modelId
stringlengths
4
122
author
stringlengths
2
42
last_modified
unknown
downloads
int64
0
387M
likes
int64
0
6.55k
library_name
stringclasses
368 values
tags
sequencelengths
1
4.05k
pipeline_tag
stringclasses
51 values
createdAt
unknown
card
stringlengths
1
1M
nolanaatama/thwkndrvc1000pchclbbdsm
nolanaatama
"2023-05-21T23:10:28Z"
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
"2023-05-21T23:08:46Z"
--- license: creativeml-openrail-m ---
ongknsro/ACARISBERT-BERT
ongknsro
"2023-05-21T23:14:20Z"
0
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "en", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
"2023-05-21T23:12:31Z"
--- language: - en metrics: - accuracy - f1 - recall - precision library_name: transformers pipeline_tag: text-classification ---
yaqliu/results
yaqliu
"2023-05-21T23:15:04Z"
0
0
null
[ "region:us" ]
null
"2023-05-21T23:15:04Z"
Entry not found
Jikiwi/jokowi-voice-ai
Jikiwi
"2023-05-22T02:26:58Z"
0
0
null
[ "region:us" ]
null
"2023-05-21T23:20:52Z"
Entry not found
amd1729/solar-mask2-swin-small-ade-200-deepsolar-2023052103
amd1729
"2023-05-22T00:32:33Z"
0
0
transformers
[ "transformers", "pytorch", "mask2former", "endpoints_compatible", "region:us" ]
null
"2023-05-21T23:21:52Z"
Entry not found
alvinxd/Tokyo
alvinxd
"2023-05-21T23:36:02Z"
0
0
null
[ "region:us" ]
null
"2023-05-21T23:36:02Z"
Entry not found
sitownle/4bLLM2
sitownle
"2023-05-21T23:47:52Z"
0
0
null
[ "en", "dataset:FourthBrainGenAI/MarketMail-AI-Dataset", "region:us" ]
null
"2023-05-21T23:41:06Z"
--- datasets: - FourthBrainGenAI/MarketMail-AI-Dataset language: - en --- LLM Assignment 2 - Fine Tuning BLOOMZ with PyTorch, peft, and transformers from HuggingFace
Ahmadswaid/california_housing
Ahmadswaid
"2023-05-21T23:52:12Z"
0
0
sklearn
[ "sklearn", "skops", "tabular-regression", "region:us" ]
tabular-regression
"2023-05-21T23:46:15Z"
--- library_name: sklearn tags: - sklearn - skops - tabular-regression widget: structuredData: AveBedrms: - 0.9806451612903225 - 1.0379746835443038 - 0.9601449275362319 AveOccup: - 2.587096774193548 - 2.8658227848101268 - 2.6449275362318843 AveRooms: - 7.275268817204301 - 5.39493670886076 - 6.536231884057971 HouseAge: - 38.0 - 25.0 - 39.0 Latitude: - 37.44 - 37.31 - 34.16 Longitude: - -122.19 - -122.03 - -118.07 MedInc: - 9.3198 - 5.3508 - 6.4761 Population: - 1203.0 - 1132.0 - 730.0 --- # Model description [More Information Needed] ## Intended uses & limitations [More Information Needed] ## Training Procedure ### Hyperparameters The model is trained with below hyperparameters. <details> <summary> Click to expand </summary> | Hyperparameter | Value | |--------------------------|---------------| | bootstrap | True | | ccp_alpha | 0.0 | | criterion | squared_error | | max_depth | | | max_features | 1.0 | | max_leaf_nodes | | | max_samples | | | min_impurity_decrease | 0.0 | | min_samples_leaf | 1 | | min_samples_split | 2 | | min_weight_fraction_leaf | 0.0 | | n_estimators | 100 | | n_jobs | | | oob_score | False | | random_state | | | verbose | 0 | | warm_start | False | </details> ### Model Plot The model plot is below. <style>#sk-container-id-2 {color: black;background-color: white;}#sk-container-id-2 pre{padding: 0;}#sk-container-id-2 div.sk-toggleable {background-color: white;}#sk-container-id-2 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-2 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-2 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-2 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-2 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-2 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-2 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-2 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-container-id-2 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-2 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-2 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-2 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-2 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-2 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-2 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-2 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-2 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-2 div.sk-item {position: relative;z-index: 1;}#sk-container-id-2 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-2 div.sk-item::before, #sk-container-id-2 div.sk-parallel-item::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-2 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-2 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-2 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-2 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-2 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-2 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-2 div.sk-label-container {text-align: center;}#sk-container-id-2 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-2 div.sk-text-repr-fallback {display: none;}</style><div id="sk-container-id-2" class="sk-top-container"><div class="sk-text-repr-fallback"><pre>RandomForestRegressor()</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class="sk-container" hidden><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-2" type="checkbox" checked><label for="sk-estimator-id-2" class="sk-toggleable__label sk-toggleable__label-arrow">RandomForestRegressor</label><div class="sk-toggleable__content"><pre>RandomForestRegressor()</pre></div></div></div></div></div> ## Evaluation Results You can find the details about evaluation process and the evaluation results. | Metric | Value | |----------|---------| # How to Get Started with the Model Use the code below to get started with the model. <details> <summary> Click to expand </summary> ```python [More Information Needed] ``` </details> # Model Card Authors This model card is written by following authors: [More Information Needed] # Model Card Contact You can contact the model card authors through following channels: [More Information Needed] # Citation Below you can find information related to citation. **BibTeX:** ``` [More Information Needed] ```
Firestqr/Guitar
Firestqr
"2023-05-21T23:59:11Z"
0
0
null
[ "region:us" ]
null
"2023-05-21T23:59:11Z"
Entry not found
fa5ih/f1
fa5ih
"2023-05-22T00:06:35Z"
0
0
null
[ "region:us" ]
null
"2023-05-22T00:06:35Z"
Entry not found
Ahmadswaid/sklearn-mpg
Ahmadswaid
"2023-05-22T00:06:44Z"
0
0
sklearn
[ "sklearn", "skops", "tabular-regression", "region:us" ]
tabular-regression
"2023-05-22T00:06:40Z"
--- library_name: sklearn tags: - sklearn - skops - tabular-regression model_file: linreg.pkl widget: structuredData: x0: - -0.3839236795902252 - -0.9788183569908142 - 1.0937178134918213 x1: - -0.5319488644599915 - -1.108436107635498 - 0.9354732036590576 x2: - -0.38279563188552856 - -1.3128694295883179 - 1.4773520231246948 x3: - 0.2815782427787781 - -0.11783809214830399 - -0.9529813528060913 x4: - 1.0 - 1.0 - 0.0 x5: - 0.0 - 0.0 - 0.0 x6: - 0.0 - 0.0 - 0.0 x7: - 0.0 - 0.0 - 1.0 x8: - 0.0 - 1.0 - 0.0 x9: - 0.0 - 0.0 - 0.0 --- # Model description This is a regression model on MPG dataset trained. ## Intended uses & limitations This model is not ready to be used in production. ## Training Procedure ### Hyperparameters The model is trained with below hyperparameters. <details> <summary> Click to expand </summary> | Hyperparameter | Value | |------------------|------------| | copy_X | True | | fit_intercept | True | | n_jobs | | | normalize | deprecated | | positive | False | </details> ### Model Plot The model plot is below. <style>#sk-container-id-3 {color: black;background-color: white;}#sk-container-id-3 pre{padding: 0;}#sk-container-id-3 div.sk-toggleable {background-color: white;}#sk-container-id-3 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-3 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-3 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-3 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-3 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-3 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-3 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-3 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-container-id-3 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-3 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-3 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-3 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-3 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-3 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-3 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-3 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-3 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-3 div.sk-item {position: relative;z-index: 1;}#sk-container-id-3 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-3 div.sk-item::before, #sk-container-id-3 div.sk-parallel-item::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-3 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-3 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-3 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-3 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-3 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-3 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-3 div.sk-label-container {text-align: center;}#sk-container-id-3 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-3 div.sk-text-repr-fallback {display: none;}</style><div id="sk-container-id-3" class="sk-top-container" style="overflow: auto;"><div class="sk-text-repr-fallback"><pre>LinearRegression()</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class="sk-container" hidden><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-3" type="checkbox" checked><label for="sk-estimator-id-3" class="sk-toggleable__label sk-toggleable__label-arrow">LinearRegression</label><div class="sk-toggleable__content"><pre>LinearRegression()</pre></div></div></div></div></div> ## Evaluation Results You can find the details about evaluation process and the evaluation results. | Metric | Value | |--------------------|----------| | Mean Squared Error | 5.01069 | | R-Squared | 0.883503 | # How to Get Started with the Model Use the code below to get started with the model. ```python import joblib import json import pandas as pd clf = joblib.load(linreg.pkl) with open("config.json") as f: config = json.load(f) clf.predict(pd.DataFrame.from_dict(config["sklearn"]["example_input"])) ``` # Model Card Authors This model card is written by following authors: [More Information Needed] # Model Card Contact You can contact the model card authors through following channels: [More Information Needed] # Citation Below you can find information related to citation. **BibTeX:** ``` [More Information Needed] ```
latimar/airoboros-13b-ggml
latimar
"2023-05-22T11:10:04Z"
0
8
null
[ "region:us" ]
null
"2023-05-22T00:08:25Z"
ggml conversion of the https://huggingface.co/jondurbin/airoboros-13b
ibrahimbush45/Idk
ibrahimbush45
"2023-05-22T00:12:29Z"
0
0
null
[ "region:us" ]
null
"2023-05-22T00:12:29Z"
Entry not found
polypo/testing
polypo
"2023-05-22T00:31:05Z"
0
0
null
[ "region:us" ]
null
"2023-05-22T00:15:42Z"
Entry not found
ZyXin/rl_course_vizdoom_health_gathering_supreme
ZyXin
"2023-05-22T00:16:20Z"
0
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
"2023-05-22T00:16:04Z"
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_health_gathering_supreme type: doom_health_gathering_supreme metrics: - type: mean_reward value: 9.93 +/- 3.96 name: mean_reward verified: false --- A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment. This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory. Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/ ## Downloading the model After installing Sample-Factory, download the model with: ``` python -m sample_factory.huggingface.load_from_hub -r ZyXin/rl_course_vizdoom_health_gathering_supreme ``` ## Using the model To run the model after download, use the `enjoy` script corresponding to this environment: ``` python -m .usr.local.lib.python3.10.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme ``` You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag. See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details ## Training with this model To continue training with this model, use the `train` script corresponding to this environment: ``` python -m .usr.local.lib.python3.10.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000 ``` Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
tchebonenko/Ass1c-BLOOMZ
tchebonenko
"2023-05-22T00:32:45Z"
0
0
null
[ "region:us" ]
null
"2023-05-22T00:16:37Z"
# Fine-tune a BLOOMZ-based ad generation model using peft, transformers and bitsandbytes ##Dataset: [MarketMail-AI dataset](https://huggingface.co/datasets/FourthBrainGenAI/MarketMail-AI)
alvinxd/Initokyo
alvinxd
"2023-05-23T00:01:52Z"
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
"2023-05-22T00:16:38Z"
--- license: creativeml-openrail-m ---
DigitaalisetM/LoveLiveHPDY
DigitaalisetM
"2023-05-22T01:01:19Z"
0
0
null
[ "region:us" ]
null
"2023-05-22T00:17:19Z"
Entry not found
Ahmadswaid/example-california-housing
Ahmadswaid
"2023-05-22T00:18:08Z"
0
0
sklearn
[ "sklearn", "skops", "tabular-regression", "region:us" ]
tabular-regression
"2023-05-22T00:18:03Z"
--- library_name: sklearn tags: - sklearn - skops - tabular-regression model_format: skops model_file: model.skops widget: structuredData: AveBedrms: - 0.9290780141843972 - 0.9458483754512635 - 1.087360594795539 AveOccup: - 3.1134751773049647 - 3.0613718411552346 - 3.2657992565055762 AveRooms: - 6.304964539007092 - 6.945848375451264 - 3.8884758364312266 HouseAge: - 17.0 - 15.0 - 24.0 Latitude: - 34.23 - 36.84 - 34.04 Longitude: - -117.41 - -119.77 - -118.3 MedInc: - 6.1426 - 5.3886 - 1.7109 Population: - 439.0 - 848.0 - 1757.0 --- # Model description Gradient boosting regressor trained on California Housing dataset The model is a gradient boosting regressor from sklearn. On top of the standard features, it contains predictions from a KNN models. These predictions are calculated out of fold, then added on top of the existing features. These features are really helpful for decision tree-based models, since those cannot easily learn from geospatial data. ## Intended uses & limitations This model is meant for demonstration purposes ## Training Procedure ### Hyperparameters The model is trained with below hyperparameters. <details> <summary> Click to expand </summary> | Hyperparameter | Value | |-----------------------------------------------|--------------------------------------------------------------| | cv | | | estimators | [('knn@5', Pipeline(steps=[('select_cols',<br /> ColumnTransformer(transformers=[('long_and_lat', 'passthrough',<br /> ['Longitude', 'Latitude'])])),<br /> ('knn', KNeighborsRegressor())]))] | | final_estimator__alpha | 0.9 | | final_estimator__ccp_alpha | 0.0 | | final_estimator__criterion | friedman_mse | | final_estimator__init | | | final_estimator__learning_rate | 0.1 | | final_estimator__loss | squared_error | | final_estimator__max_depth | 3 | | final_estimator__max_features | | | final_estimator__max_leaf_nodes | | | final_estimator__min_impurity_decrease | 0.0 | | final_estimator__min_samples_leaf | 1 | | final_estimator__min_samples_split | 2 | | final_estimator__min_weight_fraction_leaf | 0.0 | | final_estimator__n_estimators | 500 | | final_estimator__n_iter_no_change | | | final_estimator__random_state | 0 | | final_estimator__subsample | 1.0 | | final_estimator__tol | 0.0001 | | final_estimator__validation_fraction | 0.1 | | final_estimator__verbose | 0 | | final_estimator__warm_start | False | | final_estimator | GradientBoostingRegressor(n_estimators=500, random_state=0) | | n_jobs | | | passthrough | True | | verbose | 0 | | knn@5 | Pipeline(steps=[('select_cols',<br /> ColumnTransformer(transformers=[('long_and_lat', 'passthrough',<br /> ['Longitude', 'Latitude'])])),<br /> ('knn', KNeighborsRegressor())]) | | knn@5__memory | | | knn@5__steps | [('select_cols', ColumnTransformer(transformers=[('long_and_lat', 'passthrough',<br /> ['Longitude', 'Latitude'])])), ('knn', KNeighborsRegressor())] | | knn@5__verbose | False | | knn@5__select_cols | ColumnTransformer(transformers=[('long_and_lat', 'passthrough',<br /> ['Longitude', 'Latitude'])]) | | knn@5__knn | KNeighborsRegressor() | | knn@5__select_cols__n_jobs | | | knn@5__select_cols__remainder | drop | | knn@5__select_cols__sparse_threshold | 0.3 | | knn@5__select_cols__transformer_weights | | | knn@5__select_cols__transformers | [('long_and_lat', 'passthrough', ['Longitude', 'Latitude'])] | | knn@5__select_cols__verbose | False | | knn@5__select_cols__verbose_feature_names_out | True | | knn@5__select_cols__long_and_lat | passthrough | | knn@5__knn__algorithm | auto | | knn@5__knn__leaf_size | 30 | | knn@5__knn__metric | minkowski | | knn@5__knn__metric_params | | | knn@5__knn__n_jobs | | | knn@5__knn__n_neighbors | 5 | | knn@5__knn__p | 2 | | knn@5__knn__weights | uniform | </details> ### Model Plot The model plot is below. <style>#sk-container-id-13 {color: black;background-color: white;}#sk-container-id-13 pre{padding: 0;}#sk-container-id-13 div.sk-toggleable {background-color: white;}#sk-container-id-13 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-13 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-13 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-13 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-13 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-13 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-13 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-13 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-container-id-13 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-13 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-13 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-13 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-13 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-13 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-13 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-13 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-13 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-13 div.sk-item {position: relative;z-index: 1;}#sk-container-id-13 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-13 div.sk-item::before, #sk-container-id-13 div.sk-parallel-item::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-13 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-13 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-13 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-13 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-13 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-13 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-13 div.sk-label-container {text-align: center;}#sk-container-id-13 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-13 div.sk-text-repr-fallback {display: none;}</style><div id="sk-container-id-13" class="sk-top-container" style="overflow: auto;"><div class="sk-text-repr-fallback"><pre>StackingRegressor(estimators=[(&#x27;knn@5&#x27;,Pipeline(steps=[(&#x27;select_cols&#x27;,ColumnTransformer(transformers=[(&#x27;long_and_lat&#x27;,&#x27;passthrough&#x27;,[&#x27;Longitude&#x27;,&#x27;Latitude&#x27;])])),(&#x27;knn&#x27;,KNeighborsRegressor())]))],final_estimator=GradientBoostingRegressor(n_estimators=500,random_state=0),passthrough=True)</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-41" type="checkbox" ><label for="sk-estimator-id-41" class="sk-toggleable__label sk-toggleable__label-arrow">StackingRegressor</label><div class="sk-toggleable__content"><pre>StackingRegressor(estimators=[(&#x27;knn@5&#x27;,Pipeline(steps=[(&#x27;select_cols&#x27;,ColumnTransformer(transformers=[(&#x27;long_and_lat&#x27;,&#x27;passthrough&#x27;,[&#x27;Longitude&#x27;,&#x27;Latitude&#x27;])])),(&#x27;knn&#x27;,KNeighborsRegressor())]))],final_estimator=GradientBoostingRegressor(n_estimators=500,random_state=0),passthrough=True)</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-parallel"><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><label>knn@5</label></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-serial"><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-42" type="checkbox" ><label for="sk-estimator-id-42" class="sk-toggleable__label sk-toggleable__label-arrow">select_cols: ColumnTransformer</label><div class="sk-toggleable__content"><pre>ColumnTransformer(transformers=[(&#x27;long_and_lat&#x27;, &#x27;passthrough&#x27;,[&#x27;Longitude&#x27;, &#x27;Latitude&#x27;])])</pre></div></div></div><div class="sk-parallel"><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-43" type="checkbox" ><label for="sk-estimator-id-43" class="sk-toggleable__label sk-toggleable__label-arrow">long_and_lat</label><div class="sk-toggleable__content"><pre>[&#x27;Longitude&#x27;, &#x27;Latitude&#x27;]</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-44" type="checkbox" ><label for="sk-estimator-id-44" class="sk-toggleable__label sk-toggleable__label-arrow">passthrough</label><div class="sk-toggleable__content"><pre>passthrough</pre></div></div></div></div></div></div></div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-45" type="checkbox" ><label for="sk-estimator-id-45" class="sk-toggleable__label sk-toggleable__label-arrow">KNeighborsRegressor</label><div class="sk-toggleable__content"><pre>KNeighborsRegressor()</pre></div></div></div></div></div></div></div></div></div></div><div class="sk-item"><div class="sk-parallel"><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><label>final_estimator</label></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-46" type="checkbox" ><label for="sk-estimator-id-46" class="sk-toggleable__label sk-toggleable__label-arrow">GradientBoostingRegressor</label><div class="sk-toggleable__content"><pre>GradientBoostingRegressor(n_estimators=500, random_state=0)</pre></div></div></div></div></div></div></div></div></div></div></div></div> ## Evaluation Results Metrics are calculated on the test set | Metric | Value | |-------------------------|--------------| | Root mean squared error | 44273.5 | | Mean absolute error | 30079.9 | | R² | 0.805954 | ## Dataset description California Housing dataset -------------------------- **Data Set Characteristics:** :Number of Instances: 20640 :Number of Attributes: 8 numeric, predictive attributes and the target :Attribute Information: - MedInc median income in block group - HouseAge median house age in block group - AveRooms average number of rooms per household - AveBedrms average number of bedrooms per household - Population block group population - AveOccup average number of household members - Latitude block group latitude - Longitude block group longitude :Missing Attribute Values: None This dataset was obtained from the StatLib repository. https://www.dcc.fc.up.pt/~ltorgo/Regression/cal_housing.html The target variable is the median house value for California districts, expressed in hundreds of thousands of dollars ($100,000). This dataset was derived from the 1990 U.S. census, using one row per census block group. A block group is the smallest geographical unit for which the U.S. Census Bureau publishes sample data (a block group typically has a population of 600 to 3,000 people). An household is a group of people residing within a home. Since the average number of rooms and bedrooms in this dataset are provided per household, these columns may take surpinsingly large values for block groups with few households and many empty houses, such as vacation resorts. It can be downloaded/loaded using the :func:`sklearn.datasets.fetch_california_housing` function. .. topic:: References - Pace, R. Kelley and Ronald Barry, Sparse Spatial Autoregressions, Statistics and Probability Letters, 33 (1997) 291-297 ### Data distribution <details> <summary> Click to expand </summary> ![Data distribution](geographic.png) </details> # How to Get Started with the Model Run the code below to load the model ```python import json import pandas as pd import skops.io as sio model = sio.load("model.skops") with open("config.json") as f: config = json.load(f) model.predict(pd.DataFrame.from_dict(config["sklearn"]["example_input"])) ``` # Model Card Authors Benjamin Bossan # Model Card Contact benjamin@huggingface.co # Permutation Importances ![Permutation Importances](permutation-importances.png)
sevk/kkbot
sevk
"2023-05-22T00:18:46Z"
0
0
null
[ "license:mit", "region:us" ]
null
"2023-05-22T00:18:46Z"
--- license: mit ---
erickyue/moon
erickyue
"2024-02-10T16:42:23Z"
0
0
null
[ "region:us" ]
null
"2023-05-22T00:26:42Z"
Entry not found
jarl0415/jarl
jarl0415
"2023-05-22T00:45:31Z"
0
0
null
[ "license:openrail", "region:us" ]
null
"2023-05-22T00:45:31Z"
--- license: openrail ---
public-data/DeepDanbooru
public-data
"2022-01-23T22:31:55Z"
0
0
null
[ "region:us" ]
null
"2023-05-22T00:53:07Z"
# DeepDanbooru - https://github.com/KichangKim/DeepDanbooru - https://github.com/KichangKim/DeepDanbooru/releases/tag/v3-20200915-sgd-e30 - https://github.com/KichangKim/DeepDanbooru/releases/download/v3-20200915-sgd-e30/deepdanbooru-v3-20200915-sgd-e30.zip
jie001/find
jie001
"2023-05-22T00:54:36Z"
0
0
null
[ "license:openrail", "region:us" ]
null
"2023-05-22T00:54:35Z"
--- license: openrail ---
Elonvrc/Yuzl
Elonvrc
"2023-05-22T00:55:50Z"
0
0
null
[ "region:us" ]
null
"2023-05-22T00:55:24Z"
hu
perfectino/naput
perfectino
"2023-05-23T17:25:20Z"
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
"2023-05-22T00:56:06Z"
--- license: creativeml-openrail-m ---
EDWINHM/egla
EDWINHM
"2023-05-22T00:56:18Z"
0
0
null
[ "region:us" ]
null
"2023-05-22T00:56:18Z"
Entry not found
ssxjz/singer
ssxjz
"2023-05-22T01:01:14Z"
0
0
null
[ "region:us" ]
null
"2023-05-22T01:01:14Z"
Entry not found
dongyoungkim/whisper-large-korean-A
dongyoungkim
"2023-05-22T01:03:23Z"
0
0
null
[ "region:us" ]
null
"2023-05-22T01:03:23Z"
Entry not found
max2lax/Newdataset
max2lax
"2023-05-22T01:13:35Z"
0
0
null
[ "license:apache-2.0", "region:us" ]
null
"2023-05-22T01:13:35Z"
--- license: apache-2.0 ---
Laurie/lora-instruct-chat-50k-cn-en
Laurie
"2023-05-24T08:07:31Z"
0
0
null
[ "region:us" ]
null
"2023-05-22T01:13:35Z"
# 经测试,此版本的效果较好😀 I use the 50k [Chinese data](https://huggingface.co/datasets/Chinese-Vicuna/instruct_chat_50k.jsonl), which is the combination of alpaca_chinese_instruction_dataset and the Chinese conversation data from sharegpt-90k data. I finetune the model for 3 epochs use a single 4090 GPU with cutoff_len=1024. **Use in Python**: from transformers import LlamaForCausalLM, LlamaTokenizer from peft import PeftModel import torch tokenizer = LlamaTokenizer.from_pretrained("decapoda-research/llama-7b-hf") model = LlamaForCausalLM.from_pretrained( "decapoda-research/llama-7b-hf", load_in_8bit=True, torch_dtype=torch.float16, device_map="auto", ) model = PeftModel.from_pretrained( model, "Laurie/lora-instruct-chat-50k-cn-en", torch_dtype=torch.float16, device_map={'': 0} ) device = "cuda" if torch.cuda.is_available() else "cpu" inputs = tokenizer("什么是自然语言处理?",return_tensors="pt" ) model.to(device) with torch.no_grad(): inputs = {k: v.to(device) for k, v in inputs.items()} outputs = model.generate(input_ids=inputs["input_ids"], max_new_tokens=129) print(tokenizer.batch_decode(outputs.detach().cpu().numpy(), skip_special_tokens=True))
raghudinesh/ddp_final
raghudinesh
"2023-05-22T01:15:05Z"
0
0
null
[ "region:us" ]
null
"2023-05-22T01:15:05Z"
Entry not found
dnsn/t5-large_PREFIX_TUNING_SEQ2SEQ
dnsn
"2023-05-22T01:21:38Z"
0
0
null
[ "region:us" ]
null
"2023-05-22T01:21:34Z"
Entry not found
duanhong/learning
duanhong
"2023-05-22T01:39:30Z"
0
0
null
[ "region:us" ]
null
"2023-05-22T01:24:51Z"
Entry not found
ntedeschi/reconcile_the_irreconcilable
ntedeschi
"2023-05-22T03:41:09Z"
0
0
null
[ "region:us" ]
null
"2023-05-22T01:25:57Z"
--- # For reference on model card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1 # Doc / guide: https://huggingface.co/docs/hub/model-cards {} --- # Reconcile the Irreconcilable <!-- Provide a quick summary of what the model is/does. --> This model tries to reconcile the views of Hegel and Ayn Rand on a given philosophical topic. ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> The purpose of the model is to give the views of Hegel and Ayn Rand on a given philosophical topic. Then it is supposed to write a paragraph reconciling their (most likely contrary) views. The model was multitasked fine-tuned on [bloomz-3b](https://huggingface.co/bigscience/bloomz-3b). Data for the fine-tuning was generated using chatGPT GPT-4. - **Developed by:** [Neil Tedeschi](https://huggingface.co/ntedeschi) - **Training dataset:** [reconcile_the_irreconcilable](https://huggingface.co/datasets/ntedeschi/reconcile_the_irreconcilable) - **Language(s) (NLP):** [bloomz-3b](https://huggingface.co/bigscience/bloomz-3b) ## Direct Use I am not sure how to get the model to work on this site. So, annoyingly, you need to cut and paste the following code into a notebook. 1. Download the adapter and connect with base model. ``` import torch from peft import PeftModel, PeftConfig from transformers import AutoModelForCausalLM, AutoTokenizer peft_model_id = "ntedeschi/reconcile_the_irreconcilable" config = PeftConfig.from_pretrained(peft_model_id) model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path, return_dict=True, load_in_8bit=False, device_map='auto') tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path) # Load the Lora model model = PeftModel.from_pretrained(model, peft_model_id) ``` 2. Set up prompt and query function: ``` from IPython.display import display, Markdown def make_inference(topic): batch = tokenizer( f"### INSTRUCTION\nBelow is a philosophy topic. Please write Hegel's view on the topic, Ayn Rand's view \ on the topic and a reconciliation of their views. \ \n\n### Topic:\n{topic}\n \ \n\n### Hegel:\n \ \n\n### Ayn Rand:\n \ \n\n### Reconciliation:\n", return_tensors='pt' ) with torch.cuda.amp.autocast(): output_tokens = model.generate(**batch, max_new_tokens=512) display(Markdown((tokenizer.decode(output_tokens[0], skip_special_tokens=True)))) ``` 3. Make the inference by giving a philosophy topic. For example, ``` philosophy_topic = "Mind body dualism" make_inference(philosophy_topic) ```
Gille/GilleMix_v2_tests
Gille
"2023-06-03T22:09:10Z"
0
1
null
[ "license:creativeml-openrail-m", "region:us" ]
null
"2023-05-22T01:31:26Z"
--- license: creativeml-openrail-m ---
pennlio/test
pennlio
"2023-05-22T01:33:35Z"
0
0
null
[ "region:us" ]
null
"2023-05-22T01:33:35Z"
Entry not found
TKNM/nva-ze_sayaka04
TKNM
"2023-05-22T01:39:18Z"
0
0
null
[ "region:us" ]
null
"2023-05-22T01:38:46Z"
Entry not found
outterseayi/childmask
outterseayi
"2023-05-22T01:38:51Z"
0
0
null
[ "region:us" ]
null
"2023-05-22T01:38:51Z"
Entry not found
collabrl/SpaceInvadersNoFrameskip-v4
collabrl
"2023-05-22T01:40:23Z"
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
"2023-05-22T01:39:43Z"
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 808.00 +/- 284.47 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga collabrl -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga collabrl -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga collabrl ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
denaneek/fine-tuning_BLOOMZ_using_LoRA
denaneek
"2023-05-22T02:35:30Z"
0
0
null
[ "region:us" ]
null
"2023-05-22T01:42:27Z"
Entry not found
douglch/q-FrozenLake-v1-4x4-noSlippery
douglch
"2023-05-22T02:02:09Z"
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
"2023-05-22T01:43:30Z"
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="douglch/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
betterme/models
betterme
"2023-05-22T02:05:09Z"
0
0
null
[ "region:us" ]
null
"2023-05-22T01:57:03Z"
Entry not found
StupidGame/kyawawa_loha
StupidGame
"2023-05-22T01:59:53Z"
0
0
null
[ "region:us" ]
null
"2023-05-22T01:59:07Z"
Entry not found
ongknsro/ACARISBERT-RoBERTa
ongknsro
"2023-05-22T02:01:22Z"
0
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
"2023-05-22T02:00:37Z"
Entry not found
moghis/LunarLander-v2-scratch
moghis
"2023-05-22T02:09:43Z"
0
0
null
[ "tensorboard", "LunarLander-v2", "ppo", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "deep-rl-course", "model-index", "region:us" ]
reinforcement-learning
"2023-05-22T02:04:27Z"
--- tags: - LunarLander-v2 - ppo - deep-reinforcement-learning - reinforcement-learning - custom-implementation - deep-rl-course model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -144.28 +/- 93.95 name: mean_reward verified: false --- # PPO Agent Playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2. # Hyperparameters ```python {'exp_name': 'ppo' 'seed': 1 'torch_deterministic': True 'cuda': True 'track': False 'wandb_project_name': 'cleanRL' 'wandb_entity': None 'capture_video': False 'env_id': 'LunarLander-v2' 'total_timesteps': 80000 'learning_rate': 0.00025 'num_envs': 4 'num_steps': 128 'anneal_lr': True 'gae': True 'gamma': 0.99 'gae_lambda': 0.95 'num_minibatches': 4 'update_epochs': 4 'norm_adv': True 'clip_coef': 0.2 'clip_vloss': True 'ent_coef': 0.01 'vf_coef': 0.5 'max_grad_norm': 0.5 'target_kl': None 'repo_id': 'moghis/LunarLander-v2-scratch' 'batch_size': 512 'minibatch_size': 128} ```
douglch/q-learning_taxi_v3
douglch
"2023-05-22T02:07:06Z"
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
"2023-05-22T02:04:40Z"
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-learning_taxi_v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.24 +/- 2.60 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="douglch/q-learning_taxi_v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
ApolloFilippou/a2c-PandaReachDense-v2
ApolloFilippou
"2023-05-22T02:09:07Z"
0
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
"2023-05-22T02:06:27Z"
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -0.44 +/- 0.12 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
addiekline/genaidemo
addiekline
"2023-05-22T02:12:24Z"
0
0
null
[ "region:us" ]
null
"2023-05-22T02:12:23Z"
Entry not found
dddx/mehmehmeh
dddx
"2023-05-22T02:29:59Z"
0
0
null
[ "region:us" ]
null
"2023-05-22T02:29:59Z"
Entry not found
AI2CC/luzhiy
AI2CC
"2023-05-22T02:50:15Z"
0
0
transformers
[ "transformers", "endpoints_compatible", "region:us" ]
null
"2023-05-22T02:42:30Z"
Entry not found
Pegasus88/liuling1
Pegasus88
"2023-05-22T02:45:13Z"
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
"2023-05-22T02:43:52Z"
--- license: creativeml-openrail-m ---
Chen311/angie
Chen311
"2023-05-22T02:51:07Z"
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
"2023-05-22T02:46:50Z"
--- license: creativeml-openrail-m ---
Zx1140199595/ControlNet
Zx1140199595
"2023-05-27T12:52:45Z"
0
0
null
[ "region:us" ]
null
"2023-05-22T02:54:00Z"
Entry not found
DisasterArtist/DIO
DisasterArtist
"2023-05-23T22:49:16Z"
0
0
transformers
[ "transformers", "endpoints_compatible", "region:us" ]
null
"2023-05-22T02:54:56Z"
Entry not found
albertStarCloud/mit-b0-scene-parse-150-lora
albertStarCloud
"2023-05-22T03:23:17Z"
0
0
null
[ "pytorch", "tensorboard", "region:us" ]
null
"2023-05-22T02:56:28Z"
Entry not found
takesomerisks/loraBnbOpt13bOasst1Local
takesomerisks
"2023-05-22T13:17:34Z"
0
0
null
[ "region:us" ]
null
"2023-05-22T02:58:03Z"
Entry not found
warren2023/xlm-roberta-base-finetuned-panx-de-fr
warren2023
"2023-05-22T03:10:54Z"
0
0
null
[ "region:us" ]
null
"2023-05-22T03:10:54Z"
Entry not found
Faiza3/martin_valen_dataset_faf
Faiza3
"2023-05-22T03:11:40Z"
0
0
null
[ "region:us" ]
null
"2023-05-22T03:11:40Z"
Entry not found
chenbowen-184/GenerAd
chenbowen-184
"2023-05-22T03:13:20Z"
0
0
null
[ "region:us" ]
null
"2023-05-22T03:13:18Z"
Entry not found
Pachosoad/Sad
Pachosoad
"2023-05-22T03:13:58Z"
0
0
null
[ "license:bigscience-openrail-m", "region:us" ]
null
"2023-05-22T03:13:58Z"
--- license: bigscience-openrail-m ---
ApolloFilippou/poca-SoccerTwos
ApolloFilippou
"2023-05-22T03:18:11Z"
0
0
null
[ "region:us" ]
null
"2023-05-22T03:18:11Z"
Entry not found
joshxin/test-model
joshxin
"2023-05-22T03:24:18Z"
0
0
null
[ "region:us" ]
null
"2023-05-22T03:24:18Z"
Entry not found
xixixixihu/output
xixixixihu
"2023-05-22T03:26:06Z"
0
0
null
[ "region:us" ]
null
"2023-05-22T03:26:06Z"
Entry not found
ttogun/fourthbrain_wk1_finetuned_bloomz_ad_gen
ttogun
"2023-05-22T03:26:32Z"
0
0
null
[ "region:us" ]
null
"2023-05-22T03:26:26Z"
Entry not found
antruong/speecht5_tts_pierre
antruong
"2023-05-22T03:34:20Z"
0
0
null
[ "region:us" ]
null
"2023-05-22T03:34:20Z"
Entry not found
rxl7906/super-cool-model
rxl7906
"2023-05-22T03:36:21Z"
0
0
null
[ "region:us" ]
null
"2023-05-22T03:36:21Z"
Entry not found
Skim7603/imneko
Skim7603
"2023-05-22T03:40:59Z"
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
"2023-05-22T03:37:22Z"
--- license: creativeml-openrail-m ---
humin1102/vicuna-13b-all-v1.1
humin1102
"2023-05-22T06:25:03Z"
0
1
transformers
[ "transformers", "pytorch", "llama", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2023-05-22T03:45:18Z"
Entry not found
marasama/nva-king_george_v
marasama
"2023-05-22T03:49:10Z"
0
0
null
[ "region:us" ]
null
"2023-05-22T03:47:46Z"
Entry not found
kebab111/SevensMix
kebab111
"2023-05-22T03:52:41Z"
0
0
diffusers
[ "diffusers", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
"2023-05-22T03:51:32Z"
Entry not found
nikitagricanuk/vicuna-13b
nikitagricanuk
"2023-05-22T03:53:34Z"
0
0
null
[ "region:us" ]
null
"2023-05-22T03:53:34Z"
Entry not found
iamanavk/qm_sum_t5-base_attempt_2
iamanavk
"2023-05-22T03:58:08Z"
0
0
null
[ "region:us" ]
null
"2023-05-22T03:58:08Z"
Entry not found
kebab111/AresMix
kebab111
"2023-05-22T03:59:24Z"
0
0
diffusers
[ "diffusers", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
"2023-05-22T03:58:20Z"
Entry not found
moghis/rl_course_vizdoom_health_gathering_supreme
moghis
"2023-05-22T03:59:27Z"
0
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
"2023-05-22T03:59:12Z"
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_health_gathering_supreme type: doom_health_gathering_supreme metrics: - type: mean_reward value: 8.25 +/- 2.88 name: mean_reward verified: false --- A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment. This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory. Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/ ## Downloading the model After installing Sample-Factory, download the model with: ``` python -m sample_factory.huggingface.load_from_hub -r moghis/rl_course_vizdoom_health_gathering_supreme ``` ## Using the model To run the model after download, use the `enjoy` script corresponding to this environment: ``` python -m .usr.local.lib.python3.10.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme ``` You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag. See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details ## Training with this model To continue training with this model, use the `train` script corresponding to this environment: ``` python -m .usr.local.lib.python3.10.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000 ``` Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
kirp/psy-llama-extend-delta
kirp
"2023-05-27T05:02:31Z"
0
1
null
[ "dataset:siyangliu/PsyQA", "license:apache-2.0", "region:us" ]
null
"2023-05-22T03:59:48Z"
--- license: apache-2.0 datasets: - siyangliu/PsyQA --- Extend the vocab of llama to 52992 and random initialization.
leonhe/ppo-LunarLander-v2
leonhe
"2023-05-22T04:03:30Z"
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
"2023-05-22T04:03:05Z"
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 225.17 +/- 41.05 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
yusufagung29/whisper_1e-4_clean_legion_fleurs
yusufagung29
"2023-05-22T18:38:57Z"
0
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
"2023-05-22T04:15:36Z"
Entry not found
ShawnGGG/update
ShawnGGG
"2023-05-22T04:16:41Z"
0
0
null
[ "region:us" ]
null
"2023-05-22T04:16:08Z"
Entry not found
moin1234/MHAI
moin1234
"2023-05-22T04:26:30Z"
0
0
null
[ "arxiv:1910.09700", "region:us" ]
null
"2023-05-22T04:22:08Z"
--- # For reference on model card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1 # Doc / guide: https://huggingface.co/docs/hub/model-cards {} --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1). ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
BIDJOE/Safety-Protocol-YOLOv5-Vanilla
BIDJOE
"2023-05-22T04:29:06Z"
0
0
null
[ "region:us" ]
null
"2023-05-22T04:28:11Z"
Entry not found
fcuadra/FineTuningBLOOMZ
fcuadra
"2023-05-22T04:45:21Z"
0
0
adapter-transformers
[ "adapter-transformers", "text-generation", "dataset:fcuadra/MarketMail_AI", "license:bigscience-bloom-rail-1.0", "region:us" ]
text-generation
"2023-05-22T04:32:01Z"
--- license: bigscience-bloom-rail-1.0 datasets: - fcuadra/MarketMail_AI library_name: adapter-transformers pipeline_tag: text-generation ---
prismaticholdings/prismaticholdings
prismaticholdings
"2023-05-22T04:35:44Z"
0
0
null
[ "license:openrail", "region:us" ]
null
"2023-05-22T04:35:44Z"
--- license: openrail ---
lip421/wutoududou4
lip421
"2023-05-22T04:36:22Z"
0
0
null
[ "region:us" ]
null
"2023-05-22T04:36:17Z"
Entry not found
rewoo/planner_7B
rewoo
"2023-05-28T23:03:35Z"
0
17
null
[ "license:mit", "region:us" ]
null
"2023-05-22T04:48:40Z"
--- license: mit --- Alpaca Lora adapter weight fine-tuned on following instruction dataset. https://huggingface.co/datasets/rewoo/planner_instruction_tuning_2k/blob/main/README.md Training script: borrowed from the official [Alpaca-LoRA](https://github.com/tloen/alpaca-lora) implementation We use following parameter. ``` python finetune.py \ --base_model 'decapoda-research/llama-7b-hf' \ --data_path 'rewoo/planner_instruction_tuning_2k' \ --output_dir './lora-alpaca-planner' \ --batch_size 128 \ --micro_batch_size 8 \ --num_epochs 10 \ --learning_rate 1e-4 \ --cutoff_len 1024 \ --val_set_size 200 \ --lora_r 8 \ --lora_alpha 16 \ --lora_dropout 0.05 \ --lora_target_modules '[q_proj,v_proj]' \ --train_on_inputs \ --group_by_length \ --resume_from_checkpoint 'tloen/alpaca-lora-7b' ```
TKNM/nva-fh_nie2_02r
TKNM
"2023-05-22T04:57:33Z"
0
0
null
[ "region:us" ]
null
"2023-05-22T04:57:22Z"
Entry not found
natanasha/posing
natanasha
"2023-05-22T05:00:54Z"
0
0
null
[ "region:us" ]
null
"2023-05-22T04:58:51Z"
Entry not found
averageandyyy/brainheck_imda_wav2vec_hf
averageandyyy
"2023-05-22T05:02:36Z"
0
0
null
[ "region:us" ]
null
"2023-05-22T05:02:36Z"
Entry not found
Tony1810/Draft
Tony1810
"2023-05-22T05:12:10Z"
0
0
null
[ "region:us" ]
null
"2023-05-22T05:06:07Z"
Entry not found
Trinity123/Testn1
Trinity123
"2023-05-22T05:09:16Z"
0
0
null
[ "region:us" ]
null
"2023-05-22T05:09:16Z"
Entry not found
GeneZC/bert-base-cola
GeneZC
"2023-05-22T08:34:09Z"
0
0
transformers
[ "transformers", "pytorch", "bert", "dataset:glue", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
"2023-05-22T05:20:29Z"
--- license: apache-2.0 datasets: - glue --- # Model Details `bert-base-uncased` finetuned on `CoLA`. ## Parameter settings batch size is 32, learning rate is 2e-5. ## Metrics matthews_corr: 0.6295
KyungChang/TestModel
KyungChang
"2023-05-22T05:25:22Z"
0
0
null
[ "license:openrail", "region:us" ]
null
"2023-05-22T05:25:22Z"
--- license: openrail ---
PragyanPrusty/wav2vec2-large-xlsr-53-odia-colab
PragyanPrusty
"2023-05-22T11:50:47Z"
0
0
null
[ "region:us" ]
null
"2023-05-22T05:25:27Z"
Entry not found
RanaReebaal/clip-embeddings
RanaReebaal
"2023-05-22T05:33:43Z"
0
0
null
[ "endpoints_compatible", "region:us" ]
null
"2023-05-22T05:28:27Z"
Entry not found
dustinator/BusinessGuy-GPT
dustinator
"2023-05-22T05:30:47Z"
0
0
null
[ "region:us" ]
null
"2023-05-22T05:30:47Z"
Entry not found
Odlanier968/Gggg
Odlanier968
"2023-05-22T05:31:37Z"
0
0
null
[ "region:us" ]
null
"2023-05-22T05:31:37Z"
Entry not found
Valentine89/TwitterSentimentAnalysis
Valentine89
"2023-05-22T05:32:12Z"
0
0
null
[ "license:openrail", "region:us" ]
null
"2023-05-22T05:32:12Z"
--- license: openrail ---
oguzhanascr/oascier
oguzhanascr
"2023-05-22T05:32:34Z"
0
0
null
[ "region:us" ]
null
"2023-05-22T05:32:34Z"
Entry not found
warren2023/xlm-roberta-base-finetuned-panx-fr
warren2023
"2023-05-22T05:35:43Z"
0
0
null
[ "region:us" ]
null
"2023-05-22T05:35:43Z"
Entry not found
sj1/textual_inversion_cat
sj1
"2023-05-22T05:38:00Z"
0
0
null
[ "region:us" ]
null
"2023-05-22T05:38:00Z"
Entry not found