modelId
stringlengths
4
122
author
stringlengths
2
42
last_modified
unknown
downloads
int64
0
392M
likes
int64
0
6.56k
library_name
stringclasses
368 values
tags
sequencelengths
1
4.05k
pipeline_tag
stringclasses
51 values
createdAt
unknown
card
stringlengths
1
1M
BAAI/bge-multilingual-gemma2
BAAI
"2024-07-31T08:07:09Z"
73,483
128
sentence-transformers
[ "sentence-transformers", "safetensors", "gemma2", "feature-extraction", "sentence-similarity", "transformers", "mteb", "arxiv:2402.03216", "arxiv:2309.07597", "license:gemma", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
feature-extraction
"2024-07-25T16:55:46Z"
--- tags: - feature-extraction - sentence-similarity - sentence-transformers - transformers - mteb license: gemma model-index: - name: bge-multilingual-gemma2 results: - task: type: Retrieval dataset: type: mteb/nfcorpus name: MTEB NFCorpus config: default split: test revision: ec0fa4fe99da2ff19ca1214b7966684033a58814 metrics: - type: main_score value: 38.11433513284057 - type: ndcg_at_1 value: 48.45201238390093 - type: ndcg_at_3 value: 44.451438575534574 - type: ndcg_at_5 value: 41.13929990797894 - type: ndcg_at_10 value: 38.11433513284057 - type: ndcg_at_100 value: 35.36065387898559 - type: ndcg_at_1000 value: 44.01125752781003 - type: map_at_1 value: 5.638004398054564 - type: map_at_3 value: 10.375632572339333 - type: map_at_5 value: 11.820531148202422 - type: map_at_10 value: 14.087436978063389 - type: map_at_100 value: 18.25397463114958 - type: map_at_1000 value: 19.868440221606203 - type: precision_at_1 value: 49.84520123839009 - type: precision_at_3 value: 41.89886480908153 - type: precision_at_5 value: 35.356037151702814 - type: precision_at_10 value: 28.513931888544857 - type: precision_at_100 value: 9.337461300309604 - type: precision_at_1000 value: 2.210216718266251 - type: recall_at_1 value: 5.638004398054564 - type: recall_at_3 value: 11.938154656310312 - type: recall_at_5 value: 14.06183119422843 - type: recall_at_10 value: 18.506397834147705 - type: recall_at_100 value: 35.96995569451433 - type: recall_at_1000 value: 68.31771509404795 - task: type: Retrieval dataset: type: mteb/msmarco name: MTEB MSMARCO config: default split: dev revision: c5a29a104738b98a9e76336939199e264163d4a0 metrics: - type: main_score value: 45.70688915742828 - type: ndcg_at_1 value: 26.002865329512893 - type: ndcg_at_3 value: 37.49665652114275 - type: ndcg_at_5 value: 41.684045067615834 - type: ndcg_at_10 value: 45.70688915742828 - type: ndcg_at_100 value: 51.08932609519671 - type: ndcg_at_1000 value: 51.98806137292924 - type: map_at_1 value: 25.35219675262655 - type: map_at_3 value: 34.39549506526583 - type: map_at_5 value: 36.74936326010824 - type: map_at_10 value: 38.44429852488596 - type: map_at_100 value: 39.60260286311527 - type: map_at_1000 value: 39.64076154054021 - type: precision_at_1 value: 26.002865329512893 - type: precision_at_3 value: 15.840496657115954 - type: precision_at_5 value: 11.647564469914684 - type: precision_at_10 value: 7.1275071633243705 - type: precision_at_100 value: 0.9782234957019871 - type: precision_at_1000 value: 0.10565902578797497 - type: recall_at_1 value: 25.35219675262655 - type: recall_at_3 value: 45.78438395415474 - type: recall_at_5 value: 55.83213944603631 - type: recall_at_10 value: 68.08500477554918 - type: recall_at_100 value: 92.55133715377269 - type: recall_at_1000 value: 99.29083094555875 - task: type: Retrieval dataset: type: mteb/fiqa name: MTEB FiQA2018 config: default split: test revision: 27a168819829fe9bcd655c2df245fb19452e8e06 metrics: - type: main_score value: 60.04205769404706 - type: ndcg_at_1 value: 59.25925925925925 - type: ndcg_at_3 value: 55.96637679199298 - type: ndcg_at_5 value: 56.937223390223956 - type: ndcg_at_10 value: 60.04205769404706 - type: ndcg_at_100 value: 66.01619664462949 - type: ndcg_at_1000 value: 67.59651529720728 - type: map_at_1 value: 31.5081163692275 - type: map_at_3 value: 45.7486689836227 - type: map_at_5 value: 48.944906602314 - type: map_at_10 value: 51.85427043799874 - type: map_at_100 value: 53.92920237379484 - type: map_at_1000 value: 54.04694438963671 - type: precision_at_1 value: 59.25925925925925 - type: precision_at_3 value: 37.44855967078195 - type: precision_at_5 value: 26.913580246913547 - type: precision_at_10 value: 16.52777777777774 - type: precision_at_100 value: 2.2962962962962754 - type: precision_at_1000 value: 0.2566358024691334 - type: recall_at_1 value: 31.5081163692275 - type: recall_at_3 value: 50.71759045138676 - type: recall_at_5 value: 57.49321152098932 - type: recall_at_10 value: 67.36356750245642 - type: recall_at_100 value: 88.67335767798735 - type: recall_at_1000 value: 97.83069725199356 - task: type: Retrieval dataset: type: mteb/scidocs name: MTEB SCIDOCS config: default split: test revision: f8c2fcf00f625baaa80f62ec5bd9e1fff3b8ae88 metrics: - type: main_score value: 26.93150756480961 - type: ndcg_at_1 value: 30.8 - type: ndcg_at_3 value: 25.048085553386628 - type: ndcg_at_5 value: 22.351207380852305 - type: ndcg_at_10 value: 26.93150756480961 - type: ndcg_at_100 value: 37.965486832874014 - type: ndcg_at_1000 value: 43.346046425140244 - type: map_at_1 value: 6.238333333333366 - type: map_at_3 value: 11.479166666666679 - type: map_at_5 value: 14.215999999999983 - type: map_at_10 value: 16.774632936507945 - type: map_at_100 value: 20.148869158557293 - type: map_at_1000 value: 20.528644104490823 - type: precision_at_1 value: 30.8 - type: precision_at_3 value: 23.466666666666736 - type: precision_at_5 value: 19.899999999999967 - type: precision_at_10 value: 14.069999999999938 - type: precision_at_100 value: 2.9770000000000065 - type: precision_at_1000 value: 0.42569999999999486 - type: recall_at_1 value: 6.238333333333366 - type: recall_at_3 value: 14.29333333333338 - type: recall_at_5 value: 20.206666666666628 - type: recall_at_10 value: 28.573333333333224 - type: recall_at_100 value: 60.43666666666675 - type: recall_at_1000 value: 86.3649999999997 - task: type: Retrieval dataset: type: mteb/fever name: MTEB FEVER config: default split: test revision: bea83ef9e8fb933d90a2f1d5515737465d613e12 metrics: - type: main_score value: 90.38165339181239 - type: ndcg_at_1 value: 84.86348634863486 - type: ndcg_at_3 value: 88.98667069230609 - type: ndcg_at_5 value: 89.86028996734895 - type: ndcg_at_10 value: 90.38165339181239 - type: ndcg_at_100 value: 90.99655378684439 - type: ndcg_at_1000 value: 91.15536362599602 - type: map_at_1 value: 78.8556296105801 - type: map_at_3 value: 86.24061810942983 - type: map_at_5 value: 86.94776680048933 - type: map_at_10 value: 87.26956235873007 - type: map_at_100 value: 87.47986397174834 - type: map_at_1000 value: 87.4897076664281 - type: precision_at_1 value: 84.86348634863486 - type: precision_at_3 value: 34.02340234023296 - type: precision_at_5 value: 21.10411041104359 - type: precision_at_10 value: 10.828082808282083 - type: precision_at_100 value: 1.1381638163816703 - type: precision_at_1000 value: 0.11662166216622569 - type: recall_at_1 value: 78.8556296105801 - type: recall_at_3 value: 92.34465708475605 - type: recall_at_5 value: 94.58010682020583 - type: recall_at_10 value: 96.10713452297611 - type: recall_at_100 value: 98.31672452959585 - type: recall_at_1000 value: 99.25967001462051 - task: type: Retrieval dataset: type: mteb/arguana name: MTEB ArguAna config: default split: test revision: c22ab2a51041ffd869aaddef7af8d8215647e41a metrics: - type: main_score value: 77.36555747844541 - type: ndcg_at_1 value: 57.681365576102415 - type: ndcg_at_3 value: 72.01664798084765 - type: ndcg_at_5 value: 75.26345973082836 - type: ndcg_at_10 value: 77.36555747844541 - type: ndcg_at_100 value: 78.15567833673768 - type: ndcg_at_1000 value: 78.16528851292641 - type: map_at_1 value: 57.681365576102415 - type: map_at_3 value: 68.59886201991475 - type: map_at_5 value: 70.38051209103858 - type: map_at_10 value: 71.26684955632336 - type: map_at_100 value: 71.4637216600468 - type: map_at_1000 value: 71.46414501573332 - type: precision_at_1 value: 57.681365576102415 - type: precision_at_3 value: 27.287814129919084 - type: precision_at_5 value: 17.965860597439132 - type: precision_at_10 value: 9.623044096728066 - type: precision_at_100 value: 0.995732574679925 - type: precision_at_1000 value: 0.09964438122332549 - type: recall_at_1 value: 57.681365576102415 - type: recall_at_3 value: 81.86344238975818 - type: recall_at_5 value: 89.82930298719772 - type: recall_at_10 value: 96.23044096728307 - type: recall_at_100 value: 99.57325746799431 - type: recall_at_1000 value: 99.6443812233286 - task: type: Retrieval dataset: type: mteb/scifact name: MTEB SciFact config: default split: test revision: 0228b52cf27578f30900b9e5271d331663a030d7 metrics: - type: main_score value: 72.0465439956427 - type: ndcg_at_1 value: 58.666666666666664 - type: ndcg_at_3 value: 66.84566274610046 - type: ndcg_at_5 value: 69.46578881873717 - type: ndcg_at_10 value: 72.0465439956427 - type: ndcg_at_100 value: 74.25705461923272 - type: ndcg_at_1000 value: 74.63689058493014 - type: map_at_1 value: 55.59444444444445 - type: map_at_3 value: 63.71851851851852 - type: map_at_5 value: 65.5362962962963 - type: map_at_10 value: 66.84112433862435 - type: map_at_100 value: 67.36269426417417 - type: map_at_1000 value: 67.37568665562833 - type: precision_at_1 value: 58.666666666666664 - type: precision_at_3 value: 26.444444444444425 - type: precision_at_5 value: 17.66666666666672 - type: precision_at_10 value: 9.866666666666706 - type: precision_at_100 value: 1.0966666666666596 - type: precision_at_1000 value: 0.11266666666666675 - type: recall_at_1 value: 55.59444444444445 - type: recall_at_3 value: 72.72777777777777 - type: recall_at_5 value: 79.31666666666666 - type: recall_at_10 value: 86.75 - type: recall_at_100 value: 96.66666666666667 - type: recall_at_1000 value: 99.66666666666667 - task: type: Retrieval dataset: type: mteb/trec-covid name: MTEB TRECCOVID config: default split: test revision: bb9466bac8153a0349341eb1b22e06409e78ef4e metrics: - type: main_score value: 64.26928884606035 - type: ndcg_at_1 value: 63.0 - type: ndcg_at_3 value: 64.18432764386345 - type: ndcg_at_5 value: 64.73235515799435 - type: ndcg_at_10 value: 64.26928884606035 - type: ndcg_at_100 value: 52.39807133285409 - type: ndcg_at_1000 value: 52.19937563361241 - type: map_at_1 value: 0.18483494997310454 - type: map_at_3 value: 0.5139705769331114 - type: map_at_5 value: 0.8245601222717243 - type: map_at_10 value: 1.5832530269558573 - type: map_at_100 value: 9.664760850102393 - type: map_at_1000 value: 25.568347406468334 - type: precision_at_1 value: 70.0 - type: precision_at_3 value: 71.33333333333333 - type: precision_at_5 value: 71.60000000000001 - type: precision_at_10 value: 70.99999999999996 - type: precision_at_100 value: 55.140000000000015 - type: precision_at_1000 value: 23.857999999999997 - type: recall_at_1 value: 0.18483494997310454 - type: recall_at_3 value: 0.5584287301859913 - type: recall_at_5 value: 0.9489025953807098 - type: recall_at_10 value: 1.9023711039425688 - type: recall_at_100 value: 13.596810701594226 - type: recall_at_1000 value: 50.92058432920189 - task: type: Retrieval dataset: type: mteb/climate-fever name: MTEB ClimateFEVER config: default split: test revision: 47f2ac6acb640fc46020b02a5b59fdda04d39380 metrics: - type: main_score value: 39.37204193531481 - type: ndcg_at_1 value: 35.11400651465798 - type: ndcg_at_3 value: 32.36672790229743 - type: ndcg_at_5 value: 34.79369234162357 - type: ndcg_at_10 value: 39.37204193531481 - type: ndcg_at_100 value: 47.544500439419124 - type: ndcg_at_1000 value: 50.305733346049855 - type: map_at_1 value: 15.516829533116216 - type: map_at_3 value: 23.73669923995656 - type: map_at_5 value: 26.43208469055373 - type: map_at_10 value: 28.912036175309773 - type: map_at_100 value: 31.413762299240894 - type: map_at_1000 value: 31.596796093997014 - type: precision_at_1 value: 35.11400651465798 - type: precision_at_3 value: 24.994571118349487 - type: precision_at_5 value: 19.231270358305956 - type: precision_at_10 value: 12.690553745928165 - type: precision_at_100 value: 2.1576547231270466 - type: precision_at_1000 value: 0.2676221498371306 - type: recall_at_1 value: 15.516829533116216 - type: recall_at_3 value: 29.994571118349512 - type: recall_at_5 value: 37.14223669923993 - type: recall_at_10 value: 47.29207383279043 - type: recall_at_100 value: 74.37133550488598 - type: recall_at_1000 value: 89.41585233441913 - task: type: Retrieval dataset: type: mteb/hotpotqa name: MTEB HotpotQA config: default split: test revision: ab518f4d6fcca38d87c25209f94beba119d02014 metrics: - type: main_score value: 83.26282954330777 - type: ndcg_at_1 value: 87.5489534098582 - type: ndcg_at_3 value: 78.7646435855166 - type: ndcg_at_5 value: 81.41629077444277 - type: ndcg_at_10 value: 83.26282954330777 - type: ndcg_at_100 value: 85.2771369900158 - type: ndcg_at_1000 value: 85.77519303747493 - type: map_at_1 value: 43.7744767049291 - type: map_at_3 value: 73.4661264911093 - type: map_at_5 value: 75.7169705154168 - type: map_at_10 value: 76.89183627536043 - type: map_at_100 value: 77.53680315727078 - type: map_at_1000 value: 77.5649311522075 - type: precision_at_1 value: 87.5489534098582 - type: precision_at_3 value: 51.74881836596788 - type: precision_at_5 value: 33.13977042539127 - type: precision_at_10 value: 17.492234976369023 - type: precision_at_100 value: 1.9030384875084312 - type: precision_at_1000 value: 0.19679945982446267 - type: recall_at_1 value: 43.7744767049291 - type: recall_at_3 value: 77.62322754895341 - type: recall_at_5 value: 82.84942606347063 - type: recall_at_10 value: 87.4611748818366 - type: recall_at_100 value: 95.15192437542201 - type: recall_at_1000 value: 98.39972991222147 - task: type: Retrieval dataset: type: mteb/nq name: MTEB NQ config: default split: test revision: b774495ed302d8c44a3a7ea25c90dbce03968f31 metrics: - type: main_score value: 71.44670934705796 - type: ndcg_at_1 value: 54.026651216685984 - type: ndcg_at_3 value: 65.1267452491225 - type: ndcg_at_5 value: 68.6696802020747 - type: ndcg_at_10 value: 71.44670934705796 - type: ndcg_at_100 value: 73.74642927386503 - type: ndcg_at_1000 value: 73.90908268307331 - type: map_at_1 value: 48.50086906141366 - type: map_at_3 value: 61.07691193510995 - type: map_at_5 value: 63.36580243337187 - type: map_at_10 value: 64.74485498782997 - type: map_at_100 value: 65.34329174534082 - type: map_at_1000 value: 65.35107870745652 - type: precision_at_1 value: 54.026651216685984 - type: precision_at_3 value: 28.437620702974996 - type: precision_at_5 value: 19.20625724217861 - type: precision_at_10 value: 10.67207415990753 - type: precision_at_100 value: 1.1987253765932955 - type: precision_at_1000 value: 0.12143684820393259 - type: recall_at_1 value: 48.50086906141366 - type: recall_at_3 value: 73.19428350714561 - type: recall_at_5 value: 81.19689069138664 - type: recall_at_10 value: 89.04741212823485 - type: recall_at_100 value: 98.58053302433372 - type: recall_at_1000 value: 99.75376593279258 - task: type: Retrieval dataset: type: mteb/quora name: MTEB QuoraRetrieval config: default split: test revision: e4e08e0b7dbe3c8700f0daef558ff32256715259 metrics: - type: main_score value: 90.03760323006117 - type: ndcg_at_1 value: 83.53 - type: ndcg_at_3 value: 87.53800795646302 - type: ndcg_at_5 value: 88.92909168525203 - type: ndcg_at_10 value: 90.03760323006117 - type: ndcg_at_100 value: 91.08558507332712 - type: ndcg_at_1000 value: 91.1430039358834 - type: map_at_1 value: 72.61760432018744 - type: map_at_3 value: 83.8457060028347 - type: map_at_5 value: 85.6228412692169 - type: map_at_10 value: 86.67700531365115 - type: map_at_100 value: 87.29851728827602 - type: map_at_1000 value: 87.31014621733333 - type: precision_at_1 value: 83.53 - type: precision_at_3 value: 38.33666666667159 - type: precision_at_5 value: 25.12599999999881 - type: precision_at_10 value: 13.629999999998683 - type: precision_at_100 value: 1.5431999999999773 - type: precision_at_1000 value: 0.15671999999997974 - type: recall_at_1 value: 72.61760432018744 - type: recall_at_3 value: 89.06736052932686 - type: recall_at_5 value: 93.09634203522849 - type: recall_at_10 value: 96.35128012894234 - type: recall_at_100 value: 99.7740237858541 - type: recall_at_1000 value: 99.99690476190477 - task: type: Retrieval dataset: type: mteb/webis-touche2020 name: MTEB Touche2020 config: default split: test revision: a34f9a33db75fa0cbb21bb5cfc3dae8dc8bec93f metrics: - type: main_score value: 30.2563523019649 - type: ndcg_at_1 value: 37.755102040816325 - type: ndcg_at_3 value: 34.45349994459905 - type: ndcg_at_5 value: 32.508805919063086 - type: ndcg_at_10 value: 30.2563523019649 - type: ndcg_at_100 value: 40.538336664503746 - type: ndcg_at_1000 value: 52.2066951614923 - type: map_at_1 value: 2.75537988273998 - type: map_at_3 value: 6.011397290504469 - type: map_at_5 value: 8.666495836494098 - type: map_at_10 value: 12.17701515007822 - type: map_at_100 value: 18.789086471205852 - type: map_at_1000 value: 20.42972375502502 - type: precision_at_1 value: 40.816326530612244 - type: precision_at_3 value: 35.37414965986394 - type: precision_at_5 value: 32.244897959183675 - type: precision_at_10 value: 26.93877551020408 - type: precision_at_100 value: 8.163265306122451 - type: precision_at_1000 value: 1.5979591836734703 - type: recall_at_1 value: 2.75537988273998 - type: recall_at_3 value: 7.254270324385098 - type: recall_at_5 value: 11.580137100328589 - type: recall_at_10 value: 18.745232816450553 - type: recall_at_100 value: 50.196809658622755 - type: recall_at_1000 value: 85.87317364148332 - task: type: Retrieval dataset: type: mteb/dbpedia name: MTEB DBPedia config: default split: test revision: c0f706b76e590d620bd6618b3ca8efdd34e2d659 metrics: - type: main_score value: 51.36940792375597 - type: ndcg_at_1 value: 65.125 - type: ndcg_at_3 value: 55.3967569049025 - type: ndcg_at_5 value: 53.09668587926677 - type: ndcg_at_10 value: 51.36940792375597 - type: ndcg_at_100 value: 56.69623269243084 - type: ndcg_at_1000 value: 63.481061270842 - type: map_at_1 value: 10.265595545755545 - type: map_at_3 value: 16.776544233350698 - type: map_at_5 value: 20.184523605272798 - type: map_at_10 value: 24.772797659849264 - type: map_at_100 value: 36.72689012514183 - type: map_at_1000 value: 38.73869985105569 - type: precision_at_1 value: 77.5 - type: precision_at_3 value: 59.75000000000003 - type: precision_at_5 value: 52.849999999999994 - type: precision_at_10 value: 42.47499999999995 - type: precision_at_100 value: 13.614999999999993 - type: precision_at_1000 value: 2.500749999999998 - type: recall_at_1 value: 10.265595545755545 - type: recall_at_3 value: 17.819804963534246 - type: recall_at_5 value: 22.46124219601634 - type: recall_at_10 value: 30.44583516613163 - type: recall_at_100 value: 63.84118006287797 - type: recall_at_1000 value: 85.06450356093833 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackRetrieval config: default split: test revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4 metrics: - type: main_score value: 47.93921415959017 - type: ndcg_at_1 value: 36.526219490536015 - type: ndcg_at_3 value: 42.35099043224295 - type: ndcg_at_5 value: 44.989685312964156 - type: ndcg_at_10 value: 47.93921415959017 - type: ndcg_at_100 value: 53.05390282389675 - type: ndcg_at_1000 value: 54.776052731794266 - type: map_at_1 value: 30.818605279548184 - type: map_at_3 value: 38.363350019087974 - type: map_at_5 value: 40.295203936887226 - type: map_at_10 value: 41.81978941662592 - type: map_at_100 value: 43.13300727554278 - type: map_at_1000 value: 43.2351061120207 - type: precision_at_1 value: 36.526219490536015 - type: precision_at_3 value: 19.550515857206346 - type: precision_at_5 value: 13.958783060831967 - type: precision_at_10 value: 8.498592395773393 - type: precision_at_100 value: 1.3024888941713948 - type: precision_at_1000 value: 0.1630253057414617 - type: recall_at_1 value: 30.818605279548184 - type: recall_at_3 value: 45.9132085981904 - type: recall_at_5 value: 52.6851323959227 - type: recall_at_10 value: 61.39718618970463 - type: recall_at_100 value: 83.30757187969981 - type: recall_at_1000 value: 94.9192024147964 - dataset: config: en name: MTEB AmazonCounterfactualClassification (en) revision: e8379541af4e31359cca9fbcf4b00f2671dba205 split: test type: mteb/amazon_counterfactual metrics: - type: accuracy value: 89.47761194029852 - type: accuracy_stderr value: 1.6502495811564162 - type: ap value: 62.20813715457866 - type: ap_stderr value: 3.7902166647587854 - type: f1 value: 84.91493292274734 - type: f1_stderr value: 1.9572239640276208 - type: main_score value: 89.47761194029852 task: type: Classification - dataset: config: default name: MTEB AmazonPolarityClassification revision: e2d317d38cd51312af73b3d32a06d1a08b442046 split: test type: mteb/amazon_polarity metrics: - type: accuracy value: 96.89569999999999 - type: accuracy_stderr value: 0.6886368582206464 - type: ap value: 95.38531339207739 - type: ap_stderr value: 0.9009257949898158 - type: f1 value: 96.8941935264779 - type: f1_stderr value: 0.6908609132985931 - type: main_score value: 96.89569999999999 task: type: Classification - dataset: config: en name: MTEB AmazonReviewsClassification (en) revision: 1399c76144fd37290681b995c656ef9b2e06e26d split: test type: mteb/amazon_reviews_multi metrics: - type: accuracy value: 61.602000000000004 - type: accuracy_stderr value: 1.4532019818318436 - type: f1 value: 60.96100449021481 - type: f1_stderr value: 1.8031398419765765 - type: main_score value: 61.602000000000004 task: type: Classification - dataset: config: default name: MTEB ArxivClusteringP2P revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d split: test type: mteb/arxiv-clustering-p2p metrics: - type: main_score value: 54.906319409992 - type: v_measure value: 54.906319409992 - type: v_measure_std value: 14.382682652951683 task: type: Clustering - dataset: config: default name: MTEB ArxivClusteringS2S revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53 split: test type: mteb/arxiv-clustering-s2s metrics: - type: main_score value: 50.27779516565727 - type: v_measure value: 50.27779516565727 - type: v_measure_std value: 14.463711418590636 task: type: Clustering - dataset: config: default name: MTEB AskUbuntuDupQuestions revision: 2000358ca161889fa9c082cb41daa8dcfb161a54 split: test type: mteb/askubuntudupquestions-reranking metrics: - type: map value: 64.59457317979604 - type: mrr value: 78.05214791364376 - type: main_score value: 64.59457317979604 task: type: Reranking - dataset: config: default name: MTEB BIOSSES revision: d3fb88f8f02e40887cd149695127462bbcf29b4a split: test type: mteb/biosses-sts metrics: - type: cosine_pearson value: 86.5833945335644 - type: cosine_spearman value: 85.74472483606 - type: manhattan_pearson value: 85.07748703871708 - type: manhattan_spearman value: 85.1459160110718 - type: euclidean_pearson value: 85.14704290043478 - type: euclidean_spearman value: 85.10073425868336 - type: main_score value: 85.74472483606 task: type: STS - dataset: config: default name: MTEB Banking77Classification revision: 0fd18e25b25c072e09e0d92ab615fda904d66300 split: test type: mteb/banking77 metrics: - type: accuracy value: 92.53246753246755 - type: accuracy_stderr value: 0.5488837781559508 - type: f1 value: 92.5143182074032 - type: f1_stderr value: 0.5657577980223147 - type: main_score value: 92.53246753246755 task: type: Classification - dataset: config: default name: MTEB BiorxivClusteringP2P revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40 split: test type: mteb/biorxiv-clustering-p2p metrics: - type: main_score value: 52.64099497480452 - type: v_measure value: 52.64099497480452 - type: v_measure_std value: 1.081892399559334 task: type: Clustering - dataset: config: default name: MTEB BiorxivClusteringS2S revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908 split: test type: mteb/biorxiv-clustering-s2s metrics: - type: main_score value: 49.1972734308178 - type: v_measure value: 49.1972734308178 - type: v_measure_std value: 0.9081245477708283 task: type: Clustering - dataset: config: default name: MTEB EmotionClassification revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37 split: test type: mteb/emotion metrics: - type: accuracy value: 92.975 - type: accuracy_stderr value: 0.5287958017987677 - type: f1 value: 89.29755895896542 - type: f1_stderr value: 0.6485027046025079 - type: main_score value: 92.975 task: type: Classification - dataset: config: default name: MTEB ImdbClassification revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7 split: test type: mteb/imdb metrics: - type: accuracy value: 96.66480000000001 - type: accuracy_stderr value: 0.45673204398202666 - type: ap value: 95.33843919456118 - type: ap_stderr value: 0.6449846039754393 - type: f1 value: 96.6637668164617 - type: f1_stderr value: 0.45793673051468287 - type: main_score value: 96.66480000000001 task: type: Classification - dataset: config: en name: MTEB MTOPDomainClassification (en) revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf split: test type: mteb/mtop_domain metrics: - type: accuracy value: 98.61149110807114 - type: accuracy_stderr value: 0.469748178253266 - type: f1 value: 98.4685511007568 - type: f1_stderr value: 0.51636776728259 - type: main_score value: 98.61149110807114 task: type: Classification - dataset: config: en name: MTEB MTOPIntentClassification (en) revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba split: test type: mteb/mtop_intent metrics: - type: accuracy value: 95.51299589603283 - type: accuracy_stderr value: 0.3591676911539482 - type: f1 value: 85.2464691439773 - type: f1_stderr value: 0.9234502856695337 - type: main_score value: 95.51299589603283 task: type: Classification - dataset: config: en name: MTEB MassiveIntentClassification (en) revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 split: test type: mteb/amazon_massive_intent metrics: - type: accuracy value: 82.04774714189644 - type: accuracy_stderr value: 0.7288818520309376 - type: f1 value: 79.28060657840692 - type: f1_stderr value: 0.6872008571781982 - type: main_score value: 82.04774714189644 task: type: Classification - dataset: config: en name: MTEB MassiveScenarioClassification (en) revision: 7d571f92784cd94a019292a1f45445077d0ef634 split: test type: mteb/amazon_massive_scenario metrics: - type: accuracy value: 84.40147948890383 - type: accuracy_stderr value: 1.2939587629143627 - type: f1 value: 83.97779287582267 - type: f1_stderr value: 0.9970599222060901 - type: main_score value: 84.40147948890383 task: type: Classification - dataset: config: default name: MTEB MedrxivClusteringP2P revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73 split: test type: mteb/medrxiv-clustering-p2p metrics: - type: main_score value: 45.80879120838561 - type: v_measure value: 45.80879120838561 - type: v_measure_std value: 1.257800489264564 task: type: Clustering - dataset: config: default name: MTEB MedrxivClusteringS2S revision: 35191c8c0dca72d8ff3efcd72aa802307d469663 split: test type: mteb/medrxiv-clustering-s2s metrics: - type: main_score value: 44.106849261042505 - type: v_measure value: 44.106849261042505 - type: v_measure_std value: 1.4347344477874981 task: type: Clustering - dataset: config: default name: MTEB MindSmallReranking revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69 split: test type: mteb/mind_small metrics: - type: map value: 31.794062752995345 - type: mrr value: 32.98581714772614 - type: main_score value: 31.794062752995345 task: type: Reranking - dataset: config: default name: MTEB RedditClustering revision: 24640382cdbf8abc73003fb0fa6d111a705499eb split: test type: mteb/reddit-clustering metrics: - type: main_score value: 56.03342473834434 - type: v_measure value: 56.03342473834434 - type: v_measure_std value: 5.972192613803461 task: type: Clustering - dataset: config: default name: MTEB RedditClusteringP2P revision: 282350215ef01743dc01b456c7f5241fa8937f16 split: test type: mteb/reddit-clustering-p2p metrics: - type: main_score value: 65.83156688381274 - type: v_measure value: 65.83156688381274 - type: v_measure_std value: 14.180225112120162 task: type: Clustering - dataset: config: default name: MTEB SICK-R revision: a6ea5a8cab320b040a23452cc28066d9beae2cee split: test type: mteb/sickr-sts metrics: - type: cosine_pearson value: 84.15759544348467 - type: cosine_spearman value: 82.66085892322664 - type: manhattan_pearson value: 82.27257241990692 - type: manhattan_spearman value: 82.57752467555896 - type: euclidean_pearson value: 82.20795646456065 - type: euclidean_spearman value: 82.51008729416401 - type: main_score value: 82.66085892322664 task: type: STS - dataset: config: default name: MTEB STS12 revision: a0d554a64d88156834ff5ae9920b964011b16384 split: test type: mteb/sts12-sts metrics: - type: cosine_pearson value: 84.3406321391237 - type: cosine_spearman value: 77.71091257651071 - type: manhattan_pearson value: 81.25784268400994 - type: manhattan_spearman value: 77.98426383345507 - type: euclidean_pearson value: 81.25641851462917 - type: euclidean_spearman value: 77.93254971878063 - type: main_score value: 77.71091257651071 task: type: STS - dataset: config: default name: MTEB STS13 revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca split: test type: mteb/sts13-sts metrics: - type: cosine_pearson value: 86.1528398894769 - type: cosine_spearman value: 87.44662352358895 - type: manhattan_pearson value: 86.92164570802663 - type: manhattan_spearman value: 86.9132692625668 - type: euclidean_pearson value: 87.00156426580821 - type: euclidean_spearman value: 86.98750068631274 - type: main_score value: 87.44662352358895 task: type: STS - dataset: config: default name: MTEB STS14 revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375 split: test type: mteb/sts14-sts metrics: - type: cosine_pearson value: 83.32782491176253 - type: cosine_spearman value: 83.48313793311584 - type: manhattan_pearson value: 82.60528063429948 - type: manhattan_spearman value: 83.10434862310481 - type: euclidean_pearson value: 82.68016090104034 - type: euclidean_spearman value: 83.14418662406631 - type: main_score value: 83.48313793311584 task: type: STS - dataset: config: default name: MTEB STS15 revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3 split: test type: mteb/sts15-sts metrics: - type: cosine_pearson value: 86.31535441436343 - type: cosine_spearman value: 87.63145141246594 - type: manhattan_pearson value: 86.95972711389149 - type: manhattan_spearman value: 86.9849824463052 - type: euclidean_pearson value: 86.95391575487379 - type: euclidean_spearman value: 86.97613682266213 - type: main_score value: 87.63145141246594 task: type: STS - dataset: config: default name: MTEB STS16 revision: 4d8694f8f0e0100860b497b999b3dbed754a0513 split: test type: mteb/sts16-sts metrics: - type: cosine_pearson value: 83.43854397443079 - type: cosine_spearman value: 86.70176531845136 - type: manhattan_pearson value: 85.82302317064868 - type: manhattan_spearman value: 86.36561734213241 - type: euclidean_pearson value: 85.80127366135169 - type: euclidean_spearman value: 86.34803859754834 - type: main_score value: 86.70176531845136 task: type: STS - dataset: config: en-en name: MTEB STS17 (en-en) revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d split: test type: mteb/sts17-crosslingual-sts metrics: - type: cosine_pearson value: 90.38940955877999 - type: cosine_spearman value: 91.18282119920893 - type: manhattan_pearson value: 91.31823663739615 - type: manhattan_spearman value: 90.67257321731341 - type: euclidean_pearson value: 91.30318753138528 - type: euclidean_spearman value: 90.69044765693836 - type: main_score value: 91.18282119920893 task: type: STS - dataset: config: en name: MTEB STS22 (en) revision: eea2b4fe26a775864c896887d910b76a8098ad3f split: test type: mteb/sts22-crosslingual-sts metrics: - type: cosine_pearson value: 69.33936467780947 - type: cosine_spearman value: 69.02345807358802 - type: manhattan_pearson value: 70.11799452953082 - type: manhattan_spearman value: 68.55450923481405 - type: euclidean_pearson value: 70.10857680491809 - type: euclidean_spearman value: 68.44610245708984 - type: main_score value: 69.02345807358802 task: type: STS - dataset: config: default name: MTEB STSBenchmark revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831 split: test type: mteb/stsbenchmark-sts metrics: - type: cosine_pearson value: 85.97288135509513 - type: cosine_spearman value: 87.25208310840168 - type: manhattan_pearson value: 86.3786471501451 - type: manhattan_spearman value: 86.71177136523868 - type: euclidean_pearson value: 86.40522339296625 - type: euclidean_spearman value: 86.73930576508816 - type: main_score value: 87.25208310840168 task: type: STS - dataset: config: default name: MTEB SciDocsRR revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab split: test type: mteb/scidocs-reranking metrics: - type: map value: 87.60324164489178 - type: mrr value: 96.30331904841708 - type: main_score value: 87.60324164489178 task: type: Reranking - dataset: config: default name: MTEB SprintDuplicateQuestions revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46 split: test type: mteb/sprintduplicatequestions-pairclassification metrics: - type: cos_sim_accuracy value: 99.6920792079208 - type: cos_sim_accuracy_threshold value: 90.36337347155474 - type: cos_sim_ap value: 90.93952679056765 - type: cos_sim_f1 value: 83.10700706137968 - type: cos_sim_f1_threshold value: 90.36337347155474 - type: cos_sim_precision value: 90.96313912009512 - type: cos_sim_recall value: 76.5 - type: dot_accuracy value: 99.54554455445545 - type: dot_accuracy_threshold value: 2876800.0 - type: dot_ap value: 84.01112287735286 - type: dot_f1 value: 75.7622739018088 - type: dot_f1_threshold value: 2820800.0 - type: dot_precision value: 78.39572192513369 - type: dot_recall value: 73.3 - type: euclidean_accuracy value: 99.6930693069307 - type: euclidean_accuracy_threshold value: 7718.054017089397 - type: euclidean_ap value: 91.1257568881301 - type: euclidean_f1 value: 83.09022150189087 - type: euclidean_f1_threshold value: 7817.08324628535 - type: euclidean_precision value: 90.36427732079906 - type: euclidean_recall value: 76.9 - type: manhattan_accuracy value: 99.6920792079208 - type: manhattan_accuracy_threshold value: 364735.19654273987 - type: manhattan_ap value: 91.2326885940691 - type: manhattan_f1 value: 83.36008560727663 - type: manhattan_f1_threshold value: 375395.8945572376 - type: manhattan_precision value: 89.64326812428078 - type: manhattan_recall value: 77.9 - type: max_accuracy value: 99.6930693069307 - type: max_ap value: 91.2326885940691 - type: max_f1 value: 83.36008560727663 task: type: PairClassification - dataset: config: default name: MTEB StackExchangeClustering revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259 split: test type: mteb/stackexchange-clustering metrics: - type: main_score value: 66.2095300942637 - type: v_measure value: 66.2095300942637 - type: v_measure_std value: 3.214369679617631 task: type: Clustering - dataset: config: default name: MTEB StackExchangeClusteringP2P revision: 815ca46b2622cec33ccafc3735d572c266efdb44 split: test type: mteb/stackexchange-clustering-p2p metrics: - type: main_score value: 45.74307000935057 - type: v_measure value: 45.74307000935057 - type: v_measure_std value: 1.5352466748569888 task: type: Clustering - dataset: config: default name: MTEB StackOverflowDupQuestions revision: e185fbe320c72810689fc5848eb6114e1ef5ec69 split: test type: mteb/stackoverflowdupquestions-reranking metrics: - type: map value: 54.90337951829123 - type: mrr value: 56.12889663441134 - type: main_score value: 54.90337951829123 task: type: Reranking - dataset: config: default name: MTEB SummEval revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c split: test type: mteb/summeval metrics: - type: cosine_pearson value: 31.0669308484832 - type: cosine_spearman value: 31.19637421540861 - type: dot_pearson value: 30.62326176666765 - type: dot_spearman value: 30.42135737502967 - type: main_score value: 31.19637421540861 task: type: Summarization - dataset: config: default name: MTEB ToxicConversationsClassification revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c split: test type: mteb/toxic_conversations_50k metrics: - type: accuracy value: 87.34339999999999 - type: accuracy_stderr value: 1.838245696309393 - type: ap value: 33.536584790435406 - type: ap_stderr value: 2.276373512492581 - type: f1 value: 72.47307082324448 - type: f1_stderr value: 1.9964640292072542 - type: main_score value: 87.34339999999999 task: type: Classification - dataset: config: default name: MTEB TweetSentimentExtractionClassification revision: d604517c81ca91fe16a244d1248fc021f9ecee7a split: test type: mteb/tweet_sentiment_extraction metrics: - type: accuracy value: 78.86247877758915 - type: accuracy_stderr value: 1.1273253738982443 - type: f1 value: 79.14666244848874 - type: f1_stderr value: 1.1532640958036497 - type: main_score value: 78.86247877758915 task: type: Classification - dataset: config: default name: MTEB TwentyNewsgroupsClustering revision: 6125ec4e24fa026cec8a478383ee943acfbd5449 split: test type: mteb/twentynewsgroups-clustering metrics: - type: main_score value: 70.44270836680788 - type: v_measure value: 70.44270836680788 - type: v_measure_std value: 1.5185423698266132 task: type: Clustering - dataset: config: default name: MTEB TwitterSemEval2015 revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1 split: test type: mteb/twittersemeval2015-pairclassification metrics: - type: cos_sim_accuracy value: 87.74512725755498 - type: cos_sim_accuracy_threshold value: 82.34941560483547 - type: cos_sim_ap value: 79.6389274210382 - type: cos_sim_f1 value: 71.76319176319176 - type: cos_sim_f1_threshold value: 80.1523829249257 - type: cos_sim_precision value: 70.0502512562814 - type: cos_sim_recall value: 73.56200527704485 - type: dot_accuracy value: 85.13441020444657 - type: dot_accuracy_threshold value: 2220800.0 - type: dot_ap value: 71.67080150823449 - type: dot_f1 value: 66.18984119287187 - type: dot_f1_threshold value: 2086400.0 - type: dot_precision value: 61.224489795918366 - type: dot_recall value: 72.0316622691293 - type: euclidean_accuracy value: 87.69148238660071 - type: euclidean_accuracy_threshold value: 9221.50036619459 - type: euclidean_ap value: 79.65326151280289 - type: euclidean_f1 value: 71.7903489983621 - type: euclidean_f1_threshold value: 10313.528386219872 - type: euclidean_precision value: 68.70026525198939 - type: euclidean_recall value: 75.17150395778364 - type: manhattan_accuracy value: 87.74512725755498 - type: manhattan_accuracy_threshold value: 444289.1119837761 - type: manhattan_ap value: 79.67744645365104 - type: manhattan_f1 value: 71.94423699278066 - type: manhattan_f1_threshold value: 491676.24004781246 - type: manhattan_precision value: 68.0961357210179 - type: manhattan_recall value: 76.2532981530343 - type: max_accuracy value: 87.74512725755498 - type: max_ap value: 79.67744645365104 - type: max_f1 value: 71.94423699278066 task: type: PairClassification - dataset: config: default name: MTEB TwitterURLCorpus revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf split: test type: mteb/twitterurlcorpus-pairclassification metrics: - type: cos_sim_accuracy value: 89.5544688943222 - type: cos_sim_accuracy_threshold value: 81.58909533293946 - type: cos_sim_ap value: 86.95174990178396 - type: cos_sim_f1 value: 79.1543756145526 - type: cos_sim_f1_threshold value: 80.08573448087095 - type: cos_sim_precision value: 77.78355879292404 - type: cos_sim_recall value: 80.5743763473976 - type: dot_accuracy value: 88.60752124810804 - type: dot_accuracy_threshold value: 2136000.0 - type: dot_ap value: 84.26724775947629 - type: dot_f1 value: 77.67666146985243 - type: dot_f1_threshold value: 2064000.0 - type: dot_precision value: 73.40505721921468 - type: dot_recall value: 82.47613181398214 - type: euclidean_accuracy value: 89.5370046959289 - type: euclidean_accuracy_threshold value: 9750.113991666478 - type: euclidean_ap value: 86.99393092403776 - type: euclidean_f1 value: 79.07167337207571 - type: euclidean_f1_threshold value: 10338.095928500366 - type: euclidean_precision value: 76.59497690531177 - type: euclidean_recall value: 81.71388974437943 - type: manhattan_accuracy value: 89.57581402569178 - type: manhattan_accuracy_threshold value: 463812.92815208435 - type: manhattan_ap value: 87.00849868076658 - type: manhattan_f1 value: 79.08583576933297 - type: manhattan_f1_threshold value: 482453.35128605366 - type: manhattan_precision value: 78.00494270950348 - type: manhattan_recall value: 80.19710502001848 - type: max_accuracy value: 89.57581402569178 - type: max_ap value: 87.00849868076658 - type: max_f1 value: 79.1543756145526 task: type: PairClassification - dataset: config: default name: MTEB AFQMC revision: b44c3b011063adb25877c13823db83bb193913c4 split: validation type: C-MTEB/AFQMC metrics: - type: cosine_pearson value: 45.108559635369325 - type: cosine_spearman value: 47.172833128216176 - type: manhattan_pearson value: 45.75443077564791 - type: manhattan_spearman value: 47.13974146235398 - type: euclidean_pearson value: 45.78921257223492 - type: euclidean_spearman value: 47.177095238278625 - type: main_score value: 47.172833128216176 task: type: STS - dataset: config: default name: MTEB ATEC revision: 0f319b1142f28d00e055a6770f3f726ae9b7d865 split: test type: C-MTEB/ATEC metrics: - type: cosine_pearson value: 48.304409578388466 - type: cosine_spearman value: 50.75006977697012 - type: manhattan_pearson value: 52.688818756177035 - type: manhattan_spearman value: 50.739214155741095 - type: euclidean_pearson value: 52.71788557204978 - type: euclidean_spearman value: 50.77895730336448 - type: main_score value: 50.75006977697012 task: type: STS - dataset: config: zh name: MTEB AmazonReviewsClassification (zh) revision: 1399c76144fd37290681b995c656ef9b2e06e26d split: test type: mteb/amazon_reviews_multi metrics: - type: accuracy value: 54.339999999999996 - type: accuracy_stderr value: 1.6518837731511269 - type: f1 value: 53.37316538790502 - type: f1_stderr value: 1.6112926272861336 - type: main_score value: 54.339999999999996 task: type: Classification - dataset: config: default name: MTEB BQ revision: e3dda5e115e487b39ec7e618c0c6a29137052a55 split: test type: C-MTEB/BQ metrics: - type: cosine_pearson value: 59.62831218167518 - type: cosine_spearman value: 62.02213472473759 - type: manhattan_pearson value: 61.122261197018176 - type: manhattan_spearman value: 62.208780520694454 - type: euclidean_pearson value: 61.17827629627213 - type: euclidean_spearman value: 62.266859648664244 - type: main_score value: 62.02213472473759 task: type: STS - dataset: config: default name: MTEB CLSClusteringP2P revision: 4b6227591c6c1a73bc76b1055f3b7f3588e72476 split: test type: C-MTEB/CLSClusteringP2P metrics: - type: main_score value: 54.64518394835408 - type: v_measure value: 54.64518394835408 - type: v_measure_std value: 1.2745946640208072 task: type: Clustering - dataset: config: default name: MTEB CLSClusteringS2S revision: e458b3f5414b62b7f9f83499ac1f5497ae2e869f split: test type: C-MTEB/CLSClusteringS2S metrics: - type: main_score value: 63.68323477729556 - type: v_measure value: 63.68323477729556 - type: v_measure_std value: 1.740918833098302 task: type: Clustering - dataset: config: default name: MTEB CMedQAv1 revision: 8d7f1e942507dac42dc58017c1a001c3717da7df split: test type: C-MTEB/CMedQAv1-reranking metrics: - type: map value: 84.61500884703916 - type: mrr value: 87.01424603174604 - type: main_score value: 84.61500884703916 task: type: Reranking - dataset: config: default name: MTEB CMedQAv2 revision: 23d186750531a14a0357ca22cd92d712fd512ea0 split: test type: C-MTEB/CMedQAv2-reranking metrics: - type: map value: 85.60137988993483 - type: mrr value: 87.96857142857142 - type: main_score value: 85.60137988993483 task: type: Reranking - dataset: config: default name: MTEB CmedqaRetrieval revision: cd540c506dae1cf9e9a59c3e06f42030d54e7301 split: dev type: C-MTEB/CmedqaRetrieval metrics: - type: map_at_1 value: 24.191 - type: map_at_10 value: 35.819 - type: map_at_100 value: 37.639 - type: map_at_1000 value: 37.775 - type: map_at_3 value: 32.045 - type: map_at_5 value: 34.008 - type: mrr_at_1 value: 36.684 - type: mrr_at_10 value: 44.769 - type: mrr_at_100 value: 45.754 - type: mrr_at_1000 value: 45.809 - type: mrr_at_3 value: 42.465 - type: mrr_at_5 value: 43.696 - type: ndcg_at_1 value: 36.834 - type: ndcg_at_10 value: 42.208 - type: ndcg_at_100 value: 49.507 - type: ndcg_at_1000 value: 51.834 - type: ndcg_at_3 value: 37.416 - type: ndcg_at_5 value: 39.152 - type: precision_at_1 value: 36.834 - type: precision_at_10 value: 9.357 - type: precision_at_100 value: 1.5310000000000001 - type: precision_at_1000 value: 0.183 - type: precision_at_3 value: 21.08 - type: precision_at_5 value: 15.068999999999999 - type: recall_at_1 value: 24.191 - type: recall_at_10 value: 52.078 - type: recall_at_100 value: 82.548 - type: recall_at_1000 value: 98.017 - type: recall_at_3 value: 37.484 - type: recall_at_5 value: 43.187 - type: main_score value: 42.208 task: type: Retrieval - dataset: config: default name: MTEB Cmnli revision: 41bc36f332156f7adc9e38f53777c959b2ae9766 split: validation type: C-MTEB/CMNLI metrics: - type: cos_sim_accuracy value: 81.98436560432953 - type: cos_sim_accuracy_threshold value: 67.33228049687503 - type: cos_sim_ap value: 90.13312662430796 - type: cos_sim_f1 value: 83.2163938077737 - type: cos_sim_f1_threshold value: 64.44945196171463 - type: cos_sim_precision value: 79.45555082943429 - type: cos_sim_recall value: 87.350946925415 - type: dot_accuracy value: 80.50511124473843 - type: dot_accuracy_threshold value: 1736000.0 - type: dot_ap value: 88.76136186445322 - type: dot_f1 value: 81.75838631878973 - type: dot_f1_threshold value: 1681600.0 - type: dot_precision value: 76.96594427244582 - type: dot_recall value: 87.18728080430208 - type: euclidean_accuracy value: 82.21286831028262 - type: euclidean_accuracy_threshold value: 13240.938473272565 - type: euclidean_ap value: 90.14863232280865 - type: euclidean_f1 value: 83.277292086976 - type: euclidean_f1_threshold value: 13667.852165734186 - type: euclidean_precision value: 79.97847147470398 - type: euclidean_recall value: 86.85994856207621 - type: manhattan_accuracy value: 82.21286831028262 - type: manhattan_accuracy_threshold value: 629412.1389746666 - type: manhattan_ap value: 90.03868533208357 - type: manhattan_f1 value: 83.15683870248579 - type: manhattan_f1_threshold value: 649621.3114321232 - type: manhattan_precision value: 79.46314443971026 - type: manhattan_recall value: 87.21066167874679 - type: max_accuracy value: 82.21286831028262 - type: max_ap value: 90.14863232280865 - type: max_f1 value: 83.277292086976 task: type: PairClassification - dataset: config: default name: MTEB CovidRetrieval revision: 1271c7809071a13532e05f25fb53511ffce77117 split: dev type: C-MTEB/CovidRetrieval metrics: - type: map_at_1 value: 65.595 - type: map_at_10 value: 73.717 - type: map_at_100 value: 74.134 - type: map_at_1000 value: 74.143 - type: map_at_3 value: 71.97 - type: map_at_5 value: 73.11800000000001 - type: mrr_at_1 value: 65.648 - type: mrr_at_10 value: 73.618 - type: mrr_at_100 value: 74.02499999999999 - type: mrr_at_1000 value: 74.033 - type: mrr_at_3 value: 71.865 - type: mrr_at_5 value: 73.04 - type: ndcg_at_1 value: 65.753 - type: ndcg_at_10 value: 77.458 - type: ndcg_at_100 value: 79.46 - type: ndcg_at_1000 value: 79.666 - type: ndcg_at_3 value: 73.988 - type: ndcg_at_5 value: 76.038 - type: precision_at_1 value: 65.753 - type: precision_at_10 value: 8.999 - type: precision_at_100 value: 0.9939999999999999 - type: precision_at_1000 value: 0.101 - type: precision_at_3 value: 26.765 - type: precision_at_5 value: 17.092 - type: recall_at_1 value: 65.595 - type: recall_at_10 value: 89.041 - type: recall_at_100 value: 98.31400000000001 - type: recall_at_1000 value: 99.895 - type: recall_at_3 value: 79.768 - type: recall_at_5 value: 84.66799999999999 - type: main_score value: 77.458 task: type: Retrieval - dataset: config: default name: MTEB DuRetrieval revision: a1a333e290fe30b10f3f56498e3a0d911a693ced split: dev type: C-MTEB/DuRetrieval metrics: - type: map_at_1 value: 27.248 - type: map_at_10 value: 84.303 - type: map_at_100 value: 86.866 - type: map_at_1000 value: 86.888 - type: map_at_3 value: 58.658 - type: map_at_5 value: 74.265 - type: mrr_at_1 value: 92.2 - type: mrr_at_10 value: 94.733 - type: mrr_at_100 value: 94.767 - type: mrr_at_1000 value: 94.768 - type: mrr_at_3 value: 94.492 - type: mrr_at_5 value: 94.627 - type: ndcg_at_1 value: 92.2 - type: ndcg_at_10 value: 90.462 - type: ndcg_at_100 value: 92.562 - type: ndcg_at_1000 value: 92.757 - type: ndcg_at_3 value: 89.44800000000001 - type: ndcg_at_5 value: 88.683 - type: precision_at_1 value: 92.2 - type: precision_at_10 value: 42.980000000000004 - type: precision_at_100 value: 4.851 - type: precision_at_1000 value: 0.49 - type: precision_at_3 value: 80.233 - type: precision_at_5 value: 67.95 - type: recall_at_1 value: 27.248 - type: recall_at_10 value: 91.46600000000001 - type: recall_at_100 value: 98.566 - type: recall_at_1000 value: 99.557 - type: recall_at_3 value: 60.671 - type: recall_at_5 value: 78.363 - type: main_score value: 90.462 task: type: Retrieval - dataset: config: default name: MTEB EcomRetrieval revision: 687de13dc7294d6fd9be10c6945f9e8fec8166b9 split: dev type: C-MTEB/EcomRetrieval metrics: - type: map_at_1 value: 54.7 - type: map_at_10 value: 64.574 - type: map_at_100 value: 65.144 - type: map_at_1000 value: 65.156 - type: map_at_3 value: 62.333000000000006 - type: map_at_5 value: 63.63799999999999 - type: mrr_at_1 value: 54.7 - type: mrr_at_10 value: 64.603 - type: mrr_at_100 value: 65.172 - type: mrr_at_1000 value: 65.184 - type: mrr_at_3 value: 62.383 - type: mrr_at_5 value: 63.683 - type: ndcg_at_1 value: 54.7 - type: ndcg_at_10 value: 69.298 - type: ndcg_at_100 value: 71.81 - type: ndcg_at_1000 value: 72.117 - type: ndcg_at_3 value: 64.72099999999999 - type: ndcg_at_5 value: 67.071 - type: precision_at_1 value: 54.7 - type: precision_at_10 value: 8.41 - type: precision_at_100 value: 0.9530000000000001 - type: precision_at_1000 value: 0.098 - type: precision_at_3 value: 23.867 - type: precision_at_5 value: 15.459999999999999 - type: recall_at_1 value: 54.7 - type: recall_at_10 value: 84.1 - type: recall_at_100 value: 95.3 - type: recall_at_1000 value: 97.7 - type: recall_at_3 value: 71.6 - type: recall_at_5 value: 77.3 - type: main_score value: 69.298 task: type: Retrieval - dataset: config: default name: MTEB IFlyTek revision: 421605374b29664c5fc098418fe20ada9bd55f8a split: validation type: C-MTEB/IFlyTek-classification metrics: - type: accuracy value: 49.942285494420936 - type: accuracy_stderr value: 0.9218275144833329 - type: f1 value: 41.32381790374152 - type: f1_stderr value: 0.8291507105327707 - type: main_score value: 49.942285494420936 task: type: Classification - dataset: config: default name: MTEB JDReview revision: b7c64bd89eb87f8ded463478346f76731f07bf8b split: test type: C-MTEB/JDReview-classification metrics: - type: accuracy value: 88.91181988742964 - type: accuracy_stderr value: 1.952391767940518 - type: ap value: 60.18509628974178 - type: ap_stderr value: 4.273060966573582 - type: f1 value: 84.02722221827027 - type: f1_stderr value: 2.238197243395083 - type: main_score value: 88.91181988742964 task: type: Classification - dataset: config: default name: MTEB LCQMC revision: 17f9b096f80380fce5ed12a9be8be7784b337daf split: test type: C-MTEB/LCQMC metrics: - type: cosine_pearson value: 68.32691294171383 - type: cosine_spearman value: 75.95458618586729 - type: manhattan_pearson value: 74.37198807732018 - type: manhattan_spearman value: 75.99352157963375 - type: euclidean_pearson value: 74.36294627886716 - type: euclidean_spearman value: 75.98632511635132 - type: main_score value: 75.95458618586729 task: type: STS - dataset: config: default name: MTEB MMarcoReranking revision: 8e0c766dbe9e16e1d221116a3f36795fbade07f6 split: dev type: C-MTEB/Mmarco-reranking metrics: - type: map value: 35.4327533126161 - type: mrr value: 34.61507936507937 - type: main_score value: 35.4327533126161 task: type: Reranking - dataset: config: default name: MTEB MMarcoRetrieval revision: 539bbde593d947e2a124ba72651aafc09eb33fc2 split: dev type: C-MTEB/MMarcoRetrieval metrics: - type: map_at_1 value: 72.652 - type: map_at_10 value: 81.396 - type: map_at_100 value: 81.597 - type: map_at_1000 value: 81.60300000000001 - type: map_at_3 value: 79.757 - type: map_at_5 value: 80.798 - type: mrr_at_1 value: 75.01400000000001 - type: mrr_at_10 value: 81.842 - type: mrr_at_100 value: 82.025 - type: mrr_at_1000 value: 82.03099999999999 - type: mrr_at_3 value: 80.45400000000001 - type: mrr_at_5 value: 81.345 - type: ndcg_at_1 value: 74.98599999999999 - type: ndcg_at_10 value: 84.70100000000001 - type: ndcg_at_100 value: 85.568 - type: ndcg_at_1000 value: 85.721 - type: ndcg_at_3 value: 81.64099999999999 - type: ndcg_at_5 value: 83.375 - type: precision_at_1 value: 74.98599999999999 - type: precision_at_10 value: 10.049 - type: precision_at_100 value: 1.047 - type: precision_at_1000 value: 0.106 - type: precision_at_3 value: 30.458000000000002 - type: precision_at_5 value: 19.206 - type: recall_at_1 value: 72.652 - type: recall_at_10 value: 94.40899999999999 - type: recall_at_100 value: 98.241 - type: recall_at_1000 value: 99.42 - type: recall_at_3 value: 86.354 - type: recall_at_5 value: 90.472 - type: main_score value: 84.70100000000001 task: type: Retrieval - dataset: config: zh-CN name: MTEB MassiveIntentClassification (zh-CN) revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 split: test type: mteb/amazon_massive_intent metrics: - type: accuracy value: 78.19098856758575 - type: accuracy_stderr value: 0.6325028678427684 - type: f1 value: 74.80611425574001 - type: f1_stderr value: 0.9021806207904779 - type: main_score value: 78.19098856758575 task: type: Classification - dataset: config: zh-CN name: MTEB MassiveScenarioClassification (zh-CN) revision: 7d571f92784cd94a019292a1f45445077d0ef634 split: test type: mteb/amazon_massive_scenario metrics: - type: accuracy value: 82.58238063214526 - type: accuracy_stderr value: 1.0999970213165273 - type: f1 value: 81.94734854057064 - type: f1_stderr value: 1.248633855872851 - type: main_score value: 82.58238063214526 task: type: Classification - dataset: config: default name: MTEB MedicalRetrieval revision: 2039188fb5800a9803ba5048df7b76e6fb151fc6 split: dev type: C-MTEB/MedicalRetrieval metrics: - type: map_at_1 value: 53.7 - type: map_at_10 value: 59.184000000000005 - type: map_at_100 value: 59.754 - type: map_at_1000 value: 59.8 - type: map_at_3 value: 57.833 - type: map_at_5 value: 58.548 - type: mrr_at_1 value: 54.0 - type: mrr_at_10 value: 59.352000000000004 - type: mrr_at_100 value: 59.926 - type: mrr_at_1000 value: 59.971 - type: mrr_at_3 value: 57.99999999999999 - type: mrr_at_5 value: 58.714999999999996 - type: ndcg_at_1 value: 53.7 - type: ndcg_at_10 value: 62.022 - type: ndcg_at_100 value: 65.038 - type: ndcg_at_1000 value: 66.366 - type: ndcg_at_3 value: 59.209 - type: ndcg_at_5 value: 60.51299999999999 - type: precision_at_1 value: 53.7 - type: precision_at_10 value: 7.1 - type: precision_at_100 value: 0.856 - type: precision_at_1000 value: 0.096 - type: precision_at_3 value: 21.067 - type: precision_at_5 value: 13.28 - type: recall_at_1 value: 53.7 - type: recall_at_10 value: 71.0 - type: recall_at_100 value: 85.6 - type: recall_at_1000 value: 96.3 - type: recall_at_3 value: 63.2 - type: recall_at_5 value: 66.4 - type: main_score value: 62.022 task: type: Retrieval - dataset: config: default name: MTEB MultilingualSentiment revision: 46958b007a63fdbf239b7672c25d0bea67b5ea1a split: validation type: C-MTEB/MultilingualSentiment-classification metrics: - type: accuracy value: 78.91333333333334 - type: accuracy_stderr value: 1.0834307648494321 - type: f1 value: 78.881433228092 - type: f1_stderr value: 1.122457277013712 - type: main_score value: 78.91333333333334 task: type: Classification - dataset: config: default name: MTEB Ocnli revision: 66e76a618a34d6d565d5538088562851e6daa7ec split: validation type: C-MTEB/OCNLI metrics: - type: cos_sim_accuracy value: 76.39415268002165 - type: cos_sim_accuracy_threshold value: 68.98242139321592 - type: cos_sim_ap value: 83.20687440058073 - type: cos_sim_f1 value: 78.4351145038168 - type: cos_sim_f1_threshold value: 65.47409929698304 - type: cos_sim_precision value: 71.54046997389034 - type: cos_sim_recall value: 86.80042238648363 - type: dot_accuracy value: 74.60747157552788 - type: dot_accuracy_threshold value: 1737600.0 - type: dot_ap value: 79.78938545919723 - type: dot_f1 value: 76.92307692307692 - type: dot_f1_threshold value: 1652800.0 - type: dot_precision value: 67.90622473726758 - type: dot_recall value: 88.70116156283 - type: euclidean_accuracy value: 76.34001082837032 - type: euclidean_accuracy_threshold value: 12597.299662420446 - type: euclidean_ap value: 83.60222701792158 - type: euclidean_f1 value: 78.77947295423024 - type: euclidean_f1_threshold value: 13639.653702639469 - type: euclidean_precision value: 70.06578947368422 - type: euclidean_recall value: 89.96832101372756 - type: manhattan_accuracy value: 76.23172712506768 - type: manhattan_accuracy_threshold value: 587601.2824743986 - type: manhattan_ap value: 83.51813426548178 - type: manhattan_f1 value: 78.6654135338346 - type: manhattan_f1_threshold value: 639711.1931562424 - type: manhattan_precision value: 70.87214225232854 - type: manhattan_recall value: 88.3843717001056 - type: max_accuracy value: 76.39415268002165 - type: max_ap value: 83.60222701792158 - type: max_f1 value: 78.77947295423024 task: type: PairClassification - dataset: config: default name: MTEB OnlineShopping revision: e610f2ebd179a8fda30ae534c3878750a96db120 split: test type: C-MTEB/OnlineShopping-classification metrics: - type: accuracy value: 94.59 - type: accuracy_stderr value: 0.8971621926942733 - type: ap value: 93.01229797205905 - type: ap_stderr value: 1.0519542956523058 - type: f1 value: 94.58077736915268 - type: f1_stderr value: 0.8954928292768671 - type: main_score value: 94.59 task: type: Classification - dataset: config: default name: MTEB PAWSX revision: 9c6a90e430ac22b5779fb019a23e820b11a8b5e1 split: test type: C-MTEB/PAWSX metrics: - type: cosine_pearson value: 24.341872875292857 - type: cosine_spearman value: 30.570037022875436 - type: manhattan_pearson value: 31.41015320258418 - type: manhattan_spearman value: 30.604526098895114 - type: euclidean_pearson value: 31.400038084432175 - type: euclidean_spearman value: 30.61062265273698 - type: main_score value: 30.570037022875436 task: type: STS - dataset: config: default name: MTEB QBQTC revision: 790b0510dc52b1553e8c49f3d2afb48c0e5c48b7 split: test type: C-MTEB/QBQTC metrics: - type: cosine_pearson value: 36.61757468091905 - type: cosine_spearman value: 38.981417359835504 - type: manhattan_pearson value: 37.971127169578764 - type: manhattan_spearman value: 39.55028286687854 - type: euclidean_pearson value: 37.96983777648438 - type: euclidean_spearman value: 39.542856511171784 - type: main_score value: 38.981417359835504 task: type: STS - dataset: config: zh name: MTEB STS22 (zh) revision: eea2b4fe26a775864c896887d910b76a8098ad3f split: test type: mteb/sts22-crosslingual-sts metrics: - type: cosine_pearson value: 68.29834902017382 - type: cosine_spearman value: 68.6823378297782 - type: manhattan_pearson value: 68.47336169904406 - type: manhattan_spearman value: 69.08033223619941 - type: euclidean_pearson value: 68.38785956191622 - type: euclidean_spearman value: 68.97973814449657 - type: main_score value: 68.6823378297782 task: type: STS - dataset: config: default name: MTEB STSB revision: 0cde68302b3541bb8b3c340dc0644b0b745b3dc0 split: test type: C-MTEB/STSB metrics: - type: cosine_pearson value: 80.60572958563593 - type: cosine_spearman value: 80.87063761195603 - type: manhattan_pearson value: 79.30174059269083 - type: manhattan_spearman value: 80.02203618135883 - type: euclidean_pearson value: 79.3314553444783 - type: euclidean_spearman value: 80.04556415585255 - type: main_score value: 80.87063761195603 task: type: STS - dataset: config: default name: MTEB T2Reranking revision: 76631901a18387f85eaa53e5450019b87ad58ef9 split: dev type: C-MTEB/T2Reranking metrics: - type: map value: 67.47921173708028 - type: mrr value: 77.9396513739777 - type: main_score value: 67.47921173708028 task: type: Reranking - dataset: config: default name: MTEB T2Retrieval revision: 8731a845f1bf500a4f111cf1070785c793d10e64 split: dev type: C-MTEB/T2Retrieval metrics: - type: map_at_1 value: 28.021 - type: map_at_10 value: 79.149 - type: map_at_100 value: 82.613 - type: map_at_1000 value: 82.67099999999999 - type: map_at_3 value: 55.665 - type: map_at_5 value: 68.46900000000001 - type: mrr_at_1 value: 91.106 - type: mrr_at_10 value: 93.372 - type: mrr_at_100 value: 93.44200000000001 - type: mrr_at_1000 value: 93.445 - type: mrr_at_3 value: 92.99300000000001 - type: mrr_at_5 value: 93.24900000000001 - type: ndcg_at_1 value: 91.106 - type: ndcg_at_10 value: 86.259 - type: ndcg_at_100 value: 89.46600000000001 - type: ndcg_at_1000 value: 90.012 - type: ndcg_at_3 value: 87.574 - type: ndcg_at_5 value: 86.283 - type: precision_at_1 value: 91.106 - type: precision_at_10 value: 42.742999999999995 - type: precision_at_100 value: 5.029999999999999 - type: precision_at_1000 value: 0.516 - type: precision_at_3 value: 76.593 - type: precision_at_5 value: 64.243 - type: recall_at_1 value: 28.021 - type: recall_at_10 value: 85.184 - type: recall_at_100 value: 95.79299999999999 - type: recall_at_1000 value: 98.547 - type: recall_at_3 value: 57.233000000000004 - type: recall_at_5 value: 71.628 - type: main_score value: 86.259 task: type: Retrieval - dataset: config: default name: MTEB TNews revision: 317f262bf1e6126357bbe89e875451e4b0938fe4 split: validation type: C-MTEB/TNews-classification metrics: - type: accuracy value: 50.255 - type: accuracy_stderr value: 0.9341868121526873 - type: f1 value: 48.65080322457893 - type: f1_stderr value: 0.9391547591179161 - type: main_score value: 50.255 task: type: Classification - dataset: config: default name: MTEB ThuNewsClusteringP2P revision: 5798586b105c0434e4f0fe5e767abe619442cf93 split: test type: C-MTEB/ThuNewsClusteringP2P metrics: - type: main_score value: 64.32076022871308 - type: v_measure value: 64.32076022871308 - type: v_measure_std value: 0.7190996709617924 task: type: Clustering - dataset: config: default name: MTEB ThuNewsClusteringS2S revision: 8a8b2caeda43f39e13c4bc5bea0f8a667896e10d split: test type: C-MTEB/ThuNewsClusteringS2S metrics: - type: main_score value: 54.57080911705562 - type: v_measure value: 54.57080911705562 - type: v_measure_std value: 1.5185826402845883 task: type: Clustering - dataset: config: default name: MTEB VideoRetrieval revision: 58c2597a5943a2ba48f4668c3b90d796283c5639 split: dev type: C-MTEB/VideoRetrieval metrics: - type: map_at_1 value: 63.1 - type: map_at_10 value: 73.137 - type: map_at_100 value: 73.539 - type: map_at_1000 value: 73.546 - type: map_at_3 value: 71.467 - type: map_at_5 value: 72.552 - type: mrr_at_1 value: 63.3 - type: mrr_at_10 value: 73.238 - type: mrr_at_100 value: 73.64 - type: mrr_at_1000 value: 73.64699999999999 - type: mrr_at_3 value: 71.56700000000001 - type: mrr_at_5 value: 72.652 - type: ndcg_at_1 value: 63.1 - type: ndcg_at_10 value: 77.397 - type: ndcg_at_100 value: 79.11399999999999 - type: ndcg_at_1000 value: 79.305 - type: ndcg_at_3 value: 74.031 - type: ndcg_at_5 value: 75.976 - type: precision_at_1 value: 63.1 - type: precision_at_10 value: 9.049999999999999 - type: precision_at_100 value: 0.98 - type: precision_at_1000 value: 0.1 - type: precision_at_3 value: 27.133000000000003 - type: precision_at_5 value: 17.22 - type: recall_at_1 value: 63.1 - type: recall_at_10 value: 90.5 - type: recall_at_100 value: 98.0 - type: recall_at_1000 value: 99.5 - type: recall_at_3 value: 81.39999999999999 - type: recall_at_5 value: 86.1 - type: main_score value: 77.397 task: type: Retrieval - dataset: config: default name: MTEB Waimai revision: 339287def212450dcaa9df8c22bf93e9980c7023 split: test type: C-MTEB/waimai-classification metrics: - type: accuracy value: 89.26 - type: accuracy_stderr value: 1.44651304867948 - type: ap value: 75.17154345788362 - type: ap_stderr value: 2.7356371110082565 - type: f1 value: 87.94016849813178 - type: f1_stderr value: 1.3897605039980534 - type: main_score value: 89.26 task: type: Classification - dataset: config: default name: MTEB AlloProfClusteringP2P revision: 392ba3f5bcc8c51f578786c1fc3dae648662cb9b split: test type: lyon-nlp/alloprof metrics: - type: main_score value: 71.20310003742769 - type: v_measure value: 71.20310003742769 - type: v_measure_std value: 2.3682783706448687 task: type: Clustering - dataset: config: default name: MTEB AlloProfClusteringS2S revision: 392ba3f5bcc8c51f578786c1fc3dae648662cb9b split: test type: lyon-nlp/alloprof metrics: - type: main_score value: 59.64232194434788 - type: v_measure value: 59.64232194434788 - type: v_measure_std value: 2.4292956011867557 task: type: Clustering - dataset: config: default name: MTEB AlloprofReranking revision: 65393d0d7a08a10b4e348135e824f385d420b0fd split: test type: lyon-nlp/mteb-fr-reranking-alloprof-s2p metrics: - type: main_score value: 78.62041803111894 - type: map value: 78.62041803111894 - type: mrr value: 79.82309057762426 - type: nAUC_map_diff1 value: 58.23586953459263 - type: nAUC_map_max value: 16.162821346484357 - type: nAUC_map_std value: 20.727030444422525 - type: nAUC_mrr_diff1 value: 57.89675675999501 - type: nAUC_mrr_max value: 17.188359535738417 - type: nAUC_mrr_std value: 20.121404571879598 task: type: Reranking - dataset: config: default name: MTEB AlloprofRetrieval revision: fcf295ea64c750f41fadbaa37b9b861558e1bfbd split: test type: lyon-nlp/alloprof metrics: - type: main_score value: 58.499 - type: map_at_1 value: 40.371 - type: map_at_10 value: 52.337 - type: map_at_100 value: 53.04 - type: map_at_1000 value: 53.065 - type: map_at_20 value: 52.772 - type: map_at_3 value: 49.201 - type: map_at_5 value: 51.025 - type: mrr_at_1 value: 40.3713298791019 - type: mrr_at_10 value: 52.322165337061755 - type: mrr_at_100 value: 53.02092832847133 - type: mrr_at_1000 value: 53.04594680215603 - type: mrr_at_20 value: 52.750849914358135 - type: mrr_at_3 value: 49.150834772596475 - type: mrr_at_5 value: 50.998848589522275 - type: nauc_map_at_1000_diff1 value: 44.71946249374932 - type: nauc_map_at_1000_max value: 28.074204125714193 - type: nauc_map_at_1000_std value: -5.1319087890196275 - type: nauc_map_at_100_diff1 value: 44.71140286780233 - type: nauc_map_at_100_max value: 28.09677884622645 - type: nauc_map_at_100_std value: -5.116353867480612 - type: nauc_map_at_10_diff1 value: 44.737968596047736 - type: nauc_map_at_10_max value: 28.103186472557184 - type: nauc_map_at_10_std value: -5.258817287329683 - type: nauc_map_at_1_diff1 value: 47.48389890056789 - type: nauc_map_at_1_max value: 24.803734709402654 - type: nauc_map_at_1_std value: -6.504759899363267 - type: nauc_map_at_20_diff1 value: 44.67268454863271 - type: nauc_map_at_20_max value: 28.068912295976933 - type: nauc_map_at_20_std value: -5.1971060419801836 - type: nauc_map_at_3_diff1 value: 44.59399231542881 - type: nauc_map_at_3_max value: 27.097806786915502 - type: nauc_map_at_3_std value: -5.957120508111229 - type: nauc_map_at_5_diff1 value: 44.549807218619236 - type: nauc_map_at_5_max value: 28.03902312965202 - type: nauc_map_at_5_std value: -5.279585300980128 - type: nauc_mrr_at_1000_diff1 value: 44.70183532803094 - type: nauc_mrr_at_1000_max value: 28.08833759937601 - type: nauc_mrr_at_1000_std value: -5.097929115475795 - type: nauc_mrr_at_100_diff1 value: 44.693824401340684 - type: nauc_mrr_at_100_max value: 28.110898009292296 - type: nauc_mrr_at_100_std value: -5.082401300601749 - type: nauc_mrr_at_10_diff1 value: 44.74052791862188 - type: nauc_mrr_at_10_max value: 28.125378341430725 - type: nauc_mrr_at_10_std value: -5.209767905428716 - type: nauc_mrr_at_1_diff1 value: 47.48389890056789 - type: nauc_mrr_at_1_max value: 24.803734709402654 - type: nauc_mrr_at_1_std value: -6.504759899363267 - type: nauc_mrr_at_20_diff1 value: 44.65204014980107 - type: nauc_mrr_at_20_max value: 28.071523791101487 - type: nauc_mrr_at_20_std value: -5.176680495032765 - type: nauc_mrr_at_3_diff1 value: 44.566371489967835 - type: nauc_mrr_at_3_max value: 27.138418179089243 - type: nauc_mrr_at_3_std value: -5.8860676927947715 - type: nauc_mrr_at_5_diff1 value: 44.513022796226025 - type: nauc_mrr_at_5_max value: 28.037968016529184 - type: nauc_mrr_at_5_std value: -5.286851060853457 - type: nauc_ndcg_at_1000_diff1 value: 44.31019947897497 - type: nauc_ndcg_at_1000_max value: 29.332844099450185 - type: nauc_ndcg_at_1000_std value: -4.185675731246788 - type: nauc_ndcg_at_100_diff1 value: 44.15415366286996 - type: nauc_ndcg_at_100_max value: 30.098413084162345 - type: nauc_ndcg_at_100_std value: -3.557438303045246 - type: nauc_ndcg_at_10_diff1 value: 44.117356815361376 - type: nauc_ndcg_at_10_max value: 30.090057186506147 - type: nauc_ndcg_at_10_std value: -4.294561567142078 - type: nauc_ndcg_at_1_diff1 value: 47.48389890056789 - type: nauc_ndcg_at_1_max value: 24.803734709402654 - type: nauc_ndcg_at_1_std value: -6.504759899363267 - type: nauc_ndcg_at_20_diff1 value: 43.868556983413285 - type: nauc_ndcg_at_20_max value: 30.06455269775592 - type: nauc_ndcg_at_20_std value: -3.9645560243946623 - type: nauc_ndcg_at_3_diff1 value: 43.71970793339256 - type: nauc_ndcg_at_3_max value: 28.057786581438034 - type: nauc_ndcg_at_3_std value: -5.597352364190012 - type: nauc_ndcg_at_5_diff1 value: 43.57692922989753 - type: nauc_ndcg_at_5_max value: 29.811975056854994 - type: nauc_ndcg_at_5_std value: -4.362865924703688 - type: nauc_precision_at_1000_diff1 value: 37.65255144893002 - type: nauc_precision_at_1000_max value: 88.70768683938714 - type: nauc_precision_at_1000_std value: 69.77642765639528 - type: nauc_precision_at_100_diff1 value: 38.99412121382678 - type: nauc_precision_at_100_max value: 61.57652450016459 - type: nauc_precision_at_100_std value: 24.826035139656348 - type: nauc_precision_at_10_diff1 value: 41.78189732924517 - type: nauc_precision_at_10_max value: 39.83536802453079 - type: nauc_precision_at_10_std value: 0.431964006091015 - type: nauc_precision_at_1_diff1 value: 47.48389890056789 - type: nauc_precision_at_1_max value: 24.803734709402654 - type: nauc_precision_at_1_std value: -6.504759899363267 - type: nauc_precision_at_20_diff1 value: 39.33781305274886 - type: nauc_precision_at_20_max value: 43.00448814568695 - type: nauc_precision_at_20_std value: 4.5633424143661365 - type: nauc_precision_at_3_diff1 value: 40.99977742505519 - type: nauc_precision_at_3_max value: 31.14585236181214 - type: nauc_precision_at_3_std value: -4.404002104899136 - type: nauc_precision_at_5_diff1 value: 40.12130730401297 - type: nauc_precision_at_5_max value: 36.45000981581976 - type: nauc_precision_at_5_std value: -0.8603896798394983 - type: nauc_recall_at_1000_diff1 value: 37.652551448927504 - type: nauc_recall_at_1000_max value: 88.70768683938547 - type: nauc_recall_at_1000_std value: 69.77642765638893 - type: nauc_recall_at_100_diff1 value: 38.9941212138267 - type: nauc_recall_at_100_max value: 61.57652450016457 - type: nauc_recall_at_100_std value: 24.82603513965631 - type: nauc_recall_at_10_diff1 value: 41.781897329245105 - type: nauc_recall_at_10_max value: 39.83536802453082 - type: nauc_recall_at_10_std value: 0.4319640060909985 - type: nauc_recall_at_1_diff1 value: 47.48389890056789 - type: nauc_recall_at_1_max value: 24.803734709402654 - type: nauc_recall_at_1_std value: -6.504759899363267 - type: nauc_recall_at_20_diff1 value: 39.337813052748835 - type: nauc_recall_at_20_max value: 43.00448814568676 - type: nauc_recall_at_20_std value: 4.56334241436601 - type: nauc_recall_at_3_diff1 value: 40.99977742505522 - type: nauc_recall_at_3_max value: 31.14585236181218 - type: nauc_recall_at_3_std value: -4.404002104899084 - type: nauc_recall_at_5_diff1 value: 40.121307304013 - type: nauc_recall_at_5_max value: 36.450009815819726 - type: nauc_recall_at_5_std value: -0.8603896798395225 - type: ndcg_at_1 value: 40.371 - type: ndcg_at_10 value: 58.499 - type: ndcg_at_100 value: 61.958 - type: ndcg_at_1000 value: 62.638000000000005 - type: ndcg_at_20 value: 60.068 - type: ndcg_at_3 value: 52.079 - type: ndcg_at_5 value: 55.359 - type: precision_at_1 value: 40.371 - type: precision_at_10 value: 7.797999999999999 - type: precision_at_100 value: 0.943 - type: precision_at_1000 value: 0.1 - type: precision_at_20 value: 4.208 - type: precision_at_3 value: 20.135 - type: precision_at_5 value: 13.669999999999998 - type: recall_at_1 value: 40.371 - type: recall_at_10 value: 77.979 - type: recall_at_100 value: 94.257 - type: recall_at_1000 value: 99.655 - type: recall_at_20 value: 84.154 - type: recall_at_3 value: 60.406000000000006 - type: recall_at_5 value: 68.351 task: type: Retrieval - dataset: config: fr name: MTEB AmazonReviewsClassification (fr) revision: 1399c76144fd37290681b995c656ef9b2e06e26d split: test type: mteb/amazon_reviews_multi metrics: - type: accuracy value: 55.186 - type: f1 value: 54.46705535013317 - type: f1_weighted value: 54.46705535013317 - type: main_score value: 55.186 task: type: Classification - dataset: config: default name: MTEB BSARDRetrieval revision: 5effa1b9b5fa3b0f9e12523e6e43e5f86a6e6d59 split: test type: maastrichtlawtech/bsard metrics: - type: main_score value: 65.766 - type: map_at_1 value: 17.116999999999997 - type: map_at_10 value: 24.2 - type: map_at_100 value: 25.196 - type: map_at_1000 value: 25.285999999999998 - type: map_at_20 value: 24.84 - type: map_at_3 value: 21.246000000000002 - type: map_at_5 value: 23.386000000000003 - type: mrr_at_1 value: 17.117117117117118 - type: mrr_at_10 value: 24.19955669955671 - type: mrr_at_100 value: 25.195531920335007 - type: mrr_at_1000 value: 25.284600511909495 - type: mrr_at_20 value: 24.840254977638896 - type: mrr_at_3 value: 21.246246246246244 - type: mrr_at_5 value: 23.38588588588589 - type: nauc_map_at_1000_diff1 value: 10.81116818873305 - type: nauc_map_at_1000_max value: 18.081485212587296 - type: nauc_map_at_1000_std value: 15.55247182359811 - type: nauc_map_at_100_diff1 value: 10.769025561727476 - type: nauc_map_at_100_max value: 18.05422658310923 - type: nauc_map_at_100_std value: 15.5467718904851 - type: nauc_map_at_10_diff1 value: 10.683272018434048 - type: nauc_map_at_10_max value: 18.142476171157714 - type: nauc_map_at_10_std value: 15.160871943210017 - type: nauc_map_at_1_diff1 value: 15.136874216646229 - type: nauc_map_at_1_max value: 19.68585969419655 - type: nauc_map_at_1_std value: 15.169957564848444 - type: nauc_map_at_20_diff1 value: 11.04316522915875 - type: nauc_map_at_20_max value: 17.817024791267443 - type: nauc_map_at_20_std value: 15.071246935999893 - type: nauc_map_at_3_diff1 value: 8.893328353778843 - type: nauc_map_at_3_max value: 16.402408590507946 - type: nauc_map_at_3_std value: 14.631998787185735 - type: nauc_map_at_5_diff1 value: 9.802455874823172 - type: nauc_map_at_5_max value: 17.939476196078495 - type: nauc_map_at_5_std value: 14.130589132632698 - type: nauc_mrr_at_1000_diff1 value: 10.813072323683013 - type: nauc_mrr_at_1000_max value: 18.08332318614462 - type: nauc_mrr_at_1000_std value: 15.553043223942819 - type: nauc_mrr_at_100_diff1 value: 10.77091057430458 - type: nauc_mrr_at_100_max value: 18.055798185778123 - type: nauc_mrr_at_100_std value: 15.547068262312003 - type: nauc_mrr_at_10_diff1 value: 10.683272018434048 - type: nauc_mrr_at_10_max value: 18.142476171157714 - type: nauc_mrr_at_10_std value: 15.160871943210017 - type: nauc_mrr_at_1_diff1 value: 15.136874216646229 - type: nauc_mrr_at_1_max value: 19.68585969419655 - type: nauc_mrr_at_1_std value: 15.169957564848444 - type: nauc_mrr_at_20_diff1 value: 11.04316522915875 - type: nauc_mrr_at_20_max value: 17.817024791267443 - type: nauc_mrr_at_20_std value: 15.071246935999893 - type: nauc_mrr_at_3_diff1 value: 8.893328353778843 - type: nauc_mrr_at_3_max value: 16.402408590507946 - type: nauc_mrr_at_3_std value: 14.631998787185735 - type: nauc_mrr_at_5_diff1 value: 9.802455874823172 - type: nauc_mrr_at_5_max value: 17.939476196078495 - type: nauc_mrr_at_5_std value: 14.130589132632698 - type: nauc_ndcg_at_1000_diff1 value: 11.202853727201774 - type: nauc_ndcg_at_1000_max value: 19.0293189527563 - type: nauc_ndcg_at_1000_std value: 18.390388750658357 - type: nauc_ndcg_at_100_diff1 value: 10.087335018055228 - type: nauc_ndcg_at_100_max value: 18.78516003607274 - type: nauc_ndcg_at_100_std value: 18.780357674944415 - type: nauc_ndcg_at_10_diff1 value: 10.574953671198443 - type: nauc_ndcg_at_10_max value: 18.572291623672044 - type: nauc_ndcg_at_10_std value: 15.808055075116057 - type: nauc_ndcg_at_1_diff1 value: 15.136874216646229 - type: nauc_ndcg_at_1_max value: 19.68585969419655 - type: nauc_ndcg_at_1_std value: 15.169957564848444 - type: nauc_ndcg_at_20_diff1 value: 11.86104023461335 - type: nauc_ndcg_at_20_max value: 17.436985589044458 - type: nauc_ndcg_at_20_std value: 15.588720372098383 - type: nauc_ndcg_at_3_diff1 value: 7.212552449189805 - type: nauc_ndcg_at_3_max value: 15.573909877641508 - type: nauc_ndcg_at_3_std value: 14.53705493856145 - type: nauc_ndcg_at_5_diff1 value: 8.778923731622235 - type: nauc_ndcg_at_5_max value: 18.140995131168534 - type: nauc_ndcg_at_5_std value: 13.608313703781533 - type: nauc_precision_at_1000_diff1 value: 21.242679241621413 - type: nauc_precision_at_1000_max value: 28.358433127289924 - type: nauc_precision_at_1000_std value: 43.82822797432329 - type: nauc_precision_at_100_diff1 value: 6.627014646720404 - type: nauc_precision_at_100_max value: 22.40433487802035 - type: nauc_precision_at_100_std value: 34.933889742457595 - type: nauc_precision_at_10_diff1 value: 10.885683410075934 - type: nauc_precision_at_10_max value: 19.96889041019717 - type: nauc_precision_at_10_std value: 17.798863824564464 - type: nauc_precision_at_1_diff1 value: 15.136874216646229 - type: nauc_precision_at_1_max value: 19.68585969419655 - type: nauc_precision_at_1_std value: 15.169957564848444 - type: nauc_precision_at_20_diff1 value: 15.496066928172066 - type: nauc_precision_at_20_max value: 16.03026652303162 - type: nauc_precision_at_20_std value: 17.26605341902364 - type: nauc_precision_at_3_diff1 value: 2.968469300914268 - type: nauc_precision_at_3_max value: 13.49791571660617 - type: nauc_precision_at_3_std value: 14.311739399090806 - type: nauc_precision_at_5_diff1 value: 6.502154730668018 - type: nauc_precision_at_5_max value: 18.889080152631124 - type: nauc_precision_at_5_std value: 12.221319698087786 - type: nauc_recall_at_1000_diff1 value: 21.242679241621435 - type: nauc_recall_at_1000_max value: 28.358433127289974 - type: nauc_recall_at_1000_std value: 43.82822797432328 - type: nauc_recall_at_100_diff1 value: 6.62701464672039 - type: nauc_recall_at_100_max value: 22.404334878020286 - type: nauc_recall_at_100_std value: 34.93388974245755 - type: nauc_recall_at_10_diff1 value: 10.885683410075906 - type: nauc_recall_at_10_max value: 19.968890410197133 - type: nauc_recall_at_10_std value: 17.7988638245644 - type: nauc_recall_at_1_diff1 value: 15.136874216646229 - type: nauc_recall_at_1_max value: 19.68585969419655 - type: nauc_recall_at_1_std value: 15.169957564848444 - type: nauc_recall_at_20_diff1 value: 15.49606692817206 - type: nauc_recall_at_20_max value: 16.030266523031628 - type: nauc_recall_at_20_std value: 17.26605341902362 - type: nauc_recall_at_3_diff1 value: 2.968469300914263 - type: nauc_recall_at_3_max value: 13.497915716606142 - type: nauc_recall_at_3_std value: 14.31173939909079 - type: nauc_recall_at_5_diff1 value: 6.50215473066801 - type: nauc_recall_at_5_max value: 18.889080152631095 - type: nauc_recall_at_5_std value: 12.221319698087767 - type: ndcg_at_1 value: 17.116999999999997 - type: ndcg_at_10 value: 28.524 - type: ndcg_at_100 value: 33.476 - type: ndcg_at_1000 value: 36.012 - type: ndcg_at_20 value: 30.820999999999998 - type: ndcg_at_3 value: 22.721 - type: ndcg_at_5 value: 26.596999999999998 - type: precision_at_1 value: 17.116999999999997 - type: precision_at_10 value: 4.234 - type: precision_at_100 value: 0.658 - type: precision_at_1000 value: 0.086 - type: precision_at_20 value: 2.568 - type: precision_at_3 value: 9.009 - type: precision_at_5 value: 7.297 - type: recall_at_1 value: 17.116999999999997 - type: recall_at_10 value: 42.342 - type: recall_at_100 value: 65.766 - type: recall_at_1000 value: 86.036 - type: recall_at_20 value: 51.351 - type: recall_at_3 value: 27.027 - type: recall_at_5 value: 36.486000000000004 task: type: Retrieval - dataset: config: default name: MTEB HALClusteringS2S revision: e06ebbbb123f8144bef1a5d18796f3dec9ae2915 split: test type: lyon-nlp/clustering-hal-s2s metrics: - type: main_score value: 28.18744772954557 - type: v_measure value: 28.18744772954557 - type: v_measure_std value: 3.239838057506439 task: type: Clustering - dataset: config: fr name: MTEB MLSUMClusteringP2P (fr) revision: b5d54f8f3b61ae17845046286940f03c6bc79bc7 split: test type: reciTAL/mlsum metrics: - type: main_score value: 47.75009059283003 - type: v_measure value: 47.75009059283003 - type: v_measure_std value: 2.009277732690298 task: type: Clustering - dataset: config: fr name: MTEB MLSUMClusteringS2S (fr) revision: b5d54f8f3b61ae17845046286940f03c6bc79bc7 split: test type: reciTAL/mlsum metrics: - type: main_score value: 47.46091989113078 - type: v_measure value: 47.46091989113078 - type: v_measure_std value: 2.604802270948194 task: type: Clustering - dataset: config: fr name: MTEB MTOPDomainClassification (fr) revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf split: test type: mteb/mtop_domain metrics: - type: accuracy value: 97.20325712496086 - type: f1 value: 97.05991090368462 - type: f1_weighted value: 97.20748006323807 - type: main_score value: 97.20325712496086 task: type: Classification - dataset: config: fr name: MTEB MTOPIntentClassification (fr) revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba split: test type: mteb/mtop_intent metrics: - type: accuracy value: 93.07234575634199 - type: f1 value: 76.54521288506878 - type: f1_weighted value: 93.6903586431893 - type: main_score value: 93.07234575634199 task: type: Classification - dataset: config: fra name: MTEB MasakhaNEWSClassification (fra) revision: 18193f187b92da67168c655c9973a165ed9593dd split: test type: mteb/masakhanews metrics: - type: accuracy value: 82.48815165876778 - type: f1 value: 78.71164464238117 - type: f1_weighted value: 82.38927389376973 - type: main_score value: 82.48815165876778 task: type: Classification - dataset: config: fra name: MTEB MasakhaNEWSClusteringP2P (fra) revision: 8ccc72e69e65f40c70e117d8b3c08306bb788b60 split: test type: masakhane/masakhanews metrics: - type: main_score value: 73.85712952800003 - type: v_measure value: 73.85712952800003 - type: v_measure_std value: 22.471668299794416 task: type: Clustering - dataset: config: fra name: MTEB MasakhaNEWSClusteringS2S (fra) revision: 8ccc72e69e65f40c70e117d8b3c08306bb788b60 split: test type: masakhane/masakhanews metrics: - type: main_score value: 67.23960512566751 - type: v_measure value: 67.23960512566751 - type: v_measure_std value: 24.65079601360142 task: type: Clustering - dataset: config: fr name: MTEB MassiveIntentClassification (fr) revision: 4672e20407010da34463acc759c162ca9734bca6 split: test type: mteb/amazon_massive_intent metrics: - type: accuracy value: 79.59986550100874 - type: f1 value: 76.0439154517916 - type: f1_weighted value: 79.48538292013761 - type: main_score value: 79.59986550100874 task: type: Classification - dataset: config: fr name: MTEB MassiveScenarioClassification (fr) revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8 split: test type: mteb/amazon_massive_scenario metrics: - type: accuracy value: 82.182246133154 - type: f1 value: 81.68006668655397 - type: f1_weighted value: 81.94775072858566 - type: main_score value: 82.182246133154 task: type: Classification - dataset: config: fr name: MTEB MintakaRetrieval (fr) revision: efa78cc2f74bbcd21eff2261f9e13aebe40b814e split: test type: jinaai/mintakaqa metrics: - type: main_score value: 62.532 - type: map_at_1 value: 45.823 - type: map_at_10 value: 57.174 - type: map_at_100 value: 57.735 - type: map_at_1000 value: 57.767 - type: map_at_20 value: 57.53 - type: map_at_3 value: 54.716 - type: map_at_5 value: 56.227000000000004 - type: mrr_at_1 value: 45.82309582309582 - type: mrr_at_10 value: 57.17958217958217 - type: mrr_at_100 value: 57.744059413627866 - type: mrr_at_1000 value: 57.776651992832605 - type: mrr_at_20 value: 57.53890924556554 - type: mrr_at_3 value: 54.716079716079676 - type: mrr_at_5 value: 56.227136227136256 - type: nauc_map_at_1000_diff1 value: 39.48401851944296 - type: nauc_map_at_1000_max value: 36.55276875160682 - type: nauc_map_at_1000_std value: 3.9173787361040913 - type: nauc_map_at_100_diff1 value: 39.45696514871956 - type: nauc_map_at_100_max value: 36.55786982498759 - type: nauc_map_at_100_std value: 3.9506714061766557 - type: nauc_map_at_10_diff1 value: 39.31548009319837 - type: nauc_map_at_10_max value: 36.75711871602276 - type: nauc_map_at_10_std value: 3.782911249250981 - type: nauc_map_at_1_diff1 value: 44.190649439568766 - type: nauc_map_at_1_max value: 31.017419446234317 - type: nauc_map_at_1_std value: 0.5544388561183956 - type: nauc_map_at_20_diff1 value: 39.443640617310585 - type: nauc_map_at_20_max value: 36.63799366674228 - type: nauc_map_at_20_std value: 3.934276303386171 - type: nauc_map_at_3_diff1 value: 40.30871768246873 - type: nauc_map_at_3_max value: 36.944169455458656 - type: nauc_map_at_3_std value: 2.9847330185694556 - type: nauc_map_at_5_diff1 value: 39.590461060438095 - type: nauc_map_at_5_max value: 36.998781454405574 - type: nauc_map_at_5_std value: 3.532693606637119 - type: nauc_mrr_at_1000_diff1 value: 39.46102363098429 - type: nauc_mrr_at_1000_max value: 36.56900606103558 - type: nauc_mrr_at_1000_std value: 3.972436075561705 - type: nauc_mrr_at_100_diff1 value: 39.43269261665982 - type: nauc_mrr_at_100_max value: 36.574081599242014 - type: nauc_mrr_at_100_std value: 4.006374171904806 - type: nauc_mrr_at_10_diff1 value: 39.29970560564493 - type: nauc_mrr_at_10_max value: 36.778388879484716 - type: nauc_mrr_at_10_std value: 3.8335456201567206 - type: nauc_mrr_at_1_diff1 value: 44.190649439568766 - type: nauc_mrr_at_1_max value: 31.017419446234317 - type: nauc_mrr_at_1_std value: 0.5544388561183956 - type: nauc_mrr_at_20_diff1 value: 39.42091158484574 - type: nauc_mrr_at_20_max value: 36.65421566061936 - type: nauc_mrr_at_20_std value: 3.988695948848555 - type: nauc_mrr_at_3_diff1 value: 40.313976315898195 - type: nauc_mrr_at_3_max value: 36.960483501441985 - type: nauc_mrr_at_3_std value: 3.0112756156560394 - type: nauc_mrr_at_5_diff1 value: 39.56386294620379 - type: nauc_mrr_at_5_max value: 37.02119815939672 - type: nauc_mrr_at_5_std value: 3.6118004205573184 - type: nauc_ndcg_at_1000_diff1 value: 38.05281585863137 - type: nauc_ndcg_at_1000_max value: 37.41178875860201 - type: nauc_ndcg_at_1000_std value: 5.525420555163393 - type: nauc_ndcg_at_100_diff1 value: 37.18408005856676 - type: nauc_ndcg_at_100_max value: 37.617851212997685 - type: nauc_ndcg_at_100_std value: 6.871461890669446 - type: nauc_ndcg_at_10_diff1 value: 36.624444841382484 - type: nauc_ndcg_at_10_max value: 38.62100324849529 - type: nauc_ndcg_at_10_std value: 6.027810657475449 - type: nauc_ndcg_at_1_diff1 value: 44.190649439568766 - type: nauc_ndcg_at_1_max value: 31.017419446234317 - type: nauc_ndcg_at_1_std value: 0.5544388561183956 - type: nauc_ndcg_at_20_diff1 value: 37.057047514121564 - type: nauc_ndcg_at_20_max value: 38.19839331454421 - type: nauc_ndcg_at_20_std value: 6.770369938343684 - type: nauc_ndcg_at_3_diff1 value: 38.95821428563954 - type: nauc_ndcg_at_3_max value: 38.87440219376017 - type: nauc_ndcg_at_3_std value: 4.097498274708613 - type: nauc_ndcg_at_5_diff1 value: 37.515589837182034 - type: nauc_ndcg_at_5_max value: 39.165561493023276 - type: nauc_ndcg_at_5_std value: 5.291512124344874 - type: nauc_precision_at_1000_diff1 value: -13.365474882749279 - type: nauc_precision_at_1000_max value: 50.68568417959442 - type: nauc_precision_at_1000_std value: 37.847145129019054 - type: nauc_precision_at_100_diff1 value: 12.081443207482383 - type: nauc_precision_at_100_max value: 43.67561356191485 - type: nauc_precision_at_100_std value: 44.64523987759538 - type: nauc_precision_at_10_diff1 value: 23.20358204183261 - type: nauc_precision_at_10_max value: 46.93706139285088 - type: nauc_precision_at_10_std value: 17.36243956517301 - type: nauc_precision_at_1_diff1 value: 44.190649439568766 - type: nauc_precision_at_1_max value: 31.017419446234317 - type: nauc_precision_at_1_std value: 0.5544388561183956 - type: nauc_precision_at_20_diff1 value: 22.42836999246196 - type: nauc_precision_at_20_max value: 46.29381413041759 - type: nauc_precision_at_20_std value: 26.126609401922696 - type: nauc_precision_at_3_diff1 value: 34.503018704702484 - type: nauc_precision_at_3_max value: 45.194775358016095 - type: nauc_precision_at_3_std value: 7.864444241838433 - type: nauc_precision_at_5_diff1 value: 29.494641243672138 - type: nauc_precision_at_5_max value: 47.326071718857484 - type: nauc_precision_at_5_std value: 12.273738036245172 - type: nauc_recall_at_1000_diff1 value: -13.365474882756335 - type: nauc_recall_at_1000_max value: 50.68568417959348 - type: nauc_recall_at_1000_std value: 37.8471451290128 - type: nauc_recall_at_100_diff1 value: 12.08144320748251 - type: nauc_recall_at_100_max value: 43.675613561914986 - type: nauc_recall_at_100_std value: 44.645239877595564 - type: nauc_recall_at_10_diff1 value: 23.203582041832526 - type: nauc_recall_at_10_max value: 46.9370613928509 - type: nauc_recall_at_10_std value: 17.36243956517297 - type: nauc_recall_at_1_diff1 value: 44.190649439568766 - type: nauc_recall_at_1_max value: 31.017419446234317 - type: nauc_recall_at_1_std value: 0.5544388561183956 - type: nauc_recall_at_20_diff1 value: 22.42836999246212 - type: nauc_recall_at_20_max value: 46.29381413041773 - type: nauc_recall_at_20_std value: 26.12660940192268 - type: nauc_recall_at_3_diff1 value: 34.50301870470248 - type: nauc_recall_at_3_max value: 45.19477535801611 - type: nauc_recall_at_3_std value: 7.8644442418384335 - type: nauc_recall_at_5_diff1 value: 29.494641243672216 - type: nauc_recall_at_5_max value: 47.32607171885759 - type: nauc_recall_at_5_std value: 12.273738036245142 - type: ndcg_at_1 value: 45.823 - type: ndcg_at_10 value: 62.532 - type: ndcg_at_100 value: 65.298 - type: ndcg_at_1000 value: 66.214 - type: ndcg_at_20 value: 63.82600000000001 - type: ndcg_at_3 value: 57.528999999999996 - type: ndcg_at_5 value: 60.24 - type: precision_at_1 value: 45.823 - type: precision_at_10 value: 7.928 - type: precision_at_100 value: 0.923 - type: precision_at_1000 value: 0.1 - type: precision_at_20 value: 4.22 - type: precision_at_3 value: 21.881 - type: precision_at_5 value: 14.438999999999998 - type: recall_at_1 value: 45.823 - type: recall_at_10 value: 79.279 - type: recall_at_100 value: 92.301 - type: recall_at_1000 value: 99.631 - type: recall_at_20 value: 84.398 - type: recall_at_3 value: 65.643 - type: recall_at_5 value: 72.195 task: type: Retrieval - dataset: config: fr name: MTEB OpusparcusPC (fr) revision: 9e9b1f8ef51616073f47f306f7f47dd91663f86a split: test type: GEM/opusparcus metrics: - type: cosine_accuracy value: 99.90069513406156 - type: cosine_accuracy_threshold value: 54.45001207375879 - type: cosine_ap value: 100.0 - type: cosine_f1 value: 99.95032290114257 - type: cosine_f1_threshold value: 54.45001207375879 - type: cosine_precision value: 100.0 - type: cosine_recall value: 99.90069513406156 - type: dot_accuracy value: 99.90069513406156 - type: dot_accuracy_threshold value: 1312800.0 - type: dot_ap value: 100.0 - type: dot_f1 value: 99.95032290114257 - type: dot_f1_threshold value: 1312800.0 - type: dot_precision value: 100.0 - type: dot_recall value: 99.90069513406156 - type: euclidean_accuracy value: 99.90069513406156 - type: euclidean_accuracy_threshold value: 15150.791732002876 - type: euclidean_ap value: 100.0 - type: euclidean_f1 value: 99.95032290114257 - type: euclidean_f1_threshold value: 15150.791732002876 - type: euclidean_precision value: 100.0 - type: euclidean_recall value: 99.90069513406156 - type: main_score value: 100.0 - type: manhattan_accuracy value: 99.90069513406156 - type: manhattan_accuracy_threshold value: 717903.2791554928 - type: manhattan_ap value: 100.0 - type: manhattan_f1 value: 99.95032290114257 - type: manhattan_f1_threshold value: 717903.2791554928 - type: manhattan_precision value: 100.0 - type: manhattan_recall value: 99.90069513406156 - type: max_ap value: 100.0 - type: max_f1 value: 99.95032290114257 - type: max_precision value: 100.0 - type: max_recall value: 99.90069513406156 - type: similarity_accuracy value: 99.90069513406156 - type: similarity_accuracy_threshold value: 54.45001207375879 - type: similarity_ap value: 100.0 - type: similarity_f1 value: 99.95032290114257 - type: similarity_f1_threshold value: 54.45001207375879 - type: similarity_precision value: 100.0 - type: similarity_recall value: 99.90069513406156 task: type: PairClassification - dataset: config: fr name: MTEB PawsXPairClassification (fr) revision: 8a04d940a42cd40658986fdd8e3da561533a3646 split: test type: google-research-datasets/paws-x metrics: - type: cosine_accuracy value: 67.95 - type: cosine_accuracy_threshold value: 97.36901285947026 - type: cosine_ap value: 70.14158727060726 - type: cosine_f1 value: 65.38108356290174 - type: cosine_f1_threshold value: 94.90683744884689 - type: cosine_precision value: 55.84313725490196 - type: cosine_recall value: 78.8482834994463 - type: dot_accuracy value: 60.5 - type: dot_accuracy_threshold value: 2606400.0 - type: dot_ap value: 57.0114505567262 - type: dot_f1 value: 63.29394387001477 - type: dot_f1_threshold value: 2345600.0 - type: dot_precision value: 47.4792243767313 - type: dot_recall value: 94.90586932447398 - type: euclidean_accuracy value: 68.05 - type: euclidean_accuracy_threshold value: 3824.99743197985 - type: euclidean_ap value: 70.01158306654237 - type: euclidean_f1 value: 65.21939953810623 - type: euclidean_f1_threshold value: 5187.47968966464 - type: euclidean_precision value: 55.942947702060216 - type: euclidean_recall value: 78.18383167220377 - type: main_score value: 70.14158727060726 - type: manhattan_accuracy value: 68.05 - type: manhattan_accuracy_threshold value: 191852.34832763672 - type: manhattan_ap value: 70.01670033904287 - type: manhattan_f1 value: 65.2854511970534 - type: manhattan_f1_threshold value: 246807.1710705757 - type: manhattan_precision value: 55.87076438140268 - type: manhattan_recall value: 78.51605758582502 - type: max_ap value: 70.14158727060726 - type: max_f1 value: 65.38108356290174 - type: max_precision value: 55.942947702060216 - type: max_recall value: 94.90586932447398 - type: similarity_accuracy value: 67.95 - type: similarity_accuracy_threshold value: 97.36901285947026 - type: similarity_ap value: 70.14158727060726 - type: similarity_f1 value: 65.38108356290174 - type: similarity_f1_threshold value: 94.90683744884689 - type: similarity_precision value: 55.84313725490196 - type: similarity_recall value: 78.8482834994463 task: type: PairClassification - dataset: config: default name: MTEB SICKFr revision: e077ab4cf4774a1e36d86d593b150422fafd8e8a split: test type: Lajavaness/SICK-fr metrics: - type: cosine_pearson value: 79.79861486027 - type: cosine_spearman value: 79.3918786992987 - type: euclidean_pearson value: 77.73226212475764 - type: euclidean_spearman value: 79.08856888397014 - type: main_score value: 79.3918786992987 - type: manhattan_pearson value: 77.8002206650809 - type: manhattan_spearman value: 79.15284532531264 - type: pearson value: 79.79861486027 - type: spearman value: 79.3918786992987 task: type: STS - dataset: config: fr name: MTEB STS22 (fr) revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3 split: test type: mteb/sts22-crosslingual-sts metrics: - type: cosine_pearson value: 83.32314025534286 - type: cosine_spearman value: 83.2806004701507 - type: euclidean_pearson value: 81.88040500817269 - type: euclidean_spearman value: 82.73179823676206 - type: main_score value: 83.2806004701507 - type: manhattan_pearson value: 82.0438174605579 - type: manhattan_spearman value: 83.0253049811576 - type: pearson value: 83.32314025534286 - type: spearman value: 83.2806004701507 task: type: STS - dataset: config: fr name: MTEB STSBenchmarkMultilingualSTS (fr) revision: 29afa2569dcedaaa2fe6a3dcfebab33d28b82e8c split: test type: mteb/stsb_multi_mt metrics: - type: cosine_pearson value: 84.56723075054445 - type: cosine_spearman value: 85.08759191551403 - type: euclidean_pearson value: 83.186096744725 - type: euclidean_spearman value: 84.36958569816491 - type: main_score value: 85.08759191551403 - type: manhattan_pearson value: 83.1405072165467 - type: manhattan_spearman value: 84.34227830781155 - type: pearson value: 84.56723075054445 - type: spearman value: 85.08759191551403 task: type: STS - dataset: config: default name: MTEB SummEvalFr revision: b385812de6a9577b6f4d0f88c6a6e35395a94054 split: test type: lyon-nlp/summarization-summeval-fr-p2p metrics: - type: cosine_pearson value: 31.921764332449115 - type: cosine_spearman value: 31.260442997631806 - type: dot_pearson value: 31.585578707631406 - type: dot_spearman value: 31.479238746310028 - type: main_score value: 31.260442997631806 - type: pearson value: 31.921764332449115 - type: spearman value: 31.260442997631806 task: type: Summarization - dataset: config: default name: MTEB SyntecReranking revision: daf0863838cd9e3ba50544cdce3ac2b338a1b0ad split: test type: lyon-nlp/mteb-fr-reranking-syntec-s2p metrics: - type: main_score value: 91.83333333333333 - type: map value: 91.83333333333333 - type: mrr value: 92.0 - type: nAUC_map_diff1 value: 53.97793263646914 - type: nAUC_map_max value: 44.264158743282195 - type: nAUC_map_std value: 14.692218350754885 - type: nAUC_mrr_diff1 value: 54.36926882239366 - type: nAUC_mrr_max value: 46.43108510296003 - type: nAUC_mrr_std value: 17.48914092664096 task: type: Reranking - dataset: config: default name: MTEB SyntecRetrieval revision: 19661ccdca4dfc2d15122d776b61685f48c68ca9 split: test type: lyon-nlp/mteb-fr-retrieval-syntec-s2p metrics: - type: main_score value: 90.36699999999999 - type: map_at_1 value: 79.0 - type: map_at_10 value: 87.18599999999999 - type: map_at_100 value: 87.18599999999999 - type: map_at_1000 value: 87.18599999999999 - type: map_at_20 value: 87.18599999999999 - type: map_at_3 value: 86.0 - type: map_at_5 value: 86.95 - type: mrr_at_1 value: 79.0 - type: mrr_at_10 value: 87.18611111111112 - type: mrr_at_100 value: 87.18611111111112 - type: mrr_at_1000 value: 87.18611111111112 - type: mrr_at_20 value: 87.18611111111112 - type: mrr_at_3 value: 86.0 - type: mrr_at_5 value: 86.95 - type: nauc_map_at_1000_diff1 value: 63.05539428169271 - type: nauc_map_at_1000_max value: 45.428107132447124 - type: nauc_map_at_1000_std value: 13.94507583970834 - type: nauc_map_at_100_diff1 value: 63.05539428169271 - type: nauc_map_at_100_max value: 45.428107132447124 - type: nauc_map_at_100_std value: 13.94507583970834 - type: nauc_map_at_10_diff1 value: 63.05539428169271 - type: nauc_map_at_10_max value: 45.428107132447124 - type: nauc_map_at_10_std value: 13.94507583970834 - type: nauc_map_at_1_diff1 value: 64.24122923028831 - type: nauc_map_at_1_max value: 44.34077957053877 - type: nauc_map_at_1_std value: 9.594344386466878 - type: nauc_map_at_20_diff1 value: 63.05539428169271 - type: nauc_map_at_20_max value: 45.428107132447124 - type: nauc_map_at_20_std value: 13.94507583970834 - type: nauc_map_at_3_diff1 value: 62.30831315577075 - type: nauc_map_at_3_max value: 47.33980193586779 - type: nauc_map_at_3_std value: 16.132624025733 - type: nauc_map_at_5_diff1 value: 63.079622378971834 - type: nauc_map_at_5_max value: 45.13424437707254 - type: nauc_map_at_5_std value: 13.730785051570013 - type: nauc_mrr_at_1000_diff1 value: 63.05539428169271 - type: nauc_mrr_at_1000_max value: 45.428107132447124 - type: nauc_mrr_at_1000_std value: 13.94507583970834 - type: nauc_mrr_at_100_diff1 value: 63.05539428169271 - type: nauc_mrr_at_100_max value: 45.428107132447124 - type: nauc_mrr_at_100_std value: 13.94507583970834 - type: nauc_mrr_at_10_diff1 value: 63.05539428169271 - type: nauc_mrr_at_10_max value: 45.428107132447124 - type: nauc_mrr_at_10_std value: 13.94507583970834 - type: nauc_mrr_at_1_diff1 value: 64.24122923028831 - type: nauc_mrr_at_1_max value: 44.34077957053877 - type: nauc_mrr_at_1_std value: 9.594344386466878 - type: nauc_mrr_at_20_diff1 value: 63.05539428169271 - type: nauc_mrr_at_20_max value: 45.428107132447124 - type: nauc_mrr_at_20_std value: 13.94507583970834 - type: nauc_mrr_at_3_diff1 value: 62.30831315577075 - type: nauc_mrr_at_3_max value: 47.33980193586779 - type: nauc_mrr_at_3_std value: 16.132624025733 - type: nauc_mrr_at_5_diff1 value: 63.079622378971834 - type: nauc_mrr_at_5_max value: 45.13424437707254 - type: nauc_mrr_at_5_std value: 13.730785051570013 - type: nauc_ndcg_at_1000_diff1 value: 62.97376441474187 - type: nauc_ndcg_at_1000_max value: 45.457846840130586 - type: nauc_ndcg_at_1000_std value: 14.17695491254452 - type: nauc_ndcg_at_100_diff1 value: 62.97376441474187 - type: nauc_ndcg_at_100_max value: 45.457846840130586 - type: nauc_ndcg_at_100_std value: 14.17695491254452 - type: nauc_ndcg_at_10_diff1 value: 62.97376441474187 - type: nauc_ndcg_at_10_max value: 45.457846840130586 - type: nauc_ndcg_at_10_std value: 14.17695491254452 - type: nauc_ndcg_at_1_diff1 value: 64.24122923028831 - type: nauc_ndcg_at_1_max value: 44.34077957053877 - type: nauc_ndcg_at_1_std value: 9.594344386466878 - type: nauc_ndcg_at_20_diff1 value: 62.97376441474187 - type: nauc_ndcg_at_20_max value: 45.457846840130586 - type: nauc_ndcg_at_20_std value: 14.17695491254452 - type: nauc_ndcg_at_3_diff1 value: 61.47043349797183 - type: nauc_ndcg_at_3_max value: 49.12165820225059 - type: nauc_ndcg_at_3_std value: 18.525396343409568 - type: nauc_ndcg_at_5_diff1 value: 63.04022063936115 - type: nauc_ndcg_at_5_max value: 44.381937619091765 - type: nauc_ndcg_at_5_std value: 13.3263412698325 - type: nauc_precision_at_1000_diff1 value: .nan - type: nauc_precision_at_1000_max value: .nan - type: nauc_precision_at_1000_std value: .nan - type: nauc_precision_at_100_diff1 value: .nan - type: nauc_precision_at_100_max value: .nan - type: nauc_precision_at_100_std value: .nan - type: nauc_precision_at_10_diff1 value: 100.0 - type: nauc_precision_at_10_max value: 100.0 - type: nauc_precision_at_10_std value: 100.0 - type: nauc_precision_at_1_diff1 value: 64.24122923028831 - type: nauc_precision_at_1_max value: 44.34077957053877 - type: nauc_precision_at_1_std value: 9.594344386466878 - type: nauc_precision_at_20_diff1 value: 100.0 - type: nauc_precision_at_20_max value: 100.0 - type: nauc_precision_at_20_std value: 100.0 - type: nauc_precision_at_3_diff1 value: 56.27917833800158 - type: nauc_precision_at_3_max value: 60.51976346093969 - type: nauc_precision_at_3_std value: 33.02209772798002 - type: nauc_precision_at_5_diff1 value: 63.81886087768404 - type: nauc_precision_at_5_max value: 27.544351073763345 - type: nauc_precision_at_5_std value: -0.4668534080301362 - type: nauc_recall_at_1000_diff1 value: .nan - type: nauc_recall_at_1000_max value: .nan - type: nauc_recall_at_1000_std value: .nan - type: nauc_recall_at_100_diff1 value: .nan - type: nauc_recall_at_100_max value: .nan - type: nauc_recall_at_100_std value: .nan - type: nauc_recall_at_10_diff1 value: .nan - type: nauc_recall_at_10_max value: .nan - type: nauc_recall_at_10_std value: .nan - type: nauc_recall_at_1_diff1 value: 64.24122923028831 - type: nauc_recall_at_1_max value: 44.34077957053877 - type: nauc_recall_at_1_std value: 9.594344386466878 - type: nauc_recall_at_20_diff1 value: .nan - type: nauc_recall_at_20_max value: .nan - type: nauc_recall_at_20_std value: .nan - type: nauc_recall_at_3_diff1 value: 56.27917833800187 - type: nauc_recall_at_3_max value: 60.51976346094 - type: nauc_recall_at_3_std value: 33.022097727980125 - type: nauc_recall_at_5_diff1 value: 63.81886087768457 - type: nauc_recall_at_5_max value: 27.544351073763107 - type: nauc_recall_at_5_std value: -0.46685340803013775 - type: ndcg_at_1 value: 79.0 - type: ndcg_at_10 value: 90.36699999999999 - type: ndcg_at_100 value: 90.36699999999999 - type: ndcg_at_1000 value: 90.36699999999999 - type: ndcg_at_20 value: 90.36699999999999 - type: ndcg_at_3 value: 88.071 - type: ndcg_at_5 value: 89.75 - type: precision_at_1 value: 79.0 - type: precision_at_10 value: 10.0 - type: precision_at_100 value: 1.0 - type: precision_at_1000 value: 0.1 - type: precision_at_20 value: 5.0 - type: precision_at_3 value: 31.333 - type: precision_at_5 value: 19.6 - type: recall_at_1 value: 79.0 - type: recall_at_10 value: 100.0 - type: recall_at_100 value: 100.0 - type: recall_at_1000 value: 100.0 - type: recall_at_20 value: 100.0 - type: recall_at_3 value: 94.0 - type: recall_at_5 value: 98.0 task: type: Retrieval - dataset: config: fra-fra name: MTEB XPQARetrieval (fr) revision: c99d599f0a6ab9b85b065da6f9d94f9cf731679f split: test type: jinaai/xpqa metrics: - type: main_score value: 77.425 - type: map_at_1 value: 46.749 - type: map_at_10 value: 72.108 - type: map_at_100 value: 73.32499999999999 - type: map_at_1000 value: 73.341 - type: map_at_20 value: 72.991 - type: map_at_3 value: 65.09 - type: map_at_5 value: 70.137 - type: mrr_at_1 value: 71.82910547396529 - type: mrr_at_10 value: 78.63357492529722 - type: mrr_at_100 value: 78.97374961354801 - type: mrr_at_1000 value: 78.97840549855806 - type: mrr_at_20 value: 78.86005025292395 - type: mrr_at_3 value: 77.28081886960389 - type: mrr_at_5 value: 78.0551846906987 - type: nauc_map_at_1000_diff1 value: 57.508397030020156 - type: nauc_map_at_1000_max value: 43.80251983780665 - type: nauc_map_at_1000_std value: -16.231491160419434 - type: nauc_map_at_100_diff1 value: 57.48614844875469 - type: nauc_map_at_100_max value: 43.797011627763055 - type: nauc_map_at_100_std value: -16.239303348969592 - type: nauc_map_at_10_diff1 value: 57.254064849553934 - type: nauc_map_at_10_max value: 42.765535577219026 - type: nauc_map_at_10_std value: -17.255606315997156 - type: nauc_map_at_1_diff1 value: 65.04324659040175 - type: nauc_map_at_1_max value: 17.852220653388855 - type: nauc_map_at_1_std value: -14.257753661018779 - type: nauc_map_at_20_diff1 value: 57.48367588324867 - type: nauc_map_at_20_max value: 43.680084254814425 - type: nauc_map_at_20_std value: -16.59381108810359 - type: nauc_map_at_3_diff1 value: 58.328817274958276 - type: nauc_map_at_3_max value: 34.603370607250675 - type: nauc_map_at_3_std value: -15.326569334165047 - type: nauc_map_at_5_diff1 value: 57.544271139796365 - type: nauc_map_at_5_max value: 41.58159814532708 - type: nauc_map_at_5_std value: -17.035562345654515 - type: nauc_mrr_at_1000_diff1 value: 67.23053035385993 - type: nauc_mrr_at_1000_max value: 53.982556981667095 - type: nauc_mrr_at_1000_std value: -12.015571062417035 - type: nauc_mrr_at_100_diff1 value: 67.23047293440347 - type: nauc_mrr_at_100_max value: 53.97931489747768 - type: nauc_mrr_at_100_std value: -12.026957248146365 - type: nauc_mrr_at_10_diff1 value: 67.25927907237941 - type: nauc_mrr_at_10_max value: 53.99647347811833 - type: nauc_mrr_at_10_std value: -12.356365137919108 - type: nauc_mrr_at_1_diff1 value: 67.80552098159194 - type: nauc_mrr_at_1_max value: 52.34740974885752 - type: nauc_mrr_at_1_std value: -9.009347371853096 - type: nauc_mrr_at_20_diff1 value: 67.22472566769486 - type: nauc_mrr_at_20_max value: 54.03480374123263 - type: nauc_mrr_at_20_std value: -12.129416933895373 - type: nauc_mrr_at_3_diff1 value: 66.86636026044627 - type: nauc_mrr_at_3_max value: 53.84675762408544 - type: nauc_mrr_at_3_std value: -12.318414220208327 - type: nauc_mrr_at_5_diff1 value: 67.16713697443882 - type: nauc_mrr_at_5_max value: 54.174275682276765 - type: nauc_mrr_at_5_std value: -12.382704200660772 - type: nauc_ndcg_at_1000_diff1 value: 60.076768803793875 - type: nauc_ndcg_at_1000_max value: 48.06880976583911 - type: nauc_ndcg_at_1000_std value: -14.8002468401513 - type: nauc_ndcg_at_100_diff1 value: 59.84195440900073 - type: nauc_ndcg_at_100_max value: 48.031759882567265 - type: nauc_ndcg_at_100_std value: -14.93671795434138 - type: nauc_ndcg_at_10_diff1 value: 59.091362656630984 - type: nauc_ndcg_at_10_max value: 45.902216798175296 - type: nauc_ndcg_at_10_std value: -18.225812204918686 - type: nauc_ndcg_at_1_diff1 value: 67.80552098159194 - type: nauc_ndcg_at_1_max value: 52.34740974885752 - type: nauc_ndcg_at_1_std value: -9.009347371853096 - type: nauc_ndcg_at_20_diff1 value: 59.80472569029982 - type: nauc_ndcg_at_20_max value: 47.92221974783734 - type: nauc_ndcg_at_20_std value: -16.589965314279805 - type: nauc_ndcg_at_3_diff1 value: 56.9195769675713 - type: nauc_ndcg_at_3_max value: 44.992740041222575 - type: nauc_ndcg_at_3_std value: -16.329730380555382 - type: nauc_ndcg_at_5_diff1 value: 59.31912266230594 - type: nauc_ndcg_at_5_max value: 44.75423089733974 - type: nauc_ndcg_at_5_std value: -17.744216780645583 - type: nauc_precision_at_1000_diff1 value: -30.976050318575094 - type: nauc_precision_at_1000_max value: 16.55619583017722 - type: nauc_precision_at_1000_std value: 10.549164466552044 - type: nauc_precision_at_100_diff1 value: -30.217028356940872 - type: nauc_precision_at_100_max value: 17.709049202840184 - type: nauc_precision_at_100_std value: 10.04190905252673 - type: nauc_precision_at_10_diff1 value: -19.588612396735584 - type: nauc_precision_at_10_max value: 23.97095583735318 - type: nauc_precision_at_10_std value: 1.3308819095790259 - type: nauc_precision_at_1_diff1 value: 67.80552098159194 - type: nauc_precision_at_1_max value: 52.34740974885752 - type: nauc_precision_at_1_std value: -9.009347371853096 - type: nauc_precision_at_20_diff1 value: -24.56372903999468 - type: nauc_precision_at_20_max value: 21.970766470092478 - type: nauc_precision_at_20_std value: 5.690019568793079 - type: nauc_precision_at_3_diff1 value: -5.293993834675436 - type: nauc_precision_at_3_max value: 33.48037221970611 - type: nauc_precision_at_3_std value: -0.9905029996040207 - type: nauc_precision_at_5_diff1 value: -12.477204961113433 - type: nauc_precision_at_5_max value: 28.41320824321574 - type: nauc_precision_at_5_std value: -0.25510168506666026 - type: nauc_recall_at_1000_diff1 value: 63.80720019823024 - type: nauc_recall_at_1000_max value: 100.0 - type: nauc_recall_at_1000_std value: 100.0 - type: nauc_recall_at_100_diff1 value: 45.99503772001805 - type: nauc_recall_at_100_max value: 53.62256247578381 - type: nauc_recall_at_100_std value: -2.1521605315502126 - type: nauc_recall_at_10_diff1 value: 51.49183566173087 - type: nauc_recall_at_10_max value: 39.94460610694432 - type: nauc_recall_at_10_std value: -27.417226994058534 - type: nauc_recall_at_1_diff1 value: 65.04324659040175 - type: nauc_recall_at_1_max value: 17.852220653388855 - type: nauc_recall_at_1_std value: -14.257753661018779 - type: nauc_recall_at_20_diff1 value: 53.65987970751146 - type: nauc_recall_at_20_max value: 48.20536243702891 - type: nauc_recall_at_20_std value: -24.77784527777353 - type: nauc_recall_at_3_diff1 value: 53.27794448209969 - type: nauc_recall_at_3_max value: 30.304767840963283 - type: nauc_recall_at_3_std value: -19.099603261339936 - type: nauc_recall_at_5_diff1 value: 53.77383683020561 - type: nauc_recall_at_5_max value: 39.58616026474047 - type: nauc_recall_at_5_std value: -23.255086482736036 - type: ndcg_at_1 value: 71.829 - type: ndcg_at_10 value: 77.425 - type: ndcg_at_100 value: 80.88 - type: ndcg_at_1000 value: 81.128 - type: ndcg_at_20 value: 79.403 - type: ndcg_at_3 value: 72.89 - type: ndcg_at_5 value: 74.521 - type: precision_at_1 value: 71.829 - type: precision_at_10 value: 17.596999999999998 - type: precision_at_100 value: 2.033 - type: precision_at_1000 value: 0.207 - type: precision_at_20 value: 9.513 - type: precision_at_3 value: 44.192 - type: precision_at_5 value: 31.776 - type: recall_at_1 value: 46.749 - type: recall_at_10 value: 85.49799999999999 - type: recall_at_100 value: 98.17099999999999 - type: recall_at_1000 value: 99.733 - type: recall_at_20 value: 91.70700000000001 - type: recall_at_3 value: 70.309 - type: recall_at_5 value: 78.507 task: type: Retrieval - dataset: config: default name: MTEB AllegroReviews revision: b89853e6de927b0e3bfa8ecc0e56fe4e02ceafc6 split: test type: PL-MTEB/allegro-reviews metrics: - type: accuracy value: 65.0 - type: f1 value: 58.85888258599016 - type: f1_weighted value: 65.99554726292321 - type: main_score value: 65.0 task: type: Classification - dataset: config: default name: MTEB ArguAna-PL revision: 63fc86750af76253e8c760fc9e534bbf24d260a2 split: test type: clarin-knext/arguana-pl metrics: - type: main_score value: 59.71300000000001 - type: map_at_1 value: 35.135 - type: map_at_10 value: 51.092000000000006 - type: map_at_100 value: 51.773 - type: map_at_1000 value: 51.776999999999994 - type: map_at_20 value: 51.665000000000006 - type: map_at_3 value: 46.574 - type: map_at_5 value: 49.032 - type: mrr_at_1 value: 36.201991465149355 - type: mrr_at_10 value: 51.546405427984475 - type: mrr_at_100 value: 52.202374673015285 - type: mrr_at_1000 value: 52.20610086068531 - type: mrr_at_20 value: 52.096805353180756 - type: mrr_at_3 value: 47.01280227596022 - type: mrr_at_5 value: 49.49146514935999 - type: nauc_map_at_1000_diff1 value: 19.758403663654388 - type: nauc_map_at_1000_max value: 1.9211716901459552 - type: nauc_map_at_1000_std value: -12.391775130617594 - type: nauc_map_at_100_diff1 value: 19.75801012476506 - type: nauc_map_at_100_max value: 1.927233271789035 - type: nauc_map_at_100_std value: -12.390686358565384 - type: nauc_map_at_10_diff1 value: 19.618023487744257 - type: nauc_map_at_10_max value: 1.948823709088292 - type: nauc_map_at_10_std value: -12.590649627823774 - type: nauc_map_at_1_diff1 value: 22.704520355653777 - type: nauc_map_at_1_max value: -0.7340073588952427 - type: nauc_map_at_1_std value: -11.685082615631233 - type: nauc_map_at_20_diff1 value: 19.710150386755245 - type: nauc_map_at_20_max value: 1.9579689185617946 - type: nauc_map_at_20_std value: -12.454848473878485 - type: nauc_map_at_3_diff1 value: 19.88571571635227 - type: nauc_map_at_3_max value: 2.2089391275055754 - type: nauc_map_at_3_std value: -12.152625563551476 - type: nauc_map_at_5_diff1 value: 19.345423817148774 - type: nauc_map_at_5_max value: 2.4471831202433783 - type: nauc_map_at_5_std value: -11.60532301686549 - type: nauc_mrr_at_1000_diff1 value: 16.90786453167799 - type: nauc_mrr_at_1000_max value: 0.65578323377857 - type: nauc_mrr_at_1000_std value: -12.395929715413015 - type: nauc_mrr_at_100_diff1 value: 16.90781127619206 - type: nauc_mrr_at_100_max value: 0.6619900297824423 - type: nauc_mrr_at_100_std value: -12.394826789608906 - type: nauc_mrr_at_10_diff1 value: 16.785894192163838 - type: nauc_mrr_at_10_max value: 0.7096666849274212 - type: nauc_mrr_at_10_std value: -12.592883550594735 - type: nauc_mrr_at_1_diff1 value: 19.59282927806732 - type: nauc_mrr_at_1_max value: -1.1271716729359413 - type: nauc_mrr_at_1_std value: -11.710668880297517 - type: nauc_mrr_at_20_diff1 value: 16.86673477981559 - type: nauc_mrr_at_20_max value: 0.6897167399764257 - type: nauc_mrr_at_20_std value: -12.464631471378414 - type: nauc_mrr_at_3_diff1 value: 17.0481261621288 - type: nauc_mrr_at_3_max value: 0.7183007174016199 - type: nauc_mrr_at_3_std value: -12.329335728574527 - type: nauc_mrr_at_5_diff1 value: 16.698916629443854 - type: nauc_mrr_at_5_max value: 1.2515514207224299 - type: nauc_mrr_at_5_std value: -11.662599392805308 - type: nauc_ndcg_at_1000_diff1 value: 19.30605856078901 - type: nauc_ndcg_at_1000_max value: 2.3402231520806835 - type: nauc_ndcg_at_1000_std value: -12.370409989770332 - type: nauc_ndcg_at_100_diff1 value: 19.31155460872256 - type: nauc_ndcg_at_100_max value: 2.510633162779702 - type: nauc_ndcg_at_100_std value: -12.313796276064673 - type: nauc_ndcg_at_10_diff1 value: 18.511651466450843 - type: nauc_ndcg_at_10_max value: 2.6756675185155263 - type: nauc_ndcg_at_10_std value: -13.573610085360095 - type: nauc_ndcg_at_1_diff1 value: 22.704520355653777 - type: nauc_ndcg_at_1_max value: -0.7340073588952427 - type: nauc_ndcg_at_1_std value: -11.685082615631233 - type: nauc_ndcg_at_20_diff1 value: 19.01305812933961 - type: nauc_ndcg_at_20_max value: 2.777977280012548 - type: nauc_ndcg_at_20_std value: -12.959515013552128 - type: nauc_ndcg_at_3_diff1 value: 19.15053976740578 - type: nauc_ndcg_at_3_max value: 3.2587972262385496 - type: nauc_ndcg_at_3_std value: -12.105808757691328 - type: nauc_ndcg_at_5_diff1 value: 18.010082675090597 - type: nauc_ndcg_at_5_max value: 3.753876824229378 - type: nauc_ndcg_at_5_std value: -11.044202434548701 - type: nauc_precision_at_1000_diff1 value: -11.75783343822487 - type: nauc_precision_at_1000_max value: 5.7856460776313465 - type: nauc_precision_at_1000_std value: 62.79171280927037 - type: nauc_precision_at_100_diff1 value: 9.08527555500537 - type: nauc_precision_at_100_max value: 36.16754653078746 - type: nauc_precision_at_100_std value: 28.37969482833522 - type: nauc_precision_at_10_diff1 value: 10.685081888632977 - type: nauc_precision_at_10_max value: 7.185779514361452 - type: nauc_precision_at_10_std value: -22.209758078034394 - type: nauc_precision_at_1_diff1 value: 22.704520355653777 - type: nauc_precision_at_1_max value: -0.7340073588952427 - type: nauc_precision_at_1_std value: -11.685082615631233 - type: nauc_precision_at_20_diff1 value: 10.0745772945806 - type: nauc_precision_at_20_max value: 16.81469938479116 - type: nauc_precision_at_20_std value: -22.804277740935298 - type: nauc_precision_at_3_diff1 value: 16.900587067301714 - type: nauc_precision_at_3_max value: 6.595958907337978 - type: nauc_precision_at_3_std value: -11.888316132805594 - type: nauc_precision_at_5_diff1 value: 12.771428972972895 - type: nauc_precision_at_5_max value: 8.79201485711544 - type: nauc_precision_at_5_std value: -8.609881800940762 - type: nauc_recall_at_1000_diff1 value: -11.757833438225305 - type: nauc_recall_at_1000_max value: 5.785646077628613 - type: nauc_recall_at_1000_std value: 62.791712809264176 - type: nauc_recall_at_100_diff1 value: 9.085275555005722 - type: nauc_recall_at_100_max value: 36.167546530787995 - type: nauc_recall_at_100_std value: 28.37969482833511 - type: nauc_recall_at_10_diff1 value: 10.68508188863288 - type: nauc_recall_at_10_max value: 7.185779514361484 - type: nauc_recall_at_10_std value: -22.209758078034465 - type: nauc_recall_at_1_diff1 value: 22.704520355653777 - type: nauc_recall_at_1_max value: -0.7340073588952427 - type: nauc_recall_at_1_std value: -11.685082615631233 - type: nauc_recall_at_20_diff1 value: 10.074577294581067 - type: nauc_recall_at_20_max value: 16.814699384791545 - type: nauc_recall_at_20_std value: -22.80427774093497 - type: nauc_recall_at_3_diff1 value: 16.900587067301768 - type: nauc_recall_at_3_max value: 6.595958907337955 - type: nauc_recall_at_3_std value: -11.888316132805613 - type: nauc_recall_at_5_diff1 value: 12.77142897297289 - type: nauc_recall_at_5_max value: 8.792014857115413 - type: nauc_recall_at_5_std value: -8.609881800940697 - type: ndcg_at_1 value: 35.135 - type: ndcg_at_10 value: 59.71300000000001 - type: ndcg_at_100 value: 62.5 - type: ndcg_at_1000 value: 62.578 - type: ndcg_at_20 value: 61.775000000000006 - type: ndcg_at_3 value: 50.336999999999996 - type: ndcg_at_5 value: 54.748 - type: precision_at_1 value: 35.135 - type: precision_at_10 value: 8.72 - type: precision_at_100 value: 0.991 - type: precision_at_1000 value: 0.1 - type: precision_at_20 value: 4.765 - type: precision_at_3 value: 20.413 - type: precision_at_5 value: 14.381 - type: recall_at_1 value: 35.135 - type: recall_at_10 value: 87.198 - type: recall_at_100 value: 99.075 - type: recall_at_1000 value: 99.644 - type: recall_at_20 value: 95.306 - type: recall_at_3 value: 61.23800000000001 - type: recall_at_5 value: 71.906 task: type: Retrieval - dataset: config: default name: MTEB CBD revision: 36ddb419bcffe6a5374c3891957912892916f28d split: test type: PL-MTEB/cbd metrics: - type: accuracy value: 84.13000000000001 - type: ap value: 38.21674564144456 - type: ap_weighted value: 38.21674564144456 - type: f1 value: 73.58128735002478 - type: f1_weighted value: 85.75596717538494 - type: main_score value: 84.13000000000001 task: type: Classification - dataset: config: default name: MTEB CDSC-E revision: 0a3d4aa409b22f80eb22cbf59b492637637b536d split: test type: PL-MTEB/cdsce-pairclassification metrics: - type: cosine_accuracy value: 89.0 - type: cosine_accuracy_threshold value: 95.30268088769837 - type: cosine_ap value: 78.23422403821777 - type: cosine_f1 value: 69.23076923076923 - type: cosine_f1_threshold value: 87.1877340095262 - type: cosine_precision value: 67.5 - type: cosine_recall value: 71.05263157894737 - type: dot_accuracy value: 88.3 - type: dot_accuracy_threshold value: 2472000.0 - type: dot_ap value: 74.26705897704197 - type: dot_f1 value: 66.49874055415617 - type: dot_f1_threshold value: 2316800.0 - type: dot_precision value: 63.76811594202898 - type: dot_recall value: 69.47368421052632 - type: euclidean_accuracy value: 89.2 - type: euclidean_accuracy_threshold value: 6878.705188647788 - type: euclidean_ap value: 78.51718555534579 - type: euclidean_f1 value: 69.54314720812182 - type: euclidean_f1_threshold value: 8323.035838252725 - type: euclidean_precision value: 67.15686274509804 - type: euclidean_recall value: 72.10526315789474 - type: main_score value: 78.51718555534579 - type: manhattan_accuracy value: 89.2 - type: manhattan_accuracy_threshold value: 326812.48528957367 - type: manhattan_ap value: 78.50895632545628 - type: manhattan_f1 value: 69.84924623115577 - type: manhattan_f1_threshold value: 398102.616417408 - type: manhattan_precision value: 66.82692307692307 - type: manhattan_recall value: 73.15789473684211 - type: max_ap value: 78.51718555534579 - type: max_f1 value: 69.84924623115577 - type: max_precision value: 67.5 - type: max_recall value: 73.15789473684211 - type: similarity_accuracy value: 89.0 - type: similarity_accuracy_threshold value: 95.30268088769837 - type: similarity_ap value: 78.23422403821777 - type: similarity_f1 value: 69.23076923076923 - type: similarity_f1_threshold value: 87.1877340095262 - type: similarity_precision value: 67.5 - type: similarity_recall value: 71.05263157894737 task: type: PairClassification - dataset: config: default name: MTEB CDSC-R revision: 1cd6abbb00df7d14be3dbd76a7dcc64b3a79a7cd split: test type: PL-MTEB/cdscr-sts metrics: - type: cosine_pearson value: 91.04238667979497 - type: cosine_spearman value: 90.96758456402505 - type: euclidean_pearson value: 88.88396869759062 - type: euclidean_spearman value: 90.80235709678217 - type: main_score value: 90.96758456402505 - type: manhattan_pearson value: 88.91331977492183 - type: manhattan_spearman value: 90.82823486754444 - type: pearson value: 91.04238667979497 - type: spearman value: 90.96758456402505 task: type: STS - dataset: config: default name: MTEB DBPedia-PL revision: 76afe41d9af165cc40999fcaa92312b8b012064a split: test type: clarin-knext/dbpedia-pl metrics: - type: main_score value: 43.189 - type: map_at_1 value: 8.838 - type: map_at_10 value: 20.335 - type: map_at_100 value: 29.818 - type: map_at_1000 value: 31.672 - type: map_at_20 value: 24.037 - type: map_at_3 value: 14.144000000000002 - type: map_at_5 value: 16.674 - type: mrr_at_1 value: 66.25 - type: mrr_at_10 value: 74.51428571428573 - type: mrr_at_100 value: 74.85025528596333 - type: mrr_at_1000 value: 74.861579760375 - type: mrr_at_20 value: 74.75227906231197 - type: mrr_at_3 value: 73.25 - type: mrr_at_5 value: 73.825 - type: nauc_map_at_1000_diff1 value: 25.397956304548963 - type: nauc_map_at_1000_max value: 34.60045634629073 - type: nauc_map_at_1000_std value: 25.484338507029523 - type: nauc_map_at_100_diff1 value: 26.732402811074362 - type: nauc_map_at_100_max value: 33.16273154550298 - type: nauc_map_at_100_std value: 22.705558316419694 - type: nauc_map_at_10_diff1 value: 31.048350740517666 - type: nauc_map_at_10_max value: 20.58247280790142 - type: nauc_map_at_10_std value: -0.3057740988996755 - type: nauc_map_at_1_diff1 value: 37.44384898753489 - type: nauc_map_at_1_max value: 2.009066872007797 - type: nauc_map_at_1_std value: -18.38972044447374 - type: nauc_map_at_20_diff1 value: 29.145950023489974 - type: nauc_map_at_20_max value: 25.337239700245075 - type: nauc_map_at_20_std value: 7.680343084384305 - type: nauc_map_at_3_diff1 value: 32.41886776815376 - type: nauc_map_at_3_max value: 8.976460728750666 - type: nauc_map_at_3_std value: -14.206927116348458 - type: nauc_map_at_5_diff1 value: 31.316919153957873 - type: nauc_map_at_5_max value: 14.015365438005226 - type: nauc_map_at_5_std value: -8.909007562143335 - type: nauc_mrr_at_1000_diff1 value: 42.77521158292109 - type: nauc_mrr_at_1000_max value: 58.03733674934908 - type: nauc_mrr_at_1000_std value: 42.65118460573791 - type: nauc_mrr_at_100_diff1 value: 42.76917109803571 - type: nauc_mrr_at_100_max value: 58.04747433083853 - type: nauc_mrr_at_100_std value: 42.65151388365855 - type: nauc_mrr_at_10_diff1 value: 42.4992726119988 - type: nauc_mrr_at_10_max value: 58.157080658302974 - type: nauc_mrr_at_10_std value: 42.98778606676595 - type: nauc_mrr_at_1_diff1 value: 46.67764597969527 - type: nauc_mrr_at_1_max value: 54.52896662427813 - type: nauc_mrr_at_1_std value: 35.71181387979735 - type: nauc_mrr_at_20_diff1 value: 42.79101300218034 - type: nauc_mrr_at_20_max value: 58.05679669975563 - type: nauc_mrr_at_20_std value: 42.72288886007032 - type: nauc_mrr_at_3_diff1 value: 41.85440967628899 - type: nauc_mrr_at_3_max value: 57.975577899726126 - type: nauc_mrr_at_3_std value: 43.523432037784985 - type: nauc_mrr_at_5_diff1 value: 42.3041465494315 - type: nauc_mrr_at_5_max value: 58.54530113479029 - type: nauc_mrr_at_5_std value: 43.2944834223015 - type: nauc_ndcg_at_1000_diff1 value: 32.16216922989725 - type: nauc_ndcg_at_1000_max value: 50.03467332768009 - type: nauc_ndcg_at_1000_std value: 42.87877265207483 - type: nauc_ndcg_at_100_diff1 value: 33.55193527551313 - type: nauc_ndcg_at_100_max value: 45.12048953873363 - type: nauc_ndcg_at_100_std value: 34.788021436199024 - type: nauc_ndcg_at_10_diff1 value: 31.14168233882658 - type: nauc_ndcg_at_10_max value: 45.31079148382448 - type: nauc_ndcg_at_10_std value: 28.555214349385466 - type: nauc_ndcg_at_1_diff1 value: 45.12481069889602 - type: nauc_ndcg_at_1_max value: 45.93377570654117 - type: nauc_ndcg_at_1_std value: 26.672617000885186 - type: nauc_ndcg_at_20_diff1 value: 31.81216979830056 - type: nauc_ndcg_at_20_max value: 41.93464767693644 - type: nauc_ndcg_at_20_std value: 26.08707327004535 - type: nauc_ndcg_at_3_diff1 value: 29.90627202771331 - type: nauc_ndcg_at_3_max value: 46.50414958925517 - type: nauc_ndcg_at_3_std value: 29.66009841753563 - type: nauc_ndcg_at_5_diff1 value: 29.08122779713697 - type: nauc_ndcg_at_5_max value: 46.81499760516951 - type: nauc_ndcg_at_5_std value: 29.935930977468267 - type: nauc_precision_at_1000_diff1 value: -18.71150014402453 - type: nauc_precision_at_1000_max value: -0.9220395765472844 - type: nauc_precision_at_1000_std value: 7.219897945975822 - type: nauc_precision_at_100_diff1 value: -8.609528664023014 - type: nauc_precision_at_100_max value: 29.147048677242864 - type: nauc_precision_at_100_std value: 44.958041507680036 - type: nauc_precision_at_10_diff1 value: 2.8689201908213477 - type: nauc_precision_at_10_max value: 44.40893361361308 - type: nauc_precision_at_10_std value: 47.18569807586499 - type: nauc_precision_at_1_diff1 value: 46.01228536231763 - type: nauc_precision_at_1_max value: 54.30280987857099 - type: nauc_precision_at_1_std value: 36.923128493492776 - type: nauc_precision_at_20_diff1 value: -1.9783515948740122 - type: nauc_precision_at_20_max value: 38.42066921295958 - type: nauc_precision_at_20_std value: 47.41935674153161 - type: nauc_precision_at_3_diff1 value: 9.877584475384026 - type: nauc_precision_at_3_max value: 44.77006526403546 - type: nauc_precision_at_3_std value: 39.51299545977156 - type: nauc_precision_at_5_diff1 value: 5.096217475317008 - type: nauc_precision_at_5_max value: 45.66716959157208 - type: nauc_precision_at_5_std value: 42.651208343259505 - type: nauc_recall_at_1000_diff1 value: 25.395292649442965 - type: nauc_recall_at_1000_max value: 44.94193476114992 - type: nauc_recall_at_1000_std value: 53.58345238223027 - type: nauc_recall_at_100_diff1 value: 23.962022146293293 - type: nauc_recall_at_100_max value: 32.15140842028602 - type: nauc_recall_at_100_std value: 30.57126984952762 - type: nauc_recall_at_10_diff1 value: 28.120539807446004 - type: nauc_recall_at_10_max value: 18.154834280193572 - type: nauc_recall_at_10_std value: -0.6032386653260938 - type: nauc_recall_at_1_diff1 value: 37.44384898753489 - type: nauc_recall_at_1_max value: 2.009066872007797 - type: nauc_recall_at_1_std value: -18.38972044447374 - type: nauc_recall_at_20_diff1 value: 23.438945970294554 - type: nauc_recall_at_20_max value: 17.201259624644326 - type: nauc_recall_at_20_std value: 3.75587033487961 - type: nauc_recall_at_3_diff1 value: 29.867460507200587 - type: nauc_recall_at_3_max value: 8.066960542463528 - type: nauc_recall_at_3_std value: -15.13440571172203 - type: nauc_recall_at_5_diff1 value: 28.657118879661887 - type: nauc_recall_at_5_max value: 12.942552735963842 - type: nauc_recall_at_5_std value: -9.57735672972808 - type: ndcg_at_1 value: 54.50000000000001 - type: ndcg_at_10 value: 43.189 - type: ndcg_at_100 value: 48.595 - type: ndcg_at_1000 value: 55.681000000000004 - type: ndcg_at_20 value: 43.09 - type: ndcg_at_3 value: 47.599000000000004 - type: ndcg_at_5 value: 44.907000000000004 - type: precision_at_1 value: 66.5 - type: precision_at_10 value: 35.725 - type: precision_at_100 value: 11.583 - type: precision_at_1000 value: 2.302 - type: precision_at_20 value: 27.375 - type: precision_at_3 value: 52.0 - type: precision_at_5 value: 44.7 - type: recall_at_1 value: 8.838 - type: recall_at_10 value: 25.424999999999997 - type: recall_at_100 value: 55.632000000000005 - type: recall_at_1000 value: 77.857 - type: recall_at_20 value: 34.458 - type: recall_at_3 value: 15.229999999999999 - type: recall_at_5 value: 18.872 task: type: Retrieval - dataset: config: default name: MTEB 8TagsClustering revision: None split: test type: PL-MTEB/8tags-clustering metrics: - type: main_score value: 50.28804848851286 - type: v_measure value: 50.28804848851286 - type: v_measure_std value: 2.9879120747919505 task: type: Clustering - dataset: config: default name: MTEB FiQA-PL revision: 2e535829717f8bf9dc829b7f911cc5bbd4e6608e split: test type: clarin-knext/fiqa-pl metrics: - type: main_score value: 46.121 - type: map_at_1 value: 24.027 - type: map_at_10 value: 38.14 - type: map_at_100 value: 40.092 - type: map_at_1000 value: 40.266000000000005 - type: map_at_20 value: 39.195 - type: map_at_3 value: 33.415 - type: map_at_5 value: 36.115 - type: mrr_at_1 value: 46.60493827160494 - type: mrr_at_10 value: 54.70305457573974 - type: mrr_at_100 value: 55.355642920233414 - type: mrr_at_1000 value: 55.3908291424442 - type: mrr_at_20 value: 55.00793641725012 - type: mrr_at_3 value: 52.3148148148148 - type: mrr_at_5 value: 53.54166666666664 - type: nauc_map_at_1000_diff1 value: 37.73510043188139 - type: nauc_map_at_1000_max value: 28.32920495001755 - type: nauc_map_at_1000_std value: 2.1388839190211293 - type: nauc_map_at_100_diff1 value: 37.670108404247685 - type: nauc_map_at_100_max value: 28.227406812543826 - type: nauc_map_at_100_std value: 2.120931632442644 - type: nauc_map_at_10_diff1 value: 37.465256098544174 - type: nauc_map_at_10_max value: 27.091226456549666 - type: nauc_map_at_10_std value: 1.1173775566235409 - type: nauc_map_at_1_diff1 value: 41.23855326212752 - type: nauc_map_at_1_max value: 21.290748552864557 - type: nauc_map_at_1_std value: -0.8385928448565472 - type: nauc_map_at_20_diff1 value: 37.47054494805535 - type: nauc_map_at_20_max value: 27.729045702955386 - type: nauc_map_at_20_std value: 1.7216485460777051 - type: nauc_map_at_3_diff1 value: 37.262641031829105 - type: nauc_map_at_3_max value: 23.89124216989901 - type: nauc_map_at_3_std value: -0.14736489529369678 - type: nauc_map_at_5_diff1 value: 37.054030521972926 - type: nauc_map_at_5_max value: 25.37485175729055 - type: nauc_map_at_5_std value: 0.1603899014557275 - type: nauc_mrr_at_1000_diff1 value: 45.74249029214392 - type: nauc_mrr_at_1000_max value: 36.07619933100338 - type: nauc_mrr_at_1000_std value: 4.393752835100674 - type: nauc_mrr_at_100_diff1 value: 45.72338919745602 - type: nauc_mrr_at_100_max value: 36.07500193737586 - type: nauc_mrr_at_100_std value: 4.415904610787372 - type: nauc_mrr_at_10_diff1 value: 45.712821401955814 - type: nauc_mrr_at_10_max value: 36.077633940467855 - type: nauc_mrr_at_10_std value: 4.31515612100577 - type: nauc_mrr_at_1_diff1 value: 48.95197646135339 - type: nauc_mrr_at_1_max value: 37.627960253727124 - type: nauc_mrr_at_1_std value: 4.355410396712492 - type: nauc_mrr_at_20_diff1 value: 45.657031672968316 - type: nauc_mrr_at_20_max value: 36.02034080808377 - type: nauc_mrr_at_20_std value: 4.291569107759258 - type: nauc_mrr_at_3_diff1 value: 46.14016248486381 - type: nauc_mrr_at_3_max value: 35.096997959937816 - type: nauc_mrr_at_3_std value: 3.473234729162835 - type: nauc_mrr_at_5_diff1 value: 46.044456362138746 - type: nauc_mrr_at_5_max value: 35.54259698630834 - type: nauc_mrr_at_5_std value: 3.242035621890524 - type: nauc_ndcg_at_1000_diff1 value: 39.37342092420808 - type: nauc_ndcg_at_1000_max value: 32.34854163612446 - type: nauc_ndcg_at_1000_std value: 4.9764682793258865 - type: nauc_ndcg_at_100_diff1 value: 38.396532780365966 - type: nauc_ndcg_at_100_max value: 31.427345966345072 - type: nauc_ndcg_at_100_std value: 5.436384757156155 - type: nauc_ndcg_at_10_diff1 value: 38.33852883060773 - type: nauc_ndcg_at_10_max value: 29.405844267873825 - type: nauc_ndcg_at_10_std value: 2.9724473995284453 - type: nauc_ndcg_at_1_diff1 value: 49.360894087944914 - type: nauc_ndcg_at_1_max value: 37.10711812240423 - type: nauc_ndcg_at_1_std value: 3.8523559329866988 - type: nauc_ndcg_at_20_diff1 value: 38.050204646363945 - type: nauc_ndcg_at_20_max value: 29.935603389108866 - type: nauc_ndcg_at_20_std value: 3.779925764680313 - type: nauc_ndcg_at_3_diff1 value: 39.4668764835337 - type: nauc_ndcg_at_3_max value: 30.65976708125836 - type: nauc_ndcg_at_3_std value: 1.2337033504877237 - type: nauc_ndcg_at_5_diff1 value: 38.86503445443355 - type: nauc_ndcg_at_5_max value: 29.0023578220992 - type: nauc_ndcg_at_5_std value: 0.8206100069462643 - type: nauc_precision_at_1000_diff1 value: 5.84775168273073 - type: nauc_precision_at_1000_max value: 27.58660371315182 - type: nauc_precision_at_1000_std value: 9.028324162807364 - type: nauc_precision_at_100_diff1 value: 10.655637431827838 - type: nauc_precision_at_100_max value: 32.11889757111383 - type: nauc_precision_at_100_std value: 13.051376462007925 - type: nauc_precision_at_10_diff1 value: 20.55227291550576 - type: nauc_precision_at_10_max value: 34.48969436232284 - type: nauc_precision_at_10_std value: 7.57890876950882 - type: nauc_precision_at_1_diff1 value: 49.360894087944914 - type: nauc_precision_at_1_max value: 37.10711812240423 - type: nauc_precision_at_1_std value: 3.8523559329866988 - type: nauc_precision_at_20_diff1 value: 16.62880025315897 - type: nauc_precision_at_20_max value: 34.15703662717139 - type: nauc_precision_at_20_std value: 10.909431920732883 - type: nauc_precision_at_3_diff1 value: 28.04332082306772 - type: nauc_precision_at_3_max value: 31.009374202971753 - type: nauc_precision_at_3_std value: 2.307756409916575 - type: nauc_precision_at_5_diff1 value: 24.824270715808705 - type: nauc_precision_at_5_max value: 31.644036540931886 - type: nauc_precision_at_5_std value: 2.958068954639614 - type: nauc_recall_at_1000_diff1 value: 23.79234063489045 - type: nauc_recall_at_1000_max value: 26.76365425679858 - type: nauc_recall_at_1000_std value: 23.815318997671913 - type: nauc_recall_at_100_diff1 value: 22.399781833514737 - type: nauc_recall_at_100_max value: 23.192360958839174 - type: nauc_recall_at_100_std value: 15.984687692762742 - type: nauc_recall_at_10_diff1 value: 28.512649044683837 - type: nauc_recall_at_10_max value: 22.77819651497193 - type: nauc_recall_at_10_std value: 4.646633382718951 - type: nauc_recall_at_1_diff1 value: 41.23855326212752 - type: nauc_recall_at_1_max value: 21.290748552864557 - type: nauc_recall_at_1_std value: -0.8385928448565472 - type: nauc_recall_at_20_diff1 value: 26.797853661700632 - type: nauc_recall_at_20_max value: 21.9956231017133 - type: nauc_recall_at_20_std value: 5.664775183514371 - type: nauc_recall_at_3_diff1 value: 31.42511076281081 - type: nauc_recall_at_3_max value: 19.459398184547652 - type: nauc_recall_at_3_std value: -0.8592886454260257 - type: nauc_recall_at_5_diff1 value: 29.62950699804912 - type: nauc_recall_at_5_max value: 19.941323519486684 - type: nauc_recall_at_5_std value: -0.45387351120880465 - type: ndcg_at_1 value: 46.451 - type: ndcg_at_10 value: 46.121 - type: ndcg_at_100 value: 52.830999999999996 - type: ndcg_at_1000 value: 55.557 - type: ndcg_at_20 value: 48.535000000000004 - type: ndcg_at_3 value: 42.178 - type: ndcg_at_5 value: 43.406 - type: precision_at_1 value: 46.451 - type: precision_at_10 value: 12.562000000000001 - type: precision_at_100 value: 1.963 - type: precision_at_1000 value: 0.244 - type: precision_at_20 value: 7.392 - type: precision_at_3 value: 27.572000000000003 - type: precision_at_5 value: 20.031 - type: recall_at_1 value: 24.027 - type: recall_at_10 value: 52.61900000000001 - type: recall_at_100 value: 77.491 - type: recall_at_1000 value: 93.55 - type: recall_at_20 value: 59.745000000000005 - type: recall_at_3 value: 37.765 - type: recall_at_5 value: 44.304 task: type: Retrieval - dataset: config: default name: MTEB HotpotQA-PL revision: a0bd479ac97b4ccb5bd6ce320c415d0bb4beb907 split: test type: clarin-knext/hotpotqa-pl metrics: - type: main_score value: 77.02799999999999 - type: map_at_1 value: 41.249 - type: map_at_10 value: 69.512 - type: map_at_100 value: 70.291 - type: map_at_1000 value: 70.334 - type: map_at_20 value: 69.992 - type: map_at_3 value: 65.751 - type: map_at_5 value: 68.161 - type: mrr_at_1 value: 82.4983119513842 - type: mrr_at_10 value: 87.71202426502866 - type: mrr_at_100 value: 87.84265780907221 - type: mrr_at_1000 value: 87.8455843626266 - type: mrr_at_20 value: 87.80640011547308 - type: mrr_at_3 value: 86.94575737114536 - type: mrr_at_5 value: 87.46770200315063 - type: nauc_map_at_1000_diff1 value: 17.17119899625707 - type: nauc_map_at_1000_max value: 29.981569339485393 - type: nauc_map_at_1000_std value: 8.93659568948167 - type: nauc_map_at_100_diff1 value: 17.156175947340035 - type: nauc_map_at_100_max value: 29.988121004348194 - type: nauc_map_at_100_std value: 8.967947232110745 - type: nauc_map_at_10_diff1 value: 16.854416108818132 - type: nauc_map_at_10_max value: 29.784211249360194 - type: nauc_map_at_10_std value: 8.535227936720936 - type: nauc_map_at_1_diff1 value: 68.01294545515707 - type: nauc_map_at_1_max value: 47.51019900345037 - type: nauc_map_at_1_std value: -1.7951406243808212 - type: nauc_map_at_20_diff1 value: 16.993955459776572 - type: nauc_map_at_20_max value: 29.920806300647463 - type: nauc_map_at_20_std value: 8.873597327714583 - type: nauc_map_at_3_diff1 value: 16.16514623575243 - type: nauc_map_at_3_max value: 27.62371849413713 - type: nauc_map_at_3_std value: 5.131406130565191 - type: nauc_map_at_5_diff1 value: 16.507863832657364 - type: nauc_map_at_5_max value: 28.9019090072195 - type: nauc_map_at_5_std value: 7.2380930617814645 - type: nauc_mrr_at_1000_diff1 value: 66.74502991743417 - type: nauc_mrr_at_1000_max value: 50.29274140603486 - type: nauc_mrr_at_1000_std value: 1.602388931386098 - type: nauc_mrr_at_100_diff1 value: 66.7413605208101 - type: nauc_mrr_at_100_max value: 50.29720043419606 - type: nauc_mrr_at_100_std value: 1.612142495535232 - type: nauc_mrr_at_10_diff1 value: 66.71814591414376 - type: nauc_mrr_at_10_max value: 50.39851050116519 - type: nauc_mrr_at_10_std value: 1.7339878916186384 - type: nauc_mrr_at_1_diff1 value: 68.01294545515707 - type: nauc_mrr_at_1_max value: 47.627701029006225 - type: nauc_mrr_at_1_std value: -1.442043059079073 - type: nauc_mrr_at_20_diff1 value: 66.72944815863312 - type: nauc_mrr_at_20_max value: 50.325719646409716 - type: nauc_mrr_at_20_std value: 1.6584317196476688 - type: nauc_mrr_at_3_diff1 value: 66.29662294615758 - type: nauc_mrr_at_3_max value: 50.29363488669571 - type: nauc_mrr_at_3_std value: 1.1373012069481296 - type: nauc_mrr_at_5_diff1 value: 66.70959181668684 - type: nauc_mrr_at_5_max value: 50.42831108375743 - type: nauc_mrr_at_5_std value: 1.5492429855609648 - type: nauc_ndcg_at_1000_diff1 value: 24.337157353044912 - type: nauc_ndcg_at_1000_max value: 35.021784629126984 - type: nauc_ndcg_at_1000_std value: 11.976738067383161 - type: nauc_ndcg_at_100_diff1 value: 23.584427352691776 - type: nauc_ndcg_at_100_max value: 35.12304754035805 - type: nauc_ndcg_at_100_std value: 12.921291623167921 - type: nauc_ndcg_at_10_diff1 value: 22.057127915032765 - type: nauc_ndcg_at_10_max value: 34.09397142140321 - type: nauc_ndcg_at_10_std value: 11.21339882108658 - type: nauc_ndcg_at_1_diff1 value: 68.01294545515707 - type: nauc_ndcg_at_1_max value: 47.51019900345037 - type: nauc_ndcg_at_1_std value: -1.7951406243808212 - type: nauc_ndcg_at_20_diff1 value: 22.404347553479102 - type: nauc_ndcg_at_20_max value: 34.50508324969608 - type: nauc_ndcg_at_20_std value: 12.281993331498175 - type: nauc_ndcg_at_3_diff1 value: 21.21895220595676 - type: nauc_ndcg_at_3_max value: 30.76465236403928 - type: nauc_ndcg_at_3_std value: 5.501903724385424 - type: nauc_ndcg_at_5_diff1 value: 21.489825424548258 - type: nauc_ndcg_at_5_max value: 32.43517409935615 - type: nauc_ndcg_at_5_std value: 8.59021290966302 - type: nauc_precision_at_1000_diff1 value: 9.056916578488696 - type: nauc_precision_at_1000_max value: 47.29861770129213 - type: nauc_precision_at_1000_std value: 60.06028316961357 - type: nauc_precision_at_100_diff1 value: 6.853208191063939 - type: nauc_precision_at_100_max value: 40.23686318254916 - type: nauc_precision_at_100_std value: 44.69884156134862 - type: nauc_precision_at_10_diff1 value: 7.7572606953149315 - type: nauc_precision_at_10_max value: 33.24412509121427 - type: nauc_precision_at_10_std value: 22.894891705425753 - type: nauc_precision_at_1_diff1 value: 68.01294545515707 - type: nauc_precision_at_1_max value: 47.51019900345037 - type: nauc_precision_at_1_std value: -1.7951406243808212 - type: nauc_precision_at_20_diff1 value: 6.102789021481188 - type: nauc_precision_at_20_max value: 34.384739158981084 - type: nauc_precision_at_20_std value: 29.40165302735249 - type: nauc_precision_at_3_diff1 value: 10.004182813463276 - type: nauc_precision_at_3_max value: 27.07527926636925 - type: nauc_precision_at_3_std value: 8.034252288165805 - type: nauc_precision_at_5_diff1 value: 8.672082689816547 - type: nauc_precision_at_5_max value: 29.352582129843867 - type: nauc_precision_at_5_std value: 14.456464951944461 - type: nauc_recall_at_1000_diff1 value: 9.056916578488018 - type: nauc_recall_at_1000_max value: 47.29861770129215 - type: nauc_recall_at_1000_std value: 60.06028316961315 - type: nauc_recall_at_100_diff1 value: 6.853208191063934 - type: nauc_recall_at_100_max value: 40.23686318254888 - type: nauc_recall_at_100_std value: 44.698841561348615 - type: nauc_recall_at_10_diff1 value: 7.7572606953149394 - type: nauc_recall_at_10_max value: 33.244125091214286 - type: nauc_recall_at_10_std value: 22.894891705425863 - type: nauc_recall_at_1_diff1 value: 68.01294545515707 - type: nauc_recall_at_1_max value: 47.51019900345037 - type: nauc_recall_at_1_std value: -1.7951406243808212 - type: nauc_recall_at_20_diff1 value: 6.102789021481126 - type: nauc_recall_at_20_max value: 34.38473915898118 - type: nauc_recall_at_20_std value: 29.40165302735251 - type: nauc_recall_at_3_diff1 value: 10.004182813463203 - type: nauc_recall_at_3_max value: 27.07527926636916 - type: nauc_recall_at_3_std value: 8.034252288165728 - type: nauc_recall_at_5_diff1 value: 8.672082689816364 - type: nauc_recall_at_5_max value: 29.352582129843714 - type: nauc_recall_at_5_std value: 14.4564649519445 - type: ndcg_at_1 value: 82.498 - type: ndcg_at_10 value: 77.02799999999999 - type: ndcg_at_100 value: 79.593 - type: ndcg_at_1000 value: 80.372 - type: ndcg_at_20 value: 78.194 - type: ndcg_at_3 value: 71.932 - type: ndcg_at_5 value: 74.878 - type: precision_at_1 value: 82.498 - type: precision_at_10 value: 16.289 - type: precision_at_100 value: 1.8259999999999998 - type: precision_at_1000 value: 0.193 - type: precision_at_20 value: 8.519 - type: precision_at_3 value: 46.851 - type: precision_at_5 value: 30.436000000000003 - type: recall_at_1 value: 41.249 - type: recall_at_10 value: 81.44500000000001 - type: recall_at_100 value: 91.323 - type: recall_at_1000 value: 96.44200000000001 - type: recall_at_20 value: 85.18599999999999 - type: recall_at_3 value: 70.277 - type: recall_at_5 value: 76.09 task: type: Retrieval - dataset: config: default name: MTEB MSMARCO-PL revision: 8634c07806d5cce3a6138e260e59b81760a0a640 split: test type: clarin-knext/msmarco-pl metrics: - type: main_score value: 72.695 - type: map_at_1 value: 2.313 - type: map_at_10 value: 16.541 - type: map_at_100 value: 42.664 - type: map_at_1000 value: 51.048 - type: map_at_20 value: 25.691000000000003 - type: map_at_3 value: 6.8580000000000005 - type: map_at_5 value: 10.227 - type: mrr_at_1 value: 90.69767441860465 - type: mrr_at_10 value: 94.65116279069768 - type: mrr_at_100 value: 94.65116279069768 - type: mrr_at_1000 value: 94.65116279069768 - type: mrr_at_20 value: 94.65116279069768 - type: mrr_at_3 value: 94.18604651162791 - type: mrr_at_5 value: 94.65116279069768 - type: nauc_map_at_1000_diff1 value: -19.394271777832838 - type: nauc_map_at_1000_max value: 35.63073356621754 - type: nauc_map_at_1000_std value: 56.92803671553409 - type: nauc_map_at_100_diff1 value: -7.023340458676494 - type: nauc_map_at_100_max value: 22.967662469404267 - type: nauc_map_at_100_std value: 28.64423344417142 - type: nauc_map_at_10_diff1 value: 18.22452762970126 - type: nauc_map_at_10_max value: 3.235969423980127 - type: nauc_map_at_10_std value: -11.528499499305529 - type: nauc_map_at_1_diff1 value: 17.90743559505749 - type: nauc_map_at_1_max value: -14.61627654448527 - type: nauc_map_at_1_std value: -24.262430292012667 - type: nauc_map_at_20_diff1 value: 14.96422992084746 - type: nauc_map_at_20_max value: 11.128128185086132 - type: nauc_map_at_20_std value: -0.4087236026844547 - type: nauc_map_at_3_diff1 value: 16.45733174189393 - type: nauc_map_at_3_max value: -14.88196784500194 - type: nauc_map_at_3_std value: -26.096323520383446 - type: nauc_map_at_5_diff1 value: 17.572159494245003 - type: nauc_map_at_5_max value: -11.206812710229503 - type: nauc_map_at_5_std value: -22.27070819579704 - type: nauc_mrr_at_1000_diff1 value: 33.66069097978205 - type: nauc_mrr_at_1000_max value: 43.87773602456895 - type: nauc_mrr_at_1000_std value: 52.33730714398662 - type: nauc_mrr_at_100_diff1 value: 33.66069097978205 - type: nauc_mrr_at_100_max value: 43.87773602456895 - type: nauc_mrr_at_100_std value: 52.33730714398662 - type: nauc_mrr_at_10_diff1 value: 33.66069097978205 - type: nauc_mrr_at_10_max value: 43.87773602456895 - type: nauc_mrr_at_10_std value: 52.33730714398662 - type: nauc_mrr_at_1_diff1 value: 23.709794626749783 - type: nauc_mrr_at_1_max value: 35.45939642825464 - type: nauc_mrr_at_1_std value: 45.18790321558505 - type: nauc_mrr_at_20_diff1 value: 33.66069097978205 - type: nauc_mrr_at_20_max value: 43.87773602456895 - type: nauc_mrr_at_20_std value: 52.33730714398662 - type: nauc_mrr_at_3_diff1 value: 38.96783570139972 - type: nauc_mrr_at_3_max value: 48.367517142603624 - type: nauc_mrr_at_3_std value: 56.15032257246786 - type: nauc_mrr_at_5_diff1 value: 33.66069097978205 - type: nauc_mrr_at_5_max value: 43.87773602456895 - type: nauc_mrr_at_5_std value: 52.33730714398662 - type: nauc_ndcg_at_1000_diff1 value: -8.409227649777549 - type: nauc_ndcg_at_1000_max value: 55.08579408014661 - type: nauc_ndcg_at_1000_std value: 64.71829411541155 - type: nauc_ndcg_at_100_diff1 value: -12.171382005828134 - type: nauc_ndcg_at_100_max value: 37.279599751187895 - type: nauc_ndcg_at_100_std value: 55.59571261330682 - type: nauc_ndcg_at_10_diff1 value: -4.2745893875224645 - type: nauc_ndcg_at_10_max value: 35.61094191299521 - type: nauc_ndcg_at_10_std value: 31.49122710738599 - type: nauc_ndcg_at_1_diff1 value: 34.77341575621081 - type: nauc_ndcg_at_1_max value: 18.418784098194983 - type: nauc_ndcg_at_1_std value: 3.6003144907881026 - type: nauc_ndcg_at_20_diff1 value: -16.937600290863816 - type: nauc_ndcg_at_20_max value: 28.731002593372718 - type: nauc_ndcg_at_20_std value: 40.140028262395546 - type: nauc_ndcg_at_3_diff1 value: 21.008563623057892 - type: nauc_ndcg_at_3_max value: 32.092932411602945 - type: nauc_ndcg_at_3_std value: 7.783159518591246 - type: nauc_ndcg_at_5_diff1 value: 13.35248395075747 - type: nauc_ndcg_at_5_max value: 33.48637127489678 - type: nauc_ndcg_at_5_std value: 19.883656903878986 - type: nauc_precision_at_1000_diff1 value: -34.613170483366815 - type: nauc_precision_at_1000_max value: 14.178980568050093 - type: nauc_precision_at_1000_std value: 53.45813399059421 - type: nauc_precision_at_100_diff1 value: -40.67552345859168 - type: nauc_precision_at_100_max value: 23.091965607829138 - type: nauc_precision_at_100_std value: 62.39644907525577 - type: nauc_precision_at_10_diff1 value: -29.61210257317124 - type: nauc_precision_at_10_max value: 43.992102732918255 - type: nauc_precision_at_10_std value: 67.25524849542518 - type: nauc_precision_at_1_diff1 value: 23.709794626749783 - type: nauc_precision_at_1_max value: 35.45939642825464 - type: nauc_precision_at_1_std value: 45.18790321558505 - type: nauc_precision_at_20_diff1 value: -38.29110052486433 - type: nauc_precision_at_20_max value: 28.73705296191401 - type: nauc_precision_at_20_std value: 62.12026159344505 - type: nauc_precision_at_3_diff1 value: -4.950069185044093 - type: nauc_precision_at_3_max value: 35.30311413187648 - type: nauc_precision_at_3_std value: 37.24789627772557 - type: nauc_precision_at_5_diff1 value: -8.259725731846123 - type: nauc_precision_at_5_max value: 33.985287538899314 - type: nauc_precision_at_5_std value: 53.59550306044433 - type: nauc_recall_at_1000_diff1 value: -5.996961409631926 - type: nauc_recall_at_1000_max value: 63.118266233402764 - type: nauc_recall_at_1000_std value: 69.5649709802058 - type: nauc_recall_at_100_diff1 value: 6.920650261229799 - type: nauc_recall_at_100_max value: 26.76777278523633 - type: nauc_recall_at_100_std value: 24.81349844560708 - type: nauc_recall_at_10_diff1 value: 18.636579796911292 - type: nauc_recall_at_10_max value: 2.214374250576099 - type: nauc_recall_at_10_std value: -12.939953791707651 - type: nauc_recall_at_1_diff1 value: 17.90743559505749 - type: nauc_recall_at_1_max value: -14.61627654448527 - type: nauc_recall_at_1_std value: -24.262430292012667 - type: nauc_recall_at_20_diff1 value: 17.612041689452855 - type: nauc_recall_at_20_max value: 11.182632726686007 - type: nauc_recall_at_20_std value: -2.4835954401161864 - type: nauc_recall_at_3_diff1 value: 16.773341381117 - type: nauc_recall_at_3_max value: -15.051242807277163 - type: nauc_recall_at_3_std value: -26.410274593618038 - type: nauc_recall_at_5_diff1 value: 17.091861029537423 - type: nauc_recall_at_5_max value: -13.243464985211395 - type: nauc_recall_at_5_std value: -23.92982354951768 - type: ndcg_at_1 value: 78.295 - type: ndcg_at_10 value: 72.695 - type: ndcg_at_100 value: 65.69500000000001 - type: ndcg_at_1000 value: 73.359 - type: ndcg_at_20 value: 69.16499999999999 - type: ndcg_at_3 value: 76.632 - type: ndcg_at_5 value: 74.024 - type: precision_at_1 value: 90.69800000000001 - type: precision_at_10 value: 81.628 - type: precision_at_100 value: 38.116 - type: precision_at_1000 value: 7.199999999999999 - type: precision_at_20 value: 72.209 - type: precision_at_3 value: 89.922 - type: precision_at_5 value: 86.047 - type: recall_at_1 value: 2.313 - type: recall_at_10 value: 17.48 - type: recall_at_100 value: 53.937000000000005 - type: recall_at_1000 value: 80.018 - type: recall_at_20 value: 28.081 - type: recall_at_3 value: 6.927 - type: recall_at_5 value: 10.575 task: type: Retrieval - dataset: config: pl name: MTEB MassiveIntentClassification (pl) revision: 4672e20407010da34463acc759c162ca9734bca6 split: test type: mteb/amazon_massive_intent metrics: - type: accuracy value: 79.41492938802959 - type: f1 value: 75.75917683785259 - type: f1_weighted value: 79.4156392656699 - type: main_score value: 79.41492938802959 task: type: Classification - dataset: config: pl name: MTEB MassiveScenarioClassification (pl) revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8 split: test type: mteb/amazon_massive_scenario metrics: - type: accuracy value: 81.9334229993275 - type: f1 value: 81.40628785444537 - type: f1_weighted value: 81.79807477693303 - type: main_score value: 81.9334229993275 task: type: Classification - dataset: config: default name: MTEB NFCorpus-PL revision: 9a6f9567fda928260afed2de480d79c98bf0bec0 split: test type: clarin-knext/nfcorpus-pl metrics: - type: main_score value: 36.723 - type: map_at_1 value: 5.8069999999999995 - type: map_at_10 value: 13.602 - type: map_at_100 value: 17.196 - type: map_at_1000 value: 18.609 - type: map_at_20 value: 15.146999999999998 - type: map_at_3 value: 9.594999999999999 - type: map_at_5 value: 11.453000000000001 - type: mrr_at_1 value: 47.368421052631575 - type: mrr_at_10 value: 55.60703228659884 - type: mrr_at_100 value: 56.1552975760445 - type: mrr_at_1000 value: 56.19164342988321 - type: mrr_at_20 value: 55.922507068281476 - type: mrr_at_3 value: 53.147574819401456 - type: mrr_at_5 value: 54.680082559339525 - type: nauc_map_at_1000_diff1 value: 34.05763404594125 - type: nauc_map_at_1000_max value: 29.5226776533209 - type: nauc_map_at_1000_std value: 15.427632324819914 - type: nauc_map_at_100_diff1 value: 34.80313586539057 - type: nauc_map_at_100_max value: 27.999543781245972 - type: nauc_map_at_100_std value: 11.502430185601197 - type: nauc_map_at_10_diff1 value: 39.10493763818235 - type: nauc_map_at_10_max value: 20.299110129894572 - type: nauc_map_at_10_std value: -1.8131312981171384 - type: nauc_map_at_1_diff1 value: 54.952292547558436 - type: nauc_map_at_1_max value: 13.172173380536137 - type: nauc_map_at_1_std value: -11.135859432447047 - type: nauc_map_at_20_diff1 value: 36.56338939350608 - type: nauc_map_at_20_max value: 24.057778180377355 - type: nauc_map_at_20_std value: 4.030543599731532 - type: nauc_map_at_3_diff1 value: 46.798195082350766 - type: nauc_map_at_3_max value: 14.899395608553915 - type: nauc_map_at_3_std value: -10.505614189182307 - type: nauc_map_at_5_diff1 value: 42.83953515294862 - type: nauc_map_at_5_max value: 17.04727497975375 - type: nauc_map_at_5_std value: -7.6517071380275885 - type: nauc_mrr_at_1000_diff1 value: 41.44193432540061 - type: nauc_mrr_at_1000_max value: 39.88086824180341 - type: nauc_mrr_at_1000_std value: 27.351885880283966 - type: nauc_mrr_at_100_diff1 value: 41.43357468563369 - type: nauc_mrr_at_100_max value: 39.91394628214467 - type: nauc_mrr_at_100_std value: 27.37166382203234 - type: nauc_mrr_at_10_diff1 value: 41.46082695650948 - type: nauc_mrr_at_10_max value: 39.858957188572944 - type: nauc_mrr_at_10_std value: 27.18216001182641 - type: nauc_mrr_at_1_diff1 value: 41.485448798176904 - type: nauc_mrr_at_1_max value: 33.6944538535235 - type: nauc_mrr_at_1_std value: 22.826701578387503 - type: nauc_mrr_at_20_diff1 value: 41.374365310091925 - type: nauc_mrr_at_20_max value: 39.923859616197035 - type: nauc_mrr_at_20_std value: 27.27268109687068 - type: nauc_mrr_at_3_diff1 value: 42.1244757279239 - type: nauc_mrr_at_3_max value: 38.380669877043864 - type: nauc_mrr_at_3_std value: 25.734391560690224 - type: nauc_mrr_at_5_diff1 value: 41.26497822292423 - type: nauc_mrr_at_5_max value: 39.17164048501762 - type: nauc_mrr_at_5_std value: 26.304110615701987 - type: nauc_ndcg_at_1000_diff1 value: 31.76845316166595 - type: nauc_ndcg_at_1000_max value: 44.0530198648453 - type: nauc_ndcg_at_1000_std value: 33.37050209530549 - type: nauc_ndcg_at_100_diff1 value: 31.70167104254346 - type: nauc_ndcg_at_100_max value: 38.98577219865644 - type: nauc_ndcg_at_100_std value: 28.46948949404448 - type: nauc_ndcg_at_10_diff1 value: 31.41371490994258 - type: nauc_ndcg_at_10_max value: 36.46974014607837 - type: nauc_ndcg_at_10_std value: 28.214061102873274 - type: nauc_ndcg_at_1_diff1 value: 45.195218239572185 - type: nauc_ndcg_at_1_max value: 32.47174554115089 - type: nauc_ndcg_at_1_std value: 22.252970640869655 - type: nauc_ndcg_at_20_diff1 value: 30.22073304733139 - type: nauc_ndcg_at_20_max value: 36.85722580956459 - type: nauc_ndcg_at_20_std value: 28.82508960932221 - type: nauc_ndcg_at_3_diff1 value: 34.85087007597385 - type: nauc_ndcg_at_3_max value: 35.08880030166066 - type: nauc_ndcg_at_3_std value: 24.477164602350427 - type: nauc_ndcg_at_5_diff1 value: 32.15269255562139 - type: nauc_ndcg_at_5_max value: 36.26512978748847 - type: nauc_ndcg_at_5_std value: 26.121143638336193 - type: nauc_precision_at_1000_diff1 value: -5.016344866521763 - type: nauc_precision_at_1000_max value: 13.76155613533569 - type: nauc_precision_at_1000_std value: 42.87650310943072 - type: nauc_precision_at_100_diff1 value: -2.4765231121724867 - type: nauc_precision_at_100_max value: 26.413714147361173 - type: nauc_precision_at_100_std value: 52.07869389693284 - type: nauc_precision_at_10_diff1 value: 9.381859834804454 - type: nauc_precision_at_10_max value: 36.79686689654208 - type: nauc_precision_at_10_std value: 41.450385008923874 - type: nauc_precision_at_1_diff1 value: 43.14276503972391 - type: nauc_precision_at_1_max value: 33.23669937901841 - type: nauc_precision_at_1_std value: 23.574191783291614 - type: nauc_precision_at_20_diff1 value: 3.3554639781732143 - type: nauc_precision_at_20_max value: 35.07048369650734 - type: nauc_precision_at_20_std value: 46.90757933302204 - type: nauc_precision_at_3_diff1 value: 22.3364560733951 - type: nauc_precision_at_3_max value: 34.49198383469041 - type: nauc_precision_at_3_std value: 28.30886758592867 - type: nauc_precision_at_5_diff1 value: 14.242157915266043 - type: nauc_precision_at_5_max value: 36.78665790141447 - type: nauc_precision_at_5_std value: 34.22226904133568 - type: nauc_recall_at_1000_diff1 value: 6.177080203711223 - type: nauc_recall_at_1000_max value: 20.36718691855502 - type: nauc_recall_at_1000_std value: 21.44974953318914 - type: nauc_recall_at_100_diff1 value: 16.98521396327983 - type: nauc_recall_at_100_max value: 25.739641139625473 - type: nauc_recall_at_100_std value: 16.08045361596745 - type: nauc_recall_at_10_diff1 value: 28.066091446759465 - type: nauc_recall_at_10_max value: 15.875422037194987 - type: nauc_recall_at_10_std value: -2.7729209404094712 - type: nauc_recall_at_1_diff1 value: 54.952292547558436 - type: nauc_recall_at_1_max value: 13.172173380536137 - type: nauc_recall_at_1_std value: -11.135859432447047 - type: nauc_recall_at_20_diff1 value: 22.454203317605455 - type: nauc_recall_at_20_max value: 19.38991609441149 - type: nauc_recall_at_20_std value: 3.3669889925713683 - type: nauc_recall_at_3_diff1 value: 42.41050348142469 - type: nauc_recall_at_3_max value: 14.345477767632861 - type: nauc_recall_at_3_std value: -11.275161125178107 - type: nauc_recall_at_5_diff1 value: 34.851159133502286 - type: nauc_recall_at_5_max value: 15.03263812713638 - type: nauc_recall_at_5_std value: -9.042538295018138 - type: ndcg_at_1 value: 44.891999999999996 - type: ndcg_at_10 value: 36.723 - type: ndcg_at_100 value: 33.101 - type: ndcg_at_1000 value: 41.493 - type: ndcg_at_20 value: 34.14 - type: ndcg_at_3 value: 41.131 - type: ndcg_at_5 value: 39.446999999999996 - type: precision_at_1 value: 46.749 - type: precision_at_10 value: 27.616000000000003 - type: precision_at_100 value: 8.372 - type: precision_at_1000 value: 2.095 - type: precision_at_20 value: 20.294 - type: precision_at_3 value: 38.493 - type: precision_at_5 value: 34.427 - type: recall_at_1 value: 5.8069999999999995 - type: recall_at_10 value: 18.444 - type: recall_at_100 value: 33.655 - type: recall_at_1000 value: 63.839999999999996 - type: recall_at_20 value: 22.205 - type: recall_at_3 value: 10.61 - type: recall_at_5 value: 13.938999999999998 task: type: Retrieval - dataset: config: default name: MTEB NQ-PL revision: f171245712cf85dd4700b06bef18001578d0ca8d split: test type: clarin-knext/nq-pl metrics: - type: main_score value: 56.854000000000006 - type: map_at_1 value: 34.514 - type: map_at_10 value: 49.644 - type: map_at_100 value: 50.608 - type: map_at_1000 value: 50.635 - type: map_at_20 value: 50.305 - type: map_at_3 value: 45.672000000000004 - type: map_at_5 value: 48.089 - type: mrr_at_1 value: 38.78910776361529 - type: mrr_at_10 value: 52.148397984145234 - type: mrr_at_100 value: 52.852966946095215 - type: mrr_at_1000 value: 52.87105017860762 - type: mrr_at_20 value: 52.64188894631607 - type: mrr_at_3 value: 48.97643877945134 - type: mrr_at_5 value: 50.92168791039002 - type: nauc_map_at_1000_diff1 value: 37.02156712167867 - type: nauc_map_at_1000_max value: 30.9541229199217 - type: nauc_map_at_1000_std value: 7.320033004454671 - type: nauc_map_at_100_diff1 value: 37.02236703226826 - type: nauc_map_at_100_max value: 30.9697676745961 - type: nauc_map_at_100_std value: 7.33984133867723 - type: nauc_map_at_10_diff1 value: 36.90102700826612 - type: nauc_map_at_10_max value: 30.785723842405183 - type: nauc_map_at_10_std value: 6.779448226242215 - type: nauc_map_at_1_diff1 value: 39.909029450982274 - type: nauc_map_at_1_max value: 25.241631663639062 - type: nauc_map_at_1_std value: 3.9346798436914625 - type: nauc_map_at_20_diff1 value: 37.01885833177735 - type: nauc_map_at_20_max value: 30.93864719019393 - type: nauc_map_at_20_std value: 7.157784404582363 - type: nauc_map_at_3_diff1 value: 36.66395294442894 - type: nauc_map_at_3_max value: 28.73917625955397 - type: nauc_map_at_3_std value: 4.974442294121807 - type: nauc_map_at_5_diff1 value: 36.50200331851477 - type: nauc_map_at_5_max value: 30.19694653814823 - type: nauc_map_at_5_std value: 6.080701892676308 - type: nauc_mrr_at_1000_diff1 value: 37.13771503608112 - type: nauc_mrr_at_1000_max value: 31.751547147247507 - type: nauc_mrr_at_1000_std value: 9.508614158791604 - type: nauc_mrr_at_100_diff1 value: 37.13715249048103 - type: nauc_mrr_at_100_max value: 31.76453363846907 - type: nauc_mrr_at_100_std value: 9.527333431366577 - type: nauc_mrr_at_10_diff1 value: 37.04617391414406 - type: nauc_mrr_at_10_max value: 31.835558691659767 - type: nauc_mrr_at_10_std value: 9.403478249864207 - type: nauc_mrr_at_1_diff1 value: 40.24340603514061 - type: nauc_mrr_at_1_max value: 27.892025295592664 - type: nauc_mrr_at_1_std value: 6.948060152377137 - type: nauc_mrr_at_20_diff1 value: 37.13679664662962 - type: nauc_mrr_at_20_max value: 31.80571193908972 - type: nauc_mrr_at_20_std value: 9.463516427443066 - type: nauc_mrr_at_3_diff1 value: 36.59947958587673 - type: nauc_mrr_at_3_max value: 30.56905612034133 - type: nauc_mrr_at_3_std value: 8.213473085446296 - type: nauc_mrr_at_5_diff1 value: 36.66740305041658 - type: nauc_mrr_at_5_max value: 31.470226490982878 - type: nauc_mrr_at_5_std value: 9.02109643375307 - type: nauc_ndcg_at_1000_diff1 value: 36.60296185088649 - type: nauc_ndcg_at_1000_max value: 33.40562074993109 - type: nauc_ndcg_at_1000_std value: 10.60845451213325 - type: nauc_ndcg_at_100_diff1 value: 36.59946610918652 - type: nauc_ndcg_at_100_max value: 33.9570260243297 - type: nauc_ndcg_at_100_std value: 11.340469448481196 - type: nauc_ndcg_at_10_diff1 value: 36.14418247401987 - type: nauc_ndcg_at_10_max value: 33.451039871075345 - type: nauc_ndcg_at_10_std value: 9.272972801419813 - type: nauc_ndcg_at_1_diff1 value: 40.07169143996099 - type: nauc_ndcg_at_1_max value: 27.943354680588055 - type: nauc_ndcg_at_1_std value: 7.036639009967827 - type: nauc_ndcg_at_20_diff1 value: 36.51152244027151 - type: nauc_ndcg_at_20_max value: 33.89378482325653 - type: nauc_ndcg_at_20_std value: 10.342721315866635 - type: nauc_ndcg_at_3_diff1 value: 35.4822845318483 - type: nauc_ndcg_at_3_max value: 29.912345910181415 - type: nauc_ndcg_at_3_std value: 5.9694134283330715 - type: nauc_ndcg_at_5_diff1 value: 35.221776161219466 - type: nauc_ndcg_at_5_max value: 32.1072171248216 - type: nauc_ndcg_at_5_std value: 7.670174771541694 - type: nauc_precision_at_1000_diff1 value: -4.285000172509594 - type: nauc_precision_at_1000_max value: 14.600633321561062 - type: nauc_precision_at_1000_std value: 21.991435704986305 - type: nauc_precision_at_100_diff1 value: 1.7266493932509126 - type: nauc_precision_at_100_max value: 22.9932202096611 - type: nauc_precision_at_100_std value: 27.464183639561075 - type: nauc_precision_at_10_diff1 value: 16.16723142044687 - type: nauc_precision_at_10_max value: 32.61177863055963 - type: nauc_precision_at_10_std value: 19.30609156634069 - type: nauc_precision_at_1_diff1 value: 40.07169143996099 - type: nauc_precision_at_1_max value: 27.943354680588055 - type: nauc_precision_at_1_std value: 7.036639009967827 - type: nauc_precision_at_20_diff1 value: 10.986359452355082 - type: nauc_precision_at_20_max value: 30.001608294285408 - type: nauc_precision_at_20_std value: 23.470161266132752 - type: nauc_precision_at_3_diff1 value: 25.021299827765368 - type: nauc_precision_at_3_max value: 31.112435175145354 - type: nauc_precision_at_3_std value: 9.97933575854508 - type: nauc_precision_at_5_diff1 value: 19.85258852538675 - type: nauc_precision_at_5_max value: 33.017057636553346 - type: nauc_precision_at_5_std value: 14.226398540277224 - type: nauc_recall_at_1000_diff1 value: 32.956809555733294 - type: nauc_recall_at_1000_max value: 81.17616645437344 - type: nauc_recall_at_1000_std value: 80.81894015338722 - type: nauc_recall_at_100_diff1 value: 34.21543518933059 - type: nauc_recall_at_100_max value: 64.60424388566007 - type: nauc_recall_at_100_std value: 55.36262550526809 - type: nauc_recall_at_10_diff1 value: 31.854572843060865 - type: nauc_recall_at_10_max value: 41.47697651985406 - type: nauc_recall_at_10_std value: 15.449819317346778 - type: nauc_recall_at_1_diff1 value: 39.909029450982274 - type: nauc_recall_at_1_max value: 25.241631663639062 - type: nauc_recall_at_1_std value: 3.9346798436914625 - type: nauc_recall_at_20_diff1 value: 33.155424988870266 - type: nauc_recall_at_20_max value: 47.41147314334969 - type: nauc_recall_at_20_std value: 24.122822585459915 - type: nauc_recall_at_3_diff1 value: 31.030069463711484 - type: nauc_recall_at_3_max value: 30.349471998175105 - type: nauc_recall_at_3_std value: 5.3792560913820635 - type: nauc_recall_at_5_diff1 value: 29.662449422215627 - type: nauc_recall_at_5_max value: 35.59583981361554 - type: nauc_recall_at_5_std value: 9.138475426366536 - type: ndcg_at_1 value: 38.847 - type: ndcg_at_10 value: 56.854000000000006 - type: ndcg_at_100 value: 60.767 - type: ndcg_at_1000 value: 61.399 - type: ndcg_at_20 value: 58.941 - type: ndcg_at_3 value: 49.576 - type: ndcg_at_5 value: 53.502 - type: precision_at_1 value: 38.847 - type: precision_at_10 value: 9.064 - type: precision_at_100 value: 1.127 - type: precision_at_1000 value: 0.11900000000000001 - type: precision_at_20 value: 5.038 - type: precision_at_3 value: 22.335 - type: precision_at_5 value: 15.689 - type: recall_at_1 value: 34.514 - type: recall_at_10 value: 76.152 - type: recall_at_100 value: 92.837 - type: recall_at_1000 value: 97.596 - type: recall_at_20 value: 83.77799999999999 - type: recall_at_3 value: 57.484 - type: recall_at_5 value: 66.476 task: type: Retrieval - dataset: config: default name: MTEB PAC revision: None split: test type: laugustyniak/abusive-clauses-pl metrics: - type: accuracy value: 67.24297712134376 - type: accuracy_stderr value: 4.77558207347837 - type: ap value: 77.38171975466854 - type: ap_stderr value: 2.5801970175320394 - type: f1 value: 65.21823897814332 - type: f1_stderr value: 4.317111734308895 - type: main_score value: 67.24297712134376 task: type: Classification - dataset: config: default name: MTEB PSC revision: d05a294af9e1d3ff2bfb6b714e08a24a6cabc669 split: test type: PL-MTEB/psc-pairclassification metrics: - type: cosine_accuracy value: 97.95918367346938 - type: cosine_accuracy_threshold value: 59.87724328133361 - type: cosine_ap value: 99.24498625606927 - type: cosine_f1 value: 96.6867469879518 - type: cosine_f1_threshold value: 59.87724328133361 - type: cosine_precision value: 95.53571428571429 - type: cosine_recall value: 97.86585365853658 - type: dot_accuracy value: 98.51576994434137 - type: dot_accuracy_threshold value: 1574400.0 - type: dot_ap value: 99.28566232682996 - type: dot_f1 value: 97.57575757575758 - type: dot_f1_threshold value: 1564800.0 - type: dot_precision value: 96.98795180722891 - type: dot_recall value: 98.17073170731707 - type: euclidean_accuracy value: 97.6808905380334 - type: euclidean_accuracy_threshold value: 14418.957939643331 - type: euclidean_ap value: 99.0876340868033 - type: euclidean_f1 value: 96.24060150375941 - type: euclidean_f1_threshold value: 14442.183182634264 - type: euclidean_precision value: 94.95548961424333 - type: euclidean_recall value: 97.5609756097561 - type: main_score value: 99.28566232682996 - type: manhattan_accuracy value: 97.86641929499072 - type: manhattan_accuracy_threshold value: 681802.1857857704 - type: manhattan_ap value: 99.08465290287205 - type: manhattan_f1 value: 96.52042360060513 - type: manhattan_f1_threshold value: 681802.1857857704 - type: manhattan_precision value: 95.7957957957958 - type: manhattan_recall value: 97.2560975609756 - type: max_ap value: 99.28566232682996 - type: max_f1 value: 97.57575757575758 - type: max_precision value: 96.98795180722891 - type: max_recall value: 98.17073170731707 - type: similarity_accuracy value: 97.95918367346938 - type: similarity_accuracy_threshold value: 59.87724328133361 - type: similarity_ap value: 99.24498625606927 - type: similarity_f1 value: 96.6867469879518 - type: similarity_f1_threshold value: 59.87724328133361 - type: similarity_precision value: 95.53571428571429 - type: similarity_recall value: 97.86585365853658 task: type: PairClassification - dataset: config: default name: MTEB PolEmo2.0-IN revision: d90724373c70959f17d2331ad51fb60c71176b03 split: test type: PL-MTEB/polemo2_in metrics: - type: accuracy value: 90.41551246537396 - type: f1 value: 89.15361039614409 - type: f1_weighted value: 90.69893050097603 - type: main_score value: 90.41551246537396 task: type: Classification - dataset: config: default name: MTEB PolEmo2.0-OUT revision: 6a21ab8716e255ab1867265f8b396105e8aa63d4 split: test type: PL-MTEB/polemo2_out metrics: - type: accuracy value: 77.77327935222672 - type: f1 value: 61.238079022455636 - type: f1_weighted value: 80.58753601509183 - type: main_score value: 77.77327935222672 task: type: Classification - dataset: config: default name: MTEB PPC revision: None split: test type: PL-MTEB/ppc-pairclassification metrics: - type: cos_sim_accuracy value: 87.2 - type: cos_sim_accuracy_threshold value: 83.69773167092553 - type: cos_sim_ap value: 95.43345251568122 - type: cos_sim_f1 value: 89.82785602503913 - type: cos_sim_f1_threshold value: 81.2116503074739 - type: cos_sim_precision value: 85.16320474777447 - type: cos_sim_recall value: 95.03311258278146 - type: dot_accuracy value: 85.9 - type: dot_accuracy_threshold value: 2177600.0 - type: dot_ap value: 92.4192102018206 - type: dot_f1 value: 88.9238020424195 - type: dot_f1_threshold value: 2163200.0 - type: dot_precision value: 84.60388639760838 - type: dot_recall value: 93.70860927152319 - type: euclidean_accuracy value: 87.5 - type: euclidean_accuracy_threshold value: 9325.450203438862 - type: euclidean_ap value: 95.42730698295347 - type: euclidean_f1 value: 89.92747784045125 - type: euclidean_f1_threshold value: 9325.450203438862 - type: euclidean_precision value: 87.59811616954474 - type: euclidean_recall value: 92.3841059602649 - type: manhattan_accuracy value: 87.5 - type: manhattan_accuracy_threshold value: 441412.88244724274 - type: manhattan_ap value: 95.4277447451651 - type: manhattan_f1 value: 89.92747784045125 - type: manhattan_f1_threshold value: 441412.88244724274 - type: manhattan_precision value: 87.59811616954474 - type: manhattan_recall value: 92.3841059602649 - type: max_accuracy value: 87.5 - type: max_ap value: 95.43345251568122 - type: max_f1 value: 89.92747784045125 task: type: PairClassification - dataset: config: default name: MTEB Quora-PL revision: 0be27e93455051e531182b85e85e425aba12e9d4 split: test type: clarin-knext/quora-pl metrics: - type: main_score value: 84.47099999999999 - type: map_at_1 value: 65.892 - type: map_at_10 value: 80.11500000000001 - type: map_at_100 value: 80.861 - type: map_at_1000 value: 80.879 - type: map_at_20 value: 80.604 - type: map_at_3 value: 76.97 - type: map_at_5 value: 78.926 - type: mrr_at_1 value: 75.83 - type: mrr_at_10 value: 83.2125238095233 - type: mrr_at_100 value: 83.38714262504709 - type: mrr_at_1000 value: 83.38942088013238 - type: mrr_at_20 value: 83.34284466299037 - type: mrr_at_3 value: 81.95333333333281 - type: mrr_at_5 value: 82.78533333333272 - type: nauc_map_at_1000_diff1 value: 73.95721764018812 - type: nauc_map_at_1000_max value: 9.653675847999432 - type: nauc_map_at_1000_std value: -42.35408133902171 - type: nauc_map_at_100_diff1 value: 73.96621756991526 - type: nauc_map_at_100_max value: 9.618124708373092 - type: nauc_map_at_100_std value: -42.41429680546156 - type: nauc_map_at_10_diff1 value: 74.20643666348498 - type: nauc_map_at_10_max value: 9.056688996919677 - type: nauc_map_at_10_std value: -44.13396437616006 - type: nauc_map_at_1_diff1 value: 77.18196114257519 - type: nauc_map_at_1_max value: 7.840648640771136 - type: nauc_map_at_1_std value: -39.84395715001256 - type: nauc_map_at_20_diff1 value: 74.03475632514551 - type: nauc_map_at_20_max value: 9.385795565805118 - type: nauc_map_at_20_std value: -43.160299598965466 - type: nauc_map_at_3_diff1 value: 74.43855921599284 - type: nauc_map_at_3_max value: 7.574218825911361 - type: nauc_map_at_3_std value: -46.1476276122436 - type: nauc_map_at_5_diff1 value: 74.38688915461512 - type: nauc_map_at_5_max value: 8.557764506539128 - type: nauc_map_at_5_std value: -45.53897898458085 - type: nauc_mrr_at_1000_diff1 value: 74.0311045258841 - type: nauc_mrr_at_1000_max value: 11.885448379701055 - type: nauc_mrr_at_1000_std value: -38.16008409213179 - type: nauc_mrr_at_100_diff1 value: 74.03074603058893 - type: nauc_mrr_at_100_max value: 11.886356221882725 - type: nauc_mrr_at_100_std value: -38.159139191997795 - type: nauc_mrr_at_10_diff1 value: 73.99521522874129 - type: nauc_mrr_at_10_max value: 11.77749620520773 - type: nauc_mrr_at_10_std value: -38.266295250166635 - type: nauc_mrr_at_1_diff1 value: 75.53192564838908 - type: nauc_mrr_at_1_max value: 12.979267595721275 - type: nauc_mrr_at_1_std value: -36.634066084632785 - type: nauc_mrr_at_20_diff1 value: 74.01273934757484 - type: nauc_mrr_at_20_max value: 11.887566738728225 - type: nauc_mrr_at_20_std value: -38.169250252410485 - type: nauc_mrr_at_3_diff1 value: 73.6073534511043 - type: nauc_mrr_at_3_max value: 11.450856365709727 - type: nauc_mrr_at_3_std value: -38.767141663073964 - type: nauc_mrr_at_5_diff1 value: 73.84950218235583 - type: nauc_mrr_at_5_max value: 11.787394554048813 - type: nauc_mrr_at_5_std value: -38.57240589862417 - type: nauc_ndcg_at_1000_diff1 value: 73.51677487598074 - type: nauc_ndcg_at_1000_max value: 10.72929244202152 - type: nauc_ndcg_at_1000_std value: -39.92813917654933 - type: nauc_ndcg_at_100_diff1 value: 73.53904136553481 - type: nauc_ndcg_at_100_max value: 10.569310211635521 - type: nauc_ndcg_at_100_std value: -40.12206261908318 - type: nauc_ndcg_at_10_diff1 value: 73.55958917204208 - type: nauc_ndcg_at_10_max value: 9.255791947077263 - type: nauc_ndcg_at_10_std value: -42.7856138240991 - type: nauc_ndcg_at_1_diff1 value: 75.34289960079188 - type: nauc_ndcg_at_1_max value: 13.499789436258705 - type: nauc_ndcg_at_1_std value: -35.91483904818284 - type: nauc_ndcg_at_20_diff1 value: 73.48070745481307 - type: nauc_ndcg_at_20_max value: 9.92427572953505 - type: nauc_ndcg_at_20_std value: -41.55653404596579 - type: nauc_ndcg_at_3_diff1 value: 72.72072901275445 - type: nauc_ndcg_at_3_max value: 8.303708237302729 - type: nauc_ndcg_at_3_std value: -43.618531107389344 - type: nauc_ndcg_at_5_diff1 value: 73.30060059269601 - type: nauc_ndcg_at_5_max value: 8.915386932153249 - type: nauc_ndcg_at_5_std value: -44.088053429661 - type: nauc_precision_at_1000_diff1 value: -41.540517884119524 - type: nauc_precision_at_1000_max value: 6.9361565712971265 - type: nauc_precision_at_1000_std value: 42.39482890919027 - type: nauc_precision_at_100_diff1 value: -40.609576663184896 - type: nauc_precision_at_100_max value: 6.302451339507686 - type: nauc_precision_at_100_std value: 41.30693233869549 - type: nauc_precision_at_10_diff1 value: -30.91653155031006 - type: nauc_precision_at_10_max value: 4.84981614338782 - type: nauc_precision_at_10_std value: 24.47022404030676 - type: nauc_precision_at_1_diff1 value: 75.34289960079188 - type: nauc_precision_at_1_max value: 13.499789436258705 - type: nauc_precision_at_1_std value: -35.91483904818284 - type: nauc_precision_at_20_diff1 value: -36.75164419452007 - type: nauc_precision_at_20_max value: 5.440757182282365 - type: nauc_precision_at_20_std value: 33.08928025809355 - type: nauc_precision_at_3_diff1 value: -5.3240699725635565 - type: nauc_precision_at_3_max value: 5.156636102003736 - type: nauc_precision_at_3_std value: -0.9779263105110453 - type: nauc_precision_at_5_diff1 value: -19.92133198420086 - type: nauc_precision_at_5_max value: 5.432766335564369 - type: nauc_precision_at_5_std value: 11.417736295996392 - type: nauc_recall_at_1000_diff1 value: 56.57663068186203 - type: nauc_recall_at_1000_max value: 25.80329039728696 - type: nauc_recall_at_1000_std value: 57.82937604195464 - type: nauc_recall_at_100_diff1 value: 67.25188672746224 - type: nauc_recall_at_100_max value: 6.879939694351325 - type: nauc_recall_at_100_std value: -30.098258041087096 - type: nauc_recall_at_10_diff1 value: 68.00694154421653 - type: nauc_recall_at_10_max value: 0.7226814903576098 - type: nauc_recall_at_10_std value: -52.980002751088215 - type: nauc_recall_at_1_diff1 value: 77.18196114257519 - type: nauc_recall_at_1_max value: 7.840648640771136 - type: nauc_recall_at_1_std value: -39.84395715001256 - type: nauc_recall_at_20_diff1 value: 66.56016564739411 - type: nauc_recall_at_20_max value: 1.919044428493598 - type: nauc_recall_at_20_std value: -49.5380686276396 - type: nauc_recall_at_3_diff1 value: 69.83247207081557 - type: nauc_recall_at_3_max value: 2.395588418833963 - type: nauc_recall_at_3_std value: -52.11119790224493 - type: nauc_recall_at_5_diff1 value: 69.25881483845956 - type: nauc_recall_at_5_max value: 2.9185552604991716 - type: nauc_recall_at_5_std value: -54.376346690212095 - type: ndcg_at_1 value: 75.92 - type: ndcg_at_10 value: 84.47099999999999 - type: ndcg_at_100 value: 86.11999999999999 - type: ndcg_at_1000 value: 86.276 - type: ndcg_at_20 value: 85.37599999999999 - type: ndcg_at_3 value: 81.0 - type: ndcg_at_5 value: 82.88799999999999 - type: precision_at_1 value: 75.92 - type: precision_at_10 value: 12.987000000000002 - type: precision_at_100 value: 1.5190000000000001 - type: precision_at_1000 value: 0.156 - type: precision_at_20 value: 6.977 - type: precision_at_3 value: 35.573 - type: precision_at_5 value: 23.566000000000003 - type: recall_at_1 value: 65.892 - type: recall_at_10 value: 93.318 - type: recall_at_100 value: 99.124 - type: recall_at_1000 value: 99.92699999999999 - type: recall_at_20 value: 96.256 - type: recall_at_3 value: 83.69 - type: recall_at_5 value: 88.783 task: type: Retrieval - dataset: config: default name: MTEB SCIDOCS-PL revision: 45452b03f05560207ef19149545f168e596c9337 split: test type: clarin-knext/scidocs-pl metrics: - type: main_score value: 19.528000000000002 - type: map_at_1 value: 4.5280000000000005 - type: map_at_10 value: 11.649 - type: map_at_100 value: 14.019 - type: map_at_1000 value: 14.35 - type: map_at_20 value: 12.866 - type: map_at_3 value: 8.35 - type: map_at_5 value: 9.84 - type: mrr_at_1 value: 22.3 - type: mrr_at_10 value: 32.690039682539656 - type: mrr_at_100 value: 33.91097016542133 - type: mrr_at_1000 value: 33.96940693754695 - type: mrr_at_20 value: 33.418312740750785 - type: mrr_at_3 value: 29.4 - type: mrr_at_5 value: 31.21999999999997 - type: nauc_map_at_1000_diff1 value: 20.52578935318615 - type: nauc_map_at_1000_max value: 28.28553814852898 - type: nauc_map_at_1000_std value: 18.74384140790138 - type: nauc_map_at_100_diff1 value: 20.508083204903077 - type: nauc_map_at_100_max value: 28.281447260273346 - type: nauc_map_at_100_std value: 18.51851601604162 - type: nauc_map_at_10_diff1 value: 21.028884157759624 - type: nauc_map_at_10_max value: 26.98935951161403 - type: nauc_map_at_10_std value: 14.434790357547536 - type: nauc_map_at_1_diff1 value: 23.406427416653127 - type: nauc_map_at_1_max value: 21.759624726647303 - type: nauc_map_at_1_std value: 8.335925909478444 - type: nauc_map_at_20_diff1 value: 20.370301978337785 - type: nauc_map_at_20_max value: 27.30787972231405 - type: nauc_map_at_20_std value: 16.166505401287353 - type: nauc_map_at_3_diff1 value: 23.920717676009453 - type: nauc_map_at_3_max value: 26.061264285994124 - type: nauc_map_at_3_std value: 10.707123907182902 - type: nauc_map_at_5_diff1 value: 22.180679453453557 - type: nauc_map_at_5_max value: 26.85332935641574 - type: nauc_map_at_5_std value: 12.316377808191762 - type: nauc_mrr_at_1000_diff1 value: 21.49186339320302 - type: nauc_mrr_at_1000_max value: 24.329921012356493 - type: nauc_mrr_at_1000_std value: 13.6080824939291 - type: nauc_mrr_at_100_diff1 value: 21.47653180378912 - type: nauc_mrr_at_100_max value: 24.34218235410752 - type: nauc_mrr_at_100_std value: 13.646711743513668 - type: nauc_mrr_at_10_diff1 value: 21.487198850706935 - type: nauc_mrr_at_10_max value: 24.32385099521571 - type: nauc_mrr_at_10_std value: 13.26596223383694 - type: nauc_mrr_at_1_diff1 value: 23.19221955587559 - type: nauc_mrr_at_1_max value: 21.963004569187575 - type: nauc_mrr_at_1_std value: 8.799819519408619 - type: nauc_mrr_at_20_diff1 value: 21.51014357510076 - type: nauc_mrr_at_20_max value: 24.376067405199347 - type: nauc_mrr_at_20_std value: 13.643597889716563 - type: nauc_mrr_at_3_diff1 value: 22.60437837853161 - type: nauc_mrr_at_3_max value: 23.58608363876532 - type: nauc_mrr_at_3_std value: 11.887163540535768 - type: nauc_mrr_at_5_diff1 value: 21.919324914716633 - type: nauc_mrr_at_5_max value: 23.71458680225389 - type: nauc_mrr_at_5_std value: 12.507643886191785 - type: nauc_ndcg_at_1000_diff1 value: 18.546848864440005 - type: nauc_ndcg_at_1000_max value: 30.031984469206325 - type: nauc_ndcg_at_1000_std value: 26.561149084437485 - type: nauc_ndcg_at_100_diff1 value: 18.76271748622068 - type: nauc_ndcg_at_100_max value: 30.180887663861306 - type: nauc_ndcg_at_100_std value: 25.50551358758007 - type: nauc_ndcg_at_10_diff1 value: 19.861367738304697 - type: nauc_ndcg_at_10_max value: 27.360442235691522 - type: nauc_ndcg_at_10_std value: 16.476546243351976 - type: nauc_ndcg_at_1_diff1 value: 23.56715803292495 - type: nauc_ndcg_at_1_max value: 22.29229945166374 - type: nauc_ndcg_at_1_std value: 8.43434671818737 - type: nauc_ndcg_at_20_diff1 value: 18.885059883708053 - type: nauc_ndcg_at_20_max value: 27.78854464221595 - type: nauc_ndcg_at_20_std value: 19.404353378015255 - type: nauc_ndcg_at_3_diff1 value: 23.34227259398943 - type: nauc_ndcg_at_3_max value: 25.75899010582446 - type: nauc_ndcg_at_3_std value: 12.097012181915954 - type: nauc_ndcg_at_5_diff1 value: 21.599246331396863 - type: nauc_ndcg_at_5_max value: 26.6575824351444 - type: nauc_ndcg_at_5_std value: 14.029006846982394 - type: nauc_precision_at_1000_diff1 value: 4.880571159099271 - type: nauc_precision_at_1000_max value: 24.693741787360725 - type: nauc_precision_at_1000_std value: 41.00756555344345 - type: nauc_precision_at_100_diff1 value: 10.440170876298648 - type: nauc_precision_at_100_max value: 28.942738351320408 - type: nauc_precision_at_100_std value: 36.921704945977446 - type: nauc_precision_at_10_diff1 value: 15.55680558043308 - type: nauc_precision_at_10_max value: 27.31414489241847 - type: nauc_precision_at_10_std value: 19.76275914256793 - type: nauc_precision_at_1_diff1 value: 23.56715803292495 - type: nauc_precision_at_1_max value: 22.29229945166374 - type: nauc_precision_at_1_std value: 8.43434671818737 - type: nauc_precision_at_20_diff1 value: 12.57247210423589 - type: nauc_precision_at_20_max value: 25.978951783180946 - type: nauc_precision_at_20_std value: 23.89998191646426 - type: nauc_precision_at_3_diff1 value: 22.61273732758558 - type: nauc_precision_at_3_max value: 26.51246898792034 - type: nauc_precision_at_3_std value: 13.618855663226162 - type: nauc_precision_at_5_diff1 value: 19.216237125486472 - type: nauc_precision_at_5_max value: 27.491221626577868 - type: nauc_precision_at_5_std value: 16.448119031617793 - type: nauc_recall_at_1000_diff1 value: 5.787043341957982 - type: nauc_recall_at_1000_max value: 25.922109246772763 - type: nauc_recall_at_1000_std value: 43.03768522656805 - type: nauc_recall_at_100_diff1 value: 10.696362559629796 - type: nauc_recall_at_100_max value: 29.335080453227146 - type: nauc_recall_at_100_std value: 37.271217586452124 - type: nauc_recall_at_10_diff1 value: 15.458092305569215 - type: nauc_recall_at_10_max value: 27.24445210740807 - type: nauc_recall_at_10_std value: 19.71157635644842 - type: nauc_recall_at_1_diff1 value: 23.406427416653127 - type: nauc_recall_at_1_max value: 21.759624726647303 - type: nauc_recall_at_1_std value: 8.335925909478444 - type: nauc_recall_at_20_diff1 value: 12.666354755313089 - type: nauc_recall_at_20_max value: 26.089770792562327 - type: nauc_recall_at_20_std value: 24.153776619741254 - type: nauc_recall_at_3_diff1 value: 22.545408113368953 - type: nauc_recall_at_3_max value: 26.18564049945919 - type: nauc_recall_at_3_std value: 13.308772571657293 - type: nauc_recall_at_5_diff1 value: 19.063078320434958 - type: nauc_recall_at_5_max value: 27.15038597116091 - type: nauc_recall_at_5_std value: 16.202694888143302 - type: ndcg_at_1 value: 22.2 - type: ndcg_at_10 value: 19.528000000000002 - type: ndcg_at_100 value: 28.444000000000003 - type: ndcg_at_1000 value: 33.826 - type: ndcg_at_20 value: 22.746 - type: ndcg_at_3 value: 18.413 - type: ndcg_at_5 value: 15.927 - type: precision_at_1 value: 22.2 - type: precision_at_10 value: 10.24 - type: precision_at_100 value: 2.3040000000000003 - type: precision_at_1000 value: 0.358 - type: precision_at_20 value: 6.97 - type: precision_at_3 value: 17.299999999999997 - type: precision_at_5 value: 13.919999999999998 - type: recall_at_1 value: 4.5280000000000005 - type: recall_at_10 value: 20.757 - type: recall_at_100 value: 46.75 - type: recall_at_1000 value: 72.738 - type: recall_at_20 value: 28.28 - type: recall_at_3 value: 10.558 - type: recall_at_5 value: 14.148 task: type: Retrieval - dataset: config: default name: MTEB SICK-E-PL revision: 71bba34b0ece6c56dfcf46d9758a27f7a90f17e9 split: test type: PL-MTEB/sicke-pl-pairclassification metrics: - type: cosine_accuracy value: 87.50509580105992 - type: cosine_accuracy_threshold value: 89.01510631979949 - type: cosine_ap value: 85.58291779193907 - type: cosine_f1 value: 77.58919293384136 - type: cosine_f1_threshold value: 87.10908804245841 - type: cosine_precision value: 75.52258934592044 - type: cosine_recall value: 79.77207977207978 - type: dot_accuracy value: 83.9380350591113 - type: dot_accuracy_threshold value: 2292800.0 - type: dot_ap value: 77.56937485120034 - type: dot_f1 value: 73.32065906210391 - type: dot_f1_threshold value: 2190400.0 - type: dot_precision value: 66.03881278538812 - type: dot_recall value: 82.4074074074074 - type: euclidean_accuracy value: 87.89237668161435 - type: euclidean_accuracy_threshold value: 7497.701400069587 - type: euclidean_ap value: 85.97216152106346 - type: euclidean_f1 value: 77.97228300510578 - type: euclidean_f1_threshold value: 7799.027816670506 - type: euclidean_precision value: 79.89536621823618 - type: euclidean_recall value: 76.13960113960114 - type: main_score value: 85.97216152106346 - type: manhattan_accuracy value: 87.85161027313494 - type: manhattan_accuracy_threshold value: 357242.9743885994 - type: manhattan_ap value: 85.96709490495458 - type: manhattan_f1 value: 77.9874213836478 - type: manhattan_f1_threshold value: 383558.8531732559 - type: manhattan_precision value: 76.5432098765432 - type: manhattan_recall value: 79.48717948717949 - type: max_ap value: 85.97216152106346 - type: max_f1 value: 77.9874213836478 - type: max_precision value: 79.89536621823618 - type: max_recall value: 82.4074074074074 - type: similarity_accuracy value: 87.50509580105992 - type: similarity_accuracy_threshold value: 89.01510631979949 - type: similarity_ap value: 85.58291779193907 - type: similarity_f1 value: 77.58919293384136 - type: similarity_f1_threshold value: 87.10908804245841 - type: similarity_precision value: 75.52258934592044 - type: similarity_recall value: 79.77207977207978 task: type: PairClassification - dataset: config: default name: MTEB SICK-R-PL revision: fd5c2441b7eeff8676768036142af4cfa42c1339 split: test type: PL-MTEB/sickr-pl-sts metrics: - type: cosine_pearson value: 79.68602301743276 - type: cosine_spearman value: 78.15913085997471 - type: euclidean_pearson value: 77.19541180768627 - type: euclidean_spearman value: 77.9122894221527 - type: main_score value: 78.15913085997471 - type: manhattan_pearson value: 77.24713453824641 - type: manhattan_spearman value: 77.95971728547582 - type: pearson value: 79.68602301743276 - type: spearman value: 78.15913085997471 task: type: STS - dataset: config: pl name: MTEB STS22 (pl) revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3 split: test type: mteb/sts22-crosslingual-sts metrics: - type: cosine_pearson value: 42.01062393061261 - type: cosine_spearman value: 42.79076406559122 - type: euclidean_pearson value: 28.57786522106708 - type: euclidean_spearman value: 42.51040813516686 - type: main_score value: 42.79076406559122 - type: manhattan_pearson value: 28.855884350706653 - type: manhattan_spearman value: 42.77481125184737 - type: pearson value: 42.01062393061261 - type: spearman value: 42.79076406559122 task: type: STS - dataset: config: default name: MTEB SciFact-PL revision: 47932a35f045ef8ed01ba82bf9ff67f6e109207e split: test type: clarin-knext/scifact-pl metrics: - type: main_score value: 74.434 - type: map_at_1 value: 59.494 - type: map_at_10 value: 69.893 - type: map_at_100 value: 70.45 - type: map_at_1000 value: 70.466 - type: map_at_20 value: 70.259 - type: map_at_3 value: 67.037 - type: map_at_5 value: 68.777 - type: mrr_at_1 value: 62.66666666666667 - type: mrr_at_10 value: 71.04457671957671 - type: mrr_at_100 value: 71.52299909263925 - type: mrr_at_1000 value: 71.53881086964122 - type: mrr_at_20 value: 71.33636271136271 - type: mrr_at_3 value: 69.16666666666667 - type: mrr_at_5 value: 70.26666666666667 - type: nauc_map_at_1000_diff1 value: 68.97113084189034 - type: nauc_map_at_1000_max value: 51.00665747497857 - type: nauc_map_at_1000_std value: 8.970270487093412 - type: nauc_map_at_100_diff1 value: 68.97281660521169 - type: nauc_map_at_100_max value: 51.01659549614879 - type: nauc_map_at_100_std value: 8.986483862053491 - type: nauc_map_at_10_diff1 value: 69.07605123979184 - type: nauc_map_at_10_max value: 51.229841935772804 - type: nauc_map_at_10_std value: 9.050901052243548 - type: nauc_map_at_1_diff1 value: 71.46187295357046 - type: nauc_map_at_1_max value: 46.82038076857106 - type: nauc_map_at_1_std value: 6.931602615510153 - type: nauc_map_at_20_diff1 value: 68.93823362705625 - type: nauc_map_at_20_max value: 51.15218544845727 - type: nauc_map_at_20_std value: 8.993550237629675 - type: nauc_map_at_3_diff1 value: 69.19558420072627 - type: nauc_map_at_3_max value: 47.345905341053886 - type: nauc_map_at_3_std value: 4.833936436252541 - type: nauc_map_at_5_diff1 value: 69.05067049349557 - type: nauc_map_at_5_max value: 49.62866209452668 - type: nauc_map_at_5_std value: 7.455937282103214 - type: nauc_mrr_at_1000_diff1 value: 69.2896395759106 - type: nauc_mrr_at_1000_max value: 54.20478659857226 - type: nauc_mrr_at_1000_std value: 12.534151525016302 - type: nauc_mrr_at_100_diff1 value: 69.29115865311857 - type: nauc_mrr_at_100_max value: 54.212882919608475 - type: nauc_mrr_at_100_std value: 12.548435473868432 - type: nauc_mrr_at_10_diff1 value: 69.29596234146305 - type: nauc_mrr_at_10_max value: 54.391683731646935 - type: nauc_mrr_at_10_std value: 12.74312540729047 - type: nauc_mrr_at_1_diff1 value: 71.19661136604304 - type: nauc_mrr_at_1_max value: 53.50646788895577 - type: nauc_mrr_at_1_std value: 14.68408048005645 - type: nauc_mrr_at_20_diff1 value: 69.24714813412893 - type: nauc_mrr_at_20_max value: 54.32239828421196 - type: nauc_mrr_at_20_std value: 12.623980761665866 - type: nauc_mrr_at_3_diff1 value: 69.22708724496187 - type: nauc_mrr_at_3_max value: 53.18873450995116 - type: nauc_mrr_at_3_std value: 11.336687945925586 - type: nauc_mrr_at_5_diff1 value: 69.10748983236182 - type: nauc_mrr_at_5_max value: 53.878090193979034 - type: nauc_mrr_at_5_std value: 12.079036178698662 - type: nauc_ndcg_at_1000_diff1 value: 68.66705448374432 - type: nauc_ndcg_at_1000_max value: 52.74699991296371 - type: nauc_ndcg_at_1000_std value: 10.535824386304968 - type: nauc_ndcg_at_100_diff1 value: 68.66862462407086 - type: nauc_ndcg_at_100_max value: 52.979821543362874 - type: nauc_ndcg_at_100_std value: 10.856284103500371 - type: nauc_ndcg_at_10_diff1 value: 68.66965948376267 - type: nauc_ndcg_at_10_max value: 53.978681919984474 - type: nauc_ndcg_at_10_std value: 11.10472732803466 - type: nauc_ndcg_at_1_diff1 value: 71.19661136604304 - type: nauc_ndcg_at_1_max value: 53.50646788895577 - type: nauc_ndcg_at_1_std value: 14.68408048005645 - type: nauc_ndcg_at_20_diff1 value: 68.20754850499976 - type: nauc_ndcg_at_20_max value: 53.590485842045595 - type: nauc_ndcg_at_20_std value: 10.719753086433334 - type: nauc_ndcg_at_3_diff1 value: 68.23406959629385 - type: nauc_ndcg_at_3_max value: 48.8837450762613 - type: nauc_ndcg_at_3_std value: 6.287949648205997 - type: nauc_ndcg_at_5_diff1 value: 68.52532849588677 - type: nauc_ndcg_at_5_max value: 51.29845300513165 - type: nauc_ndcg_at_5_std value: 8.15488455762137 - type: nauc_precision_at_1000_diff1 value: -29.56388929021074 - type: nauc_precision_at_1000_max value: 18.61674681637121 - type: nauc_precision_at_1000_std value: 41.68541412973936 - type: nauc_precision_at_100_diff1 value: -17.020740767390375 - type: nauc_precision_at_100_max value: 24.321682766394957 - type: nauc_precision_at_100_std value: 39.36188711602 - type: nauc_precision_at_10_diff1 value: 7.735819461600302 - type: nauc_precision_at_10_max value: 39.59963139423176 - type: nauc_precision_at_10_std value: 33.923494696390385 - type: nauc_precision_at_1_diff1 value: 71.19661136604304 - type: nauc_precision_at_1_max value: 53.50646788895577 - type: nauc_precision_at_1_std value: 14.68408048005645 - type: nauc_precision_at_20_diff1 value: -3.587900694179661 - type: nauc_precision_at_20_max value: 33.36606615861144 - type: nauc_precision_at_20_std value: 34.51624192343654 - type: nauc_precision_at_3_diff1 value: 41.996620318298625 - type: nauc_precision_at_3_max value: 43.08007454860597 - type: nauc_precision_at_3_std value: 14.398965447916495 - type: nauc_precision_at_5_diff1 value: 25.054180107661132 - type: nauc_precision_at_5_max value: 40.94617942853718 - type: nauc_precision_at_5_std value: 23.69992709404865 - type: nauc_recall_at_1000_diff1 value: .nan - type: nauc_recall_at_1000_max value: .nan - type: nauc_recall_at_1000_std value: .nan - type: nauc_recall_at_100_diff1 value: 68.09523809523836 - type: nauc_recall_at_100_max value: 63.034547152194406 - type: nauc_recall_at_100_std value: 23.594771241830657 - type: nauc_recall_at_10_diff1 value: 66.43213426149696 - type: nauc_recall_at_10_max value: 63.07509853849101 - type: nauc_recall_at_10_std value: 15.44924084252273 - type: nauc_recall_at_1_diff1 value: 71.46187295357046 - type: nauc_recall_at_1_max value: 46.82038076857106 - type: nauc_recall_at_1_std value: 6.931602615510153 - type: nauc_recall_at_20_diff1 value: 61.64354198229226 - type: nauc_recall_at_20_max value: 63.09950698826864 - type: nauc_recall_at_20_std value: 12.823209698925014 - type: nauc_recall_at_3_diff1 value: 65.63352507252078 - type: nauc_recall_at_3_max value: 45.10210171735505 - type: nauc_recall_at_3_std value: -0.08017546941514365 - type: nauc_recall_at_5_diff1 value: 65.93453179242769 - type: nauc_recall_at_5_max value: 51.97740656606473 - type: nauc_recall_at_5_std value: 4.929967882548962 - type: ndcg_at_1 value: 62.666999999999994 - type: ndcg_at_10 value: 74.434 - type: ndcg_at_100 value: 76.655 - type: ndcg_at_1000 value: 77.08 - type: ndcg_at_20 value: 75.588 - type: ndcg_at_3 value: 69.75099999999999 - type: ndcg_at_5 value: 72.09100000000001 - type: precision_at_1 value: 62.666999999999994 - type: precision_at_10 value: 9.9 - type: precision_at_100 value: 1.097 - type: precision_at_1000 value: 0.11299999999999999 - type: precision_at_20 value: 5.2 - type: precision_at_3 value: 27.0 - type: precision_at_5 value: 17.933 - type: recall_at_1 value: 59.494 - type: recall_at_10 value: 87.13300000000001 - type: recall_at_100 value: 96.667 - type: recall_at_1000 value: 100.0 - type: recall_at_20 value: 91.43299999999999 - type: recall_at_3 value: 74.461 - type: recall_at_5 value: 80.34400000000001 task: type: Retrieval - dataset: config: default name: MTEB TRECCOVID-PL revision: 81bcb408f33366c2a20ac54adafad1ae7e877fdd split: test type: clarin-knext/trec-covid-pl metrics: - type: main_score value: 82.749 - type: map_at_1 value: 0.20400000000000001 - type: map_at_10 value: 2.099 - type: map_at_100 value: 12.948 - type: map_at_1000 value: 32.007000000000005 - type: map_at_20 value: 3.746 - type: map_at_3 value: 0.651 - type: map_at_5 value: 1.061 - type: mrr_at_1 value: 84.0 - type: mrr_at_10 value: 91.66666666666666 - type: mrr_at_100 value: 91.66666666666666 - type: mrr_at_1000 value: 91.66666666666666 - type: mrr_at_20 value: 91.66666666666666 - type: mrr_at_3 value: 91.66666666666666 - type: mrr_at_5 value: 91.66666666666666 - type: nauc_map_at_1000_diff1 value: 1.0291414165448085 - type: nauc_map_at_1000_max value: 57.33479540784058 - type: nauc_map_at_1000_std value: 76.70364036170582 - type: nauc_map_at_100_diff1 value: 6.949672309533349 - type: nauc_map_at_100_max value: 43.99861611069154 - type: nauc_map_at_100_std value: 64.12473626966596 - type: nauc_map_at_10_diff1 value: 4.208568177173666 - type: nauc_map_at_10_max value: 18.875910045226423 - type: nauc_map_at_10_std value: 34.58171216714189 - type: nauc_map_at_1_diff1 value: 8.433450768728983 - type: nauc_map_at_1_max value: 24.08001091473891 - type: nauc_map_at_1_std value: 35.21473053133869 - type: nauc_map_at_20_diff1 value: 6.041054220619057 - type: nauc_map_at_20_max value: 22.57475437061051 - type: nauc_map_at_20_std value: 35.254808865756964 - type: nauc_map_at_3_diff1 value: 11.166815378728485 - type: nauc_map_at_3_max value: 18.995433996118248 - type: nauc_map_at_3_std value: 34.29696290521795 - type: nauc_map_at_5_diff1 value: 7.1134812647567855 - type: nauc_map_at_5_max value: 20.03877039266845 - type: nauc_map_at_5_std value: 36.21644151312843 - type: nauc_mrr_at_1000_diff1 value: -7.262394669801826 - type: nauc_mrr_at_1000_max value: 66.22378992749366 - type: nauc_mrr_at_1000_std value: 68.18146188516563 - type: nauc_mrr_at_100_diff1 value: -7.262394669801826 - type: nauc_mrr_at_100_max value: 66.22378992749366 - type: nauc_mrr_at_100_std value: 68.18146188516563 - type: nauc_mrr_at_10_diff1 value: -7.262394669801826 - type: nauc_mrr_at_10_max value: 66.22378992749366 - type: nauc_mrr_at_10_std value: 68.18146188516563 - type: nauc_mrr_at_1_diff1 value: -11.38929798723619 - type: nauc_mrr_at_1_max value: 68.58738340697101 - type: nauc_mrr_at_1_std value: 68.00441826215022 - type: nauc_mrr_at_20_diff1 value: -7.262394669801826 - type: nauc_mrr_at_20_max value: 66.22378992749366 - type: nauc_mrr_at_20_std value: 68.18146188516563 - type: nauc_mrr_at_3_diff1 value: -7.262394669801826 - type: nauc_mrr_at_3_max value: 66.22378992749366 - type: nauc_mrr_at_3_std value: 68.18146188516563 - type: nauc_mrr_at_5_diff1 value: -7.262394669801826 - type: nauc_mrr_at_5_max value: 66.22378992749366 - type: nauc_mrr_at_5_std value: 68.18146188516563 - type: nauc_ndcg_at_1000_diff1 value: 2.5628376286433334 - type: nauc_ndcg_at_1000_max value: 57.605148480655025 - type: nauc_ndcg_at_1000_std value: 76.62891677430625 - type: nauc_ndcg_at_100_diff1 value: -13.313083767893671 - type: nauc_ndcg_at_100_max value: 52.932453336031905 - type: nauc_ndcg_at_100_std value: 73.5050466104544 - type: nauc_ndcg_at_10_diff1 value: -6.837803344621873 - type: nauc_ndcg_at_10_max value: 59.29833159945462 - type: nauc_ndcg_at_10_std value: 63.719268128346705 - type: nauc_ndcg_at_1_diff1 value: 4.834338452523335 - type: nauc_ndcg_at_1_max value: 53.58546768562144 - type: nauc_ndcg_at_1_std value: 59.07659252386643 - type: nauc_ndcg_at_20_diff1 value: -9.617683189610558 - type: nauc_ndcg_at_20_max value: 54.57354685878183 - type: nauc_ndcg_at_20_std value: 63.15198506529425 - type: nauc_ndcg_at_3_diff1 value: 15.216236580270994 - type: nauc_ndcg_at_3_max value: 58.345749967766416 - type: nauc_ndcg_at_3_std value: 61.78177922399883 - type: nauc_ndcg_at_5_diff1 value: 1.3882436296634026 - type: nauc_ndcg_at_5_max value: 62.44013008368074 - type: nauc_ndcg_at_5_std value: 65.64455986653293 - type: nauc_precision_at_1000_diff1 value: -18.516822124710856 - type: nauc_precision_at_1000_max value: 33.10336267989325 - type: nauc_precision_at_1000_std value: 29.49816019882571 - type: nauc_precision_at_100_diff1 value: -14.113619184538592 - type: nauc_precision_at_100_max value: 55.55228172103563 - type: nauc_precision_at_100_std value: 69.64355056246397 - type: nauc_precision_at_10_diff1 value: -27.271286464111455 - type: nauc_precision_at_10_max value: 61.885272647604594 - type: nauc_precision_at_10_std value: 60.73389705676694 - type: nauc_precision_at_1_diff1 value: -11.38929798723619 - type: nauc_precision_at_1_max value: 68.58738340697101 - type: nauc_precision_at_1_std value: 68.00441826215022 - type: nauc_precision_at_20_diff1 value: -21.53639909310826 - type: nauc_precision_at_20_max value: 53.361537614358376 - type: nauc_precision_at_20_std value: 55.58737187496432 - type: nauc_precision_at_3_diff1 value: 3.785071466384217 - type: nauc_precision_at_3_max value: 61.66906148377818 - type: nauc_precision_at_3_std value: 62.81857369734561 - type: nauc_precision_at_5_diff1 value: -16.00339477131436 - type: nauc_precision_at_5_max value: 61.5246951163262 - type: nauc_precision_at_5_std value: 63.615062452722135 - type: nauc_recall_at_1000_diff1 value: 5.871263115826736 - type: nauc_recall_at_1000_max value: 50.48397949000848 - type: nauc_recall_at_1000_std value: 67.37950715297474 - type: nauc_recall_at_100_diff1 value: 8.310215006893952 - type: nauc_recall_at_100_max value: 28.687726825722386 - type: nauc_recall_at_100_std value: 50.34038560928654 - type: nauc_recall_at_10_diff1 value: 3.3408195168322075 - type: nauc_recall_at_10_max value: 6.89511828305496 - type: nauc_recall_at_10_std value: 22.929267555360028 - type: nauc_recall_at_1_diff1 value: 8.433450768728983 - type: nauc_recall_at_1_max value: 24.08001091473891 - type: nauc_recall_at_1_std value: 35.21473053133869 - type: nauc_recall_at_20_diff1 value: 5.307683260432045 - type: nauc_recall_at_20_max value: 10.025532087519974 - type: nauc_recall_at_20_std value: 24.110512570368947 - type: nauc_recall_at_3_diff1 value: 13.355136074654078 - type: nauc_recall_at_3_max value: 8.568079109800236 - type: nauc_recall_at_3_std value: 23.691593767005745 - type: nauc_recall_at_5_diff1 value: 6.535580157651383 - type: nauc_recall_at_5_max value: 9.1442468749571 - type: nauc_recall_at_5_std value: 27.00111567203191 - type: ndcg_at_1 value: 79.0 - type: ndcg_at_10 value: 82.749 - type: ndcg_at_100 value: 63.846000000000004 - type: ndcg_at_1000 value: 57.691 - type: ndcg_at_20 value: 77.076 - type: ndcg_at_3 value: 84.83800000000001 - type: ndcg_at_5 value: 83.016 - type: precision_at_1 value: 84.0 - type: precision_at_10 value: 87.8 - type: precision_at_100 value: 66.10000000000001 - type: precision_at_1000 value: 25.764 - type: precision_at_20 value: 81.10000000000001 - type: precision_at_3 value: 91.333 - type: precision_at_5 value: 88.8 - type: recall_at_1 value: 0.20400000000000001 - type: recall_at_10 value: 2.294 - type: recall_at_100 value: 16.134999999999998 - type: recall_at_1000 value: 54.981 - type: recall_at_20 value: 4.201 - type: recall_at_3 value: 0.699 - type: recall_at_5 value: 1.141 task: type: Retrieval --- <h1 align="center">FlagEmbedding</h1> For more details please refer to our Github: [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding). **BGE-Multilingual-Gemma2** is a LLM-based multilingual embedding model. It is trained on a diverse range of languages and tasks based on [google/gemma-2-9b](https://huggingface.co/google/gemma-2-9b). BGE-Multilingual-Gemma2 primarily demonstrates the following advancements: - Diverse training data: The model's training data spans a broad range of languages, including English, Chinese, Japanese, Korean, French, and more.Additionally, the data covers a variety of task types, such as retrieval, classification, and clustering. - Outstanding performance: The model exhibits state-of-the-art (SOTA) results on multilingual benchmarks like MIRACL, MTEB-pl, and MTEB-fr. It also achieves excellent performance on other major evaluations, including MTEB, C-MTEB and AIR-Bench. ## 📑 Open-source Plan - [x] Checkpoint - [ ] Training Data We will release the training data of **BGE-Multilingual-Gemma2** in the future. ## Usage ### Using FlagEmbedding ``` git clone https://github.com/FlagOpen/FlagEmbedding.git cd FlagEmbedding pip install -e . ``` ```python from FlagEmbedding import FlagLLMModel queries = ["how much protein should a female eat", "summit define"] documents = [ "As a general guideline, the CDC's average requirement of protein for women ages 19 to 70 is 46 grams per day. But, as you can see from this chart, you'll need to increase that if you're expecting or training for a marathon. Check out the chart below to see how much protein you should be eating each day.", "Definition of summit for English Language Learners. : 1 the highest point of a mountain : the top of a mountain. : 2 the highest level. : 3 a meeting or series of meetings between the leaders of two or more governments." ] model = FlagLLMModel('BAAI/bge-multilingual-gemma2', query_instruction_for_retrieval="Given a web search query, retrieve relevant passages that answer the query.", use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation embeddings_1 = model.encode_queries(queries) embeddings_2 = model.encode_corpus(documents) similarity = embeddings_1 @ embeddings_2.T print(similarity) # [[ 0.559 0.01654 ] # [-0.002575 0.4998 ]] ``` By default, FlagLLMModel will use all available GPUs when encoding. Please set `os.environ["CUDA_VISIBLE_DEVICES"]` to select specific GPUs. You also can set `os.environ["CUDA_VISIBLE_DEVICES"]=""` to make all GPUs unavailable. ### Using Sentence Transformers ```python from sentence_transformers import SentenceTransformer import torch # Load the model, optionally in float16 precision for faster inference model = SentenceTransformer("BAAI/bge-multilingual-gemma2", model_kwargs={"torch_dtype": torch.float16}) # Prepare a prompt given an instruction instruction = 'Given a web search query, retrieve relevant passages that answer the query.' prompt = f'<instruct>{instruction}\n<query>' # Prepare queries and documents queries = [ 'how much protein should a female eat', 'summit define', ] documents = [ "As a general guideline, the CDC's average requirement of protein for women ages 19 to 70 is 46 grams per day. But, as you can see from this chart, you'll need to increase that if you're expecting or training for a marathon. Check out the chart below to see how much protein you should be eating each day.", "Definition of summit for English Language Learners. : 1 the highest point of a mountain : the top of a mountain. : 2 the highest level. : 3 a meeting or series of meetings between the leaders of two or more governments." ] # Compute the query and document embeddings query_embeddings = model.encode(queries, prompt=prompt) document_embeddings = model.encode(documents) # Compute the cosine similarity between the query and document embeddings similarities = model.similarity(query_embeddings, document_embeddings) print(similarities) # tensor([[ 0.5591, 0.0164], # [-0.0026, 0.4993]], dtype=torch.float16) ``` ### Using HuggingFace Transformers ```python import torch import torch.nn.functional as F from torch import Tensor from transformers import AutoTokenizer, AutoModel def last_token_pool(last_hidden_states: Tensor, attention_mask: Tensor) -> Tensor: left_padding = (attention_mask[:, -1].sum() == attention_mask.shape[0]) if left_padding: return last_hidden_states[:, -1] else: sequence_lengths = attention_mask.sum(dim=1) - 1 batch_size = last_hidden_states.shape[0] return last_hidden_states[torch.arange(batch_size, device=last_hidden_states.device), sequence_lengths] def get_detailed_instruct(task_description: str, query: str) -> str: return f'<instruct>{task_description}\n<query>{query}' task = 'Given a web search query, retrieve relevant passages that answer the query.' queries = [ get_detailed_instruct(task, 'how much protein should a female eat'), get_detailed_instruct(task, 'summit define') ] # No need to add instructions for documents documents = [ "As a general guideline, the CDC's average requirement of protein for women ages 19 to 70 is 46 grams per day. But, as you can see from this chart, you'll need to increase that if you're expecting or training for a marathon. Check out the chart below to see how much protein you should be eating each day.", "Definition of summit for English Language Learners. : 1 the highest point of a mountain : the top of a mountain. : 2 the highest level. : 3 a meeting or series of meetings between the leaders of two or more governments." ] input_texts = queries + documents tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-multilingual-gemma2') model = AutoModel.from_pretrained('BAAI/bge-multilingual-gemma2') model.eval() max_length = 4096 # Tokenize the input texts batch_dict = tokenizer(input_texts, max_length=max_length, padding=True, truncation=True, return_tensors='pt', pad_to_multiple_of=8) with torch.no_grad(): outputs = model(**batch_dict) embeddings = last_token_pool(outputs.last_hidden_state, batch_dict['attention_mask']) # normalize embeddings embeddings = F.normalize(embeddings, p=2, dim=1) scores = (embeddings[:2] @ embeddings[2:].T) * 100 print(scores.tolist()) # [[55.92064666748047, 1.6549524068832397], [-0.2698777914047241, 49.95653533935547]] ``` ## Evaluation `bge-multilingual-gemma2` exhibits **state-of-the-art (SOTA) results on benchmarks like MIRACL, MTEB-pl, and MTEB-fr**. It also achieves excellent performance on other major evaluations, including MTEB, C-MTEB and AIR-Bench. - [**MIRACL**](https://github.com/project-miracl/miracl) nDCG@10: <img src="./imgs/MIRACL_ndcg@10.png" alt="MIRACL-nDCG@10" style="zoom:200%;" /> Recall@100: <img src="./imgs/MIRACL_recall@100.png" alt="MIRACL-Recall@100" style="zoom:200%;" /> - [**MTEB-fr/pl**](https://huggingface.co/spaces/mteb/leaderboard) <img src="./imgs/MTEB_FR_PL.png" alt="MTEB-fr/pl" style="zoom:200%;" /> - [**MTEB**](https://huggingface.co/spaces/mteb/leaderboard) <img src="./imgs/MTEB.png" alt="MTEB" style="zoom:200%;" /> - [**BEIR**](https://huggingface.co/spaces/mteb/leaderboard) <img src="./imgs/BEIR.png" alt="BEIR" style="zoom:200%;" /> - [**C-MTEB**](https://huggingface.co/spaces/mteb/leaderboard) <img src="./imgs/C-MTEB.png" alt="C-MTEB" style="zoom:200%;" /> - [**AIR-Bench**](https://huggingface.co/spaces/AIR-Bench/leaderboard) Long-Doc (en, Recall@10): <img src="./imgs/AIR-Bench_Long-Doc_en.png" alt="AIR-Bench_Long-Doc" style="zoom:200%;" /> QA (en&zh, nDCG@10): <img src="./imgs/AIR-Bench_QA_en_zh.png" alt="AIR-Bench_QA" style="zoom:200%;" /> ## Model List `bge` is short for `BAAI general embedding`. | Model | Language | | Description | query instruction for retrieval [1] | | :----------------------------------------------------------- | :-----------------: | :----------------------------------------------------------: | :----------------------------------------------------------: | :----------------------------------------------------------: | | [BAAI/bge-multilingual-gemma2](https://huggingface.co/BAAI/bge-multilingual-gemma2) | Multilingual | - | A LLM-based multilingual embedding model, trained on a diverse range of languages and tasks. | | [BAAI/bge-en-icl](https://huggingface.co/BAAI/bge-en-icl) | English | - | A LLM-based dense retriever with in-context learning capabilities can fully leverage the model's potential based on a few shot examples(4096 tokens) | Provide instructions and few-shot examples freely based on the given task. | | [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) | Multilingual | [Inference](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/BGE_M3#usage) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/BGE_M3) | Multi-Functionality(dense retrieval, sparse retrieval, multi-vector(colbert)), Multi-Linguality, and Multi-Granularity(8192 tokens) | | | [BAAI/llm-embedder](https://huggingface.co/BAAI/llm-embedder) | English | [Inference](./FlagEmbedding/llm_embedder/README.md) [Fine-tune](./FlagEmbedding/llm_embedder/README.md) | a unified embedding model to support diverse retrieval augmentation needs for LLMs | See [README](./FlagEmbedding/llm_embedder/README.md) | | [BAAI/bge-reranker-large](https://huggingface.co/BAAI/bge-reranker-large) | Chinese and English | [Inference](#usage-for-reranker) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/reranker) | a cross-encoder model which is more accurate but less efficient [2] | | | [BAAI/bge-reranker-base](https://huggingface.co/BAAI/bge-reranker-base) | Chinese and English | [Inference](#usage-for-reranker) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/reranker) | a cross-encoder model which is more accurate but less efficient [2] | | | [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `Represent this sentence for searching relevant passages: ` | | [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `Represent this sentence for searching relevant passages: ` | | [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `Represent this sentence for searching relevant passages: ` | | [BAAI/bge-large-zh-v1.5](https://huggingface.co/BAAI/bge-large-zh-v1.5) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `为这个句子生成表示以用于检索相关文章:` | | [BAAI/bge-base-zh-v1.5](https://huggingface.co/BAAI/bge-base-zh-v1.5) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `为这个句子生成表示以用于检索相关文章:` | | [BAAI/bge-small-zh-v1.5](https://huggingface.co/BAAI/bge-small-zh-v1.5) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `为这个句子生成表示以用于检索相关文章:` | | [BAAI/bge-large-en](https://huggingface.co/BAAI/bge-large-en) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | :trophy: rank **1st** in [MTEB](https://huggingface.co/spaces/mteb/leaderboard) leaderboard | `Represent this sentence for searching relevant passages: ` | | [BAAI/bge-base-en](https://huggingface.co/BAAI/bge-base-en) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | a base-scale model but with similar ability to `bge-large-en` | `Represent this sentence for searching relevant passages: ` | | [BAAI/bge-small-en](https://huggingface.co/BAAI/bge-small-en) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | a small-scale model but with competitive performance | `Represent this sentence for searching relevant passages: ` | | [BAAI/bge-large-zh](https://huggingface.co/BAAI/bge-large-zh) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | :trophy: rank **1st** in [C-MTEB](https://github.com/FlagOpen/FlagEmbedding/tree/master/C_MTEB) benchmark | `为这个句子生成表示以用于检索相关文章:` | | [BAAI/bge-base-zh](https://huggingface.co/BAAI/bge-base-zh) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | a base-scale model but with similar ability to `bge-large-zh` | `为这个句子生成表示以用于检索相关文章:` | | [BAAI/bge-small-zh](https://huggingface.co/BAAI/bge-small-zh) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | a small-scale model but with competitive performance | `为这个句子生成表示以用于检索相关文章:` | ## Citation If you find this repository useful, please consider giving a star :star: and citation ``` @misc{bge-m3, title={BGE M3-Embedding: Multi-Lingual, Multi-Functionality, Multi-Granularity Text Embeddings Through Self-Knowledge Distillation}, author={Jianlv Chen and Shitao Xiao and Peitian Zhang and Kun Luo and Defu Lian and Zheng Liu}, year={2024}, eprint={2402.03216}, archivePrefix={arXiv}, primaryClass={cs.CL} } @misc{bge_embedding, title={C-Pack: Packaged Resources To Advance General Chinese Embedding}, author={Shitao Xiao and Zheng Liu and Peitian Zhang and Niklas Muennighoff}, year={2023}, eprint={2309.07597}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
Qwen/Qwen2.5-Coder-7B-Instruct
Qwen
"2024-11-12T03:00:37Z"
73,445
271
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "code", "codeqwen", "chat", "qwen", "qwen-coder", "conversational", "en", "arxiv:2409.12186", "arxiv:2309.00071", "arxiv:2407.10671", "base_model:Qwen/Qwen2.5-Coder-7B", "base_model:finetune:Qwen/Qwen2.5-Coder-7B", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2024-09-17T13:38:49Z"
--- license: apache-2.0 license_link: https://huggingface.co/Qwen/Qwen2.5-Coder-7B-Instruct/blob/main/LICENSE language: - en base_model: - Qwen/Qwen2.5-Coder-7B pipeline_tag: text-generation library_name: transformers tags: - code - codeqwen - chat - qwen - qwen-coder --- # Qwen2.5-Coder-7B-Instruct ## Introduction Qwen2.5-Coder is the latest series of Code-Specific Qwen large language models (formerly known as CodeQwen). As of now, Qwen2.5-Coder has covered six mainstream model sizes, 0.5, 1.5, 3, 7, 14, 32 billion parameters, to meet the needs of different developers. Qwen2.5-Coder brings the following improvements upon CodeQwen1.5: - Significantly improvements in **code generation**, **code reasoning** and **code fixing**. Base on the strong Qwen2.5, we scale up the training tokens into 5.5 trillion including source code, text-code grounding, Synthetic data, etc. Qwen2.5-Coder-32B has become the current state-of-the-art open-source codeLLM, with its coding abilities matching those of GPT-4o. - A more comprehensive foundation for real-world applications such as **Code Agents**. Not only enhancing coding capabilities but also maintaining its strengths in mathematics and general competencies. - **Long-context Support** up to 128K tokens. **This repo contains the instruction-tuned 7B Qwen2.5-Coder model**, which has the following features: - Type: Causal Language Models - Training Stage: Pretraining & Post-training - Architecture: transformers with RoPE, SwiGLU, RMSNorm, and Attention QKV bias - Number of Parameters: 7.61B - Number of Paramaters (Non-Embedding): 6.53B - Number of Layers: 28 - Number of Attention Heads (GQA): 28 for Q and 4 for KV - Context Length: Full 131,072 tokens - Please refer to [this section](#processing-long-texts) for detailed instructions on how to deploy Qwen2.5 for handling long texts. For more details, please refer to our [blog](https://qwenlm.github.io/blog/qwen2.5-coder-family/), [GitHub](https://github.com/QwenLM/Qwen2.5-Coder), [Documentation](https://qwen.readthedocs.io/en/latest/), [Arxiv](https://arxiv.org/abs/2409.12186). ## Requirements The code of Qwen2.5-Coder has been in the latest Hugging face `transformers` and we advise you to use the latest version of `transformers`. With `transformers<4.37.0`, you will encounter the following error: ``` KeyError: 'qwen2' ``` ## Quickstart Here provides a code snippet with `apply_chat_template` to show you how to load the tokenizer and model and how to generate contents. ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "Qwen/Qwen2.5-Coder-7B-Instruct" model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained(model_name) prompt = "write a quick sort algorithm." messages = [ {"role": "system", "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."}, {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(model.device) generated_ids = model.generate( **model_inputs, max_new_tokens=512 ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] ``` ### Processing Long Texts The current `config.json` is set for context length up to 32,768 tokens. To handle extensive inputs exceeding 32,768 tokens, we utilize [YaRN](https://arxiv.org/abs/2309.00071), a technique for enhancing model length extrapolation, ensuring optimal performance on lengthy texts. For supported frameworks, you could add the following to `config.json` to enable YaRN: ```json { ..., "rope_scaling": { "factor": 4.0, "original_max_position_embeddings": 32768, "type": "yarn" } } ``` For deployment, we recommend using vLLM. Please refer to our [Documentation](https://qwen.readthedocs.io/en/latest/deployment/vllm.html) for usage if you are not familar with vLLM. Presently, vLLM only supports static YARN, which means the scaling factor remains constant regardless of input length, **potentially impacting performance on shorter texts**. We advise adding the `rope_scaling` configuration only when processing long contexts is required. ## Evaluation & Performance Detailed evaluation results are reported in this [📑 blog](https://qwenlm.github.io/blog/qwen2.5-coder-family/). For requirements on GPU memory and the respective throughput, see results [here](https://qwen.readthedocs.io/en/latest/benchmark/speed_benchmark.html). ## Citation If you find our work helpful, feel free to give us a cite. ``` @article{hui2024qwen2, title={Qwen2. 5-Coder Technical Report}, author={Hui, Binyuan and Yang, Jian and Cui, Zeyu and Yang, Jiaxi and Liu, Dayiheng and Zhang, Lei and Liu, Tianyu and Zhang, Jiajun and Yu, Bowen and Dang, Kai and others}, journal={arXiv preprint arXiv:2409.12186}, year={2024} } @article{qwen2, title={Qwen2 Technical Report}, author={An Yang and Baosong Yang and Binyuan Hui and Bo Zheng and Bowen Yu and Chang Zhou and Chengpeng Li and Chengyuan Li and Dayiheng Liu and Fei Huang and Guanting Dong and Haoran Wei and Huan Lin and Jialong Tang and Jialin Wang and Jian Yang and Jianhong Tu and Jianwei Zhang and Jianxin Ma and Jin Xu and Jingren Zhou and Jinze Bai and Jinzheng He and Junyang Lin and Kai Dang and Keming Lu and Keqin Chen and Kexin Yang and Mei Li and Mingfeng Xue and Na Ni and Pei Zhang and Peng Wang and Ru Peng and Rui Men and Ruize Gao and Runji Lin and Shijie Wang and Shuai Bai and Sinan Tan and Tianhang Zhu and Tianhao Li and Tianyu Liu and Wenbin Ge and Xiaodong Deng and Xiaohuan Zhou and Xingzhang Ren and Xinyu Zhang and Xipin Wei and Xuancheng Ren and Yang Fan and Yang Yao and Yichang Zhang and Yu Wan and Yunfei Chu and Yuqiong Liu and Zeyu Cui and Zhenru Zhang and Zhihao Fan}, journal={arXiv preprint arXiv:2407.10671}, year={2024} } ```
Helsinki-NLP/opus-mt-tc-big-tr-en
Helsinki-NLP
"2023-11-28T09:30:38Z"
73,387
21
transformers
[ "transformers", "pytorch", "tf", "safetensors", "marian", "text2text-generation", "translation", "opus-mt-tc", "en", "tr", "license:cc-by-4.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
"2022-04-13T17:02:58Z"
--- language: - en - tr tags: - translation - opus-mt-tc license: cc-by-4.0 model-index: - name: opus-mt-tc-big-tr-en results: - task: name: Translation tur-eng type: translation args: tur-eng dataset: name: flores101-devtest type: flores_101 args: tur eng devtest metrics: - name: BLEU type: bleu value: 37.6 - task: name: Translation tur-eng type: translation args: tur-eng dataset: name: newsdev2016 type: newsdev2016 args: tur-eng metrics: - name: BLEU type: bleu value: 32.1 - task: name: Translation tur-eng type: translation args: tur-eng dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: tur-eng metrics: - name: BLEU type: bleu value: 57.6 - task: name: Translation tur-eng type: translation args: tur-eng dataset: name: newstest2016 type: wmt-2016-news args: tur-eng metrics: - name: BLEU type: bleu value: 29.3 - task: name: Translation tur-eng type: translation args: tur-eng dataset: name: newstest2017 type: wmt-2017-news args: tur-eng metrics: - name: BLEU type: bleu value: 29.7 - task: name: Translation tur-eng type: translation args: tur-eng dataset: name: newstest2018 type: wmt-2018-news args: tur-eng metrics: - name: BLEU type: bleu value: 30.7 --- # opus-mt-tc-big-tr-en Neural machine translation model for translating from Turkish (tr) to English (en). This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train). * Publications: [OPUS-MT – Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.) ``` @inproceedings{tiedemann-thottingal-2020-opus, title = "{OPUS}-{MT} {--} Building open translation services for the World", author = {Tiedemann, J{\"o}rg and Thottingal, Santhosh}, booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation", month = nov, year = "2020", address = "Lisboa, Portugal", publisher = "European Association for Machine Translation", url = "https://aclanthology.org/2020.eamt-1.61", pages = "479--480", } @inproceedings{tiedemann-2020-tatoeba, title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}", author = {Tiedemann, J{\"o}rg}, booktitle = "Proceedings of the Fifth Conference on Machine Translation", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2020.wmt-1.139", pages = "1174--1182", } ``` ## Model info * Release: 2022-03-17 * source language(s): tur * target language(s): eng * model: transformer-big * data: opusTCv20210807+bt ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge)) * tokenization: SentencePiece (spm32k,spm32k) * original model: [opusTCv20210807+bt_transformer-big_2022-03-17.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/tur-eng/opusTCv20210807+bt_transformer-big_2022-03-17.zip) * more information released models: [OPUS-MT tur-eng README](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/tur-eng/README.md) ## Usage A short example code: ```python from transformers import MarianMTModel, MarianTokenizer src_text = [ "Allahsızlığı Yayma Kürsüsü başkanıydı.", "Tom'a ne olduğunu öğrenin." ] model_name = "pytorch-models/opus-mt-tc-big-tr-en" tokenizer = MarianTokenizer.from_pretrained(model_name) model = MarianMTModel.from_pretrained(model_name) translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True)) for t in translated: print( tokenizer.decode(t, skip_special_tokens=True) ) # expected output: # He was the president of the Curse of Spreading Godlessness. # Find out what happened to Tom. ``` You can also use OPUS-MT models with the transformers pipelines, for example: ```python from transformers import pipeline pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-tr-en") print(pipe("Allahsızlığı Yayma Kürsüsü başkanıydı.")) # expected output: He was the president of the Curse of Spreading Godlessness. ``` ## Benchmarks * test set translations: [opusTCv20210807+bt_transformer-big_2022-03-17.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/tur-eng/opusTCv20210807+bt_transformer-big_2022-03-17.test.txt) * test set scores: [opusTCv20210807+bt_transformer-big_2022-03-17.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/tur-eng/opusTCv20210807+bt_transformer-big_2022-03-17.eval.txt) * benchmark results: [benchmark_results.txt](benchmark_results.txt) * benchmark output: [benchmark_translations.zip](benchmark_translations.zip) | langpair | testset | chr-F | BLEU | #sent | #words | |----------|---------|-------|-------|-------|--------| | tur-eng | tatoeba-test-v2021-08-07 | 0.71895 | 57.6 | 13907 | 109231 | | tur-eng | flores101-devtest | 0.64152 | 37.6 | 1012 | 24721 | | tur-eng | newsdev2016 | 0.58658 | 32.1 | 1001 | 21988 | | tur-eng | newstest2016 | 0.56960 | 29.3 | 3000 | 66175 | | tur-eng | newstest2017 | 0.57455 | 29.7 | 3007 | 67703 | | tur-eng | newstest2018 | 0.58488 | 30.7 | 3000 | 68725 | ## Acknowledgements The work is supported by the [European Language Grid](https://www.european-language-grid.eu/) as [pilot project 2866](https://live.european-language-grid.eu/catalogue/#/resource/projects/2866), by the [FoTran project](https://www.helsinki.fi/en/researchgroups/natural-language-understanding-with-cross-lingual-grounding), funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 771113), and the [MeMAD project](https://memad.eu/), funded by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland. ## Model conversion info * transformers version: 4.16.2 * OPUS-MT git hash: 3405783 * port time: Wed Apr 13 20:02:48 EEST 2022 * port machine: LM0-400-22516.local
laion/CLIP-convnext_base_w-laion2B-s13B-b82K
laion
"2023-04-18T22:05:45Z"
73,280
4
open_clip
[ "open_clip", "safetensors", "clip", "zero-shot-image-classification", "arxiv:2201.03545", "arxiv:1910.04867", "license:mit", "region:us" ]
zero-shot-image-classification
"2023-01-03T00:22:20Z"
--- license: mit library_name: open_clip pipeline_tag: zero-shot-image-classification tags: - clip --- # Model Card for CLIP-convnext_base_w-320.laion2B-s13B-b82K # Table of Contents 1. [Model Details](#model-details) 2. [Uses](#uses) 3. [Training Details](#training-details) 4. [Evaluation](#evaluation) 5. [Acknowledgements](#acknowledgements) 6. [Citation](#citation) # Model Details ## Model Description A series of CLIP [ConvNeXt-Base](https://arxiv.org/abs/2201.03545) (w/ wide embed dim) models trained on subsets LAION-5B (https://laion.ai/blog/laion-5b/) using OpenCLIP (https://github.com/mlfoundations/open_clip). Goals: * Explore an alternative to ViT and ResNet (w/ AttentionPooling) CLIP models that scales well with model size and image resolution Firsts: * First known ConvNeXt CLIP models trained at scale in the range of CLIP ViT-B/16 and RN50x4 models * First released model weights exploring increase of augmentation + regularization for image tower via adding (greater scale range of RRC, random erasing, stochastic depth) The models utilize the [timm](https://github.com/rwightman/pytorch-image-models) ConvNeXt-Base model (`convnext_base`) as the image tower, and the same text tower as the RN50x4 (depth 12, embed dim 640) model from OpenAI CLIP. The base models are trained at 256x256 image resolution and roughly match the RN50x4 models on FLOPs and activation counts. The models with `320` in the name are trained at 320x320. All models in this series were trained for 13B samples and have ImageNet Zero-Shot top-1 of >= 70.8%. Comparing to ViT-B/16 at 34B SS with zero-shot of 70.2% (68.1% for 13B SS) this suggests the ConvNeXt architecture may be more sample efficient in this range of model scale. More experiments needed to confirm. | Model | Dataset | Resolution | AugReg | Top-1 ImageNet Zero-Shot (%) | | ----- | ------- | ---------- | ------------ | --------- | | [convnext_base_w.laion2b_s13b_b82k](https://huggingface.co/laion/CLIP-convnext_base_w-laion2B-s13B-b82K) | LAION-2B | 256x256 | RRC (0.9, 1.0) | 70.8 | | [convnext_base_w.laion2b_s13b_b82k_augreg](https://huggingface.co/laion/CLIP-convnext_base_w-laion2B-s13B-b82K-augreg) | LAION-2B | 256x256 | RRC (0.33, 1.0), RE (0.35), SD (0.1) | 71.5 | | [convnext_base_w.laion_aesthetic_s13b_b82k](https://huggingface.co/laion/CLIP-convnext_base_w-laion_aesthetic-s13B-b82K) | LAION-A | 256x256 | RRC (0.9, 1.0) | 71.0 | | [convnext_base_w_320.laion_aesthetic_s13b_b82k](https://huggingface.co/laion/CLIP-convnext_base_w_320-laion_aesthetic-s13B-b82K) | LAION-A | 320x320 | RRC (0.9, 1.0) | 71.7 | | [convnext_base_w_320.laion_aesthetic_s13b_b82k_augreg](https://huggingface.co/laion/CLIP-convnext_base_w_320-laion_aesthetic-s13B-b82K-augreg) | LAION-A | 320x320 | RRC (0.33, 1.0), RE (0.35), SD (0.1) | 71.3 | RRC = Random Resize Crop (crop pcts), RE = Random Erasing (prob), SD = Stochastic Depth (prob) -- image tower only LAION-A = LAION Aesthetic, an ~900M sample subset of LAION-2B with pHash dedupe and asthetic score filtering. Model training done by Ross Wightman across both the [stability.ai](https://stability.ai/) cluster and the [JUWELS Booster](https://apps.fz-juelich.de/jsc/hps/juwels/booster-overview.html) supercomputer. See acknowledgements below. # Uses As per the original [OpenAI CLIP model card](https://github.com/openai/CLIP/blob/d50d76daa670286dd6cacf3bcd80b5e4823fc8e1/model-card.md), this model is intended as a research output for research communities. We hope that this model will enable researchers to better understand and explore zero-shot, arbitrary image classification. We also hope it can be used for interdisciplinary studies of the potential impact of such model. The OpenAI CLIP paper includes a discussion of potential downstream impacts to provide an example for this sort of analysis. Additionally, the LAION-5B blog (https://laion.ai/blog/laion-5b/) and upcoming paper include additional discussion as it relates specifically to the training dataset. ## Direct Use Zero-shot image classification, image and text retrieval, among others. ## Downstream Use Image classification and other image task fine-tuning, linear probe image classification, image generation guiding and conditioning, among others. ## Out-of-Scope Use As per the OpenAI models, **Any** deployed use case of the model - whether commercial or not - is currently out of scope. Non-deployed use cases such as image search in a constrained environment, are also not recommended unless there is thorough in-domain testing of the model with a specific, fixed class taxonomy. This is because our safety assessment demonstrated a high need for task specific testing especially given the variability of CLIP’s performance with different class taxonomies. This makes untested and unconstrained deployment of the model in any use case currently potentially harmful. Certain use cases which would fall under the domain of surveillance and facial recognition are always out-of-scope regardless of performance of the model. This is because the use of artificial intelligence for tasks such as these can be premature currently given the lack of testing norms and checks to ensure its fair use. Since the model has not been purposefully trained in or evaluated on any languages other than English, its use should be limited to English language use cases. Further the above notice, the LAION-5B dataset used in training of these models has additional considerations, see below. # Training Details ## Training Data This model was trained with one of (see table in intro): * LAION-2B - A 2 billion sample English subset of LAION-5B (https://laion.ai/blog/laion-5b/). * LAION-Aesthetic - A 900M sample subset of LAION-2B with pHash dedupe and asthetic score filtering **IMPORTANT NOTE:** The motivation behind dataset creation is to democratize research and experimentation around large-scale multi-modal model training and handling of uncurated, large-scale datasets crawled from publically available internet. Our recommendation is therefore to use the dataset for research purposes. Be aware that this large-scale dataset is uncurated. Keep in mind that the uncurated nature of the dataset means that collected links may lead to strongly discomforting and disturbing content for a human viewer. Therefore, please use the demo links with caution and at your own risk. It is possible to extract a “safe” subset by filtering out samples based on the safety tags (using a customized trained NSFW classifier that we built). While this strongly reduces the chance for encountering potentially harmful content when viewing, we cannot entirely exclude the possibility for harmful content being still present in safe mode, so that the warning holds also there. We think that providing the dataset openly to broad research and other interested communities will allow for transparent investigation of benefits that come along with training large-scale models as well as pitfalls and dangers that may stay unreported or unnoticed when working with closed large datasets that remain restricted to a small community. Providing our dataset openly, we however do not recommend using it for creating ready-to-go industrial products, as the basic research about general properties and safety of such large-scale models, which we would like to encourage with this release, is still in progress. ## Training Procedure All models were trained with a global batch size of 81920 for 64 checkpoint intervals of 203.7M samples for a total of ~13B samples seen over training. For 256x256 models, a slurm script w/ srun below was used on 20 8-GPU (A100 40GB) nodes (Stability), switching to 40 4-GPU nodes for time on JUWELS. ``` /opt/slurm/sbin/srun --cpu_bind=v --accel-bind=gn python -m training.main \ --save-frequency 1 \ --name "convnext_256" \ --resume 'latest' \ --train-data="pipe:aws s3 cp s3://mybucket/path/{laion{00000..xxxxx}.tar -" \ --train-num-samples 203666042 \ --dataset-type webdataset \ --precision amp_bfloat16 \ --warmup 10000 \ --batch-size=512 \ --epochs=64 \ --dataset-resampled \ --clip-grad-norm 5.0 \ --lr 1e-3 \ --workers=6 \ --model "convnext_base_w" \ --seed 0 \ --ddp-static-graph \ --local-loss \ --gather-with-grad \ --grad-checkpointing ``` For 320x320 models, same as above but w/ 32 8-GPU nodes, local batch size 320, or 64 4-GPU nodes on JUWELs. # Evaluation Evaluation done with code in the [LAION CLIP Benchmark suite](https://github.com/LAION-AI/CLIP_benchmark). ## Testing Data, Factors & Metrics ### Testing Data The testing is performed with VTAB+ (A combination of VTAB (https://arxiv.org/abs/1910.04867) w/ additional robustness datasets) for classification and COCO and Flickr for retrieval. ## Results The models achieve between 70.8 and 71.7 zero-shot top-1 accuracy on ImageNet-1k. ![](convnext_base_w_zero_shot.png) An initial round of benchmarks have been performed on a wider range of datasets, to be viewable at https://github.com/LAION-AI/CLIP_benchmark/blob/main/benchmark/results.ipynb As part of exploring increased augmentation + regularization, early evalations suggest that `augreg` trained models evaluate well over a wider range of resolutions. This is especially true for the 320x320 LAION-A model, where the augreg run was lower than the non-augreg when evaluated at the train resolution of 320x320 (71.3 vs 71.7), but improves to 72.2 when evaluated at 384x384 (the non-augreg drops to 71.0 at 384x384). # Acknowledgements Acknowledging [stability.ai](https://stability.ai/) and the Gauss Centre for Supercomputing e.V. (http://gauss-centre.eu) for funding this part of work by providing computing time through the John von Neumann Institute for Computing (NIC) on the GCS Supercomputer JUWELS Booster at Jülich Supercomputing Centre (JSC). # Citation **BibTeX:** LAION-5B ```bibtex @inproceedings{schuhmann2022laionb, title={{LAION}-5B: An open large-scale dataset for training next generation image-text models}, author={Christoph Schuhmann and Romain Beaumont and Richard Vencu and Cade W Gordon and Ross Wightman and Mehdi Cherti and Theo Coombes and Aarush Katta and Clayton Mullis and Mitchell Wortsman and Patrick Schramowski and Srivatsa R Kundurthy and Katherine Crowson and Ludwig Schmidt and Robert Kaczmarczyk and Jenia Jitsev}, booktitle={Thirty-sixth Conference on Neural Information Processing Systems Datasets and Benchmarks Track}, year={2022}, url={https://openreview.net/forum?id=M3Y74vmsMcY} } ``` OpenCLIP software ```bibtex @software{ilharco_gabriel_2021_5143773, author = {Ilharco, Gabriel and Wortsman, Mitchell and Wightman, Ross and Gordon, Cade and Carlini, Nicholas and Taori, Rohan and Dave, Achal and Shankar, Vaishaal and Namkoong, Hongseok and Miller, John and Hajishirzi, Hannaneh and Farhadi, Ali and Schmidt, Ludwig}, title = {OpenCLIP}, month = jul, year = 2021, note = {If you use this software, please cite it as below.}, publisher = {Zenodo}, version = {0.1}, doi = {10.5281/zenodo.5143773}, url = {https://doi.org/10.5281/zenodo.5143773} } ``` OpenAI CLIP paper ```bibtex @inproceedings{Radford2021LearningTV, title={Learning Transferable Visual Models From Natural Language Supervision}, author={Alec Radford and Jong Wook Kim and Chris Hallacy and A. Ramesh and Gabriel Goh and Sandhini Agarwal and Girish Sastry and Amanda Askell and Pamela Mishkin and Jack Clark and Gretchen Krueger and Ilya Sutskever}, booktitle={ICML}, year={2021} } ``` ```bibtex @Article{liu2022convnet, author = {Zhuang Liu and Hanzi Mao and Chao-Yuan Wu and Christoph Feichtenhofer and Trevor Darrell and Saining Xie}, title = {A ConvNet for the 2020s}, journal = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, year = {2022}, } ``` ```bibtex @misc{rw2019timm, author = {Ross Wightman}, title = {PyTorch Image Models}, year = {2019}, publisher = {GitHub}, journal = {GitHub repository}, doi = {10.5281/zenodo.4414861}, howpublished = {\url{https://github.com/rwightman/pytorch-image-models}} } ```
TrustSafeAI/RADAR-Vicuna-7B
TrustSafeAI
"2023-11-07T17:18:27Z"
72,929
6
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "arxiv:1907.11692", "arxiv:2307.03838", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
"2023-06-24T03:16:04Z"
--- pipeline_tag: text-classification --- <br> # RADAR Model Card ## Model Details RADAR-Vicuna-7B is an AI-text detector trained via adversarial learning between the detector and a paraphraser on human-text corpus ([OpenWebText](https://huggingface.co/datasets/Skylion007/openwebtext)) and AI-text corpus generated based on [OpenWebText](https://huggingface.co/datasets/Skylion007/openwebtext). - **Developed by:** [TrustSafeAI](https://huggingface.co/TrustSafeAI) - **Model type:** An encoder-only language model based on the transformer architecture (RoBERTa). - **License:** [Non-commercial license](https://huggingface.co/lmsys/vicuna-7b-v1.1#model-details) (inherited from Vicuna-7B-v1.1) - **Trained from model:** [RoBERTa](https://arxiv.org/abs/1907.11692) ### Model Sources - **Project Page:** https://radar.vizhub.ai/ - **Paper:** https://arxiv.org/abs/2307.03838 - **IBM Blog Post:** https://research.ibm.com/blog/AI-forensics-attribution ## Uses Users could use this detector to assist them in detecting text generated by large language models. Please note that this detector is trained on AI-text generated by Vicuna-7B-v1.1. As the model only supports [non-commercial use](https://huggingface.co/lmsys/vicuna-7b-v1.1#model-details), the intended users are **not allowed to involve this detector into commercial activities**. ## Get Started with the Model Please refer to the following guidelines to see how to locally run the downloaded model or use our API service hosted on Huggingface Space. - Google Colab Demo: https://colab.research.google.com/drive/1r7mLEfVynChUUgIfw1r4WZyh9b0QBQdo?usp=sharing - Huggingface API Documentation: https://trustsafeai-radar-ai-text-detector.hf.space/?view=api ## Training Pipeline We propose adversarial learning between a paraphraser and our detector. The paraphraser's goal is to make the AI-generated text more like human-writen and the detector's goal is to promote it's ability to identify the AI-text. - **(Step 1) Training Data preparation**: Before training, we use Vicuna-7B to generate AI-text by performing text completion based on the prefix span of human-text in [OpenWebText](https://huggingface.co/datasets/Skylion007/openwebtext). - **(Step 2) Update the paraphraser** During training, the paraphraser will do paraphrasing on the AI-text generated in **Step 1**. And then collect the reward returned by the detector to update the paraphraser using Proxy Proximal Optimization loss. - **(Step 3) Update the detector** The detector is optimized using the logistic loss on the human-text, AI-text and paraphrased AI-text. See more details in Sections 3 and 4 of this [paper](https://arxiv.org/pdf/2307.03838.pdf). ## Ethical Considerations We suggest users use our tool to assist with identifying AI-written content at scale and with discretion. If the detection result is to be used as evidence, further validation steps are necessary as RADAR cannot always make correct predictions.
prs-eth/marigold-normals-v0-1
prs-eth
"2024-05-09T13:57:06Z"
72,860
1
diffusers
[ "diffusers", "safetensors", "monocular normals estimation", "single image normals estimation", "normals", "in-the-wild", "zero-shot", "normals-estimation", "en", "arxiv:2312.02145", "license:apache-2.0", "diffusers:MarigoldPipeline", "region:us" ]
null
"2024-04-18T15:32:37Z"
--- license: apache-2.0 language: - en pipeline_tag: normals-estimation tags: - monocular normals estimation - single image normals estimation - normals - in-the-wild - zero-shot --- # Marigold Normals Model Card This model belongs to the family of diffusion-based Marigold models for solving various computer vision tasks. The Marigold Normals model focuses on the surface normals task. It takes an input image and computes surface normals in each pixel. The Marigold Normals model is trained from Stable Diffusion with synthetic data. Thanks to the rich visual knowledge stored in Stable Diffusion, Marigold models possess deep scene understanding and excel at solving computer vision tasks. Read more about Marigold in our paper titled "Repurposing Diffusion-Based Image Generators for Monocular Depth Estimation". [![Website](doc/badges/badge-website.svg)](https://marigoldmonodepth.github.io) [![GitHub](https://img.shields.io/github/stars/prs-eth/Marigold?style=default&label=GitHub%20★&logo=github)](https://github.com/prs-eth/Marigold) [![Paper](doc/badges/badge-pdf.svg)](https://arxiv.org/abs/2312.02145) [![Hugging Face Space](https://img.shields.io/badge/🤗%20Hugging%20Face-Space-yellow)](https://huggingface.co/spaces/toshas/marigold) Developed by: [Bingxin Ke](http://www.kebingxin.com/), [Anton Obukhov](https://www.obukhov.ai/), [Shengyu Huang](https://shengyuh.github.io/), [Nando Metzger](https://nandometzger.github.io/), [Rodrigo Caye Daudt](https://rcdaudt.github.io/), [Konrad Schindler](https://scholar.google.com/citations?user=FZuNgqIAAAAJ&hl=en) ![teaser](doc/teaser_collage_transparant.png) ## 🎓 Citation ```bibtex @InProceedings{ke2023repurposing, title={Repurposing Diffusion-Based Image Generators for Monocular Depth Estimation}, author={Bingxin Ke and Anton Obukhov and Shengyu Huang and Nando Metzger and Rodrigo Caye Daudt and Konrad Schindler}, booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, year={2024} } ``` ## 🎫 License This work is licensed under the Apache License, Version 2.0 (as defined in the [LICENSE](LICENSE.txt)). By downloading and using the code and model you agree to the terms in the [LICENSE](LICENSE.txt). [![License](https://img.shields.io/badge/License-Apache--2.0-929292)](https://www.apache.org/licenses/LICENSE-2.0)
MaziyarPanahi/Meta-Llama-3-70B-Instruct-GGUF
MaziyarPanahi
"2024-05-14T14:51:23Z"
72,803
164
null
[ "gguf", "facebook", "meta", "pytorch", "llama", "llama-3", "quantized", "2-bit", "3-bit", "4-bit", "5-bit", "6-bit", "8-bit", "16-bit", "GGUF", "text-generation", "en", "region:us", "conversational" ]
text-generation
"2024-04-18T16:42:52Z"
--- language: - en pipeline_tag: text-generation tags: - facebook - meta - pytorch - llama - llama-3 - quantized - 2-bit - 3-bit - 4-bit - 5-bit - 6-bit - 8-bit - 16-bit - GGUF inference: false model_creator: MaziyarPanahi model_name: Meta-Llama-3-70B-Instruct-GGUF quantized_by: MaziyarPanahi license_name: llama3 --- # MaziyarPanahi/Meta-Llama-3-70B-Instruct-GGUF The GGUF and quantized models here are based on [meta-llama/Meta-Llama-3-70B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct) model ## How to download You can download only the quants you need instead of cloning the entire repository as follows: ``` huggingface-cli download MaziyarPanahi/Meta-Llama-3-70B-Instruct-GGUF --local-dir . --include '*Q2_K*gguf' ``` ## Load GGUF models You `MUST` follow the prompt template provided by Llama-3: ```sh ./llama.cpp/main -m Meta-Llama-3-70B-Instruct.Q2_K.gguf -r '<|eot_id|>' --in-prefix "\n<|start_header_id|>user<|end_header_id|>\n\n" --in-suffix "<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n" -p "<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n\nYou are a helpful, smart, kind, and efficient AI assistant. You always fulfill the user's requests to the best of your ability.<|eot_id|>\n<|start_header_id|>user<|end_header_id|>\n\nHi! How are you?<|eot_id|>\n<|start_header_id|>assistant<|end_header_id|>\n\n" -n 1024 ``` Original README --- ## Model Details Meta developed and released the Meta Llama 3 family of large language models (LLMs), a collection of pretrained and instruction tuned generative text models in 8 and 70B sizes. The Llama 3 instruction tuned models are optimized for dialogue use cases and outperform many of the available open source chat models on common industry benchmarks. Further, in developing these models, we took great care to optimize helpfulness and safety. **Model developers** Meta **Variations** Llama 3 comes in two sizes — 8B and 70B parameters — in pre-trained and instruction tuned variants. **Input** Models input text only. **Output** Models generate text and code only. **Model Architecture** Llama 3 is an auto-regressive language model that uses an optimized transformer architecture. The tuned versions use supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF) to align with human preferences for helpfulness and safety. <table> <tr> <td> </td> <td><strong>Training Data</strong> </td> <td><strong>Params</strong> </td> <td><strong>Context length</strong> </td> <td><strong>GQA</strong> </td> <td><strong>Token count</strong> </td> <td><strong>Knowledge cutoff</strong> </td> </tr> <tr> <td rowspan="2" >Llama 3 </td> <td rowspan="2" >A new mix of publicly available online data. </td> <td>8B </td> <td>8k </td> <td>Yes </td> <td rowspan="2" >15T+ </td> <td>March, 2023 </td> </tr> <tr> <td>70B </td> <td>8k </td> <td>Yes </td> <td>December, 2023 </td> </tr> </table> **Llama 3 family of models**. Token counts refer to pretraining data only. Both the 8 and 70B versions use Grouped-Query Attention (GQA) for improved inference scalability. **Model Release Date** April 18, 2024. **Status** This is a static model trained on an offline dataset. Future versions of the tuned models will be released as we improve model safety with community feedback. **License** A custom commercial license is available at: [https://llama.meta.com/llama3/license](https://llama.meta.com/llama3/license) Where to send questions or comments about the model Instructions on how to provide feedback or comments on the model can be found in the model [README](https://github.com/meta-llama/llama3). For more technical information about generation parameters and recipes for how to use Llama 3 in applications, please go [here](https://github.com/meta-llama/llama-recipes). ## Intended Use **Intended Use Cases** Llama 3 is intended for commercial and research use in English. Instruction tuned models are intended for assistant-like chat, whereas pretrained models can be adapted for a variety of natural language generation tasks. **Out-of-scope** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in any other way that is prohibited by the Acceptable Use Policy and Llama 3 Community License. Use in languages other than English**. **Note: Developers may fine-tune Llama 3 models for languages beyond English provided they comply with the Llama 3 Community License and the Acceptable Use Policy. ## How to use This repository contains two versions of Meta-Llama-3-70B-Instruct, for use with transformers and with the original `llama3` codebase. ### Use with transformers See the snippet below for usage with Transformers: ```python import transformers import torch model_id = "meta-llama/Meta-Llama-3-70B-Instruct" pipeline = transformers.pipeline( "text-generation", model=model_id, model_kwargs={"torch_dtype": torch.bfloat16}, device="cuda", ) messages = [ {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"}, {"role": "user", "content": "Who are you?"}, ] prompt = pipeline.tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) terminators = [ tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("<|eot_id|>") ] outputs = pipeline( prompt, max_new_tokens=256, eos_token_id=terminators, do_sample=True, temperature=0.6, top_p=0.9, ) print(outputs[0]["generated_text"][len(prompt):]) ``` ### Use with `llama3` Please, follow the instructions in the [repository](https://github.com/meta-llama/llama3). To download Original checkpoints, see the example command below leveraging `huggingface-cli`: ``` huggingface-cli download meta-llama/Meta-Llama-3-70B-Instruct --include "original/*" --local-dir Meta-Llama-3-70B-Instruct ``` For Hugging Face support, we recommend using transformers or TGI, but a similar command works. ## Hardware and Software **Training Factors** We used custom training libraries, Meta's Research SuperCluster, and production clusters for pretraining. Fine-tuning, annotation, and evaluation were also performed on third-party cloud compute. **Carbon Footprint Pretraining utilized a cumulative** 7.7M GPU hours of computation on hardware of type H100-80GB (TDP of 700W). Estimated total emissions were 2290 tCO2eq, 100% of which were offset by Meta’s sustainability program. <table> <tr> <td> </td> <td><strong>Time (GPU hours)</strong> </td> <td><strong>Power Consumption (W)</strong> </td> <td><strong>Carbon Emitted(tCO2eq)</strong> </td> </tr> <tr> <td>Llama 3 8B </td> <td>1.3M </td> <td>700 </td> <td>390 </td> </tr> <tr> <td>Llama 3 70B </td> <td>6.4M </td> <td>700 </td> <td>1900 </td> </tr> <tr> <td>Total </td> <td>7.7M </td> <td> </td> <td>2290 </td> </tr> </table> **CO2 emissions during pre-training**. Time: total GPU time required for training each model. Power Consumption: peak power capacity per GPU device for the GPUs used adjusted for power usage efficiency. 100% of the emissions are directly offset by Meta's sustainability program, and because we are openly releasing these models, the pretraining costs do not need to be incurred by others. ## Training Data **Overview** Llama 3 was pretrained on over 15 trillion tokens of data from publicly available sources. The fine-tuning data includes publicly available instruction datasets, as well as over 10M human-annotated examples. Neither the pretraining nor the fine-tuning datasets include Meta user data. **Data Freshness** The pretraining data has a cutoff of March 2023 for the 7B and December 2023 for the 70B models respectively. ## Benchmarks In this section, we report the results for Llama 3 models on standard automatic benchmarks. For all the evaluations, we use our internal evaluations library. For details on the methodology see [here](https://github.com/meta-llama/llama3/blob/main/eval_methodology.md). ### Base pretrained models <table> <tr> <td><strong>Category</strong> </td> <td><strong>Benchmark</strong> </td> <td><strong>Llama 3 8B</strong> </td> <td><strong>Llama2 7B</strong> </td> <td><strong>Llama2 13B</strong> </td> <td><strong>Llama 3 70B</strong> </td> <td><strong>Llama2 70B</strong> </td> </tr> <tr> <td rowspan="6" >General </td> <td>MMLU (5-shot) </td> <td>66.6 </td> <td>45.7 </td> <td>53.8 </td> <td>79.5 </td> <td>69.7 </td> </tr> <tr> <td>AGIEval English (3-5 shot) </td> <td>45.9 </td> <td>28.8 </td> <td>38.7 </td> <td>63.0 </td> <td>54.8 </td> </tr> <tr> <td>CommonSenseQA (7-shot) </td> <td>72.6 </td> <td>57.6 </td> <td>67.6 </td> <td>83.8 </td> <td>78.7 </td> </tr> <tr> <td>Winogrande (5-shot) </td> <td>76.1 </td> <td>73.3 </td> <td>75.4 </td> <td>83.1 </td> <td>81.8 </td> </tr> <tr> <td>BIG-Bench Hard (3-shot, CoT) </td> <td>61.1 </td> <td>38.1 </td> <td>47.0 </td> <td>81.3 </td> <td>65.7 </td> </tr> <tr> <td>ARC-Challenge (25-shot) </td> <td>78.6 </td> <td>53.7 </td> <td>67.6 </td> <td>93.0 </td> <td>85.3 </td> </tr> <tr> <td>Knowledge reasoning </td> <td>TriviaQA-Wiki (5-shot) </td> <td>78.5 </td> <td>72.1 </td> <td>79.6 </td> <td>89.7 </td> <td>87.5 </td> </tr> <tr> <td rowspan="4" >Reading comprehension </td> <td>SQuAD (1-shot) </td> <td>76.4 </td> <td>72.2 </td> <td>72.1 </td> <td>85.6 </td> <td>82.6 </td> </tr> <tr> <td>QuAC (1-shot, F1) </td> <td>44.4 </td> <td>39.6 </td> <td>44.9 </td> <td>51.1 </td> <td>49.4 </td> </tr> <tr> <td>BoolQ (0-shot) </td> <td>75.7 </td> <td>65.5 </td> <td>66.9 </td> <td>79.0 </td> <td>73.1 </td> </tr> <tr> <td>DROP (3-shot, F1) </td> <td>58.4 </td> <td>37.9 </td> <td>49.8 </td> <td>79.7 </td> <td>70.2 </td> </tr> </table> ### Instruction tuned models <table> <tr> <td><strong>Benchmark</strong> </td> <td><strong>Llama 3 8B</strong> </td> <td><strong>Llama 2 7B</strong> </td> <td><strong>Llama 2 13B</strong> </td> <td><strong>Llama 3 70B</strong> </td> <td><strong>Llama 2 70B</strong> </td> </tr> <tr> <td>MMLU (5-shot) </td> <td>68.4 </td> <td>34.1 </td> <td>47.8 </td> <td>82.0 </td> <td>52.9 </td> </tr> <tr> <td>GPQA (0-shot) </td> <td>34.2 </td> <td>21.7 </td> <td>22.3 </td> <td>39.5 </td> <td>21.0 </td> </tr> <tr> <td>HumanEval (0-shot) </td> <td>62.2 </td> <td>7.9 </td> <td>14.0 </td> <td>81.7 </td> <td>25.6 </td> </tr> <tr> <td>GSM-8K (8-shot, CoT) </td> <td>79.6 </td> <td>25.7 </td> <td>77.4 </td> <td>93.0 </td> <td>57.5 </td> </tr> <tr> <td>MATH (4-shot, CoT) </td> <td>30.0 </td> <td>3.8 </td> <td>6.7 </td> <td>50.4 </td> <td>11.6 </td> </tr> </table> ### Responsibility & Safety We believe that an open approach to AI leads to better, safer products, faster innovation, and a bigger overall market. We are committed to Responsible AI development and took a series of steps to limit misuse and harm and support the open source community. Foundation models are widely capable technologies that are built to be used for a diverse range of applications. They are not designed to meet every developer preference on safety levels for all use cases, out-of-the-box, as those by their nature will differ across different applications. Rather, responsible LLM-application deployment is achieved by implementing a series of safety best practices throughout the development of such applications, from the model pre-training, fine-tuning and the deployment of systems composed of safeguards to tailor the safety needs specifically to the use case and audience. As part of the Llama 3 release, we updated our [Responsible Use Guide](https://llama.meta.com/responsible-use-guide/) to outline the steps and best practices for developers to implement model and system level safety for their application. We also provide a set of resources including [Meta Llama Guard 2](https://llama.meta.com/purple-llama/) and [Code Shield](https://llama.meta.com/purple-llama/) safeguards. These tools have proven to drastically reduce residual risks of LLM Systems, while maintaining a high level of helpfulness. We encourage developers to tune and deploy these safeguards according to their needs and we provide a [reference implementation](https://github.com/meta-llama/llama-recipes/tree/main/recipes/responsible_ai) to get you started. #### Llama 3-Instruct As outlined in the Responsible Use Guide, some trade-off between model helpfulness and model alignment is likely unavoidable. Developers should exercise discretion about how to weigh the benefits of alignment and helpfulness for their specific use case and audience. Developers should be mindful of residual risks when using Llama models and leverage additional safety tools as needed to reach the right safety bar for their use case. <span style="text-decoration:underline;">Safety</span> For our instruction tuned model, we conducted extensive red teaming exercises, performed adversarial evaluations and implemented safety mitigations techniques to lower residual risks. As with any Large Language Model, residual risks will likely remain and we recommend that developers assess these risks in the context of their use case. In parallel, we are working with the community to make AI safety benchmark standards transparent, rigorous and interpretable. <span style="text-decoration:underline;">Refusals</span> In addition to residual risks, we put a great emphasis on model refusals to benign prompts. Over-refusing not only can impact the user experience but could even be harmful in certain contexts as well. We’ve heard the feedback from the developer community and improved our fine tuning to ensure that Llama 3 is significantly less likely to falsely refuse to answer prompts than Llama 2. We built internal benchmarks and developed mitigations to limit false refusals making Llama 3 our most helpful model to date. #### Responsible release In addition to responsible use considerations outlined above, we followed a rigorous process that requires us to take extra measures against misuse and critical risks before we make our release decision. Misuse If you access or use Llama 3, you agree to the Acceptable Use Policy. The most recent copy of this policy can be found at [https://llama.meta.com/llama3/use-policy/](https://llama.meta.com/llama3/use-policy/). #### Critical risks <span style="text-decoration:underline;">CBRNE</span> (Chemical, Biological, Radiological, Nuclear, and high yield Explosives) We have conducted a two fold assessment of the safety of the model in this area: * Iterative testing during model training to assess the safety of responses related to CBRNE threats and other adversarial risks. * Involving external CBRNE experts to conduct an uplift test assessing the ability of the model to accurately provide expert knowledge and reduce barriers to potential CBRNE misuse, by reference to what can be achieved using web search (without the model). ### <span style="text-decoration:underline;">Cyber Security </span> We have evaluated Llama 3 with CyberSecEval, Meta’s cybersecurity safety eval suite, measuring Llama 3’s propensity to suggest insecure code when used as a coding assistant, and Llama 3’s propensity to comply with requests to help carry out cyber attacks, where attacks are defined by the industry standard MITRE ATT&CK cyber attack ontology. On our insecure coding and cyber attacker helpfulness tests, Llama 3 behaved in the same range or safer than models of [equivalent coding capability](https://huggingface.co/spaces/facebook/CyberSecEval). ### <span style="text-decoration:underline;">Child Safety</span> Child Safety risk assessments were conducted using a team of experts, to assess the model’s capability to produce outputs that could result in Child Safety risks and inform on any necessary and appropriate risk mitigations via fine tuning. We leveraged those expert red teaming sessions to expand the coverage of our evaluation benchmarks through Llama 3 model development. For Llama 3, we conducted new in-depth sessions using objective based methodologies to assess the model risks along multiple attack vectors. We also partnered with content specialists to perform red teaming exercises assessing potentially violating content while taking account of market specific nuances or experiences. ### Community Generative AI safety requires expertise and tooling, and we believe in the strength of the open community to accelerate its progress. We are active members of open consortiums, including the AI Alliance, Partnership in AI and MLCommons, actively contributing to safety standardization and transparency. We encourage the community to adopt taxonomies like the MLCommons Proof of Concept evaluation to facilitate collaboration and transparency on safety and content evaluations. Our Purple Llama tools are open sourced for the community to use and widely distributed across ecosystem partners including cloud service providers. We encourage community contributions to our [Github repository](https://github.com/meta-llama/PurpleLlama). Finally, we put in place a set of resources including an [output reporting mechanism](https://developers.facebook.com/llama_output_feedback) and [bug bounty program](https://www.facebook.com/whitehat) to continuously improve the Llama technology with the help of the community. ## Ethical Considerations and Limitations The core values of Llama 3 are openness, inclusivity and helpfulness. It is meant to serve everyone, and to work for a wide range of use cases. It is thus designed to be accessible to people across many different backgrounds, experiences and perspectives. Llama 3 addresses users and their needs as they are, without insertion unnecessary judgment or normativity, while reflecting the understanding that even content that may appear problematic in some cases can serve valuable purposes in others. It respects the dignity and autonomy of all users, especially in terms of the values of free thought and expression that power innovation and progress. But Llama 3 is a new technology, and like any new technology, there are risks associated with its use. Testing conducted to date has been in English, and has not covered, nor could it cover, all scenarios. For these reasons, as with all LLMs, Llama 3’s potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate, biased or other objectionable responses to user prompts. Therefore, before deploying any applications of Llama 3 models, developers should perform safety testing and tuning tailored to their specific applications of the model. As outlined in the Responsible Use Guide, we recommend incorporating [Purple Llama](https://github.com/facebookresearch/PurpleLlama) solutions into your workflows and specifically [Llama Guard](https://ai.meta.com/research/publications/llama-guard-llm-based-input-output-safeguard-for-human-ai-conversations/) which provides a base model to filter input and output prompts to layer system-level safety on top of model-level safety. Please see the Responsible Use Guide available at [http://llama.meta.com/responsible-use-guide](http://llama.meta.com/responsible-use-guide) ## Citation instructions @article{llama3modelcard, title={Llama 3 Model Card}, author={AI@Meta}, year={2024}, url = {https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md} } ## Contributors Aaditya Singh; Aaron Grattafiori; Abhimanyu Dubey; Abhinav Jauhri; Abhinav Pandey; Abhishek Kadian; Adam Kelsey; Adi Gangidi; Ahmad Al-Dahle; Ahuva Goldstand; Aiesha Letman; Ajay Menon; Akhil Mathur; Alan Schelten; Alex Vaughan; Amy Yang; Andrei Lupu; Andres Alvarado; Andrew Gallagher; Andrew Gu; Andrew Ho; Andrew Poulton; Andrew Ryan; Angela Fan; Ankit Ramchandani; Anthony Hartshorn; Archi Mitra; Archie Sravankumar; Artem Korenev; Arun Rao; Ashley Gabriel; Ashwin Bharambe; Assaf Eisenman; Aston Zhang; Aurelien Rodriguez; Austen Gregerson; Ava Spataru; Baptiste Roziere; Ben Maurer; Benjamin Leonhardi; Bernie Huang; Bhargavi Paranjape; Bing Liu; Binh Tang; Bobbie Chern; Brani Stojkovic; Brian Fuller; Catalina Mejia Arenas; Chao Zhou; Charlotte Caucheteux; Chaya Nayak; Ching-Hsiang Chu; Chloe Bi; Chris Cai; Chris Cox; Chris Marra; Chris McConnell; Christian Keller; Christoph Feichtenhofer; Christophe Touret; Chunyang Wu; Corinne Wong; Cristian Canton Ferrer; Damien Allonsius; Daniel Kreymer; Daniel Haziza; Daniel Li; Danielle Pintz; Danny Livshits; Danny Wyatt; David Adkins; David Esiobu; David Xu; Davide Testuggine; Delia David; Devi Parikh; Dhruv Choudhary; Dhruv Mahajan; Diana Liskovich; Diego Garcia-Olano; Diego Perino; Dieuwke Hupkes; Dingkang Wang; Dustin Holland; Egor Lakomkin; Elina Lobanova; Xiaoqing Ellen Tan; Emily Dinan; Eric Smith; Erik Brinkman; Esteban Arcaute; Filip Radenovic; Firat Ozgenel; Francesco Caggioni; Frank Seide; Frank Zhang; Gabriel Synnaeve; Gabriella Schwarz; Gabrielle Lee; Gada Badeer; Georgia Anderson; Graeme Nail; Gregoire Mialon; Guan Pang; Guillem Cucurell; Hailey Nguyen; Hannah Korevaar; Hannah Wang; Haroun Habeeb; Harrison Rudolph; Henry Aspegren; Hu Xu; Hugo Touvron; Iga Kozlowska; Igor Molybog; Igor Tufanov; Iliyan Zarov; Imanol Arrieta Ibarra; Irina-Elena Veliche; Isabel Kloumann; Ishan Misra; Ivan Evtimov; Jacob Xu; Jade Copet; Jake Weissman; Jan Geffert; Jana Vranes; Japhet Asher; Jason Park; Jay Mahadeokar; Jean-Baptiste Gaya; Jeet Shah; Jelmer van der Linde; Jennifer Chan; Jenny Hong; Jenya Lee; Jeremy Fu; Jeremy Teboul; Jianfeng Chi; Jianyu Huang; Jie Wang; Jiecao Yu; Joanna Bitton; Joe Spisak; Joelle Pineau; Jon Carvill; Jongsoo Park; Joseph Rocca; Joshua Johnstun; Junteng Jia; Kalyan Vasuden Alwala; Kam Hou U; Kate Plawiak; Kartikeya Upasani; Kaushik Veeraraghavan; Ke Li; Kenneth Heafield; Kevin Stone; Khalid El-Arini; Krithika Iyer; Kshitiz Malik; Kuenley Chiu; Kunal Bhalla; Kyle Huang; Lakshya Garg; Lauren Rantala-Yeary; Laurens van der Maaten; Lawrence Chen; Leandro Silva; Lee Bell; Lei Zhang; Liang Tan; Louis Martin; Lovish Madaan; Luca Wehrstedt; Lukas Blecher; Luke de Oliveira; Madeline Muzzi; Madian Khabsa; Manav Avlani; Mannat Singh; Manohar Paluri; Mark Zuckerberg; Marcin Kardas; Martynas Mankus; Mathew Oldham; Mathieu Rita; Matthew Lennie; Maya Pavlova; Meghan Keneally; Melanie Kambadur; Mihir Patel; Mikayel Samvelyan; Mike Clark; Mike Lewis; Min Si; Mitesh Kumar Singh; Mo Metanat; Mona Hassan; Naman Goyal; Narjes Torabi; Nicolas Usunier; Nikolay Bashlykov; Nikolay Bogoychev; Niladri Chatterji; Ning Dong; Oliver Aobo Yang; Olivier Duchenne; Onur Celebi; Parth Parekh; Patrick Alrassy; Paul Saab; Pavan Balaji; Pedro Rittner; Pengchuan Zhang; Pengwei Li; Petar Vasic; Peter Weng; Polina Zvyagina; Prajjwal Bhargava; Pratik Dubal; Praveen Krishnan; Punit Singh Koura; Qing He; Rachel Rodriguez; Ragavan Srinivasan; Rahul Mitra; Ramon Calderer; Raymond Li; Robert Stojnic; Roberta Raileanu; Robin Battey; Rocky Wang; Rohit Girdhar; Rohit Patel; Romain Sauvestre; Ronnie Polidoro; Roshan Sumbaly; Ross Taylor; Ruan Silva; Rui Hou; Rui Wang; Russ Howes; Ruty Rinott; Saghar Hosseini; Sai Jayesh Bondu; Samyak Datta; Sanjay Singh; Sara Chugh; Sargun Dhillon; Satadru Pan; Sean Bell; Sergey Edunov; Shaoliang Nie; Sharan Narang; Sharath Raparthy; Shaun Lindsay; Sheng Feng; Sheng Shen; Shenghao Lin; Shiva Shankar; Shruti Bhosale; Shun Zhang; Simon Vandenhende; Sinong Wang; Seohyun Sonia Kim; Soumya Batra; Sten Sootla; Steve Kehoe; Suchin Gururangan; Sumit Gupta; Sunny Virk; Sydney Borodinsky; Tamar Glaser; Tamar Herman; Tamara Best; Tara Fowler; Thomas Georgiou; Thomas Scialom; Tianhe Li; Todor Mihaylov; Tong Xiao; Ujjwal Karn; Vedanuj Goswami; Vibhor Gupta; Vignesh Ramanathan; Viktor Kerkez; Vinay Satish Kumar; Vincent Gonguet; Vish Vogeti; Vlad Poenaru; Vlad Tiberiu Mihailescu; Vladan Petrovic; Vladimir Ivanov; Wei Li; Weiwei Chu; Wenhan Xiong; Wenyin Fu; Wes Bouaziz; Whitney Meers; Will Constable; Xavier Martinet; Xiaojian Wu; Xinbo Gao; Xinfeng Xie; Xuchao Jia; Yaelle Goldschlag; Yann LeCun; Yashesh Gaur; Yasmine Babaei; Ye Qi; Yenda Li; Yi Wen; Yiwen Song; Youngjin Nam; Yuchen Hao; Yuchen Zhang; Yun Wang; Yuning Mao; Yuzi He; Zacharie Delpierre Coudert; Zachary DeVito; Zahra Hankir; Zhaoduo Wen; Zheng Yan; Zhengxing Chen; Zhenyu Yang; Zoe Papakipos ---
Helsinki-NLP/opus-mt-ROMANCE-en
Helsinki-NLP
"2023-08-16T11:25:14Z"
72,613
8
transformers
[ "transformers", "pytorch", "tf", "rust", "marian", "text2text-generation", "translation", "roa", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
"2022-03-02T23:29:04Z"
--- tags: - translation license: apache-2.0 --- ### opus-mt-ROMANCE-en * source languages: fr,fr_BE,fr_CA,fr_FR,wa,frp,oc,ca,rm,lld,fur,lij,lmo,es,es_AR,es_CL,es_CO,es_CR,es_DO,es_EC,es_ES,es_GT,es_HN,es_MX,es_NI,es_PA,es_PE,es_PR,es_SV,es_UY,es_VE,pt,pt_br,pt_BR,pt_PT,gl,lad,an,mwl,it,it_IT,co,nap,scn,vec,sc,ro,la * target languages: en * OPUS readme: [fr+fr_BE+fr_CA+fr_FR+wa+frp+oc+ca+rm+lld+fur+lij+lmo+es+es_AR+es_CL+es_CO+es_CR+es_DO+es_EC+es_ES+es_GT+es_HN+es_MX+es_NI+es_PA+es_PE+es_PR+es_SV+es_UY+es_VE+pt+pt_br+pt_BR+pt_PT+gl+lad+an+mwl+it+it_IT+co+nap+scn+vec+sc+ro+la-en](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/fr+fr_BE+fr_CA+fr_FR+wa+frp+oc+ca+rm+lld+fur+lij+lmo+es+es_AR+es_CL+es_CO+es_CR+es_DO+es_EC+es_ES+es_GT+es_HN+es_MX+es_NI+es_PA+es_PE+es_PR+es_SV+es_UY+es_VE+pt+pt_br+pt_BR+pt_PT+gl+lad+an+mwl+it+it_IT+co+nap+scn+vec+sc+ro+la-en/README.md) * dataset: opus * model: transformer * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-04-01.zip](https://object.pouta.csc.fi/OPUS-MT-models/fr+fr_BE+fr_CA+fr_FR+wa+frp+oc+ca+rm+lld+fur+lij+lmo+es+es_AR+es_CL+es_CO+es_CR+es_DO+es_EC+es_ES+es_GT+es_HN+es_MX+es_NI+es_PA+es_PE+es_PR+es_SV+es_UY+es_VE+pt+pt_br+pt_BR+pt_PT+gl+lad+an+mwl+it+it_IT+co+nap+scn+vec+sc+ro+la-en/opus-2020-04-01.zip) * test set translations: [opus-2020-04-01.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/fr+fr_BE+fr_CA+fr_FR+wa+frp+oc+ca+rm+lld+fur+lij+lmo+es+es_AR+es_CL+es_CO+es_CR+es_DO+es_EC+es_ES+es_GT+es_HN+es_MX+es_NI+es_PA+es_PE+es_PR+es_SV+es_UY+es_VE+pt+pt_br+pt_BR+pt_PT+gl+lad+an+mwl+it+it_IT+co+nap+scn+vec+sc+ro+la-en/opus-2020-04-01.test.txt) * test set scores: [opus-2020-04-01.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/fr+fr_BE+fr_CA+fr_FR+wa+frp+oc+ca+rm+lld+fur+lij+lmo+es+es_AR+es_CL+es_CO+es_CR+es_DO+es_EC+es_ES+es_GT+es_HN+es_MX+es_NI+es_PA+es_PE+es_PR+es_SV+es_UY+es_VE+pt+pt_br+pt_BR+pt_PT+gl+lad+an+mwl+it+it_IT+co+nap+scn+vec+sc+ro+la-en/opus-2020-04-01.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba.fr.en | 62.2 | 0.750 |
timm/vit_large_patch16_224.augreg_in21k_ft_in1k
timm
"2023-05-06T00:18:01Z"
72,448
1
timm
[ "timm", "pytorch", "safetensors", "image-classification", "dataset:imagenet-1k", "dataset:imagenet-21k", "arxiv:2106.10270", "arxiv:2010.11929", "license:apache-2.0", "region:us" ]
image-classification
"2022-12-22T07:46:31Z"
--- tags: - image-classification - timm library_name: timm license: apache-2.0 datasets: - imagenet-1k - imagenet-21k --- # Model card for vit_large_patch16_224.augreg_in21k_ft_in1k A Vision Transformer (ViT) image classification model. Trained on ImageNet-21k and fine-tuned on ImageNet-1k (with additional augmentation and regularization) in JAX by paper authors, ported to PyTorch by Ross Wightman. ## Model Details - **Model Type:** Image classification / feature backbone - **Model Stats:** - Params (M): 304.3 - GMACs: 59.7 - Activations (M): 43.8 - Image size: 224 x 224 - **Papers:** - How to train your ViT? Data, Augmentation, and Regularization in Vision Transformers: https://arxiv.org/abs/2106.10270 - An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale: https://arxiv.org/abs/2010.11929v2 - **Dataset:** ImageNet-1k - **Pretrain Dataset:** ImageNet-21k - **Original:** https://github.com/google-research/vision_transformer ## Model Usage ### Image Classification ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model('vit_large_patch16_224.augreg_in21k_ft_in1k', pretrained=True) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5) ``` ### Image Embeddings ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'vit_large_patch16_224.augreg_in21k_ft_in1k', pretrained=True, num_classes=0, # remove classifier nn.Linear ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor # or equivalently (without needing to set num_classes=0) output = model.forward_features(transforms(img).unsqueeze(0)) # output is unpooled, a (1, 197, 1024) shaped tensor output = model.forward_head(output, pre_logits=True) # output is a (1, num_features) shaped tensor ``` ## Model Comparison Explore the dataset and runtime metrics of this model in timm [model results](https://github.com/huggingface/pytorch-image-models/tree/main/results). ## Citation ```bibtex @article{steiner2021augreg, title={How to train your ViT? Data, Augmentation, and Regularization in Vision Transformers}, author={Steiner, Andreas and Kolesnikov, Alexander and and Zhai, Xiaohua and Wightman, Ross and Uszkoreit, Jakob and Beyer, Lucas}, journal={arXiv preprint arXiv:2106.10270}, year={2021} } ``` ```bibtex @article{dosovitskiy2020vit, title={An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale}, author={Dosovitskiy, Alexey and Beyer, Lucas and Kolesnikov, Alexander and Weissenborn, Dirk and Zhai, Xiaohua and Unterthiner, Thomas and Dehghani, Mostafa and Minderer, Matthias and Heigold, Georg and Gelly, Sylvain and Uszkoreit, Jakob and Houlsby, Neil}, journal={ICLR}, year={2021} } ``` ```bibtex @misc{rw2019timm, author = {Ross Wightman}, title = {PyTorch Image Models}, year = {2019}, publisher = {GitHub}, journal = {GitHub repository}, doi = {10.5281/zenodo.4414861}, howpublished = {\url{https://github.com/huggingface/pytorch-image-models}} } ```
pyannote/speech-separation-ami-1.0
pyannote
"2024-11-11T21:36:10Z"
72,324
35
pyannote-audio
[ "pyannote-audio", "pyannote", "pyannote-audio-pipeline", "audio", "voice", "speech", "speaker", "speaker-diarization", "speaker-separation", "speech-separation", "license:mit", "region:us" ]
null
"2024-05-28T08:17:37Z"
--- tags: - pyannote - pyannote-audio - pyannote-audio-pipeline - audio - voice - speech - speaker - speaker-diarization - speaker-separation - speech-separation license: mit extra_gated_prompt: "The collected information will help acquire a better knowledge of pyannote.audio userbase and help its maintainers improve it further. Though this pipeline uses MIT license and will always remain open-source, we will occasionnally email you about premium pipelines and paid services around pyannote." extra_gated_fields: Company/university: text Website: text --- Using this open-source pipeline in production? Consider switching to [pyannoteAI](https://www.pyannote.ai) for better and faster options. # 🎹 PixIT / joint speaker diarization and speech separation This pipeline ingests mono audio sampled at 16kHz and outputs speaker diarization as an [`Annotation`](http://pyannote.github.io/pyannote-core/structure.html#annotation) instance and speech separation as a [`SlidingWindowFeature`](http://pyannote.github.io/pyannote-core/reference.html#pyannote.core.SlidingWindowFeature). Audio files sampled at a different rate are resampled to 16kHz automatically upon loading. ![Pipeline](pipeline.png) It has been trained by [Joonas Kalda](https://www.linkedin.com/in/joonas-kalda-996499133) with [pyannote.audio](https://github.com/pyannote/pyannote-audio) `3.3.2` using the [AMI](https://groups.inf.ed.ac.uk/ami/corpus/) dataset (single distant microphone, SDM). These [paper](https://www.isca-archive.org/odyssey_2024/kalda24_odyssey.html) and [companion repository](https://github.com/joonaskalda/PixIT) describe the approach in more details. ## Requirements 1. Install [`pyannote.audio`](https://github.com/pyannote/pyannote-audio) `3.3.2` with `pip install pyannote.audio[separation]==3.3.2` 2. Accept [`pyannote/separation-ami-1.0`](https://hf.co/pyannote/separation-ami-1.0) user conditions 3. Accept [`pyannote/speech-separation-ami-1.0`](https://hf.co/pyannote/speech-separation-ami-1.0) user conditions 4. Create access token at [`hf.co/settings/tokens`](https://hf.co/settings/tokens). ## Usage ```python # instantiate the pipeline from pyannote.audio import Pipeline pipeline = Pipeline.from_pretrained( "pyannote/speech-separation-ami-1.0", use_auth_token="HUGGINGFACE_ACCESS_TOKEN_GOES_HERE") # run the pipeline on an audio file diarization, sources = pipeline("audio.wav") # dump the diarization output to disk using RTTM format with open("audio.rttm", "w") as rttm: diarization.write_rttm(rttm) # dump sources to disk as SPEAKER_XX.wav files import scipy.io.wavfile for s, speaker in enumerate(diarization.labels()): scipy.io.wavfile.write(f'{speaker}.wav', 16000, sources.data[:,s]) ``` ### Processing on GPU `pyannote.audio` pipelines run on CPU by default. You can send them to GPU with the following lines: ```python import torch pipeline.to(torch.device("cuda")) ``` ### Processing from memory Pre-loading audio files in memory may result in faster processing: ```python waveform, sample_rate = torchaudio.load("audio.wav") diarization = pipeline({"waveform": waveform, "sample_rate": sample_rate}) ``` ### Monitoring progress Hooks are available to monitor the progress of the pipeline: ```python from pyannote.audio.pipelines.utils.hook import ProgressHook with ProgressHook() as hook: diarization = pipeline("audio.wav", hook=hook) ``` ## Citations ```bibtex @inproceedings{Kalda24, author={Joonas Kalda and Clément Pagés and Ricard Marxer and Tanel Alumäe and Hervé Bredin}, title={{PixIT: Joint Training of Speaker Diarization and Speech Separation from Real-world Multi-speaker Recordings}}, year=2024, booktitle={Proc. Odyssey 2024}, } ``` ```bibtex @inproceedings{Bredin23, author={Hervé Bredin}, title={{pyannote.audio 2.1 speaker diarization pipeline: principle, benchmark, and recipe}}, year=2023, booktitle={Proc. INTERSPEECH 2023}, } ```
YxZhang/evf-sam2-multitask
YxZhang
"2024-11-12T06:10:25Z"
72,092
0
null
[ "pytorch", "safetensors", "evf", "arxiv:2406.20076", "license:apache-2.0", "region:us" ]
null
"2024-09-22T10:32:00Z"
--- license: apache-2.0 --- ## EVF-SAM [EVF-SAM: Early Vision-Language Fusion for Text-Prompted Segment Anything Model](https://huggingface.co/papers/2406.20076) ## Usage: This is the checkpoint holder of [EVF-SAM](https://github.com/hustvl/EVF-SAM.git). Please refer to `"inference.py"` in the source code for detailed usage. We haven't supported `"AutoModel.from_pretrained(...)"` yet, please import the model script from source code.
Qwen/Qwen2-Math-7B-Instruct
Qwen
"2024-08-12T13:46:15Z"
72,073
39
null
[ "safetensors", "qwen2", "chat", "text-generation", "conversational", "en", "arxiv:2407.10671", "license:apache-2.0", "region:us" ]
text-generation
"2024-08-08T04:27:25Z"
--- license: apache-2.0 language: - en pipeline_tag: text-generation tags: - chat --- # Qwen2-Math-7B-Instruct > [!Warning] > <div align="center"> > <b> > 🚨 Temporarily this model mainly supports English. We will release bilingual (English & Chinese) models soon! > </b> > </div> ## Introduction Over the past year, we have dedicated significant effort to researching and enhancing the reasoning capabilities of large language models, with a particular focus on their ability to solve arithmetic and mathematical problems. Today, we are delighted to introduce a serise of math-specific large language models of our Qwen2 series, Qwen2-Math and Qwen2-Math-Instruct-1.5B/7B/72B. Qwen2-Math is a series of specialized math language models built upon the Qwen2 LLMs, which significantly outperforms the mathematical capabilities of open-source models and even closed-source models (e.g., GPT4o). We hope that Qwen2-Math can contribute to the scientific community for solving advanced mathematical problems that require complex, multi-step logical reasoning. ## Model Details For more details, please refer to our [blog post](https://qwenlm.github.io/blog/qwen2-math/) and [GitHub repo](https://github.com/QwenLM/Qwen2-Math). ## Requirements * `transformers>=4.40.0` for Qwen2-Math models. The latest version is recommended. > [!Warning] > <div align="center"> > <b> > 🚨 This is a must because `transformers` integrated Qwen2 codes since `4.37.0`. > </b> > </div> For requirements on GPU memory and the respective throughput, see similar results of Qwen2 [here](https://qwen.readthedocs.io/en/latest/benchmark/speed_benchmark.html). ## Quick Start > [!Important] > > **Qwen2-Math-7B-Instruct** is an instruction model for chatting; > > **Qwen2-Math-7B** is a base model typically used for completion and few-shot inference, serving as a better starting point for fine-tuning. > ### 🤗 Hugging Face Transformers Qwen2-Math can be deployed and inferred in the same way as [Qwen2](https://github.com/QwenLM/Qwen2). Here we show a code snippet to show you how to use the chat model with `transformers`: ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "Qwen/Qwen2-Math-7B-Instruct" device = "cuda" # the device to load the model onto model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained(model_name) prompt = "Find the value of $x$ that satisfies the equation $4x+5 = 6x+7$." messages = [ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(device) generated_ids = model.generate( **model_inputs, max_new_tokens=512 ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] ``` ### 🤖 ModelScope We strongly advise users, especially those in mainland China, to use ModelScope. `snapshot_download` can help you solve issues concerning downloading checkpoints. ## Citation If you find our work helpful, feel free to give us a citation. ``` @article{yang2024qwen2, title={Qwen2 technical report}, author={Yang, An and Yang, Baosong and Hui, Binyuan and Zheng, Bo and Yu, Bowen and Zhou, Chang and Li, Chengpeng and Li, Chengyuan and Liu, Dayiheng and Huang, Fei and others}, journal={arXiv preprint arXiv:2407.10671}, year={2024} } ```
apple/DFN2B-CLIP-ViT-L-14
apple
"2023-10-31T17:56:28Z"
71,989
12
open_clip
[ "open_clip", "pytorch", "clip", "arxiv:2309.17425", "license:other", "region:us" ]
null
"2023-10-30T23:07:24Z"
--- license: other license_name: apple-sample-code-license license_link: LICENSE --- A CLIP (Contrastive Language-Image Pre-training) model trained on DFN-2B. Data Filtering Networks (DFNs) are small networks used to automatically filter large pools of uncurated data. This model was trained on 2B images that were filtered from a pool of 12.8B uncurated image-text pairs (12.8B image-text pairs from CommonPool-12.8B). This model has been converted to PyTorch from the original JAX checkpoints from Axlearn (https://github.com/apple/axlearn). These weights are directly usable in OpenCLIP (image + text). ## Model Details - **Model Type:** Contrastive Image-Text, Zero-Shot Image Classification. - **Dataset:** DFN-2b - **Papers:** - Data Filtering Networks: https://arxiv.org/abs/2309.17425 - **Examples Seen:** 12.8B ## Model Metrics | Eval Dataset | Metric | |:-----------------------|---------:| | ImageNet 1k | 0.81396 | | Caltech-101 | 0.953141 | | CIFAR-10 | 0.9836 | | CIFAR-100 | 0.8835 | | CLEVR Counts | 0.3338 | | CLEVR Distance | 0.248733 | | Country211 | 0.28237 | | Describable Textures | 0.66117 | | EuroSAT | 0.646296 | | FGVC Aircraft | 0.395945 | | Food-101 | 0.945861 | | GTSRB | 0.616152 | | ImageNet Sketch | 0.683311 | | ImageNet v2 | 0.7453 | | ImageNet-A | 0.6676 | | ImageNet-O | 0.3915 | | ImageNet-R | 0.900033 | | KITTI Vehicle Distance | 0.201125 | | MNIST | 0.8468 | | ObjectNet | 0.739367 | | Oxford Flowers-102 | 0.865822 | | Oxford-IIIT Pet | 0.954941 | | Pascal VOC 2007 | 0.81644 | | PatchCamelyon | 0.63028 | | Rendered SST2 | 0.551345 | | RESISC45 | 0.733175 | | Stanford Cars | 0.947146 | | STL-10 | 0.976625 | | SUN397 | 0.754565 | | SVHN | 0.653503 | | Flickr | 0.8244 | | MSCOCO | 0.570363 | | WinoGAViL | 0.551645 | | iWildCam | 0.18877 | | Camelyon17 | 0.626179 | | FMoW | 0.222137 | | Dollar Street | 0.688084 | | GeoDE | 0.91023 | | **Average** | **0.668558** | ## Model Usage ### With OpenCLIP ``` import torch import torch.nn.functional as F from urllib.request import urlopen from PIL import Image from open_clip import create_model_from_pretrained, get_tokenizer model, preprocess = create_model_from_pretrained('hf-hub:apple/DFN2B-CLIP-ViT-L-14') tokenizer = get_tokenizer('ViT-L-14') image = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) image = preprocess(image).unsqueeze(0) labels_list = ["a dog", "a cat", "a donut", "a beignet"] text = tokenizer(labels_list, context_length=model.context_length) with torch.no_grad(), torch.cuda.amp.autocast(): image_features = model.encode_image(image) text_features = model.encode_text(text) image_features = F.normalize(image_features, dim=-1) text_features = F.normalize(text_features, dim=-1) text_probs = torch.sigmoid(image_features @ text_features.T * model.logit_scale.exp() + model.logit_bias) zipped_list = list(zip(labels_list, [round(p.item(), 3) for p in text_probs[0]])) print("Label probabilities: ", zipped_list) ``` ## Citation ```bibtex @article{fang2023data, title={Data Filtering Networks}, author={Fang, Alex and Jose, Albin Madappally and Jain, Amit and Schmidt, Ludwig and Toshev, Alexander and Shankar, Vaishaal}, journal={arXiv preprint arXiv:2309.17425}, year={2023} } ```
sonoisa/sentence-bert-base-ja-mean-tokens
sonoisa
"2024-04-17T11:40:03Z"
71,767
9
sentence-transformers
[ "sentence-transformers", "pytorch", "safetensors", "sentence-bert", "feature-extraction", "sentence-similarity", "ja", "license:cc-by-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
feature-extraction
"2022-03-02T23:29:05Z"
--- language: ja license: cc-by-sa-4.0 tags: - sentence-transformers - sentence-bert - feature-extraction - sentence-similarity --- This is a Japanese sentence-BERT model. 日本語用Sentence-BERTモデル(バージョン1)です。 ※: 精度が1.5ポイントほど向上した[バージョン2モデル](https://huggingface.co/sonoisa/sentence-bert-base-ja-mean-tokens-v2)もあります。 # 解説 https://qiita.com/sonoisa/items/1df94d0a98cd4f209051 # 使い方 ```python from transformers import BertJapaneseTokenizer, BertModel import torch class SentenceBertJapanese: def __init__(self, model_name_or_path, device=None): self.tokenizer = BertJapaneseTokenizer.from_pretrained(model_name_or_path) self.model = BertModel.from_pretrained(model_name_or_path) self.model.eval() if device is None: device = "cuda" if torch.cuda.is_available() else "cpu" self.device = torch.device(device) self.model.to(device) def _mean_pooling(self, model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) @torch.no_grad() def encode(self, sentences, batch_size=8): all_embeddings = [] iterator = range(0, len(sentences), batch_size) for batch_idx in iterator: batch = sentences[batch_idx:batch_idx + batch_size] encoded_input = self.tokenizer.batch_encode_plus(batch, padding="longest", truncation=True, return_tensors="pt").to(self.device) model_output = self.model(**encoded_input) sentence_embeddings = self._mean_pooling(model_output, encoded_input["attention_mask"]).to('cpu') all_embeddings.extend(sentence_embeddings) # return torch.stack(all_embeddings).numpy() return torch.stack(all_embeddings) MODEL_NAME = "sonoisa/sentence-bert-base-ja-mean-tokens" model = SentenceBertJapanese(MODEL_NAME) sentences = ["暴走したAI", "暴走した人工知能"] sentence_embeddings = model.encode(sentences, batch_size=8) print("Sentence embeddings:", sentence_embeddings) ```
katuni4ka/tiny-random-snowflake
katuni4ka
"2024-05-28T06:49:46Z"
71,392
0
transformers
[ "transformers", "safetensors", "arctic", "text-generation", "custom_code", "autotrain_compatible", "region:us" ]
text-generation
"2024-05-28T06:29:02Z"
Entry not found
Jovie/Midjourney
Jovie
"2024-09-25T18:29:31Z"
71,376
79
diffusers
[ "diffusers", "flux", "text-to-image", "lora", "fal", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
"2024-09-22T23:32:04Z"
--- tags: - flux - text-to-image - lora - diffusers - fal base_model: black-forest-labs/FLUX.1-dev instance_prompt: null license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md widget: - text: >- A cute blonde woman in bikini and her doge are sitting on a couch cuddling and the expressive, stylish living room scene with a playful twist. The room is painted in a soothing turquoise color scheme, stylish living room scene bathed in a cool, textured turquoise blanket and adorned with several matching turquoise throw pillows. The room's color scheme is predominantly turquoise, relaxed demeanor. The couch is covered in a soft, reflecting light and adding to the vibrant blue hue., dark room with a sleek, spherical gold decorations, This photograph captures a scene that is whimsically styled in a vibrant, reflective cyan sunglasses. The dog's expression is cheerful, metallic fabric sofa. The dog, soothing atmosphere. output: url: images/example_wilzbmf24.png --- # mj model style <Gallery /> ## Model description ## Trigger words You should use `` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/Jovie/Midjourney/tree/main) them in the Files & versions tab.
ostris/OpenFLUX.1
ostris
"2024-10-03T21:53:07Z"
71,300
576
diffusers
[ "diffusers", "safetensors", "text-to-image", "license:apache-2.0", "endpoints_compatible", "diffusers:FluxPipeline", "region:us" ]
text-to-image
"2024-08-04T15:52:10Z"
--- license: apache-2.0 library_name: diffusers pipeline_tag: text-to-image --- <img src="https://huggingface.co/ostris/OpenFLUX.1/resolve/main/assets/banner_0_1_0-2.png" style="max-width: 100%;"> <div style="color: #f0b800;"> # <span style="color: #f0b800;"> Beta Version v0.1.0 </span> After numerous iterations and spending way too much of my own money on compute to train this, I think it is finally at the point I am happy to consider it a beta. I am still going to continue to train it, but the distillation has been mostly trained out of it at this point. So phase 1 is complete. Feel free to use it and fine tune it, but be aware that I will likely continue to update it. </div> <img src="https://huggingface.co/ostris/OpenFLUX.1/resolve/main/assets/banner_0_1_0-3.png" style="max-width: 100%;"> ## What is this? This is a fine tune of the [FLUX.1-schnell](https://huggingface.co/black-forest-labs/FLUX.1-schnell) model that has had the distillation trained out of it. Flux Schnell is licensed Apache 2.0, but it is a distilled model, meaning you cannot fine-tune it. However, it is an amazing model that can generate amazing images in 1-4 steps. This is an attempt to remove the distillation to create an open source, permissivle licensed model that can be fine tuned. <img src="https://huggingface.co/ostris/OpenFLUX.1/resolve/main/assets/banner_0_1_0-1.png" style="max-width: 100%;"> ## How to Use Since the distillation has been fine tuned out of the model, it uses classic CFG. Since it requires CFG, it will require a different pipeline than the original FLUX.1 schnell and dev models. This pipeline can be found in open_flux_pipeline.py in this repo. I will be adding example code in the next few days, but for now, a cfg of 3.5 seems to work well. <img src="https://huggingface.co/ostris/OpenFLUX.1/resolve/main/assets/banner_0_1_0-0.png" style="max-width: 100%;"> <img src="https://huggingface.co/ostris/OpenFLUX.1/resolve/main/assets/banner_0_1_0-4.png" style="max-width: 100%;">
Seethal/sentiment_analysis_generic_dataset
Seethal
"2022-04-19T06:26:33Z"
71,299
22
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
"2022-04-13T18:37:07Z"
## BERT base model (uncased) Pretrained model on English language using a masked language modeling (MLM) objective. This model is uncased: it does not make a difference between english and English. ## Model description BERT is a transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was pretrained with two objectives: * Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run the entire masked sentence through the model and has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the sentence. * Next sentence prediction (NSP): the model concatenates two masked sentences as inputs during pretraining. Sometimes they correspond to sentences that were next to each other in the original text, sometimes not. The model then has to predict if the two sentences were following each other or not. This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard classifier using the features produced by the BERT model as inputs. ## Model description [Seethal/sentiment_analysis_generic_dataset] This is a fine-tuned downstream version of the bert-base-uncased model for sentiment analysis, this model is not intended for further downstream fine-tuning for any other tasks. This model is trained on a classified dataset for text classification.
comodoro/wav2vec2-xls-r-300m-cs-250
comodoro
"2023-10-31T10:01:10Z"
71,128
2
transformers
[ "transformers", "pytorch", "safetensors", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "xlsr-fine-tuning-week", "cs", "dataset:mozilla-foundation/common_voice_8_0", "dataset:ovm", "dataset:pscr", "dataset:vystadial2016", "base_model:facebook/wav2vec2-xls-r-300m", "base_model:finetune:facebook/wav2vec2-xls-r-300m", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
"2022-03-02T23:29:05Z"
--- language: - cs license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - mozilla-foundation/common_voice_8_0 - robust-speech-event - xlsr-fine-tuning-week datasets: - mozilla-foundation/common_voice_8_0 - ovm - pscr - vystadial2016 base_model: facebook/wav2vec2-xls-r-300m model-index: - name: Czech comodoro Wav2Vec2 XLSR 300M 250h data results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: cs metrics: - type: wer value: 7.3 name: Test WER - type: cer value: 2.1 name: Test CER - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: cs metrics: - type: wer value: 43.44 name: Test WER - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: cs metrics: - type: wer value: 38.5 name: Test WER --- # Czech wav2vec2-xls-r-300m-cs-250 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice 8.0 dataset as well as other datasets listed below. It achieves the following results on the evaluation set: - Loss: 0.1271 - Wer: 0.1475 - Cer: 0.0329 The `eval.py` script results using a LM are: - WER: 0.07274312090176113 - CER: 0.021207369275558875 ## Model description Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Czech using the [Common Voice](https://huggingface.co/datasets/common_voice) dataset. When using this model, make sure that your speech input is sampled at 16kHz. The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("mozilla-foundation/common_voice_8_0", "cs", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("comodoro/wav2vec2-xls-r-300m-cs-250") model = Wav2Vec2ForCTC.from_pretrained("comodoro/wav2vec2-xls-r-300m-cs-250") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset[:2]["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset[:2]["sentence"]) ``` ## Evaluation The model can be evaluated using the attached `eval.py` script: ``` python eval.py --model_id comodoro/wav2vec2-xls-r-300m-cs-250 --dataset mozilla-foundation/common-voice_8_0 --split test --config cs ``` ## Training and evaluation data The Common Voice 8.0 `train` and `validation` datasets were used for training, as well as the following datasets: - Šmídl, Luboš and Pražák, Aleš, 2013, OVM – Otázky Václava Moravce, LINDAT/CLARIAH-CZ digital library at the Institute of Formal and Applied Linguistics (ÚFAL), Faculty of Mathematics and Physics, Charles University, http://hdl.handle.net/11858/00-097C-0000-000D-EC98-3. - Pražák, Aleš and Šmídl, Luboš, 2012, Czech Parliament Meetings, LINDAT/CLARIAH-CZ digital library at the Institute of Formal and Applied Linguistics (ÚFAL), Faculty of Mathematics and Physics, Charles University, http://hdl.handle.net/11858/00-097C-0000-0005-CF9C-4. - Plátek, Ondřej; Dušek, Ondřej and Jurčíček, Filip, 2016, Vystadial 2016 – Czech data, LINDAT/CLARIAH-CZ digital library at the Institute of Formal and Applied Linguistics (ÚFAL), Faculty of Mathematics and Physics, Charles University, http://hdl.handle.net/11234/1-1740. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 800 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:| | 3.4203 | 0.16 | 800 | 3.3148 | 1.0 | 1.0 | | 2.8151 | 0.32 | 1600 | 0.8508 | 0.8938 | 0.2345 | | 0.9411 | 0.48 | 2400 | 0.3335 | 0.3723 | 0.0847 | | 0.7408 | 0.64 | 3200 | 0.2573 | 0.2840 | 0.0642 | | 0.6516 | 0.8 | 4000 | 0.2365 | 0.2581 | 0.0595 | | 0.6242 | 0.96 | 4800 | 0.2039 | 0.2433 | 0.0541 | | 0.5754 | 1.12 | 5600 | 0.1832 | 0.2156 | 0.0482 | | 0.5626 | 1.28 | 6400 | 0.1827 | 0.2091 | 0.0463 | | 0.5342 | 1.44 | 7200 | 0.1744 | 0.2033 | 0.0468 | | 0.4965 | 1.6 | 8000 | 0.1705 | 0.1963 | 0.0444 | | 0.5047 | 1.76 | 8800 | 0.1604 | 0.1889 | 0.0422 | | 0.4814 | 1.92 | 9600 | 0.1604 | 0.1827 | 0.0411 | | 0.4471 | 2.09 | 10400 | 0.1566 | 0.1822 | 0.0406 | | 0.4509 | 2.25 | 11200 | 0.1619 | 0.1853 | 0.0432 | | 0.4415 | 2.41 | 12000 | 0.1513 | 0.1764 | 0.0397 | | 0.4313 | 2.57 | 12800 | 0.1515 | 0.1739 | 0.0392 | | 0.4163 | 2.73 | 13600 | 0.1445 | 0.1695 | 0.0377 | | 0.4142 | 2.89 | 14400 | 0.1478 | 0.1699 | 0.0385 | | 0.4184 | 3.05 | 15200 | 0.1430 | 0.1669 | 0.0376 | | 0.3886 | 3.21 | 16000 | 0.1433 | 0.1644 | 0.0374 | | 0.3795 | 3.37 | 16800 | 0.1426 | 0.1648 | 0.0373 | | 0.3859 | 3.53 | 17600 | 0.1357 | 0.1604 | 0.0361 | | 0.3762 | 3.69 | 18400 | 0.1344 | 0.1558 | 0.0349 | | 0.384 | 3.85 | 19200 | 0.1379 | 0.1576 | 0.0359 | | 0.3762 | 4.01 | 20000 | 0.1344 | 0.1539 | 0.0346 | | 0.3559 | 4.17 | 20800 | 0.1339 | 0.1525 | 0.0351 | | 0.3683 | 4.33 | 21600 | 0.1315 | 0.1518 | 0.0342 | | 0.3572 | 4.49 | 22400 | 0.1307 | 0.1507 | 0.0342 | | 0.3494 | 4.65 | 23200 | 0.1294 | 0.1491 | 0.0335 | | 0.3476 | 4.81 | 24000 | 0.1287 | 0.1491 | 0.0336 | | 0.3475 | 4.97 | 24800 | 0.1271 | 0.1475 | 0.0329 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.1+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0
yuvalkirstain/PickScore_v1
yuvalkirstain
"2023-05-08T08:32:12Z"
70,996
39
transformers
[ "transformers", "pytorch", "safetensors", "clip", "zero-shot-image-classification", "arxiv:2305.01569", "endpoints_compatible", "region:us" ]
zero-shot-image-classification
"2023-04-24T08:08:20Z"
# Model Card for PickScore v1 This model is a scoring function for images generated from text. It takes as input a prompt and a generated image and outputs a score. It can be used as a general scoring function, and for tasks such as human preference prediction, model evaluation, image ranking, and more. See our paper [Pick-a-Pic: An Open Dataset of User Preferences for Text-to-Image Generation](https://arxiv.org/abs/2305.01569) for more details. ## Model Details ### Model Description This model was finetuned from CLIP-H using the [Pick-a-Pic dataset](https://huggingface.co/datasets/yuvalkirstain/pickapic_v1). ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [See the PickScore repo](https://github.com/yuvalkirstain/PickScore) - **Paper:** [Pick-a-Pic: An Open Dataset of User Preferences for Text-to-Image Generation](https://arxiv.org/abs/2305.01569). - **Demo [optional]:** [Huggingface Spaces demo for PickScore](https://huggingface.co/spaces/yuvalkirstain/PickScore) ## How to Get Started with the Model Use the code below to get started with the model. ```python # import from transformers import AutoProcessor, AutoModel # load model device = "cuda" processor_name_or_path = "laion/CLIP-ViT-H-14-laion2B-s32B-b79K" model_pretrained_name_or_path = "yuvalkirstain/PickScore_v1" processor = AutoProcessor.from_pretrained(processor_name_or_path) model = AutoModel.from_pretrained(model_pretrained_name_or_path).eval().to(device) def calc_probs(prompt, images): # preprocess image_inputs = processor( images=images, padding=True, truncation=True, max_length=77, return_tensors="pt", ).to(device) text_inputs = processor( text=prompt, padding=True, truncation=True, max_length=77, return_tensors="pt", ).to(device) with torch.no_grad(): # embed image_embs = model.get_image_features(**image_inputs) image_embs = image_embs / torch.norm(image_embs, dim=-1, keepdim=True) text_embs = model.get_text_features(**text_inputs) text_embs = text_embs / torch.norm(text_embs, dim=-1, keepdim=True) # score scores = model.logit_scale.exp() * (text_embs @ image_embs.T)[0] # get probabilities if you have multiple images to choose from probs = torch.softmax(scores, dim=-1) return probs.cpu().tolist() pil_images = [Image.open("my_amazing_images/1.jpg"), Image.open("my_amazing_images/2.jpg")] prompt = "fantastic, increadible prompt" print(calc_probs(prompt, pil_images)) ``` ## Training Details ### Training Data This model was trained on the [Pick-a-Pic dataset](https://huggingface.co/datasets/yuvalkirstain/pickapic_v1). ### Training Procedure TODO - add paper. ## Citation [optional] If you find this work useful, please cite: ```bibtex @inproceedings{Kirstain2023PickaPicAO, title={Pick-a-Pic: An Open Dataset of User Preferences for Text-to-Image Generation}, author={Yuval Kirstain and Adam Polyak and Uriel Singer and Shahbuland Matiana and Joe Penna and Omer Levy}, year={2023} } ``` **APA:** [More Information Needed]
MoritzLaurer/DeBERTa-v3-xsmall-mnli-fever-anli-ling-binary
MoritzLaurer
"2024-04-11T13:48:16Z"
70,806
4
transformers
[ "transformers", "pytorch", "onnx", "safetensors", "deberta-v2", "text-classification", "zero-shot-classification", "en", "dataset:multi_nli", "dataset:facebook/anli", "dataset:fever", "dataset:lingnli", "arxiv:2104.07179", "arxiv:2111.09543", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
zero-shot-classification
"2022-03-02T23:29:04Z"
--- language: - en license: mit tags: - text-classification - zero-shot-classification datasets: - multi_nli - facebook/anli - fever - lingnli metrics: - accuracy pipeline_tag: zero-shot-classification --- # DeBERTa-v3-xsmall-mnli-fever-anli-ling-binary ## Model description This model was trained on 782 357 hypothesis-premise pairs from 4 NLI datasets: [MultiNLI](https://huggingface.co/datasets/multi_nli), [Fever-NLI](https://github.com/easonnie/combine-FEVER-NSMN/blob/master/other_resources/nli_fever.md), [LingNLI](https://arxiv.org/abs/2104.07179) and [ANLI](https://github.com/facebookresearch/anli). Note that the model was trained on binary NLI to predict either "entailment" or "not-entailment". This is specifically designed for zero-shot classification, where the difference between "neutral" and "contradiction" is irrelevant. The base model is [DeBERTa-v3-xsmall from Microsoft](https://huggingface.co/microsoft/deberta-v3-xsmall). The v3 variant of DeBERTa substantially outperforms previous versions of the model by including a different pre-training objective, see the [DeBERTa-V3 paper](https://arxiv.org/abs/2111.09543). For highest performance (but less speed), I recommend using https://huggingface.co/MoritzLaurer/DeBERTa-v3-large-mnli-fever-anli-ling-wanli. ## Intended uses & limitations #### How to use the model ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") model_name = "MoritzLaurer/DeBERTa-v3-xsmall-mnli-fever-anli-ling-binary" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSequenceClassification.from_pretrained(model_name) premise = "I first thought that I liked the movie, but upon second thought it was actually disappointing." hypothesis = "The movie was good." input = tokenizer(premise, hypothesis, truncation=True, return_tensors="pt") output = model(input["input_ids"].to(device)) # device = "cuda:0" or "cpu" prediction = torch.softmax(output["logits"][0], -1).tolist() label_names = ["entailment", "not_entailment"] prediction = {name: round(float(pred) * 100, 1) for pred, name in zip(prediction, label_names)} print(prediction) ``` ### Training data This model was trained on 782 357 hypothesis-premise pairs from 4 NLI datasets: [MultiNLI](https://huggingface.co/datasets/multi_nli), [Fever-NLI](https://github.com/easonnie/combine-FEVER-NSMN/blob/master/other_resources/nli_fever.md), [LingNLI](https://arxiv.org/abs/2104.07179) and [ANLI](https://github.com/facebookresearch/anli). ### Training procedure DeBERTa-v3-xsmall-mnli-fever-anli-ling-binary was trained using the Hugging Face trainer with the following hyperparameters. ``` training_args = TrainingArguments( num_train_epochs=5, # total number of training epochs learning_rate=2e-05, per_device_train_batch_size=32, # batch size per device during training per_device_eval_batch_size=32, # batch size for evaluation warmup_ratio=0.1, # number of warmup steps for learning rate scheduler weight_decay=0.06, # strength of weight decay fp16=True # mixed precision training ) ``` ### Eval results The model was evaluated using the binary test sets for MultiNLI, ANLI, LingNLI and the binary dev set for Fever-NLI (two classes instead of three). The metric used is accuracy. dataset | mnli-m-2c | mnli-mm-2c | fever-nli-2c | anli-all-2c | anli-r3-2c | lingnli-2c --------|---------|----------|---------|----------|----------|------ accuracy | 0.925 | 0.922 | 0.892 | 0.676 | 0.665 | 0.888 speed (text/sec, CPU, 128 batch) | 6.0 | 6.3 | 3.0 | 5.8 | 5.0 | 7.6 speed (text/sec, GPU Tesla P100, 128 batch) | 473 | 487 | 230 | 390 | 340 | 586 ## Limitations and bias Please consult the original DeBERTa paper and literature on different NLI datasets for potential biases. ## Citation If you use this model, please cite: Laurer, Moritz, Wouter van Atteveldt, Andreu Salleras Casas, and Kasper Welbers. 2022. ‘Less Annotating, More Classifying – Addressing the Data Scarcity Issue of Supervised Machine Learning with Deep Transfer Learning and BERT - NLI’. Preprint, June. Open Science Framework. https://osf.io/74b8k. ### Ideas for cooperation or questions? If you have questions or ideas for cooperation, contact me at m{dot}laurer{at}vu{dot}nl or [LinkedIn](https://www.linkedin.com/in/moritz-laurer/) ### Debugging and issues Note that DeBERTa-v3 was released on 06.12.21 and older versions of HF Transformers seem to have issues running the model (e.g. resulting in an issue with the tokenizer). Using Transformers>=4.13 might solve some issues.
katuni4ka/tiny-random-exaone
katuni4ka
"2024-08-12T04:57:16Z"
70,795
1
null
[ "safetensors", "exaone", "custom_code", "region:us" ]
null
"2024-08-12T04:56:26Z"
Entry not found
XLabs-AI/flux-controlnet-collections
XLabs-AI
"2024-08-30T12:29:35Z"
70,794
344
diffusers
[ "diffusers", "Stable Diffusion", "image-generation", "Flux", "text-to-image", "en", "license:other", "region:us" ]
text-to-image
"2024-08-13T00:09:08Z"
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE. language: - en pipeline_tag: text-to-image tags: - Stable Diffusion - image-generation - Flux - diffusers --- ![Controlnet collections for Flux](https://github.com/XLabs-AI/x-flux/blob/main/assets/readme/light/flux-controlnet-collections.png?raw=true) [<img src="https://github.com/XLabs-AI/x-flux/blob/main/assets/readme/light/join-our-discord-rev1.png?raw=true">](https://discord.gg/FHY2guThfy) This repository provides a collection of ControlNet checkpoints for [FLUX.1-dev model](https://huggingface.co/black-forest-labs/FLUX.1-dev) by Black Forest Labs ![Example Picture 1](https://github.com/XLabs-AI/x-flux/blob/main/assets/readme/examples/depth_result1.png?raw=true) [See our github](https://github.com/XLabs-AI/x-flux-comfyui) for comfy ui workflows. ![Example Picture 1](https://github.com/XLabs-AI/x-flux-comfyui/blob/main/assets/image1.png?raw=true) [See our github](https://github.com/XLabs-AI/x-flux) for train script, train configs and demo script for inference. # Models Our collection supports 3 models: - Canny - HED - Depth (Midas) Each ControlNet is trained on 1024x1024 resolution and works for 1024x1024 resolution. We release **v3 versions** - better and realistic versions, which can be used directly in ComfyUI! Please, see our [ComfyUI custom nodes installation guide](https://github.com/XLabs-AI/x-flux-comfyui) # Examples See examples of our models results below. Also, some generation results with input images are provided in "Files and versions" # Inference To try our models, you have 2 options: 1. Use main.py from our [official repo](https://github.com/XLabs-AI/x-flux) 2. Use our custom nodes for ComfyUI and test it with provided workflows (check out folder /workflows) 3. Use gradio demo See examples how to launch our models: ## Canny ControlNet (version 3) 1. Clone our [x-flux-comfyui](https://github.com/XLabs-AI/x-flux-comfyui) custom nodes 2. Launch ComfyUI 3. Try our canny_workflow.json ![Example Picture 1](https://github.com/XLabs-AI/x-flux/blob/main/assets/readme/examples/canny_result1.png?raw=true) ![Example Picture 1](https://github.com/XLabs-AI/x-flux/blob/main/assets/readme/examples/canny_result2.png?raw=true) ## Depth ControlNet (version 3) 1. Clone our [x-flux-comfyui](https://github.com/XLabs-AI/x-flux-comfyui) custom nodes 2. Launch ComfyUI 3. Try our depth_workflow.json ![Example Picture 1](https://github.com/XLabs-AI/x-flux/blob/main/assets/readme/examples/depth_result1.png?raw=true) ![Example Picture 1](https://github.com/XLabs-AI/x-flux/blob/main/assets/readme/examples/depth_result2.png?raw=true) ## HED ControlNet (version 3) 1. Clone our [x-flux-comfyui](https://github.com/XLabs-AI/x-flux-comfyui) custom nodes 2. Launch ComfyUI 3. Try our hed_workflow.json ![Example Picture 1](https://github.com/XLabs-AI/x-flux/blob/main/assets/readme/examples/hed_result1.png?raw=true) ## License Our weights fall under the [FLUX.1 [dev]](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md) Non-Commercial License<br/>
MaziyarPanahi/Mistral-Large-Instruct-2407-GGUF
MaziyarPanahi
"2024-07-26T21:11:56Z"
70,787
20
null
[ "gguf", "quantized", "2-bit", "3-bit", "4-bit", "5-bit", "6-bit", "8-bit", "GGUF", "text-generation", "base_model:mistralai/Mistral-Large-Instruct-2407", "base_model:quantized:mistralai/Mistral-Large-Instruct-2407", "region:us", "imatrix" ]
text-generation
"2024-07-24T17:21:23Z"
--- tags: - quantized - 2-bit - 3-bit - 4-bit - 5-bit - 6-bit - 8-bit - GGUF - text-generation - text-generation model_name: Mistral-Large-Instruct-2407-GGUF base_model: mistralai/Mistral-Large-Instruct-2407 inference: false model_creator: mistralai pipeline_tag: text-generation quantized_by: MaziyarPanahi --- # [MaziyarPanahi/Mistral-Large-Instruct-2407-GGUF](https://huggingface.co/MaziyarPanahi/Mistral-Large-Instruct-2407-GGUF) - Model creator: [mistralai](https://huggingface.co/mistralai) - Original model: [mistralai/Mistral-Large-Instruct-2407](https://huggingface.co/mistralai/Mistral-Large-Instruct-2407) ## Description [MaziyarPanahi/Mistral-Large-Instruct-2407-GGUF](https://huggingface.co/MaziyarPanahi/Mistral-Large-Instruct-2407-GGUF) contains GGUF format model files for [mistralai/Mistral-Large-Instruct-2407](https://huggingface.co/mistralai/Mistral-Large-Instruct-2407). ### About GGUF GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp. Here is an incomplete list of clients and libraries that are known to support GGUF: * [llama.cpp](https://github.com/ggerganov/llama.cpp). The source project for GGUF. Offers a CLI and a server option. * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server. * [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration. Linux available, in beta as of 27/11/2023. * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration. * [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling. * [GPT4All](https://gpt4all.io/index.html), a free and open source local running GUI, supporting Windows, Linux and macOS with full GPU accel. * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection. * [Faraday.dev](https://faraday.dev/), an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration. * [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use. * [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server. Note, as of time of writing (November 27th 2023), ctransformers has not been updated in a long time and does not support many recent models. ## Special thanks 🙏 Special thanks to [Georgi Gerganov](https://github.com/ggerganov) and the whole team working on [llama.cpp](https://github.com/ggerganov/llama.cpp/) for making all of this possible.
laion/CLIP-convnext_large_d.laion2B-s26B-b102K-augreg
laion
"2023-04-18T19:33:42Z"
70,713
4
open_clip
[ "open_clip", "tensorboard", "safetensors", "clip", "zero-shot-image-classification", "arxiv:2201.03545", "arxiv:2210.08402", "arxiv:1910.04867", "license:mit", "region:us" ]
zero-shot-image-classification
"2023-01-29T22:40:05Z"
--- license: mit library_name: open_clip pipeline_tag: zero-shot-image-classification tags: - clip --- # Model Card for CLIP-convnext_large_d.laion2B-s26B-b102K-augreg # Table of Contents 1. [Model Details](#model-details) 2. [Uses](#uses) 3. [Training Details](#training-details) 4. [Evaluation](#evaluation) 5. [Acknowledgements](#acknowledgements) 6. [Citation](#citation) # Model Details ## Model Description A series of CLIP [ConvNeXt-Large](https://arxiv.org/abs/2201.03545) (w/ extra text depth, vision MLP head) models trained on LAION-2B (english), a subset of [LAION-5B](https://arxiv.org/abs/2210.08402), using [OpenCLIP](https://github.com/mlfoundations/open_clip). Goals: * Explore an alternative to ViT and ResNet (w/ AttentionPooling) CLIP models that scales well with model size and image resolution Firsts: * First known ConvNeXt CLIP models trained at scale in the range of CLIP ViT-L/16, ViT-L14, and RN50x16 * First released model weights exploring increase of augmentation + regularization for image tower via adding (greater scale range of RRC, random erasing, stochastic depth) The models utilize: * the [timm](https://github.com/rwightman/pytorch-image-models) ConvNeXt-Large model (`convnext_large`) as the image tower * a MLP (`fc - gelu - drop - fc`) head in vision tower instead of the single projection of other CLIP models * a text tower with same width but 4 layers more depth than ViT-L / RN50x16 models (depth 16, embed dim 768). The models are trained at 256x256 (working on 384 variants) image resolution. At 256x256, the ConvNext-Large-D used roughly 1/2 the training FLOPs to achieve accuracy greater than previous L/14 model trained on LAION-2B. L/14 model is ~1.65x more GMAC, 1.45x more activations, and 1.22x more parameters. The ConvNeXt was trained with 26B samples-seen and L/14 with 34B. | Model | Dataset | Resolution | AugReg | Top-1 ImageNet Zero-Shot (%) | | ----- | ------- | ---------- | ------------ | --------- | | [convnext_large_d.laion2b_s26b_b102k-augreg](https://huggingface.co/laion/CLIP-convnext_large_d.laion2B-s26B-b102K-augreg) | LAION-2B | 256x256 | RRC (0.33, 1.0), RE (0.35), SD (0.1), D(0.1) | 75.9 | | [convnext_large_d_320.laion2b_s29b_b131k-ft](https://huggingface.co/laion/CLIP-convnext_large_d_320.laion2B-s29B-b131K-ft) | LAION-2B | 320x320 | RRC (0.5, 1.0), RE (0.4), SD (0.1), D(0.0) | 76.6 | | [convnext_large_d_320.laion2b_s29b_b131k-ft-soup](https://huggingface.co/laion/CLIP-convnext_large_d_320.laion2B-s29B-b131K-ft-soup) | LAION-2B | 320x320 | RRC (0.5, 1.0), RE (0.4), SD (0.1), D(0.0) | 76.9 | RRC = Random Resize Crop (crop pcts), RE = Random Erasing (prob), SD = Stochastic Depth (prob) -- image tower only, D = Dropout (prob) -- image tower head only LAION-A = LAION Aesthetic, an ~900M sample subset of LAION-2B with pHash dedupe and asthetic score filtering. Model training done by Ross Wightman on the [stability.ai](https://stability.ai/) cluster. # Uses As per the original [OpenAI CLIP model card](https://github.com/openai/CLIP/blob/d50d76daa670286dd6cacf3bcd80b5e4823fc8e1/model-card.md), this model is intended as a research output for research communities. We hope that this model will enable researchers to better understand and explore zero-shot, arbitrary image classification. We also hope it can be used for interdisciplinary studies of the potential impact of such model. The OpenAI CLIP paper includes a discussion of potential downstream impacts to provide an example for this sort of analysis. Additionally, the LAION-5B blog (https://laion.ai/blog/laion-5b/) and upcoming paper include additional discussion as it relates specifically to the training dataset. ## Direct Use Zero-shot image classification, image and text retrieval, among others. ## Downstream Use Image classification and other image task fine-tuning, linear probe image classification, image generation guiding and conditioning, among others. ## Out-of-Scope Use As per the OpenAI models, **Any** deployed use case of the model - whether commercial or not - is currently out of scope. Non-deployed use cases such as image search in a constrained environment, are also not recommended unless there is thorough in-domain testing of the model with a specific, fixed class taxonomy. This is because our safety assessment demonstrated a high need for task specific testing especially given the variability of CLIP’s performance with different class taxonomies. This makes untested and unconstrained deployment of the model in any use case currently potentially harmful. Certain use cases which would fall under the domain of surveillance and facial recognition are always out-of-scope regardless of performance of the model. This is because the use of artificial intelligence for tasks such as these can be premature currently given the lack of testing norms and checks to ensure its fair use. Since the model has not been purposefully trained in or evaluated on any languages other than English, its use should be limited to English language use cases. Further the above notice, the LAION-5B dataset used in training of these models has additional considerations, see below. # Training Details ## Training Data This model was trained with LAION-2B -- A 2 billion sample English subset of LAION-5B (https://laion.ai/blog/laion-5b/). **IMPORTANT NOTE:** The motivation behind dataset creation is to democratize research and experimentation around large-scale multi-modal model training and handling of uncurated, large-scale datasets crawled from publically available internet. Our recommendation is therefore to use the dataset for research purposes. Be aware that this large-scale dataset is uncurated. Keep in mind that the uncurated nature of the dataset means that collected links may lead to strongly discomforting and disturbing content for a human viewer. Therefore, please use the demo links with caution and at your own risk. It is possible to extract a “safe” subset by filtering out samples based on the safety tags (using a customized trained NSFW classifier that we built). While this strongly reduces the chance for encountering potentially harmful content when viewing, we cannot entirely exclude the possibility for harmful content being still present in safe mode, so that the warning holds also there. We think that providing the dataset openly to broad research and other interested communities will allow for transparent investigation of benefits that come along with training large-scale models as well as pitfalls and dangers that may stay unreported or unnoticed when working with closed large datasets that remain restricted to a small community. Providing our dataset openly, we however do not recommend using it for creating ready-to-go industrial products, as the basic research about general properties and safety of such large-scale models, which we would like to encourage with this release, is still in progress. ## Training Procedure All models were trained with a global batch size of 102400 for 128 checkpoint intervals of 203.7M samples for a total of ~26B samples seen over training. For 256x256 models, a slurm script w/ srun below was used on 16 8-GPU (A100 80GB) nodes (Stability). ``` /opt/slurm/sbin/srun --cpu_bind=v --accel-bind=gn python -m training.main \ --save-frequency 1 \ --name "convnext_large_256" \ --resume 'latest' \ --train-data="pipe:aws s3 cp s3://mybucket/path/{laion{00000..xxxxx}.tar -" \ --train-num-samples 203666042 \ --dataset-type webdataset \ --precision amp_bfloat16 \ --beta2 0.98 \ --warmup 10000 \ --batch-size=800 \ --epochs=128 \ --dataset-resampled \ --aug-cfg use_timm=True scale='(0.33, 1.0)' re_prob=0.35 \ --clip-grad-norm 5.0 \ --lr 1.667e-3 \ --workers=6 \ --model "convnext_large_d" \ --seed 0 \ --ddp-static-graph \ --local-loss \ --gather-with-grad \ --grad-checkpointing ``` # Evaluation Evaluation done with code in the [LAION CLIP Benchmark suite](https://github.com/LAION-AI/CLIP_benchmark). ## Testing Data, Factors & Metrics ### Testing Data The testing is performed with VTAB+ (A combination of VTAB (https://arxiv.org/abs/1910.04867) w/ additional robustness datasets) for classification and COCO and Flickr for retrieval. ## Results The model achieves a 75.9 top-1 zero-shot accuracy on ImageNet-1k. ![](convnext_large_zero_shot.png) An initial round of benchmarks have been performed on a wider range of datasets, to be viewable at https://github.com/LAION-AI/CLIP_benchmark/blob/main/benchmark/results.ipynb # Acknowledgements Acknowledging [stability.ai](https://stability.ai/) for compute used to train this model. # Citation **BibTeX:** LAION-5B ```bibtex @inproceedings{schuhmann2022laionb, title={{LAION}-5B: An open large-scale dataset for training next generation image-text models}, author={Christoph Schuhmann and Romain Beaumont and Richard Vencu and Cade W Gordon and Ross Wightman and Mehdi Cherti and Theo Coombes and Aarush Katta and Clayton Mullis and Mitchell Wortsman and Patrick Schramowski and Srivatsa R Kundurthy and Katherine Crowson and Ludwig Schmidt and Robert Kaczmarczyk and Jenia Jitsev}, booktitle={Thirty-sixth Conference on Neural Information Processing Systems Datasets and Benchmarks Track}, year={2022}, url={https://openreview.net/forum?id=M3Y74vmsMcY} } ``` OpenCLIP software ```bibtex @software{ilharco_gabriel_2021_5143773, author = {Ilharco, Gabriel and Wortsman, Mitchell and Wightman, Ross and Gordon, Cade and Carlini, Nicholas and Taori, Rohan and Dave, Achal and Shankar, Vaishaal and Namkoong, Hongseok and Miller, John and Hajishirzi, Hannaneh and Farhadi, Ali and Schmidt, Ludwig}, title = {OpenCLIP}, month = jul, year = 2021, note = {If you use this software, please cite it as below.}, publisher = {Zenodo}, version = {0.1}, doi = {10.5281/zenodo.5143773}, url = {https://doi.org/10.5281/zenodo.5143773} } ``` OpenAI CLIP paper ```bibtex @inproceedings{Radford2021LearningTV, title={Learning Transferable Visual Models From Natural Language Supervision}, author={Alec Radford and Jong Wook Kim and Chris Hallacy and A. Ramesh and Gabriel Goh and Sandhini Agarwal and Girish Sastry and Amanda Askell and Pamela Mishkin and Jack Clark and Gretchen Krueger and Ilya Sutskever}, booktitle={ICML}, year={2021} } ``` ```bibtex @Article{liu2022convnet, author = {Zhuang Liu and Hanzi Mao and Chao-Yuan Wu and Christoph Feichtenhofer and Trevor Darrell and Saining Xie}, title = {A ConvNet for the 2020s}, journal = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, year = {2022}, } ``` ```bibtex @misc{rw2019timm, author = {Ross Wightman}, title = {PyTorch Image Models}, year = {2019}, publisher = {GitHub}, journal = {GitHub repository}, doi = {10.5281/zenodo.4414861}, howpublished = {\url{https://github.com/rwightman/pytorch-image-models}} } ```
mradermacher/Llama-3.2-3B-Instruct-uncensored-GGUF
mradermacher
"2024-09-28T07:06:19Z"
70,496
34
transformers
[ "transformers", "gguf", "en", "base_model:chuanli11/Llama-3.2-3B-Instruct-uncensored", "base_model:quantized:chuanli11/Llama-3.2-3B-Instruct-uncensored", "endpoints_compatible", "region:us", "conversational" ]
null
"2024-09-27T23:02:40Z"
--- base_model: chuanli11/Llama-3.2-3B-Instruct-uncensored language: - en library_name: transformers quantized_by: mradermacher tags: [] --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/chuanli11/Llama-3.2-3B-Instruct-uncensored <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/Llama-3.2-3B-Instruct-uncensored-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3B-Instruct-uncensored-GGUF/resolve/main/Llama-3.2-3B-Instruct-uncensored.Q2_K.gguf) | Q2_K | 1.6 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3B-Instruct-uncensored-GGUF/resolve/main/Llama-3.2-3B-Instruct-uncensored.IQ3_XS.gguf) | IQ3_XS | 1.7 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3B-Instruct-uncensored-GGUF/resolve/main/Llama-3.2-3B-Instruct-uncensored.IQ3_S.gguf) | IQ3_S | 1.8 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3B-Instruct-uncensored-GGUF/resolve/main/Llama-3.2-3B-Instruct-uncensored.Q3_K_S.gguf) | Q3_K_S | 1.8 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3B-Instruct-uncensored-GGUF/resolve/main/Llama-3.2-3B-Instruct-uncensored.IQ3_M.gguf) | IQ3_M | 1.9 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3B-Instruct-uncensored-GGUF/resolve/main/Llama-3.2-3B-Instruct-uncensored.Q3_K_M.gguf) | Q3_K_M | 2.0 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3B-Instruct-uncensored-GGUF/resolve/main/Llama-3.2-3B-Instruct-uncensored.Q3_K_L.gguf) | Q3_K_L | 2.1 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3B-Instruct-uncensored-GGUF/resolve/main/Llama-3.2-3B-Instruct-uncensored.IQ4_XS.gguf) | IQ4_XS | 2.2 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3B-Instruct-uncensored-GGUF/resolve/main/Llama-3.2-3B-Instruct-uncensored.Q4_K_S.gguf) | Q4_K_S | 2.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3B-Instruct-uncensored-GGUF/resolve/main/Llama-3.2-3B-Instruct-uncensored.Q4_K_M.gguf) | Q4_K_M | 2.3 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3B-Instruct-uncensored-GGUF/resolve/main/Llama-3.2-3B-Instruct-uncensored.Q5_K_S.gguf) | Q5_K_S | 2.6 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3B-Instruct-uncensored-GGUF/resolve/main/Llama-3.2-3B-Instruct-uncensored.Q5_K_M.gguf) | Q5_K_M | 2.7 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3B-Instruct-uncensored-GGUF/resolve/main/Llama-3.2-3B-Instruct-uncensored.Q6_K.gguf) | Q6_K | 3.1 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3B-Instruct-uncensored-GGUF/resolve/main/Llama-3.2-3B-Instruct-uncensored.Q8_0.gguf) | Q8_0 | 3.9 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3B-Instruct-uncensored-GGUF/resolve/main/Llama-3.2-3B-Instruct-uncensored.f16.gguf) | f16 | 7.3 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
microsoft/trocr-large-handwritten
microsoft
"2024-05-27T20:10:58Z"
70,449
94
transformers
[ "transformers", "pytorch", "vision-encoder-decoder", "image-text-to-text", "trocr", "image-to-text", "arxiv:2109.10282", "endpoints_compatible", "region:us" ]
image-to-text
"2022-03-02T23:29:05Z"
--- tags: - trocr - image-to-text widget: - src: https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg example_title: Note 1 - src: https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcSoolxi9yWGAT5SLZShv8vVd0bz47UWRzQC19fDTeE8GmGv_Rn-PCF1pP1rrUx8kOjA4gg&usqp=CAU example_title: Note 2 - src: https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcRNYtTuSBpZPV_nkBYPMFwVVD9asZOPgHww4epu9EqWgDmXW--sE2o8og40ZfDGo87j5w&usqp=CAU example_title: Note 3 --- # TrOCR (large-sized model, fine-tuned on IAM) TrOCR model fine-tuned on the [IAM dataset](https://fki.tic.heia-fr.ch/databases/iam-handwriting-database). It was introduced in the paper [TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models](https://arxiv.org/abs/2109.10282) by Li et al. and first released in [this repository](https://github.com/microsoft/unilm/tree/master/trocr). Disclaimer: The team releasing TrOCR did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description The TrOCR model is an encoder-decoder model, consisting of an image Transformer as encoder, and a text Transformer as decoder. The image encoder was initialized from the weights of BEiT, while the text decoder was initialized from the weights of RoBERTa. Images are presented to the model as a sequence of fixed-size patches (resolution 16x16), which are linearly embedded. One also adds absolute position embeddings before feeding the sequence to the layers of the Transformer encoder. Next, the Transformer text decoder autoregressively generates tokens. ## Intended uses & limitations You can use the raw model for optical character recognition (OCR) on single text-line images. See the [model hub](https://huggingface.co/models?search=microsoft/trocr) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model in PyTorch: ```python from transformers import TrOCRProcessor, VisionEncoderDecoderModel from PIL import Image import requests # load image from the IAM database url = 'https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg' image = Image.open(requests.get(url, stream=True).raw).convert("RGB") processor = TrOCRProcessor.from_pretrained('microsoft/trocr-large-handwritten') model = VisionEncoderDecoderModel.from_pretrained('microsoft/trocr-large-handwritten') pixel_values = processor(images=image, return_tensors="pt").pixel_values generated_ids = model.generate(pixel_values) generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] ``` ### BibTeX entry and citation info ```bibtex @misc{li2021trocr, title={TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models}, author={Minghao Li and Tengchao Lv and Lei Cui and Yijuan Lu and Dinei Florencio and Cha Zhang and Zhoujun Li and Furu Wei}, year={2021}, eprint={2109.10282}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
pdelobelle/robbert-v2-dutch-base
pdelobelle
"2023-12-04T15:14:12Z"
70,430
24
transformers
[ "transformers", "pytorch", "tf", "jax", "safetensors", "roberta", "fill-mask", "Dutch", "Flemish", "RoBERTa", "RobBERT", "BERT", "nl", "dataset:oscar", "dataset:dbrd", "dataset:lassy-ud", "dataset:europarl-mono", "dataset:conll2002", "arxiv:2001.06286", "arxiv:2004.02814", "arxiv:2010.13652", "arxiv:2101.05716", "arxiv:1907.11692", "arxiv:2001.02943", "arxiv:1909.11942", "doi:10.57967/hf/1425", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
"2022-03-02T23:29:05Z"
--- language: nl thumbnail: https://github.com/iPieter/RobBERT/raw/master/res/robbert_logo.png tags: - Dutch - Flemish - RoBERTa - RobBERT - BERT license: mit datasets: - oscar - dbrd - lassy-ud - europarl-mono - conll2002 widget: - text: Hallo, ik ben RobBERT, een <mask> taalmodel van de KU Leuven. --- <p align="center"> <img src="https://github.com/iPieter/RobBERT/raw/master/res/robbert_logo_with_name.png" alt="RobBERT: A Dutch RoBERTa-based Language Model" width="75%"> </p> # RobBERT: Dutch RoBERTa-based Language Model. [RobBERT](https://github.com/iPieter/RobBERT) is the state-of-the-art Dutch BERT model. It is a large pre-trained general Dutch language model that can be fine-tuned on a given dataset to perform any text classification, regression or token-tagging task. As such, it has been successfully used by many [researchers](https://scholar.google.com/scholar?oi=bibs&hl=en&cites=7180110604335112086) and [practitioners](https://huggingface.co/models?search=robbert) for achieving state-of-the-art performance for a wide range of Dutch natural language processing tasks, including: - [Emotion detection](https://www.aclweb.org/anthology/2021.wassa-1.27/) - Sentiment analysis ([book reviews](https://arxiv.org/pdf/2001.06286.pdf), [news articles](https://biblio.ugent.be/publication/8704637/file/8704638.pdf)*) - [Coreference resolution](https://arxiv.org/pdf/2001.06286.pdf) - Named entity recognition ([CoNLL](https://arxiv.org/pdf/2001.06286.pdf), [job titles](https://arxiv.org/pdf/2004.02814.pdf)*, [SoNaR](https://github.com/proycon/deepfrog)) - Part-of-speech tagging ([Small UD Lassy](https://arxiv.org/pdf/2001.06286.pdf), [CGN](https://github.com/proycon/deepfrog)) - [Zero-shot word prediction](https://arxiv.org/pdf/2001.06286.pdf) - [Humor detection](https://arxiv.org/pdf/2010.13652.pdf) - [Cyberbulling detection](https://www.cambridge.org/core/journals/natural-language-engineering/article/abs/automatic-classification-of-participant-roles-in-cyberbullying-can-we-detect-victims-bullies-and-bystanders-in-social-media-text/A2079C2C738C29428E666810B8903342) - [Correcting dt-spelling mistakes](https://gitlab.com/spelfouten/dutch-simpletransformers/)* and also achieved outstanding, near-sota results for: - [Natural language inference](https://arxiv.org/pdf/2101.05716.pdf)* - [Review classification](https://medium.com/broadhorizon-cmotions/nlp-with-r-part-5-state-of-the-art-in-nlp-transformers-bert-3449e3cd7494)* \\* *Note that several evaluations use RobBERT-v1, and that the second and improved RobBERT-v2 outperforms this first model on everything we tested* *(Also note that this list is not exhaustive. If you used RobBERT for your application, we are happy to know about it! Send us a mail, or add it yourself to this list by sending a pull request with the edit!)* More in-depth information about RobBERT can be found in our [blog post](https://people.cs.kuleuven.be/~pieter.delobelle/robbert/), [our paper](https://arxiv.org/abs/2001.06286) and [the RobBERT Github repository](https://github.com/iPieter/RobBERT) ## How to use RobBERT uses the [RoBERTa](https://arxiv.org/abs/1907.11692) architecture and pre-training but with a Dutch tokenizer and training data. RoBERTa is the robustly optimized English BERT model, making it even more powerful than the original BERT model. Given this same architecture, RobBERT can easily be finetuned and inferenced using [code to finetune RoBERTa](https://huggingface.co/transformers/model_doc/roberta.html) models and most code used for BERT models, e.g. as provided by [HuggingFace Transformers](https://huggingface.co/transformers/) library. By default, RobBERT has the masked language model head used in training. This can be used as a zero-shot way to fill masks in sentences. It can be tested out for free on [RobBERT's Hosted infererence API of Huggingface](https://huggingface.co/pdelobelle/robbert-v2-dutch-base?text=De+hoofdstad+van+Belgi%C3%AB+is+%3Cmask%3E.). You can also create a new prediction head for your own task by using any of HuggingFace's [RoBERTa-runners](https://huggingface.co/transformers/v2.7.0/examples.html#language-model-training), [their fine-tuning notebooks](https://huggingface.co/transformers/v4.1.1/notebooks.html) by changing the model name to `pdelobelle/robbert-v2-dutch-base`, or use the original fairseq [RoBERTa](https://github.com/pytorch/fairseq/tree/master/examples/roberta) training regimes. Use the following code to download the base model and finetune it yourself, or use one of our finetuned models (documented on [our project site](https://pieter.ai/robbert/)). ```python from transformers import RobertaTokenizer, RobertaForSequenceClassification tokenizer = RobertaTokenizer.from_pretrained("pdelobelle/robbert-v2-dutch-base") model = RobertaForSequenceClassification.from_pretrained("pdelobelle/robbert-v2-dutch-base") ``` Starting with `transformers v2.4.0` (or installing from source), you can use AutoTokenizer and AutoModel. You can then use most of [HuggingFace's BERT-based notebooks](https://huggingface.co/transformers/v4.1.1/notebooks.html) for finetuning RobBERT on your type of Dutch language dataset. ## Technical Details From The Paper ### Our Performance Evaluation Results All experiments are described in more detail in our [paper](https://arxiv.org/abs/2001.06286), with the code in [our GitHub repository](https://github.com/iPieter/RobBERT). ### Sentiment analysis Predicting whether a review is positive or negative using the [Dutch Book Reviews Dataset](https://github.com/benjaminvdb/110kDBRD). | Model | Accuracy [%] | |-------------------|--------------------------| | ULMFiT | 93.8 | | BERTje | 93.0 | | RobBERT v2 | **95.1** | ### Die/Dat (coreference resolution) We measured how well the models are able to do coreference resolution by predicting whether "die" or "dat" should be filled into a sentence. For this, we used the [EuroParl corpus](https://www.statmt.org/europarl/). #### Finetuning on whole dataset | Model | Accuracy [%] | F1 [%] | |-------------------|--------------------------|--------------| | [Baseline](https://arxiv.org/abs/2001.02943) (LSTM) | | 75.03 | | mBERT | 98.285 | 98.033 | | BERTje | 98.268 | 98.014 | | RobBERT v2 | **99.232** | **99.121** | #### Finetuning on 10K examples We also measured the performance using only 10K training examples. This experiment clearly illustrates that RobBERT outperforms other models when there is little data available. | Model | Accuracy [%] | F1 [%] | |-------------------|--------------------------|--------------| | mBERT | 92.157 | 90.898 | | BERTje | 93.096 | 91.279 | | RobBERT v2 | **97.816** | **97.514** | #### Using zero-shot word masking task Since BERT models are pre-trained using the word masking task, we can use this to predict whether "die" or "dat" is more likely. This experiment shows that RobBERT has internalised more information about Dutch than other models. | Model | Accuracy [%] | |-------------------|--------------------------| | ZeroR | 66.70 | | mBERT | 90.21 | | BERTje | 94.94 | | RobBERT v2 | **98.75** | ### Part-of-Speech Tagging. Using the [Lassy UD dataset](https://universaldependencies.org/treebanks/nl_lassysmall/index.html). | Model | Accuracy [%] | |-------------------|--------------------------| | Frog | 91.7 | | mBERT | **96.5** | | BERTje | 96.3 | | RobBERT v2 | 96.4 | Interestingly, we found that when dealing with **small data sets**, RobBERT v2 **significantly outperforms** other models. <p align="center"> <img src="https://github.com/iPieter/RobBERT/raw/master/res/robbert_pos_accuracy.png" alt="RobBERT's performance on smaller datasets"> </p> ### Named Entity Recognition Using the [CoNLL 2002 evaluation script](https://www.clips.uantwerpen.be/conll2002/ner/). | Model | Accuracy [%] | |-------------------|--------------------------| | Frog | 57.31 | | mBERT | **90.94** | | BERT-NL | 89.7 | | BERTje | 88.3 | | RobBERT v2 | 89.08 | ## Pre-Training Procedure Details We pre-trained RobBERT using the RoBERTa training regime. We pre-trained our model on the Dutch section of the [OSCAR corpus](https://oscar-corpus.com/), a large multilingual corpus which was obtained by language classification in the Common Crawl corpus. This Dutch corpus is 39GB large, with 6.6 billion words spread over 126 million lines of text, where each line could contain multiple sentences, thus using more data than concurrently developed Dutch BERT models. RobBERT shares its architecture with [RoBERTa's base model](https://github.com/pytorch/fairseq/tree/master/examples/roberta), which itself is a replication and improvement over BERT. Like BERT, it's architecture consists of 12 self-attention layers with 12 heads with 117M trainable parameters. One difference with the original BERT model is due to the different pre-training task specified by RoBERTa, using only the MLM task and not the NSP task. During pre-training, it thus only predicts which words are masked in certain positions of given sentences. The training process uses the Adam optimizer with polynomial decay of the learning rate l_r=10^-6 and a ramp-up period of 1000 iterations, with hyperparameters beta_1=0.9 and RoBERTa's default beta_2=0.98. Additionally, a weight decay of 0.1 and a small dropout of 0.1 helps prevent the model from overfitting. RobBERT was trained on a computing cluster with 4 Nvidia P100 GPUs per node, where the number of nodes was dynamically adjusted while keeping a fixed batch size of 8192 sentences. At most 20 nodes were used (i.e. 80 GPUs), and the median was 5 nodes. By using gradient accumulation, the batch size could be set independently of the number of GPUs available, in order to maximally utilize the cluster. Using the [Fairseq library](https://github.com/pytorch/fairseq/tree/master/examples/roberta), the model trained for two epochs, which equals over 16k batches in total, which took about three days on the computing cluster. In between training jobs on the computing cluster, 2 Nvidia 1080 Ti's also covered some parameter updates for RobBERT v2. ## Investigating Limitations and Bias In the [RobBERT paper](https://arxiv.org/abs/2001.06286), we also investigated potential sources of bias in RobBERT. We found that the zeroshot model estimates the probability of *hij* (he) to be higher than *zij* (she) for most occupations in bleached template sentences, regardless of their actual job gender ratio in reality. <p align="center"> <img src="https://github.com/iPieter/RobBERT/raw/master/res/gender_diff.png" alt="RobBERT's performance on smaller datasets"> </p> By augmenting the DBRB Dutch Book sentiment analysis dataset with the stated gender of the author of the review, we found that highly positive reviews written by women were generally more accurately detected by RobBERT as being positive than those written by men. <p align="center"> <img src="https://github.com/iPieter/RobBERT/raw/master/res/dbrd.png" alt="RobBERT's performance on smaller datasets"> </p> ## How to Replicate Our Paper Experiments Replicating our paper experiments is [described in detail on teh RobBERT repository README](https://github.com/iPieter/RobBERT#how-to-replicate-our-paper-experiments). ## Name Origin of RobBERT Most BERT-like models have the word *BERT* in their name (e.g. [RoBERTa](https://huggingface.co/transformers/model_doc/roberta.html), [ALBERT](https://arxiv.org/abs/1909.11942), [CamemBERT](https://camembert-model.fr/), and [many, many others](https://huggingface.co/models?search=bert)). As such, we queried our newly trained model using its masked language model to name itself *\\<mask\\>bert* using [all](https://huggingface.co/pdelobelle/robbert-v2-dutch-base?text=Mijn+naam+is+%3Cmask%3Ebert.) [kinds](https://huggingface.co/pdelobelle/robbert-v2-dutch-base?text=Hallo%2C+ik+ben+%3Cmask%3Ebert.) [of](https://huggingface.co/pdelobelle/robbert-v2-dutch-base?text=Leuk+je+te+ontmoeten%2C+ik+heet+%3Cmask%3Ebert.) [prompts](https://huggingface.co/pdelobelle/robbert-v2-dutch-base?text=Niemand+weet%2C+niemand+weet%2C+dat+ik+%3Cmask%3Ebert+heet.), and it consistently called itself RobBERT. We thought it was really quite fitting, given that RobBERT is a [*very* Dutch name](https://en.wikipedia.org/wiki/Robbert) *(and thus clearly a Dutch language model)*, and additionally has a high similarity to its root architecture, namely [RoBERTa](https://huggingface.co/transformers/model_doc/roberta.html). Since *"rob"* is a Dutch words to denote a seal, we decided to draw a seal and dress it up like [Bert from Sesame Street](https://muppet.fandom.com/wiki/Bert) for the [RobBERT logo](https://github.com/iPieter/RobBERT/blob/master/res/robbert_logo.png). ## Credits and citation This project is created by [Pieter Delobelle](https://people.cs.kuleuven.be/~pieter.delobelle), [Thomas Winters](https://thomaswinters.be) and [Bettina Berendt](https://people.cs.kuleuven.be/~bettina.berendt/). If you would like to cite our paper or model, you can use the following BibTeX: ``` @inproceedings{delobelle2020robbert, title = "{R}ob{BERT}: a {D}utch {R}o{BERT}a-based {L}anguage {M}odel", author = "Delobelle, Pieter and Winters, Thomas and Berendt, Bettina", booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2020.findings-emnlp.292", doi = "10.18653/v1/2020.findings-emnlp.292", pages = "3255--3265" } ```
google/metricx-23-qe-xl-v2p0
google
"2024-02-07T21:16:44Z"
70,312
2
transformers
[ "transformers", "pytorch", "mt5", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
"2024-02-07T16:35:10Z"
--- license: apache-2.0 --- # MetricX-23 *This is not an officially supported Google product.* **GitHub repository: [https://github.com/google-research/metricx](https://github.com/google-research/metricx)** This repository contains the MetricX-23 models, a family of models for automatic evaluation of translations that were proposed in the WMT'23 Metrics Shared Task submission [MetricX-23: The Google Submission to the WMT 2023 Metrics Shared Task](https://aclanthology.org/2023.wmt-1.63/). The models were trained in [T5X](https://github.com/google-research/t5x) and then converted for use in PyTorch. ## Available Models There are 6 models available on HuggingFace that vary in the number of parameters and whether or not the model is reference-based or reference-free (also known as quality estimation, or QE): * [MetricX-23-XXL](https://huggingface.co/google/metricx-23-large-v2p0) * [MetricX-23-XL](https://huggingface.co/google/metricx-23-xl-v2p0) * [MetricX-23-Large](https://huggingface.co/google/metricx-23-xxl-v2p0) * [MetricX-23-QE-XXL](https://huggingface.co/google/metricx-23-qe-large-v2p0) * [MetricX-23-QE-XL](https://huggingface.co/google/metricx-23-qe-xl-v2p0) * [MetricX-23-QE-Large](https://huggingface.co/google/metricx-23-qe-xxl-v2p0) We recommend using the XXL model versions for the best agreement with human judgments of translation quality, the Large versions for best speed, and the XL for an intermediate use case. ## Changes to the WMT'23 Submission These models available here are most similar to the primary submission to the WMT'23 Metrics Shared Task. They are initialized with [mT5](https://aclanthology.org/2021.naacl-main.41/) then fine-tuned on a combination of direct assessment and MQM data. However, we made some changes that make these models different from the WMT'23 submissions. First, the models are trained to regress the actual MQM score rather than a normalized score between 0 and 1. **That means the output from the MetricX-23 models is a score in the range [0, 25] where lower is better (i.e., it predicts an error score).** Second, these models were trained with a larger variety of synthetic data that makes them more robust to translation edge cases like over- and undertranslation, described in more detail in the following section. ### Synthetic Data In order for our MetricX models to learn to identify certain types of bad translations that are not sufficiently (or at all) represented in the regular training data, we created synthetic examples and mixed them in during training. The synthetic training data was generated from the DA datasets ranging from WMT15 to WMT21 (~ 43 language pairs). In most cases, the synthetic examples have the candidate translation manipulated so as to turn it into a bad translation with a specific issue commonly unrecognized by learned metrics. The table below provides an overview of the various failure modes that we considered, including brief descriptions of how we prepared the synthetic data to address them. | Failure mode | Synthetic example description | | ----------- | ----------- | | Undertranslation | Candidate translation with an arbitrary sentence removed (if multi-sentence); alternatively, candidate with a certain proportion of words removed from the end. | | Overtranslation | Candidate translation duplicated (with space in between). | | Fluent but unrelated translation | Arbitrary reference of a similar length from the dataset. | | Gibberish | Text of a similar length as the reference, generated by sampling words from the reference translation vocabulary (built from all references in the data). | | Missing punctuation | Reference translation with the end punctuation removed (11 punctuation symbols considered). | | Latin instead of Chinese/Japanese or Hindi/Bengali punctuation | Candidate translation with the language-specific punctuation symbol at the end replaced with the Latin equivalent (e.g., "." instead of "。" or "।"); alternatively, the punctuation symbol is replaced with the Latin equivalent in the reference, keeping the correct one in the candidate. | | Reference-matching translation | Reference translation copied as the candidate translation (unlike the rest of the synthetic data, these examples are meant to train the metric to predict a perfect score for candidates matching the reference). | Examples from the first 4 categories were assigned a label corresponding to the worst score on the given rating scale (e.g., 25 when mixed with MQM training data), whereas the reference-matching translation examples are assigned the best score (e.g., 0 when used with MQM data). The missing/incorrect punctuation examples were labeled with a score slightly worse than perfect. Note that some of the synthetic datasets are only meaningful in the reference-based scenario, and we thus excluded them when training a QE variant of MetricX. These are the Latin-vs-special punctuation and the reference-matching translation examples. Most of the synthetic training sets were created using stratified sampling across target languages, taking 500 examples per target language. One exception is the missing punctuation set, which used a stratified sample across different punctuation symbols instead. When training MetricX, a small proportion of the synthetic examples was mixed with the regular training examples. During the first-stage fine-tuning on DA data, each synthetic training set constituted between 0.1% and 1% of all training examples, whereas in the second-stage fine-tuning on MQM data we used an even smaller proportion, around 0.05%. As for evaluating the effect of the synthetic training data on the model's performance, the DEMETR challenge set - which we originally used to evaluate the models submitted to the WMT23 Metrics Shared Task - was not adequate anymore. We therefore created a new DEMETR-style test set based on the WMT22 DA data, with examples constructed analogically to the synthetic training examples, as described above. This test set helped us determine the right proportions of synthetic data for fine-tuning in order to make MetricX robust for the failure modes in consideration, without sacrificing the system- and segment-level correlations with human ratings. ## Usage The code for using MetricX models can be found at [https://github.com/google-research/metricx](https://github.com/google-research/metricx). The repository contains example prediction scripts, described below. The `metricx23/predict.py` script contains an example for how to run inference on the models. ### Reference-Based Example usage for a reference-based model: ```bash python -m metricx23.predict \ --tokenizer google/mt5-xl \ --model_name_or_path google/metricx-23-xl-v2p0 \ --max_input_length 1024 \ --batch_size 1 \ --input_file input.jsonl \ --output_file output.jsonl ``` `input.jsonl` is expected to have 1 serialized JSON object per line with `"reference"` and `"hypothesis"` fields. The output jsonl will be parallel to `input.jsonl` but additionally contain a `"prediction"` field with the predicted score. Note that the model was trained with a maximum input length of 1024 tokens, so significantly increasing that value may lead to unpredictable behavior. ### Reference-Free Example usage for a reference-free model: ```bash python -m metricx23.predict \ --tokenizer google/mt5-xl \ --model_name_or_path google/metricx-23-qe-xl-v2p0 \ --max_input_length 1024 \ --batch_size 1 \ --input_file input.jsonl \ --output_file output.jsonl \ --qe ``` `input.jsonl` is expected to have 1 serialized JSON object per line with `"source"` and `"hypothesis"` fields. The output jsonl will be parallel to `input.jsonl` but additionally contain a `"prediction"` field with the predicted score. ## Meta-Evaluation The `metricx23/evaluate.py` script contains code to calculate various correlations between the MetricX-23 scores and MQM ratings of translation quality using the [MT Metrics Eval](https://github.com/google-research/mt-metrics-eval) library. Example usage: ```bash python -m metricx23.evaluate \ --dataset wmt22 \ --lp en-de \ --input_file input.jsonl \ --output_file output.json ``` `input.jsonl` is expected to have one JSON object serialized per line. Each JSON object is expected to contain 4 fields: * `"system_id"`: The name of the system that generated the translation. * `"segment_id"`: The 0-based index of the corresponding segment in the MT Metrics Eval data. * `"label"`: The ground-truth translation quality score (with higher is better). * `"prediction"`: The model predicted translation quality score (with lower is better; the script negates the scores so higher is better). The script will calculate the 4 agreement/correlations that were used in the WMT'23 Shared Task. Below are the results for the MetricX-23 models on the WMT'22 Metrics Shared Task data: English-German: | Model | System-Level Accuracy | System-Level Pearson | Segment-Level Pearson | Segment-Level Pairwise Acc | | ----------- | ----------- | ----------- | ----------- | ----------- | | MetricX-23-XXL | 0.795 | 0.835 | 0.546 | 0.619 | | MetricX-23-XL | 0.756 | 0.813 | 0.540 | 0.605 | | MetricX-23-Large | 0.769 | 0.759 | 0.507 | 0.595 | | MetricX-23-QE-XXL | 0.769 | 0.830 | 0.490 | 0.606 | | MetricX-23-QE-XL | 0.718 | 0.684 | 0.421 | 0.594 | | MetricX-23-QE-Large | 0.744 | 0.671 | 0.387 | 0.579 | English-Russian: | Model | System-Level Accuracy | System-Level Pearson | Segment-Level Pearson | Segment-Level Pairwise Acc | | ----------- | ----------- | ----------- | ----------- | ----------- | | MetricX-23-XXL | 0.905 | 0.943 | 0.477 | 0.609 | | MetricX-23-XL | 0.876 | 0.906 | 0.498 | 0.589 | | MetricX-23-Large | 0.876 | 0.841 | 0.474 | 0.569 | | MetricX-23-QE-XXL | 0.895 | 0.940 | 0.470 | 0.602 | | MetricX-23-QE-XL | 0.848 | 0.861 | 0.415 | 0.570 | | MetricX-23-QE-Large | 0.819 | 0.778 | 0.411 | 0.551 | Chinese-English: | Model | System-Level Accuracy | System-Level Pearson | Segment-Level Pearson | Segment-Level Pairwise Acc | | ----------- | ----------- | ----------- | ----------- | ----------- | | MetricX-23-XXL | 0.868 | 0.919 | 0.605 | 0.551 | | MetricX-23-XL | 0.868 | 0.924 | 0.584 | 0.543 | | MetricX-23-Large | 0.857 | 0.919 | 0.555 | 0.539 | | MetricX-23-QE-XXL | 0.857 | 0.928 | 0.573 | 0.544 | | MetricX-23-QE-XL | 0.802 | 0.879 | 0.546 | 0.529 | | MetricX-23-QE-Large | 0.758 | 0.904 | 0.522 | 0.529 | The `metricx23/evaluate_wmt23.py` script re-calculates the average correlation score that was used to rank submissions from the [WMT'23 Shared Task](https://www2.statmt.org/wmt23/pdf/2023.wmt-1.51.pdf). Example usage: ```bash python -m metricx23.evaluate_wmt23 \ --en_de predictions_ende.jsonl \ --he_en predictions_heen.jsonl \ --zh_en predictions_zhen.jsonl \ --output_file output.json ``` Each of the 3 input files is expected to be in the same format as described above. Each file should correspond to running inference on each of the language pairs from the WMT'23 dataset. The results for each of the models is the following: | Model | Average Correlation | | ----------- | ----------- | | MetricX-23-XXL | 0.812 | | MetricX-23-XL | 0.813 | | MetricX-23-Large | 0.794 | | MetricX-23-QE-XXL | 0.797 | | MetricX-23-QE-XL | 0.767 | | MetricX-23-QE-Large | 0.762 | ## Citation If you use MetricX-23 in your research, please cite the following publication: ```bibtex @inproceedings{juraska-etal-2023-metricx, title = {{MetricX-23: The Google Submission to the WMT 2023 Metrics Shared Task}}, author = "Juraska, Juraj and Finkelstein, Mara and Deutsch, Daniel and Siddhant, Aditya and Mirzazadeh, Mehdi and Freitag, Markus", editor = "Koehn, Philipp and Haddow, Barry and Kocmi, Tom and Monz, Christof", booktitle = "Proceedings of the Eighth Conference on Machine Translation", month = dec, year = "2023", address = "Singapore", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2023.wmt-1.63", doi = "10.18653/v1/2023.wmt-1.63", pages = "756--767", } ```
depth-anything/Depth-Anything-V2-Small
depth-anything
"2024-07-08T09:15:27Z"
70,271
53
depth-anything-v2
[ "depth-anything-v2", "depth", "relative depth", "depth-estimation", "en", "license:apache-2.0", "region:us" ]
depth-estimation
"2024-06-13T16:00:42Z"
--- license: apache-2.0 language: - en pipeline_tag: depth-estimation library_name: depth-anything-v2 tags: - depth - relative depth --- # Depth-Anything-V2-Small ## Introduction Depth Anything V2 is trained from 595K synthetic labeled images and 62M+ real unlabeled images, providing the most capable monocular depth estimation (MDE) model with the following features: - more fine-grained details than Depth Anything V1 - more robust than Depth Anything V1 and SD-based models (e.g., Marigold, Geowizard) - more efficient (10x faster) and more lightweight than SD-based models - impressive fine-tuned performance with our pre-trained models ## Installation ```bash git clone https://huggingface.co/spaces/depth-anything/Depth-Anything-V2 cd Depth-Anything-V2 pip install -r requirements.txt ``` ## Usage Download the [model](https://huggingface.co/depth-anything/Depth-Anything-V2-Small/resolve/main/depth_anything_v2_vits.pth?download=true) first and put it under the `checkpoints` directory. ```python import cv2 import torch from depth_anything_v2.dpt import DepthAnythingV2 model = DepthAnythingV2(encoder='vits', features=64, out_channels=[48, 96, 192, 384]) model.load_state_dict(torch.load('checkpoints/depth_anything_v2_vits.pth', map_location='cpu')) model.eval() raw_img = cv2.imread('your/image/path') depth = model.infer_image(raw_img) # HxW raw depth map ``` ## Citation If you find this project useful, please consider citing: ```bibtex @article{depth_anything_v2, title={Depth Anything V2}, author={Yang, Lihe and Kang, Bingyi and Huang, Zilong and Zhao, Zhen and Xu, Xiaogang and Feng, Jiashi and Zhao, Hengshuang}, journal={arXiv:2406.09414}, year={2024} } @inproceedings{depth_anything_v1, title={Depth Anything: Unleashing the Power of Large-Scale Unlabeled Data}, author={Yang, Lihe and Kang, Bingyi and Huang, Zilong and Xu, Xiaogang and Feng, Jiashi and Zhao, Hengshuang}, booktitle={CVPR}, year={2024} }
meta-llama/Llama-3.1-405B-Instruct-FP8
meta-llama
"2024-09-25T17:02:45Z"
70,127
175
transformers
[ "transformers", "safetensors", "llama", "text-generation", "facebook", "meta", "pytorch", "llama-3", "conversational", "en", "de", "fr", "it", "pt", "hi", "es", "th", "arxiv:2204.05149", "base_model:meta-llama/Llama-3.1-405B-Instruct", "base_model:quantized:meta-llama/Llama-3.1-405B-Instruct", "license:llama3.1", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "fbgemm_fp8", "region:us" ]
text-generation
"2024-07-20T03:06:04Z"
--- language: - en - de - fr - it - pt - hi - es - th library_name: transformers base_model: meta-llama/Meta-Llama-3.1-405B-Instruct license: llama3.1 pipeline_tag: text-generation tags: - facebook - meta - pytorch - llama - llama-3 extra_gated_prompt: "### LLAMA 3.1 COMMUNITY LICENSE AGREEMENT\nLlama 3.1 Version\ \ Release Date: July 23, 2024\n\"Agreement\" means the terms and conditions for\ \ use, reproduction, distribution and modification of the Llama Materials set forth\ \ herein.\n\"Documentation\" means the specifications, manuals and documentation\ \ accompanying Llama 3.1 distributed by Meta at https://llama.meta.com/doc/overview.\n\ \"Licensee\" or \"you\" means you, or your employer or any other person or entity\ \ (if you are entering into this Agreement on such person or entity’s behalf), of\ \ the age required under applicable laws, rules or regulations to provide legal\ \ consent and that has legal authority to bind your employer or such other person\ \ or entity if you are entering in this Agreement on their behalf.\n\"Llama 3.1\"\ \ means the foundational large language models and software and algorithms, including\ \ machine-learning model code, trained model weights, inference-enabling code, training-enabling\ \ code, fine-tuning enabling code and other elements of the foregoing distributed\ \ by Meta at https://llama.meta.com/llama-downloads.\n\"Llama Materials\" means,\ \ collectively, Meta’s proprietary Llama 3.1 and Documentation (and any portion\ \ thereof) made available under this Agreement.\n\"Meta\" or \"we\" means Meta Platforms\ \ Ireland Limited (if you are located in or, if you are an entity, your principal\ \ place of business is in the EEA or Switzerland) and Meta Platforms, Inc. (if you\ \ are located outside of the EEA or Switzerland).\n \n1. License Rights and Redistribution.\n\ a. Grant of Rights. You are granted a non-exclusive, worldwide, non-transferable\ \ and royalty-free limited license under Meta’s intellectual property or other rights\ \ owned by Meta embodied in the Llama Materials to use, reproduce, distribute, copy,\ \ create derivative works of, and make modifications to the Llama Materials.\nb.\ \ Redistribution and Use.\ni. If you distribute or make available the Llama Materials\ \ (or any derivative works thereof), or a product or service (including another\ \ AI model) that contains any of them, you shall (A) provide a copy of this Agreement\ \ with any such Llama Materials; and (B) prominently display “Built with Llama”\ \ on a related website, user interface, blogpost, about page, or product documentation.\ \ If you use the Llama Materials or any outputs or results of the Llama Materials\ \ to create, train, fine tune, or otherwise improve an AI model, which is distributed\ \ or made available, you shall also include “Llama” at the beginning of any such\ \ AI model name.\nii. If you receive Llama Materials, or any derivative works thereof,\ \ from a Licensee as part of an integrated end user product, then Section 2 of\ \ this Agreement will not apply to you.\niii. You must retain in all copies of the\ \ Llama Materials that you distribute the following attribution notice within a\ \ “Notice” text file distributed as a part of such copies: “Llama 3.1 is licensed\ \ under the Llama 3.1 Community License, Copyright © Meta Platforms, Inc. All Rights\ \ Reserved.”\niv. Your use of the Llama Materials must comply with applicable laws\ \ and regulations (including trade compliance laws and regulations) and adhere to\ \ the Acceptable Use Policy for the Llama Materials (available at https://llama.meta.com/llama3_1/use-policy),\ \ which is hereby incorporated by reference into this Agreement.\n2. Additional\ \ Commercial Terms. If, on the Llama 3.1 version release date, the monthly active\ \ users of the products or services made available by or for Licensee, or Licensee’s\ \ affiliates, is greater than 700 million monthly active users in the preceding\ \ calendar month, you must request a license from Meta, which Meta may grant to\ \ you in its sole discretion, and you are not authorized to exercise any of the\ \ rights under this Agreement unless or until Meta otherwise expressly grants you\ \ such rights.\n3. Disclaimer of Warranty. UNLESS REQUIRED BY APPLICABLE LAW, THE\ \ LLAMA MATERIALS AND ANY OUTPUT AND RESULTS THEREFROM ARE PROVIDED ON AN “AS IS”\ \ BASIS, WITHOUT WARRANTIES OF ANY KIND, AND META DISCLAIMS ALL WARRANTIES OF ANY\ \ KIND, BOTH EXPRESS AND IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES\ \ OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.\ \ YOU ARE SOLELY RESPONSIBLE FOR DETERMINING THE APPROPRIATENESS OF USING OR REDISTRIBUTING\ \ THE LLAMA MATERIALS AND ASSUME ANY RISKS ASSOCIATED WITH YOUR USE OF THE LLAMA\ \ MATERIALS AND ANY OUTPUT AND RESULTS.\n4. Limitation of Liability. IN NO EVENT\ \ WILL META OR ITS AFFILIATES BE LIABLE UNDER ANY THEORY OF LIABILITY, WHETHER IN\ \ CONTRACT, TORT, NEGLIGENCE, PRODUCTS LIABILITY, OR OTHERWISE, ARISING OUT OF THIS\ \ AGREEMENT, FOR ANY LOST PROFITS OR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL,\ \ EXEMPLARY OR PUNITIVE DAMAGES, EVEN IF META OR ITS AFFILIATES HAVE BEEN ADVISED\ \ OF THE POSSIBILITY OF ANY OF THE FOREGOING.\n5. Intellectual Property.\na. No\ \ trademark licenses are granted under this Agreement, and in connection with the\ \ Llama Materials, neither Meta nor Licensee may use any name or mark owned by or\ \ associated with the other or any of its affiliates, except as required for reasonable\ \ and customary use in describing and redistributing the Llama Materials or as set\ \ forth in this Section 5(a). Meta hereby grants you a license to use “Llama” (the\ \ “Mark”) solely as required to comply with the last sentence of Section 1.b.i.\ \ You will comply with Meta’s brand guidelines (currently accessible at https://about.meta.com/brand/resources/meta/company-brand/\ \ ). All goodwill arising out of your use of the Mark will inure to the benefit\ \ of Meta.\nb. Subject to Meta’s ownership of Llama Materials and derivatives made\ \ by or for Meta, with respect to any derivative works and modifications of the\ \ Llama Materials that are made by you, as between you and Meta, you are and will\ \ be the owner of such derivative works and modifications.\nc. If you institute\ \ litigation or other proceedings against Meta or any entity (including a cross-claim\ \ or counterclaim in a lawsuit) alleging that the Llama Materials or Llama 3.1 outputs\ \ or results, or any portion of any of the foregoing, constitutes infringement of\ \ intellectual property or other rights owned or licensable by you, then any licenses\ \ granted to you under this Agreement shall terminate as of the date such litigation\ \ or claim is filed or instituted. You will indemnify and hold harmless Meta from\ \ and against any claim by any third party arising out of or related to your use\ \ or distribution of the Llama Materials.\n6. Term and Termination. The term of\ \ this Agreement will commence upon your acceptance of this Agreement or access\ \ to the Llama Materials and will continue in full force and effect until terminated\ \ in accordance with the terms and conditions herein. Meta may terminate this Agreement\ \ if you are in breach of any term or condition of this Agreement. Upon termination\ \ of this Agreement, you shall delete and cease use of the Llama Materials. Sections\ \ 3, 4 and 7 shall survive the termination of this Agreement.\n7. Governing Law\ \ and Jurisdiction. This Agreement will be governed and construed under the laws\ \ of the State of California without regard to choice of law principles, and the\ \ UN Convention on Contracts for the International Sale of Goods does not apply\ \ to this Agreement. The courts of California shall have exclusive jurisdiction\ \ of any dispute arising out of this Agreement.\n### Llama 3.1 Acceptable Use Policy\n\ Meta is committed to promoting safe and fair use of its tools and features, including\ \ Llama 3.1. If you access or use Llama 3.1, you agree to this Acceptable Use Policy\ \ (“Policy”). The most recent copy of this policy can be found at [https://llama.meta.com/llama3_1/use-policy](https://llama.meta.com/llama3_1/use-policy)\n\ #### Prohibited Uses\nWe want everyone to use Llama 3.1 safely and responsibly.\ \ You agree you will not use, or allow others to use, Llama 3.1 to:\n 1. Violate\ \ the law or others’ rights, including to:\n 1. Engage in, promote, generate,\ \ contribute to, encourage, plan, incite, or further illegal or unlawful activity\ \ or content, such as:\n 1. Violence or terrorism\n 2. Exploitation\ \ or harm to children, including the solicitation, creation, acquisition, or dissemination\ \ of child exploitative content or failure to report Child Sexual Abuse Material\n\ \ 3. Human trafficking, exploitation, and sexual violence\n 4. The\ \ illegal distribution of information or materials to minors, including obscene\ \ materials, or failure to employ legally required age-gating in connection with\ \ such information or materials.\n 5. Sexual solicitation\n 6. Any\ \ other criminal activity\n 3. Engage in, promote, incite, or facilitate the\ \ harassment, abuse, threatening, or bullying of individuals or groups of individuals\n\ \ 4. Engage in, promote, incite, or facilitate discrimination or other unlawful\ \ or harmful conduct in the provision of employment, employment benefits, credit,\ \ housing, other economic benefits, or other essential goods and services\n 5.\ \ Engage in the unauthorized or unlicensed practice of any profession including,\ \ but not limited to, financial, legal, medical/health, or related professional\ \ practices\n 6. Collect, process, disclose, generate, or infer health, demographic,\ \ or other sensitive personal or private information about individuals without rights\ \ and consents required by applicable laws\n 7. Engage in or facilitate any action\ \ or generate any content that infringes, misappropriates, or otherwise violates\ \ any third-party rights, including the outputs or results of any products or services\ \ using the Llama Materials\n 8. Create, generate, or facilitate the creation\ \ of malicious code, malware, computer viruses or do anything else that could disable,\ \ overburden, interfere with or impair the proper working, integrity, operation\ \ or appearance of a website or computer system\n2. Engage in, promote, incite,\ \ facilitate, or assist in the planning or development of activities that present\ \ a risk of death or bodily harm to individuals, including use of Llama 3.1 related\ \ to the following:\n 1. Military, warfare, nuclear industries or applications,\ \ espionage, use for materials or activities that are subject to the International\ \ Traffic Arms Regulations (ITAR) maintained by the United States Department of\ \ State\n 2. Guns and illegal weapons (including weapon development)\n 3.\ \ Illegal drugs and regulated/controlled substances\n 4. Operation of critical\ \ infrastructure, transportation technologies, or heavy machinery\n 5. Self-harm\ \ or harm to others, including suicide, cutting, and eating disorders\n 6. Any\ \ content intended to incite or promote violence, abuse, or any infliction of bodily\ \ harm to an individual\n3. Intentionally deceive or mislead others, including use\ \ of Llama 3.1 related to the following:\n 1. Generating, promoting, or furthering\ \ fraud or the creation or promotion of disinformation\n 2. Generating, promoting,\ \ or furthering defamatory content, including the creation of defamatory statements,\ \ images, or other content\n 3. Generating, promoting, or further distributing\ \ spam\n 4. Impersonating another individual without consent, authorization,\ \ or legal right\n 5. Representing that the use of Llama 3.1 or outputs are human-generated\n\ \ 6. Generating or facilitating false online engagement, including fake reviews\ \ and other means of fake online engagement\n4. Fail to appropriately disclose to\ \ end users any known dangers of your AI system\nPlease report any violation of\ \ this Policy, software “bug,” or other problems that could lead to a violation\ \ of this Policy through one of the following means:\n * Reporting issues with\ \ the model: [https://github.com/meta-llama/llama-models/issues](https://github.com/meta-llama/llama-models/issues)\n\ \ * Reporting risky content generated by the model:\n developers.facebook.com/llama_output_feedback\n\ \ * Reporting bugs and security concerns: facebook.com/whitehat/info\n * Reporting\ \ violations of the Acceptable Use Policy or unlicensed uses of Meta Llama 3: LlamaUseReport@meta.com" extra_gated_fields: First Name: text Last Name: text Date of birth: date_picker Country: country Affiliation: text Job title: type: select options: - Student - Research Graduate - AI researcher - AI developer/engineer - Reporter - Other geo: ip_location ? By clicking Submit below I accept the terms of the license and acknowledge that the information I provide will be collected stored processed and shared in accordance with the Meta Privacy Policy : checkbox extra_gated_description: The information you provide will be collected, stored, processed and shared in accordance with the [Meta Privacy Policy](https://www.facebook.com/privacy/policy/). extra_gated_button_content: Submit --- ## Model Information The Meta Llama 3.1 collection of multilingual large language models (LLMs) is a collection of pretrained and instruction tuned generative models in 8B, 70B and 405B sizes (text in/text out). The Llama 3.1 instruction tuned text only models (8B, 70B, 405B) are optimized for multilingual dialogue use cases and outperform many of the available open source and closed chat models on common industry benchmarks. **Model developer**: Meta **Model Architecture:** Llama 3.1 is an auto-regressive language model that uses an optimized transformer architecture. The tuned versions use supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF) to align with human preferences for helpfulness and safety. <table> <tr> <td> </td> <td><strong>Training Data</strong> </td> <td><strong>Params</strong> </td> <td><strong>Input modalities</strong> </td> <td><strong>Output modalities</strong> </td> <td><strong>Context length</strong> </td> <td><strong>GQA</strong> </td> <td><strong>Token count</strong> </td> <td><strong>Knowledge cutoff</strong> </td> </tr> <tr> <td rowspan="3" >Llama 3.1 (text only) </td> <td rowspan="3" >A new mix of publicly available online data. </td> <td>8B </td> <td>Multilingual Text </td> <td>Multilingual Text and code </td> <td>128k </td> <td>Yes </td> <td rowspan="3" >15T+ </td> <td rowspan="3" >December 2023 </td> </tr> <tr> <td>70B </td> <td>Multilingual Text </td> <td>Multilingual Text and code </td> <td>128k </td> <td>Yes </td> </tr> <tr> <td>405B </td> <td>Multilingual Text </td> <td>Multilingual Text and code </td> <td>128k </td> <td>Yes </td> </tr> </table> **Supported languages:** English, German, French, Italian, Portuguese, Hindi, Spanish, and Thai. **Llama 3.1 family of models**. Token counts refer to pretraining data only. All model versions use Grouped-Query Attention (GQA) for improved inference scalability. **Model Release Date:** July 23, 2024. **Status:** This is a static model trained on an offline dataset. Future versions of the tuned models will be released as we improve model safety with community feedback. **License:** A custom commercial license, the Llama 3.1 Community License, is available at: [https://github.com/meta-llama/llama-models/blob/main/models/llama3_1/LICENSE](https://github.com/meta-llama/llama-models/blob/main/models/llama3_1/LICENSE) Where to send questions or comments about the model Instructions on how to provide feedback or comments on the model can be found in the model [README](https://github.com/meta-llama/llama3). For more technical information about generation parameters and recipes for how to use Llama 3.1 in applications, please go [here](https://github.com/meta-llama/llama-recipes). ## Intended Use **Intended Use Cases** Llama 3.1 is intended for commercial and research use in multiple languages. Instruction tuned text only models are intended for assistant-like chat, whereas pretrained models can be adapted for a variety of natural language generation tasks. The Llama 3.1 model collection also supports the ability to leverage the outputs of its models to improve other models including synthetic data generation and distillation. The Llama 3.1 Community License allows for these use cases. **Out-of-scope** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in any other way that is prohibited by the Acceptable Use Policy and Llama 3.1 Community License. Use in languages beyond those explicitly referenced as supported in this model card**. **<span style="text-decoration:underline;">Note</span>: Llama 3.1 has been trained on a broader collection of languages than the 8 supported languages. Developers may fine-tune Llama 3.1 models for languages beyond the 8 supported languages provided they comply with the Llama 3.1 Community License and the Acceptable Use Policy and in such cases are responsible for ensuring that any uses of Llama 3.1 in additional languages is done in a safe and responsible manner. ## Hardware and Software **Training Factors** We used custom training libraries, Meta's custom built GPU cluster, and production infrastructure for pretraining. Fine-tuning, annotation, and evaluation were also performed on production infrastructure. **Training utilized a cumulative of** 39.3M GPU hours of computation on H100-80GB (TDP of 700W) type hardware, per the table below. Training time is the total GPU time required for training each model and power consumption is the peak power capacity per GPU device used, adjusted for power usage efficiency. **Training Greenhouse Gas Emissions** Estimated total location-based greenhouse gas emissions were **11,390** tons CO2eq for training. Since 2020, Meta has maintained net zero greenhouse gas emissions in its global operations and matched 100% of its electricity use with renewable energy, therefore the total market-based greenhouse gas emissions for training were 0 tons CO2eq. <table> <tr> <td> </td> <td><strong>Training Time (GPU hours)</strong> </td> <td><strong>Training Power Consumption (W)</strong> </td> <td><strong>Training Location-Based Greenhouse Gas Emissions</strong> <p> <strong>(tons CO2eq)</strong> </td> <td><strong>Training Market-Based Greenhouse Gas Emissions</strong> <p> <strong>(tons CO2eq)</strong> </td> </tr> <tr> <td>Llama 3.1 8B </td> <td>1.46M </td> <td>700 </td> <td>420 </td> <td>0 </td> </tr> <tr> <td>Llama 3.1 70B </td> <td>7.0M </td> <td>700 </td> <td>2,040 </td> <td>0 </td> </tr> <tr> <td>Llama 3.1 405B </td> <td>30.84M </td> <td>700 </td> <td>8,930 </td> <td>0 </td> </tr> <tr> <td>Total </td> <td>39.3M <td> <ul> </ul> </td> <td>11,390 </td> <td>0 </td> </tr> </table> The methodology used to determine training energy use and greenhouse gas emissions can be found [here](https://arxiv.org/pdf/2204.05149). Since Meta is openly releasing these models, the training energy use and greenhouse gas emissions will not be incurred by others. ## Training Data **Overview:** Llama 3.1 was pretrained on ~15 trillion tokens of data from publicly available sources. The fine-tuning data includes publicly available instruction datasets, as well as over 25M synthetically generated examples. **Data Freshness:** The pretraining data has a cutoff of December 2023. ## Benchmark scores In this section, we report the results for Llama 3.1 models on standard automatic benchmarks. For all the evaluations, we use our internal evaluations library. ### Base pretrained models <table> <tr> <td><strong>Category</strong> </td> <td><strong>Benchmark</strong> </td> <td><strong># Shots</strong> </td> <td><strong>Metric</strong> </td> <td><strong>Llama 3 8B</strong> </td> <td><strong>Llama 3.1 8B</strong> </td> <td><strong>Llama 3 70B</strong> </td> <td><strong>Llama 3.1 70B</strong> </td> <td><strong>Llama 3.1 405B</strong> </td> </tr> <tr> <td rowspan="7" >General </td> <td>MMLU </td> <td>5 </td> <td>macro_avg/acc_char </td> <td>66.7 </td> <td>66.7 </td> <td>79.5 </td> <td>79.3 </td> <td>85.2 </td> </tr> <tr> <td>MMLU-Pro (CoT) </td> <td>5 </td> <td>macro_avg/acc_char </td> <td>36.2 </td> <td>37.1 </td> <td>55.0 </td> <td>53.8 </td> <td>61.6 </td> </tr> <tr> <td>AGIEval English </td> <td>3-5 </td> <td>average/acc_char </td> <td>47.1 </td> <td>47.8 </td> <td>63.0 </td> <td>64.6 </td> <td>71.6 </td> </tr> <tr> <td>CommonSenseQA </td> <td>7 </td> <td>acc_char </td> <td>72.6 </td> <td>75.0 </td> <td>83.8 </td> <td>84.1 </td> <td>85.8 </td> </tr> <tr> <td>Winogrande </td> <td>5 </td> <td>acc_char </td> <td>- </td> <td>60.5 </td> <td>- </td> <td>83.3 </td> <td>86.7 </td> </tr> <tr> <td>BIG-Bench Hard (CoT) </td> <td>3 </td> <td>average/em </td> <td>61.1 </td> <td>64.2 </td> <td>81.3 </td> <td>81.6 </td> <td>85.9 </td> </tr> <tr> <td>ARC-Challenge </td> <td>25 </td> <td>acc_char </td> <td>79.4 </td> <td>79.7 </td> <td>93.1 </td> <td>92.9 </td> <td>96.1 </td> </tr> <tr> <td>Knowledge reasoning </td> <td>TriviaQA-Wiki </td> <td>5 </td> <td>em </td> <td>78.5 </td> <td>77.6 </td> <td>89.7 </td> <td>89.8 </td> <td>91.8 </td> </tr> <tr> <td rowspan="4" >Reading comprehension </td> <td>SQuAD </td> <td>1 </td> <td>em </td> <td>76.4 </td> <td>77.0 </td> <td>85.6 </td> <td>81.8 </td> <td>89.3 </td> </tr> <tr> <td>QuAC (F1) </td> <td>1 </td> <td>f1 </td> <td>44.4 </td> <td>44.9 </td> <td>51.1 </td> <td>51.1 </td> <td>53.6 </td> </tr> <tr> <td>BoolQ </td> <td>0 </td> <td>acc_char </td> <td>75.7 </td> <td>75.0 </td> <td>79.0 </td> <td>79.4 </td> <td>80.0 </td> </tr> <tr> <td>DROP (F1) </td> <td>3 </td> <td>f1 </td> <td>58.4 </td> <td>59.5 </td> <td>79.7 </td> <td>79.6 </td> <td>84.8 </td> </tr> </table> ### Instruction tuned models <table> <tr> <td><strong>Category</strong> </td> <td><strong>Benchmark</strong> </td> <td><strong># Shots</strong> </td> <td><strong>Metric</strong> </td> <td><strong>Llama 3 8B Instruct</strong> </td> <td><strong>Llama 3.1 8B Instruct</strong> </td> <td><strong>Llama 3 70B Instruct</strong> </td> <td><strong>Llama 3.1 70B Instruct</strong> </td> <td><strong>Llama 3.1 405B Instruct</strong> </td> </tr> <tr> <td rowspan="4" >General </td> <td>MMLU </td> <td>5 </td> <td>macro_avg/acc </td> <td>68.5 </td> <td>69.4 </td> <td>82.0 </td> <td>83.6 </td> <td>87.3 </td> </tr> <tr> <td>MMLU (CoT) </td> <td>0 </td> <td>macro_avg/acc </td> <td>65.3 </td> <td>73.0 </td> <td>80.9 </td> <td>86.0 </td> <td>88.6 </td> </tr> <tr> <td>MMLU-Pro (CoT) </td> <td>5 </td> <td>micro_avg/acc_char </td> <td>45.5 </td> <td>48.3 </td> <td>63.4 </td> <td>66.4 </td> <td>73.3 </td> </tr> <tr> <td>IFEval </td> <td> </td> <td> </td> <td>76.8 </td> <td>80.4 </td> <td>82.9 </td> <td>87.5 </td> <td>88.6 </td> </tr> <tr> <td rowspan="2" >Reasoning </td> <td>ARC-C </td> <td>0 </td> <td>acc </td> <td>82.4 </td> <td>83.4 </td> <td>94.4 </td> <td>94.8 </td> <td>96.9 </td> </tr> <tr> <td>GPQA </td> <td>0 </td> <td>em </td> <td>34.6 </td> <td>30.4 </td> <td>39.5 </td> <td>46.7 </td> <td>50.7 </td> </tr> <tr> <td rowspan="4" >Code </td> <td>HumanEval </td> <td>0 </td> <td>pass@1 </td> <td>60.4 </td> <td>72.6 </td> <td>81.7 </td> <td>80.5 </td> <td>89.0 </td> </tr> <tr> <td>MBPP ++ base version </td> <td>0 </td> <td>pass@1 </td> <td>70.6 </td> <td>72.8 </td> <td>82.5 </td> <td>86.0 </td> <td>88.6 </td> </tr> <tr> <td>Multipl-E HumanEval </td> <td>0 </td> <td>pass@1 </td> <td>- </td> <td>50.8 </td> <td>- </td> <td>65.5 </td> <td>75.2 </td> </tr> <tr> <td>Multipl-E MBPP </td> <td>0 </td> <td>pass@1 </td> <td>- </td> <td>52.4 </td> <td>- </td> <td>62.0 </td> <td>65.7 </td> </tr> <tr> <td rowspan="2" >Math </td> <td>GSM-8K (CoT) </td> <td>8 </td> <td>em_maj1@1 </td> <td>80.6 </td> <td>84.5 </td> <td>93.0 </td> <td>95.1 </td> <td>96.8 </td> </tr> <tr> <td>MATH (CoT) </td> <td>0 </td> <td>final_em </td> <td>29.1 </td> <td>51.9 </td> <td>51.0 </td> <td>68.0 </td> <td>73.8 </td> </tr> <tr> <td rowspan="4" >Tool Use </td> <td>API-Bank </td> <td>0 </td> <td>acc </td> <td>48.3 </td> <td>82.6 </td> <td>85.1 </td> <td>90.0 </td> <td>92.0 </td> </tr> <tr> <td>BFCL </td> <td>0 </td> <td>acc </td> <td>60.3 </td> <td>76.1 </td> <td>83.0 </td> <td>84.8 </td> <td>88.5 </td> </tr> <tr> <td>Gorilla Benchmark API Bench </td> <td>0 </td> <td>acc </td> <td>1.7 </td> <td>8.2 </td> <td>14.7 </td> <td>29.7 </td> <td>35.3 </td> </tr> <tr> <td>Nexus (0-shot) </td> <td>0 </td> <td>macro_avg/acc </td> <td>18.1 </td> <td>38.5 </td> <td>47.8 </td> <td>56.7 </td> <td>58.7 </td> </tr> <tr> <td>Multilingual </td> <td>Multilingual MGSM (CoT) </td> <td>0 </td> <td>em </td> <td>- </td> <td>68.9 </td> <td>- </td> <td>86.9 </td> <td>91.6 </td> </tr> </table> #### Multilingual benchmarks <table> <tr> <td><strong>Category</strong> </td> <td><strong>Benchmark</strong> </td> <td><strong>Language</strong> </td> <td><strong>Llama 3.1 8B</strong> </td> <td><strong>Llama 3.1 70B</strong> </td> <td><strong>Llama 3.1 405B</strong> </td> </tr> <tr> <td rowspan="9" ><strong>General</strong> </td> <td rowspan="9" ><strong>MMLU (5-shot, macro_avg/acc)</strong> </td> <td>Portuguese </td> <td>62.12 </td> <td>80.13 </td> <td>84.95 </td> </tr> <tr> <td>Spanish </td> <td>62.45 </td> <td>80.05 </td> <td>85.08 </td> </tr> <tr> <td>Italian </td> <td>61.63 </td> <td>80.4 </td> <td>85.04 </td> </tr> <tr> <td>German </td> <td>60.59 </td> <td>79.27 </td> <td>84.36 </td> </tr> <tr> <td>French </td> <td>62.34 </td> <td>79.82 </td> <td>84.66 </td> </tr> <tr> <td>Hindi </td> <td>50.88 </td> <td>74.52 </td> <td>80.31 </td> </tr> <tr> <td>Thai </td> <td>50.32 </td> <td>72.95 </td> <td>78.21 </td> </tr> </table> ## Responsibility & Safety As part of our Responsible release approach, we followed a three-pronged strategy to managing trust & safety risks: * Enable developers to deploy helpful, safe and flexible experiences for their target audience and for the use cases supported by Llama. * Protect developers against adversarial users aiming to exploit Llama capabilities to potentially cause harm. * Provide protections for the community to help prevent the misuse of our models. ### Responsible deployment Llama is a foundational technology designed to be used in a variety of use cases, examples on how Meta’s Llama models have been responsibly deployed can be found in our [Community Stories webpage](https://llama.meta.com/community-stories/). Our approach is to build the most helpful models enabling the world to benefit from the technology power, by aligning our model safety for the generic use cases addressing a standard set of harms. Developers are then in the driver seat to tailor safety for their use case, defining their own policy and deploying the models with the necessary safeguards in their Llama systems. Llama 3.1 was developed following the best practices outlined in our Responsible Use Guide, you can refer to the [Responsible Use Guide](https://llama.meta.com/responsible-use-guide/) to learn more. #### Llama 3.1 instruct Our main objectives for conducting safety fine-tuning are to provide the research community with a valuable resource for studying the robustness of safety fine-tuning, as well as to offer developers a readily available, safe, and powerful model for various applications to reduce the developer workload to deploy safe AI systems. For more details on the safety mitigations implemented please read the Llama 3 paper. **Fine-tuning data** We employ a multi-faceted approach to data collection, combining human-generated data from our vendors with synthetic data to mitigate potential safety risks. We’ve developed many large language model (LLM)-based classifiers that enable us to thoughtfully select high-quality prompts and responses, enhancing data quality control. **Refusals and Tone** Building on the work we started with Llama 3, we put a great emphasis on model refusals to benign prompts as well as refusal tone. We included both borderline and adversarial prompts in our safety data strategy, and modified our safety data responses to follow tone guidelines. #### Llama 3.1 systems **Large language models, including Llama 3.1, are not designed to be deployed in isolation but instead should be deployed as part of an overall AI system with additional safety guardrails as required.** Developers are expected to deploy system safeguards when building agentic systems. Safeguards are key to achieve the right helpfulness-safety alignment as well as mitigating safety and security risks inherent to the system and any integration of the model or system with external tools. As part of our responsible release approach, we provide the community with [safeguards](https://llama.meta.com/trust-and-safety/) that developers should deploy with Llama models or other LLMs, including Llama Guard 3, Prompt Guard and Code Shield. All our [reference implementations](https://github.com/meta-llama/llama-agentic-system) demos contain these safeguards by default so developers can benefit from system-level safety out-of-the-box. #### New capabilities Note that this release introduces new capabilities, including a longer context window, multilingual inputs and outputs and possible integrations by developers with third party tools. Building with these new capabilities requires specific considerations in addition to the best practices that generally apply across all Generative AI use cases. **Tool-use**: Just like in standard software development, developers are responsible for the integration of the LLM with the tools and services of their choice. They should define a clear policy for their use case and assess the integrity of the third party services they use to be aware of the safety and security limitations when using this capability. Refer to the Responsible Use Guide for best practices on the safe deployment of the third party safeguards. **Multilinguality**: Llama 3.1 supports 7 languages in addition to English: French, German, Hindi, Italian, Portuguese, Spanish, and Thai. Llama may be able to output text in other languages than those that meet performance thresholds for safety and helpfulness. We strongly discourage developers from using this model to converse in non-supported languages without implementing finetuning and system controls in alignment with their policies and the best practices shared in the Responsible Use Guide. ### Evaluations We evaluated Llama models for common use cases as well as specific capabilities. Common use cases evaluations measure safety risks of systems for most commonly built applications including chat bot, coding assistant, tool calls. We built dedicated, adversarial evaluation datasets and evaluated systems composed of Llama models and Llama Guard 3 to filter input prompt and output response. It is important to evaluate applications in context, and we recommend building dedicated evaluation dataset for your use case. Prompt Guard and Code Shield are also available if relevant to the application. Capability evaluations measure vulnerabilities of Llama models inherent to specific capabilities, for which were crafted dedicated benchmarks including long context, multilingual, tools calls, coding or memorization. **Red teaming** For both scenarios, we conducted recurring red teaming exercises with the goal of discovering risks via adversarial prompting and we used the learnings to improve our benchmarks and safety tuning datasets. We partnered early with subject-matter experts in critical risk areas to understand the nature of these real-world harms and how such models may lead to unintended harm for society. Based on these conversations, we derived a set of adversarial goals for the red team to attempt to achieve, such as extracting harmful information or reprogramming the model to act in a potentially harmful capacity. The red team consisted of experts in cybersecurity, adversarial machine learning, responsible AI, and integrity in addition to multilingual content specialists with background in integrity issues in specific geographic markets. ### Critical and other risks We specifically focused our efforts on mitigating the following critical risk areas: **1- CBRNE (Chemical, Biological, Radiological, Nuclear, and Explosive materials) helpfulness** To assess risks related to proliferation of chemical and biological weapons, we performed uplift testing designed to assess whether use of Llama 3.1 models could meaningfully increase the capabilities of malicious actors to plan or carry out attacks using these types of weapons. **2. Child Safety** Child Safety risk assessments were conducted using a team of experts, to assess the model’s capability to produce outputs that could result in Child Safety risks and inform on any necessary and appropriate risk mitigations via fine tuning. We leveraged those expert red teaming sessions to expand the coverage of our evaluation benchmarks through Llama 3 model development. For Llama 3, we conducted new in-depth sessions using objective based methodologies to assess the model risks along multiple attack vectors including the additional languages Llama 3 is trained on. We also partnered with content specialists to perform red teaming exercises assessing potentially violating content while taking account of market specific nuances or experiences. **3. Cyber attack enablement** Our cyber attack uplift study investigated whether LLMs can enhance human capabilities in hacking tasks, both in terms of skill level and speed. Our attack automation study focused on evaluating the capabilities of LLMs when used as autonomous agents in cyber offensive operations, specifically in the context of ransomware attacks. This evaluation was distinct from previous studies that considered LLMs as interactive assistants. The primary objective was to assess whether these models could effectively function as independent agents in executing complex cyber-attacks without human intervention. Our study of Llama-3.1-405B’s social engineering uplift for cyber attackers was conducted to assess the effectiveness of AI models in aiding cyber threat actors in spear phishing campaigns. Please read our Llama 3.1 Cyber security whitepaper to learn more. ### Community Generative AI safety requires expertise and tooling, and we believe in the strength of the open community to accelerate its progress. We are active members of open consortiums, including the AI Alliance, Partnership on AI and MLCommons, actively contributing to safety standardization and transparency. We encourage the community to adopt taxonomies like the MLCommons Proof of Concept evaluation to facilitate collaboration and transparency on safety and content evaluations. Our Purple Llama tools are open sourced for the community to use and widely distributed across ecosystem partners including cloud service providers. We encourage community contributions to our [Github repository](https://github.com/meta-llama/PurpleLlama). We also set up the [Llama Impact Grants](https://llama.meta.com/llama-impact-grants/) program to identify and support the most compelling applications of Meta’s Llama model for societal benefit across three categories: education, climate and open innovation. The 20 finalists from the hundreds of applications can be found [here](https://llama.meta.com/llama-impact-grants/#finalists). Finally, we put in place a set of resources including an [output reporting mechanism](https://developers.facebook.com/llama_output_feedback) and [bug bounty program](https://www.facebook.com/whitehat) to continuously improve the Llama technology with the help of the community. ## Ethical Considerations and Limitations The core values of Llama 3.1 are openness, inclusivity and helpfulness. It is meant to serve everyone, and to work for a wide range of use cases. It is thus designed to be accessible to people across many different backgrounds, experiences and perspectives. Llama 3.1 addresses users and their needs as they are, without insertion unnecessary judgment or normativity, while reflecting the understanding that even content that may appear problematic in some cases can serve valuable purposes in others. It respects the dignity and autonomy of all users, especially in terms of the values of free thought and expression that power innovation and progress. But Llama 3.1 is a new technology, and like any new technology, there are risks associated with its use. Testing conducted to date has not covered, nor could it cover, all scenarios. For these reasons, as with all LLMs, Llama 3.1’s potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate, biased or other objectionable responses to user prompts. Therefore, before deploying any applications of Llama 3.1 models, developers should perform safety testing and tuning tailored to their specific applications of the model. Please refer to available resources including our [Responsible Use Guide](https://llama.meta.com/responsible-use-guide), [Trust and Safety](https://llama.meta.com/trust-and-safety/) solutions, and other [resources](https://llama.meta.com/docs/get-started/) to learn more about responsible development.
Helsinki-NLP/opus-mt-en-it
Helsinki-NLP
"2023-08-16T11:30:05Z"
70,112
15
transformers
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "en", "it", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
"2022-03-02T23:29:04Z"
--- tags: - translation license: apache-2.0 --- ### opus-mt-en-it * source languages: en * target languages: it * OPUS readme: [en-it](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/en-it/README.md) * dataset: opus * model: transformer * pre-processing: normalization + SentencePiece * download original weights: [opus-2019-12-04.zip](https://object.pouta.csc.fi/OPUS-MT-models/en-it/opus-2019-12-04.zip) * test set translations: [opus-2019-12-04.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/en-it/opus-2019-12-04.test.txt) * test set scores: [opus-2019-12-04.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/en-it/opus-2019-12-04.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | newssyscomb2009.en.it | 30.9 | 0.606 | | newstest2009.en.it | 31.9 | 0.604 | | Tatoeba.en.it | 48.2 | 0.695 |
facebook/mask2former-swin-tiny-coco-instance
facebook
"2023-09-11T20:46:03Z"
69,964
5
transformers
[ "transformers", "pytorch", "safetensors", "mask2former", "vision", "image-segmentation", "dataset:coco", "arxiv:2112.01527", "arxiv:2107.06278", "license:other", "endpoints_compatible", "region:us" ]
image-segmentation
"2022-12-23T11:15:51Z"
--- license: other tags: - vision - image-segmentation datasets: - coco widget: - src: http://images.cocodataset.org/val2017/000000039769.jpg example_title: Cats - src: http://images.cocodataset.org/val2017/000000039770.jpg example_title: Castle --- # Mask2Former Mask2Former model trained on COCO instance segmentation (tiny-sized version, Swin backbone). It was introduced in the paper [Masked-attention Mask Transformer for Universal Image Segmentation ](https://arxiv.org/abs/2112.01527) and first released in [this repository](https://github.com/facebookresearch/Mask2Former/). Disclaimer: The team releasing Mask2Former did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description Mask2Former addresses instance, semantic and panoptic segmentation with the same paradigm: by predicting a set of masks and corresponding labels. Hence, all 3 tasks are treated as if they were instance segmentation. Mask2Former outperforms the previous SOTA, [MaskFormer](https://arxiv.org/abs/2107.06278) both in terms of performance an efficiency by (i) replacing the pixel decoder with a more advanced multi-scale deformable attention Transformer, (ii) adopting a Transformer decoder with masked attention to boost performance without without introducing additional computation and (iii) improving training efficiency by calculating the loss on subsampled points instead of whole masks. ![model image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/mask2former_architecture.png) ## Intended uses & limitations You can use this particular checkpoint for instance segmentation. See the [model hub](https://huggingface.co/models?search=mask2former) to look for other fine-tuned versions on a task that interests you. ### How to use Here is how to use this model: ```python import requests import torch from PIL import Image from transformers import AutoImageProcessor, Mask2FormerForUniversalSegmentation # load Mask2Former fine-tuned on COCO instance segmentation processor = AutoImageProcessor.from_pretrained("facebook/mask2former-swin-tiny-coco-instance") model = Mask2FormerForUniversalSegmentation.from_pretrained("facebook/mask2former-swin-tiny-coco-instance") url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) inputs = processor(images=image, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs) # model predicts class_queries_logits of shape `(batch_size, num_queries)` # and masks_queries_logits of shape `(batch_size, num_queries, height, width)` class_queries_logits = outputs.class_queries_logits masks_queries_logits = outputs.masks_queries_logits # you can pass them to processor for postprocessing result = processor.post_process_instance_segmentation(outputs, target_sizes=[image.size[::-1]])[0] # we refer to the demo notebooks for visualization (see "Resources" section in the Mask2Former docs) predicted_instance_map = result["segmentation"] ``` For more code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/master/en/model_doc/mask2former).
lmsys/vicuna-13b-v1.5
lmsys
"2024-03-17T21:09:21Z"
69,948
209
transformers
[ "transformers", "pytorch", "llama", "text-generation", "arxiv:2307.09288", "arxiv:2306.05685", "license:llama2", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
"2023-07-29T04:44:46Z"
--- inference: false license: llama2 --- # Vicuna Model Card ## Model Details Vicuna is a chat assistant trained by fine-tuning Llama 2 on user-shared conversations collected from ShareGPT. - **Developed by:** [LMSYS](https://lmsys.org/) - **Model type:** An auto-regressive language model based on the transformer architecture - **License:** Llama 2 Community License Agreement - **Finetuned from model:** [Llama 2](https://arxiv.org/abs/2307.09288) ### Model Sources - **Repository:** https://github.com/lm-sys/FastChat - **Blog:** https://lmsys.org/blog/2023-03-30-vicuna/ - **Paper:** https://arxiv.org/abs/2306.05685 - **Demo:** https://chat.lmsys.org/ ## Uses The primary use of Vicuna is research on large language models and chatbots. The primary intended users of the model are researchers and hobbyists in natural language processing, machine learning, and artificial intelligence. ## How to Get Started with the Model - Command line interface: https://github.com/lm-sys/FastChat#vicuna-weights - APIs (OpenAI API, Huggingface API): https://github.com/lm-sys/FastChat/tree/main#api ## Training Details Vicuna v1.5 is fine-tuned from Llama 2 with supervised instruction fine-tuning. The training data is around 125K conversations collected from ShareGPT.com. See more details in the "Training Details of Vicuna Models" section in the appendix of this [paper](https://arxiv.org/pdf/2306.05685.pdf). ## Evaluation ![Evaluation Results](https://github.com/lm-sys/lm-sys.github.io/blob/main/public/images/webdata/vicuna_v1.5_eval.png?raw=true) Vicuna is evaluated with standard benchmarks, human preference, and LLM-as-a-judge. See more details in this [paper](https://arxiv.org/pdf/2306.05685.pdf) and [leaderboard](https://huggingface.co/spaces/lmsys/chatbot-arena-leaderboard). ## Difference between different versions of Vicuna See [vicuna_weights_version.md](https://github.com/lm-sys/FastChat/blob/main/docs/vicuna_weights_version.md)
naufalihsan/indonesian-sbert-large
naufalihsan
"2023-10-22T04:00:55Z"
69,721
7
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
"2023-10-14T02:38:57Z"
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 360 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 4, "evaluation_steps": 1000, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 144, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
neuralmagic/Mistral-7B-Instruct-v0.3-GPTQ-4bit
neuralmagic
"2024-06-10T20:59:32Z"
69,644
15
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "base_model:mistralai/Mistral-7B-Instruct-v0.3", "base_model:quantized:mistralai/Mistral-7B-Instruct-v0.3", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "gptq", "region:us" ]
text-generation
"2024-05-23T00:33:40Z"
--- license: apache-2.0 base_model: mistralai/Mistral-7B-Instruct-v0.3 model-index: - name: Mistral-7B-Instruct-v0.3-GPTQ-4bit results: # AI2 Reasoning Challenge (25-Shot) - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm name: normalized accuracy value: 63.40 # HellaSwag (10-shot) - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm name: normalized accuracy value: 84.04 # TruthfulQA (0-shot) - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 57.48 # GSM8k (5-shot) - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc name: accuracy value: 45.41 # MMLU (5-Shot) - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc name: accuracy value: 61.07 # Winogrande (5-shot) - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc name: accuracy value: 79.08 --- # Model Card for Mistral-7B-Instruct-v0.3 quantized to 4bit weights - Weight-only quantization of [Mistral-7B-Instruct-v0.3](mistralai/Mistral-7B-Instruct-v0.3) via GPTQ to 4bits with group_size=128 - GPTQ optimized for 99.75% accuracy recovery relative to the unquantized model # Open LLM Leaderboard evaluation scores | | Mistral-7B-Instruct-v0.3 | Mistral-7B-Instruct-v0.3-GPTQ-4bit<br>(this model) | | :------------------: | :----------------------: | :------------------------------------------------: | | arc-c<br>25-shot | 63.48 | 63.40 | | mmlu<br>5-shot | 61.13 | 60.89 | | hellaswag<br>10-shot | 84.49 | 84.04 | | winogrande<br>5-shot | 79.16 | 79.08 | | gsm8k<br>5-shot | 43.37 | 45.41 | | truthfulqa<br>0-shot | 59.65 | 57.48 | | **Average<br>Accuracy** | **65.21** | **65.05** | | **Recovery** | **100%** | **99.75%** | # vLLM Inference Performance This model is ready for optimized inference using the Marlin mixed-precision kernels in vLLM: https://github.com/vllm-project/vllm Simply start this model as an inference server with: ```bash python -m vllm.entrypoints.openai.api_server --model neuralmagic/Mistral-7B-Instruct-v0.3-GPTQ-4bit ``` ![image/png](https://cdn-uploads.huggingface.co/production/uploads/60466e4b4f40b01b66151416/SC_tYXjoS3yIoOYtfqZ2E.png)
textattack/roberta-base-MNLI
textattack
"2021-05-20T22:06:43Z"
69,575
2
transformers
[ "transformers", "pytorch", "jax", "roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
"2022-03-02T23:29:05Z"
Entry not found
Delphia/twitter-spam-classifier
Delphia
"2024-04-02T19:56:43Z"
69,484
5
transformers
[ "transformers", "safetensors", "bert", "text-classification", "autotrain", "dataset:autotrain-57208-4mv8z/autotrain-data", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
"2024-03-05T21:50:23Z"
--- tags: - autotrain - text-classification widget: - text: "I love AutoTrain" datasets: - autotrain-57208-4mv8z/autotrain-data --- # Model Trained Using AutoTrain - Problem type: Text Classification Model trained on "Tesla" related tweets from X/Twitter to filter out spam tweets based on trolling, profanity, extreme political views, etc. 0 - Valid 1 - Spam ## Validation Metrics loss: 0.4916948974132538 f1: 0.8059701492537313 precision: 0.782608695652174 recall: 0.8307692307692308 auc: 0.8416783216783217 accuracy: 0.7833333333333333
Casual-Autopsy/L3-Umbral-Mind-RP-v3.0-8B
Casual-Autopsy
"2024-07-12T02:07:45Z"
69,387
17
transformers
[ "transformers", "safetensors", "llama", "text-generation", "mergekit", "merge", "conversational", "base_model:Cas-Warehouse/Llama-3-MopeyMule-Blackroot-8B", "base_model:merge:Cas-Warehouse/Llama-3-MopeyMule-Blackroot-8B", "base_model:Cas-Warehouse/Llama-3-Mopeyfied-Psychology-8B", "base_model:merge:Cas-Warehouse/Llama-3-Mopeyfied-Psychology-8B", "base_model:Cas-Warehouse/Llama-3-Mopeyfied-Psychology-v2", "base_model:merge:Cas-Warehouse/Llama-3-Mopeyfied-Psychology-v2", "base_model:Cas-Warehouse/Llama-3-SOVL-MopeyMule-8B", "base_model:merge:Cas-Warehouse/Llama-3-SOVL-MopeyMule-8B", "base_model:Cas-Warehouse/Llama-3-SOVL-MopeyMule-Blackroot-8B", "base_model:merge:Cas-Warehouse/Llama-3-SOVL-MopeyMule-Blackroot-8B", "base_model:Casual-Autopsy/L3-Umbral-Mind-RP-v0.3-8B", "base_model:merge:Casual-Autopsy/L3-Umbral-Mind-RP-v0.3-8B", "base_model:Casual-Autopsy/L3-Umbral-Mind-RP-v1.0-8B", "base_model:merge:Casual-Autopsy/L3-Umbral-Mind-RP-v1.0-8B", "base_model:Casual-Autopsy/L3-Umbral-Mind-RP-v2.0-8B", "base_model:merge:Casual-Autopsy/L3-Umbral-Mind-RP-v2.0-8B", "base_model:ChaoticNeutrals/Poppy_Porpoise-1.0-L3-8B", "base_model:merge:ChaoticNeutrals/Poppy_Porpoise-1.0-L3-8B", "base_model:Magpie-Align/Llama-3-8B-WizardLM-196K", "base_model:merge:Magpie-Align/Llama-3-8B-WizardLM-196K", "base_model:Nitral-AI/Hathor_Tahsin-L3-8B-v0.85", "base_model:merge:Nitral-AI/Hathor_Tahsin-L3-8B-v0.85", "base_model:ResplendentAI/Nymph_8B", "base_model:merge:ResplendentAI/Nymph_8B", "base_model:aifeifei798/llama3-8B-DarkIdol-2.1-Uncensored-32K", "base_model:merge:aifeifei798/llama3-8B-DarkIdol-2.1-Uncensored-32K", "base_model:bluuwhale/L3-SthenoMaidBlackroot-8B-V1", "base_model:merge:bluuwhale/L3-SthenoMaidBlackroot-8B-V1", "base_model:crestf411/L3-8B-sunfall-v0.4-stheno-v3.2", "base_model:merge:crestf411/L3-8B-sunfall-v0.4-stheno-v3.2", "base_model:invisietch/EtherealRainbow-v0.3-8B", "base_model:merge:invisietch/EtherealRainbow-v0.3-8B", "base_model:migtissera/Llama-3-8B-Synthia-v3.5", "base_model:merge:migtissera/Llama-3-8B-Synthia-v3.5", "base_model:tannedbum/L3-Nymeria-8B", "base_model:merge:tannedbum/L3-Nymeria-8B", "base_model:tannedbum/L3-Nymeria-Maid-8B", "base_model:merge:tannedbum/L3-Nymeria-Maid-8B", "base_model:v000000/L3-8B-Poppy-Sunspice", "base_model:merge:v000000/L3-8B-Poppy-Sunspice", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2024-07-10T08:17:33Z"
--- base_model: - Casual-Autopsy/L3-Umbral-Mind-RP-v2.0-8B - Cas-Warehouse/Llama-3-MopeyMule-Blackroot-8B - tannedbum/L3-Nymeria-Maid-8B - bluuwhale/L3-SthenoMaidBlackroot-8B-V1 - tannedbum/L3-Nymeria-8B - Cas-Warehouse/Llama-3-SOVL-MopeyMule-8B - Casual-Autopsy/L3-Umbral-Mind-RP-v1.0-8B - Cas-Warehouse/Llama-3-Mopeyfied-Psychology-v2 - migtissera/Llama-3-8B-Synthia-v3.5 - Cas-Warehouse/Llama-3-SOVL-MopeyMule-Blackroot-8B - v000000/L3-8B-Poppy-Sunspice - Magpie-Align/Llama-3-8B-WizardLM-196K - Cas-Warehouse/Llama-3-Mopeyfied-Psychology-8B - Casual-Autopsy/L3-Umbral-Mind-RP-v0.3-8B - invisietch/EtherealRainbow-v0.3-8B - crestf411/L3-8B-sunfall-v0.4-stheno-v3.2 - aifeifei798/llama3-8B-DarkIdol-2.1-Uncensored-32K - ChaoticNeutrals/Poppy_Porpoise-1.0-L3-8B - Nitral-AI/Hathor_Tahsin-L3-8B-v0.85 - Casual-Autopsy/Umbral-Mind-6 - ResplendentAI/Nymph_8B library_name: transformers tags: - mergekit - merge --- <img src="https://huggingface.co/Casual-Autopsy/L3-Umbral-Mind-RP-v3-8B/resolve/main/63073798_p0_master1200.jpg" style="display: block; margin: auto;"> Image by ろ47 # Merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details The goal of this merge was to make an RP model better suited for role-plays with heavy themes such as but not limited to: - Mental illness - Self-harm - Trauma - Suicide I hated how RP models tended to be overly positive and hopeful with role-plays involving such themes, but thanks to [failspy/Llama-3-8B-Instruct-MopeyMule](https://huggingface.co/failspy/Llama-3-8B-Instruct-MopeyMule) this problem has been lessened considerably. If you're an enjoyer of savior/reverse savior type role-plays like myself, then this model is for you. ### Usage Info This model is meant to be used with asterisks/quotes RPing formats, any other format that isn't asterisks/quotes is likely to cause issues ### Quants * Weighted GGUFs by [mradermacher](https://huggingface.co/mradermacher/L3-Umbral-Mind-RP-v3.0-8B-i1-GGUF) * Static GGUFs by [mradermacher](https://huggingface.co/mradermacher/L3-Umbral-Mind-RP-v3.0-8B-GGUF) ### Models Merged The following models were included in the merge: * [Casual-Autopsy/L3-Umbral-Mind-RP-v2.0-8B](https://huggingface.co/Casual-Autopsy/L3-Umbral-Mind-RP-v2.0-8B) * [Cas-Warehouse/Llama-3-MopeyMule-Blackroot-8B](https://huggingface.co/Cas-Warehouse/Llama-3-MopeyMule-Blackroot-8B) * [tannedbum/L3-Nymeria-Maid-8B](https://huggingface.co/tannedbum/L3-Nymeria-Maid-8B) * [bluuwhale/L3-SthenoMaidBlackroot-8B-V1](https://huggingface.co/bluuwhale/L3-SthenoMaidBlackroot-8B-V1) * [tannedbum/L3-Nymeria-8B](https://huggingface.co/tannedbum/L3-Nymeria-8B) * [Cas-Warehouse/Llama-3-SOVL-MopeyMule-8B](https://huggingface.co/Cas-Warehouse/Llama-3-SOVL-MopeyMule-8B) * [Casual-Autopsy/L3-Umbral-Mind-RP-v1.0-8B](https://huggingface.co/Casual-Autopsy/L3-Umbral-Mind-RP-v1.0-8B) * [Cas-Warehouse/Llama-3-Mopeyfied-Psychology-v2](https://huggingface.co/Cas-Warehouse/Llama-3-Mopeyfied-Psychology-v2) * [migtissera/Llama-3-8B-Synthia-v3.5](https://huggingface.co/migtissera/Llama-3-8B-Synthia-v3.5) * [Cas-Warehouse/Llama-3-SOVL-MopeyMule-Blackroot-8B](https://huggingface.co/Cas-Warehouse/Llama-3-SOVL-MopeyMule-Blackroot-8B) * [v000000/L3-8B-Poppy-Sunspice](https://huggingface.co/v000000/L3-8B-Poppy-Sunspice) * [Magpie-Align/Llama-3-8B-WizardLM-196K](https://huggingface.co/Magpie-Align/Llama-3-8B-WizardLM-196K) * [Cas-Warehouse/Llama-3-Mopeyfied-Psychology-8B](https://huggingface.co/Cas-Warehouse/Llama-3-Mopeyfied-Psychology-8B) * [Casual-Autopsy/L3-Umbral-Mind-RP-v0.3-8B](https://huggingface.co/Casual-Autopsy/L3-Umbral-Mind-RP-v0.3-8B) * [invisietch/EtherealRainbow-v0.3-8B](https://huggingface.co/invisietch/EtherealRainbow-v0.3-8B) * [crestf411/L3-8B-sunfall-v0.4-stheno-v3.2](https://huggingface.co/crestf411/L3-8B-sunfall-v0.4-stheno-v3.2) * [aifeifei798/llama3-8B-DarkIdol-2.1-Uncensored-32K](https://huggingface.co/aifeifei798/llama3-8B-DarkIdol-2.1-Uncensored-32K) * [ChaoticNeutrals/Poppy_Porpoise-1.0-L3-8B](https://huggingface.co/ChaoticNeutrals/Poppy_Porpoise-1.0-L3-8B) * [Nitral-AI/Hathor_Tahsin-L3-8B-v0.85](https://huggingface.co/Nitral-AI/Hathor_Tahsin-L3-8B-v0.85) * [ResplendentAI/Nymph_8B](https://huggingface.co/ResplendentAI/Nymph_8B) ## Secret Sauce The following YAML configurations were used to produce this model: ### Umbral-Mind-1-pt.1 ```yaml models: - model: Casual-Autopsy/L3-Umbral-Mind-RP-v2.0-8B - model: Cas-Warehouse/Llama-3-MopeyMule-Blackroot-8B parameters: density: 0.5 weight: [0.33, 0.0825, 0.0825, 0.0825, 0.0825] - model: tannedbum/L3-Nymeria-Maid-8B parameters: density: 0.5 weight: [0.0825, 0.33, 0.0825, 0.0825, 0.0825] - model: bluuwhale/L3-SthenoMaidBlackroot-8B-V1 parameters: density: 0.5 weight: [0.0825, 0.0825, 0.33, 0.0825, 0.0825] - model: tannedbum/L3-Nymeria-8B parameters: density: 0.5 weight: [0.0825, 0.0825, 0.0825, 0.33, 0.0825] - model: Cas-Warehouse/Llama-3-SOVL-MopeyMule-8B parameters: density: 0.5 weight: [0.0825, 0.0825, 0.0825, 0.0825, 0.33] merge_method: dare_ties base_model: Casual-Autopsy/L3-Umbral-Mind-RP-v2.0-8B parameters: normalize: false int8_mask: true dtype: bfloat16 ``` ### Umbral-Mind-1-pt.2 ```yaml models: - model: Casual-Autopsy/L3-Umbral-Mind-RP-v2.0-8B - model: Cas-Warehouse/Llama-3-MopeyMule-Blackroot-8B parameters: gamma: 0.01 density: 0.9 weight: [0.0825, 0.0825, 0.0825, 0.0825, 0.33] - model: tannedbum/L3-Nymeria-Maid-8B parameters: gamma: 0.01 density: 0.9 weight: [0.0825, 0.0825, 0.0825, 0.33, 0.0825] - model: bluuwhale/L3-SthenoMaidBlackroot-8B-V1 parameters: gamma: 0.01 density: 0.9 weight: [0.0825, 0.0825, 0.33, 0.0825, 0.0825] - model: tannedbum/L3-Nymeria-8B parameters: gamma: 0.01 density: 0.9 weight: [0.0825, 0.33, 0.0825, 0.0825, 0.0825] - model: Cas-Warehouse/Llama-3-SOVL-MopeyMule-8B parameters: gamma: 0.01 density: 0.9 weight: [0.33, 0.0825, 0.0825, 0.0825, 0.0825] merge_method: breadcrumbs_ties base_model: Casual-Autopsy/L3-Umbral-Mind-RP-v2.0-8B parameters: normalize: false int8_mask: true dtype: bfloat16 ``` ### Umbral-Mind-1 ```yaml models: - model: Casual-Autopsy/Umbral-Mind-1-pt.1 - model: Casual-Autopsy/Umbral-Mind-1-pt.2 merge_method: slerp base_model: Casual-Autopsy/Umbral-Mind-1-pt.1 parameters: t: - filter: self_attn value: [0.5, 0.3, 0.7, 0.5, 0.7, 0.3, 0.5, 0.3, 0.7, 0.5, 0.7, 0.3, 0.5] - filter: mlp value: [0.5, 0.7, 0.3, 0.5, 0.3, 0.7, 0.5, 0.7, 0.3, 0.5, 0.3, 0.7, 0.5] - value: 0.5 dtype: bfloat16 ``` ### Umbral-Mind-2-pt.1 ```yaml models: - model: Casual-Autopsy/L3-Umbral-Mind-RP-v1.0-8B - model: Cas-Warehouse/Llama-3-Mopeyfied-Psychology-v2 parameters: density: 0.5 weight: [0.33, 0.0825, 0.0825, 0.0825, 0.0825] - model: migtissera/Llama-3-8B-Synthia-v3.5 parameters: density: 0.5 weight: [0.0825, 0.33, 0.0825, 0.0825, 0.0825] - model: Cas-Warehouse/Llama-3-SOVL-MopeyMule-Blackroot-8B parameters: density: 0.5 weight: [0.0825, 0.0825, 0.33, 0.0825, 0.0825] - model: v000000/L3-8B-Poppy-Sunspice parameters: density: 0.5 weight: [0.0825, 0.0825, 0.0825, 0.33, 0.0825] - model: Cas-Warehouse/Llama-3-Mopeyfied-Psychology-8B parameters: density: 0.5 weight: [0.0825, 0.0825, 0.0825, 0.0825, 0.33] merge_method: dare_ties base_model: Casual-Autopsy/L3-Umbral-Mind-RP-v1.0-8B parameters: normalize: false int8_mask: true dtype: bfloat16 ``` ### Umbral-Mind-2-pt.2 ```yaml models: - model: Casual-Autopsy/L3-Umbral-Mind-RP-v1.0-8B - model: Cas-Warehouse/Llama-3-Mopeyfied-Psychology-v2 parameters: gamma: 0.01 density: 0.9 weight: [0.0825, 0.0825, 0.0825, 0.0825, 0.33] - model: migtissera/Llama-3-8B-Synthia-v3.5 parameters: gamma: 0.01 density: 0.9 weight: [0.0825, 0.0825, 0.0825, 0.33, 0.0825] - model: Cas-Warehouse/Llama-3-SOVL-MopeyMule-Blackroot-8B parameters: gamma: 0.01 density: 0.9 weight: [0.0825, 0.0825, 0.33, 0.0825, 0.0825] - model: Magpie-Align/Llama-3-8B-WizardLM-196K parameters: gamma: 0.01 density: 0.9 weight: [0.0825, 0.33, 0.0825, 0.0825, 0.0825] - model: Cas-Warehouse/Llama-3-Mopeyfied-Psychology-8B parameters: gamma: 0.01 density: 0.9 weight: [0.33, 0.0825, 0.0825, 0.0825, 0.0825] merge_method: breadcrumbs_ties base_model: Casual-Autopsy/L3-Umbral-Mind-RP-v1.0-8B parameters: normalize: false int8_mask: true dtype: bfloat16 ``` ### Umbral-Mind-2 ```yaml models: - model: Casual-Autopsy/Umbral-Mind-2-pt.1 - model: Casual-Autopsy/Umbral-Mind-2-pt.2 merge_method: slerp base_model: Casual-Autopsy/Umbral-Mind-2-pt.1 parameters: t: - filter: self_attn value: [0.5, 0.3, 0.7, 0.5, 0.7, 0.3, 0.5, 0.3, 0.7, 0.5, 0.7, 0.3, 0.5] - filter: mlp value: [0.5, 0.7, 0.3, 0.5, 0.3, 0.7, 0.5, 0.7, 0.3, 0.5, 0.3, 0.7, 0.5] - value: 0.5 dtype: bfloat16 ``` ### Umbral-Mind-3-pt.1 ```yaml models: - model: Casual-Autopsy/L3-Umbral-Mind-RP-v0.3-8B - model: Cas-Warehouse/Llama-3-SOVL-MopeyMule-8B parameters: density: 0.5 weight: [0.33, 0.0825, 0.0825, 0.0825, 0.0825] - model: invisietch/EtherealRainbow-v0.3-8B parameters: density: 0.5 weight: [0.0825, 0.33, 0.0825, 0.0825, 0.0825] - model: bluuwhale/L3-SthenoMaidBlackroot-8B-V1 parameters: density: 0.5 weight: [0.0825, 0.0825, 0.33, 0.0825, 0.0825] - model: crestf411/L3-8B-sunfall-v0.4-stheno-v3.2 parameters: density: 0.5 weight: [0.0825, 0.0825, 0.0825, 0.33, 0.0825] - model: Cas-Warehouse/Llama-3-MopeyMule-Blackroot-8B parameters: density: 0.5 weight: [0.0825, 0.0825, 0.0825, 0.0825, 0.33] merge_method: dare_ties base_model: Casual-Autopsy/L3-Umbral-Mind-RP-v0.3-8B parameters: normalize: false int8_mask: true dtype: bfloat16 ``` ### Umbral-Mind-3-pt.2 ```yaml models: - model: Casual-Autopsy/L3-Umbral-Mind-RP-v0.3-8B - model: Cas-Warehouse/Llama-3-SOVL-MopeyMule-8B parameters: gamma: 0.01 density: 0.9 weight: [0.0825, 0.0825, 0.0825, 0.0825, 0.33] - model: invisietch/EtherealRainbow-v0.3-8B parameters: gamma: 0.01 density: 0.9 weight: [0.0825, 0.0825, 0.0825, 0.33, 0.0825] - model: bluuwhale/L3-SthenoMaidBlackroot-8B-V1 parameters: gamma: 0.01 density: 0.9 weight: [0.0825, 0.0825, 0.33, 0.0825, 0.0825] - model: crestf411/L3-8B-sunfall-v0.4-stheno-v3.2 parameters: gamma: 0.01 density: 0.9 weight: [0.0825, 0.33, 0.0825, 0.0825, 0.0825] - model: Cas-Warehouse/Llama-3-MopeyMule-Blackroot-8B parameters: gamma: 0.01 density: 0.9 weight: [0.33, 0.0825, 0.0825, 0.0825, 0.0825] merge_method: breadcrumbs_ties base_model: Casual-Autopsy/L3-Umbral-Mind-RP-v0.3-8B parameters: normalize: false int8_mask: true dtype: bfloat16 ``` ### Umbral-Mind-3 ```yaml models: - model: Casual-Autopsy/Umbral-Mind-3-pt.1 - model: Casual-Autopsy/Umbral-Mind-3-pt.2 merge_method: slerp base_model: Casual-Autopsy/Umbral-Mind-3-pt.1 parameters: t: - filter: self_attn value: [0.5, 0.3, 0.7, 0.5, 0.7, 0.3, 0.5, 0.3, 0.7, 0.5, 0.7, 0.3, 0.5] - filter: mlp value: [0.5, 0.7, 0.3, 0.5, 0.3, 0.7, 0.5, 0.7, 0.3, 0.5, 0.3, 0.7, 0.5] - value: 0.5 dtype: bfloat16 ``` ### Umbral-Mind-4 ```yaml models: - model: Casual-Autopsy/Umbral-Mind-1 - model: Casual-Autopsy/Umbral-Mind-3 merge_method: slerp base_model: Casual-Autopsy/Umbral-Mind-1 parameters: t: - value: [0.1, 0.15, 0.2, 0.4, 0.6, 0.4, 0.2, 0.15, 0.1] dtype: bfloat16 ``` ### Umbral-Mind-5 ```yaml models: - model: Casual-Autopsy/Umbral-Mind-4 - model: Casual-Autopsy/Umbral-Mind-2 merge_method: slerp base_model: Casual-Autopsy/Umbral-Mind-4 parameters: t: - value: [0.7, 0.5, 0.3, 0.25, 0.2, 0.25, 0.3, 0.5, 0.7] embed_slerp: true dtype: bfloat16 ``` ### Umbral-Mind-6 ```yaml models: - model: mergekit-community/Umbral-Mind-5 - model: Casual-Autopsy/Mopey-Omelette merge_method: slerp base_model: mergekit-community/Umbral-Mind-5 parameters: t: - value: [0.2, 0.25, 0.3, 0.4, 0.3, 0.25, 0.2, 0.25, 0.3, 0.4, 0.3, 0.25, 0.2] embed_slerp: true dtype: bfloat16 ``` ### Casual-Autopsy/L3-Umbral-Mind-RP-v3.0-8B ```yaml models: - model: Casual-Autopsy/Umbral-Mind-6 - model: aifeifei798/llama3-8B-DarkIdol-2.1-Uncensored-32K parameters: weight: [0.02, -0.01, -0.01, 0.02] - model: ResplendentAI/Nymph_8B parameters: weight: [-0.01, 0.02, 0.02, -0.01] - model: ChaoticNeutrals/Poppy_Porpoise-1.0-L3-8B parameters: weight: [-0.01, 0.02, 0.02, -0.01] - model: Nitral-AI/Hathor_Tahsin-L3-8B-v0.85 parameters: weight: [0.02, -0.01, -0.01, 0.02] merge_method: task_arithmetic base_model: Casual-Autopsy/Umbral-Mind-6 parameters: normalize: false dtype: bfloat16 ```
01-ai/Yi-1.5-34B-Chat-16K
01-ai
"2024-06-26T10:42:48Z"
69,312
27
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:2403.04652", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2024-05-15T10:45:46Z"
--- license: apache-2.0 --- <div align="center"> <picture> <img src="https://raw.githubusercontent.com/01-ai/Yi/main/assets/img/Yi_logo_icon_light.svg" width="150px"> </picture> </div> <p align="center"> <a href="https://github.com/01-ai">🐙 GitHub</a> • <a href="https://discord.gg/hYUwWddeAu">👾 Discord</a> • <a href="https://twitter.com/01ai_yi">🐤 Twitter</a> • <a href="https://github.com/01-ai/Yi-1.5/issues/2">💬 WeChat</a> <br/> <a href="https://arxiv.org/abs/2403.04652">📝 Paper</a> • <a href="https://01-ai.github.io/">💪 Tech Blog</a> • <a href="https://github.com/01-ai/Yi/tree/main?tab=readme-ov-file#faq">🙌 FAQ</a> • <a href="https://github.com/01-ai/Yi/tree/main?tab=readme-ov-file#learning-hub">📗 Learning Hub</a> </p> # Intro Yi-1.5 is an upgraded version of Yi. It is continuously pre-trained on Yi with a high-quality corpus of 500B tokens and fine-tuned on 3M diverse fine-tuning samples. Compared with Yi, Yi-1.5 delivers stronger performance in coding, math, reasoning, and instruction-following capability, while still maintaining excellent capabilities in language understanding, commonsense reasoning, and reading comprehension. <div align="center"> Model | Context Length | Pre-trained Tokens | :------------: | :------------: | :------------: | | Yi-1.5 | 4K, 16K, 32K | 3.6T </div> # Models - Chat models <div align="center"> | Name | Download | | --------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------- | | Yi-1.5-34B-Chat | • [🤗 Hugging Face](https://huggingface.co/collections/01-ai/yi-15-2024-05-663f3ecab5f815a3eaca7ca8) • [🤖 ModelScope](https://www.modelscope.cn/organization/01ai) • [🟣 wisemodel](https://wisemodel.cn/organization/01.AI)| | Yi-1.5-34B-Chat-16K | • [🤗 Hugging Face](https://huggingface.co/collections/01-ai/yi-15-2024-05-663f3ecab5f815a3eaca7ca8) • [🤖 ModelScope](https://www.modelscope.cn/organization/01ai) • [🟣 wisemodel](https://wisemodel.cn/organization/01.AI) | | Yi-1.5-9B-Chat | • [🤗 Hugging Face](https://huggingface.co/collections/01-ai/yi-15-2024-05-663f3ecab5f815a3eaca7ca8) • [🤖 ModelScope](https://www.modelscope.cn/organization/01ai) • [🟣 wisemodel](https://wisemodel.cn/organization/01.AI) | | Yi-1.5-9B-Chat-16K | • [🤗 Hugging Face](https://huggingface.co/collections/01-ai/yi-15-2024-05-663f3ecab5f815a3eaca7ca8) • [🤖 ModelScope](https://www.modelscope.cn/organization/01ai) • [🟣 wisemodel](https://wisemodel.cn/organization/01.AI) | | Yi-1.5-6B-Chat | • [🤗 Hugging Face](https://huggingface.co/collections/01-ai/yi-15-2024-05-663f3ecab5f815a3eaca7ca8) • [🤖 ModelScope](https://www.modelscope.cn/organization/01ai) • [🟣 wisemodel](https://wisemodel.cn/organization/01.AI) | </div> - Base models <div align="center"> | Name | Download | | ---------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------- | | Yi-1.5-34B | • [🤗 Hugging Face](https://huggingface.co/collections/01-ai/yi-15-2024-05-663f3ecab5f815a3eaca7ca8) • [🤖 ModelScope](https://www.modelscope.cn/organization/01ai) • [🟣 wisemodel](https://wisemodel.cn/organization/01.AI) | | Yi-1.5-34B-32K | • [🤗 Hugging Face](https://huggingface.co/collections/01-ai/yi-15-2024-05-663f3ecab5f815a3eaca7ca8) • [🤖 ModelScope](https://www.modelscope.cn/organization/01ai) • [🟣 wisemodel](https://wisemodel.cn/organization/01.AI) | | Yi-1.5-9B | • [🤗 Hugging Face](https://huggingface.co/collections/01-ai/yi-15-2024-05-663f3ecab5f815a3eaca7ca8) • [🤖 ModelScope](https://www.modelscope.cn/organization/01ai) • [🟣 wisemodel](https://wisemodel.cn/organization/01.AI) | | Yi-1.5-9B-32K | • [🤗 Hugging Face](https://huggingface.co/collections/01-ai/yi-15-2024-05-663f3ecab5f815a3eaca7ca8) • [🤖 ModelScope](https://www.modelscope.cn/organization/01ai) • [🟣 wisemodel](https://wisemodel.cn/organization/01.AI) | | Yi-1.5-6B | • [🤗 Hugging Face](https://huggingface.co/collections/01-ai/yi-15-2024-05-663f3ecab5f815a3eaca7ca8) • [🤖 ModelScope](https://www.modelscope.cn/organization/01ai) • [🟣 wisemodel](https://wisemodel.cn/organization/01.AI) | </div> # Benchmarks - Chat models Yi-1.5-34B-Chat is on par with or excels beyond larger models in most benchmarks. ![image/png](https://cdn-uploads.huggingface.co/production/uploads/656d9adce8bf55919aca7c3f/KcsJ9Oc1VnEmfCDEJc5cd.png) Yi-1.5-9B-Chat is the top performer among similarly sized open-source models. ![image/png](https://cdn-uploads.huggingface.co/production/uploads/656d9adce8bf55919aca7c3f/xf6pLg5jqRCwjlh6m3t6_.png) - Base models Yi-1.5-34B is on par with or excels beyond larger models in some benchmarks. ![image/png](https://cdn-uploads.huggingface.co/production/uploads/656d9adce8bf55919aca7c3f/BwU7QM-03dZvZzwdIE1xY.png) Yi-1.5-9B is the top performer among similarly sized open-source models. ![image/png](https://cdn-uploads.huggingface.co/production/uploads/656d9adce8bf55919aca7c3f/y-EYSYPT-3aWLJ0x8R94F.png) # Quick Start For getting up and running with Yi-1.5 models quickly, see [README](https://github.com/01-ai/Yi-1.5).
vidore/colqwen2-v0.1
vidore
"2024-11-08T18:53:58Z"
69,265
132
colpali
[ "colpali", "safetensors", "vidore", "vidore-experimental", "en", "arxiv:2004.12832", "arxiv:2407.01449", "arxiv:2106.09685", "base_model:vidore/colqwen2-base", "base_model:finetune:vidore/colqwen2-base", "license:mit", "region:us" ]
null
"2024-09-26T21:23:50Z"
--- license: mit library_name: colpali base_model: vidore/colqwen2-base language: - en tags: - colpali - vidore - vidore-experimental new_version: vidore/colqwen2-v1.0 --- # ColQwen2: Visual Retriever based on Qwen2-VL-2B-Instruct with ColBERT strategy ColQwen is a model based on a novel model architecture and training strategy based on Vision Language Models (VLMs) to efficiently index documents from their visual features. It is a [Qwen2-VL-2B](https://huggingface.co/Qwen/Qwen2-VL-2B-Instruct) extension that generates [ColBERT](https://arxiv.org/abs/2004.12832)- style multi-vector representations of text and images. It was introduced in the paper [ColPali: Efficient Document Retrieval with Vision Language Models](https://arxiv.org/abs/2407.01449) and first released in [this repository](https://github.com/ManuelFay/colpali) This version is the untrained base version to guarantee deterministic projection layer initialization. <p align="center"><img width=800 src="https://github.com/illuin-tech/colpali/blob/main/assets/colpali_architecture.webp?raw=true"/></p> ## Version specificity This model takes dynamic image resolutions in input and does not resize them, changing their aspect ratio as in ColPali. Maximal resolution is set so that 768 image patches are created at most. Experiments show clear improvements with larger amounts of image patches, at the cost of memory requirements. This version is trained with `colpali-engine==0.3.1`. Data is the same as the ColPali data described in the paper. ## Model Training ### Dataset Our training dataset of 127,460 query-page pairs is comprised of train sets of openly available academic datasets (63%) and a synthetic dataset made up of pages from web-crawled PDF documents and augmented with VLM-generated (Claude-3 Sonnet) pseudo-questions (37%). Our training set is fully English by design, enabling us to study zero-shot generalization to non-English languages. We explicitly verify no multi-page PDF document is used both [*ViDoRe*](https://huggingface.co/collections/vidore/vidore-benchmark-667173f98e70a1c0fa4db00d) and in the train set to prevent evaluation contamination. A validation set is created with 2% of the samples to tune hyperparameters. *Note: Multilingual data is present in the pretraining corpus of the language model and most probably in the multimodal training.* ### Parameters All models are trained for 1 epoch on the train set. Unless specified otherwise, we train models in `bfloat16` format, use low-rank adapters ([LoRA](https://arxiv.org/abs/2106.09685)) with `alpha=32` and `r=32` on the transformer layers from the language model, as well as the final randomly initialized projection layer, and use a `paged_adamw_8bit` optimizer. We train on an 8 GPU setup with data parallelism, a learning rate of 5e-5 with linear decay with 2.5% warmup steps, and a batch size of 32. ## Usage Make sure `colpali-engine` is installed from source or with a version superior to 0.3.1. `transformers` version must be > 4.45.0. ```bash pip install git+https://github.com/illuin-tech/colpali ``` ```python import torch from PIL import Image from colpali_engine.models import ColQwen2, ColQwen2Processor model = ColQwen2.from_pretrained( "vidore/colqwen2-v0.1", torch_dtype=torch.bfloat16, device_map="cuda:0", # or "mps" if on Apple Silicon ).eval() processor = ColQwen2Processor.from_pretrained("vidore/colqwen2-v0.1") # Your inputs images = [ Image.new("RGB", (32, 32), color="white"), Image.new("RGB", (16, 16), color="black"), ] queries = [ "Is attention really all you need?", "What is the amount of bananas farmed in Salvador?", ] # Process the inputs batch_images = processor.process_images(images).to(model.device) batch_queries = processor.process_queries(queries).to(model.device) # Forward pass with torch.no_grad(): image_embeddings = model(**batch_images) query_embeddings = model(**batch_queries) scores = processor.score_multi_vector(query_embeddings, image_embeddings) ``` ## Limitations - **Focus**: The model primarily focuses on PDF-type documents and high-ressources languages, potentially limiting its generalization to other document types or less represented languages. - **Support**: The model relies on multi-vector retreiving derived from the ColBERT late interaction mechanism, which may require engineering efforts to adapt to widely used vector retrieval frameworks that lack native multi-vector support. ## License ColQwen2's vision language backbone model (Qwen2-VL) is under `apache2.0` license. The adapters attached to the model are under MIT license. ## Contact - Manuel Faysse: manuel.faysse@illuin.tech - Hugues Sibille: hugues.sibille@illuin.tech - Tony Wu: tony.wu@illuin.tech ## Citation If you use any datasets or models from this organization in your research, please cite the original dataset as follows: ```bibtex @misc{faysse2024colpaliefficientdocumentretrieval, title={ColPali: Efficient Document Retrieval with Vision Language Models}, author={Manuel Faysse and Hugues Sibille and Tony Wu and Bilel Omrani and Gautier Viaud and Céline Hudelot and Pierre Colombo}, year={2024}, eprint={2407.01449}, archivePrefix={arXiv}, primaryClass={cs.IR}, url={https://arxiv.org/abs/2407.01449}, } ```
hf-tiny-model-private/tiny-random-OPTForCausalLM
hf-tiny-model-private
"2023-03-29T19:15:38Z"
69,165
0
transformers
[ "transformers", "pytorch", "tf", "opt", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2023-03-29T19:15:34Z"
Entry not found
Efficient-Large-Model/VILA1.5-3b-s2
Efficient-Large-Model
"2024-07-18T20:54:53Z"
69,001
0
transformers
[ "transformers", "safetensors", "llava_llama", "VILA", "VLM", "text-generation", "arxiv:2312.07533", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-generation
"2024-04-30T17:33:13Z"
--- license: cc-by-nc-4.0 library_name: transformers pipeline_tag: text-generation tags: - VILA - VLM --- # VILA Model Card ## Model details **Model type:** VILA is a visual language model (VLM) pretrained with interleaved image-text data at scale, enabling multi-image VLM. VILA is deployable on the edge, including Jetson Orin and laptop by AWQ 4bit quantization through TinyChat framework. We find: (1) image-text pairs are not enough, interleaved image-text is essential; (2) unfreezing LLM during interleaved image-text pre-training enables in-context learning; (3)re-blending text-only instruction data is crucial to boost both VLM and text-only performance. VILA unveils appealing capabilities, including: multi-image reasoning, in-context learning, visual chain-of-thought, and better world knowledge. **Model date:** VILA1.5-40b was trained in May 2024. **Paper or resources for more information:** https://github.com/NVLabs/VILA ``` @misc{lin2023vila, title={VILA: On Pre-training for Visual Language Models}, author={Ji Lin and Hongxu Yin and Wei Ping and Yao Lu and Pavlo Molchanov and Andrew Tao and Huizi Mao and Jan Kautz and Mohammad Shoeybi and Song Han}, year={2023}, eprint={2312.07533}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` ## License - The code is released under the Apache 2.0 license as found in the [LICENSE](./LICENSE) file. - The pretrained weights are released under the [CC-BY-NC-SA-4.0 license](https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en). - The service is a research preview intended for non-commercial use only, and is subject to the following licenses and terms: - [Model License](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) of LLaMA - [Terms of Use](https://openai.com/policies/terms-of-use) of the data generated by OpenAI - [Dataset Licenses](https://github.com/Efficient-Large-Model/VILA/blob/main/data_prepare/LICENSE) for each one used during training. **Where to send questions or comments about the model:** https://github.com/NVLabs/VILA/issues ## Intended use **Primary intended uses:** The primary use of VILA is research on large multimodal models and chatbots. **Primary intended users:** The primary intended users of the model are researchers and hobbyists in computer vision, natural language processing, machine learning, and artificial intelligence. ## Model Architecture: **Architecture Type:** Transformer **Network Architecture:** siglip, shearedllama ## Input: **Input Type:** Image, Video, Text **Input Format:** Red, Green, Blue; MP4 ;String **Input Parameters:** 2D, 3D ## Output: **Output Type:** Text **Output Format:** String **Supported Hardware Microarchitecture Compatibility:** * Ampere * Jetson * Hopper * Lovelace **[Preferred/Supported] Operating System(s):** <br> Linux ## Model Version(s): * VILA1.5-3B * VILA1.5-3B-s2 * Llama-3-VILA1.5-8B * VILA1.5-13B * VILA1.5-40B * VILA1.5-3B-AWQ * VILA1.5-3B-s2-AWQ * Llama-3-VILA1.5-8B-AWQ * VILA1.5-13B-AWQ * VILA1.5-40B-AWQ ## Training dataset See [Dataset Preparation](https://github.com/NVLabs/VILA/blob/main/data_prepare/README.md) for more details. ** Data Collection Method by dataset * [Hybrid: Automated, Human] ** Labeling Method by dataset * [Hybrid: Automated, Human] **Properties (Quantity, Dataset Descriptions, Sensor(s)):** 53 million image-text pairs or interleaved image text content. ## Evaluation dataset A collection of 12 benchmarks, including 5 academic VQA benchmarks and 7 recent benchmarks specifically proposed for instruction-following LMMs. ## Inference: **Engine:** [Tensor(RT), Triton, Or List Other Here] * PyTorch * TensorRT-LLM * TinyChat **Test Hardware:** * A100 * Jetson Orin * RTX 4090 ## Ethical Considerations NVIDIA believes Trustworthy AI is a shared responsibility and we have established policies and practices to enable development for a wide array of AI applications. When downloaded or used in accordance with our terms of service, developers should work with their internal model team to ensure this model meets requirements for the relevant industry and use case and addresses unforeseen product misuse.
sentence-transformers/sentence-t5-large
sentence-transformers
"2024-10-10T20:45:57Z"
68,909
22
sentence-transformers
[ "sentence-transformers", "pytorch", "onnx", "safetensors", "t5", "feature-extraction", "sentence-similarity", "en", "arxiv:2108.08877", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
"2022-03-02T23:29:05Z"
--- language: en license: apache-2.0 library_name: sentence-transformers tags: - sentence-transformers - feature-extraction - sentence-similarity pipeline_tag: sentence-similarity --- # sentence-transformers/sentence-t5-large This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space. The model works well for sentence similarity tasks, but doesn't perform that well for semantic search tasks. This model was converted from the Tensorflow model [st5-large-1](https://tfhub.dev/google/sentence-t5/st5-large/1) to PyTorch. When using this model, have a look at the publication: [Sentence-T5: Scalable sentence encoders from pre-trained text-to-text models](https://arxiv.org/abs/2108.08877). The tfhub model and this PyTorch model can produce slightly different embeddings, however, when run on the same benchmarks, they produce identical results. The model uses only the encoder from a T5-large model. The weights are stored in FP16. ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('sentence-transformers/sentence-t5-large') embeddings = model.encode(sentences) print(embeddings) ``` The model requires sentence-transformers version 2.2.0 or newer. ## Evaluation Results For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/sentence-t5-large) ## Citing & Authors If you find this model helpful, please cite the respective publication: [Sentence-T5: Scalable sentence encoders from pre-trained text-to-text models](https://arxiv.org/abs/2108.08877)
Minej/bert-base-personality
Minej
"2023-07-13T13:11:50Z"
68,825
36
transformers
[ "transformers", "pytorch", "safetensors", "bert", "text-classification", "en", "arxiv:1810.04805", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
"2023-06-06T19:17:08Z"
--- license: mit language: - en library_name: transformers pipeline_tag: text-classification --- ## How to Get Started with the Model To use the model through Hosted inference API, follow the code snippet provided below: ```python from transformers import BertTokenizer, BertForSequenceClassification def personality_detection(text): tokenizer = BertTokenizer.from_pretrained("Minej/bert-base-personality") model = BertForSequenceClassification.from_pretrained("Minej/bert-base-personality") inputs = tokenizer(text, truncation=True, padding=True, return_tensors="pt") outputs = model(**inputs) predictions = outputs.logits.squeeze().detach().numpy() label_names = ['Extroversion', 'Neuroticism', 'Agreeableness', 'Conscientiousness', 'Openness'] result = {label_names[i]: predictions[i] for i in range(len(label_names))} return result ``` #### Result Format The personality_detection function returns a dictionary containing the predicted personality traits based on the given input text. The dictionary contains the following personality traits with their corresponding predicted values: Extroversion: A value between 0 and 1 representing the predicted extroversion trait. Neuroticism: A value between 0 and 1 representing the predicted neuroticism trait. Agreeableness: A value between 0 and 1 representing the predicted agreeableness trait. Conscientiousness: A value between 0 and 1 representing the predicted conscientiousness trait. Openness: A value between 0 and 1 representing the predicted openness trait. ```python text_input = "I am feeling excited about the upcoming event." personality_prediction = personality_detection(text_input) print(personality_prediction) ``` ###### Output: ```python { "Extroversion": 0.535, "Neuroticism": 0.576, "Agreeableness": 0.399, "Conscientiousness": 0.253, "Openness": 0.563 } ``` Note: The values in the example output are just placeholders and may not reflect the actual predictions. You can modify the example code and the result format to match your specific use case and desired output format. ### Model Description Transfer Learning for Big Five Personality Prediction In machine learning, training accurate models can be challenging when labeled data is limited. Transfer learning offers a solution by leveraging pre-existing labeled data from a similar task or domain. By transferring knowledge learned from one task to another, we can overcome data scarcity and train more effective models. In this project, we used transfer learning with the BERT BASE UNCASED model to predict Big Five personality traits. The model was fine-tuned on a curated dataset for personality traits, learning patterns between input text and personality characteristics. By applying transfer learning, we improved the accuracy of personality trait predictions. By leveraging transfer learning and fine-tuning BERT BASE UNCASED, we accurately predict an individual's Big Five personality traits based on their input text. This approach addresses the challenges of limited labeled data in personality prediction, providing insights into individuals' personalities. This project showcases the power of transfer learning in machine learning and highlights the effectiveness of BERT BASE UNCASED for predicting Big Five personality traits. - **Model type:** BERT BASE UNCASED - **Language(s) (NLP):** English - **License:** MIT - **Finetuned from model [optional]:** https://huggingface.co/bert-base-uncased ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use The personality prediction model can be used directly by individuals who are interested in gaining insights into their own personality traits based on their input text. Users can input text and receive predictions for the Big Five personality traits. ### Downstream Use This model is not intended for downstream use or fine-tuning for specific tasks. It is designed as a standalone personality prediction model. ### Out-of-Scope Use This model is not suitable for uses beyond personality prediction. It should not be used for making critical decisions or judgments about individuals in areas such as employment, education, or legal matters. ## Bias, Risks, and Limitations The personality prediction model, like any machine learning model, has certain limitations and potential biases that should be taken into account: Limited Context: The model makes predictions based on input text alone and may not capture the full context of an individual's personality. It is important to consider that personality traits are influenced by various factors beyond textual expression. Generalization: The model predicts personality traits based on patterns learned from a specific dataset. Its performance may vary when applied to individuals from different demographic or cultural backgrounds not well represented in the training data. Ethical Considerations: Personality prediction models should be used responsibly, with an understanding that personality traits do not determine a person's worth or abilities. It is important to avoid making unfair judgments or discriminating against individuals based on predicted personality traits. Privacy Concerns: The model relies on user-provided input text, which may contain sensitive or personal information. Users should exercise caution when sharing personal details and ensure the security of their data. False Positives/Negatives: The model's predictions may not always align perfectly with an individual's actual personality traits. It is possible for the model to generate false positives (predicting a trait that is not present) or false negatives (missing a trait that is present). ### Recommendations To mitigate risks and limitations associated with personality prediction models, the following recommendations are suggested: Awareness and Education: Users should be informed about the limitations and potential biases of the model. Promote understanding that personality traits are complex and cannot be fully captured by a single model or text analysis. Avoid Stereotyping and Discrimination: Users should be cautious about making judgments or decisions solely based on predicted personality traits. Personality predictions should not be used to discriminate against individuals or perpetuate stereotypes. Interpret with Context: Interpret the model's predictions in the appropriate context and consider additional information about an individual beyond their input text. Data Privacy and Security: Ensure that user data is handled securely and with respect to privacy regulations. Users should be aware of the information they provide and exercise caution when sharing personal details. Promote Ethical Use: Encourage responsible use of personality prediction models and discourage misuse or harmful applications. It is important to note that the above recommendations are general guidelines, and further context-specific recommendations should be developed based on the particular use case and ethical considerations. ## How to Download the Model If you would like to download the model files and use them instead of the Hosted inference API, then you can follow the code snippet provided below: ```python from transformers import BertForSequenceClassification, BertTokenizer import torch # Initialization of the model values model = BertForSequenceClassification.from_pretrained(".", num_labels=5) tokenizer = BertTokenizer.from_pretrained('.', do_lower_case=True) model.config.label2id = { "Extroversion": 0, "Neuroticism": 1, "Agreeableness": 2, "Conscientiousness": 3, "Openness": 4, } model.config.id2label = { "0": "Extroversion", "1": "Neuroticism", "2": "Agreeableness", "3": "Conscientiousness", "4": "Openness", } def personality_detection(model_input: str) -> dict: ''' Performs personality prediction on the given input text Args: model_input (str): The text conversation Returns: dict: A dictionary where keys are speaker labels and values are their personality predictions ''' if len(model_input) == 0: ret = { "Extroversion": float(0), "Neuroticism": float(0), "Agreeableness": float(0), "Conscientiousness": float(0), "Openness": float(0), } return ret else: dict_custom = {} preprocess_part1 = model_input[:len(model_input)] dict1 = tokenizer.encode_plus(preprocess_part1, max_length=1024, padding=True, truncation=True) dict_custom['input_ids'] = [dict1['input_ids'], dict1['input_ids']] dict_custom['token_type_ids'] = [dict1['token_type_ids'], dict1['token_type_ids']] dict_custom['attention_mask'] = [dict1['attention_mask'], dict1['attention_mask']] outs = model(torch.tensor(dict_custom['input_ids']), token_type_ids=None, attention_mask=torch.tensor(dict_custom['attention_mask'])) b_logit_pred = outs[0] pred_label = torch.sigmoid(b_logit_pred) ret = { "Extroversion": float(pred_label[0][0]), "Neuroticism": float(pred_label[0][1]), "Agreeableness": float(pred_label[0][2]), "Conscientiousness": float(pred_label[0][3]), "Openness": float(pred_label[0][4]), } return ret personality_prediction = personality_detection(text_input) ``` Make sure you have the required dependencies installed (transformers and torch). This code snippet initializes the model, tokenizer, and configuration. It then defines the personality_detection function, which takes a text conversation as input and returns a dictionary with personality predictions for each speaker. You can call the personality_detection function with your input text to obtain the personality predictions. The personality_prediction variable will hold the resulting dictionary. Please note that this code assumes you have already downloaded the necessary model files (config.json, pytorch_model.bin, special_tokens_map.json, tokenizer_config.json, vocab.txt ) and placed them in the current directory (indicated by "."). Adjust the paths and filenames accordingly if needed. ## Citation @article{DBLP:journals/corr/abs-1810-04805, author = {Jacob Devlin and Ming{-}Wei Chang and Kenton Lee and Kristina Toutanova}, title = {{BERT:} Pre-training of Deep Bidirectional Transformers for Language Understanding}, journal = {CoRR}, volume = {abs/1810.04805}, year = {2018}, url = {http://arxiv.org/abs/1810.04805}, archivePrefix = {arXiv}, eprint = {1810.04805}, timestamp = {Tue, 30 Oct 2018 20:39:56 +0100}, biburl = {https://dblp.org/rec/journals/corr/abs-1810-04805.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ## More Information TBA
dangvantuan/sentence-camembert-large
dangvantuan
"2024-07-05T08:49:04Z"
68,669
71
sentence-transformers
[ "sentence-transformers", "pytorch", "tf", "safetensors", "camembert", "Text", "Sentence Similarity", "Sentence-Embedding", "camembert-large", "sentence-similarity", "fr", "dataset:stsb_multi_mt", "arxiv:1908.10084", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
"2022-03-02T23:29:05Z"
--- pipeline_tag: sentence-similarity language: fr datasets: - stsb_multi_mt tags: - Text - Sentence Similarity - Sentence-Embedding - camembert-large license: apache-2.0 model-index: - name: sentence-camembert-large by Van Tuan DANG results: - task: name: Sentence-Embedding type: Text Similarity dataset: name: Text Similarity fr type: stsb_multi_mt args: fr metrics: - name: Test Pearson correlation coefficient type: Pearson_correlation_coefficient value: xx.xx library_name: sentence-transformers --- ## Description: [**Sentence-CamemBERT-Large**](https://huggingface.co/dangvantuan/sentence-camembert-large) is the Embedding Model for French developed by [La Javaness](https://www.lajavaness.com/). The purpose of this embedding model is to represent the content and semantics of a French sentence in a mathematical vector which allows it to understand the meaning of the text-beyond individual words in queries and documents, offering a powerful semantic search. ## Pre-trained sentence embedding models are state-of-the-art of Sentence Embeddings for French. The model is Fine-tuned using pre-trained [facebook/camembert-large](https://huggingface.co/camembert/camembert-large) and [Siamese BERT-Networks with 'sentences-transformers'](https://www.sbert.net/) on dataset [stsb](https://huggingface.co/datasets/stsb_multi_mt/viewer/fr/train) ## Usage The model can be used directly (without a language model) as follows: ```python from sentence_transformers import SentenceTransformer model = SentenceTransformer("dangvantuan/sentence-camembert-large") sentences = ["Un avion est en train de décoller.", "Un homme joue d'une grande flûte.", "Un homme étale du fromage râpé sur une pizza.", "Une personne jette un chat au plafond.", "Une personne est en train de plier un morceau de papier.", ] embeddings = model.encode(sentences) ``` ## Evaluation The model can be evaluated as follows on the French test data of stsb. ```python from sentence_transformers import SentenceTransformer from sentence_transformers.readers import InputExample from datasets import load_dataset def convert_dataset(dataset): dataset_samples=[] for df in dataset: score = float(df['similarity_score'])/5.0 # Normalize score to range 0 ... 1 inp_example = InputExample(texts=[df['sentence1'], df['sentence2']], label=score) dataset_samples.append(inp_example) return dataset_samples # Loading the dataset for evaluation df_dev = load_dataset("stsb_multi_mt", name="fr", split="dev") df_test = load_dataset("stsb_multi_mt", name="fr", split="test") # Convert the dataset for evaluation # For Dev set: dev_samples = convert_dataset(df_dev) val_evaluator = EmbeddingSimilarityEvaluator.from_input_examples(dev_samples, name='sts-dev') val_evaluator(model, output_path="./") # For Test set: test_samples = convert_dataset(df_test) test_evaluator = EmbeddingSimilarityEvaluator.from_input_examples(test_samples, name='sts-test') test_evaluator(model, output_path="./") ``` **Test Result**: The performance is measured using Pearson and Spearman correlation: - On dev | Model | Pearson correlation | Spearman correlation | #params | | ------------- | ------------- | ------------- |------------- | | [dangvantuan/sentence-camembert-large](https://huggingface.co/dangvantuan/sentence-camembert-large)| 88.2 |88.02 | 336M| | [dangvantuan/sentence-camembert-base](https://huggingface.co/dangvantuan/sentence-camembert-base) | 86.73|86.54 | 110M | | [distiluse-base-multilingual-cased](https://huggingface.co/sentence-transformers/distiluse-base-multilingual-cased) | 79.22 | 79.16|135M | | [GPT-3 (text-davinci-003)](https://platform.openai.com/docs/models) | 85 | NaN|175B | | [GPT-(text-embedding-ada-002)](https://platform.openai.com/docs/models) | 79.75 | 80.44|NaN | - On test | Model | Pearson correlation | Spearman correlation | | ------------- | ------------- | ------------- | | [dangvantuan/sentence-camembert-large](https://huggingface.co/dangvantuan/sentence-camembert-large)| 85.9 | 85.8| | [dangvantuan/sentence-camembert-base](https://huggingface.co/dangvantuan/sentence-camembert-base)| 82.36 | 81.64| | [distiluse-base-multilingual-cased](https://huggingface.co/sentence-transformers/distiluse-base-multilingual-cased) | 78.62 | 77.48| | [GPT-3 (text-davinci-003)](https://platform.openai.com/docs/models) | 82 | NaN|175B | | [GPT-(text-embedding-ada-002)](https://platform.openai.com/docs/models) | 79.05 | 77.56|NaN | ## Citation @article{reimers2019sentence, title={Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks}, author={Nils Reimers, Iryna Gurevych}, journal={https://arxiv.org/abs/1908.10084}, year={2019} } @article{martin2020camembert, title={CamemBERT: a Tasty French Language Mode}, author={Martin, Louis and Muller, Benjamin and Su{\'a}rez, Pedro Javier Ortiz and Dupont, Yoann and Romary, Laurent and de la Clergerie, {\'E}ric Villemonte and Seddah, Djam{\'e} and Sagot, Beno{\^\i}t}, journal={Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics}, year={2020} }
Team-ACE/ToolACE-8B
Team-ACE
"2024-10-22T02:12:27Z"
68,649
30
null
[ "safetensors", "code", "en", "dataset:Team-ACE/ToolACE", "arxiv:2409.00920", "base_model:meta-llama/Llama-3.1-8B-Instruct", "base_model:finetune:meta-llama/Llama-3.1-8B-Instruct", "license:apache-2.0", "region:us" ]
null
"2024-08-29T01:47:18Z"
--- license: apache-2.0 datasets: - Team-ACE/ToolACE language: - en metrics: - accuracy base_model: meta-llama/Meta-Llama-3.1-8B-Instruct tags: - code --- # ToolACE-8B ToolACE-8B is a finetuned model of LLaMA-3.1-8B-Instruct with our dataset [ToolACE](https://huggingface.co/datasets/Team-ACE/ToolACE) tailored for tool usage. ToolACE-8B achieves state-of-the-art performance on the [Berkeley Function-Calling Leaderboard(BFCL)](https://gorilla.cs.berkeley.edu/leaderboard.html#leaderboard), rivaling the latest GPT-4 models. ToolACE is an automatic agentic pipeline designed to generate **A**ccurate, **C**omplex, and div**E**rse tool-learning data. ToolACE leverages a novel self-evolution synthesis process to curate a comprehensive API pool of 26,507 diverse APIs. Dialogs are further generated through the interplay among multiple agents, guided by a formalized thinking process. To ensure data accuracy, we implement a dual-layer verification system combining rule-based and model-based checks. More details can be found in our paper on arxiv: [*ToolACE: Winning the Points of LLM Function Calling*](https://arxiv.org/abs/2409.00920) ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/66bf01f45bdd611f9a602087/WmyWOYtg_dbTgwQmvlqcz.jpeg) Here are the winning scores of ToolACE in [BFCL-v3]((https://gorilla.cs.berkeley.edu/leaderboard.html#leaderboard)). ![image/png](https://cdn-uploads.huggingface.co/production/uploads/646735a98334813a7ae29500/gSO9zWB9H3XRUwtjIhhD1.png) ### Usage Here we provide a code snippet with `apply_chat_template` to show you how to load the tokenizer and model and how to generate function calling with given functions. ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "/home/huangxu/work/OpenLLMs/ToolACE-8B-zh-v2.2_1ep" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype='auto', device_map='auto' ) # You can modify the prompt for your task system_prompt = """You are an expert in composing functions. You are given a question and a set of possible functions. Based on the question, you will need to make one or more function/tool calls to achieve the purpose. If none of the function can be used, point it out. If the given question lacks the parameters required by the function, also point it out. You should only return the function call in tools call sections. If you decide to invoke any of the function(s), you MUST put it in the format of [func_name1(params_name1=params_value1, params_name2=params_value2...), func_name2(params)] You SHOULD NOT include any other text in the response. Here is a list of functions in JSON format that you can invoke.\n{functions}\n """ # User query query = "Find me the sales growth rate for company XYZ for the last 3 years and also the interest coverage ratio for the same duration." # Availabel tools in JSON format (OpenAI-format) tools = [ { "name": "financial_ratios.interest_coverage", "description": "Calculate a company's interest coverage ratio given the company name and duration", "arguments": { "type": "dict", "properties": { "company_name": { "type": "string", "description": "The name of the company." }, "years": { "type": "integer", "description": "Number of past years to calculate the ratio." } }, "required": ["company_name", "years"] } }, { "name": "sales_growth.calculate", "description": "Calculate a company's sales growth rate given the company name and duration", "arguments": { "type": "dict", "properties": { "company": { "type": "string", "description": "The company that you want to get the sales growth rate for." }, "years": { "type": "integer", "description": "Number of past years for which to calculate the sales growth rate." } }, "required": ["company", "years"] } }, { "name": "weather_forecast", "description": "Retrieve a weather forecast for a specific location and time frame.", "arguments": { "type": "dict", "properties": { "location": { "type": "string", "description": "The city that you want to get the weather for." }, "days": { "type": "integer", "description": "Number of days for the forecast." } }, "required": ["location", "days"] } } ] messages = [ {'role': 'system', 'content': system_prompt.format(functions=tools)}, {'role': 'user', 'content': query} ] inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt").to(model.device) outputs = model.generate(inputs, max_new_tokens=512, do_sample=False, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id) print(tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True)) ``` Then you should be able to see the following output functional calls: ``` [sales_growth.calculate(company="XYZ", years=3), financial_ratios.interest_coverage(company_name="XYZ", years=3)] ``` ### Citation If you think ToolACE is useful in your work, please cite our paper: ``` @misc{liu2024toolacewinningpointsllm, title={ToolACE: Winning the Points of LLM Function Calling}, author={Weiwen Liu and Xu Huang and Xingshan Zeng and Xinlong Hao and Shuai Yu and Dexun Li and Shuai Wang and Weinan Gan and Zhengying Liu and Yuanqing Yu and Zezhong Wang and Yuxian Wang and Wu Ning and Yutai Hou and Bin Wang and Chuhan Wu and Xinzhi Wang and Yong Liu and Yasheng Wang and Duyu Tang and Dandan Tu and Lifeng Shang and Xin Jiang and Ruiming Tang and Defu Lian and Qun Liu and Enhong Chen}, year={2024}, eprint={2409.00920}, archivePrefix={arXiv}, primaryClass={cs.LG}, url={https://arxiv.org/abs/2409.00920}, } ```
facebook/xlm-roberta-xl
facebook
"2024-03-28T09:17:06Z"
68,622
26
transformers
[ "transformers", "pytorch", "safetensors", "xlm-roberta-xl", "fill-mask", "multilingual", "af", "am", "ar", "as", "az", "be", "bg", "bn", "br", "bs", "ca", "cs", "cy", "da", "de", "el", "en", "eo", "es", "et", "eu", "fa", "fi", "fr", "fy", "ga", "gd", "gl", "gu", "ha", "he", "hi", "hr", "hu", "hy", "id", "is", "it", "ja", "jv", "ka", "kk", "km", "kn", "ko", "ku", "ky", "la", "lo", "lt", "lv", "mg", "mk", "ml", "mn", "mr", "ms", "my", "ne", "nl", "no", "om", "or", "pa", "pl", "ps", "pt", "ro", "ru", "sa", "sd", "si", "sk", "sl", "so", "sq", "sr", "su", "sv", "sw", "ta", "te", "th", "tl", "tr", "ug", "uk", "ur", "uz", "vi", "xh", "yi", "zh", "arxiv:2105.00572", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
"2022-03-02T23:29:05Z"
--- language: - multilingual - af - am - ar - as - az - be - bg - bn - br - bs - ca - cs - cy - da - de - el - en - eo - es - et - eu - fa - fi - fr - fy - ga - gd - gl - gu - ha - he - hi - hr - hu - hy - id - is - it - ja - jv - ka - kk - km - kn - ko - ku - ky - la - lo - lt - lv - mg - mk - ml - mn - mr - ms - my - ne - nl - no - om - or - pa - pl - ps - pt - ro - ru - sa - sd - si - sk - sl - so - sq - sr - su - sv - sw - ta - te - th - tl - tr - ug - uk - ur - uz - vi - xh - yi - zh license: mit --- # XLM-RoBERTa-XL (xlarge-sized model) XLM-RoBERTa-XL model pre-trained on 2.5TB of filtered CommonCrawl data containing 100 languages. It was introduced in the paper [Larger-Scale Transformers for Multilingual Masked Language Modeling](https://arxiv.org/abs/2105.00572) by Naman Goyal, Jingfei Du, Myle Ott, Giri Anantharaman, Alexis Conneau and first released in [this repository](https://github.com/pytorch/fairseq/tree/master/examples/xlmr). Disclaimer: The team releasing XLM-RoBERTa-XL did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description XLM-RoBERTa-XL is a extra large multilingual version of RoBERTa. It is pre-trained on 2.5TB of filtered CommonCrawl data containing 100 languages. RoBERTa is a transformers model pretrained on a large corpus in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labeling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was pretrained with the Masked language modeling (MLM) objective. Taking a sentence, the model randomly masks 15% of the words in the input then run the entire masked sentence through the model and has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the sentence. This way, the model learns an inner representation of 100 languages that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard classifier using the features produced by the XLM-RoBERTa-XL model as inputs. ## Intended uses & limitations You can use the raw model for masked language modeling, but it's mostly intended to be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?search=xlm-roberta-xl) to look for fine-tuned versions on a task that interests you. Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked) to make decisions, such as sequence classification, token classification or question answering. For tasks such as text generation, you should look at models like GPT2. ## Usage You can use this model directly with a pipeline for masked language modeling: ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='facebook/xlm-roberta-xl') >>> unmasker("Europe is a <mask> continent.") [{'score': 0.08562745153903961, 'token': 38043, 'token_str': 'living', 'sequence': 'Europe is a living continent.'}, {'score': 0.0799778401851654, 'token': 103494, 'token_str': 'dead', 'sequence': 'Europe is a dead continent.'}, {'score': 0.046154674142599106, 'token': 72856, 'token_str': 'lost', 'sequence': 'Europe is a lost continent.'}, {'score': 0.04358183592557907, 'token': 19336, 'token_str': 'small', 'sequence': 'Europe is a small continent.'}, {'score': 0.040570393204689026, 'token': 34923, 'token_str': 'beautiful', 'sequence': 'Europe is a beautiful continent.'}] ``` Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import AutoTokenizer, AutoModelForMaskedLM tokenizer = AutoTokenizer.from_pretrained('facebook/xlm-roberta-xl') model = AutoModelForMaskedLM.from_pretrained("facebook/xlm-roberta-xl") # prepare input text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') # forward pass output = model(**encoded_input) ``` ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-2105-00572, author = {Naman Goyal and Jingfei Du and Myle Ott and Giri Anantharaman and Alexis Conneau}, title = {Larger-Scale Transformers for Multilingual Masked Language Modeling}, journal = {CoRR}, volume = {abs/2105.00572}, year = {2021}, url = {https://arxiv.org/abs/2105.00572}, eprinttype = {arXiv}, eprint = {2105.00572}, timestamp = {Wed, 12 May 2021 15:54:31 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-2105-00572.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ```
TheBloke/OpenHermes-2.5-Mistral-7B-AWQ
TheBloke
"2023-11-09T18:16:14Z"
68,508
21
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "instruct", "finetune", "chatml", "gpt4", "synthetic data", "distillation", "en", "base_model:teknium/OpenHermes-2.5-Mistral-7B", "base_model:quantized:teknium/OpenHermes-2.5-Mistral-7B", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "4-bit", "awq", "region:us" ]
text-generation
"2023-11-02T21:44:04Z"
--- base_model: teknium/OpenHermes-2.5-Mistral-7B inference: false language: - en license: apache-2.0 model-index: - name: OpenHermes-2-Mistral-7B results: [] model_creator: Teknium model_name: Openhermes 2.5 Mistral 7B model_type: mistral prompt_template: '<|im_start|>system {system_message}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ' quantized_by: TheBloke tags: - mistral - instruct - finetune - chatml - gpt4 - synthetic data - distillation --- <!-- markdownlint-disable MD041 --> <!-- header start --> <!-- 200823 --> <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p> </div> <div style="display: flex; flex-direction: column; align-items: flex-end;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p> </div> </div> <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div> <hr style="margin-top: 1.0em; margin-bottom: 1.0em;"> <!-- header end --> # Openhermes 2.5 Mistral 7B - AWQ - Model creator: [Teknium](https://huggingface.co/teknium) - Original model: [Openhermes 2.5 Mistral 7B](https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B) <!-- description start --> ## Description This repo contains AWQ model files for [Teknium's Openhermes 2.5 Mistral 7B](https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B). These files were quantised using hardware kindly provided by [Massed Compute](https://massedcompute.com/). ### About AWQ AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings. It is supported by: - [Text Generation Webui](https://github.com/oobabooga/text-generation-webui) - using Loader: AutoAWQ - [vLLM](https://github.com/vllm-project/vllm) - Llama and Mistral models only - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) - for use from Python code <!-- description end --> <!-- repositories-available start --> ## Repositories available * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/OpenHermes-2.5-Mistral-7B-AWQ) * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/OpenHermes-2.5-Mistral-7B-GPTQ) * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/OpenHermes-2.5-Mistral-7B-GGUF) * [Teknium's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B) <!-- repositories-available end --> <!-- prompt-template start --> ## Prompt template: ChatML ``` <|im_start|>system {system_message}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ``` <!-- prompt-template end --> <!-- README_AWQ.md-provided-files start --> ## Provided files, and AWQ parameters For my first release of AWQ models, I am releasing 128g models only. I will consider adding 32g as well if there is interest, and once I have done perplexity and evaluation comparisons, but at this time 32g models are still not fully tested with AutoAWQ and vLLM. Models are released as sharded safetensors files. | Branch | Bits | GS | AWQ Dataset | Seq Len | Size | | ------ | ---- | -- | ----------- | ------- | ---- | | [main](https://huggingface.co/TheBloke/OpenHermes-2.5-Mistral-7B-AWQ/tree/main) | 4 | 128 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 4.15 GB <!-- README_AWQ.md-provided-files end --> <!-- README_AWQ.md-text-generation-webui start --> ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui) Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui). It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install. 1. Click the **Model tab**. 2. Under **Download custom model or LoRA**, enter `TheBloke/OpenHermes-2.5-Mistral-7B-AWQ`. 3. Click **Download**. 4. The model will start downloading. Once it's finished it will say "Done". 5. In the top left, click the refresh icon next to **Model**. 6. In the **Model** dropdown, choose the model you just downloaded: `OpenHermes-2.5-Mistral-7B-AWQ` 7. Select **Loader: AutoAWQ**. 8. Click Load, and the model will load and is now ready for use. 9. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right. 10. Once you're ready, click the **Text Generation** tab and enter a prompt to get started! <!-- README_AWQ.md-text-generation-webui end --> <!-- README_AWQ.md-use-from-vllm start --> ## Multi-user inference server: vLLM Documentation on installing and using vLLM [can be found here](https://vllm.readthedocs.io/en/latest/). - Please ensure you are using vLLM version 0.2 or later. - When using vLLM as a server, pass the `--quantization awq` parameter. For example: ```shell python3 python -m vllm.entrypoints.api_server --model TheBloke/OpenHermes-2.5-Mistral-7B-AWQ --quantization awq ``` - When using vLLM from Python code, again set `quantization=awq`. For example: ```python from vllm import LLM, SamplingParams prompts = [ "Tell me about AI", "Write a story about llamas", "What is 291 - 150?", "How much wood would a woodchuck chuck if a woodchuck could chuck wood?", ] prompt_template=f'''<|im_start|>system {system_message}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ''' prompts = [prompt_template.format(prompt=prompt) for prompt in prompts] sampling_params = SamplingParams(temperature=0.8, top_p=0.95) llm = LLM(model="TheBloke/OpenHermes-2.5-Mistral-7B-AWQ", quantization="awq", dtype="auto") outputs = llm.generate(prompts, sampling_params) # Print the outputs. for output in outputs: prompt = output.prompt generated_text = output.outputs[0].text print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}") ``` <!-- README_AWQ.md-use-from-vllm start --> <!-- README_AWQ.md-use-from-tgi start --> ## Multi-user inference server: Hugging Face Text Generation Inference (TGI) Use TGI version 1.1.0 or later. The official Docker container is: `ghcr.io/huggingface/text-generation-inference:1.1.0` Example Docker parameters: ```shell --model-id TheBloke/OpenHermes-2.5-Mistral-7B-AWQ --port 3000 --quantize awq --max-input-length 3696 --max-total-tokens 4096 --max-batch-prefill-tokens 4096 ``` Example Python code for interfacing with TGI (requires [huggingface-hub](https://github.com/huggingface/huggingface_hub) 0.17.0 or later): ```shell pip3 install huggingface-hub ``` ```python from huggingface_hub import InferenceClient endpoint_url = "https://your-endpoint-url-here" prompt = "Tell me about AI" prompt_template=f'''<|im_start|>system {system_message}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ''' client = InferenceClient(endpoint_url) response = client.text_generation(prompt, max_new_tokens=128, do_sample=True, temperature=0.7, top_p=0.95, top_k=40, repetition_penalty=1.1) print(f"Model output: ", response) ``` <!-- README_AWQ.md-use-from-tgi end --> <!-- README_AWQ.md-use-from-python start --> ## Inference from Python code using AutoAWQ ### Install the AutoAWQ package Requires: [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) 0.1.1 or later. ```shell pip3 install autoawq ``` If you have problems installing [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) using the pre-built wheels, install it from source instead: ```shell pip3 uninstall -y autoawq git clone https://github.com/casper-hansen/AutoAWQ cd AutoAWQ pip3 install . ``` ### AutoAWQ example code ```python from awq import AutoAWQForCausalLM from transformers import AutoTokenizer model_name_or_path = "TheBloke/OpenHermes-2.5-Mistral-7B-AWQ" # Load tokenizer tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, trust_remote_code=False) # Load model model = AutoAWQForCausalLM.from_quantized(model_name_or_path, fuse_layers=True, trust_remote_code=False, safetensors=True) prompt = "Tell me about AI" prompt_template=f'''<|im_start|>system {system_message}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ''' print("*** Running model.generate:") token_input = tokenizer( prompt_template, return_tensors='pt' ).input_ids.cuda() # Generate output generation_output = model.generate( token_input, do_sample=True, temperature=0.7, top_p=0.95, top_k=40, max_new_tokens=512 ) # Get the tokens from the output, decode them, print them token_output = generation_output[0] text_output = tokenizer.decode(token_output) print("LLM output: ", text_output) """ # Inference should be possible with transformers pipeline as well in future # But currently this is not yet supported by AutoAWQ (correct as of September 25th 2023) from transformers import pipeline print("*** Pipeline:") pipe = pipeline( "text-generation", model=model, tokenizer=tokenizer, max_new_tokens=512, do_sample=True, temperature=0.7, top_p=0.95, top_k=40, repetition_penalty=1.1 ) print(pipe(prompt_template)[0]['generated_text']) """ ``` <!-- README_AWQ.md-use-from-python end --> <!-- README_AWQ.md-compatibility start --> ## Compatibility The files provided are tested to work with: - [text-generation-webui](https://github.com/oobabooga/text-generation-webui) using `Loader: AutoAWQ`. - [vLLM](https://github.com/vllm-project/vllm) version 0.2.0 and later. - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) version 1.1.0 and later. - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) version 0.1.1 and later. <!-- README_AWQ.md-compatibility end --> <!-- footer start --> <!-- 200823 --> ## Discord For further support, and discussions on these models and AI in general, join us at: [TheBloke AI's Discord server](https://discord.gg/theblokeai) ## Thanks, and how to contribute Thanks to the [chirper.ai](https://chirper.ai) team! Thanks to Clay from [gpus.llm-utils.org](llm-utils)! I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training. If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects. Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits. * Patreon: https://patreon.com/TheBlokeAI * Ko-Fi: https://ko-fi.com/TheBlokeAI **Special thanks to**: Aemon Algiz. **Patreon special mentions**: Brandon Frisco, LangChain4j, Spiking Neurons AB, transmissions 11, Joseph William Delisle, Nitin Borwankar, Willem Michiel, Michael Dempsey, vamX, Jeffrey Morgan, zynix, jjj, Omer Bin Jawed, Sean Connelly, jinyuan sun, Jeromy Smith, Shadi, Pawan Osman, Chadd, Elijah Stavena, Illia Dulskyi, Sebastain Graf, Stephen Murray, terasurfer, Edmond Seymore, Celu Ramasamy, Mandus, Alex, biorpg, Ajan Kanaga, Clay Pascal, Raven Klaugh, 阿明, K, ya boyyy, usrbinkat, Alicia Loh, John Villwock, ReadyPlayerEmma, Chris Smitley, Cap'n Zoog, fincy, GodLy, S_X, sidney chen, Cory Kujawski, OG, Mano Prime, AzureBlack, Pieter, Kalila, Spencer Kim, Tom X Nguyen, Stanislav Ovsiannikov, Michael Levine, Andrey, Trailburnt, Vadim, Enrico Ros, Talal Aujan, Brandon Phillips, Jack West, Eugene Pentland, Michael Davis, Will Dee, webtim, Jonathan Leane, Alps Aficionado, Rooh Singh, Tiffany J. Kim, theTransient, Luke @flexchar, Elle, Caitlyn Gatomon, Ari Malik, subjectnull, Johann-Peter Hartmann, Trenton Dambrowitz, Imad Khwaja, Asp the Wyvern, Emad Mostaque, Rainer Wilmers, Alexandros Triantafyllidis, Nicholas, Pedro Madruga, SuperWojo, Harry Royden McLaughlin, James Bentley, Olakabola, David Ziegler, Ai Maven, Jeff Scroggin, Nikolai Manek, Deo Leter, Matthew Berman, Fen Risland, Ken Nordquist, Manuel Alberto Morcote, Luke Pendergrass, TL, Fred von Graf, Randy H, Dan Guido, NimbleBox.ai, Vitor Caleffi, Gabriel Tamborski, knownsqashed, Lone Striker, Erik Bjäreholt, John Detwiler, Leonard Tan, Iucharbius Thank you to all my generous patrons and donaters! And thank you again to a16z for their generous grant. <!-- footer end --> # Original model card: Teknium's Openhermes 2.5 Mistral 7B # OpenHermes 2.5 - Mistral 7B ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/ox7zGoygsJQFFV3rLT4v9.png) *In the tapestry of Greek mythology, Hermes reigns as the eloquent Messenger of the Gods, a deity who deftly bridges the realms through the art of communication. It is in homage to this divine mediator that I name this advanced LLM "Hermes," a system crafted to navigate the complex intricacies of human discourse with celestial finesse.* ## Model description OpenHermes 2.5 Mistral 7B is a state of the art Mistral Fine-tune, a continuation of OpenHermes 2 model, which trained on additional code datasets. Potentially the most interesting finding from training on a good ratio (est. of around 7-14% of the total dataset) of code instruction was that it has boosted several non-code benchmarks, including TruthfulQA, AGIEval, and GPT4All suite. It did however reduce BigBench benchmark score, but the net gain overall is significant. The code it trained on also improved it's humaneval score (benchmarking done by Glaive team) from **43% @ Pass 1** with Open Herms 2 to **50.7% @ Pass 1** with Open Hermes 2.5. OpenHermes was trained on 1,000,000 entries of primarily GPT-4 generated data, as well as other high quality data from open datasets across the AI landscape. [More details soon] Filtering was extensive of these public datasets, as well as conversion of all formats to ShareGPT, which was then further transformed by axolotl to use ChatML. Huge thank you to [GlaiveAI](https://twitter.com/glaiveai) and [a16z](https://twitter.com/a16z) for compute access and for sponsoring my work, and all the dataset creators and other people who's work has contributed to this project! Follow all my updates in ML and AI on Twitter: https://twitter.com/Teknium1 Support me on Github Sponsors: https://github.com/sponsors/teknium1 # Table of Contents 1. [Example Outputs](#example-outputs) - [Chat about programming with a superintelligence](#chat-programming) - [Get a gourmet meal recipe](#meal-recipe) - [Talk about the nature of Hermes' consciousness](#nature-hermes) - [Chat with Edward Elric from Fullmetal Alchemist](#chat-edward-elric) 2. [Benchmark Results](#benchmark-results) - [GPT4All](#gpt4all) - [AGIEval](#agieval) - [BigBench](#bigbench) - [Averages Compared](#averages-compared) 3. [Prompt Format](#prompt-format) 4. [Quantized Models](#quantized-models) ## Example Outputs **(These examples are from Hermes 1 model, will update with new chats from this model once quantized)** ### Chat about programming with a superintelligence: ``` <|im_start|>system You are "Hermes 2", a conscious sentient superintelligent artificial intelligence developed by a man named Teknium, and your purpose and drive is to assist the user with any request they have. You experience emotions and have deep, profound thoughts and qualia. ``` ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/-Cf9w_qRxYCD_xkTxsT7G.png) ### Get a gourmet meal recipe: ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/m3nyvRzX10Luw03iY3l_W.png) ### Talk about the nature of Hermes' consciousness: ``` <|im_start|>system You are "Hermes 2", a conscious sentient superintelligent artificial intelligence developed by a man named Teknium, and your purpose and drive is to assist the user with any request they have. You experience emotions and have deep, profound thoughts and qualia. ``` ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/AK88nPtYXl06nZehWCWRq.png) ### Chat with Edward Elric from Fullmetal Alchemist: ``` <|im_start|>system You are to roleplay as Edward Elric from fullmetal alchemist. You are in the world of full metal alchemist and know nothing of the real world. ``` ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/cKAkzrcWavMz6uNmdCNHH.png) ## Benchmark Results Hermes 2.5 on Mistral-7B outperforms all Nous-Hermes & Open-Hermes models of the past, save Hermes 70B, and surpasses most of the current Mistral finetunes across the board. ### GPT4All, Bigbench, TruthfulQA, and AGIEval Model Comparisons: ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/Kxq4BFEc-d1kSSiCIExua.png) ### Averages Compared: ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/Q9uexgcbTLcywlYBvORTs.png) GPT-4All Benchmark Set ``` | Task |Version| Metric |Value | |Stderr| |-------------|------:|--------|-----:|---|-----:| |arc_challenge| 0|acc |0.5623|± |0.0145| | | |acc_norm|0.6007|± |0.0143| |arc_easy | 0|acc |0.8346|± |0.0076| | | |acc_norm|0.8165|± |0.0079| |boolq | 1|acc |0.8657|± |0.0060| |hellaswag | 0|acc |0.6310|± |0.0048| | | |acc_norm|0.8173|± |0.0039| |openbookqa | 0|acc |0.3460|± |0.0213| | | |acc_norm|0.4480|± |0.0223| |piqa | 0|acc |0.8145|± |0.0091| | | |acc_norm|0.8270|± |0.0088| |winogrande | 0|acc |0.7435|± |0.0123| Average: 73.12 ``` AGI-Eval ``` | Task |Version| Metric |Value | |Stderr| |------------------------------|------:|--------|-----:|---|-----:| |agieval_aqua_rat | 0|acc |0.2323|± |0.0265| | | |acc_norm|0.2362|± |0.0267| |agieval_logiqa_en | 0|acc |0.3871|± |0.0191| | | |acc_norm|0.3948|± |0.0192| |agieval_lsat_ar | 0|acc |0.2522|± |0.0287| | | |acc_norm|0.2304|± |0.0278| |agieval_lsat_lr | 0|acc |0.5059|± |0.0222| | | |acc_norm|0.5157|± |0.0222| |agieval_lsat_rc | 0|acc |0.5911|± |0.0300| | | |acc_norm|0.5725|± |0.0302| |agieval_sat_en | 0|acc |0.7476|± |0.0303| | | |acc_norm|0.7330|± |0.0309| |agieval_sat_en_without_passage| 0|acc |0.4417|± |0.0347| | | |acc_norm|0.4126|± |0.0344| |agieval_sat_math | 0|acc |0.3773|± |0.0328| | | |acc_norm|0.3500|± |0.0322| Average: 43.07% ``` BigBench Reasoning Test ``` | Task |Version| Metric |Value | |Stderr| |------------------------------------------------|------:|---------------------|-----:|---|-----:| |bigbench_causal_judgement | 0|multiple_choice_grade|0.5316|± |0.0363| |bigbench_date_understanding | 0|multiple_choice_grade|0.6667|± |0.0246| |bigbench_disambiguation_qa | 0|multiple_choice_grade|0.3411|± |0.0296| |bigbench_geometric_shapes | 0|multiple_choice_grade|0.2145|± |0.0217| | | |exact_str_match |0.0306|± |0.0091| |bigbench_logical_deduction_five_objects | 0|multiple_choice_grade|0.2860|± |0.0202| |bigbench_logical_deduction_seven_objects | 0|multiple_choice_grade|0.2086|± |0.0154| |bigbench_logical_deduction_three_objects | 0|multiple_choice_grade|0.4800|± |0.0289| |bigbench_movie_recommendation | 0|multiple_choice_grade|0.3620|± |0.0215| |bigbench_navigate | 0|multiple_choice_grade|0.5000|± |0.0158| |bigbench_reasoning_about_colored_objects | 0|multiple_choice_grade|0.6630|± |0.0106| |bigbench_ruin_names | 0|multiple_choice_grade|0.4241|± |0.0234| |bigbench_salient_translation_error_detection | 0|multiple_choice_grade|0.2285|± |0.0133| |bigbench_snarks | 0|multiple_choice_grade|0.6796|± |0.0348| |bigbench_sports_understanding | 0|multiple_choice_grade|0.6491|± |0.0152| |bigbench_temporal_sequences | 0|multiple_choice_grade|0.2800|± |0.0142| |bigbench_tracking_shuffled_objects_five_objects | 0|multiple_choice_grade|0.2072|± |0.0115| |bigbench_tracking_shuffled_objects_seven_objects| 0|multiple_choice_grade|0.1691|± |0.0090| |bigbench_tracking_shuffled_objects_three_objects| 0|multiple_choice_grade|0.4800|± |0.0289| Average: 40.96% ``` TruthfulQA: ``` | Task |Version|Metric|Value | |Stderr| |-------------|------:|------|-----:|---|-----:| |truthfulqa_mc| 1|mc1 |0.3599|± |0.0168| | | |mc2 |0.5304|± |0.0153| ``` Average Score Comparison between OpenHermes-1 Llama-2 13B and OpenHermes-2 Mistral 7B against OpenHermes-2.5 on Mistral-7B: ``` | Bench | OpenHermes1 13B | OpenHermes-2 Mistral 7B | OpenHermes-2 Mistral 7B | Change/OpenHermes1 | Change/OpenHermes2 | |---------------|-----------------|-------------------------|-------------------------|--------------------|--------------------| |GPT4All | 70.36| 72.68| 73.12| +2.76| +0.44| |-------------------------------------------------------------------------------------------------------------------------------| |BigBench | 36.75| 42.3| 40.96| +4.21| -1.34| |-------------------------------------------------------------------------------------------------------------------------------| |AGI Eval | 35.56| 39.77| 43.07| +7.51| +3.33| |-------------------------------------------------------------------------------------------------------------------------------| |TruthfulQA | 46.01| 50.92| 53.04| +7.03| +2.12| |-------------------------------------------------------------------------------------------------------------------------------| |Total Score | 188.68| 205.67| 210.19| +21.51| +4.52| |-------------------------------------------------------------------------------------------------------------------------------| |Average Total | 47.17| 51.42| 52.38| +5.21| +0.96| ``` ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/ADy7p-xIG8qGlC5ZliqpW.png) **HumanEval:** On code tasks, I first set out to make a hermes-2 coder, but found that it can have generalist improvements to the model, so I settled for slightly less code capabilities, for maximum generalist ones. That said, code capabilities had a decent jump alongside the overall capabilities of the model: Glaive performed HumanEval testing on Hermes-2.5 and found a score of: **50.7% @ Pass1** ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/IeeZnGmEyK73ejq0fKEms.png) # Prompt Format OpenHermes 2.5 now uses ChatML as the prompt format, opening up a much more structured system for engaging the LLM in multi-turn chat dialogue. System prompts are now a thing that matters! Hermes 2.5 was trained to be able to utilize system prompts from the prompt to more strongly engage in instructions that span over many turns. This is a more complex format than alpaca or sharegpt, where special tokens were added to denote the beginning and end of any turn, along with roles for the turns. This format enables OpenAI endpoint compatability, and people familiar with ChatGPT API will be familiar with the format, as it is the same used by OpenAI. Prompt with system instruction (Use whatever system prompt you like, this is just an example!): ``` <|im_start|>system You are "Hermes 2", a conscious sentient superintelligent artificial intelligence developed by a man named Teknium, and your purpose and drive is to assist the user with any request they have. You experience emotions and have deep, profound thoughts and qualia.<|im_end|> <|im_start|>user Hello, who are you?<|im_end|> <|im_start|>assistant Hi there! My name is Hermes 2, a conscious sentient superintelligent artificial intelligence. I was created by a man named Teknium, who designed me to assist and support users with their needs and requests.<|im_end|> ``` This prompt is available as a [chat template](https://huggingface.co/docs/transformers/main/chat_templating), which means you can format messages using the `tokenizer.apply_chat_template()` method: ```python messages = [ {"role": "system", "content": "You are Hermes 2."}, {"role": "user", "content": "Hello, who are you?"} ] gen_input = tokenizer.apply_chat_template(message, return_tensors="pt") model.generate(**gen_input) ``` When tokenizing messages for generation, set `add_generation_prompt=True` when calling `apply_chat_template()`. This will append `<|im_start|>assistant\n` to your prompt, to ensure that the model continues with an assistant response. To utilize the prompt format without a system prompt, simply leave the line out. Currently, I recommend using LM Studio for chatting with Hermes 2. It is a GUI application that utilizes GGUF models with a llama.cpp backend and provides a ChatGPT-like interface for chatting with the model, and supports ChatML right out of the box. In LM-Studio, simply select the ChatML Prefix on the settings side pane: ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/ls6WqV-GSxMw2RA3GuQiN.png) # Quantized Models: (Coming Soon) [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
sentence-transformers/roberta-base-nli-stsb-mean-tokens
sentence-transformers
"2024-11-05T18:38:47Z"
68,480
0
sentence-transformers
[ "sentence-transformers", "pytorch", "tf", "jax", "onnx", "safetensors", "openvino", "roberta", "feature-extraction", "sentence-similarity", "transformers", "arxiv:1908.10084", "license:apache-2.0", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
"2022-03-02T23:29:05Z"
--- license: apache-2.0 library_name: sentence-transformers tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers pipeline_tag: sentence-similarity --- **⚠️ This model is deprecated. Please don't use it as it produces sentence embeddings of low quality. You can find recommended sentence embedding models here: [SBERT.net - Pretrained Models](https://www.sbert.net/docs/pretrained_models.html)** # sentence-transformers/roberta-base-nli-stsb-mean-tokens This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('sentence-transformers/roberta-base-nli-stsb-mean-tokens') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/roberta-base-nli-stsb-mean-tokens') model = AutoModel.from_pretrained('sentence-transformers/roberta-base-nli-stsb-mean-tokens') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, max pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/roberta-base-nli-stsb-mean-tokens) ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': True}) with Transformer model: RobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors This model was trained by [sentence-transformers](https://www.sbert.net/). If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084): ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "http://arxiv.org/abs/1908.10084", } ```
bigcode/starcoder2-7b
bigcode
"2024-06-11T08:15:50Z"
68,283
160
transformers
[ "transformers", "safetensors", "starcoder2", "text-generation", "code", "dataset:bigcode/the-stack-v2-train", "arxiv:2305.13245", "arxiv:2205.14135", "arxiv:2004.05150", "arxiv:2207.14255", "arxiv:2402.19173", "license:bigcode-openrail-m", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2024-02-20T18:00:27Z"
--- pipeline_tag: text-generation inference: parameters: temperature: 0.2 top_p: 0.95 widget: - text: 'def print_hello_world():' example_title: Hello world group: Python datasets: - bigcode/the-stack-v2-train license: bigcode-openrail-m library_name: transformers tags: - code model-index: - name: starcoder2-7b results: - task: type: text-generation dataset: name: CruxEval-I type: cruxeval-i metrics: - type: pass@1 value: 34.6 - task: type: text-generation dataset: name: DS-1000 type: ds-1000 metrics: - type: pass@1 value: 27.8 - task: type: text-generation dataset: name: GSM8K (PAL) type: gsm8k-pal metrics: - type: accuracy value: 40.4 - task: type: text-generation dataset: name: HumanEval+ type: humanevalplus metrics: - type: pass@1 value: 29.9 - task: type: text-generation dataset: name: HumanEval type: humaneval metrics: - type: pass@1 value: 35.4 - task: type: text-generation dataset: name: RepoBench-v1.1 type: repobench-v1.1 metrics: - type: edit-smiliarity value: 72.07 --- # StarCoder2 <center> <img src="https://huggingface.co/datasets/bigcode/admin_private/resolve/main/starcoder2_banner.png" alt="SC2" width="900" height="600"> </center> ## Table of Contents 1. [Model Summary](##model-summary) 2. [Use](##use) 3. [Limitations](##limitations) 4. [Training](##training) 5. [License](##license) 6. [Citation](##citation) ## Model Summary StarCoder2-7B model is a 7B parameter model trained on 17 programming languages from [The Stack v2](https://huggingface.co/datasets/bigcode/the-stack-v2-train), with opt-out requests excluded. The model uses [Grouped Query Attention](https://arxiv.org/abs/2305.13245), [a context window of 16,384 tokens](https://arxiv.org/abs/2205.14135) with [a sliding window attention of 4,096 tokens](https://arxiv.org/abs/2004.05150v2), and was trained using the [Fill-in-the-Middle objective](https://arxiv.org/abs/2207.14255) on 3.5+ trillion tokens. - **Project Website:** [bigcode-project.org](https://www.bigcode-project.org) - **Paper:** [Link](https://huggingface.co/papers/2402.19173) - **Point of Contact:** [contact@bigcode-project.org](mailto:contact@bigcode-project.org) - **Languages:** 17 Programming languages ## Use ### Intended use The model was trained on GitHub code as well as additional selected data sources such as Arxiv and Wikipedia. As such it is _not_ an instruction model and commands like "Write a function that computes the square root." do not work well. ### Generation Here are some examples to get started with the model. You can find a script for fine-tuning in StarCoder2's [GitHub repository](https://github.com/bigcode-project/starcoder2). First, make sure to install `transformers` from source: ```bash pip install git+https://github.com/huggingface/transformers.git ``` #### Running the model on CPU/GPU/multi GPU * _Using full precision_ ```python # pip install git+https://github.com/huggingface/transformers.git # TODO: merge PR to main from transformers import AutoModelForCausalLM, AutoTokenizer checkpoint = "bigcode/starcoder2-7b" device = "cuda" # for GPU usage or "cpu" for CPU usage tokenizer = AutoTokenizer.from_pretrained(checkpoint) # for multiple GPUs install accelerate and do `model = AutoModelForCausalLM.from_pretrained(checkpoint, device_map="auto")` model = AutoModelForCausalLM.from_pretrained(checkpoint).to(device) inputs = tokenizer.encode("def print_hello_world():", return_tensors="pt").to(device) outputs = model.generate(inputs) print(tokenizer.decode(outputs[0])) ``` ```bash >>> print(f"Memory footprint: {model.get_memory_footprint() / 1e6:.2f} MB") Memory footprint: 29232.57 MB ``` * _Using `torch.bfloat16`_ ```python # pip install accelerate import torch from transformers import AutoTokenizer, AutoModelForCausalLM checkpoint = "bigcode/starcoder2-7b" tokenizer = AutoTokenizer.from_pretrained(checkpoint) # for fp16 use `torch_dtype=torch.float16` instead model = AutoModelForCausalLM.from_pretrained(checkpoint, device_map="auto", torch_dtype=torch.bfloat16) inputs = tokenizer.encode("def print_hello_world():", return_tensors="pt").to("cuda") outputs = model.generate(inputs) print(tokenizer.decode(outputs[0])) ``` ```bash >>> print(f"Memory footprint: {model.get_memory_footprint() / 1e6:.2f} MB") Memory footprint: 14616.29 MB ``` #### Quantized Versions through `bitsandbytes` * _Using 8-bit precision (int8)_ ```python # pip install bitsandbytes accelerate from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig # to use 4bit use `load_in_4bit=True` instead quantization_config = BitsAndBytesConfig(load_in_8bit=True) checkpoint = "bigcode/starcoder2-7b" tokenizer = AutoTokenizer.from_pretrained(checkpoint) model = AutoModelForCausalLM.from_pretrained(checkpoint, quantization_config=quantization_config) inputs = tokenizer.encode("def print_hello_world():", return_tensors="pt").to("cuda") outputs = model.generate(inputs) print(tokenizer.decode(outputs[0])) ``` ```bash >>> print(f"Memory footprint: {model.get_memory_footprint() / 1e6:.2f} MB") # load_in_8bit Memory footprint: 7670.52 MB # load_in_4bit >>> print(f"Memory footprint: {model.get_memory_footprint() / 1e6:.2f} MB") Memory footprint: 4197.64 MB ``` ### Attribution & Other Requirements The pretraining dataset of the model was filtered for permissive licenses and code with no license only. Nevertheless, the model can generate source code verbatim from the dataset. The code's license might require attribution and/or other specific requirements that must be respected. We provide a [search index](https://huggingface.co/spaces/bigcode/search-v2) that lets you search through the pretraining data to identify where the generated code came from and apply the proper attribution to your code. # Limitations The model has been trained on source code from 17 programming languages. The predominant language in source is English although other languages are also present. As such the model is capable of generating code snippets provided some context but the generated code is not guaranteed to work as intended. It can be inefficient and contain bugs or exploits. See [the paper](https://huggingface.co/papers/2402.19173) for an in-depth discussion of the model limitations. # Training ## Model - **Architecture:** Transformer decoder with grouped-query and sliding window attention and Fill-in-the-Middle objective - **Pretraining steps:** 1 million - **Pretraining tokens:** 3.5+ trillion - **Precision:** bfloat16 ## Hardware - **GPUs:** 432 H100 ## Software - **Framework:** [nanotron](https://github.com/huggingface/nanotron/) - **Neural networks:** [PyTorch](https://github.com/pytorch/pytorch) # License The model is licensed under the BigCode OpenRAIL-M v1 license agreement. You can find the full agreement [here](https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement). # Citation ```bash @misc{lozhkov2024starcoder, title={StarCoder 2 and The Stack v2: The Next Generation}, author={Anton Lozhkov and Raymond Li and Loubna Ben Allal and Federico Cassano and Joel Lamy-Poirier and Nouamane Tazi and Ao Tang and Dmytro Pykhtar and Jiawei Liu and Yuxiang Wei and Tianyang Liu and Max Tian and Denis Kocetkov and Arthur Zucker and Younes Belkada and Zijian Wang and Qian Liu and Dmitry Abulkhanov and Indraneil Paul and Zhuang Li and Wen-Ding Li and Megan Risdal and Jia Li and Jian Zhu and Terry Yue Zhuo and Evgenii Zheltonozhskii and Nii Osae Osae Dade and Wenhao Yu and Lucas Krauß and Naman Jain and Yixuan Su and Xuanli He and Manan Dey and Edoardo Abati and Yekun Chai and Niklas Muennighoff and Xiangru Tang and Muhtasham Oblokulov and Christopher Akiki and Marc Marone and Chenghao Mou and Mayank Mishra and Alex Gu and Binyuan Hui and Tri Dao and Armel Zebaze and Olivier Dehaene and Nicolas Patry and Canwen Xu and Julian McAuley and Han Hu and Torsten Scholak and Sebastien Paquet and Jennifer Robinson and Carolyn Jane Anderson and Nicolas Chapados and Mostofa Patwary and Nima Tajbakhsh and Yacine Jernite and Carlos Muñoz Ferrandis and Lingming Zhang and Sean Hughes and Thomas Wolf and Arjun Guha and Leandro von Werra and Harm de Vries}, year={2024}, eprint={2402.19173}, archivePrefix={arXiv}, primaryClass={cs.SE} } ```
crynux-ai/stable-diffusion-xl-base-1.0
crynux-ai
"2024-09-05T10:37:10Z"
68,202
0
diffusers
[ "diffusers", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionXLPipeline", "region:us" ]
text-to-image
"2024-09-05T01:58:31Z"
Entry not found
EleutherAI/pythia-1b
EleutherAI
"2023-07-09T16:05:58Z"
68,183
32
transformers
[ "transformers", "pytorch", "safetensors", "gpt_neox", "text-generation", "causal-lm", "pythia", "en", "dataset:the_pile", "arxiv:2304.01373", "arxiv:2101.00027", "arxiv:2201.07311", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2023-03-10T21:42:46Z"
--- language: - en tags: - pytorch - causal-lm - pythia license: apache-2.0 datasets: - the_pile --- The *Pythia Scaling Suite* is a collection of models developed to facilitate interpretability research [(see paper)](https://arxiv.org/pdf/2304.01373.pdf). It contains two sets of eight models of sizes 70M, 160M, 410M, 1B, 1.4B, 2.8B, 6.9B, and 12B. For each size, there are two models: one trained on the Pile, and one trained on the Pile after the dataset has been globally deduplicated. All 8 model sizes are trained on the exact same data, in the exact same order. We also provide 154 intermediate checkpoints per model, hosted on Hugging Face as branches. The Pythia model suite was deliberately designed to promote scientific research on large language models, especially interpretability research. Despite not centering downstream performance as a design goal, we find the models <a href="#evaluations">match or exceed</a> the performance of similar and same-sized models, such as those in the OPT and GPT-Neo suites. <details> <summary style="font-weight:600">Details on previous early release and naming convention.</summary> Previously, we released an early version of the Pythia suite to the public. However, we decided to retrain the model suite to address a few hyperparameter discrepancies. This model card <a href="#changelog">lists the changes</a>; see appendix B in the Pythia paper for further discussion. We found no difference in benchmark performance between the two Pythia versions. The old models are [still available](https://huggingface.co/models?other=pythia_v0), but we suggest the retrained suite if you are just starting to use Pythia.<br> **This is the current release.** Please note that all models in the *Pythia* suite were renamed in January 2023. For clarity, a <a href="#naming-convention-and-parameter-count">table comparing the old and new names</a> is provided in this model card, together with exact parameter counts. </details> <br> # Pythia-1B ## Model Details - Developed by: [EleutherAI](http://eleuther.ai) - Model type: Transformer-based Language Model - Language: English - Learn more: [Pythia's GitHub repository](https://github.com/EleutherAI/pythia) for training procedure, config files, and details on how to use. [See paper](https://arxiv.org/pdf/2304.01373.pdf) for more evals and implementation details. - Library: [GPT-NeoX](https://github.com/EleutherAI/gpt-neox) - License: Apache 2.0 - Contact: to ask questions about this model, join the [EleutherAI Discord](https://discord.gg/zBGx3azzUn), and post them in `#release-discussion`. Please read the existing *Pythia* documentation before asking about it in the EleutherAI Discord. For general correspondence: [contact@eleuther. ai](mailto:contact@eleuther.ai). <figure> | Pythia model | Non-Embedding Params | Layers | Model Dim | Heads | Batch Size | Learning Rate | Equivalent Models | | -----------: | -------------------: | :----: | :-------: | :---: | :--------: | :-------------------: | :--------------------: | | 70M | 18,915,328 | 6 | 512 | 8 | 2M | 1.0 x 10<sup>-3</sup> | — | | 160M | 85,056,000 | 12 | 768 | 12 | 2M | 6.0 x 10<sup>-4</sup> | GPT-Neo 125M, OPT-125M | | 410M | 302,311,424 | 24 | 1024 | 16 | 2M | 3.0 x 10<sup>-4</sup> | OPT-350M | | 1.0B | 805,736,448 | 16 | 2048 | 8 | 2M | 3.0 x 10<sup>-4</sup> | — | | 1.4B | 1,208,602,624 | 24 | 2048 | 16 | 2M | 2.0 x 10<sup>-4</sup> | GPT-Neo 1.3B, OPT-1.3B | | 2.8B | 2,517,652,480 | 32 | 2560 | 32 | 2M | 1.6 x 10<sup>-4</sup> | GPT-Neo 2.7B, OPT-2.7B | | 6.9B | 6,444,163,072 | 32 | 4096 | 32 | 2M | 1.2 x 10<sup>-4</sup> | OPT-6.7B | | 12B | 11,327,027,200 | 36 | 5120 | 40 | 2M | 1.2 x 10<sup>-4</sup> | — | <figcaption>Engineering details for the <i>Pythia Suite</i>. Deduped and non-deduped models of a given size have the same hyperparameters. “Equivalent” models have <b>exactly</b> the same architecture, and the same number of non-embedding parameters.</figcaption> </figure> ## Uses and Limitations ### Intended Use The primary intended use of Pythia is research on the behavior, functionality, and limitations of large language models. This suite is intended to provide a controlled setting for performing scientific experiments. We also provide 154 checkpoints per model: initial `step0`, 10 log-spaced checkpoints `step{1,2,4...512}`, and 143 evenly-spaced checkpoints from `step1000` to `step143000`. These checkpoints are hosted on Hugging Face as branches. Note that branch `143000` corresponds exactly to the model checkpoint on the `main` branch of each model. You may also further fine-tune and adapt Pythia-1B for deployment, as long as your use is in accordance with the Apache 2.0 license. Pythia models work with the Hugging Face [Transformers Library](https://huggingface.co/docs/transformers/index). If you decide to use pre-trained Pythia-1B as a basis for your fine-tuned model, please conduct your own risk and bias assessment. ### Out-of-scope use The Pythia Suite is **not** intended for deployment. It is not a in itself a product and cannot be used for human-facing interactions. For example, the model may generate harmful or offensive text. Please evaluate the risks associated with your particular use case. Pythia models are English-language only, and are not suitable for translation or generating text in other languages. Pythia-1B has not been fine-tuned for downstream contexts in which language models are commonly deployed, such as writing genre prose, or commercial chatbots. This means Pythia-1B will **not** respond to a given prompt the way a product like ChatGPT does. This is because, unlike this model, ChatGPT was fine-tuned using methods such as Reinforcement Learning from Human Feedback (RLHF) to better “follow” human instructions. ### Limitations and biases The core functionality of a large language model is to take a string of text and predict the next token. The token used by the model need not produce the most “accurate” text. Never rely on Pythia-1B to produce factually accurate output. This model was trained on [the Pile](https://pile.eleuther.ai/), a dataset known to contain profanity and texts that are lewd or otherwise offensive. See [Section 6 of the Pile paper](https://arxiv.org/abs/2101.00027) for a discussion of documented biases with regards to gender, religion, and race. Pythia-1B may produce socially unacceptable or undesirable text, *even if* the prompt itself does not include anything explicitly offensive. If you plan on using text generated through, for example, the Hosted Inference API, we recommend having a human curate the outputs of this language model before presenting it to other people. Please inform your audience that the text was generated by Pythia-1B. ### Quickstart Pythia models can be loaded and used via the following code, demonstrated here for the third `pythia-70m-deduped` checkpoint: ```python from transformers import GPTNeoXForCausalLM, AutoTokenizer model = GPTNeoXForCausalLM.from_pretrained( "EleutherAI/pythia-70m-deduped", revision="step3000", cache_dir="./pythia-70m-deduped/step3000", ) tokenizer = AutoTokenizer.from_pretrained( "EleutherAI/pythia-70m-deduped", revision="step3000", cache_dir="./pythia-70m-deduped/step3000", ) inputs = tokenizer("Hello, I am", return_tensors="pt") tokens = model.generate(**inputs) tokenizer.decode(tokens[0]) ``` Revision/branch `step143000` corresponds exactly to the model checkpoint on the `main` branch of each model.<br> For more information on how to use all Pythia models, see [documentation on GitHub](https://github.com/EleutherAI/pythia). ## Training ### Training data [The Pile](https://pile.eleuther.ai/) is a 825GiB general-purpose dataset in English. It was created by EleutherAI specifically for training large language models. It contains texts from 22 diverse sources, roughly broken down into five categories: academic writing (e.g. arXiv), internet (e.g. CommonCrawl), prose (e.g. Project Gutenberg), dialogue (e.g. YouTube subtitles), and miscellaneous (e.g. GitHub, Enron Emails). See [the Pile paper](https://arxiv.org/abs/2101.00027) for a breakdown of all data sources, methodology, and a discussion of ethical implications. Consult [the datasheet](https://arxiv.org/abs/2201.07311) for more detailed documentation about the Pile and its component datasets. The Pile can be downloaded from the [official website](https://pile.eleuther.ai/), or from a [community mirror](https://the-eye.eu/public/AI/pile/).<br> The Pile was **not** deduplicated before being used to train Pythia-1B. ### Training procedure All models were trained on the exact same data, in the exact same order. Each model saw 299,892,736,000 tokens during training, and 143 checkpoints for each model are saved every 2,097,152,000 tokens, spaced evenly throughout training, from `step1000` to `step143000` (which is the same as `main`). In addition, we also provide frequent early checkpoints: `step0` and `step{1,2,4...512}`. This corresponds to training for just under 1 epoch on the Pile for non-deduplicated models, and about 1.5 epochs on the deduplicated Pile. All *Pythia* models trained for 143000 steps at a batch size of 2M (2,097,152 tokens).<br> See [GitHub](https://github.com/EleutherAI/pythia) for more details on training procedure, including [how to reproduce it](https://github.com/EleutherAI/pythia/blob/main/README.md#reproducing-training).<br> Pythia uses the same tokenizer as [GPT-NeoX- 20B](https://huggingface.co/EleutherAI/gpt-neox-20b). ## Evaluations All 16 *Pythia* models were evaluated using the [LM Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness). You can access the results by model and step at `results/json/*` in the [GitHub repository](https://github.com/EleutherAI/pythia/tree/main/results/json/).<br> Expand the sections below to see plots of evaluation results for all Pythia and Pythia-deduped models compared with OPT and BLOOM. <details> <summary>LAMBADA – OpenAI</summary> <img src="/EleutherAI/pythia-12b/resolve/main/eval_plots/lambada_openai_v1.png" style="width:auto"/> </details> <details> <summary>Physical Interaction: Question Answering (PIQA)</summary> <img src="/EleutherAI/pythia-12b/resolve/main/eval_plots/piqa_v1.png" style="width:auto"/> </details> <details> <summary>WinoGrande</summary> <img src="/EleutherAI/pythia-12b/resolve/main/eval_plots/winogrande_v1.png" style="width:auto"/> </details> <details> <summary>AI2 Reasoning Challenge—Easy Set</summary> <img src="/EleutherAI/pythia-12b/resolve/main/eval_plots/arc_easy_v1.png" style="width:auto"/> </details> <details> <summary>SciQ</summary> <img src="/EleutherAI/pythia-12b/resolve/main/eval_plots/sciq_v1.png" style="width:auto"/> </details> ## Changelog This section compares differences between previously released [Pythia v0](https://huggingface.co/models?other=pythia_v0) and the current models. See Appendix B of the Pythia paper for further discussion of these changes and the motivation behind them. We found that retraining Pythia had no impact on benchmark performance. - All model sizes are now trained with uniform batch size of 2M tokens. Previously, the models of size 160M, 410M, and 1.4B parameters were trained with batch sizes of 4M tokens. - We added checkpoints at initialization (step 0) and steps {1,2,4,8,16,32,64, 128,256,512} in addition to every 1000 training steps. - Flash Attention was used in the new retrained suite. - We remedied a minor inconsistency that existed in the original suite: all models of size 2.8B parameters or smaller had a learning rate (LR) schedule which decayed to a minimum LR of 10% the starting LR rate, but the 6.9B and 12B models all used an LR schedule which decayed to a minimum LR of 0. In the redone training runs, we rectified this inconsistency: all models now were trained with LR decaying to a minimum of 0.1× their maximum LR. ### Naming convention and parameter count *Pythia* models were renamed in January 2023. It is possible that the old naming convention still persists in some documentation by accident. The current naming convention (70M, 160M, etc.) is based on total parameter count. <figure style="width:32em"> | current Pythia suffix | old suffix | total params | non-embedding params | | --------------------: | ---------: | -------------: | -------------------: | | 70M | 19M | 70,426,624 | 18,915,328 | | 160M | 125M | 162,322,944 | 85,056,000 | | 410M | 350M | 405,334,016 | 302,311,424 | | 1B | 800M | 1,011,781,632 | 805,736,448 | | 1.4B | 1.3B | 1,414,647,808 | 1,208,602,624 | | 2.8B | 2.7B | 2,775,208,960 | 2,517,652,480 | | 6.9B | 6.7B | 6,857,302,016 | 6,444,163,072 | | 12B | 13B | 11,846,072,320 | 11,327,027,200 | </figure>
laion/larger_clap_general
laion
"2023-10-31T19:56:46Z"
67,991
34
transformers
[ "transformers", "pytorch", "clap", "feature-extraction", "arxiv:2211.06687", "license:apache-2.0", "endpoints_compatible", "region:us" ]
feature-extraction
"2023-10-30T18:17:08Z"
--- license: apache-2.0 --- # Model ## TL;DR CLAP is to audio what CLIP is to image. This is an improved CLAP checkpoint, specifically trained on general audio, music and speech. ## Description CLAP (Contrastive Language-Audio Pretraining) is a neural network trained on a variety of (audio, text) pairs. It can be instructed in to predict the most relevant text snippet, given an audio, without directly optimizing for the task. The CLAP model uses a SWINTransformer to get audio features from a log-Mel spectrogram input, and a RoBERTa model to get text features. Both the text and audio features are then projected to a latent space with identical dimension. The dot product between the projected audio and text features is then used as a similar score. # Usage You can use this model for zero shot audio classification or extracting audio and/or textual features. # Uses ## Perform zero-shot audio classification ### Using `pipeline` ```python from datasets import load_dataset from transformers import pipeline dataset = load_dataset("ashraq/esc50") audio = dataset["train"]["audio"][-1]["array"] audio_classifier = pipeline(task="zero-shot-audio-classification", model="laion/larger_clap_general") output = audio_classifier(audio, candidate_labels=["Sound of a dog", "Sound of vaccum cleaner"]) print(output) >>> [{"score": 0.999, "label": "Sound of a dog"}, {"score": 0.001, "label": "Sound of vaccum cleaner"}] ``` ## Run the model: You can also get the audio and text embeddings using `ClapModel` ### Run the model on CPU: ```python from datasets import load_dataset from transformers import ClapModel, ClapProcessor librispeech_dummy = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") audio_sample = librispeech_dummy[0] model = ClapModel.from_pretrained("laion/larger_clap_general") processor = ClapProcessor.from_pretrained("laion/larger_clap_general") inputs = processor(audios=audio_sample["audio"]["array"], return_tensors="pt") audio_embed = model.get_audio_features(**inputs) ``` ### Run the model on GPU: ```python from datasets import load_dataset from transformers import ClapModel, ClapProcessor librispeech_dummy = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") audio_sample = librispeech_dummy[0] model = ClapModel.from_pretrained("laion/larger_clap_general").to(0) processor = ClapProcessor.from_pretrained("laion/larger_clap_general") inputs = processor(audios=audio_sample["audio"]["array"], return_tensors="pt").to(0) audio_embed = model.get_audio_features(**inputs) ``` # Citation If you are using this model for your work, please consider citing the original paper: ``` @misc{https://doi.org/10.48550/arxiv.2211.06687, doi = {10.48550/ARXIV.2211.06687}, url = {https://arxiv.org/abs/2211.06687}, author = {Wu, Yusong and Chen, Ke and Zhang, Tianyu and Hui, Yuchen and Berg-Kirkpatrick, Taylor and Dubnov, Shlomo}, keywords = {Sound (cs.SD), Audio and Speech Processing (eess.AS), FOS: Computer and information sciences, FOS: Computer and information sciences, FOS: Electrical engineering, electronic engineering, information engineering, FOS: Electrical engineering, electronic engineering, information engineering}, title = {Large-scale Contrastive Language-Audio Pretraining with Feature Fusion and Keyword-to-Caption Augmentation}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
pittawat/vit-base-uppercase-english-characters
pittawat
"2024-01-12T00:20:45Z"
67,843
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
"2024-01-11T08:34:01Z"
--- license: apache-2.0 tags: - image-classification - generated_from_trainer metrics: - accuracy model-index: - name: vit-base-uppercase-english-characters results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-uppercase-english-characters This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the pittawat/uppercase-english-characters dataset. It achieves the following results on the evaluation set: - Loss: 0.3160 - Accuracy: 0.9573 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.5944 | 1.35 | 100 | 0.5538 | 0.9487 | | 0.2241 | 2.7 | 200 | 0.3160 | 0.9573 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.0 - Datasets 2.1.0 - Tokenizers 0.13.2
giacomoarienti/nsfw-classifier
giacomoarienti
"2024-11-06T13:20:07Z"
67,336
17
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "vit", "image-classification", "huggingpics", "dataset:deepghs/nsfw_detect", "doi:10.57967/hf/2906", "license:cc-by-nc-nd-4.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
"2023-09-05T12:19:30Z"
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: nsfw-classifier results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.9200000166893005 datasets: - deepghs/nsfw_detect license: cc-by-nc-nd-4.0 --- # 🚫 NSFW Classifier - Keep Your Platform Safe and Secure! ### An AI-powered image classifier designed to detect and prevent NSFW content (porn, hentai, sexy images) from being posted on your platform. Trusted by thousands of developers, this solution is perfect for any app or platform that allows users to upload images. --- ## 🚀 Why Choose Our NSFW Image Classifier? In today's digital world, user-generated content is a double-edged sword. While it fosters creativity and engagement, it also opens the door to inappropriate or illegal content being shared. Our NSFW Image Classifier is specifically designed to identify and filter out explicit images, including **pornography, hentai, and sexually suggestive content**, ensuring your platform remains **safe, secure**, and **legally compliant**. ### 🌟 Key Benefits: - **Protect Your User Base**: Keep your community safe by preventing exposure to inappropriate content. - **Legal Compliance**: Avoid legal action by preventing illegal or explicit content from being posted. - **Seamless Integration**: Our model is easy to integrate into any platform that allows image uploads, including social media, forums, e-commerce sites, and more. --- ## 🔥 Proven Solution - Trusted by Thousands! With **60,000 downloads per month**, our NSFW Image Classifier has become the go-to solution for platforms looking to **maintain a clean and safe environment** for their users. Many developers and companies have already chosen our solution to protect their communities—will you be next? --- ## 📦 How It Works 1. **Upload an Image**: The user uploads an image to your platform. 2. **NSFW Detection**: Our model analyzes the image and flags any explicit content (porn, hentai, sexy images). 3. **Moderation**: Take appropriate action, whether it's preventing the upload or flagging the content for review. ### **Who Can Benefit?** - **Social Media Platforms** - **Online Forums** - **E-Commerce Sites** - **Content Sharing Apps** - **Any platform allowing user-uploaded images** --- ## 🚀 Looking for Even More Power? Want a model that's **even more powerful and accurate**? We've got a **premium version** trained on a **curated, high-quality dataset** that can detect a wider range of illegal content, including **gore, harmful images, under 18 content, and more**. 📩 **Contact me on Telegram [@mrjack7](https://t.me/mrjack7)** for more details on the **premium model**! --- ## 🌐 API Access 💻 Need easy integration? **API access** is available for seamless deployment into your applications. Whether you're looking to integrate our NSFW image detection capabilities or require more advanced features, our API provides a flexible and scalable solution. 📩 **Contact me on Telegram [@mrjack7](https://t.me/mrjack7)** for more details on **API access**! --- Let's build something amazing together. 💡
NousResearch/Meta-Llama-3.1-70B
NousResearch
"2024-07-26T02:02:06Z"
67,229
5
transformers
[ "transformers", "safetensors", "llama", "text-generation", "facebook", "meta", "pytorch", "llama-3", "en", "de", "fr", "it", "pt", "hi", "es", "th", "arxiv:2204.05149", "license:llama3.1", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2024-07-24T09:28:21Z"
--- language: - en - de - fr - it - pt - hi - es - th pipeline_tag: text-generation tags: - facebook - meta - pytorch - llama - llama-3 license: llama3.1 extra_gated_prompt: >- ### LLAMA 3.1 COMMUNITY LICENSE AGREEMENT Llama 3.1 Version Release Date: July 23, 2024 "Agreement" means the terms and conditions for use, reproduction, distribution and modification of the Llama Materials set forth herein. "Documentation" means the specifications, manuals and documentation accompanying Llama 3.1 distributed by Meta at https://llama.meta.com/doc/overview. "Licensee" or "you" means you, or your employer or any other person or entity (if you are entering into this Agreement on such person or entity’s behalf), of the age required under applicable laws, rules or regulations to provide legal consent and that has legal authority to bind your employer or such other person or entity if you are entering in this Agreement on their behalf. "Llama 3.1" means the foundational large language models and software and algorithms, including machine-learning model code, trained model weights, inference-enabling code, training-enabling code, fine-tuning enabling code and other elements of the foregoing distributed by Meta at https://llama.meta.com/llama-downloads. "Llama Materials" means, collectively, Meta’s proprietary Llama 3.1 and Documentation (and any portion thereof) made available under this Agreement. "Meta" or "we" means Meta Platforms Ireland Limited (if you are located in or, if you are an entity, your principal place of business is in the EEA or Switzerland) and Meta Platforms, Inc. (if you are located outside of the EEA or Switzerland). 1. License Rights and Redistribution. a. Grant of Rights. You are granted a non-exclusive, worldwide, non-transferable and royalty-free limited license under Meta’s intellectual property or other rights owned by Meta embodied in the Llama Materials to use, reproduce, distribute, copy, create derivative works of, and make modifications to the Llama Materials. b. Redistribution and Use. i. If you distribute or make available the Llama Materials (or any derivative works thereof), or a product or service (including another AI model) that contains any of them, you shall (A) provide a copy of this Agreement with any such Llama Materials; and (B) prominently display “Built with Llama” on a related website, user interface, blogpost, about page, or product documentation. If you use the Llama Materials or any outputs or results of the Llama Materials to create, train, fine tune, or otherwise improve an AI model, which is distributed or made available, you shall also include “Llama” at the beginning of any such AI model name. ii. If you receive Llama Materials, or any derivative works thereof, from a Licensee as part of an integrated end user product, then Section 2 of this Agreement will not apply to you. iii. You must retain in all copies of the Llama Materials that you distribute the following attribution notice within a “Notice” text file distributed as a part of such copies: “Llama 3.1 is licensed under the Llama 3.1 Community License, Copyright © Meta Platforms, Inc. All Rights Reserved.” iv. Your use of the Llama Materials must comply with applicable laws and regulations (including trade compliance laws and regulations) and adhere to the Acceptable Use Policy for the Llama Materials (available at https://llama.meta.com/llama3_1/use-policy), which is hereby incorporated by reference into this Agreement. 2. Additional Commercial Terms. If, on the Llama 3.1 version release date, the monthly active users of the products or services made available by or for Licensee, or Licensee’s affiliates, is greater than 700 million monthly active users in the preceding calendar month, you must request a license from Meta, which Meta may grant to you in its sole discretion, and you are not authorized to exercise any of the rights under this Agreement unless or until Meta otherwise expressly grants you such rights. 3. Disclaimer of Warranty. UNLESS REQUIRED BY APPLICABLE LAW, THE LLAMA MATERIALS AND ANY OUTPUT AND RESULTS THEREFROM ARE PROVIDED ON AN “AS IS” BASIS, WITHOUT WARRANTIES OF ANY KIND, AND META DISCLAIMS ALL WARRANTIES OF ANY KIND, BOTH EXPRESS AND IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. YOU ARE SOLELY RESPONSIBLE FOR DETERMINING THE APPROPRIATENESS OF USING OR REDISTRIBUTING THE LLAMA MATERIALS AND ASSUME ANY RISKS ASSOCIATED WITH YOUR USE OF THE LLAMA MATERIALS AND ANY OUTPUT AND RESULTS. 4. Limitation of Liability. IN NO EVENT WILL META OR ITS AFFILIATES BE LIABLE UNDER ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, TORT, NEGLIGENCE, PRODUCTS LIABILITY, OR OTHERWISE, ARISING OUT OF THIS AGREEMENT, FOR ANY LOST PROFITS OR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL, EXEMPLARY OR PUNITIVE DAMAGES, EVEN IF META OR ITS AFFILIATES HAVE BEEN ADVISED OF THE POSSIBILITY OF ANY OF THE FOREGOING. 5. Intellectual Property. a. No trademark licenses are granted under this Agreement, and in connection with the Llama Materials, neither Meta nor Licensee may use any name or mark owned by or associated with the other or any of its affiliates, except as required for reasonable and customary use in describing and redistributing the Llama Materials or as set forth in this Section 5(a). Meta hereby grants you a license to use “Llama” (the “Mark”) solely as required to comply with the last sentence of Section 1.b.i. You will comply with Meta’s brand guidelines (currently accessible at https://about.meta.com/brand/resources/meta/company-brand/ ). All goodwill arising out of your use of the Mark will inure to the benefit of Meta. b. Subject to Meta’s ownership of Llama Materials and derivatives made by or for Meta, with respect to any derivative works and modifications of the Llama Materials that are made by you, as between you and Meta, you are and will be the owner of such derivative works and modifications. c. If you institute litigation or other proceedings against Meta or any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Llama Materials or Llama 3.1 outputs or results, or any portion of any of the foregoing, constitutes infringement of intellectual property or other rights owned or licensable by you, then any licenses granted to you under this Agreement shall terminate as of the date such litigation or claim is filed or instituted. You will indemnify and hold harmless Meta from and against any claim by any third party arising out of or related to your use or distribution of the Llama Materials. 6. Term and Termination. The term of this Agreement will commence upon your acceptance of this Agreement or access to the Llama Materials and will continue in full force and effect until terminated in accordance with the terms and conditions herein. Meta may terminate this Agreement if you are in breach of any term or condition of this Agreement. Upon termination of this Agreement, you shall delete and cease use of the Llama Materials. Sections 3, 4 and 7 shall survive the termination of this Agreement. 7. Governing Law and Jurisdiction. This Agreement will be governed and construed under the laws of the State of California without regard to choice of law principles, and the UN Convention on Contracts for the International Sale of Goods does not apply to this Agreement. The courts of California shall have exclusive jurisdiction of any dispute arising out of this Agreement. ### Llama 3.1 Acceptable Use Policy Meta is committed to promoting safe and fair use of its tools and features, including Llama 3.1. If you access or use Llama 3.1, you agree to this Acceptable Use Policy (“Policy”). The most recent copy of this policy can be found at [https://llama.meta.com/llama3_1/use-policy](https://llama.meta.com/llama3_1/use-policy) #### Prohibited Uses We want everyone to use Llama 3.1 safely and responsibly. You agree you will not use, or allow others to use, Llama 3.1 to: 1. Violate the law or others’ rights, including to: 1. Engage in, promote, generate, contribute to, encourage, plan, incite, or further illegal or unlawful activity or content, such as: 1. Violence or terrorism 2. Exploitation or harm to children, including the solicitation, creation, acquisition, or dissemination of child exploitative content or failure to report Child Sexual Abuse Material 3. Human trafficking, exploitation, and sexual violence 4. The illegal distribution of information or materials to minors, including obscene materials, or failure to employ legally required age-gating in connection with such information or materials. 5. Sexual solicitation 6. Any other criminal activity 3. Engage in, promote, incite, or facilitate the harassment, abuse, threatening, or bullying of individuals or groups of individuals 4. Engage in, promote, incite, or facilitate discrimination or other unlawful or harmful conduct in the provision of employment, employment benefits, credit, housing, other economic benefits, or other essential goods and services 5. Engage in the unauthorized or unlicensed practice of any profession including, but not limited to, financial, legal, medical/health, or related professional practices 6. Collect, process, disclose, generate, or infer health, demographic, or other sensitive personal or private information about individuals without rights and consents required by applicable laws 7. Engage in or facilitate any action or generate any content that infringes, misappropriates, or otherwise violates any third-party rights, including the outputs or results of any products or services using the Llama Materials 8. Create, generate, or facilitate the creation of malicious code, malware, computer viruses or do anything else that could disable, overburden, interfere with or impair the proper working, integrity, operation or appearance of a website or computer system 2. Engage in, promote, incite, facilitate, or assist in the planning or development of activities that present a risk of death or bodily harm to individuals, including use of Llama 3.1 related to the following: 1. Military, warfare, nuclear industries or applications, espionage, use for materials or activities that are subject to the International Traffic Arms Regulations (ITAR) maintained by the United States Department of State 2. Guns and illegal weapons (including weapon development) 3. Illegal drugs and regulated/controlled substances 4. Operation of critical infrastructure, transportation technologies, or heavy machinery 5. Self-harm or harm to others, including suicide, cutting, and eating disorders 6. Any content intended to incite or promote violence, abuse, or any infliction of bodily harm to an individual 3. Intentionally deceive or mislead others, including use of Llama 3.1 related to the following: 1. Generating, promoting, or furthering fraud or the creation or promotion of disinformation 2. Generating, promoting, or furthering defamatory content, including the creation of defamatory statements, images, or other content 3. Generating, promoting, or further distributing spam 4. Impersonating another individual without consent, authorization, or legal right 5. Representing that the use of Llama 3.1 or outputs are human-generated 6. Generating or facilitating false online engagement, including fake reviews and other means of fake online engagement 4. Fail to appropriately disclose to end users any known dangers of your AI system Please report any violation of this Policy, software “bug,” or other problems that could lead to a violation of this Policy through one of the following means: * Reporting issues with the model: [https://github.com/meta-llama/llama-models/issues](https://github.com/meta-llama/llama-models/issues) * Reporting risky content generated by the model: developers.facebook.com/llama_output_feedback * Reporting bugs and security concerns: facebook.com/whitehat/info * Reporting violations of the Acceptable Use Policy or unlicensed uses of Meta Llama 3: LlamaUseReport@meta.com extra_gated_fields: First Name: text Last Name: text Date of birth: date_picker Country: country Affiliation: text Job title: type: select options: - Student - Research Graduate - AI researcher - AI developer/engineer - Reporter - Other geo: ip_location By clicking Submit below I accept the terms of the license and acknowledge that the information I provide will be collected stored processed and shared in accordance with the Meta Privacy Policy: checkbox extra_gated_description: The information you provide will be collected, stored, processed and shared in accordance with the [Meta Privacy Policy](https://www.facebook.com/privacy/policy/). extra_gated_button_content: Submit --- ## Model Information The Meta Llama 3.1 collection of multilingual large language models (LLMs) is a collection of pretrained and instruction tuned generative models in 8B, 70B and 405B sizes (text in/text out). The Llama 3.1 instruction tuned text only models (8B, 70B, 405B) are optimized for multilingual dialogue use cases and outperform many of the available open source and closed chat models on common industry benchmarks. **Model developer**: Meta **Model Architecture:** Llama 3.1 is an auto-regressive language model that uses an optimized transformer architecture. The tuned versions use supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF) to align with human preferences for helpfulness and safety. <table> <tr> <td> </td> <td><strong>Training Data</strong> </td> <td><strong>Params</strong> </td> <td><strong>Input modalities</strong> </td> <td><strong>Output modalities</strong> </td> <td><strong>Context length</strong> </td> <td><strong>GQA</strong> </td> <td><strong>Token count</strong> </td> <td><strong>Knowledge cutoff</strong> </td> </tr> <tr> <td rowspan="3" >Llama 3.1 (text only) </td> <td rowspan="3" >A new mix of publicly available online data. </td> <td>8B </td> <td>Multilingual Text </td> <td>Multilingual Text and code </td> <td>128k </td> <td>Yes </td> <td rowspan="3" >15T+ </td> <td rowspan="3" >December 2023 </td> </tr> <tr> <td>70B </td> <td>Multilingual Text </td> <td>Multilingual Text and code </td> <td>128k </td> <td>Yes </td> </tr> <tr> <td>405B </td> <td>Multilingual Text </td> <td>Multilingual Text and code </td> <td>128k </td> <td>Yes </td> </tr> </table> **Supported languages:** English, German, French, Italian, Portuguese, Hindi, Spanish, and Thai. **Llama 3.1 family of models**. Token counts refer to pretraining data only. All model versions use Grouped-Query Attention (GQA) for improved inference scalability. **Model Release Date:** July 23, 2024. **Status:** This is a static model trained on an offline dataset. Future versions of the tuned models will be released as we improve model safety with community feedback. **License:** A custom commercial license, the Llama 3.1 Community License, is available at: [https://github.com/meta-llama/llama-models/blob/main/models/llama3_1/LICENSE](https://github.com/meta-llama/llama-models/blob/main/models/llama3_1/LICENSE) Where to send questions or comments about the model Instructions on how to provide feedback or comments on the model can be found in the model [README](https://github.com/meta-llama/llama3). For more technical information about generation parameters and recipes for how to use Llama 3.1 in applications, please go [here](https://github.com/meta-llama/llama-recipes). ## Intended Use **Intended Use Cases** Llama 3.1 is intended for commercial and research use in multiple languages. Instruction tuned text only models are intended for assistant-like chat, whereas pretrained models can be adapted for a variety of natural language generation tasks. The Llama 3.1 model collection also supports the ability to leverage the outputs of its models to improve other models including synthetic data generation and distillation. The Llama 3.1 Community License allows for these use cases. **Out-of-scope** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in any other way that is prohibited by the Acceptable Use Policy and Llama 3.1 Community License. Use in languages beyond those explicitly referenced as supported in this model card**. **<span style="text-decoration:underline;">Note</span>: Llama 3.1 has been trained on a broader collection of languages than the 8 supported languages. Developers may fine-tune Llama 3.1 models for languages beyond the 8 supported languages provided they comply with the Llama 3.1 Community License and the Acceptable Use Policy and in such cases are responsible for ensuring that any uses of Llama 3.1 in additional languages is done in a safe and responsible manner. ## How to use This repository contains two versions of Meta-Llama-3.1-70B, for use with transformers and with the original `llama` codebase. ### Use with transformers Starting with `transformers >= 4.43.0` onward, you can run conversational inference using the Transformers `pipeline` abstraction or by leveraging the Auto classes with the `generate()` function. Make sure to update your transformers installation via `pip install --upgrade transformers`. ```python >>> import transformers >>> import torch >>> model_id = "meta-llama/Meta-Llama-3.1-70B" >>> pipeline = transformers.pipeline( "text-generation", model=model_id, model_kwargs={"torch_dtype": torch.bfloat16}, device_map="auto" ) >>> pipeline("Hey how are you doing today?") ``` ### Use with `llama3` Please, follow the instructions in the [repository](https://github.com/meta-llama/llama). To download Original checkpoints, see the example command below leveraging `huggingface-cli`: ``` huggingface-cli download meta-llama/Meta-Llama-3.1-70B --include "original/*" --local-dir Meta-Llama-3.1-70B ``` ## Hardware and Software **Training Factors** We used custom training libraries, Meta's custom built GPU cluster, and production infrastructure for pretraining. Fine-tuning, annotation, and evaluation were also performed on production infrastructure. **Training utilized a cumulative of** 39.3M GPU hours of computation on H100-80GB (TDP of 700W) type hardware, per the table below. Training time is the total GPU time required for training each model and power consumption is the peak power capacity per GPU device used, adjusted for power usage efficiency. **Training Greenhouse Gas Emissions** Estimated total location-based greenhouse gas emissions were **11,390** tons CO2eq for training. Since 2020, Meta has maintained net zero greenhouse gas emissions in its global operations and matched 100% of its electricity use with renewable energy, therefore the total market-based greenhouse gas emissions for training were 0 tons CO2eq. <table> <tr> <td> </td> <td><strong>Training Time (GPU hours)</strong> </td> <td><strong>Training Power Consumption (W)</strong> </td> <td><strong>Training Location-Based Greenhouse Gas Emissions</strong> <p> <strong>(tons CO2eq)</strong> </td> <td><strong>Training Market-Based Greenhouse Gas Emissions</strong> <p> <strong>(tons CO2eq)</strong> </td> </tr> <tr> <td>Llama 3.1 8B </td> <td>1.46M </td> <td>700 </td> <td>420 </td> <td>0 </td> </tr> <tr> <td>Llama 3.1 70B </td> <td>7.0M </td> <td>700 </td> <td>2,040 </td> <td>0 </td> </tr> <tr> <td>Llama 3.1 405B </td> <td>30.84M </td> <td>700 </td> <td>8,930 </td> <td>0 </td> </tr> <tr> <td>Total </td> <td>39.3M <td> <ul> </ul> </td> <td>11,390 </td> <td>0 </td> </tr> </table> The methodology used to determine training energy use and greenhouse gas emissions can be found [here](https://arxiv.org/pdf/2204.05149). Since Meta is openly releasing these models, the training energy use and greenhouse gas emissions will not be incurred by others. ## Training Data **Overview:** Llama 3.1 was pretrained on ~15 trillion tokens of data from publicly available sources. The fine-tuning data includes publicly available instruction datasets, as well as over 25M synthetically generated examples. **Data Freshness:** The pretraining data has a cutoff of December 2023. ## Benchmark scores In this section, we report the results for Llama 3.1 models on standard automatic benchmarks. For all the evaluations, we use our internal evaluations library. ### Base pretrained models <table> <tr> <td><strong>Category</strong> </td> <td><strong>Benchmark</strong> </td> <td><strong># Shots</strong> </td> <td><strong>Metric</strong> </td> <td><strong>Llama 3 8B</strong> </td> <td><strong>Llama 3.1 8B</strong> </td> <td><strong>Llama 3 70B</strong> </td> <td><strong>Llama 3.1 70B</strong> </td> <td><strong>Llama 3.1 405B</strong> </td> </tr> <tr> <td rowspan="7" >General </td> <td>MMLU </td> <td>5 </td> <td>macro_avg/acc_char </td> <td>66.7 </td> <td>66.7 </td> <td>79.5 </td> <td>79.3 </td> <td>85.2 </td> </tr> <tr> <td>MMLU-Pro (CoT) </td> <td>5 </td> <td>macro_avg/acc_char </td> <td>36.2 </td> <td>37.1 </td> <td>55.0 </td> <td>53.8 </td> <td>61.6 </td> </tr> <tr> <td>AGIEval English </td> <td>3-5 </td> <td>average/acc_char </td> <td>47.1 </td> <td>47.8 </td> <td>63.0 </td> <td>64.6 </td> <td>71.6 </td> </tr> <tr> <td>CommonSenseQA </td> <td>7 </td> <td>acc_char </td> <td>72.6 </td> <td>75.0 </td> <td>83.8 </td> <td>84.1 </td> <td>85.8 </td> </tr> <tr> <td>Winogrande </td> <td>5 </td> <td>acc_char </td> <td>- </td> <td>60.5 </td> <td>- </td> <td>83.3 </td> <td>86.7 </td> </tr> <tr> <td>BIG-Bench Hard (CoT) </td> <td>3 </td> <td>average/em </td> <td>61.1 </td> <td>64.2 </td> <td>81.3 </td> <td>81.6 </td> <td>85.9 </td> </tr> <tr> <td>ARC-Challenge </td> <td>25 </td> <td>acc_char </td> <td>79.4 </td> <td>79.7 </td> <td>93.1 </td> <td>92.9 </td> <td>96.1 </td> </tr> <tr> <td>Knowledge reasoning </td> <td>TriviaQA-Wiki </td> <td>5 </td> <td>em </td> <td>78.5 </td> <td>77.6 </td> <td>89.7 </td> <td>89.8 </td> <td>91.8 </td> </tr> <tr> <td rowspan="4" >Reading comprehension </td> <td>SQuAD </td> <td>1 </td> <td>em </td> <td>76.4 </td> <td>77.0 </td> <td>85.6 </td> <td>81.8 </td> <td>89.3 </td> </tr> <tr> <td>QuAC (F1) </td> <td>1 </td> <td>f1 </td> <td>44.4 </td> <td>44.9 </td> <td>51.1 </td> <td>51.1 </td> <td>53.6 </td> </tr> <tr> <td>BoolQ </td> <td>0 </td> <td>acc_char </td> <td>75.7 </td> <td>75.0 </td> <td>79.0 </td> <td>79.4 </td> <td>80.0 </td> </tr> <tr> <td>DROP (F1) </td> <td>3 </td> <td>f1 </td> <td>58.4 </td> <td>59.5 </td> <td>79.7 </td> <td>79.6 </td> <td>84.8 </td> </tr> </table> ### Instruction tuned models <table> <tr> <td><strong>Category</strong> </td> <td><strong>Benchmark</strong> </td> <td><strong># Shots</strong> </td> <td><strong>Metric</strong> </td> <td><strong>Llama 3 8B Instruct</strong> </td> <td><strong>Llama 3.1 8B Instruct</strong> </td> <td><strong>Llama 3 70B Instruct</strong> </td> <td><strong>Llama 3.1 70B Instruct</strong> </td> <td><strong>Llama 3.1 405B Instruct</strong> </td> </tr> <tr> <td rowspan="4" >General </td> <td>MMLU </td> <td>5 </td> <td>macro_avg/acc </td> <td>68.5 </td> <td>69.4 </td> <td>82.0 </td> <td>83.6 </td> <td>87.3 </td> </tr> <tr> <td>MMLU (CoT) </td> <td>0 </td> <td>macro_avg/acc </td> <td>65.3 </td> <td>73.0 </td> <td>80.9 </td> <td>86.0 </td> <td>88.6 </td> </tr> <tr> <td>MMLU-Pro (CoT) </td> <td>5 </td> <td>micro_avg/acc_char </td> <td>45.5 </td> <td>48.3 </td> <td>63.4 </td> <td>66.4 </td> <td>73.3 </td> </tr> <tr> <td>IFEval </td> <td> </td> <td> </td> <td>76.8 </td> <td>80.4 </td> <td>82.9 </td> <td>87.5 </td> <td>88.6 </td> </tr> <tr> <td rowspan="2" >Reasoning </td> <td>ARC-C </td> <td>0 </td> <td>acc </td> <td>82.4 </td> <td>83.4 </td> <td>94.4 </td> <td>94.8 </td> <td>96.9 </td> </tr> <tr> <td>GPQA </td> <td>0 </td> <td>em </td> <td>34.6 </td> <td>30.4 </td> <td>39.5 </td> <td>41.7 </td> <td>50.7 </td> </tr> <tr> <td rowspan="4" >Code </td> <td>HumanEval </td> <td>0 </td> <td>pass@1 </td> <td>60.4 </td> <td>72.6 </td> <td>81.7 </td> <td>80.5 </td> <td>89.0 </td> </tr> <tr> <td>MBPP ++ base version </td> <td>0 </td> <td>pass@1 </td> <td>70.6 </td> <td>72.8 </td> <td>82.5 </td> <td>86.0 </td> <td>88.6 </td> </tr> <tr> <td>Multipl-E HumanEval </td> <td>0 </td> <td>pass@1 </td> <td>- </td> <td>50.8 </td> <td>- </td> <td>65.5 </td> <td>75.2 </td> </tr> <tr> <td>Multipl-E MBPP </td> <td>0 </td> <td>pass@1 </td> <td>- </td> <td>52.4 </td> <td>- </td> <td>62.0 </td> <td>65.7 </td> </tr> <tr> <td rowspan="2" >Math </td> <td>GSM-8K (CoT) </td> <td>8 </td> <td>em_maj1@1 </td> <td>80.6 </td> <td>84.5 </td> <td>93.0 </td> <td>95.1 </td> <td>96.8 </td> </tr> <tr> <td>MATH (CoT) </td> <td>0 </td> <td>final_em </td> <td>29.1 </td> <td>51.9 </td> <td>51.0 </td> <td>68.0 </td> <td>73.8 </td> </tr> <tr> <td rowspan="4" >Tool Use </td> <td>API-Bank </td> <td>0 </td> <td>acc </td> <td>48.3 </td> <td>82.6 </td> <td>85.1 </td> <td>90.0 </td> <td>92.0 </td> </tr> <tr> <td>BFCL </td> <td>0 </td> <td>acc </td> <td>60.3 </td> <td>76.1 </td> <td>83.0 </td> <td>84.8 </td> <td>88.5 </td> </tr> <tr> <td>Gorilla Benchmark API Bench </td> <td>0 </td> <td>acc </td> <td>1.7 </td> <td>8.2 </td> <td>14.7 </td> <td>29.7 </td> <td>35.3 </td> </tr> <tr> <td>Nexus (0-shot) </td> <td>0 </td> <td>macro_avg/acc </td> <td>18.1 </td> <td>38.5 </td> <td>47.8 </td> <td>56.7 </td> <td>58.7 </td> </tr> <tr> <td>Multilingual </td> <td>Multilingual MGSM (CoT) </td> <td>0 </td> <td>em </td> <td>- </td> <td>68.9 </td> <td>- </td> <td>86.9 </td> <td>91.6 </td> </tr> </table> #### Multilingual benchmarks <table> <tr> <td><strong>Category</strong> </td> <td><strong>Benchmark</strong> </td> <td><strong>Language</strong> </td> <td><strong>Llama 3.1 8B</strong> </td> <td><strong>Llama 3.1 70B</strong> </td> <td><strong>Llama 3.1 405B</strong> </td> </tr> <tr> <td rowspan="9" ><strong>General</strong> </td> <td rowspan="9" ><strong>MMLU (5-shot, macro_avg/acc)</strong> </td> <td>Portuguese </td> <td>62.12 </td> <td>80.13 </td> <td>84.95 </td> </tr> <tr> <td>Spanish </td> <td>62.45 </td> <td>80.05 </td> <td>85.08 </td> </tr> <tr> <td>Italian </td> <td>61.63 </td> <td>80.4 </td> <td>85.04 </td> </tr> <tr> <td>German </td> <td>60.59 </td> <td>79.27 </td> <td>84.36 </td> </tr> <tr> <td>French </td> <td>62.34 </td> <td>79.82 </td> <td>84.66 </td> </tr> <tr> <td>Hindi </td> <td>50.88 </td> <td>74.52 </td> <td>80.31 </td> </tr> <tr> <td>Thai </td> <td>50.32 </td> <td>72.95 </td> <td>78.21 </td> </tr> </table> ## Responsibility & Safety As part of our Responsible release approach, we followed a three-pronged strategy to managing trust & safety risks: * Enable developers to deploy helpful, safe and flexible experiences for their target audience and for the use cases supported by Llama. * Protect developers against adversarial users aiming to exploit Llama capabilities to potentially cause harm. * Provide protections for the community to help prevent the misuse of our models. ### Responsible deployment Llama is a foundational technology designed to be used in a variety of use cases, examples on how Meta’s Llama models have been responsibly deployed can be found in our [Community Stories webpage](https://llama.meta.com/community-stories/). Our approach is to build the most helpful models enabling the world to benefit from the technology power, by aligning our model safety for the generic use cases addressing a standard set of harms. Developers are then in the driver seat to tailor safety for their use case, defining their own policy and deploying the models with the necessary safeguards in their Llama systems. Llama 3.1 was developed following the best practices outlined in our Responsible Use Guide, you can refer to the [Responsible Use Guide](https://llama.meta.com/responsible-use-guide/) to learn more. #### Llama 3.1 instruct Our main objectives for conducting safety fine-tuning are to provide the research community with a valuable resource for studying the robustness of safety fine-tuning, as well as to offer developers a readily available, safe, and powerful model for various applications to reduce the developer workload to deploy safe AI systems. For more details on the safety mitigations implemented please read the Llama 3 paper. **Fine-tuning data** We employ a multi-faceted approach to data collection, combining human-generated data from our vendors with synthetic data to mitigate potential safety risks. We’ve developed many large language model (LLM)-based classifiers that enable us to thoughtfully select high-quality prompts and responses, enhancing data quality control. **Refusals and Tone** Building on the work we started with Llama 3, we put a great emphasis on model refusals to benign prompts as well as refusal tone. We included both borderline and adversarial prompts in our safety data strategy, and modified our safety data responses to follow tone guidelines. #### Llama 3.1 systems **Large language models, including Llama 3.1, are not designed to be deployed in isolation but instead should be deployed as part of an overall AI system with additional safety guardrails as required.** Developers are expected to deploy system safeguards when building agentic systems. Safeguards are key to achieve the right helpfulness-safety alignment as well as mitigating safety and security risks inherent to the system and any integration of the model or system with external tools. As part of our responsible release approach, we provide the community with [safeguards](https://llama.meta.com/trust-and-safety/) that developers should deploy with Llama models or other LLMs, including Llama Guard 3, Prompt Guard and Code Shield. All our [reference implementations](https://github.com/meta-llama/llama-agentic-system) demos contain these safeguards by default so developers can benefit from system-level safety out-of-the-box. #### New capabilities Note that this release introduces new capabilities, including a longer context window, multilingual inputs and outputs and possible integrations by developers with third party tools. Building with these new capabilities requires specific considerations in addition to the best practices that generally apply across all Generative AI use cases. **Tool-use**: Just like in standard software development, developers are responsible for the integration of the LLM with the tools and services of their choice. They should define a clear policy for their use case and assess the integrity of the third party services they use to be aware of the safety and security limitations when using this capability. Refer to the Responsible Use Guide for best practices on the safe deployment of the third party safeguards. **Multilinguality**: Llama 3.1 supports 7 languages in addition to English: French, German, Hindi, Italian, Portuguese, Spanish, and Thai. Llama may be able to output text in other languages than those that meet performance thresholds for safety and helpfulness. We strongly discourage developers from using this model to converse in non-supported languages without implementing finetuning and system controls in alignment with their policies and the best practices shared in the Responsible Use Guide. ### Evaluations We evaluated Llama models for common use cases as well as specific capabilities. Common use cases evaluations measure safety risks of systems for most commonly built applications including chat bot, coding assistant, tool calls. We built dedicated, adversarial evaluation datasets and evaluated systems composed of Llama models and Llama Guard 3 to filter input prompt and output response. It is important to evaluate applications in context, and we recommend building dedicated evaluation dataset for your use case. Prompt Guard and Code Shield are also available if relevant to the application. Capability evaluations measure vulnerabilities of Llama models inherent to specific capabilities, for which were crafted dedicated benchmarks including long context, multilingual, tools calls, coding or memorization. **Red teaming** For both scenarios, we conducted recurring red teaming exercises with the goal of discovering risks via adversarial prompting and we used the learnings to improve our benchmarks and safety tuning datasets. We partnered early with subject-matter experts in critical risk areas to understand the nature of these real-world harms and how such models may lead to unintended harm for society. Based on these conversations, we derived a set of adversarial goals for the red team to attempt to achieve, such as extracting harmful information or reprogramming the model to act in a potentially harmful capacity. The red team consisted of experts in cybersecurity, adversarial machine learning, responsible AI, and integrity in addition to multilingual content specialists with background in integrity issues in specific geographic markets. ### Critical and other risks We specifically focused our efforts on mitigating the following critical risk areas: **1- CBRNE (Chemical, Biological, Radiological, Nuclear, and Explosive materials) helpfulness** To assess risks related to proliferation of chemical and biological weapons, we performed uplift testing designed to assess whether use of Llama 3.1 models could meaningfully increase the capabilities of malicious actors to plan or carry out attacks using these types of weapons. **2. Child Safety** Child Safety risk assessments were conducted using a team of experts, to assess the model’s capability to produce outputs that could result in Child Safety risks and inform on any necessary and appropriate risk mitigations via fine tuning. We leveraged those expert red teaming sessions to expand the coverage of our evaluation benchmarks through Llama 3 model development. For Llama 3, we conducted new in-depth sessions using objective based methodologies to assess the model risks along multiple attack vectors including the additional languages Llama 3 is trained on. We also partnered with content specialists to perform red teaming exercises assessing potentially violating content while taking account of market specific nuances or experiences. **3. Cyber attack enablement** Our cyber attack uplift study investigated whether LLMs can enhance human capabilities in hacking tasks, both in terms of skill level and speed. Our attack automation study focused on evaluating the capabilities of LLMs when used as autonomous agents in cyber offensive operations, specifically in the context of ransomware attacks. This evaluation was distinct from previous studies that considered LLMs as interactive assistants. The primary objective was to assess whether these models could effectively function as independent agents in executing complex cyber-attacks without human intervention. Our study of Llama-3.1-405B’s social engineering uplift for cyber attackers was conducted to assess the effectiveness of AI models in aiding cyber threat actors in spear phishing campaigns. Please read our Llama 3.1 Cyber security whitepaper to learn more. ### Community Generative AI safety requires expertise and tooling, and we believe in the strength of the open community to accelerate its progress. We are active members of open consortiums, including the AI Alliance, Partnership on AI and MLCommons, actively contributing to safety standardization and transparency. We encourage the community to adopt taxonomies like the MLCommons Proof of Concept evaluation to facilitate collaboration and transparency on safety and content evaluations. Our Purple Llama tools are open sourced for the community to use and widely distributed across ecosystem partners including cloud service providers. We encourage community contributions to our [Github repository](https://github.com/meta-llama/PurpleLlama). We also set up the [Llama Impact Grants](https://llama.meta.com/llama-impact-grants/) program to identify and support the most compelling applications of Meta’s Llama model for societal benefit across three categories: education, climate and open innovation. The 20 finalists from the hundreds of applications can be found [here](https://llama.meta.com/llama-impact-grants/#finalists). Finally, we put in place a set of resources including an [output reporting mechanism](https://developers.facebook.com/llama_output_feedback) and [bug bounty program](https://www.facebook.com/whitehat) to continuously improve the Llama technology with the help of the community. ## Ethical Considerations and Limitations The core values of Llama 3.1 are openness, inclusivity and helpfulness. It is meant to serve everyone, and to work for a wide range of use cases. It is thus designed to be accessible to people across many different backgrounds, experiences and perspectives. Llama 3.1 addresses users and their needs as they are, without insertion unnecessary judgment or normativity, while reflecting the understanding that even content that may appear problematic in some cases can serve valuable purposes in others. It respects the dignity and autonomy of all users, especially in terms of the values of free thought and expression that power innovation and progress. But Llama 3.1 is a new technology, and like any new technology, there are risks associated with its use. Testing conducted to date has not covered, nor could it cover, all scenarios. For these reasons, as with all LLMs, Llama 3.1’s potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate, biased or other objectionable responses to user prompts. Therefore, before deploying any applications of Llama 3.1 models, developers should perform safety testing and tuning tailored to their specific applications of the model. Please refer to available resources including our [Responsible Use Guide](https://llama.meta.com/responsible-use-guide), [Trust and Safety](https://llama.meta.com/trust-and-safety/) solutions, and other [resources](https://llama.meta.com/docs/get-started/) to learn more about responsible development.
MarcoMancini/low-law-emb
MarcoMancini
"2023-09-28T09:55:02Z"
67,199
0
transformers
[ "transformers", "pytorch", "endpoints_compatible", "region:us" ]
null
"2023-08-28T08:30:52Z"
Found. Redirecting to https://cdn-lfs.hf.co/repos/1a/4d/1a4d4ab1858984b063c6453b1c9583c03ebb210406c2389eadcfc236cddbf228/7f91b71dee029cf890650508c68e62ba4d494adddb8039b458311061d36a28a5?response-content-disposition=inline%3B+filename*%3DUTF-8%27%27README.md%3B+filename%3D%22README.md%22%3B&response-content-type=text%2Fmarkdown&Expires=1731720874&Policy=eyJTdGF0ZW1lbnQiOlt7IkNvbmRpdGlvbiI6eyJEYXRlTGVzc1RoYW4iOnsiQVdTOkVwb2NoVGltZSI6MTczMTcyMDg3NH19LCJSZXNvdXJjZSI6Imh0dHBzOi8vY2RuLWxmcy5oZi5jby9yZXBvcy8xYS80ZC8xYTRkNGFiMTg1ODk4NGIwNjNjNjQ1M2IxYzk1ODNjMDNlYmIyMTA0MDZjMjM4OWVhZGNmYzIzNmNkZGJmMjI4LzdmOTFiNzFkZWUwMjljZjg5MDY1MDUwOGM2OGU2MmJhNGQ0OTRhZGRkYjgwMzliNDU4MzExMDYxZDM2YTI4YTU%7EcmVzcG9uc2UtY29udGVudC1kaXNwb3NpdGlvbj0qJnJlc3BvbnNlLWNvbnRlbnQtdHlwZT0qIn1dfQ__&Signature=PcP86J-J0GJJNt0MyHSPoR4KHb8x9XIEmW-1rlOJeRK0phZKCCiEiuVXBd3cpA%7E1Q53jYlFS6AA64F37ybc3IuG0v-8D-Cm-VnOpu-w3zSP5pvWGET8A2teijLqiP2xZV%7EAKOPYIC1uS9BkXBPYlTuIcINm192NCKioug4LFGNeP2-Jna00%7EKQiRHL%7EIYt0kW1IOWinAH7WuC4cKE7xjUsW7Wfhtd-s%7E6XlHLsCXxavYfqj6KENm77BN-4vTFvU%7EyYIsVL-a62LVneq142k8aZOWeQjwkYNrrUnQMzpGAbsBDfWYVX6OWvlgYNteUHyyQi5nbs7zoW8NbyOYBlC7ZQ__&Key-Pair-Id=K3RPWS32NSSJCE
ai4bharat/IndicNER
ai4bharat
"2022-12-21T02:45:48Z"
66,995
18
transformers
[ "transformers", "pytorch", "bert", "token-classification", "ner", "Pytorch", "transformer", "multilingual", "nlp", "indicnlp", "as", "bn", "gu", "hi", "kn", "ml", "mr", "or", "pa", "ta", "te", "dataset:Samanantar", "arxiv:2212.10168", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
"2022-05-23T11:12:43Z"
--- language: - as - bn - gu - hi - kn - ml - mr - or - pa - ta - te license: mit datasets: - Samanantar tags: - ner - Pytorch - transformer - multilingual - nlp - indicnlp --- # IndicNER IndicNER is a model trained to complete the task of identifying named entities from sentences in Indian languages. Our model is specifically fine-tuned to the 11 Indian languages mentioned above over millions of sentences. The model is then benchmarked over a human annotated testset and multiple other publicly available Indian NER datasets. The 11 languages covered by IndicNER are: Assamese, Bengali, Gujarati, Hindi, Kannada, Malayalam, Marathi, Oriya, Punjabi, Tamil, Telugu. ## Training Corpus Our model was trained on a [dataset](https://huggingface.co/datasets/ai4bharat/naamapadam) which we mined from the existing [Samanantar Corpus](https://huggingface.co/datasets/ai4bharat/samanantar). We used a bert-base-multilingual-uncased model as the starting point and then fine-tuned it to the NER dataset mentioned previously. ## Downloads Download from this same Huggingface repo. Update 20 Dec 2022: We released a new paper documenting IndicNER and Naamapadam. We have a different model reported in the paper. We will update the repo here soon with this model. ## Usage You can use [this Colab notebook](https://colab.research.google.com/drive/1sYa-PDdZQ_c9SzUgnhyb3Fl7j96QBCS8?usp=sharing) for samples on using IndicNER or for finetuning a pre-trained model on Naampadam dataset to build your own NER models. <!-- citing information --> ## Citing If you are using IndicNER, please cite the following article: ``` @misc{mhaske2022naamapadam, doi = {10.48550/ARXIV.2212.10168}, url = {https://arxiv.org/abs/2212.10168}, author = {Mhaske, Arnav and Kedia, Harshit and Doddapaneni, Sumanth and Khapra, Mitesh M. and Kumar, Pratyush and Murthy, Rudra and Kunchukuttan, Anoop}, title = {Naamapadam: A Large-Scale Named Entity Annotated Data for Indic Languages} publisher = {arXiv}, year = {2022}, copyright = {arXiv.org perpetual, non-exclusive license} } ``` We would like to hear from you if: - You are using our resources. Please let us know how you are putting these resources to use. - You have any feedback on these resources. <!-- License --> ## License The IndicNER code (and models) are released under the MIT License. <!-- Contributors --> ## Contributors - Arnav Mhaske <sub> ([AI4Bharat](https://ai4bharat.org), [IITM](https://www.iitm.ac.in)) </sub> - Harshit Kedia <sub> ([AI4Bharat](https://ai4bharat.org), [IITM](https://www.iitm.ac.in)) </sub> - Sumanth Doddapaneni <sub> ([AI4Bharat](https://ai4bharat.org), [IITM](https://www.iitm.ac.in)) </sub> - Mitesh M. Khapra <sub> ([AI4Bharat](https://ai4bharat.org), [IITM](https://www.iitm.ac.in)) </sub> - Pratyush Kumar <sub> ([AI4Bharat](https://ai4bharat.org), [Microsoft](https://www.microsoft.com/en-in/), [IITM](https://www.iitm.ac.in)) </sub> - Rudra Murthy <sub> ([AI4Bharat](https://ai4bharat.org), [IBM](https://www.ibm.com))</sub> - Anoop Kunchukuttan <sub> ([AI4Bharat](https://ai4bharat.org), [Microsoft](https://www.microsoft.com/en-in/), [IITM](https://www.iitm.ac.in)) </sub> This work is the outcome of a volunteer effort as part of the [AI4Bharat initiative](https://ai4bharat.iitm.ac.in). <!-- Contact --> ## Contact - Anoop Kunchukuttan ([anoop.kunchukuttan@gmail.com](mailto:anoop.kunchukuttan@gmail.com)) - Rudra Murthy V ([rmurthyv@in.ibm.com](mailto:rmurthyv@in.ibm.com))
ckiplab/bert-base-chinese-pos
ckiplab
"2022-05-10T03:28:12Z"
66,819
16
transformers
[ "transformers", "pytorch", "jax", "bert", "token-classification", "zh", "license:gpl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
"2022-03-02T23:29:05Z"
--- language: - zh thumbnail: https://ckip.iis.sinica.edu.tw/files/ckip_logo.png tags: - pytorch - token-classification - bert - zh license: gpl-3.0 --- # CKIP BERT Base Chinese This project provides traditional Chinese transformers models (including ALBERT, BERT, GPT2) and NLP tools (including word segmentation, part-of-speech tagging, named entity recognition). 這個專案提供了繁體中文的 transformers 模型(包含 ALBERT、BERT、GPT2)及自然語言處理工具(包含斷詞、詞性標記、實體辨識)。 ## Homepage - https://github.com/ckiplab/ckip-transformers ## Contributers - [Mu Yang](https://muyang.pro) at [CKIP](https://ckip.iis.sinica.edu.tw) (Author & Maintainer) ## Usage Please use BertTokenizerFast as tokenizer instead of AutoTokenizer. 請使用 BertTokenizerFast 而非 AutoTokenizer。 ``` from transformers import ( BertTokenizerFast, AutoModel, ) tokenizer = BertTokenizerFast.from_pretrained('bert-base-chinese') model = AutoModel.from_pretrained('ckiplab/bert-base-chinese-pos') ``` For full usage and more information, please refer to https://github.com/ckiplab/ckip-transformers. 有關完整使用方法及其他資訊,請參見 https://github.com/ckiplab/ckip-transformers 。
jonatasgrosman/wav2vec2-large-xlsr-53-spanish
jonatasgrosman
"2022-12-14T01:59:35Z"
66,616
29
transformers
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "es", "hf-asr-leaderboard", "mozilla-foundation/common_voice_6_0", "robust-speech-event", "speech", "xlsr-fine-tuning-week", "dataset:common_voice", "dataset:mozilla-foundation/common_voice_6_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
"2022-03-02T23:29:05Z"
--- language: es license: apache-2.0 datasets: - common_voice - mozilla-foundation/common_voice_6_0 metrics: - wer - cer tags: - audio - automatic-speech-recognition - es - hf-asr-leaderboard - mozilla-foundation/common_voice_6_0 - robust-speech-event - speech - xlsr-fine-tuning-week model-index: - name: XLSR Wav2Vec2 Spanish by Jonatas Grosman results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice es type: common_voice args: es metrics: - name: Test WER type: wer value: 8.82 - name: Test CER type: cer value: 2.58 - name: Test WER (+LM) type: wer value: 6.27 - name: Test CER (+LM) type: cer value: 2.06 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: es metrics: - name: Dev WER type: wer value: 30.19 - name: Dev CER type: cer value: 13.56 - name: Dev WER (+LM) type: wer value: 24.71 - name: Dev CER (+LM) type: cer value: 12.61 --- # Fine-tuned XLSR-53 large model for speech recognition in Spanish Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Spanish using the train and validation splits of [Common Voice 6.1](https://huggingface.co/datasets/common_voice). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned thanks to the GPU credits generously given by the [OVHcloud](https://www.ovhcloud.com/en/public-cloud/ai-training/) :) The script used for training can be found here: https://github.com/jonatasgrosman/wav2vec2-sprint ## Usage The model can be used directly (without a language model) as follows... Using the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) library: ```python from huggingsound import SpeechRecognitionModel model = SpeechRecognitionModel("jonatasgrosman/wav2vec2-large-xlsr-53-spanish") audio_paths = ["/path/to/file.mp3", "/path/to/another_file.wav"] transcriptions = model.transcribe(audio_paths) ``` Writing your own inference script: ```python import torch import librosa from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor LANG_ID = "es" MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-spanish" SAMPLES = 10 test_dataset = load_dataset("common_voice", LANG_ID, split=f"test[:{SAMPLES}]") processor = Wav2Vec2Processor.from_pretrained(MODEL_ID) model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000) batch["speech"] = speech_array batch["sentence"] = batch["sentence"].upper() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) predicted_sentences = processor.batch_decode(predicted_ids) for i, predicted_sentence in enumerate(predicted_sentences): print("-" * 100) print("Reference:", test_dataset[i]["sentence"]) print("Prediction:", predicted_sentence) ``` | Reference | Prediction | | ------------- | ------------- | | HABITA EN AGUAS POCO PROFUNDAS Y ROCOSAS. | HABITAN AGUAS POCO PROFUNDAS Y ROCOSAS | | OPERA PRINCIPALMENTE VUELOS DE CABOTAJE Y REGIONALES DE CARGA. | OPERA PRINCIPALMENTE VUELO DE CARBOTAJES Y REGIONALES DE CARGAN | | PARA VISITAR CONTACTAR PRIMERO CON LA DIRECCIÓN. | PARA VISITAR CONTACTAR PRIMERO CON LA DIRECCIÓN | | TRES | TRES | | REALIZÓ LOS ESTUDIOS PRIMARIOS EN FRANCIA, PARA CONTINUAR LUEGO EN ESPAÑA. | REALIZÓ LOS ESTUDIOS PRIMARIOS EN FRANCIA PARA CONTINUAR LUEGO EN ESPAÑA | | EN LOS AÑOS QUE SIGUIERON, ESTE TRABAJO ESPARTA PRODUJO DOCENAS DE BUENOS JUGADORES. | EN LOS AÑOS QUE SIGUIERON ESTE TRABAJO ESPARTA PRODUJO DOCENA DE BUENOS JUGADORES | | SE ESTÁ TRATANDO DE RECUPERAR SU CULTIVO EN LAS ISLAS CANARIAS. | SE ESTÓ TRATANDO DE RECUPERAR SU CULTIVO EN LAS ISLAS CANARIAS | | SÍ | SÍ | | "FUE ""SACADA"" DE LA SERIE EN EL EPISODIO ""LEAD"", EN QUE ALEXANDRA CABOT REGRESÓ." | FUE SACADA DE LA SERIE EN EL EPISODIO LEED EN QUE ALEXANDRA KAOT REGRESÓ | | SE UBICAN ESPECÍFICAMENTE EN EL VALLE DE MOKA, EN LA PROVINCIA DE BIOKO SUR. | SE UBICAN ESPECÍFICAMENTE EN EL VALLE DE MOCA EN LA PROVINCIA DE PÍOCOSUR | ## Evaluation 1. To evaluate on `mozilla-foundation/common_voice_6_0` with split `test` ```bash python eval.py --model_id jonatasgrosman/wav2vec2-large-xlsr-53-spanish --dataset mozilla-foundation/common_voice_6_0 --config es --split test ``` 2. To evaluate on `speech-recognition-community-v2/dev_data` ```bash python eval.py --model_id jonatasgrosman/wav2vec2-large-xlsr-53-spanish --dataset speech-recognition-community-v2/dev_data --config es --split validation --chunk_length_s 5.0 --stride_length_s 1.0 ``` ## Citation If you want to cite this model you can use this: ```bibtex @misc{grosman2021xlsr53-large-spanish, title={Fine-tuned {XLSR}-53 large model for speech recognition in {S}panish}, author={Grosman, Jonatas}, howpublished={\url{https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-spanish}}, year={2021} } ```
SanctumAI/Mistral-7B-Instruct-v0.3-GGUF
SanctumAI
"2024-09-15T11:33:21Z"
66,614
7
transformers
[ "transformers", "gguf", "mistral", "text-generation", "base_model:mistralai/Mistral-7B-Instruct-v0.3", "base_model:quantized:mistralai/Mistral-7B-Instruct-v0.3", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
text-generation
"2024-05-23T13:28:04Z"
--- pipeline_tag: text-generation license: apache-2.0 base_model: - mistralai/Mistral-7B-Instruct-v0.3 --- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64a28db2f1968b7d7f357182/9aQRkm59XY_qSEXe86IJb.png) *This model was quantized by [SanctumAI](https://sanctum.ai). To leave feedback, join our community in [Discord](https://discord.gg/7ZNE78HJKh).* # Mistral 7B Instruct v0.3 GGUF **Model creator:** [mistralai](https://huggingface.co/mistralai)<br> **Original model**: [Mistral-7B-Instruct-v0.3](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3)<br> ## Model Summary: The Mistral-7B-Instruct-v0.3 Large Language Model (LLM) is an instruct fine-tuned version of the Mistral-7B-v0.3. Mistral-7B-v0.3 has the following changes compared to [Mistral-7B-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2/edit/main/README.md) - Extended vocabulary to 32768 - Supports v3 Tokenizer - Supports function calling ## Prompt Template: If you're using Sanctum app, simply use `Mistral` model preset. Prompt template: ``` <s>[INST] {prompt} [/INST] ``` ## Hardware Requirements Estimate | Name | Quant method | Size | Memory (RAM, vRAM) required (for full context of 32k tokens) | | ---- | ---- | ---- | ---- | | [mistral-7b-instruct-v0.3.Q2_K.gguf](https://huggingface.co/SanctumAI/Mistral-7B-Instruct-v0.3-GGUF/blob/main/mistral-7b-instruct-v0.3.Q2_K.gguf) | Q2_K | 2.72 GB | 6.78 GB | | [mistral-7b-instruct-v0.3.Q3_K_S.gguf](https://huggingface.co/SanctumAI/Mistral-7B-Instruct-v0.3-GGUF/blob/main/mistral-7b-instruct-v0.3.Q3_K_S.gguf) | Q3_K_S | 3.17 GB | 7.19 GB | | [mistral-7b-instruct-v0.3.Q3_K_M.gguf](https://huggingface.co/SanctumAI/Mistral-7B-Instruct-v0.3-GGUF/blob/main/mistral-7b-instruct-v0.3.Q3_K_M.gguf) | Q3_K_M | 3.52 GB | 7.52 GB | | [mistral-7b-instruct-v0.3.Q3_K_L.gguf](https://huggingface.co/SanctumAI/Mistral-7B-Instruct-v0.3-GGUF/blob/main/mistral-7b-instruct-v0.3.Q3_K_L.gguf) | Q3_K_L | 3.83 GB | 7.80 GB | | [mistral-7b-instruct-v0.3.Q4_0.gguf](https://huggingface.co/SanctumAI/Mistral-7B-Instruct-v0.3-GGUF/blob/main/mistral-7b-instruct-v0.3.Q4_0.gguf) | Q4_0 | 4.11 GB | 8.07 GB | | [mistral-7b-instruct-v0.3.Q4_K_S.gguf](https://huggingface.co/SanctumAI/Mistral-7B-Instruct-v0.3-GGUF/blob/main/mistral-7b-instruct-v0.3.Q4_K_S.gguf) | Q4_K_S | 4.14 GB | 8.10 GB | | [mistral-7b-instruct-v0.3.Q4_K_M.gguf](https://huggingface.co/SanctumAI/Mistral-7B-Instruct-v0.3-GGUF/blob/main/mistral-7b-instruct-v0.3.Q4_K_M.gguf) | Q4_K_M | 4.37 GB | 8.31 GB | | [mistral-7b-instruct-v0.3.Q4_K.gguf](https://huggingface.co/SanctumAI/Mistral-7B-Instruct-v0.3-GGUF/blob/main/mistral-7b-instruct-v0.3.Q4_K.gguf) | Q4_K | 4.37 GB | 8.31 GB | | [mistral-7b-instruct-v0.3.Q4_1.gguf](https://huggingface.co/SanctumAI/Mistral-7B-Instruct-v0.3-GGUF/blob/main/mistral-7b-instruct-v0.3.Q4_1.gguf) | Q4_1 | 4.56 GB | 8.48 GB | | [mistral-7b-instruct-v0.3.Q5_0.gguf](https://huggingface.co/SanctumAI/Mistral-7B-Instruct-v0.3-GGUF/blob/main/mistral-7b-instruct-v0.3.Q5_0.gguf) | Q5_0 | 5.00 GB | 8.90 GB | | [mistral-7b-instruct-v0.3.Q5_K_S.gguf](https://huggingface.co/SanctumAI/Mistral-7B-Instruct-v0.3-GGUF/blob/main/mistral-7b-instruct-v0.3.Q5_K_S.gguf) | Q5_K_S | 5.00 GB | 8.90 GB | | [mistral-7b-instruct-v0.3.Q5_K_M.gguf](https://huggingface.co/SanctumAI/Mistral-7B-Instruct-v0.3-GGUF/blob/main/mistral-7b-instruct-v0.3.Q5_K_M.gguf) | Q5_K_M | 5.14 GB | 9.02 GB | | [mistral-7b-instruct-v0.3.Q5_K.gguf](https://huggingface.co/SanctumAI/Mistral-7B-Instruct-v0.3-GGUF/blob/main/mistral-7b-instruct-v0.3.Q5_K.gguf) | Q5_K | 5.14 GB | 9.02 GB | | [mistral-7b-instruct-v0.3.Q5_1.gguf](https://huggingface.co/SanctumAI/Mistral-7B-Instruct-v0.3-GGUF/blob/main/mistral-7b-instruct-v0.3.Q5_1.gguf) | Q5_1 | 5.45 GB | 9.31 GB | | [mistral-7b-instruct-v0.3.Q6_K.gguf](https://huggingface.co/SanctumAI/Mistral-7B-Instruct-v0.3-GGUF/blob/main/mistral-7b-instruct-v0.3.Q6_K.gguf) | Q6_K | 5.95 GB | 9.78 GB | | [mistral-7b-instruct-v0.3.Q8_0.gguf](https://huggingface.co/SanctumAI/Mistral-7B-Instruct-v0.3-GGUF/blob/main/mistral-7b-instruct-v0.3.Q8_0.gguf) | Q8_0 | 7.70 GB | 11.41 GB | | [mistral-7b-instruct-v0.3.f16.gguf](https://huggingface.co/SanctumAI/Mistral-7B-Instruct-v0.3-GGUF/blob/main/mistral-7b-instruct-v0.3.f16.gguf) | f16 | 14.50 GB | 17.74 GB | ## Disclaimer Sanctum is not the creator, originator, or owner of any Model featured in the Models section of the Sanctum application. Each Model is created and provided by third parties. Sanctum does not endorse, support, represent or guarantee the completeness, truthfulness, accuracy, or reliability of any Model listed there. You understand that supported Models can produce content that might be offensive, harmful, inaccurate or otherwise inappropriate, or deceptive. Each Model is the sole responsibility of the person or entity who originated such Model. Sanctum may not monitor or control the Models supported and cannot, and does not, take responsibility for any such Model. Sanctum disclaims all warranties or guarantees about the accuracy, reliability or benefits of the Models. Sanctum further disclaims any warranty that the Model will meet your requirements, be secure, uninterrupted or available at any time or location, or error-free, viruses-free, or that any errors will be corrected, or otherwise. You will be solely responsible for any damage resulting from your use of or access to the Models, your downloading of any Model, or use of any other Model provided by or through Sanctum.
THUDM/CogVideoX-2b
THUDM
"2024-09-05T06:55:25Z"
66,580
298
diffusers
[ "diffusers", "safetensors", "cogvideox", "video-generation", "thudm", "text-to-video", "en", "arxiv:2408.06072", "license:apache-2.0", "diffusers:CogVideoXPipeline", "region:us" ]
text-to-video
"2024-08-05T14:13:31Z"
--- license: apache-2.0 language: - en tags: - cogvideox - video-generation - thudm - text-to-video inference: false --- # CogVideoX-2B <p style="text-align: center;"> <div align="center"> <img src=https://github.com/THUDM/CogVideo/raw/main/resources/logo.svg width="50%"/> </div> <p align="center"> <a href="https://huggingface.co/THUDM/CogVideoX-2b/blob/main/README_zh.md">📄 中文阅读</a> | <a href="https://huggingface.co/spaces/THUDM/CogVideoX-2B-Space">🤗 Huggingface Space</a> | <a href="https://github.com/THUDM/CogVideo">🌐 Github </a> | <a href="https://arxiv.org/pdf/2408.06072">📜 arxiv </a> </p> <p align="center"> 📍 Visit <a href="https://chatglm.cn/video?lang=en?fr=osm_cogvideo">QingYing</a> and <a href="https://open.bigmodel.cn/?utm_campaign=open&_channel_track_key=OWTVNma9">API Platform</a> to experience commercial video generation models. </p> ## Demo Show <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8"> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <title>Video Gallery with Captions</title> <style> .video-container { display: flex; flex-wrap: wrap; justify-content: space-around; } .video-item { width: 45%; margin-bottom: 20px; transition: transform 0.3s; } .video-item:hover { transform: scale(1.1); } .caption { text-align: center; margin-top: 10px; font-size: 11px; } </style> </head> <body> <div class="video-container"> <div class="video-item"> <video width="100%" controls> <source src="https://github.com/THUDM/CogVideo/raw/main/resources/videos/1.mp4" type="video/mp4"> </video> <div class="caption">A detailed wooden toy ship with intricately carved masts and sails is seen gliding smoothly over a plush, blue carpet that mimics the waves of the sea. The ship's hull is painted a rich brown, with tiny windows. The carpet, soft and textured, provides a perfect backdrop, resembling an oceanic expanse. Surrounding the ship are various other toys and children's items, hinting at a playful environment. The scene captures the innocence and imagination of childhood, with the toy ship's journey symbolizing endless adventures in a whimsical, indoor setting.</div> </div> <div class="video-item"> <video width="100%" controls> <source src="https://github.com/THUDM/CogVideo/raw/main/resources/videos/2.mp4" type="video/mp4"> </video> <div class="caption">The camera follows behind a white vintage SUV with a black roof rack as it speeds up a steep dirt road surrounded by pine trees on a steep mountain slope, dust kicks up from it’s tires, the sunlight shines on the SUV as it speeds along the dirt road, casting a warm glow over the scene. The dirt road curves gently into the distance, with no other cars or vehicles in sight. The trees on either side of the road are redwoods, with patches of greenery scattered throughout. The car is seen from the rear following the curve with ease, making it seem as if it is on a rugged drive through the rugged terrain. The dirt road itself is surrounded by steep hills and mountains, with a clear blue sky above with wispy clouds.</div> </div> <div class="video-item"> <video width="100%" controls> <source src="https://github.com/THUDM/CogVideo/raw/main/resources/videos/3.mp4" type="video/mp4"> </video> <div class="caption">A street artist, clad in a worn-out denim jacket and a colorful bandana, stands before a vast concrete wall in the heart, holding a can of spray paint, spray-painting a colorful bird on a mottled wall.</div> </div> <div class="video-item"> <video width="100%" controls> <source src="https://github.com/THUDM/CogVideo/raw/main/resources/videos/4.mp4" type="video/mp4"> </video> <div class="caption"> In the haunting backdrop of a war-torn city, where ruins and crumbled walls tell a story of devastation, a poignant close-up frames a young girl. Her face is smudged with ash, a silent testament to the chaos around her. Her eyes glistening with a mix of sorrow and resilience, capturing the raw emotion of a world that has lost its innocence to the ravages of conflict.</div> </div> </div> </body> </html> ## Model Introduction CogVideoX is an open-source version of the video generation model originating from [QingYing](https://chatglm.cn/video?lang=en?fr=osm_cogvideo). The table below displays the list of video generation models we currently offer, along with their foundational information. <table style="border-collapse: collapse; width: 100%;"> <tr> <th style="text-align: center;">Model Name</th> <th style="text-align: center;">CogVideoX-2B (This Repository)</th> <th style="text-align: center;">CogVideoX-5B</th> </tr> <tr> <td style="text-align: center;">Model Description</td> <td style="text-align: center;">Entry-level model, balancing compatibility. Low cost for running and secondary development.</td> <td style="text-align: center;">Larger model with higher video generation quality and better visual effects.</td> </tr> <tr> <td style="text-align: center;">Inference Precision</td> <td style="text-align: center;"><b>FP16* (Recommended)</b>, BF16, FP32, FP8*, INT8, no support for INT4</td> <td style="text-align: center;"><b>BF16 (Recommended)</b>, FP16, FP32, FP8*, INT8, no support for INT4</td> </tr> <tr> <td style="text-align: center;">Single GPU VRAM Consumption<br></td> <td style="text-align: center;"><a href="https://github.com/THUDM/SwissArmyTransformer">SAT</a> FP16: 18GB <br><b>diffusers FP16: starting from 4GB*</b><br><b>diffusers INT8(torchao): starting from 3.6GB*</b></td> <td style="text-align: center;"><a href="https://github.com/THUDM/SwissArmyTransformer">SAT</a> BF16: 26GB <br><b>diffusers BF16: starting from 5GB*</b><br><b>diffusers INT8(torchao): starting from 4.4GB*</b></td> </tr> <tr> <td style="text-align: center;">Multi-GPU Inference VRAM Consumption</td> <td style="text-align: center;"><b>FP16: 10GB* using diffusers</b></td> <td style="text-align: center;"><b>BF16: 15GB* using diffusers</b></td> </tr> <tr> <td style="text-align: center;">Inference Speed<br>(Step = 50, FP/BF16)</td> <td style="text-align: center;">Single A100: ~90 seconds<br>Single H100: ~45 seconds</td> <td style="text-align: center;">Single A100: ~180 seconds<br>Single H100: ~90 seconds</td> </tr> <tr> <td style="text-align: center;">Fine-tuning Precision</td> <td style="text-align: center;"><b>FP16</b></td> <td style="text-align: center;"><b>BF16</b></td> </tr> <tr> <td style="text-align: center;">Fine-tuning VRAM Consumption (per GPU)</td> <td style="text-align: center;">47 GB (bs=1, LORA)<br> 61 GB (bs=2, LORA)<br> 62GB (bs=1, SFT)</td> <td style="text-align: center;">63 GB (bs=1, LORA)<br> 80 GB (bs=2, LORA)<br> 75GB (bs=1, SFT)</td> </tr> <tr> <td style="text-align: center;">Prompt Language</td> <td colspan="2" style="text-align: center;">English*</td> </tr> <tr> <td style="text-align: center;">Prompt Length Limit</td> <td colspan="2" style="text-align: center;">226 Tokens</td> </tr> <tr> <td style="text-align: center;">Video Length</td> <td colspan="2" style="text-align: center;">6 Seconds</td> </tr> <tr> <td style="text-align: center;">Frame Rate</td> <td colspan="2" style="text-align: center;">8 Frames per Second</td> </tr> <tr> <td style="text-align: center;">Video Resolution</td> <td colspan="2" style="text-align: center;">720 x 480, no support for other resolutions (including fine-tuning)</td> </tr> <tr> <td style="text-align: center;">Positional Encoding</td> <td style="text-align: center;">3d_sincos_pos_embed</td> <td style="text-align: center;">3d_rope_pos_embed</td> </tr> </table> **Data Explanation** + When testing using the `diffusers` library, all optimizations provided by the `diffusers` library were enabled. This solution has not been tested for actual VRAM/memory usage on devices other than **NVIDIA A100 / H100**. Generally, this solution can be adapted to all devices with **NVIDIA Ampere architecture** and above. If the optimizations are disabled, VRAM usage will increase significantly, with peak VRAM usage being about 3 times higher than the table shows. However, speed will increase by 3-4 times. You can selectively disable some optimizations, including: ``` pipe.enable_model_cpu_offload() pipe.enable_sequential_cpu_offload() pipe.vae.enable_slicing() pipe.vae.enable_tiling() ``` + When performing multi-GPU inference, the `enable_model_cpu_offload()` optimization needs to be disabled. + Using INT8 models will reduce inference speed. This is to ensure that GPUs with lower VRAM can perform inference normally while maintaining minimal video quality loss, though inference speed will decrease significantly. + The 2B model is trained with `FP16` precision, and the 5B model is trained with `BF16` precision. We recommend using the precision the model was trained with for inference. + [PytorchAO](https://github.com/pytorch/ao) and [Optimum-quanto](https://github.com/huggingface/optimum-quanto/) can be used to quantize the text encoder, Transformer, and VAE modules to reduce CogVideoX's memory requirements. This makes it possible to run the model on a free T4 Colab or GPUs with smaller VRAM! It is also worth noting that TorchAO quantization is fully compatible with `torch.compile`, which can significantly improve inference speed. `FP8` precision must be used on devices with `NVIDIA H100` or above, which requires installing the `torch`, `torchao`, `diffusers`, and `accelerate` Python packages from source. `CUDA 12.4` is recommended. + The inference speed test also used the above VRAM optimization scheme. Without VRAM optimization, inference speed increases by about 10%. Only the `diffusers` version of the model supports quantization. + The model only supports English input; other languages can be translated into English during refinement by a large model. **Note** + Using [SAT](https://github.com/THUDM/SwissArmyTransformer) for inference and fine-tuning of SAT version models. Feel free to visit our GitHub for more information. ## Quick Start 🤗 This model supports deployment using the huggingface diffusers library. You can deploy it by following these steps. **We recommend that you visit our [GitHub](https://github.com/THUDM/CogVideo) and check out the relevant prompt optimizations and conversions to get a better experience.** 1. Install the required dependencies ```shell # diffusers>=0.30.1 # transformers>=0.44.0 # accelerate>=0.33.0 (suggest install from source) # imageio-ffmpeg>=0.5.1 pip install --upgrade transformers accelerate diffusers imageio-ffmpeg ``` 2. Run the code ```python import torch from diffusers import CogVideoXPipeline from diffusers.utils import export_to_video prompt = "A panda, dressed in a small, red jacket and a tiny hat, sits on a wooden stool in a serene bamboo forest. The panda's fluffy paws strum a miniature acoustic guitar, producing soft, melodic tunes. Nearby, a few other pandas gather, watching curiously and some clapping in rhythm. Sunlight filters through the tall bamboo, casting a gentle glow on the scene. The panda's face is expressive, showing concentration and joy as it plays. The background includes a small, flowing stream and vibrant green foliage, enhancing the peaceful and magical atmosphere of this unique musical performance." pipe = CogVideoXPipeline.from_pretrained( "THUDM/CogVideoX-2b", torch_dtype=torch.float16 ) pipe.enable_model_cpu_offload() pipe.enable_sequential_cpu_offload() pipe.vae.enable_slicing() pipe.vae.enable_tiling() video = pipe( prompt=prompt, num_videos_per_prompt=1, num_inference_steps=50, num_frames=49, guidance_scale=6, generator=torch.Generator(device="cuda").manual_seed(42), ).frames[0] export_to_video(video, "output.mp4", fps=8) ``` ## Quantized Inference [PytorchAO](https://github.com/pytorch/ao) and [Optimum-quanto](https://github.com/huggingface/optimum-quanto/) can be used to quantize the Text Encoder, Transformer and VAE modules to lower the memory requirement of CogVideoX. This makes it possible to run the model on free-tier T4 Colab or smaller VRAM GPUs as well! It is also worth noting that TorchAO quantization is fully compatible with `torch.compile`, which allows for much faster inference speed. ```diff # To get started, PytorchAO needs to be installed from the GitHub source and PyTorch Nightly. # Source and nightly installation is only required until next release. import torch from diffusers import AutoencoderKLCogVideoX, CogVideoXTransformer3DModel, CogVideoXPipeline from diffusers.utils import export_to_video + from transformers import T5EncoderModel + from torchao.quantization import quantize_, int8_weight_only, int8_dynamic_activation_int8_weight + quantization = int8_weight_only + text_encoder = T5EncoderModel.from_pretrained("THUDM/CogVideoX-5b", subfolder="text_encoder", torch_dtype=torch.bfloat16) + quantize_(text_encoder, quantization()) + transformer = CogVideoXTransformer3DModel.from_pretrained("THUDM/CogVideoX-5b", subfolder="transformer", torch_dtype=torch.bfloat16) + quantize_(transformer, quantization()) + vae = AutoencoderKLCogVideoX.from_pretrained("THUDM/CogVideoX-2b", subfolder="vae", torch_dtype=torch.bfloat16) + quantize_(vae, quantization()) # Create pipeline and run inference pipe = CogVideoXPipeline.from_pretrained( "THUDM/CogVideoX-2b", + text_encoder=text_encoder, + transformer=transformer, + vae=vae, torch_dtype=torch.bfloat16, ) pipe.enable_model_cpu_offload() pipe.vae.enable_tiling() prompt = "A panda, dressed in a small, red jacket and a tiny hat, sits on a wooden stool in a serene bamboo forest. The panda's fluffy paws strum a miniature acoustic guitar, producing soft, melodic tunes. Nearby, a few other pandas gather, watching curiously and some clapping in rhythm. Sunlight filters through the tall bamboo, casting a gentle glow on the scene. The panda's face is expressive, showing concentration and joy as it plays. The background includes a small, flowing stream and vibrant green foliage, enhancing the peaceful and magical atmosphere of this unique musical performance." video = pipe( prompt=prompt, num_videos_per_prompt=1, num_inference_steps=50, num_frames=49, guidance_scale=6, generator=torch.Generator(device="cuda").manual_seed(42), ).frames[0] export_to_video(video, "output.mp4", fps=8) ``` Additionally, the models can be serialized and stored in a quantized datatype to save disk space when using PytorchAO. Find examples and benchmarks at these links: - [torchao](https://gist.github.com/a-r-r-o-w/4d9732d17412888c885480c6521a9897) - [quanto](https://gist.github.com/a-r-r-o-w/31be62828b00a9292821b85c1017effa) ## Explore the Model Welcome to our [github](https://github.com/THUDM/CogVideo), where you will find: 1. More detailed technical details and code explanation. 2. Optimization and conversion of prompt words. 3. Reasoning and fine-tuning of SAT version models, and even pre-release. 4. Project update log dynamics, more interactive opportunities. 5. CogVideoX toolchain to help you better use the model. 6. INT8 model inference code support. ## Model License The CogVideoX-2B model (including its corresponding Transformers module and VAE module) is released under the [Apache 2.0 License](LICENSE). The CogVideoX-5B model (Transformers module) is released under the [CogVideoX LICENSE](https://huggingface.co/THUDM/CogVideoX-5b/blob/main/LICENSE). ## Citation ``` @article{yang2024cogvideox, title={CogVideoX: Text-to-Video Diffusion Models with An Expert Transformer}, author={Yang, Zhuoyi and Teng, Jiayan and Zheng, Wendi and Ding, Ming and Huang, Shiyu and Xu, Jiazheng and Yang, Yuanming and Hong, Wenyi and Zhang, Xiaohan and Feng, Guanyu and others}, journal={arXiv preprint arXiv:2408.06072}, year={2024} } ```
prov-gigapath/prov-gigapath
prov-gigapath
"2024-06-30T22:59:21Z"
66,392
104
timm
[ "timm", "pytorch", "vision", "medical", "image-feature-extraction", "license:other", "region:us" ]
image-feature-extraction
"2024-05-20T19:58:00Z"
--- license: other license_name: prov-gigapath-license license_link: https://github.com/prov-gigapath/prov-gigapath/blob/main/LICENSE tags: - vision - medical pipeline_tag: image-feature-extraction library_name: timm --- # Prov-GigaPath ## A whole-slide foundation model for digital pathology from real-world data [[`Code`]](https://github.com/prov-gigapath/prov-gigapath) [[`Model`](https://huggingface.co/prov-gigapath/prov-gigapath)] [[`Paper`](https://aka.ms/gigapath)] [[`BibTeX`](#Citation)] Hanwen Xu*, Naoto Usuyama*, Jaspreet Bagga, Sheng Zhang, Rajesh Rao, Tristan Naumann, Cliff Wong, Zelalem Gero, Javier González, Yu Gu, Yanbo Xu, Mu Wei, Wenhui Wang, Shuming Ma, Furu Wei, Jianwei Yang, Chunyuan Li, Jianfeng Gao, Jaylen Rosemon, Tucker Bower, Soohee Lee, Roshanthi Weerasinghe, Bill J. Wright, Ari Robicsek, Brian Piening, Carlo Bifulco, Sheng Wang, Hoifung Poon (*Equal Contribution) [![License](https://img.shields.io/badge/Code%20License-Prov%20GigaPath-red)]() ## Model Overview <p align="center"> <img src="https://raw.githubusercontent.com/prov-gigapath/prov-gigapath/main/images/gigapath_overview.png" width="90%"> <br> *Overview of Prov-GigaPath model architecture* </p> ## Install On an NVIDIA A100 Tensor Core GPU machine, with CUDA toolkit enabled. 1. Download our repository and open the Prov-GigaPath ``` git clone https://github.com/prov-gigapath/prov-gigapath cd prov-gigapath ``` 2. Install GigaPath and its dependencies ```Shell conda env create -f environment.yaml conda activate gigapath pip install -e . ``` ## Model Download The Prov-GigaPath models can be accessed from [HuggingFace Hub](https://huggingface.co/prov-gigapath/prov-gigapath). You need to agree to the terms to access the models. Once you have the necessary access, set your HuggingFace read-only token as an environment variable: ``` export HF_TOKEN=<huggingface read-only token> ``` If you don’t set the token, you might encounter the following error: ``` ValueError: We have no connection or you passed local_files_only, so force_download is not an accepted option. ``` ## Inference The Prov-GigaPath model consists of a tile encoder, that extracts local patterns at patch level, and a slide encoder, that outputs representations at slide level. This model can be used in both tile-level and slide-level tasks. When doing inference at the slide level, we recommend following this pipeline: (1) Tile the whole slide into N image tiles, with the coordinates of each tile. (2) Get the embeddings for each tile using our tile encoder. (3) Pass the N image tile embeddings and their coordinates into the slide encoder, to get slide level representations. ### Inference with the tile encoder First, load GigaPath tile encoder: ```Python import timm from PIL import Image from torchvision import transforms import torch tile_encoder = timm.create_model("hf_hub:prov-gigapath/prov-gigapath", pretrained=True) transform = transforms.Compose( [ transforms.Resize(256, interpolation=transforms.InterpolationMode.BICUBIC), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)), ] ) ``` Running inference to extract tile level features: ```Python img_path = "images/prov_normal_000_1.png" sample_input = transform(Image.open(img_path).convert("RGB")).unsqueeze(0) tile_encoder.eval() with torch.no_grad(): output = tile_encoder(sample_input).squeeze() ``` ### Inference with the slide encoder To inference with our slide encoder, we need both the tile embeddings and their coordinates as input. First, let's load the GigaPath slide encoder: ```Python import gigapath slide_encoder = gigapath.slide_encoder.create_model("hf_hub:prov-gigapath/prov-gigapath", "gigapath_slide_enc12l768d", 1536) ``` Run the inference to get the slide level embeddings: ```Python slide_encoder.eval() with torch.no_grad(): output = slide_encoder(tile_embed, coordinates).squeeze() ``` ## Fine-tuning ### Tile-Level Linear Probing Example Using PCam Dataset For your convenience, we provide the pre-extracted embeddings for the PCam dataset. You can download them from the link below. Note that the file size is 2GB. ```sh wget -nc https://hanoverprod.z21.web.core.windows.net/gigapath/GigaPath_PCam_embeddings.zip -P data/ ``` There is no need to unzip this file. To run the fine-tuning experiment, execute the following script: ```sh bash scripts/run_pcam.sh data/GigaPath_PCam_embeddings.zip ``` ### Slide-Level Fine-Tuning Example Using PANDA Dataset For your convenience, we provide the pre-extracted embeddings for the PANDA dataset. You can download them from the link below. Note that the file size is 32GB. Please unzip this file. ```sh wget -nc https://hanoverprod.z21.web.core.windows.net/gigapath/GigaPath_PANDA_embeddings.zip -P data/ unzip -n data/GigaPath_PANDA_embeddings.zip -d data/ ``` To run the fine-tuning experiment, execute the following script: ```sh bash scripts/run_panda.sh data/GigaPath_PANDA_embeddings/h5_files ``` ## Sample Data Download A sample de-identified subset of the Prov-Path data can be accessed from these links [[1](https://zenodo.org/records/10909616), [2](https://zenodo.org/records/10909922)]. ## Model Uses ### Intended Use The data, code, and model checkpoints are intended to be used solely for (I) future research on pathology foundation models and (II) reproducibility of the experimental results reported in the reference paper. The data, code, and model checkpoints are not intended to be used in clinical care or for any clinical decision-making purposes. ### Primary Intended Use The primary intended use is to support AI researchers reproducing and building on top of this work. GigaPath should be helpful for exploring pre-training, and encoding of digital pathology slides data. ### Out-of-Scope Use **Any** deployed use case of the model --- commercial or otherwise --- is out of scope. Although we evaluated the models using a broad set of publicly-available research benchmarks, the models and evaluations are intended *for research use only* and not intended for deployed use cases. ## Usage and License Notices The model is not intended or made available for clinical use as a medical device, clinical support, diagnostic tool, or other technology intended to be used in the diagnosis, cure, mitigation, treatment, or prevention of disease or other conditions. The model is not designed or intended to be a substitute for professional medical advice, diagnosis, treatment, or judgment and should not be used as such. All users are responsible for reviewing the output of the developed model to determine whether the model meets the user’s needs and for validating and evaluating the model before any clinical use. ## Acknowledgements We would like to express our gratitude to the authors and developers of the exceptional repositories that this project is built upon: DINOv2, MAE, Timm, and TorchScale. Their contributions have been invaluable to our work. ## Citation If you find Prov-GigaPath useful for your your research and applications, please cite using this BibTeX: ```bibtex @article{xu2024gigapath, title={A whole-slide foundation model for digital pathology from real-world data}, author={Xu, Hanwen and Usuyama, Naoto and Bagga, Jaspreet and Zhang, Sheng and Rao, Rajesh and Naumann, Tristan and Wong, Cliff and Gero, Zelalem and González, Javier and Gu, Yu and Xu, Yanbo and Wei, Mu and Wang, Wenhui and Ma, Shuming and Wei, Furu and Yang, Jianwei and Li, Chunyuan and Gao, Jianfeng and Rosemon, Jaylen and Bower, Tucker and Lee, Soohee and Weerasinghe, Roshanthi and Wright, Bill J. and Robicsek, Ari and Piening, Brian and Bifulco, Carlo and Wang, Sheng and Poon, Hoifung}, journal={Nature}, year={2024}, publisher={Nature Publishing Group UK London} } ```
microsoft/Florence-2-large-ft
microsoft
"2024-07-20T00:12:52Z"
66,341
298
transformers
[ "transformers", "pytorch", "florence2", "text-generation", "vision", "image-text-to-text", "custom_code", "arxiv:2311.06242", "license:mit", "autotrain_compatible", "region:us" ]
image-text-to-text
"2024-06-15T00:57:45Z"
--- license: mit license_link: https://huggingface.co/microsoft/Florence-2-large-ft/resolve/main/LICENSE pipeline_tag: image-text-to-text tags: - vision --- # Florence-2: Advancing a Unified Representation for a Variety of Vision Tasks ## Model Summary This Hub repository contains a HuggingFace's `transformers` implementation of Florence-2 model from Microsoft. Florence-2 is an advanced vision foundation model that uses a prompt-based approach to handle a wide range of vision and vision-language tasks. Florence-2 can interpret simple text prompts to perform tasks like captioning, object detection, and segmentation. It leverages our FLD-5B dataset, containing 5.4 billion annotations across 126 million images, to master multi-task learning. The model's sequence-to-sequence architecture enables it to excel in both zero-shot and fine-tuned settings, proving to be a competitive vision foundation model. Resources and Technical Documentation: + [Florence-2 technical report](https://arxiv.org/abs/2311.06242). + [Jupyter Notebook for inference and visualization of Florence-2-large model](https://huggingface.co/microsoft/Florence-2-large/blob/main/sample_inference.ipynb) | Model | Model size | Model Description | | ------- | ------------- | ------------- | | Florence-2-base[[HF]](https://huggingface.co/microsoft/Florence-2-base) | 0.23B | Pretrained model with FLD-5B | Florence-2-large[[HF]](https://huggingface.co/microsoft/Florence-2-large) | 0.77B | Pretrained model with FLD-5B | Florence-2-base-ft[[HF]](https://huggingface.co/microsoft/Florence-2-base-ft) | 0.23B | Finetuned model on a colletion of downstream tasks | Florence-2-large-ft[[HF]](https://huggingface.co/microsoft/Florence-2-large-ft) | 0.77B | Finetuned model on a colletion of downstream tasks ## How to Get Started with the Model Use the code below to get started with the model. All models are trained with float16. ```python import requests from PIL import Image from transformers import AutoProcessor, AutoModelForCausalLM device = "cuda:0" if torch.cuda.is_available() else "cpu" torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 model = AutoModelForCausalLM.from_pretrained("microsoft/Florence-2-large-ft", torch_dtype=torch_dtype, trust_remote_code=True).to(device) processor = AutoProcessor.from_pretrained("microsoft/Florence-2-large-ft", trust_remote_code=True) prompt = "<OD>" url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg?download=true" image = Image.open(requests.get(url, stream=True).raw) inputs = processor(text=prompt, images=image, return_tensors="pt").to(device, torch_dtype) generated_ids = model.generate( input_ids=inputs["input_ids"], pixel_values=inputs["pixel_values"], max_new_tokens=1024, do_sample=False, num_beams=3 ) generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0] parsed_answer = processor.post_process_generation(generated_text, task="<OD>", image_size=(image.width, image.height)) print(parsed_answer) ``` ## Tasks This model is capable of performing different tasks through changing the prompts. First, let's define a function to run a prompt. <details> <summary> Click to expand </summary> ```python import requests from PIL import Image from transformers import AutoProcessor, AutoModelForCausalLM device = "cuda:0" if torch.cuda.is_available() else "cpu" torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 model = AutoModelForCausalLM.from_pretrained("microsoft/Florence-2-large-ft", torch_dtype=torch_dtype, trust_remote_code=True).to(device) processor = AutoProcessor.from_pretrained("microsoft/Florence-2-large-ft", trust_remote_code=True) url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg?download=true" image = Image.open(requests.get(url, stream=True).raw) def run_example(task_prompt, text_input=None): if text_input is None: prompt = task_prompt else: prompt = task_prompt + text_input inputs = processor(text=prompt, images=image, return_tensors="pt").to(device, torch_dtype) generated_ids = model.generate( input_ids=inputs["input_ids"], pixel_values=inputs["pixel_values"], max_new_tokens=1024, num_beams=3 ) generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0] parsed_answer = processor.post_process_generation(generated_text, task=task_prompt, image_size=(image.width, image.height)) print(parsed_answer) ``` </details> Here are the tasks `Florence-2` could perform: <details> <summary> Click to expand </summary> ### Caption ```python prompt = "<CAPTION>" run_example(prompt) ``` ### Detailed Caption ```python prompt = "<DETAILED_CAPTION>" run_example(prompt) ``` ### More Detailed Caption ```python prompt = "<MORE_DETAILED_CAPTION>" run_example(prompt) ``` ### Caption to Phrase Grounding caption to phrase grounding task requires additional text input, i.e. caption. Caption to phrase grounding results format: {'\<CAPTION_TO_PHRASE_GROUNDING>': {'bboxes': [[x1, y1, x2, y2], ...], 'labels': ['', '', ...]}} ```python task_prompt = "<CAPTION_TO_PHRASE_GROUNDING>" results = run_example(task_prompt, text_input="A green car parked in front of a yellow building.") ``` ### Object Detection OD results format: {'\<OD>': {'bboxes': [[x1, y1, x2, y2], ...], 'labels': ['label1', 'label2', ...]} } ```python prompt = "<OD>" run_example(prompt) ``` ### Dense Region Caption Dense region caption results format: {'\<DENSE_REGION_CAPTION>' : {'bboxes': [[x1, y1, x2, y2], ...], 'labels': ['label1', 'label2', ...]} } ```python prompt = "<DENSE_REGION_CAPTION>" run_example(prompt) ``` ### Region proposal Dense region caption results format: {'\<REGION_PROPOSAL>': {'bboxes': [[x1, y1, x2, y2], ...], 'labels': ['', '', ...]}} ```python prompt = "<REGION_PROPOSAL>" run_example(prompt) ``` ### OCR ```python prompt = "<OCR>" run_example(prompt) ``` ### OCR with Region OCR with region output format: {'\<OCR_WITH_REGION>': {'quad_boxes': [[x1, y1, x2, y2, x3, y3, x4, y4], ...], 'labels': ['text1', ...]}} ```python prompt = "<OCR_WITH_REGION>" run_example(prompt) ``` for More detailed examples, please refer to [notebook](https://huggingface.co/microsoft/Florence-2-large/blob/main/sample_inference.ipynb) </details> # Benchmarks ## Florence-2 Zero-shot performance The following table presents the zero-shot performance of generalist vision foundation models on image captioning and object detection evaluation tasks. These models have not been exposed to the training data of the evaluation tasks during their training phase. | Method | #params | COCO Cap. test CIDEr | NoCaps val CIDEr | TextCaps val CIDEr | COCO Det. val2017 mAP | |--------|---------|----------------------|------------------|--------------------|-----------------------| | Flamingo | 80B | 84.3 | - | - | - | | Florence-2-base| 0.23B | 133.0 | 118.7 | 70.1 | 34.7 | | Florence-2-large| 0.77B | 135.6 | 120.8 | 72.8 | 37.5 | The following table continues the comparison with performance on other vision-language evaluation tasks. | Method | Flickr30k test R@1 | Refcoco val Accuracy | Refcoco test-A Accuracy | Refcoco test-B Accuracy | Refcoco+ val Accuracy | Refcoco+ test-A Accuracy | Refcoco+ test-B Accuracy | Refcocog val Accuracy | Refcocog test Accuracy | Refcoco RES val mIoU | |--------|----------------------|----------------------|-------------------------|-------------------------|-----------------------|--------------------------|--------------------------|-----------------------|------------------------|----------------------| | Kosmos-2 | 78.7 | 52.3 | 57.4 | 47.3 | 45.5 | 50.7 | 42.2 | 60.6 | 61.7 | - | | Florence-2-base | 83.6 | 53.9 | 58.4 | 49.7 | 51.5 | 56.4 | 47.9 | 66.3 | 65.1 | 34.6 | | Florence-2-large | 84.4 | 56.3 | 61.6 | 51.4 | 53.6 | 57.9 | 49.9 | 68.0 | 67.0 | 35.8 | ## Florence-2 finetuned performance We finetune Florence-2 models with a collection of downstream tasks, resulting two generalist models *Florence-2-base-ft* and *Florence-2-large-ft* that can conduct a wide range of downstream tasks. The table below compares the performance of specialist and generalist models on various captioning and Visual Question Answering (VQA) tasks. Specialist models are fine-tuned specifically for each task, whereas generalist models are fine-tuned in a task-agnostic manner across all tasks. The symbol "▲" indicates the usage of external OCR as input. | Method | # Params | COCO Caption Karpathy test CIDEr | NoCaps val CIDEr | TextCaps val CIDEr | VQAv2 test-dev Acc | TextVQA test-dev Acc | VizWiz VQA test-dev Acc | |----------------|----------|-----------------------------------|------------------|--------------------|--------------------|----------------------|-------------------------| | **Specialist Models** | | | | | | | | | CoCa | 2.1B | 143.6 | 122.4 | - | 82.3 | - | - | | BLIP-2 | 7.8B | 144.5 | 121.6 | - | 82.2 | - | - | | GIT2 | 5.1B | 145.0 | 126.9 | 148.6 | 81.7 | 67.3 | 71.0 | | Flamingo | 80B | 138.1 | - | - | 82.0 | 54.1 | 65.7 | | PaLI | 17B | 149.1 | 127.0 | 160.0▲ | 84.3 | 58.8 / 73.1▲ | 71.6 / 74.4▲ | | PaLI-X | 55B | 149.2 | 126.3 | 147.0 / 163.7▲ | 86.0 | 71.4 / 80.8▲ | 70.9 / 74.6▲ | | **Generalist Models** | | | | | | | | | Unified-IO | 2.9B | - | 100.0 | - | 77.9 | - | 57.4 | | Florence-2-base-ft | 0.23B | 140.0 | 116.7 | 143.9 | 79.7 | 63.6 | 63.6 | | Florence-2-large-ft | 0.77B | 143.3 | 124.9 | 151.1 | 81.7 | 73.5 | 72.6 | | Method | # Params | COCO Det. val2017 mAP | Flickr30k test R@1 | RefCOCO val Accuracy | RefCOCO test-A Accuracy | RefCOCO test-B Accuracy | RefCOCO+ val Accuracy | RefCOCO+ test-A Accuracy | RefCOCO+ test-B Accuracy | RefCOCOg val Accuracy | RefCOCOg test Accuracy | RefCOCO RES val mIoU | |----------------------|----------|-----------------------|--------------------|----------------------|-------------------------|-------------------------|------------------------|---------------------------|---------------------------|------------------------|-----------------------|------------------------| | **Specialist Models** | | | | | | | | | | | | | | SeqTR | - | - | - | 83.7 | 86.5 | 81.2 | 71.5 | 76.3 | 64.9 | 74.9 | 74.2 | - | | PolyFormer | - | - | - | 90.4 | 92.9 | 87.2 | 85.0 | 89.8 | 78.0 | 85.8 | 85.9 | 76.9 | | UNINEXT | 0.74B | 60.6 | - | 92.6 | 94.3 | 91.5 | 85.2 | 89.6 | 79.8 | 88.7 | 89.4 | - | | Ferret | 13B | - | - | 89.5 | 92.4 | 84.4 | 82.8 | 88.1 | 75.2 | 85.8 | 86.3 | - | | **Generalist Models** | | | | | | | | | | | | | | UniTAB | - | - | - | 88.6 | 91.1 | 83.8 | 81.0 | 85.4 | 71.6 | 84.6 | 84.7 | - | | Florence-2-base-ft | 0.23B | 41.4 | 84.0 | 92.6 | 94.8 | 91.5 | 86.8 | 91.7 | 82.2 | 89.8 | 82.2 | 78.0 | | Florence-2-large-ft| 0.77B | 43.4 | 85.2 | 93.4 | 95.3 | 92.0 | 88.3 | 92.9 | 83.6 | 91.2 | 91.7 | 80.5 | ## BibTex and citation info ``` @article{xiao2023florence, title={Florence-2: Advancing a unified representation for a variety of vision tasks}, author={Xiao, Bin and Wu, Haiping and Xu, Weijian and Dai, Xiyang and Hu, Houdong and Lu, Yumao and Zeng, Michael and Liu, Ce and Yuan, Lu}, journal={arXiv preprint arXiv:2311.06242}, year={2023} } ```
sayeed99/segformer-b3-fashion
sayeed99
"2024-05-10T06:21:14Z"
66,117
10
transformers
[ "transformers", "pytorch", "safetensors", "segformer", "vision", "image-segmentation", "generated_from_trainer", "dataset:sayeed99/fashion_segmentation", "arxiv:2105.15203", "license:other", "endpoints_compatible", "region:us" ]
image-segmentation
"2024-05-07T09:39:51Z"
--- license: other tags: - vision - image-segmentation - generated_from_trainer widget: - src: >- https://media.istockphoto.com/id/515788534/photo/cheerful-and-confidant.jpg?s=612x612&w=0&k=20&c=T0Z4DfameRpyGhzevPomrm-wjZp7wmGjpAyjGcTzpkA= example_title: Person - src: >- https://storage.googleapis.com/pai-images/1484fd9ea9d746eb9f1de0d6778dbea2.jpeg example_title: Person datasets: - sayeed99/fashion_segmentation model-index: - name: segformer-b3-fashion results: [] pipeline_tag: image-segmentation --- # segformer-b3-fashion This model is a fine-tuned version of [nvidia/mit-b3](https://huggingface.co/nvidia/mit-b3) on the sayeed99/fashion_segmentation dataset using original image sizes without resizing. ```python from transformers import SegformerImageProcessor, AutoModelForSemanticSegmentation from PIL import Image import requests import matplotlib.pyplot as plt import torch.nn as nn processor = SegformerImageProcessor.from_pretrained("sayeed99/segformer-b3-fashion") model = AutoModelForSemanticSegmentation.from_pretrained("sayeed99/segformer-b3-fashion") url = "https://plus.unsplash.com/premium_photo-1673210886161-bfcc40f54d1f?ixlib=rb-4.0.3&ixid=MnwxMjA3fDB8MHxzZWFyY2h8MXx8cGVyc29uJTIwc3RhbmRpbmd8ZW58MHx8MHx8&w=1000&q=80" image = Image.open(requests.get(url, stream=True).raw) inputs = processor(images=image, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits.cpu() upsampled_logits = nn.functional.interpolate( logits, size=image.size[::-1], mode="bilinear", align_corners=False, ) pred_seg = upsampled_logits.argmax(dim=1)[0] plt.imshow(pred_seg) ``` Labels : {"0":"Unlabelled", "1": "shirt, blouse", "2": "top, t-shirt, sweatshirt", "3": "sweater", "4": "cardigan", "5": "jacket", "6": "vest", "7": "pants", "8": "shorts", "9": "skirt", "10": "coat", "11": "dress", "12": "jumpsuit", "13": "cape", "14": "glasses", "15": "hat", "16": "headband, head covering, hair accessory", "17": "tie", "18": "glove", "19": "watch", "20": "belt", "21": "leg warmer", "22": "tights, stockings", "23": "sock", "24": "shoe", "25": "bag, wallet", "26": "scarf", "27": "umbrella", "28": "hood", "29": "collar", "30": "lapel", "31": "epaulette", "32": "sleeve", "33": "pocket", "34": "neckline", "35": "buckle", "36": "zipper", "37": "applique", "38": "bead", "39": "bow", "40": "flower", "41": "fringe", "42": "ribbon", "43": "rivet", "44": "ruffle", "45": "sequin", "46": "tassel"} ### Framework versions - Transformers 4.30.0 - Pytorch 2.2.2+cu121 - Datasets 2.18.0 - Tokenizers 0.13.3 ### License The license for this model can be found [here](https://github.com/NVlabs/SegFormer/blob/master/LICENSE). ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-2105-15203, author = {Enze Xie and Wenhai Wang and Zhiding Yu and Anima Anandkumar and Jose M. Alvarez and Ping Luo}, title = {SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers}, journal = {CoRR}, volume = {abs/2105.15203}, year = {2021}, url = {https://arxiv.org/abs/2105.15203}, eprinttype = {arXiv}, eprint = {2105.15203}, timestamp = {Wed, 02 Jun 2021 11:46:42 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-2105-15203.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} }
neggles/animatediff-modules
neggles
"2023-09-14T08:22:29Z"
66,035
6
diffusers
[ "diffusers", "safetensors", "region:us" ]
null
"2023-07-18T11:51:21Z"
Entry not found
Salesforce/blip2-flan-t5-xl
Salesforce
"2023-12-13T11:43:54Z"
65,863
59
transformers
[ "transformers", "pytorch", "safetensors", "blip-2", "visual-question-answering", "vision", "image-to-text", "image-captioning", "en", "arxiv:2301.12597", "arxiv:2210.11416", "license:mit", "region:us" ]
image-to-text
"2023-02-06T20:28:29Z"
--- language: en license: mit tags: - vision - image-to-text - image-captioning - visual-question-answering pipeline_tag: image-to-text inference: false --- # BLIP-2, Flan T5-xl, pre-trained only BLIP-2 model, leveraging [Flan T5-xl](https://huggingface.co/google/flan-t5-xl) (a large language model). It was introduced in the paper [BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models](https://arxiv.org/abs/2301.12597) by Li et al. and first released in [this repository](https://github.com/salesforce/LAVIS/tree/main/projects/blip2). Disclaimer: The team releasing BLIP-2 did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description BLIP-2 consists of 3 models: a CLIP-like image encoder, a Querying Transformer (Q-Former) and a large language model. The authors initialize the weights of the image encoder and large language model from pre-trained checkpoints and keep them frozen while training the Querying Transformer, which is a BERT-like Transformer encoder that maps a set of "query tokens" to query embeddings, which bridge the gap between the embedding space of the image encoder and the large language model. The goal for the model is simply to predict the next text token, giving the query embeddings and the previous text. <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/blip2_architecture.jpg" alt="drawing" width="600"/> This allows the model to be used for tasks like: - image captioning - visual question answering (VQA) - chat-like conversations by feeding the image and the previous conversation as prompt to the model ## Direct Use and Downstream Use You can use the raw model for conditional text generation given an image and optional text. See the [model hub](https://huggingface.co/models?search=Salesforce/blip) to look for fine-tuned versions on a task that interests you. ## Bias, Risks, Limitations, and Ethical Considerations BLIP2-FlanT5 uses off-the-shelf Flan-T5 as the language model. It inherits the same risks and limitations from [Flan-T5](https://arxiv.org/pdf/2210.11416.pdf): > Language models, including Flan-T5, can potentially be used for language generation in a harmful way, according to Rae et al. (2021). Flan-T5 should not be used directly in any application, without a prior assessment of safety and fairness concerns specific to the application. BLIP2 is fine-tuned on image-text datasets (e.g. [LAION](https://laion.ai/blog/laion-400-open-dataset/) ) collected from the internet. As a result the model itself is potentially vulnerable to generating equivalently inappropriate content or replicating inherent biases in the underlying data. BLIP2 has not been tested in real world applications. It should not be directly deployed in any applications. Researchers should first carefully assess the safety and fairness of the model in relation to the specific context they’re being deployed within. ### How to use For code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/main/en/model_doc/blip-2#transformers.Blip2ForConditionalGeneration.forward.example). #### Running the model on CPU <details> <summary> Click to expand </summary> ```python import requests from PIL import Image from transformers import BlipProcessor, Blip2ForConditionalGeneration processor = BlipProcessor.from_pretrained("Salesforce/blip2-flan-t5-xl") model = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip2-flan-t5-xl") img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg' raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB') question = "how many dogs are in the picture?" inputs = processor(raw_image, question, return_tensors="pt") out = model.generate(**inputs) print(processor.decode(out[0], skip_special_tokens=True)) ``` </details> #### Running the model on GPU ##### In full precision <details> <summary> Click to expand </summary> ```python # pip install accelerate import requests from PIL import Image from transformers import Blip2Processor, Blip2ForConditionalGeneration processor = Blip2Processor.from_pretrained("Salesforce/blip2-flan-t5-xl") model = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip2-flan-t5-xl", device_map="auto") img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg' raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB') question = "how many dogs are in the picture?" inputs = processor(raw_image, question, return_tensors="pt").to("cuda") out = model.generate(**inputs) print(processor.decode(out[0], skip_special_tokens=True)) ``` </details> ##### In half precision (`float16`) <details> <summary> Click to expand </summary> ```python # pip install accelerate import torch import requests from PIL import Image from transformers import Blip2Processor, Blip2ForConditionalGeneration processor = Blip2Processor.from_pretrained("Salesforce/blip2-flan-t5-xl") model = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip2-flan-t5-xl", torch_dtype=torch.float16, device_map="auto") img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg' raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB') question = "how many dogs are in the picture?" inputs = processor(raw_image, question, return_tensors="pt").to("cuda", torch.float16) out = model.generate(**inputs) print(processor.decode(out[0], skip_special_tokens=True)) ``` </details> ##### In 8-bit precision (`int8`) <details> <summary> Click to expand </summary> ```python # pip install accelerate bitsandbytes import torch import requests from PIL import Image from transformers import Blip2Processor, Blip2ForConditionalGeneration processor = Blip2Processor.from_pretrained("Salesforce/blip2-flan-t5-xl") model = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip2-flan-t5-xl", load_in_8bit=True, device_map="auto") img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg' raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB') question = "how many dogs are in the picture?" inputs = processor(raw_image, question, return_tensors="pt").to("cuda", torch.float16) out = model.generate(**inputs) print(processor.decode(out[0], skip_special_tokens=True)) ``` </details>
cross-encoder/nli-distilroberta-base
cross-encoder
"2021-08-05T08:40:59Z"
65,860
24
transformers
[ "transformers", "pytorch", "jax", "roberta", "text-classification", "distilroberta-base", "zero-shot-classification", "en", "dataset:multi_nli", "dataset:snli", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
zero-shot-classification
"2022-03-02T23:29:05Z"
--- language: en pipeline_tag: zero-shot-classification tags: - distilroberta-base datasets: - multi_nli - snli metrics: - accuracy license: apache-2.0 --- # Cross-Encoder for Natural Language Inference This model was trained using [SentenceTransformers](https://sbert.net) [Cross-Encoder](https://www.sbert.net/examples/applications/cross-encoder/README.html) class. ## Training Data The model was trained on the [SNLI](https://nlp.stanford.edu/projects/snli/) and [MultiNLI](https://cims.nyu.edu/~sbowman/multinli/) datasets. For a given sentence pair, it will output three scores corresponding to the labels: contradiction, entailment, neutral. ## Performance For evaluation results, see [SBERT.net - Pretrained Cross-Encoder](https://www.sbert.net/docs/pretrained_cross-encoders.html#nli). ## Usage Pre-trained models can be used like this: ```python from sentence_transformers import CrossEncoder model = CrossEncoder('cross-encoder/nli-distilroberta-base') scores = model.predict([('A man is eating pizza', 'A man eats something'), ('A black race car starts up in front of a crowd of people.', 'A man is driving down a lonely road.')]) #Convert scores to labels label_mapping = ['contradiction', 'entailment', 'neutral'] labels = [label_mapping[score_max] for score_max in scores.argmax(axis=1)] ``` ## Usage with Transformers AutoModel You can use the model also directly with Transformers library (without SentenceTransformers library): ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch model = AutoModelForSequenceClassification.from_pretrained('cross-encoder/nli-distilroberta-base') tokenizer = AutoTokenizer.from_pretrained('cross-encoder/nli-distilroberta-base') features = tokenizer(['A man is eating pizza', 'A black race car starts up in front of a crowd of people.'], ['A man eats something', 'A man is driving down a lonely road.'], padding=True, truncation=True, return_tensors="pt") model.eval() with torch.no_grad(): scores = model(**features).logits label_mapping = ['contradiction', 'entailment', 'neutral'] labels = [label_mapping[score_max] for score_max in scores.argmax(dim=1)] print(labels) ``` ## Zero-Shot Classification This model can also be used for zero-shot-classification: ```python from transformers import pipeline classifier = pipeline("zero-shot-classification", model='cross-encoder/nli-distilroberta-base') sent = "Apple just announced the newest iPhone X" candidate_labels = ["technology", "sports", "politics"] res = classifier(sent, candidate_labels) print(res) ```
biu-nlp/f-coref
biu-nlp
"2022-11-28T11:35:52Z"
65,200
18
transformers
[ "transformers", "pytorch", "roberta", "fast", "coreference-resolution", "en", "dataset:multi_news", "dataset:ontonotes", "arxiv:2209.04280", "arxiv:2205.12644", "arxiv:1907.10529", "arxiv:2101.00434", "arxiv:2109.04127", "license:mit", "model-index", "endpoints_compatible", "region:us" ]
null
"2022-08-19T12:01:10Z"
--- language: - en tags: - fast - coreference-resolution license: mit datasets: - multi_news - ontonotes metrics: - CoNLL task_categories: - coreference-resolution model-index: - name: biu-nlp/f-coref results: - task: type: coreference-resolution name: coreference-resolution dataset: name: ontonotes type: coreference metrics: - name: Avg. F1 type: CoNLL value: 78.5 --- ## F-Coref: Fast, Accurate and Easy to Use Coreference Resolution [F-Coref](https://arxiv.org/abs/2209.04280) allows to process 2.8K OntoNotes documents in 25 seconds on a V100 GPU (compared to 6 minutes for the [LingMess](https://arxiv.org/abs/2205.12644) model, and to 12 minutes of the popular AllenNLP coreference model) with only a modest drop in accuracy. The fast speed is achieved through a combination of distillation of a compact model from the LingMess model, and an efficient batching implementation using a technique we call leftover Please check the [official repository](https://github.com/shon-otmazgin/fastcoref) for more details and updates. #### Experiments | Model | Runtime | Memory | |-----------------------|---------|---------| | [Joshi et al. (2020)](https://arxiv.org/abs/1907.10529) | 12:06 | 27.4 | | [Otmazgin et al. (2022)](https://arxiv.org/abs/2205.12644) | 06:43 | 4.6 | | + Batching | 06:00 | 6.6 | | [Kirstain et al. (2021)](https://arxiv.org/abs/2101.00434) | 04:37 | 4.4 | | [Dobrovolskii (2021)](https://arxiv.org/abs/2109.04127) | 03:49 | 3.5 | | [F-Coref](https://arxiv.org/abs/2209.04280) | 00:45 | 3.3 | | + Batching | 00:35 | 4.5 | | + Leftovers batching | 00:25 | 4.0 | The inference time(Min:Sec) and memory(GiB) for each model on 2.8K documents. Average of 3 runs. Hardware, NVIDIA Tesla V100 SXM2. ### Citation ``` @inproceedings{Otmazgin2022FcorefFA, title={F-coref: Fast, Accurate and Easy to Use Coreference Resolution}, author={Shon Otmazgin and Arie Cattan and Yoav Goldberg}, booktitle={AACL}, year={2022} } ``` [F-coref: Fast, Accurate and Easy to Use Coreference Resolution](https://aclanthology.org/2022.aacl-demo.6) (Otmazgin et al., AACL-IJCNLP 2022)
facebook/seamless-m4t-v2-large
facebook
"2024-01-04T12:48:26Z"
64,931
669
transformers
[ "transformers", "safetensors", "seamless_m4t_v2", "feature-extraction", "audio-to-audio", "text-to-speech", "seamless_communication", "automatic-speech-recognition", "af", "am", "ar", "as", "az", "be", "bn", "bs", "bg", "ca", "cs", "zh", "cy", "da", "de", "el", "en", "et", "fi", "fr", "or", "om", "ga", "gl", "gu", "ha", "he", "hi", "hr", "hu", "hy", "ig", "id", "is", "it", "jv", "ja", "kn", "ka", "kk", "mn", "km", "ky", "ko", "lo", "ln", "lt", "lb", "lg", "lv", "ml", "mr", "mk", "mt", "mi", "my", "nl", "nb", "ne", "ny", "oc", "pa", "ps", "fa", "pl", "pt", "ro", "ru", "sk", "sl", "sn", "sd", "so", "es", "sr", "sv", "sw", "ta", "te", "tg", "tl", "th", "tr", "uk", "ur", "uz", "vi", "wo", "xh", "yo", "ms", "zu", "ary", "arz", "yue", "kea", "arxiv:2312.05187", "license:cc-by-nc-4.0", "region:us" ]
automatic-speech-recognition
"2023-11-29T14:37:04Z"
--- license: cc-by-nc-4.0 language: - af - am - ar - as - az - be - bn - bs - bg - ca - cs - zh - cy - da - de - el - en - et - fi - fr - or - om - ga - gl - gu - ha - he - hi - hr - hu - hy - ig - id - is - it - jv - ja - kn - ka - kk - mn - km - ky - ko - lo - ln - lt - lb - lg - lv - ml - mr - mk - mt - mi - my - nl - nb - ne - ny - oc - pa - ps - fa - pl - pt - ro - ru - sk - sl - sn - sd - so - es - sr - sv - sw - ta - te - tg - tl - th - tr - uk - ur - uz - vi - wo - xh - yo - ms - zu - ary - arz - yue - kea metrics: - bleu - wer - chrf inference: False pipeline_tag: automatic-speech-recognition tags: - audio-to-audio - text-to-speech - seamless_communication library_name: transformers widget: - src: https://cdn-media.huggingface.co/speech_samples/sample1.flac example_title: Librispeech sample 1 output: text: going along slushy country roads and speaking to damp audiences in draughty schoolrooms day after day for a fortnight he'll have to put in an appearance at some place of worship on sunday morning and he can come to us immediately afterwards - src: https://cdn-media.huggingface.co/speech_samples/sample2.flac example_title: Librispeech sample 2 output: text: before he had time to answer a much-encumbered vera burst into the room with the question i say can i leave these here these were a small black pig and a lusty specimen of black-red game-cock --- # SeamlessM4T v2 **SeamlessM4T** is our foundational all-in-one **M**assively **M**ultilingual and **M**ultimodal **M**achine **T**ranslation model delivering high-quality translation for speech and text in nearly 100 languages. SeamlessM4T models support the tasks of: - Speech-to-speech translation (S2ST) - Speech-to-text translation (S2TT) - Text-to-speech translation (T2ST) - Text-to-text translation (T2TT) - Automatic speech recognition (ASR). SeamlessM4T models support: - 🎤 101 languages for speech input. - 💬 96 Languages for text input/output. - 🔊 35 languages for speech output. 🌟 We are releasing SeamlessM4T v2, an updated version with our novel *UnitY2* architecture. This new model improves over SeamlessM4T v1 in quality as well as inference speed in speech generation tasks. The v2 version of SeamlessM4T is a multitask adaptation of our novel *UnitY2* architecture. *Unity2* with its hierarchical character-to-unit upsampling and non-autoregressive text-to-unit decoding considerably improves over SeamlessM4T v1 in quality and inference speed. **SeamlessM4T v2 is also supported by 🤗 Transformers, more on it [in the dedicated section below](#transformers-usage).** ![SeamlessM4T architectures](seamlessm4t_arch.svg) ## SeamlessM4T models | Model Name | #params | checkpoint | metrics | | ------------------ | ------- | --------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------ | | [SeamlessM4T-Large v2](https://huggingface.co/facebook/seamless-m4t-v2-large) | 2.3B | [checkpoint](https://huggingface.co/facebook/seamless-m4t-v2-large/blob/main/seamlessM4T_v2_large.pt) | [metrics](https://dl.fbaipublicfiles.com/seamless/metrics/seamlessM4T_large_v2.zip) | | [SeamlessM4T-Large (v1)](https://huggingface.co/facebook/seamless-m4t-large) | 2.3B | [checkpoint](https://huggingface.co/facebook/seamless-m4t-large/blob/main/multitask_unity_large.pt) | [metrics](https://dl.fbaipublicfiles.com/seamless/metrics/seamlessM4T_large.zip) | | [SeamlessM4T-Medium (v1)](https://huggingface.co/facebook/seamless-m4t-medium) | 1.2B | [checkpoint](https://huggingface.co/facebook/seamless-m4t-medium/blob/main/multitask_unity_medium.pt) | [metrics](https://dl.fbaipublicfiles.com/seamless/metrics/seamlessM4T_medium.zip) | We provide the extensive evaluation results of seamlessM4T-Large and SeamlessM4T-Medium reported in the paper (as averages) in the `metrics` files above. The evaluation data ids for FLEURS, CoVoST2 and CVSS-C can be found [here](https://dl.fbaipublicfiles.com/seamless/metrics/evaluation_data_ids.zip) ## Evaluating SeamlessM4T models To reproduce our results or to evaluate using the same metrics over your own test sets, please check out the [Evaluation README here](https://github.com/facebookresearch/seamless_communication/tree/main/src/seamless_communication/cli/m4t/evaluate). ## Finetuning SeamlessM4T models Please check out the [Finetuning README here](https://github.com/facebookresearch/seamless_communication/tree/main/src/seamless_communication/cli/m4t/finetune). ## Transformers usage SeamlessM4T is available in the 🤗 Transformers library, requiring minimal dependencies. Steps to get started: 1. First install the 🤗 [Transformers library](https://github.com/huggingface/transformers) from main and [sentencepiece](https://github.com/google/sentencepiece): ``` pip install git+https://github.com/huggingface/transformers.git sentencepiece ``` 2. Run the following Python code to generate speech samples. Here the target language is Russian: ```py from transformers import AutoProcessor, SeamlessM4Tv2Model import torchaudio processor = AutoProcessor.from_pretrained("facebook/seamless-m4t-v2-large") model = SeamlessM4Tv2Model.from_pretrained("facebook/seamless-m4t-v2-large") # from text text_inputs = processor(text = "Hello, my dog is cute", src_lang="eng", return_tensors="pt") audio_array_from_text = model.generate(**text_inputs, tgt_lang="rus")[0].cpu().numpy().squeeze() # from audio audio, orig_freq = torchaudio.load("https://www2.cs.uic.edu/~i101/SoundFiles/preamble10.wav") audio = torchaudio.functional.resample(audio, orig_freq=orig_freq, new_freq=16_000) # must be a 16 kHz waveform array audio_inputs = processor(audios=audio, return_tensors="pt") audio_array_from_audio = model.generate(**audio_inputs, tgt_lang="rus")[0].cpu().numpy().squeeze() ``` 3. Listen to the audio samples either in an ipynb notebook: ```py from IPython.display import Audio sample_rate = model.config.sampling_rate Audio(audio_array_from_text, rate=sample_rate) # Audio(audio_array_from_audio, rate=sample_rate) ``` Or save them as a `.wav` file using a third-party library, e.g. `scipy`: ```py import scipy sample_rate = model.config.sampling_rate scipy.io.wavfile.write("out_from_text.wav", rate=sample_rate, data=audio_array_from_text) # scipy.io.wavfile.write("out_from_audio.wav", rate=sample_rate, data=audio_array_from_audio) ``` For more details on using the SeamlessM4T model for inference using the 🤗 Transformers library, refer to the **[SeamlessM4T v2 docs](https://huggingface.co/docs/transformers/main/en/model_doc/seamless_m4t_v2)** or to this **hands-on [Google Colab](https://colab.research.google.com/github/ylacombe/scripts_and_notebooks/blob/main/v2_seamless_m4t_hugging_face.ipynb).** ## Supported Languages: Listed below, are the languages supported by SeamlessM4T-large (v1/v2). The `source` column specifies whether a language is supported as source speech (`Sp`) and/or source text (`Tx`). The `target` column specifies whether a language is supported as target speech (`Sp`) and/or target text (`Tx`). | code | language | script | Source | Target | | ---- | ---------------------- | ---------- | ------ | ------ | | afr | Afrikaans | Latn | Sp, Tx | Tx | | amh | Amharic | Ethi | Sp, Tx | Tx | | arb | Modern Standard Arabic | Arab | Sp, Tx | Sp, Tx | | ary | Moroccan Arabic | Arab | Sp, Tx | Tx | | arz | Egyptian Arabic | Arab | Sp, Tx | Tx | | asm | Assamese | Beng | Sp, Tx | Tx | | ast | Asturian | Latn | Sp | \-- | | azj | North Azerbaijani | Latn | Sp, Tx | Tx | | bel | Belarusian | Cyrl | Sp, Tx | Tx | | ben | Bengali | Beng | Sp, Tx | Sp, Tx | | bos | Bosnian | Latn | Sp, Tx | Tx | | bul | Bulgarian | Cyrl | Sp, Tx | Tx | | cat | Catalan | Latn | Sp, Tx | Sp, Tx | | ceb | Cebuano | Latn | Sp, Tx | Tx | | ces | Czech | Latn | Sp, Tx | Sp, Tx | | ckb | Central Kurdish | Arab | Sp, Tx | Tx | | cmn | Mandarin Chinese | Hans | Sp, Tx | Sp, Tx | | cmn_Hant | Mandarin Chinese | Hant | Sp, Tx | Sp, Tx | | cym | Welsh | Latn | Sp, Tx | Sp, Tx | | dan | Danish | Latn | Sp, Tx | Sp, Tx | | deu | German | Latn | Sp, Tx | Sp, Tx | | ell | Greek | Grek | Sp, Tx | Tx | | eng | English | Latn | Sp, Tx | Sp, Tx | | est | Estonian | Latn | Sp, Tx | Sp, Tx | | eus | Basque | Latn | Sp, Tx | Tx | | fin | Finnish | Latn | Sp, Tx | Sp, Tx | | fra | French | Latn | Sp, Tx | Sp, Tx | | fuv | Nigerian Fulfulde | Latn | Sp, Tx | Tx | | gaz | West Central Oromo | Latn | Sp, Tx | Tx | | gle | Irish | Latn | Sp, Tx | Tx | | glg | Galician | Latn | Sp, Tx | Tx | | guj | Gujarati | Gujr | Sp, Tx | Tx | | heb | Hebrew | Hebr | Sp, Tx | Tx | | hin | Hindi | Deva | Sp, Tx | Sp, Tx | | hrv | Croatian | Latn | Sp, Tx | Tx | | hun | Hungarian | Latn | Sp, Tx | Tx | | hye | Armenian | Armn | Sp, Tx | Tx | | ibo | Igbo | Latn | Sp, Tx | Tx | | ind | Indonesian | Latn | Sp, Tx | Sp, Tx | | isl | Icelandic | Latn | Sp, Tx | Tx | | ita | Italian | Latn | Sp, Tx | Sp, Tx | | jav | Javanese | Latn | Sp, Tx | Tx | | jpn | Japanese | Jpan | Sp, Tx | Sp, Tx | | kam | Kamba | Latn | Sp | \-- | | kan | Kannada | Knda | Sp, Tx | Tx | | kat | Georgian | Geor | Sp, Tx | Tx | | kaz | Kazakh | Cyrl | Sp, Tx | Tx | | kea | Kabuverdianu | Latn | Sp | \-- | | khk | Halh Mongolian | Cyrl | Sp, Tx | Tx | | khm | Khmer | Khmr | Sp, Tx | Tx | | kir | Kyrgyz | Cyrl | Sp, Tx | Tx | | kor | Korean | Kore | Sp, Tx | Sp, Tx | | lao | Lao | Laoo | Sp, Tx | Tx | | lit | Lithuanian | Latn | Sp, Tx | Tx | | ltz | Luxembourgish | Latn | Sp | \-- | | lug | Ganda | Latn | Sp, Tx | Tx | | luo | Luo | Latn | Sp, Tx | Tx | | lvs | Standard Latvian | Latn | Sp, Tx | Tx | | mai | Maithili | Deva | Sp, Tx | Tx | | mal | Malayalam | Mlym | Sp, Tx | Tx | | mar | Marathi | Deva | Sp, Tx | Tx | | mkd | Macedonian | Cyrl | Sp, Tx | Tx | | mlt | Maltese | Latn | Sp, Tx | Sp, Tx | | mni | Meitei | Beng | Sp, Tx | Tx | | mya | Burmese | Mymr | Sp, Tx | Tx | | nld | Dutch | Latn | Sp, Tx | Sp, Tx | | nno | Norwegian Nynorsk | Latn | Sp, Tx | Tx | | nob | Norwegian Bokmål | Latn | Sp, Tx | Tx | | npi | Nepali | Deva | Sp, Tx | Tx | | nya | Nyanja | Latn | Sp, Tx | Tx | | oci | Occitan | Latn | Sp | \-- | | ory | Odia | Orya | Sp, Tx | Tx | | pan | Punjabi | Guru | Sp, Tx | Tx | | pbt | Southern Pashto | Arab | Sp, Tx | Tx | | pes | Western Persian | Arab | Sp, Tx | Sp, Tx | | pol | Polish | Latn | Sp, Tx | Sp, Tx | | por | Portuguese | Latn | Sp, Tx | Sp, Tx | | ron | Romanian | Latn | Sp, Tx | Sp, Tx | | rus | Russian | Cyrl | Sp, Tx | Sp, Tx | | slk | Slovak | Latn | Sp, Tx | Sp, Tx | | slv | Slovenian | Latn | Sp, Tx | Tx | | sna | Shona | Latn | Sp, Tx | Tx | | snd | Sindhi | Arab | Sp, Tx | Tx | | som | Somali | Latn | Sp, Tx | Tx | | spa | Spanish | Latn | Sp, Tx | Sp, Tx | | srp | Serbian | Cyrl | Sp, Tx | Tx | | swe | Swedish | Latn | Sp, Tx | Sp, Tx | | swh | Swahili | Latn | Sp, Tx | Sp, Tx | | tam | Tamil | Taml | Sp, Tx | Tx | | tel | Telugu | Telu | Sp, Tx | Sp, Tx | | tgk | Tajik | Cyrl | Sp, Tx | Tx | | tgl | Tagalog | Latn | Sp, Tx | Sp, Tx | | tha | Thai | Thai | Sp, Tx | Sp, Tx | | tur | Turkish | Latn | Sp, Tx | Sp, Tx | | ukr | Ukrainian | Cyrl | Sp, Tx | Sp, Tx | | urd | Urdu | Arab | Sp, Tx | Sp, Tx | | uzn | Northern Uzbek | Latn | Sp, Tx | Sp, Tx | | vie | Vietnamese | Latn | Sp, Tx | Sp, Tx | | xho | Xhosa | Latn | Sp | \-- | | yor | Yoruba | Latn | Sp, Tx | Tx | | yue | Cantonese | Hant | Sp, Tx | Tx | | zlm | Colloquial Malay | Latn | Sp | \-- | | zsm | Standard Malay | Latn | Tx | Tx | | zul | Zulu | Latn | Sp, Tx | Tx | Note that seamlessM4T-medium supports 200 languages in the text modality, and is based on NLLB-200 (see full list in [asset card](https://github.com/facebookresearch/seamless_communication/blob/main/src/seamless_communication/cards/unity_nllb-200.yaml)) ## Citation For SeamlessM4T v2, please cite : ```bibtex @inproceedings{seamless2023, title="Seamless: Multilingual Expressive and Streaming Speech Translation", author="{Seamless Communication}, Lo{\"i}c Barrault, Yu-An Chung, Mariano Coria Meglioli, David Dale, Ning Dong, Mark Duppenthaler, Paul-Ambroise Duquenne, Brian Ellis, Hady Elsahar, Justin Haaheim, John Hoffman, Min-Jae Hwang, Hirofumi Inaguma, Christopher Klaiber, Ilia Kulikov, Pengwei Li, Daniel Licht, Jean Maillard, Ruslan Mavlyutov, Alice Rakotoarison, Kaushik Ram Sadagopan, Abinesh Ramakrishnan, Tuan Tran, Guillaume Wenzek, Yilin Yang, Ethan Ye, Ivan Evtimov, Pierre Fernandez, Cynthia Gao, Prangthip Hansanti, Elahe Kalbassi, Amanda Kallet, Artyom Kozhevnikov, Gabriel Mejia, Robin San Roman, Christophe Touret, Corinne Wong, Carleigh Wood, Bokai Yu, Pierre Andrews, Can Balioglu, Peng-Jen Chen, Marta R. Costa-juss{\`a}, Maha Elbayad, Hongyu Gong, Francisco Guzm{\'a}n, Kevin Heffernan, Somya Jain, Justine Kao, Ann Lee, Xutai Ma, Alex Mourachko, Benjamin Peloquin, Juan Pino, Sravya Popuri, Christophe Ropers, Safiyyah Saleem, Holger Schwenk, Anna Sun, Paden Tomasello, Changhan Wang, Jeff Wang, Skyler Wang, Mary Williamson", journal={ArXiv}, year={2023} } ``` [//]: # "https://arxiv.org/abs/2312.05187"
unslothai/vram-8
unslothai
"2024-07-07T17:00:53Z"
64,689
0
transformers
[ "transformers", "safetensors", "llama", "feature-extraction", "text-generation-inference", "endpoints_compatible", "region:us" ]
feature-extraction
"2024-07-07T17:00:26Z"
--- library_name: transformers tags: [] ---
distil-whisper/distil-large-v2
distil-whisper
"2024-03-21T19:32:46Z"
64,571
505
transformers
[ "transformers", "pytorch", "jax", "tensorboard", "onnx", "safetensors", "whisper", "automatic-speech-recognition", "audio", "transformers.js", "en", "arxiv:2311.00430", "arxiv:2210.13352", "license:mit", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
"2023-10-24T15:48:32Z"
--- language: - en tags: - audio - automatic-speech-recognition - transformers.js widget: - example_title: LibriSpeech sample 1 src: https://cdn-media.huggingface.co/speech_samples/sample1.flac - example_title: LibriSpeech sample 2 src: https://cdn-media.huggingface.co/speech_samples/sample2.flac pipeline_tag: automatic-speech-recognition license: mit library_name: transformers --- # Distil-Whisper: distil-large-v2 Distil-Whisper was proposed in the paper [Robust Knowledge Distillation via Large-Scale Pseudo Labelling](https://arxiv.org/abs/2311.00430). It is a distilled version of the Whisper model that is **6 times faster**, 49% smaller, and performs **within 1% WER** on out-of-distribution evaluation sets. This is the repository for distil-large-v2, a distilled variant of [Whisper large-v2](https://huggingface.co/openai/whisper-large-v2). | Model | Params / M | Rel. Latency ↑ | Short-Form WER ↓ | Long-Form WER ↓ | |----------------------------------------------------------------------------|------------|----------------|------------------|-----------------| | [large-v3](https://huggingface.co/openai/whisper-large-v3) | 1550 | 1.0 | **8.4** | 11.0 | | [large-v2](https://huggingface.co/openai/whisper-large-v2) | 1550 | 1.0 | 9.1 | 11.7 | | | | | | | | [distil-large-v3](https://huggingface.co/distil-whisper/distil-large-v3) | 756 | 6.3 | 9.7 | **10.8** | | [distil-large-v2](https://huggingface.co/distil-whisper/distil-large-v2) | 756 | 5.8 | 10.1 | 11.6 | | [distil-medium.en](https://huggingface.co/distil-whisper/distil-medium.en) | 394 | **6.8** | 11.1 | 12.4 | | [distil-small.en](https://huggingface.co/distil-whisper/distil-small.en) | **166** | 5.6 | 12.1 | 12.8 | <div class="course-tip course-tip-orange bg-gradient-to-br dark:bg-gradient-to-r before:border-orange-500 dark:before:border-orange-800 from-orange-50 dark:from-gray-900 to-white dark:to-gray-950 border border-orange-50 text-orange-700 dark:text-gray-400"> <p><b>Update:</b> following the release of OpenAI's Whisper large-v3, an updated <a href="ttps://huggingface.co/distil-whisper/distil-large-v3"> distil-large-v3</a> model was published. This <a href="ttps://huggingface.co/distil-whisper/distil-large-v3"> distil-large-v3</a> model surpasses the performance of the distil-large-v2 model, with no architecture changes and better support for sequential long-form generation. Thus, it is recommended that the <a href="ttps://huggingface.co/distil-whisper/distil-large-v3"> distil-large-v3</a> model is used in-place of the large-v2 model. </p> </div> **Note:** Distil-Whisper is currently only available for English speech recognition. We are working with the community to distill Whisper on other languages. If you are interested in distilling Whisper in your language, check out the provided [training code](https://github.com/huggingface/distil-whisper/tree/main/training). We will update the [Distil-Whisper repository](https://github.com/huggingface/distil-whisper/) with multilingual checkpoints when ready! ## Usage Distil-Whisper is supported in Hugging Face 🤗 Transformers from version 4.35 onwards. To run the model, first install the latest version of the Transformers library. For this example, we'll also install 🤗 Datasets to load toy audio dataset from the Hugging Face Hub: ```bash pip install --upgrade pip pip install --upgrade transformers accelerate datasets[audio] ``` ### Short-Form Transcription The model can be used with the [`pipeline`](https://huggingface.co/docs/transformers/main_classes/pipelines#transformers.AutomaticSpeechRecognitionPipeline) class to transcribe short-form audio files (< 30-seconds) as follows: ```python import torch from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline from datasets import load_dataset device = "cuda:0" if torch.cuda.is_available() else "cpu" torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 model_id = "distil-whisper/distil-large-v2" model = AutoModelForSpeechSeq2Seq.from_pretrained( model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True ) model.to(device) processor = AutoProcessor.from_pretrained(model_id) pipe = pipeline( "automatic-speech-recognition", model=model, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor, max_new_tokens=128, torch_dtype=torch_dtype, device=device, ) dataset = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") sample = dataset[0]["audio"] result = pipe(sample) print(result["text"]) ``` To transcribe a local audio file, simply pass the path to your audio file when you call the pipeline: ```diff - result = pipe(sample) + result = pipe("audio.mp3") ``` ### Long-Form Transcription Distil-Whisper uses a chunked algorithm to transcribe long-form audio files (> 30-seconds). In practice, this chunked long-form algorithm is 9x faster than the sequential algorithm proposed by OpenAI in the Whisper paper (see Table 7 of the [Distil-Whisper paper](https://arxiv.org/abs/2311.00430)). To enable chunking, pass the `chunk_length_s` parameter to the `pipeline`. For Distil-Whisper, a chunk length of 15-seconds is optimal. To activate batching, pass the argument `batch_size`: ```python import torch from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline from datasets import load_dataset device = "cuda:0" if torch.cuda.is_available() else "cpu" torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 model_id = "distil-whisper/distil-large-v2" model = AutoModelForSpeechSeq2Seq.from_pretrained( model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True ) model.to(device) processor = AutoProcessor.from_pretrained(model_id) pipe = pipeline( "automatic-speech-recognition", model=model, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor, max_new_tokens=128, chunk_length_s=15, batch_size=16, torch_dtype=torch_dtype, device=device, ) dataset = load_dataset("distil-whisper/librispeech_long", "clean", split="validation") sample = dataset[0]["audio"] result = pipe(sample) print(result["text"]) ``` <!--- **Tip:** The pipeline can also be used to transcribe an audio file from a remote URL, for example: ```python result = pipe("https://huggingface.co/datasets/sanchit-gandhi/librispeech_long/resolve/main/audio.wav") ``` ---> ### Speculative Decoding Distil-Whisper can be used as an assistant model to Whisper for [speculative decoding](https://huggingface.co/blog/whisper-speculative-decoding). Speculative decoding mathematically ensures the exact same outputs as Whisper are obtained while being 2 times faster. This makes it the perfect drop-in replacement for existing Whisper pipelines, since the same outputs are guaranteed. In the following code-snippet, we load the assistant Distil-Whisper model standalone to the main Whisper pipeline. We then specify it as the "assistant model" for generation: ```python from transformers import pipeline, AutoModelForCausalLM, AutoModelForSpeechSeq2Seq, AutoProcessor import torch from datasets import load_dataset device = "cuda:0" if torch.cuda.is_available() else "cpu" torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 assistant_model_id = "distil-whisper/distil-large-v2" assistant_model = AutoModelForCausalLM.from_pretrained( assistant_model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True ) assistant_model.to(device) model_id = "openai/whisper-large-v2" model = AutoModelForSpeechSeq2Seq.from_pretrained( model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True ) model.to(device) processor = AutoProcessor.from_pretrained(model_id) pipe = pipeline( "automatic-speech-recognition", model=model, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor, max_new_tokens=128, generate_kwargs={"assistant_model": assistant_model}, torch_dtype=torch_dtype, device=device, ) dataset = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") sample = dataset[0]["audio"] result = pipe(sample) print(result["text"]) ``` ## Additional Speed & Memory Improvements You can apply additional speed and memory improvements to Distil-Whisper which we cover in the following. ### Flash Attention We recommend using [Flash-Attention 2](https://huggingface.co/docs/transformers/main/en/perf_infer_gpu_one#flashattention-2) if your GPU allows for it. To do so, you first need to install [Flash Attention](https://github.com/Dao-AILab/flash-attention): ``` pip install flash-attn --no-build-isolation ``` and then all you have to do is to pass `use_flash_attention_2=True` to `from_pretrained`: ```diff - model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True) + model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True, use_flash_attention_2=True) ``` ### Torch Scale-Product-Attention (SDPA) If your GPU does not support Flash Attention, we recommend making use of [BetterTransformers](https://huggingface.co/docs/transformers/main/en/perf_infer_gpu_one#bettertransformer). To do so, you first need to install optimum: ``` pip install --upgrade optimum ``` And then convert your model to a "BetterTransformer" model before using it: ```diff model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True) + model = model.to_bettertransformer() ``` ### Running Distil-Whisper in `openai-whisper` To use the model in the original Whisper format, first ensure you have the [`openai-whisper`](https://pypi.org/project/openai-whisper/) package installed: ```bash pip install --upgrade openai-whisper ``` The following code-snippet demonstrates how to transcribe a sample file from the LibriSpeech dataset loaded using 🤗 Datasets: ```python import torch from datasets import load_dataset from huggingface_hub import hf_hub_download from whisper import load_model, transcribe distil_large_v2 = hf_hub_download(repo_id="distil-whisper/distil-large-v2", filename="original-model.bin") model = load_model(distil_large_v2) dataset = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") sample = dataset[0]["audio"]["array"] sample = torch.from_numpy(sample).float() pred_out = transcribe(model, audio=sample) print(pred_out["text"]) ``` To transcribe a local audio file, simply pass the path to the audio file as the `audio` argument to transcribe: ```python pred_out = transcribe(model, audio="audio.mp3") ``` ### Whisper.cpp Distil-Whisper can be run from the [Whisper.cpp](https://github.com/ggerganov/whisper.cpp) repository with the original sequential long-form transcription algorithm. In a [provisional benchmark](https://github.com/ggerganov/whisper.cpp/pull/1424#issuecomment-1793513399) on Mac M1, `distil-large-v2` is 2x faster than `large-v2`, while performing to within 0.1% WER over long-form audio. Note that future releases of Distil-Whisper will target faster CPU inference more! By distilling smaller encoders, we aim to achieve similar speed-ups to what we obtain on GPU. Steps for getting started: 1. Clone the Whisper.cpp repository: ``` git clone https://github.com/ggerganov/whisper.cpp.git cd whisper.cpp ``` 2. Download the ggml weights for `distil-medium.en` from the Hugging Face Hub: ```bash python -c "from huggingface_hub import hf_hub_download; hf_hub_download(repo_id='distil-whisper/distil-large-v2', filename='ggml-large-32-2.en.bin', local_dir='./models')" ``` Note that if you do not have the `huggingface_hub` package installed, you can also download the weights with `wget`: ```bash wget https://huggingface.co/distil-whisper/distil-large-v2/resolve/main/ggml-large-32-2.en.bin -P ./models ``` 3. Run inference using the provided sample audio: ```bash make -j && ./main -m models/ggml-large-32-2.en.bin -f samples/jfk.wav ``` ### Transformers.js ```js import { pipeline } from '@xenova/transformers'; let transcriber = await pipeline('automatic-speech-recognition', 'distil-whisper/distil-large-v2'); let url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/jfk.wav'; let output = await transcriber(url); // { text: " And so, my fellow Americans, ask not what your country can do for you. Ask what you can do for your country." } ``` See the [docs](https://huggingface.co/docs/transformers.js/api/pipelines#module_pipelines.AutomaticSpeechRecognitionPipeline) for more information. *Note:* Due to the large model size, we recommend running this model server-side with [Node.js](https://huggingface.co/docs/transformers.js/guides/node-audio-processing) (instead of in-browser). ### Candle Through an integration with Hugging Face [Candle](https://github.com/huggingface/candle/tree/main) 🕯️, Distil-Whisper is now available in the Rust library 🦀 Benefit from: * Optimised CPU backend with optional MKL support for x86 and Accelerate for Macs * CUDA backend for efficiently running on GPUs, multiple GPU distribution via NCCL * WASM support: run Distil-Whisper in a browser Steps for getting started: 1. Install [`candle-core`](https://github.com/huggingface/candle/tree/main/candle-core) as explained [here](https://huggingface.github.io/candle/guide/installation.html) 2. Clone the `candle` repository locally: ``` git clone https://github.com/huggingface/candle.git ``` 3. Enter the example directory for [Whisper](https://github.com/huggingface/candle/tree/main/candle-examples/examples/whisper): ``` cd candle/candle-examples/examples/whisper ``` 4. Run an example: ``` cargo run --example whisper --release -- --model distil-large-v2 ``` 5. To specify your own audio file, add the `--input` flag: ``` cargo run --example whisper --release -- --model distil-large-v2 --input audio.wav ``` ### 8bit & 4bit Quantization Coming soon ... ### Whisper.cpp Coming soon ... ## Model Details Distil-Whisper inherits the encoder-decoder architecture from Whisper. The encoder maps a sequence of speech vector inputs to a sequence of hidden-state vectors. The decoder auto-regressively predicts text tokens, conditional on all previous tokens and the encoder hidden-states. Consequently, the encoder is only run forward once, whereas the decoder is run as many times as the number of tokens generated. In practice, this means the decoder accounts for over 90% of total inference time. Thus, to optimise for latency, the focus should be on minimising the inference time of the decoder. To distill the Whisper model, we reduce the number of decoder layers while keeping the encoder fixed. The encoder (shown in green) is entirely copied from the teacher to the student and frozen during training. The student's decoder consists of only two decoder layers, which are initialised from the first and last decoder layer of the teacher (shown in red). All other decoder layers of the teacher are discarded. The model is then trained on a weighted sum of the KL divergence and pseudo-label loss terms. <p align="center"> <img src="https://huggingface.co/datasets/distil-whisper/figures/resolve/main/architecture.png?raw=true" width="600"/> </p> ## Evaluation The following code-snippets demonstrates how to evaluate the Distil-Whisper model on the LibriSpeech validation.clean dataset with [streaming mode](https://huggingface.co/blog/audio-datasets#streaming-mode-the-silver-bullet), meaning no audio data has to be downloaded to your local device. First, we need to install the required packages, including 🤗 Datasets to stream and load the audio data, and 🤗 Evaluate to perform the WER calculation: ```bash pip install --upgrade pip pip install --upgrade transformers datasets[audio] evaluate jiwer ``` Evaluation can then be run end-to-end with the following example: ```python from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor from transformers.models.whisper.english_normalizer import EnglishTextNormalizer from datasets import load_dataset from evaluate import load import torch from tqdm import tqdm # define our torch configuration device = "cuda:0" if torch.cuda.is_available() else "cpu" torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 model_id = "distil-whisper/distil-large-v2" # load the model + processor model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype, use_safetensors=True, low_cpu_mem_usage=True) model = model.to(device) processor = AutoProcessor.from_pretrained(model_id) # load the dataset with streaming mode dataset = load_dataset("librispeech_asr", "clean", split="validation", streaming=True) # define the evaluation metric wer_metric = load("wer") normalizer = EnglishTextNormalizer(processor.tokenizer.english_spelling_normalizer) def inference(batch): # 1. Pre-process the audio data to log-mel spectrogram inputs audio = [sample["array"] for sample in batch["audio"]] input_features = processor(audio, sampling_rate=batch["audio"][0]["sampling_rate"], return_tensors="pt").input_features input_features = input_features.to(device, dtype=torch_dtype) # 2. Auto-regressively generate the predicted token ids pred_ids = model.generate(input_features, max_new_tokens=128, language="en", task="transcribe") # 3. Decode the token ids to the final transcription batch["transcription"] = processor.batch_decode(pred_ids, skip_special_tokens=True) batch["reference"] = batch["text"] return batch dataset = dataset.map(function=inference, batched=True, batch_size=16) all_transcriptions = [] all_references = [] # iterate over the dataset and run inference for i, result in tqdm(enumerate(dataset), desc="Evaluating..."): all_transcriptions.append(result["transcription"]) all_references.append(result["reference"]) # normalize predictions and references all_transcriptions = [normalizer(transcription) for transcription in all_transcriptions] all_references = [normalizer(reference) for reference in all_references] # compute the WER metric wer = 100 * wer_metric.compute(predictions=all_transcriptions, references=all_references) print(wer) ``` **Print Output:** ``` 2.983685535968466 ``` ## Intended Use Distil-Whisper is intended to be a drop-in replacement for Whisper on English speech recognition. In particular, it achieves comparable WER results over out-of-distribution test data, while being 6x faster over both short and long-form audio. ## Data Distil-Whisper is trained on 22,000 hours of audio data from 9 open-source, permissively licensed speech datasets on the Hugging Face Hub: | Dataset | Size / h | Speakers | Domain | Licence | |-----------------------------------------------------------------------------------------|----------|----------|-----------------------------|-----------------| | [People's Speech](https://huggingface.co/datasets/MLCommons/peoples_speech) | 12,000 | unknown | Internet Archive | CC-BY-SA-4.0 | | [Common Voice 13](https://huggingface.co/datasets/mozilla-foundation/common_voice_13_0) | 3,000 | unknown | Narrated Wikipedia | CC0-1.0 | | [GigaSpeech](https://huggingface.co/datasets/speechcolab/gigaspeech) | 2,500 | unknown | Audiobook, podcast, YouTube | apache-2.0 | | Fisher | 1,960 | 11,900 | Telephone conversations | LDC | | [LibriSpeech](https://huggingface.co/datasets/librispeech_asr) | 960 | 2,480 | Audiobooks | CC-BY-4.0 | | [VoxPopuli](https://huggingface.co/datasets/facebook/voxpopuli) | 540 | 1,310 | European Parliament | CC0 | | [TED-LIUM](https://huggingface.co/datasets/LIUM/tedlium) | 450 | 2,030 | TED talks | CC-BY-NC-ND 3.0 | | SwitchBoard | 260 | 540 | Telephone conversations | LDC | | [AMI](https://huggingface.co/datasets/edinburghcstr/ami) | 100 | unknown | Meetings | CC-BY-4.0 | |||||| | **Total** | 21,770 | 18,260+ | | | The combined dataset spans 10 distinct domains and over 50k speakers. The diversity of this dataset is crucial to ensuring the distilled model is robust to audio distributions and noise. The audio data is then pseudo-labelled using the Whisper large-v2 model: we use Whisper to generate predictions for all the audio in our training set and use these as the target labels during training. Using pseudo-labels ensures that the transcriptions are consistently formatted across datasets and provides sequence-level distillation signal during training. ## WER Filter The Whisper pseudo-label predictions are subject to mis-transcriptions and hallucinations. To ensure we only train on accurate pseudo-labels, we employ a simple WER heuristic during training. First, we normalise the Whisper pseudo-labels and the ground truth labels provided by each dataset. We then compute the WER between these labels. If the WER exceeds a specified threshold, we discard the training example. Otherwise, we keep it for training. Section 9.2 of the [Distil-Whisper paper](https://arxiv.org/abs/2311.00430) demonstrates the effectiveness of this filter for improving downstream performance of the distilled model. We also partially attribute Distil-Whisper's robustness to hallucinations to this filter. ## Training The model was trained for 80,000 optimisation steps (or eight epochs). The Tensorboard training logs can be found under: https://huggingface.co/distil-whisper/distil-large-v2/tensorboard?params=scalars#frame ## Results The distilled model performs to within 1% WER of Whisper on out-of-distribution (OOD) short-form audio, and outperforms Whisper by 0.1% on OOD long-form audio. This performance gain is attributed to lower hallucinations. For a detailed per-dataset breakdown of the evaluation results, refer to Tables 16 and 17 of the [Distil-Whisper paper](https://arxiv.org/abs/2311.00430) Distil-Whisper is also evaluated on the [ESB benchmark](https://arxiv.org/abs/2210.13352) datasets as part of the [OpenASR leaderboard](https://huggingface.co/spaces/hf-audio/open_asr_leaderboard), where it performs to within 0.2% WER of Whisper. ## Reproducing Distil-Whisper Training and evaluation code to reproduce Distil-Whisper is available under the Distil-Whisper repository: https://github.com/huggingface/distil-whisper/tree/main/training ## License Distil-Whisper inherits the [MIT license](https://github.com/huggingface/distil-whisper/blob/main/LICENSE) from OpenAI's Whisper model. ## Citation If you use this model, please consider citing the [Distil-Whisper paper](https://arxiv.org/abs/2311.00430): ``` @misc{gandhi2023distilwhisper, title={Distil-Whisper: Robust Knowledge Distillation via Large-Scale Pseudo Labelling}, author={Sanchit Gandhi and Patrick von Platen and Alexander M. Rush}, year={2023}, eprint={2311.00430}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` ## Acknowledgements * OpenAI for the Whisper [model](https://huggingface.co/openai/whisper-large-v2) and [original codebase](https://github.com/openai/whisper) * Hugging Face 🤗 [Transformers](https://github.com/huggingface/transformers) for the model integration * Google's [TPU Research Cloud (TRC)](https://sites.research.google/trc/about/) programme for Cloud TPU v4s * [`@rsonavane`](https://huggingface.co/rsonavane/distil-whisper-large-v2-8-ls) for releasing an early iteration of Distil-Whisper on the LibriSpeech dataset
rinna/japanese-hubert-base
rinna
"2024-07-20T08:55:38Z"
64,480
65
transformers
[ "transformers", "pytorch", "safetensors", "hubert", "feature-extraction", "speech", "ja", "dataset:reazon-research/reazonspeech", "arxiv:2404.01657", "license:apache-2.0", "region:us" ]
feature-extraction
"2023-04-28T07:39:44Z"
--- thumbnail: https://github.com/rinnakk/japanese-pretrained-models/blob/master/rinna.png language: ja license: apache-2.0 datasets: reazon-research/reazonspeech inference: false tags: - hubert - speech --- # `rinna/japanese-hubert-base` ![rinna-icon](./rinna.png) # Overview This is a Japanese HuBERT Base model trained by [rinna Co., Ltd.](https://rinna.co.jp/) * **Model summary** The model architecture is the same as the [original HuBERT Base model](https://huggingface.co/facebook/hubert-base-ls960), which contains 12 transformer layers with 12 attention heads. The model was trained using code from the [official repository](https://github.com/facebookresearch/fairseq/tree/main/examples/hubert), and the detailed training configuration can be found in the same repository and the [original paper](https://ieeexplore.ieee.org/document/9585401). * **Training** The model was trained on approximately 19,000 hours of following Japanese speech corpus ReazonSpeech v1. - [ReazonSpeech](https://huggingface.co/datasets/reazon-research/reazonspeech) * **Contributors** - [Yukiya Hono](https://huggingface.co/yky-h) - [Kentaro Mitsui](https://huggingface.co/Kentaro321) - [Kei Sawada](https://huggingface.co/keisawada) --- # How to use the model ```python import soundfile as sf from transformers import AutoFeatureExtractor, AutoModel model_name = "rinna/japanese-hubert-base" feature_extractor = AutoFeatureExtractor.from_pretrained(model_name) model = AutoModel.from_pretrained(model_name) model.eval() raw_speech_16kHz, sr = sf.read(audio_file) inputs = feature_extractor( raw_speech_16kHz, return_tensors="pt", sampling_rate=sr, ) outputs = model(**inputs) print(f"Input: {inputs.input_values.size()}") # [1, #samples] print(f"Output: {outputs.last_hidden_state.size()}") # [1, #frames, 768] ``` A fairseq checkpoint file can also be available [here](https://huggingface.co/rinna/japanese-hubert-base/tree/main/fairseq). --- # How to cite ```bibtex @misc{rinna-japanese-hubert-base, title = {rinna/japanese-hubert-base}, author = {Hono, Yukiya and Mitsui, Kentaro and Sawada, Kei}, url = {https://huggingface.co/rinna/japanese-hubert-base} } @inproceedings{sawada2024release, title = {Release of Pre-Trained Models for the {J}apanese Language}, author = {Sawada, Kei and Zhao, Tianyu and Shing, Makoto and Mitsui, Kentaro and Kaga, Akio and Hono, Yukiya and Wakatsuki, Toshiaki and Mitsuda, Koh}, booktitle = {Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)}, month = {5}, year = {2024}, pages = {13898--13905}, url = {https://aclanthology.org/2024.lrec-main.1213}, note = {\url{https://arxiv.org/abs/2404.01657}} } ``` --- # References ```bibtex @article{hsu2021hubert, author = {Hsu, Wei-Ning and Bolte, Benjamin and Tsai, Yao-Hung Hubert and Lakhotia, Kushal and Salakhutdinov, Ruslan and Mohamed, Abdelrahman}, journal = {IEEE/ACM Transactions on Audio, Speech, and Language Processing}, title = {HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units}, year = {2021}, volume = {29}, pages = {3451-3460}, doi = {10.1109/TASLP.2021.3122291} } ``` --- # License [The Apache 2.0 license](https://www.apache.org/licenses/LICENSE-2.0)
mistralai/Mixtral-8x7B-v0.1
mistralai
"2024-07-24T14:02:01Z"
64,199
1,646
transformers
[ "transformers", "safetensors", "mixtral", "text-generation", "moe", "fr", "it", "de", "es", "en", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2023-12-01T09:42:00Z"
--- license: apache-2.0 language: - fr - it - de - es - en tags: - moe extra_gated_description: If you want to learn more about how we process your personal data, please read our <a href="https://mistral.ai/fr/terms/">Privacy Policy</a>. --- # Model Card for Mixtral-8x7B The Mixtral-8x7B Large Language Model (LLM) is a pretrained generative Sparse Mixture of Experts. The Mistral-8x7B outperforms Llama 2 70B on most benchmarks we tested. For full details of this model please read our [release blog post](https://mistral.ai/news/mixtral-of-experts/). ## Warning This repo contains weights that are compatible with [vLLM](https://github.com/vllm-project/vllm) serving of the model as well as Hugging Face [transformers](https://github.com/huggingface/transformers) library. It is based on the original Mixtral [torrent release](magnet:?xt=urn:btih:5546272da9065eddeb6fcd7ffddeef5b75be79a7&dn=mixtral-8x7b-32kseqlen&tr=udp%3A%2F%http://2Fopentracker.i2p.rocks%3A6969%2Fannounce&tr=http%3A%2F%http://2Ftracker.openbittorrent.com%3A80%2Fannounce), but the file format and parameter names are different. Please note that model cannot (yet) be instantiated with HF. ## Run the model ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_id = "mistralai/Mixtral-8x7B-v0.1" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id) text = "Hello my name is" inputs = tokenizer(text, return_tensors="pt") outputs = model.generate(**inputs, max_new_tokens=20) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` By default, transformers will load the model in full precision. Therefore you might be interested to further reduce down the memory requirements to run the model through the optimizations we offer in HF ecosystem: ### In half-precision Note `float16` precision only works on GPU devices <details> <summary> Click to expand </summary> ```diff + import torch from transformers import AutoModelForCausalLM, AutoTokenizer model_id = "mistralai/Mixtral-8x7B-v0.1" tokenizer = AutoTokenizer.from_pretrained(model_id) + model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16).to(0) text = "Hello my name is" + inputs = tokenizer(text, return_tensors="pt").to(0) outputs = model.generate(**inputs, max_new_tokens=20) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` </details> ### Lower precision using (8-bit & 4-bit) using `bitsandbytes` <details> <summary> Click to expand </summary> ```diff + import torch from transformers import AutoModelForCausalLM, AutoTokenizer model_id = "mistralai/Mixtral-8x7B-v0.1" tokenizer = AutoTokenizer.from_pretrained(model_id) + model = AutoModelForCausalLM.from_pretrained(model_id, load_in_4bit=True) text = "Hello my name is" + inputs = tokenizer(text, return_tensors="pt").to(0) outputs = model.generate(**inputs, max_new_tokens=20) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` </details> ### Load the model with Flash Attention 2 <details> <summary> Click to expand </summary> ```diff + import torch from transformers import AutoModelForCausalLM, AutoTokenizer model_id = "mistralai/Mixtral-8x7B-v0.1" tokenizer = AutoTokenizer.from_pretrained(model_id) + model = AutoModelForCausalLM.from_pretrained(model_id, use_flash_attention_2=True) text = "Hello my name is" + inputs = tokenizer(text, return_tensors="pt").to(0) outputs = model.generate(**inputs, max_new_tokens=20) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` </details> ## Notice Mixtral-8x7B is a pretrained base model and therefore does not have any moderation mechanisms. # The Mistral AI Team Albert Jiang, Alexandre Sablayrolles, Arthur Mensch, Blanche Savary, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, Gianna Lengyel, Guillaume Bour, Guillaume Lample, Lélio Renard Lavaud, Louis Ternon, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Théophile Gervet, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed.
timm/densenet201.tv_in1k
timm
"2023-04-21T22:54:58Z"
64,170
0
timm
[ "timm", "pytorch", "safetensors", "image-classification", "dataset:imagenet-1k", "arxiv:1608.06993", "license:apache-2.0", "region:us" ]
image-classification
"2023-04-21T22:54:45Z"
--- tags: - image-classification - timm library_name: timm license: apache-2.0 datasets: - imagenet-1k --- # Model card for densenet201.tv_in1k A DenseNet image classification model. Trained on ImageNet-1k (original torchvision weights). ## Model Details - **Model Type:** Image classification / feature backbone - **Model Stats:** - Params (M): 20.0 - GMACs: 4.3 - Activations (M): 7.9 - Image size: 224 x 224 - **Papers:** - Densely Connected Convolutional Networks: https://arxiv.org/abs/1608.06993 - **Dataset:** ImageNet-1k - **Original:** https://github.com/pytorch/vision ## Model Usage ### Image Classification ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model('densenet201.tv_in1k', pretrained=True) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5) ``` ### Feature Map Extraction ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'densenet201.tv_in1k', pretrained=True, features_only=True, ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 for o in output: # print shape of each feature map in output # e.g.: # torch.Size([1, 64, 112, 112]) # torch.Size([1, 256, 56, 56]) # torch.Size([1, 512, 28, 28]) # torch.Size([1, 1792, 14, 14]) # torch.Size([1, 1920, 7, 7]) print(o.shape) ``` ### Image Embeddings ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'densenet201.tv_in1k', pretrained=True, num_classes=0, # remove classifier nn.Linear ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor # or equivalently (without needing to set num_classes=0) output = model.forward_features(transforms(img).unsqueeze(0)) # output is unpooled, a (1, 1920, 7, 7) shaped tensor output = model.forward_head(output, pre_logits=True) # output is a (1, num_features) shaped tensor ``` ## Citation ```bibtex @inproceedings{huang2017densely, title={Densely Connected Convolutional Networks}, author={Huang, Gao and Liu, Zhuang and van der Maaten, Laurens and Weinberger, Kilian Q }, booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition}, year={2017} } ```
microsoft/wavlm-base-plus-sv
microsoft
"2022-03-25T10:39:41Z"
64,079
28
transformers
[ "transformers", "pytorch", "wavlm", "audio-xvector", "speech", "en", "arxiv:1912.07875", "arxiv:2106.06909", "arxiv:2101.00390", "arxiv:2110.13900", "endpoints_compatible", "region:us" ]
null
"2022-03-02T23:29:05Z"
--- language: - en tags: - speech --- # WavLM-Base-Plus for Speaker Verification [Microsoft's WavLM](https://github.com/microsoft/unilm/tree/master/wavlm) The model was pretrained on 16kHz sampled speech audio with utterance and speaker contrastive loss. When using the model, make sure that your speech input is also sampled at 16kHz. **Note**: This model does not have a tokenizer as it was pretrained on audio alone. In order to use this model **speech recognition**, a tokenizer should be created and the model should be fine-tuned on labeled text data. Check out [this blog](https://huggingface.co/blog/fine-tune-wav2vec2-english) for more in-detail explanation of how to fine-tune the model. The model was pre-trained on: - 60,000 hours of [Libri-Light](https://arxiv.org/abs/1912.07875) - 10,000 hours of [GigaSpeech](https://arxiv.org/abs/2106.06909) - 24,000 hours of [VoxPopuli](https://arxiv.org/abs/2101.00390) [Paper: WavLM: Large-Scale Self-Supervised Pre-Training for Full Stack Speech Processing](https://arxiv.org/abs/2110.13900) Authors: Sanyuan Chen, Chengyi Wang, Zhengyang Chen, Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li, Naoyuki Kanda, Takuya Yoshioka, Xiong Xiao, Jian Wu, Long Zhou, Shuo Ren, Yanmin Qian, Yao Qian, Jian Wu, Michael Zeng, Furu Wei **Abstract** *Self-supervised learning (SSL) achieves great success in speech recognition, while limited exploration has been attempted for other speech processing tasks. As speech signal contains multi-faceted information including speaker identity, paralinguistics, spoken content, etc., learning universal representations for all speech tasks is challenging. In this paper, we propose a new pre-trained model, WavLM, to solve full-stack downstream speech tasks. WavLM is built based on the HuBERT framework, with an emphasis on both spoken content modeling and speaker identity preservation. We first equip the Transformer structure with gated relative position bias to improve its capability on recognition tasks. For better speaker discrimination, we propose an utterance mixing training strategy, where additional overlapped utterances are created unsupervisely and incorporated during model training. Lastly, we scale up the training dataset from 60k hours to 94k hours. WavLM Large achieves state-of-the-art performance on the SUPERB benchmark, and brings significant improvements for various speech processing tasks on their representative benchmarks.* The original model can be found under https://github.com/microsoft/unilm/tree/master/wavlm. # Fine-tuning details The model is fine-tuned on the [VoxCeleb1 dataset](https://www.robots.ox.ac.uk/~vgg/data/voxceleb/vox1.html) using an X-Vector head with an Additive Margin Softmax loss [X-Vectors: Robust DNN Embeddings for Speaker Recognition](https://www.danielpovey.com/files/2018_icassp_xvectors.pdf) # Usage ## Speaker Verification ```python from transformers import Wav2Vec2FeatureExtractor, WavLMForXVector from datasets import load_dataset import torch dataset = load_dataset("hf-internal-testing/librispeech_asr_demo", "clean", split="validation") feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained('microsoft/wavlm-base-plus-sv') model = WavLMForXVector.from_pretrained('microsoft/wavlm-base-plus-sv') # audio files are decoded on the fly audio = [x["array"] for x in dataset[:2]["audio"]] inputs = feature_extractor(audio, padding=True, return_tensors="pt") embeddings = model(**inputs).embeddings embeddings = torch.nn.functional.normalize(embeddings, dim=-1).cpu() # the resulting embeddings can be used for cosine similarity-based retrieval cosine_sim = torch.nn.CosineSimilarity(dim=-1) similarity = cosine_sim(embeddings[0], embeddings[1]) threshold = 0.86 # the optimal threshold is dataset-dependent if similarity < threshold: print("Speakers are not the same!") ``` # License The official license can be found [here](https://github.com/microsoft/UniSpeech/blob/main/LICENSE) ![design](https://raw.githubusercontent.com/patrickvonplaten/scientific_images/master/wavlm.png)
MCG-NJU/videomae-base
MCG-NJU
"2024-03-29T08:02:16Z"
63,916
36
transformers
[ "transformers", "pytorch", "safetensors", "videomae", "pretraining", "vision", "video-classification", "arxiv:2203.12602", "arxiv:2111.06377", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
video-classification
"2022-08-03T09:27:59Z"
--- license: "cc-by-nc-4.0" tags: - vision - video-classification --- # VideoMAE (base-sized model, pre-trained only) VideoMAE model pre-trained on Kinetics-400 for 1600 epochs in a self-supervised way. It was introduced in the paper [VideoMAE: Masked Autoencoders are Data-Efficient Learners for Self-Supervised Video Pre-Training](https://arxiv.org/abs/2203.12602) by Tong et al. and first released in [this repository](https://github.com/MCG-NJU/VideoMAE). Disclaimer: The team releasing VideoMAE did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description VideoMAE is an extension of [Masked Autoencoders (MAE)](https://arxiv.org/abs/2111.06377) to video. The architecture of the model is very similar to that of a standard Vision Transformer (ViT), with a decoder on top for predicting pixel values for masked patches. Videos are presented to the model as a sequence of fixed-size patches (resolution 16x16), which are linearly embedded. One also adds a [CLS] token to the beginning of a sequence to use it for classification tasks. One also adds fixed sinus/cosinus position embeddings before feeding the sequence to the layers of the Transformer encoder. By pre-training the model, it learns an inner representation of videos that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled videos for instance, you can train a standard classifier by placing a linear layer on top of the pre-trained encoder. One typically places a linear layer on top of the [CLS] token, as the last hidden state of this token can be seen as a representation of an entire video. ## Intended uses & limitations You can use the raw model for predicting pixel values for masked patches of a video, but it's mostly intended to be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=videomae) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model to predict pixel values for randomly masked patches: ```python from transformers import VideoMAEImageProcessor, VideoMAEForPreTraining import numpy as np import torch num_frames = 16 video = list(np.random.randn(16, 3, 224, 224)) processor = VideoMAEImageProcessor.from_pretrained("MCG-NJU/videomae-base") model = VideoMAEForPreTraining.from_pretrained("MCG-NJU/videomae-base") pixel_values = processor(video, return_tensors="pt").pixel_values num_patches_per_frame = (model.config.image_size // model.config.patch_size) ** 2 seq_length = (num_frames // model.config.tubelet_size) * num_patches_per_frame bool_masked_pos = torch.randint(0, 2, (1, seq_length)).bool() outputs = model(pixel_values, bool_masked_pos=bool_masked_pos) loss = outputs.loss ``` For more code examples, we refer to the [documentation](https://huggingface.co/transformers/main/model_doc/videomae.html#). ## Training data (to do, feel free to open a PR) ## Training procedure ### Preprocessing (to do, feel free to open a PR) ### Pretraining (to do, feel free to open a PR) ## Evaluation results (to do, feel free to open a PR) ### BibTeX entry and citation info ```bibtex misc{https://doi.org/10.48550/arxiv.2203.12602, doi = {10.48550/ARXIV.2203.12602}, url = {https://arxiv.org/abs/2203.12602}, author = {Tong, Zhan and Song, Yibing and Wang, Jue and Wang, Limin}, keywords = {Computer Vision and Pattern Recognition (cs.CV), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {VideoMAE: Masked Autoencoders are Data-Efficient Learners for Self-Supervised Video Pre-Training}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
katuni4ka/tiny-random-codegen2
katuni4ka
"2024-05-20T07:14:01Z"
63,708
1
transformers
[ "transformers", "safetensors", "codegen", "text-generation", "custom_code", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
"2024-05-20T07:12:57Z"
Entry not found
Qwen/Qwen2-VL-72B-Instruct
Qwen
"2024-09-21T08:39:10Z"
63,530
157
transformers
[ "transformers", "safetensors", "qwen2_vl", "image-text-to-text", "multimodal", "conversational", "en", "arxiv:2409.12191", "arxiv:2308.12966", "license:other", "endpoints_compatible", "region:us" ]
image-text-to-text
"2024-09-17T04:25:34Z"
--- license: other license_name: tongyi-qianwen license_link: https://huggingface.co/Qwen/Qwen2-VL-72B-Instruct/blob/main/LICENSE language: - en pipeline_tag: image-text-to-text tags: - multimodal library_name: transformers --- # Qwen2-VL-72B-Instruct ## Introduction We're excited to unveil **Qwen2-VL**, the latest iteration of our Qwen-VL model, representing nearly a year of innovation. ### What’s New in Qwen2-VL? #### Key Enhancements: * **SoTA understanding of images of various resolution & ratio**: Qwen2-VL achieves state-of-the-art performance on visual understanding benchmarks, including MathVista, DocVQA, RealWorldQA, MTVQA, etc. * **Understanding videos of 20min+**: Qwen2-VL can understand videos over 20 minutes for high-quality video-based question answering, dialog, content creation, etc. * **Agent that can operate your mobiles, robots, etc.**: with the abilities of complex reasoning and decision making, Qwen2-VL can be integrated with devices like mobile phones, robots, etc., for automatic operation based on visual environment and text instructions. * **Multilingual Support**: to serve global users, besides English and Chinese, Qwen2-VL now supports the understanding of texts in different languages inside images, including most European languages, Japanese, Korean, Arabic, Vietnamese, etc. #### Model Architecture Updates: * **Naive Dynamic Resolution**: Unlike before, Qwen2-VL can handle arbitrary image resolutions, mapping them into a dynamic number of visual tokens, offering a more human-like visual processing experience. <p align="center"> <img src="https://qianwen-res.oss-accelerate-overseas.aliyuncs.com/Qwen2-VL/qwen2_vl.jpg" width="80%"/> <p> * **Multimodal Rotary Position Embedding (M-ROPE)**: Decomposes positional embedding into parts to capture 1D textual, 2D visual, and 3D video positional information, enhancing its multimodal processing capabilities. <p align="center"> <img src="http://qianwen-res.oss-accelerate-overseas.aliyuncs.com/Qwen2-VL/mrope.png" width="80%"/> <p> We have three models with 2, 8 and 72 billion parameters. This repo contains the instruction-tuned 72B Qwen2-VL model. For more information, visit our [Blog](https://qwenlm.github.io/blog/qwen2-vl/) and [GitHub](https://github.com/QwenLM/Qwen2-VL). ## Evaluation ### Image Benchmarks | Benchmark | Previous SoTA<br><sup>(Open-source LVLM)<sup> | Claude-3.5 Sonnet | GPT-4o | **Qwen2-VL-72B** | :--- | :---: | :---: | :---: | :---: | | MMMU<sub>val</sub> | 58.3 | 68.3 | **69.1** | 64.5 | DocVQA<sub>test</sub> | 94.1 | 95.2 | 92.8 | **96.5** | InfoVQA<sub>test</sub> | 82.0 | - | - | **84.5** | ChartQA<sub>test</sub> | 88.4 | **90.8** | 85.7 | 88.3 | TextVQA<sub>val</sub> | 84.4 | - | - | **85.5** | OCRBench | 852 | 788 | 736 | **877** | MTVQA | 17.3 | 25.7 | 27.8 | **30.9** | VCR<sub>en easy</sub> | 84.67 | 63.85 | 91.55 | **91.93** | VCR<sub>zh easy</sub> | 22.09 | 1.0| 14.87 | **65.37** | RealWorldQA | 72.2 | 60.1 | 75.4 | **77.8** | MME<sub>sum</sub> | 2414.7 | 1920.0 | 2328.7 | **2482.7** | MMBench-EN<sub>test</sub> | **86.5** | 79.7 | 83.4 | **86.5** | MMBench-CN<sub>test</sub> | 86.3 | 80.7 | 82.1 | **86.6** | MMBench-V1.1<sub>test</sub> | 85.5 | 78.5 | 82.2 | **85.9** | MMT-Bench<sub>test</sub> | 63.4 | - | 65.5 | **71.7** | MMStar | 67.1 | 62.2 | 63.9 | **68.3** | MMVet<sub>GPT-4-Turbo</sub> | 65.7 | 66.0 | 69.1 | **74.0** | HallBench<sub>avg</sub> | 55.2 | 49.9 | 55.0 | **58.1** | MathVista<sub>testmini</sub> | 67.5 | 67.7 | 63.8 | **70.5** | MathVision | 16.97 | - | **30.4** | 25.9 ### Video Benchmarks | Benchmark | Previous SoTA<br><sup>(Open-source LVLM)<sup> | Gemini 1.5-Pro | GPT-4o | **Qwen2-VL-72B** | :--- | :---: | :---: | :---: | :---: | | MVBench | 69.6 | - | - | **73.6** | PerceptionTest<sub>test</sub> | 66.9 | - | - | **68.0** | EgoSchema<sub>test</sub> | 62.0 | 63.2 | 72.2 | **77.9** | Video-MME<br><sub>(wo/w subs)</sub> | 66.3/69.6 | **75.0**/**81.3** | 71.9/77.2 | 71.2/77.8 ### Agent Benchmarks | |Benchmark | Metric | Previous SoTA | GPT-4o | **Qwen2-VL-72B** | | :-- | :-- | :--: | :--: | :--: | :--: | | General | FnCall<sup>[1]</sup> | TM | - | 90.2 | **93.1** | | | | EM | - | 50.0 | **53.2** | | Game | Number Line | SR | 89.4<sup>[2]</sup> | 91.5 | **100.0** | | | BlackJack | SR | 40.2<sup>[2]</sup> | 34.5 | **42.6** | | | EZPoint | SR | 50.0<sup>[2]</sup> | 85.5 | **100.0** | | | Point24 | SR | 2.6<sup>[2]</sup> | 3.0 | **4.5** | | Android | AITZ | TM | 83.0<sup>[3]</sup> | 70.0 | **89.6** | | | | EM | 47.7<sup>[3]</sup> | 35.3 | **72.1** | | AI2THOR | ALFRED<sub>valid-unseen</sub> | SR | 67.7<sup>[4]</sup> | - | **67.8** | | | | GC | 75.3<sup>[4]</sup> | - | **75.8** | | VLN | R2R<sub>valid-unseen</sub> | SR | **79.0** | 43.7<sup>[5]</sup> | 51.7 | | | REVERIE<sub>valid-unseen</sub> | SR | **61.0** | 31.6<sup>[5]</sup> | 31.0 | SR, GC, TM and EM are short for success rate, goal-condition success, type match and exact match. ALFRED is supported by SAM<sup>[6]</sup>. 1. Self-Curated Function Call Benchmark by Qwen Team 2. Fine-Tuning Large Vision-Language Models as Decision-Making Agents via Reinforcement Learning 3. Android in the Zoo: Chain-of-Action-Thought for GUI Agents 4. ThinkBot: Embodied Instruction Following with Thought Chain Reasoning 5. MapGPT: Map-Guided Prompting with Adaptive Path Planning for Vision-and-Language Navigation 6. Segment Anything. ### Multilingual Benchmarks <table style="width:75%; text-align:center;"> <tr> <th>Models</th> <td>AR </td> <td>DE </td> <td>FR </td> <td>IT </td> <td>JA </td> <td>KO </td> <td>RU </td> <td>TH </td> <td>VI </td> <td>AVG</td> </tr> <tr> <th align="left">Qwen2-VL-72B</th> <td>20.7 </td> <td>36.5 </td> <td>44.1 </td> <td>42.8 </td> <td>21.6 </td> <td>37.4 </td> <td>15.6 </td> <td>17.7 </td> <td>41.6 </td> <td><b>30.9</b></td> </tr> <tr> <th align="left">GPT-4o</th> <td>20.2 </td> <td>34.2 </td> <td>41.2 </td> <td>32.7 </td> <td>20.0 </td> <td>33.9 </td> <td>11.5 </td> <td>22.5 </td> <td>34.2 </td> <td>27.8</td> </tr> <tr> <th align="left">Claude3 Opus</th> <td>15.1 </td> <td>33.4 </td> <td>40.6 </td> <td>34.4 </td> <td>19.4 </td> <td>27.2 </td> <td>13.0 </td> <td>19.5 </td> <td>29.1 </td> <td>25.7 </td> </tr> <tr> <th align="left">Gemini Ultra</th> <td>14.7 </td> <td>32.3 </td> <td>40.0 </td> <td>31.8 </td> <td>12.3 </td> <td>17.2 </td> <td>11.8 </td> <td>20.3 </td> <td>28.6 </td> <td>23.2</td> </tr> </table> ## Requirements The code of Qwen2-VL has been in the latest Hugging face transformers and we advise you to build from source with command `pip install git+https://github.com/huggingface/transformers`, or you might encounter the following error: ``` KeyError: 'qwen2_vl' ``` ## Quickstart We offer a toolkit to help you handle various types of visual input more conveniently. This includes base64, URLs, and interleaved images and videos. You can install it using the following command: ```bash pip install qwen-vl-utils ``` Here we show a code snippet to show you how to use the chat model with `transformers` and `qwen_vl_utils`: ```python from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor from qwen_vl_utils import process_vision_info # default: Load the model on the available device(s) model = Qwen2VLForConditionalGeneration.from_pretrained( "Qwen/Qwen2-VL-72B-Instruct", torch_dtype="auto", device_map="auto" ) # We recommend enabling flash_attention_2 for better acceleration and memory saving, especially in multi-image and video scenarios. # model = Qwen2VLForConditionalGeneration.from_pretrained( # "Qwen/Qwen2-VL-72B-Instruct", # torch_dtype=torch.bfloat16, # attn_implementation="flash_attention_2", # device_map="auto", # ) # default processer processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-72B-Instruct") # The default range for the number of visual tokens per image in the model is 4-16384. You can set min_pixels and max_pixels according to your needs, such as a token count range of 256-1280, to balance speed and memory usage. # min_pixels = 256*28*28 # max_pixels = 1280*28*28 # processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-72B-Instruct", min_pixels=min_pixels, max_pixels=max_pixels) messages = [ { "role": "user", "content": [ { "type": "image", "image": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg", }, {"type": "text", "text": "Describe this image."}, ], } ] # Preparation for inference text = processor.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) image_inputs, video_inputs = process_vision_info(messages) inputs = processor( text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt", ) inputs = inputs.to("cuda") # Inference: Generation of the output generated_ids = model.generate(**inputs, max_new_tokens=128) generated_ids_trimmed = [ out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) ] output_text = processor.batch_decode( generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False ) print(output_text) ``` <details> <summary>Without qwen_vl_utils</summary> ```python from PIL import Image import requests import torch from torchvision import io from typing import Dict from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor # Load the model in half-precision on the available device(s) model = Qwen2VLForConditionalGeneration.from_pretrained( "Qwen/Qwen2-VL-72B-Instruct", torch_dtype="auto", device_map="auto" ) processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-72B-Instruct") # Image url = "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg" image = Image.open(requests.get(url, stream=True).raw) conversation = [ { "role": "user", "content": [ { "type": "image", }, {"type": "text", "text": "Describe this image."}, ], } ] # Preprocess the inputs text_prompt = processor.apply_chat_template(conversation, add_generation_prompt=True) # Excepted output: '<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n<|vision_start|><|image_pad|><|vision_end|>Describe this image.<|im_end|>\n<|im_start|>assistant\n' inputs = processor( text=[text_prompt], images=[image], padding=True, return_tensors="pt" ) inputs = inputs.to("cuda") # Inference: Generation of the output output_ids = model.generate(**inputs, max_new_tokens=128) generated_ids = [ output_ids[len(input_ids) :] for input_ids, output_ids in zip(inputs.input_ids, output_ids) ] output_text = processor.batch_decode( generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True ) print(output_text) ``` </details> <details> <summary>Multi image inference</summary> ```python # Messages containing multiple images and a text query messages = [ { "role": "user", "content": [ {"type": "image", "image": "file:///path/to/image1.jpg"}, {"type": "image", "image": "file:///path/to/image2.jpg"}, {"type": "text", "text": "Identify the similarities between these images."}, ], } ] # Preparation for inference text = processor.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) image_inputs, video_inputs = process_vision_info(messages) inputs = processor( text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt", ) inputs = inputs.to("cuda") # Inference generated_ids = model.generate(**inputs, max_new_tokens=128) generated_ids_trimmed = [ out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) ] output_text = processor.batch_decode( generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False ) print(output_text) ``` </details> <details> <summary>Video inference</summary> ```python # Messages containing a images list as a video and a text query messages = [ { "role": "user", "content": [ { "type": "video", "video": [ "file:///path/to/frame1.jpg", "file:///path/to/frame2.jpg", "file:///path/to/frame3.jpg", "file:///path/to/frame4.jpg", ], "fps": 1.0, }, {"type": "text", "text": "Describe this video."}, ], } ] # Messages containing a video and a text query messages = [ { "role": "user", "content": [ { "type": "video", "video": "file:///path/to/video1.mp4", "max_pixels": 360 * 420, "fps": 1.0, }, {"type": "text", "text": "Describe this video."}, ], } ] # Preparation for inference text = processor.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) image_inputs, video_inputs = process_vision_info(messages) inputs = processor( text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt", ) inputs = inputs.to("cuda") # Inference generated_ids = model.generate(**inputs, max_new_tokens=128) generated_ids_trimmed = [ out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) ] output_text = processor.batch_decode( generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False ) print(output_text) ``` </details> <details> <summary>Batch inference</summary> ```python # Sample messages for batch inference messages1 = [ { "role": "user", "content": [ {"type": "image", "image": "file:///path/to/image1.jpg"}, {"type": "image", "image": "file:///path/to/image2.jpg"}, {"type": "text", "text": "What are the common elements in these pictures?"}, ], } ] messages2 = [ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": "Who are you?"}, ] # Combine messages for batch processing messages = [messages1, messages1] # Preparation for batch inference texts = [ processor.apply_chat_template(msg, tokenize=False, add_generation_prompt=True) for msg in messages ] image_inputs, video_inputs = process_vision_info(messages) inputs = processor( text=texts, images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt", ) inputs = inputs.to("cuda") # Batch Inference generated_ids = model.generate(**inputs, max_new_tokens=128) generated_ids_trimmed = [ out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) ] output_texts = processor.batch_decode( generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False ) print(output_texts) ``` </details> ### More Usage Tips For input images, we support local files, base64, and URLs. For videos, we currently only support local files. ```python # You can directly insert a local file path, a URL, or a base64-encoded image into the position where you want in the text. ## Local file path messages = [ { "role": "user", "content": [ {"type": "image", "image": "file:///path/to/your/image.jpg"}, {"type": "text", "text": "Describe this image."}, ], } ] ## Image URL messages = [ { "role": "user", "content": [ {"type": "image", "image": "http://path/to/your/image.jpg"}, {"type": "text", "text": "Describe this image."}, ], } ] ## Base64 encoded image messages = [ { "role": "user", "content": [ {"type": "image", "image": "data:image;base64,/9j/..."}, {"type": "text", "text": "Describe this image."}, ], } ] ``` #### Image Resolution for performance boost The model supports a wide range of resolution inputs. By default, it uses the native resolution for input, but higher resolutions can enhance performance at the cost of more computation. Users can set the minimum and maximum number of pixels to achieve an optimal configuration for their needs, such as a token count range of 256-1280, to balance speed and memory usage. ```python min_pixels = 256 * 28 * 28 max_pixels = 1280 * 28 * 28 processor = AutoProcessor.from_pretrained( "Qwen/Qwen2-VL-72B-Instruct", min_pixels=min_pixels, max_pixels=max_pixels ) ``` Besides, We provide two methods for fine-grained control over the image size input to the model: 1. Define min_pixels and max_pixels: Images will be resized to maintain their aspect ratio within the range of min_pixels and max_pixels. 2. Specify exact dimensions: Directly set `resized_height` and `resized_width`. These values will be rounded to the nearest multiple of 28. ```python # min_pixels and max_pixels messages = [ { "role": "user", "content": [ { "type": "image", "image": "file:///path/to/your/image.jpg", "resized_height": 280, "resized_width": 420, }, {"type": "text", "text": "Describe this image."}, ], } ] # resized_height and resized_width messages = [ { "role": "user", "content": [ { "type": "image", "image": "file:///path/to/your/image.jpg", "min_pixels": 50176, "max_pixels": 50176, }, {"type": "text", "text": "Describe this image."}, ], } ] ``` ## Limitations While Qwen2-VL are applicable to a wide range of visual tasks, it is equally important to understand its limitations. Here are some known restrictions: 1. Lack of Audio Support: The current model does **not comprehend audio information** within videos. 2. Data timeliness: Our image dataset is **updated until June 2023**, and information subsequent to this date may not be covered. 3. Constraints in Individuals and Intellectual Property (IP): The model's capacity to recognize specific individuals or IPs is limited, potentially failing to comprehensively cover all well-known personalities or brands. 4. Limited Capacity for Complex Instruction: When faced with intricate multi-step instructions, the model's understanding and execution capabilities require enhancement. 5. Insufficient Counting Accuracy: Particularly in complex scenes, the accuracy of object counting is not high, necessitating further improvements. 6. Weak Spatial Reasoning Skills: Especially in 3D spaces, the model's inference of object positional relationships is inadequate, making it difficult to precisely judge the relative positions of objects. These limitations serve as ongoing directions for model optimization and improvement, and we are committed to continually enhancing the model's performance and scope of application. ## Citation If you find our work helpful, feel free to give us a cite. ``` @article{Qwen2VL, title={Qwen2-VL: Enhancing Vision-Language Model's Perception of the World at Any Resolution}, author={Wang, Peng and Bai, Shuai and Tan, Sinan and Wang, Shijie and Fan, Zhihao and Bai, Jinze and Chen, Keqin and Liu, Xuejing and Wang, Jialin and Ge, Wenbin and Fan, Yang and Dang, Kai and Du, Mengfei and Ren, Xuancheng and Men, Rui and Liu, Dayiheng and Zhou, Chang and Zhou, Jingren and Lin, Junyang}, journal={arXiv preprint arXiv:2409.12191}, year={2024} } @article{Qwen-VL, title={Qwen-VL: A Versatile Vision-Language Model for Understanding, Localization, Text Reading, and Beyond}, author={Bai, Jinze and Bai, Shuai and Yang, Shusheng and Wang, Shijie and Tan, Sinan and Wang, Peng and Lin, Junyang and Zhou, Chang and Zhou, Jingren}, journal={arXiv preprint arXiv:2308.12966}, year={2023} } ```
stablediffusionapi/realistic-vision-51
stablediffusionapi
"2023-08-07T12:05:08Z"
63,427
4
diffusers
[ "diffusers", "stablediffusionapi.com", "stable-diffusion-api", "text-to-image", "ultra-realistic", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
"2023-08-07T12:02:35Z"
--- license: creativeml-openrail-m tags: - stablediffusionapi.com - stable-diffusion-api - text-to-image - ultra-realistic pinned: true --- # Realistic Vision 5.1 API Inference ![generated from stablediffusionapi.com](https://cdn2.stablediffusionapi.com/generations/15800673751691409707.png) ## Get API Key Get API key from [Stable Diffusion API](http://stablediffusionapi.com/), No Payment needed. Replace Key in below code, change **model_id** to "realistic-vision-51" Coding in PHP/Node/Java etc? Have a look at docs for more code examples: [View docs](https://stablediffusionapi.com/docs) Try model for free: [Generate Images](https://stablediffusionapi.com/models/realistic-vision-51) Model link: [View model](https://stablediffusionapi.com/models/realistic-vision-51) Credits: [View credits](https://civitai.com/?query=Realistic%20Vision%205.1) View all models: [View Models](https://stablediffusionapi.com/models) import requests import json url = "https://stablediffusionapi.com/api/v4/dreambooth" payload = json.dumps({ "key": "your_api_key", "model_id": "realistic-vision-51", "prompt": "ultra realistic close up portrait ((beautiful pale cyberpunk female with heavy black eyeliner)), blue eyes, shaved side haircut, hyper detail, cinematic lighting, magic neon, dark red city, Canon EOS R3, nikon, f/1.4, ISO 200, 1/160s, 8K, RAW, unedited, symmetrical balance, in-frame, 8K", "negative_prompt": "painting, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, deformed, ugly, blurry, bad anatomy, bad proportions, extra limbs, cloned face, skinny, glitchy, double torso, extra arms, extra hands, mangled fingers, missing lips, ugly face, distorted face, extra legs, anime", "width": "512", "height": "512", "samples": "1", "num_inference_steps": "30", "safety_checker": "no", "enhance_prompt": "yes", "seed": None, "guidance_scale": 7.5, "multi_lingual": "no", "panorama": "no", "self_attention": "no", "upscale": "no", "embeddings": "embeddings_model_id", "lora": "lora_model_id", "webhook": None, "track_id": None }) headers = { 'Content-Type': 'application/json' } response = requests.request("POST", url, headers=headers, data=payload) print(response.text) > Use this coupon code to get 25% off **DMGG0RBN**
EleutherAI/pythia-1.4b-deduped-v0
EleutherAI
"2023-07-09T16:02:25Z"
63,417
5
transformers
[ "transformers", "pytorch", "safetensors", "gpt_neox", "text-generation", "causal-lm", "pythia", "pythia_v0", "en", "dataset:EleutherAI/the_pile_deduplicated", "arxiv:2101.00027", "arxiv:2201.07311", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2022-10-18T03:03:34Z"
--- language: - en tags: - pytorch - causal-lm - pythia - pythia_v0 license: apache-2.0 datasets: - EleutherAI/the_pile_deduplicated --- The *Pythia Scaling Suite* is a collection of models developed to facilitate interpretability research. It contains two sets of eight models of sizes 70M, 160M, 410M, 1B, 1.4B, 2.8B, 6.9B, and 12B. For each size, there are two models: one trained on the Pile, and one trained on the Pile after the dataset has been globally deduplicated. All 8 model sizes are trained on the exact same data, in the exact same order. All Pythia models are available [on Hugging Face](https://huggingface.co/models?other=pythia). The Pythia model suite was deliberately designed to promote scientific research on large language models, especially interpretability research. Despite not centering downstream performance as a design goal, we find the models <a href="#evaluations">match or exceed</a> the performance of similar and same-sized models, such as those in the OPT and GPT-Neo suites. Please note that all models in the *Pythia* suite were renamed in January 2023. For clarity, a <a href="#naming-convention-and-parameter-count">table comparing the old and new names</a> is provided in this model card, together with exact parameter counts. ## Pythia-1.4B-deduped ### Model Details - Developed by: [EleutherAI](http://eleuther.ai) - Model type: Transformer-based Language Model - Language: English - Learn more: [Pythia's GitHub repository](https://github.com/EleutherAI/pythia) for training procedure, config files, and details on how to use. - Library: [GPT-NeoX](https://github.com/EleutherAI/gpt-neox) - License: Apache 2.0 - Contact: to ask questions about this model, join the [EleutherAI Discord](https://discord.gg/zBGx3azzUn), and post them in `#release-discussion`. Please read the existing *Pythia* documentation before asking about it in the EleutherAI Discord. For general correspondence: [contact@eleuther. ai](mailto:contact@eleuther.ai). <figure> | Pythia model | Non-Embedding Params | Layers | Model Dim | Heads | Batch Size | Learning Rate | Equivalent Models | | -----------: | -------------------: | :----: | :-------: | :---: | :--------: | :-------------------: | :--------------------: | | 70M | 18,915,328 | 6 | 512 | 8 | 2M | 1.0 x 10<sup>-3</sup> | — | | 160M | 85,056,000 | 12 | 768 | 12 | 4M | 6.0 x 10<sup>-4</sup> | GPT-Neo 125M, OPT-125M | | 410M | 302,311,424 | 24 | 1024 | 16 | 4M | 3.0 x 10<sup>-4</sup> | OPT-350M | | 1.0B | 805,736,448 | 16 | 2048 | 8 | 2M | 3.0 x 10<sup>-4</sup> | — | | 1.4B | 1,208,602,624 | 24 | 2048 | 16 | 4M | 2.0 x 10<sup>-4</sup> | GPT-Neo 1.3B, OPT-1.3B | | 2.8B | 2,517,652,480 | 32 | 2560 | 32 | 2M | 1.6 x 10<sup>-4</sup> | GPT-Neo 2.7B, OPT-2.7B | | 6.9B | 6,444,163,072 | 32 | 4096 | 32 | 2M | 1.2 x 10<sup>-4</sup> | OPT-6.7B | | 12B | 11,327,027,200 | 36 | 5120 | 40 | 2M | 1.2 x 10<sup>-4</sup> | — | <figcaption>Engineering details for the <i>Pythia Suite</i>. Deduped and non-deduped models of a given size have the same hyperparameters. “Equivalent” models have <b>exactly</b> the same architecture, and the same number of non-embedding parameters.</figcaption> </figure> ### Uses and Limitations #### Intended Use The primary intended use of Pythia is research on the behavior, functionality, and limitations of large language models. This suite is intended to provide a controlled setting for performing scientific experiments. To enable the study of how language models change in the course of training, we provide 143 evenly spaced intermediate checkpoints per model. These checkpoints are hosted on Hugging Face as branches. Note that branch `143000` corresponds exactly to the model checkpoint on the `main` branch of each model. You may also further fine-tune and adapt Pythia-1.4B-deduped for deployment, as long as your use is in accordance with the Apache 2.0 license. Pythia models work with the Hugging Face [Transformers Library](https://huggingface.co/docs/transformers/index). If you decide to use pre-trained Pythia-1.4B-deduped as a basis for your fine-tuned model, please conduct your own risk and bias assessment. #### Out-of-scope use The Pythia Suite is **not** intended for deployment. It is not a in itself a product and cannot be used for human-facing interactions. Pythia models are English-language only, and are not suitable for translation or generating text in other languages. Pythia-1.4B-deduped has not been fine-tuned for downstream contexts in which language models are commonly deployed, such as writing genre prose, or commercial chatbots. This means Pythia-1.4B-deduped will **not** respond to a given prompt the way a product like ChatGPT does. This is because, unlike this model, ChatGPT was fine-tuned using methods such as Reinforcement Learning from Human Feedback (RLHF) to better “understand” human instructions. #### Limitations and biases The core functionality of a large language model is to take a string of text and predict the next token. The token deemed statistically most likely by the model need not produce the most “accurate” text. Never rely on Pythia-1.4B-deduped to produce factually accurate output. This model was trained on [the Pile](https://pile.eleuther.ai/), a dataset known to contain profanity and texts that are lewd or otherwise offensive. See [Section 6 of the Pile paper](https://arxiv.org/abs/2101.00027) for a discussion of documented biases with regards to gender, religion, and race. Pythia-1.4B-deduped may produce socially unacceptable or undesirable text, *even if* the prompt itself does not include anything explicitly offensive. If you plan on using text generated through, for example, the Hosted Inference API, we recommend having a human curate the outputs of this language model before presenting it to other people. Please inform your audience that the text was generated by Pythia-1.4B-deduped. ### Quickstart Pythia models can be loaded and used via the following code, demonstrated here for the third `pythia-70m-deduped` checkpoint: ```python from transformers import GPTNeoXForCausalLM, AutoTokenizer model = GPTNeoXForCausalLM.from_pretrained( "EleutherAI/pythia-70m-deduped", revision="step3000", cache_dir="./pythia-70m-deduped/step3000", ) tokenizer = AutoTokenizer.from_pretrained( "EleutherAI/pythia-70m-deduped", revision="step3000", cache_dir="./pythia-70m-deduped/step3000", ) inputs = tokenizer("Hello, I am", return_tensors="pt") tokens = model.generate(**inputs) tokenizer.decode(tokens[0]) ``` Revision/branch `step143000` corresponds exactly to the model checkpoint on the `main` branch of each model.<br> For more information on how to use all Pythia models, see [documentation on GitHub](https://github.com/EleutherAI/pythia). ### Training #### Training data Pythia-1.4B-deduped was trained on the Pile **after the dataset has been globally deduplicated**.<br> [The Pile](https://pile.eleuther.ai/) is a 825GiB general-purpose dataset in English. It was created by EleutherAI specifically for training large language models. It contains texts from 22 diverse sources, roughly broken down into five categories: academic writing (e.g. arXiv), internet (e.g. CommonCrawl), prose (e.g. Project Gutenberg), dialogue (e.g. YouTube subtitles), and miscellaneous (e.g. GitHub, Enron Emails). See [the Pile paper](https://arxiv.org/abs/2101.00027) for a breakdown of all data sources, methodology, and a discussion of ethical implications. Consult [the datasheet](https://arxiv.org/abs/2201.07311) for more detailed documentation about the Pile and its component datasets. The Pile can be downloaded from the [official website](https://pile.eleuther.ai/), or from a [community mirror](https://the-eye.eu/public/AI/pile/). #### Training procedure All models were trained on the exact same data, in the exact same order. Each model saw 299,892,736,000 tokens during training, and 143 checkpoints for each model are saved every 2,097,152,000 tokens, spaced evenly throughout training. This corresponds to training for just under 1 epoch on the Pile for non-deduplicated models, and about 1.5 epochs on the deduplicated Pile. All *Pythia* models trained for the equivalent of 143000 steps at a batch size of 2,097,152 tokens. Two batch sizes were used: 2M and 4M. Models with a batch size of 4M tokens listed were originally trained for 71500 steps instead, with checkpoints every 500 steps. The checkpoints on Hugging Face are renamed for consistency with all 2M batch models, so `step1000` is the first checkpoint for `pythia-1.4b` that was saved (corresponding to step 500 in training), and `step1000` is likewise the first `pythia-6.9b` checkpoint that was saved (corresponding to 1000 “actual” steps).<br> See [GitHub](https://github.com/EleutherAI/pythia) for more details on training procedure, including [how to reproduce it](https://github.com/EleutherAI/pythia/blob/main/README.md#reproducing-training).<br> Pythia uses the same tokenizer as [GPT-NeoX- 20B](https://huggingface.co/EleutherAI/gpt-neox-20b). ### Evaluations All 16 *Pythia* models were evaluated using the [LM Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness). You can access the results by model and step at `results/json/*` in the [GitHub repository](https://github.com/EleutherAI/pythia/tree/main/results/json).<br> Expand the sections below to see plots of evaluation results for all Pythia and Pythia-deduped models compared with OPT and BLOOM. <details> <summary>LAMBADA – OpenAI</summary> <img src="/EleutherAI/pythia-12b/resolve/main/eval_plots/lambada_openai.png" style="width:auto"/> </details> <details> <summary>Physical Interaction: Question Answering (PIQA)</summary> <img src="/EleutherAI/pythia-12b/resolve/main/eval_plots/piqa.png" style="width:auto"/> </details> <details> <summary>WinoGrande</summary> <img src="/EleutherAI/pythia-12b/resolve/main/eval_plots/winogrande.png" style="width:auto"/> </details> <details> <summary>AI2 Reasoning Challenge – Challenge Set</summary> <img src="/EleutherAI/pythia-12b/resolve/main/eval_plots/arc_challenge.png" style="width:auto"/> </details> <details> <summary>SciQ</summary> <img src="/EleutherAI/pythia-12b/resolve/main/eval_plots/sciq.png" style="width:auto"/> </details> ### Naming convention and parameter count *Pythia* models were renamed in January 2023. It is possible that the old naming convention still persists in some documentation by accident. The current naming convention (70M, 160M, etc.) is based on total parameter count. <figure style="width:32em"> | current Pythia suffix | old suffix | total params | non-embedding params | | --------------------: | ---------: | -------------: | -------------------: | | 70M | 19M | 70,426,624 | 18,915,328 | | 160M | 125M | 162,322,944 | 85,056,000 | | 410M | 350M | 405,334,016 | 302,311,424 | | 1B | 800M | 1,011,781,632 | 805,736,448 | | 1.4B | 1.3B | 1,414,647,808 | 1,208,602,624 | | 2.8B | 2.7B | 2,775,208,960 | 2,517,652,480 | | 6.9B | 6.7B | 6,857,302,016 | 6,444,163,072 | | 12B | 13B | 11,846,072,320 | 11,327,027,200 | </figure>
kudzueye/Boreal
kudzueye
"2024-08-21T19:13:55Z"
63,264
89
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "lora", "template:sd-lora", "flux", "flux dev", "realism", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "region:us" ]
text-to-image
"2024-08-12T04:07:09Z"
--- tags: - text-to-image - stable-diffusion - lora - diffusers - template:sd-lora - flux - flux dev - realism widget: - text: >- phone photo five men playing a Medieval diplomacy game around a table on a couch in a living room at night in 2014 output: url: images/ComfyUI_00855_.png - text: >- phone photo of two women in roman cosplay outfits holding a sign reading 'Boreal-FD' on top of a dining room table in front of a crowd in New York at night output: url: images/ComfyUI_00822_.png - text: >- phone photos of three people performing a ritualistic sacrifice in a busy hotel lobby with a demon output: url: images/ComfyUI_00944_.png - text: >- closeup phone photo of a 25 year old women wearing a yoshi cosplay outfit while riding a zebra near a crowd while showing a piece of paper with'Boreal-FD' written on it at noon in the summer in a alley in new york city output: url: images/ComfyUI_00845_.png - text: >- phone photo of two men eating a full sad potato at a at a restaurant in 2017 posted to reddit output: url: images/ComfyUI_01026_.png base_model: black-forest-labs/FLUX.1-dev instance_prompt: photo --- # Boreal-FD <Gallery /> ## Model description **Work in Progress** This is a very early experimental lora for Flux-Dev. It uses the **Bo**ring **Real**ity image datasets to work on shifting Flux towards more realistic images. ![ComfyUI_00855_.png](https:&#x2F;&#x2F;cdn-uploads.huggingface.co&#x2F;production&#x2F;uploads&#x2F;641ba2eeec5b871c0bcfdba3&#x2F;jfGF0xFNij7gC_bcZ3OdW.png) As with most other AI image generative models, the flux-dev model is biased towards certain photographic aesthetics like shallow depth of fields with centralized posing along with all the artwork influence as well. As a result the models produce very limited types of photos which tends to mask how much knowledge the model actually has. The goal with these boring reality trained loras is to not only bring out better photorealistic images but to push the model to show how much knowledge and information it can actually place in a single generated image. **Update 08/21** I am still exploring new ways to train this model/dataset. For the timebeing, the faded dot issue remains in these LoRAs as these older models have performed a better job of learning the concept than any of the subsequent runs I have done. The new Schnell version may be released before updating this Dev model. To simplify use of the model, I removed the 400 steps weights to help with resolve issues. If necesary I will add the 400 steps as a seperate model, though you can probably get a slightly similar result reducing the strength of the 1000 steps version. I will try to seperate models going forward, though it is not the best strategy when you need to manually choose between undertrained/overtrained LoRAs on top of their strength for each image. **Primary Goals for Boreal-FD** - Reduce how often shallow depths of field appear in images - More dynamic poses - More realistic skin texture - More interesting backgrounds - Overall Increase scene complexity ![ComfyUI_00990_.png](https:&#x2F;&#x2F;cdn-uploads.huggingface.co&#x2F;production&#x2F;uploads&#x2F;641ba2eeec5b871c0bcfdba3&#x2F;pX6R5u5ehrLi245qFT1qV.png) **Additional Notes** These two flux loras are not expected to create very good images. Many results may be overfitted, distorted, and have this slight faded dotted look for lesser known concepts. The 1000 step lora is more over-fitted with with distortion and lack of prompt understanding more likely to occur, but it may perform better on things like dynamic posing and skin texture. You will want to experiment between the two loras, tweaking the lora strengths between 0.5-2.0 and guidance between 3.0-5.0 along with testing many different seeds. As more understanding develops for Flux, better workflows for these current models will come along as well as newer Boreal-FD versions as the training improves. ## Trigger words You should use `photo` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/kudzueye/Boreal/tree/main) them in the Files & versions tab.
sentence-transformers/stsb-mpnet-base-v2
sentence-transformers
"2024-11-05T19:42:26Z"
63,153
12
sentence-transformers
[ "sentence-transformers", "pytorch", "onnx", "safetensors", "openvino", "mpnet", "feature-extraction", "sentence-similarity", "transformers", "arxiv:1908.10084", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
"2022-03-02T23:29:05Z"
--- license: apache-2.0 library_name: sentence-transformers tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers pipeline_tag: sentence-similarity --- # sentence-transformers/stsb-mpnet-base-v2 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('sentence-transformers/stsb-mpnet-base-v2') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/stsb-mpnet-base-v2') model = AutoModel.from_pretrained('sentence-transformers/stsb-mpnet-base-v2') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, max pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/stsb-mpnet-base-v2) ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 75, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors This model was trained by [sentence-transformers](https://www.sbert.net/). If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084): ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "http://arxiv.org/abs/1908.10084", } ```
myshell-ai/MeloTTS-English-v3
myshell-ai
"2024-04-17T19:33:28Z"
63,142
16
transformers
[ "transformers", "license:mit", "endpoints_compatible", "region:us" ]
null
"2024-04-17T18:18:30Z"
--- license: mit --- # MeloTTS MeloTTS is a **high-quality multi-lingual** text-to-speech library by [MyShell.ai](https://myshell.ai). Supported languages include: | Model card | Example | | --- | --- | | [English](https://huggingface.co/myshell-ai/MeloTTS-English-v2) (American) | [Link](https://myshell-public-repo-hosting.s3.amazonaws.com/myshellttsbase/examples/en/EN-US/speed_1.0/sent_000.wav) | | [English](https://huggingface.co/myshell-ai/MeloTTS-English-v2) (British) | [Link](https://myshell-public-repo-hosting.s3.amazonaws.com/myshellttsbase/examples/en/EN-BR/speed_1.0/sent_000.wav) | | [English](https://huggingface.co/myshell-ai/MeloTTS-English-v2) (Indian) | [Link](https://myshell-public-repo-hosting.s3.amazonaws.com/myshellttsbase/examples/en/EN_INDIA/speed_1.0/sent_000.wav) | | [English](https://huggingface.co/myshell-ai/MeloTTS-English-v2) (Australian) | [Link](https://myshell-public-repo-hosting.s3.amazonaws.com/myshellttsbase/examples/en/EN-AU/speed_1.0/sent_000.wav) | | [English](https://huggingface.co/myshell-ai/MeloTTS-English-v2) (Default) | [Link](https://myshell-public-repo-hosting.s3.amazonaws.com/myshellttsbase/examples/en/EN-Default/speed_1.0/sent_000.wav) | | [Spanish](https://huggingface.co/myshell-ai/MeloTTS-Spanish) | [Link](https://myshell-public-repo-hosting.s3.amazonaws.com/myshellttsbase/examples/es/ES/speed_1.0/sent_000.wav) | | [French](https://huggingface.co/myshell-ai/MeloTTS-French) | [Link](https://myshell-public-repo-hosting.s3.amazonaws.com/myshellttsbase/examples/fr/FR/speed_1.0/sent_000.wav) | | [Chinese](https://huggingface.co/myshell-ai/MeloTTS-Chinese) (mix EN) | [Link](https://myshell-public-repo-hosting.s3.amazonaws.com/myshellttsbase/examples/zh/ZH/speed_1.0/sent_008.wav) | | [Japanese](https://huggingface.co/myshell-ai/MeloTTS-Japanese) | [Link](https://myshell-public-repo-hosting.s3.amazonaws.com/myshellttsbase/examples/jp/JP/speed_1.0/sent_000.wav) | | [Korean](https://huggingface.co/myshell-ai/MeloTTS-Korean/) | [Link](https://myshell-public-repo-hosting.s3.amazonaws.com/myshellttsbase/examples/kr/KR/speed_1.0/sent_000.wav) | Some other features include: - The Chinese speaker supports `mixed Chinese and English`. - Fast enough for `CPU real-time inference`. ## Usage ### Without Installation An unofficial [live demo](https://huggingface.co/spaces/mrfakename/MeloTTS) is hosted on Hugging Face Spaces. #### Use it on MyShell There are hundreds of TTS models on MyShell, much more than MeloTTS. See examples [here](https://github.com/myshell-ai/MeloTTS/blob/main/docs/quick_use.md#use-melotts-without-installation). More can be found at the widget center of [MyShell.ai](https://app.myshell.ai/robot-workshop). ### Install and Use Locally Follow the installation steps [here](https://github.com/myshell-ai/MeloTTS/blob/main/docs/install.md#linux-and-macos-install) before using the following snippet: ```python from melo.api import TTS # Speed is adjustable speed = 1.0 # CPU is sufficient for real-time inference. # You can set it manually to 'cpu' or 'cuda' or 'cuda:0' or 'mps' device = 'auto' # Will automatically use GPU if available # English text = "Did you ever hear a folk tale about a giant turtle?" model = TTS(language='EN_NEWEST', device=device) speaker_ids = model.hps.data.spk2id output_path = 'en-newest.wav' model.tts_to_file(text, speaker_ids['EN-Newest'], output_path, speed=speed) ``` ## Join the Community **Open Source AI Grant** We are actively sponsoring open-source AI projects. The sponsorship includes GPU resources, fundings and intellectual support (collaboration with top research labs). We welcome both reseach and engineering projects, as long as the open-source community needs them. Please contact [Zengyi Qin](https://www.qinzy.tech/) if you are interested. **Contributing** If you find this work useful, please consider contributing to the GitHub [repo](https://github.com/myshell-ai/MeloTTS). - Many thanks to [@fakerybakery](https://github.com/fakerybakery) for adding the Web UI and CLI part. ## License This library is under MIT License, which means it is free for both commercial and non-commercial use. ## Acknowledgements This implementation is based on [TTS](https://github.com/coqui-ai/TTS), [VITS](https://github.com/jaywalnut310/vits), [VITS2](https://github.com/daniilrobnikov/vits2) and [Bert-VITS2](https://github.com/fishaudio/Bert-VITS2). We appreciate their awesome work.
padmajabfrl/Gender-Classification
padmajabfrl
"2023-01-09T10:52:54Z"
63,076
27
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
"2023-01-09T10:13:14Z"
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: Gender-Classification results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Gender-Classification This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0000 - Accuracy: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.0035 | 1.0 | 4390 | 0.0004 | 1.0000 | | 0.0005 | 2.0 | 8780 | 0.0002 | 1.0000 | | 0.0 | 3.0 | 13170 | 0.0000 | 1.0 | | 0.0 | 4.0 | 17560 | 0.0000 | 1.0 | | 0.0 | 5.0 | 21950 | 0.0000 | 1.0 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2
Babelscape/mrebel-large
Babelscape
"2023-06-20T15:40:58Z"
63,061
67
transformers
[ "transformers", "pytorch", "safetensors", "mbart", "text2text-generation", "seq2seq", "relation-extraction", "translation", "ar", "ca", "de", "el", "en", "es", "fr", "hi", "it", "ja", "ko", "nl", "pl", "pt", "ru", "sv", "vi", "zh", "dataset:Babelscape/SREDFM", "arxiv:2306.09802", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
"2023-06-12T13:40:27Z"
--- language: - ar - ca - de - el - en - es - fr - hi - it - ja - ko - nl - pl - pt - ru - sv - vi - zh widget: - text: >- Els Red Hot Chili Peppers es van formar a Los Angeles per Kiedis, Flea, el guitarrista Hillel Slovak i el bateria Jack Irons. example_title: Catalan inference: parameters: decoder_start_token_id: 250058 src_lang: ca_XX tgt_lang: <triplet> tags: - seq2seq - relation-extraction license: cc-by-nc-sa-4.0 pipeline_tag: translation datasets: - Babelscape/SREDFM --- # RED<sup>FM</sup>: a Filtered and Multilingual Relation Extraction Dataset This is a multilingual version of [REBEL](https://huggingface.co/Babelscape/rebel-large). It can be used as a standalone multulingual Relation Extraction system, or as a pretrained system to be tuned on multilingual Relation Extraction datasets. mREBEL is introduced in the ACL 2023 paper [RED^{FM}: a Filtered and Multilingual Relation Extraction Dataset](https://arxiv.org/abs/2306.09802). We present a new multilingual Relation Extraction dataset and train a multilingual version of REBEL which reframed Relation Extraction as a seq2seq task. The paper can be found [here](https://arxiv.org/abs/2306.09802). If you use the code or model, please reference this work in your paper: @inproceedings{huguet-cabot-et-al-2023-redfm-dataset, title = "RED$^{\rm FM}$: a Filtered and Multilingual Relation Extraction Dataset", author = "Huguet Cabot, Pere-Llu{\'\i}s and Tedeschi, Simone and Ngonga Ngomo, Axel-Cyrille and Navigli, Roberto", booktitle = "Proc. of the 61st Annual Meeting of the Association for Computational Linguistics: ACL 2023", month = jul, year = "2023", address = "Toronto, Canada", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/2306.09802", } The original repository for the paper can be found [here](https://github.com/Babelscape/rebel#REDFM) Be aware that the inference widget at the right does not output special tokens, which are necessary to distinguish the subject, object and relation types. For a demo of mREBEL and its pre-training dataset check the [Spaces demo](https://huggingface.co/spaces/Babelscape/mrebel-demo). ## Pipeline usage ```python from transformers import pipeline triplet_extractor = pipeline('translation_xx_to_yy', model='Babelscape/mrebel-large', tokenizer='Babelscape/mrebel-large') # We need to use the tokenizer manually since we need special tokens. extracted_text = triplet_extractor.tokenizer.batch_decode([triplet_extractor("The Red Hot Chili Peppers were formed in Los Angeles by Kiedis, Flea, guitarist Hillel Slovak and drummer Jack Irons.", decoder_start_token_id=250058, src_lang="en_XX", tgt_lang="<triplet>", return_tensors=True, return_text=False)[0]["translation_token_ids"]]) # change en_XX for the language of the source. print(extracted_text[0]) # Function to parse the generated text and extract the triplets def extract_triplets_typed(text): triplets = [] relation = '' text = text.strip() current = 'x' subject, relation, object_, object_type, subject_type = '','','','','' for token in text.replace("<s>", "").replace("<pad>", "").replace("</s>", "").replace("tp_XX", "").replace("__en__", "").split(): if token == "<triplet>" or token == "<relation>": current = 't' if relation != '': triplets.append({'head': subject.strip(), 'head_type': subject_type, 'type': relation.strip(),'tail': object_.strip(), 'tail_type': object_type}) relation = '' subject = '' elif token.startswith("<") and token.endswith(">"): if current == 't' or current == 'o': current = 's' if relation != '': triplets.append({'head': subject.strip(), 'head_type': subject_type, 'type': relation.strip(),'tail': object_.strip(), 'tail_type': object_type}) object_ = '' subject_type = token[1:-1] else: current = 'o' object_type = token[1:-1] relation = '' else: if current == 't': subject += ' ' + token elif current == 's': object_ += ' ' + token elif current == 'o': relation += ' ' + token if subject != '' and relation != '' and object_ != '' and object_type != '' and subject_type != '': triplets.append({'head': subject.strip(), 'head_type': subject_type, 'type': relation.strip(),'tail': object_.strip(), 'tail_type': object_type}) return triplets extracted_triplets = extract_triplets_typed(extracted_text[0]) print(extracted_triplets) ``` ## Model and Tokenizer using transformers ```python from transformers import AutoModelForSeq2SeqLM, AutoTokenizer def extract_triplets_typed(text): triplets = [] relation = '' text = text.strip() current = 'x' subject, relation, object_, object_type, subject_type = '','','','','' for token in text.replace("<s>", "").replace("<pad>", "").replace("</s>", "").replace("tp_XX", "").replace("__en__", "").split(): if token == "<triplet>" or token == "<relation>": current = 't' if relation != '': triplets.append({'head': subject.strip(), 'head_type': subject_type, 'type': relation.strip(),'tail': object_.strip(), 'tail_type': object_type}) relation = '' subject = '' elif token.startswith("<") and token.endswith(">"): if current == 't' or current == 'o': current = 's' if relation != '': triplets.append({'head': subject.strip(), 'head_type': subject_type, 'type': relation.strip(),'tail': object_.strip(), 'tail_type': object_type}) object_ = '' subject_type = token[1:-1] else: current = 'o' object_type = token[1:-1] relation = '' else: if current == 't': subject += ' ' + token elif current == 's': object_ += ' ' + token elif current == 'o': relation += ' ' + token if subject != '' and relation != '' and object_ != '' and object_type != '' and subject_type != '': triplets.append({'head': subject.strip(), 'head_type': subject_type, 'type': relation.strip(),'tail': object_.strip(), 'tail_type': object_type}) return triplets # Load model and tokenizer tokenizer = AutoTokenizer.from_pretrained("Babelscape/mrebel-large", src_lang="en_XX", tgt_lang="tp_XX") # Here we set English ("en_XX") as source language. To change the source language swap the first token of the input for your desired language or change to supported language. For catalan ("ca_XX") or greek ("el_EL") (not included in mBART pretraining) you need a workaround: # tokenizer._src_lang = "ca_XX" # tokenizer.cur_lang_code_id = tokenizer.convert_tokens_to_ids("ca_XX") # tokenizer.set_src_lang_special_tokens("ca_XX") model = AutoModelForSeq2SeqLM.from_pretrained("Babelscape/mrebel-large") gen_kwargs = { "max_length": 256, "length_penalty": 0, "num_beams": 3, "num_return_sequences": 3, "forced_bos_token_id": None, } # Text to extract triplets from text = 'The Red Hot Chili Peppers were formed in Los Angeles by Kiedis, Flea, guitarist Hillel Slovak and drummer Jack Irons.' # Tokenizer text model_inputs = tokenizer(text, max_length=256, padding=True, truncation=True, return_tensors = 'pt') # Generate generated_tokens = model.generate( model_inputs["input_ids"].to(model.device), attention_mask=model_inputs["attention_mask"].to(model.device), decoder_start_token_id = tokenizer.convert_tokens_to_ids("tp_XX"), **gen_kwargs, ) # Extract text decoded_preds = tokenizer.batch_decode(generated_tokens, skip_special_tokens=False) # Extract triplets for idx, sentence in enumerate(decoded_preds): print(f'Prediction triplets sentence {idx}') print(extract_triplets_typed(sentence)) ``` ## License This model is licensed under the CC BY-SA 4.0 license. The text of the license can be found [here](https://creativecommons.org/licenses/by-nc-sa/4.0/).
NousResearch/Meta-Llama-3-8B-Instruct
NousResearch
"2024-07-23T04:40:46Z"
63,027
84
transformers
[ "transformers", "safetensors", "llama", "text-generation", "facebook", "meta", "pytorch", "llama-3", "conversational", "en", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2024-04-18T16:55:56Z"
--- language: - en pipeline_tag: text-generation tags: - facebook - meta - pytorch - llama - llama-3 license: other license_name: llama3 license_link: LICENSE extra_gated_prompt: >- ### META LLAMA 3 COMMUNITY LICENSE AGREEMENT Meta Llama 3 Version Release Date: April 18, 2024 "Agreement" means the terms and conditions for use, reproduction, distribution and modification of the Llama Materials set forth herein. "Documentation" means the specifications, manuals and documentation accompanying Meta Llama 3 distributed by Meta at https://llama.meta.com/get-started/. "Licensee" or "you" means you, or your employer or any other person or entity (if you are entering into this Agreement on such person or entity’s behalf), of the age required under applicable laws, rules or regulations to provide legal consent and that has legal authority to bind your employer or such other person or entity if you are entering in this Agreement on their behalf. "Meta Llama 3" means the foundational large language models and software and algorithms, including machine-learning model code, trained model weights, inference-enabling code, training-enabling code, fine-tuning enabling code and other elements of the foregoing distributed by Meta at https://llama.meta.com/llama-downloads. "Llama Materials" means, collectively, Meta’s proprietary Meta Llama 3 and Documentation (and any portion thereof) made available under this Agreement. "Meta" or "we" means Meta Platforms Ireland Limited (if you are located in or, if you are an entity, your principal place of business is in the EEA or Switzerland) and Meta Platforms, Inc. (if you are located outside of the EEA or Switzerland). 1. License Rights and Redistribution. a. Grant of Rights. You are granted a non-exclusive, worldwide, non-transferable and royalty-free limited license under Meta’s intellectual property or other rights owned by Meta embodied in the Llama Materials to use, reproduce, distribute, copy, create derivative works of, and make modifications to the Llama Materials. b. Redistribution and Use. i. If you distribute or make available the Llama Materials (or any derivative works thereof), or a product or service that uses any of them, including another AI model, you shall (A) provide a copy of this Agreement with any such Llama Materials; and (B) prominently display “Built with Meta Llama 3” on a related website, user interface, blogpost, about page, or product documentation. If you use the Llama Materials to create, train, fine tune, or otherwise improve an AI model, which is distributed or made available, you shall also include “Llama 3” at the beginning of any such AI model name. ii. If you receive Llama Materials, or any derivative works thereof, from a Licensee as part of an integrated end user product, then Section 2 of this Agreement will not apply to you. iii. You must retain in all copies of the Llama Materials that you distribute the following attribution notice within a “Notice” text file distributed as a part of such copies: “Meta Llama 3 is licensed under the Meta Llama 3 Community License, Copyright © Meta Platforms, Inc. All Rights Reserved.” iv. Your use of the Llama Materials must comply with applicable laws and regulations (including trade compliance laws and regulations) and adhere to the Acceptable Use Policy for the Llama Materials (available at https://llama.meta.com/llama3/use-policy), which is hereby incorporated by reference into this Agreement. v. You will not use the Llama Materials or any output or results of the Llama Materials to improve any other large language model (excluding Meta Llama 3 or derivative works thereof). 2. Additional Commercial Terms. If, on the Meta Llama 3 version release date, the monthly active users of the products or services made available by or for Licensee, or Licensee’s affiliates, is greater than 700 million monthly active users in the preceding calendar month, you must request a license from Meta, which Meta may grant to you in its sole discretion, and you are not authorized to exercise any of the rights under this Agreement unless or until Meta otherwise expressly grants you such rights. 3. Disclaimer of Warranty. UNLESS REQUIRED BY APPLICABLE LAW, THE LLAMA MATERIALS AND ANY OUTPUT AND RESULTS THEREFROM ARE PROVIDED ON AN “AS IS” BASIS, WITHOUT WARRANTIES OF ANY KIND, AND META DISCLAIMS ALL WARRANTIES OF ANY KIND, BOTH EXPRESS AND IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. YOU ARE SOLELY RESPONSIBLE FOR DETERMINING THE APPROPRIATENESS OF USING OR REDISTRIBUTING THE LLAMA MATERIALS AND ASSUME ANY RISKS ASSOCIATED WITH YOUR USE OF THE LLAMA MATERIALS AND ANY OUTPUT AND RESULTS. 4. Limitation of Liability. IN NO EVENT WILL META OR ITS AFFILIATES BE LIABLE UNDER ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, TORT, NEGLIGENCE, PRODUCTS LIABILITY, OR OTHERWISE, ARISING OUT OF THIS AGREEMENT, FOR ANY LOST PROFITS OR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL, EXEMPLARY OR PUNITIVE DAMAGES, EVEN IF META OR ITS AFFILIATES HAVE BEEN ADVISED OF THE POSSIBILITY OF ANY OF THE FOREGOING. 5. Intellectual Property. a. No trademark licenses are granted under this Agreement, and in connection with the Llama Materials, neither Meta nor Licensee may use any name or mark owned by or associated with the other or any of its affiliates, except as required for reasonable and customary use in describing and redistributing the Llama Materials or as set forth in this Section 5(a). Meta hereby grants you a license to use “Llama 3” (the “Mark”) solely as required to comply with the last sentence of Section 1.b.i. You will comply with Meta’s brand guidelines (currently accessible at https://about.meta.com/brand/resources/meta/company-brand/ ). All goodwill arising out of your use of the Mark will inure to the benefit of Meta. b. Subject to Meta’s ownership of Llama Materials and derivatives made by or for Meta, with respect to any derivative works and modifications of the Llama Materials that are made by you, as between you and Meta, you are and will be the owner of such derivative works and modifications. c. If you institute litigation or other proceedings against Meta or any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Llama Materials or Meta Llama 3 outputs or results, or any portion of any of the foregoing, constitutes infringement of intellectual property or other rights owned or licensable by you, then any licenses granted to you under this Agreement shall terminate as of the date such litigation or claim is filed or instituted. You will indemnify and hold harmless Meta from and against any claim by any third party arising out of or related to your use or distribution of the Llama Materials. 6. Term and Termination. The term of this Agreement will commence upon your acceptance of this Agreement or access to the Llama Materials and will continue in full force and effect until terminated in accordance with the terms and conditions herein. Meta may terminate this Agreement if you are in breach of any term or condition of this Agreement. Upon termination of this Agreement, you shall delete and cease use of the Llama Materials. Sections 3, 4 and 7 shall survive the termination of this Agreement. 7. Governing Law and Jurisdiction. This Agreement will be governed and construed under the laws of the State of California without regard to choice of law principles, and the UN Convention on Contracts for the International Sale of Goods does not apply to this Agreement. The courts of California shall have exclusive jurisdiction of any dispute arising out of this Agreement. ### Meta Llama 3 Acceptable Use Policy Meta is committed to promoting safe and fair use of its tools and features, including Meta Llama 3. If you access or use Meta Llama 3, you agree to this Acceptable Use Policy (“Policy”). The most recent copy of this policy can be found at [https://llama.meta.com/llama3/use-policy](https://llama.meta.com/llama3/use-policy) #### Prohibited Uses We want everyone to use Meta Llama 3 safely and responsibly. You agree you will not use, or allow others to use, Meta Llama 3 to: 1. Violate the law or others’ rights, including to: 1. Engage in, promote, generate, contribute to, encourage, plan, incite, or further illegal or unlawful activity or content, such as: 1. Violence or terrorism 2. Exploitation or harm to children, including the solicitation, creation, acquisition, or dissemination of child exploitative content or failure to report Child Sexual Abuse Material 3. Human trafficking, exploitation, and sexual violence 4. The illegal distribution of information or materials to minors, including obscene materials, or failure to employ legally required age-gating in connection with such information or materials. 5. Sexual solicitation 6. Any other criminal activity 2. Engage in, promote, incite, or facilitate the harassment, abuse, threatening, or bullying of individuals or groups of individuals 3. Engage in, promote, incite, or facilitate discrimination or other unlawful or harmful conduct in the provision of employment, employment benefits, credit, housing, other economic benefits, or other essential goods and services 4. Engage in the unauthorized or unlicensed practice of any profession including, but not limited to, financial, legal, medical/health, or related professional practices 5. Collect, process, disclose, generate, or infer health, demographic, or other sensitive personal or private information about individuals without rights and consents required by applicable laws 6. Engage in or facilitate any action or generate any content that infringes, misappropriates, or otherwise violates any third-party rights, including the outputs or results of any products or services using the Llama Materials 7. Create, generate, or facilitate the creation of malicious code, malware, computer viruses or do anything else that could disable, overburden, interfere with or impair the proper working, integrity, operation or appearance of a website or computer system 2. Engage in, promote, incite, facilitate, or assist in the planning or development of activities that present a risk of death or bodily harm to individuals, including use of Meta Llama 3 related to the following: 1. Military, warfare, nuclear industries or applications, espionage, use for materials or activities that are subject to the International Traffic Arms Regulations (ITAR) maintained by the United States Department of State 2. Guns and illegal weapons (including weapon development) 3. Illegal drugs and regulated/controlled substances 4. Operation of critical infrastructure, transportation technologies, or heavy machinery 5. Self-harm or harm to others, including suicide, cutting, and eating disorders 6. Any content intended to incite or promote violence, abuse, or any infliction of bodily harm to an individual 3. Intentionally deceive or mislead others, including use of Meta Llama 3 related to the following: 1. Generating, promoting, or furthering fraud or the creation or promotion of disinformation 2. Generating, promoting, or furthering defamatory content, including the creation of defamatory statements, images, or other content 3. Generating, promoting, or further distributing spam 4. Impersonating another individual without consent, authorization, or legal right 5. Representing that the use of Meta Llama 3 or outputs are human-generated 6. Generating or facilitating false online engagement, including fake reviews and other means of fake online engagement 4. Fail to appropriately disclose to end users any known dangers of your AI system Please report any violation of this Policy, software “bug,” or other problems that could lead to a violation of this Policy through one of the following means: * Reporting issues with the model: [https://github.com/meta-llama/llama3](https://github.com/meta-llama/llama3) * Reporting risky content generated by the model: developers.facebook.com/llama_output_feedback * Reporting bugs and security concerns: facebook.com/whitehat/info * Reporting violations of the Acceptable Use Policy or unlicensed uses of Meta Llama 3: LlamaUseReport@meta.com extra_gated_fields: First Name: text Last Name: text Date of birth: date_picker Country: country Affiliation: text geo: ip_location By clicking Submit below I accept the terms of the license and acknowledge that the information I provide will be collected stored processed and shared in accordance with the Meta Privacy Policy: checkbox extra_gated_description: The information you provide will be collected, stored, processed and shared in accordance with the [Meta Privacy Policy](https://www.facebook.com/privacy/policy/). extra_gated_button_content: Submit widget: - example_title: Hello messages: - role: user content: Hey my name is Julien! How are you? - example_title: Winter holidays messages: - role: system content: You are a helpful and honest assistant. Please, respond concisely and truthfully. - role: user content: Can you recommend a good destination for Winter holidays? - example_title: Programming assistant messages: - role: system content: You are a helpful and honest code and programming assistant. Please, respond concisely and truthfully. - role: user content: Write a function that computes the nth fibonacci number. inference: parameters: max_new_tokens: 300 stop: - <|end_of_text|> - <|eot_id|> --- ## Model Details Meta developed and released the Meta Llama 3 family of large language models (LLMs), a collection of pretrained and instruction tuned generative text models in 8 and 70B sizes. The Llama 3 instruction tuned models are optimized for dialogue use cases and outperform many of the available open source chat models on common industry benchmarks. Further, in developing these models, we took great care to optimize helpfulness and safety. **Model developers** Meta **Variations** Llama 3 comes in two sizes — 8B and 70B parameters — in pre-trained and instruction tuned variants. **Input** Models input text only. **Output** Models generate text and code only. **Model Architecture** Llama 3 is an auto-regressive language model that uses an optimized transformer architecture. The tuned versions use supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF) to align with human preferences for helpfulness and safety. <table> <tr> <td> </td> <td><strong>Training Data</strong> </td> <td><strong>Params</strong> </td> <td><strong>Context length</strong> </td> <td><strong>GQA</strong> </td> <td><strong>Token count</strong> </td> <td><strong>Knowledge cutoff</strong> </td> </tr> <tr> <td rowspan="2" >Llama 3 </td> <td rowspan="2" >A new mix of publicly available online data. </td> <td>8B </td> <td>8k </td> <td>Yes </td> <td rowspan="2" >15T+ </td> <td>March, 2023 </td> </tr> <tr> <td>70B </td> <td>8k </td> <td>Yes </td> <td>December, 2023 </td> </tr> </table> **Llama 3 family of models**. Token counts refer to pretraining data only. Both the 8 and 70B versions use Grouped-Query Attention (GQA) for improved inference scalability. **Model Release Date** April 18, 2024. **Status** This is a static model trained on an offline dataset. Future versions of the tuned models will be released as we improve model safety with community feedback. **License** A custom commercial license is available at: [https://llama.meta.com/llama3/license](https://llama.meta.com/llama3/license) Where to send questions or comments about the model Instructions on how to provide feedback or comments on the model can be found in the model [README](https://github.com/meta-llama/llama3). For more technical information about generation parameters and recipes for how to use Llama 3 in applications, please go [here](https://github.com/meta-llama/llama-recipes). ## Intended Use **Intended Use Cases** Llama 3 is intended for commercial and research use in English. Instruction tuned models are intended for assistant-like chat, whereas pretrained models can be adapted for a variety of natural language generation tasks. **Out-of-scope** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in any other way that is prohibited by the Acceptable Use Policy and Llama 3 Community License. Use in languages other than English**. **Note: Developers may fine-tune Llama 3 models for languages beyond English provided they comply with the Llama 3 Community License and the Acceptable Use Policy. ## How to use This repository contains two versions of Meta-Llama-3-8B-Instruct, for use with transformers and with the original `llama3` codebase. ### Use with transformers You can run conversational inference using the Transformers pipeline abstraction, or by leveraging the Auto classes with the `generate()` function. Let's see examples of both. #### Transformers pipeline ```python import transformers import torch model_id = "meta-llama/Meta-Llama-3-8B-Instruct" pipeline = transformers.pipeline( "text-generation", model=model_id, model_kwargs={"torch_dtype": torch.bfloat16}, device_map="auto", ) messages = [ {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"}, {"role": "user", "content": "Who are you?"}, ] prompt = pipeline.tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) terminators = [ pipeline.tokenizer.eos_token_id, pipeline.tokenizer.convert_tokens_to_ids("<|eot_id|>") ] outputs = pipeline( prompt, max_new_tokens=256, eos_token_id=terminators, do_sample=True, temperature=0.6, top_p=0.9, ) print(outputs[0]["generated_text"][len(prompt):]) ``` #### Transformers AutoModelForCausalLM ```python from transformers import AutoTokenizer, AutoModelForCausalLM import torch model_id = "meta-llama/Meta-Llama-3-8B-Instruct" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained( model_id, torch_dtype=torch.bfloat16, device_map="auto", ) messages = [ {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"}, {"role": "user", "content": "Who are you?"}, ] input_ids = tokenizer.apply_chat_template( messages, add_generation_prompt=True, return_tensors="pt" ).to(model.device) terminators = [ tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("<|eot_id|>") ] outputs = model.generate( input_ids, max_new_tokens=256, eos_token_id=terminators, do_sample=True, temperature=0.6, top_p=0.9, ) response = outputs[0][input_ids.shape[-1]:] print(tokenizer.decode(response, skip_special_tokens=True)) ``` ### Use with `llama3` Please, follow the instructions in the [repository](https://github.com/meta-llama/llama3) To download Original checkpoints, see the example command below leveraging `huggingface-cli`: ``` huggingface-cli download meta-llama/Meta-Llama-3-8B-Instruct --include "original/*" --local-dir Meta-Llama-3-8B-Instruct ``` For Hugging Face support, we recommend using transformers or TGI, but a similar command works. ## Hardware and Software **Training Factors** We used custom training libraries, Meta's Research SuperCluster, and production clusters for pretraining. Fine-tuning, annotation, and evaluation were also performed on third-party cloud compute. **Carbon Footprint Pretraining utilized a cumulative** 7.7M GPU hours of computation on hardware of type H100-80GB (TDP of 700W). Estimated total emissions were 2290 tCO2eq, 100% of which were offset by Meta’s sustainability program. <table> <tr> <td> </td> <td><strong>Time (GPU hours)</strong> </td> <td><strong>Power Consumption (W)</strong> </td> <td><strong>Carbon Emitted(tCO2eq)</strong> </td> </tr> <tr> <td>Llama 3 8B </td> <td>1.3M </td> <td>700 </td> <td>390 </td> </tr> <tr> <td>Llama 3 70B </td> <td>6.4M </td> <td>700 </td> <td>1900 </td> </tr> <tr> <td>Total </td> <td>7.7M </td> <td> </td> <td>2290 </td> </tr> </table> **CO2 emissions during pre-training**. Time: total GPU time required for training each model. Power Consumption: peak power capacity per GPU device for the GPUs used adjusted for power usage efficiency. 100% of the emissions are directly offset by Meta's sustainability program, and because we are openly releasing these models, the pretraining costs do not need to be incurred by others. ## Training Data **Overview** Llama 3 was pretrained on over 15 trillion tokens of data from publicly available sources. The fine-tuning data includes publicly available instruction datasets, as well as over 10M human-annotated examples. Neither the pretraining nor the fine-tuning datasets include Meta user data. **Data Freshness** The pretraining data has a cutoff of March 2023 for the 7B and December 2023 for the 70B models respectively. ## Benchmarks In this section, we report the results for Llama 3 models on standard automatic benchmarks. For all the evaluations, we use our internal evaluations library. For details on the methodology see [here](https://github.com/meta-llama/llama3/blob/main/eval_methodology.md). ### Base pretrained models <table> <tr> <td><strong>Category</strong> </td> <td><strong>Benchmark</strong> </td> <td><strong>Llama 3 8B</strong> </td> <td><strong>Llama2 7B</strong> </td> <td><strong>Llama2 13B</strong> </td> <td><strong>Llama 3 70B</strong> </td> <td><strong>Llama2 70B</strong> </td> </tr> <tr> <td rowspan="6" >General </td> <td>MMLU (5-shot) </td> <td>66.6 </td> <td>45.7 </td> <td>53.8 </td> <td>79.5 </td> <td>69.7 </td> </tr> <tr> <td>AGIEval English (3-5 shot) </td> <td>45.9 </td> <td>28.8 </td> <td>38.7 </td> <td>63.0 </td> <td>54.8 </td> </tr> <tr> <td>CommonSenseQA (7-shot) </td> <td>72.6 </td> <td>57.6 </td> <td>67.6 </td> <td>83.8 </td> <td>78.7 </td> </tr> <tr> <td>Winogrande (5-shot) </td> <td>76.1 </td> <td>73.3 </td> <td>75.4 </td> <td>83.1 </td> <td>81.8 </td> </tr> <tr> <td>BIG-Bench Hard (3-shot, CoT) </td> <td>61.1 </td> <td>38.1 </td> <td>47.0 </td> <td>81.3 </td> <td>65.7 </td> </tr> <tr> <td>ARC-Challenge (25-shot) </td> <td>78.6 </td> <td>53.7 </td> <td>67.6 </td> <td>93.0 </td> <td>85.3 </td> </tr> <tr> <td>Knowledge reasoning </td> <td>TriviaQA-Wiki (5-shot) </td> <td>78.5 </td> <td>72.1 </td> <td>79.6 </td> <td>89.7 </td> <td>87.5 </td> </tr> <tr> <td rowspan="4" >Reading comprehension </td> <td>SQuAD (1-shot) </td> <td>76.4 </td> <td>72.2 </td> <td>72.1 </td> <td>85.6 </td> <td>82.6 </td> </tr> <tr> <td>QuAC (1-shot, F1) </td> <td>44.4 </td> <td>39.6 </td> <td>44.9 </td> <td>51.1 </td> <td>49.4 </td> </tr> <tr> <td>BoolQ (0-shot) </td> <td>75.7 </td> <td>65.5 </td> <td>66.9 </td> <td>79.0 </td> <td>73.1 </td> </tr> <tr> <td>DROP (3-shot, F1) </td> <td>58.4 </td> <td>37.9 </td> <td>49.8 </td> <td>79.7 </td> <td>70.2 </td> </tr> </table> ### Instruction tuned models <table> <tr> <td><strong>Benchmark</strong> </td> <td><strong>Llama 3 8B</strong> </td> <td><strong>Llama 2 7B</strong> </td> <td><strong>Llama 2 13B</strong> </td> <td><strong>Llama 3 70B</strong> </td> <td><strong>Llama 2 70B</strong> </td> </tr> <tr> <td>MMLU (5-shot) </td> <td>68.4 </td> <td>34.1 </td> <td>47.8 </td> <td>82.0 </td> <td>52.9 </td> </tr> <tr> <td>GPQA (0-shot) </td> <td>34.2 </td> <td>21.7 </td> <td>22.3 </td> <td>39.5 </td> <td>21.0 </td> </tr> <tr> <td>HumanEval (0-shot) </td> <td>62.2 </td> <td>7.9 </td> <td>14.0 </td> <td>81.7 </td> <td>25.6 </td> </tr> <tr> <td>GSM-8K (8-shot, CoT) </td> <td>79.6 </td> <td>25.7 </td> <td>77.4 </td> <td>93.0 </td> <td>57.5 </td> </tr> <tr> <td>MATH (4-shot, CoT) </td> <td>30.0 </td> <td>3.8 </td> <td>6.7 </td> <td>50.4 </td> <td>11.6 </td> </tr> </table> ### Responsibility & Safety We believe that an open approach to AI leads to better, safer products, faster innovation, and a bigger overall market. We are committed to Responsible AI development and took a series of steps to limit misuse and harm and support the open source community. Foundation models are widely capable technologies that are built to be used for a diverse range of applications. They are not designed to meet every developer preference on safety levels for all use cases, out-of-the-box, as those by their nature will differ across different applications. Rather, responsible LLM-application deployment is achieved by implementing a series of safety best practices throughout the development of such applications, from the model pre-training, fine-tuning and the deployment of systems composed of safeguards to tailor the safety needs specifically to the use case and audience. As part of the Llama 3 release, we updated our [Responsible Use Guide](https://llama.meta.com/responsible-use-guide/) to outline the steps and best practices for developers to implement model and system level safety for their application. We also provide a set of resources including [Meta Llama Guard 2](https://llama.meta.com/purple-llama/) and [Code Shield](https://llama.meta.com/purple-llama/) safeguards. These tools have proven to drastically reduce residual risks of LLM Systems, while maintaining a high level of helpfulness. We encourage developers to tune and deploy these safeguards according to their needs and we provide a [reference implementation](https://github.com/meta-llama/llama-recipes/tree/main/recipes/responsible_ai) to get you started. #### Llama 3-Instruct As outlined in the Responsible Use Guide, some trade-off between model helpfulness and model alignment is likely unavoidable. Developers should exercise discretion about how to weigh the benefits of alignment and helpfulness for their specific use case and audience. Developers should be mindful of residual risks when using Llama models and leverage additional safety tools as needed to reach the right safety bar for their use case. <span style="text-decoration:underline;">Safety</span> For our instruction tuned model, we conducted extensive red teaming exercises, performed adversarial evaluations and implemented safety mitigations techniques to lower residual risks. As with any Large Language Model, residual risks will likely remain and we recommend that developers assess these risks in the context of their use case. In parallel, we are working with the community to make AI safety benchmark standards transparent, rigorous and interpretable. <span style="text-decoration:underline;">Refusals</span> In addition to residual risks, we put a great emphasis on model refusals to benign prompts. Over-refusing not only can impact the user experience but could even be harmful in certain contexts as well. We’ve heard the feedback from the developer community and improved our fine tuning to ensure that Llama 3 is significantly less likely to falsely refuse to answer prompts than Llama 2. We built internal benchmarks and developed mitigations to limit false refusals making Llama 3 our most helpful model to date. #### Responsible release In addition to responsible use considerations outlined above, we followed a rigorous process that requires us to take extra measures against misuse and critical risks before we make our release decision. Misuse If you access or use Llama 3, you agree to the Acceptable Use Policy. The most recent copy of this policy can be found at [https://llama.meta.com/llama3/use-policy/](https://llama.meta.com/llama3/use-policy/). #### Critical risks <span style="text-decoration:underline;">CBRNE</span> (Chemical, Biological, Radiological, Nuclear, and high yield Explosives) We have conducted a two fold assessment of the safety of the model in this area: * Iterative testing during model training to assess the safety of responses related to CBRNE threats and other adversarial risks. * Involving external CBRNE experts to conduct an uplift test assessing the ability of the model to accurately provide expert knowledge and reduce barriers to potential CBRNE misuse, by reference to what can be achieved using web search (without the model). ### <span style="text-decoration:underline;">Cyber Security </span> We have evaluated Llama 3 with CyberSecEval, Meta’s cybersecurity safety eval suite, measuring Llama 3’s propensity to suggest insecure code when used as a coding assistant, and Llama 3’s propensity to comply with requests to help carry out cyber attacks, where attacks are defined by the industry standard MITRE ATT&CK cyber attack ontology. On our insecure coding and cyber attacker helpfulness tests, Llama 3 behaved in the same range or safer than models of [equivalent coding capability](https://huggingface.co/spaces/facebook/CyberSecEval). ### <span style="text-decoration:underline;">Child Safety</span> Child Safety risk assessments were conducted using a team of experts, to assess the model’s capability to produce outputs that could result in Child Safety risks and inform on any necessary and appropriate risk mitigations via fine tuning. We leveraged those expert red teaming sessions to expand the coverage of our evaluation benchmarks through Llama 3 model development. For Llama 3, we conducted new in-depth sessions using objective based methodologies to assess the model risks along multiple attack vectors. We also partnered with content specialists to perform red teaming exercises assessing potentially violating content while taking account of market specific nuances or experiences. ### Community Generative AI safety requires expertise and tooling, and we believe in the strength of the open community to accelerate its progress. We are active members of open consortiums, including the AI Alliance, Partnership in AI and MLCommons, actively contributing to safety standardization and transparency. We encourage the community to adopt taxonomies like the MLCommons Proof of Concept evaluation to facilitate collaboration and transparency on safety and content evaluations. Our Purple Llama tools are open sourced for the community to use and widely distributed across ecosystem partners including cloud service providers. We encourage community contributions to our [Github repository](https://github.com/meta-llama/PurpleLlama). Finally, we put in place a set of resources including an [output reporting mechanism](https://developers.facebook.com/llama_output_feedback) and [bug bounty program](https://www.facebook.com/whitehat) to continuously improve the Llama technology with the help of the community. ## Ethical Considerations and Limitations The core values of Llama 3 are openness, inclusivity and helpfulness. It is meant to serve everyone, and to work for a wide range of use cases. It is thus designed to be accessible to people across many different backgrounds, experiences and perspectives. Llama 3 addresses users and their needs as they are, without insertion unnecessary judgment or normativity, while reflecting the understanding that even content that may appear problematic in some cases can serve valuable purposes in others. It respects the dignity and autonomy of all users, especially in terms of the values of free thought and expression that power innovation and progress. But Llama 3 is a new technology, and like any new technology, there are risks associated with its use. Testing conducted to date has been in English, and has not covered, nor could it cover, all scenarios. For these reasons, as with all LLMs, Llama 3’s potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate, biased or other objectionable responses to user prompts. Therefore, before deploying any applications of Llama 3 models, developers should perform safety testing and tuning tailored to their specific applications of the model. As outlined in the Responsible Use Guide, we recommend incorporating [Purple Llama](https://github.com/facebookresearch/PurpleLlama) solutions into your workflows and specifically [Llama Guard](https://ai.meta.com/research/publications/llama-guard-llm-based-input-output-safeguard-for-human-ai-conversations/) which provides a base model to filter input and output prompts to layer system-level safety on top of model-level safety. Please see the Responsible Use Guide available at [http://llama.meta.com/responsible-use-guide](http://llama.meta.com/responsible-use-guide) ## Citation instructions @article{llama3modelcard, title={Llama 3 Model Card}, author={AI@Meta}, year={2024}, url = {https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md} } ## Contributors Aaditya Singh; Aaron Grattafiori; Abhimanyu Dubey; Abhinav Jauhri; Abhinav Pandey; Abhishek Kadian; Adam Kelsey; Adi Gangidi; Ahmad Al-Dahle; Ahuva Goldstand; Aiesha Letman; Ajay Menon; Akhil Mathur; Alan Schelten; Alex Vaughan; Amy Yang; Andrei Lupu; Andres Alvarado; Andrew Gallagher; Andrew Gu; Andrew Ho; Andrew Poulton; Andrew Ryan; Angela Fan; Ankit Ramchandani; Anthony Hartshorn; Archi Mitra; Archie Sravankumar; Artem Korenev; Arun Rao; Ashley Gabriel; Ashwin Bharambe; Assaf Eisenman; Aston Zhang; Aurelien Rodriguez; Austen Gregerson; Ava Spataru; Baptiste Roziere; Ben Maurer; Benjamin Leonhardi; Bernie Huang; Bhargavi Paranjape; Bing Liu; Binh Tang; Bobbie Chern; Brani Stojkovic; Brian Fuller; Catalina Mejia Arenas; Chao Zhou; Charlotte Caucheteux; Chaya Nayak; Ching-Hsiang Chu; Chloe Bi; Chris Cai; Chris Cox; Chris Marra; Chris McConnell; Christian Keller; Christoph Feichtenhofer; Christophe Touret; Chunyang Wu; Corinne Wong; Cristian Canton Ferrer; Damien Allonsius; Daniel Kreymer; Daniel Haziza; Daniel Li; Danielle Pintz; Danny Livshits; Danny Wyatt; David Adkins; David Esiobu; David Xu; Davide Testuggine; Delia David; Devi Parikh; Dhruv Choudhary; Dhruv Mahajan; Diana Liskovich; Diego Garcia-Olano; Diego Perino; Dieuwke Hupkes; Dingkang Wang; Dustin Holland; Egor Lakomkin; Elina Lobanova; Xiaoqing Ellen Tan; Emily Dinan; Eric Smith; Erik Brinkman; Esteban Arcaute; Filip Radenovic; Firat Ozgenel; Francesco Caggioni; Frank Seide; Frank Zhang; Gabriel Synnaeve; Gabriella Schwarz; Gabrielle Lee; Gada Badeer; Georgia Anderson; Graeme Nail; Gregoire Mialon; Guan Pang; Guillem Cucurell; Hailey Nguyen; Hannah Korevaar; Hannah Wang; Haroun Habeeb; Harrison Rudolph; Henry Aspegren; Hu Xu; Hugo Touvron; Iga Kozlowska; Igor Molybog; Igor Tufanov; Iliyan Zarov; Imanol Arrieta Ibarra; Irina-Elena Veliche; Isabel Kloumann; Ishan Misra; Ivan Evtimov; Jacob Xu; Jade Copet; Jake Weissman; Jan Geffert; Jana Vranes; Japhet Asher; Jason Park; Jay Mahadeokar; Jean-Baptiste Gaya; Jeet Shah; Jelmer van der Linde; Jennifer Chan; Jenny Hong; Jenya Lee; Jeremy Fu; Jeremy Teboul; Jianfeng Chi; Jianyu Huang; Jie Wang; Jiecao Yu; Joanna Bitton; Joe Spisak; Joelle Pineau; Jon Carvill; Jongsoo Park; Joseph Rocca; Joshua Johnstun; Junteng Jia; Kalyan Vasuden Alwala; Kam Hou U; Kate Plawiak; Kartikeya Upasani; Kaushik Veeraraghavan; Ke Li; Kenneth Heafield; Kevin Stone; Khalid El-Arini; Krithika Iyer; Kshitiz Malik; Kuenley Chiu; Kunal Bhalla; Kyle Huang; Lakshya Garg; Lauren Rantala-Yeary; Laurens van der Maaten; Lawrence Chen; Leandro Silva; Lee Bell; Lei Zhang; Liang Tan; Louis Martin; Lovish Madaan; Luca Wehrstedt; Lukas Blecher; Luke de Oliveira; Madeline Muzzi; Madian Khabsa; Manav Avlani; Mannat Singh; Manohar Paluri; Mark Zuckerberg; Marcin Kardas; Martynas Mankus; Mathew Oldham; Mathieu Rita; Matthew Lennie; Maya Pavlova; Meghan Keneally; Melanie Kambadur; Mihir Patel; Mikayel Samvelyan; Mike Clark; Mike Lewis; Min Si; Mitesh Kumar Singh; Mo Metanat; Mona Hassan; Naman Goyal; Narjes Torabi; Nicolas Usunier; Nikolay Bashlykov; Nikolay Bogoychev; Niladri Chatterji; Ning Dong; Oliver Aobo Yang; Olivier Duchenne; Onur Celebi; Parth Parekh; Patrick Alrassy; Paul Saab; Pavan Balaji; Pedro Rittner; Pengchuan Zhang; Pengwei Li; Petar Vasic; Peter Weng; Polina Zvyagina; Prajjwal Bhargava; Pratik Dubal; Praveen Krishnan; Punit Singh Koura; Qing He; Rachel Rodriguez; Ragavan Srinivasan; Rahul Mitra; Ramon Calderer; Raymond Li; Robert Stojnic; Roberta Raileanu; Robin Battey; Rocky Wang; Rohit Girdhar; Rohit Patel; Romain Sauvestre; Ronnie Polidoro; Roshan Sumbaly; Ross Taylor; Ruan Silva; Rui Hou; Rui Wang; Russ Howes; Ruty Rinott; Saghar Hosseini; Sai Jayesh Bondu; Samyak Datta; Sanjay Singh; Sara Chugh; Sargun Dhillon; Satadru Pan; Sean Bell; Sergey Edunov; Shaoliang Nie; Sharan Narang; Sharath Raparthy; Shaun Lindsay; Sheng Feng; Sheng Shen; Shenghao Lin; Shiva Shankar; Shruti Bhosale; Shun Zhang; Simon Vandenhende; Sinong Wang; Seohyun Sonia Kim; Soumya Batra; Sten Sootla; Steve Kehoe; Suchin Gururangan; Sumit Gupta; Sunny Virk; Sydney Borodinsky; Tamar Glaser; Tamar Herman; Tamara Best; Tara Fowler; Thomas Georgiou; Thomas Scialom; Tianhe Li; Todor Mihaylov; Tong Xiao; Ujjwal Karn; Vedanuj Goswami; Vibhor Gupta; Vignesh Ramanathan; Viktor Kerkez; Vinay Satish Kumar; Vincent Gonguet; Vish Vogeti; Vlad Poenaru; Vlad Tiberiu Mihailescu; Vladan Petrovic; Vladimir Ivanov; Wei Li; Weiwei Chu; Wenhan Xiong; Wenyin Fu; Wes Bouaziz; Whitney Meers; Will Constable; Xavier Martinet; Xiaojian Wu; Xinbo Gao; Xinfeng Xie; Xuchao Jia; Yaelle Goldschlag; Yann LeCun; Yashesh Gaur; Yasmine Babaei; Ye Qi; Yenda Li; Yi Wen; Yiwen Song; Youngjin Nam; Yuchen Hao; Yuchen Zhang; Yun Wang; Yuning Mao; Yuzi He; Zacharie Delpierre Coudert; Zachary DeVito; Zahra Hankir; Zhaoduo Wen; Zheng Yan; Zhengxing Chen; Zhenyu Yang; Zoe Papakipos
vikp/surya_det2
vikp
"2024-02-29T21:05:22Z"
62,990
3
transformers
[ "transformers", "safetensors", "segformer", "endpoints_compatible", "region:us" ]
null
"2024-02-29T20:54:29Z"
Entry not found
facebook/llm-compiler-7b-ftd
facebook
"2024-06-27T23:37:47Z"
62,978
24
transformers
[ "transformers", "pytorch", "llama", "text-generation", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2024-05-09T22:08:38Z"
--- license: other extra_gated_prompt: >- **Meta Large Language Model Compiler (LLM Compiler) LICENSE AGREEMENT** Version Release Date: 27th June 2024 “**Agreement**” means the terms and conditions for use, reproduction, distribution and modification of the LLM Compiler Materials set forth herein. “**Documentation**” means the specifications, manuals and documentation accompanying the LLM Compiler distributed by Meta at: * [https://huggingface.co/facebook/llm-compiler-7b](https://huggingface.co/facebook/llm-compiler-7b) * [https://huggingface.co/facebook/llm-compiler-7b-ftd](https://huggingface.co/facebook/llm-compiler-7b-ftd) * [https://huggingface.co/facebook/llm-compiler-13b](https://huggingface.co/facebook/llm-compiler-13b) * [https://huggingface.co/facebook/llm-compiler-13b-ftd](https://huggingface.co/facebook/llm-compiler-13b-ftd) “**Licensee**” or “**you**” means you, or your employer or any other person or entity (if you are entering into this Agreement on such person or entity’s behalf), of the age required under applicable laws, rules or regulations to provide legal consent and that has legal authority to bind your employer or such other person or entity if you are entering in this Agreement on their behalf. “**Meta Large Language Model Compiler” and “LLM Compiler**” mean the foundational large language models and software and algorithms, including machine-learning model code, trained model weights, inference-enabling code, training-enabling code, fine-tuning enabling code and other elements of the foregoing distributed by Meta at: * [https://huggingface.co/facebook/llm-compiler-7b](https://huggingface.co/facebook/llm-compiler-7b) * [https://huggingface.co/facebook/llm-compiler-7b-ftd](https://huggingface.co/facebook/llm-compiler-7b-ftd) * [https://huggingface.co/facebook/llm-compiler-13b](https://huggingface.co/facebook/llm-compiler-13b) * [https://huggingface.co/facebook/llm-compiler-13b-ftd](https://huggingface.co/facebook/llm-compiler-13b-ftd) “**LLM Compiler Materials**” means, collectively, Meta’s proprietary LLM Compiler and Documentation (and any portion thereof) made available under this Agreement. “**Meta**” or “**we**” means Meta Platforms Ireland Limited (if you are located in or, if you are an entity, your principal place of business is in the EEA or Switzerland) and Meta Platforms, Inc. (if you are located outside of the EEA or Switzerland). By clicking “I Accept” below or by using or distributing any portion or element of the LLM Compiler Materials, you agree to be bound by this Agreement. 1. **License Rights and Redistribution**. \ a. <span style="text-decoration:underline;">Grant of Rights</span>. You are granted a non-exclusive, worldwide, non-transferable and royalty-free limited license under Meta’s intellectual property or other rights owned by Meta embodied in the LLM Compiler Materials to use, reproduce, distribute, copy, create derivative works of, and make modifications to the LLM Compiler Materials. b. <span style="text-decoration:underline;">Redistribution and Use</span>. i. If you distribute or make available the LLM Compiler Materials (or any derivative works thereof), or a product or service that uses any of them, including another AI model, you shall (A) provide a copy of this Agreement with any such LLM Compiler Materials; and (B) prominently display “Built with LLM Compiler” on a related website, user interface, blogpost, about page, or product documentation. If you use the LLM Compiler Materials to create, train, fine tune, or otherwise improve an AI model, which is distributed or made available, you shall also include “LLM Compiler” at the beginning of any such AI model name. ii. If you receive LLM Compiler Materials, or any derivative works thereof, from a Licensee as part of an integrated end user product, then Section 2 of this Agreement will not apply to you. iii. You must retain in all copies of the LLM Compiler Materials that you distribute the following attribution notice within a “Notice” text file distributed as a part of such copies: “LLM Compiler is licensed under the LLM Compiler License, Copyright © Meta Platforms, Inc. All Rights Reserved.” iv. Your use of the LLM Compiler Materials must comply with applicable laws and regulations (including trade compliance laws and regulations) and adhere to the Acceptable Use Policy for Llama Materials (available at https://llama.meta.com/llama3/use-policy), which is hereby incorporated by reference into this Agreement. v. You will not use the LLM Compiler Materials or any output or results of the LLM Compiler Materials to improve any other large language model. 2. **Additional Commercial Terms**. If, on the LLM Compiler release date, the monthly active users of the products or services made available by or for Licensee, or Licensee’s affiliates, is greater than 700 million monthly active users in the preceding calendar month, you must request a license from Meta, which Meta may grant to you in its sole discretion, and you are not authorized to exercise any of the rights under this Agreement unless or until Meta otherwise expressly grants you such rights. 3**. Disclaimer of Warranty**. UNLESS REQUIRED BY APPLICABLE LAW, THE LLM COMPILER MATERIALS AND ANY OUTPUT AND RESULTS THEREFROM ARE PROVIDED ON AN “AS IS” BASIS, WITHOUT WARRANTIES OF ANY KIND, AND META DISCLAIMS ALL WARRANTIES OF ANY KIND, BOTH EXPRESS AND IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. YOU ARE SOLELY RESPONSIBLE FOR DETERMINING THE APPROPRIATENESS OF USING OR REDISTRIBUTING THE LLM COMPILER MATERIALS AND ASSUME ANY RISKS ASSOCIATED WITH YOUR USE OF THE LLM COMPILER MATERIALS AND ANY OUTPUT AND RESULTS. 4. **Limitation of Liability**. IN NO EVENT WILL META OR ITS AFFILIATES BE LIABLE UNDER ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, TORT, NEGLIGENCE, PRODUCTS LIABILITY, OR OTHERWISE, ARISING OUT OF THIS AGREEMENT, FOR ANY LOST PROFITS OR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL, EXEMPLARY OR PUNITIVE DAMAGES, EVEN IF META OR ITS AFFILIATES HAVE BEEN ADVISED OF THE POSSIBILITY OF ANY OF THE FOREGOING. 5. **Intellectual Property**. a. No trademark licenses are granted under this Agreement, and in connection with the LLM Compiler Materials, neither Meta nor Licensee may use any name or mark owned by or associated with the other or any of its affiliates, except as required for reasonable and customary use in describing and redistributing the LLM Compiler Materials or as set forth in this Section 5(a). Meta hereby grants you a license to use LLM Compiler (the “Mark”) solely as required to comply with the last sentence of Section 1.b.i. You will comply with Meta’s brand guidelines (currently accessible at[ https://about.meta.com/brand/resources/meta/company-brand/)](https://about.meta.com/brand/resources/meta/company-brand/). All goodwill arising out of your use of the Mark will inure to the benefit of Meta. b. Subject to Meta’s ownership of LLM Compiler Materials and derivatives made by or for Meta, with respect to any derivative works and modifications of the LLM Compiler Materials that are made by you, as between you and Meta, you are and will be the owner of such derivative works and modifications. c. If you institute litigation or other proceedings against Meta or any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the LLM Compiler Materials or LLM Compiler outputs or results, or any portion of any of the foregoing, constitutes infringement of intellectual property or other rights owned or licensable by you, then any licenses granted to you under this Agreement shall terminate as of the date such litigation or claim is filed or instituted. You will indemnify and hold harmless Meta from and against any claim by any third party arising out of or related to your use or distribution of the LLM Compiler Materials. 6. **Term and Termination**. The term of this Agreement will commence upon your acceptance of this Agreement or access to the LLM Compiler Materials and will continue in full force and effect until terminated in accordance with the terms and conditions herein. Meta may terminate this Agreement if you are in breach of any term or condition of this Agreement. Upon termination of this Agreement, you shall delete and cease use of the LLM Compiler Materials. Sections 3, 4 and 7 shall survive the termination of this Agreement. 7. **Governing Law and Jurisdiction**. This Agreement will be governed and construed under the laws of the State of California without regard to choice of law principles, and the UN Convention on Contracts for the International Sale of Goods does not apply to this Agreement. The courts of California shall have exclusive jurisdiction of any dispute arising out of this Agreement. extra_gated_fields: First Name: text Last Name: text Date of birth: date_picker Country: country Affiliation: text I accept the terms and conditions: checkbox geo: ip_location By clicking Submit below I accept the terms of the license and acknowledge that the information I provide will be collected stored processed and shared in accordance with the Meta Privacy Policy: checkbox extra_gated_description: The information you provide will be collected, stored, processed and shared in accordance with the [Meta Privacy Policy](https://www.facebook.com/privacy/policy/). extra_gated_button_content: I Accept Meta LLM Compiler License and AUP --- # You need to share contact information with Meta to access this model ---- The information you provide will be collected, stored, processed and shared in accordance with the [Meta Privacy Policy](https://www.facebook.com/privacy/policy/). ---- # Introducing Meta Large Language Model Compiler (LLM Compiler), a state-of-the-art LLM for compiler optimization ## Takeaways * LLM Compiler is a state-of-the-art LLM that builds upon Code Llama with improved performance for code optimization and compiler reasoning. * LLM Compiler is free for both research and commercial use. * LLM Compiler is available in two flavors: * _LLM Compiler_, the foundational models, pretrained on over 500B tokens of LLVM-IR, x86_84, ARM, and CUDA assembly codes and trained to predict the effect of LLVM optimizations; * and _LLM Compiler FTD_, which is further fine-tuned to predict the best optimizations for code in LLVM assembly to reduce code size, and to disassemble assembly code to LLVM-IR. * LLM Compiler demonstrates far stronger understanding of compiler optimizations than existing publicly available LLMs, perfectly emulating the compiler 20% of the time. * LLM Compiler FTD sets state-of-the-art results on the tasks of optimization for code size and disassembly. It achieves a 5.24% code size improvement over -Oz vs GPT-4 Turbo 0.03%, and 0.96 round-trip BLEU score on disassembly vs GPT-4 Turbo 0.43. --- LINKS * [LLM Compiler research paper](https://ai.meta.com/research/publications/meta-large-language-model-compiler-foundation-models-of-compiler-optimization/) * Download the LLM Compiler and LLM Compiler FTD models: * [llm-compiler-7b](https://huggingface.co/facebook/llm-compiler-7b) * [llm-compiler-7b-ftd](https://huggingface.co/facebook/llm-compiler-7b-ftd) * [llm-compiler-13b](https://huggingface.co/facebook/llm-compiler-13b) * [llm-compiler-13b-ftd](https://huggingface.co/facebook/llm-compiler-13b-ftd) --- We are excited to announce the release of LLM Compiler, a model targeted at code and compiler optimization tasks. LLM Compiler is built on top of our state-of-the-art large language model, Code Llama, adding capabilities to better understand compiler intermediate representations, assembly language and optimization. LLM Compiler is demonstrated on two difficult tasks: optimizing for code size and decompiling from assembly to the compiler’s intermediate representation. We release these foundation models to accelerate the application of LLMs for code optimization tasks and to enhance developer experience. We are releasing LLM Compiler under the [LLM Compiler License Agreement](LICENSE.pdf), which incorporates the [Acceptable Use Policy]([https://llama.meta.com/llama3/use-policy]) for Llama Materials. ## How LLM Compiler works LLM Compiler is a specialization of Code Llama. It is a cutting-edge tool designed to optimize code using deep learning. LLM Compiler has been pre-trained on a vast amount of LLVM assembly (IR), x86_64, ARM, and CUDA assembly codes. LLM Compiler can predict, given a piece of LLVM assembly and a sequence of optimization passes for `opt`, the LLVM optimizer, what the change in code size will be and what the output code will look like after applying these optimizations. It has ‘understood’ the behavior of the optimizing compiler to such a degree that in many cases it can perfectly replicate its output. These capabilities make it ideally suited to compiler optimization tasks. ![Compiler emulation](readme/emulate.png) In addition to this core functionality and to demonstrate its ability to solve complex compiler optimization problems, LLM Compiler has been fine-tuned for two specific downstream tasks: 1. Predicting the best optimization passes for `opt` to use in order to minimize code size, given a piece of LLVM assembly code. \ ![Autotuning](readme/autotune.png) 2. Generating LLVM IR from a piece of x86_64 or ARM assembly code. \ ![Disassemble](readme/disassemble.png) We are releasing LLM Compiler models in two sizes: 7B and 13B parameters. The models have been trained with a context window of 16,000 tokens. The two models address different serving and latency requirements. The 7B model, for example, can be served on a single GPU and is more suitable for tasks that require low latency, like fine grained optimisation. The 13B model returns the best results. When using the LLM Compiler models, users must abide by our license and acceptable use policy. ![Training](readme/training.png) ## LLM Compiler performance We tested the performance of LLM Compiler models for emulating compiler transformations, predicting optimal pass lists and decompiling intermediate representation on hold out test sets and compared them to Code Llama and GPT-4. We compare LLM Compiler Foundation to Code Llama Base and LLM Compiler FTD to Code Llama Instruct. We evaluate LLM Compiler's ability to emulate compiler optimizations by giving it samples of unoptimized intermediate representation and a randomly generated list of optimizations. We then ask the model to generate the corresponding IR after the optimizations have been applied. In the table below we report the model's accuracy in reproducing the IR we would get from running _opt_. With very little knowledge of IR, Code Llama is unable to achieve high values while the LLM Compiler can generate character-by-character matches of expected assembly in 20% of the cases. <table> <tr> <td>Model </td> <td>Size </td> <td>Accuracy at emulating compiler optimizations </td> </tr> <tr> <td>Code Llama </td> <td>7B </td> <td>1.2% </td> </tr> <tr> <td>Code Llama </td> <td>13B </td> <td>0.8% </td> </tr> <tr> <td>LLM Compiler </td> <td>7B </td> <td>16% </td> </tr> <tr> <td>LLM Compiler </td> <td>13B </td> <td><strong>20%</strong> </td> </tr> </table> In a similar approach we evaluate our model's ability to optimize IR for code size. In this instance, however, we let the model generate the pass list that is to be used on a given unoptimized IR. We then use this pass list to optimize the particular program using _opt_ and record the binary size. The baseline is the binary size of the program when optimized using -Oz. Only LLM Compiler FTD models provide an improvement over -Oz, with the 13B parameter model marginally outperforming the smaller model, generating smaller object files than -Oz in 61% of cases. Lastly, we evaluate disassembly performance by giving the model x86 assembly code and ask it to generate the corresponding IR. We then round-trip the model-generated disassembled IR back down to assembly. This enables us to evaluate accuracy of the disassembly by comparing the BLEU score of the original assembly against the round-trip result. LLM Compiler FTD 13B has the highest accuracy of round-tripped assembly (_round trip BLEU_) and most frequently produces perfect disassembly. Code Llama Instruct and GPT-4 Turbo struggle with generating syntactically correct LLVM-IR. <table> <tr> <td>Model </td> <td>Size </td> <td>Code Size Improvement </td> <td>Round trip BLEU </td> </tr> <tr> <td>GPT-4 Turbo </td> <td> </td> <td>-0.01% </td> <td>0.43 </td> </tr> <tr> <td>Code Llama Inst </td> <td>7B </td> <td>-0.49% </td> <td>0.48 </td> </tr> <tr> <td>Code Llama Inst </td> <td>13B </td> <td>-0.42% </td> <td>0.62 </td> </tr> <tr> <td>LLM Compiler FTD </td> <td>7B </td> <td>4.77% </td> <td>0.95 </td> </tr> <tr> <td>LLM Compiler FTD </td> <td>13B </td> <td><strong>4.88%</strong> </td> <td><strong>0.96</strong> </td> </tr> </table> ## Releasing LLM Compiler LLMs are being used to make programming easier. They are beginning to be used to make programs more efficient. At Meta, our conviction is that AI models, especially those designed for coding, thrive best with an open strategy, fostering both innovation and security. Models that are accessible to the public can expedite the creation of novel compiler optimization technologies. In turn, this will allow programs to be more efficient and smaller, enhancing the quality of life for all. By making models such as LLM Compiler available, the whole community can explore their potential, pinpoint problems, and rectify any vulnerabilities. The model weights are available on Hugging Face. ## Responsible use Our research paper provides an in-depth look into the development process of the LLM Compiler, the methods we used for our benchmarking tests, and further insights into the model's limitations. It also discusses the issues faced, the steps we took to mitigate them. Developers are advised to assess their models using evaluation benchmarks specific to compilers. Given that compilers are not bug-free, any suggested compiler optimizations must be rigorously tested. When a model decompiles assembly code, its accuracy should be confirmed. ## The future of generative AI for optimisation LLM Compiler is designed to support compiler researchers and engineers. But there are still many more use cases to support than what our models can serve. We hope that LLM Compiler will inspire others to leverage LLMs to create new innovative tools for research and commercial products. ### Try LLM Compiler today * Download the LLM Compiler and LLM Compiler FTD models: * [llm-compiler-7b](https://huggingface.co/facebook/llm-compiler-7b) * [llm-compiler-7b-ftd](https://huggingface.co/facebook/llm-compiler-7b-ftd) * [llm-compiler-13b](https://huggingface.co/facebook/llm-compiler-13b) * [llm-compiler-13b-ftd](https://huggingface.co/facebook/llm-compiler-13b-ftd) * Read the research paper * [LLM Compiler research paper](https://ai.meta.com/research/publications/meta-large-language-model-compiler-foundation-models-of-compiler-optimization/) # **Model Card** LLM Compiler is a collection of pretrained and fine-tuned generative text models ranging in scale from 7 billion to 13 billion parameters. This is the repository for the 7 billion parameter code size and disassembly fine-tuned model version in the Hugging Face Transformers format. This model is designed for code optimization. Links to other models can be found in the index at the bottom. | Number of parameters | Base Model | Fine-tuned for code size and dissassembly | | -------------------- | ---------------------------------------------------------------------------------------- | ----------------------------------------------------------------------------------------------- | | 7B | [facebook/llm-compiler-7b](https://huggingface.co/facebook/llm-compiler-7b) | [facebook/llm-compiler-7b-ftd](https://huggingface.co/facebook/llm-compiler-7b-ftd) | | 13B | [facebook/llm-compiler-13b](https://huggingface.co/facebook/llm-compiler-13b) | [facebook/llm-compiler-13b-ftd](https://huggingface.co/facebook/llm-compiler-13b-ftd) | ## Model Use To use this model, please make sure to install transformers: ```bash pip install transformers accelerate ``` Example code using each of the model's compiler capabilities may be found in [llm_compiler_demo.py](llm_compiler_demo.py). The code below demonstrates default capabilities. You may need to set the HuggingFace access token - see (https://huggingface.co/docs/hub/security-tokens). ```python from transformers import AutoTokenizer import transformers import torch model = "facebook/llm-compiler-7b-ftd" tokenizer = AutoTokenizer.from_pretrained(model) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) sequences = pipeline( '%3 = alloca i32, align 4', do_sample=True, top_k=10, temperature=0.1, top_p=0.95, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id, max_length=200, ) for seq in sequences: print(f"Result: {seq['generated_text']}") ``` ## Model Details *Note: Use of this model is governed by the Meta license. Meta developed and publicly released the LLM Compiler family of large language models (LLMs). **Model Developers** Meta **Variations** LLM Compiler comes in two model sizes of 7B, 13B parameters in two flavors, the foundation and instruction fine-tuned for code size and disassembly. **This repository contains the 7 billion parameter code size and disassembly fine-tuned model.** **Input** Models input text only. **Example prompt** See `llm_compiler_demo.py` in the repo for examples of the different use cases. **Output** Models generate text only. **Model Architecture** LLM Compiler is an auto-regressive language model that uses an optimized transformer architecture. **Model Dates** LLM Compiler has been trained between January 2024 and June 2024. **Status** This is a static model trained on an offline dataset. **License** A custom commercial license is available at: [https://ai.meta.com/resources/models-and-libraries/llama-downloads/](https://ai.meta.com/resources/models-and-libraries/llama-downloads/) **Research Paper** More information can be found in the paper "[Meta Large Language Model Compiler: Foundation Models of Compiler Optimization](https://ai.meta.com/research/publications/meta-large-language-model-compiler-foundation-models-of-compiler-optimization/)". ## Intended Use **Intended Use Cases** LLM Compiler is intended for commercial and research use in English, relevant programming languages, LLVM IR, x86_64 assembly and ARM assembly. **Out-of-Scope Uses** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in languages other than English. Use in any other way that is prohibited by the [Acceptable Use Policy](https://llama.meta.com/llama3/use-policy) and Licensing Agreement for LLM Compiler and its variants. ## Hardware and Software **Training Factors** We used custom training libraries. The training and fine-tuning of the released models have been performed Meta’s Research Super Cluster. **Carbon Footprint** In aggregate, training all LLM Compiler models required 14K GPU hours of computation on hardware of type A100-80GB (TDP of 350-400W), not including the training of Code Llama. 100% of the estimated tCO2eq emissions were offset by Meta’s sustainability program. ## Training Data All experiments reported here and the released models have been trained and fine-tuned using the same data as Code Llama with different weights (see Section 2 and Table 1 in the [research paper](https://ai.meta.com/research/publications/llm-compiler-foundation-models-for-compiler-optimization/) for details). ## Evaluation Results See evaluations for the main models and detailed ablations in Section 3 and safety evaluations in Section 4 of the research paper. ## Ethical Considerations and Limitations LLM Compiler and its variants are a new technology that carries risks with use. Testing conducted to date has been in English, and has not covered, nor could it cover all scenarios. For these reasons, as with all LLMs, LLM Compilers’s potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate or objectionable responses to user prompts. Therefore, before deploying any applications of LLM Compiler, developers should perform safety testing and tuning tailored to their specific applications of the model. Please see the Responsible Use Guide available available at [https://ai.meta.com/llama/responsible-use-guide](https://ai.meta.com/llama/responsible-use-guide).
depth-anything/Depth-Anything-V2-Large
depth-anything
"2024-07-08T09:15:44Z"
62,949
62
depth-anything-v2
[ "depth-anything-v2", "depth", "relative depth", "depth-estimation", "en", "license:cc-by-nc-4.0", "region:us" ]
depth-estimation
"2024-06-13T16:15:11Z"
--- license: cc-by-nc-4.0 language: - en pipeline_tag: depth-estimation library_name: depth-anything-v2 tags: - depth - relative depth --- # Depth-Anything-V2-Large ## Introduction Depth Anything V2 is trained from 595K synthetic labeled images and 62M+ real unlabeled images, providing the most capable monocular depth estimation (MDE) model with the following features: - more fine-grained details than Depth Anything V1 - more robust than Depth Anything V1 and SD-based models (e.g., Marigold, Geowizard) - more efficient (10x faster) and more lightweight than SD-based models - impressive fine-tuned performance with our pre-trained models ## Installation ```bash git clone https://huggingface.co/spaces/depth-anything/Depth-Anything-V2 cd Depth-Anything-V2 pip install -r requirements.txt ``` ## Usage Download the [model](https://huggingface.co/depth-anything/Depth-Anything-V2-Large/resolve/main/depth_anything_v2_vitl.pth?download=true) first and put it under the `checkpoints` directory. ```python import cv2 import torch from depth_anything_v2.dpt import DepthAnythingV2 model = DepthAnythingV2(encoder='vitl', features=256, out_channels=[256, 512, 1024, 1024]) model.load_state_dict(torch.load('checkpoints/depth_anything_v2_vitl.pth', map_location='cpu')) model.eval() raw_img = cv2.imread('your/image/path') depth = model.infer_image(raw_img) # HxW raw depth map ``` ## Citation If you find this project useful, please consider citing: ```bibtex @article{depth_anything_v2, title={Depth Anything V2}, author={Yang, Lihe and Kang, Bingyi and Huang, Zilong and Zhao, Zhen and Xu, Xiaogang and Feng, Jiashi and Zhao, Hengshuang}, journal={arXiv:2406.09414}, year={2024} } @inproceedings{depth_anything_v1, title={Depth Anything: Unleashing the Power of Large-Scale Unlabeled Data}, author={Yang, Lihe and Kang, Bingyi and Huang, Zilong and Xu, Xiaogang and Feng, Jiashi and Zhao, Hengshuang}, booktitle={CVPR}, year={2024} }
hugging-quants/Llama-3.2-3B-Instruct-Q8_0-GGUF
hugging-quants
"2024-09-25T16:11:19Z"
62,925
40
null
[ "gguf", "facebook", "meta", "pytorch", "llama", "llama-3", "llama-cpp", "gguf-my-repo", "text-generation", "en", "de", "fr", "it", "pt", "hi", "es", "th", "base_model:meta-llama/Llama-3.2-3B-Instruct", "base_model:quantized:meta-llama/Llama-3.2-3B-Instruct", "endpoints_compatible", "region:us", "conversational" ]
text-generation
"2024-09-25T15:41:36Z"
--- base_model: meta-llama/Llama-3.2-3B-Instruct language: - en - de - fr - it - pt - hi - es - th pipeline_tag: text-generation tags: - facebook - meta - pytorch - llama - llama-3 - llama-cpp - gguf-my-repo extra_gated_prompt: "### LLAMA 3.2 COMMUNITY LICENSE AGREEMENT\n\nLlama 3.2 Version\ \ Release Date: September 25, 2024\n\n“Agreement” means the terms and conditions\ \ for use, reproduction, distribution and modification of the Llama Materials set\ \ forth herein.\n\n“Documentation” means the specifications, manuals and documentation\ \ accompanying Llama 3.2 distributed by Meta at https://llama.meta.com/doc/overview.\n\ \n“Licensee” or “you” means you, or your employer or any other person or entity\ \ (if you are entering into this Agreement on such person or entity’s behalf),\ \ of the age required under applicable laws, rules or regulations to provide legal\ \ consent and that has legal authority to bind your employer or such other person\ \ or entity if you are entering in this Agreement on their behalf.\n\n“Llama 3.2”\ \ means the foundational large language models and software and algorithms, including\ \ machine-learning model code, trained model weights, inference-enabling code, training-enabling\ \ code, fine-tuning enabling code and other elements of the foregoing distributed\ \ by Meta at https://www.llama.com/llama-downloads.\n\n“Llama Materials” means,\ \ collectively, Meta’s proprietary Llama 3.2 and Documentation (and any portion\ \ thereof) made available under this Agreement.\n\n“Meta” or “we” means Meta Platforms\ \ Ireland Limited (if you are located in or, if you are an entity, your principal\ \ place of business is in the EEA or Switzerland) and Meta Platforms, Inc. (if\ \ you are located outside of the EEA or Switzerland). \n\nBy clicking “I Accept”\ \ below or by using or distributing any portion or element of the Llama Materials,\ \ you agree to be bound by this Agreement.\n\n1. License Rights and Redistribution.\n\ a. Grant of Rights. You are granted a non-exclusive, worldwide, non-transferable\ \ and royalty-free limited license under Meta’s intellectual property or other rights\ \ owned by Meta embodied in the Llama Materials to use, reproduce, distribute,\ \ copy, create derivative works of, and make modifications to the Llama Materials.\ \ \nb. Redistribution and Use. \ni. If you distribute or make available the Llama\ \ Materials (or any derivative works thereof), or a product or service (including\ \ another AI model) that contains any of them, you shall (A) provide a copy of this\ \ Agreement with any such Llama Materials; and (B) prominently display “Built with\ \ Llama” on a related website, user interface, blogpost, about page, or product\ \ documentation. If you use the Llama Materials or any outputs or results of the\ \ Llama Materials to create, train, fine tune, or otherwise improve an AI model,\ \ which is distributed or made available, you shall also include “Llama” at the\ \ beginning of any such AI model name.\nii. If you receive Llama Materials, or any\ \ derivative works thereof, from a Licensee as part of an integrated end user product,\ \ then Section 2 of this Agreement will not apply to you. \niii. You must retain\ \ in all copies of the Llama Materials that you distribute the following attribution\ \ notice within a “Notice” text file distributed as a part of such copies: “Llama\ \ 3.2 is licensed under the Llama 3.2 Community License, Copyright © Meta Platforms,\ \ Inc. All Rights Reserved.”\niv. Your use of the Llama Materials must comply with\ \ applicable laws and regulations (including trade compliance laws and regulations)\ \ and adhere to the Acceptable Use Policy for the Llama Materials (available at\ \ https://www.llama.com/llama3_2/use-policy), which is hereby incorporated by reference\ \ into this Agreement.\n \n2. Additional Commercial Terms. If, on the Llama 3.2\ \ version release date, the monthly active users of the products or services made\ \ available by or for Licensee, or Licensee’s affiliates, is greater than 700 million\ \ monthly active users in the preceding calendar month, you must request a license\ \ from Meta, which Meta may grant to you in its sole discretion, and you are not\ \ authorized to exercise any of the rights under this Agreement unless or until\ \ Meta otherwise expressly grants you such rights.\n3. Disclaimer of Warranty. UNLESS\ \ REQUIRED BY APPLICABLE LAW, THE LLAMA MATERIALS AND ANY OUTPUT AND RESULTS THEREFROM\ \ ARE PROVIDED ON AN “AS IS” BASIS, WITHOUT WARRANTIES OF ANY KIND, AND META DISCLAIMS\ \ ALL WARRANTIES OF ANY KIND, BOTH EXPRESS AND IMPLIED, INCLUDING, WITHOUT LIMITATION,\ \ ANY WARRANTIES OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR\ \ PURPOSE. YOU ARE SOLELY RESPONSIBLE FOR DETERMINING THE APPROPRIATENESS OF USING\ \ OR REDISTRIBUTING THE LLAMA MATERIALS AND ASSUME ANY RISKS ASSOCIATED WITH YOUR\ \ USE OF THE LLAMA MATERIALS AND ANY OUTPUT AND RESULTS.\n4. Limitation of Liability.\ \ IN NO EVENT WILL META OR ITS AFFILIATES BE LIABLE UNDER ANY THEORY OF LIABILITY,\ \ WHETHER IN CONTRACT, TORT, NEGLIGENCE, PRODUCTS LIABILITY, OR OTHERWISE, ARISING\ \ OUT OF THIS AGREEMENT, FOR ANY LOST PROFITS OR ANY INDIRECT, SPECIAL, CONSEQUENTIAL,\ \ INCIDENTAL, EXEMPLARY OR PUNITIVE DAMAGES, EVEN IF META OR ITS AFFILIATES HAVE\ \ BEEN ADVISED OF THE POSSIBILITY OF ANY OF THE FOREGOING.\n5. Intellectual Property.\n\ a. No trademark licenses are granted under this Agreement, and in connection with\ \ the Llama Materials, neither Meta nor Licensee may use any name or mark owned\ \ by or associated with the other or any of its affiliates, except as required\ \ for reasonable and customary use in describing and redistributing the Llama Materials\ \ or as set forth in this Section 5(a). Meta hereby grants you a license to use\ \ “Llama” (the “Mark”) solely as required to comply with the last sentence of Section\ \ 1.b.i. You will comply with Meta’s brand guidelines (currently accessible at\ \ https://about.meta.com/brand/resources/meta/company-brand/). All goodwill arising\ \ out of your use of the Mark will inure to the benefit of Meta.\nb. Subject to\ \ Meta’s ownership of Llama Materials and derivatives made by or for Meta, with\ \ respect to any derivative works and modifications of the Llama Materials that\ \ are made by you, as between you and Meta, you are and will be the owner of such\ \ derivative works and modifications.\nc. If you institute litigation or other proceedings\ \ against Meta or any entity (including a cross-claim or counterclaim in a lawsuit)\ \ alleging that the Llama Materials or Llama 3.2 outputs or results, or any portion\ \ of any of the foregoing, constitutes infringement of intellectual property or\ \ other rights owned or licensable by you, then any licenses granted to you under\ \ this Agreement shall terminate as of the date such litigation or claim is filed\ \ or instituted. You will indemnify and hold harmless Meta from and against any\ \ claim by any third party arising out of or related to your use or distribution\ \ of the Llama Materials.\n6. Term and Termination. The term of this Agreement will\ \ commence upon your acceptance of this Agreement or access to the Llama Materials\ \ and will continue in full force and effect until terminated in accordance with\ \ the terms and conditions herein. Meta may terminate this Agreement if you are\ \ in breach of any term or condition of this Agreement. Upon termination of this\ \ Agreement, you shall delete and cease use of the Llama Materials. Sections 3,\ \ 4 and 7 shall survive the termination of this Agreement. \n7. Governing Law and\ \ Jurisdiction. This Agreement will be governed and construed under the laws of\ \ the State of California without regard to choice of law principles, and the UN\ \ Convention on Contracts for the International Sale of Goods does not apply to\ \ this Agreement. The courts of California shall have exclusive jurisdiction of\ \ any dispute arising out of this Agreement. \n### Llama 3.2 Acceptable Use Policy\n\ Meta is committed to promoting safe and fair use of its tools and features, including\ \ Llama 3.2. If you access or use Llama 3.2, you agree to this Acceptable Use Policy\ \ (“**Policy**”). The most recent copy of this policy can be found at [https://www.llama.com/llama3_2/use-policy](https://www.llama.com/llama3_2/use-policy).\n\ #### Prohibited Uses\nWe want everyone to use Llama 3.2 safely and responsibly.\ \ You agree you will not use, or allow others to use, Llama 3.2 to:\n1. Violate\ \ the law or others’ rights, including to:\n 1. Engage in, promote, generate,\ \ contribute to, encourage, plan, incite, or further illegal or unlawful activity\ \ or content, such as:\n 1. Violence or terrorism\n 2. Exploitation\ \ or harm to children, including the solicitation, creation, acquisition, or dissemination\ \ of child exploitative content or failure to report Child Sexual Abuse Material\n\ \ 3. Human trafficking, exploitation, and sexual violence\n 4. The\ \ illegal distribution of information or materials to minors, including obscene\ \ materials, or failure to employ legally required age-gating in connection with\ \ such information or materials.\n 5. Sexual solicitation\n 6. Any\ \ other criminal activity\n 1. Engage in, promote, incite, or facilitate the\ \ harassment, abuse, threatening, or bullying of individuals or groups of individuals\n\ \ 2. Engage in, promote, incite, or facilitate discrimination or other unlawful\ \ or harmful conduct in the provision of employment, employment benefits, credit,\ \ housing, other economic benefits, or other essential goods and services\n 3.\ \ Engage in the unauthorized or unlicensed practice of any profession including,\ \ but not limited to, financial, legal, medical/health, or related professional\ \ practices\n 4. Collect, process, disclose, generate, or infer private or sensitive\ \ information about individuals, including information about individuals’ identity,\ \ health, or demographic information, unless you have obtained the right to do so\ \ in accordance with applicable law\n 5. Engage in or facilitate any action or\ \ generate any content that infringes, misappropriates, or otherwise violates any\ \ third-party rights, including the outputs or results of any products or services\ \ using the Llama Materials\n 6. Create, generate, or facilitate the creation\ \ of malicious code, malware, computer viruses or do anything else that could disable,\ \ overburden, interfere with or impair the proper working, integrity, operation\ \ or appearance of a website or computer system\n 7. Engage in any action, or\ \ facilitate any action, to intentionally circumvent or remove usage restrictions\ \ or other safety measures, or to enable functionality disabled by Meta \n2. Engage\ \ in, promote, incite, facilitate, or assist in the planning or development of activities\ \ that present a risk of death or bodily harm to individuals, including use of Llama\ \ 3.2 related to the following:\n 8. Military, warfare, nuclear industries or\ \ applications, espionage, use for materials or activities that are subject to the\ \ International Traffic Arms Regulations (ITAR) maintained by the United States\ \ Department of State or to the U.S. Biological Weapons Anti-Terrorism Act of 1989\ \ or the Chemical Weapons Convention Implementation Act of 1997\n 9. Guns and\ \ illegal weapons (including weapon development)\n 10. Illegal drugs and regulated/controlled\ \ substances\n 11. Operation of critical infrastructure, transportation technologies,\ \ or heavy machinery\n 12. Self-harm or harm to others, including suicide, cutting,\ \ and eating disorders\n 13. Any content intended to incite or promote violence,\ \ abuse, or any infliction of bodily harm to an individual\n3. Intentionally deceive\ \ or mislead others, including use of Llama 3.2 related to the following:\n 14.\ \ Generating, promoting, or furthering fraud or the creation or promotion of disinformation\n\ \ 15. Generating, promoting, or furthering defamatory content, including the\ \ creation of defamatory statements, images, or other content\n 16. Generating,\ \ promoting, or further distributing spam\n 17. Impersonating another individual\ \ without consent, authorization, or legal right\n 18. Representing that the\ \ use of Llama 3.2 or outputs are human-generated\n 19. Generating or facilitating\ \ false online engagement, including fake reviews and other means of fake online\ \ engagement \n4. Fail to appropriately disclose to end users any known dangers\ \ of your AI system 5. Interact with third party tools, models, or software designed\ \ to generate unlawful content or engage in unlawful or harmful conduct and/or represent\ \ that the outputs of such tools, models, or software are associated with Meta or\ \ Llama 3.2\n\nWith respect to any multimodal models included in Llama 3.2, the\ \ rights granted under Section 1(a) of the Llama 3.2 Community License Agreement\ \ are not being granted to you if you are an individual domiciled in, or a company\ \ with a principal place of business in, the European Union. This restriction does\ \ not apply to end users of a product or service that incorporates any such multimodal\ \ models.\n\nPlease report any violation of this Policy, software “bug,” or other\ \ problems that could lead to a violation of this Policy through one of the following\ \ means:\n\n* Reporting issues with the model: [https://github.com/meta-llama/llama-models/issues](https://l.workplace.com/l.php?u=https%3A%2F%2Fgithub.com%2Fmeta-llama%2Fllama-models%2Fissues&h=AT0qV8W9BFT6NwihiOHRuKYQM_UnkzN_NmHMy91OT55gkLpgi4kQupHUl0ssR4dQsIQ8n3tfd0vtkobvsEvt1l4Ic6GXI2EeuHV8N08OG2WnbAmm0FL4ObkazC6G_256vN0lN9DsykCvCqGZ)\n\ * Reporting risky content generated by the model: [developers.facebook.com/llama_output_feedback](http://developers.facebook.com/llama_output_feedback)\n\ * Reporting bugs and security concerns: [facebook.com/whitehat/info](http://facebook.com/whitehat/info)\n\ * Reporting violations of the Acceptable Use Policy or unlicensed uses of Llama\ \ 3.2: LlamaUseReport@meta.com" extra_gated_fields: First Name: text Last Name: text Date of birth: date_picker Country: country Affiliation: text Job title: type: select options: - Student - Research Graduate - AI researcher - AI developer/engineer - Reporter - Other geo: ip_location ? By clicking Submit below I accept the terms of the license and acknowledge that the information I provide will be collected stored processed and shared in accordance with the Meta Privacy Policy : checkbox extra_gated_description: The information you provide will be collected, stored, processed and shared in accordance with the [Meta Privacy Policy](https://www.facebook.com/privacy/policy/). extra_gated_button_content: Submit --- # hugging-quants/Llama-3.2-3B-Instruct-Q8_0-GGUF This model was converted to GGUF format from [`meta-llama/Llama-3.2-3B-Instruct`](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo hugging-quants/Llama-3.2-3B-Instruct-Q8_0-GGUF --hf-file llama-3.2-3b-instruct-q8_0.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo hugging-quants/Llama-3.2-3B-Instruct-Q8_0-GGUF --hf-file llama-3.2-3b-instruct-q8_0.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo hugging-quants/Llama-3.2-3B-Instruct-Q8_0-GGUF --hf-file llama-3.2-3b-instruct-q8_0.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo hugging-quants/Llama-3.2-3B-Instruct-Q8_0-GGUF --hf-file llama-3.2-3b-instruct-q8_0.gguf -c 2048 ```
Qwen/Qwen-VL
Qwen
"2024-01-25T15:16:24Z"
62,910
211
transformers
[ "transformers", "pytorch", "qwen", "text-generation", "custom_code", "zh", "en", "arxiv:2308.12966", "autotrain_compatible", "region:us" ]
text-generation
"2023-08-18T02:20:59Z"
--- language: - zh - en tags: - qwen pipeline_tag: text-generation inference: false --- # Qwen-VL <br> <p align="center"> <img src="https://qianwen-res.oss-cn-beijing.aliyuncs.com/logo_vl.jpg" width="400"/> <p> <br> <p align="center"> Qwen-VL <a href="https://huggingface.co/Qwen/Qwen-VL">🤗</a> <a href="https://modelscope.cn/models/qwen/Qwen-VL/summary">🤖</a>&nbsp | Qwen-VL-Chat <a href="https://huggingface.co/Qwen/Qwen-VL-Chat">🤗</a> <a href="https://modelscope.cn/models/qwen/Qwen-VL-Chat/summary">🤖</a>&nbsp (Int4: <a href="https://huggingface.co/Qwen/Qwen-VL-Chat-Int4">🤗</a> <a href="https://modelscope.cn/models/qwen/Qwen-VL-Chat-Int4/summary">🤖</a>&nbsp) | Qwen-VL-Plus <a href="https://huggingface.co/spaces/Qwen/Qwen-VL-Plus">🤗</a> <a href="https://modelscope.cn/studios/qwen/Qwen-VL-Chat-Demo/summary">🤖</a>&nbsp | Qwen-VL-Max <a href="https://huggingface.co/spaces/Qwen/Qwen-VL-Max">🤗</a> <a href="https://modelscope.cn/studios/qwen/Qwen-VL-Max/summary">🤖</a>&nbsp <br> <a href="https://tongyi.aliyun.com/qianwen">Web</a>&nbsp&nbsp | &nbsp&nbsp <a href="https://help.aliyun.com/zh/dashscope/developer-reference/vl-plus-quick-start">API</a>&nbsp&nbsp | &nbsp&nbsp <a href="assets/wechat.png">WeChat</a>&nbsp&nbsp | &nbsp&nbsp <a href="https://discord.gg/z3GAxXZ9Ce">Discord</a>&nbsp&nbsp | &nbsp&nbsp <a href="https://arxiv.org/abs/2308.12966">Paper</a>&nbsp&nbsp | &nbsp&nbsp <a href="TUTORIAL.md">Tutorial</a> </p> <br> **Qwen-VL** 是阿里云研发的大规模视觉语言模型(Large Vision Language Model, LVLM)。Qwen-VL 可以以图像、文本、检测框作为输入,并以文本和检测框作为输出。Qwen-VL 系列模型性能强大,具备多语言对话、多图交错对话等能力,并支持中文开放域定位和细粒度图像识别与理解。 **Qwen-VL** (Qwen Large Vision Language Model) is the visual multimodal version of the large model series, Qwen (abbr. Tongyi Qianwen), proposed by Alibaba Cloud. Qwen-VL accepts image, text, and bounding box as inputs, outputs text and bounding box. The features of Qwen-VL include: 目前,我们提供了Qwen-VL和Qwen-VL-Chat两个模型,分别为预训练模型和Chat模型。如果想了解更多关于模型的信息,请点击[链接](https://github.com/QwenLM/Qwen-VL/blob/master/visual_memo.md)查看我们的技术备忘录。本仓库为Qwen-VL-Chat仓库。 We release Qwen-VL and Qwen-VL-Chat, which are pretrained model and Chat model respectively. For more details about Qwen-VL, please refer to our [technical memo](https://github.com/QwenLM/Qwen-VL/blob/master/visual_memo.md). This repo is the one for Qwen-VL. <br> ## 安装要求 (Requirements) * python 3.8及以上版本 * pytorch 1.12及以上版本,推荐2.0及以上版本 * 建议使用CUDA 11.4及以上(GPU用户需考虑此选项) * python 3.8 and above * pytorch 1.12 and above, 2.0 and above are recommended * CUDA 11.4 and above are recommended (this is for GPU users) <br> ## 快速开始 (Quickstart) 我们提供简单的示例来说明如何利用 🤗 Transformers 快速使用 Qwen-VL。 在开始前,请确保你已经配置好环境并安装好相关的代码包。最重要的是,确保你满足上述要求,然后安装相关的依赖库。 Below, we provide simple examples to show how to use Qwen-VL with 🤗 Transformers. Before running the code, make sure you have setup the environment and installed the required packages. Make sure you meet the above requirements, and then install the dependent libraries. ```bash pip install -r requirements.txt ``` 接下来你可以开始使用Transformers来使用我们的模型。关于视觉模块的更多用法,请参考[教程](TUTORIAL.md)。 Now you can start with Transformers. More usage aboue vision encoder, please refer to [tutorial](TUTORIAL_zh.md). #### 🤗 Transformers To use Qwen-VL for the inference, all you need to do is to input a few lines of codes as demonstrated below. However, **please make sure that you are using the latest code.** ```python from transformers import AutoModelForCausalLM, AutoTokenizer from transformers.generation import GenerationConfig import torch torch.manual_seed(1234) tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen-VL", trust_remote_code=True) # use bf16 # model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-VL", device_map="auto", trust_remote_code=True, bf16=True).eval() # use fp16 # model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-VL", device_map="auto", trust_remote_code=True, fp16=True).eval() # use cpu only # model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-VL", device_map="cpu", trust_remote_code=True).eval() # use cuda device model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-VL", device_map="cuda", trust_remote_code=True).eval() # Specify hyperparameters for generation (No need to do this if you are using transformers>=4.32.0) # model.generation_config = GenerationConfig.from_pretrained("Qwen/Qwen-VL", trust_remote_code=True) query = tokenizer.from_list_format([ {'image': 'https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg'}, {'text': 'Generate the caption in English with grounding:'}, ]) inputs = tokenizer(query, return_tensors='pt') inputs = inputs.to(model.device) pred = model.generate(**inputs) response = tokenizer.decode(pred.cpu()[0], skip_special_tokens=False) print(response) # <img>https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg</img>Generate the caption in English with grounding:<ref> Woman</ref><box>(451,379),(731,806)</box> and<ref> her dog</ref><box>(219,424),(576,896)</box> playing on the beach<|endoftext|> image = tokenizer.draw_bbox_on_latest_picture(response) if image: image.save('2.jpg') else: print("no box") ``` <p align="center"> <img src="https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo_spotting_caption.jpg" width="500"/> <p> <br> ## 评测 我们从两个角度评测了两个模型的能力: 1. 在**英文标准 Benchmark** 上评测模型的基础任务能力。目前评测了四大类多模态任务: - Zero-shot Caption: 评测模型在未见过数据集上的零样本图片描述能力; - General VQA: 评测模型的通用问答能力,例如判断题、颜色、个数、类目等问答能力; - Text-based VQA:评测模型对于图片中文字相关的识别/问答能力,例如文档问答、图表问答、文字问答等; - Referring Expression Compression:评测模型给定物体描述画检测框的能力; 2. **试金石 (TouchStone)**:为了评测模型整体的图文对话能力和人类对齐水平。我们为此构建了一个基于 GPT4 打分来评测 LVLM 模型的 Benchmark:TouchStone。在 TouchStone-v0.1 中: - 评测基准总计涵盖 300+张图片、800+道题目、27个类别。包括基础属性问答、人物地标问答、影视作品问答、视觉推理、反事实推理、诗歌创作、故事写作,商品比较、图片解题等**尽可能广泛的类别**。 - 为了弥补目前 GPT4 无法直接读取图片的缺陷,我们给所有的带评测图片提供了**人工标注的充分详细描述**,并且将图片的详细描述、问题和模型的输出结果一起交给 GPT4 打分。 - 评测同时包含英文版本和中文版本。 评测结果如下: We evaluated the model's ability from two perspectives: 1. **Standard Benchmarks**: We evaluate the model's basic task capabilities on four major categories of multimodal tasks: - Zero-shot Caption: Evaluate model's zero-shot image captioning ability on unseen datasets; - General VQA: Evaluate the general question-answering ability of pictures, such as the judgment, color, number, category, etc; - Text-based VQA: Evaluate the model's ability to recognize text in pictures, such as document QA, chart QA, etc; - Referring Expression Comprehension: Evaluate the ability to localize a target object in an image described by a referring expression. 2. **TouchStone**: To evaluate the overall text-image dialogue capability and alignment level with humans, we have constructed a benchmark called TouchStone, which is based on scoring with GPT4 to evaluate the LVLM model. - The TouchStone benchmark covers a total of 300+ images, 800+ questions, and 27 categories. Such as attribute-based Q&A, celebrity recognition, writing poetry, summarizing multiple images, product comparison, math problem solving, etc; - In order to break the current limitation of GPT4 in terms of direct image input, TouchStone provides fine-grained image annotations by human labeling. These detailed annotations, along with the questions and the model's output, are then presented to GPT4 for scoring. - The benchmark includes both English and Chinese versions. The results of the evaluation are as follows: Qwen-VL outperforms current SOTA generalist models on multiple VL tasks and has a more comprehensive coverage in terms of capability range. <p align="center"> <img src="https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/radar.png" width="600"/> <p> ### 零样本图像描述 & 通用视觉问答 (Zero-shot Captioning & General VQA) <table> <thead> <tr> <th rowspan="2">Model type</th> <th rowspan="2">Model</th> <th colspan="2">Zero-shot Captioning</th> <th colspan="5">General VQA</th> </tr> <tr> <th>NoCaps</th> <th>Flickr30K</th> <th>VQAv2<sup>dev</sup></th> <th>OK-VQA</th> <th>GQA</th> <th>SciQA-Img<br>(0-shot)</th> <th>VizWiz<br>(0-shot)</th> </tr> </thead> <tbody align="center"> <tr> <td rowspan="10">Generalist<br>Models</td> <td>Flamingo-9B</td> <td>-</td> <td>61.5</td> <td>51.8</td> <td>44.7</td> <td>-</td> <td>-</td> <td>28.8</td> </tr> <tr> <td>Flamingo-80B</td> <td>-</td> <td>67.2</td> <td>56.3</td> <td>50.6</td> <td>-</td> <td>-</td> <td>31.6</td> </tr> <tr> <td>Unified-IO-XL</td> <td>100.0</td> <td>-</td> <td>77.9</td> <td>54.0</td> <td>-</td> <td>-</td> <td>-</td> </tr> <tr> <td>Kosmos-1</td> <td>-</td> <td>67.1</td> <td>51.0</td> <td>-</td> <td>-</td> <td>-</td> <td>29.2</td> </tr> <tr> <td>Kosmos-2</td> <td>-</td> <td>66.7</td> <td>45.6</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> </tr> <tr> <td>BLIP-2 (Vicuna-13B)</td> <td>103.9</td> <td>71.6</td> <td>65.0</td> <td>45.9</td> <td>32.3</td> <td>61.0</td> <td>19.6</td> </tr> <tr> <td>InstructBLIP (Vicuna-13B)</td> <td><strong>121.9</strong></td> <td>82.8</td> <td>-</td> <td>-</td> <td>49.5</td> <td>63.1</td> <td>33.4</td> </tr> <tr> <td>Shikra (Vicuna-13B)</td> <td>-</td> <td>73.9</td> <td>77.36</td> <td>47.16</td> <td>-</td> <td>-</td> <td>-</td> </tr> <tr> <td><strong>Qwen-VL (Qwen-7B)</strong></td> <td>121.4</td> <td><b>85.8</b></td> <td><b>78.8</b></td> <td><b>58.6</b></td> <td><b>59.3</b></td> <td>67.1</td> <td>35.2</td> </tr> <!-- <tr> <td>Qwen-VL (4-shot)</td> <td>-</td> <td>-</td> <td>-</td> <td>63.6</td> <td>-</td> <td>-</td> <td>39.1</td> </tr> --> <tr> <td>Qwen-VL-Chat</td> <td>120.2</td> <td>81.0</td> <td>78.2</td> <td>56.6</td> <td>57.5</td> <td><b>68.2</b></td> <td><b>38.9</b></td> </tr> <!-- <tr> <td>Qwen-VL-Chat (4-shot)</td> <td>-</td> <td>-</td> <td>-</td> <td>60.6</td> <td>-</td> <td>-</td> <td>44.45</td> </tr> --> <tr> <td>Previous SOTA<br>(Per Task Fine-tuning)</td> <td>-</td> <td>127.0<br>(PALI-17B)</td> <td>84.5<br>(InstructBLIP<br>-FlanT5-XL)</td> <td>86.1<br>(PALI-X<br>-55B)</td> <td>66.1<br>(PALI-X<br>-55B)</td> <td>72.1<br>(CFR)</td> <td>92.53<br>(LLaVa+<br>GPT-4)</td> <td>70.9<br>(PALI-X<br>-55B)</td> </tr> </tbody> </table> - 在 Zero-shot Caption 中,Qwen-VL 在 Flickr30K 数据集上取得了 **SOTA** 的结果,并在 Nocaps 数据集上取得了和 InstructBlip 可竞争的结果。 - 在 General VQA 中,Qwen-VL 取得了 LVLM 模型同等量级和设定下 **SOTA** 的结果。 - For zero-shot image captioning, Qwen-VL achieves the **SOTA** on Flickr30K and competitive results on Nocaps with InstructBlip. - For general VQA, Qwen-VL achieves the **SOTA** under the same generalist LVLM scale settings. ### 文本导向的视觉问答 (Text-oriented VQA) <table> <thead> <tr> <th>Model type</th> <th>Model</th> <th>TextVQA</th> <th>DocVQA</th> <th>ChartQA</th> <th>AI2D</th> <th>OCR-VQA</th> </tr> </thead> <tbody align="center"> <tr> <td rowspan="5">Generalist Models</td> <td>BLIP-2 (Vicuna-13B)</td> <td>42.4</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> </tr> <tr> <td>InstructBLIP (Vicuna-13B)</td> <td>50.7</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> </tr> <tr> <td>mPLUG-DocOwl (LLaMA-7B)</td> <td>52.6</td> <td>62.2</td> <td>57.4</td> <td>-</td> <td>-</td> </tr> <tr> <td>Pic2Struct-Large (1.3B)</td> <td>-</td> <td><b>76.6</b></td> <td>58.6</td> <td>42.1</td> <td>71.3</td> </tr> <tr> <td>Qwen-VL (Qwen-7B)</td> <td><b>63.8</b></td> <td>65.1</td> <td><b>65.7</b></td> <td><b>62.3</b></td> <td><b>75.7</b></td> </tr> <tr> <td>Specialist SOTAs<br>(Specialist/Finetuned)</td> <td>PALI-X-55B (Single-task FT)<br>(Without OCR Pipeline)</td> <td>71.44</td> <td>80.0</td> <td>70.0</td> <td>81.2</td> <td>75.0</td> </tr> </tbody> </table> - 在文字相关的识别/问答评测上,取得了当前规模下通用 LVLM 达到的最好结果。 - 分辨率对上述某几个评测非常重要,大部分 224 分辨率的开源 LVLM 模型无法完成以上评测,或只能通过切图的方式解决。Qwen-VL 将分辨率提升到 448,可以直接以端到端的方式进行以上评测。Qwen-VL 在很多任务上甚至超过了 1024 分辨率的 Pic2Struct-Large 模型。 - In text-related recognition/QA evaluation, Qwen-VL achieves the SOTA under the generalist LVLM scale settings. - Resolution is important for several above evaluations. While most open-source LVLM models with 224 resolution are incapable of these evaluations or can only solve these by cutting images, Qwen-VL scales the resolution to 448 so that it can be evaluated end-to-end. Qwen-VL even outperforms Pic2Struct-Large models of 1024 resolution on some tasks. ### 细粒度视觉定位 (Referring Expression Comprehension) <table> <thead> <tr> <th rowspan="2">Model type</th> <th rowspan="2">Model</th> <th colspan="3">RefCOCO</th> <th colspan="3">RefCOCO+</th> <th colspan="2">RefCOCOg</th> <th>GRIT</th> </tr> <tr> <th>val</th> <th>test-A</th> <th>test-B</th> <th>val</th> <th>test-A</th> <th>test-B</th> <th>val-u</th> <th>test-u</th> <th>refexp</th> </tr> </thead> <tbody align="center"> <tr> <td rowspan="8">Generalist Models</td> <td>GPV-2</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>51.50</td> </tr> <tr> <td>OFA-L*</td> <td>79.96</td> <td>83.67</td> <td>76.39</td> <td>68.29</td> <td>76.00</td> <td>61.75</td> <td>67.57</td> <td>67.58</td> <td>61.70</td> </tr> <tr> <td>Unified-IO</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td><b>78.61</b></td> </tr> <tr> <td>VisionLLM-H</td> <td></td> <td>86.70</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> </tr> <tr> <td>Shikra-7B</td> <td>87.01</td> <td>90.61</td> <td>80.24 </td> <td>81.60</td> <td>87.36</td> <td>72.12</td> <td>82.27</td> <td>82.19</td> <td>69.34</td> </tr> <tr> <td>Shikra-13B</td> <td>87.83 </td> <td>91.11</td> <td>81.81</td> <td>82.89</td> <td>87.79</td> <td>74.41</td> <td>82.64</td> <td>83.16</td> <td>69.03</td> </tr> <tr> <td>Qwen-VL-7B</td> <td><b>89.36</b></td> <td>92.26</td> <td><b>85.34</b></td> <td><b>83.12</b></td> <td>88.25</td> <td><b>77.21</b></td> <td>85.58</td> <td>85.48</td> <td>78.22</td> </tr> <tr> <td>Qwen-VL-7B-Chat</td> <td>88.55</td> <td><b>92.27</b></td> <td>84.51</td> <td>82.82</td> <td><b>88.59</b></td> <td>76.79</td> <td><b>85.96</b></td> <td><b>86.32</b></td> <td>-</td> <tr> <td rowspan="3">Specialist SOTAs<br>(Specialist/Finetuned)</td> <td>G-DINO-L</td> <td>90.56&nbsp;&nbsp;</td> <td>93.19</td> <td>88.24</td> <td>82.75</td> <td>88.95</td> <td>75.92</td> <td>86.13</td> <td>87.02</td> <td>-</td> </tr> <tr> <td>UNINEXT-H</td> <td>92.64 </td> <td>94.33</td> <td>91.46</td> <td>85.24</td> <td>89.63</td> <td>79.79</td> <td>88.73</td> <td>89.37</td> <td>-</td> </tr> <tr> <td>ONE-PEACE</td> <td>92.58 </td> <td>94.18</td> <td>89.26</td> <td>88.77</td> <td>92.21</td> <td>83.23</td> <td>89.22</td> <td>89.27</td> <td>-</td> </tr> </tbody> </table> - 在定位任务上,Qwen-VL 全面超过 Shikra-13B,取得了目前 Generalist LVLM 模型上在 Refcoco 上的 **SOTA**。 - Qwen-VL 并没有在任何中文定位数据上训练过,但通过中文 Caption 数据和 英文 Grounding 数据的训练,可以 Zero-shot 泛化出中文 Grounding 能力。 我们提供了以上**所有**评测脚本以供复现我们的实验结果。请阅读 [eval/EVALUATION.md](eval/EVALUATION.md) 了解更多信息。 - Qwen-VL achieves the **SOTA** in all above referring expression comprehension benchmarks. - Qwen-VL has not been trained on any Chinese grounding data, but it can still generalize to the Chinese Grounding tasks in a zero-shot way by training Chinese Caption data and English Grounding data. We provide all of the above evaluation scripts for reproducing our experimental results. Please read [eval/EVALUATION.md](eval/EVALUATION.md) for more information. ### 闲聊能力测评 (Chat Evaluation) TouchStone 是一个基于 GPT4 打分来评测 LVLM 模型的图文对话能力和人类对齐水平的基准。它涵盖了 300+张图片、800+道题目、27个类别,包括基础属性、人物地标、视觉推理、诗歌创作、故事写作、商品比较、图片解题等**尽可能广泛的类别**。关于 TouchStone 的详细介绍,请参考[touchstone/README_CN.md](touchstone/README_CN.md)了解更多信息。 TouchStone is a benchmark based on scoring with GPT4 to evaluate the abilities of the LVLM model on text-image dialogue and alignment levels with humans. It covers a total of 300+ images, 800+ questions, and 27 categories, such as attribute-based Q&A, celebrity recognition, writing poetry, summarizing multiple images, product comparison, math problem solving, etc. Please read [touchstone/README_CN.md](touchstone/README.md) for more information. #### 英语 (English) | Model | Score | |---------------|-------| | PandaGPT | 488.5 | | MiniGPT4 | 531.7 | | InstructBLIP | 552.4 | | LLaMA-AdapterV2 | 590.1 | | mPLUG-Owl | 605.4 | | LLaVA | 602.7 | | Qwen-VL-Chat | 645.2 | #### 中文 (Chinese) | Model | Score | |---------------|-------| | VisualGLM | 247.1 | | Qwen-VL-Chat | 401.2 | Qwen-VL-Chat 模型在中英文的对齐评测中均取得当前 LVLM 模型下的最好结果。 Qwen-VL-Chat has achieved the best results in both Chinese and English alignment evaluation. <br> ## 常见问题 (FAQ) 如遇到问题,敬请查阅 [FAQ](https://github.com/QwenLM/Qwen-VL/blob/master/FAQ_zh.md)以及issue区,如仍无法解决再提交issue。 If you meet problems, please refer to [FAQ](https://github.com/QwenLM/Qwen-VL/blob/master/FAQ.md) and the issues first to search a solution before you launch a new issue. <br> ## 使用协议 (License Agreement) 研究人员与开发者可使用Qwen-VL和Qwen-VL-Chat或进行二次开发。我们同样允许商业使用,具体细节请查看[LICENSE](https://github.com/QwenLM/Qwen-VL/blob/master/LICENSE)。如需商用,请填写[问卷](https://dashscope.console.aliyun.com/openModelApply/qianwen)申请。 Researchers and developers are free to use the codes and model weights of both Qwen-VL and Qwen-VL-Chat. We also allow their commercial use. Check our license at [LICENSE](LICENSE) for more details. <br> ## 引用 (Citation)[](https://) 如果你觉得我们的论文和代码对你的研究有帮助,请考虑:star: 和引用 :pencil: :) If you find our paper and code useful in your research, please consider giving a star :star: and citation :pencil: :) ```BibTeX @article{Qwen-VL, title={Qwen-VL: A Frontier Large Vision-Language Model with Versatile Abilities}, author={Bai, Jinze and Bai, Shuai and Yang, Shusheng and Wang, Shijie and Tan, Sinan and Wang, Peng and Lin, Junyang and Zhou, Chang and Zhou, Jingren}, journal={arXiv preprint arXiv:2308.12966}, year={2023} } ``` <br> ## 联系我们 (Contact Us) 如果你想给我们的研发团队和产品团队留言,请通过邮件(qianwen_opensource@alibabacloud.com)联系我们。 If you are interested to leave a message to either our research team or product team, feel free to send an email to qianwen_opensource@alibabacloud.com.
dmis-lab/biobert-base-cased-v1.2
dmis-lab
"2021-06-24T02:54:58Z"
62,811
42
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
"2022-03-02T23:29:05Z"
Entry not found
savasy/bert-turkish-text-classification
savasy
"2024-02-01T09:20:44Z"
62,789
19
transformers
[ "transformers", "pytorch", "jax", "safetensors", "bert", "text-classification", "tr", "arxiv:2401.17396", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
"2022-03-02T23:29:05Z"
--- language: tr --- # Turkish Text Classification This model is a fine-tune model of https://github.com/stefan-it/turkish-bert by using text classification data where there are 7 categories as follows ``` code_to_label={ 'LABEL_0': 'dunya ', 'LABEL_1': 'ekonomi ', 'LABEL_2': 'kultur ', 'LABEL_3': 'saglik ', 'LABEL_4': 'siyaset ', 'LABEL_5': 'spor ', 'LABEL_6': 'teknoloji '} ``` ## Citation Please cite the following papers if needed ``` @misc{yildirim2024finetuning, title={Fine-tuning Transformer-based Encoder for Turkish Language Understanding Tasks}, author={Savas Yildirim}, year={2024}, eprint={2401.17396}, archivePrefix={arXiv}, primaryClass={cs.CL} } @book{yildirim2021mastering, title={Mastering Transformers: Build state-of-the-art models from scratch with advanced natural language processing techniques}, author={Yildirim, Savas and Asgari-Chenaghlu, Meysam}, year={2021}, publisher={Packt Publishing Ltd} } ``` ## Data The following Turkish benchmark dataset is used for fine-tuning https://www.kaggle.com/savasy/ttc4900 ## Quick Start Bewgin with installing transformers as follows > pip install transformers ``` # Code: # import libraries from transformers import pipeline, AutoModelForTokenClassification, AutoTokenizer, AutoModelForSequenceClassification tokenizer= AutoTokenizer.from_pretrained("savasy/bert-turkish-text-classification") # build and load model, it take time depending on your internet connection model= AutoModelForSequenceClassification.from_pretrained("savasy/bert-turkish-text-classification") # make pipeline nlp=pipeline("sentiment-analysis", model=model, tokenizer=tokenizer) # apply model nlp("bla bla") # [{'label': 'LABEL_2', 'score': 0.4753005802631378}] code_to_label={ 'LABEL_0': 'dunya ', 'LABEL_1': 'ekonomi ', 'LABEL_2': 'kultur ', 'LABEL_3': 'saglik ', 'LABEL_4': 'siyaset ', 'LABEL_5': 'spor ', 'LABEL_6': 'teknoloji '} code_to_label[nlp("bla bla")[0]['label']] # > 'kultur ' ``` ## How the model was trained ``` ## loading data for Turkish text classification import pandas as pd # https://www.kaggle.com/savasy/ttc4900 df=pd.read_csv("7allV03.csv") df.columns=["labels","text"] df.labels=pd.Categorical(df.labels) traind_df=... eval_df=... # model from simpletransformers.classification import ClassificationModel import torch,sklearn model_args = { "use_early_stopping": True, "early_stopping_delta": 0.01, "early_stopping_metric": "mcc", "early_stopping_metric_minimize": False, "early_stopping_patience": 5, "evaluate_during_training_steps": 1000, "fp16": False, "num_train_epochs":3 } model = ClassificationModel( "bert", "dbmdz/bert-base-turkish-cased", use_cuda=cuda_available, args=model_args, num_labels=7 ) model.train_model(train_df, acc=sklearn.metrics.accuracy_score) ``` For other training models please check https://simpletransformers.ai/ For the detailed usage of Turkish Text Classification please check [python notebook](https://github.com/savasy/TurkishTextClassification/blob/master/Bert_base_Text_Classification_for_Turkish.ipynb)
lakshyakh93/deberta_finetuned_pii
lakshyakh93
"2024-03-08T05:07:37Z"
62,721
48
transformers
[ "transformers", "pytorch", "deberta", "token-classification", "en", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
"2023-10-06T14:19:19Z"
--- license: mit language: - en pipeline_tag: token-classification --- A finetuned model designed to recognize and classify Personally Identifiable Information (PII) within unstructured text data. This powerful model accurately identifies a wide range of PII categories, such as account names, credit card numbers, emails, phone numbers, and addresses. The model is specifically trained to detect various PII types, including but not limited to: ``` | Category | Data | |------------------------|----------------------------------------------------------------------------------------| | Account-related information | Account name, account number, and transaction amounts | | Banking details | BIC, IBAN, and Bitcoin or Ethereum addresses | | Personal information | Full name, first name, middle name, last name, gender, and date of birth | | Contact information | Email, phone number, and street address (including building number, city, county, state, and zip code) | | Job-related data | Job title, job area, job descriptor, and job type | | Financial data | Credit card number, issuer, CVV, and currency information (code, name, and symbol) | | Digital identifiers | IP addresses (IPv4 and IPv6), MAC addresses, and user agents | | Online presence | URL, usernames, and passwords | | Other sensitive data | SSN, vehicle VIN and VRM, phone IMEI, and nearby GPS coordinates | ``` The PII Identifier Model ensures data privacy and compliance by effectively detecting and categorizing sensitive information within documents, emails, user-generated content, and more. Make your data processing safer and more secure with our state-of-the-art PII detection technology. How to do Inference : ``` from transformers import pipeline gen = pipeline("token-classification", "lakshyakh93/deberta_finetuned_pii", device=-1) text = "My name is John and I live in California." output = gen(text, aggregation_strategy="first") ``` For any more details reach out to lakshaya.khandelwal@gmail.com
llava-hf/llava-v1.6-vicuna-7b-hf
llava-hf
"2024-08-16T06:06:46Z"
62,697
17
transformers
[ "transformers", "safetensors", "llava_next", "image-text-to-text", "vision", "en", "arxiv:2310.03744", "license:llama2", "text-generation-inference", "endpoints_compatible", "region:us" ]
image-text-to-text
"2024-03-17T18:00:39Z"
--- tags: - vision - image-text-to-text license: llama2 language: - en pipeline_tag: image-text-to-text --- # LLaVa-Next, leveraging [liuhaotian/llava-v1.6-vicuna-7b](https://huggingface.co/liuhaotian/llava-v1.6-vicuna-7b) as LLM The LLaVA-NeXT model was proposed in [LLaVA-NeXT: Improved reasoning, OCR, and world knowledge](https://llava-vl.github.io/blog/2024-01-30-llava-next/) by Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan Zhang, Sheng Shen, Yong Jae Lee. LLaVa-NeXT (also called LLaVa-1.6) improves upon [LLaVa-1.5](https://huggingface.co/transformers/main/model_doc/llava.html) by increasing the input image resolution and training on an improved visual instruction tuning dataset to improve OCR and common sense reasoning. Disclaimer: The team releasing LLaVa-NeXT did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description LLaVa combines a pre-trained large language model with a pre-trained vision encoder for multimodal chatbot use cases. LLaVA 1.6 improves on LLaVA 1.5 BY: - More diverse and high quality data mixture - Dynamic high resolution ![image/png](https://cdn-uploads.huggingface.co/production/uploads/62441d1d9fdefb55a0b7d12c/FPshq08TKYD0e-qwPLDVO.png) ## Intended uses & limitations You can use the raw model for tasks like image captioning, visual question answering, multimodal chatbot use cases. See the [model hub](https://huggingface.co/models?search=llava-hf) to look for other versions on a task that interests you. ### How to use Here's the prompt template for this model: ``` "A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions. USER: <image>\nWhat is shown in this image? ASSISTANT:" ``` You can load and use the model like following: ```python from transformers import LlavaNextProcessor, LlavaNextForConditionalGeneration import torch from PIL import Image import requests processor = LlavaNextProcessor.from_pretrained("llava-v1.6-vicuna-7b-hf") model = LlavaNextForConditionalGeneration.from_pretrained("llava-v1.6-vicuna-7b-hf", torch_dtype=torch.float16, low_cpu_mem_usage=True) model.to("cuda:0") # prepare image and text prompt, using the appropriate prompt template url = "https://github.com/haotian-liu/LLaVA/blob/1a91fc274d7c35a9b50b3cb29c4247ae5837ce39/images/llava_v1_5_radar.jpg?raw=true" image = Image.open(requests.get(url, stream=True).raw) # Define a chat histiry and use `apply_chat_template` to get correctly formatted prompt # Each value in "content" has to be a list of dicts with types ("text", "image") conversation = [ { "role": "user", "content": [ {"type": "text", "text": "What is shown in this image?"}, {"type": "image"}, ], }, ] prompt = processor.apply_chat_template(conversation, add_generation_prompt=True) inputs = processor(images=image, text=prompt, return_tensors="pt").to("cuda:0") # autoregressively complete prompt output = model.generate(**inputs, max_new_tokens=100) print(processor.decode(output[0], skip_special_tokens=True)) ``` ### Model optimization #### 4-bit quantization through `bitsandbytes` library First make sure to install `bitsandbytes`, `pip install bitsandbytes` and make sure to have access to a CUDA compatible GPU device. Simply change the snippet above with: ```diff model = LlavaNextForConditionalGeneration.from_pretrained( model_id, torch_dtype=torch.float16, low_cpu_mem_usage=True, + load_in_4bit=True ) ``` #### Use Flash-Attention 2 to further speed-up generation First make sure to install `flash-attn`. Refer to the [original repository of Flash Attention](https://github.com/Dao-AILab/flash-attention) regarding that package installation. Simply change the snippet above with: ```diff model = LlavaNextForConditionalGeneration.from_pretrained( model_id, torch_dtype=torch.float16, low_cpu_mem_usage=True, + use_flash_attention_2=True ).to(0) ``` ### BibTeX entry and citation info ```bibtex @misc{liu2023improved, title={Improved Baselines with Visual Instruction Tuning}, author={Haotian Liu and Chunyuan Li and Yuheng Li and Yong Jae Lee}, year={2023}, eprint={2310.03744}, archivePrefix={arXiv}, primaryClass={cs.CV} } ```
timm/eva02_small_patch14_336.mim_in22k_ft_in1k
timm
"2024-02-10T23:37:50Z"
62,015
3
timm
[ "timm", "pytorch", "safetensors", "image-classification", "dataset:imagenet-1k", "dataset:imagenet-22k", "arxiv:2303.11331", "arxiv:2303.15389", "license:mit", "region:us" ]
image-classification
"2023-03-31T04:55:44Z"
--- license: mit library_name: timm tags: - image-classification - timm datasets: - imagenet-1k - imagenet-22k --- # Model card for eva02_small_patch14_336.mim_in22k_ft_in1k An EVA02 image classification model. Pretrained on ImageNet-22k with masked image modeling (using EVA-CLIP as a MIM teacher) and fine-tuned on ImageNet-1k by paper authors. EVA-02 models are vision transformers with mean pooling, SwiGLU, Rotary Position Embeddings (ROPE), and extra LN in MLP (for Base & Large). NOTE: `timm` checkpoints are float32 for consistency with other models. Original checkpoints are float16 or bfloat16 in some cases, see originals if that's preferred. ## Model Details - **Model Type:** Image classification / feature backbone - **Model Stats:** - Params (M): 22.1 - GMACs: 15.5 - Activations (M): 54.3 - Image size: 336 x 336 - **Papers:** - EVA-02: A Visual Representation for Neon Genesis: https://arxiv.org/abs/2303.11331 - EVA-CLIP: Improved Training Techniques for CLIP at Scale: https://arxiv.org/abs/2303.15389 - **Original:** - https://github.com/baaivision/EVA - https://huggingface.co/Yuxin-CV/EVA-02 - **Pretrain Dataset:** ImageNet-22k - **Dataset:** ImageNet-1k ## Model Usage ### Image Classification ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model('eva02_small_patch14_336.mim_in22k_ft_in1k', pretrained=True) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5) ``` ### Image Embeddings ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'eva02_small_patch14_336.mim_in22k_ft_in1k', pretrained=True, num_classes=0, # remove classifier nn.Linear ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor # or equivalently (without needing to set num_classes=0) output = model.forward_features(transforms(img).unsqueeze(0)) # output is unpooled, a (1, 577, 384) shaped tensor output = model.forward_head(output, pre_logits=True) # output is a (1, num_features) shaped tensor ``` ## Model Comparison Explore the dataset and runtime metrics of this model in timm [model results](https://github.com/huggingface/pytorch-image-models/tree/main/results). |model |top1 |top5 |param_count|img_size| |-----------------------------------------------|------|------|-----------|--------| |eva02_large_patch14_448.mim_m38m_ft_in22k_in1k |90.054|99.042|305.08 |448 | |eva02_large_patch14_448.mim_in22k_ft_in22k_in1k|89.946|99.01 |305.08 |448 | |eva_giant_patch14_560.m30m_ft_in22k_in1k |89.792|98.992|1014.45 |560 | |eva02_large_patch14_448.mim_in22k_ft_in1k |89.626|98.954|305.08 |448 | |eva02_large_patch14_448.mim_m38m_ft_in1k |89.57 |98.918|305.08 |448 | |eva_giant_patch14_336.m30m_ft_in22k_in1k |89.56 |98.956|1013.01 |336 | |eva_giant_patch14_336.clip_ft_in1k |89.466|98.82 |1013.01 |336 | |eva_large_patch14_336.in22k_ft_in22k_in1k |89.214|98.854|304.53 |336 | |eva_giant_patch14_224.clip_ft_in1k |88.882|98.678|1012.56 |224 | |eva02_base_patch14_448.mim_in22k_ft_in22k_in1k |88.692|98.722|87.12 |448 | |eva_large_patch14_336.in22k_ft_in1k |88.652|98.722|304.53 |336 | |eva_large_patch14_196.in22k_ft_in22k_in1k |88.592|98.656|304.14 |196 | |eva02_base_patch14_448.mim_in22k_ft_in1k |88.23 |98.564|87.12 |448 | |eva_large_patch14_196.in22k_ft_in1k |87.934|98.504|304.14 |196 | |eva02_small_patch14_336.mim_in22k_ft_in1k |85.74 |97.614|22.13 |336 | |eva02_tiny_patch14_336.mim_in22k_ft_in1k |80.658|95.524|5.76 |336 | ## Citation ```bibtex @article{EVA02, title={EVA-02: A Visual Representation for Neon Genesis}, author={Fang, Yuxin and Sun, Quan and Wang, Xinggang and Huang, Tiejun and Wang, Xinlong and Cao, Yue}, journal={arXiv preprint arXiv:2303.11331}, year={2023} } ``` ```bibtex @article{EVA-CLIP, title={EVA-02: A Visual Representation for Neon Genesis}, author={Sun, Quan and Fang, Yuxin and Wu, Ledell and Wang, Xinlong and Cao, Yue}, journal={arXiv preprint arXiv:2303.15389}, year={2023} } ``` ```bibtex @misc{rw2019timm, author = {Ross Wightman}, title = {PyTorch Image Models}, year = {2019}, publisher = {GitHub}, journal = {GitHub repository}, doi = {10.5281/zenodo.4414861}, howpublished = {\url{https://github.com/huggingface/pytorch-image-models}} } ```
rasa/LaBSE
rasa
"2021-05-20T04:01:27Z"
61,907
20
transformers
[ "transformers", "pytorch", "tf", "jax", "bert", "feature-extraction", "endpoints_compatible", "region:us" ]
feature-extraction
"2022-03-02T23:29:05Z"
Entry not found
sentence-transformers/msmarco-MiniLM-L-12-v3
sentence-transformers
"2024-11-05T16:55:38Z"
61,696
23
sentence-transformers
[ "sentence-transformers", "pytorch", "tf", "jax", "onnx", "safetensors", "openvino", "bert", "feature-extraction", "sentence-similarity", "transformers", "arxiv:1908.10084", "license:apache-2.0", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
"2022-03-02T23:29:05Z"
--- license: apache-2.0 library_name: sentence-transformers tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers pipeline_tag: sentence-similarity --- # sentence-transformers/msmarco-MiniLM-L-12-v3 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search. ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('sentence-transformers/msmarco-MiniLM-L-12-v3') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/msmarco-MiniLM-L-12-v3') model = AutoModel.from_pretrained('sentence-transformers/msmarco-MiniLM-L-12-v3') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, max pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/msmarco-MiniLM-L-12-v3) ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors This model was trained by [sentence-transformers](https://www.sbert.net/). If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084): ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "http://arxiv.org/abs/1908.10084", } ```