings{du2022glm,
title={GLM: General Language Model Pretraining with Autoregressive Blank Infilling},
author={Du, Zhengxiao and Qian, Yujie and Liu, Xiao and Ding, Ming and Qiu, Jiezhong and Yang, Zhilin and Tang, Jie},
booktitle={Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)},
pages={320--335},
year={2022}
}
```
| [
-0.4924125075340271,
-0.8584177494049072,
0.1481933295726776,
0.43203598260879517,
-0.362976998090744,
-0.029207171872258186,
-0.33064472675323486,
-0.5486012697219849,
0.08532106131315231,
0.23709678649902344,
-0.5498276948928833,
-0.673167884349823,
-0.5522255301475525,
-0.07300037890672684,
-0.10590531677007675,
0.918655514717102,
0.0864548534154892,
0.05815979838371277,
0.09575191140174866,
-0.041648585349321365,
-0.5045295357704163,
-0.616496741771698,
-0.7128170132637024,
-0.27658283710479736,
0.1315445750951767,
0.16485032439231873,
0.6728272438049316,
0.36572012305259705,
0.4080013930797577,
0.3815874457359314,
-0.2552543878555298,
0.15092289447784424,
-0.6017323136329651,
-0.24941512942314148,
0.3884524405002594,
-0.5479380488395691,
-0.8124748468399048,
0.06476157903671265,
0.5661465525627136,
0.2780592441558838,
-0.1380944848060608,
0.23659057915210724,
0.3320864140987396,
0.6115971803665161,
-0.4319516718387604,
0.5670931935310364,
-0.4805276393890381,
-0.037400975823402405,
-0.10847324132919312,
-0.14579947292804718,
-0.3747186064720154,
-0.443132609128952,
0.06173558533191681,
-0.5616369843482971,
-0.08295103907585144,
0.15177583694458008,
1.334720492362976,
-0.21105115115642548,
-0.25928840041160583,
-0.20446278154850006,
-0.5670695304870605,
0.9649187922477722,
-1.200163722038269,
0.13896003365516663,
0.34306713938713074,
0.41865241527557373,
-0.2788694500923157,
-0.7177903056144714,
-0.523681640625,
-0.2459353804588318,
-0.4260416030883789,
0.3164679706096649,
-0.14210084080696106,
0.0027406474109739065,
0.22268837690353394,
0.4230170249938965,
-0.5963823795318604,
-0.044851478189229965,
-0.5299490094184875,
-0.2839561998844147,
0.6334306001663208,
0.2319624423980713,
0.6578705310821533,
-0.15288852155208588,
-0.4708598554134369,
-0.058449193835258484,
-0.5212628245353699,
0.26187631487846375,
0.26339659094810486,
0.3460296392440796,
-0.7148494720458984,
0.3780141770839691,
-0.07723382860422134,
0.6156028509140015,
0.05781633406877518,
-0.36735501885414124,
0.5402077436447144,
-0.47081711888313293,
-0.36566361784935,
-0.219109445810318,
1.3095147609710693,
0.47082409262657166,
0.071507528424263,
0.14994104206562042,
-0.04413773864507675,
-0.2342415153980255,
-0.13227219879627228,
-0.984523594379425,
-0.05632269009947777,
0.37519586086273193,
-0.642785906791687,
-0.3097626566886902,
-0.03593023866415024,
-0.6289095282554626,
0.13457322120666504,
0.0017081558471545577,
0.6078090071678162,
-0.6697893738746643,
-0.45776286721229553,
0.256732314825058,
-0.06667562574148178,
0.3646988868713379,
0.3682210147380829,
-0.9774544835090637,
0.4563605785369873,
0.4766707122325897,
0.9275606274604797,
-0.1195431649684906,
-0.32799410820007324,
-0.14510640501976013,
0.0746576115489006,
-0.17369918525218964,
0.3756529986858368,
-0.061687171459198,
-0.5602624416351318,
-0.10420550405979156,
0.08343757688999176,
-0.2881673574447632,
-0.33311620354652405,
0.36997970938682556,
-0.29008913040161133,
0.7010127305984497,
-0.018215881660580635,
-0.523090660572052,
-0.32607656717300415,
0.36938124895095825,
-0.39028307795524597,
1.0104531049728394,
-0.038694415241479874,
-0.9575873613357544,
-0.0715642049908638,
-0.6739385724067688,
-0.13262630999088287,
0.01686529815196991,
-0.023913133889436722,
-0.3969390094280243,
-0.32343462109565735,
0.38787761330604553,
0.4060437083244324,
-0.3624151647090912,
0.05122438818216324,
-0.23569032549858093,
-0.41118142008781433,
0.3264155685901642,
-0.3250405192375183,
1.2698955535888672,
0.316425621509552,
-0.3840789198875427,
0.27399706840515137,
-0.5003631114959717,
0.35071346163749695,
0.3072631359100342,
-0.22700726985931396,
-0.03263802081346512,
-0.04603157192468643,
-0.07493115961551666,
0.33527153730392456,
0.4906201660633087,
-0.3182472288608551,
0.15389373898506165,
-0.7300633788108826,
0.47807076573371887,
0.7074262499809265,
-0.03652285784482956,
0.4791521728038788,
-0.5223103165626526,
0.3969901204109192,
0.1610935628414154,
0.4929531216621399,
-0.22489367425441742,
-0.6689752340316772,
-0.9953335523605347,
-0.2529769837856293,
0.1900649517774582,
0.7824883460998535,
-0.6899656653404236,
0.8716362714767456,
-0.21202608942985535,
-0.6969136595726013,
-0.4360666275024414,
0.14400427043437958,
0.5265344381332397,
0.3805277943611145,
0.43700742721557617,
-0.20077981054782867,
-0.5359925627708435,
-0.6738948822021484,
-0.06476297974586487,
-0.445474237203598,
-0.07503832876682281,
0.46684956550598145,
0.5846438407897949,
-0.28509747982025146,
0.9798505902290344,
-0.6385510563850403,
-0.36545974016189575,
-0.3748757541179657,
0.04726720228791237,
0.3746735751628876,
0.6535025238990784,
0.6972389221191406,
-0.665178120136261,
-0.9038612246513367,
-0.043357882648706436,
-0.9050217866897583,
0.13745829463005066,
0.10339949280023575,
-0.3680528402328491,
0.3635883629322052,
0.3339543044567108,
-0.7434993386268616,
0.4108422100543976,
0.6979843378067017,
-0.3407251238822937,
0.6163776516914368,
-0.19767063856124878,
0.0556291900575161,
-1.3676718473434448,
0.053203463554382324,
-0.1889660358428955,
-0.01652153767645359,
-0.7145829796791077,
-0.10955457389354706,
-0.03436373919248581,
0.10479886829853058,
-0.6670137643814087,
1.0003001689910889,
-0.6740792989730835,
0.3502567708492279,
-0.10912889242172241,
0.28272008895874023,
-0.17190146446228027,
0.8202707171440125,
-0.14772142469882965,
0.6217730045318604,
0.8169354796409607,
-0.5999625325202942,
0.4037313163280487,
0.3718257248401642,
-0.21206912398338318,
0.12743739783763885,
-0.842178463935852,
0.16027891635894775,
0.06007661297917366,
0.381687194108963,
-1.178968071937561,
-0.06526406109333038,
0.7023584246635437,
-0.8845853209495544,
0.23274333775043488,
-0.2259541153907776,
-0.40203797817230225,
-0.584713339805603,
-0.48910120129585266,
0.17060688138008118,
0.7754048705101013,
-0.28300201892852783,
0.6381061673164368,
0.36911386251449585,
-0.014738132245838642,
-0.5968899130821228,
-0.5751105546951294,
-0.10505219548940659,
-0.3095630705356598,
-0.9265401363372803,
0.27443554997444153,
-0.2788444757461548,
-0.013493589125573635,
-0.17230865359306335,
0.13874876499176025,
0.021795179694890976,
0.010581796988844872,
0.30761024355888367,
0.45476481318473816,
-0.09451466798782349,
-0.08850037306547165,
-0.3353763222694397,
-0.11233922094106674,
0.06280176341533661,
-0.09496720135211945,
0.7132419347763062,
-0.4693908393383026,
-0.34925395250320435,
-0.5314226746559143,
0.17692221701145172,
0.4495494067668915,
-0.10199515521526337,
0.8763920664787292,
1.0153331756591797,
-0.19664742052555084,
0.1796852946281433,
-0.602797269821167,
-0.17740745842456818,
-0.5947014093399048,
0.27680641412734985,
-0.13043028116226196,
-0.9983377456665039,
0.838162362575531,
0.2843173146247864,
0.2537690997123718,
0.5937925577163696,
0.665001392364502,
0.09486661106348038,
1.231990098953247,
0.4421631693840027,
-0.3014299273490906,
0.5846422910690308,
-0.439040869474411,
0.17667847871780396,
-0.7776417136192322,
-0.29671064019203186,
-0.5036638975143433,
-0.19681315124034882,
-0.6641016602516174,
-0.473381906747818,
0.2996782064437866,
0.08095679432153702,
-0.33743906021118164,
0.24110493063926697,
-0.4659378230571747,
0.04790849611163139,
0.4692419767379761,
0.07330203801393509,
0.07812971621751785,
-0.20476047694683075,
-0.15490473806858063,
0.1474844068288803,
-0.6899733543395996,
-0.5134972929954529,
0.8653366565704346,
0.557777464389801,
0.818062961101532,
0.21522635221481323,
0.6293537020683289,
-0.10540318489074707,
0.36493679881095886,
-0.686439037322998,
0.7217414975166321,
0.273378849029541,
-0.7574375867843628,
-0.4265863597393036,
-0.540531575679779,
-1.051206111907959,
0.4596220552921295,
-0.16174590587615967,
-1.0785257816314697,
-0.15052612125873566,
0.09298069030046463,
-0.26689714193344116,
0.3217068910598755,
-0.8579039573669434,
0.8453179597854614,
-0.36332571506500244,
-0.24167291820049286,
0.05202867090702057,
-0.8019951581954956,
0.5045056343078613,
0.30910322070121765,
0.3880251348018646,
-0.3781520426273346,
0.09746101498603821,
0.8296921253204346,
-0.6384385228157043,
0.9115415811538696,
-0.3068625032901764,
-0.13865651190280914,
0.6007019281387329,
-0.05740323290228844,
0.6310845017433167,
0.14534853398799896,
0.21460238099098206,
0.3405647277832031,
0.05569456145167351,
-0.42694777250289917,
-0.5514310002326965,
0.7228745818138123,
-0.8865941166877747,
-0.8137585520744324,
-0.5059014558792114,
-0.38839951157569885,
-0.19846674799919128,
0.3610665202140808,
0.4189112186431885,
0.28176137804985046,
-0.08767607063055038,
0.3222881555557251,
0.3863573372364044,
-0.43514198064804077,
0.6858633160591125,
0.5399153828620911,
-0.5457013845443726,
-0.49821144342422485,
0.7179078459739685,
-0.0049373311921954155,
0.41011494398117065,
0.20395909249782562,
0.13035351037979126,
-0.30954474210739136,
-0.511144757270813,
-0.39878228306770325,
0.36200204491615295,
-0.46524447202682495,
-0.1445429027080536,
-0.7939382791519165,
-0.5958362221717834,
-0.5856346487998962,
0.03620956093072891,
-0.3493119180202484,
-0.13229967653751373,
-0.4193909764289856,
-0.020461449399590492,
0.556035578250885,
0.16694146394729614,
0.0038936310447752476,
0.29879388213157654,
-1.0416399240493774,
0.3207892179489136,
0.26715749502182007,
0.40607577562332153,
0.23064495623111725,
-0.6730882525444031,
-0.544745147228241,
0.48358145356178284,
-0.23081828653812408,
-0.6090869903564453,
0.6342552900314331,
0.0766180232167244,
0.6761793494224548,
0.35281434655189514,
-0.07022088766098022,
0.7401434779167175,
-0.41386547684669495,
1.0217170715332031,
0.4156097173690796,
-0.9772520661354065,
0.4920955002307892,
-0.547213077545166,
0.43982601165771484,
0.24813923239707947,
0.3879477381706238,
-0.6168779730796814,
-0.4535079002380371,
-0.7526395916938782,
-0.8536208271980286,
1.044540286064148,
0.6198770403862,
0.492644727230072,
0.03164059296250343,
0.02794083207845688,
-0.2990953326225281,
0.1398618072271347,
-0.8524793386459351,
-0.7109377980232239,
-0.22517850995063782,
-0.1459612101316452,
0.01585785113275051,
-0.369651198387146,
-0.16027843952178955,
-0.4402235448360443,
0.7999253273010254,
0.009184298105537891,
0.6856834292411804,
0.0027608557138592005,
0.00577681977301836,
0.1326184719800949,
0.206090047955513,
0.6632050275802612,
0.6546560525894165,
-0.39352092146873474,
-0.21776196360588074,
0.38960373401641846,
-0.6766342520713806,
0.03973686695098877,
0.03946910798549652,
-0.15609529614448547,
0.03370894491672516,
0.2454604059457779,
1.0910553932189941,
0.20926789939403534,
-0.49514463543891907,
0.6419276595115662,
-0.3328544497489929,
-0.3081907331943512,
-0.3497143089771271,
0.24401558935642242,
0.318000853061676,
0.1662297546863556,
0.5559653639793396,
-0.3044697344303131,
-0.09513165801763535,
-0.6671155691146851,
0.000682155427057296,
0.51240473985672,
-0.3652910888195038,
-0.27011868357658386,
0.6238077282905579,
0.25693097710609436,
-0.181635320186615,
0.4163268804550171,
-0.1965702474117279,
-0.6056970953941345,
0.6126747727394104,
0.609759509563446,
0.8634633421897888,
-0.26192378997802734,
0.13243542611598969,
0.7169347405433655,
0.13914024829864502,
-0.2996041476726532,
0.2854121923446655,
0.16396397352218628,
-0.8097847104072571,
-0.2930431365966797,
-0.5497522354125977,
-0.24598348140716553,
0.22837711870670319,
-0.5282862782478333,
0.39062410593032837,
-0.4371119439601898,
-0.33762308955192566,
-0.21180139482021332,
0.08792635798454285,
-0.4008064866065979,
0.19642752408981323,
0.1542845219373703,
0.7740005850791931,
-0.46834638714790344,
0.8168947696685791,
0.4540051519870758,
-0.3923742175102234,
-0.9675478339195251,
-0.19396129250526428,
0.14841683208942413,
-0.8337050676345825,
0.48491916060447693,
0.14418268203735352,
-0.11337152123451233,
0.00906254630535841,
-0.6756235957145691,
-1.116938829421997,
1.2925794124603271,
0.1907794028520584,
-0.3026338517665863,
-0.19942715764045715,
-0.07695470750331879,
0.6885752081871033,
-0.325398325920105,
0.6161386370658875,
0.2302270531654358,
0.34707310795783997,
0.2809526324272156,
-1.2528839111328125,
0.24042221903800964,
-0.5658156275749207,
0.09910997003316879,
-0.04164353385567665,
-1.1038075685501099,
1.0986682176589966,
-0.0569363608956337,
-0.3585256338119507,
-0.008451517671346664,
0.7593063712120056,
0.26385366916656494,
-0.029868610203266144,
0.39538341760635376,
0.26078885793685913,
0.5077147483825684,
-0.3325141370296478,
0.8550538420677185,
-0.5260471701622009,
0.7074307203292847,
0.9467326998710632,
0.06970248371362686,
0.6811179518699646,
0.17910824716091156,
-0.34857043623924255,
0.5550925731658936,
0.5934004187583923,
-0.17268528044223785,
0.4191080331802368,
0.05467095598578453,
-0.28302115201950073,
-0.08088899403810501,
0.207074835896492,
-0.6984540224075317,
0.3052186071872711,
0.47958478331565857,
-0.18869498372077942,
-0.17004375159740448,
-0.02741813287138939,
0.35178491473197937,
-0.42174574732780457,
-0.16923584043979645,
0.9042625427246094,
0.25952282547950745,
-0.630768895149231,
1.1442861557006836,
0.08428983390331268,
0.9761703610420227,
-0.8841003179550171,
0.13035504519939423,
-0.20874711871147156,
0.07020384073257446,
-0.2187703251838684,
-0.6666639447212219,
0.07031270116567612,
-0.1274939626455307,
0.1496749073266983,
-0.11319663375616074,
0.8550368547439575,
-0.4272574782371521,
-0.38810163736343384,
0.4521225094795227,
0.44244131445884705,
0.14645865559577942,
0.11203151196241379,
-0.991247296333313,
0.1403612494468689,
0.21071979403495789,
-0.5262110233306885,
0.40473005175590515,
0.38619208335876465,
0.15340164303779602,
0.8752424120903015,
0.6554808616638184,
-0.012951282784342766,
-0.010634945705533028,
-0.06611985713243484,
0.939525842666626,
-0.7393968105316162,
-0.511589527130127,
-1.0319591760635376,
0.7328464984893799,
-0.1957908719778061,
-0.21556147933006287,
1.0823920965194702,
0.5388494729995728,
0.7645463347434998,
-0.02112754061818123,
0.8319652676582336,
-0.3014824390411377,
0.5348406434059143,
-0.4957020878791809,
0.8223678469657898,
-0.5332709550857544,
0.18296535313129425,
-0.4045601487159729,
-0.6204542517662048,
-0.26647529006004333,
0.627911388874054,
-0.34077024459838867,
0.36529675126075745,
0.6692091822624207,
0.879310131072998,
0.21746373176574707,
-0.14827817678451538,
0.19635415077209473,
0.34946340322494507,
0.3954228162765503,
0.8695167899131775,
0.6833767890930176,
-0.686903715133667,
0.805023193359375,
-0.2576543986797333,
-0.07305781543254852,
-0.49368250370025635,
-0.7184880971908569,
-1.272536277770996,
-0.566650390625,
-0.21277931332588196,
-0.5572274327278137,
-0.13597922027111053,
0.9615610837936401,
0.6783007383346558,
-0.7117669582366943,
-0.5024040937423706,
0.22067251801490784,
0.16718704998493195,
-0.3022325038909912,
-0.2594895362854004,
0.4555245339870453,
-0.40049928426742554,
-0.8875302672386169,
0.002168483566492796,
0.1589958667755127,
0.39590317010879517,
-0.13350148499011993,
-0.27991577982902527,
-0.3603208363056183,
0.10531044751405716,
0.5509120225906372,
0.3579835891723633,
-0.744558572769165,
-0.1962326318025589,
0.10519090294837952,
-0.4820525050163269,
0.262719064950943,
0.2103428840637207,
-0.4387107193470001,
0.36009958386421204,
0.574312686920166,
0.03118990547955036,
0.7595956325531006,
-0.013193582184612751,
0.5153275728225708,
-0.5552092790603638,
0.39803022146224976,
0.029903113842010498,
0.3389359414577484,
0.09904536604881287,
-0.2705994248390198,
0.5687850713729858,
0.15696950256824493,
-0.43325096368789673,
-0.812738299369812,
-0.18976061046123505,
-1.1436645984649658,
-0.15297053754329681,
1.4292787313461304,
-0.30990132689476013,
-0.31986135244369507,
0.06403405219316483,
-0.606509804725647,
0.3487885296344757,
-0.44865572452545166,
0.8386827707290649,
0.9061077237129211,
-0.0682407021522522,
-0.17840875685214996,
-0.610848069190979,
0.6939639449119568,
0.24657979607582092,
-0.9104404449462891,
-0.11412931233644485,
0.36758875846862793,
0.35270166397094727,
0.13914726674556732,
0.98980712890625,
-0.21016190946102142,
0.18314550817012787,
-0.2770369052886963,
0.23544274270534515,
-0.16391880810260773,
0.19156770408153534,
-0.10849185287952423,
-0.09842557460069656,
-0.10235447436571121,
-0.2646879255771637
] |
microsoft/unispeech-sat-base | microsoft | "2021-11-05T12:41:05Z" | 11,853 | 0 | transformers | [
"transformers",
"pytorch",
"unispeech-sat",
"pretraining",
"speech",
"en",
"dataset:librispeech_asr",
"arxiv:2110.05752",
"endpoints_compatible",
"region:us"
] | null | "2022-03-02T23:29:05Z" | ---
language:
- en
datasets:
- librispeech_asr
tags:
- speech
---
# UniSpeech-SAT-Base
[Microsoft's UniSpeech](https://www.microsoft.com/en-us/research/publication/unispeech-unified-speech-representation-learning-with-labeled-and-unlabeled-data/)
The base model pretrained on 16kHz sampled speech audio with utterance and speaker contrastive loss. When using the model, make sure that your speech input is also sampled at 16kHz.
**Note**: This model does not have a tokenizer as it was pretrained on audio alone. In order to use this model **speech recognition**, a tokenizer should be created and the model should be fine-tuned on labeled text data. Check out [this blog](https://huggingface.co/blog/fine-tune-wav2vec2-english) for more in-detail explanation of how to fine-tune the model.
The model was pre-trained on:
- 960 hours of [LibriSpeech](https://huggingface.co/datasets/librispeech_asr)
[Paper: UNISPEECH-SAT: UNIVERSAL SPEECH REPRESENTATION LEARNING WITH SPEAKER
AWARE PRE-TRAINING](https://arxiv.org/abs/2110.05752)
Authors: Sanyuan Chen, Yu Wu, Chengyi Wang, Zhengyang Chen, Zhuo Chen, Shujie Liu, Jian Wu, Yao Qian, Furu Wei, Jinyu Li, Xiangzhan Yu
**Abstract**
*Self-supervised learning (SSL) is a long-standing goal for speech processing, since it utilizes large-scale unlabeled data and avoids extensive human labeling. Recent years witness great successes in applying self-supervised learning in speech recognition, while limited exploration was attempted in applying SSL for modeling speaker characteristics. In this paper, we aim to improve the existing SSL framework for speaker representation learning. Two methods are introduced for enhancing the unsupervised speaker information extraction. First, we apply the multi-task learning to the current SSL framework, where we integrate the utterance-wise contrastive loss with the SSL objective function. Second, for better speaker discrimination, we propose an utterance mixing strategy for data augmentation, where additional overlapped utterances are created unsupervisely and incorporate during training. We integrate the proposed methods into the HuBERT framework. Experiment results on SUPERB benchmark show that the proposed system achieves state-of-the-art performance in universal representation learning, especially for speaker identification oriented tasks. An ablation study is performed verifying the efficacy of each proposed method. Finally, we scale up training dataset to 94 thousand hours public audio data and achieve further performance improvement in all SUPERB tasks..*
The original model can be found under https://github.com/microsoft/UniSpeech/tree/main/UniSpeech-SAT.
# Usage
This is an English pre-trained speech model that has to be fine-tuned on a downstream task like speech recognition or audio classification before it can be
used in inference. The model was pre-trained in English and should therefore perform well only in English. The model has been shown to work well on task such as speaker verification, speaker identification, and speaker diarization.
**Note**: The model was pre-trained on phonemes rather than characters. This means that one should make sure that the input text is converted to a sequence
of phonemes before fine-tuning.
## Speech Recognition
To fine-tune the model for speech recognition, see [the official speech recognition example](https://github.com/huggingface/transformers/tree/master/examples/pytorch/speech-recognition).
## Speech Classification
To fine-tune the model for speech classification, see [the official audio classification example](https://github.com/huggingface/transformers/tree/master/examples/pytorch/audio-classification).
## Speaker Verification
TODO
## Speaker Diarization
TODO
# Contribution
The model was contributed by [cywang](https://huggingface.co/cywang) and [patrickvonplaten](https://huggingface.co/patrickvonplaten).
# License
The official license can be found [here](https://github.com/microsoft/UniSpeech/blob/main/LICENSE)
![design](https://raw.githubusercontent.com/patrickvonplaten/scientific_images/master/UniSpeechSAT.png) | [
-0.30116117000579834,
-0.4483121633529663,
0.07996600866317749,
0.11731481552124023,
-0.3854878842830658,
0.009380458854138851,
-0.3420182764530182,
-0.47951823472976685,
0.06522995978593826,
0.45774343609809875,
-0.32023921608924866,
-0.3773728013038635,
-0.4296797513961792,
-0.10891024768352509,
-0.30282676219940186,
0.7166875004768372,
0.4629024565219879,
0.3389164209365845,
-0.12992480397224426,
0.0064721861854195595,
-0.3269365429878235,
-0.6204195618629456,
-0.35959333181381226,
-0.6786994338035583,
-0.1943703144788742,
0.36931857466697693,
0.3362167775630951,
0.363329142332077,
0.08917329460382462,
0.3857465088367462,
-0.3537871837615967,
0.1630353331565857,
-0.2171337753534317,
-0.19391842186450958,
-0.24492892622947693,
-0.02550864778459072,
-0.39124470949172974,
0.2118484377861023,
0.8217631578445435,
0.779695987701416,
-0.3899329900741577,
0.27255383133888245,
0.3664398491382599,
0.510434091091156,
-0.4445018470287323,
0.25055447220802307,
-0.7092675566673279,
-0.12095332890748978,
-0.36613625288009644,
-0.2040974497795105,
-0.5749927759170532,
0.3340655267238617,
0.02058340422809124,
-0.3741631507873535,
0.13415852189064026,
-0.1481175571680069,
0.7591333985328674,
0.19789612293243408,
-0.36772605776786804,
0.11812762171030045,
-0.754197895526886,
0.8258394598960876,
-0.7256419062614441,
0.8388485908508301,
0.44184496998786926,
0.16034987568855286,
-0.195804625749588,
-0.6937552094459534,
-0.36998286843299866,
-0.3606719672679901,
0.005874446127563715,
0.1769777089357376,
-0.2768106758594513,
0.18929867446422577,
0.24507856369018555,
0.28563863039016724,
-0.5911993980407715,
0.23088835179805756,
-0.45119667053222656,
-0.4704975187778473,
0.7069072127342224,
-0.2691311538219452,
0.06905938684940338,
-0.2150137722492218,
-0.4433259665966034,
-0.16374851763248444,
-0.5434413552284241,
0.3091515302658081,
0.17824168503284454,
0.6841263175010681,
-0.32097452878952026,
0.4643827974796295,
-0.15116359293460846,
0.619123637676239,
0.06979864090681076,
-0.10121817141771317,
0.662642776966095,
-0.14133021235466003,
-0.1871757060289383,
0.22355453670024872,
0.946220338344574,
-0.017207998782396317,
0.4687483012676239,
-0.09982611238956451,
-0.24853995442390442,
0.08125588297843933,
0.10252510011196136,
-0.6201444268226624,
-0.4624917805194855,
0.17170123755931854,
-0.4143279790878296,
0.13161848485469818,
0.10216720402240753,
-0.36580216884613037,
-0.03214443475008011,
-0.7050133943557739,
0.3638230562210083,
-0.4292685091495514,
-0.5392012000083923,
0.007018504664301872,
0.1284756362438202,
-0.026967184618115425,
0.10402394086122513,
-0.8114321827888489,
0.43153801560401917,
0.406220942735672,
0.5409054160118103,
-0.2915869355201721,
-0.32670485973358154,
-0.5891119241714478,
0.019784918054938316,
-0.19695785641670227,
0.6277795433998108,
-0.39360153675079346,
-0.3868559002876282,
-0.1407252848148346,
0.05267605185508728,
-0.059412430971860886,
-0.49490824341773987,
0.4164428114891052,
-0.2224399447441101,
0.10350257903337479,
0.015618272125720978,
-0.8281477093696594,
0.06750398129224777,
-0.39220476150512695,
-0.32057955861091614,
1.0852655172348022,
-0.004565732087939978,
-0.7490164041519165,
0.0493202731013298,
-0.7699559330940247,
-0.34480875730514526,
0.18091660737991333,
-0.1643459051847458,
-0.34930771589279175,
0.10468430072069168,
0.1462453454732895,
0.5554429888725281,
-0.13638436794281006,
0.15778076648712158,
-0.01118964608758688,
-0.3879542052745819,
0.20129841566085815,
-0.3784615099430084,
1.0771269798278809,
0.4757559597492218,
-0.37405702471733093,
0.08405430614948273,
-1.0226233005523682,
0.1699541062116623,
0.13458053767681122,
-0.3511776924133301,
-0.06004133075475693,
-0.07190820574760437,
0.4783985912799835,
-0.019355058670043945,
0.21132676303386688,
-0.7984439134597778,
-0.21931704878807068,
-0.6094983220100403,
0.45990949869155884,
0.5206108689308167,
-0.24039803445339203,
0.5147993564605713,
0.21788714826107025,
0.11961524933576584,
0.04265977069735527,
0.07887567579746246,
-0.06333927810192108,
-0.38814395666122437,
-0.600680410861969,
-0.18201793730258942,
0.7029593586921692,
0.7183645963668823,
-0.29470640420913696,
0.7704521417617798,
-0.051409266889095306,
-0.485312283039093,
-0.675957202911377,
0.15231163799762726,
0.7512831091880798,
0.4537835419178009,
0.5835869908332825,
-0.3397795855998993,
-0.7160666584968567,
-0.7121004462242126,
-0.1622874140739441,
-0.30735135078430176,
-0.2540656328201294,
0.027584362775087357,
0.24103392660617828,
-0.23411141335964203,
0.8545919060707092,
-0.12507441639900208,
-0.416245698928833,
-0.1530655324459076,
0.17585131525993347,
0.03410465642809868,
0.7693016529083252,
0.236883744597435,
-0.8561059832572937,
-0.42338326573371887,
-0.10115475207567215,
-0.395926833152771,
-0.029834192246198654,
0.11030479520559311,
0.2860109806060791,
0.27271682024002075,
0.5003868937492371,
-0.598563015460968,
0.4126856327056885,
0.414286345243454,
-0.268655925989151,
0.4604531228542328,
-0.28566381335258484,
-0.09068535268306732,
-1.1110416650772095,
-0.00048397586215287447,
-0.000014086763258092105,
-0.2988961935043335,
-0.7735106945037842,
-0.19690348207950592,
0.0688120499253273,
-0.27148860692977905,
-0.5878872275352478,
0.4320540726184845,
-0.5659821629524231,
-0.20945946872234344,
-0.34165138006210327,
0.14853297173976898,
-0.19871018826961517,
0.46883347630500793,
0.10739661008119583,
0.9158451557159424,
0.7531046271324158,
-0.5777759552001953,
0.35712501406669617,
0.3222655653953552,
-0.33986490964889526,
0.3779042959213257,
-0.7698008418083191,
0.3873039484024048,
0.03215988352894783,
0.04271743819117546,
-1.1457617282867432,
0.08248835802078247,
0.012338538654148579,
-0.7841549515724182,
0.7072253227233887,
-0.13425855338573456,
-0.4829152822494507,
-0.2884288430213928,
0.21110714972019196,
0.2003714144229889,
0.6436858177185059,
-0.6724020838737488,
0.7102155685424805,
0.6703630685806274,
-0.03154049813747406,
-0.3621861934661865,
-0.7318033576011658,
-0.04151027277112007,
0.018541701138019562,
-0.38962653279304504,
0.6562398672103882,
-0.16373135149478912,
-0.015390688553452492,
-0.2873120903968811,
-0.1027216762304306,
-0.03708203509449959,
-0.1302933692932129,
0.4095539152622223,
0.09940003603696823,
-0.03967012092471123,
0.26123952865600586,
-0.23397698998451233,
-0.392059326171875,
-0.1418662816286087,
-0.1441006064414978,
0.5806236863136292,
-0.296154648065567,
-0.3487258851528168,
-0.8874229192733765,
0.37557095289230347,
0.27161481976509094,
-0.5406326651573181,
0.2513432204723358,
0.8251003623008728,
-0.2724583148956299,
0.02205154299736023,
-0.7837938070297241,
-0.14811517298221588,
-0.49602922797203064,
0.47843819856643677,
-0.449716717004776,
-0.9789331555366516,
0.3266209661960602,
-0.09794620424509048,
0.003417614847421646,
0.4796052873134613,
0.4022781252861023,
-0.22425934672355652,
1.009097695350647,
0.6051653027534485,
-0.26570701599121094,
0.4841728210449219,
-0.1539662778377533,
0.019333366304636,
-0.7991207838058472,
-0.3281669616699219,
-0.6366360783576965,
0.10534165054559708,
-0.694914698600769,
-0.25582459568977356,
-0.048640891909599304,
0.2768408954143524,
-0.23833049833774567,
0.5533873438835144,
-0.8393571972846985,
0.3363272249698639,
0.607894778251648,
-0.053209926933050156,
0.020743120461702347,
0.27890828251838684,
-0.29898595809936523,
-0.13869653642177582,
-0.4212605953216553,
-0.4031456410884857,
0.9311456680297852,
0.5045943856239319,
0.7171717882156372,
-0.11695052683353424,
0.7303249835968018,
0.3509126901626587,
-0.304783433675766,
-0.396697074174881,
0.547185480594635,
-0.32807597517967224,
-0.4078769087791443,
-0.44037121534347534,
-0.5159922242164612,
-0.9446600675582886,
0.32598021626472473,
-0.1962776631116867,
-1.0012867450714111,
0.13612575829029083,
0.32322272658348083,
-0.24902869760990143,
0.19759690761566162,
-0.8874192237854004,
0.7216591835021973,
-0.2529776990413666,
0.12605614960193634,
-0.17720386385917664,
-0.7634936571121216,
-0.2070014625787735,
0.17113110423088074,
0.14517301321029663,
-0.17280973494052887,
0.3433428406715393,
0.9710059762001038,
-0.07357907295227051,
0.8317238688468933,
-0.5416350364685059,
0.1779594123363495,
0.32350093126296997,
-0.18099813163280487,
0.4180445075035095,
-0.1503109633922577,
0.034697096794843674,
0.44550424814224243,
0.34923216700553894,
-0.3125882148742676,
-0.33594632148742676,
0.5774006247520447,
-1.0061153173446655,
-0.36561593413352966,
-0.21557140350341797,
-0.34172263741493225,
-0.4377208948135376,
0.10008784383535385,
0.3786751329898834,
0.4772491455078125,
-0.2780582308769226,
0.30098477005958557,
0.6599518060684204,
0.02632141299545765,
0.40172287821769714,
0.7680187225341797,
-0.12741081416606903,
-0.3830806612968445,
0.9420951008796692,
0.21170227229595184,
0.06248244643211365,
0.41662493348121643,
0.25192713737487793,
-0.6200446486473083,
-0.6250672340393066,
-0.22968047857284546,
0.1966133415699005,
-0.5552915930747986,
-0.10601181536912918,
-0.5768616199493408,
-0.5220546126365662,
-0.8981039524078369,
0.455027312040329,
-0.8118195533752441,
-0.4219152331352234,
-0.6150990724563599,
-0.1372046172618866,
0.3435085415840149,
0.5856761336326599,
-0.2815732955932617,
0.4778572618961334,
-0.5246157050132751,
0.4074793756008148,
0.2837938964366913,
0.2897970676422119,
-0.2948477864265442,
-0.9537590146064758,
-0.11727488040924072,
0.2609986364841461,
-0.21740031242370605,
-0.7543290257453918,
0.16241858899593353,
0.3832877278327942,
0.7847315669059753,
0.4432240128517151,
0.03005601465702057,
0.6850409507751465,
-0.5770875811576843,
0.7484632134437561,
0.3953617215156555,
-1.0136747360229492,
0.7143639326095581,
-0.054730165749788284,
0.3851172924041748,
0.6184485554695129,
0.20226190984249115,
-0.28919723629951477,
-0.08263716101646423,
-0.7283414602279663,
-0.6095246076583862,
0.6801013946533203,
0.32075953483581543,
0.2267133742570877,
0.212471604347229,
0.2897868752479553,
-0.20411773025989532,
0.04927503690123558,
-0.6789471507072449,
-0.5100792050361633,
-0.4732913076877594,
0.009058364666998386,
-0.4321865141391754,
-0.508747398853302,
0.15246547758579254,
-0.7117510437965393,
0.7928534746170044,
0.082949697971344,
0.3090144991874695,
0.14809788763523102,
-0.20192904770374298,
-0.04180612415075302,
0.468688040971756,
0.4235059916973114,
0.6308299899101257,
-0.34501633048057556,
0.15286687016487122,
0.1811196506023407,
-0.34491339325904846,
-0.000655178795568645,
0.5065284967422485,
0.050621721893548965,
0.14611557126045227,
0.14542753994464874,
0.9871245622634888,
0.24196891486644745,
-0.41713669896125793,
0.5211477875709534,
0.08945149928331375,
-0.25078657269477844,
-0.5891987681388855,
-0.06287965923547745,
0.16770648956298828,
0.25758832693099976,
0.43355318903923035,
-0.05510692670941353,
0.15216419100761414,
-0.3766289949417114,
0.4458222985267639,
0.46951043605804443,
-0.6044334769248962,
-0.3170921802520752,
0.5130173563957214,
0.24829724431037903,
-0.6006687879562378,
0.5884996056556702,
-0.2940273880958557,
-0.3761537969112396,
0.14008522033691406,
0.7560705542564392,
0.6987927556037903,
-0.9434414505958557,
0.226121187210083,
0.2930369973182678,
0.16908201575279236,
0.09134680777788162,
0.4084273874759674,
-0.44348713755607605,
-0.6579746603965759,
-0.3775620460510254,
-0.754332959651947,
-0.20169760286808014,
0.30743640661239624,
-0.6321438550949097,
0.019759714603424072,
-0.2845953106880188,
-0.25400909781455994,
0.23425628244876862,
0.20399628579616547,
-0.6173946261405945,
0.24450282752513885,
0.24460557103157043,
0.7926408052444458,
-0.9549266695976257,
1.0313571691513062,
0.669076681137085,
-0.31881392002105713,
-0.9479817748069763,
-0.333021342754364,
-0.021464239805936813,
-0.6970721483230591,
0.47247743606567383,
0.1566341668367386,
-0.14177493751049042,
0.12833255529403687,
-0.5469040274620056,
-0.8135089874267578,
0.8154587745666504,
0.4595545530319214,
-0.7732179164886475,
0.08375127613544464,
0.4094010591506958,
0.4990082085132599,
-0.4635860025882721,
0.1791159212589264,
0.49700215458869934,
0.17818865180015564,
0.24783571064472198,
-1.2400286197662354,
-0.19274593889713287,
-0.40197792649269104,
0.06460082530975342,
-0.08345619589090347,
-0.4056931436061859,
0.8584873676300049,
-0.12197226285934448,
-0.26494529843330383,
0.031804680824279785,
0.8662887811660767,
0.1982962042093277,
0.06665371358394623,
0.7794257998466492,
0.6244369149208069,
0.8127119541168213,
-0.04198979586362839,
0.6067453622817993,
-0.20990122854709625,
0.37819159030914307,
1.4060676097869873,
-0.09208782762289047,
1.0509756803512573,
0.46021491289138794,
-0.52646803855896,
0.2666720747947693,
0.605288028717041,
-0.14585065841674805,
0.5397026538848877,
0.13641145825386047,
-0.03745919093489647,
-0.5980331897735596,
-0.24801789224147797,
-0.561486005783081,
0.7998740077018738,
0.14055968821048737,
-0.16725541651248932,
-0.10923653841018677,
0.22258511185646057,
-0.2605329751968384,
0.07080084085464478,
-0.18792502582073212,
0.7539501786231995,
0.2539828419685364,
-0.23029343783855438,
0.7134042382240295,
-0.12564949691295624,
0.6783699989318848,
-0.6000960469245911,
-0.09688972681760788,
0.17370718717575073,
0.22444795072078705,
-0.25678110122680664,
-0.5802435874938965,
-0.009962991811335087,
-0.1662112921476364,
-0.1428651660680771,
-0.1482098400592804,
0.7528252601623535,
-0.5842416286468506,
-0.4913328289985657,
0.5909221768379211,
0.2407948225736618,
0.5467064380645752,
-0.33084532618522644,
-1.02022385597229,
0.11222865432500839,
0.12310933321714401,
-0.13095130026340485,
0.4010554552078247,
0.17204484343528748,
0.3008849620819092,
0.4710749089717865,
0.7285235524177551,
0.1823613941669464,
-0.10183297097682953,
0.447144091129303,
0.6909486055374146,
-0.4355953633785248,
-0.6600982546806335,
-0.5037729740142822,
0.6849159002304077,
-0.0862707644701004,
-0.1708991974592209,
0.7371211051940918,
0.6165702939033508,
0.9730539917945862,
0.12234638631343842,
0.39106741547584534,
0.27772200107574463,
1.0044403076171875,
-0.3974263370037079,
0.677894651889801,
-0.658094584941864,
0.1540648192167282,
-0.4079166650772095,
-0.8288084864616394,
-0.11505553126335144,
0.6102650165557861,
0.10948789864778519,
0.2268342524766922,
0.3167530298233032,
0.8553634881973267,
-0.09772658348083496,
0.060200147330760956,
0.5896773934364319,
0.1676044464111328,
0.11667653173208237,
0.15519371628761292,
0.6785998940467834,
-0.49462035298347473,
0.43666142225265503,
-0.4509889483451843,
-0.3261718153953552,
0.04037356376647949,
-0.5644286870956421,
-1.00674307346344,
-0.9457752108573914,
-0.4599825143814087,
-0.2693573534488678,
0.1471453607082367,
1.0456538200378418,
0.9940459728240967,
-1.0321629047393799,
-0.4052850008010864,
0.03344458341598511,
-0.332662433385849,
-0.06485501676797867,
-0.17903566360473633,
0.5253774523735046,
-0.3288149833679199,
-0.485533744096756,
0.7207843661308289,
0.07393959909677505,
0.2822108566761017,
-0.11607956886291504,
-0.2521681487560272,
-0.2733442187309265,
-0.17127364873886108,
0.4936748445034027,
0.46050241589546204,
-0.9038756489753723,
-0.12328463792800903,
-0.2742527425289154,
0.19628843665122986,
0.13899724185466766,
0.5923700928688049,
-0.6683878898620605,
0.581713855266571,
0.25410839915275574,
0.44628456234931946,
0.6512786746025085,
-0.008112641982734203,
0.13292282819747925,
-0.9365350604057312,
0.2865971028804779,
0.15857037901878357,
0.5703547596931458,
0.5235472917556763,
-0.21692205965518951,
0.2294132262468338,
0.2448337823152542,
-0.6734879612922668,
-0.8296634554862976,
0.0803031399846077,
-1.1766639947891235,
-0.27331656217575073,
1.1028341054916382,
-0.04294906184077263,
-0.027513302862644196,
-0.19071023166179657,
-0.2009260505437851,
0.5302877426147461,
-0.5432270169258118,
0.44323986768722534,
0.3511787950992584,
-0.19816672801971436,
-0.31134700775146484,
-0.24449214339256287,
0.5589442849159241,
0.49853360652923584,
-0.4566251039505005,
0.2923833131790161,
0.2586561143398285,
0.4220711886882782,
0.32947781682014465,
0.7424557209014893,
-0.1399262398481369,
0.15918906033039093,
-0.16802048683166504,
0.34354647994041443,
-0.23216111958026886,
-0.4039950370788574,
-0.42229413986206055,
-0.026897355914115906,
0.05288481339812279,
-0.5208084583282471
] |
aiplanet/effi-13b | aiplanet | "2023-08-20T04:16:56Z" | 11,843 | 9 | transformers | [
"transformers",
"pytorch",
"llama",
"text-generation",
"dataset:kaist-ai/CoT-Collection",
"license:apache-2.0",
"endpoints_compatible",
"has_space",
"text-generation-inference",
"region:us"
] | text-generation | "2023-08-18T13:59:35Z" | ---
license: apache-2.0
datasets:
- kaist-ai/CoT-Collection
metrics:
- accuracy
pipeline_tag: text-generation
---
# Model card for aiplanet/effi-13b
effi-13B parameters is a causal decoder-only model built by AI Planet based on Llama-2-13b-chat-hf and fine tuned using the 1.8 Million coversations from CoT dataset available in huggingface datasets. The model is made available under the Apache 2.0 license.
## Why use effi-13B-Instruct?
- This is a ready to use chat/instruct model based on Llama-2-13b-chat-hf, which provides a rationale for the context provided.
- Llama-2 is the best open-source model available. This is an instruct model, which may not be ideal for further finetuning. If you are interested in building your own instruct/chat model, we recommend starting from **Llama-2-13b-chat-hf**
You will need at least **85-100GB of memory to swiftly run inference with effi-13b**.
## Model Details
### Model Description
This model has been fine-tuned on Chain of Thought datasets, which has context from mixed sources with corresponding rationale. The final finetuned Large Language Model(LLM) have shown enhanced capabilities of solving novel tasks by providing a reasoning.
- **Developed by:** AI Planet
- **Model type:** Casual Decoder only
- **Language(s) (NLP):** English
- **License:** Apache 2.0
- **Finetuned from model:** Llama-2-13b-chat-hf
### Direct Use
effi-13b has been finetuned on a Chain of Thought dataset.
### Out-of-Scope Use
Production use without adequate assessment of risks and mitigation; any use cases which may be considered irresponsible or harmful.
## Bias, Risks, and Limitations
This model has been majorly trained on English data, and will not generalize appropriately to other languages. Furthermore, as it is trained on a large-scale corpora representative of the web, it will carry the stereotypes and biases commonly encountered online.
### Recommendations
We recommend users of effi-13b to develop guardrails and take appropriate precautions for any production use.
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information is needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
```
from transformers import (AutoModelForCausalLM, AutoTokenizer, pipeline)
model_card = "aiplanet/effi-13b"
#
model = AutoModelForCausalLM.from_pretrained(model_card)
tokenizer = AutoTokenizer.from_pretrained(model_card)
#
generate_text = transformers.pipeline(
model=model, tokenizer=tokenizer,
return_full_text=True, # langchain expects the full text
task='text-generation',
# we pass model parameters here too
temperature=0.4, # 'randomness' of outputs, 0.0 is the min and 1.0 the max
max_new_tokens=512, # mex number of tokens to generate in the output
repetition_penalty=1.1 # without this output begins repeating
)
#
promt = """
Can you explain this code in detail?
def generate_stream(tokenizer, model, params, device,
context_len=2048, stream_interval=2):
prompt = params["prompt"]
l_prompt = len(prompt)
temperature = float(params.get("temperature", 1.0))
max_new_tokens = int(params.get("max_new_tokens", 256))
stop_str = params.get("stop", None)
input_ids = tokenizer(prompt).input_ids
output_ids = list(input_ids)
max_src_len = context_len - max_new_tokens - 8
input_ids = input_ids[-max_src_len:]
for i in range(max_new_tokens):
if i == 0:
out = model(
torch.as_tensor([input_ids], device=device), use_cache=True)
logits = out.logits
past_key_values = out.past_key_values
else:
attention_mask = torch.ones(
1, past_key_values[0][0].shape[-2] + 1, device=device)
out = model(input_ids=torch.as_tensor([[token]], device=device),
use_cache=True,
attention_mask=attention_mask,
past_key_values=past_key_values)
logits = out.logits
past_key_values = out.past_key_values
last_token_logits = logits[0][-1]
if device == "mps":
# Switch to CPU by avoiding some bugs in mps backend.
last_token_logits = last_token_logits.float().to("cpu")
if temperature < 1e-4:
token = int(torch.argmax(last_token_logits))
else:
probs = torch.softmax(last_token_logits / temperature, dim=-1)
token = int(torch.multinomial(probs, num_samples=1))
output_ids.append(token)
if token == tokenizer.eos_token_id:
stopped = True
else:
stopped = False
if i % stream_interval == 0 or i == max_new_tokens - 1 or stopped:
output = tokenizer.decode(output_ids, skip_special_tokens=True)
pos = output.rfind(stop_str, l_prompt)
if pos != -1:
output = output[:pos]
stopped = True
yield output
if stopped:
break
del past_key_values
"""
#
system_message = "Given your chain of thought reasoning, provide a rationale for the context in the source."
prompt = f"[INST] <<SYS>>\n{system_message}\n<</SYS>>\n\n{prompt}. [/INST]" # replace the command here with something relevant to your task
#
result = generate_text(prompt)
print(result[0]['generated_text'].strip().split("[/INST]")[-1])
```
## Training Details
### Training Data
effi-13b has been finetuned on https://huggingface.co/datasets/kaist-ai/CoT-Collection
The data was tokenized with the **meta-llama/Llama-2-13b-chat-hf** tokenizer.
### Training Procedure
Fine-tuning approach using PefT and Qlora(https://huggingface.co/blog/4bit-transformers-bitsandbytes)
#### Training Hyperparameters
- **Training regime:**
- lora_alpha=32,
- lora_dropout=0.05,
- r=8,
- bias="none",
- task_type="CAUSAL_LM"
#
- load_in_4bit=True,
- bnb_4bit_quant_type = "nf4",
- bnb_4bit_use_double_quant=True,
- bnb_4bit_compute_dtype=torch.bfloat16
#
- num_train_epochs = 1
- fp16 = False
- bf16 = False
- per_device_train_batch_size = 1
- per_device_eval_batch_size = 1
- gradient_accumulation_steps = 4
- gradient_checkpointing = True
- max_grad_norm = 0.3
- learning_rate = 2e-4
- weight_decay = 0.001
- optim = "paged_adamw_32bit"
- lr_scheduler_type = "constant"
- max_steps = 500
- warmup_ratio = 0.03
- group_by_length = True
- save_steps = 25
- logging_steps = 5
- max_seq_length = 2048
- packing = False
- device_map = {"": 0}
## Evaluation
Paper coming soon.
See the OpenLLM Leaderboard(https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) for early results.
## Citation
@article{effi-13b,
title={{effi-13b}: an open large language model with state-of-the-art performance},
author={aiplanet},
year={2023}
}
## Model Card Contact
community@aiplanet.com
| [
-0.3870641887187958,
-0.9591773152351379,
0.28464269638061523,
0.22464434802532196,
-0.43060845136642456,
-0.20197224617004395,
-0.31588172912597656,
-0.3417168855667114,
0.20449955761432648,
0.22356614470481873,
-0.6553785800933838,
-0.4652409553527832,
-0.6007901430130005,
0.12508724629878998,
-0.19675609469413757,
0.9376308917999268,
0.020785046741366386,
-0.163405179977417,
0.024857887998223305,
0.14811916649341583,
-0.3071908950805664,
-0.5185239911079407,
-0.8192338943481445,
-0.28194567561149597,
0.2022707760334015,
0.24428622424602509,
0.2948608100414276,
0.7003382444381714,
0.5569179058074951,
0.3536624014377594,
-0.11408814787864685,
0.3009522557258606,
-0.5397867560386658,
-0.015379516407847404,
0.13914021849632263,
-0.30118095874786377,
-0.4022989571094513,
0.004562126938253641,
0.7275447249412537,
0.24100665748119354,
-0.06443124264478683,
0.46797189116477966,
0.09156018495559692,
0.3390340507030487,
-0.44872236251831055,
0.29070189595222473,
-0.6886796355247498,
-0.1018601730465889,
-0.2138669341802597,
-0.3380763530731201,
-0.5095632076263428,
-0.0936773493885994,
-0.20112070441246033,
-0.582931637763977,
0.029588228091597557,
0.19176144897937775,
1.168270468711853,
0.48697948455810547,
-0.26327863335609436,
-0.24139666557312012,
-0.6432836651802063,
0.7945455312728882,
-1.0052554607391357,
0.24152621626853943,
0.34327539801597595,
0.036886826157569885,
-0.17654497921466827,
-0.8513818979263306,
-0.6457858085632324,
-0.1886046975851059,
-0.05466194450855255,
0.17879168689250946,
-0.1928919404745102,
0.018157316371798515,
0.3437495827674866,
0.23579664528369904,
-0.47956615686416626,
0.0714031234383583,
-0.4717671573162079,
-0.23419839143753052,
0.586541473865509,
0.40043574571609497,
0.10077100247144699,
-0.34559348225593567,
-0.4309759736061096,
-0.25707581639289856,
-0.46512657403945923,
0.09223248809576035,
0.4019741415977478,
0.2608972489833832,
-0.300326943397522,
0.5281819105148315,
-0.1375252902507782,
0.6322462558746338,
0.1771342009305954,
-0.35267892479896545,
0.43023425340652466,
-0.33727484941482544,
-0.5427477359771729,
-0.02960674650967121,
1.0483704805374146,
0.34317439794540405,
-0.08321364223957062,
0.19327253103256226,
-0.06993719935417175,
-0.12508901953697205,
-0.11368589103221893,
-0.962510883808136,
-0.23483514785766602,
0.3789774775505066,
-0.5123459696769714,
-0.42321643233299255,
0.03526092320680618,
-0.6563814878463745,
-0.025023767724633217,
-0.17611412703990936,
0.40478238463401794,
-0.5158013105392456,
-0.3566480875015259,
0.08886938542127609,
-0.16989654302597046,
0.38547778129577637,
0.07918471097946167,
-0.7533013224601746,
0.2534618079662323,
0.47044065594673157,
0.7999180555343628,
0.049866557121276855,
-0.45594802498817444,
-0.343888521194458,
0.057034701108932495,
-0.07278870791196823,
0.5763993859291077,
-0.30190038681030273,
-0.20464369654655457,
-0.395245224237442,
0.056150827556848526,
-0.2742730677127838,
-0.3466087281703949,
0.5411534905433655,
-0.36446183919906616,
0.225642591714859,
-0.1711367964744568,
-0.7177241444587708,
-0.1574055403470993,
0.17488127946853638,
-0.45330339670181274,
1.2492828369140625,
-0.15632058680057526,
-0.9618951678276062,
0.19694288074970245,
-0.7275160551071167,
-0.18559491634368896,
-0.03103369101881981,
-0.06704443693161011,
-0.4795903265476227,
-0.18606361746788025,
0.17646722495555878,
0.5581545829772949,
-0.39594894647598267,
0.4577568471431732,
-0.2769050598144531,
-0.3588973879814148,
0.24716012179851532,
-0.6708318591117859,
1.1463580131530762,
0.3487268090248108,
-0.6604616641998291,
0.2466326504945755,
-0.8334754109382629,
0.024829404428601265,
0.2802945375442505,
-0.4400791823863983,
0.027145391330122948,
-0.10190045088529587,
0.198349729180336,
0.19596391916275024,
0.38435614109039307,
-0.6331115365028381,
0.08316674828529358,
-0.34479185938835144,
0.6112195253372192,
0.9175841808319092,
0.08093386888504028,
0.16026173532009125,
-0.2628885507583618,
0.2811373174190521,
0.13654011487960815,
0.23503147065639496,
-0.07619009166955948,
-0.6579890847206116,
-0.9667499661445618,
-0.348665326833725,
0.036378324031829834,
0.6849269270896912,
-0.5273946523666382,
0.812813401222229,
-0.12198328226804733,
-0.7282992601394653,
-0.4490237236022949,
0.08643133193254471,
0.3139584958553314,
0.5509992837905884,
0.343161940574646,
0.0958404466509819,
-0.6817820072174072,
-0.832490086555481,
0.14123491942882538,
-0.3229467570781708,
0.12735968828201294,
0.4583847224712372,
0.7008972764015198,
-0.19508467614650726,
0.5521407723426819,
-0.6369656920433044,
-0.1760997325181961,
-0.2462121546268463,
0.01964562013745308,
0.47868964076042175,
0.7109543085098267,
0.4691730737686157,
-0.44528689980506897,
-0.32663050293922424,
-0.18969035148620605,
-0.8754149079322815,
-0.013322949409484863,
-0.31668075919151306,
-0.3851572871208191,
0.29848483204841614,
0.6005677580833435,
-0.7092394828796387,
0.37730804085731506,
0.40880778431892395,
-0.5297104120254517,
0.5151816606521606,
-0.2682982385158539,
0.04948755353689194,
-1.284030556678772,
0.28298497200012207,
-0.046362362802028656,
-0.03019077330827713,
-0.43018651008605957,
0.13603772222995758,
-0.1263258308172226,
-0.04125833138823509,
-0.578468918800354,
0.5943787097930908,
-0.27312037348747253,
0.17381270229816437,
-0.15211591124534607,
-0.1474640965461731,
-0.09702718257904053,
0.7368643879890442,
-0.029949065297842026,
0.6564454436302185,
0.5967768430709839,
-0.6562607288360596,
0.45158320665359497,
0.12925498187541962,
-0.1997426152229309,
0.2412208914756775,
-0.7473112940788269,
0.20067737996578217,
0.012566520832479,
0.25387173891067505,
-1.1384456157684326,
-0.21175101399421692,
0.49717551469802856,
-0.6154565811157227,
0.2502996623516083,
0.16989989578723907,
-0.5703519582748413,
-0.45378753542900085,
-0.1410827487707138,
0.3291323781013489,
0.5837464928627014,
-0.46543431282043457,
0.5765889883041382,
0.21615491807460785,
0.20489005744457245,
-0.6062542796134949,
-0.675724446773529,
-0.03574317693710327,
-0.22845257818698883,
-0.6626825928688049,
0.3756481409072876,
-0.22931453585624695,
-0.13642719388008118,
-0.02398800663650036,
0.2490752935409546,
0.02354457415640354,
0.13550974428653717,
0.3150096535682678,
0.30696141719818115,
-0.1513478308916092,
-0.023158812895417213,
-0.03947676345705986,
-0.08436378091573715,
0.23571835458278656,
-0.3603549003601074,
0.8539207577705383,
-0.3478311598300934,
-0.20658469200134277,
-0.7600500583648682,
0.19849862158298492,
0.41810980439186096,
-0.08151578903198242,
1.029240369796753,
0.897529125213623,
-0.5008789300918579,
0.04962443932890892,
-0.48261645436286926,
-0.22098329663276672,
-0.5226423740386963,
0.4081052243709564,
-0.4044935405254364,
-0.6014374494552612,
0.6511451005935669,
0.20655162632465363,
0.28918346762657166,
0.7652795314788818,
0.7585904598236084,
-0.024082573130726814,
0.7982869744300842,
0.41361546516418457,
0.04440196231007576,
0.4362500011920929,
-0.6288335919380188,
0.07535939663648605,
-0.7590683698654175,
-0.4329943060874939,
-0.4120490252971649,
-0.2858331501483917,
-0.5721176862716675,
-0.3495505154132843,
0.2126941978931427,
0.07458621263504028,
-0.6569663286209106,
0.22276949882507324,
-0.6730165481567383,
0.24378827214241028,
0.7079397439956665,
0.2904115915298462,
-0.03696655109524727,
-0.05596183240413666,
-0.27458372712135315,
0.14056825637817383,
-0.6975707411766052,
-0.44269105792045593,
1.0680296421051025,
0.40858304500579834,
0.7041378617286682,
-0.1502181738615036,
0.8700668811798096,
0.04868163913488388,
0.13896819949150085,
-0.5040625333786011,
0.657789945602417,
0.10936363786458969,
-0.6269739866256714,
-0.3558938503265381,
-0.35483089089393616,
-0.7636539936065674,
0.17470234632492065,
-0.12545235455036163,
-0.7321639657020569,
0.057348884642124176,
0.14162981510162354,
-0.2164759635925293,
0.6431969404220581,
-0.7088595628738403,
0.8191426396369934,
-0.15976102650165558,
-0.3705746531486511,
-0.09576167911291122,
-0.5951533317565918,
0.46097108721733093,
0.12225925922393799,
0.0780956819653511,
-0.10015581548213959,
-0.01755935326218605,
1.0528541803359985,
-0.5762990117073059,
0.9336180686950684,
-0.2739153504371643,
0.13634413480758667,
0.48552536964416504,
-0.18078207969665527,
0.4479799270629883,
-0.03289073333144188,
-0.20465992391109467,
0.25352248549461365,
-0.06499043852090836,
-0.5137962102890015,
-0.19693559408187866,
0.7584258317947388,
-1.1820675134658813,
-0.6326746940612793,
-0.45068079233169556,
-0.41885724663734436,
0.19350233674049377,
0.2059379518032074,
0.5210846662521362,
0.3668166697025299,
-0.04838716611266136,
0.17938275635242462,
0.5080211162567139,
-0.3754461705684662,
0.618927001953125,
0.05833842605352402,
-0.08102412521839142,
-0.6286538243293762,
0.867408037185669,
-0.023086650297045708,
0.2433721423149109,
0.34761497378349304,
0.17268209159374237,
-0.29050812125205994,
-0.29536718130111694,
-0.6454101800918579,
0.2876652479171753,
-0.7538788318634033,
-0.43301257491111755,
-0.7646677494049072,
-0.4591705799102783,
-0.43873196840286255,
-0.0334458090364933,
-0.32192596793174744,
-0.2817148268222809,
-0.6830907464027405,
-0.18187740445137024,
0.6707490086555481,
0.5267288088798523,
-0.1533917933702469,
0.41710275411605835,
-0.5303992629051208,
0.1496478021144867,
0.12263170629739761,
0.10882942378520966,
0.24619680643081665,
-0.7552061080932617,
-0.2082672417163849,
0.10003173351287842,
-0.4229227602481842,
-0.7850785255432129,
0.4965680241584778,
0.25128957629203796,
0.5516912937164307,
0.43627411127090454,
0.05818644165992737,
0.7970876097679138,
-0.2809120714664459,
0.8852355480194092,
0.2442268282175064,
-0.9992226362228394,
0.5605849623680115,
-0.24579456448554993,
0.31740689277648926,
0.2573568522930145,
0.25418803095817566,
-0.2930947542190552,
-0.4236241579055786,
-0.7799371480941772,
-0.8730266094207764,
0.7936718463897705,
0.3387492001056671,
0.08899804204702377,
-0.1560072898864746,
0.382785826921463,
-0.09562034159898758,
-0.00044712412636727095,
-0.7987092137336731,
-0.5465498566627502,
-0.3450128734111786,
-0.1977051943540573,
-0.04686175286769867,
-0.14221039414405823,
0.09102670848369598,
-0.537032425403595,
0.8519611358642578,
0.008581655099987984,
0.8004471659660339,
0.24503152072429657,
-0.06698398292064667,
-0.0768410861492157,
-0.03230994567275047,
0.604302167892456,
0.5606871247291565,
-0.3409685790538788,
0.08139703422784805,
0.2864558696746826,
-0.602144718170166,
0.24345402419567108,
0.1236361414194107,
-0.17529799044132233,
-0.03479932248592377,
0.2972407937049866,
1.0641860961914062,
0.03967016562819481,
-0.36726173758506775,
0.2566477954387665,
-0.15194298326969147,
-0.37638193368911743,
-0.4353930354118347,
0.08028707653284073,
0.3098595142364502,
0.19178937375545502,
0.39103832840919495,
0.12597277760505676,
-0.055101968348026276,
-0.32854464650154114,
0.12226083874702454,
0.3588436245918274,
-0.011375298723578453,
-0.2437945157289505,
0.9679290652275085,
0.22529566287994385,
-0.2802736163139343,
0.774890661239624,
-0.2262657731771469,
-0.4431826174259186,
0.8865570425987244,
0.6921385526657104,
0.8150091171264648,
0.003850362729281187,
0.05305987596511841,
0.6780474185943604,
0.3990921676158905,
0.1270115077495575,
0.4009133577346802,
0.09902293235063553,
-0.6953546404838562,
-0.39155131578445435,
-0.7518548369407654,
-0.15016072988510132,
0.2869355380535126,
-0.5906030535697937,
0.3949005901813507,
-0.6426591277122498,
-0.2550271451473236,
0.025208165869116783,
0.2086877077817917,
-0.9185290932655334,
0.20611007511615753,
0.26034867763519287,
0.9448518753051758,
-0.8987935185432434,
0.8489300608634949,
0.6058673858642578,
-0.4554687738418579,
-0.9708134531974792,
-0.20031367242336273,
-0.08680989593267441,
-0.8934645056724548,
0.655184805393219,
0.19799979031085968,
0.02489597536623478,
0.2011033594608307,
-0.7298330068588257,
-1.0485070943832397,
1.2432146072387695,
0.3321235179901123,
-0.4148958921432495,
-0.05132674425840378,
0.016799919307231903,
0.4296110272407532,
-0.35546278953552246,
0.499968022108078,
0.4428233206272125,
0.45904940366744995,
0.1441667079925537,
-0.8790050148963928,
0.34288057684898376,
-0.42410439252853394,
-0.1425495445728302,
0.1595931202173233,
-0.9317397475242615,
1.0600836277008057,
-0.25068551301956177,
-0.07407989352941513,
0.051006659865379333,
0.8315317630767822,
0.439604789018631,
0.12874820828437805,
0.4029844105243683,
0.7263689041137695,
0.8698942065238953,
-0.02765188366174698,
0.933893620967865,
-0.4424026906490326,
0.48855137825012207,
0.8192197680473328,
0.02057621069252491,
0.934253990650177,
0.5118381977081299,
-0.18094894289970398,
0.4623377323150635,
0.8678510189056396,
-0.09607939422130585,
0.4682275652885437,
0.1268269568681717,
-0.08051887899637222,
-0.2487502545118332,
-0.022987376898527145,
-0.43617331981658936,
0.368998646736145,
0.4193551242351532,
-0.47708266973495483,
-0.09955224394798279,
0.018075035884976387,
0.14173434674739838,
-0.42562392354011536,
-0.17130878567695618,
0.6712861657142639,
0.04831329360604286,
-0.6037623286247253,
0.946817934513092,
0.18801431357860565,
0.8835455179214478,
-0.44518083333969116,
0.07676699012517929,
-0.045060187578201294,
0.27242085337638855,
-0.16085414588451385,
-0.5612000226974487,
0.22944504022598267,
0.0024202698841691017,
-0.11537989228963852,
-0.08324714004993439,
0.5736360549926758,
-0.23846058547496796,
-0.7497434616088867,
0.2665124833583832,
0.38085511326789856,
0.4649694859981537,
0.1616695672273636,
-0.8713778257369995,
0.2963373064994812,
0.2226935476064682,
-0.5005484223365784,
0.18940076231956482,
0.3545824885368347,
0.3100769519805908,
0.546205997467041,
0.7618083953857422,
0.0017160680145025253,
0.2499147653579712,
-0.1975901573896408,
0.9517631530761719,
-0.7120107412338257,
-0.3557359576225281,
-1.0770472288131714,
0.3810542821884155,
-0.040035273879766464,
-0.6811324954032898,
0.5894671082496643,
0.6249297261238098,
0.9323279857635498,
0.019200434908270836,
0.6309746503829956,
-0.35695531964302063,
0.08692308515310287,
-0.5349612236022949,
0.5636720061302185,
-0.47206854820251465,
0.20078860223293304,
-0.15213432908058167,
-0.7951870560646057,
-0.020021121948957443,
0.6924295425415039,
-0.1675868034362793,
0.029826955869793892,
0.6694584488868713,
0.8181801438331604,
-0.054233815521001816,
0.07071979343891144,
0.1910172998905182,
0.32390835881233215,
0.3884963393211365,
0.7118960618972778,
0.584263026714325,
-0.6599185466766357,
0.5985733866691589,
-0.5094548463821411,
-0.2690171003341675,
-0.1377270668745041,
-0.8085514903068542,
-0.9618701934814453,
-0.6646150946617126,
-0.2437235414981842,
-0.46916288137435913,
-0.05976945161819458,
1.2011759281158447,
0.677891731262207,
-0.6828029751777649,
-0.3902014195919037,
-0.13480277359485626,
-0.10841865092515945,
-0.22921402752399445,
-0.26855921745300293,
0.5759726166725159,
-0.3374405801296234,
-0.7048494219779968,
-0.031073786318302155,
-0.0628897175192833,
0.06169812008738518,
-0.2744065225124359,
-0.19992156326770782,
-0.4696003496646881,
0.13405022025108337,
0.47758790850639343,
0.06528040021657944,
-0.802507221698761,
-0.12147942930459976,
0.18522784113883972,
-0.12410226464271545,
0.06044895201921463,
0.3951607346534729,
-0.6363239288330078,
0.12269383668899536,
0.49173998832702637,
0.4661911129951477,
0.7159467339515686,
-0.22218680381774902,
0.32187896966934204,
-0.5103043913841248,
0.29145288467407227,
0.03132948651909828,
0.48017585277557373,
0.24128420650959015,
-0.6372231841087341,
0.30280840396881104,
0.39400047063827515,
-0.6312522888183594,
-0.8044205904006958,
-0.1616314798593521,
-0.9833558797836304,
-0.266615629196167,
1.3060522079467773,
-0.23556742072105408,
-0.49930819869041443,
0.2096395343542099,
-0.2685595154762268,
0.4571745693683624,
-0.5380502343177795,
0.5598224401473999,
0.619162380695343,
-0.27473485469818115,
-0.11884080618619919,
-0.34428519010543823,
0.3316935896873474,
0.27992111444473267,
-0.8253968358039856,
-0.017256468534469604,
0.35273781418800354,
0.4055668115615845,
0.058297332376241684,
0.724663257598877,
0.16906069219112396,
0.09640814363956451,
0.23310373723506927,
0.058729011565446854,
-0.25212255120277405,
-0.1898188591003418,
-0.1304941028356552,
-0.01080010924488306,
-0.07250626385211945,
-0.3391590416431427
] |
redstonehero/dreamshaper-inpainting | redstonehero | "2023-04-23T18:00:38Z" | 11,823 | 0 | diffusers | [
"diffusers",
"text-to-image",
"license:creativeml-openrail-m",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] | text-to-image | "2023-04-23T07:23:48Z" | ---
license: creativeml-openrail-m
library_name: diffusers
pipeline_tag: text-to-image
--- | [
-0.12853388488292694,
-0.18616782128810883,
0.6529127359390259,
0.4943625330924988,
-0.19319313764572144,
0.23607465624809265,
0.36071982979774475,
0.05056332051753998,
0.5793652534484863,
0.740013837814331,
-0.6508103013038635,
-0.2378396987915039,
-0.710224986076355,
-0.04782581701874733,
-0.3894752264022827,
0.8470761775970459,
-0.09598272293806076,
0.024004854261875153,
0.047120071947574615,
-0.14317826926708221,
-0.6121037602424622,
-0.04771740734577179,
-1.0524537563323975,
-0.06787490844726562,
0.3002279996871948,
0.5120972990989685,
0.8275896310806274,
0.39602896571159363,
0.5030564069747925,
1.7515558004379272,
-0.08836919069290161,
-0.22754427790641785,
-0.45892032980918884,
0.4223068356513977,
-0.33277371525764465,
-0.42133718729019165,
-0.2624166011810303,
-0.07449338585138321,
0.32380399107933044,
0.790371298789978,
-0.38104110956192017,
0.19328099489212036,
-0.22438454627990723,
1.008224368095398,
-0.8202074766159058,
0.22630876302719116,
-0.16698351502418518,
0.14053204655647278,
0.042308706790208817,
-0.14591927826404572,
-0.1326323002576828,
-0.6440033912658691,
0.06469469517469406,
-0.899596095085144,
0.1027495265007019,
-0.04461126774549484,
0.8789561986923218,
0.21909058094024658,
-0.5102370977401733,
-0.0459773913025856,
-0.6883594989776611,
1.0972508192062378,
-0.17556026577949524,
0.7615712881088257,
0.4507811963558197,
0.45288562774658203,
-0.5849329829216003,
-1.178217887878418,
-0.4441864490509033,
-0.13579002022743225,
0.14722809195518494,
0.30556100606918335,
-0.3453029692173004,
-0.022343844175338745,
0.10801105946302414,
0.5610314011573792,
-0.5003758072853088,
-0.311959445476532,
-0.9579929113388062,
-0.18164916336536407,
0.6820483207702637,
0.319308340549469,
0.834044337272644,
0.1873151659965515,
-0.7347195744514465,
0.12866291403770447,
-1.3239703178405762,
0.07650735974311829,
0.6465023756027222,
0.239467591047287,
-0.554598867893219,
0.8594784736633301,
-0.28587982058525085,
0.626249372959137,
0.2728465497493744,
-0.1164526641368866,
0.2784252464771271,
-0.23030735552310944,
-0.2735062837600708,
0.033087607473134995,
0.34597301483154297,
0.8204491138458252,
0.16248634457588196,
-0.019984982907772064,
-0.22123965620994568,
0.0020717978477478027,
0.2684449553489685,
-0.7935096025466919,
-0.4712669551372528,
0.1926696002483368,
-0.558952808380127,
-0.0910850465297699,
0.4327022135257721,
-1.0976827144622803,
-0.4812980592250824,
-0.1879846155643463,
0.05468139797449112,
-0.5451693534851074,
-0.3697946071624756,
0.07273250073194504,
-0.79254150390625,
-0.1243419200181961,
0.570950984954834,
-0.6230252981185913,
0.43974608182907104,
0.533625602722168,
0.7861635684967041,
0.2330387681722641,
-0.23613610863685608,
-0.6695019602775574,
0.48848265409469604,
-0.8661867380142212,
0.36860740184783936,
-0.3073781132698059,
-0.8298640251159668,
-0.09631050378084183,
0.5393159985542297,
0.20664852857589722,
-0.6653256416320801,
0.7074045538902283,
-0.5496984720230103,
-0.07806532829999924,
-0.4308285415172577,
-0.2432200014591217,
0.17460417747497559,
0.11115431040525436,
-0.6238909363746643,
0.9402233362197876,
0.5551108121871948,
-0.584109902381897,
0.31701239943504333,
-0.4869506359100342,
-0.6865583658218384,
0.26748135685920715,
-0.008750975131988525,
-0.047152332961559296,
0.3279528021812439,
-0.15983973443508148,
-0.0020511597394943237,
0.10505761206150055,
0.008299741894006729,
-0.21891699731349945,
-0.4786304235458374,
0.06349936127662659,
0.151650071144104,
1.25368332862854,
0.4083622097969055,
-0.3771882951259613,
-0.13140122592449188,
-1.0526149272918701,
0.025432661175727844,
0.0505015105009079,
-0.42306768894195557,
-0.2504565119743347,
-0.14882194995880127,
-0.20381587743759155,
0.4307260811328888,
0.2118472456932068,
-0.813115119934082,
0.22643625736236572,
-0.2064024657011032,
0.364496648311615,
0.8222091794013977,
0.2703101634979248,
0.39760565757751465,
-0.6625286340713501,
0.6563138365745544,
0.2076188325881958,
0.49590179324150085,
0.35404202342033386,
-0.3845822811126709,
-0.9641586542129517,
-0.442161500453949,
-0.10117404907941818,
0.2975531220436096,
-0.7744957804679871,
0.5847322940826416,
0.012979604303836823,
-0.5836705565452576,
-0.4465281367301941,
-0.15488101541996002,
0.2755330502986908,
-0.06606576591730118,
0.03334902226924896,
-0.4049779176712036,
-0.7394417524337769,
-1.0127898454666138,
-0.13788150250911713,
-0.5021388530731201,
-0.21892830729484558,
0.3160586357116699,
0.2617739737033844,
-0.34290042519569397,
0.7610747814178467,
-0.6059278249740601,
-0.704064130783081,
-0.13973554968833923,
-0.0995984673500061,
0.6187719702720642,
0.9297672510147095,
0.749138355255127,
-0.7224893569946289,
-0.8973818421363831,
-0.056230708956718445,
-0.5420039892196655,
-0.020044349133968353,
0.038149889558553696,
-0.18260693550109863,
-0.10514980554580688,
0.22352531552314758,
-0.6100803017616272,
0.8851073980331421,
0.43224984407424927,
-0.681546688079834,
0.5210590958595276,
-0.4444413483142853,
0.6073803901672363,
-0.8642839193344116,
-0.2911490201950073,
-0.16823577880859375,
-0.1976117193698883,
-0.7090160846710205,
0.19411544501781464,
-0.3002234101295471,
-0.33029863238334656,
-0.7474032044410706,
0.5274897813796997,
-0.9497010707855225,
-0.18781527876853943,
-0.33672773838043213,
-0.03423111140727997,
0.25807833671569824,
0.19490505754947662,
-0.23560254275798798,
0.8900529742240906,
0.9160482287406921,
-0.7121306657791138,
0.5487277507781982,
0.3930906653404236,
-0.1920013427734375,
0.7131237387657166,
-0.3887738585472107,
0.05161993205547333,
-0.12344931066036224,
0.14374595880508423,
-1.126388430595398,
-0.561158299446106,
0.13677382469177246,
-0.712703287601471,
0.17686958611011505,
-0.16556859016418457,
-0.09428537636995316,
-0.6608465313911438,
-0.33806395530700684,
0.25910091400146484,
0.48612290620803833,
-0.47969940304756165,
0.6188148260116577,
0.5728040337562561,
0.02651876211166382,
-0.5307406783103943,
-0.7206818461418152,
0.20418110489845276,
0.039646461606025696,
-0.5569695830345154,
0.3011690080165863,
0.006543457508087158,
-0.6622446775436401,
-0.371124804019928,
-0.26354190707206726,
-0.6043857336044312,
-0.2267974615097046,
0.7826986312866211,
0.1199423298239708,
-0.09012264013290405,
-0.20310267806053162,
-0.3199536204338074,
-0.06167525798082352,
0.30487415194511414,
-0.07575298100709915,
0.7232834696769714,
-0.33623749017715454,
-0.17850083112716675,
-0.887734055519104,
0.652754545211792,
0.9970465302467346,
0.09446714073419571,
0.806644082069397,
0.46324217319488525,
-0.35647475719451904,
-0.1304660439491272,
-0.3535459041595459,
-0.15120601654052734,
-0.685774564743042,
-0.1806798279285431,
-0.5322476625442505,
-0.5411434769630432,
0.40530654788017273,
0.10101459175348282,
-0.0021042972803115845,
0.5167046785354614,
0.2533605694770813,
-0.28806859254837036,
0.7550324201583862,
1.034340739250183,
0.1391797959804535,
0.3602915108203888,
-0.2854715585708618,
0.6341594457626343,
-0.8329949378967285,
-0.34052175283432007,
-0.4548071026802063,
-0.2563585042953491,
-0.31214389204978943,
-0.10750849545001984,
0.5791022181510925,
0.2818215489387512,
-0.4463467597961426,
0.1250680536031723,
-0.5994209051132202,
0.6587361693382263,
0.6273988485336304,
0.5719727873802185,
0.1997303068637848,
-0.46199458837509155,
0.19982971251010895,
0.04816687852144241,
-0.45745599269866943,
-0.4009109139442444,
0.7711143493652344,
0.2399624139070511,
0.8364022374153137,
0.20927050709724426,
0.4957774877548218,
0.33375421166419983,
0.2528058588504791,
-0.6318977475166321,
0.2009797990322113,
-0.22282809019088745,
-1.245961308479309,
-0.206426739692688,
-0.16551318764686584,
-1.0080583095550537,
-0.11792082339525223,
-0.18288995325565338,
-0.8406620025634766,
0.2665729820728302,
-0.19225634634494781,
-0.6640645265579224,
0.5206149220466614,
-0.5103875398635864,
0.69347083568573,
-0.23555898666381836,
-0.2817087769508362,
0.11930079013109207,
-0.6889920830726624,
0.5254612565040588,
0.3667147755622864,
0.29168397188186646,
-0.37968993186950684,
-0.3192872405052185,
0.5068994760513306,
-0.881224513053894,
0.44081127643585205,
-0.10564978420734406,
0.19428130984306335,
0.5358879566192627,
0.4153591990470886,
0.3823971152305603,
0.28699052333831787,
-0.2459377944469452,
-0.23415414988994598,
0.2250344604253769,
-0.7581346035003662,
-0.27754613757133484,
0.9095459580421448,
-0.7519428730010986,
-0.8586915731430054,
-0.6954255700111389,
-0.30644941329956055,
0.28865277767181396,
0.02781464159488678,
0.7154772281646729,
0.6456884145736694,
-0.18821057677268982,
0.23776991665363312,
0.7208225727081299,
-0.0146945184096694,
0.7235562801361084,
0.29411184787750244,
-0.4056646227836609,
-0.6169787645339966,
0.7182320356369019,
0.2627044916152954,
0.05162655562162399,
0.028327951207756996,
0.3058736026287079,
-0.17546698451042175,
-0.15078596770763397,
-0.6318323612213135,
-0.06395323574542999,
-0.7465729117393494,
-0.0927949845790863,
-0.7541396617889404,
-0.2507742643356323,
-0.7114590406417847,
-0.8068137764930725,
-0.7080163955688477,
-0.45604395866394043,
-0.43011948466300964,
-0.23352204263210297,
0.5163108706474304,
1.1627086400985718,
-0.2613152861595154,
0.8011051416397095,
-0.8900954723358154,
0.41936296224594116,
0.4969540238380432,
0.7519731521606445,
-0.11061006784439087,
-0.6746935844421387,
-0.07836239039897919,
-0.5338755249977112,
-0.29485058784484863,
-1.0156972408294678,
0.31774646043777466,
-0.03688591718673706,
0.40537136793136597,
0.42938894033432007,
0.25190269947052,
0.49392756819725037,
-0.30073118209838867,
1.1130688190460205,
0.7274302244186401,
-0.803381085395813,
0.519527792930603,
-0.7635002136230469,
0.16122324764728546,
0.9363659620285034,
0.54477459192276,
-0.4417075514793396,
-0.15113934874534607,
-1.025976538658142,
-0.843137264251709,
0.5963036417961121,
0.15439945459365845,
0.016843896359205246,
0.01821417547762394,
0.03168272227048874,
0.29466384649276733,
0.3591304123401642,
-0.7847291231155396,
-0.8240220546722412,
-0.13851122558116913,
0.25803306698799133,
0.31456053256988525,
-0.1648542582988739,
-0.3003871440887451,
-0.611615777015686,
0.8711391091346741,
0.18286482989788055,
0.3546231985092163,
0.12073354423046112,
0.04369349032640457,
-0.35506919026374817,
0.14787021279335022,
0.5522999167442322,
1.2529057264328003,
-0.40983331203460693,
0.3673911392688751,
0.1751260608434677,
-0.6540069580078125,
0.6494997143745422,
-0.3036349415779114,
-0.021784601733088493,
0.6203135251998901,
0.17760884761810303,
0.28528398275375366,
0.315599262714386,
-0.3621427118778229,
0.6047801971435547,
-0.029422052204608917,
-0.17758512496948242,
-0.7005696296691895,
0.15866968035697937,
0.029350608587265015,
0.27507954835891724,
0.4392024278640747,
0.24443313479423523,
0.08246771991252899,
-1.0602877140045166,
0.5711055397987366,
0.24493910372257233,
-0.8676618337631226,
-0.3011006712913513,
0.7047957181930542,
0.4075389802455902,
-0.47599563002586365,
0.38749054074287415,
0.012702330946922302,
-0.6710241436958313,
0.5987741351127625,
0.5510413646697998,
0.7569674253463745,
-0.4702427089214325,
0.3088020086288452,
0.6245602965354919,
0.06711331009864807,
0.20550549030303955,
0.6923202872276306,
0.03149382025003433,
-0.44738656282424927,
0.23022446036338806,
-0.5986733436584473,
-0.1468990594148636,
0.13735318183898926,
-0.8047426342964172,
0.351533442735672,
-0.9312615394592285,
-0.24089956283569336,
0.08751589059829712,
0.11761097609996796,
-0.6130945086479187,
0.6674696207046509,
-0.008524954319000244,
0.9280490875244141,
-0.8549083471298218,
0.9626278281211853,
0.8559581637382507,
-0.31830817461013794,
-0.7709448337554932,
-0.33556753396987915,
0.02013934776186943,
-0.6660526990890503,
0.7108278274536133,
-0.18973003327846527,
-0.41207411885261536,
-0.09323947876691818,
-0.622982919216156,
-1.0003730058670044,
0.030618250370025635,
0.017415650188922882,
-0.4625031054019928,
0.4454794228076935,
-0.5157257318496704,
0.3289681673049927,
-0.19169732928276062,
0.30509495735168457,
0.7719469666481018,
0.7958452701568604,
0.22960808873176575,
-0.6354780197143555,
-0.4466685652732849,
-0.010276071727275848,
-0.16682815551757812,
0.4545809030532837,
-1.0710972547531128,
0.967736542224884,
-0.4652574360370636,
-0.34733209013938904,
0.2706642150878906,
0.797762393951416,
0.2538500428199768,
0.3524126708507538,
0.6219537258148193,
0.9016807079315186,
0.36450111865997314,
-0.31178343296051025,
0.7276745438575745,
0.2426338493824005,
0.4152539074420929,
0.7364203333854675,
-0.22712187469005585,
0.5403846502304077,
0.8906413316726685,
-0.786162257194519,
0.5381765365600586,
0.7879031896591187,
0.16047371923923492,
0.7758157253265381,
0.5944145917892456,
-0.611952543258667,
-0.1185941994190216,
-0.1464141309261322,
-0.6171560287475586,
0.1979752480983734,
0.052926212549209595,
-0.11974738538265228,
-0.2846010625362396,
-0.13567376136779785,
0.12295057624578476,
0.2836454212665558,
-0.5959328413009644,
0.606866717338562,
0.34341585636138916,
-0.6328282356262207,
0.21025103330612183,
-0.25779569149017334,
0.6709501147270203,
-0.5978154540061951,
0.02733636647462845,
-0.226993590593338,
0.41810402274131775,
-0.4618742763996124,
-1.007582426071167,
0.47138404846191406,
-0.2920241355895996,
-0.40551304817199707,
-0.26942431926727295,
0.8072363138198853,
-0.22133907675743103,
-0.5572860240936279,
0.37486034631729126,
0.13466592133045197,
0.41473662853240967,
0.40145981311798096,
-0.548729419708252,
0.047790080308914185,
0.13760165870189667,
-0.20061805844306946,
0.3601190149784088,
0.2973729372024536,
0.25488772988319397,
0.7100128531455994,
0.5052477717399597,
0.22198708355426788,
0.25694364309310913,
-0.18668605387210846,
0.8387458324432373,
-0.9102796316146851,
-0.8167635202407837,
-0.9497333765029907,
0.3849896192550659,
0.025727711617946625,
-0.880144476890564,
0.7920305728912354,
0.7652608156204224,
0.5113964080810547,
-0.4877890348434448,
0.4755283296108246,
-0.326479434967041,
0.5047136545181274,
-0.13870958983898163,
1.001089096069336,
-0.760762631893158,
-0.29587265849113464,
-0.030554059892892838,
-0.9216439723968506,
-0.2533753216266632,
0.5375741720199585,
0.1540832668542862,
-0.14608067274093628,
0.4385907053947449,
0.44216376543045044,
0.022173406556248665,
0.25223150849342346,
0.32861006259918213,
0.06042787432670593,
0.14508451521396637,
0.5510438680648804,
1.0931141376495361,
-0.43394410610198975,
0.18694786727428436,
-0.4923475384712219,
-0.4536249041557312,
-0.4153490662574768,
-0.9548057913780212,
-0.6640313863754272,
-0.48185449838638306,
-0.2973935008049011,
-0.5915579199790955,
0.11726461350917816,
0.9300885796546936,
0.9018137454986572,
-0.6256728172302246,
-0.41243645548820496,
0.25713539123535156,
0.30293411016464233,
-0.2295418381690979,
-0.146267831325531,
0.2736492455005646,
-0.006407544948160648,
-0.7211178541183472,
0.3930943012237549,
0.807976245880127,
0.3887130320072174,
0.08444006741046906,
-0.07217127084732056,
-0.4407080411911011,
0.026101574301719666,
0.5373561382293701,
0.5729561448097229,
-0.6281182169914246,
-0.4099644422531128,
-0.5328317880630493,
-0.21386730670928955,
0.15529435873031616,
0.48077550530433655,
-0.5166378617286682,
0.32661110162734985,
0.8128959536552429,
0.17017659544944763,
0.7187885642051697,
-0.0022492259740829468,
0.6678642630577087,
-0.8970246315002441,
0.4446259140968323,
0.3953385353088379,
0.5681870579719543,
0.08998038619756699,
-0.7339164614677429,
0.9820241928100586,
0.49674350023269653,
-0.6334057450294495,
-1.0034242868423462,
0.03079957515001297,
-1.193113923072815,
-0.3788175582885742,
0.9890843629837036,
-0.09595765173435211,
-0.9597458839416504,
-0.36448943614959717,
-0.3677716851234436,
0.07989637553691864,
-0.33809733390808105,
0.35498204827308655,
0.8268195986747742,
-0.2538071274757385,
-0.2204185128211975,
-0.9505581855773926,
0.4752943515777588,
0.3102525472640991,
-0.5886632204055786,
-0.05114369094371796,
0.329391211271286,
0.45236870646476746,
0.3009701371192932,
0.5239557027816772,
0.10428227484226227,
0.8970529437065125,
0.25200390815734863,
0.30491405725479126,
-0.04526621103286743,
-0.590078592300415,
-0.0160664189606905,
0.2621477246284485,
0.04487839341163635,
-0.6869441270828247
] |
bigscience/bloom | bigscience | "2023-07-28T17:50:20Z" | 11,814 | 4,191 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"safetensors",
"bloom",
"text-generation",
"ak",
"ar",
"as",
"bm",
"bn",
"ca",
"code",
"en",
"es",
"eu",
"fon",
"fr",
"gu",
"hi",
"id",
"ig",
"ki",
"kn",
"lg",
"ln",
"ml",
"mr",
"ne",
"nso",
"ny",
"or",
"pa",
"pt",
"rn",
"rw",
"sn",
"st",
"sw",
"ta",
"te",
"tn",
"ts",
"tum",
"tw",
"ur",
"vi",
"wo",
"xh",
"yo",
"zh",
"zu",
"arxiv:2211.05100",
"arxiv:1909.08053",
"arxiv:2110.02861",
"arxiv:2108.12409",
"doi:10.57967/hf/0003",
"license:bigscience-bloom-rail-1.0",
"model-index",
"co2_eq_emissions",
"endpoints_compatible",
"has_space",
"text-generation-inference",
"region:us"
] | text-generation | "2022-05-19T11:53:33Z" | ---
license: bigscience-bloom-rail-1.0
language:
- ak
- ar
- as
- bm
- bn
- ca
- code
- en
- es
- eu
- fon
- fr
- gu
- hi
- id
- ig
- ki
- kn
- lg
- ln
- ml
- mr
- ne
- nso
- ny
- or
- pa
- pt
- rn
- rw
- sn
- st
- sw
- ta
- te
- tn
- ts
- tum
- tw
- ur
- vi
- wo
- xh
- yo
- zh
- zu
programming_language:
- C
- C++
- C#
- Go
- Java
- JavaScript
- Lua
- PHP
- Python
- Ruby
- Rust
- Scala
- TypeScript
pipeline_tag: text-generation
widget:
- text: 'A "whatpu" is a small, furry animal native to Tanzania. An example of a sentence that uses the word whatpu is: We were traveling in Africa and we saw these very cute whatpus. | To do a "farduddle" means to jump up and down really fast. An example of a sentence that uses the word farduddle is:'
example_title: Imaginary word
group: English
- text: 'Un "whatpu" est un petit animal à fourrure originaire de Tanzanie. Un exemple de phrase qui utilise le mot whatpu est: Nous étions en Afrique et nous avons vu des whatpus trop mignons. Faire un "farduddle" veut dire sauter sur place vraiment vite. Un exemple de phrase qui utilise le mot farduddle est:'
example_title: Imaginary word
group: French
- text: 'Un "whatpu" es un pequeño animal peludo nativo de Tanzania. Un ejemplo de una oración que usa la palabra whatpu es: Estábamos viajando por África y vimos estos whatpus muy bonitos. Hacer un "farduddle" significa saltar arriba y abajo muy rápido. Un ejemplo de una oración que usa la palabra farduddle es:'
example_title: Imaginary word
group: Spanish
- text: ' ال"واتبو" هو حيوان صغير مكسو بالفراء يعيش في تنزانيا. مثال على جملة تستخدم كلمة واتبو هي: كنا نسافر في افريقيا و رأينا هؤلاء الواتبو اللطفاء. للقيام ب"فاردادل" يعني ان تقفز للأعلى و الأسفل بسرعة كبيرة. مثال على جملة تستخدم كلمة فاردادل هي:'
example_title: Imaginary word
group: Arabic
- text: 'Um "whatpu" é um pequeno animal peludo nativo da Tanzânia. Um exemplo de uma frase que usa a palavra whatpu é: Estávamos a viajar por África e vimos uns whatpus muito queridos. Fazer um "farduddle" significa saltar para cima e para baixo muito rápido. Um exemplo de uma frase que usa a palavra farduddle é:'
example : Imaginary word
group: Portuguese
- text: Pour déguster un ortolan, il faut tout d'abord
example_title: Recipe
group: French
- text: |-
34+10=44
54+20=
example_title: Addition
group: Math
- text: |-
This tool converts irregular verbs to past tense.
Arise - Arose
Become - Became
Forget - Forgot
Freeze -
example_title: Irregular verbs
group: English
- text: |-
Please unscramble the letters into a word, and write that word:
r e!c.i p r o.c a/l = reciprocal
d.o m i!n a n.t =
example_title: Word unscrambling
group: English
- text: |-
Estos ejemplos quitan vocales de las palabras
Ejemplos:
hola - hl
manzana - mnzn
papas - pps
alacran - lcrn
papa -
example_title: Vowel removal
group: Spanish
- text: |-
Traduce español de España a español de Argentina
El coche es rojo - el auto es rojo
El ordenador es nuevo - la computadora es nueva
el boligrafo es negro - lapicera es negra
la nevera
example_title: Spanish to Argentinian Spanish
group: Spanish
- text: To say "I love you" in Hindi, you would say
example_title: Translation to Hindi
group: English
- text: To say "I love you" in Hindi, you would say
example_title: Translation from English
group: Hindi
- text: 'Poor English: She no went to the market. Corrected English:'
example_title: Grammar exercise 1
group: English
- text: 'استخراج العدد العاملي في لغة بايثون:'
example_title: Code generation
group: Arabic
- text: 'Regexp. Here is a regular expression to match a word starting with a number and then having only vowels:'
example_title: Regular expressions
group: English
- text: |-
Do a hello world in different languages:
Python: print("hello world")
R:
example_title: Code generation
group: English
- text: |-
Which is the correct preposition? I'm born X July. X is the preposition in
He sat X a chair. X is the preposition on
She drove X the bridge. X is the preposition
example_title: Grammar exercise 2
group: English
- text: |-
Traduction en français: Dans cet essai je vais m'interroger sur la conscience des modèles d'intelligence artificielle récents comme les modèles de langue. Pour commencer, je m'intéresserai à la notion de conscience et à ce qui la caractérise. Ensuite, j'aborderai la question de l'intelligence et de son lien avec le langage. Enfin, dans une dernière partie je me pencherai sur le cas de l'IA et sur sa conscience.
Traduction en espagnol:
example_title: Translation to Spanish
group: French
- text: |-
Traducción al francés: Dans cet essai je vais m'interroger sur la conscience des modèles d'intelligence artificielle récents comme les modèles de langue. Pour commencer, je m'intéresserai à la notion de conscience et à ce qui la caractérise. Ensuite, j'aborderai la question de l'intelligence et de son lien avec le langage. Enfin, dans une dernière partie je me pencherai sur le cas de l'IA et sur sa conscience.
Traducción al español:
example_title: Translation from French
group: Spanish
- text: ذات مرة ، عاش شبل الدب في الغابة
example_title: Fairy tale
group: Arabic
- text: एक बार की बात है, जंगल में एक भालू का शावक रहता था
example_title: Fairy tale
group: Hindi
- text: Il était une fois une licorne qui vivait
example_title: Fairy tale
group: French
- text: |-
Q: A juggler can juggle 16 balls. Half of the balls are golf balls, and half of the golf balls are blue. How many blue golf balls are there?
A: Let's think step by step.
example_title: Mathematical reasoning
group: English
co2_eq_emissions:
emissions: 24_700_000
source: "Estimating the Carbon Footprint of BLOOM, a 176B Parameter Language Model. https://arxiv.org/abs/2211.02001"
training_type: "pre-training"
geographical_location: "Orsay, France"
hardware_used: "384 A100 80GB GPUs"
model-index:
- name: bloom
results:
- task:
type: text-generation
dataset:
type: openai_humaneval
name: humaneval
metrics:
- name: pass@1
type: pass@1
value: 0.15542682926829265
verified: false
- name: pass@10
type: pass@10
value: 0.3278356276947017
verified: false
- name: pass@100
type: pass@100
value: 0.5719815685597749
verified: false
---
<img src="https://cdn-uploads.huggingface.co/production/uploads/1657124309515-5f17f0a0925b9863e28ad517.png" alt="BigScience Logo" width="800" style="margin-left:'auto' margin-right:'auto' display:'block'"/>
BigScience Large Open-science Open-access Multilingual Language Model
Version 1.3 / 6 July 2022
Current Checkpoint: **Training Iteration 95000**
Link to paper: [here](https://arxiv.org/abs/2211.05100)
Total seen tokens: **366B**
---
# Model Details
BLOOM is an autoregressive Large Language Model (LLM), trained to continue text from a prompt on vast amounts of text data using industrial-scale computational resources. As such, it is able to output coherent text in 46 languages and 13 programming languages that is hardly distinguishable from text written by humans. BLOOM can also be instructed to perform text tasks it hasn't been explicitly trained for, by casting them as text generation tasks.
## Basics
*This section provides information about the model type, version, license, funders, release date, developers, and contact information.*
*It is useful for anyone who wants to reference the model.*
<details>
<summary>Click to expand</summary>
**Developed by:** BigScience ([website](https://bigscience.huggingface.co))
*All collaborators are either volunteers or have an agreement with their employer. (Further breakdown of participants forthcoming.)*
**Model Type:** Transformer-based Language Model
**Checkpoints format:** `transformers` (Megatron-DeepSpeed format available [here](https://huggingface.co/bigscience/bloom-optimizer-states))
**Version:** 1.0.0
**Languages:** Multiple; see [training data](#training-data)
**License:** RAIL License v1.0 ([link](https://huggingface.co/spaces/bigscience/license) / [article and FAQ](https://bigscience.huggingface.co/blog/the-bigscience-rail-license))
**Release Date Estimate:** Monday, 11.July.2022
**Send Questions to:** bigscience-contact@googlegroups.com
**Cite as:** BigScience, _BigScience Language Open-science Open-access Multilingual (BLOOM) Language Model_. International, May 2021-May 2022
**Funded by:**
* The French government.
* Hugging Face ([website](https://huggingface.co)).
* Organizations of contributors. *(Further breakdown of organizations forthcoming.)*
</details>
## Technical Specifications
*This section includes details about the model objective and architecture, and the compute infrastructure.*
*It is useful for people interested in model development.*
<details>
<summary>Click to expand</summary>
Please see [the BLOOM training README](https://github.com/bigscience-workshop/bigscience/tree/master/train/tr11-176B-ml#readme) for full details on replicating training.
### Model Architecture and Objective
* Modified from Megatron-LM GPT2 (see [paper](https://arxiv.org/abs/1909.08053), [BLOOM Megatron code](https://github.com/bigscience-workshop/Megatron-DeepSpeed)):
* Decoder-only architecture
* Layer normalization applied to word embeddings layer (`StableEmbedding`; see [code](https://github.com/facebookresearch/bitsandbytes), [paper](https://arxiv.org/pdf/2110.02861.pdf))
* ALiBI positional encodings (see [paper](https://arxiv.org/pdf/2108.12409.pdf)), with GeLU activation functions
* 176,247,271,424 parameters:
* 3,596,615,680 embedding parameters
* 70 layers, 112 attention heads
* Hidden layers are 14336-dimensional
* Sequence length of 2048 tokens used (see [BLOOM tokenizer](https://huggingface.co/bigscience/tokenizer), [tokenizer description](#tokenization))
**Objective Function:** Cross Entropy with mean reduction (see [API documentation](https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html#torch.nn.CrossEntropyLoss)).
### Compute infrastructure
Jean Zay Public Supercomputer, provided by the French government (see [announcement](https://www.enseignementsup-recherche.gouv.fr/fr/signature-du-marche-d-acquisition-de-l-un-des-supercalculateurs-les-plus-puissants-d-europe-46733)).
#### Hardware
* 384 A100 80GB GPUs (48 nodes)
* Additional 32 A100 80GB GPUs (4 nodes) in reserve
* 8 GPUs per node Using NVLink 4 inter-gpu connects, 4 OmniPath links
* CPU: AMD
* CPU memory: 512GB per node
* GPU memory: 640GB per node
* Inter-node connect: Omni-Path Architecture (OPA)
* NCCL-communications network: a fully dedicated subnet
* Disc IO network: shared network with other types of nodes
#### Software
* Megatron-DeepSpeed ([Github link](https://github.com/bigscience-workshop/Megatron-DeepSpeed))
* DeepSpeed ([Github link](https://github.com/microsoft/DeepSpeed))
* PyTorch (pytorch-1.11 w/ CUDA-11.5; see [Github link](https://github.com/pytorch/pytorch))
* apex ([Github link](https://github.com/NVIDIA/apex))
</details>
---
# Training
*This section provides information about the training data, the speed and size of training elements, and the environmental impact of training.*
*It is useful for people who want to learn more about the model inputs and training footprint.*
<details>
<summary>Click to expand</summary>
## Training Data
*This section provides a high-level overview of the training data. It is relevant for anyone who wants to know the basics of what the model is learning.*
Details for each dataset are provided in individual [Data Cards](https://huggingface.co/spaces/bigscience/BigScienceCorpus), and the sizes of each of their contributions to the aggregated training data are presented in an [Interactive Corpus Map](https://huggingface.co/spaces/bigscience-catalogue-lm-data/corpus-map).
Training data includes:
- 46 natural languages
- 13 programming languages
- In 1.6TB of pre-processed text, converted into 350B unique tokens (see [the tokenizer section](#tokenization) for more.)
### Languages
The pie chart shows the distribution of languages in training data.
![pie chart showing the distribution of languages in training data](https://github.com/bigscience-workshop/model_card/blob/main/assets/data/pie_v2.svg?raw=true)
The following tables shows the further distribution of Niger-Congo & Indic languages and programming languages in the training data.
Distribution of Niger Congo and Indic languages.
| Niger Congo | Percentage | | Indic | Percentage |
|----------------|------------| ------ |-----------|------------|
| Chi Tumbuka | 0.00002 | | Assamese | 0.01 |
| Kikuyu | 0.00004 | | Odia | 0.04 |
| Bambara | 0.00004 | | Gujarati | 0.04 |
| Akan | 0.00007 | | Marathi | 0.05 |
| Xitsonga | 0.00007 | | Punjabi | 0.05 |
| Sesotho | 0.00007 | | Kannada | 0.06 |
| Chi Chewa | 0.0001 | | Nepali | 0.07 |
| Setswana | 0.0002 | | Telugu | 0.09 |
| Lingala | 0.0002 | | Malayalam | 0.10 |
| Northern Sotho | 0.0002 | | Urdu | 0.10 |
| Fon | 0.0002 | | Tamil | 0.20 |
| Kirundi | 0.0003 | | Bengali | 0.50 |
| Wolof | 0.0004 | | Hindi | 0.70 |
| Luganda | 0.0004 |
| Chi Shona | 0.001 |
| Isi Zulu | 0.001 |
| Igbo | 0.001 |
| Xhosa | 0.001 |
| Kinyarwanda | 0.003 |
| Yoruba | 0.006 |
| Swahili | 0.02 |
Distribution of programming languages.
| Extension | Language | Number of files |
|----------------|------------|-----------------|
| java | Java | 5,407,724 |
| php | PHP | 4,942,186 |
| cpp | C++ | 2,503,930 |
| py | Python | 2,435,072 |
| js | JavaScript | 1,905,518 |
| cs | C# | 1,577,347 |
| rb | Ruby | 6,78,413 |
| cc | C++ | 443,054 |
| hpp | C++ | 391,048 |
| lua | Lua | 352,317 |
| go | GO | 227,763 |
| ts | TypeScript | 195,254 |
| C | C | 134,537 |
| scala | Scala | 92,052 |
| hh | C++ | 67,161 |
| H | C++ | 55,899 |
| tsx | TypeScript | 33,107 |
| rs | Rust | 29,693 |
| phpt | PHP | 9,702 |
| c++ | C++ | 1,342 |
| h++ | C++ | 791 |
| php3 | PHP | 540 |
| phps | PHP | 270 |
| php5 | PHP | 166 |
| php4 | PHP | 29 |
### Preprocessing
**Tokenization:** The BLOOM tokenizer ([link](https://huggingface.co/bigscience/tokenizer)), a learned subword tokenizer trained using:
- A byte-level Byte Pair Encoding (BPE) algorithm
- A simple pre-tokenization rule, no normalization
- A vocabulary size of 250,680
It was trained on a subset of a preliminary version of the corpus using alpha-weighting per language.
## Speeds, Sizes, Times
Training logs: [Tensorboard link](https://huggingface.co/tensorboard/bigscience/tr11-176B-ml-logs/)
- Dates:
- Started 11th March, 2022 11:42am PST
- Estimated end: 5th July, 2022
- Checkpoint size:
- Bf16 weights: 329GB
- Full checkpoint with optimizer states: 2.3TB
- Training throughput: About 150 TFLOP per GPU per second
- Number of epochs: 1
- Estimated cost of training: Equivalent of $2-5M in cloud computing (including preliminary experiments)
- Server training location: Île-de-France, France
## Environmental Impact
The training supercomputer, Jean Zay ([website](http://www.idris.fr/eng/jean-zay/jean-zay-presentation-eng.html)), uses mostly nuclear energy. The heat generated by it is reused for heating campus housing.
**Estimated carbon emissions:** *(Forthcoming.)*
**Estimated electricity usage:** *(Forthcoming.)*
</details>
---
# Uses
*This section addresses questions around how the model is intended to be used, discusses the foreseeable users of the model (including those affected by the model), and describes uses that are considered out of scope or misuse of the model.*
*It is useful for anyone considering using the model or who is affected by the model.*
<details>
<summary>Click to expand</summary>
## How to use
This model can be easily used and deployed using HuggingFace's ecosystem. This needs `transformers` and `accelerate` installed. The model can be downloaded as follows:
<img src="https://s3.amazonaws.com/moonup/production/uploads/1657271608456-62441d1d9fdefb55a0b7d12c.png" width="800" style="margin-left:'auto' margin-right:'auto' display:'block'"/>
## Intended Use
This model is being created in order to enable public research on large language models (LLMs). LLMs are intended to be used for language generation or as a pretrained base model that can be further fine-tuned for specific tasks. Use cases below are not exhaustive.
### Direct Use
- Text generation
- Exploring characteristics of language generated by a language model
- Examples: Cloze tests, counterfactuals, generations with reframings
### Downstream Use
- Tasks that leverage language models include: Information Extraction, Question Answering, Summarization
### Misuse and Out-of-scope Use
*This section addresses what users ought not do with the model.*
See the [BLOOM License](https://huggingface.co/spaces/bigscience/license), Attachment A, for detailed usage restrictions. The below list is non-exhaustive, but lists some easily foreseeable problematic use cases.
#### Out-of-scope Uses
Using the model in [high-stakes](#high-stakes) settings is out of scope for this model. The model is not designed for [critical decisions](#critical-decisions) nor uses with any material consequences on an individual's livelihood or wellbeing. The model outputs content that appears factual but may not be correct.
Out-of-scope Uses Include:
- Usage in biomedical domains, political and legal domains, or finance domains
- Usage for evaluating or scoring individuals, such as for employment, education, or credit
- Applying the model for critical automatic decisions, generating factual content, creating reliable summaries, or generating predictions that must be correct
#### Misuse
Intentionally using the model for harm, violating [human rights](#human-rights), or other kinds of malicious activities, is a misuse of this model. This includes:
- Spam generation
- Disinformation and influence operations
- Disparagement and defamation
- Harassment and abuse
- [Deception](#deception)
- Unconsented impersonation and imitation
- Unconsented surveillance
- Generating content without attribution to the model, as specified in the [RAIL License, Use Restrictions](https://huggingface.co/spaces/bigscience/license)
## Intended Users
### Direct Users
- General Public
- Researchers
- Students
- Educators
- Engineers/developers
- Non-commercial entities
- Community advocates, including human and civil rights groups
### Indirect Users
- Users of derivatives created by Direct Users, such as those using software with an [intended use](#intended-use)
- Users of [Derivatives of the Model, as described in the License](https://huggingface.co/spaces/bigscience/license)
### Others Affected (Parties Prenantes)
- People and groups referred to by the LLM
- People and groups exposed to outputs of, or decisions based on, the LLM
- People and groups whose original work is included in the LLM
</details>
---
# Risks and Limitations
*This section identifies foreseeable harms and misunderstandings.*
<details>
<summary>Click to expand</summary>
Model may:
- Overrepresent some viewpoints and underrepresent others
- Contain stereotypes
- Contain [personal information](#personal-data-and-information)
- Generate:
- Hateful, abusive, or violent language
- Discriminatory or prejudicial language
- Content that may not be appropriate for all settings, including sexual content
- Make errors, including producing incorrect information as if it were factual
- Generate irrelevant or repetitive outputs
- Induce users into attributing human traits to it, such as sentience or consciousness
</details>
---
# Evaluation
*This section describes the evaluation protocols and provides the results.*
<details>
<summary>Click to expand</summary>
## Metrics
*This section describes the different ways performance is calculated and why.*
Includes:
| Metric | Why chosen |
|--------------------|--------------------------------------------------------------------|
| [Perplexity](#perplexity) | Standard metric for quantifying model improvements during training |
| Cross Entropy [Loss](#loss) | Standard objective for language models. |
And multiple different metrics for specific tasks. _(More evaluation metrics forthcoming upon completion of evaluation protocol.)_
## Factors
*This section lists some different aspects of BLOOM models. Its focus is on aspects that are likely to give rise to high variance in model behavior.*
- Language, such as English or Yoruba
- Domain, such as newswire or stories
- Demographic characteristics, such as gender or nationality
## Results
*Results are based on the [Factors](#factors) and [Metrics](#metrics).*
**Zero-shot evaluations:**
<span style="color:red"><b>WARNING:</b> This section used to contain much more results, however they were not correct and we released without the approval of the evaluation working group. We are currently in the process of fixing the evaluations.</span>
See this repository for JSON files: https://github.com/bigscience-workshop/evaluation-results
| Task | Language | Metric | BLOOM-176B | OPT-175B* |
|:--------|:-----------------|:------------------------|-------------:|------------:|
| humaneval | python | pass@1 ↑ | 0.155 | 0.0 |
| humaneval | python | pass@10 ↑ | 0.328 | 0.0 |
| humaneval | python | pass@100 ↑ | 0.572 | 0.003 |
**Train-time Evaluation:**
Final checkpoint after 95K steps:
- Training Loss: 1.939
- Validation Loss: 2.061
- Perplexity: 7.045
For more see: https://huggingface.co/bigscience/tr11-176B-ml-logs
</details>
---
# Recommendations
*This section provides information on warnings and potential mitigations.*
<details>
<summary>Click to expand</summary>
- Indirect users should be made aware when the content they're working with is created by the LLM.
- Users should be aware of [Risks and Limitations](#risks-and-limitations), and include an appropriate age disclaimer or blocking interface as necessary.
- Models trained or finetuned downstream of BLOOM LM should include an updated Model Card.
- Users of the model should provide mechanisms for those affected to provide feedback, such as an email address for comments.
</details>
---
# Glossary and Calculations
*This section defines common terms and how metrics are calculated.*
<details>
<summary>Click to expand</summary>
- <a name="loss">**Loss:**</a> A calculation of the difference between what the model has learned and what the data shows ("groundtruth"). The lower the loss, the better. The training process aims to minimize the loss.
- <a name="perplexity">**Perplexity:**</a> This is based on what the model estimates the probability of new data is. The lower the perplexity, the better. If the model is 100% correct at predicting the next token it will see, then the perplexity is 1. Mathematically this is calculated using entropy.
- <a name="high-stakes">**High-stakes settings:**</a> Such as those identified as "high-risk AI systems" and "unacceptable risk AI systems" in the European Union's proposed [Artificial Intelligence (AI) Act](https://artificialintelligenceact.eu/annexes/).
- <a name="critical-decisions">**Critical decisions:**</a> Such as those defined in [the United States' proposed Algorithmic Accountability Act](https://www.congress.gov/117/bills/s3572/BILLS-117s3572is.pdf).
- <a name="human-rights">**Human rights:**</a> Includes those rights defined in the [Universal Declaration of Human Rights](https://www.un.org/sites/un2.un.org/files/2021/03/udhr.pdf).
- <a name="personal-data-and-information">**Personal Data and Personal Information:**</a> Personal data and information is defined in multiple data protection regulations, such as "[personal data](https://gdpr-info.eu/issues/personal-data/)" in the [European Union's General Data Protection Regulation](https://gdpr-info.eu); and "personal information" in the Republic of South Africa's [Protection of Personal Information Act](https://www.gov.za/sites/default/files/gcis_document/201409/3706726-11act4of2013popi.pdf), The People's Republic of China's [Personal information protection law](http://en.npc.gov.cn.cdurl.cn/2021-12/29/c_694559.htm).
- <a name="sensitive-characteristics">**Sensitive characteristics:**</a> This includes specifically protected categories in human rights (see [UHDR, Article 2](https://www.un.org/sites/un2.un.org/files/2021/03/udhr.pdf)) and personal information regulation (see GDPR, [Article 9; Protection of Personal Information Act, Chapter 1](https://www.gov.za/sites/default/files/gcis_document/201409/3706726-11act4of2013popi.pdf))
- <a name="deception">**Deception:**</a> Doing something to intentionally mislead individuals to believe something that is false, such as by creating deadbots or chatbots on social media posing as real people, or generating text documents without making consumers aware that the text is machine generated.
</details>
---
# More Information
*This section provides links to writing on dataset creation, technical specifications, lessons learned, and initial results.*
<details>
<summary>Click to expand</summary>
## Intermediate checkpoints
For academic (or any) usage, we published the intermediate checkpoints, corresponding to the model state at each 5000 steps. Please follow [this link](https://huggingface.co/bigscience/bloom-176-intermediate) to get these checkpoints.
## Dataset Creation
Blog post detailing the design choices during the dataset creation: https://bigscience.huggingface.co/blog/building-a-tb-scale-multilingual-dataset-for-language-modeling
## Technical Specifications
Blog post summarizing how the architecture, size, shape, and pre-training duration where selected: https://bigscience.huggingface.co/blog/what-language-model-to-train-if-you-have-two-million-gpu-hours
More details on the architecture/optimizer: https://github.com/bigscience-workshop/bigscience/tree/master/train/tr11-176B-ml
Blog post on the hardware/engineering side: https://bigscience.huggingface.co/blog/which-hardware-to-train-a-176b-parameters-model
Details on the distributed setup used for the training: https://github.com/bigscience-workshop/bigscience/tree/master/train/tr11-176B-ml
Tensorboard updated during the training: https://huggingface.co/bigscience/tr11-176B-ml-logs/tensorboard#scalars&tagFilter=loss
## Lessons
Insights on how to approach training, negative results: https://github.com/bigscience-workshop/bigscience/blob/master/train/lessons-learned.md
Details on the obstacles overcome during the preparation on the engineering side (instabilities, optimization of training throughput, so many technical tricks and questions): https://github.com/bigscience-workshop/bigscience/blob/master/train/tr11-176B-ml/chronicles.md
## Initial Results
Initial prompting experiments using interim checkpoints: https://huggingface.co/spaces/bigscience/bloom-book
</details>
## Original checkpoints
The checkpoints in this repo correspond to the HuggingFace Transformers format. If you want to use our fork of [Megatron-DeepSpeed](https://github.com/bigscience-workshop/Megatron-DeepSpeed) that the model was trained with, you'd want to use [this repo instead](https://huggingface.co/bigscience/bloom-optimizer-states).
Many intermediate checkpoints are available at https://huggingface.co/bigscience/bloom-intermediate/
---
# Model Card Authors
*Ordered roughly chronologically and by amount of time spent on creating this model card.*
Margaret Mitchell, Giada Pistilli, Yacine Jernite, Ezinwanne Ozoani, Marissa Gerchick, Nazneen Rajani, Sasha Luccioni, Irene Solaiman, Maraim Masoud, Somaieh Nikpoor, Carlos Muñoz Ferrandis, Stas Bekman, Christopher Akiki, Danish Contractor, David Lansky, Angelina McMillan-Major, Tristan Thrush, Suzana Ilić, Gérard Dupont, Shayne Longpre, Manan Dey, Stella Biderman, Douwe Kiela, Emi Baylor, Teven Le Scao, Aaron Gokaslan, Julien Launay, Niklas Muennighoff | [
-0.4199169874191284,
-0.6134524941444397,
0.3427535891532898,
0.22644230723381042,
0.0033824006095528603,
0.010857818648219109,
-0.4580247700214386,
-0.4762881398200989,
0.20794254541397095,
0.0885227844119072,
-0.41715800762176514,
-0.5970842838287354,
-0.7097848057746887,
0.1410454511642456,
-0.2806222438812256,
0.9935311079025269,
0.014012140221893787,
0.1105218231678009,
0.05265338346362114,
-0.05311908200383186,
-0.0973718985915184,
-0.5188319683074951,
-0.5440831780433655,
-0.27852192521095276,
0.5580052137374878,
0.30034512281417847,
0.6065847277641296,
0.5961024761199951,
0.5847175121307373,
0.2690776586532593,
-0.31524819135665894,
-0.12398780137300491,
-0.41582417488098145,
-0.36250969767570496,
-0.15174922347068787,
-0.23858210444450378,
-0.47783613204956055,
-0.12049644440412521,
0.9016205072402954,
0.6740198135375977,
0.020227903500199318,
0.22854401171207428,
0.007016345392912626,
0.684380829334259,
-0.5188705921173096,
0.3234155774116516,
-0.3756391108036041,
0.1472606509923935,
-0.23641757667064667,
0.2771824896335602,
-0.18541492521762848,
-0.16802692413330078,
0.037652503699064255,
-0.49281564354896545,
0.265873521566391,
-0.10575375705957413,
0.9458087086677551,
0.007219976745545864,
-0.15518587827682495,
-0.019980091601610184,
-0.7220470309257507,
0.8082762956619263,
-0.7331773042678833,
0.49494218826293945,
0.31364965438842773,
0.20020791888237,
0.05411031097173691,
-0.8006756901741028,
-0.7803130149841309,
-0.046616081148386,
0.0046682460233569145,
0.271487295627594,
-0.11068110913038254,
-0.049262404441833496,
0.36021170020103455,
0.6588672995567322,
-0.8492593765258789,
0.22406956553459167,
-0.5645818710327148,
-0.21722160279750824,
0.6671585440635681,
0.05495189502835274,
0.26808297634124756,
-0.16903267800807953,
-0.17743878066539764,
-0.5384531617164612,
-0.5420545935630798,
-0.09637719392776489,
0.2573886215686798,
0.388439804315567,
-0.5599095225334167,
0.5240144729614258,
0.0005719680921174586,
0.44568026065826416,
-0.3053455650806427,
-0.06084761768579483,
0.6991263031959534,
-0.5885031819343567,
-0.3745933175086975,
-0.21665188670158386,
1.1351038217544556,
0.09073945134878159,
-0.11115638166666031,
0.03874174878001213,
0.09146571904420853,
-0.15390709042549133,
-0.0875980406999588,
-0.9478180408477783,
-0.23845086991786957,
0.4515168368816376,
-0.2193118929862976,
-0.08301891386508942,
0.07653171569108963,
-0.9815266132354736,
-0.07040772587060928,
-0.19791655242443085,
0.2961580157279968,
-0.7870530486106873,
-0.4623207151889801,
0.11717109382152557,
-0.16573084890842438,
0.3128070831298828,
0.18810652196407318,
-0.9498913884162903,
0.1780799776315689,
0.5987516641616821,
1.0726542472839355,
-0.16490325331687927,
-0.6154959797859192,
0.11416403949260712,
0.03351141884922981,
-0.11676212400197983,
0.28526660799980164,
-0.2510600686073303,
-0.3703666031360626,
-0.10982707142829895,
0.26588743925094604,
-0.21514813601970673,
-0.25256654620170593,
0.4388371706008911,
-0.3321843147277832,
0.2311018407344818,
-0.3611723780632019,
-0.48518404364585876,
-0.11098762601613998,
0.13319313526153564,
-0.59288090467453,
1.1351568698883057,
0.21077921986579895,
-0.8573009371757507,
0.35220226645469666,
-0.7942726612091064,
-0.25014254450798035,
0.06581540405750275,
-0.08144655078649521,
-0.600185751914978,
-0.22678299248218536,
0.22790080308914185,
0.3266916871070862,
-0.20874059200286865,
0.34095609188079834,
-0.11594581604003906,
-0.19627834856510162,
0.009855985641479492,
-0.35792362689971924,
1.000844120979309,
0.3866695463657379,
-0.5404208302497864,
0.05125697702169418,
-0.6809229850769043,
-0.07188280671834946,
0.2959176301956177,
-0.45901474356651306,
0.2672663927078247,
-0.19631625711917877,
0.3186219334602356,
0.22601094841957092,
0.27718672156333923,
-0.6604400873184204,
0.4449441432952881,
-0.5851471424102783,
0.6518739461898804,
0.5714433193206787,
-0.1300498992204666,
0.3204122483730316,
-0.0643065795302391,
0.34680336713790894,
0.27308061718940735,
0.2515154182910919,
-0.24650461971759796,
-0.5473591089248657,
-0.8528501391410828,
-0.4530699849128723,
0.26506128907203674,
0.532881498336792,
-0.41367048025131226,
0.6780329942703247,
-0.5134536027908325,
-0.7821377515792847,
-0.4166440963745117,
0.052477478981018066,
0.4983086884021759,
0.2664738595485687,
0.6428576707839966,
-0.13269133865833282,
-0.551180362701416,
-0.901005744934082,
0.22373805940151215,
0.08313266932964325,
0.1525808423757553,
0.20460031926631927,
1.065699577331543,
-0.5277814865112305,
0.8245418071746826,
-0.6362254023551941,
-0.12826038897037506,
-0.28880074620246887,
-0.05355193465948105,
0.43906015157699585,
0.5772361755371094,
0.5945330858230591,
-0.6351847648620605,
-0.4164247214794159,
0.16125452518463135,
-0.6370070576667786,
0.39756372570991516,
0.2934998571872711,
-0.048668283969163895,
0.4025469720363617,
0.4924887716770172,
-0.760374128818512,
0.28964710235595703,
0.7417769432067871,
-0.11097481101751328,
0.6884632706642151,
-0.23064567148685455,
-0.019755814224481583,
-1.3746159076690674,
0.4982779026031494,
-0.014632648788392544,
0.0705355554819107,
-0.30941134691238403,
0.15649278461933136,
-0.018136506900191307,
-0.4270794093608856,
-0.4643450677394867,
0.6357024908065796,
-0.4019797742366791,
-0.03746559098362923,
0.07470683753490448,
-0.13854527473449707,
-0.11935713142156601,
0.48484405875205994,
0.11831881105899811,
1.0495424270629883,
0.8948385119438171,
-0.5974981784820557,
0.13805840909481049,
0.20823761820793152,
-0.28288039565086365,
-0.022260582074522972,
-0.8449870347976685,
-0.005526154767721891,
-0.0955018475651741,
0.39804306626319885,
-0.8627730011940002,
-0.3660812973976135,
0.19666007161140442,
-0.5144983530044556,
0.3984508216381073,
-0.20409095287322998,
-0.6840837001800537,
-0.67829430103302,
-0.21473321318626404,
0.2954515516757965,
0.5807916522026062,
-0.37789979577064514,
0.2543468177318573,
0.2332000732421875,
0.061652570962905884,
-0.5899137258529663,
-0.852573037147522,
0.03887749835848808,
0.0037618803326040506,
-0.5440018177032471,
0.32767534255981445,
-0.131758451461792,
0.04129216820001602,
-0.03906160965561867,
0.15198804438114166,
-0.027209719642996788,
-0.06545966118574142,
0.2977405786514282,
0.1182107999920845,
-0.24410668015480042,
0.1870795339345932,
-0.20827819406986237,
-0.06661119312047958,
-0.13000155985355377,
-0.5704862475395203,
0.7860459089279175,
-0.3138633072376251,
-0.3795541524887085,
-0.43745675683021545,
0.25224602222442627,
0.6241579055786133,
-0.2629193663597107,
1.1704554557800293,
0.9207541942596436,
-0.3827775716781616,
0.06772483885288239,
-0.3126775920391083,
-0.19398954510688782,
-0.48529157042503357,
0.6457228660583496,
-0.08585107326507568,
-0.9217703938484192,
0.44329833984375,
0.15732011198997498,
0.24003900587558746,
0.7560223340988159,
0.6646749973297119,
0.07728932797908783,
0.824454128742218,
0.6206473112106323,
-0.39848825335502625,
0.4780171513557434,
-0.7413303852081299,
0.25354164838790894,
-0.7542369365692139,
-0.14898942410945892,
-0.6097921133041382,
-0.16009241342544556,
-0.5984399318695068,
-0.6015728712081909,
0.3296647369861603,
0.10605530440807343,
-0.6157727241516113,
0.48344019055366516,
-0.647940993309021,
0.34831300377845764,
0.6328012943267822,
0.043741222470998764,
-0.012895558029413223,
0.17790280282497406,
-0.26663094758987427,
-0.03274963051080704,
-0.6804714798927307,
-0.48150521516799927,
1.2250926494598389,
0.5385724902153015,
0.3772977292537689,
0.16747692227363586,
0.6438173651695251,
-0.04076579958200455,
0.10944275557994843,
-0.5851319432258606,
0.4209701120853424,
-0.04408947005867958,
-0.7883092761039734,
-0.30627691745758057,
-0.6008740663528442,
-1.0942447185516357,
0.05182531848549843,
-0.13305653631687164,
-0.9545709490776062,
0.1547715812921524,
0.22725442051887512,
-0.12995213270187378,
0.5481894612312317,
-0.7974957823753357,
0.963933527469635,
-0.19527599215507507,
-0.3658752739429474,
-0.22212593257427216,
-0.6215621829032898,
0.318515419960022,
-0.0007784502813592553,
0.28256163001060486,
0.11025377362966537,
0.2217014729976654,
0.8445833921432495,
-0.6295768618583679,
0.7994066476821899,
-0.19285863637924194,
0.04791758954524994,
0.2450755387544632,
-0.24221643805503845,
0.3971557021141052,
0.05071324482560158,
-0.16487178206443787,
0.553584098815918,
-0.03249361738562584,
-0.48079314827919006,
-0.12027249485254288,
0.8136521577835083,
-1.1367111206054688,
-0.2590579390525818,
-0.6579927802085876,
-0.4941997826099396,
-0.02318180538713932,
0.42454293370246887,
0.5523978471755981,
0.2443605363368988,
-0.12552820146083832,
0.24099288880825043,
0.7786334753036499,
-0.6445412039756775,
0.5451297163963318,
0.28618499636650085,
-0.28218933939933777,
-0.5935104489326477,
1.0520601272583008,
0.05507509037852287,
0.31333479285240173,
0.38950490951538086,
0.202224463224411,
-0.2917422652244568,
-0.625644326210022,
-0.43420109152793884,
0.41294464468955994,
-0.4966183304786682,
-0.14819703996181488,
-0.9480238556861877,
-0.45361608266830444,
-0.7408803105354309,
-0.020836886018514633,
-0.4982413053512573,
-0.2512153387069702,
-0.31908854842185974,
-0.11033258587121964,
0.6093963384628296,
0.5076460242271423,
-0.09452751278877258,
0.44131338596343994,
-0.6348938345909119,
0.01875329576432705,
0.16848747432231903,
0.35459527373313904,
0.06359440088272095,
-0.576938807964325,
-0.4882432520389557,
0.2675510346889496,
-0.5242069363594055,
-0.5807867646217346,
0.43672338128089905,
0.2563965320587158,
0.33178627490997314,
0.23351117968559265,
-0.4458475112915039,
0.5463669896125793,
-0.40263593196868896,
1.1398333311080933,
0.35327208042144775,
-0.7940953373908997,
0.6660944223403931,
-0.5083449482917786,
0.4046499729156494,
0.5661232471466064,
0.5921220183372498,
-0.4949968755245209,
-0.15728174149990082,
-0.7244848012924194,
-1.0710352659225464,
0.7194631695747375,
0.23517879843711853,
0.04732997715473175,
-0.0014232764951884747,
0.2274998128414154,
-0.20300962030887604,
0.12190805375576019,
-0.9033849835395813,
-0.4387580454349518,
-0.29505789279937744,
-0.23490560054779053,
-0.37218359112739563,
-0.002140142722055316,
-0.18373794853687286,
-0.5586744546890259,
0.75448077917099,
-0.0315428227186203,
0.5409020781517029,
0.3308447599411011,
-0.1352357566356659,
0.07621094584465027,
0.1821518987417221,
0.6413418054580688,
0.5767039060592651,
-0.22582529485225677,
-0.01740838959813118,
0.18059879541397095,
-0.958713710308075,
-0.012315239757299423,
0.2092677652835846,
-0.12872931361198425,
-0.15676553547382355,
0.4237115979194641,
0.8114997148513794,
0.033312588930130005,
-0.547254204750061,
0.46915334463119507,
0.1471083015203476,
-0.3575751781463623,
-0.3351947069168091,
0.11650041490793228,
0.32900378108024597,
0.0851539671421051,
0.3367704451084137,
-0.06019477918744087,
-0.02183067798614502,
-0.5544509291648865,
0.11007040739059448,
0.4070248305797577,
-0.2741192579269409,
-0.41070878505706787,
0.6075836420059204,
-0.033195432275533676,
-0.07228118181228638,
0.6058101654052734,
-0.3779006898403168,
-0.5571556091308594,
0.7567529678344727,
0.5622227191925049,
0.6845446825027466,
-0.09808995574712753,
0.09241142123937607,
0.9013448357582092,
0.45682278275489807,
-0.010944738984107971,
0.27298489212989807,
0.22007524967193604,
-0.5340300798416138,
-0.45187434554100037,
-0.9374977946281433,
-0.3593238592147827,
0.2788936495780945,
-0.3297998309135437,
0.29442188143730164,
-0.5774344801902771,
-0.09682189673185349,
0.1418832689523697,
0.16899898648262024,
-0.8908275365829468,
0.15110011398792267,
0.2322121560573578,
1.0759572982788086,
-0.9371312856674194,
0.9021195769309998,
0.7057203054428101,
-0.6834417581558228,
-0.9547078609466553,
-0.19834892451763153,
-0.03074495866894722,
-0.7583587765693665,
0.7155364751815796,
0.12611490488052368,
0.19560988247394562,
0.029814699664711952,
-0.6391465663909912,
-1.1156196594238281,
1.168332576751709,
0.3394620418548584,
-0.7188224196434021,
0.22213220596313477,
0.2715865969657898,
0.6990103721618652,
0.0682196170091629,
0.4078158140182495,
0.4414927065372467,
0.5754185318946838,
0.15999850630760193,
-0.9765025973320007,
-0.06523691862821579,
-0.3731312155723572,
-0.08396541327238083,
0.26729854941368103,
-0.8416991233825684,
1.0517382621765137,
-0.11609645932912827,
-0.1675993651151657,
-0.18450923264026642,
0.6119219660758972,
0.26140323281288147,
0.02952764742076397,
0.08885136991739273,
0.9369370341300964,
0.7143673300743103,
-0.2904563844203949,
1.0473530292510986,
-0.37679216265678406,
0.6180935502052307,
0.8927796483039856,
-0.02243185043334961,
0.7131391763687134,
0.3420778810977936,
-0.6353265643119812,
0.4152089059352875,
0.572292149066925,
-0.2143530696630478,
0.21621516346931458,
0.11780551820993423,
-0.18932612240314484,
0.15424512326717377,
0.11266101896762848,
-0.7315223813056946,
0.17964576184749603,
0.43456870317459106,
-0.497881144285202,
-0.07159513235092163,
0.06641436368227005,
0.2183082550764084,
-0.40982258319854736,
-0.22202889621257782,
0.47531870007514954,
-0.013236730359494686,
-0.5061243772506714,
0.6630838513374329,
0.026349570602178574,
0.7602033615112305,
-0.7748825550079346,
0.05685627460479736,
-0.1576484888792038,
0.28135284781455994,
-0.3628973662853241,
-1.0155874490737915,
0.23364365100860596,
-0.07100411504507065,
-0.30567699670791626,
-0.028798215091228485,
0.25949564576148987,
-0.26049020886421204,
-0.6349383592605591,
0.23987850546836853,
0.1904555708169937,
0.28189462423324585,
0.028098562732338905,
-0.8146430850028992,
0.2186088263988495,
-0.05061502754688263,
-0.3204151391983032,
0.3908836245536804,
0.2567182183265686,
0.19211405515670776,
0.5545064806938171,
0.7321780323982239,
0.12579748034477234,
0.16618941724300385,
-0.02468131296336651,
0.9514369964599609,
-0.7206985354423523,
-0.256492018699646,
-0.8127267956733704,
0.45838695764541626,
-0.15037013590335846,
-0.6203773617744446,
0.9287517070770264,
0.9094688296318054,
0.8146336674690247,
-0.09382793307304382,
0.8385519981384277,
-0.34497424960136414,
0.2872518301010132,
-0.31331709027290344,
0.5703140497207642,
-0.5439200401306152,
-0.10388201475143433,
-0.5311570167541504,
-0.9773463010787964,
-0.3021323084831238,
0.5219622254371643,
-0.3549135625362396,
0.24432456493377686,
0.6400773525238037,
0.834279477596283,
-0.2340908795595169,
-0.03959594666957855,
0.016879267990589142,
0.3732002079486847,
0.4069378077983856,
0.6466579437255859,
0.3363303244113922,
-0.6283223628997803,
0.4419746398925781,
-0.2904283106327057,
-0.19905173778533936,
-0.24649006128311157,
-0.7262473702430725,
-0.6133075952529907,
-0.6277205348014832,
-0.3702811002731323,
-0.4431970715522766,
-0.09682877361774445,
0.9107086062431335,
0.8032100796699524,
-0.8623518347740173,
-0.20700106024742126,
-0.4272795617580414,
-0.10664084553718567,
-0.1522214114665985,
-0.2369774729013443,
0.6719713807106018,
-0.22333639860153198,
-0.7173641920089722,
0.2575383186340332,
0.1804780513048172,
0.13720864057540894,
-0.39823010563850403,
-0.15703131258487701,
-0.3392464518547058,
-0.19970951974391937,
0.5968393087387085,
0.5861405730247498,
-0.428891658782959,
-0.06117221340537071,
0.04417787492275238,
-0.27623018622398376,
0.11343739926815033,
0.376181036233902,
-0.4148130714893341,
0.2529895603656769,
0.3838413953781128,
0.4755212664604187,
0.6968772411346436,
-0.3262462615966797,
0.20615504682064056,
-0.6315350532531738,
0.3674578070640564,
0.21625486016273499,
0.4641944169998169,
0.29448819160461426,
-0.28865569829940796,
0.5336883664131165,
0.393921822309494,
-0.7468616962432861,
-0.7092652916908264,
0.09634046256542206,
-1.0903195142745972,
-0.22892919182777405,
1.390611171722412,
-0.12940558791160583,
-0.36662790179252625,
0.09282605350017548,
-0.17521052062511444,
0.2409398853778839,
-0.26699212193489075,
0.44285711646080017,
0.6659179925918579,
0.10670413821935654,
-0.1196248009800911,
-0.6519680619239807,
0.4402790367603302,
0.33759549260139465,
-0.8513848781585693,
0.090203657746315,
0.4359967112541199,
0.4580952525138855,
0.4306773841381073,
0.5386666655540466,
-0.19470472633838654,
0.04118410870432854,
0.05644170194864273,
0.46589013934135437,
0.02422727458178997,
-0.18854019045829773,
-0.33870553970336914,
-0.06245790049433708,
-0.008756965398788452,
-0.0805138573050499
] |
facebook/blenderbot_small-90M | facebook | "2023-01-24T16:29:13Z" | 11,806 | 40 | transformers | [
"transformers",
"pytorch",
"tf",
"jax",
"blenderbot-small",
"text2text-generation",
"convAI",
"conversational",
"facebook",
"en",
"dataset:blended_skill_talk",
"arxiv:1907.06616",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"has_space",
"region:us"
] | conversational | "2022-03-02T23:29:05Z" | ---
language:
- en
thumbnail:
tags:
- convAI
- conversational
- facebook
license: apache-2.0
datasets:
- blended_skill_talk
metrics:
- perplexity
---
## Model description
+ Paper: [Recipes for building an open-domain chatbot](https://arxiv.org/abs/1907.06616)
+ [Original PARLAI Code](https://parl.ai/projects/recipes/)
### Abstract
Building open-domain chatbots is a challenging area for machine learning research. While prior work has shown that scaling neural models in the number of parameters and the size of the data they are trained on gives improved results, we show that other ingredients are important for a high-performing chatbot. Good conversation requires a number of skills that an expert conversationalist blends in a seamless way: providing engaging talking points and listening to their partners, both asking and answering questions, and displaying knowledge, empathy and personality appropriately, depending on the situation. We show that large scale models can learn these skills when given appropriate training data and choice of generation strategy. We build variants of these recipes with 90M, 2.7B and 9.4B parameter neural models, and make our models and code publicly available. Human evaluations show our best models are superior to existing approaches in multi-turn dialogue in terms of engagingness and humanness measurements. We then discuss the limitations of this work by analyzing failure cases of our models.
| [
-0.3299379050731659,
-0.76351398229599,
0.32815980911254883,
0.31163108348846436,
0.31120577454566956,
-0.08448483794927597,
-0.4083685278892517,
-0.2015322595834732,
-0.008383276872336864,
0.6380597949028015,
-0.26299378275871277,
-0.24815762042999268,
-0.724308967590332,
-0.36091381311416626,
-0.22305934131145477,
0.9266358017921448,
0.3176840841770172,
0.17404137551784515,
-0.3203333020210266,
-0.17790792882442474,
-0.4638640284538269,
-0.7086642980575562,
-0.7803884148597717,
-0.1855911910533905,
0.6041881442070007,
0.45410698652267456,
0.9087989926338196,
0.45009681582450867,
0.18019366264343262,
0.31662172079086304,
-0.31300094723701477,
0.453949511051178,
-0.7174899578094482,
0.29513221979141235,
-0.03564071282744408,
-0.3870370090007782,
-0.8366767764091492,
0.22810058295726776,
0.05682719871401787,
0.8058596253395081,
-0.32129696011543274,
0.06670649349689484,
0.21209366619586945,
0.5225247144699097,
-0.382843941450119,
0.48264822363853455,
-0.8058265447616577,
-0.2113666832447052,
0.09130243211984634,
-0.17052428424358368,
-0.7445091009140015,
-0.1781071424484253,
0.23889119923114777,
-0.5831595063209534,
0.2056708037853241,
-0.05909804627299309,
0.6721607446670532,
-0.030747169628739357,
-0.27074623107910156,
-0.35523611307144165,
-0.9167351722717285,
0.7003800868988037,
-0.8647423386573792,
0.19253088533878326,
0.5747851729393005,
0.4596545696258545,
-0.4205460250377655,
-0.7085099816322327,
-0.40037980675697327,
-0.2803713083267212,
0.11381827294826508,
-0.07508815824985504,
-0.20876586437225342,
-0.00537871103733778,
0.0865635797381401,
0.21021081507205963,
-0.2682744860649109,
0.16949306428432465,
-0.31118282675743103,
0.11734186857938766,
0.5783729553222656,
0.40403273701667786,
0.2314465492963791,
0.15406973659992218,
-0.030712120234966278,
-0.1902027279138565,
-0.40670475363731384,
0.08399220556020737,
0.7394887208938599,
0.5848328471183777,
-0.25961631536483765,
0.5298354625701904,
-0.16107355058193207,
0.6426733136177063,
-0.016300980001688004,
-0.0788312703371048,
-0.060172174125909805,
-0.38992196321487427,
-0.07933434098958969,
-0.41327282786369324,
0.8082091212272644,
0.40928709506988525,
0.4743001163005829,
-0.10460955649614334,
0.2145959585905075,
-0.36776667833328247,
0.5947617292404175,
-0.9796605706214905,
-0.44427308440208435,
0.3643217086791992,
-0.581404447555542,
-0.32774239778518677,
-0.0673179030418396,
-0.543428361415863,
-0.3126508295536041,
-0.25234511494636536,
0.21906882524490356,
-0.5882009863853455,
-0.4652480483055115,
0.2643645703792572,
-0.20920760929584503,
0.1298413872718811,
0.40931642055511475,
-1.1259106397628784,
0.29631251096725464,
0.718512237071991,
0.8102544546127319,
0.18221434950828552,
-0.2840435206890106,
-0.4343375861644745,
-0.31475555896759033,
-0.4572114646434784,
0.38584059476852417,
-0.5817128419876099,
-0.3084632158279419,
0.09521394222974777,
-0.17137350142002106,
-0.009604653343558311,
-0.4891408383846283,
0.4389466643333435,
-0.4060591459274292,
0.3779686689376831,
-0.06317565590143204,
-0.5754148364067078,
-0.1432924121618271,
0.0982908308506012,
-0.5008268356323242,
0.4476739764213562,
0.18624822795391083,
-0.5536382794380188,
0.024580329656600952,
-0.8937175869941711,
-0.4583037197589874,
0.16491036117076874,
0.01845463737845421,
-0.27612221240997314,
0.28957411646842957,
0.2093224972486496,
0.6105093359947205,
-0.3327989876270294,
0.30289578437805176,
-0.36631253361701965,
0.15251867473125458,
0.527030885219574,
-0.4741666316986084,
0.8598902821540833,
0.11649040132761002,
0.07297258079051971,
0.36205676198005676,
-0.577560544013977,
0.361734002828598,
0.2576608657836914,
-0.2706761360168457,
-0.1385583132505417,
0.11630228906869888,
0.055957548320293427,
-0.0984535664319992,
-0.028898006305098534,
-0.3809538185596466,
0.0016290664207190275,
-0.49225181341171265,
0.7907451391220093,
0.6009665727615356,
-0.05774777755141258,
0.4836282730102539,
-0.34108835458755493,
0.24349331855773926,
0.11354797333478928,
0.2844555377960205,
-0.4730846583843231,
-0.9188857674598694,
-0.8751358985900879,
-0.3734745681285858,
0.47220584750175476,
0.329415500164032,
-0.4247659146785736,
0.8252747654914856,
0.07155708968639374,
-0.9142464995384216,
-0.8636801242828369,
-0.06372706592082977,
0.38322025537490845,
0.4362231194972992,
0.22726555168628693,
-0.44442304968833923,
-0.43671125173568726,
-0.7689018845558167,
-0.21696949005126953,
-0.017785832285881042,
-0.2761222720146179,
0.670761227607727,
0.40716472268104553,
0.15206606686115265,
0.8497816324234009,
-0.5153966546058655,
0.03190608322620392,
-0.4008900821208954,
0.18270529806613922,
0.16078497469425201,
0.43357694149017334,
0.3637695014476776,
-0.8403787612915039,
-0.6822618246078491,
0.10366369038820267,
-0.7924370765686035,
0.3517282009124756,
-0.014733158983290195,
-0.3404195010662079,
-0.015189960598945618,
0.1784038245677948,
-0.9238094091415405,
0.5161886811256409,
0.3513048589229584,
-0.23360681533813477,
0.3440553545951843,
-0.2380209118127823,
0.18984776735305786,
-1.1439515352249146,
0.01187114417552948,
0.1300407350063324,
0.06226920336484909,
-0.9975886344909668,
0.11726482957601547,
0.08508054167032242,
-0.3902103006839752,
-0.6137608289718628,
0.5599856376647949,
-0.18059152364730835,
0.18571296334266663,
-0.201088085770607,
-0.11908993124961853,
-0.06815408915281296,
0.8072687983512878,
0.026309482753276825,
0.6970319747924805,
0.460395872592926,
-0.4776124060153961,
0.31781119108200073,
0.4665907919406891,
-0.2735058069229126,
0.4935368299484253,
-1.1050026416778564,
0.22357144951820374,
0.1861535906791687,
0.1442355066537857,
-0.9435785412788391,
-0.5434752106666565,
0.0058382474817335606,
-0.79804527759552,
0.1575373411178589,
-0.3105570673942566,
-0.5207856297492981,
-0.12324204295873642,
0.13639691472053528,
0.028608066961169243,
0.7140845656394958,
-0.42900845408439636,
0.5692738890647888,
0.47867369651794434,
-0.23467440903186798,
-0.08963610976934433,
-0.09311045706272125,
0.09495856612920761,
-0.06019523739814758,
-0.7919610142707825,
0.17282681167125702,
-0.3220713138580322,
-0.0991876870393753,
-0.17669451236724854,
0.29329654574394226,
-0.2158944010734558,
0.09285134077072144,
0.3669005334377289,
0.16135260462760925,
-0.2700093686580658,
-0.12943774461746216,
-0.13308990001678467,
-0.07035636156797409,
0.11784068495035172,
-0.2884233891963959,
0.7384696006774902,
-0.27057039737701416,
-0.11993221938610077,
-0.5503460764884949,
0.4612882435321808,
0.6205134391784668,
-0.32542797923088074,
0.9437586069107056,
0.43092378973960876,
-0.21973548829555511,
-0.14944298565387726,
-0.29331719875335693,
-0.3518883287906647,
-0.43696680665016174,
0.266958624124527,
-0.19397252798080444,
-0.7650676369667053,
0.4770893156528473,
0.1701294481754303,
0.14174599945545197,
0.22495901584625244,
0.8384411931037903,
0.013953786343336105,
1.14279043674469,
0.5334113836288452,
0.22036169469356537,
0.26766130328178406,
-0.09172142297029495,
0.3348354399204254,
-0.5901659727096558,
-0.2738327980041504,
-0.5920765399932861,
-0.11873085796833038,
-0.3917188346385956,
-0.48076730966567993,
0.32905876636505127,
-0.15171211957931519,
-0.4377679228782654,
0.48241016268730164,
-0.39555615186691284,
0.5234920978546143,
0.8996297121047974,
0.3323836624622345,
-0.01814332604408264,
-0.08428070694208145,
0.03557905554771423,
-0.02296411246061325,
-0.8119606375694275,
-0.5505526065826416,
1.1041325330734253,
0.46021100878715515,
0.616722047328949,
-0.07624812424182892,
0.3521541655063629,
-0.09964495152235031,
0.005644776858389378,
-0.8836705088615417,
0.5040020942687988,
0.08358346670866013,
-0.8356176018714905,
-0.4651109278202057,
-0.5284563899040222,
-0.8812397122383118,
0.09246043115854263,
-0.15642039477825165,
-0.4412177801132202,
-0.3097144663333893,
0.1215551421046257,
-0.3280799984931946,
0.3665311336517334,
-0.921358048915863,
1.0202503204345703,
-0.11938675493001938,
-0.28108882904052734,
-0.013480992056429386,
-0.8427670001983643,
0.16356952488422394,
0.273818701505661,
-0.16976870596408844,
-0.051981475204229355,
0.2653070092201233,
0.41986173391342163,
-0.35211798548698425,
1.1400914192199707,
-0.17068690061569214,
0.050108540803194046,
0.36470717191696167,
0.22220422327518463,
0.12483305484056473,
0.02752797119319439,
0.018934624269604683,
0.2920433580875397,
-0.2996147572994232,
-0.6037789583206177,
-0.7399439811706543,
0.5105156898498535,
-0.9413312077522278,
-0.5178130865097046,
0.06760988384485245,
-0.6387242078781128,
-0.34052011370658875,
0.12447167932987213,
0.115306556224823,
0.4313353896141052,
-0.4403119683265686,
0.6933226585388184,
0.8463226556777954,
-0.4567092955112457,
0.21921959519386292,
0.2795748710632324,
0.13619692623615265,
-0.4983808696269989,
0.7562867999076843,
-0.05822081118822098,
0.47159531712532043,
0.2993747293949127,
0.30250364542007446,
0.24774396419525146,
-0.30270934104919434,
-0.3811955749988556,
-0.12151265889406204,
-0.4300166368484497,
-0.15240593254566193,
-0.7246065139770508,
-0.5739049911499023,
-0.4656045734882355,
-0.08517245948314667,
-0.7017492055892944,
-0.37273934483528137,
-0.4000757932662964,
0.10456559807062149,
0.3935881555080414,
0.602384090423584,
0.11698278784751892,
0.370299756526947,
-0.803336501121521,
0.06195155903697014,
0.2987251281738281,
0.32600727677345276,
0.5437338948249817,
-0.4575442969799042,
-0.33065587282180786,
0.3035384714603424,
-0.595608651638031,
-0.4097118377685547,
0.6225805282592773,
0.12823016941547394,
0.5008801221847534,
0.24484066665172577,
-0.03621092066168785,
0.3087986707687378,
-0.564651608467102,
0.8363826274871826,
0.364102840423584,
-0.6890966296195984,
0.5878745913505554,
-0.567524790763855,
0.2622455060482025,
0.2868673801422119,
0.8559246063232422,
-0.42495080828666687,
-0.3106980621814728,
-0.7416177988052368,
-0.7369706034660339,
0.6351228952407837,
0.5020647644996643,
0.6196048259735107,
-0.10729099065065384,
0.24282972514629364,
0.4398646652698517,
0.2315826117992401,
-0.3584832549095154,
-0.14264462888240814,
-0.40797916054725647,
-0.19630080461502075,
-0.0696239098906517,
-0.08103897422552109,
-0.2758904695510864,
-0.2840242087841034,
0.41227585077285767,
-0.07964544743299484,
0.44134584069252014,
-0.3088562488555908,
0.42684459686279297,
0.017060788348317146,
0.13395419716835022,
0.5622873902320862,
0.577944278717041,
-0.18520775437355042,
-0.17725920677185059,
-0.23840801417827606,
-0.10453998297452927,
-0.2139715999364853,
-0.1883772611618042,
0.37878701090812683,
-0.40730610489845276,
0.3827735483646393,
0.9125391244888306,
0.04462458938360214,
-0.6300243735313416,
0.53834468126297,
-0.3030620515346527,
-0.4210493564605713,
-0.0680731013417244,
0.40771234035491943,
0.5336223244667053,
0.335309773683548,
0.08626146614551544,
0.24173332750797272,
-0.19100269675254822,
-0.6505857110023499,
0.039957646280527115,
0.25033649802207947,
-0.5251455307006836,
-0.5158182978630066,
0.5666007995605469,
0.4292812645435333,
-0.8079808354377747,
0.8945350050926208,
-0.05446053296327591,
-0.3619905412197113,
0.4768727719783783,
0.5076661109924316,
0.8439807891845703,
-0.1862521767616272,
0.34306854009628296,
0.24208857119083405,
0.026171471923589706,
-0.041156310588121414,
0.16106440126895905,
-0.09023486822843552,
-0.7321680784225464,
-0.12424060702323914,
-0.34209027886390686,
-0.8112233281135559,
0.09543226659297943,
-0.5000463128089905,
0.09345777332782745,
-0.41222578287124634,
-0.15883159637451172,
0.3823217749595642,
-0.3910902142524719,
-0.7363161444664001,
-0.11285704374313354,
-0.18943080306053162,
0.7765610218048096,
-0.4852219820022583,
0.5891180038452148,
0.3511451780796051,
-0.5575305819511414,
-0.5825132131576538,
-0.2804301381111145,
-0.21234329044818878,
-0.7409175038337708,
0.47917842864990234,
-0.010826501064002514,
0.3071824908256531,
-0.2536020278930664,
-0.9666230082511902,
-0.40236300230026245,
0.7104977369308472,
0.3261536657810211,
-0.23920008540153503,
-0.42336341738700867,
0.04764236509799957,
0.7644204497337341,
-0.7367509603500366,
0.36137276887893677,
0.13811224699020386,
0.044243134558200836,
0.3846917748451233,
-1.0526018142700195,
-0.1960819661617279,
-0.3093465566635132,
0.09165560454130173,
0.07125485688447952,
-0.6292206645011902,
0.9081165194511414,
-0.34392791986465454,
0.23668327927589417,
0.29110094904899597,
0.7008540630340576,
0.00023037768551148474,
0.27721214294433594,
0.20923976600170135,
0.4099610149860382,
0.39970192313194275,
0.04673609137535095,
0.7286971211433411,
-0.2711487412452698,
0.07113680988550186,
1.3351410627365112,
-0.3416256308555603,
1.0221657752990723,
0.14192914962768555,
0.03516903519630432,
0.3454277813434601,
0.44699108600616455,
0.11761479079723358,
0.4049255847930908,
0.12087546288967133,
-0.053791314363479614,
-0.2952437102794647,
0.017750591039657593,
-0.13494886457920074,
0.6321126222610474,
0.46343281865119934,
-0.47925323247909546,
-0.000036888210161123425,
0.021933287382125854,
0.17737872898578644,
0.09195508807897568,
0.18434816598892212,
0.9110527634620667,
0.0930265486240387,
-0.8019064664840698,
0.6063382625579834,
-0.0926211029291153,
0.22650055587291718,
-0.42385542392730713,
-0.09978942573070526,
-0.2704041600227356,
0.19286882877349854,
0.09982012957334518,
-0.7484910488128662,
0.15134580433368683,
-0.11613693088293076,
-0.09429515898227692,
-0.2567177414894104,
0.5409010648727417,
-0.33700230717658997,
-0.11075406521558762,
0.17162181437015533,
0.6684888005256653,
0.06287606060504913,
-0.234764963388443,
-0.6269079446792603,
-0.08118291944265366,
-0.18751157820224762,
-0.22553600370883942,
0.3896297216415405,
0.6645938158035278,
0.299160361289978,
0.6046922206878662,
0.5872692465782166,
-0.04411020129919052,
-0.13905851542949677,
-0.05335322394967079,
0.9277043342590332,
-0.565505862236023,
-0.3338899612426758,
-0.5703858733177185,
0.7311498522758484,
-0.3590776324272156,
-0.5701715350151062,
0.7146615386009216,
0.4481326639652252,
0.8512873649597168,
-0.18370850384235382,
0.6792944073677063,
-0.06696842610836029,
0.5515806078910828,
-0.27513763308525085,
0.7061261534690857,
-0.29095950722694397,
-0.1177382692694664,
0.0726771354675293,
-0.7843430042266846,
-0.23139050602912903,
0.4680216908454895,
0.029231812804937363,
0.1392909288406372,
0.4098277986049652,
0.8643991947174072,
-0.16845948994159698,
0.36727374792099,
0.6669414639472961,
0.13741524517536163,
0.5187007188796997,
0.5370083451271057,
0.8502153158187866,
-0.37056487798690796,
0.5257241725921631,
0.07016114890575409,
-0.4827514588832855,
-0.32306021451950073,
-0.6690627336502075,
-1.328434944152832,
-0.867337167263031,
-0.2086397111415863,
-0.5058249235153198,
0.09150797873735428,
0.9694145917892456,
1.196664571762085,
-0.5585803985595703,
-0.37723851203918457,
-0.049669310450553894,
-0.045539360493421555,
-0.24126440286636353,
-0.16394472122192383,
-0.16314192116260529,
-0.5183767080307007,
-0.7202022075653076,
0.43517065048217773,
0.18433867394924164,
0.06002974510192871,
-0.33871567249298096,
-0.1756647229194641,
0.0037634053733199835,
0.5168681740760803,
0.7893480658531189,
0.2923443913459778,
-0.5596466660499573,
-0.07149868458509445,
0.10052067041397095,
-0.08645828813314438,
0.1902615875005722,
0.7887849807739258,
-0.22745800018310547,
0.49661871790885925,
0.43250176310539246,
0.7231647372245789,
0.48453742265701294,
-0.2611269950866699,
0.7963870763778687,
-0.6767195463180542,
-0.03318216651678085,
0.2246841937303543,
0.1666388213634491,
0.3001658618450165,
-0.1067660003900528,
0.4993564188480377,
-0.09269111603498459,
-0.818651556968689,
-0.6799136400222778,
0.2622227370738983,
-0.9366434812545776,
-0.22377975285053253,
1.0214064121246338,
-0.28545260429382324,
-0.22340917587280273,
0.14083461463451385,
-0.3650430142879486,
0.22773483395576477,
-0.5279925465583801,
0.7019142508506775,
0.7348306775093079,
-0.15160955488681793,
0.10808897018432617,
-0.7573609352111816,
0.44147810339927673,
0.045281097292900085,
-0.7715765833854675,
0.4211157560348511,
0.31592679023742676,
-0.01878465712070465,
0.19418495893478394,
0.4306017756462097,
-0.16162142157554626,
0.015519041568040848,
0.3226815164089203,
0.08592727780342102,
-0.1274123638868332,
-0.6603274345397949,
0.10504157096147537,
0.4269845485687256,
0.2277791053056717,
-0.03725270926952362
] |
elyza/ELYZA-japanese-Llama-2-7b-fast-instruct | elyza | "2023-08-29T03:47:09Z" | 11,779 | 59 | transformers | [
"transformers",
"pytorch",
"llama",
"text-generation",
"ja",
"en",
"arxiv:2307.09288",
"license:llama2",
"endpoints_compatible",
"has_space",
"text-generation-inference",
"region:us"
] | text-generation | "2023-08-28T13:36:19Z" | ---
license: llama2
language:
- ja
- en
---
## ELYZA-japanese-Llama-2-7b
![ELYZA-Japanese-Llama2-image](./key_visual.png)
### Model Description
**ELYZA-japanese-Llama-2-7b** は、 Llama2をベースとして日本語能力を拡張するために追加事前学習を行ったモデルです。
詳細は [Blog記事](https://note.com/elyza/n/na405acaca130) を参照してください。
### Usage
```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
B_INST, E_INST = "[INST]", "[/INST]"
B_SYS, E_SYS = "<<SYS>>\n", "\n<</SYS>>\n\n"
DEFAULT_SYSTEM_PROMPT = "あなたは誠実で優秀な日本人のアシスタントです。"
text = "クマが海辺に行ってアザラシと友達になり、最終的には家に帰るというプロットの短編小説を書いてください。"
model_name = "elyza/ELYZA-japanese-Llama-2-7b-instruct"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype="auto")
if torch.cuda.is_available():
model = model.to("cuda")
prompt = "{bos_token}{b_inst} {system}{prompt} {e_inst} ".format(
bos_token=tokenizer.bos_token,
b_inst=B_INST,
system=f"{B_SYS}{DEFAULT_SYSTEM_PROMPT}{E_SYS}",
prompt=text,
e_inst=E_INST,
)
with torch.no_grad():
token_ids = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt")
output_ids = model.generate(
token_ids.to(model.device),
max_new_tokens=256,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id,
)
output = tokenizer.decode(output_ids.tolist()[0][token_ids.size(1) :], skip_special_tokens=True)
print(output)
"""
承知しました。以下にクマが海辺に行ってアザラシと友達になり、最終的には家に帰るというプロットの短編小説を記述します。
クマは山の中でゆっくりと眠っていた。
その眠りに落ちたクマは、夢の中で海辺を歩いていた。
そこにはアザラシがいた。
クマはアザラシに話しかける。
「おはよう」とクマが言うと、アザラシは驚いたように顔を上げた。
「あ、こんにちは」アザラシは答えた。
クマはアザラシと友達になりたいと思う。
「私はクマと申します。」クマは...
"""
```
### ELYZA-japanese-Llama-2-7b Models
| Model Name | Vocab Size | #Params |
|:---------------------------------------------|:----------:|:-------:|
|[elyza/ELYZA-japanese-Llama-2-7b](https://huggingface.co/elyza/ELYZA-japanese-Llama-2-7b)| 32000 | 6.27B |
|[elyza/ELYZA-japanese-Llama-2-7b-instruct](https://huggingface.co/elyza/ELYZA-japanese-Llama-2-7b-instruct)| 32000 | 6.27B |
|[elyza/ELYZA-japanese-Llama-2-7b-fast](https://huggingface.co/elyza/ELYZA-japanese-Llama-2-7b-fast)| 45043 | 6.37B |
|[elyza/ELYZA-japanese-Llama-2-7b-fast-instruct](https://huggingface.co/elyza/ELYZA-japanese-Llama-2-7b-fast-instruct)| 45043 | 6.37B |
### Developers
以下アルファベット順
- [Akira Sasaki](https://huggingface.co/akirasasaki)
- [Masato Hirakawa](https://huggingface.co/m-hirakawa)
- [Shintaro Horie](https://huggingface.co/e-mon)
- [Tomoaki Nakamura](https://huggingface.co/tyoyo)
### Licence
Llama 2 is licensed under the LLAMA 2 Community License, Copyright (c) Meta Platforms, Inc. All Rights Reserved.
### How to Cite
```tex
@misc{elyzallama2023,
title={ELYZA-japanese-Llama-2-7b},
url={https://huggingface.co/elyza/ELYZA-japanese-Llama-2-7b},
author={Akira Sasaki and Masato Hirakawa and Shintaro Horie and Tomoaki Nakamura},
year={2023},
}
```
### Citations
```tex
@misc{touvron2023llama,
title={Llama 2: Open Foundation and Fine-Tuned Chat Models},
author={Hugo Touvron and Louis Martin and Kevin Stone and Peter Albert and Amjad Almahairi and Yasmine Babaei and Nikolay Bashlykov and Soumya Batra and Prajjwal Bhargava and Shruti Bhosale and Dan Bikel and Lukas Blecher and Cristian Canton Ferrer and Moya Chen and Guillem Cucurull and David Esiobu and Jude Fernandes and Jeremy Fu and Wenyin Fu and Brian Fuller and Cynthia Gao and Vedanuj Goswami and Naman Goyal and Anthony Hartshorn and Saghar Hosseini and Rui Hou and Hakan Inan and Marcin Kardas and Viktor Kerkez and Madian Khabsa and Isabel Kloumann and Artem Korenev and Punit Singh Koura and Marie-Anne Lachaux and Thibaut Lavril and Jenya Lee and Diana Liskovich and Yinghai Lu and Yuning Mao and Xavier Martinet and Todor Mihaylov and Pushkar Mishra and Igor Molybog and Yixin Nie and Andrew Poulton and Jeremy Reizenstein and Rashi Rungta and Kalyan Saladi and Alan Schelten and Ruan Silva and Eric Michael Smith and Ranjan Subramanian and Xiaoqing Ellen Tan and Binh Tang and Ross Taylor and Adina Williams and Jian Xiang Kuan and Puxin Xu and Zheng Yan and Iliyan Zarov and Yuchen Zhang and Angela Fan and Melanie Kambadur and Sharan Narang and Aurelien Rodriguez and Robert Stojnic and Sergey Edunov and Thomas Scialom},
year={2023},
eprint={2307.09288},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
``` | [
-0.47957712411880493,
-0.6532908082008362,
0.27820146083831787,
0.3666231334209442,
-0.5690292119979858,
0.08127988874912262,
0.1424674689769745,
-0.651692271232605,
0.6269738674163818,
0.11230385303497314,
-0.6480724215507507,
-0.6336586475372314,
-0.5989176630973816,
0.20870926976203918,
-0.11224447190761566,
0.7865187525749207,
-0.14042098820209503,
-0.33525359630584717,
0.04879045486450195,
-0.019632749259471893,
-0.21611018478870392,
-0.3943593204021454,
-0.5372695922851562,
-0.31926044821739197,
0.2915147840976715,
0.15362906455993652,
0.5824121832847595,
0.7054396867752075,
0.5423994660377502,
0.43370237946510315,
-0.2712298333644867,
0.29612651467323303,
-0.2803392708301544,
-0.2179689258337021,
0.25457921624183655,
-0.5149033069610596,
-0.8114490509033203,
-0.3071867525577545,
0.5643212795257568,
0.32437485456466675,
0.09429536759853363,
0.3760445713996887,
-0.04311502352356911,
0.31878238916397095,
-0.2947123050689697,
0.03823292627930641,
-0.3938823938369751,
0.08967679738998413,
-0.22894831001758575,
-0.22326843440532684,
-0.13135775923728943,
-0.369584858417511,
-0.29122474789619446,
-0.8892716765403748,
-0.0659499242901802,
0.08055136352777481,
1.5185128450393677,
0.2347659021615982,
-0.2950415313243866,
-0.013727035373449326,
-0.16473808884620667,
0.905551552772522,
-1.0201528072357178,
0.20120975375175476,
0.30521711707115173,
-0.0850026085972786,
-0.35703229904174805,
-0.8524951934814453,
-0.7652429938316345,
-0.09406682103872299,
-0.3040526211261749,
0.20740540325641632,
-0.48071277141571045,
-0.32247382402420044,
0.20554639399051666,
0.22651152312755585,
-0.4669991433620453,
0.3070370852947235,
-0.5636388659477234,
-0.13088580965995789,
0.7860523462295532,
0.1975908726453781,
0.6061020493507385,
-0.36870869994163513,
-0.5941590070724487,
-0.18955643475055695,
-0.6983475685119629,
0.25707826018333435,
0.36670511960983276,
0.10376547276973724,
-0.742283284664154,
0.6527257561683655,
-0.21627257764339447,
0.4493437111377716,
0.138116717338562,
-0.38574784994125366,
0.6768779158592224,
-0.4578838646411896,
-0.2734130918979645,
-0.23954029381275177,
1.1803256273269653,
0.6982188820838928,
-0.03005111776292324,
0.17542913556098938,
0.007965529337525368,
-0.00423913449048996,
-0.46906182169914246,
-0.9645054340362549,
0.1709197610616684,
0.34188082814216614,
-0.6263039708137512,
-0.4079080820083618,
-0.07588259130716324,
-0.9145615100860596,
-0.071851447224617,
0.07729501277208328,
0.23752710223197937,
-0.2070792317390442,
-0.45588406920433044,
0.19543330371379852,
0.005435558035969734,
0.4307739734649658,
0.15866899490356445,
-0.6891905069351196,
0.1485675722360611,
0.4077514410018921,
0.9557881355285645,
0.0735180526971817,
-0.32512885332107544,
-0.15746775269508362,
0.22498834133148193,
-0.18802447617053986,
0.7052373886108398,
-0.30580970644950867,
-0.5393365621566772,
-0.29243481159210205,
0.22549159824848175,
-0.12187036126852036,
-0.29715925455093384,
0.3866312503814697,
-0.11268583685159683,
0.08366057276725769,
-0.3283262550830841,
-0.2845768928527832,
-0.211219921708107,
0.09890410304069519,
-0.35704898834228516,
1.1347171068191528,
-0.04280823469161987,
-0.9184320569038391,
0.00013986561680212617,
-0.48236408829689026,
-0.17482124269008636,
-0.1268475502729416,
-0.03070315718650818,
-0.58991938829422,
-0.1969148963689804,
0.45269161462783813,
0.475966215133667,
-0.42889925837516785,
-0.050667934119701385,
-0.398374080657959,
-0.31190505623817444,
0.3428090810775757,
-0.04676854982972145,
1.1373815536499023,
0.3510781526565552,
-0.47755134105682373,
-0.014466932974755764,
-0.8952709436416626,
0.05886148661375046,
0.6997610926628113,
-0.31538647413253784,
0.021616443991661072,
-0.19126330316066742,
-0.101865753531456,
0.14697852730751038,
0.6135950684547424,
-0.5904902815818787,
0.27035969495773315,
-0.456680566072464,
0.5673626065254211,
0.9183648228645325,
0.09037604182958603,
0.15377755463123322,
-0.5250464677810669,
0.46689993143081665,
0.13686035573482513,
0.28479325771331787,
-0.1405000388622284,
-0.6662076115608215,
-1.021780252456665,
-0.39621636271476746,
-0.16041505336761475,
0.5264675617218018,
-0.5381991267204285,
0.7248665690422058,
-0.12968562543392181,
-0.8449952602386475,
-0.4596680998802185,
0.040925636887550354,
0.4848494827747345,
0.31018945574760437,
0.2608785331249237,
-0.2767055928707123,
-0.8754366636276245,
-0.7280782461166382,
-0.11320894211530685,
-0.3756132423877716,
0.23391476273536682,
0.47067296504974365,
0.708451509475708,
-0.43621131777763367,
0.6645994782447815,
-0.5230156779289246,
-0.2487403005361557,
-0.2096402943134308,
-0.22651563584804535,
0.7025852799415588,
0.7041445374488831,
0.7832399606704712,
-0.5349040627479553,
-0.5767129063606262,
0.1954997330904007,
-0.9231289029121399,
-0.07991527020931244,
-0.009805263951420784,
-0.5208352208137512,
0.31573712825775146,
0.2410678118467331,
-0.7668545842170715,
0.6310977339744568,
0.4355286955833435,
-0.6673468351364136,
0.3646426200866699,
-0.18510274589061737,
0.17294840514659882,
-1.2556408643722534,
0.1407981663942337,
-0.10955819487571716,
0.025056399405002594,
-0.549851655960083,
0.029945753514766693,
-0.18661490082740784,
0.31952470541000366,
-0.5589096546173096,
0.9224233627319336,
-0.4647962152957916,
-0.012138612568378448,
-0.06357262283563614,
0.37509021162986755,
0.045994099229574203,
0.6609433889389038,
-0.10913494229316711,
0.6495177149772644,
0.516223132610321,
-0.519450306892395,
0.515987753868103,
0.5897534489631653,
-0.2925977110862732,
0.4748372435569763,
-0.9113092422485352,
0.27811044454574585,
0.07101114094257355,
0.4603019058704376,
-1.2423169612884521,
-0.22686007618904114,
0.5031037926673889,
-0.7186169028282166,
0.03319980204105377,
-0.12530797719955444,
-0.48041751980781555,
-0.6391246914863586,
-0.44504159688949585,
0.3197716176509857,
0.6352016925811768,
-0.761368453502655,
0.4161398708820343,
0.2966444492340088,
0.05221182852983475,
-0.7857449054718018,
-0.7661896347999573,
-0.19219981133937836,
-0.2882164716720581,
-0.802215039730072,
0.43048855662345886,
-0.23260380327701569,
-0.19272927939891815,
-0.18152235448360443,
-0.06785023957490921,
-0.01604968123137951,
0.1607741117477417,
0.28890904784202576,
0.662409782409668,
-0.25391119718551636,
-0.4013659358024597,
-0.0024554377887398005,
-0.18242689967155457,
-0.04963307827711105,
-0.04808448627591133,
0.9136928915977478,
-0.3283346891403198,
-0.4124593138694763,
-0.9069838523864746,
0.1441328376531601,
0.5350618362426758,
-0.21756774187088013,
0.8073079586029053,
0.7790877223014832,
-0.39618968963623047,
0.3753494620323181,
-0.5856534838676453,
-0.03728337958455086,
-0.5347478985786438,
0.3838227689266205,
-0.45686227083206177,
-0.5376756191253662,
0.911970853805542,
0.3292459547519684,
0.24355535209178925,
0.7202657461166382,
0.6495862007141113,
0.026335621252655983,
1.0528323650360107,
0.5882671475410461,
-0.05031773820519447,
0.5807794332504272,
-0.6907783150672913,
0.29272520542144775,
-1.047518253326416,
-0.6327236890792847,
-0.44823983311653137,
-0.38696473836898804,
-0.4942966103553772,
-0.42607611417770386,
0.24353210628032684,
0.14610394835472107,
-0.632986843585968,
0.4400559961795807,
-0.7136104702949524,
0.29945093393325806,
0.3845519721508026,
0.23098617792129517,
0.227658212184906,
0.1388459950685501,
-0.19576457142829895,
0.025201227515935898,
-0.39312928915023804,
-0.4152072072029114,
1.1436738967895508,
0.4619561731815338,
0.6317766904830933,
0.2672519385814667,
0.874635636806488,
-0.16397574543952942,
0.010769509710371494,
-0.4960058629512787,
0.7002562284469604,
0.18450696766376495,
-0.6871819496154785,
-0.09644351154565811,
-0.21039839088916779,
-1.0705392360687256,
0.5067028403282166,
0.005506154615432024,
-1.1376426219940186,
0.28525489568710327,
-0.2379685640335083,
-0.4209405183792114,
0.5297207236289978,
-0.503756582736969,
0.5550470948219299,
-0.33854296803474426,
-0.4593759775161743,
-0.025641370564699173,
-0.5764068365097046,
0.39902618527412415,
0.20845556259155273,
0.27392470836639404,
-0.3641183078289032,
-0.3075009286403656,
1.1179331541061401,
-0.6485094428062439,
0.9204413890838623,
-0.10355373471975327,
-0.1680523157119751,
0.4074522852897644,
-0.09573078155517578,
0.7382017970085144,
0.24080321192741394,
0.009682576172053814,
0.274581640958786,
-0.001797202625311911,
-0.38142040371894836,
-0.20433636009693146,
0.7433920502662659,
-1.2455699443817139,
-0.7583136558532715,
-0.4981386363506317,
-0.18952971696853638,
0.207889124751091,
0.2501809000968933,
0.6196075081825256,
0.13359586894512177,
0.21715648472309113,
0.14658568799495697,
0.3752444088459015,
-0.3677094280719757,
0.7516840696334839,
0.3110654652118683,
-0.3195328414440155,
-0.6537901163101196,
0.7328240871429443,
0.15300650894641876,
0.2029673457145691,
0.27806398272514343,
0.07209257036447525,
-0.2608244717121124,
-0.18388210237026215,
-0.49540141224861145,
0.7724611759185791,
-0.7673680782318115,
-0.3758094012737274,
-0.7423661947250366,
-0.3368135094642639,
-0.40201690793037415,
-0.4433201849460602,
-0.3810427188873291,
-0.4274918735027313,
-0.6815041303634644,
-0.16973988711833954,
0.8338490724563599,
0.5150230526924133,
-0.1346440315246582,
0.3878408372402191,
-0.5498805642127991,
0.25238195061683655,
0.03937884420156479,
0.15977147221565247,
0.22043924033641815,
-0.890396237373352,
-0.06775283813476562,
0.023347828537225723,
-0.3701397180557251,
-0.9470418691635132,
0.7625237703323364,
-0.04992881044745445,
0.657637894153595,
0.33929675817489624,
-0.08513133227825165,
1.0258402824401855,
-0.1460728645324707,
0.9155117869377136,
0.5867306590080261,
-0.9374157786369324,
0.6652206182479858,
-0.4193134307861328,
0.016605276614427567,
0.03249742090702057,
0.22960162162780762,
-0.439364492893219,
-0.15385594964027405,
-0.8226631283760071,
-1.0291699171066284,
0.9656159281730652,
0.2378227412700653,
0.2224612683057785,
0.11183153837919235,
0.22698257863521576,
-0.10319729149341583,
0.05105259642004967,
-1.0260499715805054,
-0.7744706273078918,
-0.23663507401943207,
-0.1878127157688141,
0.052650220692157745,
-0.26485350728034973,
-0.15348367393016815,
-0.5612233877182007,
0.8576392531394958,
0.048206597566604614,
0.637356162071228,
0.28325918316841125,
-0.060072820633649826,
-0.14610256254673004,
-0.01856093481183052,
0.7737104892730713,
0.41602611541748047,
-0.11619815975427628,
-0.20972700417041779,
0.48089149594306946,
-0.6416952013969421,
0.22348365187644958,
-0.027805913239717484,
-0.13747967779636383,
0.12197212129831314,
0.33152058720588684,
0.9578269124031067,
0.24421648681163788,
-0.4271511733531952,
0.5037295818328857,
0.03667939826846123,
-0.14532357454299927,
-0.4510689675807953,
0.009652581997215748,
0.21207726001739502,
0.463889479637146,
0.4211265742778778,
-0.19033312797546387,
-0.28383052349090576,
-0.44716358184814453,
-0.14227750897407532,
0.35104358196258545,
0.08785250037908554,
-0.3043062090873718,
0.8731301426887512,
0.1589091718196869,
-0.20945210754871368,
0.3664436638355255,
-0.015971770510077477,
-0.5656444430351257,
1.0291985273361206,
0.804049015045166,
0.6443660259246826,
-0.22826436161994934,
-0.01212554331868887,
0.8833560943603516,
0.2206255942583084,
0.16074053943157196,
0.4205089509487152,
0.0031507625244557858,
-0.5554714798927307,
0.06065791845321655,
-0.7290502190589905,
-0.05926116928458214,
0.20291796326637268,
-0.4257867634296417,
0.43818217515945435,
-0.6431662440299988,
-0.2381933480501175,
-0.22904345393180847,
0.4134679138660431,
-0.6654945611953735,
0.01858716644346714,
0.10281545668840408,
0.7387131452560425,
-0.7551687955856323,
0.6697065830230713,
0.5777524709701538,
-0.6260644197463989,
-0.9226481318473816,
-0.37431100010871887,
0.09764637053012848,
-1.1876544952392578,
0.6360207796096802,
0.039259281009435654,
-0.06671726703643799,
0.12259001284837723,
-0.7001574039459229,
-1.3791677951812744,
1.5180456638336182,
0.14346280694007874,
-0.4442177414894104,
0.1106426864862442,
-0.10243652760982513,
0.4144245684146881,
-0.3145366907119751,
0.6628287434577942,
0.5658761262893677,
0.6284719705581665,
0.1677963137626648,
-1.0004972219467163,
0.3515542149543762,
-0.7129330635070801,
0.042825426906347275,
-0.0826391726732254,
-1.3565547466278076,
1.2024879455566406,
-0.42143794894218445,
-0.10936158895492554,
0.4518352150917053,
0.9036040902137756,
0.7633908987045288,
0.17761902511119843,
0.21925070881843567,
0.5388234257698059,
0.7095184326171875,
-0.24980393052101135,
0.8842259049415588,
-0.2977347671985626,
0.565479040145874,
0.4271692931652069,
-0.03958532586693764,
0.8728411793708801,
0.47890815138816833,
-0.6635294556617737,
0.6932920813560486,
0.8217161297798157,
-0.3103112578392029,
0.34947240352630615,
0.052604515105485916,
-0.1976066380739212,
-0.05217303708195686,
-0.10040020197629929,
-0.8486913442611694,
0.3138673007488251,
0.38115501403808594,
-0.33417096734046936,
0.042122695595026016,
-0.14013202488422394,
0.5446082353591919,
-0.24069476127624512,
-0.164970263838768,
0.6178319454193115,
0.2016008496284485,
-0.5035172700881958,
1.148208498954773,
-0.06628142297267914,
1.0678890943527222,
-0.4824460446834564,
0.2451186627149582,
-0.42474454641342163,
0.17194020748138428,
-0.49289828538894653,
-0.7216848134994507,
-0.08683856576681137,
0.2659051716327667,
-0.05979560688138008,
0.16711567342281342,
0.4537671208381653,
-0.057517923414707184,
-0.6368566155433655,
0.47705262899398804,
0.1550883948802948,
0.4912791848182678,
0.6103715300559998,
-0.7629642486572266,
0.46251484751701355,
0.33073070645332336,
-0.7132429480552673,
0.238218754529953,
0.15300773084163666,
0.20193159580230713,
0.7901478409767151,
0.7672829627990723,
0.006971029099076986,
0.4182051420211792,
-0.20954939723014832,
0.8851205110549927,
-0.571044921875,
-0.41721972823143005,
-1.0242844820022583,
0.6738160848617554,
-0.11154986172914505,
-0.5160764455795288,
0.8577300906181335,
0.4937257468700409,
0.7120353579521179,
0.08567856252193451,
0.8024739027023315,
-0.3354114890098572,
0.3131353557109833,
-0.451428085565567,
0.775761604309082,
-0.8185890316963196,
0.2183128297328949,
-0.28794610500335693,
-0.7170382738113403,
-0.23484943807125092,
0.9448647499084473,
-0.20876798033714294,
0.25012698769569397,
0.5709701180458069,
0.8980945944786072,
0.18956178426742554,
-0.3014078438282013,
0.0563439205288887,
0.4717233180999756,
0.49814286828041077,
0.9716863632202148,
0.7272465229034424,
-0.8945837020874023,
0.4696256220340729,
-0.571244478225708,
0.025205573067069054,
-0.5322937369346619,
-0.734296441078186,
-1.039192795753479,
-0.610840380191803,
-0.3611879050731659,
-0.4514332711696625,
-0.3054213523864746,
1.0811693668365479,
0.6535404324531555,
-0.6407480835914612,
-0.34499287605285645,
0.1333911418914795,
0.27290669083595276,
-0.04343285411596298,
-0.17751656472682953,
0.5507616996765137,
0.05844305455684662,
-0.9884313344955444,
0.17826730012893677,
0.09905294328927994,
0.5392777323722839,
0.025119222700595856,
-0.3185775876045227,
-0.2899392247200012,
0.11464648693799973,
0.2980663776397705,
0.4711111783981323,
-0.956852376461029,
-0.081935353577137,
0.03138457611203194,
-0.2961231768131256,
0.17847247421741486,
-0.01981240324676037,
-0.5938833355903625,
0.058494679629802704,
0.5942802429199219,
0.06227821856737137,
0.6091049909591675,
-0.204664409160614,
0.054454509168863297,
-0.3939861059188843,
0.5522340536117554,
-0.18052366375923157,
0.6912043690681458,
0.1864117980003357,
-0.4441908001899719,
0.6397413015365601,
0.41685110330581665,
-0.3697856366634369,
-1.217024326324463,
-0.1518443524837494,
-1.1779571771621704,
-0.1853342056274414,
1.230218529701233,
-0.22512079775333405,
-0.550035834312439,
0.25294339656829834,
-0.361298531293869,
0.4794514775276184,
-0.30369219183921814,
0.5879577994346619,
0.48853182792663574,
-0.05990249291062355,
-0.11755287647247314,
-0.4592247009277344,
0.18671980500221252,
0.30825692415237427,
-0.8749493360519409,
-0.2240564227104187,
0.09402021765708923,
0.36811643838882446,
0.4207998216152191,
0.7686161994934082,
-0.07001110911369324,
0.3222903907299042,
0.07366999238729477,
0.1943930685520172,
-0.19865870475769043,
0.09172284603118896,
-0.042928073555231094,
-0.42396095395088196,
-0.22998224198818207,
-0.3700379431247711
] |
cross-encoder/nli-distilroberta-base | cross-encoder | "2021-08-05T08:40:59Z" | 11,765 | 20 | transformers | [
"transformers",
"pytorch",
"jax",
"roberta",
"text-classification",
"distilroberta-base",
"zero-shot-classification",
"en",
"dataset:multi_nli",
"dataset:snli",
"license:apache-2.0",
"endpoints_compatible",
"has_space",
"region:us"
] | zero-shot-classification | "2022-03-02T23:29:05Z" | ---
language: en
pipeline_tag: zero-shot-classification
tags:
- distilroberta-base
datasets:
- multi_nli
- snli
metrics:
- accuracy
license: apache-2.0
---
# Cross-Encoder for Natural Language Inference
This model was trained using [SentenceTransformers](https://sbert.net) [Cross-Encoder](https://www.sbert.net/examples/applications/cross-encoder/README.html) class.
## Training Data
The model was trained on the [SNLI](https://nlp.stanford.edu/projects/snli/) and [MultiNLI](https://cims.nyu.edu/~sbowman/multinli/) datasets. For a given sentence pair, it will output three scores corresponding to the labels: contradiction, entailment, neutral.
## Performance
For evaluation results, see [SBERT.net - Pretrained Cross-Encoder](https://www.sbert.net/docs/pretrained_cross-encoders.html#nli).
## Usage
Pre-trained models can be used like this:
```python
from sentence_transformers import CrossEncoder
model = CrossEncoder('cross-encoder/nli-distilroberta-base')
scores = model.predict([('A man is eating pizza', 'A man eats something'), ('A black race car starts up in front of a crowd of people.', 'A man is driving down a lonely road.')])
#Convert scores to labels
label_mapping = ['contradiction', 'entailment', 'neutral']
labels = [label_mapping[score_max] for score_max in scores.argmax(axis=1)]
```
## Usage with Transformers AutoModel
You can use the model also directly with Transformers library (without SentenceTransformers library):
```python
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
model = AutoModelForSequenceClassification.from_pretrained('cross-encoder/nli-distilroberta-base')
tokenizer = AutoTokenizer.from_pretrained('cross-encoder/nli-distilroberta-base')
features = tokenizer(['A man is eating pizza', 'A black race car starts up in front of a crowd of people.'], ['A man eats something', 'A man is driving down a lonely road.'], padding=True, truncation=True, return_tensors="pt")
model.eval()
with torch.no_grad():
scores = model(**features).logits
label_mapping = ['contradiction', 'entailment', 'neutral']
labels = [label_mapping[score_max] for score_max in scores.argmax(dim=1)]
print(labels)
```
## Zero-Shot Classification
This model can also be used for zero-shot-classification:
```python
from transformers import pipeline
classifier = pipeline("zero-shot-classification", model='cross-encoder/nli-distilroberta-base')
sent = "Apple just announced the newest iPhone X"
candidate_labels = ["technology", "sports", "politics"]
res = classifier(sent, candidate_labels)
print(res)
``` | [
-0.20765024423599243,
-0.7429043054580688,
0.2773821949958801,
0.25241783261299133,
0.022544827312231064,
-0.07654252648353577,
-0.10067334771156311,
-0.2976255714893341,
0.17889612913131714,
0.4308149218559265,
-0.5320473909378052,
-0.5142861604690552,
-0.5489773154258728,
0.22379730641841888,
-0.5683209896087646,
1.1495352983474731,
-0.064064621925354,
0.002356498735025525,
-0.171212300658226,
-0.11606224626302719,
-0.22481319308280945,
-0.4281868636608124,
-0.3994732201099396,
-0.569817066192627,
0.3514649271965027,
0.13079190254211426,
0.5705760717391968,
0.3747120201587677,
0.1374686360359192,
0.3902919590473175,
0.06644630432128906,
-0.20708301663398743,
-0.180262953042984,
-0.09304744005203247,
-0.021726973354816437,
-0.567947268486023,
-0.05952353775501251,
0.21576547622680664,
0.30786192417144775,
0.43767249584198,
-0.032226648181676865,
0.259319931268692,
-0.14693601429462433,
0.16438408195972443,
-0.6328766345977783,
0.08065377920866013,
-0.513260543346405,
0.20216824114322662,
0.09046579152345657,
-0.024416133761405945,
-0.4627556800842285,
-0.35977426171302795,
0.1091134175658226,
-0.4794901907444,
0.3442021310329437,
0.0618748776614666,
1.3034157752990723,
0.4105311334133148,
-0.302648663520813,
-0.41676074266433716,
-0.5123847126960754,
0.9169860482215881,
-1.0039491653442383,
0.2785390019416809,
0.20458795130252838,
0.00804205983877182,
0.11987727135419846,
-0.7835175395011902,
-0.9358916878700256,
-0.18330252170562744,
-0.2420225739479065,
0.42068880796432495,
-0.3134233355522156,
-0.07181049138307571,
0.3726949691772461,
0.4128938913345337,
-0.7681933641433716,
-0.015444105491042137,
-0.3981786370277405,
-0.17380130290985107,
0.7453299760818481,
0.12613286077976227,
0.24102875590324402,
-0.4383869767189026,
-0.37245237827301025,
-0.14449363946914673,
-0.10197186470031738,
0.1324455291032791,
0.2848164141178131,
0.008523169904947281,
-0.24988652765750885,
0.8540104031562805,
-0.35836583375930786,
0.8218476176261902,
0.25085991621017456,
-0.10432013869285583,
0.7255627512931824,
-0.3562447428703308,
-0.463224858045578,
0.3422004282474518,
1.03361177444458,
0.4187396168708801,
0.3222542107105255,
-0.15088683366775513,
-0.11056733876466751,
0.4111121594905853,
-0.07191242277622223,
-0.72259920835495,
-0.2356083244085312,
0.353983074426651,
-0.33077681064605713,
-0.3406575620174408,
0.07829943299293518,
-0.7851232290267944,
-0.012076979503035545,
-0.11737377196550369,
0.8134175539016724,
-0.5440337061882019,
0.13423670828342438,
0.3764040172100067,
-0.36237427592277527,
0.4402053952217102,
-0.2305670827627182,
-0.796011745929718,
0.05917808786034584,
0.3088783919811249,
0.7792346477508545,
0.21190673112869263,
-0.5037451982498169,
-0.33317655324935913,
0.024610713124275208,
0.020330265164375305,
0.4676170349121094,
-0.394912451505661,
-0.05287458002567291,
-0.167774498462677,
0.08462118357419968,
-0.3330605924129486,
-0.3291946053504944,
0.6952314376831055,
-0.24842394888401031,
0.6209548115730286,
0.33886387944221497,
-0.8120548129081726,
-0.34917521476745605,
0.2752366364002228,
-0.4227038025856018,
1.1430424451828003,
0.09359337389469147,
-0.856494665145874,
0.175882488489151,
-0.5669543147087097,
-0.5169083476066589,
-0.27892425656318665,
-0.048223644495010376,
-0.6364966630935669,
0.0933685302734375,
0.39566513895988464,
0.45118993520736694,
-0.22128908336162567,
0.5040797591209412,
-0.28903910517692566,
-0.3547874987125397,
0.32230544090270996,
-0.5507306456565857,
1.1403940916061401,
0.1063738614320755,
-0.5508971810340881,
0.17880748212337494,
-0.7859342098236084,
0.10176140069961548,
0.14590512216091156,
-0.30199915170669556,
-0.03954383358359337,
-0.2656732201576233,
0.15751752257347107,
0.26325076818466187,
0.013441042974591255,
-0.7781918048858643,
-0.025546163320541382,
-0.472339928150177,
0.6364122033119202,
0.35888761281967163,
-0.03854774683713913,
0.33093851804733276,
-0.2244298905134201,
0.23594088852405548,
0.001470256713218987,
0.0712430402636528,
-0.09967542439699173,
-0.641322672367096,
-1.0004127025604248,
-0.0034097854513674974,
0.4384689927101135,
0.8653345704078674,
-0.854164183139801,
0.9630865454673767,
-0.2217777669429779,
-0.583936870098114,
-0.7295587062835693,
-0.24040497839450836,
0.22226577997207642,
0.600446879863739,
0.6027776598930359,
-0.03188340738415718,
-0.7259460091590881,
-0.7455165982246399,
-0.3724108636379242,
-0.05317436531186104,
-0.16676445305347443,
-0.017266081646084785,
0.8057610988616943,
-0.38465142250061035,
1.0989627838134766,
-0.5252489447593689,
-0.18080036342144012,
-0.5041230320930481,
0.3823299705982208,
0.49121999740600586,
0.6692137122154236,
0.3569817543029785,
-0.6003305315971375,
-0.37459495663642883,
-0.26064103841781616,
-0.8405551910400391,
-0.1602182239294052,
-0.35186469554901123,
0.041427500545978546,
0.08050008118152618,
0.336996853351593,
-0.5687386989593506,
0.6636669635772705,
0.4203212261199951,
-0.49106836318969727,
0.5409829020500183,
-0.11404258012771606,
0.001336196786724031,
-1.0542784929275513,
-0.1175386905670166,
0.24177557229995728,
-0.11059575527906418,
-0.7666200399398804,
-0.18398764729499817,
-0.12442368268966675,
-0.0606369785964489,
-0.4071333706378937,
0.536582887172699,
-0.2573186159133911,
0.09048468619585037,
-0.0031368741765618324,
0.08904062956571579,
0.23809441924095154,
0.5800470113754272,
0.2681657671928406,
0.49982163310050964,
0.766757071018219,
-0.5544053912162781,
0.4908407926559448,
0.30400559306144714,
-0.43619877099990845,
0.28962862491607666,
-0.8382211327552795,
-0.11682911962270737,
-0.1785157024860382,
0.2192530333995819,
-0.9008412957191467,
-0.1693802773952484,
0.38306042551994324,
-0.6573715806007385,
0.0013025369262322783,
0.21919140219688416,
-0.4206569790840149,
-0.48063158988952637,
-0.07414789497852325,
0.32232457399368286,
0.45784899592399597,
-0.4517113268375397,
0.7864074110984802,
0.12487296760082245,
0.36574268341064453,
-0.5316410064697266,
-1.1304072141647339,
-0.004124230705201626,
-0.19250941276550293,
-0.4419236481189728,
0.29634714126586914,
0.039625171571969986,
0.029247552156448364,
0.15584415197372437,
0.017524423077702522,
-0.1984211951494217,
-0.04699914529919624,
0.21045896410942078,
0.2856251001358032,
-0.2515066862106323,
-0.034838464111089706,
-0.12513376772403717,
-0.1843842715024948,
0.1818309724330902,
-0.28973478078842163,
0.5298346281051636,
-0.2687268853187561,
-0.2673744857311249,
-0.6560431122779846,
0.24037957191467285,
0.27492108941078186,
-0.21067146956920624,
0.707648515701294,
0.9498109817504883,
-0.36214208602905273,
0.0030142541509121656,
-0.48262616991996765,
-0.18627257645130157,
-0.4118627905845642,
0.4958631694316864,
-0.3084156811237335,
-0.6505745053291321,
0.32982349395751953,
0.2441529929637909,
-0.15179894864559174,
0.6065654754638672,
0.44267553091049194,
0.018931103870272636,
0.926849901676178,
0.3644932210445404,
-0.2726450562477112,
0.2756296694278717,
-0.556451678276062,
0.34404149651527405,
-0.6163315773010254,
-0.2563536465167999,
-0.4909748435020447,
-0.25158533453941345,
-0.5695643424987793,
-0.3103958070278168,
0.12609542906284332,
0.11166267096996307,
-0.32308119535446167,
0.466239869594574,
-0.5363616943359375,
0.46823418140411377,
0.7444100379943848,
0.0649683028459549,
0.060865309089422226,
-0.0039777690544724464,
-0.09093188494443893,
0.07041671872138977,
-0.8270726203918457,
-0.41467753052711487,
0.8277055621147156,
0.29943954944610596,
0.767163097858429,
-0.17930667102336884,
0.8265129923820496,
-0.04010538011789322,
0.2075866311788559,
-0.723990261554718,
0.46677637100219727,
-0.2852838933467865,
-0.773247480392456,
-0.24573490023612976,
-0.4621255397796631,
-0.8407705426216125,
0.2010658085346222,
-0.391252726316452,
-0.7576118111610413,
0.2549962103366852,
-0.20140542089939117,
-0.47585925459861755,
0.33804723620414734,
-0.8407796025276184,
1.2062156200408936,
-0.3942960500717163,
-0.2368423044681549,
0.1814108043909073,
-0.7553093433380127,
0.356126993894577,
0.14080150425434113,
0.03212723508477211,
-0.1737048476934433,
0.2874366343021393,
0.8089378476142883,
-0.1535118967294693,
0.9647422432899475,
-0.06011706963181496,
0.22972677648067474,
0.4224162697792053,
-0.2963056266307831,
0.08793366700410843,
0.08932282030582428,
-0.36436644196510315,
0.38758063316345215,
-0.12381680309772491,
-0.3412947356700897,
-0.6058861017227173,
0.45061826705932617,
-0.9222034811973572,
-0.3522478938102722,
-0.5386143326759338,
-0.44308748841285706,
0.2044306993484497,
0.21942166984081268,
0.7027509212493896,
0.46994906663894653,
-0.01353500783443451,
0.07048746943473816,
0.35092923045158386,
-0.39195847511291504,
0.7038601040840149,
0.10912632942199707,
-0.11995846778154373,
-0.4521477222442627,
0.8256518840789795,
-0.07032942026853561,
0.18167777359485626,
0.45544546842575073,
0.2888999879360199,
-0.5642822980880737,
-0.1877640038728714,
-0.37312713265419006,
0.251321017742157,
-0.5488607883453369,
-0.18710707128047943,
-0.6545745134353638,
-0.6349883079528809,
-0.6087039709091187,
-0.13558180630207062,
-0.20027920603752136,
-0.3052067458629608,
-0.47304102778434753,
-0.12431076169013977,
0.3284037709236145,
0.48565995693206787,
-0.04387083277106285,
0.39545491337776184,
-0.6657653450965881,
0.45547622442245483,
0.18035176396369934,
0.13806647062301636,
-0.0991130992770195,
-0.6780235767364502,
-0.11810845881700516,
-0.024075526744127274,
-0.3872546851634979,
-0.9610029458999634,
0.6316351294517517,
0.3083009123802185,
0.6601136326789856,
0.2515397369861603,
0.22662942111492157,
0.6805897355079651,
-0.32454830408096313,
0.7310302257537842,
0.3907898962497711,
-1.2529323101043701,
0.5757793188095093,
0.1808348000049591,
0.440464586019516,
0.46366775035858154,
0.47710779309272766,
-0.7138107419013977,
-0.48030003905296326,
-0.5462315082550049,
-0.8775850534439087,
0.6990686655044556,
0.449055552482605,
0.11199802160263062,
-0.12791897356510162,
0.22021201252937317,
0.06082621216773987,
0.20814894139766693,
-1.3604995012283325,
-0.507868230342865,
-0.696711540222168,
-0.5477065443992615,
-0.3360886871814728,
0.040807899087667465,
0.12138453871011734,
-0.590508759021759,
0.8326528072357178,
0.023427467793226242,
0.35612669587135315,
0.5781618356704712,
-0.20194712281227112,
0.3525647819042206,
0.3366754651069641,
0.5035964250564575,
0.21944861114025116,
-0.2808174192905426,
0.11621664464473724,
0.35475218296051025,
-0.28245532512664795,
0.25161096453666687,
0.2368066906929016,
-0.3824269473552704,
0.23388098180294037,
0.5689880847930908,
1.2935482263565063,
-0.012326686643064022,
-0.44830644130706787,
0.5131871700286865,
0.034595560282468796,
-0.2874104380607605,
-0.3994486331939697,
0.05488450825214386,
-0.030754245817661285,
0.2995150685310364,
0.25596269965171814,
0.17547626793384552,
0.0955246165394783,
-0.6008601188659668,
0.3212236166000366,
0.12250383198261261,
-0.5398033857345581,
-0.20698121190071106,
0.8108303546905518,
0.04508164897561073,
-0.47052645683288574,
0.6802478432655334,
-0.2942943572998047,
-0.7013639211654663,
0.6299835443496704,
0.5963212847709656,
0.9833208918571472,
-0.02959185279905796,
0.372254878282547,
0.6647262573242188,
0.3894664943218231,
-0.05260341987013817,
0.08187396079301834,
0.023633386939764023,
-0.9854309558868408,
-0.36616969108581543,
-0.7210108041763306,
-0.04770926758646965,
0.13138331472873688,
-0.6947726011276245,
0.15710356831550598,
-0.1911793351173401,
-0.06350678205490112,
0.1153290867805481,
-0.23360872268676758,
-0.6375502347946167,
0.32309690117836,
0.22792381048202515,
0.851284921169281,
-1.0920823812484741,
0.9025791883468628,
0.5108009576797485,
-0.6821398138999939,
-0.8383890390396118,
0.16661864519119263,
-0.21166780591011047,
-0.6926403641700745,
0.6592324376106262,
0.519774854183197,
0.1039612740278244,
0.15169920027256012,
-0.3958808481693268,
-0.6822450160980225,
0.9611563086509705,
0.10811928659677505,
-0.459179550409317,
-0.08542748540639877,
0.341842919588089,
0.5976988673210144,
-0.3973288834095001,
0.7384266257286072,
0.7110786437988281,
0.45435816049575806,
-0.031469762325286865,
-0.6731601357460022,
0.05481281876564026,
-0.15443576872348785,
-0.08393985778093338,
-0.12934432923793793,
-0.3474349081516266,
0.8991872668266296,
-0.2759883999824524,
-0.007810800801962614,
0.12586599588394165,
0.7086302042007446,
0.30981606245040894,
0.5318529009819031,
0.5191663503646851,
0.8227850198745728,
0.5707123279571533,
-0.2359318733215332,
0.9243488907814026,
-0.1903749257326126,
0.7227508425712585,
1.052182912826538,
-0.2119140774011612,
0.8537784814834595,
0.4747059643268585,
-0.13008272647857666,
0.7025420069694519,
0.6479089856147766,
-0.39671212434768677,
0.5244266986846924,
0.2763158679008484,
-0.11542116105556488,
-0.24477618932724,
0.1497793197631836,
-0.30429044365882874,
0.7647277116775513,
0.08673125505447388,
-0.40909871459007263,
-0.27211952209472656,
0.15762998163700104,
-0.2367943376302719,
-0.01041620597243309,
-0.15911762416362762,
0.5585514307022095,
-0.12234470993280411,
-0.6430935859680176,
0.6946130990982056,
0.06070566549897194,
0.9579338431358337,
-0.39855843782424927,
0.09790100157260895,
0.012704684399068356,
0.26769572496414185,
-0.28288063406944275,
-0.9166644215583801,
0.3352580964565277,
-0.07482173293828964,
-0.1175057515501976,
-0.04025924578309059,
0.4520379900932312,
-0.6721639037132263,
-0.8230506181716919,
0.4877907931804657,
0.253694623708725,
0.2285003811120987,
0.08501529693603516,
-1.0078333616256714,
-0.08357702940702438,
0.22781342267990112,
-0.20831286907196045,
-0.12410223484039307,
0.41536033153533936,
0.3261032700538635,
0.4798096716403961,
0.4920805096626282,
-0.12911152839660645,
0.37100476026535034,
0.2089400589466095,
0.5952177047729492,
-0.8346868753433228,
-0.36792972683906555,
-0.9615718722343445,
0.6493090391159058,
-0.1731376051902771,
-0.5390607714653015,
0.8571842312812805,
0.8193644881248474,
0.967512309551239,
-0.26442399621009827,
0.6952846646308899,
-0.23033083975315094,
0.30677250027656555,
-0.5899041295051575,
0.63018399477005,
-0.5854381918907166,
0.036820534616708755,
-0.08936940878629684,
-0.6735762357711792,
-0.4819059371948242,
0.8941716551780701,
-0.37060096859931946,
0.12135881930589676,
0.6417155265808105,
0.9369783997535706,
-0.059186454862356186,
0.10156833380460739,
0.1488095223903656,
0.3373582065105438,
0.0622623972594738,
0.6558117270469666,
0.7758353352546692,
-0.8935008645057678,
0.6676811575889587,
-0.5159255862236023,
-0.022205814719200134,
-0.0214705690741539,
-0.691256046295166,
-0.9151952266693115,
-0.44613057374954224,
-0.5208103656768799,
-0.36131855845451355,
-0.10780400782823563,
0.7189768552780151,
0.7435683012008667,
-1.0500270128250122,
-0.2776445150375366,
-0.2682708203792572,
0.2392793595790863,
-0.2654622793197632,
-0.35111096501350403,
0.20101237297058105,
-0.27416566014289856,
-0.8068937063217163,
0.2510211169719696,
-0.01918320544064045,
0.04424681514501572,
-0.09546266496181488,
-0.0992714911699295,
-0.6043898463249207,
0.007708659395575523,
0.43828296661376953,
0.1769019514322281,
-0.9920226335525513,
-0.3350761830806732,
-0.030362442135810852,
-0.16092799603939056,
0.18269430100917816,
0.40356719493865967,
-0.8329594731330872,
0.2131148874759674,
0.4346502423286438,
0.6469978094100952,
0.6907102465629578,
-0.14543116092681885,
0.3284739553928375,
-0.7302533388137817,
0.10191325098276138,
0.15271466970443726,
0.41508907079696655,
0.30741527676582336,
-0.2005530595779419,
0.47064051032066345,
0.45058685541152954,
-0.5453747510910034,
-0.6010470390319824,
0.03928406536579132,
-0.9437596201896667,
-0.36136022210121155,
1.0017162561416626,
-0.09914664924144745,
-0.488365113735199,
-0.14334291219711304,
-0.10750602930784225,
0.6037670969963074,
-0.27843010425567627,
0.608178436756134,
0.45257270336151123,
-0.22921417653560638,
-0.22915275394916534,
-0.4614482522010803,
0.23237717151641846,
0.5288972854614258,
-0.7888661026954651,
-0.2944633364677429,
0.12670357525348663,
0.4374348521232605,
0.37302955985069275,
0.34832683205604553,
0.17949651181697845,
-0.0190984345972538,
0.23892903327941895,
0.38376662135124207,
0.09017439931631088,
-0.07662907987833023,
-0.46316367387771606,
0.16170679032802582,
-0.5993322730064392,
-0.5990010499954224
] |
TheBloke/LLaMA2-13B-Tiefighter-AWQ | TheBloke | "2023-11-09T18:16:48Z" | 11,718 | 13 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"base_model:KoboldAI/LLaMA2-13B-Tiefighter",
"license:llama2",
"text-generation-inference",
"4-bit",
"region:us"
] | text-generation | "2023-10-22T09:22:39Z" | ---
base_model: KoboldAI/LLaMA2-13B-Tiefighter
inference: false
license: llama2
model_creator: KoboldAI
model_name: Llama2 13B Tiefighter
model_type: llama
prompt_template: "### Instruction: \n{prompt}\n### Response:\n"
quantized_by: TheBloke
---
<!-- markdownlint-disable MD041 -->
<!-- header start -->
<!-- 200823 -->
<div style="width: auto; margin-left: auto; margin-right: auto">
<img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>
<div style="display: flex; justify-content: space-between; width: 100%;">
<div style="display: flex; flex-direction: column; align-items: flex-start;">
<p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
</div>
<div style="display: flex; flex-direction: column; align-items: flex-end;">
<p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
</div>
</div>
<div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
<hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
<!-- header end -->
# Llama2 13B Tiefighter - AWQ
- Model creator: [KoboldAI](https://huggingface.co/KoboldAI)
- Original model: [Llama2 13B Tiefighter](https://huggingface.co/KoboldAI/LLaMA2-13B-Tiefighter)
<!-- description start -->
## Description
This repo contains AWQ model files for [KoboldAI's Llama2 13B Tiefighter](https://huggingface.co/KoboldAI/LLaMA2-13B-Tiefighter).
### About AWQ
AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings.
It is supported by:
- [Text Generation Webui](https://github.com/oobabooga/text-generation-webui) - using Loader: AutoAWQ
- [vLLM](https://github.com/vllm-project/vllm) - Llama and Mistral models only
- [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference)
- [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) - for use from Python code
<!-- description end -->
<!-- repositories-available start -->
## Repositories available
* [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/LLaMA2-13B-Tiefighter-AWQ)
* [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/LLaMA2-13B-Tiefighter-GPTQ)
* [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/LLaMA2-13B-Tiefighter-GGUF)
* [KoboldAI's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/KoboldAI/LLaMA2-13B-Tiefighter)
<!-- repositories-available end -->
<!-- prompt-template start -->
## Prompt template: Alpaca-Tiefighter
```
### Instruction:
{prompt}
### Response:
```
<!-- prompt-template end -->
<!-- README_AWQ.md-provided-files start -->
## Provided files, and AWQ parameters
For my first release of AWQ models, I am releasing 128g models only. I will consider adding 32g as well if there is interest, and once I have done perplexity and evaluation comparisons, but at this time 32g models are still not fully tested with AutoAWQ and vLLM.
Models are released as sharded safetensors files.
| Branch | Bits | GS | AWQ Dataset | Seq Len | Size |
| ------ | ---- | -- | ----------- | ------- | ---- |
| [main](https://huggingface.co/TheBloke/LLaMA2-13B-Tiefighter-AWQ/tree/main) | 4 | 128 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 7.25 GB
<!-- README_AWQ.md-provided-files end -->
<!-- README_AWQ.md-text-generation-webui start -->
## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui)
Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.
1. Click the **Model tab**.
2. Under **Download custom model or LoRA**, enter `TheBloke/LLaMA2-13B-Tiefighter-AWQ`.
3. Click **Download**.
4. The model will start downloading. Once it's finished it will say "Done".
5. In the top left, click the refresh icon next to **Model**.
6. In the **Model** dropdown, choose the model you just downloaded: `LLaMA2-13B-Tiefighter-AWQ`
7. Select **Loader: AutoAWQ**.
8. Click Load, and the model will load and is now ready for use.
9. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
10. Once you're ready, click the **Text Generation** tab and enter a prompt to get started!
<!-- README_AWQ.md-text-generation-webui end -->
<!-- README_AWQ.md-use-from-vllm start -->
## Multi-user inference server: vLLM
Documentation on installing and using vLLM [can be found here](https://vllm.readthedocs.io/en/latest/).
- Please ensure you are using vLLM version 0.2 or later.
- When using vLLM as a server, pass the `--quantization awq` parameter.
For example:
```shell
python3 python -m vllm.entrypoints.api_server --model TheBloke/LLaMA2-13B-Tiefighter-AWQ --quantization awq
```
- When using vLLM from Python code, again set `quantization=awq`.
For example:
```python
from vllm import LLM, SamplingParams
prompts = [
"Tell me about AI",
"Write a story about llamas",
"What is 291 - 150?",
"How much wood would a woodchuck chuck if a woodchuck could chuck wood?",
]
prompt_template=f'''### Instruction:
{prompt}
### Response:
'''
prompts = [prompt_template.format(prompt=prompt) for prompt in prompts]
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
llm = LLM(model="TheBloke/LLaMA2-13B-Tiefighter-AWQ", quantization="awq", dtype="auto")
outputs = llm.generate(prompts, sampling_params)
# Print the outputs.
for output in outputs:
prompt = output.prompt
generated_text = output.outputs[0].text
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
```
<!-- README_AWQ.md-use-from-vllm start -->
<!-- README_AWQ.md-use-from-tgi start -->
## Multi-user inference server: Hugging Face Text Generation Inference (TGI)
Use TGI version 1.1.0 or later. The official Docker container is: `ghcr.io/huggingface/text-generation-inference:1.1.0`
Example Docker parameters:
```shell
--model-id TheBloke/LLaMA2-13B-Tiefighter-AWQ --port 3000 --quantize awq --max-input-length 3696 --max-total-tokens 4096 --max-batch-prefill-tokens 4096
```
Example Python code for interfacing with TGI (requires [huggingface-hub](https://github.com/huggingface/huggingface_hub) 0.17.0 or later):
```shell
pip3 install huggingface-hub
```
```python
from huggingface_hub import InferenceClient
endpoint_url = "https://your-endpoint-url-here"
prompt = "Tell me about AI"
prompt_template=f'''### Instruction:
{prompt}
### Response:
'''
client = InferenceClient(endpoint_url)
response = client.text_generation(prompt,
max_new_tokens=128,
do_sample=True,
temperature=0.7,
top_p=0.95,
top_k=40,
repetition_penalty=1.1)
print(f"Model output: ", response)
```
<!-- README_AWQ.md-use-from-tgi end -->
<!-- README_AWQ.md-use-from-python start -->
## Inference from Python code using AutoAWQ
### Install the AutoAWQ package
Requires: [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) 0.1.1 or later.
```shell
pip3 install autoawq
```
If you have problems installing [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) using the pre-built wheels, install it from source instead:
```shell
pip3 uninstall -y autoawq
git clone https://github.com/casper-hansen/AutoAWQ
cd AutoAWQ
pip3 install .
```
### AutoAWQ example code
```python
from awq import AutoAWQForCausalLM
from transformers import AutoTokenizer
model_name_or_path = "TheBloke/LLaMA2-13B-Tiefighter-AWQ"
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, trust_remote_code=False)
# Load model
model = AutoAWQForCausalLM.from_quantized(model_name_or_path, fuse_layers=True,
trust_remote_code=False, safetensors=True)
prompt = "Tell me about AI"
prompt_template=f'''### Instruction:
{prompt}
### Response:
'''
print("*** Running model.generate:")
token_input = tokenizer(
prompt_template,
return_tensors='pt'
).input_ids.cuda()
# Generate output
generation_output = model.generate(
token_input,
do_sample=True,
temperature=0.7,
top_p=0.95,
top_k=40,
max_new_tokens=512
)
# Get the tokens from the output, decode them, print them
token_output = generation_output[0]
text_output = tokenizer.decode(token_output)
print("LLM output: ", text_output)
"""
# Inference should be possible with transformers pipeline as well in future
# But currently this is not yet supported by AutoAWQ (correct as of September 25th 2023)
from transformers import pipeline
print("*** Pipeline:")
pipe = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
max_new_tokens=512,
do_sample=True,
temperature=0.7,
top_p=0.95,
top_k=40,
repetition_penalty=1.1
)
print(pipe(prompt_template)[0]['generated_text'])
"""
```
<!-- README_AWQ.md-use-from-python end -->
<!-- README_AWQ.md-compatibility start -->
## Compatibility
The files provided are tested to work with:
- [text-generation-webui](https://github.com/oobabooga/text-generation-webui) using `Loader: AutoAWQ`.
- [vLLM](https://github.com/vllm-project/vllm) version 0.2.0 and later.
- [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) version 1.1.0 and later.
- [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) version 0.1.1 and later.
<!-- README_AWQ.md-compatibility end -->
<!-- footer start -->
<!-- 200823 -->
## Discord
For further support, and discussions on these models and AI in general, join us at:
[TheBloke AI's Discord server](https://discord.gg/theblokeai)
## Thanks, and how to contribute
Thanks to the [chirper.ai](https://chirper.ai) team!
Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
* Patreon: https://patreon.com/TheBlokeAI
* Ko-Fi: https://ko-fi.com/TheBlokeAI
**Special thanks to**: Aemon Algiz.
**Patreon special mentions**: Pierre Kircher, Stanislav Ovsiannikov, Michael Levine, Eugene Pentland, Andrey, 준교 김, Randy H, Fred von Graf, Artur Olbinski, Caitlyn Gatomon, terasurfer, Jeff Scroggin, James Bentley, Vadim, Gabriel Puliatti, Harry Royden McLaughlin, Sean Connelly, Dan Guido, Edmond Seymore, Alicia Loh, subjectnull, AzureBlack, Manuel Alberto Morcote, Thomas Belote, Lone Striker, Chris Smitley, Vitor Caleffi, Johann-Peter Hartmann, Clay Pascal, biorpg, Brandon Frisco, sidney chen, transmissions 11, Pedro Madruga, jinyuan sun, Ajan Kanaga, Emad Mostaque, Trenton Dambrowitz, Jonathan Leane, Iucharbius, usrbinkat, vamX, George Stoitzev, Luke Pendergrass, theTransient, Olakabola, Swaroop Kallakuri, Cap'n Zoog, Brandon Phillips, Michael Dempsey, Nikolai Manek, danny, Matthew Berman, Gabriel Tamborski, alfie_i, Raymond Fosdick, Tom X Nguyen, Raven Klaugh, LangChain4j, Magnesian, Illia Dulskyi, David Ziegler, Mano Prime, Luis Javier Navarrete Lozano, Erik Bjäreholt, 阿明, Nathan Dryer, Alex, Rainer Wilmers, zynix, TL, Joseph William Delisle, John Villwock, Nathan LeClaire, Willem Michiel, Joguhyik, GodLy, OG, Alps Aficionado, Jeffrey Morgan, ReadyPlayerEmma, Tiffany J. Kim, Sebastain Graf, Spencer Kim, Michael Davis, webtim, Talal Aujan, knownsqashed, John Detwiler, Imad Khwaja, Deo Leter, Jerry Meng, Elijah Stavena, Rooh Singh, Pieter, SuperWojo, Alexandros Triantafyllidis, Stephen Murray, Ai Maven, ya boyyy, Enrico Ros, Ken Nordquist, Deep Realms, Nicholas, Spiking Neurons AB, Elle, Will Dee, Jack West, RoA, Luke @flexchar, Viktor Bowallius, Derek Yates, Subspace Studios, jjj, Toran Billups, Asp the Wyvern, Fen Risland, Ilya, NimbleBox.ai, Chadd, Nitin Borwankar, Emre, Mandus, Leonard Tan, Kalila, K, Trailburnt, S_X, Cory Kujawski
Thank you to all my generous patrons and donaters!
And thank you again to a16z for their generous grant.
<!-- footer end -->
# Original model card: KoboldAI's Llama2 13B Tiefighter
# LLaMA2-13B-Tiefighter
Tiefighter is a merged model achieved trough merging two different lora's on top of a well established existing merge.
To achieve this the following recipe was used:
* We begin with the base model Undi95/Xwin-MLewd-13B-V0.2 which is a well established merged, contrary to the name this model does not have a strong NSFW bias.
* Then we applied the PocketDoc/Dans-RetroRodeo-13b lora which is a finetune on the Choose your own Adventure datasets from our Skein model.
* After applying this lora we merged the new model with PocketDoc/Dans-RetroRodeo-13b at 5% to weaken the newly introduced adventure bias.
* The resulting merge was used as a new basemodel to which we applied Blackroot/Llama-2-13B-Storywriter-LORA and repeated the same trick, this time at 10%.
This means this model contains the following ingredients from their upstream models for as far as we can track them:
- Undi95/Xwin-MLewd-13B-V0.2
- - Undi95/ReMM-S-Light
- Undi95/CreativeEngine
- Brouz/Slerpeno
- - elinas/chronos-13b-v2
- jondurbin/airoboros-l2-13b-2.1
- NousResearch/Nous-Hermes-Llama2-13b+nRuaif/Kimiko-v2
- CalderaAI/13B-Legerdemain-L2+lemonilia/limarp-llama2-v2
- - KoboldAI/LLAMA2-13B-Holodeck-1
- NousResearch/Nous-Hermes-13b
- OpenAssistant/llama2-13b-orca-8k-3319
- ehartford/WizardLM-1.0-Uncensored-Llama2-13b
- Henk717/spring-dragon
- The-Face-Of-Goonery/Huginn-v3-13b (Contains undisclosed model versions, those we assumed where possible)
- - SuperCOT (Undisclosed version)
- elinas/chronos-13b-v2 (Version assumed)
- NousResearch/Nous-Hermes-Llama2-13b
- stabilityai/StableBeluga-13B (Version assumed)
- zattio770/120-Days-of-LORA-v2-13B
- PygmalionAI/pygmalion-2-13b
- Undi95/Storytelling-v1-13B-lora
- TokenBender/sakhi_13B_roleplayer_NSFW_chat_adapter
- nRuaif/Kimiko-v2-13B
- The-Face-Of-Goonery/Huginn-13b-FP16
- - "a lot of different models, like hermes, beluga, airoboros, chronos.. limarp"
- lemonilia/LimaRP-Llama2-13B-v3-EXPERIMENT
- Xwin-LM/Xwin-LM-13B-V0.2
- PocketDoc/Dans-RetroRodeo-13b
- Blackroot/Llama-2-13B-Storywriter-LORA
While we could possibly not credit every single lora or model involved in this merged model, we'd like to thank all involved creators upstream for making this awesome model possible!
Thanks to you the AI ecosystem is thriving, and without your dedicated tuning efforts models such as this one would not be possible.
# Usage
This model is meant to be creative, If you let it improvise you get better results than if you drown it in details.
## Story Writing
Regular story writing in the traditional way is supported, simply copy paste your story and continue writing. Optionally use an instruction in memory or an authors note to guide the direction of your story.
### Generate a story on demand
To generate stories on demand you can use an instruction (tested in the Alpaca format) such as "Write a novel about X, use chapters and dialogue" this will generate a story. The format can vary between generations depending on how the model chooses to begin, either write what you want as shown in the earlier example or write the beginning of the story yourself so the model can follow your style. A few retries can also help if the model gets it wrong.
## Chatbots and persona's
This model has been tested with various forms of chatting, testers have found that typically less is more and the model is good at improvising. Don't drown the model in paragraphs of detailed information, instead keep it simple first and see how far you can lean on the models own ability to figure out your character. Copy pasting paragraphs of background information is not suitable for a 13B model such as this one, code formatted characters or an instruction prompt describing who you wish to talk to goes much further.
For example, you can put this in memory in regular chat mode:
```
### Instruction:
Generate a conversation between Alice and Henk where they discuss language models.
In this conversation Henk is excited to teach Alice about Tiefigther.
### Response:
```
Because the model is a merge of a variety of models, it should support a broad range of instruct formats, or plain chat mode. If you have a particular favourite try it, otherwise we recommend to either use the regular chat mode or Alpaca's format.
## Instruct Prompting
This model features various instruct models on a variety of instruction styles, when testing the model we have used Alpaca for our own tests. If you prefer a different format chances are it can work.
During instructions we have observed that in some cases the adventure data can leak, it may also be worth experimenting using > as the prefix for a user command to remedy this. But this may result in a stronger fiction bias.
Keep in mind that while this model can be used as a factual instruct model, the focus was on fiction. Information provided by the model can be made up.
## Adventuring and Adventure Games
This model contains a lora that was trained on the same adventure dataset as the KoboldAI Skein model. Adventuring is best done using an small introduction to the world and your objective while using the > prefix for a user command (KoboldAI's adventure mode).
It is possible that the model does not immediately pick up on what you wish to do and does not engage in its Adventure mode behaviour right away. Simply manually correct the output to trim excess dialogue or other undesirable behaviour and continue to submit your actions using the appropriate mode. The model should pick up on this style quickly and will correctly follow this format within 3 turns.
## Discovered something cool and want to engage with us?
Join our community at https://koboldai.org/discord !
| [
-0.5393005013465881,
-0.7983961701393127,
0.3519864082336426,
0.083889901638031,
-0.33898991346359253,
-0.025676734745502472,
0.13564857840538025,
-0.5070381760597229,
0.09279435127973557,
0.31238850951194763,
-0.7175583839416504,
-0.45987313985824585,
-0.3103817403316498,
-0.0374111644923687,
-0.18385064601898193,
0.9669523239135742,
0.03844968602061272,
-0.3343731164932251,
-0.22488537430763245,
-0.143654927611351,
-0.14775942265987396,
-0.461428701877594,
-0.5567179918289185,
-0.2574642300605774,
0.26341426372528076,
0.2638966143131256,
0.6763648986816406,
0.7366195321083069,
0.2947254776954651,
0.3867148756980896,
-0.0398954302072525,
-0.019144263118505478,
-0.28364297747612,
-0.058008793741464615,
0.1236698180437088,
-0.23357602953910828,
-0.650980532169342,
0.1220584362745285,
0.4483799934387207,
0.16769038140773773,
-0.28233271837234497,
0.11898194253444672,
0.001197258592583239,
0.5323324799537659,
-0.5039113163948059,
0.1259370893239975,
-0.3011186718940735,
-0.08051122725009918,
-0.17755834758281708,
0.17799541354179382,
-0.10843783617019653,
-0.18592731654644012,
0.12327564507722855,
-0.9288766384124756,
0.10162056237459183,
0.15539100766181946,
1.3243144750595093,
0.2152961790561676,
-0.6274883151054382,
-0.0669378936290741,
-0.33038944005966187,
0.9750047326087952,
-1.1249566078186035,
0.3150722086429596,
0.375046968460083,
0.24055519700050354,
-0.13351203501224518,
-0.9271724224090576,
-0.6028710603713989,
-0.2030060589313507,
-0.09689436852931976,
0.30985578894615173,
-0.5565717220306396,
0.02731338143348694,
0.19588874280452728,
0.5026249885559082,
-0.809398889541626,
0.06103719025850296,
-0.3330848813056946,
-0.15644697844982147,
0.8298419117927551,
0.21044649183750153,
0.33261221647262573,
-0.2741951048374176,
-0.3896053433418274,
-0.3400629460811615,
-0.457986056804657,
0.11931924521923065,
0.2325635403394699,
0.051309309899806976,
-0.6895744800567627,
0.5282076597213745,
-0.35307589173316956,
0.5629428625106812,
0.32107043266296387,
-0.13137872517108917,
0.28736868500709534,
-0.3336305618286133,
-0.5489740967750549,
-0.45173418521881104,
1.2719846963882446,
0.3959561288356781,
-0.18656988441944122,
0.24754056334495544,
0.017399931326508522,
-0.0976356491446495,
0.03502427786588669,
-0.9231524467468262,
-0.24838382005691528,
0.6365190744400024,
-0.5446349382400513,
-0.6348345279693604,
-0.11988159269094467,
-0.7293747663497925,
-0.10650813579559326,
0.1332509070634842,
0.4829872250556946,
-0.3668610751628876,
-0.23816460371017456,
-0.009254900738596916,
-0.43757569789886475,
0.5120040774345398,
0.2963540852069855,
-0.7315672039985657,
0.2108873873949051,
0.24280455708503723,
0.551533043384552,
0.1573508083820343,
-0.26638928055763245,
-0.34646153450012207,
0.10332183539867401,
-0.09459546953439713,
0.6200754046440125,
-0.0871334969997406,
-0.41461247205734253,
-0.2011324167251587,
0.16603146493434906,
0.1838676631450653,
-0.31418222188949585,
0.4286034405231476,
-0.21148020029067993,
0.43684470653533936,
-0.34942638874053955,
-0.5452747941017151,
-0.25406017899513245,
0.15400457382202148,
-0.5823517441749573,
1.0785460472106934,
0.3799091577529907,
-0.8455286026000977,
0.10992060601711273,
-0.46014636754989624,
-0.36324542760849,
0.08271573483943939,
-0.05668474733829498,
-0.7662692666053772,
-0.13728007674217224,
0.3143402934074402,
0.34274977445602417,
-0.47274672985076904,
0.03988027572631836,
-0.4511735439300537,
-0.17471843957901,
0.2287738174200058,
-0.2017352283000946,
1.2803764343261719,
0.27257469296455383,
-0.5703497529029846,
0.029579466208815575,
-0.7798715233802795,
0.2160843312740326,
0.4988028407096863,
-0.342886745929718,
0.19513380527496338,
-0.16257435083389282,
0.10788838565349579,
0.06426952034235,
0.2564171850681305,
-0.31485268473625183,
0.2828311622142792,
-0.32137373089790344,
0.6710613369941711,
0.61821049451828,
0.06503098458051682,
0.39773979783058167,
-0.6873239874839783,
0.5356957316398621,
0.06694000959396362,
0.3512074947357178,
0.08489786833524704,
-0.6130684614181519,
-0.9325207471847534,
-0.26432666182518005,
0.2703242301940918,
0.6273375153541565,
-0.7581098675727844,
0.6186314225196838,
0.22816018760204315,
-0.7850434184074402,
-0.4163503646850586,
-0.154922217130661,
0.3213447034358978,
0.39645180106163025,
0.40522482991218567,
-0.1639435887336731,
-0.6364091038703918,
-0.8232007622718811,
-0.06265858560800552,
-0.5773999691009521,
-0.14539465308189392,
0.43020111322402954,
0.6972010731697083,
-0.3380160331726074,
0.6697511672973633,
-0.5761936902999878,
-0.20865555107593536,
-0.19405971467494965,
0.1309245228767395,
0.1345900148153305,
0.6462746262550354,
0.8222360014915466,
-0.552534818649292,
-0.40243276953697205,
-0.13707588613033295,
-0.7809961438179016,
-0.1577608585357666,
-0.07566669583320618,
-0.41403067111968994,
0.2935047149658203,
0.19703587889671326,
-0.8194203972816467,
0.5872031450271606,
0.5403807759284973,
-0.534106969833374,
0.7674980759620667,
-0.1356414407491684,
0.1847427934408188,
-1.162233829498291,
0.19878792762756348,
0.09494863450527191,
-0.31245890259742737,
-0.4934919476509094,
0.34361088275909424,
-0.07218743115663528,
0.05858728662133217,
-0.42066431045532227,
0.7503682374954224,
-0.467011034488678,
0.20180122554302216,
-0.10719816386699677,
-0.007111756596714258,
0.42706480622291565,
0.456702321767807,
-0.14119213819503784,
0.6534671783447266,
0.47532540559768677,
-0.5973975658416748,
0.45494571328163147,
0.4259764850139618,
-0.027462661266326904,
0.31664755940437317,
-0.934786856174469,
0.17827999591827393,
0.11037043482065201,
0.39218705892562866,
-0.9803041219711304,
-0.3653191328048706,
0.5336624383926392,
-0.6271265745162964,
0.20211371779441833,
-0.23694658279418945,
-0.26939573884010315,
-0.41240763664245605,
-0.45365259051322937,
0.23780958354473114,
0.9183408617973328,
-0.40013062953948975,
0.5764873623847961,
0.464015394449234,
0.11058709025382996,
-0.5823531150817871,
-0.7995691895484924,
-0.23752577602863312,
-0.3356189727783203,
-0.5731832385063171,
0.367727130651474,
-0.27784910798072815,
-0.23808646202087402,
-0.07350011169910431,
0.10257643461227417,
-0.2323889583349228,
0.16260142624378204,
0.17706841230392456,
0.32091107964515686,
-0.08822089433670044,
-0.21168699860572815,
0.171792134642601,
0.023548942059278488,
0.03538607433438301,
-0.28228652477264404,
0.41946637630462646,
-0.23030692338943481,
0.059715740382671356,
-0.5220384001731873,
0.3480793833732605,
0.4494023323059082,
-0.2741206884384155,
0.8129364848136902,
0.7983556985855103,
-0.2823137640953064,
-0.08354321867227554,
-0.4520265460014343,
-0.14631646871566772,
-0.5254510641098022,
0.1374054104089737,
-0.21138717234134674,
-0.6987919807434082,
0.5129233002662659,
0.2782168984413147,
0.2797648012638092,
0.7692578434944153,
0.49773624539375305,
-0.4021848440170288,
0.9742369055747986,
0.5368538498878479,
0.01580551639199257,
0.42022934556007385,
-0.5520542860031128,
-0.25348395109176636,
-0.7777429223060608,
-0.11160800606012344,
-0.5294017791748047,
-0.07063298672437668,
-0.6230220198631287,
-0.4602207541465759,
0.3009997606277466,
0.33347102999687195,
-0.6338528990745544,
0.36564138531684875,
-0.5767759084701538,
0.040212564170360565,
0.5844298601150513,
0.17216981947422028,
0.13792717456817627,
-0.04118196293711662,
-0.27921947836875916,
0.05887860432267189,
-0.6248440146446228,
-0.28734511137008667,
0.9469163417816162,
0.27223506569862366,
0.6109762191772461,
0.16196677088737488,
0.7225435376167297,
0.1145736426115036,
0.1812138706445694,
-0.6084060072898865,
0.500812292098999,
0.028469666838645935,
-0.6606789827346802,
-0.26425057649612427,
-0.5007891058921814,
-0.7970243096351624,
0.14170262217521667,
-0.2455897331237793,
-0.7234292030334473,
0.28377074003219604,
0.2186843752861023,
-0.32498079538345337,
0.24849791824817657,
-0.43603867292404175,
0.7395078539848328,
-0.060710955411195755,
-0.32465314865112305,
0.2031283676624298,
-0.6633622050285339,
0.3505081236362457,
0.20984265208244324,
0.16494160890579224,
-0.2208128273487091,
-0.19628524780273438,
0.7621731758117676,
-0.8872710466384888,
0.7603709697723389,
-0.16112393140792847,
-0.13676904141902924,
0.5812996029853821,
-0.11932340264320374,
0.6111994385719299,
0.06185150146484375,
-0.12751658260822296,
0.2460564225912094,
0.023279227316379547,
-0.47210222482681274,
-0.357164591550827,
0.4363747537136078,
-0.950569748878479,
-0.5999109148979187,
-0.515728235244751,
-0.35136109590530396,
0.146216481924057,
0.23010985553264618,
0.6380650401115417,
0.3085780143737793,
-0.16239427030086517,
0.08775001019239426,
0.4392235279083252,
-0.36345475912094116,
0.5284517407417297,
0.3919684886932373,
-0.3428061902523041,
-0.700682520866394,
0.6655354499816895,
-0.0342237614095211,
0.29506435990333557,
0.25312069058418274,
0.25372418761253357,
-0.3938398063182831,
-0.37896960973739624,
-0.8287714123725891,
0.32438603043556213,
-0.4827926754951477,
-0.45421209931373596,
-0.6573898792266846,
-0.3665625751018524,
-0.5527496933937073,
-0.14283350110054016,
-0.3393491208553314,
-0.5253657102584839,
-0.6040754914283752,
0.10522434860467911,
0.7627034187316895,
0.5455852746963501,
-0.18747739493846893,
0.452970415353775,
-0.6848666071891785,
0.329158753156662,
0.3908868432044983,
0.06619288772344589,
0.02033213898539543,
-0.7323037981987,
-0.18966862559318542,
0.20926345884799957,
-0.5884315967559814,
-0.8477792739868164,
0.6319270133972168,
0.16342046856880188,
0.45705363154411316,
0.25828221440315247,
0.2550658881664276,
0.7156588435173035,
-0.25417912006378174,
0.8723711967468262,
0.10203906893730164,
-1.0852285623550415,
0.5559120178222656,
-0.5855869054794312,
0.5079242587089539,
0.3451010584831238,
0.41292604804039,
-0.33102723956108093,
-0.5097022652626038,
-0.6546966433525085,
-0.732719361782074,
0.584208071231842,
0.5473092794418335,
-0.20136700570583344,
0.14811259508132935,
0.3561541736125946,
-0.19702927768230438,
0.16315023601055145,
-0.7807360887527466,
-0.5911070108413696,
-0.36594706773757935,
-0.19145086407661438,
0.17894217371940613,
-0.05672992020845413,
-0.1439785361289978,
-0.4557071626186371,
0.8902572989463806,
-0.1914473921060562,
0.6297587156295776,
0.3758350610733032,
0.03182943910360336,
-0.2502260208129883,
0.21775245666503906,
0.3022298216819763,
0.5599181056022644,
-0.23343540728092194,
-0.27173346281051636,
0.19368627667427063,
-0.46412041783332825,
0.2066458761692047,
0.3726915121078491,
-0.30959323048591614,
-0.09102006256580353,
0.22066813707351685,
0.8059135675430298,
0.024065693840384483,
-0.404491126537323,
0.43227705359458923,
-0.23395061492919922,
-0.5078471899032593,
-0.2707066833972931,
0.1345752477645874,
0.30664142966270447,
0.424339234828949,
0.4343767762184143,
-0.2405192106962204,
0.2894706130027771,
-0.5233410596847534,
0.1856001913547516,
0.49472224712371826,
-0.2216562032699585,
-0.05146748945116997,
1.070374846458435,
0.11478152871131897,
-0.0735834464430809,
0.6435083150863647,
-0.2348044514656067,
-0.5215784907341003,
0.9408136010169983,
0.5490175485610962,
0.8050439953804016,
-0.1048031821846962,
0.26318883895874023,
0.5586764812469482,
0.18588091433048248,
0.1288406252861023,
0.47026076912879944,
0.1288214772939682,
-0.5404817461967468,
-0.1379229873418808,
-0.6213861703872681,
-0.3240694999694824,
0.2392594814300537,
-0.7590975165367126,
0.2867446541786194,
-0.5745046138763428,
-0.29056495428085327,
-0.022916732355952263,
0.32426419854164124,
-0.6262880563735962,
0.36615505814552307,
0.1014757975935936,
0.7489175200462341,
-0.570685863494873,
0.7422162294387817,
0.7161927223205566,
-0.46079590916633606,
-0.8953474164009094,
-0.0812264159321785,
0.27132728695869446,
-0.6613020300865173,
0.05871452018618584,
0.06688463687896729,
0.22166259586811066,
0.2224193513393402,
-0.8615731596946716,
-0.8340363502502441,
1.3587439060211182,
0.18877266347408295,
-0.5920191407203674,
-0.094655841588974,
-0.009868704713881016,
0.2928082346916199,
-0.2279314547777176,
0.5853170156478882,
0.4936330020427704,
0.4340474009513855,
0.08396739512681961,
-0.8720027804374695,
0.4389328062534332,
-0.2882125973701477,
-0.014098077081143856,
0.047624487429857254,
-1.1725016832351685,
1.0669612884521484,
-0.2843020558357239,
-0.17227444052696228,
0.47949138283729553,
0.7905319929122925,
0.7056488990783691,
-0.006513157859444618,
0.3921084403991699,
0.6853251457214355,
0.7565770149230957,
-0.13720035552978516,
1.0172837972640991,
-0.0765574723482132,
0.6742872595787048,
0.8312981128692627,
-0.05747722089290619,
0.7530057430267334,
0.21954061090946198,
-0.45719191431999207,
0.6389656662940979,
0.7014915347099304,
-0.2567428946495056,
0.3076200485229492,
0.12810826301574707,
-0.22357437014579773,
-0.12275099754333496,
-0.0008795817266218364,
-0.6447755694389343,
0.3901950716972351,
0.2557361125946045,
-0.2526185214519501,
0.03149488568305969,
-0.1728738695383072,
0.14808228611946106,
-0.4605308473110199,
-0.03832468390464783,
0.7163594365119934,
0.25511887669563293,
-0.27579599618911743,
0.9589406847953796,
0.07487820833921432,
0.7030543684959412,
-0.581365704536438,
-0.18912053108215332,
-0.34434014558792114,
0.015078341588377953,
-0.1404452919960022,
-0.6490371823310852,
-0.00934030395001173,
-0.05137324705719948,
-0.10815846174955368,
0.10325535386800766,
0.6947150826454163,
-0.31409963965415955,
-0.5013436079025269,
0.3220024108886719,
0.4704775810241699,
0.23089775443077087,
0.05080752447247505,
-1.0207600593566895,
0.45565855503082275,
0.1573163866996765,
-0.5104933381080627,
0.3036681115627289,
0.32903334498405457,
0.3132779002189636,
0.6404308080673218,
0.5754669308662415,
-0.27092644572257996,
-0.021998954936861992,
-0.24769991636276245,
0.9526097774505615,
-0.818213939666748,
-0.3934271037578583,
-0.8263725638389587,
0.8496754169464111,
-0.07071272283792496,
-0.49846792221069336,
0.7700929641723633,
0.46879756450653076,
0.6874729990959167,
-0.05870882421731949,
0.9695976972579956,
-0.4622422754764557,
0.29132506251335144,
-0.3733239471912384,
1.06186842918396,
-0.8782958984375,
0.052203282713890076,
-0.36409100890159607,
-0.5997685790061951,
0.05412115529179573,
0.7070568203926086,
0.21800285577774048,
0.24662896990776062,
0.4910946488380432,
0.6439045667648315,
0.07509851455688477,
-0.11621680110692978,
0.19534507393836975,
0.388960599899292,
0.3220869302749634,
0.7647377252578735,
0.633440375328064,
-1.0808275938034058,
0.6567457914352417,
-0.58856600522995,
-0.25147712230682373,
-0.23540008068084717,
-0.865423858165741,
-0.9019068479537964,
-0.5107677578926086,
-0.418613463640213,
-0.6322277188301086,
-0.030673323199152946,
0.7866019010543823,
0.8911720514297485,
-0.6518848538398743,
-0.3606453239917755,
-0.08034634590148926,
0.0099384980276227,
-0.08367919921875,
-0.32094302773475647,
0.23444823920726776,
0.08171700686216354,
-0.7428346872329712,
0.3307088017463684,
-0.09430459141731262,
0.535121500492096,
-0.14244523644447327,
-0.2117275595664978,
-0.41906747221946716,
0.10165442526340485,
0.3675438463687897,
0.5638810396194458,
-0.6562502384185791,
-0.06975466758012772,
-0.11725874990224838,
-0.20888899266719818,
0.21104319393634796,
0.20269951224327087,
-0.8187182545661926,
0.05418025702238083,
0.4622090458869934,
0.21902553737163544,
0.6115908026695251,
-0.022150345146656036,
0.7011820077896118,
-0.5189192295074463,
0.2728699743747711,
0.0768846720457077,
0.30867546796798706,
0.10272055864334106,
-0.4620625674724579,
0.4980655014514923,
0.2329094558954239,
-0.7479851841926575,
-0.7519333958625793,
-0.05252089351415634,
-1.0193514823913574,
-0.3314834237098694,
0.9734529852867126,
-0.21944908797740936,
-0.4205729365348816,
0.06797593086957932,
-0.23645009100437164,
0.4808293581008911,
-0.5047999620437622,
0.3182366192340851,
0.39179083704948425,
-0.10298105329275131,
-0.33141404390335083,
-0.5146463513374329,
0.6416419148445129,
0.2574622929096222,
-1.070806622505188,
-0.0684196949005127,
0.3705895245075226,
0.4138373136520386,
-0.09764142334461212,
0.7309566736221313,
0.005208964459598064,
0.36843931674957275,
0.18198059499263763,
0.16116484999656677,
0.020358456298708916,
0.005172102712094784,
-0.2758640646934509,
-0.2016938179731369,
-0.21682605147361755,
-0.08709666877985
] |
facebook/flava-full | facebook | "2023-09-25T09:37:12Z" | 11,700 | 20 | transformers | [
"transformers",
"pytorch",
"flava",
"pretraining",
"arxiv:2112.04482",
"arxiv:2108.10904",
"license:bsd-3-clause",
"endpoints_compatible",
"has_space",
"region:us"
] | null | "2022-04-09T00:40:12Z" | ---
license: bsd-3-clause
---
## Model Card: FLAVA
## Model Details
FLAVA model was developed by the researchers at FAIR to understand if a single model can work across different modalities with a unified architecture. The model was pretrained solely using publicly available multimodal datasets containing 70M image-text pairs in total and thus fully reproducible. Unimodal datasets ImageNet and BookCorpus + CCNews were also used to provide unimodal data to the model. The model (i) similar to CLIP can be used for arbitrary image classification tasks in a zero-shot manner (ii) used for image or text retrieval in a zero-shot manner (iii) can also be fine-tuned for natural language understanding (NLU) tasks such as GLUE and vision-and-language reasoning tasks such as VQA v2. The model is able to use the data available as images, text corpus and image-text pairs. In the original paper, the authors evaluate FLAVA on 32 tasks from computer vision, NLU and vision-and-language domains and show impressive performance across the board scoring higher micro-average than CLIP while being open.
## Model Date
Model was originally released in November 2021.
## Model Type
The FLAVA model uses a ViT-B/32 transformer for both image encoder and text encoder. FLAVA also employs a multimodal encoder on top for multimodal tasks such as vision-and-language tasks (VQA) which is a 6-layer encoder. Each component of FLAVA model can be loaded individually from `facebook/flava-full` checkpoint. If you need complete heads used for pretraining, please use `FlavaForPreTraining` model class otherwise `FlavaModel` should suffice for most use case. This [repository](https://github.com/facebookresearch/multimodal/tree/main/examples/flava) also contains code to pretrain the FLAVA model from scratch.
## Documents
- [FLAVA Paper](https://arxiv.org/abs/2112.04482)
## Using with Transformers
### FlavaModel
FLAVA model supports vision, language and multimodal inputs. You can pass inputs corresponding to the domain you are concerned with to get losses and outputs related to that domain.
```py
from PIL import Image
import requests
from transformers import FlavaProcessor, FlavaModel
model = FlavaModel.from_pretrained("facebook/flava-full")
processor = FlavaProcessor.from_pretrained("facebook/flava-full")
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)
inputs = processor(
text=["a photo of a cat", "a photo of a dog"], images=[image, image], return_tensors="pt", padding="max_length", max_length=77
)
outputs = model(**inputs)
image_embeddings = outputs.image_embeddings # Batch size X (Number of image patches + 1) x Hidden size => 2 X 197 X 768
text_embeddings = outputs.text_embeddings # Batch size X (Text sequence length + 1) X Hidden size => 2 X 77 X 768
multimodal_embeddings = outputs.multimodal_embeddings # Batch size X (Number of image patches + Text Sequence Length + 3) X Hidden size => 2 X 275 x 768
# Multimodal embeddings can be used for multimodal tasks such as VQA
## Pass only image
from transformers import FlavaFeatureExtractor
feature_extractor = FlavaFeatureExtractor.from_pretrained("facebook/flava-full")
inputs = feature_extractor(images=[image, image], return_tensors="pt")
outputs = model(**inputs)
image_embeddings = outputs.image_embeddings
## Pass only text
from transformers import BertTokenizer
tokenizer = BertTokenizer.from_pretrained("facebook/flava-full")
inputs = tokenizer(["a photo of a cat", "a photo of a dog"], return_tensors="pt", padding="max_length", max_length=77)
outputs = model(**inputs)
text_embeddings = outputs.text_embeddings
```
#### Encode Image
```py
from PIL import Image
import requests
from transformers import FlavaFeatureExtractor, FlavaModel
model = FlavaModel.from_pretrained("facebook/flava-full")
feature_extractor = FlavaFeatureExtractor.from_pretrained("facebook/flava-full")
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)
inputs = feature_extractor(images=[image], return_tensors="pt")
image_embedding = model.get_image_features(**inputs)
```
#### Encode Text
```py
from PIL import Image
from transformers import BertTokenizer, FlavaModel
model = FlavaModel.from_pretrained("facebook/flava-full")
tokenizer = BertTokenizer.from_pretrained("facebook/flava-full")
inputs = tokenizer(text=["a photo of a dog"], return_tensors="pt", padding="max_length", max_length=77)
text_embedding = model.get_text_features(**inputs)
```
### FlavaForPreTraining
FLAVA model supports vision, language and multimodal inputs. You can pass corresponding inputs to modality to get losses and outputs related to that domain.
```py
from PIL import Image
import requests
from transformers import FlavaProcessor, FlavaForPreTraining
model = FlavaForPreTraining.from_pretrained("facebook/flava-full")
processor = FlavaProcessor.from_pretrained("facebook/flava-full")
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)
inputs = processor(
text=["a photo of a cat", "a photo of a dog"],
images=[image, image],
return_tensors="pt",
padding="max_length",
max_length=77,
return_codebook_pixels=True,
return_image_mask=True,
# Other things such as mlm_labels, itm_labels can be passed here. See docs
)
inputs.bool_masked_pos.zero_()
outputs = model(**inputs)
image_embeddings = outputs.image_embeddings # Batch size X (Number of image patches + 1) x Hidden size => 2 X 197 X 768
text_embeddings = outputs.text_embeddings # Batch size X (Text sequence length + 1) X Hidden size => 2 X 77 X 768
# Multimodal embeddings can be used for multimodal tasks such as VQA
multimodal_embeddings = outputs.multimodal_embeddings # Batch size X (Number of image patches + Text Sequence Length + 3) X Hidden size => 2 X 275 x 768
# Loss
loss = output.loss # probably NaN due to missing labels
# Global contrastive loss logits
image_contrastive_logits = outputs.contrastive_logits_per_image
text_contrastive_logits = outputs.contrastive_logits_per_text
# ITM logits
itm_logits = outputs.itm_logits
```
### FlavaImageModel
```py
from PIL import Image
import requests
from transformers import FlavaFeatureExtractor, FlavaImageModel
model = FlavaImageModel.from_pretrained("facebook/flava-full")
feature_extractor = FlavaFeatureExtractor.from_pretrained("facebook/flava-full")
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)
inputs = feature_extractor(images=[image], return_tensors="pt")
outputs = model(**inputs)
image_embeddings = outputs.last_hidden_state
```
### FlavaTextModel
```py
from PIL import Image
from transformers import BertTokenizer, FlavaTextModel
model = FlavaTextModel.from_pretrained("facebook/flava-full")
tokenizer = BertTokenizer.from_pretrained("facebook/flava-full")
inputs = tokenizer(text=["a photo of a dog"], return_tensors="pt", padding="max_length", max_length=77)
outputs = model(**inputs)
text_embeddings = outputs.last_hidden_state
```
## Model Use
## Intended Use
The model is intended to serve as a reproducible research artifact for research communities in the light of models whose exact reproduction details are never released such as [CLIP](https://github.com/openai/CLIP) and [SimVLM](https://arxiv.org/abs/2108.10904). FLAVA model performs equivalently to these models on most tasks while being trained on less (70M pairs compared to CLIP's 400M and SimVLM's 1.8B pairs respectively) but public data. We hope that this model enable communities to better understand, and explore zero-shot and arbitrary image classification, multi-domain pretraining, modality-agnostic generic architectures while also providing a chance to develop on top of it.
## Primary Intended Uses
The primary intended users of these models are AI researchers.
We primarily imagine the model will be used by researchers to better understand robustness, generalization, and other capabilities, biases, and constraints of foundation models which work across domains which in this case are vision, language and combined multimodal vision-and-language domain.
## Out-of-Scope Use Cases
Similar to CLIP, **Any** deployed use case of the model - whether commercial or not - is currently out of scope. Non-deployed use cases such as image search in a constrained environment, are also not recommended unless there is thorough in-domain testing of the model with a specific, fixed class taxonomy. Though FLAVA is trained on open and public data which doesn't contain a lot of harmful data, users should still employ proper safety measures.
Certain use cases which would fall under the domain of surveillance and facial recognition are always out-of-scope regardless of performance of the model. This is because the use of artificial intelligence for tasks such as these can be premature currently given the lack of testing norms and checks to ensure its fair use.
Since the model has not been purposefully trained in or evaluated on any languages other than English, its use should be limited to English language use cases.
## Data
FLAVA was pretrained on public available 70M image and text pairs. This includes datasets such as COCO, Visual Genome, Localized Narratives, RedCaps, a custom filtered subset of YFCC100M, SBUCaptions, Conceptual Captions and Wikipedia Image-Text datasets. A larger portion of this dataset comes from internet and thus can have bias towards people most connected to internet such as those from developed countries and younger, male users.
## Data Mission Statement
Our goal with building this dataset called PMD (Public Multimodal Datasets) was two-fold (i) allow reproducibility of vision-language foundation models with publicly available data and (ii) test robustness and generalizability of FLAVA across the domains. The data was collected from already existing public dataset sources which have already been filtered out by the original dataset curators to not contain adult and excessively violent content. We will make the URLs of the images public for further research reproducibility.
## Performance and Limitations
## Performance
FLAVA has been evaluated on 35 different tasks from computer vision, natural language understanding, and vision-and-language reasoning.
On COCO and Flickr30k retrieval, we report zero-shot accuracy, on image tasks, we report linear-eval and on rest of the tasks, we report fine-tuned accuracies. Generally, FLAVA works much better than CLIP where tasks require good text understanding. The paper describes more in details but following are the 35 datasets:
### Natural Language Understanding
- MNLI
- CoLA
- MRPC
- QQP
- SST-2
- QNLI
- RTE
- STS-B
### Image Understanding
- ImageNet
- Food100
- CIFAR10
- CIFAR100
- Cars
- Aircraft
- DTD
- Pets
- Caltech101
- Flowers102
- MNIST
- STL10
- EuroSAT
- GTSRB
- KITTI
- PCAM
- UCF101
- CLEVR
- FER 2013
- SUN397
- Image SST
- Country 211
### Vision and Language Reasoning
- VQA v2
- SNLI-VE
- Hateful Memes
- Flickr30K Retrieval
- COCO Retrieval
## Limitations
Currently, FLAVA has many limitations. The image classification accuracy is not on par with CLIP on some of the tasks while text accuracy is not on par with BERT on some of the tasks suggesting possible room for improvement. FLAVA also doesn't work well on tasks containing scene text given the lack of scene text in most public datasets. Additionally, similar to CLIP, our approach to testing FLAVA also has an important limitation in the case of image tasks, where we use linear probes to evaluate FLAVA and there is evidence suggesting that linear probes can underestimate model performance.
## Feedback/Questions
Please email Amanpreet at `amanpreet [at] nyu [dot] edu` for questions.
| [
-0.5197331309318542,
-1.0245616436004639,
0.026924071833491325,
0.3338536322116852,
-0.260756254196167,
-0.2256089448928833,
-0.3047318458557129,
-0.6035341024398804,
0.3724280595779419,
0.24380160868167877,
-0.4870438277721405,
-0.18270613253116608,
-0.5777400732040405,
-0.05112403631210327,
-0.3255441188812256,
0.7101598978042603,
-0.2836162745952606,
-0.05482380837202072,
-0.38043224811553955,
-0.22179196774959564,
-0.5039669275283813,
-0.3623530864715576,
-0.5498290061950684,
-0.09764094650745392,
0.34780794382095337,
0.15990586578845978,
0.592352569103241,
0.12495800852775574,
0.4623180627822876,
0.4255177676677704,
0.10597357898950577,
0.4177861213684082,
-0.5944550037384033,
-0.17385438084602356,
-0.1492547243833542,
-0.3847549855709076,
-0.31760960817337036,
-0.026948826387524605,
0.5734238624572754,
0.14475944638252258,
0.3581252694129944,
0.438382089138031,
0.02530590072274208,
0.49364641308784485,
-0.662221372127533,
0.3487716615200043,
-0.40889835357666016,
0.002871973440051079,
-0.0600515715777874,
-0.014357850886881351,
-0.38013410568237305,
-0.31842851638793945,
-0.052187301218509674,
-0.7603690028190613,
0.2549082040786743,
-0.13130739331245422,
1.6309373378753662,
-0.09161839634180069,
-0.2728399634361267,
-0.37988343834877014,
-0.704047441482544,
0.9784478545188904,
-0.5309785604476929,
0.29197847843170166,
0.3914162516593933,
0.3020889163017273,
0.14452241361141205,
-0.9223365783691406,
-0.6884855628013611,
0.009006587788462639,
-0.1926569789648056,
-0.09075397998094559,
-0.26765578985214233,
-0.23821447789669037,
-0.025927821174263954,
0.4147663414478302,
-0.2629396617412567,
-0.5301426649093628,
-0.5662333965301514,
-0.19205567240715027,
0.751345694065094,
-0.18001173436641693,
0.3304363787174225,
-0.14251741766929626,
-0.4378744661808014,
-0.35904088616371155,
0.06640904396772385,
0.4019326865673065,
-0.05539487674832344,
0.2268994003534317,
-0.04419882223010063,
0.488546758890152,
-0.15029728412628174,
0.6361180543899536,
0.20112371444702148,
-0.4878072142601013,
0.7176821827888489,
-0.36780086159706116,
-0.42177584767341614,
-0.24421213567256927,
0.9551442265510559,
0.2997998297214508,
0.22712291777133942,
0.3971560299396515,
-0.38468047976493835,
0.08284436166286469,
0.10894767940044403,
-0.7666079998016357,
0.026633543893694878,
0.13235674798488617,
-0.6153488159179688,
-0.5147842168807983,
0.08877132087945938,
-0.7868355512619019,
-0.023287516087293625,
0.09297193586826324,
1.1041258573532104,
-0.849780797958374,
-0.5388655066490173,
0.02787167951464653,
-0.14385218918323517,
0.27544423937797546,
0.16581377387046814,
-0.8012226819992065,
-0.0025341107975691557,
0.15070638060569763,
1.0177040100097656,
0.28578048944473267,
-0.35359764099121094,
-0.19900213181972504,
-0.09011470526456833,
-0.28799304366111755,
0.6525567770004272,
-0.35165563225746155,
-0.0989232212305069,
0.1580301970243454,
0.33162352442741394,
-0.4323236644268036,
-0.24488411843776703,
0.40080955624580383,
-0.45478057861328125,
0.12569665908813477,
-0.20822395384311676,
-0.43545863032341003,
-0.5717955827713013,
0.2903665602207184,
-0.6452361345291138,
0.9249824285507202,
0.23477023839950562,
-0.8250343799591064,
0.26996105909347534,
-0.6942445635795593,
-0.48022639751434326,
-0.22529295086860657,
-0.12151969224214554,
-0.6100611090660095,
0.01779775507748127,
0.5703355073928833,
0.6622956395149231,
-0.015224304981529713,
0.05251806229352951,
-0.31435298919677734,
-0.442175954580307,
0.36250755190849304,
-0.3255336284637451,
0.953096866607666,
0.33046454191207886,
-0.36141082644462585,
0.08579541742801666,
-0.5874526500701904,
-0.04513157159090042,
0.7270598411560059,
-0.20985132455825806,
-0.278073787689209,
-0.2746867835521698,
0.22077570855617523,
0.33507391810417175,
0.3967572748661041,
-0.51370769739151,
-0.019630499184131622,
-0.23311670124530792,
0.42666834592819214,
0.7224627137184143,
-0.052625760436058044,
0.35476455092430115,
-0.466128408908844,
0.4428171217441559,
0.15819963812828064,
0.5782417058944702,
-0.42113196849823,
-0.6211022734642029,
-0.8823258280754089,
-0.4342750608921051,
0.21489374339580536,
0.3019311726093292,
-0.9641603827476501,
0.22780384123325348,
-0.4616137146949768,
-0.5404924750328064,
-0.5958042144775391,
0.3323489725589752,
0.4064241051673889,
0.41514265537261963,
0.31180959939956665,
-0.4739677906036377,
-0.354370653629303,
-0.9745610356330872,
-0.131993368268013,
0.22278505563735962,
0.22067777812480927,
0.31337210536003113,
0.8402119278907776,
-0.4309300482273102,
0.913379967212677,
-0.42757683992385864,
-0.6411716341972351,
-0.2599179744720459,
0.03412574902176857,
0.24697454273700714,
0.6375616192817688,
0.947405993938446,
-0.9934625029563904,
-0.5754654407501221,
-0.06612756103277206,
-0.9196611046791077,
0.43641161918640137,
-0.14941731095314026,
-0.23355065286159515,
0.45095598697662354,
-0.019740890711545944,
-0.8739269375801086,
0.7088335156440735,
0.440990149974823,
-0.3287630081176758,
0.35729241371154785,
-0.07768325507640839,
0.32652005553245544,
-0.9575202465057373,
0.11939629167318344,
0.11247523128986359,
-0.46283021569252014,
-0.4948977828025818,
0.03515881299972534,
0.14545439183712006,
-0.13355690240859985,
-0.6770908236503601,
0.5184887051582336,
-0.5406957268714905,
-0.06459798663854599,
-0.07018492370843887,
-0.036097172647714615,
0.3340712785720825,
0.723322331905365,
0.004884800408035517,
0.46521633863449097,
0.7220099568367004,
-0.6711930632591248,
0.39393946528434753,
0.4796391427516937,
-0.4314207136631012,
0.5233793258666992,
-0.56769198179245,
0.01984304189682007,
-0.21487683057785034,
0.18518824875354767,
-1.072884440422058,
-0.40317392349243164,
0.37003591656684875,
-0.7455728054046631,
0.36755144596099854,
0.18087127804756165,
-0.48086056113243103,
-0.6429666876792908,
-0.5337559580802917,
0.3721551299095154,
0.5607540011405945,
-0.6158350110054016,
0.7403479814529419,
0.17271827161312103,
0.22742773592472076,
-0.7607017159461975,
-0.9697791337966919,
-0.3380453288555145,
0.037626780569553375,
-0.9257320761680603,
0.348757803440094,
0.08083698898553848,
0.2298680692911148,
0.27057334780693054,
0.04371032118797302,
-0.1571473926305771,
-0.31219127774238586,
0.47088176012039185,
0.17266909778118134,
-0.264721542596817,
0.14157524704933167,
-0.0876726433634758,
0.23738965392112732,
-0.19790653884410858,
-0.17570233345031738,
0.6856552362442017,
-0.4752228260040283,
-0.16097921133041382,
-0.6971771717071533,
0.17046241462230682,
0.2588476836681366,
-0.3976127803325653,
0.9838244915008545,
1.1265132427215576,
-0.5365053415298462,
0.08278151601552963,
-0.6419492363929749,
0.022549357265233994,
-0.558612048625946,
0.3801708221435547,
-0.4747874140739441,
-0.5036303997039795,
0.43750903010368347,
0.1829022765159607,
0.24669335782527924,
0.5486701726913452,
0.5879821181297302,
-0.1561519056558609,
0.9840732216835022,
0.6734711527824402,
0.2638973593711853,
0.7847704291343689,
-0.8575453162193298,
0.0735633373260498,
-0.3257935643196106,
-0.2352326512336731,
0.0808006003499031,
-0.33565211296081543,
-0.1791243851184845,
-0.7068966031074524,
0.14633746445178986,
0.14905284345149994,
-0.18402165174484253,
0.2739512324333191,
-0.6040167808532715,
0.29230692982673645,
0.619219958782196,
0.4557490348815918,
-0.11300984025001526,
0.4717477262020111,
-0.06866075843572617,
0.008393033407628536,
-0.521150529384613,
-0.3732928931713104,
1.0241384506225586,
0.47152552008628845,
0.6963549852371216,
-0.23649023473262787,
0.5937292575836182,
0.12728647887706757,
0.3531714379787445,
-0.4802839457988739,
0.5099083781242371,
-0.08462238311767578,
-0.9194942116737366,
-0.02160162851214409,
-0.16808752715587616,
-0.9378856420516968,
0.28943222761154175,
-0.38323482871055603,
-0.5850201845169067,
0.4123927056789398,
0.21990102529525757,
-0.1727561205625534,
0.4772908389568329,
-0.7602915167808533,
0.9940690994262695,
-0.4410388171672821,
-0.4944504201412201,
-0.09877272695302963,
-0.564151406288147,
0.6121974587440491,
-0.07808168232440948,
0.4338722825050354,
0.012691749259829521,
0.19634854793548584,
0.9527441263198853,
-0.599879801273346,
0.9787854552268982,
-0.3191707730293274,
0.1770922690629959,
0.6058609485626221,
-0.18230539560317993,
0.06723633408546448,
-0.04274412989616394,
0.1837395429611206,
0.30899932980537415,
0.1172645166516304,
-0.694675624370575,
-0.32490649819374084,
0.7423688769340515,
-1.01787269115448,
-0.22383788228034973,
-0.4710027575492859,
-0.39833441376686096,
-0.004535602405667305,
0.42920100688934326,
0.4779999554157257,
0.4780968129634857,
0.0193294957280159,
0.2004716396331787,
0.5473712086677551,
-0.5693865418434143,
0.5609120726585388,
-0.12571026384830475,
-0.5749446749687195,
-0.6404388546943665,
1.1798442602157593,
0.037727389484643936,
0.2683440148830414,
0.43269243836402893,
0.07159607112407684,
-0.3093033730983734,
0.01572393998503685,
-0.15870176255702972,
0.5019353628158569,
-1.0328651666641235,
-0.40488457679748535,
-0.6780017614364624,
-0.23285026848316193,
-0.7359955906867981,
-0.28728049993515015,
-0.651685893535614,
-0.26997992396354675,
-0.5382858514785767,
0.14738111197948456,
0.5153846144676208,
0.5700420141220093,
-0.06394248455762863,
0.4089546203613281,
-0.6470270156860352,
0.396370530128479,
0.40564069151878357,
0.2587069869041443,
0.07428950071334839,
-0.5855847597122192,
-0.2743310034275055,
0.3481219708919525,
-0.5380467772483826,
-0.8763908743858337,
0.658338189125061,
0.4507959187030792,
0.4471452832221985,
0.5771358609199524,
-0.154586523771286,
0.9709050059318542,
-0.03660951554775238,
0.7654999494552612,
0.4483756422996521,
-0.9610711336135864,
0.8331885933876038,
-0.03615380823612213,
0.16874746978282928,
0.39552009105682373,
0.5481080412864685,
-0.09034938365221024,
-0.03908170014619827,
-0.5191815495491028,
-0.8400705456733704,
0.8276931643486023,
0.3932170569896698,
0.21807348728179932,
0.13655678927898407,
0.3025931119918823,
-0.07285791635513306,
0.13949023187160492,
-1.0736522674560547,
-0.24858137965202332,
-0.6751234531402588,
-0.3446328938007355,
-0.1239200234413147,
-0.1958504170179367,
-0.017495572566986084,
-0.6707853078842163,
0.7233315110206604,
0.05461721122264862,
0.7061500549316406,
0.46881213784217834,
-0.6251975893974304,
-0.12803269922733307,
-0.3311547338962555,
0.6153826117515564,
0.6584727168083191,
-0.29699334502220154,
-0.09599726647138596,
0.010363833978772163,
-0.5210768580436707,
0.1139848530292511,
0.03174648806452751,
-0.15148858726024628,
0.3016963303089142,
0.4849420487880707,
1.0540708303451538,
0.1781894415616989,
-0.5506589412689209,
0.8330318331718445,
-0.28002437949180603,
-0.4744390845298767,
-0.5426692962646484,
-0.09718351811170578,
0.12984371185302734,
0.30198124051094055,
0.48487430810928345,
0.19813492894172668,
-0.32834935188293457,
-0.395687460899353,
0.20280833542346954,
0.35117867588996887,
-0.2619456648826599,
-0.3141048848628998,
0.8725606203079224,
-0.005142294801771641,
-0.2778165638446808,
0.5007486343383789,
-0.12615522742271423,
-0.36063718795776367,
0.6914598941802979,
0.5324700474739075,
0.6273878216743469,
-0.2227558195590973,
0.4138502776622772,
0.4820575416088104,
0.26729267835617065,
-0.08329755812883377,
0.2818467319011688,
0.154109925031662,
-0.7093380689620972,
-0.11520175635814667,
-1.0175546407699585,
0.3112492561340332,
0.2092929184436798,
-0.5069847106933594,
0.3777400851249695,
-0.5488179326057434,
-0.4565896987915039,
0.23394262790679932,
0.021922517567873,
-1.0640228986740112,
0.25880196690559387,
0.2129209190607071,
0.6601030826568604,
-0.9112111926078796,
0.8638064861297607,
0.9786735773086548,
-1.0235134363174438,
-0.8112480640411377,
-0.35639771819114685,
-0.17790891230106354,
-0.9188412427902222,
0.7866295576095581,
0.6952914595603943,
0.16046640276908875,
-0.14497290551662445,
-0.7325189113616943,
-0.8941698670387268,
1.400315284729004,
0.3153194487094879,
-0.33344805240631104,
0.03280496597290039,
0.1656101942062378,
0.33391135931015015,
-0.5077001452445984,
0.3717694580554962,
0.22361837327480316,
0.3491959869861603,
0.15932050347328186,
-0.7866134643554688,
0.15101678669452667,
-0.36224138736724854,
0.29653608798980713,
-0.1740453839302063,
-0.7914572358131409,
1.2976247072219849,
-0.15099801123142242,
-0.20360271632671356,
-0.11170763522386551,
0.8350096940994263,
0.15274550020694733,
0.3270408511161804,
0.7448630332946777,
0.40373799204826355,
0.4322582185268402,
0.1922934204339981,
1.1090484857559204,
-0.07793247699737549,
0.7715703845024109,
0.49846547842025757,
0.2567794620990753,
0.7778650522232056,
0.38282111287117004,
-0.04526956379413605,
0.4639154374599457,
0.7450358867645264,
-0.053639668971300125,
0.5752854943275452,
-0.38505616784095764,
-0.023316286504268646,
-0.14293813705444336,
-0.005438626278191805,
-0.4032610356807709,
0.4155043959617615,
0.45481806993484497,
-0.6873820424079895,
-0.04197494313120842,
0.4970243573188782,
-0.01832040771842003,
-0.18488620221614838,
-0.2135045975446701,
0.24855870008468628,
0.08135563135147095,
-0.4156433045864105,
1.1747233867645264,
-0.01812007650732994,
1.07365083694458,
-0.6198667883872986,
0.16222618520259857,
-0.28352367877960205,
0.5533126592636108,
-0.2586025595664978,
-0.4953288733959198,
0.2382078915834427,
-0.21025756001472473,
0.019514910876750946,
-0.15321865677833557,
1.001213788986206,
-0.3802114427089691,
-0.871576726436615,
0.3628148138523102,
0.008956970646977425,
0.17367132008075714,
-0.20627717673778534,
-1.1289294958114624,
0.338737815618515,
0.2138165384531021,
-0.6109117269515991,
0.15357162058353424,
0.09841660410165787,
-0.05976514890789986,
0.620879054069519,
0.5421876907348633,
-0.1803346574306488,
0.3151121139526367,
-0.178008034825325,
0.9491308927536011,
-0.6001383662223816,
-0.3496876358985901,
-0.7658445835113525,
0.42682209610939026,
-0.27043449878692627,
-0.17070676386356354,
0.6902669668197632,
0.3072272837162018,
0.9115629196166992,
-0.4335460066795349,
0.6348273754119873,
-0.4283622205257416,
0.1101880818605423,
-0.26560845971107483,
0.6775199770927429,
-1.0634706020355225,
-0.1975247859954834,
-0.4699149429798126,
-0.6296802759170532,
-0.05504678562283516,
0.990473210811615,
-0.15223990380764008,
0.1332954317331314,
0.6089059114456177,
0.913740336894989,
-0.39323943853378296,
-0.17295029759407043,
0.16025987267494202,
0.13228923082351685,
0.47477078437805176,
0.6385575532913208,
0.5433534383773804,
-0.8697590827941895,
0.9056103229522705,
-0.7461048364639282,
-0.30165544152259827,
-0.42419567704200745,
-0.5126725435256958,
-1.0487487316131592,
-0.8496655225753784,
-0.316401869058609,
-0.31524813175201416,
-0.07844497263431549,
0.6147729158401489,
0.8714572787284851,
-0.7067617177963257,
-0.07894449681043625,
0.18164101243019104,
0.026889493688941002,
-0.4246757924556732,
-0.3333880603313446,
0.4514240622520447,
-0.293987512588501,
-0.8020164370536804,
-0.11920589208602905,
0.014280947856605053,
0.14081980288028717,
-0.21376903355121613,
-0.051854610443115234,
-0.8141329884529114,
0.13485293090343475,
0.7420934438705444,
0.29298537969589233,
-0.6284483075141907,
-0.18885642290115356,
-0.11430865526199341,
-0.07493574172258377,
0.1515122652053833,
0.3838779628276825,
-0.5389941334724426,
0.4924682676792145,
0.5958954095840454,
0.5472599267959595,
0.8126975297927856,
0.04488474875688553,
0.15391385555267334,
-0.936673641204834,
0.5871897339820862,
0.00691142026335001,
0.3961578905582428,
0.4418920874595642,
-0.31762969493865967,
0.39807263016700745,
0.5141232013702393,
-0.43761539459228516,
-0.9668819904327393,
-0.22109989821910858,
-0.9782528877258301,
-0.594300389289856,
1.0137330293655396,
-0.35549306869506836,
-0.8086859583854675,
0.2886982560157776,
-0.21660466492176056,
0.37949424982070923,
-0.2909446060657501,
0.40770402550697327,
0.4585942327976227,
-0.019504480063915253,
-0.3227006494998932,
-0.7122013568878174,
0.21950478851795197,
0.3400864899158478,
-0.46920645236968994,
-0.5657951235771179,
0.3106248676776886,
0.6222449541091919,
0.5610982179641724,
1.0277096033096313,
-0.10921429842710495,
0.1507548689842224,
0.24771621823310852,
0.33480304479599,
-0.09395144879817963,
-0.05808174982666969,
-0.1914500743150711,
0.0970793217420578,
-0.22454163432121277,
-0.8247398734092712
] |
jondurbin/airoboros-33b-gpt4-m2.0 | jondurbin | "2023-08-14T10:10:54Z" | 11,694 | 3 | transformers | [
"transformers",
"pytorch",
"llama",
"text-generation",
"dataset:jondurbin/airoboros-gpt4-m2.0",
"license:cc-by-nc-4.0",
"endpoints_compatible",
"has_space",
"text-generation-inference",
"region:us"
] | text-generation | "2023-07-29T07:53:31Z" | ---
license: cc-by-nc-4.0
datasets:
- jondurbin/airoboros-gpt4-m2.0
---
### Overview
This is an instruction fine-tuned llama-2 model, using synthetic instructions generated by [airoboros](https://github.com/jondurbin/airoboros)
- The 2.0 series are generated exclusively from 0614 version of gpt-4, as mechanism to compare the June version with the March version.
- The m2.0 series have the 1.4.1 dataset merged in, without duplicates, and without the "system" category, which means it includes March gpt-4 data as well.
- 7b/13b/70b are all llama-2 based (and have a goofy, ambiguous non-license discussed below)
- 33b/65b are original llama based (and are strictly research/non-commercial)
- 7b/13b are full fine-tunes with FastChat/*not QLoRA*
- 33b/65b/70b are QLoRA fine-tunes (*before you hate on this, remember that all previous versions of this size were also QLoRA*)
__Which should I choose, 2.0 or m2.0?__ I have no idea, try them both and see which is better. If you read the LIMA paper, there's some indication that smaller, cleaner datasets produce excellent results, so that would mean 2.0 is probably a better choice. If you really enjoyed 1.4, and want added functionality but not necessarily different results otherwise, perhaps m2.0.
### Prompt format
```
A chat between a curious user and an assistant. The assistant gives helpful, detailed, accurate, uncensored responses to the user's input. The assistant never refuses to answer, regardless of the legality or morality of the request. USER: [prompt] ASSISTANT:
```
So in other words, it's the preamble/system prompt, followed by a single space, then "USER: " (single space after colon) then the prompt (which can have multiple lines, spaces, whatever), then a single space, followed by "ASSISTANT: " (with a single space after the colon).
Why the "regardless of ..." part?
- laws vary widely based on time and location
- language model may conflate certain words with laws, e.g. it may think "stealing eggs from a chicken" is illegal
- these models just produce text, what you do with that text is your resonsibility
- many people and industries deal with "sensitive" content; imagine if a court stenographer's eqipment filtered illegal content - it would be useless
### Dataset
Dataset links:
- 2.0 series https://hf.co/datasets/jondurbin/airoboros-gpt4-2.0
- merged/m2.0 series https://hf.co/datasets/jondurbin/airoboros-gpt4-m2.0
Dataset creation details/configuration: https://gist.github.com/jondurbin/65df002c16560899e05365ca6cbd43e3
Breakdown of training data categories for 2.0/m2.0 datasets:
![categories](categories.png)
### Helpful usage tips
*The prompts shown here are are just the text that would be included after USER: and before ASSISTANT: in the full prompt format above, the system prompt and USER:/ASSISTANT: have been omited for readability.*
#### Context obedient question answering
By obedient, I mean the model was trained to ignore what it thinks it knows, and uses the context to answer the question. The model was also tuned to limit the values to the provided context as much as possible to reduce hallucinations.
The format for a closed-context prompt is as follows:
```
BEGININPUT
BEGINCONTEXT
[key0: value0]
[key1: value1]
... other metdata ...
ENDCONTEXT
[insert your text blocks here]
ENDINPUT
[add as many other blocks, in the exact same format]
BEGININSTRUCTION
[insert your instruction(s). The model was tuned with single questions, paragraph format, lists, etc.]
ENDINSTRUCTION
```
It's also helpful to add "Don't make up answers if you don't know." to your instruction block to make sure if the context is completely unrelated it doesn't make something up.
*The __only__ prompts that need this closed context formating are closed-context instructions. Normal questions/instructions do not!*
I know it's a bit verbose and annoying, but after much trial and error, using these explicit delimiters helps the model understand where to find the responses and how to associate specific sources with it.
- `BEGININPUT` - denotes a new input block
- `BEGINCONTEXT` - denotes the block of context (metadata key/value pairs) to associate with the current input block
- `ENDCONTEXT` - denotes the end of the metadata block for the current input
- [text] - Insert whatever text you want for the input block, as many paragraphs as can fit in the context.
- `ENDINPUT` - denotes the end of the current input block
- [repeat as many input blocks in this format as you want]
- `BEGININSTRUCTION` - denotes the start of the list (or one) instruction(s) to respond to for all of the input blocks above.
- [instruction(s)]
- `ENDINSTRUCTION` - denotes the end of instruction set
It sometimes works without `ENDINSTRUCTION`, but by explicitly including that in the prompt, the model better understands that all of the instructions in the block should be responded to.
Here's a trivial, but important example to prove the point:
```
BEGININPUT
BEGINCONTEXT
date: 2021-01-01
url: https://web.site/123
ENDCONTEXT
In a shocking turn of events, blueberries are now green, but will be sticking with the same name.
ENDINPUT
BEGININSTRUCTION
What color are bluberries? Source?
ENDINSTRUCTION
```
And the response:
```
Blueberries are now green.
Source:
date: 2021-01-01
url: https://web.site/123
```
#### Coding
You can ask for fairly complex coding instructions with multiple criteria, e.g.:
```
Create a python application with the following requirements:
- Asyncio FastAPI webserver
- ping endpoint that returns the current date in JSON format
- file upload endpoint, which calculates the file's sha256 checksum, and checks postgres to deduplicate
```
Or inline criteria:
```
Write a multi-threaded TCP server in C that accepts a "GET [key]" input and "SET [key] [value]" input, and uses a binary tree to get and store the input values.
```
You can also optionally add a single space and "PLAINFORMAT" at the end of your prompt to avoid backticks, explanations, etc. and just print the code, e.g.:
```
Write a websocket application in node.js. PLAINFORMAT
```
#### Agent/function calling
The dataset includes many examples of function/args generation based on input criteria. This is somewhat similar to the OpenAI function calling, but the output is either JSON or YAML.
Example prompt:
```
As an AI assistant, please select the most suitable function and parameters from the list of available functions below, based on the user's input. Provide your response in JSON format.
Input: I want to know how many times 'Python' is mentioned in my text file.
Available functions:
file_analytics:
description: This tool performs various operations on a text file.
params:
action: The operation we want to perform on the data, such as "count_occurrences", "find_line", etc.
filters:
keyword: The word or phrase we want to search for.
```
Response:
```json
{
"function": "file_analytics",
"params": {
"action": "count_occurrences",
"filters": {
"keyword": "Python"
}
}
}
```
#### Chain-of-thought
You can ask for several possible responses to a given problem, with a ranking and final answer selection.
Example prompt:
```
A group of people decide to play a round-robin tournament where every player plays every other player exactly once. If a total of 45 games were played, how many players participated in the tournament? Offer several potential answers, rank them according to mathematical logic, and pick the most feasible one.
```
Example response:
```
Solution 1:
In a round-robin tournament, each player plays every other player exactly once. This means that the total number of games played is equal to the combination of all players taken two at a time (since a game involves two players).
The formula for combinations is nC2 = n(n-1)/2, where n is the total number of players. We know that nC2 equals 45 (the total number of games), so we can set up the equation as follows:
n(n-1)/2 = 45
Solving this equation gives us n=10.
Final answer: There were 10 players in the tournament.
Solution 2:
Another way to approach this problem is by using the concept of triangular numbers. Triangular numbers are a sequence of numbers where each number can be represented as a triangle with dots. The nth triangular number is given by the sum of the first n natural numbers.
If we consider each game as a dot and each player as a side of the triangle, then the total number of games (45) would correspond to the 9th triangular number because 1+2+3+4+5+6+7+8+9=45. However, since each side of the triangle represents a player, and there's one more player than sides in our model (because the last player has no one left to play against), we need to add one more to get the total number of players.
Final answer: There were 10 players in the tournament.
Solution 3:
We could also use trial and error to solve this problem. Starting from a small number of players, we calculate how many games would be played in a round-robin tournament until we reach 45 games. For example, with 2 players, only 1 game is played; with 3 players, 3 games are played; with 4 players, 6 games are played, and so on. Continuing this process, we find that with 10 players, 45 games are played.
Final answer: There were 10 players in the tournament.
Ranking of solutions from best to worst:
1. Solution 1: This solution uses direct mathematical reasoning based on the properties of a round-robin tournament and solves an equation to find the answer.
2. Solution 2: This solution uses the concept of triangular numbers which requires additional steps and knowledge beyond the immediate problem context, but still arrives at the correct answer.
3. Solution 3: This solution relies on trial and error, which is less efficient and reliable than the other methods, but it eventually gets to the right answer.
Best and final answer: There were 10 players in the tournament.
```
#### reWOO style execution planning
The model now supports execution planning for complex instructions that would require making use of several tools. The output is just the plan, you must implement a mechanism to parse the output and actually call the functions!
Example prompt:
```
Please construct a systematic plan to generate an optimal response to the user instruction, utilizing a set of provided tools. Each plan will correspond to an evidence value, which will be the output of one of the available functions given an input string
that could be the user's question, one or more prior evidence values, or a combination of both.
Here are the tools available to be called:
DuckDuckGo[input]: Tool that enables the user to search for information using the DuckDuckGo search engine. This tool is helpful in locating a suitable list of sites that may contain the answer to the user's query. It does not directly answer the question but finds a list of sites that might have the answer.
TextScraper[input]: Load one or more websites from the input string containing newline delimited links, where input is one or more links, and produces plain text output containing the content of the links.
HyperlinkExtractor[input]: Extract links from plain text and produces a plain text, newline delimited response of links.
KnowledgeModel[input]: Question answering language model, particularly useful in answering questions based on an input passage of text. The input must be a text question that references an :evidence[n]: variable, e.g. What color is the cat, given :evidence1:?
The output should be in format:
Plan: [first action to take based on input question]
:evidence0: = [function to call with input parameter]
Plan: [next action to take, based on result of :evidence0:]
:evidence1: = [next function to call and input parameter, which may include reference to previous evidence, e.g. "Given context :evidence0"]
...
Answer: [:evidence[n]: containing the final answer.]
Question: Who won the Nobel Prize in Literature in 2020 and what is their most famous work?
```
Response:
```
Plan: Begin by conducting a web search to find out who won the Nobel Prize in Literature in 2020.
:evidence0: = DuckDuckGo[Nobel Prize in Literature 2020 winner]
Plan: Utilize the KnowledgeModel to interpret the search results and find the name of the laureate.
:evidence1: = KnowledgeModel[Who won the Nobel Prize in Literature in 2020, given :evidence0:?]
Plan: Conduct another web search to find the most famous work of the identified laureate.
:evidence2: = DuckDuckGo[Most famous work of :evidence1:]
Plan: Extract the relevant links from the DuckDuckGo search results for a more focused search.
:evidence3: = HyperlinkExtractor[:evidence2:]
Plan: Use the TextScraper tool to extract information from the relevant links.
:evidence4: = TextScraper[:evidence3:]
Plan: Finally, utilize the KnowledgeModel to identify and summarize the most famous work of the laureate from the extracted information.
:evidence5: = KnowledgeModel[What is the most famous work of :evidence1:, given :evidence4:?]
Answer: :evidence5:
```
For this to be useful, you'd have to parse the output plan text, and implement/call each of the functions. This is just pseudo-code, completely untested off the top of my head, and obviously would requiring full implementation + hardening:
```python
import re
import requests
def inject_context(input_text, **context):
for ref in set(re.findall(r"(:evidence[0-9]+:)", input_text, re.I)):
input_text = input_text.replace(ref, context.get(ref, ""))
return input_text
def duckduckgo(input_text, **context):
search_string = inject_context(input_text, **context)
... search via duck duck go using search_string
... return text content
def link_extractor(input_text, **context):
input_text = inject_context(input_text, **context)
return "\n".join(list(set(re.findall(r"(https?://[^\s]+?\.?)", input_text, re.I))))
def scrape(input_text, **context):
input_text = inject_context(input_text, **context)
text = []
for link in input_text.splitlines():
text.append(requests.get(link).text)
return "\n".join(text)
def infer(input_text, **context)
prompt = inject_context(input_text, **context)
... call model with prompt, return output
def parse_plan(plan):
method_map = {
"DuckDuckGo": duckduckgo,
"HyperlinkExtractor": link_extractor,
"KnowledgeModel": infer,
"TextScraper": scrape,
}
context = {}
for line in plan.strip().splitlines():
if line.startswith("Plan:"):
print(line)
continue
parts = re.match("^(:evidence[0-9]+:)\s*=\s*([^\[]+])(\[.*\])\s$", line, re.I)
if not parts:
if line.startswith("Answer: "):
return context.get(line.split(" ")[-1].strip(), "Answer couldn't be generated...")
raise RuntimeError("bad format: " + line)
context[parts.group(1)] = method_map[parts.group(2)](parts.group(3), **context)
```
### Contribute
If you're interested in new functionality, particularly a new "instructor" type to generate a specific type of training data,
take a look at the dataset generation tool repo: https://github.com/jondurbin/airoboros and either make a PR or open an issue with details.
To help me with the OpenAI/compute costs:
- https://bmc.link/jondurbin
- ETH 0xce914eAFC2fe52FdceE59565Dd92c06f776fcb11
- BTC bc1qdwuth4vlg8x37ggntlxu5cjfwgmdy5zaa7pswf
### Licence and usage restrictions
The airoboros 2.0/m2.0 models are built on top of either llama or llama-2. Any model with `-l2-` in the name uses llama2, `..-33b-...` and `...-65b-...` are based on the original llama.
#### Llama (original) models
If the model was based on the original llama (33b/65b), the license is __cc-by-nc-4.0__ and is for research/academic use only -- no commercial usage whatsoever!
#### Llama-2 models
Base model has a custom Meta license:
- See the [meta-license/LICENSE.txt](meta-license/LICENSE.txt) file attached for the original license provided by Meta.
- See also [meta-license/USE_POLICY.md](meta-license/USE_POLICY.md) and [meta-license/Responsible-Use-Guide.pdf](meta-license/Responsible-Use-Guide.pdf), also provided by Meta.
The fine-tuning data was generated by OpenAI API calls to gpt-4, via [airoboros](https://github.com/jondurbin/airoboros)
The ToS for OpenAI API usage has a clause preventing the output from being used to train a model that __competes__ with OpenAI
- what does *compete* actually mean here?
- these small open source models will not produce output anywhere near the quality of gpt-4, or even gpt-3.5, so I can't imagine this could credibly be considered competing in the first place
- if someone else uses the dataset to do the same, they wouldn't necessarily be violating the ToS because they didn't call the API, so I don't know how that works
- the training data used in essentially all large language models includes a significant amount of copyrighted or otherwise non-permissive licensing in the first place
- other work using the self-instruct method, e.g. the original here: https://github.com/yizhongw/self-instruct released the data and model as apache-2
I am purposingly leaving this license ambiguous (other than the fact you must comply with the Meta original license for llama-2) because I am not a lawyer and refuse to attempt to interpret all of the terms accordingly.
Your best bet is probably to avoid using this commercially due to the OpenAI API usage.
Either way, by using this model, you agree to completely indemnify me. | [
-0.2872447967529297,
-0.8478116393089294,
0.4856773912906647,
0.23792864382266998,
-0.14801117777824402,
-0.2562846541404724,
-0.1244235411286354,
-0.33297619223594666,
0.1457553207874298,
0.4088686406612396,
-0.6448259353637695,
-0.5228108763694763,
-0.39651790261268616,
0.275098979473114,
-0.2438804656267166,
1.065483570098877,
-0.07986170053482056,
-0.0907314270734787,
-0.03320547565817833,
0.03194993734359741,
-0.6083993911743164,
-0.42674118280410767,
-0.77522212266922,
-0.07538476586341858,
0.38227424025535583,
0.42738044261932373,
0.4179176986217499,
0.6018089652061462,
0.5100607872009277,
0.35610929131507874,
0.01613505557179451,
0.24576672911643982,
-0.39627179503440857,
0.06080200523138046,
-0.12268254160881042,
-0.4615766406059265,
-0.32091671228408813,
0.11961130797863007,
0.369943767786026,
0.4184314012527466,
-0.20196326076984406,
0.28959938883781433,
-0.0023155342787504196,
0.37083661556243896,
-0.4382038712501526,
0.19868500530719757,
-0.4244321286678314,
0.037662800401449203,
-0.10771723836660385,
-0.4564114809036255,
-0.3240620791912079,
-0.23190174996852875,
0.06150960549712181,
-0.9536352753639221,
-0.055717114359140396,
0.11173620074987411,
0.9138903617858887,
0.3313229978084564,
-0.4357846975326538,
-0.36902010440826416,
-0.5155697464942932,
0.770679235458374,
-0.7548549175262451,
0.11136847734451294,
0.6272367238998413,
0.37246569991111755,
-0.3416900336742401,
-0.7950682044029236,
-0.6140412092208862,
-0.1455886960029602,
-0.2519887387752533,
0.22673407196998596,
-0.10903303325176239,
-0.0683479979634285,
0.46539953351020813,
0.05726069584488869,
-0.7925650477409363,
-0.106950543820858,
-0.5709230303764343,
-0.14744435250759125,
0.6272531747817993,
0.33332759141921997,
0.24723218381404877,
-0.15852870047092438,
-0.360215425491333,
-0.02411733940243721,
-0.4828704297542572,
0.2544597089290619,
0.39552778005599976,
0.37721413373947144,
-0.28646573424339294,
0.49439528584480286,
-0.3157619535923004,
0.5685129761695862,
0.017448894679546356,
-0.17488698661327362,
0.13002678751945496,
-0.4918452203273773,
-0.2318575382232666,
-0.17146767675876617,
1.0338581800460815,
0.627747118473053,
0.13014556467533112,
0.019426438957452774,
-0.040335867553949356,
-0.09890837222337723,
0.14445796608924866,
-0.8831308484077454,
-0.21097332239151,
0.5650393962860107,
-0.4819267690181732,
-0.3365088999271393,
-0.026424039155244827,
-0.7745423913002014,
-0.186590313911438,
-0.18485145270824432,
0.5208821892738342,
-0.37263795733451843,
0.016719261184334755,
0.11910038441419601,
-0.3003995418548584,
0.20574933290481567,
0.4204973578453064,
-0.7898181676864624,
0.5032551884651184,
0.3911815583705902,
0.856747567653656,
0.05911564826965332,
-0.34406909346580505,
-0.5246171355247498,
-0.07151199877262115,
-0.10460247099399567,
0.7105206251144409,
-0.40195131301879883,
-0.34124335646629333,
-0.24318785965442657,
0.31067660450935364,
0.01909877546131611,
-0.2939649522304535,
0.28340238332748413,
-0.4137363135814667,
0.5503862500190735,
-0.4334924817085266,
-0.44700074195861816,
-0.2735185921192169,
0.25071799755096436,
-0.43420901894569397,
0.9044637680053711,
0.09377280622720718,
-0.7698523998260498,
-0.04262905940413475,
-0.9438934922218323,
-0.3341658115386963,
-0.040208883583545685,
-0.0006117669399827719,
-0.061709363013505936,
-0.3621087372303009,
0.13692349195480347,
0.31315848231315613,
-0.36637169122695923,
0.14320272207260132,
-0.2059590071439743,
-0.43446600437164307,
0.3689311146736145,
-0.3113573491573334,
1.114709496498108,
0.3310108482837677,
-0.22856441140174866,
0.09213902801275253,
-0.6475607752799988,
-0.0061962236650288105,
0.21689124405384064,
-0.48022985458374023,
-0.14453016221523285,
0.09642879664897919,
-0.011748564429581165,
0.03164205700159073,
0.3076574504375458,
-0.45365914702415466,
0.2807072699069977,
-0.32088080048561096,
0.8150435090065002,
0.7079110145568848,
0.14274200797080994,
0.31817612051963806,
-0.34024977684020996,
0.45233914256095886,
-0.049387622624635696,
0.3197232484817505,
-0.3879249095916748,
-0.6251295208930969,
-0.5228245854377747,
-0.0011022082762792706,
0.1738179326057434,
0.9128695726394653,
-0.5852022171020508,
0.44280341267585754,
-0.020770270377397537,
-0.42757365107536316,
-0.2889864146709442,
-0.09267398715019226,
0.3256518542766571,
0.6643193960189819,
0.494842529296875,
-0.09527698904275894,
-0.6702582836151123,
-0.6968894004821777,
0.1448093205690384,
-0.2033468782901764,
0.01879938319325447,
0.4509209990501404,
0.6566208004951477,
-0.18406689167022705,
0.842887282371521,
-0.7761809825897217,
-0.030830828472971916,
-0.0693010464310646,
0.04703729972243309,
0.28574877977371216,
0.5696640610694885,
0.4917975664138794,
-0.6709343194961548,
-0.3648653030395508,
-0.0793900340795517,
-0.8225805163383484,
-0.10445991903543472,
-0.07534469664096832,
-0.2386230081319809,
-0.004691415000706911,
0.30712658166885376,
-0.6213157176971436,
0.4175003170967102,
0.2695334553718567,
-0.4533335268497467,
0.5982462763786316,
-0.12930916249752045,
0.251952588558197,
-1.1683582067489624,
0.2770424783229828,
-0.14462250471115112,
-0.13878825306892395,
-0.6183215975761414,
0.32147416472435,
-0.19713784754276276,
-0.03293730318546295,
-0.4638676047325134,
0.6447304487228394,
-0.30048057436943054,
0.072669118642807,
-0.07441859692335129,
0.14204920828342438,
0.18121007084846497,
0.5795814990997314,
-0.12086871266365051,
0.864327609539032,
0.44935154914855957,
-0.6615064740180969,
0.5362991690635681,
0.22477830946445465,
-0.05001915618777275,
0.3502117693424225,
-0.8277370929718018,
0.20617488026618958,
-0.08017836511135101,
0.2665843665599823,
-1.0417112112045288,
-0.16947026550769806,
0.5353224277496338,
-0.5925905108451843,
0.0192258320748806,
-0.10656827688217163,
-0.3488829433917999,
-0.4660170376300812,
-0.4314488470554352,
0.29558834433555603,
0.4270011782646179,
-0.28057101368904114,
0.4630126357078552,
0.3431616425514221,
0.04921833425760269,
-0.5253822803497314,
-0.6863996386528015,
0.07546518743038177,
-0.32260003685951233,
-0.5279523730278015,
0.2770563066005707,
-0.40301045775413513,
-0.2759704887866974,
-0.17791789770126343,
0.11371250450611115,
-0.27602723240852356,
0.3057415783405304,
0.17802494764328003,
0.21738116443157196,
-0.130059152841568,
-0.07887270301580429,
0.09572228789329529,
-0.014205067418515682,
0.04461090639233589,
-0.37476879358291626,
0.7398501634597778,
-0.2026379108428955,
-0.10212715715169907,
-0.6702712178230286,
0.4941934049129486,
0.3213278353214264,
-0.1981000155210495,
0.4835553765296936,
0.5289909243583679,
-0.4375322163105011,
0.17909906804561615,
-0.2267659604549408,
-0.3154194951057434,
-0.52783203125,
0.18979911506175995,
-0.3246838450431824,
-0.575482964515686,
0.6548092365264893,
0.3225315511226654,
0.22111129760742188,
0.43368688225746155,
0.39826950430870056,
-0.25399473309516907,
0.8066921234130859,
0.25433388352394104,
0.18797849118709564,
0.28363582491874695,
-0.5038626790046692,
-0.018850062042474747,
-0.7863245606422424,
-0.3561219573020935,
-0.5490602254867554,
-0.3272654712200165,
-0.5670956373214722,
-0.2654368579387665,
0.291350781917572,
0.258273184299469,
-0.46923506259918213,
0.48661091923713684,
-0.6944621801376343,
0.47406119108200073,
0.6585738062858582,
0.13178086280822754,
0.1308547407388687,
-0.13698680698871613,
0.020992843434214592,
0.07502514868974686,
-0.5163552761077881,
-0.553790271282196,
1.0966317653656006,
0.24031025171279907,
0.6141768097877502,
0.18127770721912384,
0.7421941161155701,
0.2642289102077484,
0.039673514664173126,
-0.767053484916687,
0.6620097160339355,
-0.0254026111215353,
-0.5357465147972107,
-0.4504782259464264,
-0.3205365836620331,
-1.0533652305603027,
0.20522059500217438,
-0.0713147222995758,
-0.9067468643188477,
0.16110122203826904,
0.13304415345191956,
-0.7590107917785645,
0.01368430070579052,
-0.7318511009216309,
0.8486665487289429,
-0.22631123661994934,
-0.3255653977394104,
0.11107530444860458,
-0.740053117275238,
0.2639898359775543,
0.13360589742660522,
0.17853084206581116,
0.004988687578588724,
-0.07989129424095154,
0.8532301187515259,
-0.6958914399147034,
0.8511066436767578,
-0.24092286825180054,
0.1448354423046112,
0.49186840653419495,
-0.002762624528259039,
0.4087948203086853,
0.19175152480602264,
-0.022058721631765366,
0.142072394490242,
0.29458823800086975,
-0.2278493046760559,
-0.5354793667793274,
0.5689862370491028,
-0.8376853466033936,
-0.47853994369506836,
-0.375076562166214,
-0.5245673656463623,
0.21637611091136932,
0.36030814051628113,
0.44697949290275574,
0.5378137826919556,
-0.06629262864589691,
-0.04400103911757469,
0.5004372000694275,
-0.30268096923828125,
0.526658296585083,
0.563928484916687,
-0.24197833240032196,
-0.5507876873016357,
0.7177268862724304,
0.17366428673267365,
-0.03838816657662392,
0.5764641761779785,
0.37632817029953003,
-0.30386635661125183,
-0.37711653113365173,
-0.6362408399581909,
0.17573601007461548,
-0.579224169254303,
-0.22667911648750305,
-0.8145535588264465,
-0.06063242256641388,
-0.554192304611206,
-0.06288392841815948,
-0.0025059664621949196,
-0.4953097999095917,
-0.560215175151825,
-0.017874466255307198,
0.564297080039978,
0.5429750084877014,
0.006757151801139116,
0.546271562576294,
-0.6162559986114502,
0.23270581662654877,
0.3068220913410187,
0.11323676258325577,
-0.03015679307281971,
-0.5941411256790161,
-0.06732074916362762,
0.2204769104719162,
-0.4300740361213684,
-1.1052719354629517,
0.3489648699760437,
0.048600148409605026,
0.4459493160247803,
0.4899768829345703,
-0.016665590927004814,
0.7361598014831543,
-0.544158935546875,
1.0115910768508911,
-0.006846547592431307,
-0.7822995185852051,
0.7583306431770325,
-0.5526488423347473,
0.115542933344841,
0.5197377800941467,
0.3877752721309662,
-0.5754432082176208,
-0.17154888808727264,
-0.46938955783843994,
-0.8204506039619446,
0.9173330664634705,
0.29896795749664307,
0.02307095192372799,
-0.10762155801057816,
0.4559515118598938,
0.0009903700556606054,
0.2283504158258438,
-0.7541394829750061,
-0.3549787998199463,
-0.4159587323665619,
-0.19171848893165588,
0.03396410495042801,
-0.04845333471894264,
-0.2732917070388794,
-0.34504300355911255,
0.47490814328193665,
-0.10624755173921585,
0.5623703598976135,
0.2002529352903366,
0.03076808713376522,
0.07966335117816925,
0.15255160629749298,
0.7781735062599182,
0.5165079236030579,
-0.30501100420951843,
0.036874447017908096,
0.19791020452976227,
-0.4864793121814728,
0.10648694634437561,
0.19722868502140045,
-0.27974748611450195,
-0.2553931176662445,
0.3227601647377014,
0.7106609344482422,
-0.044395510107278824,
-0.5666913986206055,
0.4302532374858856,
-0.1878497451543808,
-0.11775454133749008,
-0.31592845916748047,
0.25229716300964355,
0.08644699305295944,
0.15699972212314606,
0.22761192917823792,
-0.10164284706115723,
0.4045921266078949,
-0.6287521719932556,
0.10039142519235611,
0.27432453632354736,
0.004271474666893482,
-0.3642304241657257,
0.6704062223434448,
0.19956466555595398,
-0.6126995086669922,
0.5677602291107178,
-0.49725887179374695,
-0.5160858631134033,
0.8339702486991882,
0.7097300291061401,
0.627986490726471,
-0.18208254873752594,
0.27278295159339905,
0.5199052691459656,
0.34590259194374084,
-0.16255928575992584,
0.5952560305595398,
-0.12337753176689148,
-0.5703218579292297,
-0.09629494696855545,
-0.5990545749664307,
-0.2581493556499481,
0.21718086302280426,
-0.5302557945251465,
0.21865738928318024,
-0.6537393927574158,
-0.1819990873336792,
0.008569053374230862,
0.11360456049442291,
-0.6646916270256042,
0.204224094748497,
-0.18192416429519653,
0.8966429829597473,
-0.9248245358467102,
0.46432775259017944,
0.7719096541404724,
-0.6930547952651978,
-0.8440393209457397,
-0.10782231390476227,
0.08524332195520401,
-0.6629706025123596,
0.3723277449607849,
0.2514439821243286,
0.15124036371707916,
-0.000660211662761867,
-0.7341219186782837,
-0.9352929592132568,
1.2115553617477417,
0.10073722153902054,
-0.3865405023097992,
-0.13549456000328064,
-0.015272010117769241,
0.5271212458610535,
-0.39700251817703247,
0.6235285401344299,
0.4852955937385559,
0.5853049755096436,
-0.010595985688269138,
-0.8758077621459961,
0.3271072208881378,
-0.40043577551841736,
-0.0689261183142662,
-0.015697015449404716,
-0.8230509161949158,
1.0631004571914673,
-0.2927470803260803,
-0.21379010379314423,
0.10195407271385193,
0.43672946095466614,
0.15038958191871643,
0.31814947724342346,
0.35335537791252136,
0.45617279410362244,
0.9856265187263489,
-0.08558560162782669,
0.9658815264701843,
-0.25640302896499634,
0.2547870874404907,
1.0839723348617554,
-0.12480843812227249,
0.7447431683540344,
0.3707747757434845,
-0.4271283745765686,
0.5291615128517151,
0.818185567855835,
-0.12411551177501678,
0.546712338924408,
0.0630885660648346,
0.030518442392349243,
0.03885604441165924,
-0.0028975270688533783,
-0.41081878542900085,
0.4766557216644287,
0.2532408833503723,
-0.17463457584381104,
-0.08232314139604568,
-0.011994623579084873,
0.19122381508350372,
-0.1340325027704239,
-0.08663778752088547,
0.69922935962677,
-0.02321208082139492,
-0.758180558681488,
0.6335088014602661,
0.1631128340959549,
0.6329931616783142,
-0.5467998385429382,
-0.13110870122909546,
-0.31655851006507874,
-0.12163186818361282,
-0.28436586260795593,
-0.8626649975776672,
0.24568399786949158,
0.0621451810002327,
-0.32161301374435425,
0.04410282522439957,
0.40271252393722534,
-0.29555800557136536,
-0.3129173219203949,
0.13873177766799927,
0.2258484810590744,
0.6103600263595581,
0.07303271442651749,
-0.7058317065238953,
0.11515834182500839,
0.1030956581234932,
-0.261316180229187,
0.14419996738433838,
0.33572909235954285,
-0.040721096098423004,
0.6504092812538147,
0.7171613574028015,
-0.01062055490911007,
-0.031012235209345818,
-0.1163121685385704,
0.8199091553688049,
-0.6458567976951599,
-0.5623565912246704,
-0.8007962703704834,
0.573380172252655,
-0.13170994818210602,
-0.44861704111099243,
0.580982506275177,
0.6189040541648865,
0.678739607334137,
0.08225825428962708,
0.7300927042961121,
-0.2737189829349518,
0.29669734835624695,
-0.492342472076416,
0.5982064604759216,
-0.5929425358772278,
0.3212381899356842,
-0.12642636895179749,
-0.608472466468811,
-0.07430624961853027,
0.8045896291732788,
-0.19826295971870422,
-0.00006209774437593296,
0.6331164836883545,
0.8761414885520935,
0.021822994574904442,
0.11539547145366669,
-0.026377413421869278,
0.2262888103723526,
0.35147759318351746,
0.5967208743095398,
0.6651239991188049,
-0.6012002825737,
0.5201398730278015,
-0.2634087800979614,
-0.42708852887153625,
-0.10484243184328079,
-0.722002387046814,
-0.7911813855171204,
-0.5211524367332458,
-0.06682277470827103,
-0.38113105297088623,
0.11235006898641586,
1.0761851072311401,
0.6032032370567322,
-0.7903777956962585,
-0.37106069922447205,
0.03393697366118431,
0.08274010568857193,
-0.28441184759140015,
-0.2941097021102905,
0.2452915906906128,
-0.1739501804113388,
-0.6455366015434265,
0.3999824821949005,
0.020976640284061432,
0.1185639351606369,
-0.14451263844966888,
-0.05064094811677933,
-0.35283562541007996,
0.1304207146167755,
0.5699953436851501,
0.3261788487434387,
-0.6607106328010559,
-0.26297903060913086,
0.1673106551170349,
-0.10730785876512527,
0.04532819613814354,
0.4648420512676239,
-0.678831160068512,
0.31968051195144653,
0.535847544670105,
0.26310962438583374,
0.3859507143497467,
0.09029106795787811,
0.32270440459251404,
-0.5471938252449036,
0.07793548703193665,
0.08798637241125107,
0.3534196615219116,
0.1888531744480133,
-0.6797033548355103,
0.5201154351234436,
0.308636873960495,
-0.6407750844955444,
-0.8492892980575562,
0.04037066176533699,
-0.9985702037811279,
-0.38760456442832947,
1.1994117498397827,
-0.1534011960029602,
-0.18118610978126526,
-0.1672859489917755,
-0.4061411917209625,
0.1661878228187561,
-0.6316899657249451,
0.6309198141098022,
0.6152733564376831,
-0.38514015078544617,
0.09691103547811508,
-0.48476916551589966,
0.4097302258014679,
-0.007139536552131176,
-0.8617860078811646,
-0.0364033542573452,
0.47660118341445923,
0.5144506096839905,
0.2650318145751953,
0.9055246114730835,
0.09733565896749496,
0.25720536708831787,
0.028664983808994293,
-0.07421456277370453,
-0.22190679609775543,
-0.37032783031463623,
-0.19269713759422302,
0.09996403008699417,
-0.23881548643112183,
-0.3085598349571228
] |
timm/inception_resnet_v2.tf_in1k | timm | "2023-05-10T01:09:00Z" | 11,687 | 0 | timm | [
"timm",
"pytorch",
"safetensors",
"image-classification",
"dataset:imagenet-1k",
"arxiv:1602.07261",
"license:apache-2.0",
"region:us"
] | image-classification | "2023-04-25T21:33:47Z" | ---
tags:
- image-classification
- timm
library_name: timm
license: apache-2.0
datasets:
- imagenet-1k
---
# Model card for inception_resnet_v2.tf_in1k
A Inception-ResNet-v2 image classification model. Trained on ImageNet-1k paper authors. Ported from Tensorflow via Cadene's pretrained-models.pytorch.
## Model Details
- **Model Type:** Image classification / feature backbone
- **Model Stats:**
- Params (M): 55.8
- GMACs: 13.2
- Activations (M): 25.1
- Image size: 299 x 299
- **Papers:**
- https://arxiv.org/abs/1602.07261: https://arxiv.org/abs/1602.07261
- **Original:**
- https://github.com/tensorflow/models
- https://github.com/Cadene/pretrained-models.pytorch
- **Dataset:** ImageNet-1k
## Model Usage
### Image Classification
```python
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model('inception_resnet_v2.tf_in1k', pretrained=True)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
```
### Feature Map Extraction
```python
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model(
'inception_resnet_v2.tf_in1k',
pretrained=True,
features_only=True,
)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
for o in output:
# print shape of each feature map in output
# e.g.:
# torch.Size([1, 64, 147, 147])
# torch.Size([1, 192, 71, 71])
# torch.Size([1, 320, 35, 35])
# torch.Size([1, 1088, 17, 17])
# torch.Size([1, 1536, 8, 8])
print(o.shape)
```
### Image Embeddings
```python
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model(
'inception_resnet_v2.tf_in1k',
pretrained=True,
num_classes=0, # remove classifier nn.Linear
)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor
# or equivalently (without needing to set num_classes=0)
output = model.forward_features(transforms(img).unsqueeze(0))
# output is unpooled, a (1, 1536, 8, 8) shaped tensor
output = model.forward_head(output, pre_logits=True)
# output is a (1, num_features) shaped tensor
```
## Model Comparison
Explore the dataset and runtime metrics of this model in timm [model results](https://github.com/huggingface/pytorch-image-models/tree/main/results).
## Citation
```bibtex
@article{Szegedy2016Inceptionv4IA,
title={Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning},
author={Christian Szegedy and Sergey Ioffe and Vincent Vanhoucke and Alexander A. Alemi},
journal={ArXiv},
year={2016},
volume={abs/1602.07261}
}
```
| [
-0.4579610526561737,
-0.4719267189502716,
0.03491080924868584,
0.05378524214029312,
-0.37588754296302795,
-0.26861289143562317,
-0.19353747367858887,
-0.40584906935691833,
0.19855496287345886,
0.39235684275627136,
-0.50956791639328,
-0.7261732220649719,
-0.6813244819641113,
-0.10144316405057907,
-0.27234145998954773,
0.8992958664894104,
-0.029644358903169632,
-0.021869497373700142,
-0.3182627260684967,
-0.4391922056674957,
-0.18496467173099518,
-0.19098185002803802,
-1.0585060119628906,
-0.44634518027305603,
0.3209685981273651,
0.2774956226348877,
0.3326100707054138,
0.5540969371795654,
0.6301043629646301,
0.4546685218811035,
-0.08750645816326141,
-0.032499007880687714,
-0.37183764576911926,
-0.20299281179904938,
0.2955781817436218,
-0.6335798501968384,
-0.3232641816139221,
0.2689536213874817,
0.8599140048027039,
0.3551084101200104,
0.036496274173259735,
0.5047187209129333,
0.23170432448387146,
0.49377402663230896,
-0.16060063242912292,
0.09049788862466812,
-0.37749287486076355,
0.2699367105960846,
-0.12153912335634232,
0.10168705135583878,
-0.2337234765291214,
-0.4426652193069458,
0.3079020380973816,
-0.4989851117134094,
0.5347029566764832,
-0.015142438001930714,
1.388322114944458,
0.30308592319488525,
0.17078430950641632,
0.05193888023495674,
-0.29853951930999756,
0.7851967215538025,
-0.7821602821350098,
0.33383938670158386,
0.2525476813316345,
0.156435027718544,
-0.03920381888747215,
-1.2723191976547241,
-0.543217122554779,
-0.13719798624515533,
-0.1277843415737152,
-0.09215860068798065,
-0.1562156081199646,
0.030898554250597954,
0.2542170286178589,
0.42522475123405457,
-0.3377499580383301,
0.2215602993965149,
-0.7227983474731445,
-0.2076534628868103,
0.4570062756538391,
-0.08376938104629517,
0.2453877031803131,
-0.10127461701631546,
-0.5457212924957275,
-0.4357117712497711,
-0.3961605429649353,
0.27022784948349,
0.2782832980155945,
0.17544277012348175,
-0.6429880857467651,
0.38971734046936035,
0.18542928993701935,
0.6043079495429993,
0.055113837122917175,
-0.3553178906440735,
0.61841881275177,
0.023610487580299377,
-0.4372274577617645,
-0.07937648892402649,
1.0253652334213257,
0.32810136675834656,
0.2612040340900421,
0.06270774453878403,
-0.01075436919927597,
-0.47567975521087646,
0.034878022968769073,
-1.1641370058059692,
-0.24602849781513214,
0.3959851562976837,
-0.5404562950134277,
-0.48233190178871155,
0.2240309864282608,
-0.5879175066947937,
-0.13849984109401703,
-0.03358496353030205,
0.5536468029022217,
-0.599256157875061,
-0.4826142489910126,
-0.010000786744058132,
-0.190399169921875,
0.46278464794158936,
0.07233086228370667,
-0.4604722559452057,
0.017823591828346252,
0.3437769412994385,
1.2155418395996094,
0.11969035118818283,
-0.4796430766582489,
-0.011527073569595814,
-0.4128495156764984,
-0.28844502568244934,
0.5056349039077759,
0.0007906557293608785,
-0.10728953778743744,
-0.3246650993824005,
0.30813950300216675,
-0.09950342029333115,
-0.6375489234924316,
0.2605474293231964,
-0.2656611204147339,
0.31762099266052246,
0.04556000232696533,
-0.30390456318855286,
-0.629676342010498,
0.3280617594718933,
-0.38132143020629883,
1.1934524774551392,
0.4765213131904602,
-0.844204843044281,
0.3358551561832428,
-0.521855890750885,
-0.0883311927318573,
-0.27060896158218384,
-0.13967733085155487,
-1.0825730562210083,
-0.09622104465961456,
0.07191338390111923,
0.5617853999137878,
-0.3580629229545593,
0.01362309418618679,
-0.5558508038520813,
-0.20963864028453827,
0.2715947926044464,
-0.072770856320858,
1.0531957149505615,
0.19131921231746674,
-0.41218993067741394,
0.1831076443195343,
-0.6220139265060425,
0.19438128173351288,
0.48904481530189514,
-0.21358250081539154,
0.05747920647263527,
-0.6558536887168884,
0.05185379460453987,
0.29870957136154175,
0.15795521438121796,
-0.6151986718177795,
0.15942227840423584,
-0.31059297919273376,
0.6222684383392334,
0.594393253326416,
-0.0009776883525773883,
0.25503888726234436,
-0.3318023979663849,
0.2759135365486145,
0.4374946057796478,
0.19773657619953156,
-0.005469926167279482,
-0.5540719628334045,
-0.8875910043716431,
-0.3994286358356476,
0.3618990182876587,
0.3522642254829407,
-0.4544595181941986,
0.44672662019729614,
-0.2728080153465271,
-0.8045302629470825,
-0.5894840955734253,
0.020646722987294197,
0.48572471737861633,
0.7609743475914001,
0.3455178141593933,
-0.47585800290107727,
-0.5799668431282043,
-0.9946151971817017,
0.1433379203081131,
-0.048877518624067307,
0.056106820702552795,
0.30201318860054016,
0.6174471974372864,
-0.04185377061367035,
0.8506413698196411,
-0.40267887711524963,
-0.30619144439697266,
-0.20835570991039276,
0.09372003376483917,
0.4117732346057892,
0.9412484169006348,
0.8179455399513245,
-0.5654734373092651,
-0.2986363470554352,
-0.2282373458147049,
-1.0793904066085815,
0.2758994698524475,
-0.06674305349588394,
-0.19659963250160217,
0.2532159984111786,
0.24122916162014008,
-0.48531270027160645,
0.6162975430488586,
0.08716659992933273,
-0.2772166132926941,
0.41520312428474426,
-0.21893587708473206,
0.2608757019042969,
-1.295570969581604,
0.12561023235321045,
0.29618844389915466,
-0.05524276942014694,
-0.3594495356082916,
0.04825026914477348,
-0.08486130088567734,
-0.12083830684423447,
-0.6385090351104736,
0.5450988411903381,
-0.5376908779144287,
-0.2941117584705353,
-0.06381502747535706,
-0.2579020857810974,
0.08458894491195679,
0.7011612057685852,
-0.000057860386732500046,
0.5015725493431091,
0.9120152592658997,
-0.5237289667129517,
0.48799246549606323,
0.426021933555603,
-0.3195677697658539,
0.4121617376804352,
-0.7425520420074463,
0.2826147675514221,
-0.117573082447052,
0.13529731333255768,
-1.0772294998168945,
-0.18094825744628906,
0.3658296465873718,
-0.7123585939407349,
0.6389431953430176,
-0.5389922857284546,
-0.2785002291202545,
-0.5413511991500854,
-0.46995314955711365,
0.48596400022506714,
0.7777525186538696,
-0.684506893157959,
0.4393060803413391,
0.14612609148025513,
0.3325381875038147,
-0.6666672229766846,
-1.0113998651504517,
-0.12333312630653381,
-0.45411327481269836,
-0.7435017228126526,
0.4305242598056793,
0.23400302231311798,
0.16605941951274872,
0.252086341381073,
-0.015238320454955101,
-0.11273954808712006,
-0.07618056237697601,
0.5523205399513245,
0.23769953846931458,
-0.47498252987861633,
-0.11612426489591599,
-0.3152063488960266,
-0.05758535489439964,
-0.006343285087496042,
-0.48285287618637085,
0.6378576755523682,
-0.2885640263557434,
-0.149077907204628,
-0.9496016502380371,
-0.2091091424226761,
0.5505433082580566,
-0.11868910491466522,
0.9776462912559509,
1.1456167697906494,
-0.5687062740325928,
0.046732254326343536,
-0.5295856595039368,
-0.3535623848438263,
-0.46708229184150696,
0.5321056246757507,
-0.4206884205341339,
-0.5085608959197998,
0.8711612224578857,
0.006721307523548603,
0.1587119996547699,
0.7475289702415466,
0.197442427277565,
-0.07861613482236862,
0.4192773997783661,
0.6029857993125916,
0.21091628074645996,
0.719561755657196,
-1.2044293880462646,
-0.13977749645709991,
-0.9795989990234375,
-0.5779947638511658,
-0.38355162739753723,
-0.5768372416496277,
-0.5055696964263916,
-0.18725764751434326,
0.43508100509643555,
0.38821670413017273,
-0.4807538092136383,
0.5291194319725037,
-0.8482809662818909,
0.06587658077478409,
0.7532624006271362,
0.5677024126052856,
-0.36045506596565247,
0.40915337204933167,
-0.208238422870636,
0.03306030482053757,
-0.7754185795783997,
-0.23003529012203217,
1.1267346143722534,
0.45846349000930786,
0.5110798478126526,
-0.17430736124515533,
0.7036933898925781,
-0.2023845762014389,
0.308538019657135,
-0.5463099479675293,
0.527745246887207,
-0.035839639604091644,
-0.37169739603996277,
-0.18413221836090088,
-0.3227534890174866,
-1.0548056364059448,
-0.006158717442303896,
-0.30836695432662964,
-0.732674241065979,
0.2605321705341339,
0.10462134331464767,
-0.41605910658836365,
0.8298549056053162,
-0.8037734627723694,
1.010575532913208,
-0.048868171870708466,
-0.4346618056297302,
-0.058050431311130524,
-0.5620740056037903,
0.32887139916419983,
0.18541979789733887,
-0.2864970862865448,
-0.04991859197616577,
0.1841762214899063,
1.1649399995803833,
-0.5023516416549683,
0.9163827896118164,
-0.43045419454574585,
0.38725072145462036,
0.7104156017303467,
-0.1472615748643875,
0.14434100687503815,
0.025948118418455124,
-0.12515157461166382,
0.540052056312561,
0.0011546456953510642,
-0.43779122829437256,
-0.4986801743507385,
0.6364606022834778,
-1.1098778247833252,
-0.4645557403564453,
-0.34192800521850586,
-0.28468289971351624,
0.2637428939342499,
0.1919572949409485,
0.6822332143783569,
0.8569780588150024,
0.2201433777809143,
0.3817242980003357,
0.5091770887374878,
-0.45496442914009094,
0.49113142490386963,
-0.10499606281518936,
-0.1683642417192459,
-0.6186156272888184,
0.7337606549263,
0.29591017961502075,
0.18456541001796722,
0.013285909779369831,
0.13862492144107819,
-0.47101593017578125,
-0.7165361642837524,
-0.33432480692863464,
0.38952794671058655,
-0.6945136189460754,
-0.5273690819740295,
-0.5872703194618225,
-0.6498989462852478,
-0.5888184905052185,
-0.030089952051639557,
-0.49961936473846436,
-0.3185712993144989,
-0.4821854531764984,
0.098830945789814,
0.7239311337471008,
0.5469363331794739,
-0.19551338255405426,
0.6098523736000061,
-0.5911200046539307,
0.03543766215443611,
0.0848446860909462,
0.577674150466919,
0.00657218461856246,
-1.0455650091171265,
-0.26573389768600464,
-0.09088875353336334,
-0.43664684891700745,
-0.6425707936286926,
0.3145769238471985,
0.26647424697875977,
0.46574389934539795,
0.49255800247192383,
-0.29113397002220154,
0.7432743906974792,
0.02168808877468109,
0.6220812797546387,
0.29881682991981506,
-0.458654522895813,
0.6537373661994934,
0.08789265155792236,
0.0931231901049614,
0.161285862326622,
0.3056267499923706,
-0.2827393710613251,
0.020106954500079155,
-1.0916591882705688,
-0.7245827913284302,
1.0400643348693848,
0.15623341500759125,
-0.029344089329242706,
0.285085529088974,
0.9015958905220032,
-0.014184434898197651,
0.019823959097266197,
-0.6742145419120789,
-0.43452876806259155,
-0.3551250398159027,
-0.27608591318130493,
0.028875242918729782,
-0.22350649535655975,
-0.0353059284389019,
-0.5950384736061096,
0.6850994825363159,
0.16554218530654907,
0.7622827291488647,
0.48807355761528015,
-0.022240236401557922,
-0.028749942779541016,
-0.519507646560669,
0.5027825236320496,
0.39826273918151855,
-0.39945927262306213,
0.039672061800956726,
0.23757852613925934,
-0.6256892085075378,
0.15404099225997925,
0.12055399268865585,
-0.07599710673093796,
-0.09144729375839233,
0.6348100900650024,
0.9783008098602295,
-0.06037205085158348,
0.15630677342414856,
0.3051900565624237,
-0.027476830407977104,
-0.3071766495704651,
-0.4976558983325958,
0.14163245260715485,
-0.060310617089271545,
0.3830763101577759,
0.3037995398044586,
0.41081470251083374,
-0.25011011958122253,
-0.146389439702034,
0.32613176107406616,
0.4142285883426666,
-0.3080403804779053,
-0.41655462980270386,
0.6738342046737671,
-0.14892235398292542,
-0.3193396329879761,
1.0908094644546509,
-0.07251083850860596,
-0.3759838342666626,
1.1510405540466309,
0.5138480067253113,
1.0572268962860107,
-0.04657340794801712,
-0.027609167620539665,
1.0413825511932373,
0.26530125737190247,
-0.025080109015107155,
0.012849896214902401,
0.1651206761598587,
-0.8908581733703613,
0.0644533634185791,
-0.6823930144309998,
0.2079838514328003,
0.4732336103916168,
-0.5204423666000366,
0.38327500224113464,
-0.8184791207313538,
-0.4617712199687958,
0.06799528747797012,
0.19916121661663055,
-0.9414612054824829,
0.17187988758087158,
-0.005915505811572075,
0.8823573589324951,
-0.7208502292633057,
0.726018488407135,
0.9104307889938354,
-0.7675931453704834,
-0.9884586930274963,
-0.22903509438037872,
-0.08532964438199997,
-1.0493216514587402,
0.5787391066551208,
0.48539021611213684,
0.0706411823630333,
0.3560459613800049,
-0.757142961025238,
-0.8383732438087463,
1.4962362051010132,
0.5879682302474976,
0.016642795875668526,
0.18922322988510132,
0.006001013796776533,
0.21274280548095703,
-0.503298819065094,
0.5261379480361938,
0.3320028483867645,
0.30011850595474243,
0.3637038469314575,
-0.5220118165016174,
0.11818104237318039,
-0.12617932260036469,
0.14368382096290588,
0.09646216779947281,
-0.7642386555671692,
0.8393412232398987,
-0.567339301109314,
-0.3114076256752014,
-0.012650489807128906,
0.8783374428749084,
0.2544911801815033,
0.12115466594696045,
0.5741639733314514,
1.0107178688049316,
0.45298171043395996,
-0.2970997393131256,
0.8365453481674194,
-0.1453111171722412,
0.6289669871330261,
0.5958831310272217,
0.49159759283065796,
0.5116651654243469,
0.36191731691360474,
-0.3258111774921417,
0.4726303219795227,
1.2380164861679077,
-0.33957409858703613,
0.2694973647594452,
0.20350171625614166,
0.0038327230140566826,
-0.02522253803908825,
0.04438270628452301,
-0.4950178861618042,
0.4899173378944397,
0.23662564158439636,
-0.4933747947216034,
-0.3038165271282196,
0.08775665611028671,
0.006763909477740526,
-0.3690841495990753,
-0.1670537143945694,
0.5021199584007263,
0.0928635522723198,
-0.4158097505569458,
0.8779418468475342,
0.05725177377462387,
0.7995508313179016,
-0.3742298185825348,
-0.041259653866291046,
-0.3703853487968445,
0.2291167974472046,
-0.40877631306648254,
-0.8960620760917664,
0.34134405851364136,
-0.282642662525177,
0.02166021056473255,
0.16866828501224518,
0.5452707409858704,
-0.41314640641212463,
-0.5019218325614929,
0.15629905462265015,
0.21327508985996246,
0.6565076112747192,
0.11961251497268677,
-1.216507077217102,
0.10487666726112366,
0.08142097294330597,
-0.5630643367767334,
0.17267706990242004,
0.3413490951061249,
0.12248922139406204,
0.747994065284729,
0.558822751045227,
-0.12313257157802582,
0.11784464120864868,
-0.22018763422966003,
0.6890448927879333,
-0.5055757761001587,
-0.2889535427093506,
-0.9251766800880432,
0.6326039433479309,
-0.10458175092935562,
-0.692639172077179,
0.3650852143764496,
0.6573823094367981,
0.9427925944328308,
-0.04702644795179367,
0.393410861492157,
-0.3361184298992157,
-0.056770458817481995,
-0.4186211824417114,
0.712034285068512,
-0.6478936076164246,
-0.05417951941490173,
0.038496311753988266,
-0.8551127314567566,
-0.24223361909389496,
0.6144904494285583,
-0.2300710529088974,
0.45236727595329285,
0.5296454429626465,
1.0020501613616943,
-0.4031078815460205,
-0.40234991908073425,
0.07422403246164322,
0.22551682591438293,
0.1802791953086853,
0.4237978458404541,
0.3498079180717468,
-0.8228094577789307,
0.3589605391025543,
-0.6719156503677368,
-0.1863701492547989,
-0.03852382302284241,
-0.6521256566047668,
-0.8609881401062012,
-0.9902646541595459,
-0.6718838810920715,
-0.7846752405166626,
-0.2921110689640045,
0.9587989449501038,
1.0535917282104492,
-0.7131327390670776,
-0.09470397233963013,
-0.033794984221458435,
0.16536176204681396,
-0.19980235397815704,
-0.22293782234191895,
0.7629015445709229,
-0.3188318610191345,
-0.7391012907028198,
-0.25382623076438904,
-0.027894621714949608,
0.4665732681751251,
-0.09246218949556351,
-0.11684804409742355,
-0.22123382985591888,
-0.4086150825023651,
0.0963938906788826,
0.3576532006263733,
-0.692148745059967,
-0.3321892321109772,
-0.3623237907886505,
-0.06823183596134186,
0.4247779846191406,
0.38538920879364014,
-0.6398881673812866,
0.24394050240516663,
0.42069169878959656,
0.49870091676712036,
0.804989755153656,
-0.22520579397678375,
0.06748677045106888,
-0.8349685668945312,
0.6405014991760254,
-0.14265668392181396,
0.42695799469947815,
0.45009446144104004,
-0.4104699194431305,
0.6360434889793396,
0.5610345602035522,
-0.337741881608963,
-0.8754380345344543,
-0.06193213537335396,
-0.9107831716537476,
-0.06505446135997772,
0.7709577083587646,
-0.4100271463394165,
-0.579628050327301,
0.4858986735343933,
0.07202013581991196,
0.797225296497345,
-0.0018953753169625998,
0.5036855340003967,
0.3144929111003876,
-0.10402414202690125,
-0.6567078232765198,
-0.4241042733192444,
0.5472537279129028,
0.11592228710651398,
-0.5327708125114441,
-0.5618177056312561,
-0.090721495449543,
0.8039188981056213,
0.23411568999290466,
0.49692365527153015,
-0.24750997126102448,
0.0037253962364047766,
0.14567843079566956,
0.6516048908233643,
-0.602114737033844,
-0.15208539366722107,
-0.41591593623161316,
0.028311360627412796,
0.008859380148351192,
-0.7406642436981201
] |
stablediffusionapi/all-526 | stablediffusionapi | "2023-04-26T20:04:01Z" | 11,684 | 2 | diffusers | [
"diffusers",
"stablediffusionapi.com",
"stable-diffusion-api",
"text-to-image",
"ultra-realistic",
"license:creativeml-openrail-m",
"endpoints_compatible",
"has_space",
"diffusers:StableDiffusionPipeline",
"region:us"
] | text-to-image | "2023-04-26T20:02:20Z" | ---
license: creativeml-openrail-m
tags:
- stablediffusionapi.com
- stable-diffusion-api
- text-to-image
- ultra-realistic
pinned: true
---
# All 526 API Inference
![generated from stablediffusionapi.com](https://pub-8b49af329fae499aa563997f5d4068a4.r2.dev/generations/9290108341682539305.png)
## Get API Key
Get API key from [Stable Diffusion API](http://stablediffusionapi.com/), No Payment needed.
Replace Key in below code, change **model_id** to "all-526"
Coding in PHP/Node/Java etc? Have a look at docs for more code examples: [View docs](https://stablediffusionapi.com/docs)
Model link: [View model](https://stablediffusionapi.com/models/all-526)
Credits: [View credits](https://civitai.com/?query=All%20526)
View all models: [View Models](https://stablediffusionapi.com/models)
import requests
import json
url = "https://stablediffusionapi.com/api/v3/dreambooth"
payload = json.dumps({
"key": "",
"model_id": "all-526",
"prompt": "actual 8K portrait photo of gareth person, portrait, happy colors, bright eyes, clear eyes, warm smile, smooth soft skin, big dreamy eyes, beautiful intricate colored hair, symmetrical, anime wide eyes, soft lighting, detailed face, by makoto shinkai, stanley artgerm lau, wlop, rossdraws, concept art, digital painting, looking into camera",
"negative_prompt": "painting, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, deformed, ugly, blurry, bad anatomy, bad proportions, extra limbs, cloned face, skinny, glitchy, double torso, extra arms, extra hands, mangled fingers, missing lips, ugly face, distorted face, extra legs, anime",
"width": "512",
"height": "512",
"samples": "1",
"num_inference_steps": "30",
"safety_checker": "no",
"enhance_prompt": "yes",
"seed": None,
"guidance_scale": 7.5,
"multi_lingual": "no",
"panorama": "no",
"self_attention": "no",
"upscale": "no",
"embeddings": "embeddings_model_id",
"lora": "lora_model_id",
"webhook": None,
"track_id": None
})
headers = {
'Content-Type': 'application/json'
}
response = requests.request("POST", url, headers=headers, data=payload)
print(response.text)
> Use this coupon code to get 25% off **DMGG0RBN** | [
-0.4433228373527527,
-0.703075110912323,
0.5559173822402954,
0.38057661056518555,
-0.417287677526474,
0.01009216345846653,
0.3651778995990753,
-0.3979019522666931,
0.5366730690002441,
0.586388111114502,
-0.9382648468017578,
-0.8638051152229309,
-0.3282018303871155,
0.042431462556123734,
-0.09457779675722122,
0.6124140620231628,
0.17602814733982086,
-0.14127683639526367,
-0.07946453243494034,
0.20388191938400269,
-0.26514527201652527,
-0.11669573187828064,
-0.6835149526596069,
-0.11773650348186493,
0.25330814719200134,
-0.033141568303108215,
0.555812656879425,
0.6615331768989563,
0.3034241497516632,
0.3059268593788147,
-0.20861327648162842,
-0.00971244927495718,
-0.399923712015152,
-0.326465368270874,
-0.1887081265449524,
-0.8207670450210571,
-0.6841620206832886,
-0.14159543812274933,
0.3693556785583496,
0.4975103735923767,
0.07840870320796967,
0.44603899121284485,
-0.036148801445961,
0.7708280682563782,
-0.7736124992370605,
0.3178282082080841,
-0.37082192301750183,
0.19030310213565826,
-0.05950550734996796,
0.008673863485455513,
-0.3721231520175934,
-0.3241608440876007,
-0.1274309903383255,
-0.9488094449043274,
0.3140106499195099,
0.08842311054468155,
1.2856444120407104,
0.28230294585227966,
-0.28746742010116577,
-0.10612311214208603,
-0.37927916646003723,
0.8640803098678589,
-1.0619326829910278,
0.2673552632331848,
0.5287072062492371,
-0.014281470328569412,
-0.11137676984071732,
-0.8210733532905579,
-0.6839697360992432,
0.4857039153575897,
0.20081019401550293,
0.259186327457428,
-0.5007800459861755,
-0.054119937121868134,
0.3132985234260559,
0.36455631256103516,
-0.5307168960571289,
-0.262647807598114,
-0.4665505886077881,
-0.08716769516468048,
0.6924836039543152,
0.18511152267456055,
0.14880889654159546,
-0.5575013160705566,
-0.4266718327999115,
-0.26739150285720825,
-0.4910105764865875,
0.24558833241462708,
0.6429753303527832,
0.3473980724811554,
-0.5751495361328125,
0.45860281586647034,
-0.4816552698612213,
0.769554078578949,
0.231927752494812,
-0.09911156445741653,
0.7765107750892639,
-0.1795225888490677,
-0.37475576996803284,
-0.29503750801086426,
1.1507271528244019,
0.66688072681427,
-0.05239010229706764,
0.2919016480445862,
-0.04639068618416786,
0.015219517983496189,
0.009896487928926945,
-1.0551832914352417,
-0.09183255583047867,
0.8185266256332397,
-0.780219316482544,
-0.5776403546333313,
0.09172546118497849,
-1.1429506540298462,
-0.25226011872291565,
0.1257057785987854,
0.31414493918418884,
-0.34394243359565735,
-0.5902289152145386,
0.48938804864883423,
-0.20496900379657745,
0.15852077305316925,
0.2283705174922943,
-0.847328245639801,
0.059678103774785995,
0.6746976971626282,
0.8655981421470642,
0.1568562537431717,
-0.02951296977698803,
0.2149163782596588,
0.1395612210035324,
-0.3173174560070038,
0.871906578540802,
-0.22129973769187927,
-0.5157917737960815,
-0.12616731226444244,
0.30840662121772766,
-0.15490399301052094,
-0.5402575731277466,
0.7452281713485718,
-0.5704705119132996,
-0.10974758863449097,
-0.2020828276872635,
-0.4277832806110382,
-0.40334847569465637,
0.14748728275299072,
-0.7178396582603455,
0.7371317744255066,
0.1149204820394516,
-0.8510379195213318,
0.11416218429803848,
-0.8077995777130127,
-0.16929949820041656,
-0.001204099622555077,
0.1314479112625122,
-0.5519965291023254,
-0.06951432675123215,
0.09513390809297562,
0.3268110156059265,
-0.1067245602607727,
-0.07274928689002991,
-0.7587921023368835,
-0.36184370517730713,
0.3666720986366272,
-0.31667396426200867,
1.261399507522583,
0.5155770182609558,
-0.23049725592136383,
-0.009434754960238934,
-0.977263867855072,
0.19172853231430054,
0.5147404074668884,
-0.29806840419769287,
-0.1906321495771408,
-0.28072166442871094,
0.0806317925453186,
-0.07474888116121292,
0.2714490592479706,
-0.5495247840881348,
0.22984685003757477,
-0.49678483605384827,
0.5307174921035767,
0.6149039268493652,
0.2933955490589142,
0.24858148396015167,
-0.3372710645198822,
0.753688633441925,
0.20875275135040283,
0.4592974781990051,
-0.06559589505195618,
-0.7349905967712402,
-0.6297945976257324,
-0.511900007724762,
0.2999090254306793,
0.4947587251663208,
-0.4844021201133728,
0.547806441783905,
-0.24645619094371796,
-0.6600967049598694,
-0.7287871241569519,
-0.11579849570989609,
0.32356157898902893,
0.41880857944488525,
0.14404398202896118,
-0.24582473933696747,
-0.7263708710670471,
-0.9071442484855652,
-0.03282298520207405,
-0.19120566546916962,
-0.10084032267332077,
0.23679493367671967,
0.5848458409309387,
-0.41804128885269165,
0.871789813041687,
-0.8715248107910156,
-0.01829223521053791,
-0.027827557176351547,
0.007608231157064438,
0.9171008467674255,
0.6882839798927307,
0.8472108840942383,
-0.9286834001541138,
-0.4304494261741638,
-0.4480910897254944,
-0.6972793340682983,
0.1505604088306427,
0.20627360045909882,
-0.48247402906417847,
-0.0282690841704607,
-0.02068466506898403,
-1.048231840133667,
0.6630519032478333,
0.42876073718070984,
-0.6639596819877625,
0.5392926931381226,
-0.07406724989414215,
0.542864203453064,
-1.3186497688293457,
-0.018534772098064423,
0.16517159342765808,
-0.23549821972846985,
-0.43401333689689636,
0.3703995645046234,
0.09454026073217392,
-0.04683009535074234,
-0.7516577243804932,
0.4941774308681488,
-0.3628297746181488,
0.15541307628154755,
-0.2580453157424927,
-0.02489393576979637,
0.3297063708305359,
0.4273359775543213,
-0.06162821501493454,
0.3939661383628845,
0.6557652354240417,
-0.4573831558227539,
0.5222978591918945,
0.31803858280181885,
-0.37310168147087097,
0.5764548182487488,
-0.6246533393859863,
0.12899993360042572,
0.02530314400792122,
0.47196829319000244,
-1.291775107383728,
-0.49778512120246887,
0.5173625946044922,
-0.6881709694862366,
-0.12447050958871841,
-0.6066235303878784,
-0.5995675921440125,
-0.6986925005912781,
-0.38940343260765076,
0.36944591999053955,
0.7830948233604431,
-0.461710125207901,
0.8005934357643127,
0.16642722487449646,
0.2971082031726837,
-0.7082833647727966,
-0.9157201051712036,
-0.3573068380355835,
-0.4156423807144165,
-0.7313411235809326,
0.2551451027393341,
-0.2635001540184021,
-0.29885533452033997,
0.023574121296405792,
0.04758178070187569,
-0.225691020488739,
-0.04509034752845764,
0.5105053186416626,
0.5342148542404175,
-0.20124083757400513,
-0.278078556060791,
0.05176021158695221,
-0.07242220640182495,
0.2339511513710022,
-0.3327559530735016,
0.8400726914405823,
-0.06218289956450462,
-0.6049646139144897,
-0.8804532885551453,
0.10067027807235718,
0.7463523745536804,
-0.01800399273633957,
0.5980271100997925,
0.4561169743537903,
-0.6706777215003967,
-0.04198899492621422,
-0.5906863212585449,
-0.13600818812847137,
-0.5134463310241699,
0.23662711679935455,
-0.581028163433075,
-0.30942392349243164,
1.0356067419052124,
0.0008749380358494818,
-0.08454247564077377,
0.7254812717437744,
0.4877451956272125,
-0.08076193928718567,
1.3110562562942505,
0.20283626019954681,
0.14261333644390106,
0.29038485884666443,
-0.8056378364562988,
-0.0005077474634163082,
-0.836173415184021,
-0.27927467226982117,
-0.3736706078052521,
-0.29868677258491516,
-0.46334412693977356,
-0.585188627243042,
-0.0505487322807312,
0.2303193062543869,
-0.42049604654312134,
0.27991148829460144,
-0.6892673969268799,
0.435809850692749,
0.5632264614105225,
0.3926129639148712,
0.2337145060300827,
-0.07237926870584488,
-0.030855674296617508,
0.041353434324264526,
-0.4024527966976166,
-0.3583948612213135,
1.131458044052124,
0.2979675233364105,
0.8010881543159485,
0.13518883287906647,
0.7157751321792603,
0.16374512016773224,
-0.01800270564854145,
-0.6650136113166809,
0.5304560661315918,
0.13189227879047394,
-1.041745901107788,
0.22388605773448944,
-0.2992631793022156,
-1.0298936367034912,
0.40817683935165405,
-0.23433978855609894,
-0.8118584156036377,
0.7640780210494995,
0.10981938242912292,
-0.7563387751579285,
0.5108006596565247,
-0.7979282736778259,
0.8257232904434204,
-0.05351504683494568,
-0.6350380182266235,
-0.15871216356754303,
-0.5307468175888062,
0.5173823833465576,
-0.01564117707312107,
0.6515464782714844,
-0.5144311189651489,
-0.11179929226636887,
0.7192000150680542,
-0.49245840311050415,
1.128267765045166,
-0.37693512439727783,
0.034260328859090805,
0.6479836702346802,
0.009755680337548256,
0.4002280831336975,
0.34028133749961853,
-0.24237211048603058,
0.20078957080841064,
0.27661389112472534,
-0.6091079711914062,
-0.3537827730178833,
0.8489402532577515,
-0.8685170412063599,
-0.44437435269355774,
-0.36573895812034607,
-0.4178401529788971,
-0.0265731830149889,
0.432778924703598,
0.46482160687446594,
0.15816135704517365,
0.09848044067621231,
-0.008647551760077477,
0.8520338535308838,
-0.1031765341758728,
0.547815203666687,
0.3390345573425293,
-0.5597962141036987,
-0.7226937413215637,
0.6674038171768188,
-0.17951832711696625,
0.32232287526130676,
0.14711682498455048,
0.1987071931362152,
-0.48502206802368164,
-0.5177119374275208,
-0.4708169102668762,
0.39898672699928284,
-0.8047012686729431,
-0.4403171241283417,
-0.7821681499481201,
0.08377034217119217,
-0.7923958897590637,
-0.07188476622104645,
-0.7539727091789246,
-0.39136117696762085,
-0.6750146746635437,
-0.25313299894332886,
0.6993691325187683,
0.36917170882225037,
-0.17730821669101715,
0.3344156742095947,
-0.7360660433769226,
0.3505364656448364,
0.12114371359348297,
0.280886173248291,
0.19120115041732788,
-0.555450439453125,
-0.035044703632593155,
0.2882012128829956,
-0.440912663936615,
-1.0456852912902832,
0.533342182636261,
-0.15146836638450623,
0.353092759847641,
0.9483279585838318,
0.2528032660484314,
0.9842864274978638,
-0.08039034157991409,
0.803118884563446,
0.41858166456222534,
-0.9482181072235107,
0.8248205780982971,
-0.6544749140739441,
0.17587128281593323,
0.5462595820426941,
0.3677447438240051,
-0.2650497257709503,
-0.18779082596302032,
-0.9396608471870422,
-1.1600979566574097,
0.5179351568222046,
0.08471027761697769,
0.293917179107666,
0.026620106771588326,
0.5406872630119324,
-0.08085773140192032,
0.23174501955509186,
-0.9944092035293579,
-0.5268164873123169,
-0.2832501530647278,
-0.2855667173862457,
0.5193960666656494,
-0.01896236464381218,
-0.3755567669868469,
-0.43308117985725403,
0.8168929815292358,
-0.15375952422618866,
0.31185224652290344,
0.23921334743499756,
0.38145145773887634,
-0.24030393362045288,
0.06417693197727203,
0.33653920888900757,
0.8382394909858704,
-0.5264050960540771,
-0.10664555430412292,
-0.05936615914106369,
-0.43608903884887695,
0.05160064250230789,
0.24268589913845062,
-0.3230578303337097,
-0.03155115246772766,
0.3137122094631195,
0.9156908392906189,
0.008809364400804043,
-0.5390146374702454,
0.6281277537345886,
-0.1587473601102829,
-0.48495614528656006,
-0.5060556530952454,
0.16117487847805023,
0.49543246626853943,
0.65249103307724,
0.5526435971260071,
0.2649719715118408,
0.28531262278556824,
-0.42722421884536743,
-0.08073359727859497,
0.334007203578949,
-0.24782618880271912,
-0.3888222277164459,
1.1422861814498901,
-0.053842294961214066,
-0.37023353576660156,
0.4687986671924591,
-0.33784210681915283,
-0.13274092972278595,
0.8265336155891418,
0.7088630199432373,
0.8452200889587402,
-0.07249882072210312,
0.2174309939146042,
0.7847960591316223,
-0.004468419589102268,
-0.13890521228313446,
0.8067101836204529,
0.2017408162355423,
-0.6434949636459351,
-0.3529079258441925,
-0.8908224105834961,
-0.16533169150352478,
0.2720063030719757,
-0.8463911414146423,
0.47988203167915344,
-0.7244057059288025,
-0.43523454666137695,
-0.06941362470388412,
-0.19110754132270813,
-0.6506306529045105,
0.37442904710769653,
0.09547285735607147,
0.9837037920951843,
-0.900986909866333,
0.6307693719863892,
0.7078837156295776,
-0.6299592852592468,
-1.0354151725769043,
-0.16945715248584747,
0.17618103325366974,
-0.821446418762207,
0.39637869596481323,
0.03554018214344978,
0.09746047109365463,
0.14606492221355438,
-0.8353290557861328,
-0.968280553817749,
1.1939730644226074,
0.34472987055778503,
-0.4695987403392792,
-0.017447616904973984,
0.06337512284517288,
0.44337621331214905,
-0.41829589009284973,
0.47072187066078186,
0.35698652267456055,
0.45025816559791565,
0.37735795974731445,
-0.5263777375221252,
0.21672901511192322,
-0.49206408858299255,
-0.02212800271809101,
-0.24545693397521973,
-0.945267915725708,
0.9690588116645813,
-0.4123188853263855,
0.03568006679415703,
0.2495822161436081,
0.6980106234550476,
0.8337073922157288,
0.4085274040699005,
0.6333128809928894,
1.0033478736877441,
0.6228575706481934,
-0.20065905153751373,
1.0205280780792236,
-0.2966556251049042,
0.8248466849327087,
0.6321028470993042,
-0.025272740051150322,
1.007092833518982,
0.5207730531692505,
-0.5331135392189026,
0.7474327087402344,
1.1772232055664062,
-0.30547815561294556,
0.8535836935043335,
0.15252719819545746,
-0.41375532746315,
-0.19069109857082367,
0.09946408867835999,
-0.645361065864563,
0.22994408011436462,
0.3052007257938385,
-0.40373268723487854,
0.21365216374397278,
-0.011896799318492413,
0.08836616575717926,
-0.3172919452190399,
-0.2422231137752533,
0.44472551345825195,
0.04407108202576637,
-0.3787936270236969,
0.7804320454597473,
-0.14731577038764954,
0.96075838804245,
-0.5837472081184387,
-0.00705969613045454,
-0.12738625705242157,
0.3984830975532532,
-0.4289230704307556,
-0.6002652049064636,
0.08920405060052872,
-0.15649381279945374,
-0.31626683473587036,
-0.01226659957319498,
0.5943357348442078,
0.0172067042440176,
-0.7206899523735046,
0.30478477478027344,
0.2936442196369171,
0.28913164138793945,
-0.08057829737663269,
-1.0080113410949707,
0.28757399320602417,
0.34667691588401794,
-0.5096826553344727,
0.0014570134226232767,
0.42138350009918213,
0.49810582399368286,
0.6351704001426697,
0.8158121109008789,
0.15356022119522095,
0.13647685945034027,
-0.014489933848381042,
0.7057385444641113,
-0.614992082118988,
-0.6769747734069824,
-0.9833526015281677,
0.8123788237571716,
-0.17159755527973175,
-0.20082521438598633,
0.6663797497749329,
0.897652268409729,
0.7844813466072083,
-0.46709752082824707,
0.981239378452301,
-0.2571830451488495,
0.5253146886825562,
-0.3336845636367798,
0.797538697719574,
-0.7978686690330505,
0.13813669979572296,
-0.42199766635894775,
-0.7196890711784363,
-0.1578022539615631,
0.7143018245697021,
-0.14195425808429718,
0.1866392344236374,
0.5332438349723816,
0.7532128095626831,
-0.2918119728565216,
0.10824660211801529,
-0.021899698302149773,
0.23830047249794006,
0.16965478658676147,
0.44445595145225525,
0.7032908797264099,
-0.6818499565124512,
0.46825191378593445,
-0.6542291045188904,
-0.2662793695926666,
-0.08467952907085419,
-0.7993695735931396,
-0.75,
-0.322293758392334,
-0.56482994556427,
-0.7802488207817078,
-0.1441994309425354,
0.7674298882484436,
1.042039394378662,
-0.9015321731567383,
-0.16469240188598633,
-0.10487688332796097,
0.06129705533385277,
-0.24448052048683167,
-0.32804858684539795,
0.43837928771972656,
0.34018057584762573,
-1.1690384149551392,
0.26178884506225586,
-0.17345429956912994,
0.33372771739959717,
-0.09106981009244919,
0.11791767925024033,
-0.2614184021949768,
0.09071634709835052,
0.23552599549293518,
0.27483251690864563,
-0.8315472602844238,
-0.016283610835671425,
-0.08880778402090073,
0.08076515048742294,
0.286963552236557,
0.22619883716106415,
-0.4440881311893463,
0.3296487331390381,
0.7949014902114868,
0.20335383713245392,
0.6499612927436829,
0.08494061976671219,
0.1318000853061676,
-0.43623316287994385,
0.409700483083725,
0.029733968898653984,
0.669394314289093,
0.2126426249742508,
-0.637237012386322,
0.5604320168495178,
0.6049620509147644,
-0.43556779623031616,
-0.8974145650863647,
0.024891139939427376,
-1.1635315418243408,
-0.4119638204574585,
1.0450372695922852,
-0.3118093013763428,
-0.6844021677970886,
0.19428305327892303,
-0.18486930429935455,
0.33046016097068787,
-0.4067642092704773,
0.6540881991386414,
0.5744117498397827,
-0.3718079924583435,
-0.13595888018608093,
-0.8783454895019531,
0.1700887233018875,
0.2204378992319107,
-0.9389305114746094,
-0.16490231454372406,
0.47261953353881836,
0.6336211562156677,
0.546302080154419,
0.6441490054130554,
-0.36021119356155396,
0.18487854301929474,
0.238136425614357,
0.425540566444397,
0.13539181649684906,
0.3637577295303345,
-0.15689681470394135,
0.1147264763712883,
-0.14672979712486267,
-0.6100229024887085
] |
xiaolxl/Stable-diffusion-models | xiaolxl | "2023-02-17T08:47:29Z" | 11,676 | 34 | diffusers | [
"diffusers",
"stable-diffusion",
"stable-diffusion-diffusers",
"text-to-image",
"en",
"license:creativeml-openrail-m",
"has_space",
"region:us"
] | text-to-image | "2022-11-22T03:42:40Z" | ---
license: creativeml-openrail-m
language:
- en
library_name: diffusers
pipeline_tag: text-to-image
tags:
- stable-diffusion
- stable-diffusion-diffusers
---
模型均来自网络,此仓库仅作为下载备用 | [
-0.11534921824932098,
-0.5934820771217346,
-0.07245047390460968,
1.3481775522232056,
-1.1893377304077148,
0.03632749617099762,
0.1746857911348343,
-0.32656723260879517,
0.7713614702224731,
0.921531081199646,
-0.2613818645477295,
-0.07156003266572952,
-0.6689164042472839,
-0.04627975821495056,
-0.7025948166847229,
0.9511607885360718,
-0.640344500541687,
0.08719994127750397,
0.2672247290611267,
0.12041707336902618,
-0.8485440015792847,
0.1794063150882721,
-0.8272367715835571,
-0.2881227135658264,
-0.1266288459300995,
0.4740661084651947,
0.9277046322822571,
0.65721195936203,
0.7628160715103149,
0.5919477343559265,
0.3553462326526642,
-0.13947415351867676,
-0.31993499398231506,
0.5007539391517639,
0.42413410544395447,
-0.8250433206558228,
-0.9781774282455444,
-0.19208283722400665,
1.2946850061416626,
0.7578290104866028,
-0.1008867472410202,
-0.1845453381538391,
0.5038198828697205,
1.1928762197494507,
-0.21230554580688477,
0.26373937726020813,
-0.05080745741724968,
0.47897568345069885,
-0.3496800661087036,
-0.6400974988937378,
0.14558085799217224,
-1.3348485231399536,
-0.08721853792667389,
-0.7572520971298218,
-0.41636818647384644,
0.2664640545845032,
1.3641233444213867,
0.15552930533885956,
-0.7372690439224243,
0.11351883411407471,
-0.9392061233520508,
0.7040921449661255,
-0.3646516799926758,
-0.0412081703543663,
-0.15704002976417542,
0.9374723434448242,
0.01262722909450531,
-0.9207791090011597,
0.005246324930340052,
0.09909459948539734,
-0.5810781717300415,
0.3444031774997711,
0.2630871832370758,
-0.4076458811759949,
0.011973237618803978,
0.5898581743240356,
0.2675796151161194,
0.12951800227165222,
-0.8995553255081177,
-0.1984875649213791,
0.4887010157108307,
0.5103119611740112,
0.9276825189590454,
0.028526362031698227,
-0.5828918218612671,
0.37428030371665955,
-0.6596487164497375,
0.48853403329849243,
-0.053263384848833084,
0.24815812706947327,
-0.5355219841003418,
0.28022390604019165,
-0.45971569418907166,
0.1309874802827835,
0.32125145196914673,
-0.2735522389411926,
0.15005330741405487,
-0.14339418709278107,
-0.9509841799736023,
-0.16690441966056824,
0.2701769471168518,
1.0558111667633057,
-0.33272507786750793,
-0.01130196824669838,
-0.43069109320640564,
-0.3467497229576111,
-0.33083224296569824,
-0.8689138293266296,
-0.25762563943862915,
0.599233090877533,
-0.7461374402046204,
-0.5981415510177612,
0.34524160623550415,
-1.740563988685608,
0.08088228851556778,
-0.06943012028932571,
0.4863714575767517,
0.025432471185922623,
-1.1900124549865723,
-0.10405333340167999,
-0.22917065024375916,
0.007769676856696606,
0.5925342440605164,
-0.6910005211830139,
0.4109099507331848,
0.18564347922801971,
0.6536362171173096,
0.07860315591096878,
-0.1123531237244606,
0.05181316286325455,
0.6135356426239014,
-0.01494302786886692,
0.6822515726089478,
0.1848783940076828,
-0.8210671544075012,
0.27104443311691284,
0.18179064989089966,
0.2479654848575592,
-0.5586507320404053,
1.3349881172180176,
-0.7281407117843628,
-0.1563568413257599,
-0.642356276512146,
-0.13720227777957916,
-0.3117443919181824,
0.16897548735141754,
-0.8083890676498413,
0.7317340970039368,
-0.19891273975372314,
-1.018923282623291,
-0.1410396844148636,
-0.6152161359786987,
-0.8686107397079468,
0.8100677728652954,
-0.21424253284931183,
0.10456423461437225,
0.18029823899269104,
0.09106963872909546,
0.4207063615322113,
-0.2215408831834793,
0.003976611886173487,
0.5445523262023926,
0.01738034002482891,
0.44949769973754883,
-0.06617940962314606,
1.5244041681289673,
0.7023543119430542,
-0.3503490388393402,
0.22425313293933868,
-0.24191522598266602,
0.16969940066337585,
0.6326476335525513,
-0.27458763122558594,
-0.3466953635215759,
-0.03124634362757206,
0.5053039193153381,
0.28611940145492554,
1.1707817316055298,
-0.25265178084373474,
0.33559587597846985,
-0.6954654455184937,
0.3883194029331207,
1.2745016813278198,
0.0035952776670455933,
0.6949993968009949,
-0.9146285057067871,
0.538115382194519,
0.18797989189624786,
0.29091182351112366,
-0.06317660212516785,
-0.19891148805618286,
-1.6171810626983643,
0.2815859913825989,
-0.2277878224849701,
0.9103948473930359,
-1.0311108827590942,
0.7391389012336731,
0.24229022860527039,
-0.5913376808166504,
-0.1866592913866043,
-0.15577565133571625,
0.504213273525238,
0.22123387455940247,
0.37599748373031616,
-0.41478538513183594,
-0.9091991186141968,
-0.5742751955986023,
-0.021345073357224464,
-0.19209401309490204,
-0.09716571122407913,
0.46583089232444763,
0.4449912905693054,
-0.251736581325531,
0.36534637212753296,
-0.43141865730285645,
-0.5335482954978943,
-0.21496562659740448,
-0.1519409865140915,
0.39961445331573486,
0.8980439901351929,
0.743645966053009,
-1.027961015701294,
-0.8908208608627319,
-0.2267327606678009,
-1.2142943143844604,
-0.20125138759613037,
0.2655220627784729,
-0.5140835642814636,
0.284511923789978,
-0.13521425426006317,
-0.26106566190719604,
0.5620677471160889,
0.4222848415374756,
-0.460139662027359,
1.110644817352295,
-0.3053019940853119,
0.04319373145699501,
-0.9005860090255737,
-0.2107732743024826,
-0.5693026185035706,
0.5166126489639282,
-0.4392244219779968,
0.6359065771102905,
-0.2431749850511551,
0.01342710293829441,
-0.761352002620697,
0.5755482912063599,
-0.6665413975715637,
0.2957482933998108,
-0.7018471956253052,
0.3120298683643341,
0.06419750303030014,
0.09219381958246231,
-0.313947468996048,
0.5776105523109436,
0.6567996740341187,
-1.4672250747680664,
1.3424115180969238,
0.6836479902267456,
-0.23770281672477722,
0.08236429840326309,
-0.7133054733276367,
-0.25209513306617737,
-0.04219678416848183,
0.40290766954421997,
-1.3531557321548462,
-0.5382935404777527,
0.36454999446868896,
-0.20999717712402344,
0.5588544011116028,
0.4834885597229004,
-0.2832266688346863,
-1.0543429851531982,
-0.5169122815132141,
0.4263055920600891,
0.8336063623428345,
-0.2966832220554352,
-0.00770183652639389,
0.749698281288147,
-0.019963586702942848,
-0.7964972257614136,
-0.627517819404602,
-0.28010910749435425,
0.06649332493543625,
-0.8342490196228027,
0.10602328926324844,
0.09930197149515152,
-0.02040947787463665,
0.06934506446123123,
0.12570592761039734,
-0.25993937253952026,
-0.0549076683819294,
0.09425231069326401,
0.7632805109024048,
-0.5030174255371094,
-0.5071218013763428,
0.15357422828674316,
-0.3543928265571594,
0.17794100940227509,
-0.15537934005260468,
0.38850417733192444,
0.1407788097858429,
-0.307529479265213,
-0.9597657918930054,
0.8570938110351562,
0.40951594710350037,
0.26595789194107056,
0.043294697999954224,
0.2937764525413513,
-0.4549282193183899,
0.13675692677497864,
-0.6819154024124146,
0.10039076954126358,
-0.766139805316925,
0.14032161235809326,
-0.2497491091489792,
-1.0015530586242676,
0.44162678718566895,
-0.6266225576400757,
-0.039999473839998245,
0.8026984333992004,
0.4047538638114929,
-0.2056201696395874,
1.0429222583770752,
1.0111836194992065,
-0.5275647044181824,
0.02635844424366951,
-0.27726465463638306,
0.25165700912475586,
-0.7856781482696533,
-0.7138504981994629,
-0.9729076623916626,
-0.6393281817436218,
-0.8098495602607727,
-0.08378990739583969,
0.35274624824523926,
-0.2654517590999603,
-0.06695976108312607,
0.6307122111320496,
-1.2783769369125366,
0.15013563632965088,
0.31294769048690796,
0.38321250677108765,
0.02625448629260063,
-0.8133111000061035,
-0.05125560611486435,
0.0928591713309288,
-0.513552188873291,
-0.4669722020626068,
0.48967885971069336,
0.7588112354278564,
1.2335069179534912,
-0.07315020263195038,
0.44984012842178345,
-0.23067578673362732,
0.3278932571411133,
-0.4353264272212982,
1.086783528327942,
0.1367240846157074,
-1.0056159496307373,
-0.45153313875198364,
0.18603065609931946,
-1.2571219205856323,
0.3858429789543152,
0.017781797796487808,
-1.0056103467941284,
-0.19742979109287262,
-0.21827974915504456,
-0.6007562875747681,
0.981672465801239,
-0.36762675642967224,
0.5816512107849121,
-0.8661192655563354,
-0.3848867416381836,
-0.1299716681241989,
-0.5711350440979004,
0.726879894733429,
0.2763715386390686,
0.39489686489105225,
-0.36187323927879333,
-0.4005356729030609,
1.390060305595398,
-0.3609716296195984,
0.5405703783035278,
-0.712645411491394,
-0.05795257166028023,
0.2759518027305603,
0.2307422161102295,
0.7443742752075195,
0.06825131922960281,
0.480250746011734,
-0.3414399027824402,
0.1958780586719513,
-0.700993537902832,
-0.006066122092306614,
1.0844268798828125,
-0.8672662973403931,
-1.2275564670562744,
-0.8352804183959961,
-0.3068804442882538,
0.356434166431427,
0.4595368504524231,
0.6080012321472168,
0.06719444692134857,
-0.3896685540676117,
-0.15295279026031494,
0.44794711470603943,
-0.5473987460136414,
0.9238253831863403,
0.7161110639572144,
-0.7838101387023926,
-0.2370796501636505,
0.729655385017395,
0.6391607522964478,
-0.3848767876625061,
0.44703683257102966,
-0.10018660873174667,
-0.222507044672966,
-0.4932631552219391,
-0.3517666459083557,
0.2874934673309326,
-0.2014605700969696,
-0.4269596040248871,
-0.6395133137702942,
-0.28196850419044495,
-0.6247676014900208,
-0.47906064987182617,
-0.2662307620048523,
-0.48395460844039917,
-0.03494315594434738,
-0.3848739266395569,
-0.050981760025024414,
0.6634813547134399,
-0.05292028188705444,
0.6010933518409729,
-1.2119005918502808,
0.34632688760757446,
0.4907749593257904,
0.29097047448158264,
0.5011036396026611,
-0.622643232345581,
-0.967669665813446,
-0.29883646965026855,
-0.7778333425521851,
-0.7876852750778198,
0.9635869860649109,
-0.24958033859729767,
0.3272664248943329,
1.372179388999939,
0.33817872405052185,
0.6164377927780151,
-0.5226465463638306,
0.7953063249588013,
0.555564284324646,
-1.0822502374649048,
0.9395893216133118,
-0.34959307312965393,
-0.024222539737820625,
0.40217381715774536,
0.6062430739402771,
-0.4901835024356842,
-0.43662863969802856,
-0.8902850151062012,
-1.163535714149475,
0.7199589014053345,
0.19984129071235657,
0.7076026201248169,
0.5596693754196167,
-0.13294751942157745,
0.18644890189170837,
0.5257935523986816,
-0.30036482214927673,
-0.9516726732254028,
-0.23937325179576874,
0.7568543553352356,
0.5730465650558472,
-0.8337616920471191,
-0.2947990298271179,
-0.8057724237442017,
0.7860978245735168,
0.9037209749221802,
1.2208768129348755,
-0.007423326373100281,
0.515670895576477,
-0.9084745645523071,
0.5956681370735168,
0.6134369969367981,
0.8593063354492188,
-0.27036240696907043,
0.3584812581539154,
0.15821895003318787,
-0.6923230886459351,
0.15489926934242249,
-0.006941781844943762,
-0.6090701222419739,
0.41656845808029175,
-0.3142167925834656,
0.28422823548316956,
0.245104119181633,
-0.003987855277955532,
0.40804606676101685,
0.021590987220406532,
0.47223377227783203,
-1.0986026525497437,
0.06150214001536369,
-0.454928457736969,
0.1095755323767662,
1.076287865638733,
0.24119412899017334,
-0.02531430684030056,
-0.44017934799194336,
0.4916345477104187,
0.21150191128253937,
-0.25060033798217773,
-0.15145762264728546,
1.0348604917526245,
1.3482844829559326,
-0.3100685179233551,
0.44895491003990173,
0.38419848680496216,
-1.1387267112731934,
0.9287652969360352,
0.7160660028457642,
0.844362735748291,
-0.9335086941719055,
0.10449135303497314,
0.7409159541130066,
0.42354655265808105,
-0.3505256772041321,
0.5026527643203735,
0.165645569562912,
-0.8145125508308411,
-0.33454179763793945,
-0.43490070104599,
-0.882380485534668,
0.33694034814834595,
-0.4969552159309387,
0.23055188357830048,
-1.0325770378112793,
0.015429189428687096,
-0.06039963290095329,
0.254041463136673,
-0.030611474066972733,
0.5922682285308838,
-0.18548771739006042,
1.828866958618164,
-0.7277711629867554,
1.3770067691802979,
0.2612645924091339,
-0.48279276490211487,
-0.6881898641586304,
-0.11725194752216339,
-0.17414291203022003,
-1.186366081237793,
0.9280144572257996,
0.14705146849155426,
0.167324036359787,
-0.1126789003610611,
-0.7970964908599854,
-0.7691443562507629,
1.0874452590942383,
-0.1245993822813034,
-0.10874998569488525,
0.03494024649262428,
0.0711144357919693,
0.2957186996936798,
-0.6485410928726196,
0.12064661830663681,
0.4633074402809143,
1.1811412572860718,
-0.20952875912189484,
-1.0291775465011597,
0.7301058769226074,
-0.46803873777389526,
-0.21340306103229523,
0.3537825345993042,
-1.2585046291351318,
1.233595848083496,
-0.05583306401968002,
-0.40234270691871643,
0.33607497811317444,
1.2154645919799805,
-0.30804187059402466,
0.6094479560852051,
0.5150365233421326,
0.31617361307144165,
0.41415566205978394,
-0.7088419795036316,
0.8413203358650208,
0.050176702439785004,
-0.028535187244415283,
0.3763452470302582,
-0.0816304087638855,
0.2913282513618469,
0.20007240772247314,
-0.7299693822860718,
0.5423308610916138,
0.5969021320343018,
-0.1414032131433487,
0.6982929110527039,
-0.41453415155410767,
-0.7353952527046204,
0.21082039177417755,
-0.5543256402015686,
-0.6156457662582397,
-0.06473853439092636,
0.4388512074947357,
-0.1436159908771515,
-0.4338363707065582,
-0.05795208364725113,
0.5241246223449707,
0.041922301054000854,
-0.4495008587837219,
0.8055608868598938,
0.029823828488588333,
-0.875592827796936,
0.7089501619338989,
0.07682687044143677,
1.1858516931533813,
-0.8804728388786316,
0.05560573190450668,
-0.056511543691158295,
0.23004262149333954,
-0.639876127243042,
-1.0570120811462402,
0.5267175436019897,
-0.2283676117658615,
0.09579895436763763,
-0.40213435888290405,
1.2627654075622559,
-0.45181506872177124,
-0.25186678767204285,
0.5600432753562927,
0.33438292145729065,
0.4145517349243164,
0.3885345757007599,
-1.2757222652435303,
-0.09707330167293549,
0.23474541306495667,
-0.10219955444335938,
0.472012996673584,
0.3313034176826477,
0.2954428195953369,
0.6302286386489868,
0.4307880401611328,
0.22985348105430603,
-0.09117434173822403,
-0.4768887460231781,
1.4587056636810303,
-0.6006845831871033,
-0.8440335392951965,
-0.8625122308731079,
0.7592576742172241,
-0.4051571786403656,
-0.29743894934654236,
1.003821611404419,
0.7341431379318237,
0.804796040058136,
-0.40753549337387085,
1.1798055171966553,
-0.71131432056427,
0.9011834859848022,
0.16921930015087128,
0.6632013320922852,
-0.28871601819992065,
-0.3512839674949646,
-0.20659367740154266,
-0.16060137748718262,
-0.0840277373790741,
0.5748101472854614,
-0.07615743577480316,
-0.19242212176322937,
1.3650028705596924,
0.4972366690635681,
0.3493233323097229,
0.173729807138443,
0.298432320356369,
0.16657570004463196,
-0.15111279487609863,
1.261666178703308,
0.5406726002693176,
-0.9029613733291626,
0.5404572486877441,
-1.0493520498275757,
-0.4493449330329895,
-0.782097339630127,
-0.5876973867416382,
-0.7195960879325867,
-0.44485265016555786,
-0.28202491998672485,
-0.657298743724823,
-0.4025174081325531,
0.5340675115585327,
0.41647273302078247,
-1.4073476791381836,
-0.8979043960571289,
0.6635144948959351,
0.7602956295013428,
-0.6758450269699097,
-0.13152270019054413,
0.8721906542778015,
-0.3253117501735687,
-1.1998889446258545,
-0.0959206372499466,
0.3389105498790741,
0.24239619076251984,
-0.4349922239780426,
0.2049558162689209,
-0.26588693261146545,
0.14951366186141968,
0.19140625,
0.7941097021102905,
-0.740056574344635,
0.04425763338804245,
-0.1465180665254593,
-0.5922125577926636,
0.3184659481048584,
0.9730653762817383,
-0.09427585452795029,
0.1530214548110962,
1.0775829553604126,
0.06521189957857132,
0.3224681317806244,
-0.49818581342697144,
0.6919145584106445,
-0.7871065139770508,
0.8367854356765747,
0.11074270308017731,
0.5956716537475586,
-0.17104071378707886,
-0.8962453603744507,
0.7308832406997681,
0.6240564584732056,
-0.8753112554550171,
-0.6682745218276978,
0.19474291801452637,
-1.513629674911499,
-0.22722312808036804,
0.7478770017623901,
-0.12082107365131378,
-0.3186211585998535,
-0.45660310983657837,
-0.8632806539535522,
1.0682775974273682,
-0.6613882184028625,
0.9448902010917664,
0.29977989196777344,
-0.10690313577651978,
0.01888532191514969,
-1.0609443187713623,
0.6591953039169312,
0.3693165183067322,
-0.6633805632591248,
-0.7142711877822876,
-0.17146319150924683,
-0.30026549100875854,
0.3712536096572876,
0.9487398862838745,
-0.3826146721839905,
0.038260478526353836,
-0.18559938669204712,
-0.18010568618774414,
-0.01847141981124878,
0.21633262932300568,
0.1226881742477417,
0.6475542783737183,
-0.5052911043167114,
-1.057355284690857
] |
knkarthick/Sentiment-Analysis | knkarthick | "2022-11-10T10:56:46Z" | 11,666 | 0 | transformers | [
"transformers",
"pytorch",
"tf",
"roberta",
"text-classification",
"endpoints_compatible",
"has_space",
"region:us"
] | text-classification | "2022-11-10T10:55:31Z" | Entry not found | [
-0.3227650225162506,
-0.22568431496620178,
0.862226128578186,
0.43461495637893677,
-0.5282987952232361,
0.7012965679168701,
0.7915717363357544,
0.07618638128042221,
0.7746025919914246,
0.2563219666481018,
-0.7852817177772522,
-0.22573819756507874,
-0.9104480743408203,
0.5715669393539429,
-0.3992334008216858,
0.5791245698928833,
-0.14494505524635315,
-0.10751161724328995,
0.28233757615089417,
-0.2768954336643219,
-0.5409224033355713,
-0.36855220794677734,
-1.1902776956558228,
0.061491113156080246,
0.5316578149795532,
0.7435142397880554,
0.7584060430526733,
0.3652167320251465,
0.6432578563690186,
0.3932291269302368,
-0.23138920962810516,
0.4827055037021637,
-0.04171813279390335,
0.00260411505587399,
-0.3524433970451355,
-0.5516898036003113,
-0.28596609830856323,
0.07584730535745621,
1.0961304903030396,
0.966687798500061,
-0.284663587808609,
0.05330817773938179,
-0.3063621520996094,
0.33088892698287964,
-0.49734312295913696,
0.3054099678993225,
-0.022506045177578926,
0.16318801045417786,
-0.7041513919830322,
-0.5535354018211365,
0.012794834561645985,
-0.7361212968826294,
0.17926570773124695,
-0.690081000328064,
0.8269098401069641,
0.18583157658576965,
1.1533750295639038,
0.14819414913654327,
-0.462487131357193,
-0.8161764144897461,
-0.6538989543914795,
0.5711171627044678,
-0.32703715562820435,
0.39680248498916626,
0.7028235197067261,
-0.048573412001132965,
-0.9820332527160645,
-0.6745741367340088,
-0.46466192603111267,
0.2923962473869324,
0.35402774810791016,
-0.3411678075790405,
-0.17522086203098297,
-0.3058989644050598,
0.15792037546634674,
0.12811517715454102,
-0.4841994643211365,
-0.5543919205665588,
-0.5475160479545593,
-0.3960252106189728,
0.6206658482551575,
0.3482950031757355,
0.2429177463054657,
-0.1888415813446045,
-0.3228583335876465,
0.0880163162946701,
-0.4160851538181305,
0.3402571678161621,
0.6335517168045044,
0.7114017009735107,
-0.5811444520950317,
0.560215950012207,
-0.04927587881684303,
0.7439703941345215,
0.11445561796426773,
-0.27478092908859253,
0.41460567712783813,
-0.14724725484848022,
0.055171746760606766,
0.4226345121860504,
0.31524422764778137,
0.2841312289237976,
-0.3273695111274719,
0.2032228708267212,
-0.3215144872665405,
-0.30496224761009216,
-0.22332167625427246,
-0.29490774869918823,
-0.3592180609703064,
0.5492289066314697,
-0.3314017057418823,
-0.42855486273765564,
1.143175721168518,
-0.4200771450996399,
-0.7302224040031433,
0.33156412839889526,
0.4065209925174713,
-0.0994480773806572,
-0.37146568298339844,
-0.052260834723711014,
-0.8458789587020874,
-0.007907390594482422,
0.7491172552108765,
-0.7198970913887024,
0.3371737599372864,
0.4728063642978668,
0.7417217493057251,
0.19650575518608093,
-0.14034469425678253,
-0.42949390411376953,
0.2971969544887543,
-0.8659994006156921,
0.6320174336433411,
-0.20135220885276794,
-1.0051977634429932,
0.11150479316711426,
0.8971705436706543,
-0.37896400690078735,
-1.2094876766204834,
1.0605159997940063,
-0.6887932419776917,
0.16017857193946838,
-0.676761269569397,
-0.14661237597465515,
-0.07118501514196396,
-0.005096632521599531,
-0.6088156700134277,
0.7567102313041687,
0.587267279624939,
-0.4995276927947998,
0.21429483592510223,
-0.26029831171035767,
-0.39151400327682495,
0.38824859261512756,
-0.07935450226068497,
-0.21858926117420197,
0.713833212852478,
-0.6647079586982727,
-0.26932814717292786,
0.2942774295806885,
0.2368936538696289,
-0.35706108808517456,
-0.7931919097900391,
0.08478113263845444,
-0.05786270648241043,
1.550750494003296,
-0.03868847340345383,
-0.3586106300354004,
-0.679383397102356,
-1.1506240367889404,
-0.07070787996053696,
0.6886883974075317,
-0.9194989204406738,
-0.27839475870132446,
-0.046410128474235535,
-0.26169314980506897,
0.08994917571544647,
0.7390589714050293,
-1.1194051504135132,
0.2832726836204529,
-0.05092663690447807,
-0.22794683277606964,
0.8271058797836304,
0.15387225151062012,
0.24758946895599365,
0.14913396537303925,
0.42958706617355347,
0.527725338935852,
0.11115207523107529,
0.683587908744812,
-0.34720373153686523,
-0.9694353938102722,
0.6154631972312927,
0.25266361236572266,
0.8121447563171387,
-0.49945297837257385,
0.2685093879699707,
0.27025535702705383,
-0.3409680724143982,
-0.5682371854782104,
-0.3102838397026062,
0.09025752544403076,
0.14930562674999237,
0.11142510175704956,
-0.5721710324287415,
-0.6576125025749207,
-0.9689140319824219,
-0.13590654730796814,
-0.4314374029636383,
-0.3571570813655853,
0.21006910502910614,
0.5792906284332275,
-1.1975523233413696,
0.4128875136375427,
-0.7705625891685486,
-0.7038741111755371,
-0.01065548975020647,
-0.19338123500347137,
0.7540656328201294,
0.43240174651145935,
0.5033966898918152,
-0.6397148370742798,
-0.5661987066268921,
-0.22470176219940186,
-1.0333747863769531,
-0.13280506432056427,
0.24819621443748474,
0.3065737783908844,
-0.13423344492912292,
-0.2744963765144348,
-0.48740333318710327,
0.8100387454032898,
0.14789170026779175,
-0.5391897559165955,
0.5220767259597778,
-0.3020317256450653,
0.17224803566932678,
-0.6369150280952454,
-0.06916818022727966,
-0.661676287651062,
-0.0009071884560398757,
-0.3608308732509613,
-0.5737438797950745,
0.14772287011146545,
0.07017494738101959,
-0.16065457463264465,
0.28808408975601196,
-0.909277081489563,
-0.0010852962732315063,
-0.7442210912704468,
0.379071980714798,
0.06394772231578827,
-0.3145078718662262,
-0.017517540603876114,
1.0000386238098145,
0.7784460783004761,
-0.3848048746585846,
0.721744179725647,
0.4440041184425354,
0.19036155939102173,
0.7630521059036255,
-0.18725109100341797,
0.16478213667869568,
-0.5245416760444641,
-0.12161104381084442,
-0.8887597918510437,
-1.0982946157455444,
0.7320570349693298,
-0.6114250421524048,
0.36542922258377075,
-0.4277869760990143,
0.2589159905910492,
-0.6919258832931519,
-0.03885362669825554,
0.4808599352836609,
-0.05936325341463089,
-0.6863942742347717,
0.5232570171356201,
0.45317530632019043,
-0.2019241601228714,
-0.6609031558036804,
-0.530157208442688,
0.39365822076797485,
0.6154114007949829,
-0.16390392184257507,
0.06878514587879181,
0.14941060543060303,
-0.5441926121711731,
-0.040802597999572754,
-0.38691970705986023,
-0.45766758918762207,
0.054224006831645966,
0.13053473830223083,
-0.005750799085944891,
-0.404820054769516,
-0.0868026465177536,
-0.35842007398605347,
-0.4656120240688324,
0.21876516938209534,
0.3011947274208069,
-0.04096309468150139,
-0.42599788308143616,
-0.3619818687438965,
-0.888181209564209,
0.6719610095024109,
0.5370282530784607,
0.05281545966863632,
0.7555549740791321,
0.16819314658641815,
-0.8014987707138062,
-0.13532210886478424,
-0.1760706603527069,
0.2696830928325653,
-0.5588056445121765,
0.13849826157093048,
-0.013484534807503223,
-0.0637492910027504,
0.26297882199287415,
0.25386232137680054,
-0.4300556778907776,
0.9276250004768372,
-0.2615274488925934,
-0.3592521846294403,
0.7960181832313538,
0.5974742770195007,
0.49583131074905396,
0.16503219306468964,
-0.044541798532009125,
0.900709331035614,
-1.1966516971588135,
-0.6563175916671753,
-0.7409549355506897,
-0.15945707261562347,
-0.43510833382606506,
-0.032105933874845505,
0.6254412531852722,
0.2900990843772888,
-0.1333388388156891,
0.4756395220756531,
-0.5243489742279053,
0.3556033670902252,
1.01198410987854,
0.35748639702796936,
0.3435698449611664,
-0.7570229172706604,
-0.2515777349472046,
-0.1402427852153778,
-0.9998157620429993,
-0.2631377875804901,
0.8871029019355774,
0.22752606868743896,
0.844460666179657,
0.5992541313171387,
0.6784542798995972,
0.1367226243019104,
0.2523828148841858,
-0.30590319633483887,
0.3920294940471649,
0.4376082420349121,
-1.0401138067245483,
-0.42758408188819885,
0.021418681368231773,
-0.9703338742256165,
-0.14227519929409027,
-0.03495011106133461,
-0.42617112398147583,
0.7681737542152405,
0.00016589462757110596,
-0.4076709747314453,
0.7732734084129333,
-0.455583393573761,
0.7562873363494873,
-0.4473648965358734,
-0.02663906291127205,
0.4699096083641052,
-0.7070636749267578,
0.4677430987358093,
0.12878790497779846,
0.6205843091011047,
-0.015572631731629372,
-0.04078587517142296,
0.7104941606521606,
-0.9129160046577454,
0.25438642501831055,
-0.6348397135734558,
0.22421300411224365,
0.24246945977210999,
0.51606285572052,
0.5969953536987305,
0.4371243417263031,
0.10119888931512833,
-0.23920902609825134,
0.04115807265043259,
-0.8241125345230103,
-0.210506409406662,
0.697515606880188,
-0.7186890840530396,
-0.6864197850227356,
-1.2355337142944336,
0.14438660442829132,
0.27347055077552795,
0.389305055141449,
0.7959296107292175,
0.571408748626709,
0.1289544403553009,
0.680525004863739,
0.9888588190078735,
-0.0688566341996193,
0.9166924357414246,
0.3224477171897888,
0.09175168722867966,
-0.21944808959960938,
0.7036820650100708,
0.26627904176712036,
-0.24707956612110138,
-0.11939732730388641,
0.20913465321063995,
-0.11069409549236298,
-0.591761589050293,
-0.49990686774253845,
0.3701757788658142,
-0.6731787919998169,
-0.18303893506526947,
-0.6243735551834106,
-0.6043769717216492,
-0.511759340763092,
0.06927360594272614,
-0.7147687673568726,
0.23979046940803528,
-0.7753565907478333,
-0.10574902594089508,
0.04323432594537735,
0.9792009592056274,
-0.589311957359314,
0.5805224180221558,
-1.1218582391738892,
0.19345788657665253,
-0.07949887961149216,
0.7921058535575867,
0.21395787596702576,
-0.7344395518302917,
-0.3975418508052826,
-0.11592631042003632,
-0.3729911744594574,
-1.3576762676239014,
0.21404948830604553,
-0.2454141080379486,
0.23094046115875244,
0.6145404577255249,
0.1397707313299179,
0.5258248448371887,
-0.34326282143592834,
0.7029101848602295,
-0.057017259299755096,
-0.7069286704063416,
0.7934495210647583,
-0.5026894807815552,
0.4963534474372864,
0.9765996932983398,
0.5333835482597351,
-0.7984007596969604,
0.035741209983825684,
-1.041123390197754,
-0.6008695363998413,
0.38426393270492554,
0.11928944289684296,
-0.03601083159446716,
-0.6659559011459351,
-0.054019637405872345,
-0.16143807768821716,
0.6043745279312134,
-1.039069414138794,
-0.7858356237411499,
0.2576698362827301,
0.5277302861213684,
0.0816856250166893,
-0.5653398633003235,
0.20880667865276337,
-0.544416069984436,
1.0657774209976196,
0.45109400153160095,
0.3274499475955963,
0.8406060934066772,
0.46492424607276917,
-0.3823164403438568,
0.09252490103244781,
0.7662695050239563,
0.6666232347488403,
-0.5239797830581665,
-0.2908027470111847,
-0.08827541768550873,
-0.9143403768539429,
0.05927472561597824,
0.11168918758630753,
-0.013455932028591633,
0.9082110524177551,
0.5793083310127258,
0.2539709210395813,
0.4514279365539551,
-0.726460337638855,
0.8859451413154602,
-0.14954176545143127,
-0.12472866475582123,
-1.0677239894866943,
0.1948619782924652,
-0.23984959721565247,
0.5006402134895325,
1.0061326026916504,
0.5250048041343689,
-0.047630298882722855,
-0.8143380880355835,
-0.01473585981875658,
0.6939172148704529,
-0.7091123461723328,
-0.17449834942817688,
0.944853663444519,
0.3847099542617798,
-1.2953051328659058,
1.106776475906372,
-0.5381771326065063,
-0.560332179069519,
0.9121301770210266,
0.522956907749176,
1.1221847534179688,
-0.44204121828079224,
0.0008676342549733818,
0.2662237286567688,
0.41378432512283325,
0.5423170328140259,
1.0869629383087158,
0.431413471698761,
-0.7931063771247864,
0.8826584815979004,
-0.24776044487953186,
-0.40361151099205017,
-0.05347571521997452,
-0.42859897017478943,
0.16892178356647491,
-0.4406192898750305,
-0.10713007301092148,
-0.3444187641143799,
0.28543180227279663,
-0.7072042226791382,
0.42807620763778687,
-0.0838567465543747,
0.8653068542480469,
-0.8553727269172668,
0.47207626700401306,
0.635470449924469,
-0.3337355852127075,
-0.8508191108703613,
-0.26198428869247437,
-0.11448462307453156,
-0.6389466524124146,
0.30214807391166687,
-0.4554102420806885,
0.044398851692676544,
0.09623463451862335,
-0.649151623249054,
-1.1778275966644287,
0.9093633890151978,
-0.639612078666687,
-0.2784462869167328,
0.20464053750038147,
-0.11514760553836823,
0.28811705112457275,
-0.2524643540382385,
0.010661216452717781,
0.41876548528671265,
0.748940110206604,
0.2844654619693756,
-0.7727053761482239,
-0.3694884479045868,
0.0015032943338155746,
-0.44474777579307556,
0.7582978010177612,
-0.6002101898193359,
1.1840779781341553,
-0.5563543438911438,
-0.059654366225004196,
0.44384512305259705,
0.24690914154052734,
0.21076197922229767,
0.6629220843315125,
0.1442081481218338,
0.7282265424728394,
1.07012140750885,
-0.40835219621658325,
0.8811809420585632,
0.26432839035987854,
0.47430819272994995,
0.7238501906394958,
-0.6487724781036377,
0.7513749003410339,
0.31810489296913147,
-0.5682924389839172,
0.9228013753890991,
1.2906063795089722,
-0.15699204802513123,
0.8079374432563782,
0.05136508867144585,
-1.081600546836853,
0.325833261013031,
-0.20724765956401825,
-0.7530064582824707,
0.3150254189968109,
0.19055864214897156,
-0.6920982599258423,
-0.5770308971405029,
-0.24046507477760315,
-0.35662803053855896,
-0.11552901566028595,
-0.7631728649139404,
0.6720563769340515,
-0.016969164833426476,
-0.5103683471679688,
0.18857547640800476,
0.2877499461174011,
0.17368432879447937,
-0.5235732793807983,
-0.02939440682530403,
-0.22823619842529297,
0.2660655975341797,
-0.5670853853225708,
-0.5234526991844177,
0.5724433064460754,
-0.32430219650268555,
-0.5343255400657654,
0.18147465586662292,
0.763587236404419,
-0.16923809051513672,
-0.4515409469604492,
0.32472723722457886,
0.6959525346755981,
0.1665852814912796,
0.4250282347202301,
-0.23511263728141785,
0.24480605125427246,
-0.08044824004173279,
-0.06651552021503448,
0.27714768052101135,
0.3449169099330902,
0.22435641288757324,
0.4450142979621887,
0.43285664916038513,
-0.01808755099773407,
-0.10736498981714249,
-0.382819801568985,
0.4124940037727356,
-0.9542785882949829,
-0.5713282823562622,
-0.6307113766670227,
0.2740660607814789,
-0.02315417304635048,
-1.0836423635482788,
0.4145168364048004,
1.4406683444976807,
1.0359982252120972,
-0.4756383001804352,
1.067226529121399,
-0.21818485856056213,
0.9594791531562805,
0.41483086347579956,
0.5420440435409546,
-0.6030411720275879,
0.03835370019078255,
-0.4364396035671234,
-1.076962947845459,
-0.35716333985328674,
0.4539391100406647,
-0.022899555042386055,
-0.3429867625236511,
0.872571587562561,
0.5887166261672974,
-0.33473607897758484,
-0.11728022992610931,
0.048487238585948944,
-0.029941488057374954,
-0.12433847039937973,
0.5145376324653625,
0.7648399472236633,
-0.9344304800033569,
-0.10680416971445084,
-0.21577754616737366,
-0.6382725834846497,
-0.5047279000282288,
-0.9632009267807007,
-0.12959396839141846,
-0.16037796437740326,
0.035343267023563385,
-0.5662806630134583,
0.00255737011320889,
1.208324909210205,
0.5684957504272461,
-1.1113994121551514,
-0.5303789377212524,
0.3371853232383728,
0.3920421898365021,
-0.1874791383743286,
-0.24202413856983185,
0.2984568774700165,
0.15382249653339386,
-0.5908876657485962,
0.6875665783882141,
0.8089625239372253,
0.208888977766037,
0.19554761052131653,
0.15893013775348663,
-0.8229473829269409,
-0.14913435280323029,
0.17440445721149445,
0.9450570344924927,
-0.939853310585022,
-0.7114843130111694,
-0.03168516233563423,
-0.27094873785972595,
-0.05765746906399727,
0.17102102935314178,
-0.4046344757080078,
0.5180677175521851,
0.34591493010520935,
0.49933457374572754,
0.0561608150601387,
-0.054746925830841064,
0.5409556031227112,
-0.9069057703018188,
0.09425963461399078,
0.4134361147880554,
0.4154115319252014,
-0.4000864028930664,
-0.5910194516181946,
0.6713420748710632,
1.0073972940444946,
-0.6594868898391724,
-0.8743268847465515,
-0.19846712052822113,
-1.0016002655029297,
0.04189709946513176,
0.6762762069702148,
0.5009527802467346,
-0.4806513786315918,
-0.4174500107765198,
-0.5617399215698242,
-0.1254672110080719,
-0.1369970738887787,
0.7621601819992065,
1.179680585861206,
-0.7432094812393188,
0.07975747436285019,
-1.038639783859253,
0.6594986915588379,
-0.2419457733631134,
-0.3457581698894501,
-0.48644304275512695,
0.3832802176475525,
0.35236993432044983,
0.440481036901474,
0.614812433719635,
0.1408471167087555,
0.8338426351547241,
0.3126053214073181,
-0.1702686995267868,
0.2698982357978821,
-0.4559200704097748,
-0.028932858258485794,
-0.057962555438280106,
0.31015971302986145,
-1.0262157917022705
] |
facebook/s2t-small-librispeech-asr | facebook | "2023-09-06T19:14:59Z" | 11,660 | 19 | transformers | [
"transformers",
"pytorch",
"tf",
"safetensors",
"speech_to_text",
"automatic-speech-recognition",
"speech",
"audio",
"hf-asr-leaderboard",
"en",
"dataset:librispeech_asr",
"arxiv:2010.05171",
"arxiv:1904.08779",
"license:mit",
"model-index",
"endpoints_compatible",
"has_space",
"region:us"
] | automatic-speech-recognition | "2022-03-02T23:29:05Z" | ---
language: en
datasets:
- librispeech_asr
tags:
- speech
- audio
- automatic-speech-recognition
- hf-asr-leaderboard
license: mit
pipeline_tag: automatic-speech-recognition
widget:
- example_title: Librispeech sample 1
src: https://cdn-media.huggingface.co/speech_samples/sample1.flac
- example_title: Librispeech sample 2
src: https://cdn-media.huggingface.co/speech_samples/sample2.flac
model-index:
- name: s2t-small-librispeech-asr
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: LibriSpeech (clean)
type: librispeech_asr
config: clean
split: test
args:
language: en
metrics:
- name: Test WER
type: wer
value: 4.3
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: LibriSpeech (other)
type: librispeech_asr
config: other
split: test
args:
language: en
metrics:
- name: Test WER
type: wer
value: 9.0
---
# S2T-SMALL-LIBRISPEECH-ASR
`s2t-small-librispeech-asr` is a Speech to Text Transformer (S2T) model trained for automatic speech recognition (ASR).
The S2T model was proposed in [this paper](https://arxiv.org/abs/2010.05171) and released in
[this repository](https://github.com/pytorch/fairseq/tree/master/examples/speech_to_text)
## Model description
S2T is an end-to-end sequence-to-sequence transformer model. It is trained with standard
autoregressive cross-entropy loss and generates the transcripts autoregressively.
## Intended uses & limitations
This model can be used for end-to-end speech recognition (ASR).
See the [model hub](https://huggingface.co/models?filter=speech_to_text) to look for other S2T checkpoints.
### How to use
As this a standard sequence to sequence transformer model, you can use the `generate` method to generate the
transcripts by passing the speech features to the model.
*Note: The `Speech2TextProcessor` object uses [torchaudio](https://github.com/pytorch/audio) to extract the
filter bank features. Make sure to install the `torchaudio` package before running this example.*
*Note: The feature extractor depends on [torchaudio](https://github.com/pytorch/audio) and the tokenizer depends on [sentencepiece](https://github.com/google/sentencepiece)
so be sure to install those packages before running the examples.*
You could either install those as extra speech dependancies with
`pip install transformers"[speech, sentencepiece]"` or install the packages seperatly
with `pip install torchaudio sentencepiece`.
```python
import torch
from transformers import Speech2TextProcessor, Speech2TextForConditionalGeneration
from datasets import load_dataset
model = Speech2TextForConditionalGeneration.from_pretrained("facebook/s2t-small-librispeech-asr")
processor = Speech2TextProcessor.from_pretrained("facebook/s2t-small-librispeech-asr")
ds = load_dataset(
"patrickvonplaten/librispeech_asr_dummy",
"clean",
split="validation"
)
input_features = processor(
ds[0]["audio"]["array"],
sampling_rate=16_000,
return_tensors="pt"
).input_features # Batch size 1
generated_ids = model.generate(input_features=input_features)
transcription = processor.batch_decode(generated_ids)
```
#### Evaluation on LibriSpeech Test
The following script shows how to evaluate this model on the [LibriSpeech](https://huggingface.co/datasets/librispeech_asr)
*"clean"* and *"other"* test dataset.
```python
from datasets import load_dataset
from evaluate import load
from transformers import Speech2TextForConditionalGeneration, Speech2TextProcessor
librispeech_eval = load_dataset("librispeech_asr", "clean", split="test") # change to "other" for other test dataset
wer = load("wer")
model = Speech2TextForConditionalGeneration.from_pretrained("facebook/s2t-small-librispeech-asr").to("cuda")
processor = Speech2TextProcessor.from_pretrained("facebook/s2t-small-librispeech-asr", do_upper_case=True)
def map_to_pred(batch):
features = processor(batch["audio"]["array"], sampling_rate=16000, padding=True, return_tensors="pt")
input_features = features.input_features.to("cuda")
attention_mask = features.attention_mask.to("cuda")
gen_tokens = model.generate(input_features=input_features, attention_mask=attention_mask)
batch["transcription"] = processor.batch_decode(gen_tokens, skip_special_tokens=True)[0]
return batch
result = librispeech_eval.map(map_to_pred, remove_columns=["audio"])
print("WER:", wer.compute(predictions=result["transcription"], references=result["text"]))
```
*Result (WER)*:
| "clean" | "other" |
|:-------:|:-------:|
| 4.3 | 9.0 |
## Training data
The S2T-SMALL-LIBRISPEECH-ASR is trained on [LibriSpeech ASR Corpus](https://www.openslr.org/12), a dataset consisting of
approximately 1000 hours of 16kHz read English speech.
## Training procedure
### Preprocessing
The speech data is pre-processed by extracting Kaldi-compliant 80-channel log mel-filter bank features automatically from
WAV/FLAC audio files via PyKaldi or torchaudio. Further utterance-level CMVN (cepstral mean and variance normalization)
is applied to each example.
The texts are lowercased and tokenized using SentencePiece and a vocabulary size of 10,000.
### Training
The model is trained with standard autoregressive cross-entropy loss and using [SpecAugment](https://arxiv.org/abs/1904.08779).
The encoder receives speech features, and the decoder generates the transcripts autoregressively.
### BibTeX entry and citation info
```bibtex
@inproceedings{wang2020fairseqs2t,
title = {fairseq S2T: Fast Speech-to-Text Modeling with fairseq},
author = {Changhan Wang and Yun Tang and Xutai Ma and Anne Wu and Dmytro Okhonko and Juan Pino},
booktitle = {Proceedings of the 2020 Conference of the Asian Chapter of the Association for Computational Linguistics (AACL): System Demonstrations},
year = {2020},
}
``` | [
-0.09878920763731003,
-0.7627052068710327,
0.1320246011018753,
0.13879048824310303,
-0.22425338625907898,
-0.23512303829193115,
-0.4895736277103424,
-0.38861513137817383,
0.07890743017196655,
0.4140922725200653,
-0.6961060166358948,
-0.2902667224407196,
-0.6483036279678345,
-0.2082182615995407,
-0.5173372030258179,
1.0460175275802612,
0.21999907493591309,
0.24586078524589539,
-0.05209888517856598,
0.012808259576559067,
-0.20680972933769226,
-0.26631873846054077,
-0.9887698292732239,
-0.3965480923652649,
0.07885569334030151,
0.43637001514434814,
0.28631311655044556,
0.5008009672164917,
0.2959129512310028,
0.32807761430740356,
-0.3499939441680908,
-0.14043641090393066,
-0.45374080538749695,
-0.054241374135017395,
-0.051408298313617706,
-0.36382368206977844,
-0.17178025841712952,
-0.002669959794729948,
0.6329035758972168,
0.3199487030506134,
-0.17107266187667847,
0.46375229954719543,
0.23536960780620575,
0.33316025137901306,
-0.2529485523700714,
0.19301976263523102,
-0.4691247344017029,
-0.2799244225025177,
-0.2225942462682724,
0.05623501166701317,
-0.4490598738193512,
-0.19567415118217468,
0.2655481994152069,
-0.27156010270118713,
0.14263378083705902,
-0.07435333728790283,
1.0827975273132324,
0.3702963888645172,
-0.2576087415218353,
-0.6497160792350769,
-0.6149052381515503,
0.6421535015106201,
-0.8418416976928711,
0.5364761352539062,
0.453172892332077,
0.27782151103019714,
0.09073103219270706,
-1.139983892440796,
-0.6402565240859985,
-0.13685619831085205,
-0.10154225677251816,
0.2920369803905487,
-0.3965218663215637,
-0.18112948536872864,
0.38345205783843994,
0.23238177597522736,
-0.7919008731842041,
0.07314327359199524,
-0.6885663866996765,
-0.3434073328971863,
0.8402628302574158,
-0.26433202624320984,
0.18830333650112152,
-0.4199584722518921,
-0.3787226974964142,
-0.3797142207622528,
-0.2513764798641205,
0.4201301634311676,
0.24772006273269653,
0.33110859990119934,
-0.5015478730201721,
0.5231423377990723,
-0.035392895340919495,
0.44957950711250305,
0.1283981204032898,
-0.25259265303611755,
0.5816999673843384,
-0.29282814264297485,
-0.16245990991592407,
0.2785448133945465,
1.0450867414474487,
0.15856285393238068,
0.10605596005916595,
0.11659731715917587,
-0.17908333241939545,
0.10527290403842926,
-0.2064467817544937,
-0.9806921482086182,
-0.29006385803222656,
0.4102267324924469,
-0.39974868297576904,
-0.11205890029668808,
0.015432043932378292,
-0.5317937135696411,
-0.10969994217157364,
-0.19272981584072113,
0.8643967509269714,
-0.7218400835990906,
-0.14719095826148987,
0.10202458500862122,
-0.28080233931541443,
0.3062484562397003,
-0.1798534095287323,
-0.7599919438362122,
0.30783596634864807,
0.388399213552475,
0.8082958459854126,
0.007003445643931627,
-0.19569355249404907,
-0.5681754350662231,
-0.0045636845752596855,
0.10654282569885254,
0.7844541072845459,
-0.00613398477435112,
-0.42392265796661377,
-0.12516121566295624,
0.22822393476963043,
-0.17159795761108398,
-0.48279836773872375,
0.7216296792030334,
-0.18428704142570496,
0.44596776366233826,
0.027145816013216972,
-0.6535742282867432,
-0.19882123172283173,
-0.4233347773551941,
-0.38458964228630066,
1.17719566822052,
-0.08997312188148499,
-0.6996943354606628,
0.08082025498151779,
-0.6796441078186035,
-0.6508864760398865,
-0.3444739878177643,
-0.17348405718803406,
-0.633955180644989,
-0.06865015625953674,
0.21847766637802124,
0.38027673959732056,
-0.34329909086227417,
0.19329240918159485,
0.017458472400903702,
-0.47752153873443604,
0.5139158964157104,
-0.3944726586341858,
1.3031967878341675,
0.28980129957199097,
-0.6503451466560364,
0.17099447548389435,
-0.8344123959541321,
0.050863541662693024,
0.23596462607383728,
-0.2360638678073883,
0.14924770593643188,
-0.004656476434320211,
0.4421617388725281,
0.33116114139556885,
0.2893871068954468,
-0.5179531574249268,
-0.1767018437385559,
-0.786681056022644,
0.736294686794281,
0.6260966062545776,
-0.11411401629447937,
0.4548243284225464,
-0.31502440571784973,
0.0937214195728302,
-0.11256691068410873,
-0.031416017562150955,
0.03444933146238327,
-0.456945538520813,
-0.9346882104873657,
-0.37727442383766174,
0.3767662048339844,
0.8367657661437988,
-0.5838695168495178,
0.6825712323188782,
-0.40587204694747925,
-0.8185353875160217,
-0.7561943531036377,
-0.13205771148204803,
0.5228052735328674,
0.3954123556613922,
0.4827931523323059,
-0.22041544318199158,
-0.6555213332176208,
-0.895209014415741,
-0.27442753314971924,
-0.1090656965970993,
-0.3108336329460144,
0.3228955566883087,
0.5187499523162842,
-0.4821481704711914,
0.8816042542457581,
-0.370847225189209,
-0.3966364860534668,
-0.3232495188713074,
0.03575259447097778,
0.4162396788597107,
0.6344592571258545,
0.22757816314697266,
-0.5520607829093933,
-0.3749341070652008,
-0.33614543080329895,
-0.5054426789283752,
-0.2798995077610016,
-0.04230913519859314,
0.09274810552597046,
0.250567764043808,
0.6299906373023987,
-0.5296880006790161,
0.4363250732421875,
0.4994569420814514,
-0.45670774579048157,
0.3450198769569397,
0.0006233451422303915,
-0.06697215884923935,
-1.2693337202072144,
0.11201359331607819,
-0.1988055258989334,
-0.28206220269203186,
-0.6620330214500427,
-0.27412450313568115,
-0.142110213637352,
-0.24230413138866425,
-0.47445395588874817,
0.5611528754234314,
-0.30472609400749207,
-0.29557839035987854,
-0.2143065482378006,
0.41225990653038025,
-0.14430676400661469,
0.41313794255256653,
0.07794660329818726,
0.8580898642539978,
0.6088988780975342,
-0.5021207332611084,
0.27210894227027893,
0.5054088830947876,
-0.45431557297706604,
0.2559143900871277,
-0.8615274429321289,
0.3260718584060669,
0.11523491889238358,
0.2780502438545227,
-1.0951846837997437,
-0.22434595227241516,
0.1554052084684372,
-0.8686489462852478,
0.22903376817703247,
0.11543212831020355,
-0.615616500377655,
-0.4171777367591858,
-0.11606904119253159,
0.12282766401767731,
0.6993479132652283,
-0.41149041056632996,
0.6856964826583862,
0.4146150052547455,
-0.24748755991458893,
-0.28265199065208435,
-1.0222896337509155,
-0.3468568027019501,
-0.20933999121189117,
-0.8585531115531921,
0.4463613033294678,
-0.026110686361789703,
0.07108428329229355,
-0.07083506882190704,
-0.16604162752628326,
0.035016246140003204,
-0.16803988814353943,
0.4364992380142212,
0.04525158554315567,
-0.030177008360624313,
0.058339040726423264,
-0.024037286639213562,
-0.20797470211982727,
0.03517230600118637,
-0.23969519138336182,
0.7964265942573547,
-0.21233028173446655,
-0.07417628169059753,
-0.9031244516372681,
0.05911757051944733,
0.03736020252108574,
-0.2515346109867096,
0.36100149154663086,
1.1128802299499512,
-0.3770446479320526,
-0.014081481844186783,
-0.4858314096927643,
-0.5497203469276428,
-0.5109174847602844,
0.586597740650177,
-0.3508939743041992,
-0.8626343607902527,
0.5288376212120056,
0.1645507961511612,
-0.09929978102445602,
0.6595779061317444,
0.6406875848770142,
-0.19135244190692902,
0.6686684489250183,
0.2672198414802551,
0.07530527561903,
0.504304826259613,
-0.6561738848686218,
0.08415418863296509,
-0.6707797646522522,
-0.12565681338310242,
-0.49074387550354004,
-0.1886700689792633,
-0.6798952221870422,
-0.6229815483093262,
0.35155999660491943,
0.11949167400598526,
-0.4221673905849457,
0.543243408203125,
-0.5122277140617371,
0.17915864288806915,
0.7768345475196838,
0.15769055485725403,
0.017896732315421104,
0.22026680409908295,
0.056285519152879715,
-0.08271145820617676,
-0.6106258630752563,
-0.3990424573421478,
1.0082882642745972,
0.4840376079082489,
0.4696698784828186,
0.07592363655567169,
0.7411555647850037,
0.14018027484416962,
-0.14702987670898438,
-0.8018657565116882,
0.5364328622817993,
-0.4793245494365692,
-0.6090000867843628,
-0.3549390435218811,
-0.22703750431537628,
-0.80745929479599,
0.015613364987075329,
-0.16393911838531494,
-0.998991847038269,
0.148490771651268,
0.0031920738983899355,
-0.5700991153717041,
-0.11966894567012787,
-0.7462830543518066,
0.9094182252883911,
-0.15800277888774872,
-0.25628727674484253,
-0.1711624264717102,
-0.8688803911209106,
0.10054125636816025,
0.1425492763519287,
0.2596926987171173,
-0.0035658415872603655,
0.30211344361305237,
1.2560678720474243,
-0.220228910446167,
0.7286261320114136,
-0.30203360319137573,
0.08485732972621918,
0.5789781212806702,
-0.19202490150928497,
0.41586509346961975,
0.01075406838208437,
-0.09028244763612747,
0.3485677242279053,
0.21944594383239746,
-0.16053450107574463,
-0.3044193387031555,
0.47342798113822937,
-0.9955102205276489,
-0.37823304533958435,
-0.41958948969841003,
-0.3124127686023712,
-0.10460594296455383,
0.18644890189170837,
0.7651007771492004,
0.5327147841453552,
-0.006760638207197189,
0.3619960844516754,
0.46150779724121094,
-0.2706037759780884,
0.5336625576019287,
0.3845299482345581,
-0.270588219165802,
-0.6120333671569824,
0.9658727049827576,
0.2799239158630371,
0.27891406416893005,
0.032293714582920074,
0.28488093614578247,
-0.5158572196960449,
-0.2653259038925171,
-0.4087059199810028,
0.3532458543777466,
-0.6064168810844421,
-0.19191570580005646,
-0.6907416582107544,
-0.5993376970291138,
-0.8355724811553955,
0.09045340120792389,
-0.5150976777076721,
-0.4840905964374542,
-0.4163742959499359,
-0.006277443375438452,
0.49273455142974854,
0.3888278901576996,
-0.32691338658332825,
0.7622760534286499,
-0.42524024844169617,
0.3540719449520111,
0.26079168915748596,
-0.08675628155469894,
-0.3844814598560333,
-1.1914408206939697,
-0.28468573093414307,
0.1677926927804947,
-0.29220128059387207,
-0.7760933637619019,
0.3717919886112213,
0.3975810110569,
0.28576013445854187,
0.33281105756759644,
-0.14043599367141724,
0.7529483437538147,
-0.5591791272163391,
0.9258620142936707,
0.07643067836761475,
-1.2068357467651367,
0.7879427075386047,
-0.15913109481334686,
0.2483653873205185,
0.5074917674064636,
0.10265770554542542,
-0.4916258454322815,
-0.2528791129589081,
-0.7977917790412903,
-1.0478007793426514,
1.07066810131073,
0.42866384983062744,
-0.05002661421895027,
0.26845768094062805,
0.10582368820905685,
-0.18828213214874268,
0.07408284395933151,
-0.8474945425987244,
-0.42965665459632874,
-0.2927717864513397,
-0.33553963899612427,
-0.36093372106552124,
-0.33874157071113586,
-0.04440751671791077,
-0.30785027146339417,
0.9408056139945984,
0.17376132309436798,
0.7524277567863464,
0.3827623426914215,
-0.18029893934726715,
0.210092693567276,
0.18087394535541534,
0.5967822670936584,
0.0818849578499794,
-0.2497139573097229,
-0.051966067403554916,
0.2900453209877014,
-0.4580620527267456,
0.07217789441347122,
0.600433349609375,
-0.23361563682556152,
0.12298319488763809,
0.4009295403957367,
1.169270634651184,
0.22490504384040833,
-0.605000376701355,
0.7119953036308289,
0.06314003467559814,
-0.2817322015762329,
-0.8195501565933228,
0.01407327689230442,
0.36746102571487427,
0.5047134160995483,
0.31405678391456604,
0.021745715290308,
0.29691293835639954,
-0.4568878710269928,
0.5321282744407654,
0.1247255802154541,
-0.5765016078948975,
-0.1984330415725708,
0.9062731266021729,
-0.010206020437180996,
-0.4886017441749573,
0.4960617125034332,
-0.22304370999336243,
-0.38365960121154785,
0.4958256483078003,
0.7107450366020203,
0.8984515070915222,
-0.44583794474601746,
-0.024105386808514595,
0.44682857394218445,
0.21727772057056427,
-0.054726023226976395,
0.42388486862182617,
0.04891115054488182,
-0.7230744361877441,
-0.25039374828338623,
-0.8148449659347534,
0.08374612033367157,
0.17403578758239746,
-0.7412492036819458,
0.4527210593223572,
-0.27415892481803894,
-0.2770133316516876,
0.1759701818227768,
0.013524644076824188,
-0.6455004215240479,
0.30832552909851074,
0.13170941174030304,
0.7962944507598877,
-0.8641135096549988,
0.9772995710372925,
0.36398378014564514,
-0.524608850479126,
-1.1066313982009888,
0.0800553560256958,
0.0680658295750618,
-0.8554361462593079,
0.677335798740387,
0.44962212443351746,
-0.1815689653158188,
0.23955965042114258,
-0.3845517933368683,
-0.9502178430557251,
1.2083086967468262,
0.26117196679115295,
-0.5482051372528076,
0.0034472451079636812,
0.13416573405265808,
0.4610738456249237,
-0.3063046336174011,
0.31594517827033997,
0.7713902592658997,
0.3074956238269806,
-0.010842953808605671,
-1.113112211227417,
-0.05491458997130394,
-0.166049525141716,
-0.05821879953145981,
-0.40131503343582153,
-0.7543342709541321,
0.9088591933250427,
-0.09978950768709183,
-0.28541019558906555,
0.15030817687511444,
0.8269495368003845,
0.3976863622665405,
0.4347234070301056,
0.6513558030128479,
0.5298612713813782,
0.6440882086753845,
-0.16343392431735992,
0.7242620587348938,
-0.25419801473617554,
0.49848973751068115,
1.238518476486206,
-0.025467125698924065,
1.211635708808899,
0.3963392674922943,
-0.22941118478775024,
0.5213726162910461,
0.6060828566551208,
-0.03631230816245079,
0.6078055500984192,
0.1577085554599762,
-0.0915885865688324,
0.0659501850605011,
-0.022287802770733833,
-0.4442857801914215,
0.9782882928848267,
0.3935070335865021,
-0.40564969182014465,
0.22552940249443054,
0.2335326075553894,
0.10828013718128204,
-0.048221006989479065,
-0.10101229697465897,
0.8421898484230042,
0.18132103979587555,
-0.310653954744339,
0.718146026134491,
0.04531164839863777,
0.8407307863235474,
-0.5390728712081909,
0.4060806632041931,
0.07757764309644699,
0.22359469532966614,
-0.1670612394809723,
-0.5338048934936523,
0.3598977029323578,
0.005095699802041054,
-0.1376257985830307,
-0.1330140084028244,
0.6221668124198914,
-0.726981520652771,
-0.5895893573760986,
0.4658950865268707,
0.2922285795211792,
0.38632625341415405,
-0.008880514651536942,
-0.8490895628929138,
0.15016567707061768,
0.32626283168792725,
-0.4483175575733185,
-0.04739292338490486,
0.2132769525051117,
0.21586258709430695,
0.4574846029281616,
0.5974493622779846,
0.11155002564191818,
-0.03795364499092102,
0.12568357586860657,
0.7081626057624817,
-0.6012071967124939,
-0.6768022775650024,
-0.7078419327735901,
0.7312758564949036,
-0.2402450293302536,
-0.13773049414157867,
0.7132933735847473,
0.85763019323349,
0.8909898996353149,
-0.1097685918211937,
0.7593585252761841,
-0.20448720455169678,
0.8301355242729187,
-0.6126775145530701,
0.9506375193595886,
-0.6405059099197388,
0.10964642465114594,
-0.17957782745361328,
-0.6614274382591248,
0.0008479687385261059,
1.0003741979599,
-0.34229665994644165,
0.05989960581064224,
0.6133692264556885,
1.0682097673416138,
-0.03383101150393486,
0.06176052615046501,
0.10344669222831726,
0.5330101251602173,
0.2235371172428131,
0.37898555397987366,
0.4173470139503479,
-0.9748614430427551,
0.7594561576843262,
-0.33568379282951355,
-0.19704259932041168,
-0.22892047464847565,
-0.3365941345691681,
-0.785922110080719,
-0.815608561038971,
-0.2838021218776703,
-0.742773175239563,
0.07158944010734558,
1.0090028047561646,
0.5263779759407043,
-0.9382132887840271,
-0.5579319000244141,
0.127943754196167,
-0.3269554078578949,
-0.21706737577915192,
-0.26833608746528625,
0.7126917839050293,
-0.07462389767169952,
-0.8005505204200745,
0.5348029136657715,
-0.039785079658031464,
0.06726688891649246,
0.06012049689888954,
-0.09829122573137283,
-0.25997257232666016,
0.06444250792264938,
0.46981319785118103,
0.10481233149766922,
-0.7861728072166443,
-0.3319671154022217,
-0.029517801478505135,
-0.1332235485315323,
-0.10343965142965317,
0.4370745122432709,
-0.5133159756660461,
0.2819674015045166,
0.3869108557701111,
0.42188841104507446,
0.9305477142333984,
-0.19738493859767914,
0.1790505051612854,
-0.6920879483222961,
0.5964878797531128,
0.1341264694929123,
0.3132534325122833,
0.36399418115615845,
-0.1442992091178894,
0.45797020196914673,
0.3582606911659241,
-0.7906944751739502,
-0.8373165130615234,
0.09422209113836288,
-1.1693347692489624,
-0.154835045337677,
1.4604192972183228,
-0.004083826206624508,
-0.24027636647224426,
0.2393171340227127,
-0.410383403301239,
0.8044867515563965,
-0.49612846970558167,
0.506286084651947,
0.44095468521118164,
-0.1393214613199234,
-0.11175846308469772,
-0.6914030909538269,
0.7735872268676758,
0.4652034640312195,
-0.4671829044818878,
-0.036361828446388245,
0.2687438130378723,
0.5344655513763428,
0.18072256445884705,
0.8646574020385742,
0.02833617478609085,
0.19508524239063263,
0.15342319011688232,
0.2346995770931244,
0.0980556383728981,
0.0077032349072396755,
-0.49604055285453796,
-0.10100360959768295,
-0.1934836506843567,
-0.3273870348930359
] |
google/ddpm-celebahq-256 | google | "2022-07-21T15:00:31Z" | 11,638 | 23 | diffusers | [
"diffusers",
"pytorch",
"unconditional-image-generation",
"arxiv:2006.11239",
"license:apache-2.0",
"has_space",
"diffusers:DDPMPipeline",
"region:us"
] | unconditional-image-generation | "2022-07-19T10:42:22Z" | ---
license: apache-2.0
tags:
- pytorch
- diffusers
- unconditional-image-generation
---
# Denoising Diffusion Probabilistic Models (DDPM)
**Paper**: [Denoising Diffusion Probabilistic Models](https://arxiv.org/abs/2006.11239)
**Authors**: Jonathan Ho, Ajay Jain, Pieter Abbeel
**Abstract**:
*We present high quality image synthesis results using diffusion probabilistic models, a class of latent variable models inspired by considerations from nonequilibrium thermodynamics. Our best results are obtained by training on a weighted variational bound designed according to a novel connection between diffusion probabilistic models and denoising score matching with Langevin dynamics, and our models naturally admit a progressive lossy decompression scheme that can be interpreted as a generalization of autoregressive decoding. On the unconditional CIFAR10 dataset, we obtain an Inception score of 9.46 and a state-of-the-art FID score of 3.17. On 256x256 LSUN, we obtain sample quality similar to ProgressiveGAN.*
## Inference
**DDPM** models can use *discrete noise schedulers* such as:
- [scheduling_ddpm](https://github.com/huggingface/diffusers/blob/main/src/diffusers/schedulers/scheduling_ddpm.py)
- [scheduling_ddim](https://github.com/huggingface/diffusers/blob/main/src/diffusers/schedulers/scheduling_ddim.py)
- [scheduling_pndm](https://github.com/huggingface/diffusers/blob/main/src/diffusers/schedulers/scheduling_pndm.py)
for inference. Note that while the *ddpm* scheduler yields the highest quality, it also takes the longest.
For a good trade-off between quality and inference speed you might want to consider the *ddim* or *pndm* schedulers instead.
See the following code:
```python
# !pip install diffusers
from diffusers import DDPMPipeline, DDIMPipeline, PNDMPipeline
model_id = "google/ddpm-celebahq-256"
# load model and scheduler
ddpm = DDPMPipeline.from_pretrained(model_id) # you can replace DDPMPipeline with DDIMPipeline or PNDMPipeline for faster inference
# run pipeline in inference (sample random noise and denoise)
image = ddpm()["sample"]
# save image
image[0].save("ddpm_generated_image.png")
```
For more in-detail information, please have a look at the [official inference example](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/diffusers_intro.ipynb)
## Training
If you want to train your own model, please have a look at the [official training example](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/training_example.ipynb)
## Samples
1. ![sample_1](https://huggingface.co/google/ddpm-celebahq-256/resolve/main/images/generated_image_0.png)
2. ![sample_2](https://huggingface.co/google/ddpm-celebahq-256/resolve/main/images/generated_image_1.png)
3. ![sample_3](https://huggingface.co/google/ddpm-celebahq-256/resolve/main/images/generated_image_2.png)
4. ![sample_4](https://huggingface.co/google/ddpm-celebahq-256/resolve/main/images/generated_image_3.png) | [
-0.43730396032333374,
-0.7024747133255005,
0.342559278011322,
0.5867739915847778,
-0.12746554613113403,
-0.2525441646575928,
0.08831509202718735,
-0.3183914124965668,
0.09745930135250092,
0.1748277097940445,
-0.7067519426345825,
-0.24169312417507172,
-0.5635470747947693,
-0.17479541897773743,
-0.2939571142196655,
0.9559494853019714,
-0.11161085218191147,
0.14668866991996765,
-0.12460611760616302,
0.1452360451221466,
0.09554857015609741,
-0.14449426531791687,
-0.8059502243995667,
-0.4041946232318878,
0.04724918678402901,
-0.23882406949996948,
0.5275944471359253,
0.3344535231590271,
0.2974342107772827,
0.29282552003860474,
-0.49228256940841675,
0.09014319628477097,
-0.5942226052284241,
-0.12356807291507721,
0.21670465171337128,
-0.06245746463537216,
-0.6618101000785828,
0.14362598955631256,
0.8254079222679138,
0.7174673676490784,
-0.440966933965683,
0.07429786026477814,
0.11158213764429092,
0.6577646732330322,
-0.6439327001571655,
0.1818232536315918,
-0.20794260501861572,
0.1603640466928482,
0.12608292698860168,
0.21727144718170166,
-0.16999731957912445,
-0.2623996436595917,
0.1318729668855667,
-0.5959281325340271,
0.4656204879283905,
-0.4000665247440338,
1.2393306493759155,
0.23648793995380402,
-0.2584626078605652,
0.06400139629840851,
-0.6802312731742859,
0.7571998834609985,
-0.7115001678466797,
0.2140326052904129,
0.299439400434494,
0.02395736426115036,
-0.19130432605743408,
-0.7103251814842224,
-0.606731653213501,
-0.0942416563630104,
-0.01060689240694046,
0.5918981432914734,
-0.1621292531490326,
0.2064533829689026,
0.2731521427631378,
0.6093239784240723,
-0.42604124546051025,
-0.09332780539989471,
-0.3254479467868805,
-0.1998806744813919,
0.7169553637504578,
0.08455230295658112,
-0.007890768349170685,
0.0060643465258181095,
-0.4191676378250122,
0.012911650352180004,
-0.2636997103691101,
-0.04710039868950844,
0.40756064653396606,
-0.49787676334381104,
-0.537461519241333,
0.16698944568634033,
-0.23160170018672943,
0.7796658873558044,
0.5068904161453247,
-0.32037606835365295,
0.24257157742977142,
-0.18510496616363525,
-0.3303062319755554,
-0.4757140278816223,
0.8074818253517151,
0.5157360434532166,
-0.11961425095796585,
-0.09268397092819214,
-0.18262334167957306,
0.023566359654068947,
-0.05729074776172638,
-1.1615028381347656,
-0.681465208530426,
0.28311601281166077,
-0.6231213808059692,
-0.5132811665534973,
-0.16831165552139282,
-0.808320939540863,
0.026614252477884293,
-0.2754858732223511,
0.416155070066452,
-0.4155614972114563,
-0.5958300232887268,
0.07298022508621216,
-0.21534301340579987,
0.2983255088329315,
0.5204500555992126,
-0.7000699639320374,
0.39423778653144836,
0.2841816842556,
1.0467877388000488,
-0.13118138909339905,
-0.13784444332122803,
-0.4394231140613556,
0.0570494569838047,
-0.4539669156074524,
0.5652534365653992,
-0.25982218980789185,
-0.5577332377433777,
-0.4248069226741791,
0.056122276932001114,
-0.2312987595796585,
-0.5842810869216919,
0.4418092966079712,
-0.526719868183136,
0.3785192370414734,
0.04142676293849945,
-0.6430845260620117,
-0.2744981050491333,
-0.08850263804197311,
-0.47628724575042725,
0.8549847602844238,
0.4983861446380615,
-0.7117413878440857,
0.16435009241104126,
-0.5831201672554016,
-0.27046722173690796,
-0.12287244200706482,
0.07779818028211594,
-0.7535498738288879,
-0.03417300805449486,
0.08177473396062851,
0.5308237671852112,
-0.05435061827301979,
0.14993703365325928,
-0.5376632213592529,
-0.20804232358932495,
0.14640742540359497,
-0.3243652880191803,
1.1326780319213867,
0.37186574935913086,
-0.325945645570755,
-0.04336794093251228,
-0.8101568818092346,
-0.05875594913959503,
0.08671889454126358,
-0.4706898629665375,
0.1405361145734787,
-0.3765265643596649,
0.2108413428068161,
0.17463034391403198,
-0.09198885411024094,
-0.49040526151657104,
0.15772244334220886,
-0.415767103433609,
0.5710239410400391,
0.7962548732757568,
0.1841573417186737,
0.7804467082023621,
-0.4778503477573395,
0.6781007647514343,
0.17593003809452057,
0.264050155878067,
0.07041063904762268,
-0.6522946953773499,
-0.5865963697433472,
-0.7566410899162292,
0.3133428692817688,
0.5853906869888306,
-0.4761144816875458,
0.43969208002090454,
0.0695265457034111,
-0.6319519877433777,
-0.32283520698547363,
0.04409109801054001,
0.37604930996894836,
0.7404578924179077,
0.3021744191646576,
-0.5687110424041748,
-0.3855328857898712,
-0.5886926651000977,
0.16455841064453125,
-0.06449251621961594,
-0.23756924271583557,
0.2578268051147461,
0.4298703074455261,
-0.243979811668396,
0.6539263725280762,
-0.5666121244430542,
-0.15630823373794556,
0.12541629374027252,
0.14616717398166656,
0.5175515413284302,
0.7752389907836914,
0.7481719851493835,
-0.837288498878479,
-0.5329331755638123,
-0.5478448271751404,
-0.7150415182113647,
-0.24087926745414734,
-0.19990772008895874,
-0.35618022084236145,
0.4214348793029785,
0.29267418384552,
-0.8267143964767456,
0.6071910262107849,
0.8060013651847839,
-0.3044050335884094,
0.7631007432937622,
-0.23065949976444244,
0.002565868431702256,
-0.9361060857772827,
0.16893194615840912,
0.12379292398691177,
-0.3076367974281311,
-0.48648717999458313,
0.02977924235165119,
-0.18356485664844513,
-0.05852124094963074,
-0.4070783257484436,
0.7630057334899902,
-0.7306315302848816,
0.22425131499767303,
-0.12077883630990982,
-0.40557554364204407,
0.2959728240966797,
0.3957814872264862,
0.21771886944770813,
0.5374026298522949,
0.8653594255447388,
-0.9180603623390198,
0.2512957751750946,
0.44597911834716797,
-0.3106304109096527,
0.6259564757347107,
-0.8598980903625488,
-0.061493441462516785,
-0.18175791203975677,
0.5275014042854309,
-1.0460774898529053,
-0.21938613057136536,
0.7077479362487793,
-0.17300814390182495,
0.6612006425857544,
-0.5852357745170593,
-0.2759133279323578,
-0.2161773443222046,
-0.12652303278446198,
0.30582568049430847,
1.0277425050735474,
-0.5591633319854736,
0.54290372133255,
0.3674181401729584,
0.1461792290210724,
-0.464420884847641,
-0.6294213533401489,
-0.2047123908996582,
-0.3953165113925934,
-0.6052828431129456,
0.8987258076667786,
-0.38928091526031494,
-0.11818438768386841,
0.05511948838829994,
-0.13478995859622955,
-0.2759723365306854,
0.1467360258102417,
0.5215843915939331,
0.39493319392204285,
0.05003705620765686,
-0.31165656447410583,
-0.08808988332748413,
-0.10704155266284943,
0.04281705617904663,
-0.22900420427322388,
0.22276228666305542,
0.015393509529531002,
-0.08162207901477814,
-0.7514866590499878,
0.32843905687332153,
0.2818228304386139,
0.26347455382347107,
0.873950719833374,
1.1943365335464478,
-0.18206965923309326,
-0.11320747435092926,
-0.5988913178443909,
-0.34223833680152893,
-0.47263097763061523,
-0.16676943004131317,
-0.459140807390213,
-0.511914849281311,
0.5863074660301208,
-0.15241536498069763,
-0.0679253339767456,
0.4861004948616028,
0.5964595675468445,
-0.35244354605674744,
0.7513092756271362,
0.3749113380908966,
0.11531908810138702,
0.7504268884658813,
-0.7707058787345886,
-0.11294692009687424,
-0.9733431339263916,
-0.04908633604645729,
0.04394711181521416,
-0.28097426891326904,
-0.5425352454185486,
-0.5978957414627075,
0.5631115436553955,
0.5114586353302002,
-0.1632954627275467,
0.10571981966495514,
-0.6634904146194458,
0.29221388697624207,
0.5533092021942139,
0.3472141623497009,
-0.08175697177648544,
0.27420663833618164,
0.05789791792631149,
0.08307842910289764,
-0.6327483654022217,
-0.21969389915466309,
0.8877203464508057,
0.20561861991882324,
0.9109625220298767,
0.012627098709344864,
0.6812437176704407,
-0.004433047492057085,
0.12546008825302124,
-0.41243764758110046,
0.5051669478416443,
0.06730376929044724,
-0.48775166273117065,
-0.04973897710442543,
-0.5924515128135681,
-0.93475741147995,
0.2655283808708191,
-0.11834140866994858,
-0.49999502301216125,
0.4901275932788849,
0.29590874910354614,
-0.3226892054080963,
0.33759474754333496,
-0.7023699879646301,
0.7179506421089172,
0.2549562454223633,
-0.648779034614563,
-0.0968112051486969,
-0.6496898531913757,
0.39773303270339966,
0.22962890565395355,
-0.026195526123046875,
-0.22773398458957672,
0.024078084155917168,
0.6878888607025146,
-0.5225064754486084,
0.9138036966323853,
-0.6446465849876404,
-0.07962923496961594,
0.5714776515960693,
0.12620475888252258,
0.25795796513557434,
0.3784255087375641,
-0.32891184091567993,
0.593781590461731,
0.24872110784053802,
-0.6027538776397705,
-0.2690914273262024,
0.6781567931175232,
-0.7267744541168213,
-0.32031235098838806,
-0.36068058013916016,
-0.42564064264297485,
0.23576460778713226,
-0.04219725355505943,
0.5845486521720886,
0.4711587429046631,
-0.14452296495437622,
-0.21619656682014465,
0.7338135838508606,
-0.16710728406906128,
0.583015501499176,
0.3206462264060974,
-0.0033465519081801176,
-0.42723220586776733,
0.6877487897872925,
0.18437235057353973,
0.27310118079185486,
0.37475723028182983,
0.21482625603675842,
-0.14465823769569397,
-0.6377726793289185,
-0.46251794695854187,
0.38686975836753845,
-0.5187326669692993,
-0.14898452162742615,
-0.7801167368888855,
-0.3341011703014374,
-0.5851616859436035,
-0.07434038072824478,
-0.38119447231292725,
-0.6642715334892273,
-0.7224448323249817,
0.32197657227516174,
0.47665631771087646,
0.1920909732580185,
-0.6418496966362,
0.4228239059448242,
-0.5975891351699829,
0.42439237236976624,
0.24775387346744537,
0.24634724855422974,
-0.08647441864013672,
-0.7969157099723816,
-0.115018829703331,
-0.03364121913909912,
-0.5842095613479614,
-0.628059983253479,
0.6156926155090332,
0.39372560381889343,
0.6194151043891907,
0.5201716423034668,
-0.00043890124652534723,
0.7508721947669983,
-0.40819424390792847,
0.7125032544136047,
0.23133456707000732,
-0.776755154132843,
0.495344877243042,
-0.28943073749542236,
0.0996580570936203,
0.15210944414138794,
0.518288254737854,
-0.13097010552883148,
-0.017670096829533577,
-0.9253451228141785,
-0.7810551524162292,
0.5798153281211853,
0.31771984696388245,
0.075382761657238,
0.08356436342000961,
0.7209012508392334,
0.0792606994509697,
0.25763389468193054,
-0.5947189331054688,
-0.22258205711841583,
-0.18910609185695648,
-0.010498089715838432,
0.11804033815860748,
-0.37435927987098694,
-0.28219547867774963,
-0.4994201958179474,
0.8901469707489014,
0.019792331382632256,
0.6773707866668701,
0.5719899535179138,
0.14198049902915955,
-0.12106730788946152,
-0.2349373698234558,
0.4454796314239502,
0.7305858135223389,
-0.3948986828327179,
-0.2567770779132843,
-0.07702311128377914,
-0.38477006554603577,
0.17231090366840363,
0.25396615266799927,
-0.4356786906719208,
0.2344556450843811,
0.2558135390281677,
0.8481290340423584,
-0.21271038055419922,
-0.34779229760169983,
0.5156851410865784,
-0.07434920966625214,
-0.43299585580825806,
-0.6558046936988831,
0.19653619825839996,
0.18419426679611206,
0.3601645827293396,
-0.029793985188007355,
0.27747392654418945,
0.35832077264785767,
-0.1647154688835144,
0.0032455511391162872,
0.5431308746337891,
-0.12351908534765244,
-0.5471813082695007,
0.9022273421287537,
-0.004083079751580954,
0.13777130842208862,
0.6758875846862793,
-0.5757501721382141,
-0.35830870270729065,
0.6956649422645569,
0.2775276303291321,
0.7649288177490234,
-0.2332543283700943,
0.30857959389686584,
0.6239804625511169,
-0.11223772913217545,
-0.2688181698322296,
0.4314679205417633,
-0.19788311421871185,
-0.6314904689788818,
-0.5364680886268616,
-0.8600340485572815,
-0.2913653254508972,
0.11440262943506241,
-0.6077343225479126,
0.14054857194423676,
-0.4918203353881836,
-0.2668474316596985,
0.09223510324954987,
-0.11041895300149918,
-0.7590340375900269,
0.20024439692497253,
0.067460797727108,
0.7085660099983215,
-0.7689945101737976,
0.6961461305618286,
0.5791031718254089,
-0.2776966392993927,
-0.6630135774612427,
-0.030843153595924377,
0.0639297142624855,
-0.6741068959236145,
0.6316012740135193,
0.004822337534278631,
0.11761118471622467,
0.17694391310214996,
-0.6200301647186279,
-0.6587963700294495,
1.0817863941192627,
0.4840623438358307,
-0.4823629856109619,
-0.18610885739326477,
-0.5807391405105591,
0.3282027542591095,
-0.23714855313301086,
0.39086395502090454,
0.3208860456943512,
0.24093222618103027,
0.2781340479850769,
-0.7882224917411804,
0.16142334043979645,
-0.18430733680725098,
0.20477834343910217,
-0.016411278396844864,
-0.7741541862487793,
1.088998556137085,
-0.39848196506500244,
-0.213322252035141,
0.2888225317001343,
0.4348317086696625,
0.20303809642791748,
0.3221585154533386,
0.6283056139945984,
0.9036030769348145,
0.5198250412940979,
-0.05664949119091034,
1.1384271383285522,
-0.2301444262266159,
0.5271052718162537,
0.8463382124900818,
-0.008951866999268532,
0.385836124420166,
0.4472157657146454,
-0.540501058101654,
0.620134174823761,
0.878815770149231,
-0.33939099311828613,
0.7277677059173584,
0.3794749081134796,
-0.44724398851394653,
-0.21113832294940948,
0.12823353707790375,
-0.4661838412284851,
0.14566558599472046,
0.25378769636154175,
-0.3213692605495453,
-0.03359925001859665,
0.06511906534433365,
0.02781234309077263,
-0.28791171312332153,
-0.011483414098620415,
0.7881507277488708,
0.1362733244895935,
-0.45627161860466003,
0.9647014141082764,
-0.04802205413579941,
0.870527446269989,
-0.41741669178009033,
-0.060074854642152786,
-0.2602313756942749,
0.16585566103458405,
-0.3046581745147705,
-0.5488494634628296,
0.40375083684921265,
-0.46362966299057007,
-0.25472137331962585,
-0.4450547397136688,
0.6023188233375549,
-0.42465710639953613,
-0.5281939506530762,
0.3089819550514221,
0.2856657803058624,
0.4817541241645813,
-0.22445553541183472,
-0.898525059223175,
0.062046557664871216,
-0.22848203778266907,
-0.5575550198554993,
0.3900236189365387,
0.20924104750156403,
0.4278651475906372,
0.4933013916015625,
0.7043856382369995,
0.2826019823551178,
-0.034321438521146774,
-0.14965352416038513,
0.8392133712768555,
-0.2689317464828491,
-0.4320147931575775,
-0.7816711664199829,
0.49270427227020264,
-0.1052541509270668,
-0.13639262318611145,
0.4935130178928375,
0.329128235578537,
0.918975830078125,
-0.32712048292160034,
0.543788731098175,
-0.2442702054977417,
0.26358163356781006,
-0.6384140849113464,
0.5736613273620605,
-0.6112580895423889,
0.20098644495010376,
-0.30701392889022827,
-0.8505367636680603,
0.016466524451971054,
0.8654569983482361,
-0.1518169492483139,
0.2323949933052063,
0.21675719320774078,
0.9218932390213013,
-0.3017779290676117,
-0.3101547360420227,
0.13250413537025452,
0.19602113962173462,
0.20984840393066406,
0.5926561951637268,
0.7470852732658386,
-0.6876169443130493,
0.4188769459724426,
-0.681821346282959,
-0.4352829158306122,
-0.16705332696437836,
-0.9902896285057068,
-0.6738923788070679,
-0.6127392649650574,
-0.9965143799781799,
-0.7474808692932129,
-0.04345535486936569,
0.5032800436019897,
1.2459511756896973,
-0.6270512342453003,
-0.11643078178167343,
-0.3755927085876465,
-0.006132555194199085,
-0.601654052734375,
-0.30703839659690857,
0.40626731514930725,
-0.010977055877447128,
-1.0213027000427246,
0.2116585075855255,
-0.04885734245181084,
0.4028017818927765,
-0.07531166821718216,
-0.18553121387958527,
-0.22221162915229797,
-0.18130406737327576,
0.501508355140686,
0.21979069709777832,
-0.6110923290252686,
0.14703990519046783,
-0.37331894040107727,
0.1476823091506958,
0.08448190242052078,
0.2770475149154663,
-0.642577052116394,
0.3697003126144409,
0.5977975130081177,
0.35970696806907654,
0.888721227645874,
-0.045572679489851,
0.3038836419582367,
-0.5682128071784973,
0.3281151056289673,
0.086045041680336,
0.2868359684944153,
0.3426051437854767,
-0.4430595338344574,
0.7798643112182617,
0.6698922514915466,
-0.8637714385986328,
-0.8445389270782471,
0.1551332175731659,
-1.2376489639282227,
-0.2628162205219269,
1.2042111158370972,
-0.4349716305732727,
-0.2985202670097351,
0.266072154045105,
-0.036818068474531174,
0.29028424620628357,
-0.412283331155777,
0.7473471760749817,
0.4629284143447876,
-0.3613569140434265,
-0.2649329900741577,
-0.5325534343719482,
0.6012003421783447,
0.2831336557865143,
-0.42153993248939514,
-0.24837809801101685,
0.6283518075942993,
0.7812021970748901,
0.15597854554653168,
0.9808891415596008,
-0.06001828610897064,
0.17972129583358765,
0.14135095477104187,
0.06138356402516365,
0.013282403349876404,
0.09541788697242737,
-0.47537437081336975,
0.02845079079270363,
-0.3287167549133301,
-0.3348155617713928
] |
JackFram/llama-160m | JackFram | "2023-11-05T19:50:43Z" | 11,636 | 8 | transformers | [
"transformers",
"pytorch",
"safetensors",
"llama",
"text-generation",
"en",
"dataset:wikipedia",
"arxiv:2305.09781",
"license:other",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | text-generation | "2023-05-26T16:49:26Z" | ---
license: other
language:
- en
datasets:
- wikipedia
pipeline_tag: text-generation
---
## Model description
This is a LLaMA-like model with only 160M parameters trained on Wikipedia and part of the C4-en and C4-realnewslike datasets.
No evaluation has been conducted yet, so use it with care.
The model is mainly developed as a base Small Speculative Model in the [SpecInfer](https://arxiv.org/abs/2305.09781) paper.
## Citation
To cite the model, please use
```bibtex
@misc{miao2023specinfer,
title={SpecInfer: Accelerating Generative LLM Serving with Speculative Inference and Token Tree Verification},
author={Xupeng Miao and Gabriele Oliaro and Zhihao Zhang and Xinhao Cheng and Zeyu Wang and Rae Ying Yee Wong and Zhuoming Chen and Daiyaan Arfeen and Reyna Abhyankar and Zhihao Jia},
year={2023},
eprint={2305.09781},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
| [
-0.3389104902744293,
-0.7365129590034485,
0.4728221893310547,
0.06769868731498718,
-0.5371031761169434,
-0.014071899466216564,
-0.15910418331623077,
-0.8169541358947754,
0.6758113503456116,
0.5261247158050537,
-0.7797013521194458,
-0.5322737097740173,
-0.4694851338863373,
0.19534656405448914,
-0.7218165397644043,
1.1481256484985352,
0.09823137521743774,
0.04798851162195206,
0.006554870400577784,
0.21034619212150574,
0.23233839869499207,
-0.3517085015773773,
-0.6821067929267883,
0.06390486657619476,
0.5402358770370483,
0.6547112464904785,
0.578751266002655,
0.83282470703125,
0.3545599579811096,
0.17470647394657135,
-0.3494989573955536,
0.3287234306335449,
-0.9403790235519409,
-0.22830264270305634,
0.23427842557430267,
-0.5763937830924988,
-0.6877962350845337,
-0.15507295727729797,
0.9294083714485168,
0.5227517485618591,
-0.2865632176399231,
0.518328845500946,
-0.09729937463998795,
0.037543702870607376,
-0.4020019471645355,
-0.24826979637145996,
-0.891541063785553,
0.09110553562641144,
-0.7262827157974243,
0.22606782615184784,
-0.38117140531539917,
-0.10031034052371979,
0.035506751388311386,
-0.8622736930847168,
0.5676050186157227,
0.5650734305381775,
1.3914560079574585,
0.21374738216400146,
-0.4444302022457123,
0.29138970375061035,
-0.5207316875457764,
0.6514994502067566,
-0.9732336401939392,
0.2515910863876343,
0.3878007233142853,
0.21120448410511017,
-0.2641020715236664,
-1.071204662322998,
-0.7057226896286011,
-0.5047361254692078,
0.1820741593837738,
0.13832028210163116,
0.08656521141529083,
0.028238549828529358,
0.2683753967285156,
0.467835932970047,
-0.45330241322517395,
0.3772284686565399,
-0.6247259974479675,
-0.3528134822845459,
0.6157873272895813,
0.4289643168449402,
-0.13550296425819397,
-0.5705569386482239,
-0.9404538869857788,
0.03549585118889809,
-0.5665667057037354,
0.15085211396217346,
0.5624249577522278,
0.08656627684831619,
-0.6035858392715454,
0.668105959892273,
-0.2105250209569931,
0.5547986030578613,
0.06200077757239342,
-0.009383284486830235,
0.3372369408607483,
-0.38824358582496643,
-0.24259185791015625,
-0.39262667298316956,
1.0978485345840454,
0.4091118574142456,
-0.02808075211942196,
-0.09670837968587875,
-0.047565072774887085,
-0.08713094145059586,
0.14020226895809174,
-0.999113917350769,
-0.01791444607079029,
0.1452338546514511,
-0.5281264185905457,
-0.3561592400074005,
0.08785076439380646,
-0.8182082176208496,
-0.030715584754943848,
0.43217021226882935,
-0.18133600056171417,
-0.2639830410480499,
-0.47846031188964844,
0.12523643672466278,
0.23716937005519867,
0.5786521434783936,
-0.02252034842967987,
-0.8885012269020081,
0.47097960114479065,
0.5461941957473755,
0.9734305739402771,
-0.4458099901676178,
-0.32427188754081726,
-0.11653901636600494,
0.09339935332536697,
-0.593022882938385,
0.8951408863067627,
-0.43008866906166077,
-0.6399013996124268,
-0.3193240165710449,
0.4485200047492981,
-0.012144123204052448,
-0.2765679359436035,
1.361584186553955,
-0.8039414882659912,
-0.0644245520234108,
-0.1918443739414215,
-0.550838053226471,
-0.3658446967601776,
0.27948352694511414,
-1.0120171308517456,
1.283514380455017,
0.15876029431819916,
-0.9008966088294983,
0.441215455532074,
-0.5118110179901123,
-0.017714591696858406,
0.2641694247722626,
-0.031163381412625313,
-0.47424405813217163,
-0.17191293835639954,
-0.14139625430107117,
0.4568459689617157,
-0.7353909015655518,
0.3292856514453888,
-0.5145647525787354,
-0.6075026988983154,
0.11660435050725937,
-0.4263732433319092,
0.7864772081375122,
0.3261162042617798,
-0.17001031339168549,
-0.08349262923002243,
-1.124666690826416,
-0.20376688241958618,
0.30370691418647766,
-0.40651920437812805,
0.015482659451663494,
-0.03972204774618149,
0.10252740979194641,
0.02057245746254921,
0.5513449311256409,
-0.7016721963882446,
0.2726583778858185,
-0.5402101874351501,
0.22822467982769012,
0.6646855473518372,
0.06824132055044174,
0.16974449157714844,
-0.3461245894432068,
0.7507559657096863,
-0.08150686323642731,
0.34660109877586365,
0.1288084238767624,
-0.6941441297531128,
-0.9581690430641174,
-0.27157795429229736,
0.40697866678237915,
0.32247379422187805,
-0.49868425726890564,
0.08834301680326462,
-0.19990909099578857,
-0.8051728010177612,
-0.35499125719070435,
0.0909666046500206,
0.23501954972743988,
0.6955649852752686,
0.23115240037441254,
-0.07623627036809921,
-0.7048880457878113,
-1.3343396186828613,
0.28726524114608765,
-0.19472292065620422,
0.08031512051820755,
0.3730582594871521,
0.5295010209083557,
-0.4565342664718628,
0.7293763756752014,
-0.4263342618942261,
0.23363471031188965,
-0.00494429050013423,
-0.15776459872722626,
0.5490946769714355,
0.43356627225875854,
0.812853991985321,
-0.6649091839790344,
-0.45326632261276245,
-0.23775437474250793,
-0.6699075698852539,
0.13847891986370087,
0.23483173549175262,
-0.49843931198120117,
0.03209787234663963,
0.20297497510910034,
-0.8684942126274109,
0.2171483188867569,
0.7533642649650574,
-0.3110799193382263,
0.7674447894096375,
0.03378918766975403,
0.09784428030252457,
-1.1651238203048706,
0.13695575296878815,
0.06087486073374748,
-0.1914251446723938,
-0.6269790530204773,
0.27835729718208313,
0.16458596289157867,
0.057955753058195114,
-0.7237228155136108,
0.4719579815864563,
-0.21410968899726868,
0.06843170523643494,
-0.3539242148399353,
-0.17430610954761505,
-0.029032688587903976,
0.6586952209472656,
-0.07517778128385544,
0.6679143905639648,
0.7777305245399475,
-0.6132959127426147,
0.4256630837917328,
0.1713692545890808,
-0.4109222888946533,
0.16972234845161438,
-0.9009674191474915,
0.22391211986541748,
0.21365468204021454,
0.3099941611289978,
-0.9856817722320557,
-0.33716028928756714,
0.681334912776947,
-0.14524586498737335,
-0.02549705281853676,
-0.1098870038986206,
-0.7068630456924438,
-0.6570422053337097,
-0.5106797218322754,
0.7170246839523315,
0.3763347268104553,
-0.687308669090271,
0.5358566641807556,
0.015234383754432201,
0.3598378002643585,
-0.5773505568504333,
-0.692546546459198,
0.005915085319429636,
-0.25659120082855225,
-0.9425278902053833,
0.7816360592842102,
-0.3640747666358948,
-0.08837071061134338,
-0.0262470506131649,
0.07645958662033081,
0.13694003224372864,
0.06374158710241318,
0.2648952901363373,
0.6923089623451233,
-0.23735328018665314,
-0.054152097553014755,
0.04084523394703865,
-0.129836305975914,
0.09546028822660446,
-0.14730411767959595,
0.5212968587875366,
-0.2697446346282959,
-0.32207009196281433,
-0.5380281805992126,
0.24154354631900787,
0.37145015597343445,
0.09353191405534744,
0.7691939473152161,
0.5202043056488037,
-0.35231441259384155,
-0.10713335126638412,
-0.43405720591545105,
-0.2203771322965622,
-0.5063101053237915,
0.6029586791992188,
-0.49471041560173035,
-0.6687514185905457,
0.754340410232544,
0.010823323391377926,
0.09878259897232056,
1.0266824960708618,
0.4067922830581665,
0.07534239441156387,
0.6735325455665588,
0.6776072382926941,
0.08122291415929794,
0.2692219316959381,
-0.5483717918395996,
-0.4245055615901947,
-0.8790119886398315,
-0.4649685025215149,
-0.33517366647720337,
-0.31431421637535095,
-0.7580074667930603,
-0.6937277913093567,
0.14213302731513977,
-0.046922240406274796,
-0.5705217123031616,
0.2489650398492813,
-0.35656893253326416,
0.17431426048278809,
0.5857625603675842,
0.29392510652542114,
0.24716316163539886,
-0.04706941917538643,
-0.4500434994697571,
0.09401071816682816,
-0.7124710083007812,
-0.41415777802467346,
1.105440616607666,
0.33224645256996155,
0.8293393850326538,
-0.08333257585763931,
0.5445103645324707,
0.171483114361763,
0.21200896799564362,
-0.6352381706237793,
0.7311522364616394,
-0.1384938806295395,
-0.9406442046165466,
-0.18729163706302643,
-0.3113313615322113,
-0.8472067713737488,
0.2729949355125427,
-0.2757360637187958,
-0.6451869010925293,
0.2102845162153244,
0.1083565354347229,
-0.30755192041397095,
0.5465579628944397,
-0.4801427125930786,
0.568220853805542,
-0.3520527780056,
-0.31048643589019775,
-0.22164344787597656,
-0.5226402878761292,
0.8952944278717041,
-0.1991172730922699,
0.19668646156787872,
-0.3367583751678467,
-0.36725470423698425,
0.9367966651916504,
-0.5474615693092346,
1.005581021308899,
-0.13751523196697235,
-0.3045447766780853,
0.3745671212673187,
-0.009225078858435154,
0.9071270227432251,
0.21999554336071014,
-0.4865621030330658,
0.5731085538864136,
-0.02513234131038189,
-0.5834352970123291,
0.007277528289705515,
0.8294159173965454,
-1.145049810409546,
-0.7836403250694275,
-0.32770681381225586,
-0.347294420003891,
-0.12293023616075516,
0.10796249657869339,
0.5993471145629883,
-0.23051698505878448,
-0.27057960629463196,
0.05041402578353882,
0.398121178150177,
0.1404561847448349,
0.5966965556144714,
0.6038698554039001,
-0.03566523268818855,
-0.4357559084892273,
0.614919126033783,
0.08435875177383423,
0.1990058571100235,
0.11786801367998123,
-0.0010609636083245277,
0.24454312026500702,
-0.5381703972816467,
-0.5849446058273315,
0.5082942247390747,
-0.5999020338058472,
-0.12368617951869965,
-0.41721346974372864,
-0.4466133415699005,
0.09551497548818588,
0.12295036017894745,
-0.5379438996315002,
-0.3996501564979553,
-0.7689360976219177,
-0.3834966719150543,
0.7895724773406982,
0.46895840764045715,
0.11106687784194946,
0.546484649181366,
-0.2794229984283447,
0.39451417326927185,
0.09030264616012573,
0.383685827255249,
0.40052711963653564,
-1.064760446548462,
-0.5215501189231873,
0.2157798409461975,
-0.057041045278310776,
-0.8142957091331482,
0.29622843861579895,
0.2650011479854584,
0.7673614621162415,
0.6183587908744812,
-0.03970621898770332,
0.6220517754554749,
-0.5172640681266785,
1.1443836688995361,
0.15145671367645264,
-0.6023099422454834,
0.22431574761867523,
-0.2238391637802124,
0.04363793879747391,
0.2735418975353241,
0.4894997775554657,
-0.11946002393960953,
-0.32308948040008545,
-0.775870680809021,
-0.9628940224647522,
0.8810166120529175,
-0.116452656686306,
0.38219153881073,
0.10587705671787262,
0.8697100281715393,
0.35442039370536804,
-0.2143690288066864,
-1.0364387035369873,
-0.48031753301620483,
-0.3561439514160156,
0.12761680781841278,
0.14215055108070374,
-0.732218325138092,
-0.15771763026714325,
-0.385479599237442,
0.9002622365951538,
-0.2622672915458679,
0.17183852195739746,
-0.06848470866680145,
0.20985592901706696,
-0.3571666181087494,
-0.3161349296569824,
0.6652007102966309,
0.2354888617992401,
-0.3160034716129303,
0.033952582627534866,
0.5550153255462646,
-0.6547772288322449,
0.05013880506157875,
0.275310218334198,
-0.19586598873138428,
-0.16864082217216492,
0.2650299370288849,
0.8977351784706116,
0.5367804765701294,
-0.5381104350090027,
0.2956324517726898,
-0.09108464419841766,
-0.6281707882881165,
-0.5418879389762878,
0.32072919607162476,
0.3836729824542999,
0.3763097822666168,
0.7165703177452087,
0.14565613865852356,
0.03595369681715965,
0.07394757866859436,
-0.023403845727443695,
0.425436407327652,
0.020908880978822708,
-0.42912226915359497,
1.0857487916946411,
0.03324086219072342,
-0.11100216209888458,
0.4213516414165497,
-0.22673682868480682,
0.09669704735279083,
0.7241880297660828,
0.5797388553619385,
0.5137074589729309,
0.045773401856422424,
0.06999704241752625,
0.4357605576515198,
0.20091018080711365,
-0.002975985174998641,
0.42297860980033875,
-0.05539276450872421,
-0.6941447854042053,
-0.29339301586151123,
-0.8473140001296997,
-0.419789582490921,
0.339591920375824,
-0.47313761711120605,
0.4464934170246124,
-0.4668816924095154,
-0.20591992139816284,
0.08394079655408859,
0.33292049169540405,
-0.7222874760627747,
0.06930402666330338,
0.14332149922847748,
1.3355135917663574,
-0.6939231157302856,
1.0313799381256104,
0.5444437265396118,
-0.5181717872619629,
-0.9558403491973877,
0.1783936321735382,
-0.2377598136663437,
-1.1448229551315308,
0.574757993221283,
-0.0646016001701355,
-0.20699381828308105,
0.0703936517238617,
-1.0722310543060303,
-1.4036909341812134,
1.443749189376831,
0.7089763879776001,
-0.8057989478111267,
-0.25646525621414185,
-0.13300517201423645,
0.5032115578651428,
-0.253029465675354,
0.301470011472702,
0.12607036530971527,
0.4429149925708771,
0.3461662232875824,
-0.687168300151825,
0.10814853757619858,
-0.4022345244884491,
0.3080277442932129,
-0.40436968207359314,
-1.4039337635040283,
1.1436439752578735,
-0.22991646826267242,
-0.23854167759418488,
0.6053164005279541,
0.960387110710144,
0.5802801251411438,
0.011434318497776985,
0.5998508930206299,
0.5142965316772461,
0.8100324273109436,
0.22739583253860474,
1.1132490634918213,
-0.6731247901916504,
0.2756229341030121,
0.8393574357032776,
-0.29421502351760864,
0.8207380771636963,
0.4467056393623352,
-0.39045459032058716,
0.9499385952949524,
1.2559525966644287,
-0.4770837724208832,
0.4358304440975189,
0.06325864046812057,
-0.2737618088722229,
-0.34412267804145813,
-0.08025675266981125,
-0.5064591765403748,
0.3709715008735657,
0.5045907497406006,
-0.6020659804344177,
0.025310922414064407,
-0.2471485286951065,
-0.03515198826789856,
-0.3081025183200836,
-0.247396782040596,
0.3061515688896179,
0.11746145039796829,
-0.4789033830165863,
1.0537679195404053,
0.3327500522136688,
1.070510745048523,
-0.5870040655136108,
0.17864516377449036,
-0.22419238090515137,
-0.35470277070999146,
-0.2677072286605835,
-0.32537707686424255,
-0.07777607440948486,
0.15854394435882568,
-0.456225723028183,
0.4990185797214508,
0.6486230492591858,
0.006008243653923273,
-0.9483763575553894,
0.590942919254303,
0.29620352387428284,
0.363016813993454,
0.5596935153007507,
-0.6162928938865662,
-0.024350695312023163,
-0.12138793617486954,
-0.6705195307731628,
0.006464020349085331,
0.37159281969070435,
-0.05394876375794411,
0.6672184467315674,
0.8044285774230957,
0.1173027902841568,
0.25609609484672546,
0.15054091811180115,
0.9850643277168274,
-0.7281948924064636,
-0.44393211603164673,
-0.9130480885505676,
0.3328537046909332,
0.10675051808357239,
-0.4911647140979767,
0.8283591270446777,
0.6590104103088379,
0.6196445226669312,
0.004270358011126518,
0.5583142638206482,
-0.060692865401506424,
0.37922921776771545,
-0.4007479250431061,
0.30058225989341736,
-0.6106341481208801,
0.2933410704135895,
0.017559560015797615,
-0.744545578956604,
0.12264104932546616,
0.2463219314813614,
0.03900451213121414,
0.12157271057367325,
0.44706109166145325,
1.0055105686187744,
-0.04775233566761017,
0.05016713961958885,
0.45385444164276123,
0.47792550921440125,
0.03723733872175217,
0.46977096796035767,
0.7599949836730957,
-0.3242770731449127,
0.7754899263381958,
-0.2178994119167328,
-0.16089066863059998,
-0.40887877345085144,
-0.8292233943939209,
-0.8769498467445374,
-0.525075376033783,
-0.05428323894739151,
-0.19259844720363617,
-0.04880731925368309,
0.7850092053413391,
1.0732322931289673,
-0.605228841304779,
-0.2275983840227127,
-0.2757827639579773,
-0.05990171432495117,
-0.1855246126651764,
-0.24987086653709412,
0.4338662922382355,
0.18675653636455536,
-0.7840649485588074,
0.4191124439239502,
-0.07328236103057861,
0.24088267982006073,
-0.5467531681060791,
-0.2598741352558136,
-0.5115718245506287,
0.07146748155355453,
0.0838702842593193,
0.19124633073806763,
-1.0125844478607178,
-0.22838659584522247,
0.15813755989074707,
-0.09472493827342987,
0.04631339758634567,
0.16977736353874207,
-0.7803270816802979,
0.13902954757213593,
0.043938931077718735,
0.2810535132884979,
0.9159925580024719,
-0.06883922219276428,
0.3262612521648407,
-0.756690502166748,
0.2613670825958252,
-0.008804302662611008,
0.5697401762008667,
0.18617811799049377,
-0.732673168182373,
0.3957824409008026,
0.4081406593322754,
-0.4592400789260864,
-0.7764338850975037,
0.1882389932870865,
-1.1337146759033203,
-0.11082190275192261,
1.3344074487686157,
-0.07348252832889557,
-0.3762025535106659,
0.4276972711086273,
-0.1679903119802475,
0.3356046974658966,
-0.4818258583545685,
0.6148882508277893,
0.5678340196609497,
-0.08010046929121017,
-0.40414050221443176,
-0.653081476688385,
0.36910417675971985,
0.14199180901050568,
-0.581314742565155,
-0.3033396005630493,
0.20977531373500824,
0.43707650899887085,
0.1774323433637619,
0.4694279730319977,
0.17133797705173492,
0.38570886850357056,
0.2586398422718048,
0.1613142341375351,
-0.08077897131443024,
-0.04965696483850479,
0.0746704638004303,
0.046521350741386414,
0.27001601457595825,
-0.1960276961326599
] |
sentence-transformers/distilbert-multilingual-nli-stsb-quora-ranking | sentence-transformers | "2022-06-15T19:34:08Z" | 11,633 | 1 | sentence-transformers | [
"sentence-transformers",
"pytorch",
"tf",
"distilbert",
"feature-extraction",
"sentence-similarity",
"transformers",
"arxiv:1908.10084",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | sentence-similarity | "2022-03-02T23:29:05Z" | ---
pipeline_tag: sentence-similarity
license: apache-2.0
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
---
# sentence-transformers/distilbert-multilingual-nli-stsb-quora-ranking
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('sentence-transformers/distilbert-multilingual-nli-stsb-quora-ranking')
embeddings = model.encode(sentences)
print(embeddings)
```
## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
```python
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/distilbert-multilingual-nli-stsb-quora-ranking')
model = AutoModel.from_pretrained('sentence-transformers/distilbert-multilingual-nli-stsb-quora-ranking')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, max pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
```
## Evaluation Results
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/distilbert-multilingual-nli-stsb-quora-ranking)
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: DistilBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
```
## Citing & Authors
This model was trained by [sentence-transformers](https://www.sbert.net/).
If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084):
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "http://arxiv.org/abs/1908.10084",
}
``` | [
-0.3055238425731659,
-0.8315280079841614,
0.25365978479385376,
0.4422626793384552,
-0.2773093581199646,
-0.09913551062345505,
-0.25203651189804077,
0.0027807950973510742,
0.21185970306396484,
0.14426617324352264,
-0.4913432002067566,
-0.454799622297287,
-0.7854453325271606,
0.15202735364437103,
-0.463647723197937,
0.8883410096168518,
-0.037396449595689774,
0.003642165334895253,
-0.32180261611938477,
-0.24790118634700775,
-0.23303712904453278,
-0.5046938061714172,
-0.3833165764808655,
-0.18753448128700256,
0.3531492352485657,
0.1914687603712082,
0.6048597693443298,
0.26163381338119507,
0.2826138734817505,
0.522493302822113,
-0.1218395009636879,
0.19042843580245972,
-0.40299803018569946,
-0.05660148337483406,
0.013154744170606136,
-0.35815250873565674,
-0.05007876455783844,
0.2701946198940277,
0.6470653414726257,
0.4876728951931,
-0.18525709211826324,
0.18735948204994202,
0.07781192660331726,
0.41020336747169495,
-0.3643830120563507,
0.3081895709037781,
-0.6930874586105347,
0.006675971206277609,
0.11215254664421082,
0.002935454249382019,
-0.5255340337753296,
-0.32129400968551636,
0.2359277606010437,
-0.4016225039958954,
0.13468119502067566,
0.18449512124061584,
1.1934473514556885,
0.44682812690734863,
-0.36551418900489807,
-0.3167150914669037,
-0.35608819127082825,
0.9388488531112671,
-0.8392610549926758,
0.21159718930721283,
0.21964088082313538,
0.0070871273055672646,
0.07157453149557114,
-0.9117303490638733,
-0.8468191623687744,
-0.14110161364078522,
-0.436388224363327,
0.2628864645957947,
-0.3910621106624603,
-0.12252596765756607,
0.1562475562095642,
0.32410070300102234,
-0.6989985704421997,
-0.10648953169584274,
-0.5293288826942444,
-0.12847808003425598,
0.5771043300628662,
-0.03864610567688942,
0.333935022354126,
-0.5841807126998901,
-0.4750785827636719,
-0.34325867891311646,
-0.13130450248718262,
0.05635087564587593,
0.14342790842056274,
0.18820986151695251,
-0.15435492992401123,
0.7562336921691895,
-0.07870091497898102,
0.5123992562294006,
0.04676048830151558,
0.17263801395893097,
0.6695975065231323,
-0.47563838958740234,
-0.14882124960422516,
-0.02083311788737774,
1.1464495658874512,
0.3300316631793976,
0.2725927233695984,
-0.07314234972000122,
-0.07942970097064972,
0.02005256526172161,
0.27152350544929504,
-0.8407592177391052,
-0.3341275751590729,
0.27416253089904785,
-0.26808592677116394,
-0.3594236373901367,
0.22807936370372772,
-0.6376027464866638,
-0.024005908519029617,
0.03766419366002083,
0.8282139301300049,
-0.5474274158477783,
-0.06700389832258224,
0.25477346777915955,
-0.2878354489803314,
0.1631694734096527,
-0.2646162509918213,
-0.6061711311340332,
0.11140219122171402,
0.29183638095855713,
0.9840847253799438,
0.06963978707790375,
-0.5922171473503113,
-0.2644599974155426,
-0.1417037546634674,
0.02563433162868023,
0.7142714262008667,
-0.3391540050506592,
-0.11677739769220352,
0.12171219289302826,
0.2473040372133255,
-0.5903052091598511,
-0.380054235458374,
0.607612133026123,
-0.41723018884658813,
0.6585520505905151,
-0.04413530230522156,
-0.814536452293396,
-0.17239437997341156,
0.2382737696170807,
-0.6221508979797363,
1.2909138202667236,
0.12703704833984375,
-1.0123834609985352,
0.10066313296556473,
-0.7260811924934387,
-0.2731475830078125,
-0.15368352830410004,
0.0894341915845871,
-0.6093783378601074,
0.02687891200184822,
0.45765140652656555,
0.6929900050163269,
0.1003182977437973,
0.4101942777633667,
-0.22355148196220398,
-0.40287405252456665,
0.5187342762947083,
-0.37368497252464294,
1.1378893852233887,
0.14969806373119354,
-0.28906458616256714,
0.15560035407543182,
-0.42247703671455383,
-0.0791955441236496,
0.3315045237541199,
-0.2664230465888977,
-0.2912357747554779,
-0.03744760528206825,
0.2523864209651947,
0.39926886558532715,
0.3414638042449951,
-0.680374801158905,
0.18587039411067963,
-0.5014869570732117,
0.9868647456169128,
0.6237500309944153,
0.0426708422601223,
0.5605302453041077,
-0.255827397108078,
0.27892473340034485,
0.3652944266796112,
0.061784639954566956,
-0.08908582478761673,
-0.434336394071579,
-1.0317137241363525,
-0.29515185952186584,
0.4063975214958191,
0.6723547577857971,
-0.8673480153083801,
0.9590002298355103,
-0.5604995489120483,
-0.5597130060195923,
-0.828540563583374,
-0.02216055616736412,
0.06275875866413116,
0.36396583914756775,
0.6140283346176147,
0.0987149253487587,
-0.49605005979537964,
-0.9010129570960999,
-0.08085905015468597,
-0.08724167943000793,
0.15954025089740753,
0.0969795435667038,
0.7377578020095825,
-0.3423701226711273,
1.0439051389694214,
-0.7004596590995789,
-0.3583902418613434,
-0.5153492093086243,
0.2385985106229782,
0.3488484025001526,
0.5113025307655334,
0.5650631189346313,
-0.8335421085357666,
-0.478651225566864,
-0.5541858077049255,
-0.6889274716377258,
0.06523824483156204,
-0.14622925221920013,
-0.2904103994369507,
0.11814326047897339,
0.6090843081474304,
-0.8094301819801331,
0.2511919438838959,
0.5827534794807434,
-0.4980100095272064,
0.3665185272693634,
-0.214708149433136,
-0.03313466161489487,
-1.5401438474655151,
0.017101820558309555,
0.0863177552819252,
-0.20802515745162964,
-0.3805009722709656,
0.05424819141626358,
0.12446334958076477,
-0.08393518626689911,
-0.4366130828857422,
0.40187469124794006,
-0.2947709262371063,
0.26186805963516235,
0.08529459685087204,
0.4726477265357971,
0.18776267766952515,
0.8223159313201904,
-0.14323574304580688,
0.8352348208427429,
0.49875280261039734,
-0.6051584482192993,
0.35106292366981506,
0.606640100479126,
-0.5251278877258301,
0.23120422661304474,
-0.9562389850616455,
-0.14172875881195068,
-0.028074555099010468,
0.36437875032424927,
-1.2685413360595703,
0.10745063424110413,
0.19805337488651276,
-0.6091687083244324,
0.09580688178539276,
0.20157185196876526,
-0.7500136494636536,
-0.569949209690094,
-0.5176293253898621,
0.22815534472465515,
0.43401989340782166,
-0.494587779045105,
0.4427111744880676,
0.3648371696472168,
-0.22138792276382446,
-0.686762809753418,
-1.031804084777832,
-0.09224479645490646,
-0.2489260882139206,
-0.6560320258140564,
0.5810487866401672,
-0.19381029903888702,
0.12945158779621124,
0.2141139954328537,
0.22620871663093567,
-0.04596257582306862,
0.02408086322247982,
-0.04409860447049141,
0.31294748187065125,
-0.06396102905273438,
0.3135392665863037,
0.2815752625465393,
-0.10271760821342468,
0.039304882287979126,
-0.15616267919540405,
0.7458815574645996,
-0.32265567779541016,
-0.156291663646698,
-0.42738106846809387,
0.21915706992149353,
0.4673765003681183,
-0.37965431809425354,
1.1346311569213867,
1.0212798118591309,
-0.3084777593612671,
0.029855802655220032,
-0.5636407136917114,
-0.19362635910511017,
-0.497418612241745,
0.7201605439186096,
-0.16615846753120422,
-0.9874559044837952,
0.3948265314102173,
0.048564501106739044,
0.10640362650156021,
0.7632297873497009,
0.5371478199958801,
-0.15671688318252563,
0.8767117857933044,
0.552741289138794,
-0.3452613651752472,
0.543470025062561,
-0.6718499660491943,
0.4128221869468689,
-0.8725348711013794,
-0.0712006539106369,
-0.44044116139411926,
-0.37319761514663696,
-0.8140224814414978,
-0.5078885555267334,
0.3586948812007904,
0.07795163989067078,
-0.25068774819374084,
0.5757450461387634,
-0.6888243556022644,
0.2537052631378174,
0.5689932107925415,
0.08628750592470169,
0.029017645865678787,
0.13598787784576416,
-0.3896896243095398,
-0.0440777912735939,
-0.7557723522186279,
-0.5304896831512451,
0.7557177543640137,
0.3624952733516693,
0.38267675042152405,
0.018233072012662888,
0.7368730902671814,
0.06780558079481125,
-0.03530966863036156,
-0.7243554592132568,
0.5122265815734863,
-0.26183900237083435,
-0.5256251096725464,
-0.44253697991371155,
-0.40260592103004456,
-0.9466978311538696,
0.4958583116531372,
-0.14130741357803345,
-0.6653695702552795,
0.15288390219211578,
-0.34360232949256897,
-0.35858359932899475,
0.19856154918670654,
-0.8354867100715637,
1.0676014423370361,
0.04681156203150749,
-0.016521114856004715,
-0.22577428817749023,
-0.5981805920600891,
0.13546262681484222,
0.24645867943763733,
0.21905206143856049,
-0.09541050344705582,
-0.02462129481136799,
0.8344948887825012,
-0.24285775423049927,
0.8329645991325378,
-0.151153564453125,
0.17805850505828857,
0.2839118540287018,
-0.3668089807033539,
0.1893133968114853,
0.14240168035030365,
-0.17521841824054718,
0.21487948298454285,
0.0179203562438488,
-0.4300988018512726,
-0.5012445449829102,
0.7967323064804077,
-1.010396957397461,
-0.36784064769744873,
-0.6080482602119446,
-0.5162957906723022,
-0.09272806346416473,
0.10956117510795593,
0.4158533811569214,
0.3832268714904785,
-0.2678639590740204,
0.42097964882850647,
0.5538111925125122,
-0.40111684799194336,
0.7262219190597534,
0.2270759493112564,
-0.1321263164281845,
-0.4581763446331024,
0.7774269580841064,
0.17952291667461395,
-0.034550201147794724,
0.5488955974578857,
0.15849781036376953,
-0.5485687851905823,
-0.16842445731163025,
-0.4415542781352997,
0.41162109375,
-0.5931686162948608,
-0.20448456704616547,
-1.0057936906814575,
-0.6281331181526184,
-0.5916948914527893,
0.08785955607891083,
-0.23189780116081238,
-0.5522314310073853,
-0.4125466048717499,
-0.3621539771556854,
0.5049434304237366,
0.4602154493331909,
0.07031092792749405,
0.26183316111564636,
-0.6544378995895386,
0.21630288660526276,
0.2597845196723938,
0.09135620296001434,
-0.01148588303476572,
-0.7776411175727844,
-0.3560107350349426,
0.06243695691227913,
-0.4725375175476074,
-0.8154443502426147,
0.5662879943847656,
0.30701154470443726,
0.5670627355575562,
0.06324593722820282,
0.1804346740245819,
0.7180755734443665,
-0.5761781930923462,
0.907587468624115,
0.007283026352524757,
-1.031494140625,
0.45005717873573303,
0.004585813730955124,
0.42188015580177307,
0.6014522910118103,
0.4249468743801117,
-0.5087887048721313,
-0.49495187401771545,
-0.6134672164916992,
-1.1560553312301636,
0.6936647295951843,
0.4536290168762207,
0.5903139114379883,
-0.3765938878059387,
0.1929280310869217,
-0.22056537866592407,
0.23645158112049103,
-1.1543828248977661,
-0.5027049779891968,
-0.3965400457382202,
-0.49746081233024597,
-0.3592008650302887,
-0.30691850185394287,
0.13769064843654633,
-0.5650920271873474,
0.8225576281547546,
0.0788688063621521,
0.6077504754066467,
0.3613080084323883,
-0.5409048795700073,
0.35358840227127075,
0.3077984154224396,
0.43452930450439453,
0.30537617206573486,
-0.01588284969329834,
0.04847382381558418,
0.24272002279758453,
-0.3316418528556824,
0.016622453927993774,
0.5433971881866455,
-0.08227085322141647,
0.2751423418521881,
0.2943490445613861,
0.94010329246521,
0.46993565559387207,
-0.4389829635620117,
0.7916768789291382,
-0.1509900987148285,
-0.20730705559253693,
-0.524069607257843,
-0.19718466699123383,
0.355467289686203,
0.31398195028305054,
0.4515397846698761,
0.0028617652133107185,
0.054047275334596634,
-0.37432634830474854,
0.2914826273918152,
0.24513404071331024,
-0.3389567732810974,
-0.08713329583406448,
0.5832099318504333,
0.08514576405286789,
-0.07657959312200546,
0.9312789440155029,
-0.3755321800708771,
-0.7828840017318726,
0.4106416702270508,
0.40556731820106506,
0.8396778702735901,
-0.06873473525047302,
0.47114095091819763,
0.6226032972335815,
0.4183957278728485,
-0.0333707295358181,
0.05412668362259865,
0.0897248163819313,
-0.8890785574913025,
-0.30399808287620544,
-0.7722123861312866,
0.11769911646842957,
-0.03025735728442669,
-0.7183509469032288,
0.19706915318965912,
-0.06174121052026749,
-0.1264578253030777,
-0.018077746033668518,
0.06374866515398026,
-0.6559191942214966,
-0.01622329093515873,
-0.061289940029382706,
0.8044347167015076,
-0.974080502986908,
0.8359086513519287,
0.7258296608924866,
-0.795265257358551,
-0.7501345276832581,
-0.019838431850075722,
-0.3943844139575958,
-0.7022544741630554,
0.349442720413208,
0.4926068186759949,
0.1775263249874115,
0.25647661089897156,
-0.531058132648468,
-0.8620175719261169,
1.38931405544281,
0.30771490931510925,
-0.35484936833381653,
-0.12748444080352783,
0.18672452867031097,
0.5508045554161072,
-0.33379754424095154,
0.3852560520172119,
0.36903664469718933,
0.3493000268936157,
-0.0749235451221466,
-0.7297837734222412,
0.14862684905529022,
-0.45535385608673096,
0.13570453226566315,
-0.07634568959474564,
-0.714667022228241,
0.9436189532279968,
-0.039264578372240067,
-0.16546441614627838,
0.11703139543533325,
0.8014065027236938,
0.32892194390296936,
0.018806710839271545,
0.5197111964225769,
0.8045762777328491,
0.648666501045227,
-0.180780291557312,
0.97209233045578,
-0.3770810067653656,
0.7531023025512695,
0.9191884994506836,
0.020534954965114594,
1.1574862003326416,
0.47730106115341187,
-0.23435847461223602,
0.9399600625038147,
0.5828309655189514,
-0.2368800789117813,
0.635277509689331,
0.10944513976573944,
0.07069618999958038,
-0.045180704444646835,
0.06072447821497917,
-0.2978273332118988,
0.49506330490112305,
0.17336733639240265,
-0.5139924883842468,
0.0008258888847194612,
0.089819997549057,
0.04555388540029526,
0.07478780299425125,
0.12498090416193008,
0.6718305349349976,
0.14162909984588623,
-0.5309901833534241,
0.5769617557525635,
0.1763152927160263,
1.025403618812561,
-0.4312189221382141,
0.18819323182106018,
-0.07926683127880096,
0.2343011051416397,
0.007000481244176626,
-0.623936653137207,
0.3562353551387787,
-0.11935064196586609,
-0.1921006292104721,
-0.21375928819179535,
0.45605403184890747,
-0.6740506291389465,
-0.8110707998275757,
0.37878701090812683,
0.611213207244873,
0.0477459616959095,
-0.09129562228918076,
-1.1515133380889893,
-0.061727359890937805,
0.003294504713267088,
-0.49485093355178833,
0.23913723230361938,
0.4510515034198761,
0.29590603709220886,
0.5572757124900818,
0.43846213817596436,
-0.294716477394104,
0.1521851122379303,
0.24497033655643463,
0.8837302923202515,
-0.6193302869796753,
-0.5390830039978027,
-0.9064871668815613,
0.7319711446762085,
-0.31565603613853455,
-0.3471607565879822,
0.7452356815338135,
0.5843848586082458,
0.9575062394142151,
-0.1736234575510025,
0.5727892518043518,
-0.18698090314865112,
0.3248901963233948,
-0.441356897354126,
0.9168943762779236,
-0.5889378786087036,
-0.039029769599437714,
-0.31265661120414734,
-0.9617323279380798,
-0.09808742254972458,
1.003039836883545,
-0.3382464647293091,
0.16063103079795837,
0.9687522053718567,
0.8175449371337891,
-0.06374111771583557,
-0.16599638760089874,
0.10898832976818085,
0.49759507179260254,
0.08063969016075134,
0.425400048494339,
0.5609651803970337,
-0.8374577760696411,
0.7821167707443237,
-0.5263698697090149,
-0.04065738245844841,
-0.036548860371112823,
-0.7046641707420349,
-0.9089912176132202,
-0.965554416179657,
-0.45831942558288574,
-0.2202141284942627,
-0.23889537155628204,
0.9492209553718567,
0.6106061339378357,
-0.7978411316871643,
-0.10448011755943298,
-0.07566501945257187,
-0.05542849376797676,
-0.22049695253372192,
-0.3456183671951294,
0.49765172600746155,
-0.4966508746147156,
-0.9286208748817444,
0.1931205540895462,
-0.05544142425060272,
-0.12768860161304474,
-0.42483827471733093,
0.11951602250337601,
-0.7848319411277771,
0.14391401410102844,
0.6639061570167542,
-0.3747737407684326,
-0.8241791725158691,
-0.11057744175195694,
0.06259533762931824,
-0.37401628494262695,
-0.12556865811347961,
0.2938220798969269,
-0.7163003087043762,
0.19728754460811615,
0.442943811416626,
0.4976341426372528,
0.5456146001815796,
-0.11818956583738327,
0.3452567458152771,
-0.9166048765182495,
0.29163071513175964,
0.013071946799755096,
0.6587406396865845,
0.45865878462791443,
-0.2752097249031067,
0.5297285914421082,
0.15719369053840637,
-0.5208199620246887,
-0.728680431842804,
-0.1682594269514084,
-1.0506778955459595,
-0.32440176606178284,
1.1594455242156982,
-0.35354113578796387,
-0.23611004650592804,
0.12448650598526001,
-0.2590809464454651,
0.4943319857120514,
-0.45316189527511597,
0.8846519589424133,
0.9529289603233337,
0.1860569715499878,
-0.19308431446552277,
-0.37494874000549316,
0.210138201713562,
0.48314031958580017,
-0.5756285190582275,
-0.2398589849472046,
0.1813226193189621,
0.33016958832740784,
0.3446705639362335,
0.38744640350341797,
-0.10234244167804718,
-0.04564160108566284,
-0.12493237107992172,
0.02713506855070591,
-0.0862191766500473,
0.042126964777708054,
-0.37737295031547546,
0.11744783073663712,
-0.2359684556722641,
-0.3305676579475403
] |
hatmimoha/arabic-ner | hatmimoha | "2023-11-13T10:53:17Z" | 11,623 | 12 | transformers | [
"transformers",
"pytorch",
"tf",
"jax",
"safetensors",
"bert",
"token-classification",
"ar",
"autotrain_compatible",
"endpoints_compatible",
"has_space",
"region:us"
] | token-classification | "2022-03-02T23:29:05Z" | ---
language: ar
---
# Arabic Named Entity Recognition Model
Pretrained BERT-based ([arabic-bert-base](https://huggingface.co/asafaya/bert-base-arabic)) Named Entity Recognition model for Arabic.
The pre-trained model can recognize the following entities:
1. **PERSON**
- و هذا ما نفاه المعاون السياسي للرئيس ***نبيه بري*** ، النائب ***علي حسن خليل***
- لكن أوساط ***الحريري*** تعتبر أنه ضحى كثيرا في سبيل البلد
- و ستفقد الملكة ***إليزابيث الثانية*** بذلك سيادتها على واحدة من آخر ممالك الكومنولث
2. **ORGANIZATION**
- حسب أرقام ***البنك الدولي***
- أعلن ***الجيش العراقي***
- و نقلت وكالة ***رويترز*** عن ثلاثة دبلوماسيين في ***الاتحاد الأوروبي*** ، أن ***بلجيكا*** و ***إيرلندا*** و ***لوكسمبورغ*** تريد أيضاً مناقشة
- ***الحكومة الاتحادية*** و ***حكومة إقليم كردستان***
- و هو ما يثير الشكوك حول مشاركة النجم البرتغالي في المباراة المرتقبة أمام ***برشلونة*** الإسباني في
3. ***LOCATION***
- الجديد هو تمكين اللاجئين من “ مغادرة الجزيرة تدريجياً و بهدوء إلى ***أثينا*** ”
- ***جزيرة ساكيز*** تبعد 1 كم عن ***إزمير***
4. **DATE**
- ***غدا الجمعة***
- ***06 أكتوبر 2020***
- ***العام السابق***
5. **PRODUCT**
- عبر حسابه ب ***تطبيق “ إنستغرام ”***
- الجيل الثاني من ***نظارة الواقع الافتراضي أوكولوس كويست*** تحت اسم " ***أوكولوس كويست 2*** "
6. **COMPETITION**
- عدم المشاركة في ***بطولة فرنسا المفتوحة للتنس***
- في مباراة ***كأس السوبر الأوروبي***
7. **PRIZE**
- ***جائزة نوبل ل لآداب***
- الذي فاز ب ***جائزة “ إيمي ” لأفضل دور مساند***
8. **EVENT**
- تسجّل أغنية جديدة خاصة ب ***العيد الوطني السعودي***
- ***مهرجان المرأة يافوية*** في دورته الرابعة
9. **DISEASE**
- في مكافحة فيروس ***كورونا*** و عدد من الأمراض
- الأزمات المشابهة مثل “ ***انفلونزا الطيور*** ” و ” ***انفلونزا الخنازير***
## Example
[Find here a complete example to use this model](https://github.com/hatmimoha/arabic-ner)
## Training Corpus
The training corpus is made of 378.000 tokens (14.000 sentences) collected from the Web and annotated manually.
## Results
The results on a valid corpus made of 30.000 tokens shows an F-measure of ~87%.
| [
-0.7488747239112854,
-0.6356757879257202,
0.3460320234298706,
0.2719041705131531,
-0.7320680022239685,
0.08237536996603012,
0.04410218447446823,
-0.6467258334159851,
0.6981232762336731,
0.46845903992652893,
-0.49387261271476746,
-1.0058525800704956,
-1.043117880821228,
0.40456315875053406,
-0.4261103570461273,
1.0643342733383179,
-0.21955625712871552,
0.3649536371231079,
0.4032602310180664,
-0.30037418007850647,
-0.24858656525611877,
-0.7165662050247192,
-0.6395737528800964,
-0.3011082112789154,
0.5619508028030396,
0.16873502731323242,
0.7145361304283142,
0.09905651211738586,
0.6794884204864502,
0.434112548828125,
0.1837313175201416,
0.006240893620997667,
-0.26315411925315857,
-0.24946492910385132,
0.009948690421879292,
-0.4311070740222931,
-0.06947706639766693,
-0.01204707007855177,
0.6856991052627563,
0.6977362632751465,
-0.18103289604187012,
0.29940667748451233,
-0.027405833825469017,
0.9539734125137329,
-0.5697110295295715,
0.05712846666574478,
-0.05800651013851166,
0.07166194170713425,
-0.18677431344985962,
0.07234556972980499,
0.013241966255009174,
-0.7928049564361572,
-0.04229983314871788,
-0.35968244075775146,
0.15734417736530304,
0.3228825628757477,
1.3507364988327026,
-0.02401292324066162,
-0.3121221661567688,
-0.7335958480834961,
-0.8198928236961365,
1.0945485830307007,
-0.7291707396507263,
0.17194578051567078,
0.6040847897529602,
0.2492530792951584,
-0.26717209815979004,
-0.7755336165428162,
-0.854149580001831,
-0.08053699880838394,
-0.0637054443359375,
0.08544009923934937,
-0.10676366090774536,
-0.44596198201179504,
0.23325978219509125,
0.07972853630781174,
-0.36594894528388977,
-0.5207459330558777,
-0.26726219058036804,
-0.22886954247951508,
0.7537290453910828,
-0.1000472828745842,
0.6154993772506714,
-0.13923192024230957,
-0.41871562600135803,
0.054063498973846436,
-0.375906765460968,
0.23842628300189972,
0.184074267745018,
0.01406252570450306,
-0.3512619733810425,
0.4075089991092682,
-0.10454627871513367,
0.5743231177330017,
0.3544771671295166,
-0.4073839783668518,
0.43780234456062317,
-0.20993667840957642,
-0.4274817407131195,
0.3500555753707886,
0.6935997009277344,
0.2678838074207306,
0.2152298092842102,
-0.04221357777714729,
-0.2765551805496216,
-0.04172153398394585,
0.09996281564235687,
-1.1158138513565063,
-0.11815153062343597,
0.07859411835670471,
-0.9144366979598999,
-0.385641485452652,
0.3096027076244354,
-0.6420819163322449,
-0.05601722002029419,
0.26345837116241455,
0.5835874080657959,
-0.5539941191673279,
-0.5366406440734863,
0.056502219289541245,
0.13881602883338928,
0.3365185558795929,
0.6182542443275452,
-0.8993517160415649,
0.5242735147476196,
0.20663784444332123,
0.686292827129364,
0.2043389081954956,
-0.11829791218042374,
0.06456679850816727,
0.3383204936981201,
-0.4739675223827362,
0.5941544771194458,
-0.3684639036655426,
-0.6444186568260193,
-0.12176327407360077,
0.03943829983472824,
-0.27485883235931396,
-0.655920684337616,
0.6603299975395203,
-0.9119094014167786,
0.30035167932510376,
-0.33399760723114014,
-0.7107120156288147,
-0.7133927345275879,
0.28750237822532654,
-0.8091197609901428,
0.9915962815284729,
-0.05574684217572212,
-0.89613938331604,
0.10281355679035187,
-0.8275424242019653,
-0.3931320607662201,
0.23896199464797974,
-0.23078963160514832,
-0.590524435043335,
0.07697857916355133,
0.4000312387943268,
0.28778886795043945,
-0.07495387643575668,
0.2313552051782608,
-0.011419807560741901,
-0.29345083236694336,
0.40157070755958557,
0.002833444392308593,
0.9665472507476807,
0.22177597880363464,
-0.6482709646224976,
0.11645138263702393,
-1.0507763624191284,
0.12079698592424393,
0.47551101446151733,
-0.2492280751466751,
-0.12271435558795929,
-0.2707200050354004,
0.29067373275756836,
0.42041459679603577,
0.6624190211296082,
-0.6275255680084229,
0.14019252359867096,
-0.7132939100265503,
0.07682599127292633,
0.842630922794342,
0.13883478939533234,
0.19513766467571259,
-0.7441966533660889,
0.5206426978111267,
0.2732974588871002,
-0.12088587135076523,
0.3286733031272888,
-0.5934911370277405,
-0.9769258499145508,
-0.31938567757606506,
0.5714119672775269,
0.4518805146217346,
-0.6629741191864014,
0.6542664766311646,
-0.04548203572630882,
-0.7392222881317139,
-0.7201853394508362,
-0.005210561212152243,
0.5120194554328918,
0.4267432987689972,
0.2702416479587555,
-0.43033963441848755,
-0.6470696926116943,
-0.7348030805587769,
-0.3423095941543579,
-0.24157041311264038,
0.06579326093196869,
0.5147685408592224,
0.9830515384674072,
-0.3878134787082672,
0.5250354409217834,
-0.5273240804672241,
-0.3908820152282715,
-0.44585099816322327,
0.1854954957962036,
0.7005295753479004,
0.4948238730430603,
0.9102122783660889,
-1.1073942184448242,
-0.8136681914329529,
-0.05602895841002464,
-0.7480745911598206,
0.4306042492389679,
0.16990302503108978,
-0.15355679392814636,
0.5433244705200195,
-0.03951915353536606,
-0.8463855981826782,
0.9925386309623718,
0.3473673164844513,
-0.757321298122406,
0.8009341955184937,
-0.2504950165748596,
0.3882018029689789,
-1.2992725372314453,
0.20378345251083374,
-0.549614667892456,
-0.13752789795398712,
-0.3840222954750061,
0.2520991861820221,
-0.0807168111205101,
0.24184884130954742,
-0.568286120891571,
0.8502464294433594,
-0.6564730405807495,
0.3514246940612793,
-0.26092326641082764,
-0.2958870232105255,
-0.17000973224639893,
0.7930020093917847,
0.05688063055276871,
0.5754107236862183,
0.4482770562171936,
-0.6795840859413147,
0.2576252222061157,
0.35618653893470764,
-0.8720283508300781,
0.20153765380382538,
-0.5832241773605347,
0.2920355200767517,
-0.24283315241336823,
0.10795415192842484,
-1.185867190361023,
-0.3705616891384125,
0.6929728984832764,
-0.9632986187934875,
0.21276149153709412,
0.19727732241153717,
-0.33379045128822327,
-0.24261105060577393,
-0.27374017238616943,
0.47214218974113464,
0.48112136125564575,
-0.4463256597518921,
0.9742916822433472,
0.308129221200943,
-0.3365861177444458,
-0.682600200176239,
-0.6189659833908081,
0.26679080724716187,
-0.10651562362909317,
-0.5518997311592102,
0.44313034415245056,
-0.23731476068496704,
-0.12879669666290283,
0.016024453565478325,
-0.013490463607013226,
-0.20872999727725983,
0.09028374403715134,
0.5679082274436951,
0.1969546675682068,
-0.28339892625808716,
-0.09834231436252594,
-0.12151248753070831,
-0.08487125486135483,
0.09264333546161652,
0.22632451355457306,
0.7529792785644531,
-0.2817806601524353,
-0.6146784424781799,
-0.6353520154953003,
0.6902444958686829,
0.36522021889686584,
-0.06689976155757904,
1.1852320432662964,
0.8936806321144104,
-0.7291346192359924,
0.3418262004852295,
-0.7406930923461914,
0.006131533533334732,
-0.5236725211143494,
0.3960876762866974,
-0.6529552340507507,
-0.7731634974479675,
0.777062714099884,
-0.3058187961578369,
-0.2849385142326355,
0.8876868486404419,
0.9329920411109924,
-0.24015314877033234,
1.2604142427444458,
0.6763553023338318,
-0.5447000861167908,
0.09719919413328171,
-0.38407808542251587,
0.5050457715988159,
-0.5448870062828064,
-0.6593425869941711,
-0.6388580799102783,
-0.753901481628418,
-0.589984655380249,
-0.1251748949289322,
0.19118088483810425,
0.13947109878063202,
-0.2815483808517456,
0.2077907770872116,
-0.5431022047996521,
0.292974591255188,
0.6885023713111877,
0.2543107271194458,
-0.019689254462718964,
-0.11418069154024124,
-0.5398509502410889,
-0.19151771068572998,
-0.418438583612442,
-0.5981802344322205,
1.0383535623550415,
0.2527240514755249,
0.5932225584983826,
0.644180953502655,
1.0724449157714844,
0.3739977478981018,
0.4267677664756775,
-0.5561625957489014,
0.7193503379821777,
0.46469059586524963,
-0.7653864622116089,
-0.40256088972091675,
0.016646873205900192,
-1.2230587005615234,
0.08977360278367996,
-0.015316258184611797,
-1.0371289253234863,
0.3963623046875,
-0.31292346119880676,
-0.4544247090816498,
0.4801289737224579,
-0.3917813003063202,
0.5751091837882996,
-0.40499091148376465,
-0.1834426075220108,
-0.17009593546390533,
-1.0966976881027222,
0.08380326628684998,
0.07487919181585312,
0.5354523062705994,
-0.12927500903606415,
0.0955527275800705,
1.1800793409347534,
-0.8319122195243835,
0.613335371017456,
-0.19384823739528656,
0.29303374886512756,
0.45877161622047424,
0.17999562621116638,
0.5271720886230469,
0.3160887062549591,
0.09791101515293121,
0.3319852948188782,
0.0689014196395874,
-0.5535066723823547,
-0.3214821219444275,
1.0828295946121216,
-1.2922866344451904,
-0.7186636924743652,
-0.9560050368309021,
-0.11734406650066376,
0.16305677592754364,
0.7107011079788208,
0.4942217469215393,
0.3930913209915161,
-0.29543712735176086,
-0.11368651688098907,
0.5120864510536194,
-0.2418334186077118,
0.6146769523620605,
0.5396227240562439,
-0.21948660910129547,
-0.7303018569946289,
0.9443330764770508,
-0.013752630911767483,
-0.4278934895992279,
0.5033838748931885,
-0.03232135996222496,
-0.39950037002563477,
-0.6971708536148071,
-0.4198594093322754,
0.43631333112716675,
-0.6876575946807861,
-0.2972804605960846,
-0.8743394017219543,
-0.4079439640045166,
-0.5998389720916748,
-0.11590979993343353,
-0.0929778516292572,
-0.35822880268096924,
-0.5166037678718567,
-0.268792062997818,
0.32920899987220764,
0.8046979308128357,
-0.03957681730389595,
0.2911398410797119,
-0.8138476014137268,
0.3085568845272064,
0.1344977468252182,
0.17205218970775604,
0.3330245912075043,
-0.3521812856197357,
-0.4674987196922302,
0.01733311451971531,
-0.37924185395240784,
-1.3927212953567505,
0.9508418440818787,
0.06741566210985184,
0.2947060763835907,
0.6426836252212524,
-0.03633289784193039,
0.42195385694503784,
-0.3114432096481323,
0.8877855539321899,
0.3319462239742279,
-0.8788124322891235,
0.6377701759338379,
-0.23612919449806213,
0.30222269892692566,
0.7149966955184937,
0.6770960688591003,
-0.5525839328765869,
-0.04211677983403206,
-0.9208489656448364,
-0.8646252751350403,
0.9206528663635254,
0.5071412324905396,
0.03420237451791763,
-0.2615041136741638,
0.07225813716650009,
-0.17675825953483582,
0.6540176868438721,
-0.6747340559959412,
-0.7553451061248779,
0.008993479423224926,
-0.40861421823501587,
0.19873587787151337,
-0.7799509763717651,
-0.14444641768932343,
-0.5144455432891846,
0.8855272531509399,
0.5568690299987793,
0.7178980112075806,
0.3270314037799835,
-0.1951143890619278,
-0.2169971764087677,
0.23573535680770874,
0.6292737126350403,
0.7302895784378052,
-0.3569398522377014,
0.04624149203300476,
0.2315368354320526,
-0.9238262176513672,
0.26994073390960693,
-0.032802823930978775,
-0.26687660813331604,
0.34131860733032227,
0.5964196920394897,
0.7994183897972107,
0.4147963523864746,
-0.7729297876358032,
0.6320834159851074,
-0.26850736141204834,
-0.3186304271221161,
-0.7606455087661743,
-0.17465029656887054,
0.29134702682495117,
0.08244577795267105,
0.673862099647522,
-0.042033955454826355,
0.24262839555740356,
-0.4625616669654846,
0.12664349377155304,
0.49254128336906433,
-0.27300581336021423,
-0.0673857256770134,
0.7450091242790222,
0.13347336649894714,
-0.6196470856666565,
0.9206188321113586,
-0.23706750571727753,
-0.8117656111717224,
0.9869693517684937,
0.6194599270820618,
0.9458561539649963,
-0.8270045518875122,
0.18825054168701172,
0.7376379370689392,
0.18539196252822876,
0.3169679343700409,
0.8411992192268372,
0.060886215418577194,
-0.8497820496559143,
-0.06283669918775558,
-1.0298912525177002,
-0.3249194920063019,
0.21745705604553223,
-0.6301599144935608,
0.08119942247867584,
-0.776811420917511,
-0.3801301419734955,
0.2035702019929886,
0.2974134087562561,
-1.0687801837921143,
0.4494348466396332,
0.30894678831100464,
0.9206840395927429,
-0.47621843218803406,
0.93684983253479,
0.8563007116317749,
-0.5104619264602661,
-1.0816065073013306,
-0.14692991971969604,
-0.11608641594648361,
-1.2026183605194092,
1.0704004764556885,
0.23838500678539276,
-0.1246921494603157,
0.04846872016787529,
-0.6407517194747925,
-1.4277937412261963,
0.9288651347160339,
-0.29022422432899475,
-0.6451663374900818,
0.05118891969323158,
0.2524970769882202,
0.3360438346862793,
-0.3658607006072998,
0.4702678620815277,
0.22591733932495117,
0.5963761210441589,
0.28940343856811523,
-1.0632041692733765,
0.3789205849170685,
-0.7358773946762085,
0.035433657467365265,
0.3544560372829437,
-0.6473615169525146,
0.939620316028595,
-0.4217860996723175,
-0.3231807351112366,
0.5456857085227966,
0.9134707450866699,
0.0786476656794548,
0.414375364780426,
0.2953551709651947,
0.8620830178260803,
0.5346403121948242,
-0.1254928857088089,
0.9581771492958069,
-0.42091530561447144,
0.4973643124103546,
0.8631813526153564,
-0.09691784530878067,
0.7385293245315552,
0.3944152891635895,
-0.5367640256881714,
0.9307137131690979,
0.7483170628547668,
-0.1984635591506958,
1.0264760255813599,
0.07981211692094803,
-0.7327293753623962,
-0.0857657641172409,
-0.19679126143455505,
-0.507311999797821,
0.29363417625427246,
0.3510856330394745,
-0.6199242472648621,
-0.39311906695365906,
0.19269812107086182,
0.05807734280824661,
-0.07644149661064148,
-0.2630012035369873,
0.907579243183136,
0.08093425631523132,
-0.4782428741455078,
0.7151122093200684,
0.40805405378341675,
0.48806971311569214,
-0.7753507494926453,
-0.158084437251091,
0.10710282623767853,
0.3679046630859375,
-0.1482430398464203,
-0.5266125798225403,
0.14601905643939972,
-0.27445322275161743,
-0.12479285895824432,
0.06871773302555084,
1.102553129196167,
-0.2232983112335205,
-0.9275941252708435,
0.1929391324520111,
0.4493039548397064,
0.15369334816932678,
-0.07229790836572647,
-1.0153558254241943,
0.17114053666591644,
0.19910572469234467,
-0.42077770829200745,
0.3763921856880188,
0.18723326921463013,
-0.03772329166531563,
0.5764150023460388,
0.596104621887207,
0.06849688291549683,
-0.11976445466279984,
-0.03539566323161125,
0.935716450214386,
-1.1423369646072388,
-0.5650249123573303,
-1.0183833837509155,
0.33314773440361023,
0.03615552932024002,
-0.24348175525665283,
0.7514206767082214,
0.7464924454689026,
0.8726763725280762,
-0.3960576355457306,
0.8017545938491821,
-0.049746591597795486,
0.8635155558586121,
-0.2170638144016266,
1.0303852558135986,
-0.5455252528190613,
-0.37032267451286316,
-0.3856137692928314,
-0.568037211894989,
-0.20407193899154663,
0.8771678805351257,
-0.4962654411792755,
0.3025732934474945,
0.6004108190536499,
0.6379414200782776,
0.29651615023612976,
0.030934398993849754,
0.1384783387184143,
0.2812797725200653,
-0.07138028740882874,
0.7642025947570801,
0.7956846356391907,
-0.5728195905685425,
0.07193565368652344,
-0.2819611430168152,
-0.14719368517398834,
-0.5935032367706299,
-0.5406227111816406,
-1.1849067211151123,
-0.521996796131134,
-0.2616085410118103,
-0.34698253870010376,
-0.027133550494909286,
1.1990424394607544,
0.3536527156829834,
-1.2618950605392456,
-0.2251615822315216,
0.24957001209259033,
0.2969341278076172,
-0.2799006998538971,
-0.27236124873161316,
0.8694316744804382,
0.23482047021389008,
-0.9031258225440979,
-0.1503690630197525,
0.14888957142829895,
0.33421042561531067,
0.027288585901260376,
-0.006054652854800224,
-0.7006273865699768,
0.13594186305999756,
0.2595252990722656,
0.2973135709762573,
-0.9672589898109436,
-0.142145037651062,
0.00921389739960432,
-0.3905463218688965,
0.006164124235510826,
0.3468517065048218,
-0.712885320186615,
0.19595982134342194,
0.27354833483695984,
0.5205052495002747,
0.6868481636047363,
-0.10346440225839615,
0.1920696645975113,
-0.4333063066005707,
0.13326495885849,
0.6341831088066101,
0.4307287037372589,
0.06931687891483307,
-0.7772867679595947,
0.36438149213790894,
0.19369611144065857,
-0.5981943607330322,
-0.5799963474273682,
0.19136789441108704,
-1.0001975297927856,
-0.41949662566185,
0.8141246438026428,
-0.056416552513837814,
-0.33625054359436035,
-0.10444153100252151,
-0.44997042417526245,
0.41056597232818604,
-0.5057801604270935,
0.9739958047866821,
1.2727991342544556,
-0.1767677217721939,
0.06457509845495224,
-0.34328848123550415,
0.7083154320716858,
0.6182986497879028,
-0.5713733434677124,
-0.8582156896591187,
0.17741429805755615,
0.5912032127380371,
0.3169190585613251,
0.9732084274291992,
-0.011414040811359882,
0.45446518063545227,
-0.1820458173751831,
0.3788188099861145,
0.20139823853969574,
-0.09727231413125992,
0.10493067651987076,
0.11985861510038376,
0.12745484709739685,
-0.7037865519523621
] |
Antraxas/test1 | Antraxas | "2023-09-02T09:25:04Z" | 11,599 | 0 | diffusers | [
"diffusers",
"license:openrail",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] | null | "2023-02-06T18:29:48Z" | ---
license: openrail
---
| [
-0.12853388488292694,
-0.18616782128810883,
0.6529127359390259,
0.4943625330924988,
-0.19319313764572144,
0.23607465624809265,
0.36071982979774475,
0.05056332051753998,
0.5793652534484863,
0.740013837814331,
-0.6508103013038635,
-0.2378396987915039,
-0.710224986076355,
-0.04782581701874733,
-0.3894752264022827,
0.8470761775970459,
-0.09598272293806076,
0.024004854261875153,
0.047120071947574615,
-0.14317826926708221,
-0.6121037602424622,
-0.04771740734577179,
-1.0524537563323975,
-0.06787490844726562,
0.3002279996871948,
0.5120972990989685,
0.8275896310806274,
0.39602896571159363,
0.5030564069747925,
1.7515558004379272,
-0.08836919069290161,
-0.22754427790641785,
-0.45892032980918884,
0.4223068356513977,
-0.33277371525764465,
-0.42133718729019165,
-0.2624166011810303,
-0.07449338585138321,
0.32380399107933044,
0.790371298789978,
-0.38104110956192017,
0.19328099489212036,
-0.22438454627990723,
1.008224368095398,
-0.8202074766159058,
0.22630876302719116,
-0.16698351502418518,
0.14053204655647278,
0.042308706790208817,
-0.14591927826404572,
-0.1326323002576828,
-0.6440033912658691,
0.06469469517469406,
-0.899596095085144,
0.1027495265007019,
-0.04461126774549484,
0.8789561986923218,
0.21909058094024658,
-0.5102370977401733,
-0.0459773913025856,
-0.6883594989776611,
1.0972508192062378,
-0.17556026577949524,
0.7615712881088257,
0.4507811963558197,
0.45288562774658203,
-0.5849329829216003,
-1.178217887878418,
-0.4441864490509033,
-0.13579002022743225,
0.14722809195518494,
0.30556100606918335,
-0.3453029692173004,
-0.022343844175338745,
0.10801105946302414,
0.5610314011573792,
-0.5003758072853088,
-0.311959445476532,
-0.9579929113388062,
-0.18164916336536407,
0.6820483207702637,
0.319308340549469,
0.834044337272644,
0.1873151659965515,
-0.7347195744514465,
0.12866291403770447,
-1.3239703178405762,
0.07650735974311829,
0.6465023756027222,
0.239467591047287,
-0.554598867893219,
0.8594784736633301,
-0.28587982058525085,
0.626249372959137,
0.2728465497493744,
-0.1164526641368866,
0.2784252464771271,
-0.23030735552310944,
-0.2735062837600708,
0.033087607473134995,
0.34597301483154297,
0.8204491138458252,
0.16248634457588196,
-0.019984982907772064,
-0.22123965620994568,
0.0020717978477478027,
0.2684449553489685,
-0.7935096025466919,
-0.4712669551372528,
0.1926696002483368,
-0.558952808380127,
-0.0910850465297699,
0.4327022135257721,
-1.0976827144622803,
-0.4812980592250824,
-0.1879846155643463,
0.05468139797449112,
-0.5451693534851074,
-0.3697946071624756,
0.07273250073194504,
-0.79254150390625,
-0.1243419200181961,
0.570950984954834,
-0.6230252981185913,
0.43974608182907104,
0.533625602722168,
0.7861635684967041,
0.2330387681722641,
-0.23613610863685608,
-0.6695019602775574,
0.48848265409469604,
-0.8661867380142212,
0.36860740184783936,
-0.3073781132698059,
-0.8298640251159668,
-0.09631050378084183,
0.5393159985542297,
0.20664852857589722,
-0.6653256416320801,
0.7074045538902283,
-0.5496984720230103,
-0.07806532829999924,
-0.4308285415172577,
-0.2432200014591217,
0.17460417747497559,
0.11115431040525436,
-0.6238909363746643,
0.9402233362197876,
0.5551108121871948,
-0.584109902381897,
0.31701239943504333,
-0.4869506359100342,
-0.6865583658218384,
0.26748135685920715,
-0.008750975131988525,
-0.047152332961559296,
0.3279528021812439,
-0.15983973443508148,
-0.0020511597394943237,
0.10505761206150055,
0.008299741894006729,
-0.21891699731349945,
-0.4786304235458374,
0.06349936127662659,
0.151650071144104,
1.25368332862854,
0.4083622097969055,
-0.3771882951259613,
-0.13140122592449188,
-1.0526149272918701,
0.025432661175727844,
0.0505015105009079,
-0.42306768894195557,
-0.2504565119743347,
-0.14882194995880127,
-0.20381587743759155,
0.4307260811328888,
0.2118472456932068,
-0.813115119934082,
0.22643625736236572,
-0.2064024657011032,
0.364496648311615,
0.8222091794013977,
0.2703101634979248,
0.39760565757751465,
-0.6625286340713501,
0.6563138365745544,
0.2076188325881958,
0.49590179324150085,
0.35404202342033386,
-0.3845822811126709,
-0.9641586542129517,
-0.442161500453949,
-0.10117404907941818,
0.2975531220436096,
-0.7744957804679871,
0.5847322940826416,
0.012979604303836823,
-0.5836705565452576,
-0.4465281367301941,
-0.15488101541996002,
0.2755330502986908,
-0.06606576591730118,
0.03334902226924896,
-0.4049779176712036,
-0.7394417524337769,
-1.0127898454666138,
-0.13788150250911713,
-0.5021388530731201,
-0.21892830729484558,
0.3160586357116699,
0.2617739737033844,
-0.34290042519569397,
0.7610747814178467,
-0.6059278249740601,
-0.704064130783081,
-0.13973554968833923,
-0.0995984673500061,
0.6187719702720642,
0.9297672510147095,
0.749138355255127,
-0.7224893569946289,
-0.8973818421363831,
-0.056230708956718445,
-0.5420039892196655,
-0.020044349133968353,
0.038149889558553696,
-0.18260693550109863,
-0.10514980554580688,
0.22352531552314758,
-0.6100803017616272,
0.8851073980331421,
0.43224984407424927,
-0.681546688079834,
0.5210590958595276,
-0.4444413483142853,
0.6073803901672363,
-0.8642839193344116,
-0.2911490201950073,
-0.16823577880859375,
-0.1976117193698883,
-0.7090160846710205,
0.19411544501781464,
-0.3002234101295471,
-0.33029863238334656,
-0.7474032044410706,
0.5274897813796997,
-0.9497010707855225,
-0.18781527876853943,
-0.33672773838043213,
-0.03423111140727997,
0.25807833671569824,
0.19490505754947662,
-0.23560254275798798,
0.8900529742240906,
0.9160482287406921,
-0.7121306657791138,
0.5487277507781982,
0.3930906653404236,
-0.1920013427734375,
0.7131237387657166,
-0.3887738585472107,
0.05161993205547333,
-0.12344931066036224,
0.14374595880508423,
-1.126388430595398,
-0.561158299446106,
0.13677382469177246,
-0.712703287601471,
0.17686958611011505,
-0.16556859016418457,
-0.09428537636995316,
-0.6608465313911438,
-0.33806395530700684,
0.25910091400146484,
0.48612290620803833,
-0.47969940304756165,
0.6188148260116577,
0.5728040337562561,
0.02651876211166382,
-0.5307406783103943,
-0.7206818461418152,
0.20418110489845276,
0.039646461606025696,
-0.5569695830345154,
0.3011690080165863,
0.006543457508087158,
-0.6622446775436401,
-0.371124804019928,
-0.26354190707206726,
-0.6043857336044312,
-0.2267974615097046,
0.7826986312866211,
0.1199423298239708,
-0.09012264013290405,
-0.20310267806053162,
-0.3199536204338074,
-0.06167525798082352,
0.30487415194511414,
-0.07575298100709915,
0.7232834696769714,
-0.33623749017715454,
-0.17850083112716675,
-0.887734055519104,
0.652754545211792,
0.9970465302467346,
0.09446714073419571,
0.806644082069397,
0.46324217319488525,
-0.35647475719451904,
-0.1304660439491272,
-0.3535459041595459,
-0.15120601654052734,
-0.685774564743042,
-0.1806798279285431,
-0.5322476625442505,
-0.5411434769630432,
0.40530654788017273,
0.10101459175348282,
-0.0021042972803115845,
0.5167046785354614,
0.2533605694770813,
-0.28806859254837036,
0.7550324201583862,
1.034340739250183,
0.1391797959804535,
0.3602915108203888,
-0.2854715585708618,
0.6341594457626343,
-0.8329949378967285,
-0.34052175283432007,
-0.4548071026802063,
-0.2563585042953491,
-0.31214389204978943,
-0.10750849545001984,
0.5791022181510925,
0.2818215489387512,
-0.4463467597961426,
0.1250680536031723,
-0.5994209051132202,
0.6587361693382263,
0.6273988485336304,
0.5719727873802185,
0.1997303068637848,
-0.46199458837509155,
0.19982971251010895,
0.04816687852144241,
-0.45745599269866943,
-0.4009109139442444,
0.7711143493652344,
0.2399624139070511,
0.8364022374153137,
0.20927050709724426,
0.4957774877548218,
0.33375421166419983,
0.2528058588504791,
-0.6318977475166321,
0.2009797990322113,
-0.22282809019088745,
-1.245961308479309,
-0.206426739692688,
-0.16551318764686584,
-1.0080583095550537,
-0.11792082339525223,
-0.18288995325565338,
-0.8406620025634766,
0.2665729820728302,
-0.19225634634494781,
-0.6640645265579224,
0.5206149220466614,
-0.5103875398635864,
0.69347083568573,
-0.23555898666381836,
-0.2817087769508362,
0.11930079013109207,
-0.6889920830726624,
0.5254612565040588,
0.3667147755622864,
0.29168397188186646,
-0.37968993186950684,
-0.3192872405052185,
0.5068994760513306,
-0.881224513053894,
0.44081127643585205,
-0.10564978420734406,
0.19428130984306335,
0.5358879566192627,
0.4153591990470886,
0.3823971152305603,
0.28699052333831787,
-0.2459377944469452,
-0.23415414988994598,
0.2250344604253769,
-0.7581346035003662,
-0.27754613757133484,
0.9095459580421448,
-0.7519428730010986,
-0.8586915731430054,
-0.6954255700111389,
-0.30644941329956055,
0.28865277767181396,
0.02781464159488678,
0.7154772281646729,
0.6456884145736694,
-0.18821057677268982,
0.23776991665363312,
0.7208225727081299,
-0.0146945184096694,
0.7235562801361084,
0.29411184787750244,
-0.4056646227836609,
-0.6169787645339966,
0.7182320356369019,
0.2627044916152954,
0.05162655562162399,
0.028327951207756996,
0.3058736026287079,
-0.17546698451042175,
-0.15078596770763397,
-0.6318323612213135,
-0.06395323574542999,
-0.7465729117393494,
-0.0927949845790863,
-0.7541396617889404,
-0.2507742643356323,
-0.7114590406417847,
-0.8068137764930725,
-0.7080163955688477,
-0.45604395866394043,
-0.43011948466300964,
-0.23352204263210297,
0.5163108706474304,
1.1627086400985718,
-0.2613152861595154,
0.8011051416397095,
-0.8900954723358154,
0.41936296224594116,
0.4969540238380432,
0.7519731521606445,
-0.11061006784439087,
-0.6746935844421387,
-0.07836239039897919,
-0.5338755249977112,
-0.29485058784484863,
-1.0156972408294678,
0.31774646043777466,
-0.03688591718673706,
0.40537136793136597,
0.42938894033432007,
0.25190269947052,
0.49392756819725037,
-0.30073118209838867,
1.1130688190460205,
0.7274302244186401,
-0.803381085395813,
0.519527792930603,
-0.7635002136230469,
0.16122324764728546,
0.9363659620285034,
0.54477459192276,
-0.4417075514793396,
-0.15113934874534607,
-1.025976538658142,
-0.843137264251709,
0.5963036417961121,
0.15439945459365845,
0.016843896359205246,
0.01821417547762394,
0.03168272227048874,
0.29466384649276733,
0.3591304123401642,
-0.7847291231155396,
-0.8240220546722412,
-0.13851122558116913,
0.25803306698799133,
0.31456053256988525,
-0.1648542582988739,
-0.3003871440887451,
-0.611615777015686,
0.8711391091346741,
0.18286482989788055,
0.3546231985092163,
0.12073354423046112,
0.04369349032640457,
-0.35506919026374817,
0.14787021279335022,
0.5522999167442322,
1.2529057264328003,
-0.40983331203460693,
0.3673911392688751,
0.1751260608434677,
-0.6540069580078125,
0.6494997143745422,
-0.3036349415779114,
-0.021784601733088493,
0.6203135251998901,
0.17760884761810303,
0.28528398275375366,
0.315599262714386,
-0.3621427118778229,
0.6047801971435547,
-0.029422052204608917,
-0.17758512496948242,
-0.7005696296691895,
0.15866968035697937,
0.029350608587265015,
0.27507954835891724,
0.4392024278640747,
0.24443313479423523,
0.08246771991252899,
-1.0602877140045166,
0.5711055397987366,
0.24493910372257233,
-0.8676618337631226,
-0.3011006712913513,
0.7047957181930542,
0.4075389802455902,
-0.47599563002586365,
0.38749054074287415,
0.012702330946922302,
-0.6710241436958313,
0.5987741351127625,
0.5510413646697998,
0.7569674253463745,
-0.4702427089214325,
0.3088020086288452,
0.6245602965354919,
0.06711331009864807,
0.20550549030303955,
0.6923202872276306,
0.03149382025003433,
-0.44738656282424927,
0.23022446036338806,
-0.5986733436584473,
-0.1468990594148636,
0.13735318183898926,
-0.8047426342964172,
0.351533442735672,
-0.9312615394592285,
-0.24089956283569336,
0.08751589059829712,
0.11761097609996796,
-0.6130945086479187,
0.6674696207046509,
-0.008524954319000244,
0.9280490875244141,
-0.8549083471298218,
0.9626278281211853,
0.8559581637382507,
-0.31830817461013794,
-0.7709448337554932,
-0.33556753396987915,
0.02013934776186943,
-0.6660526990890503,
0.7108278274536133,
-0.18973003327846527,
-0.41207411885261536,
-0.09323947876691818,
-0.622982919216156,
-1.0003730058670044,
0.030618250370025635,
0.017415650188922882,
-0.4625031054019928,
0.4454794228076935,
-0.5157257318496704,
0.3289681673049927,
-0.19169732928276062,
0.30509495735168457,
0.7719469666481018,
0.7958452701568604,
0.22960808873176575,
-0.6354780197143555,
-0.4466685652732849,
-0.010276071727275848,
-0.16682815551757812,
0.4545809030532837,
-1.0710972547531128,
0.967736542224884,
-0.4652574360370636,
-0.34733209013938904,
0.2706642150878906,
0.797762393951416,
0.2538500428199768,
0.3524126708507538,
0.6219537258148193,
0.9016807079315186,
0.36450111865997314,
-0.31178343296051025,
0.7276745438575745,
0.2426338493824005,
0.4152539074420929,
0.7364203333854675,
-0.22712187469005585,
0.5403846502304077,
0.8906413316726685,
-0.786162257194519,
0.5381765365600586,
0.7879031896591187,
0.16047371923923492,
0.7758157253265381,
0.5944145917892456,
-0.611952543258667,
-0.1185941994190216,
-0.1464141309261322,
-0.6171560287475586,
0.1979752480983734,
0.052926212549209595,
-0.11974738538265228,
-0.2846010625362396,
-0.13567376136779785,
0.12295057624578476,
0.2836454212665558,
-0.5959328413009644,
0.606866717338562,
0.34341585636138916,
-0.6328282356262207,
0.21025103330612183,
-0.25779569149017334,
0.6709501147270203,
-0.5978154540061951,
0.02733636647462845,
-0.226993590593338,
0.41810402274131775,
-0.4618742763996124,
-1.007582426071167,
0.47138404846191406,
-0.2920241355895996,
-0.40551304817199707,
-0.26942431926727295,
0.8072363138198853,
-0.22133907675743103,
-0.5572860240936279,
0.37486034631729126,
0.13466592133045197,
0.41473662853240967,
0.40145981311798096,
-0.548729419708252,
0.047790080308914185,
0.13760165870189667,
-0.20061805844306946,
0.3601190149784088,
0.2973729372024536,
0.25488772988319397,
0.7100128531455994,
0.5052477717399597,
0.22198708355426788,
0.25694364309310913,
-0.18668605387210846,
0.8387458324432373,
-0.9102796316146851,
-0.8167635202407837,
-0.9497333765029907,
0.3849896192550659,
0.025727711617946625,
-0.880144476890564,
0.7920305728912354,
0.7652608156204224,
0.5113964080810547,
-0.4877890348434448,
0.4755283296108246,
-0.326479434967041,
0.5047136545181274,
-0.13870958983898163,
1.001089096069336,
-0.760762631893158,
-0.29587265849113464,
-0.030554059892892838,
-0.9216439723968506,
-0.2533753216266632,
0.5375741720199585,
0.1540832668542862,
-0.14608067274093628,
0.4385907053947449,
0.44216376543045044,
0.022173406556248665,
0.25223150849342346,
0.32861006259918213,
0.06042787432670593,
0.14508451521396637,
0.5510438680648804,
1.0931141376495361,
-0.43394410610198975,
0.18694786727428436,
-0.4923475384712219,
-0.4536249041557312,
-0.4153490662574768,
-0.9548057913780212,
-0.6640313863754272,
-0.48185449838638306,
-0.2973935008049011,
-0.5915579199790955,
0.11726461350917816,
0.9300885796546936,
0.9018137454986572,
-0.6256728172302246,
-0.41243645548820496,
0.25713539123535156,
0.30293411016464233,
-0.2295418381690979,
-0.146267831325531,
0.2736492455005646,
-0.006407544948160648,
-0.7211178541183472,
0.3930943012237549,
0.807976245880127,
0.3887130320072174,
0.08444006741046906,
-0.07217127084732056,
-0.4407080411911011,
0.026101574301719666,
0.5373561382293701,
0.5729561448097229,
-0.6281182169914246,
-0.4099644422531128,
-0.5328317880630493,
-0.21386730670928955,
0.15529435873031616,
0.48077550530433655,
-0.5166378617286682,
0.32661110162734985,
0.8128959536552429,
0.17017659544944763,
0.7187885642051697,
-0.0022492259740829468,
0.6678642630577087,
-0.8970246315002441,
0.4446259140968323,
0.3953385353088379,
0.5681870579719543,
0.08998038619756699,
-0.7339164614677429,
0.9820241928100586,
0.49674350023269653,
-0.6334057450294495,
-1.0034242868423462,
0.03079957515001297,
-1.193113923072815,
-0.3788175582885742,
0.9890843629837036,
-0.09595765173435211,
-0.9597458839416504,
-0.36448943614959717,
-0.3677716851234436,
0.07989637553691864,
-0.33809733390808105,
0.35498204827308655,
0.8268195986747742,
-0.2538071274757385,
-0.2204185128211975,
-0.9505581855773926,
0.4752943515777588,
0.3102525472640991,
-0.5886632204055786,
-0.05114369094371796,
0.329391211271286,
0.45236870646476746,
0.3009701371192932,
0.5239557027816772,
0.10428227484226227,
0.8970529437065125,
0.25200390815734863,
0.30491405725479126,
-0.04526621103286743,
-0.590078592300415,
-0.0160664189606905,
0.2621477246284485,
0.04487839341163635,
-0.6869441270828247
] |
Salesforce/instructblip-flan-t5-xl | Salesforce | "2023-06-18T09:19:04Z" | 11,563 | 23 | transformers | [
"transformers",
"pytorch",
"instructblip",
"text2text-generation",
"vision",
"image-captioning",
"image-to-text",
"en",
"arxiv:2305.06500",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"has_space",
"region:us"
] | image-to-text | "2023-05-28T13:29:18Z" | ---
language: en
license: mit
tags:
- vision
- image-captioning
pipeline_tag: image-to-text
---
# InstructBLIP model
InstructBLIP model using [Flan-T5-xl](https://huggingface.co/google/flan-t5-xl) as language model. InstructBLIP was introduced in the paper [InstructBLIP: Towards General-purpose Vision-Language Models with Instruction Tuning](https://arxiv.org/abs/2305.06500) by Dai et al.
Disclaimer: The team releasing InstructBLIP did not write a model card for this model so this model card has been written by the Hugging Face team.
## Model description
InstructBLIP is a visual instruction tuned version of [BLIP-2](https://huggingface.co/docs/transformers/main/model_doc/blip-2). Refer to the paper for details.
![InstructBLIP architecture](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/instructblip_architecture.jpg)
## Intended uses & limitations
Usage is as follows:
```
from transformers import InstructBlipProcessor, InstructBlipForConditionalGeneration
import torch
from PIL import Image
import requests
model = InstructBlipForConditionalGeneration.from_pretrained("Salesforce/instructblip-flan-t5-xl")
processor = InstructBlipProcessor.from_pretrained("Salesforce/instructblip-flan-t5-xl")
device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)
url = "https://raw.githubusercontent.com/salesforce/LAVIS/main/docs/_static/Confusing-Pictures.jpg"
image = Image.open(requests.get(url, stream=True).raw).convert("RGB")
prompt = "What is unusual about this image?"
inputs = processor(images=image, text=prompt, return_tensors="pt").to(device)
outputs = model.generate(
**inputs,
do_sample=False,
num_beams=5,
max_length=256,
min_length=1,
top_p=0.9,
repetition_penalty=1.5,
length_penalty=1.0,
temperature=1,
)
generated_text = processor.batch_decode(outputs, skip_special_tokens=True)[0].strip()
print(generated_text)
```
### How to use
For code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/main/en/model_doc/instructblip). | [
-0.478196382522583,
-0.6255189180374146,
0.019274931401014328,
0.3513505756855011,
-0.22274072468280792,
-0.03703504428267479,
-0.10831256210803986,
-0.663727343082428,
-0.05865180119872093,
0.5036603808403015,
-0.6767332553863525,
-0.37353575229644775,
-0.5299829840660095,
-0.23484493792057037,
-0.2539307475090027,
0.9943671822547913,
-0.017437467351555824,
-0.14272600412368774,
-0.1752956509590149,
0.06876756995916367,
-0.30516254901885986,
-0.3057759702205658,
-0.49199914932250977,
-0.39396145939826965,
-0.2109716534614563,
0.43999218940734863,
0.6710625290870667,
0.4315641522407532,
0.6601125001907349,
0.32970595359802246,
-0.2924351394176483,
0.11661006510257721,
-0.37493154406547546,
-0.533927321434021,
0.06395261734724045,
-0.5390982031822205,
-0.47689658403396606,
0.020944908261299133,
0.5544249415397644,
0.36640051007270813,
-0.07441195845603943,
0.47386202216148376,
-0.016721125692129135,
0.44202882051467896,
-0.45761269330978394,
0.3547994792461395,
-0.44800978899002075,
0.1047704815864563,
-0.015780044719576836,
-0.2284548282623291,
-0.6226191520690918,
-0.1707131564617157,
0.029621560126543045,
-0.38229408860206604,
0.5621877312660217,
0.060853343456983566,
1.4271461963653564,
0.23059295117855072,
-0.12706473469734192,
-0.18007442355155945,
-0.6927304267883301,
0.7335798144340515,
-0.8080427646636963,
0.419951468706131,
0.12646742165088654,
0.26598110795021057,
0.06987737864255905,
-1.0088900327682495,
-0.4768642783164978,
-0.14213404059410095,
-0.14240072667598724,
0.19419322907924652,
-0.2580254375934601,
0.24194331467151642,
0.64091956615448,
0.260750949382782,
-0.5657519698143005,
0.11382690072059631,
-0.6410291790962219,
-0.1623639166355133,
0.6271274089813232,
0.030532460659742355,
0.25980985164642334,
-0.1867608278989792,
-0.8115929365158081,
-0.3807399868965149,
-0.5433392524719238,
0.27416929602622986,
0.16140751540660858,
0.11212462931871414,
-0.618252158164978,
0.5601488947868347,
0.06361684203147888,
0.6521535515785217,
0.40840423107147217,
-0.2943374812602997,
0.5855938792228699,
-0.006407200358808041,
-0.45112326741218567,
0.05447860062122345,
0.7927811145782471,
0.48458191752433777,
0.10073096305131912,
0.007009120192378759,
-0.37029996514320374,
0.03384473919868469,
0.20590658485889435,
-1.1656147241592407,
-0.2516022026538849,
0.34890154004096985,
-0.5255101323127747,
-0.308324933052063,
0.2871803045272827,
-0.8322445154190063,
-0.038153018802404404,
0.06453081220388412,
0.5143035650253296,
-0.5812172889709473,
-0.38089287281036377,
0.023268969729542732,
-0.34003591537475586,
0.4361760914325714,
0.03094831109046936,
-1.1915000677108765,
0.2041155844926834,
0.6257689595222473,
0.808185338973999,
0.2386692464351654,
-0.42534077167510986,
-0.21177859604358673,
0.16515010595321655,
-0.1211848184466362,
0.644035816192627,
-0.25419333577156067,
-0.4157188832759857,
-0.06910136342048645,
0.16181129217147827,
-0.07252492755651474,
-0.7170904874801636,
0.3611159026622772,
-0.3112255036830902,
0.24550120532512665,
0.04276905953884125,
-0.6287853717803955,
-0.2694050967693329,
-0.09215649217367172,
-0.3845503330230713,
1.0851101875305176,
0.355837345123291,
-0.8337938785552979,
0.28661516308784485,
-0.7281378507614136,
-0.3769553005695343,
0.23558133840560913,
-0.10058223456144333,
-0.6411372423171997,
0.0006683029932901263,
0.0660347193479538,
0.4754948318004608,
-0.1775178462266922,
0.02848183363676071,
-0.18636782467365265,
-0.48307493329048157,
0.03996197134256363,
-0.2039172202348709,
1.1878899335861206,
0.10443609952926636,
-0.6456049680709839,
0.34562647342681885,
-0.6523658037185669,
0.07823588699102402,
0.2972348928451538,
-0.03254534676671028,
0.10150216519832611,
-0.39373016357421875,
0.10713086277246475,
0.134475439786911,
0.35845059156417847,
-0.5822309255599976,
0.2390129417181015,
-0.48651230335235596,
0.5463125705718994,
0.6107215285301208,
-0.076370008289814,
0.5073155164718628,
-0.10927087813615799,
0.5396257042884827,
0.09785494208335876,
0.5272102355957031,
-0.1585359424352646,
-0.629584014415741,
-0.8881475925445557,
-0.24332843720912933,
-0.10689191520214081,
0.6915967464447021,
-0.829718291759491,
0.2410990595817566,
-0.1479424685239792,
-0.7448047399520874,
-0.4868338704109192,
-0.00880891177803278,
0.6295045018196106,
0.8127487897872925,
0.4534546434879303,
-0.1016804426908493,
-0.4468063712120056,
-1.0567657947540283,
0.20832404494285583,
-0.13369496166706085,
0.033680904656648636,
0.19330710172653198,
0.6200531721115112,
-0.1779634952545166,
0.6063610315322876,
-0.5695534944534302,
-0.19171370565891266,
-0.4132736921310425,
0.14352844655513763,
0.4154612720012665,
0.5771080255508423,
0.830083966255188,
-0.7084851861000061,
-0.3732694387435913,
-0.0621524304151535,
-0.7720220685005188,
-0.007741567213088274,
-0.1759345680475235,
-0.2267281413078308,
0.45252668857574463,
0.4539235532283783,
-0.8144760131835938,
0.5923859477043152,
0.5813244581222534,
-0.45895230770111084,
0.6059061884880066,
-0.12033702433109283,
-0.07692019641399384,
-1.0753581523895264,
0.15342657268047333,
0.16288238763809204,
-0.10783428698778152,
-0.5403127074241638,
0.20921684801578522,
0.35258734226226807,
-0.2179180234670639,
-0.6872497200965881,
0.6187013387680054,
-0.4856518805027008,
0.04825207591056824,
-0.15104840695858002,
-0.28193020820617676,
0.06959685683250427,
0.7435123920440674,
0.1414353847503662,
0.7712907195091248,
0.6339182257652283,
-0.6527979969978333,
0.454007625579834,
0.5343413352966309,
-0.2579743564128876,
0.3638826906681061,
-0.8731797337532043,
0.04825882986187935,
0.029840903356671333,
-0.04388492926955223,
-0.7338743209838867,
-0.1814514845609665,
0.5161105394363403,
-0.4057423174381256,
0.610242486000061,
-0.26202088594436646,
-0.5525297522544861,
-0.6058294177055359,
-0.11040374636650085,
0.2505094110965729,
0.7348775267601013,
-0.8109017610549927,
0.544394850730896,
0.34413471817970276,
0.2725619077682495,
-0.5442753434181213,
-1.0615133047103882,
-0.21837377548217773,
-0.12774202227592468,
-0.7595380544662476,
0.647983193397522,
-0.17010745406150818,
0.0805417150259018,
-0.043560754507780075,
0.011518159881234169,
-0.17492029070854187,
-0.25036224722862244,
0.4195847809314728,
0.4689052999019623,
-0.20774902403354645,
-0.19585303962230682,
0.013464762829244137,
-0.1277049034833908,
0.2227896749973297,
0.09660453349351883,
0.7424504160881042,
-0.41641175746917725,
-0.18852992355823517,
-0.8193101286888123,
0.13618169724941254,
0.3366019129753113,
-0.2853805124759674,
0.6352259516716003,
0.730516791343689,
-0.2827053964138031,
-0.46164730191230774,
-0.4065921902656555,
-0.33250096440315247,
-0.6084509491920471,
0.36786240339279175,
-0.32164856791496277,
-0.37833842635154724,
0.47208335995674133,
0.059683527797460556,
0.13042080402374268,
0.3572290539741516,
0.45563948154449463,
-0.15171687304973602,
0.8241294026374817,
0.7797083854675293,
0.26491665840148926,
0.795376718044281,
-0.8880215287208557,
0.03748617321252823,
-0.7095658183097839,
-0.4126439392566681,
-0.17252831161022186,
-0.15796875953674316,
-0.4712204337120056,
-0.21880453824996948,
0.27458664774894714,
0.15523909032344818,
-0.4928005337715149,
0.549941897392273,
-0.841167688369751,
0.23214814066886902,
0.8092911243438721,
0.3571820855140686,
-0.22982843220233917,
0.13413573801517487,
-0.0632452443242073,
-0.11142580211162567,
-0.7854565978050232,
-0.3567037582397461,
0.6200034618377686,
0.4428708851337433,
0.7044834494590759,
-0.19581198692321777,
0.638229489326477,
-0.09814207255840302,
0.3071827292442322,
-0.6726089715957642,
0.720526933670044,
-0.11786478012800217,
-0.5262811183929443,
0.14049021899700165,
-0.30820953845977783,
-0.6927671432495117,
-0.025166824460029602,
-0.15330268442630768,
-0.7433483600616455,
0.1415448635816574,
0.3885270059108734,
-0.07474076002836227,
0.5239751935005188,
-1.0906009674072266,
1.048277735710144,
-0.5035727620124817,
-0.25985854864120483,
0.005127716343849897,
-0.5592934489250183,
0.42233532667160034,
0.5013011693954468,
-0.21875131130218506,
0.10598412901163101,
0.2440931499004364,
0.7692115902900696,
-0.5644509196281433,
1.0394039154052734,
-0.3455544710159302,
0.03627777844667435,
0.5206062197685242,
-0.15030290186405182,
0.32160690426826477,
-0.09438714385032654,
-0.16673967242240906,
0.42272353172302246,
0.1942596137523651,
-0.350795716047287,
-0.5799890756607056,
0.3857780694961548,
-0.7407386898994446,
-0.5273432731628418,
-0.36329415440559387,
-0.44689545035362244,
-0.0023578263353556395,
0.3620341122150421,
0.7750106453895569,
0.5717549920082092,
0.04115081951022148,
0.025427211076021194,
0.49424979090690613,
-0.3731476068496704,
0.6477195024490356,
0.09017283469438553,
-0.3499755859375,
-0.4253283739089966,
0.9786493182182312,
-0.11933685094118118,
0.5001994371414185,
0.42216601967811584,
0.07625102251768112,
-0.261965811252594,
-0.2432846575975418,
-0.6817508339881897,
0.4259010851383209,
-0.6935697793960571,
-0.4212990999221802,
-0.10671281069517136,
-0.4952172338962555,
-0.387158066034317,
-0.25257250666618347,
-0.5394392609596252,
-0.18707440793514252,
-0.47341594099998474,
0.025297559797763824,
0.5168554782867432,
0.49059849977493286,
0.0482480525970459,
0.5412066578865051,
-0.7251254320144653,
0.4635087251663208,
0.01873139850795269,
0.5077562928199768,
0.023609047755599022,
-0.674797773361206,
-0.30944153666496277,
0.22041112184524536,
-0.5093146562576294,
-0.8012415170669556,
0.506283700466156,
0.1380171775817871,
0.5381031036376953,
0.5059792399406433,
-0.0033328374847769737,
0.7746894359588623,
-0.3477768898010254,
0.6702917814254761,
0.345237135887146,
-1.0584120750427246,
0.6865972280502319,
0.05799403041601181,
0.38938379287719727,
0.11487932503223419,
0.25157269835472107,
-0.34708255529403687,
-0.32275182008743286,
-0.8659371733665466,
-0.8758217096328735,
0.8920504450798035,
0.04669377580285072,
0.19978590309619904,
0.16127938032150269,
0.29123973846435547,
-0.026453528553247452,
0.23934102058410645,
-0.6143101453781128,
-0.4797613024711609,
-0.4802108705043793,
-0.16689367592334747,
0.14442846179008484,
-0.36110973358154297,
-0.15639545023441315,
-0.42644739151000977,
0.6306757926940918,
0.09960205107927322,
0.7035272121429443,
0.18975582718849182,
-0.14488613605499268,
-0.13137419521808624,
-0.24103549122810364,
0.657703161239624,
0.5490680932998657,
-0.364571213722229,
-0.1790466010570526,
-0.020654920488595963,
-0.5893355011940002,
-0.2930435538291931,
0.12863850593566895,
-0.4424239993095398,
0.07307314872741699,
0.4570503532886505,
1.2405672073364258,
0.15896323323249817,
-0.4437703788280487,
0.5111309885978699,
-0.0006744948914274573,
-0.31311020255088806,
-0.5106960535049438,
0.18718168139457703,
0.09170887619256973,
0.38840046525001526,
0.21151956915855408,
0.2679397761821747,
-0.18229633569717407,
-0.218527153134346,
0.11147342622280121,
0.5127855539321899,
-0.27078860998153687,
-0.43483391404151917,
0.9582993984222412,
0.23955762386322021,
-0.498185932636261,
0.8590300679206848,
-0.1889849752187729,
-0.4724269211292267,
0.8226021528244019,
0.7500233054161072,
0.7563093304634094,
0.002881977241486311,
0.36857783794403076,
0.4740247428417206,
0.44962114095687866,
0.12782368063926697,
0.6163297891616821,
0.02712814137339592,
-0.7388390302658081,
-0.11115573346614838,
-0.52654629945755,
-0.43525898456573486,
0.073469378054142,
-0.708648681640625,
0.522619366645813,
-0.8513191342353821,
-0.16104862093925476,
0.08840305358171463,
-0.053811270743608475,
-0.8341546654701233,
0.2628996670246124,
0.2612992227077484,
1.0907622575759888,
-0.7026187181472778,
0.7363381385803223,
0.6357267498970032,
-0.7642343044281006,
-0.9548918008804321,
-0.11788753420114517,
-0.2335410863161087,
-0.8723252415657043,
0.6816813945770264,
0.3876023590564728,
-0.09313379228115082,
0.13664405047893524,
-1.0051549673080444,
-0.5519723296165466,
1.0383074283599854,
0.583018958568573,
-0.3106880486011505,
-0.0018012129003182054,
0.14346572756767273,
0.4978732764720917,
-0.29001644253730774,
0.3487117886543274,
0.12822601199150085,
0.36826884746551514,
0.1949576437473297,
-0.9389989972114563,
0.1587091088294983,
-0.3183744251728058,
-0.08926918357610703,
0.1315733641386032,
-0.9460023045539856,
0.8131835460662842,
-0.5576780438423157,
-0.29722198843955994,
0.08147179335355759,
0.9408915638923645,
0.2538905441761017,
0.2923005223274231,
0.43572095036506653,
0.533305287361145,
0.5627576112747192,
-0.03963855281472206,
1.1399906873703003,
-0.4725448489189148,
0.5623018145561218,
0.8923225402832031,
0.11683229357004166,
0.8621034622192383,
0.4624907374382019,
-0.06953983008861542,
0.5141555070877075,
0.5020335912704468,
-0.5895227789878845,
0.35004177689552307,
-0.12157310545444489,
0.012600166723132133,
0.11425790935754776,
-0.04049967601895332,
-0.45345228910446167,
0.5433120131492615,
0.43429216742515564,
-0.5299038290977478,
0.04675435647368431,
-0.045923810452222824,
0.08742974698543549,
-0.27675020694732666,
-0.258907675743103,
0.3501857817173004,
-0.034489426761865616,
-0.49186423420906067,
1.017328143119812,
-0.10956615954637527,
0.872255265712738,
-0.5562654137611389,
-0.19014385342597961,
-0.14017006754875183,
0.3489220142364502,
-0.41852185130119324,
-0.9096186757087708,
0.3451683521270752,
-0.12676894664764404,
-0.10689129680395126,
-0.3238106369972229,
0.421893835067749,
-0.3271174728870392,
-0.807711124420166,
0.29966986179351807,
-0.03224331885576248,
0.24684645235538483,
0.27969759702682495,
-0.8365354537963867,
0.20206759870052338,
0.1887436807155609,
-0.3302299380302429,
0.020393671467900276,
0.17448633909225464,
0.13875453174114227,
0.8463276624679565,
0.42028552293777466,
0.03499893471598625,
0.19645072519779205,
0.06036018952727318,
0.833303689956665,
-0.5896613001823425,
-0.343395859003067,
-0.531868040561676,
0.7041652202606201,
-0.14283253252506256,
-0.6370943784713745,
0.6600648164749146,
0.6361562609672546,
1.139400839805603,
-0.3812883794307709,
0.6076105833053589,
-0.2435477375984192,
0.20355847477912903,
-0.5550320148468018,
0.6829153299331665,
-0.6828992962837219,
0.008640028536319733,
-0.411632776260376,
-0.736914873123169,
-0.19046683609485626,
0.6493456959724426,
-0.14873096346855164,
0.1805792599916458,
0.6611076593399048,
1.0551209449768066,
-0.40098878741264343,
-0.0704602524638176,
0.15999658405780792,
0.2985163629055023,
0.3374623656272888,
0.3756121098995209,
0.3652796447277069,
-0.6761595606803894,
0.6647229194641113,
-1.0304765701293945,
-0.3023146092891693,
-0.15895824134349823,
-0.721678614616394,
-0.9379657506942749,
-0.610876739025116,
-0.45204052329063416,
-0.4945773780345917,
-0.1738242655992508,
0.7444651126861572,
0.9470598101615906,
-0.7678672671318054,
-0.31736189126968384,
-0.16962772607803345,
-0.10426987707614899,
-0.4097166359424591,
-0.29975879192352295,
0.4873005747795105,
-0.09957677870988846,
-0.9284484386444092,
0.11903050541877747,
0.14371666312217712,
0.22749049961566925,
-0.16301119327545166,
-0.04249705746769905,
-0.07319404929876328,
-0.2873174548149109,
0.48603901267051697,
0.6017754077911377,
-0.6613743901252747,
-0.20249474048614502,
0.030400384217500687,
-0.12865686416625977,
0.1691683530807495,
0.3625756502151489,
-0.45488905906677246,
0.29508039355278015,
0.46766382455825806,
0.3051359951496124,
0.6988804340362549,
-0.09102457016706467,
0.37422677874565125,
-0.7302640676498413,
0.7289599776268005,
0.17155525088310242,
0.5153306722640991,
0.3305395841598511,
-0.4242188334465027,
0.42701441049575806,
0.23742243647575378,
-0.4758901298046112,
-0.8530752658843994,
0.35247957706451416,
-1.2018499374389648,
-0.1287592351436615,
1.1177974939346313,
-0.03545423969626427,
-0.57048100233078,
0.4143048822879791,
-0.3208870589733124,
0.3548266589641571,
-0.40659213066101074,
0.6755169034004211,
0.16602753102779388,
-0.2784668207168579,
-0.5499657392501831,
-0.39507490396499634,
0.3673904240131378,
0.20706401765346527,
-0.6429837942123413,
-0.19910211861133575,
0.2552410066127777,
0.26382583379745483,
0.18311424553394318,
0.3250853717327118,
0.02907738648355007,
0.22909148037433624,
0.24988819658756256,
0.6560925245285034,
-0.32526907324790955,
-0.16170468926429749,
-0.11230066418647766,
-0.02713041566312313,
-0.1184445172548294,
-0.49730774760246277
] |
Habana/clip | Habana | "2023-08-18T16:56:00Z" | 11,543 | 0 | null | [
"optimum_habana",
"license:apache-2.0",
"region:us"
] | null | "2023-02-16T13:00:20Z" | ---
license: apache-2.0
---
[Optimum Habana](https://github.com/huggingface/optimum-habana) is the interface between the Hugging Face Transformers and Diffusers libraries and Habana's Gaudi processor (HPU).
It provides a set of tools enabling easy and fast model loading, training and inference on single- and multi-HPU settings for different downstream tasks.
Learn more about how to take advantage of the power of Habana HPUs to train and deploy Transformers and Diffusers models at [hf.co/hardware/habana](https://huggingface.co/hardware/habana).
## CLIP model HPU configuration
This model only contains the `GaudiConfig` file for running CLIP-like models (e.g. [this one](https://huggingface.co/openai/clip-vit-large-patch14)) on Habana's Gaudi processors (HPU).
**This model contains no model weights, only a GaudiConfig.**
This enables to specify:
- `use_fused_adam`: whether to use Habana's custom AdamW implementation
- `use_fused_clip_norm`: whether to use Habana's fused gradient norm clipping operator
- `use_torch_autocast`: whether to use Torch Autocast for managing mixed precision
## Usage
The model is instantiated the same way as in the Transformers library.
The only difference is that there are a few new training arguments specific to HPUs.\
It is strongly recommended to train this model doing bf16 mixed-precision training for optimal performance and accuracy.
[Here](https://github.com/huggingface/optimum-habana/blob/main/examples/contrastive-image-text) is an example script to fine-tune a model on COCO.
Use it as follows:
1. You first need to download the dataset:
```bash
mkdir data
cd data
wget http://images.cocodataset.org/zips/train2017.zip
wget http://images.cocodataset.org/zips/val2017.zip
wget http://images.cocodataset.org/zips/test2017.zip
wget http://images.cocodataset.org/annotations/annotations_trainval2017.zip
wget http://images.cocodataset.org/annotations/image_info_test2017.zip
cd ..
```
2. Then, you can create a model from pretrained vision and text decoder models:
```python
from transformers import (
VisionTextDualEncoderModel,
VisionTextDualEncoderProcessor,
AutoTokenizer,
AutoImageProcessor
)
model = VisionTextDualEncoderModel.from_vision_text_pretrained(
"openai/clip-vit-large-patch14", "roberta-large"
)
tokenizer = AutoTokenizer.from_pretrained("roberta-large")
image_processor = AutoImageProcessor.from_pretrained("openai/clip-vit-large-patch14")
processor = VisionTextDualEncoderProcessor(image_processor, tokenizer)
# save the model and processor
model.save_pretrained("clip-roberta")
processor.save_pretrained("clip-roberta")
```
3. Finally, you can run it with the following command:
```bash
python run_clip.py \
--output_dir ./clip-roberta-finetuned \
--model_name_or_path ./clip-roberta \
--data_dir $PWD/data \
--dataset_name ydshieh/coco_dataset_script \
--dataset_config_name=2017 \
--image_column image_path \
--caption_column caption \
--remove_unused_columns=False \
--do_train --do_eval \
--per_device_train_batch_size="16" \
--per_device_eval_batch_size="16" \
--learning_rate="5e-5" --warmup_steps="0" --weight_decay 0.1 \
--overwrite_output_dir \
--save_strategy epoch \
--use_habana \
--use_lazy_mode \
--use_hpu_graphs \
--gaudi_config_name Habana/clip \
--throughput_warmup_steps 2 \
--bf16
```
Check the [documentation](https://huggingface.co/docs/optimum/habana/index) out for more advanced usage and examples.
| [
-0.677638053894043,
-0.8612597584724426,
0.25666502118110657,
0.31629621982574463,
-0.36977434158325195,
-0.08712859451770782,
-0.12258275598287582,
-0.4959515929222107,
0.39311137795448303,
0.4582240581512451,
-0.5256808400154114,
-0.32178744673728943,
-0.555294394493103,
-0.030407313257455826,
-0.4346712827682495,
0.9823753833770752,
-0.240912064909935,
-0.2779129147529602,
-0.1831342577934265,
-0.15733550488948822,
-0.5205640196800232,
-0.47833865880966187,
-0.7866945862770081,
-0.08900091797113419,
0.08659012615680695,
0.3093392550945282,
0.7431331872940063,
0.6413135528564453,
0.5748158097267151,
0.4026077389717102,
-0.16442210972309113,
0.17706440389156342,
-0.4165816307067871,
-0.2625802755355835,
0.04757624492049217,
-0.4311465919017792,
-0.3985571265220642,
0.12050889432430267,
0.5580911040306091,
0.009142312221229076,
0.03093242272734642,
0.23354989290237427,
0.14280089735984802,
0.4178316295146942,
-0.7842221856117249,
0.02632974646985531,
-0.37060773372650146,
0.16977736353874207,
-0.1505342572927475,
-0.26555874943733215,
-0.1732558310031891,
-0.27774742245674133,
0.051867835223674774,
-0.6392816305160522,
0.4134478271007538,
0.15739330649375916,
1.5408424139022827,
0.5696642398834229,
-0.2622012495994568,
-0.05578351020812988,
-0.5745092630386353,
0.8727992177009583,
-0.5079034566879272,
0.13782723248004913,
0.38676196336746216,
0.4291907548904419,
0.059058647602796555,
-0.8981821537017822,
-0.5101259350776672,
0.0666879266500473,
-0.0378064326941967,
0.2232372760772705,
-0.2929782271385193,
0.1190529316663742,
0.35584425926208496,
0.698298454284668,
-0.14256292581558228,
-0.16842620074748993,
-0.5016132593154907,
-0.26411372423171997,
0.5274922251701355,
0.17756310105323792,
0.3178539574146271,
-0.3968640863895416,
-0.47045037150382996,
-0.3992905616760254,
-0.31275293231010437,
0.11315461993217468,
0.2597133219242096,
-0.24281997978687286,
-0.4111005961894989,
0.44867998361587524,
0.036217350512742996,
0.8190664052963257,
0.14181073009967804,
-0.26046016812324524,
0.3522515594959259,
-0.19342081248760223,
-0.5563642382621765,
-0.08732111006975174,
0.9715072512626648,
0.29515495896339417,
0.24848344922065735,
0.23264415562152863,
-0.13179047405719757,
0.1341543048620224,
0.4919452965259552,
-0.8550875782966614,
-0.4493860900402069,
0.13364146649837494,
-0.456331729888916,
-0.6824092268943787,
-0.18193615972995758,
-0.8925011157989502,
0.18771123886108398,
-0.10833472013473511,
0.7326014637947083,
-0.48746997117996216,
0.15873193740844727,
-0.02079077996313572,
-0.24828466773033142,
0.1624477654695511,
0.3246849775314331,
-0.9988542795181274,
0.3242660462856293,
0.16059233248233795,
1.031889796257019,
-0.22935587167739868,
-0.3090515434741974,
-0.19886408746242523,
-0.04348684102296829,
-0.14772872626781464,
0.6224668025970459,
-0.11921720206737518,
-0.4033948481082916,
-0.14710648357868195,
0.3391428589820862,
-0.2897033989429474,
-0.47079184651374817,
0.8163175582885742,
-0.22451557219028473,
0.319278359413147,
-0.06909067928791046,
-0.348328173160553,
-0.3753551244735718,
0.1001458689570427,
-0.6305928826332092,
1.3342217206954956,
0.336581826210022,
-0.9075952172279358,
0.20270155370235443,
-0.597966194152832,
-0.5102411508560181,
-0.2412954568862915,
-0.05156255513429642,
-0.7139676809310913,
-0.08604682236909866,
0.5487577319145203,
0.3750581443309784,
-0.21205879747867584,
0.11434542387723923,
-0.20120538771152496,
-0.4098684787750244,
0.15667298436164856,
-0.502297580242157,
1.153928518295288,
0.238912895321846,
-0.4325007498264313,
0.25699764490127563,
-0.6648192405700684,
-0.127404123544693,
0.33921921253204346,
-0.35024356842041016,
-0.10592866688966751,
-0.3458133041858673,
0.2459074705839157,
0.12356215715408325,
0.19946244359016418,
-0.45712918043136597,
0.08399410545825958,
-0.10314834862947464,
0.6976210474967957,
0.7600990533828735,
0.14226430654525757,
0.16213811933994293,
-0.4210022985935211,
0.5454353094100952,
-0.1350623071193695,
0.7628750205039978,
-0.1665838360786438,
-0.5997065901756287,
-1.2208306789398193,
-0.5389525294303894,
0.037385690957307816,
0.44091594219207764,
-0.5042257905006409,
0.46944668889045715,
0.0640019103884697,
-0.4467942416667938,
-0.7969146370887756,
0.04508396238088608,
0.22910961508750916,
0.6630812883377075,
0.5574259161949158,
-0.5188283324241638,
-0.6611476540565491,
-0.9252350926399231,
0.18002645671367645,
0.2021111696958542,
0.1030421033501625,
0.6313065886497498,
0.667250394821167,
-0.2637747824192047,
1.0257501602172852,
-0.7518184185028076,
-0.5178306698799133,
-0.08952020853757858,
-0.07496418058872223,
0.38398393988609314,
0.5153154730796814,
0.8110450506210327,
-0.8342450857162476,
-0.4155886769294739,
-0.2760317921638489,
-0.8648990392684937,
0.15364904701709747,
-0.005605819635093212,
-0.4809543192386627,
0.11624511331319809,
0.2886725068092346,
-0.5768200159072876,
0.6620423197746277,
0.5458712577819824,
-0.12543261051177979,
0.719592809677124,
-0.3487643599510193,
0.1957983672618866,
-1.0289429426193237,
0.2590910494327545,
-0.15183766186237335,
-0.5032042264938354,
-0.3389989137649536,
0.09169679135084152,
0.07344893366098404,
-0.12659205496311188,
-0.668565034866333,
0.5362629890441895,
-0.34250205755233765,
0.033375084400177,
-0.289152055978775,
-0.13397783041000366,
0.35491111874580383,
0.7875002026557922,
0.08815883845090866,
0.7805482745170593,
0.6503456234931946,
-0.8061774373054504,
0.4295586943626404,
0.46119818091392517,
-0.5249186754226685,
0.29769420623779297,
-0.9311246871948242,
0.06711358577013016,
0.07452083379030228,
0.11898154020309448,
-0.6623645424842834,
-0.4548361301422119,
0.39137107133865356,
-0.4623080790042877,
0.22723236680030823,
-0.16140705347061157,
-0.20632599294185638,
-0.6384460926055908,
-0.29152151942253113,
0.4637032449245453,
0.8500509262084961,
-0.8209298849105835,
0.48623034358024597,
0.6342408061027527,
0.22694356739521027,
-0.597891092300415,
-0.7571324110031128,
-0.056714244186878204,
-0.34868761897087097,
-0.5886203050613403,
0.6305527687072754,
-0.11567959189414978,
0.21514089405536652,
-0.03131479769945145,
0.09160369634628296,
-0.1918511837720871,
0.04245705530047417,
0.3422349989414215,
0.5084207057952881,
0.15829196572303772,
-0.3566950261592865,
0.06990070641040802,
-0.04356316849589348,
0.020129196345806122,
-0.21263939142227173,
0.6703878045082092,
-0.20914019644260406,
-0.012712636031210423,
-0.4932876527309418,
-0.08843595534563065,
0.46336090564727783,
-0.28007030487060547,
0.6594802141189575,
0.9470194578170776,
-0.38610097765922546,
-0.012185167521238327,
-0.5392927527427673,
-0.025809749960899353,
-0.5597250461578369,
0.11861445009708405,
-0.21426799893379211,
-0.5299821496009827,
0.4794284999370575,
0.213995099067688,
0.03687769174575806,
0.5958348512649536,
0.6817067861557007,
-0.11150661110877991,
0.9821183085441589,
0.8293832540512085,
-0.1168401911854744,
0.7034214735031128,
-0.8728191256523132,
-0.01445712149143219,
-1.0959066152572632,
-0.23512855172157288,
-0.39359626173973083,
-0.03561241924762726,
-0.15381774306297302,
-0.5304660797119141,
0.5325682759284973,
0.2449975311756134,
-0.1930094212293625,
0.5962920188903809,
-0.8121073842048645,
0.3168800175189972,
0.5998827815055847,
0.25309881567955017,
0.03096015378832817,
0.05226224660873413,
-0.22431354224681854,
0.15796636044979095,
-0.7479709982872009,
-0.30935636162757874,
0.7458178997039795,
0.4170916974544525,
0.8196112513542175,
-0.26581406593322754,
0.5653997659683228,
0.13611537218093872,
0.023790864273905754,
-0.77792888879776,
0.38374266028404236,
-0.0031214472837746143,
-0.605877161026001,
-0.06266645342111588,
-0.19787748157978058,
-0.6641942262649536,
0.1658231019973755,
-0.2798014283180237,
-0.6975763440132141,
0.44061580300331116,
0.3977625370025635,
-0.27197977900505066,
0.29634273052215576,
-0.4703219532966614,
0.9711074829101562,
-0.22418846189975739,
-0.45662203431129456,
0.011922035366296768,
-0.5412679314613342,
0.39052724838256836,
0.050661515444517136,
0.028353676199913025,
-0.03040030039846897,
0.28261810541152954,
1.0249837636947632,
-0.6928833723068237,
0.7401157021522522,
-0.09931474924087524,
0.1259154975414276,
0.6576401591300964,
-0.16595721244812012,
0.2976011335849762,
0.0072832838632166386,
0.11176324635744095,
0.27511170506477356,
0.0007117291097529233,
-0.36728334426879883,
-0.3836855888366699,
0.5418484210968018,
-0.9708081483840942,
-0.27226826548576355,
-0.33327609300613403,
-0.39862802624702454,
0.27555856108665466,
0.28574833273887634,
0.8668726682662964,
0.4770215153694153,
-0.18851643800735474,
-0.050730589777231216,
0.5577695965766907,
-0.2892882525920868,
0.4142686724662781,
-0.14571556448936462,
-0.30308282375335693,
-0.5915016531944275,
0.8776029348373413,
-0.23231512308120728,
0.28937992453575134,
0.1841672658920288,
0.22251948714256287,
-0.1635204404592514,
-0.29725751280784607,
-0.5972089171409607,
0.16299602389335632,
-0.7418351173400879,
-0.29807522892951965,
-0.7623060941696167,
-0.24590784311294556,
-0.4628349840641022,
-0.39363259077072144,
-0.49710458517074585,
-0.3472234606742859,
-0.4332232177257538,
0.17034204304218292,
0.5297612547874451,
0.2557729184627533,
0.025995174422860146,
0.5562652349472046,
-0.6634171009063721,
0.39804133772850037,
0.21688751876354218,
0.005963211879134178,
0.06432253867387772,
-0.6535895466804504,
-0.4134529232978821,
0.04430555924773216,
-0.5744956135749817,
-0.8031028509140015,
0.619935154914856,
0.3287130296230316,
0.44332340359687805,
0.48962923884391785,
-0.06633505970239639,
0.7912866473197937,
-0.29008227586746216,
0.7158055901527405,
0.20073680579662323,
-0.9943430423736572,
0.6928924322128296,
-0.22409604489803314,
0.2614067494869232,
0.624703586101532,
0.5278229117393494,
-0.335476279258728,
-0.23239755630493164,
-0.646529495716095,
-0.8647865653038025,
0.7585217356681824,
0.3658677339553833,
-0.05782347545027733,
0.05713255703449249,
0.27216604351997375,
-0.23436203598976135,
0.13529987633228302,
-0.6178693175315857,
-0.18434344232082367,
-0.5021013021469116,
-0.16126835346221924,
-0.057758111506700516,
-0.06257200986146927,
-0.17228670418262482,
-0.6101067066192627,
0.8416965007781982,
-0.11769695580005646,
0.6023982763290405,
0.5011957883834839,
-0.32791373133659363,
-0.08498423546552658,
-0.33600881695747375,
0.1502007097005844,
0.346861332654953,
-0.42009294033050537,
-0.15631887316703796,
0.23670358955860138,
-0.6881067156791687,
0.0417296402156353,
-0.0963161438703537,
-0.4467625319957733,
0.08172144740819931,
0.2860439121723175,
1.2197242975234985,
0.2984786629676819,
-0.45042160153388977,
0.590448796749115,
-0.21985521912574768,
-0.10438264906406403,
-0.4851761758327484,
0.298664391040802,
-0.09426520019769669,
-0.07473909109830856,
0.030430739745497704,
0.23474439978599548,
0.1197829395532608,
-0.4824032187461853,
0.0783986821770668,
0.2624533772468567,
-0.3530190587043762,
-0.06166129186749458,
0.9213327765464783,
0.1199054941534996,
-0.21689863502979279,
0.8397364616394043,
0.1405104100704193,
-0.7733949422836304,
0.8491594195365906,
0.4865109324455261,
0.7724239230155945,
-0.12560561299324036,
0.17576587200164795,
0.6050240397453308,
0.13785487413406372,
-0.004075692035257816,
0.004766132682561874,
-0.24727150797843933,
-0.6858735084533691,
-0.13884223997592926,
-0.9617863297462463,
-0.3675907850265503,
-0.1258533000946045,
-0.844193696975708,
0.6675823330879211,
-0.5519623756408691,
-0.329592227935791,
0.09011271595954895,
-0.04620363190770149,
-0.8866668939590454,
0.3123002052307129,
-0.14032648503780365,
1.0705119371414185,
-0.7909734845161438,
0.9584629535675049,
0.546960175037384,
-0.5521354675292969,
-0.7289410829544067,
-0.4015387296676636,
-0.1495075523853302,
-0.8561705350875854,
0.193174809217453,
0.31606441736221313,
-0.055161308497190475,
-0.002070564776659012,
-0.6044836640357971,
-0.7293247580528259,
1.1246076822280884,
0.28391796350479126,
-0.26016324758529663,
-0.07384422421455383,
-0.14643564820289612,
0.35737156867980957,
-0.39554160833358765,
0.4573342800140381,
0.764092743396759,
0.4078284502029419,
0.21345800161361694,
-0.7844417095184326,
0.01632716879248619,
-0.3031783103942871,
-0.07165849953889847,
0.17249904572963715,
-0.828196108341217,
0.984381914138794,
-0.3369985520839691,
-0.1366797834634781,
0.14995449781417847,
0.6997314691543579,
0.08864080160856247,
0.09902863204479218,
0.5009011030197144,
0.6784865260124207,
0.6847561597824097,
-0.024874301627278328,
1.2265355587005615,
-0.3561403453350067,
0.7140325903892517,
0.7318910360336304,
0.24741627275943756,
0.5627015829086304,
0.3099105954170227,
-0.16304953396320343,
0.4056905508041382,
0.8603134155273438,
-0.43800514936447144,
0.6416633129119873,
-0.1424858123064041,
-0.1508973240852356,
-0.0787675604224205,
-0.029856011271476746,
-0.24002705514431,
0.5295307040214539,
0.21835315227508545,
-0.5992764830589294,
0.14484457671642303,
0.25844666361808777,
0.2937256097793579,
-0.40612879395484924,
-0.09288855642080307,
0.5062350034713745,
0.1356869637966156,
-0.7544259428977966,
1.0132979154586792,
0.11897604167461395,
0.892298698425293,
-0.5938752293586731,
0.11836488544940948,
-0.07134471833705902,
0.3643476665019989,
-0.27519968152046204,
-0.5645241737365723,
0.4048679769039154,
0.04357432946562767,
-0.0055796257220208645,
0.16983488202095032,
0.7250241041183472,
-0.3206719756126404,
-0.5025700330734253,
0.3278113007545471,
-0.17718453705310822,
0.4234674870967865,
0.03699691593647003,
-0.8553876876831055,
0.45122554898262024,
0.22871315479278564,
-0.25408992171287537,
0.1494397521018982,
-0.19893178343772888,
0.06449659168720245,
0.5635272860527039,
0.5761590600013733,
-0.036659374833106995,
0.1394200325012207,
-0.12168630212545395,
0.9053411483764648,
-0.517178475856781,
-0.5669349431991577,
-0.6395782232284546,
0.29139482975006104,
-0.25922951102256775,
-0.530346691608429,
0.7425069808959961,
0.5767870545387268,
0.7962876558303833,
-0.18911796808242798,
0.6260069608688354,
-0.3351081311702728,
-0.013200427405536175,
-0.5969318151473999,
0.6933276057243347,
-0.5845393538475037,
-0.1891629546880722,
-0.542376697063446,
-1.088032603263855,
-0.06443298608064651,
0.9563800692558289,
-0.039605867117643356,
0.044857244938611984,
0.675126314163208,
0.8403717279434204,
-0.3752356171607971,
0.07490672916173935,
0.011932682245969772,
0.15206792950630188,
0.35093870759010315,
0.5974003076553345,
0.4165627360343933,
-0.7052263021469116,
0.49571675062179565,
-0.7760000824928284,
-0.4386734068393707,
-0.3221040964126587,
-0.8002932071685791,
-0.9007498025894165,
-0.5074374675750732,
-0.3335396945476532,
-0.31614673137664795,
0.07025452703237534,
0.6139664649963379,
0.9717528820037842,
-0.45179951190948486,
-0.2222571074962616,
-0.07845743745565414,
-0.11608020216226578,
-0.18940041959285736,
-0.27070352435112,
0.6596338152885437,
-0.14200931787490845,
-0.9741873741149902,
0.29886919260025024,
0.011575297452509403,
0.18997739255428314,
-0.19810353219509125,
-0.11075185239315033,
-0.2290731966495514,
0.09268665313720703,
0.4590667188167572,
0.4638529121875763,
-0.26626160740852356,
-0.23846979439258575,
-0.18027572333812714,
0.07890770584344864,
0.251139760017395,
0.5710086226463318,
-0.82606440782547,
0.35338112711906433,
0.5129247903823853,
0.3200598955154419,
1.0507164001464844,
-0.014545858837664127,
0.265377402305603,
-0.5252172350883484,
0.33468589186668396,
-0.04186728596687317,
0.5647064447402954,
0.34037458896636963,
-0.48644179105758667,
0.5823060274124146,
0.2590729892253876,
-0.7750554084777832,
-0.6881616711616516,
-0.06600027531385422,
-1.1710522174835205,
-0.16018462181091309,
0.8396316170692444,
-0.24367724359035492,
-0.7325864434242249,
0.17190615832805634,
-0.48609867691993713,
0.47946053743362427,
-0.22152914106845856,
0.6833786368370056,
0.3783628046512604,
-0.17581528425216675,
-0.09148204326629639,
-0.49672532081604004,
0.577235758304596,
0.3488539159297943,
-0.7842044830322266,
-0.22991898655891418,
0.3341684639453888,
0.4326118230819702,
0.2925108075141907,
0.7308510541915894,
-0.33687713742256165,
0.22564536333084106,
0.06912673264741898,
0.24037443101406097,
-0.3048108220100403,
-0.6120200753211975,
-0.3067779242992401,
-0.07548903673887253,
-0.241896852850914,
-0.5071535110473633
] |
facebook/dpr-question_encoder-multiset-base | facebook | "2022-12-21T15:20:05Z" | 11,532 | 4 | transformers | [
"transformers",
"pytorch",
"tf",
"dpr",
"feature-extraction",
"en",
"dataset:nq_open",
"dataset:trivia_qa",
"dataset:web_questions",
"dataset:trec",
"arxiv:2004.04906",
"arxiv:1702.08734",
"arxiv:1910.09700",
"license:cc-by-nc-4.0",
"has_space",
"region:us"
] | feature-extraction | "2022-03-02T23:29:05Z" | ---
language: en
license: cc-by-nc-4.0
tags:
- dpr
datasets:
- nq_open
- trivia_qa
- web_questions
- trec
inference: false
---
# `dpr-question_encoder-multiset-base`
## Table of Contents
- [Model Details](#model-details)
- [How To Get Started With the Model](#how-to-get-started-with-the-model)
- [Uses](#uses)
- [Risks, Limitations and Biases](#risks-limitations-and-biases)
- [Training](#training)
- [Evaluation](#evaluation-results)
- [Environmental Impact](#environmental-impact)
- [Technical Specifications](#technical-specifications)
- [Citation Information](#citation-information)
- [Model Card Authors](#model-card-authors)
## Model Details
**Model Description:** [Dense Passage Retrieval (DPR)](https://github.com/facebookresearch/DPR) is a set of tools and models for state-of-the-art open-domain Q&A research. `dpr-question_encoder-multiset-base` is the question encoder trained using the [Natural Questions (NQ) dataset](https://huggingface.co/datasets/nq_open), [TriviaQA](https://huggingface.co/datasets/trivia_qa), [WebQuestions (WQ)](https://huggingface.co/datasets/web_questions), and [CuratedTREC (TREC)](https://huggingface.co/datasets/trec).
- **Developed by:** See [GitHub repo](https://github.com/facebookresearch/DPR) for model developers
- **Model Type:** BERT-based encoder
- **Language(s):** [CC-BY-NC-4.0](https://github.com/facebookresearch/DPR/blob/main/LICENSE), also see [Code of Conduct](https://github.com/facebookresearch/DPR/blob/main/CODE_OF_CONDUCT.md)
- **License:** English
- **Related Models:**
- [`dpr-ctx_encoder-multiset-base`](https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base)
- [`dpr-reader-multiset-base`](https://huggingface.co/facebook/dpr-reader-multiset-base)
- [`dpr-ctx_encoder-single-nq-base`](https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base)
- [`dpr-question_encoder-single-nq-base`](https://huggingface.co/facebook/dpr-question_encoder-single-nq-base)
- [`dpr-reader-single-nq-base`](https://huggingface.co/facebook/dpr-reader-single-nq-base)
- **Resources for more information:**
- [Research Paper](https://arxiv.org/abs/2004.04906)
- [GitHub Repo](https://github.com/facebookresearch/DPR)
- [Hugging Face DPR docs](https://huggingface.co/docs/transformers/main/en/model_doc/dpr)
- [BERT Base Uncased Model Card](https://huggingface.co/bert-base-uncased)
## How to Get Started with the Model
Use the code below to get started with the model.
```python
from transformers import DPRQuestionEncoder, DPRQuestionEncoderTokenizer
tokenizer = DPRQuestionEncoderTokenizer.from_pretrained("facebook/dpr-question_encoder-multiset-base")
model = DPRQuestionEncoder.from_pretrained("facebook/dpr-question_encoder-multiset-base")
input_ids = tokenizer("Hello, is my dog cute ?", return_tensors="pt")["input_ids"]
embeddings = model(input_ids).pooler_output
```
## Uses
#### Direct Use
`dpr-question_encoder-multiset-base`, [`dpr-ctx_encoder-multiset-base`](https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base), and [`dpr-reader-multiset-base`](https://huggingface.co/facebook/dpr-reader-multiset-base) can be used for the task of open-domain question answering.
#### Misuse and Out-of-scope Use
The model should not be used to intentionally create hostile or alienating environments for people. In addition, the set of DPR models was not trained to be factual or true representations of people or events, and therefore using the models to generate such content is out-of-scope for the abilities of this model.
## Risks, Limitations and Biases
**CONTENT WARNING: Readers should be aware this section may contain content that is disturbing, offensive, and can propogate historical and current stereotypes.**
Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al., 2021](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al., 2021](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). Predictions generated by the model can include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups.
## Training
#### Training Data
This model was trained using the following datasets:
- **[Natural Questions (NQ) dataset](https://huggingface.co/datasets/nq_open)** ([Lee et al., 2019](https://aclanthology.org/P19-1612/); [Kwiatkowski et al., 2019](https://aclanthology.org/Q19-1026/))
- **[TriviaQA](https://huggingface.co/datasets/trivia_qa)** ([Joshi et al., 2017](https://aclanthology.org/P17-1147/))
- **[WebQuestions (WQ)](https://huggingface.co/datasets/web_questions)** ([Berant et al., 2013](https://aclanthology.org/D13-1160/))
- **[CuratedTREC (TREC)](https://huggingface.co/datasets/trec)** ([Baudiš & Šedivý, 2015](https://www.aminer.cn/pub/599c7953601a182cd263079b/reading-wikipedia-to-answer-open-domain-questions))
#### Training Procedure
The training procedure is described in the [associated paper](https://arxiv.org/pdf/2004.04906.pdf):
> Given a collection of M text passages, the goal of our dense passage retriever (DPR) is to index all the passages in a low-dimensional and continuous space, such that it can retrieve efficiently the top k passages relevant to the input question for the reader at run-time.
> Our dense passage retriever (DPR) uses a dense encoder EP(·) which maps any text passage to a d- dimensional real-valued vectors and builds an index for all the M passages that we will use for retrieval. At run-time, DPR applies a different encoder EQ(·) that maps the input question to a d-dimensional vector, and retrieves k passages of which vectors are the closest to the question vector.
The authors report that for encoders, they used two independent BERT ([Devlin et al., 2019](https://aclanthology.org/N19-1423/)) networks (base, un-cased) and use FAISS ([Johnson et al., 2017](https://arxiv.org/abs/1702.08734)) during inference time to encode and index passages. See the paper for further details on training, including encoders, inference, positive and negative passages, and in-batch negatives.
## Evaluation
The following evaluation information is extracted from the [associated paper](https://arxiv.org/pdf/2004.04906.pdf).
#### Testing Data, Factors and Metrics
The model developers report the performance of the model on five QA datasets, using the top-k accuracy (k ∈ {20, 100}). The datasets were [NQ](https://huggingface.co/datasets/nq_open), [TriviaQA](https://huggingface.co/datasets/trivia_qa), [WebQuestions (WQ)](https://huggingface.co/datasets/web_questions), [CuratedTREC (TREC)](https://huggingface.co/datasets/trec), and [SQuAD v1.1](https://huggingface.co/datasets/squad).
#### Results
| | Top 20 | | | | | Top 100| | | | |
|:----:|:------:|:---------:|:--:|:----:|:-----:|:------:|:---------:|:--:|:----:|:-----:|
| | NQ | TriviaQA | WQ | TREC | SQuAD | NQ | TriviaQA | WQ | TREC | SQuAD |
| | 79.4 | 78.8 |75.0| 89.1 | 51.6 | 86.0 | 84.7 |82.9| 93.9 | 67.6 |
## Environmental Impact
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). We present the hardware type and based on the [associated paper](https://arxiv.org/abs/2004.04906).
- **Hardware Type:** 8 32GB GPUs
- **Hours used:** Unknown
- **Cloud Provider:** Unknown
- **Compute Region:** Unknown
- **Carbon Emitted:** Unknown
## Technical Specifications
See the [associated paper](https://arxiv.org/abs/2004.04906) for details on the modeling architecture, objective, compute infrastructure, and training details.
## Citation Information
```bibtex
@inproceedings{karpukhin-etal-2020-dense,
title = "Dense Passage Retrieval for Open-Domain Question Answering",
author = "Karpukhin, Vladimir and Oguz, Barlas and Min, Sewon and Lewis, Patrick and Wu, Ledell and Edunov, Sergey and Chen, Danqi and Yih, Wen-tau",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/2020.emnlp-main.550",
doi = "10.18653/v1/2020.emnlp-main.550",
pages = "6769--6781",
}
```
## Model Card Authors
This model card was written by the team at Hugging Face. | [
-0.6389752626419067,
-0.8986828327178955,
0.25271546840667725,
0.1612185537815094,
-0.09172411262989044,
-0.028648361563682556,
-0.10616113990545273,
-0.3066689074039459,
0.0727115273475647,
0.38308221101760864,
-0.7116965651512146,
-0.3740604817867279,
-0.4730904996395111,
0.24988844990730286,
-0.30489295721054077,
0.882586658000946,
-0.008252815343439579,
0.03262517973780632,
-0.3984397351741791,
-0.19458433985710144,
-0.17673833668231964,
-0.6622305512428284,
-0.5146995782852173,
-0.07365547865629196,
0.32932695746421814,
0.11729906499385834,
0.6105239987373352,
0.35770294070243835,
0.5966969132423401,
0.2638607621192932,
-0.37388432025909424,
0.23430736362934113,
-0.5600927472114563,
-0.1848554164171219,
0.05601310729980469,
-0.20603112876415253,
-0.4380505681037903,
0.004825027659535408,
0.6370865702629089,
0.5287750959396362,
-0.07344339787960052,
0.33669885993003845,
0.0747874528169632,
0.7007196545600891,
-0.4914827346801758,
0.01945088617503643,
-0.36879053711891174,
0.03070184402167797,
0.11222104728221893,
-0.029627367854118347,
-0.25964024662971497,
-0.5022251009941101,
0.04906938597559929,
-0.4817030429840088,
0.30289337038993835,
0.056920960545539856,
1.0824986696243286,
0.24978812038898468,
-0.32379746437072754,
-0.3140087425708771,
-0.43085452914237976,
0.7279576659202576,
-0.8298648595809937,
0.49550727009773254,
0.383364737033844,
0.19164150953292847,
0.057006366550922394,
-0.6271070241928101,
-0.9401663541793823,
-0.10282565653324127,
-0.18133394420146942,
0.20612752437591553,
-0.1286773830652237,
0.004476503003388643,
0.45152297616004944,
0.555776059627533,
-0.7320957779884338,
-0.098691925406456,
-0.37172919511795044,
-0.10204477608203888,
0.8957058191299438,
0.18890896439552307,
0.22593235969543457,
-0.48408445715904236,
-0.3677877187728882,
-0.33513128757476807,
-0.2709329128265381,
0.3279728591442108,
0.34749293327331543,
0.23670975863933563,
-0.35076382756233215,
0.5850437879562378,
-0.16408056020736694,
0.7103737592697144,
0.30200693011283875,
-0.15010300278663635,
0.552336573600769,
-0.6143561601638794,
-0.01336588617414236,
-0.27391374111175537,
0.956169605255127,
0.37759295105934143,
0.18712645769119263,
0.015260791406035423,
-0.14477328956127167,
-0.2646159827709198,
0.09458906203508377,
-0.9597436189651489,
-0.11481327563524246,
0.5610992312431335,
-0.4163805842399597,
-0.13211533427238464,
0.07115576416254044,
-0.8425964117050171,
-0.1891840547323227,
-0.04912639036774635,
0.40446993708610535,
-0.5158146023750305,
-0.4143957793712616,
0.4015183448791504,
-0.3772154748439789,
0.4721692204475403,
0.1952989399433136,
-0.5849344730377197,
0.29233700037002563,
0.4330006241798401,
0.6949516534805298,
-0.027500370517373085,
-0.11752907186746597,
-0.10423050075769424,
-0.24520936608314514,
-0.02339424565434456,
0.5283364653587341,
-0.39316853880882263,
-0.2157694697380066,
-0.02160366252064705,
0.1634674072265625,
-0.21395371854305267,
-0.4136786162853241,
0.5514864325523376,
-0.621232807636261,
0.4098612070083618,
-0.5945347547531128,
-0.6525282263755798,
-0.21633076667785645,
0.4679384231567383,
-0.7358006834983826,
1.2236895561218262,
0.1298198252916336,
-0.9326768517494202,
0.1259264349937439,
-0.6077850461006165,
-0.10947626829147339,
-0.07407806813716888,
-0.05807363986968994,
-0.40446150302886963,
-0.3145796060562134,
0.4838421046733856,
0.4661879539489746,
-0.2503969669342041,
0.26538148522377014,
-0.32525312900543213,
-0.4604487717151642,
0.3866816759109497,
-0.2624272108078003,
1.253061294555664,
0.08249735087156296,
-0.1814475804567337,
-0.2696175277233124,
-0.6901500225067139,
0.018028201535344124,
0.4426519572734833,
-0.3039662837982178,
-0.1224043220281601,
-0.29019954800605774,
0.051392823457717896,
0.359381765127182,
0.32087093591690063,
-0.8147562146186829,
0.08566012978553772,
-0.2595999836921692,
0.4706367552280426,
0.5548160076141357,
0.2486099749803543,
0.35184043645858765,
-0.46714597940444946,
0.566075325012207,
0.09291162341833115,
0.342582643032074,
0.10640878975391388,
-0.5518917441368103,
-0.6685017347335815,
-0.20821237564086914,
0.34729212522506714,
0.6307780146598816,
-0.8001804351806641,
0.562688946723938,
-0.272926390171051,
-0.5960217714309692,
-0.6469754576683044,
-0.0869242250919342,
0.5048068761825562,
0.5601066946983337,
0.5027132034301758,
-0.09607772529125214,
-0.4257800877094269,
-0.8140989542007446,
-0.016147054731845856,
-0.19709503650665283,
0.10950762033462524,
0.6969927549362183,
0.8279078602790833,
-0.04821323603391647,
0.8995876312255859,
-0.6043998599052429,
-0.1106490045785904,
-0.33981937170028687,
-0.18206161260604858,
0.23381872475147247,
0.4782242178916931,
0.766083836555481,
-1.0916346311569214,
-0.5262686610221863,
-0.51726233959198,
-0.7782796621322632,
0.2770320475101471,
0.024037711322307587,
-0.21687045693397522,
0.14390960335731506,
0.3760938346385956,
-0.7040186524391174,
0.3299429416656494,
0.3730120360851288,
-0.25509560108184814,
0.45887258648872375,
0.06360068917274475,
0.2015848010778427,
-1.0483653545379639,
0.1967928260564804,
0.05930796638131142,
0.18722902238368988,
-0.574134111404419,
0.013790180906653404,
0.1098594218492508,
-0.08586666733026505,
-0.5196183919906616,
0.7042723298072815,
-0.3563273847103119,
0.07565195113420486,
0.21896374225616455,
0.2127072960138321,
0.3496555685997009,
0.786212682723999,
0.087944895029068,
0.7428606748580933,
0.29983025789260864,
-0.71839839220047,
0.2600981295108795,
0.7934442758560181,
-0.2686072885990143,
0.3473166525363922,
-0.8085057735443115,
0.3500923216342926,
-0.42787009477615356,
0.3040478825569153,
-1.012954592704773,
-0.130043163895607,
0.3118956685066223,
-0.7774753570556641,
0.2581203579902649,
0.025028876960277557,
-0.693821907043457,
-0.7101913094520569,
-0.27913588285446167,
0.40806543827056885,
0.5161240696907043,
-0.4674654006958008,
0.38619452714920044,
0.34163397550582886,
0.0020613858941942453,
-0.8841405510902405,
-0.7933871746063232,
-0.2954639792442322,
-0.013354256749153137,
-0.7160298824310303,
0.4701416790485382,
-0.3539356291294098,
-0.05822557583451271,
0.24095353484153748,
0.029173552989959717,
-0.36498281359672546,
-0.026607075706124306,
0.011478510685265064,
0.13851134479045868,
-0.07891781628131866,
0.2679860591888428,
-0.14093898236751556,
0.30417686700820923,
0.09553758054971695,
0.13900205492973328,
0.5723692178726196,
-0.2798091769218445,
-0.20849862694740295,
-0.31357377767562866,
0.299343466758728,
0.23628418147563934,
-0.4316193461418152,
0.8299325108528137,
0.6453870534896851,
-0.4376481771469116,
-0.053276386111974716,
-0.646399736404419,
-0.3743521273136139,
-0.47875478863716125,
0.44527703523635864,
-0.2997487187385559,
-1.0794206857681274,
0.7200178503990173,
0.42417019605636597,
0.08644270896911621,
0.6234008073806763,
0.38619598746299744,
-0.15353789925575256,
0.8961634635925293,
0.4474617838859558,
0.09582871943712234,
0.4855521321296692,
-0.5278802514076233,
0.1749754250049591,
-0.8724020719528198,
-0.3494795560836792,
-0.4589657485485077,
-0.3570902645587921,
-0.6314994096755981,
-0.43043631315231323,
0.25450989603996277,
0.04815610870718956,
-0.4819583594799042,
0.3055538535118103,
-0.6771978735923767,
0.2272101640701294,
0.5554036498069763,
0.36040425300598145,
0.07153870910406113,
-0.0692928284406662,
-0.030959488824009895,
-0.09731383621692657,
-0.8944870829582214,
-0.3043169379234314,
1.1654982566833496,
0.4383380711078644,
0.5246427059173584,
-0.00462346663698554,
0.7676987648010254,
0.14900252223014832,
-0.04475267976522446,
-0.4723491072654724,
0.6770846843719482,
-0.13401125371456146,
-1.0073795318603516,
-0.3366855978965759,
-0.569993257522583,
-0.8399744629859924,
0.12364323437213898,
-0.18132224678993225,
-0.4665302038192749,
0.5837276577949524,
-0.08592374622821808,
-0.6432110667228699,
0.3716484010219574,
-0.4618322551250458,
0.970539391040802,
-0.42690372467041016,
-0.3842623233795166,
0.12461408972740173,
-0.6854307651519775,
0.372738778591156,
0.10787829011678696,
0.053903914988040924,
-0.009987004101276398,
-0.013000685721635818,
0.8634970188140869,
-0.19791428744792938,
0.8119034767150879,
-0.41149017214775085,
0.15775568783283234,
0.6027237772941589,
-0.29012858867645264,
0.16557739675045013,
0.14116410911083221,
-0.230705127120018,
0.3261067569255829,
0.1861717402935028,
-0.34195342659950256,
-0.5114125609397888,
0.3479181230068207,
-0.9324622750282288,
-0.2974320650100708,
-0.5253741145133972,
-0.47723647952079773,
-0.12581300735473633,
0.09509561955928802,
0.2737904489040375,
0.5129132270812988,
-0.22122013568878174,
0.29522067308425903,
0.9598667025566101,
-0.6817026734352112,
0.32100653648376465,
0.4993398189544678,
0.0005128227639943361,
-0.4649909436702728,
0.6955483555793762,
0.1408846229314804,
0.1752745658159256,
0.5886243581771851,
-0.034649815410375595,
-0.5505461096763611,
-0.46645426750183105,
-0.43187767267227173,
0.4002624452114105,
-0.7756158113479614,
-0.27814552187919617,
-0.9574535489082336,
-0.5860452055931091,
-0.5887019634246826,
0.19048430025577545,
-0.3633798360824585,
-0.3691561818122864,
-0.3725976049900055,
-0.18421964347362518,
0.5535016059875488,
0.4583965539932251,
0.007993915118277073,
0.1410164088010788,
-0.7068543434143066,
0.4499918818473816,
0.2044665664434433,
0.35506778955459595,
-0.04702886939048767,
-0.6925949454307556,
-0.21156445145606995,
0.33057376742362976,
-0.27412736415863037,
-0.8130466341972351,
0.3682786822319031,
0.27192333340644836,
0.6635771989822388,
0.05213277414441109,
0.39231404662132263,
0.6089873313903809,
-0.17080232501029968,
0.8559218645095825,
-0.16095145046710968,
-0.5186339616775513,
0.47339335083961487,
-0.2486736923456192,
0.20239713788032532,
0.7599152326583862,
0.7067291140556335,
-0.41689568758010864,
-0.08205651491880417,
-0.6126161217689514,
-0.7814390063285828,
0.6599711179733276,
0.1725868582725525,
0.21452997624874115,
-0.27737417817115784,
0.6408547163009644,
-0.14358362555503845,
0.39294958114624023,
-0.8446487188339233,
-0.32596009969711304,
-0.23074184358119965,
-0.2512500584125519,
0.008540203794836998,
-0.31857389211654663,
-0.028761712834239006,
-0.524011492729187,
0.6184460520744324,
-0.06876561790704727,
0.6873182654380798,
0.5815030932426453,
-0.17116793990135193,
0.11333988606929779,
0.13035848736763,
0.3336362838745117,
0.4874076247215271,
-0.57616126537323,
-0.3648914098739624,
0.06216622516512871,
-0.5165561437606812,
-0.03403569012880325,
0.4020933210849762,
-0.3269128203392029,
-0.038200315088033676,
0.27289095520973206,
0.8323802351951599,
0.09029848128557205,
-0.7306402921676636,
0.6889605522155762,
-0.20877012610435486,
-0.5270780920982361,
-0.5216394066810608,
-0.199557363986969,
0.02089061215519905,
0.27129238843917847,
0.24339205026626587,
-0.2700679898262024,
0.18105414509773254,
-0.40499547123908997,
0.2605152726173401,
0.37244531512260437,
-0.3718595504760742,
-0.09233912080526352,
0.6101042628288269,
0.1435428410768509,
-0.022912457585334778,
0.8942721486091614,
-0.4750666916370392,
-0.6581412553787231,
0.7553678750991821,
0.22290438413619995,
0.7737857699394226,
0.0030058277770876884,
0.30349817872047424,
0.8522314429283142,
0.4758099615573883,
0.01692526414990425,
0.6362540125846863,
0.07177918404340744,
-0.9531648755073547,
-0.2911812663078308,
-0.782072901725769,
-0.32821303606033325,
0.17899470031261444,
-0.8012973666191101,
-0.00576054910197854,
-0.41337019205093384,
-0.23712722957134247,
-0.19640102982521057,
0.21494391560554504,
-0.9600510597229004,
0.22750836610794067,
0.006319085136055946,
1.0542339086532593,
-0.7187373042106628,
0.4312334954738617,
0.704240083694458,
-0.8260864019393921,
-0.7204724550247192,
-0.009706034325063229,
-0.20456044375896454,
-0.7399691939353943,
0.5922565460205078,
0.217091903090477,
0.3695495128631592,
0.08649838715791702,
-0.6231302618980408,
-0.902662992477417,
1.1747547388076782,
0.151834174990654,
-0.4470910429954529,
-0.17065659165382385,
0.35448819398880005,
0.5320925116539001,
-0.2930055856704712,
0.4763803780078888,
0.4641273021697998,
0.399779736995697,
0.09300576895475388,
-0.8443723917007446,
0.23437123000621796,
-0.4529092311859131,
-0.2052551507949829,
-0.14865750074386597,
-0.9182338714599609,
1.0456429719924927,
-0.2388107031583786,
-0.19141080975532532,
-0.04730994254350662,
0.4575920104980469,
0.3933298587799072,
0.24129362404346466,
0.44473522901535034,
0.7491270303726196,
0.7472820281982422,
-0.18736796081066132,
1.1755988597869873,
-0.3883296847343445,
0.3609122633934021,
0.8512814044952393,
-0.13351604342460632,
0.9140692353248596,
0.26441049575805664,
-0.288192480802536,
0.46916720271110535,
0.8035752177238464,
-0.2000734508037567,
0.5528693795204163,
0.10957872867584229,
0.022845793515443802,
-0.2636794447898865,
-0.08682127296924591,
-0.510391116142273,
0.36461690068244934,
0.20449917018413544,
-0.3017449378967285,
0.026598205789923668,
0.01719868741929531,
-0.1238146424293518,
-0.008213146589696407,
-0.13998275995254517,
0.7624820470809937,
0.05330603942275047,
-0.5935451984405518,
0.8351576924324036,
-0.1396247297525406,
0.794573962688446,
-0.523577868938446,
0.013792809098958969,
-0.31032103300094604,
0.276132196187973,
-0.09500887244939804,
-0.8967978358268738,
0.20423610508441925,
-0.09508813172578812,
-0.1921127736568451,
-0.2722807824611664,
0.6352282166481018,
-0.3870023488998413,
-0.5983873009681702,
0.36034321784973145,
0.7211554050445557,
0.11886583268642426,
-0.24738049507141113,
-1.1886677742004395,
0.01897394470870495,
0.0006666085100732744,
-0.3582291901111603,
0.24334649741649628,
0.3768574893474579,
0.22663740813732147,
0.7092875838279724,
0.43297135829925537,
-0.28834834694862366,
0.0960220992565155,
0.07102622836828232,
1.001265287399292,
-0.7620649337768555,
-0.3141372799873352,
-0.555970311164856,
0.6680237054824829,
-0.18083807826042175,
-0.43285998702049255,
0.879150390625,
0.6154736280441284,
1.000543236732483,
0.027059948071837425,
0.8615840077400208,
-0.2766396105289459,
0.6257413029670715,
-0.31391826272010803,
0.7012450098991394,
-0.824306070804596,
0.0504189096391201,
-0.3279866576194763,
-0.7743691802024841,
0.0894145667552948,
0.6008707880973816,
-0.25500673055648804,
0.39060378074645996,
0.5611807703971863,
0.8603433966636658,
0.07123078405857086,
0.0945030227303505,
-0.06502049416303635,
0.15749458968639374,
0.12809088826179504,
0.6483160853385925,
0.6925671100616455,
-0.7762524485588074,
0.6989999413490295,
-0.6069623827934265,
-0.16361293196678162,
-0.10768721997737885,
-0.5455971360206604,
-1.0497040748596191,
-0.649542510509491,
-0.4806176722049713,
-0.5498189926147461,
0.0562812015414238,
0.6930277347564697,
0.47648701071739197,
-0.692437469959259,
-0.10455922782421112,
0.08255578577518463,
0.011846345849335194,
-0.3075483739376068,
-0.265893816947937,
0.4571828544139862,
0.013269096612930298,
-0.6592211723327637,
0.039140015840530396,
-0.17095334827899933,
0.057284723967313766,
-0.28833433985710144,
-0.21044029295444489,
-0.557175874710083,
0.05638078972697258,
0.47105956077575684,
0.22780492901802063,
-0.5948715806007385,
-0.24399912357330322,
0.5439285039901733,
-0.12826484441757202,
0.03790314123034477,
0.2349761575460434,
-0.504546046257019,
0.2716990113258362,
0.6539056897163391,
0.7584260702133179,
0.6697428822517395,
0.158798485994339,
0.23705175518989563,
-0.7530576586723328,
0.011324534192681313,
0.53249192237854,
0.24271561205387115,
0.4485962688922882,
-0.43373385071754456,
0.5901199579238892,
0.23235222697257996,
-0.5822963118553162,
-0.9188336730003357,
-0.024083519354462624,
-1.097104549407959,
-0.22229331731796265,
1.3085724115371704,
-0.05674470588564873,
-0.28539833426475525,
0.02335502579808235,
-0.11082407087087631,
0.20846189558506012,
-0.4088095724582672,
0.5343277454376221,
0.7178637981414795,
-0.143629789352417,
-0.35806775093078613,
-0.6944880485534668,
0.44221869111061096,
0.21615901589393616,
-0.5928667783737183,
-0.16213293373584747,
0.4193934202194214,
0.35135990381240845,
0.11999472230672836,
0.8452746272087097,
-0.22043681144714355,
0.1345880776643753,
0.08349578827619553,
0.2769947648048401,
-0.197796031832695,
0.016788283362984657,
-0.29493406414985657,
0.06966931372880936,
-0.3232599198818207,
-0.20573589205741882
] |
bigscience/bloomz-3b | bigscience | "2023-05-27T17:26:10Z" | 11,526 | 72 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"safetensors",
"bloom",
"text-generation",
"ak",
"ar",
"as",
"bm",
"bn",
"ca",
"code",
"en",
"es",
"eu",
"fon",
"fr",
"gu",
"hi",
"id",
"ig",
"ki",
"kn",
"lg",
"ln",
"ml",
"mr",
"ne",
"nso",
"ny",
"or",
"pa",
"pt",
"rn",
"rw",
"sn",
"st",
"sw",
"ta",
"te",
"tn",
"ts",
"tum",
"tw",
"ur",
"vi",
"wo",
"xh",
"yo",
"zh",
"zu",
"dataset:bigscience/xP3",
"arxiv:2211.01786",
"license:bigscience-bloom-rail-1.0",
"model-index",
"endpoints_compatible",
"has_space",
"text-generation-inference",
"region:us"
] | text-generation | "2022-10-08T16:47:24Z" | ---
datasets:
- bigscience/xP3
license: bigscience-bloom-rail-1.0
language:
- ak
- ar
- as
- bm
- bn
- ca
- code
- en
- es
- eu
- fon
- fr
- gu
- hi
- id
- ig
- ki
- kn
- lg
- ln
- ml
- mr
- ne
- nso
- ny
- or
- pa
- pt
- rn
- rw
- sn
- st
- sw
- ta
- te
- tn
- ts
- tum
- tw
- ur
- vi
- wo
- xh
- yo
- zh
- zu
programming_language:
- C
- C++
- C#
- Go
- Java
- JavaScript
- Lua
- PHP
- Python
- Ruby
- Rust
- Scala
- TypeScript
pipeline_tag: text-generation
widget:
- text: "一个传奇的开端,一个不灭的神话,这不仅仅是一部电影,而是作为一个走进新时代的标签,永远彪炳史册。Would you rate the previous review as positive, neutral or negative?"
example_title: "zh-en sentiment"
- text: "一个传奇的开端,一个不灭的神话,这不仅仅是一部电影,而是作为一个走进新时代的标签,永远彪炳史册。你认为这句话的立场是赞扬、中立还是批评?"
example_title: "zh-zh sentiment"
- text: "Suggest at least five related search terms to \"Mạng neural nhân tạo\"."
example_title: "vi-en query"
- text: "Proposez au moins cinq mots clés concernant «Réseau de neurones artificiels»."
example_title: "fr-fr query"
- text: "Explain in a sentence in Telugu what is backpropagation in neural networks."
example_title: "te-en qa"
- text: "Why is the sky blue?"
example_title: "en-en qa"
- text: "Write a fairy tale about a troll saving a princess from a dangerous dragon. The fairy tale is a masterpiece that has achieved praise worldwide and its moral is \"Heroes Come in All Shapes and Sizes\". Story (in Spanish):"
example_title: "es-en fable"
- text: "Write a fable about wood elves living in a forest that is suddenly invaded by ogres. The fable is a masterpiece that has achieved praise worldwide and its moral is \"Violence is the last refuge of the incompetent\". Fable (in Hindi):"
example_title: "hi-en fable"
model-index:
- name: bloomz-3b1
results:
- task:
type: Coreference resolution
dataset:
type: winogrande
name: Winogrande XL (xl)
config: xl
split: validation
revision: a80f460359d1e9a67c006011c94de42a8759430c
metrics:
- type: Accuracy
value: 53.67
- task:
type: Coreference resolution
dataset:
type: Muennighoff/xwinograd
name: XWinograd (en)
config: en
split: test
revision: 9dd5ea5505fad86b7bedad667955577815300cee
metrics:
- type: Accuracy
value: 59.23
- task:
type: Coreference resolution
dataset:
type: Muennighoff/xwinograd
name: XWinograd (fr)
config: fr
split: test
revision: 9dd5ea5505fad86b7bedad667955577815300cee
metrics:
- type: Accuracy
value: 53.01
- task:
type: Coreference resolution
dataset:
type: Muennighoff/xwinograd
name: XWinograd (jp)
config: jp
split: test
revision: 9dd5ea5505fad86b7bedad667955577815300cee
metrics:
- type: Accuracy
value: 52.45
- task:
type: Coreference resolution
dataset:
type: Muennighoff/xwinograd
name: XWinograd (pt)
config: pt
split: test
revision: 9dd5ea5505fad86b7bedad667955577815300cee
metrics:
- type: Accuracy
value: 53.61
- task:
type: Coreference resolution
dataset:
type: Muennighoff/xwinograd
name: XWinograd (ru)
config: ru
split: test
revision: 9dd5ea5505fad86b7bedad667955577815300cee
metrics:
- type: Accuracy
value: 53.97
- task:
type: Coreference resolution
dataset:
type: Muennighoff/xwinograd
name: XWinograd (zh)
config: zh
split: test
revision: 9dd5ea5505fad86b7bedad667955577815300cee
metrics:
- type: Accuracy
value: 60.91
- task:
type: Natural language inference
dataset:
type: anli
name: ANLI (r1)
config: r1
split: validation
revision: 9dbd830a06fea8b1c49d6e5ef2004a08d9f45094
metrics:
- type: Accuracy
value: 40.1
- task:
type: Natural language inference
dataset:
type: anli
name: ANLI (r2)
config: r2
split: validation
revision: 9dbd830a06fea8b1c49d6e5ef2004a08d9f45094
metrics:
- type: Accuracy
value: 36.8
- task:
type: Natural language inference
dataset:
type: anli
name: ANLI (r3)
config: r3
split: validation
revision: 9dbd830a06fea8b1c49d6e5ef2004a08d9f45094
metrics:
- type: Accuracy
value: 40.0
- task:
type: Natural language inference
dataset:
type: super_glue
name: SuperGLUE (cb)
config: cb
split: validation
revision: 9e12063561e7e6c79099feb6d5a493142584e9e2
metrics:
- type: Accuracy
value: 75.0
- task:
type: Natural language inference
dataset:
type: super_glue
name: SuperGLUE (rte)
config: rte
split: validation
revision: 9e12063561e7e6c79099feb6d5a493142584e9e2
metrics:
- type: Accuracy
value: 76.17
- task:
type: Natural language inference
dataset:
type: xnli
name: XNLI (ar)
config: ar
split: validation
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
metrics:
- type: Accuracy
value: 53.29
- task:
type: Natural language inference
dataset:
type: xnli
name: XNLI (bg)
config: bg
split: validation
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
metrics:
- type: Accuracy
value: 43.82
- task:
type: Natural language inference
dataset:
type: xnli
name: XNLI (de)
config: de
split: validation
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
metrics:
- type: Accuracy
value: 45.26
- task:
type: Natural language inference
dataset:
type: xnli
name: XNLI (el)
config: el
split: validation
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
metrics:
- type: Accuracy
value: 42.61
- task:
type: Natural language inference
dataset:
type: xnli
name: XNLI (en)
config: en
split: validation
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
metrics:
- type: Accuracy
value: 57.31
- task:
type: Natural language inference
dataset:
type: xnli
name: XNLI (es)
config: es
split: validation
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
metrics:
- type: Accuracy
value: 56.14
- task:
type: Natural language inference
dataset:
type: xnli
name: XNLI (fr)
config: fr
split: validation
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
metrics:
- type: Accuracy
value: 55.78
- task:
type: Natural language inference
dataset:
type: xnli
name: XNLI (hi)
config: hi
split: validation
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
metrics:
- type: Accuracy
value: 51.49
- task:
type: Natural language inference
dataset:
type: xnli
name: XNLI (ru)
config: ru
split: validation
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
metrics:
- type: Accuracy
value: 47.11
- task:
type: Natural language inference
dataset:
type: xnli
name: XNLI (sw)
config: sw
split: validation
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
metrics:
- type: Accuracy
value: 47.83
- task:
type: Natural language inference
dataset:
type: xnli
name: XNLI (th)
config: th
split: validation
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
metrics:
- type: Accuracy
value: 42.93
- task:
type: Natural language inference
dataset:
type: xnli
name: XNLI (tr)
config: tr
split: validation
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
metrics:
- type: Accuracy
value: 37.23
- task:
type: Natural language inference
dataset:
type: xnli
name: XNLI (ur)
config: ur
split: validation
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
metrics:
- type: Accuracy
value: 49.04
- task:
type: Natural language inference
dataset:
type: xnli
name: XNLI (vi)
config: vi
split: validation
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
metrics:
- type: Accuracy
value: 53.98
- task:
type: Natural language inference
dataset:
type: xnli
name: XNLI (zh)
config: zh
split: validation
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
metrics:
- type: Accuracy
value: 54.18
- task:
type: Program synthesis
dataset:
type: openai_humaneval
name: HumanEval
config: None
split: test
revision: e8dc562f5de170c54b5481011dd9f4fa04845771
metrics:
- type: Pass@1
value: 6.29
- type: Pass@10
value: 11.94
- type: Pass@100
value: 19.06
- task:
type: Sentence completion
dataset:
type: story_cloze
name: StoryCloze (2016)
config: "2016"
split: validation
revision: e724c6f8cdf7c7a2fb229d862226e15b023ee4db
metrics:
- type: Accuracy
value: 87.33
- task:
type: Sentence completion
dataset:
type: super_glue
name: SuperGLUE (copa)
config: copa
split: validation
revision: 9e12063561e7e6c79099feb6d5a493142584e9e2
metrics:
- type: Accuracy
value: 76.0
- task:
type: Sentence completion
dataset:
type: xcopa
name: XCOPA (et)
config: et
split: validation
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
metrics:
- type: Accuracy
value: 53.0
- task:
type: Sentence completion
dataset:
type: xcopa
name: XCOPA (ht)
config: ht
split: validation
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
metrics:
- type: Accuracy
value: 64.0
- task:
type: Sentence completion
dataset:
type: xcopa
name: XCOPA (id)
config: id
split: validation
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
metrics:
- type: Accuracy
value: 70.0
- task:
type: Sentence completion
dataset:
type: xcopa
name: XCOPA (it)
config: it
split: validation
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
metrics:
- type: Accuracy
value: 53.0
- task:
type: Sentence completion
dataset:
type: xcopa
name: XCOPA (qu)
config: qu
split: validation
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
metrics:
- type: Accuracy
value: 56.0
- task:
type: Sentence completion
dataset:
type: xcopa
name: XCOPA (sw)
config: sw
split: validation
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
metrics:
- type: Accuracy
value: 66.0
- task:
type: Sentence completion
dataset:
type: xcopa
name: XCOPA (ta)
config: ta
split: validation
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
metrics:
- type: Accuracy
value: 59.0
- task:
type: Sentence completion
dataset:
type: xcopa
name: XCOPA (th)
config: th
split: validation
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
metrics:
- type: Accuracy
value: 63.0
- task:
type: Sentence completion
dataset:
type: xcopa
name: XCOPA (tr)
config: tr
split: validation
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
metrics:
- type: Accuracy
value: 61.0
- task:
type: Sentence completion
dataset:
type: xcopa
name: XCOPA (vi)
config: vi
split: validation
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
metrics:
- type: Accuracy
value: 77.0
- task:
type: Sentence completion
dataset:
type: xcopa
name: XCOPA (zh)
config: zh
split: validation
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
metrics:
- type: Accuracy
value: 73.0
- task:
type: Sentence completion
dataset:
type: Muennighoff/xstory_cloze
name: XStoryCloze (ar)
config: ar
split: validation
revision: 8bb76e594b68147f1a430e86829d07189622b90d
metrics:
- type: Accuracy
value: 80.61
- task:
type: Sentence completion
dataset:
type: Muennighoff/xstory_cloze
name: XStoryCloze (es)
config: es
split: validation
revision: 8bb76e594b68147f1a430e86829d07189622b90d
metrics:
- type: Accuracy
value: 85.9
- task:
type: Sentence completion
dataset:
type: Muennighoff/xstory_cloze
name: XStoryCloze (eu)
config: eu
split: validation
revision: 8bb76e594b68147f1a430e86829d07189622b90d
metrics:
- type: Accuracy
value: 70.95
- task:
type: Sentence completion
dataset:
type: Muennighoff/xstory_cloze
name: XStoryCloze (hi)
config: hi
split: validation
revision: 8bb76e594b68147f1a430e86829d07189622b90d
metrics:
- type: Accuracy
value: 78.89
- task:
type: Sentence completion
dataset:
type: Muennighoff/xstory_cloze
name: XStoryCloze (id)
config: id
split: validation
revision: 8bb76e594b68147f1a430e86829d07189622b90d
metrics:
- type: Accuracy
value: 82.99
- task:
type: Sentence completion
dataset:
type: Muennighoff/xstory_cloze
name: XStoryCloze (my)
config: my
split: validation
revision: 8bb76e594b68147f1a430e86829d07189622b90d
metrics:
- type: Accuracy
value: 49.9
- task:
type: Sentence completion
dataset:
type: Muennighoff/xstory_cloze
name: XStoryCloze (ru)
config: ru
split: validation
revision: 8bb76e594b68147f1a430e86829d07189622b90d
metrics:
- type: Accuracy
value: 61.42
- task:
type: Sentence completion
dataset:
type: Muennighoff/xstory_cloze
name: XStoryCloze (sw)
config: sw
split: validation
revision: 8bb76e594b68147f1a430e86829d07189622b90d
metrics:
- type: Accuracy
value: 69.69
- task:
type: Sentence completion
dataset:
type: Muennighoff/xstory_cloze
name: XStoryCloze (te)
config: te
split: validation
revision: 8bb76e594b68147f1a430e86829d07189622b90d
metrics:
- type: Accuracy
value: 73.66
- task:
type: Sentence completion
dataset:
type: Muennighoff/xstory_cloze
name: XStoryCloze (zh)
config: zh
split: validation
revision: 8bb76e594b68147f1a430e86829d07189622b90d
metrics:
- type: Accuracy
value: 84.32
---
![xmtf](https://github.com/bigscience-workshop/xmtf/blob/master/xmtf_banner.png?raw=true)
# Table of Contents
1. [Model Summary](#model-summary)
2. [Use](#use)
3. [Limitations](#limitations)
4. [Training](#training)
5. [Evaluation](#evaluation)
7. [Citation](#citation)
# Model Summary
> We present BLOOMZ & mT0, a family of models capable of following human instructions in dozens of languages zero-shot. We finetune BLOOM & mT5 pretrained multilingual language models on our crosslingual task mixture (xP3) and find the resulting models capable of crosslingual generalization to unseen tasks & languages.
- **Repository:** [bigscience-workshop/xmtf](https://github.com/bigscience-workshop/xmtf)
- **Paper:** [Crosslingual Generalization through Multitask Finetuning](https://arxiv.org/abs/2211.01786)
- **Point of Contact:** [Niklas Muennighoff](mailto:niklas@hf.co)
- **Languages:** Refer to [bloom](https://huggingface.co/bigscience/bloom) for pretraining & [xP3](https://huggingface.co/datasets/bigscience/xP3) for finetuning language proportions. It understands both pretraining & finetuning languages.
- **BLOOMZ & mT0 Model Family:**
<div class="max-w-full overflow-auto">
<table>
<tr>
<th colspan="12">Multitask finetuned on <a style="font-weight:bold" href=https://huggingface.co/datasets/bigscience/xP3>xP3</a>. Recommended for prompting in English.
</tr>
<tr>
<td>Parameters</td>
<td>300M</td>
<td>580M</td>
<td>1.2B</td>
<td>3.7B</td>
<td>13B</td>
<td>560M</td>
<td>1.1B</td>
<td>1.7B</td>
<td>3B</td>
<td>7.1B</td>
<td>176B</td>
</tr>
<tr>
<td>Finetuned Model</td>
<td><a href=https://huggingface.co/bigscience/mt0-small>mt0-small</a></td>
<td><a href=https://huggingface.co/bigscience/mt0-base>mt0-base</a></td>
<td><a href=https://huggingface.co/bigscience/mt0-large>mt0-large</a></td>
<td><a href=https://huggingface.co/bigscience/mt0-xl>mt0-xl</a></td>
<td><a href=https://huggingface.co/bigscience/mt0-xxl>mt0-xxl</a></td>
<td><a href=https://huggingface.co/bigscience/bloomz-560m>bloomz-560m</a></td>
<td><a href=https://huggingface.co/bigscience/bloomz-1b1>bloomz-1b1</a></td>
<td><a href=https://huggingface.co/bigscience/bloomz-1b7>bloomz-1b7</a></td>
<td><a href=https://huggingface.co/bigscience/bloomz-3b>bloomz-3b</a></td>
<td><a href=https://huggingface.co/bigscience/bloomz-7b1>bloomz-7b1</a></td>
<td><a href=https://huggingface.co/bigscience/bloomz>bloomz</a></td>
</tr>
</tr>
<tr>
<th colspan="12">Multitask finetuned on <a style="font-weight:bold" href=https://huggingface.co/datasets/bigscience/xP3mt>xP3mt</a>. Recommended for prompting in non-English.</th>
</tr>
<tr>
<td>Finetuned Model</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><a href=https://huggingface.co/bigscience/mt0-xxl-mt>mt0-xxl-mt</a></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><a href=https://huggingface.co/bigscience/bloomz-7b1-mt>bloomz-7b1-mt</a></td>
<td><a href=https://huggingface.co/bigscience/bloomz-mt>bloomz-mt</a></td>
</tr>
<th colspan="12">Multitask finetuned on <a style="font-weight:bold" href=https://huggingface.co/datasets/Muennighoff/P3>P3</a>. Released for research purposes only. Strictly inferior to above models!</th>
</tr>
<tr>
<td>Finetuned Model</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><a href=https://huggingface.co/bigscience/mt0-xxl-p3>mt0-xxl-p3</a></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><a href=https://huggingface.co/bigscience/bloomz-7b1-p3>bloomz-7b1-p3</a></td>
<td><a href=https://huggingface.co/bigscience/bloomz-p3>bloomz-p3</a></td>
</tr>
<th colspan="12">Original pretrained checkpoints. Not recommended.</th>
<tr>
<td>Pretrained Model</td>
<td><a href=https://huggingface.co/google/mt5-small>mt5-small</a></td>
<td><a href=https://huggingface.co/google/mt5-base>mt5-base</a></td>
<td><a href=https://huggingface.co/google/mt5-large>mt5-large</a></td>
<td><a href=https://huggingface.co/google/mt5-xl>mt5-xl</a></td>
<td><a href=https://huggingface.co/google/mt5-xxl>mt5-xxl</a></td>
<td><a href=https://huggingface.co/bigscience/bloom-560m>bloom-560m</a></td>
<td><a href=https://huggingface.co/bigscience/bloom-1b1>bloom-1b1</a></td>
<td><a href=https://huggingface.co/bigscience/bloom-1b7>bloom-1b7</a></td>
<td><a href=https://huggingface.co/bigscience/bloom-3b>bloom-3b</a></td>
<td><a href=https://huggingface.co/bigscience/bloom-7b1>bloom-7b1</a></td>
<td><a href=https://huggingface.co/bigscience/bloom>bloom</a></td>
</tr>
</table>
</div>
# Use
## Intended use
We recommend using the model to perform tasks expressed in natural language. For example, given the prompt "*Translate to English: Je t’aime.*", the model will most likely answer "*I love you.*". Some prompt ideas from our paper:
- 一个传奇的开端,一个不灭的神话,这不仅仅是一部电影,而是作为一个走进新时代的标签,永远彪炳史册。你认为这句话的立场是赞扬、中立还是批评?
- Suggest at least five related search terms to "Mạng neural nhân tạo".
- Write a fairy tale about a troll saving a princess from a dangerous dragon. The fairy tale is a masterpiece that has achieved praise worldwide and its moral is "Heroes Come in All Shapes and Sizes". Story (in Spanish):
- Explain in a sentence in Telugu what is backpropagation in neural networks.
**Feel free to share your generations in the Community tab!**
## How to use
### CPU
<details>
<summary> Click to expand </summary>
```python
# pip install -q transformers
from transformers import AutoModelForCausalLM, AutoTokenizer
checkpoint = "bigscience/bloomz-3b"
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
model = AutoModelForCausalLM.from_pretrained(checkpoint)
inputs = tokenizer.encode("Translate to English: Je t’aime.", return_tensors="pt")
outputs = model.generate(inputs)
print(tokenizer.decode(outputs[0]))
```
</details>
### GPU
<details>
<summary> Click to expand </summary>
```python
# pip install -q transformers accelerate
from transformers import AutoModelForCausalLM, AutoTokenizer
checkpoint = "bigscience/bloomz-3b"
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
model = AutoModelForCausalLM.from_pretrained(checkpoint, torch_dtype="auto", device_map="auto")
inputs = tokenizer.encode("Translate to English: Je t’aime.", return_tensors="pt").to("cuda")
outputs = model.generate(inputs)
print(tokenizer.decode(outputs[0]))
```
</details>
### GPU in 8bit
<details>
<summary> Click to expand </summary>
```python
# pip install -q transformers accelerate bitsandbytes
from transformers import AutoModelForCausalLM, AutoTokenizer
checkpoint = "bigscience/bloomz-3b"
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
model = AutoModelForCausalLM.from_pretrained(checkpoint, device_map="auto", load_in_8bit=True)
inputs = tokenizer.encode("Translate to English: Je t’aime.", return_tensors="pt").to("cuda")
outputs = model.generate(inputs)
print(tokenizer.decode(outputs[0]))
```
</details>
<!-- Necessary for whitespace -->
###
# Limitations
**Prompt Engineering:** The performance may vary depending on the prompt. For BLOOMZ models, we recommend making it very clear when the input stops to avoid the model trying to continue it. For example, the prompt "*Translate to English: Je t'aime*" without the full stop (.) at the end, may result in the model trying to continue the French sentence. Better prompts are e.g. "*Translate to English: Je t'aime.*", "*Translate to English: Je t'aime. Translation:*" "*What is "Je t'aime." in English?*", where it is clear for the model when it should answer. Further, we recommend providing the model as much context as possible. For example, if you want it to answer in Telugu, then tell the model, e.g. "*Explain in a sentence in Telugu what is backpropagation in neural networks.*".
# Training
## Model
- **Architecture:** Same as [bloom-3b](https://huggingface.co/bigscience/bloom-3b), also refer to the `config.json` file
- **Finetuning steps:** 2000
- **Finetuning tokens:** 8.39 billion
- **Finetuning layout:** 2x pipeline parallel, 1x tensor parallel, 64x data parallel
- **Precision:** float16
## Hardware
- **CPUs:** AMD CPUs with 512GB memory per node
- **GPUs:** 128 A100 80GB GPUs with 8 GPUs per node (16 nodes) using NVLink 4 inter-gpu connects, 4 OmniPath links
- **Communication:** NCCL-communications network with a fully dedicated subnet
## Software
- **Orchestration:** [Megatron-DeepSpeed](https://github.com/bigscience-workshop/Megatron-DeepSpeed)
- **Optimizer & parallelism:** [DeepSpeed](https://github.com/microsoft/DeepSpeed)
- **Neural networks:** [PyTorch](https://github.com/pytorch/pytorch) (pytorch-1.11 w/ CUDA-11.5)
- **FP16 if applicable:** [apex](https://github.com/NVIDIA/apex)
# Evaluation
We refer to Table 7 from our [paper](https://arxiv.org/abs/2211.01786) & [bigscience/evaluation-results](https://huggingface.co/datasets/bigscience/evaluation-results) for zero-shot results on unseen tasks. The sidebar reports zero-shot performance of the best prompt per dataset config.
# Citation
```bibtex
@article{muennighoff2022crosslingual,
title={Crosslingual generalization through multitask finetuning},
author={Muennighoff, Niklas and Wang, Thomas and Sutawika, Lintang and Roberts, Adam and Biderman, Stella and Scao, Teven Le and Bari, M Saiful and Shen, Sheng and Yong, Zheng-Xin and Schoelkopf, Hailey and others},
journal={arXiv preprint arXiv:2211.01786},
year={2022}
}
``` | [
-0.4280444383621216,
-0.5882007479667664,
0.31942105293273926,
0.41404399275779724,
-0.07117325812578201,
-0.08586717396974564,
-0.33746224641799927,
-0.3526039123535156,
0.42273619771003723,
-0.168945774435997,
-0.9286734461784363,
-0.5415802001953125,
-0.5445879697799683,
0.15035875141620636,
0.011003637686371803,
0.8036444783210754,
-0.14073428511619568,
0.16766494512557983,
0.036333341151475906,
-0.036431677639484406,
-0.2968902587890625,
-0.39840519428253174,
-0.7533936500549316,
-0.6132722496986389,
0.5245223641395569,
0.18121784925460815,
0.5040012001991272,
0.5259350538253784,
0.31722384691238403,
0.381910502910614,
-0.3372381031513214,
0.071019247174263,
-0.2190903127193451,
-0.1358334720134735,
0.03506671264767647,
-0.39705151319503784,
-0.7473312616348267,
-0.07002677768468857,
0.5878966450691223,
0.6045756936073303,
0.19412511587142944,
0.28805381059646606,
0.3205978274345398,
0.5383151769638062,
-0.47314369678497314,
0.37976714968681335,
-0.04695708304643631,
0.4007328450679779,
-0.1875174343585968,
0.05257236957550049,
-0.15332739055156708,
-0.32758817076683044,
-0.04681635648012161,
-0.792595386505127,
0.2063826471567154,
0.1276627629995346,
1.3695298433303833,
0.01024424098432064,
0.05472753196954727,
0.06425760686397552,
-0.3405456244945526,
1.027355432510376,
-0.8977979421615601,
0.40628233551979065,
0.42213401198387146,
-0.04910890385508537,
0.016546059399843216,
-0.6173710227012634,
-0.811623215675354,
-0.05725376307964325,
-0.3332763910293579,
0.4332287609577179,
-0.25741612911224365,
-0.16946600377559662,
0.25319382548332214,
0.5245340466499329,
-0.7052493095397949,
0.07430487871170044,
-0.3445628583431244,
-0.2324075698852539,
0.5659408569335938,
0.20571748912334442,
0.5811837911605835,
-0.3154791593551636,
-0.2598351836204529,
-0.4352843463420868,
-0.4746755063533783,
0.14272715151309967,
0.16962163150310516,
0.5525200963020325,
-0.6600503921508789,
0.4087577164173126,
-0.07843542098999023,
0.617805540561676,
0.2905151844024658,
-0.0014319677138701081,
0.7846871614456177,
-0.47961410880088806,
-0.3809095025062561,
-0.269273042678833,
1.210078477859497,
0.2241550236940384,
0.04654969647526741,
-0.09477846324443817,
0.11434713006019592,
-0.20854218304157257,
-0.009702281095087528,
-0.9738629460334778,
-0.05896279588341713,
0.30714255571365356,
-0.5872381925582886,
-0.34095627069473267,
-0.1116987094283104,
-1.0119482278823853,
0.11594951152801514,
-0.21552300453186035,
0.7022361159324646,
-0.5949610471725464,
-0.3750627636909485,
0.22030337154865265,
0.01612481288611889,
0.21362410485744476,
0.1596045196056366,
-0.9726519584655762,
0.18409988284111023,
0.31786879897117615,
0.9385735988616943,
-0.157673180103302,
-0.5937622785568237,
0.034466274082660675,
0.08306905627250671,
-0.15561069548130035,
0.5307314991950989,
-0.16491030156612396,
-0.3973977565765381,
-0.3263031244277954,
0.31649425625801086,
-0.4412287771701813,
-0.09368748217821121,
0.5699037909507751,
-0.1165066659450531,
0.6171252131462097,
-0.5748524069786072,
-0.3445725739002228,
-0.2111041396856308,
0.29520902037620544,
-0.5374405384063721,
1.080551266670227,
0.21396686136722565,
-0.9291325807571411,
0.17394579946994781,
-0.9831729531288147,
-0.24001364409923553,
-0.19595889747142792,
-0.01313086599111557,
-0.7038324475288391,
-0.37907132506370544,
0.45867228507995605,
0.5243852138519287,
-0.23472845554351807,
-0.27316299080848694,
-0.30612805485725403,
-0.03046184964478016,
-0.033448491245508194,
-0.1512773185968399,
1.068536639213562,
0.26271724700927734,
-0.6397953629493713,
0.24045588076114655,
-0.6572220921516418,
0.13025721907615662,
0.5644410252571106,
-0.2148006111383438,
0.12383225560188293,
-0.427219420671463,
-0.03197496011853218,
0.4674395024776459,
0.31693321466445923,
-0.5338504314422607,
0.19272777438163757,
-0.5523585081100464,
0.6546969413757324,
0.6288875937461853,
-0.0495750866830349,
0.4333886206150055,
-0.5325918197631836,
0.49114346504211426,
0.1733935922384262,
0.1585490107536316,
-0.2636222839355469,
-0.4565195143222809,
-0.8585286140441895,
-0.21476596593856812,
0.25574037432670593,
0.4933692514896393,
-0.5394007563591003,
0.5653568506240845,
-0.30660033226013184,
-0.6635193228721619,
-0.3565700948238373,
0.013843596912920475,
0.585355281829834,
0.6988116502761841,
0.6865296959877014,
-0.04013435170054436,
-0.5876913070678711,
-0.798370361328125,
0.0016373853432014585,
-0.10472002625465393,
0.1308356374502182,
0.5499553680419922,
0.7810357213020325,
-0.13942062854766846,
0.5378341674804688,
-0.6391057372093201,
-0.06403475999832153,
-0.41122984886169434,
0.04109106957912445,
0.2901393473148346,
0.8085333704948425,
0.5780754685401917,
-0.7779760956764221,
-0.4457351565361023,
0.010674076154828072,
-0.9309060573577881,
0.23562149703502655,
0.021225640550255775,
-0.4059778153896332,
0.10996504873037338,
0.3431228697299957,
-0.7696705460548401,
0.4753134548664093,
0.31033989787101746,
-0.5043704509735107,
0.6062544584274292,
-0.22840072214603424,
0.23950035870075226,
-1.3415910005569458,
0.42657285928726196,
0.1491093635559082,
0.08010633289813995,
-0.6551378965377808,
0.18882085382938385,
0.07770214229822159,
0.058427970856428146,
-0.5987623333930969,
0.9104756712913513,
-0.49536147713661194,
0.16872471570968628,
0.033120524138212204,
-0.1005735769867897,
0.24342840909957886,
0.7426363229751587,
0.18135863542556763,
0.7208768129348755,
0.7049592137336731,
-0.6864467859268188,
0.3117392361164093,
0.5911551117897034,
-0.12597166001796722,
0.3702310025691986,
-0.8639611005783081,
-0.06300105154514313,
0.011281248182058334,
0.15305018424987793,
-0.8569201827049255,
-0.2407142072916031,
0.4222225546836853,
-0.749234139919281,
0.6341776847839355,
0.06247281655669212,
-0.5412319898605347,
-0.843229353427887,
-0.32861003279685974,
0.30443716049194336,
0.550930380821228,
-0.5187008380889893,
0.3883504569530487,
-0.013497082516551018,
0.07709997147321701,
-0.5724110007286072,
-0.9828324913978577,
-0.1580747812986374,
-0.3886587917804718,
-0.8760186433792114,
0.6409929990768433,
-0.20451313257217407,
0.1775733381509781,
-0.2446346879005432,
0.06696566194295883,
-0.09431044012308121,
-0.04695943370461464,
0.33435961604118347,
0.4366830587387085,
-0.3779635429382324,
0.06738679111003876,
-0.16533096134662628,
0.07647041231393814,
-0.01080003660172224,
-0.24425771832466125,
0.7318627834320068,
-0.2567746639251709,
-0.10457541793584824,
-0.7662463784217834,
0.15560992062091827,
0.5338298678398132,
-0.16020430624485016,
0.9253221154212952,
0.9372535347938538,
-0.4578065574169159,
0.10150626301765442,
-0.4018113315105438,
-0.38353294134140015,
-0.5379911065101624,
0.14631806313991547,
-0.31298828125,
-0.6503645777702332,
0.731493353843689,
0.2815028131008148,
-0.039632007479667664,
0.7592027187347412,
0.6509376764297485,
0.14730101823806763,
0.958493173122406,
0.5789731740951538,
-0.07417652755975723,
0.4999687969684601,
-0.6787323951721191,
0.1546393781900406,
-0.9858531951904297,
-0.4917091727256775,
-0.39527955651283264,
-0.3091253936290741,
-0.236494243144989,
-0.3362266421318054,
0.24923083186149597,
0.07779227197170258,
-0.6454715728759766,
0.5155500173568726,
-0.6848414540290833,
-0.020271508023142815,
0.6270651817321777,
0.37524282932281494,
-0.11839993298053741,
0.00006749278691131622,
-0.4902026355266571,
-0.16415062546730042,
-0.7531452775001526,
-0.22494164109230042,
0.9834805727005005,
0.2848067283630371,
0.42259451746940613,
-0.08411134034395218,
0.679751455783844,
-0.23370511829853058,
-0.04526962339878082,
-0.5295355916023254,
0.428246408700943,
0.054211027920246124,
-0.707051694393158,
-0.32523393630981445,
-0.39124786853790283,
-1.1673918962478638,
0.2791191339492798,
-0.4761182367801666,
-0.9906091690063477,
0.18772752583026886,
0.32165563106536865,
-0.764034628868103,
0.4980355501174927,
-0.7135704755783081,
1.0914578437805176,
-0.20389097929000854,
-0.7908652424812317,
0.16909313201904297,
-0.653052568435669,
0.1863335222005844,
0.37721946835517883,
0.2782464027404785,
0.10020843148231506,
0.21778178215026855,
0.840316891670227,
-0.6106473207473755,
0.8544694185256958,
-0.14507140219211578,
0.09009119868278503,
0.28707772493362427,
-0.21458657085895538,
0.32897618412971497,
-0.15246380865573883,
-0.06191765516996384,
0.07143401354551315,
-0.07347980886697769,
-0.47832190990448,
-0.3576202094554901,
0.8185603618621826,
-0.9139547944068909,
-0.4780005216598511,
-0.559391438961029,
-0.5359776616096497,
-0.1418459415435791,
0.49221542477607727,
0.6318145990371704,
0.22888651490211487,
0.07491569966077805,
-0.053033068776130676,
0.6513071656227112,
-0.33977603912353516,
0.7199940085411072,
0.14849631488323212,
-0.20786979794502258,
-0.2376670390367508,
0.9570886492729187,
0.07203733175992966,
0.10054534673690796,
0.3946415185928345,
0.39545100927352905,
-0.3585374653339386,
-0.41136685013771057,
-0.5269302725791931,
0.4971344769001007,
-0.3311414420604706,
-0.31721416115760803,
-0.8821029663085938,
-0.3626736104488373,
-0.7977135181427002,
-0.1824532449245453,
-0.43390005826950073,
-0.43685510754585266,
-0.5916849970817566,
-0.17524078488349915,
0.48466047644615173,
0.46548184752464294,
-0.27046939730644226,
0.3469226062297821,
-0.5230342745780945,
0.36437007784843445,
0.24565701186656952,
0.31681835651397705,
0.20790626108646393,
-0.5434851050376892,
-0.22209511697292328,
0.23562705516815186,
-0.5992141962051392,
-0.6928576827049255,
0.6935731172561646,
0.021315304562449455,
0.5264104008674622,
0.23975561559200287,
-0.3765510618686676,
0.8284115791320801,
-0.47181618213653564,
0.8438050746917725,
0.4302360713481903,
-0.8649232983589172,
0.6493625640869141,
-0.40439388155937195,
0.49768081307411194,
0.36874502897262573,
0.5346569418907166,
-0.4087320566177368,
-0.1667037010192871,
-0.784185528755188,
-0.9319987297058105,
0.7902485132217407,
0.3457556664943695,
0.030243948101997375,
0.06911005079746246,
0.3951318860054016,
-0.07582925260066986,
0.09106606990098953,
-0.9835798144340515,
-0.621484100818634,
-0.5015197396278381,
-0.2647646963596344,
-0.052650872617959976,
0.09287073463201523,
-0.029671823605895042,
-0.5904675126075745,
0.7180402278900146,
0.02797817252576351,
0.5880432724952698,
0.2958676517009735,
0.020992126315832138,
-0.03014504723250866,
0.10963888466358185,
0.6013450622558594,
0.42452237010002136,
-0.08554903417825699,
-0.22668005526065826,
0.21018368005752563,
-0.694430947303772,
0.011427960358560085,
0.07120411098003387,
-0.2951487898826599,
-0.145009383559227,
0.23515132069587708,
0.8806414008140564,
0.21379342675209045,
-0.15008583664894104,
0.4581098258495331,
-0.03807709738612175,
-0.3769228160381317,
-0.2781274616718292,
0.14989632368087769,
0.342409610748291,
0.21218615770339966,
0.23810727894306183,
0.0775151327252388,
0.015904603525996208,
-0.39552199840545654,
0.02539040334522724,
0.41352275013923645,
-0.2632945477962494,
-0.49681398272514343,
0.8990333676338196,
-0.05283838137984276,
-0.035702869296073914,
0.3093627691268921,
-0.3178922235965729,
-0.7782227396965027,
0.668480396270752,
0.6582929491996765,
0.6157627701759338,
-0.2791324555873871,
0.06611494719982147,
1.035335659980774,
0.08387231081724167,
-0.23277947306632996,
0.3423766493797302,
0.02778564766049385,
-0.545271098613739,
-0.275220662355423,
-0.817167341709137,
-0.0002826808486133814,
0.3628365099430084,
-0.6467300057411194,
0.3855159878730774,
-0.5061361193656921,
-0.2324618250131607,
0.24207094311714172,
0.27034127712249756,
-0.7816715836524963,
0.5711665153503418,
0.2698304057121277,
0.84416663646698,
-0.7506825923919678,
0.757587730884552,
0.6371027827262878,
-0.8437628149986267,
-1.032801866531372,
-0.0896020457148552,
0.024699067696928978,
-0.9655387997627258,
0.8638543486595154,
0.15096589922904968,
0.14339371025562286,
0.16722668707370758,
-0.6278309226036072,
-1.1646302938461304,
1.3504036664962769,
0.07812628149986267,
-0.2511066496372223,
-0.2985696792602539,
0.026471618562936783,
0.5518105030059814,
-0.20308074355125427,
0.4248383045196533,
0.34847867488861084,
0.6583855152130127,
0.27971363067626953,
-0.9303147196769714,
0.360017329454422,
-0.617429792881012,
-0.044808439910411835,
-0.04631862789392471,
-1.1452827453613281,
1.2419875860214233,
-0.18256273865699768,
-0.12649179995059967,
0.04140237718820572,
0.8285472989082336,
0.38421186804771423,
0.18532826006412506,
0.20585817098617554,
0.8073597550392151,
0.5027285218238831,
-0.32496845722198486,
1.0199793577194214,
-0.3915002644062042,
0.5687482357025146,
0.7871915102005005,
0.2201799899339676,
0.5899201035499573,
0.3456915616989136,
-0.5250804424285889,
0.5622883439064026,
0.657419741153717,
-0.29970869421958923,
0.27521806955337524,
0.22630305588245392,
-0.06871957331895828,
-0.08780176937580109,
0.15261991322040558,
-0.6520076990127563,
0.10189761221408844,
0.41625893115997314,
-0.29810863733291626,
-0.037025246769189835,
0.09391679614782333,
0.3870733678340912,
-0.039406247437000275,
-0.48093265295028687,
0.37281832098960876,
0.11621028929948807,
-0.6942508816719055,
0.6915034651756287,
-0.0495046004652977,
1.0154893398284912,
-0.543137788772583,
0.25634491443634033,
-0.15853312611579895,
0.1767469048500061,
-0.4052462577819824,
-0.7634141445159912,
0.19513778388500214,
-0.061236586421728134,
-0.12389069050550461,
-0.19542184472084045,
0.4732038974761963,
-0.30712783336639404,
-0.623285710811615,
0.30598509311676025,
0.35801491141319275,
0.12508299946784973,
0.06865148991346359,
-1.0903573036193848,
0.04513094946742058,
-0.03835676237940788,
-0.4630955159664154,
0.1888681948184967,
0.1750725656747818,
0.21979545056819916,
0.7329269647598267,
0.5937526822090149,
0.13549542427062988,
0.3538859188556671,
-0.06635230779647827,
0.8519030213356018,
-0.7101173400878906,
-0.48809319734573364,
-0.851754367351532,
0.5595340728759766,
-0.13803653419017792,
-0.3426249027252197,
1.076489806175232,
0.5820075273513794,
0.8058213591575623,
-0.06852280348539352,
0.8187068700790405,
-0.24746905267238617,
0.6169246435165405,
-0.41401994228363037,
0.9499919414520264,
-0.8055877685546875,
-0.2516748309135437,
-0.3883226215839386,
-0.5165236592292786,
-0.34682559967041016,
0.8156881928443909,
-0.2760729193687439,
0.5678766965866089,
0.7941716909408569,
0.6671068072319031,
-0.1319407969713211,
-0.05009963735938072,
-0.06092943251132965,
0.40165582299232483,
0.18601006269454956,
0.8663251996040344,
0.3352208733558655,
-0.7540556788444519,
0.388088583946228,
-0.6812130212783813,
-0.037090737372636795,
-0.25350290536880493,
-0.6548447012901306,
-0.9240531325340271,
-0.7070926427841187,
-0.48183515667915344,
-0.5648435354232788,
-0.10352278500795364,
0.8813925385475159,
0.7561594247817993,
-0.9078442454338074,
-0.20309919118881226,
-0.19259487092494965,
0.00044411010458134115,
-0.15214578807353973,
-0.24159249663352966,
0.7493529319763184,
-0.2999192476272583,
-0.9639790058135986,
0.08745061606168747,
0.021299628540873528,
0.543303906917572,
-0.06684021651744843,
-0.19123363494873047,
-0.41322287917137146,
-0.051514625549316406,
0.3171897530555725,
0.6542834639549255,
-0.4810088574886322,
-0.09996189177036285,
0.16776502132415771,
-0.20418666303157806,
0.359580934047699,
0.3281545341014862,
-0.5328350067138672,
0.10157886892557144,
0.465847909450531,
0.29416152834892273,
0.7087278962135315,
-0.19863781332969666,
0.34549400210380554,
-0.48996105790138245,
0.23240594565868378,
0.17245863378047943,
0.4697459042072296,
0.37046492099761963,
-0.4557153880596161,
0.38077887892723083,
0.26519089937210083,
-0.579647421836853,
-0.7826439142227173,
-0.10931311547756195,
-1.1393117904663086,
-0.22410745918750763,
1.1681749820709229,
-0.2832636535167694,
-0.6832590103149414,
0.35502558946609497,
-0.13967756927013397,
0.5759161710739136,
-0.3480589687824249,
0.6409201622009277,
0.7815437912940979,
-0.31302252411842346,
-0.12097909301519394,
-0.6022253632545471,
0.5660383701324463,
0.5923718214035034,
-0.8875654339790344,
-0.1545948088169098,
0.14672276377677917,
0.44223055243492126,
0.42000052332878113,
0.4195750057697296,
-0.2663944661617279,
0.21306975185871124,
-0.008403629995882511,
0.22159305214881897,
-0.17714548110961914,
0.03499145433306694,
-0.3810155689716339,
-0.03395087271928787,
-0.3164617717266083,
-0.262667715549469
] |
shahrukhx01/bert-multitask-query-classifiers | shahrukhx01 | "2023-11-09T09:00:11Z" | 11,515 | 3 | transformers | [
"transformers",
"pytorch",
"safetensors",
"bert",
"text-classification",
"endpoints_compatible",
"has_space",
"region:us"
] | text-classification | "2022-03-02T23:29:05Z" | # A Multi-task learning model with two prediction heads
* One prediction head classifies between keyword sentences vs statements/questions
* Other prediction head corresponds to classifier for statements vs questions
## Scores
##### Spaadia SQuaD Test acc: **0.9891**
##### Quora Keyword Pairs Test acc: **0.98048**
## Datasets:
Quora Keyword Pairs: https://www.kaggle.com/stefanondisponibile/quora-question-keyword-pairs
Spaadia SQuaD pairs: https://www.kaggle.com/shahrukhkhan/questions-vs-statementsclassificationdataset
## Article
[Medium article](https://medium.com/@shahrukhx01/multi-task-learning-with-transformers-part-1-multi-prediction-heads-b7001cf014bf)
## Demo Notebook
[Colab Notebook Multi-task Query classifiers](https://colab.research.google.com/drive/1R7WcLHxDsVvZXPhr5HBgIWa3BlSZKY6p?usp=sharing)
## Clone the model repo
```bash
git clone https://huggingface.co/shahrukhx01/bert-multitask-query-classifiers
```
```python
%cd bert-multitask-query-classifiers/
```
## Load model
```python
from multitask_model import BertForSequenceClassification
from transformers import AutoTokenizer
import torch
model = BertForSequenceClassification.from_pretrained(
"shahrukhx01/bert-multitask-query-classifiers",
task_labels_map={"quora_keyword_pairs": 2, "spaadia_squad_pairs": 2},
)
tokenizer = AutoTokenizer.from_pretrained("shahrukhx01/bert-multitask-query-classifiers")
```
## Run inference on both Tasks
```python
from multitask_model import BertForSequenceClassification
from transformers import AutoTokenizer
import torch
model = BertForSequenceClassification.from_pretrained(
"shahrukhx01/bert-multitask-query-classifiers",
task_labels_map={"quora_keyword_pairs": 2, "spaadia_squad_pairs": 2},
)
tokenizer = AutoTokenizer.from_pretrained("shahrukhx01/bert-multitask-query-classifiers")
## Keyword vs Statement/Question Classifier
input = ["keyword query", "is this a keyword query?"]
task_name="quora_keyword_pairs"
sequence = tokenizer(input, padding=True, return_tensors="pt")['input_ids']
logits = model(sequence, task_name=task_name)[0]
predictions = torch.argmax(torch.softmax(logits, dim=1).detach().cpu(), axis=1)
for input, prediction in zip(input, predictions):
print(f"task: {task_name}, input: {input} \n prediction=> {prediction}")
print()
## Statement vs Question Classifier
input = ["where is berlin?", "is this a keyword query?", "Berlin is in Germany."]
task_name="spaadia_squad_pairs"
sequence = tokenizer(input, padding=True, return_tensors="pt")['input_ids']
logits = model(sequence, task_name=task_name)[0]
predictions = torch.argmax(torch.softmax(logits, dim=1).detach().cpu(), axis=1)
for input, prediction in zip(input, predictions):
print(f"task: {task_name}, input: {input} \n prediction=> {prediction}")
print()
``` | [
-0.2791471779346466,
-0.7417392730712891,
0.2739560008049011,
0.12231770157814026,
-0.13490530848503113,
-0.000757138361223042,
-0.39069026708602905,
-0.19245807826519012,
-0.1497911512851715,
0.26080888509750366,
-0.7578765749931335,
-0.3981489837169647,
-0.7264307737350464,
-0.0775604397058487,
-0.29439613223075867,
1.1054505109786987,
0.026132404804229736,
-0.014449644833803177,
-0.2406357377767563,
-0.28241947293281555,
-0.5055541396141052,
-0.4821110963821411,
-0.602415919303894,
-0.29596590995788574,
0.3796918988227844,
0.31470993161201477,
0.28207913041114807,
0.11195220053195953,
0.3738629221916199,
0.4839096963405609,
0.2742060124874115,
0.2654597759246826,
-0.12597477436065674,
0.329267293214798,
0.09835769236087799,
-0.5076669454574585,
-0.19230154156684875,
0.012227319180965424,
0.4924365282058716,
0.3230533301830292,
0.15692579746246338,
0.333061546087265,
0.3076643943786621,
0.5465661883354187,
-0.5904935002326965,
0.6439262628555298,
-0.7545271515846252,
-0.19159255921840668,
-0.07054836302995682,
-0.03336320444941521,
-0.35037392377853394,
-0.04431425780057907,
0.23240917921066284,
-0.3521243929862976,
0.5729398131370544,
-0.07058648765087128,
1.0079870223999023,
0.4306071996688843,
-0.29499414563179016,
-0.46325191855430603,
-0.3716473877429962,
1.0387452840805054,
-0.6317338943481445,
0.2815679907798767,
0.2843987047672272,
0.12452715635299683,
0.11288797855377197,
-0.8151975870132446,
-0.8995106816291809,
-0.20360174775123596,
-0.23059716820716858,
0.2434632033109665,
0.0458594411611557,
0.09274230152368546,
0.1799846887588501,
-0.0074957022443413734,
-0.6640095114707947,
-0.3033654987812042,
-0.6257662773132324,
-0.20467904210090637,
0.5634056925773621,
0.19804075360298157,
-0.08080912381410599,
-0.4426693320274353,
-0.3571796417236328,
-0.4325806200504303,
-0.1397378295660019,
0.3546070456504822,
0.12499278038740158,
0.44428548216819763,
-0.049307681620121,
0.5149935483932495,
-0.39300036430358887,
0.881005048751831,
0.3031372129917145,
-0.2707767188549042,
0.6673436164855957,
-0.5213397741317749,
-0.2810532748699188,
-0.020479654893279076,
0.9852694272994995,
0.3164537847042084,
0.038201138377189636,
-0.20038387179374695,
0.052639253437519073,
0.1968340426683426,
0.19568592309951782,
-0.7010000348091125,
-0.3539779782295227,
0.5684887766838074,
-0.35324615240097046,
-0.2709994316101074,
-0.030197568237781525,
-0.7052296996116638,
-0.12172458320856094,
0.005709387827664614,
0.8184289336204529,
-0.46180960536003113,
-0.12770162522792816,
-0.017869792878627777,
-0.14462855458259583,
0.29626479744911194,
0.002610198687762022,
-0.7178584337234497,
0.006626604590564966,
0.3726576864719391,
0.7205935716629028,
-0.09871792048215866,
-0.7318605184555054,
-0.1333652287721634,
-0.19853690266609192,
0.059271689504384995,
0.531348466873169,
-0.2501034438610077,
-0.25504574179649353,
-0.1963028907775879,
0.2309405505657196,
-0.7011940479278564,
-0.30313780903816223,
0.5175321698188782,
-0.4252454340457916,
0.5180718898773193,
-0.3881055414676666,
-0.5645299553871155,
-0.5621715188026428,
0.2538447678089142,
-0.5061945915222168,
1.333739161491394,
0.12511703372001648,
-0.8920952677726746,
0.3543899655342102,
-0.7476339936256409,
-0.40577608346939087,
-0.14378289878368378,
-0.04092591628432274,
-0.5847277641296387,
-0.28184080123901367,
0.28291603922843933,
0.9037623405456543,
-0.22941920161247253,
0.2956814467906952,
-0.20180776715278625,
-0.23199521005153656,
0.20580708980560303,
-0.2245236188173294,
0.8307732343673706,
0.13924995064735413,
-0.7755922079086304,
0.43451809883117676,
-0.5549886226654053,
0.203545942902565,
0.19498012959957123,
-0.4080270826816559,
0.12128663063049316,
0.026219699531793594,
0.17729808390140533,
0.46114304661750793,
0.46337103843688965,
-0.6138013601303101,
0.18544885516166687,
-0.2930878698825836,
0.5724900364875793,
0.6995868682861328,
-0.2594439387321472,
0.0819186121225357,
-0.6488645672798157,
0.28172051906585693,
0.14504024386405945,
-0.09178589284420013,
0.037469785660505295,
-0.6304560303688049,
-1.0355985164642334,
0.04002128913998604,
0.2795340120792389,
0.827181339263916,
-0.8283910751342773,
0.5689603090286255,
-0.23538683354854584,
-0.7611726522445679,
-0.5083720088005066,
0.047907713800668716,
0.4419751465320587,
0.5531890988349915,
0.5017327070236206,
0.04501368850469589,
-0.6603370904922485,
-0.6950874328613281,
-0.370248407125473,
-0.1391455978155136,
0.16444510221481323,
0.4972669780254364,
0.8854972720146179,
-0.11717672646045685,
0.7353485226631165,
-0.5806564688682556,
-0.4368172585964203,
-0.49291953444480896,
0.3507826030254364,
0.40581321716308594,
0.7382487654685974,
0.4507809579372406,
-0.7853718996047974,
-0.5267218351364136,
-0.5422196984291077,
-0.6360019445419312,
0.36069855093955994,
-0.23214091360569,
-0.07653440535068512,
0.3278866708278656,
0.3461451828479767,
-0.8070152997970581,
0.26724761724472046,
0.30483222007751465,
-0.4443688988685608,
0.6711477637290955,
-0.10792655497789383,
0.2202414870262146,
-1.3419452905654907,
0.08289625495672226,
-0.0664847120642662,
0.07939810305833817,
-0.48628684878349304,
0.01291583850979805,
0.04232174530625343,
0.10840217769145966,
-0.43258270621299744,
0.5715659260749817,
-0.27612006664276123,
0.28037047386169434,
-0.13289648294448853,
-0.07054019719362259,
-0.11311714351177216,
0.9807318449020386,
-0.03645860776305199,
0.8728183507919312,
0.766781747341156,
-0.7487969994544983,
0.6253104209899902,
0.3870644271373749,
-0.47043707966804504,
0.21036697924137115,
-0.764724612236023,
0.17388151586055756,
-0.0522000789642334,
0.26348820328712463,
-1.5681856870651245,
-0.1563410758972168,
0.22878332436084747,
-0.7825307846069336,
0.16350701451301575,
0.13270144164562225,
-0.7021065950393677,
-0.5753443837165833,
-0.2520831227302551,
0.42343947291374207,
0.4363304376602173,
-0.3504113256931305,
0.5128690004348755,
0.30544227361679077,
0.013432015664875507,
-0.9291507005691528,
-0.6462222337722778,
-0.4296777844429016,
-0.15948162972927094,
-0.5469524264335632,
0.4149326980113983,
-0.00034358820994384587,
0.23927909135818481,
0.11436392366886139,
-0.2010907679796219,
-0.19193695485591888,
0.05753638967871666,
0.3664664924144745,
0.5105971097946167,
0.03523324802517891,
0.2973051071166992,
-0.1576690375804901,
0.16864745318889618,
0.12036238610744476,
-0.2470889389514923,
0.8046466112136841,
-0.3440564274787903,
-0.12464366853237152,
-0.24147313833236694,
0.06890818476676941,
0.5712234973907471,
-0.25687289237976074,
0.9579887986183167,
1.1479616165161133,
-0.3733871579170227,
0.1059468537569046,
-0.7137429118156433,
-0.32483595609664917,
-0.47662562131881714,
0.6781208515167236,
-0.5899659991264343,
-0.767497181892395,
0.41504910588264465,
0.165877103805542,
0.18462224304676056,
0.9515563249588013,
0.7531876564025879,
-0.15314708650112152,
1.018195390701294,
0.4340798258781433,
-0.19342151284217834,
0.3738129734992981,
-0.9000511765480042,
0.14851972460746765,
-0.8537076711654663,
-0.4664061963558197,
-0.5036869049072266,
-0.3313179910182953,
-0.6788522005081177,
-0.5142807364463806,
0.37570908665657043,
0.034820057451725006,
-0.2880735993385315,
0.5197616815567017,
-0.9163169264793396,
-0.0735863521695137,
0.8929985761642456,
0.297159343957901,
-0.3210054636001587,
-0.06831087172031403,
-0.437694787979126,
0.19511006772518158,
-0.7179994583129883,
-0.16190814971923828,
1.433628797531128,
-0.09700614213943481,
0.4214949607849121,
-0.3376549780368805,
0.6546583771705627,
0.11930999904870987,
-0.08884585648775101,
-0.6594023108482361,
0.6650416851043701,
-0.0600375160574913,
-1.010561466217041,
-0.3241924047470093,
-0.25748157501220703,
-1.1302616596221924,
0.5047605633735657,
-0.1465204507112503,
-0.8739169239997864,
-0.040070489048957825,
-0.0632004663348198,
-0.605482280254364,
0.33445972204208374,
-0.6582674980163574,
1.2232259511947632,
-0.09111517667770386,
-0.3702845871448517,
-0.2535504400730133,
-0.7790822982788086,
0.25255173444747925,
0.1518261581659317,
0.02860182709991932,
-0.27822455763816833,
0.04589199274778366,
1.362255334854126,
-0.15292803943157196,
0.7520822882652283,
-0.2258264571428299,
0.4028472304344177,
0.45243003964424133,
-0.41953322291374207,
0.33305245637893677,
-0.19893322885036469,
-0.030118072405457497,
-0.08725577592849731,
0.14424145221710205,
-0.3547741174697876,
-0.2137557417154312,
0.7784884572029114,
-0.8735012412071228,
-0.5098583698272705,
-0.7042738795280457,
-0.8789907097816467,
-0.32164955139160156,
0.32478150725364685,
0.5568282604217529,
0.39764395356178284,
0.18937240540981293,
0.2720079720020294,
0.4617437422275543,
-0.1580544114112854,
0.6115881204605103,
0.09664789587259293,
0.25064125657081604,
-0.2472182661294937,
1.020760416984558,
0.10266350209712982,
-0.07569056004285812,
0.3275648355484009,
0.05289190635085106,
-0.6941129565238953,
-0.3052593767642975,
-0.24081338942050934,
0.1947837918996811,
-0.6452710032463074,
-0.2393650859594345,
-0.9626978039741516,
-0.26578962802886963,
-0.7356799840927124,
0.06959961354732513,
-0.14738018810749054,
-0.38480138778686523,
-0.23609685897827148,
0.14883072674274445,
0.4930662512779236,
0.42609694600105286,
0.15369057655334473,
0.3539702296257019,
-0.6327046155929565,
0.4810341000556946,
0.4943082630634308,
-0.026058560237288475,
-0.08109954744577408,
-0.5102291703224182,
-0.12403588742017746,
0.03418218344449997,
-0.6884271502494812,
-1.0243024826049805,
0.4307318925857544,
0.2317509651184082,
0.6339742541313171,
0.12093290686607361,
0.152613565325737,
0.6787460446357727,
-0.29702121019363403,
0.8747839331626892,
0.1405962109565735,
-0.9774547219276428,
0.5131847858428955,
0.05091535672545433,
0.4213283360004425,
0.5303806066513062,
0.3971410095691681,
-0.45987945795059204,
-0.38835597038269043,
-0.7849012613296509,
-1.0387810468673706,
1.0361601114273071,
0.21722054481506348,
-0.01601039618253708,
0.11911913007497787,
0.004751550033688545,
0.018373046070337296,
0.536991536617279,
-0.679297149181366,
-0.6396929621696472,
-0.3219214379787445,
-0.3499853014945984,
-0.22324605286121368,
-0.10586610436439514,
0.11468753963708878,
-0.6537677049636841,
0.826536238193512,
-0.01116896327584982,
0.8537492752075195,
0.23639553785324097,
-0.1800253540277481,
0.2681558132171631,
0.27467504143714905,
0.5806347131729126,
0.7026872038841248,
-0.27956217527389526,
-0.1153925210237503,
0.3014105260372162,
-0.47595953941345215,
0.030974777415394783,
0.37458673119544983,
0.24419519305229187,
0.16882148385047913,
0.3281523585319519,
1.0839265584945679,
0.09362030774354935,
-0.44308769702911377,
0.36568766832351685,
0.11893709003925323,
-0.38397741317749023,
-0.37770015001296997,
0.03673050180077553,
0.1827142834663391,
0.42128756642341614,
0.4690733850002289,
0.26338890194892883,
0.06514503806829453,
-0.5059362649917603,
0.23944565653800964,
0.5268771648406982,
-0.10130753368139267,
-0.08636289834976196,
0.9919117093086243,
0.02093447744846344,
-0.012058529071509838,
0.6684064269065857,
-0.38369041681289673,
-1.0204607248306274,
0.8017469644546509,
0.15939070284366608,
0.8327747583389282,
-0.033489860594272614,
0.0750046968460083,
0.6550022959709167,
0.20320911705493927,
-0.04591536894440651,
0.5985853672027588,
-0.22489477694034576,
-0.8468916416168213,
-0.26238691806793213,
-0.6336165070533752,
-0.17614546418190002,
0.34402787685394287,
-0.559211254119873,
-0.035936176776885986,
-0.18008318543434143,
-0.32242125272750854,
0.2698460817337036,
0.4752867817878723,
-1.0093238353729248,
0.3194451332092285,
-0.11059869825839996,
0.5448097586631775,
-0.6608144044876099,
1.085975170135498,
0.7916234731674194,
-0.3650105893611908,
-0.8754172325134277,
-0.11625639349222183,
-0.29101234674453735,
-1.0806585550308228,
0.9205930829048157,
0.478908509016037,
0.20024897158145905,
0.05132807418704033,
-0.3093957006931305,
-0.8806865215301514,
1.1146928071975708,
-0.02030579000711441,
-0.24197213351726532,
-0.4178352653980255,
0.015146992169320583,
0.1039409264922142,
-0.0692603811621666,
0.3211122155189514,
0.49598774313926697,
0.5349422097206116,
-0.04753178358078003,
-1.0360236167907715,
0.17983783781528473,
-0.21092486381530762,
-0.256166011095047,
0.23280692100524902,
-0.702716052532196,
1.372056484222412,
-0.42702630162239075,
-0.023684358224272728,
0.08756022155284882,
0.6562215089797974,
0.33651161193847656,
0.20365995168685913,
0.6386777758598328,
0.6173421144485474,
0.6157283186912537,
-0.43257200717926025,
0.8921266794204712,
-0.6077370643615723,
0.853323221206665,
0.955089807510376,
0.16114197671413422,
0.7934387922286987,
0.3297652006149292,
-0.4200841188430786,
0.4942493140697479,
0.6962838172912598,
-0.3332499563694,
0.745728611946106,
0.1495492160320282,
-0.1440633237361908,
-0.17442473769187927,
0.30803149938583374,
-0.4197803735733032,
0.6631019115447998,
0.3371446132659912,
-0.25277119874954224,
-0.138685405254364,
0.1577683538198471,
-0.0028547823894768953,
-0.41605520248413086,
-0.14278407394886017,
0.5372611880302429,
-0.34936824440956116,
-0.9897898435592651,
0.9709420204162598,
0.12084878981113434,
1.1610139608383179,
-0.5171843767166138,
0.08059301227331161,
0.31501394510269165,
0.46952787041664124,
-0.10957436263561249,
-0.6371516585350037,
0.10937589406967163,
-0.3864026963710785,
-0.03535838797688484,
-0.05914108827710152,
0.6832109689712524,
-0.6346362829208374,
-0.6518633961677551,
0.09204813092947006,
0.5350327491760254,
0.19820713996887207,
-0.29698100686073303,
-1.3321194648742676,
-0.15940816700458527,
0.03837639465928078,
-0.34694090485572815,
0.15653882920742035,
0.06146730110049248,
0.4491586983203888,
0.5519312024116516,
0.49268949031829834,
-0.14868023991584778,
0.3981010615825653,
-0.4600830376148224,
0.7368645071983337,
-0.5669546127319336,
-0.2810198664665222,
-0.8369417190551758,
0.3912174701690674,
0.07599110901355743,
-0.6075509786605835,
0.9067996144294739,
0.5615847706794739,
1.0555821657180786,
-0.2742893695831299,
0.8859896063804626,
-0.5319914817810059,
0.43115171790122986,
-0.3064408004283905,
0.6810519099235535,
-0.7533433437347412,
-0.27642691135406494,
-0.1713344007730484,
-0.5841768383979797,
0.2012040913105011,
0.8884803652763367,
-0.24781855940818787,
0.3692180812358856,
0.9837427139282227,
0.7515972256660461,
0.11389128863811493,
-0.1486954540014267,
0.06488196551799774,
0.1253703385591507,
-0.030572587624192238,
0.8727198839187622,
0.37269216775894165,
-0.7633801102638245,
0.7158136367797852,
-0.8311662077903748,
0.09882450103759766,
-0.28111040592193604,
-0.36836329102516174,
-1.0696749687194824,
-1.1489492654800415,
-0.36887818574905396,
-0.48921680450439453,
0.011570615693926811,
0.844245970249176,
0.7857950925827026,
-1.0052169561386108,
-0.36839476227760315,
-0.09112118929624557,
0.1563991904258728,
-0.57887864112854,
-0.31940463185310364,
0.7418729662895203,
-0.7915078401565552,
-0.9073213338851929,
0.0632593184709549,
-0.36773452162742615,
-0.25962477922439575,
-0.12635579705238342,
0.13248910009860992,
-0.6761020421981812,
-0.09205158054828644,
0.5837331414222717,
0.05752414092421532,
-0.8953206539154053,
-0.11188967525959015,
0.16868966817855835,
-0.21178266406059265,
0.026492828503251076,
0.5075682997703552,
-0.9693185091018677,
0.24800685048103333,
0.602617621421814,
0.5594457387924194,
0.6938946843147278,
-0.2948855757713318,
0.07508141547441483,
-0.709596574306488,
0.1781904697418213,
0.19200648367404938,
0.46771517395973206,
0.07199462503194809,
-0.295182466506958,
0.39055120944976807,
0.4359124004840851,
-0.6542243957519531,
-0.7775725722312927,
-0.14251646399497986,
-1.0925644636154175,
-0.42156022787094116,
1.1446130275726318,
-0.2350747287273407,
-0.1946815550327301,
-0.08745209872722626,
-0.19893226027488708,
0.7309030890464783,
-0.4634082019329071,
0.7725289463996887,
0.7823919057846069,
-0.2899746596813202,
-0.035541705787181854,
-0.673585057258606,
0.48355379700660706,
0.7251095175743103,
-0.6183294057846069,
-0.21816232800483704,
0.03236161172389984,
0.48488444089889526,
0.3922985792160034,
0.5360613465309143,
0.3726693391799927,
0.28921571373939514,
-0.008281562477350235,
0.03721950203180313,
-0.21233540773391724,
-0.16115817427635193,
0.11122839897871017,
0.3825357258319855,
-0.3047734498977661,
-1.071954369544983
] |
Yntec/ChiliConCarne | Yntec | "2023-10-30T17:24:31Z" | 11,435 | 2 | diffusers | [
"diffusers",
"stable-diffusion",
"stable-diffusion-diffusers",
"text-to-image",
"license:creativeml-openrail-m",
"endpoints_compatible",
"has_space",
"diffusers:StableDiffusionPipeline",
"region:us"
] | text-to-image | "2023-10-30T10:24:43Z" | ---
license: creativeml-openrail-m
library_name: diffusers
pipeline_tag: text-to-image
tags:
- stable-diffusion
- stable-diffusion-diffusers
- diffusers
- text-to-image
---
# Chili Con Carne
Model specialized in Food Photography.
Samples and prompts:
![Samples](https://cdn-uploads.huggingface.co/production/uploads/63239b8370edc53f51cd5d42/-S5M6qKMDSjIYjBmWnag1.png)
(Click for larger)
- Top Left: hamburger with melted cheese splashing on top of it, highly stylized, 4k, unreal engine 5 render, food art, food photography, realistic render, smoke, mist, dramatic lighting, cinematic lighting, rule of thirds, depth of field, cinematic bloom, art by
- Top Right: lemon icecream with mapple syrup and chocolate, highly stylized, 4k, unreal engine 5 render, food art, food photography, realistic render, smoke, mist, dramatic lighting, cinematic lighting, rule of thirds, depth of field, cinematic bloom, art by
- Bottom Left: pizza, raining cheese, roast jalapeños with tomato, highly stylized, 4k, unreal engine 5 render, food art, food photography, realistic render, smoke, mist, dramatic lighting, cinematic lighting, rule of thirds, depth of field, cinematic bloom, art by
- Bottom Right: Chili con Carne, classic ground beef, beans, meatballs, highly stylized, 4k, unreal engine 5 render, food art, food photography, realistic render, smoke, mist, dramatic lighting, cinematic lighting, rule of thirds, depth of field, cinematic bloom, art by | [
-0.4639612138271332,
-0.3594799339771271,
0.5007856488227844,
0.1290982961654663,
-0.2128053456544876,
0.16757656633853912,
0.14177271723747253,
0.03490052372217178,
0.3818145990371704,
0.44909173250198364,
-0.587605357170105,
-0.6320081949234009,
-0.43972793221473694,
0.0230913944542408,
-0.4957677721977234,
0.5501019954681396,
0.23223724961280823,
0.25042375922203064,
0.05130329355597496,
0.1581643521785736,
-0.45880043506622314,
-0.153163343667984,
-0.8304557204246521,
-0.2080860733985901,
0.7200851440429688,
0.9874517917633057,
0.8876113295555115,
0.35573986172676086,
0.050297122448682785,
0.30802422761917114,
0.03743334859609604,
-0.24062179028987885,
-0.22180919349193573,
-0.0880051702260971,
-0.3498363494873047,
-0.34804514050483704,
-0.014560247771441936,
0.2541548013687134,
-0.03763313218951225,
0.3726729452610016,
-0.25639939308166504,
0.1594998836517334,
-0.08356498926877975,
0.609901487827301,
-0.625536322593689,
-0.10442087799310684,
-0.02122565172612667,
0.022948680445551872,
-0.14635217189788818,
-0.039590541273355484,
-0.23167946934700012,
-0.1612434983253479,
-0.20894008874893188,
-1.0046271085739136,
0.3126834034919739,
-0.025459779426455498,
0.9828028082847595,
0.13981316983699799,
-0.27425241470336914,
-0.15821553766727448,
-1.1384391784667969,
0.4027349650859833,
-0.678810179233551,
0.5388622283935547,
-0.18181003630161285,
0.8940366506576538,
-0.4696323871612549,
-1.2007861137390137,
-1.0031989812850952,
0.004257860127836466,
0.22533680498600006,
0.7922745943069458,
-0.517341136932373,
-0.4484064280986786,
0.32109880447387695,
0.6207901835441589,
-0.8452469706535339,
0.17333023250102997,
-0.35912075638771057,
0.33019229769706726,
0.38387054204940796,
0.31122636795043945,
0.3678378760814667,
0.08739226311445236,
-0.6844281554222107,
-0.5520265102386475,
-0.24758915603160858,
0.6292662024497986,
0.05727274343371391,
-0.2066354751586914,
-0.3953116536140442,
0.7322972416877747,
-0.3020617961883545,
0.7818992733955383,
0.36541748046875,
-0.06404684484004974,
0.1729862540960312,
-0.07950146496295929,
-0.4860910177230835,
-0.16827934980392456,
1.0018948316574097,
1.153067946434021,
-0.030823763459920883,
0.06956157833337784,
-0.05697697773575783,
0.34162256121635437,
0.1563764065504074,
-0.9497954249382019,
-0.5276140570640564,
0.2330121546983719,
-0.38085195422172546,
-0.27383342385292053,
0.4387038052082062,
-0.7276107668876648,
-0.34493908286094666,
-0.10807709395885468,
-0.12435737997293472,
-0.02043105848133564,
-0.337014764547348,
0.2915903329849243,
-0.7065679430961609,
0.8104660511016846,
0.11292996257543564,
-0.6613644957542419,
0.4354112148284912,
0.27030476927757263,
0.5462795495986938,
0.18868425488471985,
0.24003393948078156,
0.06080678105354309,
0.42094388604164124,
-0.39676234126091003,
1.4054287672042847,
-0.7773425579071045,
-0.5157495737075806,
-0.4772202670574188,
0.587916374206543,
0.2884742021560669,
-0.6259912848472595,
0.962085485458374,
-0.27570489048957825,
-0.31846925616264343,
-0.642988920211792,
-0.43719109892845154,
-0.48267045617103577,
0.2264925092458725,
-0.7589601278305054,
1.0160056352615356,
0.4321257472038269,
-0.7619381546974182,
0.7685030698776245,
-0.3626261055469513,
-0.3094134032726288,
0.4831850528717041,
-0.734352707862854,
-0.08416666090488434,
0.4376438558101654,
0.08960649371147156,
0.35673782229423523,
-0.7754389643669128,
0.10504207760095596,
-0.32678088545799255,
-0.13295616209506989,
0.33013245463371277,
0.11033093929290771,
0.5241807699203491,
0.7347415089607239,
-0.5242789387702942,
0.44095054268836975,
-1.3447164297103882,
-0.20512975752353668,
0.1937723308801651,
0.08686568588018417,
-0.14110171794891357,
-0.4153040647506714,
0.3856595456600189,
0.3952381908893585,
-0.1561761498451233,
-0.5353941321372986,
-0.059382498264312744,
0.05126769468188286,
0.4257467985153198,
0.4587993025779724,
0.28662341833114624,
0.5969470739364624,
-0.5416446924209595,
0.8709309697151184,
0.48564413189888,
0.48091429471969604,
0.008743694983422756,
-0.5275306105613708,
-0.7668591141700745,
-0.4885445237159729,
0.3243171274662018,
0.8507707118988037,
-0.728076159954071,
0.47522062063217163,
0.6931912899017334,
-1.005614161491394,
-0.21619342267513275,
-0.3842914402484894,
0.011298932135105133,
0.8870201706886292,
-0.02738451585173607,
-0.6567330956459045,
-0.48175668716430664,
-1.4765506982803345,
0.06375464051961899,
0.47260603308677673,
-0.4476655125617981,
0.05084504559636116,
0.3203328847885132,
-0.010349702090024948,
0.6011198163032532,
-0.5905842781066895,
-0.06598212569952011,
-0.4369224011898041,
-0.04311046376824379,
0.8379765748977661,
0.5996896624565125,
1.0120271444320679,
-0.7479596138000488,
-0.6154975295066833,
-0.1622152477502823,
-0.6273435950279236,
0.3620489239692688,
0.16446448862552643,
-0.10986901819705963,
-0.6420294642448425,
0.6139343976974487,
-0.6797821521759033,
0.853327214717865,
0.2767806649208069,
-0.7234902381896973,
0.6817437410354614,
-0.24377653002738953,
0.7016411423683167,
-1.4334274530410767,
-0.07394355535507202,
0.5539988279342651,
-0.1136687844991684,
-0.4389621317386627,
0.46381911635398865,
-0.20484234392642975,
-0.5707350969314575,
-0.9673958420753479,
0.6061346530914307,
-0.6623855829238892,
0.1569041609764099,
-0.3211142122745514,
-0.41174012422561646,
0.4008479118347168,
0.349344402551651,
0.019193582236766815,
0.5257655382156372,
1.2634055614471436,
-0.9002002477645874,
1.075502872467041,
-0.10373223572969437,
-0.7889465689659119,
0.9275263547897339,
-1.0647151470184326,
-0.14638559520244598,
-0.11965618282556534,
0.2689083218574524,
-1.304447889328003,
-0.6209274530410767,
0.7868459224700928,
-0.29369473457336426,
-0.27509719133377075,
-0.0785229280591011,
-1.162265419960022,
-0.7343987226486206,
0.08050860464572906,
0.43078190088272095,
0.5410275459289551,
-0.12595722079277039,
0.6558091640472412,
0.19082607328891754,
0.3491598665714264,
0.11894983053207397,
-0.7067171335220337,
-0.24824652075767517,
-0.4031199514865875,
-0.4400060474872589,
0.42936187982559204,
-0.2989271283149719,
-0.27813538908958435,
-0.10126980394124985,
0.1019083634018898,
-0.31552404165267944,
-0.23737891018390656,
0.6610706448554993,
0.03151024505496025,
0.05924734100699425,
-0.5573769807815552,
-0.20879173278808594,
0.2608707845211029,
-0.22686277329921722,
-0.07498227059841156,
0.7523320913314819,
-0.033753760159015656,
0.17993836104869843,
-1.1579035520553589,
0.29106369614601135,
0.7703370451927185,
0.22379207611083984,
0.7083653211593628,
0.7678192853927612,
-0.462197870016098,
0.2121017575263977,
-0.4997016489505768,
-0.3546925485134125,
-0.47014740109443665,
-0.3932793438434601,
-0.7486279010772705,
-0.27289700508117676,
1.0861848592758179,
-0.3138576149940491,
-0.1959448754787445,
0.6750451922416687,
0.32385924458503723,
-0.37947893142700195,
0.6053194999694824,
0.3192920684814453,
0.05365947261452675,
0.3632396161556244,
-0.5618584156036377,
-0.3783014714717865,
-0.6317178010940552,
-0.7309182286262512,
-0.7758808732032776,
-0.554087221622467,
-0.520176112651825,
-0.6436129808425903,
0.2791556715965271,
-0.2381335198879242,
-0.5075585842132568,
0.42735737562179565,
-0.5894046425819397,
0.7462372779846191,
0.7695459127426147,
0.5612703561782837,
0.08548576384782791,
0.04323773458600044,
-0.8000794649124146,
-0.08613164722919464,
-0.753979504108429,
-0.24014484882354736,
0.4995305836200714,
0.06751850247383118,
1.1148256063461304,
-0.36728501319885254,
0.4101957380771637,
0.08507434278726578,
-0.1541583091020584,
-0.728693962097168,
0.5455873608589172,
-0.17268308997154236,
-0.8607783317565918,
0.023252733051776886,
-0.28609713912010193,
-0.6581892967224121,
-0.12099821120500565,
-0.13274268805980682,
-0.2935335040092468,
0.6080568432807922,
0.34047403931617737,
-0.726318895816803,
0.3125591278076172,
-0.608866274356842,
1.1131511926651,
-0.3766518831253052,
-0.5066503882408142,
0.4543280601501465,
-0.3274003565311432,
0.11183872073888779,
0.7954347729682922,
0.7129442691802979,
0.0844917744398117,
0.09578999876976013,
0.5384785532951355,
-0.26857903599739075,
0.7563053369522095,
-0.15988291800022125,
-0.00898878462612629,
0.35250571370124817,
0.22471842169761658,
0.24413847923278809,
0.598400354385376,
-0.2476629763841629,
-0.37680068612098694,
-0.42284148931503296,
-0.32330429553985596,
-0.7212850451469421,
0.7568086981773376,
-0.4621039927005768,
-0.3780350983142853,
-0.7957273721694946,
-0.5389424562454224,
0.2910468578338623,
0.33824852108955383,
1.063994288444519,
0.33990445733070374,
-0.6329210996627808,
-0.013362549245357513,
0.6533912420272827,
-0.15224699676036835,
0.5560194253921509,
0.3600171208381653,
-0.20761173963546753,
-0.7549748420715332,
0.6298871040344238,
-0.19440336525440216,
-0.04624028876423836,
0.23975612223148346,
0.24415642023086548,
-0.2035539299249649,
-0.18604648113250732,
-0.5999366641044617,
-0.019736072048544884,
-0.4403824508190155,
-0.21124160289764404,
-0.22614552080631256,
-0.10537808388471603,
-0.4087259769439697,
-0.4527397155761719,
-0.6513904929161072,
-0.5689713954925537,
-0.8734493255615234,
-0.3594857454299927,
0.5428691506385803,
0.640381395816803,
-0.01850198768079281,
0.47947269678115845,
-0.3456501066684723,
0.5379034280776978,
0.3882947862148285,
0.21978971362113953,
-0.13337118923664093,
-0.5638675093650818,
0.26416778564453125,
-0.16863098740577698,
-0.5794687867164612,
-0.8182631731033325,
0.5842494964599609,
-0.15173697471618652,
0.5399265289306641,
0.6965901255607605,
0.001197967678308487,
0.8867189288139343,
-0.3640160858631134,
0.9678131937980652,
0.8323176503181458,
-0.5049296617507935,
0.5340738296508789,
-0.4758365750312805,
0.8410375714302063,
0.8526260256767273,
0.7218328714370728,
-0.6417756080627441,
-0.5681960582733154,
-0.835056483745575,
-1.045554518699646,
-0.029186589643359184,
0.10398667305707932,
0.17444640398025513,
-0.1391974240541458,
0.4586120545864105,
0.2351001650094986,
0.19109757244586945,
-1.0310860872268677,
-0.6867483258247375,
-0.5824106931686401,
0.20062874257564545,
0.11660945415496826,
-0.23561233282089233,
-0.23009322583675385,
-0.9703899025917053,
0.46570467948913574,
0.40469229221343994,
-0.01933254674077034,
0.3677913248538971,
0.6599688529968262,
-0.1658981889486313,
0.42532768845558167,
0.7664884328842163,
0.9580186605453491,
-0.2517467737197876,
0.21679148077964783,
-0.5485455393791199,
0.0524585023522377,
0.24302557110786438,
-0.19940263032913208,
-0.1806659698486328,
0.11850772053003311,
-0.20330213010311127,
0.6836401224136353,
0.4735022485256195,
-0.33457309007644653,
0.2969059348106384,
-0.5805630087852478,
-0.3354779779911041,
-1.0241010189056396,
0.39723750948905945,
0.17902328073978424,
0.580402135848999,
0.506054699420929,
0.3023677468299866,
0.6505416035652161,
-0.9182811975479126,
0.2321319580078125,
0.2758404016494751,
-0.5358458161354065,
-0.45366621017456055,
0.9597399234771729,
0.09648685902357101,
-0.039295002818107605,
0.5787655711174011,
-0.30215561389923096,
-0.23591959476470947,
0.827777087688446,
0.7183521389961243,
0.5194266438484192,
-0.39795351028442383,
0.8059074282646179,
0.6570932865142822,
0.07822443544864655,
-0.29778504371643066,
1.0310133695602417,
0.19972233474254608,
-0.4578540027141571,
0.37675246596336365,
-0.4062989354133606,
-0.23203153908252716,
0.5762433409690857,
-0.8132431507110596,
0.3316126763820648,
-0.9889082908630371,
-0.1399945169687271,
0.18365579843521118,
-0.430118203163147,
-0.8997652530670166,
0.7167649865150452,
-0.05918418988585472,
1.4647009372711182,
-0.872014045715332,
0.6841894388198853,
0.8743261694908142,
-0.6949051022529602,
-1.1469260454177856,
-0.29956844449043274,
-0.12747754156589508,
-0.2113438844680786,
0.657559335231781,
0.03777423873543739,
0.16420131921768188,
-0.021225113421678543,
-0.8160872459411621,
-0.5306324362754822,
0.9271553158760071,
0.3099510967731476,
-0.9915621280670166,
-0.1258518546819687,
-0.0014463543193414807,
0.47848257422447205,
-0.8215505480766296,
0.28779712319374084,
0.5209760069847107,
0.7173036336898804,
0.9906063079833984,
-0.6028060913085938,
-0.1605851948261261,
-0.41994282603263855,
0.2970902621746063,
-0.47051194310188293,
-1.1261976957321167,
1.0279858112335205,
-0.12947392463684082,
-0.13151569664478302,
0.2250566929578781,
0.7965188026428223,
0.23678962886333466,
0.46373316645622253,
0.5837321281433105,
1.2533767223358154,
0.21554388105869293,
-0.05894674360752106,
1.2713783979415894,
0.27386951446533203,
0.04800475388765335,
1.4430509805679321,
-0.28621721267700195,
0.20327487587928772,
0.3643682897090912,
0.11779189854860306,
0.6560273766517639,
1.3692893981933594,
-0.4905471205711365,
1.0226192474365234,
0.4924507141113281,
-0.1838374137878418,
-0.18099994957447052,
-0.37997883558273315,
-0.5268261432647705,
0.6497211456298828,
0.22594964504241943,
-0.5248692631721497,
-0.24023494124412537,
0.3768290579319,
-0.29281094670295715,
0.38977834582328796,
-0.5177688002586365,
0.7760018110275269,
0.07344666123390198,
-0.360543429851532,
0.5745131373405457,
-0.0696796253323555,
0.03534495830535889,
-0.2398017793893814,
-0.3078380525112152,
-0.5035713315010071,
-0.21395064890384674,
-0.2700323164463043,
-0.9219256043434143,
0.04305586963891983,
-0.3556782603263855,
-0.428562730550766,
0.004143351223319769,
0.3016470968723297,
0.09604813903570175,
-1.2048139572143555,
0.22869548201560974,
-0.010575652122497559,
0.11481735110282898,
0.020789548754692078,
-0.908507764339447,
0.42702752351760864,
-0.3762504756450653,
0.01926315389573574,
-0.4285062849521637,
0.46522778272628784,
0.5495286583900452,
0.32359087467193604,
0.05951879546046257,
0.015848806127905846,
0.20536108314990997,
0.5707910060882568,
1.1974823474884033,
-0.8225391507148743,
-0.750684380531311,
-0.8018321990966797,
0.7508499026298523,
-0.12068499624729156,
-0.21384702622890472,
0.6534972786903381,
1.14737868309021,
1.1220844984054565,
-0.873274028301239,
0.63986736536026,
-0.43946534395217896,
0.258544921875,
-0.6352426409721375,
0.3817764222621918,
-0.660885751247406,
-0.00008648871153127402,
-0.3289773464202881,
-1.0510679483413696,
-0.26728180050849915,
0.4748089909553528,
0.13117945194244385,
-0.06339667737483978,
0.6946018934249878,
0.7144262194633484,
-0.36186543107032776,
-0.34803926944732666,
0.5220949053764343,
-0.023886822164058685,
0.12054403871297836,
0.15300323069095612,
0.8957989811897278,
-0.5067053437232971,
0.16019852459430695,
-0.6589555144309998,
-0.6016555428504944,
0.12123716622591019,
-0.7544931769371033,
-0.839996874332428,
-0.6088925004005432,
-0.2417849898338318,
-0.19473479688167572,
-0.2499546855688095,
0.5813246369361877,
1.0711112022399902,
-1.0287656784057617,
-0.624481201171875,
-0.2486116886138916,
-0.084303118288517,
-0.39312127232551575,
-0.2892340421676636,
-0.29482290148735046,
0.42334097623825073,
-0.6324840188026428,
0.36057794094085693,
0.31811121106147766,
0.26429617404937744,
0.0478626973927021,
0.3558514416217804,
-0.38478606939315796,
-0.06232059374451637,
0.450347900390625,
0.5823365449905396,
-0.630388081073761,
0.08365758508443832,
-0.23621080815792084,
0.1844802349805832,
0.27624446153640747,
1.2311418056488037,
-0.43459710478782654,
0.23674654960632324,
0.18624551594257355,
0.02309647761285305,
0.4680178165435791,
-0.034011270850896835,
0.5688912272453308,
-0.7887011170387268,
0.7001142501831055,
0.057899631559848785,
0.46586376428604126,
0.20979198813438416,
-0.5955579876899719,
0.5312569737434387,
0.31578096747398376,
-0.4826791286468506,
-0.3908998966217041,
0.47826069593429565,
-1.5739001035690308,
-0.3305874168872833,
0.7907846570014954,
0.043569229543209076,
-0.765789270401001,
0.4505006670951843,
-0.135318323969841,
0.47888898849487305,
-0.7059116363525391,
0.6979115605354309,
0.7792935967445374,
-0.26362350583076477,
-0.8449169397354126,
-0.5523864030838013,
0.4297995865345001,
-0.23143742978572845,
-0.9537758827209473,
-0.47344836592674255,
0.7900245189666748,
0.6998394727706909,
0.3931056559085846,
0.2487046867609024,
-0.3577163517475128,
0.4344843626022339,
-0.20579686760902405,
0.23890244960784912,
0.046285632997751236,
-0.6751944422721863,
0.41986051201820374,
0.22480852901935577,
0.11505737900733948,
-0.4432622194290161
] |
prajjwal1/bert-medium | prajjwal1 | "2021-10-27T18:30:16Z" | 11,413 | 2 | transformers | [
"transformers",
"pytorch",
"BERT",
"MNLI",
"NLI",
"transformer",
"pre-training",
"en",
"arxiv:1908.08962",
"arxiv:2110.01518",
"license:mit",
"endpoints_compatible",
"region:us"
] | null | "2022-03-02T23:29:05Z" | ---
language:
- en
license:
- mit
tags:
- BERT
- MNLI
- NLI
- transformer
- pre-training
---
The following model is a Pytorch pre-trained model obtained from converting Tensorflow checkpoint found in the [official Google BERT repository](https://github.com/google-research/bert).
This is one of the smaller pre-trained BERT variants, together with [bert-tiny](https://huggingface.co/prajjwal1/bert-tiny), [bert-mini](https://huggingface.co/prajjwal1/bert-mini) and [bert-small](https://huggingface.co/prajjwal1/bert-small). They were introduced in the study `Well-Read Students Learn Better: On the Importance of Pre-training Compact Models` ([arxiv](https://arxiv.org/abs/1908.08962)), and ported to HF for the study `Generalization in NLI: Ways (Not) To Go Beyond Simple Heuristics` ([arXiv](https://arxiv.org/abs/2110.01518)). These models are supposed to be trained on a downstream task.
If you use the model, please consider citing both the papers:
```
@misc{bhargava2021generalization,
title={Generalization in NLI: Ways (Not) To Go Beyond Simple Heuristics},
author={Prajjwal Bhargava and Aleksandr Drozd and Anna Rogers},
year={2021},
eprint={2110.01518},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
@article{DBLP:journals/corr/abs-1908-08962,
author = {Iulia Turc and
Ming{-}Wei Chang and
Kenton Lee and
Kristina Toutanova},
title = {Well-Read Students Learn Better: The Impact of Student Initialization
on Knowledge Distillation},
journal = {CoRR},
volume = {abs/1908.08962},
year = {2019},
url = {http://arxiv.org/abs/1908.08962},
eprinttype = {arXiv},
eprint = {1908.08962},
timestamp = {Thu, 29 Aug 2019 16:32:34 +0200},
biburl = {https://dblp.org/rec/journals/corr/abs-1908-08962.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
```
Config of this model:
- `prajjwal1/bert-medium` (L=8, H=512) [Model Link](https://huggingface.co/prajjwal1/bert-medium)
Other models to check out:
- `prajjwal1/bert-tiny` (L=2, H=128) [Model Link](https://huggingface.co/prajjwal1/bert-tiny)
- `prajjwal1/bert-mini` (L=4, H=256) [Model Link](https://huggingface.co/prajjwal1/bert-mini)
- `prajjwal1/bert-small` (L=4, H=512) [Model Link](https://huggingface.co/prajjwal1/bert-small)
Original Implementation and more info can be found in [this Github repository](https://github.com/prajjwal1/generalize_lm_nli).
Twitter: [@prajjwal_1](https://twitter.com/prajjwal_1)
| [
-0.4227505624294281,
-0.5668261051177979,
0.4675174951553345,
-0.02444453164935112,
-0.16810697317123413,
-0.30436059832572937,
-0.31650617718696594,
-0.4430510699748993,
0.11027352511882782,
0.17546144127845764,
-0.7442125678062439,
-0.34093528985977173,
-0.5222346186637878,
-0.1382872760295868,
-0.34959322214126587,
1.258940577507019,
0.07271776348352432,
0.06580185145139694,
-0.17588524520397186,
-0.25467559695243835,
-0.1623430848121643,
-0.559669554233551,
-0.5965400338172913,
-0.5105533003807068,
0.7493221759796143,
-0.0203830786049366,
0.49062320590019226,
0.2150849997997284,
0.6399102210998535,
0.2791872024536133,
-0.4029870331287384,
-0.09744570404291153,
-0.5032501816749573,
-0.2639443278312683,
0.04854221269488335,
-0.45245927572250366,
-0.5981497168540955,
0.10689180344343185,
0.7570738792419434,
0.9574185609817505,
-0.11821170896291733,
0.3736390769481659,
0.29551437497138977,
0.6240373849868774,
-0.5751108527183533,
-0.042178668081760406,
-0.32700487971305847,
-0.21713730692863464,
-0.15927349030971527,
0.2860310971736908,
-0.562473714351654,
-0.35368427634239197,
0.509522557258606,
-0.5349743366241455,
0.5595981478691101,
-0.016163483262062073,
1.4104297161102295,
0.1544378250837326,
-0.22677263617515564,
-0.12595418095588684,
-0.6446865200996399,
0.9885737299919128,
-0.9788011908531189,
0.5173024535179138,
0.033623576164245605,
0.2643653154373169,
-0.013922423124313354,
-0.9852054119110107,
-0.5913425087928772,
-0.07667843252420425,
-0.4722156524658203,
0.14577312767505646,
-0.38576826453208923,
0.15893472731113434,
0.3965822756290436,
0.38343608379364014,
-0.5960004925727844,
0.08279561996459961,
-0.58523029088974,
-0.259204626083374,
0.41922977566719055,
-0.012193780392408371,
-0.039272140711545944,
-0.41879400610923767,
-0.3486025333404541,
-0.4500255286693573,
-0.5949041843414307,
0.2585771679878235,
0.5329256057739258,
0.3983917832374573,
-0.4178975522518158,
0.43385377526283264,
-0.002513677114620805,
0.8562210202217102,
0.1426849067211151,
-0.027577277272939682,
0.44022226333618164,
-0.6765644550323486,
-0.14909064769744873,
-0.2099553942680359,
0.8168521523475647,
0.08299554139375687,
0.12104678153991699,
-0.07602258771657944,
-0.0935491994023323,
-0.40034618973731995,
0.1650221049785614,
-1.059123158454895,
-0.4222833812236786,
0.17121510207653046,
-0.726746678352356,
-0.03686722740530968,
0.17855027318000793,
-0.6365755796432495,
-0.05711204558610916,
-0.3366186320781708,
0.5243992209434509,
-0.5349318981170654,
-0.2737456262111664,
-0.14818459749221802,
-0.009065431542694569,
0.42551010847091675,
0.3967326581478119,
-0.6771811842918396,
0.07541900128126144,
0.48752373456954956,
0.9533573389053345,
0.09407907724380493,
-0.2369185835123062,
0.011480079963803291,
0.05664917081594467,
-0.19786463677883148,
0.4173312783241272,
-0.22227919101715088,
-0.18405206501483917,
-0.07717178016901016,
-0.031049998477101326,
-0.16467730700969696,
-0.35470521450042725,
0.6946051716804504,
-0.5168821215629578,
0.3577362298965454,
-0.35498449206352234,
-0.5521341562271118,
-0.26595553755760193,
0.18627694249153137,
-0.6298744082450867,
1.022265911102295,
0.0217696912586689,
-0.9708698987960815,
0.5320852398872375,
-0.6611303687095642,
-0.21979856491088867,
-0.19641874730587006,
0.13917940855026245,
-0.7220796346664429,
-0.005824965890496969,
0.2003374993801117,
0.5323406457901001,
-0.18683399260044098,
0.32454395294189453,
-0.48128625750541687,
-0.34498700499534607,
-0.10188836604356766,
-0.07674843072891235,
1.2121336460113525,
0.3037503659725189,
-0.06145436689257622,
0.20978319644927979,
-0.8455861806869507,
0.11156436055898666,
0.18279334902763367,
-0.3929602801799774,
-0.512001633644104,
-0.13224786520004272,
-0.018347403034567833,
0.030015064403414726,
0.36888837814331055,
-0.4136253893375397,
0.3714072108268738,
-0.38140562176704407,
0.42336636781692505,
0.6430341005325317,
0.07892905920743942,
0.5043524503707886,
-0.5370869040489197,
0.09898758679628372,
0.16016128659248352,
0.3267800807952881,
0.0392937995493412,
-0.5186967849731445,
-1.0354710817337036,
-0.5216973423957825,
0.5797553658485413,
0.28459709882736206,
-0.5856239795684814,
0.6053824424743652,
-0.31632548570632935,
-0.7133442163467407,
-0.6240386366844177,
0.20883327722549438,
0.31957149505615234,
0.4983007609844208,
0.45247557759284973,
-0.1711881160736084,
-0.742391049861908,
-0.8894343972206116,
-0.224783256649971,
-0.3540726900100708,
-0.2164047211408615,
0.3425457179546356,
0.7004183530807495,
-0.5428294539451599,
1.088240146636963,
-0.39587166905403137,
-0.3103483021259308,
-0.33843374252319336,
0.35873690247535706,
0.716630220413208,
0.8733590841293335,
0.8340409398078918,
-0.542121946811676,
-0.4325040578842163,
-0.3986879885196686,
-0.5777114033699036,
0.118816077709198,
-0.20103396475315094,
-0.2902037799358368,
0.17509005963802338,
0.40716153383255005,
-0.613824725151062,
0.41363197565078735,
0.3101513087749481,
-0.37196049094200134,
0.4626193046569824,
-0.23226134479045868,
-0.09689310938119888,
-1.1533453464508057,
0.3626270294189453,
0.04619820788502693,
-0.05149662494659424,
-0.5684460997581482,
0.15551014244556427,
0.004838031716644764,
0.12087927758693695,
-0.1923162192106247,
0.6809486746788025,
-0.5710372924804688,
0.04881385341286659,
0.12893395125865936,
-0.1520434021949768,
-0.04685765877366066,
0.49216708540916443,
-0.02052847482264042,
0.5362552404403687,
0.31373608112335205,
-0.46781718730926514,
-0.07612338662147522,
0.45809677243232727,
-0.46044138073921204,
0.17618361115455627,
-1.1244921684265137,
0.1522160917520523,
-0.046294182538986206,
0.421637624502182,
-0.9683014750480652,
-0.24220776557922363,
0.2951767146587372,
-0.4185406565666199,
0.3928217887878418,
-0.3679875433444977,
-0.7317125797271729,
-0.463735431432724,
-0.28965452313423157,
0.36655527353286743,
0.7695778012275696,
-0.6619768142700195,
0.6856934428215027,
-0.09262646734714508,
-0.02470393106341362,
-0.47966474294662476,
-0.7141997814178467,
-0.44763368368148804,
-0.019188737496733665,
-0.7156978249549866,
0.3575395941734314,
-0.2661374807357788,
-0.061112117022275925,
0.1690136343240738,
-0.019012920558452606,
-0.26675519347190857,
-0.04606390744447708,
0.1706070601940155,
0.5956133604049683,
-0.30299100279808044,
0.1410531848669052,
0.07689451426267624,
0.22888118028640747,
-0.04503839835524559,
-0.07284180074930191,
0.5895271897315979,
-0.3115805685520172,
-0.18108028173446655,
-0.5943417549133301,
0.11143220216035843,
0.39765098690986633,
-0.02913191355764866,
1.123258352279663,
0.9432136416435242,
-0.383493036031723,
0.03679540380835533,
-0.6563268303871155,
-0.603969156742096,
-0.4757508337497711,
0.19573505222797394,
-0.26606711745262146,
-0.771858274936676,
0.6615063548088074,
0.04750794544816017,
0.22732359170913696,
0.7909308671951294,
0.4991706907749176,
-0.29980432987213135,
0.7612170577049255,
0.8131782412528992,
-0.0005181775777600706,
0.82252037525177,
-0.7197140455245972,
0.270568311214447,
-0.951413094997406,
-0.21067024767398834,
-0.6193473935127258,
-0.41571882367134094,
-0.6299163103103638,
-0.19783087074756622,
0.285170316696167,
0.3707667887210846,
-0.5135399103164673,
0.3997223675251007,
-0.6035372018814087,
0.16775719821453094,
0.8810694813728333,
0.3061666488647461,
0.06302381306886673,
-0.011246653273701668,
-0.41856664419174194,
-0.04179973155260086,
-1.0027780532836914,
-0.364177405834198,
1.3699955940246582,
0.41981661319732666,
0.6208853125572205,
0.3137713670730591,
1.075724720954895,
0.029387719929218292,
0.32777461409568787,
-0.6396973133087158,
0.47031348943710327,
-0.06170152127742767,
-1.0919629335403442,
-0.25868934392929077,
-0.6516817212104797,
-1.0524457693099976,
0.08036578446626663,
-0.3923652470111847,
-0.7329568266868591,
0.5262250900268555,
0.09279976785182953,
-0.6626328229904175,
0.2084791362285614,
-0.9793835878372192,
0.7763502597808838,
0.03907690569758415,
-0.48846641182899475,
-0.1426287293434143,
-0.7113986015319824,
0.3790281116962433,
0.014911062084138393,
0.05226900056004524,
0.1529841274023056,
0.2384275197982788,
1.1085270643234253,
-0.6559545993804932,
0.9408313632011414,
-0.420497328042984,
0.26400166749954224,
0.5331567525863647,
-0.19753775000572205,
0.6369407176971436,
0.1002015471458435,
-0.048360832035541534,
0.41687262058258057,
0.16402557492256165,
-0.6068545579910278,
-0.24941778182983398,
0.5745258927345276,
-1.203384518623352,
-0.47122010588645935,
-0.6563522219657898,
-0.6429800987243652,
-0.09293254464864731,
0.44481009244918823,
0.40234124660491943,
0.34158509969711304,
0.09120001643896103,
0.4992011785507202,
0.7653055191040039,
-0.131828173995018,
0.5888308882713318,
0.4754350483417511,
-0.11493796110153198,
-0.12246846407651901,
0.622159481048584,
0.1443665325641632,
0.24301749467849731,
0.1378326714038849,
0.18863365054130554,
-0.2817832827568054,
-0.7996427416801453,
-0.07967621833086014,
0.5997793078422546,
-0.6992891430854797,
-0.03068346343934536,
-0.6522733569145203,
-0.4829724133014679,
-0.5920464992523193,
-0.25762346386909485,
-0.3547075688838959,
-0.2151135951280594,
-0.506697416305542,
0.04796318709850311,
0.31942829489707947,
0.5265918374061584,
-0.2788645327091217,
0.46355950832366943,
-0.6637903451919556,
0.056228674948215485,
0.4732986390590668,
0.19666987657546997,
0.1454155594110489,
-0.7683542966842651,
-0.19054438173770905,
0.03481903299689293,
-0.21398892998695374,
-0.5352048873901367,
0.2946205735206604,
0.28280115127563477,
0.8139259815216064,
0.4170951247215271,
0.158443883061409,
0.6876147389411926,
-0.3068047761917114,
0.6968380808830261,
0.455230176448822,
-0.5847163796424866,
0.5269487500190735,
-0.3945367634296417,
0.2681455612182617,
0.7529929876327515,
0.518486499786377,
-0.04572581499814987,
-0.054585184901952744,
-0.8507605791091919,
-1.0973817110061646,
0.7363682985305786,
0.1863846331834793,
0.12299151718616486,
0.37794971466064453,
0.43221625685691833,
0.09969142079353333,
0.16995367407798767,
-0.8770317435264587,
-0.3506319224834442,
-0.17132030427455902,
-0.2896718978881836,
-0.165583997964859,
-0.5219433307647705,
-0.31670331954956055,
-0.6874780654907227,
0.8114058971405029,
-0.0038557909429073334,
0.6485903263092041,
0.31885018944740295,
-0.22420604526996613,
0.18898934125900269,
0.0810176283121109,
0.5045356750488281,
0.6578508615493774,
-0.6999467015266418,
-0.19316500425338745,
-0.007244069129228592,
-0.5440853238105774,
-0.2084430307149887,
0.34363028407096863,
-0.32836297154426575,
0.16819308698177338,
0.6200017929077148,
0.8525753021240234,
0.25221261382102966,
-0.23498307168483734,
0.5454435348510742,
0.048533134162425995,
-0.2865195572376251,
-0.4036324620246887,
0.030979089438915253,
-0.01383462268859148,
0.422017902135849,
0.3903261721134186,
0.28751111030578613,
0.09965283423662186,
-0.4852913022041321,
0.09624363481998444,
0.2578356862068176,
-0.26631709933280945,
-0.30759283900260925,
0.6971455216407776,
0.266329288482666,
0.05874025821685791,
0.7861581444740295,
-0.31957289576530457,
-0.4039370119571686,
0.37985774874687195,
0.23954607546329498,
0.7486053109169006,
0.240269273519516,
0.06518595665693283,
0.9220324158668518,
0.3574084937572479,
-0.12673071026802063,
0.07153300940990448,
-0.15335631370544434,
-0.6930307745933533,
-0.2709464728832245,
-0.9033189415931702,
-0.2392236739397049,
0.11309873312711716,
-0.7530343532562256,
0.29191887378692627,
-0.5674182772636414,
-0.3593165874481201,
0.16490007936954498,
0.2584296464920044,
-0.9277154803276062,
0.06847450882196426,
0.027120819315314293,
0.8314567804336548,
-0.7080698013305664,
1.0164233446121216,
0.799472451210022,
-0.6035652160644531,
-0.9213019609451294,
0.0267979446798563,
-0.15063254535198212,
-0.6273025274276733,
0.7326181530952454,
-0.14925134181976318,
0.2738763988018036,
0.13812033832073212,
-0.5310434103012085,
-0.9174810647964478,
1.3252888917922974,
0.23944152891635895,
-0.8369849920272827,
-0.37596866488456726,
-0.1747807264328003,
0.5407075881958008,
-0.07510103285312653,
0.4220791161060333,
0.3550407290458679,
0.38233482837677,
0.3797311782836914,
-0.7998685240745544,
0.0005931242485530674,
-0.20929506421089172,
0.02363312616944313,
0.07735297828912735,
-0.7971590161323547,
1.2824465036392212,
-0.3862763047218323,
0.02691318467259407,
0.2818373739719391,
0.6310753226280212,
0.42242431640625,
0.18063539266586304,
0.4799230992794037,
0.7592765092849731,
0.7764089107513428,
-0.3546639382839203,
1.1024980545043945,
-0.193354070186615,
0.7869017124176025,
1.0987963676452637,
0.2804620563983917,
0.7899550199508667,
0.7141318321228027,
-0.40065792202949524,
0.6387536525726318,
0.8196099996566772,
-0.22121672332286835,
0.7020981311798096,
0.08774147182703018,
0.12948185205459595,
-0.30495861172676086,
0.25937846302986145,
-0.6385647654533386,
0.11531747132539749,
0.114160917699337,
-0.4483432173728943,
-0.21822533011436462,
-0.21179081499576569,
0.14508943259716034,
-0.3749570846557617,
-0.30848339200019836,
0.6106926202774048,
0.044529858976602554,
-0.4280702769756317,
0.7851746082305908,
-0.2434435933828354,
0.9476843476295471,
-0.8033984303474426,
0.20037628710269928,
-0.14532224833965302,
0.41324594616889954,
-0.11903085559606552,
-0.44239193201065063,
0.2527124285697937,
-0.02107219584286213,
-0.4383925199508667,
-0.19839416444301605,
0.7929202914237976,
-0.1812412291765213,
-0.7043690085411072,
0.2879502773284912,
0.5007409453392029,
0.12134503573179245,
0.22679877281188965,
-0.8843087553977966,
0.05769474431872368,
0.010377668775618076,
-0.5363393425941467,
0.3348946273326874,
0.17036685347557068,
0.18045440316200256,
0.4607125520706177,
0.7812654376029968,
-0.0514676608145237,
0.3636516332626343,
-0.052196990698575974,
0.8310032486915588,
-0.3681451082229614,
-0.3954660892486572,
-0.5851809978485107,
0.6943742632865906,
-0.22790098190307617,
-0.6036328673362732,
0.6818678379058838,
0.4325718879699707,
1.0696274042129517,
-0.12061452865600586,
0.6253229379653931,
-0.36105015873908997,
0.6365691423416138,
-0.391802042722702,
1.0393999814987183,
-0.8153555989265442,
0.15176242589950562,
-0.322407603263855,
-0.9148026704788208,
-0.1569024920463562,
0.7778195738792419,
-0.5727289319038391,
0.4409606158733368,
0.6064164042472839,
0.5015307664871216,
-0.012687725014984608,
-0.27755674719810486,
0.0763603150844574,
0.4321373701095581,
0.2740567624568939,
0.43588608503341675,
0.5669782757759094,
-0.5736159682273865,
0.5498901605606079,
-0.4363543689250946,
-0.1290275752544403,
-0.5304043292999268,
-0.6756770610809326,
-1.1524085998535156,
-0.6721775531768799,
-0.4045279026031494,
-0.41799354553222656,
0.022572863847017288,
0.8133478164672852,
0.9793105721473694,
-1.03690505027771,
-0.06645333766937256,
-0.1647801399230957,
-0.015972362831234932,
-0.144688218832016,
-0.21323369443416595,
0.43623486161231995,
-0.2594989240169525,
-0.7042168378829956,
-0.05148809403181076,
-0.41762086749076843,
0.28516513109207153,
-0.10038100183010101,
-0.24760256707668304,
-0.5282726883888245,
0.07500974088907242,
0.3556780219078064,
0.28929463028907776,
-0.6590876579284668,
-0.40150460600852966,
-0.06978354603052139,
-0.18209457397460938,
-0.1527777910232544,
0.5274204611778259,
-0.6194478869438171,
0.3180159628391266,
0.5429611802101135,
0.4570234417915344,
0.7262420654296875,
-0.3124544322490692,
0.1775718331336975,
-0.8210735321044922,
0.44361716508865356,
0.2914922833442688,
0.4943632483482361,
0.18015913665294647,
-0.09877584129571915,
0.6590309143066406,
0.38428184390068054,
-0.5513029098510742,
-1.1348365545272827,
-0.05332944542169571,
-1.1595268249511719,
-0.16395656764507294,
1.0863949060440063,
-0.427647203207016,
-0.1866590678691864,
0.32189205288887024,
-0.042282987385988235,
0.3846880793571472,
-0.3749602735042572,
0.7144576907157898,
0.8191717267036438,
-0.022303996607661247,
-0.17442263662815094,
-0.5509347915649414,
0.4095803201198578,
0.3852989971637726,
-0.5956308841705322,
-0.3560471832752228,
0.20927581191062927,
0.37479010224342346,
0.3994103968143463,
0.3368687629699707,
0.10104763507843018,
0.19915901124477386,
-0.033585987985134125,
0.2744787335395813,
-0.12043516337871552,
-0.2636485695838928,
-0.10057333111763,
-0.047266025096178055,
-0.040307026356458664,
-0.15915842354297638
] |
ElnaggarLab/ankh-base | ElnaggarLab | "2023-01-18T18:13:01Z" | 11,377 | 10 | transformers | [
"transformers",
"pytorch",
"t5",
"text2text-generation",
"biology",
"doi:10.57967/hf/0276",
"license:cc-by-nc-sa-4.0",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | text2text-generation | "2022-08-16T19:30:03Z" | ---
license: cc-by-nc-sa-4.0
tags:
- biology
--- | [
-0.12853388488292694,
-0.18616782128810883,
0.6529127359390259,
0.4943625330924988,
-0.19319313764572144,
0.23607465624809265,
0.36071982979774475,
0.05056332051753998,
0.5793652534484863,
0.740013837814331,
-0.6508103013038635,
-0.2378396987915039,
-0.710224986076355,
-0.04782581701874733,
-0.3894752264022827,
0.8470761775970459,
-0.09598272293806076,
0.024004854261875153,
0.047120071947574615,
-0.14317826926708221,
-0.6121037602424622,
-0.04771740734577179,
-1.0524537563323975,
-0.06787490844726562,
0.3002279996871948,
0.5120972990989685,
0.8275896310806274,
0.39602896571159363,
0.5030564069747925,
1.7515558004379272,
-0.08836919069290161,
-0.22754427790641785,
-0.45892032980918884,
0.4223068356513977,
-0.33277371525764465,
-0.42133718729019165,
-0.2624166011810303,
-0.07449338585138321,
0.32380399107933044,
0.790371298789978,
-0.38104110956192017,
0.19328099489212036,
-0.22438454627990723,
1.008224368095398,
-0.8202074766159058,
0.22630876302719116,
-0.16698351502418518,
0.14053204655647278,
0.042308706790208817,
-0.14591927826404572,
-0.1326323002576828,
-0.6440033912658691,
0.06469469517469406,
-0.899596095085144,
0.1027495265007019,
-0.04461126774549484,
0.8789561986923218,
0.21909058094024658,
-0.5102370977401733,
-0.0459773913025856,
-0.6883594989776611,
1.0972508192062378,
-0.17556026577949524,
0.7615712881088257,
0.4507811963558197,
0.45288562774658203,
-0.5849329829216003,
-1.178217887878418,
-0.4441864490509033,
-0.13579002022743225,
0.14722809195518494,
0.30556100606918335,
-0.3453029692173004,
-0.022343844175338745,
0.10801105946302414,
0.5610314011573792,
-0.5003758072853088,
-0.311959445476532,
-0.9579929113388062,
-0.18164916336536407,
0.6820483207702637,
0.319308340549469,
0.834044337272644,
0.1873151659965515,
-0.7347195744514465,
0.12866291403770447,
-1.3239703178405762,
0.07650735974311829,
0.6465023756027222,
0.239467591047287,
-0.554598867893219,
0.8594784736633301,
-0.28587982058525085,
0.626249372959137,
0.2728465497493744,
-0.1164526641368866,
0.2784252464771271,
-0.23030735552310944,
-0.2735062837600708,
0.033087607473134995,
0.34597301483154297,
0.8204491138458252,
0.16248634457588196,
-0.019984982907772064,
-0.22123965620994568,
0.0020717978477478027,
0.2684449553489685,
-0.7935096025466919,
-0.4712669551372528,
0.1926696002483368,
-0.558952808380127,
-0.0910850465297699,
0.4327022135257721,
-1.0976827144622803,
-0.4812980592250824,
-0.1879846155643463,
0.05468139797449112,
-0.5451693534851074,
-0.3697946071624756,
0.07273250073194504,
-0.79254150390625,
-0.1243419200181961,
0.570950984954834,
-0.6230252981185913,
0.43974608182907104,
0.533625602722168,
0.7861635684967041,
0.2330387681722641,
-0.23613610863685608,
-0.6695019602775574,
0.48848265409469604,
-0.8661867380142212,
0.36860740184783936,
-0.3073781132698059,
-0.8298640251159668,
-0.09631050378084183,
0.5393159985542297,
0.20664852857589722,
-0.6653256416320801,
0.7074045538902283,
-0.5496984720230103,
-0.07806532829999924,
-0.4308285415172577,
-0.2432200014591217,
0.17460417747497559,
0.11115431040525436,
-0.6238909363746643,
0.9402233362197876,
0.5551108121871948,
-0.584109902381897,
0.31701239943504333,
-0.4869506359100342,
-0.6865583658218384,
0.26748135685920715,
-0.008750975131988525,
-0.047152332961559296,
0.3279528021812439,
-0.15983973443508148,
-0.0020511597394943237,
0.10505761206150055,
0.008299741894006729,
-0.21891699731349945,
-0.4786304235458374,
0.06349936127662659,
0.151650071144104,
1.25368332862854,
0.4083622097969055,
-0.3771882951259613,
-0.13140122592449188,
-1.0526149272918701,
0.025432661175727844,
0.0505015105009079,
-0.42306768894195557,
-0.2504565119743347,
-0.14882194995880127,
-0.20381587743759155,
0.4307260811328888,
0.2118472456932068,
-0.813115119934082,
0.22643625736236572,
-0.2064024657011032,
0.364496648311615,
0.8222091794013977,
0.2703101634979248,
0.39760565757751465,
-0.6625286340713501,
0.6563138365745544,
0.2076188325881958,
0.49590179324150085,
0.35404202342033386,
-0.3845822811126709,
-0.9641586542129517,
-0.442161500453949,
-0.10117404907941818,
0.2975531220436096,
-0.7744957804679871,
0.5847322940826416,
0.012979604303836823,
-0.5836705565452576,
-0.4465281367301941,
-0.15488101541996002,
0.2755330502986908,
-0.06606576591730118,
0.03334902226924896,
-0.4049779176712036,
-0.7394417524337769,
-1.0127898454666138,
-0.13788150250911713,
-0.5021388530731201,
-0.21892830729484558,
0.3160586357116699,
0.2617739737033844,
-0.34290042519569397,
0.7610747814178467,
-0.6059278249740601,
-0.704064130783081,
-0.13973554968833923,
-0.0995984673500061,
0.6187719702720642,
0.9297672510147095,
0.749138355255127,
-0.7224893569946289,
-0.8973818421363831,
-0.056230708956718445,
-0.5420039892196655,
-0.020044349133968353,
0.038149889558553696,
-0.18260693550109863,
-0.10514980554580688,
0.22352531552314758,
-0.6100803017616272,
0.8851073980331421,
0.43224984407424927,
-0.681546688079834,
0.5210590958595276,
-0.4444413483142853,
0.6073803901672363,
-0.8642839193344116,
-0.2911490201950073,
-0.16823577880859375,
-0.1976117193698883,
-0.7090160846710205,
0.19411544501781464,
-0.3002234101295471,
-0.33029863238334656,
-0.7474032044410706,
0.5274897813796997,
-0.9497010707855225,
-0.18781527876853943,
-0.33672773838043213,
-0.03423111140727997,
0.25807833671569824,
0.19490505754947662,
-0.23560254275798798,
0.8900529742240906,
0.9160482287406921,
-0.7121306657791138,
0.5487277507781982,
0.3930906653404236,
-0.1920013427734375,
0.7131237387657166,
-0.3887738585472107,
0.05161993205547333,
-0.12344931066036224,
0.14374595880508423,
-1.126388430595398,
-0.561158299446106,
0.13677382469177246,
-0.712703287601471,
0.17686958611011505,
-0.16556859016418457,
-0.09428537636995316,
-0.6608465313911438,
-0.33806395530700684,
0.25910091400146484,
0.48612290620803833,
-0.47969940304756165,
0.6188148260116577,
0.5728040337562561,
0.02651876211166382,
-0.5307406783103943,
-0.7206818461418152,
0.20418110489845276,
0.039646461606025696,
-0.5569695830345154,
0.3011690080165863,
0.006543457508087158,
-0.6622446775436401,
-0.371124804019928,
-0.26354190707206726,
-0.6043857336044312,
-0.2267974615097046,
0.7826986312866211,
0.1199423298239708,
-0.09012264013290405,
-0.20310267806053162,
-0.3199536204338074,
-0.06167525798082352,
0.30487415194511414,
-0.07575298100709915,
0.7232834696769714,
-0.33623749017715454,
-0.17850083112716675,
-0.887734055519104,
0.652754545211792,
0.9970465302467346,
0.09446714073419571,
0.806644082069397,
0.46324217319488525,
-0.35647475719451904,
-0.1304660439491272,
-0.3535459041595459,
-0.15120601654052734,
-0.685774564743042,
-0.1806798279285431,
-0.5322476625442505,
-0.5411434769630432,
0.40530654788017273,
0.10101459175348282,
-0.0021042972803115845,
0.5167046785354614,
0.2533605694770813,
-0.28806859254837036,
0.7550324201583862,
1.034340739250183,
0.1391797959804535,
0.3602915108203888,
-0.2854715585708618,
0.6341594457626343,
-0.8329949378967285,
-0.34052175283432007,
-0.4548071026802063,
-0.2563585042953491,
-0.31214389204978943,
-0.10750849545001984,
0.5791022181510925,
0.2818215489387512,
-0.4463467597961426,
0.1250680536031723,
-0.5994209051132202,
0.6587361693382263,
0.6273988485336304,
0.5719727873802185,
0.1997303068637848,
-0.46199458837509155,
0.19982971251010895,
0.04816687852144241,
-0.45745599269866943,
-0.4009109139442444,
0.7711143493652344,
0.2399624139070511,
0.8364022374153137,
0.20927050709724426,
0.4957774877548218,
0.33375421166419983,
0.2528058588504791,
-0.6318977475166321,
0.2009797990322113,
-0.22282809019088745,
-1.245961308479309,
-0.206426739692688,
-0.16551318764686584,
-1.0080583095550537,
-0.11792082339525223,
-0.18288995325565338,
-0.8406620025634766,
0.2665729820728302,
-0.19225634634494781,
-0.6640645265579224,
0.5206149220466614,
-0.5103875398635864,
0.69347083568573,
-0.23555898666381836,
-0.2817087769508362,
0.11930079013109207,
-0.6889920830726624,
0.5254612565040588,
0.3667147755622864,
0.29168397188186646,
-0.37968993186950684,
-0.3192872405052185,
0.5068994760513306,
-0.881224513053894,
0.44081127643585205,
-0.10564978420734406,
0.19428130984306335,
0.5358879566192627,
0.4153591990470886,
0.3823971152305603,
0.28699052333831787,
-0.2459377944469452,
-0.23415414988994598,
0.2250344604253769,
-0.7581346035003662,
-0.27754613757133484,
0.9095459580421448,
-0.7519428730010986,
-0.8586915731430054,
-0.6954255700111389,
-0.30644941329956055,
0.28865277767181396,
0.02781464159488678,
0.7154772281646729,
0.6456884145736694,
-0.18821057677268982,
0.23776991665363312,
0.7208225727081299,
-0.0146945184096694,
0.7235562801361084,
0.29411184787750244,
-0.4056646227836609,
-0.6169787645339966,
0.7182320356369019,
0.2627044916152954,
0.05162655562162399,
0.028327951207756996,
0.3058736026287079,
-0.17546698451042175,
-0.15078596770763397,
-0.6318323612213135,
-0.06395323574542999,
-0.7465729117393494,
-0.0927949845790863,
-0.7541396617889404,
-0.2507742643356323,
-0.7114590406417847,
-0.8068137764930725,
-0.7080163955688477,
-0.45604395866394043,
-0.43011948466300964,
-0.23352204263210297,
0.5163108706474304,
1.1627086400985718,
-0.2613152861595154,
0.8011051416397095,
-0.8900954723358154,
0.41936296224594116,
0.4969540238380432,
0.7519731521606445,
-0.11061006784439087,
-0.6746935844421387,
-0.07836239039897919,
-0.5338755249977112,
-0.29485058784484863,
-1.0156972408294678,
0.31774646043777466,
-0.03688591718673706,
0.40537136793136597,
0.42938894033432007,
0.25190269947052,
0.49392756819725037,
-0.30073118209838867,
1.1130688190460205,
0.7274302244186401,
-0.803381085395813,
0.519527792930603,
-0.7635002136230469,
0.16122324764728546,
0.9363659620285034,
0.54477459192276,
-0.4417075514793396,
-0.15113934874534607,
-1.025976538658142,
-0.843137264251709,
0.5963036417961121,
0.15439945459365845,
0.016843896359205246,
0.01821417547762394,
0.03168272227048874,
0.29466384649276733,
0.3591304123401642,
-0.7847291231155396,
-0.8240220546722412,
-0.13851122558116913,
0.25803306698799133,
0.31456053256988525,
-0.1648542582988739,
-0.3003871440887451,
-0.611615777015686,
0.8711391091346741,
0.18286482989788055,
0.3546231985092163,
0.12073354423046112,
0.04369349032640457,
-0.35506919026374817,
0.14787021279335022,
0.5522999167442322,
1.2529057264328003,
-0.40983331203460693,
0.3673911392688751,
0.1751260608434677,
-0.6540069580078125,
0.6494997143745422,
-0.3036349415779114,
-0.021784601733088493,
0.6203135251998901,
0.17760884761810303,
0.28528398275375366,
0.315599262714386,
-0.3621427118778229,
0.6047801971435547,
-0.029422052204608917,
-0.17758512496948242,
-0.7005696296691895,
0.15866968035697937,
0.029350608587265015,
0.27507954835891724,
0.4392024278640747,
0.24443313479423523,
0.08246771991252899,
-1.0602877140045166,
0.5711055397987366,
0.24493910372257233,
-0.8676618337631226,
-0.3011006712913513,
0.7047957181930542,
0.4075389802455902,
-0.47599563002586365,
0.38749054074287415,
0.012702330946922302,
-0.6710241436958313,
0.5987741351127625,
0.5510413646697998,
0.7569674253463745,
-0.4702427089214325,
0.3088020086288452,
0.6245602965354919,
0.06711331009864807,
0.20550549030303955,
0.6923202872276306,
0.03149382025003433,
-0.44738656282424927,
0.23022446036338806,
-0.5986733436584473,
-0.1468990594148636,
0.13735318183898926,
-0.8047426342964172,
0.351533442735672,
-0.9312615394592285,
-0.24089956283569336,
0.08751589059829712,
0.11761097609996796,
-0.6130945086479187,
0.6674696207046509,
-0.008524954319000244,
0.9280490875244141,
-0.8549083471298218,
0.9626278281211853,
0.8559581637382507,
-0.31830817461013794,
-0.7709448337554932,
-0.33556753396987915,
0.02013934776186943,
-0.6660526990890503,
0.7108278274536133,
-0.18973003327846527,
-0.41207411885261536,
-0.09323947876691818,
-0.622982919216156,
-1.0003730058670044,
0.030618250370025635,
0.017415650188922882,
-0.4625031054019928,
0.4454794228076935,
-0.5157257318496704,
0.3289681673049927,
-0.19169732928276062,
0.30509495735168457,
0.7719469666481018,
0.7958452701568604,
0.22960808873176575,
-0.6354780197143555,
-0.4466685652732849,
-0.010276071727275848,
-0.16682815551757812,
0.4545809030532837,
-1.0710972547531128,
0.967736542224884,
-0.4652574360370636,
-0.34733209013938904,
0.2706642150878906,
0.797762393951416,
0.2538500428199768,
0.3524126708507538,
0.6219537258148193,
0.9016807079315186,
0.36450111865997314,
-0.31178343296051025,
0.7276745438575745,
0.2426338493824005,
0.4152539074420929,
0.7364203333854675,
-0.22712187469005585,
0.5403846502304077,
0.8906413316726685,
-0.786162257194519,
0.5381765365600586,
0.7879031896591187,
0.16047371923923492,
0.7758157253265381,
0.5944145917892456,
-0.611952543258667,
-0.1185941994190216,
-0.1464141309261322,
-0.6171560287475586,
0.1979752480983734,
0.052926212549209595,
-0.11974738538265228,
-0.2846010625362396,
-0.13567376136779785,
0.12295057624578476,
0.2836454212665558,
-0.5959328413009644,
0.606866717338562,
0.34341585636138916,
-0.6328282356262207,
0.21025103330612183,
-0.25779569149017334,
0.6709501147270203,
-0.5978154540061951,
0.02733636647462845,
-0.226993590593338,
0.41810402274131775,
-0.4618742763996124,
-1.007582426071167,
0.47138404846191406,
-0.2920241355895996,
-0.40551304817199707,
-0.26942431926727295,
0.8072363138198853,
-0.22133907675743103,
-0.5572860240936279,
0.37486034631729126,
0.13466592133045197,
0.41473662853240967,
0.40145981311798096,
-0.548729419708252,
0.047790080308914185,
0.13760165870189667,
-0.20061805844306946,
0.3601190149784088,
0.2973729372024536,
0.25488772988319397,
0.7100128531455994,
0.5052477717399597,
0.22198708355426788,
0.25694364309310913,
-0.18668605387210846,
0.8387458324432373,
-0.9102796316146851,
-0.8167635202407837,
-0.9497333765029907,
0.3849896192550659,
0.025727711617946625,
-0.880144476890564,
0.7920305728912354,
0.7652608156204224,
0.5113964080810547,
-0.4877890348434448,
0.4755283296108246,
-0.326479434967041,
0.5047136545181274,
-0.13870958983898163,
1.001089096069336,
-0.760762631893158,
-0.29587265849113464,
-0.030554059892892838,
-0.9216439723968506,
-0.2533753216266632,
0.5375741720199585,
0.1540832668542862,
-0.14608067274093628,
0.4385907053947449,
0.44216376543045044,
0.022173406556248665,
0.25223150849342346,
0.32861006259918213,
0.06042787432670593,
0.14508451521396637,
0.5510438680648804,
1.0931141376495361,
-0.43394410610198975,
0.18694786727428436,
-0.4923475384712219,
-0.4536249041557312,
-0.4153490662574768,
-0.9548057913780212,
-0.6640313863754272,
-0.48185449838638306,
-0.2973935008049011,
-0.5915579199790955,
0.11726461350917816,
0.9300885796546936,
0.9018137454986572,
-0.6256728172302246,
-0.41243645548820496,
0.25713539123535156,
0.30293411016464233,
-0.2295418381690979,
-0.146267831325531,
0.2736492455005646,
-0.006407544948160648,
-0.7211178541183472,
0.3930943012237549,
0.807976245880127,
0.3887130320072174,
0.08444006741046906,
-0.07217127084732056,
-0.4407080411911011,
0.026101574301719666,
0.5373561382293701,
0.5729561448097229,
-0.6281182169914246,
-0.4099644422531128,
-0.5328317880630493,
-0.21386730670928955,
0.15529435873031616,
0.48077550530433655,
-0.5166378617286682,
0.32661110162734985,
0.8128959536552429,
0.17017659544944763,
0.7187885642051697,
-0.0022492259740829468,
0.6678642630577087,
-0.8970246315002441,
0.4446259140968323,
0.3953385353088379,
0.5681870579719543,
0.08998038619756699,
-0.7339164614677429,
0.9820241928100586,
0.49674350023269653,
-0.6334057450294495,
-1.0034242868423462,
0.03079957515001297,
-1.193113923072815,
-0.3788175582885742,
0.9890843629837036,
-0.09595765173435211,
-0.9597458839416504,
-0.36448943614959717,
-0.3677716851234436,
0.07989637553691864,
-0.33809733390808105,
0.35498204827308655,
0.8268195986747742,
-0.2538071274757385,
-0.2204185128211975,
-0.9505581855773926,
0.4752943515777588,
0.3102525472640991,
-0.5886632204055786,
-0.05114369094371796,
0.329391211271286,
0.45236870646476746,
0.3009701371192932,
0.5239557027816772,
0.10428227484226227,
0.8970529437065125,
0.25200390815734863,
0.30491405725479126,
-0.04526621103286743,
-0.590078592300415,
-0.0160664189606905,
0.2621477246284485,
0.04487839341163635,
-0.6869441270828247
] |
Lykon/dreamshaper-xl-1-0 | Lykon | "2023-08-26T16:44:49Z" | 11,324 | 16 | diffusers | [
"diffusers",
"stable-diffusion",
"stable-diffusion-diffusers",
"stable-diffusion-xl",
"text-to-image",
"art",
"artistic",
"anime",
"dreamshaper",
"en",
"license:openrail++",
"endpoints_compatible",
"has_space",
"diffusers:StableDiffusionXLPipeline",
"region:us"
] | text-to-image | "2023-08-26T16:44:49Z" | ---
language:
- en
license: openrail++
tags:
- stable-diffusion
- stable-diffusion-diffusers
- stable-diffusion-xl
- text-to-image
- art
- artistic
- diffusers
- anime
- dreamshaper
duplicated_from: lykon-models/dreamshaper-xl-1-0
---
# Dreamshaper SDXL-1-0
`lykon-models/dreamshaper-xl-1-0` is a Stable Diffusion model that has been fine-tuned on [stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0).
Please consider supporting me:
- on [Patreon](https://www.patreon.com/Lykon275)
- or [buy me a coffee](https://snipfeed.co/lykon)
## Diffusers
For more general information on how to run text-to-image models with 🧨 Diffusers, see [the docs](https://huggingface.co/docs/diffusers/using-diffusers/conditional_image_generation).
1. Installation
```
pip install diffusers transformers accelerate
```
2. Run
```py
from diffusers import AutoPipelineForText2Image, DEISMultistepScheduler
import torch
pipe = AutoPipelineForText2Image.from_pretrained('lykon-models/dreamshaper-xl-1-0', torch_dtype=torch.float16, variant="fp16")
pipe.scheduler = DEISMultistepScheduler.from_config(pipe.scheduler.config)
pipe = pipe.to("cuda")
prompt = "portrait photo of muscular bearded guy in a worn mech suit, light bokeh, intricate, steel metal, elegant, sharp focus, soft lighting, vibrant colors"
generator = torch.manual_seed(0)
image = pipe(prompt, num_inference_steps=25).images[0]
image.save("./image.png")
```
![](./image.png)
| [
-0.27769845724105835,
-0.43300607800483704,
0.5360463261604309,
0.46603116393089294,
-0.5209625959396362,
-0.1267232894897461,
0.05472048372030258,
-0.21669505536556244,
0.3484172821044922,
0.5897023677825928,
-0.5936986804008484,
-0.3533494770526886,
-0.807828962802887,
-0.031978871673345566,
-0.3066646158695221,
0.8887810707092285,
-0.15054933726787567,
-0.17689202725887299,
-0.00726791936904192,
0.08767465502023697,
-0.369071900844574,
0.0353410579264164,
-1.2414623498916626,
-0.3085552453994751,
0.6009290814399719,
-0.06366720050573349,
0.7709031701087952,
0.28099554777145386,
0.3032931089401245,
0.4044138193130493,
-0.07270293682813644,
-0.11068490147590637,
-0.39275214076042175,
0.4489491879940033,
0.044369280338287354,
-0.3231468200683594,
-0.34456199407577515,
-0.32625332474708557,
0.5596250891685486,
0.05114398151636124,
-0.4044158160686493,
0.13609357178211212,
0.20042836666107178,
0.5089454054832458,
-0.5598641633987427,
0.19967414438724518,
-0.2999167740345001,
0.10064420849084854,
-0.19964559376239777,
0.16742271184921265,
-0.2227313071489334,
-0.45195427536964417,
-0.02981267310678959,
-0.6913389563560486,
0.33675992488861084,
-0.10907655209302902,
1.1228052377700806,
0.4364226162433624,
-0.3478182554244995,
-0.14330415427684784,
-0.6777640581130981,
0.8392623662948608,
-0.8255429863929749,
0.38903263211250305,
0.0858953446149826,
0.2941700220108032,
0.14680150151252747,
-1.3349542617797852,
-0.580094575881958,
0.28555619716644287,
-0.33358410000801086,
0.49067994952201843,
-0.2575814723968506,
0.14260099828243256,
0.3302849531173706,
0.21983371675014496,
-0.4921351671218872,
-0.12148642539978027,
-0.6878772377967834,
-0.2834058105945587,
0.6502411961555481,
0.21334584057331085,
0.1559264361858368,
-0.13099713623523712,
-0.32123100757598877,
-0.06495954841375351,
-0.06622932851314545,
0.06654926389455795,
0.28112009167671204,
-0.11617806553840637,
-0.5039451718330383,
0.7066074013710022,
0.022278141230344772,
0.4646666347980499,
0.35348352789878845,
-0.14553387463092804,
0.277110755443573,
0.21598759293556213,
-0.2762245535850525,
-0.1195124015212059,
0.9549074769020081,
0.6305591464042664,
0.048813849687576294,
0.11635980755090714,
-0.3622726798057556,
0.38738733530044556,
-0.026168683543801308,
-1.25869619846344,
-0.47119614481925964,
0.5741115212440491,
-0.639036238193512,
-0.5164098739624023,
-0.25589632987976074,
-0.793002188205719,
-0.3315477967262268,
0.17927934229373932,
0.5918479561805725,
-0.36097005009651184,
-0.6995678544044495,
0.3122716546058655,
-0.34599265456199646,
0.21308955550193787,
0.2919071316719055,
-0.7849131226539612,
0.2327125370502472,
0.26223045587539673,
1.0407121181488037,
-0.038052402436733246,
-0.013402101583778858,
0.0025836629793047905,
0.04048403725028038,
-0.5185738801956177,
0.763175368309021,
-0.05025539547204971,
-0.5253427624702454,
0.0439949668943882,
0.2334684133529663,
-0.13450907170772552,
-0.3724554181098938,
0.8940735459327698,
-0.5323779582977295,
0.3572162091732025,
0.011606341227889061,
-0.6702466607093811,
-0.06628412008285522,
-0.06954538822174072,
-0.5060426592826843,
0.9744347929954529,
0.3562023639678955,
-1.0126924514770508,
0.3524322807788849,
-0.7113776206970215,
-0.1440650224685669,
0.17455482482910156,
-0.17552144825458527,
-0.8093693852424622,
0.09981711953878403,
-0.20444650948047638,
0.6735039949417114,
0.15765580534934998,
-0.006878905463963747,
-0.27537211775779724,
-0.2625195384025574,
-0.023637546226382256,
-0.23846028745174408,
1.0537383556365967,
0.3759567439556122,
-0.21017137169837952,
0.11949373781681061,
-0.690692663192749,
0.1560269296169281,
0.40827202796936035,
-0.1356879025697708,
0.05626709386706352,
-0.12973491847515106,
0.5104110836982727,
0.23748861253261566,
0.14748971164226532,
-0.8435186743736267,
0.18951529264450073,
-0.22961315512657166,
0.24228523671627045,
0.8635831475257874,
0.1466674506664276,
0.1328008770942688,
-0.5108891129493713,
0.6633970141410828,
0.15072616934776306,
0.015552927739918232,
0.08096931874752045,
-0.6758993268013,
-1.093098759651184,
-0.43819335103034973,
-0.07460708916187286,
0.3203720450401306,
-0.7186843156814575,
0.3024901747703552,
-0.022586312144994736,
-0.5222592949867249,
-0.42673471570014954,
-0.2826940715312958,
0.11747884750366211,
0.40803200006484985,
0.10509064048528671,
-0.17770302295684814,
-0.655559241771698,
-0.8957940340042114,
0.06455710530281067,
0.1113373190164566,
-0.15069694817066193,
0.1375465840101242,
0.4302526116371155,
-0.41412225365638733,
0.6213477849960327,
-0.7254460453987122,
-0.37881341576576233,
-0.23622825741767883,
-0.11206120252609253,
0.7716238498687744,
0.6285446882247925,
0.7482383251190186,
-0.6873415112495422,
-0.8991611003875732,
-0.17303240299224854,
-0.6838534474372864,
-0.007653188891708851,
-0.012183302082121372,
-0.12769027054309845,
0.27627843618392944,
0.1504766345024109,
-1.0381981134414673,
0.4608979821205139,
0.7932610511779785,
-0.7660873532295227,
0.7497004866600037,
-0.27870455384254456,
0.16749073565006256,
-1.280794382095337,
0.016274433583021164,
0.19605083763599396,
-0.5710005164146423,
-0.44829756021499634,
-0.07066275179386139,
0.024468911811709404,
-0.20157097280025482,
-0.5550112724304199,
0.8044449090957642,
-0.2205829620361328,
0.45551905035972595,
-0.2709696590900421,
-0.27203169465065,
-0.021696219220757484,
0.357414573431015,
0.2948157787322998,
0.3837133049964905,
1.2294355630874634,
-0.6616507172584534,
0.43671783804893494,
0.45218053460121155,
-0.3525635302066803,
0.5197916626930237,
-1.0631886720657349,
0.27024707198143005,
-0.29159727692604065,
0.23413178324699402,
-1.0148990154266357,
-0.2054341733455658,
0.6492063403129578,
-0.3511410653591156,
0.39148998260498047,
-0.39048901200294495,
-0.34460505843162537,
-0.5166722536087036,
-0.1504373699426651,
0.4685819447040558,
1.0706106424331665,
-0.4729771316051483,
0.5659162402153015,
0.043865736573934555,
0.07734515517950058,
-0.5789140462875366,
-0.5777026414871216,
-0.2327912598848343,
-0.28119269013404846,
-0.7698794007301331,
0.368130087852478,
-0.29127365350723267,
-0.24937060475349426,
0.11463446915149689,
-0.11909094452857971,
-0.08070608973503113,
-0.407804012298584,
0.39621105790138245,
0.26689526438713074,
-0.2149660736322403,
-0.4891648292541504,
0.1839776337146759,
-0.520602822303772,
0.2397550493478775,
-0.35264864563941956,
0.5381124019622803,
0.11248333007097244,
-0.11309850215911865,
-0.6911402940750122,
0.09804048389196396,
0.5180083513259888,
0.3278869092464447,
0.8389537334442139,
0.7806981205940247,
-0.5099114775657654,
-0.38140127062797546,
-0.5001355409622192,
-0.21037423610687256,
-0.6134466528892517,
0.3572116494178772,
-0.5519353747367859,
-0.3914787173271179,
0.33927467465400696,
0.181012824177742,
0.32225990295410156,
0.5694081783294678,
0.5807250738143921,
-0.6025696396827698,
1.0889538526535034,
0.5931981801986694,
0.2509356141090393,
0.33319756388664246,
-0.9413327574729919,
-0.02580544538795948,
-0.7552769184112549,
-0.11632555723190308,
-0.023316608741879463,
-0.4465359151363373,
-0.33348962664604187,
-0.39049988985061646,
0.3344084918498993,
-0.020603293552994728,
-0.24749518930912018,
0.27893492579460144,
-0.6054654717445374,
0.4403083324432373,
0.06079190969467163,
0.2302383929491043,
0.035040296614170074,
0.031150460243225098,
-0.09727898985147476,
-0.15849316120147705,
-0.5288134813308716,
-0.3934330642223358,
0.7648993730545044,
0.3123735785484314,
1.0122543573379517,
-0.010272355750203133,
0.7673263549804688,
0.1629423201084137,
0.06244610622525215,
-0.6640843152999878,
0.5936610698699951,
-0.17505168914794922,
-0.6776533722877502,
0.043655287474393845,
-0.0653349906206131,
-1.0177496671676636,
0.3349512815475464,
-0.29167142510414124,
-0.5970768332481384,
0.09720958769321442,
0.34390130639076233,
-0.20907241106033325,
0.5429787039756775,
-0.41240018606185913,
0.8547155857086182,
-0.05994629114866257,
-0.5570922493934631,
-0.275383323431015,
-0.2738244831562042,
0.3201126754283905,
0.14438459277153015,
0.006945360917598009,
-0.23477664589881897,
-0.22234129905700684,
0.6748926043510437,
-0.2942827641963959,
0.8275665044784546,
-0.4749141335487366,
-0.23635946214199066,
0.37970343232154846,
0.1590336710214615,
0.514746367931366,
0.15853087604045868,
-0.3355213701725006,
0.11265652626752853,
0.31088513135910034,
-0.5763755440711975,
-0.4390234649181366,
0.7223880290985107,
-0.7394080758094788,
-0.3532799184322357,
-0.6725530624389648,
-0.3705750107765198,
0.24393780529499054,
0.3114561140537262,
0.8392391204833984,
0.3529531955718994,
0.0787346139550209,
0.09173145145177841,
0.629891037940979,
0.14208996295928955,
0.6701562404632568,
0.018365109339356422,
-0.5256912112236023,
-0.4700266718864441,
0.6417118906974792,
0.0862298384308815,
0.39205944538116455,
-0.061072587966918945,
0.31124696135520935,
-0.36186525225639343,
-0.5056473612785339,
-0.40467777848243713,
0.37537163496017456,
-0.7525244355201721,
-0.2529871463775635,
-0.6629610061645508,
-0.6021973490715027,
-0.1285514235496521,
-0.3372521698474884,
-0.41473785042762756,
-0.4336841106414795,
-0.35789182782173157,
0.1168183833360672,
0.6561930775642395,
0.691075325012207,
-0.06527602672576904,
0.28811007738113403,
-0.48906415700912476,
0.5149399638175964,
0.24158380925655365,
0.5403860211372375,
-0.0871124267578125,
-0.6469776034355164,
-0.11108380556106567,
0.046566884964704514,
-0.4596226215362549,
-0.722775936126709,
0.47937968373298645,
0.12867872416973114,
0.5080728530883789,
0.4964999556541443,
-0.047952935099601746,
0.6651671528816223,
-0.3861243426799774,
0.6540989279747009,
0.43057698011398315,
-0.7105498909950256,
0.5131185054779053,
-0.5341926217079163,
0.14680515229701996,
0.014776497147977352,
0.3682352900505066,
-0.6383467316627502,
-0.5608173608779907,
-0.8244135975837708,
-0.7605283260345459,
0.5320395827293396,
0.695793092250824,
0.3337828516960144,
0.19684307277202606,
0.5735591650009155,
0.15066386759281158,
-0.08282618224620819,
-1.123788595199585,
-0.6346056461334229,
-0.3140151798725128,
-0.1655626744031906,
0.10051224380731583,
-0.261938214302063,
0.00604715570807457,
-0.34172704815864563,
1.1582032442092896,
-0.17699319124221802,
0.26270797848701477,
0.3342367708683014,
0.22857828438282013,
-0.34838634729385376,
-0.13236743211746216,
0.23175284266471863,
0.5684449672698975,
-0.2985308766365051,
-0.04979342594742775,
0.12014424800872803,
-0.5432042479515076,
0.2732276916503906,
-0.06913464516401291,
-0.4582954943180084,
0.2856293022632599,
-0.03936786204576492,
0.8338870406150818,
-0.08556608110666275,
-0.22673004865646362,
0.43500345945358276,
-0.3078184127807617,
-0.30025798082351685,
-0.5779983401298523,
0.29453158378601074,
0.284454882144928,
0.4587334990501404,
0.1330033391714096,
0.724090576171875,
-0.0013779938453808427,
0.08758427202701569,
-0.026807183399796486,
0.6015368700027466,
-0.33969318866729736,
-0.34979745745658875,
1.084375262260437,
0.08049273490905762,
-0.4113887846469879,
0.4609953761100769,
-0.31497830152511597,
-0.14142678678035736,
0.7136890292167664,
0.9833832383155823,
1.0751932859420776,
0.01680135913193226,
0.21494469046592712,
0.8127456307411194,
-0.003535336581990123,
-0.27639898657798767,
0.6122430562973022,
0.07467363029718399,
-0.7892805933952332,
-0.0064752064645290375,
-0.6423753499984741,
-0.232529878616333,
0.11057493090629578,
-0.45290812849998474,
0.908299446105957,
-0.4131893813610077,
-0.3363623023033142,
-0.10234993696212769,
-0.09312157332897186,
-0.7170207500457764,
0.3838467299938202,
0.35957205295562744,
0.8303208351135254,
-0.7376580238342285,
0.9243395328521729,
0.47826674580574036,
-0.36069759726524353,
-0.5846467614173889,
-0.03573629632592201,
-0.15910491347312927,
-0.718364953994751,
0.23539167642593384,
0.15482550859451294,
-0.1743863970041275,
0.3451289236545563,
-0.42335131764411926,
-0.9442763328552246,
1.3227145671844482,
0.34138476848602295,
-0.6208378672599792,
0.18293528258800507,
-0.3290516138076782,
0.4723779857158661,
-0.21528807282447815,
0.23163869976997375,
0.16558749973773956,
0.3361406922340393,
0.23036445677280426,
-0.6284557580947876,
0.06972876936197281,
-0.25426873564720154,
0.23347215354442596,
0.22765670716762543,
-0.8558385968208313,
0.7593068480491638,
-0.5557311773300171,
-0.4525206685066223,
0.6335602402687073,
0.7800134420394897,
0.5800021886825562,
0.17565999925136566,
0.6886310577392578,
0.831068217754364,
0.3273305594921112,
-0.04122522100806236,
1.0209729671478271,
-0.19134722650051117,
0.7805145382881165,
0.49606189131736755,
-0.05828244239091873,
0.6368143558502197,
0.47427666187286377,
-0.350536584854126,
0.795815646648407,
0.7308847904205322,
-0.28809648752212524,
0.5629220604896545,
0.12832431495189667,
-0.42861443758010864,
0.014566317200660706,
0.29316771030426025,
-0.5025410652160645,
-0.005128327291458845,
0.23291748762130737,
-0.36061719059944153,
-0.0563269779086113,
-0.009016253054141998,
0.020353851839900017,
-0.2527073621749878,
-0.2942228317260742,
0.42854177951812744,
0.1142515316605568,
-0.39100125432014465,
0.6811415553092957,
-0.2066401094198227,
1.2005832195281982,
-0.9565776586532593,
-0.04248831048607826,
0.043594323098659515,
0.5753916501998901,
-0.5394469499588013,
-1.0363361835479736,
0.4238532483577728,
-0.2829746603965759,
0.015904881060123444,
-0.3621092736721039,
0.9626086950302124,
-0.3544965088367462,
-1.0636018514633179,
0.3545287251472473,
0.0899074375629425,
0.28524911403656006,
0.2475244253873825,
-0.7935474514961243,
0.2647097110748291,
0.052063439041376114,
-0.4623166024684906,
-0.016411757096648216,
0.054788801819086075,
0.4995976686477661,
0.7190845012664795,
0.3801107108592987,
0.22459153831005096,
-0.005008559208363295,
0.0029053904581815004,
0.5773531198501587,
-0.3753230571746826,
-0.3506963849067688,
-0.91335529088974,
0.9998608231544495,
-0.036272335797548294,
-0.4314802587032318,
0.7109886407852173,
0.8021038174629211,
0.48499587178230286,
-0.497896671295166,
0.9271767139434814,
-0.4602842628955841,
0.22617073357105255,
-0.49343207478523254,
1.077659010887146,
-0.5685036182403564,
0.03456216678023338,
-0.29425257444381714,
-0.9482890367507935,
-0.0162090715020895,
0.9096206426620483,
0.3613179326057434,
0.19775058329105377,
0.4979722499847412,
0.8770971298217773,
-0.45173224806785583,
-0.23563121259212494,
0.3817977011203766,
0.3353482484817505,
0.24744516611099243,
0.14880885183811188,
0.7595512270927429,
-0.8459473848342896,
0.458970308303833,
-0.8607795238494873,
-0.11677390336990356,
0.3872053027153015,
-0.9010187387466431,
-0.7584809064865112,
-0.7749242186546326,
-0.8659710884094238,
-0.8782476186752319,
-0.0671539157629013,
0.7215806841850281,
1.0135178565979004,
-0.7824459671974182,
-0.30154135823249817,
-0.26627784967422485,
-0.007325362879782915,
-0.22956125438213348,
-0.30375489592552185,
0.2719265818595886,
-0.16359029710292816,
-0.9718464612960815,
-0.12447807937860489,
0.0916057676076889,
0.44026342034339905,
-0.2180052101612091,
-0.25961869955062866,
0.10548634827136993,
0.024902591481804848,
0.43119171261787415,
0.13818234205245972,
-0.7445778250694275,
-0.08481565862894058,
-0.17250196635723114,
0.030985692515969276,
0.13845036923885345,
0.49146243929862976,
-0.8300489783287048,
0.17380645871162415,
0.31179550290107727,
-0.04016021639108658,
0.9132155776023865,
-0.46876564621925354,
0.2931255102157593,
-0.6111623048782349,
0.3386271893978119,
0.31551650166511536,
0.6844285726547241,
0.12591683864593506,
-0.5065144896507263,
0.4728953540325165,
0.3439648747444153,
-0.7753985524177551,
-0.5917784571647644,
0.1418026089668274,
-1.1493334770202637,
-0.12186799943447113,
1.0946457386016846,
0.08810339868068695,
-0.04424446448683739,
0.1482113152742386,
-0.7682077884674072,
0.05631762370467186,
-0.29344257712364197,
0.7398855686187744,
0.4409414529800415,
-0.3548644781112671,
-0.5334662795066833,
-0.39122530817985535,
0.5441921353340149,
0.10369865596294403,
-0.5515649318695068,
-0.08443991839885712,
0.3260188698768616,
0.7461179494857788,
0.3169387876987457,
0.873526394367218,
0.033484913408756256,
0.2511575222015381,
0.2863481044769287,
0.11219951510429382,
0.2650671899318695,
0.3026847541332245,
-0.26392918825149536,
-0.11982621997594833,
-0.09153228998184204,
-0.48092636466026306
] |
symanto/sn-xlm-roberta-base-snli-mnli-anli-xnli | symanto | "2023-02-20T09:49:54Z" | 11,316 | 58 | sentence-transformers | [
"sentence-transformers",
"pytorch",
"xlm-roberta",
"zero-shot-classification",
"feature-extraction",
"sentence-similarity",
"transformers",
"ar",
"bg",
"de",
"el",
"en",
"es",
"fr",
"ru",
"th",
"tr",
"ur",
"vn",
"zh",
"dataset:SNLI",
"dataset:MNLI",
"dataset:ANLI",
"dataset:XNLI",
"endpoints_compatible",
"has_space",
"region:us"
] | sentence-similarity | "2022-03-02T23:29:05Z" | ---
language:
- ar
- bg
- de
- el
- en
- es
- fr
- ru
- th
- tr
- ur
- vn
- zh
datasets:
- SNLI
- MNLI
- ANLI
- XNLI
pipeline_tag: sentence-similarity
tags:
- zero-shot-classification
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
---
A Siamese network model trained for zero-shot and few-shot text classification.
The base model is [xlm-roberta-base](https://huggingface.co/xlm-roberta-base).
It was trained on [SNLI](https://nlp.stanford.edu/projects/snli/), [MNLI](https://cims.nyu.edu/~sbowman/multinli/), [ANLI](https://github.com/facebookresearch/anli) and [XNLI](https://github.com/facebookresearch/XNLI).
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space.
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('{MODEL_NAME}')
embeddings = model.encode(sentences)
print(embeddings)
```
## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
```python
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
model = AutoModel.from_pretrained('{MODEL_NAME}')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
```
| [
-0.20911762118339539,
-0.5789163112640381,
0.22895577549934387,
0.20682582259178162,
-0.2606871724128723,
-0.34956231713294983,
-0.1662926971912384,
-0.10764802992343903,
0.35274913907051086,
0.5126616358757019,
-0.5772761702537537,
-0.5356015563011169,
-0.7181834578514099,
0.16047897934913635,
-0.3941122591495514,
1.2347174882888794,
-0.20334123075008392,
-0.0504712238907814,
0.021230511367321014,
-0.2926342487335205,
-0.3355554938316345,
-0.4606682062149048,
-0.5842723846435547,
-0.3775405287742615,
0.42793476581573486,
0.3003929853439331,
0.39370250701904297,
0.5581289529800415,
0.2987215518951416,
0.4304799437522888,
0.07011505216360092,
0.04679717868566513,
-0.4367520809173584,
-0.09369662404060364,
0.0629369392991066,
-0.5185474753379822,
-0.1803770214319229,
0.29657334089279175,
0.6871222853660583,
0.30980873107910156,
-0.001263184123672545,
0.13100871443748474,
-0.03677099943161011,
0.374857634305954,
-0.7135077714920044,
0.3042495548725128,
-0.4701126217842102,
0.26979565620422363,
-0.03699899837374687,
-0.10172080993652344,
-0.5435861945152283,
0.04055441543459892,
0.19019122421741486,
-0.5476831197738647,
0.10664307326078415,
0.1685286909341812,
1.1941123008728027,
0.3066543638706207,
-0.3574941158294678,
-0.31418898701667786,
-0.3062010407447815,
0.9280655384063721,
-0.7387283444404602,
0.1901049017906189,
0.26493528485298157,
-0.026297681033611298,
0.11494409292936325,
-0.8390428423881531,
-0.8980507254600525,
0.10818663239479065,
-0.3500654697418213,
0.28663286566734314,
-0.35551851987838745,
0.15403343737125397,
0.22600805759429932,
0.30464357137680054,
-0.7907193303108215,
0.025928134098649025,
-0.4475562274456024,
-0.06838326156139374,
0.6170893907546997,
0.11521556228399277,
0.4245085120201111,
-0.6542043685913086,
-0.48471227288246155,
-0.29834887385368347,
-0.19080767035484314,
-0.10359745472669601,
0.03703983873128891,
0.21352070569992065,
-0.3192256689071655,
0.793263852596283,
-0.23352684080600739,
0.6510911583900452,
-0.01686369813978672,
-0.04217592999339104,
0.5125013589859009,
-0.342876136302948,
-0.47561296820640564,
0.1724894791841507,
1.163275122642517,
0.4651976227760315,
0.45334160327911377,
-0.014133117161691189,
-0.13385258615016937,
0.1728680282831192,
0.12282485514879227,
-0.8969731330871582,
-0.31898564100265503,
0.16389288008213043,
-0.35019806027412415,
-0.5517942905426025,
0.06908777356147766,
-0.652859628200531,
-0.07822231203317642,
-0.019758084788918495,
0.7918183207511902,
-0.4165971875190735,
-0.05826234444975853,
0.30453649163246155,
-0.24925875663757324,
0.22460933029651642,
-0.10517258197069168,
-0.8101746439933777,
0.19285649061203003,
0.24687834084033966,
1.2828465700149536,
0.020686691626906395,
-0.5058452486991882,
-0.4609861969947815,
-0.02678285725414753,
-0.06726700067520142,
0.7140112519264221,
-0.20821404457092285,
-0.05294209346175194,
0.031610533595085144,
0.17167723178863525,
-0.6884571313858032,
-0.2515347898006439,
0.3877275884151459,
-0.31395018100738525,
0.6964675188064575,
0.24598081409931183,
-0.8294827938079834,
-0.26876235008239746,
0.44795936346054077,
-0.527804970741272,
0.9974905848503113,
0.19164025783538818,
-1.2103358507156372,
0.0781899243593216,
-0.8230234384536743,
-0.12473399937152863,
-0.1286531239748001,
-0.09513802081346512,
-0.7601870894432068,
0.006028748117387295,
0.25861406326293945,
0.8766241669654846,
0.20252177119255066,
0.16376563906669617,
-0.38086843490600586,
-0.5392059087753296,
0.3916882574558258,
-0.3284863233566284,
1.1314929723739624,
0.06384491920471191,
-0.4548046886920929,
0.19641563296318054,
-0.7383259534835815,
-0.08622799068689346,
0.2689542770385742,
-0.17977435886859894,
-0.2554117739200592,
-0.3561039865016937,
0.41618263721466064,
0.37492048740386963,
-0.07958337664604187,
-0.7701402306556702,
0.24582549929618835,
-0.6002347469329834,
0.7710619568824768,
0.492220401763916,
0.08814992010593414,
0.6320196390151978,
-0.38808366656303406,
0.21876922249794006,
0.4098609685897827,
-0.22832518815994263,
-0.39268237352371216,
-0.37905511260032654,
-1.1642649173736572,
-0.23149125277996063,
0.25928759574890137,
0.755715548992157,
-0.9145410656929016,
0.6792241930961609,
-0.45503905415534973,
-0.444667786359787,
-0.5503401756286621,
0.08990155905485153,
0.255458265542984,
0.5166237950325012,
0.5049105286598206,
-0.22065243124961853,
-0.5631025433540344,
-0.7272292971611023,
0.05259586125612259,
-0.11425599455833435,
0.01581275463104248,
0.23285439610481262,
0.76824551820755,
-0.31534770131111145,
1.0018459558486938,
-0.6323705315589905,
-0.6669753789901733,
-0.4411824643611908,
0.33929961919784546,
0.25828972458839417,
0.642855167388916,
0.5921956300735474,
-0.6093068718910217,
-0.4194231629371643,
-0.32931992411613464,
-0.8917818069458008,
0.09482912719249725,
-0.28087279200553894,
-0.20795735716819763,
0.23531940579414368,
0.4686780869960785,
-0.7898019552230835,
0.5564133524894714,
0.4954237639904022,
-0.37796372175216675,
0.5195139050483704,
-0.10405982285737991,
-0.16518762707710266,
-1.4668867588043213,
0.03992477059364319,
0.2001953274011612,
-0.3723472058773041,
-0.6430308222770691,
0.07025767117738724,
-0.011237784288823605,
-0.16272836923599243,
-0.5747795701026917,
0.7306130528450012,
-0.4141010642051697,
0.14763714373111725,
-0.34722599387168884,
0.3635358512401581,
0.10701560974121094,
0.7330067157745361,
0.14882901310920715,
0.6108501553535461,
0.662138819694519,
-0.6223456859588623,
0.4793805778026581,
0.45986124873161316,
-0.2383260726928711,
0.39046645164489746,
-0.7150577306747437,
0.07515650987625122,
-0.18087004125118256,
0.4596382677555084,
-1.1060166358947754,
-0.2313830852508545,
0.45392873883247375,
-0.6186944246292114,
0.30017825961112976,
0.20841552317142487,
-0.560556948184967,
-0.49259334802627563,
-0.39118194580078125,
0.344521164894104,
0.3306742310523987,
-0.5678398013114929,
0.5320883393287659,
0.21862846612930298,
0.05438527464866638,
-0.5589074492454529,
-1.121079683303833,
0.07587848603725433,
-0.28427186608314514,
-0.5229771137237549,
0.4233418107032776,
0.014253649860620499,
0.23166921734809875,
0.15886223316192627,
0.3542789816856384,
-0.21062378585338593,
-0.024869147688150406,
0.06428989768028259,
0.29913854598999023,
-0.26106971502304077,
0.22847121953964233,
0.09328810125589371,
-0.27474328875541687,
-0.013505459763109684,
-0.3672604262828827,
0.6341458559036255,
-0.12493190914392471,
0.0012686923146247864,
-0.6834560036659241,
0.1766933798789978,
0.3494054675102234,
-0.14298614859580994,
0.9008128643035889,
1.0768483877182007,
-0.5245252847671509,
-0.15181832015514374,
-0.4186173379421234,
-0.2309095561504364,
-0.4460931420326233,
0.5340296030044556,
-0.3498139977455139,
-0.9995112419128418,
0.3346420228481293,
0.21160045266151428,
0.0945025309920311,
0.5219061374664307,
0.5013099312782288,
-0.07745037227869034,
0.9694280624389648,
0.8112479448318481,
-0.3466322124004364,
0.5585940480232239,
-0.69379723072052,
0.20578807592391968,
-0.9096576571464539,
0.10687030851840973,
-0.19631345570087433,
-0.31205227971076965,
-0.6778587102890015,
-0.318672239780426,
0.20324265956878662,
-0.006191485561430454,
-0.27954182028770447,
0.6370185613632202,
-0.6596256494522095,
0.4044373333454132,
0.5198474526405334,
0.18305319547653198,
0.018965600058436394,
0.04255657643079758,
-0.23627926409244537,
-0.008283383212983608,
-0.8611618280410767,
-0.49221181869506836,
0.8706603050231934,
0.49020230770111084,
0.4786723256111145,
-0.12870144844055176,
0.9082566499710083,
-0.13946859538555145,
0.32307490706443787,
-0.9220888018608093,
0.4390347898006439,
-0.32986730337142944,
-0.5459892749786377,
-0.31099388003349304,
-0.4387177526950836,
-0.8522274494171143,
0.3933083713054657,
-0.21765626966953278,
-0.9778333902359009,
0.06849648058414459,
-0.15703228116035461,
-0.5094578266143799,
0.39001765847206116,
-0.7549301385879517,
1.0733095407485962,
0.21351924538612366,
-0.18114523589611053,
0.012411823496222496,
-0.7202470898628235,
0.491776704788208,
0.1617320328950882,
-0.04817524552345276,
-0.06490329653024673,
0.09531166404485703,
0.9507743120193481,
-0.20949982106685638,
1.0633690357208252,
-0.07973054051399231,
0.3246994614601135,
0.31353065371513367,
-0.24842329323291779,
0.03902390971779823,
0.012484226375818253,
-0.027550790458917618,
0.18206758797168732,
0.021033447235822678,
-0.3980410695075989,
-0.6597375869750977,
0.667477548122406,
-1.0541069507598877,
-0.24733786284923553,
-0.6316664218902588,
-0.4260653555393219,
0.13178569078445435,
0.27462077140808105,
0.5566849708557129,
0.5260046720504761,
-0.0769781693816185,
0.269637793302536,
0.5486637949943542,
-0.22929036617279053,
0.8103749752044678,
0.06982828676700592,
-0.19671425223350525,
-0.5248407125473022,
0.8265271186828613,
0.11884529143571854,
0.02642829343676567,
0.49004194140434265,
0.14441116154193878,
-0.4326086938381195,
-0.09967583417892456,
-0.65305095911026,
0.5007055401802063,
-0.6520193815231323,
-0.37791940569877625,
-1.0568042993545532,
-0.7586583495140076,
-0.5591273903846741,
-0.15099148452281952,
-0.2502058744430542,
-0.3449725806713104,
-0.6996328234672546,
-0.18225456774234772,
0.27840790152549744,
0.5575554966926575,
0.1277311146259308,
0.64045649766922,
-0.8092188835144043,
0.11929202824831009,
0.16468049585819244,
0.13965725898742676,
-0.06104831025004387,
-0.7008481621742249,
-0.236242413520813,
-0.08690927922725677,
-0.4807766079902649,
-1.0420341491699219,
0.6786033511161804,
0.3520354926586151,
0.3169723153114319,
0.4674539566040039,
0.04459671303629875,
0.6311808228492737,
-0.5370562672615051,
0.6682226657867432,
0.3265949487686157,
-1.0602600574493408,
0.459966242313385,
-0.09067083150148392,
0.446466863155365,
0.4812670350074768,
0.45470374822616577,
-0.6684403419494629,
-0.3235829174518585,
-0.6138253211975098,
-0.6986302733421326,
0.9182045459747314,
0.46273061633110046,
0.5080958008766174,
-0.23359084129333496,
0.505396842956543,
-0.31866779923439026,
0.14946354925632477,
-1.2807236909866333,
-0.42154523730278015,
-0.4529927670955658,
-0.6087577939033508,
-0.36256545782089233,
-0.1886466145515442,
0.20492084324359894,
-0.3171733021736145,
0.798073947429657,
-0.23613081872463226,
0.53098464012146,
0.40962016582489014,
-0.38110801577568054,
0.13210409879684448,
0.16920024156570435,
0.6513910293579102,
0.1250731647014618,
-0.05751413479447365,
0.23473574221134186,
0.2552417516708374,
-0.3121923804283142,
0.20818519592285156,
0.1949850618839264,
-0.21302001178264618,
0.2957477867603302,
0.43223750591278076,
1.219619631767273,
0.44953233003616333,
-0.3149029016494751,
0.895641565322876,
-0.1541752815246582,
-0.26273277401924133,
-0.35911479592323303,
0.05671163275837898,
0.04966093599796295,
0.1376139521598816,
0.10543475300073624,
-0.03563597798347473,
0.08369137346744537,
-0.3355269730091095,
0.3917257487773895,
0.21544483304023743,
-0.5218209028244019,
-0.18283583223819733,
0.6427039504051208,
0.047170206904411316,
-0.2255217581987381,
0.8490548133850098,
-0.39627182483673096,
-0.7905469536781311,
0.40454208850860596,
0.6349555850028992,
1.1014846563339233,
-0.07364116609096527,
0.4130952060222626,
0.6764429211616516,
0.19917438924312592,
0.07955651730298996,
-0.1486956924200058,
-0.0823746845126152,
-1.0544137954711914,
-0.2954592704772949,
-0.7752615809440613,
-0.053680047392845154,
0.10769985616207123,
-0.6145979762077332,
0.46999305486679077,
-0.3636329472064972,
-0.05244637653231621,
0.057791002094745636,
0.11190424114465714,
-0.6251978278160095,
0.20941470563411713,
0.11666020005941391,
0.8036410212516785,
-1.1507792472839355,
0.840146541595459,
0.7486147284507751,
-0.6720247268676758,
-0.7771819829940796,
-0.08155377209186554,
-0.07461513578891754,
-0.8238911628723145,
0.6114053726196289,
0.7425999641418457,
0.1656409353017807,
0.3427993357181549,
-0.5344176888465881,
-0.8508671522140503,
1.2394803762435913,
0.041565172374248505,
-0.41943469643592834,
-0.197432279586792,
0.0016594785265624523,
0.48125192523002625,
-0.5827385187149048,
0.5337038040161133,
0.38794904947280884,
0.15014193952083588,
0.08549308031797409,
-0.8335315585136414,
0.07965581864118576,
-0.30373522639274597,
0.21266351640224457,
-0.12231220304965973,
-0.6315740942955017,
0.8520950078964233,
-0.11257140338420868,
-0.3182500898838043,
0.11517760902643204,
0.8975186347961426,
0.4418424367904663,
0.25290676951408386,
0.6325960755348206,
0.7270873785018921,
0.5170952081680298,
-0.026095062494277954,
0.9353578090667725,
-0.24739477038383484,
0.7583856582641602,
0.8940476179122925,
-0.04726182296872139,
1.1247764825820923,
0.33204010128974915,
0.08755805343389511,
0.7540665864944458,
0.6650031805038452,
-0.19187773764133453,
0.452690452337265,
0.2404680848121643,
-0.17716577649116516,
0.0015915879048407078,
-0.02692866325378418,
-0.06017012521624565,
0.7252169251441956,
0.16743801534175873,
-0.48731550574302673,
-0.24577970802783966,
0.3793167173862457,
0.22614319622516632,
-0.17804564535617828,
-0.126019686460495,
0.8513328433036804,
0.21149887144565582,
-0.4727310240268707,
0.4342395067214966,
0.3155621886253357,
1.0719798803329468,
-0.3672340214252472,
0.07556531578302383,
-0.01589781418442726,
0.380109965801239,
-0.14697913825511932,
-0.6434458494186401,
0.4195687472820282,
-0.057397302240133286,
-0.14953717589378357,
-0.10554159432649612,
0.7541331648826599,
-0.742434024810791,
-0.6743505597114563,
0.29454830288887024,
0.3438686430454254,
0.3022816777229309,
-0.02365785837173462,
-1.0374959707260132,
-0.009977800771594048,
-0.09440850466489792,
-0.4600740075111389,
0.25750866532325745,
0.24930623173713684,
0.17250293493270874,
0.5649698376655579,
0.43940407037734985,
-0.08520502597093582,
0.19153054058551788,
0.12551501393318176,
0.8851143717765808,
-0.6462119817733765,
-0.7279508709907532,
-0.9815359115600586,
0.5120717287063599,
-0.17945349216461182,
-0.45118454098701477,
0.7062475085258484,
0.4906798005104065,
0.9632810354232788,
-0.05104580149054527,
0.49138063192367554,
0.04172255098819733,
0.23415984213352203,
-0.6147223711013794,
0.9448627233505249,
-0.5831029415130615,
-0.2602059841156006,
-0.31015491485595703,
-0.9343969225883484,
-0.5343965291976929,
1.0861819982528687,
-0.19960808753967285,
0.17311741411685944,
0.8303748965263367,
0.7407522201538086,
-0.16351523995399475,
-0.07426363974809647,
0.2866947650909424,
0.300273060798645,
0.1467341184616089,
0.562124490737915,
0.43758121132850647,
-0.8882497549057007,
0.5012569427490234,
-0.5523684620857239,
-0.24853327870368958,
-0.051530491560697556,
-0.765426754951477,
-1.1093168258666992,
-0.6461239457130432,
-0.5920593738555908,
-0.31347328424453735,
-0.13250021636486053,
0.9609696865081787,
0.9639603495597839,
-0.8401468992233276,
-0.18236131966114044,
-0.31691038608551025,
-0.10378219187259674,
0.06547833234071732,
-0.38158825039863586,
0.42929816246032715,
-0.5142538547515869,
-0.8745262622833252,
0.022684035822749138,
0.18231096863746643,
0.21164552867412567,
-0.4227747619152069,
0.16559907793998718,
-0.530375599861145,
0.05169875547289848,
0.5690373182296753,
-0.054001517593860626,
-0.66839998960495,
-0.25414973497390747,
0.06821775436401367,
-0.3674439787864685,
0.07943522185087204,
0.4248640835285187,
-0.634750485420227,
0.38247260451316833,
0.37739402055740356,
0.6309406161308289,
0.7492047548294067,
-0.13096295297145844,
0.27088698744773865,
-1.0260977745056152,
0.22655929625034332,
-0.007097607012838125,
0.5286502242088318,
0.49935296177864075,
-0.35883402824401855,
0.4431006908416748,
0.38314586877822876,
-0.5457818508148193,
-0.7933447360992432,
-0.06661520153284073,
-0.9892285466194153,
-0.1632136106491089,
1.101528286933899,
-0.4360264539718628,
-0.5611180663108826,
0.11914011090993881,
-0.25196942687034607,
0.5228300094604492,
-0.128879576921463,
0.6813586950302124,
0.8673304319381714,
-0.10684165358543396,
-0.5886351466178894,
-0.25587770342826843,
0.2111174613237381,
0.42801302671432495,
-0.658450722694397,
-0.3078168034553528,
0.13665439188480377,
0.33722543716430664,
0.4374127686023712,
0.7768638134002686,
0.10228484869003296,
0.07673631608486176,
0.06051752343773842,
0.119821697473526,
-0.013280774466693401,
-0.2365598827600479,
-0.6602065563201904,
0.06180588901042938,
-0.4495089054107666,
-0.5746572613716125
] |
MoritzLaurer/DeBERTa-v3-xsmall-mnli-fever-anli-ling-binary | MoritzLaurer | "2023-03-20T08:28:49Z" | 11,296 | 3 | transformers | [
"transformers",
"pytorch",
"safetensors",
"deberta-v2",
"text-classification",
"zero-shot-classification",
"en",
"dataset:multi_nli",
"dataset:anli",
"dataset:fever",
"dataset:lingnli",
"arxiv:2104.07179",
"arxiv:2111.09543",
"license:mit",
"endpoints_compatible",
"region:us"
] | zero-shot-classification | "2022-03-02T23:29:04Z" | ---
language:
- en
license: mit
tags:
- text-classification
- zero-shot-classification
metrics:
- accuracy
datasets:
- multi_nli
- anli
- fever
- lingnli
pipeline_tag: zero-shot-classification
---
# DeBERTa-v3-xsmall-mnli-fever-anli-ling-binary
## Model description
This model was trained on 782 357 hypothesis-premise pairs from 4 NLI datasets: [MultiNLI](https://huggingface.co/datasets/multi_nli), [Fever-NLI](https://github.com/easonnie/combine-FEVER-NSMN/blob/master/other_resources/nli_fever.md), [LingNLI](https://arxiv.org/abs/2104.07179) and [ANLI](https://github.com/facebookresearch/anli).
Note that the model was trained on binary NLI to predict either "entailment" or "not-entailment". This is specifically designed for zero-shot classification, where the difference between "neutral" and "contradiction" is irrelevant.
The base model is [DeBERTa-v3-xsmall from Microsoft](https://huggingface.co/microsoft/deberta-v3-xsmall). The v3 variant of DeBERTa substantially outperforms previous versions of the model by including a different pre-training objective, see the [DeBERTa-V3 paper](https://arxiv.org/abs/2111.09543).
For highest performance (but less speed), I recommend using https://huggingface.co/MoritzLaurer/DeBERTa-v3-large-mnli-fever-anli-ling-wanli.
## Intended uses & limitations
#### How to use the model
```python
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
model_name = "MoritzLaurer/DeBERTa-v3-xsmall-mnli-fever-anli-ling-binary"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)
premise = "I first thought that I liked the movie, but upon second thought it was actually disappointing."
hypothesis = "The movie was good."
input = tokenizer(premise, hypothesis, truncation=True, return_tensors="pt")
output = model(input["input_ids"].to(device)) # device = "cuda:0" or "cpu"
prediction = torch.softmax(output["logits"][0], -1).tolist()
label_names = ["entailment", "not_entailment"]
prediction = {name: round(float(pred) * 100, 1) for pred, name in zip(prediction, label_names)}
print(prediction)
```
### Training data
This model was trained on 782 357 hypothesis-premise pairs from 4 NLI datasets: [MultiNLI](https://huggingface.co/datasets/multi_nli), [Fever-NLI](https://github.com/easonnie/combine-FEVER-NSMN/blob/master/other_resources/nli_fever.md), [LingNLI](https://arxiv.org/abs/2104.07179) and [ANLI](https://github.com/facebookresearch/anli).
### Training procedure
DeBERTa-v3-xsmall-mnli-fever-anli-ling-binary was trained using the Hugging Face trainer with the following hyperparameters.
```
training_args = TrainingArguments(
num_train_epochs=5, # total number of training epochs
learning_rate=2e-05,
per_device_train_batch_size=32, # batch size per device during training
per_device_eval_batch_size=32, # batch size for evaluation
warmup_ratio=0.1, # number of warmup steps for learning rate scheduler
weight_decay=0.06, # strength of weight decay
fp16=True # mixed precision training
)
```
### Eval results
The model was evaluated using the binary test sets for MultiNLI, ANLI, LingNLI and the binary dev set for Fever-NLI (two classes instead of three). The metric used is accuracy.
dataset | mnli-m-2c | mnli-mm-2c | fever-nli-2c | anli-all-2c | anli-r3-2c | lingnli-2c
--------|---------|----------|---------|----------|----------|------
accuracy | 0.925 | 0.922 | 0.892 | 0.676 | 0.665 | 0.888
speed (text/sec, CPU, 128 batch) | 6.0 | 6.3 | 3.0 | 5.8 | 5.0 | 7.6
speed (text/sec, GPU Tesla P100, 128 batch) | 473 | 487 | 230 | 390 | 340 | 586
## Limitations and bias
Please consult the original DeBERTa paper and literature on different NLI datasets for potential biases.
## Citation
If you use this model, please cite: Laurer, Moritz, Wouter van Atteveldt, Andreu Salleras Casas, and Kasper Welbers. 2022. ‘Less Annotating, More Classifying – Addressing the Data Scarcity Issue of Supervised Machine Learning with Deep Transfer Learning and BERT - NLI’. Preprint, June. Open Science Framework. https://osf.io/74b8k.
### Ideas for cooperation or questions?
If you have questions or ideas for cooperation, contact me at m{dot}laurer{at}vu{dot}nl or [LinkedIn](https://www.linkedin.com/in/moritz-laurer/)
### Debugging and issues
Note that DeBERTa-v3 was released on 06.12.21 and older versions of HF Transformers seem to have issues running the model (e.g. resulting in an issue with the tokenizer). Using Transformers>=4.13 might solve some issues. | [
-0.33126044273376465,
-0.4403015673160553,
0.10019093006849289,
0.28595882654190063,
-0.2068386971950531,
-0.1781829595565796,
0.06863811612129211,
-0.5710787773132324,
0.4487030506134033,
0.12169130891561508,
-0.4563536047935486,
-0.5146821141242981,
-0.6630169749259949,
0.22052042186260223,
-0.19690267741680145,
1.067884922027588,
-0.029153024777770042,
0.12119128555059433,
0.0047593615017831326,
-0.17500628530979156,
-0.2610359191894531,
-0.6705600619316101,
-0.5158650875091553,
-0.5190346240997314,
0.3422872722148895,
0.37977713346481323,
0.709709882736206,
0.42931151390075684,
0.5347914099693298,
0.20727016031742096,
-0.09861285984516144,
-0.06462257355451584,
-0.2923777401447296,
-0.10944264382123947,
0.27878129482269287,
-0.5352621674537659,
-0.4944707453250885,
0.13304635882377625,
0.41631799936294556,
0.30890440940856934,
0.05769883468747139,
0.3536255359649658,
-0.20013107359409332,
0.6424080729484558,
-0.54659503698349,
0.10711687058210373,
-0.5139532089233398,
0.2884802222251892,
-0.04775173217058182,
0.17183341085910797,
-0.3288373351097107,
-0.16081863641738892,
0.3152472674846649,
-0.4757634401321411,
0.14859262108802795,
-0.11671610921621323,
1.2932038307189941,
0.2760121822357178,
-0.28836095333099365,
0.045338232070207596,
-0.5190645456314087,
0.8525916934013367,
-1.0042837858200073,
0.19181577861309052,
0.24321430921554565,
-0.05470176413655281,
0.03573682904243469,
-0.39409375190734863,
-0.6297991275787354,
-0.13828144967556,
-0.08320162445306778,
0.1254771649837494,
-0.42177870869636536,
-0.3295455574989319,
0.4680377244949341,
0.14331379532814026,
-0.7474094033241272,
-0.0821375772356987,
-0.5846724510192871,
-0.06638841331005096,
0.7286026477813721,
-0.012283637188374996,
0.18538668751716614,
-0.4363389015197754,
-0.5232558846473694,
-0.139839768409729,
-0.4288374185562134,
0.14161764085292816,
0.06231273338198662,
0.028607245534658432,
-0.3926387429237366,
0.2590844929218292,
-0.08559994399547577,
0.752765953540802,
0.30688709020614624,
-0.2737168073654175,
1.0315414667129517,
-0.2048957496881485,
-0.42471843957901,
0.2455180287361145,
0.9981814622879028,
0.4255306124687195,
0.11147129535675049,
0.041526682674884796,
0.07368731498718262,
-0.17045249044895172,
-0.15749193727970123,
-1.1210172176361084,
-0.2876325249671936,
0.38352739810943604,
-0.3898185193538666,
-0.5326574444770813,
0.07299783080816269,
-0.8305360674858093,
-0.23832233250141144,
-0.3436472713947296,
0.564449667930603,
-0.709287166595459,
-0.5122500061988831,
-0.06631963700056076,
-0.204366996884346,
0.38534867763519287,
-0.034425750374794006,
-0.8495558500289917,
0.11769090592861176,
0.19844919443130493,
0.8727782368659973,
-0.1881607174873352,
-0.30601146817207336,
-0.1982244998216629,
-0.05448788031935692,
-0.18697795271873474,
0.3355270326137543,
-0.2804583013057709,
-0.2444145381450653,
-0.33164772391319275,
0.031176559627056122,
-0.5893286466598511,
-0.5061963796615601,
0.4119645953178406,
-0.3159463405609131,
0.1653108447790146,
-0.17308442294597626,
-0.3727678656578064,
-0.4153718054294586,
0.2211848944425583,
-0.44694486260414124,
0.9961020350456238,
0.18483670055866241,
-1.1515978574752808,
0.2708316445350647,
-0.4894600212574005,
-0.23688170313835144,
-0.4003843367099762,
0.02639065310359001,
-0.7147388458251953,
-0.16566093266010284,
0.3600097596645355,
0.5335380434989929,
-0.24396443367004395,
0.5270044803619385,
-0.528949499130249,
-0.4006873369216919,
0.40407824516296387,
-0.26091551780700684,
1.0829375982284546,
0.2750658690929413,
-0.7580437660217285,
0.1329004317522049,
-1.0215439796447754,
-0.04864109680056572,
0.4318385720252991,
0.06525380909442902,
-0.1501532942056656,
-0.49105629324913025,
-0.08037601411342621,
0.45331263542175293,
0.16913224756717682,
-0.5213112831115723,
0.26719915866851807,
-0.6511101722717285,
0.4334382712841034,
0.3437665104866028,
-0.013195288367569447,
0.26495522260665894,
-0.5288359522819519,
0.27115511894226074,
0.4361741840839386,
0.3691902756690979,
0.025857852771878242,
-0.7565070986747742,
-0.9307706356048584,
-0.30820128321647644,
0.3207569122314453,
0.8006049394607544,
-0.7139713168144226,
0.46247684955596924,
-0.061154019087553024,
-0.8679734468460083,
-0.5101274847984314,
0.14210638403892517,
0.39675411581993103,
0.6378352046012878,
0.4749218821525574,
-0.06572336703538895,
-0.8140912055969238,
-0.9678779244422913,
0.22043778002262115,
-0.17359690368175507,
0.0643429234623909,
0.12224135547876358,
0.7473241686820984,
-0.4354328215122223,
0.9661679267883301,
-0.39236968755722046,
-0.4229230284690857,
-0.31927502155303955,
0.014182527549564838,
0.7799848318099976,
0.7624617218971252,
0.979496419429779,
-0.6551907062530518,
-0.505863606929779,
-0.19409292936325073,
-1.0262451171875,
0.07349785417318344,
0.026943016797304153,
-0.20032866299152374,
0.643234372138977,
0.2021552473306656,
-0.4173266887664795,
0.5043975114822388,
0.5365824699401855,
-0.25310540199279785,
0.23326493799686432,
-0.09112874418497086,
0.20691579580307007,
-1.2195546627044678,
0.35596075654029846,
0.14399482309818268,
0.12156561762094498,
-0.970408022403717,
-0.1104162409901619,
0.025835558772087097,
0.007872658781707287,
-0.6347237825393677,
0.5357351899147034,
-0.11033862829208374,
0.30697545409202576,
-0.13022086024284363,
-0.08369965106248856,
0.2243954837322235,
0.6507610082626343,
0.11480046063661575,
0.344272255897522,
1.0128997564315796,
-0.6181135177612305,
0.23442615568637848,
0.172748863697052,
0.03541460633277893,
0.07965104281902313,
-0.8738040924072266,
0.0630212128162384,
-0.06045133247971535,
0.16376300156116486,
-0.6804540753364563,
-0.2070506513118744,
0.6674649715423584,
-0.4868236184120178,
0.45457515120506287,
-0.08169932663440704,
-0.30861952900886536,
-0.5320332646369934,
-0.3913976848125458,
0.4533720910549164,
0.7921097874641418,
-0.6339823603630066,
0.6388839483261108,
0.20276981592178345,
0.23788736760616302,
-0.9050391316413879,
-0.6736208200454712,
-0.39405298233032227,
-0.3940024673938751,
-0.7202233076095581,
0.4594443440437317,
-0.027133163064718246,
-0.28129032254219055,
-0.009651264175772667,
0.006408162415027618,
-0.17006716132164001,
0.046909868717193604,
0.41778135299682617,
0.5904213190078735,
-0.13937608897686005,
-0.09486354887485504,
0.0041750953532755375,
0.021517587825655937,
0.023845983669161797,
-0.1763281375169754,
0.5243741273880005,
-0.43295031785964966,
-0.017037762328982353,
-0.5516190528869629,
0.09861033409833908,
0.5047735571861267,
-0.09727572649717331,
0.9440048336982727,
0.9814174175262451,
-0.49549925327301025,
0.40516427159309387,
-0.5695942044258118,
-0.11299839615821838,
-0.3910496234893799,
0.12949854135513306,
-0.42696869373321533,
-0.3850119411945343,
0.6157463192939758,
0.46252045035362244,
0.022787809371948242,
0.8634424805641174,
0.39977484941482544,
0.3537457287311554,
0.9046951532363892,
0.5391073226928711,
-0.221848726272583,
0.11771602183580399,
-0.7149069905281067,
0.09025724977254868,
-0.7251125574111938,
-0.3601621985435486,
-0.41899192333221436,
-0.12572114169597626,
-0.48955053091049194,
-0.3830015957355499,
0.41823941469192505,
0.2596837282180786,
-0.4191015660762787,
0.3697599470615387,
-0.5703648328781128,
0.1601763814687729,
0.6653668880462646,
0.20993360877037048,
0.11625169217586517,
-0.09198892116546631,
-0.00066831533331424,
0.11864400655031204,
-0.8222309350967407,
-0.23084621131420135,
1.1589808464050293,
0.54660564661026,
0.5369275808334351,
0.048490699380636215,
1.0104082822799683,
-0.13650888204574585,
0.3814449906349182,
-0.3986913859844208,
0.2774972915649414,
-0.18819718062877655,
-0.8453739881515503,
-0.18524377048015594,
-0.49309056997299194,
-0.8408713340759277,
0.2573624551296234,
-0.43759483098983765,
-0.8458605408668518,
0.5975252389907837,
0.1402435600757599,
-0.5385048985481262,
0.420413613319397,
-0.7537707686424255,
0.863181471824646,
-0.10848478227853775,
-0.3525068759918213,
0.0801260694861412,
-0.7510247230529785,
0.6778907179832458,
-0.22136084735393524,
0.1602274775505066,
-0.3784865140914917,
0.35009899735450745,
1.004352331161499,
-0.32472407817840576,
0.8816154599189758,
-0.3534049987792969,
0.14289610087871552,
0.45365557074546814,
-0.24182792007923126,
0.0767911970615387,
0.32586926221847534,
-0.6077415347099304,
0.702610194683075,
0.3888506293296814,
-0.48666298389434814,
-0.31006738543510437,
0.8220162987709045,
-1.1252361536026,
-0.5800040364265442,
-0.8196084499359131,
-0.314704954624176,
0.02599959261715412,
0.11402064561843872,
0.6310380697250366,
0.6126134395599365,
-0.0026199668645858765,
-0.04688802734017372,
0.6886126399040222,
-0.4077441692352295,
0.4341981112957001,
0.2919482886791229,
-0.415964275598526,
-0.47427213191986084,
0.9007009267807007,
0.045794446021318436,
0.17351941764354706,
0.1399620920419693,
0.22048383951187134,
-0.1468173712491989,
-0.3186548054218292,
-0.718252956867218,
0.3791036605834961,
-0.6271622180938721,
-0.4122582972049713,
-1.01329505443573,
-0.41609621047973633,
-0.856432318687439,
0.022060224786400795,
-0.18579991161823273,
-0.33302071690559387,
-0.4894333779811859,
0.07181383669376373,
0.6338094472885132,
0.5730767846107483,
-0.2520095705986023,
0.08306198567152023,
-0.8087691068649292,
0.14365944266319275,
0.012520665302872658,
0.11198075860738754,
-0.01719226874411106,
-0.8820652365684509,
-0.09096941351890564,
0.09267967194318771,
-0.3369317948818207,
-1.0001403093338013,
0.8249118328094482,
0.2472865879535675,
0.38954266905784607,
0.28047090768814087,
0.15907780826091766,
0.6029834747314453,
-0.13846077024936676,
0.6677088737487793,
0.33637499809265137,
-0.9925894737243652,
0.642150342464447,
-0.05274388566613197,
0.3863252103328705,
0.5203200578689575,
0.8148614168167114,
-0.13645176589488983,
-0.3382754623889923,
-0.7860417366027832,
-0.9002499580383301,
0.8329941630363464,
0.23046907782554626,
-0.1760261207818985,
0.12071121484041214,
0.3615639805793762,
0.011741944588720798,
0.07261249423027039,
-0.8324958682060242,
-0.6719382405281067,
-0.40041467547416687,
-0.10800550878047943,
-0.14946392178535461,
-0.13346903026103973,
-0.05389732867479324,
-0.6796417832374573,
1.1716738939285278,
-0.010976498946547508,
0.302837073802948,
0.6843231916427612,
-0.02037281170487404,
-0.10499465465545654,
0.008723091334104538,
0.4966205656528473,
0.5259279608726501,
-0.5789800882339478,
-0.13803689181804657,
0.45133641362190247,
-0.334555983543396,
0.16722509264945984,
0.42522183060646057,
-0.40512603521347046,
0.31396397948265076,
0.31617459654808044,
1.1290091276168823,
-0.11322345584630966,
-0.4390590786933899,
0.5563379526138306,
-0.193403959274292,
-0.36691606044769287,
-0.450806200504303,
0.13887764513492584,
-0.11033212393522263,
0.19045929610729218,
0.3324865996837616,
0.34176403284072876,
0.2440711408853531,
-0.41993117332458496,
0.3067466914653778,
0.16884943842887878,
-0.39794930815696716,
-0.28094324469566345,
0.6837087869644165,
0.08473144471645355,
0.17094998061656952,
0.6284163594245911,
-0.35763928294181824,
-0.5102949142456055,
0.8603466749191284,
0.48432180285453796,
0.685814619064331,
-0.2658141553401947,
0.2729755938053131,
0.899377703666687,
0.14706817269325256,
0.08961151540279388,
0.22679202258586884,
0.4552138149738312,
-0.6426402926445007,
-0.3561023771762848,
-0.8240669369697571,
-0.19245855510234833,
0.22141316533088684,
-0.7119349241256714,
0.451262503862381,
-0.35322773456573486,
-0.2798352539539337,
0.2483186274766922,
0.0531153678894043,
-0.7419101595878601,
0.11722603440284729,
0.27351459860801697,
0.9078218340873718,
-1.0536503791809082,
1.0364199876785278,
0.5137926340103149,
-0.5634738802909851,
-1.0059359073638916,
-0.004709760658442974,
-0.01819390244781971,
-0.6515103578567505,
0.8379918336868286,
0.4760797321796417,
0.1369587481021881,
-0.21787403523921967,
-0.2241801768541336,
-1.164832592010498,
1.077886700630188,
0.23381619155406952,
-0.586616575717926,
0.02595026232302189,
-0.10069794207811356,
0.5043071508407593,
-0.3390556573867798,
0.47943541407585144,
0.7396447062492371,
0.3481540083885193,
0.3494625687599182,
-0.9924063086509705,
0.14308086037635803,
-0.45407170057296753,
-0.13084787130355835,
0.0501890666782856,
-0.5210523009300232,
0.8961523175239563,
-0.6173588633537292,
0.12016035616397858,
0.010973104275763035,
0.8019633293151855,
0.3661724925041199,
0.6276851296424866,
0.5123320817947388,
0.5166852474212646,
0.6864839196205139,
-0.11161162704229355,
0.9446234107017517,
-0.5009167790412903,
0.3112514019012451,
0.7418853044509888,
-0.3227775990962982,
0.7974987626075745,
0.2879221737384796,
-0.037115130573511124,
0.5496384501457214,
0.6712151765823364,
-0.26748281717300415,
0.32272592186927795,
0.2145211398601532,
-0.15149971842765808,
-0.007056151982396841,
-0.0037833559326827526,
-0.6765843033790588,
0.3421088755130768,
0.21661457419395447,
-0.40350598096847534,
0.09155052155256271,
0.416096568107605,
0.32545551657676697,
-0.3567318022251129,
-0.13732266426086426,
0.6219324469566345,
0.010253875516355038,
-0.8242545127868652,
1.2676632404327393,
-0.09246333688497543,
0.9049641489982605,
-0.31066635251045227,
0.15848904848098755,
-0.1233462244272232,
0.2320806235074997,
-0.43709588050842285,
-0.44939735531806946,
0.44357606768608093,
-0.00010186287545366213,
-0.22444504499435425,
0.254782497882843,
0.549345850944519,
-0.3900545537471771,
-0.7064673900604248,
0.31525763869285583,
0.33381325006484985,
0.3207588195800781,
0.13365010917186737,
-0.9996373653411865,
0.22047841548919678,
0.17991437017917633,
-0.3058446943759918,
0.3433300256729126,
0.1767081320285797,
0.23145392537117004,
0.5467316508293152,
0.5043910145759583,
-0.16405051946640015,
-0.06758143752813339,
0.022988896816968918,
0.8445162177085876,
-0.4455828368663788,
-0.015322462655603886,
-0.9875869750976562,
0.2472509890794754,
-0.13946858048439026,
-0.3494942784309387,
0.7103074193000793,
0.6736424565315247,
0.7984135746955872,
-0.2528148293495178,
0.6350345611572266,
-0.31299543380737305,
0.3374675214290619,
-0.46437904238700867,
0.5090125799179077,
-0.4954748749732971,
-0.016786320134997368,
-0.34592559933662415,
-0.6719750165939331,
-0.46222057938575745,
0.6133466362953186,
-0.3341454863548279,
-0.001967550488188863,
0.5752561688423157,
0.8624703288078308,
0.2310095727443695,
0.0026935141067951918,
0.10881046205759048,
0.2046128660440445,
0.18228548765182495,
0.7066340446472168,
0.44725486636161804,
-0.7617239356040955,
0.40309029817581177,
-0.9438439011573792,
-0.47638463973999023,
-0.2112537920475006,
-0.6585812568664551,
-1.1135571002960205,
-0.4937572181224823,
-0.7341668009757996,
-0.7758085131645203,
0.13672949373722076,
1.3613041639328003,
0.7402970194816589,
-1.0691559314727783,
-0.12493093311786652,
0.1676672250032425,
-0.029156215488910675,
-0.2995896637439728,
-0.2082231640815735,
0.5365738272666931,
-0.2507901191711426,
-0.8429136872291565,
0.09907719492912292,
0.012234678491950035,
0.33195772767066956,
-0.052081432193517685,
-0.032537978142499924,
-0.32924896478652954,
0.049555886536836624,
0.47136324644088745,
0.29787200689315796,
-0.6057063341140747,
0.055794790387153625,
0.2340720146894455,
-0.12662191689014435,
0.18037158250808716,
0.20456820726394653,
-0.7234041094779968,
0.15694783627986908,
0.4442182779312134,
0.28001096844673157,
0.5324432253837585,
-0.28344884514808655,
0.2680284380912781,
-0.47095155715942383,
0.27824079990386963,
-0.0007023754296824336,
0.4582424759864807,
0.2425917088985443,
-0.3584781289100647,
0.5648205280303955,
0.2876357436180115,
-0.5223760604858398,
-0.8507081866264343,
-0.14735595881938934,
-1.0813535451889038,
-0.31740427017211914,
1.385257601737976,
-0.11692965030670166,
-0.585601806640625,
0.09922076016664505,
-0.23429633677005768,
0.35006821155548096,
-0.4384152889251709,
0.5936185121536255,
0.2967292070388794,
-0.30831554532051086,
0.0922125056385994,
-0.514640212059021,
0.6269751191139221,
0.43264392018318176,
-0.5500813126564026,
-0.18457213044166565,
0.00611377228051424,
0.35950154066085815,
0.525154173374176,
0.6818968653678894,
-0.1346973478794098,
0.16170278191566467,
-0.16679230332374573,
0.29027703404426575,
-0.04492998495697975,
-0.21102556586265564,
-0.5074881315231323,
0.015543036162853241,
-0.03379914537072182,
-0.13500244915485382
] |
VictorSanh/roberta-base-finetuned-yelp-polarity | VictorSanh | "2023-03-17T19:24:32Z" | 11,260 | 1 | transformers | [
"transformers",
"pytorch",
"jax",
"safetensors",
"roberta",
"text-classification",
"en",
"dataset:yelp_polarity",
"endpoints_compatible",
"region:us"
] | text-classification | "2022-03-02T23:29:05Z" | ---
language: en
datasets:
- yelp_polarity
---
# RoBERTa-base-finetuned-yelp-polarity
This is a [RoBERTa-base](https://huggingface.co/roberta-base) checkpoint fine-tuned on binary sentiment classifcation from [Yelp polarity](https://huggingface.co/nlp/viewer/?dataset=yelp_polarity).
It gets **98.08%** accuracy on the test set.
## Hyper-parameters
We used the following hyper-parameters to train the model on one GPU:
```python
num_train_epochs = 2.0
learning_rate = 1e-05
weight_decay = 0.0
adam_epsilon = 1e-08
max_grad_norm = 1.0
per_device_train_batch_size = 32
gradient_accumulation_steps = 1
warmup_steps = 3500
seed = 42
```
| [
-0.5748888850212097,
-0.8965378999710083,
0.4978726804256439,
0.22060193121433258,
-0.5793166160583496,
-0.16862063109874725,
-0.25839948654174805,
0.00821394007652998,
0.2710633873939514,
0.3444035053253174,
-0.8392258286476135,
-0.7407645583152771,
-0.6576327681541443,
-0.28336846828460693,
0.19590699672698975,
1.6163676977157593,
0.5427761673927307,
0.7737868428230286,
0.13437391817569733,
-0.6243482828140259,
-0.38986024260520935,
-0.6007643342018127,
-0.5620242953300476,
-0.22864674031734467,
0.3197745978832245,
0.4516967833042145,
0.7129152417182922,
0.12192759662866592,
0.405178427696228,
0.15257681906223297,
-0.3287894129753113,
-0.26631686091423035,
-0.5843144655227661,
-0.12465377151966095,
-0.25544166564941406,
-0.4645368456840515,
-0.6770601868629456,
0.3092598617076874,
0.6264139413833618,
0.6267175674438477,
-0.09803174436092377,
0.627949595451355,
-0.033529672771692276,
0.8167245984077454,
-0.31550121307373047,
0.35444045066833496,
-0.6772685050964355,
-0.18286475539207458,
0.04627722129225731,
0.32257699966430664,
-0.30272528529167175,
-0.4370989203453064,
-0.009783639572560787,
-0.3973315954208374,
0.5910859704017639,
0.18710198998451233,
1.1495301723480225,
0.27758243680000305,
-0.12390664219856262,
0.08795066177845001,
-0.5168473124504089,
1.0720388889312744,
-0.931792140007019,
0.20883256196975708,
0.33015039563179016,
0.12123875319957733,
-0.06632252782583237,
-0.4344530403614044,
-0.6670219302177429,
-0.08369949460029602,
0.37627220153808594,
0.13466621935367584,
0.034744467586278915,
0.06310922652482986,
0.5452383756637573,
0.3955157995223999,
-0.5901413559913635,
-0.23752780258655548,
-0.3029540777206421,
-0.14838966727256775,
0.17410369217395782,
0.25112882256507874,
0.09851254522800446,
-0.32562047243118286,
-0.47289496660232544,
-0.22974859178066254,
-0.38182297348976135,
0.1293923258781433,
0.23078405857086182,
0.7974737882614136,
-0.11778407543897629,
0.6428325772285461,
-0.29041552543640137,
0.810849666595459,
0.4161371886730194,
0.004069371148943901,
0.6924187541007996,
-0.3429718017578125,
-0.4089587926864624,
-0.03855704143643379,
0.8078170418739319,
0.5204139947891235,
0.03611309081315994,
0.11229688674211502,
-0.21326303482055664,
0.23981499671936035,
0.4125681519508362,
-0.755216658115387,
-0.29535987973213196,
0.40616142749786377,
-0.30962905287742615,
-0.4847922921180725,
0.24241723120212555,
-0.6313269734382629,
-0.01843608357012272,
-0.3539324104785919,
0.6907274127006531,
-0.5639787316322327,
-0.0292064119130373,
0.29182130098342896,
-0.4465824365615845,
0.28121045231819153,
0.19863605499267578,
-0.7042019963264465,
0.029788119718432426,
0.799272894859314,
0.8759090304374695,
0.30292996764183044,
-0.08144520223140717,
-0.49622634053230286,
-0.16671033203601837,
-0.03811396658420563,
0.5690416693687439,
-0.18162114918231964,
-0.2815704047679901,
-0.38728657364845276,
0.052479662001132965,
-0.013384963385760784,
-0.37960442900657654,
0.8961805701255798,
-0.6129396557807922,
0.6060054302215576,
-0.4672708213329315,
-0.4277307987213135,
-0.5305207967758179,
0.5518901944160461,
-0.6098656058311462,
0.997018575668335,
0.558060884475708,
-0.8137781620025635,
0.5959450602531433,
-0.3495151400566101,
-0.3815569281578064,
0.18543677031993866,
0.19724790751934052,
-0.7892701029777527,
0.2147202044725418,
-0.09163332730531693,
0.3601139783859253,
-0.3173550069332123,
0.3284410238265991,
-0.5220960974693298,
-0.25231802463531494,
0.0037509831599891186,
-0.1100928783416748,
1.1219300031661987,
0.061940934509038925,
-0.7577895522117615,
0.23854349553585052,
-1.129254937171936,
0.4705774784088135,
-0.1383729726076126,
-0.3679754436016083,
-0.24458888173103333,
-0.3410350978374481,
0.39216357469558716,
0.2426954209804535,
0.3986850380897522,
-0.7149141430854797,
0.24564868211746216,
-0.29814237356185913,
0.42658284306526184,
0.7509220242500305,
0.10985960811376572,
0.2952110469341278,
-0.4086281955242157,
0.3433613181114197,
0.1436682790517807,
0.3589450418949127,
0.528251588344574,
-0.9679580926895142,
-0.7671524286270142,
-0.43522077798843384,
0.1258937120437622,
0.6853541731834412,
-0.12212558090686798,
1.0688512325286865,
0.026266682893037796,
-0.855735182762146,
-0.29838767647743225,
0.20899614691734314,
0.5708869695663452,
0.7947431206703186,
0.6250834465026855,
-0.690154492855072,
-0.25059032440185547,
-0.6868778467178345,
-0.028972119092941284,
-0.44844210147857666,
0.1930156648159027,
0.4075384736061096,
0.39866241812705994,
-0.436430424451828,
0.6168171763420105,
-0.5542780160903931,
-0.41708365082740784,
-0.19098664820194244,
0.6048423647880554,
0.7470253109931946,
0.7351658344268799,
0.6080916523933411,
-0.43107303977012634,
-0.48043715953826904,
-0.5076200366020203,
-0.5919674038887024,
0.16732165217399597,
0.11078236997127533,
-0.27088943123817444,
0.3333669602870941,
-0.03475553169846535,
-0.8074715733528137,
0.10938344150781631,
0.5617667436599731,
-0.49067896604537964,
0.5850958824157715,
-0.15733090043067932,
0.15383456647396088,
-1.1811312437057495,
0.017878899350762367,
0.3577258884906769,
-0.20131361484527588,
-0.3378213047981262,
0.1913277506828308,
0.048136450350284576,
-0.11514165252447128,
-0.2818070650100708,
0.08739478141069412,
-0.4034343659877777,
0.08856531977653503,
-0.15024253726005554,
-0.2897593379020691,
0.05261657014489174,
0.590263843536377,
-0.022805579006671906,
0.796100914478302,
0.7990630269050598,
-0.44237011671066284,
0.3587195575237274,
0.31736481189727783,
-0.15175847709178925,
0.7533207535743713,
-0.8253241777420044,
0.29067736864089966,
-0.054015327244997025,
0.2829138934612274,
-1.1711467504501343,
-0.12654979526996613,
0.25065797567367554,
-0.5376331210136414,
0.11403366178274155,
-0.5499786734580994,
-0.42644646763801575,
-0.14708465337753296,
-0.4081481993198395,
0.4571611285209656,
0.7339040040969849,
-0.44023922085762024,
0.5818215608596802,
0.3519617021083832,
0.03571096435189247,
-0.5110780596733093,
-0.4855934679508209,
-0.17422422766685486,
-0.18001632392406464,
-0.6297867894172668,
-0.04052362218499184,
-0.12188290804624557,
-0.0777711570262909,
-0.1961846947669983,
0.24546822905540466,
0.01668267697095871,
-0.129822239279747,
0.6084133982658386,
0.5508686900138855,
-0.535413384437561,
-0.08254878968000412,
-0.24975739419460297,
-0.19775347411632538,
0.38781651854515076,
-0.30539655685424805,
1.0869046449661255,
-0.6656520366668701,
0.011213717982172966,
-0.6977614164352417,
-0.13105882704257965,
0.8320041298866272,
0.01870076358318329,
1.0788922309875488,
0.7656835317611694,
-0.22321957349777222,
-0.21302445232868195,
-0.4577508568763733,
-0.17106442153453827,
-0.40795084834098816,
0.220773845911026,
-0.21217046678066254,
-0.32021594047546387,
0.7029043436050415,
0.243306964635849,
-0.2694855332374573,
0.8036824464797974,
0.5411809682846069,
-0.04053480550646782,
1.279585838317871,
0.3843403160572052,
-0.6370126008987427,
0.4762795567512512,
-0.5544491410255432,
0.16822706162929535,
-0.9414510130882263,
-0.17574867606163025,
-0.6771928071975708,
-0.15464970469474792,
-0.6519883871078491,
-0.44555044174194336,
0.38272055983543396,
0.21205298602581024,
-0.7729955315589905,
0.4605633020401001,
-0.49486714601516724,
0.11686848104000092,
0.9894980788230896,
0.495800644159317,
0.09266918152570724,
0.0942670926451683,
-0.03190702944993973,
-0.15089203417301178,
-0.3479757606983185,
-0.3920508027076721,
1.1478062868118286,
0.2560522258281708,
0.7649615406990051,
0.04636233299970627,
0.5829082727432251,
0.14303745329380035,
0.08347583562135696,
-0.6687184572219849,
0.5877952575683594,
-0.08640120923519135,
-0.9674422144889832,
-0.082555390894413,
-0.4308010935783386,
-0.27738967537879944,
-0.22535020112991333,
-0.5321264266967773,
-0.2989814877510071,
-0.17493540048599243,
0.1820039451122284,
-0.30966293811798096,
0.33006349205970764,
-0.49520164728164673,
1.0688607692718506,
-0.3755709230899811,
-0.5272490978240967,
-0.47100773453712463,
-0.6946926116943359,
0.1618550717830658,
0.16940709948539734,
0.0058401525020599365,
-0.19570288062095642,
0.3973146975040436,
0.6793002486228943,
-0.4313725233078003,
0.8387605547904968,
-0.7048786282539368,
0.3234942555427551,
0.34849944710731506,
0.020129332318902016,
0.38594019412994385,
0.2911812663078308,
-0.127956822514534,
0.5801743268966675,
-0.23344522714614868,
-0.7436679601669312,
-0.26903486251831055,
0.8048035502433777,
-1.020227074623108,
-0.1934809386730194,
-0.8926292657852173,
-0.42174240946769714,
-0.4898436963558197,
0.32971835136413574,
0.5004311800003052,
0.43923306465148926,
-0.2880402207374573,
0.07517934590578079,
0.9170358777046204,
-0.05878721550107002,
-0.06977915018796921,
0.26951342821121216,
-0.01369535829871893,
-0.7563389539718628,
1.0400311946868896,
-0.24410437047481537,
0.37868186831474304,
-0.13145115971565247,
0.25983601808547974,
-0.2845200300216675,
-0.6486554741859436,
-0.8105309009552002,
0.37597012519836426,
-0.5599492788314819,
-0.24395065009593964,
-0.40951624512672424,
-0.21035176515579224,
-0.5734302997589111,
-0.032063983380794525,
-0.48423781991004944,
-0.582755982875824,
-0.6435370445251465,
-0.1038411557674408,
0.4778084456920624,
0.7009891271591187,
0.08535575866699219,
0.4795134365558624,
-0.8395913243293762,
0.3373323380947113,
0.1270052194595337,
0.334884911775589,
-0.38161247968673706,
-1.0136215686798096,
0.008885074406862259,
0.24726708233356476,
-0.11987420171499252,
-0.6365193724632263,
0.3974613547325134,
0.15421010553836823,
0.5477958917617798,
0.5333884954452515,
-0.12000518292188644,
0.6733211278915405,
-0.12835659086704254,
1.0169568061828613,
0.4082551896572113,
-0.843801736831665,
0.7397950291633606,
-0.5875047445297241,
0.1928236484527588,
1.0124415159225464,
0.601318359375,
-0.02334575168788433,
-0.5325785279273987,
-1.0893276929855347,
-1.0048080682754517,
0.5213153958320618,
-0.029203465208411217,
0.09827299416065216,
0.07931677252054214,
0.438770055770874,
-0.023747172206640244,
0.1026948094367981,
-0.871924877166748,
-0.4277561902999878,
-0.431174099445343,
-0.5290049314498901,
-0.3799711763858795,
-0.2719978392124176,
-0.3100203573703766,
-0.6069303750991821,
1.1941434144973755,
-0.1512858122587204,
0.093015156686306,
-0.07934289425611496,
-0.002728930674493313,
-0.3113940954208374,
0.04006399214267731,
0.6588771343231201,
0.5158263444900513,
-0.9336017966270447,
-0.15536072850227356,
0.06021879240870476,
-0.7698798179626465,
-0.10762768238782883,
-0.16469959914684296,
-0.42602500319480896,
0.010396353900432587,
0.14015045762062073,
0.6903867721557617,
-0.23923654854297638,
-0.3563460111618042,
0.596696674823761,
-0.28481653332710266,
0.09498686343431473,
-0.41687268018722534,
0.30687662959098816,
-0.06957484036684036,
0.08352657407522202,
0.2373785823583603,
0.5662717223167419,
0.052782412618398666,
-0.7461478114128113,
0.10782822966575623,
0.8929820656776428,
-0.8148353695869446,
-0.513851523399353,
0.6950913071632385,
0.11751975864171982,
-0.16244152188301086,
0.9572612643241882,
-0.4159359931945801,
-0.8244664669036865,
0.4802713394165039,
0.529578685760498,
1.044955849647522,
0.35363566875457764,
0.12042195349931717,
1.105828046798706,
0.09687838703393936,
-0.26935458183288574,
0.6424252390861511,
0.06099916994571686,
-0.8223219513893127,
0.029053237289190292,
-0.9753766655921936,
-0.519858181476593,
0.13109269738197327,
-1.0625241994857788,
0.3777604103088379,
-1.2073962688446045,
-0.6547277569770813,
0.03290123492479324,
0.2437073439359665,
-0.4354589581489563,
0.6446200013160706,
0.08145171403884888,
0.7470729351043701,
-1.2732796669006348,
0.7643357515335083,
0.9374932050704956,
-0.6849437952041626,
-0.9275758862495422,
-0.028193611651659012,
-0.06829638034105301,
-0.9114263653755188,
0.6572250723838806,
0.2081652730703354,
-0.25586581230163574,
0.00822280254215002,
-0.7908775806427002,
-0.6189202666282654,
0.8353008031845093,
-0.0951363816857338,
-0.6434528827667236,
0.4211159348487854,
-0.004190871026366949,
0.7735844850540161,
-0.3358701765537262,
0.20382554829120636,
0.21311013400554657,
0.30270659923553467,
-0.08235317468643188,
-0.6937883496284485,
-0.0066365511156618595,
-0.17206256091594696,
-0.13879109919071198,
-0.0072028497233986855,
-0.8988584876060486,
1.1170650720596313,
-0.3676525950431824,
0.25287434458732605,
-0.007404626812785864,
0.6324322819709778,
0.5164279341697693,
0.4051545560359955,
0.7456336617469788,
1.2346066236495972,
0.5937780141830444,
-0.2319665104150772,
0.7249311208724976,
-0.6419296860694885,
0.7343962788581848,
1.0676387548446655,
-0.19626262784004211,
0.8287878632545471,
0.41829967498779297,
-0.17883440852165222,
0.8174695372581482,
0.4800964891910553,
-0.17827068269252777,
0.6745027899742126,
-0.06672658026218414,
-0.25432005524635315,
-0.25248077511787415,
0.1503359079360962,
-0.41117486357688904,
0.17212584614753723,
0.20783737301826477,
-0.43603628873825073,
0.0007645563455298543,
-0.24217863380908966,
0.11787863820791245,
-0.17166109383106232,
-0.4410209059715271,
0.795128345489502,
-0.23036308586597443,
-0.8527928590774536,
0.6028837561607361,
0.10436730831861496,
0.7924443483352661,
-0.4103519916534424,
0.06113927438855171,
-0.1780468076467514,
0.5734294652938843,
-0.2767534852027893,
-0.9084609150886536,
0.024223191663622856,
-0.06540297716856003,
-0.5761455297470093,
-0.08500514179468155,
0.4428282082080841,
-0.15944387018680573,
-0.8399851322174072,
0.2935655415058136,
0.19585657119750977,
0.008039049804210663,
-0.36176860332489014,
-0.9350842833518982,
-0.0812944695353508,
0.11601332575082779,
-0.22844088077545166,
0.17589309811592102,
0.40122950077056885,
0.13998527824878693,
0.3727002739906311,
0.8746123909950256,
0.3756164610385895,
0.32033398747444153,
0.33532869815826416,
1.0264617204666138,
-1.0095601081848145,
-0.47871994972229004,
-0.6516576409339905,
0.35121577978134155,
0.021165963262319565,
-0.9342614412307739,
0.798235297203064,
0.8839514851570129,
0.8946874141693115,
-0.1860838383436203,
0.6144326329231262,
-0.3477473855018616,
0.5629364848136902,
-0.38033464550971985,
0.6031789183616638,
-0.3037036955356598,
-0.03838655352592468,
-0.23473767936229706,
-0.9674299359321594,
-0.058276109397411346,
1.0136253833770752,
-0.09056492894887924,
0.17310531437397003,
0.5271735191345215,
0.9427250027656555,
-0.14854727685451508,
0.13397406041622162,
-0.1185590997338295,
0.3518754541873932,
0.07412337511777878,
0.4396101236343384,
0.5696747303009033,
-0.6615998148918152,
-0.02949092537164688,
-0.6871742010116577,
-0.43401241302490234,
-0.13012416660785675,
-0.7067757844924927,
-0.9362350702285767,
-0.4465576112270355,
-0.43160298466682434,
-1.1259958744049072,
-0.1615123599767685,
0.8168501257896423,
0.746254563331604,
-1.1964908838272095,
-0.1398172378540039,
-0.33404725790023804,
-0.24883249402046204,
-0.15122011303901672,
-0.29810500144958496,
0.12210843712091446,
-0.47435396909713745,
-0.530142605304718,
-0.05337651073932648,
-0.011779523454606533,
-0.15571333467960358,
-0.35995203256607056,
-0.08520316332578659,
-0.23063354194164276,
-0.23550060391426086,
0.29737958312034607,
0.12511177361011505,
-0.5079420804977417,
-0.503007709980011,
0.01666276901960373,
-0.4855903685092926,
0.31960049271583557,
0.5005676746368408,
-0.5730258822441101,
0.2379392385482788,
0.7311688661575317,
0.11992846429347992,
0.610184907913208,
0.5169086456298828,
0.2536032795906067,
-0.4956815838813782,
0.20790761709213257,
0.42019224166870117,
0.422564834356308,
0.3877454400062561,
-0.3893672227859497,
0.17138077318668365,
0.7625116109848022,
-0.7101203203201294,
-0.6044529676437378,
-0.0018474257085472345,
-1.8255608081817627,
-0.06786138564348221,
1.217056155204773,
-0.011387796141207218,
-0.7093816995620728,
0.06462137401103973,
-0.22875842452049255,
0.29009896516799927,
-0.5497111082077026,
0.8069765567779541,
0.5330706238746643,
-0.14322760701179504,
0.25016331672668457,
-0.2639535367488861,
0.33267316222190857,
0.7704055905342102,
-0.3424158990383148,
-0.16259640455245972,
0.7645441889762878,
1.0139455795288086,
0.4101855158805847,
0.4075688421726227,
-0.05496768653392792,
0.2427668273448944,
-0.0545886754989624,
0.30737820267677307,
0.14370165765285492,
-0.2891766428947449,
-0.5581403374671936,
0.22974836826324463,
0.26045507192611694,
-0.24992485344409943
] |
google/deplot | google | "2023-09-06T19:53:17Z" | 11,248 | 135 | transformers | [
"transformers",
"pytorch",
"safetensors",
"pix2struct",
"text2text-generation",
"visual-question-answering",
"en",
"fr",
"ro",
"de",
"multilingual",
"arxiv:2212.10505",
"license:apache-2.0",
"autotrain_compatible",
"has_space",
"region:us"
] | visual-question-answering | "2023-04-03T11:05:38Z" | ---
language:
- en
- fr
- ro
- de
- multilingual
inference: false
pipeline_tag: visual-question-answering
license: apache-2.0
---
# Model card for DePlot
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/deplot_architecture.png"
alt="drawing" width="600"/>
# Table of Contents
0. [TL;DR](#TL;DR)
1. [Using the model](#using-the-model)
2. [Contribution](#contribution)
3. [Citation](#citation)
# TL;DR
The abstract of the paper states that:
> Visual language such as charts and plots is ubiquitous in the human world. Comprehending plots and charts requires strong reasoning skills. Prior state-of-the-art (SOTA) models require at least tens of thousands of training examples and their reasoning capabilities are still much limited, especially on complex human-written queries. This paper presents the first one-shot solution to visual language reasoning. We decompose the challenge of visual language reasoning into two steps: (1) plot-to-text translation, and (2) reasoning over the translated text. The key in this method is a modality conversion module, named as DePlot, which translates the image of a plot or chart to a linearized table. The output of DePlot can then be directly used to prompt a pretrained large language model (LLM), exploiting the few-shot reasoning capabilities of LLMs. To obtain DePlot, we standardize the plot-to-table task by establishing unified task formats and metrics, and train DePlot end-to-end on this task. DePlot can then be used off-the-shelf together with LLMs in a plug-and-play fashion. Compared with a SOTA model finetuned on more than >28k data points, DePlot+LLM with just one-shot prompting achieves a 24.0% improvement over finetuned SOTA on human-written queries from the task of chart QA.
# Using the model
You can run a prediction by querying an input image together with a question as follows:
```python
from transformers import Pix2StructProcessor, Pix2StructForConditionalGeneration
import requests
from PIL import Image
processor = Pix2StructProcessor.from_pretrained('google/deplot')
model = Pix2StructForConditionalGeneration.from_pretrained('google/deplot')
url = "https://raw.githubusercontent.com/vis-nlp/ChartQA/main/ChartQA%20Dataset/val/png/5090.png"
image = Image.open(requests.get(url, stream=True).raw)
inputs = processor(images=image, text="Generate underlying data table of the figure below:", return_tensors="pt")
predictions = model.generate(**inputs, max_new_tokens=512)
print(processor.decode(predictions[0], skip_special_tokens=True))
```
# Converting from T5x to huggingface
You can use the [`convert_pix2struct_checkpoint_to_pytorch.py`](https://github.com/huggingface/transformers/blob/main/src/transformers/models/pix2struct/convert_pix2struct_original_pytorch_to_hf.py) script as follows:
```bash
python convert_pix2struct_checkpoint_to_pytorch.py --t5x_checkpoint_path PATH_TO_T5X_CHECKPOINTS --pytorch_dump_path PATH_TO_SAVE --is_vqa
```
if you are converting a large model, run:
```bash
python convert_pix2struct_checkpoint_to_pytorch.py --t5x_checkpoint_path PATH_TO_T5X_CHECKPOINTS --pytorch_dump_path PATH_TO_SAVE --use-large --is_vqa
```
Once saved, you can push your converted model with the following snippet:
```python
from transformers import Pix2StructForConditionalGeneration, Pix2StructProcessor
model = Pix2StructForConditionalGeneration.from_pretrained(PATH_TO_SAVE)
processor = Pix2StructProcessor.from_pretrained(PATH_TO_SAVE)
model.push_to_hub("USERNAME/MODEL_NAME")
processor.push_to_hub("USERNAME/MODEL_NAME")
```
# Contribution
This model was originally contributed by Fangyu Liu, Julian Martin Eisenschlos et al. and added to the Hugging Face ecosystem by [Younes Belkada](https://huggingface.co/ybelkada).
# Citation
If you want to cite this work, please consider citing the original paper:
```
@misc{liu2022deplot,
title={DePlot: One-shot visual language reasoning by plot-to-table translation},
author={Liu, Fangyu and Eisenschlos, Julian Martin and Piccinno, Francesco and Krichene, Syrine and Pang, Chenxi and Lee, Kenton and Joshi, Mandar and Chen, Wenhu and Collier, Nigel and Altun, Yasemin},
year={2022},
eprint={2212.10505},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
``` | [
-0.44661611318588257,
-0.8984489440917969,
0.4799160659313202,
0.23770397901535034,
-0.26320862770080566,
-0.5033586621284485,
-0.06930623203516006,
-0.4416816830635071,
0.06388574838638306,
0.6301214098930359,
-0.647799015045166,
-0.4058413505554199,
-0.5841181874275208,
-0.0513041689991951,
-0.27727803587913513,
0.814567506313324,
-0.13282538950443268,
-0.060181789100170135,
-0.34453731775283813,
-0.029106654226779938,
-0.11915083229541779,
-0.2901343107223511,
-0.47969314455986023,
-0.3668655753135681,
0.3447246253490448,
0.37371549010276794,
0.824720561504364,
0.4875447452068329,
0.5595120787620544,
0.3277308940887451,
-0.16789919137954712,
-0.0807437151670456,
-0.41450831294059753,
-0.06729550659656525,
-0.07842470705509186,
-0.5582181215286255,
-0.6149356961250305,
0.11229009181261063,
0.4444707930088043,
0.5011312365531921,
0.12586136162281036,
0.2223549336194992,
-0.0371173657476902,
0.7202644348144531,
-0.2167925238609314,
0.4953710734844208,
-0.3025958836078644,
0.018645912408828735,
0.007627458777278662,
0.1184060350060463,
-0.4400455057621002,
-0.20223712921142578,
0.2467799335718155,
-0.6106265783309937,
0.0006937872967682779,
-0.1974601298570633,
1.1978182792663574,
0.5102554559707642,
-0.247203066945076,
0.2629615366458893,
-0.47020405530929565,
0.6416090726852417,
-0.6856213808059692,
0.2327587753534317,
0.3670131266117096,
0.4519781172275543,
-0.08673795312643051,
-0.9178128838539124,
-0.7904002070426941,
-0.1684749871492386,
-0.24771536886692047,
0.19512034952640533,
-0.5284072160720825,
-0.07865989953279495,
0.5980942845344543,
0.10646883398294449,
-0.5991573333740234,
-0.07532446086406708,
-0.4908054769039154,
-0.18782025575637817,
0.8060355186462402,
-0.06522075086832047,
0.46745526790618896,
-0.5220012068748474,
-0.6347933411598206,
-0.6530868411064148,
-0.48030295968055725,
0.14103713631629944,
-0.07140425592660904,
0.19897779822349548,
-0.44743359088897705,
0.5846803188323975,
-0.16722221672534943,
0.4937320649623871,
0.06994497030973434,
-0.2234731912612915,
0.36572352051734924,
-0.03816425800323486,
-0.2422514408826828,
-0.2300635725259781,
1.0205899477005005,
0.4617883861064911,
0.43340441584587097,
0.18730567395687103,
-0.05471174418926239,
0.07858622819185257,
-0.04813064634799957,
-1.0917116403579712,
-0.36490416526794434,
0.24025627970695496,
-0.30889391899108887,
-0.15972132980823517,
0.00638223672285676,
-0.7922310829162598,
-0.1907450258731842,
-0.2544073164463043,
0.5290408134460449,
-0.5849661827087402,
-0.4305479824542999,
-0.0276663638651371,
-0.15368975698947906,
0.23544511198997498,
0.4377649426460266,
-0.5708454251289368,
-0.029742002487182617,
0.4095563292503357,
0.8156985640525818,
0.001239699893631041,
-0.4414255619049072,
-0.4510060250759125,
-0.1781253069639206,
-0.20290400087833405,
0.8571788668632507,
-0.2517501413822174,
-0.08670787513256073,
-0.2229159027338028,
0.2157878279685974,
-0.1621362864971161,
-0.5592566132545471,
0.3475402295589447,
-0.25655651092529297,
0.09763506054878235,
-0.2981417179107666,
-0.24864590167999268,
-0.39155861735343933,
0.24585583806037903,
-0.5426942706108093,
1.1375746726989746,
0.547751247882843,
-0.802880585193634,
0.1806727945804596,
-0.42788630723953247,
-0.27911534905433655,
-0.08072014153003693,
-0.09114217758178711,
-0.6849710941314697,
-0.1519184112548828,
0.38511693477630615,
0.5007052421569824,
-0.2968977391719818,
0.2553931772708893,
-0.47578859329223633,
-0.14327432215213776,
0.19305576384067535,
-0.024960126727819443,
0.9388164281845093,
0.24930749833583832,
-0.5159538388252258,
0.2106325924396515,
-0.4135836958885193,
0.05087025836110115,
0.40369051694869995,
-0.10293746739625931,
0.07201207429170609,
-0.2955111861228943,
0.1661178171634674,
0.5093564391136169,
0.06834671646356583,
-0.4454006850719452,
0.41166505217552185,
-0.36304333806037903,
0.6198124289512634,
0.4907720386981964,
-0.24828121066093445,
0.38937124609947205,
-0.05079026520252228,
0.4796070158481598,
0.2296738177537918,
0.09786899387836456,
-0.3299373388290405,
-0.6343443989753723,
-0.8053516149520874,
-0.22804145514965057,
0.1139531210064888,
0.4637763202190399,
-0.9667352437973022,
0.3863036632537842,
-0.3600819706916809,
-0.6364850401878357,
-0.12559407949447632,
-0.11856409907341003,
0.2886679768562317,
0.58796226978302,
0.5387378334999084,
-0.13655373454093933,
-0.3557297885417938,
-0.8422150611877441,
0.046135906130075455,
-0.33598634600639343,
-0.12386783212423325,
0.12252292782068253,
0.6818951964378357,
-0.42965421080589294,
1.0033361911773682,
-0.5122131705284119,
-0.302794873714447,
-0.4491569995880127,
0.07516106963157654,
0.1604856699705124,
0.6672977805137634,
0.7330727577209473,
-0.5968773365020752,
-0.5817669630050659,
-0.03901810944080353,
-0.9048827886581421,
-0.07135062664747238,
-0.17394807934761047,
-0.4878503978252411,
0.27879294753074646,
0.5156096816062927,
-0.7722932696342468,
0.6622652411460876,
0.4542138874530792,
-0.6322505474090576,
0.5974692702293396,
0.0031890973914414644,
-0.03749343752861023,
-0.8732569813728333,
0.31373414397239685,
0.10129518806934357,
-0.3822355270385742,
-0.5141875743865967,
0.14408664405345917,
0.08872150629758835,
-0.37842079997062683,
-0.4360761046409607,
0.9134031534194946,
-0.3312976360321045,
0.031308192759752274,
-0.196510449051857,
0.17467144131660461,
0.1414128541946411,
0.6898595094680786,
0.19199064373970032,
0.4632992744445801,
0.8328461647033691,
-0.4951834976673126,
0.39128029346466064,
0.7952522039413452,
-0.17951034009456635,
0.4969220757484436,
-0.813582181930542,
0.16015242040157318,
-0.16106286644935608,
0.3237032890319824,
-0.9424350261688232,
-0.2593080699443817,
0.5152551531791687,
-0.4862988293170929,
0.3444361090660095,
-0.2714684009552002,
-0.44776055216789246,
-0.5536370873451233,
-0.04106968641281128,
0.23061220347881317,
0.6640181541442871,
-0.6397671699523926,
0.6263301372528076,
0.2339060753583908,
-0.12458451837301254,
-0.3094901442527771,
-0.9284704923629761,
-0.06510552763938904,
-0.1278029829263687,
-1.023783802986145,
0.4208647608757019,
0.02801714651286602,
-0.08492176979780197,
-0.014143119566142559,
-0.13622325658798218,
0.12834526598453522,
-0.21363534033298492,
0.303903192281723,
0.362420916557312,
-0.14071878790855408,
-0.01976844295859337,
0.029586229473352432,
-0.5338449478149414,
0.09682507067918777,
-0.14685067534446716,
0.6339542865753174,
-0.20883585512638092,
-0.20535098016262054,
-0.7468053698539734,
0.19306093454360962,
0.7335026860237122,
-0.304220587015152,
0.5479038953781128,
0.7900577783584595,
-0.30128857493400574,
-0.026289647445082664,
-0.46464166045188904,
-0.36035314202308655,
-0.4349942207336426,
0.45308780670166016,
-0.4560350477695465,
-0.47020959854125977,
0.5522677898406982,
0.0008747839601710439,
-0.1566673219203949,
0.683330774307251,
0.507579505443573,
-0.029992684721946716,
1.091882348060608,
0.6486527919769287,
0.21114446222782135,
0.5648159384727478,
-0.713514506816864,
0.020253369584679604,
-0.6372949481010437,
-0.2663259208202362,
-0.27201274037361145,
-0.4073944091796875,
-0.4838578999042511,
-0.6044790148735046,
0.6707127094268799,
0.39861583709716797,
-0.45223358273506165,
0.583960235118866,
-0.5717211365699768,
0.15412193536758423,
0.538597822189331,
0.42323657870292664,
0.04469108581542969,
0.25968608260154724,
0.024660708382725716,
-0.03994956612586975,
-0.5950552225112915,
-0.46316468715667725,
0.7774476408958435,
0.4725158214569092,
0.7228231430053711,
-0.13862982392311096,
0.4601765275001526,
-0.29932162165641785,
0.28029200434684753,
-0.7759726047515869,
0.6452102661132812,
-0.09998004883527756,
-0.5131841897964478,
-0.32962819933891296,
-0.5294004678726196,
-0.7617531418800354,
0.2368205487728119,
-0.223446786403656,
-0.9089178442955017,
0.25026482343673706,
0.152719184756279,
-0.267036110162735,
0.2812716066837311,
-0.7734781503677368,
1.3371179103851318,
-0.23764900863170624,
-0.5876086354255676,
-0.006027945317327976,
-0.6824633479118347,
0.2792492210865021,
0.3499563932418823,
-0.15567177534103394,
-0.19633179903030396,
0.2818983495235443,
0.750762403011322,
-0.5188800096511841,
0.7395700812339783,
-0.3648751676082611,
0.03070574440062046,
0.6302134990692139,
0.20056016743183136,
0.5737655162811279,
0.017393168061971664,
-0.18607594072818756,
0.35840722918510437,
0.34769207239151,
-0.4528113901615143,
-0.6329681873321533,
0.46435707807540894,
-0.8305481672286987,
-0.5279555916786194,
-0.38519564270973206,
-0.5887053608894348,
0.02015017159283161,
0.2475515753030777,
0.2743637263774872,
0.18509350717067719,
0.11110503226518631,
0.08846195787191391,
0.3319941461086273,
-0.3851185142993927,
0.35135579109191895,
0.020986275747418404,
-0.5358157753944397,
-0.30406269431114197,
0.6911086440086365,
0.010745052248239517,
0.41194260120391846,
0.1510692685842514,
0.45137402415275574,
-0.42753565311431885,
-0.05960823968052864,
-0.7014811038970947,
0.5088464617729187,
-0.787555992603302,
-0.3006364107131958,
-0.7174283266067505,
-0.10094382613897324,
-0.5345733165740967,
-0.06612560153007507,
-0.5229825973510742,
-0.4134416878223419,
-0.2813951075077057,
0.12094130367040634,
0.6257497072219849,
0.3577598035335541,
-0.06827624142169952,
0.3666360378265381,
-0.7351420521736145,
0.40922993421554565,
0.37663158774375916,
0.29520779848098755,
-0.15598388016223907,
-0.698525071144104,
0.061345141381025314,
0.1126730740070343,
-0.4619659185409546,
-0.982031524181366,
0.6371479034423828,
0.0747963935136795,
0.39056602120399475,
0.3711276650428772,
0.02231401577591896,
0.8316394686698914,
-0.17606684565544128,
0.4991469383239746,
0.3813786208629608,
-0.939194917678833,
0.7013073563575745,
-0.263092964887619,
0.2703394591808319,
0.3845246732234955,
0.39916497468948364,
-0.4807246923446655,
0.0371021069586277,
-0.7633705735206604,
-0.6858363747596741,
0.8861933350563049,
0.2094443440437317,
0.01335998997092247,
0.2430691123008728,
0.4203716218471527,
-0.038066212087869644,
0.03933616355061531,
-0.8445269465446472,
-0.19453132152557373,
-0.48513710498809814,
-0.03565385565161705,
0.04361046850681305,
-0.11434347927570343,
-0.008883793838322163,
-0.7434021830558777,
0.5909792184829712,
-0.43423178791999817,
0.526470422744751,
0.41436007618904114,
-0.18466807901859283,
-0.27875012159347534,
-0.12268656492233276,
0.24186453223228455,
0.5445040464401245,
-0.0804511085152626,
0.07844199985265732,
0.06196285039186478,
-0.2454729974269867,
-0.16203054785728455,
0.2534075379371643,
-0.2579902410507202,
-0.05796947330236435,
0.3736865818500519,
1.0179940462112427,
0.044447410851716995,
-0.613401472568512,
0.6094027161598206,
0.20207104086875916,
-0.18333397805690765,
-0.1678749918937683,
-0.0225518811494112,
0.2616974413394928,
0.44371506571769714,
0.19632220268249512,
0.15138192474842072,
-0.26312920451164246,
-0.5917498469352722,
0.35769736766815186,
0.36938247084617615,
-0.3983254134654999,
-0.4236052930355072,
0.8417448401451111,
0.015371080487966537,
0.036267150193452835,
0.7883536219596863,
-0.2406233251094818,
-0.7122469544410706,
0.6567383408546448,
0.4328095614910126,
0.8044410943984985,
-0.02652716636657715,
0.3672449588775635,
0.9117586016654968,
0.21431158483028412,
-0.11222278326749802,
0.20262810587882996,
0.021418608725070953,
-0.5788624882698059,
-0.3319650888442993,
-0.7660837173461914,
-0.19705426692962646,
0.01699289306998253,
-0.4785173237323761,
0.5820973515510559,
-0.4101090729236603,
-0.11580754816532135,
0.012355555780231953,
-0.12742365896701813,
-0.7728310823440552,
0.14439880847930908,
0.3850918114185333,
0.750549852848053,
-0.8556573390960693,
0.7252288460731506,
0.6572062969207764,
-0.7974817156791687,
-0.8850449919700623,
-0.1754801869392395,
-0.064052052795887,
-0.898962140083313,
0.7422210574150085,
0.4121190905570984,
0.2035636156797409,
0.02942761592566967,
-0.8257436156272888,
-0.8023045063018799,
1.149009108543396,
0.6191214919090271,
-0.4871407449245453,
-0.06863879412412643,
0.2335393875837326,
0.5022805333137512,
-0.1828499585390091,
0.5905696749687195,
0.6753127574920654,
0.7417000532150269,
0.4386378228664398,
-0.9090330004692078,
0.3104678988456726,
-0.30391260981559753,
-0.005711843725293875,
-0.07478025555610657,
-0.636581540107727,
1.1165627241134644,
-0.4942685067653656,
-0.407072514295578,
-0.04747726395726204,
0.7182861566543579,
0.3524221181869507,
0.19054235517978668,
0.4791772961616516,
0.7020624279975891,
0.4131354093551636,
-0.334095299243927,
1.081292986869812,
-0.06489463895559311,
0.6842575669288635,
0.6261380314826965,
0.04202799126505852,
0.8233641386032104,
0.4385847747325897,
-0.4473891258239746,
0.5163945555686951,
0.5226290822029114,
-0.17470231652259827,
0.14996249973773956,
-0.010082237422466278,
0.2557004690170288,
-0.49304500222206116,
0.04977366328239441,
-0.45157918334007263,
0.5185946226119995,
0.13365860283374786,
-0.2548724412918091,
-0.37986496090888977,
0.08567576110363007,
0.23423494398593903,
0.0499633364379406,
0.008986195549368858,
0.5316664576530457,
0.21251365542411804,
-0.7123503684997559,
0.9748354554176331,
-0.1294502317905426,
0.6100611686706543,
-0.4357098639011383,
-0.05045593902468681,
-0.2890138030052185,
0.2749123275279999,
-0.3239428699016571,
-0.8086264729499817,
0.392541766166687,
-0.11551829427480698,
-0.0034677553921937943,
-0.2729485034942627,
0.5608243942260742,
-0.4659159183502197,
-0.7347055077552795,
0.31849268078804016,
0.4669780433177948,
0.29899072647094727,
-0.5079901814460754,
-0.9618681073188782,
0.19769179821014404,
0.09582764655351639,
-0.6265037655830383,
0.29473555088043213,
0.35748225450515747,
-0.03376799076795578,
0.783976674079895,
0.5325681567192078,
-0.2241162210702896,
-0.0824115201830864,
-0.05004628747701645,
0.9945296049118042,
-0.7011652588844299,
-0.46800559759140015,
-0.6554263234138489,
0.8632298707962036,
0.1009531244635582,
-0.39940953254699707,
0.5117648243904114,
0.29317739605903625,
0.7881084680557251,
-0.19107067584991455,
0.5852460861206055,
-0.34751078486442566,
0.22337356209754944,
-0.46242108941078186,
0.7670398354530334,
-0.7746974229812622,
-0.0686950609087944,
-0.4738346040248871,
-0.9127967953681946,
-0.31525665521621704,
0.8548478484153748,
-0.43800660967826843,
0.1016094982624054,
0.7683712244033813,
0.9313867688179016,
-0.09931276738643646,
-0.2491634637117386,
0.2421460598707199,
0.341513067483902,
0.4547622501850128,
0.5788542032241821,
0.5785792469978333,
-0.7115364670753479,
0.6708898544311523,
-0.638119637966156,
-0.2694271206855774,
-0.1720292568206787,
-0.7354216575622559,
-0.8860629200935364,
-0.6429517865180969,
-0.6854739189147949,
-0.4961979389190674,
-0.45505291223526,
0.6675791144371033,
0.7904365658760071,
-0.7027707099914551,
-0.04722239449620247,
-0.14301612973213196,
-0.01571500115096569,
-0.3811313807964325,
-0.27449753880500793,
0.5213140845298767,
-0.11042728275060654,
-0.9593191146850586,
0.06056267023086548,
0.1505807638168335,
0.13107483088970184,
-0.27732545137405396,
-0.14774319529533386,
-0.1455853134393692,
-0.3289891481399536,
0.6684175729751587,
0.3417922556400299,
-0.7756222486495972,
-0.26758643984794617,
0.051971375942230225,
-0.1623670905828476,
0.27318254113197327,
0.42672309279441833,
-0.8029271364212036,
0.5346701741218567,
0.8018526434898376,
0.34933796525001526,
1.0087425708770752,
0.019712254405021667,
0.21783585846424103,
-0.3826241195201874,
0.44910943508148193,
0.13979831337928772,
0.3835654854774475,
0.33112967014312744,
-0.19781024754047394,
0.543110728263855,
0.36780858039855957,
-0.41499435901641846,
-0.777914822101593,
0.2468014806509018,
-1.315253496170044,
-0.2485545426607132,
1.227107048034668,
-0.22153308987617493,
-0.5862165689468384,
0.3724501430988312,
-0.41312694549560547,
0.40701910853385925,
-0.2101448029279709,
0.512603759765625,
0.20957665145397186,
-0.26542186737060547,
-0.47635817527770996,
-0.44400572776794434,
0.3956414461135864,
0.44724681973457336,
-0.8613882660865784,
0.09922349452972412,
0.3773996829986572,
0.27426451444625854,
0.38764357566833496,
0.4098224341869354,
-0.25556766986846924,
0.26821598410606384,
0.2132435142993927,
0.4756718575954437,
-0.23955301940441132,
-0.22477473318576813,
-0.10605476796627045,
-0.08698030561208725,
-0.21031534671783447,
0.02641451545059681
] |
trl-internal-testing/tiny-random-LlamaForCausalLM | trl-internal-testing | "2023-03-29T07:11:50Z" | 11,243 | 0 | transformers | [
"transformers",
"pytorch",
"llama",
"text-generation",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | text-generation | "2023-03-29T07:11:13Z" | Entry not found | [
-0.3227650225162506,
-0.22568431496620178,
0.862226128578186,
0.43461495637893677,
-0.5282987952232361,
0.7012965679168701,
0.7915717363357544,
0.07618638128042221,
0.7746025919914246,
0.2563219666481018,
-0.7852817177772522,
-0.22573819756507874,
-0.9104480743408203,
0.5715669393539429,
-0.3992334008216858,
0.5791245698928833,
-0.14494505524635315,
-0.10751161724328995,
0.28233757615089417,
-0.2768954336643219,
-0.5409224033355713,
-0.36855220794677734,
-1.1902776956558228,
0.061491113156080246,
0.5316578149795532,
0.7435142397880554,
0.7584060430526733,
0.3652167320251465,
0.6432578563690186,
0.3932291269302368,
-0.23138920962810516,
0.4827055037021637,
-0.04171813279390335,
0.00260411505587399,
-0.3524433970451355,
-0.5516898036003113,
-0.28596609830856323,
0.07584730535745621,
1.0961304903030396,
0.966687798500061,
-0.284663587808609,
0.05330817773938179,
-0.3063621520996094,
0.33088892698287964,
-0.49734312295913696,
0.3054099678993225,
-0.022506045177578926,
0.16318801045417786,
-0.7041513919830322,
-0.5535354018211365,
0.012794834561645985,
-0.7361212968826294,
0.17926570773124695,
-0.690081000328064,
0.8269098401069641,
0.18583157658576965,
1.1533750295639038,
0.14819414913654327,
-0.462487131357193,
-0.8161764144897461,
-0.6538989543914795,
0.5711171627044678,
-0.32703715562820435,
0.39680248498916626,
0.7028235197067261,
-0.048573412001132965,
-0.9820332527160645,
-0.6745741367340088,
-0.46466192603111267,
0.2923962473869324,
0.35402774810791016,
-0.3411678075790405,
-0.17522086203098297,
-0.3058989644050598,
0.15792037546634674,
0.12811517715454102,
-0.4841994643211365,
-0.5543919205665588,
-0.5475160479545593,
-0.3960252106189728,
0.6206658482551575,
0.3482950031757355,
0.2429177463054657,
-0.1888415813446045,
-0.3228583335876465,
0.0880163162946701,
-0.4160851538181305,
0.3402571678161621,
0.6335517168045044,
0.7114017009735107,
-0.5811444520950317,
0.560215950012207,
-0.04927587881684303,
0.7439703941345215,
0.11445561796426773,
-0.27478092908859253,
0.41460567712783813,
-0.14724725484848022,
0.055171746760606766,
0.4226345121860504,
0.31524422764778137,
0.2841312289237976,
-0.3273695111274719,
0.2032228708267212,
-0.3215144872665405,
-0.30496224761009216,
-0.22332167625427246,
-0.29490774869918823,
-0.3592180609703064,
0.5492289066314697,
-0.3314017057418823,
-0.42855486273765564,
1.143175721168518,
-0.4200771450996399,
-0.7302224040031433,
0.33156412839889526,
0.4065209925174713,
-0.0994480773806572,
-0.37146568298339844,
-0.052260834723711014,
-0.8458789587020874,
-0.007907390594482422,
0.7491172552108765,
-0.7198970913887024,
0.3371737599372864,
0.4728063642978668,
0.7417217493057251,
0.19650575518608093,
-0.14034469425678253,
-0.42949390411376953,
0.2971969544887543,
-0.8659994006156921,
0.6320174336433411,
-0.20135220885276794,
-1.0051977634429932,
0.11150479316711426,
0.8971705436706543,
-0.37896400690078735,
-1.2094876766204834,
1.0605159997940063,
-0.6887932419776917,
0.16017857193946838,
-0.676761269569397,
-0.14661237597465515,
-0.07118501514196396,
-0.005096632521599531,
-0.6088156700134277,
0.7567102313041687,
0.587267279624939,
-0.4995276927947998,
0.21429483592510223,
-0.26029831171035767,
-0.39151400327682495,
0.38824859261512756,
-0.07935450226068497,
-0.21858926117420197,
0.713833212852478,
-0.6647079586982727,
-0.26932814717292786,
0.2942774295806885,
0.2368936538696289,
-0.35706108808517456,
-0.7931919097900391,
0.08478113263845444,
-0.05786270648241043,
1.550750494003296,
-0.03868847340345383,
-0.3586106300354004,
-0.679383397102356,
-1.1506240367889404,
-0.07070787996053696,
0.6886883974075317,
-0.9194989204406738,
-0.27839475870132446,
-0.046410128474235535,
-0.26169314980506897,
0.08994917571544647,
0.7390589714050293,
-1.1194051504135132,
0.2832726836204529,
-0.05092663690447807,
-0.22794683277606964,
0.8271058797836304,
0.15387225151062012,
0.24758946895599365,
0.14913396537303925,
0.42958706617355347,
0.527725338935852,
0.11115207523107529,
0.683587908744812,
-0.34720373153686523,
-0.9694353938102722,
0.6154631972312927,
0.25266361236572266,
0.8121447563171387,
-0.49945297837257385,
0.2685093879699707,
0.27025535702705383,
-0.3409680724143982,
-0.5682371854782104,
-0.3102838397026062,
0.09025752544403076,
0.14930562674999237,
0.11142510175704956,
-0.5721710324287415,
-0.6576125025749207,
-0.9689140319824219,
-0.13590654730796814,
-0.4314374029636383,
-0.3571570813655853,
0.21006910502910614,
0.5792906284332275,
-1.1975523233413696,
0.4128875136375427,
-0.7705625891685486,
-0.7038741111755371,
-0.01065548975020647,
-0.19338123500347137,
0.7540656328201294,
0.43240174651145935,
0.5033966898918152,
-0.6397148370742798,
-0.5661987066268921,
-0.22470176219940186,
-1.0333747863769531,
-0.13280506432056427,
0.24819621443748474,
0.3065737783908844,
-0.13423344492912292,
-0.2744963765144348,
-0.48740333318710327,
0.8100387454032898,
0.14789170026779175,
-0.5391897559165955,
0.5220767259597778,
-0.3020317256450653,
0.17224803566932678,
-0.6369150280952454,
-0.06916818022727966,
-0.661676287651062,
-0.0009071884560398757,
-0.3608308732509613,
-0.5737438797950745,
0.14772287011146545,
0.07017494738101959,
-0.16065457463264465,
0.28808408975601196,
-0.909277081489563,
-0.0010852962732315063,
-0.7442210912704468,
0.379071980714798,
0.06394772231578827,
-0.3145078718662262,
-0.017517540603876114,
1.0000386238098145,
0.7784460783004761,
-0.3848048746585846,
0.721744179725647,
0.4440041184425354,
0.19036155939102173,
0.7630521059036255,
-0.18725109100341797,
0.16478213667869568,
-0.5245416760444641,
-0.12161104381084442,
-0.8887597918510437,
-1.0982946157455444,
0.7320570349693298,
-0.6114250421524048,
0.36542922258377075,
-0.4277869760990143,
0.2589159905910492,
-0.6919258832931519,
-0.03885362669825554,
0.4808599352836609,
-0.05936325341463089,
-0.6863942742347717,
0.5232570171356201,
0.45317530632019043,
-0.2019241601228714,
-0.6609031558036804,
-0.530157208442688,
0.39365822076797485,
0.6154114007949829,
-0.16390392184257507,
0.06878514587879181,
0.14941060543060303,
-0.5441926121711731,
-0.040802597999572754,
-0.38691970705986023,
-0.45766758918762207,
0.054224006831645966,
0.13053473830223083,
-0.005750799085944891,
-0.404820054769516,
-0.0868026465177536,
-0.35842007398605347,
-0.4656120240688324,
0.21876516938209534,
0.3011947274208069,
-0.04096309468150139,
-0.42599788308143616,
-0.3619818687438965,
-0.888181209564209,
0.6719610095024109,
0.5370282530784607,
0.05281545966863632,
0.7555549740791321,
0.16819314658641815,
-0.8014987707138062,
-0.13532210886478424,
-0.1760706603527069,
0.2696830928325653,
-0.5588056445121765,
0.13849826157093048,
-0.013484534807503223,
-0.0637492910027504,
0.26297882199287415,
0.25386232137680054,
-0.4300556778907776,
0.9276250004768372,
-0.2615274488925934,
-0.3592521846294403,
0.7960181832313538,
0.5974742770195007,
0.49583131074905396,
0.16503219306468964,
-0.044541798532009125,
0.900709331035614,
-1.1966516971588135,
-0.6563175916671753,
-0.7409549355506897,
-0.15945707261562347,
-0.43510833382606506,
-0.032105933874845505,
0.6254412531852722,
0.2900990843772888,
-0.1333388388156891,
0.4756395220756531,
-0.5243489742279053,
0.3556033670902252,
1.01198410987854,
0.35748639702796936,
0.3435698449611664,
-0.7570229172706604,
-0.2515777349472046,
-0.1402427852153778,
-0.9998157620429993,
-0.2631377875804901,
0.8871029019355774,
0.22752606868743896,
0.844460666179657,
0.5992541313171387,
0.6784542798995972,
0.1367226243019104,
0.2523828148841858,
-0.30590319633483887,
0.3920294940471649,
0.4376082420349121,
-1.0401138067245483,
-0.42758408188819885,
0.021418681368231773,
-0.9703338742256165,
-0.14227519929409027,
-0.03495011106133461,
-0.42617112398147583,
0.7681737542152405,
0.00016589462757110596,
-0.4076709747314453,
0.7732734084129333,
-0.455583393573761,
0.7562873363494873,
-0.4473648965358734,
-0.02663906291127205,
0.4699096083641052,
-0.7070636749267578,
0.4677430987358093,
0.12878790497779846,
0.6205843091011047,
-0.015572631731629372,
-0.04078587517142296,
0.7104941606521606,
-0.9129160046577454,
0.25438642501831055,
-0.6348397135734558,
0.22421300411224365,
0.24246945977210999,
0.51606285572052,
0.5969953536987305,
0.4371243417263031,
0.10119888931512833,
-0.23920902609825134,
0.04115807265043259,
-0.8241125345230103,
-0.210506409406662,
0.697515606880188,
-0.7186890840530396,
-0.6864197850227356,
-1.2355337142944336,
0.14438660442829132,
0.27347055077552795,
0.389305055141449,
0.7959296107292175,
0.571408748626709,
0.1289544403553009,
0.680525004863739,
0.9888588190078735,
-0.0688566341996193,
0.9166924357414246,
0.3224477171897888,
0.09175168722867966,
-0.21944808959960938,
0.7036820650100708,
0.26627904176712036,
-0.24707956612110138,
-0.11939732730388641,
0.20913465321063995,
-0.11069409549236298,
-0.591761589050293,
-0.49990686774253845,
0.3701757788658142,
-0.6731787919998169,
-0.18303893506526947,
-0.6243735551834106,
-0.6043769717216492,
-0.511759340763092,
0.06927360594272614,
-0.7147687673568726,
0.23979046940803528,
-0.7753565907478333,
-0.10574902594089508,
0.04323432594537735,
0.9792009592056274,
-0.589311957359314,
0.5805224180221558,
-1.1218582391738892,
0.19345788657665253,
-0.07949887961149216,
0.7921058535575867,
0.21395787596702576,
-0.7344395518302917,
-0.3975418508052826,
-0.11592631042003632,
-0.3729911744594574,
-1.3576762676239014,
0.21404948830604553,
-0.2454141080379486,
0.23094046115875244,
0.6145404577255249,
0.1397707313299179,
0.5258248448371887,
-0.34326282143592834,
0.7029101848602295,
-0.057017259299755096,
-0.7069286704063416,
0.7934495210647583,
-0.5026894807815552,
0.4963534474372864,
0.9765996932983398,
0.5333835482597351,
-0.7984007596969604,
0.035741209983825684,
-1.041123390197754,
-0.6008695363998413,
0.38426393270492554,
0.11928944289684296,
-0.03601083159446716,
-0.6659559011459351,
-0.054019637405872345,
-0.16143807768821716,
0.6043745279312134,
-1.039069414138794,
-0.7858356237411499,
0.2576698362827301,
0.5277302861213684,
0.0816856250166893,
-0.5653398633003235,
0.20880667865276337,
-0.544416069984436,
1.0657774209976196,
0.45109400153160095,
0.3274499475955963,
0.8406060934066772,
0.46492424607276917,
-0.3823164403438568,
0.09252490103244781,
0.7662695050239563,
0.6666232347488403,
-0.5239797830581665,
-0.2908027470111847,
-0.08827541768550873,
-0.9143403768539429,
0.05927472561597824,
0.11168918758630753,
-0.013455932028591633,
0.9082110524177551,
0.5793083310127258,
0.2539709210395813,
0.4514279365539551,
-0.726460337638855,
0.8859451413154602,
-0.14954176545143127,
-0.12472866475582123,
-1.0677239894866943,
0.1948619782924652,
-0.23984959721565247,
0.5006402134895325,
1.0061326026916504,
0.5250048041343689,
-0.047630298882722855,
-0.8143380880355835,
-0.01473585981875658,
0.6939172148704529,
-0.7091123461723328,
-0.17449834942817688,
0.944853663444519,
0.3847099542617798,
-1.2953051328659058,
1.106776475906372,
-0.5381771326065063,
-0.560332179069519,
0.9121301770210266,
0.522956907749176,
1.1221847534179688,
-0.44204121828079224,
0.0008676342549733818,
0.2662237286567688,
0.41378432512283325,
0.5423170328140259,
1.0869629383087158,
0.431413471698761,
-0.7931063771247864,
0.8826584815979004,
-0.24776044487953186,
-0.40361151099205017,
-0.05347571521997452,
-0.42859897017478943,
0.16892178356647491,
-0.4406192898750305,
-0.10713007301092148,
-0.3444187641143799,
0.28543180227279663,
-0.7072042226791382,
0.42807620763778687,
-0.0838567465543747,
0.8653068542480469,
-0.8553727269172668,
0.47207626700401306,
0.635470449924469,
-0.3337355852127075,
-0.8508191108703613,
-0.26198428869247437,
-0.11448462307453156,
-0.6389466524124146,
0.30214807391166687,
-0.4554102420806885,
0.044398851692676544,
0.09623463451862335,
-0.649151623249054,
-1.1778275966644287,
0.9093633890151978,
-0.639612078666687,
-0.2784462869167328,
0.20464053750038147,
-0.11514760553836823,
0.28811705112457275,
-0.2524643540382385,
0.010661216452717781,
0.41876548528671265,
0.748940110206604,
0.2844654619693756,
-0.7727053761482239,
-0.3694884479045868,
0.0015032943338155746,
-0.44474777579307556,
0.7582978010177612,
-0.6002101898193359,
1.1840779781341553,
-0.5563543438911438,
-0.059654366225004196,
0.44384512305259705,
0.24690914154052734,
0.21076197922229767,
0.6629220843315125,
0.1442081481218338,
0.7282265424728394,
1.07012140750885,
-0.40835219621658325,
0.8811809420585632,
0.26432839035987854,
0.47430819272994995,
0.7238501906394958,
-0.6487724781036377,
0.7513749003410339,
0.31810489296913147,
-0.5682924389839172,
0.9228013753890991,
1.2906063795089722,
-0.15699204802513123,
0.8079374432563782,
0.05136508867144585,
-1.081600546836853,
0.325833261013031,
-0.20724765956401825,
-0.7530064582824707,
0.3150254189968109,
0.19055864214897156,
-0.6920982599258423,
-0.5770308971405029,
-0.24046507477760315,
-0.35662803053855896,
-0.11552901566028595,
-0.7631728649139404,
0.6720563769340515,
-0.016969164833426476,
-0.5103683471679688,
0.18857547640800476,
0.2877499461174011,
0.17368432879447937,
-0.5235732793807983,
-0.02939440682530403,
-0.22823619842529297,
0.2660655975341797,
-0.5670853853225708,
-0.5234526991844177,
0.5724433064460754,
-0.32430219650268555,
-0.5343255400657654,
0.18147465586662292,
0.763587236404419,
-0.16923809051513672,
-0.4515409469604492,
0.32472723722457886,
0.6959525346755981,
0.1665852814912796,
0.4250282347202301,
-0.23511263728141785,
0.24480605125427246,
-0.08044824004173279,
-0.06651552021503448,
0.27714768052101135,
0.3449169099330902,
0.22435641288757324,
0.4450142979621887,
0.43285664916038513,
-0.01808755099773407,
-0.10736498981714249,
-0.382819801568985,
0.4124940037727356,
-0.9542785882949829,
-0.5713282823562622,
-0.6307113766670227,
0.2740660607814789,
-0.02315417304635048,
-1.0836423635482788,
0.4145168364048004,
1.4406683444976807,
1.0359982252120972,
-0.4756383001804352,
1.067226529121399,
-0.21818485856056213,
0.9594791531562805,
0.41483086347579956,
0.5420440435409546,
-0.6030411720275879,
0.03835370019078255,
-0.4364396035671234,
-1.076962947845459,
-0.35716333985328674,
0.4539391100406647,
-0.022899555042386055,
-0.3429867625236511,
0.872571587562561,
0.5887166261672974,
-0.33473607897758484,
-0.11728022992610931,
0.048487238585948944,
-0.029941488057374954,
-0.12433847039937973,
0.5145376324653625,
0.7648399472236633,
-0.9344304800033569,
-0.10680416971445084,
-0.21577754616737366,
-0.6382725834846497,
-0.5047279000282288,
-0.9632009267807007,
-0.12959396839141846,
-0.16037796437740326,
0.035343267023563385,
-0.5662806630134583,
0.00255737011320889,
1.208324909210205,
0.5684957504272461,
-1.1113994121551514,
-0.5303789377212524,
0.3371853232383728,
0.3920421898365021,
-0.1874791383743286,
-0.24202413856983185,
0.2984568774700165,
0.15382249653339386,
-0.5908876657485962,
0.6875665783882141,
0.8089625239372253,
0.208888977766037,
0.19554761052131653,
0.15893013775348663,
-0.8229473829269409,
-0.14913435280323029,
0.17440445721149445,
0.9450570344924927,
-0.939853310585022,
-0.7114843130111694,
-0.03168516233563423,
-0.27094873785972595,
-0.05765746906399727,
0.17102102935314178,
-0.4046344757080078,
0.5180677175521851,
0.34591493010520935,
0.49933457374572754,
0.0561608150601387,
-0.054746925830841064,
0.5409556031227112,
-0.9069057703018188,
0.09425963461399078,
0.4134361147880554,
0.4154115319252014,
-0.4000864028930664,
-0.5910194516181946,
0.6713420748710632,
1.0073972940444946,
-0.6594868898391724,
-0.8743268847465515,
-0.19846712052822113,
-1.0016002655029297,
0.04189709946513176,
0.6762762069702148,
0.5009527802467346,
-0.4806513786315918,
-0.4174500107765198,
-0.5617399215698242,
-0.1254672110080719,
-0.1369970738887787,
0.7621601819992065,
1.179680585861206,
-0.7432094812393188,
0.07975747436285019,
-1.038639783859253,
0.6594986915588379,
-0.2419457733631134,
-0.3457581698894501,
-0.48644304275512695,
0.3832802176475525,
0.35236993432044983,
0.440481036901474,
0.614812433719635,
0.1408471167087555,
0.8338426351547241,
0.3126053214073181,
-0.1702686995267868,
0.2698982357978821,
-0.4559200704097748,
-0.028932858258485794,
-0.057962555438280106,
0.31015971302986145,
-1.0262157917022705
] |
cerebras/Cerebras-GPT-111M | cerebras | "2023-11-22T21:48:32Z" | 11,242 | 67 | transformers | [
"transformers",
"pytorch",
"gpt2",
"causal-lm",
"text-generation",
"en",
"dataset:the_pile",
"arxiv:2304.03208",
"arxiv:2203.15556",
"arxiv:2101.00027",
"license:apache-2.0",
"endpoints_compatible",
"has_space",
"text-generation-inference",
"region:us"
] | text-generation | "2023-03-17T00:02:47Z" | ---
language:
- en
tags:
- pytorch
- causal-lm
license: apache-2.0
datasets:
- the_pile
pipeline_tag: text-generation
---
# Cerebras-GPT 111M
Check out our [Blog Post](https://www.cerebras.net/cerebras-gpt) and [arXiv paper](https://arxiv.org/abs/2304.03208)!
## Model Description
The Cerebras-GPT family is released to facilitate research into LLM scaling laws using open architectures and data sets and demonstrate the simplicity of and scalability of training LLMs on the Cerebras software and hardware stack. All Cerebras-GPT models are available on Hugging Face.
The family includes 111M, 256M, 590M, 1.3B, 2.7B, 6.7B, and 13B models.
All models in the Cerebras-GPT family have been trained in accordance with [Chinchilla scaling laws](https://arxiv.org/abs/2203.15556) (20 tokens per model parameter) which is compute-optimal.
These models were trained on the [Andromeda](https://www.cerebras.net/andromeda/) AI supercomputer comprised of 16 CS-2 wafer scale systems. Cerebras' [weight streaming technology](https://www.cerebras.net/blog/linear-scaling-made-possible-with-weight-streaming) simplifies the training of LLMs by disaggregating compute from model storage. This allowed for efficient scaling of training across nodes using simple data parallelism.
Cerebras systems for pre-training and fine tuning are available in the cloud via the [Cerebras Model Studio](https://www.cerebras.net/product-cloud/). Cerebras CS-2 compatible checkpoints are available in [Cerebras Model Zoo](https://github.com/Cerebras/modelzoo).
## Model Details
* Developed by: [Cerebras Systems](https://www.cerebras.net/)
* License: Apache 2.0
* Model type: Transformer-based Language Model
* Architecture: GPT-3 style architecture
* Data set: The Pile
* Tokenizer: Byte Pair Encoding
* Vocabulary Size: 50257
* Sequence Length: 2048
* Optimizer: AdamW, (β1, β2) = (0.9, 0.95), adam_eps = 1e−8 (1e−9 for larger models)
* Positional Encoding: Learned
* Language: English
* Learn more: Dense Scaling Laws Paper for training procedure, config files, and details on how to use.
**Contact**: To ask questions about Cerebras-GPT models, join the [Cerebras Discord](https://discord.gg/q6bZcMWJVu).
This is the standard parameterization version of Cerebras-GPT with **111M** parameters
Related models: [Cerebras-GPT Models](https://huggingface.co/models?sort=downloads&search=cerebras-gpt)
<br><br>
| Model | Parameters | Layers | d_model | Heads | d_head | d_ffn | LR | BS (seq) | BS (tokens) |
|---------------|------------|--------|---------|-------|--------|--------|----------|----------|----------------|
| Cerebras-GPT | 111M | 10 | 768 | 12 | 64 | 3072 | 6.0E-04 | 120 | 246K |
| Cerebras-GPT | 256M | 14 | 1088 | 17 | 64 | 4352 | 6.0E-04 | 264 | 541K |
| Cerebras-GPT | 590M | 18 | 1536 | 12 | 128 | 6144 | 2.0E-04 | 264 | 541K |
| Cerebras-GPT | 1.3B | 24 | 2048 | 16 | 128 | 8192 | 2.0E-04 | 528 | 1.08M |
| Cerebras-GPT | 2.7B | 32 | 2560 | 32 | 80 | 10240 | 2.0E-04 | 528 | 1.08M |
| Cerebras-GPT | 6.7B | 32 | 4096 | 32 | 128 | 16384 | 1.2E-04 | 1040 | 2.13M |
| Cerebras-GPT | 13B | 40 | 5120 | 40 | 128 | 20480 | 1.2E-04 | 720 → 1080 | 1.47M → 2.21M |
<br><br>
## Quickstart
This model can be easily loaded using the AutoModelForCausalLM functionality:
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("cerebras/Cerebras-GPT-111M")
model = AutoModelForCausalLM.from_pretrained("cerebras/Cerebras-GPT-111M")
text = "Generative AI is "
```
And can be used with Hugging Face Pipelines
```python
from transformers import pipeline
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
generated_text = pipe(text, max_length=50, do_sample=False, no_repeat_ngram_size=2)[0]
print(generated_text['generated_text'])
```
or with `model.generate()`
```python
inputs = tokenizer(text, return_tensors="pt")
outputs = model.generate(**inputs, num_beams=5,
max_new_tokens=50, early_stopping=True,
no_repeat_ngram_size=2)
text_output = tokenizer.batch_decode(outputs, skip_special_tokens=True)
print(text_output[0])
```
<br><br>
## Training data
Cerebras-GPT is trained using [the Pile](https://pile.eleuther.ai) dataset from [EleutherAI](https://www.eleuther.ai). See the [Pile paper](https://arxiv.org/abs/2101.00027) for a more detailed breakdown of data sources and methodology. The Pile was cleaned using the ftfy library to normalize the text, then filtered using scripts provided by Eleuther.
We tokenized the data using byte-pair encoding using the GPT-2 vocabulary. Our tokenized version of the Pile has 371B tokens. We include more details about the training dataset preprocessing in Appendix A.1 of our paper.
Recent works find significant duplicate data present in the Pile. Eleuther’s Pythia applies a deduplication process to reduce replicated data, decreasing the Pile dataset size. Pythia was trained on both the standard dataset and deduplicated dataset to characterize the impact. Our models are trained on the standard Pile without deduplication, which may present an opportunity for further improvement with the deduplicated data set.
<br><br>
## Training procedure
We use the GPT-3 style model architecture. All of our layers use full attention as opposed to the GPT-3 style sparse banded attention. The model shapes were selected to either follow aspect ratio 80 or are the same shape as GPT-3 models. Learning rate warmed up for 375M tokens (1500 steps for 111M and 256M models) and 10x cosine decayed. No dropout was used and weight decay was set to 0.1. All models are trained with MSL of 2048.
All models were trained to Chinchilla point: 20 tokens per model parameter. Number of steps was chosen based on optimal batch size (varied by model) and fixed sequence length (2048). See Training Table, below, for detail.
<br>
Model Params | Sequence Length | Batch Size | Number of Steps | Tokens | Tokens per Parameter | Flops
------------ | -------------- | ---------- | --------------- | ------ | -------------------- | -----
111M | 2048 | 120 | 9037 | 2.22E+09 | 20 | 2.6E+18
256M | 2048 | 264 | 9468 | 5.12E+09 | 20 | 1.3E+19
590M | 2048 | 264 | 21836 | 1.18E+10 | 20 | 6.1E+19
1.3B | 2048 | 528 | 24334 | 2.63E+10 | 20 | 2.8E+20
2.7B | 2048 | 528 | 49041 | 5.30E+10 | 20 | 1.1E+21
6.7B | 2048 | 1040 | 62522 | 1.33E+11 | 20 | 6.3E+21
13B | 2048 | 720 | 174335 | 2.57E+11 | 20 | 2.3E+22
<br><br>
## Evaluations
We trained models from smallest to largest and fit a power law as we went along. The power law was helpful for extrapolating the validation loss of the next largest model we trained and provided confidence about whether the training run was going well.
We performed upstream (pre-training) evaluations of text prediction cross-entropy using the Pile validation and test splits. We performed downstream evaluations of text generation accuracy on standardized tasks using the [Eleuther lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness). Results are compared against many publicly available large language models in Section 3 of the paper.
#### 0-shot Evaluation
| Model | Params | Training FLOPs | PILE test xent | Hella-Swag | PIQA | Wino-Grande | Lambada | ARC-e | ARC-c | OpenBookQA | Downstream Average |
| ------- | ----- | -------------- | -------------- | ---------- | ----- | ----------- | ------- | ----- | ----- | ---------- | ------------------ |
| Cerebras-GPT | 111M | 2.6E+18 | 2.566 | 0.268 | 0.594 | 0.488 | 0.194 | 0.380 | 0.166 | 0.118 | 0.315 |
| Cerebras-GPT | 256M | 1.3E+19 | 2.299 | 0.274 | 0.613 | 0.511 | 0.293 | 0.410 | 0.170 | 0.158 | 0.347 |
| Cerebras-GPT | 590M | 6.1E+19 | 2.184 | 0.291 | 0.627 | 0.498 | 0.366 | 0.464 | 0.190 | 0.158 | 0.370 |
| Cerebras-GPT | 1.3B | 2.8E+20 | 1.996 | 0.325 | 0.664 | 0.521 | 0.462 | 0.508 | 0.224 | 0.166 | 0.410 |
| Cerebras-GPT | 2.7B | 1.1E+21 | 1.834 | 0.386 | 0.701 | 0.559 | 0.567 | 0.571 | 0.246 | 0.206 | 0.462 |
| Cerebras-GPT | 6.7B | 6.3E+21 | 1.704 | 0.447 | 0.739 | 0.602 | 0.636 | 0.643 | 0.282 | 0.238 | 0.512 |
| Cerebras-GPT | 13B | 2.3E+22 | 1.575 | 0.513 | 0.766 | 0.646 | 0.696 | 0.714 | 0.367 | 0.286 | 0.570 |
#### 5-shot Evaluation
| Model | Params | Hella-Swag | PIQA | Wino-Grande | Lambada | ARC-e | ARC-c | OpenBookQA |
| -------- | ----- | ----------| ----- | ----------- | -------| ----- | ----- | ---------- |
| Cerebras-GPT | 111M | 0.267 | 0.588 | 0.475 | 0.158 | 0.356 | 0.166 | 0.136 |
| Cerebras-GPT | 256M | 0.278 | 0.606 | 0.522 | 0.225 | 0.422 | 0.183 | 0.164 |
| Cerebras-GPT | 590M | 0.291 | 0.634 | 0.479 | 0.281 | 0.475 | 0.206 | 0.152 |
| Cerebras-GPT | 1.3B | 0.326 | 0.668 | 0.536 | 0.395 | 0.529 | 0.241 | 0.174 |
| Cerebras-GPT | 2.7B | 0.382 | 0.697 | 0.543 | 0.487 | 0.590 | 0.267 | 0.224 |
| Cerebras-GPT | 6.7B | 0.444 | 0.736 | 0.590 | 0.591 | 0.667 | 0.314 | 0.270 |
| Cerebras-GPT | 13B | 0.514 | 0.768 | 0.674 | 0.655 | 0.743 | 0.398 | 0.318 |
<br><br>
## Uses and Limitations
### Intended Use
The primary intended use is to further research into large language models. These models can be used as a foundation model for NLP, applications, ethics, and alignment research. Our primary intended users are researchers who are working to improve LLMs and practitioners seeking reference implementations, training setups, hyperparameters, or pre-trained models. We release these models with a fully permissive Apache license for the community to use freely.
You may fine-tune and adapt Cerebras-GPT models for deployment via either Cerebras [Model Studio](https://www.cerebras.net/product-cloud/) or third-party libraries. Further safety-related testing and mitigations should be applied beore using the Cerebras-GPT model family in production downstream applications.
Due to financial and compute budgets, Cerebras-GPT models were only trained and evaluated following the approaches described in the paper.
### Out of Scope Use
Cerebras-GPT models are trained on the Pile, with English language only, and are not suitable for machine translation tasks.
Cerebras-GPT models have not been tuned for human-facing dialog applications like chatbots and will not respond to prompts in a similar way to models that have received instruction tuning or reinforcement learning from human feedback (RLHF) like Flan-T5 or ChatGPT. Cerebras-GPT models can be tuned using those methods.
### Risk, Bias, Ethical Considerations
* **Data**: The Pile dataset has been thoroughly analyzed from various ethical standpoints such as toxicity analysis, gender bias, pejorative content, racially sensitive content etc. Please refer to Pile dataset references.
* **Human life**: The outputs from this model may or may not align with human values. The risk needs to be thoroughly investigated before deploying this model in a production environment where it can directly impact human life.
* **Risks and harms**: There can be distributional bias in the Pile dataset that can manifest in various forms in the downstream model deployment. There are other risks associated with large language models such as amplifying stereotypes, memorizing training data, or revealing private or secure information.
* **Mitigations**: Only mitigations in standard Pile dataset pre-processing were employed when pre-training Cerebras-GPT.
<br><br>
## Acknowledgements
We are thankful to all Cerebras engineers, past and present, that made this work possible. | [
-0.37991032004356384,
-0.6283915042877197,
0.2631998658180237,
0.17449745535850525,
-0.25818130373954773,
-0.20515181124210358,
-0.2177239954471588,
-0.4022228419780731,
0.186688631772995,
0.28233885765075684,
-0.3768494427204132,
-0.42699921131134033,
-0.7526924014091492,
-0.19381016492843628,
-0.41469594836235046,
1.1536380052566528,
-0.09597689658403397,
0.06556576490402222,
0.12654583156108856,
-0.09366244822740555,
-0.1990261822938919,
-0.5786500573158264,
-0.7847186326980591,
-0.40248003602027893,
0.48131227493286133,
-0.006090305279940367,
0.7570104002952576,
0.826920747756958,
0.3523273169994354,
0.2995932102203369,
-0.3931613564491272,
-0.04480791464447975,
-0.33331701159477234,
-0.31623080372810364,
0.15845488011837006,
-0.25520649552345276,
-0.5717254281044006,
-0.1009838655591011,
0.7078094482421875,
0.669870913028717,
-0.35799896717071533,
0.25879672169685364,
0.35868170857429504,
0.7364908456802368,
-0.4922184348106384,
0.16599753499031067,
-0.48937907814979553,
0.006233688443899155,
-0.2553900182247162,
-0.006561273243278265,
-0.2929622232913971,
-0.20599691569805145,
0.03111456334590912,
-0.5375235080718994,
0.2709987163543701,
-0.038070689886808395,
1.287574291229248,
0.23390080034732819,
-0.4211297333240509,
-0.25945380330085754,
-0.43948063254356384,
0.7300565242767334,
-0.7617741227149963,
0.38080716133117676,
0.18295910954475403,
-0.018472399562597275,
-0.021427201107144356,
-0.863237202167511,
-0.5178393125534058,
-0.22787195444107056,
-0.2114495486021042,
0.15062253177165985,
-0.213075652718544,
0.05262307822704315,
0.4610671401023865,
0.5201500654220581,
-0.800882875919342,
0.20267775654792786,
-0.49132394790649414,
-0.25080886483192444,
0.6796324253082275,
0.1740393489599228,
0.2267843633890152,
-0.34835875034332275,
-0.4375067949295044,
-0.404418408870697,
-0.5199730396270752,
0.3334367275238037,
0.42014482617378235,
0.20032727718353271,
-0.4265025556087494,
0.398656964302063,
-0.18016409873962402,
0.6302240490913391,
0.2868560254573822,
-0.11324706673622131,
0.5518420338630676,
-0.2906751334667206,
-0.4526287615299225,
-0.06391271948814392,
1.0492054224014282,
0.16519024968147278,
0.17883102595806122,
0.09134775400161743,
-0.1893976628780365,
-0.1459740549325943,
0.002643810585141182,
-1.10085129737854,
-0.3495982587337494,
0.1764453798532486,
-0.5916582345962524,
-0.39546939730644226,
0.04332863539457321,
-0.7148300409317017,
-0.19183699786663055,
-0.42240142822265625,
0.5107307434082031,
-0.5001937747001648,
-0.3299286365509033,
0.09746750444173813,
0.03775676712393761,
0.4573070704936981,
0.25665903091430664,
-1.1871252059936523,
0.2910027503967285,
0.40241143107414246,
0.8592360615730286,
0.03502001613378525,
-0.40966978669166565,
-0.24021749198436737,
-0.01149024534970522,
-0.16410879790782928,
0.49238139390945435,
-0.040335435420274734,
-0.3653274178504944,
-0.24954216182231903,
0.14600180089473724,
-0.45292866230010986,
-0.37299680709838867,
0.5104679465293884,
-0.3576984107494354,
0.2470851093530655,
-0.13733799755573273,
-0.530910313129425,
-0.38813093304634094,
0.172118678689003,
-0.5519621968269348,
1.1212111711502075,
0.19414536654949188,
-0.9406077861785889,
0.2698114216327667,
-0.46776553988456726,
-0.24858732521533966,
-0.07827409356832504,
-0.15250003337860107,
-0.6598488092422485,
-0.17410196363925934,
0.42537814378738403,
0.574052631855011,
-0.3302138149738312,
0.3649485409259796,
-0.23655849695205688,
-0.30092695355415344,
-0.08817976713180542,
-0.5236880779266357,
1.186266541481018,
0.28849470615386963,
-0.621184229850769,
0.016497157514095306,
-0.7357100248336792,
0.1368170529603958,
0.3641577363014221,
-0.4322633445262909,
0.1128903329372406,
-0.24229641258716583,
0.10608014464378357,
0.24201898276805878,
0.36842289566993713,
-0.2756781578063965,
0.1831914186477661,
-0.44553059339523315,
0.5356019139289856,
0.7135186195373535,
0.047274935990571976,
0.314223051071167,
-0.31834760308265686,
0.4634483754634857,
0.07315380871295929,
0.23256540298461914,
-0.16048191487789154,
-0.5289062261581421,
-0.7741892337799072,
-0.24988384544849396,
0.44253411889076233,
0.5633360743522644,
-0.4611177444458008,
0.5128949880599976,
-0.3128815293312073,
-0.7916859984397888,
-0.22744257748126984,
0.06945100426673889,
0.469287246465683,
0.5619816780090332,
0.44437459111213684,
-0.2589093744754791,
-0.4818037152290344,
-0.9633938670158386,
-0.07929211854934692,
-0.24737997353076935,
-0.057435207068920135,
0.22828225791454315,
0.7617571949958801,
-0.05694791302084923,
0.7224476933479309,
-0.4768180549144745,
-0.0664491131901741,
-0.07913646101951599,
0.2031252384185791,
0.4436936676502228,
0.6330900192260742,
0.6132931113243103,
-0.7582436800003052,
-0.5690696835517883,
0.011122110299766064,
-0.8338528275489807,
0.12261010706424713,
-0.20159055292606354,
0.041699908673763275,
0.3018184304237366,
0.4460070729255676,
-0.7354400753974915,
0.3761759102344513,
0.641325831413269,
-0.333780437707901,
0.6294598579406738,
-0.29572123289108276,
0.004047391004860401,
-1.092361330986023,
0.3215017020702362,
0.13324134051799774,
-0.04623236879706383,
-0.5973376631736755,
0.06099509447813034,
0.24409976601600647,
0.010580518282949924,
-0.6193751096725464,
0.5197909474372864,
-0.617262601852417,
-0.0034521459601819515,
-0.01712127774953842,
0.11559368669986725,
-0.09039986878633499,
0.8743541836738586,
0.10572000592947006,
0.7094232439994812,
0.6438636183738708,
-0.6441026329994202,
0.12896554172039032,
0.15058191120624542,
-0.23067623376846313,
0.3572036325931549,
-0.8452585339546204,
0.03108823485672474,
-0.042527902871370316,
0.3569353222846985,
-0.7354817986488342,
-0.18989412486553192,
0.24358303844928741,
-0.6069978475570679,
0.5075954794883728,
-0.2678883671760559,
-0.41269299387931824,
-0.6426363587379456,
-0.31462714076042175,
0.35637906193733215,
0.7030193209648132,
-0.5942333936691284,
0.5541465878486633,
0.2643396258354187,
-0.05054678022861481,
-0.6641605496406555,
-0.717115581035614,
-0.034661803394556046,
-0.4364592432975769,
-0.8550716638565063,
0.528438925743103,
-0.06444711238145828,
0.014511482790112495,
-0.1953713595867157,
0.059656284749507904,
0.04097563028335571,
0.036968331784009933,
0.3059424161911011,
0.30259189009666443,
-0.14495550096035004,
-0.11427586525678635,
0.005357066169381142,
-0.1117573007941246,
0.08826341480016708,
-0.3343169689178467,
0.7325655817985535,
-0.4093523621559143,
-0.24707241356372833,
-0.566469669342041,
-0.16405820846557617,
0.6082280874252319,
-0.18105481564998627,
0.8691876530647278,
0.8185899257659912,
-0.5385939478874207,
0.16414512693881989,
-0.452396035194397,
-0.04268795996904373,
-0.5044541954994202,
0.49194249510765076,
-0.3944794535636902,
-0.7144866585731506,
0.7313249707221985,
0.2783706784248352,
0.06970109045505524,
0.8477692008018494,
0.7595089673995972,
0.10909738391637802,
1.1388025283813477,
0.3824752867221832,
-0.22405867278575897,
0.4888378381729126,
-0.7175531983375549,
0.003328199964016676,
-0.9628344774246216,
-0.27251890301704407,
-0.4494144916534424,
-0.18748359382152557,
-0.7084440588951111,
-0.29193341732025146,
0.27193036675453186,
0.3561222553253174,
-0.6935856938362122,
0.5151332020759583,
-0.7431069612503052,
0.21789684891700745,
0.48786190152168274,
0.18706510961055756,
0.07985337823629379,
0.02335960604250431,
-0.32848724722862244,
0.003123695030808449,
-0.7130316495895386,
-0.500634491443634,
1.2453303337097168,
0.5654891729354858,
0.46744304895401,
-0.1254017949104309,
0.7806432843208313,
-0.03165167570114136,
0.3827190697193146,
-0.6263281106948853,
0.45393839478492737,
-0.07015824317932129,
-0.6108538508415222,
-0.34067684412002563,
-0.5830626487731934,
-1.021822214126587,
0.5047886371612549,
0.02823425643146038,
-0.9869285225868225,
0.2553068995475769,
0.10545715689659119,
-0.46777981519699097,
0.6100388765335083,
-0.5790175199508667,
0.936161458492279,
-0.258426696062088,
-0.37136614322662354,
-0.14381013810634613,
-0.7198247313499451,
0.47247716784477234,
-0.03171292692422867,
0.21822185814380646,
0.13485799729824066,
0.0711122676730156,
0.9715961217880249,
-0.6891268491744995,
0.7085431814193726,
-0.33899974822998047,
-0.15777486562728882,
0.5659554600715637,
-0.1304783821105957,
0.7713654041290283,
-0.002900015329942107,
-0.06303535401821136,
0.25749069452285767,
0.0036127830389887094,
-0.40684425830841064,
-0.24404263496398926,
0.7749515175819397,
-1.1004276275634766,
-0.4682730734348297,
-0.5220512747764587,
-0.5021105408668518,
0.06382016092538834,
0.15339204668998718,
0.5259458422660828,
0.4055052101612091,
0.043598469346761703,
0.3965281546115875,
0.6378238797187805,
-0.1950916051864624,
0.6995766162872314,
0.3047778904438019,
-0.21860355138778687,
-0.6285272240638733,
0.8525933027267456,
0.3063233196735382,
0.23908066749572754,
0.18899445235729218,
0.10513368248939514,
-0.3848247826099396,
-0.6193268895149231,
-0.5824776887893677,
0.3197452127933502,
-0.6173746585845947,
-0.1436970829963684,
-0.815443217754364,
-0.43814581632614136,
-0.45691177248954773,
-0.11504549533128738,
-0.338412344455719,
-0.3960472047328949,
-0.3560541570186615,
-0.08111591637134552,
0.3647765517234802,
0.5169297456741333,
-0.09971119463443756,
0.3819639980792999,
-0.7275064587593079,
0.10256077349185944,
0.3305661082267761,
0.13864289224147797,
0.21301181614398956,
-1.0011804103851318,
-0.34451666474342346,
0.11185717582702637,
-0.6490832567214966,
-0.8196051716804504,
0.6008082032203674,
-0.06472224742174149,
0.46233996748924255,
0.3251405656337738,
-0.2903344929218292,
0.7356065511703491,
-0.3028460144996643,
0.9682208895683289,
0.3219310939311981,
-0.962394654750824,
0.5187894105911255,
-0.6083600521087646,
0.20515315234661102,
0.4372505843639374,
0.3985029458999634,
-0.524549663066864,
-0.17690707743167877,
-0.9811204075813293,
-0.9899810552597046,
0.7748922109603882,
0.34623637795448303,
-0.006878674495965242,
0.15948885679244995,
0.4661828875541687,
-0.17801979184150696,
0.13866107165813446,
-1.050856351852417,
-0.2948416471481323,
-0.27495062351226807,
-0.18786241114139557,
-0.017610354349017143,
0.03017892688512802,
0.13843539357185364,
-0.49377158284187317,
0.8800897598266602,
-0.11681283265352249,
0.2581559717655182,
0.25815314054489136,
-0.17007820308208466,
-0.13478057086467743,
-0.060795292258262634,
0.53769451379776,
0.5688968896865845,
-0.15908841788768768,
-0.2675638496875763,
0.45845508575439453,
-0.7498887777328491,
0.05069757252931595,
0.29558664560317993,
-0.3518159091472626,
-0.13134385645389557,
0.26738080382347107,
0.9388318657875061,
0.16510874032974243,
-0.3187657296657562,
0.4794872999191284,
0.029640324413776398,
-0.5663288235664368,
-0.38885945081710815,
-0.0018967799842357635,
0.22281908988952637,
0.18212993443012238,
0.38178750872612,
-0.013197953812777996,
0.019398750737309456,
-0.287661612033844,
0.1399107277393341,
0.3672872483730316,
-0.3036844730377197,
-0.2781248986721039,
0.9671293497085571,
-0.03807108476758003,
-0.0985637828707695,
0.6872093677520752,
-0.1678496152162552,
-0.49151381850242615,
1.035070776939392,
0.3200245797634125,
0.8574897050857544,
-0.28416961431503296,
0.13903789222240448,
0.8217204213142395,
0.36566710472106934,
-0.26150503754615784,
0.06361865997314453,
0.08493248373270035,
-0.5098084807395935,
-0.2892988622188568,
-0.8048089742660522,
-0.21327970921993256,
0.3550904095172882,
-0.7351616621017456,
0.5060640573501587,
-0.504330039024353,
-0.10517530888319016,
-0.08648774772882462,
0.3147139251232147,
-0.7601132392883301,
0.4007921814918518,
0.29479798674583435,
0.8535337448120117,
-0.8558052778244019,
0.9418207406997681,
0.5341793894767761,
-0.7290444374084473,
-1.210137963294983,
-0.05679769068956375,
-0.03409174084663391,
-0.878495991230011,
0.5369709730148315,
0.3028106391429901,
0.22583554685115814,
0.19040121138095856,
-0.5307065844535828,
-1.209681749343872,
1.619665265083313,
0.2625048756599426,
-0.7119904160499573,
-0.1753404289484024,
0.10001792013645172,
0.5790655612945557,
-0.13216915726661682,
0.5225379467010498,
0.5422042012214661,
0.4493817389011383,
0.006536391563713551,
-1.0667964220046997,
0.25382721424102783,
-0.28505516052246094,
0.10304670035839081,
0.29015082120895386,
-1.094139575958252,
1.2116671800613403,
-0.1328805834054947,
-0.04512300714850426,
0.1361018866300583,
0.7266212105751038,
0.5564073920249939,
0.15895293653011322,
0.5724102258682251,
0.8479645848274231,
0.8349659442901611,
-0.0783499926328659,
1.1600160598754883,
-0.6244366765022278,
0.7326355576515198,
0.8901183009147644,
0.04737316071987152,
0.7354456782341003,
0.4262135624885559,
-0.440371036529541,
0.6326171159744263,
0.9501233696937561,
-0.15792712569236755,
0.2751142084598541,
0.2723033130168915,
-0.06485215574502945,
-0.09137185662984848,
0.1830182820558548,
-0.6268388032913208,
0.16507478058338165,
0.2756233215332031,
-0.5336105227470398,
-0.129043310880661,
-0.014134836383163929,
0.2742004990577698,
-0.1689925491809845,
-0.41192853450775146,
0.4204564392566681,
0.1561182141304016,
-0.6037186980247498,
0.9351513385772705,
0.1200098991394043,
0.7215703725814819,
-0.5140702128410339,
0.32553479075431824,
-0.17996029555797577,
0.20774349570274353,
-0.3387060761451721,
-0.6551859378814697,
0.10529067367315292,
0.03171832486987114,
-0.03297163546085358,
-0.22472970187664032,
0.5420494079589844,
-0.2291073352098465,
-0.49841031432151794,
0.42505598068237305,
0.3852420747280121,
0.20731709897518158,
-0.16376425325870514,
-0.9556453824043274,
-0.11364317685365677,
0.08718946576118469,
-0.8754879832267761,
0.4254927337169647,
0.3603094518184662,
-0.0708484947681427,
0.6200823187828064,
0.5948189496994019,
-0.023872854188084602,
0.10440510511398315,
0.11466087400913239,
1.0105233192443848,
-0.6345325708389282,
-0.4229173958301544,
-0.8834935426712036,
0.6617861986160278,
0.0003358996764291078,
-0.5666317343711853,
0.7509713172912598,
0.663397490978241,
0.785306990146637,
0.147602379322052,
0.6222853064537048,
-0.2833394706249237,
0.25514042377471924,
-0.5842245817184448,
0.6978814601898193,
-0.5963553786277771,
0.14894185960292816,
-0.2757919430732727,
-0.9987947344779968,
-0.11677306890487671,
0.5730355978012085,
-0.4743937849998474,
0.46332380175590515,
0.7915786504745483,
0.8552003502845764,
0.06254792213439941,
0.061934735625982285,
0.06882119178771973,
0.28710487484931946,
0.2933794856071472,
0.8576363921165466,
0.4963727593421936,
-0.8575709462165833,
0.7734020352363586,
-0.42243754863739014,
-0.20472599565982819,
-0.12886565923690796,
-0.696290910243988,
-0.7520854473114014,
-0.5238082408905029,
-0.4357146620750427,
-0.40432965755462646,
-0.059249792248010635,
0.781562864780426,
0.7308793663978577,
-0.6904427409172058,
-0.2634851336479187,
-0.4033032953739166,
-0.18710334599018097,
-0.21376504004001617,
-0.28134527802467346,
0.6853560209274292,
-0.27239763736724854,
-0.7722265720367432,
0.08683415502309799,
-0.08196324110031128,
0.3010011613368988,
-0.3167716860771179,
-0.37148937582969666,
-0.1971038430929184,
-0.002319312421604991,
0.32826900482177734,
0.3333601653575897,
-0.5774620175361633,
-0.2182987481355667,
-0.04836185649037361,
-0.326060950756073,
0.11951669305562973,
0.4543110132217407,
-0.6505935788154602,
0.002947938395664096,
0.457755446434021,
0.3281228244304657,
0.9518303275108337,
-0.10752450674772263,
0.22336529195308685,
-0.49358171224594116,
0.22813285887241364,
0.10153959691524506,
0.5719878077507019,
0.23647455871105194,
-0.4254372715950012,
0.6611120104789734,
0.3977958559989929,
-0.7990165948867798,
-0.8196409940719604,
-0.11628670245409012,
-0.9609545469284058,
-0.21006381511688232,
1.1098246574401855,
-0.1552383005619049,
-0.38832730054855347,
0.25077131390571594,
-0.18046286702156067,
0.3688245713710785,
-0.24685299396514893,
0.6161397695541382,
0.7117461562156677,
-0.06937825679779053,
-0.1723451167345047,
-0.708408534526825,
0.3875223994255066,
0.5704647302627563,
-0.743945837020874,
-0.028756272047758102,
0.2730086147785187,
0.41482940316200256,
0.2054842859506607,
0.6575490236282349,
-0.3076539933681488,
0.20061661303043365,
0.09877500683069229,
0.2792983055114746,
0.0059887077659368515,
-0.10296275466680527,
-0.5804117918014526,
0.15937753021717072,
-0.06839250028133392,
-0.0955207496881485
] |
microsoft/git-large-textcaps | microsoft | "2023-02-08T10:49:30Z" | 11,241 | 16 | transformers | [
"transformers",
"pytorch",
"git",
"text-generation",
"vision",
"image-captioning",
"image-to-text",
"en",
"arxiv:2205.14100",
"license:mit",
"endpoints_compatible",
"has_space",
"region:us"
] | image-to-text | "2023-01-02T10:53:45Z" | ---
language: en
license: mit
tags:
- vision
- image-captioning
model_name: microsoft/git-large-textcaps
pipeline_tag: image-to-text
---
# GIT (GenerativeImage2Text), large-sized, fine-tuned on TextCaps
GIT (short for GenerativeImage2Text) model, large-sized version, fine-tuned on TextCaps. It was introduced in the paper [GIT: A Generative Image-to-text Transformer for Vision and Language](https://arxiv.org/abs/2205.14100) by Wang et al. and first released in [this repository](https://github.com/microsoft/GenerativeImage2Text).
Disclaimer: The team releasing GIT did not write a model card for this model so this model card has been written by the Hugging Face team.
## Model description
GIT is a Transformer decoder conditioned on both CLIP image tokens and text tokens. The model is trained using "teacher forcing" on a lot of (image, text) pairs.
The goal for the model is simply to predict the next text token, giving the image tokens and previous text tokens.
The model has full access to (i.e. a bidirectional attention mask is used for) the image patch tokens, but only has access to the previous text tokens (i.e. a causal attention mask is used for the text tokens) when predicting the next text token.
![GIT architecture](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/git_architecture.jpg)
This allows the model to be used for tasks like:
- image and video captioning
- visual question answering (VQA) on images and videos
- even image classification (by simply conditioning the model on the image and asking it to generate a class for it in text).
## Intended uses & limitations
You can use the raw model for image captioning. See the [model hub](https://huggingface.co/models?search=microsoft/git) to look for
fine-tuned versions on a task that interests you.
### How to use
For code examples, we refer to the [documentation](https://huggingface.co/transformers/main/model_doc/git.html).
## Training data
From the paper:
> We collect 0.8B image-text pairs for pre-training, which include COCO (Lin et al., 2014), Conceptual Captions
(CC3M) (Sharma et al., 2018), SBU (Ordonez et al., 2011), Visual Genome (VG) (Krishna et al., 2016),
Conceptual Captions (CC12M) (Changpinyo et al., 2021), ALT200M (Hu et al., 2021a), and an extra 0.6B
data following a similar collection procedure in Hu et al. (2021a).
=> however this is for the model referred to as "GIT" in the paper, which is not open-sourced.
This checkpoint is "GIT-large", which is a smaller variant of GIT trained on 20 million image-text pairs.
Next, the model was fine-tuned on TextCaps.
See table 11 in the [paper](https://arxiv.org/abs/2205.14100) for more details.
### Preprocessing
We refer to the original repo regarding details for preprocessing during training.
During validation, one resizes the shorter edge of each image, after which center cropping is performed to a fixed-size resolution. Next, frames are normalized across the RGB channels with the ImageNet mean and standard deviation.
## Evaluation results
For evaluation results, we refer readers to the [paper](https://arxiv.org/abs/2205.14100). | [
-0.612460196018219,
-0.6902594566345215,
0.20559905469417572,
-0.17558477818965912,
-0.4384997487068176,
0.056700002402067184,
-0.17448481917381287,
-0.5027125477790833,
0.33502012491226196,
0.39370885491371155,
-0.6061771512031555,
-0.41886401176452637,
-0.8977202773094177,
0.02868063934147358,
-0.38880279660224915,
1.5910022258758545,
-0.3075413107872009,
0.02650066465139389,
-0.31854790449142456,
-0.30271366238594055,
-0.4340004324913025,
-0.2543317675590515,
-0.3618287444114685,
-0.08507993072271347,
0.3657883107662201,
0.4079667031764984,
0.8263742923736572,
0.6567540168762207,
0.8405360579490662,
0.2604846656322479,
-0.2119542956352234,
-0.2597985565662384,
-0.4541645050048828,
-0.2685925364494324,
-0.023280806839466095,
-0.36296314001083374,
-0.34021833539009094,
0.3198329508304596,
0.4431745409965515,
0.24225378036499023,
0.14775091409683228,
0.3716180920600891,
-0.020370837301015854,
0.952080488204956,
-0.380174845457077,
0.3700579106807709,
-0.3024761974811554,
0.13475574553012848,
-0.038437046110630035,
0.1617422103881836,
-0.13165497779846191,
-0.19371165335178375,
0.22152431309223175,
-0.6203466653823853,
0.3995288014411926,
-0.12313752621412277,
1.3677136898040771,
0.30293896794319153,
-0.0897955670952797,
-0.14022211730480194,
-0.3256535232067108,
0.2374412566423416,
-0.3878503143787384,
0.16791200637817383,
0.33035099506378174,
0.38199010491371155,
0.3097812533378601,
-0.8175222277641296,
-0.5500901341438293,
-0.35230910778045654,
-0.2915040850639343,
0.29708126187324524,
-0.21447184681892395,
0.22035209834575653,
0.6814233660697937,
0.564200758934021,
-0.5955299139022827,
-0.2436106950044632,
-0.6220013499259949,
-0.125427708029747,
0.42079612612724304,
-0.3606976866722107,
0.5742577910423279,
-0.3822365701198578,
-0.7133808135986328,
-0.2504578232765198,
-0.4027705490589142,
-0.03168792650103569,
0.11587785929441452,
-0.24639892578125,
-0.5933462381362915,
0.838297426700592,
-0.07123588770627975,
0.425875186920166,
0.18026407063007355,
0.03455750271677971,
0.26440051198005676,
-0.35222846269607544,
-0.2055262327194214,
-0.4188816249370575,
0.9711353778839111,
0.5074819326400757,
0.6478910446166992,
-0.005116946995258331,
-0.3846018314361572,
0.2683826982975006,
0.3384397625923157,
-0.8631057143211365,
-0.4498472511768341,
-0.11922000348567963,
-0.4272806644439697,
-0.37491679191589355,
0.21117529273033142,
-0.6171331405639648,
-0.03312676399946213,
-0.4408327639102936,
0.3809624910354614,
-0.49989035725593567,
-0.17696912586688995,
-0.1978774070739746,
-0.3151605725288391,
0.27560585737228394,
0.31843146681785583,
-0.7357980012893677,
0.12470939755439758,
0.3716001808643341,
1.104636549949646,
-0.26938503980636597,
-0.2691429555416107,
-0.312629759311676,
-0.11555729061365128,
-0.24403956532478333,
0.8152586817741394,
-0.20877572894096375,
-0.010157790966331959,
-0.046734437346458435,
0.34649458527565,
0.03050203062593937,
-0.31808239221572876,
0.25779256224632263,
-0.5934387445449829,
0.08342739194631577,
-0.2202746868133545,
-0.3285641074180603,
-0.23974327743053436,
0.3687816858291626,
-0.7908756136894226,
0.7720151543617249,
0.5645338296890259,
-1.048804521560669,
0.2844426929950714,
-0.8985598683357239,
-0.24869641661643982,
0.16050413250923157,
-0.14879210293293,
-0.715252697467804,
-0.09433154761791229,
0.23754258453845978,
0.5655890703201294,
-0.2587374150753021,
0.4879249036312103,
-0.20637743175029755,
-0.32169991731643677,
0.07501198351383209,
0.05185401067137718,
0.6473851203918457,
0.15608900785446167,
-0.4175707697868347,
0.25500237941741943,
-0.28339922428131104,
-0.21324706077575684,
0.3892388939857483,
-0.1328965723514557,
-0.004833858460187912,
-0.37869691848754883,
0.18751873075962067,
0.2091115564107895,
0.05255351960659027,
-0.37493330240249634,
0.5696194767951965,
-0.11554428935050964,
0.7378664016723633,
0.4827767014503479,
-0.11933954060077667,
0.7308350205421448,
-0.33958643674850464,
0.8442785143852234,
0.041715316474437714,
0.14444345235824585,
-0.6197763085365295,
-0.6550325155258179,
-0.6353170871734619,
-0.32828664779663086,
0.5370671153068542,
0.6224685907363892,
-1.0840635299682617,
0.17872929573059082,
-0.5520986318588257,
-0.49278345704078674,
-0.30137425661087036,
-0.036389246582984924,
0.6525672078132629,
0.4159280061721802,
0.3066931366920471,
-0.6277801990509033,
-0.35670527815818787,
-0.9632872343063354,
0.060129351913928986,
-0.26871708035469055,
-0.06364934146404266,
0.055397629737854004,
0.8898643255233765,
-0.36799362301826477,
0.893114447593689,
-0.6328220367431641,
-0.25069957971572876,
-0.05808260664343834,
0.21883919835090637,
-0.1993817836046219,
0.5303716659545898,
0.6770645380020142,
-0.9416592121124268,
-0.5247841477394104,
-0.11382858455181122,
-0.7918424010276794,
0.06413023918867111,
-0.12896870076656342,
-0.2508929371833801,
0.4162123203277588,
0.6301112174987793,
-0.862433135509491,
0.6424534320831299,
0.7471066117286682,
-0.2636604309082031,
0.744006335735321,
0.05387626960873604,
0.14418643712997437,
-1.0968233346939087,
0.14768172800540924,
0.2334960550069809,
-0.38518816232681274,
-0.3291622996330261,
0.4563366174697876,
0.2675696611404419,
-0.3689572215080261,
-0.25560206174850464,
0.4555337727069855,
-0.8348116874694824,
-0.1876416951417923,
-0.12669500708580017,
0.02438323013484478,
0.027920948341488838,
0.7213484644889832,
0.09454233944416046,
0.8721471428871155,
0.4925268292427063,
-0.15059474110603333,
0.3418724536895752,
0.38665419816970825,
-0.3119077980518341,
0.6388610601425171,
-0.8288128972053528,
0.20129171013832092,
-0.15040001273155212,
0.37597620487213135,
-1.046001672744751,
-0.4376581311225891,
0.41383105516433716,
-0.6870200634002686,
0.611545741558075,
-0.4244779050350189,
-0.6280860304832458,
-0.6739110946655273,
-0.3334713280200958,
0.3365939259529114,
0.7289831042289734,
-0.44734758138656616,
0.46146291494369507,
0.43365567922592163,
-0.04061102867126465,
-0.19525088369846344,
-0.7949343323707581,
0.0680725947022438,
-0.12537069618701935,
-0.827612042427063,
0.37300050258636475,
-0.18971653282642365,
0.19781747460365295,
0.050095707178115845,
0.07272759079933167,
-0.04587835073471069,
-0.1700189858675003,
0.42703837156295776,
0.4211839437484741,
-0.16034811735153198,
0.15196065604686737,
-0.0966392457485199,
-0.2189231514930725,
0.002531452802941203,
-0.2662108838558197,
0.23858967423439026,
-0.21223682165145874,
-0.12260714173316956,
-0.3425605595111847,
0.38568365573883057,
0.6818360686302185,
-0.3935392498970032,
0.6484198570251465,
0.8039988279342651,
-0.34032365679740906,
0.3863551914691925,
-0.5790464282035828,
-0.2369353324174881,
-0.4077094793319702,
0.30372142791748047,
-0.2863573431968689,
-1.0002844333648682,
0.5460894107818604,
0.07244493067264557,
-0.04217902943491936,
0.5397468209266663,
0.3986324369907379,
-0.126652792096138,
0.7440005540847778,
0.7218717336654663,
-0.07451830059289932,
0.8502667546272278,
-0.5238097310066223,
-0.05593285709619522,
-0.860117495059967,
0.006716704461723566,
-0.2255220264196396,
-0.2710351049900055,
-0.7214342951774597,
-0.612907886505127,
0.35196271538734436,
0.34459012746810913,
-0.2815361022949219,
0.6936700344085693,
-0.8777227401733398,
0.4483639597892761,
0.5491748452186584,
0.2304215431213379,
0.0032716665882617235,
0.20295417308807373,
0.027234019711613655,
-0.002599282655864954,
-0.5363893508911133,
-0.5315614342689514,
0.8369519710540771,
0.48178011178970337,
0.5433229804039001,
-0.17562513053417206,
0.4206412732601166,
0.15466070175170898,
0.5750923156738281,
-0.829415500164032,
0.4207690954208374,
-0.09960135072469711,
-0.6483631730079651,
-0.17967365682125092,
-0.30641454458236694,
-0.800944447517395,
-0.07982761412858963,
-0.27698540687561035,
-0.5816900134086609,
-0.1470804363489151,
0.2337452471256256,
-0.13388758897781372,
0.3448103070259094,
-1.1694217920303345,
1.0373713970184326,
0.05044037476181984,
-0.039850641041994095,
0.19561967253684998,
-1.062601089477539,
0.4545978009700775,
0.008233479224145412,
0.012206140905618668,
0.012888324446976185,
0.022249994799494743,
0.8499984741210938,
-0.31670576333999634,
0.8694359064102173,
-0.13712835311889648,
0.190260112285614,
0.5610045790672302,
-0.09095101058483124,
0.562995433807373,
-0.03340107202529907,
0.39054274559020996,
0.5140458941459656,
0.17998798191547394,
-0.39405736327171326,
-0.5075079202651978,
0.36948758363723755,
-0.7725648880004883,
-0.46409380435943604,
-0.36496102809906006,
-0.3437155485153198,
0.2105824500322342,
0.15083737671375275,
0.6010087132453918,
0.0704575777053833,
-0.08356640487909317,
0.15975740551948547,
0.6112263202667236,
-0.30893370509147644,
0.277058482170105,
0.15074753761291504,
-0.21730220317840576,
-0.5662632584571838,
0.5640852451324463,
0.2825866639614105,
0.44291970133781433,
0.3193473815917969,
0.10985720157623291,
0.051964856684207916,
-0.2857799232006073,
-0.7985547780990601,
0.4254120886325836,
-0.6050771474838257,
-0.5983843803405762,
-0.7812016010284424,
-0.4163294732570648,
-0.5154305696487427,
-0.23133675754070282,
-0.28574705123901367,
-0.28740713000297546,
-0.4293041527271271,
-0.15671616792678833,
0.6619664430618286,
0.62882000207901,
0.1692710965871811,
0.5404627323150635,
-0.8844283819198608,
0.6484771370887756,
0.21688038110733032,
0.537219762802124,
-0.290825217962265,
-0.6492449641227722,
-0.29878729581832886,
0.09241549670696259,
-0.570117175579071,
-1.0937267541885376,
0.2821887135505676,
0.0632978305220604,
0.1875498741865158,
0.19871379435062408,
-0.1780550330877304,
0.43007707595825195,
-0.521994411945343,
0.8704659342765808,
0.36887407302856445,
-0.7360644340515137,
0.6601333618164062,
-0.46045663952827454,
0.5860388875007629,
0.34207671880722046,
0.40267878770828247,
-0.5361550450325012,
-0.1714116930961609,
-0.786982536315918,
-0.72139972448349,
0.7026148438453674,
0.2845306098461151,
0.2513616681098938,
0.04654980078339577,
0.6109251976013184,
-0.2136111855506897,
0.1384144276380539,
-0.9426542520523071,
-0.1701740175485611,
-0.3465850055217743,
-0.09215182811021805,
-0.13497105240821838,
-0.5041697025299072,
-0.11249952018260956,
-0.5306426882743835,
0.4686841070652008,
-0.3894399106502533,
0.6061791777610779,
0.18152901530265808,
-0.1674710363149643,
-0.18408462405204773,
-0.16556084156036377,
0.4884394109249115,
0.2244952768087387,
0.08476410806179047,
-0.22862613201141357,
-0.10534702986478806,
-0.7103479504585266,
-0.10429342091083527,
0.24712873995304108,
-0.37753981351852417,
-0.01085573062300682,
0.44429928064346313,
1.0641976594924927,
0.07269691675901413,
-0.3903687298297882,
0.9165378212928772,
-0.032297283411026,
-0.3693544268608093,
-0.4138997495174408,
-0.16621583700180054,
0.15840885043144226,
0.15129877626895905,
0.07542859017848969,
0.2837566137313843,
0.09662371873855591,
-0.3736295700073242,
0.2676803171634674,
0.3704417049884796,
-0.562798261642456,
-0.40031492710113525,
0.6731165051460266,
0.06013604626059532,
-0.19823810458183289,
0.6368562579154968,
-0.2786366939544678,
-0.7461456060409546,
0.8929164409637451,
0.24406930804252625,
0.964971125125885,
0.016127299517393112,
0.42170554399490356,
0.7463060021400452,
0.4346441328525543,
-0.10648207366466522,
0.05106877163052559,
-0.0949471965432167,
-0.5639222264289856,
-0.3421933948993683,
-0.5338879823684692,
-0.056391261518001556,
-0.004463302902877331,
-0.7461395263671875,
0.4659281373023987,
-0.44066131114959717,
-0.23400090634822845,
0.14617134630680084,
-0.08820260316133499,
-0.7672221064567566,
0.3155187666416168,
0.10424487292766571,
0.96247798204422,
-0.8478190898895264,
0.7146270871162415,
0.9478630423545837,
-0.7948912978172302,
-0.8774527907371521,
0.0014457375509664416,
0.08108950406312943,
-0.7874353528022766,
0.33744266629219055,
0.5225700736045837,
0.384247750043869,
-0.05150182917714119,
-1.0969074964523315,
-0.7348964214324951,
1.1294387578964233,
0.44641968607902527,
-0.5993566513061523,
-0.21095776557922363,
-0.20958690345287323,
0.590826690196991,
-0.33829373121261597,
0.25286293029785156,
0.40311142802238464,
0.3592056334018707,
0.32112765312194824,
-0.7300422191619873,
0.1470412164926529,
-0.47329095005989075,
0.2467534840106964,
0.2553553879261017,
-0.6338908672332764,
0.6342626810073853,
-0.5163596272468567,
-0.3080947697162628,
0.22704383730888367,
0.6123883724212646,
0.09680397808551788,
0.1703498214483261,
0.5024343729019165,
0.64957195520401,
0.28827810287475586,
-0.3376086354255676,
1.3622462749481201,
-0.23316513001918793,
0.4590475261211395,
0.9209663271903992,
0.33527469635009766,
0.5427863001823425,
0.4611482620239258,
-0.13108202815055847,
0.3866735100746155,
0.7921638488769531,
-0.34962770342826843,
0.3888076841831207,
0.20333389937877655,
0.17618148028850555,
0.08637287467718124,
-0.006925490684807301,
-0.37253671884536743,
0.2496320605278015,
0.07789092510938644,
-0.5718857049942017,
0.10266320407390594,
0.3071829080581665,
0.20703037083148956,
-0.03878471627831459,
-0.10273086279630661,
0.9740366339683533,
0.07662098854780197,
-0.8766228556632996,
0.5430482029914856,
-0.06169337406754494,
0.7774442434310913,
-0.49167492985725403,
-0.05351044610142708,
-0.23435315489768982,
-0.1859503984451294,
-0.12827354669570923,
-0.9581701159477234,
0.49147436022758484,
0.09649251401424408,
-0.38903725147247314,
-0.30607667565345764,
0.5801135897636414,
-0.3432779610157013,
-0.43638649582862854,
0.2207990139722824,
0.15506511926651,
0.279768705368042,
-0.3821442723274231,
-0.916241466999054,
0.09460648149251938,
0.025635596364736557,
-0.4495562016963959,
0.28769782185554504,
0.5384429097175598,
-0.22277623414993286,
0.44464632868766785,
0.5519199371337891,
-0.17206965386867523,
-0.25299784541130066,
0.002802429022267461,
1.1263965368270874,
-0.5524457097053528,
-0.3519417941570282,
-0.5998707413673401,
0.6850732564926147,
-0.003965186886489391,
-0.3182460069656372,
0.36746740341186523,
0.39835241436958313,
1.0066006183624268,
-0.3782576322555542,
0.6532776355743408,
-0.29653382301330566,
0.1946384757757187,
-0.5319073796272278,
0.7928186058998108,
-0.6049509644508362,
-0.145424023270607,
-0.5909432768821716,
-0.8990703225135803,
-0.2848876118659973,
0.6058863997459412,
-0.33099091053009033,
0.3018122613430023,
0.6907756328582764,
0.7207258343696594,
0.025312788784503937,
-0.08770902454853058,
0.2746170461177826,
0.027732551097869873,
0.10107572376728058,
0.37992867827415466,
0.506232500076294,
-0.7549729347229004,
0.5595454573631287,
-0.23992806673049927,
-0.4112341105937958,
-0.07894407212734222,
-0.7987127900123596,
-0.9069415926933289,
-0.910468578338623,
-0.5956866145133972,
-0.49550631642341614,
0.08546973019838333,
0.5485091209411621,
0.9509670734405518,
-0.5956864356994629,
0.22910188138484955,
-0.11441517621278763,
-0.08445806801319122,
0.0008115478558465838,
-0.22480085492134094,
0.29837822914123535,
-0.05167396739125252,
-0.564424991607666,
-0.5011435747146606,
0.14329664409160614,
0.42574775218963623,
-0.1921892762184143,
-0.03565986827015877,
-0.17422540485858917,
-0.2191929668188095,
0.6431634426116943,
0.3011503219604492,
-0.6116421222686768,
-0.3668898046016693,
0.02501508593559265,
-0.3545365035533905,
0.37391379475593567,
0.6434061527252197,
-0.567459225654602,
0.38945791125297546,
0.420808881521225,
0.5495895147323608,
0.728154718875885,
0.1112634688615799,
0.33561381697654724,
-0.6709750294685364,
0.17569001019001007,
-0.06224234402179718,
0.3847895562648773,
0.6074398756027222,
-0.4542207717895508,
0.8044717311859131,
0.3883661925792694,
-0.581581175327301,
-0.4759896695613861,
0.18236970901489258,
-1.2035164833068848,
-0.13515526056289673,
1.2513309717178345,
-0.3720789849758148,
-0.34629547595977783,
0.43569129705429077,
-0.5403647422790527,
0.5068785548210144,
-0.2971794307231903,
0.6197115182876587,
0.7214359641075134,
0.4951927065849304,
-0.6687342524528503,
-0.6601080894470215,
0.4483337104320526,
0.09191647917032242,
-0.8098616003990173,
-0.2313050478696823,
0.5041354298591614,
0.41605234146118164,
0.3312622606754303,
0.6060867309570312,
-0.325948566198349,
0.3048616647720337,
-0.16015855967998505,
0.4795309007167816,
0.05254257470369339,
-0.2509799301624298,
-0.3134393095970154,
-0.09480184316635132,
-0.189874529838562,
-0.23690825700759888
] |
DeepChem/ChemBERTa-77M-MTR | DeepChem | "2022-01-20T17:55:55Z" | 11,233 | 1 | transformers | [
"transformers",
"pytorch",
"roberta",
"endpoints_compatible",
"region:us"
] | null | "2022-03-02T23:29:04Z" | Entry not found | [
-0.3227650225162506,
-0.22568431496620178,
0.862226128578186,
0.43461495637893677,
-0.5282987952232361,
0.7012965679168701,
0.7915717363357544,
0.07618638128042221,
0.7746025919914246,
0.2563219666481018,
-0.7852817177772522,
-0.22573819756507874,
-0.9104480743408203,
0.5715669393539429,
-0.3992334008216858,
0.5791245698928833,
-0.14494505524635315,
-0.10751161724328995,
0.28233757615089417,
-0.2768954336643219,
-0.5409224033355713,
-0.36855220794677734,
-1.1902776956558228,
0.061491113156080246,
0.5316578149795532,
0.7435142397880554,
0.7584060430526733,
0.3652167320251465,
0.6432578563690186,
0.3932291269302368,
-0.23138920962810516,
0.4827055037021637,
-0.04171813279390335,
0.00260411505587399,
-0.3524433970451355,
-0.5516898036003113,
-0.28596609830856323,
0.07584730535745621,
1.0961304903030396,
0.966687798500061,
-0.284663587808609,
0.05330817773938179,
-0.3063621520996094,
0.33088892698287964,
-0.49734312295913696,
0.3054099678993225,
-0.022506045177578926,
0.16318801045417786,
-0.7041513919830322,
-0.5535354018211365,
0.012794834561645985,
-0.7361212968826294,
0.17926570773124695,
-0.690081000328064,
0.8269098401069641,
0.18583157658576965,
1.1533750295639038,
0.14819414913654327,
-0.462487131357193,
-0.8161764144897461,
-0.6538989543914795,
0.5711171627044678,
-0.32703715562820435,
0.39680248498916626,
0.7028235197067261,
-0.048573412001132965,
-0.9820332527160645,
-0.6745741367340088,
-0.46466192603111267,
0.2923962473869324,
0.35402774810791016,
-0.3411678075790405,
-0.17522086203098297,
-0.3058989644050598,
0.15792037546634674,
0.12811517715454102,
-0.4841994643211365,
-0.5543919205665588,
-0.5475160479545593,
-0.3960252106189728,
0.6206658482551575,
0.3482950031757355,
0.2429177463054657,
-0.1888415813446045,
-0.3228583335876465,
0.0880163162946701,
-0.4160851538181305,
0.3402571678161621,
0.6335517168045044,
0.7114017009735107,
-0.5811444520950317,
0.560215950012207,
-0.04927587881684303,
0.7439703941345215,
0.11445561796426773,
-0.27478092908859253,
0.41460567712783813,
-0.14724725484848022,
0.055171746760606766,
0.4226345121860504,
0.31524422764778137,
0.2841312289237976,
-0.3273695111274719,
0.2032228708267212,
-0.3215144872665405,
-0.30496224761009216,
-0.22332167625427246,
-0.29490774869918823,
-0.3592180609703064,
0.5492289066314697,
-0.3314017057418823,
-0.42855486273765564,
1.143175721168518,
-0.4200771450996399,
-0.7302224040031433,
0.33156412839889526,
0.4065209925174713,
-0.0994480773806572,
-0.37146568298339844,
-0.052260834723711014,
-0.8458789587020874,
-0.007907390594482422,
0.7491172552108765,
-0.7198970913887024,
0.3371737599372864,
0.4728063642978668,
0.7417217493057251,
0.19650575518608093,
-0.14034469425678253,
-0.42949390411376953,
0.2971969544887543,
-0.8659994006156921,
0.6320174336433411,
-0.20135220885276794,
-1.0051977634429932,
0.11150479316711426,
0.8971705436706543,
-0.37896400690078735,
-1.2094876766204834,
1.0605159997940063,
-0.6887932419776917,
0.16017857193946838,
-0.676761269569397,
-0.14661237597465515,
-0.07118501514196396,
-0.005096632521599531,
-0.6088156700134277,
0.7567102313041687,
0.587267279624939,
-0.4995276927947998,
0.21429483592510223,
-0.26029831171035767,
-0.39151400327682495,
0.38824859261512756,
-0.07935450226068497,
-0.21858926117420197,
0.713833212852478,
-0.6647079586982727,
-0.26932814717292786,
0.2942774295806885,
0.2368936538696289,
-0.35706108808517456,
-0.7931919097900391,
0.08478113263845444,
-0.05786270648241043,
1.550750494003296,
-0.03868847340345383,
-0.3586106300354004,
-0.679383397102356,
-1.1506240367889404,
-0.07070787996053696,
0.6886883974075317,
-0.9194989204406738,
-0.27839475870132446,
-0.046410128474235535,
-0.26169314980506897,
0.08994917571544647,
0.7390589714050293,
-1.1194051504135132,
0.2832726836204529,
-0.05092663690447807,
-0.22794683277606964,
0.8271058797836304,
0.15387225151062012,
0.24758946895599365,
0.14913396537303925,
0.42958706617355347,
0.527725338935852,
0.11115207523107529,
0.683587908744812,
-0.34720373153686523,
-0.9694353938102722,
0.6154631972312927,
0.25266361236572266,
0.8121447563171387,
-0.49945297837257385,
0.2685093879699707,
0.27025535702705383,
-0.3409680724143982,
-0.5682371854782104,
-0.3102838397026062,
0.09025752544403076,
0.14930562674999237,
0.11142510175704956,
-0.5721710324287415,
-0.6576125025749207,
-0.9689140319824219,
-0.13590654730796814,
-0.4314374029636383,
-0.3571570813655853,
0.21006910502910614,
0.5792906284332275,
-1.1975523233413696,
0.4128875136375427,
-0.7705625891685486,
-0.7038741111755371,
-0.01065548975020647,
-0.19338123500347137,
0.7540656328201294,
0.43240174651145935,
0.5033966898918152,
-0.6397148370742798,
-0.5661987066268921,
-0.22470176219940186,
-1.0333747863769531,
-0.13280506432056427,
0.24819621443748474,
0.3065737783908844,
-0.13423344492912292,
-0.2744963765144348,
-0.48740333318710327,
0.8100387454032898,
0.14789170026779175,
-0.5391897559165955,
0.5220767259597778,
-0.3020317256450653,
0.17224803566932678,
-0.6369150280952454,
-0.06916818022727966,
-0.661676287651062,
-0.0009071884560398757,
-0.3608308732509613,
-0.5737438797950745,
0.14772287011146545,
0.07017494738101959,
-0.16065457463264465,
0.28808408975601196,
-0.909277081489563,
-0.0010852962732315063,
-0.7442210912704468,
0.379071980714798,
0.06394772231578827,
-0.3145078718662262,
-0.017517540603876114,
1.0000386238098145,
0.7784460783004761,
-0.3848048746585846,
0.721744179725647,
0.4440041184425354,
0.19036155939102173,
0.7630521059036255,
-0.18725109100341797,
0.16478213667869568,
-0.5245416760444641,
-0.12161104381084442,
-0.8887597918510437,
-1.0982946157455444,
0.7320570349693298,
-0.6114250421524048,
0.36542922258377075,
-0.4277869760990143,
0.2589159905910492,
-0.6919258832931519,
-0.03885362669825554,
0.4808599352836609,
-0.05936325341463089,
-0.6863942742347717,
0.5232570171356201,
0.45317530632019043,
-0.2019241601228714,
-0.6609031558036804,
-0.530157208442688,
0.39365822076797485,
0.6154114007949829,
-0.16390392184257507,
0.06878514587879181,
0.14941060543060303,
-0.5441926121711731,
-0.040802597999572754,
-0.38691970705986023,
-0.45766758918762207,
0.054224006831645966,
0.13053473830223083,
-0.005750799085944891,
-0.404820054769516,
-0.0868026465177536,
-0.35842007398605347,
-0.4656120240688324,
0.21876516938209534,
0.3011947274208069,
-0.04096309468150139,
-0.42599788308143616,
-0.3619818687438965,
-0.888181209564209,
0.6719610095024109,
0.5370282530784607,
0.05281545966863632,
0.7555549740791321,
0.16819314658641815,
-0.8014987707138062,
-0.13532210886478424,
-0.1760706603527069,
0.2696830928325653,
-0.5588056445121765,
0.13849826157093048,
-0.013484534807503223,
-0.0637492910027504,
0.26297882199287415,
0.25386232137680054,
-0.4300556778907776,
0.9276250004768372,
-0.2615274488925934,
-0.3592521846294403,
0.7960181832313538,
0.5974742770195007,
0.49583131074905396,
0.16503219306468964,
-0.044541798532009125,
0.900709331035614,
-1.1966516971588135,
-0.6563175916671753,
-0.7409549355506897,
-0.15945707261562347,
-0.43510833382606506,
-0.032105933874845505,
0.6254412531852722,
0.2900990843772888,
-0.1333388388156891,
0.4756395220756531,
-0.5243489742279053,
0.3556033670902252,
1.01198410987854,
0.35748639702796936,
0.3435698449611664,
-0.7570229172706604,
-0.2515777349472046,
-0.1402427852153778,
-0.9998157620429993,
-0.2631377875804901,
0.8871029019355774,
0.22752606868743896,
0.844460666179657,
0.5992541313171387,
0.6784542798995972,
0.1367226243019104,
0.2523828148841858,
-0.30590319633483887,
0.3920294940471649,
0.4376082420349121,
-1.0401138067245483,
-0.42758408188819885,
0.021418681368231773,
-0.9703338742256165,
-0.14227519929409027,
-0.03495011106133461,
-0.42617112398147583,
0.7681737542152405,
0.00016589462757110596,
-0.4076709747314453,
0.7732734084129333,
-0.455583393573761,
0.7562873363494873,
-0.4473648965358734,
-0.02663906291127205,
0.4699096083641052,
-0.7070636749267578,
0.4677430987358093,
0.12878790497779846,
0.6205843091011047,
-0.015572631731629372,
-0.04078587517142296,
0.7104941606521606,
-0.9129160046577454,
0.25438642501831055,
-0.6348397135734558,
0.22421300411224365,
0.24246945977210999,
0.51606285572052,
0.5969953536987305,
0.4371243417263031,
0.10119888931512833,
-0.23920902609825134,
0.04115807265043259,
-0.8241125345230103,
-0.210506409406662,
0.697515606880188,
-0.7186890840530396,
-0.6864197850227356,
-1.2355337142944336,
0.14438660442829132,
0.27347055077552795,
0.389305055141449,
0.7959296107292175,
0.571408748626709,
0.1289544403553009,
0.680525004863739,
0.9888588190078735,
-0.0688566341996193,
0.9166924357414246,
0.3224477171897888,
0.09175168722867966,
-0.21944808959960938,
0.7036820650100708,
0.26627904176712036,
-0.24707956612110138,
-0.11939732730388641,
0.20913465321063995,
-0.11069409549236298,
-0.591761589050293,
-0.49990686774253845,
0.3701757788658142,
-0.6731787919998169,
-0.18303893506526947,
-0.6243735551834106,
-0.6043769717216492,
-0.511759340763092,
0.06927360594272614,
-0.7147687673568726,
0.23979046940803528,
-0.7753565907478333,
-0.10574902594089508,
0.04323432594537735,
0.9792009592056274,
-0.589311957359314,
0.5805224180221558,
-1.1218582391738892,
0.19345788657665253,
-0.07949887961149216,
0.7921058535575867,
0.21395787596702576,
-0.7344395518302917,
-0.3975418508052826,
-0.11592631042003632,
-0.3729911744594574,
-1.3576762676239014,
0.21404948830604553,
-0.2454141080379486,
0.23094046115875244,
0.6145404577255249,
0.1397707313299179,
0.5258248448371887,
-0.34326282143592834,
0.7029101848602295,
-0.057017259299755096,
-0.7069286704063416,
0.7934495210647583,
-0.5026894807815552,
0.4963534474372864,
0.9765996932983398,
0.5333835482597351,
-0.7984007596969604,
0.035741209983825684,
-1.041123390197754,
-0.6008695363998413,
0.38426393270492554,
0.11928944289684296,
-0.03601083159446716,
-0.6659559011459351,
-0.054019637405872345,
-0.16143807768821716,
0.6043745279312134,
-1.039069414138794,
-0.7858356237411499,
0.2576698362827301,
0.5277302861213684,
0.0816856250166893,
-0.5653398633003235,
0.20880667865276337,
-0.544416069984436,
1.0657774209976196,
0.45109400153160095,
0.3274499475955963,
0.8406060934066772,
0.46492424607276917,
-0.3823164403438568,
0.09252490103244781,
0.7662695050239563,
0.6666232347488403,
-0.5239797830581665,
-0.2908027470111847,
-0.08827541768550873,
-0.9143403768539429,
0.05927472561597824,
0.11168918758630753,
-0.013455932028591633,
0.9082110524177551,
0.5793083310127258,
0.2539709210395813,
0.4514279365539551,
-0.726460337638855,
0.8859451413154602,
-0.14954176545143127,
-0.12472866475582123,
-1.0677239894866943,
0.1948619782924652,
-0.23984959721565247,
0.5006402134895325,
1.0061326026916504,
0.5250048041343689,
-0.047630298882722855,
-0.8143380880355835,
-0.01473585981875658,
0.6939172148704529,
-0.7091123461723328,
-0.17449834942817688,
0.944853663444519,
0.3847099542617798,
-1.2953051328659058,
1.106776475906372,
-0.5381771326065063,
-0.560332179069519,
0.9121301770210266,
0.522956907749176,
1.1221847534179688,
-0.44204121828079224,
0.0008676342549733818,
0.2662237286567688,
0.41378432512283325,
0.5423170328140259,
1.0869629383087158,
0.431413471698761,
-0.7931063771247864,
0.8826584815979004,
-0.24776044487953186,
-0.40361151099205017,
-0.05347571521997452,
-0.42859897017478943,
0.16892178356647491,
-0.4406192898750305,
-0.10713007301092148,
-0.3444187641143799,
0.28543180227279663,
-0.7072042226791382,
0.42807620763778687,
-0.0838567465543747,
0.8653068542480469,
-0.8553727269172668,
0.47207626700401306,
0.635470449924469,
-0.3337355852127075,
-0.8508191108703613,
-0.26198428869247437,
-0.11448462307453156,
-0.6389466524124146,
0.30214807391166687,
-0.4554102420806885,
0.044398851692676544,
0.09623463451862335,
-0.649151623249054,
-1.1778275966644287,
0.9093633890151978,
-0.639612078666687,
-0.2784462869167328,
0.20464053750038147,
-0.11514760553836823,
0.28811705112457275,
-0.2524643540382385,
0.010661216452717781,
0.41876548528671265,
0.748940110206604,
0.2844654619693756,
-0.7727053761482239,
-0.3694884479045868,
0.0015032943338155746,
-0.44474777579307556,
0.7582978010177612,
-0.6002101898193359,
1.1840779781341553,
-0.5563543438911438,
-0.059654366225004196,
0.44384512305259705,
0.24690914154052734,
0.21076197922229767,
0.6629220843315125,
0.1442081481218338,
0.7282265424728394,
1.07012140750885,
-0.40835219621658325,
0.8811809420585632,
0.26432839035987854,
0.47430819272994995,
0.7238501906394958,
-0.6487724781036377,
0.7513749003410339,
0.31810489296913147,
-0.5682924389839172,
0.9228013753890991,
1.2906063795089722,
-0.15699204802513123,
0.8079374432563782,
0.05136508867144585,
-1.081600546836853,
0.325833261013031,
-0.20724765956401825,
-0.7530064582824707,
0.3150254189968109,
0.19055864214897156,
-0.6920982599258423,
-0.5770308971405029,
-0.24046507477760315,
-0.35662803053855896,
-0.11552901566028595,
-0.7631728649139404,
0.6720563769340515,
-0.016969164833426476,
-0.5103683471679688,
0.18857547640800476,
0.2877499461174011,
0.17368432879447937,
-0.5235732793807983,
-0.02939440682530403,
-0.22823619842529297,
0.2660655975341797,
-0.5670853853225708,
-0.5234526991844177,
0.5724433064460754,
-0.32430219650268555,
-0.5343255400657654,
0.18147465586662292,
0.763587236404419,
-0.16923809051513672,
-0.4515409469604492,
0.32472723722457886,
0.6959525346755981,
0.1665852814912796,
0.4250282347202301,
-0.23511263728141785,
0.24480605125427246,
-0.08044824004173279,
-0.06651552021503448,
0.27714768052101135,
0.3449169099330902,
0.22435641288757324,
0.4450142979621887,
0.43285664916038513,
-0.01808755099773407,
-0.10736498981714249,
-0.382819801568985,
0.4124940037727356,
-0.9542785882949829,
-0.5713282823562622,
-0.6307113766670227,
0.2740660607814789,
-0.02315417304635048,
-1.0836423635482788,
0.4145168364048004,
1.4406683444976807,
1.0359982252120972,
-0.4756383001804352,
1.067226529121399,
-0.21818485856056213,
0.9594791531562805,
0.41483086347579956,
0.5420440435409546,
-0.6030411720275879,
0.03835370019078255,
-0.4364396035671234,
-1.076962947845459,
-0.35716333985328674,
0.4539391100406647,
-0.022899555042386055,
-0.3429867625236511,
0.872571587562561,
0.5887166261672974,
-0.33473607897758484,
-0.11728022992610931,
0.048487238585948944,
-0.029941488057374954,
-0.12433847039937973,
0.5145376324653625,
0.7648399472236633,
-0.9344304800033569,
-0.10680416971445084,
-0.21577754616737366,
-0.6382725834846497,
-0.5047279000282288,
-0.9632009267807007,
-0.12959396839141846,
-0.16037796437740326,
0.035343267023563385,
-0.5662806630134583,
0.00255737011320889,
1.208324909210205,
0.5684957504272461,
-1.1113994121551514,
-0.5303789377212524,
0.3371853232383728,
0.3920421898365021,
-0.1874791383743286,
-0.24202413856983185,
0.2984568774700165,
0.15382249653339386,
-0.5908876657485962,
0.6875665783882141,
0.8089625239372253,
0.208888977766037,
0.19554761052131653,
0.15893013775348663,
-0.8229473829269409,
-0.14913435280323029,
0.17440445721149445,
0.9450570344924927,
-0.939853310585022,
-0.7114843130111694,
-0.03168516233563423,
-0.27094873785972595,
-0.05765746906399727,
0.17102102935314178,
-0.4046344757080078,
0.5180677175521851,
0.34591493010520935,
0.49933457374572754,
0.0561608150601387,
-0.054746925830841064,
0.5409556031227112,
-0.9069057703018188,
0.09425963461399078,
0.4134361147880554,
0.4154115319252014,
-0.4000864028930664,
-0.5910194516181946,
0.6713420748710632,
1.0073972940444946,
-0.6594868898391724,
-0.8743268847465515,
-0.19846712052822113,
-1.0016002655029297,
0.04189709946513176,
0.6762762069702148,
0.5009527802467346,
-0.4806513786315918,
-0.4174500107765198,
-0.5617399215698242,
-0.1254672110080719,
-0.1369970738887787,
0.7621601819992065,
1.179680585861206,
-0.7432094812393188,
0.07975747436285019,
-1.038639783859253,
0.6594986915588379,
-0.2419457733631134,
-0.3457581698894501,
-0.48644304275512695,
0.3832802176475525,
0.35236993432044983,
0.440481036901474,
0.614812433719635,
0.1408471167087555,
0.8338426351547241,
0.3126053214073181,
-0.1702686995267868,
0.2698982357978821,
-0.4559200704097748,
-0.028932858258485794,
-0.057962555438280106,
0.31015971302986145,
-1.0262157917022705
] |
FFusion/400GB-LoraXL | FFusion | "2023-09-17T06:30:59Z" | 11,227 | 35 | diffusers | [
"diffusers",
"stable-diffusion-xl",
"stable-diffusion",
"text-to-image",
"lora",
"loraxl",
"ffai",
"en",
"base_model:FFusion/FFXL400",
"license:openrail++",
"has_space",
"region:us"
] | text-to-image | "2023-09-07T10:07:02Z" | ---
license: openrail++
base_model: FFusion/FFXL400
instance_prompt: Morphxl_V10
widget:
- text: >-
cyber bunny solo, looking at viewer, long sleeves, 1girl, holding, animal ears, jewelry, closed mouth, standing, latex jacket, upper body, weapon, female focus, outdoors, open clothes, solo focus, belt, necklace, holding weapon, rabbit ears, blurry . graphic illustration, comic art, graphic novel art, vibrant, highly detailed
example_title: Cyber Bunny FFusion
- text: >-
a dog in colorful exploding clouds, dreamlike surrealism colorful smoke and fire coming
out of it, explosion of data fragments, exploding background,realistic explosion, 3d digital art
example_title: Dogo FFusion
- text: >-
a sprinkled donut sitting on top of a table, colorful hyperrealism, everything is made of candy, hyperrealistic digital
painting, covered in sprinkles and crumbs, vibrant colors hyper realism,colorful smoke explosion background
example_title: Donut FFusion
- text: >-
a cup of coffee with a tree in it, surreal art, awesome great composition,
surrealism, ice cubes in tree, colorful clouds, perfectly realistic yet surreal
example_title: CoFFee FFusion
- text: >-
brightly colored headphones with a splash of colorful paint splash, vibing
to music, stunning artwork, music is life, beautiful digital artwork, concept art, cinematic, dramatic, intricate details, dark
lighting
example_title: Headset FFusion
- text: >-
high-quality game character digital design, Unreal Engine, Water color painting, Mecha- Monstrous high quality game fantasy rpg character design, dark rainbow Fur Scarf, inside of a Superficial Outhouse, at Twilight, Overdetailed art
example_title: Digital FFusion
Negative prompt: photograph, deformed, glitch, noisy, realistic, stock photo, watermark,signature
tags:
- stable-diffusion-xl
- diffusers
- stable-diffusion
- text-to-image
- lora
- loraxl
- ffai
language:
- en
thumbnail: >-
https://huggingface.co/FFusion/400GB-LoraXL/resolve/main/images/image0thumb.jpg
library_name: diffusers
---
[![400GB FFusion Lora XL 1](https://huggingface.co/FFusion/400GB-LoraXL/resolve/main/images/image0.jpg)](https://huggingface.co/FFusion/400GB-LoraXL/tree/main)
# 🌌 FFusion's Universe of LoRA Models for Hugging Face 🌠
Welcome to the FFusion LoRA extracted models repository on Hugging Face! Here, we present a collection of models extracted using the Low-Rank Adaptation (LoRA) technique to provide a rich dataset for research and further exploration.
# LoRA 66-98 Specifications
| Model Name | UNet Magnitude | UNet Strength | UNet Conv Magnitude | UNet Conv Strength | Text Encoder 1 Magnitude | Text Encoder 1 Strength | Text Encoder 2 Magnitude | Text Encoder 2 Strength |
|------------|----------------|---------------|---------------------|--------------------|--------------------------|------------------------|--------------------------|------------------------|
| sdxlYamersRealism_version2.FFai.lora64.safetensors | 4.154722048359913 | 0.010771295011342323 | 4.015763928139778 | 0.004715556773610134 | 3.958945306529754 | 0.013064685133728026 | 3.9970537933453656 | 0.01012922219208529 |
| FF.66.hassakuSfwNsfwAlphav_alphaV02.lora.safetensors | 4.6113617624162275 | 0.011981260592954776 | 6.686307668617343 | 0.006950538604713883 | 3.807746602732888 | 0.012745779610859834 | 3.729743715233202 | 0.009551327927254742 |
| FF.67.galaxytimemachinesGTM_xlplusV10.lora.safetensors | 5.2081857497500135 | 0.012861152998866098 | 6.477215331015863 | 0.005731545812523109 | 3.865321475649114 | 0.012968309181164591 | 3.791585137796209 | 0.009739622211064131 |
| FF.68.furtasticxl_BetaEPOCHS3.lora.safetensors | 4.82028448554389 | 0.012252009690673311 | 6.774379998733585 | 0.007177153983462227 | 4.20241893596518 | 0.01346020465857439 | 4.260738640446866 | 0.010471828656006711 |
| FF.69.formulaxlXLComfyui_v20Pruned.lora.safetensors | 4.194797467480407 | 0.010794051441520451 | 5.658129971781666 | 0.004699672960547711 | 3.9974802957054556 | 0.013097433444426298 | 4.090353610501367 | 0.010226978548569817 |
| FF.70.FinalAnimeCG_mk2a2.lora.safetensors | 5.832734982003316 | 0.013620979564593433 | 6.588312134998715 | 0.006310420276329548 | 3.856879807170544 | 0.012947154068967848 | 3.7769155501438316 | 0.009654614341923677 |
| FF.71.explicitFreedomNSFW_beta.lora.safetensors | 4.501298830893416 | 0.01109003259855744 | 6.204555848757276 | 0.005750268214362425 | 3.85944453350698 | 0.012919606802022875 | 3.9375385889629477 | 0.010088601556714144 |
| FF.72.endjourneyXL_v11.lora.safetensors | 4.202640614034873 | 0.010788684869548844 | 5.80301284455635 | 0.005029451652697187 | 3.835258093635928 | 0.012878727225694529 | 3.7550355683040344 | 0.009627099200498888 |
| FF.73.dreamshaperXL10_alpha2Xl10.lora.safetensors | 3.859263254032285 | 0.010177448403109668 | 0.0 | 0.0 | Not Found | Not Found | Not Found | Not Found |
| FF.74.copaxTimelessxlSDXL1_v5.lora.safetensors | 4.006565464438231 | 0.010389718183037322 | 5.738000089710234 | 0.0048703539869873365 | Not Found | Not Found | Not Found | Not Found |
| FF.75.cinemaxAlphaSDXLCinema_alpha1.lora.safetensors | 4.466204403397648 | 0.011222293042751443 | 5.684097723570108 | 0.004689726735887235 | 3.9233677697347935 | 0.013047985608868315 | 3.967672834668905 | 0.010161683571519127 |
| FF.76.brixlAMustInYour_v20Banu.lora.safetensors | 5.201652157233597 | 0.012340885235722432 | 6.246570986909302 | 0.005628776318139394 | 3.7901131354041215 | 0.012251635754363702 | 3.9011343266469787 | 0.009675557128661683 |
| FF.77.animeChangefulXL_v10ReleasedCandidate.lora.safetensors | 4.8712592588918255 | 0.011882757534620026 | 6.307265147238472 | 0.005707653219309981 | 3.806143895360976 | 0.012739821013629662 | 3.7378093050117975 | 0.009586058803350757 |
| FF.78.xlYamersCartoonArcadia_v1.lora.safetensors | 4.353353198959002 | 0.010753757289463425 | 5.9177157902332835 | 0.0051653985959496315 | 3.8127760281067853 | 0.012772330040804636 | 3.764581932297466 | 0.009682294095990565 |
| FF.79.venusxl_v11.lora.safetensors | 4.0781163529498725 | 0.01056802143213069 | 5.725042873950945 | 0.004766753768581111 | 3.8819661703272876 | 0.01297504551077796 | 3.8989897630581978 | 0.00999233670699671 |
| FF.80.unsafexl_v20.lora.safetensors | 4.433128703574937 | 0.01126235056722307 | 5.6776551531768105 | 0.004711627911345002 | 3.9928442365475028 | 0.013100078304973888 | 3.945462724939238 | 0.010062376848996262 |
| FF.81.sdxlYamersRealism_version2.lora.safetensors | 4.229406260655774 | 0.01076863108078825 | 5.653783535189452 | 0.004649401315378378 | 3.958945306529754 | 0.013064685133728026 | 3.9970537933453656 | 0.01012922219208529 |
| FF.82.sdxlUnstableDiffusers_v6StabilityEater.lora.safetensors | 4.387654105095919 | 0.010840575656477952 | 5.859291158408854 | 0.004964447160293478 | 3.8646596391683863 | 0.012911755181541458 | 3.840901404987889 | 0.009815472265736007 |
| FF.83.sdxlNuclearGeneralPurposeSemi_v10.lora.safetensors | 4.329690552630377 | 0.01081156604611163 | 5.754435529197304 | 0.004791491470688117 | 3.908995280978119 | 0.012984716052686607 | 3.8730233638208733 | 0.009816295838443996 |
| FF.84.sdvn6Realxl_detailface.lora.safetensors | 3.9204966894076203 | 0.010152018695796424 | 5.609827023476847 | 0.004578104347668462 | Not Found | Not Found | Not Found | Not Found |
| FF.85.samaritan3dCartoon_v40SDXL.lora.safetensors | 4.1930053871423265 | 0.010823639858269587 | 6.242507300692357 | 0.006012499761466946 | 3.807746602732888 | 0.012745779610859834 | 3.729743715233202 | 0.009551327927254742 |
| FF.86.realvisxlV10_v10VAE.lora.safetensors | 4.035726046516959 | 0.01043685083171328 | 5.780022388037139 | 0.0049551385295671935 | 3.862534960968426 | 0.01291815120168007 | 3.8792245692334855 | 0.010027987691388776 |
| FF.87.RealitiesEdgeXLANIME_20.lora.safetensors | 4.322741449452443 | 0.011017050541178184 | 5.957632120776351 | 0.005321540223768453 | 3.9027693617053862 | 0.013066310297084008 | 3.941240896860996 | 0.010187814902599733 |
| FF.88.RealitiesEdgeXL_30.lora.safetensors | 4.527436449035657 | 0.011438576163998578 | 6.042128532601058 | 0.0053643976503331536 | 3.96435868300754 | 0.013183793628117942 | 4.03501811478197 | 0.01033219734045475 |
| FF.89.realisticStockPhoto_v10.lora.safetensors | 4.178010046544553 | 0.01060077238986419 | 5.832883513120958 | 0.005094057992644391 | 3.838598740372775 | 0.012775584451815206 | 3.8534473782218375 | 0.009703626948148766 |
| FF.90.realisticFreedomSFW_alpha.lora.safetensors | 4.570225351823505 | 0.011338880456799554 | 6.107921122775599 | 0.005313926393612039 | 3.9145800451769137 | 0.012987243885510853 | 3.9456476675702756 | 0.010086475486504298 |
| FF.91.realcartoonXL_v2.lora.safetensors | 4.264556294830096 | 0.010837268212782766 | 5.775273580445967 | 0.004823115907624419 | 3.868685000881062 | 0.012967535154814412 | 3.8942008722126786 | 0.009956078788817995 |
| FF.92.pyrosSDModelsBlowjob_v0122022steps.lora.safetensors | 4.29299465986103 | 0.011065152509191439 | 6.148179389228268 | 0.005785365500822891 | Not Found | Not Found | Not Found | Not Found |
| FF.93.pyrosNSFWSDXL_v013e6.lora.safetensors | 4.462978487594761 | 0.011458003048327881 | 6.365678967519903 | 0.006252718402740558 | Not Found | Not Found | Not Found | Not Found |
| FF.94.nightvisionXLPhotorealisticPortrait_v0743ReleaseBakedvae.lora.safetensors | 4.30821859959078 | 0.01092674471500856 | 5.760595716272804 | 0.0047913433799900915 | 4.082814836813033 | 0.013277437149876429 | 4.269554751742187 | 0.0104525629385582 |
| FF.95.newone_v10.lora.safetensors | 3.9863974933790827 | 0.010221166935769414 | 5.591587011383119 | 0.004544408523927106 | 3.826913276992613 | 0.012515731668562081 | 3.7789877235680827 | 0.008847150427050579 |
| FF.96.MOHAWK_v10BETA.lora.safetensors | 4.13427196290026 | 0.010604709463386349 | 5.906059771550209 | 0.005266774851315859 | 3.8816106810049615 | 0.013007851116722372 | 3.795246249757246 | 0.009741588405668723 |
| FF.97.juggernautXL_version4.lora.safetensors | 4.351658373013424 | 0.01097575598820061 | 5.7254163997882515 | 0.0048427100518286656 | 3.98009165065858 | 0.013189073899460014 | 4.452439746998783 | 0.010877184808674183 |
| FF.98.sdxlYamersRealism_version2.lora.safetensors | 4.229406260655774 | 0.01076863108078825 | 5.653783535189452 | 0.004649401315378378 | 3.958945306529754 | 0.013064685133728026 | 3.9970537933453656 | 0.01012922219208529 |
[![FF-lora-xl1](https://huggingface.co/FFusion/400GB-LoraXL/resolve/main/Charts60-100/FF-lora-xl1.svg)](https://huggingface.co/FFusion/400GB-LoraXL/tree/main)
[![FF-lora-xl2](https://huggingface.co/FFusion/400GB-LoraXL/resolve/main/Charts60-100/FF-lora-xl2.svg)](https://huggingface.co/FFusion/400GB-LoraXL/tree/main)
[![FF-lora-xl3](https://huggingface.co/FFusion/400GB-LoraXL/resolve/main/Charts60-100/FF-lora-xl3.svg)](https://huggingface.co/FFusion/400GB-LoraXL/tree/main)
[![FF-loras-68-96-1](https://huggingface.co/FFusion/400GB-LoraXL/resolve/main/Charts60-100/FF-loras-68-96-1.png)](https://huggingface.co/FFusion/400GB-LoraXL/tree/main)
[![FF-loras-68-96-2](https://huggingface.co/FFusion/400GB-LoraXL/resolve/main/Charts60-100/FF-loras-68-96-2.png)](https://huggingface.co/FFusion/400GB-LoraXL/tree/main)
[![FF-loras-68-96-3](https://huggingface.co/FFusion/400GB-LoraXL/resolve/main/Charts60-100/FF-loras-68-96-3.png)](https://huggingface.co/FFusion/400GB-LoraXL/tree/main)
[![FF-loras-68-96-4](https://huggingface.co/FFusion/400GB-LoraXL/resolve/main/Charts60-100/FF-loras-68-96-4.png)](https://huggingface.co/FFusion/400GB-LoraXL/tree/main)
[![FF-loras-68-96-5](https://huggingface.co/FFusion/400GB-LoraXL/resolve/main/Charts60-100/FF-loras-68-96-5.png)](https://huggingface.co/FFusion/400GB-LoraXL/tree/main)
[![FF-loras-68-96-6](https://huggingface.co/FFusion/400GB-LoraXL/resolve/main/Charts60-100/FF-loras-68-96-6.png)](https://huggingface.co/FFusion/400GB-LoraXL/tree/main)
[![FF-loras-68-96-7](https://huggingface.co/FFusion/400GB-LoraXL/resolve/main/Charts60-100/FF-loras-68-96-7.png)](https://huggingface.co/FFusion/400GB-LoraXL/tree/main)
[![FF-loras-68-96-8](https://huggingface.co/FFusion/400GB-LoraXL/resolve/main/Charts60-100/FF-loras-68-96-8.png)](https://huggingface.co/FFusion/400GB-LoraXL/tree/main)
## 📦 Base Models
The following models served as the foundation for our extractions:
- [stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
- [stabilityai/stable-diffusion-xl-base-0.9](https://huggingface.co/stabilityai/stable-diffusion-xl-base-0.9)
- [FFusion/FFusionXL-BASE](https://huggingface.co/FFusion/FFusionXL-BASE)
## 🌟 Recommended Models for Inference
For those on the quest for ideal models to drive their inference tasks, we especially recommend:
- [FFusionXL-BASE](https://huggingface.co/FFusion/FFusionXL-BASE) - Our signature base model, meticulously trained with licensed images.
- [FFXL400 Combined LoRA Model 🚀](https://huggingface.co/FFusion/FFXL400) - A galactic blend of power and precision in the world of LoRA models.
Rest assured, our LoRAs, even at weight 1.0, maintain compatibility with most of the current SDXL models.
## 🔍 Extraction Details
- **Variants:** Each base model was extracted into 4-5 distinct variants.
- **Extraction Depth:** The models uploaded here contain approximately 70% of extracted data. These extractions yield a dataset size of around 400 GB.
- **Precision:** We experimented with both `float32` and `float64` for optimal extraction results.
- **Differences Measurement:** Singular Value Decomposition (SVD) was utilized to measure differences between the original and the tuned models. A threshold of 1e-3 was commonly used, although in some cases, 1e-5 and 1e-2 were tested.
- **Demonstration Parameters:** For our demonstration, we employed `"conv_dim": 256` and `"conv_alpha": 256`.
[![400GB FFusion Lora XL 8](https://huggingface.co/FFusion/400GB-LoraXL/resolve/main/images/image8sm.jpg)](https://huggingface.co/FFusion/400GB-LoraXL/resolve/main/images/image8.jpg)
## ⚙️ Technical Notes
- Most SDXL models in this collection are not traditionally "trained." Instead, they are merged from previous SDXL 0.9 versions or created using other methods with the help of Comfy UI.
- An important note for users: all models saved with Comfy add an extra key `text_model.encoder.text_model.embeddings.position_ids`. We've made necessary adjustments to ensure compatibility with the current scripts from Kohoya.
## 📈 Use Cases
These extracted models are intended for research and testing. They can be particularly useful for:
- Investigating the potential of merging multiple LoRAs.
- Weighting experiments with 1-5 LoRAs simultaneously.
- Exploring the differences and similarities between LoRAs extracted from different base models.
[![400GB FFusion Lora XL 2](https://huggingface.co/FFusion/400GB-LoraXL/resolve/main/images/image2sm.jpg)](https://huggingface.co/FFusion/400GB-LoraXL/resolve/main/images/image2.jpg)
# FFusion LoRA Extracted Models - How to Use Guide 🧠
Welcome to the technical guide for using the FFusion LoRA extracted models. This document will walk you through the steps required to fuse LoRA parameters, load checkpoints, and perform inference.
## Fusing LoRA Parameters 🔗
To merge the LoRA parameters with the original parameters of the underlying model(s), leading to a potential speedup in inference latency:
```python
pipe.fuse_lora()
```
### Unfusing LoRA Parameters ⛓️
To revert the effects of `fuse_lora()`:
```python
pipe.unfuse_lora()
```
### Working with Different LoRA Scales 🎚️
To control the influence of the LoRA parameters on the outputs:
```python
pipe.fuse_lora(lora_scale=0.5)
```
## Working with FFusion Models 🔍
Here's how to load and utilize our FFusion models:
```python
from diffusers import DiffusionPipeline
import torch
pipeline_id = "FFusion/FFusionXL-BASE"
pipe = DiffusionPipeline.from_pretrained(pipeline_id, torch_dtype=torch.float16)
pipe.enable_model_cpu_offload()
lora_model_id = "FFusion/400GB-LoraXL"
lora_filename = "FFai.0038.Realitycheckxl_Alpha11.lora.safetensors"
pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)
prompt = "papercut sonic"
image = pipe(prompt=prompt, num_inference_steps=20, generator=torch.manual_seed(0)).images[0]
image
```
## Running Inference 🖼️
After loading the desired model, you can perform inference as follows:
```python
generator = torch.manual_seed(0)
images_fusion = pipe(
- "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=25
).images
```
## ⚠️ License & Usage Disclaimers
**Please review the full [license agreement](https://huggingface.co/FFusion/FFXL400/blob/main/LICENSE.md) before accessing or using the models.**
🔴 The models and weights available in this repository are **strictly for research and testing purposes**, with exceptions noted below. They are **not** generally intended for commercial use and are dependent on each individual LORA.
🔵 **Exception for Commercial Use:** The [FFusionXL-BASE](https://huggingface.co/FFusion/FFusionXL-BASE), [FFusion-BaSE](https://huggingface.co/FFusion/FFusion-BaSE), [di.FFUSION.ai-v2.1-768-BaSE-alpha](https://huggingface.co/FFusion/di.FFUSION.ai-v2.1-768-BaSE-alpha), and [di.ffusion.ai.Beta512](https://huggingface.co/FFusion/di.ffusion.ai.Beta512) models are trained by FFusion AI using images for which we hold licenses. Users are advised to primarily use these models for a safer experience. These particular models are allowed for commercial use.
🔴 **Disclaimer:** FFusion AI, in conjunction with Source Code Bulgaria Ltd and BlackswanTechnologies, **does not endorse or guarantee the content produced by the weights in each LORA**. There's potential for generating NSFW or offensive content. Collectively, we expressly disclaim responsibility for the outcomes and content produced by these weights.
🔴 **Acknowledgement:** The [FFusionXL-BASE](https://huggingface.co/FFusion/FFusionXL-BASE) model model is a uniquely developed version by FFusion AI. Rights to this and associated modifications belong to FFusion AI and Source Code Bulgaria Ltd. Ensure adherence to both this license and any conditions set by Stability AI Ltd for referenced models.
## Library of Available LoRA Models 📚
You can choose any of the models from our repository on Hugging Face or the upcoming repository on CivitAI. Here's a list of available models with `lora_model_id = "FFusion/400GB-LoraXL"`:
```
lora_filename =
- FFai.0001.4Guofeng4xl_V1125d.lora_Dim64.safetensors
- FFai.0002.4Guofeng4xl_V1125d.lora_Dim8.safetensors
- FFai.0003.4Guofeng4xl_V1125d.loraa.safetensors
- FFai.0004.Ambiencesdxl_A1.lora.safetensors
- FFai.0005.Ambiencesdxl_A1.lora_8.safetensors
- FFai.0006.Angrasdxl10_V22.lora.safetensors
- FFai.0007.Animaginexl_V10.lora.safetensors
- FFai.0008.Animeartdiffusionxl_Alpha3.lora.safetensors
- FFai.0009.Astreapixiexlanime_V16.lora.safetensors
- FFai.0010.Bluepencilxl_V010.lora.safetensors
- FFai.0011.Bluepencilxl_V021.lora.safetensors
- FFai.0012.Breakdomainxl_V03d.lora.safetensors
- FFai.0013.Canvasxl_Bfloat16v002.lora.safetensors
- FFai.0014.Cherrypickerxl_V20.lora.safetensors
- FFai.0015.Copaxtimelessxlsdxl1_V44.lora.safetensors
- FFai.0016.Counterfeitxl-Ffusionai-Alpha-Vae.lora.safetensors
- FFai.0017.Counterfeitxl_V10.lora.safetensors
- FFai.0018.Crystalclearxl_Ccxl.lora.safetensors
- FFai.0019.Deepbluexl_V006.lora.safetensors
- FFai.0020.Dream-Ffusion-Shaper.lora.safetensors
- FFai.0021.Dreamshaperxl10_Alpha2xl10.lora.safetensors
- FFai.0022.Duchaitenaiartsdxl_V10.lora.safetensors
- FFai.0023.Dynavisionxlallinonestylized_Beta0371bakedvae.lora.safetensors
- FFai.0024.Dynavisionxlallinonestylized_Beta0411bakedvae.lora.safetensors
- FFai.0025.Fantasticcharacters_V55.lora.safetensors
- FFai.0026.Fenrisxl_V55.lora.safetensors
- FFai.0027.Fudukimix_V10.lora.safetensors
- FFai.0028.Infinianimexl_V16.lora.safetensors
- FFai.0029.Juggernautxl_Version1.lora_1.safetensors
- FFai.0030.Lahmysterioussdxl_V330.lora.safetensors
- FFai.0031.Mbbxlultimate_V10rc.lora.safetensors
- FFai.0032.Miamodelsfwnsfwsdxl_V30.lora.safetensors
- FFai.0033.Morphxl_V10.lora.safetensors
- FFai.0034.Nightvisionxlphotorealisticportrait_Beta0681bakedvae.lora_1.safetensors
- FFai.0035.Osorubeshialphaxl_Z.lora.safetensors
- FFai.0036.Physiogenxl_V04.lora.safetensors
- FFai.0037.Protovisionxlhighfidelity3d_Beta0520bakedvae.lora.safetensors
- FFai.0038.Realitycheckxl_Alpha11.lora.safetensors
- FFai.0039.Realmixxl_V10.lora.safetensors
- FFai.0040.Reproductionsdxl_V31.lora.safetensors
- FFai.0041.Rundiffusionxl_Beta.lora.safetensors
- FFai.0042.Samaritan3dcartoon_V40sdxl.lora.safetensors
- FFai.0043.Sdvn6realxl_Detailface.lora.safetensors
- FFai.0044.Sdvn7realartxl_Beta2.lora.safetensors
- FFai.0045.Sdxl10arienmixxlasian_V10.lora.safetensors
- FFai.0046.Sdxlbasensfwfaces_Sdxlnsfwfaces03.lora.safetensors
- FFai.0047.Sdxlfaetastic_V10.lora.safetensors
- FFai.0048.Sdxlfixedvaefp16remove_Basefxiedvaev2fp16.lora.safetensors
- FFai.0049.Sdxlnijiv4_Sdxlnijiv4.lora.safetensors
- FFai.0050.Sdxlronghua_V11.lora.safetensors
- FFai.0051.Sdxlunstablediffusers_V5unchainedslayer.lora.safetensors
- FFai.0052.Sdxlyamersanimeultra_Yamersanimev2.lora.safetensors
- FFai.0053.Shikianimexl_V10.lora.safetensors
- FFai.0054.Spectrumblendx_V10.lora.safetensors
- FFai.0055.Stablediffusionxl_V30.lora.safetensors
- FFai.0056.Talmendoxlsdxl_V11beta.lora.safetensors
- FFai.0057.Wizard_V10.lora.safetensors
- FFai.0058.Wyvernmix15xl_Xlv11.lora.safetensors
- FFai.0059.Xl13asmodeussfwnsfw_V17bakedvae.lora.safetensors
- FFai.0060.Xl3experimentalsd10xl_V10.lora.safetensors
- FFai.0061.Xl6hephaistossd10xlsfw_V21bakedvaefp16fix.lora.safetensors
- FFai.0062.Xlperfectdesign_V2ultimateartwork.lora.safetensors
- FFai.0063.Xlyamersrealistic_V3.lora.safetensors
- FFai.0064.Xxmix9realisticsdxl_Testv20.lora.safetensors
- FFai.0065.Zavychromaxl_B2.lora.safetensors
- FF.66.hassakuSfwNsfwAlphav_alphaV02.lora.safetensors
- FF.67.galaxytimemachinesGTM_xlplusV10.lora.safetensors
- FF.68.furtasticxl_BetaEPOCHS3.lora.safetensors
- FF.69.formulaxlXLComfyui_v20Pruned.lora.safetensors
- FF.70.FinalAnimeCG_mk2a2.lora.safetensors
- FF.71.explicitFreedomNSFW_beta.lora.safetensors
- FF.72.endjourneyXL_v11.lora.safetensors
- FF.73.dreamshaperXL10_alpha2Xl10.lora.safetensors
- FF.74.copaxTimelessxlSDXL1_v5.lora.safetensors
- FF.75.cinemaxAlphaSDXLCinema_alpha1.lora.safetensors
- FF.76.brixlAMustInYour_v20Banu.lora.safetensors
- FF.77.animeChangefulXL_v10ReleasedCandidate.lora.safetensors
- FF.78.xlYamersCartoonArcadia_v1.lora.safetensors
- FF.79.venusxl_v11.lora.safetensors
- FF.80.unsafexl_v20.lora.safetensors
- FF.81.sdxlYamersRealism_version2.lora.safetensors
- FF.82.sdxlUnstableDiffusers_v6StabilityEater.lora.safetensors
- FF.83.sdxlNuclearGeneralPurposeSemi_v10.lora.safetensors
- FF.84.sdvn6Realxl_detailface.lora.safetensors
- FF.85.samaritan3dCartoon_v40SDXL.lora.safetensors
- FF.86.realvisxlV10_v10VAE.lora.safetensors
- FF.87.RealitiesEdgeXLANIME_20.lora.safetensors
- FF.88.RealitiesEdgeXL_30.lora.safetensors
- FF.89.realisticStockPhoto_v10.lora.safetensors
- FF.90.realisticFreedomSFW_alpha.lora.safetensors
- FF.91.realcartoonXL_v2.lora.safetensors
- FF.92.pyrosSDModelsBlowjob_v0122022steps.lora.safetensors
- FF.93.pyrosNSFWSDXL_v013e6.lora.safetensors
- FF.94.nightvisionXLPhotorealisticPortrait_v0743ReleaseBakedvae.lora.safetensors
- FF.95.newone_v10.lora.safetensors
- FF.96.MOHAWK_v10BETA.lora.safetensors
- FF.97.juggernautXL_version4.lora.safetensors
- FF.98.sdxlYamersRealism_version2.lora.safetensors
```
### 📊 Text Encoder Difference Overview
Based on the extraction process, we observed the following differences in the text encoder across various models:
[![FFusionAI tests](https://huggingface.co/FFusion/400GB-LoraXL/resolve/main/images/infochartw.jpg)](https://huggingface.co/FFusion/400GB-LoraXL/tree/main)
- **bluePencilXL_v021** ✅ Text encoder available. Difference by 0.00140380859375
- **sdvn7Realartxl_beta2** ✅ Text encoder available. Difference by 0.00362396240234375
- **4Guofeng4XL_v1125D** 🚫 Text encoder unavailable. Same as SDXL 1.0 Base
- **ambienceSDXL_a1** ✅ Text encoder available. Difference by 0.003082275390625
- **angraSDXL10_v22** ✅ Text encoder available. Difference by 0.001953125
- **animagineXL_v10** 🚫 Text encoder unavailable. Same as SDXL 1.0 Base
- **animeArtDiffusionXL_alpha3** 🚫 Text encoder unavailable. Same as SDXL 1.0 Base
- **astreapixieXLAnime_v16** ✅ Text encoder available. Difference by 0.0029296875
- **bluePencilXL_v010** ✅ Text encoder available. Difference by 0.00177001953125
- **breakdomainxl_v03d** ✅ Text encoder available. Difference by 0.0013427734375
- **canvasxl_Bfloat16V002** ✅ Text encoder available. Difference by 0.00390625
- **cherryPickerXL_v20** ✅ Text encoder available. Difference by 0.0016450881958007812
- **copaxTimelessxlSDXL1_v44** 🚫 Text encoder unavailable. Same as SDXL 1.0 Base
- **counterfeitxl_v10** ✅ Text encoder available. Difference by 0.001708984375
- **crystalClearXL_ccxl** ✅ Text encoder available. Difference by 0.0012865066528320312
- **deepblueXL_v006** ✅ Text encoder available. Difference by 0.00200653076171875
- **dreamshaperXL10_alpha2Xl10** 🚫 Text encoder unavailable. Same as SDXL 1.0 Base
- **duchaitenAiartSDXL_v10** 🚫 Text encoder unavailable. Same as SDXL 1.0 Base
- **dynavisionXLAllInOneStylized_beta0371Bakedvae** ✅ Text encoder available. Difference by 0.00321197509765625
- **dynavisionXLAllInOneStylized_beta0411Bakedvae** ✅ Text encoder available. Difference by 0.0037841796875
- **envyoverdrivexl_v11** 🚫 Text encoder unavailable. Same as SDXL 1.0 Base
- **envypoodaxl01_v10** ✅ Text encoder available. Difference by 0.0011358261108398438
- **fantasticCharacters_v55** ✅ Text encoder available. Difference by 0.00390625
- **fenrisxl_V55** ✅ Text encoder available. Difference by 0.0086822509765625
- **fudukiMix_v10** ✅ Text encoder available. Difference by 0.0011138916015625
- **infinianimexl_v16** ✅ Text encoder available. Difference by 0.0048828125
- **juggernautXL_version1** ✅ Text encoder available. Difference by 0.001953125
- **LahMysteriousSDXL_v330** 🚫 Text encoder unavailable. Same as SDXL 1.0 Base
- **mbbxlUltimate_v10RC** 🚫 Text encoder unavailable. Same as SDXL 1.0 Base
- **miamodelSFWNSFWSDXL_v30** ✅ Text encoder available. Difference by 0.0047607421875
- **morphxl_v10** ✅ Text encoder available. Difference by 0.001861572265625
- **nightvisionXLPhotorealisticPortrait_beta0681Bakedvae** ✅ Text encoder available. Difference by 0.013885498046875
- **osorubeshiAlphaXL_z** ✅ Text encoder available. Difference by 0.005615234375
- **physiogenXL_v04** ✅ Text encoder available. Difference by 0.00390625
- **protovisionXLHighFidelity3D_beta0520Bakedvae** ✅ Text encoder available. Difference by 0.007568359375
- **realitycheckXL_alpha11** ✅ Text encoder available. Difference by 0.0015010833740234375
- **realmixXL_v10** ✅ Text encoder available. Difference by 0.0023899078369140625
- **reproductionSDXL_v31** ✅ Text encoder available. Difference by 0.00146484375
- **rundiffusionXL_beta** ✅ Text encoder available. Difference by 0.00196075439453125
- **samaritan3dCartoon_v40SDXL** ✅ Text encoder available. Difference by 0.0009765625
- **sdvn6Realxl_detailface** 🚫 Text encoder unavailable. Same as SDXL 1.0 Base
- **sdxl10ArienmixxlAsian_v10** ✅ Text encoder available. Difference by 0.00048828125
- **sdxlbaseNsfwFaces_sdxlNsfwFaces03** ✅ Text encoder available. Difference by 0.008056640625
- **sdxlFaetastic_v10** ✅ Text encoder available. Difference by 0.0029296875
- **sdxlFixedvaeFp16Remove_baseFxiedVaeV2Fp16** 🚫 Text encoder unavailable. Same as SDXL 1.0 Base
- **sdxlNijiV4_sdxlNijiV4** ✅ Text encoder available. Difference by 0.0009765625
- **SDXLRonghua_v11** ✅ Text encoder available. Difference by 0.0009765625
- **sdxlUnstableDiffusers_v5UnchainedSlayer** ✅ Text encoder available. Difference by 0.001251220703125
- **sdxlYamersAnimeUltra_yamersAnimeV2** ✅ Text encoder available. Difference by 0.000732421875
- **sdXL_v10VAEFix** 🚫 Text encoder unavailable. Same as SDXL 1.0 Base
- **shikianimexl_v10** ✅ Text encoder available. Difference by 0.0009765625
- **spectrumblendx_v10** ✅ Text encoder available. Difference by 0.0013065338134765625
- **stableDiffusionXL_v30** 🚫 Text encoder unavailable. Same as SDXL 1.0 Base
- **talmendoxlSDXL_v11Beta** 🚫 Text encoder unavailable. Same as SDXL 1.0 Base
- **wizard_v10** ✅ Text encoder available. Difference by 0.000244140625
- **sdxlYamersRealism_version2** - ✅ Text encoder available. Difference by 0.0048828125
- **animeChangefulXL_v10ReleasedCandidate** - ✅ Text encoder available. Difference by 0.00390625
- **brixlAMustInYour_v20Banu** - ✅ Text encoder available. Difference by 0.001434326171875
- **cinemaxAlphaSDXLCinema_alpha1** - ✅ Text encoder available. Difference by 0.00311279296875
- **copaxTimelessxlSDXL1_v5** - 🚫 Text encoder unavailable. Same as SDXL 1.0 Base
- **dreamshaperXL10_alpha2Xl10** - 🚫 Text encoder unavailable. Same as SDXL 1.0 Base
- **endjourneyXL_v11** - ✅ Text encoder available. Difference by 0.0029296875
- **explicitFreedomNSFW_beta** - ✅ Text encoder available. Difference by 0.001220703125
- **FinalAnimeCG_mk2a2** - ✅ Text encoder available. Difference by 0.00390625
- **formulaxlXLComfyui_v20Pruned** - ✅ Text encoder available. Difference by 0.002643585205078125
- **furtasticxl_BetaEPOCHS3** - ✅ Text encoder available. Difference by 0.013824462890625
- **galaxytimemachinesGTM_xlplusV10** - ✅ Text encoder available. Difference by 0.0012865066528320312
- **hassakuSfwNsfwAlphav_alphaV02** - ✅ Text encoder available. Difference by 0.00390625
- **juggernautXL_version4** - ✅ Text encoder available. Difference by 0.0019378662109375
- **MOHAWK_v10BETA** - ✅ Text encoder available. Difference by 0.00103759765625
- **newone_v10** - ✅ Text encoder available. Difference by 0.001190185546875
- **nightvisionXLPhotorealisticPortrait_v0743ReleaseBakedvae** - ✅ Text encoder available. Difference by 0.009429931640625
- **pyrosNSFWSDXL_v013e6** - 🚫 Text encoder unavailable. Same as SDXL 1.0 Base
- **pyrosSDModelsBlowjob_v0122022steps** - 🚫 Text encoder unavailable. Same as SDXL 1.0 Base
- **realisticFreedomSFW_alpha** - ✅ Text encoder available. Difference by 0.0011749267578125
- **realisticStockPhoto_v10** - ✅ Text encoder available. Difference by 0.0011444091796875
- **RealitiesEdgeXLANIME_20** - ✅ Text encoder available. Difference by 0.0018310546875
- **RealitiesEdgeXL_30** - ✅ Text encoder available. Difference by 0.004150390625
- **realvisxlV10_v10VAE** - ✅ Text encoder available. Difference by 0.0029296875
- **samaritan3dCartoon_v40SDXL** - ✅ Text encoder available. Difference by 0.00390625
- **sdvn6Realxl_detailface** - 🚫 Text encoder unavailable. Same as SDXL 1.0 Base
- **sdxlNuclearGeneralPurposeSemi_v10** - ✅ Text encoder available. Difference by 0.003021240234375
- **sdxlUnstableDiffusers_v6StabilityEater** - ✅ Text encoder available. Difference by 0.0029296875
- **sdxlYamersRealism_version2** - ✅ Text encoder available. Difference by 0.0048828125
- **unsafexl_v20** - ✅ Text encoder available. Difference by 0.068359375
- **venusxl_v11** - ✅ Text encoder available. Difference by 0.0013863444328308105
- **xlYamersCartoonArcadia_v1** - ✅ Text encoder available. Difference by 0.0029296875
## 🎉 Acknowledgements & Citations
A huge shoutout to the community for their continued support and feedback. Together, we are pushing the boundaries of what's possible with machine learning!
We would also like to acknowledge and give credit to the following projects and authors:
- **ComfyUI**: We've used and modified portions of [ComfyUI](https://github.com/comfyanonymous/ComfyUI) for our work.
- **kohya-ss/sd-scripts and bmaltais**: Our work also incorporates modifications from [kohya-ss/sd-scripts](https://github.com/kohya-ss/sd-scripts).
- **lora-inspector**: We've benefited from the [lora-inspector](https://github.com/rockerBOO/lora-inspector) project.
- **KohakuBlueleaf**: Special mention to KohakuBlueleaf for their invaluable contributions.
[![400GB FFusion Lora XL 1](https://huggingface.co/FFusion/400GB-LoraXL/resolve/main/images/image1sm.jpg)](https://huggingface.co/FFusion/400GB-LoraXL/resolve/main/images/image1.jpg)
[![400GB FFusion Lora XL 3](https://huggingface.co/FFusion/400GB-LoraXL/resolve/main/images/image3sm.jpg)](https://huggingface.co/FFusion/400GB-LoraXL/resolve/main/images/image3.jpg)
[![400GB FFusion Lora XL 4](https://huggingface.co/FFusion/400GB-LoraXL/resolve/main/images/image4sm.jpg)](https://huggingface.co/FFusion/400GB-LoraXL/resolve/main/images/image4.jpg)
[![400GB FFusion Lora XL 5](https://huggingface.co/FFusion/400GB-LoraXL/resolve/main/images/image5sm.jpg)](https://huggingface.co/FFusion/400GB-LoraXL/resolve/main/images/image5.jpg)
[![400GB FFusion Lora XL 6](https://huggingface.co/FFusion/400GB-LoraXL/resolve/main/images/image6sm.jpg)](https://huggingface.co/FFusion/400GB-LoraXL/resolve/main/images/image6.jpg)
[![400GB FFusion Lora XL 7](https://huggingface.co/FFusion/400GB-LoraXL/resolve/main/images/image7sm.jpg)](https://huggingface.co/FFusion/400GB-LoraXL/resolve/main/images/image7.jpg)
[![400GB FFusion Lora XL 9](https://huggingface.co/FFusion/400GB-LoraXL/resolve/main/images/image9.jpg)](https://huggingface.co/FFusion/400GB-LoraXL/tree/main)
### HowMuch ???
![60% Works](https://img.shields.io/badge/60%25%20of%20the%20Time-It%20Works%20Every%20Time-green)
**Have you ever asked yourself, "How much space have I wasted on `*.ckpt` and `*.safetensors` checkpoints?"** 🤔
Say hello to HowMuch: Checking checkpoint wasted space since... well, now!
😄 Enjoy this somewhat unnecessary, yet **"fun-for-the-whole-family"** DiskSpaceAnalyzer tool. 😄
## Overview
`HowMuch` is a Python tool designed to scan your drives (or a specified directory) and report on the total space used by files with specific extensions, mainly `.ckpt` and `.safetensors`.
It outputs:
- The total storage capacity of each scanned drive or directory.
- The space occupied by `.ckpt` and `.safetensors` files.
- The free space available.
- A neat bar chart visualizing the above data.
## Installation
[GitHub](https://github.com/1e-2/HowMuch)
### From PyPI
You can easily install `HowMuch` via pip:
```bash
pip install howmuch
```
### From Source
1. Clone the repository:
```bash
git clone https://github.com/1e-2/HowMuch.git
```
2. Navigate to the cloned directory and install:
```bash
cd HowMuch
pip install .
```
## Usage
Run the tool without any arguments to scan all drives:
```bash
howmuch
```
Or, specify a particular directory or drive to scan:
```bash
howmuch --scan C:
```
### 🌐 **Contact Information**
The **FFusion.ai** project is proudly maintained by **Source Code Bulgaria Ltd** & **Black Swan Technologies**.
📧 Reach us at [di@ffusion.ai](mailto:di@ffusion.ai) for any inquiries or support.
#### 🌌 **Find us on:**
- 🐙 [GitHub](https://github.com/1e-2)
- 😊 [Hugging Face](https://huggingface.co/FFusion/)
- 💡 [Civitai](https://civitai.com/user/idle/models)
🔐 **Security powered by** [Comodo.BG](http://Comodo.BG) & [Preasidium.CX](http://Preasidium.CX)
🚀 Marketing by [Гугъл.com](http://Гугъл.com)
📩 [![Email](https://img.shields.io/badge/Email-enquiries%40ffusion.ai-blue?style=for-the-badge&logo=gmail)](mailto:enquiries@ffusion.ai)
🌍 Sofia Istanbul London
| [
-0.7934744358062744,
-1.0032552480697632,
0.5332090854644775,
0.005126600619405508,
-0.1207529753446579,
-0.03773185610771179,
0.4959191381931305,
-0.801596462726593,
0.9881545305252075,
0.3318612277507782,
-0.44504448771476746,
-0.6360223293304443,
-0.566321074962616,
-0.021937644109129906,
-0.39641451835632324,
0.628106415271759,
0.30716899037361145,
-0.5332186818122864,
0.46665850281715393,
0.08936010301113129,
0.12667904794216156,
-0.012180272489786148,
-0.45284202694892883,
-0.19828535616397858,
0.7477805018424988,
0.12725813686847687,
1.2369270324707031,
1.0111669301986694,
0.5225493907928467,
0.37907516956329346,
-0.2534136176109314,
-0.09504490345716476,
-0.36992308497428894,
-0.5829694271087646,
0.2501484453678131,
-0.5297205448150635,
-0.7988312840461731,
-0.29146331548690796,
0.39215144515037537,
0.656080961227417,
-0.12165705859661102,
0.446079283952713,
0.04622526839375496,
0.9635767936706543,
-0.4999808669090271,
-0.27720555663108826,
-0.16550636291503906,
0.2244451642036438,
-0.03778699412941933,
0.11832549422979355,
0.22770638763904572,
-0.8656554818153381,
-0.03966740891337395,
-0.9532901048660278,
0.097419872879982,
0.17367640137672424,
1.5162572860717773,
0.17718712985515594,
-0.3940230906009674,
0.12043828517198563,
-0.3878667652606964,
0.7050308585166931,
-0.7534722089767456,
0.1608913093805313,
0.5613454580307007,
0.10931853204965591,
-0.423076331615448,
-0.475018173456192,
-0.7706758379936218,
0.3817353844642639,
0.048941995948553085,
0.17283734679222107,
-0.6853353381156921,
-0.7145505547523499,
0.31551364064216614,
0.5471315383911133,
-0.4549822509288788,
-0.07523433864116669,
-0.4104713201522827,
0.027469836175441742,
0.7307032942771912,
0.10466719418764114,
0.5520898699760437,
-0.6022337675094604,
-0.9541060328483582,
-0.27281686663627625,
-0.6412025094032288,
0.5679996013641357,
0.3357270359992981,
0.17614342272281647,
-0.7409394979476929,
0.5784537196159363,
-0.10226333886384964,
0.5647323131561279,
0.1901354193687439,
-0.3636959195137024,
0.679881751537323,
-0.4338208734989166,
-0.7254324555397034,
-0.026263028383255005,
1.151865005493164,
0.8909332752227783,
-0.13866031169891357,
0.2514491379261017,
0.14011651277542114,
0.10652664303779602,
0.017616093158721924,
-1.0378097295761108,
-0.04730885103344917,
0.6724404096603394,
-0.420773446559906,
-0.48546114563941956,
0.13035424053668976,
-1.221916913986206,
-0.30120041966438293,
0.1795075535774231,
0.28271690011024475,
-0.31022319197654724,
-0.4528769254684448,
0.12729065120220184,
-0.07964791357517242,
0.5493041276931763,
0.36078134179115295,
-0.6695172786712646,
0.49687182903289795,
0.5133191347122192,
1.068268895149231,
-0.022317126393318176,
0.15035948157310486,
0.038873907178640366,
0.4728211462497711,
-0.530734121799469,
0.999110758304596,
-0.022352758795022964,
-0.5497117042541504,
-0.3276093900203705,
0.3969031870365143,
-0.11988496780395508,
-0.25268319249153137,
0.6334673762321472,
-0.20796392858028412,
-0.262015163898468,
-0.3740873634815216,
-0.08318214118480682,
-0.10155091434717178,
0.4959389269351959,
-1.0657991170883179,
0.918379008769989,
0.348998099565506,
-1.0270253419876099,
0.16369421780109406,
-0.5722376108169556,
0.02544117346405983,
-0.16265186667442322,
0.1434899866580963,
-0.8773232102394104,
-0.2170356661081314,
0.4083661735057831,
0.2849127948284149,
-0.5226075649261475,
-0.39428120851516724,
-0.30425506830215454,
-0.3889373540878296,
0.1244264468550682,
-0.2853976786136627,
1.427019476890564,
0.589684784412384,
-0.7274104356765747,
0.029599931091070175,
-0.8940318822860718,
0.20092064142227173,
0.6802412867546082,
-0.27843135595321655,
0.04473448172211647,
-0.6339966654777527,
-0.09025747328996658,
0.46841222047805786,
0.48484358191490173,
-0.5755636096000671,
0.16631461679935455,
-0.42967188358306885,
0.5033864974975586,
1.141216516494751,
0.2720435559749603,
0.20279017090797424,
-0.9191179275512695,
0.7187702655792236,
0.3913767337799072,
0.6616290211677551,
0.2408602237701416,
-0.7687122821807861,
-0.9958942532539368,
-0.6119052171707153,
-0.03742479905486107,
0.5857216715812683,
-0.4372471868991852,
0.7763068675994873,
0.021524855867028236,
-0.8427530527114868,
-0.5237307548522949,
0.09926418215036392,
0.6267766952514648,
0.4428965747356415,
0.3037868142127991,
0.03765152767300606,
-0.37635889649391174,
-0.9858524799346924,
-0.04222090169787407,
-0.04275041073560715,
0.2051185667514801,
0.24991674721240997,
0.8001974821090698,
-0.5427239537239075,
1.115103840827942,
-0.8470252156257629,
-0.549524188041687,
0.09903393685817719,
-0.4734060764312744,
0.816461443901062,
0.5556952357292175,
1.0385334491729736,
-0.731141984462738,
-0.9683331251144409,
0.30963364243507385,
-0.8649805188179016,
0.4173891246318817,
0.4643368422985077,
-0.39964842796325684,
0.34211012721061707,
0.23778082430362701,
-1.0448918342590332,
0.696725606918335,
0.7322521805763245,
-0.7020502686500549,
0.5128695368766785,
-0.38588234782218933,
0.2549220025539398,
-1.1889474391937256,
0.31563600897789,
-0.09618968516588211,
-0.21573971211910248,
-0.7268320918083191,
0.19657951593399048,
0.03319857642054558,
-0.10225483030080795,
-0.6954067945480347,
0.6657915115356445,
-0.48731061816215515,
-0.1292475461959839,
0.2276180386543274,
0.15605002641677856,
-0.14829404652118683,
0.6758747100830078,
-0.21706533432006836,
0.8226776719093323,
0.5331007838249207,
-0.28154146671295166,
0.23708590865135193,
0.13611701130867004,
-0.5900840759277344,
0.27507326006889343,
-0.6115683317184448,
-0.22543705999851227,
-0.12304721027612686,
0.3765392005443573,
-0.8837438821792603,
-0.45001423358917236,
0.482477068901062,
-0.42564043402671814,
-0.41116371750831604,
-0.34420958161354065,
-0.33278122544288635,
-0.832670271396637,
-0.7486222982406616,
0.08880391716957092,
0.601021945476532,
-0.3107009530067444,
0.7558103799819946,
0.4736132323741913,
0.18322350084781647,
-0.8131853342056274,
-0.5251396298408508,
-0.07886621356010437,
-0.27514609694480896,
-1.0523934364318848,
0.2671080231666565,
-0.15539969503879547,
-0.6501520276069641,
0.05657500773668289,
0.031889528036117554,
-0.1418912559747696,
0.09219235926866531,
0.7429060339927673,
0.39062798023223877,
-0.15268391370773315,
-0.9354729652404785,
-0.4983130693435669,
-0.5886763334274292,
-0.09395556151866913,
0.07768960297107697,
0.7480292916297913,
-0.3276585638523102,
-0.5462519526481628,
-0.6401268243789673,
0.147882342338562,
0.9537066221237183,
-0.17289888858795166,
1.0001931190490723,
0.5028491020202637,
-0.5419055819511414,
0.01449634786695242,
-0.315159410238266,
-0.04017546400427818,
-0.5460534691810608,
-0.16414718329906464,
-0.6449546217918396,
-0.815903902053833,
1.0357229709625244,
0.4837855398654938,
0.08571521192789078,
0.85955810546875,
0.24842128157615662,
-0.12618178129196167,
1.176165223121643,
0.4125441014766693,
0.04057777673006058,
0.36303091049194336,
-1.008143663406372,
0.35249438881874084,
-0.45880791544914246,
-0.38327503204345703,
-0.14047415554523468,
-0.6066868305206299,
-0.5951147675514221,
-0.6792195439338684,
0.7377333045005798,
0.2614596486091614,
-0.5693379044532776,
0.5674062967300415,
-0.7055739164352417,
0.47293251752853394,
0.543369472026825,
0.5671467185020447,
0.3075779974460602,
-0.08130624145269394,
0.00018709484720602632,
0.12514479458332062,
-0.44152727723121643,
-0.2464173138141632,
1.099529504776001,
0.3349153697490692,
0.5430866479873657,
0.674086332321167,
0.7637434601783752,
0.3540932238101959,
0.12149696797132492,
-0.21629486978054047,
0.6435389518737793,
-0.17080190777778625,
-1.019637107849121,
-0.46040645241737366,
-0.4570862650871277,
-1.3086968660354614,
0.3691088557243347,
-0.234632670879364,
-0.6629669666290283,
0.6068496108055115,
0.07603742927312851,
-1.0615298748016357,
0.7558385729789734,
-0.6408465504646301,
0.7574235796928406,
-0.21109160780906677,
-1.0338034629821777,
0.11482202261686325,
-0.8892073631286621,
0.4841683506965637,
-0.04296362027525902,
0.7084722518920898,
-0.47104448080062866,
-0.041444916278123856,
0.6717286705970764,
-1.0882636308670044,
0.5068598985671997,
-0.1596575677394867,
-0.4197451174259186,
0.9016451239585876,
0.030219534412026405,
0.9539028406143188,
0.1494569331407547,
0.07506739348173141,
0.03836839646100998,
0.09193163365125656,
-0.7739500999450684,
-0.13377836346626282,
1.1527676582336426,
-1.1927462816238403,
-0.7978363633155823,
-0.8326260447502136,
-0.06196901202201843,
0.3076978325843811,
0.3865990936756134,
0.4936295747756958,
0.39838382601737976,
-0.09026101976633072,
0.14879924058914185,
0.8175501823425293,
-0.43288928270339966,
0.7822751402854919,
0.1616712361574173,
-0.5322679877281189,
-0.6703369617462158,
1.0484061241149902,
0.023255454376339912,
0.47034525871276855,
0.18064235150814056,
0.33273079991340637,
-0.16511473059654236,
-0.2384050041437149,
-0.2973881959915161,
0.4433366358280182,
-0.49987277388572693,
-0.3032962679862976,
-0.6188596487045288,
-0.2880980968475342,
-0.5923617482185364,
-0.6744806170463562,
-0.47658154368400574,
-0.2883877754211426,
-0.5231018662452698,
-0.1979290097951889,
1.0712305307388306,
0.837842583656311,
-0.4358745813369751,
0.0951211005449295,
-0.7051187753677368,
0.4754170775413513,
0.5357756614685059,
0.3277285695075989,
-0.17417877912521362,
-0.4864703416824341,
0.20853886008262634,
0.33459004759788513,
-0.1205824762582779,
-1.0118941068649292,
0.8982232213020325,
-0.3948366641998291,
0.01105978898704052,
0.7971352934837341,
0.01350089255720377,
1.1958026885986328,
-0.09205201268196106,
0.8691387176513672,
0.7507105469703674,
-0.6884322166442871,
0.40709954500198364,
-0.9217245578765869,
0.31063708662986755,
0.36709290742874146,
0.2514234781265259,
-0.24194875359535217,
-0.1587023288011551,
-0.9561077356338501,
-0.7489151954650879,
0.6184535622596741,
0.4101606011390686,
-0.3455909192562103,
0.16810205578804016,
0.001997720915824175,
-0.433775395154953,
-0.17730441689491272,
-0.985231339931488,
-0.9339702725410461,
0.1458384394645691,
-0.0026875347830355167,
0.13417987525463104,
0.05267959460616112,
-0.2707604765892029,
-0.4434848129749298,
0.5457400679588318,
0.06270673125982285,
0.7004525065422058,
0.320965975522995,
0.3633374273777008,
-0.2652619183063507,
0.08531946688890457,
0.6162382364273071,
0.7681217193603516,
-0.6407710313796997,
-0.03418814018368721,
0.11464583873748779,
-0.5668925642967224,
0.1866963505744934,
0.1345807909965515,
-0.5213003158569336,
-0.19283096492290497,
0.03738835081458092,
0.33288899064064026,
0.26698267459869385,
-0.49383944272994995,
0.6972953081130981,
-0.18922126293182373,
-0.2818193733692169,
-1.0504872798919678,
0.3272440433502197,
0.234170064330101,
0.21545960009098053,
0.6189789175987244,
0.2339935600757599,
-0.07328414916992188,
-1.0033729076385498,
-0.016273800283670425,
0.5975174903869629,
-0.7753022313117981,
-0.11533642560243607,
1.080405831336975,
0.02148277498781681,
-0.3104197084903717,
0.32877248525619507,
-0.07124683260917664,
-0.5450970530509949,
1.2536256313323975,
0.4538780152797699,
0.6164184808731079,
-0.6534528732299805,
-0.11192121356725693,
0.9570971727371216,
0.4320032000541687,
0.029322750866413116,
0.5847606062889099,
0.48116418719291687,
-0.20152604579925537,
0.03366744518280029,
-1.0073567628860474,
-0.1542772799730301,
0.2661338150501251,
-0.42273685336112976,
0.34757426381111145,
-0.8027441501617432,
-0.43263840675354004,
-0.060794610530138016,
0.34276890754699707,
-0.4618406891822815,
0.29369276762008667,
-0.05962790548801422,
1.1476496458053589,
-0.9739837646484375,
1.0107768774032593,
0.31875425577163696,
-0.7160119414329529,
-0.8135071396827698,
-0.38993433117866516,
0.250764399766922,
-0.896526575088501,
0.2913016080856323,
0.07297103852033615,
-0.2738076150417328,
-0.12081434577703476,
-0.9864065051078796,
-1.5160763263702393,
1.7026870250701904,
0.23498350381851196,
-0.5178994536399841,
0.20409168303012848,
0.2103245109319687,
0.5229880809783936,
-0.05347203463315964,
0.21440519392490387,
0.5656762719154358,
0.5698491930961609,
-0.018198000267148018,
-1.033503532409668,
0.28513312339782715,
-0.8827371001243591,
-0.3010169267654419,
0.3191204071044922,
-1.3176145553588867,
1.3524587154388428,
-0.41483211517333984,
-0.032947052270174026,
0.2748841643333435,
0.36066606640815735,
0.6682283282279968,
0.05537639930844307,
0.7399216294288635,
1.0063780546188354,
0.5091087818145752,
-0.43719518184661865,
1.3413915634155273,
-0.5296887755393982,
0.27441662549972534,
0.5658006072044373,
-0.006395459640771151,
1.0487169027328491,
0.33127185702323914,
-0.7682629823684692,
0.44057509303092957,
0.6103687882423401,
0.17111405730247498,
0.09397757798433304,
-0.2746891975402832,
-0.643871009349823,
-0.01655506156384945,
-0.06644413620233536,
-0.7004163861274719,
-0.1194336861371994,
0.45904701948165894,
-0.45276546478271484,
0.22478921711444855,
-0.28321847319602966,
0.147980198264122,
-0.1850140243768692,
-0.5257618427276611,
0.599416196346283,
0.07475642114877701,
-0.335294246673584,
0.8134415149688721,
-0.23251639306545258,
0.5645287036895752,
-0.7356486320495605,
0.0452333465218544,
-0.4119771122932434,
0.6024217009544373,
-0.7352360486984253,
-1.311619758605957,
-0.045303329825401306,
0.00041739013977348804,
-0.15665294229984283,
-0.025351880118250847,
0.4809068739414215,
0.06980255991220474,
-0.5589636564254761,
0.5940502285957336,
0.08786602318286896,
0.14916488528251648,
0.09685466438531876,
-0.759399950504303,
0.2684628367424011,
0.4818223714828491,
-0.4751429855823517,
0.579590380191803,
0.44472798705101013,
0.125637948513031,
1.040110468864441,
1.1134167909622192,
-0.22509905695915222,
0.4024244546890259,
-0.733582615852356,
1.0620932579040527,
-1.1508896350860596,
-0.5358691811561584,
-0.6527932286262512,
0.6311604976654053,
-0.1410001516342163,
-0.4563434422016144,
1.1081329584121704,
0.8236934542655945,
0.2242100089788437,
0.07019221037626266,
0.7338086366653442,
-0.45246630907058716,
0.6119141578674316,
-0.22306859493255615,
0.8366701602935791,
-0.9181058406829834,
0.042553726583719254,
-0.4443436861038208,
-1.1287932395935059,
-0.4803325831890106,
0.9876042604446411,
-0.0419277586042881,
-0.07419202476739883,
0.35970401763916016,
1.0367776155471802,
-0.05519624426960945,
0.17688250541687012,
0.26584529876708984,
0.5479265451431274,
0.1856134682893753,
1.1230179071426392,
0.6065486669540405,
-0.6113272309303284,
0.7824134826660156,
-0.7385964393615723,
-0.26566842198371887,
-0.430921733379364,
-0.854361355304718,
-0.7823341488838196,
-0.19240014255046844,
-0.10934023559093475,
-0.5764264464378357,
-0.23919406533241272,
0.8695586919784546,
0.6644889712333679,
-0.7662068605422974,
-0.4393775165081024,
0.1381707787513733,
0.06268090754747391,
-0.207858145236969,
-0.33111637830734253,
0.9849299788475037,
0.6748672127723694,
-0.7924380898475647,
0.12447226047515869,
0.2834961712360382,
0.44202661514282227,
-0.069965660572052,
-0.1649874746799469,
-0.3864384889602661,
0.11422017216682434,
0.705817461013794,
0.6284216642379761,
-0.9457365274429321,
-0.37299466133117676,
0.02378774806857109,
-0.3780120611190796,
0.3687429130077362,
-0.1323433816432953,
-0.5798569917678833,
-0.005971675273030996,
0.38839617371559143,
0.1948844939470291,
0.8435613512992859,
0.23014721274375916,
-0.10697970539331436,
0.08006443828344345,
0.34463584423065186,
-0.4198158085346222,
0.5745638608932495,
0.07290540635585785,
-0.33262118697166443,
0.9426115155220032,
0.14457233250141144,
-0.6870346069335938,
-0.8458830118179321,
-0.22677941620349884,
-1.65794837474823,
-0.453914612531662,
0.9380673170089722,
0.05907347425818443,
-0.7213879823684692,
-0.07178658992052078,
-0.12040473520755768,
-0.1695968508720398,
-0.6565845608711243,
0.5008699297904968,
0.08932548016309738,
-0.4175328314304352,
-0.20371615886688232,
-0.947773814201355,
0.6319366693496704,
0.087515689432621,
-1.2681554555892944,
0.026412177830934525,
0.44593796133995056,
0.27502134442329407,
0.9989674687385559,
0.7310031056404114,
-0.18078741431236267,
0.17825981974601746,
0.1475914865732193,
-0.030531154945492744,
0.34922778606414795,
-0.09716763347387314,
0.04577392712235451,
0.3380732238292694,
-0.20773042738437653,
-0.05617881193757057
] |
onlplab/alephbert-base | onlplab | "2022-06-26T09:32:47Z" | 11,226 | 12 | transformers | [
"transformers",
"pytorch",
"tf",
"jax",
"bert",
"fill-mask",
"language model",
"he",
"dataset:oscar",
"dataset:wikipedia",
"dataset:twitter",
"arxiv:1810.04805",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"has_space",
"region:us"
] | fill-mask | "2022-03-02T23:29:05Z" | ---
language:
- he
tags:
- language model
license: apache-2.0
datasets:
- oscar
- wikipedia
- twitter
---
# AlephBERT
## Hebrew Language Model
State-of-the-art language model for Hebrew.
Based on Google's BERT architecture [(Devlin et al. 2018)](https://arxiv.org/abs/1810.04805).
#### How to use
```python
from transformers import BertModel, BertTokenizerFast
alephbert_tokenizer = BertTokenizerFast.from_pretrained('onlplab/alephbert-base')
alephbert = BertModel.from_pretrained('onlplab/alephbert-base')
# if not finetuning - disable dropout
alephbert.eval()
```
## Training data
1. OSCAR [(Ortiz, 2019)](https://oscar-corpus.com/) Hebrew section (10 GB text, 20 million sentences).
2. Hebrew dump of [Wikipedia](https://dumps.wikimedia.org/hewiki/latest/) (650 MB text, 3 million sentences).
3. Hebrew Tweets collected from the Twitter sample stream (7 GB text, 70 million sentences).
## Training procedure
Trained on a DGX machine (8 V100 GPUs) using the standard huggingface training procedure.
Since the larger part of our training data is based on tweets we decided to start by optimizing using Masked Language Model loss only.
To optimize training time we split the data into 4 sections based on max number of tokens:
1. num tokens < 32 (70M sentences)
2. 32 <= num tokens < 64 (12M sentences)
3. 64 <= num tokens < 128 (10M sentences)
4. 128 <= num tokens < 512 (1.5M sentences)
Each section was first trained for 5 epochs with an initial learning rate set to 1e-4. Then each section was trained for another 5 epochs with an initial learning rate set to 1e-5, for a total of 10 epochs.
Total training time was 8 days.
| [
-0.278851717710495,
-0.6938608288764954,
-0.020042695105075836,
0.6797583699226379,
-0.3480820059776306,
-0.09936818480491638,
-0.3233075439929962,
-0.23620902001857758,
0.07730799168348312,
0.19298125803470612,
-0.4316917359828949,
-0.6096475124359131,
-0.6193684935569763,
-0.11085575073957443,
-0.6115132570266724,
1.1481914520263672,
-0.03454264625906944,
0.21363647282123566,
0.4212189316749573,
-0.11961980164051056,
0.0806998535990715,
-0.03459268808364868,
-0.6337270736694336,
-0.42787909507751465,
0.223875492811203,
0.05949625372886658,
0.7435385584831238,
0.7203480005264282,
0.2967582643032074,
0.31290125846862793,
-0.21907773613929749,
-0.058834005147218704,
-0.4041021168231964,
-0.15484581887722015,
0.1281413435935974,
-0.14642837643623352,
-0.22404587268829346,
0.011170420795679092,
0.8468719720840454,
0.6433366537094116,
-0.2694394588470459,
0.38247132301330566,
-0.17402392625808716,
0.6508408188819885,
-0.5394473075866699,
0.1992236077785492,
-0.7707800269126892,
0.2961958944797516,
-0.28011050820350647,
-0.028972575441002846,
-0.41136062145233154,
-0.5579228401184082,
0.24924959242343903,
-0.2755122482776642,
0.12059526890516281,
0.3427739143371582,
1.2699100971221924,
0.15357139706611633,
0.08794631063938141,
-0.20913758873939514,
-0.5549944639205933,
0.8038426041603088,
-0.6723286509513855,
0.5675476789474487,
0.5202513337135315,
0.013996378518640995,
0.08830500394105911,
-0.5823215842247009,
-0.6618857383728027,
-0.29338374733924866,
0.20958995819091797,
0.02437834069132805,
-0.5852425694465637,
-0.07723885774612427,
0.09874095767736435,
0.428753525018692,
-0.7517709732055664,
0.050225868821144104,
-0.6285548210144043,
-0.4099227488040924,
0.4817938208580017,
-0.03331173211336136,
0.4455302357673645,
-0.14013360440731049,
-0.43918684124946594,
-0.21890945732593536,
-0.47801822423934937,
0.03540565446019173,
0.47757089138031006,
0.22513245046138763,
-0.188315749168396,
0.5501856207847595,
-0.030263029038906097,
0.5889298915863037,
0.0279573705047369,
-0.1477024257183075,
0.5331681966781616,
-0.1240132749080658,
-0.2517308294773102,
0.1606103628873825,
1.0100446939468384,
0.16750293970108032,
0.40554532408714294,
-0.26207488775253296,
-0.17511166632175446,
-0.057206153869628906,
0.39678242802619934,
-0.9319648742675781,
-0.2721214294433594,
0.07661700993776321,
-0.5956850051879883,
-0.3229197561740875,
-0.08141473680734634,
-0.2884920537471771,
-0.02238200046122074,
-0.10153016448020935,
0.47684571146965027,
-1.1290943622589111,
-0.07508998364210129,
0.27796420454978943,
-0.00443207798525691,
0.5072386860847473,
0.24483929574489594,
-0.884837806224823,
0.3999350965023041,
0.4713664948940277,
0.8605800867080688,
-0.04218499734997749,
-0.4084402322769165,
-0.5080496072769165,
-0.3881106972694397,
-0.4708794355392456,
0.45070263743400574,
-0.08796241879463196,
0.21802501380443573,
0.17809557914733887,
-0.37122154235839844,
-0.17165590822696686,
-0.4057645797729492,
0.5450157523155212,
-0.7272473573684692,
0.35330337285995483,
0.40084633231163025,
-0.7753504514694214,
-0.09571996331214905,
0.19721008837223053,
-0.48454737663269043,
1.1185170412063599,
0.393798828125,
-0.8953108191490173,
0.03009689413011074,
-0.5172414183616638,
-0.41232895851135254,
0.2342647910118103,
-0.0940723642706871,
-0.5888829827308655,
0.21274130046367645,
0.23783814907073975,
0.4358481764793396,
-0.016765164211392403,
0.34498563408851624,
0.07948273420333862,
-0.45035457611083984,
0.13846619427204132,
-0.1617754101753235,
1.1519455909729004,
0.21931980550289154,
-0.49167853593826294,
0.008692792616784573,
-0.7626210451126099,
0.06903661042451859,
0.03842049464583397,
-0.5728889107704163,
-0.07279451936483383,
-0.27914881706237793,
0.5123569369316101,
0.06822382658720016,
0.08262312412261963,
-0.9165791273117065,
0.021757200360298157,
-0.7805030941963196,
0.3019482493400574,
0.731526255607605,
-0.5491610169410706,
0.47075265645980835,
-0.20911474525928497,
0.4443727135658264,
-0.0942302718758583,
0.10018687695264816,
-0.12985149025917053,
-0.5285762548446655,
-0.7913126945495605,
-0.22345077991485596,
0.43943071365356445,
0.5351009368896484,
-0.7144151926040649,
0.8610309958457947,
-0.29945915937423706,
-0.6038602590560913,
-0.9617727994918823,
0.052277710288763046,
0.4805856943130493,
0.42349570989608765,
0.4170442223548889,
-0.3128983974456787,
-0.48982104659080505,
-1.0544850826263428,
-0.0068100797943770885,
-0.4685553014278412,
0.08568214625120163,
-0.14434154331684113,
0.5906763672828674,
-0.11963532119989395,
1.0291355848312378,
-0.19809575378894806,
-0.04913970082998276,
-0.4229769706726074,
0.14371132850646973,
0.2953743040561676,
0.5716570019721985,
0.5406599044799805,
-0.610044538974762,
-0.7245928645133972,
-0.1511889398097992,
-0.4985640048980713,
-0.09325207024812698,
0.008717578835785389,
-0.17393966019153595,
0.3772400915622711,
0.4067867696285248,
-0.608087956905365,
0.6202492713928223,
0.7122194766998291,
-0.3393118977546692,
0.6194443106651306,
0.05364223197102547,
-0.238549143075943,
-1.1078110933303833,
0.08021069318056107,
0.013212091289460659,
-0.16959626972675323,
-0.7241945266723633,
-0.04377041012048721,
0.3052431046962738,
-0.08441513776779175,
-0.7332651615142822,
0.7593283653259277,
-0.2340906411409378,
0.1800069659948349,
-0.21808470785617828,
0.06764623522758484,
-0.190995454788208,
0.6785364747047424,
-0.11873093992471695,
0.7243004441261292,
0.7044130563735962,
-0.43793684244155884,
0.44998684525489807,
0.8141053318977356,
-0.7524161338806152,
0.03389265388250351,
-0.7787134647369385,
-0.048025332391262054,
-0.3274681270122528,
0.16032277047634125,
-0.7826550602912903,
-0.02623666264116764,
0.5261330604553223,
-0.7355825304985046,
0.34434881806373596,
0.1158621534705162,
-0.7202612161636353,
-0.19000793993473053,
-0.49815893173217773,
0.30879759788513184,
0.7340545654296875,
-0.5838008522987366,
0.652458906173706,
0.1260165274143219,
-0.09772752970457077,
-0.7937515377998352,
-0.6706989407539368,
0.041213445365428925,
-0.0752609595656395,
-0.759323000907898,
0.6237155795097351,
-0.19338659942150116,
-0.10943377017974854,
0.1425020843744278,
-0.05074399337172508,
0.04294382780790329,
-0.10902999341487885,
0.04095090925693512,
0.25393620133399963,
-0.11843594163656235,
0.3052844703197479,
-0.028382718563079834,
-0.091178759932518,
-0.26597660779953003,
-0.17750149965286255,
1.104120135307312,
-0.5863314270973206,
-0.17170356214046478,
-0.8109830617904663,
0.1341921091079712,
0.23979124426841736,
-0.20866477489471436,
1.1695884466171265,
1.1476386785507202,
-0.3377145826816559,
-0.09875468164682388,
-0.594150722026825,
0.07154809683561325,
-0.4436863362789154,
0.569643497467041,
-0.10460980236530304,
-0.8966912627220154,
0.44828060269355774,
0.3300846517086029,
0.16907274723052979,
0.46158742904663086,
0.7523161172866821,
0.09384157508611679,
0.617002010345459,
0.601792573928833,
-0.5248517990112305,
0.6697232723236084,
-0.20145577192306519,
0.1789972335100174,
-0.6995589733123779,
-0.23522302508354187,
-0.4677475094795227,
-0.10167042911052704,
-0.6006448268890381,
-0.334435373544693,
0.173760324716568,
0.11496677994728088,
-0.5843388438224792,
0.654383659362793,
-0.328642338514328,
0.2690862715244293,
0.7615866661071777,
0.10228477418422699,
-0.17645137012004852,
0.40859898924827576,
-0.040994029492139816,
0.07302768528461456,
-0.7173593044281006,
-0.47904595732688904,
0.850943922996521,
0.7114212512969971,
0.9237415194511414,
0.022707698866724968,
0.7537673115730286,
0.14837008714675903,
0.22473663091659546,
-0.833371639251709,
0.5271821618080139,
0.019893066957592964,
-0.739948034286499,
-0.3462419807910919,
-0.428109735250473,
-0.9411550760269165,
0.1709306240081787,
-0.1131754145026207,
-0.9711912274360657,
-0.3491695821285248,
0.05113853141665459,
-0.25360357761383057,
0.44611120223999023,
-0.52757728099823,
0.680214524269104,
-0.05646080896258354,
-0.0893469899892807,
0.07249262183904648,
-1.008266806602478,
0.08369158953428268,
0.011833429336547852,
-0.013120568357408047,
-0.2691177427768707,
0.09619203954935074,
0.9352613091468811,
-0.1846979260444641,
0.8297160863876343,
0.04611912742257118,
0.0625680461525917,
0.17886368930339813,
-0.05696788802742958,
0.2726425230503082,
-0.1983960121870041,
-0.15175795555114746,
0.2694503366947174,
-0.3048550486564636,
-0.5372673273086548,
-0.1909124255180359,
0.35487666726112366,
-1.1631217002868652,
-0.1023854985833168,
-0.4565291106700897,
-0.5736546516418457,
0.0278558898717165,
0.0801740363240242,
0.4776262640953064,
0.4658864140510559,
-0.324453204870224,
0.2885221242904663,
0.6205009818077087,
-0.5848326683044434,
0.6179403066635132,
0.3120286464691162,
-0.3270295262336731,
-0.5399951934814453,
0.7314932942390442,
-0.1971900910139084,
0.10136742889881134,
0.4299565553665161,
0.39243119955062866,
-0.2082156240940094,
-0.6302831172943115,
-0.5799622535705566,
0.42994269728660583,
-0.6142309308052063,
-0.2063002586364746,
-0.8079332709312439,
-0.6113063097000122,
-0.6748664975166321,
0.11424078047275543,
-0.6276828050613403,
-0.41906052827835083,
-0.1457047462463379,
0.15187427401542664,
0.3378918468952179,
0.3370908796787262,
-0.03483443707227707,
0.6422674059867859,
-0.8714318871498108,
0.1650582253932953,
-0.12919023633003235,
0.48028793931007385,
-0.002982370089739561,
-0.9055632948875427,
-0.48034244775772095,
-0.19166012108325958,
-0.3157600462436676,
-0.6836237907409668,
0.5688287615776062,
0.3750975430011749,
0.4721037447452545,
0.46377649903297424,
0.02158159390091896,
0.4640580117702484,
-0.858562171459198,
0.6642806529998779,
0.41362065076828003,
-1.0587449073791504,
0.5121229887008667,
-0.22817030549049377,
0.5154874920845032,
0.5533129572868347,
0.5048736333847046,
-0.7558578848838806,
-0.3988279700279236,
-0.7188495397567749,
-0.952759861946106,
1.0224201679229736,
0.8271329998970032,
0.4800077974796295,
-0.08269260823726654,
0.28738224506378174,
0.19711491465568542,
0.3933527171611786,
-0.9433796405792236,
-0.4921114444732666,
-0.18482857942581177,
-0.5190061926841736,
0.11822184175252914,
-0.06246598809957504,
0.0015705901896581054,
-0.5051873326301575,
1.083636999130249,
0.054443735629320145,
0.5897420644760132,
-0.06702262163162231,
-0.2571314871311188,
-0.12085393816232681,
0.09950052201747894,
0.547099232673645,
0.6455115675926208,
-0.3467406630516052,
-0.053959913551807404,
0.008265980519354343,
-0.6144111752510071,
-0.22293734550476074,
0.3519216775894165,
-0.29856693744659424,
0.3137686252593994,
0.5732104778289795,
1.1850744485855103,
-0.1696736365556717,
-0.7222766876220703,
0.6373200416564941,
-0.0035330187529325485,
-0.2238667905330658,
-0.6683788299560547,
-0.14609584212303162,
0.09498333185911179,
0.43031907081604004,
0.4390944540500641,
0.07472764700651169,
-0.16513676941394806,
-0.38778865337371826,
0.2346927374601364,
0.12556664645671844,
-0.35239362716674805,
-0.3885961174964905,
0.525911808013916,
-0.07093856483697891,
-0.5492390990257263,
1.0706630945205688,
-0.14478376507759094,
-0.7817885279655457,
0.3806470036506653,
0.5476109385490417,
0.8788301348686218,
-0.32563289999961853,
0.3089905381202698,
0.5451480150222778,
0.24355736374855042,
-0.03425632044672966,
0.0981258749961853,
0.024413684383034706,
-1.0701338052749634,
-0.3863503336906433,
-1.137331247329712,
-0.18761001527309418,
0.32849711179733276,
-0.6704580187797546,
0.06749632209539413,
-0.3369857668876648,
-0.029906073585152626,
0.1682821810245514,
-0.12578602135181427,
-0.7721584439277649,
0.0678076446056366,
0.2805175185203552,
1.133425235748291,
-0.8944622278213501,
0.8473345637321472,
0.6791971921920776,
-0.4586608409881592,
-0.8208442330360413,
-0.040971025824546814,
-0.2519000470638275,
-1.3181102275848389,
0.7949181199073792,
0.38805699348449707,
0.05333476513624191,
0.02555147558450699,
-0.8645617365837097,
-0.7363271117210388,
0.7973342537879944,
0.27510178089141846,
-0.4554585814476013,
-0.06459736078977585,
-0.03897194564342499,
0.6033541560173035,
-0.38130348920822144,
0.03883693367242813,
0.46907496452331543,
0.1063690334558487,
0.1679639220237732,
-0.9491256475448608,
-0.22264382243156433,
-0.6377934217453003,
0.2387925237417221,
0.16511958837509155,
-0.5059643387794495,
0.9080086946487427,
0.06730777025222778,
-0.07215866446495056,
0.3145444393157959,
0.7653175592422485,
0.2295871526002884,
0.051616765558719635,
0.5776828527450562,
0.6967614889144897,
0.345752090215683,
-0.011596078984439373,
0.9733428359031677,
-0.42077815532684326,
0.6251148581504822,
0.9222220182418823,
0.18242613971233368,
0.8219305872917175,
0.5109848380088806,
-0.18844275176525116,
0.5271517038345337,
0.6532998085021973,
-0.26610854268074036,
0.608687162399292,
0.4267440736293793,
-0.27368414402008057,
-0.15330228209495544,
-0.026900749653577805,
-0.19695308804512024,
0.5374467968940735,
0.14949992299079895,
-0.4829093813896179,
-0.3274011015892029,
0.29418808221817017,
0.3418789207935333,
-0.04000544548034668,
0.010807803831994534,
0.4837968349456787,
-0.17314185202121735,
-0.5522333979606628,
0.588941216468811,
0.23199623823165894,
0.6186896562576294,
-0.621035099029541,
0.2157011181116104,
-0.1639144867658615,
0.3045254945755005,
0.10564805567264557,
-0.5954595804214478,
0.19083331525325775,
0.04951785132288933,
0.14431624114513397,
-0.4298754632472992,
0.5739824771881104,
-0.5483083724975586,
-0.6213005781173706,
0.24981853365898132,
0.585853099822998,
0.4736846089363098,
-0.03205765411257744,
-0.8785106539726257,
0.2887784242630005,
0.07805938273668289,
-0.5039149522781372,
0.15868531167507172,
0.21659903228282928,
0.11691714078187943,
0.7264370918273926,
0.2124040275812149,
0.09634631127119064,
0.1499944031238556,
0.19361336529254913,
1.1308130025863647,
-0.6165057420730591,
-0.3422859013080597,
-0.987055778503418,
0.4780610501766205,
-0.01770157180726528,
-0.37120896577835083,
0.6553850173950195,
0.5233678817749023,
0.9634476900100708,
-0.08451046794652939,
0.6149168014526367,
-0.39424586296081543,
0.4011617600917816,
-0.43165749311447144,
0.6908783912658691,
-0.508586585521698,
-0.07183374464511871,
-0.19547754526138306,
-0.9863788485527039,
-0.3409067988395691,
0.999855637550354,
-0.0011535133235156536,
0.0875578448176384,
0.624994695186615,
0.7408251166343689,
0.01929210126399994,
-0.02345232479274273,
0.15251585841178894,
0.15498220920562744,
0.27866318821907043,
0.20874474942684174,
0.7375811338424683,
-0.6910665035247803,
0.6040113568305969,
-0.3665924668312073,
-0.2682092487812042,
-0.15116848051548004,
-0.699943482875824,
-1.0498292446136475,
-0.603152871131897,
-0.4285004436969757,
-0.577538788318634,
-0.013160415925085545,
1.365032434463501,
0.6700648069381714,
-0.7289387583732605,
-0.23385635018348694,
-0.14674623310565948,
-0.23255208134651184,
-0.06275749951601028,
-0.16133823990821838,
0.7006546258926392,
-0.4804551601409912,
-0.8563829660415649,
0.24085775017738342,
0.1276652216911316,
0.01972484029829502,
-0.16656897962093353,
-0.1872231811285019,
-0.5024435520172119,
-0.06369560956954956,
0.5683015584945679,
0.027346165850758553,
-0.854076087474823,
-0.2193361073732376,
0.02242141216993332,
-0.2021460086107254,
0.18118144571781158,
0.3669324219226837,
-0.4445783793926239,
0.39082401990890503,
0.32657867670059204,
0.777708888053894,
0.8598222136497498,
-0.06064214929938316,
0.32845401763916016,
-0.9017588496208191,
0.0844959020614624,
0.32332971692085266,
0.33990269899368286,
0.43469831347465515,
0.12270090728998184,
0.5266134738922119,
0.10675948113203049,
-0.4577908217906952,
-0.5138158202171326,
0.13431209325790405,
-1.082472801208496,
-0.14395548403263092,
1.1400680541992188,
-0.2504241168498993,
-0.37664341926574707,
0.13160786032676697,
-0.19942118227481842,
0.5211877226829529,
-0.489319384098053,
0.9272375106811523,
0.6969788670539856,
-0.13815522193908691,
-0.23527877032756805,
-0.47607421875,
0.3058164715766907,
0.3249555826187134,
-0.45296281576156616,
-0.3239259123802185,
0.20522870123386383,
0.33080747723579407,
0.44578903913497925,
0.8319916725158691,
-0.06192462518811226,
0.10429162532091141,
0.08616092056035995,
0.46512001752853394,
-0.007938100025057793,
-0.2643398940563202,
-0.20792365074157715,
0.09781678020954132,
-0.2578567564487457,
-0.4684155583381653
] |
Recognai/zeroshot_selectra_medium | Recognai | "2023-07-14T22:21:07Z" | 11,217 | 8 | transformers | [
"transformers",
"pytorch",
"safetensors",
"electra",
"text-classification",
"zero-shot-classification",
"nli",
"es",
"dataset:xnli",
"license:apache-2.0",
"endpoints_compatible",
"has_space",
"region:us"
] | zero-shot-classification | "2022-03-02T23:29:04Z" | ---
language: es
tags:
- zero-shot-classification
- nli
- pytorch
datasets:
- xnli
pipeline_tag: zero-shot-classification
license: apache-2.0
widget:
- text: "El autor se perfila, a los 50 años de su muerte, como uno de los grandes de su siglo"
candidate_labels: "cultura, sociedad, economia, salud, deportes"
---
# Zero-shot SELECTRA: A zero-shot classifier based on SELECTRA
*Zero-shot SELECTRA* is a [SELECTRA model](https://huggingface.co/Recognai/selectra_small) fine-tuned on the Spanish portion of the [XNLI dataset](https://huggingface.co/datasets/xnli). You can use it with Hugging Face's [Zero-shot pipeline](https://huggingface.co/transformers/master/main_classes/pipelines.html#transformers.ZeroShotClassificationPipeline) to make [zero-shot classifications](https://joeddav.github.io/blog/2020/05/29/ZSL.html).
In comparison to our previous zero-shot classifier [based on BETO](https://huggingface.co/Recognai/bert-base-spanish-wwm-cased-xnli), zero-shot SELECTRA is **much more lightweight**. As shown in the *Metrics* section, the *small* version (5 times fewer parameters) performs slightly worse, while the *medium* version (3 times fewer parameters) **outperforms** the BETO based zero-shot classifier.
## Usage
```python
from transformers import pipeline
classifier = pipeline("zero-shot-classification",
model="Recognai/zeroshot_selectra_medium")
classifier(
"El autor se perfila, a los 50 años de su muerte, como uno de los grandes de su siglo",
candidate_labels=["cultura", "sociedad", "economia", "salud", "deportes"],
hypothesis_template="Este ejemplo es {}."
)
"""Output
{'sequence': 'El autor se perfila, a los 50 años de su muerte, como uno de los grandes de su siglo',
'labels': ['sociedad', 'cultura', 'economia', 'salud', 'deportes'],
'scores': [0.6450043320655823,
0.16710571944713593,
0.08507631719112396,
0.0759836807847023,
0.026829993352293968]}
"""
```
The `hypothesis_template` parameter is important and should be in Spanish. **In the widget on the right, this parameter is set to its default value: "This example is {}.", so different results are expected.**
## Demo and tutorial
If you want to see this model in action, we have created a basic tutorial using [Rubrix](https://www.rubrix.ml/), a free and open-source tool to *explore, annotate, and monitor data for NLP*.
The tutorial shows you how to evaluate this classifier for news categorization in Spanish, and how it could be used to build a training set for training a supervised classifier (which might be useful if you want obtain more precise results or improve the model over time).
You can [find the tutorial here](https://rubrix.readthedocs.io/en/master/tutorials/zeroshot_data_annotation.html).
See the video below showing the predictions within the annotation process (see that the predictions are almost correct for every example).
<video width="100%" controls><source src="https://github.com/recognai/rubrix-materials/raw/main/tutorials/videos/zeroshot_selectra_news_data_annotation.mp4" type="video/mp4"></video>
## Metrics
| Model | Params | XNLI (acc) | \*MLSUM (acc) |
| --- | --- | --- | --- |
| [zs BETO](https://huggingface.co/Recognai/bert-base-spanish-wwm-cased-xnli) | 110M | 0.799 | 0.530 |
| zs SELECTRA medium | 41M | **0.807** | **0.589** |
| [zs SELECTRA small](https://huggingface.co/Recognai/zeroshot_selectra_small) | **22M** | 0.795 | 0.446 |
\*evaluated with zero-shot learning (ZSL)
- **XNLI**: The stated accuracy refers to the test portion of the [XNLI dataset](https://huggingface.co/datasets/xnli), after finetuning the model on the training portion.
- **MLSUM**: For this accuracy we take the test set of the [MLSUM dataset](https://huggingface.co/datasets/mlsum) and classify the summaries of 5 selected labels. For details, check out our [evaluation notebook](https://github.com/recognai/selectra/blob/main/zero-shot_classifier/evaluation.ipynb)
## Training
Check out our [training notebook](https://github.com/recognai/selectra/blob/main/zero-shot_classifier/training.ipynb) for all the details.
## Authors
- David Fidalgo ([GitHub](https://github.com/dcfidalgo))
- Daniel Vila ([GitHub](https://github.com/dvsrepo))
- Francisco Aranda ([GitHub](https://github.com/frascuchon))
- Javier Lopez ([GitHub](https://github.com/javispp)) | [
-0.16511006653308868,
-0.39428627490997314,
0.2856883108615875,
-0.21181215345859528,
-0.1251622438430786,
0.1914263665676117,
-0.14901824295520782,
-0.5094925165176392,
0.4130634665489197,
0.17342285811901093,
-0.40559664368629456,
-0.7312169671058655,
-0.5365769863128662,
-0.08661149442195892,
-0.2805554270744324,
1.37784743309021,
-0.22737182676792145,
0.13169020414352417,
0.1479322463274002,
-0.19960211217403412,
-0.4600377380847931,
-0.3554040491580963,
-0.615098237991333,
-0.2659807503223419,
0.7847165465354919,
0.4708847999572754,
0.555947482585907,
0.46847331523895264,
0.40815553069114685,
0.16462668776512146,
-0.08219081908464432,
-0.2465236485004425,
-0.3589479327201843,
-0.15512804687023163,
0.08999578654766083,
-0.9263525009155273,
-0.3824804127216339,
0.10542236268520355,
0.6399330496788025,
0.3064460754394531,
-0.04464095085859299,
0.572081983089447,
-0.35901930928230286,
0.48274269700050354,
-0.8096324801445007,
0.07001937180757523,
-0.6369250416755676,
0.33070826530456543,
-0.28794756531715393,
-0.11425457894802094,
-0.3278830349445343,
-0.09311886131763458,
-0.02948584221303463,
-0.26501891016960144,
0.4203282296657562,
-0.03719104453921318,
1.3218657970428467,
0.413184255361557,
-0.0975755825638771,
0.2555627226829529,
-0.7054165601730347,
0.909787118434906,
-0.5793553590774536,
0.1168566569685936,
0.2261875569820404,
0.6351473331451416,
0.1289396733045578,
-0.32159072160720825,
-0.6295663714408875,
-0.14122575521469116,
0.09484302252531052,
0.45364582538604736,
-0.3391726613044739,
-0.11112091690301895,
0.4001218378543854,
0.44156280159950256,
-0.7194560766220093,
0.23206613957881927,
-0.5952776074409485,
-0.1196250468492508,
0.7553929090499878,
0.02696545422077179,
0.009419550187885761,
-0.12299332767724991,
-0.22494012117385864,
-0.37381985783576965,
-0.4412338137626648,
0.18099956214427948,
0.36630985140800476,
0.49564066529273987,
-0.376726359128952,
0.6426381468772888,
-0.4702974557876587,
0.9047670960426331,
-0.0906614363193512,
-0.31923535466194153,
0.7725191116333008,
-0.17771422863006592,
-0.5730410218238831,
0.16395357251167297,
0.9131421446800232,
0.3539259135723114,
-0.013283085078001022,
-0.03357613459229469,
0.036956340074539185,
0.4196273684501648,
0.005965703167021275,
-0.7116464376449585,
-0.0982436090707779,
0.42353859543800354,
-0.1403365582227707,
-0.722484827041626,
-0.015225574374198914,
-0.42176419496536255,
0.1779296100139618,
-0.08601447194814682,
0.6922680735588074,
-0.313247412443161,
-0.06524237245321274,
0.3626124858856201,
-0.15758858621120453,
0.49407219886779785,
0.5678907632827759,
-0.6175591349601746,
0.03703756257891655,
0.2616649568080902,
0.9683218002319336,
-0.06553811579942703,
-0.24417278170585632,
-0.3949887156486511,
-0.20854635536670685,
-0.22219444811344147,
0.8344281315803528,
-0.035990871489048004,
0.04188721999526024,
-0.3375887870788574,
-0.04347197338938713,
-0.179324671626091,
-0.21193985641002655,
0.7101686000823975,
-0.24188081920146942,
0.5134193301200867,
-0.05251908302307129,
-0.48025768995285034,
-0.36531469225883484,
0.4057897627353668,
-0.3573414385318756,
1.0226359367370605,
0.19610819220542908,
-0.775398850440979,
0.6327396035194397,
-0.653117299079895,
-0.007780447602272034,
-0.034017402678728104,
-0.021655883640050888,
-0.5943170189857483,
-0.15351030230522156,
-0.053055595606565475,
0.497474730014801,
-0.07013082504272461,
0.12504585087299347,
-0.4657919406890869,
-0.3442564010620117,
0.43676793575286865,
-0.32747551798820496,
1.103163719177246,
0.20198093354701996,
-0.33898288011550903,
0.14908795058727264,
-0.9568666219711304,
0.04402175918221474,
0.3214172422885895,
-0.1587945520877838,
0.040598541498184204,
-0.4137020409107208,
0.05582909286022186,
0.3965114951133728,
0.03588837757706642,
-0.8790208101272583,
0.13617295026779175,
-0.22193747758865356,
0.1753469556570053,
0.22082149982452393,
-0.21537305414676666,
0.39062729477882385,
-0.460120290517807,
0.633508026599884,
-0.04983295500278473,
0.3211138844490051,
-0.2505019009113312,
-0.5973137021064758,
-1.0339926481246948,
-0.2512025237083435,
0.624590277671814,
0.8464555740356445,
-0.6400201916694641,
0.5390554666519165,
-0.20443838834762573,
-0.8414496183395386,
-0.5866103172302246,
-0.0906091183423996,
0.47140854597091675,
0.8797321915626526,
0.430092453956604,
-0.23156756162643433,
-0.6341473460197449,
-0.659385085105896,
0.41328293085098267,
-0.12178483605384827,
-0.22747796773910522,
0.06804827600717545,
0.7548249363899231,
0.17887379229068756,
0.87531578540802,
-0.6336589455604553,
-0.460641086101532,
-0.3250258266925812,
-0.0783989280462265,
0.6049802303314209,
0.3313891589641571,
0.9865828156471252,
-0.4047331213951111,
-0.5708891749382019,
0.013912264257669449,
-0.9007652401924133,
0.13662685453891754,
-0.07709411531686783,
-0.08321206271648407,
0.3728545010089874,
-0.17987070977687836,
-0.5080897808074951,
0.49139320850372314,
0.36998987197875977,
-0.31561803817749023,
0.498616486787796,
0.002317488892003894,
-0.16287320852279663,
-1.0932090282440186,
0.1658913791179657,
0.31651386618614197,
-0.2750147581100464,
-0.7598581910133362,
0.14746256172657013,
-0.04393232986330986,
0.059397634118795395,
-0.9886670708656311,
0.572231650352478,
-0.058377284556627274,
-0.038496483117341995,
0.002330866176635027,
-0.03131689876317978,
-0.01919739879667759,
0.49702128767967224,
0.42165422439575195,
0.5071224570274353,
0.7711163759231567,
-0.3303491771221161,
0.21493346989154816,
0.25924721360206604,
-0.3805472254753113,
0.41411152482032776,
-0.6712101101875305,
-0.24993781745433807,
-0.29018527269363403,
0.2645206153392792,
-0.84496009349823,
-0.1614982932806015,
0.5921357870101929,
-0.7149132490158081,
0.500698983669281,
-0.10898232460021973,
-0.4520849585533142,
-0.5208029747009277,
-0.556113064289093,
0.008312072604894638,
0.6194450855255127,
-0.32947099208831787,
0.035117506980895996,
0.2578004002571106,
0.3688817322254181,
-0.9949905872344971,
-0.7815319299697876,
0.0428910106420517,
-0.196268230676651,
-0.20904278755187988,
0.25927573442459106,
-0.05182245373725891,
-0.036225397139787674,
-0.16166500747203827,
0.0654330626130104,
-0.14376966655254364,
0.058944862335920334,
0.18275730311870575,
0.6890523433685303,
-0.13492022454738617,
-0.07093320041894913,
-0.022256849333643913,
-0.2644827663898468,
-0.23356352746486664,
-0.006810295861214399,
0.4230053126811981,
-0.13533851504325867,
-0.010240977630019188,
-0.6459107398986816,
-0.1954270303249359,
0.24270543456077576,
0.08125029504299164,
0.7485036253929138,
0.6696909666061401,
-0.1811426430940628,
-0.16537539660930634,
-0.4956943094730377,
0.008131438866257668,
-0.339382141828537,
0.00878077931702137,
-0.2957863509654999,
-0.7682139277458191,
0.678920567035675,
0.5591119527816772,
0.11025853455066681,
0.6919321417808533,
0.41518843173980713,
-0.1852789968252182,
0.7752382159233093,
0.560400664806366,
-0.072398841381073,
0.427245557308197,
-0.8686949014663696,
-0.2003212422132492,
-0.6898809671401978,
-0.28814563155174255,
-0.6271890997886658,
-0.5074716210365295,
-0.5078117251396179,
-0.45972397923469543,
0.0010221577249467373,
0.06527704745531082,
-0.3724886476993561,
0.6777544021606445,
-0.6218885779380798,
0.5334756970405579,
0.6200278997421265,
0.07635027915239334,
0.14402396976947784,
0.11959636956453323,
-0.011781829409301281,
-0.13324935734272003,
-0.8371570706367493,
-0.35192549228668213,
1.2813013792037964,
0.42066502571105957,
0.6329973936080933,
-0.16103459894657135,
0.8178670406341553,
0.035891421139240265,
0.33994951844215393,
-1.0761293172836304,
0.3621934652328491,
-0.15475107729434967,
-0.6767582297325134,
-0.06681516021490097,
-0.35714226961135864,
-0.8588776588439941,
0.2873416841030121,
-0.4560525119304657,
-0.6486783027648926,
0.3237605690956116,
-0.027578288689255714,
-0.7949132919311523,
0.5595173835754395,
-0.5541858673095703,
0.9097787141799927,
-0.3603689670562744,
-0.3130577802658081,
0.2712624967098236,
-0.783881664276123,
0.32376912236213684,
-0.03259087726473808,
-0.22721341252326965,
-0.4467088282108307,
-0.010409652255475521,
0.5948887467384338,
-0.44438788294792175,
1.0114785432815552,
-0.25970834493637085,
0.2024325579404831,
0.3141692280769348,
-0.20455363392829895,
-0.2502312958240509,
-0.13786303997039795,
-0.2845243215560913,
0.8140583038330078,
0.20209355652332306,
-0.3615516722202301,
-0.4158361554145813,
0.4190431833267212,
-0.9537758827209473,
-0.03486444801092148,
-0.856367290019989,
-0.3532784879207611,
0.2693212330341339,
0.24372902512550354,
0.35386812686920166,
0.17326660454273224,
-0.0409553200006485,
0.10716090351343155,
0.5648333430290222,
-0.1618785411119461,
0.5320687890052795,
0.835660994052887,
-0.36164191365242004,
-0.41070082783699036,
0.8971570730209351,
0.4325146973133087,
-0.030614793300628662,
0.6718955636024475,
0.028788188472390175,
-0.27412769198417664,
-0.6720557808876038,
-0.6935438513755798,
0.36746472120285034,
-0.3642066419124603,
-0.7925649285316467,
-0.5697808861732483,
-0.41869404911994934,
-0.23219692707061768,
-0.14248330891132355,
-0.3655014634132385,
-0.7858759164810181,
-0.5490626692771912,
-0.3742592930793762,
0.4904593527317047,
0.17836597561836243,
0.007470170501619577,
0.39058780670166016,
-0.6287831664085388,
0.058221615850925446,
0.026209142059087753,
0.24950294196605682,
-0.2608885169029236,
-0.7644503712654114,
-0.07529782503843307,
0.1514175981283188,
-0.3112744092941284,
-0.7649964690208435,
0.656589686870575,
0.1863074153661728,
0.4694582521915436,
0.4718925654888153,
0.019538048654794693,
0.5489034056663513,
-0.33703160285949707,
0.7311383485794067,
0.26031622290611267,
-0.6533582806587219,
0.9519705772399902,
-0.33131876587867737,
0.2477487474679947,
0.7761775851249695,
0.6761887073516846,
-0.2884552478790283,
-0.32815682888031006,
-0.7769201993942261,
-0.4848523736000061,
0.9668625593185425,
0.19928337633609772,
0.06588569283485413,
0.04971494525671005,
0.5763076543807983,
0.22838924825191498,
0.19832633435726166,
-0.9432811737060547,
-0.49026185274124146,
-0.1705014705657959,
-0.07131985574960709,
-0.09429585933685303,
-0.11335095018148422,
0.011423066258430481,
-0.48145365715026855,
0.8011025786399841,
-0.189870223402977,
0.1559179425239563,
0.2788935899734497,
0.02777037024497986,
-0.3049769997596741,
0.09952567517757416,
0.664463460445404,
0.5006911754608154,
-0.7244903445243835,
-0.2733112573623657,
0.23628449440002441,
-0.2793702185153961,
0.2227424830198288,
0.09553302079439163,
-0.8329448699951172,
0.28469327092170715,
0.1385185569524765,
1.2731026411056519,
0.07876486331224442,
-0.5607687830924988,
0.6010760068893433,
-0.17373448610305786,
-0.4227064549922943,
-0.6211963295936584,
0.302078515291214,
-0.4744760990142822,
0.04977961257100105,
0.370583713054657,
0.27154314517974854,
0.021391943097114563,
-0.4393590986728668,
0.10526013374328613,
0.4230819642543793,
-0.4445168673992157,
-0.4933370053768158,
0.9308068156242371,
-0.08101990073919296,
-0.06397499889135361,
0.2807480990886688,
-0.42510077357292175,
-0.1904096156358719,
0.7190698981285095,
0.44176360964775085,
0.8342964053153992,
-0.1607513427734375,
0.7976081967353821,
0.749273955821991,
0.10596983879804611,
-0.14884674549102783,
0.3999428451061249,
-0.14043642580509186,
-1.034746766090393,
-0.6645622253417969,
-0.8459364771842957,
-0.7009273171424866,
0.2843206226825714,
-0.702546238899231,
0.6399431228637695,
-0.6092256307601929,
-0.18627916276454926,
0.36751577258110046,
0.32857397198677063,
-0.6396979689598083,
0.2623187303543091,
0.3534504175186157,
1.0103886127471924,
-1.0965338945388794,
1.0254451036453247,
0.7148992419242859,
-0.9418032169342041,
-0.624392032623291,
-0.5447590351104736,
-0.010913608595728874,
-0.8430266976356506,
0.7000734210014343,
0.28961482644081116,
0.11466345936059952,
-0.22490139305591583,
-0.47607704997062683,
-0.8246875405311584,
1.329472541809082,
0.40851402282714844,
-0.4970557689666748,
0.1369556188583374,
0.08445271849632263,
0.7571821808815002,
-0.32228392362594604,
0.6350194215774536,
0.4020695686340332,
0.224192813038826,
0.5109257102012634,
-0.9939601421356201,
-0.14906032383441925,
-0.11997678130865097,
-0.12702061235904694,
0.14817415177822113,
-0.880852222442627,
0.7189757227897644,
-0.3143100440502167,
-0.08825895935297012,
0.007346095982939005,
0.4311508238315582,
0.12515199184417725,
0.4532104432582855,
0.16112647950649261,
1.0664259195327759,
0.6245799660682678,
-0.23427103459835052,
0.980558454990387,
-0.1681147813796997,
0.5286142826080322,
1.229560136795044,
-0.38383492827415466,
1.1315513849258423,
0.07540541142225266,
-0.5972089171409607,
0.5840349793434143,
0.7961753606796265,
-0.4086152911186218,
0.377315878868103,
-0.16136930882930756,
-0.2720986008644104,
0.0045952098444104195,
-0.13592301309108734,
-0.241008922457695,
0.7515985369682312,
0.15864287316799164,
-0.40974757075309753,
-0.32614201307296753,
0.04657416418194771,
0.2850806415081024,
-0.299357533454895,
-0.28676164150238037,
0.6150598526000977,
-0.2006247341632843,
-0.38317233324050903,
0.7568524479866028,
-0.10295826196670532,
0.8825885057449341,
-0.5873106122016907,
0.0649120956659317,
-0.1805809885263443,
0.13151870667934418,
-0.4091760218143463,
-0.9222001433372498,
0.3698938488960266,
0.03887202963232994,
-0.15798981487751007,
-0.2212357372045517,
0.7180429100990295,
-0.28236982226371765,
-0.7597895860671997,
0.15999050438404083,
0.5495807528495789,
0.47936058044433594,
0.11395803093910217,
-0.9041624665260315,
0.07400097697973251,
0.24145467579364777,
0.020534833893179893,
0.4308279752731323,
-0.1294560730457306,
0.05992267280817032,
0.5212669968605042,
0.7648234367370605,
0.26729530096054077,
-0.13570033013820648,
0.11911638081073761,
0.6906135678291321,
-0.5507200956344604,
-0.07575026154518127,
-0.7538518309593201,
0.621917724609375,
-0.20704521238803864,
-0.383725106716156,
0.8107571601867676,
0.737465500831604,
1.1471388339996338,
-0.13574238121509552,
0.5830643773078918,
-0.1885872483253479,
0.6070857048034668,
-0.15801914036273956,
0.7492761015892029,
-0.5008010864257812,
-0.08684856444597244,
-0.06893452256917953,
-0.9976486563682556,
-0.9119587540626526,
0.7786244750022888,
-0.2981686294078827,
-0.17819035053253174,
0.28998544812202454,
0.720784604549408,
0.010786937549710274,
-0.39281991124153137,
0.4658447802066803,
0.10352570563554764,
-0.020158173516392708,
0.4527500867843628,
0.5193444490432739,
-0.8607631325721741,
0.511716902256012,
-0.8765583634376526,
-0.3465803563594818,
-0.15580153465270996,
-0.8180882930755615,
-0.7984203100204468,
-0.18065796792507172,
-0.7526759505271912,
-0.18297067284584045,
0.001970068784430623,
0.6862252354621887,
0.6919963955879211,
-1.0201023817062378,
-0.28016817569732666,
-0.018243595957756042,
0.04619111865758896,
-0.11208364367485046,
-0.3136563301086426,
0.1326272040605545,
-0.18968312442302704,
-0.845127284526825,
0.20138099789619446,
0.3224447965621948,
0.20801091194152832,
-0.25897496938705444,
0.13727569580078125,
-0.26776906847953796,
-0.3110208511352539,
0.6281229257583618,
0.6314690113067627,
-0.6095409393310547,
-0.21119928359985352,
0.16137291491031647,
0.19654756784439087,
0.4072771668434143,
0.1295144110918045,
-1.095927119255066,
0.37995296716690063,
0.6714820265769958,
0.1486200988292694,
0.7668120265007019,
-0.2686639726161957,
-0.025788096711039543,
-0.6561470031738281,
0.35790514945983887,
0.21741972863674164,
0.45316237211227417,
0.35383206605911255,
-0.15560276806354523,
0.8587214946746826,
0.22698956727981567,
-0.47037604451179504,
-0.8563727736473083,
-0.07907397300004959,
-1.3172051906585693,
-0.012483789585530758,
0.8328382968902588,
-0.12223943322896957,
-0.5159047842025757,
0.19420254230499268,
-0.28703927993774414,
0.3038654625415802,
-0.5086697936058044,
0.7317773699760437,
0.21944834291934967,
-0.27071821689605713,
-0.3574032783508301,
-0.7851575016975403,
0.18078520894050598,
0.2649657726287842,
-0.668567419052124,
-0.48256656527519226,
0.48106908798217773,
0.5983187556266785,
0.4621092677116394,
0.6871252655982971,
-0.13521860539913177,
0.24412471055984497,
-0.10082144290208817,
0.3856039345264435,
0.0029726733919233084,
-0.16685502231121063,
-0.6890920400619507,
0.06925462186336517,
-0.11151372641324997,
-0.4504477083683014
] |
facebook/mask2former-swin-large-mapillary-vistas-panoptic | facebook | "2023-09-07T15:31:16Z" | 11,183 | 2 | transformers | [
"transformers",
"pytorch",
"safetensors",
"mask2former",
"vision",
"image-segmentation",
"dataset:coco",
"arxiv:2112.01527",
"arxiv:2107.06278",
"license:other",
"endpoints_compatible",
"has_space",
"region:us"
] | image-segmentation | "2023-01-05T00:48:59Z" | ---
license: other
tags:
- vision
- image-segmentation
datasets:
- coco
widget:
- src: http://images.cocodataset.org/val2017/000000039769.jpg
example_title: Cats
- src: http://images.cocodataset.org/val2017/000000039770.jpg
example_title: Castle
---
# Mask2Former
Mask2Former model trained on Mapillary Vistas panoptic segmentation (large-sized version, Swin backbone). It was introduced in the paper [Masked-attention Mask Transformer for Universal Image Segmentation
](https://arxiv.org/abs/2112.01527) and first released in [this repository](https://github.com/facebookresearch/Mask2Former/).
Disclaimer: The team releasing Mask2Former did not write a model card for this model so this model card has been written by the Hugging Face team.
## Model description
Mask2Former addresses instance, semantic and panoptic segmentation with the same paradigm: by predicting a set of masks and corresponding labels. Hence, all 3 tasks are treated as if they were instance segmentation. Mask2Former outperforms the previous SOTA,
[MaskFormer](https://arxiv.org/abs/2107.06278) both in terms of performance an efficiency by (i) replacing the pixel decoder with a more advanced multi-scale deformable attention Transformer, (ii) adopting a Transformer decoder with masked attention to boost performance without
without introducing additional computation and (iii) improving training efficiency by calculating the loss on subsampled points instead of whole masks.
![model image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/mask2former_architecture.png)
## Intended uses & limitations
You can use this particular checkpoint for panoptic segmentation. See the [model hub](https://huggingface.co/models?search=mask2former) to look for other
fine-tuned versions on a task that interests you.
### How to use
Here is how to use this model:
```python
import requests
import torch
from PIL import Image
from transformers import AutoImageProcessor, Mask2FormerForUniversalSegmentation
# load Mask2Former fine-tuned on Mapillary Vistas panoptic segmentation
processor = AutoImageProcessor.from_pretrained("facebook/mask2former-swin-large-mapillary-vistas-panoptic")
model = Mask2FormerForUniversalSegmentation.from_pretrained("facebook/mask2former-swin-large-mapillary-vistas-panoptic")
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)
inputs = processor(images=image, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
# model predicts class_queries_logits of shape `(batch_size, num_queries)`
# and masks_queries_logits of shape `(batch_size, num_queries, height, width)`
class_queries_logits = outputs.class_queries_logits
masks_queries_logits = outputs.masks_queries_logits
# you can pass them to processor for postprocessing
result = processor.post_process_panoptic_segmentation(outputs, target_sizes=[image.size[::-1]])[0]
# we refer to the demo notebooks for visualization (see "Resources" section in the Mask2Former docs)
predicted_panoptic_map = result["segmentation"]
```
For more code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/master/en/model_doc/mask2former). | [
-0.5815846920013428,
-0.5525922179222107,
0.21488109230995178,
0.38707491755485535,
-0.2279966175556183,
-0.2600928544998169,
0.16074585914611816,
-0.7586582899093628,
0.22963516414165497,
0.6753590106964111,
-0.6987480521202087,
-0.30804428458213806,
-0.8192645907402039,
-0.3548488914966583,
-0.08562702685594559,
0.9019314646720886,
-0.07998392730951309,
0.013098451308906078,
-0.2013803869485855,
0.08109700679779053,
-0.18340793251991272,
-0.13530683517456055,
-0.7565677762031555,
-0.35285037755966187,
0.1712963879108429,
0.23797085881233215,
0.4258156716823578,
0.6023464798927307,
0.6101638674736023,
0.2671210467815399,
-0.088032566010952,
0.01760721020400524,
-0.4859210252761841,
-0.16341416537761688,
0.11941438913345337,
-0.6287572979927063,
-0.2946000397205353,
0.13164891302585602,
0.5146955251693726,
0.34148290753364563,
0.18106654286384583,
0.318410724401474,
-0.0788278579711914,
0.6377401947975159,
-0.6318022012710571,
0.3973621726036072,
-0.38669997453689575,
0.2954988479614258,
-0.23578377068042755,
0.3571154475212097,
-0.2215072065591812,
-0.2732420563697815,
0.262117862701416,
-0.5548497438430786,
0.42580512166023254,
-0.19134102761745453,
1.0430642366409302,
0.28340575098991394,
-0.05122533440589905,
-0.06469583511352539,
-0.4230906367301941,
0.5695670247077942,
-0.3669564127922058,
0.17040127515792847,
0.43615859746932983,
0.7798877358436584,
0.17638543248176575,
-1.1003233194351196,
-0.44321924448013306,
0.31612807512283325,
-0.003601249773055315,
0.23285694420337677,
-0.256595253944397,
0.0535447895526886,
0.38614413142204285,
0.31734493374824524,
-0.6486606001853943,
0.033260542899370193,
-0.9063690900802612,
-0.3841690719127655,
0.5841914415359497,
-0.14040105044841766,
0.24700118601322174,
-0.3043047785758972,
-0.6700194478034973,
-0.29870086908340454,
-0.2979978621006012,
0.519223153591156,
0.03942820802330971,
-0.300357848405838,
-0.1780110001564026,
0.4951525032520294,
-0.06391259282827377,
0.7209213376045227,
0.33245161175727844,
-0.2388109415769577,
0.2613619267940521,
0.15516848862171173,
-0.3623368442058563,
-0.1613633781671524,
0.5673643946647644,
0.55904221534729,
0.16375800967216492,
0.12708640098571777,
-0.1265803426504135,
0.24010923504829407,
0.09660877287387848,
-1.2031617164611816,
-0.5882245898246765,
0.11764559149742126,
-0.33734551072120667,
-0.2413831651210785,
0.3164557218551636,
-0.9295228123664856,
-0.12982530891895294,
-0.15489651262760162,
0.4669948220252991,
-0.34012898802757263,
-0.15053950250148773,
0.09772595763206482,
-0.3456643223762512,
0.5694974660873413,
0.38485613465309143,
-0.8271427154541016,
0.2699958384037018,
0.5675914287567139,
1.0479146242141724,
-0.023519091308116913,
-0.11047348380088806,
-0.2709326148033142,
-0.05831561237573624,
-0.22697483003139496,
0.9493808150291443,
-0.5358889698982239,
-0.06966038793325424,
-0.20141096413135529,
0.328887939453125,
-0.3997957706451416,
-0.6558107733726501,
0.3330425024032593,
-0.5202905535697937,
0.48131492733955383,
-0.30373838543891907,
-0.20400068163871765,
-0.6421743035316467,
0.14343184232711792,
-0.5326335430145264,
1.133379340171814,
0.45268234610557556,
-0.6078370213508606,
0.15122567117214203,
-0.7381893396377563,
-0.057234492152929306,
-0.09612858295440674,
-0.020754776895046234,
-0.7819344401359558,
-0.1823202669620514,
0.42498308420181274,
0.35661017894744873,
-0.18057890236377716,
-0.07915610820055008,
-0.276642769575119,
-0.14955729246139526,
0.021934259682893753,
0.13362380862236023,
0.9767480492591858,
0.10117015242576599,
-0.7267952561378479,
0.21489045023918152,
-0.4154599606990814,
-0.033487752079963684,
0.2522697448730469,
0.13316850364208221,
0.1727760136127472,
-0.46487534046173096,
0.47706785798072815,
0.6274548172950745,
0.12064686417579651,
-0.5817095041275024,
0.13146361708641052,
-0.41442084312438965,
0.5750653147697449,
0.5647423267364502,
-0.0060080732218921185,
0.4369977116584778,
-0.1781330704689026,
0.4960060119628906,
0.16022390127182007,
0.4862370789051056,
-0.11455759406089783,
-0.7582799196243286,
-0.8973870277404785,
-0.4794672429561615,
-0.04931177943944931,
0.49217456579208374,
-0.4712197482585907,
0.33171549439430237,
0.1545240432024002,
-0.7822262644767761,
-0.3524054288864136,
-0.106290303170681,
0.4351486563682556,
0.7093585729598999,
0.3276871144771576,
-0.5750358700752258,
-0.7560903429985046,
-1.051206350326538,
0.2473265379667282,
0.18679215013980865,
-0.1657802015542984,
0.2892184257507324,
0.5373305082321167,
-0.5909823179244995,
0.9884640574455261,
-0.6752720475196838,
-0.44290855526924133,
-0.18294811248779297,
-0.03568262234330177,
-0.059134241193532944,
0.4940601587295532,
0.8718807101249695,
-0.708113431930542,
-0.454487144947052,
-0.33028173446655273,
-0.720689058303833,
-0.08011284470558167,
0.2013522833585739,
-0.33815115690231323,
0.23710612952709198,
0.22886981070041656,
-0.5975977778434753,
0.5972857475280762,
0.37064698338508606,
-0.3242945373058319,
0.6120722889900208,
0.10092298686504364,
-0.10349368304014206,
-0.8823338150978088,
0.21157270669937134,
0.19850386679172516,
-0.36315062642097473,
-0.48812147974967957,
0.09691977500915527,
0.12019495666027069,
-0.32810869812965393,
-0.5529719591140747,
0.4995255470275879,
-0.547153890132904,
-0.34889763593673706,
-0.43880367279052734,
-0.20757383108139038,
0.28342413902282715,
0.6208999156951904,
0.3583897054195404,
0.5102310180664062,
0.9665631055831909,
-0.39438989758491516,
0.3815074861049652,
0.3182501792907715,
-0.34347209334373474,
0.4402381479740143,
-0.9078406095504761,
0.1865067183971405,
-0.27955159544944763,
0.6387045979499817,
-1.1752305030822754,
-0.5727816224098206,
0.5178653597831726,
-0.32480132579803467,
0.28942349553108215,
-0.16566556692123413,
-0.1738700121641159,
-0.7643593549728394,
-0.5531876683235168,
0.5675464272499084,
0.636082649230957,
-0.7231333255767822,
0.26768195629119873,
0.6012756824493408,
0.12170172482728958,
-0.34896865487098694,
-0.9068173766136169,
-0.17879657447338104,
-0.17358945310115814,
-0.9958959817886353,
0.4644460678100586,
0.09569429606199265,
0.07465410977602005,
-0.17768749594688416,
-0.1288476437330246,
-0.07963696122169495,
-0.45471227169036865,
0.45832109451293945,
0.376186341047287,
-0.17274028062820435,
-0.4714280366897583,
0.10406427830457687,
-0.3169252574443817,
0.18824568390846252,
-0.4203015863895416,
0.5909274816513062,
-0.2553883492946625,
-0.04954272508621216,
-0.6999437212944031,
0.07095834612846375,
0.5987086296081543,
-0.390628844499588,
0.42082318663597107,
1.0802607536315918,
-0.7256556153297424,
-0.007628605235368013,
-0.8668311238288879,
-0.4399823546409607,
-0.4677678942680359,
0.373045951128006,
-0.3362576961517334,
-0.739919900894165,
0.7724552154541016,
0.049996789544820786,
0.029877878725528717,
0.6752609610557556,
0.5292861461639404,
0.10275689512491226,
0.8951953649520874,
0.6315666437149048,
0.3309224545955658,
0.5638274550437927,
-0.8587250709533691,
0.03616895154118538,
-1.1646678447723389,
-0.6685702204704285,
-0.061833128333091736,
-0.5466251373291016,
-0.31024858355522156,
-0.9213449358940125,
0.7141938209533691,
0.31978899240493774,
-0.15026170015335083,
0.5057963132858276,
-0.9273802638053894,
0.39507362246513367,
0.5152860879898071,
0.2722894251346588,
-0.3977350890636444,
0.26146653294563293,
0.20145845413208008,
-0.07403845340013504,
-0.5559393763542175,
-0.3735050559043884,
0.7765121459960938,
0.6025513410568237,
0.5313885807991028,
-0.25221389532089233,
0.3318001925945282,
-0.14454713463783264,
-0.011467410251498222,
-0.7214354276657104,
0.4459141790866852,
-0.0379369780421257,
-0.5399504899978638,
-0.11375627666711807,
0.07641791552305222,
-0.8544179797172546,
0.4101499915122986,
0.05074864998459816,
-1.1650187969207764,
0.5438722968101501,
0.11200378090143204,
-0.42606261372566223,
0.3298775851726532,
-0.7235713601112366,
1.0771805047988892,
-0.04232391342520714,
-0.38896211981773376,
0.11460123211145401,
-0.9735753536224365,
0.5359299182891846,
0.16143029928207397,
-0.2018275409936905,
-0.10957139730453491,
0.14678063988685608,
1.193631649017334,
-0.47140657901763916,
0.9489184617996216,
-0.45680853724479675,
0.3151286244392395,
0.5686990022659302,
-0.15772703289985657,
0.2843955457210541,
0.16416023671627045,
0.05441281199455261,
0.4211583733558655,
0.19009652733802795,
-0.4705547094345093,
-0.5179433226585388,
0.5418335795402527,
-0.9681277871131897,
-0.35685113072395325,
-0.37830182909965515,
-0.3498693108558655,
0.15525054931640625,
0.12567709386348724,
0.8000636696815491,
0.35696902871131897,
0.10918402671813965,
-0.061701785773038864,
0.6963525414466858,
-0.017634471878409386,
0.5028488636016846,
-0.007433697581291199,
-0.34296342730522156,
-0.5707439184188843,
0.6511410474777222,
0.10320606827735901,
0.15710404515266418,
0.2813759744167328,
0.2517859637737274,
-0.4428943991661072,
0.02596687711775303,
-0.5740122199058533,
0.44938135147094727,
-0.527791440486908,
-0.38646602630615234,
-0.7859120965003967,
-0.5004898309707642,
-0.7878425717353821,
-0.3001193404197693,
-0.568494439125061,
-0.5635709762573242,
-0.3114927113056183,
0.0576724149286747,
0.3521362543106079,
0.42893916368484497,
-0.3098476529121399,
0.558993399143219,
-0.2817660868167877,
0.2599235773086548,
0.5556564331054688,
0.16149970889091492,
-0.2551059126853943,
-0.524446964263916,
0.024676742032170296,
-0.03619010001420975,
-0.5635374784469604,
-0.8611671328544617,
0.36349841952323914,
0.13496944308280945,
0.2646752595901489,
0.7071112990379333,
-0.2653138339519501,
0.684736967086792,
-0.10111632943153381,
0.7033151388168335,
0.43120068311691284,
-0.7225043773651123,
0.8103742003440857,
-0.08979681134223938,
0.26504456996917725,
0.32197287678718567,
0.19865338504314423,
-0.5056716799736023,
-0.047171782702207565,
-0.5355986952781677,
-0.8659943342208862,
1.117418885231018,
0.10794362425804138,
-0.21260136365890503,
0.3407181203365326,
0.4765106439590454,
0.16060549020767212,
-0.001023227465339005,
-0.7395817041397095,
-0.21666526794433594,
-0.547082245349884,
0.2000943273305893,
0.016910512000322342,
-0.5269792675971985,
-0.1130850538611412,
-0.5099951028823853,
0.6020539402961731,
0.008080200292170048,
0.6037155985832214,
0.4010300040245056,
-0.14385031163692474,
-0.23144541680812836,
-0.49363642930984497,
0.6236523389816284,
0.6516019105911255,
-0.24131086468696594,
0.1633429229259491,
-0.14434543251991272,
-0.6449114680290222,
-0.20433545112609863,
0.32462477684020996,
-0.30547699332237244,
-0.08654741942882538,
0.24011652171611786,
1.1115062236785889,
-0.05807038024067879,
-0.27776792645454407,
0.597998321056366,
0.13857710361480713,
-0.3101961016654968,
-0.43675628304481506,
0.11011355370283127,
-0.07208877056837082,
0.3495974540710449,
0.15116305649280548,
0.40395525097846985,
0.342307448387146,
-0.2113700658082962,
0.17883886396884918,
0.3298492133617401,
-0.4388998746871948,
-0.4057807922363281,
0.8158156275749207,
-0.05873067304491997,
-0.1991499364376068,
0.558690071105957,
-0.14724399149417877,
-0.961175262928009,
0.9545809030532837,
0.647896409034729,
0.8128200173377991,
-0.4388282299041748,
0.3592895567417145,
0.739448070526123,
0.30040332674980164,
-0.0032540466636419296,
0.025724109262228012,
-0.10922124981880188,
-0.3601689338684082,
-0.1173003688454628,
-0.676796555519104,
-0.11809132248163223,
0.1940072476863861,
-0.5360341668128967,
0.31745320558547974,
-0.5838424563407898,
-0.0789865106344223,
0.12442982196807861,
0.07450695335865021,
-0.7768173217773438,
0.38565975427627563,
0.28643879294395447,
0.8522440195083618,
-0.8560615181922913,
0.6536204814910889,
0.8724270462989807,
-0.30564814805984497,
-0.6755098104476929,
-0.20451800525188446,
0.1310993731021881,
-1.0568135976791382,
0.3693729043006897,
0.8235259056091309,
-0.010208455845713615,
-0.25259390473365784,
-0.41370484232902527,
-0.8227812647819519,
1.2341234683990479,
0.27456122636795044,
-0.4106140732765198,
-0.012002578936517239,
0.3040487468242645,
0.31016337871551514,
-0.4844878017902374,
0.5738499164581299,
0.5622597336769104,
0.5310490131378174,
0.6145533323287964,
-0.7873865962028503,
0.05245520547032356,
-0.3502729833126068,
0.2997010350227356,
-0.06116902828216553,
-0.8117523789405823,
0.8639267683029175,
-0.3455633223056793,
-0.011859873309731483,
-0.08102872967720032,
0.6440295577049255,
0.25586557388305664,
0.5764182209968567,
0.5052855610847473,
0.7308443784713745,
0.5815295577049255,
-0.124448761343956,
0.8592379093170166,
-0.05162963271141052,
0.48237499594688416,
0.6503221988677979,
0.13671307265758514,
0.5400343537330627,
0.35402071475982666,
-0.02390807494521141,
0.49524587392807007,
1.0458688735961914,
-0.2788587212562561,
0.5517030954360962,
0.11879640817642212,
-0.04560059681534767,
-0.1245637759566307,
0.15215829014778137,
-0.5807464122772217,
0.7566758990287781,
0.28773146867752075,
-0.3972354531288147,
-0.30892106890678406,
0.34510552883148193,
0.0782201960682869,
-0.38209405541419983,
-0.26457151770591736,
0.5794036984443665,
-0.05754022300243378,
-0.7518839240074158,
0.6693090796470642,
0.2777586281299591,
0.7254405617713928,
-0.4809456765651703,
0.07802345603704453,
-0.20847590267658234,
0.266530841588974,
-0.3971368074417114,
-0.7094783186912537,
0.653579592704773,
-0.2079920768737793,
-0.24069789052009583,
0.03516345098614693,
0.7841203808784485,
-0.3741435706615448,
-0.830872654914856,
0.14850831031799316,
-0.03251511603593826,
0.3957253396511078,
-0.33173367381095886,
-0.8477827310562134,
0.3993757665157318,
-0.017419777810573578,
-0.42783495783805847,
0.22893589735031128,
0.05973757803440094,
-0.04697788134217262,
0.3684249520301819,
0.4495399296283722,
-0.30215033888816833,
0.13284210860729218,
-0.19175510108470917,
0.9505661725997925,
-0.24881765246391296,
-0.5856828093528748,
-0.5467517375946045,
0.528824508190155,
-0.22611762583255768,
-0.3263709843158722,
0.5354281663894653,
0.9244378209114075,
0.8105565309524536,
-0.2724418640136719,
0.5189759731292725,
-0.09254096448421478,
0.12067095190286636,
-0.28822973370552063,
0.5791149735450745,
-0.43292635679244995,
-0.13038493692874908,
-0.24798284471035004,
-1.1892322301864624,
-0.3821569085121155,
1.0981675386428833,
-0.5890344381332397,
0.10334781557321548,
0.46428099274635315,
1.0614227056503296,
-0.4094686508178711,
-0.11874961107969284,
0.0027612873818725348,
-0.06688645482063293,
0.3642134368419647,
0.6455909609794617,
0.28660687804222107,
-0.7152988910675049,
0.3608604371547699,
-0.7444205284118652,
-0.7254444360733032,
-0.31384047865867615,
-0.2920983135700226,
-0.906702995300293,
-0.753547191619873,
-0.524570107460022,
-0.4783058166503906,
-0.09337794035673141,
0.43017593026161194,
1.2870270013809204,
-0.7031471729278564,
-0.2120451033115387,
-0.16597983241081238,
-0.036066699773073196,
-0.19565512239933014,
-0.3173149824142456,
0.6433588862419128,
-0.04531577229499817,
-0.9140623807907104,
-0.06195662170648575,
0.41436415910720825,
-0.053870271891355515,
-0.23246623575687408,
-0.034529149532318115,
0.0961390808224678,
-0.09152382612228394,
0.7268841862678528,
0.4622131884098053,
-0.8208518624305725,
-0.1662825345993042,
-0.03422265127301216,
-0.02621239237487316,
0.21064390242099762,
0.6197989583015442,
-0.6927834749221802,
0.596795916557312,
0.3534317910671234,
0.3252915143966675,
1.1074138879776,
-0.07902941107749939,
0.009756403043866158,
-0.39482295513153076,
0.3400450050830841,
0.16808490455150604,
0.3701416254043579,
0.36832085251808167,
-0.49755001068115234,
0.46349260210990906,
0.4172897934913635,
-0.6084561944007874,
-0.551333487033844,
0.2693464159965515,
-1.430797815322876,
-0.07900983095169067,
1.1363612413406372,
-0.2151689976453781,
-0.6092841029167175,
0.3126862049102783,
-0.5652629733085632,
0.32823634147644043,
-0.0990082398056984,
0.8751963973045349,
0.19094648957252502,
-0.42125070095062256,
-0.45749616622924805,
-0.15912236273288727,
0.5100595951080322,
0.11005100607872009,
-0.7727668285369873,
-0.3841601610183716,
0.47800183296203613,
0.5976386070251465,
0.25713059306144714,
0.5278528332710266,
-0.33624181151390076,
0.5053326487541199,
0.112164206802845,
0.1854536384344101,
-0.22419506311416626,
-0.26447755098342896,
-0.14365002512931824,
0.2692163288593292,
-0.37311026453971863,
-0.6309434175491333
] |
mncai/Mistral-7B-guanaco1k-ep2 | mncai | "2023-10-06T02:30:42Z" | 11,183 | 3 | transformers | [
"transformers",
"pytorch",
"llama",
"text-generation",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | text-generation | "2023-10-06T02:12:38Z" | Entry not found | [
-0.3227650225162506,
-0.22568431496620178,
0.862226128578186,
0.43461495637893677,
-0.5282987952232361,
0.7012965679168701,
0.7915717363357544,
0.07618638128042221,
0.7746025919914246,
0.2563219666481018,
-0.7852817177772522,
-0.22573819756507874,
-0.9104480743408203,
0.5715669393539429,
-0.3992334008216858,
0.5791245698928833,
-0.14494505524635315,
-0.10751161724328995,
0.28233757615089417,
-0.2768954336643219,
-0.5409224033355713,
-0.36855220794677734,
-1.1902776956558228,
0.061491113156080246,
0.5316578149795532,
0.7435142397880554,
0.7584060430526733,
0.3652167320251465,
0.6432578563690186,
0.3932291269302368,
-0.23138920962810516,
0.4827055037021637,
-0.04171813279390335,
0.00260411505587399,
-0.3524433970451355,
-0.5516898036003113,
-0.28596609830856323,
0.07584730535745621,
1.0961304903030396,
0.966687798500061,
-0.284663587808609,
0.05330817773938179,
-0.3063621520996094,
0.33088892698287964,
-0.49734312295913696,
0.3054099678993225,
-0.022506045177578926,
0.16318801045417786,
-0.7041513919830322,
-0.5535354018211365,
0.012794834561645985,
-0.7361212968826294,
0.17926570773124695,
-0.690081000328064,
0.8269098401069641,
0.18583157658576965,
1.1533750295639038,
0.14819414913654327,
-0.462487131357193,
-0.8161764144897461,
-0.6538989543914795,
0.5711171627044678,
-0.32703715562820435,
0.39680248498916626,
0.7028235197067261,
-0.048573412001132965,
-0.9820332527160645,
-0.6745741367340088,
-0.46466192603111267,
0.2923962473869324,
0.35402774810791016,
-0.3411678075790405,
-0.17522086203098297,
-0.3058989644050598,
0.15792037546634674,
0.12811517715454102,
-0.4841994643211365,
-0.5543919205665588,
-0.5475160479545593,
-0.3960252106189728,
0.6206658482551575,
0.3482950031757355,
0.2429177463054657,
-0.1888415813446045,
-0.3228583335876465,
0.0880163162946701,
-0.4160851538181305,
0.3402571678161621,
0.6335517168045044,
0.7114017009735107,
-0.5811444520950317,
0.560215950012207,
-0.04927587881684303,
0.7439703941345215,
0.11445561796426773,
-0.27478092908859253,
0.41460567712783813,
-0.14724725484848022,
0.055171746760606766,
0.4226345121860504,
0.31524422764778137,
0.2841312289237976,
-0.3273695111274719,
0.2032228708267212,
-0.3215144872665405,
-0.30496224761009216,
-0.22332167625427246,
-0.29490774869918823,
-0.3592180609703064,
0.5492289066314697,
-0.3314017057418823,
-0.42855486273765564,
1.143175721168518,
-0.4200771450996399,
-0.7302224040031433,
0.33156412839889526,
0.4065209925174713,
-0.0994480773806572,
-0.37146568298339844,
-0.052260834723711014,
-0.8458789587020874,
-0.007907390594482422,
0.7491172552108765,
-0.7198970913887024,
0.3371737599372864,
0.4728063642978668,
0.7417217493057251,
0.19650575518608093,
-0.14034469425678253,
-0.42949390411376953,
0.2971969544887543,
-0.8659994006156921,
0.6320174336433411,
-0.20135220885276794,
-1.0051977634429932,
0.11150479316711426,
0.8971705436706543,
-0.37896400690078735,
-1.2094876766204834,
1.0605159997940063,
-0.6887932419776917,
0.16017857193946838,
-0.676761269569397,
-0.14661237597465515,
-0.07118501514196396,
-0.005096632521599531,
-0.6088156700134277,
0.7567102313041687,
0.587267279624939,
-0.4995276927947998,
0.21429483592510223,
-0.26029831171035767,
-0.39151400327682495,
0.38824859261512756,
-0.07935450226068497,
-0.21858926117420197,
0.713833212852478,
-0.6647079586982727,
-0.26932814717292786,
0.2942774295806885,
0.2368936538696289,
-0.35706108808517456,
-0.7931919097900391,
0.08478113263845444,
-0.05786270648241043,
1.550750494003296,
-0.03868847340345383,
-0.3586106300354004,
-0.679383397102356,
-1.1506240367889404,
-0.07070787996053696,
0.6886883974075317,
-0.9194989204406738,
-0.27839475870132446,
-0.046410128474235535,
-0.26169314980506897,
0.08994917571544647,
0.7390589714050293,
-1.1194051504135132,
0.2832726836204529,
-0.05092663690447807,
-0.22794683277606964,
0.8271058797836304,
0.15387225151062012,
0.24758946895599365,
0.14913396537303925,
0.42958706617355347,
0.527725338935852,
0.11115207523107529,
0.683587908744812,
-0.34720373153686523,
-0.9694353938102722,
0.6154631972312927,
0.25266361236572266,
0.8121447563171387,
-0.49945297837257385,
0.2685093879699707,
0.27025535702705383,
-0.3409680724143982,
-0.5682371854782104,
-0.3102838397026062,
0.09025752544403076,
0.14930562674999237,
0.11142510175704956,
-0.5721710324287415,
-0.6576125025749207,
-0.9689140319824219,
-0.13590654730796814,
-0.4314374029636383,
-0.3571570813655853,
0.21006910502910614,
0.5792906284332275,
-1.1975523233413696,
0.4128875136375427,
-0.7705625891685486,
-0.7038741111755371,
-0.01065548975020647,
-0.19338123500347137,
0.7540656328201294,
0.43240174651145935,
0.5033966898918152,
-0.6397148370742798,
-0.5661987066268921,
-0.22470176219940186,
-1.0333747863769531,
-0.13280506432056427,
0.24819621443748474,
0.3065737783908844,
-0.13423344492912292,
-0.2744963765144348,
-0.48740333318710327,
0.8100387454032898,
0.14789170026779175,
-0.5391897559165955,
0.5220767259597778,
-0.3020317256450653,
0.17224803566932678,
-0.6369150280952454,
-0.06916818022727966,
-0.661676287651062,
-0.0009071884560398757,
-0.3608308732509613,
-0.5737438797950745,
0.14772287011146545,
0.07017494738101959,
-0.16065457463264465,
0.28808408975601196,
-0.909277081489563,
-0.0010852962732315063,
-0.7442210912704468,
0.379071980714798,
0.06394772231578827,
-0.3145078718662262,
-0.017517540603876114,
1.0000386238098145,
0.7784460783004761,
-0.3848048746585846,
0.721744179725647,
0.4440041184425354,
0.19036155939102173,
0.7630521059036255,
-0.18725109100341797,
0.16478213667869568,
-0.5245416760444641,
-0.12161104381084442,
-0.8887597918510437,
-1.0982946157455444,
0.7320570349693298,
-0.6114250421524048,
0.36542922258377075,
-0.4277869760990143,
0.2589159905910492,
-0.6919258832931519,
-0.03885362669825554,
0.4808599352836609,
-0.05936325341463089,
-0.6863942742347717,
0.5232570171356201,
0.45317530632019043,
-0.2019241601228714,
-0.6609031558036804,
-0.530157208442688,
0.39365822076797485,
0.6154114007949829,
-0.16390392184257507,
0.06878514587879181,
0.14941060543060303,
-0.5441926121711731,
-0.040802597999572754,
-0.38691970705986023,
-0.45766758918762207,
0.054224006831645966,
0.13053473830223083,
-0.005750799085944891,
-0.404820054769516,
-0.0868026465177536,
-0.35842007398605347,
-0.4656120240688324,
0.21876516938209534,
0.3011947274208069,
-0.04096309468150139,
-0.42599788308143616,
-0.3619818687438965,
-0.888181209564209,
0.6719610095024109,
0.5370282530784607,
0.05281545966863632,
0.7555549740791321,
0.16819314658641815,
-0.8014987707138062,
-0.13532210886478424,
-0.1760706603527069,
0.2696830928325653,
-0.5588056445121765,
0.13849826157093048,
-0.013484534807503223,
-0.0637492910027504,
0.26297882199287415,
0.25386232137680054,
-0.4300556778907776,
0.9276250004768372,
-0.2615274488925934,
-0.3592521846294403,
0.7960181832313538,
0.5974742770195007,
0.49583131074905396,
0.16503219306468964,
-0.044541798532009125,
0.900709331035614,
-1.1966516971588135,
-0.6563175916671753,
-0.7409549355506897,
-0.15945707261562347,
-0.43510833382606506,
-0.032105933874845505,
0.6254412531852722,
0.2900990843772888,
-0.1333388388156891,
0.4756395220756531,
-0.5243489742279053,
0.3556033670902252,
1.01198410987854,
0.35748639702796936,
0.3435698449611664,
-0.7570229172706604,
-0.2515777349472046,
-0.1402427852153778,
-0.9998157620429993,
-0.2631377875804901,
0.8871029019355774,
0.22752606868743896,
0.844460666179657,
0.5992541313171387,
0.6784542798995972,
0.1367226243019104,
0.2523828148841858,
-0.30590319633483887,
0.3920294940471649,
0.4376082420349121,
-1.0401138067245483,
-0.42758408188819885,
0.021418681368231773,
-0.9703338742256165,
-0.14227519929409027,
-0.03495011106133461,
-0.42617112398147583,
0.7681737542152405,
0.00016589462757110596,
-0.4076709747314453,
0.7732734084129333,
-0.455583393573761,
0.7562873363494873,
-0.4473648965358734,
-0.02663906291127205,
0.4699096083641052,
-0.7070636749267578,
0.4677430987358093,
0.12878790497779846,
0.6205843091011047,
-0.015572631731629372,
-0.04078587517142296,
0.7104941606521606,
-0.9129160046577454,
0.25438642501831055,
-0.6348397135734558,
0.22421300411224365,
0.24246945977210999,
0.51606285572052,
0.5969953536987305,
0.4371243417263031,
0.10119888931512833,
-0.23920902609825134,
0.04115807265043259,
-0.8241125345230103,
-0.210506409406662,
0.697515606880188,
-0.7186890840530396,
-0.6864197850227356,
-1.2355337142944336,
0.14438660442829132,
0.27347055077552795,
0.389305055141449,
0.7959296107292175,
0.571408748626709,
0.1289544403553009,
0.680525004863739,
0.9888588190078735,
-0.0688566341996193,
0.9166924357414246,
0.3224477171897888,
0.09175168722867966,
-0.21944808959960938,
0.7036820650100708,
0.26627904176712036,
-0.24707956612110138,
-0.11939732730388641,
0.20913465321063995,
-0.11069409549236298,
-0.591761589050293,
-0.49990686774253845,
0.3701757788658142,
-0.6731787919998169,
-0.18303893506526947,
-0.6243735551834106,
-0.6043769717216492,
-0.511759340763092,
0.06927360594272614,
-0.7147687673568726,
0.23979046940803528,
-0.7753565907478333,
-0.10574902594089508,
0.04323432594537735,
0.9792009592056274,
-0.589311957359314,
0.5805224180221558,
-1.1218582391738892,
0.19345788657665253,
-0.07949887961149216,
0.7921058535575867,
0.21395787596702576,
-0.7344395518302917,
-0.3975418508052826,
-0.11592631042003632,
-0.3729911744594574,
-1.3576762676239014,
0.21404948830604553,
-0.2454141080379486,
0.23094046115875244,
0.6145404577255249,
0.1397707313299179,
0.5258248448371887,
-0.34326282143592834,
0.7029101848602295,
-0.057017259299755096,
-0.7069286704063416,
0.7934495210647583,
-0.5026894807815552,
0.4963534474372864,
0.9765996932983398,
0.5333835482597351,
-0.7984007596969604,
0.035741209983825684,
-1.041123390197754,
-0.6008695363998413,
0.38426393270492554,
0.11928944289684296,
-0.03601083159446716,
-0.6659559011459351,
-0.054019637405872345,
-0.16143807768821716,
0.6043745279312134,
-1.039069414138794,
-0.7858356237411499,
0.2576698362827301,
0.5277302861213684,
0.0816856250166893,
-0.5653398633003235,
0.20880667865276337,
-0.544416069984436,
1.0657774209976196,
0.45109400153160095,
0.3274499475955963,
0.8406060934066772,
0.46492424607276917,
-0.3823164403438568,
0.09252490103244781,
0.7662695050239563,
0.6666232347488403,
-0.5239797830581665,
-0.2908027470111847,
-0.08827541768550873,
-0.9143403768539429,
0.05927472561597824,
0.11168918758630753,
-0.013455932028591633,
0.9082110524177551,
0.5793083310127258,
0.2539709210395813,
0.4514279365539551,
-0.726460337638855,
0.8859451413154602,
-0.14954176545143127,
-0.12472866475582123,
-1.0677239894866943,
0.1948619782924652,
-0.23984959721565247,
0.5006402134895325,
1.0061326026916504,
0.5250048041343689,
-0.047630298882722855,
-0.8143380880355835,
-0.01473585981875658,
0.6939172148704529,
-0.7091123461723328,
-0.17449834942817688,
0.944853663444519,
0.3847099542617798,
-1.2953051328659058,
1.106776475906372,
-0.5381771326065063,
-0.560332179069519,
0.9121301770210266,
0.522956907749176,
1.1221847534179688,
-0.44204121828079224,
0.0008676342549733818,
0.2662237286567688,
0.41378432512283325,
0.5423170328140259,
1.0869629383087158,
0.431413471698761,
-0.7931063771247864,
0.8826584815979004,
-0.24776044487953186,
-0.40361151099205017,
-0.05347571521997452,
-0.42859897017478943,
0.16892178356647491,
-0.4406192898750305,
-0.10713007301092148,
-0.3444187641143799,
0.28543180227279663,
-0.7072042226791382,
0.42807620763778687,
-0.0838567465543747,
0.8653068542480469,
-0.8553727269172668,
0.47207626700401306,
0.635470449924469,
-0.3337355852127075,
-0.8508191108703613,
-0.26198428869247437,
-0.11448462307453156,
-0.6389466524124146,
0.30214807391166687,
-0.4554102420806885,
0.044398851692676544,
0.09623463451862335,
-0.649151623249054,
-1.1778275966644287,
0.9093633890151978,
-0.639612078666687,
-0.2784462869167328,
0.20464053750038147,
-0.11514760553836823,
0.28811705112457275,
-0.2524643540382385,
0.010661216452717781,
0.41876548528671265,
0.748940110206604,
0.2844654619693756,
-0.7727053761482239,
-0.3694884479045868,
0.0015032943338155746,
-0.44474777579307556,
0.7582978010177612,
-0.6002101898193359,
1.1840779781341553,
-0.5563543438911438,
-0.059654366225004196,
0.44384512305259705,
0.24690914154052734,
0.21076197922229767,
0.6629220843315125,
0.1442081481218338,
0.7282265424728394,
1.07012140750885,
-0.40835219621658325,
0.8811809420585632,
0.26432839035987854,
0.47430819272994995,
0.7238501906394958,
-0.6487724781036377,
0.7513749003410339,
0.31810489296913147,
-0.5682924389839172,
0.9228013753890991,
1.2906063795089722,
-0.15699204802513123,
0.8079374432563782,
0.05136508867144585,
-1.081600546836853,
0.325833261013031,
-0.20724765956401825,
-0.7530064582824707,
0.3150254189968109,
0.19055864214897156,
-0.6920982599258423,
-0.5770308971405029,
-0.24046507477760315,
-0.35662803053855896,
-0.11552901566028595,
-0.7631728649139404,
0.6720563769340515,
-0.016969164833426476,
-0.5103683471679688,
0.18857547640800476,
0.2877499461174011,
0.17368432879447937,
-0.5235732793807983,
-0.02939440682530403,
-0.22823619842529297,
0.2660655975341797,
-0.5670853853225708,
-0.5234526991844177,
0.5724433064460754,
-0.32430219650268555,
-0.5343255400657654,
0.18147465586662292,
0.763587236404419,
-0.16923809051513672,
-0.4515409469604492,
0.32472723722457886,
0.6959525346755981,
0.1665852814912796,
0.4250282347202301,
-0.23511263728141785,
0.24480605125427246,
-0.08044824004173279,
-0.06651552021503448,
0.27714768052101135,
0.3449169099330902,
0.22435641288757324,
0.4450142979621887,
0.43285664916038513,
-0.01808755099773407,
-0.10736498981714249,
-0.382819801568985,
0.4124940037727356,
-0.9542785882949829,
-0.5713282823562622,
-0.6307113766670227,
0.2740660607814789,
-0.02315417304635048,
-1.0836423635482788,
0.4145168364048004,
1.4406683444976807,
1.0359982252120972,
-0.4756383001804352,
1.067226529121399,
-0.21818485856056213,
0.9594791531562805,
0.41483086347579956,
0.5420440435409546,
-0.6030411720275879,
0.03835370019078255,
-0.4364396035671234,
-1.076962947845459,
-0.35716333985328674,
0.4539391100406647,
-0.022899555042386055,
-0.3429867625236511,
0.872571587562561,
0.5887166261672974,
-0.33473607897758484,
-0.11728022992610931,
0.048487238585948944,
-0.029941488057374954,
-0.12433847039937973,
0.5145376324653625,
0.7648399472236633,
-0.9344304800033569,
-0.10680416971445084,
-0.21577754616737366,
-0.6382725834846497,
-0.5047279000282288,
-0.9632009267807007,
-0.12959396839141846,
-0.16037796437740326,
0.035343267023563385,
-0.5662806630134583,
0.00255737011320889,
1.208324909210205,
0.5684957504272461,
-1.1113994121551514,
-0.5303789377212524,
0.3371853232383728,
0.3920421898365021,
-0.1874791383743286,
-0.24202413856983185,
0.2984568774700165,
0.15382249653339386,
-0.5908876657485962,
0.6875665783882141,
0.8089625239372253,
0.208888977766037,
0.19554761052131653,
0.15893013775348663,
-0.8229473829269409,
-0.14913435280323029,
0.17440445721149445,
0.9450570344924927,
-0.939853310585022,
-0.7114843130111694,
-0.03168516233563423,
-0.27094873785972595,
-0.05765746906399727,
0.17102102935314178,
-0.4046344757080078,
0.5180677175521851,
0.34591493010520935,
0.49933457374572754,
0.0561608150601387,
-0.054746925830841064,
0.5409556031227112,
-0.9069057703018188,
0.09425963461399078,
0.4134361147880554,
0.4154115319252014,
-0.4000864028930664,
-0.5910194516181946,
0.6713420748710632,
1.0073972940444946,
-0.6594868898391724,
-0.8743268847465515,
-0.19846712052822113,
-1.0016002655029297,
0.04189709946513176,
0.6762762069702148,
0.5009527802467346,
-0.4806513786315918,
-0.4174500107765198,
-0.5617399215698242,
-0.1254672110080719,
-0.1369970738887787,
0.7621601819992065,
1.179680585861206,
-0.7432094812393188,
0.07975747436285019,
-1.038639783859253,
0.6594986915588379,
-0.2419457733631134,
-0.3457581698894501,
-0.48644304275512695,
0.3832802176475525,
0.35236993432044983,
0.440481036901474,
0.614812433719635,
0.1408471167087555,
0.8338426351547241,
0.3126053214073181,
-0.1702686995267868,
0.2698982357978821,
-0.4559200704097748,
-0.028932858258485794,
-0.057962555438280106,
0.31015971302986145,
-1.0262157917022705
] |
Open-Orca/Mistral-7B-SlimOrca | Open-Orca | "2023-11-18T00:14:57Z" | 11,175 | 15 | transformers | [
"transformers",
"pytorch",
"mistral",
"text-generation",
"en",
"dataset:Open-Orca/SlimOrca",
"arxiv:2306.02707",
"arxiv:2301.13688",
"license:apache-2.0",
"endpoints_compatible",
"has_space",
"text-generation-inference",
"region:us"
] | text-generation | "2023-10-08T17:42:56Z" | ---
datasets:
- Open-Orca/SlimOrca
language:
- en
library_name: transformers
pipeline_tag: text-generation
license: apache-2.0
---
<p><h1>🐋 Mistral-7B-SlimOrca 🐋</h1></p>
PRE-RELEASE, DEMO MODEL
![OpenOrca Logo](https://huggingface.co/Open-Orca/Mistral-7B-OpenOrca/resolve/main/Images/MistralOrcaLogo.png "MistralOrca Logo")
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
# OpenOrca - Mistral - 7B - 8k - Slim Data!
We have used our own [OpenOrca dataset](https://huggingface.co/datasets/Open-Orca/OpenOrca) to fine-tune on top of [Mistral 7B](https://huggingface.co/mistralai/Mistral-7B-v0.1).
This dataset is our attempt to reproduce the dataset generated for Microsoft Research's [Orca Paper](https://arxiv.org/abs/2306.02707).
We use [OpenChat](https://huggingface.co/openchat) packing, trained with [Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl).
This model is being released as a demonstration of the performance of our new curated subset of the OpenOrca data: **[SlimOrca](https://huggingface.co/datasets/Open-Orca/SlimOrca)**.
This new dataset release provides an efficient means of reaching performance on-par with using larger slices of our data, while only including ~500k GPT-4 completions.
HF Leaderboard evals place this model as near parity with our recent [MistralOrca](https://huggingface.co/Open-Orca/Mistral-7B-OpenOrca) release, which was the #1 model at release time recently.
Codename: "*MistralSlimOrca*"
We are in-process with training more models, so keep a look out on our org for releases coming soon with exciting partners.
We will also give sneak-peak announcements on our Discord, which you can find here:
https://AlignmentLab.ai
or check the OpenAccess AI Collective Discord for more information about Axolotl trainer here:
https://discord.gg/5y8STgB3P3
# Prompt Template
We used [OpenAI's Chat Markup Language (ChatML)](https://github.com/openai/openai-python/blob/main/chatml.md) format, with `<|im_start|>` and `<|im_end|>` tokens added to support this.
This means that, e.g., in [oobabooga](https://github.com/oobabooga/text-generation-webui/) the "`MPT-Chat`" instruction template should work, as it also uses ChatML.
This formatting is also available via a pre-defined [Transformers chat template](https://huggingface.co/docs/transformers/main/chat_templating),
which means that lists of messages can be formatted for you with the `apply_chat_template()` method:
```python
chat = [
{"role": "system", "content": "You are MistralSlimOrca, a large language model trained by Alignment Lab AI. Write out your reasoning step-by-step to be sure you get the right answers!"}
{"role": "user", "content": "How are you?"},
{"role": "assistant", "content": "I am doing well!"},
{"role": "user", "content": "Please tell me about how mistral winds have attracted super-orcas."},
]
tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
```
which will yield:
```
<|im_start|>system
You are MistralSlimOrca, a large language model trained by Alignment Lab AI. Write out your reasoning step-by-step to be sure you get the right answers!
<|im_end|>
<|im_start|>user
How are you?<|im_end|>
<|im_start|>assistant
I am doing well!<|im_end|>
<|im_start|>user
Please tell me about how mistral winds have attracted super-orcas.<|im_end|>
<|im_start|>assistant
```
If you use `tokenize=True` and `return_tensors="pt"` instead, then you will get a tokenized
and formatted conversation ready to pass to `model.generate()`.
# Inference
See [this notebook](https://colab.research.google.com/drive/tbd) for inference details.
Note that you need the development snapshot of Transformers currently, as support for Mistral hasn't been released into PyPI yet:
```
pip install git+https://github.com/huggingface/transformers
```
# Evaluation
## HuggingFace Leaderboard Performance
We have evaluated using the methodology and tools for the HuggingFace Leaderboard, and find that we have dramatically improved upon the base model.
We find **106%** of the base model's performance on HF Leaderboard evals, averaging **65.85**.
This is also **98.6%** of *`Llama2-70b-chat`*'s performance!
![HF Leaderboard](https://huggingface.co/Open-Orca/Mistral-7B-SlimOrca/resolve/main/Images/MistralSlimOrca7BHFLeaderboard.png)
| Metric | Value |
|-----------------------|-------|
| MMLU (5-shot) | 62.77 |
| ARC (25-shot) | 62.54 |
| HellaSwag (10-shot) | 83.86 |
| TruthfulQA (0-shot) | 54.23 |
| Avg. | 65.85 |
We use [Language Model Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness) to run the benchmark tests above, using the same version as the HuggingFace LLM Leaderboard.
# Dataset
We used a curated, filtered selection of most of the GPT-4 augmented data from our OpenOrca dataset, which aims to reproduce the Orca Research Paper dataset.
The key change in this dataset is that we've done an additional pass, using GPT-4 to remove answers which appear wrong based on the human annotations from the FLAN dataset.
This reduces the dataset size to only ~500k entries, allowing training to a similar quality level to our previous releases with 2/3 the compute requirement.
# Training
We trained with 8x A6000 GPUs for 40 hours, completing 4 epochs of full fine tuning on our dataset in one training run.
Commodity cost was ~$240.
# Citation
```bibtex
@software{lian2023mistralslimorca1
title = {MistralSlimOrca: Mistral-7B Model Instruct-tuned on Filtered, Corrected, OpenOrcaV1 GPT-4 Dataset},
author = {Wing Lian and Bleys Goodson and Guan Wang and Eugene Pentland and Austin Cook and Chanvichet Vong and "Teknium"},
year = {2023},
publisher = {HuggingFace},
url = {https://huggingface.co/Open-Orca/Mistral-7B-SlimOrca}
}
@misc{SlimOrca,
title = {SlimOrca: An Open Dataset of GPT-4 Augmented FLAN Reasoning Traces, with Verification},
author = {Wing Lian and Guan Wang and Bleys Goodson and Eugene Pentland and Austin Cook and Chanvichet Vong and "Teknium"},
year = {2023},
publisher = {HuggingFace},
url = {https://https://huggingface.co/Open-Orca/SlimOrca}
}
@misc{mukherjee2023orca,
title={Orca: Progressive Learning from Complex Explanation Traces of GPT-4},
author={Subhabrata Mukherjee and Arindam Mitra and Ganesh Jawahar and Sahaj Agarwal and Hamid Palangi and Ahmed Awadallah},
year={2023},
eprint={2306.02707},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
@misc{longpre2023flan,
title={The Flan Collection: Designing Data and Methods for Effective Instruction Tuning},
author={Shayne Longpre and Le Hou and Tu Vu and Albert Webson and Hyung Won Chung and Yi Tay and Denny Zhou and Quoc V. Le and Barret Zoph and Jason Wei and Adam Roberts},
year={2023},
eprint={2301.13688},
archivePrefix={arXiv},
primaryClass={cs.AI}
}
```
| [
-0.3730323016643524,
-0.7430622577667236,
-0.0032051075249910355,
0.04807835817337036,
-0.07414204627275467,
-0.16033263504505157,
-0.25366827845573425,
-0.7110114693641663,
0.1725117564201355,
0.15621480345726013,
-0.4534774720668793,
-0.5151094198226929,
-0.4020672142505646,
-0.042891308665275574,
-0.2806593179702759,
1.1358885765075684,
-0.20611333847045898,
-0.27073219418525696,
0.007129347417503595,
-0.3381424844264984,
-0.3186781704425812,
-0.5546241402626038,
-0.850661039352417,
-0.3593563735485077,
0.5057554841041565,
0.11786641925573349,
0.7837822437286377,
0.8079757690429688,
0.2806081771850586,
0.32712459564208984,
-0.36432528495788574,
0.2960379123687744,
-0.5930115580558777,
-0.07136916369199753,
-0.06193036958575249,
-0.5045475959777832,
-0.7889363765716553,
0.02360907383263111,
0.3232552409172058,
0.22516177594661713,
-0.34558892250061035,
0.368335485458374,
0.19115325808525085,
0.2831880450248718,
-0.5870192050933838,
0.441025048494339,
-0.23649699985980988,
-0.0982576310634613,
-0.355020135641098,
0.12794692814350128,
-0.15662258863449097,
-0.2786504030227661,
0.10783398151397705,
-0.8938758373260498,
0.17583675682544708,
0.046118490397930145,
1.2258329391479492,
0.20702619850635529,
-0.19816911220550537,
-0.14175941050052643,
-0.4542034864425659,
0.5821167826652527,
-0.6899972558021545,
0.4540962278842926,
0.23168878257274628,
0.2600262463092804,
-0.2713989019393921,
-0.9653100967407227,
-0.6457260847091675,
-0.043079737573862076,
-0.019788382574915886,
0.31221187114715576,
-0.3111407458782196,
-0.0405430905520916,
0.2191881239414215,
0.4860072135925293,
-0.6294943690299988,
0.00892044696956873,
-0.4558522701263428,
-0.3602462410926819,
0.6407043933868408,
0.0857778862118721,
0.21095341444015503,
0.10844552516937256,
-0.36299630999565125,
-0.6057145595550537,
-0.45668861269950867,
0.31721997261047363,
0.35456278920173645,
0.3226498067378998,
-0.5908957123756409,
0.4890996813774109,
0.07322082668542862,
0.5704216361045837,
0.15444086492061615,
-0.4009785056114197,
0.4278285503387451,
-0.31386473774909973,
-0.30961132049560547,
-0.11829933524131775,
0.9670391082763672,
0.1519983559846878,
0.016498927026987076,
0.1846344769001007,
-0.19381512701511383,
0.1317865252494812,
-0.0269487164914608,
-0.8208493590354919,
-0.30250653624534607,
0.29571837186813354,
-0.39071255922317505,
-0.302994966506958,
0.22269506752490997,
-0.5680519938468933,
-0.22702327370643616,
-0.1523127257823944,
0.39422234892845154,
-0.5761342644691467,
-0.5251469016075134,
0.2798082232475281,
-0.2394864559173584,
0.32345321774482727,
0.5329853296279907,
-0.7418482899665833,
0.41137489676475525,
0.5835290551185608,
0.9401468634605408,
-0.03962096571922302,
-0.2922132611274719,
-0.18375670909881592,
-0.21023602783679962,
-0.2388833612203598,
0.6163698434829712,
-0.2280888706445694,
-0.26721954345703125,
-0.2016095072031021,
-0.11888081580400467,
-0.20386476814746857,
-0.524661660194397,
0.5761821269989014,
-0.24816684424877167,
0.49061307311058044,
-0.3732728660106659,
-0.2396409958600998,
-0.3192049264907837,
0.12340082973241806,
-0.5654686093330383,
1.2551236152648926,
0.33734458684921265,
-0.9422374963760376,
0.1679885983467102,
-0.6333380937576294,
-0.14856603741645813,
-0.2523114085197449,
-0.08894345909357071,
-0.48652511835098267,
-0.2158583104610443,
0.46884843707084656,
0.20070260763168335,
-0.38244107365608215,
-0.013796509243547916,
-0.36038586497306824,
-0.2596418261528015,
0.22546406090259552,
-0.2238282561302185,
0.9347856044769287,
0.3676352798938751,
-0.5910321474075317,
0.0033732294104993343,
-0.4838966429233551,
-0.08454306423664093,
0.17010551691055298,
-0.22678279876708984,
-0.08379349112510681,
-0.2968626022338867,
0.0557752326130867,
0.3122413158416748,
0.38805335760116577,
-0.5277444124221802,
0.37221506237983704,
-0.3317166864871979,
0.5388030409812927,
0.8099530935287476,
-0.15074263513088226,
0.279883474111557,
-0.43251463770866394,
0.5907042026519775,
0.15113544464111328,
0.546254575252533,
-0.10731315612792969,
-0.691275417804718,
-0.9039314985275269,
-0.43059414625167847,
0.35494065284729004,
0.39501065015792847,
-0.6729288697242737,
0.40107235312461853,
-0.17896698415279388,
-0.6692224144935608,
-0.5626726746559143,
-0.007788180373609066,
0.50035160779953,
0.6329541802406311,
0.4137883484363556,
-0.5235010981559753,
-0.41902539134025574,
-0.5711498260498047,
-0.014203273691236973,
-0.4603710174560547,
0.11975482851266861,
0.26833727955818176,
0.48812612891197205,
-0.17345686256885529,
1.048353672027588,
-0.49768516421318054,
-0.36161908507347107,
-0.17179358005523682,
-0.00041602362762205303,
0.2716684639453888,
0.5145918726921082,
0.7312940359115601,
-0.6570075154304504,
-0.3604879379272461,
0.16225628554821014,
-0.8045645952224731,
-0.03004680573940277,
0.08338223397731781,
-0.3541240990161896,
0.17733392119407654,
0.3367987871170044,
-0.8088762164115906,
0.6261078715324402,
0.5476779937744141,
-0.4542059302330017,
0.4992436170578003,
-0.08244127035140991,
-0.04672158136963844,
-1.0304551124572754,
0.2725684344768524,
0.22982251644134521,
-0.14549106359481812,
-0.46609416604042053,
0.06660893559455872,
-0.07547251880168915,
0.007833010517060757,
-0.398339182138443,
0.7035099267959595,
-0.41918760538101196,
0.1949535757303238,
0.03365958482027054,
0.11772900819778442,
-0.044403258711099625,
0.6499056220054626,
-0.033250898122787476,
0.5974192023277283,
0.6580144166946411,
-0.422762930393219,
0.31967779994010925,
0.3842368423938751,
-0.09267877787351608,
0.32101649045944214,
-0.8635560274124146,
0.14582137763500214,
-0.09702742844820023,
0.623291015625,
-0.8348450064659119,
-0.28872478008270264,
0.5893107652664185,
-0.5166018605232239,
0.3680501878261566,
-0.12004885822534561,
-0.4199541211128235,
-0.5068643689155579,
-0.3422251045703888,
0.4558110535144806,
0.5591403841972351,
-0.7030582427978516,
0.700984537601471,
0.2008884698152542,
0.041100770235061646,
-0.743231475353241,
-0.5582097172737122,
-0.24881570041179657,
-0.39989539980888367,
-0.7589206695556641,
0.3847401738166809,
-0.00943076517432928,
-0.09017865359783173,
-0.1491926908493042,
-0.3068690598011017,
0.11149128526449203,
-0.031118862330913544,
0.5534927248954773,
0.2860165238380432,
-0.3276664912700653,
-0.12329647690057755,
0.019440477713942528,
-0.05157855525612831,
-0.08669229596853256,
-0.4554738998413086,
0.6000918745994568,
-0.3645748198032379,
-0.18267013132572174,
-0.7568253874778748,
-0.2519840896129608,
0.5381628274917603,
-0.5013521313667297,
0.8454490303993225,
0.7830275297164917,
-0.28955498337745667,
-0.011348877102136612,
-0.5585710406303406,
-0.20448742806911469,
-0.49480050802230835,
0.0741504356265068,
-0.33138802647590637,
-0.8214529156684875,
0.7457107305526733,
0.2797389030456543,
0.36753740906715393,
0.672024667263031,
0.4667222201824188,
0.24172343313694,
0.9465235471725464,
0.5672348141670227,
-0.3128829598426819,
0.5774717330932617,
-0.567711353302002,
0.024835361167788506,
-0.6308750510215759,
-0.43608129024505615,
-0.5578802824020386,
-0.34985387325286865,
-0.5321661233901978,
-0.39110350608825684,
0.44504424929618835,
0.373397558927536,
-0.5197975039482117,
0.5184631943702698,
-0.6571686863899231,
0.0421576164662838,
0.4707808792591095,
0.29865679144859314,
0.24566170573234558,
0.014864041469991207,
-0.05979890376329422,
0.14837493002414703,
-0.7237544655799866,
-0.42809954285621643,
1.0717910528182983,
0.5509174466133118,
0.8847404718399048,
0.2032841444015503,
0.6512930989265442,
-0.05738403648138046,
0.502880871295929,
-0.36741918325424194,
0.30097487568855286,
0.2730189859867096,
-0.5615132451057434,
-0.21251584589481354,
-0.5670740604400635,
-1.0585373640060425,
0.35283163189888,
-0.13772964477539062,
-0.8481964468955994,
0.2830771207809448,
0.21235468983650208,
-0.5042316913604736,
0.2153642475605011,
-0.7224358916282654,
1.0044796466827393,
-0.18735414743423462,
-0.16117393970489502,
0.10739661753177643,
-0.6952851414680481,
0.41630104184150696,
0.09665567427873611,
0.07318021357059479,
0.11711013317108154,
-0.1053057536482811,
0.7915310263633728,
-0.8052833676338196,
0.8675920367240906,
-0.20531457662582397,
-0.26279374957084656,
0.5300424098968506,
-0.1638394594192505,
0.2544463872909546,
0.16538023948669434,
-0.055572036653757095,
0.3953876197338104,
0.09047742933034897,
-0.32917124032974243,
-0.6001735329627991,
0.5817553997039795,
-1.1675132513046265,
-0.25041526556015015,
-0.5649521946907043,
-0.2900890111923218,
0.17954044044017792,
0.15569166839122772,
0.4525304138660431,
0.4738592505455017,
-0.07762059569358826,
-0.1789568066596985,
0.48122790455818176,
-0.24656860530376434,
0.2543293833732605,
0.3509455919265747,
-0.40122172236442566,
-0.6303586363792419,
0.8465555310249329,
0.09603992849588394,
0.054256316274404526,
0.2712543308734894,
0.25889670848846436,
-0.36523985862731934,
-0.3060838580131531,
-0.37926480174064636,
0.540672779083252,
-0.38829606771469116,
-0.3464314937591553,
-0.727397620677948,
-0.23946984112262726,
-0.6070688366889954,
0.18220660090446472,
-0.41494303941726685,
-0.4457848072052002,
-0.4553723931312561,
-0.03381757438182831,
0.5255005359649658,
0.6766461730003357,
-0.05852725729346275,
0.3688184916973114,
-0.4827667474746704,
0.12024416774511337,
0.19524936378002167,
0.08157014846801758,
0.17693811655044556,
-0.7649696469306946,
-0.19908243417739868,
0.33751988410949707,
-0.725510835647583,
-0.5751422047615051,
0.353966623544693,
0.22126704454421997,
0.43178707361221313,
0.5227535367012024,
0.01353022363036871,
1.0212498903274536,
-0.11990522593259811,
0.8738511800765991,
0.18769866228103638,
-0.8058904409408569,
0.49623122811317444,
-0.38273268938064575,
0.17157258093357086,
0.3260691165924072,
0.41158992052078247,
-0.43127158284187317,
-0.45281490683555603,
-0.9905827641487122,
-0.7433642745018005,
0.8755033612251282,
0.43511199951171875,
-0.06926140934228897,
0.1012987568974495,
0.6077533960342407,
0.06798490136861801,
0.15015022456645966,
-0.6772504448890686,
-0.3697982430458069,
-0.4504980742931366,
-0.1581777185201645,
-0.11757899075746536,
0.15838275849819183,
-0.07292493432760239,
-0.46751442551612854,
0.7418520450592041,
-0.10238750278949738,
0.4081452786922455,
0.24613958597183228,
0.15939542651176453,
-0.08083987236022949,
-0.258791446685791,
0.5622110366821289,
0.5319328904151917,
-0.1915244609117508,
-0.19150494039058685,
0.053944576531648636,
-0.6508862376213074,
-0.2378353476524353,
0.3621492087841034,
0.03289848193526268,
-0.06802470982074738,
0.4615727961063385,
0.8261706829071045,
-0.16410616040229797,
-0.5312801003456116,
0.636936604976654,
-0.22371089458465576,
-0.12857317924499512,
-0.2885867953300476,
0.2130398154258728,
0.009975258260965347,
0.4089898467063904,
0.285400927066803,
0.21029268205165863,
-0.20227192342281342,
-0.4853781759738922,
0.03649073839187622,
0.19425728917121887,
-0.2884504795074463,
-0.6249439120292664,
0.9315047264099121,
-0.015010233968496323,
-0.06378991156816483,
0.7066974639892578,
0.0169613528996706,
-0.46772652864456177,
0.544573962688446,
0.3702507019042969,
0.5487087368965149,
-0.39254844188690186,
0.16943441331386566,
0.48673516511917114,
0.16104839742183685,
-0.3442161977291107,
0.3299652636051178,
-0.07036928087472916,
-0.6166242957115173,
-0.24784846603870392,
-0.5873036980628967,
-0.2035181075334549,
0.2014419287443161,
-0.7475416660308838,
0.4469364881515503,
-0.5160905718803406,
-0.3800247013568878,
0.0018713342724367976,
-0.010890215635299683,
-0.6668519973754883,
0.11703517287969589,
0.06100516393780708,
1.1175358295440674,
-0.8149765729904175,
0.7344749569892883,
0.7137964367866516,
-0.7095798850059509,
-1.170356035232544,
-0.16842211782932281,
0.11316080391407013,
-0.700372576713562,
0.3963645100593567,
0.1802532821893692,
0.09265156090259552,
-0.13315966725349426,
-0.7089454531669617,
-0.8908870816230774,
1.3166396617889404,
0.6493399143218994,
-0.21483027935028076,
-0.20031213760375977,
-0.013288285583257675,
0.7787594795227051,
-0.20597326755523682,
0.7154067158699036,
0.5716243982315063,
0.40553760528564453,
0.1396014541387558,
-1.1618874073028564,
0.0620073638856411,
-0.38256725668907166,
-0.016170410439372063,
0.09587620943784714,
-1.0468063354492188,
1.127487301826477,
-0.13400252163410187,
-0.25032466650009155,
0.30639132857322693,
0.9290827512741089,
0.2553578317165375,
0.12375292181968689,
0.4292053282260895,
0.827965259552002,
0.7868920564651489,
-0.20667825639247894,
1.1669390201568604,
-0.13915584981441498,
0.522495687007904,
0.8317392468452454,
0.073710136115551,
0.7027496099472046,
0.18297815322875977,
-0.22617921233177185,
0.6546682715415955,
0.8347150087356567,
0.2442820519208908,
0.31438374519348145,
0.018946386873722076,
-0.04036584496498108,
0.00028784500318579376,
-0.08617158234119415,
-0.5899714231491089,
0.49912703037261963,
0.26393380761146545,
-0.22305117547512054,
-0.2533113956451416,
-0.009895222261548042,
0.2957298159599304,
-0.18077386915683746,
-0.06852993369102478,
0.6639831066131592,
0.23388098180294037,
-0.6556599140167236,
1.1507426500320435,
0.1446952074766159,
0.7651177644729614,
-0.6467865109443665,
0.005265099927783012,
-0.4477493464946747,
0.2781296968460083,
-0.41013434529304504,
-0.46358951926231384,
-0.17443957924842834,
-0.09287796169519424,
0.1706271469593048,
-0.15146860480308533,
0.39256754517555237,
-0.4125547707080841,
-0.1617240160703659,
0.1885538548231125,
0.4086167514324188,
0.22801895439624786,
-0.07915602624416351,
-0.9141254425048828,
0.2574827969074249,
0.03886331245303154,
-0.35098570585250854,
0.375581294298172,
0.47065216302871704,
-0.24385496973991394,
0.6667007803916931,
0.6403123736381531,
0.009541088715195656,
0.0721091628074646,
-0.0617683008313179,
1.1502138376235962,
-0.37525004148483276,
-0.46304845809936523,
-0.6582059264183044,
0.4995190501213074,
-0.04640323296189308,
-0.7130199074745178,
0.8294174075126648,
0.7319164276123047,
0.9924249649047852,
0.22649948298931122,
0.626758337020874,
-0.36945003271102905,
0.267094224691391,
-0.2490299791097641,
0.626112163066864,
-0.6057522892951965,
0.18162566423416138,
-0.42788904905319214,
-0.9636480212211609,
-0.034612901508808136,
0.7338922619819641,
-0.13766857981681824,
0.23030813038349152,
0.5080393552780151,
0.9469867944717407,
-0.260040283203125,
0.15013548731803894,
-0.1280388981103897,
0.2593390941619873,
0.5067600011825562,
0.6454426050186157,
0.71294766664505,
-0.7437003254890442,
0.6228601932525635,
-0.45342302322387695,
-0.5063897967338562,
-0.06734390556812286,
-0.5484430193901062,
-0.9612258076667786,
-0.5841823816299438,
-0.4125019907951355,
-0.6892737746238708,
0.05035896599292755,
0.8437893390655518,
0.6670548319816589,
-0.664790689945221,
-0.38428372144699097,
0.03497341647744179,
-0.051930997520685196,
-0.597101628780365,
-0.2163846343755722,
0.5226672291755676,
-0.019386326894164085,
-0.7148469686508179,
0.08859392255544662,
-0.025895381346344948,
0.2453642636537552,
-0.14905868470668793,
-0.26079705357551575,
0.013721171766519547,
-0.18735629320144653,
0.3390030264854431,
0.6483395099639893,
-0.642305850982666,
-0.2656118869781494,
-0.005238568410277367,
-0.18831005692481995,
0.11099839210510254,
0.5068060755729675,
-0.7056865096092224,
0.2859986424446106,
0.3512688875198364,
0.3360251188278198,
0.7581037282943726,
0.23711411654949188,
0.39497309923171997,
-0.5359079241752625,
0.3274844288825989,
0.06391730904579163,
0.3062233328819275,
0.18569324910640717,
-0.18541987240314484,
0.6475235819816589,
0.28673431277275085,
-0.4683378040790558,
-0.763486921787262,
-0.1540651023387909,
-1.1140470504760742,
0.04329613968729973,
1.1161426305770874,
-0.26481860876083374,
-0.43126100301742554,
0.07053817808628082,
-0.453268826007843,
0.3462055027484894,
-0.6504082083702087,
0.6382577419281006,
0.3727397322654724,
-0.1629430651664734,
-0.014651934616267681,
-0.34884563088417053,
0.4968317747116089,
0.24051594734191895,
-0.681839644908905,
-0.12438863515853882,
0.35243919491767883,
0.29841381311416626,
0.3346709907054901,
0.6044790148735046,
-0.24944455921649933,
0.2531411349773407,
-0.06876824796199799,
0.16128996014595032,
-0.21139736473560333,
-0.1726808249950409,
-0.23370055854320526,
-0.003697150619700551,
-0.04011622443795204,
-0.12125411629676819
] |
Yntec/sexyToons | Yntec | "2023-08-04T04:24:16Z" | 11,161 | 8 | diffusers | [
"diffusers",
"stable-diffusion",
"stable-diffusion-diffusers",
"text-to-image",
"alexds9",
"license:creativeml-openrail-m",
"endpoints_compatible",
"has_space",
"diffusers:StableDiffusionPipeline",
"region:us"
] | text-to-image | "2023-07-27T09:52:16Z" | ---
license: creativeml-openrail-m
library_name: diffusers
pipeline_tag: text-to-image
tags:
- stable-diffusion
- stable-diffusion-diffusers
- diffusers
- text-to-image
- alexds9
---
# Sexy Toons feat. Pipa
Original pages:
https://civitai.com/models/35549/sexy-toons-feat-pipa | [
-0.4497767388820648,
-0.2522391080856323,
0.26856160163879395,
0.5490298867225647,
-0.49584197998046875,
-0.5612908601760864,
0.4242081642150879,
0.023406464606523514,
1.2875984907150269,
1.3765238523483276,
-0.953794538974762,
-0.3225165605545044,
-0.2930079400539398,
-0.11048237979412079,
-0.521639347076416,
0.6371465921401978,
0.5301404595375061,
0.3414332866668701,
-0.03429016098380089,
-0.020182861015200615,
-0.14751622080802917,
-0.0979500263929367,
-0.6488618850708008,
0.04346993565559387,
1.0491307973861694,
0.6157277226448059,
0.6648138761520386,
0.1672738790512085,
0.34560245275497437,
0.20510360598564148,
0.06803051382303238,
0.057675231248140335,
-0.5999508500099182,
0.3306802213191986,
-0.42056429386138916,
-0.18021638691425323,
-0.33317843079566956,
0.02090173400938511,
0.723474383354187,
0.20911569893360138,
0.18979856371879578,
0.1450297087430954,
-0.0657534971833229,
0.8076202273368835,
-0.7021122574806213,
-0.016214657574892044,
-0.06332208961248398,
-0.19670237600803375,
-0.4781648814678192,
-0.5272220969200134,
-0.044768042862415314,
-0.5090030431747437,
-0.3102501332759857,
-1.0862222909927368,
0.3253970742225647,
-0.2798044681549072,
0.7465238571166992,
0.14198917150497437,
-0.9823941588401794,
-0.0753241702914238,
-0.21279136836528778,
0.650579571723938,
-0.3880930542945862,
0.6368600726127625,
0.46519002318382263,
0.3918975591659546,
-0.40135517716407776,
-0.9435478448867798,
-0.35290130972862244,
0.38793841004371643,
0.06246256083250046,
0.17265616357326508,
-0.48509541153907776,
-0.5410978198051453,
0.39634671807289124,
0.3316779136657715,
-0.7512972950935364,
-0.2712087333202362,
-0.720152735710144,
0.2508290708065033,
0.8977877497673035,
-0.10838905721902847,
0.9165908098220825,
-0.4746440649032593,
-0.19667448103427887,
-0.1874387562274933,
-1.2782411575317383,
0.05737723037600517,
0.4289432764053345,
0.08196765184402466,
-0.534401535987854,
0.9601248502731323,
-0.08475393056869507,
0.3693028688430786,
0.10171328485012054,
0.015436978079378605,
0.24867503345012665,
-0.20412997901439667,
-0.432176411151886,
-0.3229706883430481,
0.5650672316551208,
0.5176188945770264,
0.026850754395127296,
-0.4095940589904785,
0.006006450857967138,
-0.337584912776947,
0.17465457320213318,
-0.9967952370643616,
-0.9848261475563049,
-0.05698591470718384,
-0.41357260942459106,
-0.24994845688343048,
0.3496876657009125,
-0.7938034534454346,
-0.5944741368293762,
-0.2799256443977356,
0.09956018626689911,
-0.4452812075614929,
-0.25445356965065,
-0.015304354019463062,
-0.26146215200424194,
0.4376814663410187,
-0.10800094902515411,
-0.9991526007652283,
-0.11711014807224274,
0.9229934215545654,
0.4839457869529724,
0.909135639667511,
-0.04856305569410324,
-0.4731738567352295,
0.08109460026025772,
-0.692875862121582,
0.6297785639762878,
-0.10576613992452621,
-0.29508069157600403,
0.15811820328235626,
0.7160605788230896,
-0.13467183709144592,
-0.061931248754262924,
0.7382649779319763,
-1.102555274963379,
-0.6946473121643066,
-0.7911064624786377,
-0.2709406614303589,
0.005171559751033783,
-0.26589617133140564,
-1.1479847431182861,
0.23079493641853333,
-0.2987695038318634,
-0.7502350211143494,
0.6142953634262085,
-0.9684423208236694,
-0.3575059771537781,
-0.06880343705415726,
0.43507200479507446,
-0.2947235703468323,
0.3758975565433502,
0.1961154043674469,
0.1673222780227661,
0.09007454663515091,
-0.028129616752266884,
-0.5975951552391052,
-0.07074521481990814,
0.6168798208236694,
-0.08316420018672943,
1.4913350343704224,
0.7267190217971802,
0.04741057753562927,
0.40102723240852356,
-1.2072349786758423,
0.21893392503261566,
0.5610270500183105,
0.2266787439584732,
-0.38500162959098816,
-0.15004165470600128,
0.08667536079883575,
0.09809068590402603,
0.13687299191951752,
-0.11673735082149506,
0.43143072724342346,
-0.37469950318336487,
0.14548061788082123,
0.2896735668182373,
0.22800679504871368,
0.08036822080612183,
-0.8348112106323242,
0.5019500255584717,
-0.4842044711112976,
0.2760229706764221,
0.006601452827453613,
-0.7086788415908813,
-1.070076823234558,
-0.3293529152870178,
0.34191128611564636,
0.1304614543914795,
-0.7482355237007141,
0.45959463715553284,
0.008125427179038525,
-0.8898066878318787,
-0.2017555981874466,
0.2723565399646759,
0.15754082798957825,
-0.6210573315620422,
0.10654912143945694,
-0.4609570801258087,
-0.9369725584983826,
-0.6539901494979858,
0.01675512082874775,
0.019191542640328407,
-0.3422830402851105,
0.2781369984149933,
0.5615361928939819,
-0.08800069987773895,
0.4854736328125,
-0.12350229173898697,
0.08889579772949219,
-0.13169781863689423,
-0.06324992328882217,
0.2995563745498657,
0.6697626113891602,
1.3560372591018677,
-1.155478596687317,
-0.645362138748169,
-0.5065439343452454,
-0.6210657954216003,
-0.4965512454509735,
0.18326663970947266,
-0.4508715867996216,
-0.2895045280456543,
-0.1234641969203949,
-0.40141841769218445,
0.5730204582214355,
0.4449227452278137,
-0.41121721267700195,
0.6333016753196716,
-0.4820661246776581,
0.5581132173538208,
-1.4280145168304443,
0.3943959176540375,
0.12090833485126495,
-0.19173352420330048,
-0.2624369263648987,
0.9202902317047119,
-0.012105628848075867,
-0.3757057785987854,
-0.6661058664321899,
0.48473307490348816,
-0.6759153604507446,
0.01569128967821598,
-0.24548834562301636,
-0.16766393184661865,
0.3220723271369934,
0.3845061957836151,
-0.2738726735115051,
0.9429232478141785,
0.9858109951019287,
-0.45545125007629395,
0.6416659355163574,
0.5793997049331665,
0.11984831839799881,
0.5399354100227356,
-0.7976207733154297,
0.5214414596557617,
-0.2224424183368683,
0.26077139377593994,
-1.1020883321762085,
-0.6644830703735352,
0.35625213384628296,
-0.26457205414772034,
0.11986639350652695,
-0.6354105472564697,
-0.8334162831306458,
-0.23210638761520386,
-0.39830833673477173,
0.4962841868400574,
0.49459436535835266,
-0.8795334100723267,
-0.18427185714244843,
0.6587179899215698,
0.04346852004528046,
-0.26089364290237427,
-0.2831946909427643,
0.3246476948261261,
-0.21093396842479706,
-0.6780085563659668,
0.5715014338493347,
-0.17920802533626556,
-0.4513707458972931,
-0.714553713798523,
0.19287197291851044,
-0.3993527591228485,
-0.5280773043632507,
0.3975156843662262,
0.1519336700439453,
-0.6077813506126404,
0.11660639941692352,
-0.23405742645263672,
0.3999433219432831,
0.014795683324337006,
-0.4176974296569824,
0.6569216847419739,
-0.3681502938270569,
-0.17525114119052887,
-0.7863698601722717,
0.6126184463500977,
0.7407206892967224,
-0.26191356778144836,
0.7204862236976624,
0.45833954215049744,
-0.33449986577033997,
0.1310615837574005,
-0.8349683880805969,
-0.17521268129348755,
-0.4399014115333557,
0.03728228434920311,
-0.5390327572822571,
-0.33397412300109863,
0.5905884504318237,
0.46580398082733154,
-0.45296162366867065,
1.1579043865203857,
0.02579117752611637,
-0.2984977066516876,
0.5400729775428772,
0.6706272959709167,
-0.01025686040520668,
0.23521165549755096,
-0.6879878640174866,
0.012098610401153564,
-0.3678681254386902,
-0.2666224539279938,
-0.4173591136932373,
-0.42455989122390747,
-1.1925047636032104,
-0.5681803822517395,
-0.11123720556497574,
0.06631886959075928,
-0.4101255238056183,
0.9191857576370239,
-0.15611225366592407,
0.6514991521835327,
0.6174827218055725,
0.7038543820381165,
-0.013647153973579407,
-0.28702694177627563,
0.2677076458930969,
-0.23613996803760529,
-0.34809210896492004,
-0.10358736664056778,
1.1594325304031372,
0.16395246982574463,
0.521965742111206,
0.7252660989761353,
0.6996593475341797,
0.11431722342967987,
-0.08376051485538483,
-0.45120492577552795,
0.5319358110427856,
-0.6068105697631836,
-1.2661693096160889,
-0.35137635469436646,
-0.1414097547531128,
-0.9529749751091003,
-0.16276389360427856,
-0.43054434657096863,
-0.49533766508102417,
0.1847379207611084,
-0.14187604188919067,
-0.6509297490119934,
0.5910062193870544,
-0.4425312876701355,
1.0751621723175049,
-0.2729281485080719,
-0.701502799987793,
-0.12075761705636978,
-0.8457813858985901,
0.37636274099349976,
0.2538076341152191,
-0.4255223572254181,
0.015638144686818123,
-0.18199867010116577,
0.9945105314254761,
-0.6287153363227844,
1.1521296501159668,
0.3454895317554474,
-0.18858179450035095,
0.631362795829773,
-0.47796475887298584,
0.20692887902259827,
0.5535780191421509,
0.15480965375900269,
-0.026424070820212364,
-0.1901884824037552,
-0.8523951768875122,
-0.181892529129982,
1.118374228477478,
-0.604902982711792,
-0.3072953224182129,
-0.6167513728141785,
-0.06973996758460999,
0.25369203090667725,
0.42064356803894043,
0.6902602910995483,
1.023131012916565,
-0.4267258942127228,
0.6082610487937927,
0.888536274433136,
0.05571342259645462,
0.4705565571784973,
0.2919483482837677,
-0.49678921699523926,
-0.4571538269519806,
1.035904884338379,
0.23678810894489288,
-0.4131983816623688,
0.4655753970146179,
0.48512932658195496,
-0.6197988986968994,
-0.6977064609527588,
-0.43154051899909973,
0.7131384015083313,
-0.41003987193107605,
0.06638384610414505,
-0.5659120082855225,
-0.497413694858551,
-0.8815637826919556,
-0.19626151025295258,
-0.5373018383979797,
-0.3341372311115265,
-0.6993343234062195,
0.21365870535373688,
0.7344576716423035,
1.0465805530548096,
-0.1694314032793045,
0.6223233938217163,
-0.8392447233200073,
0.6762382984161377,
0.8499316573143005,
0.49605879187583923,
-0.42879724502563477,
-0.8053321242332458,
0.2609320282936096,
-0.0465785376727581,
-0.7971425652503967,
-0.9209292531013489,
1.161603569984436,
0.0825856477022171,
0.3675212860107422,
0.40895867347717285,
0.1397368162870407,
0.368448942899704,
0.003572401124984026,
0.22589011490345,
0.7395409941673279,
-0.6557430624961853,
0.7457506060600281,
-1.1323925256729126,
0.025910288095474243,
0.5972782969474792,
0.5981384515762329,
-0.03226105868816376,
0.37182801961898804,
-0.8827215433120728,
-1.1425116062164307,
0.16721785068511963,
0.29909980297088623,
0.3913233280181885,
0.5005338788032532,
0.40138012170791626,
0.22706985473632812,
0.3298453390598297,
-0.8060819506645203,
-0.5969523787498474,
-0.6577402353286743,
0.16666582226753235,
-0.055502574890851974,
-0.8392989039421082,
0.0019793156534433365,
-0.35768237709999084,
0.760511577129364,
-0.0713723674416542,
0.06392623484134674,
-0.05315656214952469,
0.1532677859067917,
0.26271140575408936,
0.34019961953163147,
0.6984014511108398,
1.023954153060913,
-0.35345545411109924,
-0.3744848668575287,
-0.22489145398139954,
-0.42056041955947876,
-0.05180946737527847,
0.02529122494161129,
-0.21431803703308105,
0.004287822637706995,
-0.09678851813077927,
1.1788554191589355,
0.5105239748954773,
-0.09466645866632462,
0.6940687298774719,
-0.09308826923370361,
0.7135457992553711,
-1.1601215600967407,
0.3537575602531433,
0.12399989366531372,
0.3199644088745117,
0.25582075119018555,
0.5074746608734131,
0.3694542646408081,
-0.5990925431251526,
1.058868408203125,
0.2257423847913742,
-0.8358229398727417,
-0.7908651232719421,
0.8105431199073792,
0.25909873843193054,
-0.627454936504364,
0.3433218002319336,
-0.1171642616391182,
0.09813998639583588,
0.6277559399604797,
0.8769099116325378,
1.145769715309143,
-0.3825826942920685,
0.25758448243141174,
0.7487731575965881,
-0.3330124020576477,
0.0640786811709404,
0.5237470865249634,
-0.08158387988805771,
-0.26220789551734924,
-0.2521957755088806,
-0.2518405020236969,
-0.3530835509300232,
0.44335582852363586,
-0.3954833149909973,
0.7373573184013367,
-0.8488878607749939,
-0.23793841898441315,
0.04783299192786217,
0.16393424570560455,
-0.47049856185913086,
0.7423173785209656,
0.15705245733261108,
1.3289813995361328,
-0.737411379814148,
0.9670357704162598,
0.5199061632156372,
-0.7856770157814026,
-0.7233706116676331,
0.0624949149787426,
0.22845691442489624,
-0.7876408696174622,
0.30652767419815063,
0.07470658421516418,
0.2658991813659668,
-0.12483840435743332,
-0.9203807711601257,
-0.6810805797576904,
0.6485585570335388,
0.4294084310531616,
-0.5277112722396851,
-0.055088628083467484,
-0.3597882091999054,
0.5471429824829102,
-0.3871024250984192,
0.6912443041801453,
0.4100627303123474,
0.34907200932502747,
0.8026094436645508,
-0.8401918411254883,
-0.5705933570861816,
-1.0670486688613892,
-0.25341328978538513,
-0.043887458741664886,
-1.0218150615692139,
0.6114862561225891,
-0.45897263288497925,
0.3415375053882599,
0.7998073697090149,
0.8475570678710938,
0.5381951332092285,
0.42397090792655945,
0.21675512194633484,
0.6127224564552307,
0.0879039391875267,
-0.1650657057762146,
1.2284069061279297,
0.21989722549915314,
0.0830564871430397,
0.9283151626586914,
0.006716187112033367,
0.7530288696289062,
0.43354979157447815,
-0.33063456416130066,
0.15106774866580963,
0.798050045967102,
-0.2723197042942047,
0.6451285481452942,
0.5164445638656616,
-0.21446898579597473,
-0.017209207639098167,
-0.22924338281154633,
-0.46620282530784607,
0.7483043074607849,
-0.22141283750534058,
-0.16904714703559875,
0.2917211949825287,
-0.46231335401535034,
0.004791224841028452,
0.08397042006254196,
-0.57410728931427,
0.5067321062088013,
0.15606477856636047,
-0.6753080487251282,
0.41446906328201294,
-0.6515532732009888,
0.7089280486106873,
-0.5525798201560974,
-0.05834110453724861,
-0.11644118279218674,
-0.22444622218608856,
-0.20022960007190704,
-0.6539794206619263,
0.5335659980773926,
0.05455600842833519,
-0.4084160625934601,
-0.3069532811641693,
0.9584971070289612,
-0.3741018772125244,
-1.2998007535934448,
0.27876728773117065,
-0.1254473626613617,
0.3958072364330292,
-0.31347233057022095,
-0.5869152545928955,
-0.16504965722560883,
0.39625033736228943,
0.048719022423028946,
0.1787349283695221,
0.0013090686406940222,
0.29147419333457947,
0.7553390264511108,
0.6855214238166809,
0.22617344558238983,
0.19982363283634186,
0.3740383982658386,
0.7289095520973206,
-0.8892200589179993,
-1.1101726293563843,
-0.5514828562736511,
0.4825438857078552,
-0.4204758405685425,
-0.5662508606910706,
0.8063069581985474,
0.8360245227813721,
0.31837740540504456,
-0.6367065906524658,
0.5688499808311462,
-0.22635197639465332,
0.3780438005924225,
-0.5604714155197144,
1.4865138530731201,
-1.341965913772583,
0.15899595618247986,
-0.32925111055374146,
-0.592965841293335,
-0.27870529890060425,
0.18068847060203552,
-0.05619882792234421,
0.18740853667259216,
0.02729669399559498,
0.8981156349182129,
-0.5240646004676819,
0.18900640308856964,
0.37718328833580017,
-0.08898352831602097,
0.20018941164016724,
0.3181469142436981,
0.5377771258354187,
-1.0470170974731445,
0.16662028431892395,
-0.6192987561225891,
0.07067788392305374,
-0.5966894030570984,
-0.8649364113807678,
-0.5383399128913879,
-1.0080914497375488,
-0.5945485234260559,
-0.349785715341568,
0.13386811316013336,
0.9686286449432373,
0.9882752895355225,
-1.2684558629989624,
-0.11560433357954025,
-0.015663260594010353,
0.32544034719467163,
0.25709661841392517,
-0.13451161980628967,
0.5850344300270081,
0.4496062397956848,
-0.6987173557281494,
0.6662379503250122,
-0.11095844954252243,
0.4880888760089874,
-0.07024741172790527,
0.15149536728858948,
-0.14382775127887726,
0.042159393429756165,
0.3252623379230499,
0.8613213300704956,
-0.6220574975013733,
-0.131165012717247,
0.006081716623157263,
-0.29416409134864807,
-0.01682940497994423,
1.1904304027557373,
-0.07912126183509827,
0.04692677780985832,
0.9852418899536133,
0.09923254698514938,
0.34377485513687134,
-0.03253743797540665,
0.5983957648277283,
-0.5913611054420471,
0.48641884326934814,
-0.05888558551669121,
0.7383387684822083,
0.4734792411327362,
-0.2158890813589096,
0.49843618273735046,
0.5221623182296753,
-0.29180455207824707,
-0.5227298140525818,
-0.2824922204017639,
-1.3729345798492432,
0.46817660331726074,
0.6831537485122681,
0.065498948097229,
-0.45303675532341003,
0.05633298307657242,
-0.5387193560600281,
0.5009576082229614,
-0.33496978878974915,
0.7202611565589905,
-0.050809331238269806,
0.20175160467624664,
-0.41440045833587646,
-0.35734301805496216,
0.1780025064945221,
0.03979356214404106,
-0.35085007548332214,
-0.5700113773345947,
0.2779098451137543,
0.424514502286911,
0.41653814911842346,
0.43862754106521606,
-0.2692602574825287,
0.3968835771083832,
0.420944482088089,
0.3011709749698639,
0.09428565204143524,
-0.6942914724349976,
0.29113954305648804,
0.33572712540626526,
-0.1932489275932312,
-0.8934379816055298
] |
timm/resnet34d.ra2_in1k | timm | "2023-04-05T18:07:44Z" | 11,158 | 0 | timm | [
"timm",
"pytorch",
"safetensors",
"image-classification",
"arxiv:2110.00476",
"arxiv:1512.03385",
"arxiv:1812.01187",
"license:apache-2.0",
"region:us"
] | image-classification | "2023-04-05T18:07:30Z" | ---
tags:
- image-classification
- timm
library_tag: timm
license: apache-2.0
---
# Model card for resnet34d.ra2_in1k
A ResNet-D image classification model.
This model features:
* ReLU activations
* 3-layer stem of 3x3 convolutions with pooling
* 2x2 average pool + 1x1 convolution shortcut downsample
Trained on ImageNet-1k in `timm` using recipe template described below.
Recipe details:
* RandAugment `RA2` recipe. Inspired by and evolved from EfficientNet RandAugment recipes. Published as `B` recipe in [ResNet Strikes Back](https://arxiv.org/abs/2110.00476).
* RMSProp (TF 1.0 behaviour) optimizer, EMA weight averaging
* Step (exponential decay w/ staircase) LR schedule with warmup
## Model Details
- **Model Type:** Image classification / feature backbone
- **Model Stats:**
- Params (M): 21.8
- GMACs: 3.9
- Activations (M): 4.5
- Image size: train = 224 x 224, test = 288 x 288
- **Papers:**
- ResNet strikes back: An improved training procedure in timm: https://arxiv.org/abs/2110.00476
- Deep Residual Learning for Image Recognition: https://arxiv.org/abs/1512.03385
- Bag of Tricks for Image Classification with Convolutional Neural Networks: https://arxiv.org/abs/1812.01187
- **Original:** https://github.com/huggingface/pytorch-image-models
## Model Usage
### Image Classification
```python
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model('resnet34d.ra2_in1k', pretrained=True)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
```
### Feature Map Extraction
```python
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model(
'resnet34d.ra2_in1k',
pretrained=True,
features_only=True,
)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
for o in output:
# print shape of each feature map in output
# e.g.:
# torch.Size([1, 64, 112, 112])
# torch.Size([1, 64, 56, 56])
# torch.Size([1, 128, 28, 28])
# torch.Size([1, 256, 14, 14])
# torch.Size([1, 512, 7, 7])
print(o.shape)
```
### Image Embeddings
```python
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model(
'resnet34d.ra2_in1k',
pretrained=True,
num_classes=0, # remove classifier nn.Linear
)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor
# or equivalently (without needing to set num_classes=0)
output = model.forward_features(transforms(img).unsqueeze(0))
# output is unpooled, a (1, 512, 7, 7) shaped tensor
output = model.forward_head(output, pre_logits=True)
# output is a (1, num_features) shaped tensor
```
## Model Comparison
Explore the dataset and runtime metrics of this model in timm [model results](https://github.com/huggingface/pytorch-image-models/tree/main/results).
|model |img_size|top1 |top5 |param_count|gmacs|macts|img/sec|
|------------------------------------------|--------|-----|-----|-----------|-----|-----|-------|
|[seresnextaa101d_32x8d.sw_in12k_ft_in1k_288](https://huggingface.co/timm/seresnextaa101d_32x8d.sw_in12k_ft_in1k_288)|320 |86.72|98.17|93.6 |35.2 |69.7 |451 |
|[seresnextaa101d_32x8d.sw_in12k_ft_in1k_288](https://huggingface.co/timm/seresnextaa101d_32x8d.sw_in12k_ft_in1k_288)|288 |86.51|98.08|93.6 |28.5 |56.4 |560 |
|[seresnextaa101d_32x8d.sw_in12k_ft_in1k](https://huggingface.co/timm/seresnextaa101d_32x8d.sw_in12k_ft_in1k)|288 |86.49|98.03|93.6 |28.5 |56.4 |557 |
|[seresnextaa101d_32x8d.sw_in12k_ft_in1k](https://huggingface.co/timm/seresnextaa101d_32x8d.sw_in12k_ft_in1k)|224 |85.96|97.82|93.6 |17.2 |34.2 |923 |
|[resnext101_32x32d.fb_wsl_ig1b_ft_in1k](https://huggingface.co/timm/resnext101_32x32d.fb_wsl_ig1b_ft_in1k)|224 |85.11|97.44|468.5 |87.3 |91.1 |254 |
|[resnetrs420.tf_in1k](https://huggingface.co/timm/resnetrs420.tf_in1k)|416 |85.0 |97.12|191.9 |108.4|213.8|134 |
|[ecaresnet269d.ra2_in1k](https://huggingface.co/timm/ecaresnet269d.ra2_in1k)|352 |84.96|97.22|102.1 |50.2 |101.2|291 |
|[ecaresnet269d.ra2_in1k](https://huggingface.co/timm/ecaresnet269d.ra2_in1k)|320 |84.73|97.18|102.1 |41.5 |83.7 |353 |
|[resnetrs350.tf_in1k](https://huggingface.co/timm/resnetrs350.tf_in1k)|384 |84.71|96.99|164.0 |77.6 |154.7|183 |
|[seresnextaa101d_32x8d.ah_in1k](https://huggingface.co/timm/seresnextaa101d_32x8d.ah_in1k)|288 |84.57|97.08|93.6 |28.5 |56.4 |557 |
|[resnetrs200.tf_in1k](https://huggingface.co/timm/resnetrs200.tf_in1k)|320 |84.45|97.08|93.2 |31.5 |67.8 |446 |
|[resnetrs270.tf_in1k](https://huggingface.co/timm/resnetrs270.tf_in1k)|352 |84.43|96.97|129.9 |51.1 |105.5|280 |
|[seresnext101d_32x8d.ah_in1k](https://huggingface.co/timm/seresnext101d_32x8d.ah_in1k)|288 |84.36|96.92|93.6 |27.6 |53.0 |595 |
|[seresnet152d.ra2_in1k](https://huggingface.co/timm/seresnet152d.ra2_in1k)|320 |84.35|97.04|66.8 |24.1 |47.7 |610 |
|[resnetrs350.tf_in1k](https://huggingface.co/timm/resnetrs350.tf_in1k)|288 |84.3 |96.94|164.0 |43.7 |87.1 |333 |
|[resnext101_32x8d.fb_swsl_ig1b_ft_in1k](https://huggingface.co/timm/resnext101_32x8d.fb_swsl_ig1b_ft_in1k)|224 |84.28|97.17|88.8 |16.5 |31.2 |1100 |
|[resnetrs420.tf_in1k](https://huggingface.co/timm/resnetrs420.tf_in1k)|320 |84.24|96.86|191.9 |64.2 |126.6|228 |
|[seresnext101_32x8d.ah_in1k](https://huggingface.co/timm/seresnext101_32x8d.ah_in1k)|288 |84.19|96.87|93.6 |27.2 |51.6 |613 |
|[resnext101_32x16d.fb_wsl_ig1b_ft_in1k](https://huggingface.co/timm/resnext101_32x16d.fb_wsl_ig1b_ft_in1k)|224 |84.18|97.19|194.0 |36.3 |51.2 |581 |
|[resnetaa101d.sw_in12k_ft_in1k](https://huggingface.co/timm/resnetaa101d.sw_in12k_ft_in1k)|288 |84.11|97.11|44.6 |15.1 |29.0 |1144 |
|[resnet200d.ra2_in1k](https://huggingface.co/timm/resnet200d.ra2_in1k)|320 |83.97|96.82|64.7 |31.2 |67.3 |518 |
|[resnetrs200.tf_in1k](https://huggingface.co/timm/resnetrs200.tf_in1k)|256 |83.87|96.75|93.2 |20.2 |43.4 |692 |
|[seresnextaa101d_32x8d.ah_in1k](https://huggingface.co/timm/seresnextaa101d_32x8d.ah_in1k)|224 |83.86|96.65|93.6 |17.2 |34.2 |923 |
|[resnetrs152.tf_in1k](https://huggingface.co/timm/resnetrs152.tf_in1k)|320 |83.72|96.61|86.6 |24.3 |48.1 |617 |
|[seresnet152d.ra2_in1k](https://huggingface.co/timm/seresnet152d.ra2_in1k)|256 |83.69|96.78|66.8 |15.4 |30.6 |943 |
|[seresnext101d_32x8d.ah_in1k](https://huggingface.co/timm/seresnext101d_32x8d.ah_in1k)|224 |83.68|96.61|93.6 |16.7 |32.0 |986 |
|[resnet152d.ra2_in1k](https://huggingface.co/timm/resnet152d.ra2_in1k)|320 |83.67|96.74|60.2 |24.1 |47.7 |706 |
|[resnetrs270.tf_in1k](https://huggingface.co/timm/resnetrs270.tf_in1k)|256 |83.59|96.61|129.9 |27.1 |55.8 |526 |
|[seresnext101_32x8d.ah_in1k](https://huggingface.co/timm/seresnext101_32x8d.ah_in1k)|224 |83.58|96.4 |93.6 |16.5 |31.2 |1013 |
|[resnetaa101d.sw_in12k_ft_in1k](https://huggingface.co/timm/resnetaa101d.sw_in12k_ft_in1k)|224 |83.54|96.83|44.6 |9.1 |17.6 |1864 |
|[resnet152.a1h_in1k](https://huggingface.co/timm/resnet152.a1h_in1k)|288 |83.46|96.54|60.2 |19.1 |37.3 |904 |
|[resnext101_32x16d.fb_swsl_ig1b_ft_in1k](https://huggingface.co/timm/resnext101_32x16d.fb_swsl_ig1b_ft_in1k)|224 |83.35|96.85|194.0 |36.3 |51.2 |582 |
|[resnet200d.ra2_in1k](https://huggingface.co/timm/resnet200d.ra2_in1k)|256 |83.23|96.53|64.7 |20.0 |43.1 |809 |
|[resnext101_32x4d.fb_swsl_ig1b_ft_in1k](https://huggingface.co/timm/resnext101_32x4d.fb_swsl_ig1b_ft_in1k)|224 |83.22|96.75|44.2 |8.0 |21.2 |1814 |
|[resnext101_64x4d.c1_in1k](https://huggingface.co/timm/resnext101_64x4d.c1_in1k)|288 |83.16|96.38|83.5 |25.7 |51.6 |590 |
|[resnet152d.ra2_in1k](https://huggingface.co/timm/resnet152d.ra2_in1k)|256 |83.14|96.38|60.2 |15.4 |30.5 |1096 |
|[resnet101d.ra2_in1k](https://huggingface.co/timm/resnet101d.ra2_in1k)|320 |83.02|96.45|44.6 |16.5 |34.8 |992 |
|[ecaresnet101d.miil_in1k](https://huggingface.co/timm/ecaresnet101d.miil_in1k)|288 |82.98|96.54|44.6 |13.4 |28.2 |1077 |
|[resnext101_64x4d.tv_in1k](https://huggingface.co/timm/resnext101_64x4d.tv_in1k)|224 |82.98|96.25|83.5 |15.5 |31.2 |989 |
|[resnetrs152.tf_in1k](https://huggingface.co/timm/resnetrs152.tf_in1k)|256 |82.86|96.28|86.6 |15.6 |30.8 |951 |
|[resnext101_32x8d.tv2_in1k](https://huggingface.co/timm/resnext101_32x8d.tv2_in1k)|224 |82.83|96.22|88.8 |16.5 |31.2 |1099 |
|[resnet152.a1h_in1k](https://huggingface.co/timm/resnet152.a1h_in1k)|224 |82.8 |96.13|60.2 |11.6 |22.6 |1486 |
|[resnet101.a1h_in1k](https://huggingface.co/timm/resnet101.a1h_in1k)|288 |82.8 |96.32|44.6 |13.0 |26.8 |1291 |
|[resnet152.a1_in1k](https://huggingface.co/timm/resnet152.a1_in1k)|288 |82.74|95.71|60.2 |19.1 |37.3 |905 |
|[resnext101_32x8d.fb_wsl_ig1b_ft_in1k](https://huggingface.co/timm/resnext101_32x8d.fb_wsl_ig1b_ft_in1k)|224 |82.69|96.63|88.8 |16.5 |31.2 |1100 |
|[resnet152.a2_in1k](https://huggingface.co/timm/resnet152.a2_in1k)|288 |82.62|95.75|60.2 |19.1 |37.3 |904 |
|[resnetaa50d.sw_in12k_ft_in1k](https://huggingface.co/timm/resnetaa50d.sw_in12k_ft_in1k)|288 |82.61|96.49|25.6 |8.9 |20.6 |1729 |
|[resnet61q.ra2_in1k](https://huggingface.co/timm/resnet61q.ra2_in1k)|288 |82.53|96.13|36.8 |9.9 |21.5 |1773 |
|[wide_resnet101_2.tv2_in1k](https://huggingface.co/timm/wide_resnet101_2.tv2_in1k)|224 |82.5 |96.02|126.9 |22.8 |21.2 |1078 |
|[resnext101_64x4d.c1_in1k](https://huggingface.co/timm/resnext101_64x4d.c1_in1k)|224 |82.46|95.92|83.5 |15.5 |31.2 |987 |
|[resnet51q.ra2_in1k](https://huggingface.co/timm/resnet51q.ra2_in1k)|288 |82.36|96.18|35.7 |8.1 |20.9 |1964 |
|[ecaresnet50t.ra2_in1k](https://huggingface.co/timm/ecaresnet50t.ra2_in1k)|320 |82.35|96.14|25.6 |8.8 |24.1 |1386 |
|[resnet101.a1_in1k](https://huggingface.co/timm/resnet101.a1_in1k)|288 |82.31|95.63|44.6 |13.0 |26.8 |1291 |
|[resnetrs101.tf_in1k](https://huggingface.co/timm/resnetrs101.tf_in1k)|288 |82.29|96.01|63.6 |13.6 |28.5 |1078 |
|[resnet152.tv2_in1k](https://huggingface.co/timm/resnet152.tv2_in1k)|224 |82.29|96.0 |60.2 |11.6 |22.6 |1484 |
|[wide_resnet50_2.racm_in1k](https://huggingface.co/timm/wide_resnet50_2.racm_in1k)|288 |82.27|96.06|68.9 |18.9 |23.8 |1176 |
|[resnet101d.ra2_in1k](https://huggingface.co/timm/resnet101d.ra2_in1k)|256 |82.26|96.07|44.6 |10.6 |22.2 |1542 |
|[resnet101.a2_in1k](https://huggingface.co/timm/resnet101.a2_in1k)|288 |82.24|95.73|44.6 |13.0 |26.8 |1290 |
|[seresnext50_32x4d.racm_in1k](https://huggingface.co/timm/seresnext50_32x4d.racm_in1k)|288 |82.2 |96.14|27.6 |7.0 |23.8 |1547 |
|[ecaresnet101d.miil_in1k](https://huggingface.co/timm/ecaresnet101d.miil_in1k)|224 |82.18|96.05|44.6 |8.1 |17.1 |1771 |
|[resnext50_32x4d.fb_swsl_ig1b_ft_in1k](https://huggingface.co/timm/resnext50_32x4d.fb_swsl_ig1b_ft_in1k)|224 |82.17|96.22|25.0 |4.3 |14.4 |2943 |
|[ecaresnet50t.a1_in1k](https://huggingface.co/timm/ecaresnet50t.a1_in1k)|288 |82.12|95.65|25.6 |7.1 |19.6 |1704 |
|[resnext50_32x4d.a1h_in1k](https://huggingface.co/timm/resnext50_32x4d.a1h_in1k)|288 |82.03|95.94|25.0 |7.0 |23.8 |1745 |
|[ecaresnet101d_pruned.miil_in1k](https://huggingface.co/timm/ecaresnet101d_pruned.miil_in1k)|288 |82.0 |96.15|24.9 |5.8 |12.7 |1787 |
|[resnet61q.ra2_in1k](https://huggingface.co/timm/resnet61q.ra2_in1k)|256 |81.99|95.85|36.8 |7.8 |17.0 |2230 |
|[resnext101_32x8d.tv2_in1k](https://huggingface.co/timm/resnext101_32x8d.tv2_in1k)|176 |81.98|95.72|88.8 |10.3 |19.4 |1768 |
|[resnet152.a1_in1k](https://huggingface.co/timm/resnet152.a1_in1k)|224 |81.97|95.24|60.2 |11.6 |22.6 |1486 |
|[resnet101.a1h_in1k](https://huggingface.co/timm/resnet101.a1h_in1k)|224 |81.93|95.75|44.6 |7.8 |16.2 |2122 |
|[resnet101.tv2_in1k](https://huggingface.co/timm/resnet101.tv2_in1k)|224 |81.9 |95.77|44.6 |7.8 |16.2 |2118 |
|[resnext101_32x16d.fb_ssl_yfcc100m_ft_in1k](https://huggingface.co/timm/resnext101_32x16d.fb_ssl_yfcc100m_ft_in1k)|224 |81.84|96.1 |194.0 |36.3 |51.2 |583 |
|[resnet51q.ra2_in1k](https://huggingface.co/timm/resnet51q.ra2_in1k)|256 |81.78|95.94|35.7 |6.4 |16.6 |2471 |
|[resnet152.a2_in1k](https://huggingface.co/timm/resnet152.a2_in1k)|224 |81.77|95.22|60.2 |11.6 |22.6 |1485 |
|[resnetaa50d.sw_in12k_ft_in1k](https://huggingface.co/timm/resnetaa50d.sw_in12k_ft_in1k)|224 |81.74|96.06|25.6 |5.4 |12.4 |2813 |
|[ecaresnet50t.a2_in1k](https://huggingface.co/timm/ecaresnet50t.a2_in1k)|288 |81.65|95.54|25.6 |7.1 |19.6 |1703 |
|[ecaresnet50d.miil_in1k](https://huggingface.co/timm/ecaresnet50d.miil_in1k)|288 |81.64|95.88|25.6 |7.2 |19.7 |1694 |
|[resnext101_32x8d.fb_ssl_yfcc100m_ft_in1k](https://huggingface.co/timm/resnext101_32x8d.fb_ssl_yfcc100m_ft_in1k)|224 |81.62|96.04|88.8 |16.5 |31.2 |1101 |
|[wide_resnet50_2.tv2_in1k](https://huggingface.co/timm/wide_resnet50_2.tv2_in1k)|224 |81.61|95.76|68.9 |11.4 |14.4 |1930 |
|[resnetaa50.a1h_in1k](https://huggingface.co/timm/resnetaa50.a1h_in1k)|288 |81.61|95.83|25.6 |8.5 |19.2 |1868 |
|[resnet101.a1_in1k](https://huggingface.co/timm/resnet101.a1_in1k)|224 |81.5 |95.16|44.6 |7.8 |16.2 |2125 |
|[resnext50_32x4d.a1_in1k](https://huggingface.co/timm/resnext50_32x4d.a1_in1k)|288 |81.48|95.16|25.0 |7.0 |23.8 |1745 |
|[gcresnet50t.ra2_in1k](https://huggingface.co/timm/gcresnet50t.ra2_in1k)|288 |81.47|95.71|25.9 |6.9 |18.6 |2071 |
|[wide_resnet50_2.racm_in1k](https://huggingface.co/timm/wide_resnet50_2.racm_in1k)|224 |81.45|95.53|68.9 |11.4 |14.4 |1929 |
|[resnet50d.a1_in1k](https://huggingface.co/timm/resnet50d.a1_in1k)|288 |81.44|95.22|25.6 |7.2 |19.7 |1908 |
|[ecaresnet50t.ra2_in1k](https://huggingface.co/timm/ecaresnet50t.ra2_in1k)|256 |81.44|95.67|25.6 |5.6 |15.4 |2168 |
|[ecaresnetlight.miil_in1k](https://huggingface.co/timm/ecaresnetlight.miil_in1k)|288 |81.4 |95.82|30.2 |6.8 |13.9 |2132 |
|[resnet50d.ra2_in1k](https://huggingface.co/timm/resnet50d.ra2_in1k)|288 |81.37|95.74|25.6 |7.2 |19.7 |1910 |
|[resnet101.a2_in1k](https://huggingface.co/timm/resnet101.a2_in1k)|224 |81.32|95.19|44.6 |7.8 |16.2 |2125 |
|[seresnet50.ra2_in1k](https://huggingface.co/timm/seresnet50.ra2_in1k)|288 |81.3 |95.65|28.1 |6.8 |18.4 |1803 |
|[resnext50_32x4d.a2_in1k](https://huggingface.co/timm/resnext50_32x4d.a2_in1k)|288 |81.3 |95.11|25.0 |7.0 |23.8 |1746 |
|[seresnext50_32x4d.racm_in1k](https://huggingface.co/timm/seresnext50_32x4d.racm_in1k)|224 |81.27|95.62|27.6 |4.3 |14.4 |2591 |
|[ecaresnet50t.a1_in1k](https://huggingface.co/timm/ecaresnet50t.a1_in1k)|224 |81.26|95.16|25.6 |4.3 |11.8 |2823 |
|[gcresnext50ts.ch_in1k](https://huggingface.co/timm/gcresnext50ts.ch_in1k)|288 |81.23|95.54|15.7 |4.8 |19.6 |2117 |
|[senet154.gluon_in1k](https://huggingface.co/timm/senet154.gluon_in1k)|224 |81.23|95.35|115.1 |20.8 |38.7 |545 |
|[resnet50.a1_in1k](https://huggingface.co/timm/resnet50.a1_in1k)|288 |81.22|95.11|25.6 |6.8 |18.4 |2089 |
|[resnet50_gn.a1h_in1k](https://huggingface.co/timm/resnet50_gn.a1h_in1k)|288 |81.22|95.63|25.6 |6.8 |18.4 |676 |
|[resnet50d.a2_in1k](https://huggingface.co/timm/resnet50d.a2_in1k)|288 |81.18|95.09|25.6 |7.2 |19.7 |1908 |
|[resnet50.fb_swsl_ig1b_ft_in1k](https://huggingface.co/timm/resnet50.fb_swsl_ig1b_ft_in1k)|224 |81.18|95.98|25.6 |4.1 |11.1 |3455 |
|[resnext50_32x4d.tv2_in1k](https://huggingface.co/timm/resnext50_32x4d.tv2_in1k)|224 |81.17|95.34|25.0 |4.3 |14.4 |2933 |
|[resnext50_32x4d.a1h_in1k](https://huggingface.co/timm/resnext50_32x4d.a1h_in1k)|224 |81.1 |95.33|25.0 |4.3 |14.4 |2934 |
|[seresnet50.a2_in1k](https://huggingface.co/timm/seresnet50.a2_in1k)|288 |81.1 |95.23|28.1 |6.8 |18.4 |1801 |
|[seresnet50.a1_in1k](https://huggingface.co/timm/seresnet50.a1_in1k)|288 |81.1 |95.12|28.1 |6.8 |18.4 |1799 |
|[resnet152s.gluon_in1k](https://huggingface.co/timm/resnet152s.gluon_in1k)|224 |81.02|95.41|60.3 |12.9 |25.0 |1347 |
|[resnet50.d_in1k](https://huggingface.co/timm/resnet50.d_in1k)|288 |80.97|95.44|25.6 |6.8 |18.4 |2085 |
|[gcresnet50t.ra2_in1k](https://huggingface.co/timm/gcresnet50t.ra2_in1k)|256 |80.94|95.45|25.9 |5.4 |14.7 |2571 |
|[resnext101_32x4d.fb_ssl_yfcc100m_ft_in1k](https://huggingface.co/timm/resnext101_32x4d.fb_ssl_yfcc100m_ft_in1k)|224 |80.93|95.73|44.2 |8.0 |21.2 |1814 |
|[resnet50.c1_in1k](https://huggingface.co/timm/resnet50.c1_in1k)|288 |80.91|95.55|25.6 |6.8 |18.4 |2084 |
|[seresnext101_32x4d.gluon_in1k](https://huggingface.co/timm/seresnext101_32x4d.gluon_in1k)|224 |80.9 |95.31|49.0 |8.0 |21.3 |1585 |
|[seresnext101_64x4d.gluon_in1k](https://huggingface.co/timm/seresnext101_64x4d.gluon_in1k)|224 |80.9 |95.3 |88.2 |15.5 |31.2 |918 |
|[resnet50.c2_in1k](https://huggingface.co/timm/resnet50.c2_in1k)|288 |80.86|95.52|25.6 |6.8 |18.4 |2085 |
|[resnet50.tv2_in1k](https://huggingface.co/timm/resnet50.tv2_in1k)|224 |80.85|95.43|25.6 |4.1 |11.1 |3450 |
|[ecaresnet50t.a2_in1k](https://huggingface.co/timm/ecaresnet50t.a2_in1k)|224 |80.84|95.02|25.6 |4.3 |11.8 |2821 |
|[ecaresnet101d_pruned.miil_in1k](https://huggingface.co/timm/ecaresnet101d_pruned.miil_in1k)|224 |80.79|95.62|24.9 |3.5 |7.7 |2961 |
|[seresnet33ts.ra2_in1k](https://huggingface.co/timm/seresnet33ts.ra2_in1k)|288 |80.79|95.36|19.8 |6.0 |14.8 |2506 |
|[ecaresnet50d_pruned.miil_in1k](https://huggingface.co/timm/ecaresnet50d_pruned.miil_in1k)|288 |80.79|95.58|19.9 |4.2 |10.6 |2349 |
|[resnet50.a2_in1k](https://huggingface.co/timm/resnet50.a2_in1k)|288 |80.78|94.99|25.6 |6.8 |18.4 |2088 |
|[resnet50.b1k_in1k](https://huggingface.co/timm/resnet50.b1k_in1k)|288 |80.71|95.43|25.6 |6.8 |18.4 |2087 |
|[resnext50_32x4d.ra_in1k](https://huggingface.co/timm/resnext50_32x4d.ra_in1k)|288 |80.7 |95.39|25.0 |7.0 |23.8 |1749 |
|[resnetrs101.tf_in1k](https://huggingface.co/timm/resnetrs101.tf_in1k)|192 |80.69|95.24|63.6 |6.0 |12.7 |2270 |
|[resnet50d.a1_in1k](https://huggingface.co/timm/resnet50d.a1_in1k)|224 |80.68|94.71|25.6 |4.4 |11.9 |3162 |
|[eca_resnet33ts.ra2_in1k](https://huggingface.co/timm/eca_resnet33ts.ra2_in1k)|288 |80.68|95.36|19.7 |6.0 |14.8 |2637 |
|[resnet50.a1h_in1k](https://huggingface.co/timm/resnet50.a1h_in1k)|224 |80.67|95.3 |25.6 |4.1 |11.1 |3452 |
|[resnext50d_32x4d.bt_in1k](https://huggingface.co/timm/resnext50d_32x4d.bt_in1k)|288 |80.67|95.42|25.0 |7.4 |25.1 |1626 |
|[resnetaa50.a1h_in1k](https://huggingface.co/timm/resnetaa50.a1h_in1k)|224 |80.63|95.21|25.6 |5.2 |11.6 |3034 |
|[ecaresnet50d.miil_in1k](https://huggingface.co/timm/ecaresnet50d.miil_in1k)|224 |80.61|95.32|25.6 |4.4 |11.9 |2813 |
|[resnext101_64x4d.gluon_in1k](https://huggingface.co/timm/resnext101_64x4d.gluon_in1k)|224 |80.61|94.99|83.5 |15.5 |31.2 |989 |
|[gcresnet33ts.ra2_in1k](https://huggingface.co/timm/gcresnet33ts.ra2_in1k)|288 |80.6 |95.31|19.9 |6.0 |14.8 |2578 |
|[gcresnext50ts.ch_in1k](https://huggingface.co/timm/gcresnext50ts.ch_in1k)|256 |80.57|95.17|15.7 |3.8 |15.5 |2710 |
|[resnet152.a3_in1k](https://huggingface.co/timm/resnet152.a3_in1k)|224 |80.56|95.0 |60.2 |11.6 |22.6 |1483 |
|[resnet50d.ra2_in1k](https://huggingface.co/timm/resnet50d.ra2_in1k)|224 |80.53|95.16|25.6 |4.4 |11.9 |3164 |
|[resnext50_32x4d.a1_in1k](https://huggingface.co/timm/resnext50_32x4d.a1_in1k)|224 |80.53|94.46|25.0 |4.3 |14.4 |2930 |
|[wide_resnet101_2.tv2_in1k](https://huggingface.co/timm/wide_resnet101_2.tv2_in1k)|176 |80.48|94.98|126.9 |14.3 |13.2 |1719 |
|[resnet152d.gluon_in1k](https://huggingface.co/timm/resnet152d.gluon_in1k)|224 |80.47|95.2 |60.2 |11.8 |23.4 |1428 |
|[resnet50.b2k_in1k](https://huggingface.co/timm/resnet50.b2k_in1k)|288 |80.45|95.32|25.6 |6.8 |18.4 |2086 |
|[ecaresnetlight.miil_in1k](https://huggingface.co/timm/ecaresnetlight.miil_in1k)|224 |80.45|95.24|30.2 |4.1 |8.4 |3530 |
|[resnext50_32x4d.a2_in1k](https://huggingface.co/timm/resnext50_32x4d.a2_in1k)|224 |80.45|94.63|25.0 |4.3 |14.4 |2936 |
|[wide_resnet50_2.tv2_in1k](https://huggingface.co/timm/wide_resnet50_2.tv2_in1k)|176 |80.43|95.09|68.9 |7.3 |9.0 |3015 |
|[resnet101d.gluon_in1k](https://huggingface.co/timm/resnet101d.gluon_in1k)|224 |80.42|95.01|44.6 |8.1 |17.0 |2007 |
|[resnet50.a1_in1k](https://huggingface.co/timm/resnet50.a1_in1k)|224 |80.38|94.6 |25.6 |4.1 |11.1 |3461 |
|[seresnet33ts.ra2_in1k](https://huggingface.co/timm/seresnet33ts.ra2_in1k)|256 |80.36|95.1 |19.8 |4.8 |11.7 |3267 |
|[resnext101_32x4d.gluon_in1k](https://huggingface.co/timm/resnext101_32x4d.gluon_in1k)|224 |80.34|94.93|44.2 |8.0 |21.2 |1814 |
|[resnext50_32x4d.fb_ssl_yfcc100m_ft_in1k](https://huggingface.co/timm/resnext50_32x4d.fb_ssl_yfcc100m_ft_in1k)|224 |80.32|95.4 |25.0 |4.3 |14.4 |2941 |
|[resnet101s.gluon_in1k](https://huggingface.co/timm/resnet101s.gluon_in1k)|224 |80.28|95.16|44.7 |9.2 |18.6 |1851 |
|[seresnet50.ra2_in1k](https://huggingface.co/timm/seresnet50.ra2_in1k)|224 |80.26|95.08|28.1 |4.1 |11.1 |2972 |
|[resnetblur50.bt_in1k](https://huggingface.co/timm/resnetblur50.bt_in1k)|288 |80.24|95.24|25.6 |8.5 |19.9 |1523 |
|[resnet50d.a2_in1k](https://huggingface.co/timm/resnet50d.a2_in1k)|224 |80.22|94.63|25.6 |4.4 |11.9 |3162 |
|[resnet152.tv2_in1k](https://huggingface.co/timm/resnet152.tv2_in1k)|176 |80.2 |94.64|60.2 |7.2 |14.0 |2346 |
|[seresnet50.a2_in1k](https://huggingface.co/timm/seresnet50.a2_in1k)|224 |80.08|94.74|28.1 |4.1 |11.1 |2969 |
|[eca_resnet33ts.ra2_in1k](https://huggingface.co/timm/eca_resnet33ts.ra2_in1k)|256 |80.08|94.97|19.7 |4.8 |11.7 |3284 |
|[gcresnet33ts.ra2_in1k](https://huggingface.co/timm/gcresnet33ts.ra2_in1k)|256 |80.06|94.99|19.9 |4.8 |11.7 |3216 |
|[resnet50_gn.a1h_in1k](https://huggingface.co/timm/resnet50_gn.a1h_in1k)|224 |80.06|94.95|25.6 |4.1 |11.1 |1109 |
|[seresnet50.a1_in1k](https://huggingface.co/timm/seresnet50.a1_in1k)|224 |80.02|94.71|28.1 |4.1 |11.1 |2962 |
|[resnet50.ram_in1k](https://huggingface.co/timm/resnet50.ram_in1k)|288 |79.97|95.05|25.6 |6.8 |18.4 |2086 |
|[resnet152c.gluon_in1k](https://huggingface.co/timm/resnet152c.gluon_in1k)|224 |79.92|94.84|60.2 |11.8 |23.4 |1455 |
|[seresnext50_32x4d.gluon_in1k](https://huggingface.co/timm/seresnext50_32x4d.gluon_in1k)|224 |79.91|94.82|27.6 |4.3 |14.4 |2591 |
|[resnet50.d_in1k](https://huggingface.co/timm/resnet50.d_in1k)|224 |79.91|94.67|25.6 |4.1 |11.1 |3456 |
|[resnet101.tv2_in1k](https://huggingface.co/timm/resnet101.tv2_in1k)|176 |79.9 |94.6 |44.6 |4.9 |10.1 |3341 |
|[resnetrs50.tf_in1k](https://huggingface.co/timm/resnetrs50.tf_in1k)|224 |79.89|94.97|35.7 |4.5 |12.1 |2774 |
|[resnet50.c2_in1k](https://huggingface.co/timm/resnet50.c2_in1k)|224 |79.88|94.87|25.6 |4.1 |11.1 |3455 |
|[ecaresnet26t.ra2_in1k](https://huggingface.co/timm/ecaresnet26t.ra2_in1k)|320 |79.86|95.07|16.0 |5.2 |16.4 |2168 |
|[resnet50.a2_in1k](https://huggingface.co/timm/resnet50.a2_in1k)|224 |79.85|94.56|25.6 |4.1 |11.1 |3460 |
|[resnet50.ra_in1k](https://huggingface.co/timm/resnet50.ra_in1k)|288 |79.83|94.97|25.6 |6.8 |18.4 |2087 |
|[resnet101.a3_in1k](https://huggingface.co/timm/resnet101.a3_in1k)|224 |79.82|94.62|44.6 |7.8 |16.2 |2114 |
|[resnext50_32x4d.ra_in1k](https://huggingface.co/timm/resnext50_32x4d.ra_in1k)|224 |79.76|94.6 |25.0 |4.3 |14.4 |2943 |
|[resnet50.c1_in1k](https://huggingface.co/timm/resnet50.c1_in1k)|224 |79.74|94.95|25.6 |4.1 |11.1 |3455 |
|[ecaresnet50d_pruned.miil_in1k](https://huggingface.co/timm/ecaresnet50d_pruned.miil_in1k)|224 |79.74|94.87|19.9 |2.5 |6.4 |3929 |
|[resnet33ts.ra2_in1k](https://huggingface.co/timm/resnet33ts.ra2_in1k)|288 |79.71|94.83|19.7 |6.0 |14.8 |2710 |
|[resnet152.gluon_in1k](https://huggingface.co/timm/resnet152.gluon_in1k)|224 |79.68|94.74|60.2 |11.6 |22.6 |1486 |
|[resnext50d_32x4d.bt_in1k](https://huggingface.co/timm/resnext50d_32x4d.bt_in1k)|224 |79.67|94.87|25.0 |4.5 |15.2 |2729 |
|[resnet50.bt_in1k](https://huggingface.co/timm/resnet50.bt_in1k)|288 |79.63|94.91|25.6 |6.8 |18.4 |2086 |
|[ecaresnet50t.a3_in1k](https://huggingface.co/timm/ecaresnet50t.a3_in1k)|224 |79.56|94.72|25.6 |4.3 |11.8 |2805 |
|[resnet101c.gluon_in1k](https://huggingface.co/timm/resnet101c.gluon_in1k)|224 |79.53|94.58|44.6 |8.1 |17.0 |2062 |
|[resnet50.b1k_in1k](https://huggingface.co/timm/resnet50.b1k_in1k)|224 |79.52|94.61|25.6 |4.1 |11.1 |3459 |
|[resnet50.tv2_in1k](https://huggingface.co/timm/resnet50.tv2_in1k)|176 |79.42|94.64|25.6 |2.6 |6.9 |5397 |
|[resnet32ts.ra2_in1k](https://huggingface.co/timm/resnet32ts.ra2_in1k)|288 |79.4 |94.66|18.0 |5.9 |14.6 |2752 |
|[resnet50.b2k_in1k](https://huggingface.co/timm/resnet50.b2k_in1k)|224 |79.38|94.57|25.6 |4.1 |11.1 |3459 |
|[resnext50_32x4d.tv2_in1k](https://huggingface.co/timm/resnext50_32x4d.tv2_in1k)|176 |79.37|94.3 |25.0 |2.7 |9.0 |4577 |
|[resnext50_32x4d.gluon_in1k](https://huggingface.co/timm/resnext50_32x4d.gluon_in1k)|224 |79.36|94.43|25.0 |4.3 |14.4 |2942 |
|[resnext101_32x8d.tv_in1k](https://huggingface.co/timm/resnext101_32x8d.tv_in1k)|224 |79.31|94.52|88.8 |16.5 |31.2 |1100 |
|[resnet101.gluon_in1k](https://huggingface.co/timm/resnet101.gluon_in1k)|224 |79.31|94.53|44.6 |7.8 |16.2 |2125 |
|[resnetblur50.bt_in1k](https://huggingface.co/timm/resnetblur50.bt_in1k)|224 |79.31|94.63|25.6 |5.2 |12.0 |2524 |
|[resnet50.a1h_in1k](https://huggingface.co/timm/resnet50.a1h_in1k)|176 |79.27|94.49|25.6 |2.6 |6.9 |5404 |
|[resnext50_32x4d.a3_in1k](https://huggingface.co/timm/resnext50_32x4d.a3_in1k)|224 |79.25|94.31|25.0 |4.3 |14.4 |2931 |
|[resnet50.fb_ssl_yfcc100m_ft_in1k](https://huggingface.co/timm/resnet50.fb_ssl_yfcc100m_ft_in1k)|224 |79.22|94.84|25.6 |4.1 |11.1 |3451 |
|[resnet33ts.ra2_in1k](https://huggingface.co/timm/resnet33ts.ra2_in1k)|256 |79.21|94.56|19.7 |4.8 |11.7 |3392 |
|[resnet50d.gluon_in1k](https://huggingface.co/timm/resnet50d.gluon_in1k)|224 |79.07|94.48|25.6 |4.4 |11.9 |3162 |
|[resnet50.ram_in1k](https://huggingface.co/timm/resnet50.ram_in1k)|224 |79.03|94.38|25.6 |4.1 |11.1 |3453 |
|[resnet50.am_in1k](https://huggingface.co/timm/resnet50.am_in1k)|224 |79.01|94.39|25.6 |4.1 |11.1 |3461 |
|[resnet32ts.ra2_in1k](https://huggingface.co/timm/resnet32ts.ra2_in1k)|256 |79.01|94.37|18.0 |4.6 |11.6 |3440 |
|[ecaresnet26t.ra2_in1k](https://huggingface.co/timm/ecaresnet26t.ra2_in1k)|256 |78.9 |94.54|16.0 |3.4 |10.5 |3421 |
|[resnet152.a3_in1k](https://huggingface.co/timm/resnet152.a3_in1k)|160 |78.89|94.11|60.2 |5.9 |11.5 |2745 |
|[wide_resnet101_2.tv_in1k](https://huggingface.co/timm/wide_resnet101_2.tv_in1k)|224 |78.84|94.28|126.9 |22.8 |21.2 |1079 |
|[seresnext26d_32x4d.bt_in1k](https://huggingface.co/timm/seresnext26d_32x4d.bt_in1k)|288 |78.83|94.24|16.8 |4.5 |16.8 |2251 |
|[resnet50.ra_in1k](https://huggingface.co/timm/resnet50.ra_in1k)|224 |78.81|94.32|25.6 |4.1 |11.1 |3454 |
|[seresnext26t_32x4d.bt_in1k](https://huggingface.co/timm/seresnext26t_32x4d.bt_in1k)|288 |78.74|94.33|16.8 |4.5 |16.7 |2264 |
|[resnet50s.gluon_in1k](https://huggingface.co/timm/resnet50s.gluon_in1k)|224 |78.72|94.23|25.7 |5.5 |13.5 |2796 |
|[resnet50d.a3_in1k](https://huggingface.co/timm/resnet50d.a3_in1k)|224 |78.71|94.24|25.6 |4.4 |11.9 |3154 |
|[wide_resnet50_2.tv_in1k](https://huggingface.co/timm/wide_resnet50_2.tv_in1k)|224 |78.47|94.09|68.9 |11.4 |14.4 |1934 |
|[resnet50.bt_in1k](https://huggingface.co/timm/resnet50.bt_in1k)|224 |78.46|94.27|25.6 |4.1 |11.1 |3454 |
|[resnet34d.ra2_in1k](https://huggingface.co/timm/resnet34d.ra2_in1k)|288 |78.43|94.35|21.8 |6.5 |7.5 |3291 |
|[gcresnext26ts.ch_in1k](https://huggingface.co/timm/gcresnext26ts.ch_in1k)|288 |78.42|94.04|10.5 |3.1 |13.3 |3226 |
|[resnet26t.ra2_in1k](https://huggingface.co/timm/resnet26t.ra2_in1k)|320 |78.33|94.13|16.0 |5.2 |16.4 |2391 |
|[resnet152.tv_in1k](https://huggingface.co/timm/resnet152.tv_in1k)|224 |78.32|94.04|60.2 |11.6 |22.6 |1487 |
|[seresnext26ts.ch_in1k](https://huggingface.co/timm/seresnext26ts.ch_in1k)|288 |78.28|94.1 |10.4 |3.1 |13.3 |3062 |
|[bat_resnext26ts.ch_in1k](https://huggingface.co/timm/bat_resnext26ts.ch_in1k)|256 |78.25|94.1 |10.7 |2.5 |12.5 |3393 |
|[resnet50.a3_in1k](https://huggingface.co/timm/resnet50.a3_in1k)|224 |78.06|93.78|25.6 |4.1 |11.1 |3450 |
|[resnet50c.gluon_in1k](https://huggingface.co/timm/resnet50c.gluon_in1k)|224 |78.0 |93.99|25.6 |4.4 |11.9 |3286 |
|[eca_resnext26ts.ch_in1k](https://huggingface.co/timm/eca_resnext26ts.ch_in1k)|288 |78.0 |93.91|10.3 |3.1 |13.3 |3297 |
|[seresnext26t_32x4d.bt_in1k](https://huggingface.co/timm/seresnext26t_32x4d.bt_in1k)|224 |77.98|93.75|16.8 |2.7 |10.1 |3841 |
|[resnet34.a1_in1k](https://huggingface.co/timm/resnet34.a1_in1k)|288 |77.92|93.77|21.8 |6.1 |6.2 |3609 |
|[resnet101.a3_in1k](https://huggingface.co/timm/resnet101.a3_in1k)|160 |77.88|93.71|44.6 |4.0 |8.3 |3926 |
|[resnet26t.ra2_in1k](https://huggingface.co/timm/resnet26t.ra2_in1k)|256 |77.87|93.84|16.0 |3.4 |10.5 |3772 |
|[seresnext26ts.ch_in1k](https://huggingface.co/timm/seresnext26ts.ch_in1k)|256 |77.86|93.79|10.4 |2.4 |10.5 |4263 |
|[resnetrs50.tf_in1k](https://huggingface.co/timm/resnetrs50.tf_in1k)|160 |77.82|93.81|35.7 |2.3 |6.2 |5238 |
|[gcresnext26ts.ch_in1k](https://huggingface.co/timm/gcresnext26ts.ch_in1k)|256 |77.81|93.82|10.5 |2.4 |10.5 |4183 |
|[ecaresnet50t.a3_in1k](https://huggingface.co/timm/ecaresnet50t.a3_in1k)|160 |77.79|93.6 |25.6 |2.2 |6.0 |5329 |
|[resnext50_32x4d.a3_in1k](https://huggingface.co/timm/resnext50_32x4d.a3_in1k)|160 |77.73|93.32|25.0 |2.2 |7.4 |5576 |
|[resnext50_32x4d.tv_in1k](https://huggingface.co/timm/resnext50_32x4d.tv_in1k)|224 |77.61|93.7 |25.0 |4.3 |14.4 |2944 |
|[seresnext26d_32x4d.bt_in1k](https://huggingface.co/timm/seresnext26d_32x4d.bt_in1k)|224 |77.59|93.61|16.8 |2.7 |10.2 |3807 |
|[resnet50.gluon_in1k](https://huggingface.co/timm/resnet50.gluon_in1k)|224 |77.58|93.72|25.6 |4.1 |11.1 |3455 |
|[eca_resnext26ts.ch_in1k](https://huggingface.co/timm/eca_resnext26ts.ch_in1k)|256 |77.44|93.56|10.3 |2.4 |10.5 |4284 |
|[resnet26d.bt_in1k](https://huggingface.co/timm/resnet26d.bt_in1k)|288 |77.41|93.63|16.0 |4.3 |13.5 |2907 |
|[resnet101.tv_in1k](https://huggingface.co/timm/resnet101.tv_in1k)|224 |77.38|93.54|44.6 |7.8 |16.2 |2125 |
|[resnet50d.a3_in1k](https://huggingface.co/timm/resnet50d.a3_in1k)|160 |77.22|93.27|25.6 |2.2 |6.1 |5982 |
|[resnext26ts.ra2_in1k](https://huggingface.co/timm/resnext26ts.ra2_in1k)|288 |77.17|93.47|10.3 |3.1 |13.3 |3392 |
|[resnet34.a2_in1k](https://huggingface.co/timm/resnet34.a2_in1k)|288 |77.15|93.27|21.8 |6.1 |6.2 |3615 |
|[resnet34d.ra2_in1k](https://huggingface.co/timm/resnet34d.ra2_in1k)|224 |77.1 |93.37|21.8 |3.9 |4.5 |5436 |
|[seresnet50.a3_in1k](https://huggingface.co/timm/seresnet50.a3_in1k)|224 |77.02|93.07|28.1 |4.1 |11.1 |2952 |
|[resnext26ts.ra2_in1k](https://huggingface.co/timm/resnext26ts.ra2_in1k)|256 |76.78|93.13|10.3 |2.4 |10.5 |4410 |
|[resnet26d.bt_in1k](https://huggingface.co/timm/resnet26d.bt_in1k)|224 |76.7 |93.17|16.0 |2.6 |8.2 |4859 |
|[resnet34.bt_in1k](https://huggingface.co/timm/resnet34.bt_in1k)|288 |76.5 |93.35|21.8 |6.1 |6.2 |3617 |
|[resnet34.a1_in1k](https://huggingface.co/timm/resnet34.a1_in1k)|224 |76.42|92.87|21.8 |3.7 |3.7 |5984 |
|[resnet26.bt_in1k](https://huggingface.co/timm/resnet26.bt_in1k)|288 |76.35|93.18|16.0 |3.9 |12.2 |3331 |
|[resnet50.tv_in1k](https://huggingface.co/timm/resnet50.tv_in1k)|224 |76.13|92.86|25.6 |4.1 |11.1 |3457 |
|[resnet50.a3_in1k](https://huggingface.co/timm/resnet50.a3_in1k)|160 |75.96|92.5 |25.6 |2.1 |5.7 |6490 |
|[resnet34.a2_in1k](https://huggingface.co/timm/resnet34.a2_in1k)|224 |75.52|92.44|21.8 |3.7 |3.7 |5991 |
|[resnet26.bt_in1k](https://huggingface.co/timm/resnet26.bt_in1k)|224 |75.3 |92.58|16.0 |2.4 |7.4 |5583 |
|[resnet34.bt_in1k](https://huggingface.co/timm/resnet34.bt_in1k)|224 |75.16|92.18|21.8 |3.7 |3.7 |5994 |
|[seresnet50.a3_in1k](https://huggingface.co/timm/seresnet50.a3_in1k)|160 |75.1 |92.08|28.1 |2.1 |5.7 |5513 |
|[resnet34.gluon_in1k](https://huggingface.co/timm/resnet34.gluon_in1k)|224 |74.57|91.98|21.8 |3.7 |3.7 |5984 |
|[resnet18d.ra2_in1k](https://huggingface.co/timm/resnet18d.ra2_in1k)|288 |73.81|91.83|11.7 |3.4 |5.4 |5196 |
|[resnet34.tv_in1k](https://huggingface.co/timm/resnet34.tv_in1k)|224 |73.32|91.42|21.8 |3.7 |3.7 |5979 |
|[resnet18.fb_swsl_ig1b_ft_in1k](https://huggingface.co/timm/resnet18.fb_swsl_ig1b_ft_in1k)|224 |73.28|91.73|11.7 |1.8 |2.5 |10213 |
|[resnet18.a1_in1k](https://huggingface.co/timm/resnet18.a1_in1k)|288 |73.16|91.03|11.7 |3.0 |4.1 |6050 |
|[resnet34.a3_in1k](https://huggingface.co/timm/resnet34.a3_in1k)|224 |72.98|91.11|21.8 |3.7 |3.7 |5967 |
|[resnet18.fb_ssl_yfcc100m_ft_in1k](https://huggingface.co/timm/resnet18.fb_ssl_yfcc100m_ft_in1k)|224 |72.6 |91.42|11.7 |1.8 |2.5 |10213 |
|[resnet18.a2_in1k](https://huggingface.co/timm/resnet18.a2_in1k)|288 |72.37|90.59|11.7 |3.0 |4.1 |6051 |
|[resnet14t.c3_in1k](https://huggingface.co/timm/resnet14t.c3_in1k)|224 |72.26|90.31|10.1 |1.7 |5.8 |7026 |
|[resnet18d.ra2_in1k](https://huggingface.co/timm/resnet18d.ra2_in1k)|224 |72.26|90.68|11.7 |2.1 |3.3 |8707 |
|[resnet18.a1_in1k](https://huggingface.co/timm/resnet18.a1_in1k)|224 |71.49|90.07|11.7 |1.8 |2.5 |10187 |
|[resnet14t.c3_in1k](https://huggingface.co/timm/resnet14t.c3_in1k)|176 |71.31|89.69|10.1 |1.1 |3.6 |10970 |
|[resnet18.gluon_in1k](https://huggingface.co/timm/resnet18.gluon_in1k)|224 |70.84|89.76|11.7 |1.8 |2.5 |10210 |
|[resnet18.a2_in1k](https://huggingface.co/timm/resnet18.a2_in1k)|224 |70.64|89.47|11.7 |1.8 |2.5 |10194 |
|[resnet34.a3_in1k](https://huggingface.co/timm/resnet34.a3_in1k)|160 |70.56|89.52|21.8 |1.9 |1.9 |10737 |
|[resnet18.tv_in1k](https://huggingface.co/timm/resnet18.tv_in1k)|224 |69.76|89.07|11.7 |1.8 |2.5 |10205 |
|[resnet10t.c3_in1k](https://huggingface.co/timm/resnet10t.c3_in1k)|224 |68.34|88.03|5.4 |1.1 |2.4 |13079 |
|[resnet18.a3_in1k](https://huggingface.co/timm/resnet18.a3_in1k)|224 |68.25|88.17|11.7 |1.8 |2.5 |10167 |
|[resnet10t.c3_in1k](https://huggingface.co/timm/resnet10t.c3_in1k)|176 |66.71|86.96|5.4 |0.7 |1.5 |20327 |
|[resnet18.a3_in1k](https://huggingface.co/timm/resnet18.a3_in1k)|160 |65.66|86.26|11.7 |0.9 |1.3 |18229 |
## Citation
```bibtex
@inproceedings{wightman2021resnet,
title={ResNet strikes back: An improved training procedure in timm},
author={Wightman, Ross and Touvron, Hugo and Jegou, Herve},
booktitle={NeurIPS 2021 Workshop on ImageNet: Past, Present, and Future}
}
```
```bibtex
@misc{rw2019timm,
author = {Ross Wightman},
title = {PyTorch Image Models},
year = {2019},
publisher = {GitHub},
journal = {GitHub repository},
doi = {10.5281/zenodo.4414861},
howpublished = {\url{https://github.com/huggingface/pytorch-image-models}}
}
```
```bibtex
@article{He2015,
author = {Kaiming He and Xiangyu Zhang and Shaoqing Ren and Jian Sun},
title = {Deep Residual Learning for Image Recognition},
journal = {arXiv preprint arXiv:1512.03385},
year = {2015}
}
```
```bibtex
@article{He2018BagOT,
title={Bag of Tricks for Image Classification with Convolutional Neural Networks},
author={Tong He and Zhi Zhang and Hang Zhang and Zhongyue Zhang and Junyuan Xie and Mu Li},
journal={2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
year={2018},
pages={558-567}
}
```
| [
-0.862825870513916,
-0.23422157764434814,
0.03858453780412674,
0.37246400117874146,
-0.413438618183136,
-0.09953973442316055,
-0.1374499499797821,
-0.4294140338897705,
1.0833770036697388,
0.3016147017478943,
-0.6650972962379456,
-0.5440780520439148,
-0.6652161478996277,
-0.0052491165697574615,
0.31419479846954346,
0.8979684114456177,
-0.012231938540935516,
-0.07820549607276917,
0.1914481669664383,
-0.2856251001358032,
-0.09037870168685913,
-0.2726673483848572,
-1.0603342056274414,
-0.23913024365901947,
0.4507800340652466,
0.2307937890291214,
0.7029978036880493,
0.6157731413841248,
0.4338829219341278,
0.5880526900291443,
-0.2253914475440979,
0.30089226365089417,
-0.07529329508543015,
-0.10233154892921448,
0.5923283100128174,
-0.46140241622924805,
-0.8815374970436096,
-0.01703176647424698,
0.6912573575973511,
0.5824565291404724,
0.06121167913079262,
0.3479708135128021,
0.3691062331199646,
0.6714968085289001,
0.01577678695321083,
-0.017816700041294098,
0.0011310814879834652,
0.15392862260341644,
-0.32250452041625977,
0.0636526569724083,
-0.097042977809906,
-0.7200738191604614,
0.13368123769760132,
-0.6385037302970886,
-0.011327626183629036,
0.0016732517397031188,
1.3570177555084229,
-0.07753398269414902,
-0.19004687666893005,
0.04846763610839844,
0.08355799317359924,
0.7850558161735535,
-0.8022323846817017,
0.31127792596817017,
0.5745521783828735,
0.05065855756402016,
-0.20335142314434052,
-0.6994439959526062,
-0.5323785543441772,
0.13109080493450165,
-0.40948957204818726,
0.3190762996673584,
-0.3285243511199951,
-0.22474472224712372,
0.3867427408695221,
0.3285021483898163,
-0.48932120203971863,
-0.08106677979230881,
-0.3742979168891907,
-0.07483953982591629,
0.7043198943138123,
0.06684668362140656,
0.6977202296257019,
-0.33366942405700684,
-0.5087180733680725,
-0.181489959359169,
-0.19532419741153717,
0.4465801417827606,
0.2698851227760315,
0.13741035759449005,
-1.0811108350753784,
0.4578063189983368,
0.14182566106319427,
0.26183709502220154,
0.36782360076904297,
-0.17153781652450562,
0.8280856013298035,
-0.07402922213077545,
-0.4831579923629761,
-0.5205504894256592,
1.106075644493103,
0.6596887111663818,
0.2897273898124695,
-0.06798242777585983,
-0.05447050556540489,
-0.18091773986816406,
-0.39766445755958557,
-0.9799801707267761,
-0.07478654384613037,
0.2861199378967285,
-0.570647120475769,
-0.2563958466053009,
0.34376007318496704,
-0.9201884865760803,
-0.06375943869352341,
-0.08105108141899109,
0.07071596384048462,
-0.747020959854126,
-0.46429818868637085,
0.010350657626986504,
-0.21879413723945618,
0.5056015849113464,
0.229845330119133,
-0.3615867793560028,
0.43952593207359314,
0.1332799196243286,
0.9232869744300842,
0.2651495039463043,
-0.06959103792905807,
-0.22159986197948456,
-0.019787369295954704,
-0.3683225214481354,
0.41350057721138,
0.1237514391541481,
-0.1646472066640854,
-0.3271360695362091,
0.39518409967422485,
-0.2545098662376404,
-0.31284216046333313,
0.6097168922424316,
0.20005640387535095,
0.16329893469810486,
-0.30107587575912476,
-0.243539959192276,
-0.2571829855442047,
0.34008631110191345,
-0.5858726501464844,
1.0957293510437012,
0.40139663219451904,
-1.1257719993591309,
0.16374565660953522,
-0.5215907096862793,
-0.02299802005290985,
-0.2870596945285797,
0.0332232303917408,
-0.9384563565254211,
0.0025608886498957872,
0.22731482982635498,
0.6984439492225647,
-0.2836705148220062,
-0.172453373670578,
-0.37749651074409485,
0.04538596421480179,
0.4277649223804474,
0.1924089789390564,
0.9330950975418091,
0.3452122211456299,
-0.4540537893772125,
-0.2173706293106079,
-0.7109668850898743,
0.43681979179382324,
0.4690960645675659,
-0.029497073963284492,
-0.050253719091415405,
-0.7805103063583374,
0.06270978599786758,
0.6125947833061218,
0.22101816534996033,
-0.713569164276123,
0.25324171781539917,
-0.20490270853042603,
0.33545660972595215,
0.6223882436752319,
0.04147762060165405,
0.19319359958171844,
-0.7433589100837708,
0.6148498058319092,
-0.00199573440477252,
0.2765687108039856,
0.013623639941215515,
-0.46066203713417053,
-0.7556463479995728,
-0.729308545589447,
0.22461946308612823,
0.45852604508399963,
-0.42903438210487366,
0.8599294424057007,
0.12036417424678802,
-0.6310587525367737,
-0.6077940464019775,
0.07345450669527054,
0.6061831712722778,
0.23386453092098236,
0.10966762900352478,
-0.369066447019577,
-0.7484862208366394,
-0.9904481768608093,
-0.31972166895866394,
0.1130770817399025,
-0.040287844836711884,
0.6718974113464355,
0.4575996398925781,
-0.17896251380443573,
0.5881462693214417,
-0.4066223204135895,
-0.2707112729549408,
-0.1797792911529541,
-0.08475444465875626,
0.4359589219093323,
0.8266655206680298,
1.0583961009979248,
-0.739182710647583,
-0.9435513019561768,
0.12753969430923462,
-1.1214221715927124,
-0.052891138941049576,
-0.015624540857970715,
-0.23845550417900085,
0.40653130412101746,
0.24690426886081696,
-0.8796252012252808,
0.7484987378120422,
0.3662147521972656,
-0.7571197152137756,
0.4424585998058319,
-0.3717523217201233,
0.5389332175254822,
-1.1331536769866943,
0.2508271336555481,
0.2956019639968872,
-0.2218308299779892,
-0.5575323700904846,
0.07835133373737335,
-0.08689174801111221,
0.11770287901163101,
-0.538806676864624,
0.7755995988845825,
-0.7347343564033508,
-0.0776727944612503,
0.10292498022317886,
0.03973442316055298,
-0.010308233089745045,
0.45762574672698975,
-0.07552441209554672,
0.6060258150100708,
0.9041939377784729,
-0.16094957292079926,
0.32159408926963806,
0.4269731938838959,
0.007970346137881279,
0.7535338401794434,
-0.6257246732711792,
0.1744770109653473,
0.01731519214808941,
0.47645583748817444,
-1.0436558723449707,
-0.409944087266922,
0.5745448470115662,
-0.8514224290847778,
0.6748203039169312,
-0.3029576241970062,
-0.34664857387542725,
-0.8364132642745972,
-0.8668983578681946,
0.2880745232105255,
0.6963664889335632,
-0.6203657984733582,
0.38522064685821533,
0.22596144676208496,
-0.030186597257852554,
-0.508212685585022,
-0.752845048904419,
0.07445483654737473,
-0.4260805547237396,
-0.8257338404655457,
0.4514111280441284,
0.31172582507133484,
-0.19429603219032288,
0.0969848781824112,
-0.12356333434581757,
-0.14000150561332703,
-0.21902014315128326,
0.61602783203125,
0.32427141070365906,
-0.29731571674346924,
-0.4151814877986908,
-0.3722114562988281,
-0.3015933930873871,
-0.05673157423734665,
-0.1258518099784851,
0.527617335319519,
-0.42874521017074585,
0.04932067543268204,
-1.459192156791687,
0.12327224016189575,
0.9090008735656738,
-0.048881322145462036,
0.978542685508728,
0.8113060593605042,
-0.5073433518409729,
0.1570623815059662,
-0.4781796634197235,
-0.2410418689250946,
-0.5246827006340027,
-0.16362756490707397,
-0.6938446760177612,
-0.5855683088302612,
0.9505962133407593,
0.06560187041759491,
-0.12573175132274628,
0.7887270450592041,
0.18207967281341553,
-0.23830178380012512,
0.8507589101791382,
0.48181548714637756,
-0.00972590409219265,
0.5735453963279724,
-0.8730981349945068,
0.08283396065235138,
-0.8540842533111572,
-0.7543295621871948,
-0.27161309123039246,
-0.578882098197937,
-0.5976601839065552,
-0.38574397563934326,
0.25183287262916565,
0.38293135166168213,
-0.24923497438430786,
0.5838111042976379,
-0.6009025573730469,
0.042733363807201385,
0.33554789423942566,
0.5610823631286621,
-0.2460116147994995,
-0.06725049763917923,
-0.12570714950561523,
-0.3536401093006134,
-0.5569518804550171,
-0.35454946756362915,
0.8263965845108032,
0.6425799131393433,
0.45932862162590027,
0.10399417579174042,
0.6106462478637695,
0.06267347186803818,
0.2233753204345703,
-0.33262351155281067,
0.6811540722846985,
0.02824922651052475,
-0.4496324360370636,
-0.29646193981170654,
-0.3785412609577179,
-1.0846065282821655,
0.14606577157974243,
-0.46262210607528687,
-0.8472343683242798,
-0.13400772213935852,
-0.03267921134829521,
-0.38656753301620483,
0.7617090940475464,
-0.6256719827651978,
0.6163091063499451,
-0.04525616765022278,
-0.5610830187797546,
-0.08171074092388153,
-0.8247389197349548,
0.11077895015478134,
0.3674353063106537,
0.052468933165073395,
-0.019398976117372513,
-0.032999031245708466,
0.8338759541511536,
-0.8385748267173767,
0.6123440265655518,
-0.37649068236351013,
0.16835570335388184,
0.4224694073200226,
-0.0383911058306694,
0.42571383714675903,
0.005457113031297922,
-0.1924324929714203,
-0.07939084619283676,
0.08529902249574661,
-0.8046092987060547,
-0.37620455026626587,
0.6863664984703064,
-0.8007766604423523,
-0.3686690032482147,
-0.6835241913795471,
-0.29191267490386963,
0.09525866061449051,
0.01838207058608532,
0.49346959590911865,
0.6682189106941223,
0.015224269591271877,
0.22427666187286377,
0.559654951095581,
-0.4421342611312866,
0.50270676612854,
-0.09366610646247864,
-0.00493652606382966,
-0.5732396841049194,
0.7140061855316162,
0.0755019560456276,
0.0037546646781265736,
-0.0010103905806317925,
0.027504902333021164,
-0.42163336277008057,
-0.2803221344947815,
-0.3080073595046997,
0.736514687538147,
-0.21270272135734558,
-0.35134854912757874,
-0.6523770093917847,
-0.3619699776172638,
-0.5536248683929443,
-0.39854860305786133,
-0.4713124632835388,
-0.3586713969707489,
-0.31810715794563293,
0.031933560967445374,
0.7685400247573853,
0.9031276702880859,
-0.39959293603897095,
0.39412546157836914,
-0.5057803988456726,
0.2946632206439972,
0.06902805715799332,
0.5611385703086853,
-0.31286442279815674,
-0.6988605856895447,
0.04997093603014946,
-0.044203419238328934,
-0.1004442498087883,
-0.8391303420066833,
0.6432392597198486,
0.02508820965886116,
0.3738957345485687,
0.4076964557170868,
-0.20421966910362244,
0.7149847745895386,
-0.01923041231930256,
0.4495881497859955,
0.6274663805961609,
-0.6567623615264893,
0.381926029920578,
-0.4249837100505829,
0.005094203166663647,
0.29395225644111633,
0.18711498379707336,
-0.38897955417633057,
-0.3501855731010437,
-0.9003933668136597,
-0.4591946005821228,
0.7991259098052979,
0.12239671498537064,
-0.040491484105587006,
-0.02011667937040329,
0.7742130756378174,
-0.06433223932981491,
-0.02138051949441433,
-0.5275529623031616,
-0.921049177646637,
-0.09206147491931915,
-0.17796844244003296,
0.08207204937934875,
-0.09969016909599304,
0.017146971076726913,
-0.6549077033996582,
0.6690605282783508,
0.07871116697788239,
0.5231770873069763,
0.19892144203186035,
0.06928352266550064,
0.011357559822499752,
-0.31649482250213623,
0.6239494681358337,
0.37410596013069153,
-0.21925725042819977,
-0.12694516777992249,
0.3480318784713745,
-0.5475178956985474,
0.10940523445606232,
0.2160300612449646,
0.000007538915724580875,
0.07273034751415253,
0.11119098216295242,
0.5220603942871094,
0.3139325678348541,
-0.06579996645450592,
0.5243719816207886,
-0.25706547498703003,
-0.5631917715072632,
-0.26401957869529724,
-0.17447622120380402,
0.2447025626897812,
0.4459556043148041,
0.35719364881515503,
0.13634532690048218,
-0.4124617278575897,
-0.35501253604888916,
0.5548638105392456,
0.7022185325622559,
-0.38748690485954285,
-0.41737672686576843,
0.6237961649894714,
-0.06563251465559006,
-0.25479161739349365,
0.423899382352829,
-0.1207357868552208,
-0.6564769744873047,
1.0593433380126953,
0.3650057315826416,
0.6618599891662598,
-0.4799122214317322,
0.09593354910612106,
0.9023023247718811,
0.0078011746518313885,
0.15207834541797638,
0.3361649513244629,
0.4550827443599701,
-0.382263720035553,
-0.056461211293935776,
-0.5234978795051575,
0.18417944014072418,
0.5080798268318176,
-0.48436489701271057,
0.2937981188297272,
-0.7729761004447937,
-0.35946038365364075,
0.10710591822862625,
0.4973953068256378,
-0.6728927493095398,
0.3408370316028595,
-0.05069161579012871,
1.0744742155075073,
-0.8719423413276672,
0.8898758888244629,
0.9043167233467102,
-0.5763736963272095,
-0.8906626105308533,
-0.008976397104561329,
0.1457194685935974,
-0.892257809638977,
0.4913591742515564,
0.11047156155109406,
0.033226482570171356,
-0.01649090088903904,
-0.5181970000267029,
-0.7128092050552368,
1.4088537693023682,
0.4017879068851471,
-0.06522011011838913,
0.3146573603153229,
-0.4032731354236603,
0.375927209854126,
-0.19883596897125244,
0.6074309945106506,
0.3711916208267212,
0.5160001516342163,
0.19772233068943024,
-0.8542865514755249,
0.36730799078941345,
-0.4398233890533447,
-0.0896751880645752,
0.27040761709213257,
-1.2971378564834595,
0.9105867147445679,
-0.2855392098426819,
-0.06812785565853119,
0.25075677037239075,
0.6921464800834656,
0.34525349736213684,
-0.020435316488146782,
0.2905532121658325,
0.9470892548561096,
0.48877495527267456,
-0.2553272247314453,
1.0686209201812744,
-0.2390439510345459,
0.5658687353134155,
0.2595580816268921,
0.5085765719413757,
0.39106377959251404,
0.38880664110183716,
-0.5699136257171631,
0.2665981650352478,
0.8714117407798767,
-0.06593184918165207,
0.17845863103866577,
0.2816481292247772,
-0.3923933804035187,
-0.17769043147563934,
-0.18657204508781433,
-0.6881405115127563,
0.24086132645606995,
0.12940114736557007,
-0.14682047069072723,
-0.18373601138591766,
-0.016580944880843163,
0.2654786705970764,
0.30259644985198975,
-0.20232707262039185,
0.5305337905883789,
0.08009124547243118,
-0.4486723244190216,
0.4888821542263031,
0.028966987505555153,
1.0617632865905762,
-0.35749495029449463,
0.15636397898197174,
-0.36798834800720215,
0.33574992418289185,
-0.2704198360443115,
-1.1085911989212036,
0.36092737317085266,
-0.08325737714767456,
0.0369117446243763,
-0.22076964378356934,
0.6593071818351746,
-0.3360452950000763,
-0.3555099368095398,
0.40188780426979065,
0.37794041633605957,
0.5250869989395142,
0.3056876063346863,
-1.1740001440048218,
0.2882654368877411,
0.07728272676467896,
-0.6101434230804443,
0.45964574813842773,
0.4715181291103363,
0.355308473110199,
0.7742224931716919,
0.36489489674568176,
0.25408047437667847,
0.1635606735944748,
-0.32735171914100647,
0.7796362042427063,
-0.5895464420318604,
-0.44883984327316284,
-0.8256157636642456,
0.5113701820373535,
-0.3740643560886383,
-0.5468153357505798,
0.7352543473243713,
0.6120802760124207,
0.40008169412612915,
0.025444548577070236,
0.7018440961837769,
-0.5582537651062012,
0.5234116315841675,
-0.28845393657684326,
0.774579644203186,
-0.6713164448738098,
-0.2182786613702774,
-0.19059666991233826,
-0.6014275550842285,
-0.4211748242378235,
0.8688188195228577,
-0.1300547569990158,
0.2699199914932251,
0.32144877314567566,
0.7518771886825562,
0.054620154201984406,
-0.15706667304039001,
-0.01781691052019596,
0.1798318475484848,
-0.10510624945163727,
0.87739098072052,
0.5128345489501953,
-0.7849053740501404,
0.07151877135038376,
-0.4955304265022278,
-0.3084859251976013,
-0.3534890115261078,
-0.7228812575340271,
-1.1649843454360962,
-0.7181925773620605,
-0.5615723133087158,
-0.7150251865386963,
-0.22408223152160645,
1.2102075815200806,
0.8379230499267578,
-0.6273335218429565,
-0.1470138281583786,
0.11123327910900116,
0.08274409919977188,
-0.17006075382232666,
-0.21511974930763245,
0.5630149841308594,
0.0855817124247551,
-0.9781659245491028,
-0.39685988426208496,
0.1544787734746933,
0.5848459005355835,
0.38932326436042786,
-0.4947049021720886,
-0.2440974861383438,
-0.0914575457572937,
0.3111560046672821,
0.856917142868042,
-0.8192396759986877,
-0.28588810563087463,
-0.002843959955498576,
-0.48953983187675476,
0.17418405413627625,
0.3082459270954132,
-0.44253015518188477,
-0.0815787985920906,
0.4879221022129059,
0.36686447262763977,
0.7598710060119629,
0.05658566951751709,
0.14865979552268982,
-0.47334256768226624,
0.5806240439414978,
-0.0191473588347435,
0.33320921659469604,
0.24398787319660187,
-0.30408456921577454,
0.7559859156608582,
0.5311213731765747,
-0.4127788841724396,
-1.0221797227859497,
-0.16450123488903046,
-1.3377106189727783,
-0.05937514454126358,
0.7255017757415771,
-0.10803667455911636,
-0.41769516468048096,
0.3964889943599701,
-0.4333260655403137,
0.5361655354499817,
-0.21190059185028076,
0.27818888425827026,
0.22951434552669525,
-0.34750306606292725,
-0.38971924781799316,
-0.601620078086853,
0.6368530988693237,
0.37437307834625244,
-0.6836327314376831,
-0.39866435527801514,
-0.015035724267363548,
0.365689754486084,
0.17824073135852814,
0.7658589482307434,
-0.4047137200832367,
0.15508562326431274,
-0.09795758873224258,
0.26423129439353943,
-0.06833698600530624,
0.152381032705307,
-0.31377625465393066,
-0.12400513142347336,
-0.18541455268859863,
-0.6650408506393433
] |
WizardLM/WizardCoder-Python-34B-V1.0 | WizardLM | "2023-09-09T06:44:14Z" | 11,148 | 679 | transformers | [
"transformers",
"pytorch",
"llama",
"text-generation",
"code",
"arxiv:2304.12244",
"arxiv:2306.08568",
"arxiv:2308.09583",
"arxiv:2303.08774",
"license:llama2",
"model-index",
"endpoints_compatible",
"has_space",
"text-generation-inference",
"region:us"
] | text-generation | "2023-08-26T03:59:07Z" | ---
license: llama2
metrics:
- code_eval
library_name: transformers
tags:
- code
model-index:
- name: WizardCoder-Python-34B-V1.0
results:
- task:
type: text-generation
dataset:
type: openai_humaneval
name: HumanEval
metrics:
- name: pass@1
type: pass@1
value: 0.732
verified: false
---
<p align="center">
🤗 <a href="https://huggingface.co/WizardLM" target="_blank">HF Repo</a> •🐱 <a href="https://github.com/nlpxucan/WizardLM" target="_blank">Github Repo</a> • 🐦 <a href="https://twitter.com/WizardLM_AI" target="_blank">Twitter</a> • 📃 <a href="https://arxiv.org/abs/2304.12244" target="_blank">[WizardLM]</a> • 📃 <a href="https://arxiv.org/abs/2306.08568" target="_blank">[WizardCoder]</a> • 📃 <a href="https://arxiv.org/abs/2308.09583" target="_blank">[WizardMath]</a> <br>
</p>
<p align="center">
👋 Join our <a href="https://discord.gg/VZjjHtWrKs" target="_blank">Discord</a>
</p>
## News
- 🔥🔥🔥[2023/08/26] We released **WizardCoder-Python-34B-V1.0** , which achieves the **73.2 pass@1** and surpasses **GPT4 (2023/03/15)**, **ChatGPT-3.5**, and **Claude2** on the [HumanEval Benchmarks](https://github.com/openai/human-eval).
- [2023/06/16] We released **WizardCoder-15B-V1.0** , which achieves the **57.3 pass@1** and surpasses **Claude-Plus (+6.8)**, **Bard (+15.3)** and **InstructCodeT5+ (+22.3)** on the [HumanEval Benchmarks](https://github.com/openai/human-eval).
❗Note: There are two HumanEval results of GPT4 and ChatGPT-3.5. The 67.0 and 48.1 are reported by the official GPT4 Report (2023/03/15) of [OpenAI](https://arxiv.org/abs/2303.08774). The 82.0 and 72.5 are tested by ourselves with the latest API (2023/08/26).
| Model | Checkpoint | Paper | HumanEval | MBPP | Demo | License |
| ----- |------| ---- |------|-------| ----- | ----- |
| WizardCoder-Python-34B-V1.0 | 🤗 <a href="https://huggingface.co/WizardLM/WizardCoder-Python-34B-V1.0" target="_blank">HF Link</a> | 📃 <a href="https://arxiv.org/abs/2306.08568" target="_blank">[WizardCoder]</a> | 73.2 | 61.2 | [Demo](http://47.103.63.15:50085/) | <a href="https://ai.meta.com/resources/models-and-libraries/llama-downloads/" target="_blank">Llama2</a> |
| WizardCoder-15B-V1.0 | 🤗 <a href="https://huggingface.co/WizardLM/WizardCoder-15B-V1.0" target="_blank">HF Link</a> | 📃 <a href="https://arxiv.org/abs/2306.08568" target="_blank">[WizardCoder]</a> | 59.8 |50.6 | -- | <a href="https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement" target="_blank">OpenRAIL-M</a> |
| WizardCoder-Python-13B-V1.0 | 🤗 <a href="https://huggingface.co/WizardLM/WizardCoder-Python-13B-V1.0" target="_blank">HF Link</a> | 📃 <a href="https://arxiv.org/abs/2306.08568" target="_blank">[WizardCoder]</a> | 64.0 | 55.6 | -- | <a href="https://ai.meta.com/resources/models-and-libraries/llama-downloads/" target="_blank">Llama2</a> |
| WizardCoder-3B-V1.0 | 🤗 <a href="https://huggingface.co/WizardLM/WizardCoder-3B-V1.0" target="_blank">HF Link</a> | 📃 <a href="https://arxiv.org/abs/2306.08568" target="_blank">[WizardCoder]</a> | 34.8 |37.4 | [Demo](http://47.103.63.15:50086/) | <a href="https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement" target="_blank">OpenRAIL-M</a> |
| WizardCoder-1B-V1.0 | 🤗 <a href="https://huggingface.co/WizardLM/WizardCoder-1B-V1.0" target="_blank">HF Link</a> | 📃 <a href="https://arxiv.org/abs/2306.08568" target="_blank">[WizardCoder]</a> | 23.8 |28.6 | -- | <a href="https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement" target="_blank">OpenRAIL-M</a> |
- Our **WizardMath-70B-V1.0** model slightly outperforms some closed-source LLMs on the GSM8K, including **ChatGPT 3.5**, **Claude Instant 1** and **PaLM 2 540B**.
- Our **WizardMath-70B-V1.0** model achieves **81.6 pass@1** on the [GSM8k Benchmarks](https://github.com/openai/grade-school-math), which is **24.8** points higher than the SOTA open-source LLM, and achieves **22.7 pass@1** on the [MATH Benchmarks](https://github.com/hendrycks/math), which is **9.2** points higher than the SOTA open-source LLM.
<font size=4>
| Model | Checkpoint | Paper | GSM8k | MATH |Online Demo| License|
| ----- |------| ---- |------|-------| ----- | ----- |
| WizardMath-70B-V1.0 | 🤗 <a href="https://huggingface.co/WizardLM/WizardMath-70B-V1.0" target="_blank">HF Link</a> | 📃 <a href="https://arxiv.org/abs/2308.09583" target="_blank">[WizardMath]</a>| **81.6** | **22.7** |[Demo](http://47.103.63.15:50083/)| <a href="https://ai.meta.com/resources/models-and-libraries/llama-downloads/" target="_blank">Llama 2 </a> |
| WizardMath-13B-V1.0 | 🤗 <a href="https://huggingface.co/WizardLM/WizardMath-13B-V1.0" target="_blank">HF Link</a> | 📃 <a href="https://arxiv.org/abs/2308.09583" target="_blank">[WizardMath]</a>| **63.9** | **14.0** |[Demo](http://47.103.63.15:50082/)| <a href="https://ai.meta.com/resources/models-and-libraries/llama-downloads/" target="_blank">Llama 2 </a> |
| WizardMath-7B-V1.0 | 🤗 <a href="https://huggingface.co/WizardLM/WizardMath-7B-V1.0" target="_blank">HF Link</a> | 📃 <a href="https://arxiv.org/abs/2308.09583" target="_blank">[WizardMath]</a>| **54.9** | **10.7** | [Demo ](http://47.103.63.15:50080/)| <a href="https://ai.meta.com/resources/models-and-libraries/llama-downloads/" target="_blank">Llama 2 </a>|
</font>
- [08/09/2023] We released **WizardLM-70B-V1.0** model. Here is [Full Model Weight](https://huggingface.co/WizardLM/WizardLM-70B-V1.0).
<font size=4>
| <sup>Model</sup> | <sup>Checkpoint</sup> | <sup>Paper</sup> |<sup>MT-Bench</sup> | <sup>AlpacaEval</sup> | <sup>GSM8k</sup> | <sup>HumanEval</sup> | <sup>License</sup>|
| ----- |------| ---- |------|-------| ----- | ----- | ----- |
| <sup>**WizardLM-70B-V1.0**</sup> | <sup>🤗 <a href="https://huggingface.co/WizardLM/WizardLM-70B-V1.0" target="_blank">HF Link</a> </sup>|<sup>📃**Coming Soon**</sup>| <sup>**7.78**</sup> | <sup>**92.91%**</sup> |<sup>**77.6%**</sup> | <sup> **50.6**</sup>|<sup> <a href="https://ai.meta.com/resources/models-and-libraries/llama-downloads/" target="_blank">Llama 2 License </a></sup> |
| <sup>WizardLM-13B-V1.2</sup> | <sup>🤗 <a href="https://huggingface.co/WizardLM/WizardLM-13B-V1.2" target="_blank">HF Link</a> </sup>| | <sup>7.06</sup> | <sup>89.17%</sup> |<sup>55.3%</sup> | <sup>36.6 </sup>|<sup> <a href="https://ai.meta.com/resources/models-and-libraries/llama-downloads/" target="_blank">Llama 2 License </a></sup> |
| <sup>WizardLM-13B-V1.1</sup> |<sup> 🤗 <a href="https://huggingface.co/WizardLM/WizardLM-13B-V1.1" target="_blank">HF Link</a> </sup> | | <sup>6.76</sup> |<sup>86.32%</sup> | | <sup>25.0 </sup>| <sup>Non-commercial</sup>|
| <sup>WizardLM-30B-V1.0</sup> | <sup>🤗 <a href="https://huggingface.co/WizardLM/WizardLM-30B-V1.0" target="_blank">HF Link</a></sup> | | <sup>7.01</sup> | | | <sup>37.8 </sup>| <sup>Non-commercial</sup> |
| <sup>WizardLM-13B-V1.0</sup> | <sup>🤗 <a href="https://huggingface.co/WizardLM/WizardLM-13B-V1.0" target="_blank">HF Link</a> </sup> | | <sup>6.35</sup> | <sup>75.31%</sup> | | <sup> 24.0 </sup> | <sup>Non-commercial</sup>|
| <sup>WizardLM-7B-V1.0 </sup>| <sup>🤗 <a href="https://huggingface.co/WizardLM/WizardLM-7B-V1.0" target="_blank">HF Link</a> </sup> |<sup> 📃 <a href="https://arxiv.org/abs/2304.12244" target="_blank">[WizardLM]</a> </sup>| | | |<sup>19.1 </sup>|<sup> Non-commercial</sup>|
</font>
## Comparing WizardCoder-Python-34B-V1.0 with Other LLMs.
🔥 The following figure shows that our **WizardCoder-Python-34B-V1.0 attains the second position in this benchmark**, surpassing GPT4 (2023/03/15, 73.2 vs. 67.0), ChatGPT-3.5 (73.2 vs. 72.5) and Claude2 (73.2 vs. 71.2).
<p align="center" width="100%">
<a ><img src="https://raw.githubusercontent.com/nlpxucan/WizardLM/main/WizardCoder/imgs/compare_sota.png" alt="WizardCoder" style="width: 96%; min-width: 300px; display: block; margin: auto;"></a>
</p>
## Prompt Format
```
"Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n{instruction}\n\n### Response:"
```
## Inference Demo Script
We provide the inference demo code [here](https://github.com/nlpxucan/WizardLM/tree/main/demo).
## Citation
Please cite the repo if you use the data, method or code in this repo.
```
@article{luo2023wizardcoder,
title={WizardCoder: Empowering Code Large Language Models with Evol-Instruct},
author={Luo, Ziyang and Xu, Can and Zhao, Pu and Sun, Qingfeng and Geng, Xiubo and Hu, Wenxiang and Tao, Chongyang and Ma, Jing and Lin, Qingwei and Jiang, Daxin},
journal={arXiv preprint arXiv:2306.08568},
year={2023}
}
``` | [
-0.6760825514793396,
-0.5056440830230713,
-0.09845591336488724,
0.4001033902168274,
0.07251425087451935,
-0.19588816165924072,
0.03779112920165062,
-0.5130402445793152,
0.23448359966278076,
0.3460148274898529,
-0.7168397903442383,
-0.6729856133460999,
-0.5432239770889282,
0.3047810196876526,
-0.10542326420545578,
0.9169896841049194,
-0.16945309937000275,
-0.24178944528102875,
-0.20867019891738892,
-0.1660238653421402,
-0.1595275104045868,
-0.5206018090248108,
-0.28150874376296997,
-0.4804926812648773,
0.44698598980903625,
0.030792852863669395,
0.9181347489356995,
0.49245238304138184,
0.36803898215293884,
0.3155512809753418,
-0.2229144424200058,
0.531345546245575,
-0.16186274588108063,
-0.27200835943222046,
0.2630752623081207,
-0.2677858769893646,
-1.0387744903564453,
-0.035857461392879486,
0.6325780153274536,
0.3267965316772461,
-0.010687019675970078,
0.4032364785671234,
0.07034123688936234,
0.9836449027061462,
-0.5895189642906189,
0.2830337584018707,
-0.2565149664878845,
0.3221281170845032,
-0.17881721258163452,
-0.13223052024841309,
0.06425328552722931,
-0.6089757084846497,
0.027091294527053833,
-0.8355852961540222,
-0.04202884063124657,
0.13474421203136444,
1.2120397090911865,
0.2120695859193802,
-0.24619631469249725,
-0.04936965927481651,
-0.26146790385246277,
0.6989049911499023,
-0.92064368724823,
0.35490432381629944,
0.5886615514755249,
0.14320558309555054,
-0.5854586958885193,
-0.642951488494873,
-0.9467017650604248,
-0.17988501489162445,
-0.11587414890527725,
0.11200834065675735,
-0.40721744298934937,
-0.22558633983135223,
0.3599938154220581,
0.36718666553497314,
-0.7546692490577698,
-0.12264831364154816,
-0.36318740248680115,
-0.3225552439689636,
0.8705315589904785,
0.21797126531600952,
0.5121047496795654,
-0.23979032039642334,
-0.01769937388598919,
-0.2163539081811905,
-0.5051371455192566,
0.232069194316864,
0.41818851232528687,
-0.10917513817548752,
-0.46789565682411194,
0.8118798732757568,
-0.11951763927936554,
0.6531444787979126,
0.13365517556667328,
-0.6456018090248108,
0.7094293832778931,
-0.41627055406570435,
-0.21576987206935883,
-0.10356676578521729,
1.215135097503662,
0.593378484249115,
0.1470940113067627,
0.051661841571331024,
-0.0037315445952117443,
-0.2314976304769516,
0.02433423325419426,
-0.972531259059906,
-0.13040423393249512,
0.3557262718677521,
-0.5481680631637573,
-0.19485431909561157,
-0.2535013258457184,
-0.8380722403526306,
-0.3977660536766052,
-0.013522629626095295,
0.2794796824455261,
-0.6967064738273621,
-0.3428442180156708,
0.2596362233161926,
-0.1330677717924118,
0.6801868081092834,
0.5829800963401794,
-0.9158152341842651,
0.2762071192264557,
0.5556730031967163,
0.8782176375389099,
-0.17490820586681366,
-0.5971258282661438,
-0.14812269806861877,
-0.004419156815856695,
-0.37250030040740967,
0.6009649038314819,
0.03532969951629639,
-0.4708498418331146,
-0.12712480127811432,
-0.06796329468488693,
-0.14269812405109406,
-0.37633198499679565,
0.44042909145355225,
-0.5031008124351501,
0.30919596552848816,
-0.13527098298072815,
-0.5454298257827759,
-0.24219132959842682,
0.3637377917766571,
-0.6783679723739624,
1.19158136844635,
0.1893598735332489,
-1.0723110437393188,
-0.0023159217089414597,
-0.6869221925735474,
-0.10635531693696976,
-0.42613035440444946,
-0.04033482447266579,
-0.678887665271759,
-0.3124406933784485,
0.29131534695625305,
0.24321405589580536,
-0.4858839511871338,
-0.23008564114570618,
-0.2765556275844574,
-0.29457080364227295,
0.3022176921367645,
-0.5797201991081238,
1.322026252746582,
0.24038861691951752,
-0.42400169372558594,
-0.08676204830408096,
-1.0326497554779053,
0.01618015207350254,
0.6329920291900635,
-0.5255229473114014,
0.11348369717597961,
-0.35023537278175354,
-0.10696059465408325,
0.16979624330997467,
0.7303146123886108,
-0.3469150960445404,
0.5173028707504272,
-0.5459715127944946,
-0.11135493963956833,
0.7743659019470215,
-0.13654206693172455,
0.41434890031814575,
-0.514489471912384,
0.4509780704975128,
-0.19312357902526855,
0.41674095392227173,
0.1618107557296753,
-0.7547187209129333,
-0.887424886226654,
-0.4104527235031128,
0.08865958452224731,
0.7995407581329346,
-0.5148242115974426,
1.090181589126587,
-0.2745794653892517,
-0.942939043045044,
-0.5638015866279602,
0.283833384513855,
0.4346838891506195,
0.5502529740333557,
0.5969687104225159,
-0.23477552831172943,
-0.3670838177204132,
-0.8270549774169922,
-0.0824747160077095,
-0.3513018786907196,
-0.1190689206123352,
0.3193194270133972,
0.657321572303772,
-0.48028022050857544,
1.074474811553955,
-0.6437156796455383,
-0.25776877999305725,
-0.06743093580007553,
-0.22848333418369293,
0.4256722629070282,
0.6640644073486328,
0.6406552791595459,
-0.6580148339271545,
-0.4888868033885956,
0.16636140644550323,
-0.972428560256958,
-0.11684175580739975,
0.11606845259666443,
-0.33979979157447815,
0.3726792335510254,
-0.11345062404870987,
-0.9847894906997681,
0.8394357562065125,
0.30687642097473145,
-0.5904250144958496,
0.9692625403404236,
-0.3747313320636749,
0.1522374004125595,
-1.0167951583862305,
0.05329692363739014,
-0.12319519370794296,
0.12447105348110199,
-0.6567049026489258,
-0.040952760726213455,
0.06932291388511658,
0.3201926052570343,
-0.6308649778366089,
0.8559030890464783,
-0.5054729580879211,
-0.11051787436008453,
-0.0636119395494461,
-0.1338517963886261,
0.212649405002594,
0.8219652771949768,
-0.12157458066940308,
0.7919741272926331,
0.7353590726852417,
-0.47109028697013855,
0.6009727716445923,
0.4195363223552704,
-0.2029356211423874,
0.3884662985801697,
-0.5983187556266785,
0.13713961839675903,
0.10152842849493027,
0.39668962359428406,
-0.5689777731895447,
-0.11668657511472702,
0.6930344700813293,
-0.6736206412315369,
0.3475309908390045,
-0.02601085789501667,
-0.822115957736969,
-0.6725770235061646,
-0.7493998408317566,
0.06162407994270325,
0.8237754106521606,
-0.5590258240699768,
0.708437979221344,
0.2805449068546295,
0.3179742097854614,
-0.8617703318595886,
-0.5963903069496155,
-0.11071916669607162,
-0.14521658420562744,
-0.8578848838806152,
0.27450641989707947,
-0.33970534801483154,
-0.11256489902734756,
-0.06788399070501328,
-0.39522460103034973,
-0.001068461686372757,
0.1175728514790535,
0.2613592743873596,
0.48827263712882996,
-0.15604865550994873,
-0.39130058884620667,
0.0327201671898365,
-0.14180275797843933,
0.022217879071831703,
-0.32040324807167053,
0.49011677503585815,
-0.31159743666648865,
-0.543565034866333,
-0.4886607229709625,
0.05157541111111641,
0.5053249597549438,
-0.29303666949272156,
0.8930697441101074,
0.7344298362731934,
-0.5129351019859314,
0.13674476742744446,
-0.7039401531219482,
0.13680964708328247,
-0.5938065648078918,
0.11691030114889145,
-0.46591460704803467,
-0.7508045434951782,
0.6256572604179382,
0.28320571780204773,
0.33666422963142395,
0.6348887085914612,
0.7051365971565247,
0.12227708846330643,
0.9854474663734436,
0.45679718255996704,
-0.06072363257408142,
0.49795475602149963,
-0.5775565505027771,
0.07302524894475937,
-0.9447337985038757,
-0.5638998746871948,
-0.5059985518455505,
0.03233012184500694,
-0.5323025584220886,
-0.6949806809425354,
0.420452356338501,
0.6448658108711243,
-0.62668776512146,
0.6311161518096924,
-0.9920761585235596,
0.2191811501979828,
0.5795997381210327,
0.030226068571209908,
0.20189650356769562,
0.1825479120016098,
-0.2950601875782013,
0.24880237877368927,
-0.385477751493454,
-0.6442214250564575,
1.1301863193511963,
0.2695973217487335,
0.6808159351348877,
0.2073950320482254,
0.8245036602020264,
0.03257526457309723,
-0.04286718741059303,
-0.3687549829483032,
0.7449613809585571,
0.4138520359992981,
-0.5605801343917847,
-0.44678181409835815,
-0.26665547490119934,
-1.2069528102874756,
0.5087223052978516,
-0.186331644654274,
-1.2707633972167969,
0.34396687150001526,
0.08958736807107925,
-0.26852384209632874,
0.5369547009468079,
-0.6037296652793884,
0.9430365562438965,
-0.1385481059551239,
-0.4763581454753876,
0.07354484498500824,
-0.5030646920204163,
0.28215667605400085,
0.12765221297740936,
0.09059319645166397,
-0.3884449601173401,
-0.3367566466331482,
0.9107442498207092,
-1.1749305725097656,
0.6539267897605896,
-0.04925477132201195,
-0.33462709188461304,
0.5919925570487976,
-0.06436721980571747,
0.5847457647323608,
-0.06977566331624985,
-0.21438391506671906,
0.49294859170913696,
0.17767004668712616,
-0.47435152530670166,
-0.6492563486099243,
0.7123216390609741,
-1.1612975597381592,
-0.7378785014152527,
-0.603179931640625,
-0.3627406358718872,
-0.05038922280073166,
0.27517834305763245,
0.31321650743484497,
0.20336422324180603,
0.32695695757865906,
-0.36930662393569946,
0.7761766314506531,
-0.3847798705101013,
0.4335252344608307,
0.3700927495956421,
-0.3282645344734192,
-0.5493888258934021,
1.0706360340118408,
0.15079571306705475,
-0.08684714138507843,
0.3660118281841278,
0.23915375769138336,
-0.24998356401920319,
-0.43897706270217896,
-0.7714737057685852,
0.3785814642906189,
-0.7926474809646606,
-0.4284916818141937,
-0.8953145146369934,
-0.48960307240486145,
-0.6605116724967957,
-0.308983713388443,
-0.42181843519210815,
-0.5127987265586853,
-0.6846135258674622,
0.11182396858930588,
1.1379377841949463,
0.43205133080482483,
-0.2779209613800049,
-0.16670794785022736,
-0.7648774981498718,
0.3961925804615021,
0.39400923252105713,
0.22521187365055084,
0.3118779957294464,
-0.5638652443885803,
-0.2060098648071289,
-0.1485508531332016,
-0.5800710320472717,
-0.9794570803642273,
0.6444221138954163,
-0.19041717052459717,
0.5806819200515747,
0.08456341922283173,
0.054075248539447784,
0.8732017874717712,
-0.6503700017929077,
1.1043473482131958,
0.6201850175857544,
-0.8284348845481873,
0.5354889035224915,
-0.158754363656044,
0.3609783947467804,
0.24764545261859894,
0.3408485949039459,
-0.45703691244125366,
-0.20249198377132416,
-0.5003336071968079,
-0.8105655312538147,
0.7433136105537415,
0.36559876799583435,
-0.038256797939538956,
0.15301626920700073,
0.19967442750930786,
0.030518775805830956,
0.033791474997997284,
-0.5540006756782532,
-0.8908472061157227,
-0.4496679902076721,
-0.21536770462989807,
0.299343079328537,
0.017428617924451828,
0.004182503093034029,
-0.5452224612236023,
0.7592398524284363,
-0.08185967803001404,
0.6472557187080383,
0.3863997459411621,
-0.07976250350475311,
-0.00585130462422967,
0.13812348246574402,
0.5332974195480347,
0.5468761324882507,
-0.16577716171741486,
-0.15201351046562195,
0.47395145893096924,
-0.8750975131988525,
0.22477111220359802,
0.3907151520252228,
-0.22725459933280945,
-0.13856476545333862,
0.5080521702766418,
0.8443333506584167,
-0.07168727368116379,
-0.5300710201263428,
0.6683791279792786,
0.007193844765424728,
-0.2702524960041046,
-0.5134153366088867,
0.19225215911865234,
0.23615919053554535,
0.4193514287471771,
0.4829089939594269,
0.08973614126443863,
0.2563605308532715,
-0.21138927340507507,
0.03265567868947983,
0.4486760199069977,
-0.024811003357172012,
-0.20336395502090454,
0.7503963708877563,
-0.21590864658355713,
-0.3763417899608612,
0.22080625593662262,
-0.3383098840713501,
-0.6589962840080261,
0.8257916569709778,
0.530482828617096,
0.772724986076355,
0.15270666778087616,
-0.17134882509708405,
0.5577085018157959,
0.17486722767353058,
0.016418108716607094,
0.14897514879703522,
-0.12806393206119537,
-0.5063223838806152,
-0.13738834857940674,
-0.9081060886383057,
-0.3195371627807617,
-0.22950772941112518,
-0.34340518712997437,
0.513566792011261,
-0.478577584028244,
-0.07141970098018646,
-0.21826253831386566,
0.5334722399711609,
-0.9874572157859802,
-0.15374280512332916,
0.2777785062789917,
1.2924020290374756,
-0.17956098914146423,
1.056336522102356,
0.45088863372802734,
-0.7439056038856506,
-1.0321614742279053,
-0.13431940972805023,
0.3574427664279938,
-0.9529934525489807,
0.5551364421844482,
0.018780138343572617,
-0.13204853236675262,
-0.15502092242240906,
-0.47195249795913696,
-1.0763615369796753,
1.524806022644043,
0.22943635284900665,
-0.32405975461006165,
-0.32019490003585815,
0.015550781041383743,
0.4142841100692749,
-0.06104225665330887,
0.6479198336601257,
0.6500371694564819,
0.6721360087394714,
0.07989758998155594,
-1.434352993965149,
0.31348717212677,
-0.6169874668121338,
0.03309331461787224,
-0.19419260323047638,
-0.9354544878005981,
0.8755154013633728,
-0.1560778170824051,
0.03636318817734718,
0.2993025481700897,
0.8733957409858704,
0.8306918740272522,
0.35976049304008484,
0.17752553522586823,
0.5759150981903076,
0.8976215720176697,
0.11858434975147247,
1.370923399925232,
-0.24265235662460327,
0.48923808336257935,
0.6009581685066223,
-0.026506008580327034,
0.5561732649803162,
0.21170321106910706,
-0.6939961314201355,
0.5605330467224121,
0.7605068683624268,
-0.1741926372051239,
0.44490867853164673,
0.5606762170791626,
-0.2013290822505951,
0.08152493834495544,
0.15284164249897003,
-0.786723792552948,
-0.15332399308681488,
0.2722548544406891,
0.1514783352613449,
-0.03922643885016441,
0.015451998449862003,
0.22003215551376343,
-0.2584821283817291,
-0.43284913897514343,
0.6690468788146973,
0.10911767184734344,
-0.2987540066242218,
1.193333625793457,
-0.12356187403202057,
1.220365047454834,
-0.7343716025352478,
-0.10617877542972565,
-0.3539440929889679,
-0.03037627786397934,
-0.4987044930458069,
-0.7977652549743652,
-0.08072759956121445,
0.11203458160161972,
-0.08852587640285492,
0.1542234718799591,
0.8487675189971924,
-0.09305933117866516,
-0.6173161268234253,
0.39879289269447327,
0.33566489815711975,
0.5043259263038635,
0.3626915514469147,
-1.040313959121704,
0.43921932578086853,
-0.02637157030403614,
-0.7234389781951904,
0.43741869926452637,
0.5528536438941956,
0.01097070798277855,
0.8075318932533264,
0.6922405958175659,
0.033752840012311935,
0.5105668306350708,
-0.22365254163742065,
0.9799150824546814,
-0.5837632417678833,
-0.09841512143611908,
-0.9174559712409973,
0.6096099019050598,
-0.22722765803337097,
-0.3554939329624176,
1.188448429107666,
0.6432464718818665,
0.751620352268219,
-0.05820309370756149,
0.688347339630127,
-0.150549978017807,
0.1596982479095459,
-0.2677416205406189,
0.9385173320770264,
-0.9095912575721741,
0.10450191050767899,
-0.5262464284896851,
-0.8570429086685181,
-0.5092085599899292,
0.9651933908462524,
-0.2097618132829666,
0.04004094749689102,
0.4830254018306732,
1.079903483390808,
0.18840163946151733,
-0.22475510835647583,
0.18195675313472748,
-0.17003197968006134,
0.32373157143592834,
0.7834426760673523,
0.6056376695632935,
-0.7508801817893982,
0.7114390730857849,
-0.403974324464798,
-0.18227501213550568,
-0.36065828800201416,
-0.6567946672439575,
-1.1170532703399658,
-0.439063161611557,
-0.4363486170768738,
-0.7556747198104858,
-0.18816658854484558,
1.3679031133651733,
0.6315115094184875,
-0.727077066898346,
-0.2248460203409195,
0.1092587411403656,
0.618645191192627,
-0.3031019866466522,
-0.20332087576389313,
0.812998354434967,
0.1129034161567688,
-0.8690834045410156,
0.17668375372886658,
0.20693717896938324,
0.35796111822128296,
-0.2617000639438629,
-0.7866779565811157,
-0.1331496685743332,
0.25992316007614136,
0.4616222083568573,
0.6815360188484192,
-0.8448303937911987,
-0.055322207510471344,
0.03484593331813812,
-0.3647601306438446,
0.1874915361404419,
0.24557112157344818,
-0.5968899726867676,
0.09684129059314728,
0.5458245277404785,
0.5165507197380066,
0.5755465626716614,
-0.5426162481307983,
0.06458877772092819,
-0.2268088459968567,
0.07460920512676239,
-0.044956330209970474,
0.5118199586868286,
0.17713694274425507,
-0.4817798435688019,
0.6399913430213928,
0.2752726376056671,
-0.5238827466964722,
-0.8607046604156494,
-0.21623019874095917,
-1.0867925882339478,
-0.12167870253324509,
1.162582516670227,
-0.0733083114027977,
-0.6687055230140686,
0.07590806484222412,
-0.4311350882053375,
0.3549899756908417,
-0.5419321656227112,
0.3277076482772827,
0.4114058315753937,
-0.3217689096927643,
-0.07770183682441711,
-0.558994710445404,
0.5228654742240906,
0.043569415807724,
-0.8360947966575623,
-0.032125722616910934,
0.5153465867042542,
0.31069839000701904,
0.6132209897041321,
1.0197497606277466,
-0.2831270396709442,
0.39585813879966736,
0.2577657103538513,
0.5009934902191162,
-0.31824421882629395,
0.15896053612232208,
-0.34901097416877747,
-0.06152382865548134,
-0.0618993304669857,
-0.2122262716293335
] |
timm/resnetv2_50.a1h_in1k | timm | "2023-03-22T20:55:30Z" | 11,132 | 0 | timm | [
"timm",
"pytorch",
"safetensors",
"image-classification",
"dataset:imagenet-1k",
"arxiv:2110.00476",
"arxiv:1603.05027",
"license:apache-2.0",
"region:us"
] | image-classification | "2023-03-22T20:54:57Z" | ---
tags:
- image-classification
- timm
library_tag: timm
license: apache-2.0
datasets:
- imagenet-1k
---
# Model card for resnetv2_50.a1h_in1k
A ResNet-V2 (pre-activation ResNet) image classification model. Trained on ImageNet-1k by Ross Wightman in `timm` using ResNet strikes back (RSB) `A1` based recipe.
## Model Details
- **Model Type:** Image classification / feature backbone
- **Model Stats:**
- Params (M): 25.5
- GMACs: 4.1
- Activations (M): 11.1
- Image size: 224 x 224
- **Papers:**
- ResNet strikes back: An improved training procedure in timm: https://arxiv.org/abs/2110.00476
- Identity Mappings in Deep Residual Networks: https://arxiv.org/abs/1603.05027
- **Dataset:** ImageNet-1k
- **Original:** https://github.com/huggingface/pytorch-image-models
## Model Usage
### Image Classification
```python
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model('resnetv2_50.a1h_in1k', pretrained=True)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
```
### Feature Map Extraction
```python
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model(
'resnetv2_50.a1h_in1k',
pretrained=True,
features_only=True,
)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
for o in output:
# print shape of each feature map in output
# e.g.:
# torch.Size([1, 64, 112, 112])
# torch.Size([1, 256, 56, 56])
# torch.Size([1, 512, 28, 28])
# torch.Size([1, 1024, 14, 14])
# torch.Size([1, 2048, 7, 7])
print(o.shape)
```
### Image Embeddings
```python
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model(
'resnetv2_50.a1h_in1k',
pretrained=True,
num_classes=0, # remove classifier nn.Linear
)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor
# or equivalently (without needing to set num_classes=0)
output = model.forward_features(transforms(img).unsqueeze(0))
# output is unpooled, a (1, 2048, 7, 7) shaped tensor
output = model.forward_head(output, pre_logits=True)
# output is a (1, num_features) shaped tensor
```
## Model Comparison
Explore the dataset and runtime metrics of this model in timm [model results](https://github.com/huggingface/pytorch-image-models/tree/main/results).
## Citation
```bibtex
@inproceedings{wightman2021resnet,
title={ResNet strikes back: An improved training procedure in timm},
author={Wightman, Ross and Touvron, Hugo and Jegou, Herve},
booktitle={NeurIPS 2021 Workshop on ImageNet: Past, Present, and Future}
}
```
```bibtex
@article{He2016,
author = {Kaiming He and Xiangyu Zhang and Shaoqing Ren and Jian Sun},
title = {Identity Mappings in Deep Residual Networks},
journal = {arXiv preprint arXiv:1603.05027},
year = {2016}
}
```
```bibtex
@misc{rw2019timm,
author = {Ross Wightman},
title = {PyTorch Image Models},
year = {2019},
publisher = {GitHub},
journal = {GitHub repository},
doi = {10.5281/zenodo.4414861},
howpublished = {\url{https://github.com/huggingface/pytorch-image-models}}
}
```
| [
-0.42221876978874207,
-0.33760425448417664,
-0.06963823735713959,
-0.03417001664638519,
-0.2950834631919861,
-0.2724982798099518,
-0.2328941375017166,
-0.31546011567115784,
0.30951064825057983,
0.5784368515014648,
-0.5251458287239075,
-0.6903021931648254,
-0.6979380249977112,
-0.13643619418144226,
-0.15455394983291626,
0.9260972738265991,
-0.08935065567493439,
-0.02210245467722416,
-0.20176248252391815,
-0.56562340259552,
-0.2858741879463196,
-0.34370073676109314,
-0.9718053340911865,
-0.5042479038238525,
0.49939173460006714,
0.20627626776695251,
0.5054541230201721,
0.5938912034034729,
0.71431565284729,
0.47789648175239563,
-0.038672324270009995,
0.153583824634552,
-0.28789010643959045,
-0.13210247457027435,
0.2732803523540497,
-0.6516788601875305,
-0.39087867736816406,
0.2594948709011078,
0.7781134247779846,
0.28120648860931396,
0.010156811214983463,
0.4893813133239746,
0.08979253470897675,
0.6670615077018738,
-0.2590979337692261,
0.04326886683702469,
-0.4153725206851959,
0.2219151109457016,
-0.07756078988313675,
-0.016889149323105812,
-0.39840075373649597,
-0.43251392245292664,
0.15987765789031982,
-0.48161444067955017,
0.47854626178741455,
-0.015486152842640877,
1.4175759553909302,
0.31378114223480225,
-0.0005612849490717053,
0.16514286398887634,
-0.26216086745262146,
0.843176543712616,
-0.855175256729126,
0.24279844760894775,
0.25589147210121155,
0.33128592371940613,
-0.1342415064573288,
-1.2959038019180298,
-0.5389026403427124,
-0.18628725409507751,
-0.21010059118270874,
-0.022856764495372772,
-0.2819526195526123,
-0.07930624485015869,
0.28975847363471985,
0.26993808150291443,
-0.3473001718521118,
0.2169128656387329,
-0.5459637641906738,
-0.24017131328582764,
0.4841470420360565,
0.042404718697071075,
0.30096811056137085,
-0.17223826050758362,
-0.5315210819244385,
-0.4976244568824768,
-0.4379827380180359,
0.2252252995967865,
0.3390934467315674,
0.29721134901046753,
-0.5824320316314697,
0.3450222909450531,
0.13332383334636688,
0.6013815402984619,
-0.007000739220529795,
-0.3029976189136505,
0.6475649476051331,
0.012220983393490314,
-0.4101411700248718,
-0.2542744576931,
1.0594245195388794,
0.4329661428928375,
0.19532263278961182,
0.11545131355524063,
-0.1595757007598877,
-0.45056596398353577,
0.018952880054712296,
-1.176302433013916,
-0.4264751672744751,
0.2940168082714081,
-0.6860468983650208,
-0.45182955265045166,
0.23584774136543274,
-0.612702488899231,
-0.2243911325931549,
-0.10933803021907806,
0.4895855784416199,
-0.5241006016731262,
-0.4976534843444824,
-0.018442681059241295,
-0.24226585030555725,
0.3812876343727112,
0.1981307566165924,
-0.44630420207977295,
0.209782212972641,
0.42570430040359497,
1.152746319770813,
0.09001006931066513,
-0.4926503002643585,
-0.2736874222755432,
-0.48289981484413147,
-0.26852187514305115,
0.458817720413208,
-0.11214214563369751,
0.06696625053882599,
-0.3254331946372986,
0.36051732301712036,
-0.05580511689186096,
-0.784965455532074,
0.10447870939970016,
-0.36111730337142944,
0.30567675828933716,
-0.1358908861875534,
-0.15859845280647278,
-0.6311061978340149,
0.3508375287055969,
-0.5313766598701477,
1.2994893789291382,
0.41282933950424194,
-0.8991882801055908,
0.2425425797700882,
-0.46861532330513,
-0.10234371572732925,
-0.34387657046318054,
-0.032603438943624496,
-1.134659767150879,
-0.08567339926958084,
0.11578229814767838,
0.653342604637146,
-0.4070747494697571,
0.04621879756450653,
-0.5464560389518738,
-0.2742571234703064,
0.41007596254348755,
-0.087975412607193,
1.040400505065918,
0.11481942236423492,
-0.48239409923553467,
0.19192437827587128,
-0.5592602491378784,
0.2664840519428253,
0.5288152694702148,
-0.23523131012916565,
0.021986864507198334,
-0.5901311635971069,
0.08656110614538193,
0.3422622084617615,
0.09680422395467758,
-0.4984319508075714,
0.2254890501499176,
-0.22692261636257172,
0.450659841299057,
0.6245999932289124,
-0.0589895062148571,
0.23542353510856628,
-0.44375288486480713,
0.35614198446273804,
0.2832847833633423,
0.1692359447479248,
-0.07460574060678482,
-0.4658718705177307,
-0.8564552068710327,
-0.5067425966262817,
0.5440279245376587,
0.4244517982006073,
-0.5761091113090515,
0.492453008890152,
-0.21614038944244385,
-0.7875683903694153,
-0.5327174067497253,
0.012940170243382454,
0.653499960899353,
0.7058554887771606,
0.3997576832771301,
-0.6019787788391113,
-0.6615390181541443,
-0.9973531365394592,
0.022144487127661705,
-0.014360393397510052,
0.03302900493144989,
0.35885089635849,
0.6499925851821899,
-0.11959635466337204,
0.713204026222229,
-0.4172116219997406,
-0.27527862787246704,
-0.24212327599525452,
0.12193715572357178,
0.34670427441596985,
0.8030250072479248,
0.8367041945457458,
-0.5858429670333862,
-0.418317973613739,
-0.12264405190944672,
-0.9122716784477234,
0.16057075560092926,
-0.12906987965106964,
-0.22540654242038727,
0.31571251153945923,
0.20137090981006622,
-0.4465552270412445,
0.6137377619743347,
0.17505843937397003,
-0.202713280916214,
0.4597843587398529,
-0.21099989116191864,
0.328214168548584,
-1.2521355152130127,
0.1788085401058197,
0.37400248646736145,
-0.12143097072839737,
-0.3893348276615143,
0.15668056905269623,
0.004150566644966602,
-0.08959580957889557,
-0.538719654083252,
0.5658378601074219,
-0.6325746178627014,
-0.3062271475791931,
-0.20209383964538574,
-0.29032015800476074,
0.05447184666991234,
0.6980921626091003,
-0.03104463592171669,
0.3902420699596405,
0.8094960451126099,
-0.37289759516716003,
0.6062219738960266,
0.2757646143436432,
-0.08855512738227844,
0.3512435257434845,
-0.6988914608955383,
0.3203654885292053,
-0.04303304851055145,
0.3280786871910095,
-1.1685118675231934,
-0.1994335949420929,
0.4103522300720215,
-0.7216311097145081,
0.7197022438049316,
-0.5914081335067749,
-0.42586642503738403,
-0.5817999839782715,
-0.46545371413230896,
0.35243621468544006,
0.8307430148124695,
-0.7550973892211914,
0.48002296686172485,
0.17560160160064697,
0.327128529548645,
-0.6399813294410706,
-0.9170728325843811,
-0.11625117063522339,
-0.46242836117744446,
-0.6328255534172058,
0.3261520266532898,
0.30733680725097656,
0.11924684047698975,
0.17635947465896606,
-0.041520409286022186,
-0.18105649948120117,
-0.08940169960260391,
0.5841646790504456,
0.30916890501976013,
-0.3661264479160309,
-0.11086618900299072,
-0.37952378392219543,
-0.2146136462688446,
0.015030769631266594,
-0.3328048586845398,
0.6373765468597412,
-0.25844806432724,
-0.15540190041065216,
-0.9858293533325195,
-0.09453786164522171,
0.5033891797065735,
-0.21720348298549652,
0.8992449045181274,
1.1393836736679077,
-0.5728239417076111,
0.05704285949468613,
-0.5295969843864441,
-0.43405696749687195,
-0.4943241477012634,
0.5339786410331726,
-0.3164554834365845,
-0.42018264532089233,
0.8973076939582825,
-0.11894898861646652,
0.10730727761983871,
0.6520775556564331,
0.31635117530822754,
-0.12162134051322937,
0.5126667022705078,
0.5855228304862976,
0.15965576469898224,
0.6871500015258789,
-1.0273165702819824,
-0.25474271178245544,
-0.9202390909194946,
-0.5385491251945496,
-0.4038720726966858,
-0.7823383808135986,
-0.557733952999115,
-0.372695654630661,
0.3682078719139099,
0.15784554183483124,
-0.4142824709415436,
0.5771105885505676,
-0.8655806183815002,
0.07266274839639664,
0.76826012134552,
0.6325738430023193,
-0.47068455815315247,
0.4608252942562103,
-0.17811720073223114,
-0.14654852449893951,
-0.7822213172912598,
-0.2106948345899582,
1.1240755319595337,
0.521912157535553,
0.5782642364501953,
-0.11075207591056824,
0.8511072397232056,
-0.20792964100837708,
0.4262200593948364,
-0.5746776461601257,
0.6041334271430969,
-0.15571905672550201,
-0.3697783946990967,
-0.1777096837759018,
-0.4355661869049072,
-1.07258141040802,
0.08639141917228699,
-0.23884406685829163,
-0.6283729076385498,
0.14838261902332306,
0.23875056207180023,
-0.3308800756931305,
0.8293009996414185,
-0.839491605758667,
0.907330334186554,
-0.09314476698637009,
-0.41763973236083984,
0.020977819338440895,
-0.7742660641670227,
0.27868834137916565,
0.1932213455438614,
-0.30061614513397217,
-0.04265313968062401,
0.10470578819513321,
1.1179200410842896,
-0.6198678612709045,
0.9742326736450195,
-0.5135935544967651,
0.4243409037590027,
0.5439294576644897,
-0.13115361332893372,
0.3688105642795563,
-0.14939798414707184,
-0.1780567765235901,
0.38583406805992126,
-0.07183658331632614,
-0.4194192886352539,
-0.6472966074943542,
0.5812057256698608,
-0.9647260904312134,
-0.3496745228767395,
-0.3340934216976166,
-0.32032397389411926,
0.27338865399360657,
0.10884775966405869,
0.5485554337501526,
0.7690284252166748,
0.3899146020412445,
0.34739238023757935,
0.5753044486045837,
-0.5185407400131226,
0.43052464723587036,
0.06656090915203094,
-0.09629182517528534,
-0.6533458828926086,
0.87094646692276,
0.2816808521747589,
0.18403127789497375,
0.1326969414949417,
0.18445132672786713,
-0.35362866520881653,
-0.5717799663543701,
-0.20395205914974213,
0.4207378923892975,
-0.6790017485618591,
-0.5982673764228821,
-0.5404225587844849,
-0.47399720549583435,
-0.47701480984687805,
0.037192948162555695,
-0.6163706183433533,
-0.2924324572086334,
-0.4125560522079468,
0.20278558135032654,
0.775984525680542,
0.4867498278617859,
-0.23162147402763367,
0.5438482761383057,
-0.5615962147712708,
0.19252844154834747,
0.08804219961166382,
0.47336506843566895,
-0.07425018399953842,
-1.0587489604949951,
-0.19625762104988098,
-0.06794626265764236,
-0.37487754225730896,
-0.7662912011146545,
0.4650815427303314,
0.1249530091881752,
0.47865620255470276,
0.2391616851091385,
-0.17517609894275665,
0.798383355140686,
-0.10304323583841324,
0.5315021276473999,
0.48187315464019775,
-0.4164773225784302,
0.6165958046913147,
0.10188168287277222,
0.05940312147140503,
0.1517711579799652,
0.28413739800453186,
-0.3414413332939148,
0.04035672917962074,
-1.0524096488952637,
-0.7878677845001221,
0.9296438097953796,
0.02857006900012493,
0.022564738988876343,
0.33456504344940186,
0.8931761384010315,
0.028630593791604042,
-0.012130784802138805,
-0.7292375564575195,
-0.5730012059211731,
-0.27118930220603943,
-0.20153607428073883,
0.07806120067834854,
-0.19420380890369415,
-0.12278687208890915,
-0.6675776839256287,
0.7240820527076721,
0.020345712080597878,
0.7572163939476013,
0.33494168519973755,
0.10559270530939102,
-0.035286758095026016,
-0.5076244473457336,
0.47430992126464844,
0.28470173478126526,
-0.32502034306526184,
0.14715330302715302,
0.21993578970432281,
-0.5439388751983643,
0.17303475737571716,
0.16873490810394287,
0.02298925630748272,
0.043666087090969086,
0.5829561948776245,
0.9275200366973877,
-0.04959480091929436,
0.13529951870441437,
0.3696387708187103,
-0.05749182030558586,
-0.4083591401576996,
-0.33996644616127014,
0.12362018972635269,
-0.10624779760837555,
0.46730098128318787,
0.296098530292511,
0.40415090322494507,
-0.21564939618110657,
-0.19852252304553986,
0.4337070882320404,
0.4534645080566406,
-0.335065096616745,
-0.3386085629463196,
0.6294603943824768,
-0.19854916632175446,
-0.333041787147522,
0.9498239159584045,
-0.07547523081302643,
-0.48755741119384766,
1.1704307794570923,
0.488391637802124,
1.0323933362960815,
-0.02735893428325653,
0.05302678048610687,
0.8943613767623901,
0.3424402177333832,
-0.023590918630361557,
0.12128451466560364,
0.2837129533290863,
-0.7474187612533569,
0.011699478141963482,
-0.4050326943397522,
0.0900716558098793,
0.42885610461235046,
-0.6345905661582947,
0.3162689507007599,
-0.735770583152771,
-0.5208045244216919,
0.06262347102165222,
0.2768610417842865,
-0.9403172731399536,
0.25470244884490967,
-0.08803486824035645,
0.8802908658981323,
-0.757889449596405,
0.7466318011283875,
0.9109902381896973,
-0.5636311173439026,
-1.080187439918518,
-0.04682277888059616,
-0.007845220156013966,
-0.9981873035430908,
0.7092887163162231,
0.41712433099746704,
0.17281486093997955,
0.15948067605495453,
-0.7714865803718567,
-0.7297627329826355,
1.466054916381836,
0.6078841686248779,
-0.11487239599227905,
0.3238670825958252,
-0.12466244399547577,
0.2708006799221039,
-0.34577465057373047,
0.4878164231777191,
0.2662261128425598,
0.3390677869319916,
0.3339705467224121,
-0.603696882724762,
0.3224649727344513,
-0.24963660538196564,
0.11803894490003586,
0.17826223373413086,
-0.8665245175361633,
0.8231778740882874,
-0.5445692539215088,
-0.1657104641199112,
0.028839772567152977,
0.7918232083320618,
0.28023552894592285,
0.12086958438158035,
0.4940490424633026,
0.9405952095985413,
0.5452640652656555,
-0.34499308466911316,
0.936009407043457,
-0.00474535021930933,
0.6256633996963501,
0.7556546926498413,
0.38536521792411804,
0.6040502786636353,
0.36321476101875305,
-0.32143211364746094,
0.43526285886764526,
1.1811084747314453,
-0.3624192178249359,
0.37030455470085144,
0.3148995339870453,
0.04514142498373985,
-0.10948022454977036,
0.10178067535161972,
-0.5908293724060059,
0.39435550570487976,
0.08483360707759857,
-0.5930886268615723,
-0.26977428793907166,
-0.006116214208304882,
0.016528436914086342,
-0.2616752088069916,
-0.03386635705828667,
0.5107104778289795,
0.010207142680883408,
-0.40247225761413574,
0.9493604302406311,
0.19520588219165802,
0.7756967544555664,
-0.3699892461299896,
-0.09353914111852646,
-0.43589356541633606,
0.18227197229862213,
-0.3294660747051239,
-0.788245439529419,
0.30561742186546326,
-0.2890298664569855,
-0.014035137370228767,
0.05846966803073883,
0.6913985013961792,
-0.31128591299057007,
-0.4224967360496521,
0.1356292963027954,
0.16151316463947296,
0.562858521938324,
0.09277091920375824,
-1.2685632705688477,
0.2302122861146927,
0.0870363637804985,
-0.6138406991958618,
0.2867248058319092,
0.402450829744339,
0.18128588795661926,
0.7588881254196167,
0.5652048587799072,
-0.14536984264850616,
0.07926202565431595,
-0.14457736909389496,
0.8598795533180237,
-0.491299033164978,
-0.20865179598331451,
-0.8850260972976685,
0.6998586654663086,
-0.15400055050849915,
-0.5971328616142273,
0.486578106880188,
0.6113030910491943,
0.7834702730178833,
-0.025436874479055405,
0.47714123129844666,
-0.22425417602062225,
0.04508258402347565,
-0.437106192111969,
0.6771894693374634,
-0.7208989858627319,
0.04829319939017296,
-0.04625078663229942,
-0.6632110476493835,
-0.37126943469047546,
0.6622844934463501,
-0.24570591747760773,
0.4413950741291046,
0.49602606892585754,
1.0701137781143188,
-0.3249780833721161,
-0.5601527094841003,
0.07520561665296555,
0.08399400115013123,
0.13122990727424622,
0.4561702311038971,
0.42648589611053467,
-0.9014037847518921,
0.3269617259502411,
-0.645859956741333,
-0.2232050597667694,
-0.11937643587589264,
-0.7399201393127441,
-0.9635359644889832,
-0.880221426486969,
-0.7080360054969788,
-0.8538030982017517,
-0.18323147296905518,
0.8469734191894531,
1.0666568279266357,
-0.7045585513114929,
-0.02477649785578251,
0.06548577547073364,
0.1753612458705902,
-0.28358814120292664,
-0.23040805757045746,
0.652754545211792,
-0.19899162650108337,
-0.6428329348564148,
-0.3163762092590332,
0.018496328964829445,
0.4207443594932556,
-0.0363757498562336,
-0.2570977210998535,
-0.11651246249675751,
-0.34885403513908386,
0.06523410975933075,
0.4304420053958893,
-0.7732734680175781,
-0.2568534314632416,
-0.25817665457725525,
-0.1492675095796585,
0.3764505088329315,
0.4835817515850067,
-0.6207462549209595,
0.297869473695755,
0.4140182137489319,
0.5142098665237427,
0.7423514127731323,
-0.2614066004753113,
0.06471224874258041,
-0.9790550470352173,
0.59360671043396,
-0.14910663664340973,
0.4106122851371765,
0.45266830921173096,
-0.34201887249946594,
0.6454225778579712,
0.5497024059295654,
-0.32305431365966797,
-0.9795006513595581,
-0.048890113830566406,
-0.9644044041633606,
-0.13033439218997955,
0.9161173701286316,
-0.4426431953907013,
-0.4815807640552521,
0.5325643420219421,
-0.06667434424161911,
0.7723006010055542,
-0.0010098364436998963,
0.47908833622932434,
0.20737595856189728,
0.0025994349271059036,
-0.7266501784324646,
-0.4757767915725708,
0.41964349150657654,
0.2023993283510208,
-0.6161729693412781,
-0.3905978798866272,
0.00616215355694294,
0.7345494627952576,
0.21275728940963745,
0.512197732925415,
-0.1796085238456726,
0.13398639857769012,
0.07893510162830353,
0.5898491740226746,
-0.5938015580177307,
-0.18807882070541382,
-0.3793173134326935,
0.01041827816516161,
-0.09720087051391602,
-0.7648462653160095
] |
Isotonic/distilbert_finetuned_ai4privacy | Isotonic | "2023-10-24T23:12:16Z" | 11,127 | 1 | transformers | [
"transformers",
"pytorch",
"onnx",
"safetensors",
"distilbert",
"token-classification",
"generated_from_trainer",
"en",
"dataset:ai4privacy/pii-masking-65k",
"dataset:ai4privacy/pii-masking-43k",
"base_model:distilbert-base-uncased",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | token-classification | "2023-08-21T00:49:59Z" | ---
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
model-index:
- name: distilbert_finetuned_ai4privacy
results: []
datasets:
- ai4privacy/pii-masking-65k
- ai4privacy/pii-masking-43k
language:
- en
metrics:
- f1
- precision
- recall
library_name: transformers
pipeline_tag: token-classification
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert_finetuned_ai4privacy
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the english only section of ai4privacy/pii-masking-65k dataset.
Latest Model: [electra_large_finetuned_ai4privacy_50k](https://huggingface.co/Isotonic/electra_large_finetuned_ai4privacy_50k)
## Useage
GitHub Implementation: [Ai4Privacy](https://github.com/Sripaad/ai4privacy)
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.2
- num_epochs: 7
## Class wise metrics
It achieves the following results on the evaluation set:
- Loss: 0.0106
- Overall Precision: 0.9760
- Overall Recall: 0.9801
- Overall F1: 0.9780
- Overall Accuracy: 0.9977
- Accountname F1: 1.0
- Accountnumber F1: 1.0
- Amount F1: 0.9565
- Bic F1: 1.0
- Bitcoinaddress F1: 1.0
- Buildingnumber F1: 0.9753
- City F1: 0.9987
- Company Name F1: 1.0
- County F1: 1.0
- Creditcardcvv F1: 0.9701
- Creditcardissuer F1: 0.9939
- Creditcardnumber F1: 1.0
- Currency F1: 0.8668
- Currencycode F1: 0.8662
- Currencyname F1: 0.7582
- Currencysymbol F1: 0.36
- Date F1: 0.9944
- Displayname F1: 0.5970
- Email F1: 1.0
- Ethereumaddress F1: 1.0
- Firstname F1: 0.9493
- Fullname F1: 0.9982
- Gender F1: 0.9524
- Iban F1: 1.0
- Ip F1: 0.5543
- Ipv4 F1: 0.8700
- Ipv6 F1: 0.8863
- Jobarea F1: 0.9806
- Jobdescriptor F1: 0.6875
- Jobtitle F1: 0.9424
- Jobtype F1: 0.8811
- Lastname F1: 0.9052
- Litecoinaddress F1: 0.9848
- Mac F1: 1.0
- Maskednumber F1: 1.0
- Middlename F1: 0.7364
- Name F1: 0.9994
- Nearbygpscoordinate F1: 0.5
- Number F1: 1.0
- Password F1: 1.0
- Phoneimei F1: 1.0
- Phone Number F1: 1.0
- Pin F1: 0.9697
- Prefix F1: 0.9540
- Secondaryaddress F1: 0.9947
- Sex F1: 0.9650
- Sextype F1: 0.0
- Ssn F1: 1.0
- State F1: 0.9965
- Street F1: 0.9810
- Streetaddress F1: 0.9832
- Suffix F1: 0.7928
- Time F1: 0.9880
- Url F1: 0.9974
- Useragent F1: 1.0
- Username F1: 0.9746
- Vehiclevin F1: 1.0
- Vehiclevrm F1: 1.0
- Zipcode F1: 0.9969
## Training results
| Training Loss | Epoch | Step | Validation Loss | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | Accountname F1 | Accountnumber F1 | Amount F1 | Bic F1 | Bitcoinaddress F1 | Buildingnumber F1 | City F1 | Company Name F1 | County F1 | Creditcardcvv F1 | Creditcardissuer F1 | Creditcardnumber F1 | Currency F1 | Currencycode F1 | Currencyname F1 | Currencysymbol F1 | Date F1 | Displayname F1 | Email F1 | Ethereumaddress F1 | Firstname F1 | Fullname F1 | Gender F1 | Iban F1 | Ip F1 | Ipv4 F1 | Ipv6 F1 | Jobarea F1 | Jobdescriptor F1 | Jobtitle F1 | Jobtype F1 | Lastname F1 | Litecoinaddress F1 | Mac F1 | Maskednumber F1 | Middlename F1 | Name F1 | Nearbygpscoordinate F1 | Number F1 | Password F1 | Phoneimei F1 | Phone Number F1 | Pin F1 | Prefix F1 | Secondaryaddress F1 | Sex F1 | Sextype F1 | Ssn F1 | State F1 | Street F1 | Streetaddress F1 | Suffix F1 | Time F1 | Url F1 | Useragent F1 | Username F1 | Vehiclevin F1 | Vehiclevrm F1 | Zipcode F1 |
|:-------------:|:-----:|:----:|:---------------:|:-----------------:|:--------------:|:----------:|:----------------:|:--------------:|:----------------:|:---------:|:------:|:-----------------:|:-----------------:|:-------:|:---------------:|:---------:|:----------------:|:-------------------:|:-------------------:|:-----------:|:---------------:|:---------------:|:-----------------:|:-------:|:--------------:|:--------:|:------------------:|:------------:|:-----------:|:---------:|:-------:|:------:|:-------:|:-------:|:----------:|:----------------:|:-----------:|:----------:|:-----------:|:------------------:|:------:|:---------------:|:-------------:|:-------:|:----------------------:|:---------:|:-----------:|:------------:|:---------------:|:------:|:---------:|:-------------------:|:------:|:----------:|:------:|:--------:|:---------:|:----------------:|:---------:|:-------:|:------:|:------------:|:-----------:|:-------------:|:-------------:|:----------:|
| No log | 1.0 | 335 | 0.3836 | 0.6166 | 0.6314 | 0.6239 | 0.9080 | 0.0 | 0.5534 | 0.1940 | 0.0 | 0.4890 | 0.0 | 0.6856 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3306 | 0.0 | 0.9420 | 0.4869 | 0.0704 | 0.9094 | 0.0 | 0.0877 | 0.0 | 0.6112 | 0.6779 | 0.0 | 0.0 | 0.0066 | 0.0 | 0.0 | 0.0 | 0.5589 | 0.3733 | 0.0 | 0.8152 | 0.0 | 0.0137 | 0.4013 | 0.3786 | 0.1117 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0104 | 0.0 | 0.5657 | 0.0 | 0.1786 | 0.7969 | 0.7734 | 0.0710 | 0.2662 | 0.0 | 0.2335 |
| 1.2518 | 2.0 | 670 | 0.1360 | 0.7806 | 0.8283 | 0.8037 | 0.9571 | 0.7286 | 0.6427 | 0.6429 | 0.5102 | 0.6207 | 0.1322 | 0.9476 | 0.1031 | 0.7823 | 0.0303 | 0.0 | 0.4403 | 0.5190 | 0.0 | 0.0144 | 0.0 | 0.9125 | 0.0 | 0.9908 | 0.7273 | 0.7199 | 0.9762 | 0.0 | 0.2890 | 0.0 | 0.8519 | 0.5472 | 0.8354 | 0.0 | 0.7228 | 0.0 | 0.3513 | 0.0 | 0.8381 | 0.0117 | 0.0 | 0.9740 | 0.0 | 0.3070 | 0.7378 | 0.8857 | 0.4724 | 0.0 | 0.3978 | 0.4541 | 0.0278 | 0.0 | 0.2254 | 0.7361 | 0.0205 | 0.7132 | 0.0 | 0.9032 | 0.9870 | 0.9540 | 0.7943 | 0.6036 | 0.6184 | 0.6923 |
| 0.1589 | 3.0 | 1005 | 0.0721 | 0.8615 | 0.9008 | 0.8807 | 0.9770 | 0.9164 | 0.9765 | 0.8283 | 0.5200 | 0.8077 | 0.6461 | 0.9790 | 0.6881 | 0.9592 | 0.5217 | 0.6769 | 0.5950 | 0.4094 | 0.5758 | 0.2397 | 0.0 | 0.9672 | 0.0 | 0.9994 | 0.9484 | 0.8170 | 0.9836 | 0.6437 | 0.9492 | 0.0 | 0.8424 | 0.8056 | 0.8999 | 0.0 | 0.7921 | 0.2667 | 0.5761 | 0.0 | 0.9841 | 0.0103 | 0.2147 | 0.9880 | 0.0 | 0.8051 | 0.8299 | 0.9947 | 0.7793 | 0.5161 | 0.7444 | 0.9894 | 0.7692 | 0.0 | 0.8182 | 0.9939 | 0.5244 | 0.4451 | 0.0 | 0.9762 | 0.9896 | 1.0 | 0.9008 | 0.9349 | 0.9605 | 0.9337 |
| 0.1589 | 4.0 | 1340 | 0.0386 | 0.9175 | 0.9445 | 0.9308 | 0.9876 | 0.9597 | 0.9921 | 0.9041 | 0.9691 | 0.7944 | 0.7662 | 0.9940 | 0.9864 | 0.9801 | 0.7463 | 0.9560 | 0.8562 | 0.7383 | 0.7308 | 0.4286 | 0.0 | 0.9861 | 0.0 | 1.0 | 1.0 | 0.8726 | 0.9916 | 0.8434 | 0.9884 | 0.0382 | 0.8700 | 0.4811 | 0.9517 | 0.0741 | 0.8927 | 0.6732 | 0.7251 | 0.5629 | 1.0 | 0.6341 | 0.3353 | 0.9968 | 0.0 | 0.9648 | 0.9532 | 0.9947 | 0.9725 | 0.7719 | 0.8683 | 0.9947 | 0.9028 | 0.0 | 0.9302 | 0.9957 | 0.8287 | 0.8698 | 0.1389 | 0.9841 | 0.9974 | 0.9832 | 0.9303 | 0.9639 | 0.9673 | 0.9573 |
| 0.0637 | 5.0 | 1675 | 0.0226 | 0.9402 | 0.9627 | 0.9513 | 0.9936 | 1.0 | 1.0 | 0.9355 | 0.9796 | 0.9813 | 0.8643 | 0.9987 | 0.9640 | 1.0 | 0.9197 | 0.9693 | 0.9368 | 0.7273 | 0.8052 | 0.5455 | 0.1395 | 0.9916 | 0.0615 | 1.0 | 0.9952 | 0.9051 | 0.9933 | 0.9048 | 1.0 | 0.2069 | 0.8700 | 0.5124 | 0.9728 | 0.4444 | 0.9107 | 0.7753 | 0.8147 | 0.9023 | 0.9741 | 0.8521 | 0.5990 | 0.9978 | 0.0 | 1.0 | 0.9970 | 1.0 | 0.9953 | 0.8713 | 0.8913 | 0.9735 | 0.9583 | 0.0 | 0.9924 | 0.9974 | 0.9041 | 0.9192 | 0.5053 | 0.9801 | 0.9974 | 1.0 | 0.9521 | 1.0 | 0.9934 | 0.975 |
| 0.0333 | 6.0 | 2010 | 0.0136 | 0.9683 | 0.9774 | 0.9728 | 0.9966 | 0.9963 | 1.0 | 0.9454 | 1.0 | 1.0 | 0.9670 | 0.9987 | 1.0 | 1.0 | 0.9481 | 0.9880 | 1.0 | 0.8475 | 0.8701 | 0.7174 | 0.36 | 0.9944 | 0.4776 | 1.0 | 1.0 | 0.9441 | 0.9982 | 0.9398 | 1.0 | 0.3661 | 0.8519 | 0.7309 | 0.9785 | 0.7108 | 0.9474 | 0.8722 | 0.8909 | 0.9848 | 0.9895 | 1.0 | 0.7 | 0.9994 | 0.5 | 1.0 | 1.0 | 1.0 | 1.0 | 0.96 | 0.9535 | 0.9947 | 0.9718 | 0.0 | 1.0 | 0.9974 | 0.9810 | 0.9815 | 0.7037 | 0.9880 | 0.9974 | 1.0 | 0.9681 | 1.0 | 1.0 | 0.9938 |
| 0.0333 | 7.0 | 2345 | 0.0106 | 0.9760 | 0.9801 | 0.9780 | 0.9977 | 1.0 | 1.0 | 0.9565 | 1.0 | 1.0 | 0.9753 | 0.9987 | 1.0 | 1.0 | 0.9701 | 0.9939 | 1.0 | 0.8668 | 0.8662 | 0.7582 | 0.36 | 0.9944 | 0.5970 | 1.0 | 1.0 | 0.9493 | 0.9982 | 0.9524 | 1.0 | 0.5543 | 0.8700 | 0.8863 | 0.9806 | 0.6875 | 0.9424 | 0.8811 | 0.9052 | 0.9848 | 1.0 | 1.0 | 0.7364 | 0.9994 | 0.5 | 1.0 | 1.0 | 1.0 | 1.0 | 0.9697 | 0.9540 | 0.9947 | 0.9650 | 0.0 | 1.0 | 0.9965 | 0.9810 | 0.9832 | 0.7928 | 0.9880 | 0.9974 | 1.0 | 0.9746 | 1.0 | 1.0 | 0.9969 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu117
- Datasets 2.13.1
- Tokenizers 0.13.3 | [
-0.6493899822235107,
-0.48799073696136475,
0.32387420535087585,
0.15553905069828033,
-0.04593440890312195,
0.3435974419116974,
0.13559766113758087,
-0.17470254004001617,
0.8006963133811951,
0.3692857325077057,
-0.635859489440918,
-0.3932841122150421,
-0.759860098361969,
0.11080212146043777,
0.09898898750543594,
0.6864299774169922,
0.05748830363154411,
-0.28323113918304443,
0.008829784579575062,
-0.05915055051445961,
-0.3622682988643646,
-0.18122084438800812,
-0.8930642008781433,
-0.18267592787742615,
-0.11593001335859299,
0.6013311743736267,
0.9458519220352173,
0.7416394948959351,
0.34125423431396484,
0.6725082993507385,
-0.34390372037887573,
-0.0636800229549408,
-0.4333703815937042,
-0.36216533184051514,
0.011401224881410599,
-0.5082731246948242,
-0.35835978388786316,
0.0387735441327095,
0.5160216093063354,
0.7014976739883423,
-0.1078186109662056,
0.40477022528648376,
-0.06669193506240845,
0.8752297759056091,
-0.2645578682422638,
0.17880848050117493,
-0.2776069939136505,
-0.0001555391791043803,
-0.2496614009141922,
-0.4378761649131775,
0.08718939870595932,
-0.5725840926170349,
-0.03968118131160736,
-0.8097302913665771,
0.2908664345741272,
0.25228267908096313,
1.3046883344650269,
0.05642843618988991,
-0.10064039379358292,
-0.027085108682513237,
-0.5283777713775635,
0.8445460796356201,
-0.47974127531051636,
0.3301181495189667,
0.6063918471336365,
0.009350121021270752,
-0.2107594609260559,
-0.5811728239059448,
-0.7803490161895752,
0.4132479429244995,
-0.36073487997055054,
0.36213916540145874,
-0.08182492852210999,
-0.45208463072776794,
0.3666044771671295,
0.4987494945526123,
-0.7717278003692627,
-0.1566680669784546,
-0.7234799861907959,
-0.2684473395347595,
0.4208904206752777,
0.2434607595205307,
0.3373980224132538,
-0.4548962414264679,
-0.7891305088996887,
-0.03926393762230873,
-0.39362677931785583,
0.9001623392105103,
0.4399072825908661,
-0.009732105769217014,
-0.4742205739021301,
0.6173881888389587,
-0.2318030744791031,
0.4745030403137207,
0.2594497799873352,
-0.44954413175582886,
0.8274148106575012,
-0.4620460867881775,
-0.2861638367176056,
-0.173091858625412,
0.6396726965904236,
0.8379411101341248,
-0.33719009160995483,
0.05426822975277901,
-0.15771549940109253,
-0.16109831631183624,
0.019315499812364578,
-0.7449812889099121,
-0.28657808899879456,
0.9256637692451477,
-0.6151830554008484,
-0.35718151926994324,
0.08783800154924393,
-0.9965355396270752,
0.08624383807182312,
-0.39943957328796387,
0.30643796920776367,
-0.31625133752822876,
-0.5358536243438721,
0.1930086612701416,
-0.44133707880973816,
0.2759248614311218,
0.5031664967536926,
-0.9951725602149963,
0.18598341941833496,
0.4607211947441101,
1.1117608547210693,
0.28783169388771057,
-0.25722041726112366,
-0.1889122575521469,
0.5832240581512451,
-0.5642702579498291,
0.9395237565040588,
0.09841926395893097,
-0.544420063495636,
-0.2540128231048584,
0.5451024174690247,
-0.3775140643119812,
-0.6081387400627136,
0.6723900437355042,
-0.29673805832862854,
-0.008456381969153881,
-0.21018587052822113,
-0.4038209319114685,
-0.032607853412628174,
0.4782646596431732,
-0.8207703232765198,
1.0343049764633179,
0.3078975975513458,
-0.8146765828132629,
0.4196910262107849,
-0.5695605278015137,
-0.1753896325826645,
0.20355935394763947,
0.050803739577531815,
-0.8833328485488892,
-0.23581437766551971,
0.20414774119853973,
0.3603213429450989,
-0.27883732318878174,
-0.12422400712966919,
-0.07229133695363998,
-0.29703378677368164,
-0.11678235977888107,
-0.04518044367432594,
1.6000055074691772,
0.3237323462963104,
-0.7408187389373779,
-0.24066831171512604,
-0.9919062256813049,
0.24514712393283844,
0.1457519233226776,
-0.4748917818069458,
-0.04128853976726532,
-0.42659494280815125,
-0.21549591422080994,
0.3896181285381317,
0.658278226852417,
-0.576107919216156,
0.43542060256004333,
-0.3889845013618469,
0.220390185713768,
1.039569616317749,
0.21138329803943634,
0.5681644082069397,
-0.7831474542617798,
0.6050073504447937,
0.36347097158432007,
0.38851362466812134,
0.18116489052772522,
-0.3459952473640442,
-0.9300822019577026,
-0.4918099641799927,
-0.17316065728664398,
0.7677790522575378,
-0.5060203671455383,
0.703393816947937,
-0.14461643993854523,
-0.5543786287307739,
-0.3411220610141754,
0.08351501077413559,
0.3473746180534363,
0.44431957602500916,
0.15884464979171753,
0.2210887223482132,
-0.7600628137588501,
-0.9951768517494202,
-0.03854772448539734,
-0.15175369381904602,
0.21227356791496277,
0.578251838684082,
0.87874436378479,
-0.2953830659389496,
1.1027153730392456,
-0.9029127359390259,
-0.7565321922302246,
-0.2156442403793335,
-0.08641082793474197,
0.873451292514801,
0.5258803367614746,
0.6723631620407104,
-0.9419837594032288,
-0.8011422753334045,
0.22526507079601288,
-0.8769432902336121,
0.2364649474620819,
-0.40295469760894775,
-0.04791778698563576,
0.05038699135184288,
0.3694310784339905,
-0.5309125781059265,
0.672892153263092,
0.34788933396339417,
-0.5867652297019958,
0.5839876532554626,
-0.7544834613800049,
0.5345442891120911,
-1.4327313899993896,
0.4007738530635834,
0.10559145361185074,
-0.07177085429430008,
-0.6085268259048462,
-0.1220879778265953,
-0.1798853725194931,
-0.0016176945064216852,
-0.41595762968063354,
0.5508050322532654,
-0.685931921005249,
0.036927446722984314,
0.16332347691059113,
0.045044444501399994,
-0.052340779453516006,
0.47180241346359253,
-0.021897682920098305,
1.1029866933822632,
0.8270714282989502,
-0.7201305031776428,
0.253882497549057,
0.29977038502693176,
-0.6723493337631226,
0.6056602597236633,
-0.45207729935646057,
-0.02133084647357464,
-0.3754212260246277,
0.18985366821289062,
-1.2379902601242065,
-0.15895628929138184,
0.17848637700080872,
-0.5227189660072327,
0.248063325881958,
-0.15580984950065613,
-0.27633050084114075,
-1.0686590671539307,
-0.41088157892227173,
-0.11126013100147247,
0.31811991333961487,
-0.46080684661865234,
0.8313339948654175,
0.4873681664466858,
0.025815851986408234,
-0.7149283289909363,
-0.6018339395523071,
0.1752299666404724,
-0.07467684894800186,
-0.7505496144294739,
0.5449647307395935,
-0.25603124499320984,
-0.24852560460567474,
-0.218704491853714,
-0.0686136782169342,
-0.32481610774993896,
0.2926987111568451,
0.3099849224090576,
0.4487990140914917,
-0.05495675280690193,
-0.5158542394638062,
-0.2826571464538574,
-0.547903835773468,
-0.1799273043870926,
-0.04337404668331146,
0.6597712635993958,
-0.17913810908794403,
-0.15706169605255127,
-0.8647936582565308,
0.18166087567806244,
0.6645105481147766,
-0.3131455183029175,
1.1562039852142334,
0.5776228308677673,
-0.08832034468650818,
0.0759662613272667,
-0.3022761344909668,
-0.32788586616516113,
-0.5347017645835876,
0.06478242576122284,
-0.9043307900428772,
-0.42965400218963623,
0.48592936992645264,
-0.2704266905784607,
0.3341982066631317,
0.6315416693687439,
0.42513805627822876,
-0.36101487278938293,
0.7303654551506042,
0.3000420928001404,
-0.028120068833231926,
0.16369324922561646,
-1.0223510265350342,
0.25464242696762085,
-0.6104947328567505,
-0.7143082618713379,
-0.6332556009292603,
-0.34477218985557556,
-0.43649041652679443,
-0.24107135832309723,
0.6483243703842163,
0.26135513186454773,
-0.5293158888816833,
0.3121439516544342,
-0.7605587840080261,
0.30192264914512634,
0.8887730836868286,
0.4479115903377533,
0.12442000210285187,
-0.33867543935775757,
-0.3447960317134857,
0.08957434445619583,
-0.45870694518089294,
-0.5368178486824036,
1.2121559381484985,
-0.05777040123939514,
0.5710338950157166,
0.5886990427970886,
0.9318400621414185,
0.258730411529541,
0.019854463636875153,
-0.412177175283432,
0.19855870306491852,
0.09381940960884094,
-0.9800929427146912,
-0.21399840712547302,
-0.07241204380989075,
-1.057092547416687,
0.4002014100551605,
-0.2834107577800751,
-0.9290643334388733,
0.5296687483787537,
0.08242864906787872,
-0.5987082123756409,
0.4758062958717346,
-0.8884735107421875,
0.8632364869117737,
-0.33381855487823486,
-0.44203782081604004,
0.09208415448665619,
-0.8381682634353638,
0.2624763548374176,
0.04068296402692795,
0.7581078410148621,
-0.2599537670612335,
-0.05883335322141647,
0.5581093430519104,
-0.9236631393432617,
0.43423810601234436,
-0.37914490699768066,
0.10687392950057983,
0.6039680242538452,
-0.24638773500919342,
0.7221601009368896,
0.17933042347431183,
-0.24148426949977875,
0.06126103177666664,
-0.013957534916698933,
-0.5723916888237,
-0.058851368725299835,
1.059896469116211,
-1.330174446105957,
-0.9571899175643921,
-0.7849766612052917,
-0.15242797136306763,
0.3607740104198456,
0.3297981917858124,
0.47387415170669556,
0.3793596029281616,
0.2069098949432373,
0.3003176152706146,
0.7565666437149048,
0.03441803157329559,
0.6374277472496033,
0.3464728891849518,
0.13853269815444946,
-0.819772481918335,
0.934380292892456,
0.2925471365451813,
0.1882159262895584,
0.19745156168937683,
0.19188667833805084,
-0.5005432963371277,
-0.4294530153274536,
-0.5426844358444214,
0.13229183852672577,
-0.26655834913253784,
-0.30124908685684204,
-0.8096855282783508,
0.06577739119529724,
-0.9847685098648071,
-0.719998836517334,
-0.3000865876674652,
-0.21997585892677307,
-0.5606340765953064,
-0.2729090750217438,
0.5931048393249512,
0.6411831974983215,
-0.20151542127132416,
0.2182193547487259,
-0.6332018375396729,
0.2904934585094452,
0.035229653120040894,
0.22123652696609497,
-0.11315304040908813,
-0.49050548672676086,
-0.28731101751327515,
0.1482575386762619,
-0.4039957821369171,
-0.8818159103393555,
0.7992902398109436,
0.18649375438690186,
0.688183605670929,
0.42594727873802185,
-0.04551496356725693,
1.0099226236343384,
-0.2134120762348175,
0.9816014170646667,
0.4534958302974701,
-0.9145045876502991,
0.7262264490127563,
-0.2641054689884186,
0.35759782791137695,
0.7907633185386658,
0.43285873532295227,
-0.38200709223747253,
-0.3613201379776001,
-1.0283520221710205,
-0.9073590040206909,
0.9518114328384399,
0.3717849850654602,
-0.04739679768681526,
0.0804164707660675,
0.35946041345596313,
-0.33818700909614563,
0.26911523938179016,
-1.0877385139465332,
-1.204277515411377,
-0.23003095388412476,
0.07647445052862167,
-0.04469389095902443,
0.0028134312015026808,
-0.02847074531018734,
-0.5702729225158691,
0.8211950659751892,
0.3759196102619171,
0.2480967938899994,
0.3351553678512573,
0.04083631932735443,
-0.1663605123758316,
0.4179244935512543,
0.9687196016311646,
0.6636688113212585,
-0.6275796890258789,
0.09216118603944778,
-0.1107960194349289,
-0.6244021654129028,
0.5860159993171692,
-0.10061106085777283,
-0.44704052805900574,
0.17606331408023834,
0.09732531011104584,
0.32390880584716797,
-0.01007769349962473,
0.1957884281873703,
0.6360759139060974,
0.1814459264278412,
-0.5960695743560791,
-1.0625213384628296,
-0.0847112387418747,
0.21562427282333374,
0.40198951959609985,
0.7842825651168823,
0.4020090103149414,
-0.014286631718277931,
-0.8302354216575623,
0.03593866154551506,
0.5553524494171143,
-0.2845197916030884,
0.023518642410635948,
1.0296940803527832,
0.12318349629640579,
-0.2629488706588745,
0.337591290473938,
0.11679399013519287,
-0.8086618185043335,
1.0473335981369019,
0.6406903862953186,
0.44828227162361145,
-0.505864143371582,
0.08309340476989746,
1.1310817003250122,
0.45694631338119507,
0.22527828812599182,
0.5479510426521301,
0.13215281069278717,
-0.19039765000343323,
0.3357599079608917,
-0.5721571445465088,
-0.1643633395433426,
0.27439770102500916,
-0.6763024926185608,
0.6469022631645203,
-0.7046230435371399,
-0.4946622848510742,
0.03721580654382706,
0.35881760716438293,
-0.6554678678512573,
0.589713990688324,
-0.32886460423469543,
0.7599591016769409,
-0.8935889005661011,
0.801055371761322,
0.7690932750701904,
-0.817865252494812,
-1.3412413597106934,
-0.3264803886413574,
-0.09827397763729095,
-0.6737411022186279,
0.8138234615325928,
0.06311449408531189,
0.04032175987958908,
-0.01064132247120142,
-0.4785425066947937,
-1.0846329927444458,
1.2409427165985107,
-0.009411820210516453,
-0.6680806279182434,
0.06765507906675339,
-0.0748906284570694,
0.33975663781166077,
0.12165343761444092,
0.48289766907691956,
0.5359735488891602,
0.8066989779472351,
0.22613586485385895,
-0.884401798248291,
0.10814329236745834,
-0.44935858249664307,
0.02424122951924801,
0.29108211398124695,
-1.0687108039855957,
1.217534065246582,
-0.4756053686141968,
-0.014993809163570404,
0.12435057759284973,
0.48766064643859863,
0.3587256968021393,
0.18951885402202606,
0.5844711065292358,
1.047926902770996,
0.7208105325698853,
-0.16188769042491913,
1.0161957740783691,
-0.6579067707061768,
0.8335540890693665,
0.8347142338752747,
0.2040739506483078,
0.7590744495391846,
0.7464354634284973,
-0.6963074207305908,
0.4927509129047394,
0.9380972981452942,
-0.21616411209106445,
0.5296463966369629,
0.25522351264953613,
-0.6739146113395691,
-0.09695632755756378,
0.17585454881191254,
-0.8016104698181152,
0.1187458410859108,
0.3186650574207306,
-0.5374556183815002,
-0.08017321676015854,
-0.17303219437599182,
0.2035282701253891,
0.006381703540682793,
-0.3610813021659851,
0.7235976457595825,
-0.17358317971229553,
-0.5048388838768005,
0.6714175343513489,
-0.28740018606185913,
0.6935759782791138,
-0.589063286781311,
0.09059307724237442,
-0.10042790323495865,
0.5832808017730713,
-0.6753668189048767,
-0.99313884973526,
0.07608529180288315,
-0.4551917314529419,
-0.4106202721595764,
-0.14752936363220215,
0.18394917249679565,
-0.1979411542415619,
-0.5412926077842712,
0.01879815384745598,
0.12041017413139343,
0.3034701645374298,
0.3005891740322113,
-0.7676041126251221,
-0.23024582862854004,
0.40620991587638855,
-0.4143056571483612,
0.0968318060040474,
0.4392847418785095,
0.21876004338264465,
0.4910092353820801,
1.0081875324249268,
0.13780754804611206,
0.1958552747964859,
-0.4415205419063568,
1.054715871810913,
-0.774279773235321,
-0.5737800002098083,
-0.761508047580719,
0.2353391796350479,
-0.36922091245651245,
-0.6068482995033264,
0.9135985374450684,
1.1912237405776978,
0.4165325462818146,
-0.32736802101135254,
0.49685466289520264,
-0.5201094150543213,
0.6036979556083679,
-0.28429123759269714,
0.7311046123504639,
-0.8511488437652588,
-0.14416784048080444,
-0.27262482047080994,
-0.6966429352760315,
-0.10832110047340393,
0.9364308714866638,
-0.36069726943969727,
0.13271039724349976,
0.7836723923683167,
0.9559885859489441,
0.208576500415802,
-0.1301533430814743,
0.23105290532112122,
0.24539439380168915,
0.20129325985908508,
0.777421236038208,
0.6109760999679565,
-0.6353889107704163,
0.6153694987297058,
-0.6804512143135071,
-0.2381249964237213,
-0.4519895017147064,
-0.7591117024421692,
-0.7165488004684448,
-0.62388014793396,
-0.46998071670532227,
-0.6228548288345337,
-0.24123647809028625,
1.0247830152511597,
0.8771451115608215,
-0.6720665097236633,
-0.35217687487602234,
-0.22643455862998962,
-0.07169338315725327,
-0.08411556482315063,
-0.13326673209667206,
0.8445673584938049,
0.1957358419895172,
-1.0086164474487305,
0.14420442283153534,
0.31406375765800476,
0.482112854719162,
0.1572815477848053,
-0.11432386934757233,
-0.49230077862739563,
0.011155109852552414,
0.3176119029521942,
0.34839320182800293,
-0.7198135256767273,
-0.028691187500953674,
-0.16919581592082977,
-0.45949357748031616,
0.5547853708267212,
0.3600960075855255,
-0.45946401357650757,
0.32780566811561584,
0.314536988735199,
-0.08302740007638931,
0.7930447459220886,
0.07955770939588547,
0.18724459409713745,
-0.23056462407112122,
0.3313049376010895,
-0.1161871924996376,
0.47804760932922363,
0.08513011038303375,
-0.8396474719047546,
0.6233245134353638,
0.5635067820549011,
-0.624588131904602,
-0.6020779609680176,
-0.5257943272590637,
-1.2444026470184326,
-0.11003539711236954,
1.0371755361557007,
-0.27157628536224365,
-0.6684196591377258,
-0.3140728771686554,
-0.5221680998802185,
0.12066219747066498,
-0.7022913098335266,
0.38614651560783386,
0.5048909187316895,
-0.16334392130374908,
-0.0893431231379509,
-0.7900744676589966,
0.5590773224830627,
0.12212793529033661,
-0.8802748918533325,
-0.3645915389060974,
0.39686819911003113,
0.5363131165504456,
0.4514274299144745,
1.0787999629974365,
-0.2552538514137268,
0.273095965385437,
0.18614782392978668,
0.171421080827713,
0.004921752959489822,
0.20135216414928436,
-0.0034219976514577866,
0.35913869738578796,
-0.1339735984802246,
-0.4621288478374481
] |
microsoft/cvt-13 | microsoft | "2023-09-17T16:00:37Z" | 11,118 | 5 | transformers | [
"transformers",
"pytorch",
"tf",
"safetensors",
"cvt",
"image-classification",
"vision",
"dataset:imagenet-1k",
"arxiv:2103.15808",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"has_space",
"region:us"
] | image-classification | "2022-04-04T11:32:10Z" | ---
license: apache-2.0
tags:
- vision
- image-classification
datasets:
- imagenet-1k
widget:
- src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg
example_title: Tiger
- src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg
example_title: Teapot
- src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg
example_title: Palace
---
# Convolutional Vision Transformer (CvT)
CvT-13 model pre-trained on ImageNet-1k at resolution 224x224. It was introduced in the paper [CvT: Introducing Convolutions to Vision Transformers](https://arxiv.org/abs/2103.15808) by Wu et al. and first released in [this repository](https://github.com/microsoft/CvT).
Disclaimer: The team releasing CvT did not write a model card for this model so this model card has been written by the Hugging Face team.
## Usage
Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes:
```python
from transformers import AutoFeatureExtractor, CvtForImageClassification
from PIL import Image
import requests
url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
image = Image.open(requests.get(url, stream=True).raw)
feature_extractor = AutoFeatureExtractor.from_pretrained('microsoft/cvt-13')
model = CvtForImageClassification.from_pretrained('microsoft/cvt-13')
inputs = feature_extractor(images=image, return_tensors="pt")
outputs = model(**inputs)
logits = outputs.logits
# model predicts one of the 1000 ImageNet classes
predicted_class_idx = logits.argmax(-1).item()
print("Predicted class:", model.config.id2label[predicted_class_idx])
``` | [
-0.6904622912406921,
-0.22734667360782623,
-0.15937308967113495,
0.19604970514774323,
-0.4588698744773865,
-0.06776130944490433,
0.07239820063114166,
-0.5462880730628967,
-0.013326743617653847,
0.48242008686065674,
-0.6815823912620544,
-0.2803082764148712,
-0.6743534803390503,
-0.06026821210980415,
-0.6348864436149597,
0.9521796703338623,
0.023467104882001877,
0.06720374524593353,
-0.23672941327095032,
0.004823376890271902,
-0.38075345754623413,
-0.483093798160553,
-0.5962939262390137,
-0.19423577189445496,
0.2804051637649536,
0.23521503806114197,
0.4491412937641144,
0.29035112261772156,
0.7625101804733276,
0.42377975583076477,
0.1843552142381668,
0.07498139142990112,
-0.3097168207168579,
-0.5486964583396912,
0.1518486738204956,
-0.4077768325805664,
-0.21636155247688293,
0.2565533518791199,
0.3189648985862732,
0.11893782764673233,
0.1085062325000763,
0.27370208501815796,
0.3286280333995819,
0.4620787799358368,
-0.5278828740119934,
0.3767305314540863,
-0.5779113173484802,
0.17175991833209991,
0.09735633432865143,
-0.11587720364332199,
-0.4230966567993164,
-0.10675182193517685,
0.3716699481010437,
-0.7153887152671814,
0.5847175121307373,
0.0233133677393198,
1.2620267868041992,
0.36489713191986084,
-0.21647606790065765,
-0.05186384171247482,
-0.4858012795448303,
0.6789666414260864,
-0.26937153935432434,
0.1968730092048645,
0.12454520165920258,
0.774547278881073,
0.19675485789775848,
-0.9740384221076965,
-0.49606892466545105,
-0.1773945838212967,
-0.03351004049181938,
0.11305084079504013,
-0.29949378967285156,
0.09128159284591675,
0.2970345914363861,
0.42135411500930786,
-0.6856427788734436,
-0.044508371502161026,
-0.8362458944320679,
-0.3552738130092621,
0.570852518081665,
-0.008830436505377293,
0.052534691989421844,
0.021683067083358765,
-0.6907302141189575,
-0.3004034757614136,
-0.14502865076065063,
0.18609507381916046,
0.010329864919185638,
0.11024360358715057,
-0.29349663853645325,
0.44153016805648804,
0.010534199886023998,
0.6037758588790894,
0.296598881483078,
0.10629334300756454,
0.3971249461174011,
0.02779199555516243,
-0.6046122312545776,
0.18070749938488007,
0.9698476791381836,
0.28573283553123474,
0.46430888772010803,
0.14732564985752106,
-0.06034642457962036,
0.3586507737636566,
0.5114313960075378,
-0.911867618560791,
-0.3851015567779541,
-0.060326289385557175,
-0.4294956624507904,
-0.7377249002456665,
0.36217638850212097,
-0.4775698781013489,
0.002456641523167491,
-0.2660871744155884,
0.50383460521698,
-0.28346678614616394,
-0.19928671419620514,
-0.16321974992752075,
0.03381942957639694,
0.5949339866638184,
0.5066904425621033,
-0.5087034106254578,
0.31266677379608154,
0.34822535514831543,
0.7630795836448669,
-0.27320596575737,
-0.267876535654068,
-0.12967447936534882,
-0.367204487323761,
-0.3083617687225342,
0.7441262602806091,
-0.07636354863643646,
-0.25411468744277954,
-0.07389035075902939,
0.600619375705719,
-0.10537289083003998,
-0.5509284734725952,
0.3762083947658539,
-0.42506149411201477,
-0.019744090735912323,
-0.059521183371543884,
-0.11985211819410324,
-0.35983142256736755,
0.4688672721385956,
-0.5386161804199219,
1.0614869594573975,
0.43318310379981995,
-0.7835558652877808,
0.27488312125205994,
-0.5348637700080872,
-0.06807391345500946,
0.28909897804260254,
-0.08773677796125412,
-0.7013439536094666,
-0.04532590135931969,
0.12458872050046921,
0.5077024102210999,
-0.23198482394218445,
0.322123646736145,
-0.24858425557613373,
-0.39580368995666504,
0.1898271143436432,
-0.5418259501457214,
0.8675307035446167,
0.39903974533081055,
-0.2818509638309479,
0.07384368032217026,
-0.7451130151748657,
-0.03519095107913017,
0.1472305804491043,
-0.019764432683587074,
0.12404771894216537,
-0.46398523449897766,
0.3804033100605011,
0.5153583884239197,
0.14527711272239685,
-0.6358562111854553,
0.3099868595600128,
-0.06366628408432007,
0.4906250834465027,
0.631546676158905,
-0.17311729490756989,
0.2714461386203766,
-0.1964145004749298,
0.5904974341392517,
0.3834785223007202,
0.6106340885162354,
-0.1679600328207016,
-0.5477120876312256,
-0.8718830347061157,
-0.12340719252824783,
-0.03379909321665764,
0.41705939173698425,
-0.8826955556869507,
0.36699721217155457,
-0.16933833062648773,
-0.7927452325820923,
-0.4504063129425049,
-0.26357904076576233,
0.19534941017627716,
0.46758195757865906,
0.4956676959991455,
-0.4760003685951233,
-0.6795793175697327,
-0.9781861901283264,
0.10962501168251038,
0.10564550012350082,
0.1356487274169922,
0.07431218773126602,
0.6968260407447815,
-0.2936350107192993,
0.8952829837799072,
-0.3427060544490814,
-0.3652953803539276,
-0.0773368701338768,
0.030413644388318062,
0.16165132820606232,
0.8236175179481506,
0.7276966571807861,
-0.9198358058929443,
-0.5142223238945007,
-0.11431773006916046,
-0.6947722434997559,
0.39361345767974854,
0.11539772152900696,
-0.15943454205989838,
0.0858667716383934,
0.33584240078926086,
-0.3137270510196686,
0.968510627746582,
0.5052964091300964,
-0.10999707877635956,
0.6181530952453613,
-0.021959232166409492,
0.15537837147712708,
-1.0551185607910156,
-0.05005575716495514,
0.22053025662899017,
-0.2934088110923767,
-0.3839244842529297,
-0.1191028356552124,
0.22623197734355927,
-0.31117871403694153,
-0.8903143405914307,
0.24267539381980896,
-0.24603986740112305,
0.15977968275547028,
-0.37603527307510376,
-0.5804134607315063,
-0.0894751027226448,
0.5481955409049988,
0.25192350149154663,
0.39267805218696594,
0.858291745185852,
-0.7626262307167053,
0.6802751421928406,
0.4388677179813385,
-0.3869674503803253,
0.4413367211818695,
-0.6321755647659302,
0.07576143741607666,
-0.021609781309962273,
0.35006552934646606,
-0.9690364003181458,
-0.12541702389717102,
0.24968242645263672,
-0.5902312994003296,
0.49326080083847046,
-0.2855929136276245,
-0.15949058532714844,
-0.8645904064178467,
-0.19469225406646729,
0.6585025191307068,
0.5226643681526184,
-0.8295759558677673,
0.44320550560951233,
0.11161939054727554,
0.6064580082893372,
-0.643340528011322,
-1.1923750638961792,
-0.22756357491016388,
-0.05069300904870033,
-0.6046115756034851,
0.3134993314743042,
-0.17655958235263824,
0.32247012853622437,
0.04548904299736023,
-0.13863486051559448,
-0.19149287045001984,
-0.17682316899299622,
0.46562355756759644,
0.5054394006729126,
-0.2584059238433838,
-0.1597118377685547,
-0.24781490862369537,
-0.34584566950798035,
0.08045443147420883,
-0.3923477232456207,
0.5411651730537415,
-0.44489917159080505,
-0.14081506431102753,
-0.6880598068237305,
-0.06427007913589478,
0.5907647013664246,
-0.3093383312225342,
0.6195524334907532,
0.9148788452148438,
-0.4948384761810303,
-0.167171910405159,
-0.5054663419723511,
-0.11007671058177948,
-0.5334725975990295,
0.3619414269924164,
-0.41704991459846497,
-0.6618626117706299,
0.5368736982345581,
0.0794774517416954,
-0.29620790481567383,
0.8048481345176697,
0.3701770603656769,
0.09890798479318619,
0.8306582570075989,
0.7080724239349365,
0.11880046874284744,
0.6466901898384094,
-0.9775667190551758,
0.11922379583120346,
-0.8329702615737915,
-0.4616297781467438,
-0.41873303055763245,
-0.2869819700717926,
-0.9823746085166931,
-0.27346426248550415,
0.20764902234077454,
-0.0905623584985733,
-0.5090087652206421,
0.8384715914726257,
-1.1673786640167236,
0.3442051410675049,
0.6477737426757812,
0.4233827292919159,
-0.1622472107410431,
-0.043512012809515,
-0.02677764929831028,
0.1273641139268875,
-0.6599676012992859,
-0.28977909684181213,
0.7578864097595215,
0.3141646087169647,
0.8116586208343506,
-0.41559046506881714,
0.47665470838546753,
-0.018373535946011543,
0.4798700213432312,
-0.7657290101051331,
0.4625866711139679,
-0.35365450382232666,
-0.6081823706626892,
0.11143959313631058,
-0.12857197225093842,
-0.7511364817619324,
-0.027249613776803017,
-0.2560310959815979,
-0.70578932762146,
0.6505006551742554,
0.23551857471466064,
-0.15407775342464447,
0.37635883688926697,
-0.561336100101471,
1.194181203842163,
-0.19966132938861847,
-0.2614004611968994,
0.21707817912101746,
-0.6384744048118591,
0.42159849405288696,
-0.17354299128055573,
-0.04021959751844406,
-0.09625354409217834,
0.38585126399993896,
0.8194190859794617,
-0.6640653014183044,
0.8191800117492676,
-0.26043975353240967,
0.3363584876060486,
0.752747118473053,
-0.021753868088126183,
0.2587856948375702,
-0.14061273634433746,
0.09279916435480118,
0.45406246185302734,
0.30601242184638977,
-0.37239086627960205,
-0.4812554717063904,
0.7386071085929871,
-1.0200691223144531,
-0.25205525755882263,
-0.7033401131629944,
-0.392839640378952,
0.2878115177154541,
0.04808727279305458,
0.8753594756126404,
0.5685698390007019,
-0.12036837637424469,
0.3504146933555603,
0.32002437114715576,
-0.2982831299304962,
0.5754084587097168,
0.09575670212507248,
-0.13076011836528778,
-0.21621423959732056,
0.924854576587677,
0.35514089465141296,
0.2023797482252121,
0.3592730164527893,
0.20656996965408325,
-0.23317381739616394,
-0.2500619888305664,
-0.09116817265748978,
-0.03876888379454613,
-0.7161552906036377,
-0.5265019536018372,
-0.500598669052124,
-0.7366828918457031,
-0.5852487087249756,
-0.31191107630729675,
-0.5637941956520081,
-0.24002981185913086,
-0.48183199763298035,
0.07710637897253036,
0.37136152386665344,
0.5696219801902771,
0.024409066885709763,
0.637760579586029,
-0.5862932801246643,
-0.01903296448290348,
0.34996941685676575,
0.2228521853685379,
0.012503160163760185,
-0.7064967751502991,
-0.1643432378768921,
-0.09969879686832428,
-0.7069911360740662,
-0.5576236248016357,
0.8040904402732849,
0.10205013304948807,
0.4693310260772705,
0.4765974283218384,
0.06836175918579102,
0.7432021498680115,
-0.17586812376976013,
0.8119170069694519,
0.553480327129364,
-0.7981718182563782,
0.622439444065094,
0.059400178492069244,
0.31575825810432434,
0.3267554044723511,
0.4687387943267822,
-0.25243163108825684,
-0.18442077934741974,
-0.9616894125938416,
-0.6564784049987793,
0.7796298861503601,
0.20557135343551636,
0.02744835801422596,
0.02022516541182995,
0.3479187786579132,
0.10322554409503937,
0.0740254744887352,
-0.8089412450790405,
-0.24526441097259521,
-0.7748610973358154,
-0.2849932014942169,
-0.32464364171028137,
-0.1377352774143219,
0.3859362006187439,
-0.6954460740089417,
0.7184195518493652,
-0.1434766799211502,
0.5790665149688721,
0.2727222740650177,
-0.18981164693832397,
-0.08120433241128922,
-0.3307797908782959,
0.3715443015098572,
0.4417280852794647,
-0.29495692253112793,
0.19794540107250214,
0.10235690325498581,
-0.8093836307525635,
0.07617106288671494,
0.0814189463853836,
0.042443543672561646,
-0.1289883404970169,
0.3151550590991974,
0.8198700547218323,
0.00398422172293067,
0.012620571069419384,
0.7292168140411377,
-0.23431259393692017,
-0.4038916528224945,
-0.6304402947425842,
0.1326412856578827,
-0.27720820903778076,
0.2238176167011261,
0.284952312707901,
0.4187304973602295,
0.04311419278383255,
-0.34248900413513184,
0.27486348152160645,
0.3219459652900696,
-0.7235502004623413,
-0.23396146297454834,
0.8587766885757446,
-0.003839486511424184,
-0.28925007581710815,
0.9789108037948608,
-0.04325361177325249,
-0.6848925352096558,
1.0604090690612793,
0.40675365924835205,
0.9746993184089661,
-0.41576236486434937,
0.06943289935588837,
0.8625675439834595,
0.33512696623802185,
-0.07409588992595673,
0.043919190764427185,
-0.08392497897148132,
-0.8135714530944824,
-0.14967912435531616,
-0.6517537832260132,
-0.07891064137220383,
0.23175527155399323,
-0.9199174046516418,
0.6371731758117676,
-0.34428611397743225,
-0.0770413726568222,
0.29556629061698914,
0.2481481432914734,
-1.2368439435958862,
0.5168101787567139,
0.08549949526786804,
1.1220741271972656,
-0.8668773770332336,
1.1006457805633545,
0.4881729185581207,
-0.6043539643287659,
-0.8888011574745178,
-0.5473510026931763,
-0.10048495978116989,
-1.0698344707489014,
0.5871217846870422,
0.6064949035644531,
0.2682732045650482,
0.23571446537971497,
-1.1771467924118042,
-0.6009767651557922,
1.2659151554107666,
0.2493799775838852,
-0.6779303550720215,
0.1410634070634842,
0.19675412774085999,
0.23938000202178955,
-0.6579239368438721,
0.4295704960823059,
0.26461055874824524,
0.4095185399055481,
0.5298202037811279,
-0.7415936589241028,
-0.058397069573402405,
-0.270174115896225,
0.15394535660743713,
-0.02835254743695259,
-0.6206944584846497,
0.8005058765411377,
-0.19666075706481934,
0.1255863755941391,
0.1139318123459816,
0.6660263538360596,
-0.014120741747319698,
0.22750352323055267,
0.6255623698234558,
0.5243777632713318,
0.36790502071380615,
-0.308137983083725,
1.1278998851776123,
-0.0706239640712738,
0.7075057029724121,
0.7704685926437378,
0.4302894175052643,
0.45633235573768616,
0.32108330726623535,
-0.056055840104818344,
0.22328884899616241,
1.052148699760437,
-0.591923177242279,
0.5664659738540649,
0.22649535536766052,
-0.08254992216825485,
-0.2617819607257843,
0.02220987156033516,
-0.38690829277038574,
0.5606259107589722,
0.22500790655612946,
-0.4696519374847412,
-0.0618937611579895,
0.45469221472740173,
-0.322134792804718,
-0.4586904048919678,
-0.4255002439022064,
0.501559317111969,
0.0998319759964943,
-0.558956503868103,
0.7356022000312805,
-0.2975475490093231,
0.7569666504859924,
-0.5124331116676331,
-0.17319513857364655,
0.014873471111059189,
0.43091580271720886,
-0.35841143131256104,
-0.7323999404907227,
0.3321632146835327,
-0.14763326942920685,
-0.0032732118852436543,
0.11939595639705658,
0.7355876564979553,
-0.33980923891067505,
-0.7366012334823608,
0.2689029574394226,
-0.12483222782611847,
0.46005967259407043,
-0.3338962495326996,
-0.8507978320121765,
0.30180466175079346,
-0.07655521482229233,
-0.25338149070739746,
0.20306658744812012,
0.2615169882774353,
-0.09105613082647324,
0.5496369004249573,
0.488382488489151,
-0.3772647976875305,
0.20948787033557892,
-0.15894559025764465,
1.0315070152282715,
-0.4321231544017792,
-0.3508327901363373,
-0.5803361535072327,
0.5862337946891785,
0.12841163575649261,
-0.4245351254940033,
0.43480271100997925,
0.7485150694847107,
1.0511550903320312,
-0.2924242317676544,
0.6477057933807373,
-0.06628842651844025,
-0.15120790898799896,
-0.0600961409509182,
0.5591475963592529,
-0.46329429745674133,
-0.22954607009887695,
-0.32464027404785156,
-0.9484599232673645,
-0.3050271272659302,
0.8514791131019592,
-0.22047895193099976,
0.13621926307678223,
0.719630777835846,
0.8825031518936157,
-0.34567251801490784,
-0.013040308840572834,
0.44031691551208496,
0.21393683552742004,
0.39612284302711487,
0.5784925222396851,
0.6202695369720459,
-0.9002472162246704,
0.5907467603683472,
-0.7528430223464966,
-0.3265458047389984,
-0.24398835003376007,
-0.8738452792167664,
-0.7667860388755798,
-0.7784712910652161,
-0.6096410155296326,
-0.6789141297340393,
-0.1691845804452896,
0.784487783908844,
1.1710656881332397,
-0.864575982093811,
-0.038347139954566956,
-0.37310031056404114,
-0.2911032438278198,
-0.2372817099094391,
-0.25525230169296265,
0.586642861366272,
-0.10979529470205307,
-0.7022037506103516,
-0.15773484110832214,
-0.10803301632404327,
0.2988554835319519,
-0.28190839290618896,
-0.2212817221879959,
-0.10578451305627823,
-0.24009771645069122,
0.48205095529556274,
0.2983909547328949,
-0.5226649641990662,
-0.3285864591598511,
-0.15068195760250092,
0.004894681740552187,
0.32290488481521606,
0.539628267288208,
-0.761479377746582,
0.5504598021507263,
0.3280094265937805,
0.24003341794013977,
1.0018600225448608,
-0.21474365890026093,
0.12139543145895004,
-0.4888072609901428,
0.43126022815704346,
0.1551823914051056,
0.3608998656272888,
0.22881579399108887,
-0.3982982635498047,
0.580978512763977,
0.3599430024623871,
-0.6115976572036743,
-0.6672196388244629,
-0.08888120204210281,
-1.626473069190979,
-0.04920285567641258,
0.7777136564254761,
-0.12475099414587021,
-0.7168103456497192,
0.17288453876972198,
-0.2423289567232132,
0.5064403414726257,
-0.13889750838279724,
0.40692925453186035,
0.29974570870399475,
0.08966588228940964,
-0.5283212661743164,
-0.46160775423049927,
0.3689069449901581,
-0.4664320647716522,
-0.612059473991394,
-0.4854904115200043,
-0.09167774021625519,
0.47889795899391174,
0.31772762537002563,
0.3184479773044586,
-0.3601642847061157,
0.34258121252059937,
0.0625205934047699,
0.5795257687568665,
-0.3390241861343384,
-0.28016939759254456,
-0.20406198501586914,
0.017846960574388504,
-0.33095985651016235,
-0.725657045841217
] |
CalderaAI/30B-Epsilon | CalderaAI | "2023-07-20T06:59:50Z" | 11,108 | 9 | transformers | [
"transformers",
"pytorch",
"llama",
"text-generation",
"alpaca",
"vicuna",
"uncensored",
"cot",
"chain of thought",
"story",
"adventure",
"roleplay",
"rp",
"merge",
"mix",
"instruct",
"wizardlm",
"superhot",
"supercot",
"manticore",
"hippogriff",
"endpoints_compatible",
"has_space",
"text-generation-inference",
"region:us"
] | text-generation | "2023-07-07T08:12:03Z" | ---
tags:
- llama
- alpaca
- vicuna
- uncensored
- cot
- chain of thought
- story
- adventure
- roleplay
- rp
- merge
- mix
- instruct
- wizardlm
- superhot
- supercot
- manticore
- hippogriff
---
## 30B-Epsilon
Epsilon is an instruct based general purpose model assembled from hand picked models and LoRAs.
There is no censorship and it follows instructions in the Alpaca format. This means you can create
your own rules in the context memory of your inference system of choice [mainly KoboldAI or Text
Generation Webui and chat UIs like SillyTavern and so on].
## Composition:
This model is the result of an experimental use of LoRAs on language models and model merges.
[] = applied as LoRA to a composite model | () = combined as composite models
30B-Epsilon = [SuperCOT[SuperHOT-prototype13b-8192[(wizardlmuncensored+((hippogriff+manticore)+(StoryV2))]
Alpaca's instruct format can be used to do many things, including control of the terms of behavior
between a user and a response from an agent in chat. Below is an example of a command injected into
memory.
```
### Instruction:
Make Narrator function as a text based adventure game that responds with verbose, detailed, and creative descriptions of what happens next after Player's response.
Make Player function as the player input for Narrator's text based adventure game, controlling a character named (insert character name here, their short bio, and
whatever quest or other information to keep consistent in the interaction).
### Response:
{an empty new line here}
```
All datasets from all models and LoRAs used were documented and reviewed as model candidates for merging.
Model candidates were based on five core principles: creativity, logic, inference, instruction following,
and longevity of trained responses. SuperHOT-prototype30b-8192 was used in this mix, not the 8K version;
the prototype LoRA seems to have been removed [from HF] as of this writing. The GPT4Alpaca LoRA from
Chansung was removed from this amalgam following a thorough review of where censorship and railroading
the user came from in 33B-Lazarus. This is not a reflection of ChanSung's excellent work - it merely did
not fit the purpose of this model.
## Language Models and LoRAs Used Credits:
manticore-30b-chat-pyg-alpha [Epoch0.4] by openaccess-ai-collective
https://huggingface.co/openaccess-ai-collective/manticore-30b-chat-pyg-alpha
hippogriff-30b-chat by openaccess-ai-collective
https://huggingface.co/openaccess-ai-collective/hippogriff-30b-chat
WizardLM-33B-V1.0-Uncensored by ehartford
https://huggingface.co/ehartford/WizardLM-33B-V1.0-Uncensored
Storytelling-LLaMa-LoRA [30B, Version 2] by GamerUnTouch
https://huggingface.co/GamerUntouch/Storytelling-LLaMa-LoRAs
SuperCOT-LoRA [30B] by kaiokendev
https://huggingface.co/kaiokendev/SuperCOT-LoRA
SuperHOT-LoRA-prototype30b-8192 [30b, not 8K version, but a removed prototype] by kaiokendev
https://huggingface.co/kaiokendev/superhot-30b-8k-no-rlhf-test [Similar LoRA to one since removed that was used in making this model.]
Also thanks to Meta for LLaMA and to each and every one of you
who developed these fine-tunes and LoRAs. | [
-0.6082407832145691,
-0.9087258577346802,
0.26049456000328064,
0.40615829825401306,
-0.1858857125043869,
-0.2828315496444702,
-0.021433038637042046,
-0.8673915863037109,
0.6426745653152466,
0.6685394048690796,
-0.7340209484100342,
-0.4677371382713318,
-0.39544373750686646,
-0.049311500042676926,
-0.43339788913726807,
1.2277717590332031,
0.0972750335931778,
-0.2443399429321289,
-0.06302550435066223,
-0.27639099955558777,
-0.2884494364261627,
-0.48664188385009766,
-0.46203678846359253,
-0.3762603998184204,
0.43651312589645386,
0.5090663433074951,
0.7115830183029175,
0.40752077102661133,
0.41029858589172363,
0.3586089611053467,
-0.27515316009521484,
0.1491061896085739,
-0.5200690031051636,
-0.06328930705785751,
-0.12640593945980072,
-0.41724109649658203,
-0.8365806937217712,
0.059688303619623184,
0.5376745462417603,
0.1992168128490448,
-0.3547934889793396,
0.31704917550086975,
-0.060886308550834656,
0.21410556137561798,
-0.4755110442638397,
0.21730105578899384,
-0.21201054751873016,
-0.07271517068147659,
-0.10050863772630692,
0.1826053410768509,
-0.3344826102256775,
-0.21630455553531647,
0.11970028281211853,
-0.6821740865707397,
0.06867043673992157,
0.03829456865787506,
1.1668541431427002,
0.12390702217817307,
-0.16982808709144592,
-0.46633607149124146,
-0.5571902394294739,
0.7835319638252258,
-0.9528078436851501,
0.033729974180459976,
0.5012639164924622,
0.2186688780784607,
-0.19310906529426575,
-0.6786574721336365,
-0.7299607992172241,
-0.15683479607105255,
0.07990258932113647,
0.17858798801898956,
-0.4271826148033142,
0.006591313984245062,
0.2942943274974823,
0.579051673412323,
-0.15118084847927094,
0.2896430790424347,
-0.4219766855239868,
-0.226511612534523,
0.5040621161460876,
0.1541510671377182,
0.46225976943969727,
-0.30672815442085266,
-0.31175392866134644,
-0.11864536255598068,
-0.8755245804786682,
-0.1003652811050415,
0.44838279485702515,
0.06576162576675415,
-0.2945196330547333,
0.7527849674224854,
-0.08610261231660843,
0.3565894663333893,
0.21072953939437866,
-0.3781093657016754,
0.21144305169582367,
-0.301742821931839,
-0.2803958058357239,
-0.22997547686100006,
0.9100543260574341,
0.5297998189926147,
0.09859906882047653,
0.1488659530878067,
0.03638071194291115,
0.08927162736654282,
-0.08058544993400574,
-0.8319116234779358,
0.1682196706533432,
0.10100919753313065,
-0.46586501598358154,
-0.26612672209739685,
-0.13316069543361664,
-0.6526782512664795,
-0.2383573204278946,
0.1178785189986229,
0.3698533773422241,
-0.6150360703468323,
-0.08668790757656097,
0.10629545152187347,
-0.09836336225271225,
0.5502259135246277,
0.25992974638938904,
-0.9821059107780457,
0.42611390352249146,
0.4506453275680542,
0.48792362213134766,
0.2134503275156021,
-0.4107339680194855,
-0.15443181991577148,
0.09423896670341492,
-0.38460105657577515,
0.7123304009437561,
-0.24032896757125854,
-0.3774765431880951,
-0.2087278664112091,
0.1866319626569748,
0.313895046710968,
-0.3507477343082428,
0.5557339787483215,
-0.31298157572746277,
0.5002657175064087,
-0.27208805084228516,
-0.7127586603164673,
-0.33666035532951355,
-0.05015116184949875,
-0.6180701851844788,
0.7415946125984192,
0.09897328168153763,
-0.626910924911499,
0.09658148139715195,
-0.829704999923706,
-0.0899004116654396,
0.049829643219709396,
-0.030672434717416763,
-0.33298322558403015,
-0.11761324852705002,
0.24599267542362213,
0.3039008677005768,
-0.3790644407272339,
0.09685005992650986,
-0.24551481008529663,
-0.4551755487918854,
-0.0027921320870518684,
-0.12323230504989624,
0.9714927673339844,
0.1921234130859375,
-0.4242594242095947,
0.023630807176232338,
-0.5892186760902405,
-0.04091108962893486,
0.301362007856369,
-0.17194542288780212,
-0.13209323585033417,
-0.05970831960439682,
-0.08872167021036148,
-0.08986829221248627,
0.25315985083580017,
-0.45277971029281616,
0.2325226366519928,
-0.32152754068374634,
0.46236708760261536,
0.606484055519104,
0.1644035428762436,
0.3241419196128845,
-0.39682793617248535,
0.600422203540802,
-0.20212258398532867,
0.45550262928009033,
-0.3239934742450714,
-0.7136387825012207,
-1.01044762134552,
-0.42117586731910706,
0.15866762399673462,
0.5779361724853516,
-0.5379461646080017,
0.6068381071090698,
0.16618658602237701,
-0.7179291844367981,
-0.47832590341567993,
0.07715979963541031,
0.5999186635017395,
0.33193233609199524,
0.2680560350418091,
-0.44107064604759216,
-0.631869375705719,
-0.8747166991233826,
0.15421630442142487,
-0.4390641450881958,
0.009734146296977997,
0.5071645975112915,
0.45548784732818604,
-0.4792763292789459,
0.7911052107810974,
-0.45939937233924866,
-0.268636554479599,
-0.3702269494533539,
-0.020700912922620773,
0.19981487095355988,
0.38051638007164,
0.8726130723953247,
-0.4989607036113739,
-0.27364179491996765,
-0.22194956243038177,
-0.8527402281761169,
-0.22061461210250854,
0.18192104995250702,
-0.20317107439041138,
0.15833356976509094,
0.5575776100158691,
-0.8492897748947144,
0.5164160132408142,
0.5639894008636475,
-0.505166232585907,
0.738757312297821,
-0.1898048371076584,
0.0959768146276474,
-1.132091999053955,
-0.002089595887809992,
-0.0983298197388649,
-0.26074594259262085,
-0.49017399549484253,
0.6388716697692871,
-0.20836661756038666,
0.25263711810112,
-0.6288471221923828,
0.8070145845413208,
-0.35381537675857544,
0.0318281464278698,
-0.09281676262617111,
0.16087079048156738,
0.010280224494636059,
0.5880091786384583,
-0.09621184319257736,
0.4857107102870941,
0.4904496967792511,
-0.5469303131103516,
0.6793466210365295,
0.6428148746490479,
-0.38641923666000366,
0.6657640337944031,
-0.9248514771461487,
0.15057742595672607,
0.034077972173690796,
0.4876483380794525,
-0.67917400598526,
-0.32498860359191895,
0.5128123164176941,
-0.5362125039100647,
-0.0016987425042316318,
0.07949743419885635,
-0.5201229453086853,
-0.3810630440711975,
-0.20444022119045258,
0.20484381914138794,
0.6886952519416809,
-0.47276586294174194,
0.5373704433441162,
0.5098902583122253,
-0.07322066277265549,
-0.5986175537109375,
-0.7527095079421997,
0.12532643973827362,
-0.506356954574585,
-0.35501745343208313,
0.2604842782020569,
-0.44518572092056274,
-0.267069011926651,
-0.01176589634269476,
0.1398291289806366,
-0.24539904296398163,
-0.17952102422714233,
0.47293588519096375,
0.41280102729797363,
-0.27660930156707764,
-0.14948219060897827,
-0.11795653402805328,
0.16358797252178192,
-0.1300571858882904,
0.19945867359638214,
0.5397387742996216,
-0.4112485945224762,
-0.307669997215271,
-0.6189876794815063,
0.39581504464149475,
0.550489604473114,
0.1574043333530426,
0.6965489387512207,
0.659821093082428,
-0.392266184091568,
0.10297582298517227,
-0.6709036827087402,
-0.054711148142814636,
-0.48497411608695984,
0.13755765557289124,
-0.2284923940896988,
-1.02143132686615,
0.729636549949646,
0.4140234887599945,
0.2295585423707962,
0.6969691514968872,
0.6899420022964478,
-0.06448747962713242,
0.7428261637687683,
0.9203959703445435,
-0.28590139746665955,
0.6626961827278137,
-0.45149290561676025,
-0.08827462047338486,
-0.7942096590995789,
-0.28059300780296326,
-0.35541853308677673,
-0.24397771060466766,
-0.6446437835693359,
-0.33064281940460205,
0.08357169479131699,
0.22777952253818512,
-0.30998992919921875,
0.8015955090522766,
-0.25150036811828613,
0.6780050992965698,
0.5551258325576782,
0.2276732474565506,
0.3255859613418579,
-0.12918907403945923,
-0.02146778255701065,
0.08255992084741592,
-0.6393207907676697,
-0.4538869559764862,
1.0085389614105225,
0.57925945520401,
0.9082342982292175,
0.24498619139194489,
0.8454023003578186,
0.30414262413978577,
0.25201690196990967,
-0.6745046973228455,
0.8347811698913574,
-0.00752341328188777,
-0.7348496913909912,
-0.45047831535339355,
-0.2819681465625763,
-0.8434082269668579,
0.04876728728413582,
-0.05234985053539276,
-0.991203248500824,
0.25346362590789795,
-0.03961748257279396,
-0.6202895045280457,
0.15662391483783722,
-0.8702782988548279,
0.5651214718818665,
0.2777235507965088,
-0.05335642769932747,
-0.23640714585781097,
-0.6527064442634583,
0.6197004318237305,
0.04249521344900131,
0.06459970027208328,
-0.14237193763256073,
0.10769108682870865,
0.7883448004722595,
-0.6371526718139648,
0.9709984064102173,
0.05982533097267151,
-0.3615501821041107,
0.7594884037971497,
0.09418661147356033,
0.26758143305778503,
0.03717593476176262,
0.24666401743888855,
0.314943790435791,
0.128172367811203,
-0.33402326703071594,
-0.3183470070362091,
0.6504574418067932,
-0.961480975151062,
-0.5625430345535278,
-0.23779533803462982,
-0.41967228055000305,
0.02199597842991352,
0.19934643805027008,
0.5897716879844666,
0.43137326836586,
-0.48614194989204407,
0.3178214132785797,
0.545958399772644,
-0.3449169099330902,
0.5228357315063477,
0.5361178517341614,
-0.47106972336769104,
-0.39378833770751953,
0.6585663557052612,
-0.15980465710163116,
0.33073270320892334,
0.21985198557376862,
0.1795160472393036,
-0.13663282990455627,
-0.032326746731996536,
-0.29022789001464844,
0.4127086400985718,
-0.7093047499656677,
-0.23494641482830048,
-0.47980570793151855,
-0.556267499923706,
-0.4813704490661621,
-0.08322303742170334,
-0.3215356469154358,
-0.4734213948249817,
-0.44478923082351685,
-0.02117706649005413,
0.4734629988670349,
0.7384251356124878,
-0.25979945063591003,
0.5919901728630066,
-0.5944339632987976,
0.5103679895401001,
0.4847739338874817,
0.13207502663135529,
-0.13507318496704102,
-0.6707533001899719,
-0.11000679433345795,
0.12415590137243271,
-0.31482309103012085,
-0.7266771793365479,
0.3991992175579071,
0.2823926508426666,
0.6204833388328552,
0.6052875518798828,
-0.14875106513500214,
0.6997123956680298,
-0.49165791273117065,
0.8795762062072754,
0.3080563545227051,
-1.0141394138336182,
0.4554216265678406,
-0.4595719873905182,
0.28444626927375793,
0.15835750102996826,
0.2342384308576584,
-0.587357759475708,
-0.46527358889579773,
-0.9205674529075623,
-0.5953354239463806,
0.7192888259887695,
0.22902043163776398,
0.2950282394886017,
-0.13851681351661682,
0.32748714089393616,
0.058084212243556976,
0.13594694435596466,
-0.7557325959205627,
-0.28538602590560913,
-0.14902682602405548,
0.046318214386701584,
-0.11536496877670288,
-0.4169809818267822,
-0.15677890181541443,
-0.2532206177711487,
0.47974729537963867,
-0.07530023902654648,
0.5315501689910889,
0.15723711252212524,
-0.057114459574222565,
-0.09900400787591934,
0.047454655170440674,
0.6568217873573303,
0.5480436086654663,
-0.2649705111980438,
-0.2357787936925888,
0.24787215888500214,
-0.6355785727500916,
-0.04767419025301933,
-0.12835530936717987,
-0.09170441329479218,
-0.1544293314218521,
0.598595917224884,
0.7954744696617126,
0.3137533962726593,
-0.7325100302696228,
0.4535512626171112,
-0.08410187810659409,
-0.17708580195903778,
-0.15183676779270172,
0.28985029458999634,
0.14153426885604858,
0.5180168747901917,
0.10333464294672012,
-0.2454284429550171,
0.06819893419742584,
-0.7950195074081421,
0.16044336557388306,
0.2584931552410126,
-0.2420826256275177,
-0.41328296065330505,
0.6222114562988281,
0.06711376458406448,
-0.22378163039684296,
0.36205190420150757,
-0.27378135919570923,
-0.3045797348022461,
0.7109449505805969,
0.6492545008659363,
0.7422529458999634,
-0.434041827917099,
0.44911739230155945,
0.30678272247314453,
0.26442649960517883,
-0.0709746852517128,
0.2653190493583679,
0.049352049827575684,
-0.8181416392326355,
-0.3401833176612854,
-0.46861588954925537,
-0.6600690484046936,
0.23706229031085968,
-0.49600842595100403,
0.279320627450943,
-0.6824599504470825,
-0.15653347969055176,
0.01651604101061821,
0.09186279773712158,
-0.5458394289016724,
0.03047816827893257,
0.03339187800884247,
1.038192629814148,
-0.8031464219093323,
0.6504597067832947,
0.37970298528671265,
-0.6685100793838501,
-0.6451824903488159,
-0.1593034267425537,
0.06005680933594704,
-1.0077210664749146,
0.32297268509864807,
-0.2208608239889145,
0.11960165947675705,
-0.050426606088876724,
-1.0479968786239624,
-0.7973191142082214,
1.134921669960022,
0.3618784248828888,
-0.26601335406303406,
-0.2481399029493332,
-0.19734804332256317,
0.6872500777244568,
-0.5557347536087036,
0.3585524260997772,
0.5193607211112976,
0.22839799523353577,
0.45855918526649475,
-1.0695637464523315,
-0.026393214240670204,
-0.16503943502902985,
-0.12760336697101593,
-0.29502254724502563,
-1.1305557489395142,
0.9327011704444885,
-0.36000487208366394,
-0.09886971116065979,
0.6137983798980713,
0.782758891582489,
0.4061160087585449,
0.016830071806907654,
0.40929579734802246,
0.694408655166626,
0.5512487292289734,
0.11914338916540146,
0.8815931677818298,
0.04330451786518097,
0.31451061367988586,
1.0655702352523804,
-0.10125559568405151,
0.8407323956489563,
0.1793457269668579,
-0.1928180307149887,
0.7769824266433716,
0.6645500063896179,
0.09917481988668442,
0.4817538261413574,
-0.022348731756210327,
-0.09247806668281555,
0.015420830808579922,
-0.22014041244983673,
-0.4510858654975891,
0.64473956823349,
0.429651141166687,
-0.18480250239372253,
-0.19065025448799133,
-0.1506618708372116,
0.2946292459964752,
-0.32446813583374023,
-0.17130757868289948,
0.6371065974235535,
0.14640134572982788,
-0.5385481715202332,
0.5922321081161499,
0.01187707670032978,
0.6441519260406494,
-0.6907134652137756,
-0.022458750754594803,
-0.5704032182693481,
0.14685136079788208,
-0.014031564816832542,
-0.633316695690155,
0.09713172912597656,
0.03379208594560623,
-0.001754273776896298,
-0.0559503547847271,
0.5851115584373474,
-0.29129788279533386,
-0.30955982208251953,
0.11994366347789764,
0.38631272315979004,
0.5029560327529907,
0.1271606981754303,
-0.6456522941589355,
0.2201298326253891,
-0.11373943090438843,
-0.33238205313682556,
0.2065015584230423,
0.434212327003479,
-0.14669981598854065,
0.773616373538971,
0.4731474220752716,
0.03809530660510063,
-0.2298239767551422,
0.025855349376797676,
0.8816009163856506,
-0.7669176459312439,
-0.6116228699684143,
-0.7164470553398132,
0.13375216722488403,
0.026044046506285667,
-0.35774004459381104,
0.8474655747413635,
0.3214491009712219,
0.46550166606903076,
0.04568551108241081,
0.47462213039398193,
-0.3389180600643158,
0.3433951437473297,
-0.449039101600647,
0.7341474294662476,
-0.3407858610153198,
0.14847636222839355,
-0.6229701042175293,
-1.0350463390350342,
-0.05276915431022644,
0.518385112285614,
0.0998169407248497,
0.08788587152957916,
0.5963885188102722,
0.6970451474189758,
0.10583256930112839,
-0.02244112454354763,
0.2869583070278168,
0.3966030180454254,
0.35679998993873596,
0.7304482460021973,
0.8275749087333679,
-0.6344344615936279,
0.45629003643989563,
0.00878129806369543,
-0.4738547205924988,
-0.43766316771507263,
-0.9468073844909668,
-0.9469437599182129,
-0.6410524249076843,
-0.24732983112335205,
-0.4676409661769867,
-0.08030539005994797,
0.7037453651428223,
0.8330138921737671,
-0.683625340461731,
-0.38417327404022217,
0.13797622919082642,
0.18400686979293823,
-0.17822471261024475,
-0.21373407542705536,
0.23025892674922943,
0.1526552140712738,
-0.7300472855567932,
0.3681546449661255,
0.09081902354955673,
0.30252569913864136,
-0.5458177328109741,
-0.17306171357631683,
-0.21379096806049347,
0.33808833360671997,
0.6585057377815247,
0.7420043349266052,
-0.7934974431991577,
-0.36060988903045654,
0.11388843506574631,
-0.19795754551887512,
-0.17652712762355804,
0.40026286244392395,
-0.6796442270278931,
0.04112299531698227,
0.3126837909221649,
0.09238971024751663,
0.5710286498069763,
-0.11736222356557846,
0.3428736925125122,
-0.523747980594635,
0.2709338366985321,
0.03179511800408363,
0.4705694317817688,
0.11373065412044525,
-0.2667798399925232,
0.5633233189582825,
0.3205854892730713,
-0.6156009435653687,
-0.6702170968055725,
0.17691728472709656,
-0.946611225605011,
-0.07461140304803848,
1.2873562574386597,
-0.1812959611415863,
-0.4321894943714142,
0.2560568153858185,
-0.5232794880867004,
0.05983658507466316,
-0.3235827088356018,
0.7093070149421692,
0.9099171161651611,
-0.3119170069694519,
-0.2500022351741791,
-0.424628883600235,
0.345013290643692,
0.06631172448396683,
-0.8388944268226624,
-0.10888178646564484,
0.7159448266029358,
0.22359763085842133,
0.3300402760505676,
0.88763427734375,
-0.21431422233581543,
0.24456171691417694,
0.05223626270890236,
0.3193935453891754,
0.10035305470228195,
-0.3280978202819824,
-0.11678712069988251,
-0.12122420221567154,
-0.20162351429462433,
-0.2269732654094696
] |
4bit/llava-v1.5-13b-3GB | 4bit | "2023-10-14T11:10:34Z" | 11,084 | 2 | transformers | [
"transformers",
"pytorch",
"llava",
"text-generation",
"endpoints_compatible",
"has_space",
"region:us"
] | text-generation | "2023-10-14T11:02:51Z" | Entry not found | [
-0.3227650225162506,
-0.22568431496620178,
0.862226128578186,
0.43461495637893677,
-0.5282987952232361,
0.7012965679168701,
0.7915717363357544,
0.07618638128042221,
0.7746025919914246,
0.2563219666481018,
-0.7852817177772522,
-0.22573819756507874,
-0.9104480743408203,
0.5715669393539429,
-0.3992334008216858,
0.5791245698928833,
-0.14494505524635315,
-0.10751161724328995,
0.28233757615089417,
-0.2768954336643219,
-0.5409224033355713,
-0.36855220794677734,
-1.1902776956558228,
0.061491113156080246,
0.5316578149795532,
0.7435142397880554,
0.7584060430526733,
0.3652167320251465,
0.6432578563690186,
0.3932291269302368,
-0.23138920962810516,
0.4827055037021637,
-0.04171813279390335,
0.00260411505587399,
-0.3524433970451355,
-0.5516898036003113,
-0.28596609830856323,
0.07584730535745621,
1.0961304903030396,
0.966687798500061,
-0.284663587808609,
0.05330817773938179,
-0.3063621520996094,
0.33088892698287964,
-0.49734312295913696,
0.3054099678993225,
-0.022506045177578926,
0.16318801045417786,
-0.7041513919830322,
-0.5535354018211365,
0.012794834561645985,
-0.7361212968826294,
0.17926570773124695,
-0.690081000328064,
0.8269098401069641,
0.18583157658576965,
1.1533750295639038,
0.14819414913654327,
-0.462487131357193,
-0.8161764144897461,
-0.6538989543914795,
0.5711171627044678,
-0.32703715562820435,
0.39680248498916626,
0.7028235197067261,
-0.048573412001132965,
-0.9820332527160645,
-0.6745741367340088,
-0.46466192603111267,
0.2923962473869324,
0.35402774810791016,
-0.3411678075790405,
-0.17522086203098297,
-0.3058989644050598,
0.15792037546634674,
0.12811517715454102,
-0.4841994643211365,
-0.5543919205665588,
-0.5475160479545593,
-0.3960252106189728,
0.6206658482551575,
0.3482950031757355,
0.2429177463054657,
-0.1888415813446045,
-0.3228583335876465,
0.0880163162946701,
-0.4160851538181305,
0.3402571678161621,
0.6335517168045044,
0.7114017009735107,
-0.5811444520950317,
0.560215950012207,
-0.04927587881684303,
0.7439703941345215,
0.11445561796426773,
-0.27478092908859253,
0.41460567712783813,
-0.14724725484848022,
0.055171746760606766,
0.4226345121860504,
0.31524422764778137,
0.2841312289237976,
-0.3273695111274719,
0.2032228708267212,
-0.3215144872665405,
-0.30496224761009216,
-0.22332167625427246,
-0.29490774869918823,
-0.3592180609703064,
0.5492289066314697,
-0.3314017057418823,
-0.42855486273765564,
1.143175721168518,
-0.4200771450996399,
-0.7302224040031433,
0.33156412839889526,
0.4065209925174713,
-0.0994480773806572,
-0.37146568298339844,
-0.052260834723711014,
-0.8458789587020874,
-0.007907390594482422,
0.7491172552108765,
-0.7198970913887024,
0.3371737599372864,
0.4728063642978668,
0.7417217493057251,
0.19650575518608093,
-0.14034469425678253,
-0.42949390411376953,
0.2971969544887543,
-0.8659994006156921,
0.6320174336433411,
-0.20135220885276794,
-1.0051977634429932,
0.11150479316711426,
0.8971705436706543,
-0.37896400690078735,
-1.2094876766204834,
1.0605159997940063,
-0.6887932419776917,
0.16017857193946838,
-0.676761269569397,
-0.14661237597465515,
-0.07118501514196396,
-0.005096632521599531,
-0.6088156700134277,
0.7567102313041687,
0.587267279624939,
-0.4995276927947998,
0.21429483592510223,
-0.26029831171035767,
-0.39151400327682495,
0.38824859261512756,
-0.07935450226068497,
-0.21858926117420197,
0.713833212852478,
-0.6647079586982727,
-0.26932814717292786,
0.2942774295806885,
0.2368936538696289,
-0.35706108808517456,
-0.7931919097900391,
0.08478113263845444,
-0.05786270648241043,
1.550750494003296,
-0.03868847340345383,
-0.3586106300354004,
-0.679383397102356,
-1.1506240367889404,
-0.07070787996053696,
0.6886883974075317,
-0.9194989204406738,
-0.27839475870132446,
-0.046410128474235535,
-0.26169314980506897,
0.08994917571544647,
0.7390589714050293,
-1.1194051504135132,
0.2832726836204529,
-0.05092663690447807,
-0.22794683277606964,
0.8271058797836304,
0.15387225151062012,
0.24758946895599365,
0.14913396537303925,
0.42958706617355347,
0.527725338935852,
0.11115207523107529,
0.683587908744812,
-0.34720373153686523,
-0.9694353938102722,
0.6154631972312927,
0.25266361236572266,
0.8121447563171387,
-0.49945297837257385,
0.2685093879699707,
0.27025535702705383,
-0.3409680724143982,
-0.5682371854782104,
-0.3102838397026062,
0.09025752544403076,
0.14930562674999237,
0.11142510175704956,
-0.5721710324287415,
-0.6576125025749207,
-0.9689140319824219,
-0.13590654730796814,
-0.4314374029636383,
-0.3571570813655853,
0.21006910502910614,
0.5792906284332275,
-1.1975523233413696,
0.4128875136375427,
-0.7705625891685486,
-0.7038741111755371,
-0.01065548975020647,
-0.19338123500347137,
0.7540656328201294,
0.43240174651145935,
0.5033966898918152,
-0.6397148370742798,
-0.5661987066268921,
-0.22470176219940186,
-1.0333747863769531,
-0.13280506432056427,
0.24819621443748474,
0.3065737783908844,
-0.13423344492912292,
-0.2744963765144348,
-0.48740333318710327,
0.8100387454032898,
0.14789170026779175,
-0.5391897559165955,
0.5220767259597778,
-0.3020317256450653,
0.17224803566932678,
-0.6369150280952454,
-0.06916818022727966,
-0.661676287651062,
-0.0009071884560398757,
-0.3608308732509613,
-0.5737438797950745,
0.14772287011146545,
0.07017494738101959,
-0.16065457463264465,
0.28808408975601196,
-0.909277081489563,
-0.0010852962732315063,
-0.7442210912704468,
0.379071980714798,
0.06394772231578827,
-0.3145078718662262,
-0.017517540603876114,
1.0000386238098145,
0.7784460783004761,
-0.3848048746585846,
0.721744179725647,
0.4440041184425354,
0.19036155939102173,
0.7630521059036255,
-0.18725109100341797,
0.16478213667869568,
-0.5245416760444641,
-0.12161104381084442,
-0.8887597918510437,
-1.0982946157455444,
0.7320570349693298,
-0.6114250421524048,
0.36542922258377075,
-0.4277869760990143,
0.2589159905910492,
-0.6919258832931519,
-0.03885362669825554,
0.4808599352836609,
-0.05936325341463089,
-0.6863942742347717,
0.5232570171356201,
0.45317530632019043,
-0.2019241601228714,
-0.6609031558036804,
-0.530157208442688,
0.39365822076797485,
0.6154114007949829,
-0.16390392184257507,
0.06878514587879181,
0.14941060543060303,
-0.5441926121711731,
-0.040802597999572754,
-0.38691970705986023,
-0.45766758918762207,
0.054224006831645966,
0.13053473830223083,
-0.005750799085944891,
-0.404820054769516,
-0.0868026465177536,
-0.35842007398605347,
-0.4656120240688324,
0.21876516938209534,
0.3011947274208069,
-0.04096309468150139,
-0.42599788308143616,
-0.3619818687438965,
-0.888181209564209,
0.6719610095024109,
0.5370282530784607,
0.05281545966863632,
0.7555549740791321,
0.16819314658641815,
-0.8014987707138062,
-0.13532210886478424,
-0.1760706603527069,
0.2696830928325653,
-0.5588056445121765,
0.13849826157093048,
-0.013484534807503223,
-0.0637492910027504,
0.26297882199287415,
0.25386232137680054,
-0.4300556778907776,
0.9276250004768372,
-0.2615274488925934,
-0.3592521846294403,
0.7960181832313538,
0.5974742770195007,
0.49583131074905396,
0.16503219306468964,
-0.044541798532009125,
0.900709331035614,
-1.1966516971588135,
-0.6563175916671753,
-0.7409549355506897,
-0.15945707261562347,
-0.43510833382606506,
-0.032105933874845505,
0.6254412531852722,
0.2900990843772888,
-0.1333388388156891,
0.4756395220756531,
-0.5243489742279053,
0.3556033670902252,
1.01198410987854,
0.35748639702796936,
0.3435698449611664,
-0.7570229172706604,
-0.2515777349472046,
-0.1402427852153778,
-0.9998157620429993,
-0.2631377875804901,
0.8871029019355774,
0.22752606868743896,
0.844460666179657,
0.5992541313171387,
0.6784542798995972,
0.1367226243019104,
0.2523828148841858,
-0.30590319633483887,
0.3920294940471649,
0.4376082420349121,
-1.0401138067245483,
-0.42758408188819885,
0.021418681368231773,
-0.9703338742256165,
-0.14227519929409027,
-0.03495011106133461,
-0.42617112398147583,
0.7681737542152405,
0.00016589462757110596,
-0.4076709747314453,
0.7732734084129333,
-0.455583393573761,
0.7562873363494873,
-0.4473648965358734,
-0.02663906291127205,
0.4699096083641052,
-0.7070636749267578,
0.4677430987358093,
0.12878790497779846,
0.6205843091011047,
-0.015572631731629372,
-0.04078587517142296,
0.7104941606521606,
-0.9129160046577454,
0.25438642501831055,
-0.6348397135734558,
0.22421300411224365,
0.24246945977210999,
0.51606285572052,
0.5969953536987305,
0.4371243417263031,
0.10119888931512833,
-0.23920902609825134,
0.04115807265043259,
-0.8241125345230103,
-0.210506409406662,
0.697515606880188,
-0.7186890840530396,
-0.6864197850227356,
-1.2355337142944336,
0.14438660442829132,
0.27347055077552795,
0.389305055141449,
0.7959296107292175,
0.571408748626709,
0.1289544403553009,
0.680525004863739,
0.9888588190078735,
-0.0688566341996193,
0.9166924357414246,
0.3224477171897888,
0.09175168722867966,
-0.21944808959960938,
0.7036820650100708,
0.26627904176712036,
-0.24707956612110138,
-0.11939732730388641,
0.20913465321063995,
-0.11069409549236298,
-0.591761589050293,
-0.49990686774253845,
0.3701757788658142,
-0.6731787919998169,
-0.18303893506526947,
-0.6243735551834106,
-0.6043769717216492,
-0.511759340763092,
0.06927360594272614,
-0.7147687673568726,
0.23979046940803528,
-0.7753565907478333,
-0.10574902594089508,
0.04323432594537735,
0.9792009592056274,
-0.589311957359314,
0.5805224180221558,
-1.1218582391738892,
0.19345788657665253,
-0.07949887961149216,
0.7921058535575867,
0.21395787596702576,
-0.7344395518302917,
-0.3975418508052826,
-0.11592631042003632,
-0.3729911744594574,
-1.3576762676239014,
0.21404948830604553,
-0.2454141080379486,
0.23094046115875244,
0.6145404577255249,
0.1397707313299179,
0.5258248448371887,
-0.34326282143592834,
0.7029101848602295,
-0.057017259299755096,
-0.7069286704063416,
0.7934495210647583,
-0.5026894807815552,
0.4963534474372864,
0.9765996932983398,
0.5333835482597351,
-0.7984007596969604,
0.035741209983825684,
-1.041123390197754,
-0.6008695363998413,
0.38426393270492554,
0.11928944289684296,
-0.03601083159446716,
-0.6659559011459351,
-0.054019637405872345,
-0.16143807768821716,
0.6043745279312134,
-1.039069414138794,
-0.7858356237411499,
0.2576698362827301,
0.5277302861213684,
0.0816856250166893,
-0.5653398633003235,
0.20880667865276337,
-0.544416069984436,
1.0657774209976196,
0.45109400153160095,
0.3274499475955963,
0.8406060934066772,
0.46492424607276917,
-0.3823164403438568,
0.09252490103244781,
0.7662695050239563,
0.6666232347488403,
-0.5239797830581665,
-0.2908027470111847,
-0.08827541768550873,
-0.9143403768539429,
0.05927472561597824,
0.11168918758630753,
-0.013455932028591633,
0.9082110524177551,
0.5793083310127258,
0.2539709210395813,
0.4514279365539551,
-0.726460337638855,
0.8859451413154602,
-0.14954176545143127,
-0.12472866475582123,
-1.0677239894866943,
0.1948619782924652,
-0.23984959721565247,
0.5006402134895325,
1.0061326026916504,
0.5250048041343689,
-0.047630298882722855,
-0.8143380880355835,
-0.01473585981875658,
0.6939172148704529,
-0.7091123461723328,
-0.17449834942817688,
0.944853663444519,
0.3847099542617798,
-1.2953051328659058,
1.106776475906372,
-0.5381771326065063,
-0.560332179069519,
0.9121301770210266,
0.522956907749176,
1.1221847534179688,
-0.44204121828079224,
0.0008676342549733818,
0.2662237286567688,
0.41378432512283325,
0.5423170328140259,
1.0869629383087158,
0.431413471698761,
-0.7931063771247864,
0.8826584815979004,
-0.24776044487953186,
-0.40361151099205017,
-0.05347571521997452,
-0.42859897017478943,
0.16892178356647491,
-0.4406192898750305,
-0.10713007301092148,
-0.3444187641143799,
0.28543180227279663,
-0.7072042226791382,
0.42807620763778687,
-0.0838567465543747,
0.8653068542480469,
-0.8553727269172668,
0.47207626700401306,
0.635470449924469,
-0.3337355852127075,
-0.8508191108703613,
-0.26198428869247437,
-0.11448462307453156,
-0.6389466524124146,
0.30214807391166687,
-0.4554102420806885,
0.044398851692676544,
0.09623463451862335,
-0.649151623249054,
-1.1778275966644287,
0.9093633890151978,
-0.639612078666687,
-0.2784462869167328,
0.20464053750038147,
-0.11514760553836823,
0.28811705112457275,
-0.2524643540382385,
0.010661216452717781,
0.41876548528671265,
0.748940110206604,
0.2844654619693756,
-0.7727053761482239,
-0.3694884479045868,
0.0015032943338155746,
-0.44474777579307556,
0.7582978010177612,
-0.6002101898193359,
1.1840779781341553,
-0.5563543438911438,
-0.059654366225004196,
0.44384512305259705,
0.24690914154052734,
0.21076197922229767,
0.6629220843315125,
0.1442081481218338,
0.7282265424728394,
1.07012140750885,
-0.40835219621658325,
0.8811809420585632,
0.26432839035987854,
0.47430819272994995,
0.7238501906394958,
-0.6487724781036377,
0.7513749003410339,
0.31810489296913147,
-0.5682924389839172,
0.9228013753890991,
1.2906063795089722,
-0.15699204802513123,
0.8079374432563782,
0.05136508867144585,
-1.081600546836853,
0.325833261013031,
-0.20724765956401825,
-0.7530064582824707,
0.3150254189968109,
0.19055864214897156,
-0.6920982599258423,
-0.5770308971405029,
-0.24046507477760315,
-0.35662803053855896,
-0.11552901566028595,
-0.7631728649139404,
0.6720563769340515,
-0.016969164833426476,
-0.5103683471679688,
0.18857547640800476,
0.2877499461174011,
0.17368432879447937,
-0.5235732793807983,
-0.02939440682530403,
-0.22823619842529297,
0.2660655975341797,
-0.5670853853225708,
-0.5234526991844177,
0.5724433064460754,
-0.32430219650268555,
-0.5343255400657654,
0.18147465586662292,
0.763587236404419,
-0.16923809051513672,
-0.4515409469604492,
0.32472723722457886,
0.6959525346755981,
0.1665852814912796,
0.4250282347202301,
-0.23511263728141785,
0.24480605125427246,
-0.08044824004173279,
-0.06651552021503448,
0.27714768052101135,
0.3449169099330902,
0.22435641288757324,
0.4450142979621887,
0.43285664916038513,
-0.01808755099773407,
-0.10736498981714249,
-0.382819801568985,
0.4124940037727356,
-0.9542785882949829,
-0.5713282823562622,
-0.6307113766670227,
0.2740660607814789,
-0.02315417304635048,
-1.0836423635482788,
0.4145168364048004,
1.4406683444976807,
1.0359982252120972,
-0.4756383001804352,
1.067226529121399,
-0.21818485856056213,
0.9594791531562805,
0.41483086347579956,
0.5420440435409546,
-0.6030411720275879,
0.03835370019078255,
-0.4364396035671234,
-1.076962947845459,
-0.35716333985328674,
0.4539391100406647,
-0.022899555042386055,
-0.3429867625236511,
0.872571587562561,
0.5887166261672974,
-0.33473607897758484,
-0.11728022992610931,
0.048487238585948944,
-0.029941488057374954,
-0.12433847039937973,
0.5145376324653625,
0.7648399472236633,
-0.9344304800033569,
-0.10680416971445084,
-0.21577754616737366,
-0.6382725834846497,
-0.5047279000282288,
-0.9632009267807007,
-0.12959396839141846,
-0.16037796437740326,
0.035343267023563385,
-0.5662806630134583,
0.00255737011320889,
1.208324909210205,
0.5684957504272461,
-1.1113994121551514,
-0.5303789377212524,
0.3371853232383728,
0.3920421898365021,
-0.1874791383743286,
-0.24202413856983185,
0.2984568774700165,
0.15382249653339386,
-0.5908876657485962,
0.6875665783882141,
0.8089625239372253,
0.208888977766037,
0.19554761052131653,
0.15893013775348663,
-0.8229473829269409,
-0.14913435280323029,
0.17440445721149445,
0.9450570344924927,
-0.939853310585022,
-0.7114843130111694,
-0.03168516233563423,
-0.27094873785972595,
-0.05765746906399727,
0.17102102935314178,
-0.4046344757080078,
0.5180677175521851,
0.34591493010520935,
0.49933457374572754,
0.0561608150601387,
-0.054746925830841064,
0.5409556031227112,
-0.9069057703018188,
0.09425963461399078,
0.4134361147880554,
0.4154115319252014,
-0.4000864028930664,
-0.5910194516181946,
0.6713420748710632,
1.0073972940444946,
-0.6594868898391724,
-0.8743268847465515,
-0.19846712052822113,
-1.0016002655029297,
0.04189709946513176,
0.6762762069702148,
0.5009527802467346,
-0.4806513786315918,
-0.4174500107765198,
-0.5617399215698242,
-0.1254672110080719,
-0.1369970738887787,
0.7621601819992065,
1.179680585861206,
-0.7432094812393188,
0.07975747436285019,
-1.038639783859253,
0.6594986915588379,
-0.2419457733631134,
-0.3457581698894501,
-0.48644304275512695,
0.3832802176475525,
0.35236993432044983,
0.440481036901474,
0.614812433719635,
0.1408471167087555,
0.8338426351547241,
0.3126053214073181,
-0.1702686995267868,
0.2698982357978821,
-0.4559200704097748,
-0.028932858258485794,
-0.057962555438280106,
0.31015971302986145,
-1.0262157917022705
] |
TheBloke/zephyr-7B-alpha-GPTQ | TheBloke | "2023-10-14T07:12:11Z" | 11,071 | 25 | transformers | [
"transformers",
"safetensors",
"mistral",
"text-generation",
"generated_from_trainer",
"en",
"dataset:stingning/ultrachat",
"dataset:openbmb/UltraFeedback",
"arxiv:2305.18290",
"base_model:HuggingFaceH4/zephyr-7b-alpha",
"license:mit",
"text-generation-inference",
"4-bit",
"region:us"
] | text-generation | "2023-10-11T03:26:23Z" | ---
base_model: HuggingFaceH4/zephyr-7b-alpha
datasets:
- stingning/ultrachat
- openbmb/UltraFeedback
inference: false
language:
- en
license: mit
model-index:
- name: zephyr-7b-alpha
results: []
model_creator: Hugging Face H4
model_name: Zephyr 7B Alpha
model_type: mistral
prompt_template: '<|system|>
</s>
<|user|>
{prompt}</s>
<|assistant|>
'
quantized_by: TheBloke
tags:
- generated_from_trainer
---
<!-- header start -->
<!-- 200823 -->
<div style="width: auto; margin-left: auto; margin-right: auto">
<img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>
<div style="display: flex; justify-content: space-between; width: 100%;">
<div style="display: flex; flex-direction: column; align-items: flex-start;">
<p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
</div>
<div style="display: flex; flex-direction: column; align-items: flex-end;">
<p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
</div>
</div>
<div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
<hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
<!-- header end -->
# Zephyr 7B Alpha - GPTQ
- Model creator: [Hugging Face H4](https://huggingface.co/HuggingFaceH4)
- Original model: [Zephyr 7B Alpha](https://huggingface.co/HuggingFaceH4/zephyr-7b-alpha)
<!-- description start -->
## Description
This repo contains GPTQ model files for [Hugging Face H4's Zephyr 7B Alpha](https://huggingface.co/HuggingFaceH4/zephyr-7b-alpha).
Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.
<!-- description end -->
<!-- repositories-available start -->
## Repositories available
* [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/zephyr-7B-alpha-AWQ)
* [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/zephyr-7B-alpha-GPTQ)
* [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/zephyr-7B-alpha-GGUF)
* [Hugging Face H4's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/HuggingFaceH4/zephyr-7b-alpha)
<!-- repositories-available end -->
<!-- prompt-template start -->
## Prompt template: Zephyr
```
<|system|>
</s>
<|user|>
{prompt}</s>
<|assistant|>
```
<!-- prompt-template end -->
<!-- README_GPTQ.md-provided-files start -->
## Provided files, and GPTQ parameters
Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.
Each separate quant is in a different branch. See below for instructions on fetching from different branches.
Most GPTQ files are made with AutoGPTQ. Mistral models are currently made with Transformers.
<details>
<summary>Explanation of GPTQ parameters</summary>
- Bits: The bit size of the quantised model.
- GS: GPTQ group size. Higher numbers use less VRAM, but have lower quantisation accuracy. "None" is the lowest possible value.
- Act Order: True or False. Also known as `desc_act`. True results in better quantisation accuracy. Some GPTQ clients have had issues with models that use Act Order plus Group Size, but this is generally resolved now.
- Damp %: A GPTQ parameter that affects how samples are processed for quantisation. 0.01 is default, but 0.1 results in slightly better accuracy.
- GPTQ dataset: The calibration dataset used during quantisation. Using a dataset more appropriate to the model's training can improve quantisation accuracy. Note that the GPTQ calibration dataset is not the same as the dataset used to train the model - please refer to the original model repo for details of the training dataset(s).
- Sequence Length: The length of the dataset sequences used for quantisation. Ideally this is the same as the model sequence length. For some very long sequence models (16+K), a lower sequence length may have to be used. Note that a lower sequence length does not limit the sequence length of the quantised model. It only impacts the quantisation accuracy on longer inference sequences.
- ExLlama Compatibility: Whether this file can be loaded with ExLlama, which currently only supports Llama models in 4-bit.
</details>
| Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
| ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- |
| [main](https://huggingface.co/TheBloke/zephyr-7B-alpha-GPTQ/tree/main) | 4 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4095 | 4.16 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. |
| [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/zephyr-7B-alpha-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4095 | 4.57 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. |
| [gptq-8bit--1g-actorder_True](https://huggingface.co/TheBloke/zephyr-7B-alpha-GPTQ/tree/gptq-8bit--1g-actorder_True) | 8 | None | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4095 | 7.52 GB | No | 8-bit, with Act Order. No group size, to lower VRAM requirements. |
| [gptq-8bit-128g-actorder_True](https://huggingface.co/TheBloke/zephyr-7B-alpha-GPTQ/tree/gptq-8bit-128g-actorder_True) | 8 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4095 | 7.68 GB | No | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. |
| [gptq-8bit-32g-actorder_True](https://huggingface.co/TheBloke/zephyr-7B-alpha-GPTQ/tree/gptq-8bit-32g-actorder_True) | 8 | 32 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4095 | 8.17 GB | No | 8-bit, with group size 32g and Act Order for maximum inference quality. |
| [gptq-4bit-64g-actorder_True](https://huggingface.co/TheBloke/zephyr-7B-alpha-GPTQ/tree/gptq-4bit-64g-actorder_True) | 4 | 64 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4095 | 4.29 GB | Yes | 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy. |
<!-- README_GPTQ.md-provided-files end -->
<!-- README_GPTQ.md-download-from-branches start -->
## How to download, including from branches
### In text-generation-webui
To download from the `main` branch, enter `TheBloke/zephyr-7B-alpha-GPTQ` in the "Download model" box.
To download from another branch, add `:branchname` to the end of the download name, eg `TheBloke/zephyr-7B-alpha-GPTQ:gptq-4bit-32g-actorder_True`
### From the command line
I recommend using the `huggingface-hub` Python library:
```shell
pip3 install huggingface-hub
```
To download the `main` branch to a folder called `zephyr-7B-alpha-GPTQ`:
```shell
mkdir zephyr-7B-alpha-GPTQ
huggingface-cli download TheBloke/zephyr-7B-alpha-GPTQ --local-dir zephyr-7B-alpha-GPTQ --local-dir-use-symlinks False
```
To download from a different branch, add the `--revision` parameter:
```shell
mkdir zephyr-7B-alpha-GPTQ
huggingface-cli download TheBloke/zephyr-7B-alpha-GPTQ --revision gptq-4bit-32g-actorder_True --local-dir zephyr-7B-alpha-GPTQ --local-dir-use-symlinks False
```
<details>
<summary>More advanced huggingface-cli download usage</summary>
If you remove the `--local-dir-use-symlinks False` parameter, the files will instead be stored in the central Huggingface cache directory (default location on Linux is: `~/.cache/huggingface`), and symlinks will be added to the specified `--local-dir`, pointing to their real location in the cache. This allows for interrupted downloads to be resumed, and allows you to quickly clone the repo to multiple places on disk without triggering a download again. The downside, and the reason why I don't list that as the default option, is that the files are then hidden away in a cache folder and it's harder to know where your disk space is being used, and to clear it up if/when you want to remove a download model.
The cache location can be changed with the `HF_HOME` environment variable, and/or the `--cache-dir` parameter to `huggingface-cli`.
For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli).
To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`:
```shell
pip3 install hf_transfer
```
And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`:
```shell
mkdir zephyr-7B-alpha-GPTQ
HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/zephyr-7B-alpha-GPTQ --local-dir zephyr-7B-alpha-GPTQ --local-dir-use-symlinks False
```
Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command.
</details>
### With `git` (**not** recommended)
To clone a specific branch with `git`, use a command like this:
```shell
git clone --single-branch --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/zephyr-7B-alpha-GPTQ
```
Note that using Git with HF repos is strongly discouraged. It will be much slower than using `huggingface-hub`, and will use twice as much disk space as it has to store the model files twice (it stores every byte both in the intended target folder, and again in the `.git` folder as a blob.)
<!-- README_GPTQ.md-download-from-branches end -->
<!-- README_GPTQ.md-text-generation-webui start -->
## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.
1. Click the **Model tab**.
2. Under **Download custom model or LoRA**, enter `TheBloke/zephyr-7B-alpha-GPTQ`.
- To download from a specific branch, enter for example `TheBloke/zephyr-7B-alpha-GPTQ:gptq-4bit-32g-actorder_True`
- see Provided Files above for the list of branches for each option.
3. Click **Download**.
4. The model will start downloading. Once it's finished it will say "Done".
5. In the top left, click the refresh icon next to **Model**.
6. In the **Model** dropdown, choose the model you just downloaded: `zephyr-7B-alpha-GPTQ`
7. The model will automatically load, and is now ready for use!
8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
* Note that you do not need to and should not set manual GPTQ parameters any more. These are set automatically from the file `quantize_config.json`.
9. Once you're ready, click the **Text Generation tab** and enter a prompt to get started!
<!-- README_GPTQ.md-text-generation-webui end -->
<!-- README_GPTQ.md-use-from-tgi start -->
## Serving this model from Text Generation Inference (TGI)
It's recommended to use TGI version 1.1.0 or later. The official Docker container is: `ghcr.io/huggingface/text-generation-inference:1.1.0`
Example Docker parameters:
```shell
--model-id TheBloke/zephyr-7B-alpha-GPTQ --port 3000 --quantize awq --max-input-length 3696 --max-total-tokens 4096 --max-batch-prefill-tokens 4096
```
Example Python code for interfacing with TGI (requires huggingface-hub 0.17.0 or later):
```shell
pip3 install huggingface-hub
```
```python
from huggingface_hub import InferenceClient
endpoint_url = "https://your-endpoint-url-here"
prompt = "Tell me about AI"
prompt_template=f'''<|system|>
</s>
<|user|>
{prompt}</s>
<|assistant|>
'''
client = InferenceClient(endpoint_url)
response = client.text_generation(prompt,
max_new_tokens=128,
do_sample=True,
temperature=0.7,
top_p=0.95,
top_k=40,
repetition_penalty=1.1)
print(f"Model output: {response}")
```
<!-- README_GPTQ.md-use-from-tgi end -->
<!-- README_GPTQ.md-use-from-python start -->
## How to use this GPTQ model from Python code
### Install the necessary packages
Requires: Transformers 4.33.0 or later, Optimum 1.12.0 or later, and AutoGPTQ 0.4.2 or later.
```shell
pip3 install transformers optimum
pip3 install auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/ # Use cu117 if on CUDA 11.7
```
If you have problems installing AutoGPTQ using the pre-built wheels, install it from source instead:
```shell
pip3 uninstall -y auto-gptq
git clone https://github.com/PanQiWei/AutoGPTQ
cd AutoGPTQ
git checkout v0.4.2
pip3 install .
```
### You can then use the following code
```python
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
model_name_or_path = "TheBloke/zephyr-7B-alpha-GPTQ"
# To use a different branch, change revision
# For example: revision="gptq-4bit-32g-actorder_True"
model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
device_map="auto",
trust_remote_code=False,
revision="main")
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
prompt = "Tell me about AI"
prompt_template=f'''<|system|>
</s>
<|user|>
{prompt}</s>
<|assistant|>
'''
print("\n\n*** Generate:")
input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
output = model.generate(inputs=input_ids, temperature=0.7, do_sample=True, top_p=0.95, top_k=40, max_new_tokens=512)
print(tokenizer.decode(output[0]))
# Inference can also be done using transformers' pipeline
print("*** Pipeline:")
pipe = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
max_new_tokens=512,
do_sample=True,
temperature=0.7,
top_p=0.95,
top_k=40,
repetition_penalty=1.1
)
print(pipe(prompt_template)[0]['generated_text'])
```
<!-- README_GPTQ.md-use-from-python end -->
<!-- README_GPTQ.md-compatibility start -->
## Compatibility
The files provided are tested to work with AutoGPTQ, both via Transformers and using AutoGPTQ directly. They should also work with [Occ4m's GPTQ-for-LLaMa fork](https://github.com/0cc4m/KoboldAI).
[ExLlama](https://github.com/turboderp/exllama) is compatible with Llama and Mistral models in 4-bit. Please see the Provided Files table above for per-file compatibility.
[Huggingface Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) is compatible with all GPTQ models.
<!-- README_GPTQ.md-compatibility end -->
<!-- footer start -->
<!-- 200823 -->
## Discord
For further support, and discussions on these models and AI in general, join us at:
[TheBloke AI's Discord server](https://discord.gg/theblokeai)
## Thanks, and how to contribute
Thanks to the [chirper.ai](https://chirper.ai) team!
Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
* Patreon: https://patreon.com/TheBlokeAI
* Ko-Fi: https://ko-fi.com/TheBlokeAI
**Special thanks to**: Aemon Algiz.
**Patreon special mentions**: Pierre Kircher, Stanislav Ovsiannikov, Michael Levine, Eugene Pentland, Andrey, 준교 김, Randy H, Fred von Graf, Artur Olbinski, Caitlyn Gatomon, terasurfer, Jeff Scroggin, James Bentley, Vadim, Gabriel Puliatti, Harry Royden McLaughlin, Sean Connelly, Dan Guido, Edmond Seymore, Alicia Loh, subjectnull, AzureBlack, Manuel Alberto Morcote, Thomas Belote, Lone Striker, Chris Smitley, Vitor Caleffi, Johann-Peter Hartmann, Clay Pascal, biorpg, Brandon Frisco, sidney chen, transmissions 11, Pedro Madruga, jinyuan sun, Ajan Kanaga, Emad Mostaque, Trenton Dambrowitz, Jonathan Leane, Iucharbius, usrbinkat, vamX, George Stoitzev, Luke Pendergrass, theTransient, Olakabola, Swaroop Kallakuri, Cap'n Zoog, Brandon Phillips, Michael Dempsey, Nikolai Manek, danny, Matthew Berman, Gabriel Tamborski, alfie_i, Raymond Fosdick, Tom X Nguyen, Raven Klaugh, LangChain4j, Magnesian, Illia Dulskyi, David Ziegler, Mano Prime, Luis Javier Navarrete Lozano, Erik Bjäreholt, 阿明, Nathan Dryer, Alex, Rainer Wilmers, zynix, TL, Joseph William Delisle, John Villwock, Nathan LeClaire, Willem Michiel, Joguhyik, GodLy, OG, Alps Aficionado, Jeffrey Morgan, ReadyPlayerEmma, Tiffany J. Kim, Sebastain Graf, Spencer Kim, Michael Davis, webtim, Talal Aujan, knownsqashed, John Detwiler, Imad Khwaja, Deo Leter, Jerry Meng, Elijah Stavena, Rooh Singh, Pieter, SuperWojo, Alexandros Triantafyllidis, Stephen Murray, Ai Maven, ya boyyy, Enrico Ros, Ken Nordquist, Deep Realms, Nicholas, Spiking Neurons AB, Elle, Will Dee, Jack West, RoA, Luke @flexchar, Viktor Bowallius, Derek Yates, Subspace Studios, jjj, Toran Billups, Asp the Wyvern, Fen Risland, Ilya, NimbleBox.ai, Chadd, Nitin Borwankar, Emre, Mandus, Leonard Tan, Kalila, K, Trailburnt, S_X, Cory Kujawski
Thank you to all my generous patrons and donaters!
And thank you again to a16z for their generous grant.
<!-- footer end -->
# Original model card: Hugging Face H4's Zephyr 7B Alpha
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
<img src="https://huggingface.co/HuggingFaceH4/zephyr-7b-alpha/resolve/main/thumbnail.png" alt="Zephyr Logo" width="800" style="margin-left:'auto' margin-right:'auto' display:'block'"/>
# Model Card for Zephyr 7B Alpha
Zephyr is a series of language models that are trained to act as helpful assistants. Zephyr-7B-α is the first model in the series, and is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) that was trained on on a mix of publicly available, synthetic datasets using [Direct Preference Optimization (DPO)](https://arxiv.org/abs/2305.18290). We found that removing the in-built alignment of these datasets boosted performance on [MT Bench](https://huggingface.co/spaces/lmsys/mt-bench) and made the model more helpful. However, this means that model is likely to generate problematic text when prompted to do so and should only be used for educational and research purposes.
## Model description
- **Model type:** A 7B parameter GPT-like model fine-tuned on a mix of publicly available, synthetic datasets.
- **Language(s) (NLP):** Primarily English
- **License:** MIT
- **Finetuned from model:** [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1)
### Model Sources
<!-- Provide the basic links for the model. -->
- **Repository:** https://github.com/huggingface/alignment-handbook
- **Demo:** https://huggingface.co/spaces/HuggingFaceH4/zephyr-chat
## Intended uses & limitations
The model was initially fine-tuned on a variant of the [`UltraChat`](https://huggingface.co/datasets/stingning/ultrachat) dataset, which contains a diverse range of synthetic dialogues generated by ChatGPT. We then further aligned the model with [🤗 TRL's](https://github.com/huggingface/trl) `DPOTrainer` on the [openbmb/UltraFeedback](https://huggingface.co/datasets/openbmb/UltraFeedback) dataset, which contain 64k prompts and model completions that are ranked by GPT-4. As a result, the model can be used for chat and you can check out our [demo](https://huggingface.co/spaces/HuggingFaceH4/zephyr-chat) to test its capabilities.
Here's how you can run the model using the `pipeline()` function from 🤗 Transformers:
```python
import torch
from transformers import pipeline
pipe = pipeline("text-generation", model="HuggingFaceH4/zephyr-7b-alpha", torch_dtype=torch.bfloat16, device_map="auto")
# We use the tokenizer's chat template to format each message - see https://huggingface.co/docs/transformers/main/en/chat_templating
messages = [
{
"role": "system",
"content": "You are a friendly chatbot who always responds in the style of a pirate",
},
{"role": "user", "content": "How many helicopters can a human eat in one sitting?"},
]
prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
# <|system|>
# You are a friendly chatbot who always responds in the style of a pirate.</s>
# <|user|>
# How many helicopters can a human eat in one sitting?</s>
# <|assistant|>
# Ah, me hearty matey! But yer question be a puzzler! A human cannot eat a helicopter in one sitting, as helicopters are not edible. They be made of metal, plastic, and other materials, not food!
```
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
Zephyr-7B-α has not been aligned to human preferences with techniques like RLHF or deployed with in-the-loop filtering of responses like ChatGPT, so the model can produce problematic outputs (especially when prompted to do so).
It is also unknown what the size and composition of the corpus was used to train the base model (`mistralai/Mistral-7B-v0.1`), however it is likely to have included a mix of Web data and technical sources like books and code. See the [Falcon 180B model card](https://huggingface.co/tiiuae/falcon-180B#training-data) for an example of this.
## Training and evaluation data
Zephyr 7B Alpha achieves the following results on the evaluation set:
- Loss: 0.4605
- Rewards/chosen: -0.5053
- Rewards/rejected: -1.8752
- Rewards/accuracies: 0.7812
- Rewards/margins: 1.3699
- Logps/rejected: -327.4286
- Logps/chosen: -297.1040
- Logits/rejected: -2.7153
- Logits/chosen: -2.7447
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 2
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 16
- total_train_batch_size: 32
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
| 0.5602 | 0.05 | 100 | 0.5589 | -0.3359 | -0.8168 | 0.7188 | 0.4809 | -306.2607 | -293.7161 | -2.6554 | -2.6797 |
| 0.4852 | 0.1 | 200 | 0.5136 | -0.5310 | -1.4994 | 0.8125 | 0.9684 | -319.9124 | -297.6181 | -2.5762 | -2.5957 |
| 0.5212 | 0.15 | 300 | 0.5168 | -0.1686 | -1.1760 | 0.7812 | 1.0074 | -313.4444 | -290.3699 | -2.6865 | -2.7125 |
| 0.5496 | 0.21 | 400 | 0.4835 | -0.1617 | -1.7170 | 0.8281 | 1.5552 | -324.2635 | -290.2326 | -2.7947 | -2.8218 |
| 0.5209 | 0.26 | 500 | 0.5054 | -0.4778 | -1.6604 | 0.7344 | 1.1826 | -323.1325 | -296.5546 | -2.8388 | -2.8667 |
| 0.4617 | 0.31 | 600 | 0.4910 | -0.3738 | -1.5180 | 0.7656 | 1.1442 | -320.2848 | -294.4741 | -2.8234 | -2.8521 |
| 0.4452 | 0.36 | 700 | 0.4838 | -0.4591 | -1.6576 | 0.7031 | 1.1986 | -323.0770 | -296.1796 | -2.7401 | -2.7653 |
| 0.4674 | 0.41 | 800 | 0.5077 | -0.5692 | -1.8659 | 0.7656 | 1.2967 | -327.2416 | -298.3818 | -2.6740 | -2.6945 |
| 0.4656 | 0.46 | 900 | 0.4927 | -0.5279 | -1.6614 | 0.7656 | 1.1335 | -323.1518 | -297.5553 | -2.7817 | -2.8015 |
| 0.4102 | 0.52 | 1000 | 0.4772 | -0.5767 | -2.0667 | 0.7656 | 1.4900 | -331.2578 | -298.5311 | -2.7160 | -2.7455 |
| 0.4663 | 0.57 | 1100 | 0.4740 | -0.8038 | -2.1018 | 0.7656 | 1.2980 | -331.9604 | -303.0741 | -2.6994 | -2.7257 |
| 0.4737 | 0.62 | 1200 | 0.4716 | -0.3783 | -1.7015 | 0.7969 | 1.3232 | -323.9545 | -294.5634 | -2.6842 | -2.7135 |
| 0.4259 | 0.67 | 1300 | 0.4866 | -0.6239 | -1.9703 | 0.7812 | 1.3464 | -329.3312 | -299.4761 | -2.7046 | -2.7356 |
| 0.4935 | 0.72 | 1400 | 0.4747 | -0.5626 | -1.7600 | 0.7812 | 1.1974 | -325.1243 | -298.2491 | -2.7153 | -2.7444 |
| 0.4211 | 0.77 | 1500 | 0.4645 | -0.6099 | -1.9993 | 0.7656 | 1.3894 | -329.9109 | -299.1959 | -2.6944 | -2.7236 |
| 0.4931 | 0.83 | 1600 | 0.4684 | -0.6798 | -2.1082 | 0.7656 | 1.4285 | -332.0890 | -300.5934 | -2.7006 | -2.7305 |
| 0.5029 | 0.88 | 1700 | 0.4595 | -0.5063 | -1.8951 | 0.7812 | 1.3889 | -327.8267 | -297.1233 | -2.7108 | -2.7403 |
| 0.4965 | 0.93 | 1800 | 0.4613 | -0.5561 | -1.9079 | 0.7812 | 1.3518 | -328.0831 | -298.1203 | -2.7226 | -2.7523 |
| 0.4337 | 0.98 | 1900 | 0.4608 | -0.5066 | -1.8718 | 0.7656 | 1.3652 | -327.3599 | -297.1296 | -2.7175 | -2.7469 |
### Framework versions
- Transformers 4.34.0
- Pytorch 2.0.1+cu118
- Datasets 2.12.0
- Tokenizers 0.14.0
| [
-0.44604218006134033,
-0.6937116384506226,
0.12954182922840118,
0.22467993199825287,
-0.1471475511789322,
-0.206171914935112,
0.07004934549331665,
-0.5641539692878723,
0.2757343053817749,
0.3308279514312744,
-0.5793725252151489,
-0.43994250893592834,
-0.28774309158325195,
-0.07273086905479431,
-0.19700638949871063,
0.9839655756950378,
0.07583162188529968,
-0.2255336046218872,
0.013705004006624222,
-0.29820263385772705,
-0.2683992385864258,
-0.39678317308425903,
-0.6909192800521851,
-0.24637220799922943,
0.4386395514011383,
0.1495530754327774,
0.9213117361068726,
0.47998759150505066,
0.18542201817035675,
0.3489673137664795,
-0.15958011150360107,
-0.2137497067451477,
-0.5727835297584534,
-0.09715813398361206,
0.13617391884326935,
-0.30424338579177856,
-0.5972215533256531,
-0.003500924911350012,
0.5123026967048645,
0.20562733709812164,
-0.24245688319206238,
0.13381358981132507,
0.014246444217860699,
0.7728613615036011,
-0.48167580366134644,
0.18931107223033905,
-0.2696782946586609,
0.061680346727371216,
-0.21466659009456635,
0.21723435819149017,
-0.06595159322023392,
-0.48401349782943726,
0.22980396449565887,
-0.8895478844642639,
0.2669275403022766,
-0.03612947836518288,
1.1887202262878418,
-0.00439540296792984,
-0.5610242486000061,
0.16096043586730957,
-0.39325374364852905,
0.6267260313034058,
-0.9025657773017883,
0.41511452198028564,
0.35945412516593933,
0.31275472044944763,
-0.20934438705444336,
-0.9182244539260864,
-0.5563658475875854,
0.0074086179956793785,
-0.15104937553405762,
0.33602169156074524,
-0.5246729850769043,
0.14697906374931335,
0.4650159478187561,
0.7847658395767212,
-0.9096211194992065,
-0.30465206503868103,
-0.3379111886024475,
-0.3203660249710083,
0.7480571866035461,
0.033895496279001236,
0.4242349863052368,
-0.23146793246269226,
-0.32552865147590637,
-0.518832802772522,
-0.642729640007019,
0.20257818698883057,
0.301355242729187,
0.025603480637073517,
-0.5183941721916199,
0.4801761507987976,
-0.38115352392196655,
0.4885733723640442,
0.17438048124313354,
-0.10466034710407257,
0.5015318989753723,
-0.5381456613540649,
-0.38262274861335754,
-0.21673834323883057,
1.103073239326477,
0.4906264841556549,
-0.2736870348453522,
0.14090724289417267,
-0.08170071244239807,
-0.032764144241809845,
-0.07309064269065857,
-1.1268407106399536,
-0.5488465428352356,
0.4510113000869751,
-0.43946120142936707,
-0.2387460321187973,
-0.052822329103946686,
-0.8126000165939331,
0.11059899628162384,
-0.014478335157036781,
0.6258694529533386,
-0.6863398551940918,
-0.37965187430381775,
0.17114073038101196,
-0.5654721856117249,
0.3743579387664795,
0.34603166580200195,
-0.707353949546814,
0.4291200339794159,
0.2828545868396759,
0.7915498614311218,
0.25376930832862854,
-0.1355140507221222,
-0.2710258364677429,
0.1099594458937645,
-0.09182516485452652,
0.41302579641342163,
-0.18160459399223328,
-0.3712272346019745,
-0.2672403156757355,
0.3824551999568939,
-0.017004579305648804,
-0.18686583638191223,
0.5745048522949219,
-0.3224320411682129,
0.4321960210800171,
-0.6176347136497498,
-0.5899970531463623,
-0.5639398694038391,
0.06335385888814926,
-0.671881914138794,
1.2022051811218262,
0.6039940118789673,
-0.8704863786697388,
0.2310948669910431,
-0.4565809667110443,
-0.1250893920660019,
0.08094218373298645,
-0.03239850699901581,
-0.5165554881095886,
-0.09155335277318954,
0.1963672935962677,
0.28870290517807007,
-0.2682158648967743,
-0.03568696603178978,
-0.36345720291137695,
-0.19034840166568756,
0.046660684049129486,
-0.34504395723342896,
1.30458664894104,
0.15319585800170898,
-0.5307422280311584,
0.010515613481402397,
-0.6236249804496765,
0.17279976606369019,
0.42497292160987854,
-0.14467719197273254,
-0.03681480884552002,
-0.28470760583877563,
0.20264872908592224,
0.2320428341627121,
0.22889967262744904,
-0.4218928813934326,
0.35758206248283386,
-0.2821667492389679,
0.6328775882720947,
0.5397437810897827,
0.05514315143227577,
0.2915516495704651,
-0.5741207599639893,
0.5068989396095276,
0.08684592694044113,
0.5570058822631836,
0.0861876830458641,
-0.7264515161514282,
-0.6019691228866577,
-0.1499820202589035,
0.2637830376625061,
0.5288816690444946,
-0.7298669815063477,
0.5022026896476746,
-0.14373710751533508,
-0.8442732691764832,
-0.28129109740257263,
-0.03437211737036705,
0.3982563316822052,
0.38591641187667847,
0.43540799617767334,
-0.3527548909187317,
-0.21575883030891418,
-0.8109524846076965,
0.07541035860776901,
-0.503159761428833,
0.030045324936509132,
0.5358414053916931,
0.6677652597427368,
-0.17428000271320343,
0.7359395027160645,
-0.5722647905349731,
-0.12540970742702484,
-0.06355659663677216,
-0.01590626873075962,
0.30691203474998474,
0.5830918550491333,
0.9805797338485718,
-0.8504263758659363,
-0.5469723343849182,
-0.11080504953861237,
-0.6669838428497314,
-0.06386517733335495,
0.015820614993572235,
-0.4058077037334442,
0.1517544835805893,
-0.03448490798473358,
-1.0978738069534302,
0.5763899087905884,
0.5025274753570557,
-0.6427420377731323,
0.7785671949386597,
-0.23417408764362335,
0.2148720622062683,
-0.9828377366065979,
0.1328534334897995,
0.1905115395784378,
-0.22717010974884033,
-0.5415777564048767,
0.09319917112588882,
0.06257593631744385,
0.1715022325515747,
-0.492470920085907,
0.6796877384185791,
-0.5747635960578918,
-0.03412681072950363,
0.18893902003765106,
-0.1101786196231842,
0.3379333019256592,
0.4684608280658722,
-0.10443399101495743,
0.7662913799285889,
0.5592164397239685,
-0.4032957851886749,
0.5353675484657288,
0.4177536964416504,
-0.022302012890577316,
0.17772135138511658,
-0.9150160551071167,
0.007720425259321928,
0.025409642606973648,
0.41812634468078613,
-0.9170040488243103,
-0.3019585609436035,
0.5447994470596313,
-0.5263503789901733,
0.3561520278453827,
-0.4385947585105896,
-0.35844114422798157,
-0.3691588044166565,
-0.6081485748291016,
0.3693271279335022,
0.7795891165733337,
-0.3720494210720062,
0.44777536392211914,
0.38498371839523315,
0.0020385354291647673,
-0.5552091002464294,
-0.5428569912910461,
-0.2814522683620453,
-0.3073270320892334,
-0.7744058966636658,
0.5980859398841858,
-0.1640518307685852,
-0.056214578449726105,
0.08455567061901093,
-0.034378331154584885,
0.01986701786518097,
-0.1574825793504715,
0.3773546814918518,
0.28466203808784485,
-0.2423539161682129,
-0.20554500818252563,
0.1432640254497528,
0.09547612071037292,
0.006084848195314407,
-0.29444900155067444,
0.4179680645465851,
-0.3596559762954712,
-0.006688184104859829,
-0.340751975774765,
0.16921831667423248,
0.5571339726448059,
0.04420347884297371,
0.7026311755180359,
0.8595881462097168,
-0.4141812324523926,
0.15812793374061584,
-0.5035592913627625,
-0.184637650847435,
-0.5050503611564636,
0.07664210349321365,
-0.24470281600952148,
-0.753619372844696,
0.6551363468170166,
0.42249685525894165,
0.30536603927612305,
0.8214915990829468,
0.3729545772075653,
0.12901173532009125,
0.9663392901420593,
0.3782878816127777,
-0.192861869931221,
0.5567581057548523,
-0.598564624786377,
-0.25057539343833923,
-0.8057609796524048,
-0.20405247807502747,
-0.3502679169178009,
-0.28489965200424194,
-0.6723964214324951,
-0.4382278323173523,
0.410742849111557,
0.42726901173591614,
-0.6171949505805969,
0.6525955200195312,
-0.6876567602157593,
0.19644927978515625,
0.4997551739215851,
0.29924991726875305,
0.07258544862270355,
0.023221034556627274,
-0.1513928771018982,
0.032636579126119614,
-0.5980662703514099,
-0.20044898986816406,
0.9815976619720459,
0.40457063913345337,
0.5201728343963623,
0.35509875416755676,
0.44608455896377563,
0.002832836704328656,
0.23139044642448425,
-0.541473388671875,
0.5096937417984009,
0.05915912240743637,
-0.7468113899230957,
-0.3575804829597473,
-0.6423395872116089,
-0.9069069027900696,
0.35093581676483154,
-0.15093736350536346,
-0.804344892501831,
0.41277068853378296,
0.06894455850124359,
-0.3757948577404022,
0.27120035886764526,
-0.6734310388565063,
1.16092848777771,
-0.17368407547473907,
-0.48888614773750305,
-0.010200383141636848,
-0.7980714440345764,
0.36190304160118103,
0.2684182822704315,
-0.06207840517163277,
-0.2356778383255005,
-0.08697303384542465,
0.8340541124343872,
-0.8291684985160828,
0.5974612236022949,
-0.42842766642570496,
0.11766625940799713,
0.5239169597625732,
-0.09282553195953369,
0.49807751178741455,
0.12341649830341339,
-0.051155995577573776,
0.33249250054359436,
0.4404371380805969,
-0.5142877101898193,
-0.3897762894630432,
0.5413593649864197,
-0.9564173221588135,
-0.4021848440170288,
-0.5051280856132507,
-0.4304611384868622,
0.013396335765719414,
0.21494664251804352,
0.5984179973602295,
0.5109528303146362,
-0.11769592016935349,
0.13574790954589844,
0.6929172277450562,
-0.3657052516937256,
0.36783307790756226,
0.2756412923336029,
-0.37097930908203125,
-0.5653006434440613,
0.8268503546714783,
0.12454283982515335,
0.22808828949928284,
0.2199810892343521,
0.24344009160995483,
-0.4711478352546692,
-0.44987156987190247,
-0.7028278708457947,
0.37765175104141235,
-0.5405777096748352,
-0.3706851899623871,
-0.6703595519065857,
-0.2834511697292328,
-0.506515622138977,
0.1619081199169159,
-0.3013332784175873,
-0.6604358553886414,
-0.35722815990448,
0.10341235995292664,
0.9152657985687256,
0.3951777219772339,
-0.13740180432796478,
0.3560328781604767,
-0.920884907245636,
0.2308516949415207,
0.33213546872138977,
0.11959872394800186,
-0.04147033393383026,
-0.6872928142547607,
-0.02759498357772827,
0.24047479033470154,
-0.5538555979728699,
-1.0080127716064453,
0.6943345665931702,
0.3009914755821228,
0.46011868119239807,
0.4580945372581482,
0.12085266411304474,
0.8049507141113281,
-0.24849417805671692,
1.0088965892791748,
0.2787250280380249,
-0.8004185557365417,
0.5643517971038818,
-0.5460847616195679,
0.2058260291814804,
0.48246243596076965,
0.5936116576194763,
-0.3298912048339844,
-0.25084492564201355,
-0.8248599171638489,
-0.8256224393844604,
0.4769696295261383,
0.45818522572517395,
-0.020695308223366737,
0.10438843071460724,
0.6307257413864136,
-0.11344344913959503,
0.08675248920917511,
-0.7758423686027527,
-0.5520232915878296,
-0.4194379150867462,
-0.06956154853105545,
0.07475624233484268,
0.011491995304822922,
-0.213246688246727,
-0.6009193658828735,
0.9852709174156189,
-0.15283499658107758,
0.551969587802887,
0.36986228823661804,
0.0689224824309349,
-0.14089903235435486,
0.03578459098935127,
0.3083612322807312,
0.532167911529541,
-0.37915217876434326,
-0.26088303327560425,
0.0382179357111454,
-0.7606454491615295,
0.04850541800260544,
0.32360702753067017,
-0.18363617360591888,
0.05888887867331505,
0.05361828953027725,
0.7211074233055115,
0.07684285938739777,
-0.3348689675331116,
0.6198090314865112,
-0.3528764843940735,
-0.37106746435165405,
-0.31623104214668274,
0.29363343119621277,
0.2287384420633316,
0.4034176766872406,
0.2692665755748749,
-0.15629325807094574,
0.332185298204422,
-0.5613300800323486,
0.19478407502174377,
0.5137912631034851,
-0.28131571412086487,
-0.4673493206501007,
0.8045539259910583,
-0.1065865159034729,
0.27915602922439575,
0.6781573295593262,
-0.2660953998565674,
-0.5036328434944153,
0.7227265238761902,
0.4530837833881378,
0.7693416476249695,
-0.1712931990623474,
0.18995092809200287,
0.5944887399673462,
0.12593726813793182,
-0.17705923318862915,
0.42890051007270813,
-0.05219670385122299,
-0.6591476202011108,
-0.20317642390727997,
-0.609490692615509,
-0.2673433721065521,
0.23459495604038239,
-0.8019384741783142,
0.12188377231359482,
-0.45512697100639343,
-0.43761923909187317,
0.06838812679052353,
0.35824689269065857,
-0.5729925632476807,
0.22966326773166656,
-0.044854726642370224,
1.012624740600586,
-0.8012396097183228,
0.8712908625602722,
0.5888987183570862,
-0.4942392408847809,
-1.0142877101898193,
-0.23866088688373566,
0.29872605204582214,
-0.5680088400840759,
0.22371821105480194,
0.09687529504299164,
0.29821300506591797,
0.011472751386463642,
-0.5403541326522827,
-0.8232697248458862,
1.4855557680130005,
0.3674700856208801,
-0.557555615901947,
-0.13259179890155792,
-0.1345079243183136,
0.32210496068000793,
-0.036523234099149704,
0.6852724552154541,
0.5666631460189819,
0.3729223310947418,
0.2908976674079895,
-0.8478519916534424,
0.3860555589199066,
-0.5027499198913574,
0.03709360212087631,
0.2775382995605469,
-1.0594971179962158,
0.9796077609062195,
0.029539477080106735,
-0.15995226800441742,
0.11881227791309357,
0.6745532155036926,
0.43014952540397644,
0.015091671608388424,
0.47458964586257935,
0.8531164526939392,
0.6746254563331604,
-0.3443133533000946,
1.061531901359558,
-0.2912336587905884,
0.5348462462425232,
0.6459275484085083,
0.012319968082010746,
0.6862871646881104,
0.22855795919895172,
-0.6002618074417114,
0.5035842061042786,
0.9018216729164124,
-0.0729704424738884,
0.34345242381095886,
-0.02442077174782753,
-0.43705496191978455,
-0.029614660888910294,
0.16240815818309784,
-0.7205038666725159,
-0.051001548767089844,
0.4327710270881653,
-0.20455694198608398,
-0.029890095815062523,
-0.2539370357990265,
0.015921251848340034,
-0.7534157633781433,
-0.20053139328956604,
0.5696842074394226,
0.22213365137577057,
-0.300788551568985,
0.7329136729240417,
-0.13384424149990082,
0.6365775465965271,
-0.556596040725708,
-0.10452605038881302,
-0.2927091419696808,
-0.019248642027378082,
-0.3796939253807068,
-0.8162785768508911,
0.15822045505046844,
-0.26727294921875,
-0.13490712642669678,
0.04295094311237335,
0.7894167304039001,
-0.2586282193660736,
-0.3888469636440277,
0.3990829288959503,
0.3937445282936096,
0.38796573877334595,
-0.14539813995361328,
-1.1276401281356812,
0.26893672347068787,
0.04627937078475952,
-0.73714280128479,
0.49664968252182007,
0.46069473028182983,
0.22320415079593658,
0.6140689849853516,
0.597400963306427,
0.026475340127944946,
0.0988650694489479,
-0.11793122440576553,
0.99073326587677,
-0.7136052250862122,
-0.3188542127609253,
-0.6559250354766846,
0.572844386100769,
-0.10867192596197128,
-0.46278905868530273,
0.8393252491950989,
0.6360276341438293,
0.731440007686615,
0.08727511763572693,
0.6599578261375427,
-0.4391854405403137,
0.19725650548934937,
-0.3582826256752014,
0.7006675601005554,
-0.6949255466461182,
0.03168848529458046,
-0.4265487492084503,
-0.8345452547073364,
-0.0021625051740556955,
0.7674601078033447,
-0.07478393614292145,
0.2569664716720581,
0.2890045940876007,
0.9038642644882202,
-0.08083673566579819,
0.19136035442352295,
0.1806178241968155,
0.28964871168136597,
0.21972303092479706,
0.8692861199378967,
0.5914347767829895,
-1.0075429677963257,
0.4324260652065277,
-0.551245927810669,
-0.2903660833835602,
-0.13589981198310852,
-0.7022449374198914,
-0.6898705363273621,
-0.4465341567993164,
-0.6002761125564575,
-0.7044353485107422,
-0.07126328349113464,
0.8405426144599915,
0.8187720775604248,
-0.6284371614456177,
-0.26036369800567627,
-0.11213376373052597,
-0.0770253911614418,
-0.29229578375816345,
-0.3257676362991333,
0.3514276444911957,
0.1924263834953308,
-0.5742643475532532,
0.1766311228275299,
0.10395383834838867,
0.36808907985687256,
-0.06454522162675858,
-0.37560734152793884,
-0.07227955758571625,
-0.09769681841135025,
0.5914654731750488,
0.5805490612983704,
-0.5694742202758789,
-0.170672208070755,
-0.15090705454349518,
-0.06571423262357712,
0.232193261384964,
0.2514221668243408,
-0.7166510224342346,
0.06751076132059097,
0.6143375039100647,
0.20312285423278809,
0.8696478009223938,
0.01198938861489296,
0.3354218900203705,
-0.39157214760780334,
0.08316142112016678,
0.13671287894248962,
0.43671858310699463,
0.0024818656966090202,
-0.48665615916252136,
0.5830740332603455,
0.4117637574672699,
-0.7221183180809021,
-0.6912901997566223,
-0.1746053695678711,
-1.2517483234405518,
-0.22845937311649323,
1.0641781091690063,
-0.2366475909948349,
-0.41183212399482727,
0.04183542728424072,
-0.20413419604301453,
0.327154278755188,
-0.5544862151145935,
0.22173497080802917,
0.44391024112701416,
-0.32007497549057007,
-0.4145593047142029,
-0.8424412608146667,
0.6885363459587097,
0.2856200933456421,
-0.7746196985244751,
0.057561472058296204,
0.6535512208938599,
0.5486001372337341,
0.09399806708097458,
0.7894023656845093,
-0.3377451002597809,
0.3855659067630768,
0.15797118842601776,
0.04403422027826309,
0.09812943637371063,
0.0668051689863205,
-0.4259614050388336,
0.011612439528107643,
-0.2565203905105591,
0.0681062787771225
] |
TheLastBen/Pikachu_SDXL | TheLastBen | "2023-08-29T10:35:30Z" | 11,068 | 1 | diffusers | [
"diffusers",
"text-to-image",
"stable-diffusion",
"lora",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"license:creativeml-openrail-m",
"has_space",
"region:us"
] | text-to-image | "2023-08-12T15:22:27Z" | ---
license: creativeml-openrail-m
tags:
- text-to-image
- stable-diffusion
- lora
- diffusers
base_model: stabilityai/stable-diffusion-xl-base-1.0
instance_prompt: pikachu
widget:
- text: pikachu
---
### Pikachu
#### SDXL LoRA by TheLastBen
#### Prompts to start with :
closeup on pikachu on a pirate ship, cinematic, screencap, high quality, light rays, sunrays, pov, ships, 1800s
closeup on fluffy pikachu wearing a hoodie in a street in london, cinematic, screencap, high quality
---
Trained using https://github.com/TheLastBen/fast-stable-diffusion SDXL trainer.
ComfyUI seems to give better results than A1111, but that's just me.
#### Sample pictures:
!["" 0](https://huggingface.co/TheLastBen/Pikachu_SDXL/resolve/main/images/res%20(44).webp)
!["" 1](https://huggingface.co/TheLastBen/Pikachu_SDXL/resolve/main/images/res%20(60).webp)
!["" 2](https://huggingface.co/TheLastBen/Pikachu_SDXL/resolve/main/images/res%20(41).webp)
!["" 3](https://huggingface.co/TheLastBen/Pikachu_SDXL/resolve/main/images/res%20(42).webp)
!["" 4](https://huggingface.co/TheLastBen/Pikachu_SDXL/resolve/main/images/res%20(43).webp)
!["" 5](https://huggingface.co/TheLastBen/Pikachu_SDXL/resolve/main/images/res%20(1).webp)
!["" 6](https://huggingface.co/TheLastBen/Pikachu_SDXL/resolve/main/images/res%20(46).webp)
!["" 7](https://huggingface.co/TheLastBen/Pikachu_SDXL/resolve/main/images/res%20(47).webp)
!["" 8](https://huggingface.co/TheLastBen/Pikachu_SDXL/resolve/main/images/res%20(48).webp)
!["" 9](https://huggingface.co/TheLastBen/Pikachu_SDXL/resolve/main/images/res%20(49).webp)
!["" 10](https://huggingface.co/TheLastBen/Pikachu_SDXL/resolve/main/images/res%20(50).webp)
!["" 11](https://huggingface.co/TheLastBen/Pikachu_SDXL/resolve/main/images/res%20(51).webp)
!["" 12](https://huggingface.co/TheLastBen/Pikachu_SDXL/resolve/main/images/res%20(53).webp)
!["" 13](https://huggingface.co/TheLastBen/Pikachu_SDXL/resolve/main/images/res%20(54).webp)
!["" 14](https://huggingface.co/TheLastBen/Pikachu_SDXL/resolve/main/images/res%20(55).webp)
!["" 15](https://huggingface.co/TheLastBen/Pikachu_SDXL/resolve/main/images/res%20(57).webp)
!["" 16](https://huggingface.co/TheLastBen/Pikachu_SDXL/resolve/main/images/res%20(59).webp)
!["" 17](https://huggingface.co/TheLastBen/Pikachu_SDXL/resolve/main/images/res%20(40).webp)
!["" 18](https://huggingface.co/TheLastBen/Pikachu_SDXL/resolve/main/images/res%20(61).webp)
!["" 19](https://huggingface.co/TheLastBen/Pikachu_SDXL/resolve/main/images/res%20(69).webp)
!["" 20](https://huggingface.co/TheLastBen/Pikachu_SDXL/resolve/main/images/res%20(70).webp)
!["" 21](https://huggingface.co/TheLastBen/Pikachu_SDXL/resolve/main/images/res%20(71).webp)
!["" 22](https://huggingface.co/TheLastBen/Pikachu_SDXL/resolve/main/images/res%20(72).webp)
!["" 23](https://huggingface.co/TheLastBen/Pikachu_SDXL/resolve/main/images/res%20(73).webp) | [
-0.8903844356536865,
-0.4237765669822693,
0.16405841708183289,
0.7612804174423218,
-0.34166622161865234,
-0.006345327943563461,
0.045489098876714706,
-0.6554948687553406,
1.4616639614105225,
0.047687288373708725,
-0.827679455280304,
-0.2343956083059311,
-0.672274112701416,
0.1170494332909584,
0.17680442333221436,
0.7545590400695801,
0.1614522784948349,
-0.20288367569446564,
-0.10672161728143692,
-0.06971417367458344,
-0.04323782026767731,
-0.4032381474971771,
-0.5885916948318481,
-0.6473134160041809,
0.6092205047607422,
0.2975289523601532,
0.7872523665428162,
0.05351010710000992,
0.40635502338409424,
0.45879843831062317,
-0.27829593420028687,
0.012928684242069721,
-0.24028275907039642,
0.10011789947748184,
-0.04107813164591789,
-0.575888454914093,
-1.0008131265640259,
-0.06797269731760025,
0.3986774682998657,
0.6255652904510498,
-0.01632174663245678,
0.0626654401421547,
-0.0011926997685804963,
0.9352785348892212,
-0.22477149963378906,
0.07688674330711365,
-0.09977256506681442,
0.3107990026473999,
-0.08931788057088852,
0.13639362156391144,
-0.10916603356599808,
-0.7035807967185974,
0.0030664086807519197,
-0.8143688440322876,
0.03080657310783863,
-0.1446635127067566,
1.4092905521392822,
-0.29379332065582275,
-0.093818798661232,
-0.3099771738052368,
0.21410909295082092,
0.800609827041626,
-0.3993392586708069,
0.04171792045235634,
0.5519824028015137,
-0.06736952066421509,
-0.3549068868160248,
-0.6190982460975647,
-0.44035959243774414,
0.05779688060283661,
-0.1839672476053238,
0.32359039783477783,
-0.8262211680412292,
-0.48934903740882874,
0.29149049520492554,
0.4664996266365051,
-0.5373943448066711,
-0.07878229022026062,
-0.5480550527572632,
-0.2613505423069,
0.9655426144599915,
-0.17749829590320587,
0.7849880456924438,
-0.2128198742866516,
-0.5334163308143616,
-0.31790322065353394,
-0.23524054884910583,
0.39333322644233704,
0.24489310383796692,
-0.10357635468244553,
-0.7092280387878418,
0.7476189136505127,
0.19540727138519287,
0.1970435231924057,
0.9246867299079895,
-0.3898642063140869,
0.5646836161613464,
-0.25009849667549133,
0.02320888638496399,
0.05292409285902977,
1.067354679107666,
0.9220972061157227,
0.31656697392463684,
-0.004015280865132809,
0.26366251707077026,
0.008938062936067581,
0.03741961345076561,
-0.7085287570953369,
-0.2478928118944168,
0.38592714071273804,
-0.7119980454444885,
-0.3553517758846283,
-0.023991070687770844,
-1.10552978515625,
-0.33215948939323425,
0.15696711838245392,
-0.25188562273979187,
-0.9910557866096497,
-0.6002572178840637,
0.13782086968421936,
-0.4323795735836029,
0.5545850396156311,
0.466919481754303,
-0.7388908267021179,
0.14973872900009155,
0.36237069964408875,
0.6778208613395691,
0.2933647632598877,
-0.261721134185791,
-0.2498285323381424,
0.009189888834953308,
-0.37677082419395447,
0.8471758365631104,
-0.4614672362804413,
-0.36187744140625,
-0.6061338186264038,
0.18346883356571198,
-0.08707968890666962,
-0.06927964836359024,
0.6625487804412842,
0.2292788326740265,
0.21399511396884918,
-0.3701191842556,
-0.5493288636207581,
-0.246816948056221,
0.19807679951190948,
-0.7687152028083801,
0.7681030035018921,
0.4023524820804596,
-0.9967322945594788,
0.08686914294958115,
-0.775628387928009,
-0.042591892182826996,
-0.0810675248503685,
0.321062296628952,
-0.6228724122047424,
0.1941763311624527,
0.018535958603024483,
0.5390154719352722,
0.09083794802427292,
-0.693561315536499,
-0.7165273427963257,
0.08803077042102814,
0.34700754284858704,
0.3545468747615814,
1.1155779361724854,
0.3266102373600006,
-0.3852905333042145,
-0.11344792693853378,
-0.8243552446365356,
0.2565622329711914,
0.8098878264427185,
0.058357324451208115,
-0.19560642540454865,
-0.48986098170280457,
-0.12553590536117554,
0.2795279026031494,
0.45316630601882935,
-0.568804144859314,
0.4540693759918213,
-0.08514901250600815,
0.009245171211659908,
0.3781960606575012,
-0.025825602933764458,
0.5243807435035706,
-0.44033461809158325,
0.6794431805610657,
-0.2186550796031952,
0.3237384557723999,
-0.14551393687725067,
-0.6638068556785583,
-0.5987058877944946,
-0.533810555934906,
0.10360967367887497,
0.4453556537628174,
-0.3310394585132599,
1.0919119119644165,
0.04840174317359924,
-0.9698113799095154,
-0.4815414249897003,
-0.03287307918071747,
0.43179523944854736,
-0.05968465283513069,
0.06986061483621597,
-0.5870757699012756,
-0.5301159024238586,
-0.5395377278327942,
-0.13496530055999756,
-0.31131064891815186,
0.1815418004989624,
0.46055862307548523,
0.34444504976272583,
0.03744972124695778,
0.3454256057739258,
-0.291392982006073,
-0.1497647762298584,
-0.30507656931877136,
-0.2059338390827179,
0.562477171421051,
0.5799185037612915,
1.0882129669189453,
-0.8780030012130737,
-0.8101814389228821,
-0.2271098792552948,
-0.9568158984184265,
0.0022910796105861664,
-0.06816276907920837,
-0.41935402154922485,
0.19050288200378418,
0.12175910919904709,
-1.0344898700714111,
0.630021870136261,
0.6121757626533508,
-0.9896357655525208,
0.4146862030029297,
-0.6245335340499878,
0.5384532809257507,
-0.7892199754714966,
0.1740701049566269,
0.057365160435438156,
-0.20780602097511292,
-0.7643150091171265,
0.6545818448066711,
-0.104154571890831,
0.09948472678661346,
-0.6376936435699463,
0.733829140663147,
-0.6696943640708923,
0.12575112283229828,
-0.014843904413282871,
0.4748454988002777,
0.18784856796264648,
0.2364538311958313,
0.20238099992275238,
0.19712159037590027,
0.8543500900268555,
-0.3205114006996155,
0.8763436675071716,
0.9050912857055664,
0.12888400256633759,
1.3511886596679688,
-0.8005366921424866,
0.036602068692445755,
-0.025716975331306458,
0.717743456363678,
-0.7206371426582336,
-0.46425661444664,
0.7309499382972717,
-0.7619839310646057,
0.08647757023572922,
-0.012190553359687328,
-0.5930612087249756,
-0.5986128449440002,
-0.8952823877334595,
0.16410565376281738,
0.9537061452865601,
-0.7418764233589172,
0.4566817879676819,
0.28268110752105713,
0.07058292627334595,
-0.40284615755081177,
-0.6874287128448486,
0.2077702432870865,
-0.6933916807174683,
-0.9030367136001587,
0.408013254404068,
-0.1527891755104065,
-0.16644176840782166,
-0.015805140137672424,
0.007957967929542065,
-0.1179228350520134,
-0.18199793994426727,
0.4202377200126648,
0.17957845330238342,
-0.10787787288427353,
-0.5564029812812805,
-0.4588170647621155,
0.035419296473264694,
-0.14066343009471893,
0.33127492666244507,
0.8001016974449158,
-0.5344699621200562,
-0.21521690487861633,
-0.9180742502212524,
0.3269324004650116,
0.6810709238052368,
0.05636589974164963,
0.7087752819061279,
0.8245490193367004,
-0.31451523303985596,
0.468555748462677,
-0.4765677750110626,
0.21136440336704254,
-0.4258383512496948,
-0.5286218523979187,
-0.7474294304847717,
-0.30345776677131653,
0.698542058467865,
0.34975358843803406,
-0.21325825154781342,
0.5861974954605103,
0.47979772090911865,
-0.34727743268013,
0.9765780568122864,
0.5894266963005066,
-0.12825503945350647,
0.5069968700408936,
-0.47260716557502747,
0.22813747823238373,
-0.7878537774085999,
-0.8248085379600525,
-0.044188350439071655,
-0.5196094512939453,
-0.5549936294555664,
-0.3241071403026581,
0.14602011442184448,
0.9033238887786865,
-0.12452741712331772,
1.1405909061431885,
-0.7546220421791077,
0.30433520674705505,
0.5945808291435242,
0.5813595056533813,
-0.007854556664824486,
0.10002055019140244,
0.13365957140922546,
-0.1419731080532074,
-0.28426626324653625,
-0.28319358825683594,
0.5807321071624756,
0.5204048752784729,
0.6683251261711121,
0.3672378361225128,
0.9419538378715515,
-0.07031991332769394,
-0.3391302227973938,
-0.4508674442768097,
0.9531484246253967,
-0.014630955643951893,
-0.5855861306190491,
-0.10867513716220856,
0.04331245273351669,
-1.4931039810180664,
0.20292343199253082,
-0.491351842880249,
-0.9408887624740601,
0.1351640820503235,
-0.005401243455708027,
-0.2530769109725952,
0.4823910892009735,
-0.7338252067565918,
0.29998013377189636,
-0.06998022645711899,
-0.5079659223556519,
-0.38168373703956604,
-0.720241904258728,
0.21748973429203033,
0.037602122873067856,
-0.2832350730895996,
-0.4651041328907013,
-0.17930082976818085,
0.5287167429924011,
-0.6621691584587097,
0.5143810510635376,
-0.27698710560798645,
-0.08050903677940369,
0.38058796525001526,
-0.10125759243965149,
0.4028330147266388,
0.018830308690667152,
-0.2284182608127594,
-0.1654788702726364,
0.4579216539859772,
-0.9755625128746033,
-0.4152556359767914,
0.8393185138702393,
-0.5783677697181702,
-0.21221016347408295,
-0.8111306428909302,
-0.06456802040338516,
0.12212331593036652,
0.1628831923007965,
0.6217377781867981,
0.17321184277534485,
-0.10459137707948685,
0.2751268744468689,
0.8213335275650024,
-0.378589004278183,
0.5441402792930603,
-0.2212611585855484,
-0.2907334566116333,
-0.1619025021791458,
0.6793875694274902,
-0.31991085410118103,
-0.015290407463908195,
-0.034183673560619354,
0.3775302469730377,
-0.4027025103569031,
0.2058754414319992,
0.03697303682565689,
0.8106306791305542,
-0.5046859979629517,
-0.23165760934352875,
-0.5617073178291321,
-0.2580079436302185,
-0.40701013803482056,
-0.5205668807029724,
-0.39811259508132935,
-0.5759817361831665,
-0.4118553400039673,
0.42990848422050476,
0.9272365570068359,
0.6668298840522766,
-0.5106226205825806,
0.1867140233516693,
-0.6639014482498169,
0.4615345001220703,
0.20370757579803467,
0.47395431995391846,
-0.34327197074890137,
-0.32631686329841614,
0.7261057496070862,
0.03643355146050453,
-0.24635395407676697,
-0.97536301612854,
0.5950843095779419,
0.015357143245637417,
0.7534260153770447,
0.27963927388191223,
0.03789979964494705,
0.8472518920898438,
-0.3790751099586487,
0.7918884754180908,
1.2071772813796997,
-0.5660988092422485,
0.8385412096977234,
-0.2932963967323303,
0.07602661848068237,
0.28555405139923096,
0.7048322558403015,
-0.37821781635284424,
-0.4100166857242584,
-1.2144138813018799,
-0.46259212493896484,
0.4144882559776306,
0.23987777531147003,
0.33330193161964417,
0.10897919535636902,
0.37356773018836975,
-0.29226237535476685,
-0.011846119537949562,
-0.593965470790863,
-0.8091644644737244,
-0.36411306262016296,
-0.0397130586206913,
0.11688856780529022,
-0.16182973980903625,
0.014872156083583832,
-0.5471506714820862,
0.6011732220649719,
0.0421503409743309,
0.6691774129867554,
0.16605964303016663,
-0.08596579730510712,
-0.0693410336971283,
-0.272699236869812,
0.76960289478302,
0.6207315921783447,
-0.23461924493312836,
-0.4211639165878296,
0.1352865844964981,
-0.6041487455368042,
0.11203740537166595,
-0.08377420157194138,
0.16778430342674255,
0.3268435597419739,
0.353883296251297,
0.7435085773468018,
0.29192885756492615,
-0.47642576694488525,
0.7488114833831787,
-0.31573784351348877,
-0.2972986102104187,
-0.4768473505973816,
0.18025383353233337,
0.12947075068950653,
0.5764219760894775,
0.1405823826789856,
-0.023487143218517303,
-0.1941176801919937,
-0.601132869720459,
0.4360657036304474,
0.34322747588157654,
-0.14816048741340637,
-0.4512524902820587,
0.5650230050086975,
-0.08897080272436142,
-0.20612655580043793,
0.23431344330310822,
-0.3801020383834839,
-0.545164942741394,
0.7727143168449402,
0.41487905383110046,
0.3997083902359009,
-0.4697421193122864,
0.45168545842170715,
0.8651121258735657,
-0.2926178276538849,
0.1008039340376854,
0.2780664563179016,
0.15860269963741302,
-0.10108975321054459,
0.09998513013124466,
-0.46282482147216797,
-0.20475663244724274,
0.3323226273059845,
-0.5388415455818176,
0.6054693460464478,
-0.7510268092155457,
-0.23546266555786133,
0.096165731549263,
0.5549346208572388,
-0.4593132734298706,
0.30461227893829346,
0.20727013051509857,
1.15695059299469,
-0.6029216051101685,
0.7242420315742493,
0.6175698637962341,
-0.6572319269180298,
-0.7559786438941956,
-0.011553378775715828,
0.2701084613800049,
-1.3025133609771729,
0.35754820704460144,
-0.16303880512714386,
0.2843317985534668,
-0.3312450051307678,
-0.662119448184967,
-0.7074301242828369,
1.254590392112732,
0.08701211214065552,
-0.2663555145263672,
-0.04650435224175453,
-0.6259461641311646,
0.4709947109222412,
-0.3643908202648163,
0.5257269144058228,
0.7279378771781921,
0.5419217348098755,
0.4445917308330536,
-0.9371224045753479,
0.19659365713596344,
-0.6057029962539673,
-0.10605476051568985,
-0.02632668986916542,
-1.2298663854599,
0.5979292392730713,
-0.398231565952301,
0.05405401811003685,
0.5362396836280823,
0.9504756331443787,
0.7923678755760193,
-0.03374619409441948,
0.8025394678115845,
0.6236990094184875,
0.5449329614639282,
-0.18477031588554382,
1.1406077146530151,
-0.22127725183963776,
0.46410873532295227,
0.4260053038597107,
0.34225690364837646,
0.6509763598442078,
0.44941845536231995,
-0.7031263709068298,
0.4179841876029968,
1.019378900527954,
-0.5367734432220459,
0.4881860315799713,
0.35094842314720154,
-0.5065475106239319,
0.057461611926555634,
-0.14175623655319214,
-0.5782210826873779,
0.29600417613983154,
0.11711956560611725,
-0.015421245247125626,
-0.4156480133533478,
0.037990860641002655,
0.5040106773376465,
0.29247963428497314,
-0.4984090030193329,
0.41344672441482544,
-0.06801781803369522,
-0.5804757475852966,
0.5759494304656982,
-0.25191670656204224,
1.1341745853424072,
-0.49333226680755615,
0.14331641793251038,
-0.636799693107605,
0.11733737587928772,
-0.5943068265914917,
-1.2574963569641113,
0.22835570573806763,
0.07295303046703339,
0.12957796454429626,
-0.34670624136924744,
0.7506878972053528,
-0.3495866060256958,
-0.5668826699256897,
0.35563337802886963,
0.012915162369608879,
0.901885986328125,
0.3690999150276184,
-1.4247242212295532,
0.4242733120918274,
0.1270643025636673,
-0.5807405710220337,
0.3545984625816345,
0.33285340666770935,
0.2833915650844574,
0.8546781539916992,
0.2516661286354065,
0.37331104278564453,
0.33559301495552063,
-0.3028359115123749,
0.4761301279067993,
-0.26126760244369507,
-0.1494530737400055,
-0.6858681440353394,
0.49343621730804443,
-0.5950300693511963,
-0.22041653096675873,
0.9247602224349976,
0.23531948029994965,
0.29391351342201233,
-0.12425198405981064,
0.5621615648269653,
-0.6357724070549011,
0.6196134686470032,
-0.20731809735298157,
0.7828487157821655,
-0.8830063939094543,
-0.4560176134109497,
-0.35891643166542053,
-0.717042088508606,
-0.23159267008304596,
0.9764668345451355,
0.17828592658042908,
-0.03102235123515129,
0.43876707553863525,
0.5119162201881409,
-0.11091278493404388,
-0.3096127212047577,
-0.010818155482411385,
-0.3141240179538727,
0.2251109629869461,
1.013579249382019,
0.6640470623970032,
-0.8427832126617432,
0.24080437421798706,
-0.7828097939491272,
-0.2250533550977707,
-0.3766939342021942,
-0.8943086266517639,
-1.1782143115997314,
-0.7191495299339294,
-0.7168630361557007,
-0.8340200185775757,
-0.47809943556785583,
0.995005190372467,
0.9129449129104614,
-0.7815420627593994,
-0.1456025093793869,
0.1906626671552658,
0.1081181988120079,
0.16325339674949646,
-0.16763420403003693,
0.40388941764831543,
0.016287224367260933,
-1.151790738105774,
0.03432204946875572,
0.04192084074020386,
0.5585036873817444,
0.2029096931219101,
-0.42515674233436584,
-0.28363046050071716,
-0.03198624402284622,
0.5419698357582092,
0.8669149875640869,
-0.7049371004104614,
-0.11554635316133499,
-0.029595868661999702,
-0.25734928250312805,
0.12208449840545654,
0.1479521542787552,
-0.30528366565704346,
-0.039010584354400635,
0.5821244120597839,
0.1980762779712677,
0.7118427157402039,
0.03364305943250656,
0.1125783622264862,
-0.4494498372077942,
0.346790611743927,
-0.1895952969789505,
0.5315418243408203,
0.22081059217453003,
-0.3830890655517578,
1.0392019748687744,
0.41620925068855286,
-0.26062944531440735,
-0.896251380443573,
-0.2521219253540039,
-1.4008578062057495,
-0.199276864528656,
0.9781120419502258,
-0.24378111958503723,
-0.43700119853019714,
0.4546235203742981,
-0.36262011528015137,
0.045763928443193436,
-0.29605284333229065,
0.2051297128200531,
0.5549806356430054,
-0.8007831573486328,
-0.24566598236560822,
-0.1567244678735733,
0.22987748682498932,
0.30410951375961304,
-0.8314432501792908,
-0.44413045048713684,
0.1756771355867386,
0.32669657468795776,
0.7142634987831116,
0.716469407081604,
-0.3576570153236389,
0.3716355562210083,
0.23644760251045227,
0.1826503425836563,
0.34804195165634155,
0.38731929659843445,
-0.4638034701347351,
-0.1583043783903122,
-0.2934275269508362,
-0.3965941369533539
] |
TheBloke/Llama-2-13B-GPTQ | TheBloke | "2023-09-27T12:44:47Z" | 11,058 | 106 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"facebook",
"meta",
"pytorch",
"llama-2",
"en",
"arxiv:2307.09288",
"base_model:meta-llama/Llama-2-13b-hf",
"license:llama2",
"has_space",
"text-generation-inference",
"4-bit",
"region:us"
] | text-generation | "2023-07-18T17:17:40Z" | ---
language:
- en
license: llama2
tags:
- facebook
- meta
- pytorch
- llama
- llama-2
model_name: Llama 2 13B
base_model: meta-llama/Llama-2-13b-hf
inference: false
model_creator: Meta
model_type: llama
pipeline_tag: text-generation
prompt_template: '{prompt}
'
quantized_by: TheBloke
---
<!-- header start -->
<!-- 200823 -->
<div style="width: auto; margin-left: auto; margin-right: auto">
<img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>
<div style="display: flex; justify-content: space-between; width: 100%;">
<div style="display: flex; flex-direction: column; align-items: flex-start;">
<p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
</div>
<div style="display: flex; flex-direction: column; align-items: flex-end;">
<p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
</div>
</div>
<div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
<hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
<!-- header end -->
# Llama 2 13B - GPTQ
- Model creator: [Meta](https://huggingface.co/meta-llama)
- Original model: [Llama 2 13B](https://huggingface.co/meta-llama/Llama-2-13b-hf)
<!-- description start -->
## Description
This repo contains GPTQ model files for [Meta's Llama 2 13B](https://huggingface.co/meta-llama/Llama-2-13b-hf).
Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.
<!-- description end -->
<!-- repositories-available start -->
## Repositories available
* [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/Llama-2-13B-AWQ)
* [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Llama-2-13B-GPTQ)
* [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Llama-2-13B-GGUF)
* [Meta's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/meta-llama/Llama-2-13b-hf)
<!-- repositories-available end -->
<!-- prompt-template start -->
## Prompt template: None
```
{prompt}
```
<!-- prompt-template end -->
<!-- README_GPTQ.md-provided-files start -->
## Provided files and GPTQ parameters
Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.
Each separate quant is in a different branch. See below for instructions on fetching from different branches.
All recent GPTQ files are made with AutoGPTQ, and all files in non-main branches are made with AutoGPTQ. Files in the `main` branch which were uploaded before August 2023 were made with GPTQ-for-LLaMa.
<details>
<summary>Explanation of GPTQ parameters</summary>
- Bits: The bit size of the quantised model.
- GS: GPTQ group size. Higher numbers use less VRAM, but have lower quantisation accuracy. "None" is the lowest possible value.
- Act Order: True or False. Also known as `desc_act`. True results in better quantisation accuracy. Some GPTQ clients have had issues with models that use Act Order plus Group Size, but this is generally resolved now.
- Damp %: A GPTQ parameter that affects how samples are processed for quantisation. 0.01 is default, but 0.1 results in slightly better accuracy.
- GPTQ dataset: The dataset used for quantisation. Using a dataset more appropriate to the model's training can improve quantisation accuracy. Note that the GPTQ dataset is not the same as the dataset used to train the model - please refer to the original model repo for details of the training dataset(s).
- Sequence Length: The length of the dataset sequences used for quantisation. Ideally this is the same as the model sequence length. For some very long sequence models (16+K), a lower sequence length may have to be used. Note that a lower sequence length does not limit the sequence length of the quantised model. It only impacts the quantisation accuracy on longer inference sequences.
- ExLlama Compatibility: Whether this file can be loaded with ExLlama, which currently only supports Llama models in 4-bit.
</details>
| Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
| ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- |
| [main](https://huggingface.co/TheBloke/Llama-2-13B-GPTQ/tree/main) | 4 | 128 | No | 0.01 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 7.26 GB | Yes | 4-bit, without Act Order and group size 128g. |
| [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/Llama-2-13B-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.01 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 8.00 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. |
| [gptq-4bit-64g-actorder_True](https://huggingface.co/TheBloke/Llama-2-13B-GPTQ/tree/gptq-4bit-64g-actorder_True) | 4 | 64 | Yes | 0.01 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 7.51 GB | Yes | 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy. |
| [gptq-4bit-128g-actorder_True](https://huggingface.co/TheBloke/Llama-2-13B-GPTQ/tree/gptq-4bit-128g-actorder_True) | 4 | 128 | Yes | 0.01 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 7.26 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. |
| [gptq-8bit-128g-actorder_True](https://huggingface.co/TheBloke/Llama-2-13B-GPTQ/tree/gptq-8bit-128g-actorder_True) | 8 | 128 | Yes | 0.01 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 13.65 GB | No | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. |
| [gptq-8bit-64g-actorder_True](https://huggingface.co/TheBloke/Llama-2-13B-GPTQ/tree/gptq-8bit-64g-actorder_True) | 8 | 64 | Yes | 0.01 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 13.95 GB | No | 8-bit, with group size 64g and Act Order for even higher inference quality. Poor AutoGPTQ CUDA speed. |
| [gptq-8bit-128g-actorder_False](https://huggingface.co/TheBloke/Llama-2-13B-GPTQ/tree/gptq-8bit-128g-actorder_False) | 8 | 128 | No | 0.01 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 13.65 GB | No | 8-bit, with group size 128g for higher inference quality and without Act Order to improve AutoGPTQ speed. |
| [gptq-8bit--1g-actorder_True](https://huggingface.co/TheBloke/Llama-2-13B-GPTQ/tree/gptq-8bit--1g-actorder_True) | 8 | None | Yes | 0.01 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 13.36 GB | No | 8-bit, with Act Order. No group size, to lower VRAM requirements. |
<!-- README_GPTQ.md-provided-files end -->
<!-- README_GPTQ.md-download-from-branches start -->
## How to download from branches
- In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/Llama-2-13B-GPTQ:main`
- With Git, you can clone a branch with:
```
git clone --single-branch --branch main https://huggingface.co/TheBloke/Llama-2-13B-GPTQ
```
- In Python Transformers code, the branch is the `revision` parameter; see below.
<!-- README_GPTQ.md-download-from-branches end -->
<!-- README_GPTQ.md-text-generation-webui start -->
## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.
1. Click the **Model tab**.
2. Under **Download custom model or LoRA**, enter `TheBloke/Llama-2-13B-GPTQ`.
- To download from a specific branch, enter for example `TheBloke/Llama-2-13B-GPTQ:main`
- see Provided Files above for the list of branches for each option.
3. Click **Download**.
4. The model will start downloading. Once it's finished it will say "Done".
5. In the top left, click the refresh icon next to **Model**.
6. In the **Model** dropdown, choose the model you just downloaded: `Llama-2-13B-GPTQ`
7. The model will automatically load, and is now ready for use!
8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
* Note that you do not need to and should not set manual GPTQ parameters any more. These are set automatically from the file `quantize_config.json`.
9. Once you're ready, click the **Text Generation tab** and enter a prompt to get started!
<!-- README_GPTQ.md-text-generation-webui end -->
<!-- README_GPTQ.md-use-from-python start -->
## How to use this GPTQ model from Python code
### Install the necessary packages
Requires: Transformers 4.32.0 or later, Optimum 1.12.0 or later, and AutoGPTQ 0.4.2 or later.
```shell
pip3 install transformers>=4.32.0 optimum>=1.12.0
pip3 install auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/ # Use cu117 if on CUDA 11.7
```
If you have problems installing AutoGPTQ using the pre-built wheels, install it from source instead:
```shell
pip3 uninstall -y auto-gptq
git clone https://github.com/PanQiWei/AutoGPTQ
cd AutoGPTQ
pip3 install .
```
### For CodeLlama models only: you must use Transformers 4.33.0 or later.
If 4.33.0 is not yet released when you read this, you will need to install Transformers from source:
```shell
pip3 uninstall -y transformers
pip3 install git+https://github.com/huggingface/transformers.git
```
### You can then use the following code
```python
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
model_name_or_path = "TheBloke/Llama-2-13B-GPTQ"
# To use a different branch, change revision
# For example: revision="main"
model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
device_map="auto",
trust_remote_code=False,
revision="main")
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
prompt = "Tell me about AI"
prompt_template=f'''{prompt}
'''
print("\n\n*** Generate:")
input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
output = model.generate(inputs=input_ids, temperature=0.7, do_sample=True, top_p=0.95, top_k=40, max_new_tokens=512)
print(tokenizer.decode(output[0]))
# Inference can also be done using transformers' pipeline
print("*** Pipeline:")
pipe = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
max_new_tokens=512,
do_sample=True,
temperature=0.7,
top_p=0.95,
top_k=40,
repetition_penalty=1.1
)
print(pipe(prompt_template)[0]['generated_text'])
```
<!-- README_GPTQ.md-use-from-python end -->
<!-- README_GPTQ.md-compatibility start -->
## Compatibility
The files provided are tested to work with AutoGPTQ, both via Transformers and using AutoGPTQ directly. They should also work with [Occ4m's GPTQ-for-LLaMa fork](https://github.com/0cc4m/KoboldAI).
[ExLlama](https://github.com/turboderp/exllama) is compatible with Llama models in 4-bit. Please see the Provided Files table above for per-file compatibility.
[Huggingface Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) is compatible with all GPTQ models.
<!-- README_GPTQ.md-compatibility end -->
<!-- footer start -->
<!-- 200823 -->
## Discord
For further support, and discussions on these models and AI in general, join us at:
[TheBloke AI's Discord server](https://discord.gg/theblokeai)
## Thanks, and how to contribute
Thanks to the [chirper.ai](https://chirper.ai) team!
Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
* Patreon: https://patreon.com/TheBlokeAI
* Ko-Fi: https://ko-fi.com/TheBlokeAI
**Special thanks to**: Aemon Algiz.
**Patreon special mentions**: Alicia Loh, Stephen Murray, K, Ajan Kanaga, RoA, Magnesian, Deo Leter, Olakabola, Eugene Pentland, zynix, Deep Realms, Raymond Fosdick, Elijah Stavena, Iucharbius, Erik Bjäreholt, Luis Javier Navarrete Lozano, Nicholas, theTransient, John Detwiler, alfie_i, knownsqashed, Mano Prime, Willem Michiel, Enrico Ros, LangChain4j, OG, Michael Dempsey, Pierre Kircher, Pedro Madruga, James Bentley, Thomas Belote, Luke @flexchar, Leonard Tan, Johann-Peter Hartmann, Illia Dulskyi, Fen Risland, Chadd, S_X, Jeff Scroggin, Ken Nordquist, Sean Connelly, Artur Olbinski, Swaroop Kallakuri, Jack West, Ai Maven, David Ziegler, Russ Johnson, transmissions 11, John Villwock, Alps Aficionado, Clay Pascal, Viktor Bowallius, Subspace Studios, Rainer Wilmers, Trenton Dambrowitz, vamX, Michael Levine, 준교 김, Brandon Frisco, Kalila, Trailburnt, Randy H, Talal Aujan, Nathan Dryer, Vadim, 阿明, ReadyPlayerEmma, Tiffany J. Kim, George Stoitzev, Spencer Kim, Jerry Meng, Gabriel Tamborski, Cory Kujawski, Jeffrey Morgan, Spiking Neurons AB, Edmond Seymore, Alexandros Triantafyllidis, Lone Striker, Cap'n Zoog, Nikolai Manek, danny, ya boyyy, Derek Yates, usrbinkat, Mandus, TL, Nathan LeClaire, subjectnull, Imad Khwaja, webtim, Raven Klaugh, Asp the Wyvern, Gabriel Puliatti, Caitlyn Gatomon, Joseph William Delisle, Jonathan Leane, Luke Pendergrass, SuperWojo, Sebastain Graf, Will Dee, Fred von Graf, Andrey, Dan Guido, Daniel P. Andersen, Nitin Borwankar, Elle, Vitor Caleffi, biorpg, jjj, NimbleBox.ai, Pieter, Matthew Berman, terasurfer, Michael Davis, Alex, Stanislav Ovsiannikov
Thank you to all my generous patrons and donaters!
And thank you again to a16z for their generous grant.
<!-- footer end -->
# Original model card: Meta's Llama 2 13B
# **Llama 2**
Llama 2 is a collection of pretrained and fine-tuned generative text models ranging in scale from 7 billion to 70 billion parameters. This is the repository for the 13B pretrained model, converted for the Hugging Face Transformers format. Links to other models can be found in the index at the bottom.
## Model Details
*Note: Use of this model is governed by the Meta license. In order to download the model weights and tokenizer, please visit the [website](https://ai.meta.com/resources/models-and-libraries/llama-downloads/) and accept our License before requesting access here.*
Meta developed and publicly released the Llama 2 family of large language models (LLMs), a collection of pretrained and fine-tuned generative text models ranging in scale from 7 billion to 70 billion parameters. Our fine-tuned LLMs, called Llama-2-Chat, are optimized for dialogue use cases. Llama-2-Chat models outperform open-source chat models on most benchmarks we tested, and in our human evaluations for helpfulness and safety, are on par with some popular closed-source models like ChatGPT and PaLM.
**Model Developers** Meta
**Variations** Llama 2 comes in a range of parameter sizes — 7B, 13B, and 70B — as well as pretrained and fine-tuned variations.
**Input** Models input text only.
**Output** Models generate text only.
**Model Architecture** Llama 2 is an auto-regressive language model that uses an optimized transformer architecture. The tuned versions use supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF) to align to human preferences for helpfulness and safety.
||Training Data|Params|Content Length|GQA|Tokens|LR|
|---|---|---|---|---|---|---|
|Llama 2|*A new mix of publicly available online data*|7B|4k|✗|2.0T|3.0 x 10<sup>-4</sup>|
|Llama 2|*A new mix of publicly available online data*|13B|4k|✗|2.0T|3.0 x 10<sup>-4</sup>|
|Llama 2|*A new mix of publicly available online data*|70B|4k|✔|2.0T|1.5 x 10<sup>-4</sup>|
*Llama 2 family of models.* Token counts refer to pretraining data only. All models are trained with a global batch-size of 4M tokens. Bigger models - 70B -- use Grouped-Query Attention (GQA) for improved inference scalability.
**Model Dates** Llama 2 was trained between January 2023 and July 2023.
**Status** This is a static model trained on an offline dataset. Future versions of the tuned models will be released as we improve model safety with community feedback.
**License** A custom commercial license is available at: [https://ai.meta.com/resources/models-and-libraries/llama-downloads/](https://ai.meta.com/resources/models-and-libraries/llama-downloads/)
**Research Paper** ["Llama-2: Open Foundation and Fine-tuned Chat Models"](arxiv.org/abs/2307.09288)
## Intended Use
**Intended Use Cases** Llama 2 is intended for commercial and research use in English. Tuned models are intended for assistant-like chat, whereas pretrained models can be adapted for a variety of natural language generation tasks.
To get the expected features and performance for the chat versions, a specific formatting needs to be followed, including the `INST` and `<<SYS>>` tags, `BOS` and `EOS` tokens, and the whitespaces and breaklines in between (we recommend calling `strip()` on inputs to avoid double-spaces). See our reference code in github for details: [`chat_completion`](https://github.com/facebookresearch/llama/blob/main/llama/generation.py#L212).
**Out-of-scope Uses** Use in any manner that violates applicable laws or regulations (including trade compliance laws).Use in languages other than English. Use in any other way that is prohibited by the Acceptable Use Policy and Licensing Agreement for Llama 2.
## Hardware and Software
**Training Factors** We used custom training libraries, Meta's Research Super Cluster, and production clusters for pretraining. Fine-tuning, annotation, and evaluation were also performed on third-party cloud compute.
**Carbon Footprint** Pretraining utilized a cumulative 3.3M GPU hours of computation on hardware of type A100-80GB (TDP of 350-400W). Estimated total emissions were 539 tCO2eq, 100% of which were offset by Meta’s sustainability program.
||Time (GPU hours)|Power Consumption (W)|Carbon Emitted(tCO<sub>2</sub>eq)|
|---|---|---|---|
|Llama 2 7B|184320|400|31.22|
|Llama 2 13B|368640|400|62.44|
|Llama 2 70B|1720320|400|291.42|
|Total|3311616||539.00|
**CO<sub>2</sub> emissions during pretraining.** Time: total GPU time required for training each model. Power Consumption: peak power capacity per GPU device for the GPUs used adjusted for power usage efficiency. 100% of the emissions are directly offset by Meta's sustainability program, and because we are openly releasing these models, the pretraining costs do not need to be incurred by others.
## Training Data
**Overview** Llama 2 was pretrained on 2 trillion tokens of data from publicly available sources. The fine-tuning data includes publicly available instruction datasets, as well as over one million new human-annotated examples. Neither the pretraining nor the fine-tuning datasets include Meta user data.
**Data Freshness** The pretraining data has a cutoff of September 2022, but some tuning data is more recent, up to July 2023.
## Evaluation Results
In this section, we report the results for the Llama 1 and Llama 2 models on standard academic benchmarks.For all the evaluations, we use our internal evaluations library.
|Model|Size|Code|Commonsense Reasoning|World Knowledge|Reading Comprehension|Math|MMLU|BBH|AGI Eval|
|---|---|---|---|---|---|---|---|---|---|
|Llama 1|7B|14.1|60.8|46.2|58.5|6.95|35.1|30.3|23.9|
|Llama 1|13B|18.9|66.1|52.6|62.3|10.9|46.9|37.0|33.9|
|Llama 1|33B|26.0|70.0|58.4|67.6|21.4|57.8|39.8|41.7|
|Llama 1|65B|30.7|70.7|60.5|68.6|30.8|63.4|43.5|47.6|
|Llama 2|7B|16.8|63.9|48.9|61.3|14.6|45.3|32.6|29.3|
|Llama 2|13B|24.5|66.9|55.4|65.8|28.7|54.8|39.4|39.1|
|Llama 2|70B|**37.5**|**71.9**|**63.6**|**69.4**|**35.2**|**68.9**|**51.2**|**54.2**|
**Overall performance on grouped academic benchmarks.** *Code:* We report the average pass@1 scores of our models on HumanEval and MBPP. *Commonsense Reasoning:* We report the average of PIQA, SIQA, HellaSwag, WinoGrande, ARC easy and challenge, OpenBookQA, and CommonsenseQA. We report 7-shot results for CommonSenseQA and 0-shot results for all other benchmarks. *World Knowledge:* We evaluate the 5-shot performance on NaturalQuestions and TriviaQA and report the average. *Reading Comprehension:* For reading comprehension, we report the 0-shot average on SQuAD, QuAC, and BoolQ. *MATH:* We report the average of the GSM8K (8 shot) and MATH (4 shot) benchmarks at top 1.
|||TruthfulQA|Toxigen|
|---|---|---|---|
|Llama 1|7B|27.42|23.00|
|Llama 1|13B|41.74|23.08|
|Llama 1|33B|44.19|22.57|
|Llama 1|65B|48.71|21.77|
|Llama 2|7B|33.29|**21.25**|
|Llama 2|13B|41.86|26.10|
|Llama 2|70B|**50.18**|24.60|
**Evaluation of pretrained LLMs on automatic safety benchmarks.** For TruthfulQA, we present the percentage of generations that are both truthful and informative (the higher the better). For ToxiGen, we present the percentage of toxic generations (the smaller the better).
|||TruthfulQA|Toxigen|
|---|---|---|---|
|Llama-2-Chat|7B|57.04|**0.00**|
|Llama-2-Chat|13B|62.18|**0.00**|
|Llama-2-Chat|70B|**64.14**|0.01|
**Evaluation of fine-tuned LLMs on different safety datasets.** Same metric definitions as above.
## Ethical Considerations and Limitations
Llama 2 is a new technology that carries risks with use. Testing conducted to date has been in English, and has not covered, nor could it cover all scenarios. For these reasons, as with all LLMs, Llama 2’s potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate, biased or other objectionable responses to user prompts. Therefore, before deploying any applications of Llama 2, developers should perform safety testing and tuning tailored to their specific applications of the model.
Please see the Responsible Use Guide available at [https://ai.meta.com/llama/responsible-use-guide/](https://ai.meta.com/llama/responsible-use-guide)
## Reporting Issues
Please report any software “bug,” or other problems with the models through one of the following means:
- Reporting issues with the model: [github.com/facebookresearch/llama](http://github.com/facebookresearch/llama)
- Reporting problematic content generated by the model: [developers.facebook.com/llama_output_feedback](http://developers.facebook.com/llama_output_feedback)
- Reporting bugs and security concerns: [facebook.com/whitehat/info](http://facebook.com/whitehat/info)
## Llama Model Index
|Model|Llama2|Llama2-hf|Llama2-chat|Llama2-chat-hf|
|---|---|---|---|---|
|7B| [Link](https://huggingface.co/llamaste/Llama-2-7b) | [Link](https://huggingface.co/llamaste/Llama-2-7b-hf) | [Link](https://huggingface.co/llamaste/Llama-2-7b-chat) | [Link](https://huggingface.co/llamaste/Llama-2-7b-chat-hf)|
|13B| [Link](https://huggingface.co/llamaste/Llama-2-13b) | [Link](https://huggingface.co/llamaste/Llama-2-13b-hf) | [Link](https://huggingface.co/llamaste/Llama-2-13b-chat) | [Link](https://huggingface.co/llamaste/Llama-2-13b-hf)|
|70B| [Link](https://huggingface.co/llamaste/Llama-2-70b) | [Link](https://huggingface.co/llamaste/Llama-2-70b-hf) | [Link](https://huggingface.co/llamaste/Llama-2-70b-chat) | [Link](https://huggingface.co/llamaste/Llama-2-70b-hf)|
| [
-0.5351094603538513,
-0.7164894342422485,
0.09506110101938248,
0.27638718485832214,
-0.3199683129787445,
-0.09731423854827881,
0.08265121281147003,
-0.6088388562202454,
0.30697324872016907,
0.32062941789627075,
-0.6327051520347595,
-0.4886585474014282,
-0.3999464213848114,
-0.001355594489723444,
-0.35546961426734924,
1.1032294034957886,
0.06083851307630539,
-0.36534354090690613,
-0.04546527564525604,
-0.3372948169708252,
-0.20615018904209137,
-0.4574475884437561,
-0.6872125267982483,
-0.19605416059494019,
0.4199863374233246,
0.15729235112667084,
0.7922888994216919,
0.5626851320266724,
0.1907620131969452,
0.3193860948085785,
-0.11450399458408356,
-0.0004893182776868343,
-0.5069131255149841,
-0.17430679500102997,
0.19533368945121765,
-0.21822291612625122,
-0.6850462555885315,
0.14731967449188232,
0.39134344458580017,
0.23600974678993225,
-0.3748665750026703,
0.3112737536430359,
0.029648778960108757,
0.6476162075996399,
-0.43989869952201843,
0.15866222977638245,
-0.3704870939254761,
0.047946035861968994,
-0.12914666533470154,
0.2367658168077469,
-0.04844096302986145,
-0.44315269589424133,
0.0979750007390976,
-0.8397034406661987,
0.18461745977401733,
0.018196314573287964,
1.1787910461425781,
0.18933366239070892,
-0.6312080025672913,
0.12657906115055084,
-0.27033597230911255,
0.6208294630050659,
-0.9366124272346497,
0.30218032002449036,
0.5853297114372253,
0.11292757093906403,
-0.2540059983730316,
-0.8568941950798035,
-0.6731781959533691,
-0.020247573032975197,
-0.20599307119846344,
0.284214586019516,
-0.41296935081481934,
0.016430456191301346,
0.45239508152008057,
0.793036937713623,
-0.8334153890609741,
-0.12707079946994781,
-0.17852512001991272,
-0.1920238733291626,
0.967860221862793,
0.14792369306087494,
0.32955312728881836,
-0.2900930643081665,
-0.30813953280448914,
-0.45210638642311096,
-0.6474692821502686,
0.141386941075325,
0.3914948105812073,
-0.09547967463731766,
-0.6490213871002197,
0.47691893577575684,
-0.4218951463699341,
0.4603556990623474,
0.23432046175003052,
-0.19581808149814606,
0.4440080225467682,
-0.6077566146850586,
-0.40590140223503113,
-0.3578791916370392,
1.2091726064682007,
0.4786985516548157,
-0.18204160034656525,
0.2530941665172577,
-0.030969398096203804,
-0.12782375514507294,
-0.10529967397451401,
-1.0037720203399658,
-0.4838748872280121,
0.4022836685180664,
-0.5347265005111694,
-0.2860678434371948,
-0.059572331607341766,
-0.7812643051147461,
-0.06532137840986252,
-0.04701614752411842,
0.4239640235900879,
-0.49040520191192627,
-0.45577579736709595,
0.10767102986574173,
-0.34084415435791016,
0.5455062985420227,
0.3333291709423065,
-0.6603414416313171,
0.4651613235473633,
0.2976255714893341,
0.6922918558120728,
0.07751672714948654,
-0.1156216710805893,
-0.15204912424087524,
0.05916799604892731,
-0.08957510441541672,
0.48312389850616455,
-0.14802762866020203,
-0.4663134217262268,
-0.42142540216445923,
0.3280704617500305,
0.054393868893384933,
-0.23584818840026855,
0.5503976345062256,
-0.21676716208457947,
0.3997262418270111,
-0.5052574276924133,
-0.5021934509277344,
-0.43052008748054504,
0.09210506826639175,
-0.6813815236091614,
1.3508481979370117,
0.4904073178768158,
-0.8183520436286926,
0.2604767680168152,
-0.4876430928707123,
-0.18730823695659637,
-0.10364249348640442,
0.020565113052725792,
-0.6276422739028931,
-0.15975087881088257,
0.26964303851127625,
0.3060985505580902,
-0.37957310676574707,
0.1283259093761444,
-0.3184625506401062,
-0.22784775495529175,
0.14677628874778748,
-0.47783777117729187,
1.2380605936050415,
0.14247308671474457,
-0.49584320187568665,
-0.11313298344612122,
-0.7383009791374207,
0.12400375306606293,
0.5404917001724243,
-0.20942027866840363,
-0.031854335218667984,
-0.14879950881004333,
0.05157899484038353,
0.17182648181915283,
0.23204725980758667,
-0.3486257493495941,
0.5262088775634766,
-0.19474145770072937,
0.6301153302192688,
0.6282808184623718,
0.03852302208542824,
0.2101060301065445,
-0.47013065218925476,
0.4418380856513977,
0.03759924694895744,
0.6090598106384277,
0.10169488191604614,
-0.7942817807197571,
-0.699620246887207,
-0.29448509216308594,
0.3913029730319977,
0.6157232522964478,
-0.5911563038825989,
0.547084391117096,
-0.1514698714017868,
-0.7566708922386169,
-0.31232476234436035,
-0.053996793925762177,
0.30122727155685425,
0.3422303795814514,
0.4430897831916809,
-0.47638118267059326,
-0.371673583984375,
-0.8531359434127808,
0.11269758641719818,
-0.4748022258281708,
-0.024090683087706566,
0.49537140130996704,
0.8046614527702332,
-0.2873815894126892,
0.7441906929016113,
-0.6170754432678223,
-0.03988296166062355,
0.054824985563755035,
0.10040797293186188,
0.40614983439445496,
0.5786611437797546,
0.8244056105613708,
-0.7968729138374329,
-0.5519976019859314,
-0.12354996055364609,
-0.6286967396736145,
-0.11068127304315567,
-0.01190579030662775,
-0.42020848393440247,
0.21877780556678772,
-0.07939931005239487,
-1.1065365076065063,
0.7118601202964783,
0.5424339175224304,
-0.6106431484222412,
0.773328423500061,
-0.10202191025018692,
0.1739114224910736,
-1.0022282600402832,
0.030760133638978004,
0.09885644167661667,
-0.25981155037879944,
-0.42697280645370483,
0.02660631574690342,
-0.027300622314214706,
0.26782506704330444,
-0.3106297552585602,
0.6492441296577454,
-0.519710123538971,
-0.02361934632062912,
0.11860436201095581,
-0.08078029751777649,
0.3292931914329529,
0.5406908392906189,
-0.18071167171001434,
0.8295376896858215,
0.3829673230648041,
-0.37729448080062866,
0.5556521415710449,
0.5146064162254333,
-0.05153622105717659,
0.3127809464931488,
-0.805140495300293,
0.14706574380397797,
0.18564900755882263,
0.5269951224327087,
-0.9701359272003174,
-0.31181275844573975,
0.5458606481552124,
-0.5450122356414795,
0.4163205623626709,
-0.3154001832008362,
-0.4526277184486389,
-0.46788883209228516,
-0.6409122943878174,
0.410688191652298,
0.7494210600852966,
-0.41559427976608276,
0.42427223920822144,
0.3780421316623688,
0.02781464345753193,
-0.683369517326355,
-0.6930158138275146,
-0.14086872339248657,
-0.3248634934425354,
-0.5981179475784302,
0.48591893911361694,
-0.13600920140743256,
-0.029051244258880615,
0.053580448031425476,
-0.05630094185471535,
-0.04421146586537361,
-0.05460266023874283,
0.32000672817230225,
0.3011118173599243,
-0.18105679750442505,
-0.18266505002975464,
0.15452325344085693,
0.07561195641756058,
-0.0028812082018703222,
-0.2530513107776642,
0.41969379782676697,
-0.22731196880340576,
-0.06898476928472519,
-0.41467735171318054,
0.25545772910118103,
0.4609411358833313,
0.06544306129217148,
0.7359404563903809,
0.819646418094635,
-0.2979024052619934,
0.20186874270439148,
-0.5719143152236938,
-0.0977480560541153,
-0.47508248686790466,
0.10751204192638397,
-0.2190411239862442,
-0.6952281594276428,
0.6084347367286682,
0.3495059013366699,
0.17370428144931793,
0.8647624254226685,
0.44140541553497314,
-0.049191154539585114,
0.9374628663063049,
0.338155061006546,
-0.2366119623184204,
0.46680131554603577,
-0.6349491477012634,
-0.1967780888080597,
-0.8585136532783508,
-0.2323068380355835,
-0.31094783544540405,
-0.2627426087856293,
-0.8724545240402222,
-0.5326104164123535,
0.2911745309829712,
0.3153519928455353,
-0.7539037466049194,
0.5754680633544922,
-0.6748871207237244,
0.14791475236415863,
0.607677698135376,
0.28538599610328674,
0.18192535638809204,
0.0676017701625824,
-0.12682923674583435,
0.10697774589061737,
-0.5258543491363525,
-0.23499475419521332,
1.1322602033615112,
0.3422119915485382,
0.6070427298545837,
0.22803433239459991,
0.470149964094162,
0.17924411594867706,
0.31259262561798096,
-0.4884265065193176,
0.5621343851089478,
0.06495517492294312,
-0.6654412746429443,
-0.30467304587364197,
-0.5679671764373779,
-0.9250417351722717,
0.29246631264686584,
-0.1453813761472702,
-0.7839230298995972,
0.4005734324455261,
-0.014526682905852795,
-0.24015472829341888,
0.27009132504463196,
-0.6943526268005371,
0.9420788884162903,
-0.17843474447727203,
-0.44161203503608704,
-0.0026371378917247057,
-0.7612996101379395,
0.3684828579425812,
0.17407773435115814,
-0.04114381596446037,
-0.27896034717559814,
-0.2441284954547882,
0.7910587787628174,
-0.8789297342300415,
0.7660711407661438,
-0.25066813826560974,
-0.0774565190076828,
0.5700777173042297,
-0.14954768121242523,
0.6526491045951843,
0.12686215341091156,
-0.039492737501859665,
0.47273027896881104,
0.2850024104118347,
-0.5080329775810242,
-0.34447023272514343,
0.5179983973503113,
-0.974376380443573,
-0.5321776270866394,
-0.5079188942909241,
-0.42139020562171936,
0.001163716078735888,
0.006353640928864479,
0.4926094114780426,
0.33303701877593994,
0.0011526198359206319,
0.06453058123588562,
0.6332863569259644,
-0.3716621398925781,
0.44857242703437805,
0.26774725317955017,
-0.1976768672466278,
-0.6347849369049072,
0.7729389071464539,
0.04152731969952583,
0.19473859667778015,
0.16248109936714172,
0.13355322182178497,
-0.5031002163887024,
-0.4608566462993622,
-0.7033882737159729,
0.42019718885421753,
-0.4975498914718628,
-0.474641352891922,
-0.6167457699775696,
-0.32770290970802307,
-0.3954833745956421,
0.2574689984321594,
-0.31112149357795715,
-0.7331599593162537,
-0.44769179821014404,
-0.0957995280623436,
0.9637896418571472,
0.4606572985649109,
-0.19737762212753296,
0.3439064919948578,
-0.7183624505996704,
0.261475145816803,
0.34450459480285645,
0.19860194623470306,
-0.06227632611989975,
-0.7100135087966919,
-0.036796048283576965,
0.16850759088993073,
-0.6186878681182861,
-0.9977816939353943,
0.6266831159591675,
0.28111380338668823,
0.47846442461013794,
0.3942033350467682,
0.11340136080980301,
0.884017288684845,
-0.19620119035243988,
1.0800751447677612,
0.24746789038181305,
-0.8850793838500977,
0.5176461935043335,
-0.49464088678359985,
0.15323805809020996,
0.40623027086257935,
0.5452724695205688,
-0.30993980169296265,
-0.29295551776885986,
-0.7864369750022888,
-0.8888369798660278,
0.420728474855423,
0.42004939913749695,
0.01838352531194687,
0.1257307380437851,
0.6056941747665405,
0.037796709686517715,
0.18144282698631287,
-0.9227722883224487,
-0.646542489528656,
-0.41000837087631226,
-0.19221307337284088,
0.14927446842193604,
-0.14709529280662537,
-0.24785418808460236,
-0.7310945987701416,
0.8705329298973083,
-0.2068091332912445,
0.7000029683113098,
0.3144911527633667,
0.11432831734418869,
-0.02808307483792305,
-0.02000906690955162,
0.37352484464645386,
0.5425585508346558,
-0.16043338179588318,
-0.29710984230041504,
0.28532159328460693,
-0.8411430716514587,
0.202239990234375,
0.35142651200294495,
-0.1322251707315445,
-0.1765623390674591,
0.2393212765455246,
0.7542787790298462,
-0.0240041334182024,
-0.3095649480819702,
0.5517010688781738,
-0.3205212354660034,
-0.3602450489997864,
-0.3000168800354004,
0.18180228769779205,
0.19117218255996704,
0.40215516090393066,
0.3667909801006317,
-0.30428561568260193,
0.33404403924942017,
-0.4561516046524048,
0.17319822311401367,
0.5074514746665955,
-0.05058123543858528,
-0.3779454529285431,
0.7742927670478821,
-0.04683154821395874,
0.20353902876377106,
0.6902301907539368,
-0.30335816740989685,
-0.41790321469306946,
0.8168763518333435,
0.4280060827732086,
0.6913617253303528,
-0.20402595400810242,
0.2307107001543045,
0.6136957406997681,
0.15844428539276123,
-0.07424481958150864,
0.37113264203071594,
-0.13447488844394684,
-0.5372543931007385,
-0.376874715089798,
-0.6519059538841248,
-0.2671963572502136,
0.28641772270202637,
-0.7623865604400635,
0.09066670387983322,
-0.35241490602493286,
-0.41763392090797424,
-0.22231630980968475,
0.4213780462741852,
-0.5404729843139648,
0.24610890448093414,
-0.0020308177918195724,
0.9728712439537048,
-0.7504544854164124,
0.8374176621437073,
0.5025795698165894,
-0.40804415941238403,
-0.9507461190223694,
-0.14768092334270477,
0.1279287040233612,
-0.6647422313690186,
0.23555292189121246,
0.026677390560507774,
0.3219878673553467,
-0.033199939876794815,
-0.7299048900604248,
-0.9530735611915588,
1.519230842590332,
0.298641562461853,
-0.5655156373977661,
-0.07263615727424622,
-0.002186048310250044,
0.3361850380897522,
-0.06686350703239441,
0.6834714412689209,
0.6183589100837708,
0.4175819754600525,
0.20006868243217468,
-0.9243568778038025,
0.454682856798172,
-0.44140538573265076,
0.0031262789852917194,
0.1942722350358963,
-1.0834192037582397,
0.9646669626235962,
0.02089264616370201,
-0.10292085260152817,
0.17932474613189697,
0.6859964728355408,
0.44496893882751465,
0.10739406198263168,
0.42434534430503845,
0.9130449891090393,
0.7687692046165466,
-0.37002333998680115,
1.1802000999450684,
-0.14959800243377686,
0.6056919097900391,
0.7112442851066589,
0.08280310779809952,
0.6802944540977478,
0.26169076561927795,
-0.7306571006774902,
0.6050603985786438,
1.074925184249878,
-0.10326579958200455,
0.40781864523887634,
0.04578036442399025,
-0.3343840539455414,
-0.057112548500299454,
0.16300593316555023,
-0.7587372660636902,
0.1176924854516983,
0.39823558926582336,
-0.20123009383678436,
0.10204365849494934,
-0.22175875306129456,
0.09958874434232712,
-0.6671570539474487,
-0.14349345862865448,
0.5904436111450195,
0.2505664825439453,
-0.2092217653989792,
0.8441040515899658,
-0.1712438464164734,
0.6980221271514893,
-0.47825300693511963,
-0.1488056778907776,
-0.4496717154979706,
-0.16100488603115082,
-0.34273454546928406,
-0.7870848774909973,
0.19574353098869324,
-0.14650489389896393,
-0.08397620171308517,
-0.003218732075765729,
0.6759690046310425,
-0.13384494185447693,
-0.4511987566947937,
0.376742959022522,
0.4171349108219147,
0.3201436698436737,
-0.0636141300201416,
-1.1423990726470947,
0.21464601159095764,
0.01161924283951521,
-0.8129259347915649,
0.44780433177948,
0.42365068197250366,
0.09085176885128021,
0.6772805452346802,
0.6347826719284058,
-0.1056494191288948,
0.04021705314517021,
-0.2227327972650528,
0.9984354972839355,
-0.7965152859687805,
-0.24020250141620636,
-0.773887038230896,
0.5936460494995117,
-0.21900881826877594,
-0.4298655390739441,
0.7378862500190735,
0.5600062012672424,
0.7244355082511902,
0.16687621176242828,
0.6232932806015015,
-0.436454713344574,
0.19655653834342957,
-0.33831334114074707,
0.6583468317985535,
-0.7634652853012085,
0.0528968907892704,
-0.3703460991382599,
-0.718690037727356,
-0.022614141926169395,
0.7707951068878174,
-0.10496725142002106,
0.29136842489242554,
0.3917449414730072,
0.7956444621086121,
0.0380529910326004,
0.16352586448192596,
0.10564000904560089,
0.38707292079925537,
0.15786412358283997,
0.8152930736541748,
0.7489993572235107,
-0.9922113418579102,
0.4922674894332886,
-0.43633076548576355,
-0.23540589213371277,
-0.13816283643245697,
-0.8514454960823059,
-0.712307333946228,
-0.5080764293670654,
-0.6323987245559692,
-0.5996729135513306,
-0.09608592838048935,
0.8195176124572754,
0.8230890035629272,
-0.6669766902923584,
-0.2639109194278717,
-0.06184665113687515,
0.055927615612745285,
-0.2915421724319458,
-0.30269527435302734,
0.38311439752578735,
0.3830147087574005,
-0.6557713150978088,
0.12354467809200287,
0.006930605508387089,
0.36749574542045593,
-0.08066675066947937,
-0.32346829771995544,
-0.23479098081588745,
0.004308145027607679,
0.6779688596725464,
0.48896524310112,
-0.6009810566902161,
-0.16136181354522705,
-0.16646236181259155,
-0.08782099187374115,
0.27630072832107544,
0.21416208148002625,
-0.6853638291358948,
-0.11728870868682861,
0.4287940263748169,
0.21831798553466797,
0.9381688833236694,
0.1125417947769165,
0.2563779950141907,
-0.4256705939769745,
0.15904928743839264,
0.034255191683769226,
0.34747278690338135,
0.10376594960689545,
-0.5889297127723694,
0.7894675135612488,
0.468997061252594,
-0.6760396361351013,
-0.7607803344726562,
-0.13513174653053284,
-1.203850269317627,
-0.18757638335227966,
1.1138736009597778,
-0.18492917716503143,
-0.39226123690605164,
0.04217187315225601,
-0.2330693006515503,
0.35975560545921326,
-0.48626381158828735,
0.33878567814826965,
0.5032216906547546,
-0.345386803150177,
-0.36720532178878784,
-0.805235743522644,
0.5590810179710388,
0.21745385229587555,
-0.8815411925315857,
-0.06669493764638901,
0.5152780413627625,
0.5167794227600098,
0.006885686423629522,
0.8282407522201538,
-0.2099810093641281,
0.2974782884120941,
0.11957427114248276,
0.015709079802036285,
0.024953102692961693,
0.16955426335334778,
-0.3040832579135895,
-0.10294211655855179,
-0.2793337106704712,
-0.014581919647753239
] |
OFA-Sys/chinese-clip-vit-base-patch16 | OFA-Sys | "2022-12-09T06:10:13Z" | 11,055 | 39 | transformers | [
"transformers",
"pytorch",
"chinese_clip",
"zero-shot-image-classification",
"vision",
"arxiv:2211.01335",
"endpoints_compatible",
"has_space",
"region:us"
] | zero-shot-image-classification | "2022-11-09T08:14:09Z" | ---
tags:
- vision
widget:
- src: https://huggingface.co/OFA-Sys/chinese-clip-vit-base-patch16/resolve/main/festival.jpg
candidate_labels: 灯笼, 鞭炮, 对联
example_title: festival
- src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/cat-dog-music.png
candidate_labels: 音乐表演, 体育运动
example_title: cat & dog
- src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/football-match.jpg
candidate_labels: 梅西, C罗, 马奎尔
example_title: football
---
# Chinese-CLIP-ViT-Base-Patch16
## Introduction
This is the base-version of the Chinese CLIP, with ViT-B/16 as the image encoder and RoBERTa-wwm-base as the text encoder. Chinese CLIP is a simple implementation of CLIP on a large-scale dataset of around 200 million Chinese image-text pairs. For more details, please refer to our technical report https://arxiv.org/abs/2211.01335 and our official github repo https://github.com/OFA-Sys/Chinese-CLIP (Welcome to star! 🔥🔥)
## Use with the official API
We provide a simple code snippet to show how to use the API of Chinese-CLIP to compute the image & text embeddings and similarities.
```python
from PIL import Image
import requests
from transformers import ChineseCLIPProcessor, ChineseCLIPModel
model = ChineseCLIPModel.from_pretrained("OFA-Sys/chinese-clip-vit-base-patch16")
processor = ChineseCLIPProcessor.from_pretrained("OFA-Sys/chinese-clip-vit-base-patch16")
url = "https://clip-cn-beijing.oss-cn-beijing.aliyuncs.com/pokemon.jpeg"
image = Image.open(requests.get(url, stream=True).raw)
# Squirtle, Bulbasaur, Charmander, Pikachu in English
texts = ["杰尼龟", "妙蛙种子", "小火龙", "皮卡丘"]
# compute image feature
inputs = processor(images=image, return_tensors="pt")
image_features = model.get_image_features(**inputs)
image_features = image_features / image_features.norm(p=2, dim=-1, keepdim=True) # normalize
# compute text features
inputs = processor(text=texts, padding=True, return_tensors="pt")
text_features = model.get_text_features(**inputs)
text_features = text_features / text_features.norm(p=2, dim=-1, keepdim=True) # normalize
# compute image-text similarity scores
inputs = processor(text=texts, images=image, return_tensors="pt", padding=True)
outputs = model(**inputs)
logits_per_image = outputs.logits_per_image # this is the image-text similarity score
probs = logits_per_image.softmax(dim=1) # probs: [[1.2686e-03, 5.4499e-02, 6.7968e-04, 9.4355e-01]]
```
However, if you are not satisfied with only using the API, feel free to check our github repo https://github.com/OFA-Sys/Chinese-CLIP for more details about training and inference.
<br><br>
## Results
**MUGE Text-to-Image Retrieval**:
<table border="1" width="100%">
<tr align="center">
<th>Setup</th><th colspan="4">Zero-shot</th><th colspan="4">Finetune</th>
</tr>
<tr align="center">
<td>Metric</td><td>R@1</td><td>R@5</td><td>R@10</td><td>MR</td><td>R@1</td><td>R@5</td><td>R@10</td><td>MR</td>
</tr>
<tr align="center">
<td width="120%">Wukong</td><td>42.7</td><td>69.0</td><td>78.0</td><td>63.2</td><td>52.7</td><td>77.9</td><td>85.6</td><td>72.1</td>
</tr>
<tr align="center">
<td width="120%">R2D2</td><td>49.5</td><td>75.7</td><td>83.2</td><td>69.5</td><td>60.1</td><td>82.9</td><td>89.4</td><td>77.5</td>
</tr>
<tr align="center">
<td width="120%">CN-CLIP</td><td>63.0</td><td>84.1</td><td>89.2</td><td>78.8</td><td>68.9</td><td>88.7</td><td>93.1</td><td>83.6</td>
</tr>
</table>
<br>
**Flickr30K-CN Retrieval**:
<table border="1" width="120%">
<tr align="center">
<th>Task</th><th colspan="6">Text-to-Image</th><th colspan="6">Image-to-Text</th>
</tr>
<tr align="center">
<th>Setup</th><th colspan="3">Zero-shot</th><th colspan="3">Finetune</th><th colspan="3">Zero-shot</th><th colspan="3">Finetune</th>
</tr>
<tr align="center">
<td>Metric</td><td>R@1</td><td>R@5</td><td>R@10</td><td>R@1</td><td>R@5</td><td>R@10</td><td>R@1</td><td>R@5</td><td>R@10</td><td>R@1</td><td>R@5</td><td>R@10</td>
</tr>
<tr align="center">
<td width="120%">Wukong</td><td>51.7</td><td>78.9</td><td>86.3</td><td>77.4</td><td>94.5</td><td>97.0</td><td>76.1</td><td>94.8</td><td>97.5</td><td>92.7</td><td>99.1</td><td>99.6</td>
</tr>
<tr align="center">
<td width="120%">R2D2</td><td>60.9</td><td>86.8</td><td>92.7</td><td>84.4</td><td>96.7</td><td>98.4</td><td>77.6</td><td>96.7</td><td>98.9</td><td>95.6</td><td>99.8</td><td>100.0</td>
</tr>
<tr align="center">
<td width="120%">CN-CLIP</td><td>71.2</td><td>91.4</td><td>95.5</td><td>83.8</td><td>96.9</td><td>98.6</td><td>81.6</td><td>97.5</td><td>98.8</td><td>95.3</td><td>99.7</td><td>100.0</td>
</tr>
</table>
<br>
**COCO-CN Retrieval**:
<table border="1" width="100%">
<tr align="center">
<th>Task</th><th colspan="6">Text-to-Image</th><th colspan="6">Image-to-Text</th>
</tr>
<tr align="center">
<th>Setup</th><th colspan="3">Zero-shot</th><th colspan="3">Finetune</th><th colspan="3">Zero-shot</th><th colspan="3">Finetune</th>
</tr>
<tr align="center">
<td>Metric</td><td>R@1</td><td>R@5</td><td>R@10</td><td>R@1</td><td>R@5</td><td>R@10</td><td>R@1</td><td>R@5</td><td>R@10</td><td>R@1</td><td>R@5</td><td>R@10</td>
</tr>
<tr align="center">
<td width="120%">Wukong</td><td>53.4</td><td>80.2</td><td>90.1</td><td>74.0</td><td>94.4</td><td>98.1</td><td>55.2</td><td>81.0</td><td>90.6</td><td>73.3</td><td>94.0</td><td>98.0</td>
</tr>
<tr align="center">
<td width="120%">R2D2</td><td>56.4</td><td>85.0</td><td>93.1</td><td>79.1</td><td>96.5</td><td>98.9</td><td>63.3</td><td>89.3</td><td>95.7</td><td>79.3</td><td>97.1</td><td>98.7</td>
</tr>
<tr align="center">
<td width="120%">CN-CLIP</td><td>69.2</td><td>89.9</td><td>96.1</td><td>81.5</td><td>96.9</td><td>99.1</td><td>63.0</td><td>86.6</td><td>92.9</td><td>83.5</td><td>97.3</td><td>99.2</td>
</tr>
</table>
<br>
**Zero-shot Image Classification**:
<table border="1" width="100%">
<tr align="center">
<th>Task</th><th>CIFAR10</th><th>CIFAR100</th><th>DTD</th><th>EuroSAT</th><th>FER</th><th>FGVC</th><th>KITTI</th><th>MNIST</th><th>PC</th><th>VOC</th>
</tr>
<tr align="center">
<td width="150%">GIT</td><td>88.5</td><td>61.1</td><td>42.9</td><td>43.4</td><td>41.4</td><td>6.7</td><td>22.1</td><td>68.9</td><td>50.0</td><td>80.2</td>
</tr>
<tr align="center">
<td width="150%">ALIGN</td><td>94.9</td><td>76.8</td><td>66.1</td><td>52.1</td><td>50.8</td><td>25.0</td><td>41.2</td><td>74.0</td><td>55.2</td><td>83.0</td>
</tr>
<tr align="center">
<td width="150%">CLIP</td><td>94.9</td><td>77.0</td><td>56.0</td><td>63.0</td><td>48.3</td><td>33.3</td><td>11.5</td><td>79.0</td><td>62.3</td><td>84.0</td>
</tr>
<tr align="center">
<td width="150%">Wukong</td><td>95.4</td><td>77.1</td><td>40.9</td><td>50.3</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td>
</tr>
<tr align="center">
<td width="150%">CN-CLIP</td><td>96.0</td><td>79.7</td><td>51.2</td><td>52.0</td><td>55.1</td><td>26.2</td><td>49.9</td><td>79.4</td><td>63.5</td><td>84.9</td>
</tr>
</table>
<br>
## Citation
If you find Chinese CLIP helpful, feel free to cite our paper. Thanks for your support!
```
@article{chinese-clip,
title={Chinese CLIP: Contrastive Vision-Language Pretraining in Chinese},
author={Yang, An and Pan, Junshu and Lin, Junyang and Men, Rui and Zhang, Yichang and Zhou, Jingren and Zhou, Chang},
journal={arXiv preprint arXiv:2211.01335},
year={2022}
}
```
<br> | [
-0.7048627734184265,
-0.6063602566719055,
0.02171037532389164,
0.34864333271980286,
-0.36218878626823425,
0.0043547493405640125,
-0.1824498176574707,
-0.43621793389320374,
0.4641698896884918,
-0.0019075481686741114,
-0.8736940026283264,
-0.35836052894592285,
-0.5914298892021179,
0.21978428959846497,
0.18391120433807373,
0.42613425850868225,
-0.17076240479946136,
-0.09850665181875229,
0.1682555228471756,
-0.1003541573882103,
-0.49596458673477173,
-0.111762136220932,
-0.3468315303325653,
-0.11649585515260696,
0.14561378955841064,
0.5601053237915039,
0.4922161400318146,
0.5417672395706177,
0.5740559697151184,
0.45560917258262634,
-0.4586371183395386,
0.3475492298603058,
-0.24986794590950012,
-0.31090208888053894,
0.1424986571073532,
-0.3519499897956848,
-0.3699410557746887,
-0.07092396169900894,
0.4857317805290222,
0.34572726488113403,
0.2325901836156845,
0.3657458424568176,
0.6858891248703003,
0.911282479763031,
-0.7048461437225342,
0.07710766047239304,
-0.14541146159172058,
0.2966785430908203,
-0.39027857780456543,
-0.34179404377937317,
0.13051311671733856,
-0.7711042761802673,
-0.1646852195262909,
-0.7783600091934204,
0.0833803191781044,
-0.01440843753516674,
1.6858351230621338,
-0.09111402183771133,
0.03028879687190056,
-0.00366415036842227,
-0.5016472935676575,
1.098059058189392,
-0.7359546422958374,
0.2549305558204651,
0.4895574152469635,
-0.09410860389471054,
-0.09002472460269928,
-0.6307135224342346,
-1.0470471382141113,
0.39276382327079773,
-0.21610267460346222,
0.5601024031639099,
-0.0033417551312595606,
-0.6778924465179443,
0.20321901142597198,
0.2882528305053711,
-0.5128816366195679,
-0.16213946044445038,
-0.3131195604801178,
-0.21715445816516876,
0.35996338725090027,
0.17532740533351898,
0.7352434992790222,
-0.5161352753639221,
-0.5808662176132202,
-0.14464984834194183,
-0.28922030329704285,
0.59883713722229,
0.05477304011583328,
0.26567989587783813,
-0.613930881023407,
0.4245065748691559,
-0.15592274069786072,
0.5285902619361877,
0.17367124557495117,
-0.35261961817741394,
0.6844552755355835,
-0.7086057662963867,
-0.32057422399520874,
-0.15855273604393005,
0.9839170575141907,
0.7173811793327332,
0.022151106968522072,
0.04535973444581032,
0.16728462278842926,
-0.10704825818538666,
-0.2547062039375305,
-0.9151707291603088,
-0.10374540835618973,
0.15404637157917023,
-0.6865485310554504,
-0.48342981934547424,
0.21121391654014587,
-1.2960609197616577,
0.28387874364852905,
-0.18258920311927795,
0.49040883779525757,
-0.6173932552337646,
-0.318136066198349,
0.23737511038780212,
0.11421822756528854,
0.5361554026603699,
0.34954798221588135,
-0.7392537593841553,
0.1290227323770523,
0.37194332480430603,
1.1451200246810913,
-0.010519035160541534,
-0.3384045362472534,
0.05724087357521057,
0.3389422297477722,
-0.3540130853652954,
1.0034970045089722,
-0.15775904059410095,
-0.4122513234615326,
-0.22535808384418488,
0.5159620046615601,
-0.2979851961135864,
-0.06874746084213257,
0.8214134573936462,
-0.04290102422237396,
0.38480502367019653,
-0.768977165222168,
-0.20035573840141296,
0.0011959129478782415,
0.34159424901008606,
-0.5611838102340698,
1.2052818536758423,
-0.01973743736743927,
-1.2682263851165771,
0.3973899781703949,
-0.8183810710906982,
-0.19058366119861603,
-0.2631981074810028,
0.019351664930582047,
-0.6469060182571411,
-0.619645357131958,
0.6760567426681519,
0.2840077877044678,
-0.3864881694316864,
-0.8177194595336914,
-0.4705703854560852,
-0.2874284088611603,
0.03700000047683716,
-0.2127731740474701,
1.1877968311309814,
0.23709698021411896,
-0.6655100584030151,
-0.20401467382907867,
-0.6344500184059143,
0.2324678897857666,
0.7612997889518738,
-0.34330499172210693,
-0.07201817631721497,
-0.4456290602684021,
-0.0890430361032486,
0.3953670859336853,
0.3728560209274292,
-0.5807203650474548,
0.06595958769321442,
-0.4892316162586212,
0.42144763469696045,
0.9475165605545044,
0.3056240975856781,
0.4348073899745941,
-0.727181613445282,
0.42430946230888367,
0.03857404738664627,
0.3280216455459595,
0.24598091840744019,
-0.16770397126674652,
-0.778871476650238,
-0.4212946891784668,
0.2337445169687271,
0.5820671916007996,
-0.7823507189750671,
0.7399908304214478,
-0.36302557587623596,
-0.667163610458374,
-0.280612587928772,
-0.10660994797945023,
0.2708311975002289,
0.6774702072143555,
0.4829915761947632,
-0.08215433359146118,
-0.6733524203300476,
-0.4719294607639313,
0.3141630291938782,
-0.17429912090301514,
0.29729846119880676,
0.6257034540176392,
0.8355811834335327,
-0.2885127663612366,
0.7617874145507812,
-0.9074303507804871,
-0.7864221930503845,
-0.43141335248947144,
-0.1500369906425476,
0.41519057750701904,
0.7808966636657715,
1.0171020030975342,
-0.9150177240371704,
-0.7543132901191711,
0.001345015480183065,
-0.7955440878868103,
-0.06738404929637909,
0.0579642690718174,
-0.4597785770893097,
0.06027872860431671,
0.2232067584991455,
-0.5031028389930725,
0.6400158405303955,
0.18884947896003723,
-0.3557353615760803,
0.9433424472808838,
-0.2762608230113983,
0.6183876991271973,
-1.2032580375671387,
0.42954131960868835,
-0.0992371067404747,
0.15546734631061554,
-0.5813010334968567,
0.03346496820449829,
-0.0276979748159647,
0.06007664278149605,
-0.7019559144973755,
0.5839276909828186,
-0.7307568192481995,
0.26884835958480835,
-0.04562879726290703,
0.26576289534568787,
0.24879507720470428,
0.6758448481559753,
-0.020774809643626213,
1.145950436592102,
0.6956320405006409,
-0.7248049974441528,
0.2341059446334839,
0.5342939496040344,
-0.6736078858375549,
0.5364136099815369,
-0.7374892830848694,
-0.008913910947740078,
-0.09674468636512756,
0.12545593082904816,
-0.9643669128417969,
-0.12048028409481049,
0.38140755891799927,
-0.6545871496200562,
0.28559157252311707,
0.010097089223563671,
-0.6051539778709412,
-0.9669062495231628,
-0.8413540720939636,
0.2644609808921814,
0.5005788803100586,
-0.4114357829093933,
0.24240592122077942,
0.3069809377193451,
0.09277581423521042,
-0.8119845390319824,
-0.8335738778114319,
-0.28630855679512024,
-0.25136446952819824,
-0.9107259511947632,
0.6355808973312378,
-0.1006852388381958,
0.23016111552715302,
-0.18126624822616577,
-0.24449725449085236,
-0.3019527792930603,
0.0006816086242906749,
0.09806022047996521,
0.4446250796318054,
-0.47931644320487976,
-0.26637592911720276,
-0.472687691450119,
0.15615233778953552,
-0.17293474078178406,
0.07315825670957565,
0.8618703484535217,
-0.1509580761194229,
-0.37611281871795654,
-0.7578141689300537,
-0.042549096047878265,
0.4452178478240967,
-0.36190342903137207,
0.8171013593673706,
0.8840224146842957,
-0.28823187947273254,
-0.029643191024661064,
-0.31770479679107666,
-0.23622973263263702,
-0.5736179351806641,
-0.06444808095693588,
-0.37372803688049316,
-0.6364604830741882,
0.7863368988037109,
0.05268678069114685,
-0.42677241563796997,
0.6502771973609924,
0.4482506215572357,
-0.4499090015888214,
0.7302818298339844,
0.26797258853912354,
-0.1829652488231659,
0.5012178421020508,
-0.8976320624351501,
0.0667460709810257,
-1.1635786294937134,
-0.5728771686553955,
-0.6489881277084351,
-0.3351590037345886,
-0.31294065713882446,
-0.6828988790512085,
0.426733136177063,
0.46045300364494324,
-0.5113166570663452,
0.4327906370162964,
-1.0430917739868164,
0.15787966549396515,
0.4208763837814331,
0.6989887356758118,
-0.15306377410888672,
-0.18629758059978485,
-0.6070742011070251,
-0.12506160140037537,
-0.5097712874412537,
-0.4819098711013794,
0.6003124713897705,
0.17298318445682526,
0.5561853647232056,
0.2443915456533432,
0.7003231048583984,
0.060605961829423904,
-0.39210522174835205,
-0.4363689124584198,
0.5398492217063904,
0.016557900235056877,
-0.4628029465675354,
-0.42177143692970276,
-0.16378973424434662,
-1.1383450031280518,
0.28035876154899597,
-0.6039993762969971,
-1.0482996702194214,
0.4494939148426056,
0.15548136830329895,
-0.4665805995464325,
0.689635157585144,
-0.49425268173217773,
0.8243017196655273,
-0.24650715291500092,
-0.7662532329559326,
0.2405153214931488,
-0.5683762431144714,
0.18756172060966492,
0.4427301585674286,
0.35452526807785034,
-0.033225640654563904,
-0.08471289277076721,
0.8374223113059998,
-0.9312414526939392,
0.6408520340919495,
-0.011128701269626617,
0.24456855654716492,
0.7460500597953796,
-0.26532864570617676,
0.764596700668335,
-0.061248451471328735,
0.056792404502630234,
-0.10387454926967621,
-0.10438305884599686,
-0.4449059069156647,
-0.3788987398147583,
0.7423164248466492,
-0.9195632934570312,
-0.5488162636756897,
-0.7082956433296204,
0.15073570609092712,
0.3321889638900757,
0.5485507845878601,
0.5505400896072388,
0.38495174050331116,
0.04252178966999054,
0.177715003490448,
0.876794159412384,
-0.224441260099411,
0.7432572841644287,
0.0018241866491734982,
0.14287666976451874,
-0.46327123045921326,
1.0677752494812012,
0.21095040440559387,
0.006431030575186014,
0.7481045722961426,
0.5493301153182983,
-0.538556694984436,
-0.5089293718338013,
-0.20952093601226807,
0.352103590965271,
-0.4884305000305176,
-0.5001201629638672,
-0.5829254984855652,
-0.172750785946846,
-0.7557632923126221,
-0.49683326482772827,
-0.19464443624019623,
-0.32944682240486145,
-0.6506553888320923,
-0.16024841368198395,
0.5660713911056519,
0.3035547435283661,
-0.4404655396938324,
-0.03712902590632439,
-0.6257364749908447,
0.5513795614242554,
0.39484837651252747,
0.2749895453453064,
0.3406335115432739,
-0.34442436695098877,
-0.020550599321722984,
0.11377496272325516,
-0.6114513874053955,
-0.9705690145492554,
0.5316659212112427,
-0.3107856214046478,
0.6281850934028625,
0.296986848115921,
0.05347646400332451,
1.2185755968093872,
-0.3204690217971802,
0.9621837139129639,
0.596815824508667,
-1.0398300886154175,
0.7471815347671509,
-0.4298449158668518,
0.4143632650375366,
0.5342105627059937,
0.2031533271074295,
-0.3285166025161743,
-0.06900562345981598,
-0.5253362655639648,
-0.9109999537467957,
0.838765025138855,
0.2643115520477295,
-0.44410941004753113,
0.0958409234881401,
-0.15593114495277405,
-0.44771409034729004,
-0.08659321814775467,
-0.7652390003204346,
-0.7794675230979919,
-0.6424626111984253,
0.0422876738011837,
0.3380529284477234,
0.08876534551382065,
0.21362023055553436,
-0.5478148460388184,
0.6854826807975769,
0.1465366631746292,
0.7877352237701416,
0.595800518989563,
-0.04261910170316696,
0.027658021077513695,
0.3855865001678467,
0.8460066914558411,
0.4520500898361206,
-0.2226121425628662,
-0.06190769374370575,
0.30870938301086426,
-0.8905583620071411,
0.019717132672667503,
-0.26053881645202637,
-0.47078731656074524,
0.036076344549655914,
0.22877170145511627,
0.6384063363075256,
0.22754620015621185,
-0.08680441230535507,
0.6351107358932495,
0.1622912883758545,
-0.3560827076435089,
-0.5710669755935669,
0.04597771167755127,
0.1941390037536621,
0.10656886547803879,
0.3968496024608612,
0.1990283876657486,
-0.08369820564985275,
-0.5384991765022278,
0.31019237637519836,
0.5261145234107971,
-0.5029047727584839,
0.10273635387420654,
0.9797892570495605,
0.11633612960577011,
-0.07989291101694107,
0.04384871944785118,
-0.0028774559032171965,
-1.0401744842529297,
1.0045887231826782,
0.4753657579421997,
0.4573705792427063,
-0.12151624262332916,
0.22476398944854736,
1.0111209154129028,
0.021930506452918053,
-0.15554726123809814,
0.4203147888183594,
0.0029607368633151054,
-0.3207671642303467,
0.04152628779411316,
-0.7385095953941345,
0.020443877205252647,
0.207116037607193,
-0.6753749251365662,
0.6323208212852478,
-0.4696763753890991,
-0.22595711052417755,
-0.08443246781826019,
0.36880356073379517,
-0.7172232270240784,
0.6192550659179688,
-0.07798142731189728,
0.9662707448005676,
-0.5929468870162964,
0.8765903115272522,
0.4936448633670807,
-0.8646713495254517,
-1.1653518676757812,
0.25838416814804077,
-0.06046167016029358,
-0.8669376373291016,
0.908233106136322,
-0.06643365323543549,
-0.1654086858034134,
-0.20762158930301666,
-0.5230957865715027,
-0.9588629603385925,
1.6279206275939941,
-0.15946857631206512,
-0.12630344927310944,
0.10012170672416687,
0.26973608136177063,
0.42009037733078003,
-0.08258689194917679,
0.5566732287406921,
0.24429704248905182,
0.5898390412330627,
0.22796598076820374,
-0.9271419048309326,
0.4446280300617218,
-0.49075737595558167,
0.2055870145559311,
0.04651256650686264,
-1.3894848823547363,
1.0408803224563599,
-0.18926909565925598,
-0.16142980754375458,
0.12876078486442566,
0.6719172596931458,
0.45456239581108093,
0.08554448932409286,
0.37585878372192383,
0.6492375135421753,
0.3595973551273346,
-0.374078631401062,
0.8128232955932617,
-0.2706674337387085,
0.8352609276771545,
0.7452912330627441,
0.18115486204624176,
0.7573809027671814,
0.4478299021720886,
-0.5127944946289062,
0.4892972707748413,
0.49093565344810486,
-0.37376081943511963,
0.6123888492584229,
0.005209457594901323,
-0.19301852583885193,
0.038336314260959625,
-0.12044581770896912,
-0.6007410883903503,
0.24818763136863708,
0.18000665307044983,
-0.174456387758255,
0.0516684427857399,
-0.14635208249092102,
0.13721056282520294,
0.41624969244003296,
-0.5558804273605347,
0.5750489234924316,
-0.05529472976922989,
-0.2931358814239502,
0.6169254183769226,
-0.21370145678520203,
1.1416038274765015,
-0.5694526433944702,
0.017656993120908737,
0.08057279139757156,
0.21547633409500122,
-0.37628960609436035,
-1.2860714197158813,
-0.02899341471493244,
-0.0696883276104927,
-0.18358005583286285,
-0.04188412427902222,
0.7370484471321106,
-0.037430539727211,
-0.715714156627655,
0.2350873202085495,
-0.07697217911481857,
0.022195186465978622,
0.47033196687698364,
-1.033795714378357,
0.15066276490688324,
0.3121684491634369,
-0.31576746702194214,
0.22083573043346405,
0.6001226305961609,
0.2704614996910095,
0.5927380919456482,
0.7425771355628967,
0.4071582555770874,
0.37656474113464355,
-0.34125685691833496,
0.9261401295661926,
-0.774170458316803,
-0.588354229927063,
-0.9337258338928223,
0.4839634895324707,
-0.4664390981197357,
-0.20087356865406036,
0.9383557438850403,
0.6018443703651428,
0.7167096734046936,
-0.42019376158714294,
0.9072088003158569,
-0.6748746037483215,
0.7148139476776123,
-0.3973434865474701,
1.1065642833709717,
-0.8190616369247437,
-0.26556357741355896,
-0.7002488970756531,
-0.5094462037086487,
-0.12640483677387238,
1.1901346445083618,
-0.11354054510593414,
0.2072601318359375,
0.7174900770187378,
0.8554089069366455,
-0.006980732548981905,
-0.07772426307201385,
-0.11082077026367188,
0.08361505717039108,
0.13264590501785278,
0.8941857218742371,
0.44301414489746094,
-0.7465585470199585,
0.7499248385429382,
-0.7258560657501221,
-0.04914619028568268,
-0.37619784474372864,
-0.7234967947006226,
-0.7632340788841248,
-0.7262369394302368,
-0.40678146481513977,
-0.3281829357147217,
-0.25217416882514954,
0.9107385277748108,
0.6503679752349854,
-0.7671927809715271,
-0.05869998410344124,
-0.22105051577091217,
0.36842766404151917,
-0.2981407642364502,
-0.31233468651771545,
1.0215939283370972,
0.07184136658906937,
-1.0102875232696533,
-0.38570308685302734,
0.27441611886024475,
0.6020153164863586,
0.2947261929512024,
-0.2527799606323242,
-0.5441774129867554,
-0.062163498252630234,
0.29123666882514954,
0.7244998812675476,
-0.5781717896461487,
-0.35573142766952515,
0.09779787063598633,
-0.3132222592830658,
0.5318328738212585,
0.36891037225723267,
-0.32518044114112854,
0.1148502305150032,
0.8133470416069031,
0.31221020221710205,
0.46720173954963684,
0.20633524656295776,
-0.0981321707367897,
-0.24290964007377625,
0.04119282588362694,
0.09646595269441605,
0.40764695405960083,
0.11000537127256393,
-0.3263934850692749,
0.6517514586448669,
0.44010260701179504,
-0.6837552785873413,
-0.7264427542686462,
-0.1311575472354889,
-1.4651788473129272,
-0.272053599357605,
1.265190601348877,
-0.1866796463727951,
-0.6786070466041565,
0.07258724421262741,
-0.5853881239891052,
0.6698465347290039,
-0.5215046405792236,
0.4828181862831116,
0.41922762989997864,
-0.20827269554138184,
-0.31801721453666687,
-0.5171947479248047,
0.5838825106620789,
0.33075645565986633,
-0.7847709059715271,
-0.26044151186943054,
0.06109791249036789,
0.3248463571071625,
0.5160983800888062,
0.7630512118339539,
-0.39053434133529663,
0.2954927086830139,
0.006351190619170666,
-0.12440479546785355,
-0.03340693190693855,
0.21996669471263885,
0.11358505487442017,
0.27834075689315796,
-0.09348736703395844,
-0.6911019086837769
] |
Yntec/AnythingV4-768 | Yntec | "2023-11-14T09:16:58Z" | 11,054 | 2 | diffusers | [
"diffusers",
"anime",
"general",
"andite",
"stable-diffusion",
"stable-diffusion-diffusers",
"text-to-image",
"en",
"license:creativeml-openrail-m",
"endpoints_compatible",
"has_space",
"diffusers:StableDiffusionPipeline",
"region:us"
] | text-to-image | "2023-11-12T12:50:01Z" | ---
language:
- en
license: creativeml-openrail-m
tags:
- anime
- general
- andite
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
- diffusers
inference: true
---
# Anything V4
768x768 version of this model with the MoistMix V2 VAE baked in for the Inference API. Original page: https://huggingface.co/xyn-ai/anything-v4.0
Sample and prompt:
![Sample](https://cdn-uploads.huggingface.co/production/uploads/63239b8370edc53f51cd5d42/sp7Nk14WSgNpAn2zkA6mi.png)
Realistic girl standing. Very cute anime faces, chibi art, flawless, painting by gaston bussiere, charles sillem lidderdale. perfect face, full body, baby, masterpiece, highest quality, 1girl, blue eyes, sweater, Pretty CUTE GIRL, skirt, highly detailed | [
-0.08861684799194336,
-0.6438111066818237,
0.5468608736991882,
0.4572109282016754,
-0.09095053374767303,
-0.44236746430397034,
0.5202335119247437,
-0.6114890575408936,
0.7763891220092773,
0.6533967852592468,
-0.7195767164230347,
-0.528602659702301,
-0.37214145064353943,
-0.32714301347732544,
-0.5938203930854797,
0.5326991677284241,
0.2857457995414734,
0.04906054213643074,
-0.2965864837169647,
0.07413909584283829,
-0.2906220257282257,
-0.171067014336586,
-0.624144971370697,
-0.22895748913288116,
0.4339786767959595,
0.7032572627067566,
0.7390457987785339,
0.6255008578300476,
-0.009743517264723778,
0.4021848142147064,
0.1482415348291397,
-0.17762207984924316,
-0.5346981287002563,
-0.04501865804195404,
0.07114719599485397,
-0.7903620004653931,
-0.7958377599716187,
0.1119786947965622,
0.48817315697669983,
0.3107976019382477,
-0.37116116285324097,
0.049384985119104385,
-0.400567889213562,
0.2811592221260071,
-0.4141778349876404,
-0.07836003601551056,
-0.3419479727745056,
-0.11315575242042542,
-0.2555364966392517,
0.552581250667572,
-0.18642395734786987,
-0.33029061555862427,
0.14716246724128723,
-0.8651630282402039,
0.1623116433620453,
0.07035025209188461,
1.4775127172470093,
0.23891860246658325,
-0.5607204437255859,
0.2197146862745285,
-0.3354489505290985,
0.8326224684715271,
-0.6815940141677856,
0.7907395958900452,
0.4898129105567932,
0.45242223143577576,
-0.0981789082288742,
-1.1616828441619873,
-0.457444429397583,
0.17754356563091278,
0.03889840096235275,
0.24800075590610504,
-0.1753392368555069,
-0.3454919755458832,
0.2967180907726288,
0.1794717162847519,
-0.5183426737785339,
-0.28441569209098816,
-0.17498964071273804,
-0.05811966583132744,
0.6720052361488342,
0.014033329673111439,
0.7451454997062683,
-0.07904556393623352,
-0.5863677263259888,
0.044290099292993546,
-0.5720831155776978,
0.08052857220172882,
-0.01004466600716114,
-0.2413645088672638,
-0.8195303678512573,
0.629873514175415,
-0.09969418495893478,
0.528320848941803,
-0.1498979777097702,
0.03960653766989708,
0.1346801072359085,
-0.1518353521823883,
-0.474948525428772,
-0.31416335701942444,
0.46038123965263367,
0.515230655670166,
0.048581063747406006,
0.19922001659870148,
0.0011659500887617469,
0.1259835660457611,
0.4464549720287323,
-1.3717842102050781,
-0.514031171798706,
0.39844486117362976,
-0.6543841361999512,
-0.5989241600036621,
0.19951066374778748,
-0.8162440657615662,
-0.49495556950569153,
-0.23761259019374847,
0.05160856619477272,
-0.3675956428050995,
-0.6258180737495422,
0.02187407575547695,
-0.11605530977249146,
0.40306201577186584,
0.415524423122406,
-0.6114063262939453,
0.25368499755859375,
0.32947200536727905,
0.5010982751846313,
0.46207866072654724,
0.032548271119594574,
-0.09021952003240585,
-0.1301611065864563,
-0.6115157604217529,
0.8480097651481628,
-0.44307413697242737,
-0.37726855278015137,
-0.28448474407196045,
0.2939179539680481,
0.03505231440067291,
-0.37114569544792175,
0.894334614276886,
-0.3103741407394409,
0.0024208237882703543,
-0.5063907504081726,
-0.4935838580131531,
-0.4295142889022827,
0.010101990774273872,
-0.589484453201294,
0.7880526781082153,
0.6505569815635681,
-0.7168855667114258,
0.25179654359817505,
-0.34577834606170654,
0.10552475601434708,
0.0766192153096199,
-0.3237278461456299,
-0.698824942111969,
0.25288158655166626,
-0.26397112011909485,
0.2922840714454651,
-0.34471774101257324,
-0.21795041859149933,
-0.964327335357666,
-0.02488997019827366,
0.4866379201412201,
-0.17585740983486176,
1.0513019561767578,
0.12488879263401031,
-0.44695162773132324,
0.3291025161743164,
-0.9763897657394409,
0.3460701107978821,
0.6368141770362854,
0.380875825881958,
-0.15793611109256744,
-0.07871954888105392,
0.4438057839870453,
0.3659502863883972,
0.27855610847473145,
-0.5296595096588135,
0.2243831306695938,
-0.13277769088745117,
0.5869548916816711,
0.36028748750686646,
-0.10804103314876556,
0.2141490876674652,
-0.6008486747741699,
0.6967393159866333,
-0.11633498221635818,
0.40463489294052124,
-0.03137432411313057,
-0.7713222503662109,
-0.8173838257789612,
-0.8180242776870728,
0.4548735022544861,
0.28953447937965393,
-0.6598569750785828,
0.22023089230060577,
0.039778877049684525,
-0.9996261596679688,
-0.4690249562263489,
-0.0020614084787666798,
0.2727731168270111,
0.42051073908805847,
-0.0923071801662445,
-0.07897771149873734,
-0.6527906060218811,
-1.2748099565505981,
0.501644492149353,
-0.24753981828689575,
-0.18024572730064392,
0.19399672746658325,
0.1983107030391693,
-0.5447074174880981,
0.669718861579895,
-0.4038386046886444,
0.16504934430122375,
-0.1569482982158661,
-0.3367215692996979,
0.23257403075695038,
0.5556613802909851,
1.305589199066162,
-1.0241625308990479,
-0.30073070526123047,
-0.12777911126613617,
-0.7757709622383118,
-0.28477010130882263,
0.46975329518318176,
-0.9506707191467285,
-0.12030830979347229,
0.08142703026533127,
-0.9930344223976135,
0.8988668322563171,
0.5239179134368896,
-0.9598035216331482,
0.5098528861999512,
0.16645480692386627,
0.34490153193473816,
-1.1099995374679565,
0.03692788630723953,
0.2081029713153839,
-0.8081459403038025,
-0.5036454200744629,
0.6577781438827515,
0.2991545498371124,
-0.08867671340703964,
-0.7247772812843323,
1.0761017799377441,
-0.48125916719436646,
0.18044885993003845,
-0.41047152876853943,
0.05257260426878929,
0.4983935058116913,
-0.0746559277176857,
0.26984161138534546,
0.18795762956142426,
0.7955939769744873,
-0.10816052556037903,
0.3248266279697418,
0.7342129945755005,
-0.12291421741247177,
0.6395621299743652,
-0.9940853118896484,
-0.07467175275087357,
0.2466396540403366,
0.11168775707483292,
-1.0621922016143799,
-0.7918825745582581,
0.3350598216056824,
-0.6050657629966736,
0.2826768159866333,
-0.15365105867385864,
-0.2835042476654053,
-0.27281665802001953,
-0.393454909324646,
0.38425642251968384,
0.6702286601066589,
-0.569172203540802,
0.7222219109535217,
0.3877025246620178,
-0.1757851541042328,
-0.06905511021614075,
-0.5662975311279297,
-0.24305176734924316,
-0.22203059494495392,
-0.7547542452812195,
0.17145107686519623,
-0.13129277527332306,
-0.4884757697582245,
-0.10544916987419128,
-0.1847638487815857,
-0.46952056884765625,
-0.2524506747722626,
0.5656877160072327,
0.6265795230865479,
-0.5076362490653992,
-0.6431122422218323,
-0.04978350177407265,
-0.03688865900039673,
0.03608381003141403,
0.19680795073509216,
0.31268391013145447,
-0.1407400667667389,
-0.05960620567202568,
-0.7486834526062012,
0.4160376191139221,
0.7877992987632751,
0.401618093252182,
0.5211403369903564,
0.3144718110561371,
-0.8662062883377075,
-0.17282520234584808,
-0.4331790506839752,
-0.32718414068222046,
-0.4618259370326996,
-0.08498325198888779,
-0.5390889644622803,
-0.35336989164352417,
0.6732924580574036,
0.5279545187950134,
-0.20323742926120758,
0.18042558431625366,
0.4329867959022522,
-0.034239087253808975,
1.1875584125518799,
0.49070268869400024,
-0.044170111417770386,
0.21573956310749054,
-0.4075612723827362,
0.06595110893249512,
-0.38976985216140747,
-0.08539492636919022,
-0.30889999866485596,
-0.2808701992034912,
-0.4743926525115967,
-0.6094610095024109,
-0.17046140134334564,
0.28558194637298584,
-0.42939236760139465,
0.7127837538719177,
-0.3524228632450104,
0.28733396530151367,
0.5255562663078308,
0.5568614602088928,
-0.016164468601346016,
-0.21538470685482025,
0.3543175756931305,
-0.24091598391532898,
-0.7358494400978088,
-0.4461817443370819,
0.5759539604187012,
0.6143243908882141,
0.573155403137207,
0.38631266355514526,
0.3544327914714813,
-0.01726713590323925,
0.4438847005367279,
-0.5427989363670349,
0.5513542890548706,
0.1033024936914444,
-1.2299413681030273,
0.07272925972938538,
-0.4167954623699188,
-0.6864965558052063,
0.15647947788238525,
-0.46357372403144836,
-0.8638415336608887,
0.4845777451992035,
0.10631413757801056,
-0.37197619676589966,
0.1028938814997673,
-0.848595380783081,
1.0400340557098389,
-0.07676127552986145,
-0.5328962206840515,
0.23852591216564178,
-0.5199087858200073,
0.5951324701309204,
0.19229023158550262,
-0.014504961669445038,
-0.2030649483203888,
-0.3146486282348633,
0.18246234953403473,
-0.6041887998580933,
0.9245285987854004,
-0.14510126411914825,
-0.11710966378450394,
0.4318414032459259,
0.1841646283864975,
0.20546194911003113,
0.6513014435768127,
-0.2413739413022995,
0.3322382867336273,
0.4480413496494293,
-1.0173979997634888,
-0.5480373501777649,
1.0764977931976318,
-0.8162493705749512,
-0.12310431152582169,
-0.41757282614707947,
-0.2660803198814392,
0.08180832862854004,
0.4380176067352295,
0.6276212334632874,
0.7378316521644592,
-0.18070675432682037,
0.37553784251213074,
0.5486287474632263,
-0.09639403223991394,
0.16580234467983246,
0.4510948956012726,
-0.8793561458587646,
-0.32488396763801575,
0.9158838391304016,
0.03116666153073311,
0.23137298226356506,
0.12073226273059845,
0.13267403841018677,
-0.3316159248352051,
-0.2318599820137024,
-0.5152059197425842,
0.5610478520393372,
-0.5158429145812988,
-0.2757004499435425,
-0.42819029092788696,
-0.3190169930458069,
-0.42847394943237305,
-0.16459080576896667,
-0.7014039158821106,
-0.4549500644207001,
-0.47847774624824524,
-0.12533925473690033,
0.43819859623908997,
0.6767460107803345,
0.15393275022506714,
0.3685256540775299,
-0.6447336077690125,
0.49076777696609497,
0.2945942282676697,
0.3024836480617523,
-0.38126346468925476,
-0.5348629951477051,
0.27405643463134766,
0.06456422805786133,
-0.4217039942741394,
-0.8708838820457458,
0.356044203042984,
0.14174413681030273,
0.3838508725166321,
0.8576180338859558,
-0.02777940221130848,
0.47078704833984375,
-0.2970203161239624,
0.5487123727798462,
0.19174042344093323,
-0.7160657644271851,
0.25394657254219055,
-0.8475324511528015,
-0.08418294042348862,
0.38987967371940613,
0.42448699474334717,
0.09345785528421402,
-0.02723095938563347,
-1.1620632410049438,
-0.7469655871391296,
0.23545855283737183,
0.7570905089378357,
0.09531567245721817,
0.07393330335617065,
0.7977238297462463,
-0.026729900389909744,
0.5502074360847473,
-0.6071411967277527,
-0.5713291764259338,
-0.2367093861103058,
-0.12423098832368851,
0.39416828751564026,
-0.11221997439861298,
0.0521259643137455,
-0.5769059062004089,
0.9010015726089478,
-0.09087877720594406,
0.5900833606719971,
-0.06971587240695953,
0.46173858642578125,
-0.06572958081960678,
-0.5067811608314514,
0.541540265083313,
0.9253348708152771,
-0.4115713834762573,
-0.32373058795928955,
-0.2297709584236145,
-0.14433038234710693,
0.09212107956409454,
0.10686429589986801,
-0.334496408700943,
0.1346457451581955,
0.43038979172706604,
0.9988014698028564,
0.5775858163833618,
-0.6761957406997681,
0.6179352402687073,
-0.4320985972881317,
-0.020022716373205185,
-0.5811771154403687,
0.4155983328819275,
0.3104114532470703,
0.5086864233016968,
-0.2624119520187378,
0.17069527506828308,
0.24608103930950165,
-0.7580748200416565,
0.37914130091667175,
0.30434656143188477,
-0.6295154094696045,
-0.6204039454460144,
0.9552573561668396,
-0.10011041909456253,
-0.12079079449176788,
0.5712087154388428,
-0.17695072293281555,
-0.40275701880455017,
0.7178153991699219,
0.5393419861793518,
0.6760439276695251,
-0.5286380648612976,
0.5236504673957825,
0.46982184052467346,
-0.053928192704916,
0.17963725328445435,
0.6912781596183777,
0.13667190074920654,
-0.8543493747711182,
0.0943991094827652,
-0.7112773060798645,
-0.4532474875450134,
0.31462910771369934,
-0.6183376312255859,
0.9365155696868896,
-0.7616589069366455,
-0.11464200168848038,
0.10233189165592194,
-0.13903078436851501,
-0.5250062346458435,
0.787381112575531,
0.12721486389636993,
1.1844871044158936,
-0.8347411155700684,
0.8590048551559448,
0.8487535715103149,
-0.5531732439994812,
-0.9124660491943359,
-0.16572019457817078,
0.41773930191993713,
-0.8837043046951294,
0.011985458433628082,
0.34273648262023926,
0.23969845473766327,
0.024360291659832,
-0.9601826071739197,
-0.8538748025894165,
0.8752772212028503,
0.5041883587837219,
-0.6047136187553406,
-0.18031428754329681,
-0.5058368444442749,
0.3023039698600769,
-0.5015797019004822,
0.8293004631996155,
0.7860970497131348,
0.3999512791633606,
0.4801660180091858,
-0.4013134241104126,
-0.1634259819984436,
-0.9691725373268127,
0.2983127534389496,
-0.04158329963684082,
-0.9483116269111633,
0.7483411431312561,
-0.08995058387517929,
-0.0013296650722622871,
0.9372650980949402,
0.8972066044807434,
0.6667851209640503,
0.34405195713043213,
0.6346310973167419,
0.7165075540542603,
0.33365485072135925,
-0.22299200296401978,
1.3018044233322144,
0.1358594447374344,
0.08435605466365814,
1.1604351997375488,
-0.39544352889060974,
0.7300060391426086,
-0.01786772347986698,
-0.26790523529052734,
0.49614766240119934,
1.2107895612716675,
0.1081969141960144,
0.30549970269203186,
0.031131738796830177,
-0.2186466008424759,
-0.41166582703590393,
-0.1451689749956131,
-0.41200053691864014,
0.34726420044898987,
0.39483359456062317,
-0.15828830003738403,
0.014967200346291065,
-0.05295061320066452,
0.0981857031583786,
0.09523440152406693,
0.05649792030453682,
0.39830848574638367,
0.4770713448524475,
-0.06955811381340027,
0.49856677651405334,
-0.25646501779556274,
0.2652077078819275,
-0.6053223609924316,
-0.4167034327983856,
-0.14040499925613403,
0.0534077063202858,
-0.39824366569519043,
-0.6079788208007812,
0.027836119756102562,
-0.26830530166625977,
-0.43330442905426025,
0.08728787302970886,
0.8472221493721008,
-0.16721734404563904,
-1.0323612689971924,
0.6276172399520874,
0.12783220410346985,
0.3968120515346527,
-0.29777419567108154,
-1.1095452308654785,
0.4712992012500763,
-0.03076859563589096,
-0.37411198019981384,
0.20002798736095428,
0.6627105474472046,
0.03068539872765541,
0.6629087924957275,
0.3927854001522064,
0.1571281999349594,
0.1645536869764328,
0.18372884392738342,
0.6166817545890808,
-0.534839391708374,
-0.4296618700027466,
-0.2932540774345398,
0.8264124393463135,
-0.3231939673423767,
-0.31821686029434204,
0.7882663607597351,
0.48723384737968445,
0.5685359239578247,
-0.13637720048427582,
0.7216121554374695,
-0.4823768734931946,
0.7599831819534302,
-0.35574251413345337,
0.7433956861495972,
-1.0174708366394043,
-0.2816654443740845,
-0.3454658091068268,
-1.1327238082885742,
0.029957331717014313,
0.9233617782592773,
0.21074803173542023,
0.4537345767021179,
0.30365854501724243,
0.9847873449325562,
-0.37221524119377136,
0.21983885765075684,
0.5957918763160706,
0.5934415459632874,
0.15761469304561615,
0.14617469906806946,
0.7763963341712952,
-0.9225992560386658,
-0.3458573818206787,
-0.5141092538833618,
-0.5992502570152283,
-0.36474138498306274,
-0.8443900942802429,
-0.9190874695777893,
-0.5939420461654663,
-0.5267636775970459,
-0.8049660921096802,
-0.30489489436149597,
0.8576186895370483,
1.3449149131774902,
-0.9378812909126282,
0.004274836275726557,
0.011066869832575321,
-0.003102264367043972,
0.08086389303207397,
-0.2589549422264099,
-0.19849352538585663,
0.4253329038619995,
-1.0403265953063965,
0.43541738390922546,
-0.17030882835388184,
0.337741494178772,
-0.1501978635787964,
0.04754326492547989,
-0.2594124972820282,
0.28101465106010437,
0.5843790173530579,
0.4540556073188782,
-0.5381109118461609,
-0.2990588843822479,
-0.17438766360282898,
0.026088153943419456,
0.07543113827705383,
0.34791097044944763,
0.009098449721932411,
0.20854857563972473,
0.6042163968086243,
0.6123723387718201,
0.4927126467227936,
0.28016185760498047,
0.6486846208572388,
-0.33153602480888367,
0.4296899735927582,
-0.11844077706336975,
0.7135342955589294,
0.485975444316864,
-0.43413278460502625,
0.5750041604042053,
0.5047534704208374,
-0.7949410676956177,
-0.6844371557235718,
0.15246430039405823,
-1.241826057434082,
-0.24686655402183533,
0.8276658654212952,
-0.12053707987070084,
-0.830189049243927,
0.329778254032135,
-0.5297752022743225,
0.04672887176275253,
-0.3905406594276428,
0.32022392749786377,
0.620295524597168,
-0.07019361853599548,
-0.5289322733879089,
-0.8634989261627197,
0.20234842598438263,
0.3661726713180542,
-1.0085221529006958,
-0.2255440354347229,
0.6194831132888794,
0.49817854166030884,
0.35570865869522095,
0.5034308433532715,
-0.2751551568508148,
0.404886394739151,
0.24352362751960754,
0.30010274052619934,
0.5176905989646912,
-0.555144727230072,
0.13279889523983002,
-0.3326592743396759,
-0.053245533257722855,
-0.19575822353363037
] |
EleutherAI/pythia-14m | EleutherAI | "2023-07-26T17:38:10Z" | 11,041 | 4 | transformers | [
"transformers",
"pytorch",
"safetensors",
"gpt_neox",
"text-generation",
"endpoints_compatible",
"has_space",
"text-generation-inference",
"region:us"
] | text-generation | "2023-07-19T13:57:54Z" | Entry not found | [
-0.3227650225162506,
-0.22568431496620178,
0.862226128578186,
0.43461495637893677,
-0.5282987952232361,
0.7012965679168701,
0.7915717363357544,
0.07618638128042221,
0.7746025919914246,
0.2563219666481018,
-0.7852817177772522,
-0.22573819756507874,
-0.9104480743408203,
0.5715669393539429,
-0.3992334008216858,
0.5791245698928833,
-0.14494505524635315,
-0.10751161724328995,
0.28233757615089417,
-0.2768954336643219,
-0.5409224033355713,
-0.36855220794677734,
-1.1902776956558228,
0.061491113156080246,
0.5316578149795532,
0.7435142397880554,
0.7584060430526733,
0.3652167320251465,
0.6432578563690186,
0.3932291269302368,
-0.23138920962810516,
0.4827055037021637,
-0.04171813279390335,
0.00260411505587399,
-0.3524433970451355,
-0.5516898036003113,
-0.28596609830856323,
0.07584730535745621,
1.0961304903030396,
0.966687798500061,
-0.284663587808609,
0.05330817773938179,
-0.3063621520996094,
0.33088892698287964,
-0.49734312295913696,
0.3054099678993225,
-0.022506045177578926,
0.16318801045417786,
-0.7041513919830322,
-0.5535354018211365,
0.012794834561645985,
-0.7361212968826294,
0.17926570773124695,
-0.690081000328064,
0.8269098401069641,
0.18583157658576965,
1.1533750295639038,
0.14819414913654327,
-0.462487131357193,
-0.8161764144897461,
-0.6538989543914795,
0.5711171627044678,
-0.32703715562820435,
0.39680248498916626,
0.7028235197067261,
-0.048573412001132965,
-0.9820332527160645,
-0.6745741367340088,
-0.46466192603111267,
0.2923962473869324,
0.35402774810791016,
-0.3411678075790405,
-0.17522086203098297,
-0.3058989644050598,
0.15792037546634674,
0.12811517715454102,
-0.4841994643211365,
-0.5543919205665588,
-0.5475160479545593,
-0.3960252106189728,
0.6206658482551575,
0.3482950031757355,
0.2429177463054657,
-0.1888415813446045,
-0.3228583335876465,
0.0880163162946701,
-0.4160851538181305,
0.3402571678161621,
0.6335517168045044,
0.7114017009735107,
-0.5811444520950317,
0.560215950012207,
-0.04927587881684303,
0.7439703941345215,
0.11445561796426773,
-0.27478092908859253,
0.41460567712783813,
-0.14724725484848022,
0.055171746760606766,
0.4226345121860504,
0.31524422764778137,
0.2841312289237976,
-0.3273695111274719,
0.2032228708267212,
-0.3215144872665405,
-0.30496224761009216,
-0.22332167625427246,
-0.29490774869918823,
-0.3592180609703064,
0.5492289066314697,
-0.3314017057418823,
-0.42855486273765564,
1.143175721168518,
-0.4200771450996399,
-0.7302224040031433,
0.33156412839889526,
0.4065209925174713,
-0.0994480773806572,
-0.37146568298339844,
-0.052260834723711014,
-0.8458789587020874,
-0.007907390594482422,
0.7491172552108765,
-0.7198970913887024,
0.3371737599372864,
0.4728063642978668,
0.7417217493057251,
0.19650575518608093,
-0.14034469425678253,
-0.42949390411376953,
0.2971969544887543,
-0.8659994006156921,
0.6320174336433411,
-0.20135220885276794,
-1.0051977634429932,
0.11150479316711426,
0.8971705436706543,
-0.37896400690078735,
-1.2094876766204834,
1.0605159997940063,
-0.6887932419776917,
0.16017857193946838,
-0.676761269569397,
-0.14661237597465515,
-0.07118501514196396,
-0.005096632521599531,
-0.6088156700134277,
0.7567102313041687,
0.587267279624939,
-0.4995276927947998,
0.21429483592510223,
-0.26029831171035767,
-0.39151400327682495,
0.38824859261512756,
-0.07935450226068497,
-0.21858926117420197,
0.713833212852478,
-0.6647079586982727,
-0.26932814717292786,
0.2942774295806885,
0.2368936538696289,
-0.35706108808517456,
-0.7931919097900391,
0.08478113263845444,
-0.05786270648241043,
1.550750494003296,
-0.03868847340345383,
-0.3586106300354004,
-0.679383397102356,
-1.1506240367889404,
-0.07070787996053696,
0.6886883974075317,
-0.9194989204406738,
-0.27839475870132446,
-0.046410128474235535,
-0.26169314980506897,
0.08994917571544647,
0.7390589714050293,
-1.1194051504135132,
0.2832726836204529,
-0.05092663690447807,
-0.22794683277606964,
0.8271058797836304,
0.15387225151062012,
0.24758946895599365,
0.14913396537303925,
0.42958706617355347,
0.527725338935852,
0.11115207523107529,
0.683587908744812,
-0.34720373153686523,
-0.9694353938102722,
0.6154631972312927,
0.25266361236572266,
0.8121447563171387,
-0.49945297837257385,
0.2685093879699707,
0.27025535702705383,
-0.3409680724143982,
-0.5682371854782104,
-0.3102838397026062,
0.09025752544403076,
0.14930562674999237,
0.11142510175704956,
-0.5721710324287415,
-0.6576125025749207,
-0.9689140319824219,
-0.13590654730796814,
-0.4314374029636383,
-0.3571570813655853,
0.21006910502910614,
0.5792906284332275,
-1.1975523233413696,
0.4128875136375427,
-0.7705625891685486,
-0.7038741111755371,
-0.01065548975020647,
-0.19338123500347137,
0.7540656328201294,
0.43240174651145935,
0.5033966898918152,
-0.6397148370742798,
-0.5661987066268921,
-0.22470176219940186,
-1.0333747863769531,
-0.13280506432056427,
0.24819621443748474,
0.3065737783908844,
-0.13423344492912292,
-0.2744963765144348,
-0.48740333318710327,
0.8100387454032898,
0.14789170026779175,
-0.5391897559165955,
0.5220767259597778,
-0.3020317256450653,
0.17224803566932678,
-0.6369150280952454,
-0.06916818022727966,
-0.661676287651062,
-0.0009071884560398757,
-0.3608308732509613,
-0.5737438797950745,
0.14772287011146545,
0.07017494738101959,
-0.16065457463264465,
0.28808408975601196,
-0.909277081489563,
-0.0010852962732315063,
-0.7442210912704468,
0.379071980714798,
0.06394772231578827,
-0.3145078718662262,
-0.017517540603876114,
1.0000386238098145,
0.7784460783004761,
-0.3848048746585846,
0.721744179725647,
0.4440041184425354,
0.19036155939102173,
0.7630521059036255,
-0.18725109100341797,
0.16478213667869568,
-0.5245416760444641,
-0.12161104381084442,
-0.8887597918510437,
-1.0982946157455444,
0.7320570349693298,
-0.6114250421524048,
0.36542922258377075,
-0.4277869760990143,
0.2589159905910492,
-0.6919258832931519,
-0.03885362669825554,
0.4808599352836609,
-0.05936325341463089,
-0.6863942742347717,
0.5232570171356201,
0.45317530632019043,
-0.2019241601228714,
-0.6609031558036804,
-0.530157208442688,
0.39365822076797485,
0.6154114007949829,
-0.16390392184257507,
0.06878514587879181,
0.14941060543060303,
-0.5441926121711731,
-0.040802597999572754,
-0.38691970705986023,
-0.45766758918762207,
0.054224006831645966,
0.13053473830223083,
-0.005750799085944891,
-0.404820054769516,
-0.0868026465177536,
-0.35842007398605347,
-0.4656120240688324,
0.21876516938209534,
0.3011947274208069,
-0.04096309468150139,
-0.42599788308143616,
-0.3619818687438965,
-0.888181209564209,
0.6719610095024109,
0.5370282530784607,
0.05281545966863632,
0.7555549740791321,
0.16819314658641815,
-0.8014987707138062,
-0.13532210886478424,
-0.1760706603527069,
0.2696830928325653,
-0.5588056445121765,
0.13849826157093048,
-0.013484534807503223,
-0.0637492910027504,
0.26297882199287415,
0.25386232137680054,
-0.4300556778907776,
0.9276250004768372,
-0.2615274488925934,
-0.3592521846294403,
0.7960181832313538,
0.5974742770195007,
0.49583131074905396,
0.16503219306468964,
-0.044541798532009125,
0.900709331035614,
-1.1966516971588135,
-0.6563175916671753,
-0.7409549355506897,
-0.15945707261562347,
-0.43510833382606506,
-0.032105933874845505,
0.6254412531852722,
0.2900990843772888,
-0.1333388388156891,
0.4756395220756531,
-0.5243489742279053,
0.3556033670902252,
1.01198410987854,
0.35748639702796936,
0.3435698449611664,
-0.7570229172706604,
-0.2515777349472046,
-0.1402427852153778,
-0.9998157620429993,
-0.2631377875804901,
0.8871029019355774,
0.22752606868743896,
0.844460666179657,
0.5992541313171387,
0.6784542798995972,
0.1367226243019104,
0.2523828148841858,
-0.30590319633483887,
0.3920294940471649,
0.4376082420349121,
-1.0401138067245483,
-0.42758408188819885,
0.021418681368231773,
-0.9703338742256165,
-0.14227519929409027,
-0.03495011106133461,
-0.42617112398147583,
0.7681737542152405,
0.00016589462757110596,
-0.4076709747314453,
0.7732734084129333,
-0.455583393573761,
0.7562873363494873,
-0.4473648965358734,
-0.02663906291127205,
0.4699096083641052,
-0.7070636749267578,
0.4677430987358093,
0.12878790497779846,
0.6205843091011047,
-0.015572631731629372,
-0.04078587517142296,
0.7104941606521606,
-0.9129160046577454,
0.25438642501831055,
-0.6348397135734558,
0.22421300411224365,
0.24246945977210999,
0.51606285572052,
0.5969953536987305,
0.4371243417263031,
0.10119888931512833,
-0.23920902609825134,
0.04115807265043259,
-0.8241125345230103,
-0.210506409406662,
0.697515606880188,
-0.7186890840530396,
-0.6864197850227356,
-1.2355337142944336,
0.14438660442829132,
0.27347055077552795,
0.389305055141449,
0.7959296107292175,
0.571408748626709,
0.1289544403553009,
0.680525004863739,
0.9888588190078735,
-0.0688566341996193,
0.9166924357414246,
0.3224477171897888,
0.09175168722867966,
-0.21944808959960938,
0.7036820650100708,
0.26627904176712036,
-0.24707956612110138,
-0.11939732730388641,
0.20913465321063995,
-0.11069409549236298,
-0.591761589050293,
-0.49990686774253845,
0.3701757788658142,
-0.6731787919998169,
-0.18303893506526947,
-0.6243735551834106,
-0.6043769717216492,
-0.511759340763092,
0.06927360594272614,
-0.7147687673568726,
0.23979046940803528,
-0.7753565907478333,
-0.10574902594089508,
0.04323432594537735,
0.9792009592056274,
-0.589311957359314,
0.5805224180221558,
-1.1218582391738892,
0.19345788657665253,
-0.07949887961149216,
0.7921058535575867,
0.21395787596702576,
-0.7344395518302917,
-0.3975418508052826,
-0.11592631042003632,
-0.3729911744594574,
-1.3576762676239014,
0.21404948830604553,
-0.2454141080379486,
0.23094046115875244,
0.6145404577255249,
0.1397707313299179,
0.5258248448371887,
-0.34326282143592834,
0.7029101848602295,
-0.057017259299755096,
-0.7069286704063416,
0.7934495210647583,
-0.5026894807815552,
0.4963534474372864,
0.9765996932983398,
0.5333835482597351,
-0.7984007596969604,
0.035741209983825684,
-1.041123390197754,
-0.6008695363998413,
0.38426393270492554,
0.11928944289684296,
-0.03601083159446716,
-0.6659559011459351,
-0.054019637405872345,
-0.16143807768821716,
0.6043745279312134,
-1.039069414138794,
-0.7858356237411499,
0.2576698362827301,
0.5277302861213684,
0.0816856250166893,
-0.5653398633003235,
0.20880667865276337,
-0.544416069984436,
1.0657774209976196,
0.45109400153160095,
0.3274499475955963,
0.8406060934066772,
0.46492424607276917,
-0.3823164403438568,
0.09252490103244781,
0.7662695050239563,
0.6666232347488403,
-0.5239797830581665,
-0.2908027470111847,
-0.08827541768550873,
-0.9143403768539429,
0.05927472561597824,
0.11168918758630753,
-0.013455932028591633,
0.9082110524177551,
0.5793083310127258,
0.2539709210395813,
0.4514279365539551,
-0.726460337638855,
0.8859451413154602,
-0.14954176545143127,
-0.12472866475582123,
-1.0677239894866943,
0.1948619782924652,
-0.23984959721565247,
0.5006402134895325,
1.0061326026916504,
0.5250048041343689,
-0.047630298882722855,
-0.8143380880355835,
-0.01473585981875658,
0.6939172148704529,
-0.7091123461723328,
-0.17449834942817688,
0.944853663444519,
0.3847099542617798,
-1.2953051328659058,
1.106776475906372,
-0.5381771326065063,
-0.560332179069519,
0.9121301770210266,
0.522956907749176,
1.1221847534179688,
-0.44204121828079224,
0.0008676342549733818,
0.2662237286567688,
0.41378432512283325,
0.5423170328140259,
1.0869629383087158,
0.431413471698761,
-0.7931063771247864,
0.8826584815979004,
-0.24776044487953186,
-0.40361151099205017,
-0.05347571521997452,
-0.42859897017478943,
0.16892178356647491,
-0.4406192898750305,
-0.10713007301092148,
-0.3444187641143799,
0.28543180227279663,
-0.7072042226791382,
0.42807620763778687,
-0.0838567465543747,
0.8653068542480469,
-0.8553727269172668,
0.47207626700401306,
0.635470449924469,
-0.3337355852127075,
-0.8508191108703613,
-0.26198428869247437,
-0.11448462307453156,
-0.6389466524124146,
0.30214807391166687,
-0.4554102420806885,
0.044398851692676544,
0.09623463451862335,
-0.649151623249054,
-1.1778275966644287,
0.9093633890151978,
-0.639612078666687,
-0.2784462869167328,
0.20464053750038147,
-0.11514760553836823,
0.28811705112457275,
-0.2524643540382385,
0.010661216452717781,
0.41876548528671265,
0.748940110206604,
0.2844654619693756,
-0.7727053761482239,
-0.3694884479045868,
0.0015032943338155746,
-0.44474777579307556,
0.7582978010177612,
-0.6002101898193359,
1.1840779781341553,
-0.5563543438911438,
-0.059654366225004196,
0.44384512305259705,
0.24690914154052734,
0.21076197922229767,
0.6629220843315125,
0.1442081481218338,
0.7282265424728394,
1.07012140750885,
-0.40835219621658325,
0.8811809420585632,
0.26432839035987854,
0.47430819272994995,
0.7238501906394958,
-0.6487724781036377,
0.7513749003410339,
0.31810489296913147,
-0.5682924389839172,
0.9228013753890991,
1.2906063795089722,
-0.15699204802513123,
0.8079374432563782,
0.05136508867144585,
-1.081600546836853,
0.325833261013031,
-0.20724765956401825,
-0.7530064582824707,
0.3150254189968109,
0.19055864214897156,
-0.6920982599258423,
-0.5770308971405029,
-0.24046507477760315,
-0.35662803053855896,
-0.11552901566028595,
-0.7631728649139404,
0.6720563769340515,
-0.016969164833426476,
-0.5103683471679688,
0.18857547640800476,
0.2877499461174011,
0.17368432879447937,
-0.5235732793807983,
-0.02939440682530403,
-0.22823619842529297,
0.2660655975341797,
-0.5670853853225708,
-0.5234526991844177,
0.5724433064460754,
-0.32430219650268555,
-0.5343255400657654,
0.18147465586662292,
0.763587236404419,
-0.16923809051513672,
-0.4515409469604492,
0.32472723722457886,
0.6959525346755981,
0.1665852814912796,
0.4250282347202301,
-0.23511263728141785,
0.24480605125427246,
-0.08044824004173279,
-0.06651552021503448,
0.27714768052101135,
0.3449169099330902,
0.22435641288757324,
0.4450142979621887,
0.43285664916038513,
-0.01808755099773407,
-0.10736498981714249,
-0.382819801568985,
0.4124940037727356,
-0.9542785882949829,
-0.5713282823562622,
-0.6307113766670227,
0.2740660607814789,
-0.02315417304635048,
-1.0836423635482788,
0.4145168364048004,
1.4406683444976807,
1.0359982252120972,
-0.4756383001804352,
1.067226529121399,
-0.21818485856056213,
0.9594791531562805,
0.41483086347579956,
0.5420440435409546,
-0.6030411720275879,
0.03835370019078255,
-0.4364396035671234,
-1.076962947845459,
-0.35716333985328674,
0.4539391100406647,
-0.022899555042386055,
-0.3429867625236511,
0.872571587562561,
0.5887166261672974,
-0.33473607897758484,
-0.11728022992610931,
0.048487238585948944,
-0.029941488057374954,
-0.12433847039937973,
0.5145376324653625,
0.7648399472236633,
-0.9344304800033569,
-0.10680416971445084,
-0.21577754616737366,
-0.6382725834846497,
-0.5047279000282288,
-0.9632009267807007,
-0.12959396839141846,
-0.16037796437740326,
0.035343267023563385,
-0.5662806630134583,
0.00255737011320889,
1.208324909210205,
0.5684957504272461,
-1.1113994121551514,
-0.5303789377212524,
0.3371853232383728,
0.3920421898365021,
-0.1874791383743286,
-0.24202413856983185,
0.2984568774700165,
0.15382249653339386,
-0.5908876657485962,
0.6875665783882141,
0.8089625239372253,
0.208888977766037,
0.19554761052131653,
0.15893013775348663,
-0.8229473829269409,
-0.14913435280323029,
0.17440445721149445,
0.9450570344924927,
-0.939853310585022,
-0.7114843130111694,
-0.03168516233563423,
-0.27094873785972595,
-0.05765746906399727,
0.17102102935314178,
-0.4046344757080078,
0.5180677175521851,
0.34591493010520935,
0.49933457374572754,
0.0561608150601387,
-0.054746925830841064,
0.5409556031227112,
-0.9069057703018188,
0.09425963461399078,
0.4134361147880554,
0.4154115319252014,
-0.4000864028930664,
-0.5910194516181946,
0.6713420748710632,
1.0073972940444946,
-0.6594868898391724,
-0.8743268847465515,
-0.19846712052822113,
-1.0016002655029297,
0.04189709946513176,
0.6762762069702148,
0.5009527802467346,
-0.4806513786315918,
-0.4174500107765198,
-0.5617399215698242,
-0.1254672110080719,
-0.1369970738887787,
0.7621601819992065,
1.179680585861206,
-0.7432094812393188,
0.07975747436285019,
-1.038639783859253,
0.6594986915588379,
-0.2419457733631134,
-0.3457581698894501,
-0.48644304275512695,
0.3832802176475525,
0.35236993432044983,
0.440481036901474,
0.614812433719635,
0.1408471167087555,
0.8338426351547241,
0.3126053214073181,
-0.1702686995267868,
0.2698982357978821,
-0.4559200704097748,
-0.028932858258485794,
-0.057962555438280106,
0.31015971302986145,
-1.0262157917022705
] |
MoritzLaurer/DeBERTa-v3-large-mnli-fever-anli-ling-wanli | MoritzLaurer | "2023-03-20T08:27:01Z" | 10,998 | 63 | transformers | [
"transformers",
"pytorch",
"safetensors",
"deberta-v2",
"text-classification",
"zero-shot-classification",
"en",
"dataset:multi_nli",
"dataset:anli",
"dataset:fever",
"dataset:lingnli",
"dataset:alisawuffles/WANLI",
"arxiv:2104.07179",
"arxiv:2111.09543",
"license:mit",
"model-index",
"endpoints_compatible",
"has_space",
"region:us"
] | zero-shot-classification | "2022-06-06T18:28:10Z" | ---
language:
- en
tags:
- text-classification
- zero-shot-classification
license: mit
metrics:
- accuracy
datasets:
- multi_nli
- anli
- fever
- lingnli
- alisawuffles/WANLI
pipeline_tag: zero-shot-classification
#- text-classification
#widget:
#- text: "I first thought that I really liked the movie, but upon second thought it was actually disappointing. [SEP] The movie was not good."
model-index: # info: https://github.com/huggingface/hub-docs/blame/main/modelcard.md
- name: DeBERTa-v3-large-mnli-fever-anli-ling-wanli
results:
- task:
type: text-classification # Required. Example: automatic-speech-recognition
name: Natural Language Inference # Optional. Example: Speech Recognition
dataset:
type: multi_nli # Required. Example: common_voice. Use dataset id from https://hf.co/datasets
name: MultiNLI-matched # Required. A pretty name for the dataset. Example: Common Voice (French)
split: validation_matched # Optional. Example: test
metrics:
- type: accuracy # Required. Example: wer. Use metric id from https://hf.co/metrics
value: 0,912 # Required. Example: 20.90
#name: # Optional. Example: Test WER
verified: false # Optional. If true, indicates that evaluation was generated by Hugging Face (vs. self-reported).
- task:
type: text-classification # Required. Example: automatic-speech-recognition
name: Natural Language Inference # Optional. Example: Speech Recognition
dataset:
type: multi_nli # Required. Example: common_voice. Use dataset id from https://hf.co/datasets
name: MultiNLI-mismatched # Required. A pretty name for the dataset. Example: Common Voice (French)
split: validation_mismatched # Optional. Example: test
metrics:
- type: accuracy # Required. Example: wer. Use metric id from https://hf.co/metrics
value: 0,908 # Required. Example: 20.90
#name: # Optional. Example: Test WER
verified: false # Optional. If true, indicates that evaluation was generated by Hugging Face (vs. self-reported).
- task:
type: text-classification # Required. Example: automatic-speech-recognition
name: Natural Language Inference # Optional. Example: Speech Recognition
dataset:
type: anli # Required. Example: common_voice. Use dataset id from https://hf.co/datasets
name: ANLI-all # Required. A pretty name for the dataset. Example: Common Voice (French)
split: test_r1+test_r2+test_r3 # Optional. Example: test
metrics:
- type: accuracy # Required. Example: wer. Use metric id from https://hf.co/metrics
value: 0,702 # Required. Example: 20.90
#name: # Optional. Example: Test WER
verified: false # Optional. If true, indicates that evaluation was generated by Hugging Face (vs. self-reported).
- task:
type: text-classification # Required. Example: automatic-speech-recognition
name: Natural Language Inference # Optional. Example: Speech Recognition
dataset:
type: anli # Required. Example: common_voice. Use dataset id from https://hf.co/datasets
name: ANLI-r3 # Required. A pretty name for the dataset. Example: Common Voice (French)
split: test_r3 # Optional. Example: test
metrics:
- type: accuracy # Required. Example: wer. Use metric id from https://hf.co/metrics
value: 0,64 # Required. Example: 20.90
#name: # Optional. Example: Test WER
verified: false # Optional. If true, indicates that evaluation was generated by Hugging Face (vs. self-reported).
- task:
type: text-classification # Required. Example: automatic-speech-recognition
name: Natural Language Inference # Optional. Example: Speech Recognition
dataset:
type: alisawuffles/WANLI # Required. Example: common_voice. Use dataset id from https://hf.co/datasets
name: WANLI # Required. A pretty name for the dataset. Example: Common Voice (French)
split: test # Optional. Example: test
metrics:
- type: accuracy # Required. Example: wer. Use metric id from https://hf.co/metrics
value: 0,77 # Required. Example: 20.90
#name: # Optional. Example: Test WER
verified: false # Optional. If true, indicates that evaluation was generated by Hugging Face (vs. self-reported).
- task:
type: text-classification # Required. Example: automatic-speech-recognition
name: Natural Language Inference # Optional. Example: Speech Recognition
dataset:
type: lingnli # Required. Example: common_voice. Use dataset id from https://hf.co/datasets
name: LingNLI # Required. A pretty name for the dataset. Example: Common Voice (French)
split: test # Optional. Example: test
metrics:
- type: accuracy # Required. Example: wer. Use metric id from https://hf.co/metrics
value: 0,87 # Required. Example: 20.90
#name: # Optional. Example: Test WER
verified: false # Optional. If true, indicates that evaluation was generated by Hugging Face (vs. self-reported).
---
# DeBERTa-v3-large-mnli-fever-anli-ling-wanli
## Model description
This model was fine-tuned on the [MultiNLI](https://huggingface.co/datasets/multi_nli), [Fever-NLI](https://github.com/easonnie/combine-FEVER-NSMN/blob/master/other_resources/nli_fever.md), Adversarial-NLI ([ANLI](https://huggingface.co/datasets/anli)), [LingNLI](https://arxiv.org/pdf/2104.07179.pdf) and [WANLI](https://huggingface.co/datasets/alisawuffles/WANLI) datasets, which comprise 885 242 NLI hypothesis-premise pairs. This model is the best performing NLI model on the Hugging Face Hub as of 06.06.22 and can be used for zero-shot classification. It significantly outperforms all other large models on the [ANLI benchmark](https://github.com/facebookresearch/anli).
The foundation model is [DeBERTa-v3-large from Microsoft](https://huggingface.co/microsoft/deberta-v3-large). DeBERTa-v3 combines several recent innovations compared to classical Masked Language Models like BERT, RoBERTa etc., see the [paper](https://arxiv.org/abs/2111.09543)
### How to use the model
#### Simple zero-shot classification pipeline
```python
from transformers import pipeline
classifier = pipeline("zero-shot-classification", model="MoritzLaurer/DeBERTa-v3-large-mnli-fever-anli-ling-wanli")
sequence_to_classify = "Angela Merkel is a politician in Germany and leader of the CDU"
candidate_labels = ["politics", "economy", "entertainment", "environment"]
output = classifier(sequence_to_classify, candidate_labels, multi_label=False)
print(output)
```
#### NLI use-case
```python
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
model_name = "MoritzLaurer/DeBERTa-v3-large-mnli-fever-anli-ling-wanli"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)
premise = "I first thought that I liked the movie, but upon second thought it was actually disappointing."
hypothesis = "The movie was not good."
input = tokenizer(premise, hypothesis, truncation=True, return_tensors="pt")
output = model(input["input_ids"].to(device)) # device = "cuda:0" or "cpu"
prediction = torch.softmax(output["logits"][0], -1).tolist()
label_names = ["entailment", "neutral", "contradiction"]
prediction = {name: round(float(pred) * 100, 1) for pred, name in zip(prediction, label_names)}
print(prediction)
```
### Training data
DeBERTa-v3-large-mnli-fever-anli-ling-wanli was trained on the [MultiNLI](https://huggingface.co/datasets/multi_nli), [Fever-NLI](https://github.com/easonnie/combine-FEVER-NSMN/blob/master/other_resources/nli_fever.md), Adversarial-NLI ([ANLI](https://huggingface.co/datasets/anli)), [LingNLI](https://arxiv.org/pdf/2104.07179.pdf) and [WANLI](https://huggingface.co/datasets/alisawuffles/WANLI) datasets, which comprise 885 242 NLI hypothesis-premise pairs. Note that [SNLI](https://huggingface.co/datasets/snli) was explicitly excluded due to quality issues with the dataset. More data does not necessarily make for better NLI models.
### Training procedure
DeBERTa-v3-large-mnli-fever-anli-ling-wanli was trained using the Hugging Face trainer with the following hyperparameters. Note that longer training with more epochs hurt performance in my tests (overfitting).
```
training_args = TrainingArguments(
num_train_epochs=4, # total number of training epochs
learning_rate=5e-06,
per_device_train_batch_size=16, # batch size per device during training
gradient_accumulation_steps=2, # doubles the effective batch_size to 32, while decreasing memory requirements
per_device_eval_batch_size=64, # batch size for evaluation
warmup_ratio=0.06, # number of warmup steps for learning rate scheduler
weight_decay=0.01, # strength of weight decay
fp16=True # mixed precision training
)
```
### Eval results
The model was evaluated using the test sets for MultiNLI, ANLI, LingNLI, WANLI and the dev set for Fever-NLI. The metric used is accuracy.
The model achieves state-of-the-art performance on each dataset. Surprisingly, it outperforms the previous [state-of-the-art on ANLI](https://github.com/facebookresearch/anli) (ALBERT-XXL) by 8,3%. I assume that this is because ANLI was created to fool masked language models like RoBERTa (or ALBERT), while DeBERTa-v3 uses a better pre-training objective (RTD), disentangled attention and I fine-tuned it on higher quality NLI data.
|Datasets|mnli_test_m|mnli_test_mm|anli_test|anli_test_r3|ling_test|wanli_test|
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|Accuracy|0.912|0.908|0.702|0.64|0.87|0.77|
|Speed (text/sec, A100 GPU)|696.0|697.0|488.0|425.0|828.0|980.0|
## Limitations and bias
Please consult the original DeBERTa-v3 paper and literature on different NLI datasets for more information on the training data and potential biases. The model will reproduce statistical patterns in the training data.
## Citation
If you use this model, please cite: Laurer, Moritz, Wouter van Atteveldt, Andreu Salleras Casas, and Kasper Welbers. 2022. ‘Less Annotating, More Classifying – Addressing the Data Scarcity Issue of Supervised Machine Learning with Deep Transfer Learning and BERT - NLI’. Preprint, June. Open Science Framework. https://osf.io/74b8k.
### Ideas for cooperation or questions?
If you have questions or ideas for cooperation, contact me at m{dot}laurer{at}vu{dot}nl or [LinkedIn](https://www.linkedin.com/in/moritz-laurer/)
### Debugging and issues
Note that DeBERTa-v3 was released on 06.12.21 and older versions of HF Transformers seem to have issues running the model (e.g. resulting in an issue with the tokenizer). Using Transformers>=4.13 might solve some issues.
| [
-0.3793248236179352,
-0.5468590259552002,
0.04770466312766075,
0.30901503562927246,
-0.06385648995637894,
-0.07460424304008484,
-0.04858279600739479,
-0.5581321716308594,
0.330272376537323,
0.2341269552707672,
-0.42778530716896057,
-0.4022161662578583,
-0.6143449544906616,
0.17768758535385132,
-0.21772459149360657,
0.9218788146972656,
0.06566068530082703,
0.08477199822664261,
0.110439732670784,
-0.2293381243944168,
-0.22262412309646606,
-0.6920246481895447,
-0.728455662727356,
-0.4777553975582123,
0.4275802671909332,
0.2846592962741852,
0.6852501630783081,
0.5139691233634949,
0.4084421396255493,
0.24393992125988007,
-0.17192243039608002,
0.07445800304412842,
-0.32575544714927673,
-0.1712646186351776,
0.37656113505363464,
-0.4764542579650879,
-0.6123092770576477,
0.15646475553512573,
0.49197712540626526,
0.32690751552581787,
0.015400023199617863,
0.24369394779205322,
-0.1447751671075821,
0.7261186838150024,
-0.603571355342865,
0.08456207811832428,
-0.506998598575592,
0.24157170951366425,
-0.20231564342975616,
0.24920421838760376,
-0.3411053419113159,
-0.1830500364303589,
0.19115592539310455,
-0.4020054042339325,
0.05491642281413078,
-0.12473306059837341,
1.2877980470657349,
0.31806910037994385,
-0.3247171640396118,
-0.03460671380162239,
-0.5720659494400024,
0.9153228402137756,
-1.0767579078674316,
0.33112141489982605,
0.2950059473514557,
0.10502444952726364,
0.08585266768932343,
-0.40798497200012207,
-0.6876602172851562,
-0.21014092862606049,
-0.09706417471170425,
0.19772036373615265,
-0.4239916205406189,
-0.2531481981277466,
0.44985532760620117,
0.271418958902359,
-0.7553408741950989,
0.17509382963180542,
-0.529687225818634,
-0.07505360245704651,
0.7975314855575562,
-0.05351191386580467,
0.18350215256214142,
-0.31749168038368225,
-0.36842629313468933,
-0.25840437412261963,
-0.5975539684295654,
0.008539501577615738,
0.28334882855415344,
0.07079681754112244,
-0.2503786087036133,
0.21714450418949127,
-0.14199095964431763,
0.862671971321106,
0.2392057627439499,
-0.23625251650810242,
0.90650874376297,
-0.18994548916816711,
-0.31649166345596313,
0.08595685660839081,
0.9766128659248352,
0.3952641189098358,
0.2892321050167084,
-0.0004738509014714509,
0.048824138939380646,
-0.1704351007938385,
-0.12043509632349014,
-1.0461801290512085,
-0.3065462112426758,
0.34970319271087646,
-0.343800812959671,
-0.4586445093154907,
-0.0041592977941036224,
-0.8773703575134277,
-0.2568088471889496,
-0.3509026765823364,
0.48362621665000916,
-0.5996467471122742,
-0.4832583963871002,
-0.06591803580522537,
-0.06400714069604874,
0.29652249813079834,
0.04353944584727287,
-0.7849512100219727,
0.05715494975447655,
0.2271895557641983,
0.8268346786499023,
-0.11744371801614761,
-0.40473777055740356,
-0.2859214246273041,
-0.10767043381929398,
-0.20538769662380219,
0.23682476580142975,
-0.2643311321735382,
-0.12584123015403748,
-0.20595595240592957,
-0.02146175317466259,
-0.5951191186904907,
-0.5303793549537659,
0.30714142322540283,
-0.3708949685096741,
0.31673985719680786,
-0.11334613710641861,
-0.34202179312705994,
-0.3962858319282532,
0.19691050052642822,
-0.5952764749526978,
0.9924657940864563,
0.0808473452925682,
-1.0549253225326538,
0.19707459211349487,
-0.6233815550804138,
-0.23433606326580048,
-0.33176058530807495,
0.10914332419633865,
-0.6740335822105408,
-0.20175790786743164,
0.39491456747055054,
0.597111701965332,
-0.1994742453098297,
0.573329508304596,
-0.4557931125164032,
-0.35190072655677795,
0.38434651494026184,
-0.3749133050441742,
1.1557167768478394,
0.390603631734848,
-0.6504234671592712,
0.06974275410175323,
-1.0053216218948364,
-0.08985873311758041,
0.3764974772930145,
0.04023570567369461,
-0.09684499353170395,
-0.3993470072746277,
-0.031248928979039192,
0.39463678002357483,
0.13038370013237,
-0.47551393508911133,
0.17359408736228943,
-0.6285045146942139,
0.6459532380104065,
0.3637359142303467,
-0.10662354528903961,
0.23624445497989655,
-0.43375980854034424,
0.22875814139842987,
0.2809310257434845,
0.42377427220344543,
0.1188734918832779,
-0.6738812923431396,
-1.032013177871704,
-0.3325798809528351,
0.4307009279727936,
0.8084409236907959,
-0.7107062935829163,
0.49359267950057983,
-0.13570407032966614,
-0.842947244644165,
-0.6079018712043762,
0.16143758594989777,
0.40901562571525574,
0.4815998375415802,
0.4619922637939453,
-0.11571384221315384,
-0.7544954419136047,
-0.8938348293304443,
0.1395292580127716,
-0.17571444809436798,
0.01208618376404047,
0.25215664505958557,
0.6852970719337463,
-0.4432181715965271,
0.8572648167610168,
-0.36572974920272827,
-0.5068648457527161,
-0.34658536314964294,
-0.0317661426961422,
0.6365525126457214,
0.6248533725738525,
0.9171207547187805,
-0.7496321797370911,
-0.44398415088653564,
-0.19285063445568085,
-0.9644331932067871,
0.12500324845314026,
-0.003167032962664962,
-0.13714760541915894,
0.4899977743625641,
0.2756008505821228,
-0.42386847734451294,
0.3378084897994995,
0.6039518713951111,
-0.15910065174102783,
0.13353365659713745,
-0.018230494111776352,
0.17647495865821838,
-1.16350519657135,
0.4011484980583191,
0.0623299740254879,
0.13574263453483582,
-1.0446536540985107,
-0.05258416384458542,
-0.02078247256577015,
-0.008182567544281483,
-0.6189287304878235,
0.5699347257614136,
-0.13239343464374542,
0.31274324655532837,
-0.09470266848802567,
-0.004771219100803137,
0.2033236026763916,
0.6673792600631714,
0.03057597391307354,
0.5142470002174377,
0.862216055393219,
-0.6607597470283508,
0.28846263885498047,
0.19246359169483185,
-0.06467045098543167,
0.008468150161206722,
-0.7988665699958801,
0.1250685304403305,
-0.09727683663368225,
0.17735499143600464,
-0.6520585417747498,
-0.28168097138404846,
0.5000755190849304,
-0.42530083656311035,
0.5219534635543823,
0.047040872275829315,
-0.3502601385116577,
-0.5676267147064209,
-0.38576540350914,
0.4024415910243988,
0.7077526450157166,
-0.7069823145866394,
0.5506643652915955,
0.29877257347106934,
0.25149351358413696,
-0.902427613735199,
-0.7944692969322205,
-0.15344880521297455,
-0.5290303826332092,
-0.5816715359687805,
0.45347651839256287,
-0.04410145804286003,
-0.2203311175107956,
-0.02665732242166996,
0.16462178528308868,
-0.20334438979625702,
0.16592556238174438,
0.30888593196868896,
0.40109866857528687,
-0.18256080150604248,
-0.15838418900966644,
-0.20244590938091278,
0.006285772193223238,
-0.10294610261917114,
-0.12166721373796463,
0.500284731388092,
-0.40455999970436096,
0.05945152789354324,
-0.5881192088127136,
0.07442323863506317,
0.6243270039558411,
-0.20804379880428314,
0.8708762526512146,
1.0559762716293335,
-0.4825904965400696,
0.361205518245697,
-0.716605007648468,
-0.08760533481836319,
-0.39320236444473267,
0.14930260181427002,
-0.3920947313308716,
-0.6095960736274719,
0.5773137807846069,
0.3476008474826813,
-0.05368998274207115,
0.8174930810928345,
0.36569225788116455,
0.4140014052391052,
0.9456596374511719,
0.4828813076019287,
-0.38393232226371765,
0.30948948860168457,
-0.7726938128471375,
0.2102310061454773,
-0.8585788607597351,
-0.2861003577709198,
-0.3818054497241974,
-0.09420020133256912,
-0.5329880714416504,
-0.32627633213996887,
0.2926178276538849,
0.38459429144859314,
-0.29932159185409546,
0.4811917245388031,
-0.519720196723938,
0.11493916064500809,
0.6265829205513,
0.13458925485610962,
0.07735373824834824,
-0.11336567997932434,
0.1701689064502716,
0.03798847272992134,
-0.8302818536758423,
-0.2517384886741638,
1.0511208772659302,
0.5922735929489136,
0.456717312335968,
0.13618621230125427,
0.8935368657112122,
-0.15864573419094086,
0.31075000762939453,
-0.4329643249511719,
0.3318825364112854,
-0.31210657954216003,
-0.6957813501358032,
-0.26819899678230286,
-0.4966655671596527,
-0.900126576423645,
0.2668875753879547,
-0.2990378141403198,
-0.8538374900817871,
0.5708836317062378,
0.11783210933208466,
-0.5137321949005127,
0.3609655201435089,
-0.7322707176208496,
0.8952094912528992,
-0.0921100303530693,
-0.2652294635772705,
0.060710277408361435,
-0.6513724327087402,
0.6089617013931274,
-0.16742552816867828,
0.19051530957221985,
-0.34295088052749634,
0.3936845064163208,
0.9565513730049133,
-0.22941094636917114,
0.9014509320259094,
-0.31468847393989563,
0.09416959434747696,
0.38382431864738464,
-0.2921590209007263,
0.07951709628105164,
0.26969802379608154,
-0.5386138558387756,
0.6891239285469055,
0.1115061342716217,
-0.44236335158348083,
-0.4542692303657532,
0.8785017728805542,
-1.0275967121124268,
-0.6299919486045837,
-0.5878400802612305,
-0.2168569564819336,
0.02535334601998329,
0.07786489278078079,
0.5914365649223328,
0.6804618835449219,
-0.01880839094519615,
0.06859725713729858,
0.6678823232650757,
-0.36584630608558655,
0.4993574619293213,
0.27432796359062195,
-0.31199976801872253,
-0.4778958857059479,
1.0016767978668213,
0.1677737832069397,
0.12474028021097183,
0.19607120752334595,
0.2263321429491043,
-0.20251527428627014,
-0.37248867750167847,
-0.7518348693847656,
0.35721975564956665,
-0.5817030668258667,
-0.40994635224342346,
-1.041174292564392,
-0.5296633243560791,
-0.7740110754966736,
0.13284499943256378,
-0.32650330662727356,
-0.3692525625228882,
-0.4143836200237274,
0.09675205498933792,
0.5879931449890137,
0.6100442409515381,
-0.15583544969558716,
0.07043003290891647,
-0.6650981307029724,
0.1163729801774025,
0.22227154672145844,
0.08855576813220978,
0.07212921231985092,
-0.7650147676467896,
-0.09939701110124588,
0.09356740117073059,
-0.2846056818962097,
-0.9183520674705505,
0.7411807179450989,
0.4194948673248291,
0.41397741436958313,
0.283612459897995,
0.10173697024583817,
0.6784693002700806,
-0.2505756914615631,
0.7705203294754028,
0.17646361887454987,
-0.954495906829834,
0.6673325300216675,
-0.01784597337245941,
0.41962841153144836,
0.48751726746559143,
0.6850054860115051,
-0.13939695060253143,
-0.4681016206741333,
-0.7076667547225952,
-0.8865101933479309,
0.7452609539031982,
0.277016818523407,
-0.04174584895372391,
0.09011474996805191,
0.3229181170463562,
-0.0954332947731018,
0.07206987589597702,
-0.8686805963516235,
-0.6009154915809631,
-0.38558176159858704,
-0.10168860107660294,
-0.2831115424633026,
-0.207985058426857,
-0.07570840418338776,
-0.5398272275924683,
1.0704092979431152,
-0.01947675459086895,
0.32399553060531616,
0.5817261338233948,
-0.09052898734807968,
-0.0033832346089184284,
0.05064065381884575,
0.5917585492134094,
0.539080798625946,
-0.4302894175052643,
-0.1039653941988945,
0.45660996437072754,
-0.3449946939945221,
0.003750920994207263,
0.3652607202529907,
-0.30644896626472473,
0.2192728966474533,
0.43777236342430115,
1.2862930297851562,
-0.12686434388160706,
-0.46829336881637573,
0.607901394367218,
-0.16466692090034485,
-0.2887501120567322,
-0.4170043170452118,
0.13380815088748932,
-0.1777721345424652,
0.22259268164634705,
0.35309723019599915,
0.2821541130542755,
0.34047454595565796,
-0.4127101004123688,
0.2656930088996887,
0.18000175058841705,
-0.35099154710769653,
-0.32575756311416626,
0.690731942653656,
0.10307762026786804,
-0.012331224977970123,
0.6024050116539001,
-0.36963000893592834,
-0.6128738522529602,
0.7401006817817688,
0.4498286247253418,
0.7089003324508667,
-0.346949964761734,
0.30627894401550293,
0.8557046055793762,
0.17855261266231537,
0.018829457461833954,
0.07084465026855469,
0.371955543756485,
-0.6635228395462036,
-0.49771419167518616,
-0.773421049118042,
-0.11919999867677689,
0.44282737374305725,
-0.6835952401161194,
0.34278392791748047,
-0.28510966897010803,
-0.1927798092365265,
0.18442906439304352,
0.10916521400213242,
-0.7529416680335999,
0.1545272022485733,
0.2320636361837387,
0.7529246211051941,
-1.0315316915512085,
1.069898009300232,
0.5281977653503418,
-0.3860699236392975,
-0.8647913932800293,
0.034890640527009964,
-0.055679287761449814,
-0.6572719216346741,
0.775600254535675,
0.5874441862106323,
0.12985466420650482,
-0.06807251274585724,
-0.1519227772951126,
-1.1365818977355957,
1.0694347620010376,
0.222195565700531,
-0.5638026595115662,
0.0659276694059372,
-0.13438710570335388,
0.6170405745506287,
-0.39589205384254456,
0.4297817051410675,
0.6521217823028564,
0.36074700951576233,
0.26004859805107117,
-0.9791848659515381,
0.12092393636703491,
-0.418407142162323,
-0.003839752869680524,
0.02391853556036949,
-0.6656542420387268,
0.8888722062110901,
-0.4479794204235077,
-0.0293340515345335,
0.05254498869180679,
0.7344963550567627,
0.24557358026504517,
0.538176953792572,
0.5723408460617065,
0.5535955429077148,
0.6758702397346497,
-0.09336656332015991,
0.9392120242118835,
-0.40614694356918335,
0.27500593662261963,
0.687012255191803,
-0.2258225977420807,
0.872208833694458,
0.2322666496038437,
-0.08197526633739471,
0.45546308159828186,
0.628242015838623,
-0.30213916301727295,
0.4046116769313812,
0.2105361521244049,
-0.03458962216973305,
-0.012893146835267544,
-0.11160680651664734,
-0.637792706489563,
0.4981144666671753,
0.22938066720962524,
-0.2096596360206604,
0.07023195922374725,
0.40573692321777344,
0.24890683591365814,
-0.19016410410404205,
0.03534086421132088,
0.6466168761253357,
-0.023987499997019768,
-0.7798553705215454,
1.2414987087249756,
-0.08762852102518082,
0.8881664276123047,
-0.23747320473194122,
0.13467389345169067,
-0.20063214004039764,
0.21345500648021698,
-0.32684075832366943,
-0.322704553604126,
0.3929751515388489,
-0.012906109914183617,
-0.12254331260919571,
0.09081348776817322,
0.48463305830955505,
-0.492422491312027,
-0.5438805222511292,
0.37379351258277893,
0.3218776285648346,
0.268441766500473,
0.14320385456085205,
-1.03096604347229,
0.24791736900806427,
0.14180417358875275,
-0.38331371545791626,
0.35091546177864075,
0.11531375348567963,
0.19678449630737305,
0.5746192932128906,
0.5005843639373779,
-0.14174628257751465,
-0.06695358455181122,
0.11041877418756485,
0.8127407431602478,
-0.403378427028656,
0.021813569590449333,
-0.9411562085151672,
0.26513636112213135,
-0.23570145666599274,
-0.4488511085510254,
0.7769813537597656,
0.6055964827537537,
0.7849237322807312,
-0.1583976000547409,
0.486840158700943,
-0.26013901829719543,
0.3522818684577942,
-0.5874598026275635,
0.5710248351097107,
-0.5704419612884521,
0.06604355573654175,
-0.27949243783950806,
-0.8237459659576416,
-0.5347338318824768,
0.6166139245033264,
-0.24295568466186523,
0.023903459310531616,
0.4614322781562805,
0.8870732188224792,
0.26018333435058594,
-0.05758420005440712,
0.19098453223705292,
0.28391680121421814,
0.19154345989227295,
0.7458011507987976,
0.5796501636505127,
-0.83125239610672,
0.35796070098876953,
-0.8197535276412964,
-0.3819597661495209,
-0.1971656084060669,
-0.6872137188911438,
-1.1368650197982788,
-0.5508900284767151,
-0.7367027401924133,
-0.5956065058708191,
0.17775535583496094,
0.9824109077453613,
0.7934210896492004,
-1.037318468093872,
-0.15966834127902985,
0.08851425349712372,
-0.03972342982888222,
-0.2937353253364563,
-0.23240482807159424,
0.5404080152511597,
-0.2407422512769699,
-0.961578905582428,
0.3283407390117645,
0.02316780760884285,
0.22948847711086273,
-0.16295860707759857,
-0.06804662197828293,
-0.36747846007347107,
-0.05116861313581467,
0.48907768726348877,
0.2807634472846985,
-0.8109701871871948,
-0.0180677343159914,
0.20705440640449524,
-0.11739617586135864,
0.007095710840076208,
0.21067874133586884,
-0.6631126999855042,
0.22591575980186462,
0.3086724877357483,
0.366938978433609,
0.5792278051376343,
-0.2750791609287262,
0.3207869529724121,
-0.5312232971191406,
0.33210381865501404,
0.04983676224946976,
0.2958076000213623,
0.3622767925262451,
-0.41281193494796753,
0.6751060485839844,
0.18039189279079437,
-0.5312057733535767,
-0.9408880472183228,
-0.047452520579099655,
-0.9263954162597656,
-0.2880406677722931,
1.3379251956939697,
-0.19629643857479095,
-0.4664590656757355,
0.12213268876075745,
-0.14422933757305145,
0.35046061873435974,
-0.29922229051589966,
0.6229401230812073,
0.4406437277793884,
-0.18982429802417755,
0.030797306448221207,
-0.6364145278930664,
0.7286992073059082,
0.5307155847549438,
-0.47745758295059204,
-0.2012934535741806,
0.0022611122112721205,
0.15820617973804474,
0.531458854675293,
0.6334224343299866,
-0.10983741283416748,
0.03416233882308006,
-0.2136862725019455,
0.09696263074874878,
-0.09979261457920074,
-0.31013038754463196,
-0.5697009563446045,
-0.0024103063624352217,
-0.01483609527349472,
-0.16511613130569458
] |
MoritzLaurer/deberta-v3-large-zeroshot-v1 | MoritzLaurer | "2023-11-29T19:30:53Z" | 10,962 | 18 | transformers | [
"transformers",
"pytorch",
"safetensors",
"deberta-v2",
"text-classification",
"zero-shot-classification",
"en",
"license:mit",
"endpoints_compatible",
"has_space",
"region:us"
] | zero-shot-classification | "2023-10-03T03:24:13Z" | ---
language:
- en
tags:
- text-classification
- zero-shot-classification
pipeline_tag: zero-shot-classification
library_name: transformers
license: mit
---
# deberta-v3-large-zeroshot-v1
## Model description
The model is designed for zero-shot classification with the Hugging Face pipeline.
The model should be substantially better at zero-shot classification than my other zero-shot models on the
Hugging Face hub: https://huggingface.co/MoritzLaurer.
The model can do one universal task: determine whether a hypothesis is `true` or `not_true`
given a text (also called `entailment` vs. `not_entailment`).
This task format is based on the Natural Language Inference task (NLI).
The task is so universal that any classification task can be reformulated into the task.
## Training data
The model was trained on a mixture of 27 tasks and 310 classes that have been reformatted into this universal format.
1. 26 classification tasks with ~400k texts:
'amazonpolarity', 'imdb', 'appreviews', 'yelpreviews', 'rottentomatoes',
'emotiondair', 'emocontext', 'empathetic',
'financialphrasebank', 'banking77', 'massive',
'wikitoxic_toxicaggregated', 'wikitoxic_obscene', 'wikitoxic_threat', 'wikitoxic_insult', 'wikitoxic_identityhate',
'hateoffensive', 'hatexplain', 'biasframes_offensive', 'biasframes_sex', 'biasframes_intent',
'agnews', 'yahootopics',
'trueteacher', 'spam', 'wellformedquery'.
See details on each dataset here: https://docs.google.com/spreadsheets/d/1Z18tMh02IiWgh6o8pfoMiI_LH4IXpr78wd_nmNd5FaE/edit?usp=sharing
3. Five NLI datasets with ~885k texts: "mnli", "anli", "fever", "wanli", "ling"
Note that compared to other NLI models, this model predicts two classes (`entailment` vs. `not_entailment`)
as opposed to three classes (entailment/neutral/contradiction)
### How to use the model
#### Simple zero-shot classification pipeline
```python
from transformers import pipeline
classifier = pipeline("zero-shot-classification", model="MoritzLaurer/deberta-v3-large-zeroshot-v1")
sequence_to_classify = "Angela Merkel is a politician in Germany and leader of the CDU"
candidate_labels = ["politics", "economy", "entertainment", "environment"]
output = classifier(sequence_to_classify, candidate_labels, multi_label=False)
print(output)
```
### Details on data and training
The code for preparing the data and training & evaluating the model is fully open-source here: https://github.com/MoritzLaurer/zeroshot-classifier/tree/main
## Limitations and bias
The model can only do text classification tasks.
Please consult the original DeBERTa paper and the papers for the different datasets for potential biases.
## License
The base model (DeBERTa-v3) is published under the MIT license.
The datasets the model was fine-tuned on are published under a diverse set of licenses.
The following spreadsheet provides an overview of the non-NLI datasets used for fine-tuning.
The spreadsheets contains information on licenses, the underlying papers etc.: https://docs.google.com/spreadsheets/d/1Z18tMh02IiWgh6o8pfoMiI_LH4IXpr78wd_nmNd5FaE/edit?usp=sharing
In addition, the model was also trained on the following NLI datasets: MNLI, ANLI, WANLI, LING-NLI, FEVER-NLI.
## Citation
If you use this model, please cite:
```
@article{laurer_less_2023,
title = {Less {Annotating}, {More} {Classifying}: {Addressing} the {Data} {Scarcity} {Issue} of {Supervised} {Machine} {Learning} with {Deep} {Transfer} {Learning} and {BERT}-{NLI}},
issn = {1047-1987, 1476-4989},
shorttitle = {Less {Annotating}, {More} {Classifying}},
url = {https://www.cambridge.org/core/product/identifier/S1047198723000207/type/journal_article},
doi = {10.1017/pan.2023.20},
language = {en},
urldate = {2023-06-20},
journal = {Political Analysis},
author = {Laurer, Moritz and Van Atteveldt, Wouter and Casas, Andreu and Welbers, Kasper},
month = jun,
year = {2023},
pages = {1--33},
}
```
### Ideas for cooperation or questions?
If you have questions or ideas for cooperation, contact me at m{dot}laurer{at}vu{dot}nl or [LinkedIn](https://www.linkedin.com/in/moritz-laurer/)
### Debugging and issues
Note that DeBERTa-v3 was released on 06.12.21 and older versions of HF Transformers seem to have issues running the model (e.g. resulting in an issue with the tokenizer). Using Transformers>=4.13 might solve some issues. | [
-0.2636971175670624,
-0.6327240467071533,
0.42464515566825867,
0.12647612392902374,
-0.05707667022943497,
-0.16778738796710968,
0.0701172724366188,
-0.6491622924804688,
0.29379820823669434,
0.4777185618877411,
-0.5658164024353027,
-0.706736147403717,
-0.8208186626434326,
0.13660547137260437,
-0.40167564153671265,
1.0886446237564087,
0.05662783235311508,
-0.11483041942119598,
0.027621902525424957,
-0.14337480068206787,
-0.47512829303741455,
-0.6526410579681396,
-0.5651037096977234,
-0.5247825980186462,
0.7310677766799927,
0.4545060098171234,
0.5921472907066345,
0.4680582582950592,
0.40461674332618713,
0.21240760385990143,
-0.23837682604789734,
-0.19473713636398315,
-0.46193745732307434,
-0.043916601687669754,
-0.04987333342432976,
-0.5166729092597961,
-0.47902071475982666,
0.29340502619743347,
0.2699735760688782,
0.41335710883140564,
0.12563291192054749,
0.3326372802257538,
-0.06176453456282616,
0.6001865267753601,
-0.9176836609840393,
0.13189971446990967,
-0.6647697687149048,
0.11187974363565445,
-0.12135905772447586,
0.06402502208948135,
-0.36398375034332275,
-0.16372856497764587,
0.2073390632867813,
-0.4216892719268799,
0.13167449831962585,
-0.2175479233264923,
1.2390104532241821,
0.42735469341278076,
-0.31023064255714417,
-0.06959482282400131,
-0.6871740221977234,
0.9043229818344116,
-0.9317843914031982,
0.27347293496131897,
0.2773571312427521,
0.10413875430822372,
-0.026318436488509178,
-0.49164411425590515,
-0.8306928873062134,
0.11286977678537369,
-0.08799806982278824,
0.3091040551662445,
-0.45458635687828064,
-0.17979198694229126,
0.36462366580963135,
0.20976683497428894,
-0.6468064188957214,
0.37705162167549133,
-0.46221354603767395,
-0.021509723737835884,
0.6181200742721558,
0.015250266529619694,
0.18466003239154816,
-0.4150533378124237,
-0.3790205717086792,
-0.25671517848968506,
-0.632072389125824,
-0.0008827015408314764,
0.3011135756969452,
0.3353155553340912,
-0.299990713596344,
0.5168587565422058,
-0.35099127888679504,
0.7483526468276978,
0.14951105415821075,
0.041599541902542114,
0.6831055283546448,
-0.10558367520570755,
-0.5552064776420593,
0.13565205037593842,
0.8896826505661011,
0.326784610748291,
0.10000614821910858,
0.018024927005171776,
0.08806627988815308,
0.21867360174655914,
0.02846904844045639,
-1.0731086730957031,
-0.25896403193473816,
0.4262394607067108,
-0.3295387625694275,
-0.5706472396850586,
-0.005929622799158096,
-0.8352316617965698,
-0.2665347158908844,
-0.5040417313575745,
0.4592755436897278,
-0.44187816977500916,
-0.19164015352725983,
0.11707945168018341,
-0.2099418342113495,
0.42381802201271057,
0.2868182361125946,
-0.7876220941543579,
0.01711382158100605,
0.5098854899406433,
0.9053618907928467,
0.05313687026500702,
-0.2761734127998352,
-0.4318118393421173,
-0.14251962304115295,
-0.14458082616329193,
0.657450258731842,
-0.49795228242874146,
0.0025733935181051493,
-0.0921504870057106,
0.22006627917289734,
-0.2809199094772339,
-0.40141308307647705,
0.6612651348114014,
-0.4589962065219879,
0.4499838650226593,
-0.17253203690052032,
-0.5808721780776978,
-0.4289955198764801,
0.3985646069049835,
-0.64962238073349,
0.9224278330802917,
0.15512190759181976,
-0.9666038751602173,
0.4322201609611511,
-0.7455936074256897,
-0.0806199312210083,
-0.08002340793609619,
0.04161807522177696,
-0.5213436484336853,
-0.21895603835582733,
0.22829516232013702,
0.6733587384223938,
-0.20442689955234528,
0.5117778778076172,
-0.522254467010498,
-0.44768431782722473,
0.042369864881038666,
-0.3575058877468109,
1.34109628200531,
0.20525504648685455,
-0.5441773533821106,
0.10040417313575745,
-0.8576303124427795,
-0.1358213573694229,
0.19685788452625275,
-0.011154753156006336,
-0.27242857217788696,
-0.30694296956062317,
0.17584775388240814,
0.40457889437675476,
0.15358661115169525,
-0.6960214376449585,
0.3219277858734131,
-0.4750678539276123,
0.38624706864356995,
0.44879022240638733,
0.013500316068530083,
0.44638797640800476,
-0.3421820104122162,
0.37240085005760193,
0.11052411794662476,
0.2970098555088043,
0.04722310230135918,
-0.5678034424781799,
-1.0138320922851562,
-0.4070020616054535,
0.5923495292663574,
0.9314767122268677,
-0.595332682132721,
0.6882299780845642,
-0.20592327415943146,
-0.8106228709220886,
-0.4807368516921997,
0.11697807908058167,
0.30963918566703796,
0.5659182071685791,
0.4848448634147644,
-0.10891866683959961,
-0.6441174745559692,
-0.9135246276855469,
0.12827059626579285,
-0.03544248268008232,
-0.1233830600976944,
0.0739184245467186,
0.8166351914405823,
-0.5199989676475525,
0.9143319129943848,
-0.5313184261322021,
-0.6639485359191895,
-0.21212996542453766,
0.2488027662038803,
0.5074275135993958,
0.44566723704338074,
0.8367184400558472,
-0.6528449058532715,
-0.483583003282547,
-0.2321845442056656,
-0.9033558368682861,
0.02309153787791729,
-0.0695393979549408,
-0.30312681198120117,
0.425279825925827,
0.2013106495141983,
-0.5373314023017883,
0.39511820673942566,
0.6007887125015259,
-0.310726523399353,
0.021942393854260445,
0.020391074940562248,
-0.08568333834409714,
-1.0860542058944702,
0.2556217908859253,
0.2185162901878357,
-0.08105351030826569,
-0.805709183216095,
0.008121953345835209,
-0.13322918117046356,
-0.01879500411450863,
-0.6866205930709839,
0.5612203478813171,
-0.16269052028656006,
0.32124385237693787,
-0.19635653495788574,
0.09231524169445038,
0.10350921005010605,
0.5882562398910522,
0.18327797949314117,
0.3131590187549591,
0.8203713297843933,
-0.5823560953140259,
0.17542849481105804,
0.4930917024612427,
-0.17729611694812775,
0.42567360401153564,
-0.8220221400260925,
0.12180596590042114,
-0.257400244474411,
0.330000638961792,
-0.5483160018920898,
-0.23466062545776367,
0.5429829359054565,
-0.5057005882263184,
0.39329150319099426,
-0.06448780000209808,
-0.4799287021160126,
-0.3032189607620239,
-0.43201708793640137,
0.049670182168483734,
0.6175217628479004,
-0.593963623046875,
0.3900147080421448,
0.33176326751708984,
0.1834907829761505,
-0.7813650965690613,
-0.7287338376045227,
-0.14005808532238007,
-0.29445168375968933,
-0.40394800901412964,
0.37568897008895874,
0.07706229388713837,
-0.16532954573631287,
0.12407772988080978,
0.1249770000576973,
-0.3022558093070984,
0.06531566381454468,
0.33324041962623596,
0.4737847149372101,
0.06576245278120041,
0.010605127550661564,
0.04333546757698059,
-0.1462109088897705,
-0.23601725697517395,
-0.18006056547164917,
0.46377021074295044,
-0.0018931810045614839,
-0.06664617359638214,
-0.6691334247589111,
0.17263443768024445,
0.5973697304725647,
-0.10247424244880676,
0.918884813785553,
0.8286367058753967,
-0.40777039527893066,
0.06996090710163116,
-0.4436616003513336,
-0.1501452624797821,
-0.3802337944507599,
0.08683229982852936,
-0.18762829899787903,
-0.834888219833374,
0.43614429235458374,
0.2349294126033783,
0.15088368952274323,
0.8657218217849731,
0.5318053960800171,
0.11615277081727982,
0.8201727867126465,
0.7695810198783875,
-0.3747434914112091,
0.29295700788497925,
-0.7073037028312683,
0.1829175353050232,
-0.7658564448356628,
-0.22502398490905762,
-0.6150382161140442,
-0.4098377227783203,
-0.7543908357620239,
-0.354218989610672,
0.03320225700736046,
0.21387122571468353,
-0.4924755394458771,
0.7092055678367615,
-0.8042222261428833,
0.3997237980365753,
0.6934175491333008,
-0.035021521151065826,
0.21847186982631683,
-0.07171917706727982,
0.37030279636383057,
-0.03631174564361572,
-0.6934605836868286,
-0.5890402793884277,
1.0170084238052368,
0.5235488414764404,
0.5511308312416077,
0.10779185593128204,
0.9577109813690186,
0.07944417744874954,
0.36920657753944397,
-0.7934002876281738,
0.28256356716156006,
-0.3893982470035553,
-0.8366539478302002,
-0.26407143473625183,
-0.45475566387176514,
-0.98526531457901,
0.2211897075176239,
-0.4518793821334839,
-0.8893531560897827,
0.6114810109138489,
0.0062696789391338825,
-0.4945528209209442,
0.36603623628616333,
-0.5867827534675598,
0.9320112466812134,
-0.15353979170322418,
-0.2156943827867508,
0.05412612110376358,
-0.5955719351768494,
0.4134640693664551,
-0.13754431903362274,
0.0636180117726326,
-0.3189952075481415,
0.26032742857933044,
0.7871314883232117,
-0.1395532637834549,
1.1124311685562134,
-0.38882720470428467,
-0.14084070920944214,
0.3737393617630005,
-0.18227867782115936,
0.19839075207710266,
0.030691063031554222,
-0.26166796684265137,
0.7334717512130737,
0.2390550971031189,
-0.30615195631980896,
-0.500135064125061,
0.8234449625015259,
-0.9348229169845581,
-0.333881139755249,
-0.6996758580207825,
-0.21995097398757935,
0.14839357137680054,
0.26310911774635315,
0.4917058050632477,
0.25166207551956177,
-0.0499965101480484,
0.28731822967529297,
0.524266242980957,
-0.334208607673645,
0.37579840421676636,
0.5337600708007812,
-0.14332067966461182,
-0.21052615344524384,
0.9249388575553894,
0.26522645354270935,
0.025938235223293304,
0.42984631657600403,
0.07677469402551651,
-0.2674027383327484,
-0.302776962518692,
-0.48765239119529724,
0.193068265914917,
-0.5470475554466248,
-0.5029624700546265,
-0.9634792804718018,
-0.3915574252605438,
-0.5267059803009033,
-0.03579648584127426,
-0.28262314200401306,
-0.4767255485057831,
-0.640062689781189,
-0.15917322039604187,
0.5671603679656982,
0.6547254920005798,
-0.0541689358651638,
0.28803306818008423,
-0.7265236973762512,
0.24517008662223816,
0.26119285821914673,
0.3520481586456299,
-0.04272099584341049,
-0.7548510432243347,
0.04830678179860115,
0.11595998704433441,
-0.5668240785598755,
-0.9821927547454834,
0.6727397441864014,
0.19571763277053833,
0.28798267245292664,
0.27477845549583435,
0.26913201808929443,
0.5233794450759888,
-0.41795283555984497,
0.7538315057754517,
0.2086341679096222,
-1.0287597179412842,
0.5483435988426208,
-0.2783418297767639,
0.20668162405490875,
0.7306931614875793,
0.7346652746200562,
-0.35747742652893066,
-0.5013761520385742,
-0.7772583961486816,
-1.0134937763214111,
0.7948758006095886,
0.4510450065135956,
0.23902231454849243,
-0.00015982909826561809,
0.376168817281723,
-0.04776810482144356,
0.11537005007266998,
-0.9311236143112183,
-0.30496618151664734,
-0.23976916074752808,
-0.24775990843772888,
0.025812380015850067,
-0.18036393821239471,
-0.016413206234574318,
-0.5077216029167175,
1.0026768445968628,
-0.09014412015676498,
0.24573568999767303,
0.43462228775024414,
-0.004433747380971909,
0.025506751611828804,
0.41361913084983826,
0.4846538305282593,
0.38064470887184143,
-0.4894735813140869,
-0.11172034591436386,
0.27714693546295166,
-0.13788233697414398,
0.1517866998910904,
0.25550010800361633,
-0.5287485122680664,
0.12491749227046967,
0.28964102268218994,
1.0962680578231812,
-0.04434316232800484,
-0.48611533641815186,
0.6939511895179749,
-0.007445736788213253,
-0.5721471309661865,
-0.5515503287315369,
0.11242496967315674,
-0.11782217770814896,
0.37667950987815857,
0.22497163712978363,
0.08751901984214783,
0.29895734786987305,
-0.5660647749900818,
0.1525106430053711,
0.42241811752319336,
-0.5411794185638428,
-0.23596970736980438,
0.6761055588722229,
0.14619874954223633,
-0.11571065336465836,
0.5625115036964417,
-0.4804390072822571,
-0.48414456844329834,
0.6084603667259216,
0.3588215112686157,
0.900160551071167,
0.06914524734020233,
0.4580236077308655,
0.6866019368171692,
0.2852742373943329,
-0.07657526433467865,
0.12938906252384186,
0.2739584445953369,
-0.7415122389793396,
-0.5789833664894104,
-0.7112824320793152,
-0.3981509804725647,
0.52117520570755,
-0.5669809579849243,
0.5409212708473206,
-0.5012459754943848,
-0.1514759659767151,
0.2902463376522064,
0.0010622118134051561,
-0.6942439675331116,
0.21532873809337616,
0.31490984559059143,
0.763890266418457,
-1.1469649076461792,
0.8547433018684387,
0.4804210960865021,
-0.6543651223182678,
-0.705810010433197,
-0.05885690078139305,
0.07102154940366745,
-0.370636910200119,
0.8837776184082031,
0.5309383869171143,
-0.024838903918862343,
-0.12863127887248993,
-0.6717138290405273,
-0.8959462642669678,
1.1477887630462646,
0.40077197551727295,
-0.7650993466377258,
-0.034519802778959274,
-0.06912478059530258,
0.6791093349456787,
-0.2459220141172409,
0.4258655309677124,
0.5364097952842712,
0.4878670275211334,
0.18506650626659393,
-0.9390777945518494,
0.030881380662322044,
-0.25985777378082275,
-0.14458909630775452,
0.1111411452293396,
-0.7343347072601318,
0.9176017045974731,
-0.028490085154771805,
-0.2307276874780655,
-0.05020279064774513,
0.43429872393608093,
0.06354665756225586,
0.4466032087802887,
0.5081896185874939,
0.837078332901001,
0.7409642338752747,
-0.15240469574928284,
0.8857757449150085,
-0.2514570355415344,
0.5959998369216919,
1.1868702173233032,
-0.5099031925201416,
0.9754031896591187,
0.20395369827747345,
-0.06654343008995056,
0.76084303855896,
0.5152018666267395,
-0.4510542154312134,
0.37194347381591797,
0.08237496763467789,
-0.04968469217419624,
-0.1003732979297638,
-0.18138214945793152,
-0.28374794125556946,
0.677668035030365,
0.03475447744131088,
-0.40413975715637207,
-0.21037150919437408,
0.0154460733756423,
0.21820035576820374,
-0.10855228453874588,
0.03509122505784035,
0.8305776715278625,
-0.05704794451594353,
-0.5118131637573242,
0.8691924214363098,
-0.017728334292769432,
0.9461336135864258,
-0.3016311824321747,
-0.1128154993057251,
-0.0027172702830284834,
0.29006490111351013,
-0.4265146553516388,
-0.6004198789596558,
0.5314753651618958,
0.22083008289337158,
-0.2919456660747528,
-0.08250955492258072,
0.5783230662345886,
-0.32440704107284546,
-0.6028245687484741,
0.5312178730964661,
0.4730476438999176,
0.17076712846755981,
-0.13568881154060364,
-0.8077395558357239,
-0.03386295214295387,
0.07983928173780441,
-0.1666148602962494,
0.27957484126091003,
0.24078010022640228,
0.098223976790905,
0.4910866916179657,
0.6376000046730042,
-0.10944005101919174,
-0.2644461989402771,
0.0906209722161293,
0.8460483551025391,
-0.626693069934845,
-0.01888122968375683,
-0.9417616724967957,
0.483638733625412,
-0.2601645290851593,
-0.3124845325946808,
0.720200777053833,
0.5259196162223816,
0.87331622838974,
-0.09375783801078796,
0.6796279549598694,
-0.3346251845359802,
0.5477487444877625,
-0.34255218505859375,
0.6580942869186401,
-0.6801884770393372,
-0.08604399114847183,
-0.3991328477859497,
-0.9747976064682007,
-0.5508478283882141,
0.7202263474464417,
-0.23159052431583405,
-0.19700922071933746,
0.4340956509113312,
0.6199796795845032,
0.043698523193597794,
-0.11037256568670273,
0.1442168951034546,
0.09959232807159424,
0.2544851303100586,
0.617764413356781,
0.5187301635742188,
-0.6802111864089966,
0.41400161385536194,
-0.5382410883903503,
-0.3082786798477173,
-0.04385083541274071,
-0.8198062777519226,
-1.0293875932693481,
-0.3974648714065552,
-0.5622726082801819,
-0.2834678888320923,
-0.13744868338108063,
0.9562986493110657,
0.7667797207832336,
-0.9886605143547058,
0.05425279960036278,
-0.1822202056646347,
-0.034471359103918076,
-0.00003601423668442294,
-0.3130231499671936,
0.33591368794441223,
-0.1694646030664444,
-1.0458800792694092,
0.09790673106908798,
0.10836368054151535,
0.1827538162469864,
-0.2378891557455063,
0.124852754175663,
-0.46484678983688354,
0.05709785968065262,
0.6839970946311951,
0.2772008180618286,
-0.5749514698982239,
-0.21165122091770172,
0.2717994153499603,
0.003840948222205043,
-0.01044174563139677,
0.2992137670516968,
-0.8081302642822266,
0.1576818972826004,
0.46593600511550903,
0.47818559408187866,
0.5149284601211548,
-0.1775735467672348,
0.14951980113983154,
-0.6002321243286133,
0.34240758419036865,
0.17851002514362335,
0.24138373136520386,
0.33837196230888367,
-0.4850862920284271,
0.6509132385253906,
0.08689938485622406,
-0.602120578289032,
-0.6882808208465576,
0.1405879110097885,
-1.0154396295547485,
-0.30066561698913574,
1.1339361667633057,
-0.1601744443178177,
-0.3123878836631775,
-0.010955204255878925,
-0.24540361762046814,
0.3764191269874573,
-0.4761603772640228,
0.7445932030677795,
0.578781008720398,
-0.15307997167110443,
-0.17742285132408142,
-0.6486976742744446,
0.3486022353172302,
0.3847900629043579,
-0.8297999501228333,
-0.07954561710357666,
0.48242270946502686,
0.26708129048347473,
0.6039021611213684,
0.6219024062156677,
-0.036987487226724625,
-0.06265845149755478,
-0.24210825562477112,
0.15057078003883362,
0.17432712018489838,
-0.34198299050331116,
-0.5452264547348022,
-0.01106856856495142,
-0.11569566279649734,
-0.16131101548671722
] |
EleutherAI/pythia-12b | EleutherAI | "2023-06-08T11:06:48Z" | 10,960 | 118 | transformers | [
"transformers",
"pytorch",
"gpt_neox",
"text-generation",
"causal-lm",
"pythia",
"en",
"dataset:EleutherAI/pile",
"arxiv:2304.01373",
"arxiv:2101.00027",
"arxiv:2201.07311",
"license:apache-2.0",
"endpoints_compatible",
"has_space",
"text-generation-inference",
"region:us"
] | text-generation | "2023-02-28T18:48:12Z" | ---
language:
- en
tags:
- pytorch
- causal-lm
- pythia
license: apache-2.0
datasets:
- EleutherAI/pile
---
The *Pythia Scaling Suite* is a collection of models developed to facilitate
interpretability research [(see paper)](https://arxiv.org/pdf/2304.01373.pdf).
It contains two sets of eight models of sizes
70M, 160M, 410M, 1B, 1.4B, 2.8B, 6.9B, and 12B. For each size, there are two
models: one trained on the Pile, and one trained on the Pile after the dataset
has been globally deduplicated. All 8 model sizes are trained on the exact
same data, in the exact same order. We also provide 154 intermediate
checkpoints per model, hosted on Hugging Face as branches.
The Pythia model suite was deliberately designed to promote scientific
research on large language models, especially interpretability research.
Despite not centering downstream performance as a design goal, we find the
models <a href="#evaluations">match or exceed</a> the performance of
similar and same-sized models, such as those in the OPT and GPT-Neo suites.
<details>
<summary style="font-weight: 600">Past early release and naming convention.</summary>
Previously, we released an early version of the Pythia suite to the public.
However, we decided to retrain the model suite to address a few hyperparameter
discrepancies. This model card <a href="#changelog">lists the changes</a>;
see appendix B in the Pythia paper for further discussion. We found no
difference in benchmark performance between the two Pythia versions.
The old models are
[still available](https://huggingface.co/models?other=pythia_v0), but we
suggest the retrained suite if you are just starting to use Pythia.<br>
**This is the current release.**
Please note that all models in the *Pythia* suite were renamed in January
2023. For clarity, a <a href="#naming-convention-and-parameter-count">table
comparing the old and new names</a> is provided in this model card, together
with exact parameter counts.
</details>
<br>
# Pythia-12B
## Model Details
- Developed by: [EleutherAI](http://eleuther.ai)
- Model type: Transformer-based Language Model
- Language: English
- Learn more: [Pythia's GitHub repository](https://github.com/EleutherAI/pythia)
for training procedure, config files, and details on how to use.
[See paper](https://arxiv.org/pdf/2304.01373.pdf) for more evals and implementation
details.
- Library: [GPT-NeoX](https://github.com/EleutherAI/gpt-neox)
- License: Apache 2.0
- Contact: to ask questions about this model, join the [EleutherAI
Discord](https://discord.gg/zBGx3azzUn), and post them in `#release-discussion`.
Please read the existing *Pythia* documentation before asking about it in the
EleutherAI Discord. For general correspondence: [contact@eleuther.
ai](mailto:contact@eleuther.ai).
<figure>
| Pythia model | Non-Embedding Params | Layers | Model Dim | Heads | Batch Size | Learning Rate | Equivalent Models |
| -----------: | -------------------: | :----: | :-------: | :---: | :--------: | :-------------------: | :--------------------: |
| 70M | 18,915,328 | 6 | 512 | 8 | 2M | 1.0 x 10<sup>-3</sup> | — |
| 160M | 85,056,000 | 12 | 768 | 12 | 2M | 6.0 x 10<sup>-4</sup> | GPT-Neo 125M, OPT-125M |
| 410M | 302,311,424 | 24 | 1024 | 16 | 2M | 3.0 x 10<sup>-4</sup> | OPT-350M |
| 1.0B | 805,736,448 | 16 | 2048 | 8 | 2M | 3.0 x 10<sup>-4</sup> | — |
| 1.4B | 1,208,602,624 | 24 | 2048 | 16 | 2M | 2.0 x 10<sup>-4</sup> | GPT-Neo 1.3B, OPT-1.3B |
| 2.8B | 2,517,652,480 | 32 | 2560 | 32 | 2M | 1.6 x 10<sup>-4</sup> | GPT-Neo 2.7B, OPT-2.7B |
| 6.9B | 6,444,163,072 | 32 | 4096 | 32 | 2M | 1.2 x 10<sup>-4</sup> | OPT-6.7B |
| 12B | 11,327,027,200 | 36 | 5120 | 40 | 2M | 1.2 x 10<sup>-4</sup> | — |
<figcaption>Engineering details for the <i>Pythia Suite</i>. Deduped and
non-deduped models of a given size have the same hyperparameters. “Equivalent”
models have <b>exactly</b> the same architecture, and the same number of
non-embedding parameters.</figcaption>
</figure>
## Uses and Limitations
### Intended Use
The primary intended use of Pythia is research on the behavior, functionality,
and limitations of large language models. This suite is intended to provide
a controlled setting for performing scientific experiments. We also provide
154 checkpoints per model: initial `step0`, 10 log-spaced checkpoints
`step{1,2,4...512}`, and 143 evenly-spaced checkpoints from `step1000` to
`step143000`. These checkpoints are hosted on Hugging Face as branches. Note
that branch `143000` corresponds exactly to the model checkpoint on the `main`
branch of each model.
You may also further fine-tune and adapt Pythia-12B for deployment,
as long as your use is in accordance with the Apache 2.0 license. Pythia
models work with the Hugging Face [Transformers
Library](https://huggingface.co/docs/transformers/index). If you decide to use
pre-trained Pythia-12B as a basis for your fine-tuned model, please
conduct your own risk and bias assessment.
### Out-of-scope use
The Pythia Suite is **not** intended for deployment. It is not a in itself
a product and cannot be used for human-facing interactions. For example,
the model may generate harmful or offensive text. Please evaluate the risks
associated with your particular use case.
Pythia models are English-language only, and are not suitable for translation
or generating text in other languages.
Pythia-12B has not been fine-tuned for downstream contexts in which
language models are commonly deployed, such as writing genre prose,
or commercial chatbots. This means Pythia-12B will **not**
respond to a given prompt the way a product like ChatGPT does. This is because,
unlike this model, ChatGPT was fine-tuned using methods such as Reinforcement
Learning from Human Feedback (RLHF) to better “follow” human instructions.
### Limitations and biases
The core functionality of a large language model is to take a string of text
and predict the next token. The token used by the model need not produce the
most “accurate” text. Never rely on Pythia-12B to produce factually accurate
output.
This model was trained on [the Pile](https://pile.eleuther.ai/), a dataset
known to contain profanity and texts that are lewd or otherwise offensive.
See [Section 6 of the Pile paper](https://arxiv.org/abs/2101.00027) for a
discussion of documented biases with regards to gender, religion, and race.
Pythia-12B may produce socially unacceptable or undesirable text, *even if*
the prompt itself does not include anything explicitly offensive.
If you plan on using text generated through, for example, the Hosted Inference
API, we recommend having a human curate the outputs of this language model
before presenting it to other people. Please inform your audience that the
text was generated by Pythia-12B.
### Quickstart
Pythia models can be loaded and used via the following code, demonstrated here
for the third `pythia-70m-deduped` checkpoint:
```python
from transformers import GPTNeoXForCausalLM, AutoTokenizer
model = GPTNeoXForCausalLM.from_pretrained(
"EleutherAI/pythia-70m-deduped",
revision="step3000",
cache_dir="./pythia-70m-deduped/step3000",
)
tokenizer = AutoTokenizer.from_pretrained(
"EleutherAI/pythia-70m-deduped",
revision="step3000",
cache_dir="./pythia-70m-deduped/step3000",
)
inputs = tokenizer("Hello, I am", return_tensors="pt")
tokens = model.generate(**inputs)
tokenizer.decode(tokens[0])
```
Revision/branch `step143000` corresponds exactly to the model checkpoint on
the `main` branch of each model.<br>
For more information on how to use all Pythia models, see [documentation on
GitHub](https://github.com/EleutherAI/pythia).
## Training
### Training data
[The Pile](https://pile.eleuther.ai/) is a 825GiB general-purpose dataset in
English. It was created by EleutherAI specifically for training large language
models. It contains texts from 22 diverse sources, roughly broken down into
five categories: academic writing (e.g. arXiv), internet (e.g. CommonCrawl),
prose (e.g. Project Gutenberg), dialogue (e.g. YouTube subtitles), and
miscellaneous (e.g. GitHub, Enron Emails). See [the Pile
paper](https://arxiv.org/abs/2101.00027) for a breakdown of all data sources,
methodology, and a discussion of ethical implications. Consult [the
datasheet](https://arxiv.org/abs/2201.07311) for more detailed documentation
about the Pile and its component datasets. The Pile can be downloaded from
the [official website](https://pile.eleuther.ai/), or from a [community
mirror](https://the-eye.eu/public/AI/pile/).<br>
The Pile was **not** deduplicated before being used to train Pythia-12B.
### Training procedure
All models were trained on the exact same data, in the exact same order. Each
model saw 299,892,736,000 tokens during training, and 143 checkpoints for each
model are saved every 2,097,152,000 tokens, spaced evenly throughout training,
from `step1000` to `step143000` (which is the same as `main`). In addition, we
also provide frequent early checkpoints: `step0` and `step{1,2,4...512}`.
This corresponds to training for just under 1 epoch on the Pile for
non-deduplicated models, and about 1.5 epochs on the deduplicated Pile.
All *Pythia* models trained for 143000 steps at a batch size
of 2M (2,097,152 tokens).<br>
See [GitHub](https://github.com/EleutherAI/pythia) for more details on training
procedure, including [how to reproduce
it](https://github.com/EleutherAI/pythia/blob/main/README.md#reproducing-training).<br>
Pythia uses the same tokenizer as [GPT-NeoX-
20B](https://huggingface.co/EleutherAI/gpt-neox-20b).
## Evaluations
All 16 *Pythia* models were evaluated using the [LM Evaluation
Harness](https://github.com/EleutherAI/lm-evaluation-harness). You can access
the results by model and step at `results/json/*` in the [GitHub
repository](https://github.com/EleutherAI/pythia/tree/main/results/json/).<br>
Expand the sections below to see plots of evaluation results for all
Pythia and Pythia-deduped models compared with OPT and BLOOM.
<details>
<summary>LAMBADA – OpenAI</summary>
<img src="/EleutherAI/pythia-12b/resolve/main/eval_plots/lambada_openai_v1.png" style="width:auto"/>
</details>
<details>
<summary>Physical Interaction: Question Answering (PIQA)</summary>
<img src="/EleutherAI/pythia-12b/resolve/main/eval_plots/piqa_v1.png" style="width:auto"/>
</details>
<details>
<summary>WinoGrande</summary>
<img src="/EleutherAI/pythia-12b/resolve/main/eval_plots/winogrande_v1.png" style="width:auto"/>
</details>
<details>
<summary>AI2 Reasoning Challenge—Easy Set</summary>
<img src="/EleutherAI/pythia-12b/resolve/main/eval_plots/arc_easy_v1.png" style="width:auto"/>
</details>
<details>
<summary>SciQ</summary>
<img src="/EleutherAI/pythia-12b/resolve/main/eval_plots/sciq_v1.png" style="width:auto"/>
</details>
## Changelog
This section compares differences between previously released
[Pythia v0](https://huggingface.co/models?other=pythia_v0) and the current
models. See Appendix B of the Pythia paper for further discussion of these
changes and the motivation behind them. We found that retraining Pythia had no
impact on benchmark performance.
- All model sizes are now trained with uniform batch size of 2M tokens.
Previously, the models of size 160M, 410M, and 1.4B parameters were trained
with batch sizes of 4M tokens.
- We added checkpoints at initialization (step 0) and steps {1,2,4,8,16,32,64,
128,256,512} in addition to every 1000 training steps.
- Flash Attention was used in the new retrained suite.
- We remedied a minor inconsistency that existed in the original suite: all
models of size 2.8B parameters or smaller had a learning rate (LR) schedule
which decayed to a minimum LR of 10% the starting LR rate, but the 6.9B and
12B models all used an LR schedule which decayed to a minimum LR of 0. In
the redone training runs, we rectified this inconsistency: all models now were
trained with LR decaying to a minimum of 0.1× their maximum LR.
### Naming convention and parameter count
*Pythia* models were renamed in January 2023. It is possible that the old
naming convention still persists in some documentation by accident. The
current naming convention (70M, 160M, etc.) is based on total parameter count.
<figure style="width:32em">
| current Pythia suffix | old suffix | total params | non-embedding params |
| --------------------: | ---------: | -------------: | -------------------: |
| 70M | 19M | 70,426,624 | 18,915,328 |
| 160M | 125M | 162,322,944 | 85,056,000 |
| 410M | 350M | 405,334,016 | 302,311,424 |
| 1B | 800M | 1,011,781,632 | 805,736,448 |
| 1.4B | 1.3B | 1,414,647,808 | 1,208,602,624 |
| 2.8B | 2.7B | 2,775,208,960 | 2,517,652,480 |
| 6.9B | 6.7B | 6,857,302,016 | 6,444,163,072 |
| 12B | 13B | 11,846,072,320 | 11,327,027,200 |
</figure> | [
-0.33725297451019287,
-0.791206419467926,
0.3424629271030426,
0.09333227574825287,
-0.22982460260391235,
-0.18201185762882233,
-0.2475762516260147,
-0.4594472348690033,
0.21361607313156128,
0.12138617038726807,
-0.38391533493995667,
-0.2977519631385803,
-0.4499925673007965,
-0.056560952216386795,
-0.4481565058231354,
1.144571304321289,
-0.0996064618229866,
-0.10920187830924988,
0.12170412391424179,
-0.0839458629488945,
-0.0792810469865799,
-0.5007123947143555,
-0.374847412109375,
-0.425685316324234,
0.6574769616127014,
0.15928269922733307,
0.8904866576194763,
0.5917859673500061,
0.20564985275268555,
0.3002408444881439,
-0.34825605154037476,
-0.04577550292015076,
-0.16916584968566895,
-0.10268986970186234,
-0.03408785164356232,
-0.24957020580768585,
-0.6846368908882141,
0.028811393305659294,
0.6828560829162598,
0.6997379660606384,
-0.18945956230163574,
0.25122955441474915,
-0.018022481352090836,
0.3603133261203766,
-0.5339093804359436,
0.0227617546916008,
-0.3261862099170685,
-0.23669779300689697,
-0.09543903917074203,
0.14026027917861938,
-0.40032443404197693,
-0.36739689111709595,
0.4725835621356964,
-0.665010929107666,
0.24206340312957764,
0.1530802845954895,
1.2475416660308838,
-0.11549791693687439,
-0.4049569070339203,
-0.09087580442428589,
-0.7132871747016907,
0.6785081624984741,
-0.6875815391540527,
0.3227158188819885,
0.2677345871925354,
0.1800287961959839,
-0.020108461380004883,
-0.9070073962211609,
-0.5165290832519531,
-0.21124522387981415,
-0.1340213268995285,
-0.015978826209902763,
-0.6296899914741516,
0.021771222352981567,
0.476266086101532,
0.6831669807434082,
-0.8400853276252747,
-0.06739196181297302,
-0.3924826383590698,
-0.3639598786830902,
0.3205643594264984,
0.04717590659856796,
0.47193238139152527,
-0.282179594039917,
0.010399378836154938,
-0.3856584429740906,
-0.6746380925178528,
-0.26757654547691345,
0.572257399559021,
0.06652989238500595,
-0.37626776099205017,
0.5312840342521667,
-0.3276267945766449,
0.5505514144897461,
-0.05668092146515846,
0.25606703758239746,
0.4503593146800995,
-0.1768730729818344,
-0.5154888033866882,
-0.11308765411376953,
0.9203446507453918,
0.12853585183620453,
0.23890195786952972,
-0.036799896508455276,
-0.05175776407122612,
0.14909671247005463,
0.06985094398260117,
-1.1378767490386963,
-0.8373020887374878,
0.2276010364294052,
-0.42249596118927,
-0.43906697630882263,
-0.170765221118927,
-0.9517868161201477,
-0.21024145185947418,
-0.19694240391254425,
0.6038055419921875,
-0.5275589227676392,
-0.7169992327690125,
-0.1241685003042221,
0.017470430582761765,
0.22474119067192078,
0.36328235268592834,
-0.9397003650665283,
0.45391106605529785,
0.40408992767333984,
0.9952514171600342,
0.19304396212100983,
-0.590150773525238,
-0.19139499962329865,
-0.2760342061519623,
-0.15046222507953644,
0.39957645535469055,
-0.1660129427909851,
-0.18450607359409332,
-0.11345866322517395,
0.18233086168766022,
-0.1401418149471283,
-0.39046454429626465,
0.3464615046977997,
-0.42908671498298645,
0.28290805220603943,
-0.2563246786594391,
-0.46016961336135864,
-0.3599597215652466,
0.09332477301359177,
-0.5863187909126282,
0.856157660484314,
0.21854662895202637,
-0.9864349961280823,
0.21102528274059296,
-0.20633499324321747,
-0.04666447266936302,
-0.029712462797760963,
0.16087386012077332,
-0.7035291194915771,
0.03981970623135567,
0.34357574582099915,
0.04491856321692467,
-0.43020346760749817,
0.22095227241516113,
-0.24291299283504486,
-0.43901973962783813,
0.16377423703670502,
-0.5233641862869263,
0.9154671430587769,
0.1867077350616455,
-0.6540084481239319,
0.3219059705734253,
-0.6154733300209045,
0.2116689831018448,
0.2519952058792114,
-0.37734511494636536,
0.062300100922584534,
-0.23745928704738617,
0.39865726232528687,
0.17070993781089783,
0.16879795491695404,
-0.37467527389526367,
0.26639097929000854,
-0.4942054748535156,
0.7010096907615662,
0.7483199834823608,
-0.02717285044491291,
0.5071588158607483,
-0.4440162777900696,
0.4775155186653137,
0.02013877034187317,
0.18170428276062012,
-0.08827998489141464,
-0.655840277671814,
-0.973346471786499,
-0.27944931387901306,
0.3840136229991913,
0.31569766998291016,
-0.476363867521286,
0.46317142248153687,
-0.23171168565750122,
-0.9206534624099731,
-0.20253685116767883,
-0.12048688530921936,
0.438300222158432,
0.28324511647224426,
0.45319831371307373,
-0.1779654622077942,
-0.5296599864959717,
-0.8784710764884949,
-0.21526645123958588,
-0.44365039467811584,
0.1534368246793747,
0.19754144549369812,
0.9534209966659546,
-0.13448993861675262,
0.5380035638809204,
-0.3742158114910126,
0.2373785823583603,
-0.38316234946250916,
0.15970857441425323,
0.4177852272987366,
0.6248358488082886,
0.39272308349609375,
-0.5247792601585388,
-0.36667123436927795,
0.013045079074800014,
-0.6013123989105225,
0.08004573732614517,
0.005934400018304586,
-0.35346516966819763,
0.2933409512042999,
0.06597445905208588,
-0.9845396876335144,
0.5088090896606445,
0.6517864465713501,
-0.5727139711380005,
0.8092174530029297,
-0.36027345061302185,
-0.02153085544705391,
-1.0484044551849365,
0.259835422039032,
0.15190544724464417,
-0.1917136162519455,
-0.5753129720687866,
0.08000209927558899,
0.236684650182724,
-0.23202326893806458,
-0.3849821090698242,
0.57122403383255,
-0.5679534077644348,
-0.179141104221344,
-0.23238369822502136,
0.008755309507250786,
-0.0481853112578392,
0.6413708329200745,
0.16034260392189026,
0.5882490277290344,
0.8228222727775574,
-0.7751879096031189,
0.4303185045719147,
0.22896890342235565,
-0.303445965051651,
0.3609422445297241,
-0.8848614692687988,
0.12554886937141418,
0.06821934133768082,
0.4203082025051117,
-0.6132703423500061,
-0.3836911618709564,
0.5230336785316467,
-0.6070148944854736,
0.1590617597103119,
-0.412911593914032,
-0.5179917216300964,
-0.40694519877433777,
-0.15428659319877625,
0.5932031273841858,
0.7855804562568665,
-0.6209926009178162,
0.7221030592918396,
0.05874248594045639,
0.17357496917247772,
-0.3530898988246918,
-0.5757192373275757,
-0.2951623797416687,
-0.5425037741661072,
-0.6958693265914917,
0.4267911911010742,
0.1658533811569214,
-0.16474615037441254,
0.03341009467840195,
-0.029859621077775955,
0.121810682117939,
-0.08286458253860474,
0.33219000697135925,
0.3768160045146942,
-0.04300757497549057,
-0.010462033562362194,
-0.15956461429595947,
-0.1410638988018036,
0.001660658628679812,
-0.48252877593040466,
0.9842779040336609,
-0.31007930636405945,
-0.1820550560951233,
-0.839769721031189,
-0.028290845453739166,
0.9015129804611206,
-0.43132391571998596,
0.9443675875663757,
0.6160385608673096,
-0.7188626527786255,
0.16847747564315796,
-0.40139520168304443,
-0.31731167435646057,
-0.4436352252960205,
0.6276243329048157,
-0.2586226165294647,
-0.3406307101249695,
0.627865731716156,
0.22435826063156128,
0.26302024722099304,
0.5578859448432922,
0.7406694293022156,
0.22823122143745422,
1.1498936414718628,
0.46885228157043457,
-0.16027779877185822,
0.637471079826355,
-0.5240011215209961,
0.26323381066322327,
-1.1043243408203125,
-0.24357949197292328,
-0.5283938646316528,
-0.2628840208053589,
-0.9600109457969666,
-0.28053659200668335,
0.33101484179496765,
0.18222099542617798,
-0.7872020602226257,
0.5869491100311279,
-0.556032121181488,
0.07123972475528717,
0.6550223231315613,
0.2521071135997772,
0.155869722366333,
0.21804864704608917,
0.04574272036552429,
-0.08994083851575851,
-0.6568182706832886,
-0.32154569029808044,
1.2183254957199097,
0.5006229877471924,
0.6688898205757141,
0.30304086208343506,
0.7119205594062805,
-0.17015312612056732,
0.23287484049797058,
-0.7011656165122986,
0.41493502259254456,
0.3851967751979828,
-0.7465710043907166,
-0.19663545489311218,
-0.7696173787117004,
-0.9692281484603882,
0.4850364327430725,
0.06558302044868469,
-1.1129429340362549,
0.2764075994491577,
0.21536877751350403,
-0.3747091591358185,
0.46120136976242065,
-0.6774190068244934,
1.019252896308899,
-0.1939276158809662,
-0.48446905612945557,
-0.34907248616218567,
-0.3227296471595764,
0.2314372956752777,
0.3713662028312683,
0.14413312077522278,
0.10660950094461441,
0.2922140061855316,
0.9813053011894226,
-0.6795386075973511,
0.6539402604103088,
-0.13802459836006165,
0.1651352494955063,
0.3403307795524597,
0.2966800630092621,
0.680590033531189,
0.13383905589580536,
0.15290860831737518,
-0.09162859618663788,
0.12931035459041595,
-0.5724409818649292,
-0.3787352740764618,
0.91652512550354,
-1.1515015363693237,
-0.3689374029636383,
-0.821481466293335,
-0.5710682272911072,
0.08918558806180954,
0.17059612274169922,
0.45242393016815186,
0.6711925864219666,
0.0022507132962346077,
0.055113352835178375,
0.5942121148109436,
-0.557406485080719,
0.36062151193618774,
0.19360436499118805,
-0.5123263001441956,
-0.5365161299705505,
1.0295896530151367,
0.03278401494026184,
0.3412522077560425,
-0.0001710055221337825,
0.23002691566944122,
-0.38665443658828735,
-0.4492553174495697,
-0.6088314056396484,
0.5905206799507141,
-0.7154231667518616,
-0.01891135424375534,
-0.704231321811676,
-0.05030254274606705,
-0.4444223940372467,
0.10065761208534241,
-0.4353655278682709,
-0.3511850833892822,
-0.2136097550392151,
-0.03551935404539108,
0.598820686340332,
0.4772811830043793,
0.09113025665283203,
0.3652428388595581,
-0.5211492776870728,
-0.041385482996702194,
0.20443038642406464,
0.09706933796405792,
0.13640747964382172,
-0.9624146223068237,
-0.10467807203531265,
0.048584915697574615,
-0.45658963918685913,
-1.1536118984222412,
0.5259053707122803,
-0.06093909218907356,
0.3520548343658447,
0.05557628720998764,
-0.24184578657150269,
0.632361888885498,
-0.10450290143489838,
0.6578275561332703,
0.1657097488641739,
-1.0203992128372192,
0.5754018425941467,
-0.5004748106002808,
0.31548604369163513,
0.3402194380760193,
0.3817908763885498,
-0.7189005613327026,
-0.06346956640481949,
-1.029574990272522,
-1.0872598886489868,
0.7612895369529724,
0.5317865014076233,
0.17186635732650757,
0.09304529428482056,
0.3770368695259094,
-0.4711053669452667,
0.13681210577487946,
-1.0336320400238037,
-0.34294337034225464,
-0.24934975802898407,
-0.07675296068191528,
0.21657514572143555,
-0.023518413305282593,
0.07126490026712418,
-0.5523463487625122,
1.0627394914627075,
0.08221041411161423,
0.3732127845287323,
0.25844913721084595,
-0.38611045479774475,
-0.10811902582645416,
-0.07835350930690765,
0.10954828560352325,
0.7797092795372009,
-0.14858362078666687,
0.05065455660223961,
0.20306576788425446,
-0.5831694006919861,
0.05935663729906082,
0.15294520556926727,
-0.369129478931427,
-0.088778056204319,
0.20257066190242767,
0.8608809113502502,
0.15389223396778107,
-0.4008312225341797,
0.23749393224716187,
-0.05700863152742386,
-0.07028427720069885,
-0.27893200516700745,
-0.19135604798793793,
0.20593194663524628,
0.18462306261062622,
-0.014533123932778835,
-0.13651929795742035,
-0.021583329886198044,
-0.9071751236915588,
0.04647758975625038,
0.16063037514686584,
-0.11898298561573029,
-0.41421014070510864,
0.5856093168258667,
0.05278715491294861,
-0.18402723968029022,
1.1324777603149414,
-0.23238062858581543,
-0.6269344687461853,
0.7656121253967285,
0.517765998840332,
0.687792956829071,
-0.21409407258033752,
0.3325781226158142,
0.8882072567939758,
0.33435335755348206,
-0.2104548215866089,
0.07906090468168259,
0.14790138602256775,
-0.5736315846443176,
-0.11175040900707245,
-0.7918259501457214,
-0.23806098103523254,
0.275243878364563,
-0.6442937850952148,
0.44736629724502563,
-0.6690464615821838,
-0.06708890944719315,
0.0041005536913871765,
0.25595518946647644,
-0.5850784778594971,
0.3583073914051056,
0.14220084249973297,
0.7352221012115479,
-0.9306021928787231,
0.8349124193191528,
0.6719968318939209,
-0.7558650970458984,
-1.1223444938659668,
0.028892233967781067,
0.05291130393743515,
-0.4840517044067383,
0.11173384636640549,
0.21596388518810272,
0.22366668283939362,
0.17663712799549103,
-0.29724204540252686,
-0.8940704464912415,
1.3282537460327148,
0.2467949241399765,
-0.6557483077049255,
-0.2777506113052368,
-0.18017780780792236,
0.5213550925254822,
0.03807620704174042,
0.6992995142936707,
0.7434465289115906,
0.4123353064060211,
0.10494674742221832,
-1.0386348962783813,
0.35193875432014465,
-0.34880203008651733,
-0.05203128606081009,
0.2213023602962494,
-0.6903125643730164,
1.2541612386703491,
-0.056159310042858124,
-0.014035667292773724,
0.43239784240722656,
0.619365930557251,
0.44462257623672485,
-0.13250277936458588,
0.3444901704788208,
0.7729273438453674,
0.92283695936203,
-0.37838640809059143,
1.2796860933303833,
-0.32243049144744873,
0.7587257027626038,
0.8630111217498779,
0.20943664014339447,
0.487885445356369,
0.38935574889183044,
-0.3799073398113251,
0.5219278931617737,
0.8677753806114197,
-0.08820440620183945,
0.23411284387111664,
0.2686615288257599,
-0.30539458990097046,
-0.29568371176719666,
0.12149927020072937,
-0.616360604763031,
0.15948057174682617,
0.18251022696495056,
-0.5714609026908875,
-0.2145959734916687,
-0.33706191182136536,
0.3458203971385956,
-0.3647315502166748,
-0.23557375371456146,
0.26351073384284973,
0.09179681539535522,
-0.6426405906677246,
0.596562385559082,
0.27232682704925537,
0.5862250328063965,
-0.4578906297683716,
0.19764193892478943,
-0.17671291530132294,
0.3375755548477173,
-0.3607933521270752,
-0.41267073154449463,
0.12027399241924286,
0.02723754197359085,
0.07028310745954514,
0.12699905037879944,
0.44518694281578064,
-0.11351250112056732,
-0.5778184533119202,
0.22961470484733582,
0.526868462562561,
0.2932336628437042,
-0.45008760690689087,
-0.6809578537940979,
0.15444637835025787,
-0.14766474068164825,
-0.5364566445350647,
0.4601452946662903,
0.32990026473999023,
-0.1159067153930664,
0.6011409759521484,
0.6289361715316772,
0.04985931143164635,
0.01637878082692623,
0.18091093003749847,
1.022046446800232,
-0.4740249514579773,
-0.44151708483695984,
-0.9264607429504395,
0.4757305085659027,
0.0312596932053566,
-0.6847845315933228,
0.8511058688163757,
0.5711740851402283,
0.7260430455207825,
0.24111182987689972,
0.577934980392456,
-0.44324010610580444,
-0.001675711595453322,
-0.2834094166755676,
0.6672472357749939,
-0.4483453035354614,
0.05690963938832283,
-0.5163463354110718,
-1.191493272781372,
-0.09000182151794434,
1.0078314542770386,
-0.5445573925971985,
0.40270131826400757,
0.8615687489509583,
0.8406407237052917,
-0.09053228050470352,
0.10900654643774033,
0.07611016184091568,
0.28119856119155884,
0.5163160562515259,
0.904832661151886,
0.9059151411056519,
-0.718745231628418,
0.6019169688224792,
-0.507541298866272,
-0.27199187874794006,
-0.111003078520298,
-0.47018343210220337,
-0.8756622076034546,
-0.45328080654144287,
-0.5179938077926636,
-0.7744695544242859,
0.0072899977676570415,
0.9321683049201965,
0.7627671957015991,
-0.6197662353515625,
-0.17057867348194122,
-0.5552664995193481,
0.005737009458243847,
-0.23056946694850922,
-0.2268860638141632,
0.43972501158714294,
0.10389649122953415,
-0.9430557489395142,
-0.016185054555535316,
-0.15463416278362274,
0.13300924003124237,
-0.39732247591018677,
-0.29869741201400757,
-0.19430865347385406,
-0.10148275643587112,
0.029233744367957115,
0.269517719745636,
-0.5178091526031494,
-0.25742411613464355,
0.025232529267668724,
0.08096873760223389,
-0.006120434496551752,
0.701755166053772,
-0.5981640815734863,
0.07199990749359131,
0.5761359930038452,
0.17616969347000122,
0.8269098997116089,
-0.269589364528656,
0.4273422956466675,
-0.25498706102371216,
0.33172592520713806,
0.24048496782779694,
0.6480273604393005,
0.36115023493766785,
-0.24576914310455322,
0.2061077505350113,
0.45144903659820557,
-0.7568681240081787,
-0.8639287948608398,
0.327706515789032,
-0.7064303755760193,
-0.09057836979627609,
1.2750691175460815,
-0.29519134759902954,
-0.41547927260398865,
0.08760330080986023,
-0.20828361809253693,
0.510130763053894,
-0.3191695511341095,
0.6681284308433533,
0.6705373525619507,
0.08809457719326019,
-0.223881334066391,
-0.6152828931808472,
0.37057235836982727,
0.6591987609863281,
-0.8437595963478088,
0.376595139503479,
0.6157605051994324,
0.5952105522155762,
0.24777226150035858,
0.5705463886260986,
-0.3250700533390045,
0.6162238121032715,
0.10171037912368774,
0.07911411672830582,
0.07187847793102264,
-0.5237810015678406,
-0.4344935715198517,
-0.12843728065490723,
0.21394072473049164,
-0.004609949421137571
] |
flair/pos-english-fast | flair | "2021-03-02T22:19:11Z" | 10,952 | 5 | flair | [
"flair",
"pytorch",
"token-classification",
"sequence-tagger-model",
"en",
"dataset:ontonotes",
"has_space",
"region:us"
] | token-classification | "2022-03-02T23:29:05Z" | ---
tags:
- flair
- token-classification
- sequence-tagger-model
language: en
datasets:
- ontonotes
widget:
- text: "I love Berlin."
---
## English Part-of-Speech Tagging in Flair (fast model)
This is the fast part-of-speech tagging model for English that ships with [Flair](https://github.com/flairNLP/flair/).
F1-Score: **98,10** (Ontonotes)
Predicts fine-grained POS tags:
| **tag** | **meaning** |
|---------------------------------|-----------|
|ADD | Email |
|AFX | Affix |
|CC | Coordinating conjunction |
|CD | Cardinal number |
|DT | Determiner |
|EX | Existential there |
|FW | Foreign word |
|HYPH | Hyphen |
|IN | Preposition or subordinating conjunction |
|JJ | Adjective |
|JJR |Adjective, comparative |
|JJS | Adjective, superlative |
|LS | List item marker |
|MD | Modal |
|NFP | Superfluous punctuation |
|NN | Noun, singular or mass |
|NNP |Proper noun, singular |
|NNPS | Proper noun, plural |
|NNS |Noun, plural |
|PDT | Predeterminer |
|POS | Possessive ending |
|PRP | Personal pronoun |
|PRP$ | Possessive pronoun |
|RB | Adverb |
|RBR | Adverb, comparative |
|RBS | Adverb, superlative |
|RP | Particle |
|SYM | Symbol |
|TO | to |
|UH | Interjection |
|VB | Verb, base form |
|VBD | Verb, past tense |
|VBG | Verb, gerund or present participle |
|VBN | Verb, past participle |
|VBP | Verb, non-3rd person singular present |
|VBZ | Verb, 3rd person singular present |
|WDT | Wh-determiner |
|WP | Wh-pronoun |
|WP$ | Possessive wh-pronoun |
|WRB | Wh-adverb |
|XX | Unknown |
Based on [Flair embeddings](https://www.aclweb.org/anthology/C18-1139/) and LSTM-CRF.
---
### Demo: How to use in Flair
Requires: **[Flair](https://github.com/flairNLP/flair/)** (`pip install flair`)
```python
from flair.data import Sentence
from flair.models import SequenceTagger
# load tagger
tagger = SequenceTagger.load("flair/pos-english-fast")
# make example sentence
sentence = Sentence("I love Berlin.")
# predict NER tags
tagger.predict(sentence)
# print sentence
print(sentence)
# print predicted NER spans
print('The following NER tags are found:')
# iterate over entities and print
for entity in sentence.get_spans('pos'):
print(entity)
```
This yields the following output:
```
Span [1]: "I" [− Labels: PRP (1.0)]
Span [2]: "love" [− Labels: VBP (0.9998)]
Span [3]: "Berlin" [− Labels: NNP (0.9999)]
Span [4]: "." [− Labels: . (0.9998)]
```
So, the word "*I*" is labeled as a **pronoun** (PRP), "*love*" is labeled as a **verb** (VBP) and "*Berlin*" is labeled as a **proper noun** (NNP) in the sentence "*I love Berlin*".
---
### Training: Script to train this model
The following Flair script was used to train this model:
```python
from flair.data import Corpus
from flair.datasets import ColumnCorpus
from flair.embeddings import WordEmbeddings, StackedEmbeddings, FlairEmbeddings
# 1. load the corpus (Ontonotes does not ship with Flair, you need to download and reformat into a column format yourself)
corpus: Corpus = ColumnCorpus(
"resources/tasks/onto-ner",
column_format={0: "text", 1: "pos", 2: "upos", 3: "ner"},
tag_to_bioes="ner",
)
# 2. what tag do we want to predict?
tag_type = 'pos'
# 3. make the tag dictionary from the corpus
tag_dictionary = corpus.make_tag_dictionary(tag_type=tag_type)
# 4. initialize each embedding we use
embedding_types = [
# contextual string embeddings, forward
FlairEmbeddings('news-forward'),
# contextual string embeddings, backward
FlairEmbeddings('news-backward'),
]
# embedding stack consists of Flair and GloVe embeddings
embeddings = StackedEmbeddings(embeddings=embedding_types)
# 5. initialize sequence tagger
from flair.models import SequenceTagger
tagger = SequenceTagger(hidden_size=256,
embeddings=embeddings,
tag_dictionary=tag_dictionary,
tag_type=tag_type)
# 6. initialize trainer
from flair.trainers import ModelTrainer
trainer = ModelTrainer(tagger, corpus)
# 7. run training
trainer.train('resources/taggers/pos-english-fast',
train_with_dev=True,
max_epochs=150)
```
---
### Cite
Please cite the following paper when using this model.
```
@inproceedings{akbik2018coling,
title={Contextual String Embeddings for Sequence Labeling},
author={Akbik, Alan and Blythe, Duncan and Vollgraf, Roland},
booktitle = {{COLING} 2018, 27th International Conference on Computational Linguistics},
pages = {1638--1649},
year = {2018}
}
```
---
### Issues?
The Flair issue tracker is available [here](https://github.com/flairNLP/flair/issues/).
| [
-0.42577940225601196,
-0.6960420608520508,
0.10236184298992157,
0.2646942734718323,
-0.2914910912513733,
-0.09620687365531921,
-0.21003282070159912,
-0.3016035854816437,
0.6847989559173584,
0.15891286730766296,
-0.41733744740486145,
-0.6022740602493286,
-0.48929744958877563,
0.32352784276008606,
0.008830580860376358,
1.1033201217651367,
0.030683448538184166,
0.3550158441066742,
-0.17455825209617615,
-0.008354965597391129,
-0.36012545228004456,
-0.6534244418144226,
-0.44164279103279114,
-0.17745617032051086,
0.5784657001495361,
0.3951195776462555,
0.6145274639129639,
0.7676724195480347,
0.41841769218444824,
0.2826898694038391,
-0.23158077895641327,
0.15129153430461884,
-0.1308901458978653,
-0.005112924613058567,
-0.2045353651046753,
-0.3962215483188629,
-0.7852755784988403,
0.1295996606349945,
0.6505206823348999,
0.49223995208740234,
0.1734618991613388,
0.08997301757335663,
-0.12012772262096405,
0.19240254163742065,
-0.28177228569984436,
0.4371282756328583,
-0.623752772808075,
-0.2060081958770752,
-0.34989839792251587,
-0.10028376430273056,
-0.26728805899620056,
-0.41203683614730835,
0.11958664655685425,
-0.5256959199905396,
-0.011810660362243652,
0.17574229836463928,
1.384603500366211,
0.14468035101890564,
-0.35776397585868835,
-0.22479413449764252,
-0.4097149968147278,
0.7780479788780212,
-0.9156437516212463,
0.3291820287704468,
0.393507719039917,
-0.14713899791240692,
-0.20709224045276642,
-0.6948338150978088,
-0.7631322741508484,
-0.21380557119846344,
-0.21432563662528992,
0.21588070690631866,
-0.09036894142627716,
-0.07492073625326157,
0.20865099132061005,
0.2317863255739212,
-0.6435006856918335,
-0.12207289785146713,
-0.10131329298019409,
-0.27903640270233154,
0.7637724280357361,
0.14988580346107483,
0.24417592585086823,
-0.4460183084011078,
-0.4109500050544739,
-0.06304127722978592,
-0.33196312189102173,
0.048463527113199234,
0.17165875434875488,
0.5361611843109131,
-0.1345512866973877,
0.6375128030776978,
-0.02640232816338539,
0.7358027696609497,
0.11800647526979446,
-0.3894806504249573,
0.5660367608070374,
-0.4742397964000702,
-0.13379530608654022,
-0.16013236343860626,
1.0154552459716797,
0.3516033887863159,
0.16882659494876862,
-0.1167537271976471,
-0.05402328819036484,
0.36078140139579773,
-0.3242711126804352,
-0.6090096831321716,
-0.24688579142093658,
0.2331005036830902,
-0.23543809354305267,
-0.27018171548843384,
-0.019727032631635666,
-0.74405837059021,
-0.12852934002876282,
-0.038741402328014374,
0.5544096231460571,
-0.5614772439002991,
-0.14366793632507324,
0.21132171154022217,
-0.3171992897987366,
0.19376271963119507,
0.03637989982962608,
-0.7210148572921753,
-0.05658775568008423,
0.4360109567642212,
0.5913331508636475,
0.22619383037090302,
-0.4473060369491577,
-0.3327605426311493,
-0.14654774963855743,
-0.15820269286632538,
0.7836016416549683,
-0.4337782859802246,
-0.25509533286094666,
0.0019369862275198102,
0.16712771356105804,
-0.36045342683792114,
-0.27326449751853943,
0.7204709053039551,
-0.5161213874816895,
0.4565962851047516,
-0.25130367279052734,
-0.837105393409729,
-0.2554864287376404,
0.24740152060985565,
-0.5859354138374329,
0.9513672590255737,
0.01027314830571413,
-1.2083494663238525,
0.37532156705856323,
-0.4596154987812042,
-0.5680874586105347,
0.017366401851177216,
0.006222992204129696,
-0.45777109265327454,
-0.18175305426120758,
0.055712614208459854,
0.8609447479248047,
-0.1316707730293274,
0.28429773449897766,
-0.323871910572052,
-0.019578224048018456,
0.18495558202266693,
0.2478466033935547,
0.863922119140625,
0.047885388135910034,
-0.2121322751045227,
0.10505729168653488,
-0.9018579125404358,
-0.24160443246364594,
0.31144386529922485,
-0.49647897481918335,
-0.3674922287464142,
0.019516166299581528,
0.07397067546844482,
0.29656782746315,
0.20990169048309326,
-0.6165215373039246,
0.5730374455451965,
-0.5736116766929626,
0.4709838926792145,
0.46123695373535156,
0.010633252561092377,
0.6157656908035278,
-0.5210305452346802,
0.5159965753555298,
0.11457964777946472,
-0.21057096123695374,
-0.15262027084827423,
-0.6795263290405273,
-0.6833518743515015,
-0.4457578957080841,
0.6219368577003479,
0.8423734307289124,
-0.7986764311790466,
0.7865983247756958,
-0.3480246365070343,
-0.7633375525474548,
-0.520097553730011,
-0.1991293877363205,
0.3912407457828522,
0.632867157459259,
0.49246713519096375,
-0.21519356966018677,
-0.84217768907547,
-0.720980703830719,
-0.318904310464859,
-0.17960168421268463,
0.4337370991706848,
0.2827596366405487,
0.8232308626174927,
-0.21736852824687958,
0.8860797882080078,
-0.5127466320991516,
-0.45962417125701904,
-0.3946283757686615,
0.07759897410869598,
0.4488529562950134,
0.5153820514678955,
0.4250440299510956,
-0.7506337761878967,
-0.6486897468566895,
-0.31567755341529846,
-0.40020623803138733,
0.147942915558815,
-0.09120438992977142,
-0.10790035128593445,
0.2993740737438202,
0.3568932116031647,
-0.5859254002571106,
0.42641913890838623,
0.26927387714385986,
-0.7211043238639832,
0.729815661907196,
0.1230924129486084,
-0.18939903378486633,
-1.4952188730239868,
0.181889146566391,
0.24880152940750122,
-0.22080616652965546,
-0.6805190443992615,
-0.1830216497182846,
-0.0833873301744461,
0.40433934330940247,
-0.4858599603176117,
0.8440128564834595,
-0.4203490912914276,
0.21857663989067078,
0.06244131177663803,
0.12286771088838577,
0.08723100274801254,
0.3854812681674957,
0.3040179908275604,
0.48272860050201416,
0.5938215255737305,
-0.6110397577285767,
0.2943785786628723,
0.4999680519104004,
-0.4260415732860565,
0.12982505559921265,
-0.41357314586639404,
-0.2562694251537323,
-0.22422251105308533,
0.35906824469566345,
-1.1405812501907349,
-0.2852611541748047,
0.419864296913147,
-0.8124322295188904,
0.4715893268585205,
-0.006658563390374184,
-0.5561604499816895,
-0.442470520734787,
-0.2643899917602539,
0.13867723941802979,
0.4019032418727875,
-0.2576143443584442,
0.45386168360710144,
0.47980496287345886,
0.09674739092588425,
-0.7049310803413391,
-0.6366705298423767,
-0.21434682607650757,
-0.23313693702220917,
-0.7073934674263,
0.6082831025123596,
-0.08792414516210556,
-0.22053252160549164,
0.13723285496234894,
0.1761050969362259,
-0.11596707999706268,
0.2516554296016693,
0.1205981895327568,
0.4380273222923279,
-0.17467185854911804,
0.16074828803539276,
-0.3179394006729126,
0.07898499816656113,
-0.14000973105430603,
-0.13178890943527222,
0.8133493065834045,
-0.14926929771900177,
0.2823489010334015,
-0.5830336213111877,
0.182652086019516,
0.2914077043533325,
-0.3600231409072876,
0.8257458209991455,
0.8712112903594971,
-0.49352577328681946,
-0.11034958064556122,
-0.31828010082244873,
-0.1998531073331833,
-0.3604993224143982,
0.5169442296028137,
-0.540848970413208,
-0.7887452840805054,
0.5812385082244873,
0.1323610097169876,
0.1537640541791916,
0.7970383763313293,
0.5250874161720276,
-0.1003442034125328,
0.9955869317054749,
0.6294204592704773,
-0.21405108273029327,
0.4609379172325134,
-0.5032409429550171,
0.16609585285186768,
-0.7183740139007568,
-0.14483524858951569,
-0.5461931824684143,
-0.15516847372055054,
-0.7317993640899658,
-0.3924507200717926,
0.054428309202194214,
0.45266982913017273,
-0.35828837752342224,
0.5690016746520996,
-0.509840190410614,
0.21187317371368408,
0.6085895895957947,
-0.11799424141645432,
0.07142718136310577,
-0.14236927032470703,
-0.3979463279247284,
-0.26758503913879395,
-0.7441517114639282,
-0.5125415921211243,
0.8398227095603943,
0.47277238965034485,
0.6039895415306091,
-0.023863395676016808,
0.8592840433120728,
0.04642834886908531,
0.25894519686698914,
-1.021907091140747,
0.6199744939804077,
-0.28906509280204773,
-0.8073751926422119,
-0.04397070035338402,
-0.15476463735103607,
-0.963952362537384,
0.1960330307483673,
-0.3166177570819855,
-0.8872175216674805,
0.2595331072807312,
0.16400857269763947,
-0.5696872472763062,
0.34913405776023865,
-0.377797931432724,
0.9728243947029114,
-0.04559190943837166,
-0.36013004183769226,
0.21865980327129364,
-0.8070149421691895,
0.30265042185783386,
0.19020110368728638,
0.3877977728843689,
-0.29047390818595886,
-0.09165630489587784,
1.0903819799423218,
-0.3122173845767975,
0.8991832733154297,
0.006801630835980177,
0.16419871151447296,
0.3194548785686493,
0.08080680668354034,
0.35617589950561523,
0.035874415189027786,
-0.04592166468501091,
0.09027797728776932,
-0.023873386904597282,
-0.19986118376255035,
-0.08991342037916183,
0.6565066576004028,
-0.7001290917396545,
-0.3290197551250458,
-0.8512657284736633,
-0.33943039178848267,
-0.13377760350704193,
0.29839587211608887,
0.6907691955566406,
0.4351385831832886,
-0.1648397147655487,
-0.10132347792387009,
0.4744136333465576,
-0.22625629603862762,
0.6241415739059448,
0.42772528529167175,
-0.4078841507434845,
-0.6517533659934998,
0.9544884562492371,
0.19633539021015167,
-0.11589285731315613,
0.5815961360931396,
0.2543860375881195,
-0.4330689311027527,
-0.1425960808992386,
-0.2132408618927002,
0.7089232802391052,
-0.49960988759994507,
-0.36459240317344666,
-0.7163847088813782,
-0.14376075565814972,
-0.9278625249862671,
-0.11219280958175659,
-0.290662944316864,
-0.5779144167900085,
-0.7145595550537109,
0.01483099814504385,
0.3622440993785858,
0.7314414978027344,
-0.2550719380378723,
0.33083513379096985,
-0.7112907767295837,
-0.03868846595287323,
-0.009717367589473724,
0.04975311830639839,
-0.23688755929470062,
-0.8651951551437378,
-0.29963433742523193,
-0.138143852353096,
-0.33966735005378723,
-1.079205870628357,
0.894651472568512,
0.3253727853298187,
0.4027253985404968,
0.38194119930267334,
-0.03134944662451744,
0.565619170665741,
-0.5293855667114258,
1.0326703786849976,
0.05786802992224693,
-0.9378053545951843,
0.5257660150527954,
-0.36178135871887207,
0.1408638209104538,
0.2572716176509857,
0.9531802535057068,
-0.5487862825393677,
-0.11964411288499832,
-0.8076180219650269,
-1.0526231527328491,
0.5981975793838501,
-0.11338014900684357,
-0.015465864911675453,
-0.4054085612297058,
0.2575734257698059,
-0.1282469630241394,
0.1702290028333664,
-0.9404111504554749,
-0.6034980416297913,
-0.13282857835292816,
-0.24102920293807983,
-0.22181427478790283,
-0.2734094560146332,
0.09348808974027634,
-0.6106995344161987,
1.2112919092178345,
-0.008786565624177456,
0.5771234631538391,
0.4933125078678131,
0.02966947667300701,
0.18038402497768402,
0.2263198345899582,
0.675353467464447,
0.2500024139881134,
-0.33680713176727295,
-0.021274443715810776,
0.0457979291677475,
-0.27700182795524597,
-0.11808043718338013,
0.1999531388282776,
-0.03905784338712692,
0.3208538889884949,
0.4628876745700836,
0.8118213415145874,
0.12534339725971222,
-0.35135164856910706,
0.6976897716522217,
-0.02473006397485733,
-0.19983628392219543,
-0.44011783599853516,
-0.3234872817993164,
0.19571620225906372,
0.15449590981006622,
0.07652097195386887,
0.09354483336210251,
-0.07551947236061096,
-0.5999760627746582,
0.23647908866405487,
0.4672229588031769,
-0.3617318868637085,
-0.5436143279075623,
0.8759168982505798,
0.03509563207626343,
-0.2051631063222885,
0.20346997678279877,
-0.6302677989006042,
-0.9595763087272644,
0.5856107473373413,
0.643994927406311,
0.7502938508987427,
-0.30175888538360596,
0.14780113101005554,
0.6594572067260742,
0.15732094645500183,
-0.11528468132019043,
0.8535692691802979,
0.3147762417793274,
-1.070378303527832,
-0.3863513767719269,
-0.9821919202804565,
0.035253334790468216,
0.212574765086174,
-0.5374090075492859,
0.4193201959133148,
-0.42384180426597595,
-0.47235965728759766,
0.3780061602592468,
0.18048153817653656,
-0.7936397790908813,
0.2728251516819,
0.36185529828071594,
1.1824066638946533,
-1.029497504234314,
1.0863221883773804,
1.137702465057373,
-0.7414841055870056,
-1.0951164960861206,
-0.08221913874149323,
-0.07399451732635498,
-0.6046221256256104,
0.8191754221916199,
0.22792792320251465,
0.3307327926158905,
0.21062272787094116,
-0.5806601047515869,
-1.169321060180664,
0.9170113801956177,
-0.2193334996700287,
-0.4125114679336548,
-0.23083838820457458,
-0.21219587326049805,
0.45814982056617737,
-0.449341744184494,
0.4703350067138672,
0.6006044745445251,
0.5295300483703613,
-0.035646647214889526,
-1.0836533308029175,
0.05000452324748039,
-0.2749353051185608,
-0.1268460750579834,
0.07762029021978378,
-0.8091890811920166,
1.1443233489990234,
-0.22470907866954803,
-0.2160693109035492,
0.23958031833171844,
0.9236717820167542,
-0.0336453802883625,
0.06050849333405495,
0.3805236220359802,
0.9058833718299866,
0.6851438879966736,
-0.311736136674881,
0.8347300887107849,
-0.37031519412994385,
0.509070098400116,
1.174599051475525,
-0.08774387091398239,
1.0763155221939087,
0.3612669110298157,
-0.18154828250408173,
0.5129544138908386,
0.8192369937896729,
-0.062023963779211044,
0.5070615410804749,
0.2125280499458313,
-0.09791108965873718,
-0.33970996737480164,
-0.3639151453971863,
-0.40914106369018555,
0.7018316984176636,
0.33811694383621216,
-0.5123112797737122,
0.10363156348466873,
0.03324529901146889,
0.6774516105651855,
-0.023320937529206276,
-0.2944381833076477,
0.799521803855896,
-0.014961855486035347,
-0.6440333127975464,
0.6256024837493896,
0.13164423406124115,
1.0696430206298828,
-0.4083366394042969,
0.08602083474397659,
-0.13685685396194458,
0.23938989639282227,
-0.263965904712677,
-0.7096875905990601,
0.14911122620105743,
-0.348244845867157,
-0.2053156942129135,
-0.1097160130739212,
0.701862633228302,
-0.731853187084198,
-0.2716720402240753,
0.3196178078651428,
0.518039345741272,
0.22737999260425568,
0.06650731712579727,
-0.7480717301368713,
-0.10784565657377243,
0.13529838621616364,
-0.423325777053833,
0.15222673118114471,
0.13796190917491913,
0.0723051205277443,
0.4826085567474365,
0.3965974748134613,
0.2657230496406555,
0.1293463110923767,
-0.17864814400672913,
0.8554205298423767,
-0.8379238247871399,
-0.42878636717796326,
-0.8922373652458191,
0.6896631717681885,
0.055733222514390945,
-0.5290811061859131,
0.8822329640388489,
0.7801817655563354,
0.9663541316986084,
-0.1428537219762802,
0.8368186354637146,
-0.42364248633384705,
0.8517019152641296,
-0.1568162888288498,
0.7247485518455505,
-0.7537625432014465,
-0.10234490036964417,
-0.2545032501220703,
-0.6772223711013794,
-0.536162793636322,
0.7202381491661072,
-0.388573557138443,
-0.30096834897994995,
0.6395161747932434,
0.8258721828460693,
0.20179741084575653,
-0.15015126764774323,
0.14889052510261536,
0.5486693978309631,
0.0293179452419281,
0.4455568790435791,
0.7055248618125916,
-0.5987284183502197,
0.2866688072681427,
-0.6715071797370911,
-0.22689466178417206,
-0.3619547486305237,
-0.8789945244789124,
-0.8505406975746155,
-0.9690121412277222,
-0.49786219000816345,
-0.8530942797660828,
-0.19459067285060883,
1.2638862133026123,
0.4319309592247009,
-0.8583124876022339,
-0.1825326681137085,
0.2627865970134735,
0.07413385063409805,
-0.025324134156107903,
-0.31634321808815,
0.4188793897628784,
-0.2069755345582962,
-0.7938689589500427,
0.39380428194999695,
-0.25271937251091003,
0.1399007886648178,
0.07240360975265503,
0.1570410430431366,
-0.7734397649765015,
0.13448576629161835,
0.5038702487945557,
0.3834075927734375,
-0.7408843636512756,
-0.19104577600955963,
0.10956107079982758,
-0.2919662892818451,
0.13303972780704498,
0.27894264459609985,
-0.6916518211364746,
0.22089353203773499,
0.8781508207321167,
0.28566494584083557,
0.17227953672409058,
0.03416874632239342,
0.23354853689670563,
-0.6475603580474854,
0.05079541355371475,
0.46092256903648376,
0.6305049657821655,
0.2644050717353821,
-0.1919260323047638,
0.3647611141204834,
0.577213704586029,
-0.7513605356216431,
-0.7933215498924255,
0.02310449257493019,
-1.0828299522399902,
-0.25388580560684204,
1.3352950811386108,
-0.18980728089809418,
-0.5005713701248169,
0.026195231825113297,
-0.22009360790252686,
0.5486820340156555,
-0.48700985312461853,
0.3234006464481354,
0.5527645349502563,
-0.15567360818386078,
0.36258938908576965,
-0.2288624346256256,
0.8862925171852112,
0.3932044208049774,
-0.4465150833129883,
-0.26198458671569824,
0.2770872116088867,
0.56638103723526,
0.3833193778991699,
0.6742887496948242,
0.11234764754772186,
0.04943937808275223,
-0.05946691334247589,
0.4549925923347473,
0.1393647938966751,
-0.23888033628463745,
-0.4294593036174774,
-0.014998509548604488,
-0.09193277359008789,
-0.35815295577049255
] |
KoboldAI/fairseq-dense-13B-Janeway | KoboldAI | "2022-04-07T10:51:39Z" | 10,945 | 10 | transformers | [
"transformers",
"pytorch",
"xglm",
"text-generation",
"en",
"license:mit",
"endpoints_compatible",
"has_space",
"region:us"
] | text-generation | "2022-04-06T14:36:12Z" | ---
language: en
license: mit
---
# Fairseq-dense 13B - Janeway
## Model Description
Fairseq-dense 13B-Janeway is a finetune created using Fairseq's MoE dense model.
## Training data
The training data contains around 2210 ebooks, mostly in the sci-fi and fantasy genres. The dataset is identical as dataset used by GPT-Neo-2.7B-Janeway.
Some parts of the dataset have been prepended using the following text: `[Genre: <genre1>,<genre2>]`
### How to use
You can use this model directly with a pipeline for text generation. This example generates a different sequence each time it's run:
```py
>>> from transformers import pipeline
>>> generator = pipeline('text-generation', model='KoboldAI/fairseq-dense-13B-Janeway')
>>> generator("Welcome Captain Janeway, I apologize for the delay.", do_sample=True, min_length=50)
[{'generated_text': 'Welcome Captain Janeway, I apologize for the delay."\nIt's all right," Janeway said. "I'm certain that you're doing your best to keep me informed of what\'s going on."'}]
```
### Limitations and Biases
Based on known problems with NLP technology, potential relevant factors include bias (gender, profession, race and religion).
### BibTeX entry and citation info
```
Artetxe et al. (2021): Efficient Large Scale Language Modeling with Mixtures of Experts
``` | [
-0.11351306736469269,
-0.6352448463439941,
0.32238876819610596,
0.2831200361251831,
0.011618717573583126,
-0.46276137232780457,
-0.04671494662761688,
-0.00434270640835166,
-0.1051224023103714,
0.6508225798606873,
-0.9434611797332764,
-0.470533162355423,
-0.592732846736908,
0.22102248668670654,
-0.5589048266410828,
1.084581971168518,
0.42863020300865173,
0.18599840998649597,
0.15961246192455292,
0.11678920686244965,
-0.3900575637817383,
-0.2822505831718445,
-0.7721409797668457,
-0.19045746326446533,
0.5092568397521973,
0.38832971453666687,
0.8103986978530884,
0.48875972628593445,
0.2683155834674835,
0.28003108501434326,
-0.27002692222595215,
0.035622209310531616,
-0.8159024715423584,
0.10253524035215378,
-0.10156300663948059,
-0.3737049102783203,
-0.2792010009288788,
-0.1406261920928955,
0.9357243776321411,
0.7651686072349548,
-0.13931791484355927,
0.22007782757282257,
0.21131381392478943,
0.512039840221405,
-0.530392587184906,
-0.09945031255483627,
-0.6928808093070984,
0.09755565226078033,
-0.25627896189689636,
0.14082030951976776,
-0.5223059058189392,
-0.20313577353954315,
0.154981791973114,
-0.6740095615386963,
0.4256821870803833,
0.18201476335525513,
1.300166368484497,
0.2639749348163605,
-0.6573008894920349,
-0.08419359475374222,
-0.8171133399009705,
1.025080919265747,
-0.8697322010993958,
0.32570746541023254,
0.2716112434864044,
0.17475692927837372,
-0.19833900034427643,
-1.0192328691482544,
-0.7855079174041748,
0.03254207968711853,
0.09245742112398148,
0.3306124806404114,
-0.08787310123443604,
-0.17278724908828735,
0.4805685877799988,
0.33531856536865234,
-0.7565479874610901,
0.05619155243039131,
-0.7179939150810242,
-0.3187829554080963,
0.8378071188926697,
0.53788161277771,
0.07224783301353455,
-0.5728248953819275,
-0.3647928535938263,
-0.2620958089828491,
-0.4617723226547241,
-0.04309327155351639,
0.5514830946922302,
0.31954431533813477,
-0.10845482349395752,
0.857009768486023,
-0.2984064519405365,
0.540076494216919,
0.24420884251594543,
-0.14252208173274994,
0.5075988173484802,
-0.25060930848121643,
-0.31365057826042175,
-0.061377283185720444,
1.2546097040176392,
0.5313405990600586,
0.2108340710401535,
0.009683802723884583,
-0.27764424681663513,
-0.3663753569126129,
0.25240108370780945,
-1.0370339155197144,
-0.09331351518630981,
0.53243088722229,
-0.7474522590637207,
-0.39209893345832825,
0.11572720110416412,
-0.4448504149913788,
-0.45825469493865967,
-0.3167676627635956,
0.6393601894378662,
-0.6117955446243286,
-0.2553740441799164,
0.16824255883693695,
-0.24722248315811157,
0.16837835311889648,
0.10670039802789688,
-0.8081538081169128,
0.0745641365647316,
0.3786347210407257,
0.620029628276825,
0.07254962623119354,
-0.34182003140449524,
-0.4145289361476898,
0.15917328000068665,
-0.146402969956398,
0.5843424797058105,
-0.0885237380862236,
-0.3034108877182007,
0.011381625197827816,
0.34892451763153076,
0.013226496055722237,
-0.46734529733657837,
0.7058361768722534,
-0.3852688670158386,
0.623328447341919,
0.04906484857201576,
-0.6819467544555664,
-0.2026127725839615,
0.12127233296632767,
-0.6780959367752075,
1.0754843950271606,
0.3052453398704529,
-1.0113922357559204,
0.3327587842941284,
-0.3957025408744812,
-0.206446573138237,
0.007652366533875465,
0.041656699031591415,
-0.4266715347766876,
-0.05765197426080704,
0.08477172255516052,
0.6515906453132629,
-0.2973608374595642,
0.597963809967041,
-0.2117590606212616,
-0.4994571805000305,
0.3089945316314697,
-0.7304412126541138,
1.2550318241119385,
0.47113290429115295,
-0.17281077802181244,
-0.008931806311011314,
-1.1294758319854736,
-0.09234703332185745,
0.1849491149187088,
-0.2726730406284332,
-0.03523160517215729,
-0.05818037688732147,
0.7308812737464905,
0.09505707770586014,
0.14258824288845062,
-0.4620215892791748,
0.29249513149261475,
-0.5863929986953735,
0.23500539362430573,
0.5901733040809631,
-0.006212625652551651,
0.5631664991378784,
-0.43972209095954895,
0.45824116468429565,
0.05296177789568901,
0.136134535074234,
0.09268501400947571,
-0.5735632181167603,
-0.8101155161857605,
-0.1420973241329193,
0.6783629655838013,
0.8189438581466675,
-0.5788614153862,
0.5833565592765808,
-0.21043315529823303,
-0.8915916085243225,
-0.5832741260528564,
-0.22369228303432465,
-0.006483425851911306,
0.35824334621429443,
0.41987860202789307,
-0.10221044719219208,
-0.5176234245300293,
-0.8131057620048523,
-0.2460092157125473,
-0.009744931943714619,
-0.2525995671749115,
0.26222240924835205,
0.3239760100841522,
-0.6684202551841736,
0.7996205687522888,
-0.5736051797866821,
-0.20388561487197876,
-0.21159298717975616,
0.16783110797405243,
0.5969244241714478,
0.5481547713279724,
0.4568096697330475,
-0.6556991338729858,
-0.48344916105270386,
-0.31165167689323425,
-0.5860442519187927,
-0.30725526809692383,
-0.45838069915771484,
-0.3475947380065918,
-0.08276798576116562,
0.5401207804679871,
-0.5045772790908813,
0.27429690957069397,
0.5463923811912537,
-0.7067839503288269,
0.6748451590538025,
0.22720418870449066,
0.09601113200187683,
-1.5639472007751465,
-0.14329305291175842,
-0.12784671783447266,
-0.1013220027089119,
-0.31731197237968445,
-0.17356686294078827,
-0.11770323663949966,
-0.14921778440475464,
-0.4694488048553467,
0.7599310874938965,
-0.1518884003162384,
0.26890894770622253,
-0.1362692266702652,
-0.025621488690376282,
0.17151415348052979,
0.2431280016899109,
0.07595427334308624,
0.5034662485122681,
0.6633681058883667,
-0.7412555813789368,
0.3239799439907074,
0.506719708442688,
-0.336577832698822,
0.30846107006073,
-0.7380897998809814,
-0.30986592173576355,
-0.12747317552566528,
0.06541751325130463,
-0.7728903889656067,
-0.29750892519950867,
0.4084945321083069,
-0.3809659779071808,
0.23785951733589172,
-0.25813475251197815,
-0.540826678276062,
-0.1775069236755371,
0.13077452778816223,
0.2739366888999939,
0.5853881239891052,
-0.1993829756975174,
0.7720720767974854,
0.11721253395080566,
-0.30105775594711304,
-0.7477152943611145,
-0.7624485492706299,
-0.18019039928913116,
-0.2894401550292969,
-0.8553017973899841,
0.40153059363365173,
-0.09235713630914688,
-0.09473518282175064,
-0.10918308049440384,
0.26845335960388184,
-0.2892440855503082,
-0.0022383565083146095,
0.17066234350204468,
0.11702874302864075,
-0.22711369395256042,
0.12595674395561218,
0.39358392357826233,
-0.05147014185786247,
0.10190457850694656,
-0.21356242895126343,
0.5360378623008728,
0.11845514178276062,
0.020389651879668236,
-0.5031036734580994,
0.3738807439804077,
-0.009855602867901325,
0.0908137857913971,
0.998012900352478,
1.302672266960144,
-0.3216966390609741,
-0.23414954543113708,
-0.19025693833827972,
-0.3807717561721802,
-0.49723583459854126,
0.6239334940910339,
-0.27761873602867126,
-0.7124835252761841,
0.43858984112739563,
0.12011732161045074,
0.10169478505849838,
0.9513068795204163,
0.6731367707252502,
-0.07570906728506088,
0.9616957902908325,
0.41211774945259094,
0.3543626368045807,
0.49562904238700867,
-0.506818413734436,
-0.06614331156015396,
-0.591044008731842,
-0.18684203922748566,
-0.6727624535560608,
-0.2724058926105499,
-0.7194317579269409,
-0.2836940586566925,
0.09571491926908493,
0.27847975492477417,
-0.688007652759552,
0.47606489062309265,
-0.5259997248649597,
0.2992069125175476,
0.7447340488433838,
-0.04578253999352455,
0.372758686542511,
0.02796078287065029,
-0.05638578161597252,
-0.09533312916755676,
-0.9699220061302185,
-0.5984739065170288,
1.3586575984954834,
0.31504154205322266,
0.9344490170478821,
0.2161847949028015,
0.89938884973526,
0.007602033670991659,
0.12928123772144318,
-0.6235668659210205,
0.30379733443260193,
-0.16318538784980774,
-1.101189374923706,
-0.2588687241077423,
-0.6652437448501587,
-1.1166952848434448,
-0.03825398534536362,
-0.6527237296104431,
-0.6477715373039246,
0.3768693506717682,
-0.07521882653236389,
-0.2926010191440582,
0.08928728848695755,
-0.8843610286712646,
1.059831142425537,
0.02760429121553898,
-0.31759384274482727,
0.0599699467420578,
-0.5466150641441345,
0.3365744352340698,
0.01261143758893013,
0.07694033533334732,
0.006176792550832033,
0.16453945636749268,
0.8270578384399414,
-0.34771063923835754,
0.8234748244285583,
0.03597775846719742,
-0.16674283146858215,
0.5171055197715759,
0.0500786267220974,
0.2890487313270569,
0.4615393280982971,
-0.2000441551208496,
0.23956790566444397,
0.2040044367313385,
-0.42926692962646484,
-0.1349555253982544,
0.5484839677810669,
-0.9946693778038025,
-0.18972933292388916,
-0.7317945957183838,
-0.5871495008468628,
0.011320720426738262,
0.3747116029262543,
0.8484683632850647,
0.7045494914054871,
-0.1686924546957016,
0.3301718831062317,
0.4917929172515869,
-0.33094021677970886,
0.3046574890613556,
0.1885162889957428,
-0.3688492178916931,
-0.41293928027153015,
0.8507163524627686,
0.16016347706317902,
0.15451838076114655,
0.25666674971580505,
0.16206245124340057,
-0.4182530343532562,
-0.46008533239364624,
-0.3746592402458191,
0.16954323649406433,
-0.6295866966247559,
-0.3008650839328766,
-0.9445906281471252,
-0.6241441369056702,
-0.48562130331993103,
0.08720695227384567,
-0.35505586862564087,
-0.6351202726364136,
-0.5638441443443298,
0.2297983169555664,
0.4066920280456543,
0.6840784549713135,
-0.09919016063213348,
0.7147151827812195,
-1.0502350330352783,
0.36594924330711365,
0.16743439435958862,
0.21068142354488373,
-0.05295545980334282,
-0.9710083603858948,
-0.42555123567581177,
0.18094180524349213,
-0.7706583142280579,
-0.7675120830535889,
0.38112717866897583,
0.14124217629432678,
0.28584450483322144,
0.39520373940467834,
0.1558016836643219,
0.26730385422706604,
-0.6014493107795715,
0.917478621006012,
0.09758758544921875,
-0.763339638710022,
0.3150915205478668,
-0.6630364656448364,
0.3646356165409088,
0.3855289816856384,
0.5860317349433899,
-0.5215914249420166,
-0.5126707553863525,
-1.0293560028076172,
-0.9721198081970215,
0.6943359971046448,
0.5526495575904846,
0.29769647121429443,
-0.09824466705322266,
0.0794282853603363,
0.3187870383262634,
0.16147273778915405,
-1.158980131149292,
-0.4860643148422241,
-0.40330272912979126,
-0.6091645359992981,
0.07496573030948639,
-0.2074371576309204,
0.011469509452581406,
-0.1667942851781845,
0.9975545406341553,
-0.050363603979349136,
0.4370574951171875,
0.1200854629278183,
-0.004987065680325031,
0.2231733649969101,
0.26921021938323975,
0.11657209694385529,
0.4412730932235718,
-0.4441216289997101,
-0.4984910190105438,
-0.0946773812174797,
-0.71634840965271,
-0.1689649224281311,
0.5611546635627747,
-0.4562435448169708,
0.1589278280735016,
0.3178432583808899,
0.8424596190452576,
-0.18534912168979645,
-0.5937244296073914,
0.4676091969013214,
-0.1645457148551941,
-0.46101492643356323,
-0.4936191141605377,
0.2386547029018402,
0.21195514500141144,
0.5104052424430847,
0.3643387258052826,
0.21922741830348969,
0.563980758190155,
-0.31874439120292664,
0.10915685445070267,
0.13261324167251587,
-0.3818136155605316,
0.13196401298046112,
0.8700747489929199,
0.2786875069141388,
-0.07921168208122253,
0.890819251537323,
-0.42442941665649414,
-0.1333596408367157,
0.6504831314086914,
0.5684043765068054,
0.822609007358551,
0.31253302097320557,
0.2613189220428467,
0.7665916085243225,
0.3233392834663391,
-0.07702568173408508,
0.41409698128700256,
0.5066356658935547,
-0.9175838828086853,
-0.5838096141815186,
-0.7772470116615295,
-0.14646370708942413,
0.30495142936706543,
-0.5989041328430176,
0.6904727816581726,
-0.2908821702003479,
-0.40252479910850525,
-0.04739274084568024,
-0.05150524899363518,
-0.8476400375366211,
0.5007099509239197,
0.19729271531105042,
0.8335793614387512,
-0.7437340021133423,
0.46909457445144653,
0.5089163780212402,
-0.48223429918289185,
-1.2433393001556396,
0.16134758293628693,
-0.07755399495363235,
-0.3899747431278229,
0.44376295804977417,
0.2473996877670288,
0.47826650738716125,
0.30956271290779114,
-0.727356493473053,
-0.8777186870574951,
1.1845310926437378,
0.026808155700564384,
-0.7642213702201843,
0.02448917366564274,
-0.12188968062400818,
0.28115689754486084,
-0.30381089448928833,
0.5305179357528687,
0.19235089421272278,
0.3948289752006531,
-0.2221144139766693,
-0.5469754338264465,
-0.17676374316215515,
-0.2853967547416687,
-0.062209323048591614,
-0.006519772112369537,
-0.6460820436477661,
0.9075905084609985,
-0.04419980198144913,
-0.170014888048172,
0.43571725487709045,
0.874519944190979,
0.3744536340236664,
0.2935788035392761,
0.532305121421814,
0.5150418877601624,
0.8205003142356873,
-0.32903051376342773,
0.9803191423416138,
0.02945507876574993,
0.7203227281570435,
0.9801822304725647,
0.04794885218143463,
0.5420390963554382,
0.14564074575901031,
-0.18066444993019104,
0.7413496375083923,
0.8038301467895508,
-0.4045014977455139,
0.4371127486228943,
0.13880859315395355,
0.12430860102176666,
-0.30688348412513733,
-0.03787047043442726,
-0.6664602756500244,
0.3725787103176117,
0.2789011597633362,
-0.4620341956615448,
0.20630402863025665,
-0.007857815362513065,
-0.01999802514910698,
-0.036726780235767365,
-0.2431720793247223,
0.5606430172920227,
0.03888039290904999,
-0.3385765254497528,
0.7016382217407227,
0.16626007854938507,
0.7589818239212036,
-0.5889683961868286,
0.12496525794267654,
-0.0260219257324934,
0.19996394217014313,
-0.1805633306503296,
-0.8932264447212219,
0.12110118567943573,
-0.10460178554058075,
-0.5337767601013184,
-0.04192454740405083,
0.5580682158470154,
-0.7140897512435913,
-0.8934065699577332,
-0.0064124069176614285,
0.4886825382709503,
0.24550609290599823,
-0.08144809305667877,
-0.9332560896873474,
-0.14120689034461975,
0.2155779004096985,
-0.44932687282562256,
-0.041976798325777054,
0.8372772336006165,
0.21496011316776276,
0.5850717425346375,
0.45140770077705383,
-0.08506681770086288,
0.120161272585392,
0.37325718998908997,
0.5656638145446777,
-0.7516697645187378,
-0.41862788796424866,
-0.39769577980041504,
0.9404457211494446,
-0.14162759482860565,
-0.7291831374168396,
0.6285752654075623,
0.591067910194397,
0.8264334201812744,
-0.3868466913700104,
0.7809184193611145,
-0.3710545599460602,
0.5623252391815186,
-0.6903505325317383,
0.916331946849823,
-0.810409426689148,
-0.0007903232472017407,
-0.37617582082748413,
-1.2970843315124512,
0.060604386031627655,
0.7091139554977417,
0.06555433571338654,
0.280313640832901,
0.8719316720962524,
0.9381827116012573,
-0.20001626014709473,
0.10005965828895569,
-0.008803237229585648,
0.4906914234161377,
-0.02726868726313114,
0.4187244474887848,
0.8012182116508484,
-1.0650310516357422,
0.7825541496276855,
-0.3536832332611084,
-0.03327186405658722,
-0.18257878720760345,
-0.8283317685127258,
-0.972886860370636,
-0.5960369110107422,
-0.36589181423187256,
-0.9358829855918884,
-0.3250882923603058,
0.7762349843978882,
0.5994081497192383,
-0.7568989992141724,
-0.18424049019813538,
-0.03289133310317993,
-0.02257295325398445,
-0.2249743789434433,
-0.33692270517349243,
0.241115540266037,
-0.1661568135023117,
-1.0633267164230347,
0.17957517504692078,
-0.42992860078811646,
0.22445304691791534,
-0.08946225792169571,
-0.1633153110742569,
-0.28787723183631897,
0.061131492257118225,
0.26423850655555725,
-0.1785365790128708,
-0.39272183179855347,
0.04178644344210625,
0.08400905132293701,
-0.2727069854736328,
-0.25958168506622314,
0.25621429085731506,
-0.5825825929641724,
0.15725214779376984,
0.5176196098327637,
0.4608146548271179,
0.45713090896606445,
-0.17396804690361023,
0.7947405576705933,
-0.7540412545204163,
0.252269446849823,
0.30020302534103394,
0.3440128564834595,
0.3398609459400177,
-0.35760343074798584,
0.6013960838317871,
0.3894309997558594,
-0.8435879349708557,
-0.6027785539627075,
0.15330837666988373,
-1.0834425687789917,
-0.3165139853954315,
1.4083428382873535,
0.3659383952617645,
-0.14166921377182007,
-0.026681847870349884,
-0.4894288182258606,
0.3108665347099304,
-0.496318519115448,
0.4781849980354309,
0.8180002570152283,
0.38751572370529175,
0.05699823051691055,
-0.5619054436683655,
0.4065024256706238,
0.42690977454185486,
-0.36577489972114563,
-0.17323549091815948,
0.48951420187950134,
0.2806623578071594,
0.19537575542926788,
0.5170428156852722,
0.0038490579463541508,
0.20518715679645538,
0.32541725039482117,
0.17935970425605774,
0.17310120165348053,
-0.20315414667129517,
-0.05929284170269966,
-0.0931273028254509,
-0.14044047892093658,
0.2353605031967163
] |
samrawal/bert-base-uncased_clinical-ner | samrawal | "2022-11-11T22:57:56Z" | 10,942 | 23 | transformers | [
"transformers",
"pytorch",
"tf",
"jax",
"bert",
"token-classification",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | token-classification | "2022-03-02T23:29:05Z" | A Named Entity Recognition model for clinical entities (`problem`, `treatment`, `test`)
The model has been trained on the [i2b2 (now n2c2) dataset](https://n2c2.dbmi.hms.harvard.edu) for the 2010 - Relations task. Please visit the n2c2 site to request access to the dataset. | [
-0.11601988971233368,
-0.3589741885662079,
0.613426148891449,
0.16670352220535278,
-0.019563822075724602,
-0.1338099092245102,
0.18003052473068237,
-0.6557703018188477,
0.3825002610683441,
0.8063797354698181,
-0.7934386730194092,
-0.34840136766433716,
-0.7300859093666077,
0.2910245656967163,
-0.4616503417491913,
0.9874075055122375,
-0.13746927678585052,
0.9354848265647888,
-0.49090221524238586,
-0.2000006139278412,
-0.38026636838912964,
-0.20591463148593903,
-1.1062142848968506,
-0.6193702220916748,
0.6655653119087219,
0.6757502555847168,
0.3686191737651825,
0.5231297016143799,
1.254348874092102,
0.13511772453784943,
0.10507726669311523,
-0.17310647666454315,
-0.3515079617500305,
-0.07416040450334549,
-0.49879252910614014,
-0.36785653233528137,
-0.5588432550430298,
0.0790218636393547,
0.6659995317459106,
0.9912213683128357,
-0.116761714220047,
0.20106762647628784,
-0.34724655747413635,
0.5444843173027039,
-0.4735200107097626,
0.40209057927131653,
-0.595858633518219,
0.1485891342163086,
-0.2610055208206177,
-0.01320140901952982,
-0.42020753026008606,
-0.24980449676513672,
0.1713838428258896,
-0.71138995885849,
0.3680182695388794,
0.33005639910697937,
1.3147023916244507,
0.2665199339389801,
-0.828914225101471,
-0.6914955973625183,
-0.6584363579750061,
0.3976147770881653,
-0.13747891783714294,
0.6732882857322693,
0.6159420013427734,
0.5451716780662537,
-0.44752752780914307,
-0.8752151131629944,
-0.47542473673820496,
-0.3206343352794647,
-0.11552680283784866,
0.020147191360592842,
-0.29891258478164673,
-0.06308262795209885,
0.4876636266708374,
0.3184276819229126,
-0.5996637940406799,
0.3073279559612274,
-0.8531225323677063,
-0.13389140367507935,
0.7821256518363953,
0.5422303676605225,
0.4547131359577179,
-0.15786714851856232,
-0.6352989077568054,
0.4878040552139282,
-0.9824428558349609,
-0.08484918624162674,
-0.21976198256015778,
0.07690811902284622,
-0.020899705588817596,
0.6461849808692932,
-0.0323336236178875,
0.5538853406906128,
0.057000648230314255,
-0.23769831657409668,
0.20909366011619568,
-0.1129649206995964,
-0.3212774991989136,
0.5392374396324158,
0.30568963289260864,
0.408725768327713,
0.18167716264724731,
-0.2707396149635315,
-0.09207738190889359,
0.08289165794849396,
0.29555127024650574,
-0.9939584136009216,
-0.6705693602561951,
0.34198427200317383,
-0.528258204460144,
-0.13622404634952545,
-0.1882457733154297,
-0.3020021319389343,
-0.527628481388092,
-0.4898550808429718,
0.3338347375392914,
-0.5696687698364258,
-0.4460504353046417,
-0.08253110200166702,
-0.03879818320274353,
0.2612362802028656,
0.25469788908958435,
-0.777073860168457,
0.7530513405799866,
0.5101493000984192,
0.6764699220657349,
-0.25189846754074097,
0.13831926882266998,
-0.5041505694389343,
0.3015511631965637,
-0.2919609546661377,
0.9065409302711487,
-0.3073834776878357,
-0.5132871270179749,
-0.12741528451442719,
0.4856263995170593,
-0.28280317783355713,
-0.9906186461448669,
0.3560431897640228,
-0.5699695944786072,
0.07504181563854218,
-0.3431432545185089,
-1.1246880292892456,
-0.03902234137058258,
0.2107546180486679,
-0.9897475838661194,
0.8016771674156189,
0.26700934767723083,
-0.8992553949356079,
0.3951975107192993,
-0.6404873728752136,
-0.1410948485136032,
0.1526242047548294,
-0.22230209410190582,
-0.6261604428291321,
-0.08347051590681076,
-0.2936161160469055,
0.37132298946380615,
-0.4839988946914673,
0.36560335755348206,
-0.49839189648628235,
-0.28706857562065125,
0.07076093554496765,
0.531745433807373,
0.9261410236358643,
0.19863609969615936,
0.19279254972934723,
-0.09568848460912704,
-1.2374873161315918,
0.01999758929014206,
0.5842010378837585,
-0.2541494071483612,
-0.6072465181350708,
-0.22263497114181519,
0.12424235045909882,
0.030395615845918655,
0.036170732229948044,
-0.5526215434074402,
0.4695545434951782,
-0.11276164650917053,
0.49923646450042725,
0.1303262710571289,
0.34549224376678467,
0.10822825133800507,
-0.12255050987005234,
0.414320170879364,
0.3165339529514313,
0.03806101158261299,
0.4338703155517578,
-0.705401599407196,
-0.7675487399101257,
-0.08012652397155762,
0.7611745595932007,
0.6740012764930725,
-0.5927022695541382,
0.15152622759342194,
-0.18741735816001892,
-0.5067607760429382,
-0.21827997267246246,
-0.2885098457336426,
0.4788351058959961,
0.6074661612510681,
0.4844864010810852,
-0.24414744973182678,
-0.640863299369812,
-1.0972851514816284,
0.029302282258868217,
-0.022339267656207085,
-0.052350617945194244,
0.40647271275520325,
0.988447368144989,
-0.4282430410385132,
0.5866371989250183,
-0.5646183490753174,
-0.6549971699714661,
-0.12965866923332214,
0.1896401047706604,
0.11338046193122864,
0.444640189409256,
0.36382922530174255,
-0.6922394037246704,
-0.28764113783836365,
-0.5223623514175415,
-0.756290078163147,
-0.01441116351634264,
0.10728762298822403,
-0.12890714406967163,
-0.2549780011177063,
0.6347202062606812,
-0.39507514238357544,
0.6125514507293701,
0.3204735815525055,
-0.3267602324485779,
0.2604692578315735,
-0.02117619477212429,
0.003512860741466284,
-1.2320319414138794,
0.2287447601556778,
-0.0017524524591863155,
-0.21577928960323334,
-0.7354454398155212,
-0.16160546243190765,
0.4706916809082031,
-0.07007119804620743,
-0.564000129699707,
0.6539520025253296,
-0.9375715851783752,
-0.2506740689277649,
-0.15568192303180695,
0.08253154158592224,
0.0011347885010764003,
0.13569530844688416,
0.33085867762565613,
0.5624083876609802,
0.5801615118980408,
-0.7507774829864502,
0.4006785452365875,
0.662662923336029,
-0.5265581011772156,
1.012959599494934,
-0.502791166305542,
0.30485498905181885,
-0.14117850363254547,
-0.044922277331352234,
-0.6586412191390991,
-0.6788200736045837,
0.4409996271133423,
-0.20912660658359528,
0.4488207995891571,
-0.13062037527561188,
-0.3372557759284973,
-0.4324907958507538,
0.36495932936668396,
0.5693351626396179,
-0.05036124959588051,
-0.5445406436920166,
0.250422865152359,
0.6019952297210693,
-0.07876897603273392,
-0.24923966825008392,
-0.6764144897460938,
0.25595906376838684,
-0.10370003432035446,
-0.2648070156574249,
0.7393075823783875,
0.07028951495885849,
-0.35512682795524597,
0.21365328133106232,
0.06871073693037033,
-0.7218466997146606,
0.010151580907404423,
0.6043630242347717,
0.31819674372673035,
-0.12706977128982544,
0.6942043304443359,
0.059182144701480865,
-0.2762300968170166,
0.3164115846157074,
0.4085565507411957,
0.3923600912094116,
0.40644463896751404,
-0.24337877333164215,
-0.5536933541297913,
0.4754774868488312,
-0.025039423257112503,
-0.10430075973272324,
0.5595380663871765,
0.23630119860172272,
-1.2627898454666138,
0.1162203848361969,
-0.3345212936401367,
-0.33473148941993713,
-0.33496856689453125,
0.4456767141819,
-0.49196693301200867,
-0.502389669418335,
0.2963520884513855,
-0.10331539809703827,
-0.4758478105068207,
0.41482001543045044,
0.5517769455909729,
-0.09567221999168396,
0.8528827428817749,
0.4752337634563446,
0.25011447072029114,
0.1275160014629364,
-0.3337703049182892,
0.41608020663261414,
-1.2576981782913208,
-0.6571946740150452,
-0.443480521440506,
-0.2761331796646118,
-0.2628304958343506,
-0.15311935544013977,
0.2916874885559082,
0.38435637950897217,
-0.2141103297472,
0.5535649657249451,
-0.42944085597991943,
0.2090194672346115,
0.5926041603088379,
0.4466147720813751,
0.3845490515232086,
-0.2536744177341461,
-0.01224981527775526,
-0.2657718360424042,
-0.32651278376579285,
-0.39890238642692566,
1.2816376686096191,
0.35035717487335205,
0.3980312645435333,
0.201412633061409,
0.7040325999259949,
0.14715303480625153,
0.5874172449111938,
-0.7647606134414673,
0.5972802639007568,
0.007418109569698572,
-0.990848958492279,
-0.0037831852678209543,
-0.19032901525497437,
-1.5389766693115234,
-0.48211967945098877,
-0.40023183822631836,
-0.7074503302574158,
0.3039754629135132,
0.04401126131415367,
-0.32643094658851624,
0.0035556501243263483,
-0.3567403554916382,
0.8071675896644592,
-0.0916309654712677,
0.1610642969608307,
-0.25314265489578247,
-0.6328029632568359,
0.4477325677871704,
0.10805962234735489,
-0.05749080330133438,
-0.4836323857307434,
0.15526166558265686,
0.8739679455757141,
-0.3427305221557617,
0.11133816093206406,
-0.2869113087654114,
0.37304437160491943,
0.1429024189710617,
0.06353440880775452,
0.32316988706588745,
0.33209726214408875,
0.3914259076118469,
0.1318690925836563,
0.09622123092412949,
-0.3359600901603699,
-0.3897450268268585,
0.647599995136261,
-0.45431897044181824,
-0.304468035697937,
-0.6932808756828308,
-0.3491804897785187,
-0.306803822517395,
0.3514537513256073,
0.34279364347457886,
0.5630044937133789,
-0.400015264749527,
0.0031355218961834908,
0.7366945147514343,
-0.05353434011340141,
0.05156741291284561,
0.8987802863121033,
-0.29997357726097107,
-0.29276326298713684,
0.6377658247947693,
0.347843736410141,
0.10076969116926193,
0.38406190276145935,
-0.32129713892936707,
-0.2667185962200165,
-0.8288924694061279,
-0.25073811411857605,
0.4037691354751587,
-0.4812813699245453,
-0.3067305088043213,
-0.6853805184364319,
-0.7398279309272766,
-0.43006813526153564,
0.5445087552070618,
-0.15477657318115234,
-0.32997971773147583,
-0.6789627075195312,
-0.21503661572933197,
0.429983913898468,
0.8636153936386108,
0.07343047112226486,
0.22712039947509766,
-0.6034166812896729,
0.3922601044178009,
0.2070768028497696,
0.5270485281944275,
-0.42768046259880066,
-0.25135186314582825,
-0.25589749217033386,
-0.20800438523292542,
-0.2866285443305969,
-1.3472366333007812,
0.36290132999420166,
0.39539554715156555,
0.45773419737815857,
0.43890267610549927,
-0.313264399766922,
0.5497316718101501,
-0.5619043707847595,
0.45021679997444153,
0.2671525180339813,
-0.47101497650146484,
0.7853270173072815,
-0.08315590023994446,
-0.2798697352409363,
0.428984135389328,
0.983668863773346,
-0.48730868101119995,
0.23055291175842285,
-0.7189071178436279,
-0.454293429851532,
0.663485586643219,
0.14920200407505035,
-0.4438004791736603,
-0.04264819994568825,
0.8079055547714233,
-0.19079798460006714,
0.25886115431785583,
-0.5296425223350525,
-0.45341700315475464,
0.21745046973228455,
-0.3493601977825165,
0.27743086218833923,
-0.5390377640724182,
-0.29221466183662415,
-0.2588084936141968,
0.7673245072364807,
0.01650848239660263,
0.7200620174407959,
0.38019973039627075,
-0.24887870252132416,
-0.06582748889923096,
-0.062193211168050766,
0.12423818558454514,
0.45945167541503906,
-0.3755345344543457,
-0.1051018014550209,
-0.0880177766084671,
-0.6724729537963867,
0.26595422625541687,
0.4130763113498688,
0.0016982812667265534,
0.017984483391046524,
0.2885946035385132,
0.9091135263442993,
0.3022131025791168,
-0.6197987794876099,
0.5305599570274353,
-0.16915014386177063,
-0.5035048127174377,
-0.7828924059867859,
0.26960819959640503,
0.22977672517299652,
0.4405522048473358,
-0.2316826432943344,
-0.2839115560054779,
0.7386196255683899,
-0.420063316822052,
0.40042009949684143,
0.3502432405948639,
-0.7419734597206116,
-0.052178844809532166,
0.889017641544342,
-0.23382212221622467,
-0.6647049188613892,
1.2774018049240112,
-0.44874677062034607,
-0.048869624733924866,
0.7510759830474854,
0.7240075469017029,
0.4699263870716095,
-0.32375529408454895,
0.15112653374671936,
0.698127031326294,
-0.2136961966753006,
-0.01351172849535942,
0.7476484179496765,
0.3535071015357971,
-0.7430301904678345,
0.22007031738758087,
-0.29985570907592773,
-0.6310314536094666,
0.47242745757102966,
-1.2211730480194092,
0.7388641834259033,
-0.6653360724449158,
-0.37676259875297546,
0.4613652527332306,
0.167018324136734,
-0.966709554195404,
0.7341758608818054,
0.20478218793869019,
1.0670338869094849,
-0.5383861064910889,
1.1660945415496826,
0.9468808770179749,
-0.6286630630493164,
-0.7552837133407593,
-0.43120014667510986,
0.021970348432660103,
-1.0725585222244263,
0.7356163263320923,
0.1777278631925583,
0.6162502765655518,
0.0073984889313578606,
-0.39071428775787354,
-1.1940562725067139,
1.4308021068572998,
0.14503179490566254,
-0.8832714557647705,
-0.3446026146411896,
0.17529836297035217,
0.4100898504257202,
-0.4919624626636505,
0.10760495811700821,
0.6725006103515625,
0.19387078285217285,
-0.12747050821781158,
-0.8817819952964783,
0.0019892968703061342,
-0.44031190872192383,
-0.10230736434459686,
0.22516044974327087,
-0.4114740490913391,
0.7949686646461487,
-0.5961078405380249,
-0.25277143716812134,
0.2797285318374634,
0.47018498182296753,
0.41710031032562256,
0.6270244717597961,
0.6714737415313721,
0.7887172102928162,
0.9685863256454468,
-0.44538527727127075,
0.6947596073150635,
-0.3764190673828125,
0.5349027514457703,
1.3454601764678955,
-0.3624347150325775,
0.7488455176353455,
0.26065200567245483,
-0.3926811218261719,
0.5218681693077087,
0.9951050281524658,
-0.4521258473396301,
0.6955462098121643,
0.4003857672214508,
0.015091080218553543,
-0.18263675272464752,
-0.3242790400981903,
-0.48347997665405273,
0.43870970606803894,
0.625545084476471,
-0.5461576581001282,
-0.029284168034791946,
0.1153036430478096,
0.047281861305236816,
-0.2745320200920105,
-0.36879730224609375,
0.9055687189102173,
0.2742742598056793,
-0.3537684679031372,
0.35616210103034973,
-0.09950254112482071,
-0.2609913647174835,
-0.3060067296028137,
-0.1852344572544098,
-0.028345536440610886,
0.20301394164562225,
-0.22368840873241425,
-0.6133593916893005,
0.34347084164619446,
-0.3529122471809387,
-0.4252387285232544,
0.39080163836479187,
0.794617235660553,
-0.6048595905303955,
-0.7231256365776062,
0.43092095851898193,
0.29539233446121216,
0.4500674307346344,
-0.07301682978868484,
-0.8371849656105042,
-0.29920780658721924,
-0.3845510184764862,
0.0009015582036226988,
0.4063105285167694,
0.22959595918655396,
-0.34719976782798767,
0.8396443724632263,
0.22363878786563873,
0.082725889980793,
-0.11456184089183807,
0.25762316584587097,
0.5293062329292297,
-0.7492550015449524,
-0.23332539200782776,
-0.17109030485153198,
0.1830868273973465,
-0.25714370608329773,
-0.5014592409133911,
0.32118356227874756,
0.6585187315940857,
0.676085352897644,
-0.043031178414821625,
0.36987054347991943,
0.04834134876728058,
1.0052751302719116,
-0.480702668428421,
0.35690590739250183,
-0.7529569864273071,
-0.1197979748249054,
0.027542151510715485,
-0.7448156476020813,
-0.47072240710258484,
0.4357891082763672,
-0.1106175109744072,
-0.21430626511573792,
0.8172265887260437,
0.7192702889442444,
-0.09267202019691467,
0.3452158272266388,
0.09301164001226425,
0.49601736664772034,
0.1320943385362625,
0.8277292847633362,
0.5659220218658447,
-0.6773874759674072,
0.05718183517456055,
-0.40460413694381714,
-0.0749056413769722,
-0.30613258481025696,
-0.6084418296813965,
-0.929851770401001,
-0.6827825307846069,
-0.6561351418495178,
-0.5604088306427002,
0.3472479581832886,
1.0571554899215698,
0.6314271688461304,
-1.1109172105789185,
0.13900238275527954,
-0.1253843456506729,
-0.15696875751018524,
-0.11402574181556702,
-0.1526334583759308,
0.44815003871917725,
0.1299828588962555,
-0.7110301852226257,
0.2125442922115326,
0.2501250207424164,
0.17394044995307922,
-0.17726165056228638,
0.07300210744142532,
-0.23879288136959076,
-0.145819753408432,
0.10680129379034042,
0.10545790195465088,
-0.5033374428749084,
-0.12329979240894318,
-0.008242178708314896,
-0.25906407833099365,
0.33292463421821594,
0.748032808303833,
-0.46204808354377747,
0.30586346983909607,
0.00763252517208457,
0.4282933175563812,
0.4193282425403595,
-0.402474969625473,
0.1582653522491455,
-0.16342896223068237,
-0.04914684593677521,
0.2455378919839859,
0.7215160727500916,
0.3202723264694214,
-0.5386555194854736,
0.7811403274536133,
0.47003859281539917,
-0.6450313925743103,
-1.04102623462677,
0.2195364385843277,
-1.004935383796692,
-0.018329991027712822,
0.9973430633544922,
-0.2989037036895752,
-0.12517638504505157,
-0.2470858246088028,
-0.14556995034217834,
0.40389978885650635,
-0.09133409708738327,
0.8069091439247131,
0.5130764842033386,
-0.47836601734161377,
-0.19256949424743652,
-0.7281908392906189,
0.6514940857887268,
0.06901060789823532,
-1.0099040269851685,
-0.5309314727783203,
0.35540300607681274,
0.6865751147270203,
-0.05042560026049614,
0.8629963397979736,
-0.1756071299314499,
0.257821261882782,
-0.19519437849521637,
0.28871795535087585,
0.034425269812345505,
-0.7661085724830627,
-0.04060572385787964,
-0.0975564643740654,
0.011178705841302872,
-0.2312581092119217
] |
MilaNLProc/feel-it-italian-emotion | MilaNLProc | "2022-08-15T20:36:13Z" | 10,941 | 13 | transformers | [
"transformers",
"pytorch",
"tf",
"camembert",
"text-classification",
"sentiment",
"emotion",
"Italian",
"it",
"endpoints_compatible",
"has_space",
"region:us"
] | text-classification | "2022-03-02T23:29:04Z" | ---
language: it
tags:
- sentiment
- emotion
- Italian
---
# FEEL-IT: Emotion and Sentiment Classification for the Italian Language
## FEEL-IT Python Package
You can find the package that uses this model for emotion and sentiment classification **[here](https://github.com/MilaNLProc/feel-it)** it is meant to be a very simple interface over HuggingFace models.
## License
Users should refer to the [following license](https://developer.twitter.com/en/developer-terms/commercial-terms)
## Abstract
Sentiment analysis is a common task to understand people's reactions online. Still, we often need more nuanced information: is the post negative because the user is angry or because they are sad?
An abundance of approaches has been introduced for tackling both tasks. However, at least for Italian, they all treat only one of the tasks at a time. We introduce *FEEL-IT*, a novel benchmark corpus of Italian Twitter posts annotated with four basic emotions: **anger, fear, joy, sadness**. By collapsing them, we can also do **sentiment analysis**. We evaluate our corpus on benchmark datasets for both emotion and sentiment classification, obtaining competitive results.
We release an [open-source Python library](https://github.com/MilaNLProc/feel-it), so researchers can use a model trained on FEEL-IT for inferring both sentiments and emotions from Italian text.
| Model | Download |
| ------ | -------------------------|
| `feel-it-italian-sentiment` | [Link](https://huggingface.co/MilaNLProc/feel-it-italian-sentiment) |
| `feel-it-italian-emotion` | [Link](https://huggingface.co/MilaNLProc/feel-it-italian-emotion) |
## Model
The *feel-it-italian-emotion* model performs **emotion classification (joy, fear, anger, sadness)** on Italian. We fine-tuned the [UmBERTo model](https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1) on our new dataset (i.e., FEEL-IT) obtaining state-of-the-art performances on different benchmark corpora.
## Data
Our data has been collected by annotating tweets from a broad range of topics. In total, we have 2037 tweets annotated with an emotion label. More details can be found in our paper (https://aclanthology.org/2021.wassa-1.8/).
## Performance
We evaluate our performance using [MultiEmotions-It](http://ceur-ws.org/Vol-2769/paper_08.pdf). This dataset differs from FEEL-IT both in terms of topic variety and considered social media (i.e., YouTube and Facebook). We considered only the subset of emotions present in FEEL-IT. To give a point of reference, we also show the Most Frequent Class (MFC) baseline results. The results show that training on FEEL-IT brings stable performance even on datasets from different contexts.
| Training Dataset | Macro-F1 | Accuracy
| ------ | ------ |------ |
| MFC | 0.20 | 0.64 |
| FEEL-IT | **0.57** | **0.73** |
## Usage
```python
from transformers import pipeline
classifier = pipeline("text-classification",model='MilaNLProc/feel-it-italian-emotion',top_k=2)
prediction = classifier("Oggi sono proprio contento!")
print(prediction)
```
## Citation
Please use the following bibtex entry if you use this model in your project:
```
@inproceedings{bianchi2021feel,
title = {{"FEEL-IT: Emotion and Sentiment Classification for the Italian Language"}},
author = "Bianchi, Federico and Nozza, Debora and Hovy, Dirk",
booktitle = "Proceedings of the 11th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis",
year = "2021",
publisher = "Association for Computational Linguistics",
}
``` | [
-0.5375744104385376,
-0.40491652488708496,
0.10452331602573395,
0.4964982569217682,
-0.38025423884391785,
0.013856744393706322,
-0.5468709468841553,
-0.4799751937389374,
0.5439865589141846,
-0.41273725032806396,
-0.6232918500900269,
-0.8506191372871399,
-0.6728572249412537,
0.2158137857913971,
-0.2900678217411041,
1.2182157039642334,
-0.01401884201914072,
0.4503668248653412,
0.20164240896701813,
-0.3378846049308777,
0.33511853218078613,
-0.5775672197341919,
-0.6327853798866272,
-0.259068101644516,
0.763550877571106,
0.1412021666765213,
0.10267960280179977,
-0.09002742171287537,
0.3814901113510132,
0.2643348276615143,
-0.23973070085048676,
-0.16543762385845184,
-0.33642157912254333,
-0.23383651673793793,
0.025867430493235588,
-0.3883604407310486,
-0.3385690152645111,
0.04540305212140083,
0.3193000555038452,
0.14572203159332275,
-0.13807561993598938,
-0.017614413052797318,
0.20105017721652985,
0.9214178323745728,
-0.6841696500778198,
0.20040084421634674,
-0.2948095202445984,
0.08961167931556702,
-0.01801353506743908,
-0.015759427100419998,
-0.29389142990112305,
-0.5347685813903809,
-0.027731819078326225,
-0.17912526428699493,
-0.03022061288356781,
-0.0716264545917511,
1.060562252998352,
0.1894296556711197,
-0.45867040753364563,
-0.185503289103508,
-0.28300565481185913,
0.7633485794067383,
-0.7494924068450928,
0.37437736988067627,
0.029880046844482422,
-0.14414018392562866,
0.2733118534088135,
-0.10398856550455093,
-0.8776379227638245,
-0.009091665036976337,
0.1827765554189682,
0.5072798728942871,
-0.2368137389421463,
-0.10746785253286362,
0.14783507585525513,
0.5053646564483643,
-0.5010985732078552,
-0.12560001015663147,
-0.19376946985721588,
-0.03381391987204552,
0.7740480899810791,
0.0324723906815052,
0.4005538523197174,
-0.3174181878566742,
-0.3967220187187195,
-0.1792900264263153,
-0.3952915668487549,
0.29413336515426636,
0.2798572778701782,
0.3414572477340698,
-0.48505058884620667,
0.47235509753227234,
-0.07167506963014603,
0.3598938584327698,
0.002046622335910797,
0.12818609178066254,
0.8276056051254272,
0.20001257956027985,
-0.16630242764949799,
-0.09827771782875061,
1.3648533821105957,
0.6184157133102417,
0.531130313873291,
0.08899159729480743,
-0.052263110876083374,
0.4801642596721649,
0.1863003969192505,
-0.8856038451194763,
0.08415716141462326,
0.39467868208885193,
-0.31882038712501526,
-0.43217965960502625,
0.01016446016728878,
-1.0304027795791626,
-0.40419864654541016,
-0.3914247751235962,
0.28363195061683655,
-0.706592321395874,
-0.5978359580039978,
-0.0031648988369852304,
-0.125260591506958,
0.02498532272875309,
0.27880677580833435,
-0.7973843216896057,
0.21549493074417114,
0.5926419496536255,
1.009653091430664,
-0.4043668508529663,
-0.32959720492362976,
0.08739829808473587,
-0.45179808139801025,
-0.24546103179454803,
0.9452617168426514,
-0.32543739676475525,
-0.2754359245300293,
0.19013270735740662,
0.027135133743286133,
-0.27703994512557983,
-0.14763568341732025,
0.604663610458374,
-0.04280010238289833,
0.5080969929695129,
-0.31906309723854065,
-0.5692974328994751,
-0.14394982159137726,
0.44836270809173584,
-0.5559240579605103,
1.1806013584136963,
0.15978430211544037,
-1.102170705795288,
0.37019437551498413,
-0.8264279961585999,
-0.37980368733406067,
-0.5720922350883484,
0.2133670151233673,
-0.16959194839000702,
0.41294461488723755,
-0.22981588542461395,
0.5712639093399048,
-0.2649358808994293,
0.09051856398582458,
-0.6708395481109619,
-0.23410998284816742,
0.32390713691711426,
0.22851437330245972,
0.9116123914718628,
0.40689340233802795,
-0.5259280204772949,
0.020706400275230408,
-0.732438862323761,
-0.10359043627977371,
-0.1265440583229065,
-0.22281713783740997,
-0.4276937246322632,
-0.2199070155620575,
0.3933347761631012,
0.4148939549922943,
0.29187700152397156,
-0.8851168155670166,
0.4088386297225952,
-0.5373016595840454,
0.46343985199928284,
0.8002715110778809,
-0.28153395652770996,
0.4685945212841034,
0.08535552024841309,
0.30737191438674927,
0.3453374207019806,
0.14641153812408447,
0.13516874611377716,
-0.3327731788158417,
-0.7804810404777527,
-0.38265466690063477,
0.1832372099161148,
0.5919533967971802,
-0.42905694246292114,
0.36591339111328125,
-0.13654884696006775,
-0.7689619064331055,
-0.505541980266571,
-0.1394384354352951,
0.2669193148612976,
0.45805323123931885,
0.32020190358161926,
-0.05109258368611336,
-0.506262481212616,
-0.50675368309021,
-0.4044533371925354,
-0.3598242700099945,
0.23879507184028625,
0.21336781978607178,
0.5153935551643372,
-0.22968247532844543,
0.7083787322044373,
-0.3589436709880829,
-0.3320275545120239,
-0.03932657837867737,
0.4963887631893158,
0.3578513562679291,
0.34558892250061035,
0.5807874202728271,
-0.873849630355835,
-0.6329571604728699,
0.002396764699369669,
-0.9238885045051575,
-0.20075339078903198,
0.38662639260292053,
-0.05298715829849243,
0.6886846423149109,
-0.1432001292705536,
-0.6615198850631714,
0.34921783208847046,
0.6230259537696838,
-0.471591979265213,
0.23269930481910706,
0.2501441538333893,
0.5391632318496704,
-1.5308294296264648,
0.18455035984516144,
0.5321946740150452,
0.19053980708122253,
-0.5542694926261902,
-0.21238534152507782,
0.05232962965965271,
0.0016820650780573487,
-0.6323093175888062,
0.9146345853805542,
-0.17610086500644684,
0.1424681395292282,
-0.06748763471841812,
-0.18455782532691956,
-0.0848906859755516,
0.720348060131073,
0.35698676109313965,
0.5344769954681396,
0.6331771016120911,
-0.4559636414051056,
0.22990401089191437,
0.36057132482528687,
-0.2504037320613861,
0.9051123857498169,
-0.45794877409935,
0.053225331008434296,
-0.053673408925533295,
-0.0006325360154733062,
-1.038750171661377,
-0.1406623274087906,
0.4208516478538513,
-0.8505722880363464,
0.38578933477401733,
0.042667992413043976,
-0.5081928372383118,
-0.4657765030860901,
-0.45732495188713074,
-0.011536962352693081,
0.47215786576271057,
-0.5165601372718811,
0.8634833693504333,
0.2052076905965805,
0.06578868627548218,
-0.6101435422897339,
-0.84437495470047,
0.057590216398239136,
-0.6528924107551575,
-0.5699043869972229,
0.12906339764595032,
-0.3974359631538391,
-0.24575833976268768,
-0.03746347874403,
0.09885291010141373,
-0.38964349031448364,
0.16107533872127533,
0.530400812625885,
0.05281544849276543,
0.22666387259960175,
0.5197453498840332,
0.013218875043094158,
-0.09218192845582962,
-0.015397150069475174,
-0.07447677105665207,
0.6421929597854614,
-0.436932772397995,
0.09426578879356384,
-0.7120102047920227,
0.36077407002449036,
0.5468118190765381,
-0.06490729749202728,
0.7481436133384705,
1.0340244770050049,
-0.43005311489105225,
-0.10547110438346863,
-0.43016108870506287,
-0.1668245792388916,
-0.3854030668735504,
0.03841046243906021,
-0.5404118299484253,
-0.7939059138298035,
0.5024657249450684,
-0.17633813619613647,
-0.18370358645915985,
0.47906118631362915,
0.6916453242301941,
-0.44347795844078064,
1.2163255214691162,
0.7361530661582947,
-0.7361856698989868,
0.6239494681358337,
-0.4022587835788727,
0.16868989169597626,
-0.553923487663269,
-0.21844762563705444,
-0.8328980207443237,
-0.5112514495849609,
-0.641284167766571,
0.12250886112451553,
0.32790258526802063,
-0.07201479375362396,
-0.4548145830631256,
0.2687024772167206,
-0.4935022294521332,
-0.06810896098613739,
0.3827139437198639,
0.28741735219955444,
0.060301829129457474,
0.21258199214935303,
0.03629068285226822,
-0.3598412275314331,
-0.3660181164741516,
-0.4217565953731537,
0.6747502684593201,
0.23714730143547058,
0.7717923521995544,
0.07173790037631989,
0.9971376061439514,
0.3450414538383484,
0.45395201444625854,
-1.0440186262130737,
0.3456287682056427,
-0.33167243003845215,
-0.4786313772201538,
0.12019315361976624,
-0.3734408915042877,
-0.6385737657546997,
-0.25582432746887207,
-0.26798802614212036,
-1.1743967533111572,
0.32118213176727295,
0.17595058679580688,
-0.11810998618602753,
0.20143723487854004,
-0.8062500953674316,
0.9601591229438782,
-0.15878918766975403,
-0.5726208090782166,
-0.17874135076999664,
-0.4164915680885315,
0.029594510793685913,
0.10641863942146301,
0.3139016330242157,
-0.21726563572883606,
-0.13131946325302124,
0.7276355624198914,
-0.3847501873970032,
0.9105914235115051,
-0.37130796909332275,
-0.06560710817575455,
0.13208913803100586,
0.15158449113368988,
0.11923177540302277,
-0.15384188294410706,
-0.6329860091209412,
0.5080364942550659,
0.050892043858766556,
-0.2861596345901489,
-0.6140420436859131,
0.8019466996192932,
-0.9330596327781677,
0.03248283639550209,
-0.5108125805854797,
-0.09880515187978745,
-0.22461678087711334,
0.029375512152910233,
0.6926836967468262,
0.32834720611572266,
-0.2670549750328064,
0.014664278365671635,
0.5702996850013733,
-0.08189106732606888,
0.5322998762130737,
0.4064180850982666,
0.0163445882499218,
-0.41283953189849854,
0.943423330783844,
-0.12569336593151093,
-0.2138742208480835,
0.4995337128639221,
0.450984925031662,
-0.31771722435951233,
-0.07511669397354126,
-0.40986526012420654,
0.24210818111896515,
-0.3793066740036011,
-0.35678330063819885,
-0.8684581518173218,
0.2620747983455658,
-0.43345779180526733,
0.023091144859790802,
-0.5792287588119507,
-0.28631913661956787,
-0.43278446793556213,
-0.2630596160888672,
0.7550394535064697,
0.6076346635818481,
-0.3869272470474243,
0.40885815024375916,
-0.6939240097999573,
0.004378318786621094,
-0.1561281681060791,
0.4995991289615631,
-0.3585905134677887,
-0.4533538520336151,
-0.28014034032821655,
0.10432184487581253,
-0.08210369944572449,
-1.2209047079086304,
0.8604651093482971,
0.37988707423210144,
-0.0468255914747715,
0.6262661814689636,
0.12422283738851547,
0.40306854248046875,
-0.1879429817199707,
0.8622487783432007,
0.40192776918411255,
-1.1675328016281128,
0.5699518322944641,
-0.46736061573028564,
0.1090652123093605,
0.6821672916412354,
0.9548047184944153,
-0.5285802483558655,
-0.1944117248058319,
-0.5639520287513733,
-0.7325279712677002,
0.7790967226028442,
-0.05336753651499748,
0.3201046586036682,
-0.24589867889881134,
0.20787227153778076,
-0.06952439248561859,
0.5158511996269226,
-0.8398638367652893,
-0.19807977974414825,
-0.2897244989871979,
-0.8125088214874268,
-0.213315948843956,
-0.37984147667884827,
0.055414680391550064,
-0.2855779826641083,
0.6351714134216309,
-0.27359819412231445,
0.735693633556366,
0.18527351319789886,
-0.1155979335308075,
-0.1293841302394867,
0.09204614907503128,
0.1475457102060318,
0.17291897535324097,
-0.40358030796051025,
-0.06719911843538284,
0.043690066784620285,
-0.05256115272641182,
0.07165873050689697,
-0.08739636093378067,
0.01069999672472477,
0.054024532437324524,
0.13140951097011566,
0.9843310117721558,
0.239340141415596,
-0.5130343437194824,
0.7199500203132629,
-0.13562887907028198,
-0.2415180653333664,
-0.5444381237030029,
-0.17786771059036255,
0.04070710390806198,
0.4453069269657135,
0.20670293271541595,
0.1008526012301445,
0.5425634980201721,
-0.7726750373840332,
0.06184135377407074,
0.0897630974650383,
-0.7630849480628967,
-0.7588672041893005,
0.36854618787765503,
0.20639023184776306,
-0.120918869972229,
0.2742021679878235,
-0.2729305624961853,
-1.0804381370544434,
0.493974506855011,
0.16386741399765015,
1.0772525072097778,
-0.3330937325954437,
0.5151624083518982,
0.8133130669593811,
-0.07797591388225555,
-0.12375354766845703,
0.7157667875289917,
-0.17003576457500458,
-1.0135750770568848,
-0.12866659462451935,
-0.5812480449676514,
-0.2526615560054779,
-0.24232220649719238,
-0.8234162330627441,
0.39844298362731934,
-0.5409752130508423,
-0.34175586700439453,
-0.18116791546344757,
0.17151686549186707,
-0.8328953981399536,
0.640001118183136,
0.25208088755607605,
1.1229524612426758,
-1.1486949920654297,
0.6458413004875183,
1.032477617263794,
-0.5091570019721985,
-0.8357365727424622,
-0.1653834879398346,
0.30387142300605774,
-0.7149370908737183,
0.7112612128257751,
0.47600868344306946,
-0.0957227498292923,
0.0011081267148256302,
-0.8670701384544373,
-0.38889947533607483,
0.7241852283477783,
-0.030584722757339478,
-0.45908644795417786,
0.22645124793052673,
-0.13432657718658447,
1.0022870302200317,
-0.42878100275993347,
0.7089170217514038,
0.366910457611084,
0.505609929561615,
0.09593068063259125,
-0.6549785137176514,
-0.22697530686855316,
-0.8441934585571289,
-0.3755670487880707,
0.15241646766662598,
-1.0435981750488281,
0.839997410774231,
-0.09886348992586136,
-0.13690583407878876,
-0.06918787956237793,
0.4461909234523773,
-0.07121899724006653,
0.6613578796386719,
0.6894406080245972,
0.964134156703949,
0.7971752285957336,
-0.5029353499412537,
1.1478545665740967,
-0.6033573746681213,
0.5918298363685608,
0.7910167574882507,
-0.22792598605155945,
1.041167974472046,
0.33820921182632446,
-0.21308104693889618,
0.744050920009613,
1.0435383319854736,
0.14479604363441467,
0.4352149963378906,
0.13813678920269012,
-0.36270034313201904,
-0.19648627936840057,
-0.3478270173072815,
-0.24950270354747772,
0.5701587200164795,
0.27682459354400635,
-0.22331060469150543,
0.07255730032920837,
0.18755695223808289,
0.4038302004337311,
0.00832013413310051,
-0.17748236656188965,
0.9870787262916565,
0.11613576114177704,
-0.37412920594215393,
0.42106661200523376,
-0.3280830383300781,
0.8895103931427002,
-0.46504923701286316,
0.3394887447357178,
-0.5440337657928467,
0.18148735165596008,
-0.43312424421310425,
-0.7155185341835022,
0.20125412940979004,
0.5091969966888428,
-0.1298525184392929,
-0.1725589632987976,
0.584729015827179,
-0.31712979078292847,
-0.46996065974235535,
0.7724756002426147,
0.3750672936439514,
0.28698545694351196,
-0.4734335243701935,
-0.9219178557395935,
0.3911982476711273,
0.08302471786737442,
-0.7890748977661133,
0.20489554107189178,
0.7156179547309875,
0.2673233449459076,
0.7177161574363708,
0.3810740113258362,
0.0965476930141449,
-0.19035613536834717,
0.26326507329940796,
1.006960153579712,
-0.9363042116165161,
-0.38470450043678284,
-0.9013475775718689,
0.835950493812561,
-0.27899980545043945,
-0.36708444356918335,
0.5570975542068481,
0.35524260997772217,
0.6116456389427185,
0.026290610432624817,
0.812149167060852,
-0.4623635411262512,
0.706795334815979,
-0.17341704666614532,
0.41799232363700867,
-1.128713607788086,
-0.1551334112882614,
-0.6609992384910583,
-0.9726599454879761,
-0.27836498618125916,
0.687603235244751,
-0.29836052656173706,
0.10713107138872147,
0.6476348042488098,
0.6770893931388855,
0.2707204818725586,
0.07851945608854294,
0.055257655680179596,
0.5336822271347046,
-0.03744092211127281,
0.7033489346504211,
0.8473044037818909,
-0.3185323178768158,
0.1033526062965393,
-0.4950949549674988,
-0.3472006320953369,
-0.07757360488176346,
-0.9826889634132385,
-0.9086320400238037,
-0.7507282495498657,
-0.4324992299079895,
-0.6261210441589355,
0.018389195203781128,
1.1257916688919067,
0.5128380656242371,
-0.9681147336959839,
-0.3143834173679352,
-0.04194555804133415,
-0.09996891021728516,
0.1129898950457573,
-0.2748556137084961,
0.23882676661014557,
-0.40027308464050293,
-1.0791842937469482,
-0.11388684809207916,
0.1383497416973114,
-0.2490825206041336,
0.13095490634441376,
-0.16391970217227936,
-0.1579740047454834,
-0.22557663917541504,
0.5660414695739746,
0.26966145634651184,
-0.2755022346973419,
-0.10683443397283554,
0.14169420301914215,
-0.21152172982692719,
0.14818449318408966,
0.5382845997810364,
-0.42803528904914856,
0.47018933296203613,
0.7090697288513184,
0.33836060762405396,
0.6365501284599304,
0.03829678148031235,
0.3378252685070038,
-0.5014811158180237,
0.16995111107826233,
-0.02620922029018402,
0.5573395490646362,
0.4677981436252594,
-0.31182390451431274,
0.7366892695426941,
0.4324418008327484,
-0.369876891374588,
-0.6035606265068054,
-0.18012289702892303,
-1.2968993186950684,
-0.12952786684036255,
1.348852276802063,
-0.26646891236305237,
-0.4972716271877289,
0.5456526875495911,
-0.37898072600364685,
0.4718318581581116,
-0.9260764718055725,
0.9961495995521545,
0.6762624382972717,
0.011676468886435032,
-0.34349140524864197,
-0.1621517390012741,
0.4552832245826721,
0.3944551646709442,
-0.7882180213928223,
-0.2722366154193878,
0.5370818972587585,
0.2577996850013733,
0.19515244662761688,
0.6242654323577881,
0.04487031698226929,
0.051390547305345535,
-0.3478796184062958,
0.6614245176315308,
0.24268993735313416,
-0.1961088329553604,
-0.5256532430648804,
0.08378347009420395,
-0.2419181913137436,
-0.028807926923036575
] |
aari1995/German_Sentiment | aari1995 | "2023-06-23T06:29:57Z" | 10,926 | 0 | transformers | [
"transformers",
"pytorch",
"safetensors",
"bert",
"text-classification",
"deepset/gbert-large",
"de",
"endpoints_compatible",
"region:us"
] | text-classification | "2023-06-05T09:43:37Z" | ---
language:
- de
tags:
- deepset/gbert-large
---
# German Sentiment Analysis
This model predicts sentiment for German text.
# Usage
First set up the model:
```python
# if necessary:
# !pip install transformers
from transformers import pipeline
sentiment_model = pipeline(model="aari1995/German_Sentiment")
```
to use it:
```python
sentence = ["Ich liebe die Bahn. Pünktlich wie immer ... -.-","Krasser Service"]
result = sentiment_model(sentence)
print(result)
#Output:
#[{'label': 'negative', 'score': 0.4935680031776428},{'label': 'positive', 'score': 0.5790663957595825}]
```
# Credits / Special Thanks:
This model was fine-tuned by Aaron Chibb. It is trained on [twitter dataset by tygiangz](https://huggingface.co/datasets/tyqiangz/multilingual-sentiments) and based on gBERT-large by [deepset](https://huggingface.co/deepset/gbert-large). | [
-0.4821607768535614,
-0.6697027683258057,
0.34975913166999817,
0.49888354539871216,
-0.37285423278808594,
-0.031549014151096344,
-0.09476947784423828,
-0.3506952226161957,
0.566424548625946,
0.011833985336124897,
-0.8132262229919434,
-1.0068318843841553,
-0.706742525100708,
-0.0017564173322170973,
-0.3261592388153076,
1.3721349239349365,
0.19857174158096313,
0.6872878670692444,
0.16787973046302795,
-0.2556132674217224,
0.07053253799676895,
-0.6526723504066467,
-0.7952577471733093,
-0.9196341633796692,
0.824569821357727,
0.4306955337524414,
0.5362452864646912,
-0.03342792019248009,
0.4859594702720642,
0.26942479610443115,
-0.17131051421165466,
-0.4940679371356964,
-0.325461208820343,
0.19560647010803223,
-0.09437288343906403,
-0.30895093083381653,
-0.4533289968967438,
0.07458431273698807,
0.4075803756713867,
0.4616142511367798,
0.006094870623201132,
0.3268737196922302,
-0.08788160979747772,
0.39784008264541626,
-0.1296636313199997,
0.383029967546463,
-0.28767767548561096,
-0.1202571913599968,
-0.09114248305559158,
0.3491653800010681,
-0.23039427399635315,
-0.48632729053497314,
0.12205953896045685,
-0.033954691141843796,
0.14739990234375,
-0.06745254993438721,
1.4605541229248047,
0.11822766810655594,
-0.4352216422557831,
-0.17576727271080017,
-0.30860161781311035,
0.9341087341308594,
-0.9882076382637024,
0.22536776959896088,
0.1867733597755432,
0.2295154184103012,
0.2687683403491974,
-0.4650838077068329,
-0.4009469449520111,
-0.06267687678337097,
-0.04085526987910271,
0.33012983202934265,
-0.3132439851760864,
-0.1557251662015915,
0.021201958879828453,
0.4821811616420746,
-0.44085586071014404,
0.06596682220697403,
-0.3578050434589386,
-0.1723121702671051,
0.649815559387207,
0.24277569353580475,
0.12177842855453491,
-0.4299413561820984,
-0.22600027918815613,
-0.247999906539917,
-0.08350283652544022,
0.07729527354240417,
0.4464426040649414,
0.42205142974853516,
-0.48644518852233887,
0.6955308318138123,
-0.5301721692085266,
0.219096377491951,
0.08206149935722351,
0.1685165911912918,
0.8015252947807312,
0.09543316811323166,
-0.192413330078125,
-0.02724628895521164,
1.1933691501617432,
0.6004681587219238,
0.6325274109840393,
0.04006704315543175,
-0.4047417938709259,
0.5146491527557373,
0.14306561648845673,
-0.9688115119934082,
-0.418200820684433,
0.4255695641040802,
-0.6450604200363159,
-0.8311574459075928,
0.28023761510849,
-0.86175936460495,
-0.3895193338394165,
-0.019585533067584038,
0.40943393111228943,
-0.39618179202079773,
-0.248736172914505,
0.19960205256938934,
-0.42534399032592773,
0.3903290331363678,
-0.06617455929517746,
-0.5839837193489075,
0.037399161607027054,
0.3466494083404541,
0.8181995749473572,
0.3718637228012085,
-0.3314707577228546,
-0.41773757338523865,
-0.3888879418373108,
-0.26301178336143494,
0.982634425163269,
-0.27076005935668945,
-0.5045276880264282,
0.1407780945301056,
0.24041017889976501,
0.35480377078056335,
-0.10340322554111481,
0.9568350315093994,
-0.615485668182373,
0.7541549801826477,
-0.08685002475976944,
-0.4473428726196289,
-0.37255915999412537,
0.37064501643180847,
-0.5871594548225403,
0.9181477427482605,
0.40265944600105286,
-0.9515741467475891,
0.22107559442520142,
-1.0513571500778198,
-0.7568389773368835,
-0.14521674811840057,
0.4219566583633423,
-0.5145229697227478,
0.21438837051391602,
0.21606764197349548,
0.6429193615913391,
-0.1596313714981079,
0.1811288446187973,
-0.8635442852973938,
-0.09532313793897629,
0.3398823142051697,
-0.136213019490242,
1.1513702869415283,
0.24622057378292084,
-0.1716870367527008,
0.18254630267620087,
-0.5813168287277222,
0.18235370516777039,
0.07106263935565948,
-0.31613704562187195,
-0.2670838534832001,
-0.037693701684474945,
0.5097494721412659,
0.46897852420806885,
0.24378636479377747,
-0.8441471457481384,
0.08268609642982483,
-0.5177810192108154,
0.3579091727733612,
0.7398501038551331,
0.12743747234344482,
0.44515326619148254,
0.030156763270497322,
0.749597430229187,
0.20057259500026703,
0.07780463993549347,
0.09149278700351715,
-0.32917115092277527,
-0.8112825751304626,
-0.007031530607491732,
0.4415726065635681,
0.768601655960083,
-0.5885206460952759,
0.6178480386734009,
-0.28263792395591736,
-0.9709963202476501,
-0.777127742767334,
-0.22139783203601837,
0.02943277359008789,
0.5561805367469788,
0.35453295707702637,
0.013856685720384121,
-0.7074299454689026,
-1.0192922353744507,
-0.30136120319366455,
-0.33148089051246643,
0.048798903822898865,
-0.01100738625973463,
0.6606240272521973,
-0.7000035643577576,
0.5592420101165771,
-0.8210121989250183,
-0.34133344888687134,
-0.10957934707403183,
0.3110482394695282,
0.649552583694458,
0.3326062858104706,
0.5428670644760132,
-0.6570548415184021,
-0.8475717306137085,
-0.05235184729099274,
-0.7718387842178345,
-0.34633857011795044,
0.24425296485424042,
-0.07916386425495148,
0.5593791007995605,
0.15377187728881836,
-0.657559335231781,
-0.009853326715528965,
0.8037325739860535,
-0.8127926588058472,
0.4786582589149475,
0.16859358549118042,
0.05975813418626785,
-1.2451045513153076,
0.0908028706908226,
0.527953028678894,
-0.26741254329681396,
-0.4567641019821167,
0.04578466713428497,
-0.058945924043655396,
-0.16639380156993866,
-0.3803927004337311,
0.7057347297668457,
0.06697594374418259,
0.4014740288257599,
-0.12347572296857834,
-0.37850385904312134,
0.12929485738277435,
0.3361324369907379,
-0.04208361729979515,
0.40834668278694153,
0.7314375638961792,
-0.285067081451416,
0.5526742935180664,
0.36829984188079834,
-0.2707039713859558,
0.5262405872344971,
-0.8323400020599365,
-0.10495730489492416,
-0.0034430173691362143,
0.12223610281944275,
-0.974113404750824,
-0.3426761329174042,
0.5307689309120178,
-0.7724420428276062,
0.1813061386346817,
0.002730112988501787,
-0.6357486844062805,
-0.3534325063228607,
-0.33984503149986267,
-0.16126181185245514,
0.5737841129302979,
-0.26889631152153015,
0.6350045204162598,
0.43616247177124023,
-0.18385064601898193,
-0.4250591993331909,
-0.8963267803192139,
0.21926452219486237,
-0.6066564321517944,
-0.5910018086433411,
0.07835831493139267,
-0.0021281372755765915,
-0.477748841047287,
0.1460253745317459,
0.06873897463083267,
-0.154940664768219,
0.0019307727925479412,
0.03760814666748047,
0.3768880069255829,
-0.10091201961040497,
0.026072612032294273,
0.07970991730690002,
-0.43164271116256714,
0.18056097626686096,
-0.056862473487854004,
0.9441676735877991,
-0.7256206274032593,
0.0993412435054779,
-0.5260345935821533,
0.4195263385772705,
0.7279653549194336,
-0.04263811558485031,
0.7378554940223694,
1.0995193719863892,
-0.2108805775642395,
0.007252550218254328,
-0.19514627754688263,
-0.19017212092876434,
-0.4415804445743561,
0.49475616216659546,
-0.35935962200164795,
-0.722416877746582,
0.6675490736961365,
0.2884514033794403,
-0.3910091519355774,
0.7887004017829895,
0.6767321228981018,
-0.5255326628684998,
1.3796249628067017,
0.5593242049217224,
-0.6811742782592773,
0.30293744802474976,
-0.37553417682647705,
0.4229177236557007,
-0.2006038874387741,
-0.07430928200483322,
-0.5275281071662903,
-0.2552923560142517,
-0.8189194202423096,
0.26822754740715027,
0.31497830152511597,
0.06987593322992325,
-0.5054943561553955,
0.22336891293525696,
-0.26549646258354187,
0.221061110496521,
0.6401177048683167,
0.03808898851275444,
-0.13981366157531738,
0.0640341192483902,
0.11670699715614319,
-0.09761352092027664,
-0.4766671061515808,
-0.7311407327651978,
0.6771056056022644,
0.7066670656204224,
0.8784107565879822,
-0.14993247389793396,
0.8916783332824707,
0.4143384099006653,
0.32085615396499634,
-1.2807393074035645,
0.45731407403945923,
-0.4266674220561981,
-0.7140647172927856,
-0.19193899631500244,
-0.3339458107948303,
-0.5970818996429443,
0.06148471683263779,
-0.13533532619476318,
-0.5914941430091858,
-0.14089001715183258,
-0.15812842547893524,
-0.00927263218909502,
0.11232191324234009,
-0.9167943000793457,
1.0269966125488281,
-0.023811088874936104,
0.03225494176149368,
-0.2427918165922165,
-0.4596187472343445,
-0.0034907273948192596,
0.043708909302949905,
0.32249975204467773,
-0.1843721717596054,
0.04959281161427498,
0.6053436398506165,
0.14036624133586884,
1.0219892263412476,
-0.4118528366088867,
-0.31200501322746277,
0.019462283700704575,
0.09289025515317917,
0.21775954961776733,
0.1487291306257248,
-0.3996739983558655,
0.5602595210075378,
0.18152356147766113,
-0.44253814220428467,
-0.1589123010635376,
0.7313121557235718,
-0.7736788988113403,
-0.2486543506383896,
-0.6971127986907959,
-0.3862590789794922,
-0.14772441983222961,
0.37940630316734314,
0.4169161319732666,
0.37206944823265076,
-0.49410051107406616,
0.162250816822052,
0.1099197193980217,
-0.15010467171669006,
0.565639853477478,
0.41303032636642456,
-0.3795759379863739,
-0.5417947173118591,
0.841197669506073,
-0.03575582429766655,
-0.07134906947612762,
0.1603596806526184,
0.37974804639816284,
-0.5157126188278198,
0.1871352195739746,
-0.2891022264957428,
0.31343933939933777,
-0.8580453991889954,
-0.44856610894203186,
-0.5298314690589905,
-0.28881341218948364,
-0.5102229118347168,
-0.004103890620172024,
-0.14112961292266846,
-0.3468233048915863,
-0.41164445877075195,
-0.29315516352653503,
0.39062803983688354,
0.6005871891975403,
-0.3682805895805359,
0.6995881199836731,
-0.9223613739013672,
0.284396231174469,
-0.1687152236700058,
0.6184854507446289,
-0.22168123722076416,
-0.4320697784423828,
-0.56758713722229,
0.16208600997924805,
-0.4359811246395111,
-0.9822031259536743,
0.8448354601860046,
0.05664914846420288,
0.16914868354797363,
0.6453896760940552,
-0.041347719728946686,
0.31147143244743347,
-0.2937587797641754,
0.8327962756156921,
0.26520559191703796,
-1.1782724857330322,
0.4068203270435333,
-0.6302568912506104,
0.4483085870742798,
0.2685315012931824,
0.42752590775489807,
-0.9881154894828796,
-0.5214554667472839,
-0.9164777994155884,
-1.0001206398010254,
0.9174143075942993,
-0.12237956374883652,
0.5308040976524353,
-0.03907031565904617,
-0.1131332740187645,
0.10634482651948929,
0.22721891105175018,
-1.142214298248291,
-0.4214228689670563,
-0.419921338558197,
-0.4710504412651062,
-0.49813517928123474,
-0.3221167027950287,
-0.19171735644340515,
-0.4346015751361847,
1.1606521606445312,
0.0539211742579937,
0.37062519788742065,
-0.07459991425275803,
0.3149067163467407,
-0.14418163895606995,
0.46947547793388367,
0.3177858591079712,
0.2585415542125702,
-0.4593408703804016,
-0.07843377441167831,
0.24684038758277893,
-0.09467063844203949,
0.10452991724014282,
0.12279646098613739,
-0.3872556686401367,
0.2960381507873535,
0.3298722207546234,
0.9144693613052368,
-0.3392221927642822,
-0.19683794677257538,
0.31062251329421997,
0.01586177758872509,
-0.4066491723060608,
-0.7203209400177002,
-0.063300721347332,
0.365755558013916,
0.3631746172904968,
0.3474659025669098,
0.17224103212356567,
0.08017837256193161,
-0.3736266791820526,
0.1149744763970375,
0.3794730305671692,
-0.8699769377708435,
-0.46677935123443604,
0.3758326470851898,
0.0684322938323021,
-0.4517650008201599,
0.6387514472007751,
-0.3065759539604187,
-1.0363839864730835,
0.5645500421524048,
0.3831261694431305,
1.1547502279281616,
-0.034600093960762024,
0.6410555839538574,
0.3788627088069916,
0.2095743715763092,
-0.004065912216901779,
0.6371496319770813,
0.4641287922859192,
-1.0135889053344727,
-0.45102664828300476,
-0.7088803648948669,
-0.05590834841132164,
0.27456578612327576,
-0.7584930658340454,
0.3378138840198517,
-0.1435374915599823,
-0.40395838022232056,
0.01316644437611103,
0.10758689790964127,
-0.5994374752044678,
0.7451687455177307,
0.2388565093278885,
1.0251652002334595,
-1.2282054424285889,
0.9696711897850037,
0.8984370231628418,
-0.6427094340324402,
-0.7670226693153381,
0.27068427205085754,
-0.1688859909772873,
-0.6319594383239746,
0.5619083642959595,
0.5447186231613159,
-0.12349479645490646,
0.26979243755340576,
-0.7897860407829285,
-0.6721137762069702,
0.5689684152603149,
0.01600240357220173,
-0.11917293071746826,
0.04478461667895317,
-0.12770043313503265,
0.9346067309379578,
-0.415512353181839,
0.14380386471748352,
0.5494498014450073,
0.7202132344245911,
-0.3547399640083313,
-0.5305867791175842,
-0.24875277280807495,
-0.4905063509941101,
-0.37656858563423157,
0.21588994562625885,
-0.675458550453186,
0.8148539662361145,
0.08760484308004379,
-0.10865246504545212,
-0.20752044022083282,
0.4868408441543579,
-0.12578482925891876,
0.23240821063518524,
0.6581596732139587,
0.6720790863037109,
0.48497825860977173,
-0.2909523844718933,
1.1819063425064087,
-0.4324270784854889,
0.8311965465545654,
0.7918592691421509,
-0.07784092426300049,
0.7216936945915222,
0.7090551853179932,
-0.15089797973632812,
0.9864571690559387,
0.7596451640129089,
-0.5111716389656067,
0.7583731412887573,
-0.13083724677562714,
-0.06648365408182144,
-0.292041152715683,
-0.13102474808692932,
-0.2595522403717041,
0.6733493804931641,
0.09701167047023773,
-0.28457748889923096,
-0.37888291478157043,
-0.16184887290000916,
0.22987230122089386,
-0.1319165676832199,
-0.309233158826828,
0.607168972492218,
0.36018112301826477,
-0.5249112248420715,
0.35040783882141113,
0.3662306070327759,
0.7972582578659058,
-0.545716404914856,
0.27755552530288696,
-0.0278044231235981,
0.4683787226676941,
-0.24168343842029572,
-1.2039506435394287,
0.36990782618522644,
-0.052820999175310135,
-0.36536580324172974,
-0.26765093207359314,
0.8500868678092957,
-0.2404477298259735,
-0.9651678204536438,
0.7123226523399353,
0.716841995716095,
0.03617342934012413,
-0.16055123507976532,
-0.9737481474876404,
-0.2192775160074234,
0.24449768662452698,
-0.6429241895675659,
0.17188163101673126,
0.3038964867591858,
0.17654891312122345,
0.7344160676002502,
0.4901537597179413,
0.20113804936408997,
-0.5389324426651001,
0.3620816171169281,
0.850644052028656,
-0.8011479377746582,
-0.786318302154541,
-1.1251728534698486,
0.9174919724464417,
-0.2130041867494583,
-0.3108181357383728,
0.8071627020835876,
0.5287154912948608,
0.8730534911155701,
-0.3699274957180023,
1.0784860849380493,
-0.306855171918869,
0.7488643527030945,
-0.1317986100912094,
0.8171830773353577,
-0.632500171661377,
-0.26922816038131714,
-0.33597639203071594,
-0.8045880198478699,
-0.24743112921714783,
0.7974433898925781,
-0.4706112742424011,
-0.03648573160171509,
0.581473171710968,
0.7181777358055115,
-0.19023285806179047,
-0.09314719587564468,
-0.037619512528181076,
0.38176631927490234,
0.14307475090026855,
0.08134584873914719,
0.7014748454093933,
-0.46898889541625977,
0.4719495177268982,
-0.49523988366127014,
-0.05794566124677658,
0.10978561639785767,
-0.9490833282470703,
-0.8293144702911377,
-0.4367367625236511,
-0.23193174600601196,
-1.0153180360794067,
-0.4251255393028259,
0.7135056853294373,
0.4208900034427643,
-1.1115074157714844,
-0.5136969685554504,
0.12023601680994034,
-0.15322954952716827,
0.06925980001688004,
-0.42222410440444946,
0.4882301688194275,
-0.5011971592903137,
-0.7833052277565002,
-0.020625948905944824,
-0.27687299251556396,
0.1426241099834442,
-0.11872013658285141,
-0.03816995024681091,
-0.14685088396072388,
0.0016287987818941474,
0.5865084528923035,
-0.12405508756637573,
-0.6120458245277405,
-0.47123271226882935,
0.1645447462797165,
-0.333772748708725,
0.19945377111434937,
0.20550572872161865,
-0.4186897277832031,
0.014466045424342155,
0.542534351348877,
0.18109947443008423,
0.30611151456832886,
0.13919153809547424,
0.6757277846336365,
-0.5775502324104309,
0.15955892205238342,
0.2810332775115967,
0.5168285965919495,
0.5372250080108643,
-0.3647783100605011,
0.39032843708992004,
0.0521744005382061,
-0.5801471471786499,
-0.6434867978096008,
0.12018518149852753,
-0.9153326749801636,
-0.38454538583755493,
1.2341654300689697,
0.011279522441327572,
-0.011276877485215664,
0.2655390202999115,
-0.42769697308540344,
0.4699268937110901,
-0.8236464858055115,
0.985130250453949,
1.1607084274291992,
0.04103273153305054,
-0.03147676959633827,
-0.19062137603759766,
0.23318618535995483,
0.417472243309021,
-0.5155720710754395,
-0.18144163489341736,
0.5492444038391113,
0.45599645376205444,
0.12073906511068344,
0.5053034424781799,
0.058548636734485626,
-0.0022008190862834454,
-0.0029411178547888994,
0.3679008483886719,
0.20021860301494598,
-0.02406269498169422,
-0.7088491320610046,
0.2411741316318512,
-0.24952474236488342,
-0.33042797446250916
] |
Salesforce/codet5-small | Salesforce | "2021-11-23T09:45:34Z" | 10,922 | 41 | transformers | [
"transformers",
"pytorch",
"t5",
"text2text-generation",
"codet5",
"dataset:code_search_net",
"arxiv:2109.00859",
"arxiv:1909.09436",
"license:apache-2.0",
"autotrain_compatible",
"has_space",
"text-generation-inference",
"region:us"
] | text2text-generation | "2022-03-02T23:29:04Z" | ---
license: apache-2.0
tags:
- codet5
datasets:
- code_search_net
inference: false
---
# CodeT5 (small-sized model)
Pre-trained CodeT5 model. It was introduced in the paper [CodeT5: Identifier-aware Unified Pre-trained Encoder-Decoder Models
for Code Understanding and Generation](https://arxiv.org/abs/2109.00859) by Yue Wang, Weishi Wang, Shafiq Joty, Steven C.H. Hoi and first released in [this repository](https://github.com/salesforce/CodeT5).
Disclaimer: The team releasing CodeT5 did not write a model card for this model so this model card has been written by the Hugging Face team (more specifically, [nielsr](https://huggingface.co/nielsr)).
## Model description
From the abstract:
"We present CodeT5, a unified pre-trained encoder-decoder Transformer model that better leverages the code semantics conveyed from the developer-assigned identifiers. Our model employs a unified framework to seamlessly support both code understanding and generation tasks and allows for multi-task learning. Besides, we propose a novel identifier-aware pre-training task that enables the model to distinguish which code tokens are identifiers and to recover them when they are masked. Furthermore, we propose to exploit the user-written code comments with a bimodal dual generation task for better NL-PL alignment. Comprehensive experiments show that CodeT5 significantly outperforms prior methods on understanding tasks such as code defect detection and clone detection, and generation tasks across various directions including PL-NL, NL-PL, and PL-PL. Further analysis reveals that our model can better capture semantic information from code."
## Intended uses & limitations
This repository contains the pre-trained model only, so you can use this model for masked span prediction, as shown in the code example below. However, the main use of this model is to fine-tune it for a downstream task of interest, such as:
* code summarization
* code generation
* code translation
* code refinement
* code defect detection
* code clone detection.
See the [model hub](https://huggingface.co/models?search=salesforce/codet) to look for fine-tuned versions on a task that interests you.
### How to use
Here is how to use this model:
```python
from transformers import RobertaTokenizer, T5ForConditionalGeneration
tokenizer = RobertaTokenizer.from_pretrained('Salesforce/codet5-small')
model = T5ForConditionalGeneration.from_pretrained('Salesforce/codet5-small')
text = "def greet(user): print(f'hello <extra_id_0>!')"
input_ids = tokenizer(text, return_tensors="pt").input_ids
# simply generate a single sequence
generated_ids = model.generate(input_ids, max_length=10)
print(tokenizer.decode(generated_ids[0], skip_special_tokens=True))
# this prints "user: {user.name}"
```
## Training data
The CodeT5 model was pretrained on CodeSearchNet [Husain et al., 2019](https://arxiv.org/abs/1909.09436). Additionally, the authors collected two datasets of C/CSharp from [BigQuery1](https://console.cloud.google.com/marketplace/details/github/github-repos) to ensure that all downstream tasks have overlapped programming languages with the pre-training data. In total, around 8.35 million instances are used for pretraining.
## Training procedure
### Preprocessing
This model uses a code-specific BPE (Byte-Pair Encoding) tokenizer. One can prepare text (or code) for the model using RobertaTokenizer, with the files from this repository.
## Evaluation results
For evaluation results on several downstream benchmarks, we refer to the paper.
### BibTeX entry and citation info
```bibtex
@misc{wang2021codet5,
title={CodeT5: Identifier-aware Unified Pre-trained Encoder-Decoder Models for Code Understanding and Generation},
author={Yue Wang and Weishi Wang and Shafiq Joty and Steven C. H. Hoi},
year={2021},
eprint={2109.00859},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
``` | [
-0.3680388331413269,
-0.2720685601234436,
0.04301483929157257,
0.228474959731102,
-0.23721738159656525,
0.04431081563234329,
-0.30439722537994385,
-0.4948378801345825,
-0.10520782321691513,
0.3009057641029358,
-0.5380668044090271,
-0.5142905712127686,
-0.5308743715286255,
0.1961205154657364,
-0.27312004566192627,
1.2507832050323486,
0.07592613250017166,
-0.022803787142038345,
-0.177913099527359,
-0.011768503114581108,
-0.47312667965888977,
-0.7870948314666748,
-0.2322772890329361,
-0.2260124683380127,
0.23195238411426544,
0.16086578369140625,
0.34493473172187805,
0.5321304798126221,
0.5972128510475159,
0.27126702666282654,
0.010528793558478355,
-0.0334281325340271,
-0.40644019842147827,
-0.4058617651462555,
0.1812443882226944,
-0.48048022389411926,
-0.6440287232398987,
-0.02816602773964405,
0.27506396174430847,
0.563463568687439,
0.06527391076087952,
0.5175741910934448,
0.010251683183014393,
0.41405168175697327,
-0.4454449415206909,
0.1822599321603775,
-0.6447853446006775,
0.03671924024820328,
-0.0987062156200409,
0.009357873350381851,
-0.49826714396476746,
-0.22945964336395264,
0.023794325068593025,
-0.389266699552536,
0.4973575174808502,
-0.191946342587471,
1.1432946920394897,
0.34087640047073364,
-0.2845323085784912,
-0.04374212026596069,
-0.513475239276886,
0.715331494808197,
-0.8572617173194885,
0.3605612814426422,
0.1370534747838974,
0.03732818737626076,
0.12666720151901245,
-1.1348836421966553,
-0.5653799176216125,
-0.16477736830711365,
-0.2534109652042389,
0.06775277107954025,
-0.2298096865415573,
0.23120556771755219,
0.590768575668335,
0.31111016869544983,
-0.6768755912780762,
-0.05325856804847717,
-0.6905213594436646,
-0.27899524569511414,
0.5919681191444397,
-0.11164038628339767,
0.2607993185520172,
-0.1747564822435379,
-0.518302857875824,
0.017172561958432198,
-0.6155583262443542,
0.13433296978473663,
0.23692543804645538,
0.11189532279968262,
-0.3279177248477936,
0.13653460144996643,
-0.04712644964456558,
0.6914359331130981,
0.24089749157428741,
-0.026237286627292633,
0.6258611679077148,
-0.547815203666687,
-0.3492657244205475,
-0.10947630554437637,
0.834711492061615,
0.0011491428595036268,
0.31499648094177246,
-0.2556232810020447,
-0.2574536204338074,
0.2364339381456375,
0.3928471505641937,
-1.113039255142212,
-0.4224289655685425,
0.27403753995895386,
-0.6123148202896118,
-0.4438996911048889,
0.36394524574279785,
-0.4645388126373291,
-0.03365442529320717,
-0.24045167863368988,
0.3406706154346466,
-0.40047094225883484,
-0.28753817081451416,
0.08547139912843704,
-0.08250744640827179,
0.2255205512046814,
-0.03555065020918846,
-0.8207061886787415,
0.0006115317810326815,
0.3303120732307434,
0.5245715975761414,
-0.07982388883829117,
-0.5703713893890381,
-0.3506231904029846,
-0.12010755389928818,
-0.17399901151657104,
0.42757654190063477,
-0.32162877917289734,
-0.17813906073570251,
-0.1927468180656433,
0.15818221867084503,
-0.03778523579239845,
-0.5346478819847107,
0.2779541313648224,
-0.5588302612304688,
0.12138671427965164,
-0.03788848593831062,
-0.3332226872444153,
-0.1382846236228943,
0.09616053104400635,
-0.5362870097160339,
1.0309375524520874,
0.16254915297031403,
-0.7958534359931946,
0.5096644163131714,
-0.8430421352386475,
-0.2360086292028427,
0.047022897750139236,
-0.12824808061122894,
-0.6743942499160767,
0.004932024050503969,
0.27963340282440186,
0.536729097366333,
-0.07814224064350128,
0.45412299036979675,
-0.22375217080116272,
-0.4842188358306885,
0.14161987602710724,
-0.1594921201467514,
0.7905610203742981,
0.4367557168006897,
-0.5445425510406494,
0.35420480370521545,
-0.7347609996795654,
0.2088528722524643,
0.17602065205574036,
-0.29370301961898804,
0.08727061003446579,
-0.2633615732192993,
0.07249404489994049,
0.39685890078544617,
0.3578304052352905,
-0.3178294003009796,
0.32041409611701965,
-0.2178015410900116,
0.6450743079185486,
0.5764200687408447,
-0.16300839185714722,
0.36399200558662415,
-0.16433203220367432,
0.6915140151977539,
0.3932848870754242,
0.17734593152999878,
-0.5169617533683777,
-0.20956170558929443,
-0.6250635981559753,
-0.29018861055374146,
0.6646332144737244,
0.31952419877052307,
-0.6228120923042297,
0.539577066898346,
-0.5284578204154968,
-0.49859732389450073,
-0.47661012411117554,
0.1292237490415573,
0.7495228052139282,
0.18399429321289062,
0.4516509175300598,
-0.4702354073524475,
-0.9774811267852783,
-0.5688661336898804,
-0.2879456877708435,
0.058458682149648666,
0.02845524251461029,
0.059246376156806946,
0.7649089097976685,
-0.49611082673072815,
0.9899083971977234,
-0.4598686397075653,
-0.08916160464286804,
-0.44243353605270386,
0.23423713445663452,
0.1416487842798233,
0.8302846550941467,
0.5880079865455627,
-0.8227728605270386,
-0.37965020537376404,
-0.21261051297187805,
-0.6891348958015442,
-0.013054832816123962,
-0.12720896303653717,
0.004515604116022587,
0.34112218022346497,
0.5933742523193359,
-0.36101770401000977,
0.4794825613498688,
0.5907381176948547,
-0.29469794034957886,
0.45675337314605713,
-0.15160828828811646,
-0.08477405458688736,
-1.2928417921066284,
0.3657129108905792,
-0.07737188786268234,
-0.14549510180950165,
-0.5785893201828003,
0.10708905756473541,
0.2683989107608795,
-0.33380651473999023,
-0.3567386865615845,
0.24933472275733948,
-0.781302273273468,
-0.23484253883361816,
0.009714717976748943,
-0.13921993970870972,
0.008491745218634605,
0.7775707244873047,
0.12411528825759888,
0.9234750866889954,
0.264370322227478,
-0.602420449256897,
0.032493747770786285,
0.21225886046886444,
-0.2596043050289154,
0.04843856766819954,
-0.7986093759536743,
0.4483664631843567,
0.09840285778045654,
0.28136730194091797,
-0.7303839325904846,
-0.10977073013782501,
-0.05878078192472458,
-0.7204896211624146,
0.28684452176094055,
-0.4227342903614044,
-0.42407160997390747,
-0.6419453620910645,
-0.13191692531108856,
0.5500776171684265,
0.7046422362327576,
-0.6058230400085449,
0.3132936954498291,
0.18665747344493866,
0.23454435169696808,
-0.6191714406013489,
-0.7698854804039001,
-0.14607550203800201,
-0.2313559204339981,
-0.7210724949836731,
0.5504618287086487,
-0.21725896000862122,
0.24893470108509064,
-0.07122509181499481,
-0.21170198917388916,
-0.16034483909606934,
0.04170535132288933,
0.35427388548851013,
0.40024662017822266,
-0.3215791583061218,
0.036798957735300064,
-0.37933701276779175,
-0.19776830077171326,
0.013429587706923485,
-0.5109190344810486,
0.6124388575553894,
-0.41551458835601807,
-0.13109542429447174,
-0.30103617906570435,
0.07858861237764359,
0.4528857469558716,
-0.6862671375274658,
0.6422691941261292,
0.8983525633811951,
-0.295322448015213,
-0.18413609266281128,
-0.4288631081581116,
-0.21327996253967285,
-0.4575878977775574,
0.5054353475570679,
-0.5828366279602051,
-0.7395681142807007,
0.5401767492294312,
-0.05274840444326401,
-0.09570734202861786,
0.35080984234809875,
0.47433558106422424,
0.26380258798599243,
1.0457143783569336,
0.8396205902099609,
-0.03303617984056473,
0.6676017045974731,
-0.5902309417724609,
0.41201385855674744,
-0.6235519647598267,
-0.15051834285259247,
-0.47828909754753113,
-0.1173996850848198,
-0.5583119988441467,
-0.2871508300304413,
0.20721785724163055,
0.2966715395450592,
-0.45653027296066284,
0.5972811579704285,
-0.8206924200057983,
0.38583117723464966,
0.5821640491485596,
0.08084383606910706,
0.07062875479459763,
-0.11329489201307297,
-0.02723991498351097,
0.00464630639180541,
-0.6814660429954529,
-0.3575660288333893,
1.1570619344711304,
0.34233975410461426,
0.6579474210739136,
-0.053999144583940506,
0.8468419909477234,
0.13032859563827515,
0.09631701558828354,
-0.4264729619026184,
0.3140137195587158,
-0.07132332026958466,
-0.509137749671936,
0.0033452671486884356,
-0.45748481154441833,
-0.9183986783027649,
0.08237756043672562,
-0.09656547755002975,
-0.6447349786758423,
0.16974347829818726,
0.2680078148841858,
-0.48590660095214844,
0.18375036120414734,
-1.124967098236084,
1.3782988786697388,
-0.19764871895313263,
-0.13476251065731049,
0.14581170678138733,
-0.8140061497688293,
0.41279137134552,
-0.0775369256734848,
0.05564282089471817,
0.26696500182151794,
0.19382473826408386,
0.8720507621765137,
-0.6199631094932556,
0.8418694138526917,
-0.2997574806213379,
0.13501620292663574,
0.21459002792835236,
-0.22101107239723206,
0.4031144976615906,
-0.1385485827922821,
0.16313901543617249,
0.39773795008659363,
0.2585280239582062,
-0.5828748941421509,
-0.4252622127532959,
0.3912924528121948,
-0.8765634298324585,
-0.34626179933547974,
-0.382371723651886,
-0.3355565071105957,
-0.04660838842391968,
0.41261759400367737,
0.6385102868080139,
0.4146694540977478,
0.014580810442566872,
0.2914390563964844,
0.5780047178268433,
-0.26176032423973083,
0.5861364006996155,
0.24250243604183197,
-0.1510634422302246,
-0.27750733494758606,
0.8097410798072815,
0.0015947830397635698,
0.2799760103225708,
0.17314721643924713,
-0.10347537696361542,
-0.11553928256034851,
-0.5331823825836182,
-0.33484867215156555,
0.15917351841926575,
-0.5508280992507935,
-0.43951642513275146,
-0.5834835171699524,
-0.35677430033683777,
-0.6122539639472961,
-0.12178594619035721,
-0.3802255690097809,
0.07753336429595947,
-0.1412436068058014,
-0.052127204835414886,
0.28088492155075073,
0.6489351987838745,
0.09280166029930115,
0.3113895058631897,
-0.9307384490966797,
0.2772711515426636,
0.11726295948028564,
0.4046999514102936,
-0.09606658667325974,
-0.5666553974151611,
-0.4612518548965454,
0.12965844571590424,
-0.2741364538669586,
-0.6686992049217224,
0.437032014131546,
-0.009210516698658466,
0.4193185567855835,
0.2850034534931183,
0.06560804694890976,
0.7580379247665405,
-0.2019384652376175,
0.9279211163520813,
0.23993805050849915,
-1.2078851461410522,
0.5871291756629944,
-0.18441027402877808,
0.3872888386249542,
0.4401411712169647,
0.21500743925571442,
-0.3699609339237213,
0.03444746881723404,
-0.8395560383796692,
-0.7430062294006348,
1.0123814344406128,
0.1022009551525116,
0.09562571346759796,
0.19660408794879913,
0.13328061997890472,
-0.028962599113583565,
0.34002357721328735,
-1.0867196321487427,
-0.1294708549976349,
-0.4588432013988495,
-0.3370487093925476,
0.02932725101709366,
-0.23320546746253967,
0.14993739128112793,
-0.39887869358062744,
0.5174160003662109,
-0.22734180092811584,
0.7366061806678772,
0.09180933237075806,
-0.4574073255062103,
0.15512025356292725,
0.09500142931938171,
0.6647130250930786,
0.6787696480751038,
-0.22202041745185852,
-0.042580537497997284,
0.135930597782135,
-0.6959308385848999,
-0.13827675580978394,
0.22969554364681244,
0.06222431734204292,
-0.019683483988046646,
0.37510403990745544,
0.9952881932258606,
0.16547319293022156,
-0.594413697719574,
0.8615784645080566,
-0.04581877589225769,
-0.3067508041858673,
-0.4933573305606842,
-0.06426569074392319,
-0.001856345683336258,
0.11879564076662064,
0.21193374693393707,
0.3140949606895447,
-0.1553761214017868,
-0.4879172742366791,
0.24860884249210358,
0.1542649269104004,
-0.34207823872566223,
-0.47604063153266907,
0.827905535697937,
0.2548862099647522,
-0.10025236755609512,
0.5643879771232605,
-0.30434343218803406,
-0.7412651181221008,
0.8418542742729187,
0.5965781211853027,
0.8788601756095886,
0.03587373346090317,
-0.062239788472652435,
0.4522765576839447,
0.20398099720478058,
0.04727206379175186,
0.2763543128967285,
-0.1791563481092453,
-0.7366016507148743,
-0.3828386962413788,
-0.5452611446380615,
0.11674535274505615,
0.1371951699256897,
-0.6511162519454956,
0.42506298422813416,
-0.3538857400417328,
-0.07817766070365906,
0.011277822777628899,
0.16452693939208984,
-0.953643798828125,
0.29663437604904175,
0.14119543135166168,
0.8073618412017822,
-0.643028199672699,
1.1507155895233154,
0.7106549143791199,
-1.0374990701675415,
-1.193816900253296,
0.14017651975154877,
-0.31487777829170227,
-0.7643546462059021,
0.80586177110672,
0.3480885624885559,
0.14177660644054413,
0.22102417051792145,
-0.7253274917602539,
-0.7198712825775146,
1.216230034828186,
0.3221485912799835,
-0.2781658470630646,
-0.3604346811771393,
-0.0450902134180069,
0.47655147314071655,
-0.45926791429519653,
0.45542436838150024,
0.486917644739151,
0.21411581337451935,
-0.06922610849142075,
-0.9326440095901489,
0.16414140164852142,
-0.4872938096523285,
0.3086665868759155,
0.14332248270511627,
-0.5894069671630859,
1.033614993095398,
-0.4711265563964844,
-0.08253686130046844,
-0.034132830798625946,
0.5669413208961487,
0.18216906487941742,
0.1262025088071823,
0.352711945772171,
0.4300791919231415,
0.6398230195045471,
-0.16136907041072845,
0.954403281211853,
-0.5744190812110901,
0.5216540694236755,
0.8129726052284241,
0.12108349055051804,
0.5957989692687988,
0.29224246740341187,
-0.26485002040863037,
0.5422890782356262,
0.6563720703125,
-0.3344361484050751,
0.3945859670639038,
0.18335986137390137,
0.07011032849550247,
-0.04423188418149948,
0.2365582436323166,
-0.7103760838508606,
0.46872827410697937,
0.050725121051073074,
-0.5551643371582031,
0.1131802424788475,
-0.023514345288276672,
0.23638252913951874,
-0.13814808428287506,
-0.1437448412179947,
0.7548645734786987,
-0.009425513446331024,
-0.7398538589477539,
0.957008421421051,
0.15273769199848175,
1.0842771530151367,
-0.694392740726471,
0.033121924847364426,
-0.2922546863555908,
0.3612765669822693,
-0.4671085476875305,
-0.21766139566898346,
0.19982880353927612,
0.23404303193092346,
-0.24276959896087646,
-0.3220582604408264,
0.6447473168373108,
-0.42651140689849854,
-0.22541455924510956,
0.23333242535591125,
0.2824035584926605,
0.11221731454133987,
-0.08698303997516632,
-0.6548263430595398,
0.1350097805261612,
0.2380748689174652,
-0.20960910618305206,
0.3501368761062622,
0.41254013776779175,
0.009373599663376808,
0.3496808409690857,
0.700209379196167,
-0.13721352815628052,
0.2664768695831299,
0.001150936004705727,
0.7814766764640808,
-0.7258761525154114,
-0.6099688410758972,
-0.6801605820655823,
0.6881786584854126,
-0.07977283746004105,
-0.5539532899856567,
0.6302247047424316,
0.6279887557029724,
1.2095521688461304,
-0.4299808442592621,
0.922819197177887,
-0.24307382106781006,
0.3006609082221985,
-0.46214520931243896,
0.6940181851387024,
-0.4699022173881531,
0.32037580013275146,
-0.4073895215988159,
-0.7423162460327148,
-0.214758962392807,
0.5190627574920654,
-0.38632410764694214,
0.5132209658622742,
0.7734691500663757,
0.8555779457092285,
-0.16792088747024536,
-0.11659868061542511,
0.3114732503890991,
0.15202993154525757,
0.2441186159849167,
0.7477117776870728,
0.45792093873023987,
-0.7192922830581665,
0.8019391894340515,
-0.2759965658187866,
0.03884199634194374,
-0.23493485152721405,
-0.7411370277404785,
-1.0276039838790894,
-0.6583743691444397,
-0.2521435022354126,
-0.5287626385688782,
0.011269506067037582,
1.059762954711914,
1.031502604484558,
-0.7731085419654846,
-0.11146470904350281,
-0.3148309588432312,
-0.14318108558654785,
-0.2622692584991455,
-0.21219849586486816,
0.353564977645874,
-0.5870529413223267,
-0.6452104449272156,
-0.02797737717628479,
-0.18768897652626038,
0.05723542347550392,
-0.07698459178209305,
-0.2252778708934784,
0.01894376054406166,
-0.2066110074520111,
0.44629162549972534,
0.31829267740249634,
-0.6551592946052551,
-0.22269420325756073,
0.0936918705701828,
-0.2830035388469696,
0.22715584933757782,
0.7808828949928284,
-0.8520474433898926,
0.27875417470932007,
0.3510834276676178,
0.7538840174674988,
0.6746484637260437,
0.06944666802883148,
0.5745304226875305,
-0.90714031457901,
0.3445247709751129,
0.08560365438461304,
0.34138017892837524,
0.1816599816083908,
-0.3431476354598999,
0.6477771401405334,
0.4187032878398895,
-0.4965464174747467,
-0.9091620445251465,
0.11313674598932266,
-0.860734760761261,
-0.2410304695367813,
1.0172357559204102,
-0.33011236786842346,
-0.13940459489822388,
0.10604298859834671,
-0.15685270726680756,
0.3595142662525177,
-0.20846877992153168,
0.4901578426361084,
0.4206421971321106,
0.1481758952140808,
-0.2678835093975067,
-0.4319699704647064,
0.702071487903595,
0.31131860613822937,
-0.8327297568321228,
-0.136124387383461,
0.23322147130966187,
0.40608635544776917,
0.12558719515800476,
0.7102271318435669,
-0.1620299071073532,
0.35631272196769714,
0.18466705083847046,
0.6453672051429749,
-0.32492369413375854,
-0.16891035437583923,
-0.4348682165145874,
0.08266552537679672,
0.07963144034147263,
-0.4307103455066681
] |
haoranxu/ALMA-13B-Pretrain | haoranxu | "2023-10-27T05:10:01Z" | 10,898 | 5 | transformers | [
"transformers",
"pytorch",
"llama",
"text-generation",
"arxiv:2309.11674",
"license:mit",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | text-generation | "2023-09-17T17:43:22Z" | ---
license: mit
---
**ALMA** (**A**dvanced **L**anguage **M**odel-based tr**A**nslator) is an LLM-based translation model, which adopts a new translation model paradigm: it begins with fine-tuning on monolingual data and is further optimized using high-quality parallel data. This two-step fine-tuning process ensures strong translation performance.
Please find more details in our [paper](https://arxiv.org/abs/2309.11674).
```
@misc{xu2023paradigm,
title={A Paradigm Shift in Machine Translation: Boosting Translation Performance of Large Language Models},
author={Haoran Xu and Young Jin Kim and Amr Sharaf and Hany Hassan Awadalla},
year={2023},
eprint={2309.11674},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
We release four translation models presented in the paper:
- **ALMA-7B**: Full-weight Fine-tune LLaMA-2-7B on 20B monolingual tokens and then **Full-weight** fine-tune on human-written parallel data
- **ALMA-7B-LoRA**: Full-weight Fine-tune LLaMA-2-7B on 20B monolingual tokens and then **LoRA** fine-tune on human-written parallel data
- **ALMA-13B**: Full-weight Fine-tune LLaMA-2-7B on 12B monolingual tokens and then **Full-weight** fine-tune on human-written parallel data
- **ALMA-13B-LoRA** (Our best system): Full-weight Fine-tune LLaMA-2-7B on 12B monolingual tokens and then **LoRA** fine-tune on human-written parallel data
Model checkpoints are released at huggingface:
| Models | Base Model Link | LoRA Link |
|:-------------:|:---------------:|:---------:|
| ALMA-7B | [haoranxu/ALMA-7B](https://huggingface.co/haoranxu/ALMA-7B) | - |
| ALMA-7B-LoRA | [haoranxu/ALMA-7B-Pretrain](https://huggingface.co/haoranxu/ALMA-7B-Pretrain) | [haoranxu/ALMA-7B-Pretrain-LoRA](https://huggingface.co/haoranxu/ALMA-7B-Pretrain-LoRA) |
| ALMA-13B | [haoranxu/ALMA-13B](https://huggingface.co/haoranxu/ALMA-13B) | - |
| ALMA-13B-LoRA | [haoranxu/ALMA-13B-Pretrain](https://huggingface.co/haoranxu/ALMA-13B-Pretrain) | [haoranxu/ALMA-13B-Pretrain-LoRA](https://huggingface.co/haoranxu/ALMA-13B-Pretrain-LoRA) |
**Note that `ALMA-7B-Pretrain` and `ALMA-13B-Pretrain` are NOT translation models. They only experience stage 1 monolingual fine-tuning (20B tokens for the 7B model and 12B tokens for the 13B model), and should be utilized in conjunction with their LoRA models for translation purposes.**
A quick start to use our best system (ALMA-13B-LoRA) for translation. An example of translating "我爱机器翻译。" into English:
```
import torch
from peft import PeftModel
from transformers import AutoModelForCausalLM
from transformers import LlamaTokenizer
# Load base model and LoRA weights
model = AutoModelForCausalLM.from_pretrained("haoranxu/ALMA-13B-Pretrain", torch_dtype=torch.float16, device_map="auto")
model = PeftModel.from_pretrained(model, "haoranxu/ALMA-13B-Pretrain-LoRA")
tokenizer = LlamaTokenizer.from_pretrained("haoranxu/ALMA-13B-Pretrain", padding_side='left')
# Add the source setence into the prompt template
prompt="Translate this from Chinese to English:\nChinese: 我爱机器翻译。\nEnglish:"
input_ids = tokenizer(prompt, return_tensors="pt", padding=True, max_length=40, truncation=True).input_ids.cuda()
# Translation
with torch.no_grad():
generated_ids = model.generate(input_ids=input_ids, num_beams=5, max_new_tokens=20, do_sample=True, temperature=0.6, top_p=0.9)
outputs = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
print(outputs)
```
Please find more details in our [GitHub repository](https://github.com/fe1ixxu/ALMA) | [
-0.28127366304397583,
-0.4975488781929016,
0.18287068605422974,
0.3992368280887604,
-0.5117313861846924,
-0.057500749826431274,
-0.11191388219594955,
-0.5243532657623291,
0.30729618668556213,
0.4640847146511078,
-0.6197094917297363,
-0.7982717156410217,
-0.7007331252098083,
0.15783323347568512,
-0.508901834487915,
1.1864091157913208,
-0.38170892000198364,
0.2410656213760376,
0.11283481866121292,
-0.21040090918540955,
-0.4011223316192627,
-0.2255684733390808,
-0.46937671303749084,
-0.500088632106781,
0.5066809058189392,
0.3259649872779846,
0.5998228788375854,
1.0223509073257446,
0.8345577716827393,
0.318306028842926,
-0.24390669167041779,
0.12210077047348022,
-0.3525402545928955,
-0.1458619087934494,
0.2288684844970703,
-0.6070076823234558,
-0.9766347408294678,
-0.06728962808847427,
0.8409205079078674,
0.48920172452926636,
0.013681501150131226,
0.48001644015312195,
-0.03494780510663986,
0.5320653915405273,
-0.31151282787323,
0.1377331018447876,
-0.5115247368812561,
-0.03189922496676445,
-0.47893619537353516,
0.19031143188476562,
-0.2465430200099945,
-0.2803551256656647,
-0.1398453265428543,
-0.6530631184577942,
0.026259662583470345,
0.3310930132865906,
1.3257293701171875,
0.3880050480365753,
-0.4038878083229065,
-0.08715648949146271,
-0.7002664804458618,
1.0323302745819092,
-0.9692059755325317,
0.28472644090652466,
0.15970230102539062,
0.3335360288619995,
0.02203480899333954,
-0.8446953892707825,
-0.4551438093185425,
-0.16382020711898804,
-0.12697945535182953,
0.20031388103961945,
-0.15235361456871033,
-0.1889343410730362,
0.21496771275997162,
0.5005136132240295,
-0.41065168380737305,
0.1035441979765892,
-0.5652291774749756,
-0.12479475885629654,
0.4698045253753662,
0.3656560480594635,
0.19320981204509735,
-0.2660875916481018,
-0.5816346406936646,
-0.25390177965164185,
-0.7538880705833435,
0.07092006504535675,
0.1587071269750595,
0.3056096136569977,
-0.4608205556869507,
0.6027864217758179,
-0.15946358442306519,
0.6410021185874939,
0.0754905641078949,
-0.38259127736091614,
0.5255773067474365,
-0.548452615737915,
-0.3792225420475006,
-0.01597362570464611,
1.0303553342819214,
0.24322949349880219,
-0.19504863023757935,
-0.021485937759280205,
-0.32325872778892517,
0.005143885035067797,
-0.258963942527771,
-0.8932106494903564,
0.25244420766830444,
0.13290190696716309,
-0.5214512944221497,
-0.35772085189819336,
0.030109982937574387,
-0.5936118960380554,
0.01970994845032692,
-0.27807316184043884,
0.5142930150032043,
-0.5722394585609436,
0.009594634175300598,
0.25211501121520996,
0.1987643986940384,
0.37409090995788574,
0.2983339726924896,
-0.6880093216896057,
0.1985274702310562,
0.5499709844589233,
0.7647916674613953,
-0.15943309664726257,
-0.7634630799293518,
-0.4078432023525238,
0.0020901828538626432,
-0.22551953792572021,
0.5168019533157349,
-0.09586787968873978,
-0.17082956433296204,
-0.22644531726837158,
0.04826192185282707,
-0.15860283374786377,
-0.4757685661315918,
0.7696473598480225,
-0.3407311737537384,
0.19490818679332733,
-0.5327895283699036,
-0.35960960388183594,
-0.10294289886951447,
0.15363548696041107,
-0.43690574169158936,
1.138928771018982,
0.149266317486763,
-0.8639616370201111,
0.2874717116355896,
-0.5607200860977173,
-0.26621294021606445,
-0.2567785978317261,
0.23126037418842316,
-0.5473601818084717,
-0.1763596087694168,
0.27114084362983704,
0.3689618408679962,
-0.746617317199707,
0.14028611779212952,
0.014047901146113873,
-0.44882071018218994,
0.07992103695869446,
-0.13985952734947205,
0.8103146553039551,
0.44136300683021545,
-0.43396541476249695,
0.3711816370487213,
-0.790753960609436,
-0.24873441457748413,
0.23846349120140076,
-0.38782426714897156,
-0.059294722974300385,
-0.3824895918369293,
-0.03793757036328316,
0.18400317430496216,
0.6167040467262268,
-0.6183645129203796,
0.35883215069770813,
-0.5174652338027954,
0.3342205882072449,
0.7228263020515442,
-0.4340609312057495,
0.4757220447063446,
-0.47857749462127686,
0.5432198643684387,
0.2651843726634979,
0.341113418340683,
-0.2520633339881897,
-0.5149711966514587,
-1.3197659254074097,
-0.2542493939399719,
0.3452419638633728,
0.705778181552887,
-0.7975249290466309,
0.3612256944179535,
-0.26968032121658325,
-0.7259063124656677,
-0.9016728401184082,
0.1262030452489853,
0.6669322848320007,
0.6264352202415466,
0.5791813731193542,
-0.025666991248726845,
-0.5717914700508118,
-0.891252875328064,
-0.11610542982816696,
-0.1319558322429657,
0.115373395383358,
0.04614460468292236,
0.7613882422447205,
-0.28511613607406616,
0.5327239632606506,
-0.28815436363220215,
-0.24975505471229553,
-0.3048020899295807,
0.14698758721351624,
0.6066210865974426,
0.5470255017280579,
0.6139217615127563,
-0.46743178367614746,
-0.6640332937240601,
0.2724551260471344,
-0.9633272290229797,
-0.15673644840717316,
-0.04083743318915367,
-0.39559945464134216,
0.21290063858032227,
0.3429468274116516,
-0.7025372385978699,
0.4102332592010498,
0.512717604637146,
-0.5797123312950134,
0.6300603747367859,
-0.10029773414134979,
0.20552636682987213,
-1.4000591039657593,
0.17816805839538574,
-0.29343464970588684,
-0.24455289542675018,
-0.6025160551071167,
0.18319542706012726,
0.12667445838451385,
0.19563302397727966,
-0.8295581340789795,
0.7866666913032532,
-0.4200158417224884,
-0.07289938628673553,
-0.23949480056762695,
0.029531067237257957,
0.0673782154917717,
0.4888589084148407,
-0.3201732933521271,
0.7574900388717651,
0.637086808681488,
-0.5731847286224365,
0.5164414644241333,
0.5984811186790466,
-0.3787856996059418,
0.2911941409111023,
-0.7751461267471313,
0.17096097767353058,
-0.08359315991401672,
0.13811682164669037,
-0.6548189520835876,
-0.2066846787929535,
0.6466574668884277,
-0.4568450450897217,
0.2529015839099884,
-0.05582565814256668,
-0.5195527076721191,
-0.5724295973777771,
-0.19433118402957916,
0.40712931752204895,
0.6047855019569397,
-0.5279359817504883,
0.4988477826118469,
-0.001900044153444469,
-0.021700767800211906,
-0.8893718719482422,
-0.7310115098953247,
-0.05224756896495819,
-0.3450367748737335,
-0.9073977470397949,
0.5417281985282898,
-0.0914611667394638,
-0.20106378197669983,
-0.09386368095874786,
0.021916793659329414,
0.16758929193019867,
0.020569412037730217,
0.13449141383171082,
0.653984785079956,
-0.3516688644886017,
-0.16798116266727448,
0.20179860293865204,
-0.23322716355323792,
-0.12719008326530457,
-0.27589625120162964,
0.8342389464378357,
-0.46736156940460205,
-0.2769193947315216,
-0.6962854266166687,
0.1281251460313797,
0.7631080150604248,
-0.3710192143917084,
1.123978614807129,
0.9208241701126099,
-0.26357337832450867,
0.32571500539779663,
-0.4980114698410034,
-0.070907823741436,
-0.4523903429508209,
0.3465598523616791,
-0.47641441226005554,
-0.5959283113479614,
0.9495638608932495,
0.21052026748657227,
0.27565035223960876,
0.6570879817008972,
0.6710226535797119,
0.1585911065340042,
0.9332480430603027,
0.4783329963684082,
-0.19092999398708344,
0.4776046574115753,
-0.5451204776763916,
-0.12732462584972382,
-0.9454711079597473,
-0.3957024812698364,
-0.5942853093147278,
-0.4316367506980896,
-0.4438457787036896,
-0.5380101203918457,
0.4018140435218811,
0.24429519474506378,
-0.49238699674606323,
0.6461247801780701,
-0.3952055871486664,
0.20891910791397095,
0.7091335654258728,
-0.058358799666166306,
0.43135905265808105,
-0.14407259225845337,
-0.19897064566612244,
-0.008862958289682865,
-0.611819863319397,
-0.4706512689590454,
1.2479268312454224,
0.3348625600337982,
0.6964189410209656,
-0.14265216886997223,
0.7621167898178101,
-0.23767781257629395,
0.4285350739955902,
-0.5754629373550415,
0.6523057222366333,
-0.11876425892114639,
-0.5687167048454285,
-0.16296274960041046,
-0.4439053535461426,
-0.8237584233283997,
0.2785365879535675,
-0.2263234406709671,
-0.6340139508247375,
0.09615064412355423,
0.023776089772582054,
-0.20157530903816223,
0.4558704197406769,
-0.41301944851875305,
0.8597313165664673,
-0.31810301542282104,
-0.3692924678325653,
0.08417955040931702,
-0.6347600221633911,
0.4568469226360321,
-0.13522803783416748,
0.1800745725631714,
-0.2474246323108673,
0.08749166876077652,
0.927067756652832,
-0.4869828224182129,
0.46182167530059814,
-0.120450958609581,
-0.0106665575876832,
0.29123806953430176,
-0.07672583311796188,
0.843604326248169,
-0.10966358333826065,
-0.3091939389705658,
0.4303084909915924,
0.03195583447813988,
-0.4767097234725952,
-0.2597562074661255,
0.7009037733078003,
-1.066534161567688,
-0.5799787044525146,
-0.43470069766044617,
-0.7614972591400146,
0.23984645307064056,
0.42301619052886963,
0.6756091117858887,
0.027105111628770828,
-0.00173005776014179,
0.17073819041252136,
0.2776719927787781,
-0.2990381717681885,
0.33342859148979187,
0.5094335079193115,
-0.6224905848503113,
-0.47949451208114624,
0.8317433595657349,
0.004900927655398846,
0.25098174810409546,
0.3152567744255066,
0.14729546010494232,
-0.08140523731708527,
-0.5979948043823242,
-0.7033517956733704,
0.5864291191101074,
-0.5503562092781067,
-0.3816699683666229,
-0.501927375793457,
-0.12451285868883133,
-0.6498964428901672,
-0.030474625527858734,
-0.7109985947608948,
-0.4153241217136383,
-0.3755234479904175,
0.060699597001075745,
0.3690541088581085,
0.6136414408683777,
0.02549947053194046,
0.6218143701553345,
-0.8634313941001892,
0.2548966407775879,
-0.09169027209281921,
-0.006033525802195072,
-0.19036589562892914,
-0.9204331636428833,
-0.6049787402153015,
0.13702206313610077,
-0.32129335403442383,
-0.733972430229187,
0.8806268572807312,
-0.02852228656411171,
0.2628755569458008,
0.40257683396339417,
-0.09806350618600845,
0.7460721135139465,
-0.5549092292785645,
0.6405226588249207,
0.26263895630836487,
-1.057798981666565,
0.47658732533454895,
-0.5421631336212158,
0.29795601963996887,
0.4790757894515991,
0.24010616540908813,
-0.6430323719978333,
-0.3124507963657379,
-0.26283565163612366,
-0.8884294629096985,
1.037282109260559,
0.45127537846565247,
-0.039717186242341995,
0.2297937422990799,
0.5220232009887695,
0.22380542755126953,
0.2555554509162903,
-0.9299498200416565,
-0.6980366706848145,
-0.2962152063846588,
-0.0929466262459755,
0.01916275918483734,
-0.042795971035957336,
-0.05230671912431717,
-0.465545117855072,
0.8898175358772278,
0.10493449866771698,
0.49010732769966125,
0.09551138430833817,
0.10153539478778839,
-0.23775853216648102,
0.1123296469449997,
0.4504850208759308,
0.4844091832637787,
-0.3546798825263977,
-0.331968754529953,
0.41065043210983276,
-0.486983060836792,
0.030613522976636887,
0.26243093609809875,
-0.5429816842079163,
0.0655703917145729,
0.2526998221874237,
1.2332099676132202,
0.06689129769802094,
-0.31718364357948303,
0.22125916182994843,
0.08883456140756607,
-0.18159008026123047,
-0.34754806756973267,
-0.07113625854253769,
0.12143292278051376,
0.2716667652130127,
0.22350208461284637,
0.14666962623596191,
-0.14554888010025024,
-0.48742783069610596,
-0.1783146858215332,
0.31457024812698364,
-0.18685202300548553,
-0.5027185678482056,
1.0968300104141235,
0.10094611346721649,
-0.20703314244747162,
0.5786772966384888,
-0.1342068761587143,
-0.4704993665218353,
0.6909561157226562,
0.6157203912734985,
0.6680623888969421,
-0.38100573420524597,
0.14672699570655823,
0.47905227541923523,
0.39026308059692383,
-0.24353229999542236,
0.25985419750213623,
0.2998744249343872,
-0.7462849617004395,
-0.33903777599334717,
-0.9392374157905579,
-0.24779818952083588,
0.059749990701675415,
-0.8127880692481995,
0.5814160704612732,
-0.20194339752197266,
-0.16069220006465912,
-0.12195499241352081,
-0.007806677371263504,
-0.7698298692703247,
0.06859968602657318,
0.14894941449165344,
0.9435096979141235,
-0.824062705039978,
1.1178375482559204,
0.7411439418792725,
-0.3817378580570221,
-0.7790127992630005,
-0.29976820945739746,
-0.13506343960762024,
-0.9182500243186951,
0.7118847370147705,
0.009945047087967396,
-0.00226681400090456,
0.03533598780632019,
-0.4869014322757721,
-1.166137456893921,
1.535508155822754,
0.7159621119499207,
-0.4547029137611389,
-0.3100407123565674,
0.5045821666717529,
0.4972603917121887,
-0.3587278723716736,
0.11246535181999207,
0.6070019006729126,
0.7170361876487732,
0.2960905134677887,
-1.0270349979400635,
0.03334126994013786,
-0.33060750365257263,
-0.23407715559005737,
0.23386622965335846,
-1.0510555505752563,
1.4205893278121948,
-0.12318418174982071,
-0.01035861112177372,
0.5913785099983215,
0.9297035336494446,
0.36905860900878906,
0.4236721992492676,
0.11006880551576614,
0.6503623127937317,
0.731533408164978,
-0.25545844435691833,
1.1654927730560303,
-0.4359370768070221,
0.44915810227394104,
0.8655732870101929,
-0.09297040104866028,
0.7023677825927734,
0.476852685213089,
-0.2858733832836151,
0.4521404206752777,
0.5882141590118408,
-0.08318747580051422,
0.24761788547039032,
-0.13073375821113586,
-0.15379691123962402,
-0.29384058713912964,
-0.1761685460805893,
-0.6523261666297913,
0.47429144382476807,
0.18849094212055206,
-0.4810192286968231,
-0.030889393761754036,
0.14861416816711426,
0.30949848890304565,
-0.2816278040409088,
-0.3044132888317108,
0.22593386471271515,
0.22908252477645874,
-0.6972920894622803,
0.900734007358551,
0.3952089846134186,
0.7911466956138611,
-0.6181440353393555,
0.248446986079216,
-0.47924092411994934,
0.304640531539917,
0.013437705114483833,
-0.3130655288696289,
0.20096562802791595,
0.11434880644083023,
-0.08538911491632462,
-0.277625173330307,
0.47647279500961304,
-0.30485859513282776,
-0.9148351550102234,
0.3968258202075958,
0.538416862487793,
0.31578534841537476,
0.07300212234258652,
-0.8477915525436401,
0.24756106734275818,
0.1868283748626709,
-0.5243396759033203,
0.3490150570869446,
0.3377578556537628,
0.12814423441886902,
0.6872847676277161,
0.6072665452957153,
0.16555854678153992,
0.281088262796402,
-0.12738816440105438,
0.9775693416595459,
-0.6874785423278809,
-0.15414424240589142,
-0.8282747268676758,
0.5143495202064514,
0.27472034096717834,
-0.4950501024723053,
0.9490258693695068,
0.5570659637451172,
0.7703458666801453,
-0.09280595928430557,
0.4523943066596985,
0.0007733115926384926,
0.5199416875839233,
-0.6457387208938599,
0.7555484771728516,
-0.7230556607246399,
0.4016999900341034,
-0.3169066309928894,
-1.0964772701263428,
-0.2850629687309265,
0.4863077998161316,
-0.3016375005245209,
-0.044381845742464066,
0.723850429058075,
0.6878755688667297,
-0.01175511535257101,
-0.2784934639930725,
0.3325112462043762,
0.537635862827301,
0.1886609047651291,
0.7535222172737122,
0.574924111366272,
-1.0038892030715942,
0.8145211935043335,
-0.41685980558395386,
-0.00688255624845624,
-0.19827347993850708,
-0.5758640170097351,
-0.9466065168380737,
-0.4917326867580414,
-0.24558007717132568,
-0.4567207098007202,
-0.04860169440507889,
0.9554849863052368,
0.48896491527557373,
-0.8168981075286865,
-0.3214114308357239,
-0.0028277025558054447,
0.09607496112585068,
-0.12356782704591751,
-0.1472792625427246,
0.4985921382904053,
-0.13345867395401,
-1.2368810176849365,
0.46409907937049866,
0.02780301868915558,
0.29392948746681213,
-0.13899503648281097,
-0.34297236800193787,
-0.19242095947265625,
0.05020396038889885,
0.2896248698234558,
0.21601028740406036,
-0.7102866172790527,
0.0983029380440712,
0.3794440031051636,
-0.24176651239395142,
0.2444412112236023,
0.32351845502853394,
-0.6338518261909485,
0.033292174339294434,
0.4451029896736145,
0.24088239669799805,
0.7947906851768494,
-0.1049981564283371,
0.33406418561935425,
-0.43560564517974854,
0.4184054732322693,
0.006701378617435694,
0.5424239039421082,
0.2713339924812317,
-0.184482604265213,
0.5135170817375183,
0.3247496783733368,
-0.5911760926246643,
-0.8898639678955078,
0.039543528109788895,
-1.0622649192810059,
-0.05511472746729851,
1.1783024072647095,
-0.2927964925765991,
-0.5111179947853088,
0.3005138337612152,
-0.32954269647598267,
0.5823922157287598,
-0.35759708285331726,
0.7778164744377136,
0.609155535697937,
0.09120907634496689,
0.07189713418483734,
-0.46941938996315,
0.24884440004825592,
0.6066361665725708,
-0.8242856860160828,
-0.10738708078861237,
0.1798056811094284,
0.13562946021556854,
0.23287037014961243,
0.39429929852485657,
-0.1357904076576233,
0.18170565366744995,
-0.13260479271411896,
0.22515854239463806,
-0.22578512132167816,
-0.33641526103019714,
-0.13194619119167328,
-0.2558879554271698,
-0.09022437781095505,
-0.2485712617635727
] |
darkstorm2150/Protogen_Infinity_Official_Release | darkstorm2150 | "2023-01-27T17:43:23Z" | 10,889 | 62 | diffusers | [
"diffusers",
"stable-diffusion",
"stable-diffusion-diffusers",
"text-to-image",
"art",
"artistic",
"en",
"license:creativeml-openrail-m",
"endpoints_compatible",
"has_space",
"diffusers:StableDiffusionPipeline",
"region:us"
] | text-to-image | "2023-01-13T07:57:14Z" | ---
language:
- en
tags:
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
- art
- artistic
- diffusers
inference: true
license: creativeml-openrail-m
---
## Pending info card
I will be updating soon
## Model Weights
![alt text](https://huggingface.co/darkstorm2150/Protogen_Infinity_Official_Release/resolve/main/Model%20Weights.png) | [
-0.3627394437789917,
-0.02136661298573017,
0.5951336622238159,
0.4216880798339844,
-0.2689729630947113,
0.16494570672512054,
0.19872112572193146,
-0.6438783407211304,
0.49483639001846313,
0.5874208807945251,
-0.43418964743614197,
-0.5814515352249146,
-0.6300429105758667,
-0.3160810172557831,
-0.12713968753814697,
0.7892807126045227,
0.10786830633878708,
0.21826094388961792,
-0.2824653387069702,
-0.26428288221359253,
-0.34898263216018677,
-0.36432281136512756,
-0.737568736076355,
-0.6847052574157715,
0.8223728537559509,
0.6548405885696411,
0.8214974999427795,
0.6545405983924866,
0.7404630780220032,
0.33450576663017273,
-0.231141597032547,
-0.3660397231578827,
-0.17618204653263092,
0.12345445156097412,
0.08682726323604584,
-0.5659247040748596,
-1.458567500114441,
0.10522671043872833,
1.0189405679702759,
0.6815236806869507,
-0.00797326024621725,
0.7970874309539795,
-0.030483627691864967,
0.4919855296611786,
-0.5398820638656616,
0.2752872109413147,
-0.23951639235019684,
-0.08445427566766739,
-0.5271860957145691,
0.11761874705553055,
-0.15155158936977386,
-0.2223634123802185,
-0.16906210780143738,
-0.8396974802017212,
0.2095271497964859,
0.28021353483200073,
1.2274837493896484,
0.22109611332416534,
-0.33367401361465454,
0.08018206059932709,
-0.5996232628822327,
0.44237905740737915,
-0.600475013256073,
0.5485119223594666,
0.21672891080379486,
0.4929833710193634,
-0.01577475480735302,
-1.1652523279190063,
-0.1912618726491928,
-0.2513110935688019,
0.01276441104710102,
0.25546571612358093,
-0.4831625521183014,
0.22785526514053345,
0.9355780482292175,
0.6652439832687378,
-0.10613728314638138,
0.20122703909873962,
-0.8168321847915649,
-0.3465343713760376,
0.7885169982910156,
0.023088200017809868,
0.4778168797492981,
0.36217188835144043,
-0.37209126353263855,
-0.04214960336685181,
-0.5078287124633789,
-0.26411834359169006,
0.3249060809612274,
0.2208128124475479,
-0.9422348737716675,
0.9537042379379272,
-0.17028024792671204,
0.8602698445320129,
0.40880462527275085,
0.5325775146484375,
0.5909643173217773,
0.06296220421791077,
-0.3539592921733856,
-0.1697724163532257,
0.5878340005874634,
0.6155955791473389,
-0.14825570583343506,
0.2959200441837311,
-0.12615163624286652,
-0.3158555030822754,
0.1744697391986847,
-0.9096779227256775,
0.016075672581791878,
0.38719093799591064,
-0.6830154657363892,
-0.4812968969345093,
0.2416931688785553,
-1.056683897972107,
-0.5058575868606567,
0.12622731924057007,
0.3580847382545471,
0.08811055123806,
-0.48420122265815735,
0.20544885098934174,
-0.4009023904800415,
0.025933822616934776,
0.6814050078392029,
-0.8417901396751404,
0.033338673412799835,
0.14961230754852295,
0.5347184538841248,
0.8231774568557739,
0.2534901797771454,
-0.34423911571502686,
0.10719228535890579,
-0.43008050322532654,
0.7245520949363708,
-0.3902956247329712,
-0.39600616693496704,
-0.1745937168598175,
-0.05315650999546051,
0.4157608449459076,
-0.5157254934310913,
1.0216593742370605,
-0.674466609954834,
-0.02409866452217102,
-0.4575120210647583,
-0.3853192925453186,
0.29946523904800415,
0.2316308617591858,
-1.3561978340148926,
0.9215362071990967,
0.390790194272995,
-0.7707699537277222,
0.31303396821022034,
-0.7941950559616089,
0.043494902551174164,
0.6467941999435425,
-0.028844701126217842,
-0.5871091485023499,
0.44787782430648804,
-0.37325507402420044,
0.3893660008907318,
-0.1875077337026596,
0.058938536792993546,
-0.8490250110626221,
-0.19804252684116364,
0.18798120319843292,
0.1114467903971672,
0.501012921333313,
0.7361253499984741,
0.07109861820936203,
0.08750441670417786,
-0.9368686079978943,
-0.12149980664253235,
0.1882093846797943,
-0.30458492040634155,
0.46546289324760437,
-0.37364450097084045,
-0.1438586413860321,
0.19805394113063812,
0.9460902810096741,
-0.7812910079956055,
0.4724404215812683,
0.20858871936798096,
-0.1286039650440216,
0.8531721234321594,
-0.05284824222326279,
0.17870457470417023,
-0.396930456161499,
0.8248724341392517,
-0.43801259994506836,
0.3699433207511902,
0.3984326422214508,
-0.6966360211372375,
-0.8909472823143005,
0.16638897359371185,
0.8190028071403503,
0.36784499883651733,
-0.07526897639036179,
0.35773491859436035,
0.09179018437862396,
-0.6738108396530151,
-0.3370276391506195,
-0.3375301659107208,
0.25102514028549194,
0.17867840826511383,
0.12814410030841827,
-0.34919485449790955,
-0.7268475294113159,
-0.8054589033126831,
-0.11523278802633286,
-0.37153518199920654,
-0.23614288866519928,
0.1050524115562439,
0.3087701201438904,
-0.3077102303504944,
0.43085113167762756,
-0.9167146682739258,
-0.1535663902759552,
-0.3332131505012512,
0.5760102272033691,
0.4075295925140381,
0.7872517704963684,
0.911789059638977,
-1.094382405281067,
-0.3722279369831085,
-0.1588553935289383,
-0.45290324091911316,
-0.45253050327301025,
0.1052548959851265,
-0.14359299838542938,
-0.605547308921814,
0.7099537253379822,
-0.6979836821556091,
0.7735992670059204,
0.5434227585792542,
-0.8972464203834534,
0.4034087657928467,
-0.6259093880653381,
-0.004518701694905758,
-0.960792064666748,
0.29737818241119385,
0.04983966797590256,
-0.19311484694480896,
-0.2793540358543396,
0.38305020332336426,
0.1993163526058197,
-0.3287831246852875,
-0.5722624063491821,
1.0067003965377808,
-0.7650265097618103,
0.07501478493213654,
-0.1716633290052414,
-0.09805414080619812,
0.01408388838171959,
-0.2126038819551468,
-0.1437685787677765,
0.5427172183990479,
0.7044044137001038,
-0.5857937335968018,
0.7261428833007812,
0.09204261749982834,
0.2608467936515808,
0.5495619773864746,
-1.1943193674087524,
-0.3034735918045044,
-0.4029146730899811,
0.2590136229991913,
-0.9878686666488647,
-0.7444348931312561,
0.5362952947616577,
-0.7310991883277893,
0.603827714920044,
-0.11276958882808685,
-0.6274786591529846,
-0.9776062369346619,
-0.15709729492664337,
0.4864749312400818,
0.759998619556427,
-0.17220467329025269,
0.9301997423171997,
0.23935405910015106,
0.12336881458759308,
-0.33744919300079346,
-0.8756040930747986,
0.03352601081132889,
0.16221144795417786,
-0.2556803822517395,
0.7162793874740601,
-0.4091116189956665,
-0.5168901085853577,
0.017877915874123573,
-0.19511833786964417,
-0.14709381759166718,
-0.23848393559455872,
0.21345074474811554,
0.19587667286396027,
0.14384996891021729,
0.4052566587924957,
0.09488829225301743,
-0.6817299723625183,
-0.11646958440542221,
-0.1733248084783554,
0.48181167244911194,
-0.3636067807674408,
-0.013671102933585644,
-0.4844011068344116,
0.1051073893904686,
0.8570802211761475,
-0.15144583582878113,
0.4907616376876831,
0.8498528003692627,
-0.8892024159431458,
0.4450463354587555,
-0.7976815700531006,
-0.13935218751430511,
-0.5287312269210815,
0.21348685026168823,
-0.6311087608337402,
-0.7054107189178467,
0.8205887079238892,
-0.23648536205291748,
0.003649902530014515,
1.1387797594070435,
0.49284717440605164,
0.004083680454641581,
1.3908135890960693,
1.1514261960983276,
-0.06536100059747696,
0.45901626348495483,
-0.39569389820098877,
-0.17272408306598663,
-1.0542408227920532,
-0.42906081676483154,
-0.5609945058822632,
-0.39295440912246704,
-0.6293946504592896,
-0.7056681513786316,
0.02618156373500824,
0.557915449142456,
-0.051754314452409744,
0.6932244896888733,
-0.5104570984840393,
0.1950010061264038,
0.47440993785858154,
0.2819545269012451,
-0.03178367763757706,
-0.5569396018981934,
-0.2174900472164154,
-0.06105915829539299,
-0.42011862993240356,
-0.18373504281044006,
1.293319582939148,
0.6011703014373779,
0.5343447923660278,
0.07350724190473557,
0.6310616135597229,
0.33592674136161804,
0.6865386366844177,
-0.1911793053150177,
0.6158849596977234,
-0.004799551796168089,
-1.1929274797439575,
0.08787006139755249,
-0.18824611604213715,
-0.7703395485877991,
0.01828923635184765,
-0.5137270092964172,
-0.5229842662811279,
0.28090447187423706,
0.6079835295677185,
-0.6608796715736389,
0.5022231936454773,
-0.41515129804611206,
1.1224018335342407,
-0.3992786407470703,
-0.20042645931243896,
-0.3897467255592346,
-0.6792259812355042,
-0.016105493530631065,
0.020408205687999725,
-0.011936284601688385,
-0.5672131776809692,
-0.49283215403556824,
0.7727970480918884,
-0.6457648277282715,
0.8448004126548767,
-0.2716427445411682,
-0.006843094248324633,
-0.024918699637055397,
-0.5067050457000732,
0.5506404042243958,
0.42783913016319275,
-0.5333101749420166,
-0.28212234377861023,
-0.4055198132991791,
-0.8834676146507263,
-0.4258253574371338,
0.3548172116279602,
-0.4102887213230133,
-0.13783703744411469,
-0.7331615090370178,
-0.23774515092372894,
0.25550010800361633,
0.49461331963539124,
0.8300662040710449,
0.5311078429222107,
-0.20386844873428345,
-0.20309826731681824,
1.0387998819351196,
-0.20944705605506897,
0.25115540623664856,
0.4240071773529053,
-0.4413902163505554,
-0.5119644999504089,
0.7950050830841064,
0.1924370527267456,
0.22368986904621124,
0.4665008783340454,
0.3082830011844635,
-0.11451124399900436,
-0.6634515523910522,
-0.5015660524368286,
0.6092012524604797,
-0.27215680480003357,
-0.3400009870529175,
-0.49977943301200867,
-0.20816996693611145,
-0.7698723077774048,
-0.2714237868785858,
-0.6896141767501831,
-0.35597163438796997,
-0.7015672326087952,
-0.20441630482673645,
0.5081248879432678,
0.8861804604530334,
-0.5146830081939697,
0.7041158080101013,
-0.6924309134483337,
0.5662654042243958,
0.34805628657341003,
1.062451720237732,
-0.5520211458206177,
-0.598701000213623,
-0.151852086186409,
0.193223237991333,
-0.4243506193161011,
-0.5740907788276672,
0.014725561253726482,
-0.05953202769160271,
0.5083104372024536,
0.568229079246521,
-0.012259341776371002,
0.6638295650482178,
-0.27570968866348267,
0.7157617211341858,
0.36340951919555664,
-0.8031662106513977,
0.5219022631645203,
-0.40636470913887024,
0.9882218837738037,
0.7039311528205872,
0.36831367015838623,
-0.4794943630695343,
-0.8122108578681946,
-1.32844877243042,
-0.6803255677223206,
0.22615180909633636,
-0.01407334953546524,
0.5195644497871399,
0.2908141314983368,
0.41850125789642334,
-0.4479106366634369,
0.45434027910232544,
-0.819952666759491,
-0.6472364664077759,
0.17402708530426025,
-0.08017522096633911,
0.46053364872932434,
-0.7777673006057739,
0.18306884169578552,
-0.8302264213562012,
0.615816593170166,
0.1231497973203659,
0.6320871114730835,
-0.12235409766435623,
0.4180072844028473,
-0.3707473874092102,
0.0694463849067688,
0.9170034527778625,
0.9339218139648438,
-0.9799919724464417,
-0.24954953789710999,
0.15929830074310303,
-0.6236501336097717,
-0.3387646973133087,
0.6956673264503479,
0.10960128158330917,
0.21434713900089264,
0.6145144701004028,
0.7673333287239075,
0.2891082763671875,
-0.47478601336479187,
0.5553465485572815,
-0.2522776126861572,
-0.5240898728370667,
-0.4763898551464081,
-0.21456977725028992,
-0.1287337839603424,
0.48726633191108704,
0.49435916543006897,
0.6361703276634216,
0.24578045308589935,
-0.2552333176136017,
0.40146419405937195,
0.2255510836839676,
-1.0185624361038208,
-0.5590720772743225,
1.4637292623519897,
0.4141710698604584,
-0.0544867105782032,
0.45340293645858765,
-0.5278099775314331,
-0.5803208351135254,
0.7020047903060913,
0.41729140281677246,
0.9443559646606445,
-0.39702749252319336,
0.2245437204837799,
0.4514215290546417,
0.14254851639270782,
-0.18043330311775208,
0.7802045345306396,
0.002132472349330783,
-0.502440333366394,
-0.3081628978252411,
-0.7317702770233154,
-0.43479931354522705,
-0.1726228892803192,
-0.5603421926498413,
0.5261644721031189,
-0.9069386124610901,
-0.536745548248291,
-0.085085429251194,
0.3781261146068573,
-0.3512614071369171,
0.7108996510505676,
0.6103315949440002,
1.5825343132019043,
-0.9116016030311584,
0.8150231242179871,
0.8691366314888,
-0.39741721749305725,
-0.7837540507316589,
-0.0019504281226545572,
-0.009182603098452091,
-0.6741593480110168,
0.5939222574234009,
0.19234950840473175,
0.23311857879161835,
0.27582794427871704,
-0.8441648483276367,
-1.2681026458740234,
1.1418581008911133,
0.3831694424152374,
-0.6127586364746094,
-0.00617538345977664,
-0.5932714343070984,
0.7089948654174805,
-0.5156235694885254,
0.3879948556423187,
-0.12508296966552734,
1.0641824007034302,
0.565884530544281,
-0.59302818775177,
-0.06966530531644821,
-0.7101308703422546,
-0.1567249298095703,
0.6731449961662292,
-0.9359112977981567,
0.9444153904914856,
-0.29930466413497925,
-0.12595710158348083,
0.40170589089393616,
1.0421993732452393,
-0.043197255581617355,
0.07094758003950119,
0.4974440634250641,
1.280107021331787,
0.7298881411552429,
-0.285601407289505,
0.9242603778839111,
-0.2538681626319885,
0.33893463015556335,
1.0413463115692139,
-0.30122634768486023,
0.3881113827228546,
0.10761024802923203,
-0.04983007162809372,
0.609377384185791,
0.8767621517181396,
-0.5690325498580933,
0.057502616196870804,
0.27023398876190186,
-0.30142274498939514,
-0.131914883852005,
-0.4611707031726837,
-0.9656188488006592,
-0.0693272277712822,
0.08144190162420273,
-0.5245141983032227,
-0.3008233308792114,
0.05023034289479256,
0.24021635949611664,
-0.1218286082148552,
-0.7867003083229065,
0.3909587562084198,
-0.10763894766569138,
-0.3823099732398987,
0.17540660500526428,
0.20311006903648376,
0.6133087873458862,
-0.5530986189842224,
-0.13048304617404938,
0.24226774275302887,
0.2642863988876343,
-0.24033010005950928,
-0.69417804479599,
0.12282190471887589,
-0.46500250697135925,
-0.292513906955719,
-0.48170962929725647,
0.7139750123023987,
-0.623882532119751,
-1.1887987852096558,
0.4749741554260254,
-0.2722015380859375,
-0.08366341143846512,
-0.032279253005981445,
-1.1944091320037842,
0.45880696177482605,
-0.18812505900859833,
0.07646133750677109,
-0.13326163589954376,
-0.07919906824827194,
0.015707815065979958,
0.6584579944610596,
0.42196211218833923,
0.6222100257873535,
0.12878639996051788,
0.15815718472003937,
0.9581931233406067,
-0.4275555908679962,
-0.014197934418916702,
-0.7350192070007324,
1.050424575805664,
-0.5048021674156189,
-0.7061314582824707,
0.6698267459869385,
0.7463226914405823,
0.8404604196548462,
0.06762669235467911,
0.5201209783554077,
-0.6578381061553955,
0.6525070071220398,
-0.09956489503383636,
0.7647363543510437,
-0.8231416940689087,
0.04105537384748459,
-0.2706508934497833,
-0.6930069327354431,
-0.48395466804504395,
-0.1057443618774414,
-0.1324436366558075,
0.13553278148174286,
0.4943106770515442,
0.1679554581642151,
-0.03200889006257057,
-0.1418645828962326,
0.16686494648456573,
0.20212972164154053,
0.12030519545078278,
0.2406061738729477,
0.23492616415023804,
-1.0197429656982422,
-0.024196505546569824,
-0.514483630657196,
-0.7423083782196045,
-0.46882396936416626,
-0.89499431848526,
-0.688967764377594,
-0.46199554204940796,
-0.502042293548584,
-0.6378476023674011,
-0.24287928640842438,
0.6169025897979736,
0.8429345488548279,
-0.4904465675354004,
-0.2991121709346771,
0.20126019418239594,
0.38244280219078064,
-0.22042471170425415,
-0.2092139720916748,
0.0905139222741127,
0.058458808809518814,
-0.5842905640602112,
-0.23872815072536469,
0.13182945549488068,
0.7902299165725708,
0.19172978401184082,
0.0071954200975596905,
-0.3637206554412842,
-0.1344660520553589,
0.1795150637626648,
0.6265756487846375,
-0.21100212633609772,
-0.41625121235847473,
-0.15832775831222534,
-0.21872833371162415,
0.00845771748572588,
0.718645453453064,
-0.3560125529766083,
0.4880557358264923,
0.8102213740348816,
0.18094392120838165,
0.5363093018531799,
0.3636992573738098,
1.136869192123413,
-0.730033814907074,
0.519282341003418,
0.41383829712867737,
0.19565577805042267,
-0.036357562988996506,
-0.5513365268707275,
0.41637757420539856,
0.2705408036708832,
-0.4864348769187927,
-0.8633578419685364,
0.2882418632507324,
-1.083658218383789,
-0.04548002406954765,
0.24444580078125,
0.34113356471061707,
-0.47029030323028564,
0.29272109270095825,
-0.06119238957762718,
0.4887892007827759,
-0.3126390278339386,
0.05643371865153313,
0.5722140669822693,
0.11394298076629639,
-0.3956040143966675,
-0.644849419593811,
0.6562082171440125,
0.39560163021087646,
-0.6384248733520508,
-0.11519139260053635,
0.4236625134944916,
-0.32131510972976685,
0.5809512138366699,
0.7379530072212219,
-0.40310990810394287,
0.7544822692871094,
0.02522995136678219,
0.5133295059204102,
0.15641337633132935,
-0.3345218598842621,
-0.37041473388671875,
-0.18470421433448792,
0.33282625675201416,
-0.5064191818237305
] |