modelId
stringlengths
4
81
tags
list
pipeline_tag
stringclasses
17 values
config
dict
downloads
int64
0
59.7M
first_commit
timestamp[ns, tz=UTC]
card
stringlengths
51
438k
AnonymousSub/roberta-base_squad2.0
[ "pytorch", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
{ "architectures": [ "RobertaForQuestionAnswering" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
null
Access to model TLLM/bertbase-twcnstyle-entdebias is restricted and you are not in the authorized list. Visit https://huggingface.co/TLLM/bertbase-twcnstyle-entdebias to ask for access.
AnonymousSub/rule_based_bert_mean_diff_epochs_1_shard_1
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
2023-05-13T10:34:57Z
--- license: bsd-3-clause --- # CodeT5+ 220M ## Model description [CodeT5+](https://github.com/salesforce/CodeT5/tree/main/CodeT5+) is a new family of open code large language models with an encoder-decoder architecture that can flexibly operate in different modes (i.e. _encoder-only_, _decoder-only_, and _encoder-decoder_) to support a wide range of code understanding and generation tasks. It is introduced in the paper: [CodeT5+: Open Code Large Language Models for Code Understanding and Generation](https://arxiv.org/pdf/2305.07922.pdf) by [Yue Wang](https://yuewang-cuhk.github.io/)\*, [Hung Le](https://sites.google.com/view/henryle2018/home?pli=1)\*, [Akhilesh Deepak Gotmare](https://akhileshgotmare.github.io/), [Nghi D.Q. Bui](https://bdqnghi.github.io/), [Junnan Li](https://sites.google.com/site/junnanlics), [Steven C.H. Hoi](https://sites.google.com/view/stevenhoi/home) (* indicates equal contribution). Compared to the original CodeT5 family (base: `220M`, large: `770M`), CodeT5+ is pretrained with a diverse set of pretraining tasks including _span denoising_, _causal language modeling_, _contrastive learning_, and _text-code matching_ to learn rich representations from both unimodal code data and bimodal code-text data. Additionally, it employs a simple yet effective _compute-efficient pretraining_ method to initialize the model components with frozen off-the-shelf LLMs such as [CodeGen](https://github.com/salesforce/CodeGen) to efficiently scale up the model (i.e. `2B`, `6B`, `16B`), and adopts a "shallow encoder and deep decoder" architecture. Furthermore, it is instruction-tuned to align with natural language instructions (see our InstructCodeT5+ 16B) following [Code Alpaca](https://github.com/sahil280114/codealpaca). ## How to use This model can be easily loaded using the `T5ForConditionalGeneration` functionality and employs the same tokenizer as original [CodeT5](https://github.com/salesforce/CodeT5). ```python from transformers import T5ForConditionalGeneration, AutoTokenizer checkpoint = "Salesforce/codet5p-220m" device = "cuda" # for GPU usage or "cpu" for CPU usage tokenizer = AutoTokenizer.from_pretrained(checkpoint) model = T5ForConditionalGeneration.from_pretrained(checkpoint).to(device) inputs = tokenizer.encode("def print_hello_world():<extra_id_0>", return_tensors="pt").to(device) outputs = model.generate(inputs, max_length=10) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) # ==> print "Hello World" ``` ## Pretraining data This checkpoint is trained on the stricter permissive subset of the deduplicated version of the [github-code dataset](https://huggingface.co/datasets/codeparrot/github-code). The data is preprocessed by reserving only permissively licensed code ("mit" “apache-2”, “bsd-3-clause”, “bsd-2-clause”, “cc0-1.0”, “unlicense”, “isc”). Supported languages (9 in total) are as follows: `c`, `c++`, `c-sharp`, `go`, `java`, `javascript`, `php`, `python`, `ruby.` ## Training procedure This checkpoint is trained on the unimodal code data at the first-stage pretraining, which includes a diverse set of pretraining tasks including _span denoising_ and two variants of _causal language modeling_. Please refer to the paper for more details. ## Evaluation results CodeT5+ models have been comprehensively evaluated on a wide range of code understanding and generation tasks in various settings: _zero-shot_, _finetuning_, and _instruction-tuning_. Specifically, CodeT5+ yields substantial performance gains on many downstream tasks compared to their SoTA baselines, e.g., 8 text-to-code retrieval tasks (+3.2 avg. MRR), 2 line-level code completion tasks (+2.1 avg. Exact Match), and 2 retrieval-augmented code generation tasks (+5.8 avg. BLEU-4). In 2 math programming tasks on MathQA-Python and GSM8K-Python, CodeT5+ models of below billion-parameter sizes significantly outperform many LLMs of up to 137B parameters. Particularly, in the zero-shot text-to-code generation task on HumanEval benchmark, InstructCodeT5+ 16B sets new SoTA results of 35.0% pass@1 and 54.5% pass@10 against other open code LLMs, even surpassing the closed-source OpenAI code-cushman-001 mode Please refer to the [paper](https://arxiv.org/pdf/2305.07922.pdf) for more details. ## BibTeX entry and citation info ```bibtex @article{wang2023codet5plus, title={CodeT5+: Open Code Large Language Models for Code Understanding and Generation}, author={Wang, Yue and Le, Hung and Gotmare, Akhilesh Deepak and Bui, Nghi D.Q. and Li, Junnan and Hoi, Steven C. H.}, journal={arXiv preprint}, year={2023} } ```
AnonymousSub/rule_based_hier_quadruplet_epochs_1_shard_1
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
--- language: en tags: - multivae license: apache-2.0 --- ### Downloading this model from the Hub This model was trained with multivae. It can be downloaded or reloaded using the method `load_from_hf_hub` ```python >>> from multivae.models import AutoModel >>> model = AutoModel.load_from_hf_hub(hf_hub_path="your_hf_username/repo_name") ```
AnonymousSub/rule_based_hier_triplet_epochs_1_shard_1_squad2.0
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
{ "architectures": [ "BertForQuestionAnswering" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
2
null
--- license: mit tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: student_offense_distilled_asda_gpt_ok results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # student_offense_distilled_asda_gpt_ok This model is a fine-tuned version of [racai/distilbert-base-romanian-cased](https://huggingface.co/racai/distilbert-base-romanian-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3707 - Accuracy: 0.7934 - F1: 0.7943 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:| | 0.3887 | 1.0 | 14934 | 0.4498 | 0.7468 | 0.7514 | | 0.336 | 2.0 | 29868 | 0.4083 | 0.7854 | 0.7862 | | 0.2658 | 3.0 | 44802 | 0.3834 | 0.7870 | 0.7885 | | 0.2667 | 4.0 | 59736 | 0.3738 | 0.7998 | 0.8004 | | 0.2466 | 5.0 | 74670 | 0.3707 | 0.7934 | 0.7943 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
AnonymousSub/rule_based_roberta_only_classfn_twostage_epochs_1_shard_1_squad2.0
[ "pytorch", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
{ "architectures": [ "RobertaForQuestionAnswering" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
2
null
Trained in 4-bit on pygmalion-6b as POC Uses the GPTeacher roleplay dataset. ``` INFO:Getting model ready... INFO:Prepping for training... INFO:Creating LoRA model... INFO:Starting training... {'loss': 12.5737, 'learning_rate': 0.0002926829268292683, 'epoch': 0.33} {'loss': 8.5515, 'learning_rate': 0.0002560975609756097, 'epoch': 0.67} {'loss': 7.5768, 'learning_rate': 0.0002195121951219512, 'epoch': 1.0} {'loss': 6.9769, 'learning_rate': 0.00018292682926829266, 'epoch': 1.33} {'loss': 6.6842, 'learning_rate': 0.00014634146341463414, 'epoch': 1.66} {'loss': 6.3925, 'learning_rate': 0.0001097560975609756, 'epoch': 2.0} {'loss': 6.041, 'learning_rate': 7.317073170731707e-05, 'epoch': 2.33} {'loss': 5.6818, 'learning_rate': 3.6585365853658535e-05, 'epoch': 2.66} {'loss': 5.4639, 'learning_rate': 0.0, 'epoch': 2.99} {'train_runtime': 960.7748, 'train_samples_per_second': 6.005, 'train_steps_per_second': 0.047, 'train_loss': 7.326934729682074, 'epoch': 2.99} INFO:LoRA training run is completed and saved. INFO:Training complete! ``` I used the electricity so might as well post it.
AnonymousSub/rule_based_roberta_twostage_quadruplet_epochs_1_shard_1_wikiqa
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "RobertaForSequenceClassification" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
24
null
--- language: - multilingual - af - am - ar - ast - az - ba - be - bg - bn - br - bs - ca - ceb - cs - cy - da - de - el - en - es - et - fa - ff - fi - fr - fy - ga - gd - gl - gu - ha - he - hi - hr - ht - hu - hy - id - ig - ilo - is - it - ja - jv - ka - kk - km - kn - ko - lb - lg - ln - lo - lt - lv - mg - mk - ml - mn - mr - ms - my - ne - nl - no - ns - oc - or - pa - pl - ps - pt - ro - ru - sd - si - sk - sl - so - sq - sr - ss - su - sv - sw - ta - th - tl - tn - tr - uk - ur - uz - vi - wo - xh - yi - yo - zh - zu license: mit --- https://huggingface.co/facebook/m2m100_1.2B <br /> https://github.com/facebookresearch/fairseq/tree/nllb/examples/m2m_100 ``` ct2-fairseq-converter --data_dir . --model_path 1.2B_last_checkpoint.pt --fixed_dictionary model_dict.128k.txt --quantization float16 --output_dir converted/m2m_100_1.2b_ct2_float16 ``` External language dictionary is not provided; use lang-pairs to infer the set of supported languages. The language ordering is not stable which might cause misalignment in pretraining and finetuning. ``` wget https://dl.fbaipublicfiles.com/m2m_100/model_dict.128k.txt # 1.2B parameter model wget https://dl.fbaipublicfiles.com/m2m_100/1.2B_last_checkpoint.pt ```
AnonymousSub/rule_based_roberta_twostagequadruplet_hier_epochs_1_shard_1_wikiqa
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "RobertaForSequenceClassification" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
25
2023-05-13T13:01:28Z
--- language: - multilingual - af - am - ar - ast - az - ba - be - bg - bn - br - bs - ca - ceb - cs - cy - da - de - el - en - es - et - fa - ff - fi - fr - fy - ga - gd - gl - gu - ha - he - hi - hr - ht - hu - hy - id - ig - ilo - is - it - ja - jv - ka - kk - km - kn - ko - lb - lg - ln - lo - lt - lv - mg - mk - ml - mn - mr - ms - my - ne - nl - no - ns - oc - or - pa - pl - ps - pt - ro - ru - sd - si - sk - sl - so - sq - sr - ss - su - sv - sw - ta - th - tl - tn - tr - uk - ur - uz - vi - wo - xh - yi - yo - zh - zu license: mit --- https://huggingface.co/facebook/m2m100_418M <br /> https://github.com/facebookresearch/fairseq/tree/nllb/examples/m2m_100 ``` ct2-fairseq-converter --data_dir . --model_path 418M_last_checkpoint.pt --fixed_dictionary model_dict.128k.txt --output_dir converted/m2m_100_418m_ct2 ``` External language dictionary is not provided; use lang-pairs to infer the set of supported languages. The language ordering is not stable which might cause misalignment in pretraining and finetuning. ``` wget https://dl.fbaipublicfiles.com/m2m_100/model_dict.128k.txt # 418M parameter model wget https://dl.fbaipublicfiles.com/m2m_100/418M_last_checkpoint.pt ```
AnonymousSub/rule_based_roberta_twostagetriplet_epochs_1_shard_10
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "RobertaModel" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
1
null
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme config: PAN-X.de split: validation args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8609120891618334 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1400 - F1: 0.8609 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2581 | 1.0 | 525 | 0.1584 | 0.8233 | | 0.1252 | 2.0 | 1050 | 0.1384 | 0.8491 | | 0.0811 | 3.0 | 1575 | 0.1400 | 0.8609 | ### Framework versions - Transformers 4.29.1 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
AnonymousSub/rule_based_roberta_twostagetriplet_hier_epochs_1_shard_1_wikiqa
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "RobertaForSequenceClassification" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
23
null
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-PixelCopter-v1.0.0 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 22.50 +/- 15.27 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
AnonymousSub/rule_based_twostage_quadruplet_epochs_1_shard_1_wikiqa
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
30
null
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- # Model Card for MYXGRL ## Model Description - **Developed by:** BADMONK - **Model type:** Dreambooth Model + Extracted LoRA - **Language(s) (NLP):** EN - **License:** Creativeml-Openrail-M - **Parent Model:** ChilloutMix # How to Get Started with the Model Use the code below to get started with the model. ### MYXGRL ###
AnonymousSub/rule_based_twostagetriplet_epochs_1_shard_1_wikiqa
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
27
null
--- license: mit tags: - generated_from_trainer model-index: - name: mlm-20230513-indobert-large-p1-002-pt1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mlm-20230513-indobert-large-p1-002-pt1 This model is a fine-tuned version of [indobenchmark/indobert-large-p1](https://huggingface.co/indobenchmark/indobert-large-p1) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.1513 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 284 | 3.7844 | | 4.4953 | 2.0 | 568 | 3.0374 | | 4.4953 | 3.0 | 852 | 2.7386 | | 2.9063 | 4.0 | 1136 | 2.5432 | | 2.9063 | 5.0 | 1420 | 2.3463 | | 2.4449 | 6.0 | 1704 | 2.3084 | | 2.4449 | 7.0 | 1988 | 2.2064 | | 2.2361 | 8.0 | 2272 | 2.1498 | | 2.1263 | 9.0 | 2556 | 2.1531 | | 2.1263 | 10.0 | 2840 | 2.1542 | ### Framework versions - Transformers 4.29.1 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
AnonymousSub/rule_based_twostagetriplet_hier_epochs_1_shard_1
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
null
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: aalonso-developer/vit-base-patch16-224-in21k-euroSat results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # aalonso-developer/vit-base-patch16-224-in21k-euroSat This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0212 - Train Accuracy: 0.9992 - Train Top-3-accuracy: 1.0000 - Validation Loss: 0.0613 - Validation Accuracy: 0.9864 - Validation Top-3-accuracy: 0.9998 - Epoch: 4 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'inner_optimizer': {'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 3590, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000} - training_precision: mixed_float16 ### Training results | Train Loss | Train Accuracy | Train Top-3-accuracy | Validation Loss | Validation Accuracy | Validation Top-3-accuracy | Epoch | |:----------:|:--------------:|:--------------------:|:---------------:|:-------------------:|:-------------------------:|:-----:| | 0.4737 | 0.9429 | 0.9862 | 0.1568 | 0.9788 | 0.9993 | 0 | | 0.0998 | 0.9878 | 0.9996 | 0.1010 | 0.9805 | 0.9993 | 1 | | 0.0503 | 0.9946 | 0.9999 | 0.0720 | 0.9857 | 0.9998 | 2 | | 0.0297 | 0.9978 | 1.0000 | 0.0606 | 0.9881 | 0.9995 | 3 | | 0.0212 | 0.9992 | 1.0000 | 0.0613 | 0.9864 | 0.9998 | 4 | ### Framework versions - Transformers 4.29.1 - TensorFlow 2.11.0 - Datasets 2.12.0 - Tokenizers 0.13.3
AnonymousSub/rule_based_twostagetriplet_hier_epochs_1_shard_1_wikiqa
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
27
null
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Find your model_id: JoeyAndFriends/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
AnonymousSub/unsup-consert-papers
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
2
2023-05-13T13:48:42Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 194.18 +/- 78.91 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
AnonymousSubmission/pretrained-model-1
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: kids_phoneme_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # kids_phoneme_model This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.0396 - Cer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 50.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Cer | |:-------------:|:-----:|:----:|:---------------:|:---:| | 8.5987 | 0.1 | 5 | 7.0863 | 1.0 | | 5.1336 | 0.2 | 10 | 5.3871 | 1.0 | | 7.9056 | 0.3 | 15 | 4.7258 | 1.0 | | 3.0144 | 0.4 | 20 | 3.3174 | 1.0 | | 2.9792 | 0.5 | 25 | 3.1880 | 1.0 | | 3.0351 | 0.6 | 30 | 3.1787 | 1.0 | | 2.8973 | 0.7 | 35 | 3.1322 | 1.0 | | 3.0372 | 0.8 | 40 | 3.0880 | 1.0 | | 2.8416 | 0.9 | 45 | 3.0501 | 1.0 | | 2.9727 | 1.0 | 50 | 3.0396 | 1.0 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.0+cu118 - Datasets 2.12.1.dev0 - Tokenizers 0.13.3
Apisate/Discord-Ai-Bot
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
11
null
This is GGML format quantised 4bit and 8bit model of Eric Hartford's 'uncensored' training of Wizard-Vicuna 13B. This version is quantized using older version of llama.cpp (cf348a6) so it can be used with oobabooga/text-generation-webui.
ArBert/bert-base-uncased-finetuned-ner-gmm
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- language: - en tags: - feature-extraction - sentence-similarity datasets: - biu-nlp/abstract-sim widgets: - sentence-similarity - feature-extraction --- A model for mapping abstract sentence descriptions to sentences that fit the descriptions. Trained on Wikipedia. Use ```load_finetuned_model``` to load the query and sentence encoder, and ```encode_batch()``` to encode a sentence with the model. ```python from transformers import AutoTokenizer, AutoModel import torch from typing import List from sklearn.metrics.pairwise import cosine_similarity def load_finetuned_model(): sentence_encoder = AutoModel.from_pretrained("biu-nlp/abstract-sim-sentence") query_encoder = AutoModel.from_pretrained("biu-nlp/abstract-sim-query") tokenizer = AutoTokenizer.from_pretrained("biu-nlp/abstract-sim-sentence") return tokenizer, query_encoder, sentence_encoder def encode_batch(model, tokenizer, sentences: List[str], device: str): input_ids = tokenizer(sentences, padding=True, max_length=512, truncation=True, return_tensors="pt", add_special_tokens=True).to(device) features = model(**input_ids)[0] features = torch.sum(features[:,1:,:] * input_ids["attention_mask"][:,1:].unsqueeze(-1), dim=1) / torch.clamp(torch.sum(input_ids["attention_mask"][:,1:], dim=1, keepdims=True), min=1e-9) return features ``` Usage example: ```python tokenizer, query_encoder, sentence_encoder = load_finetuned_model() relevant_sentences = ["Fingersoft's parent company is the Finger Group.", "WHIRC – a subsidiary company of Wright-Hennepin", "CK Life Sciences International (Holdings) Inc. (), or CK Life Sciences, is a subsidiary of CK Hutchison Holdings", "EM Microelectronic-Marin (subsidiary of The Swatch Group).", "The company is currently a division of the corporate group Jam Industries.", "Volt Technical Resources is a business unit of Volt Workforce Solutions, a subsidiary of Volt Information Sciences (currently trading over-the-counter as VISI.)." ] irrelevant_sentences = ["The second company is deemed to be a subsidiary of the parent company.", "The company has gone through more than one incarnation.", "The company is owned by its employees.", "Larger companies compete for market share by acquiring smaller companies that may own a particular market sector.", "A parent company is a company that owns 51% or more voting stock in another firm (or subsidiary).", "It is a holding company that provides services through its subsidiaries in the following areas: oil and gas, industrial and infrastructure, government and power.", "RXVT Technologies is no longer a subsidiary of the parent company." ] all_sentences = relevant_sentences + irrelevant_sentences query = "<query>: A company is a part of a larger company." embeddings = encode_batch(sentence_encoder, tokenizer, all_sentences, "cpu").detach().cpu().numpy() query_embedding = encode_batch(query_encoder, tokenizer, [query], "cpu").detach().cpu().numpy() sims = cosine_similarity(query_embedding, embeddings)[0] sentences_sims = list(zip(all_sentences, sims)) sentences_sims.sort(key=lambda x: x[1], reverse=True) for s, sim in sentences_sims: print(s, sim) ``` Expected output: ``` WHIRC – a subsidiary company of Wright-Hennepin 0.9396286 EM Microelectronic-Marin (subsidiary of The Swatch Group). 0.93929046 Fingersoft's parent company is the Finger Group. 0.936247 CK Life Sciences International (Holdings) Inc. (), or CK Life Sciences, is a subsidiary of CK Hutchison Holdings 0.9350312 The company is currently a division of the corporate group Jam Industries. 0.9273489 Volt Technical Resources is a business unit of Volt Workforce Solutions, a subsidiary of Volt Information Sciences (currently trading over-the-counter as VISI.). 0.9005086 The second company is deemed to be a subsidiary of the parent company. 0.6723645 It is a holding company that provides services through its subsidiaries in the following areas: oil and gas, industrial and infrastructure, government and power. 0.60081375 A parent company is a company that owns 51% or more voting stock in another firm (or subsidiary). 0.59490484 The company is owned by its employees. 0.55286574 RXVT Technologies is no longer a subsidiary of the parent company. 0.4321953 The company has gone through more than one incarnation. 0.38889483 Larger companies compete for market share by acquiring smaller companies that may own a particular market sector. 0.25472647 ```
Araby/Arabic-TTS
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: islamic_qa results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # islamic_qa This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1717 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 120 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 11 | 3.1441 | | No log | 2.0 | 22 | 2.9286 | | No log | 3.0 | 33 | 2.7457 | | No log | 4.0 | 44 | 2.5833 | | No log | 5.0 | 55 | 2.4321 | | No log | 6.0 | 66 | 2.2999 | | No log | 7.0 | 77 | 2.1775 | | No log | 8.0 | 88 | 2.0746 | | No log | 9.0 | 99 | 1.9797 | | No log | 10.0 | 110 | 1.8859 | | No log | 11.0 | 121 | 1.8029 | | No log | 12.0 | 132 | 1.7232 | | No log | 13.0 | 143 | 1.6503 | | No log | 14.0 | 154 | 1.5891 | | No log | 15.0 | 165 | 1.5228 | | No log | 16.0 | 176 | 1.4632 | | No log | 17.0 | 187 | 1.4108 | | No log | 18.0 | 198 | 1.3575 | | No log | 19.0 | 209 | 1.3103 | | No log | 20.0 | 220 | 1.2638 | | No log | 21.0 | 231 | 1.2153 | | No log | 22.0 | 242 | 1.1701 | | No log | 23.0 | 253 | 1.1310 | | No log | 24.0 | 264 | 1.0866 | | No log | 25.0 | 275 | 1.0509 | | No log | 26.0 | 286 | 1.0171 | | No log | 27.0 | 297 | 0.9829 | | No log | 28.0 | 308 | 0.9542 | | No log | 29.0 | 319 | 0.9152 | | No log | 30.0 | 330 | 0.8851 | | No log | 31.0 | 341 | 0.8544 | | No log | 32.0 | 352 | 0.8278 | | No log | 33.0 | 363 | 0.8037 | | No log | 34.0 | 374 | 0.7745 | | No log | 35.0 | 385 | 0.7502 | | No log | 36.0 | 396 | 0.7238 | | No log | 37.0 | 407 | 0.7018 | | No log | 38.0 | 418 | 0.6780 | | No log | 39.0 | 429 | 0.6555 | | No log | 40.0 | 440 | 0.6354 | | No log | 41.0 | 451 | 0.6164 | | No log | 42.0 | 462 | 0.5978 | | No log | 43.0 | 473 | 0.5804 | | No log | 44.0 | 484 | 0.5567 | | No log | 45.0 | 495 | 0.5464 | | 1.5905 | 46.0 | 506 | 0.5234 | | 1.5905 | 47.0 | 517 | 0.5087 | | 1.5905 | 48.0 | 528 | 0.4961 | | 1.5905 | 49.0 | 539 | 0.4807 | | 1.5905 | 50.0 | 550 | 0.4663 | | 1.5905 | 51.0 | 561 | 0.4514 | | 1.5905 | 52.0 | 572 | 0.4411 | | 1.5905 | 53.0 | 583 | 0.4253 | | 1.5905 | 54.0 | 594 | 0.4170 | | 1.5905 | 55.0 | 605 | 0.4028 | | 1.5905 | 56.0 | 616 | 0.3945 | | 1.5905 | 57.0 | 627 | 0.3828 | | 1.5905 | 58.0 | 638 | 0.3736 | | 1.5905 | 59.0 | 649 | 0.3638 | | 1.5905 | 60.0 | 660 | 0.3530 | | 1.5905 | 61.0 | 671 | 0.3476 | | 1.5905 | 62.0 | 682 | 0.3373 | | 1.5905 | 63.0 | 693 | 0.3260 | | 1.5905 | 64.0 | 704 | 0.3213 | | 1.5905 | 65.0 | 715 | 0.3156 | | 1.5905 | 66.0 | 726 | 0.3069 | | 1.5905 | 67.0 | 737 | 0.3019 | | 1.5905 | 68.0 | 748 | 0.2943 | | 1.5905 | 69.0 | 759 | 0.2877 | | 1.5905 | 70.0 | 770 | 0.2798 | | 1.5905 | 71.0 | 781 | 0.2765 | | 1.5905 | 72.0 | 792 | 0.2719 | | 1.5905 | 73.0 | 803 | 0.2653 | | 1.5905 | 74.0 | 814 | 0.2602 | | 1.5905 | 75.0 | 825 | 0.2567 | | 1.5905 | 76.0 | 836 | 0.2530 | | 1.5905 | 77.0 | 847 | 0.2468 | | 1.5905 | 78.0 | 858 | 0.2413 | | 1.5905 | 79.0 | 869 | 0.2376 | | 1.5905 | 80.0 | 880 | 0.2347 | | 1.5905 | 81.0 | 891 | 0.2301 | | 1.5905 | 82.0 | 902 | 0.2269 | | 1.5905 | 83.0 | 913 | 0.2240 | | 1.5905 | 84.0 | 924 | 0.2211 | | 1.5905 | 85.0 | 935 | 0.2170 | | 1.5905 | 86.0 | 946 | 0.2147 | | 1.5905 | 87.0 | 957 | 0.2114 | | 1.5905 | 88.0 | 968 | 0.2090 | | 1.5905 | 89.0 | 979 | 0.2076 | | 1.5905 | 90.0 | 990 | 0.2050 | | 0.5451 | 91.0 | 1001 | 0.2020 | | 0.5451 | 92.0 | 1012 | 0.1991 | | 0.5451 | 93.0 | 1023 | 0.1981 | | 0.5451 | 94.0 | 1034 | 0.1959 | | 0.5451 | 95.0 | 1045 | 0.1929 | | 0.5451 | 96.0 | 1056 | 0.1911 | | 0.5451 | 97.0 | 1067 | 0.1903 | | 0.5451 | 98.0 | 1078 | 0.1882 | | 0.5451 | 99.0 | 1089 | 0.1865 | | 0.5451 | 100.0 | 1100 | 0.1854 | | 0.5451 | 101.0 | 1111 | 0.1846 | | 0.5451 | 102.0 | 1122 | 0.1829 | | 0.5451 | 103.0 | 1133 | 0.1815 | | 0.5451 | 104.0 | 1144 | 0.1806 | | 0.5451 | 105.0 | 1155 | 0.1797 | | 0.5451 | 106.0 | 1166 | 0.1784 | | 0.5451 | 107.0 | 1177 | 0.1767 | | 0.5451 | 108.0 | 1188 | 0.1760 | | 0.5451 | 109.0 | 1199 | 0.1756 | | 0.5451 | 110.0 | 1210 | 0.1748 | | 0.5451 | 111.0 | 1221 | 0.1743 | | 0.5451 | 112.0 | 1232 | 0.1737 | | 0.5451 | 113.0 | 1243 | 0.1732 | | 0.5451 | 114.0 | 1254 | 0.1727 | | 0.5451 | 115.0 | 1265 | 0.1723 | | 0.5451 | 116.0 | 1276 | 0.1720 | | 0.5451 | 117.0 | 1287 | 0.1718 | | 0.5451 | 118.0 | 1298 | 0.1717 | | 0.5451 | 119.0 | 1309 | 0.1717 | | 0.5451 | 120.0 | 1320 | 0.1717 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
ArashEsk95/bert-base-uncased-finetuned-stsb
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: other tags: - vision - image-segmentation - generated_from_trainer model-index: - name: segformer-b0-finetuned-segments-test results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # segformer-b0-finetuned-segments-test This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the bilal01/stamp-verification-test dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
ArjunKadya/HuggingFace
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 tags: - image-classification - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: finetuned-indian-food results: - task: name: Image Classification type: image-classification dataset: name: indian_food_images type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9436769394261424 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned-indian-food This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the indian_food_images dataset. It achieves the following results on the evaluation set: - Loss: 0.2342 - Accuracy: 0.9437 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.1912 | 0.3 | 100 | 0.9449 | 0.8470 | | 0.7387 | 0.6 | 200 | 0.5696 | 0.8969 | | 0.6616 | 0.9 | 300 | 0.4609 | 0.8969 | | 0.4093 | 1.2 | 400 | 0.4250 | 0.8937 | | 0.3707 | 1.5 | 500 | 0.3226 | 0.9182 | | 0.3725 | 1.8 | 600 | 0.3941 | 0.8895 | | 0.2317 | 2.1 | 700 | 0.2870 | 0.9309 | | 0.256 | 2.4 | 800 | 0.2753 | 0.9267 | | 0.2077 | 2.7 | 900 | 0.2698 | 0.9341 | | 0.1442 | 3.0 | 1000 | 0.2775 | 0.9288 | | 0.2138 | 3.3 | 1100 | 0.2342 | 0.9437 | | 0.1862 | 3.6 | 1200 | 0.2412 | 0.9394 | | 0.142 | 3.9 | 1300 | 0.2347 | 0.9437 | ### Framework versions - Transformers 4.29.2 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
Arpita/opus-mt-en-ro-finetuned-syn-to-react
[ "pytorch", "tensorboard", "marian", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "MarianMTModel" ], "model_type": "marian", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
9
null
--- language: en tags: - multivae license: apache-2.0 --- ### Downloading this model from the Hub This model was trained with multivae. It can be downloaded or reloaded using the method `load_from_hf_hub` ```python >>> from multivae.models import AutoModel >>> model = AutoModel.load_from_hf_hub(hf_hub_path="your_hf_username/repo_name") ```
Arpita/opus-mt-en-ro-finetuned-synthon-to-reactant
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: openrail tags: - document-image-binarization - image-segmentation - generated_from_trainer model-index: - name: binarization-segformer-b3 results: [] pipeline_tag: image-segmentation --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # binarization-segformer-b3 This model is a fine-tuned version of [nvidia/segformer-b3](https://huggingface.co/nvidia/segformer-b3-finetuned-cityscapes-1024-1024) on the same ensemble of 13 datasets as the [SauvolaNet](https://arxiv.org/pdf/2105.05521.pdf) work publicly available in their GitHub [repository](https://github.com/Leedeng/SauvolaNet#datasets). It achieves the following results on the evaluation set on DIBCO metrics: - loss: 0.1017 - F-measure: 0.9776 - pseudo F-measure: 0.9531 - PSNR: 14.5040 - DRD: 5.3749 with PSNR the peak signal-to-noise ratio and DRD the distance reciprocal distortion. For more information on the above DIBCO metrics, see the 2017 introductory [paper](https://ieeexplore.ieee.org/document/8270159). **Warning:** This model only accepts images with a resolution of 640 due to GPU compute constraints on Colab free tier during training. ## Model description This model is part of on-going research on pure semantic segmentation models as a formulation of document image binarization (DIBCO). This is in contrast to the late trend of adapting classic binarization algorithms with neural networks, such as [DeepOtsu](https://arxiv.org/abs/1901.06081) or the aforementioned SauvolaNet work as extensions of the classical Otsu's method and Sauvola thresholding algorithm, respectively. ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 10 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 50 - num_epochs: 50 ### Training results | training loss | epoch | step | validation loss | F-measure | pseudo F-measure | PSNR | DRD | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:-------:|:--------:| | 0.6667 | 1.03 | 10 | 0.6683 | 0.7127 | 0.6831 | 4.8248 | 107.2894 | | 0.6371 | 2.05 | 20 | 0.6390 | 0.8173 | 0.7360 | 6.1079 | 69.7770 | | 0.587 | 3.08 | 30 | 0.5652 | 0.8934 | 0.8187 | 7.9143 | 40.5464 | | 0.5288 | 4.1 | 40 | 0.4926 | 0.9240 | 0.8554 | 9.2247 | 27.4220 | | 0.4601 | 5.13 | 50 | 0.4244 | 0.9490 | 0.8944 | 10.8830 | 16.8051 | | 0.3864 | 6.15 | 60 | 0.3446 | 0.9638 | 0.9218 | 12.3460 | 10.6997 | | 0.3331 | 7.18 | 70 | 0.3055 | 0.9693 | 0.9317 | 13.0531 | 8.5298 | | 0.2821 | 8.21 | 80 | 0.2512 | 0.9736 | 0.9427 | 13.6929 | 6.8343 | | 0.2392 | 9.23 | 90 | 0.2112 | 0.9744 | 0.9462 | 13.8825 | 6.4094 | | 0.2126 | 10.26 | 100 | 0.1948 | 0.9743 | 0.9433 | 13.8424 | 6.5637 | | 0.1889 | 11.28 | 110 | 0.1710 | 0.9749 | 0.9499 | 13.9784 | 6.1757 | | 0.1662 | 12.31 | 120 | 0.1604 | 0.9753 | 0.9495 | 14.0450 | 6.0929 | | 0.1506 | 13.33 | 130 | 0.1451 | 0.9750 | 0.9550 | 14.0028 | 6.1031 | | 0.1359 | 14.36 | 140 | 0.1362 | 0.9759 | 0.9501 | 14.1383 | 5.9699 | | 0.1321 | 15.38 | 150 | 0.1351 | 0.9761 | 0.9485 | 14.1907 | 5.9045 | | 0.1283 | 16.41 | 160 | 0.1266 | 0.9758 | 0.9541 | 14.1515 | 5.8287 | | 0.1198 | 17.44 | 170 | 0.1232 | 0.9763 | 0.9535 | 14.2411 | 5.7300 | | 0.1151 | 18.46 | 180 | 0.1232 | 0.9765 | 0.9482 | 14.2788 | 5.8266 | | 0.1146 | 19.49 | 190 | 0.1183 | 0.9764 | 0.9530 | 14.2363 | 5.7922 | | 0.1027 | 20.51 | 200 | 0.1162 | 0.9765 | 0.9535 | 14.2867 | 5.6246 | | 0.1051 | 21.54 | 210 | 0.1146 | 0.9766 | 0.9551 | 14.2963 | 5.6159 | | 0.1095 | 22.56 | 220 | 0.1159 | 0.9767 | 0.9497 | 14.3153 | 5.8966 | | 0.1076 | 23.59 | 230 | 0.1106 | 0.9768 | 0.9533 | 14.3267 | 5.6436 | | 0.1006 | 24.62 | 240 | 0.1113 | 0.9769 | 0.9483 | 14.3683 | 5.6679 | | 0.1077 | 25.64 | 250 | 0.1086 | 0.9770 | 0.9544 | 14.3843 | 5.4949 | | 0.0966 | 26.67 | 260 | 0.1077 | 0.9770 | 0.9553 | 14.3660 | 5.5337 | | 0.0958 | 27.69 | 270 | 0.1071 | 0.9773 | 0.9529 | 14.4405 | 5.4582 | | 0.0984 | 28.72 | 280 | 0.1055 | 0.9772 | 0.9536 | 14.4405 | 5.4365 | | 0.0936 | 29.74 | 290 | 0.1056 | 0.9774 | 0.9528 | 14.4634 | 5.4066 | | 0.0958 | 30.77 | 300 | 0.1049 | 0.9772 | 0.9544 | 14.4138 | 5.4854 | | 0.0896 | 31.79 | 310 | 0.1043 | 0.9774 | 0.9533 | 14.4593 | 5.4351 | | 0.0973 | 32.82 | 320 | 0.1035 | 0.9774 | 0.9528 | 14.4633 | 5.4430 | | 0.0943 | 33.85 | 330 | 0.1033 | 0.9775 | 0.9527 | 14.4809 | 5.4193 | | 0.0956 | 34.87 | 340 | 0.1026 | 0.9774 | 0.9543 | 14.4576 | 5.4070 | | 0.0936 | 35.9 | 350 | 0.1031 | 0.9775 | 0.9531 | 14.4827 | 5.4137 | | 0.0937 | 36.92 | 360 | 0.1028 | 0.9773 | 0.9551 | 14.4420 | 5.4084 | | 0.0952 | 37.95 | 370 | 0.1023 | 0.9775 | 0.9541 | 14.4809 | 5.3769 | | 0.0952 | 38.97 | 380 | 0.1023 | 0.9776 | 0.9525 | 14.5086 | 5.3839 | | 0.0948 | 40.0 | 390 | 0.1020 | 0.9774 | 0.9546 | 14.4667 | 5.3800 | | 0.0931 | 41.03 | 400 | 0.1020 | 0.9776 | 0.9534 | 14.5043 | 5.3728 | | 0.0906 | 42.05 | 410 | 0.1023 | 0.9774 | 0.9544 | 14.4771 | 5.3773 | | 0.0974 | 43.08 | 420 | 0.1019 | 0.9776 | 0.9536 | 14.5024 | 5.3718 | | 0.0908 | 44.1 | 430 | 0.1025 | 0.9776 | 0.9536 | 14.4995 | 5.3730 | | 0.0935 | 45.13 | 440 | 0.1024 | 0.9775 | 0.9537 | 14.4978 | 5.3715 | | 0.0927 | 46.15 | 450 | 0.1017 | 0.9776 | 0.9531 | 14.5040 | 5.3749 | ### Framework versions - Transformers 4.27.4 - Pytorch 2.0.0+cu118 - Datasets 2.11.0 - Tokenizers 0.13.3
ArthurBaia/bert-base-portuguese-cased-finetuned-squad
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- language: en tags: - multivae license: apache-2.0 --- ### Downloading this model from the Hub This model was trained with multivae. It can be downloaded or reloaded using the method `load_from_hf_hub` ```python >>> from multivae.models import AutoModel >>> model = AutoModel.load_from_hf_hub(hf_hub_path="your_hf_username/repo_name") ```
Aruden/DialoGPT-medium-harrypotterall
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
null
--- language: en tags: - multivae license: apache-2.0 --- ### Downloading this model from the Hub This model was trained with multivae. It can be downloaded or reloaded using the method `load_from_hf_hub` ```python >>> from multivae.models import AutoModel >>> model = AutoModel.load_from_hf_hub(hf_hub_path="your_hf_username/repo_name") ```
ArvinZhuang/BiTAG-t5-large
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "T5ForConditionalGeneration" ], "model_type": "t5", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": true, "length_penalty": 2, "max_length": 200, "min_length": 30, "no_repeat_ngram_size": 3, "num_beams": 4, "prefix": "summarize: " }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": true, "max_length": 300, "num_beams": 4, "prefix": "translate English to German: " }, "translation_en_to_fr": { "early_stopping": true, "max_length": 300, "num_beams": 4, "prefix": "translate English to French: " }, "translation_en_to_ro": { "early_stopping": true, "max_length": 300, "num_beams": 4, "prefix": "translate English to Romanian: " } } }
4
2023-05-13T16:35:40Z
--- language: en tags: - multivae license: apache-2.0 --- ### Downloading this model from the Hub This model was trained with multivae. It can be downloaded or reloaded using the method `load_from_hf_hub` ```python >>> from multivae.models import AutoModel >>> model = AutoModel.load_from_hf_hub(hf_hub_path="your_hf_username/repo_name") ```
AryanLala/autonlp-Scientific_Title_Generator-34558227
[ "pytorch", "pegasus", "text2text-generation", "en", "dataset:AryanLala/autonlp-data-Scientific_Title_Generator", "transformers", "autonlp", "co2_eq_emissions", "autotrain_compatible", "has_space" ]
text2text-generation
{ "architectures": [ "PegasusForConditionalGeneration" ], "model_type": "pegasus", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
103
2023-05-13T16:37:49Z
--- tags: - fastai --- # Amazing! 🥳 Congratulations on hosting your fastai model on the Hugging Face Hub! # Some next steps 1. Fill out this model card with more information (see the template below and the [documentation here](https://huggingface.co/docs/hub/model-repos))! 2. Create a demo in Gradio or Streamlit using 🤗 Spaces ([documentation here](https://huggingface.co/docs/hub/spaces)). 3. Join the fastai community on the [Fastai Discord](https://discord.com/invite/YKrxeNn)! Greetings fellow fastlearner 🤝! Don't forget to delete this content from your model card. --- # Model card ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed
Ashagi/Ashvx
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2023-05-13T16:40:34Z
--- language: en tags: - multivae license: apache-2.0 --- ### Downloading this model from the Hub This model was trained with multivae. It can be downloaded or reloaded using the method `load_from_hf_hub` ```python >>> from multivae.models import AutoModel >>> model = AutoModel.load_from_hf_hub(hf_hub_path="your_hf_username/repo_name") ```
AshiNLP/Bert_model
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
Access to model Wilhelmus/GraphicalDiffusion is restricted and you are not in the authorized list. Visit https://huggingface.co/Wilhelmus/GraphicalDiffusion to ask for access.
Atchuth/DialoGPT-small-MBOT
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2023-05-13T16:55:33Z
--- license: mit tags: - generated_from_trainer model-index: - name: peft-prefix-jul results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # peft-prefix-jul This model is a fine-tuned version of [Jean-Baptiste/camembert-ner](https://huggingface.co/Jean-Baptiste/camembert-ner) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0857 - Loc: {'precision': 0.711864406779661, 'recall': 0.7777777777777778, 'f1': 0.7433628318584071, 'number': 216} - Misc: {'precision': 0.6956521739130435, 'recall': 0.4, 'f1': 0.507936507936508, 'number': 40} - Org: {'precision': 0.8097560975609757, 'recall': 0.83, 'f1': 0.8197530864197532, 'number': 200} - Per: {'precision': 0.8260869565217391, 'recall': 0.7755102040816326, 'f1': 0.8, 'number': 196} - Overall Precision: 0.7747 - Overall Recall: 0.7699 - Overall F1: 0.7723 - Overall Accuracy: 0.9822 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results ### Framework versions - Transformers 4.26.1 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
Ateeb/EmotionDetector
[ "pytorch", "funnel", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "FunnelForSequenceClassification" ], "model_type": "funnel", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
32
2023-05-13T17:01:35Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA text2image fine-tuning - RenauxLouis/monet-test These are LoRA adaption weights for runwayml/stable-diffusion-v1-5. The weights were fine-tuned on the github-smaller-dataset dataset. You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png)
Augustvember/WokkaBot9
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- language: - ar license: apache-2.0 tags: - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper_large_v2_arabic results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: ar split: test args: 'config: ar, split: test' metrics: - name: Wer type: wer value: 12.773732872855585 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper_large_v2_arabic This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.2119 - Wer: 12.7737 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.0259 | 0.83 | 500 | 0.2119 | 12.7737 | ### Framework versions - Transformers 4.29.1 - Pytorch 1.13.1 - Datasets 2.12.0 - Tokenizers 0.13.3
Augustvember/WokkaBotF
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- library_name: ml-agents tags: - SnowballTarget - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SnowballTarget 2. Step 1: Find your model_id: kasunw/ppo-SnowballTarget1 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Augustvember/wokka4
[ "conversational" ]
conversational
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2023-05-13T17:43:46Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="parallelq/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Aurora/asdawd
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - customized model-index: - name: h34 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # h34 This model is a fine-tuned version of [pinkmanlove/llama-7b-hf](https://huggingface.co/pinkmanlove/llama-7b-hf) on the customized dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 64 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 1.0 ### Training results ### Framework versions - Transformers 4.28.0.dev0 - Pytorch 2.0.0+cu117 - Datasets 2.10.1 - Tokenizers 0.13.3
Ayham/bertgpt2_cnn
[ "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "transformers", "generated_from_trainer", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "EncoderDecoderModel" ], "model_type": "encoder-decoder", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
4
null
--- license: creativeml-openrail-m --- https://civitai.com/models/64078/tenjouin-asuka-yu-gi-oh
Ayham/distilbert_bert_summarization_cnn_dailymail
[ "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "dataset:cnn_dailymail", "transformers", "generated_from_trainer", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "EncoderDecoderModel" ], "model_type": "encoder-decoder", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
11
null
--- license: creativeml-openrail-m --- https://civitai.com/models/64069/kirika-towa-alma-shining-resonance
Ayham/distilbert_gpt2_summarization_cnndm
[ "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "dataset:cnn_dailymail", "transformers", "generated_from_trainer", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "EncoderDecoderModel" ], "model_type": "encoder-decoder", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
null
--- license: openrail datasets: - OpenAssistant/oasst1 language: - en metrics: - accuracy library_name: nemo pipeline_tag: text-to-image tags: - art --- # Model Card for Model ID <!-- Provide a quick summalleymixary of what the model is/does. --> This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1). ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Ayham/distilbert_gpt2_summarization_xsum
[ "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "dataset:xsum", "transformers", "generated_from_trainer", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "EncoderDecoderModel" ], "model_type": "encoder-decoder", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
--- license: creativeml-openrail-m --- https://civitai.com/models/64271/natashahonkai-star-rail
Ayham/distilbert_roberta_summarization_cnn_dailymail
[ "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "dataset:cnn_dailymail", "transformers", "generated_from_trainer", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "EncoderDecoderModel" ], "model_type": "encoder-decoder", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
14
null
--- license: creativeml-openrail-m --- https://civitai.com/models/64385/swiftsure-azur-lane-midsummer-special-service-swimsuit
Ayham/roberta_bert_summarization_cnn_dailymail
[ "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "dataset:cnn_dailymail", "transformers", "generated_from_trainer", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "EncoderDecoderModel" ], "model_type": "encoder-decoder", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
12
2023-05-13T18:16:58Z
--- license: creativeml-openrail-m --- https://civitai.com/models/64841/miorine-rembran-or-the-witch-from-mercury
Ayham/roberta_gpt2_new_max64_summarization_cnndm
[ "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "dataset:cnn_dailymail", "transformers", "generated_from_trainer", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "EncoderDecoderModel" ], "model_type": "encoder-decoder", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
4
null
--- license: creativeml-openrail-m --- https://civitai.com/models/6100/tifa-lockhart-lessall-outfitsgreater-lora
Ayham/roberta_gpt2_summarization_cnn_dailymail
[ "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "dataset:cnn_dailymail", "transformers", "generated_from_trainer", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "EncoderDecoderModel" ], "model_type": "encoder-decoder", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
31
null
--- license: creativeml-openrail-m --- https://civitai.com/models/65131/yatogami-tohka-date-a-live
Ayham/roberta_gpt2_summarization_xsum
[ "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "dataset:xsum", "transformers", "generated_from_trainer", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "EncoderDecoderModel" ], "model_type": "encoder-decoder", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
null
--- license: creativeml-openrail-m --- https://civitai.com/models/60186/chosen-impasto-mix
Ayham/xlnet_roberta_summarization_cnn_dailymail
[ "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "dataset:cnn_dailymail", "transformers", "generated_from_trainer", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "EncoderDecoderModel" ], "model_type": "encoder-decoder", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
10
null
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 399.40 +/- 145.88 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
Ayran/DialoGPT-medium-harry-potter-1-through-4-plus-6-e18
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
12
2023-05-13T18:38:46Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="bastienm/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
AyushPJ/ai-club-inductions-21-nlp-distilBERT
[ "pytorch", "distilbert", "question-answering", "transformers", "generated_from_trainer", "autotrain_compatible" ]
question-answering
{ "architectures": [ "DistilBertForQuestionAnswering" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: bert-uncased-finetuned-mrpc results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: mrpc split: validation args: mrpc metrics: - name: Accuracy type: accuracy value: 0.8676470588235294 - name: F1 type: f1 value: 0.9093959731543624 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-uncased-finetuned-mrpc This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.6265 - Accuracy: 0.8676 - F1: 0.9094 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 230 | 0.3924 | 0.8554 | 0.9015 | | No log | 2.0 | 460 | 0.3575 | 0.875 | 0.9128 | | 0.3857 | 3.0 | 690 | 0.6265 | 0.8676 | 0.9094 | ### Framework versions - Transformers 4.29.1 - Pytorch 2.0.1+cu117 - Datasets 2.12.0 - Tokenizers 0.13.3
Azuris/DialoGPT-medium-senorita
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
14
2023-05-13T19:04:01Z
--- language: en tags: - multivae license: apache-2.0 --- ### Downloading this model from the Hub This model was trained with multivae. It can be downloaded or reloaded using the method `load_from_hf_hub` ```python >>> from multivae.models import AutoModel >>> model = AutoModel.load_from_hf_hub(hf_hub_path="your_hf_username/repo_name") ```
Barytes/hellohf
[ "tf", "bert", "fill-mask", "en", "dataset:bookcorpus", "dataset:wikipedia", "transformers", "exbert", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
2
2023-05-13T20:52:01Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: dummy-fashion-classification results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # dummy-fashion-classification This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1122 - Accuracy: 0.9665 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.3331 | 1.0 | 294 | 0.1725 | 0.9519 | | 0.296 | 2.0 | 588 | 0.1323 | 0.9591 | | 0.2484 | 3.0 | 882 | 0.1122 | 0.9665 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
BatuhanYilmaz/bert-finetuned-nerxD
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### WendiTrainedDelibarate Dreambooth model trained by MVPWendi with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept:
BenDavis71/GPT-2-Finetuning-AIRaid
[ "pytorch", "jax", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
10
null
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_health_gathering_supreme type: doom_health_gathering_supreme metrics: - type: mean_reward value: 20.44 +/- 1.69 name: mean_reward verified: false --- A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment. This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory. Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/ ## Downloading the model After installing Sample-Factory, download the model with: ``` python -m sample_factory.huggingface.load_from_hub -r NathanS-HuggingFace/VizDoom-Health-Gathering ``` ## Using the model To run the model after download, use the `enjoy` script corresponding to this environment: ``` python -m .usr.lib.python3.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=VizDoom-Health-Gathering ``` You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag. See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details ## Training with this model To continue training with this model, use the `train` script corresponding to this environment: ``` python -m .usr.lib.python3.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=VizDoom-Health-Gathering --restart_behavior=resume --train_for_env_steps=10000000000 ``` Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
BigSalmon/Flowberta
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "RobertaForMaskedLM" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
13
null
--- license: cc-by-4.0 tags: - generated_from_trainer model-index: - name: finetuning-l3-bert-latest results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-l3-bert-latest This model is a fine-tuned version of [l3cube-pune/telugu-bert](https://huggingface.co/l3cube-pune/telugu-bert) on an unknown dataset. It achieves the following results on the evaluation set: - eval_loss: 0.6283 - eval_accuracy: 0.7558 - eval_f1: 0.7529 - eval_runtime: 79.9067 - eval_samples_per_second: 51.61 - eval_steps_per_second: 6.458 - step: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Framework versions - Transformers 4.29.0 - Pytorch 1.13.1+cu117 - Datasets 2.12.0 - Tokenizers 0.13.3
BigSalmon/InformalToFormalLincoln20
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
2023-05-14T00:32:44Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: my_wikilingua_model2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_wikilingua_model2 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.5821 - Rouge1: 0.2402 - Rouge2: 0.0747 - Rougel: 0.1991 - Rougelsum: 0.1993 - Gen Len: 18.82 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | No log | 1.0 | 100 | 2.6861 | 0.2284 | 0.0646 | 0.1832 | 0.183 | 18.9375 | | No log | 2.0 | 200 | 2.6137 | 0.2343 | 0.0704 | 0.1919 | 0.1916 | 18.84 | | No log | 3.0 | 300 | 2.5890 | 0.2384 | 0.0729 | 0.1967 | 0.1966 | 18.88 | | No log | 4.0 | 400 | 2.5821 | 0.2402 | 0.0747 | 0.1991 | 0.1993 | 18.82 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
BigSalmon/InformalToFormalLincolnDistilledGPT2
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
null
--- license: mit tags: - generated_from_trainer model-index: - name: viettel-xlm-roberta-base-finetune-viquad-model-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # viettel-xlm-roberta-base-finetune-viquad-model-2 This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.2581 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 0.73 | 300 | 1.6542 | | 2.5237 | 1.45 | 600 | 1.3745 | | 2.5237 | 2.18 | 900 | 1.3041 | | 1.2219 | 2.91 | 1200 | 1.2581 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.13.3
BigTooth/DialoGPT-small-tohru
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
10
null
--- license: cc-by-nc-sa-4.0 tags: - generated_from_trainer datasets: - cord-layoutlmv3 metrics: - precision - recall - f1 - accuracy model-index: - name: layoutlmv3-finetuned-cord_100 results: - task: name: Token Classification type: token-classification dataset: name: cord-layoutlmv3 type: cord-layoutlmv3 config: cord split: test args: cord metrics: - name: Precision type: precision value: 0.9430473372781065 - name: Recall type: recall value: 0.9543413173652695 - name: F1 type: f1 value: 0.9486607142857143 - name: Accuracy type: accuracy value: 0.9579796264855688 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # layoutlmv3-finetuned-cord_100 This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the cord-layoutlmv3 dataset. It achieves the following results on the evaluation set: - Loss: 0.2188 - Precision: 0.9430 - Recall: 0.9543 - F1: 0.9487 - Accuracy: 0.9580 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 5 - eval_batch_size: 5 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 2500 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.56 | 250 | 1.0024 | 0.7392 | 0.7957 | 0.7664 | 0.8060 | | 1.3949 | 3.12 | 500 | 0.5684 | 0.8330 | 0.8660 | 0.8492 | 0.8727 | | 1.3949 | 4.69 | 750 | 0.3929 | 0.8931 | 0.9072 | 0.9001 | 0.9160 | | 0.3964 | 6.25 | 1000 | 0.3312 | 0.9236 | 0.9326 | 0.9281 | 0.9321 | | 0.3964 | 7.81 | 1250 | 0.2754 | 0.9275 | 0.9386 | 0.9330 | 0.9410 | | 0.216 | 9.38 | 1500 | 0.2447 | 0.9328 | 0.9454 | 0.9390 | 0.9478 | | 0.216 | 10.94 | 1750 | 0.2467 | 0.9363 | 0.9461 | 0.9412 | 0.9478 | | 0.1534 | 12.5 | 2000 | 0.2300 | 0.9436 | 0.9521 | 0.9478 | 0.9537 | | 0.1534 | 14.06 | 2250 | 0.2155 | 0.9459 | 0.9558 | 0.9509 | 0.9597 | | 0.119 | 15.62 | 2500 | 0.2188 | 0.9430 | 0.9543 | 0.9487 | 0.9580 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
Bilz/DialoGPT-small-harrypotter
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - generated_from_trainer metrics: - rouge model-index: - name: phobert_shared-vietnews results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # phobert_shared-vietnews This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.4872 - Rouge1: 47.252 - Rouge2: 12.3801 - Rougel: 27.9535 - Rougelsum: 31.1165 - Gen Len: 25.3494 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 4.1717 | 1.0 | 619 | 3.7817 | 46.287 | 10.7692 | 27.3606 | 30.4956 | 25.2656 | | 3.6535 | 2.0 | 1239 | 3.5421 | 46.9278 | 11.7595 | 27.5206 | 30.7512 | 25.9089 | | 3.434 | 3.0 | 1857 | 3.4872 | 47.252 | 12.3801 | 27.9535 | 31.1165 | 25.3494 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
Binbin/test
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: cc-by-nc-sa-4.0 --- # Lighting ASR英文语音识别模型 ## 环境依赖 ``` - Python3.7+ - PyTorch 1.8.1+ - torchaudio - soundfile - librosa ``` ## 安装[lighting-asr](https://github.com/gaochangfeng/lighting-asr.git) ### 下载源代码并添加到python路径 ``` export PYTHONPATH=/path/to/lasrfolder/:$PYTHONPATH ``` ### 源文件安装 ``` git clone https://github.com/gaochangfeng/lighting-asr.git cd lighting-asr python setup.py install ``` ### PIP 安装 ``` pip install git+https://github.com/gaochangfeng/lighting-asr.git ``` ## 使用 ``` from lasr.process.asrprocess import ASRProcess train_config="hparams.yaml" decode_config="decode.yaml" model_path="model.ckpt" asrpipeline = ASRProcess( train_config=train_config, decode_config=decode_config, model_path=model_path ) token, text = asrpipeline("test.wav") print(token) print(text) ``` ## 模型训练 参考https:https://github.com/gaochangfeng/lighting-asr.git
BinksSachary/DialoGPT-small-shaxx
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
12
null
--- tags: - LunarLander-v2 - ppo - deep-reinforcement-learning - reinforcement-learning - custom-implementation - deep-rl-course model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -126.53 +/- 47.03 name: mean_reward verified: false --- # PPO Agent Playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2. # Hyperparameters ```python {'exp_name': 'ppo' 'seed': 1 'torch_deterministic': True 'cuda': True 'track': False 'wandb_project_name': 'cleanRL' 'wandb_entity': None 'capture_video': False 'env_id': 'LunarLander-v2' 'total_timesteps': 50000 'learning_rate': 0.00025 'num_envs': 4 'num_steps': 128 'anneal_lr': True 'gae': True 'gamma': 0.99 'gae_lambda': 0.95 'num_minibatches': 4 'update_epochs': 4 'norm_adv': True 'clip_coef': 0.2 'clip_vloss': True 'ent_coef': 0.01 'vf_coef': 0.5 'max_grad_norm': 0.5 'target_kl': None 'repo_id': 'Felix555/LunarLander-v2' 'batch_size': 512 'minibatch_size': 128} ```
BinksSachary/ShaxxBot2
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
12
null
--- license: mit tags: - generated_from_trainer model-index: - name: viettel-xlm-roberta-base-finetune-viquad-model-4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # viettel-xlm-roberta-base-finetune-viquad-model-4 This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.2693 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 0.73 | 300 | 1.7389 | | 2.7394 | 1.45 | 600 | 1.3885 | | 2.7394 | 2.18 | 900 | 1.3075 | | 1.2501 | 2.91 | 1200 | 1.2693 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.13.3
Bloodwarrior/Chikfalay
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
BART MODEL #10 PRETRAINED ON XSUM AND FINETUNED ON SAMSUM
BlueGamerBeast/DialoGPT-small-Morgana
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
12
null
PEGASUS MODEL #5 PRETRAINED ON XSUM AND FINETUNED ON SAMSUM
BobBraico/bert-finetuned-ner
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - generated_from_trainer model-index: - name: finetuned-facebook-bart-base results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned-facebook-bart-base This model is a fine-tuned version of [../tmp/bart-abst-summarization](https://huggingface.co/../tmp/bart-abst-summarization) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Framework versions - Transformers 4.30.0.dev0 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
Bosio/full-sentence-distillroberta3-finetuned-wikitext2
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_health_gathering_supreme type: doom_health_gathering_supreme metrics: - type: mean_reward value: 9.48 +/- 3.24 name: mean_reward verified: false --- A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment. This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory. Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/ ## Downloading the model After installing Sample-Factory, download the model with: ``` python -m sample_factory.huggingface.load_from_hub -r Felix555/rl_course_vizdoom_health_gathering_supreme ``` ## Using the model To run the model after download, use the `enjoy` script corresponding to this environment: ``` python -m .usr.local.lib.python3.10.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme ``` You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag. See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details ## Training with this model To continue training with this model, use the `train` script corresponding to this environment: ``` python -m .usr.local.lib.python3.10.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000 ``` Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
Botjallu/DialoGPT-small-harrypotter
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="jokyere49/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Brayan/CNN_Brain_Tumor
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: mit tags: - generated_from_trainer model-index: - name: viettel-xlm-roberta-base-finetune-viquad-model-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # viettel-xlm-roberta-base-finetune-viquad-model-5 This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.2642 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 0.73 | 300 | 1.6829 | | 2.6038 | 1.45 | 600 | 1.3976 | | 2.6038 | 2.18 | 900 | 1.3037 | | 1.2138 | 2.91 | 1200 | 1.2309 | | 0.9802 | 3.64 | 1500 | 1.2642 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.13.3
Brykee/BrykeeBot
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 pipeline_tag: text2text-generation ---
BumBelDumBel/TRUMP
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "license:mit" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
null
BART MODEL #11 PRETRAINED ON XSUM AND FINETUNED ON SAMSUM
BumBelDumBel/ZORK-AI-TEST
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "license:mit" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
9
null
BART MODEL #12 PRETRAINED ON XSUM AND FINETUNED ON SAMSUM
CAMeL-Lab/bert-base-arabic-camelbert-ca-pos-msa
[ "pytorch", "tf", "bert", "token-classification", "ar", "arxiv:2103.06678", "transformers", "license:apache-2.0", "autotrain_compatible" ]
token-classification
{ "architectures": [ "BertForTokenClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
71
null
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 258.29 +/- 26.13 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
CAMeL-Lab/bert-base-arabic-camelbert-mix-pos-glf
[ "pytorch", "tf", "bert", "token-classification", "ar", "arxiv:2103.06678", "transformers", "license:apache-2.0", "autotrain_compatible" ]
token-classification
{ "architectures": [ "BertForTokenClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
132
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: mt5-base-active_passive results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-base-active_passive This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1623 - Rouge1: 95.4132 - Rouge2: 92.1835 - Rougel: 95.2747 - Rougelsum: 95.2517 - Gen Len: 11.6716 - Exact Match: 75.5224 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | Exact Match | |:-------------:|:-----:|:------:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|:-----------:| | 0.8403 | 1.0 | 2680 | 0.3439 | 84.2519 | 75.0962 | 83.0988 | 83.0654 | 11.3821 | 44.1791 | | 0.3755 | 2.0 | 5360 | 0.2136 | 93.7164 | 88.9172 | 93.5505 | 93.5463 | 11.6522 | 68.3582 | | 0.2587 | 3.0 | 8040 | 0.1703 | 94.8793 | 91.2347 | 94.6677 | 94.6651 | 11.6746 | 73.1343 | | 0.1993 | 4.0 | 10720 | 0.1740 | 95.4366 | 92.1875 | 95.2486 | 95.2388 | 11.6687 | 75.3731 | | 0.1763 | 5.0 | 13400 | 0.1959 | 95.4608 | 92.3592 | 95.3141 | 95.2889 | 11.6716 | 75.6716 | | 0.1337 | 6.0 | 16080 | 0.1623 | 95.4132 | 92.1835 | 95.2747 | 95.2517 | 11.6716 | 75.5224 | | 0.1152 | 7.0 | 18760 | 0.1748 | 95.5064 | 92.3455 | 95.3485 | 95.3306 | 11.6672 | 74.3284 | | 0.1374 | 8.0 | 21440 | 0.1742 | 95.9602 | 93.3902 | 95.7887 | 95.7772 | 11.6955 | 76.7164 | | 0.0942 | 9.0 | 24120 | 0.1743 | 96.0312 | 93.4795 | 95.8994 | 95.8892 | 11.6821 | 77.6119 | | 0.077 | 10.0 | 26800 | 0.1780 | 95.9435 | 93.3477 | 95.783 | 95.7725 | 11.6836 | 77.6119 | | 0.0554 | 11.0 | 29480 | 0.1967 | 96.0079 | 93.2747 | 95.8457 | 95.8357 | 11.6836 | 77.3134 | | 0.0575 | 12.0 | 32160 | 0.1837 | 96.11 | 93.6604 | 95.9517 | 95.9382 | 11.7015 | 77.7612 | | 0.0399 | 13.0 | 34840 | 0.1927 | 95.9004 | 93.2349 | 95.7718 | 95.7414 | 11.7075 | 77.1642 | | 0.0501 | 14.0 | 37520 | 0.2058 | 95.9167 | 93.3185 | 95.7849 | 95.7705 | 11.7090 | 77.4627 | | 0.0501 | 15.0 | 40200 | 0.2148 | 95.985 | 93.4129 | 95.8509 | 95.8453 | 11.6746 | 77.4627 | | 0.0407 | 16.0 | 42880 | 0.2086 | 95.9699 | 93.4136 | 95.8351 | 95.8377 | 11.6731 | 77.6119 | | 0.0412 | 17.0 | 45560 | 0.2130 | 95.9691 | 93.4489 | 95.8442 | 95.8363 | 11.6925 | 77.3134 | | 0.0388 | 18.0 | 48240 | 0.2269 | 95.7669 | 93.0314 | 95.6346 | 95.6307 | 11.6925 | 77.3134 | | 0.0208 | 19.0 | 50920 | 0.2413 | 96.0036 | 93.5595 | 95.8972 | 95.8947 | 11.6985 | 77.9104 | | 0.0344 | 20.0 | 53600 | 0.2572 | 95.8866 | 93.351 | 95.7917 | 95.7935 | 11.6910 | 77.3134 | | 0.0403 | 21.0 | 56280 | 0.2423 | 95.9904 | 93.5134 | 95.8618 | 95.8566 | 11.6970 | 77.9104 | | 0.0298 | 22.0 | 58960 | 0.2569 | 95.7327 | 93.0561 | 95.5967 | 95.5909 | 11.6910 | 77.3134 | | 0.0286 | 23.0 | 61640 | 0.2830 | 95.8656 | 93.2363 | 95.7428 | 95.7256 | 11.6836 | 77.1642 | | 0.0219 | 24.0 | 64320 | 0.2733 | 95.6646 | 92.8942 | 95.4774 | 95.4861 | 11.6866 | 77.0149 | | 0.0135 | 25.0 | 67000 | 0.2867 | 95.9215 | 93.3702 | 95.7757 | 95.7707 | 11.6746 | 77.4627 | | 0.0195 | 26.0 | 69680 | 0.2764 | 95.905 | 93.4722 | 95.7875 | 95.7905 | 11.6985 | 77.6119 | | 0.0161 | 27.0 | 72360 | 0.2936 | 96.0248 | 93.577 | 95.8972 | 95.8892 | 11.6910 | 77.7612 | | 0.016 | 28.0 | 75040 | 0.2656 | 95.8823 | 93.2351 | 95.7332 | 95.717 | 11.6955 | 77.1642 | | 0.007 | 29.0 | 77720 | 0.2579 | 95.9672 | 93.4164 | 95.8154 | 95.7959 | 11.6955 | 77.7612 | | 0.0221 | 30.0 | 80400 | 0.2838 | 95.7522 | 93.0823 | 95.6266 | 95.6061 | 11.6970 | 77.0149 | | 0.017 | 31.0 | 83080 | 0.2990 | 95.8869 | 93.3126 | 95.7469 | 95.755 | 11.6955 | 77.4627 | | 0.0199 | 32.0 | 85760 | 0.3084 | 95.7885 | 93.1157 | 95.6569 | 95.6548 | 11.6940 | 77.3134 | | 0.0088 | 33.0 | 88440 | 0.2883 | 95.8547 | 93.2583 | 95.7285 | 95.7085 | 11.7015 | 77.6119 | | 0.0145 | 34.0 | 91120 | 0.3002 | 95.7988 | 93.215 | 95.6797 | 95.6743 | 11.7015 | 77.3134 | | 0.0117 | 35.0 | 93800 | 0.3173 | 95.7973 | 93.2558 | 95.6875 | 95.6928 | 11.6925 | 77.3134 | | 0.0103 | 36.0 | 96480 | 0.3283 | 95.7067 | 92.9859 | 95.5942 | 95.59 | 11.6940 | 76.8657 | | 0.0185 | 37.0 | 99160 | 0.3191 | 95.9002 | 93.32 | 95.7707 | 95.7464 | 11.6970 | 77.4627 | | 0.0145 | 38.0 | 101840 | 0.3350 | 95.77 | 93.1028 | 95.642 | 95.6276 | 11.7 | 77.3134 | | 0.015 | 39.0 | 104520 | 0.3416 | 95.8064 | 93.2264 | 95.669 | 95.6659 | 11.7030 | 77.6119 | | 0.008 | 40.0 | 107200 | 0.3322 | 95.8005 | 93.1618 | 95.6605 | 95.6595 | 11.7 | 77.3134 | | 0.0065 | 41.0 | 109880 | 0.3312 | 95.8407 | 93.2715 | 95.7128 | 95.7058 | 11.7 | 77.6119 | | 0.0067 | 42.0 | 112560 | 0.3412 | 95.8997 | 93.4001 | 95.7679 | 95.7675 | 11.6985 | 77.7612 | | 0.0097 | 43.0 | 115240 | 0.3340 | 95.8249 | 93.2442 | 95.6857 | 95.6757 | 11.7015 | 77.4627 | | 0.0093 | 44.0 | 117920 | 0.3443 | 95.8464 | 93.3354 | 95.7134 | 95.722 | 11.7 | 77.7612 | | 0.0062 | 45.0 | 120600 | 0.3449 | 95.8265 | 93.2712 | 95.6944 | 95.7025 | 11.7030 | 77.6119 | | 0.0083 | 46.0 | 123280 | 0.3445 | 95.9734 | 93.5331 | 95.8377 | 95.8351 | 11.7 | 78.0597 | | 0.0081 | 47.0 | 125960 | 0.3426 | 95.9487 | 93.4918 | 95.8099 | 95.8051 | 11.7 | 78.0597 | | 0.0109 | 48.0 | 128640 | 0.3420 | 95.9487 | 93.4918 | 95.8099 | 95.8051 | 11.7 | 78.0597 | | 0.0064 | 49.0 | 131320 | 0.3396 | 95.8866 | 93.3924 | 95.7487 | 95.7539 | 11.7 | 77.9104 | | 0.0087 | 50.0 | 134000 | 0.3391 | 95.8866 | 93.3924 | 95.7487 | 95.7539 | 11.7 | 77.9104 | ### Framework versions - Transformers 4.29.1 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
CAMeL-Lab/bert-base-arabic-camelbert-mix-sentiment
[ "pytorch", "tf", "bert", "text-classification", "ar", "arxiv:2103.06678", "transformers", "license:apache-2.0" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
855
null
Access to model dalpaka/easy is restricted and you are not in the authorized list. Visit https://huggingface.co/dalpaka/easy to ask for access.
CAMeL-Lab/bert-base-arabic-camelbert-msa-did-madar-twitter5
[ "pytorch", "tf", "bert", "text-classification", "ar", "arxiv:2103.06678", "transformers", "license:apache-2.0" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
75
null
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="YoavWigelman/Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
CAMeL-Lab/bert-base-arabic-camelbert-msa-ner
[ "pytorch", "tf", "bert", "token-classification", "ar", "arxiv:2103.06678", "transformers", "license:apache-2.0", "autotrain_compatible", "has_space" ]
token-classification
{ "architectures": [ "BertForTokenClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
229
null
--- license: mit datasets: - squad_v2 - squad language: - en library_name: transformers pipeline_tag: question-answering tags: - deberta - deberta-v3 - question-answering - squad - squad_v2 model-index: - name: sjrhuschlee/deberta-v3-base-squad2 results: - task: type: question-answering name: Question Answering dataset: name: squad_v2 type: squad_v2 config: squad_v2 split: validation metrics: - type: exact_match value: 85.648 name: Exact Match - type: f1 value: 88.728 name: F1 - task: type: question-answering name: Question Answering dataset: name: squad type: squad config: plain_text split: validation metrics: - type: exact_match value: 87.862 name: Exact Match - type: f1 value: 93.924 name: F1 --- # deberta-v3-base for Extractive QA This is the [deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) model, fine-tuned using the [SQuAD2.0](https://huggingface.co/datasets/squad_v2) dataset. It's been trained on question-answer pairs, including unanswerable questions, for the task of Extractive Question Answering. ## Overview **Language model:** deberta-v3-base **Language:** English **Downstream-task:** Extractive QA **Training data:** SQuAD 2.0 **Eval data:** SQuAD 2.0 **Infrastructure**: 1x NVIDIA 3070 ## Model Usage ```python from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline model_name = "sjrhuschlee/deberta-v3-base-squad2" # a) Using pipelines nlp = pipeline('question-answering', model=model_name, tokenizer=model_name) qa_input = { 'question': 'Where do I live?', 'context': 'My name is Sarah and I live in London' } res = nlp(qa_input) # b) Load model & tokenizer model = AutoModelForQuestionAnswering.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) ``` ## Metrics ```bash # Squad v2 { "eval_HasAns_exact": 82.72604588394061, "eval_HasAns_f1": 88.89430905100325, "eval_HasAns_total": 5928, "eval_NoAns_exact": 88.56181665264928, "eval_NoAns_f1": 88.56181665264928, "eval_NoAns_total": 5945, "eval_best_exact": 85.64810915522614, "eval_best_exact_thresh": 0.0, "eval_best_f1": 88.72782481717712, "eval_best_f1_thresh": 0.0, "eval_exact": 85.64810915522614, "eval_f1": 88.72782481717726, "eval_runtime": 219.6226, "eval_samples": 11951, "eval_samples_per_second": 54.416, "eval_steps_per_second": 2.268, "eval_total": 11873 } # Squad { "eval_exact_match": 87.86187322611164, "eval_f1": 93.92373735474943, "eval_runtime": 195.2115, "eval_samples": 10618, "eval_samples_per_second": 54.392, "eval_steps_per_second": 2.269 } ``` ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 4.0 ### Framework versions - Transformers 4.30.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.12.0 - Tokenizers 0.13.3
CAMeL-Lab/bert-base-arabic-camelbert-msa-poetry
[ "pytorch", "tf", "bert", "text-classification", "ar", "arxiv:1905.05700", "arxiv:2103.06678", "transformers", "license:apache-2.0" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
25
null
Access to model xyz-nlp/XuanYuan2.0 is restricted and you are not in the authorized list. Visit https://huggingface.co/xyz-nlp/XuanYuan2.0 to ask for access.
CAMeL-Lab/bert-base-arabic-camelbert-msa-pos-egy
[ "pytorch", "tf", "bert", "token-classification", "ar", "arxiv:2103.06678", "transformers", "license:apache-2.0", "autotrain_compatible" ]
token-classification
{ "architectures": [ "BertForTokenClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
52
null
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: sec-t5-base results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sec-t5-base This model is a fine-tuned version of [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.0365 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.4845 | 1.0 | 24 | 3.1348 | | 3.3224 | 2.0 | 48 | 3.0846 | | 3.2575 | 3.0 | 72 | 3.0575 | | 3.2128 | 4.0 | 96 | 3.0406 | | 3.2031 | 5.0 | 120 | 3.0365 | ### Framework versions - Transformers 4.26.0 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
CAMeL-Lab/bert-base-arabic-camelbert-msa-pos-glf
[ "pytorch", "tf", "bert", "token-classification", "ar", "arxiv:2103.06678", "transformers", "license:apache-2.0", "autotrain_compatible" ]
token-classification
{ "architectures": [ "BertForTokenClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
21
null
--- tags: - conversational --- # Rocket DialoGPT Model
CAMeL-Lab/bert-base-arabic-camelbert-msa-sixteenth
[ "pytorch", "tf", "jax", "bert", "fill-mask", "ar", "arxiv:2103.06678", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
26
null
--- license: mit tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: roberta-token-class results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-token-class This model is a fine-tuned version of [Jean-Baptiste/roberta-large-ner-english](https://huggingface.co/Jean-Baptiste/roberta-large-ner-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2427 - Precision: 0.8626 - Recall: 0.7448 - F1: 0.7875 - Accuracy: 0.9168 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2378 | 1.0 | 1796 | 0.2433 | 0.8789 | 0.7063 | 0.7578 | 0.9121 | | 0.1824 | 2.0 | 3592 | 0.2427 | 0.8626 | 0.7448 | 0.7875 | 0.9168 | ### Framework versions - Transformers 4.29.2 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
CL/safe-math-bot
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - autotrain - summarization language: - unk widget: - text: "I love AutoTrain 🤗" datasets: - Xmm/autotrain-data-pegasus-x-large co2_eq_emissions: emissions: 11.841975053683889 --- # Model Trained Using AutoTrain - Problem type: Summarization - Model ID: 58281133234 - CO2 Emissions (in grams): 11.8420 ## Validation Metrics - Loss: 0.712 - Rouge1: 51.830 - Rouge2: 37.988 - RougeL: 44.541 - RougeLsum: 45.992 - Gen Len: 128.541 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/Xmm/autotrain-pegasus-x-large-58281133234 ```
CM-CA/DialoGPT-small-cartman
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
Access to model galdleduc/Assignment3Lab5MonitoringPartB is restricted and you are not in the authorized list. Visit https://huggingface.co/galdleduc/Assignment3Lab5MonitoringPartB to ask for access.
Calamarii/calamari
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: PranjalSarin/distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # PranjalSarin/distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.9615 - Train End Logits Accuracy: 0.7330 - Train Start Logits Accuracy: 0.6931 - Validation Loss: 1.1213 - Validation End Logits Accuracy: 0.6987 - Validation Start Logits Accuracy: 0.6676 - Epoch: 1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 11064, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch | |:----------:|:-------------------------:|:---------------------------:|:---------------:|:------------------------------:|:--------------------------------:|:-----:| | 1.4893 | 0.6116 | 0.5721 | 1.1497 | 0.6873 | 0.6525 | 0 | | 0.9615 | 0.7330 | 0.6931 | 1.1213 | 0.6987 | 0.6676 | 1 | ### Framework versions - Transformers 4.29.1 - TensorFlow 2.12.0 - Datasets 2.12.0 - Tokenizers 0.13.3
CalvinHuang/mt5-small-finetuned-amazon-en-es
[ "pytorch", "tensorboard", "mt5", "text2text-generation", "transformers", "summarization", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible" ]
summarization
{ "architectures": [ "MT5ForConditionalGeneration" ], "model_type": "mt5", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
16
null
--- tags: - autotrain - summarization language: - unk widget: - text: "I love AutoTrain 🤗" datasets: - Xmm/autotrain-data-pegasus-x-base-finetuned-multi-news co2_eq_emissions: emissions: 7.52869711790795 --- # Model Trained Using AutoTrain - Problem type: Summarization - Model ID: 58291133236 - CO2 Emissions (in grams): 7.5287 ## Validation Metrics - Loss: 0.794 - Rouge1: 56.481 - Rouge2: 40.769 - RougeL: 47.369 - RougeLsum: 49.028 - Gen Len: 130.354 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/Xmm/autotrain-pegasus-x-base-finetuned-multi-news-58291133236 ```
Canyonevo/DialoGPT-medium-KingHenry
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall model-index: - name: distilbert_imdb_genre_classifier results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_imdb_genre_classifier This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0196 - Precision: 0.4254 - Recall: 0.4432 - F1 Score: 0.4191 - Jaccard Score: 0.2966 - Average Precision Score: 0.4831 - Percentage Examples At Least 1 True: 0.8845 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 Score | Jaccard Score | Average Precision Score | Percentage Examples At Least 1 True | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:--------:|:-------------:|:-----------------------:|:-----------------------------------:| | 0.0231 | 1.0 | 1500 | 0.0214 | 0.3601 | 0.4090 | 0.3601 | 0.2523 | 0.4326 | 0.8638 | | 0.0196 | 2.0 | 3000 | 0.0198 | 0.4174 | 0.4367 | 0.4064 | 0.2864 | 0.4743 | 0.8842 | | 0.0172 | 3.0 | 4500 | 0.0196 | 0.4216 | 0.4418 | 0.4155 | 0.2939 | 0.4822 | 0.887 | | 0.016 | 4.0 | 6000 | 0.0196 | 0.4254 | 0.4432 | 0.4191 | 0.2966 | 0.4831 | 0.8845 | ### Framework versions - Transformers 4.26.1 - Pytorch 2.0.0+cu118 - Tokenizers 0.13.3
Capreolus/bert-base-msmarco
[ "pytorch", "tf", "jax", "bert", "text-classification", "arxiv:2008.09093", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
238
null
--- license: cc-by-nc-4.0 language: - zh --- CHaMA is a LLM sized 1B which is built for ALL NLP TASKS.A LLaMA-like Model which can be used in business is HERE by Change ALMOST EVETHING and Re-PRETRAINED FOR ZORE to ONE.
Carlork314/Carlos
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- # For reference on model card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1 # Doc / guide: https://huggingface.co/docs/hub/model-cards {} --- # Blue Archive Yuuka VITS SVC 4.0 Voice Model <!-- Provide a quick summary of what the model is/does. --> Yuuka Hayase from Blue Archive voice model for SO VITS SVC 4.0
Cedille/fr-boris
[ "pytorch", "gptj", "text-generation", "fr", "dataset:c4", "arxiv:2202.03371", "transformers", "causal-lm", "license:mit", "has_space" ]
text-generation
{ "architectures": [ "GPTJForCausalLM" ], "model_type": "gptj", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
401
null
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 257.81 +/- 40.11 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
dccuchile/albert-large-spanish-finetuned-ner
[ "pytorch", "albert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
{ "architectures": [ "AlbertForTokenClassification" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- language: - en tags: - feature-extraction - pubmed - sentence-similarity datasets: - biu-nlp/abstract-sim-pubmed --- A model for mapping abstract sentence descriptions to sentences that fit the descriptions. Trained on Pubmed sentences. Use ```load_finetuned_model``` to load the query and sentence encoder, and ```encode_batch()``` to encode a sentence with the model. ```python from transformers import AutoTokenizer, AutoModel import torch def load_finetuned_model(): sentence_encoder = AutoModel.from_pretrained("biu-nlp/abstract-sim-sentence-pubmed") query_encoder = AutoModel.from_pretrained("biu-nlp/abstract-sim-query-pubmed") tokenizer = AutoTokenizer.from_pretrained("biu-nlp/abstract-sim-sentence-pubmed") return tokenizer, query_encoder, sentence_encoder def encode_batch(model, tokenizer, sentences, device): input_ids = tokenizer(sentences, padding=True, max_length=512, truncation=True, return_tensors="pt", add_special_tokens=True).to(device) features = model(**input_ids)[0] features = torch.sum(features[:,1:,:] * input_ids["attention_mask"][:,1:].unsqueeze(-1), dim=1) / torch.clamp(torch.sum(input_ids["attention_mask"][:,1:], dim=1, keepdims=True), min=1e-9) return features ```
dccuchile/albert-large-spanish-finetuned-qa-mlqa
[ "pytorch", "albert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
{ "architectures": [ "AlbertForQuestionAnswering" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
null
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA text2image fine-tuning - valerizab/pokemon These are LoRA adaption weights for runwayml/stable-diffusion-v1-5. The weights were fine-tuned on the lambdalabs/pokemon-blip-captions dataset. You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png)
dccuchile/albert-tiny-spanish-finetuned-mldoc
[ "pytorch", "albert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "AlbertForSequenceClassification" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
32
null
--- language: - en tags: - pubmed - feature-extraction - sentence-similarity datasets: - biu-nlp/abstract-sim-pubmed --- A model for mapping abstract sentence descriptions to sentences that fit the descriptions. Trained on Pubmed sentences. Use ```load_finetuned_model``` to load the query and sentence encoder, and ```encode_batch()``` to encode a sentence with the model. ```python from transformers import AutoTokenizer, AutoModel import torch def load_finetuned_model(): sentence_encoder = AutoModel.from_pretrained("biu-nlp/abstract-sim-sentence-pubmed") query_encoder = AutoModel.from_pretrained("biu-nlp/abstract-sim-query-pubmed") tokenizer = AutoTokenizer.from_pretrained("biu-nlp/abstract-sim-sentence-pubmed") return tokenizer, query_encoder, sentence_encoder def encode_batch(model, tokenizer, sentences, device): input_ids = tokenizer(sentences, padding=True, max_length=512, truncation=True, return_tensors="pt", add_special_tokens=True).to(device) features = model(**input_ids)[0] features = torch.sum(features[:,1:,:] * input_ids["attention_mask"][:,1:].unsqueeze(-1), dim=1) / torch.clamp(torch.sum(input_ids["attention_mask"][:,1:], dim=1, keepdims=True), min=1e-9) return features ```
dccuchile/albert-xlarge-spanish-finetuned-pawsx
[ "pytorch", "albert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "AlbertForSequenceClassification" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
24
null
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: ru_propaganda_opposition_model_distilbert-base-multilingual-cased results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # ru_propaganda_opposition_model_distilbert-base-multilingual-cased This model is a fine-tuned version of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0003 - Validation Loss: 0.2582 - Train Accuracy: 0.9551 - Epoch: 14 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 7695, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Accuracy | Epoch | |:----------:|:---------------:|:--------------:|:-----:| | 0.2994 | 0.2306 | 0.9091 | 0 | | 0.1127 | 0.1394 | 0.9540 | 1 | | 0.0485 | 0.1417 | 0.9485 | 2 | | 0.0256 | 0.1394 | 0.9562 | 3 | | 0.0158 | 0.1835 | 0.9617 | 4 | | 0.0106 | 0.1984 | 0.9617 | 5 | | 0.0082 | 0.2812 | 0.9376 | 6 | | 0.0030 | 0.2452 | 0.9562 | 7 | | 0.0033 | 0.2022 | 0.9595 | 8 | | 0.0052 | 0.2328 | 0.9529 | 9 | | 0.0022 | 0.2302 | 0.9573 | 10 | | 0.0019 | 0.2552 | 0.9529 | 11 | | 0.0019 | 0.2461 | 0.9584 | 12 | | 0.0006 | 0.2569 | 0.9551 | 13 | | 0.0003 | 0.2582 | 0.9551 | 14 | ### Framework versions - Transformers 4.29.1 - TensorFlow 2.12.0 - Datasets 2.12.0 - Tokenizers 0.13.3
dccuchile/albert-tiny-spanish
[ "pytorch", "tf", "albert", "pretraining", "es", "dataset:large_spanish_corpus", "transformers", "spanish", "OpenCENIA" ]
null
{ "architectures": [ "AlbertForPreTraining" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
393
null
--- tags: - fastai --- # Amazing! 🥳 Congratulations on hosting your fastai model on the Hugging Face Hub! # Some next steps 1. Fill out this model card with more information (see the template below and the [documentation here](https://huggingface.co/docs/hub/model-repos))! 2. Create a demo in Gradio or Streamlit using 🤗 Spaces ([documentation here](https://huggingface.co/docs/hub/spaces)). 3. Join the fastai community on the [Fastai Discord](https://discord.com/invite/YKrxeNn)! Greetings fellow fastlearner 🤝! Don't forget to delete this content from your model card. --- # Model card ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed
dccuchile/bert-base-spanish-wwm-cased-finetuned-pawsx
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
25
null
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: CartPole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 430.53 +/- 21.71 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
dccuchile/bert-base-spanish-wwm-cased-finetuned-qa-mlqa
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
{ "architectures": [ "BertForQuestionAnswering" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
null
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 294.78 +/- 16.24 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
dccuchile/bert-base-spanish-wwm-cased-finetuned-xnli
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
28
null
--- datasets: - OpenAssistant/oasst1 language: - ru - en metrics: - accuracy - bertscore library_name: adapter-transformers ---
dccuchile/bert-base-spanish-wwm-uncased-finetuned-ner
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
{ "architectures": [ "BertForTokenClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb model-index: - name: distilbert-base-uncased-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 2.4253 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.5416 | 1.0 | 157 | 2.4086 | | 2.4908 | 2.0 | 314 | 2.3721 | | 2.4523 | 3.0 | 471 | 2.3873 | ### Framework versions - Transformers 4.29.1 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
dccuchile/bert-base-spanish-wwm-uncased-finetuned-qa-mlqa
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
{ "architectures": [ "BertForQuestionAnswering" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
null
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Pixelcopter-PLE-v0 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 13.00 +/- 14.51 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
CennetOguz/distilbert-base-uncased-finetuned-recipe-1
[ "pytorch", "tensorboard", "distilbert", "fill-mask", "transformers", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "DistilBertForMaskedLM" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
null
--- license: creativeml-openrail-m language: - zh tags: - 梵蒂岡驅魔士線上看 - 梵蒂岡驅魔士線上看完整版 --- # 《梵蒂岡驅魔士》免費線上看~完整版(2023小鴨影音) 《梵蒂岡驅魔士》高畫質免費線上看,梵蒂岡驅魔士線上看完整版,梵蒂岡驅魔士線上看小鴨,提供繁體中文字幕。 (電影)免費線上看【梵蒂岡驅魔士】 : ➤ [https://梵蒂岡驅魔士 The Pope's Exorcist](https://super4kuhdq.com/zh/movie/758323) 台灣 No.1 高清正版線上看 | 460p - 720p - 1080p - BRRip - DvdRip - 4KUHD 電影信息:梵蒂岡驅魔士 羅素克洛主演,改編自梵蒂岡首席驅魔士,加俾額爾阿摩特神父所記錄的真實故事。電影描述他調查一起詭異的小男孩附身案,並且最終發現深藏數世紀之久,梵蒂岡教廷極力想隱藏的驚人秘密。 作為眾多「大法師」電影的靈感來源,加俾額爾阿摩特神父自1986年開始,就擔任梵蒂岡教宗的首席驅魔士,直到他2016年過世時,已經處理超過16萬起驅魔案件。在他的自傳中詳細記載被附身的徵兆以及驅魔儀式的過程,他的故事也啟發日後恐怖電影對魔鬼的想像。高齡80歲的《大法師》導演威廉弗萊德金甚至遠赴義大利採訪阿摩特神父,就為了更深入了解邪惡的真實面貌,並在紀錄片《惡魔與阿摩特神父》中曝光這些令人不安的事實。這次在改編電影《梵蒂岡驅魔士》中,更直接披露阿摩特神父過往最神秘詭譎的案例,揭開邪魔附身背後真正的動機。 阿摩特神父於1925年5月1日出生在義大利北部的城市摩德納,在他年紀輕輕時就感受到主的召喚,17歲獨自一人到羅馬希望成為一位神職人員,但卻因為年紀太小被教會拒絕。隨後二次世界大戰爆發,阿摩特加入了義大利軍隊,但非常快的他就轉移了陣營,決定與游擊軍一同對抗法西斯主義和納粹,他年輕的時候身上就流著叛逆的血液,為自己的信念而戰。1986年阿摩特被羅馬教廷指派給當時的驅魔士阿曼蒂尼神父擔任助手,並在他過世後成為梵蒂岡的首席驅魔士,接著在1990年創立了國際驅魔師協會(International Association of Exorcists),從此展開傳奇的驅魔生涯,到2016年過世前的近30年間,進行超過16萬次的驅魔儀式。 對於這位舉世聞名且經驗豐富的驅魔師,導演阿弗瑞補充道:「阿摩特神父不只是一位虔誠的教徒,更是一位博學多聞且邏輯很好的心理學家。他認為98%的案例是現代醫學可以解決的,但是剩下2%無法解釋的懸案,才是我們電影中想要探討的。」與魔鬼交手千百回合的親身經歷,歷史上最駭人聽聞的附身案例,通通都被阿摩特神父詳細的紀載下來。 片長:103分 上映日期:2023/04/28 雖然現在網路上有許多強大的字幕網站,提供大量電影、動畫、美劇、日劇與韓劇等免費中文字幕讓大家下載,但有時候還可能發生到找不到的情形,這時就能透過這款 atmovies.org 線上翻譯字幕工具,把國外字幕一鍵翻成繁體中文,完全免費且支援超多語言。 您可以免費在線觀看《梵蒂岡驅魔士》電影,而無需註冊,但是在這裡您還可以觀看質量更高的舊電影。 您觀看的所有內容都將在線上顯示; 如果您有娛樂動作電影的訣竅,可以在這裡觀看。 如果您正在尋找適合您或您的孩子的動畫電影,也可以在這裡找到他們。 以上就是 atmovies.org 免費看《梵蒂岡驅魔士》方法。 《梵蒂岡驅魔士》線上看小鴨 台灣,用atmovies.org輕鬆看正版 《梵蒂岡驅魔士》(The Pope's Exorcist)將於台灣時間5月14正式上架,較為特別是這部電影將獨家atmovies.org 平台上線,至於該如何線上免費看《梵蒂岡驅魔士》?這篇來教大家一個最快速看正版方法。 至於《梵蒂岡驅魔士》電影版會不會有中文字幕?目前看了一下 atmovies.org 所有影片都會包含中文字幕,所以不用擔心會缺少繁體中文配音。 想要在第一時間免費看《梵蒂岡驅魔士》電影,建議先準備好爆米花和飲料,畢竟這次電影片長會長達5小時14分鐘。 台灣除了能透過 atmovies.org 觀賞《梵蒂岡驅魔士》以外,也可以選擇 Catchplay 或有線電視,如台灣大寬頻、凱擘大寬頻、TBC、大新店 / 屏南數位有線電視、台灣數位光訊科技集團、 Home+中嘉同樣都可以直接訂閱觀賞,不過這次會教大家用 atmovies.org 免費看梵蒂岡驅魔士方法。 用電腦和電視上也可以觀賞 《梵蒂岡驅魔士》 在 iPhone 和 Android 操作完成後,就可以直接透過電腦登入 atmovies.org 官網,同樣是可以直接透過電腦大螢幕觀賞《梵蒂岡驅魔士》電影。 如果要在電視上觀看《梵蒂岡驅魔士》電影,只能透過 iPhone / Android 投影、鏡像、AirPlay 或 Chromecast 方式。 關鍵字Google: 梵蒂岡驅魔士線上看 梵蒂岡驅魔士線上看完整版 梵蒂岡驅魔士線上看小鴨 梵蒂岡驅魔士線上看完整版小鴨 梵蒂岡驅魔士線上看小鴨 台灣 梵蒂岡驅魔士台灣 梵蒂岡驅魔士台灣上映 梵蒂岡驅魔士台灣小鴨 梵蒂岡驅魔士台灣下載 梵蒂岡驅魔士小鴨 2023
CennetOguz/distilbert-base-uncased-finetuned-recipe-accelerate
[ "pytorch", "distilbert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "DistilBertForMaskedLM" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
null
--- license: cc-by-4.0 language: - en library_name: nemo pipeline_tag: token-classification tags: - G2P - Grapheme-to-Phoneme --- # English G2P token classification model This is a non-autoregressive model for English grapheme-to-phoneme (G2P) conversion based on BERT architecture. It predicts phonemes in CMU format. Initial data was built using CMUdict v0.07 ## Intended uses & limitations The input is expected to contain english words consisting of latin letters and apostrophe, all letters separated by space. ### How to use Install NeMo. Download en_g2p.nemo (this model) ```bash git lfs install git clone https://huggingface.co/bene-ges/en_g2p_cmu_bert_large ``` Run ```bash python ${NEMO_ROOT}/examples/nlp/text_normalization_as_tagging/normalization_as_tagging_infer.py \ pretrained_model=en_g2p_cmu_bert_large/en_g2p.nemo \ inference.from_file=input.txt \ inference.out_file=output.txt \ model.max_sequence_len=64 \ inference.batch_size=128 \ lang=en ``` Example of input file: ``` g e f f e r t p r o s c r i b e d p r o m i n e n t l y j o c e l y n m a r c e c a ' s s t a n k o w s k i m u f f l e ``` Example of output file: ``` G EH1 F ER0 T g e f f e r t G EH1 <DELETE> F <DELETE> ER0 T G EH1 <DELETE> F <DELETE> ER0 T PLAIN PLAIN PLAIN PLAIN PLAIN PLAIN PLAIN P R OW0 S K R AY1 B D p r o s c r i b e d P R OW0 S K R AY1 B <DELETE> D P R OW0 S K R AY1 B <DELETE> D PLAIN PLAIN PLAIN PLAIN PLAIN PLAIN PLAIN PLAIN PLAIN PLAIN P R AA1 M AH0 N AH0 N T L IY0 p r o m i n e n t l y P R AA1 M AH0 N AH0 N T L IY0 P R AA1 M AH0 N AH0 N T L IY0 PLAIN PLAIN PLAIN PLAIN PLAIN PLAIN PLAIN PLAIN PLAIN PLAIN PLAIN JH AO1 S L IH0 N j o c e l y n JH AO1 S <DELETE> L IH0 N JH AO1 S <DELETE> L IH0 N PLAIN PLAIN PLAIN PLAIN PLAIN PLAIN PLAIN M AA0 R S EH1 K AH0 Z m a r c e c a ' s M AA0 R S EH1 K AH0 <DELETE> Z M AA0 R S EH1 K AH0 <DELETE> Z PLAIN PLAIN PLAIN PLAIN PLAIN PLAIN PLAIN PLAIN PLAIN S T AH0 NG K AO1 F S K IY0 s t a n k o w s k i S T AH0 NG K AO1 F S K IY0 S T AH0 NG K AO1 F S K IY0 PLAIN PLAIN PLAIN PLAIN PLAIN PLAIN PLAIN PLAIN PLAIN PLAIN M AH1 F AH0L m u f f l e M AH1 <DELETE> F AH0_L <DELETE> M AH1 <DELETE> F AH0_L <DELETE> PLAIN PLAIN PLAIN PLAIN PLAIN PLAIN ``` Note that the correct output tags are in the **third** column, input is in the second column. Tags correspond to input letters in a one-to-one fashion. If you remove `<DELETE>` tag, and replace `_` with space, you should get CMU-like transcription. ### How to use for TTS See this [script](https://github.com/bene-ges/nemo_compatible/blob/main/scripts/tts/tts_en_infer_from_cmu_phonemes.py) to run TTS directly from CMU phonemes.
Chaddmckay/Cdm
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - generated_from_trainer metrics: - rouge model-index: - name: bartpho-word-base results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bartpho-word-base This model is a fine-tuned version of [vinai/bartpho-word-base](https://huggingface.co/vinai/bartpho-word-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.1067 - Rouge1: 49.261 - Rouge2: 22.7386 - Rougel: 33.4517 - Rougelsum: 35.6277 - Gen Len: 19.8061 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 2.7155 | 1.0 | 309 | 2.1805 | 48.1588 | 21.5414 | 32.4169 | 34.6188 | 19.7453 | | 2.2951 | 2.0 | 619 | 2.1331 | 48.5623 | 21.8348 | 32.7922 | 34.9789 | 19.7525 | | 2.1676 | 3.0 | 929 | 2.1193 | 49.2433 | 22.8931 | 33.4674 | 35.738 | 19.7881 | | 2.057 | 4.0 | 1239 | 2.1210 | 49.2825 | 22.7084 | 33.4667 | 35.5888 | 19.7759 | | 2.0153 | 4.99 | 1545 | 2.1067 | 49.261 | 22.7386 | 33.4517 | 35.6277 | 19.8061 | ### Framework versions - Transformers 4.28.0 - Pytorch 1.12.0+cu102 - Datasets 2.12.0 - Tokenizers 0.13.3
Chaima/TunBerto
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA text2image fine-tuning - valerizab/pokemon2 These are LoRA adaption weights for runwayml/stable-diffusion-v1-5. The weights were fine-tuned on the lambdalabs/pokemon-blip-captions dataset. You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png)
Chalponkey/DialoGPT-small-Barry
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
11
null
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_health_gathering_supreme type: doom_health_gathering_supreme metrics: - type: mean_reward value: 12.34 +/- 5.46 name: mean_reward verified: false --- A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment. This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory. Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/ ## Downloading the model After installing Sample-Factory, download the model with: ``` python -m sample_factory.huggingface.load_from_hub -r Bhanu9Prakash/rl_course_vizdoom_health_gathering_supreme ``` ## Using the model To run the model after download, use the `enjoy` script corresponding to this environment: ``` python -m .usr.local.lib.python3.10.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme ``` You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag. See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details ## Training with this model To continue training with this model, use the `train` script corresponding to this environment: ``` python -m .usr.local.lib.python3.10.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000 ``` Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
Chandanbhat/distilbert-base-uncased-finetuned-cola
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -1.36 +/- 0.36 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```