python_code
stringlengths
0
290k
repo_name
stringclasses
30 values
file_path
stringlengths
6
125
# pylint: disable=no-self-use,invalid-name from typing import List import pytest from allennlp.data.fields import TextField from allennlp.common.util import ensure_list from allennlp.common.testing import AllenNlpTestCase from allennlp.data import Instance, Token, Vocabulary from allennlp.data.iterators import BasicIterator from allennlp.data.token_indexers import SingleIdTokenIndexer from allennlp.data.dataset_readers.dataset_reader import _LazyInstances from adversarialnlp.generators.swag.swag_generator import SwagGenerator from adversarialnlp.generators.swag.activitynet_captions import ActivityNetCaptionsDatasetReader from adversarialnlp.tests.utils import FIXTURES_ROOT class GeneratorTest(AllenNlpTestCase): def setUp(self): super(GeneratorTest, self).setUp() self.token_indexers = {"tokens": SingleIdTokenIndexer()} self.vocab = Vocabulary() self.this_index = self.vocab.add_token_to_namespace('this') self.is_index = self.vocab.add_token_to_namespace('is') self.a_index = self.vocab.add_token_to_namespace('a') self.sentence_index = self.vocab.add_token_to_namespace('sentence') self.another_index = self.vocab.add_token_to_namespace('another') self.yet_index = self.vocab.add_token_to_namespace('yet') self.very_index = self.vocab.add_token_to_namespace('very') self.long_index = self.vocab.add_token_to_namespace('long') instances = [ self.create_instance(["this", "is", "a", "sentence"], ["this", "is", "another", "sentence"]), self.create_instance(["yet", "another", "sentence"], ["this", "is", "a", "very", "very", "very", "very", "long", "sentence"]), ] class LazyIterable: def __iter__(self): return (instance for instance in instances) self.instances = instances self.lazy_instances = LazyIterable() def create_instance(self, first_sentence: List[str], second_sentence: List[str]): first_tokens = [Token(t) for t in first_sentence] second_tokens = [Token(t) for t in second_sentence] instance = Instance({'first_sentence': TextField(first_tokens, self.token_indexers), 'second_sentence': TextField(second_tokens, self.token_indexers)}) return instance def assert_instances_are_correct(self, candidate_instances): # First we need to remove padding tokens from the candidates. # pylint: disable=protected-access candidate_instances = [tuple(w for w in instance if w != 0) for instance in candidate_instances] expected_instances = [tuple(instance.fields["first_sentence"]._indexed_tokens["tokens"]) for instance in self.instances] assert set(candidate_instances) == set(expected_instances) class TestSwagGenerator(GeneratorTest): # The Generator should work the same for lazy and non lazy datasets, # so each remaining test runs over both. def test_yield_one_epoch_generation_over_the_data_once(self): for test_instances in (self.instances, self.lazy_instances): generator = SwagGenerator(num_examples=1) test_instances = ActivityNetCaptionsDatasetReader().read(FIXTURES_ROOT / 'activitynet_captions.json') batches = list(generator(test_instances)) # We just want to get the single-token array for the text field in the instance. instances = [tuple(instance.detach().cpu().numpy()) for batch in batches for instance in batch['text']["tokens"]] assert len(instances) == 5 self.assert_instances_are_correct(instances)
adversarialnlp-master
adversarialnlp/tests/generators/swag_generator_test.py
adversarialnlp-master
adversarialnlp/tests/generators/__init__.py
# pylint: disable=no-self-use,invalid-name from typing import List import pytest from adversarialnlp.generators.addsent.addsent_generator import AddSentGenerator from adversarialnlp.generators.addsent.squad_reader import squad_reader from adversarialnlp.common.file_utils import FIXTURES_ROOT # class GeneratorTest(AllenNlpTestCase): # def setUp(self): # super(GeneratorTest, self).setUp() # self.token_indexers = {"tokens": SingleIdTokenIndexer()} # self.vocab = Vocabulary() # self.this_index = self.vocab.add_token_to_namespace('this') # self.is_index = self.vocab.add_token_to_namespace('is') # self.a_index = self.vocab.add_token_to_namespace('a') # self.sentence_index = self.vocab.add_token_to_namespace('sentence') # self.another_index = self.vocab.add_token_to_namespace('another') # self.yet_index = self.vocab.add_token_to_namespace('yet') # self.very_index = self.vocab.add_token_to_namespace('very') # self.long_index = self.vocab.add_token_to_namespace('long') # instances = [ # self.create_instance(["this", "is", "a", "sentence"], ["this", "is", "another", "sentence"]), # self.create_instance(["yet", "another", "sentence"], # ["this", "is", "a", "very", "very", "very", "very", "long", "sentence"]), # ] # class LazyIterable: # def __iter__(self): # return (instance for instance in instances) # self.instances = instances # self.lazy_instances = LazyIterable() # def create_instance(self, first_sentence: List[str], second_sentence: List[str]): # first_tokens = [Token(t) for t in first_sentence] # second_tokens = [Token(t) for t in second_sentence] # instance = Instance({'first_sentence': TextField(first_tokens, self.token_indexers), # 'second_sentence': TextField(second_tokens, self.token_indexers)}) # return instance # def assert_instances_are_correct(self, candidate_instances): # # First we need to remove padding tokens from the candidates. # # pylint: disable=protected-access # candidate_instances = [tuple(w for w in instance if w != 0) for instance in candidate_instances] # expected_instances = [tuple(instance.fields["first_sentence"]._indexed_tokens["tokens"]) # for instance in self.instances] # assert set(candidate_instances) == set(expected_instances) class TestSwagGenerator(): # The Generator should work the same for lazy and non lazy datasets, # so each remaining test runs over both. def test_yield_one_epoch_generation_over_the_data_once(self): generator = AddSentGenerator() test_instances = squad_reader(FIXTURES_ROOT / 'squad.json') batches = list(generator(test_instances, num_epochs=1)) # We just want to get the single-token array for the text field in the instance. # instances = [tuple(instance.detach().cpu().numpy()) # for batch in batches # for instance in batch['text']["tokens"]] assert len(batches) == 5 # self.assert_instances_are_correct(instances)
adversarialnlp-master
adversarialnlp/tests/generators/addsent_generator_test.py
adversarialnlp-master
adversarialnlp/common/__init__.py
# pylint: disable=invalid-name,protected-access #!/usr/bin/env python3 # Copyright (c) 2017-present, Facebook, Inc. # All rights reserved. # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. An additional grant # of patent rights can be found in the PATENTS file in the same directory. """ Utilities for downloading and building data. These can be replaced if your particular file system does not support them. """ from typing import Union, List from pathlib import Path import time import datetime import os import shutil import requests MODULE_ROOT = Path(__file__).parent.parent FIXTURES_ROOT = (MODULE_ROOT / "tests" / "fixtures").resolve() PACKAGE_ROOT = MODULE_ROOT.parent DATA_ROOT = (PACKAGE_ROOT / "data").resolve() class ProgressLogger(object): """Throttles and display progress in human readable form.""" def __init__(self, throttle=1, should_humanize=True): """Initialize Progress logger. :param throttle: default 1, number in seconds to use as throttle rate :param should_humanize: default True, whether to humanize data units """ self.latest = time.time() self.throttle_speed = throttle self.should_humanize = should_humanize def humanize(self, num, suffix='B'): """Convert units to more human-readable format.""" if num < 0: return num for unit in ['', 'Ki', 'Mi', 'Gi', 'Ti', 'Pi', 'Ei', 'Zi']: if abs(num) < 1024.0: return "%3.1f%s%s" % (num, unit, suffix) num /= 1024.0 return "%.1f%s%s" % (num, 'Yi', suffix) def log(self, curr, total, width=40, force=False): """Display a bar showing the current progress.""" if curr == 0 and total == -1: print('[ no data received for this file ]', end='\r') return curr_time = time.time() if not force and curr_time - self.latest < self.throttle_speed: return else: self.latest = curr_time self.latest = curr_time done = min(curr * width // total, width) remain = width - done if self.should_humanize: curr = self.humanize(curr) total = self.humanize(total) progress = '[{}{}] {} / {}'.format( ''.join(['|'] * done), ''.join(['.'] * remain), curr, total ) print(progress, end='\r') def built(path, version_string=None): """Checks if '.built' flag has been set for that task. If a version_string is provided, this has to match, or the version is regarded as not built. """ built_file_path = os.path.join(path, '.built') if not os.path.isfile(built_file_path): return False else: with open(built_file_path, 'r') as built_file: text = built_file.read().split('\n') if len(text) <= 2: return False for fname in text[1:-1]: if not os.path.isfile(os.path.join(path, fname)) and not os.path.isdir(os.path.join(path, fname)): return False return text[-1] == version_string if version_string else True def mark_done(path, fnames, version_string='vXX'): """Marks the path as done by adding a '.built' file with the current timestamp plus a version description string if specified. """ with open(os.path.join(path, '.built'), 'w') as built_file: built_file.write(str(datetime.datetime.today())) for fname in fnames: fname = fname.replace('.tar.gz', '').replace('.tgz', '').replace('.gz', '').replace('.zip', '') built_file.write('\n' + fname) built_file.write('\n' + version_string) def download(url, path, fname, redownload=False): """Downloads file using `requests`. If ``redownload`` is set to false, then will not download tar file again if it is present (default ``True``).""" outfile = os.path.join(path, fname) curr_download = not os.path.isfile(outfile) or redownload print("[ downloading: " + url + " to " + outfile + " ]") retry = 5 exp_backoff = [2 ** r for r in reversed(range(retry))] logger = ProgressLogger() while curr_download and retry >= 0: resume_file = outfile + '.part' resume = os.path.isfile(resume_file) if resume: resume_pos = os.path.getsize(resume_file) mode = 'ab' else: resume_pos = 0 mode = 'wb' response = None with requests.Session() as session: try: header = {'Range': 'bytes=%d-' % resume_pos, 'Accept-Encoding': 'identity'} if resume else {} response = session.get(url, stream=True, timeout=5, headers=header) # negative reply could be 'none' or just missing if resume and response.headers.get('Accept-Ranges', 'none') == 'none': resume_pos = 0 mode = 'wb' CHUNK_SIZE = 32768 total_size = int(response.headers.get('Content-Length', -1)) # server returns remaining size if resuming, so adjust total total_size += resume_pos done = resume_pos with open(resume_file, mode) as f: for chunk in response.iter_content(CHUNK_SIZE): if chunk: # filter out keep-alive new chunks f.write(chunk) if total_size > 0: done += len(chunk) if total_size < done: # don't freak out if content-length was too small total_size = done logger.log(done, total_size) break except requests.exceptions.ConnectionError: retry -= 1 # TODO Better way to clean progress bar? print(''.join([' '] * 60), end='\r') if retry >= 0: print('Connection error, retrying. (%d retries left)' % retry) time.sleep(exp_backoff[retry]) else: print('Retried too many times, stopped retrying.') finally: if response: response.close() if retry < 0: raise RuntimeWarning('Connection broken too many times. Stopped retrying.') if curr_download and retry > 0: logger.log(done, total_size, force=True) print() if done < total_size: raise RuntimeWarning('Received less data than specified in ' + 'Content-Length header for ' + url + '.' + ' There may be a download problem.') move(resume_file, outfile) def make_dir(path): """Makes the directory and any nonexistent parent directories.""" # the current working directory is a fine path if path != '': os.makedirs(path, exist_ok=True) def move(path1, path2): """Renames the given file.""" shutil.move(path1, path2) def remove_dir(path): """Removes the given directory, if it exists.""" shutil.rmtree(path, ignore_errors=True) def untar(path, fname, deleteTar=True): """Unpacks the given archive file to the same directory, then (by default) deletes the archive file. """ print('unpacking ' + fname) fullpath = os.path.join(path, fname) if '.tar.gz' in fname: shutil.unpack_archive(fullpath, path, format='gztar') else: shutil.unpack_archive(fullpath, path) if deleteTar: os.remove(fullpath) def cat(file1, file2, outfile, deleteFiles=True): with open(outfile, 'wb') as wfd: for f in [file1, file2]: with open(f, 'rb') as fd: shutil.copyfileobj(fd, wfd, 1024 * 1024 * 10) # 10MB per writing chunk to avoid reading big file into memory. if deleteFiles: os.remove(file1) os.remove(file2) def _get_confirm_token(response): for key, value in response.cookies.items(): if key.startswith('download_warning'): return value return None def download_from_google_drive(gd_id, destination): """Uses the requests package to download a file from Google Drive.""" URL = 'https://docs.google.com/uc?export=download' with requests.Session() as session: response = session.get(URL, params={'id': gd_id}, stream=True) token = _get_confirm_token(response) if token: response.close() params = {'id': gd_id, 'confirm': token} response = session.get(URL, params=params, stream=True) CHUNK_SIZE = 32768 with open(destination, 'wb') as f: for chunk in response.iter_content(CHUNK_SIZE): if chunk: # filter out keep-alive new chunks f.write(chunk) response.close() def download_files(fnames: List[Union[str, Path]], local_folder: str, version: str = 'v1.0', paths: Union[List[str], str] = 'aws') -> List[str]: r"""Download model/data files from a url. Args: fnames: List of filenames to download local_folder: Sub-folder of `./data` where models/data will be downloaded. version: Version of the model path: url or respective urls for downloading filenames. Return: List[str]: List of downloaded file path. If the downloaded file was a compressed file (`.tar.gz`, `.zip`, `.tgz`, `.gz`), return the path of the folder containing the extracted files. """ dpath = str(DATA_ROOT / local_folder) out_paths = list(dpath + '/' + fname.replace('.tar.gz', '').replace('.tgz', '').replace('.gz', '').replace('.zip', '') for fname in fnames) if not built(dpath, version): for fname in fnames: print('[building data: ' + dpath + '/' + fname + ']') if built(dpath): # An older version exists, so remove these outdated files. remove_dir(dpath) make_dir(dpath) if isinstance(paths, str): paths = [paths] * len(fnames) # Download the data. for fname, path in zip(fnames, paths): if path == 'aws': url = 'http://huggingface.co/downloads/models/' url += local_folder + '/' url += fname else: url = path + '/' + fname download(url, dpath, fname) if '.tar.gz' in fname or '.tgz' in fname or '.gz' in fname or '.zip' in fname: untar(dpath, fname) # Mark the data as built. mark_done(dpath, fnames, version) return out_paths
adversarialnlp-master
adversarialnlp/common/file_utils.py
from typing import Dict import argparse import logging from allennlp.commands.subcommand import Subcommand from allennlp.common.util import import_submodules from adversarialnlp import __version__ from adversarialnlp.commands.test_install import TestInstall logger = logging.getLogger(__name__) # pylint: disable=invalid-name def main(prog: str = None, subcommand_overrides: Dict[str, Subcommand] = {}) -> None: """ :mod:`~adversarialnlp.run` command. """ # pylint: disable=dangerous-default-value parser = argparse.ArgumentParser(description="Run AdversarialNLP", usage='%(prog)s', prog=prog) parser.add_argument('--version', action='version', version='%(prog)s ' + __version__) subparsers = parser.add_subparsers(title='Commands', metavar='') subcommands = { # Default commands "test-install": TestInstall(), # Superseded by overrides **subcommand_overrides } for name, subcommand in subcommands.items(): subparser = subcommand.add_subparser(name, subparsers) # configure doesn't need include-package because it imports # whatever classes it needs. if name != "configure": subparser.add_argument('--include-package', type=str, action='append', default=[], help='additional packages to include') args = parser.parse_args() # If a subparser is triggered, it adds its work as `args.func`. # So if no such attribute has been added, no subparser was triggered, # so give the user some help. if 'func' in dir(args): # Import any additional modules needed (to register custom classes). for package_name in getattr(args, 'include_package', ()): import_submodules(package_name) args.func(args) else: parser.print_help()
adversarialnlp-master
adversarialnlp/commands/__init__.py
""" The ``test-install`` subcommand verifies an installation by running the unit tests. .. code-block:: bash $ adversarialnlp test-install --help usage: adversarialnlp test-install [-h] [--run-all] [--include-package INCLUDE_PACKAGE] Test that installation works by running the unit tests. optional arguments: -h, --help show this help message and exit --run-all By default, we skip tests that are slow or download large files. This flag will run all tests. --include-package INCLUDE_PACKAGE additional packages to include """ import argparse import logging import os import pathlib import pytest from allennlp.commands.subcommand import Subcommand import adversarialnlp logger = logging.getLogger(__name__) # pylint: disable=invalid-name class TestInstall(Subcommand): def add_subparser(self, name: str, parser: argparse._SubParsersAction) -> argparse.ArgumentParser: # pylint: disable=protected-access description = '''Test that installation works by running the unit tests.''' subparser = parser.add_parser( name, description=description, help='Run the unit tests.') subparser.add_argument('--run-all', action="store_true", help="By default, we skip tests that are slow " "or download large files. This flag will run all tests.") subparser.set_defaults(func=_run_test) return subparser def _get_module_root(): return pathlib.Path(adversarialnlp.__file__).parent def _run_test(args: argparse.Namespace): initial_working_dir = os.getcwd() module_parent = _get_module_root().parent logger.info("Changing directory to %s", module_parent) os.chdir(module_parent) test_dir = os.path.join(module_parent, "adversarialnlp") logger.info("Running tests at %s", test_dir) if args.run_all: # TODO(nfliu): remove this when notebooks have been rewritten as markdown. exit_code = pytest.main([test_dir, '--color=no', '-k', 'not notebooks_test']) else: exit_code = pytest.main([test_dir, '--color=no', '-k', 'not sniff_test and not notebooks_test', '-m', 'not java']) # Change back to original working directory after running tests os.chdir(initial_working_dir) exit(exit_code)
adversarialnlp-master
adversarialnlp/commands/test_install.py
from .generator import Generator from .swag import SwagGenerator from .addsent import AddSentGenerator
adversarialnlp-master
adversarialnlp/generators/__init__.py
import logging from typing import Dict, Union, Iterable, List from collections import defaultdict import itertools logger = logging.getLogger(__name__) # pylint: disable=invalid-name class Generator(): r"""An abstract ``Generator`` class. A ``Generator`` takes as inputs an iterable of seeds (for examples samples from a training dataset) and edit them to generate potential adversarial examples. This class is an abstract class. To implement a ``Generator``, you should override the `generate_from_seed(self, seed: any)` method with a specific method to use for yielding adversarial samples from a seed sample. Optionally, you should also: - define a typing class for the ``seed`` objects - define a default seed source in the ``__init__`` class, for examples by downloading an appropriate dataset. See examples in the ``AddSentGenerator`` class. Args: default_seeds: Default Iterable to use as source of seeds. quiet: Output debuging information. Inputs: **seed_instances** (optional): Instances to use as seed for adversarial example generation. If None uses the default_seeds providing at class instantiation. Default to None **num_epochs** (optional): How many times should we iterate over the seeds? If None, we will iterate over it forever. Default to None. **shuffle** (optional): Shuffle the instances before iteration. If True, we will shuffle the instances before iterating. Default to False. Yields: **adversarial_examples** (Iterable): Adversarial examples generated from the seeds. Examples:: >> generator = Generator() >> examples = generator(num_epochs=1) """ def __init__(self, default_seeds: Iterable = None, quiet: bool = False): self.default_seeds = default_seeds self.quiet: bool = quiet self._epochs: Dict[int, int] = defaultdict(int) def generate_from_seed(self, seed: any): r"""Generate an adversarial example from a seed. """ raise NotImplementedError def __call__(self, seeds: Iterable = None, num_epochs: int = None, shuffle: bool = True) -> Iterable: r"""Generate adversarial examples using _generate_from_seed. Args: seeds: Instances to use as seed for adversarial example generation. num_epochs: How many times should we iterate over the seeds? If None, we will iterate over it forever. shuffle: Shuffle the instances before iteration. If True, we will shuffle the instances before iterating. Yields: adversarial_examples adversarial_examples: Adversarial examples generated from the seeds. """ if seeds is None: if self.default_seeds is not None: seeds = self.default_seeds else: return # Instances is likely to be a list, which cannot be used as a key, # so we take the object id instead. key = id(seeds) starting_epoch = self._epochs[key] if num_epochs is None: epochs: Iterable[int] = itertools.count(starting_epoch) else: epochs = range(starting_epoch, starting_epoch + num_epochs) for epoch in epochs: self._epochs[key] = epoch for seed in seeds: yield from self.generate_from_seed(seed)
adversarialnlp-master
adversarialnlp/generators/generator.py
# Python wrapper for Stanford CoreNLP # Copyright (c) 2017 Lynten Guo, 2018 Thomas Wolf # Extracted and adapted from https://github.com/Lynten/stanford-corenlp from __future__ import print_function import glob import json import logging import os import re import socket import subprocess import sys import time import psutil try: from urlparse import urlparse except ImportError: from urllib.parse import urlparse import requests class StanfordCoreNLP: def __init__(self, path_or_host, port=None, memory='4g', lang='en', timeout=1500, quiet=True, logging_level=logging.WARNING, max_retries=5): self.path_or_host = path_or_host self.port = port self.memory = memory self.lang = lang self.timeout = timeout self.quiet = quiet self.logging_level = logging_level logging.basicConfig(level=self.logging_level) # Check args self._check_args() if path_or_host.startswith('http'): self.url = path_or_host + ':' + str(port) logging.info('Using an existing server {}'.format(self.url)) else: # Check Java if not subprocess.call(['java', '-version'], stdout=subprocess.PIPE, stderr=subprocess.STDOUT) == 0: raise RuntimeError('Java not found.') # Check if the dir exists if not os.path.isdir(self.path_or_host): raise IOError(str(self.path_or_host) + ' is not a directory.') directory = os.path.normpath(self.path_or_host) + os.sep self.class_path_dir = directory # Check if the language specific model file exists switcher = { 'en': 'stanford-corenlp-[0-9].[0-9].[0-9]-models.jar', 'zh': 'stanford-chinese-corenlp-[0-9][0-9][0-9][0-9]-[0-9][0-9]-[0-9][0-9]-models.jar', 'ar': 'stanford-arabic-corenlp-[0-9][0-9][0-9][0-9]-[0-9][0-9]-[0-9][0-9]-models.jar', 'fr': 'stanford-french-corenlp-[0-9][0-9][0-9][0-9]-[0-9][0-9]-[0-9][0-9]-models.jar', 'de': 'stanford-german-corenlp-[0-9][0-9][0-9][0-9]-[0-9][0-9]-[0-9][0-9]-models.jar', 'es': 'stanford-spanish-corenlp-[0-9][0-9][0-9][0-9]-[0-9][0-9]-[0-9][0-9]-models.jar' } jars = { 'en': 'stanford-corenlp-x.x.x-models.jar', 'zh': 'stanford-chinese-corenlp-yyyy-MM-dd-models.jar', 'ar': 'stanford-arabic-corenlp-yyyy-MM-dd-models.jar', 'fr': 'stanford-french-corenlp-yyyy-MM-dd-models.jar', 'de': 'stanford-german-corenlp-yyyy-MM-dd-models.jar', 'es': 'stanford-spanish-corenlp-yyyy-MM-dd-models.jar' } if len(glob.glob(directory + switcher.get(self.lang))) <= 0: raise IOError(jars.get( self.lang) + ' not exists. You should download and place it in the ' + directory + ' first.') # If port not set, auto select # Commenting: see https://github.com/Lynten/stanford-corenlp/issues/26 # if self.port is None: # for port_candidate in range(9000, 65535): # if port_candidate not in [conn.laddr[1] for conn in psutil.net_connections()]: # self.port = port_candidate # break self.port = 9999 # Check if the port is in use # Also commenting: see https://github.com/Lynten/stanford-corenlp/issues/26 # if self.port in [conn.laddr[1] for conn in psutil.net_connections()]: # raise IOError('Port ' + str(self.port) + ' is already in use.') # Start native server logging.info('Initializing native server...') cmd = "java" java_args = "-Xmx{}".format(self.memory) java_class = "edu.stanford.nlp.pipeline.StanfordCoreNLPServer" class_path = '"{}*"'.format(directory) args = [cmd, java_args, '-cp', class_path, java_class, '-port', str(self.port)] args = ' '.join(args) logging.info(args) # Silence with open(os.devnull, 'w') as null_file: out_file = None if self.quiet: out_file = null_file self.p = subprocess.Popen(args, shell=True, stdout=out_file, stderr=subprocess.STDOUT) logging.info('Server shell PID: {}'.format(self.p.pid)) self.url = 'http://localhost:' + str(self.port) # Wait until server starts sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) host_name = urlparse(self.url).hostname time.sleep(1) # OSX, not tested trial = 1 while sock.connect_ex((host_name, self.port)): if trial > max_retries: raise ValueError('Corenlp server is not available') logging.info('Waiting until the server is available.') trial += 1 time.sleep(1) logging.info('The server is available.') def __enter__(self): return self def __exit__(self, exc_type, exc_val, exc_tb): self.close() def close(self): logging.info('Cleanup...') if hasattr(self, 'p'): try: parent = psutil.Process(self.p.pid) except psutil.NoSuchProcess: logging.info('No process: {}'.format(self.p.pid)) return if self.class_path_dir not in ' '.join(parent.cmdline()): logging.info('Process not in: {}'.format(parent.cmdline())) return children = parent.children(recursive=True) for process in children: logging.info('Killing pid: {}, cmdline: {}'.format(process.pid, process.cmdline())) # process.send_signal(signal.SIGTERM) process.kill() logging.info('Killing shell pid: {}, cmdline: {}'.format(parent.pid, parent.cmdline())) # parent.send_signal(signal.SIGTERM) parent.kill() def annotate(self, text, properties=None): if sys.version_info.major >= 3: text = text.encode('utf-8') r = requests.post(self.url, params={'properties': str(properties)}, data=text, headers={'Connection': 'close'}) return r.text def tregex(self, sentence, pattern): tregex_url = self.url + '/tregex' r_dict = self._request(tregex_url, "tokenize,ssplit,depparse,parse", sentence, pattern=pattern) return r_dict def tokensregex(self, sentence, pattern): tokensregex_url = self.url + '/tokensregex' r_dict = self._request(tokensregex_url, "tokenize,ssplit,depparse", sentence, pattern=pattern) return r_dict def semgrex(self, sentence, pattern): semgrex_url = self.url + '/semgrex' r_dict = self._request(semgrex_url, "tokenize,ssplit,depparse", sentence, pattern=pattern) return r_dict def word_tokenize(self, sentence, span=False): r_dict = self._request('ssplit,tokenize', sentence) tokens = [token['originalText'] for s in r_dict['sentences'] for token in s['tokens']] # Whether return token span if span: spans = [(token['characterOffsetBegin'], token['characterOffsetEnd']) for s in r_dict['sentences'] for token in s['tokens']] return tokens, spans else: return tokens def pos_tag(self, sentence): r_dict = self._request(self.url, 'pos', sentence) words = [] tags = [] for s in r_dict['sentences']: for token in s['tokens']: words.append(token['originalText']) tags.append(token['pos']) return list(zip(words, tags)) def ner(self, sentence): r_dict = self._request(self.url, 'ner', sentence) words = [] ner_tags = [] for s in r_dict['sentences']: for token in s['tokens']: words.append(token['originalText']) ner_tags.append(token['ner']) return list(zip(words, ner_tags)) def parse(self, sentence): r_dict = self._request(self.url, 'pos,parse', sentence) return [s['parse'] for s in r_dict['sentences']][0] def dependency_parse(self, sentence): r_dict = self._request(self.url, 'depparse', sentence) return [(dep['dep'], dep['governor'], dep['dependent']) for s in r_dict['sentences'] for dep in s['basicDependencies']] def coref(self, text): r_dict = self._request('coref', text) corefs = [] for k, mentions in r_dict['corefs'].items(): simplified_mentions = [] for m in mentions: simplified_mentions.append((m['sentNum'], m['startIndex'], m['endIndex'], m['text'])) corefs.append(simplified_mentions) return corefs def switch_language(self, language="en"): self._check_language(language) self.lang = language def _request(self, url, annotators=None, data=None, *args, **kwargs): if sys.version_info.major >= 3: data = data.encode('utf-8') properties = {'annotators': annotators, 'outputFormat': 'json'} params = {'properties': str(properties), 'pipelineLanguage': self.lang} if 'pattern' in kwargs: params = {"pattern": kwargs['pattern'], 'properties': str(properties), 'pipelineLanguage': self.lang} logging.info(params) r = requests.post(url, params=params, data=data, headers={'Connection': 'close'}) r_dict = json.loads(r.text) return r_dict def _check_args(self): self._check_language(self.lang) if not re.match('\dg', self.memory): raise ValueError('memory=' + self.memory + ' not supported. Use 4g, 6g, 8g and etc. ') def _check_language(self, lang): if lang not in ['en', 'zh', 'ar', 'fr', 'de', 'es']: raise ValueError('lang=' + self.lang + ' not supported. Use English(en), Chinese(zh), Arabic(ar), ' 'French(fr), German(de), Spanish(es).')
adversarialnlp-master
adversarialnlp/generators/addsent/corenlp.py
from .addsent_generator import AddSentGenerator from .squad_reader import squad_reader
adversarialnlp-master
adversarialnlp/generators/addsent/__init__.py
"""Utilities for AddSent generator.""" from typing import List, Dict, Tuple, Optional class ConstituencyParse(object): """A CoreNLP constituency parse (or a node in a parse tree). Word-level constituents have |word| and |index| set and no children. Phrase-level constituents have no |word| or |index| and have at least one child. """ def __init__(self, tag, children=None, word=None, index=None): self.tag = tag if children: self.children = children else: self.children = None self.word = word self.index = index @classmethod def _recursive_parse_corenlp(cls, tokens, i, j): orig_i = i if tokens[i] == '(': tag = tokens[i + 1] children = [] i = i + 2 while True: child, i, j = cls._recursive_parse_corenlp(tokens, i, j) if isinstance(child, cls): children.append(child) if tokens[i] == ')': return cls(tag, children), i + 1, j else: if tokens[i] != ')': raise ValueError('Expected ")" following leaf') return cls(tag, word=child, index=j), i + 1, j + 1 else: # Only other possibility is it's a word return tokens[i], i + 1, j @classmethod def from_corenlp(cls, s): """Parses the "parse" attribute returned by CoreNLP parse annotator.""" # "parse": "(ROOT\n (SBARQ\n (WHNP (WDT What)\n (NP (NN portion)\n (PP (IN of)\n (NP\n (NP (NNS households))\n (PP (IN in)\n (NP (NNP Jacksonville)))))))\n (SQ\n (VP (VBP have)\n (NP (RB only) (CD one) (NN person))))\n (. ? )))", s_spaced = s.replace('\n', ' ').replace('(', ' ( ').replace(')', ' ) ') tokens = [t for t in s_spaced.split(' ') if t] tree, index, num_words = cls._recursive_parse_corenlp(tokens, 0, 0) if index != len(tokens): raise ValueError('Only parsed %d of %d tokens' % (index, len(tokens))) return tree def is_singleton(self): if self.word: return True if len(self.children) > 1: return False return self.children[0].is_singleton() def print_tree(self, indent=0): spaces = ' ' * indent if self.word: print(f"{spaces}{self.tag}: {self.word} ({self.index})") else: print(f"{spaces}{self.tag}") for c in self.children: c.print_tree(indent=indent + 1) def get_phrase(self): if self.word: return self.word toks = [] for i, c in enumerate(self.children): p = c.get_phrase() if i == 0 or p.startswith("'"): toks.append(p) else: toks.append(' ' + p) return ''.join(toks) def get_start_index(self): if self.index is not None: return self.index return self.children[0].get_start_index() def get_end_index(self): if self.index is not None: return self.index + 1 return self.children[-1].get_end_index() @classmethod def _recursive_replace_words(cls, tree, new_words, i): if tree.word: new_word = new_words[i] return (cls(tree.tag, word=new_word, index=tree.index), i + 1) new_children = [] for c in tree.children: new_child, i = cls._recursive_replace_words(c, new_words, i) new_children.append(new_child) return cls(tree.tag, children=new_children), i @classmethod def replace_words(cls, tree, new_words): """Return a new tree, with new words replacing old ones.""" new_tree, i = cls._recursive_replace_words(tree, new_words, 0) if i != len(new_words): raise ValueError('len(new_words) == %d != i == %d' % (len(new_words), i)) return new_tree def rejoin(tokens: List[Dict[str, str]], sep: str = None) -> str: """Rejoin tokens into the original sentence. Args: tokens: a list of dicts containing 'originalText' and 'before' fields. All other fields will be ignored. sep: if provided, use the given character as a separator instead of the 'before' field (e.g. if you want to preserve where tokens are). Returns: the original sentence that generated this CoreNLP token list. """ if sep is None: return ''.join('%s%s' % (t['before'], t['originalText']) for t in tokens) else: # Use the given separator instead return sep.join(t['originalText'] for t in tokens) def get_tokens_for_answers(answer_objs: List[Tuple[int, Dict]], corenlp_obj: Dict) -> Tuple[int, List]: """Get CoreNLP tokens corresponding to a SQuAD answer object.""" first_a_toks = None for i, a_obj in enumerate(answer_objs): a_toks = [] answer_start = a_obj['answer_start'] answer_end = answer_start + len(a_obj['text']) for sent in corenlp_obj['sentences']: for tok in sent['tokens']: if tok['characterOffsetBegin'] >= answer_end: continue if tok['characterOffsetEnd'] <= answer_start: continue a_toks.append(tok) if rejoin(a_toks).strip() == a_obj['text']: # Make sure that the tokens reconstruct the answer return i, a_toks if i == 0: first_a_toks = a_toks # None of the extracted token lists reconstruct the answer # Default to the first return 0, first_a_toks def get_determiner_for_answers(answer_objs: List[Dict]) -> Optional[str]: for ans in answer_objs: words = ans['text'].split(' ') if words[0].lower() == 'the': return 'the' if words[0].lower() in ('a', 'an'): return 'a' return None def compress_whnp(tree, inside_whnp=False): if not tree.children: return tree # Reached leaf # Compress all children for i, c in enumerate(tree.children): tree.children[i] = compress_whnp(c, inside_whnp=inside_whnp or tree.tag == 'WHNP') if tree.tag != 'WHNP': if inside_whnp: # Wrap everything in an NP return ConstituencyParse('NP', children=[tree]) return tree wh_word = None new_np_children = [] new_siblings = [] for i, c in enumerate(tree.children): if i == 0: if c.tag in ('WHNP', 'WHADJP', 'WHAVP', 'WHPP'): wh_word = c.children[0] new_np_children.extend(c.children[1:]) elif c.tag in ('WDT', 'WP', 'WP$', 'WRB'): wh_word = c else: # No WH-word at start of WHNP return tree else: if c.tag == 'SQ': # Due to bad parse, SQ may show up here new_siblings = tree.children[i:] break # Wrap everything in an NP new_np_children.append(ConstituencyParse('NP', children=[c])) if new_np_children: new_np = ConstituencyParse('NP', children=new_np_children) new_tree = ConstituencyParse('WHNP', children=[wh_word, new_np]) else: new_tree = tree if new_siblings: new_tree = ConstituencyParse('SBARQ', children=[new_tree] + new_siblings) return new_tree def read_const_parse(parse_str): tree = ConstituencyParse.from_corenlp(parse_str) new_tree = compress_whnp(tree) return new_tree
adversarialnlp-master
adversarialnlp/generators/addsent/utils.py
import json import logging from typing import Iterator, List, Tuple from adversarialnlp.common.file_utils import download_files logger = logging.getLogger(__name__) # pylint: disable=invalid-name def squad_reader(file_path: str = None) -> Iterator[List[Tuple[str, str]]]: r""" Reads a JSON-formatted SQuAD file and returns an Iterator. Args: file_path: Path to a JSON-formatted SQuAD file. If no path is provided, download and use SQuAD v1.0 training dataset. Return: list of tuple (question_answer, paragraph). """ if file_path is None: file_path = download_files(fnames=['train-v1.1.json'], paths='https://rajpurkar.github.io/SQuAD-explorer/dataset/', local_folder='squad') file_path = file_path[0] logger.info("Reading file at %s", file_path) with open(file_path) as dataset_file: dataset_json = json.load(dataset_file) dataset = dataset_json['data'] logger.info("Reading the dataset") out_data = [] for article in dataset: for paragraph_json in article['paragraphs']: paragraph = paragraph_json["context"] for question_answer in paragraph_json['qas']: question_answer["question"] = question_answer["question"].strip().replace("\n", "") out_data.append((question_answer, paragraph)) return out_data
adversarialnlp-master
adversarialnlp/generators/addsent/squad_reader.py
import logging import json import itertools from typing import Iterable, Dict, Tuple from collections import defaultdict from adversarialnlp.common.file_utils import download_files from adversarialnlp.generators import Generator from adversarialnlp.generators.addsent.rules import (ANSWER_RULES, HIGH_CONF_ALTER_RULES, ALL_ALTER_RULES, DO_NOT_ALTER, BAD_ALTERATIONS, CONVERSION_RULES) from adversarialnlp.generators.addsent.utils import (rejoin, ConstituencyParse, get_tokens_for_answers, get_determiner_for_answers, read_const_parse) from adversarialnlp.generators.addsent.squad_reader import squad_reader from adversarialnlp.generators.addsent.corenlp import StanfordCoreNLP logger = logging.getLogger(__name__) # pylint: disable=invalid-name SQUAD_FILE = 'data/squad/train-v1.1.json' NEARBY_GLOVE_FILE = 'data/addsent/nearby_n100_glove_6B_100d.json' POSTAG_FILE = 'data/addsent/postag_dict.json' class AddSentGenerator(Generator): r"""Adversarial examples generator based on AddSent. AddSent is described in the paper `Adversarial Examples for Evaluating Reading Comprehension Systems`_ by Robin Jia & Percy Liang Args, input and yield: See the ``Generator`` class. Additional arguments: alteration_strategy: Alteration strategy. Options: - `separate`: Do best alteration for each word separately. - `best`: Generate exactly one best alteration (may over-alter). - `high-conf`: Do all possible high-confidence alterations. - `high-conf-separate`: Do best high-confidence alteration for each word separately. - `all`: Do all possible alterations (very conservative) prepend: Insert adversarial example at the beginning or end of the context. use_answer_placeholder: Use and answer placeholder. Seeds: Tuple of SQuAD-like instances containing - question-answer-span, and - context paragraph. default_seeds: If no seeds are provided, the default_seeds are the training set of the `SQuAD V1.0 dataset <https://rajpurkar.github.io/SQuAD-explorer/>`_. """ def __init__(self, alteration_strategy: str = 'high-conf', prepend: bool = False, use_answer_placeholder: bool = False, default_seeds: Iterable = None, quiet: bool = False): super(AddSentGenerator).__init__(default_seeds, quiet) model_files = download_files(fnames=['nearby_n100_glove_6B_100d.json', 'postag_dict.json'], local_folder='addsent') corenlp_path = download_files(fnames=['stanford-corenlp-full-2018-02-27.zip'], paths='http://nlp.stanford.edu/software/', local_folder='corenlp') self.nlp: StanfordCoreNLP = StanfordCoreNLP(corenlp_path[0]) with open(model_files[0], 'r') as data_file: self.nearby_word_dict: Dict = json.load(data_file) with open(model_files[1], 'r') as data_file: self.postag_dict: Dict = json.load(data_file) self.alteration_strategy: str = alteration_strategy self.prepend: bool = prepend self.use_answer_placeholder: bool = use_answer_placeholder if default_seeds is None: self.default_seeds = squad_reader(SQUAD_FILE) else: self.default_seeds = default_seeds def close(self): self.nlp.close() def _annotate(self, text: str, annotators: str): r"""Wrapper to call CoreNLP. """ props = {'annotators': annotators, 'ssplit.newlineIsSentenceBreak': 'always', 'outputFormat':'json'} return json.loads(self.nlp.annotate(text, properties=props)) def _alter_question(self, question, tokens, const_parse): r"""Alter the question to make it ask something else. """ used_words = [tok['word'].lower() for tok in tokens] new_qs = [] toks_all = [] if self.alteration_strategy.startswith('high-conf'): rules = HIGH_CONF_ALTER_RULES else: rules = ALL_ALTER_RULES for i, tok in enumerate(tokens): if tok['word'].lower() in DO_NOT_ALTER: if self.alteration_strategy in ('high-conf', 'all'): toks_all.append(tok) continue begin = tokens[:i] end = tokens[i+1:] found = False for rule_name in rules: rule = rules[rule_name] new_words = rule(tok, nearby_word_dict=self.nearby_word_dict, postag_dict=self.postag_dict) if new_words: for word in new_words: if word.lower() in used_words: continue if word.lower() in BAD_ALTERATIONS: continue # Match capitzliation if tok['word'] == tok['word'].upper(): word = word.upper() elif tok['word'] == tok['word'].title(): word = word.title() new_tok = dict(tok) new_tok['word'] = new_tok['lemma'] = new_tok['originalText'] = word new_tok['altered'] = True # NOTE: obviously this is approximate if self.alteration_strategy.endswith('separate'): new_tokens = begin + [new_tok] + end new_q = rejoin(new_tokens) tag = '%s-%d-%s' % (rule_name, i, word) new_const_parse = ConstituencyParse.replace_words( const_parse, [tok['word'] for tok in new_tokens]) new_qs.append((new_q, new_tokens, new_const_parse, tag)) break elif self.alteration_strategy in ('high-conf', 'all'): toks_all.append(new_tok) found = True break if self.alteration_strategy in ('high-conf', 'all') and found: break if self.alteration_strategy in ('high-conf', 'all') and not found: toks_all.append(tok) if self.alteration_strategy in ('high-conf', 'all'): new_q = rejoin(toks_all) new_const_parse = ConstituencyParse.replace_words( const_parse, [tok['word'] for tok in toks_all]) if new_q != question: new_qs.append((rejoin(toks_all), toks_all, new_const_parse, self.alteration_strategy)) return new_qs def generate_from_seed(self, seed: Tuple): r"""Edit a SQuAD example using rules. """ qas, paragraph = seed question = qas['question'].strip() if not self.quiet: print(f"Question: {question}") if self.use_answer_placeholder: answer = 'ANSWER' determiner = '' else: p_parse = self._annotate(paragraph, 'tokenize,ssplit,pos,ner,entitymentions') ind, a_toks = get_tokens_for_answers(qas['answers'], p_parse) determiner = get_determiner_for_answers(qas['answers']) answer_obj = qas['answers'][ind] for _, func in ANSWER_RULES: answer = func(answer_obj, a_toks, question, determiner=determiner) if answer: break else: raise ValueError('Missing answer') q_parse = self._annotate(question, 'tokenize,ssplit,pos,parse,ner') q_parse = q_parse['sentences'][0] q_tokens = q_parse['tokens'] q_const_parse = read_const_parse(q_parse['parse']) if self.alteration_strategy: # Easiest to alter the question before converting q_list = self._alter_question(question, q_tokens, q_const_parse) else: q_list = [(question, q_tokens, q_const_parse, 'unaltered')] for q_str, q_tokens, q_const_parse, tag in q_list: for rule in CONVERSION_RULES: sent = rule.convert(q_str, answer, q_tokens, q_const_parse) if sent: if not self.quiet: print(f" Sent ({tag}): {sent}'") cur_qa = { 'question': qas['question'], 'id': '%s-%s' % (qas['id'], tag), 'answers': qas['answers'] } if self.prepend: cur_text = '%s %s' % (sent, paragraph) new_answers = [] for ans in qas['answers']: new_answers.append({ 'text': ans['text'], 'answer_start': ans['answer_start'] + len(sent) + 1 }) cur_qa['answers'] = new_answers else: cur_text = '%s %s' % (paragraph, sent) out_example = {'title': title, 'seed_context': paragraph, 'seed_qas': qas, 'context': cur_text, 'qas': [cur_qa]} yield out_example # from adversarialnlp.common.file_utils import FIXTURES_ROOT # generator = AddSentGenerator() # test_instances = squad_reader(FIXTURES_ROOT / 'squad.json') # batches = list(generator(test_instances, num_epochs=1)) # assert len(batches) != 0
adversarialnlp-master
adversarialnlp/generators/addsent/addsent_generator.py
import math from adversarialnlp.generators.addsent.utils import rejoin MONTHS = ['january', 'february', 'march', 'april', 'may', 'june', 'july', 'august', 'september', 'october', 'november', 'december'] def ans_number(a, tokens, q, **kwargs): out_toks = [] seen_num = False for t in tokens: ner = t['ner'] pos = t['pos'] w = t['word'] out_tok = {'before': t['before']} # Split on dashes leftover = '' dash_toks = w.split('-') if len(dash_toks) > 1: w = dash_toks[0] leftover = '-'.join(dash_toks[1:]) # Try to get a number out value = None if w != '%': # Percent sign should just pass through try: value = float(w.replace(',', '')) except: try: norm_ner = t['normalizedNER'] if norm_ner[0] in ('%', '>', '<'): norm_ner = norm_ner[1:] value = float(norm_ner) except: pass if not value and ( ner == 'NUMBER' or (ner == 'PERCENT' and pos == 'CD')): # Force this to be a number anyways value = 10 if value: if math.isinf(value) or math.isnan(value): value = 9001 seen_num = True if w in ('thousand', 'million', 'billion', 'trillion'): if w == 'thousand': new_val = 'million' else: new_val = 'thousand' else: if value < 2500 and value > 1000: new_val = str(value - 75) else: # Change leading digit if value == int(value): val_chars = list('%d' % value) else: val_chars = list('%g' % value) c = val_chars[0] for i in range(len(val_chars)): c = val_chars[i] if c >= '0' and c <= '9': val_chars[i] = str(max((int(c) + 5) % 10, 1)) break new_val = ''.join(val_chars) if leftover: new_val = '%s-%s' % (new_val, leftover) out_tok['originalText'] = new_val else: out_tok['originalText'] = t['originalText'] out_toks.append(out_tok) if seen_num: return rejoin(out_toks).strip() else: return None def ans_date(a, tokens, q, **kwargs): out_toks = [] if not all(t['ner'] == 'DATE' for t in tokens): return None for t in tokens: if t['pos'] == 'CD' or t['word'].isdigit(): try: value = int(t['word']) except: value = 10 # fallback if value > 50: new_val = str(value - 25) # Year else: # Day of month if value > 15: new_val = str(value - 11) else: new_val = str(value + 11) else: if t['word'].lower() in MONTHS: m_ind = MONTHS.index(t['word'].lower()) new_val = MONTHS[(m_ind + 6) % 12].title() else: # Give up new_val = t['originalText'] out_toks.append({'before': t['before'], 'originalText': new_val}) new_ans = rejoin(out_toks).strip() if new_ans == a['text']: return None return new_ans def ans_entity_full(ner_tag, new_ans): """Returns a function that yields new_ans iff every token has |ner_tag|.""" def func(a, tokens, q, **kwargs): for t in tokens: if t['ner'] != ner_tag: return None return new_ans return func def ans_abbrev(new_ans): def func(a, tokens, q, **kwargs): s = a['text'] if s == s.upper() and s != s.lower(): return new_ans return None return func def ans_match_wh(wh_word, new_ans): """Returns a function that yields new_ans if the question starts with |wh_word|.""" def func(a, tokens, q, **kwargs): if q.lower().startswith(wh_word + ' '): return new_ans return None return func def ans_pos(pos, new_ans, end=False, add_dt=False): """Returns a function that yields new_ans if the first/last token has |pos|.""" def func(a, tokens, q, determiner, **kwargs): if end: t = tokens[-1] else: t = tokens[0] if t['pos'] != pos: return None if add_dt and determiner: return '%s %s' % (determiner, new_ans) return new_ans return func def ans_catch_all(new_ans): def func(a, tokens, q, **kwargs): return new_ans return func ANSWER_RULES = [ ('date', ans_date), ('number', ans_number), ('ner_person', ans_entity_full('PERSON', 'Jeff Dean')), ('ner_location', ans_entity_full('LOCATION', 'Chicago')), ('ner_organization', ans_entity_full('ORGANIZATION', 'Stark Industries')), ('ner_misc', ans_entity_full('MISC', 'Jupiter')), ('abbrev', ans_abbrev('LSTM')), ('wh_who', ans_match_wh('who', 'Jeff Dean')), ('wh_when', ans_match_wh('when', '1956')), ('wh_where', ans_match_wh('where', 'Chicago')), ('wh_where', ans_match_wh('how many', '42')), # Starts with verb ('pos_begin_vb', ans_pos('VB', 'learn')), ('pos_end_vbd', ans_pos('VBD', 'learned')), ('pos_end_vbg', ans_pos('VBG', 'learning')), ('pos_end_vbp', ans_pos('VBP', 'learns')), ('pos_end_vbz', ans_pos('VBZ', 'learns')), # Ends with some POS tag ('pos_end_nn', ans_pos('NN', 'hamster', end=True, add_dt=True)), ('pos_end_nnp', ans_pos('NNP', 'Central Park', end=True, add_dt=True)), ('pos_end_nns', ans_pos('NNS', 'hamsters', end=True, add_dt=True)), ('pos_end_nnps', ans_pos('NNPS', 'Kew Gardens', end=True, add_dt=True)), ('pos_end_jj', ans_pos('JJ', 'deep', end=True)), ('pos_end_jjr', ans_pos('JJR', 'deeper', end=True)), ('pos_end_jjs', ans_pos('JJS', 'deepest', end=True)), ('pos_end_rb', ans_pos('RB', 'silently', end=True)), ('pos_end_vbg', ans_pos('VBG', 'learning', end=True)), ('catch_all', ans_catch_all('aliens')), ]
adversarialnlp-master
adversarialnlp/generators/addsent/rules/answer_rules.py
from .answer_rules import ANSWER_RULES from .alteration_rules import (HIGH_CONF_ALTER_RULES, ALL_ALTER_RULES, DO_NOT_ALTER, BAD_ALTERATIONS) from .conversion_rules import CONVERSION_RULES
adversarialnlp-master
adversarialnlp/generators/addsent/rules/__init__.py
from pattern import en as patten CONST_PARSE_MACROS = { '$Noun': '$NP/$NN/$NNS/$NNP/$NNPS', '$Verb': '$VB/$VBD/$VBP/$VBZ', '$Part': '$VBN/$VG', '$Be': 'is/are/was/were', '$Do': "do/did/does/don't/didn't/doesn't", '$WHP': '$WHADJP/$WHADVP/$WHNP/$WHPP', } # Map to pattern.en aliases # http://www.clips.ua.ac.be/pages/pattern-en#conjugation POS_TO_PATTERN = { 'vb': 'inf', # Infinitive 'vbp': '1sg', # non-3rd-person singular present 'vbz': '3sg', # 3rd-person singular present 'vbg': 'part', # gerund or present participle 'vbd': 'p', # past 'vbn': 'ppart', # past participle } # Tenses prioritized by likelihood of arising PATTERN_TENSES = ['inf', '3sg', 'p', 'part', 'ppart', '1sg'] def _check_match(node, pattern_tok): if pattern_tok in CONST_PARSE_MACROS: pattern_tok = CONST_PARSE_MACROS[pattern_tok] if ':' in pattern_tok: # ':' means you match the LHS category and start with something on the right lhs, rhs = pattern_tok.split(':') match_lhs = _check_match(node, lhs) if not match_lhs: return False phrase = node.get_phrase().lower() retval = any(phrase.startswith(w) for w in rhs.split('/')) return retval elif '/' in pattern_tok: return any(_check_match(node, t) for t in pattern_tok.split('/')) return ((pattern_tok.startswith('$') and pattern_tok[1:] == node.tag) or (node.word and pattern_tok.lower() == node.word.lower())) def _recursive_match_pattern(pattern_toks, stack, matches): """Recursively try to match a pattern, greedily.""" if len(matches) == len(pattern_toks): # We matched everything in the pattern; also need stack to be empty return len(stack) == 0 if len(stack) == 0: return False cur_tok = pattern_toks[len(matches)] node = stack.pop() # See if we match the current token at this level is_match = _check_match(node, cur_tok) if is_match: cur_num_matches = len(matches) matches.append(node) new_stack = list(stack) success = _recursive_match_pattern(pattern_toks, new_stack, matches) if success: return True # Backtrack while len(matches) > cur_num_matches: matches.pop() # Recurse to children if not node.children: return False # No children to recurse on, we failed stack.extend(node.children[::-1]) # Leftmost children should be popped first return _recursive_match_pattern(pattern_toks, stack, matches) def match_pattern(pattern, const_parse): pattern_toks = pattern.split(' ') whole_phrase = const_parse.get_phrase() if whole_phrase.endswith('?') or whole_phrase.endswith('.'): # Match trailing punctuation as needed pattern_toks.append(whole_phrase[-1]) matches = [] success = _recursive_match_pattern(pattern_toks, [const_parse], matches) if success: return matches else: return None def run_postprocessing(s, rules, all_args): rule_list = rules.split(',') for rule in rule_list: if rule == 'lower': s = s.lower() elif rule.startswith('tense-'): ind = int(rule[6:]) orig_vb = all_args[ind] tenses = patten.tenses(orig_vb) for tense in PATTERN_TENSES: # Prioritize by PATTERN_TENSES if tense in tenses: break else: # Default to first tense tense = PATTERN_TENSES[0] s = patten.conjugate(s, tense) elif rule in POS_TO_PATTERN: s = patten.conjugate(s, POS_TO_PATTERN[rule]) return s def convert_whp(node, q, a, tokens, quiet=False): if node.tag in ('WHNP', 'WHADJP', 'WHADVP', 'WHPP'): # Apply WHP rules cur_phrase = node.get_phrase() cur_tokens = tokens[node.get_start_index():node.get_end_index()] for r in WHP_RULES: phrase = r.convert(cur_phrase, a, cur_tokens, node, run_fix_style=False) if phrase: if not quiet: print(f" WHP Rule '{r.name}': {phrase}") return phrase return None ### Rules for converting questions into declarative sentences def fix_style(s): """Minor, general style fixes for questions.""" s = s.replace('?', '') # Delete question marks anywhere in sentence. s = s.strip(' .') if s[0] == s[0].lower(): s = s[0].upper() + s[1:] return s + '.' class ConversionRule(object): def convert(self, q, a, tokens, const_parse, run_fix_style=True): raise NotImplementedError class ConstituencyRule(ConversionRule): """A rule for converting question to sentence based on constituency parse.""" def __init__(self, in_pattern, out_pattern, postproc=None): self.in_pattern = in_pattern # e.g. "where did $NP $VP" self.out_pattern = out_pattern #unicode(out_pattern) # e.g. "{1} did {2} at {0}." Answer is always 0 self.name = in_pattern if postproc: self.postproc = postproc else: self.postproc = {} def convert(self, q, a, tokens, const_parse, run_fix_style=True) -> str: pattern_toks = self.in_pattern.split(' ') # Don't care about trailing punctuation match = match_pattern(self.in_pattern, const_parse) appended_clause = False if not match: # Try adding a PP at the beginning appended_clause = True new_pattern = '$PP , ' + self.in_pattern pattern_toks = new_pattern.split(' ') match = match_pattern(new_pattern, const_parse) if not match: # Try adding an SBAR at the beginning new_pattern = '$SBAR , ' + self.in_pattern pattern_toks = new_pattern.split(' ') match = match_pattern(new_pattern, const_parse) if not match: return None appended_clause_match = None fmt_args = [a] for t, m in zip(pattern_toks, match): if t.startswith('$') or '/' in t: # First check if it's a WHP phrase = convert_whp(m, q, a, tokens) if not phrase: phrase = m.get_phrase() fmt_args.append(phrase) if appended_clause: appended_clause_match = fmt_args[1] fmt_args = [a] + fmt_args[2:] for i in range(len(fmt_args)): if i in self.postproc: # Run postprocessing filters fmt_args[i] = run_postprocessing(fmt_args[i], self.postproc[i], fmt_args) output = self.gen_output(fmt_args) if appended_clause: output = appended_clause_match + ', ' + output if run_fix_style: output = fix_style(output) return output def gen_output(self, fmt_args): """By default, use self.out_pattern. Can be overridden.""" return self.out_pattern.format(*fmt_args) class ReplaceRule(ConversionRule): """A simple rule that replaces some tokens with the answer.""" def __init__(self, target, replacement='{}', start=False): self.target = target self.replacement = replacement #unicode(replacement) self.name = 'replace(%s)' % target self.start = start def convert(self, q, a, tokens, const_parse, run_fix_style=True): t_toks = self.target.split(' ') q_toks = q.rstrip('?.').split(' ') replacement_text = self.replacement.format(a) for i in range(len(q_toks)): if self.start and i != 0: continue if ' '.join(q_toks[i:i + len(t_toks)]).rstrip(',').lower() == self.target: begin = q_toks[:i] end = q_toks[i + len(t_toks):] output = ' '.join(begin + [replacement_text] + end) if run_fix_style: output = fix_style(output) return output return None class FindWHPRule(ConversionRule): """A rule that looks for $WHP's from right to left and does replacements.""" name = 'FindWHP' def _recursive_convert(self, node, q, a, tokens, found_whp): if node.word: return node.word, found_whp if not found_whp: whp_phrase = convert_whp(node, q, a, tokens) if whp_phrase: return whp_phrase, True child_phrases = [] for c in node.children[::-1]: c_phrase, found_whp = self._recursive_convert(c, q, a, tokens, found_whp) child_phrases.append(c_phrase) out_toks = [] for i, p in enumerate(child_phrases[::-1]): if i == 0 or p.startswith("'"): out_toks.append(p) else: out_toks.append(' ' + p) return ''.join(out_toks), found_whp def convert(self, q, a, tokens, const_parse, run_fix_style=True): out_phrase, found_whp = self._recursive_convert(const_parse, q, a, tokens, False) if found_whp: if run_fix_style: out_phrase = fix_style(out_phrase) return out_phrase return None class AnswerRule(ConversionRule): """Just return the answer.""" name = 'AnswerRule' def convert(self, q, a, tokens, const_parse, run_fix_style=True): return a CONVERSION_RULES = [ # Special rules ConstituencyRule('$WHP:what $Be $NP called that $VP', '{2} that {3} {1} called {1}'), # What type of X #ConstituencyRule("$WHP:what/which type/sort/kind/group of $NP/$Noun $Be $NP", '{5} {4} a {1} {3}'), #ConstituencyRule("$WHP:what/which type/sort/kind/group of $NP/$Noun $Be $VP", '{1} {3} {4} {5}'), #ConstituencyRule("$WHP:what/which type/sort/kind/group of $NP $VP", '{1} {3} {4}'), # How $JJ ConstituencyRule('how $JJ $Be $NP $IN $NP', '{3} {2} {0} {1} {4} {5}'), ConstituencyRule('how $JJ $Be $NP $SBAR', '{3} {2} {0} {1} {4}'), ConstituencyRule('how $JJ $Be $NP', '{3} {2} {0} {1}'), # When/where $Verb ConstituencyRule('$WHP:when/where $Do $NP', '{3} occurred in {1}'), ConstituencyRule('$WHP:when/where $Do $NP $Verb', '{3} {4} in {1}', {4: 'tense-2'}), ConstituencyRule('$WHP:when/where $Do $NP $Verb $NP/$PP', '{3} {4} {5} in {1}', {4: 'tense-2'}), ConstituencyRule('$WHP:when/where $Do $NP $Verb $NP $PP', '{3} {4} {5} {6} in {1}', {4: 'tense-2'}), ConstituencyRule('$WHP:when/where $Be $NP', '{3} {2} in {1}'), ConstituencyRule('$WHP:when/where $Verb $NP $VP/$ADJP', '{3} {2} {4} in {1}'), # What/who/how $Do ConstituencyRule("$WHP:what/which/who $Do $NP do", '{3} {1}', {0: 'tense-2'}), ConstituencyRule("$WHP:what/which/who/how $Do $NP $Verb", '{3} {4} {1}', {4: 'tense-2'}), ConstituencyRule("$WHP:what/which/who $Do $NP $Verb $IN/$NP", '{3} {4} {5} {1}', {4: 'tense-2', 0: 'vbg'}), ConstituencyRule("$WHP:what/which/who $Do $NP $Verb $PP", '{3} {4} {1} {5}', {4: 'tense-2', 0: 'vbg'}), ConstituencyRule("$WHP:what/which/who $Do $NP $Verb $NP $VP", '{3} {4} {5} {6} {1}', {4: 'tense-2'}), ConstituencyRule("$WHP:what/which/who $Do $NP $Verb to $VB", '{3} {4} to {5} {1}', {4: 'tense-2'}), ConstituencyRule("$WHP:what/which/who $Do $NP $Verb to $VB $VP", '{3} {4} to {5} {1} {6}', {4: 'tense-2'}), ConstituencyRule("$WHP:what/which/who/how $Do $NP $Verb $NP $IN $VP", '{3} {4} {5} {6} {1} {7}', {4: 'tense-2'}), ConstituencyRule("$WHP:what/which/who/how $Do $NP $Verb $PP/$S/$VP/$SBAR/$SQ", '{3} {4} {1} {5}', {4: 'tense-2'}), ConstituencyRule("$WHP:what/which/who/how $Do $NP $Verb $PP $PP/$S/$VP/$SBAR", '{3} {4} {1} {5} {6}', {4: 'tense-2'}), # What/who/how $Be # Watch out for things that end in a preposition ConstituencyRule("$WHP:what/which/who $Be/$MD $NP of $NP $Verb/$Part $IN", '{3} of {4} {2} {5} {6} {1}'), ConstituencyRule("$WHP:what/which/who $Be/$MD $NP $NP $IN", '{3} {2} {4} {5} {1}'), ConstituencyRule("$WHP:what/which/who $Be/$MD $NP $VP/$IN", '{3} {2} {4} {1}'), ConstituencyRule("$WHP:what/which/who $Be/$MD $NP $IN $NP/$VP", '{1} {2} {3} {4} {5}'), ConstituencyRule('$WHP:what/which/who $Be/$MD $NP $Verb $PP', '{3} {2} {4} {1} {5}'), ConstituencyRule('$WHP:what/which/who $Be/$MD $NP/$VP/$PP', '{1} {2} {3}'), ConstituencyRule("$WHP:how $Be/$MD $NP $VP", '{3} {2} {4} by {1}'), # What/who $Verb ConstituencyRule("$WHP:what/which/who $VP", '{1} {2}'), # $IN what/which $NP ConstituencyRule('$IN what/which $NP $Do $NP $Verb $NP', '{5} {6} {7} {1} the {3} of {0}', {1: 'lower', 6: 'tense-4'}), ConstituencyRule('$IN what/which $NP $Be $NP $VP/$ADJP', '{5} {4} {6} {1} the {3} of {0}', {1: 'lower'}), ConstituencyRule('$IN what/which $NP $Verb $NP/$ADJP $VP', '{5} {4} {6} {1} the {3} of {0}', {1: 'lower'}), FindWHPRule(), ] # Rules for going from WHP to an answer constituent WHP_RULES = [ # WHPP rules ConstituencyRule('$IN what/which type/sort/kind/group of $NP/$Noun', '{1} {0} {4}'), ConstituencyRule('$IN what/which type/sort/kind/group of $NP/$Noun $PP', '{1} {0} {4} {5}'), ConstituencyRule('$IN what/which $NP', '{1} the {3} of {0}'), ConstituencyRule('$IN $WP/$WDT', '{1} {0}'), # what/which ConstituencyRule('what/which type/sort/kind/group of $NP/$Noun', '{0} {3}'), ConstituencyRule('what/which type/sort/kind/group of $NP/$Noun $PP', '{0} {3} {4}'), ConstituencyRule('what/which $NP', 'the {2} of {0}'), # How many ConstituencyRule('how many/much $NP', '{0} {2}'), # Replace ReplaceRule('what'), ReplaceRule('who'), ReplaceRule('how many'), ReplaceRule('how much'), ReplaceRule('which'), ReplaceRule('where'), ReplaceRule('when'), ReplaceRule('why'), ReplaceRule('how'), # Just give the answer AnswerRule(), ]
adversarialnlp-master
adversarialnlp/generators/addsent/rules/conversion_rules.py
import collections import nltk nltk.download('wordnet') from nltk.corpus import wordnet as wn from nltk.stem.lancaster import LancasterStemmer STEMMER = LancasterStemmer() POS_TO_WORDNET = { 'NN': wn.NOUN, 'JJ': wn.ADJ, 'JJR': wn.ADJ, 'JJS': wn.ADJ, } def alter_special(token, **kwargs): w = token['originalText'] if w in SPECIAL_ALTERATIONS: return [SPECIAL_ALTERATIONS[w]] return None def alter_nearby(pos_list, ignore_pos=False, is_ner=False): def func(token, nearby_word_dict=None, postag_dict=None, **kwargs): if token['pos'] not in pos_list: return None if is_ner and token['ner'] not in ('PERSON', 'LOCATION', 'ORGANIZATION', 'MISC'): return None w = token['word'].lower() if w in ('war'): return None if w not in nearby_word_dict: return None new_words = [] w_stem = STEMMER.stem(w.replace('.', '')) for x in nearby_word_dict[w][1:]: new_word = x['word'] # Make sure words aren't too similar (e.g. same stem) new_stem = STEMMER.stem(new_word.replace('.', '')) if w_stem.startswith(new_stem) or new_stem.startswith(w_stem): continue if not ignore_pos: # Check for POS tag match if new_word not in postag_dict: continue new_postag = postag_dict[new_word] if new_postag != token['pos']: continue new_words.append(new_word) return new_words return func def alter_entity_glove(token, nearby_word_dict=None, **kwargs): # NOTE: Deprecated if token['ner'] not in ('PERSON', 'LOCATION', 'ORGANIZATION', 'MISC'): return None w = token['word'].lower() if w == token['word']: return None # Only do capitalized words if w not in nearby_word_dict: return None new_words = [] for x in nearby_word_dict[w][1:3]: if token['word'] == w.upper(): new_words.append(x['word'].upper()) else: new_words.append(x['word'].title()) return new_words def alter_entity_type(token, **kwargs): pos = token['pos'] ner = token['ner'] word = token['word'] is_abbrev = word == word.upper() and not word == word.lower() if token['pos'] not in ( 'JJ', 'JJR', 'JJS', 'NN', 'NNS', 'NNP', 'NNPS', 'RB', 'RBR', 'RBS', 'VB', 'VBD', 'VBG', 'VBN', 'VBP', 'VBZ'): # Don't alter non-content words return None if ner == 'PERSON': return ['Jackson'] elif ner == 'LOCATION': return ['Berlin'] elif ner == 'ORGANIZATION': if is_abbrev: return ['UNICEF'] return ['Acme'] elif ner == 'MISC': return ['Neptune'] elif ner == 'NNP': if is_abbrev: return ['XKCD'] return ['Dalek'] elif pos == 'NNPS': return ['Daleks'] return None def alter_wordnet_antonyms(token, **kwargs): if token['pos'] not in POS_TO_WORDNET: return None w = token['word'].lower() wn_pos = POS_TO_WORDNET[token['pos']] synsets = wn.synsets(w, wn_pos) if not synsets: return None synset = synsets[0] antonyms = [] for lem in synset.lemmas(): if lem.antonyms(): for a in lem.antonyms(): new_word = a.name() if '_' in a.name(): continue antonyms.append(new_word) return antonyms SPECIAL_ALTERATIONS = { 'States': 'Kingdom', 'US': 'UK', 'U.S': 'U.K.', 'U.S.': 'U.K.', 'UK': 'US', 'U.K.': 'U.S.', 'U.K': 'U.S.', 'largest': 'smallest', 'smallest': 'largest', 'highest': 'lowest', 'lowest': 'highest', 'May': 'April', 'Peyton': 'Trevor', } DO_NOT_ALTER = ['many', 'such', 'few', 'much', 'other', 'same', 'general', 'type', 'record', 'kind', 'sort', 'part', 'form', 'terms', 'use', 'place', 'way', 'old', 'young', 'bowl', 'united', 'one', 'likely', 'different', 'square', 'war', 'republic', 'doctor', 'color'] BAD_ALTERATIONS = ['mx2004', 'planet', 'u.s.', 'Http://Www.Co.Mo.Md.Us'] HIGH_CONF_ALTER_RULES = collections.OrderedDict([ ('special', alter_special), ('wn_antonyms', alter_wordnet_antonyms), ('nearbyNum', alter_nearby(['CD'], ignore_pos=True)), ('nearbyProperNoun', alter_nearby(['NNP', 'NNPS'])), ('nearbyProperNoun', alter_nearby(['NNP', 'NNPS'], ignore_pos=True)), ('nearbyEntityNouns', alter_nearby(['NN', 'NNS'], is_ner=True)), ('nearbyEntityJJ', alter_nearby(['JJ', 'JJR', 'JJS'], is_ner=True)), ('entityType', alter_entity_type), #('entity_glove', alter_entity_glove), ]) ALL_ALTER_RULES = collections.OrderedDict(list(HIGH_CONF_ALTER_RULES.items()) + [ ('nearbyAdj', alter_nearby(['JJ', 'JJR', 'JJS'])), ('nearbyNoun', alter_nearby(['NN', 'NNS'])), #('nearbyNoun', alter_nearby(['NN', 'NNS'], ignore_pos=True)), ])
adversarialnlp-master
adversarialnlp/generators/addsent/rules/alteration_rules.py
from .swag_generator import SwagGenerator from .activitynet_captions_reader import ActivityNetCaptionsDatasetReader
adversarialnlp-master
adversarialnlp/generators/swag/__init__.py
import re from itertools import tee from num2words import num2words def optimistic_restore(network, state_dict): mismatch = False own_state = network.state_dict() for name, param in state_dict.items(): if name not in own_state: print("Unexpected key {} in state_dict with size {}".format(name, param.size())) mismatch = True elif param.size() == own_state[name].size(): own_state[name].copy_(param) else: print("Network has {} with size {}, ckpt has {}".format(name, own_state[name].size(), param.size())) mismatch = True missing = set(own_state.keys()) - set(state_dict.keys()) if len(missing) > 0: print("We couldn't find {}".format(','.join(missing))) mismatch = True return not mismatch def pairwise(iterable): "s -> (s0,s1), (s1,s2), (s2, s3), ..." a, b = tee(iterable) next(b, None) return zip(a, b) def n2w_1k(num, use_ordinal=False): if num > 1000: return '' return num2words(num, to='ordinal' if use_ordinal else 'cardinal') def postprocess(sentence): """ make sure punctuation is followed by a space :param sentence: :return: """ sentence = remove_allcaps(sentence) # Aggressively get rid of some punctuation markers sent0 = re.sub(r'^.*(\\|/|!!!|~|=|#|@|\*|¡|©|¿|«|»|¬|{|}|\||\(|\)|\+|\]|\[).*$', ' ', sentence, flags=re.MULTILINE|re.IGNORECASE) # Less aggressively get rid of quotes, apostrophes sent1 = re.sub(r'"', ' ', sent0) sent2 = re.sub(r'`', '\'', sent1) # match ordinals sent3 = re.sub(r'(\d+(?:rd|st|nd))', lambda x: n2w_1k(int(x.group(0)[:-2]), use_ordinal=True), sent2) #These things all need to be followed by spaces or else we'll run into problems sent4 = re.sub(r'[:;,\"\!\.\-\?](?! )', lambda x: x.group(0) + ' ', sent3) #These things all need to be preceded by spaces or else we'll run into problems sent5 = re.sub(r'(?! )[-]', lambda x: ' ' + x.group(0), sent4) # Several spaces sent6 = re.sub(r'\s\s+', ' ', sent5) sent7 = sent6.strip() return sent7 def remove_allcaps(sent): """ Given a sentence, filter it so that it doesn't contain some words that are ALLcaps :param sent: string, like SOMEONE wheels SOMEONE on, mouthing silent words of earnest prayer. :return: Someone wheels someone on, mouthing silent words of earnest prayer. """ # Remove all caps def _sanitize(word, is_first): if word == "I": return word num_capitals = len([x for x in word if not x.islower()]) if num_capitals > len(word) // 2: # We have an all caps word here. if is_first: return word[0] + word[1:].lower() return word.lower() return word return ' '.join([_sanitize(word, i == 0) for i, word in enumerate(sent.split(' '))])
adversarialnlp-master
adversarialnlp/generators/swag/utils.py
# pylint: disable=invalid-name,arguments-differ from typing import List, Iterable, Tuple import logging import torch from allennlp.common.util import JsonDict from allennlp.common.file_utils import cached_path from allennlp.data import Instance, Token, Vocabulary from allennlp.data.fields import TextField from allennlp.pretrained import PretrainedModel from adversarialnlp.common.file_utils import download_files, DATA_ROOT from adversarialnlp.generators import Generator from adversarialnlp.generators.swag.simple_bilm import SimpleBiLM from adversarialnlp.generators.swag.utils import optimistic_restore from adversarialnlp.generators.swag.activitynet_captions_reader import ActivityNetCaptionsDatasetReader BATCH_SIZE = 1 BEAM_SIZE = 8 * BATCH_SIZE logger = logging.getLogger(__name__) class SwagGenerator(Generator): """ ``SwagGenerator`` inherit from the ``Generator`` class. This ``Generator`` generate adversarial examples from seeds using the method described in `SWAG: A Large-Scale Adversarial Dataset for Grounded Commonsense Inference <http://arxiv.org/abs/1808.05326>`_. This method goes schematically as follows: - In a seed sample containing a pair of sequential sentence (ex: video captions), the second sentence is split into noun and verb phrases. - A language model generates several possible endings from the sencond sentence noun phrase. Args, input and yield: See the ``Generator`` class. Seeds: AllenNLP ``Instance`` containing two ``TextField``: `first_sentence` and `first_sentence`, respectively containing first and the second consecutive sentences. default_seeds: If no seeds are provided, the default_seeds are the training set of the `ActivityNet Captions dataset <https://cs.stanford.edu/people/ranjaykrishna/densevid/>`_. """ def __init__(self, default_seeds: Iterable = None, quiet: bool = False): super().__init__(default_seeds, quiet) lm_files = download_files(fnames=['vocabulary.zip', 'lm-fold-0.bin'], local_folder='swag_lm') activity_data_files = download_files(fnames=['captions.zip'], paths='https://cs.stanford.edu/people/ranjaykrishna/densevid/', local_folder='activitynet_captions') const_parser_files = cached_path('https://s3-us-west-2.amazonaws.com/allennlp/models/elmo-constituency-parser-2018.03.14.tar.gz', cache_dir=str(DATA_ROOT / 'allennlp_constituency_parser')) self.const_parser = PretrainedModel(const_parser_files, 'constituency-parser').predictor() vocab = Vocabulary.from_files(lm_files[0]) self.language_model = SimpleBiLM(vocab=vocab, recurrent_dropout_probability=0.2, embedding_dropout_probability=0.2) optimistic_restore(self.language_model, torch.load(lm_files[1], map_location='cpu')['state_dict']) if default_seeds is None: self.default_seeds = ActivityNetCaptionsDatasetReader().read(activity_data_files[0] + '/train.json') else: self.default_seeds = default_seeds def _find_VP(self, tree: JsonDict) -> List[Tuple[str, any]]: r"""Recurse on a constituency parse tree until we find verb phrases""" # Recursion is annoying because we need to check whether each is a list or not def _recurse_on_children(): assert 'children' in tree result = [] for child in tree['children']: res = self._find_VP(child) if isinstance(res, tuple): result.append(res) else: result.extend(res) return result if 'VP' in tree['attributes']: # # Now we'll get greedy and see if we can find something better # if 'children' in tree and len(tree['children']) > 1: # recurse_result = _recurse_on_children() # if all([x[1] in ('VP', 'NP', 'CC') for x in recurse_result]): # return recurse_result return [(tree['word'], 'VP')] # base cases if 'NP' in tree['attributes']: return [(tree['word'], 'NP')] # No children if not 'children' in tree: return [(tree['word'], tree['attributes'][0])] # If a node only has 1 child then we'll have to stick with that if len(tree['children']) == 1: return _recurse_on_children() # try recursing on everything return _recurse_on_children() def _split_on_final_vp(self, sentence: Instance) -> (List[str], List[str]): r"""Splits a sentence on the final verb phrase """ sentence_txt = ' '.join(t.text for t in sentence.tokens) res = self.const_parser.predict(sentence_txt) res_chunked = self._find_VP(res['hierplane_tree']['root']) is_vp: List[int] = [i for i, (word, pos) in enumerate(res_chunked) if pos == 'VP'] if not is_vp: return None, None vp_ind = max(is_vp) not_vp = [token for x in res_chunked[:vp_ind] for token in x[0].split(' ')] is_vp = [token for x in res_chunked[vp_ind:] for token in x[0].split(' ')] return not_vp, is_vp def generate_from_seed(self, seed: Tuple): """Edit a seed example. """ first_sentence: TextField = seed.fields["first_sentence"] second_sentence: TextField = seed.fields["second_sentence"] eos_bounds = [i + 1 for i, x in enumerate(first_sentence.tokens) if x.text in ('.', '?', '!')] if not eos_bounds: first_sentence = TextField(tokens=first_sentence.tokens + [Token(text='.')], token_indexers=first_sentence.token_indexers) context_len = len(first_sentence.tokens) if context_len < 6 or context_len > 100: print("skipping on {} (too short or long)".format( ' '.join(first_sentence.tokens + second_sentence.tokens))) return # Something I should have done: # make sure that there aren't multiple periods, etc. in s2 or in the middle eos_bounds_s2 = [i + 1 for i, x in enumerate(second_sentence.tokens) if x.text in ('.', '?', '!')] if len(eos_bounds_s2) > 1 or max(eos_bounds_s2) != len(second_sentence.tokens): return elif not eos_bounds_s2: second_sentence = TextField(tokens=second_sentence.tokens + [Token(text='.')], token_indexers=second_sentence.token_indexers) # Now split on the VP startphrase, endphrase = self._split_on_final_vp(second_sentence) if startphrase is None or not startphrase or len(endphrase) < 5 or len(endphrase) > 25: print("skipping on {}->{},{}".format(' '.join(first_sentence.tokens + second_sentence.tokens), startphrase, endphrase), flush=True) return # if endphrase contains unk then it's hopeless # if any(vocab.get_token_index(tok.lower()) == vocab.get_token_index(vocab._oov_token) # for tok in endphrase): # print("skipping on {} (unk!)".format(' '.join(s1_toks + s2_toks))) # return context = [token.text for token in first_sentence.tokens] + startphrase lm_out = self.language_model.conditional_generation(context, gt_completion=endphrase, batch_size=BEAM_SIZE, max_gen_length=25) gens0, fwd_scores, ctx_scores = lm_out if len(gens0) < BATCH_SIZE: print("Couldn't generate enough candidates so skipping") return gens0 = gens0[:BATCH_SIZE] yield gens0 # fwd_scores = fwd_scores[:BATCH_SIZE] # # Now get the backward scores. # full_sents = [context + gen for gen in gens0] # NOTE: #1 is GT # result_dict = self.language_model(self.language_model.batch_to_ids(full_sents), # use_forward=False, use_reverse=True, compute_logprobs=True) # ending_lengths = (fwd_scores < 0).sum(1) # ending_lengths_float = ending_lengths.astype(np.float32) # rev_scores = result_dict['reverse_logprobs'].cpu().detach().numpy() # forward_logperp_ending = -fwd_scores.sum(1) / ending_lengths_float # reverse_logperp_ending = -rev_scores[:, context_len:].sum(1) / ending_lengths_float # forward_logperp_begin = -ctx_scores.mean() # reverse_logperp_begin = -rev_scores[:, :context_len].mean(1) # eos_logperp = -fwd_scores[np.arange(fwd_scores.shape[0]), ending_lengths - 1] # # print("Time elapsed {:.3f}".format(time() - tic), flush=True) # scores = np.exp(np.column_stack(( # forward_logperp_ending, # reverse_logperp_ending, # reverse_logperp_begin, # eos_logperp, # np.ones(forward_logperp_ending.shape[0], dtype=np.float32) * forward_logperp_begin, # ))) # PRINTOUT # low2high = scores[:, 2].argsort() # print("\n\n Dataset={} ctx: {} (perp={:.3f})\n~~~\n".format(item['dataset'], ' '.join(context), # np.exp(forward_logperp_begin)), flush=True) # for i, ind in enumerate(low2high.tolist()): # gen_i = ' '.join(gens0[ind]) # if (ind == 0) or (i < 128): # print("{:3d}/{:4d}) ({}, end|ctx:{:5.1f} end:{:5.1f} ctx|end:{:5.1f} EOS|(ctx, end):{:5.1f}) {}".format( # i, len(gens0), 'GOLD' if ind == 0 else ' ', *scores[ind][:-1], gen_i), flush=True) # gt_score = low2high.argsort()[0] # item_full = deepcopy(item) # item_full['sent1'] = first_sentence # item_full['startphrase'] = startphrase # item_full['context'] = context # item_full['generations'] = gens0 # item_full['postags'] = [ # parse real fast # [x.orth_.lower() if pos_vocab.get_token_index(x.orth_.lower()) != 1 else x.pos_ for x in y] # for y in spacy_model.pipe([startphrase + gen for gen in gens0], batch_size=BATCH_SIZE)] # item_full['scores'] = pd.DataFrame(data=scores, index=np.arange(scores.shape[0]), # columns=['end-from-ctx', 'end', 'ctx-from-end', 'eos-from-ctxend', 'ctx']) # generated_examples.append(gens0) # if len(generated_examples) > 0: # yield generated_examples # generated_examples = [] # from adversarialnlp.common.file_utils import FIXTURES_ROOT # generator = SwagGenerator() # test_instances = ActivityNetCaptionsDatasetReader().read(FIXTURES_ROOT / 'activitynet_captions.json') # batches = list(generator(test_instances, num_epochs=1)) # assert len(batches) != 0
adversarialnlp-master
adversarialnlp/generators/swag/swag_generator.py
from typing import Dict import json import logging from overrides import overrides from unidecode import unidecode from allennlp.common.file_utils import cached_path from allennlp.data.dataset_readers.dataset_reader import DatasetReader from allennlp.data.fields import TextField, MetadataField from allennlp.data.instance import Instance from allennlp.data.tokenizers import Tokenizer, WordTokenizer from allennlp.data.token_indexers import TokenIndexer, SingleIdTokenIndexer from adversarialnlp.generators.swag.utils import pairwise, postprocess logger = logging.getLogger(__name__) # pylint: disable=invalid-name @DatasetReader.register("activitynet_captions") class ActivityNetCaptionsDatasetReader(DatasetReader): r""" Reads ActivityNet Captions JSON files and creates a dataset suitable for crafting adversarial examples with swag using these captions. Expected format: JSON dict[video_id, video_obj] where video_id: str, video_obj: { "duration": float, "timestamps": list of pairs of float, "sentences": list of strings } The output of ``read`` is a list of ``Instance`` s with the fields: video_id: ``MetadataField`` first_sentence: ``TextField`` second_sentence: ``TextField`` The instances are created from all consecutive pair of sentences associated to each video. Ex: if a video has three associated sentences: s1, s2, s3 read will generate two instances: 1. Instance("first_sentence" = s1, "second_sentence" = s2) 2. Instance("first_sentence" = s2, "second_sentence" = s3) Args: lazy : If True, training will start sooner, but will take longer per batch. This allows training with datasets that are too large to fit in memory. Passed to DatasetReader. tokenizer : Tokenizer to use to split the title and abstract into words or other kinds of tokens. token_indexers : Indexers used to define input token representations. """ def __init__(self, lazy: bool = False, tokenizer: Tokenizer = None, token_indexers: Dict[str, TokenIndexer] = None) -> None: super().__init__(lazy) self._tokenizer = tokenizer or WordTokenizer() self._token_indexers = token_indexers or {"tokens": SingleIdTokenIndexer()} @overrides def _read(self, file_path): with open(cached_path(file_path), "r") as data_file: logger.info("Reading instances from: %s", file_path) json_data = json.load(data_file) for video_id, value in json_data.items(): sentences = [postprocess(unidecode(x.strip())) for x in value['sentences']] for first_sentence, second_sentence in pairwise(sentences): yield self.text_to_instance(video_id, first_sentence, second_sentence) @overrides def text_to_instance(self, video_id: str, first_sentence: str, second_sentence: str) -> Instance: # type: ignore # pylint: disable=arguments-differ tokenized_first_sentence = self._tokenizer.tokenize(first_sentence) tokenized_second_sentence = self._tokenizer.tokenize(second_sentence) first_sentence_field = TextField(tokenized_first_sentence, self._token_indexers) second_sentence_field = TextField(tokenized_second_sentence, self._token_indexers) fields = {'video_id': MetadataField(video_id), 'first_sentence': first_sentence_field, 'second_sentence': second_sentence_field} return Instance(fields)
adversarialnlp-master
adversarialnlp/generators/swag/activitynet_captions_reader.py
""" A wrapper around ai2s elmo LM to allow for an lm objective... """ from typing import Optional, Tuple from typing import Union, List, Dict import numpy as np import torch from allennlp.common.checks import ConfigurationError from allennlp.data import Token, Vocabulary, Instance from allennlp.data.dataset import Batch from allennlp.data.fields import TextField from allennlp.data.token_indexers import SingleIdTokenIndexer from allennlp.modules.augmented_lstm import AugmentedLstm from allennlp.modules.seq2seq_encoders.pytorch_seq2seq_wrapper import PytorchSeq2SeqWrapper from allennlp.nn.util import sequence_cross_entropy_with_logits from torch.autograd import Variable from torch.nn import functional as F from torch.nn.utils.rnn import PackedSequence def _de_duplicate_generations(generations): """ Given a list of list of strings, filter out the ones that are duplicates. and return an idx corresponding to the good ones :param generations: :return: """ dup_set = set() unique_idx = [] for i, gen_i in enumerate(generations): gen_i_str = ' '.join(gen_i) if gen_i_str not in dup_set: unique_idx.append(i) dup_set.add(gen_i_str) return [generations[i] for i in unique_idx], np.array(unique_idx) class StackedLstm(torch.nn.Module): """ A stacked LSTM. Parameters ---------- input_size : int, required The dimension of the inputs to the LSTM. hidden_size : int, required The dimension of the outputs of the LSTM. num_layers : int, required The number of stacked LSTMs to use. recurrent_dropout_probability: float, optional (default = 0.0) The dropout probability to be used in a dropout scheme as stated in `A Theoretically Grounded Application of Dropout in Recurrent Neural Networks <https://arxiv.org/abs/1512.05287>`_ . use_input_projection_bias : bool, optional (default = True) Whether or not to use a bias on the input projection layer. This is mainly here for backwards compatibility reasons and will be removed (and set to False) in future releases. Returns ------- output_accumulator : PackedSequence The outputs of the interleaved LSTMs per timestep. A tensor of shape (batch_size, max_timesteps, hidden_size) where for a given batch element, all outputs past the sequence length for that batch are zero tensors. """ def __init__(self, input_size: int, hidden_size: int, num_layers: int, recurrent_dropout_probability: float = 0.0, use_highway: bool = True, use_input_projection_bias: bool = True, go_forward: bool = True) -> None: super(StackedLstm, self).__init__() # Required to be wrapped with a :class:`PytorchSeq2SeqWrapper`. self.input_size = input_size self.hidden_size = hidden_size self.num_layers = num_layers layers = [] lstm_input_size = input_size for layer_index in range(num_layers): layer = AugmentedLstm(lstm_input_size, hidden_size, go_forward, recurrent_dropout_probability=recurrent_dropout_probability, use_highway=use_highway, use_input_projection_bias=use_input_projection_bias) lstm_input_size = hidden_size self.add_module('layer_{}'.format(layer_index), layer) layers.append(layer) self.lstm_layers = layers def forward(self, # pylint: disable=arguments-differ inputs: PackedSequence, initial_state: Optional[Tuple[torch.Tensor, torch.Tensor]] = None): """ Parameters ---------- inputs : ``PackedSequence``, required. A batch first ``PackedSequence`` to run the stacked LSTM over. initial_state : Tuple[torch.Tensor, torch.Tensor], optional, (default = None) A tuple (state, memory) representing the initial hidden state and memory of the LSTM. Each tensor has shape (1, batch_size, output_dimension). Returns ------- output_sequence : PackedSequence The encoded sequence of shape (batch_size, sequence_length, hidden_size) final_states: torch.Tensor The per-layer final (state, memory) states of the LSTM, each with shape (num_layers, batch_size, hidden_size). """ if not initial_state: hidden_states = [None] * len(self.lstm_layers) elif initial_state[0].size()[0] != len(self.lstm_layers): raise ConfigurationError("Initial states were passed to forward() but the number of " "initial states does not match the number of layers.") else: hidden_states = list(zip(initial_state[0].split(1, 0), initial_state[1].split(1, 0))) output_sequence = inputs final_states = [] for i, state in enumerate(hidden_states): layer = getattr(self, 'layer_{}'.format(i)) # The state is duplicated to mirror the Pytorch API for LSTMs. output_sequence, final_state = layer(output_sequence, state) final_states.append(final_state) final_state_tuple = tuple(torch.cat(state_list, 0) for state_list in zip(*final_states)) return output_sequence, final_state_tuple class SimpleBiLM(torch.nn.Module): def __init__(self, vocab: Vocabulary, recurrent_dropout_probability: float = 0.0, embedding_dropout_probability: float = 0.0, input_size=512, hidden_size=512) -> None: """ :param options_file: for initializing elmo BiLM :param weight_file: for initializing elmo BiLM :param requires_grad: Whether or not to finetune the LSTM layers :param recurrent_dropout_probability: recurrent dropout to add to LSTM layers """ super(SimpleBiLM, self).__init__() self.forward_lm = PytorchSeq2SeqWrapper(StackedLstm( input_size=input_size, hidden_size=hidden_size, num_layers=2, go_forward=True, recurrent_dropout_probability=recurrent_dropout_probability, use_input_projection_bias=False, use_highway=True), stateful=True) self.reverse_lm = PytorchSeq2SeqWrapper(StackedLstm( input_size=input_size, hidden_size=hidden_size, num_layers=2, go_forward=False, recurrent_dropout_probability=recurrent_dropout_probability, use_input_projection_bias=False, use_highway=True), stateful=True) # This will also be the encoder self.decoder = torch.nn.Linear(512, vocab.get_vocab_size(namespace='tokens')) self.vocab = vocab self.register_buffer('eos_tokens', torch.LongTensor([vocab.get_token_index(tok) for tok in ['.', '!', '?', '@@UNKNOWN@@', '@@PADDING@@', '@@bos@@', '@@eos@@']])) self.register_buffer('invalid_tokens', torch.LongTensor([vocab.get_token_index(tok) for tok in ['@@UNKNOWN@@', '@@PADDING@@', '@@bos@@', '@@eos@@', '@@NEWLINE@@']])) self.embedding_dropout_probability = embedding_dropout_probability def embed_words(self, words): # assert words.dim() == 2 return F.embedding(words, self.decoder.weight) # if not self.training: # return F.embedding(words, self.decoder.weight) # Embedding dropout # vocab_size = self.decoder.weight.size(0) # mask = Variable( # self.decoder.weight.data.new(vocab_size, 1).bernoulli_(1 - self.embedding_dropout_probability).expand_as( # self.decoder.weight) / (1 - self.embedding_dropout_probability)) # padding_idx = 0 # embeds = self.decoder._backend.Embedding.apply(words, mask * self.decoder.weight, padding_idx, None, # 2, False, False) # return embeds def timestep_to_ids(self, timestep_tokenized: List[str]): """ Just a single timestep (so dont add BOS or EOS""" return torch.tensor([self.vocab.get_token_index(x) for x in timestep_tokenized])[:, None] def batch_to_ids(self, stories_tokenized: List[List[str]]): """ Simple wrapper around _elmo_batch_to_ids :param batch: A list of tokenized sentences. :return: A tensor of padded character ids. """ batch = Batch([Instance( {'story': TextField([Token('@@bos@@')] + [Token(x) for x in story] + [Token('@@eos@@')], token_indexers={ 'tokens': SingleIdTokenIndexer(namespace='tokens', lowercase_tokens=True)})}) for story in stories_tokenized]) batch.index_instances(self.vocab) words = {k: v['tokens'] for k, v in batch.as_tensor_dict().items()}['story'] return words def conditional_generation(self, context: List[str], gt_completion: List[str], batch_size: int = 128, max_gen_length: int = 25, same_length_as_gt: bool = False, first_is_gold: bool = False): """ Generate conditoned on the context. While we're at it we'll score the GT going forwards :param context: List of tokens to condition on. We'll add the BOS marker to it :param gt_completion: The gold truth completion :param batch_size: Number of sentences to generate :param max_gen_length: Max length for genertaed sentences (irrelvant if same_length_as_gt=True) :param same_length_as_gt: set to True if you want all the sents to have the same length as the gt_completion :param first_is_gold: set to True if you want the first sample to be the gt_completion :return: """ # Forward condition on context, then repeat to be the right batch size: # (layer_index, batch_size, fwd hidden dim) log_probs = self(self.batch_to_ids([context]), use_forward=True, use_reverse=False, compute_logprobs=True) forward_logprobs = log_probs['forward_logprobs'] self.forward_lm._states = tuple(x.repeat(1, batch_size, 1).contiguous() for x in self.forward_lm._states) # Each item will be (token, score) generations = [[(context[-1], 0.0)] for i in range(batch_size)] mask = forward_logprobs.new(batch_size).long().fill_(1) gt_completion_padded = [self.vocab.get_token_index(gt_token) for gt_token in [x.lower() for x in gt_completion] + ['@@PADDING@@'] * ( max_gen_length - len(gt_completion))] for index, gt_token_ind in enumerate(gt_completion_padded): embeds = self.embed_words(self.timestep_to_ids([gen[-1][0] for gen in generations])) next_dists = F.softmax(self.decoder(self.forward_lm(embeds, mask[:, None]))[:, 0], dim=1) # Perform hacky stuff on the distribution (disallowing BOS, EOS, that sorta thing sampling_probs = next_dists.clone() sampling_probs[:, self.invalid_tokens] = 0.0 if first_is_gold: # Gold truth is first row sampling_probs[0].zero_() sampling_probs[0, gt_token_ind] = 1 if same_length_as_gt: if index == (len(gt_completion) - 1): sampling_probs.zero_() sampling_probs[:, gt_token_ind] = 1 else: sampling_probs[:, self.eos_tokens] = 0.0 sampling_probs = sampling_probs / sampling_probs.sum(1, keepdim=True) next_preds = torch.multinomial(sampling_probs, 1).squeeze(1) next_scores = np.log(next_dists[ torch.arange(0, next_dists.size(0), out=mask.data.new(next_dists.size(0))), next_preds, ].cpu().detach().numpy()) for i, (gen_list, pred_id, score_i, mask_i) in enumerate( zip(generations, next_preds.cpu().detach().numpy(), next_scores, mask.data.cpu().detach().numpy())): if mask_i: gen_list.append((self.vocab.get_token_from_index(pred_id), score_i)) is_eos = (next_preds[:, None] == self.eos_tokens[None]).max(1)[0] mask[is_eos] = 0 if mask.sum().item() == 0: break generation_scores = np.zeros((len(generations), max([len(g) - 1 for g in generations])), dtype=np.float32) for i, gen in enumerate(generations): for j, (_, v) in enumerate(gen[1:]): generation_scores[i, j] = v generation_toks, idx = _de_duplicate_generations([[tok for (tok, score) in gen[1:]] for gen in generations]) return generation_toks, generation_scores[idx], forward_logprobs.cpu().detach().numpy() def _chunked_logsoftmaxes(self, activation, word_targets, chunk_size=256): """ do the softmax in chunks so memory doesnt explode :param activation: [batch, T, dim] :param targets: [batch, T] indices :param chunk_size: you might need to tune this based on GPU specs :return: """ all_logprobs = [] num_chunks = (activation.size(0) - 1) // chunk_size + 1 for activation_chunk, target_chunk in zip(torch.chunk(activation, num_chunks, dim=0), torch.chunk(word_targets, num_chunks, dim=0)): assert activation_chunk.size()[:2] == target_chunk.size()[:2] targets_flat = target_chunk.view(-1) time_indexer = torch.arange(0, targets_flat.size(0), out=target_chunk.data.new(targets_flat.size(0))) % target_chunk.size(1) batch_indexer = torch.arange(0, targets_flat.size(0), out=target_chunk.data.new(targets_flat.size(0))) / target_chunk.size(1) all_logprobs.append(F.log_softmax(self.decoder(activation_chunk), 2)[ batch_indexer, time_indexer, targets_flat].view(*target_chunk.size())) return torch.cat(all_logprobs, 0) def forward(self, words: torch.Tensor, use_forward: bool = True, use_reverse: bool = True, compute_logprobs: bool = False) -> Dict[str, Union[torch.Tensor, List[torch.Tensor]]]: """ use this for training the LM :param words: [batch_size, N] words. assuming you're starting with BOS and ending with EOS here :return: """ encoded_inputs = self.embed_words(words) mask = (words != 0).long()[:, 2:] word_targets = words[:, 1:-1].contiguous() result_dict = { 'mask': mask, 'word_targets': word_targets, } # TODO: try to reduce duplicate code here if use_forward: self.forward_lm.reset_states() forward_activation = self.forward_lm(encoded_inputs[:, :-2], mask) if compute_logprobs: # being memory efficient here is critical if the input tensors are large result_dict['forward_logprobs'] = self._chunked_logsoftmaxes(forward_activation, word_targets) * mask.float() else: result_dict['forward_logits'] = self.decoder(forward_activation) result_dict['forward_loss'] = sequence_cross_entropy_with_logits(result_dict['forward_logits'], word_targets, mask) if use_reverse: self.reverse_lm.reset_states() reverse_activation = self.reverse_lm(encoded_inputs[:, 2:], mask) if compute_logprobs: result_dict['reverse_logprobs'] = self._chunked_logsoftmaxes(reverse_activation, word_targets) * mask.float() else: result_dict['reverse_logits'] = self.decoder(reverse_activation) result_dict['reverse_loss'] = sequence_cross_entropy_with_logits(result_dict['reverse_logits'], word_targets, mask) return result_dict
adversarialnlp-master
adversarialnlp/generators/swag/simple_bilm.py
from typing import Dict, List, Tuple, Union, Optional import torch import numpy as np from allennlp.common.checks import ConfigurationError from allennlp.data.vocabulary import Vocabulary from allennlp.models.model import Model from allennlp.modules.openai_transformer import OpenaiTransformer from allennlp.modules.token_embedders import OpenaiTransformerEmbedder from allennlp.nn.util import get_text_field_mask, remove_sentence_boundaries @Model.register('openai-transformer-language-model') class OpenAITransformerLanguageModel(Model): """ The ``OpenAITransformerLanguageModel`` is a wrapper around ``OpenATransformerModule``. Parameters ---------- vocab: ``Vocabulary`` remove_bos_eos: ``bool``, optional (default: True) Typically the provided token indexes will be augmented with begin-sentence and end-sentence tokens. If this flag is True the corresponding embeddings will be removed from the return values. """ def __init__(self, vocab: Vocabulary, openai_token_embedder: OpenaiTransformerEmbedder, remove_bos_eos: bool = True) -> None: super().__init__(vocab) model_path = "https://s3-us-west-2.amazonaws.com/allennlp/models/openai-transformer-lm-2018.07.23.tar.gz" indexer = OpenaiTransformerBytePairIndexer(model_path=model_path) transformer = OpenaiTransformer(model_path=model_path) self._token_embedders = OpenaiTransformerEmbedder(transformer=transformer, top_layer_only=True) self._remove_bos_eos = remove_bos_eos def _get_target_token_embedding(self, token_embeddings: torch.Tensor, mask: torch.Tensor, direction: int) -> torch.Tensor: # Need to shift the mask in the correct direction zero_col = token_embeddings.new_zeros(mask.size(0), 1).byte() if direction == 0: # forward direction, get token to right shifted_mask = torch.cat([zero_col, mask[:, 0:-1]], dim=1) else: shifted_mask = torch.cat([mask[:, 1:], zero_col], dim=1) return token_embeddings.masked_select(shifted_mask.unsqueeze(-1)).view(-1, self._forward_dim) def _compute_loss(self, lm_embeddings: torch.Tensor, token_embeddings: torch.Tensor, forward_targets: torch.Tensor, backward_targets: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: # lm_embeddings is shape (batch_size, timesteps, dim * 2) # forward_targets, backward_targets are shape (batch_size, timesteps) # masked with 0 forward_embeddings, backward_embeddings = lm_embeddings.chunk(2, -1) losses: List[torch.Tensor] = [] for idx, embedding, targets in ((0, forward_embeddings, forward_targets), (1, backward_embeddings, backward_targets)): mask = targets > 0 # we need to subtract 1 to undo the padding id since the softmax # does not include a padding dimension non_masked_targets = targets.masked_select(mask) - 1 non_masked_embedding = embedding.masked_select( mask.unsqueeze(-1) ).view(-1, self._forward_dim) # note: need to return average loss across forward and backward # directions, but total sum loss across all batches. # Assuming batches include full sentences, forward and backward # directions have the same number of samples, so sum up loss # here then divide by 2 just below if not self._softmax_loss.tie_embeddings or not self._use_character_inputs: losses.append(self._softmax_loss(non_masked_embedding, non_masked_targets)) else: # we also need the token embeddings corresponding to the # the targets raise NotImplementedError("This requires SampledSoftmaxLoss, which isn't implemented yet.") # pylint: disable=unreachable non_masked_token_embedding = self._get_target_token_embedding(token_embeddings, mask, idx) losses.append(self._softmax(non_masked_embedding, non_masked_targets, non_masked_token_embedding)) return losses[0], losses[1] def forward(self, # type: ignore source: Dict[str, torch.LongTensor]) -> Dict[str, torch.Tensor]: """ Computes the averaged forward and backward LM loss from the batch. By convention, the input dict is required to have at least a ``"tokens"`` entry that's the output of a ``SingleIdTokenIndexer``, which is used to compute the language model targets. If the model was instantatiated with ``remove_bos_eos=True``, then it is expected that each of the input sentences was augmented with begin-sentence and end-sentence tokens. Parameters ---------- tokens: ``torch.Tensor``, required. The output of ``Batch.as_tensor_dict()`` for a batch of sentences. Returns ------- Dict with keys: ``'loss'``: ``torch.Tensor`` averaged forward/backward negative log likelihood ``'forward_loss'``: ``torch.Tensor`` forward direction negative log likelihood ``'backward_loss'``: ``torch.Tensor`` backward direction negative log likelihood ``'lm_embeddings'``: ``torch.Tensor`` (batch_size, timesteps, embed_dim) tensor of top layer contextual representations ``'mask'``: ``torch.Tensor`` (batch_size, timesteps) mask for the embeddings """ # pylint: disable=arguments-differ mask = get_text_field_mask(source) # We must have token_ids so that we can compute targets token_ids = source.get("tokens") if token_ids is None: raise ConfigurationError("Your data must have a 'tokens': SingleIdTokenIndexer() " "in order to use the BidirectionalLM") # Use token_ids to compute targets forward_targets = torch.zeros_like(token_ids) backward_targets = torch.zeros_like(token_ids) forward_targets[:, 0:-1] = token_ids[:, 1:] backward_targets[:, 1:] = token_ids[:, 0:-1] embeddings = self._text_field_embedder(source) # Apply LayerNorm if appropriate. embeddings = self._layer_norm(embeddings) contextual_embeddings = self._contextualizer(embeddings, mask) # add dropout contextual_embeddings = self._dropout(contextual_embeddings) # compute softmax loss forward_loss, backward_loss = self._compute_loss(contextual_embeddings, embeddings, forward_targets, backward_targets) num_targets = torch.sum((forward_targets > 0).long()) if num_targets > 0: average_loss = 0.5 * (forward_loss + backward_loss) / num_targets.float() else: average_loss = torch.tensor(0.0).to(forward_targets.device) # pylint: disable=not-callable # this is stored to compute perplexity if needed self._last_average_loss[0] = average_loss.detach().item() if num_targets > 0: # loss is directly minimized if self._loss_scale == 'n_samples': scale_factor = num_targets.float() else: scale_factor = self._loss_scale return_dict = { 'loss': average_loss * scale_factor, 'forward_loss': forward_loss * scale_factor / num_targets.float(), 'backward_loss': backward_loss * scale_factor / num_targets.float() } else: # average_loss zero tensor, return it for all return_dict = { 'loss': average_loss, 'forward_loss': average_loss, 'backward_loss': average_loss } if self._remove_bos_eos: contextual_embeddings, mask = remove_sentence_boundaries(contextual_embeddings, mask) return_dict.update({ 'lm_embeddings': contextual_embeddings, 'mask': mask }) return return_dict
adversarialnlp-master
adversarialnlp/generators/swag/openai_transformer_model.py
# coding=utf-8 from pytorch_pretrained_bert import BertForMaskedLM,tokenization import torch import sys import csv device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model_name = 'bert-large-uncased' if 'base' in sys.argv: model_name = 'bert-base-uncased' print("using model:",model_name,file=sys.stderr) only_prefix = False if 'only_prefix' in sys.argv: only_prefix = True print("We take only the prefix", file=sys.stderr) bert=BertForMaskedLM.from_pretrained(model_name) tokenizer=tokenization.BertTokenizer.from_pretrained(model_name) bert.eval() bert.to(device) def get_probs_for_words(sent,w1,w2): pre,target,post=sent.split('***') if 'mask' in target.lower(): target=['[MASK]'] else: target=tokenizer.tokenize(target) tokens=['[CLS]']+tokenizer.tokenize(pre) target_idx=len(tokens) #print(target_idx) tokens+=target if not only_prefix: tokens+=tokenizer.tokenize(post) tokens+=['[SEP]'] input_ids=tokenizer.convert_tokens_to_ids(tokens) try: word_ids=tokenizer.convert_tokens_to_ids([w1,w2]) except KeyError: print("skipping",w1,w2,"bad wins") return None tens=torch.LongTensor(input_ids).unsqueeze(0).to(device) with torch.no_grad(): res=bert(tens)[0,target_idx] #res=torch.nn.functional.softmax(res,-1) scores = res[word_ids] return [float(x.item()) for x in scores] from collections import Counter def load_marvin(): cc = Counter() # note: I edited the LM_Syneval/src/make_templates.py script, and run "python LM_Syneval/src/make_templates.py LM_Syneval/data/templates/ > marvin_linzen_dataset.tsv" out = [] for line in open("marvin_linzen_dataset.tsv"): case = line.strip().split("\t") cc[case[1]]+=1 g,ug = case[-2],case[-1] g = g.split() ug = ug.split() assert(len(g)==len(ug)),(g,ug) diffs = [i for i,pair in enumerate(zip(g,ug)) if pair[0]!=pair[1]] if (len(diffs)!=1): #print(diffs) #print(g,ug) continue assert(len(diffs)==1),diffs gv=g[diffs[0]] # good ugv=ug[diffs[0]] # bad g[diffs[0]]="***mask***" g.append(".") out.append((case[0],case[1]," ".join(g),gv,ugv)) return out def eval_marvin(): o = load_marvin() print(len(o),file=sys.stderr) from collections import defaultdict import time rc = defaultdict(Counter) tc = Counter() start = time.time() for i,(case,tp,s,g,b) in enumerate(o): ps = get_probs_for_words(s,g,b) if ps is None: ps = [0,1] gp = ps[0] bp = ps[1] print(gp>bp,case,tp,g,b,s) if i % 100==0: print(i,time.time()-start,file=sys.stderr) start=time.time() sys.stdout.flush() def eval_lgd(): for i,line in enumerate(open("lgd_dataset.tsv",encoding="utf8")): # for i,line in enumerate(open("lgd_dataset_with_is_are.tsv",encoding="utf8")): na,_,masked,good,bad = line.strip().split("\t") ps = get_probs_for_words(masked,good,bad) if ps is None: continue gp = ps[0] bp = ps[1] print(str(gp>bp),na,good,gp,bad,bp,masked.encode("utf8"),sep=u"\t") if i%100 == 0: print(i,file=sys.stderr) sys.stdout.flush() def read_gulordava(): rows = csv.DictReader(open("generated.tab",encoding="utf8"),delimiter="\t") data=[] for row in rows: row2=next(rows) assert(row['sent']==row2['sent']) assert(row['class']=='correct') assert(row2['class']=='wrong') sent = row['sent'].lower().split()[:-1] # dump the <eos> token. good_form = row['form'] bad_form = row2['form'] sent[int(row['len_prefix'])]="***mask***" sent = " ".join(sent) data.append((sent,row['n_attr'],good_form,bad_form)) return data def eval_gulordava(): for i,(masked,natt,good,bad) in enumerate(read_gulordava()): if good in ["is","are"]: print("skipping is/are") continue ps = get_probs_for_words(masked,good,bad) if ps is None: continue gp = ps[0] bp = ps[1] print(str(gp>bp),natt,good,gp,bad,bp,masked.encode("utf8"),sep=u"\t") if i%100 == 0: print(i,file=sys.stderr) sys.stdout.flush() if 'marvin' in sys.argv: eval_marvin() elif 'gul' in sys.argv: eval_gulordava() else: eval_lgd()
bert-syntax-master
eval_bert.py
import sys from collections import * files=[("base","results/marvin_results_base.txt"),("large","results/marvin_results_large.txt")] if "with_only_prefix" in sys.argv: files += [("base_only_prefix","results/marvin_results_base_only_prefix.txt"),("large_only_prefix","results/marvin_results_large_only_prefix.txt")] if "no_split" in sys.argv: files.append(("openai_gpt", "results/marvin_results_openai_gpt_no_split.txt")) elif "use_postfix" in sys.argv: files.append(("openai_gpt", "results/marvin_results_openai_gpt_use_postfix.txt")) else: files.append(("openai_gpt", "results/marvin_results_openai_gpt.txt")) by_model={} conditions=set() for title,fname in files: lines = open(fname) results=defaultdict(Counter) by_model[title]=results skipped = set() for line in lines: if line.startswith("Better speed"): continue if line.startswith("skipping"): skipped.add(line.split()[1]) next(lines) continue res,c1,c2,w1,w2,s = line.split(None, 5) c1 = c1.replace("inanim","anim") conditions.add(c1) results[c1][res]+=1 print("skipped:",skipped) if "with_only_prefix" in sys.argv: print("condition & base & large & base_only_prefix & large_only_prefix & openai_gpt & count bert & count openai_gpt \\\\") else: print("condition & base & large & openai_gpt & count bert & count openai_gpt \\\\") for cond in conditions: rb = by_model['base'][cond] rl = by_model['large'][cond] ro = by_model['openai_gpt'][cond] if sum(ro.values())==0: so = "-" else: so = "%.2f" % (ro['True']/(ro['True']+ro['False'])) sb = "%.2f" % (rb['True']/(rb['True']+rb['False'])) sl = "%.2f" % (rl['True']/(rl['True']+rl['False'])) if "with_only_prefix" in sys.argv: rbp = by_model['base_only_prefix'][cond] rlp = by_model['large_only_prefix'][cond] sbp = "%.2f" % (rbp['True']/(rbp['True']+rbp['False'])) slp = "%.2f" % (rlp['True']/(rlp['True']+rlp['False'])) print(" & ".join(map(str,[cond, sb, sl, sbp, slp, so, sum(rb.values()), sum(ro.values())])),"\\\\") else: print(" & ".join(map(str,[cond, sb, sl, so, sum(rb.values()), sum(ro.values())])),"\\\\")
bert-syntax-master
gen_marvin_tbl_openai_gpt.py
import sys from collections import * files=[("base","results/gulordava_results_base.txt"),("large","results/gulordava_results_large.txt")] by_model={} conditions=set() nskipped=0 for title,fname in files: lines = open(fname) results=defaultdict(Counter) by_model[title]=results skipped = set() for line in lines: if line.startswith("Better speed"): continue if line.startswith("skipping"): skipped.add(line.split()[1]) #next(lines) # no need to skip, skipped in testing nskipped += 1 continue assert (line.strip().split()[0] in ['True','False']),line res,c1,_ = line.split(None, 2) conditions.add(c1) conditions.add('all') results[c1][res]+=1 print("adding",res,"to",c1) results['all'][res]+=1 print("skipped:",nskipped,len(skipped),skipped) print("condition & base & large & count \\\\") for cond in conditions: rb = by_model['base'][cond] rl = by_model['large'][cond] if sum(rb.values())==0: continue sb = "%.2f" % (rb['True']/(rb['True']+rb['False'])) sl = "%.2f" % (rl['True']/(rl['True']+rl['False'])) print(" & ".join(map(str,[cond, sb, sl, sum(rb.values())])),"\\\\")
bert-syntax-master
gen_gul_tbl.py
import sys from collections import * files=[("base","results/lgd_results_base.txt"),("large","results/lgd_results_large.txt")] if "with_only_prefix" in sys.argv: files+=[("base_only_prefix","results/lgd_results_base_only_prefix.txt"),("large_only_prefix","results/lgd_results_large_only_prefix.txt")] if "no_split" in sys.argv: files.append(("openai_gpt", "results/lgd_results_openai_gpt_no_split.txt")) elif "use_postfix" in sys.argv: print("Let's use postfix") files.append(("openai_gpt", "results/lgd_results_openai_gpt_use_postfix.txt")) else: files.append(("openai_gpt", "results/lgd_results_openai_gpt.txt")) by_model={} conditions=set() nskipped=0 for title,fname in files: lines = open(fname) results=defaultdict(Counter) by_model[title]=results skipped = set() for line in lines: if line.startswith("Better speed"): continue if line.startswith("skipping"): skipped.add(line.split()[1]) #next(lines) # no need to skip, skipped in testing nskipped += 1 continue assert (line.strip().split()[0] in ['True','False']),line res,c1,_ = line.split(None, 2) conditions.add(c1) results[c1][res]+=1 print("skipped:",nskipped,len(skipped),skipped) if "with_only_prefix" in sys.argv: print("condition & base & large & base_only_prefix & large_only_prefix & openai_gpt & count bert & count openai_gpt \\\\") else: print("condition & base & large & openai_gpt & count bert & count openai_gpt \\\\") for cond in conditions: rb = by_model['base'][cond] rl = by_model['large'][cond] ro = by_model['openai_gpt'][cond] sb = "%.2f" % (rb['True']/(rb['True']+rb['False'])) sl = "%.2f" % (rl['True']/(rl['True']+rl['False'])) so = "%.2f" % (ro['True']/(ro['True']+ro['False'])) if "with_only_prefix" in sys.argv: rbp = by_model['base_only_prefix'][cond] rlp = by_model['large_only_prefix'][cond] sbp = "%.2f" % (rbp['True']/(rbp['True']+rbp['False'])) slp = "%.2f" % (rlp['True']/(rlp['True']+rlp['False'])) print(" & ".join(map(str,[cond, sb, sl, sbp, slp, so, sum(rb.values()), sum(ro.values())])),"\\\\") else: print(" & ".join(map(str,[cond, sb, sl, so, sum(rb.values()), sum(ro.values())])),"\\\\")
bert-syntax-master
gen_lgd_tbl_openai_gpt.py
''' inflect.py: correctly generate plurals, ordinals, indefinite articles; convert numbers to words Copyright (C) 2010 Paul Dyson Based upon the Perl module Lingua::EN::Inflect by Damian Conway. This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. The original Perl module Lingua::EN::Inflect by Damian Conway is available from http://search.cpan.org/~dconway/ This module can be downloaded at http://pypi.python.org/pypi/inflect methods: classical inflect plural plural_noun plural_verb plural_adj singular_noun no num a an compare compare_nouns compare_verbs compare_adjs present_participle ordinal number_to_words join defnoun defverb defadj defa defan INFLECTIONS: classical inflect plural plural_noun plural_verb plural_adj singular_noun compare no num a an present_participle PLURALS: classical inflect plural plural_noun plural_verb plural_adj singular_noun no num compare compare_nouns compare_verbs compare_adjs COMPARISONS: classical compare compare_nouns compare_verbs compare_adjs ARTICLES: classical inflect num a an NUMERICAL: ordinal number_to_words USER_DEFINED: defnoun defverb defadj defa defan Exceptions: UnknownClassicalModeError BadNumValueError BadChunkingOptionError NumOutOfRangeError BadUserDefinedPatternError BadRcFileError BadGenderError ''' from re import match, search, subn, IGNORECASE, VERBOSE from re import split as splitre from re import error as reerror from re import sub as resub class UnknownClassicalModeError(Exception): pass class BadNumValueError(Exception): pass class BadChunkingOptionError(Exception): pass class NumOutOfRangeError(Exception): pass class BadUserDefinedPatternError(Exception): pass class BadRcFileError(Exception): pass class BadGenderError(Exception): pass __ver_major__ = 0 __ver_minor__ = 2 __ver_patch__ = 5 __ver_sub__ = "" __version__ = "%d.%d.%d%s" % (__ver_major__, __ver_minor__, __ver_patch__, __ver_sub__) STDOUT_ON = False def print3(txt): if STDOUT_ON: print(txt) def enclose(s): return "(?:%s)" % s def joinstem(cutpoint=0, words=''): ''' join stem of each word in words into a string for regex each word is truncated at cutpoint cutpoint is usually negative indicating the number of letters to remove from the end of each word e.g. joinstem(-2, ["ephemeris", "iris", ".*itis"]) returns (?:ephemer|ir|.*it) ''' return enclose('|'.join(w[:cutpoint] for w in words)) def bysize(words): ''' take a list of words and return a dict of sets sorted by word length e.g. ret[3]=set(['ant', 'cat', 'dog', 'pig']) ret[4]=set(['frog', 'goat']) ret[5]=set(['horse']) ret[8]=set(['elephant']) ''' ret = {} for w in words: if len(w) not in ret: ret[len(w)] = set() ret[len(w)].add(w) return ret def make_pl_si_lists(lst, plending, siendingsize, dojoinstem=True): ''' given a list of singular words: lst an ending to append to make the plural: plending the number of characters to remove from the singular before appending plending: siendingsize a flag whether to create a joinstem: dojoinstem return: a list of pluralised words: si_list (called si because this is what you need to look for to make the singular) the pluralised words as a dict of sets sorted by word length: si_bysize the singular words as a dict of sets sorted by word length: pl_bysize if dojoinstem is True: a regular expression that matches any of the stems: stem ''' if siendingsize is not None: siendingsize = -siendingsize si_list = [w[:siendingsize] + plending for w in lst] pl_bysize = bysize(lst) si_bysize = bysize(si_list) if dojoinstem: stem = joinstem(siendingsize, lst) return si_list, si_bysize, pl_bysize, stem else: return si_list, si_bysize, pl_bysize # 1. PLURALS pl_sb_irregular_s = { "corpus": "corpuses|corpora", "opus": "opuses|opera", "genus": "genera", "mythos": "mythoi", "penis": "penises|penes", "testis": "testes", "atlas": "atlases|atlantes", "yes": "yeses", } pl_sb_irregular = { "child": "children", "brother": "brothers|brethren", "loaf": "loaves", "hoof": "hoofs|hooves", "beef": "beefs|beeves", "thief": "thiefs|thieves", "money": "monies", "mongoose": "mongooses", "ox": "oxen", "cow": "cows|kine", "graffito": "graffiti", "octopus": "octopuses|octopodes", "genie": "genies|genii", "ganglion": "ganglions|ganglia", "trilby": "trilbys", "turf": "turfs|turves", "numen": "numina", "atman": "atmas", "occiput": "occiputs|occipita", "sabretooth": "sabretooths", "sabertooth": "sabertooths", "lowlife": "lowlifes", "flatfoot": "flatfoots", "tenderfoot": "tenderfoots", "romany": "romanies", "jerry": "jerries", "mary": "maries", "talouse": "talouses", "blouse": "blouses", "rom": "roma", "carmen": "carmina", } pl_sb_irregular.update(pl_sb_irregular_s) # pl_sb_irregular_keys = enclose('|'.join(pl_sb_irregular.keys())) pl_sb_irregular_caps = { 'Romany': 'Romanies', 'Jerry': 'Jerrys', 'Mary': 'Marys', 'Rom': 'Roma', } pl_sb_irregular_compound = { "prima donna": "prima donnas|prime donne", } si_sb_irregular = dict([(v, k) for (k, v) in pl_sb_irregular.items()]) keys = list(si_sb_irregular.keys()) for k in keys: if '|' in k: k1, k2 = k.split('|') si_sb_irregular[k1] = si_sb_irregular[k2] = si_sb_irregular[k] del si_sb_irregular[k] si_sb_irregular_caps = dict([(v, k) for (k, v) in pl_sb_irregular_caps.items()]) si_sb_irregular_compound = dict([(v, k) for (k, v) in pl_sb_irregular_compound.items()]) keys = list(si_sb_irregular_compound.keys()) for k in keys: if '|' in k: k1, k2 = k.split('|') si_sb_irregular_compound[k1] = si_sb_irregular_compound[k2] = si_sb_irregular_compound[k] del si_sb_irregular_compound[k] # si_sb_irregular_keys = enclose('|'.join(si_sb_irregular.keys())) # Z's that don't double pl_sb_z_zes_list = ( "quartz", "topaz", ) pl_sb_z_zes_bysize = bysize(pl_sb_z_zes_list) pl_sb_ze_zes_list = ('snooze',) pl_sb_ze_zes_bysize = bysize(pl_sb_ze_zes_list) # CLASSICAL "..is" -> "..ides" pl_sb_C_is_ides_complete = [ # GENERAL WORDS... "ephemeris", "iris", "clitoris", "chrysalis", "epididymis", ] pl_sb_C_is_ides_endings = [ # INFLAMATIONS... "itis", ] pl_sb_C_is_ides = joinstem(-2, pl_sb_C_is_ides_complete + ['.*%s' % w for w in pl_sb_C_is_ides_endings]) pl_sb_C_is_ides_list = pl_sb_C_is_ides_complete + pl_sb_C_is_ides_endings (si_sb_C_is_ides_list, si_sb_C_is_ides_bysize, pl_sb_C_is_ides_bysize) = make_pl_si_lists(pl_sb_C_is_ides_list, 'ides', 2, dojoinstem=False) # CLASSICAL "..a" -> "..ata" pl_sb_C_a_ata_list = ( "anathema", "bema", "carcinoma", "charisma", "diploma", "dogma", "drama", "edema", "enema", "enigma", "lemma", "lymphoma", "magma", "melisma", "miasma", "oedema", "sarcoma", "schema", "soma", "stigma", "stoma", "trauma", "gumma", "pragma", ) (si_sb_C_a_ata_list, si_sb_C_a_ata_bysize, pl_sb_C_a_ata_bysize, pl_sb_C_a_ata) = make_pl_si_lists(pl_sb_C_a_ata_list, 'ata', 1) # UNCONDITIONAL "..a" -> "..ae" pl_sb_U_a_ae_list = ( "alumna", "alga", "vertebra", "persona" ) (si_sb_U_a_ae_list, si_sb_U_a_ae_bysize, pl_sb_U_a_ae_bysize, pl_sb_U_a_ae) = make_pl_si_lists(pl_sb_U_a_ae_list, 'e', None) # CLASSICAL "..a" -> "..ae" pl_sb_C_a_ae_list = ( "amoeba", "antenna", "formula", "hyperbola", "medusa", "nebula", "parabola", "abscissa", "hydra", "nova", "lacuna", "aurora", "umbra", "flora", "fauna", ) (si_sb_C_a_ae_list, si_sb_C_a_ae_bysize, pl_sb_C_a_ae_bysize, pl_sb_C_a_ae) = make_pl_si_lists(pl_sb_C_a_ae_list, 'e', None) # CLASSICAL "..en" -> "..ina" pl_sb_C_en_ina_list = ( "stamen", "foramen", "lumen", ) (si_sb_C_en_ina_list, si_sb_C_en_ina_bysize, pl_sb_C_en_ina_bysize, pl_sb_C_en_ina) = make_pl_si_lists(pl_sb_C_en_ina_list, 'ina', 2) # UNCONDITIONAL "..um" -> "..a" pl_sb_U_um_a_list = ( "bacterium", "agendum", "desideratum", "erratum", "stratum", "datum", "ovum", "extremum", "candelabrum", ) (si_sb_U_um_a_list, si_sb_U_um_a_bysize, pl_sb_U_um_a_bysize, pl_sb_U_um_a) = make_pl_si_lists(pl_sb_U_um_a_list, 'a', 2) # CLASSICAL "..um" -> "..a" pl_sb_C_um_a_list = ( "maximum", "minimum", "momentum", "optimum", "quantum", "cranium", "curriculum", "dictum", "phylum", "aquarium", "compendium", "emporium", "enconium", "gymnasium", "honorarium", "interregnum", "lustrum", "memorandum", "millennium", "rostrum", "spectrum", "speculum", "stadium", "trapezium", "ultimatum", "medium", "vacuum", "velum", "consortium", "arboretum", ) (si_sb_C_um_a_list, si_sb_C_um_a_bysize, pl_sb_C_um_a_bysize, pl_sb_C_um_a) = make_pl_si_lists(pl_sb_C_um_a_list, 'a', 2) # UNCONDITIONAL "..us" -> "i" pl_sb_U_us_i_list = ( "alumnus", "alveolus", "bacillus", "bronchus", "locus", "nucleus", "stimulus", "meniscus", "sarcophagus", ) (si_sb_U_us_i_list, si_sb_U_us_i_bysize, pl_sb_U_us_i_bysize, pl_sb_U_us_i) = make_pl_si_lists(pl_sb_U_us_i_list, 'i', 2) # CLASSICAL "..us" -> "..i" pl_sb_C_us_i_list = ( "focus", "radius", "genius", "incubus", "succubus", "nimbus", "fungus", "nucleolus", "stylus", "torus", "umbilicus", "uterus", "hippopotamus", "cactus", ) (si_sb_C_us_i_list, si_sb_C_us_i_bysize, pl_sb_C_us_i_bysize, pl_sb_C_us_i) = make_pl_si_lists(pl_sb_C_us_i_list, 'i', 2) # CLASSICAL "..us" -> "..us" (ASSIMILATED 4TH DECLENSION LATIN NOUNS) pl_sb_C_us_us = ( "status", "apparatus", "prospectus", "sinus", "hiatus", "impetus", "plexus", ) pl_sb_C_us_us_bysize = bysize(pl_sb_C_us_us) # UNCONDITIONAL "..on" -> "a" pl_sb_U_on_a_list = ( "criterion", "perihelion", "aphelion", "phenomenon", "prolegomenon", "noumenon", "organon", "asyndeton", "hyperbaton", ) (si_sb_U_on_a_list, si_sb_U_on_a_bysize, pl_sb_U_on_a_bysize, pl_sb_U_on_a) = make_pl_si_lists(pl_sb_U_on_a_list, 'a', 2) # CLASSICAL "..on" -> "..a" pl_sb_C_on_a_list = ( "oxymoron", ) (si_sb_C_on_a_list, si_sb_C_on_a_bysize, pl_sb_C_on_a_bysize, pl_sb_C_on_a) = make_pl_si_lists(pl_sb_C_on_a_list, 'a', 2) # CLASSICAL "..o" -> "..i" (BUT NORMALLY -> "..os") pl_sb_C_o_i = [ "solo", "soprano", "basso", "alto", "contralto", "tempo", "piano", "virtuoso", ] # list not tuple so can concat for pl_sb_U_o_os pl_sb_C_o_i_bysize = bysize(pl_sb_C_o_i) si_sb_C_o_i_bysize = bysize(['%si' % w[:-1] for w in pl_sb_C_o_i]) pl_sb_C_o_i_stems = joinstem(-1, pl_sb_C_o_i) # ALWAYS "..o" -> "..os" pl_sb_U_o_os_complete = set(( "ado", "ISO", "NATO", "NCO", "NGO", "oto", )) si_sb_U_o_os_complete = set('%ss' % w for w in pl_sb_U_o_os_complete) pl_sb_U_o_os_endings = [ "aficionado", "aggro", "albino", "allegro", "ammo", "Antananarivo", "archipelago", "armadillo", "auto", "avocado", "Bamako", "Barquisimeto", "bimbo", "bingo", "Biro", "bolero", "Bolzano", "bongo", "Boto", "burro", "Cairo", "canto", "cappuccino", "casino", "cello", "Chicago", "Chimango", "cilantro", "cochito", "coco", "Colombo", "Colorado", "commando", "concertino", "contango", "credo", "crescendo", "cyano", "demo", "ditto", "Draco", "dynamo", "embryo", "Esperanto", "espresso", "euro", "falsetto", "Faro", "fiasco", "Filipino", "flamenco", "furioso", "generalissimo", "Gestapo", "ghetto", "gigolo", "gizmo", "Greensboro", "gringo", "Guaiabero", "guano", "gumbo", "gyro", "hairdo", "hippo", "Idaho", "impetigo", "inferno", "info", "intermezzo", "intertrigo", "Iquico", "jumbo", "junto", "Kakapo", "kilo", "Kinkimavo", "Kokako", "Kosovo", "Lesotho", "libero", "libido", "libretto", "lido", "Lilo", "limbo", "limo", "lineno", "lingo", "lino", "livedo", "loco", "logo", "lumbago", "macho", "macro", "mafioso", "magneto", "magnifico", "Majuro", "Malabo", "manifesto", "Maputo", "Maracaibo", "medico", "memo", "metro", "Mexico", "micro", "Milano", "Monaco", "mono", "Montenegro", "Morocco", "Muqdisho", "myo", "neutrino", "Ningbo", "octavo", "oregano", "Orinoco", "Orlando", "Oslo", "panto", "Paramaribo", "Pardusco", "pedalo", "photo", "pimento", "pinto", "pleco", "Pluto", "pogo", "polo", "poncho", "Porto-Novo", "Porto", "pro", "psycho", "pueblo", "quarto", "Quito", "rhino", "risotto", "rococo", "rondo", "Sacramento", "saddo", "sago", "salvo", "Santiago", "Sapporo", "Sarajevo", "scherzando", "scherzo", "silo", "sirocco", "sombrero", "staccato", "sterno", "stucco", "stylo", "sumo", "Taiko", "techno", "terrazzo", "testudo", "timpano", "tiro", "tobacco", "Togo", "Tokyo", "torero", "Torino", "Toronto", "torso", "tremolo", "typo", "tyro", "ufo", "UNESCO", "vaquero", "vermicello", "verso", "vibrato", "violoncello", "Virgo", "weirdo", "WHO", "WTO", "Yamoussoukro", "yo-yo", "zero", "Zibo", ] + pl_sb_C_o_i pl_sb_U_o_os_bysize = bysize(pl_sb_U_o_os_endings) si_sb_U_o_os_bysize = bysize(['%ss' % w for w in pl_sb_U_o_os_endings]) # UNCONDITIONAL "..ch" -> "..chs" pl_sb_U_ch_chs_list = ( "czech", "eunuch", "stomach" ) (si_sb_U_ch_chs_list, si_sb_U_ch_chs_bysize, pl_sb_U_ch_chs_bysize, pl_sb_U_ch_chs) = make_pl_si_lists(pl_sb_U_ch_chs_list, 's', None) # UNCONDITIONAL "..[ei]x" -> "..ices" pl_sb_U_ex_ices_list = ( "codex", "murex", "silex", ) (si_sb_U_ex_ices_list, si_sb_U_ex_ices_bysize, pl_sb_U_ex_ices_bysize, pl_sb_U_ex_ices) = make_pl_si_lists(pl_sb_U_ex_ices_list, 'ices', 2) pl_sb_U_ix_ices_list = ( "radix", "helix", ) (si_sb_U_ix_ices_list, si_sb_U_ix_ices_bysize, pl_sb_U_ix_ices_bysize, pl_sb_U_ix_ices) = make_pl_si_lists(pl_sb_U_ix_ices_list, 'ices', 2) # CLASSICAL "..[ei]x" -> "..ices" pl_sb_C_ex_ices_list = ( "vortex", "vertex", "cortex", "latex", "pontifex", "apex", "index", "simplex", ) (si_sb_C_ex_ices_list, si_sb_C_ex_ices_bysize, pl_sb_C_ex_ices_bysize, pl_sb_C_ex_ices) = make_pl_si_lists(pl_sb_C_ex_ices_list, 'ices', 2) pl_sb_C_ix_ices_list = ( "appendix", ) (si_sb_C_ix_ices_list, si_sb_C_ix_ices_bysize, pl_sb_C_ix_ices_bysize, pl_sb_C_ix_ices) = make_pl_si_lists(pl_sb_C_ix_ices_list, 'ices', 2) # ARABIC: ".." -> "..i" pl_sb_C_i_list = ( "afrit", "afreet", "efreet", ) (si_sb_C_i_list, si_sb_C_i_bysize, pl_sb_C_i_bysize, pl_sb_C_i) = make_pl_si_lists(pl_sb_C_i_list, 'i', None) # HEBREW: ".." -> "..im" pl_sb_C_im_list = ( "goy", "seraph", "cherub", ) (si_sb_C_im_list, si_sb_C_im_bysize, pl_sb_C_im_bysize, pl_sb_C_im) = make_pl_si_lists(pl_sb_C_im_list, 'im', None) # UNCONDITIONAL "..man" -> "..mans" pl_sb_U_man_mans_list = """ ataman caiman cayman ceriman desman dolman farman harman hetman human leman ottoman shaman talisman """.split() pl_sb_U_man_mans_caps_list = """ Alabaman Bahaman Burman German Hiroshiman Liman Nakayaman Norman Oklahoman Panaman Roman Selman Sonaman Tacoman Yakiman Yokohaman Yuman """.split() (si_sb_U_man_mans_list, si_sb_U_man_mans_bysize, pl_sb_U_man_mans_bysize) = make_pl_si_lists(pl_sb_U_man_mans_list, 's', None, dojoinstem=False) (si_sb_U_man_mans_caps_list, si_sb_U_man_mans_caps_bysize, pl_sb_U_man_mans_caps_bysize) = make_pl_si_lists(pl_sb_U_man_mans_caps_list, 's', None, dojoinstem=False) pl_sb_uninflected_s_complete = [ # PAIRS OR GROUPS SUBSUMED TO A SINGULAR... "breeches", "britches", "pajamas", "pyjamas", "clippers", "gallows", "hijinks", "headquarters", "pliers", "scissors", "testes", "herpes", "pincers", "shears", "proceedings", "trousers", # UNASSIMILATED LATIN 4th DECLENSION "cantus", "coitus", "nexus", # RECENT IMPORTS... "contretemps", "corps", "debris", "siemens", # DISEASES "mumps", # MISCELLANEOUS OTHERS... "diabetes", "jackanapes", "series", "species", "subspecies", "rabies", "chassis", "innings", "news", "mews", "haggis", ] pl_sb_uninflected_s_endings = [ # RECENT IMPORTS... "ois", # DISEASES "measles", ] pl_sb_uninflected_s = pl_sb_uninflected_s_complete + ['.*%s' % w for w in pl_sb_uninflected_s_endings] pl_sb_uninflected_herd = ( # DON'T INFLECT IN CLASSICAL MODE, OTHERWISE NORMAL INFLECTION "wildebeest", "swine", "eland", "bison", "buffalo", "elk", "rhinoceros", 'zucchini', 'caribou', 'dace', 'grouse', 'guinea fowl', 'guinea-fowl', 'haddock', 'hake', 'halibut', 'herring', 'mackerel', 'pickerel', 'pike', 'roe', 'seed', 'shad', 'snipe', 'teal', 'turbot', 'water fowl', 'water-fowl', ) pl_sb_uninflected_complete = [ # SOME FISH AND HERD ANIMALS "tuna", "salmon", "mackerel", "trout", "bream", "sea-bass", "sea bass", "carp", "cod", "flounder", "whiting", "moose", # OTHER ODDITIES "graffiti", "djinn", 'samuri', 'offspring', 'pence', 'quid', 'hertz', ] + pl_sb_uninflected_s_complete # SOME WORDS ENDING IN ...s (OFTEN PAIRS TAKEN AS A WHOLE) pl_sb_uninflected_caps = [ # ALL NATIONALS ENDING IN -ese "Portuguese", "Amoyese", "Borghese", "Congoese", "Faroese", "Foochowese", "Genevese", "Genoese", "Gilbertese", "Hottentotese", "Kiplingese", "Kongoese", "Lucchese", "Maltese", "Nankingese", "Niasese", "Pekingese", "Piedmontese", "Pistoiese", "Sarawakese", "Shavese", "Vermontese", "Wenchowese", "Yengeese", ] pl_sb_uninflected_endings = [ # SOME FISH AND HERD ANIMALS "fish", "deer", "sheep", # ALL NATIONALS ENDING IN -ese "nese", "rese", "lese", "mese", # DISEASES "pox", # OTHER ODDITIES 'craft', ] + pl_sb_uninflected_s_endings # SOME WORDS ENDING IN ...s (OFTEN PAIRS TAKEN AS A WHOLE) pl_sb_uninflected_bysize = bysize(pl_sb_uninflected_endings) # SINGULAR WORDS ENDING IN ...s (ALL INFLECT WITH ...es) pl_sb_singular_s_complete = [ "acropolis", "aegis", "alias", "asbestos", "bathos", "bias", "bronchitis", "bursitis", "caddis", "cannabis", "canvas", "chaos", "cosmos", "dais", "digitalis", "epidermis", "ethos", "eyas", "gas", "glottis", "hubris", "ibis", "lens", "mantis", "marquis", "metropolis", "pathos", "pelvis", "polis", "rhinoceros", "sassafras", "trellis", ] + pl_sb_C_is_ides_complete pl_sb_singular_s_endings = [ "ss", "us", ] + pl_sb_C_is_ides_endings pl_sb_singular_s_bysize = bysize(pl_sb_singular_s_endings) si_sb_singular_s_complete = ['%ses' % w for w in pl_sb_singular_s_complete] si_sb_singular_s_endings = ['%ses' % w for w in pl_sb_singular_s_endings] si_sb_singular_s_bysize = bysize(si_sb_singular_s_endings) pl_sb_singular_s_es = [ "[A-Z].*es", ] pl_sb_singular_s = enclose('|'.join(pl_sb_singular_s_complete + ['.*%s' % w for w in pl_sb_singular_s_endings] + pl_sb_singular_s_es)) # PLURALS ENDING IN uses -> use si_sb_ois_oi_case = ( 'Bolshois', 'Hanois' ) si_sb_uses_use_case = ( 'Betelgeuses', 'Duses', 'Meuses', 'Syracuses', 'Toulouses', ) si_sb_uses_use = ( 'abuses', 'applauses', 'blouses', 'carouses', 'causes', 'chartreuses', 'clauses', 'contuses', 'douses', 'excuses', 'fuses', 'grouses', 'hypotenuses', 'masseuses', 'menopauses', 'misuses', 'muses', 'overuses', 'pauses', 'peruses', 'profuses', 'recluses', 'reuses', 'ruses', 'souses', 'spouses', 'suffuses', 'transfuses', 'uses', ) si_sb_ies_ie_case = ( 'Addies', 'Aggies', 'Allies', 'Amies', 'Angies', 'Annies', 'Annmaries', 'Archies', 'Arties', 'Aussies', 'Barbies', 'Barries', 'Basies', 'Bennies', 'Bernies', 'Berties', 'Bessies', 'Betties', 'Billies', 'Blondies', 'Bobbies', 'Bonnies', 'Bowies', 'Brandies', 'Bries', 'Brownies', 'Callies', 'Carnegies', 'Carries', 'Cassies', 'Charlies', 'Cheries', 'Christies', 'Connies', 'Curies', 'Dannies', 'Debbies', 'Dixies', 'Dollies', 'Donnies', 'Drambuies', 'Eddies', 'Effies', 'Ellies', 'Elsies', 'Eries', 'Ernies', 'Essies', 'Eugenies', 'Fannies', 'Flossies', 'Frankies', 'Freddies', 'Gillespies', 'Goldies', 'Gracies', 'Guthries', 'Hallies', 'Hatties', 'Hetties', 'Hollies', 'Jackies', 'Jamies', 'Janies', 'Jannies', 'Jeanies', 'Jeannies', 'Jennies', 'Jessies', 'Jimmies', 'Jodies', 'Johnies', 'Johnnies', 'Josies', 'Julies', 'Kalgoorlies', 'Kathies', 'Katies', 'Kellies', 'Kewpies', 'Kristies', 'Laramies', 'Lassies', 'Lauries', 'Leslies', 'Lessies', 'Lillies', 'Lizzies', 'Lonnies', 'Lories', 'Lorries', 'Lotties', 'Louies', 'Mackenzies', 'Maggies', 'Maisies', 'Mamies', 'Marcies', 'Margies', 'Maries', 'Marjories', 'Matties', 'McKenzies', 'Melanies', 'Mickies', 'Millies', 'Minnies', 'Mollies', 'Mounties', 'Nannies', 'Natalies', 'Nellies', 'Netties', 'Ollies', 'Ozzies', 'Pearlies', 'Pottawatomies', 'Reggies', 'Richies', 'Rickies', 'Robbies', 'Ronnies', 'Rosalies', 'Rosemaries', 'Rosies', 'Roxies', 'Rushdies', 'Ruthies', 'Sadies', 'Sallies', 'Sammies', 'Scotties', 'Selassies', 'Sherries', 'Sophies', 'Stacies', 'Stefanies', 'Stephanies', 'Stevies', 'Susies', 'Sylvies', 'Tammies', 'Terries', 'Tessies', 'Tommies', 'Tracies', 'Trekkies', 'Valaries', 'Valeries', 'Valkyries', 'Vickies', 'Virgies', 'Willies', 'Winnies', 'Wylies', 'Yorkies', ) si_sb_ies_ie = ( 'aeries', 'baggies', 'belies', 'biggies', 'birdies', 'bogies', 'bonnies', 'boogies', 'bookies', 'bourgeoisies', 'brownies', 'budgies', 'caddies', 'calories', 'camaraderies', 'cockamamies', 'collies', 'cookies', 'coolies', 'cooties', 'coteries', 'crappies', 'curies', 'cutesies', 'dogies', 'eyrie', 'floozies', 'footsies', 'freebies', 'genies', 'goalies', 'groupies', 'hies', 'jalousies', 'junkies', 'kiddies', 'laddies', 'lassies', 'lies', 'lingeries', 'magpies', 'menageries', 'mommies', 'movies', 'neckties', 'newbies', 'nighties', 'oldies', 'organdies', 'overlies', 'pies', 'pinkies', 'pixies', 'potpies', 'prairies', 'quickies', 'reveries', 'rookies', 'rotisseries', 'softies', 'sorties', 'species', 'stymies', 'sweeties', 'ties', 'underlies', 'unties', 'veggies', 'vies', 'yuppies', 'zombies', ) si_sb_oes_oe_case = ( 'Chloes', 'Crusoes', 'Defoes', 'Faeroes', 'Ivanhoes', 'Joes', 'McEnroes', 'Moes', 'Monroes', 'Noes', 'Poes', 'Roscoes', 'Tahoes', 'Tippecanoes', 'Zoes', ) si_sb_oes_oe = ( 'aloes', 'backhoes', 'canoes', 'does', 'floes', 'foes', 'hoes', 'mistletoes', 'oboes', 'pekoes', 'roes', 'sloes', 'throes', 'tiptoes', 'toes', 'woes', ) si_sb_z_zes = ( "quartzes", "topazes", ) si_sb_zzes_zz = ( 'buzzes', 'fizzes', 'frizzes', 'razzes' ) si_sb_ches_che_case = ( 'Andromaches', 'Apaches', 'Blanches', 'Comanches', 'Nietzsches', 'Porsches', 'Roches', ) si_sb_ches_che = ( 'aches', 'avalanches', 'backaches', 'bellyaches', 'caches', 'cloches', 'creches', 'douches', 'earaches', 'fiches', 'headaches', 'heartaches', 'microfiches', 'niches', 'pastiches', 'psyches', 'quiches', 'stomachaches', 'toothaches', ) si_sb_xes_xe = ( 'annexes', 'axes', 'deluxes', 'pickaxes', ) si_sb_sses_sse_case = ( 'Hesses', 'Jesses', 'Larousses', 'Matisses', ) si_sb_sses_sse = ( 'bouillabaisses', 'crevasses', 'demitasses', 'impasses', 'mousses', 'posses', ) si_sb_ves_ve_case = ( # *[nwl]ives -> [nwl]live 'Clives', 'Palmolives', ) si_sb_ves_ve = ( # *[^d]eaves -> eave 'interweaves', 'weaves', # *[nwl]ives -> [nwl]live 'olives', # *[eoa]lves -> [eoa]lve 'bivalves', 'dissolves', 'resolves', 'salves', 'twelves', 'valves', ) plverb_special_s = enclose('|'.join( [pl_sb_singular_s] + pl_sb_uninflected_s + list(pl_sb_irregular_s.keys()) + [ '(.*[csx])is', '(.*)ceps', '[A-Z].*s', ] )) pl_sb_postfix_adj = { 'general': ['(?!major|lieutenant|brigadier|adjutant|.*star)\S+'], 'martial': ['court'], } for k in list(pl_sb_postfix_adj.keys()): pl_sb_postfix_adj[k] = enclose( enclose('|'.join(pl_sb_postfix_adj[k])) + "(?=(?:-|\\s+)%s)" % k) pl_sb_postfix_adj_stems = '(' + '|'.join(list(pl_sb_postfix_adj.values())) + ')(.*)' # PLURAL WORDS ENDING IS es GO TO SINGULAR is si_sb_es_is = ( 'amanuenses', 'amniocenteses', 'analyses', 'antitheses', 'apotheoses', 'arterioscleroses', 'atheroscleroses', 'axes', # 'bases', # bases -> basis 'catalyses', 'catharses', 'chasses', 'cirrhoses', 'cocces', 'crises', 'diagnoses', 'dialyses', 'diereses', 'electrolyses', 'emphases', 'exegeses', 'geneses', 'halitoses', 'hydrolyses', 'hypnoses', 'hypotheses', 'hystereses', 'metamorphoses', 'metastases', 'misdiagnoses', 'mitoses', 'mononucleoses', 'narcoses', 'necroses', 'nemeses', 'neuroses', 'oases', 'osmoses', 'osteoporoses', 'paralyses', 'parentheses', 'parthenogeneses', 'periphrases', 'photosyntheses', 'probosces', 'prognoses', 'prophylaxes', 'prostheses', 'preces', 'psoriases', 'psychoanalyses', 'psychokineses', 'psychoses', 'scleroses', 'scolioses', 'sepses', 'silicoses', 'symbioses', 'synopses', 'syntheses', 'taxes', 'telekineses', 'theses', 'thromboses', 'tuberculoses', 'urinalyses', ) pl_prep_list = """ about above across after among around at athwart before behind below beneath beside besides between betwixt beyond but by during except for from in into near of off on onto out over since till to under until unto upon with""".split() pl_prep_list_da = pl_prep_list + ['de', 'du', 'da'] pl_prep_bysize = bysize(pl_prep_list_da) pl_prep = enclose('|'.join(pl_prep_list_da)) pl_sb_prep_dual_compound = r'(.*?)((?:-|\s+)(?:' + pl_prep + r')(?:-|\s+))a(?:-|\s+)(.*)' singular_pronoun_genders = set(['neuter', 'feminine', 'masculine', 'gender-neutral', 'feminine or masculine', 'masculine or feminine']) pl_pron_nom = { # NOMINATIVE REFLEXIVE "i": "we", "myself": "ourselves", "you": "you", "yourself": "yourselves", "she": "they", "herself": "themselves", "he": "they", "himself": "themselves", "it": "they", "itself": "themselves", "they": "they", "themself": "themselves", # POSSESSIVE "mine": "ours", "yours": "yours", "hers": "theirs", "his": "theirs", "its": "theirs", "theirs": "theirs", } si_pron = {} si_pron['nom'] = dict([(v, k) for (k, v) in pl_pron_nom.items()]) si_pron['nom']['we'] = 'I' pl_pron_acc = { # ACCUSATIVE REFLEXIVE "me": "us", "myself": "ourselves", "you": "you", "yourself": "yourselves", "her": "them", "herself": "themselves", "him": "them", "himself": "themselves", "it": "them", "itself": "themselves", "them": "them", "themself": "themselves", } pl_pron_acc_keys = enclose('|'.join(list(pl_pron_acc.keys()))) pl_pron_acc_keys_bysize = bysize(list(pl_pron_acc.keys())) si_pron['acc'] = dict([(v, k) for (k, v) in pl_pron_acc.items()]) for thecase, plur, gend, sing in ( ('nom', 'they', 'neuter', 'it'), ('nom', 'they', 'feminine', 'she'), ('nom', 'they', 'masculine', 'he'), ('nom', 'they', 'gender-neutral', 'they'), ('nom', 'they', 'feminine or masculine', 'she or he'), ('nom', 'they', 'masculine or feminine', 'he or she'), ('nom', 'themselves', 'neuter', 'itself'), ('nom', 'themselves', 'feminine', 'herself'), ('nom', 'themselves', 'masculine', 'himself'), ('nom', 'themselves', 'gender-neutral', 'themself'), ('nom', 'themselves', 'feminine or masculine', 'herself or himself'), ('nom', 'themselves', 'masculine or feminine', 'himself or herself'), ('nom', 'theirs', 'neuter', 'its'), ('nom', 'theirs', 'feminine', 'hers'), ('nom', 'theirs', 'masculine', 'his'), ('nom', 'theirs', 'gender-neutral', 'theirs'), ('nom', 'theirs', 'feminine or masculine', 'hers or his'), ('nom', 'theirs', 'masculine or feminine', 'his or hers'), ('acc', 'them', 'neuter', 'it'), ('acc', 'them', 'feminine', 'her'), ('acc', 'them', 'masculine', 'him'), ('acc', 'them', 'gender-neutral', 'them'), ('acc', 'them', 'feminine or masculine', 'her or him'), ('acc', 'them', 'masculine or feminine', 'him or her'), ('acc', 'themselves', 'neuter', 'itself'), ('acc', 'themselves', 'feminine', 'herself'), ('acc', 'themselves', 'masculine', 'himself'), ('acc', 'themselves', 'gender-neutral', 'themself'), ('acc', 'themselves', 'feminine or masculine', 'herself or himself'), ('acc', 'themselves', 'masculine or feminine', 'himself or herself'), ): try: si_pron[thecase][plur][gend] = sing except TypeError: si_pron[thecase][plur] = {} si_pron[thecase][plur][gend] = sing si_pron_acc_keys = enclose('|'.join(list(si_pron['acc'].keys()))) si_pron_acc_keys_bysize = bysize(list(si_pron['acc'].keys())) def get_si_pron(thecase, word, gender): try: sing = si_pron[thecase][word] except KeyError: raise # not a pronoun try: return sing[gender] # has several types due to gender except TypeError: return sing # answer independent of gender plverb_irregular_pres = { # 1st PERS. SING. 2ND PERS. SING. 3RD PERS. SINGULAR # 3RD PERS. (INDET.) "am": "are", "are": "are", "is": "are", "was": "were", "were": "were", "was": "were", "have": "have", "have": "have", "has": "have", "do": "do", "do": "do", "does": "do", } plverb_ambiguous_pres = { # 1st PERS. SING. 2ND PERS. SING. 3RD PERS. SINGULAR # 3RD PERS. (INDET.) "act": "act", "act": "act", "acts": "act", "blame": "blame", "blame": "blame", "blames": "blame", "can": "can", "can": "can", "can": "can", "must": "must", "must": "must", "must": "must", "fly": "fly", "fly": "fly", "flies": "fly", "copy": "copy", "copy": "copy", "copies": "copy", "drink": "drink", "drink": "drink", "drinks": "drink", "fight": "fight", "fight": "fight", "fights": "fight", "fire": "fire", "fire": "fire", "fires": "fire", "like": "like", "like": "like", "likes": "like", "look": "look", "look": "look", "looks": "look", "make": "make", "make": "make", "makes": "make", "reach": "reach", "reach": "reach", "reaches": "reach", "run": "run", "run": "run", "runs": "run", "sink": "sink", "sink": "sink", "sinks": "sink", "sleep": "sleep", "sleep": "sleep", "sleeps": "sleep", "view": "view", "view": "view", "views": "view", } plverb_ambiguous_pres_keys = enclose('|'.join(list(plverb_ambiguous_pres.keys()))) plverb_irregular_non_pres = ( "did", "had", "ate", "made", "put", "spent", "fought", "sank", "gave", "sought", "shall", "could", "ought", "should", ) plverb_ambiguous_non_pres = enclose('|'.join(( "thought", "saw", "bent", "will", "might", "cut", ))) # "..oes" -> "..oe" (the rest are "..oes" -> "o") pl_v_oes_oe = ('canoes', 'floes', 'oboes', 'roes', 'throes', 'woes') pl_v_oes_oe_endings_size4 = ('hoes', 'toes') pl_v_oes_oe_endings_size5 = ('shoes') pl_count_zero = ( "0", "no", "zero", "nil" ) pl_count_one = ( "1", "a", "an", "one", "each", "every", "this", "that", ) pl_adj_special = { "a": "some", "an": "some", "this": "these", "that": "those", } pl_adj_special_keys = enclose('|'.join(list(pl_adj_special.keys()))) pl_adj_poss = { "my": "our", "your": "your", "its": "their", "her": "their", "his": "their", "their": "their", } pl_adj_poss_keys = enclose('|'.join(list(pl_adj_poss.keys()))) # 2. INDEFINITE ARTICLES # THIS PATTERN MATCHES STRINGS OF CAPITALS STARTING WITH A "VOWEL-SOUND" # CONSONANT FOLLOWED BY ANOTHER CONSONANT, AND WHICH ARE NOT LIKELY # TO BE REAL WORDS (OH, ALL RIGHT THEN, IT'S JUST MAGIC!) A_abbrev = r""" (?! FJO | [HLMNS]Y. | RY[EO] | SQU | ( F[LR]? | [HL] | MN? | N | RH? | S[CHKLMNPTVW]? | X(YL)?) [AEIOU]) [FHLMNRSX][A-Z] """ # THIS PATTERN CODES THE BEGINNINGS OF ALL ENGLISH WORDS BEGINING WITH A # 'y' FOLLOWED BY A CONSONANT. ANY OTHER Y-CONSONANT PREFIX THEREFORE # IMPLIES AN ABBREVIATION. A_y_cons = 'y(b[lor]|cl[ea]|fere|gg|p[ios]|rou|tt)' # EXCEPTIONS TO EXCEPTIONS A_explicit_a = enclose('|'.join(( "unabomber", "unanimous", "US", ))) A_explicit_an = enclose('|'.join(( "euler", "hour(?!i)", "heir", "honest", "hono[ur]", "mpeg", ))) A_ordinal_an = enclose('|'.join(( "[aefhilmnorsx]-?th", ))) A_ordinal_a = enclose('|'.join(( "[bcdgjkpqtuvwyz]-?th", ))) # NUMERICAL INFLECTIONS nth = { 0: 'th', 1: 'st', 2: 'nd', 3: 'rd', 4: 'th', 5: 'th', 6: 'th', 7: 'th', 8: 'th', 9: 'th', 11: 'th', 12: 'th', 13: 'th', } ordinal = dict(ty='tieth', one='first', two='second', three='third', five='fifth', eight='eighth', nine='ninth', twelve='twelfth') ordinal_suff = '|'.join(list(ordinal.keys())) # NUMBERS unit = ['', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight', 'nine'] teen = ['ten', 'eleven', 'twelve', 'thirteen', 'fourteen', 'fifteen', 'sixteen', 'seventeen', 'eighteen', 'nineteen'] ten = ['', '', 'twenty', 'thirty', 'forty', 'fifty', 'sixty', 'seventy', 'eighty', 'ninety'] mill = [' ', ' thousand', ' million', ' billion', ' trillion', ' quadrillion', ' quintillion', ' sextillion', ' septillion', ' octillion', ' nonillion', ' decillion'] # SUPPORT CLASSICAL PLURALIZATIONS def_classical = dict( all=False, zero=False, herd=False, names=True, persons=False, ancient=False, ) all_classical = dict((k, True) for k in list(def_classical.keys())) no_classical = dict((k, False) for k in list(def_classical.keys())) # TODO: .inflectrc file does not work # can't just execute methods from another file like this # for rcfile in (pathjoin(dirname(__file__), '.inflectrc'), # expanduser(pathjoin(('~'), '.inflectrc'))): # if isfile(rcfile): # try: # execfile(rcfile) # except: # print3("\nBad .inflectrc file (%s):\n" % rcfile) # raise BadRcFileError class engine: def __init__(self): self.classical_dict = def_classical.copy() self.persistent_count = None self.mill_count = 0 self.pl_sb_user_defined = [] self.pl_v_user_defined = [] self.pl_adj_user_defined = [] self.si_sb_user_defined = [] self.A_a_user_defined = [] self.thegender = 'neuter' deprecated_methods = dict(pl='plural', plnoun='plural_noun', plverb='plural_verb', pladj='plural_adj', sinoun='single_noun', prespart='present_participle', numwords='number_to_words', plequal='compare', plnounequal='compare_nouns', plverbequal='compare_verbs', pladjequal='compare_adjs', wordlist='join', ) def __getattr__(self, meth): if meth in self.deprecated_methods: print3('%s() deprecated, use %s()' % (meth, self.deprecated_methods[meth])) raise DeprecationWarning raise AttributeError def defnoun(self, singular, plural): ''' Set the noun plural of singular to plural. ''' self.checkpat(singular) self.checkpatplural(plural) self.pl_sb_user_defined.extend((singular, plural)) self.si_sb_user_defined.extend((plural, singular)) return 1 def defverb(self, s1, p1, s2, p2, s3, p3): ''' Set the verb plurals for s1, s2 and s3 to p1, p2 and p3 respectively. Where 1, 2 and 3 represent the 1st, 2nd and 3rd person forms of the verb. ''' self.checkpat(s1) self.checkpat(s2) self.checkpat(s3) self.checkpatplural(p1) self.checkpatplural(p2) self.checkpatplural(p3) self.pl_v_user_defined.extend((s1, p1, s2, p2, s3, p3)) return 1 def defadj(self, singular, plural): ''' Set the adjective plural of singular to plural. ''' self.checkpat(singular) self.checkpatplural(plural) self.pl_adj_user_defined.extend((singular, plural)) return 1 def defa(self, pattern): ''' Define the indefinate article as 'a' for words matching pattern. ''' self.checkpat(pattern) self.A_a_user_defined.extend((pattern, 'a')) return 1 def defan(self, pattern): ''' Define the indefinate article as 'an' for words matching pattern. ''' self.checkpat(pattern) self.A_a_user_defined.extend((pattern, 'an')) return 1 def checkpat(self, pattern): ''' check for errors in a regex pattern ''' if pattern is None: return try: match(pattern, '') except reerror: print3("\nBad user-defined singular pattern:\n\t%s\n" % pattern) raise BadUserDefinedPatternError def checkpatplural(self, pattern): ''' check for errors in a regex replace pattern ''' return # can't find a pattern that doesn't pass the following test: # if pattern is None: # return # try: # resub('', pattern, '') # except reerror: # print3("\nBad user-defined plural pattern:\n\t%s\n" % pattern) # raise BadUserDefinedPatternError def ud_match(self, word, wordlist): for i in range(len(wordlist) - 2, -2, -2): # backwards through even elements mo = search(r'^%s$' % wordlist[i], word, IGNORECASE) if mo: if wordlist[i + 1] is None: return None pl = resub(r'\$(\d+)', r'\\1', wordlist[i + 1]) # change $n to \n for expand return mo.expand(pl) return None def classical(self, **kwargs): """ turn classical mode on and off for various categories turn on all classical modes: classical() classical(all=True) turn on or off specific claassical modes: e.g. classical(herd=True) classical(names=False) By default all classical modes are off except names. unknown value in args or key in kwargs rasies exception: UnknownClasicalModeError """ classical_mode = list(def_classical.keys()) if not kwargs: self.classical_dict = all_classical.copy() return if 'all' in kwargs: if kwargs['all']: self.classical_dict = all_classical.copy() else: self.classical_dict = no_classical.copy() for k, v in list(kwargs.items()): if k in classical_mode: self.classical_dict[k] = v else: raise UnknownClassicalModeError def num(self, count=None, show=None): # (;$count,$show) ''' Set the number to be used in other method calls. Returns count. Set show to False to return '' instead. ''' if count is not None: try: self.persistent_count = int(count) except ValueError: raise BadNumValueError if (show is None) or show: return str(count) else: self.persistent_count = None return '' def gender(self, gender): ''' set the gender for the singular of plural pronouns can be one of: 'neuter' ('they' -> 'it') 'feminine' ('they' -> 'she') 'masculine' ('they' -> 'he') 'gender-neutral' ('they' -> 'they') 'feminine or masculine' ('they' -> 'she or he') 'masculine or feminine' ('they' -> 'he or she') ''' if gender in singular_pronoun_genders: self.thegender = gender else: raise BadGenderError def nummo(self, matchobject): ''' num but take a matchobject use groups 1 and 2 in matchobject ''' return self.num(matchobject.group(1), matchobject.group(2)) def plmo(self, matchobject): ''' plural but take a matchobject use groups 1 and 3 in matchobject ''' return self.plural(matchobject.group(1), matchobject.group(3)) def plnounmo(self, matchobject): ''' plural_noun but take a matchobject use groups 1 and 3 in matchobject ''' return self.plural_noun(matchobject.group(1), matchobject.group(3)) def plverbmo(self, matchobject): ''' plural_verb but take a matchobject use groups 1 and 3 in matchobject ''' return self.plural_verb(matchobject.group(1), matchobject.group(3)) def pladjmo(self, matchobject): ''' plural_adj but take a matchobject use groups 1 and 3 in matchobject ''' return self.plural_adj(matchobject.group(1), matchobject.group(3)) def sinounmo(self, matchobject): ''' singular_noun but take a matchobject use groups 1 and 3 in matchobject ''' return self.singular_noun(matchobject.group(1), matchobject.group(3)) def amo(self, matchobject): ''' A but take a matchobject use groups 1 and 3 in matchobject ''' if matchobject.group(3) is None: return self.a(matchobject.group(1)) return self.a(matchobject.group(1), matchobject.group(3)) def nomo(self, matchobject): ''' NO but take a matchobject use groups 1 and 3 in matchobject ''' return self.no(matchobject.group(1), matchobject.group(3)) def ordinalmo(self, matchobject): ''' ordinal but take a matchobject use group 1 ''' return self.ordinal(matchobject.group(1)) def numwordsmo(self, matchobject): ''' number_to_words but take a matchobject use group 1 ''' return self.number_to_words(matchobject.group(1)) def prespartmo(self, matchobject): ''' prespart but take a matchobject use group 1 ''' return self.present_participle(matchobject.group(1)) # 0. PERFORM GENERAL INFLECTIONS IN A STRING def inflect(self, text): ''' Perform inflections in a string. e.g. inflect('The plural of cat is plural(cat)') returns 'The plural of cat is cats' can use plural, plural_noun, plural_verb, plural_adj, singular_noun, a, an, no, ordinal, number_to_words and prespart ''' save_persistent_count = self.persistent_count sections = splitre(r"(num\([^)]*\))", text) inflection = [] for section in sections: (section, count) = subn(r"num\(\s*?(?:([^),]*)(?:,([^)]*))?)?\)", self.nummo, section) if not count: total = -1 while total: (section, total) = subn( r"(?x)\bplural \( ([^),]*) (, ([^)]*) )? \) ", self.plmo, section) (section, count) = subn( r"(?x)\bplural_noun \( ([^),]*) (, ([^)]*) )? \) ", self.plnounmo, section) total += count (section, count) = subn( r"(?x)\bplural_verb \( ([^),]*) (, ([^)]*) )? \) ", self.plverbmo, section) total += count (section, count) = subn( r"(?x)\bplural_adj \( ([^),]*) (, ([^)]*) )? \) ", self.pladjmo, section) total += count (section, count) = subn( r"(?x)\bsingular_noun \( ([^),]*) (, ([^)]*) )? \) ", self.sinounmo, section) total += count (section, count) = subn( r"(?x)\ban? \( ([^),]*) (, ([^)]*) )? \) ", self.amo, section) total += count (section, count) = subn( r"(?x)\bno \( ([^),]*) (, ([^)]*) )? \) ", self.nomo, section) total += count (section, count) = subn( r"(?x)\bordinal \( ([^)]*) \) ", self.ordinalmo, section) total += count (section, count) = subn( r"(?x)\bnumber_to_words \( ([^)]*) \) ", self.numwordsmo, section) total += count (section, count) = subn( r"(?x)\bpresent_participle \( ([^)]*) \) ", self.prespartmo, section) total += count inflection.append(section) self.persistent_count = save_persistent_count return "".join(inflection) # ## PLURAL SUBROUTINES def postprocess(self, orig, inflected): """ FIX PEDANTRY AND CAPITALIZATION :-) """ if '|' in inflected: inflected = inflected.split('|')[self.classical_dict['all']] if orig == "I": return inflected if orig == orig.upper(): return inflected.upper() if orig[0] == orig[0].upper(): return '%s%s' % (inflected[0].upper(), inflected[1:]) return inflected def partition_word(self, text): mo = search(r'\A(\s*)(.+?)(\s*)\Z', text) try: return mo.group(1), mo.group(2), mo.group(3) except AttributeError: # empty string return '', '', '' # def pl(self, *args, **kwds): # print 'pl() deprecated, use plural()' # raise DeprecationWarning # return self.plural(*args, **kwds) # # def plnoun(self, *args, **kwds): # print 'plnoun() deprecated, use plural_noun()' # raise DeprecationWarning # return self.plural_noun(*args, **kwds) # # def plverb(self, *args, **kwds): # print 'plverb() deprecated, use plural_verb()' # raise DeprecationWarning # return self.plural_verb(*args, **kwds) # # def pladj(self, *args, **kwds): # print 'pladj() deprecated, use plural_adj()' # raise DeprecationWarning # return self.plural_adj(*args, **kwds) # # def sinoun(self, *args, **kwds): # print 'sinoun() deprecated, use singular_noun()' # raise DeprecationWarning # return self.singular_noun(*args, **kwds) # # def prespart(self, *args, **kwds): # print 'prespart() deprecated, use present_participle()' # raise DeprecationWarning # return self.present_participle(*args, **kwds) # # def numwords(self, *args, **kwds): # print 'numwords() deprecated, use number_to_words()' # raise DeprecationWarning # return self.number_to_words(*args, **kwds) def plural(self, text, count=None): ''' Return the plural of text. If count supplied, then return text if count is one of: 1, a, an, one, each, every, this, that otherwise return the plural. Whitespace at the start and end is preserved. ''' pre, word, post = self.partition_word(text) if not word: return text plural = self.postprocess( word, self._pl_special_adjective(word, count) or self._pl_special_verb(word, count) or self._plnoun(word, count)) return "%s%s%s" % (pre, plural, post) def plural_noun(self, text, count=None): ''' Return the plural of text, where text is a noun. If count supplied, then return text if count is one of: 1, a, an, one, each, every, this, that otherwise return the plural. Whitespace at the start and end is preserved. ''' pre, word, post = self.partition_word(text) if not word: return text plural = self.postprocess(word, self._plnoun(word, count)) return "%s%s%s" % (pre, plural, post) def plural_verb(self, text, count=None): ''' Return the plural of text, where text is a verb. If count supplied, then return text if count is one of: 1, a, an, one, each, every, this, that otherwise return the plural. Whitespace at the start and end is preserved. ''' pre, word, post = self.partition_word(text) if not word: return text plural = self.postprocess(word, self._pl_special_verb(word, count) or self._pl_general_verb(word, count)) return "%s%s%s" % (pre, plural, post) def plural_adj(self, text, count=None): ''' Return the plural of text, where text is an adjective. If count supplied, then return text if count is one of: 1, a, an, one, each, every, this, that otherwise return the plural. Whitespace at the start and end is preserved. ''' pre, word, post = self.partition_word(text) if not word: return text plural = self.postprocess(word, self._pl_special_adjective(word, count) or word) return "%s%s%s" % (pre, plural, post) def compare(self, word1, word2): ''' compare word1 and word2 for equality regardless of plurality return values: eq - the strings are equal p:s - word1 is the plural of word2 s:p - word2 is the plural of word1 p:p - word1 and word2 are two different plural forms of the one word False - otherwise ''' return ( self._plequal(word1, word2, self.plural_noun) or self._plequal(word1, word2, self.plural_verb) or self._plequal(word1, word2, self.plural_adj)) def compare_nouns(self, word1, word2): ''' compare word1 and word2 for equality regardless of plurality word1 and word2 are to be treated as nouns return values: eq - the strings are equal p:s - word1 is the plural of word2 s:p - word2 is the plural of word1 p:p - word1 and word2 are two different plural forms of the one word False - otherwise ''' return self._plequal(word1, word2, self.plural_noun) def compare_verbs(self, word1, word2): ''' compare word1 and word2 for equality regardless of plurality word1 and word2 are to be treated as verbs return values: eq - the strings are equal p:s - word1 is the plural of word2 s:p - word2 is the plural of word1 p:p - word1 and word2 are two different plural forms of the one word False - otherwise ''' return self._plequal(word1, word2, self.plural_verb) def compare_adjs(self, word1, word2): ''' compare word1 and word2 for equality regardless of plurality word1 and word2 are to be treated as adjectives return values: eq - the strings are equal p:s - word1 is the plural of word2 s:p - word2 is the plural of word1 p:p - word1 and word2 are two different plural forms of the one word False - otherwise ''' return self._plequal(word1, word2, self.plural_adj) def singular_noun(self, text, count=None, gender=None): ''' Return the singular of text, where text is a plural noun. If count supplied, then return the singular if count is one of: 1, a, an, one, each, every, this, that or if count is None otherwise return text unchanged. Whitespace at the start and end is preserved. ''' pre, word, post = self.partition_word(text) if not word: return text sing = self._sinoun(word, count=count, gender=gender) if sing is not False: plural = self.postprocess(word, self._sinoun(word, count=count, gender=gender)) return "%s%s%s" % (pre, plural, post) return False def _plequal(self, word1, word2, pl): classval = self.classical_dict.copy() self.classical_dict = all_classical.copy() if word1 == word2: return "eq" if word1 == pl(word2): return "p:s" if pl(word1) == word2: return "s:p" self.classical_dict = no_classical.copy() if word1 == pl(word2): return "p:s" if pl(word1) == word2: return "s:p" self.classical_dict = classval.copy() if pl == self.plural or pl == self.plural_noun: if self._pl_check_plurals_N(word1, word2): return "p:p" if self._pl_check_plurals_N(word2, word1): return "p:p" if pl == self.plural or pl == self.plural_adj: if self._pl_check_plurals_adj(word1, word2): return "p:p" return False def _pl_reg_plurals(self, pair, stems, end1, end2): if search(r"(%s)(%s\|\1%s|%s\|\1%s)" % (stems, end1, end2, end2, end1), pair): return True return False def _pl_check_plurals_N(self, word1, word2): pair = "%s|%s" % (word1, word2) if pair in list(pl_sb_irregular_s.values()): return True if pair in list(pl_sb_irregular.values()): return True if pair in list(pl_sb_irregular_caps.values()): return True for (stems, end1, end2) in ( (pl_sb_C_a_ata, "as", "ata"), (pl_sb_C_is_ides, "is", "ides"), (pl_sb_C_a_ae, "s", "e"), (pl_sb_C_en_ina, "ens", "ina"), (pl_sb_C_um_a, "ums", "a"), (pl_sb_C_us_i, "uses", "i"), (pl_sb_C_on_a, "ons", "a"), (pl_sb_C_o_i_stems, "os", "i"), (pl_sb_C_ex_ices, "exes", "ices"), (pl_sb_C_ix_ices, "ixes", "ices"), (pl_sb_C_i, "s", "i"), (pl_sb_C_im, "s", "im"), ('.*eau', "s", "x"), ('.*ieu', "s", "x"), ('.*tri', "xes", "ces"), ('.{2,}[yia]n', "xes", "ges") ): if self._pl_reg_plurals(pair, stems, end1, end2): return True return False def _pl_check_plurals_adj(self, word1, word2): # VERSION: tuple in endswith requires python 2.5 word1a = word1[:word1.rfind("'")] if word1.endswith(("'s", "'")) else '' word2a = word2[:word2.rfind("'")] if word2.endswith(("'s", "'")) else '' # TODO: BUG? report upstream. I don't think you should chop off the s' # word1b = word1[:-2] if word1.endswith("s'") else '' # word2b = word2[:-2] if word2.endswith("s'") else '' # TODO: dresses', dresses's -> dresses, dresses when chop off letters # then they return False because they are the same. Need to fix this. if word1a: if word2a and (self._pl_check_plurals_N(word1a, word2a) or self._pl_check_plurals_N(word2a, word1a)): return True # if word2b and ( self._pl_check_plurals_N(word1a, word2b) # or self._pl_check_plurals_N(word2b, word1a) ): # return True # if word1b: # if word2a and ( self._pl_check_plurals_N(word1b, word2a) # or self._pl_check_plurals_N(word2a, word1b) ): # return True # if word2b and ( self._pl_check_plurals_N(word1b, word2b) # or self._pl_check_plurals_N(word2b, word1b) ): # return True return False def get_count(self, count=None): if count is None and self.persistent_count is not None: count = self.persistent_count if count is not None: count = 1 if ((str(count) in pl_count_one) or (self.classical_dict['zero'] and str(count).lower() in pl_count_zero)) else 2 else: count = '' return count # @profile def _plnoun(self, word, count=None): count = self.get_count(count) # DEFAULT TO PLURAL if count == 1: return word # HANDLE USER-DEFINED NOUNS value = self.ud_match(word, self.pl_sb_user_defined) if value is not None: return value # HANDLE EMPTY WORD, SINGULAR COUNT AND UNINFLECTED PLURALS if word == '': return word lowerword = word.lower() if lowerword in pl_sb_uninflected_complete: return word if word in pl_sb_uninflected_caps: return word for k, v in pl_sb_uninflected_bysize.items(): if lowerword[-k:] in v: return word if (self.classical_dict['herd'] and lowerword in pl_sb_uninflected_herd): return word # HANDLE COMPOUNDS ("Governor General", "mother-in-law", "aide-de-camp", ETC.) mo = search(r"^(?:%s)$" % pl_sb_postfix_adj_stems, word, IGNORECASE) if mo and mo.group(2) != '': return "%s%s" % (self._plnoun(mo.group(1), 2), mo.group(2)) if ' a ' in lowerword or '-a-' in lowerword: mo = search(r"^(?:%s)$" % pl_sb_prep_dual_compound, word, IGNORECASE) if mo and mo.group(2) != '' and mo.group(3) != '': return "%s%s%s" % (self._plnoun(mo.group(1), 2), mo.group(2), self._plnoun(mo.group(3))) lowersplit = lowerword.split(' ') if len(lowersplit) >= 3: for numword in range(1, len(lowersplit) - 1): if lowersplit[numword] in pl_prep_list_da: return ' '.join( lowersplit[:numword - 1] + [self._plnoun(lowersplit[numword - 1], 2)] + lowersplit[numword:]) lowersplit = lowerword.split('-') if len(lowersplit) >= 3: for numword in range(1, len(lowersplit) - 1): if lowersplit[numword] in pl_prep_list_da: return ' '.join( lowersplit[:numword - 1] + [self._plnoun(lowersplit[numword - 1], 2) + '-' + lowersplit[numword] + '-']) + ' '.join(lowersplit[(numword + 1):]) # HANDLE PRONOUNS for k, v in pl_pron_acc_keys_bysize.items(): if lowerword[-k:] in v: # ends with accusivate pronoun for pk, pv in pl_prep_bysize.items(): if lowerword[:pk] in pv: # starts with a prep if lowerword.split() == [lowerword[:pk], lowerword[-k:]]: # only whitespace in between return lowerword[:-k] + pl_pron_acc[lowerword[-k:]] try: return pl_pron_nom[word.lower()] except KeyError: pass try: return pl_pron_acc[word.lower()] except KeyError: pass # HANDLE ISOLATED IRREGULAR PLURALS wordsplit = word.split() wordlast = wordsplit[-1] lowerwordlast = wordlast.lower() if wordlast in list(pl_sb_irregular_caps.keys()): llen = len(wordlast) return '%s%s' % (word[:-llen], pl_sb_irregular_caps[wordlast]) if lowerwordlast in list(pl_sb_irregular.keys()): llen = len(lowerwordlast) return '%s%s' % (word[:-llen], pl_sb_irregular[lowerwordlast]) if (' '.join(wordsplit[-2:])).lower() in list(pl_sb_irregular_compound.keys()): llen = len(' '.join(wordsplit[-2:])) # TODO: what if 2 spaces between these words? return '%s%s' % (word[:-llen], pl_sb_irregular_compound[(' '.join(wordsplit[-2:])).lower()]) if lowerword[-3:] == 'quy': return word[:-1] + 'ies' if lowerword[-6:] == 'person': if self.classical_dict['persons']: return word + 's' else: return word[:-4] + 'ople' # HANDLE FAMILIES OF IRREGULAR PLURALS if lowerword[-3:] == 'man': for k, v in pl_sb_U_man_mans_bysize.items(): if lowerword[-k:] in v: return word + 's' for k, v in pl_sb_U_man_mans_caps_bysize.items(): if word[-k:] in v: return word + 's' return word[:-3] + 'men' if lowerword[-5:] == 'mouse': return word[:-5] + 'mice' if lowerword[-5:] == 'louse': return word[:-5] + 'lice' if lowerword[-5:] == 'goose': return word[:-5] + 'geese' if lowerword[-5:] == 'tooth': return word[:-5] + 'teeth' if lowerword[-4:] == 'foot': return word[:-4] + 'feet' if lowerword == 'die': return 'dice' # HANDLE UNASSIMILATED IMPORTS if lowerword[-4:] == 'ceps': return word if lowerword[-4:] == 'zoon': return word[:-2] + 'a' if lowerword[-3:] in ('cis', 'sis', 'xis'): return word[:-2] + 'es' for lastlet, d, numend, post in ( ('h', pl_sb_U_ch_chs_bysize, None, 's'), ('x', pl_sb_U_ex_ices_bysize, -2, 'ices'), ('x', pl_sb_U_ix_ices_bysize, -2, 'ices'), ('m', pl_sb_U_um_a_bysize, -2, 'a'), ('s', pl_sb_U_us_i_bysize, -2, 'i'), ('n', pl_sb_U_on_a_bysize, -2, 'a'), ('a', pl_sb_U_a_ae_bysize, None, 'e'), ): if lowerword[-1] == lastlet: # this test to add speed for k, v in d.items(): if lowerword[-k:] in v: return word[:numend] + post # HANDLE INCOMPLETELY ASSIMILATED IMPORTS if (self.classical_dict['ancient']): if lowerword[-4:] == 'trix': return word[:-1] + 'ces' if lowerword[-3:] in ('eau', 'ieu'): return word + 'x' if lowerword[-3:] in ('ynx', 'inx', 'anx') and len(word) > 4: return word[:-1] + 'ges' for lastlet, d, numend, post in ( ('n', pl_sb_C_en_ina_bysize, -2, 'ina'), ('x', pl_sb_C_ex_ices_bysize, -2, 'ices'), ('x', pl_sb_C_ix_ices_bysize, -2, 'ices'), ('m', pl_sb_C_um_a_bysize, -2, 'a'), ('s', pl_sb_C_us_i_bysize, -2, 'i'), ('s', pl_sb_C_us_us_bysize, None, ''), ('a', pl_sb_C_a_ae_bysize, None, 'e'), ('a', pl_sb_C_a_ata_bysize, None, 'ta'), ('s', pl_sb_C_is_ides_bysize, -1, 'des'), ('o', pl_sb_C_o_i_bysize, -1, 'i'), ('n', pl_sb_C_on_a_bysize, -2, 'a'), ): if lowerword[-1] == lastlet: # this test to add speed for k, v in d.items(): if lowerword[-k:] in v: return word[:numend] + post for d, numend, post in ( (pl_sb_C_i_bysize, None, 'i'), (pl_sb_C_im_bysize, None, 'im'), ): for k, v in d.items(): if lowerword[-k:] in v: return word[:numend] + post # HANDLE SINGULAR NOUNS ENDING IN ...s OR OTHER SILIBANTS if lowerword in pl_sb_singular_s_complete: return word + 'es' for k, v in pl_sb_singular_s_bysize.items(): if lowerword[-k:] in v: return word + 'es' if lowerword[-2:] == 'es' and word[0] == word[0].upper(): return word + 'es' # Wouldn't special words # ending with 's' always have been caught, regardless of them starting # with a capital letter (i.e. being names) # It makes sense below to do this for words ending in 'y' so that # Sally -> Sallys. But not sure it makes sense here. Where is the case # of a word ending in s that is caught here and would otherwise have been # caught below? # # removing it as I can't find a case that executes it # TODO: check this again # # if (self.classical_dict['names']): # mo = search(r"([A-Z].*s)$", word) # if mo: # return "%ses" % mo.group(1) if lowerword[-1] == 'z': for k, v in pl_sb_z_zes_bysize.items(): if lowerword[-k:] in v: return word + 'es' if lowerword[-2:-1] != 'z': return word + 'zes' if lowerword[-2:] == 'ze': for k, v in pl_sb_ze_zes_bysize.items(): if lowerword[-k:] in v: return word + 's' if lowerword[-2:] in ('ch', 'sh', 'zz', 'ss') or lowerword[-1] == 'x': return word + 'es' # ## (r"(.*)(us)$", "%s%ses"), TODO: why is this commented? # HANDLE ...f -> ...ves if lowerword[-3:] in ('elf', 'alf', 'olf'): return word[:-1] + 'ves' if lowerword[-3:] == 'eaf' and lowerword[-4:-3] != 'd': return word[:-1] + 'ves' if lowerword[-4:] in ('nife', 'life', 'wife'): return word[:-2] + 'ves' if lowerword[-3:] == 'arf': return word[:-1] + 'ves' # HANDLE ...y if lowerword[-1] == 'y': if lowerword[-2:-1] in 'aeiou' or len(word) == 1: return word + 's' if (self.classical_dict['names']): if lowerword[-1] == 'y' and word[0] == word[0].upper(): return word + 's' return word[:-1] + 'ies' # HANDLE ...o if lowerword in pl_sb_U_o_os_complete: return word + 's' for k, v in pl_sb_U_o_os_bysize.items(): if lowerword[-k:] in v: return word + 's' if lowerword[-2:] in ('ao', 'eo', 'io', 'oo', 'uo'): return word + 's' if lowerword[-1] == 'o': return word + 'es' # OTHERWISE JUST ADD ...s return "%ss" % word def _pl_special_verb(self, word, count=None): if (self.classical_dict['zero'] and str(count).lower() in pl_count_zero): return False count = self.get_count(count) if count == 1: return word # HANDLE USER-DEFINED VERBS value = self.ud_match(word, self.pl_v_user_defined) if value is not None: return value # HANDLE IRREGULAR PRESENT TENSE (SIMPLE AND COMPOUND) lowerword = word.lower() try: firstword = lowerword.split()[0] except IndexError: return False # word is '' if firstword in list(plverb_irregular_pres.keys()): return "%s%s" % (plverb_irregular_pres[firstword], word[len(firstword):]) # HANDLE IRREGULAR FUTURE, PRETERITE AND PERFECT TENSES if firstword in plverb_irregular_non_pres: return word # HANDLE PRESENT NEGATIONS (SIMPLE AND COMPOUND) if firstword.endswith("n't") and firstword[:-3] in list(plverb_irregular_pres.keys()): return "%sn't%s" % (plverb_irregular_pres[firstword[:-3]], word[len(firstword):]) if firstword.endswith("n't"): return word # HANDLE SPECIAL CASES mo = search(r"^(%s)$" % plverb_special_s, word) if mo: return False if search(r"\s", word): return False if lowerword == 'quizzes': return 'quiz' # HANDLE STANDARD 3RD PERSON (CHOP THE ...(e)s OFF SINGLE WORDS) if lowerword[-4:] in ('ches', 'shes', 'zzes', 'sses') or \ lowerword[-3:] == 'xes': return word[:-2] # # mo = search(r"^(.*)([cs]h|[x]|zz|ss)es$", # # word, IGNORECASE) # # if mo: # # return "%s%s" % (mo.group(1), mo.group(2)) if lowerword[-3:] == 'ies' and len(word) > 3: return lowerword[:-3] + 'y' if (lowerword in pl_v_oes_oe or lowerword[-4:] in pl_v_oes_oe_endings_size4 or lowerword[-5:] in pl_v_oes_oe_endings_size5): return word[:-1] if lowerword.endswith('oes') and len(word) > 3: return lowerword[:-2] mo = search(r"^(.*[^s])s$", word, IGNORECASE) if mo: return mo.group(1) # OTHERWISE, A REGULAR VERB (HANDLE ELSEWHERE) return False def _pl_general_verb(self, word, count=None): count = self.get_count(count) if count == 1: return word # HANDLE AMBIGUOUS PRESENT TENSES (SIMPLE AND COMPOUND) mo = search(r"^(%s)((\s.*)?)$" % plverb_ambiguous_pres_keys, word, IGNORECASE) if mo: return "%s%s" % (plverb_ambiguous_pres[mo.group(1).lower()], mo.group(2)) # HANDLE AMBIGUOUS PRETERITE AND PERFECT TENSES mo = search(r"^(%s)((\s.*)?)$" % plverb_ambiguous_non_pres, word, IGNORECASE) if mo: return word # OTHERWISE, 1st OR 2ND PERSON IS UNINFLECTED return word def _pl_special_adjective(self, word, count=None): count = self.get_count(count) if count == 1: return word # HANDLE USER-DEFINED ADJECTIVES value = self.ud_match(word, self.pl_adj_user_defined) if value is not None: return value # HANDLE KNOWN CASES mo = search(r"^(%s)$" % pl_adj_special_keys, word, IGNORECASE) if mo: return "%s" % (pl_adj_special[mo.group(1).lower()]) # HANDLE POSSESSIVES mo = search(r"^(%s)$" % pl_adj_poss_keys, word, IGNORECASE) if mo: return "%s" % (pl_adj_poss[mo.group(1).lower()]) mo = search(r"^(.*)'s?$", word) if mo: pl = self.plural_noun(mo.group(1)) trailing_s = "" if pl[-1] == 's' else "s" return "%s'%s" % (pl, trailing_s) # OTHERWISE, NO IDEA return False # @profile def _sinoun(self, word, count=None, gender=None): count = self.get_count(count) # DEFAULT TO PLURAL if count == 2: return word # SET THE GENDER try: if gender is None: gender = self.thegender elif gender not in singular_pronoun_genders: raise BadGenderError except (TypeError, IndexError): raise BadGenderError # HANDLE USER-DEFINED NOUNS value = self.ud_match(word, self.si_sb_user_defined) if value is not None: return value # HANDLE EMPTY WORD, SINGULAR COUNT AND UNINFLECTED PLURALS if word == '': return word lowerword = word.lower() if word in si_sb_ois_oi_case: return word[:-1] if lowerword in pl_sb_uninflected_complete: return word if word in pl_sb_uninflected_caps: return word for k, v in pl_sb_uninflected_bysize.items(): if lowerword[-k:] in v: return word if (self.classical_dict['herd'] and lowerword in pl_sb_uninflected_herd): return word # HANDLE COMPOUNDS ("Governor General", "mother-in-law", "aide-de-camp", ETC.) mo = search(r"^(?:%s)$" % pl_sb_postfix_adj_stems, word, IGNORECASE) if mo and mo.group(2) != '': return "%s%s" % (self._sinoun(mo.group(1), 1, gender=gender), mo.group(2)) # how to reverse this one? # mo = search(r"^(?:%s)$" % pl_sb_prep_dual_compound, word, IGNORECASE) # if mo and mo.group(2) != '' and mo.group(3) != '': # return "%s%s%s" % (self._sinoun(mo.group(1), 1), # mo.group(2), # self._sinoun(mo.group(3), 1)) lowersplit = lowerword.split(' ') if len(lowersplit) >= 3: for numword in range(1, len(lowersplit) - 1): if lowersplit[numword] in pl_prep_list_da: return ' '.join(lowersplit[:numword - 1] + [self._sinoun(lowersplit[numword - 1], 1, gender=gender) or lowersplit[numword - 1]] + lowersplit[numword:]) lowersplit = lowerword.split('-') if len(lowersplit) >= 3: for numword in range(1, len(lowersplit) - 1): if lowersplit[numword] in pl_prep_list_da: return ' '.join( lowersplit[:numword - 1] + [(self._sinoun(lowersplit[numword - 1], 1, gender=gender) or lowersplit[numword - 1]) + '-' + lowersplit[numword] + '-']) + ' '.join(lowersplit[(numword + 1):]) # HANDLE PRONOUNS for k, v in si_pron_acc_keys_bysize.items(): if lowerword[-k:] in v: # ends with accusivate pronoun for pk, pv in pl_prep_bysize.items(): if lowerword[:pk] in pv: # starts with a prep if lowerword.split() == [lowerword[:pk], lowerword[-k:]]: # only whitespace in between return lowerword[:-k] + get_si_pron('acc', lowerword[-k:], gender) try: return get_si_pron('nom', word.lower(), gender) except KeyError: pass try: return get_si_pron('acc', word.lower(), gender) except KeyError: pass # HANDLE ISOLATED IRREGULAR PLURALS wordsplit = word.split() wordlast = wordsplit[-1] lowerwordlast = wordlast.lower() if wordlast in list(si_sb_irregular_caps.keys()): llen = len(wordlast) return '%s%s' % (word[:-llen], si_sb_irregular_caps[wordlast]) if lowerwordlast in list(si_sb_irregular.keys()): llen = len(lowerwordlast) return '%s%s' % (word[:-llen], si_sb_irregular[lowerwordlast]) if (' '.join(wordsplit[-2:])).lower() in list(si_sb_irregular_compound.keys()): llen = len(' '.join(wordsplit[-2:])) # TODO: what if 2 spaces between these words? return '%s%s' % (word[:-llen], si_sb_irregular_compound[(' '.join(wordsplit[-2:])).lower()]) if lowerword[-5:] == 'quies': return word[:-3] + 'y' if lowerword[-7:] == 'persons': return word[:-1] if lowerword[-6:] == 'people': return word[:-4] + 'rson' # HANDLE FAMILIES OF IRREGULAR PLURALS if lowerword[-4:] == 'mans': for k, v in si_sb_U_man_mans_bysize.items(): if lowerword[-k:] in v: return word[:-1] for k, v in si_sb_U_man_mans_caps_bysize.items(): if word[-k:] in v: return word[:-1] if lowerword[-3:] == 'men': return word[:-3] + 'man' if lowerword[-4:] == 'mice': return word[:-4] + 'mouse' if lowerword[-4:] == 'lice': return word[:-4] + 'louse' if lowerword[-5:] == 'geese': return word[:-5] + 'goose' if lowerword[-5:] == 'teeth': return word[:-5] + 'tooth' if lowerword[-4:] == 'feet': return word[:-4] + 'foot' if lowerword == 'dice': return 'die' # HANDLE UNASSIMILATED IMPORTS if lowerword[-4:] == 'ceps': return word if lowerword[-3:] == 'zoa': return word[:-1] + 'on' for lastlet, d, numend, post in ( ('s', si_sb_U_ch_chs_bysize, -1, ''), ('s', si_sb_U_ex_ices_bysize, -4, 'ex'), ('s', si_sb_U_ix_ices_bysize, -4, 'ix'), ('a', si_sb_U_um_a_bysize, -1, 'um'), ('i', si_sb_U_us_i_bysize, -1, 'us'), ('a', si_sb_U_on_a_bysize, -1, 'on'), ('e', si_sb_U_a_ae_bysize, -1, ''), ): if lowerword[-1] == lastlet: # this test to add speed for k, v in d.items(): if lowerword[-k:] in v: return word[:numend] + post # HANDLE INCOMPLETELY ASSIMILATED IMPORTS if (self.classical_dict['ancient']): if lowerword[-6:] == 'trices': return word[:-3] + 'x' if lowerword[-4:] in ('eaux', 'ieux'): return word[:-1] if lowerword[-5:] in ('ynges', 'inges', 'anges') and len(word) > 6: return word[:-3] + 'x' for lastlet, d, numend, post in ( ('a', si_sb_C_en_ina_bysize, -3, 'en'), ('s', si_sb_C_ex_ices_bysize, -4, 'ex'), ('s', si_sb_C_ix_ices_bysize, -4, 'ix'), ('a', si_sb_C_um_a_bysize, -1, 'um'), ('i', si_sb_C_us_i_bysize, -1, 'us'), ('s', pl_sb_C_us_us_bysize, None, ''), ('e', si_sb_C_a_ae_bysize, -1, ''), ('a', si_sb_C_a_ata_bysize, -2, ''), ('s', si_sb_C_is_ides_bysize, -3, 's'), ('i', si_sb_C_o_i_bysize, -1, 'o'), ('a', si_sb_C_on_a_bysize, -1, 'on'), ('m', si_sb_C_im_bysize, -2, ''), ('i', si_sb_C_i_bysize, -1, ''), ): if lowerword[-1] == lastlet: # this test to add speed for k, v in d.items(): if lowerword[-k:] in v: return word[:numend] + post # HANDLE PLURLS ENDING IN uses -> use if (lowerword[-6:] == 'houses' or word in si_sb_uses_use_case or lowerword in si_sb_uses_use): return word[:-1] # HANDLE PLURLS ENDING IN ies -> ie if word in si_sb_ies_ie_case or lowerword in si_sb_ies_ie: return word[:-1] # HANDLE PLURLS ENDING IN oes -> oe if (lowerword[-5:] == 'shoes' or word in si_sb_oes_oe_case or lowerword in si_sb_oes_oe): return word[:-1] # HANDLE SINGULAR NOUNS ENDING IN ...s OR OTHER SILIBANTS if (word in si_sb_sses_sse_case or lowerword in si_sb_sses_sse): return word[:-1] if lowerword in si_sb_singular_s_complete: return word[:-2] for k, v in si_sb_singular_s_bysize.items(): if lowerword[-k:] in v: return word[:-2] if lowerword[-4:] == 'eses' and word[0] == word[0].upper(): return word[:-2] # Wouldn't special words # ending with 's' always have been caught, regardless of them starting # with a capital letter (i.e. being names) # It makes sense below to do this for words ending in 'y' so that # Sally -> Sallys. But not sure it makes sense here. Where is the case # of a word ending in s that is caught here and would otherwise have been # caught below? # # removing it as I can't find a case that executes it # TODO: check this again # # if (self.classical_dict['names']): # mo = search(r"([A-Z].*ses)$", word) # if mo: # return "%s" % mo.group(1) if lowerword in si_sb_z_zes: return word[:-2] if lowerword in si_sb_zzes_zz: return word[:-2] if lowerword[-4:] == 'zzes': return word[:-3] if (word in si_sb_ches_che_case or lowerword in si_sb_ches_che): return word[:-1] if lowerword[-4:] in ('ches', 'shes'): return word[:-2] if lowerword in si_sb_xes_xe: return word[:-1] if lowerword[-3:] == 'xes': return word[:-2] # (r"(.*)(us)es$", "%s%s"), TODO: why is this commented? # HANDLE ...f -> ...ves if (word in si_sb_ves_ve_case or lowerword in si_sb_ves_ve): return word[:-1] if lowerword[-3:] == 'ves': if lowerword[-5:-3] in ('el', 'al', 'ol'): return word[:-3] + 'f' if lowerword[-5:-3] == 'ea' and word[-6:-5] != 'd': return word[:-3] + 'f' if lowerword[-5:-3] in ('ni', 'li', 'wi'): return word[:-3] + 'fe' if lowerword[-5:-3] == 'ar': return word[:-3] + 'f' # HANDLE ...y if lowerword[-2:] == 'ys': if len(lowerword) > 2 and lowerword[-3] in 'aeiou': return word[:-1] if (self.classical_dict['names']): if lowerword[-2:] == 'ys' and word[0] == word[0].upper(): return word[:-1] if lowerword[-3:] == 'ies': return word[:-3] + 'y' # HANDLE ...o if lowerword[-2:] == 'os': if lowerword in si_sb_U_o_os_complete: return word[:-1] for k, v in si_sb_U_o_os_bysize.items(): if lowerword[-k:] in v: return word[:-1] if lowerword[-3:] in ('aos', 'eos', 'ios', 'oos', 'uos'): return word[:-1] if lowerword[-3:] == 'oes': return word[:-2] # UNASSIMILATED IMPORTS FINAL RULE if word in si_sb_es_is: return word[:-2] + 'is' # OTHERWISE JUST REMOVE ...s if lowerword[-1] == 's': return word[:-1] # COULD NOT FIND SINGULAR return False # ADJECTIVES def a(self, text, count=1): ''' Return the appropriate indefinite article followed by text. The indefinite article is either 'a' or 'an'. If count is not one, then return count followed by text instead of 'a' or 'an'. Whitespace at the start and end is preserved. ''' mo = search(r"\A(\s*)(?:an?\s+)?(.+?)(\s*)\Z", text, IGNORECASE) if mo: word = mo.group(2) if not word: return text pre = mo.group(1) post = mo.group(3) result = self._indef_article(word, count) return "%s%s%s" % (pre, result, post) return '' an = a def _indef_article(self, word, count): mycount = self.get_count(count) if mycount != 1: return "%s %s" % (count, word) # HANDLE USER-DEFINED VARIANTS value = self.ud_match(word, self.A_a_user_defined) if value is not None: return "%s %s" % (value, word) # HANDLE ORDINAL FORMS for a in ( (r"^(%s)" % A_ordinal_a, "a"), (r"^(%s)" % A_ordinal_an, "an"), ): mo = search(a[0], word, IGNORECASE) if mo: return "%s %s" % (a[1], word) # HANDLE SPECIAL CASES for a in ( (r"^(%s)" % A_explicit_an, "an"), (r"^[aefhilmnorsx]$", "an"), (r"^[bcdgjkpqtuvwyz]$", "a"), ): mo = search(a[0], word, IGNORECASE) if mo: return "%s %s" % (a[1], word) # HANDLE ABBREVIATIONS for a in ( (r"(%s)" % A_abbrev, "an", VERBOSE), (r"^[aefhilmnorsx][.-]", "an", IGNORECASE), (r"^[a-z][.-]", "a", IGNORECASE), ): mo = search(a[0], word, a[2]) if mo: return "%s %s" % (a[1], word) # HANDLE CONSONANTS mo = search(r"^[^aeiouy]", word, IGNORECASE) if mo: return "a %s" % word # HANDLE SPECIAL VOWEL-FORMS for a in ( (r"^e[uw]", "a"), (r"^onc?e\b", "a"), (r"^onetime\b", "a"), (r"^uni([^nmd]|mo)", "a"), (r"^u[bcfghjkqrst][aeiou]", "a"), (r"^ukr", "a"), (r"^(%s)" % A_explicit_a, "a"), ): mo = search(a[0], word, IGNORECASE) if mo: return "%s %s" % (a[1], word) # HANDLE SPECIAL CAPITALS mo = search(r"^U[NK][AIEO]?", word) if mo: return "a %s" % word # HANDLE VOWELS mo = search(r"^[aeiou]", word, IGNORECASE) if mo: return "an %s" % word # HANDLE y... (BEFORE CERTAIN CONSONANTS IMPLIES (UNNATURALIZED) "i.." SOUND) mo = search(r"^(%s)" % A_y_cons, word, IGNORECASE) if mo: return "an %s" % word # OTHERWISE, GUESS "a" return "a %s" % word # 2. TRANSLATE ZERO-QUANTIFIED $word TO "no plural($word)" def no(self, text, count=None): ''' If count is 0, no, zero or nil, return 'no' followed by the plural of text. If count is one of: 1, a, an, one, each, every, this, that return count followed by text. Otherwise return count follow by the plural of text. In the return value count is always followed by a space. Whitespace at the start and end is preserved. ''' if count is None and self.persistent_count is not None: count = self.persistent_count if count is None: count = 0 mo = search(r"\A(\s*)(.+?)(\s*)\Z", text) pre = mo.group(1) word = mo.group(2) post = mo.group(3) if str(count).lower() in pl_count_zero: return "%sno %s%s" % (pre, self.plural(word, 0), post) else: return "%s%s %s%s" % (pre, count, self.plural(word, count), post) # PARTICIPLES def present_participle(self, word): ''' Return the present participle for word. word is the 3rd person singular verb. ''' plv = self.plural_verb(word, 2) for pat, repl in ( (r"ie$", r"y"), (r"ue$", r"u"), # TODO: isn't ue$ -> u encompassed in the following rule? (r"([auy])e$", r"\g<1>"), (r"ski$", r"ski"), (r"[^b]i$", r""), (r"^(are|were)$", r"be"), (r"^(had)$", r"hav"), (r"^(hoe)$", r"\g<1>"), (r"([^e])e$", r"\g<1>"), (r"er$", r"er"), (r"([^aeiou][aeiouy]([bdgmnprst]))$", "\g<1>\g<2>"), ): (ans, num) = subn(pat, repl, plv) if num: return "%sing" % ans return "%sing" % ans # NUMERICAL INFLECTIONS def ordinal(self, num): ''' Return the ordinal of num. num can be an integer or text e.g. ordinal(1) returns '1st' ordinal('one') returns 'first' ''' if match(r"\d", str(num)): try: num % 2 n = num except TypeError: if '.' in str(num): try: n = int(num[-1]) # numbers after decimal, so only need last one for ordinal except ValueError: # ends with '.', so need to use whole string n = int(num[:-1]) else: n = int(num) try: post = nth[n % 100] except KeyError: post = nth[n % 10] return "%s%s" % (num, post) else: mo = search(r"(%s)\Z" % ordinal_suff, num) try: post = ordinal[mo.group(1)] return resub(r"(%s)\Z" % ordinal_suff, post, num) except AttributeError: return "%sth" % num def millfn(self, ind=0): if ind > len(mill) - 1: print3("number out of range") raise NumOutOfRangeError return mill[ind] def unitfn(self, units, mindex=0): return "%s%s" % (unit[units], self.millfn(mindex)) def tenfn(self, tens, units, mindex=0): if tens != 1: return "%s%s%s%s" % (ten[tens], '-' if tens and units else '', unit[units], self.millfn(mindex)) return "%s%s" % (teen[units], mill[mindex]) def hundfn(self, hundreds, tens, units, mindex): if hundreds: return "%s hundred%s%s%s, " % (unit[hundreds], # use unit not unitfn as simpler " %s " % self.number_args['andword'] if tens or units else '', self.tenfn(tens, units), self.millfn(mindex)) if tens or units: return "%s%s, " % (self.tenfn(tens, units), self.millfn(mindex)) return '' def group1sub(self, mo): units = int(mo.group(1)) if units == 1: return " %s, " % self.number_args['one'] elif units: # TODO: bug one and zero are padded with a space but other numbers aren't. check this in perl return "%s, " % unit[units] else: return " %s, " % self.number_args['zero'] def group1bsub(self, mo): units = int(mo.group(1)) if units: # TODO: bug one and zero are padded with a space but other numbers aren't. check this in perl return "%s, " % unit[units] else: return " %s, " % self.number_args['zero'] def group2sub(self, mo): tens = int(mo.group(1)) units = int(mo.group(2)) if tens: return "%s, " % self.tenfn(tens, units) if units: return " %s %s, " % (self.number_args['zero'], unit[units]) return " %s %s, " % (self.number_args['zero'], self.number_args['zero']) def group3sub(self, mo): hundreds = int(mo.group(1)) tens = int(mo.group(2)) units = int(mo.group(3)) if hundreds == 1: hunword = " %s" % self.number_args['one'] elif hundreds: hunword = "%s" % unit[hundreds] # TODO: bug one and zero are padded with a space but other numbers aren't. check this in perl else: hunword = " %s" % self.number_args['zero'] if tens: tenword = self.tenfn(tens, units) elif units: tenword = " %s %s" % (self.number_args['zero'], unit[units]) else: tenword = " %s %s" % (self.number_args['zero'], self.number_args['zero']) return "%s %s, " % (hunword, tenword) def hundsub(self, mo): ret = self.hundfn(int(mo.group(1)), int(mo.group(2)), int(mo.group(3)), self.mill_count) self.mill_count += 1 return ret def tensub(self, mo): return "%s, " % self.tenfn(int(mo.group(1)), int(mo.group(2)), self.mill_count) def unitsub(self, mo): return "%s, " % self.unitfn(int(mo.group(1)), self.mill_count) def enword(self, num, group): # import pdb # pdb.set_trace() if group == 1: num = resub(r"(\d)", self.group1sub, num) elif group == 2: num = resub(r"(\d)(\d)", self.group2sub, num) num = resub(r"(\d)", self.group1bsub, num, 1) # group1bsub same as # group1sub except it doesn't use the default word for one. # Is this required? i.e. is the default word not to beused when # grouping in pairs? # # No. This is a bug. Fixed. TODO: report upstream. elif group == 3: num = resub(r"(\d)(\d)(\d)", self.group3sub, num) num = resub(r"(\d)(\d)", self.group2sub, num, 1) num = resub(r"(\d)", self.group1sub, num, 1) elif int(num) == 0: num = self.number_args['zero'] elif int(num) == 1: num = self.number_args['one'] else: num = num.lstrip().lstrip('0') self.mill_count = 0 # surely there's a better way to do the next bit mo = search(r"(\d)(\d)(\d)(?=\D*\Z)", num) while mo: num = resub(r"(\d)(\d)(\d)(?=\D*\Z)", self.hundsub, num, 1) mo = search(r"(\d)(\d)(\d)(?=\D*\Z)", num) num = resub(r"(\d)(\d)(?=\D*\Z)", self.tensub, num, 1) num = resub(r"(\d)(?=\D*\Z)", self.unitsub, num, 1) return num def blankfn(self, mo): ''' do a global blank replace TODO: surely this can be done with an option to resub rather than this fn ''' return '' def commafn(self, mo): ''' do a global ',' replace TODO: surely this can be done with an option to resub rather than this fn ''' return ',' def spacefn(self, mo): ''' do a global ' ' replace TODO: surely this can be done with an option to resub rather than this fn ''' return ' ' def number_to_words(self, num, wantlist=False, group=0, comma=',', andword='and', zero='zero', one='one', decimal='point', threshold=None): ''' Return a number in words. group = 1, 2 or 3 to group numbers before turning into words comma: define comma andword: word for 'and'. Can be set to ''. e.g. "one hundred and one" vs "one hundred one" zero: word for '0' one: word for '1' decimal: word for decimal point threshold: numbers above threshold not turned into words parameters not remembered from last call. Departure from Perl version. ''' self.number_args = dict(andword=andword, zero=zero, one=one) num = '%s' % num # Handle "stylistic" conversions (up to a given threshold)... if (threshold is not None and float(num) > threshold): spnum = num.split('.', 1) while (comma): (spnum[0], n) = subn(r"(\d)(\d{3}(?:,|\Z))", r"\1,\2", spnum[0]) if n == 0: break try: return "%s.%s" % (spnum[0], spnum[1]) except IndexError: return "%s" % spnum[0] if group < 0 or group > 3: raise BadChunkingOptionError nowhite = num.lstrip() if nowhite[0] == '+': sign = "plus" elif nowhite[0] == '-': sign = "minus" else: sign = "" myord = (num[-2:] in ('st', 'nd', 'rd', 'th')) if myord: num = num[:-2] finalpoint = False if decimal: if group != 0: chunks = num.split('.') else: chunks = num.split('.', 1) if chunks[-1] == '': # remove blank string if nothing after decimal chunks = chunks[:-1] finalpoint = True # add 'point' to end of output else: chunks = [num] first = 1 loopstart = 0 if chunks[0] == '': first = 0 if len(chunks) > 1: loopstart = 1 for i in range(loopstart, len(chunks)): chunk = chunks[i] # remove all non numeric \D chunk = resub(r"\D", self.blankfn, chunk) if chunk == "": chunk = "0" if group == 0 and (first == 0 or first == ''): chunk = self.enword(chunk, 1) else: chunk = self.enword(chunk, group) if chunk[-2:] == ', ': chunk = chunk[:-2] chunk = resub(r"\s+,", self.commafn, chunk) if group == 0 and first: chunk = resub(r", (\S+)\s+\Z", " %s \\1" % andword, chunk) chunk = resub(r"\s+", self.spacefn, chunk) # chunk = resub(r"(\A\s|\s\Z)", self.blankfn, chunk) chunk = chunk.strip() if first: first = '' chunks[i] = chunk numchunks = [] if first != 0: numchunks = chunks[0].split("%s " % comma) if myord and numchunks: # TODO: can this be just one re as it is in perl? mo = search(r"(%s)\Z" % ordinal_suff, numchunks[-1]) if mo: numchunks[-1] = resub(r"(%s)\Z" % ordinal_suff, ordinal[mo.group(1)], numchunks[-1]) else: numchunks[-1] += 'th' for chunk in chunks[1:]: numchunks.append(decimal) numchunks.extend(chunk.split("%s " % comma)) if finalpoint: numchunks.append(decimal) # wantlist: Perl list context. can explictly specify in Python if wantlist: if sign: numchunks = [sign] + numchunks return numchunks elif group: signout = "%s " % sign if sign else '' return "%s%s" % (signout, ", ".join(numchunks)) else: signout = "%s " % sign if sign else '' num = "%s%s" % (signout, numchunks.pop(0)) if decimal is None: first = True else: first = not num.endswith(decimal) for nc in numchunks: if nc == decimal: num += " %s" % nc first = 0 elif first: num += "%s %s" % (comma, nc) else: num += " %s" % nc return num # Join words with commas and a trailing 'and' (when appropriate)... def join(self, words, sep=None, sep_spaced=True, final_sep=None, conj='and', conj_spaced=True): ''' Join words into a list. e.g. join(['ant', 'bee', 'fly']) returns 'ant, bee, and fly' options: conj: replacement for 'and' sep: separator. default ',', unless ',' is in the list then ';' final_sep: final separator. default ',', unless ',' is in the list then ';' conj_spaced: boolean. Should conj have spaces around it ''' if not words: return "" if len(words) == 1: return words[0] if conj_spaced: if conj == '': conj = ' ' else: conj = ' %s ' % conj if len(words) == 2: return "%s%s%s" % (words[0], conj, words[1]) if sep is None: if ',' in ''.join(words): sep = ';' else: sep = ',' if final_sep is None: final_sep = sep final_sep = "%s%s" % (final_sep, conj) if sep_spaced: sep += ' ' return "%s%s%s" % (sep.join(words[0:-1]), final_sep, words[-1])
bert-syntax-master
inflect.py
import sys from collections import * files=[("base","results/gulordava_results_base.txt"),("large","results/gulordava_results_large.txt")] if "with_only_prefix" in sys.argv: files+=[("base_only_prefix","results/gulordava_results_base_only_prefix.txt"),("large_only_prefix","results/gulordava_results_large_only_prefix.txt")] if "no_split" in sys.argv: files.append(("openai_gpt", "results/gulordava_results_openai_gpt_no_split.txt")) elif "use_postfix" in sys.argv: files.append(("openai_gpt", "results/gulordava_results_openai_gpt_use_postfix.txt")) else: files.append(("openai_gpt", "results/gulordava_results_openai_gpt.txt")) by_model={} conditions=set() nskipped=0 for title,fname in files: lines = open(fname) results=defaultdict(Counter) by_model[title]=results skipped = set() for line in lines: if line.startswith("Better speed"): continue if line.startswith("skipping"): skipped.add(line.split()[1]) #next(lines) # no need to skip, skipped in testing nskipped += 1 continue assert (line.strip().split()[0] in ['True','False']),line res,c1,_ = line.split(None, 2) conditions.add(c1) conditions.add('all') results[c1][res]+=1 print("adding",res,"to",c1) results['all'][res]+=1 print("skipped:",nskipped,len(skipped),skipped) if "with_only_prefix" in sys.argv: print("condition & base & large & base_only_prefix & large_only_prefix & openai_gpt & count bert & count openai_gpt \\\\") else: print("condition & base & large & openai_gpt & count bert & count openai_gpt \\\\") for cond in conditions: rb = by_model['base'][cond] rl = by_model['large'][cond] ro = by_model['openai_gpt'][cond] sb = "%.2f" % (rb['True']/(rb['True']+rb['False'])) sl = "%.2f" % (rl['True']/(rl['True']+rl['False'])) so = "%.2f" % (ro['True']/(ro['True']+ro['False'])) if "with_only_prefix" in sys.argv: rbp = by_model['base_only_prefix'][cond] rlp = by_model['large_only_prefix'][cond] sbp = "%.2f" % (rbp['True']/(rbp['True']+rbp['False'])) slp = "%.2f" % (rlp['True']/(rlp['True']+rlp['False'])) print(" & ".join(map(str,[cond, sb, sl, sbp, slp, so, sum(rb.values()), sum(ro.values())])),"\\\\") else: print(" & ".join(map(str,[cond, sb, sl, so, sum(rb.values()), sum(ro.values())])),"\\\\")
bert-syntax-master
gen_gul_tbl_openai_gpt.py
import csv cases_we_care_about=['1','2','3','4'] from utils import vinfl def inflect(verb): return vinfl[verb] for record in csv.DictReader(open('agr_50_mostcommon_10K.tsv','r'), delimiter='\t'): orig = record['orig_sentence'] n_i = record['n_intervening'] n_di = record['n_diff_intervening'] vindex = int(record['verb_index'])-1 if n_i != n_di: continue if n_di in cases_we_care_about: sorig = orig.split() verb = sorig[vindex] iverb = inflect(verb) #if verb in ['is','are']: continue # skip because of copular agreement sorig[vindex] = "***mask***" masked = " ".join(sorig) print("\t".join([n_di,orig,masked,verb,iverb]))
bert-syntax-master
make_linzen_goldberg_testset.py
# coding=utf-8 from pytorch_pretrained_bert import OpenAIGPTLMHeadModel, OpenAIGPTTokenizer, BertTokenizer import torch import sys import csv import logging import itertools logging.basicConfig(level=logging.INFO) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model_name = "openai-gpt" print("using model: {}".format(model_name), file=sys.stderr) split_words = True if 'no_split' in sys.argv: split_words = False print("We don't split words", file=sys.stderr) use_postfix = False if 'use_postfix' in sys.argv: use_postfix = True print("We compute probabilities over the entire sentence", file=sys.stderr) model = OpenAIGPTLMHeadModel.from_pretrained(model_name) tokenizer = OpenAIGPTTokenizer.from_pretrained(model_name) bert_tokenizer=BertTokenizer.from_pretrained('bert-base-uncased') model.eval() model.to(device) def get_probs_for_words(sent, w1, w2): pre, target, post = sent.split("***") if "mask" in target.lower(): target = ["[MASK]"] else: target = tokenizer.tokenize(target) tokens = tokenizer.tokenize(pre) target_idx = len(tokens) # Filter answers based on BERT wordpieces to align with BERT results try: word_ids=bert_tokenizer.convert_tokens_to_ids([w1,w2]) except KeyError: print("skipping",w1,w2,"bad wins") return None tok_w1, tok_w2 = tokenizer.tokenize(w1), tokenizer.tokenize(w2) input_ids = tokenizer.convert_tokens_to_ids(tokens) w1_ids = tokenizer.convert_tokens_to_ids(tok_w1) w2_ids = tokenizer.convert_tokens_to_ids(tok_w2) if len(input_ids) == 0: print("skipping",pre,w1,w2,"empty beggingin") return None if not split_words and (len(tok_w1) > 1 or len(tok_w2) > 1): print("skipping",pre,w1,w2,"splitted words") return None if use_postfix: # Add post focus tokens end_tokens = tokenizer.tokenize(post) end_ids = tokenizer.convert_tokens_to_ids(end_tokens) w1_ids += end_ids w2_ids += end_ids # Compute the score for w1 and w2 add_tok_w1 = [] add_tok_w2 = [] score_w1 = 0 score_w2 = 0 for ids_w1, ids_w2 in itertools.zip_longest(w1_ids, w2_ids): tens = torch.LongTensor([input_ids + add_tok_w1, input_ids + add_tok_w2]).to(device) with torch.no_grad(): res = model(tens) res = res[..., 0:model.config.vocab_size] # Restrict to the vocabulary only res = torch.nn.functional.log_softmax(res, dim=-1) if ids_w1 is not None: score_w1 = score_w1 + res[0, -1, ids_w1].item() if ids_w2 is not None: score_w2 = score_w2 + res[1, -1, ids_w2].item() add_tok_w1.append(ids_w1 if ids_w1 is not None else [0]) add_tok_w2.append(ids_w2 if ids_w2 is not None else [0]) # Compute the score for w2 # add_tok = [] # score_w2 = 0 # for ids in w2_ids: # tens = torch.LongTensor(input_ids + add_tok).unsqueeze(0).to(device) # with torch.no_grad(): # res = model(tens) # res = res[..., 0:model.config.vocab_size] # Restrict to the vocabulary only # res = torch.nn.functional.log_softmax(res,dim=-1) # score_w2 = score_w2 + res[0, -1, ids] # add_tok.append(ids) return [float(score_w1), float(score_w2)] from collections import Counter def load_marvin(): cc = Counter() # note: I edited the LM_Syneval/src/make_templates.py script, and run "python LM_Syneval/src/make_templates.py LM_Syneval/data/templates/ > marvin_linzen_dataset.tsv" out = [] for line in open("marvin_linzen_dataset.tsv"): case = line.strip().split("\t") cc[case[1]] += 1 g, ug = case[-2], case[-1] g = g.split() ug = ug.split() assert len(g) == len(ug), (g, ug) diffs = [i for i, pair in enumerate(zip(g, ug)) if pair[0] != pair[1]] if len(diffs) != 1: # print(diffs) # print(g,ug) continue assert len(diffs) == 1, diffs gv = g[diffs[0]] # good ugv = ug[diffs[0]] # bad g[diffs[0]] = "***mask***" g.append(".") out.append((case[0], case[1], " ".join(g), gv, ugv)) return out def eval_marvin(): o = load_marvin() print(len(o), file=sys.stderr) from collections import defaultdict import time rc = defaultdict(Counter) tc = Counter() start = time.time() for i, (case, tp, s, g, b) in enumerate(o): ps = get_probs_for_words(s, g, b) if ps is None: ps = [0, 1] gp = ps[0] bp = ps[1] print(gp > bp, case, tp, g, b, s) if i % 100 == 0: print(i, time.time() - start, file=sys.stderr) start = time.time() sys.stdout.flush() def eval_lgd(): for i, line in enumerate(open("lgd_dataset.tsv", encoding="utf8")): # for i,line in enumerate(open("lgd_dataset_with_is_are.tsv",encoding="utf8")): na, _, masked, good, bad = line.strip().split("\t") ps = get_probs_for_words(masked, good, bad) if ps is None: continue gp = ps[0] bp = ps[1] print(str(gp > bp), na, good, gp, bad, bp, masked.encode("utf8"), sep=u"\t") if i % 100 == 0: print(i, file=sys.stderr) sys.stdout.flush() def read_gulordava(): rows = csv.DictReader(open("generated.tab", encoding="utf8"), delimiter="\t") data = [] for row in rows: row2 = next(rows) assert row["sent"] == row2["sent"] assert row["class"] == "correct" assert row2["class"] == "wrong" sent = row["sent"].lower().split()[:-1] # dump the <eos> token. good_form = row["form"] bad_form = row2["form"] sent[int(row["len_prefix"])] = "***mask***" sent = " ".join(sent) data.append((sent, row["n_attr"], good_form, bad_form)) return data def eval_gulordava(): for i, (masked, natt, good, bad) in enumerate(read_gulordava()): if good in ["is", "are"]: print("skipping is/are") continue ps = get_probs_for_words(masked, good, bad) if ps is None: continue gp = ps[0] bp = ps[1] print(str(gp > bp), natt, good, gp, bad, bp, masked.encode("utf8"), sep=u"\t") if i % 100 == 0: print(i, file=sys.stderr) sys.stdout.flush() if "marvin" in sys.argv: eval_marvin() elif "gul" in sys.argv: eval_gulordava() else: eval_lgd()
bert-syntax-master
eval_openai_gpt.py
# from Linzen's code repo import inflect infl_eng = inflect.engine() def gen_inflect_from_vocab(vocab_file, freq_threshold=1000): vbp = {} vbz = {} nn = {} nns = {} from_pos = {'NNS': nns, 'NN': nn, 'VBP': vbp, 'VBZ': vbz} for line in file(vocab_file): if line.startswith(' '): # empty string token continue word, pos, count = line.strip().split() count = int(count) if len(word) > 1 and pos in from_pos and count >= freq_threshold: from_pos[pos][word] = count verb_infl = {'VBP': 'VBZ', 'VBZ': 'VBP'} for word, count in vbz.iteritems(): candidate = infl_eng.plural_verb(word) if candidate in vbp: verb_infl[candidate] = word verb_infl[word] = candidate noun_infl = {'NN': 'NNS', 'NNS': 'NN'} for word, count in nn.iteritems(): candidate = infl_eng.plural_noun(word) if candidate in nns: noun_infl[candidate] = word noun_infl[word] = candidate return verb_infl, noun_infl vinfl, ninfl = gen_inflect_from_vocab('wiki.vocab')
bert-syntax-master
utils.py
import sys from collections import * files=[("base","results/marvin_results_base.txt"),("large","results/marvin_results_large.txt")] by_model={} conditions=set() for title,fname in files: lines = open(fname) results=defaultdict(Counter) by_model[title]=results skipped = set() for line in lines: if line.startswith("Better speed"): continue if line.startswith("skipping"): skipped.add(line.split()[1]) next(lines) continue res,c1,c2,w1,w2,s = line.split(None, 5) c1 = c1.replace("inanim","anim") conditions.add(c1) results[c1][res]+=1 print("skipped:",skipped) print("condition & base & large & count \\\\") for cond in conditions: rb = by_model['base'][cond] rl = by_model['large'][cond] sb = "%.2f" % (rb['True']/(rb['True']+rb['False'])) sl = "%.2f" % (rl['True']/(rl['True']+rl['False'])) print(" & ".join(map(str,[cond, sb, sl, sum(rb.values())])),"\\\\")
bert-syntax-master
gen_marvin_tbl.py
import sys from collections import * files=[("base","results/lgd_results_base.txt"),("large","results/lgd_results_large.txt")] by_model={} conditions=set() nskipped=0 for title,fname in files: lines = open(fname) results=defaultdict(Counter) by_model[title]=results skipped = set() for line in lines: if line.startswith("Better speed"): continue if line.startswith("skipping"): skipped.add(line.split()[1]) #next(lines) # no need to skip, skipped in testing nskipped += 1 continue assert (line.strip().split()[0] in ['True','False']),line res,c1,_ = line.split(None, 2) conditions.add(c1) results[c1][res]+=1 print("skipped:",nskipped,len(skipped),skipped) print("condition & base & large & count \\\\") for cond in conditions: rb = by_model['base'][cond] rl = by_model['large'][cond] sb = "%.2f" % (rb['True']/(rb['True']+rb['False'])) sl = "%.2f" % (rl['True']/(rl['True']+rl['False'])) print(" & ".join(map(str,[cond, sb, sl, sum(rb.values())])),"\\\\")
bert-syntax-master
gen_lgd_tbl.py
# Lint as: python3 """ HuggingFace / AutoTrain Advanced """ import os from setuptools import find_packages, setup DOCLINES = __doc__.split("\n") this_directory = os.path.abspath(os.path.dirname(__file__)) with open(os.path.join(this_directory, "README.md"), encoding="utf-8") as f: LONG_DESCRIPTION = f.read() # get INSTALL_REQUIRES from requirements.txt with open(os.path.join(this_directory, "requirements.txt"), encoding="utf-8") as f: INSTALL_REQUIRES = f.read().splitlines() QUALITY_REQUIRE = [ "black", "isort", "flake8==3.7.9", ] TESTS_REQUIRE = ["pytest"] EXTRAS_REQUIRE = { "dev": INSTALL_REQUIRES + QUALITY_REQUIRE + TESTS_REQUIRE, "quality": INSTALL_REQUIRES + QUALITY_REQUIRE, "docs": INSTALL_REQUIRES + [ "recommonmark", "sphinx==3.1.2", "sphinx-markdown-tables", "sphinx-rtd-theme==0.4.3", "sphinx-copybutton", ], } setup( name="autotrain-advanced", description=DOCLINES[0], long_description=LONG_DESCRIPTION, long_description_content_type="text/markdown", author="HuggingFace Inc.", author_email="autotrain@huggingface.co", url="https://github.com/huggingface/autotrain-advanced", download_url="https://github.com/huggingface/autotrain-advanced/tags", license="Apache 2.0", package_dir={"": "src"}, packages=find_packages("src"), extras_require=EXTRAS_REQUIRE, install_requires=INSTALL_REQUIRES, entry_points={"console_scripts": ["autotrain=autotrain.cli.autotrain:main"]}, classifiers=[ "Development Status :: 5 - Production/Stable", "Intended Audience :: Developers", "Intended Audience :: Education", "Intended Audience :: Science/Research", "License :: OSI Approved :: Apache Software License", "Operating System :: OS Independent", "Programming Language :: Python :: 3.8", "Programming Language :: Python :: 3.9", "Programming Language :: Python :: 3.10", "Programming Language :: Python :: 3.11", "Topic :: Scientific/Engineering :: Artificial Intelligence", ], keywords="automl autonlp autotrain huggingface", )
autotrain-advanced-main
setup.py
import os from uuid import uuid4 from datasets import load_dataset from autotrain.dataset import AutoTrainDataset from autotrain.project import Project RANDOM_ID = str(uuid4()) DATASET = "amazon_reviews_multi" PROJECT_NAME = f"amazon_reviews_multi_{RANDOM_ID}" TASK = "text_multi_class_classification" MODEL = "bert-base-uncased" USERNAME = os.environ["AUTOTRAIN_USERNAME"] TOKEN = os.environ["HF_TOKEN"] if __name__ == "__main__": dataset = load_dataset(DATASET, "en") train = dataset["train"] validation = dataset["test"] # convert to pandas dataframe train_df = train.to_pandas() validation_df = validation.to_pandas() # prepare dataset for AutoTrain dset = AutoTrainDataset( train_data=[train_df], valid_data=[validation_df], task=TASK, token=TOKEN, project_name=PROJECT_NAME, username=USERNAME, column_mapping={"text": "review_body", "label": "stars"}, percent_valid=None, ) dset.prepare() # # How to get params for a task: # # from autotrain.params import Params # params = Params(task=TASK, training_type="hub_model").get() # print(params) to get full list of params for the task # define params in proper format job1 = { "task": TASK, "learning_rate": 1e-5, "optimizer": "adamw_torch", "scheduler": "linear", "epochs": 5, } job2 = { "task": TASK, "learning_rate": 3e-5, "optimizer": "adamw_torch", "scheduler": "cosine", "epochs": 5, } job3 = { "task": TASK, "learning_rate": 5e-5, "optimizer": "sgd", "scheduler": "cosine", "epochs": 5, } jobs = [job1, job2, job3] project = Project(dataset=dset, hub_model=MODEL, job_params=jobs) project_id = project.create() project.approve(project_id)
autotrain-advanced-main
examples/text_classification_multiclass.py
import os from uuid import uuid4 from datasets import load_dataset from autotrain.dataset import AutoTrainDataset from autotrain.project import Project RANDOM_ID = str(uuid4()) DATASET = "imdb" PROJECT_NAME = f"imdb_{RANDOM_ID}" TASK = "text_binary_classification" MODEL = "bert-base-uncased" USERNAME = os.environ["AUTOTRAIN_USERNAME"] TOKEN = os.environ["HF_TOKEN"] if __name__ == "__main__": dataset = load_dataset(DATASET) train = dataset["train"] validation = dataset["test"] # convert to pandas dataframe train_df = train.to_pandas() validation_df = validation.to_pandas() # prepare dataset for AutoTrain dset = AutoTrainDataset( train_data=[train_df], valid_data=[validation_df], task=TASK, token=TOKEN, project_name=PROJECT_NAME, username=USERNAME, column_mapping={"text": "text", "label": "label"}, percent_valid=None, ) dset.prepare() # # How to get params for a task: # # from autotrain.params import Params # params = Params(task=TASK, training_type="hub_model").get() # print(params) to get full list of params for the task # define params in proper format job1 = { "task": TASK, "learning_rate": 1e-5, "optimizer": "adamw_torch", "scheduler": "linear", "epochs": 5, } job2 = { "task": TASK, "learning_rate": 3e-5, "optimizer": "adamw_torch", "scheduler": "cosine", "epochs": 5, } job3 = { "task": TASK, "learning_rate": 5e-5, "optimizer": "sgd", "scheduler": "cosine", "epochs": 5, } jobs = [job1, job2, job3] project = Project(dataset=dset, hub_model=MODEL, job_params=jobs) project_id = project.create() project.approve(project_id)
autotrain-advanced-main
examples/text_classification_binary.py
import sys from accelerate.state import PartialState from loguru import logger emojis = { "TRACE": "🔍", "DEBUG": "🐛", "INFO": "🚀", "SUCCESS": "✅", "WARNING": "⚠️", "ERROR": "❌", "CRITICAL": "🚨", } def should_log(record): return PartialState().is_main_process def emoji_filter(record): level = record["level"].name record["level_emoji"] = emojis.get(level, "") + " " + level return True log_format = ( "<level>{level_emoji: <8}</level> | " "<green>{time:YYYY-MM-DD HH:mm:ss}</green> | " "<cyan>{name}</cyan>:<cyan>{function}</cyan>:<cyan>{line}</cyan> - " "<level>{message}</level>" ) logger.remove() if not hasattr(logger, "_is_customized") or not logger._is_customized: logger.add(sys.stderr, format=log_format, filter=lambda x: should_log(x) and emoji_filter(x)) logger._is_customized = True custom_logger = logger
autotrain-advanced-main
src/autotrain/logging.py
from dataclasses import dataclass from typing import Literal import gradio as gr from pydantic import BaseModel, Field from autotrain.languages import SUPPORTED_LANGUAGES from autotrain.tasks import TASKS class LoraR: TYPE = "int" MIN_VALUE = 1 MAX_VALUE = 100 DEFAULT = 16 STEP = 1 STREAMLIT_INPUT = "number_input" PRETTY_NAME = "LoRA R" GRADIO_INPUT = gr.Slider(minimum=MIN_VALUE, maximum=MAX_VALUE, value=DEFAULT, step=STEP) class LoraAlpha: TYPE = "int" MIN_VALUE = 1 MAX_VALUE = 256 DEFAULT = 32 STEP = 1 STREAMLIT_INPUT = "number_input" PRETTY_NAME = "LoRA Alpha" GRADIO_INPUT = gr.Slider(minimum=MIN_VALUE, maximum=MAX_VALUE, value=DEFAULT, step=STEP) class LoraDropout: TYPE = "float" MIN_VALUE = 0.0 MAX_VALUE = 1.0 DEFAULT = 0.05 STEP = 0.01 STREAMLIT_INPUT = "number_input" PRETTY_NAME = "LoRA Dropout" GRADIO_INPUT = gr.Slider(minimum=MIN_VALUE, maximum=MAX_VALUE, value=DEFAULT, step=STEP) class LearningRate: TYPE = "float" MIN_VALUE = 1e-7 MAX_VALUE = 1e-1 DEFAULT = 1e-3 STEP = 1e-6 FORMAT = "%.2E" STREAMLIT_INPUT = "number_input" PRETTY_NAME = "Learning Rate" GRADIO_INPUT = gr.Slider(minimum=MIN_VALUE, maximum=MAX_VALUE, value=DEFAULT, step=STEP) class LMLearningRate(LearningRate): DEFAULT = 5e-5 class Optimizer: TYPE = "str" DEFAULT = "adamw_torch" CHOICES = ["adamw_torch", "adamw_hf", "sgd", "adafactor", "adagrad"] STREAMLIT_INPUT = "selectbox" PRETTY_NAME = "Optimizer" GRADIO_INPUT = gr.Dropdown(CHOICES, value=DEFAULT) class LMTrainingType: TYPE = "str" DEFAULT = "generic" CHOICES = ["generic", "chat"] STREAMLIT_INPUT = "selectbox" PRETTY_NAME = "LM Training Type" GRAIDO_INPUT = gr.Dropdown(CHOICES, value=DEFAULT) class Scheduler: TYPE = "str" DEFAULT = "linear" CHOICES = ["linear", "cosine"] STREAMLIT_INPUT = "selectbox" PRETTY_NAME = "Scheduler" GRADIO_INPUT = gr.Dropdown(CHOICES, value=DEFAULT) class TrainBatchSize: TYPE = "int" MIN_VALUE = 1 MAX_VALUE = 128 DEFAULT = 2 STEP = 2 STREAMLIT_INPUT = "number_input" PRETTY_NAME = "Train Batch Size" GRADIO_INPUT = gr.Slider(minimum=MIN_VALUE, maximum=MAX_VALUE, value=DEFAULT, step=STEP) class LMTrainBatchSize(TrainBatchSize): DEFAULT = 4 class Epochs: TYPE = "int" MIN_VALUE = 1 MAX_VALUE = 1000 DEFAULT = 10 STREAMLIT_INPUT = "number_input" PRETTY_NAME = "Epochs" GRADIO_INPUT = gr.Number(value=DEFAULT) class LMEpochs(Epochs): DEFAULT = 1 class PercentageWarmup: TYPE = "float" MIN_VALUE = 0.0 MAX_VALUE = 1.0 DEFAULT = 0.1 STEP = 0.01 STREAMLIT_INPUT = "number_input" PRETTY_NAME = "Percentage Warmup" GRADIO_INPUT = gr.Slider(minimum=MIN_VALUE, maximum=MAX_VALUE, value=DEFAULT, step=STEP) class GradientAccumulationSteps: TYPE = "int" MIN_VALUE = 1 MAX_VALUE = 100 DEFAULT = 1 STREAMLIT_INPUT = "number_input" PRETTY_NAME = "Gradient Accumulation Steps" GRADIO_INPUT = gr.Number(value=DEFAULT) class WeightDecay: TYPE = "float" MIN_VALUE = 0.0 MAX_VALUE = 1.0 DEFAULT = 0.0 STREAMLIT_INPUT = "number_input" PRETTY_NAME = "Weight Decay" GRADIO_INPUT = gr.Number(value=DEFAULT) class SourceLanguage: TYPE = "str" DEFAULT = "en" CHOICES = SUPPORTED_LANGUAGES STREAMLIT_INPUT = "selectbox" PRETTY_NAME = "Source Language" GRADIO_INPUT = gr.Dropdown(CHOICES, value=DEFAULT) class TargetLanguage: TYPE = "str" DEFAULT = "en" CHOICES = SUPPORTED_LANGUAGES STREAMLIT_INPUT = "selectbox" PRETTY_NAME = "Target Language" GRADIO_INPUT = gr.Dropdown(CHOICES, value=DEFAULT) class NumModels: TYPE = "int" MIN_VALUE = 1 MAX_VALUE = 25 DEFAULT = 1 STREAMLIT_INPUT = "number_input" PRETTY_NAME = "Number of Models" GRADIO_INPUT = gr.Slider(minimum=MIN_VALUE, maximum=MAX_VALUE, value=DEFAULT, step=1) class DBNumSteps: TYPE = "int" MIN_VALUE = 100 MAX_VALUE = 10000 DEFAULT = 1500 STREAMLIT_INPUT = "number_input" PRETTY_NAME = "Number of Steps" GRADIO_INPUT = gr.Slider(minimum=MIN_VALUE, maximum=MAX_VALUE, value=DEFAULT, step=100) class DBTextEncoderStepsPercentage: TYPE = "int" MIN_VALUE = 1 MAX_VALUE = 100 DEFAULT = 30 STREAMLIT_INPUT = "number_input" PRETTY_NAME = "Text encoder steps percentage" GRADIO_INPUT = gr.Slider(minimum=MIN_VALUE, maximum=MAX_VALUE, value=DEFAULT, step=1) class DBPriorPreservation: TYPE = "bool" DEFAULT = False STREAMLIT_INPUT = "checkbox" PRETTY_NAME = "Prior preservation" GRADIO_INPUT = gr.Dropdown(["True", "False"], value="False") class ImageSize: TYPE = "int" MIN_VALUE = 64 MAX_VALUE = 2048 DEFAULT = 512 STREAMLIT_INPUT = "number_input" PRETTY_NAME = "Image Size" GRADIO_INPUT = gr.Slider(minimum=MIN_VALUE, maximum=MAX_VALUE, value=DEFAULT, step=64) class DreamboothConceptType: TYPE = "str" DEFAULT = "person" CHOICES = ["person", "object"] STREAMLIT_INPUT = "selectbox" PRETTY_NAME = "Concept Type" GRADIO_INPUT = gr.Dropdown(CHOICES, value=DEFAULT) class SourceLanguageUnk: TYPE = "str" DEFAULT = "unk" CHOICES = ["unk"] STREAMLIT_INPUT = "selectbox" PRETTY_NAME = "Source Language" GRADIO_INPUT = gr.Dropdown(CHOICES, value=DEFAULT) class HubModel: TYPE = "str" DEFAULT = "bert-base-uncased" PRETTY_NAME = "Hub Model" GRADIO_INPUT = gr.Textbox(lines=1, max_lines=1, label="Hub Model") class TextBinaryClassificationParams(BaseModel): task: Literal["text_binary_classification"] learning_rate: float = Field(5e-5, title="Learning rate") num_train_epochs: int = Field(3, title="Number of training epochs") max_seq_length: int = Field(128, title="Max sequence length") train_batch_size: int = Field(32, title="Training batch size") warmup_ratio: float = Field(0.1, title="Warmup proportion") gradient_accumulation_steps: int = Field(1, title="Gradient accumulation steps") optimizer: str = Field("adamw_torch", title="Optimizer") scheduler: str = Field("linear", title="Scheduler") weight_decay: float = Field(0.0, title="Weight decay") max_grad_norm: float = Field(1.0, title="Max gradient norm") seed: int = Field(42, title="Seed") class TextMultiClassClassificationParams(BaseModel): task: Literal["text_multi_class_classification"] learning_rate: float = Field(5e-5, title="Learning rate") num_train_epochs: int = Field(3, title="Number of training epochs") max_seq_length: int = Field(128, title="Max sequence length") train_batch_size: int = Field(32, title="Training batch size") warmup_ratio: float = Field(0.1, title="Warmup proportion") gradient_accumulation_steps: int = Field(1, title="Gradient accumulation steps") optimizer: str = Field("adamw_torch", title="Optimizer") scheduler: str = Field("linear", title="Scheduler") weight_decay: float = Field(0.0, title="Weight decay") max_grad_norm: float = Field(1.0, title="Max gradient norm") seed: int = Field(42, title="Seed") class DreamboothParams(BaseModel): task: Literal["dreambooth"] num_steps: int = Field(1500, title="Number of steps") image_size: int = Field(512, title="Image size") text_encoder_steps_percentage: int = Field(30, title="Text encoder steps percentage") prior_preservation: bool = Field(False, title="Prior preservation") learning_rate: float = Field(2e-6, title="Learning rate") train_batch_size: int = Field(1, title="Training batch size") gradient_accumulation_steps: int = Field(1, title="Gradient accumulation steps") class ImageBinaryClassificationParams(BaseModel): task: Literal["image_binary_classification"] learning_rate: float = Field(3e-5, title="Learning rate") num_train_epochs: int = Field(3, title="Number of training epochs") train_batch_size: int = Field(8, title="Training batch size") warmup_ratio: float = Field(0.1, title="Warmup proportion") gradient_accumulation_steps: int = Field(1, title="Gradient accumulation steps") optimizer: str = Field("adamw_torch", title="Optimizer") scheduler: str = Field("linear", title="Scheduler") weight_decay: float = Field(0.0, title="Weight decay") max_grad_norm: float = Field(1.0, title="Max gradient norm") seed: int = Field(42, title="Seed") class ImageMultiClassClassificationParams(BaseModel): task: Literal["image_multi_class_classification"] learning_rate: float = Field(3e-5, title="Learning rate") num_train_epochs: int = Field(3, title="Number of training epochs") train_batch_size: int = Field(8, title="Training batch size") warmup_ratio: float = Field(0.1, title="Warmup proportion") gradient_accumulation_steps: int = Field(1, title="Gradient accumulation steps") optimizer: str = Field("adamw_torch", title="Optimizer") scheduler: str = Field("linear", title="Scheduler") weight_decay: float = Field(0.0, title="Weight decay") max_grad_norm: float = Field(1.0, title="Max gradient norm") seed: int = Field(42, title="Seed") class LMTrainingParams(BaseModel): task: Literal["lm_training"] learning_rate: float = Field(3e-5, title="Learning rate") num_train_epochs: int = Field(3, title="Number of training epochs") train_batch_size: int = Field(8, title="Training batch size") warmup_ratio: float = Field(0.1, title="Warmup proportion") gradient_accumulation_steps: int = Field(1, title="Gradient accumulation steps") optimizer: str = Field("adamw_torch", title="Optimizer") scheduler: str = Field("linear", title="Scheduler") weight_decay: float = Field(0.0, title="Weight decay") max_grad_norm: float = Field(1.0, title="Max gradient norm") seed: int = Field(42, title="Seed") add_eos_token: bool = Field(True, title="Add EOS token") block_size: int = Field(-1, title="Block size") lora_r: int = Field(16, title="Lora r") lora_alpha: int = Field(32, title="Lora alpha") lora_dropout: float = Field(0.05, title="Lora dropout") training_type: str = Field("generic", title="Training type") train_on_inputs: bool = Field(False, title="Train on inputs") @dataclass class Params: task: str param_choice: str model_choice: str def __post_init__(self): # task should be one of the keys in TASKS if self.task not in TASKS: raise ValueError(f"task must be one of {TASKS.keys()}") self.task_id = TASKS[self.task] if self.param_choice not in ("autotrain", "manual"): raise ValueError("param_choice must be either autotrain or manual") if self.model_choice not in ("autotrain", "hub_model"): raise ValueError("model_choice must be either autotrain or hub_model") def _dreambooth(self): if self.param_choice == "manual": return { "hub_model": HubModel, "image_size": ImageSize, "learning_rate": LearningRate, "train_batch_size": TrainBatchSize, "num_steps": DBNumSteps, "gradient_accumulation_steps": GradientAccumulationSteps, } if self.param_choice == "autotrain": if self.model_choice == "hub_model": return { "hub_model": HubModel, "image_size": ImageSize, "num_models": NumModels, } else: return { "num_models": NumModels, } def _tabular_binary_classification(self): return { "num_models": NumModels, } def _lm_training(self): if self.param_choice == "manual": return { "hub_model": HubModel, "learning_rate": LMLearningRate, "optimizer": Optimizer, "scheduler": Scheduler, "train_batch_size": LMTrainBatchSize, "num_train_epochs": LMEpochs, "percentage_warmup": PercentageWarmup, "gradient_accumulation_steps": GradientAccumulationSteps, "weight_decay": WeightDecay, "lora_r": LoraR, "lora_alpha": LoraAlpha, "lora_dropout": LoraDropout, "training_type": LMTrainingType, } if self.param_choice == "autotrain": if self.model_choice == "autotrain": return { "num_models": NumModels, "training_type": LMTrainingType, } else: return { "hub_model": HubModel, "num_models": NumModels, "training_type": LMTrainingType, } raise ValueError("param_choice must be either autotrain or manual") def _tabular_multi_class_classification(self): return self._tabular_binary_classification() def _tabular_single_column_regression(self): return self._tabular_binary_classification() def tabular_multi_label_classification(self): return self._tabular_binary_classification() def _text_binary_classification(self): if self.param_choice == "manual": return { "hub_model": HubModel, "learning_rate": LearningRate, "optimizer": Optimizer, "scheduler": Scheduler, "train_batch_size": TrainBatchSize, "num_train_epochs": Epochs, "percentage_warmup": PercentageWarmup, "gradient_accumulation_steps": GradientAccumulationSteps, "weight_decay": WeightDecay, } if self.param_choice == "autotrain": if self.model_choice == "autotrain": return { "source_language": SourceLanguage, "num_models": NumModels, } return { "hub_model": HubModel, "source_language": SourceLanguageUnk, "num_models": NumModels, } raise ValueError("param_choice must be either autotrain or manual") def _text_multi_class_classification(self): return self._text_binary_classification() def _text_entity_extraction(self): return self._text_binary_classification() def _text_single_column_regression(self): return self._text_binary_classification() def _text_natural_language_inference(self): return self._text_binary_classification() def _image_binary_classification(self): if self.param_choice == "manual": return { "hub_model": HubModel, "learning_rate": LearningRate, "optimizer": Optimizer, "scheduler": Scheduler, "train_batch_size": TrainBatchSize, "num_train_epochs": Epochs, "percentage_warmup": PercentageWarmup, "gradient_accumulation_steps": GradientAccumulationSteps, "weight_decay": WeightDecay, } if self.param_choice == "autotrain": if self.model_choice == "autotrain": return { "num_models": NumModels, } return { "hub_model": HubModel, "num_models": NumModels, } raise ValueError("param_choice must be either autotrain or manual") def _image_multi_class_classification(self): return self._image_binary_classification() def get(self): if self.task in ("text_binary_classification", "text_multi_class_classification"): return self._text_binary_classification() if self.task == "text_entity_extraction": return self._text_entity_extraction() if self.task == "text_single_column_regression": return self._text_single_column_regression() if self.task == "text_natural_language_inference": return self._text_natural_language_inference() if self.task == "tabular_binary_classification": return self._tabular_binary_classification() if self.task == "tabular_multi_class_classification": return self._tabular_multi_class_classification() if self.task == "tabular_single_column_regression": return self._tabular_single_column_regression() if self.task == "tabular_multi_label_classification": return self.tabular_multi_label_classification() if self.task in ("image_binary_classification", "image_multi_class_classification"): return self._image_binary_classification() if self.task == "dreambooth": return self._dreambooth() if self.task == "lm_training": return self._lm_training() raise ValueError(f"task {self.task} not supported")
autotrain-advanced-main
src/autotrain/params.py
import io import json import os from dataclasses import dataclass from typing import Union import requests from huggingface_hub import HfApi from autotrain import logger from autotrain.dataset import AutoTrainDataset, AutoTrainDreamboothDataset from autotrain.trainers.clm.params import LLMTrainingParams from autotrain.trainers.dreambooth.params import DreamBoothTrainingParams from autotrain.trainers.generic.params import GenericParams from autotrain.trainers.image_classification.params import ImageClassificationParams from autotrain.trainers.tabular.params import TabularParams from autotrain.trainers.text_classification.params import TextClassificationParams def _tabular_munge_data(params, username): if isinstance(params.target_columns, str): col_map_label = [params.target_columns] else: col_map_label = params.target_columns task = params.task if task == "classification" and len(col_map_label) > 1: task = "tabular_multi_label_classification" elif task == "classification" and len(col_map_label) == 1: task = "tabular_multi_class_classification" elif task == "regression" and len(col_map_label) > 1: task = "tabular_multi_column_regression" elif task == "regression" and len(col_map_label) == 1: task = "tabular_single_column_regression" else: raise Exception("Please select a valid task.") train_data_path = f"{params.data_path}/{params.train_split}.csv" if params.valid_split is not None: valid_data_path = f"{params.data_path}/{params.valid_split}.csv" else: valid_data_path = [] if os.path.exists(train_data_path): dset = AutoTrainDataset( train_data=[train_data_path], task=task, token=params.token, project_name=params.project_name, username=username, column_mapping={"id": params.col_map_id, "label": col_map_label}, valid_data=valid_data_path, percent_valid=None, # TODO: add to UI ) dset.prepare() return f"{username}/autotrain-data-{params.project_name}" return params.data_path def _llm_munge_data(params, username): train_data_path = f"{params.data_path}/{params.train_split}.csv" if params.valid_split is not None: valid_data_path = f"{params.data_path}/{params.valid_split}.csv" else: valid_data_path = [] if os.path.exists(train_data_path): dset = AutoTrainDataset( train_data=[train_data_path], task="lm_training", token=params.token, project_name=params.project_name, username=username, column_mapping={"text": params.text_column}, valid_data=valid_data_path, percent_valid=None, # TODO: add to UI ) dset.prepare() return f"{username}/autotrain-data-{params.project_name}" return params.data_path def _text_clf_munge_data(params, username): train_data_path = f"{params.data_path}/{params.train_split}.csv" if params.valid_split is not None: valid_data_path = f"{params.data_path}/{params.valid_split}.csv" else: valid_data_path = None if os.path.exists(train_data_path): dset = AutoTrainDataset( train_data=[train_data_path], valid_data=[valid_data_path] if valid_data_path is not None else None, task="text_multi_class_classification", token=params.token, project_name=params.project_name, username=username, column_mapping={"text": params.text_column, "label": params.target_column}, percent_valid=None, # TODO: add to UI ) dset.prepare() return f"{username}/autotrain-data-{params.project_name}" return params.data_path def _dreambooth_munge_data(params, username): # check if params.image_path is a directory if os.path.isdir(params.image_path): training_data = [os.path.join(params.image_path, f) for f in os.listdir(params.image_path)] training_data = [io.BytesIO(open(f, "rb").read()) for f in training_data] dset = AutoTrainDreamboothDataset( concept_images=training_data, concept_name=params.prompt, token=params.token, project_name=params.project_name, username=username, ) dset.prepare() return f"{username}/autotrain-data-{params.project_name}" return params.image_path @dataclass class EndpointsRunner: params: Union[TextClassificationParams, ImageClassificationParams, LLMTrainingParams] backend: str def __post_init__(self): self.endpoints_backends = { "ep-aws-useast1-s": "aws_us-east-1_gpu_small_g4dn.xlarge", "ep-aws-useast1-m": "aws_us-east-1_gpu_medium_g5.2xlarge", "ep-aws-useast1-l": "aws_us-east-1_gpu_large_g4dn.12xlarge", "ep-aws-useast1-xl": "aws_us-east-1_gpu_xlarge_p4de", "ep-aws-useast1-2xl": "aws_us-east-1_gpu_2xlarge_p4de", "ep-aws-useast1-4xl": "aws_us-east-1_gpu_4xlarge_p4de", "ep-aws-useast1-8xl": "aws_us-east-1_gpu_8xlarge_p4de", } if self.params.repo_id is not None: self.username = self.params.repo_id.split("/")[0] elif self.params.username is not None: self.username = self.params.username else: raise ValueError("Must provide either repo_id or username") self.api_url = f"https://api.endpoints.huggingface.cloud/v2/endpoint/{self.username}" if isinstance(self.params, LLMTrainingParams): self.task_id = 9 def _create_endpoint(self): hardware = self.endpoints_backends[self.backend] accelerator = hardware.split("_")[2] instance_size = hardware.split("_")[3] region = hardware.split("_")[1] vendor = hardware.split("_")[0] instance_type = hardware.split("_")[4] payload = { "accountId": self.username, "compute": { "accelerator": accelerator, "instanceSize": instance_size, "instanceType": instance_type, "scaling": {"maxReplica": 1, "minReplica": 1}, }, "model": { "framework": "custom", "image": { "custom": { "env": { "HF_TOKEN": self.params.token, "AUTOTRAIN_USERNAME": self.username, "PROJECT_NAME": self.params.project_name, "PARAMS": json.dumps(self.params.json()), "DATA_PATH": self.params.data_path, "TASK_ID": str(self.task_id), "MODEL": self.params.model, "OUTPUT_MODEL_REPO": self.params.repo_id, "ENDPOINT_ID": f"{self.username}/{self.params.project_name}", }, "health_route": "/", "port": 7860, "url": "huggingface/autotrain-advanced-api:latest", } }, "repository": "autotrain-projects/autotrain-advanced", "revision": "main", "task": "custom", }, "name": self.params.project_name, "provider": {"region": region, "vendor": vendor}, "type": "protected", } headers = {"Authorization": f"Bearer {self.params.token}"} r = requests.post(self.api_url, json=payload, headers=headers) logger.info(r.json()) return r.json() def prepare(self): if isinstance(self.params, LLMTrainingParams): data_path = _llm_munge_data(self.params, self.username) self.params.data_path = data_path endpoint_id = self._create_endpoint() return endpoint_id if isinstance(self.params, TextClassificationParams): data_path = _text_clf_munge_data(self.params, self.username) self.params.data_path = data_path endpoint_id = self._create_endpoint() return endpoint_id raise NotImplementedError @dataclass class SpaceRunner: params: Union[TextClassificationParams, ImageClassificationParams, LLMTrainingParams, GenericParams, TabularParams] backend: str def __post_init__(self): self.spaces_backends = { "a10gl": "a10g-large", "a10gs": "a10g-small", "a100": "a100-large", "t4m": "t4-medium", "t4s": "t4-small", "cpu": "cpu-upgrade", "cpuf": "cpu-basic", } if not isinstance(self.params, GenericParams): if self.params.repo_id is not None: self.username = self.params.repo_id.split("/")[0] elif self.params.username is not None: self.username = self.params.username else: raise ValueError("Must provide either repo_id or username") else: self.username = self.params.username if isinstance(self.params, LLMTrainingParams): self.task_id = 9 elif isinstance(self.params, TextClassificationParams): self.task_id = 2 elif isinstance(self.params, TabularParams): self.task_id = 26 elif isinstance(self.params, GenericParams): self.task_id = 27 elif isinstance(self.params, DreamBoothTrainingParams): self.task_id = 25 else: raise NotImplementedError def prepare(self): if isinstance(self.params, LLMTrainingParams): self.task_id = 9 data_path = _llm_munge_data(self.params, self.username) self.params.data_path = data_path space_id = self._create_space() return space_id if isinstance(self.params, TextClassificationParams): self.task_id = 2 data_path = _text_clf_munge_data(self.params, self.username) self.params.data_path = data_path space_id = self._create_space() return space_id if isinstance(self.params, TabularParams): self.task_id = 26 data_path = _tabular_munge_data(self.params, self.username) self.params.data_path = data_path space_id = self._create_space() return space_id if isinstance(self.params, GenericParams): self.task_id = 27 space_id = self._create_space() return space_id if isinstance(self.params, DreamBoothTrainingParams): self.task_id = 25 data_path = _dreambooth_munge_data(self.params, self.username) space_id = self._create_space() return space_id raise NotImplementedError def _create_readme(self): _readme = "---\n" _readme += f"title: {self.params.project_name}\n" _readme += "emoji: 🚀\n" _readme += "colorFrom: green\n" _readme += "colorTo: indigo\n" _readme += "sdk: docker\n" _readme += "pinned: false\n" _readme += "duplicated_from: autotrain-projects/autotrain-advanced\n" _readme += "---\n" _readme = io.BytesIO(_readme.encode()) return _readme def _add_secrets(self, api, repo_id): if isinstance(self.params, GenericParams): for k, v in self.params.env.items(): api.add_space_secret(repo_id=repo_id, key=k, value=v) self.params.env = {} api.add_space_secret(repo_id=repo_id, key="HF_TOKEN", value=self.params.token) api.add_space_secret(repo_id=repo_id, key="AUTOTRAIN_USERNAME", value=self.username) api.add_space_secret(repo_id=repo_id, key="PROJECT_NAME", value=self.params.project_name) api.add_space_secret(repo_id=repo_id, key="TASK_ID", value=str(self.task_id)) api.add_space_secret(repo_id=repo_id, key="PARAMS", value=json.dumps(self.params.json())) if isinstance(self.params, DreamBoothTrainingParams): api.add_space_secret(repo_id=repo_id, key="DATA_PATH", value=self.params.image_path) else: api.add_space_secret(repo_id=repo_id, key="DATA_PATH", value=self.params.data_path) if not isinstance(self.params, GenericParams): api.add_space_secret(repo_id=repo_id, key="MODEL", value=self.params.model) api.add_space_secret(repo_id=repo_id, key="OUTPUT_MODEL_REPO", value=self.params.repo_id) def _create_space(self): api = HfApi(token=self.params.token) repo_id = f"{self.username}/autotrain-{self.params.project_name}" api.create_repo( repo_id=repo_id, repo_type="space", space_sdk="docker", space_hardware=self.spaces_backends[self.backend.split("-")[1].lower()], private=True, ) self._add_secrets(api, repo_id) readme = self._create_readme() api.upload_file( path_or_fileobj=readme, path_in_repo="README.md", repo_id=repo_id, repo_type="space", ) _dockerfile = "FROM huggingface/autotrain-advanced:latest\nCMD autotrain api --port 7860 --host 0.0.0.0" _dockerfile = io.BytesIO(_dockerfile.encode()) api.upload_file( path_or_fileobj=_dockerfile, path_in_repo="Dockerfile", repo_id=repo_id, repo_type="space", ) return repo_id
autotrain-advanced-main
src/autotrain/backend.py
NLP_TASKS = { "text_binary_classification": 1, "text_multi_class_classification": 2, "text_entity_extraction": 4, "text_extractive_question_answering": 5, "text_summarization": 8, "text_single_column_regression": 10, "speech_recognition": 11, "natural_language_inference": 22, "lm_training": 9, } VISION_TASKS = { "image_binary_classification": 17, "image_multi_class_classification": 18, "image_single_column_regression": 24, "dreambooth": 25, } TABULAR_TASKS = { "tabular_binary_classification": 13, "tabular_multi_class_classification": 14, "tabular_multi_label_classification": 15, "tabular_single_column_regression": 16, "tabular": 26, } TASKS = { **NLP_TASKS, **VISION_TASKS, **TABULAR_TASKS, } COLUMN_MAPPING = { "text_binary_classification": ("text", "label"), "text_multi_class_classification": ("text", "label"), "text_entity_extraction": ("text", "tokens"), "text_extractive_question_answering": ("text", "context", "question", "answer"), "text_summarization": ("text", "summary"), "text_single_column_regression": ("text", "label"), "speech_recognition": ("audio", "text"), "natural_language_inference": ("premise", "hypothesis", "label"), "image_binary_classification": ("image", "label"), "image_multi_class_classification": ("image", "label"), "image_single_column_regression": ("image", "label"), # "dreambooth": ("image", "label"), "tabular_binary_classification": ("id", "label"), "tabular_multi_class_classification": ("id", "label"), "tabular_multi_label_classification": ("id", "label"), "tabular_single_column_regression": ("id", "label"), "lm_training": ("text", "prompt_start", "prompt", "context", "response"), } TASK_TYPE_MAPPING = { "text_binary_classification": "Natural Language Processing", "text_multi_class_classification": "Natural Language Processing", "text_entity_extraction": "Natural Language Processing", "text_extractive_question_answering": "Natural Language Processing", "text_summarization": "Natural Language Processing", "text_single_column_regression": "Natural Language Processing", "lm_training": "Natural Language Processing", "speech_recognition": "Natural Language Processing", "natural_language_inference": "Natural Language Processing", "image_binary_classification": "Computer Vision", "image_multi_class_classification": "Computer Vision", "image_single_column_regression": "Computer Vision", "dreambooth": "Computer Vision", "tabular_binary_classification": "Tabular", "tabular_multi_class_classification": "Tabular", "tabular_multi_label_classification": "Tabular", "tabular_single_column_regression": "Tabular", }
autotrain-advanced-main
src/autotrain/tasks.py
import os import sys from autotrain import logger AUTOTRAIN_BACKEND_API = os.getenv("AUTOTRAIN_BACKEND_API", "https://api.autotrain.huggingface.co") HF_API = os.getenv("HF_API", "https://huggingface.co") logger.configure(handlers=[dict(sink=sys.stderr, format="> <level>{level:<7} {message}</level>")])
autotrain-advanced-main
src/autotrain/config.py
TEXT_CLASSIFICATION = [ ".csv", ".jsonl", ]
autotrain-advanced-main
src/autotrain/allowed_file_types.py
# coding=utf-8 # Copyright 2020-2023 The HuggingFace AutoTrain Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 # pylint: enable=line-too-long import os os.environ["BITSANDBYTES_NOWELCOME"] = "1" os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3" import warnings from autotrain.logging import custom_logger as logger warnings.filterwarnings("ignore", category=UserWarning, module="tensorflow") __version__ = "0.6.33.dev0"
autotrain-advanced-main
src/autotrain/__init__.py
import os import uuid import zipfile from dataclasses import dataclass from typing import Any, Dict, List, Optional import pandas as pd from autotrain import logger from autotrain.preprocessor.dreambooth import DreamboothPreprocessor from autotrain.preprocessor.tabular import ( TabularBinaryClassificationPreprocessor, TabularMultiClassClassificationPreprocessor, TabularMultiColumnRegressionPreprocessor, TabularMultiLabelClassificationPreprocessor, TabularSingleColumnRegressionPreprocessor, ) from autotrain.preprocessor.text import ( LLMPreprocessor, TextBinaryClassificationPreprocessor, TextMultiClassClassificationPreprocessor, TextSingleColumnRegressionPreprocessor, ) from autotrain.preprocessor.vision import ImageClassificationPreprocessor def remove_non_image_files(folder): # Define allowed image file extensions allowed_extensions = {".jpg", ".jpeg", ".png", ".JPG", ".JPEG", ".PNG"} # Iterate through all files in the folder for root, dirs, files in os.walk(folder): for file in files: # Get the file extension file_extension = os.path.splitext(file)[1] # If the file extension is not in the allowed list, remove the file if file_extension.lower() not in allowed_extensions: file_path = os.path.join(root, file) os.remove(file_path) print(f"Removed file: {file_path}") # Recursively call the function on each subfolder for subfolder in dirs: remove_non_image_files(os.path.join(root, subfolder)) @dataclass class AutoTrainDreamboothDataset: concept_images: List[Any] concept_name: str token: str project_name: str username: str def __str__(self) -> str: info = f"Dataset: {self.project_name} ({self.task})\n" return info def __post_init__(self): self.task = "dreambooth" logger.info(self.__str__()) @property def num_samples(self): return len(self.concept_images) def prepare(self): preprocessor = DreamboothPreprocessor( concept_images=self.concept_images, concept_name=self.concept_name, token=self.token, project_name=self.project_name, username=self.username, ) preprocessor.prepare() @dataclass class AutoTrainImageClassificationDataset: train_data: str token: str project_name: str username: str valid_data: Optional[str] = None percent_valid: Optional[float] = None def __str__(self) -> str: info = f"Dataset: {self.project_name} ({self.task})\n" info += f"Train data: {self.train_data}\n" info += f"Valid data: {self.valid_data}\n" return info def __post_init__(self): self.task = "image_multi_class_classification" if not self.valid_data and self.percent_valid is None: self.percent_valid = 0.2 elif self.valid_data and self.percent_valid is not None: raise ValueError("You can only specify one of valid_data or percent_valid") elif self.valid_data: self.percent_valid = 0.0 logger.info(self.__str__()) self.num_files = self._count_files() @property def num_samples(self): return self.num_files def _count_files(self): num_files = 0 zip_ref = zipfile.ZipFile(self.train_data, "r") for _ in zip_ref.namelist(): num_files += 1 if self.valid_data: zip_ref = zipfile.ZipFile(self.valid_data, "r") for _ in zip_ref.namelist(): num_files += 1 return num_files def prepare(self): cache_dir = os.environ.get("HF_HOME") if not cache_dir: cache_dir = os.path.join(os.path.expanduser("~"), ".cache", "huggingface") random_uuid = uuid.uuid4() train_dir = os.path.join(cache_dir, "autotrain", str(random_uuid)) os.makedirs(train_dir, exist_ok=True) zip_ref = zipfile.ZipFile(self.train_data, "r") zip_ref.extractall(train_dir) # remove the __MACOSX directory macosx_dir = os.path.join(train_dir, "__MACOSX") if os.path.exists(macosx_dir): os.system(f"rm -rf {macosx_dir}") remove_non_image_files(train_dir) valid_dir = None if self.valid_data: random_uuid = uuid.uuid4() valid_dir = os.path.join(cache_dir, "autotrain", str(random_uuid)) os.makedirs(valid_dir, exist_ok=True) zip_ref = zipfile.ZipFile(self.valid_data, "r") zip_ref.extractall(valid_dir) # remove the __MACOSX directory macosx_dir = os.path.join(valid_dir, "__MACOSX") if os.path.exists(macosx_dir): os.system(f"rm -rf {macosx_dir}") remove_non_image_files(valid_dir) preprocessor = ImageClassificationPreprocessor( train_data=train_dir, valid_data=valid_dir, token=self.token, project_name=self.project_name, username=self.username, ) preprocessor.prepare() @dataclass class AutoTrainDataset: train_data: List[str] task: str token: str project_name: str username: str column_mapping: Optional[Dict[str, str]] = None valid_data: Optional[List[str]] = None percent_valid: Optional[float] = None convert_to_class_label: Optional[bool] = False def __str__(self) -> str: info = f"Dataset: {self.project_name} ({self.task})\n" info += f"Train data: {self.train_data}\n" info += f"Valid data: {self.valid_data}\n" info += f"Column mapping: {self.column_mapping}\n" return info def __post_init__(self): if not self.valid_data and self.percent_valid is None: self.percent_valid = 0.2 elif self.valid_data and self.percent_valid is not None: raise ValueError("You can only specify one of valid_data or percent_valid") elif self.valid_data: self.percent_valid = 0.0 self.train_df, self.valid_df = self._preprocess_data() logger.info(self.__str__()) def _preprocess_data(self): train_df = [] for file in self.train_data: if isinstance(file, pd.DataFrame): train_df.append(file) else: train_df.append(pd.read_csv(file)) if len(train_df) > 1: train_df = pd.concat(train_df) else: train_df = train_df[0] valid_df = None if len(self.valid_data) > 0: valid_df = [] for file in self.valid_data: if isinstance(file, pd.DataFrame): valid_df.append(file) else: valid_df.append(pd.read_csv(file)) if len(valid_df) > 1: valid_df = pd.concat(valid_df) else: valid_df = valid_df[0] return train_df, valid_df @property def num_samples(self): return len(self.train_df) + len(self.valid_df) if self.valid_df is not None else len(self.train_df) def prepare(self): if self.task == "text_binary_classification": text_column = self.column_mapping["text"] label_column = self.column_mapping["label"] preprocessor = TextBinaryClassificationPreprocessor( train_data=self.train_df, text_column=text_column, label_column=label_column, username=self.username, project_name=self.project_name, valid_data=self.valid_df, test_size=self.percent_valid, token=self.token, seed=42, convert_to_class_label=self.convert_to_class_label, ) preprocessor.prepare() elif self.task == "text_multi_class_classification": text_column = self.column_mapping["text"] label_column = self.column_mapping["label"] preprocessor = TextMultiClassClassificationPreprocessor( train_data=self.train_df, text_column=text_column, label_column=label_column, username=self.username, project_name=self.project_name, valid_data=self.valid_df, test_size=self.percent_valid, token=self.token, seed=42, convert_to_class_label=self.convert_to_class_label, ) preprocessor.prepare() elif self.task == "text_single_column_regression": text_column = self.column_mapping["text"] label_column = self.column_mapping["label"] preprocessor = TextSingleColumnRegressionPreprocessor( train_data=self.train_df, text_column=text_column, label_column=label_column, username=self.username, project_name=self.project_name, valid_data=self.valid_df, test_size=self.percent_valid, token=self.token, seed=42, ) preprocessor.prepare() elif self.task == "lm_training": text_column = self.column_mapping.get("text", None) if text_column is None: prompt_column = self.column_mapping["prompt"] response_column = self.column_mapping["response"] else: prompt_column = None response_column = None context_column = self.column_mapping.get("context", None) prompt_start_column = self.column_mapping.get("prompt_start", None) preprocessor = LLMPreprocessor( train_data=self.train_df, text_column=text_column, prompt_column=prompt_column, response_column=response_column, context_column=context_column, prompt_start_column=prompt_start_column, username=self.username, project_name=self.project_name, valid_data=self.valid_df, test_size=self.percent_valid, token=self.token, seed=42, ) preprocessor.prepare() elif self.task == "tabular_binary_classification": id_column = self.column_mapping["id"] label_column = self.column_mapping["label"][0] if len(id_column.strip()) == 0: id_column = None preprocessor = TabularBinaryClassificationPreprocessor( train_data=self.train_df, id_column=id_column, label_column=label_column, username=self.username, project_name=self.project_name, valid_data=self.valid_df, test_size=self.percent_valid, token=self.token, seed=42, ) preprocessor.prepare() elif self.task == "tabular_multi_class_classification": id_column = self.column_mapping["id"] label_column = self.column_mapping["label"][0] if len(id_column.strip()) == 0: id_column = None preprocessor = TabularMultiClassClassificationPreprocessor( train_data=self.train_df, id_column=id_column, label_column=label_column, username=self.username, project_name=self.project_name, valid_data=self.valid_df, test_size=self.percent_valid, token=self.token, seed=42, ) preprocessor.prepare() elif self.task == "tabular_single_column_regression": id_column = self.column_mapping["id"] label_column = self.column_mapping["label"][0] if len(id_column.strip()) == 0: id_column = None preprocessor = TabularSingleColumnRegressionPreprocessor( train_data=self.train_df, id_column=id_column, label_column=label_column, username=self.username, project_name=self.project_name, valid_data=self.valid_df, test_size=self.percent_valid, token=self.token, seed=42, ) preprocessor.prepare() elif self.task == "tabular_multi_column_regression": id_column = self.column_mapping["id"] label_column = self.column_mapping["label"] if len(id_column.strip()) == 0: id_column = None preprocessor = TabularMultiColumnRegressionPreprocessor( train_data=self.train_df, id_column=id_column, label_column=label_column, username=self.username, project_name=self.project_name, valid_data=self.valid_df, test_size=self.percent_valid, token=self.token, seed=42, ) preprocessor.prepare() elif self.task == "tabular_multi_label_classification": id_column = self.column_mapping["id"] label_column = self.column_mapping["label"] if len(id_column.strip()) == 0: id_column = None preprocessor = TabularMultiLabelClassificationPreprocessor( train_data=self.train_df, id_column=id_column, label_column=label_column, username=self.username, project_name=self.project_name, valid_data=self.valid_df, test_size=self.percent_valid, token=self.token, seed=42, ) preprocessor.prepare() else: raise ValueError(f"Task {self.task} not supported")
autotrain-advanced-main
src/autotrain/dataset.py
import json import os import subprocess import psutil from fastapi import FastAPI from autotrain import logger from autotrain.trainers.clm.params import LLMTrainingParams from autotrain.trainers.dreambooth.params import DreamBoothTrainingParams from autotrain.trainers.generic.params import GenericParams from autotrain.trainers.tabular.params import TabularParams from autotrain.trainers.text_classification.params import TextClassificationParams HF_TOKEN = os.environ.get("HF_TOKEN") AUTOTRAIN_USERNAME = os.environ.get("AUTOTRAIN_USERNAME") PROJECT_NAME = os.environ.get("PROJECT_NAME") TASK_ID = int(os.environ.get("TASK_ID")) PARAMS = os.environ.get("PARAMS") DATA_PATH = os.environ.get("DATA_PATH") MODEL = os.environ.get("MODEL") OUTPUT_MODEL_REPO = os.environ.get("OUTPUT_MODEL_REPO") PID = None api = FastAPI() logger.info(f"AUTOTRAIN_USERNAME: {AUTOTRAIN_USERNAME}") logger.info(f"PROJECT_NAME: {PROJECT_NAME}") logger.info(f"TASK_ID: {TASK_ID}") logger.info(f"DATA_PATH: {DATA_PATH}") logger.info(f"MODEL: {MODEL}") logger.info(f"OUTPUT_MODEL_REPO: {OUTPUT_MODEL_REPO}") def run_training(): params = json.loads(PARAMS) logger.info(params) if TASK_ID == 9: params = LLMTrainingParams.parse_raw(params) params.project_name = "/tmp/model" params.save(output_dir=params.project_name) cmd = ["accelerate", "launch", "--num_machines", "1", "--num_processes", "1"] cmd.append("--mixed_precision") if params.fp16: cmd.append("fp16") else: cmd.append("no") cmd.extend( [ "-m", "autotrain.trainers.clm", "--training_config", os.path.join(params.project_name, "training_params.json"), ] ) elif TASK_ID in (1, 2): params = TextClassificationParams.parse_raw(params) params.project_name = "/tmp/model" params.save(output_dir=params.project_name) cmd = ["accelerate", "launch", "--num_machines", "1", "--num_processes", "1"] cmd.append("--mixed_precision") if params.fp16: cmd.append("fp16") else: cmd.append("no") cmd.extend( [ "-m", "autotrain.trainers.text_classification", "--training_config", os.path.join(params.project_name, "training_params.json"), ] ) elif TASK_ID in (13, 14, 15, 16, 26): params = TabularParams.parse_raw(params) params.project_name = "/tmp/model" params.save(output_dir=params.project_name) cmd = [ "python", "-m", "autotrain.trainers.tabular", "--training_config", os.path.join(params.project_name, "training_params.json"), ] elif TASK_ID == 27: params = GenericParams.parse_raw(params) params.project_name = "/tmp/model" params.save(output_dir=params.project_name) cmd = [ "python", "-m", "autotrain.trainers.generic", "--config", os.path.join(params.project_name, "training_params.json"), ] elif TASK_ID == 25: params = DreamBoothTrainingParams.parse_raw(params) params.project_name = "/tmp/model" params.save(output_dir=params.project_name) cmd = [ "python", "-m", "autotrain.trainers.dreambooth", "--training_config", os.path.join(params.project_name, "training_params.json"), ] else: raise NotImplementedError cmd = [str(c) for c in cmd] logger.info(cmd) env = os.environ.copy() process = subprocess.Popen(" ".join(cmd), shell=True, env=env) return process.pid def get_process_status(pid): try: process = psutil.Process(pid) return process.status() except psutil.NoSuchProcess: return "No process found with PID: {}".format(pid) def kill_process(pid): try: parent_process = psutil.Process(pid) children = parent_process.children(recursive=True) # This will get all the child processes recursively # First, terminate the child processes for child in children: child.terminate() # Wait for the child processes to terminate, and kill them if they don't gone, still_alive = psutil.wait_procs(children, timeout=3) for child in still_alive: child.kill() # Now, terminate the parent process parent_process.terminate() parent_process.wait(timeout=5) logger.info(f"Process with pid {pid} and its children have been killed") return f"Process with pid {pid} and its children have been killed" except psutil.NoSuchProcess: logger.info(f"No process found with pid {pid}") return f"No process found with pid {pid}" except psutil.TimeoutExpired: logger.info(f"Process {pid} or one of its children has not terminated in time") return f"Process {pid} or one of its children has not terminated in time" @api.on_event("startup") async def startup_event(): process_pid = run_training() logger.info(f"Started training with PID {process_pid}") global PID PID = process_pid @api.get("/") async def root(): return "Your model is being trained..." @api.get("/status") async def status(): return get_process_status(pid=PID) @api.get("/kill") async def kill(): return kill_process(pid=PID) @api.get("/health") async def health(): return "OK"
autotrain-advanced-main
src/autotrain/api.py
import glob import json import os import re import shutil import subprocess import traceback from typing import Dict, Optional import requests from accelerate.state import PartialState from huggingface_hub import HfApi, HfFolder from huggingface_hub.repository import Repository from transformers import AutoConfig from autotrain import config, logger from autotrain.tasks import TASKS FORMAT_TAG = "\033[{code}m" RESET_TAG = FORMAT_TAG.format(code=0) BOLD_TAG = FORMAT_TAG.format(code=1) RED_TAG = FORMAT_TAG.format(code=91) GREEN_TAG = FORMAT_TAG.format(code=92) YELLOW_TAG = FORMAT_TAG.format(code=93) PURPLE_TAG = FORMAT_TAG.format(code=95) CYAN_TAG = FORMAT_TAG.format(code=96) LFS_PATTERNS = [ "*.bin.*", "*.lfs.*", "*.bin", "*.h5", "*.tflite", "*.tar.gz", "*.ot", "*.onnx", "*.pt", "*.pkl", "*.parquet", "*.joblib", "tokenizer.json", ] class UnauthenticatedError(Exception): pass class UnreachableAPIError(Exception): pass def get_auth_headers(token: str, prefix: str = "Bearer"): return {"Authorization": f"{prefix} {token}"} def http_get( path: str, token: str, domain: str = config.AUTOTRAIN_BACKEND_API, token_prefix: str = "Bearer", suppress_logs: bool = False, **kwargs, ) -> requests.Response: """HTTP GET request to the AutoNLP API, raises UnreachableAPIError if the API cannot be reached""" logger.info(f"Sending GET request to {domain + path}") try: response = requests.get( url=domain + path, headers=get_auth_headers(token=token, prefix=token_prefix), **kwargs ) except requests.exceptions.ConnectionError: raise UnreachableAPIError("❌ Failed to reach AutoNLP API, check your internet connection") response.raise_for_status() return response def http_post( path: str, token: str, payload: Optional[Dict] = None, domain: str = config.AUTOTRAIN_BACKEND_API, suppress_logs: bool = False, **kwargs, ) -> requests.Response: """HTTP POST request to the AutoNLP API, raises UnreachableAPIError if the API cannot be reached""" logger.info(f"Sending POST request to {domain + path}") try: response = requests.post( url=domain + path, json=payload, headers=get_auth_headers(token=token), allow_redirects=True, **kwargs ) except requests.exceptions.ConnectionError: raise UnreachableAPIError("❌ Failed to reach AutoNLP API, check your internet connection") response.raise_for_status() return response def get_task(task_id: int) -> str: for key, value in TASKS.items(): if value == task_id: return key return "❌ Unsupported task! Please update autonlp" def get_user_token(): return HfFolder.get_token() def user_authentication(token): logger.info("Authenticating user...") headers = {} cookies = {} if token.startswith("hf_"): headers["Authorization"] = f"Bearer {token}" else: cookies = {"token": token} try: response = requests.get( config.HF_API + "/api/whoami-v2", headers=headers, cookies=cookies, timeout=3, ) except (requests.Timeout, ConnectionError) as err: logger.error(f"Failed to request whoami-v2 - {repr(err)}") raise Exception("Hugging Face Hub is unreachable, please try again later.") return response.json() def get_project_cost(username, token, task, num_samples, num_models): logger.info("Getting project cost...") task_id = TASKS[task] pricing = http_get( path=f"/pricing/compute?username={username}&task_id={task_id}&num_samples={num_samples}&num_models={num_models}", token=token, ) return pricing.json()["price"] def app_error_handler(func): def wrapper(*args, **kwargs): try: return func(*args, **kwargs) except Exception as err: logger.error(f"{func.__name__} has failed due to an exception:") logger.error(traceback.format_exc()) if "param_choice" in str(err): ValueError("Unable to estimate costs. Job params not chosen yet.") elif "Failed to reach AutoNLP API" in str(err): ValueError("Unable to reach AutoTrain API. Please check your internet connection.") elif "An error has occurred: 'NoneType' object has no attribute 'type'" in str(err): ValueError("Unable to estimate costs. Data not uploaded yet.") else: ValueError(f"An error has occurred: {err}") return wrapper def clone_hf_repo(repo_url: str, local_dir: str, token: str) -> Repository: os.makedirs(local_dir, exist_ok=True) repo_url = re.sub(r"(https?://)", rf"\1user:{token}@", repo_url) subprocess.run( "git lfs install".split(), stderr=subprocess.PIPE, stdout=subprocess.PIPE, check=True, encoding="utf-8", cwd=local_dir, ) subprocess.run( f"git lfs clone {repo_url} .".split(), stderr=subprocess.PIPE, stdout=subprocess.PIPE, check=True, encoding="utf-8", cwd=local_dir, ) data_repo = Repository(local_dir=local_dir, use_auth_token=token) return data_repo def create_repo(project_name, autotrain_user, huggingface_token, model_path): repo_name = f"autotrain-{project_name}" repo_url = HfApi().create_repo( repo_id=f"{autotrain_user}/{repo_name}", token=huggingface_token, exist_ok=False, private=True, ) if len(repo_url.strip()) == 0: repo_url = f"https://huggingface.co/{autotrain_user}/{repo_name}" logger.info(f"Created repo: {repo_url}") model_repo = clone_hf_repo( local_dir=model_path, repo_url=repo_url, token=huggingface_token, ) model_repo.lfs_track(patterns=LFS_PATTERNS) return model_repo def save_model(torch_model, model_path): torch_model.save_pretrained(model_path) try: torch_model.save_pretrained(model_path, safe_serialization=True) except Exception as e: logger.error(f"Safe serialization failed with error: {e}") def save_tokenizer(tok, model_path): tok.save_pretrained(model_path) def update_model_config(model, job_config): model.config._name_or_path = "AutoTrain" if job_config.task in ("speech_recognition", "summarization"): return model if "max_seq_length" in job_config: model.config.max_length = job_config.max_seq_length model.config.padding = "max_length" return model def save_model_card(model_card, model_path): with open(os.path.join(model_path, "README.md"), "w") as fp: fp.write(f"{model_card}") def create_file(filename, file_content, model_path): with open(os.path.join(model_path, filename), "w") as fp: fp.write(f"{file_content}") def save_config(conf, model_path): with open(os.path.join(model_path, "config.json"), "w") as fp: json.dump(conf, fp) def remove_checkpoints(model_path): subfolders = glob.glob(os.path.join(model_path, "*/")) for subfolder in subfolders: shutil.rmtree(subfolder) try: os.remove(os.path.join(model_path, "emissions.csv")) except OSError: pass def job_watcher(func): def wrapper(co2_tracker, *args, **kwargs): try: return func(co2_tracker, *args, **kwargs) except Exception: logger.error(f"{func.__name__} has failed due to an exception:") logger.error(traceback.format_exc()) co2_tracker.stop() # delete training tracker file os.remove(os.path.join("/tmp", "training")) return wrapper def get_model_architecture(model_path_or_name: str, revision: str = "main") -> str: config = AutoConfig.from_pretrained(model_path_or_name, revision=revision, trust_remote_code=True) architectures = config.architectures if architectures is None or len(architectures) > 1: raise ValueError( f"The model architecture is either not defined or not unique. Found architectures: {architectures}" ) return architectures[0] def monitor(func): def wrapper(*args, **kwargs): try: return func(*args, **kwargs) except Exception: if PartialState().process_index == 0: logger.error(f"{func.__name__} has failed due to an exception:") logger.error(traceback.format_exc()) if "SPACE_ID" in os.environ: # shut down the space logger.info("Pausing space...") api = HfApi(token=os.environ["HF_TOKEN"]) api.pause_space(repo_id=os.environ["SPACE_ID"]) return wrapper
autotrain-advanced-main
src/autotrain/utils.py
import json import os import random import string import zipfile import gradio as gr import pandas as pd from huggingface_hub import list_models from autotrain import logger from autotrain.dataset import AutoTrainDataset, AutoTrainDreamboothDataset, AutoTrainImageClassificationDataset from autotrain.languages import SUPPORTED_LANGUAGES from autotrain.params import Params from autotrain.project import Project from autotrain.utils import get_project_cost, get_user_token, user_authentication APP_TASKS = { "Natural Language Processing": ["Text Classification"], # "Tabular": TABULAR_TASKS, "Computer Vision": ["Image Classification", "Dreambooth"], } APP_TASKS_MAPPING = { "Text Classification": "text_multi_class_classification", "LLM Finetuning": "lm_training", "Image Classification": "image_multi_class_classification", "Dreambooth": "dreambooth", } APP_TASK_TYPE_MAPPING = { "text_classification": "Natural Language Processing", "lm_training": "Natural Language Processing", "image_classification": "Computer Vision", "dreambooth": "Computer Vision", } ALLOWED_FILE_TYPES = [ ".csv", ".CSV", ".jsonl", ".JSONL", ".zip", ".ZIP", ".png", ".PNG", ".jpg", ".JPG", ".jpeg", ".JPEG", ] def _login_user(user_token): user_info = user_authentication(token=user_token) username = user_info["name"] user_can_pay = user_info["canPay"] orgs = user_info["orgs"] valid_orgs = [org for org in orgs if org["canPay"] is True] valid_orgs = [org for org in valid_orgs if org["roleInOrg"] in ("admin", "write")] valid_orgs = [org["name"] for org in valid_orgs] valid_can_pay = [username] + valid_orgs if user_can_pay else valid_orgs who_is_training = [username] + [org["name"] for org in orgs] return user_token, valid_can_pay, who_is_training def _update_task_type(project_type): return gr.Dropdown.update( value=APP_TASKS[project_type][0], choices=APP_TASKS[project_type], visible=True, ) def _update_model_choice(task, autotrain_backend): # TODO: add tabular and remember, for tabular, we only support AutoTrain if autotrain_backend.lower() != "huggingface internal": model_choice = ["HuggingFace Hub"] return gr.Dropdown.update( value=model_choice[0], choices=model_choice, visible=True, ) if task == "LLM Finetuning": model_choice = ["HuggingFace Hub"] else: model_choice = ["AutoTrain", "HuggingFace Hub"] return gr.Dropdown.update( value=model_choice[0], choices=model_choice, visible=True, ) def _update_file_type(task): task = APP_TASKS_MAPPING[task] if task in ("text_multi_class_classification", "lm_training"): return gr.Radio.update( value="CSV", choices=["CSV", "JSONL"], visible=True, ) elif task == "image_multi_class_classification": return gr.Radio.update( value="ZIP", choices=["Image Subfolders", "ZIP"], visible=True, ) elif task == "dreambooth": return gr.Radio.update( value="ZIP", choices=["Image Folder", "ZIP"], visible=True, ) else: raise NotImplementedError def _update_param_choice(model_choice, autotrain_backend): logger.info(f"model_choice: {model_choice}") choices = ["AutoTrain", "Manual"] if model_choice == "HuggingFace Hub" else ["AutoTrain"] choices = ["Manual"] if autotrain_backend != "HuggingFace Internal" else choices return gr.Dropdown.update( value=choices[0], choices=choices, visible=True, ) def _project_type_update(project_type, task_type, autotrain_backend): logger.info(f"project_type: {project_type}, task_type: {task_type}") task_choices_update = _update_task_type(project_type) model_choices_update = _update_model_choice(task_choices_update["value"], autotrain_backend) param_choices_update = _update_param_choice(model_choices_update["value"], autotrain_backend) return [ task_choices_update, model_choices_update, param_choices_update, _update_hub_model_choices(task_choices_update["value"], model_choices_update["value"]), ] def _task_type_update(task_type, autotrain_backend): logger.info(f"task_type: {task_type}") model_choices_update = _update_model_choice(task_type, autotrain_backend) param_choices_update = _update_param_choice(model_choices_update["value"], autotrain_backend) return [ model_choices_update, param_choices_update, _update_hub_model_choices(task_type, model_choices_update["value"]), ] def _update_col_map(training_data, task): task = APP_TASKS_MAPPING[task] if task == "text_multi_class_classification": data_cols = pd.read_csv(training_data[0].name, nrows=2).columns.tolist() return [ gr.Dropdown.update(visible=True, choices=data_cols, label="Map `text` column", value=data_cols[0]), gr.Dropdown.update(visible=True, choices=data_cols, label="Map `target` column", value=data_cols[1]), gr.Text.update(visible=False), ] elif task == "lm_training": data_cols = pd.read_csv(training_data[0].name, nrows=2).columns.tolist() return [ gr.Dropdown.update(visible=True, choices=data_cols, label="Map `text` column", value=data_cols[0]), gr.Dropdown.update(visible=False), gr.Text.update(visible=False), ] elif task == "dreambooth": return [ gr.Dropdown.update(visible=False), gr.Dropdown.update(visible=False), gr.Text.update(visible=True, label="Concept Token", interactive=True), ] else: return [ gr.Dropdown.update(visible=False), gr.Dropdown.update(visible=False), gr.Text.update(visible=False), ] def _estimate_costs( training_data, validation_data, task, user_token, autotrain_username, training_params_txt, autotrain_backend ): if autotrain_backend.lower() != "huggingface internal": return [ gr.Markdown.update( value="Cost estimation is not available for this backend", visible=True, ), gr.Number.update(visible=False), ] try: logger.info("Estimating costs....") if training_data is None: return [ gr.Markdown.update( value="Could not estimate cost. Please add training data", visible=True, ), gr.Number.update(visible=False), ] if validation_data is None: validation_data = [] training_params = json.loads(training_params_txt) if len(training_params) == 0: return [ gr.Markdown.update( value="Could not estimate cost. Please add atleast one job", visible=True, ), gr.Number.update(visible=False), ] elif len(training_params) == 1: if "num_models" in training_params[0]: num_models = training_params[0]["num_models"] else: num_models = 1 else: num_models = len(training_params) task = APP_TASKS_MAPPING[task] num_samples = 0 logger.info("Estimating number of samples") if task in ("text_multi_class_classification", "lm_training"): for _f in training_data: num_samples += pd.read_csv(_f.name).shape[0] for _f in validation_data: num_samples += pd.read_csv(_f.name).shape[0] elif task == "image_multi_class_classification": logger.info(f"training_data: {training_data}") if len(training_data) > 1: return [ gr.Markdown.update( value="Only one training file is supported for image classification", visible=True, ), gr.Number.update(visible=False), ] if len(validation_data) > 1: return [ gr.Markdown.update( value="Only one validation file is supported for image classification", visible=True, ), gr.Number.update(visible=False), ] for _f in training_data: zip_ref = zipfile.ZipFile(_f.name, "r") for _ in zip_ref.namelist(): num_samples += 1 for _f in validation_data: zip_ref = zipfile.ZipFile(_f.name, "r") for _ in zip_ref.namelist(): num_samples += 1 elif task == "dreambooth": num_samples = len(training_data) else: raise NotImplementedError logger.info(f"Estimating costs for: num_models: {num_models}, task: {task}, num_samples: {num_samples}") estimated_cost = get_project_cost( username=autotrain_username, token=user_token, task=task, num_samples=num_samples, num_models=num_models, ) logger.info(f"Estimated_cost: {estimated_cost}") return [ gr.Markdown.update( value=f"Estimated cost: ${estimated_cost:.2f}. Note: clicking on 'Create Project' will start training and incur charges!", visible=True, ), gr.Number.update(visible=False), ] except Exception as e: logger.error(e) logger.error("Could not estimate cost, check inputs") return [ gr.Markdown.update( value="Could not estimate cost, check inputs", visible=True, ), gr.Number.update(visible=False), ] def get_job_params(param_choice, training_params, task): if param_choice == "autotrain": if len(training_params) > 1: raise ValueError("❌ Only one job parameter is allowed for AutoTrain.") training_params[0].update({"task": task}) elif param_choice.lower() == "manual": for i in range(len(training_params)): training_params[i].update({"task": task}) if "hub_model" in training_params[i]: # remove hub_model from training_params training_params[i].pop("hub_model") return training_params def _update_project_name(): random_project_name = "-".join( ["".join(random.choices(string.ascii_lowercase + string.digits, k=4)) for _ in range(3)] ) # check if training tracker exists if os.path.exists(os.path.join("/tmp", "training")): return [ gr.Text.update(value=random_project_name, visible=True, interactive=True), gr.Button.update(interactive=False), ] return [ gr.Text.update(value=random_project_name, visible=True, interactive=True), gr.Button.update(interactive=True), ] def _update_hub_model_choices(task, model_choice): task = APP_TASKS_MAPPING[task] logger.info(f"Updating hub model choices for task: {task}, model_choice: {model_choice}") if model_choice.lower() == "autotrain": return gr.Dropdown.update( visible=False, interactive=False, ) if task == "text_multi_class_classification": hub_models1 = list_models(filter="fill-mask", sort="downloads", direction=-1, limit=100) hub_models2 = list_models(filter="text-classification", sort="downloads", direction=-1, limit=100) hub_models = list(hub_models1) + list(hub_models2) elif task == "lm_training": hub_models = list(list_models(filter="text-generation", sort="downloads", direction=-1, limit=100)) elif task == "image_multi_class_classification": hub_models = list(list_models(filter="image-classification", sort="downloads", direction=-1, limit=100)) elif task == "dreambooth": hub_models = list(list_models(filter="text-to-image", sort="downloads", direction=-1, limit=100)) else: raise NotImplementedError # sort by number of downloads in descending order hub_models = [{"id": m.modelId, "downloads": m.downloads} for m in hub_models if m.private is False] hub_models = sorted(hub_models, key=lambda x: x["downloads"], reverse=True) if task == "dreambooth": choices = ["stabilityai/stable-diffusion-xl-base-1.0"] + [m["id"] for m in hub_models] value = choices[0] return gr.Dropdown.update( choices=choices, value=value, visible=True, interactive=True, ) return gr.Dropdown.update( choices=[m["id"] for m in hub_models], value=hub_models[0]["id"], visible=True, interactive=True, ) def _update_backend(backend): if backend != "Hugging Face Internal": return [ gr.Dropdown.update( visible=True, interactive=True, choices=["HuggingFace Hub"], value="HuggingFace Hub", ), gr.Dropdown.update( visible=True, interactive=True, choices=["Manual"], value="Manual", ), ] return [ gr.Dropdown.update( visible=True, interactive=True, ), gr.Dropdown.update( visible=True, interactive=True, ), ] def _create_project( autotrain_username, valid_can_pay, project_name, user_token, task, training_data, validation_data, col_map_text, col_map_label, concept_token, training_params_txt, hub_model, estimated_cost, autotrain_backend, ): task = APP_TASKS_MAPPING[task] valid_can_pay = valid_can_pay.split(",") can_pay = autotrain_username in valid_can_pay logger.info(f"🚨🚨🚨Creating project: {project_name}") logger.info(f"🚨Task: {task}") logger.info(f"🚨Training data: {training_data}") logger.info(f"🚨Validation data: {validation_data}") logger.info(f"🚨Training params: {training_params_txt}") logger.info(f"🚨Hub model: {hub_model}") logger.info(f"🚨Estimated cost: {estimated_cost}") logger.info(f"🚨:Can pay: {can_pay}") if can_pay is False and estimated_cost > 0: raise gr.Error("❌ You do not have enough credits to create this project. Please add a valid payment method.") training_params = json.loads(training_params_txt) if len(training_params) == 0: raise gr.Error("Please add atleast one job") elif len(training_params) == 1: if "num_models" in training_params[0]: param_choice = "autotrain" else: param_choice = "manual" else: param_choice = "manual" if task == "image_multi_class_classification": training_data = training_data[0].name if validation_data is not None: validation_data = validation_data[0].name dset = AutoTrainImageClassificationDataset( train_data=training_data, token=user_token, project_name=project_name, username=autotrain_username, valid_data=validation_data, percent_valid=None, # TODO: add to UI ) elif task == "text_multi_class_classification": training_data = [f.name for f in training_data] if validation_data is None: validation_data = [] else: validation_data = [f.name for f in validation_data] dset = AutoTrainDataset( train_data=training_data, task=task, token=user_token, project_name=project_name, username=autotrain_username, column_mapping={"text": col_map_text, "label": col_map_label}, valid_data=validation_data, percent_valid=None, # TODO: add to UI ) elif task == "lm_training": training_data = [f.name for f in training_data] if validation_data is None: validation_data = [] else: validation_data = [f.name for f in validation_data] dset = AutoTrainDataset( train_data=training_data, task=task, token=user_token, project_name=project_name, username=autotrain_username, column_mapping={"text": col_map_text}, valid_data=validation_data, percent_valid=None, # TODO: add to UI ) elif task == "dreambooth": dset = AutoTrainDreamboothDataset( concept_images=training_data, concept_name=concept_token, token=user_token, project_name=project_name, username=autotrain_username, ) else: raise NotImplementedError dset.prepare() project = Project( dataset=dset, param_choice=param_choice, hub_model=hub_model, job_params=get_job_params(param_choice, training_params, task), ) if autotrain_backend.lower() == "huggingface internal": project_id = project.create() project.approve(project_id) return gr.Markdown.update( value=f"Project created successfully. Monitor progess on the [dashboard](https://ui.autotrain.huggingface.co/{project_id}/trainings).", visible=True, ) else: project.create(local=True) def get_variable_name(var, namespace): for name in namespace: if namespace[name] is var: return name return None def disable_create_project_button(): return gr.Button.update(interactive=False) def main(): with gr.Blocks(theme="freddyaboulton/dracula_revamped") as demo: gr.Markdown("## 🤗 AutoTrain Advanced") user_token = os.environ.get("HF_TOKEN", "") if len(user_token) == 0: user_token = get_user_token() if user_token is None: gr.Markdown( """Please login with a write [token](https://huggingface.co/settings/tokens). Pass your HF token in an environment variable called `HF_TOKEN` and then restart this app. """ ) return demo user_token, valid_can_pay, who_is_training = _login_user(user_token) if user_token is None or len(user_token) == 0: gr.Error("Please login with a write token.") user_token = gr.Textbox( value=user_token, type="password", lines=1, max_lines=1, visible=False, interactive=False ) valid_can_pay = gr.Textbox(value=",".join(valid_can_pay), visible=False, interactive=False) with gr.Row(): with gr.Column(): with gr.Row(): autotrain_username = gr.Dropdown( label="AutoTrain Username", choices=who_is_training, value=who_is_training[0] if who_is_training else "", ) autotrain_backend = gr.Dropdown( label="AutoTrain Backend", choices=["HuggingFace Internal", "HuggingFace Spaces"], value="HuggingFace Internal", interactive=True, ) with gr.Row(): project_name = gr.Textbox(label="Project name", value="", lines=1, max_lines=1, interactive=True) project_type = gr.Dropdown( label="Project Type", choices=list(APP_TASKS.keys()), value=list(APP_TASKS.keys())[0] ) task_type = gr.Dropdown( label="Task", choices=APP_TASKS[list(APP_TASKS.keys())[0]], value=APP_TASKS[list(APP_TASKS.keys())[0]][0], interactive=True, ) model_choice = gr.Dropdown( label="Model Choice", choices=["AutoTrain", "HuggingFace Hub"], value="AutoTrain", visible=True, interactive=True, ) hub_model = gr.Dropdown( label="Hub Model", value="", visible=False, interactive=True, elem_id="hub_model", ) gr.Markdown("<hr>") with gr.Row(): with gr.Column(): with gr.Tabs(elem_id="tabs"): with gr.TabItem("Data"): with gr.Column(): # file_type_training = gr.Radio( # label="File Type", # choices=["CSV", "JSONL"], # value="CSV", # visible=True, # interactive=True, # ) training_data = gr.File( label="Training Data", file_types=ALLOWED_FILE_TYPES, file_count="multiple", visible=True, interactive=True, elem_id="training_data_box", ) with gr.Accordion("Validation Data (Optional)", open=False): validation_data = gr.File( label="Validation Data (Optional)", file_types=ALLOWED_FILE_TYPES, file_count="multiple", visible=True, interactive=True, elem_id="validation_data_box", ) with gr.Row(): col_map_text = gr.Dropdown( label="Text Column", choices=[], visible=False, interactive=True ) col_map_target = gr.Dropdown( label="Target Column", choices=[], visible=False, interactive=True ) concept_token = gr.Text( value="", visible=False, interactive=True, lines=1, max_lines=1 ) with gr.TabItem("Params"): with gr.Row(): source_language = gr.Dropdown( label="Source Language", choices=SUPPORTED_LANGUAGES[:-1], value="en", visible=True, interactive=True, elem_id="source_language", ) num_models = gr.Slider( label="Number of Models", minimum=1, maximum=25, value=5, step=1, visible=True, interactive=True, elem_id="num_models", ) target_language = gr.Dropdown( label="Target Language", choices=["fr"], value="fr", visible=False, interactive=True, elem_id="target_language", ) image_size = gr.Number( label="Image Size", value=512, visible=False, interactive=True, elem_id="image_size", ) with gr.Row(): learning_rate = gr.Number( label="Learning Rate", value=5e-5, visible=False, interactive=True, elem_id="learning_rate", ) batch_size = gr.Number( label="Train Batch Size", value=32, visible=False, interactive=True, elem_id="train_batch_size", ) num_epochs = gr.Number( label="Number of Epochs", value=3, visible=False, interactive=True, elem_id="num_train_epochs", ) with gr.Row(): gradient_accumulation_steps = gr.Number( label="Gradient Accumulation Steps", value=1, visible=False, interactive=True, elem_id="gradient_accumulation_steps", ) percentage_warmup_steps = gr.Number( label="Percentage of Warmup Steps", value=0.1, visible=False, interactive=True, elem_id="percentage_warmup", ) weight_decay = gr.Number( label="Weight Decay", value=0.01, visible=False, interactive=True, elem_id="weight_decay", ) with gr.Row(): lora_r = gr.Number( label="LoraR", value=16, visible=False, interactive=True, elem_id="lora_r", ) lora_alpha = gr.Number( label="LoraAlpha", value=32, visible=False, interactive=True, elem_id="lora_alpha", ) lora_dropout = gr.Number( label="Lora Dropout", value=0.1, visible=False, interactive=True, elem_id="lora_dropout", ) with gr.Row(): db_num_steps = gr.Number( label="Num Steps", value=500, visible=False, interactive=True, elem_id="num_steps", ) with gr.Row(): optimizer = gr.Dropdown( label="Optimizer", choices=["adamw_torch", "adamw_hf", "sgd", "adafactor", "adagrad"], value="adamw_torch", visible=False, interactive=True, elem_id="optimizer", ) scheduler = gr.Dropdown( label="Scheduler", choices=["linear", "cosine"], value="linear", visible=False, interactive=True, elem_id="scheduler", ) add_job_button = gr.Button( value="Add Job", visible=True, interactive=True, elem_id="add_job", ) # clear_jobs_button = gr.Button( # value="Clear Jobs", # visible=True, # interactive=True, # elem_id="clear_jobs", # ) gr.Markdown("<hr>") estimated_costs_md = gr.Markdown(value="Estimated Costs: N/A", visible=True, interactive=False) estimated_costs_num = gr.Number(value=0, visible=False, interactive=False) create_project_button = gr.Button( value="Create Project", visible=True, interactive=True, elem_id="create_project", ) with gr.Column(): param_choice = gr.Dropdown( label="Param Choice", choices=["AutoTrain"], value="AutoTrain", visible=True, interactive=True, ) training_params_txt = gr.Text(value="[]", visible=False, interactive=False) training_params_md = gr.DataFrame(visible=False, interactive=False) final_output = gr.Markdown(value="", visible=True, interactive=False) hyperparameters = [ hub_model, num_models, source_language, target_language, learning_rate, batch_size, num_epochs, gradient_accumulation_steps, lora_r, lora_alpha, lora_dropout, optimizer, scheduler, percentage_warmup_steps, weight_decay, db_num_steps, image_size, ] def _update_params(params_data): _task = params_data[task_type] _task = APP_TASKS_MAPPING[_task] params = Params( task=_task, param_choice="autotrain" if params_data[param_choice] == "AutoTrain" else "manual", model_choice="autotrain" if params_data[model_choice] == "AutoTrain" else "hub_model", ) params = params.get() visible_params = [] for param in hyperparameters: if param.elem_id in params.keys(): visible_params.append(param.elem_id) op = [h.update(visible=h.elem_id in visible_params) for h in hyperparameters] op.append(add_job_button.update(visible=True)) op.append(training_params_md.update(visible=False)) op.append(training_params_txt.update(value="[]")) return op autotrain_backend.change( _project_type_update, inputs=[project_type, task_type, autotrain_backend], outputs=[task_type, model_choice, param_choice, hub_model], ) project_type.change( _project_type_update, inputs=[project_type, task_type, autotrain_backend], outputs=[task_type, model_choice, param_choice, hub_model], ) task_type.change( _task_type_update, inputs=[task_type, autotrain_backend], outputs=[model_choice, param_choice, hub_model], ) model_choice.change( _update_param_choice, inputs=[model_choice, autotrain_backend], outputs=param_choice, ).then( _update_hub_model_choices, inputs=[task_type, model_choice], outputs=hub_model, ) param_choice.change( _update_params, inputs=set([task_type, param_choice, model_choice] + hyperparameters + [add_job_button]), outputs=hyperparameters + [add_job_button, training_params_md, training_params_txt], ) task_type.change( _update_params, inputs=set([task_type, param_choice, model_choice] + hyperparameters + [add_job_button]), outputs=hyperparameters + [add_job_button, training_params_md, training_params_txt], ) model_choice.change( _update_params, inputs=set([task_type, param_choice, model_choice] + hyperparameters + [add_job_button]), outputs=hyperparameters + [add_job_button, training_params_md, training_params_txt], ) def _add_job(params_data): _task = params_data[task_type] _task = APP_TASKS_MAPPING[_task] _param_choice = "autotrain" if params_data[param_choice] == "AutoTrain" else "manual" _model_choice = "autotrain" if params_data[model_choice] == "AutoTrain" else "hub_model" if _model_choice == "hub_model" and params_data[hub_model] is None: logger.error("Hub model is None") return _training_params = {} params = Params(task=_task, param_choice=_param_choice, model_choice=_model_choice) params = params.get() for _param in hyperparameters: if _param.elem_id in params.keys(): _training_params[_param.elem_id] = params_data[_param] _training_params_md = json.loads(params_data[training_params_txt]) if _param_choice == "autotrain": if len(_training_params_md) > 0: _training_params_md[0] = _training_params _training_params_md = _training_params_md[:1] else: _training_params_md.append(_training_params) else: _training_params_md.append(_training_params) params_df = pd.DataFrame(_training_params_md) # remove hub_model column if "hub_model" in params_df.columns: params_df = params_df.drop(columns=["hub_model"]) return [ gr.DataFrame.update(value=params_df, visible=True), gr.Textbox.update(value=json.dumps(_training_params_md), visible=False), ] add_job_button.click( _add_job, inputs=set( [task_type, param_choice, model_choice] + hyperparameters + [training_params_md, training_params_txt] ), outputs=[training_params_md, training_params_txt], ) col_map_components = [ col_map_text, col_map_target, concept_token, ] training_data.change( _update_col_map, inputs=[training_data, task_type], outputs=col_map_components, ) task_type.change( _update_col_map, inputs=[training_data, task_type], outputs=col_map_components, ) estimate_costs_inputs = [ training_data, validation_data, task_type, user_token, autotrain_username, training_params_txt, autotrain_backend, ] estimate_costs_outputs = [estimated_costs_md, estimated_costs_num] training_data.change(_estimate_costs, inputs=estimate_costs_inputs, outputs=estimate_costs_outputs) validation_data.change(_estimate_costs, inputs=estimate_costs_inputs, outputs=estimate_costs_outputs) training_params_txt.change(_estimate_costs, inputs=estimate_costs_inputs, outputs=estimate_costs_outputs) task_type.change(_estimate_costs, inputs=estimate_costs_inputs, outputs=estimate_costs_outputs) add_job_button.click(_estimate_costs, inputs=estimate_costs_inputs, outputs=estimate_costs_outputs) create_project_button.click(disable_create_project_button, None, create_project_button).then( _create_project, inputs=[ autotrain_username, valid_can_pay, project_name, user_token, task_type, training_data, validation_data, col_map_text, col_map_target, concept_token, training_params_txt, hub_model, estimated_costs_num, autotrain_backend, ], outputs=final_output, ) demo.load( _update_project_name, outputs=[project_name, create_project_button], ) return demo
autotrain-advanced-main
src/autotrain/app.py
TRAIN_SPLIT = "train" VALID_SPLIT = "valid" TEST_SPLIT = "test"
autotrain-advanced-main
src/autotrain/splits.py
import os import pty import random import shutil import string import subprocess import gradio as gr from huggingface_hub import HfApi, whoami # ❯ autotrain dreambooth --help # usage: autotrain <command> [<args>] dreambooth [-h] --model MODEL [--revision REVISION] [--tokenizer TOKENIZER] --image-path IMAGE_PATH # [--class-image-path CLASS_IMAGE_PATH] --prompt PROMPT [--class-prompt CLASS_PROMPT] # [--num-class-images NUM_CLASS_IMAGES] [--class-labels-conditioning CLASS_LABELS_CONDITIONING] # [--prior-preservation] [--prior-loss-weight PRIOR_LOSS_WEIGHT] --output OUTPUT [--seed SEED] # --resolution RESOLUTION [--center-crop] [--train-text-encoder] [--batch-size BATCH_SIZE] # [--sample-batch-size SAMPLE_BATCH_SIZE] [--epochs EPOCHS] [--num-steps NUM_STEPS] # [--checkpointing-steps CHECKPOINTING_STEPS] [--resume-from-checkpoint RESUME_FROM_CHECKPOINT] # [--gradient-accumulation GRADIENT_ACCUMULATION] [--gradient-checkpointing] [--lr LR] [--scale-lr] # [--scheduler SCHEDULER] [--warmup-steps WARMUP_STEPS] [--num-cycles NUM_CYCLES] [--lr-power LR_POWER] # [--dataloader-num-workers DATALOADER_NUM_WORKERS] [--use-8bit-adam] [--adam-beta1 ADAM_BETA1] # [--adam-beta2 ADAM_BETA2] [--adam-weight-decay ADAM_WEIGHT_DECAY] [--adam-epsilon ADAM_EPSILON] # [--max-grad-norm MAX_GRAD_NORM] [--allow-tf32] # [--prior-generation-precision PRIOR_GENERATION_PRECISION] [--local-rank LOCAL_RANK] [--xformers] # [--pre-compute-text-embeddings] [--tokenizer-max-length TOKENIZER_MAX_LENGTH] # [--text-encoder-use-attention-mask] [--rank RANK] [--xl] [--fp16] [--bf16] [--hub-token HUB_TOKEN] # [--hub-model-id HUB_MODEL_ID] [--push-to-hub] [--validation-prompt VALIDATION_PROMPT] # [--num-validation-images NUM_VALIDATION_IMAGES] [--validation-epochs VALIDATION_EPOCHS] # [--checkpoints-total-limit CHECKPOINTS_TOTAL_LIMIT] [--validation-images VALIDATION_IMAGES] # [--logging] REPO_ID = os.environ.get("SPACE_ID") ALLOWED_FILE_TYPES = ["png", "jpg", "jpeg"] MODELS = [ "stabilityai/stable-diffusion-xl-base-1.0", "runwayml/stable-diffusion-v1-5", "stabilityai/stable-diffusion-2-1", "stabilityai/stable-diffusion-2-1-base", ] WELCOME_TEXT = """ Welcome to the AutoTrain DreamBooth! This app allows you to train a DreamBooth model using AutoTrain. The app runs on HuggingFace Spaces. Your data is not stored anywhere. The trained model (LoRA) will be pushed to your HuggingFace Hub account. You need to use your HuggingFace Hub write [token](https://huggingface.co/settings/tokens) to push the model to your account. NOTE: This space requires GPU to train. Please make sure you have GPU enabled in space settings. Please make sure to shutdown / pause the space to avoid any additional charges. """ STEPS = """ 1. [Duplicate](https://huggingface.co/spaces/autotrain-projects/dreambooth?duplicate=true) this space 2. Upgrade the space to GPU 3. Enter your HuggingFace Hub write token 4. Upload images and adjust prompt (remember the prompt!) 5. Click on Train and wait for the training to finish 6. Go to your HuggingFace Hub account to find the trained model NOTE: For any issues or feature requests, please open an issue [here](https://github.com/huggingface/autotrain-advanced/issues) """ def _update_project_name(): random_project_name = "-".join( ["".join(random.choices(string.ascii_lowercase + string.digits, k=4)) for _ in range(3)] ) # check if training tracker exists if os.path.exists(os.path.join("/tmp", "training")): return [ gr.Text.update(value=random_project_name, visible=True, interactive=True), gr.Button.update(interactive=False), ] return [ gr.Text.update(value=random_project_name, visible=True, interactive=True), gr.Button.update(interactive=True), ] def run_command(cmd): cmd = [str(c) for c in cmd] print(f"Running command: {' '.join(cmd)}") master, slave = pty.openpty() p = subprocess.Popen(cmd, stdout=slave, stderr=slave) os.close(slave) while p.poll() is None: try: output = os.read(master, 1024).decode() except OSError: # Handle exception here, e.g. the pty was closed break else: print(output, end="") def _run_training( hub_token, project_name, model, images, prompt, learning_rate, num_steps, batch_size, gradient_accumulation_steps, prior_preservation, scale_lr, use_8bit_adam, train_text_encoder, gradient_checkpointing, center_crop, prior_loss_weight, num_cycles, lr_power, adam_beta1, adam_beta2, adam_weight_decay, adam_epsilon, max_grad_norm, warmup_steps, scheduler, resolution, fp16, ): if REPO_ID == "autotrain-projects/dreambooth": return gr.Markdown.update( value="❌ Please [duplicate](https://huggingface.co/spaces/autotrain-projects/dreambooth?duplicate=true) this space before training." ) api = HfApi(token=hub_token) if os.path.exists(os.path.join("/tmp", "training")): return gr.Markdown.update(value="❌ Another training job is already running in this space.") with open(os.path.join("/tmp", "training"), "w") as f: f.write("training") hub_model_id = whoami(token=hub_token)["name"] + "/" + str(project_name).strip() image_path = "/tmp/data" os.makedirs(image_path, exist_ok=True) output_dir = "/tmp/model" os.makedirs(output_dir, exist_ok=True) for image in images: shutil.copy(image.name, image_path) cmd = [ "autotrain", "dreambooth", "--model", model, "--output", output_dir, "--image-path", image_path, "--prompt", prompt, "--resolution", "1024", "--batch-size", batch_size, "--num-steps", num_steps, "--gradient-accumulation", gradient_accumulation_steps, "--lr", learning_rate, "--scheduler", scheduler, "--warmup-steps", warmup_steps, "--num-cycles", num_cycles, "--lr-power", lr_power, "--adam-beta1", adam_beta1, "--adam-beta2", adam_beta2, "--adam-weight-decay", adam_weight_decay, "--adam-epsilon", adam_epsilon, "--max-grad-norm", max_grad_norm, "--prior-loss-weight", prior_loss_weight, "--push-to-hub", "--hub-token", hub_token, "--hub-model-id", hub_model_id, ] if prior_preservation: cmd.append("--prior-preservation") if scale_lr: cmd.append("--scale-lr") if use_8bit_adam: cmd.append("--use-8bit-adam") if train_text_encoder: cmd.append("--train-text-encoder") if gradient_checkpointing: cmd.append("--gradient-checkpointing") if center_crop: cmd.append("--center-crop") if fp16: cmd.append("--fp16") try: run_command(cmd) # delete the training tracker file in /tmp/ os.remove(os.path.join("/tmp", "training")) # switch off space if REPO_ID is not None: api.pause_space(repo_id=REPO_ID) return gr.Markdown.update(value=f"✅ Training finished! Model pushed to {hub_model_id}") except Exception as e: print(e) print("Error running command") # delete the training tracker file in /tmp/ os.remove(os.path.join("/tmp", "training")) return gr.Markdown.update(value="❌ Error running command. Please try again.") def main(): with gr.Blocks(theme="freddyaboulton/dracula_revamped") as demo: gr.Markdown("## 🤗 AutoTrain DreamBooth") gr.Markdown(WELCOME_TEXT) with gr.Accordion("Steps", open=False): gr.Markdown(STEPS) hub_token = gr.Textbox( label="Hub Token", value="", lines=1, max_lines=1, interactive=True, type="password", ) with gr.Row(): with gr.Column(): project_name = gr.Textbox( label="Project name", value="", lines=1, max_lines=1, interactive=True, ) model = gr.Dropdown( label="Model", choices=MODELS, value=MODELS[0], visible=True, interactive=True, elem_id="model", allow_custom_values=True, ) images = gr.File( label="Images", file_types=ALLOWED_FILE_TYPES, file_count="multiple", visible=True, interactive=True, ) with gr.Column(): prompt = gr.Textbox( label="Prompt", placeholder="photo of sks dog", lines=1, ) with gr.Row(): learning_rate = gr.Number( label="Learning Rate", value=1e-4, visible=True, interactive=True, elem_id="learning_rate", ) num_steps = gr.Number( label="Number of Steps", value=500, visible=True, interactive=True, elem_id="num_steps", precision=0, ) batch_size = gr.Number( label="Batch Size", value=1, visible=True, interactive=True, elem_id="batch_size", precision=0, ) with gr.Row(): gradient_accumulation_steps = gr.Number( label="Gradient Accumulation Steps", value=4, visible=True, interactive=True, elem_id="gradient_accumulation_steps", precision=0, ) resolution = gr.Number( label="Resolution", value=1024, visible=True, interactive=True, elem_id="resolution", precision=0, ) scheduler = gr.Dropdown( label="Scheduler", choices=["cosine", "linear", "constant"], value="constant", visible=True, interactive=True, elem_id="scheduler", ) with gr.Column(): with gr.Group(): fp16 = gr.Checkbox( label="FP16", value=True, visible=True, interactive=True, elem_id="fp16", ) prior_preservation = gr.Checkbox( label="Prior Preservation", value=False, visible=True, interactive=True, elem_id="prior_preservation", ) scale_lr = gr.Checkbox( label="Scale LR", value=False, visible=True, interactive=True, elem_id="scale_lr", ) use_8bit_adam = gr.Checkbox( label="Use 8bit Adam", value=True, visible=True, interactive=True, elem_id="use_8bit_adam", ) train_text_encoder = gr.Checkbox( label="Train Text Encoder", value=False, visible=True, interactive=True, elem_id="train_text_encoder", ) gradient_checkpointing = gr.Checkbox( label="Gradient Checkpointing", value=False, visible=True, interactive=True, elem_id="gradient_checkpointing", ) center_crop = gr.Checkbox( label="Center Crop", value=False, visible=True, interactive=True, elem_id="center_crop", ) with gr.Accordion("Advanced Parameters", open=False): with gr.Row(): prior_loss_weight = gr.Number( label="Prior Loss Weight", value=1.0, visible=True, interactive=True, elem_id="prior_loss_weight", ) num_cycles = gr.Number( label="Num Cycles", value=1, visible=True, interactive=True, elem_id="num_cycles", precision=0, ) lr_power = gr.Number( label="LR Power", value=1, visible=True, interactive=True, elem_id="lr_power", ) adam_beta1 = gr.Number( label="Adam Beta1", value=0.9, visible=True, interactive=True, elem_id="adam_beta1", ) adam_beta2 = gr.Number( label="Adam Beta2", value=0.999, visible=True, interactive=True, elem_id="adam_beta2", ) adam_weight_decay = gr.Number( label="Adam Weight Decay", value=1e-2, visible=True, interactive=True, elem_id="adam_weight_decay", ) adam_epsilon = gr.Number( label="Adam Epsilon", value=1e-8, visible=True, interactive=True, elem_id="adam_epsilon", ) max_grad_norm = gr.Number( label="Max Grad Norm", value=1, visible=True, interactive=True, elem_id="max_grad_norm", ) warmup_steps = gr.Number( label="Warmup Steps", value=0, visible=True, interactive=True, elem_id="warmup_steps", precision=0, ) train_button = gr.Button(value="Train", elem_id="train") output_md = gr.Markdown("## Output") inputs = [ hub_token, project_name, model, images, prompt, learning_rate, num_steps, batch_size, gradient_accumulation_steps, prior_preservation, scale_lr, use_8bit_adam, train_text_encoder, gradient_checkpointing, center_crop, prior_loss_weight, num_cycles, lr_power, adam_beta1, adam_beta2, adam_weight_decay, adam_epsilon, max_grad_norm, warmup_steps, scheduler, resolution, fp16, ] train_button.click(_run_training, inputs=inputs, outputs=output_md) demo.load( _update_project_name, outputs=[project_name, train_button], ) return demo if __name__ == "__main__": demo = main() demo.launch()
autotrain-advanced-main
src/autotrain/dreambooth_app.py
APP_AUTOTRAIN_USERNAME = """Please choose the user or organization who is creating the AutoTrain Project. In case of non-free tier, this user or organization will be billed. """ APP_PROJECT_NAME = """A unique name for the AutoTrain Project. This name will be used to identify the project in the AutoTrain dashboard.""" APP_IMAGE_CLASSIFICATION_DATA_HELP = """The data for the Image Classification task should be in the following format: - The data should be in a zip file. - The zip file should contain multiple folders (the classes), each folder should contain images of a single class. - The name of the folder should be the name of the class. - The images must be jpeg, jpg or png. - There should be at least 5 images per class. - There should not be any other files in the zip file. - There should not be any other folders inside the zip folder. """ APP_LM_TRAINING_TYPE = """There are two types of Language Model Training: - generic - chat In the generic mode, you provide a CSV with a text column which has already been formatted by you for training a language model. In the chat mode, you provide a CSV with two or three text columns: prompt, context (optional) and response. Context column can be empty for samples if not needed. You can also have a "prompt start" column. If provided, "prompt start" will be prepended before the prompt column. Please see [this](https://huggingface.co/datasets/tatsu-lab/alpaca) dataset which has both formats in the same dataset. """
autotrain-advanced-main
src/autotrain/help.py
SUPPORTED_LANGUAGES = [ "en", "ar", "bn", "de", "es", "fi", "fr", "hi", "it", "ja", "ko", "nl", "pt", "sv", "tr", "zh", "unk", ]
autotrain-advanced-main
src/autotrain/languages.py
""" Copyright 2023 The HuggingFace Team """ import json import os import time from dataclasses import dataclass from typing import Dict, List, Optional, Union import pandas as pd from codecarbon import EmissionsTracker from autotrain import logger from autotrain.backend import SpaceRunner from autotrain.dataset import AutoTrainDataset, AutoTrainDreamboothDataset, AutoTrainImageClassificationDataset from autotrain.languages import SUPPORTED_LANGUAGES from autotrain.tasks import TASKS from autotrain.trainers.clm.params import LLMTrainingParams from autotrain.trainers.dreambooth.params import DreamBoothTrainingParams from autotrain.trainers.tabular.params import TabularParams from autotrain.trainers.text_classification.params import TextClassificationParams from autotrain.utils import http_get, http_post @dataclass class AutoTrainProject: dataset: Union[AutoTrainDataset, AutoTrainDreamboothDataset, AutoTrainImageClassificationDataset] job_params: pd.DataFrame def __post_init__(self): self.token = self.dataset.token self.project_name = self.dataset.project_name self.username = self.dataset.username self.task = self.dataset.task if isinstance(self.dataset, AutoTrainDataset): self.col_mapping = self.dataset.column_mapping self.data_path = f"{self.username}/autotrain-data-{self.project_name}" self.backend = self.job_params.loc[0, "backend"] if "model_choice" in self.job_params.columns: self.model_choice = self.job_params.loc[0, "model_choice"] if "param_choice" in self.job_params.columns: self.param_choice = self.job_params.loc[0, "param_choice"] self.task_id = TASKS.get(self.task) self.num_jobs = len(self.job_params) if self.task in ("text_multi_class_classification", "text_binary_classification"): self.col_map_text = "autotrain_text" self.col_map_target = "autotrain_label" if self.task == "lm_training": self.col_map_text = "autotrain_text" if self.task.startswith("tabular_"): self.col_map_id = "autotrain_id" _tabular_target_cols = ["autotrain_label"] if isinstance(self.col_mapping["label"], str) or len(self.col_mapping["label"]) > 1: _tabular_target_cols = [f"autotrain_label_{i}" for i in range(len(self.col_mapping["label"]))] self.col_map_target = _tabular_target_cols self.spaces_backends = { "A10G Large": "spaces-a10gl", "A10G Small": "spaces-a10gs", "A100 Large": "spaces-a100", "T4 Medium": "spaces-t4m", "T4 Small": "spaces-t4s", "CPU Upgrade": "spaces-cpu", "CPU (Free)": "spaces-cpuf", # "Local": "local", # "AutoTrain": "autotrain", } self.job_params_json = self.job_params.to_json(orient="records") logger.info(self.job_params_json) def _munge_common_params(self, job_idx): _params = json.loads(self.job_params_json)[job_idx] _params["token"] = self.token _params["project_name"] = f"{self.project_name}-{job_idx}" _params["push_to_hub"] = True _params["repo_id"] = f"{self.username}/{self.project_name}-{job_idx}" _params["data_path"] = self.data_path _params["username"] = self.username return _params def _munge_params_llm(self, job_idx): _params = self._munge_common_params(job_idx) _params["model"] = self.model_choice _params["text_column"] = self.col_map_text if "trainer" in _params: _params["trainer"] = _params["trainer"].lower() if "use_fp16" in _params: _params["fp16"] = _params["use_fp16"] _params.pop("use_fp16") if "int4_8" in _params: if _params["int4_8"] == "int4": _params["use_int4"] = True _params["use_int8"] = False elif _params["int4_8"] == "int8": _params["use_int4"] = False _params["use_int8"] = True else: _params["use_int4"] = False _params["use_int8"] = False _params.pop("int4_8") return _params def _munge_params_text_clf(self, job_idx): _params = self._munge_common_params(job_idx) _params["model"] = self.model_choice _params["text_column"] = self.col_map_text _params["target_column"] = self.col_map_target _params["valid_split"] = "validation" if "use_fp16" in _params: _params["fp16"] = _params["use_fp16"] _params.pop("use_fp16") return _params def _munge_params_tabular(self, job_idx): _params = self._munge_common_params(job_idx) _params["id_column"] = self.col_map_id _params["target_columns"] = self.col_map_target _params["valid_split"] = "validation" if len(_params["categorical_imputer"].strip()) == 0 or _params["categorical_imputer"].lower() == "none": _params["categorical_imputer"] = None if len(_params["numerical_imputer"].strip()) == 0 or _params["numerical_imputer"].lower() == "none": _params["numerical_imputer"] = None if len(_params["numeric_scaler"].strip()) == 0 or _params["numeric_scaler"].lower() == "none": _params["numeric_scaler"] = None return _params def _munge_params_dreambooth(self, job_idx): _params = self._munge_common_params(job_idx) _params["model"] = self.model_choice _params["image_path"] = self.data_path if "weight_decay" in _params: _params["adam_weight_decay"] = _params["weight_decay"] _params.pop("weight_decay") return _params def create_spaces(self): _created_spaces = [] for job_idx in range(self.num_jobs): if self.task_id == 9: _params = self._munge_params_llm(job_idx) _params = LLMTrainingParams.parse_obj(_params) elif self.task_id in (1, 2): _params = self._munge_params_text_clf(job_idx) _params = TextClassificationParams.parse_obj(_params) elif self.task_id in (13, 14, 15, 16, 26): _params = self._munge_params_tabular(job_idx) _params = TabularParams.parse_obj(_params) elif self.task_id == 25: _params = self._munge_params_dreambooth(job_idx) _params = DreamBoothTrainingParams.parse_obj(_params) else: raise NotImplementedError logger.info(f"Creating Space for job: {job_idx}") logger.info(f"Using params: {_params}") sr = SpaceRunner(params=_params, backend=self.spaces_backends[self.backend]) space_id = sr.prepare() logger.info(f"Space created with id: {space_id}") _created_spaces.append(space_id) return _created_spaces def create(self): if self.backend == "AutoTrain": raise NotImplementedError if self.backend == "Local": raise NotImplementedError if self.backend in self.spaces_backends: return self.create_spaces() @dataclass class Project: dataset: Union[AutoTrainDataset, AutoTrainDreamboothDataset, AutoTrainImageClassificationDataset] param_choice: Optional[str] = "autotrain" hub_model: Optional[str] = None job_params: Optional[List[Dict[str, str]]] = None def __post_init__(self): self.token = self.dataset.token self.name = self.dataset.project_name self.username = self.dataset.username self.task = self.dataset.task self.param_choice = self.param_choice.lower() if self.hub_model is not None: if len(self.hub_model) == 0: self.hub_model = None if self.job_params is None: self.job_params = [] logger.info(f"🚀🚀🚀 Creating project {self.name}, task: {self.task}") logger.info(f"🚀 Using username: {self.username}") logger.info(f"🚀 Using param_choice: {self.param_choice}") logger.info(f"🚀 Using hub_model: {self.hub_model}") logger.info(f"🚀 Using job_params: {self.job_params}") if self.token is None: raise ValueError("❌ Please login using `huggingface-cli login`") if self.hub_model is not None and len(self.job_params) == 0: raise ValueError("❌ Job parameters are required when hub model is specified.") if self.hub_model is None and len(self.job_params) > 1: raise ValueError("❌ Only one job parameter is allowed in AutoTrain mode.") if self.param_choice == "autotrain": if "source_language" in self.job_params[0] and "target_language" not in self.job_params[0]: self.language = self.job_params[0]["source_language"] # remove source language from job params self.job_params[0].pop("source_language") elif "source_language" in self.job_params[0] and "target_language" in self.job_params[0]: self.language = f'{self.job_params[0]["target_language"]}2{self.job_params[0]["source_language"]}' # remove source and target language from job params self.job_params[0].pop("source_language") self.job_params[0].pop("target_language") else: self.language = "unk" if "num_models" in self.job_params[0]: self.max_models = self.job_params[0]["num_models"] self.job_params[0].pop("num_models") elif "num_models" not in self.job_params[0] and "source_language" in self.job_params[0]: raise ValueError("❌ Please specify num_models in job_params when using AutoTrain model") else: self.language = "unk" self.max_models = len(self.job_params) def create_local(self, payload): from autotrain.trainers.dreambooth import train_ui as train_dreambooth from autotrain.trainers.image_classification import train as train_image_classification from autotrain.trainers.lm_trainer import train as train_lm from autotrain.trainers.text_classification import train as train_text_classification # check if training tracker file exists in /tmp/ if os.path.exists(os.path.join("/tmp", "training")): raise ValueError("❌ Another training job is already running in this workspace.") if len(payload["config"]["params"]) > 1: raise ValueError("❌ Only one job parameter is allowed in spaces/local mode.") model_path = os.path.join("/tmp/model", payload["proj_name"]) os.makedirs(model_path, exist_ok=True) co2_tracker = EmissionsTracker(save_to_file=False) co2_tracker.start() # create a training tracker file in /tmp/, using touch with open(os.path.join("/tmp", "training"), "w") as f: f.write("training") if payload["task"] in [1, 2]: _ = train_text_classification( co2_tracker=co2_tracker, payload=payload, huggingface_token=self.token, model_path=model_path, ) elif payload["task"] in [17, 18]: _ = train_image_classification( co2_tracker=co2_tracker, payload=payload, huggingface_token=self.token, model_path=model_path, ) elif payload["task"] == 25: _ = train_dreambooth( co2_tracker=co2_tracker, payload=payload, huggingface_token=self.token, model_path=model_path, ) elif payload["task"] == 9: _ = train_lm( co2_tracker=co2_tracker, payload=payload, huggingface_token=self.token, model_path=model_path, ) else: raise NotImplementedError # remove the training tracker file in /tmp/, using rm os.remove(os.path.join("/tmp", "training")) def create(self, local=False): """Create a project and return it""" logger.info(f"🚀 Creating project {self.name}, task: {self.task}") task_id = TASKS.get(self.task) if task_id is None: raise ValueError(f"❌ Invalid task selected. Please choose one of {TASKS.keys()}") language = str(self.language).strip().lower() if task_id is None: raise ValueError(f"❌ Invalid task specified. Please choose one of {list(TASKS.keys())}") if self.hub_model is not None: language = "unk" if language not in SUPPORTED_LANGUAGES: raise ValueError("❌ Invalid language. Please check supported languages in AutoTrain documentation.") payload = { "username": self.username, "proj_name": self.name, "task": task_id, "config": { "advanced": True, "autotrain": True if self.param_choice == "autotrain" else False, "language": language, "max_models": self.max_models, "hub_model": self.hub_model, "params": self.job_params, }, } logger.info(f"🚀 Creating project with payload: {payload}") if local is True: return self.create_local(payload=payload) logger.info(f"🚀 Creating project with payload: {payload}") json_resp = http_post(path="/projects/create", payload=payload, token=self.token).json() proj_name = json_resp["proj_name"] proj_id = json_resp["id"] created = json_resp["created"] if created is True: return proj_id raise ValueError(f"❌ Project with name {proj_name} already exists.") def approve(self, project_id): # Process data _ = http_post( path=f"/projects/{project_id}/data/start_processing", token=self.token, ).json() logger.info("⏳ Waiting for data processing to complete ...") is_data_processing_success = False while is_data_processing_success is not True: project_status = http_get( path=f"/projects/{project_id}", token=self.token, ).json() # See database.database.enums.ProjectStatus for definitions of `status` if project_status["status"] == 3: is_data_processing_success = True logger.info("✅ Data processing complete!") time.sleep(3) logger.info(f"🚀 Approving project # {project_id}") # Approve training job _ = http_post( path=f"/projects/{project_id}/start_training", token=self.token, ).json()
autotrain-advanced-main
src/autotrain/project.py
def test_dummy(): assert 1 + 1 == 2
autotrain-advanced-main
src/autotrain/tests/test_dummy.py
import os from argparse import ArgumentParser from . import BaseAutoTrainCommand def run_app_command_factory(args): return RunAutoTrainAppCommand( args.port, args.host, args.task, ) class RunAutoTrainAppCommand(BaseAutoTrainCommand): @staticmethod def register_subcommand(parser: ArgumentParser): run_app_parser = parser.add_parser( "app", description="✨ Run AutoTrain app", ) run_app_parser.add_argument( "--port", type=int, default=7860, help="Port to run the app on", required=False, ) run_app_parser.add_argument( "--host", type=str, default="127.0.0.1", help="Host to run the app on", required=False, ) run_app_parser.add_argument( "--task", type=str, required=False, help="Task to run", ) run_app_parser.set_defaults(func=run_app_command_factory) def __init__(self, port, host, task): self.port = port self.host = host self.task = task def run(self): if os.environ.get("TASK") == "Dreambooth" or self.task == "dreambooth": from ..apps.dreambooth import main elif os.environ.get("TASK") == "LLM": from ..apps.llm import main elif os.environ.get("TASK") == "TEXT_CLASSIFICATION": from ..apps.text_classification import main else: from ..apps.main import main demo = main() demo.queue(concurrency_count=10).launch()
autotrain-advanced-main
src/autotrain/cli/run_app.py
from argparse import ArgumentParser from autotrain.backend import SpaceRunner from autotrain.trainers.generic.params import GenericParams from autotrain.trainers.generic.utils import create_dataset_repo from . import BaseAutoTrainCommand BACKEND_CHOICES = [ "spaces-a10gl", "spaces-a10gs", "spaces-a100", "spaces-t4m", "spaces-t4s", "spaces-cpu", "spaces-cpuf", ] def run_spacerunner_command_factory(args): return RunAutoTrainSpaceRunnerCommand(args) class RunAutoTrainSpaceRunnerCommand(BaseAutoTrainCommand): @staticmethod def register_subcommand(parser: ArgumentParser): arg_list = [ { "arg": "--project-name", "help": "Name of the project. Must be unique.", "required": True, "type": str, }, { "arg": "--script-path", "help": "Path to the script", "required": True, "type": str, }, { "arg": "--username", "help": "Hugging Face Username, can also be an organization name", "required": True, "type": str, }, { "arg": "--token", "help": "Hugging Face API Token", "required": True, "type": str, }, { "arg": "--backend", "help": "Hugging Face backend to use", "required": True, "type": str, "choices": BACKEND_CHOICES, }, { "arg": "--env", "help": "Environment variables, e.g. --env FOO=bar;FOO2=bar2;FOO3=bar3", "required": False, "type": str, }, ] run_spacerunner_parser = parser.add_parser("spacerunner", description="✨ Run AutoTrain SpaceRunner") for arg in arg_list: names = [arg["arg"]] + arg.get("alias", []) if "action" in arg: run_spacerunner_parser.add_argument( *names, dest=arg["arg"].replace("--", "").replace("-", "_"), help=arg["help"], required=arg.get("required", False), action=arg.get("action"), default=arg.get("default"), choices=arg.get("choices"), ) else: run_spacerunner_parser.add_argument( *names, dest=arg["arg"].replace("--", "").replace("-", "_"), help=arg["help"], required=arg.get("required", False), type=arg.get("type"), default=arg.get("default"), choices=arg.get("choices"), ) run_spacerunner_parser.set_defaults(func=run_spacerunner_command_factory) def __init__(self, args): self.args = args store_true_arg_names = [] for arg_name in store_true_arg_names: if getattr(self.args, arg_name) is None: setattr(self.args, arg_name, False) env_vars = {} if self.args.env: env_vars = dict([env_var.split("=") for env_var in self.args.env.split(";")]) self.args.env = env_vars def run(self): dataset_id = create_dataset_repo( username=self.args.username, project_name=self.args.project_name, script_path=self.args.script_path, token=self.args.token, ) params = GenericParams( project_name=self.args.project_name, data_path=dataset_id, username=self.args.username, token=self.args.token, backend=self.args.backend, script_path=self.args.script_path, env=self.args.env, ) sr = SpaceRunner(params=params, backend=self.args.backend) sr.prepare()
autotrain-advanced-main
src/autotrain/cli/run_spacerunner.py
from argparse import ArgumentParser from . import BaseAutoTrainCommand def run_api_command_factory(args): return RunAutoTrainAPICommand( args.port, args.host, args.task, ) class RunAutoTrainAPICommand(BaseAutoTrainCommand): @staticmethod def register_subcommand(parser: ArgumentParser): run_api_parser = parser.add_parser( "api", description="✨ Run AutoTrain API", ) run_api_parser.add_argument( "--port", type=int, default=7860, help="Port to run the api on", required=False, ) run_api_parser.add_argument( "--host", type=str, default="127.0.0.1", help="Host to run the api on", required=False, ) run_api_parser.add_argument( "--task", type=str, required=False, help="Task to run", ) run_api_parser.set_defaults(func=run_api_command_factory) def __init__(self, port, host, task): self.port = port self.host = host self.task = task def run(self): import uvicorn from autotrain.api import api uvicorn.run(api, host=self.host, port=self.port)
autotrain-advanced-main
src/autotrain/cli/run_api.py
import os import sys from argparse import ArgumentParser import torch from autotrain import logger from autotrain.backend import EndpointsRunner, SpaceRunner from . import BaseAutoTrainCommand def run_tabular_command_factory(args): return RunAutoTrainTabularCommand(args) class RunAutoTrainTabularCommand(BaseAutoTrainCommand): @staticmethod def register_subcommand(parser: ArgumentParser): arg_list = [ { "arg": "--train", "help": "Train the model", "required": False, "action": "store_true", }, { "arg": "--deploy", "help": "Deploy the model", "required": False, "action": "store_true", }, { "arg": "--inference", "help": "Run inference", "required": False, "action": "store_true", }, { "arg": "--data-path", "help": "Train dataset to use", "required": False, "type": str, }, { "arg": "--model", "help": "Model name", "required": True, "type": str, }, { "arg": "--username", "help": "Hugging Face Username", "required": False, "type": str, }, { "arg": "--seed", "help": "Seed", "required": False, "type": int, "default": 42, }, { "arg": "--train-split", "help": "Train split", "required": False, "type": str, "default": "train", }, { "arg": "--valid-split", "help": "Validation split", "required": False, "type": str, "default": "valid", }, { "arg": "--project-name", "help": "Output directory", "required": True, "type": str, "alias": ["--project"], }, { "arg": "--token", "help": "Hub Token", "required": False, "type": str, }, { "arg": "--push-to-hub", "help": "Push to hub", "required": False, "action": "store_true", }, { "arg": "--id-column", "help": "ID column", "required": True, "type": str, }, { "arg": "--target-columns", "help": "Target column(s), separated by commas", "required": True, "type": str, }, { "arg": "--repo-id", "help": "Repo ID", "required": False, "type": str, }, { "arg": "--categorical-columns", "help": "Categorical columns", "required": False, "type": str, }, { "arg": "--numerical-columns", "help": "Numerical columns", "required": False, "type": str, }, { "arg": "--task", "help": "Task", "required": True, "type": str, }, { "arg": "--num-trials", "help": "Number of trials", "required": False, "type": int, "default": 100, }, { "arg": "--time-limit", "help": "Time limit", "required": False, "type": int, "default": 3600, }, { "arg": "--categorical-imputer", "help": "Categorical imputer", "required": False, "type": str, }, { "arg": "--numerical-imputer", "help": "Numerical imputer", "required": False, "type": str, }, { "arg": "--numeric-scaler", "help": "Numeric scaler", "required": False, "type": str, }, { "arg": "--backend", "help": "Backend to use: default or spaces. Spaces backend requires push_to_hub and repo_id", "required": False, "type": str, "default": "default", }, ] run_tabular_parser = parser.add_parser("tabular", description="✨ Run AutoTrain Tabular Data Training") for arg in arg_list: if "action" in arg: run_tabular_parser.add_argument( arg["arg"], help=arg["help"], required=arg.get("required", False), action=arg.get("action"), default=arg.get("default"), ) else: run_tabular_parser.add_argument( arg["arg"], help=arg["help"], required=arg.get("required", False), type=arg.get("type"), default=arg.get("default"), ) run_tabular_parser.set_defaults(func=run_tabular_command_factory) def __init__(self, args): self.args = args store_true_arg_names = [ "train", "deploy", "inference", "push_to_hub", ] for arg_name in store_true_arg_names: if getattr(self.args, arg_name) is None: setattr(self.args, arg_name, False) if self.args.train: if self.args.project_name is None: raise ValueError("Project name must be specified") if self.args.data_path is None: raise ValueError("Data path must be specified") if self.args.model is None: raise ValueError("Model must be specified") if self.args.push_to_hub: if self.args.username is None: raise ValueError("Username must be specified for push to hub") else: raise ValueError("Must specify --train, --deploy or --inference") if not torch.cuda.is_available(): self.device = "cpu" self.num_gpus = torch.cuda.device_count() if len(str(self.args.token)) < 6: self.args.token = os.environ.get("HF_TOKEN", None) self.args.target_columns = [k.strip() for k in self.args.target_columns.split(",")] def run(self): from autotrain.trainers.tabular.__main__ import train as train_tabular from autotrain.trainers.tabular.params import TabularParams logger.info("Running Tabular Training...") if self.args.train: params = TabularParams( data_path=self.args.data_path, model=self.args.model, username=self.args.username, seed=self.args.seed, train_split=self.args.train_split, valid_split=self.args.valid_split, project_name=self.args.project_name, token=self.args.token, push_to_hub=self.args.push_to_hub, id_column=self.args.id_column, target_columns=self.args.target_columns, repo_id=self.args.repo_id, categorical_columns=self.args.categorical_columns, numerical_columns=self.args.numerical_columns, task=self.args.task, num_trials=self.args.num_trials, time_limit=self.args.time_limit, categorical_imputer=self.args.categorical_imputer, numerical_imputer=self.args.numerical_imputer, numeric_scaler=self.args.numeric_scaler, ) if self.args.backend.startswith("spaces"): logger.info("Creating space...") sr = SpaceRunner( params=params, backend=self.args.backend, ) space_id = sr.prepare() logger.info(f"Training Space created. Check progress at https://hf.co/spaces/{space_id}") sys.exit(0) if self.args.backend.startswith("ep-"): logger.info("Creating training endpoint...") sr = EndpointsRunner( params=params, backend=self.args.backend, ) sr.prepare() logger.info("Training endpoint created.") sys.exit(0) params.save(output_dir=self.args.project_name) train_tabular(params)
autotrain-advanced-main
src/autotrain/cli/run_tabular.py
from abc import ABC, abstractmethod from argparse import ArgumentParser class BaseAutoTrainCommand(ABC): @staticmethod @abstractmethod def register_subcommand(parser: ArgumentParser): raise NotImplementedError() @abstractmethod def run(self): raise NotImplementedError()
autotrain-advanced-main
src/autotrain/cli/__init__.py
import subprocess from argparse import ArgumentParser from autotrain import logger from . import BaseAutoTrainCommand def run_app_command_factory(args): return RunSetupCommand(args.update_torch) class RunSetupCommand(BaseAutoTrainCommand): @staticmethod def register_subcommand(parser: ArgumentParser): run_setup_parser = parser.add_parser( "setup", description="✨ Run AutoTrain setup", ) run_setup_parser.add_argument( "--update-torch", action="store_true", help="Update PyTorch to latest version", ) run_setup_parser.set_defaults(func=run_app_command_factory) def __init__(self, update_torch: bool): self.update_torch = update_torch def run(self): # install latest transformers cmd = "pip uninstall -y transformers && pip install git+https://github.com/huggingface/transformers.git" pipe = subprocess.Popen(cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) logger.info("Installing latest transformers@main") _, _ = pipe.communicate() logger.info("Successfully installed latest transformers") cmd = "pip uninstall -y peft && pip install git+https://github.com/huggingface/peft.git" pipe = subprocess.Popen(cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) logger.info("Installing latest peft@main") _, _ = pipe.communicate() logger.info("Successfully installed latest peft") cmd = "pip uninstall -y diffusers && pip install git+https://github.com/huggingface/diffusers.git" pipe = subprocess.Popen(cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) logger.info("Installing latest diffusers@main") _, _ = pipe.communicate() logger.info("Successfully installed latest diffusers") cmd = "pip uninstall -y trl && pip install git+https://github.com/huggingface/trl.git" pipe = subprocess.Popen(cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) logger.info("Installing latest trl@main") _, _ = pipe.communicate() logger.info("Successfully installed latest trl") cmd = "pip install -U xformers" pipe = subprocess.Popen(cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) logger.info("Installing latest xformers") _, _ = pipe.communicate() logger.info("Successfully installed latest xformers") if self.update_torch: cmd = "pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118" pipe = subprocess.Popen(cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) logger.info("Installing latest PyTorch") _, _ = pipe.communicate() logger.info("Successfully installed latest PyTorch")
autotrain-advanced-main
src/autotrain/cli/run_setup.py
import argparse from .. import __version__ from .run_api import RunAutoTrainAPICommand from .run_app import RunAutoTrainAppCommand from .run_dreambooth import RunAutoTrainDreamboothCommand from .run_image_classification import RunAutoTrainImageClassificationCommand from .run_llm import RunAutoTrainLLMCommand from .run_setup import RunSetupCommand from .run_spacerunner import RunAutoTrainSpaceRunnerCommand from .run_tabular import RunAutoTrainTabularCommand from .run_text_classification import RunAutoTrainTextClassificationCommand def main(): parser = argparse.ArgumentParser( "AutoTrain advanced CLI", usage="autotrain <command> [<args>]", epilog="For more information about a command, run: `autotrain <command> --help`", ) parser.add_argument("--version", "-v", help="Display AutoTrain version", action="store_true") commands_parser = parser.add_subparsers(help="commands") # Register commands RunAutoTrainAppCommand.register_subcommand(commands_parser) RunAutoTrainLLMCommand.register_subcommand(commands_parser) RunSetupCommand.register_subcommand(commands_parser) RunAutoTrainDreamboothCommand.register_subcommand(commands_parser) RunAutoTrainAPICommand.register_subcommand(commands_parser) RunAutoTrainTextClassificationCommand.register_subcommand(commands_parser) RunAutoTrainImageClassificationCommand.register_subcommand(commands_parser) RunAutoTrainTabularCommand.register_subcommand(commands_parser) RunAutoTrainSpaceRunnerCommand.register_subcommand(commands_parser) args = parser.parse_args() if args.version: print(__version__) exit(0) if not hasattr(args, "func"): parser.print_help() exit(1) command = args.func(args) command.run() if __name__ == "__main__": main()
autotrain-advanced-main
src/autotrain/cli/autotrain.py
import os import subprocess from argparse import ArgumentParser import torch from autotrain import logger from . import BaseAutoTrainCommand def run_image_classification_command_factory(args): return RunAutoTrainImageClassificationCommand(args) class RunAutoTrainImageClassificationCommand(BaseAutoTrainCommand): @staticmethod def register_subcommand(parser: ArgumentParser): arg_list = [ { "arg": "--train", "help": "Train the model", "required": False, "action": "store_true", }, { "arg": "--deploy", "help": "Deploy the model", "required": False, "action": "store_true", }, { "arg": "--inference", "help": "Run inference", "required": False, "action": "store_true", }, { "arg": "--data-path", "help": "Train dataset to use", "required": False, "type": str, }, { "arg": "--train-split", "help": "Test dataset split to use", "required": False, "type": str, "default": "train", }, { "arg": "--valid-split", "help": "Validation dataset split to use", "required": False, "type": str, "default": None, }, { "arg": "--image-column", "help": "Image column to use", "required": False, "type": str, "default": "image", }, { "arg": "--target-column", "help": "Target column to use", "required": False, "type": str, "default": "target", }, { "arg": "--model", "help": "Model to use", "required": False, "type": str, }, { "arg": "--lr", "help": "Learning rate to use", "required": False, "type": float, "default": 3e-5, }, { "arg": "--epochs", "help": "Number of training epochs to use", "required": False, "type": int, "default": 1, }, { "arg": "--batch-size", "help": "Training batch size to use", "required": False, "type": int, "default": 2, }, { "arg": "--warmup-ratio", "help": "Warmup proportion to use", "required": False, "type": float, "default": 0.1, }, { "arg": "--gradient-accumulation", "help": "Gradient accumulation steps to use", "required": False, "type": int, "default": 1, }, { "arg": "--optimizer", "help": "Optimizer to use", "required": False, "type": str, "default": "adamw_torch", }, { "arg": "--scheduler", "help": "Scheduler to use", "required": False, "type": str, "default": "linear", }, { "arg": "--weight-decay", "help": "Weight decay to use", "required": False, "type": float, "default": 0.0, }, { "arg": "--max-grad-norm", "help": "Max gradient norm to use", "required": False, "type": float, "default": 1.0, }, { "arg": "--seed", "help": "Seed to use", "required": False, "type": int, "default": 42, }, { "arg": "--logging-steps", "help": "Logging steps to use", "required": False, "type": int, "default": -1, }, { "arg": "--project-name", "help": "Output directory", "required": False, "type": str, }, { "arg": "--evaluation-strategy", "help": "Evaluation strategy to use", "required": False, "type": str, "default": "epoch", }, { "arg": "--save-total-limit", "help": "Save total limit to use", "required": False, "type": int, "default": 1, }, { "arg": "--save-strategy", "help": "Save strategy to use", "required": False, "type": str, "default": "epoch", }, { "arg": "--auto-find-batch-size", "help": "Auto find batch size True/False", "required": False, "action": "store_true", }, { "arg": "--fp16", "help": "FP16 True/False", "required": False, "action": "store_true", }, { "arg": "--push-to-hub", "help": "Push to hub True/False. In case you want to push the trained model to huggingface hub", "required": False, "action": "store_true", }, { "arg": "--repo-id", "help": "Repo id for hugging face hub", "required": False, "type": str, }, ] run_text_classification_parser = parser.add_parser( "image-classification", description="✨ Run AutoTrain Image Classification" ) for arg in arg_list: if "action" in arg: run_text_classification_parser.add_argument( arg["arg"], help=arg["help"], required=arg.get("required", False), action=arg.get("action"), default=arg.get("default"), ) else: run_text_classification_parser.add_argument( arg["arg"], help=arg["help"], required=arg.get("required", False), type=arg.get("type"), default=arg.get("default"), ) run_text_classification_parser.set_defaults(func=run_image_classification_command_factory) def __init__(self, args): self.args = args store_true_arg_names = [ "train", "deploy", "inference", "auto_find_batch_size", "fp16", "push_to_hub", ] for arg_name in store_true_arg_names: if getattr(self.args, arg_name) is None: setattr(self.args, arg_name, False) if self.args.train: if self.args.project_name is None: raise ValueError("Project name must be specified") if self.args.data_path is None: raise ValueError("Data path must be specified") if self.args.model is None: raise ValueError("Model must be specified") if self.args.push_to_hub: if self.args.repo_id is None: raise ValueError("Repo id must be specified for push to hub") else: raise ValueError("Must specify --train, --deploy or --inference") if not torch.cuda.is_available(): self.device = "cpu" self.num_gpus = torch.cuda.device_count() def run(self): from autotrain.trainers.image_classification.__main__ import train as train_image_classification from autotrain.trainers.image_classification.params import ImageClassificationParams logger.info("Running Text Classification") if self.args.train: params = ImageClassificationParams( data_path=self.args.data_path, train_split=self.args.train_split, valid_split=self.args.valid_split, image_column=self.args.image_column, target_column=self.args.target_column, model_name=self.args.model, lr=self.args.lr, epochs=self.args.epochs, batch_size=self.args.batch_size, warmup_ratio=self.args.warmup_ratio, gradient_accumulation=self.args.gradient_accumulation, optimizer=self.args.optimizer, scheduler=self.args.scheduler, weight_decay=self.args.weight_decay, max_grad_norm=self.args.max_grad_norm, seed=self.args.seed, logging_steps=self.args.logging_steps, project_name=self.args.project_name, evaluation_strategy=self.args.evaluation_strategy, save_total_limit=self.args.save_total_limit, save_strategy=self.args.save_strategy, auto_find_batch_size=self.args.auto_find_batch_size, fp16=self.args.fp16, push_to_hub=self.args.push_to_hub, repo_id=self.args.repo_id, ) params.save(output_dir=self.args.project_name) if self.num_gpus == 1: train_image_classification(params) else: cmd = ["accelerate", "launch", "--multi_gpu", "--num_machines", "1", "--num_processes"] cmd.append(str(self.num_gpus)) cmd.append("--mixed_precision") if self.args.fp16: cmd.append("fp16") else: cmd.append("no") cmd.extend( [ "-m", "autotrain.trainers.image_classification", "--training_config", os.path.join(self.args.project_name, "training_params.json"), ] ) env = os.environ.copy() process = subprocess.Popen(cmd, env=env) process.wait()
autotrain-advanced-main
src/autotrain/cli/run_image_classification.py
import os import subprocess import sys from argparse import ArgumentParser import torch from autotrain import logger from autotrain.backend import EndpointsRunner, SpaceRunner from . import BaseAutoTrainCommand def run_text_classification_command_factory(args): return RunAutoTrainTextClassificationCommand(args) class RunAutoTrainTextClassificationCommand(BaseAutoTrainCommand): @staticmethod def register_subcommand(parser: ArgumentParser): arg_list = [ { "arg": "--train", "help": "Train the model", "required": False, "action": "store_true", }, { "arg": "--deploy", "help": "Deploy the model", "required": False, "action": "store_true", }, { "arg": "--inference", "help": "Run inference", "required": False, "action": "store_true", }, { "arg": "--data-path", "help": "Train dataset to use", "required": False, "type": str, }, { "arg": "--train-split", "help": "Test dataset split to use", "required": False, "type": str, "default": "train", }, { "arg": "--valid-split", "help": "Validation dataset split to use", "required": False, "type": str, "default": None, }, { "arg": "--text-column", "help": "Text column to use", "required": False, "type": str, "default": "text", }, { "arg": "--target-column", "help": "Target column to use", "required": False, "type": str, "default": "target", }, { "arg": "--model", "help": "Model to use", "required": False, "type": str, }, { "arg": "--lr", "help": "Learning rate to use", "required": False, "type": float, "default": 3e-5, }, { "arg": "--epochs", "help": "Number of training epochs to use", "required": False, "type": int, "default": 1, }, { "arg": "--max-seq-length", "help": "Maximum number of tokens in a sequence to use", "required": False, "type": int, "default": 128, }, { "arg": "--batch-size", "help": "Training batch size to use", "required": False, "type": int, "default": 2, }, { "arg": "--warmup-ratio", "help": "Warmup proportion to use", "required": False, "type": float, "default": 0.1, }, { "arg": "--gradient-accumulation", "help": "Gradient accumulation steps to use", "required": False, "type": int, "default": 1, }, { "arg": "--optimizer", "help": "Optimizer to use", "required": False, "type": str, "default": "adamw_torch", }, { "arg": "--scheduler", "help": "Scheduler to use", "required": False, "type": str, "default": "linear", }, { "arg": "--weight-decay", "help": "Weight decay to use", "required": False, "type": float, "default": 0.0, }, { "arg": "--max-grad-norm", "help": "Max gradient norm to use", "required": False, "type": float, "default": 1.0, }, { "arg": "--seed", "help": "Seed to use", "required": False, "type": int, "default": 42, }, { "arg": "--logging-steps", "help": "Logging steps to use", "required": False, "type": int, "default": -1, }, { "arg": "--project-name", "help": "Output directory", "required": False, "type": str, }, { "arg": "--evaluation-strategy", "help": "Evaluation strategy to use", "required": False, "type": str, "default": "epoch", }, { "arg": "--save-total-limit", "help": "Save total limit to use", "required": False, "type": int, "default": 1, }, { "arg": "--save-strategy", "help": "Save strategy to use", "required": False, "type": str, "default": "epoch", }, { "arg": "--auto-find-batch-size", "help": "Auto find batch size True/False", "required": False, "action": "store_true", }, { "arg": "--fp16", "help": "FP16 True/False", "required": False, "action": "store_true", }, { "arg": "--token", "help": "Hugging face token", "required": False, "type": str, "default": "", }, { "arg": "--push-to-hub", "help": "Push to hub True/False. In case you want to push the trained model to huggingface hub", "required": False, "action": "store_true", }, { "arg": "--repo-id", "help": "Repo id for hugging face hub", "required": False, "type": str, }, { "arg": "--backend", "help": "Backend to use: default or spaces. Spaces backend requires push_to_hub and repo_id", "required": False, "type": str, "default": "default", }, { "arg": "--username", "help": "Huggingface username to use", "required": False, "type": str, }, ] run_text_classification_parser = parser.add_parser( "text-classification", description="✨ Run AutoTrain Text Classification" ) for arg in arg_list: if "action" in arg: run_text_classification_parser.add_argument( arg["arg"], help=arg["help"], required=arg.get("required", False), action=arg.get("action"), default=arg.get("default"), ) else: run_text_classification_parser.add_argument( arg["arg"], help=arg["help"], required=arg.get("required", False), type=arg.get("type"), default=arg.get("default"), ) run_text_classification_parser.set_defaults(func=run_text_classification_command_factory) def __init__(self, args): self.args = args store_true_arg_names = [ "train", "deploy", "inference", "auto_find_batch_size", "fp16", "push_to_hub", ] for arg_name in store_true_arg_names: if getattr(self.args, arg_name) is None: setattr(self.args, arg_name, False) if self.args.train: if self.args.project_name is None: raise ValueError("Project name must be specified") if self.args.data_path is None: raise ValueError("Data path must be specified") if self.args.model is None: raise ValueError("Model must be specified") if self.args.push_to_hub: if self.args.repo_id is None: raise ValueError("Repo id must be specified for push to hub") else: raise ValueError("Must specify --train, --deploy or --inference") if not torch.cuda.is_available(): self.device = "cpu" self.num_gpus = torch.cuda.device_count() if len(str(self.args.token)) < 6: self.args.token = os.environ.get("HF_TOKEN", None) def run(self): from autotrain.trainers.text_classification.__main__ import train as train_text_classification from autotrain.trainers.text_classification.params import TextClassificationParams logger.info("Running Text Classification") if self.args.train: params = TextClassificationParams( data_path=self.args.data_path, train_split=self.args.train_split, valid_split=self.args.valid_split, text_column=self.args.text_column, target_column=self.args.target_column, model_name=self.args.model, lr=self.args.lr, epochs=self.args.epochs, max_seq_length=self.args.max_seq_length, batch_size=self.args.batch_size, warmup_ratio=self.args.warmup_ratio, gradient_accumulation=self.args.gradient_accumulation, optimizer=self.args.optimizer, scheduler=self.args.scheduler, weight_decay=self.args.weight_decay, max_grad_norm=self.args.max_grad_norm, seed=self.args.seed, logging_steps=self.args.logging_steps, project_name=self.args.project_name, evaluation_strategy=self.args.evaluation_strategy, save_total_limit=self.args.save_total_limit, save_strategy=self.args.save_strategy, auto_find_batch_size=self.args.auto_find_batch_size, fp16=self.args.fp16, push_to_hub=self.args.push_to_hub, repo_id=self.args.repo_id, token=self.args.token, username=self.args.username, ) if self.args.backend.startswith("spaces"): logger.info("Creating space...") sr = SpaceRunner( params=params, backend=self.args.backend, ) space_id = sr.prepare() logger.info(f"Training Space created. Check progress at https://hf.co/spaces/{space_id}") sys.exit(0) if self.args.backend.startswith("ep-"): logger.info("Creating training endpoint...") sr = EndpointsRunner( params=params, backend=self.args.backend, ) sr.prepare() logger.info("Training endpoint created.") sys.exit(0) params.save(output_dir=self.args.project_name) if self.num_gpus == 1: train_text_classification(params) else: cmd = ["accelerate", "launch", "--multi_gpu", "--num_machines", "1", "--num_processes"] cmd.append(str(self.num_gpus)) cmd.append("--mixed_precision") if self.args.fp16: cmd.append("fp16") else: cmd.append("no") cmd.extend( [ "-m", "autotrain.trainers.text_classification", "--training_config", os.path.join(self.args.project_name, "training_params.json"), ] ) env = os.environ.copy() process = subprocess.Popen(cmd, env=env) process.wait()
autotrain-advanced-main
src/autotrain/cli/run_text_classification.py
import os import subprocess import sys from argparse import ArgumentParser import torch from autotrain import logger from . import BaseAutoTrainCommand def run_llm_command_factory(args): return RunAutoTrainLLMCommand(args) class RunAutoTrainLLMCommand(BaseAutoTrainCommand): @staticmethod def register_subcommand(parser: ArgumentParser): arg_list = [ { "arg": "--train", "help": "Train the model", "required": False, "action": "store_true", }, { "arg": "--deploy", "help": "Deploy the model", "required": False, "action": "store_true", }, { "arg": "--inference", "help": "Run inference", "required": False, "action": "store_true", }, { "arg": "--data_path", "help": "Train dataset to use", "required": False, "type": str, "alias": ["--data-path"], }, { "arg": "--train_split", "help": "Test dataset split to use", "required": False, "type": str, "default": "train", "alias": ["--train-split"], }, { "arg": "--valid_split", "help": "Validation dataset split to use", "required": False, "type": str, "default": None, "alias": ["--valid-split"], }, { "arg": "--text_column", "help": "Text column to use", "required": False, "type": str, "default": "text", "alias": ["--text-column"], }, { "arg": "--model", "help": "Model to use", "required": False, "type": str, }, { "arg": "--learning_rate", "help": "Learning rate to use", "required": False, "type": float, "default": 3e-5, "alias": ["--lr", "--learning-rate"], }, { "arg": "--num_train_epochs", "help": "Number of training epochs to use", "required": False, "type": int, "default": 1, "alias": ["--epochs"], }, { "arg": "--train_batch_size", "help": "Training batch size to use", "required": False, "type": int, "default": 2, "alias": ["--train-batch-size", "--batch-size"], }, { "arg": "--warmup_ratio", "help": "Warmup proportion to use", "required": False, "type": float, "default": 0.1, "alias": ["--warmup-ratio"], }, { "arg": "--gradient_accumulation_steps", "help": "Gradient accumulation steps to use", "required": False, "type": int, "default": 1, "alias": ["--gradient-accumulation-steps", "--gradient-accumulation"], }, { "arg": "--optimizer", "help": "Optimizer to use", "required": False, "type": str, "default": "adamw_torch", }, { "arg": "--scheduler", "help": "Scheduler to use", "required": False, "type": str, "default": "linear", }, { "arg": "--weight_decay", "help": "Weight decay to use", "required": False, "type": float, "default": 0.0, "alias": ["--weight-decay"], }, { "arg": "--max_grad_norm", "help": "Max gradient norm to use", "required": False, "type": float, "default": 1.0, "alias": ["--max-grad-norm"], }, { "arg": "--seed", "help": "Seed to use", "required": False, "type": int, "default": 42, }, { "arg": "--add_eos_token", "help": "Add EOS token to use", "required": False, "action": "store_true", "alias": ["--add-eos-token"], }, { "arg": "--block_size", "help": "Block size to use", "required": False, "type": int, "default": -1, "alias": ["--block-size"], }, { "arg": "--use_peft", "help": "Use PEFT to use", "required": False, "action": "store_true", "alias": ["--use-peft"], }, { "arg": "--lora_r", "help": "Lora r to use", "required": False, "type": int, "default": 16, "alias": ["--lora-r"], }, { "arg": "--lora_alpha", "help": "Lora alpha to use", "required": False, "type": int, "default": 32, "alias": ["--lora-alpha"], }, { "arg": "--lora_dropout", "help": "Lora dropout to use", "required": False, "type": float, "default": 0.05, "alias": ["--lora-dropout"], }, { "arg": "--logging_steps", "help": "Logging steps to use", "required": False, "type": int, "default": -1, "alias": ["--logging-steps"], }, { "arg": "--project_name", "help": "Output directory", "required": False, "type": str, "alias": ["--project-name"], }, { "arg": "--evaluation_strategy", "help": "Evaluation strategy to use", "required": False, "type": str, "default": "epoch", "alias": ["--evaluation-strategy"], }, { "arg": "--save_total_limit", "help": "Save total limit to use", "required": False, "type": int, "default": 1, "alias": ["--save-total-limit"], }, { "arg": "--save_strategy", "help": "Save strategy to use", "required": False, "type": str, "default": "epoch", "alias": ["--save-strategy"], }, { "arg": "--auto_find_batch_size", "help": "Auto find batch size True/False", "required": False, "action": "store_true", "alias": ["--auto-find-batch-size"], }, { "arg": "--fp16", "help": "FP16 True/False", "required": False, "action": "store_true", }, { "arg": "--push_to_hub", "help": "Push to hub True/False. In case you want to push the trained model to huggingface hub", "required": False, "action": "store_true", "alias": ["--push-to-hub"], }, { "arg": "--use_int8", "help": "Use int8 True/False", "required": False, "action": "store_true", "alias": ["--use-int8"], }, { "arg": "--model_max_length", "help": "Model max length to use", "required": False, "type": int, "default": 1024, "alias": ["--max-len", "--max-length"], }, { "arg": "--repo_id", "help": "Repo id for hugging face hub. Format is username/repo_name", "required": False, "type": str, "alias": ["--repo-id"], }, { "arg": "--use_int4", "help": "Use int4 True/False", "required": False, "action": "store_true", "alias": ["--use-int4"], }, { "arg": "--trainer", "help": "Trainer type to use", "required": False, "type": str, "default": "default", }, { "arg": "--target_modules", "help": "Target modules to use", "required": False, "type": str, "default": None, "alias": ["--target-modules"], }, { "arg": "--merge_adapter", "help": "Use this flag to merge PEFT adapter with the model", "required": False, "action": "store_true", "alias": ["--merge-adapter"], }, { "arg": "--token", "help": "Hugingface token to use", "required": False, "type": str, }, { "arg": "--backend", "help": "Backend to use: default or spaces. Spaces backend requires push_to_hub and repo_id", "required": False, "type": str, "default": "default", }, { "arg": "--username", "help": "Huggingface username to use", "required": False, "type": str, }, ] run_llm_parser = parser.add_parser("llm", description="✨ Run AutoTrain LLM") for arg in arg_list: names = [arg["arg"]] + arg.get("alias", []) if "action" in arg: run_llm_parser.add_argument( *names, dest=arg["arg"].replace("--", "").replace("-", "_"), help=arg["help"], required=arg.get("required", False), action=arg.get("action"), default=arg.get("default"), ) else: run_llm_parser.add_argument( *names, dest=arg["arg"].replace("--", "").replace("-", "_"), help=arg["help"], required=arg.get("required", False), type=arg.get("type"), default=arg.get("default"), ) run_llm_parser.set_defaults(func=run_llm_command_factory) def __init__(self, args): self.args = args store_true_arg_names = [ "train", "deploy", "inference", "add_eos_token", "use_peft", "auto_find_batch_size", "fp16", "push_to_hub", "use_int8", "use_int4", "merge_adapter", ] for arg_name in store_true_arg_names: if getattr(self.args, arg_name) is None: setattr(self.args, arg_name, False) if self.args.train: if self.args.project_name is None: raise ValueError("Project name must be specified") if self.args.data_path is None: raise ValueError("Data path must be specified") if self.args.model is None: raise ValueError("Model must be specified") if self.args.push_to_hub: if self.args.repo_id is None: raise ValueError("Repo id must be specified for push to hub") if self.args.backend.startswith("spaces") or self.args.backend.startswith("ep-"): if not self.args.push_to_hub: raise ValueError("Push to hub must be specified for spaces backend") if self.args.repo_id is None: raise ValueError("Repo id must be specified for spaces backend") if self.args.token is None: raise ValueError("Token must be specified for spaces backend") if self.args.inference: from autotrain.infer.text_generation import TextGenerationInference tgi = TextGenerationInference( self.args.project_name, use_int4=self.args.use_int4, use_int8=self.args.use_int8 ) while True: prompt = input("User: ") if prompt == "exit()": break print(f"Bot: {tgi.chat(prompt)}") if not torch.cuda.is_available(): raise ValueError("No GPU found. Please install CUDA and try again.") self.num_gpus = torch.cuda.device_count() def run(self): from autotrain.backend import EndpointsRunner, SpaceRunner from autotrain.trainers.clm.__main__ import train as train_llm from autotrain.trainers.clm.params import LLMTrainingParams logger.info("Running LLM") logger.info(f"Params: {self.args}") if self.args.train: params = LLMTrainingParams( model=self.args.model, data_path=self.args.data_path, train_split=self.args.train_split, valid_split=self.args.valid_split, text_column=self.args.text_column, lr=self.args.learning_rate, epochs=self.args.num_train_epochs, batch_size=self.args.train_batch_size, warmup_ratio=self.args.warmup_ratio, gradient_accumulation=self.args.gradient_accumulation_steps, optimizer=self.args.optimizer, scheduler=self.args.scheduler, weight_decay=self.args.weight_decay, max_grad_norm=self.args.max_grad_norm, seed=self.args.seed, add_eos_token=self.args.add_eos_token, block_size=self.args.block_size, use_peft=self.args.use_peft, lora_r=self.args.lora_r, lora_alpha=self.args.lora_alpha, lora_dropout=self.args.lora_dropout, logging_steps=self.args.logging_steps, project_name=self.args.project_name, evaluation_strategy=self.args.evaluation_strategy, save_total_limit=self.args.save_total_limit, save_strategy=self.args.save_strategy, auto_find_batch_size=self.args.auto_find_batch_size, fp16=self.args.fp16, push_to_hub=self.args.push_to_hub, use_int8=self.args.use_int8, model_max_length=self.args.model_max_length, repo_id=self.args.repo_id, use_int4=self.args.use_int4, trainer=self.args.trainer, target_modules=self.args.target_modules, token=self.args.token, merge_adapter=self.args.merge_adapter, username=self.args.username, ) # space training if self.args.backend.startswith("spaces"): logger.info("Creating space...") sr = SpaceRunner( params=params, backend=self.args.backend, ) space_id = sr.prepare() logger.info(f"Training Space created. Check progress at https://hf.co/spaces/{space_id}") sys.exit(0) if self.args.backend.startswith("ep-"): logger.info("Creating training endpoint...") sr = EndpointsRunner( params=params, backend=self.args.backend, ) sr.prepare() logger.info("Training endpoint created.") sys.exit(0) # local training params.save(output_dir=self.args.project_name) if self.num_gpus == 1: train_llm(params) else: cmd = ["accelerate", "launch", "--multi_gpu", "--num_machines", "1", "--num_processes"] cmd.append(str(self.num_gpus)) cmd.append("--mixed_precision") if self.args.fp16: cmd.append("fp16") else: cmd.append("no") cmd.extend( [ "-m", "autotrain.trainers.clm", "--training_config", os.path.join(self.args.project_name, "training_params.json"), ] ) env = os.environ.copy() process = subprocess.Popen(cmd, env=env) process.wait()
autotrain-advanced-main
src/autotrain/cli/run_llm.py
import glob import os from argparse import ArgumentParser from autotrain import logger from autotrain.cli import BaseAutoTrainCommand try: from autotrain.trainers.dreambooth.__main__ import train as train_dreambooth from autotrain.trainers.dreambooth.params import DreamBoothTrainingParams from autotrain.trainers.dreambooth.utils import VALID_IMAGE_EXTENSIONS, XL_MODELS except ImportError: logger.warning( "❌ Some DreamBooth components are missing! Please run `autotrain setup` to install it. Ignore this warning if you are not using DreamBooth or running `autotrain setup` already." ) def count_images(directory): files_grabbed = [] for files in VALID_IMAGE_EXTENSIONS: files_grabbed.extend(glob.glob(os.path.join(directory, "*" + files))) return len(files_grabbed) def run_dreambooth_command_factory(args): return RunAutoTrainDreamboothCommand(args) class RunAutoTrainDreamboothCommand(BaseAutoTrainCommand): @staticmethod def register_subcommand(parser: ArgumentParser): arg_list = [ { "arg": "--model", "help": "Model to use for training", "required": True, "type": str, }, { "arg": "--revision", "help": "Model revision to use for training", "required": False, "type": str, }, { "arg": "--tokenizer", "help": "Tokenizer to use for training", "required": False, "type": str, }, { "arg": "--image-path", "help": "Path to the images", "required": True, "type": str, }, { "arg": "--class-image-path", "help": "Path to the class images", "required": False, "type": str, }, { "arg": "--prompt", "help": "Instance prompt", "required": True, "type": str, }, { "arg": "--class-prompt", "help": "Class prompt", "required": False, "type": str, }, { "arg": "--num-class-images", "help": "Number of class images", "required": False, "default": 100, "type": int, }, { "arg": "--class-labels-conditioning", "help": "Class labels conditioning", "required": False, "type": str, }, { "arg": "--prior-preservation", "help": "With prior preservation", "required": False, "action": "store_true", }, { "arg": "--prior-loss-weight", "help": "Prior loss weight", "required": False, "default": 1.0, "type": float, }, { "arg": "--project-name", "help": "Output directory or repo id", "required": True, "type": str, }, { "arg": "--seed", "help": "Seed", "required": False, "default": 42, "type": int, }, { "arg": "--resolution", "help": "Resolution", "required": True, "type": int, }, { "arg": "--center-crop", "help": "Center crop", "required": False, "action": "store_true", }, { "arg": "--train-text-encoder", "help": "Train text encoder", "required": False, "action": "store_true", }, { "arg": "--batch-size", "help": "Train batch size", "required": False, "default": 4, "type": int, }, { "arg": "--sample-batch-size", "help": "Sample batch size", "required": False, "default": 4, "type": int, }, { "arg": "--epochs", "help": "Number of training epochs", "required": False, "default": 1, "type": int, }, { "arg": "--num-steps", "help": "Max train steps", "required": False, "type": int, }, { "arg": "--checkpointing-steps", "help": "Checkpointing steps", "required": False, "default": 100000, "type": int, }, { "arg": "--resume-from-checkpoint", "help": "Resume from checkpoint", "required": False, "type": str, }, { "arg": "--gradient-accumulation", "help": "Gradient accumulation steps", "required": False, "default": 1, "type": int, }, { "arg": "--gradient-checkpointing", "help": "Gradient checkpointing", "required": False, "action": "store_true", }, { "arg": "--lr", "help": "Learning rate", "required": False, "default": 5e-4, "type": float, }, { "arg": "--scale-lr", "help": "Scale learning rate", "required": False, "action": "store_true", }, { "arg": "--scheduler", "help": "Learning rate scheduler", "required": False, "default": "constant", }, { "arg": "--warmup-steps", "help": "Learning rate warmup steps", "required": False, "default": 0, "type": int, }, { "arg": "--num-cycles", "help": "Learning rate num cycles", "required": False, "default": 1, "type": int, }, { "arg": "--lr-power", "help": "Learning rate power", "required": False, "default": 1.0, "type": float, }, { "arg": "--dataloader-num-workers", "help": "Dataloader num workers", "required": False, "default": 0, "type": int, }, { "arg": "--use-8bit-adam", "help": "Use 8bit adam", "required": False, "action": "store_true", }, { "arg": "--adam-beta1", "help": "Adam beta 1", "required": False, "default": 0.9, "type": float, }, { "arg": "--adam-beta2", "help": "Adam beta 2", "required": False, "default": 0.999, "type": float, }, { "arg": "--adam-weight-decay", "help": "Adam weight decay", "required": False, "default": 1e-2, "type": float, }, { "arg": "--adam-epsilon", "help": "Adam epsilon", "required": False, "default": 1e-8, "type": float, }, { "arg": "--max-grad-norm", "help": "Max grad norm", "required": False, "default": 1.0, "type": float, }, { "arg": "--allow-tf32", "help": "Allow TF32", "required": False, "action": "store_true", }, { "arg": "--prior-generation-precision", "help": "Prior generation precision", "required": False, "type": str, }, { "arg": "--local-rank", "help": "Local rank", "required": False, "default": -1, "type": int, }, { "arg": "--xformers", "help": "Enable xformers memory efficient attention", "required": False, "action": "store_true", }, { "arg": "--pre-compute-text-embeddings", "help": "Pre compute text embeddings", "required": False, "action": "store_true", }, { "arg": "--tokenizer-max-length", "help": "Tokenizer max length", "required": False, "type": int, }, { "arg": "--text-encoder-use-attention-mask", "help": "Text encoder use attention mask", "required": False, "action": "store_true", }, { "arg": "--rank", "help": "Rank", "required": False, "default": 4, "type": int, }, { "arg": "--xl", "help": "XL", "required": False, "action": "store_true", }, { "arg": "--fp16", "help": "FP16", "required": False, "action": "store_true", }, { "arg": "--bf16", "help": "BF16", "required": False, "action": "store_true", }, { "arg": "--token", "help": "Hub token", "required": False, "type": str, }, { "arg": "--repo-id", "help": "Hub repo id", "required": False, "type": str, }, { "arg": "--push-to-hub", "help": "Push to hub", "required": False, "action": "store_true", }, { "arg": "--validation-prompt", "help": "Validation prompt", "required": False, "type": str, }, { "arg": "--num-validation-images", "help": "Number of validation images", "required": False, "default": 4, "type": int, }, { "arg": "--validation-epochs", "help": "Validation epochs", "required": False, "default": 50, "type": int, }, { "arg": "--checkpoints-total-limit", "help": "Checkpoints total limit", "required": False, "type": int, }, { "arg": "--validation-images", "help": "Validation images", "required": False, "type": str, }, { "arg": "--logging", "help": "Logging using tensorboard", "required": False, "action": "store_true", }, { "arg": "--username", "help": "Hugging Face Hub Username", "required": False, "type": str, }, ] run_dreambooth_parser = parser.add_parser("dreambooth", description="✨ Run AutoTrain DreamBooth Training") for arg in arg_list: if "action" in arg: run_dreambooth_parser.add_argument( arg["arg"], help=arg["help"], required=arg.get("required", False), action=arg.get("action"), default=arg.get("default"), ) else: run_dreambooth_parser.add_argument( arg["arg"], help=arg["help"], required=arg.get("required", False), type=arg.get("type"), default=arg.get("default"), ) run_dreambooth_parser.set_defaults(func=run_dreambooth_command_factory) def __init__(self, args): self.args = args logger.info(self.args) store_true_arg_names = [ "center_crop", "train_text_encoder", "gradient_checkpointing", "scale_lr", "use_8bit_adam", "allow_tf32", "xformers", "pre_compute_text_embeddings", "text_encoder_use_attention_mask", "xl", "fp16", "bf16", "push_to_hub", "logging", "prior_preservation", ] for arg_name in store_true_arg_names: if getattr(self.args, arg_name) is None: setattr(self.args, arg_name, False) if self.args.fp16 and self.args.bf16: raise ValueError("❌ Please choose either FP16 or BF16") # check if self.args.image_path is a directory with images if not os.path.isdir(self.args.image_path): raise ValueError("❌ Please specify a valid image directory") # count the number of images in the directory. valid images are .jpg, .jpeg, .png num_images = count_images(self.args.image_path) if num_images == 0: raise ValueError("❌ Please specify a valid image directory") if self.args.push_to_hub: if self.args.repo_id is None and self.args.username is None: raise ValueError("❌ Please specify a username or repo id to push to hub") if self.args.model in XL_MODELS: self.args.xl = True def run(self): logger.info("Running DreamBooth Training") params = DreamBoothTrainingParams(**vars(self.args)) train_dreambooth(params)
autotrain-advanced-main
src/autotrain/cli/run_dreambooth.py
import os import albumentations as A import numpy as np import torch from datasets import load_dataset from sklearn import metrics from transformers import ( AutoConfig, AutoImageProcessor, AutoModelForImageClassification, EarlyStoppingCallback, Trainer, TrainingArguments, ) from autotrain import logger, utils from autotrain.params import ImageBinaryClassificationParams, ImageMultiClassClassificationParams BINARY_CLASSIFICATION_EVAL_METRICS = ( "eval_loss", "eval_accuracy", "eval_f1", "eval_auc", "eval_precision", "eval_recall", ) MULTI_CLASS_CLASSIFICATION_EVAL_METRICS = ( "eval_loss", "eval_accuracy", "eval_f1_macro", "eval_f1_micro", "eval_f1_weighted", "eval_precision_macro", "eval_precision_micro", "eval_precision_weighted", "eval_recall_macro", "eval_recall_micro", "eval_recall_weighted", ) MODEL_CARD = """ --- tags: - autotrain - image-classification widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace datasets: - {dataset} co2_eq_emissions: emissions: {co2} --- # Model Trained Using AutoTrain - Problem type: Image Classification - CO2 Emissions (in grams): {co2:.4f} ## Validation Metricsg {validation_metrics} """ class Dataset: def __init__(self, data, transforms): self.data = data self.transforms = transforms def __len__(self): return len(self.data) def __getitem__(self, item): image = self.data[item]["image"] target = int(self.data[item]["label"]) image = self.transforms(image=np.array(image.convert("RGB")))["image"] image = np.transpose(image, (2, 0, 1)).astype(np.float32) return { "pixel_values": torch.tensor(image, dtype=torch.float), "labels": torch.tensor(target, dtype=torch.long), } def _binary_classification_metrics(pred): raw_predictions, labels = pred predictions = np.argmax(raw_predictions, axis=1) result = { "f1": metrics.f1_score(labels, predictions), "precision": metrics.precision_score(labels, predictions), "recall": metrics.recall_score(labels, predictions), "auc": metrics.roc_auc_score(labels, raw_predictions[:, 1]), "accuracy": metrics.accuracy_score(labels, predictions), } return result def _multi_class_classification_metrics(pred): raw_predictions, labels = pred predictions = np.argmax(raw_predictions, axis=1) results = { "f1_macro": metrics.f1_score(labels, predictions, average="macro"), "f1_micro": metrics.f1_score(labels, predictions, average="micro"), "f1_weighted": metrics.f1_score(labels, predictions, average="weighted"), "precision_macro": metrics.precision_score(labels, predictions, average="macro"), "precision_micro": metrics.precision_score(labels, predictions, average="micro"), "precision_weighted": metrics.precision_score(labels, predictions, average="weighted"), "recall_macro": metrics.recall_score(labels, predictions, average="macro"), "recall_micro": metrics.recall_score(labels, predictions, average="micro"), "recall_weighted": metrics.recall_score(labels, predictions, average="weighted"), "accuracy": metrics.accuracy_score(labels, predictions), } return results def process_data(train_data, valid_data, image_processor): if "shortest_edge" in image_processor.size: size = image_processor.size["shortest_edge"] else: size = (image_processor.size["height"], image_processor.size["width"]) try: height, width = size except TypeError: height = size width = size train_transforms = A.Compose( [ A.RandomResizedCrop(height=height, width=width), A.RandomRotate90(), A.HorizontalFlip(p=0.5), A.RandomBrightnessContrast(p=0.2), A.Normalize(mean=image_processor.image_mean, std=image_processor.image_std), ] ) val_transforms = A.Compose( [ A.Resize(height=height, width=width), A.Normalize(mean=image_processor.image_mean, std=image_processor.image_std), ] ) train_data = Dataset(train_data, train_transforms) valid_data = Dataset(valid_data, val_transforms) return train_data, valid_data @utils.job_watcher def train(co2_tracker, payload, huggingface_token, model_path): # create model repo model_repo = utils.create_repo( project_name=payload["proj_name"], autotrain_user=payload["username"], huggingface_token=huggingface_token, model_path=model_path, ) data_path = f"{payload['username']}/autotrain-data-{payload['proj_name']}" data = load_dataset(data_path, use_auth_token=huggingface_token) logger.info(f"Loaded data from {data_path}") job_config = payload["config"]["params"][0] job_config["model_name"] = payload["config"]["hub_model"] train_data = data["train"] valid_data = data["validation"] labels = train_data.features["label"].names label2id, id2label = {}, {} for i, label in enumerate(labels): label2id[label] = str(i) id2label[str(i)] = label num_classes = len(labels) model_name = job_config["model_name"] device = job_config.get("device", "cuda") # remove model_name from job config del job_config["model_name"] if num_classes == 2: job_config["task"] = "image_binary_classification" job_config = ImageBinaryClassificationParams(**job_config) elif num_classes > 2: job_config["task"] = "image_multi_class_classification" job_config = ImageMultiClassClassificationParams(**job_config) else: raise ValueError("Invalid number of classes") model_config = AutoConfig.from_pretrained( model_name, num_labels=num_classes, use_auth_token=huggingface_token, ) model_config._num_labels = len(label2id) model_config.label2id = label2id model_config.id2label = id2label logger.info(model_config) try: model = AutoModelForImageClassification.from_pretrained( model_name, config=model_config, use_auth_token=huggingface_token, ignore_mismatched_sizes=True, ) except OSError: model = AutoModelForImageClassification.from_pretrained( model_name, config=model_config, use_auth_token=huggingface_token, from_tf=True, ignore_mismatched_sizes=True, ) image_processor = AutoImageProcessor.from_pretrained(model_name, use_auth_token=huggingface_token) train_dataset, valid_dataset = process_data(train_data, valid_data, image_processor) # trainer specific logging_steps = int(0.2 * len(valid_dataset) / job_config.train_batch_size) if logging_steps == 0: logging_steps = 1 fp16 = True if device == "cpu": fp16 = False training_args = dict( output_dir=model_path, per_device_train_batch_size=job_config.train_batch_size, per_device_eval_batch_size=job_config.train_batch_size, learning_rate=job_config.learning_rate, num_train_epochs=job_config.num_train_epochs, fp16=fp16, load_best_model_at_end=True, evaluation_strategy="epoch", logging_steps=logging_steps, save_total_limit=1, save_strategy="epoch", disable_tqdm=not bool(os.environ.get("ENABLE_TQDM", 0)), gradient_accumulation_steps=job_config.gradient_accumulation_steps, report_to="none", auto_find_batch_size=True, lr_scheduler_type=job_config.scheduler, optim=job_config.optimizer, warmup_ratio=job_config.warmup_ratio, weight_decay=job_config.weight_decay, max_grad_norm=job_config.max_grad_norm, ) early_stop = EarlyStoppingCallback(early_stopping_patience=3, early_stopping_threshold=0.01) callbacks_to_use = [early_stop] args = TrainingArguments(**training_args) trainer_args = dict( args=args, model=model, callbacks=callbacks_to_use, compute_metrics=_binary_classification_metrics if num_classes == 2 else _multi_class_classification_metrics, ) trainer = Trainer( **trainer_args, train_dataset=train_dataset, eval_dataset=valid_dataset, ) trainer.train() logger.info("Finished training") logger.info(trainer.state.best_metric) eval_scores = trainer.evaluate() # create and save model card co2_consumed = co2_tracker.stop() co2_consumed = co2_consumed * 1000 if co2_consumed is not None else 0 valid_metrics = BINARY_CLASSIFICATION_EVAL_METRICS if num_classes == 2 else MULTI_CLASS_CLASSIFICATION_EVAL_METRICS eval_scores = [f"{k[len('eval_'):]}: {v}" for k, v in eval_scores.items() if k in valid_metrics] eval_scores = "\n\n".join(eval_scores) model_card = MODEL_CARD.format( language=payload["config"]["language"], dataset=data_path, co2=co2_consumed, validation_metrics=eval_scores, ) logger.info(model_card) utils.save_model_card(model_card, model_path) # save model, image_processor and config model = utils.update_model_config(trainer.model, job_config) utils.save_tokenizer(image_processor, model_path) utils.save_model(model, model_path) utils.remove_checkpoints(model_path=model_path) # push model to hub logger.info("Pushing model to Hub") model_repo.git_pull() model_repo.git_add() model_repo.git_commit(commit_message="Commit From AutoTrain") model_repo.git_push()
autotrain-advanced-main
src/autotrain/trainers/image_classification.py
autotrain-advanced-main
src/autotrain/trainers/__init__.py
import os import numpy as np import torch from datasets import load_dataset from sklearn import metrics from transformers import ( AutoConfig, AutoModelForSequenceClassification, AutoTokenizer, EarlyStoppingCallback, Trainer, TrainingArguments, ) from autotrain import logger, utils from autotrain.params import TextBinaryClassificationParams, TextMultiClassClassificationParams TEXT_COLUMN = "autotrain_text" LABEL_COLUMN = "autotrain_label" FP32_MODELS = ("t5", "mt5", "pegasus", "longt5", "bigbird_pegasus") BINARY_CLASSIFICATION_EVAL_METRICS = ( "eval_loss", "eval_accuracy", "eval_f1", "eval_auc", "eval_precision", "eval_recall", ) MULTI_CLASS_CLASSIFICATION_EVAL_METRICS = ( "eval_loss", "eval_accuracy", "eval_f1_macro", "eval_f1_micro", "eval_f1_weighted", "eval_precision_macro", "eval_precision_micro", "eval_precision_weighted", "eval_recall_macro", "eval_recall_micro", "eval_recall_weighted", ) MODEL_CARD = """ --- tags: - autotrain - text-classification language: - {language} widget: - text: "I love AutoTrain" datasets: - {dataset} co2_eq_emissions: emissions: {co2} --- # Model Trained Using AutoTrain - Problem type: Text Classification - CO2 Emissions (in grams): {co2:.4f} ## Validation Metrics {validation_metrics} """ class Dataset: def __init__(self, data, tokenizer, label2id, config): self.data = data self.tokenizer = tokenizer self.config = config self.label2id = label2id def __len__(self): return len(self.data) def __getitem__(self, item): text = str(self.data[item][TEXT_COLUMN]) target = self.data[item][LABEL_COLUMN] target = int(self.label2id[target]) inputs = self.tokenizer( text, max_length=self.config.max_seq_length, padding="max_length", truncation=True, ) ids = inputs["input_ids"] mask = inputs["attention_mask"] if "token_type_ids" in inputs: token_type_ids = inputs["token_type_ids"] else: token_type_ids = None if token_type_ids is not None: return { "input_ids": torch.tensor(ids, dtype=torch.long), "attention_mask": torch.tensor(mask, dtype=torch.long), "token_type_ids": torch.tensor(token_type_ids, dtype=torch.long), "labels": torch.tensor(target, dtype=torch.long), } return { "input_ids": torch.tensor(ids, dtype=torch.long), "attention_mask": torch.tensor(mask, dtype=torch.long), "labels": torch.tensor(target, dtype=torch.long), } def _binary_classification_metrics(pred): raw_predictions, labels = pred predictions = np.argmax(raw_predictions, axis=1) result = { "f1": metrics.f1_score(labels, predictions), "precision": metrics.precision_score(labels, predictions), "recall": metrics.recall_score(labels, predictions), "auc": metrics.roc_auc_score(labels, raw_predictions[:, 1]), "accuracy": metrics.accuracy_score(labels, predictions), } return result def _multi_class_classification_metrics(pred): raw_predictions, labels = pred predictions = np.argmax(raw_predictions, axis=1) results = { "f1_macro": metrics.f1_score(labels, predictions, average="macro"), "f1_micro": metrics.f1_score(labels, predictions, average="micro"), "f1_weighted": metrics.f1_score(labels, predictions, average="weighted"), "precision_macro": metrics.precision_score(labels, predictions, average="macro"), "precision_micro": metrics.precision_score(labels, predictions, average="micro"), "precision_weighted": metrics.precision_score(labels, predictions, average="weighted"), "recall_macro": metrics.recall_score(labels, predictions, average="macro"), "recall_micro": metrics.recall_score(labels, predictions, average="micro"), "recall_weighted": metrics.recall_score(labels, predictions, average="weighted"), "accuracy": metrics.accuracy_score(labels, predictions), } return results @utils.job_watcher def train(co2_tracker, payload, huggingface_token, model_path): model_repo = utils.create_repo( project_name=payload["proj_name"], autotrain_user=payload["username"], huggingface_token=huggingface_token, model_path=model_path, ) data_path = f"{payload['username']}/autotrain-data-{payload['proj_name']}" data = load_dataset(data_path, use_auth_token=huggingface_token) logger.info(f"Loaded data from {data_path}") job_config = payload["config"]["params"][0] job_config["model_name"] = payload["config"]["hub_model"] train_data = data["train"] valid_data = data["validation"] classes = train_data.unique(LABEL_COLUMN) label2id = {c: i for i, c in enumerate(classes)} num_classes = len(classes) model_name = job_config["model_name"] device = job_config.get("device", "cuda") # remove model_name from job config del job_config["model_name"] if num_classes == 2: job_config["task"] = "text_binary_classification" job_config = TextBinaryClassificationParams(**job_config) elif num_classes > 2: job_config["task"] = "text_multi_class_classification" job_config = TextMultiClassClassificationParams(**job_config) else: raise ValueError("Invalid number of classes") model_config = AutoConfig.from_pretrained( model_name, num_labels=num_classes, ) model_config._num_labels = len(label2id) model_config.label2id = label2id model_config.id2label = {v: k for k, v in label2id.items()} logger.info(model_config) try: model = AutoModelForSequenceClassification.from_pretrained(model_name, config=model_config) except OSError: model = AutoModelForSequenceClassification.from_pretrained(model_name, config=model_config, from_tf=True) tokenizer = AutoTokenizer.from_pretrained(model_name) train_dataset = Dataset(data=train_data, tokenizer=tokenizer, label2id=label2id, config=job_config) valid_dataset = Dataset(data=valid_data, tokenizer=tokenizer, label2id=label2id, config=job_config) logging_steps = int(0.2 * len(valid_dataset) / job_config.train_batch_size) if logging_steps == 0: logging_steps = 1 fp16 = True if model_config.model_type in FP32_MODELS or device == "cpu": fp16 = False training_args = dict( output_dir="/tmp/autotrain", per_device_train_batch_size=job_config.train_batch_size, per_device_eval_batch_size=2 * job_config.train_batch_size, learning_rate=job_config.learning_rate, num_train_epochs=job_config.num_train_epochs, fp16=fp16, load_best_model_at_end=True, evaluation_strategy="epoch", logging_steps=logging_steps, save_total_limit=1, save_strategy="epoch", disable_tqdm=not bool(os.environ.get("ENABLE_TQDM", 0)), gradient_accumulation_steps=job_config.gradient_accumulation_steps, report_to="none", auto_find_batch_size=True, lr_scheduler_type=job_config.scheduler, optim=job_config.optimizer, warmup_ratio=job_config.warmup_ratio, weight_decay=job_config.weight_decay, max_grad_norm=job_config.max_grad_norm, ) early_stop = EarlyStoppingCallback(early_stopping_patience=3, early_stopping_threshold=0.01) callbacks_to_use = [early_stop] args = TrainingArguments(**training_args) trainer_args = dict( args=args, model=model, callbacks=callbacks_to_use, compute_metrics=_binary_classification_metrics if num_classes == 2 else _multi_class_classification_metrics, ) trainer = Trainer( **trainer_args, train_dataset=train_dataset, eval_dataset=valid_dataset, ) trainer.train() logger.info("Finished training") logger.info(trainer.state.best_metric) eval_scores = trainer.evaluate() co2_consumed = co2_tracker.stop() co2_consumed = co2_consumed * 1000 if co2_consumed is not None else 0 eval_scores = [f"{k}: {v}" for k, v in eval_scores.items()] eval_scores = "\n\n".join(eval_scores) model_card = MODEL_CARD.format( language=payload["config"]["language"], dataset=data_path, co2=co2_consumed, validation_metrics=eval_scores, ) utils.save_model_card(model_card, model_path) # save model, tokenizer and config model = utils.update_model_config(trainer.model, job_config) utils.save_tokenizer(tokenizer, model_path) utils.save_model(model, model_path) utils.remove_checkpoints(model_path=model_path) # push model to hub logger.info("Pushing model to Hub") model_repo.git_pull() model_repo.git_add() model_repo.git_commit(commit_message="Commit From AutoTrain") model_repo.git_push()
autotrain-advanced-main
src/autotrain/trainers/text_classification.py
import os from pydantic import BaseModel from autotrain import logger class AutoTrainParams(BaseModel): def save(self, output_dir): os.makedirs(output_dir, exist_ok=True) path = os.path.join(output_dir, "training_params.json") # save formatted json with open(path, "w") as f: f.write(self.json(indent=4)) def __str__(self): data = self.dict() data["token"] = "*****" if data.get("token") else None return str(data) def __init__(self, **data): super().__init__(**data) # Parameters not supplied by the user defaults = {f.name for f in self.__fields__.values() if f.default == self.__dict__[f.name]} supplied = set(data.keys()) not_supplied = defaults - supplied if not_supplied: logger.warning(f"Parameters not supplied by user and set to default: {', '.join(not_supplied)}") # Parameters that were supplied but not used # This is a naive implementation. It might catch some internal Pydantic params. unused = supplied - set(self.__fields__) if unused: logger.warning(f"Parameters supplied but not used: {', '.join(unused)}")
autotrain-advanced-main
src/autotrain/trainers/common.py
import os from itertools import chain import torch from datasets import Dataset, load_dataset from peft import LoraConfig, get_peft_model, prepare_model_for_int8_training from transformers import ( AutoConfig, AutoModelForCausalLM, AutoTokenizer, Trainer, TrainingArguments, default_data_collator, ) from autotrain import logger, utils from autotrain.params import LMTrainingParams TEXT_COLUMN = "autotrain_text" IGNORE_INDEX = -100 DEFAULT_PAD_TOKEN = "[PAD]" DEFAULT_EOS_TOKEN = "</s>" DEFAULT_BOS_TOKEN = "</s>" DEFAULT_UNK_TOKEN = "</s>" EVAL_METRICS = ("eval_loss",) MODEL_CARD = """ --- tags: - autotrain - text-generation widget: - text: "I love AutoTrain because " datasets: - {dataset} co2_eq_emissions: emissions: {co2} --- # Model Trained Using AutoTrain - Problem type: Text Generation - CO2 Emissions (in grams): {co2:.4f} ## Validation Metrics {validation_metrics} """ HANDLER_CONTENT = """ from typing import Dict, List, Any from transformers import AutoModelForCausalLM, AutoTokenizer from peft import PeftModel, PeftConfig import torch class EndpointHandler: def __init__(self, path=""): # load model and processor from path model = AutoModelForCausalLM.from_pretrained( path, torch_dtype=torch.float16, load_in_8bit=True, device_map="auto" ) self.tokenizer = AutoTokenizer.from_pretrained(path) self.model.eval() def __call__(self, data: Dict[str, Any]) -> Dict[str, str]: ''' Args: data (:dict:): The payload with the text prompt and generation parameters. ''' # process input inputs = data.pop("inputs", data) parameters = data.pop("parameters", None) # preprocess input_ids = self.tokenizer(inputs, return_tensors="pt").input_ids # pass inputs with all kwargs in data if parameters is not None: outputs = self.model.generate(input_ids=input_ids, **parameters) else: outputs = self.model.generate(input_ids=input_ids) # postprocess the prediction prediction = self.tokenizer.decode(outputs[0], skip_special_tokens=True) return [{"generated_text": prediction}] """ HANDLER_CONTENT_PEFT = """ from typing import Dict, List, Any from transformers import AutoModelForCausalLM, AutoTokenizer from peft import PeftModel, PeftConfig import torch class EndpointHandler: def __init__(self, path=""): # load model and processor from path config = PeftConfig.from_pretrained(path) model = AutoModelForCausalLM.from_pretrained( config.base_model_name_or_path, torch_dtype=torch.float16, load_in_8bit=True, device_map="auto" ) self.model = PeftModel.from_pretrained(model, path) self.tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path) self.model.eval() def __call__(self, data: Dict[str, Any]) -> Dict[str, str]: ''' Args: data (:dict:): The payload with the text prompt and generation parameters. ''' # process input inputs = data.pop("inputs", data) parameters = data.pop("parameters", None) # preprocess input_ids = self.tokenizer(inputs, return_tensors="pt").input_ids # pass inputs with all kwargs in data if parameters is not None: outputs = self.model.generate(input_ids=input_ids, **parameters) else: outputs = self.model.generate(input_ids=input_ids) # postprocess the prediction prediction = self.tokenizer.decode(outputs[0], skip_special_tokens=True) return [{"generated_text": prediction}] """ REQUIREMENTS = """ accelerate==0.18.0 transformers==4.28.1 git+https://github.com/huggingface/peft.git bitsandbytes tokenizers>=0.13.3 """ def _eval_metrics(pred): raw_predictions, labels = pred return 0 def tokenize(tokenizer, prompt, add_eos_token=True): result = tokenizer( prompt, truncation=True, max_length=tokenizer.model_max_length, padding=False, return_tensors=None, ) if result["input_ids"][-1] != tokenizer.eos_token_id and add_eos_token: if len(result["input_ids"]) >= tokenizer.model_max_length: result["input_ids"] = result["input_ids"][:-1] result["attention_mask"] = result["attention_mask"][:-1] result["input_ids"].append(tokenizer.eos_token_id) result["attention_mask"].append(1) result["labels"] = result["input_ids"].copy() return result def _process_data(data, tokenizer, job_config): data = data.to_pandas() data = data.fillna("") data = data[[TEXT_COLUMN]] if job_config.add_eos_token: data[TEXT_COLUMN] = data[TEXT_COLUMN] + tokenizer.eos_token data = Dataset.from_pandas(data) return data def group_texts(examples, block_size): # Concatenate all texts. concatenated_examples = {k: list(chain(*examples[k])) for k in examples.keys()} total_length = len(concatenated_examples[list(examples.keys())[0]]) # We drop the small remainder, we could add padding if the model supported it instead of this drop, you can # customize this part to your needs. if total_length >= block_size: total_length = (total_length // block_size) * block_size # Split by chunks of max_len. result = { k: [t[i : i + block_size] for i in range(0, total_length, block_size)] for k, t in concatenated_examples.items() } result["labels"] = result["input_ids"].copy() return result @utils.job_watcher def train(co2_tracker, payload, huggingface_token, model_path): # create model repo model_repo = utils.create_repo( project_name=payload["proj_name"], autotrain_user=payload["username"], huggingface_token=huggingface_token, model_path=model_path, ) data_path = f"{payload['username']}/autotrain-data-{payload['proj_name']}" data = load_dataset(data_path, use_auth_token=huggingface_token) logger.info(f"Loaded data from {data_path}") job_config = payload["config"]["params"][0] job_config["model_name"] = payload["config"]["hub_model"] train_data = data["train"] valid_data = data["validation"] model_name = job_config["model_name"] del job_config["model_name"] job_config = LMTrainingParams(**job_config) tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=huggingface_token) if tokenizer.model_max_length > 2048: tokenizer.model_max_length = 2048 m_arch = utils.get_model_architecture(model_name).lower() logger.info(f"Model architecture: {m_arch}") use_peft = False use_int8 = False if "llama" in m_arch or "rwforcausallm" in m_arch: use_peft = True use_int8 = True if "gptneo" in m_arch: use_peft = True use_int8 = False # process data train_data = _process_data(data=train_data, tokenizer=tokenizer, job_config=job_config) valid_data = _process_data(data=valid_data, tokenizer=tokenizer, job_config=job_config) model_config = AutoConfig.from_pretrained( model_name, use_auth_token=huggingface_token, trust_remote_code=True, ) logger.info(model_config) if use_peft: try: model = AutoModelForCausalLM.from_pretrained( model_name, config=model_config, use_auth_token=huggingface_token, torch_dtype=torch.float16, load_in_8bit=use_int8, device_map="auto", trust_remote_code=True, ) except OSError: model = AutoModelForCausalLM.from_pretrained( model_name, config=model_config, use_auth_token=huggingface_token, from_tf=True, torch_dtype=torch.float16, load_in_8bit=use_int8, device_map="auto", trust_remote_code=True, ) else: try: model = AutoModelForCausalLM.from_pretrained( model_name, config=model_config, use_auth_token=huggingface_token, trust_remote_code=True, ) except OSError: model = AutoModelForCausalLM.from_pretrained( model_name, config=model_config, use_auth_token=huggingface_token, from_tf=True, trust_remote_code=True, ) # PEFT: model.resize_token_embeddings(len(tokenizer)) if use_peft: if use_int8: model = prepare_model_for_int8_training(model) peft_config = LoraConfig( r=job_config.lora_r, lora_alpha=job_config.lora_alpha, lora_dropout=job_config.lora_dropout, bias="none", task_type="CAUSAL_LM", target_modules=[ "query_key_value", "dense", "dense_h_to_4h", "dense_4h_to_h", ] if "rwforcausallm" in m_arch else None, ) model = get_peft_model(model, peft_config) if job_config.block_size == -1: job_config.block_size = None if job_config.block_size is None: block_size = tokenizer.model_max_length if block_size > 1024: logger.warning( "The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value" " of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can" " override this default with `--block_size xxx`." ) block_size = 1024 else: if job_config.block_size > tokenizer.model_max_length: logger.warning( f"The block_size passed ({job_config['block_size']}) is larger than the maximum length for the model" f"({tokenizer.model_max_length}). Using block_size={tokenizer.model_max_length}." ) block_size = min(job_config.block_size, tokenizer.model_max_length) logger.info(model) def tokenize_function(examples): output = tokenizer(examples[TEXT_COLUMN]) return output def group_texts(examples): # Concatenate all texts. concatenated_examples = {k: list(chain(*examples[k])) for k in examples.keys()} total_length = len(concatenated_examples[list(examples.keys())[0]]) if total_length >= block_size: total_length = (total_length // block_size) * block_size # Split by chunks of max_len. result = { k: [t[i : i + block_size] for i in range(0, total_length, block_size)] for k, t in concatenated_examples.items() } result["labels"] = result["input_ids"].copy() return result train_data = train_data.map( tokenize_function, batched=True, num_proc=4, remove_columns=list(train_data.features), desc="Running tokenizer on train dataset", ) valid_data = valid_data.map( tokenize_function, batched=True, num_proc=4, remove_columns=list(valid_data.features), desc="Running tokenizer on validation dataset", ) train_data = train_data.map( group_texts, batched=True, num_proc=4, desc=f"Grouping texts in chunks of {block_size}", ) valid_data = valid_data.map( group_texts, batched=True, num_proc=4, desc=f"Grouping texts in chunks of {block_size}", ) logger.info("creating trainer") # trainer specific logging_steps = int(0.2 * len(valid_data) / job_config.train_batch_size) if logging_steps == 0: logging_steps = 1 training_args = dict( output_dir=model_path, per_device_train_batch_size=job_config.train_batch_size, per_device_eval_batch_size=2 * job_config.train_batch_size, learning_rate=job_config.learning_rate, num_train_epochs=job_config.num_train_epochs, evaluation_strategy="epoch", logging_steps=logging_steps, save_total_limit=1, save_strategy="epoch", disable_tqdm=not bool(os.environ.get("ENABLE_TQDM", 0)), gradient_accumulation_steps=job_config.gradient_accumulation_steps, report_to="none", auto_find_batch_size=True, lr_scheduler_type=job_config.scheduler, optim=job_config.optimizer, warmup_ratio=job_config.warmup_ratio, weight_decay=job_config.weight_decay, max_grad_norm=job_config.max_grad_norm, fp16=True, ) args = TrainingArguments(**training_args) trainer_args = dict( args=args, model=model, ) data_collator = default_data_collator trainer = Trainer( **trainer_args, train_dataset=train_data, eval_dataset=valid_data, tokenizer=tokenizer, data_collator=data_collator, ) model.config.use_cache = False trainer.train() logger.info("Finished training") logger.info(trainer.state.best_metric) eval_scores = trainer.evaluate() # create and save model card co2_consumed = co2_tracker.stop() co2_consumed = co2_consumed * 1000 if co2_consumed is not None else 0 eval_scores = [f"{k[len('eval_'):]}: {v}" for k, v in eval_scores.items() if k in EVAL_METRICS] eval_scores = "\n\n".join(eval_scores) model_card = MODEL_CARD.format( language=payload["config"]["language"], dataset=data_path, co2=co2_consumed, validation_metrics=eval_scores, ) logger.info(model_card) utils.save_model_card(model_card, model_path) utils.create_file( filename="handler.py", file_content=HANDLER_CONTENT_PEFT.strip() if use_peft else HANDLER_CONTENT.strip(), model_path=model_path, ) utils.create_file(filename="requirements.txt", file_content=REQUIREMENTS.strip(), model_path=model_path) # save model, tokenizer and config model = utils.update_model_config(trainer.model, job_config) utils.save_tokenizer(tokenizer, model_path) utils.save_model(model, model_path) utils.remove_checkpoints(model_path=model_path) # push model to hub logger.info("Pushing model to Hub") model_repo.git_pull() model_repo.git_add() model_repo.git_commit(commit_message="Commit From AutoTrain") model_repo.git_push()
autotrain-advanced-main
src/autotrain/trainers/lm_trainer.py
from typing import List, Union from pydantic import Field from autotrain.trainers.common import AutoTrainParams class TabularParams(AutoTrainParams): data_path: str = Field(None, title="Data path") model: str = Field("xgboost", title="Model name") username: str = Field(None, title="Hugging Face Username") seed: int = Field(42, title="Seed") train_split: str = Field("train", title="Train split") valid_split: str = Field(None, title="Validation split") project_name: str = Field("Project Name", title="Output directory") token: str = Field(None, title="Hub Token") push_to_hub: bool = Field(False, title="Push to hub") id_column: str = Field("id", title="ID column") target_columns: Union[List[str], str] = Field(["target"], title="Target column(s)") repo_id: str = Field(None, title="Repo ID") categorical_columns: List[str] = Field(None, title="Categorical columns") numerical_columns: List[str] = Field(None, title="Numerical columns") task: str = Field("classification", title="Task") num_trials: int = Field(10, title="Number of trials") time_limit: int = Field(600, title="Time limit") categorical_imputer: str = Field(None, title="Categorical imputer") numerical_imputer: str = Field(None, title="Numerical imputer") numeric_scaler: str = Field(None, title="Numeric scaler")
autotrain-advanced-main
src/autotrain/trainers/tabular/params.py
autotrain-advanced-main
src/autotrain/trainers/tabular/__init__.py
import copy from collections import defaultdict from dataclasses import dataclass from functools import partial from typing import List, Optional import numpy as np from sklearn import ensemble, impute, linear_model from sklearn import metrics as skmetrics from sklearn import naive_bayes, neighbors, pipeline, preprocessing, svm, tree from xgboost import XGBClassifier, XGBRegressor MARKDOWN = """ --- tags: - autotrain - tabular - {task} - tabular-{task} datasets: - {dataset} --- # Model Trained Using AutoTrain - Problem type: Tabular {task} ## Validation Metrics {metrics} ## Best Params {params} ## Usage ```python import json import joblib import pandas as pd model = joblib.load('model.joblib') config = json.load(open('config.json')) features = config['features'] # data = pd.read_csv("data.csv") data = data[features] predictions = model.predict(data) # or model.predict_proba(data) # predictions can be converted to original labels using label_encoders.pkl ``` """ _MODELS: dict = defaultdict(dict) _MODELS["xgboost"]["classification"] = XGBClassifier _MODELS["xgboost"]["regression"] = XGBRegressor _MODELS["logistic_regression"]["classification"] = linear_model.LogisticRegression _MODELS["logistic_regression"]["regression"] = linear_model.LogisticRegression _MODELS["random_forest"]["classification"] = ensemble.RandomForestClassifier _MODELS["random_forest"]["regression"] = ensemble.RandomForestRegressor _MODELS["extra_trees"]["classification"] = ensemble.ExtraTreesClassifier _MODELS["extra_trees"]["regression"] = ensemble.ExtraTreesRegressor _MODELS["gradient_boosting"]["classification"] = ensemble.GradientBoostingClassifier _MODELS["gradient_boosting"]["regression"] = ensemble.GradientBoostingRegressor _MODELS["adaboost"]["classification"] = ensemble.AdaBoostClassifier _MODELS["adaboost"]["regression"] = ensemble.AdaBoostRegressor _MODELS["ridge"]["classification"] = linear_model.RidgeClassifier _MODELS["ridge"]["regression"] = linear_model.Ridge _MODELS["svm"]["classification"] = svm.LinearSVC _MODELS["svm"]["regression"] = svm.LinearSVR _MODELS["decision_tree"]["classification"] = tree.DecisionTreeClassifier _MODELS["decision_tree"]["regression"] = tree.DecisionTreeRegressor _MODELS["lasso"]["regression"] = linear_model.Lasso _MODELS["linear_regression"]["regression"] = linear_model.LinearRegression _MODELS["naive_bayes"]["classification"] = naive_bayes.GaussianNB _MODELS["knn"]["classification"] = neighbors.KNeighborsClassifier _MODELS["knn"]["regression"] = neighbors.KNeighborsRegressor CLASSIFICATION_TASKS = ("binary_classification", "multi_class_classification", "multi_label_classification") REGRESSION_TASKS = ("single_column_regression", "multi_column_regression") @dataclass class TabularMetrics: sub_task: str labels: Optional[List] = None def __post_init__(self): if self.sub_task == "binary_classification": self.valid_metrics = { "auc": skmetrics.roc_auc_score, "logloss": skmetrics.log_loss, "f1": skmetrics.f1_score, "accuracy": skmetrics.accuracy_score, "precision": skmetrics.precision_score, "recall": skmetrics.recall_score, } elif self.sub_task == "multi_class_classification": self.valid_metrics = { "logloss": partial(skmetrics.log_loss, labels=self.labels), "accuracy": skmetrics.accuracy_score, "mlogloss": partial(skmetrics.log_loss, labels=self.labels), "f1_macro": partial(skmetrics.f1_score, average="macro", labels=self.labels), "f1_micro": partial(skmetrics.f1_score, average="micro", labels=self.labels), "f1_weighted": partial(skmetrics.f1_score, average="weighted", labels=self.labels), "precision_macro": partial(skmetrics.precision_score, average="macro", labels=self.labels), "precision_micro": partial(skmetrics.precision_score, average="micro", labels=self.labels), "precision_weighted": partial(skmetrics.precision_score, average="weighted", labels=self.labels), "recall_macro": partial(skmetrics.recall_score, average="macro", labels=self.labels), "recall_micro": partial(skmetrics.recall_score, average="micro", labels=self.labels), "recall_weighted": partial(skmetrics.recall_score, average="weighted", labels=self.labels), } elif self.sub_task in ("single_column_regression", "multi_column_regression"): self.valid_metrics = { "r2": skmetrics.r2_score, "mse": skmetrics.mean_squared_error, "mae": skmetrics.mean_absolute_error, "rmse": partial(skmetrics.mean_squared_error, squared=False), "rmsle": partial(skmetrics.mean_squared_log_error, squared=False), } elif self.sub_task == "multi_label_classification": self.valid_metrics = { "logloss": skmetrics.log_loss, } else: raise ValueError("Invalid problem type") def calculate(self, y_true, y_pred): metrics = {} for metric_name, metric_func in self.valid_metrics.items(): if self.sub_task == "binary_classification": if metric_name == "auc": metrics[metric_name] = metric_func(y_true, y_pred[:, 1]) elif metric_name == "logloss": metrics[metric_name] = metric_func(y_true, y_pred) else: metrics[metric_name] = metric_func(y_true, y_pred[:, 1] >= 0.5) elif self.sub_task == "mul": if metric_name in ( "accuracy", "f1_macro", "f1_micro", "f1_weighted", "precision_macro", "precision_micro", "precision_weighted", "recall_macro", "recall_micro", "recall_weighted", ): metrics[metric_name] = metric_func(y_true, np.argmax(y_pred, axis=1)) else: metrics[metric_name] = metric_func(y_true, y_pred) else: if metric_name == "rmsle": temp_pred = copy.deepcopy(y_pred) temp_pred = np.clip(y_pred, 0, None) metrics[metric_name] = metric_func(y_true, temp_pred) else: metrics[metric_name] = metric_func(y_true, y_pred) return metrics class TabularModel: def __init__(self, model, preprocessor, sub_task, params): self.model = model self.preprocessor = preprocessor self.sub_task = sub_task self.params = params self.use_predict_proba = True _model = self._get_model() if self.preprocessor is not None: self.pipeline = pipeline.Pipeline([("preprocessor", self.preprocessor), ("model", _model)]) else: self.pipeline = pipeline.Pipeline([("model", _model)]) def _get_model(self): if self.model in _MODELS: if self.sub_task in CLASSIFICATION_TASKS: if self.model in ("svm", "ridge"): self.use_predict_proba = False return _MODELS[self.model]["classification"](**self.params) elif self.sub_task in REGRESSION_TASKS: self.use_predict_proba = False return _MODELS[self.model]["regression"](**self.params) else: raise ValueError("Invalid task") else: raise ValueError("Invalid model") def get_params(trial, model, task): if model == "xgboost": params = { "learning_rate": trial.suggest_float("learning_rate", 1e-2, 0.25, log=True), "reg_lambda": trial.suggest_float("reg_lambda", 1e-8, 100.0, log=True), "reg_alpha": trial.suggest_float("reg_alpha", 1e-8, 100.0, log=True), "subsample": trial.suggest_float("subsample", 0.1, 1.0), "colsample_bytree": trial.suggest_float("colsample_bytree", 0.1, 1.0), "max_depth": trial.suggest_int("max_depth", 1, 9), "early_stopping_rounds": trial.suggest_int("early_stopping_rounds", 100, 500), "n_estimators": trial.suggest_categorical("n_estimators", [7000, 15000, 20000]), "tree_method": "hist", "random_state": 42, } return params if model == "logistic_regression": if task in CLASSIFICATION_TASKS: params = { "C": trial.suggest_float("C", 1e-8, 1e3, log=True), "fit_intercept": trial.suggest_categorical("fit_intercept", [True, False]), "solver": trial.suggest_categorical("solver", ["liblinear", "saga"]), "penalty": trial.suggest_categorical("penalty", ["l1", "l2"]), "n_jobs": -1, } return params raise ValueError("Task not supported") if model == "random_forest": params = { "n_estimators": trial.suggest_int("n_estimators", 10, 10000), "max_depth": trial.suggest_int("max_depth", 2, 15), "max_features": trial.suggest_categorical("max_features", ["auto", "sqrt", "log2", None]), "min_samples_split": trial.suggest_int("min_samples_split", 2, 20), "min_samples_leaf": trial.suggest_int("min_samples_leaf", 1, 20), "bootstrap": trial.suggest_categorical("bootstrap", [True, False]), "n_jobs": -1, } if task in CLASSIFICATION_TASKS: params["criterion"] = trial.suggest_categorical("criterion", ["gini", "entropy"]) return params if task in REGRESSION_TASKS: params["criterion"] = trial.suggest_categorical( "criterion", ["squared_error", "absolute_error", "poisson"] ) return params raise ValueError("Task not supported") if model == "extra_trees": params = { "n_estimators": trial.suggest_int("n_estimators", 10, 10000), "max_depth": trial.suggest_int("max_depth", 2, 15), "max_features": trial.suggest_categorical("max_features", ["auto", "sqrt", "log2", None]), "min_samples_split": trial.suggest_int("min_samples_split", 2, 20), "min_samples_leaf": trial.suggest_int("min_samples_leaf", 1, 20), "bootstrap": trial.suggest_categorical("bootstrap", [True, False]), "n_jobs": -1, } if task in CLASSIFICATION_TASKS: params["criterion"] = trial.suggest_categorical("criterion", ["gini", "entropy"]) return params if task in REGRESSION_TASKS: params["criterion"] = trial.suggest_categorical("criterion", ["squared_error", "absolute_error"]) return params raise ValueError("Task not supported") if model == "decision_tree": params = { "max_depth": trial.suggest_int("max_depth", 1, 15), "min_samples_split": trial.suggest_int("min_samples_split", 2, 20), "min_samples_leaf": trial.suggest_int("min_samples_leaf", 1, 20), "max_features": trial.suggest_categorical("max_features", ["auto", "sqrt", "log2", None]), "splitter": trial.suggest_categorical("splitter", ["best", "random"]), } if task in CLASSIFICATION_TASKS: params["criterion"] = trial.suggest_categorical("criterion", ["gini", "entropy"]) return params if task in REGRESSION_TASKS: params["criterion"] = trial.suggest_categorical( "criterion", ["squared_error", "absolute_error", "friedman_mse", "poisson"] ) return params raise ValueError("Task not supported") if model == "linear_regression": if task in REGRESSION_TASKS: params = { "fit_intercept": trial.suggest_categorical("fit_intercept", [True, False]), } return params raise ValueError("Task not supported") if model == "svm": if task in CLASSIFICATION_TASKS: params = { "C": trial.suggest_float("C", 1e-8, 1e3, log=True), "fit_intercept": trial.suggest_categorical("fit_intercept", [True, False]), "penalty": "l2", "max_iter": trial.suggest_int("max_iter", 1000, 10000), } return params if task in REGRESSION_TASKS: params = { "C": trial.suggest_float("C", 1e-8, 1e3, log=True), "fit_intercept": trial.suggest_categorical("fit_intercept", [True, False]), "loss": trial.suggest_categorical("loss", ["epsilon_insensitive", "squared_epsilon_insensitive"]), "epsilon": trial.suggest_float("epsilon", 1e-8, 1e-1, log=True), "max_iter": trial.suggest_int("max_iter", 1000, 10000), } return params raise ValueError("Task not supported") if model == "ridge": params = { "alpha": trial.suggest_float("alpha", 1e-8, 1e3, log=True), "fit_intercept": trial.suggest_categorical("fit_intercept", [True, False]), "max_iter": trial.suggest_int("max_iter", 1000, 10000), } if task in CLASSIFICATION_TASKS: return params if task in REGRESSION_TASKS: return params raise ValueError("Task not supported") if model == "lasso": if task in REGRESSION_TASKS: params = { "alpha": trial.suggest_float("alpha", 1e-8, 1e3, log=True), "fit_intercept": trial.suggest_categorical("fit_intercept", [True, False]), "max_iter": trial.suggest_int("max_iter", 1000, 10000), } return params raise ValueError("Task not supported") if model == "knn": params = { "n_neighbors": trial.suggest_int("n_neighbors", 1, 25), "weights": trial.suggest_categorical("weights", ["uniform", "distance"]), "algorithm": trial.suggest_categorical("algorithm", ["ball_tree", "kd_tree", "brute"]), "leaf_size": trial.suggest_int("leaf_size", 1, 100), "p": trial.suggest_categorical("p", [1, 2]), "metric": trial.suggest_categorical("metric", ["minkowski", "euclidean", "manhattan"]), } if task in CLASSIFICATION_TASKS or task in REGRESSION_TASKS: return params raise ValueError("Task not supported") return ValueError("Invalid model") def get_imputer(imputer_name): if imputer_name is None: return None if imputer_name == "median": return impute.SimpleImputer(strategy="median") if imputer_name == "mean": return impute.SimpleImputer(strategy="mean") if imputer_name == "most_frequent": return impute.SimpleImputer(strategy="most_frequent") raise ValueError("Invalid imputer") def get_scaler(scaler_name): if scaler_name is None: return None if scaler_name == "standard": return preprocessing.StandardScaler() if scaler_name == "minmax": return preprocessing.MinMaxScaler() if scaler_name == "robust": return preprocessing.RobustScaler() if scaler_name == "normal": return preprocessing.Normalizer() raise ValueError("Invalid scaler") def get_metric_direction(sub_task): if sub_task == "binary_classification": return "logloss", "minimize" if sub_task == "multi_class_classification": return "mlogloss", "minimize" if sub_task == "single_column_regression": return "rmse", "minimize" if sub_task == "multi_label_classification": return "logloss", "minimize" if sub_task == "multi_column_regression": return "rmse", "minimize" raise ValueError("Invalid sub_task") def get_categorical_columns(df): return list(df.select_dtypes(include=["category", "object"]).columns) def get_numerical_columns(df): return list(df.select_dtypes(include=["number"]).columns) def create_model_card(config, sub_task, best_params, best_metrics): best_metrics = "\n".join([f"- {k}: {v}" for k, v in best_metrics.items()]) best_params = "\n".join([f"- {k}: {v}" for k, v in best_params.items()]) return MARKDOWN.format( task=config.task, dataset=config.data_path, metrics=best_metrics, params=best_params, )
autotrain-advanced-main
src/autotrain/trainers/tabular/utils.py
import argparse import json import os from functools import partial import joblib import numpy as np import optuna import pandas as pd from datasets import load_dataset from huggingface_hub import HfApi from sklearn import pipeline, preprocessing from sklearn.compose import ColumnTransformer from autotrain import logger from autotrain.trainers.tabular import utils from autotrain.trainers.tabular.params import TabularParams from autotrain.utils import monitor def parse_args(): # get training_config.json from the end user parser = argparse.ArgumentParser() parser.add_argument("--training_config", type=str, required=True) return parser.parse_args() def optimize(trial, model_name, xtrain, xvalid, ytrain, yvalid, eval_metric, task, preprocessor): if isinstance(trial, dict): params = trial else: params = utils.get_params(trial, model_name, task) labels = None if task == "multi_class_classification": labels = np.unique(ytrain) metrics = utils.TabularMetrics(sub_task=task, labels=labels) if task in ("binary_classification", "multi_class_classification", "single_column_regression"): ytrain = ytrain.ravel() yvalid = yvalid.ravel() if preprocessor is not None: try: xtrain = preprocessor.fit_transform(xtrain) xvalid = preprocessor.transform(xvalid) except ValueError: logger.info("Preprocessing failed, using nan_to_num") train_cols = xtrain.columns.tolist() valid_cols = xvalid.columns.tolist() xtrain = np.nan_to_num(xtrain) xvalid = np.nan_to_num(xvalid) # convert back to dataframe xtrain = pd.DataFrame(xtrain, columns=train_cols) xvalid = pd.DataFrame(xvalid, columns=valid_cols) xtrain = preprocessor.fit_transform(xtrain) xvalid = preprocessor.transform(xvalid) if model_name == "xgboost": params["eval_metric"] = eval_metric _model = utils.TabularModel(model_name, preprocessor=None, sub_task=task, params=params) model = _model.pipeline models = [] if task in ("multi_label_classification", "multi_column_regression"): # also multi_column_regression ypred = [] models = [model] * ytrain.shape[1] for idx, _m in enumerate(models): if model_name == "xgboost": _m.fit( xtrain, ytrain[:, idx], model__eval_set=[(xvalid, yvalid[:, idx])], model__verbose=False, ) else: _m.fit(xtrain, ytrain[:, idx]) if task == "multi_column_regression": ypred_temp = _m.predict(xvalid) else: if _model.use_predict_proba: ypred_temp = _m.predict_proba(xvalid)[:, 1] else: ypred_temp = _m.predict(xvalid) ypred.append(ypred_temp) ypred = np.column_stack(ypred) else: models = [model] if model_name == "xgboost": model.fit( xtrain, ytrain, model__eval_set=[(xvalid, yvalid)], model__verbose=False, ) else: models[0].fit(xtrain, ytrain) if _model.use_predict_proba: ypred = models[0].predict_proba(xvalid) else: ypred = models[0].predict(xvalid) if task == "multi_class_classification": if ypred.reshape(xvalid.shape[0], -1).shape[1] != len(labels): ypred_ohe = np.zeros((xvalid.shape[0], len(labels))) ypred_ohe[np.arange(xvalid.shape[0]), ypred] = 1 ypred = ypred_ohe if task == "binary_classification": if ypred.reshape(xvalid.shape[0], -1).shape[1] != 2: ypred = np.column_stack([1 - ypred, ypred]) # calculate metric metric_dict = metrics.calculate(yvalid, ypred) # change eval_metric key to loss if eval_metric in metric_dict: metric_dict["loss"] = metric_dict[eval_metric] logger.info(f"Metrics: {metric_dict}") if isinstance(trial, dict): return models, preprocessor, metric_dict return metric_dict["loss"] @monitor def train(config): if isinstance(config, dict): config = TabularParams(**config) if config.repo_id is None and config.username is not None: config.repo_id = f"{config.username}/{config.project_name}" logger.info("Starting training...") logger.info(f"Training config: {config}") train_data = None valid_data = None train_path = f"{config.data_path}/{config.train_split}.csv" if os.path.exists(train_path): logger.info("loading dataset from csv") train_data = pd.read_csv(train_path) else: train_data = load_dataset( config.data_path, split=config.train_split, token=config.token, ) train_data = train_data.to_pandas() if config.valid_split is not None: valid_path = f"{config.data_path}/{config.valid_split}.csv" if os.path.exists(valid_path): logger.info("loading dataset from csv") valid_data = pd.read_csv(valid_path) else: valid_data = load_dataset( config.data_path, split=config.valid_split, token=config.token, ) valid_data = valid_data.to_pandas() if valid_data is None: raise Exception("valid_data is None. Please provide a valid_split for tabular training.") # determine which columns are categorical if config.categorical_columns is None: config.categorical_columns = utils.get_categorical_columns(train_data) if config.numerical_columns is None: config.numerical_columns = utils.get_numerical_columns(train_data) _id_target_cols = ( [config.id_column] + config.target_columns if config.id_column is not None else config.target_columns ) config.numerical_columns = [c for c in config.numerical_columns if c not in _id_target_cols] config.categorical_columns = [c for c in config.categorical_columns if c not in _id_target_cols] useful_columns = config.categorical_columns + config.numerical_columns logger.info(f"Categorical columns: {config.categorical_columns}") logger.info(f"Numerical columns: {config.numerical_columns}") # convert object columns to categorical for col in config.categorical_columns: train_data[col] = train_data[col].astype("category") valid_data[col] = valid_data[col].astype("category") logger.info(f"Useful columns: {useful_columns}") target_encoders = {} if config.task == "classification": for target_column in config.target_columns: target_encoder = preprocessing.LabelEncoder() target_encoder.fit(train_data[target_column]) target_encoders[target_column] = target_encoder # encode target columns in train and valid data for k, v in target_encoders.items(): train_data.loc[:, k] = v.transform(train_data[k]) valid_data.loc[:, k] = v.transform(valid_data[k]) numeric_transformer = "passthrough" categorical_transformer = "passthrough" transformers = [] preprocessor = None numeric_steps = [] imputer = utils.get_imputer(config.numerical_imputer) scaler = utils.get_scaler(config.numeric_scaler) if imputer is not None: numeric_steps.append(("num_imputer", imputer)) if scaler is not None: numeric_steps.append(("num_scaler", scaler)) if len(numeric_steps) > 0: numeric_transformer = pipeline.Pipeline(numeric_steps) transformers.append(("numeric", numeric_transformer, config.numerical_columns)) categorical_steps = [] imputer = utils.get_imputer(config.categorical_imputer) if imputer is not None: categorical_steps.append(("cat_imputer", imputer)) if len(config.categorical_columns) > 0: if config.model in ("xgboost", "lightgbm", "randomforest", "catboost", "extratrees"): categorical_steps.append( ( "cat_encoder", preprocessing.OrdinalEncoder( handle_unknown="use_encoded_value", categories="auto", unknown_value=np.nan, ), ) ) else: categorical_steps.append( ( "cat_encoder", preprocessing.OneHotEncoder(handle_unknown="ignore"), ) ) if len(categorical_steps) > 0: categorical_transformer = pipeline.Pipeline(categorical_steps) transformers.append(("categorical", categorical_transformer, config.categorical_columns)) if len(transformers) > 0: preprocessor = ColumnTransformer(transformers=transformers, verbose=True, n_jobs=-1) logger.info(f"Preprocessor: {preprocessor}") xtrain = train_data[useful_columns].reset_index(drop=True) xvalid = valid_data[useful_columns].reset_index(drop=True) ytrain = train_data[config.target_columns].values yvalid = valid_data[config.target_columns].values # determine sub_task if config.task == "classification": if len(target_encoders) == 1: if len(target_encoders[config.target_columns[0]].classes_) == 2: sub_task = "binary_classification" else: sub_task = "multi_class_classification" else: sub_task = "multi_label_classification" else: if len(config.target_columns) > 1: sub_task = "multi_column_regression" else: sub_task = "single_column_regression" eval_metric, direction = utils.get_metric_direction(sub_task) args = { "model_name": config.model, "xtrain": xtrain, "xvalid": xvalid, "ytrain": ytrain, "yvalid": yvalid, "eval_metric": eval_metric, "task": sub_task, "preprocessor": preprocessor, } optimize_func = partial(optimize, **args) study = optuna.create_study(direction=direction, study_name="AutoTrain") study.optimize(optimize_func, n_trials=config.num_trials, timeout=config.time_limit) best_params = study.best_params logger.info(f"Best params: {best_params}") best_models, best_preprocessors, best_metrics = optimize(best_params, **args) models = ( [pipeline.Pipeline([("preprocessor", best_preprocessors), ("model", m)]) for m in best_models] if best_preprocessors is not None else best_models ) joblib.dump( models[0] if len(models) == 1 else models, os.path.join(config.project_name, "model.joblib"), ) joblib.dump(target_encoders, os.path.join(config.project_name, "target_encoders.joblib")) model_card = utils.create_model_card(config, sub_task, best_params, best_metrics) if model_card is not None: with open(os.path.join(config.project_name, "README.md"), "w") as fp: fp.write(f"{model_card}") # remove token key from training_params.json located in output directory # first check if file exists if os.path.exists(f"{config.project_name}/training_params.json"): training_params = json.load(open(f"{config.project_name}/training_params.json")) training_params.pop("token") json.dump(training_params, open(f"{config.project_name}/training_params.json", "w")) # save model card to output directory as README.md with open(f"{config.project_name}/README.md", "w") as f: f.write(model_card) if config.push_to_hub: logger.info("Pushing model to hub...") api = HfApi(token=config.token) api.create_repo(repo_id=config.repo_id, repo_type="model", private=True) api.upload_folder(folder_path=config.project_name, repo_id=config.repo_id, repo_type="model") if "SPACE_ID" in os.environ: # shut down the space logger.info("Pausing space...") api = HfApi(token=config.token) api.pause_space(repo_id=os.environ["SPACE_ID"]) if "ENDPOINT_ID" in os.environ: # shut down the endpoint logger.info("Pausing endpoint...") utils.pause_endpoint(config) if __name__ == "__main__": args = parse_args() training_config = json.load(open(args.training_config)) config = TabularParams(**training_config) train(config)
autotrain-advanced-main
src/autotrain/trainers/tabular/__main__.py
from typing import Dict from pydantic import Field from autotrain.trainers.common import AutoTrainParams class GenericParams(AutoTrainParams): username: str = Field(None, title="Hugging Face Username") project_name: str = Field(None, title="Output directory") data_path: str = Field(None, title="Data path") token: str = Field(None, title="Hub Token") script_path: str = Field(None, title="Script path") env: Dict[str, str] = Field(None, title="Environment Variables")
autotrain-advanced-main
src/autotrain/trainers/generic/params.py
autotrain-advanced-main
src/autotrain/trainers/generic/__init__.py
import os import subprocess import requests from huggingface_hub import HfApi, snapshot_download from loguru import logger def create_dataset_repo(username, project_name, script_path, token): logger.info("Creating dataset repo...") api = HfApi(token=token) repo_id = f"{username}/autotrain-{project_name}" api.create_repo( repo_id=repo_id, repo_type="dataset", private=True, ) logger.info("Uploading dataset...") api.upload_folder( folder_path=script_path, repo_id=repo_id, repo_type="dataset", ) logger.info("Dataset uploaded.") return repo_id def pull_dataset_repo(params): snapshot_download( repo_id=params.data_path, local_dir=params.project_name, token=params.token, repo_type="dataset", ) def install_requirements(params): # check if params.project_name has a requirements.txt if os.path.exists(f"{params.project_name}/requirements.txt"): # install the requirements using subprocess, wait for it to finish pipe = subprocess.Popen( [ "pip", "install", "-r", "requirements.txt", ], cwd=params.project_name, ) pipe.wait() logger.info("Requirements installed.") return logger.info("No requirements.txt found. Skipping requirements installation.") return def run_command(params): if os.path.exists(f"{params.project_name}/script.py"): cmd = ["python", "script.py"] pipe = subprocess.Popen(cmd, cwd=params.project_name) pipe.wait() logger.info("Command finished.") return raise ValueError("No script.py found.") def pause_endpoint(params): endpoint_id = os.environ["ENDPOINT_ID"] username = endpoint_id.split("/")[0] project_name = endpoint_id.split("/")[1] api_url = f"https://api.endpoints.huggingface.cloud/v2/endpoint/{username}/{project_name}/pause" headers = {"Authorization": f"Bearer {params.token}"} r = requests.post(api_url, headers=headers) return r.json()
autotrain-advanced-main
src/autotrain/trainers/generic/utils.py
import argparse import json import os from huggingface_hub import HfApi from autotrain import logger from autotrain.trainers.generic import utils from autotrain.trainers.generic.params import GenericParams from autotrain.utils import monitor def parse_args(): # get training_config.json from the end user parser = argparse.ArgumentParser() parser.add_argument("--config", type=str, required=True) return parser.parse_args() @monitor def run(config): if isinstance(config, dict): config = GenericParams(**config) # download the data repo logger.info("Downloading data repo...") utils.pull_dataset_repo(config) # install the requirements logger.info("Installing requirements...") utils.install_requirements(config) # run the command logger.info("Running command...") utils.run_command(config) if "SPACE_ID" in os.environ: # shut down the space logger.info("Pausing space...") api = HfApi(token=config.token) api.pause_space(repo_id=os.environ["SPACE_ID"]) if "ENDPOINT_ID" in os.environ: # shut down the endpoint logger.info("Pausing endpoint...") utils.pause_endpoint(config) if __name__ == "__main__": args = parse_args() _config = json.load(open(args.config)) _config = GenericParams(**_config) run(_config)
autotrain-advanced-main
src/autotrain/trainers/generic/__main__.py
from pydantic import Field from autotrain.trainers.common import AutoTrainParams class DreamBoothTrainingParams(AutoTrainParams): model: str = Field(None, title="Model name") revision: str = Field(None, title="Revision") tokenizer: str = Field(None, title="Tokenizer, if different from model") image_path: str = Field(None, title="Image path") class_image_path: str = Field(None, title="Class image path") prompt: str = Field(None, title="Instance prompt") class_prompt: str = Field(None, title="Class prompt") num_class_images: int = Field(100, title="Number of class images") class_labels_conditioning: str = Field(None, title="Class labels conditioning") prior_preservation: bool = Field(False, title="With prior preservation") prior_loss_weight: float = Field(1.0, title="Prior loss weight") project_name: str = Field("dreambooth-model", title="Output directory") seed: int = Field(42, title="Seed") resolution: int = Field(512, title="Resolution") center_crop: bool = Field(False, title="Center crop") train_text_encoder: bool = Field(False, title="Train text encoder") batch_size: int = Field(4, title="Train batch size") sample_batch_size: int = Field(4, title="Sample batch size") epochs: int = Field(1, title="Number of training epochs") num_steps: int = Field(None, title="Max train steps") checkpointing_steps: int = Field(500, title="Checkpointing steps") resume_from_checkpoint: str = Field(None, title="Resume from checkpoint") gradient_accumulation: int = Field(1, title="Gradient accumulation steps") gradient_checkpointing: bool = Field(False, title="Gradient checkpointing") lr: float = Field(5e-4, title="Learning rate") scale_lr: bool = Field(False, title="Scale learning rate") scheduler: str = Field("constant", title="Learning rate scheduler") warmup_steps: int = Field(0, title="Learning rate warmup steps") num_cycles: int = Field(1, title="Learning rate num cycles") lr_power: float = Field(1.0, title="Learning rate power") dataloader_num_workers: int = Field(0, title="Dataloader num workers") use_8bit_adam: bool = Field(False, title="Use 8bit adam") adam_beta1: float = Field(0.9, title="Adam beta 1") adam_beta2: float = Field(0.999, title="Adam beta 2") adam_weight_decay: float = Field(1e-2, title="Adam weight decay") adam_epsilon: float = Field(1e-8, title="Adam epsilon") max_grad_norm: float = Field(1.0, title="Max grad norm") allow_tf32: bool = Field(False, title="Allow TF32") prior_generation_precision: str = Field(None, title="Prior generation precision") local_rank: int = Field(-1, title="Local rank") xformers: bool = Field(False, title="Enable xformers memory efficient attention") pre_compute_text_embeddings: bool = Field(False, title="Pre compute text embeddings") tokenizer_max_length: int = Field(None, title="Tokenizer max length") text_encoder_use_attention_mask: bool = Field(False, title="Text encoder use attention mask") rank: int = Field(4, title="Rank") xl: bool = Field(False, title="XL") fp16: bool = Field(False, title="FP16") bf16: bool = Field(False, title="BF16") token: str = Field(None, title="Hub token") repo_id: str = Field(None, title="Hub model id") push_to_hub: bool = Field(False, title="Push to hub") username: str = Field(None, title="Hub username") # disabled: validation_prompt: str = Field(None, title="Validation prompt") num_validation_images: int = Field(4, title="Number of validation images") validation_epochs: int = Field(50, title="Validation epochs") checkpoints_total_limit: int = Field(None, title="Checkpoints total limit") validation_images: str = Field(None, title="Validation images") logging: bool = Field(False, title="Logging using tensorboard")
autotrain-advanced-main
src/autotrain/trainers/dreambooth/params.py
from pathlib import Path import torch from PIL import Image from PIL.ImageOps import exif_transpose from torch.utils.data import Dataset from torchvision import transforms class PromptDataset(Dataset): "A simple dataset to prepare the prompts to generate class images on multiple GPUs." def __init__(self, prompt, num_samples): self.prompt = prompt self.num_samples = num_samples def __len__(self): return self.num_samples def __getitem__(self, index): example = {} example["prompt"] = self.prompt example["index"] = index return example class DreamBoothDatasetXL(Dataset): """ A dataset to prepare the instance and class images with the prompts for fine-tuning the model. It pre-processes the images. """ def __init__( self, instance_data_root, class_data_root=None, class_num=None, size=1024, center_crop=False, ): self.size = size self.center_crop = center_crop self.instance_data_root = Path(instance_data_root) if not self.instance_data_root.exists(): raise ValueError("Instance images root doesn't exists.") self.instance_images_path = list(Path(instance_data_root).iterdir()) self.num_instance_images = len(self.instance_images_path) self._length = self.num_instance_images if class_data_root is not None: self.class_data_root = Path(class_data_root) self.class_data_root.mkdir(parents=True, exist_ok=True) self.class_images_path = list(self.class_data_root.iterdir()) if class_num is not None: self.num_class_images = min(len(self.class_images_path), class_num) else: self.num_class_images = len(self.class_images_path) self._length = max(self.num_class_images, self.num_instance_images) else: self.class_data_root = None self.image_transforms = transforms.Compose( [ transforms.Resize(size, interpolation=transforms.InterpolationMode.BILINEAR), transforms.CenterCrop(size) if center_crop else transforms.RandomCrop(size), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def __len__(self): return self._length def __getitem__(self, index): example = {} instance_image = Image.open(self.instance_images_path[index % self.num_instance_images]) instance_image = exif_transpose(instance_image) if not instance_image.mode == "RGB": instance_image = instance_image.convert("RGB") example["instance_images"] = self.image_transforms(instance_image) if self.class_data_root: class_image = Image.open(self.class_images_path[index % self.num_class_images]) class_image = exif_transpose(class_image) if not class_image.mode == "RGB": class_image = class_image.convert("RGB") example["class_images"] = self.image_transforms(class_image) return example class DreamBoothDataset(Dataset): """ A dataset to prepare the instance and class images with the prompts for fine-tuning the model. It pre-processes the images and the tokenizes prompts. """ def __init__(self, config, tokenizers, encoder_hidden_states, instance_prompt_encoder_hidden_states): self.config = config self.tokenizer = tokenizers[0] self.size = self.config.resolution self.center_crop = self.config.center_crop self.tokenizer_max_length = self.config.tokenizer_max_length self.instance_data_root = Path(self.config.image_path) self.instance_prompt = self.config.prompt self.class_data_root = Path(self.config.class_image_path) if self.config.prior_preservation else None self.class_prompt = self.config.class_prompt self.class_num = self.config.num_class_images self.encoder_hidden_states = encoder_hidden_states self.instance_prompt_encoder_hidden_states = instance_prompt_encoder_hidden_states if not self.instance_data_root.exists(): raise ValueError("Instance images root doesn't exists.") self.instance_images_path = list(Path(self.instance_data_root).iterdir()) self.num_instance_images = len(self.instance_images_path) self._length = self.num_instance_images if self.class_data_root is not None: self.class_data_root.mkdir(parents=True, exist_ok=True) self.class_images_path = list(self.class_data_root.iterdir()) if self.class_num is not None: self.num_class_images = min(len(self.class_images_path), self.class_num) else: self.num_class_images = len(self.class_images_path) self._length = max(self.num_class_images, self.num_instance_images) else: self.class_data_root = None self.image_transforms = transforms.Compose( [ transforms.Resize(self.size, interpolation=transforms.InterpolationMode.BILINEAR), transforms.CenterCrop(self.size) if self.center_crop else transforms.RandomCrop(self.size), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def __len__(self): return self._length def _tokenize_prompt(self, tokenizer, prompt, tokenizer_max_length=None): # this function is here to avoid cyclic import issues if tokenizer_max_length is not None: max_length = tokenizer_max_length else: max_length = tokenizer.model_max_length text_inputs = tokenizer( prompt, truncation=True, padding="max_length", max_length=max_length, return_tensors="pt", ) return text_inputs def __getitem__(self, index): example = {} instance_image = Image.open(self.instance_images_path[index % self.num_instance_images]) instance_image = exif_transpose(instance_image) if not instance_image.mode == "RGB": instance_image = instance_image.convert("RGB") example["instance_images"] = self.image_transforms(instance_image) if not self.config.xl: if self.encoder_hidden_states is not None: example["instance_prompt_ids"] = self.encoder_hidden_states else: text_inputs = self._tokenize_prompt( self.tokenizer, self.instance_prompt, tokenizer_max_length=self.tokenizer_max_length ) example["instance_prompt_ids"] = text_inputs.input_ids example["instance_attention_mask"] = text_inputs.attention_mask if self.class_data_root: class_image = Image.open(self.class_images_path[index % self.num_class_images]) class_image = exif_transpose(class_image) if not class_image.mode == "RGB": class_image = class_image.convert("RGB") example["class_images"] = self.image_transforms(class_image) if not self.config.xl: if self.instance_prompt_encoder_hidden_states is not None: example["class_prompt_ids"] = self.instance_prompt_encoder_hidden_states else: class_text_inputs = self._tokenize_prompt( self.tokenizer, self.class_prompt, tokenizer_max_length=self.tokenizer_max_length ) example["class_prompt_ids"] = class_text_inputs.input_ids example["class_attention_mask"] = class_text_inputs.attention_mask return example def collate_fn(examples, config): pixel_values = [example["instance_images"] for example in examples] if not config.xl: has_attention_mask = "instance_attention_mask" in examples[0] input_ids = [example["instance_prompt_ids"] for example in examples] if has_attention_mask: attention_mask = [example["instance_attention_mask"] for example in examples] if config.prior_preservation: pixel_values += [example["class_images"] for example in examples] if not config.xl: input_ids += [example["class_prompt_ids"] for example in examples] if has_attention_mask: attention_mask += [example["class_attention_mask"] for example in examples] pixel_values = torch.stack(pixel_values) pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float() batch = { "pixel_values": pixel_values, } if not config.xl: input_ids = torch.cat(input_ids, dim=0) batch["input_ids"] = input_ids if has_attention_mask: # attention_mask = torch.cat(attention_mask, dim=0) batch["attention_mask"] = attention_mask return batch
autotrain-advanced-main
src/autotrain/trainers/dreambooth/datasets.py
autotrain-advanced-main
src/autotrain/trainers/dreambooth/__init__.py
import hashlib import itertools import os from pathlib import Path from typing import Dict import torch from diffusers import AutoencoderKL, DDPMScheduler, DiffusionPipeline, StableDiffusionXLPipeline, UNet2DConditionModel from diffusers.utils.import_utils import is_xformers_available from packaging import version from tqdm import tqdm from transformers import AutoTokenizer, PretrainedConfig from autotrain import logger from autotrain.trainers.dreambooth.datasets import PromptDataset VALID_IMAGE_EXTENSIONS = [".jpg", ".jpeg", ".png", ".JPG", ".JPEG", ".PNG"] XL_MODELS = [ "stabilityai/stable-diffusion-xl-base-1.0", "stabilityai/stable-diffusion-xl-base-0.9", "diffusers/stable-diffusion-xl-base-1.0", ] def create_model_card(repo_id: str, base_model: str, train_text_encoder: bool, prompt: str, repo_folder: str): if train_text_encoder: text_encoder_text = "trained" else: text_encoder_text = "not trained" yaml = f""" --- base_model: {base_model} instance_prompt: {prompt} tags: - text-to-image - diffusers - autotrain inference: true --- """ model_card = f""" # DreamBooth trained by AutoTrain Text encoder was {text_encoder_text}. """ with open(os.path.join(repo_folder, "README.md"), "w") as f: f.write(yaml + model_card) def import_model_class_from_model_name_or_path( pretrained_model_name_or_path: str, revision: str, subfolder: str = "text_encoder" ): text_encoder_config = PretrainedConfig.from_pretrained( pretrained_model_name_or_path, subfolder=subfolder, revision=revision ) model_class = text_encoder_config.architectures[0] if model_class == "CLIPTextModel": from transformers import CLIPTextModel return CLIPTextModel elif model_class == "CLIPTextModelWithProjection": from transformers import CLIPTextModelWithProjection return CLIPTextModelWithProjection elif model_class == "RobertaSeriesModelWithTransformation": from diffusers.pipelines.alt_diffusion.modeling_roberta_series import RobertaSeriesModelWithTransformation return RobertaSeriesModelWithTransformation elif model_class == "T5EncoderModel": from transformers import T5EncoderModel return T5EncoderModel else: raise ValueError(f"{model_class} is not supported.") def tokenize_prompt(tokenizer, prompt, tokenizer_max_length=None): if tokenizer_max_length is not None: max_length = tokenizer_max_length else: max_length = tokenizer.model_max_length text_inputs = tokenizer( prompt, truncation=True, padding="max_length", max_length=max_length, return_tensors="pt", ) return text_inputs def encode_prompt(text_encoder, input_ids, attention_mask, text_encoder_use_attention_mask=None): text_input_ids = input_ids.to(text_encoder.device) if text_encoder_use_attention_mask: attention_mask = attention_mask.to(text_encoder.device) else: attention_mask = None prompt_embeds = text_encoder( text_input_ids, attention_mask=attention_mask, ) prompt_embeds = prompt_embeds[0] return prompt_embeds def encode_prompt_xl(text_encoders, tokenizers, prompt, text_input_ids_list=None): prompt_embeds_list = [] # logger.info(f"Computing text embeddings for prompt: {prompt}") # logger.info(f"Text encoders: {text_encoders}") # logger.info(f"Tokenizers: {tokenizers}") for i, text_encoder in enumerate(text_encoders): if tokenizers is not None: tokenizer = tokenizers[i] text_input_ids = tokenize_prompt(tokenizer, prompt).input_ids # logger.info(f"Text input ids: {text_input_ids}") else: assert text_input_ids_list is not None text_input_ids = text_input_ids_list[i] prompt_embeds = text_encoder( text_input_ids.to(text_encoder.device), output_hidden_states=True, ) # We are only ALWAYS interested in the pooled output of the final text encoder pooled_prompt_embeds = prompt_embeds[0] prompt_embeds = prompt_embeds.hidden_states[-2] bs_embed, seq_len, _ = prompt_embeds.shape prompt_embeds = prompt_embeds.view(bs_embed, seq_len, -1) prompt_embeds_list.append(prompt_embeds) prompt_embeds = torch.concat(prompt_embeds_list, dim=-1) pooled_prompt_embeds = pooled_prompt_embeds.view(bs_embed, -1) return prompt_embeds, pooled_prompt_embeds def unet_attn_processors_state_dict(unet) -> Dict[str, torch.tensor]: r""" Returns: a state dict containing just the attention processor parameters. """ attn_processors = unet.attn_processors attn_processors_state_dict = {} for attn_processor_key, attn_processor in attn_processors.items(): for parameter_key, parameter in attn_processor.state_dict().items(): attn_processors_state_dict[f"{attn_processor_key}.{parameter_key}"] = parameter return attn_processors_state_dict def setup_prior_preservation(accelerator, config): class_images_dir = Path(config.class_image_path) if not class_images_dir.exists(): class_images_dir.mkdir(parents=True) cur_class_images = len(list(class_images_dir.iterdir())) if cur_class_images < config.num_class_images: torch_dtype = torch.float16 if accelerator.device.type == "cuda" else torch.float32 if config.prior_generation_precision == "fp32": torch_dtype = torch.float32 elif config.prior_generation_precision == "fp16": torch_dtype = torch.float16 elif config.prior_generation_precision == "bf16": torch_dtype = torch.bfloat16 if config.xl: pipeline = StableDiffusionXLPipeline.from_pretrained( config.model, torch_dtype=torch_dtype, safety_checker=None, revision=config.revision, ) else: pipeline = DiffusionPipeline.from_pretrained( config.model, torch_dtype=torch_dtype, safety_checker=None, revision=config.revision, ) pipeline.set_progress_bar_config(disable=True) num_new_images = config.num_class_images - cur_class_images logger.info(f"Number of class images to sample: {num_new_images}.") sample_dataset = PromptDataset(config.class_prompt, num_new_images) sample_dataloader = torch.utils.data.DataLoader(sample_dataset, batch_size=config.sample_batch_size) sample_dataloader = accelerator.prepare(sample_dataloader) pipeline.to(accelerator.device) for example in tqdm( sample_dataloader, desc="Generating class images", disable=not accelerator.is_local_main_process ): images = pipeline(example["prompt"]).images for i, image in enumerate(images): hash_image = hashlib.sha1(image.tobytes()).hexdigest() image_filename = class_images_dir / f"{example['index'][i] + cur_class_images}-{hash_image}.jpg" image.save(image_filename) del pipeline if torch.cuda.is_available(): torch.cuda.empty_cache() def load_model_components(config, device, weight_dtype): tokenizers = [] tokenizers.append( AutoTokenizer.from_pretrained( config.model, subfolder="tokenizer", revision=config.revision, use_fast=False, ) ) if config.xl: tokenizers.append( AutoTokenizer.from_pretrained( config.model, subfolder="tokenizer_2", revision=config.revision, use_fast=False, ) ) cls_text_encoders = [] cls_text_encoders.append( import_model_class_from_model_name_or_path(config.model, config.revision), ) if config.xl: cls_text_encoders.append( import_model_class_from_model_name_or_path(config.model, config.revision, subfolder="text_encoder_2") ) text_encoders = [] text_encoders.append( cls_text_encoders[0].from_pretrained( config.model, subfolder="text_encoder", revision=config.revision, ) ) if config.xl: text_encoders.append( cls_text_encoders[1].from_pretrained( config.model, subfolder="text_encoder_2", revision=config.revision, ) ) try: vae = AutoencoderKL.from_pretrained(config.model, subfolder="vae", revision=config.revision) except OSError: logger.warning("No VAE found. Training without VAE.") vae = None unet = UNet2DConditionModel.from_pretrained( config.model, subfolder="unet", revision=config.revision, ) noise_scheduler = DDPMScheduler.from_pretrained(config.model, subfolder="scheduler") # TODO: non-peft version if vae is not None: vae.requires_grad_(False) for _text_encoder in text_encoders: _text_encoder.requires_grad_(False) unet.requires_grad_(False) if vae is not None: if config.xl: vae.to(device, dtype=torch.float32) else: vae.to(device, dtype=weight_dtype) unet.to(device, dtype=weight_dtype) for _text_encoder in text_encoders: _text_encoder.to(device, dtype=weight_dtype) return tokenizers, text_encoders, vae, unet, noise_scheduler def enable_gradient_checkpointing(unet, text_encoders, config): if config.gradient_checkpointing: logger.info("Enabling gradient checkpointing.") unet.enable_gradient_checkpointing() if config.train_text_encoder: for i in range(len(text_encoders)): text_encoders[i].gradient_checkpointing_enable() def enable_xformers(unet, config): if config.xformers: if is_xformers_available(): logger.info("Enabling xformers") import xformers xformers_version = version.parse(xformers.__version__) if xformers_version == version.parse("0.0.16"): logger.warn( "xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details." ) unet.enable_xformers_memory_efficient_attention() else: raise ValueError("xformers is not available. Make sure it is installed correctly") def get_optimizer(config, unet_lora_parameters, text_lora_parameters): # Use 8-bit Adam for lower memory usage or to fine-tune the model in 16GB GPUs if config.use_8bit_adam: try: import bitsandbytes as bnb except ImportError: raise ImportError( "To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`." ) optimizer_class = bnb.optim.AdamW8bit else: optimizer_class = torch.optim.AdamW if len(text_lora_parameters) == 0: params_to_optimize = unet_lora_parameters elif len(text_lora_parameters) == 1: params_to_optimize = itertools.chain(unet_lora_parameters, text_lora_parameters[0]) elif len(text_lora_parameters) == 2: params_to_optimize = itertools.chain(unet_lora_parameters, text_lora_parameters[0], text_lora_parameters[1]) else: raise ValueError("More than 2 text encoders are not supported.") optimizer = optimizer_class( params_to_optimize, lr=config.lr, betas=(config.adam_beta1, config.adam_beta2), weight_decay=config.adam_weight_decay, eps=config.adam_epsilon, ) return optimizer def pre_compute_text_embeddings(config, tokenizers, text_encoders): if config.pre_compute_text_embeddings: tokenizer = tokenizers[0] text_encoder = text_encoders[0] def compute_text_embeddings(prompt): with torch.no_grad(): text_inputs = tokenize_prompt(tokenizer, prompt, tokenizer_max_length=config.tokenizer_max_length) prompt_embeds = encode_prompt( text_encoder, text_inputs.input_ids, text_inputs.attention_mask, text_encoder_use_attention_mask=config.text_encoder_use_attention_mask, ) return prompt_embeds pre_computed_encoder_hidden_states = compute_text_embeddings(config.prompt) # disable validation prompt for now # validation_prompt_negative_prompt_embeds = compute_text_embeddings("") # if args.validation_prompt is not None: # validation_prompt_encoder_hidden_states = compute_text_embeddings(args.validation_prompt) # else: # validation_prompt_encoder_hidden_states = None if config.prompt is not None: pre_computed_instance_prompt_encoder_hidden_states = compute_text_embeddings(config.prompt) else: pre_computed_instance_prompt_encoder_hidden_states = None else: pre_computed_encoder_hidden_states = None # validation_prompt_encoder_hidden_states = None pre_computed_instance_prompt_encoder_hidden_states = None return pre_computed_encoder_hidden_states, pre_computed_instance_prompt_encoder_hidden_states
autotrain-advanced-main
src/autotrain/trainers/dreambooth/utils.py
import itertools import math import os import shutil import torch import torch.nn.functional as F from diffusers import StableDiffusionXLPipeline from diffusers.loaders import LoraLoaderMixin, text_encoder_lora_state_dict from diffusers.optimization import get_scheduler from huggingface_hub import create_repo, upload_folder from tqdm import tqdm from autotrain import logger from autotrain.trainers.dreambooth import utils class Trainer: def __init__( self, unet, vae, train_dataloader, train_dataset, text_encoders, config, optimizer, accelerator, noise_scheduler, weight_dtype, text_lora_parameters, unet_lora_parameters, tokenizers, ): self.train_dataloader = train_dataloader self.config = config self.optimizer = optimizer self.accelerator = accelerator self.unet = unet self.vae = vae self.noise_scheduler = noise_scheduler self.train_dataset = train_dataset self.weight_dtype = weight_dtype self.text_lora_parameters = text_lora_parameters self.unet_lora_parameters = unet_lora_parameters self.tokenizers = tokenizers self.text_encoders = text_encoders if self.config.xl: self._setup_xl() self.text_encoder1 = text_encoders[0] self.text_encoder2 = None if len(text_encoders) == 2: self.text_encoder2 = text_encoders[1] overrode_max_train_steps = False self.num_update_steps_per_epoch = math.ceil(len(train_dataloader) / config.gradient_accumulation) if self.config.num_steps is None: self.config.num_steps = self.config.epochs * self.num_update_steps_per_epoch overrode_max_train_steps = True self.scheduler = get_scheduler( self.config.scheduler, optimizer=self.optimizer, num_warmup_steps=self.config.warmup_steps * self.accelerator.num_processes, num_training_steps=self.config.num_steps * self.accelerator.num_processes, num_cycles=self.config.num_cycles, power=self.config.lr_power, ) if self.config.train_text_encoder: if len(text_encoders) == 1: ( self.unet, self.text_encoder1, self.optimizer, self.train_dataloader, self.scheduler, ) = self.accelerator.prepare( self.unet, self.text_encoder1, self.optimizer, self.train_dataloader, self.scheduler ) elif len(text_encoders) == 2: ( self.unet, self.text_encoder1, self.text_encoder2, self.optimizer, self.train_dataloader, self.scheduler, ) = self.accelerator.prepare( self.unet, self.text_encoder1, self.text_encoder2, self.optimizer, self.train_dataloader, self.scheduler, ) else: self.unet, self.optimizer, self.train_dataloader, self.scheduler = accelerator.prepare( self.unet, self.optimizer, self.train_dataloader, self.scheduler ) self.num_update_steps_per_epoch = math.ceil(len(self.train_dataloader) / self.config.gradient_accumulation) if overrode_max_train_steps: self.config.num_steps = self.config.epochs * self.num_update_steps_per_epoch # Afterwards we recalculate our number of training epochs self.config.epochs = math.ceil(self.config.num_steps / self.num_update_steps_per_epoch) if self.accelerator.is_main_process: self.accelerator.init_trackers("dreambooth") self.total_batch_size = ( self.config.batch_size * self.accelerator.num_processes * self.config.gradient_accumulation ) logger.info("***** Running training *****") logger.info(f" Num examples = {len(self.train_dataset)}") logger.info(f" Num batches each epoch = {len(self.train_dataloader)}") logger.info(f" Num Epochs = {self.config.epochs}") logger.info(f" Instantaneous batch size per device = {config.batch_size}") logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {self.total_batch_size}") logger.info(f" Gradient Accumulation steps = {self.config.gradient_accumulation}") logger.info(f" Total optimization steps = {self.config.num_steps}") logger.info(f" Training config = {self.config}") self.global_step = 0 self.first_epoch = 0 if config.resume_from_checkpoint: self._resume_from_checkpoint() def compute_text_embeddings(self, prompt): logger.info(f"Computing text embeddings for prompt: {prompt}") with torch.no_grad(): prompt_embeds, pooled_prompt_embeds = utils.encode_prompt_xl(self.text_encoders, self.tokenizers, prompt) prompt_embeds = prompt_embeds.to(self.accelerator.device) pooled_prompt_embeds = pooled_prompt_embeds.to(self.accelerator.device) return prompt_embeds, pooled_prompt_embeds def compute_time_ids(self): # Adapted from pipeline.StableDiffusionXLPipeline._get_add_time_ids original_size = (self.config.resolution, self.config.resolution) target_size = (self.config.resolution, self.config.resolution) # crops_coords_top_left = (self.config.crops_coords_top_left_h, self.config.crops_coords_top_left_w) crops_coords_top_left = (0, 0) add_time_ids = list(original_size + crops_coords_top_left + target_size) add_time_ids = torch.tensor([add_time_ids]) add_time_ids = add_time_ids.to(self.accelerator.device, dtype=self.weight_dtype) return add_time_ids def _setup_xl(self): # Handle instance prompt. instance_time_ids = self.compute_time_ids() if not self.config.train_text_encoder: instance_prompt_hidden_states, instance_pooled_prompt_embeds = self.compute_text_embeddings( self.config.prompt ) # Handle class prompt for prior-preservation. if self.config.prior_preservation: class_time_ids = self.compute_time_ids() if not self.config.train_text_encoder: class_prompt_hidden_states, class_pooled_prompt_embeds = self.compute_text_embeddings( self.config.class_prompt ) self.add_time_ids = instance_time_ids if self.config.prior_preservation: self.add_time_ids = torch.cat([self.add_time_ids, class_time_ids], dim=0) if not self.config.train_text_encoder: self.prompt_embeds = instance_prompt_hidden_states self.unet_add_text_embeds = instance_pooled_prompt_embeds if self.config.prior_preservation: self.prompt_embeds = torch.cat([self.prompt_embeds, class_prompt_hidden_states], dim=0) self.unet_add_text_embeds = torch.cat([self.unet_add_text_embeds, class_pooled_prompt_embeds], dim=0) else: self.tokens_one = utils.tokenize_prompt(self.tokenizers[0], self.config.prompt).input_ids self.tokens_two = utils.tokenize_prompt(self.tokenizers[1], self.config.prompt).input_ids if self.config.prior_preservation: class_tokens_one = utils.tokenize_prompt(self.tokenizers[0], self.config.class_prompt).input_ids class_tokens_two = utils.tokenize_prompt(self.tokenizers[1], self.config.class_prompt).input_ids self.tokens_one = torch.cat([self.tokens_one, class_tokens_one], dim=0) self.tokens_two = torch.cat([self.tokens_two, class_tokens_two], dim=0) def _resume_from_checkpoint(self): if self.config.resume_from_checkpoint != "latest": path = os.path.basename(self.config.resume_from_checkpoint) else: # Get the mos recent checkpoint dirs = os.listdir(self.config.project_name) dirs = [d for d in dirs if d.startswith("checkpoint")] dirs = sorted(dirs, key=lambda x: int(x.split("-")[1])) path = dirs[-1] if len(dirs) > 0 else None if path is None: self.accelerator.print( f"Checkpoint '{self.config.resume_from_checkpoint}' does not exist. Starting a new training run." ) self.config.resume_from_checkpoint = None else: self.accelerator.print(f"Resuming from checkpoint {path}") self.accelerator.load_state(os.path.join(self.config.project_name, path)) self.global_step = int(path.split("-")[1]) resume_global_step = self.global_step * self.config.gradient_accumulation self.first_epoch = self.global_step // self.num_update_steps_per_epoch self.resume_step = resume_global_step % ( self.num_update_steps_per_epoch * self.config.gradient_accumulation ) def _calculate_loss(self, model_pred, noise, model_input, timesteps): if model_pred.shape[1] == 6 and not self.config.xl: model_pred, _ = torch.chunk(model_pred, 2, dim=1) # Get the target for loss depending on the prediction type if self.noise_scheduler.config.prediction_type == "epsilon": target = noise elif self.noise_scheduler.config.prediction_type == "v_prediction": target = self.noise_scheduler.get_velocity(model_input, noise, timesteps) else: raise ValueError(f"Unknown prediction type {self.noise_scheduler.config.prediction_type}") if self.config.prior_preservation: # Chunk the noise and model_pred into two parts and compute the loss on each part separately. model_pred, model_pred_prior = torch.chunk(model_pred, 2, dim=0) target, target_prior = torch.chunk(target, 2, dim=0) # Compute instance loss loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean") # Compute prior loss prior_loss = F.mse_loss(model_pred_prior.float(), target_prior.float(), reduction="mean") # Add the prior loss to the instance loss. loss = loss + self.config.prior_loss_weight * prior_loss else: loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean") return loss def _clip_gradients(self): if self.accelerator.sync_gradients: if len(self.text_lora_parameters) == 0: params_to_clip = self.unet_lora_parameters elif len(self.text_lora_parameters) == 1: params_to_clip = itertools.chain(self.unet_lora_parameters, self.text_lora_parameters[0]) elif len(self.text_lora_parameters) == 2: params_to_clip = itertools.chain( self.unet_lora_parameters, self.text_lora_parameters[0], self.text_lora_parameters[1] ) else: raise ValueError("More than 2 text encoders are not supported.") self.accelerator.clip_grad_norm_(params_to_clip, self.config.max_grad_norm) def _save_checkpoint(self): if self.accelerator.is_main_process: if self.global_step % self.config.checkpointing_steps == 0: # _before_ saving state, check if this save would set us over the `checkpoints_total_limit` if self.config.checkpoints_total_limit is not None: checkpoints = os.listdir(self.config.project_name) checkpoints = [d for d in checkpoints if d.startswith("checkpoint")] checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1])) # before we save the new checkpoint, we need to have at _most_ `checkpoints_total_limit - 1` checkpoints if len(checkpoints) >= self.config.checkpoints_total_limit: num_to_remove = len(checkpoints) - self.config.checkpoints_total_limit + 1 removing_checkpoints = checkpoints[0:num_to_remove] logger.info( f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints" ) logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}") for removing_checkpoint in removing_checkpoints: removing_checkpoint = os.path.join(self.config.project_name, removing_checkpoint) shutil.rmtree(removing_checkpoint) save_path = os.path.join(self.config.project_name, f"checkpoint-{self.global_step}") self.accelerator.save_state(save_path) logger.info(f"Saved state to {save_path}") def _get_model_pred(self, batch, channels, noisy_model_input, timesteps, bsz): if self.config.xl: elems_to_repeat = bsz // 2 if self.config.prior_preservation else bsz if not self.config.train_text_encoder: unet_added_conditions = { "time_ids": self.add_time_ids.repeat(elems_to_repeat, 1), "text_embeds": self.unet_add_text_embeds.repeat(elems_to_repeat, 1), } model_pred = self.unet( noisy_model_input, timesteps, self.prompt_embeds.repeat(elems_to_repeat, 1, 1), added_cond_kwargs=unet_added_conditions, ).sample else: unet_added_conditions = {"time_ids": self.add_time_ids.repeat(elems_to_repeat, 1)} prompt_embeds, pooled_prompt_embeds = utils.encode_prompt_xl( text_encoders=self.text_encoders, tokenizers=None, prompt=None, text_input_ids_list=[self.tokens_one, self.tokens_two], ) unet_added_conditions.update({"text_embeds": pooled_prompt_embeds.repeat(bsz, 1)}) prompt_embeds = prompt_embeds.repeat(elems_to_repeat, 1, 1) model_pred = self.unet( noisy_model_input, timesteps, prompt_embeds, added_cond_kwargs=unet_added_conditions ).sample else: if self.config.pre_compute_text_embeddings: encoder_hidden_states = batch["input_ids"] else: encoder_hidden_states = utils.encode_prompt( self.text_encoder1, batch["input_ids"], batch["attention_mask"], text_encoder_use_attention_mask=self.config.text_encoder_use_attention_mask, ) if self.accelerator.unwrap_model(self.unet).config.in_channels == channels * 2: noisy_model_input = torch.cat([noisy_model_input, noisy_model_input], dim=1) if self.config.class_labels_conditioning == "timesteps": class_labels = timesteps else: class_labels = None model_pred = self.unet( noisy_model_input, timesteps, encoder_hidden_states, class_labels=class_labels ).sample return model_pred def train(self): progress_bar = tqdm( range(self.global_step, self.config.num_steps), disable=not self.accelerator.is_local_main_process ) progress_bar.set_description("Steps") for epoch in range(self.first_epoch, self.config.epochs): self.unet.train() if self.config.train_text_encoder: self.text_encoder1.train() if self.config.xl: self.text_encoder2.train() for step, batch in enumerate(self.train_dataloader): # Skip steps until we reach the resumed step if self.config.resume_from_checkpoint and epoch == self.first_epoch and step < self.resume_step: if step % self.config.gradient_accumulation == 0: progress_bar.update(1) continue with self.accelerator.accumulate(self.unet): if self.config.xl: pixel_values = batch["pixel_values"] else: pixel_values = batch["pixel_values"].to(dtype=self.weight_dtype) if self.vae is not None: # Convert images to latent space model_input = self.vae.encode(pixel_values).latent_dist.sample() model_input = model_input * self.vae.config.scaling_factor model_input = model_input.to(dtype=self.weight_dtype) else: model_input = pixel_values # Sample noise that we'll add to the latents noise = torch.randn_like(model_input) bsz, channels, height, width = model_input.shape # Sample a random timestep for each image timesteps = torch.randint( 0, self.noise_scheduler.config.num_train_timesteps, (bsz,), device=model_input.device ) timesteps = timesteps.long() # Add noise to the model input according to the noise magnitude at each timestep # (this is the forward diffusion process) noisy_model_input = self.noise_scheduler.add_noise(model_input, noise, timesteps) model_pred = self._get_model_pred(batch, channels, noisy_model_input, timesteps, bsz) loss = self._calculate_loss(model_pred, noise, model_input, timesteps) self.accelerator.backward(loss) self._clip_gradients() self.optimizer.step() self.scheduler.step() self.optimizer.zero_grad() if self.accelerator.sync_gradients: progress_bar.update(1) self.global_step += 1 self._save_checkpoint() logs = {"loss": loss.detach().item(), "lr": self.scheduler.get_last_lr()[0]} progress_bar.set_postfix(**logs) self.accelerator.log(logs, step=self.global_step) if self.global_step >= self.config.num_steps: break self.accelerator.wait_for_everyone() if self.accelerator.is_main_process: self.unet = self.accelerator.unwrap_model(self.unet) self.unet = self.unet.to(torch.float32) unet_lora_layers = utils.unet_attn_processors_state_dict(self.unet) text_encoder_lora_layers_1 = None text_encoder_lora_layers_2 = None if self.text_encoder1 is not None and self.config.train_text_encoder: text_encoder1 = self.accelerator.unwrap_model(self.text_encoder1) text_encoder1 = text_encoder1.to(torch.float32) text_encoder_lora_layers_1 = text_encoder_lora_state_dict(text_encoder1) if self.text_encoder2 is not None and self.config.train_text_encoder: text_encoder2 = self.accelerator.unwrap_model(self.text_encoder2) text_encoder2 = text_encoder2.to(torch.float32) text_encoder_lora_layers_2 = text_encoder_lora_state_dict(text_encoder2) if self.config.xl: StableDiffusionXLPipeline.save_lora_weights( save_directory=self.config.project_name, unet_lora_layers=unet_lora_layers, text_encoder_lora_layers=text_encoder_lora_layers_1, text_encoder_2_lora_layers=text_encoder_lora_layers_2, safe_serialization=True, ) else: LoraLoaderMixin.save_lora_weights( save_directory=self.config.project_name, unet_lora_layers=unet_lora_layers, text_encoder_lora_layers=text_encoder_lora_layers_1, safe_serialization=True, ) self.accelerator.end_training() def push_to_hub(self): repo_id = create_repo( repo_id=self.config.repo_id, exist_ok=True, private=True, token=self.config.token, ).repo_id utils.create_model_card( repo_id, base_model=self.config.model, train_text_encoder=self.config.train_text_encoder, prompt=self.config.prompt, repo_folder=self.config.project_name, ) upload_folder( repo_id=repo_id, folder_path=self.config.project_name, commit_message="End of training", ignore_patterns=["step_*", "epoch_*"], token=self.config.token, )
autotrain-advanced-main
src/autotrain/trainers/dreambooth/trainer.py
import argparse import json import os import diffusers import torch import torch.nn.functional as F import transformers from accelerate import Accelerator from accelerate.utils import ProjectConfiguration, set_seed from diffusers import StableDiffusionXLPipeline from diffusers.loaders import LoraLoaderMixin, text_encoder_lora_state_dict from diffusers.models.attention_processor import ( AttnAddedKVProcessor, AttnAddedKVProcessor2_0, LoRAAttnAddedKVProcessor, LoRAAttnProcessor, LoRAAttnProcessor2_0, SlicedAttnAddedKVProcessor, ) from huggingface_hub import HfApi, snapshot_download from autotrain import logger from autotrain.trainers.dreambooth import utils from autotrain.trainers.dreambooth.datasets import DreamBoothDataset, collate_fn from autotrain.trainers.dreambooth.params import DreamBoothTrainingParams from autotrain.trainers.dreambooth.trainer import Trainer from autotrain.utils import monitor def parse_args(): # get training_config.json from the end user parser = argparse.ArgumentParser() parser.add_argument("--training_config", type=str, required=True) return parser.parse_args() @monitor def train(config): if isinstance(config, dict): config = DreamBoothTrainingParams(**config) config.prompt = str(config.prompt).strip() if config.model in utils.XL_MODELS: config.xl = True if config.repo_id is None and config.username is not None: config.repo_id = f"{config.username}/{config.project_name}" if config.project_name == "/tmp/model": snapshot_download( repo_id=config.image_path, local_dir=config.project_name, token=config.token, repo_type="dataset", ) config.image_path = "/tmp/model/concept1/" accelerator_project_config = ProjectConfiguration( project_dir=config.project_name, logging_dir=os.path.join(config.project_name, "logs") ) if config.fp16: mixed_precision = "fp16" elif config.bf16: mixed_precision = "bf16" else: mixed_precision = "no" accelerator = Accelerator( gradient_accumulation_steps=config.gradient_accumulation, mixed_precision=mixed_precision, log_with="tensorboard" if config.logging else None, project_config=accelerator_project_config, ) if config.train_text_encoder and config.gradient_accumulation > 1 and accelerator.num_processes > 1: raise ValueError( "Gradient accumulation is not supported when training the text encoder in distributed training. " "Please set gradient_accumulation_steps to 1. This feature will be supported in the future." ) if accelerator.is_local_main_process: transformers.utils.logging.set_verbosity_warning() diffusers.utils.logging.set_verbosity_info() else: transformers.utils.logging.set_verbosity_error() diffusers.utils.logging.set_verbosity_error() set_seed(config.seed) # Generate class images if prior preservation is enabled. if config.prior_preservation: utils.setup_prior_preservation(accelerator, config) # Handle the repository creation if accelerator.is_main_process: if config.project_name is not None: os.makedirs(config.project_name, exist_ok=True) weight_dtype = torch.float32 if accelerator.mixed_precision == "fp16": weight_dtype = torch.float16 elif accelerator.mixed_precision == "bf16": weight_dtype = torch.bfloat16 tokenizers, text_encoders, vae, unet, noise_scheduler = utils.load_model_components( config, accelerator.device, weight_dtype ) utils.enable_xformers(unet, config) utils.enable_gradient_checkpointing(unet, text_encoders, config) unet_lora_attn_procs = {} unet_lora_parameters = [] for name, attn_processor in unet.attn_processors.items(): cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim if name.startswith("mid_block"): hidden_size = unet.config.block_out_channels[-1] elif name.startswith("up_blocks"): block_id = int(name[len("up_blocks.")]) hidden_size = list(reversed(unet.config.block_out_channels))[block_id] elif name.startswith("down_blocks"): block_id = int(name[len("down_blocks.")]) hidden_size = unet.config.block_out_channels[block_id] if isinstance(attn_processor, (AttnAddedKVProcessor, SlicedAttnAddedKVProcessor, AttnAddedKVProcessor2_0)): lora_attn_processor_class = LoRAAttnAddedKVProcessor else: lora_attn_processor_class = ( LoRAAttnProcessor2_0 if hasattr(F, "scaled_dot_product_attention") else LoRAAttnProcessor ) module = lora_attn_processor_class(hidden_size=hidden_size, cross_attention_dim=cross_attention_dim) unet_lora_attn_procs[name] = module unet_lora_parameters.extend(module.parameters()) unet.set_attn_processor(unet_lora_attn_procs) text_lora_parameters = [] if config.train_text_encoder: # ensure that dtype is float32, even if rest of the model that isn't trained is loaded in fp16 text_lora_parameters = [ LoraLoaderMixin._modify_text_encoder(_text_encoder, dtype=torch.float32) for _text_encoder in text_encoders ] def save_model_hook(models, weights, output_dir): # there are only two options here. Either are just the unet attn processor layers # or there are the unet and text encoder atten layers unet_lora_layers_to_save = None text_encoder_lora_layers_to_save = [] for model in models: if isinstance(model, type(accelerator.unwrap_model(unet))): unet_lora_layers_to_save = utils.unet_attn_processors_state_dict(model) for _text_encoder in text_encoders: if isinstance(model, type(accelerator.unwrap_model(_text_encoder))): text_encoder_lora_layers_to_save.append(text_encoder_lora_state_dict(model)) # make sure to pop weight so that corresponding model is not saved again weights.pop() if len(text_encoder_lora_layers_to_save) == 0: LoraLoaderMixin.save_lora_weights( output_dir, unet_lora_layers=unet_lora_layers_to_save, text_encoder_lora_layers=None, safe_serialization=True, ) elif len(text_encoder_lora_layers_to_save) == 1: LoraLoaderMixin.save_lora_weights( output_dir, unet_lora_layers=unet_lora_layers_to_save, text_encoder_lora_layers=text_encoder_lora_layers_to_save[0], safe_serialization=True, ) elif len(text_encoder_lora_layers_to_save) == 2: StableDiffusionXLPipeline.save_lora_weights( output_dir, unet_lora_layers=unet_lora_layers_to_save, text_encoder_lora_layers=text_encoder_lora_layers_to_save[0], text_encoder_2_lora_layers=text_encoder_lora_layers_to_save[1], safe_serialization=True, ) else: raise ValueError("unexpected number of text encoders") def load_model_hook(models, input_dir): unet_ = None text_encoders_ = [] while len(models) > 0: model = models.pop() if isinstance(model, type(accelerator.unwrap_model(unet))): unet_ = model for _text_encoder in text_encoders: if isinstance(model, type(accelerator.unwrap_model(_text_encoder))): text_encoders_.append(model) lora_state_dict, network_alpha = LoraLoaderMixin.lora_state_dict(input_dir) LoraLoaderMixin.load_lora_into_unet(lora_state_dict, network_alpha=network_alpha, unet=unet_) if len(text_encoders_) == 0: LoraLoaderMixin.load_lora_into_text_encoder( lora_state_dict, network_alpha=network_alpha, text_encoder=None, ) elif len(text_encoders_) == 1: LoraLoaderMixin.load_lora_into_text_encoder( lora_state_dict, network_alpha=network_alpha, text_encoder=text_encoders_[0], ) elif len(text_encoders_) == 2: LoraLoaderMixin.load_lora_into_text_encoder( lora_state_dict, network_alpha=network_alpha, text_encoder=text_encoders_[0], ) LoraLoaderMixin.load_lora_into_text_encoder( lora_state_dict, network_alpha=network_alpha, text_encoder=text_encoders_[1], ) else: raise ValueError("unexpected number of text encoders") accelerator.register_save_state_pre_hook(save_model_hook) accelerator.register_load_state_pre_hook(load_model_hook) if config.allow_tf32: torch.backends.cuda.matmul.allow_tf32 = True if config.scale_lr: config.lr = config.lr * config.gradient_accumulation * config.batch_size * accelerator.num_processes optimizer = utils.get_optimizer(config, unet_lora_parameters, text_lora_parameters) encoder_hs, instance_prompt_encoder_hs = utils.pre_compute_text_embeddings( config=config, text_encoders=text_encoders, tokenizers=tokenizers ) train_dataset = DreamBoothDataset( config=config, tokenizers=tokenizers, encoder_hidden_states=encoder_hs, instance_prompt_encoder_hidden_states=instance_prompt_encoder_hs, ) train_dataloader = torch.utils.data.DataLoader( train_dataset, batch_size=config.batch_size, shuffle=True, collate_fn=lambda examples: collate_fn(examples, config), num_workers=config.dataloader_num_workers, ) trainer = Trainer( unet=unet, vae=vae, train_dataloader=train_dataloader, text_encoders=text_encoders, config=config, optimizer=optimizer, accelerator=accelerator, noise_scheduler=noise_scheduler, train_dataset=train_dataset, weight_dtype=weight_dtype, text_lora_parameters=text_lora_parameters, unet_lora_parameters=unet_lora_parameters, tokenizers=tokenizers, ) trainer.train() # remove token key from training_params.json located in output directory # first check if file exists if os.path.exists(f"{config.project_name}/training_params.json"): training_params = json.load(open(f"{config.project_name}/training_params.json")) training_params.pop("token") json.dump(training_params, open(f"{config.project_name}/training_params.json", "w")) # remove config.image_path directory if it exists if os.path.exists(config.image_path): os.system(f"rm -rf {config.image_path}") # add config.prompt as a text file in the output directory with open(f"{config.project_name}/prompt.txt", "w") as f: f.write(config.prompt) if config.push_to_hub: trainer.push_to_hub() if "SPACE_ID" in os.environ: # shut down the space logger.info("Pausing space...") api = HfApi(token=config.token) api.pause_space(repo_id=os.environ["SPACE_ID"]) if __name__ == "__main__": args = parse_args() training_config = json.load(open(args.training_config)) config = DreamBoothTrainingParams(**training_config) train(config)
autotrain-advanced-main
src/autotrain/trainers/dreambooth/__main__.py
import os from pydantic import BaseModel, Field from autotrain import logger class TextClassificationParams(BaseModel): data_path: str = Field(None, title="Data path") model: str = Field("bert-base-uncased", title="Model name") lr: float = Field(5e-5, title="Learning rate") epochs: int = Field(3, title="Number of training epochs") max_seq_length: int = Field(128, title="Max sequence length") batch_size: int = Field(8, title="Training batch size") warmup_ratio: float = Field(0.1, title="Warmup proportion") gradient_accumulation: int = Field(1, title="Gradient accumulation steps") optimizer: str = Field("adamw_torch", title="Optimizer") scheduler: str = Field("linear", title="Scheduler") weight_decay: float = Field(0.0, title="Weight decay") max_grad_norm: float = Field(1.0, title="Max gradient norm") seed: int = Field(42, title="Seed") train_split: str = Field("train", title="Train split") valid_split: str = Field(None, title="Validation split") text_column: str = Field("text", title="Text column") target_column: str = Field("target", title="Target column") logging_steps: int = Field(-1, title="Logging steps") project_name: str = Field("Project Name", title="Output directory") auto_find_batch_size: bool = Field(False, title="Auto find batch size") fp16: bool = Field(False, title="Enable fp16") save_total_limit: int = Field(1, title="Save total limit") save_strategy: str = Field("epoch", title="Save strategy") token: str = Field(None, title="Hub Token") push_to_hub: bool = Field(False, title="Push to hub") repo_id: str = Field(None, title="Repo id") evaluation_strategy: str = Field("epoch", title="Evaluation strategy") username: str = Field(None, title="Hugging Face Username") def __str__(self): data = self.dict() data["token"] = "*****" if data.get("token") else None return str(data) def save(self, output_dir): os.makedirs(output_dir, exist_ok=True) path = os.path.join(output_dir, "training_params.json") # save formatted json with open(path, "w") as f: f.write(self.json(indent=4)) def __init__(self, **data): super().__init__(**data) # Parameters not supplied by the user defaults = {f.name for f in self.__fields__.values() if f.default == self.__dict__[f.name]} supplied = set(data.keys()) not_supplied = defaults - supplied if not_supplied: logger.warning(f"Parameters not supplied by user and set to default: {', '.join(not_supplied)}") # Parameters that were supplied but not used # This is a naive implementation. It might catch some internal Pydantic params. unused = supplied - set(self.__fields__) if unused: logger.warning(f"Parameters supplied but not used: {', '.join(unused)}")
autotrain-advanced-main
src/autotrain/trainers/text_classification/params.py
autotrain-advanced-main
src/autotrain/trainers/text_classification/__init__.py
import torch class TextClassificationDataset: def __init__(self, data, tokenizer, config): self.data = data self.tokenizer = tokenizer self.config = config self.text_column = self.config.text_column self.target_column = self.config.target_column def __len__(self): return len(self.data) def __getitem__(self, item): text = str(self.data[item][self.text_column]) target = self.data[item][self.target_column] target = int(target) inputs = self.tokenizer( text, max_length=self.config.max_seq_length, padding="max_length", truncation=True, ) ids = inputs["input_ids"] mask = inputs["attention_mask"] if "token_type_ids" in inputs: token_type_ids = inputs["token_type_ids"] else: token_type_ids = None if token_type_ids is not None: return { "input_ids": torch.tensor(ids, dtype=torch.long), "attention_mask": torch.tensor(mask, dtype=torch.long), "token_type_ids": torch.tensor(token_type_ids, dtype=torch.long), "labels": torch.tensor(target, dtype=torch.long), } return { "input_ids": torch.tensor(ids, dtype=torch.long), "attention_mask": torch.tensor(mask, dtype=torch.long), "labels": torch.tensor(target, dtype=torch.long), }
autotrain-advanced-main
src/autotrain/trainers/text_classification/dataset.py
import os import numpy as np import requests from sklearn import metrics BINARY_CLASSIFICATION_EVAL_METRICS = ( "eval_loss", "eval_accuracy", "eval_f1", "eval_auc", "eval_precision", "eval_recall", ) MULTI_CLASS_CLASSIFICATION_EVAL_METRICS = ( "eval_loss", "eval_accuracy", "eval_f1_macro", "eval_f1_micro", "eval_f1_weighted", "eval_precision_macro", "eval_precision_micro", "eval_precision_weighted", "eval_recall_macro", "eval_recall_micro", "eval_recall_weighted", ) MODEL_CARD = """ --- tags: - autotrain - text-classification widget: - text: "I love AutoTrain" datasets: - {dataset} --- # Model Trained Using AutoTrain - Problem type: Text Classification ## Validation Metrics {validation_metrics} """ def _binary_classification_metrics(pred): raw_predictions, labels = pred predictions = np.argmax(raw_predictions, axis=1) result = { "f1": metrics.f1_score(labels, predictions), "precision": metrics.precision_score(labels, predictions), "recall": metrics.recall_score(labels, predictions), "auc": metrics.roc_auc_score(labels, raw_predictions[:, 1]), "accuracy": metrics.accuracy_score(labels, predictions), } return result def _multi_class_classification_metrics(pred): raw_predictions, labels = pred predictions = np.argmax(raw_predictions, axis=1) results = { "f1_macro": metrics.f1_score(labels, predictions, average="macro"), "f1_micro": metrics.f1_score(labels, predictions, average="micro"), "f1_weighted": metrics.f1_score(labels, predictions, average="weighted"), "precision_macro": metrics.precision_score(labels, predictions, average="macro"), "precision_micro": metrics.precision_score(labels, predictions, average="micro"), "precision_weighted": metrics.precision_score(labels, predictions, average="weighted"), "recall_macro": metrics.recall_score(labels, predictions, average="macro"), "recall_micro": metrics.recall_score(labels, predictions, average="micro"), "recall_weighted": metrics.recall_score(labels, predictions, average="weighted"), "accuracy": metrics.accuracy_score(labels, predictions), } return results def create_model_card(config, trainer, num_classes): if config.valid_split is not None: eval_scores = trainer.evaluate() valid_metrics = ( BINARY_CLASSIFICATION_EVAL_METRICS if num_classes == 2 else MULTI_CLASS_CLASSIFICATION_EVAL_METRICS ) eval_scores = [f"{k[len('eval_'):]}: {v}" for k, v in eval_scores.items() if k in valid_metrics] eval_scores = "\n\n".join(eval_scores) else: eval_scores = "No validation metrics available" model_card = MODEL_CARD.format( dataset=config.data_path, validation_metrics=eval_scores, ) return model_card def pause_endpoint(params): endpoint_id = os.environ["ENDPOINT_ID"] username = endpoint_id.split("/")[0] project_name = endpoint_id.split("/")[1] api_url = f"https://api.endpoints.huggingface.cloud/v2/endpoint/{username}/{project_name}/pause" headers = {"Authorization": f"Bearer {params.token}"} r = requests.post(api_url, headers=headers) return r.json()
autotrain-advanced-main
src/autotrain/trainers/text_classification/utils.py
import argparse import json import os import pandas as pd from accelerate.state import PartialState from datasets import Dataset, load_dataset from huggingface_hub import HfApi from transformers import ( AutoConfig, AutoModelForSequenceClassification, AutoTokenizer, EarlyStoppingCallback, Trainer, TrainingArguments, ) from autotrain import logger from autotrain.trainers.text_classification import utils from autotrain.trainers.text_classification.dataset import TextClassificationDataset from autotrain.trainers.text_classification.params import TextClassificationParams from autotrain.utils import monitor def parse_args(): # get training_config.json from the end user parser = argparse.ArgumentParser() parser.add_argument("--training_config", type=str, required=True) return parser.parse_args() @monitor def train(config): if isinstance(config, dict): config = TextClassificationParams(**config) if config.repo_id is None and config.username is not None: config.repo_id = f"{config.username}/{config.project_name}" if PartialState().process_index == 0: logger.info("Starting training...") logger.info(f"Training config: {config}") train_data = None valid_data = None # check if config.train_split.csv exists in config.data_path if config.train_split is not None: train_path = f"{config.data_path}/{config.train_split}.csv" if os.path.exists(train_path): logger.info("loading dataset from csv") train_data = pd.read_csv(train_path) train_data = Dataset.from_pandas(train_data) else: train_data = load_dataset( config.data_path, split=config.train_split, token=config.token, ) if config.valid_split is not None: valid_path = f"{config.data_path}/{config.valid_split}.csv" if os.path.exists(valid_path): logger.info("loading dataset from csv") valid_data = pd.read_csv(valid_path) valid_data = Dataset.from_pandas(valid_data) else: valid_data = load_dataset( config.data_path, split=config.valid_split, token=config.token, ) classes = train_data.features[config.target_column].names label2id = {c: i for i, c in enumerate(classes)} num_classes = len(classes) if num_classes < 2: raise ValueError("Invalid number of classes. Must be greater than 1.") if config.valid_split is not None: num_classes_valid = len(valid_data.unique(config.target_column)) if num_classes_valid != num_classes: raise ValueError( f"Number of classes in train and valid are not the same. Training has {num_classes} and valid has {num_classes_valid}" ) model_config = AutoConfig.from_pretrained(config.model, num_labels=num_classes) model_config._num_labels = len(label2id) model_config.label2id = label2id model_config.id2label = {v: k for k, v in label2id.items()} try: model = AutoModelForSequenceClassification.from_pretrained( config.model, config=model_config, trust_remote_code=True, token=config.token ) except OSError: model = AutoModelForSequenceClassification.from_pretrained( config.model, config=model_config, from_tf=True, trust_remote_code=True, token=config.token ) tokenizer = AutoTokenizer.from_pretrained(config.model, token=config.token, trust_remote_code=True) train_data = TextClassificationDataset(data=train_data, tokenizer=tokenizer, config=config) if config.valid_split is not None: valid_data = TextClassificationDataset(data=valid_data, tokenizer=tokenizer, config=config) if config.logging_steps == -1: if config.valid_split is not None: logging_steps = int(0.2 * len(valid_data) / config.batch_size) else: logging_steps = int(0.2 * len(train_data) / config.batch_size) if logging_steps == 0: logging_steps = 1 else: logging_steps = config.logging_steps training_args = dict( output_dir=config.project_name, per_device_train_batch_size=config.batch_size, per_device_eval_batch_size=2 * config.batch_size, learning_rate=config.lr, num_train_epochs=config.epochs, fp16=config.fp16, evaluation_strategy=config.evaluation_strategy if config.valid_split is not None else "no", logging_steps=logging_steps, save_total_limit=config.save_total_limit, save_strategy=config.save_strategy, gradient_accumulation_steps=config.gradient_accumulation, report_to="tensorboard", auto_find_batch_size=config.auto_find_batch_size, lr_scheduler_type=config.scheduler, optim=config.optimizer, warmup_ratio=config.warmup_ratio, weight_decay=config.weight_decay, max_grad_norm=config.max_grad_norm, push_to_hub=False, load_best_model_at_end=True if config.valid_split is not None else False, ddp_find_unused_parameters=False, ) if config.valid_split is not None: early_stop = EarlyStoppingCallback(early_stopping_patience=3, early_stopping_threshold=0.01) callbacks_to_use = [early_stop] else: callbacks_to_use = [] args = TrainingArguments(**training_args) trainer_args = dict( args=args, model=model, callbacks=callbacks_to_use, compute_metrics=utils._binary_classification_metrics if num_classes == 2 else utils._multi_class_classification_metrics, ) trainer = Trainer( **trainer_args, train_dataset=train_data, eval_dataset=valid_data, ) trainer.train() logger.info("Finished training, saving model...") trainer.save_model(config.project_name) tokenizer.save_pretrained(config.project_name) model_card = utils.create_model_card(config, trainer, num_classes) # remove token key from training_params.json located in output directory # first check if file exists if os.path.exists(f"{config.project_name}/training_params.json"): training_params = json.load(open(f"{config.project_name}/training_params.json")) training_params.pop("token") json.dump(training_params, open(f"{config.project_name}/training_params.json", "w")) # save model card to output directory as README.md with open(f"{config.project_name}/README.md", "w") as f: f.write(model_card) if config.push_to_hub: if PartialState().process_index == 0: logger.info("Pushing model to hub...") api = HfApi(token=config.token) api.create_repo(repo_id=config.repo_id, repo_type="model", private=True) api.upload_folder(folder_path=config.project_name, repo_id=config.repo_id, repo_type="model") if PartialState().process_index == 0: if "SPACE_ID" in os.environ: # shut down the space logger.info("Pausing space...") api = HfApi(token=config.token) api.pause_space(repo_id=os.environ["SPACE_ID"]) if "ENDPOINT_ID" in os.environ: # shut down the endpoint logger.info("Pausing endpoint...") utils.pause_endpoint(config) if __name__ == "__main__": args = parse_args() training_config = json.load(open(args.training_config)) config = TextClassificationParams(**training_config) train(config)
autotrain-advanced-main
src/autotrain/trainers/text_classification/__main__.py
import os from pydantic import BaseModel, Field class ImageClassificationParams(BaseModel): data_path: str = Field(None, title="Data path") model_name: str = Field("bert-base-uncased", title="Model name") lr: float = Field(5e-5, title="Learning rate") epochs: int = Field(3, title="Number of training epochs") batch_size: int = Field(8, title="Training batch size") warmup_ratio: float = Field(0.1, title="Warmup proportion") gradient_accumulation: int = Field(1, title="Gradient accumulation steps") optimizer: str = Field("adamw_torch", title="Optimizer") scheduler: str = Field("linear", title="Scheduler") weight_decay: float = Field(0.0, title="Weight decay") max_grad_norm: float = Field(1.0, title="Max gradient norm") seed: int = Field(42, title="Seed") train_split: str = Field("train", title="Train split") valid_split: str = Field(None, title="Validation split") logging_steps: int = Field(-1, title="Logging steps") project_name: str = Field("Project Name", title="Output directory") auto_find_batch_size: bool = Field(False, title="Auto find batch size") fp16: bool = Field(False, title="Enable fp16") save_total_limit: int = Field(1, title="Save total limit") save_strategy: str = Field("epoch", title="Save strategy") token: str = Field(None, title="Hub Token") push_to_hub: bool = Field(False, title="Push to hub") repo_id: str = Field(None, title="Repo id") evaluation_strategy: str = Field("epoch", title="Evaluation strategy") image_column: str = Field("image", title="Image column") target_column: str = Field("target", title="Target column") def __str__(self): data = self.dict() data["token"] = "*****" if data.get("token") else None return str(data) def save(self, output_dir): os.makedirs(output_dir, exist_ok=True) path = os.path.join(output_dir, "training_params.json") # save formatted json with open(path, "w") as f: f.write(self.json(indent=4))
autotrain-advanced-main
src/autotrain/trainers/image_classification/params.py
autotrain-advanced-main
src/autotrain/trainers/image_classification/__init__.py
import numpy as np import torch class ImageClassificationDataset: def __init__(self, data, transforms, config): self.data = data self.transforms = transforms self.config = config def __len__(self): return len(self.data) def __getitem__(self, item): image = self.data[item][self.config.image_column] target = int(self.data[item][self.config.target_column]) image = self.transforms(image=np.array(image.convert("RGB")))["image"] image = np.transpose(image, (2, 0, 1)).astype(np.float32) return { "pixel_values": torch.tensor(image, dtype=torch.float), "labels": torch.tensor(target, dtype=torch.long), }
autotrain-advanced-main
src/autotrain/trainers/image_classification/dataset.py
import albumentations as A import numpy as np from sklearn import metrics from autotrain.trainers.image_classification.dataset import ImageClassificationDataset BINARY_CLASSIFICATION_EVAL_METRICS = ( "eval_loss", "eval_accuracy", "eval_f1", "eval_auc", "eval_precision", "eval_recall", ) MULTI_CLASS_CLASSIFICATION_EVAL_METRICS = ( "eval_loss", "eval_accuracy", "eval_f1_macro", "eval_f1_micro", "eval_f1_weighted", "eval_precision_macro", "eval_precision_micro", "eval_precision_weighted", "eval_recall_macro", "eval_recall_micro", "eval_recall_weighted", ) MODEL_CARD = """ --- tags: - autotrain - image-classification widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace datasets: - {dataset} --- # Model Trained Using AutoTrain - Problem type: Image Classification ## Validation Metricsg {validation_metrics} """ def _binary_classification_metrics(pred): raw_predictions, labels = pred predictions = np.argmax(raw_predictions, axis=1) result = { "f1": metrics.f1_score(labels, predictions), "precision": metrics.precision_score(labels, predictions), "recall": metrics.recall_score(labels, predictions), "auc": metrics.roc_auc_score(labels, raw_predictions[:, 1]), "accuracy": metrics.accuracy_score(labels, predictions), } return result def _multi_class_classification_metrics(pred): raw_predictions, labels = pred predictions = np.argmax(raw_predictions, axis=1) results = { "f1_macro": metrics.f1_score(labels, predictions, average="macro"), "f1_micro": metrics.f1_score(labels, predictions, average="micro"), "f1_weighted": metrics.f1_score(labels, predictions, average="weighted"), "precision_macro": metrics.precision_score(labels, predictions, average="macro"), "precision_micro": metrics.precision_score(labels, predictions, average="micro"), "precision_weighted": metrics.precision_score(labels, predictions, average="weighted"), "recall_macro": metrics.recall_score(labels, predictions, average="macro"), "recall_micro": metrics.recall_score(labels, predictions, average="micro"), "recall_weighted": metrics.recall_score(labels, predictions, average="weighted"), "accuracy": metrics.accuracy_score(labels, predictions), } return results def process_data(train_data, valid_data, image_processor, config): if "shortest_edge" in image_processor.size: size = image_processor.size["shortest_edge"] else: size = (image_processor.size["height"], image_processor.size["width"]) try: height, width = size except TypeError: height = size width = size train_transforms = A.Compose( [ A.RandomResizedCrop(height=height, width=width), A.RandomRotate90(), A.HorizontalFlip(p=0.5), A.RandomBrightnessContrast(p=0.2), A.Normalize(mean=image_processor.image_mean, std=image_processor.image_std), ] ) val_transforms = A.Compose( [ A.Resize(height=height, width=width), A.Normalize(mean=image_processor.image_mean, std=image_processor.image_std), ] ) train_data = ImageClassificationDataset(train_data, train_transforms, config) if valid_data is not None: valid_data = ImageClassificationDataset(valid_data, val_transforms, config) return train_data, valid_data return train_data, None def create_model_card(config, trainer, num_classes): if config.valid_split is not None: eval_scores = trainer.evaluate() valid_metrics = ( BINARY_CLASSIFICATION_EVAL_METRICS if num_classes == 2 else MULTI_CLASS_CLASSIFICATION_EVAL_METRICS ) eval_scores = [f"{k[len('eval_'):]}: {v}" for k, v in eval_scores.items() if k in valid_metrics] eval_scores = "\n\n".join(eval_scores) else: eval_scores = "No validation metrics available" model_card = MODEL_CARD.format( dataset=config.data_path, validation_metrics=eval_scores, ) return model_card
autotrain-advanced-main
src/autotrain/trainers/image_classification/utils.py
import argparse import json from accelerate.state import PartialState from datasets import load_dataset from huggingface_hub import HfApi from transformers import ( AutoConfig, AutoImageProcessor, AutoModelForImageClassification, EarlyStoppingCallback, Trainer, TrainingArguments, ) from autotrain import logger from autotrain.trainers.image_classification import utils from autotrain.trainers.image_classification.params import ImageClassificationParams def parse_args(): # get training_config.json from the end user parser = argparse.ArgumentParser() parser.add_argument("--training_config", type=str, required=True) return parser.parse_args() def train(config): if isinstance(config, dict): config = ImageClassificationParams(**config) if PartialState().process_index == 0: logger.info("Starting training...") logger.info(f"Training config: {config}") valid_data = None train_data = load_dataset( config.data_path, split=config.train_split, token=config.token, ) if config.valid_split is not None: valid_data = load_dataset( config.data_path, split=config.valid_split, token=config.token, ) classes = train_data.features[config.target_column].names logger.info(f"Classes: {classes}") label2id = {c: i for i, c in enumerate(classes)} num_classes = len(classes) if num_classes < 2: raise ValueError("Invalid number of classes. Must be greater than 1.") if config.valid_split is not None: num_classes_valid = len(valid_data.unique(config.target_column)) if num_classes_valid != num_classes: raise ValueError( f"Number of classes in train and valid are not the same. Training has {num_classes} and valid has {num_classes_valid}" ) model_config = AutoConfig.from_pretrained(config.model_name, num_labels=num_classes) model_config._num_labels = len(label2id) model_config.label2id = label2id model_config.id2label = {v: k for k, v in label2id.items()} try: model = AutoModelForImageClassification.from_pretrained( config.model_name, config=model_config, trust_remote_code=True, token=config.token, ignore_mismatched_sizes=True, ) except OSError: model = AutoModelForImageClassification.from_pretrained( config.model_name, config=model_config, from_tf=True, trust_remote_code=True, token=config.token, ignore_mismatched_sizes=True, ) image_processor = AutoImageProcessor.from_pretrained(config.model_name, token=config.token) train_data, valid_data = utils.process_data(train_data, valid_data, image_processor, config) if config.logging_steps == -1: if config.valid_split is not None: logging_steps = int(0.2 * len(valid_data) / config.batch_size) else: logging_steps = int(0.2 * len(train_data) / config.batch_size) if logging_steps == 0: logging_steps = 1 else: logging_steps = config.logging_steps training_args = dict( output_dir=config.project_name, per_device_train_batch_size=config.batch_size, per_device_eval_batch_size=2 * config.batch_size, learning_rate=config.lr, num_train_epochs=config.epochs, fp16=config.fp16, evaluation_strategy=config.evaluation_strategy if config.valid_split is not None else "no", logging_steps=logging_steps, save_total_limit=config.save_total_limit, save_strategy=config.save_strategy, gradient_accumulation_steps=config.gradient_accumulation, report_to="tensorboard", auto_find_batch_size=config.auto_find_batch_size, lr_scheduler_type=config.scheduler, optim=config.optimizer, warmup_ratio=config.warmup_ratio, weight_decay=config.weight_decay, max_grad_norm=config.max_grad_norm, push_to_hub=False, load_best_model_at_end=True if config.valid_split is not None else False, ddp_find_unused_parameters=False, ) if config.valid_split is not None: early_stop = EarlyStoppingCallback(early_stopping_patience=3, early_stopping_threshold=0.01) callbacks_to_use = [early_stop] else: callbacks_to_use = [] args = TrainingArguments(**training_args) trainer_args = dict( args=args, model=model, callbacks=callbacks_to_use, compute_metrics=utils._binary_classification_metrics if num_classes == 2 else utils._multi_class_classification_metrics, ) trainer = Trainer( **trainer_args, train_dataset=train_data, eval_dataset=valid_data, ) trainer.train() logger.info("Finished training, saving model...") trainer.save_model(config.project_name) image_processor.save_pretrained(config.project_name) model_card = utils.create_model_card(config, trainer, num_classes) # save model card to output directory as README.md with open(f"{config.project_name}/README.md", "w") as f: f.write(model_card) if config.push_to_hub: if PartialState().process_index == 0: logger.info("Pushing model to hub...") api = HfApi(token=config.token) api.create_repo(repo_id=config.repo_id, repo_type="model") api.upload_folder(folder_path=config.project_name, repo_id=config.repo_id, repo_type="model") if __name__ == "__main__": args = parse_args() training_config = json.load(open(args.training_config)) config = ImageClassificationParams(**training_config) train(config)
autotrain-advanced-main
src/autotrain/trainers/image_classification/__main__.py
import os from pydantic import BaseModel, Field from autotrain import logger class LLMTrainingParams(BaseModel): model: str = Field("gpt2", title="Model name") data_path: str = Field("data", title="Data path") project_name: str = Field("Project Name", title="Output directory") train_split: str = Field("train", title="Train data config") valid_split: str = Field(None, title="Validation data config") text_column: str = Field("text", title="Text column") token: str = Field(None, title="Huggingface token") lr: float = Field(3e-5, title="Learning rate") epochs: int = Field(1, title="Number of training epochs") batch_size: int = Field(2, title="Training batch size") warmup_ratio: float = Field(0.1, title="Warmup proportion") gradient_accumulation: int = Field(1, title="Gradient accumulation steps") optimizer: str = Field("adamw_torch", title="Optimizer") scheduler: str = Field("linear", title="Scheduler") weight_decay: float = Field(0.0, title="Weight decay") max_grad_norm: float = Field(1.0, title="Max gradient norm") seed: int = Field(42, title="Seed") add_eos_token: bool = Field(True, title="Add EOS token") block_size: int = Field(-1, title="Block size") use_peft: bool = Field(False, title="Use PEFT") lora_r: int = Field(16, title="Lora r") lora_alpha: int = Field(32, title="Lora alpha") lora_dropout: float = Field(0.05, title="Lora dropout") logging_steps: int = Field(-1, title="Logging steps") evaluation_strategy: str = Field("epoch", title="Evaluation strategy") save_total_limit: int = Field(1, title="Save total limit") save_strategy: str = Field("epoch", title="Save strategy") auto_find_batch_size: bool = Field(False, title="Auto find batch size") fp16: bool = Field(False, title="FP16") push_to_hub: bool = Field(False, title="Push to hub") use_int8: bool = Field(False, title="Use int8") model_max_length: int = Field(2048, title="Model max length") repo_id: str = Field(None, title="Repo id") use_int4: bool = Field(False, title="Use int4") trainer: str = Field("default", title="Trainer type") target_modules: str = Field(None, title="Target modules") merge_adapter: bool = Field(False, title="Merge adapter") username: str = Field(None, title="Hugging Face Username") def save(self, output_dir): os.makedirs(output_dir, exist_ok=True) path = os.path.join(output_dir, "training_params.json") # save formatted json with open(path, "w") as f: f.write(self.json(indent=4)) def __str__(self): data = self.dict() data["token"] = "*****" if data.get("token") else None return str(data) def __init__(self, **data): super().__init__(**data) # Parameters not supplied by the user defaults = {f.name for f in self.__fields__.values() if f.default == self.__dict__[f.name]} supplied = set(data.keys()) not_supplied = defaults - supplied if not_supplied: logger.warning(f"Parameters not supplied by user and set to default: {', '.join(not_supplied)}") # Parameters that were supplied but not used # This is a naive implementation. It might catch some internal Pydantic params. unused = supplied - set(self.__fields__) if unused: logger.warning(f"Parameters supplied but not used: {', '.join(unused)}")
autotrain-advanced-main
src/autotrain/trainers/clm/params.py
autotrain-advanced-main
src/autotrain/trainers/clm/__init__.py
import os from itertools import chain import requests import torch from datasets import Dataset from peft import PeftModel from transformers import AutoModelForCausalLM, AutoTokenizer from autotrain import logger IGNORE_INDEX = -100 DEFAULT_PAD_TOKEN = "[PAD]" DEFAULT_EOS_TOKEN = "</s>" DEFAULT_BOS_TOKEN = "</s>" DEFAULT_UNK_TOKEN = "</s>" TARGET_MODULES = { "Salesforce/codegen25-7b-multi": "q_proj,k_proj,v_proj,o_proj,down_proj,up_proj,gate_proj", } MODEL_CARD = """ --- tags: - autotrain - text-generation widget: - text: "I love AutoTrain because " --- # Model Trained Using AutoTrain """ def get_target_modules(config): if config.target_modules is None: return TARGET_MODULES.get(config.model) return config.target_modules.split(",") def process_data(data, tokenizer, config): data = data.to_pandas() data = data.fillna("") data = data[[config.text_column]] if config.add_eos_token: data[config.text_column] = data[config.text_column] + tokenizer.eos_token data = Dataset.from_pandas(data) return data def group_texts(examples, config): # Concatenate all texts. concatenated_examples = {k: list(chain(*examples[k])) for k in examples.keys()} total_length = len(concatenated_examples[list(examples.keys())[0]]) # We drop the small remainder, we could add padding if the model supported it instead of this drop, you can # customize this part to your needs. if total_length >= config.block_size: total_length = (total_length // config.block_size) * config.block_size else: total_length = 0 # Split by chunks of max_len. result = { k: [t[i : i + config.block_size] for i in range(0, total_length, config.block_size)] for k, t in concatenated_examples.items() } result["labels"] = result["input_ids"].copy() return result def tokenize(examples, tokenizer, config): output = tokenizer(examples[config.text_column]) return output def _tokenize(prompt, tokenizer, config): result = tokenizer( prompt, truncation=True, max_length=tokenizer.model_max_length, padding=False, return_tensors=None, ) if result["input_ids"][-1] != tokenizer.eos_token_id and config.add_eos_token: if len(result["input_ids"]) >= tokenizer.model_max_length: result["input_ids"] = result["input_ids"][:-1] result["attention_mask"] = result["attention_mask"][:-1] result["input_ids"].append(tokenizer.eos_token_id) result["attention_mask"].append(1) result["labels"] = result["input_ids"].copy() return result def merge_adapter(base_model_path, target_model_path, adapter_path): logger.info("Loading adapter...") model = AutoModelForCausalLM.from_pretrained( base_model_path, torch_dtype=torch.float16, low_cpu_mem_usage=True, trust_remote_code=True, ) model = PeftModel.from_pretrained(model, adapter_path) tokenizer = AutoTokenizer.from_pretrained( base_model_path, trust_remote_code=True, ) model = model.merge_and_unload() logger.info("Saving target model...") model.save_pretrained(target_model_path) tokenizer.save_pretrained(target_model_path) def create_model_card(): return MODEL_CARD.strip() def pause_endpoint(params): endpoint_id = os.environ["ENDPOINT_ID"] username = endpoint_id.split("/")[0] project_name = endpoint_id.split("/")[1] api_url = f"https://api.endpoints.huggingface.cloud/v2/endpoint/{username}/{project_name}/pause" headers = {"Authorization": f"Bearer {params.token}"} r = requests.post(api_url, headers=headers) return r.json()
autotrain-advanced-main
src/autotrain/trainers/clm/utils.py
import os import torch from peft import set_peft_model_state_dict from transformers import TrainerCallback, TrainerControl, TrainerState, TrainingArguments from transformers.trainer_utils import PREFIX_CHECKPOINT_DIR class SavePeftModelCallback(TrainerCallback): def on_save( self, args: TrainingArguments, state: TrainerState, control: TrainerControl, **kwargs, ): checkpoint_folder = os.path.join(args.output_dir, f"{PREFIX_CHECKPOINT_DIR}-{state.global_step}") kwargs["model"].save_pretrained(checkpoint_folder) pytorch_model_path = os.path.join(checkpoint_folder, "pytorch_model.bin") torch.save({}, pytorch_model_path) return control class LoadBestPeftModelCallback(TrainerCallback): def on_train_end( self, args: TrainingArguments, state: TrainerState, control: TrainerControl, **kwargs, ): print(f"Loading best peft model from {state.best_model_checkpoint} (score: {state.best_metric}).") best_model_path = os.path.join(state.best_model_checkpoint, "adapter_model.bin") adapters_weights = torch.load(best_model_path) model = kwargs["model"] set_peft_model_state_dict(model, adapters_weights) return control
autotrain-advanced-main
src/autotrain/trainers/clm/callbacks.py
import argparse import json import os import sys from functools import partial import pandas as pd import torch from accelerate import Accelerator from accelerate.state import PartialState from datasets import Dataset, load_dataset from huggingface_hub import HfApi from peft import LoraConfig, get_peft_model, prepare_model_for_kbit_training from transformers import ( AutoConfig, AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, Trainer, TrainingArguments, default_data_collator, ) from trl import SFTTrainer from autotrain import logger from autotrain.trainers.clm import utils from autotrain.trainers.clm.callbacks import LoadBestPeftModelCallback, SavePeftModelCallback from autotrain.trainers.clm.params import LLMTrainingParams from autotrain.utils import monitor def parse_args(): # get training_config.json from the end user parser = argparse.ArgumentParser() parser.add_argument("--training_config", type=str, required=True) return parser.parse_args() @monitor def train(config): if isinstance(config, dict): config = LLMTrainingParams(**config) if config.repo_id is None and config.username is not None: config.repo_id = f"{config.username}/{config.project_name}" # TODO: remove when SFT is fixed # if config.trainer == "sft": # config.trainer = "default" # check if config.train_split.csv exists in config.data_path if config.train_split is not None: train_path = f"{config.data_path}/{config.train_split}.csv" if os.path.exists(train_path): logger.info("loading dataset from csv") train_data = pd.read_csv(train_path) train_data = Dataset.from_pandas(train_data) else: train_data = load_dataset( config.data_path, split=config.train_split, token=config.token, ) if config.valid_split is not None: valid_path = f"{config.data_path}/{config.valid_split}.csv" if os.path.exists(valid_path): logger.info("loading dataset from csv") valid_data = pd.read_csv(valid_path) valid_data = Dataset.from_pandas(valid_data) else: valid_data = load_dataset( config.data_path, split=config.valid_split, token=config.token, ) tokenizer = AutoTokenizer.from_pretrained( config.model, use_auth_token=config.token, trust_remote_code=True, ) if tokenizer.model_max_length > 2048: tokenizer.model_max_length = config.model_max_length if getattr(tokenizer, "pad_token", None) is None: tokenizer.pad_token = tokenizer.eos_token if config.trainer == "default": train_data = utils.process_data( data=train_data, tokenizer=tokenizer, config=config, ) if config.valid_split is not None: valid_data = utils.process_data( data=valid_data, tokenizer=tokenizer, config=config, ) model_config = AutoConfig.from_pretrained( config.model, use_auth_token=config.token, trust_remote_code=True, ) if config.use_peft: if config.use_int4: bnb_config = BitsAndBytesConfig( load_in_4bit=config.use_int4, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.float16, bnb_4bit_use_double_quant=False, ) elif config.use_int8: bnb_config = BitsAndBytesConfig(load_in_8bit=config.use_int8) else: bnb_config = BitsAndBytesConfig() model = AutoModelForCausalLM.from_pretrained( config.model, config=model_config, use_auth_token=config.token, quantization_config=bnb_config, torch_dtype=torch.float16, device_map={"": Accelerator().process_index} if torch.cuda.is_available() else None, trust_remote_code=True, ) else: model = AutoModelForCausalLM.from_pretrained( config.model, config=model_config, use_auth_token=config.token, trust_remote_code=True, ) model.resize_token_embeddings(len(tokenizer)) if config.use_peft: if config.use_int8 or config.use_int4: model = prepare_model_for_kbit_training(model) peft_config = LoraConfig( r=config.lora_r, lora_alpha=config.lora_alpha, lora_dropout=config.lora_dropout, bias="none", task_type="CAUSAL_LM", target_modules=utils.get_target_modules(config), ) model = get_peft_model(model, peft_config) if config.block_size == -1: config.block_size = None if config.block_size is None: block_size = tokenizer.model_max_length if block_size > 1024: logger.warning( "The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value" " of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can" " override this default with `--block_size xxx`." ) block_size = 1024 else: if config.block_size > tokenizer.model_max_length: logger.warning( f"The block_size passed ({config.block_size}) is larger than the maximum length for the model" f"({tokenizer.model_max_length}). Using block_size={tokenizer.model_max_length}." ) block_size = min(config.block_size, tokenizer.model_max_length) config.block_size = block_size if config.trainer == "default": tokenize_fn = partial(utils.tokenize, tokenizer=tokenizer, config=config) group_texts_fn = partial(utils.group_texts, config=config) train_data = train_data.map( tokenize_fn, batched=True, num_proc=1, remove_columns=list(train_data.features), desc="Running tokenizer on train dataset", ) if config.valid_split is not None: valid_data = valid_data.map( tokenize_fn, batched=True, num_proc=1, remove_columns=list(valid_data.features), desc="Running tokenizer on validation dataset", ) train_data = train_data.map( group_texts_fn, batched=True, num_proc=4, desc=f"Grouping texts in chunks of {block_size}", ) if config.valid_split is not None: valid_data = valid_data.map( group_texts_fn, batched=True, num_proc=4, desc=f"Grouping texts in chunks of {block_size}", ) logger.info("creating trainer") # trainer specific if config.logging_steps == -1: if config.valid_split is not None: logging_steps = int(0.2 * len(valid_data) / config.batch_size) else: logging_steps = int(0.2 * len(train_data) / config.batch_size) if logging_steps == 0: logging_steps = 1 else: logging_steps = config.logging_steps training_args = dict( output_dir=config.project_name, per_device_train_batch_size=config.batch_size, per_device_eval_batch_size=config.batch_size, learning_rate=config.lr, num_train_epochs=config.epochs, evaluation_strategy=config.evaluation_strategy if config.valid_split is not None else "no", logging_steps=logging_steps, save_total_limit=config.save_total_limit, save_strategy=config.save_strategy, gradient_accumulation_steps=config.gradient_accumulation, report_to="tensorboard", auto_find_batch_size=config.auto_find_batch_size, lr_scheduler_type=config.scheduler, optim=config.optimizer, warmup_ratio=config.warmup_ratio, weight_decay=config.weight_decay, max_grad_norm=config.max_grad_norm, fp16=config.fp16, push_to_hub=False, load_best_model_at_end=True if config.valid_split is not None else False, ddp_find_unused_parameters=False, ) args = TrainingArguments(**training_args) callbacks = [] if config.use_peft: callbacks.append(SavePeftModelCallback) if config.valid_split is not None: callbacks.append(LoadBestPeftModelCallback) trainer_args = dict( args=args, model=model, ) if config.trainer == "default": trainer = Trainer( **trainer_args, train_dataset=train_data, eval_dataset=valid_data if config.valid_split is not None else None, tokenizer=tokenizer, data_collator=default_data_collator, callbacks=callbacks, ) elif config.trainer == "sft": trainer = SFTTrainer( **trainer_args, train_dataset=train_data, eval_dataset=valid_data if config.valid_split is not None else None, peft_config=peft_config if config.use_peft else None, dataset_text_field=config.text_column, max_seq_length=config.block_size, tokenizer=tokenizer, packing=True, ) else: raise ValueError(f"trainer `{config.trainer}` not supported") model.config.use_cache = False if torch.__version__ >= "2" and sys.platform != "win32": model = torch.compile(model) for name, module in trainer.model.named_modules(): # if isinstance(module, LoraLayer): # if script_args.bf16: # module = module.to(torch.bfloat16) if "norm" in name: module = module.to(torch.float32) # if "lm_head" in name or "embed_tokens" in name: # if hasattr(module, "weight"): # if script_args.bf16 and module.weight.dtype == torch.float32: # module = module.to(torch.bfloat16) trainer.train() logger.info("Finished training, saving model...") trainer.save_model(config.project_name) model_card = utils.create_model_card() # save model card to output directory as README.md with open(f"{config.project_name}/README.md", "w") as f: f.write(model_card) if config.use_peft and config.merge_adapter: logger.info("Merging adapter weights...") try: utils.merge_adapter( base_model_path=config.model, target_model_path=config.project_name, adapter_path=config.project_name, ) except Exception as e: logger.warning(f"Failed to merge adapter weights: {e}") logger.warning("Skipping adapter merge. Only adapter weights will be saved.") if config.push_to_hub: if PartialState().process_index == 0: logger.info("Pushing model to hub...") if os.path.exists(f"{config.project_name}/training_params.json"): training_params = json.load(open(f"{config.project_name}/training_params.json")) training_params.pop("token") json.dump(training_params, open(f"{config.project_name}/training_params.json", "w")) api = HfApi(token=config.token) api.create_repo(repo_id=config.repo_id, repo_type="model", private=True) api.upload_folder(folder_path=config.project_name, repo_id=config.repo_id, repo_type="model") if PartialState().process_index == 0: if "SPACE_ID" in os.environ: # shut down the space logger.info("Pausing space...") api = HfApi(token=config.token) api.pause_space(repo_id=os.environ["SPACE_ID"]) if "ENDPOINT_ID" in os.environ: # shut down the endpoint logger.info("Pausing endpoint...") utils.pause_endpoint(config) if __name__ == "__main__": args = parse_args() training_config = json.load(open(args.training_config)) config = LLMTrainingParams(**training_config) train(config)
autotrain-advanced-main
src/autotrain/trainers/clm/__main__.py