text
stringlengths
2
999k
# # Copyright (c) 2008-2016 Citrix Systems, Inc. # # Licensed under the Apache License, Version 2.0 (the "License") # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from nssrc.com.citrix.netscaler.nitro.resource.base.base_resource import base_resource from nssrc.com.citrix.netscaler.nitro.resource.base.base_resource import base_response from nssrc.com.citrix.netscaler.nitro.service.options import options from nssrc.com.citrix.netscaler.nitro.exception.nitro_exception import nitro_exception from nssrc.com.citrix.netscaler.nitro.util.nitro_util import nitro_util class authenticationsamlidppolicy_binding(base_resource): """ Binding class showing the resources that can be bound to authenticationsamlidppolicy_binding. """ def __init__(self) : self._name = None self.authenticationsamlidppolicy_vpnvserver_binding = [] self.authenticationsamlidppolicy_authenticationvserver_binding = [] @property def name(self) : r"""Name of the SAML IdentityProvider (IdP) policy for which to display detailed information.<br/>Minimum length = 1. """ try : return self._name except Exception as e: raise e @name.setter def name(self, name) : r"""Name of the SAML IdentityProvider (IdP) policy for which to display detailed information.<br/>Minimum length = 1 """ try : self._name = name except Exception as e: raise e @property def authenticationsamlidppolicy_authenticationvserver_bindings(self) : r"""authenticationvserver that can be bound to authenticationsamlidppolicy. """ try : return self._authenticationsamlidppolicy_authenticationvserver_binding except Exception as e: raise e @property def authenticationsamlidppolicy_vpnvserver_bindings(self) : r"""vpnvserver that can be bound to authenticationsamlidppolicy. """ try : return self._authenticationsamlidppolicy_vpnvserver_binding except Exception as e: raise e def _get_nitro_response(self, service, response) : r""" converts nitro response into object and returns the object array in case of get request. """ try : result = service.payload_formatter.string_to_resource(authenticationsamlidppolicy_binding_response, response, self.__class__.__name__) if(result.errorcode != 0) : if (result.errorcode == 444) : service.clear_session(self) if result.severity : if (result.severity == "ERROR") : raise nitro_exception(result.errorcode, str(result.message), str(result.severity)) else : raise nitro_exception(result.errorcode, str(result.message), str(result.severity)) return result.authenticationsamlidppolicy_binding except Exception as e : raise e def _get_object_name(self) : r""" Returns the value of object identifier argument """ try : if self.name is not None : return str(self.name) return None except Exception as e : raise e @classmethod def get(self, service, name="", option_="") : r""" Use this API to fetch authenticationsamlidppolicy_binding resource. """ try : if not name : obj = authenticationsamlidppolicy_binding() response = obj.get_resources(service, option_) elif type(name) is not list : obj = authenticationsamlidppolicy_binding() obj.name = name response = obj.get_resource(service) else : if name and len(name) > 0 : obj = [authenticationsamlidppolicy_binding() for _ in range(len(name))] for i in range(len(name)) : obj[i].name = name[i]; response[i] = obj[i].get_resource(service) return response except Exception as e: raise e class authenticationsamlidppolicy_binding_response(base_response) : def __init__(self, length=1) : self.authenticationsamlidppolicy_binding = [] self.errorcode = 0 self.message = "" self.severity = "" self.sessionid = "" self.authenticationsamlidppolicy_binding = [authenticationsamlidppolicy_binding() for _ in range(length)]
import math import numpy import pytest from openff.toolkit.topology import Molecule, Topology from openff.toolkit.typing.engines.smirnoff import ForceField, ParameterList from simtk import unit @pytest.fixture() def buckingham_water_force_field() -> ForceField: """Create a buckingham water model Forcefield object.""" force_field = ForceField(load_plugins=True) # Add in a constraint handler to ensure the correct H-O-H geometry. constraint_handler = force_field.get_parameter_handler("Constraints") # Keep the H-O bond length fixed at 0.9572 angstroms. constraint_handler.add_parameter( {"smirks": "[#1:1]-[#8X2H2+0:2]-[#1]", "distance": 0.9572 * unit.angstrom} ) # Keep the H-O-H angle fixed at 104.52 degrees. constraint_handler.add_parameter( {"smirks": "[#1:1]-[#8X2H2+0]-[#1:2]", "distance": 1.5139 * unit.angstrom} ) # Add a default vdW handler which is currently required by the OFF TK. vdw_handler = force_field.get_parameter_handler("vdW") vdw_handler.add_parameter( { "smirks": "[#1:1]-[#8X2H2+0]-[#1]", "epsilon": 0.0 * unit.kilojoule_per_mole, "sigma": 1.0 * unit.angstrom, } ) vdw_handler.add_parameter( { "smirks": "[#1]-[#8X2H2+0:1]-[#1]", "epsilon": 0.0 * unit.kilojoules_per_mole, "sigma": 0.0 * unit.nanometers, # "epsilon": 0.680946 * unit.kilojoules_per_mole, # "sigma": 0.316435 * unit.nanometers, } ) # Add a charge handler to zero the charges on water. The charges will be # applied by the virtual site handler instead. force_field.get_parameter_handler("Electrostatics") force_field.get_parameter_handler( "ChargeIncrementModel", {"version": "0.3", "partial_charge_method": "formal_charge"}, ) # Add a virtual site handler to add the virtual charge site. virtual_site_handler = force_field.get_parameter_handler("VirtualSites") virtual_site_handler.add_parameter( { "smirks": "[#1:1]-[#8X2H2+0:2]-[#1:3]", "type": "DivalentLonePair", "distance": -0.0106 * unit.nanometers, "outOfPlaneAngle": 0.0 * unit.degrees, "match": "once", "charge_increment1": 1.0552 * 0.5 * unit.elementary_charge, "charge_increment2": 0.0 * unit.elementary_charge, "charge_increment3": 1.0552 * 0.5 * unit.elementary_charge, } ) virtual_site_handler._parameters = ParameterList(virtual_site_handler._parameters) # Finally add the custom buckingham charge handler. buckingham_handler = force_field.get_parameter_handler("DampedBuckingham68") buckingham_handler.add_parameter( { "smirks": "[#1:1]-[#8X2H2+0]-[#1]", "a": 0.0 * unit.kilojoule_per_mole, "b": 0.0 / unit.nanometer, "c6": 0.0 * unit.kilojoule_per_mole * unit.nanometer ** 6, "c8": 0.0 * unit.kilojoule_per_mole * unit.nanometer ** 8, } ) buckingham_handler.add_parameter( { "smirks": "[#1]-[#8X2H2+0:1]-[#1]", "a": 1600000.0 * unit.kilojoule_per_mole, "b": 42.00 / unit.nanometer, "c6": 0.003 * unit.kilojoule_per_mole * unit.nanometer ** 6, "c8": 0.00003 * unit.kilojoule_per_mole * unit.nanometer ** 8, } ) return force_field @pytest.fixture() def water_box_topology() -> Topology: mol = Molecule.from_smiles("O") mol.generate_conformers() n_molecules = 256 topology: Topology = Topology.from_molecules([mol] * n_molecules) # Create some coordinates (without the v-sites) and estimate box vectors. topology.box_vectors = ( numpy.eye(3) * math.ceil(n_molecules ** (1 / 3) + 2) * 2.5 * unit.angstrom ) return topology @pytest.fixture() def ideal_water_force_field() -> ForceField: """Returns a force field that will assign constraints, a vdW handler and a library charge handler to a three site water molecule with all LJ ``epsilon=0.0`` and all ``q=0.0``. """ ff = ForceField(load_plugins=True) constraint_handler = ff.get_parameter_handler("Constraints") constraint_handler.add_parameter( {"smirks": "[#1:1]-[#8X2H2+0:2]-[#1]", "distance": 0.9572 * unit.angstrom} ) constraint_handler.add_parameter( {"smirks": "[#1:1]-[#8X2H2+0]-[#1:2]", "distance": 1.5139 * unit.angstrom} ) # add a dummy vdW term vdw_handler = ff.get_parameter_handler("vdW") vdw_handler.add_parameter( { "smirks": "[#1:1]-[#8X2H2+0]-[#1]", "epsilon": 0.0 * unit.kilojoule_per_mole, "sigma": 1.0 * unit.angstrom, } ) vdw_handler.add_parameter( { "smirks": "[#1]-[#8X2H2+0:1]-[#1]", "epsilon": 0.0 * unit.kilojoules_per_mole, "sigma": 0.0 * unit.nanometers, } ) # add the library charges library_charge = ff.get_parameter_handler("LibraryCharges") library_charge.add_parameter( {"smirks": "[#1]-[#8X2H2+0:1]-[#1]", "charge1": 0 * unit.elementary_charge} ) library_charge.add_parameter( {"smirks": "[#1:1]-[#8X2H2+0]-[#1]", "charge1": 0 * unit.elementary_charge} ) return ff
#!/usr/bin/env python3 ################################################################################################# # Ev3TrackedExplor3r # # Version 1.0 # # # # Happily shared under the MIT License (MIT) # # # # Copyright(c) 2017 SmallRobots.it # # # # Permission is hereby granted, free of charge, to any person obtaining # # a copy of this software and associated documentation files (the "Software"), # # to deal in the Software without restriction, including without limitation the rights # # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies # # of the Software, and to permit persons to whom the Software is furnished to do so, # # subject to the following conditions: # # # # The above copyright notice and this permission notice shall be included in all # # copies or substantial portions of the Software. # # # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, # # INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR # # PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE # # LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, # # TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE # # OR OTHER DEALINGS IN THE SOFTWARE. # # # # Visit http://www.smallrobots.it for tutorials and videos # # # # Credits # # The Ev3TrackedExlpor3r is built with Lego Mindstorms Ev3 and Lego Technic Parts # ################################################################################################# import socket import os from ev3_remoted import * import ev3te from ev3te.ev3_tracked_explor3r import Ev3TrackedExplor3r class Launcher(object): """Main class used to launcher the Ev3TrackedExplor3r with remote control""" @staticmethod def get_ip_address(): s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) s.connect(("8.8.8.8", 80)) socket_name = s.getsockname()[0] s.close() return socket_name def __init__(self): """ Default constructor """ self.local_ip_address = self.get_ip_address() self.local_ip_port = "15999" self.robot_model = Ev3TrackedExplor3r() self.server = Ev3Server(host_name = self.local_ip_address, host_port = self.local_ip_port, robot_model = self.robot_model) def start(self): """ Starting point for this application """ # Check whether the operating system is Windows based or Unix based os.system('cls' if os.name == 'nt' else 'clear') # Present splash screen print("**********************************************************************") print("* Ev3 Tracked Explor3r *") print("* Smallrobots.it *") print("* *") print("* Local Ev3 host IP Address: " + self.local_ip_address + " *") print("* Local Ev3 host IP Port: " + self.local_ip_port + " *") print("* *") print("* Connect to the IP address and port above with the the remote app. *") print("* *") print("* Press ctrl-c to stop the Local Ev3 host server *") print("**********************************************************************") self.server.start() #self.tracked_explor3r.start() # Main code a_launcher = Launcher() a_launcher.start()
# Copyright 2019 The Texar Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Various neural networks and related utilities. """ from texar.torch.modules.networks.network_base import FeedForwardNetworkBase from texar.torch.utils.utils import get_output_size __all__ = [ "FeedForwardNetwork", ] class FeedForwardNetwork(FeedForwardNetworkBase): r"""Feed-forward neural network that consists of a sequence of layers. Args: layers (list, optional): A list of :torch_nn:`Linear` instances composing the network. If not given, layers are created according to :attr:`hparams`. hparams (dict, optional): Embedder hyperparameters. Missing hyperparameters will be set to default values. See :meth:`default_hparams` for the hyperparameter structure and default values. See :meth:`forward` for the inputs and outputs. Example: .. code-block:: python hparams = { # Builds a two-layer dense NN "layers": [ { "type": "Dense", "kwargs": { "units": 256 }, { "type": "Dense", "kwargs": { "units": 10 } ] } nn = FeedForwardNetwork(hparams=hparams) inputs = torch.randn([64, 100]) outputs = nn(inputs) # outputs == Tensor of shape [64, 10] """ def __init__(self, layers=None, hparams=None): super().__init__(hparams=hparams) self._build_layers(layers=layers, layer_hparams=self._hparams.layers) @staticmethod def default_hparams(): r"""Returns a dictionary of hyperparameters with default values. .. code-block:: python { "layers": [], "name": "NN" } Here: `"layers"`: list A list of layer hyperparameters. See :func:`~texar.torch.core.get_layer` for details on layer hyperparameters. `"name"`: str Name of the network. """ return { "layers": [], "name": "NN" } @property def output_size(self) -> int: r"""The feature size of network layers output. If output size is only determined by input, the feature size is equal to ``-1``. """ for i, layer in enumerate(reversed(self._layers)): size = get_output_size(layer) size_ext = getattr(layer, 'output_size', None) if size_ext is not None: size = size_ext if size is None: break elif size > 0: return size elif i == len(self._layers) - 1: return -1 raise ValueError("'output_size' can not be calculated because " "'FeedForwardNetwork' contains submodule " "whose output size cannot be determined.")
# vim: set fileencoding=utf-8 : # Copyright 2012 Alexander Else <aelse@else.id.au>. # # This file is part of the python-crowd library. # # python-crowd is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # python-crowd is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with python-crowd. If not, see <http://www.gnu.org/licenses/>. import re, sys try: from BaseHTTPServer import HTTPServer, BaseHTTPRequestHandler # Py27 except ImportError: from http.server import HTTPServer, BaseHTTPRequestHandler # Py3k try: from urllib2 import urlparse # Py27 except ImportError: from urllib import parse as urlparse # Py3k import json httpd = None app_auth = {} user_auth = {} user_attributes = {} group_auth = {} session_auth = {} def add_app(app_name, app_pass): global app_auth app_auth[app_name] = app_pass def remove_app(app_name): global app_auth try: del app_auth[app_name] except KeyError: pass def check_app_auth(headers): """Authenticate an application from Authorization HTTP header""" import base64 try: auth_header = headers["Authorization"] except KeyError: return False # Only handle HTTP Basic authentication m = re.match("Basic (\w+==)", auth_header) if not m: return False encoded = m.groups()[0].encode('ascii') decoded = base64.decodestring(encoded).decode('ascii') m = re.match("([^:]+):(.+)", decoded) if not m: # Invalid authorization format return False app_user, app_pass = m.groups() global app_auth try: if app_auth[app_user] == app_pass: return True except KeyError: # No such user, fall through pass return False def add_user_to_group(username, group): global group_auth if username not in group_auth: group_auth[username] = [] if group not in group_auth[username]: group_auth[username].append(group) def remove_user_from_group(username, group): global group_auth try: group_auth[username] = list( filter(lambda x: x != group, group_auth[username]) ) except KeyError: pass def user_exists_in_group(username, group): """Check that user exists in a group""" global group_auth try: return group in group_auth[username] except: pass return False def get_user_group_membership(username): """List of groups user is in""" global group_auth try: return group_auth[username] except: pass return [] def get_group_users(groupname): """List of users in the group""" global group_auth users = [] for username, groups in group_auth.items(): try: if groupname in groups: users.append(username) except: pass return users def add_user(username, password, attributes=None): global user_auth global user_attributes user_auth[username] = password if attributes: user_attributes[username] = attributes def remove_user(username): global user_auth try: del user_auth[username] except KeyError: pass def get_user_attributes(username): try: attributes = user_attributes[username] except KeyError: attributes = {} return attributes def user_exists(username): """Check that user exists""" global user_auth return (username in user_auth) def check_user_auth(username, password): """Authenticate an application from Authorization HTTP header""" global user_auth try: if user_auth[username] == password: return True except KeyError: # No such user, fall through pass return False def create_session(username, remote): """Create a user session for an authenticated user""" import hashlib global session_auth token = hashlib.md5((username + remote).encode('utf-8')).hexdigest()[:24] session_auth[token] = { "username": username, "remote": remote, } return token def validate_session(token, remote): """Validate a user session""" global session_auth session = None try: session = session_auth[token] except KeyError: pass # Unknown session token if not session: return None # Check any validation factors (just remote now) if session["remote"] != remote: return None # User has authenticated, return a session object response = { "token": token, "user": build_user_dict(session["username"]), } return response def delete_session(token): global session_auth del session_auth[token] def build_user_dict(username): user_dict = { "name": username, "first-name": username, "last-name": username, "display-name": username, "email": u'%s@does.not.ëxist' % username, "active": True, } return user_dict class CrowdServerStub(BaseHTTPRequestHandler): # Disable logging of fulfilled requests def log_request(self, format, *args): return def _default_handler(self): self.send_response(404) self.send_header("Content-type", "text/plain") self.end_headers() self.wfile.write("Sorry, location does not exist\n".encode('ascii')) def _do_app_failed_auth(self): self.send_response(401) self.send_header("Content-type", "text/plain") self.end_headers() self.wfile.write("Application failed to authenticate\n".encode('ascii')) def _do_user_failed_auth(self, bad_user=False, bad_pass=False): response = {} if bad_user: response["reason"] = "USER_NOT_FOUND" response["message"] = "User <whatever> does not exist" if bad_pass: response["reason"] = "INVALID_USER_AUTHENTICATION" response["message"] = "Failed to authenticate principal, password was invalid" self.send_response(400) self.send_header("Content-type", "application/json") self.end_headers() self.wfile.write(json.dumps(response).encode('ascii')) def _do_terminate(self): # Mark server object for termination self.server.keep_running = False self.send_response(200) self.send_header("Content-type", "text/plain") self.end_headers() self.wfile.write("Terminating\n".encode('ascii')) def _auth_user(self): username = self.get_params['username'][0] password = self.json_data['value'] user_authenticated = check_user_auth(username, password) response = {} response_code = 0 # Either user may authenticate, used an invalid password, # or user does not exist. if user_authenticated: response_code = 200 response = build_user_dict(username) elif user_exists(username): response_code = 400 response = { "reason": "INVALID_USER_AUTHENTICATION", "message": "Failed to authenticate principal, password was invalid", } else: response_code = 400 response = { "reason": "USER_NOT_FOUND", "message": 'User <%s> does not exist' % username } self.send_response(response_code) self.send_header("Content-type", "application/json") self.end_headers() self.wfile.write(json.dumps(response).encode('ascii')) def _get_session(self): username = self.json_data['username'] password = self.json_data['password'] v_factor = self.json_data['validation-factors']['validationFactors'] remote = '' for f in v_factor: if f['name'] == 'remote_address': remote = f['value'] user_authenticated = check_user_auth(username, password) response = {} response_code = 0 # Either user may authenticate, used an invalid password, # or user does not exist. if user_authenticated: response_code = 200 token = create_session(username, remote) response = { "token": token, "user": build_user_dict(username), } elif user_exists(username): response_code = 400 response = { "reason": "INVALID_USER_AUTHENTICATION", "message": "Failed to authenticate principal, password was invalid", } else: response_code = 400 response = { "reason": "USER_NOT_FOUND", "message": 'User <%s> does not exist' % username } self.send_response(response_code) self.send_header("Content-type", "application/json") self.end_headers() self.wfile.write(json.dumps(response).encode('ascii')) def _validate_session(self): v_factor = self.json_data['validationFactors'] remote = '' for f in v_factor: if f['name'] == 'remote_address': remote = f['value'] token = None m = re.search('/([A-Za-z\d]{24})', self.path) if m: token = m.groups()[0] session = validate_session(token, remote) else: session = None response = {} response_code = 0 if session: response_code = 200 response = session else: response_code = 404 response = { "reason": "INVALID_SSO_TOKEN", "message":"Token does not validate." } self.send_response(response_code) self.send_header("Content-type", "application/json") self.end_headers() self.wfile.write(json.dumps(response).encode('ascii')) def _delete_session(self): m = re.search('/([A-Za-z\d]{24})', self.path) if m: token = m.groups()[0] response = {} response_code = 0 if token: try: delete_session(token) response_code = 204 except KeyError: response_code = 404 response = { "reason": "INVALID_SSO_TOKEN", "message": "Token does not exist." } self.send_response(response_code) self.send_header("Content-type", "application/json") self.end_headers() self.wfile.write(json.dumps(response).encode('ascii')) def _get_groups(self): username = self.get_params['username'][0] groups = get_user_group_membership(username) response = {u'groups': [{u'name': x} for x in groups]} self.send_response(200) self.send_header("Content-type", "application/json") self.end_headers() self.wfile.write(json.dumps(response).encode('ascii')) def _get_group_users(self): groupname = self.get_params['groupname'][0] users = get_group_users(groupname) response = {u'users': [{u'name': x} for x in users]} self.send_response(200) self.send_header("Content-type", "application/json") self.end_headers() self.wfile.write(json.dumps(response).encode('ascii')) def _get_user(self): username = self.get_params['username'][0] if user_exists(username): response = {u'user': {u'name': username}} try: if self.get_params['expand'][0] == 'attributes': response['attributes'] = get_user_attributes(username) except: pass self.send_response(200) else: response = {} self.send_response(404) self.send_header("Content-type", "application/json") self.end_headers() self.wfile.write(json.dumps(response).encode('ascii')) def _add_user(self): username = self.json_data['name'] password = self.json_data['password'] if not user_exists(username): add_user(username, password, attributes=self.json_data) self.send_response(201) else: response = {u'reason': u'INVALID_USER', u'message': u'User already exists'} self.send_response(400) self.send_header("Content-type", "application/json") self.end_headers() self.wfile.write(json.dumps(response).encode('ascii')) def _do_COMMON(self, data={}): handlers = [ { "url": r"/terminate", "action": self._do_terminate, "require_auth": False, }, { "url": r"/rest/usermanagement/1/authentication$", "action": self._auth_user, "require_auth": True, "method": "POST", }, { "url": r"/rest/usermanagement/1/session$", "action": self._get_session, "require_auth": True, "method": "POST", }, { "url": r"/rest/usermanagement/1/session/[A-Za-z0-9]{24}$", "action": self._validate_session, "require_auth": True, "method": "POST", }, { "url": r"/rest/usermanagement/1/session/[A-Za-z0-9]{24}$", "action": self._delete_session, "require_auth": True, "method": "DELETE", }, { "url": r"/rest/usermanagement/1/user/group/direct$", "action": self._get_groups, "require_auth": True, "method": "GET", }, { "url": r"/rest/usermanagement/1/user/group/nested$", "action": self._get_groups, "require_auth": True, "method": "GET", }, { "url": r"/rest/usermanagement/1/group/user/nested$", "action": self._get_group_users, "require_auth": True, "method": "GET", }, { "url": r"/rest/usermanagement/1/user$", "action": self._get_user, "require_auth": True, "method": "GET", }, { "url": r"/rest/usermanagement/1/user$", "action": self._add_user, "require_auth": True, "method": "POST", }, # Default handler for unmatched requests { "url": r".*", "action": self._default_handler, "require_auth": True, }, ] p = urlparse.urlparse(self.path) self.json_data = data self.get_params = urlparse.parse_qs(p.query) for handler in handlers: method = handler.get('method') if (re.match(handler['url'], p.path) and (not method or method == self.command)): # Authenticate application if required require_auth = handler.get('require_auth') if require_auth and not check_app_auth(self.headers): self._do_app_failed_auth() return # Run the handler's action handler['action']() return # An unhandled path was encountered. self.send_response(500) self.send_header("Content-type", "text/plain") self.end_headers() self.wfile.write('Oops, should not be here for {}'.format(self.path).encode('ascii')) def do_GET(self): self._do_COMMON() def do_POST(self): ct = self.headers.get('Content-Type') if ct != 'application/json': print("Received unwanted Content-Type (%s) in POST" % ct) cl = int(self.headers.get('Content-Length', 0)) if cl > 0: data = self.rfile.read(cl).decode('utf-8') else: data = "" jdata = json.loads(data) self._do_COMMON(data=jdata) def do_PUT(self): self._do_COMMON() def do_DELETE(self): self._do_COMMON() def init_server(port): global httpd httpd = HTTPServer(("", port), CrowdServerStub) return httpd def run_server(port): if not httpd: init_server(port) httpd.keep_running = True while httpd.keep_running: httpd.handle_request() if __name__ == "__main__": run_server(8001)
# The App listening to new blocks written read the exstrincs and store the transactions in a mysql/mariadb database. # the database must be created, the app will create the tables and indexes used. # import libraries # system packages import sys import os import json # Substrate module from substrateinterface import SubstrateInterface, Keypair,ExtrinsicReceipt from substrateinterface.exceptions import SubstrateRequestException # base64 encoder/decoder import base64 # base58 encoder/decoder import base58 #import scale library to load data types import scalecodec # import mysql connector import mysql.connector currentime="" # read environment variables try: DB_NAME=os.environ['DB_NAME'] DB_USER=os.environ['DB_USER'] DB_PWD=os.environ['DB_PWD'] DB_HOST=os.environ['DB_HOST'] NODE=os.environ['NODE'] except NameError: print("System Variables have not been set") exit(1) # function to load data types registry def load_type_registry_file(file_path: str) -> dict: with open(os.path.abspath(file_path), 'r') as fp: data = fp.read() return json.loads(data) # function to create tables required def create_tables(): cnx = mysql.connector.connect(user=DB_USER, password=DB_PWD,host=DB_HOST,database=DB_NAME) cursor = cnx.cursor() # use database try: cursor.execute("USE {}".format(DB_NAME)) except mysql.connector.Error as err: print("Database {} does not exists.".format(DB_NAME)) print(err) exit(1) # create tables createtx="CREATE TABLE `transactions` (`id` MEDIUMINT NOT NULL AUTO_INCREMENT,\ `blocknumber` INT(11) NOT NULL,`txhash` VARCHAR(66) NOT NULL, \ `sender` VARCHAR(64) NOT NULL, `recipient` VARCHAR(64) NOT NULL, \ `amount` numeric(32,0) NOT NULL, \ `gasfees` numeric(32,0) NOT NULL, \ `dtblockchain` DATETIME NOT NULL, CONSTRAINT txhash_unique UNIQUE (txhash),PRIMARY KEY (id))" try: print("Creating table TRANSACTIONS...") cursor.execute(createtx) except mysql.connector.Error as err: if(err.msg!="Table 'transactions' already exists"): print(err.msg) else: print("OK") # create indexes createidxtx="CREATE INDEX txhash on transactions(txhash)" try: print("Creating index TXHASH on TRANSACTIONS...") cursor.execute(createidxtx) except mysql.connector.Error as err: if(err.msg!="Duplicate key name 'txhash'"): print(err.msg) else: print("OK") createidxtx="CREATE INDEX sender on transactions(sender)" try: print("Creating index SENDER on TRANSACTIONS...") cursor.execute(createidxtx) except mysql.connector.Error as err: if(err.msg!="Duplicate key name 'sender'"): print(err.msg) else: print("OK") createidxtx="CREATE INDEX recipient on transactions(recipient)" try: print("Creating index RECIPIENT on TRANSACTIONS...") cursor.execute(createidxtx) except mysql.connector.Error as err: if(err.msg!="Duplicate key name 'recipient'"): print(err.msg) else: print("OK") # creating sync table to keep syncronisation info createsync="CREATE TABLE `sync` (`id` MEDIUMINT NOT NULL AUTO_INCREMENT,\ `lastblocknumberverified` INT(11) NOT NULL, \ `lastapprovalrequestprocessed` int(11) default 0 not null,\ PRIMARY KEY (id))" try: print("Creating table SYNC...") cursor.execute(createsync) except mysql.connector.Error as err: if(err.msg!="Table 'sync' already exists"): print(err.msg) else: print("OK") # creating categories table for impact actions createcategories="CREATE TABLE `impactactionscategories` (`id` MEDIUMINT NOT NULL,\ `blocknumber` INT(11) NOT NULL,\ `txhash` VARCHAR(66) NOT NULL,\ `dtblockchain` DATETIME NOT NULL,\ `signer` VARCHAR(48) NOT NULL,\ `description` VARCHAR(64) NOT NULL, CONSTRAINT txhash_unique UNIQUE (txhash), PRIMARY KEY (id))" try: print("Creating table impactactionscategories...") cursor.execute(createcategories) except mysql.connector.Error as err: if(err.msg!="Table 'impactactionscategories' already exists"): print(err.msg) else: print("OK") # creating impactactions table for impact actions createactions="CREATE TABLE `impactactions` (`id` MEDIUMINT NOT NULL,\ `blocknumber` INT(11) NOT NULL,\ `txhash` VARCHAR(66) NOT NULL,\ `dtblockchain` DATETIME NOT NULL,\ `signer` VARCHAR(48) NOT NULL,\ `description` VARCHAR(128) NOT NULL,\ `category` INT(11) NOT NULL,`auditors` INT(11) NOT NULL,`blockstart` INT(11) NOT NULL,\ `blockend` INT(11) NOT NULL, `rewardstoken` INT(11) NOT NULL, `rewardsamount` INT(32) NOT NULL,\ `rewardsoracle` INT(32) NOT NULL,`rewardauditors` INT(32) NOT NULL,\ `slashingsauditors` INT(32) NOT NULL,`maxerrorsauditor` INT(11) NOT NULL,\ `fields` varchar(8192) NOT NULL, CONSTRAINT txhash_unique UNIQUE (txhash), \ PRIMARY KEY (id))" try: print("Creating table impactactions...") cursor.execute(createactions) except mysql.connector.Error as err: if(err.msg!="Table 'impactactions' already exists"): print(err.msg) else: print("OK") # creating impactactionsoracles table for impact actions createactions="CREATE TABLE `impactactionsoracles` (`id` MEDIUMINT NOT NULL,\ `blocknumber` INT(11) NOT NULL,\ `txhash` VARCHAR(66) NOT NULL,\ `dtblockchain` DATETIME NOT NULL,\ `signer` VARCHAR(48) NOT NULL,\ `description` VARCHAR(128) NOT NULL,\ `account` VARCHAR(48) NOT NULL,`otherinfo` VARCHAR(66) NOT NULL, CONSTRAINT txhash_unique UNIQUE (txhash),\ PRIMARY KEY (id))" try: print("Creating table impactactionsoracles...") cursor.execute(createactions) except mysql.connector.Error as err: if(err.msg!="Table 'impactactionsoracles' already exists"): print(err.msg) else: print("OK") # creating impactactionsauditors table for impact actions createactions="CREATE TABLE `impactactionsauditors` (`id` MEDIUMINT NOT NULL AUTO_INCREMENT,\ `blocknumber` INT(11) NOT NULL,\ `txhash` VARCHAR(66) NOT NULL,\ `dtblockchain` DATETIME NOT NULL,\ `signer` VARCHAR(48) NOT NULL,\ `description` VARCHAR(128) NOT NULL,\ `account` VARCHAR(48) NOT NULL,`categories` VARCHAR(128) NOT NULL,\ `area` VARCHAR(64) NOT NULL,`otherinfo` VARCHAR(66) NOT NULL, CONSTRAINT txhash_unique UNIQUE (txhash),\ PRIMARY KEY (id))" try: print("Creating table impactactionsauditors...") cursor.execute(createactions) except mysql.connector.Error as err: if(err.msg!="Table 'impactactionsauditors' already exists"): print(err.msg) else: print("OK") # creating impactactionsproxy table for impact actions createactions="CREATE TABLE `impactactionsproxy` (`id` MEDIUMINT NOT NULL,\ `blocknumber` INT(11) NOT NULL,\ `txhash` VARCHAR(66) NOT NULL,\ `dtblockchain` DATETIME NOT NULL,\ `signer` VARCHAR(48) NOT NULL,\ `account` VARCHAR(48) NOT NULL, CONSTRAINT txhash_unique UNIQUE (txhash),PRIMARY KEY (id))" try: print("Creating table impactactionsproxy...") cursor.execute(createactions) except mysql.connector.Error as err: if(err.msg!="Table 'impactactionsproxy' already exists"): print(err.msg) else: print("OK") # creating impactactionsapprovalrequests table for impact actions createactions="CREATE TABLE `impactactionsapprovalrequests` (`id` MEDIUMINT NOT NULL,\ `blocknumber` INT(11) NOT NULL,\ `txhash` VARCHAR(66) NOT NULL,\ `dtblockchain` DATETIME NOT NULL,\ `signer` VARCHAR(48) NOT NULL,\ `info` VARCHAR(8192) NOT NULL,\ `dtapproved` DATETIME,\ `dtrefused` DATETIME,\ CONSTRAINT txhash_unique UNIQUE (txhash),PRIMARY KEY (id))" try: print("Creating table impactactionsapprovalrequests...") cursor.execute(createactions) except mysql.connector.Error as err: if(err.msg!="Table 'impactactionsapprovalrequests' already exists"): print(err.msg) else: print("OK") # creating impactactionsapprovalrequestsauditors table for impact actions createactions="CREATE TABLE `impactactionsapprovalrequestsauditors` (`id` MEDIUMINT NOT NULL AUTO_INCREMENT,\ `blocknumber` INT(11) NOT NULL,\ `txhash` VARCHAR(66) NOT NULL,\ `dtblockchain` DATETIME NOT NULL,\ `signer` VARCHAR(48) NOT NULL,\ `approvalrequestid` int(11) NOT NULL,\ `auditor` VARCHAR(48) NOT NULL,\ `maxdays` INT(11) NOT NULL, CONSTRAINT txhash_unique UNIQUE (txhash),PRIMARY KEY (id))" try: print("Creating table impactactionsapprovalrequestsauditors...") cursor.execute(createactions) except mysql.connector.Error as err: if(err.msg!="Table 'impactactionsapprovalrequestsauditors' already exists"): print(err.msg) else: print("OK") # creating impactactionsapprovalrequestvotes table for impact actions createactions="CREATE TABLE `impactactionsapprovalrequestauditorvotes` (`id` MEDIUMINT NOT NULL AUTO_INCREMENT,\ `blocknumber` INT(11) NOT NULL,\ `txhash` VARCHAR(66) NOT NULL,\ `dtblockchain` DATETIME NOT NULL,\ `signer` VARCHAR(48) NOT NULL,\ `approvalrequestid` int(11) NOT NULL,\ `vote` VARCHAR(1) NOT NULL,\ `otherinfo` VARCHAR(66) NOT NULL,\ `dtrewards` DATETIME NOT NULL,\ CONSTRAINT txhash_unique UNIQUE (txhash),PRIMARY KEY (id))" try: print("Creating table impactactionsapprovalrequestauditorvotes...") cursor.execute(createactions) except mysql.connector.Error as err: if(err.msg!="Table 'impactactionsapprovalrequestauditorvotes' already exists"): print(err.msg) else: print("OK") # creating assets table for FT createassets="CREATE TABLE `ftassets` (`id` MEDIUMINT NOT NULL AUTO_INCREMENT,\ `blocknumber` INT(11) NOT NULL,\ `txhash` VARCHAR(66) NOT NULL,\ `dtblockchain` DATETIME NOT NULL,\ `signer` VARCHAR(48) NOT NULL,\ `assetid` int(11) NOT NULL,\ `owner` VARCHAR(48) NOT NULL,\ `maxzombies` int(11) NOT NULL,\ `minbalance` int(11) NOT NULL, CONSTRAINT txhash_unique UNIQUE (txhash),\ PRIMARY KEY (id))" try: print("Creating table ftassets...") cursor.execute(createassets) except mysql.connector.Error as err: if(err.msg!="Table 'ftassets' already exists"): print(err.msg) else: print("OK") # creating transaction for fungible tokens createassets="CREATE TABLE `fttransactions` (`id` MEDIUMINT NOT NULL AUTO_INCREMENT,\ `blocknumber` INT(11) NOT NULL,\ `txhash` VARCHAR(66) NOT NULL,\ `dtblockchain` DATETIME NOT NULL,\ `signer` VARCHAR(48) NOT NULL,\ `sender` VARCHAR(48) NOT NULL,\ `category` VARCHAR(20) NOT NULL,\ `assetid` int(11) NOT NULL,\ `recipient` VARCHAR(48) NOT NULL,\ `amount` int(11) NOT NULL, CONSTRAINT txhash_unique UNIQUE (txhash),\ PRIMARY KEY (id))" try: print("Creating table fttransactions...") cursor.execute(createassets) except mysql.connector.Error as err: if(err.msg!="Table 'fttransactions' already exists"): print(err.msg) else: print("OK") #closing database cursor.close() cnx.close() # function to syncronise the blockchain reading the old blocks if not yet loaded def sync_blockchain(substrate): # we get the the last block from the blockchain r=substrate.rpc_request(method='chain_getHeader',params=[],result_handler=None) rs=r.get('result') lastblockhex=rs.get('number') lastblocknumber=int(lastblockhex,16) print("[Info] Last Block: ",lastblocknumber) # we check the last block reconcilied cnx = mysql.connector.connect(user=DB_USER, password=DB_PWD,host=DB_HOST,database=DB_NAME) cursor = cnx.cursor(dictionary=True) lastblocknumberverified=0 query="select * from sync limit 1" try: cursor.execute(query) for row in cursor: lastblocknumberverified=row['lastblocknumberverified'] #lastblocknumberverified=row.get('lastblocknumberverified') except mysql.connector.Error as err: print(err.msg) lastblocknumberverified=0 print("[INFO] Last block number verified:",lastblocknumberverified) # loop the new block number to find gaps and fill them in case x=lastblocknumberverified+1 cursor.close() cursorb = cnx.cursor() print("[INFO] Syncing previous blocks...") while x<=lastblocknumber: # get block data print("Syncing block # ",x) # process the block of data process_block(x) # update sync sqlst="" if(lastblocknumberverified==0): sqlst="insert into sync set lastblocknumberverified="+str(x) else: sqlst="update sync set lastblocknumberverified="+str(x) try: cursorb.execute(sqlst) cnx.commit() except mysql.connector.Error as err: print(err.msg) lastblocknumberverified=x # increase block number x=x+1 #end while loop cursorb.close() cnx.close() # function to store a new transaction def store_transaction(blocknumber,txhash,sender,recipient,amount,currenttime,gasfees): cnx = mysql.connector.connect(user=DB_USER, password=DB_PWD,host=DB_HOST,database=DB_NAME) print("Storing New Transaction") print("TxHash: ",txhash) print("Current time: ",currentime) print("Sender: ",sender) print("Recipient: ",recipient) print("Amount: ",amount) print("`Gas fees`: ",gasfees) cursor = cnx.cursor() dtblockchain=currenttime.replace("T"," ") dtblockchain=dtblockchain[0:19] addtx="insert into transactions set blocknumber=%s,txhash=%s,sender=%s,recipient=%s,amount=%s,gasfees=%s,dtblockchain=%s" datatx=(blocknumber,txhash,sender,recipient,amount,gasfees,dtblockchain) try: cursor.execute(addtx,datatx) except mysql.connector.Error as err: print(err.msg) cnx.commit() cursor.close() cnx.close() # function to store Impact Actions - New Impact Action def impactactions_newimpactaction(blocknumber,txhash,signer,currenttime,idimpactaction,data): cnx = mysql.connector.connect(user=DB_USER, password=DB_PWD,host=DB_HOST,database=DB_NAME) #decode json structure j=json.loads(data) print("Storing New Impact Action") print("BlockNumber: ",blocknumber) print("TxHash: ",txhash) print("Current time: ",currenttime) print("Signer: ",signer) print("Id: ",idimpactaction) print("Data: ",data) print("Category: ",j['category']) cursor = cnx.cursor() dtblockchain=currenttime.replace("T"," ") dtblockchain=dtblockchain[0:19] addtx="insert into impactactions set blocknumber=%s,txhash=%s,signer=%s,dtblockchain=%s,id=%s" addtx=addtx+",description=%s,category=%s,auditors=%s,blockstart=%s,blockend=%s,rewardstoken=%s,rewardsamount=%s,rewardsoracle=%s" addtx=addtx+",rewardauditors=%s,slashingsauditors=%s,maxerrorsauditor=%s,fields=%s" if 'fields' in j: f=j['fields'] else: f={} datatx=(blocknumber,txhash,signer,dtblockchain,idimpactaction,j['description'],j['category'],j['auditors'],j['blockstart'],j['blockend'],j['rewardstoken'],j['rewardsamount'],j['rewardsoracle'],j['rewardsauditors'],j['slashingsauditors'],j['maxerrorsauditor'],json.dumps(f)) try: cursor.execute(addtx,datatx) except mysql.connector.Error as err: print("[Error] ",err.msg) cnx.commit() cursor.close() cnx.close() # function to store Impact Actions - Destroy Impact Actions def impactactions_destroyimpactaction(blocknumber,txhash,signer,currenttime,idimpactaction): cnx = mysql.connector.connect(user=DB_USER, password=DB_PWD,host=DB_HOST,database=DB_NAME) print("Destroy Impact Action") print("BlockNumber: ",blocknumber) print("TxHash: ",txhash) print("Current time: ",currenttime) print("Signer: ",signer) print("Id Impact Action: ",idimpactaction) cursor = cnx.cursor() dtblockchain=currenttime.replace("T"," ") dtblockchain=dtblockchain[0:19] deltx="delete from impactactions where id=%s" datatx=(idimpactaction,) try: cursor.execute(deltx,datatx) except mysql.connector.Error as err: print("[Error] ",err.msg) cnx.commit() cursor.close() cnx.close() # function to store Impact Actions - New Oracle def impactactions_neworacle(blocknumber,txhash,signer,currenttime,idoracle,data): cnx = mysql.connector.connect(user=DB_USER, password=DB_PWD,host=DB_HOST,database=DB_NAME) #decode json structure j=json.loads(data) print("Storing New Oracle") print("BlockNumber: ",blocknumber) print("TxHash: ",txhash) print("Current time: ",currenttime) print("Signer: ",signer) print("Id: ",idoracle) print("Data: ",data) cursor = cnx.cursor() dtblockchain=currenttime.replace("T"," ") dtblockchain=dtblockchain[0:19] addtx="insert into impactactionsoracles set blocknumber=%s,txhash=%s,signer=%s,dtblockchain=%s,id=%s" addtx=addtx+",description=%s,account=%s,otherinfo=%s" if 'otherinfo' in j: o=j['otherinfo'] else: o='' datatx=(blocknumber,txhash,signer,dtblockchain,idoracle,j['description'],j['account'],o) try: cursor.execute(addtx,datatx) except mysql.connector.Error as err: print("[Error] ",err.msg) cnx.commit() cursor.close() cnx.close() # function to store Impact Actions - Destroy Oracle def impactactions_destroyoracle(blocknumber,txhash,signer,currenttime,idoracle): cnx = mysql.connector.connect(user=DB_USER, password=DB_PWD,host=DB_HOST,database=DB_NAME) print("Destroy Oracle") print("BlockNumber: ",blocknumber) print("TxHash: ",txhash) print("Current time: ",currenttime) print("Signer: ",signer) print("Id Oracle: ",idoracle) cursor = cnx.cursor() dtblockchain=currenttime.replace("T"," ") dtblockchain=dtblockchain[0:19] deltx="delete from impactactionsoracles where id=%s" datatx=(idoracle,) try: cursor.execute(deltx,datatx) except mysql.connector.Error as err: print("[Error] ",err.msg) cnx.commit() cursor.close() cnx.close() # function to store Impact Actions - New Approval Request def impactactions_newapprovalrequest(blocknumber,txhash,signer,currenttime,approvalrequestid,info): cnx = mysql.connector.connect(user=DB_USER, password=DB_PWD,host=DB_HOST,database=DB_NAME) #decode json structure print("Storing New Approval Request") print("BlockNumber: ",blocknumber) print("TxHash: ",txhash) print("Current time: ",currenttime) print("Signer: ",signer) print("Id: ",approvalrequestid) print("Info: ",info) cursor = cnx.cursor() dtblockchain=currenttime.replace("T"," ") dtblockchain=dtblockchain[0:19] addtx="insert into impactactionsapprovalrequests set blocknumber=%s,txhash=%s,signer=%s,dtblockchain=%s,id=%s,info=%s" datatx=(blocknumber,txhash,signer,dtblockchain,approvalrequestid,info) try: cursor.execute(addtx,datatx) except mysql.connector.Error as err: print("[Error] ",err.msg) cnx.commit() cursor.close() cnx.close() # function to store Impact Actions - Vote Approval Request def impactactions_voteapprovalrequest(blocknumber,txhash,signer,currenttime,approvalrequestid,data): cnx = mysql.connector.connect(user=DB_USER, password=DB_PWD,host=DB_HOST,database=DB_NAME) j=json.loads(data) vote=j['vote'] otherinfo=j['otherinfo'] print("Storing Vote of an Approval Request") print("BlockNumber: ",blocknumber) print("TxHash: ",txhash) print("Current time: ",currenttime) print("Signer: ",signer) print("Id Approval: ",approvalrequestid) print("Vote: ",vote) print("Other Info: ",otherinfo) cursor = cnx.cursor() dtblockchain=currenttime.replace("T"," ") dtblockchain=dtblockchain[0:19] addtx="insert into impactactionsapprovalrequestauditorvotes set blocknumber=%s,txhash=%s,signer=%s,dtblockchain=%s,approvalrequestid=%s,vote=%s,otherinfo=%s" datatx=(blocknumber,txhash,signer,dtblockchain,approvalrequestid,vote,otherinfo) try: cursor.execute(addtx,datatx) except mysql.connector.Error as err: print("[Error] ",err.msg) cnx.commit() cursor.close() cnx.close() # function to store Impact Actions - Assign Auditor to Approval Request def impactactions_assignauditorapprovalrequest(blocknumber,txhash,signer,currenttime,approvalrequestid,auditor,maxdays): cnx = mysql.connector.connect(user=DB_USER, password=DB_PWD,host=DB_HOST,database=DB_NAME) #decode json structure print("Storing Assigned Auditor for an Approval Request") print("BlockNumber: ",blocknumber) print("TxHash: ",txhash) print("Current time: ",currenttime) print("Signer: ",signer) print("Approval Request Id: ",approvalrequestid) print("Auditor: ",auditor) print("Max days: ",maxdays) cursor = cnx.cursor() dtblockchain=currenttime.replace("T"," ") dtblockchain=dtblockchain[0:19] addtx="insert into impactactionsapprovalrequestsauditors set blocknumber=%s,txhash=%s,signer=%s,dtblockchain=%s,approvalrequestid=%s,auditor=%s,maxdays=%s" datatx=(blocknumber,txhash,signer,dtblockchain,approvalrequestid,auditor,maxdays) try: cursor.execute(addtx,datatx) except mysql.connector.Error as err: print("[Error] ",err.msg) cnx.commit() cursor.close() cnx.close() # function to store Impact Actions - Destroy Auditor def impactactions_destory_assignedauditorapprovalrequest(blocknumber,txhash,signer,currenttime,approvalrequestid,auditor): cnx = mysql.connector.connect(user=DB_USER, password=DB_PWD,host=DB_HOST,database=DB_NAME) print("Destroy Assigned Auditor to an Approval Request") print("BlockNumber: ",blocknumber) print("TxHash: ",txhash) print("Current time: ",currenttime) print("Signer: ",signer) print("Approval Request id: ",approvalrequestid) print("Auditor: ",auditor) cursor = cnx.cursor() dtblockchain=currenttime.replace("T"," ") dtblockchain=dtblockchain[0:19] deltx="delete from impactactionsapprovalrequestsauditors where approvalrequestid=%s and auditor=%s" datatx=(approvalrequestid,auditor) try: cursor.execute(deltx,datatx) except mysql.connector.Error as err: print("[Error] ",err.msg) cnx.commit() cursor.close() cnx.close() # function to store Impact Actions - New Auditor def impactactions_newauditor(blocknumber,txhash,signer,currenttime,account,data): cnx = mysql.connector.connect(user=DB_USER, password=DB_PWD,host=DB_HOST,database=DB_NAME) #decode json structure j=json.loads(data) print("Storing New Auditor") print("BlockNumber: ",blocknumber) print("TxHash: ",txhash) print("Current time: ",currenttime) print("Signer: ",signer) print("Account: ",account) print("Data: ",data) cursor = cnx.cursor() dtblockchain=currenttime.replace("T"," ") dtblockchain=dtblockchain[0:19] addtx="insert into impactactionsauditors set blocknumber=%s,txhash=%s,signer=%s,dtblockchain=%s" addtx=addtx+",description=%s,account=%s,categories=%s,area=%s,otherinfo=%s" if 'otherinfo' in j: o=j['otherinfo'] else: o='' datatx=(blocknumber,txhash,signer,dtblockchain,j['description'],account,json.dumps(j['categories']),j['area'],o) try: cursor.execute(addtx,datatx) except mysql.connector.Error as err: print("[Error] ",err.msg) cnx.commit() cursor.close() cnx.close() # function to store Impact Actions - Destroy Auditor def impactactions_destroyauditor(blocknumber,txhash,signer,currenttime,account): cnx = mysql.connector.connect(user=DB_USER, password=DB_PWD,host=DB_HOST,database=DB_NAME) print("Destroy Auditor") print("BlockNumber: ",blocknumber) print("TxHash: ",txhash) print("Current time: ",currenttime) print("Signer: ",signer) print("account: ",account) cursor = cnx.cursor() dtblockchain=currenttime.replace("T"," ") dtblockchain=dtblockchain[0:19] deltx="delete from impactactionsauditors where account=%s" datatx=(account,) try: cursor.execute(deltx,datatx) except mysql.connector.Error as err: print("[Error] ",err.msg) cnx.commit() cursor.close() cnx.close() # function to store Impact Actions - New Proxy def impactactions_newproxy(blocknumber,txhash,signer,currenttime,idproxy, account): cnx = mysql.connector.connect(user=DB_USER, password=DB_PWD,host=DB_HOST,database=DB_NAME) print("Storing New Proxy") print("BlockNumber: ",blocknumber) print("TxHash: ",txhash) print("Current time: ",currenttime) print("Signer: ",signer) print("Account: ",account) cursor = cnx.cursor() dtblockchain=currenttime.replace("T"," ") dtblockchain=dtblockchain[0:19] addtx="insert into impactactionsproxy set blocknumber=%s,txhash=%s,signer=%s,dtblockchain=%s" addtx=addtx+",id=%s,account=%s" datatx=(blocknumber,txhash,signer,dtblockchain,idproxy,account) try: cursor.execute(addtx,datatx) except mysql.connector.Error as err: print("[Error] ",err.msg) cnx.commit() cursor.close() cnx.close() # function to store Impact Actions - Destroy Proxy def impactactions_destroyproxy(blocknumber,txhash,signer,currenttime,idproxy): cnx = mysql.connector.connect(user=DB_USER, password=DB_PWD,host=DB_HOST,database=DB_NAME) print("Destroy Proxy") print("BlockNumber: ",blocknumber) print("TxHash: ",txhash) print("Current time: ",currenttime) print("Signer: ",signer) print("id Proxy: ",idproxy) cursor = cnx.cursor() dtblockchain=currenttime.replace("T"," ") dtblockchain=dtblockchain[0:19] deltx="delete from impactactionsproxy where id=%s" datatx=(idproxy,) try: cursor.execute(deltx,datatx) except mysql.connector.Error as err: print("[Error] ",err.msg) cnx.commit() cursor.close() cnx.close() # function to store Impact Actions - New Category def impactactions_newcategory(blocknumber,txhash,signer,currenttime,idcategory,description): cnx = mysql.connector.connect(user=DB_USER, password=DB_PWD,host=DB_HOST,database=DB_NAME) print("Storing New Category") print("BlockNumber: ",blocknumber) print("TxHash: ",txhash) print("Current time: ",currenttime) print("Signer: ",signer) print("Id category: ",idcategory) print("Description: ",description) cursor = cnx.cursor() dtblockchain=currenttime.replace("T"," ") dtblockchain=dtblockchain[0:19] addtx="insert into impactactionscategories set blocknumber=%s,txhash=%s,signer=%s,dtblockchain=%s,id=%s,description=%s" datatx=(blocknumber,txhash,signer,dtblockchain,idcategory,description) try: cursor.execute(addtx,datatx) except mysql.connector.Error as err: print("[Error] ",err.msg) cnx.commit() cursor.close() cnx.close() # function to store Impact Actions - Destroy Category def impactactions_destroycategory(blocknumber,txhash,signer,currenttime,idcategory): cnx = mysql.connector.connect(user=DB_USER, password=DB_PWD,host=DB_HOST,database=DB_NAME) print("Destroy Category") print("BlockNumber: ",blocknumber) print("TxHash: ",txhash) print("Current time: ",currenttime) print("Signer: ",signer) print("Id category: ",idcategory) cursor = cnx.cursor() dtblockchain=currenttime.replace("T"," ") dtblockchain=dtblockchain[0:19] deltx="delete from impactactionscategories where id=%s" datatx=(idcategory,) try: cursor.execute(deltx,datatx) except mysql.connector.Error as err: print("[Error] ",err.msg) cnx.commit() cursor.close() cnx.close() # function to create new asset from Sudo def assets_force_create(blocknumber,txhash,signer,currenttime,assetid,owner,maxzombies,minbalance): cnx = mysql.connector.connect(user=DB_USER, password=DB_PWD,host=DB_HOST,database=DB_NAME) print("Create Asset (Fungible Tokens)") print("BlockNumber: ",blocknumber) print("TxHash: ",txhash) print("Current time: ",currenttime) print("Signer: ",signer) print("Asset Id : ",assetid) print("Owner : ",owner) print("Max Zombies : ",maxzombies) print("Min Balance : ",minbalance) cursor = cnx.cursor() dtblockchain=currenttime.replace("T"," ") dtblockchain=dtblockchain[0:19] addtx="insert into ftassets set blocknumber=%s,txhash=%s,signer=%s,assetid=%s,owner=%s,maxzombies=%s,minbalance=%s,dtblockchain=%s" datatx=(blocknumber,txhash,signer,assetid,owner,maxzombies,minbalance,dtblockchain) try: cursor.execute(addtx,datatx) except mysql.connector.Error as err: print("[Error] ",err.msg) cnx.commit() cursor.close() cnx.close() # function to mint assets in favor of an account def assets_mint(blocknumber,txhash,signer,currenttime,assetid,recipient,amount): cnx = mysql.connector.connect(user=DB_USER, password=DB_PWD,host=DB_HOST,database=DB_NAME) category="Minted" print("Mint Assets (Fungible Tokens)") print("BlockNumber: ",blocknumber) print("TxHash: ",txhash) print("Current time: ",currenttime) print("Signer: ",signer) print("Asset Id : ",assetid) print("Recipient : ",recipient) print("Amount : ",amount) cursor = cnx.cursor() dtblockchain=currenttime.replace("T"," ") dtblockchain=dtblockchain[0:19] addtx="insert into fttransactions set blocknumber=%s,txhash=%s,signer=%s,sender=%s,category=%s,assetid=%s,recipient=%s,amount=%s,dtblockchain=%s" datatx=(blocknumber,txhash,signer,signer,category,assetid,recipient,amount,dtblockchain) try: cursor.execute(addtx,datatx) except mysql.connector.Error as err: print("[Error] ",err.msg) cnx.commit() cursor.close() cnx.close() # function to burn assets decrease the balance of an account def assets_burn(blocknumber,txhash,signer,currenttime,assetid,recipient,amount): cnx = mysql.connector.connect(user=DB_USER, password=DB_PWD,host=DB_HOST,database=DB_NAME) category="Burned" print("Burn Assets (Fungible Tokens)") print("BlockNumber: ",blocknumber) print("TxHash: ",txhash) print("Current time: ",currenttime) print("Signer: ",signer) print("Asset Id : ",assetid) print("Recipient : ",recipient) print("Amount : ",amount) cursor = cnx.cursor() dtblockchain=currenttime.replace("T"," ") dtblockchain=dtblockchain[0:19] addtx="insert into fttransactions set blocknumber=%s,txhash=%s,signer=%s,sender=%s,category=%s,assetid=%s,recipient=%s,amount=%s,dtblockchain=%s" datatx=(blocknumber,txhash,signer,signer,category,assetid,recipient,amount,dtblockchain) try: cursor.execute(addtx,datatx) except mysql.connector.Error as err: print("[Error] ",err.msg) cnx.commit() cursor.close() cnx.close() # function to transfer assets in favor of an account def assets_transfer(blocknumber,txhash,signer,currenttime,assetid,recipient,amount): cnx = mysql.connector.connect(user=DB_USER, password=DB_PWD,host=DB_HOST,database=DB_NAME) category="Transfer" print("Mint Assets (Fungible Tokens)") print("BlockNumber: ",blocknumber) print("TxHash: ",txhash) print("Current time: ",currenttime) print("Signer: ",signer) print("Asset Id : ",assetid) print("Recipient : ",recipient) print("Amount : ",amount) cursor = cnx.cursor() dtblockchain=currenttime.replace("T"," ") dtblockchain=dtblockchain[0:19] addtx="insert into fttransactions set blocknumber=%s,txhash=%s,signer=%s,sender=%s,category=%s,assetid=%s,recipient=%s,amount=%s,dtblockchain=%s" datatx=(blocknumber,txhash,signer,signer,category,assetid,recipient,amount,dtblockchain) try: cursor.execute(addtx,datatx) except mysql.connector.Error as err: print("[Error] ",err.msg) cnx.commit() cursor.close() cnx.close() # function to force transfer assets in favor of an account def assets_forcetransfer(blocknumber,txhash,signer,sender,currenttime,assetid,recipient,amount): cnx = mysql.connector.connect(user=DB_USER, password=DB_PWD,host=DB_HOST,database=DB_NAME) category="Transfer" print("Mint Assets (Fungible Tokens)") print("BlockNumber: ",blocknumber) print("TxHash: ",txhash) print("Current time: ",currenttime) print("Signer: ",signer) print("Asset Id : ",assetid) print("Recipient : ",recipient) print("Amount : ",amount) cursor = cnx.cursor() dtblockchain=currenttime.replace("T"," ") dtblockchain=dtblockchain[0:19] addtx="insert into fttransactions set blocknumber=%s,txhash=%s,signer=%s,sender=%s,category=%s,assetid=%s,recipient=%s,amount=%s,dtblockchain=%s" datatx=(blocknumber,txhash,signer,signer,category,assetid,recipient,amount,dtblockchain) try: cursor.execute(addtx,datatx) except mysql.connector.Error as err: print("[Error] ",err.msg) cnx.commit() cursor.close() cnx.close() # function to destroy asset (Fungible Tokens) from Sudo def assets_force_destroy(blocknumber,txhash,signer,currenttime,assetid,witnesszombies): cnx = mysql.connector.connect(user=DB_USER, password=DB_PWD,host=DB_HOST,database=DB_NAME) print("Destroy Asset (Fungible Tokens)") print("BlockNumber: ",blocknumber) print("TxHash: ",txhash) print("Current time: ",currenttime) print("Signer: ",signer) print("Asset Id: ",assetid) print("Witnesses Zombies: ",witnesszombies) cursor = cnx.cursor() dtblockchain=currenttime.replace("T"," ") dtblockchain=dtblockchain[0:19] deltx="delete from ftassets where assetid=%s" datatx=(assetid,) try: cursor.execute(deltx,datatx) except mysql.connector.Error as err: print("[Error] ",err.msg) cnx.commit() cursor.close() cnx.close() # function to process a block of data def process_block(blocknumber): # Retrieve extrinsics in block print("Processing Block # ",blocknumber) result = substrate.get_block(block_number=blocknumber) print ("##########################") print(result) print("Block Hash: ",result['header']['hash']) blockhash=result['header']['hash'] print ("##########################") events=substrate.get_events(result['header']['hash']) print ("#######EVENTS##############") print(events) print ("##########################") # retrieve receipt cnt=0 for extrinsic in result['extrinsics']: if extrinsic.address: signed_by_address = extrinsic.address.value else: signed_by_address = None print('\nPallet: {}\nCall: {}\nSigned by: {}'.format( extrinsic.call_module.name, extrinsic.call.name, signed_by_address )) # check for exstrinc success or not try: error=events[cnt].params[0]['value'].get('Error') except: error=None if events[cnt].event.name=="ExtrinsicFailed" or error!=None : print("Extrinsic has failed") cnt=cnt+1 continue else: print("Extrinsic succeded: ",events[cnt].event.name) print("extrinsic.extrinsic_hash: ",extrinsic.extrinsic_hash) print("extrinsic: ",extrinsic) print("blockhash: ",blockhash) gasfees=0 if (extrinsic.extrinsic_hash!=None): # get receipt of the extrisinc receipt = ExtrinsicReceipt( substrate=substrate, extrinsic_hash=extrinsic.extrinsic_hash, block_hash=blockhash ) print("************RECEIPT**************") print("blockhash: ",blockhash) print("extrinsic.extrinsic_hash: ",extrinsic.extrinsic_hash) print("receipt.total_fee_amount: ",receipt.total_fee_amount) print(receipt.is_success) print(receipt.extrinsic.call_module.name) print(receipt.extrinsic.call.name) print(receipt.weight) print("*********************************") gasfees=receipt.total_fee_amount #for TimeStamp call we set the time of the following transactions if extrinsic.call_module.name=="Timestamp" and extrinsic.call.name=="set": currentime=extrinsic.params[0]['value'] #Balance Transfer we update the transactions if extrinsic.call_module.name=="Balances" and ( extrinsic.call.name=="transfer" or extrinsic.call.name=="transfer_keep_alive"): ## store the transaction in the database store_transaction(blocknumber,'0x'+extrinsic.extrinsic_hash,extrinsic.address.value,extrinsic.params[0]['value'],extrinsic.params[1]['value'],currentime,gasfees) #Impact Actions - Vote Approval Request if extrinsic.call_module.name=="ImpactActions" and extrinsic.call.name=="vote_approval_request": impactactions_voteapprovalrequest(blocknumber,'0x'+extrinsic.extrinsic_hash,extrinsic.address.value,currentime,extrinsic.params[0]['value'],extrinsic.params[1]['value']) #Impact Actions - Vote Approval Request if extrinsic.call_module.name=="ImpactActions" and extrinsic.call.name=="request_approval": impactactions_newapprovalrequest(blocknumber,'0x'+extrinsic.extrinsic_hash,extrinsic.address.value,currentime,extrinsic.params[0]['value'],extrinsic.params[1]['value']) #Impact Actions - Assign Auditor to Approval Request if extrinsic.call_module.name=="ImpactActions" and extrinsic.call.name=="assign_auditor": impactactions_assignauditorapprovalrequest(blocknumber,'0x'+extrinsic.extrinsic_hash,extrinsic.address.value,currentime,extrinsic.params[0]['value'],extrinsic.params[1]['value'],extrinsic.params[2]['value']) #Impact Actions - Remove Assigned Auditor to Approval Request if extrinsic.call_module.name=="ImpactActions" and extrinsic.call.name=="destroy_assigned_auditor": impactactions_destory_assignedauditorapprovalrequest(blocknumber,'0x'+extrinsic.extrinsic_hash,extrinsic.address.value,currentime,extrinsic.params[0]['value'],extrinsic.params[1]['value']) #Assets - Create new asset as regular user if extrinsic.call_module.name=="Assets" and extrinsic.call.name=="create": assets_force_create(blocknumber,'0x'+extrinsic.extrinsic_hash,extrinsic.address.value,currentime,extrinsic.params[0]['value'],extrinsic.params[1]['value'],extrinsic.params[2]['value'],extrinsic.params[3]['value']) #Assets - Destroy asset as regular user if extrinsic.call_module.name=="Assets" and extrinsic.call.name=="destroy": assets_force_destroy(blocknumber,'0x'+extrinsic.extrinsic_hash,extrinsic.address.value,currentime,extrinsic.params[0]['value'],extrinsic.params[1]['value']) #Assets - Mint assets in favor of an account if extrinsic.call_module.name=="Assets" and extrinsic.call.name=="mint": assets_mint(blocknumber,'0x'+extrinsic.extrinsic_hash,extrinsic.address.value,currentime,extrinsic.params[0]['value'],extrinsic.params[1]['value'],extrinsic.params[2]['value']) #Assets - Burn assets decreasing the balance of an account if extrinsic.call_module.name=="Assets" and extrinsic.call.name=="burn": assets_burn(blocknumber,'0x'+extrinsic.extrinsic_hash,extrinsic.address.value,currentime,extrinsic.params[0]['value'],extrinsic.params[1]['value'],extrinsic.params[2]['value']) #Assets - Transfer assets in favor of an account if extrinsic.call_module.name=="Assets" and extrinsic.call.name=="transfer": assets_transfer(blocknumber,'0x'+extrinsic.extrinsic_hash,extrinsic.address.value,currentime,extrinsic.params[0]['value'],extrinsic.params[1]['value'],extrinsic.params[2]['value']) # Sudo Calls if extrinsic.call_module.name=="Sudo" and extrinsic.call.name=="sudo": print(extrinsic.params[0].get('value')) c=extrinsic.params[0].get('value') # new impact action if c['call_module']== 'ImpactActions' and c['call_function']=='create_impact_action': print("Impact Actions - Create New Impact Action") print("id: ",c['call_args'][0]['value']) print("data: ",c['call_args'][1]['value']) impactactions_newimpactaction(blocknumber,'0x'+extrinsic.extrinsic_hash,extrinsic.address.value,currentime,c['call_args'][0]['value'],c['call_args'][1]['value']) # destroy impact action if c['call_module']== 'ImpactActions' and c['call_function']=='destroy_impact_action': print("Impact Actions - Destroy Impact Action") print("id: ",c['call_args'][0]['value']) impactactions_destroyimpactaction(blocknumber,'0x'+extrinsic.extrinsic_hash,extrinsic.address.value,currentime,c['call_args'][0]['value']) # new oracle if c['call_module']== 'ImpactActions' and c['call_function']=='create_oracle': print("Impact Actions - Create New Oracle") print("id: ",c['call_args'][0]['value']) print("data: ",c['call_args'][1]['value']) impactactions_neworacle(blocknumber,'0x'+extrinsic.extrinsic_hash,extrinsic.address.value,currentime,c['call_args'][0]['value'],c['call_args'][1]['value']) # destroy oracle if c['call_module']== 'ImpactActions' and c['call_function']=='destroy_oracle': print("Impact Actions - Destroy Oracle") print("id: ",c['call_args'][0]['value']) impactactions_destroyoracle(blocknumber,'0x'+extrinsic.extrinsic_hash,extrinsic.address.value,currentime,c['call_args'][0]['value']) # new auditor if c['call_module']== 'ImpactActions' and c['call_function']=='create_auditor': print("Impact Actions - Create New Auditor") print("id: ",c['call_args'][0]['value']) print("data: ",c['call_args'][1]['value']) impactactions_newauditor(blocknumber,'0x'+extrinsic.extrinsic_hash,extrinsic.address.value,currentime,c['call_args'][0]['value'],c['call_args'][1]['value']) # destroy auditor if c['call_module']== 'ImpactActions' and c['call_function']=='destroy_auditor': print("Impact Actions - Destroy Auditor") print("id: ",c['call_args'][0]['value']) impactactions_destroyauditor(blocknumber,'0x'+extrinsic.extrinsic_hash,extrinsic.address.value,currentime,c['call_args'][0]['value']) # new proxy account if c['call_module']== 'ImpactActions' and c['call_function']=='create_proxy': print("Impact Actions - Create New Proxy") print("id: ",c['call_args'][0]['value']) print("account: ",c['call_args'][1]['value']) impactactions_newproxy(blocknumber,'0x'+extrinsic.extrinsic_hash,extrinsic.address.value,currentime,c['call_args'][0]['value'],c['call_args'][1]['value']) # destroy proxy if c['call_module']== 'ImpactActions' and c['call_function']=='destroy_proxy': print("Impact Actions - Destroy Proxy") print("id: ",c['call_args'][0]['value']) impactactions_destroyproxy(blocknumber,'0x'+extrinsic.extrinsic_hash,extrinsic.address.value,currentime,c['call_args'][0]['value']) # new category if c['call_module']== 'ImpactActions' and c['call_function']=='create_category': print("Impact Actions - Create New Category") print("id: ",c['call_args'][0]['value']) print("description: ",c['call_args'][1]['value']) impactactions_newcategory(blocknumber,'0x'+extrinsic.extrinsic_hash,extrinsic.address.value,currentime,c['call_args'][0]['value'],c['call_args'][1]['value']) # destroy category if c['call_module']== 'ImpactActions' and c['call_function']=='destroy_category': print("Impact Actions - Destroy Category") print("id: ",c['call_args'][0]['value']) impactactions_destroycategory(blocknumber,'0x'+extrinsic.extrinsic_hash,extrinsic.address.value,currentime,c['call_args'][0]['value']) # Force Create Asset if c['call_module']== 'Assets' and c['call_function']=='force_create': print("Fungibile Tokens - Create Asset") print("id: ",c['call_args'][0]['value']) print("Owner: ",c['call_args'][1]['value']) print("Max Zombies: ",c['call_args'][2]['value']) print("Minimum Deposit: ",c['call_args'][3]['value']) assets_force_create(blocknumber,'0x'+extrinsic.extrinsic_hash,extrinsic.address.value,currentime,c['call_args'][0]['value'],c['call_args'][1]['value'],c['call_args'][2]['value'],c['call_args'][3]['value']) # Force transfer Assets if c['call_module']== 'Assets' and c['call_function']=='force_transfer': print("Fungible Tokens - Force Transfer") print("id: ",c['call_args'][0]['value']) print("Witnesses Zombies: ",c['call_args'][1]['value']) assets_forcetransfer(blocknumber,'0x'+extrinsic.extrinsic_hash,extrinsic.address.value,c['call_args'][1]['value'],currentime,c['call_args'][0]['value'],c['call_args'][2]['value'],c['call_args'][3]['value']) # Force Destroy Asset if c['call_module']== 'Assets' and c['call_function']=='force_destroy': print("Fungible Tokens - Create Asset") print("id: ",c['call_args'][0]['value']) print("Witnesses Zombies: ",c['call_args'][1]['value']) assets_force_destroy(blocknumber,'0x'+extrinsic.extrinsic_hash,extrinsic.address.value,currentime,c['call_args'][0]['value'],c['call_args'][1]['value']) # Loop through call params for param in extrinsic.params: if param['type'] == 'Compact<Balance>': param['value'] = '{} {}'.format(param['value'] / 10 ** substrate.token_decimals, substrate.token_symbol) print("Param '{}': {}".format(param['name'], param['value'])) cnt=cnt+1 # subscription handler for new blocks written def subscription_handler(obj, update_nr, subscription_id): print(f"New block #{obj['header']['number']} produced by {obj['author']} hash: {obj['header']['hash']}") # call the block management function process_block(obj['header']['number']) ## MAIN # load custom data types custom_type_registry = load_type_registry_file("../assets/types.json") # define connection parameters substrate = SubstrateInterface( url=NODE, ss58_format=42, type_registry_preset='default', type_registry=custom_type_registry ) # create database tables create_tables() # syncronise the blockchain if(len(sys.argv)>1): if (sys.argv[1]== '--sync' or sys.argv[1]=="-s"): sync_blockchain(substrate) # subscribe to new block writing and process them in real time result = substrate.subscribe_block_headers(subscription_handler, include_author=True) print(result)
#!/bin/env python from app import create_app, socketio app = create_app(debug=True) if __name__ == '__main__': socketio.run(app, host="0.0.0.0")
'''OpenGL extension EXT.pixel_transform This module customises the behaviour of the OpenGL.raw.GL.EXT.pixel_transform to provide a more Python-friendly API Overview (from the spec) This extension provides support for scaling, rotation, translation and shearing of two-dimensional pixel rectangles in the pixel rasterizer. The transformation is defined via a 4x4 matrix, where only those entries which apply as a 2D affine transformation will be accepted and used. These matrices can be manipulated using the same functions as the other OpenGL matrix stacks. The official definition of this extension is available here: http://www.opengl.org/registry/specs/EXT/pixel_transform.txt ''' from OpenGL import platform, constant, arrays from OpenGL import extensions, wrapper import ctypes from OpenGL.raw.GL import _types, _glgets from OpenGL.raw.GL.EXT.pixel_transform import * from OpenGL.raw.GL.EXT.pixel_transform import _EXTENSION_NAME def glInitPixelTransformEXT(): '''Return boolean indicating whether this extension is available''' from OpenGL import extensions return extensions.hasGLExtension( _EXTENSION_NAME ) glPixelTransformParameterivEXT=wrapper.wrapper(glPixelTransformParameterivEXT).setInputArraySize( 'params', 1 ) glPixelTransformParameterfvEXT=wrapper.wrapper(glPixelTransformParameterfvEXT).setInputArraySize( 'params', 1 ) glGetPixelTransformParameterivEXT=wrapper.wrapper(glGetPixelTransformParameterivEXT).setOutput( 'params',size=_glgets._glget_size_mapping,pnameArg='pname',orPassIn=True ) glGetPixelTransformParameterfvEXT=wrapper.wrapper(glGetPixelTransformParameterfvEXT).setOutput( 'params',size=_glgets._glget_size_mapping,pnameArg='pname',orPassIn=True ) ### END AUTOGENERATED SECTION
# Generated by Django 3.2.9 on 2021-11-25 06:33 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('meetups', '0004_remove_meetup_location'), ] operations = [ migrations.AddField( model_name='meetup', name='location', field=models.ForeignKey(default=0, on_delete=django.db.models.deletion.CASCADE, to='meetups.location'), ), ]
import torch import torch.nn as nn from collections import OrderedDict from .utils import load_state_dict_from_url from .backbone_utils import darknet_backbone from .transform import YOLOTransform from .loss import YOLOLoss __all__ = [ "YOLOv3", "yolov3_darknet53", ] class YOLOv3(nn.Module): def __init__(self, backbone, num_classes, input_size=(416, 416), conf_thresh=0.05, nms_thresh=0.1, max_detections=100, anchors=[[[116, 90], [156, 198], [373, 326]], [[30, 61], [62, 45], [59, 119]], [[10, 13], [16, 30], [33, 23]]]): super(YOLOv3, self).__init__() self.num_classes = num_classes self.input_size = input_size self.conf_thresh = conf_thresh self.nms_thresh = nms_thresh self.max_detections = max_detections self.anchors = anchors # transform self.transform = YOLOTransform(self.input_size, self.conf_thresh, self.nms_thresh, self.max_detections) # backbone self.backbone = backbone _out_filters = self.backbone.layers_out_filters # embedding0 final_out_filter0 = len(self.anchors[0]) * (4 + self.num_classes) self.embedding0 = self._make_embedding([512, 1024], _out_filters[-1], final_out_filter0) # embedding1 final_out_filter1 = len(self.anchors[1]) * (4 + self.num_classes) self.embedding1_cbl = self._make_cbl(512, 256, 1) self.embedding1_upsample = nn.Upsample(scale_factor=2, mode="nearest") self.embedding1 = self._make_embedding([256, 512], _out_filters[-2] + 256, final_out_filter1) # embedding2 final_out_filter2 = len(self.anchors[2]) * (4 + self.num_classes) self.embedding2_cbl = self._make_cbl(256, 128, 1) self.embedding2_upsample = nn.Upsample(scale_factor=2, mode="nearest") self.embedding2 = self._make_embedding([128, 256], _out_filters[-3] + 128, final_out_filter2) # losses self.losses = nn.ModuleList([YOLOLoss(self.num_classes, self.input_size, self.anchors[i]) for i in range(3)]) def _make_cbl(self, _in, _out, ks): ''' cbl = conv + batch_norm + leaky_relu ''' pad = (ks - 1) // 2 if ks else 0 return nn.Sequential(OrderedDict([ ("conv", nn.Conv2d(_in, _out, kernel_size=ks, stride=1, padding=pad, bias=False)), ("bn", nn.BatchNorm2d(_out)), ("relu", nn.LeakyReLU(0.1)), ])) def _make_embedding(self, filters_list, in_filters, out_filter): m = nn.ModuleList([ self._make_cbl(in_filters, filters_list[0], 1), self._make_cbl(filters_list[0], filters_list[1], 3), self._make_cbl(filters_list[1], filters_list[0], 1), self._make_cbl(filters_list[0], filters_list[1], 3), self._make_cbl(filters_list[1], filters_list[0], 1), self._make_cbl(filters_list[0], filters_list[1], 3)]) m.add_module("conv_out", nn.Conv2d(filters_list[1], out_filter, kernel_size=1, stride=1, padding=0, bias=True)) return m def forward(self, images, targets=None): x, gt = self.transform(images, targets) def _branch(_embedding, _in): for i, e in enumerate(_embedding): _in = e(_in) if i == 4: out_branch = _in return _in, out_branch # backbone x2, x1, x0 = self.backbone(x) # yolo branch 0 out0, out0_branch = _branch(self.embedding0, x0) # yolo branch 1 x1_in = self.embedding1_cbl(out0_branch) x1_in = self.embedding1_upsample(x1_in) x1_in = torch.cat([x1_in, x1], 1) out1, out1_branch = _branch(self.embedding1, x1_in) # yolo branch 2 x2_in = self.embedding2_cbl(out1_branch) x2_in = self.embedding2_upsample(x2_in) x2_in = torch.cat([x2_in, x2], 1) out2, out2_branch = _branch(self.embedding2, x2_in) outputs = [out0, out1, out2] pred = [loss(outputs[i], gt) for i, loss in enumerate(self.losses)] if self.training: losses = [sum(loss) for loss in zip(*pred)] loss_dict = { "loss_box_x": losses[0], "loss_box_y": losses[1], "loss_box_width": losses[2], "loss_box_height": losses[3], "loss_objectness": losses[4], "loss_classifier": losses[5] } return loss_dict else: img_sizes = [img.shape[1:] for img in images] return self.transform.postprocess(pred, img_sizes) model_urls = { "yolov3_darknet53_coco": "https://media.githubusercontent.com/media/danilopeixoto/pretrained-weights/master/yolov3_darknet53_coco.pth" } def yolov3_darknet53(num_classes=81, pretrained=False, pretrained_backbone=True, progress=True, **kwargs): if pretrained: # no need to download the backbone if pretrained is set pretrained_backbone = False backbone = darknet_backbone("darknet53", pretrained_backbone, progress) model = YOLOv3(backbone, num_classes, **kwargs) if pretrained: state_dict = load_state_dict_from_url(model_urls["yolov3_darknet53_coco"], progress=progress) model.load_state_dict(state_dict) return model
# Copyright 2015, 2016 OpenMarket Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging from io import BytesIO from twisted.internet import defer from synapse.api.errors import Codes, SynapseError from synapse.crypto.keyring import ServerKeyFetcher from synapse.http.server import ( DirectServeResource, respond_with_json_bytes, wrap_json_request_handler, ) from synapse.http.servlet import parse_integer, parse_json_object_from_request logger = logging.getLogger(__name__) class RemoteKey(DirectServeResource): """HTTP resource for retreiving the TLS certificate and NACL signature verification keys for a collection of servers. Checks that the reported X.509 TLS certificate matches the one used in the HTTPS connection. Checks that the NACL signature for the remote server is valid. Returns a dict of JSON signed by both the remote server and by this server. Supports individual GET APIs and a bulk query POST API. Requsts: GET /_matrix/key/v2/query/remote.server.example.com HTTP/1.1 GET /_matrix/key/v2/query/remote.server.example.com/a.key.id HTTP/1.1 POST /_matrix/v2/query HTTP/1.1 Content-Type: application/json { "server_keys": { "remote.server.example.com": { "a.key.id": { "minimum_valid_until_ts": 1234567890123 } } } } Response: HTTP/1.1 200 OK Content-Type: application/json { "server_keys": [ { "server_name": "remote.server.example.com" "valid_until_ts": # posix timestamp "verify_keys": { "a.key.id": { # The identifier for a key. key: "" # base64 encoded verification key. } } "old_verify_keys": { "an.old.key.id": { # The identifier for an old key. key: "", # base64 encoded key "expired_ts": 0, # when the key stop being used. } } "tls_fingerprints": [ { "sha256": # fingerprint } ] "signatures": { "remote.server.example.com": {...} "this.server.example.com": {...} } } ] } """ isLeaf = True def __init__(self, hs): self.fetcher = ServerKeyFetcher(hs) self.store = hs.get_datastore() self.clock = hs.get_clock() self.federation_domain_whitelist = hs.config.federation_domain_whitelist @wrap_json_request_handler async def _async_render_GET(self, request): if len(request.postpath) == 1: server, = request.postpath query = {server.decode("ascii"): {}} elif len(request.postpath) == 2: server, key_id = request.postpath minimum_valid_until_ts = parse_integer(request, "minimum_valid_until_ts") arguments = {} if minimum_valid_until_ts is not None: arguments["minimum_valid_until_ts"] = minimum_valid_until_ts query = {server.decode("ascii"): {key_id.decode("ascii"): arguments}} else: raise SynapseError(404, "Not found %r" % request.postpath, Codes.NOT_FOUND) await self.query_keys(request, query, query_remote_on_cache_miss=True) @wrap_json_request_handler async def _async_render_POST(self, request): content = parse_json_object_from_request(request) query = content["server_keys"] await self.query_keys(request, query, query_remote_on_cache_miss=True) @defer.inlineCallbacks def query_keys(self, request, query, query_remote_on_cache_miss=False): logger.info("Handling query for keys %r", query) store_queries = [] for server_name, key_ids in query.items(): if ( self.federation_domain_whitelist is not None and server_name not in self.federation_domain_whitelist ): logger.debug("Federation denied with %s", server_name) continue if not key_ids: key_ids = (None,) for key_id in key_ids: store_queries.append((server_name, key_id, None)) cached = yield self.store.get_server_keys_json(store_queries) json_results = set() time_now_ms = self.clock.time_msec() cache_misses = dict() for (server_name, key_id, from_server), results in cached.items(): results = [(result["ts_added_ms"], result) for result in results] if not results and key_id is not None: cache_misses.setdefault(server_name, set()).add(key_id) continue if key_id is not None: ts_added_ms, most_recent_result = max(results) ts_valid_until_ms = most_recent_result["ts_valid_until_ms"] req_key = query.get(server_name, {}).get(key_id, {}) req_valid_until = req_key.get("minimum_valid_until_ts") miss = False if req_valid_until is not None: if ts_valid_until_ms < req_valid_until: logger.debug( "Cached response for %r/%r is older than requested" ": valid_until (%r) < minimum_valid_until (%r)", server_name, key_id, ts_valid_until_ms, req_valid_until, ) miss = True else: logger.debug( "Cached response for %r/%r is newer than requested" ": valid_until (%r) >= minimum_valid_until (%r)", server_name, key_id, ts_valid_until_ms, req_valid_until, ) elif (ts_added_ms + ts_valid_until_ms) / 2 < time_now_ms: logger.debug( "Cached response for %r/%r is too old" ": (added (%r) + valid_until (%r)) / 2 < now (%r)", server_name, key_id, ts_added_ms, ts_valid_until_ms, time_now_ms, ) # We more than half way through the lifetime of the # response. We should fetch a fresh copy. miss = True else: logger.debug( "Cached response for %r/%r is still valid" ": (added (%r) + valid_until (%r)) / 2 < now (%r)", server_name, key_id, ts_added_ms, ts_valid_until_ms, time_now_ms, ) if miss: cache_misses.setdefault(server_name, set()).add(key_id) json_results.add(bytes(most_recent_result["key_json"])) else: for ts_added, result in results: json_results.add(bytes(result["key_json"])) if cache_misses and query_remote_on_cache_miss: yield self.fetcher.get_keys(cache_misses) yield self.query_keys(request, query, query_remote_on_cache_miss=False) else: result_io = BytesIO() result_io.write(b'{"server_keys":') sep = b"[" for json_bytes in json_results: result_io.write(sep) result_io.write(json_bytes) sep = b"," if sep == b"[": result_io.write(sep) result_io.write(b"]}") respond_with_json_bytes(request, 200, result_io.getvalue())
import csv from pathlib import Path from piecash import open_book fields = [ "DATE", "TRANSACTION VALUE", "DEBIT/CREDIT INDICATOR", "ACCOUNT", "ACCOUNT CODE", "CONTRA ACCOUNT", "CONTRA ACCOUNT CODE", "ENTRY TEXT", ] GNUCASH_BOOK = "../gnucash_books/simple_sample.gnucash" CSV_EXPORT = "export.csv" REPORTING_YEAR = 2019 # open the book and the export file with open_book(GNUCASH_BOOK, readonly=True, open_if_lock=True) as mybook, Path(CSV_EXPORT).open( "w", newline="" ) as f: # initialise the CSV writer csv_writer = csv.DictWriter(f, fieldnames=fields) csv_writer.writeheader() # iterate on all the transactions in the book for transaction in mybook.transactions: # filter transactions not in REPORTING_YEAR if transaction.post_date.year != REPORTING_YEAR: continue # handle only transactions with 2 splits if len(transaction.splits) != 2: print( f"skipping transaction {transaction} as it has more" f" than 2 splits in the transaction, dunno what to export to CSV" ) continue # assign the two splits of the transaction split_one, split_two = transaction.splits # build the dictionary with the data of the transaction data = dict( zip( fields, [ transaction.post_date, split_one.value, split_one.is_debit, split_one.account.name, split_one.account.code, split_two.account.name, split_two.account.code, transaction.description, ], ) ) # write the transaction to the CSV csv_writer.writerow(data)
def get_info(path2file): to_return = dict() to_return["train_acc"] = [] to_return["train_loss"] = [] to_return["val_acc"] = [] to_return["val_loss"] = [] with open(path2file) as f: for line in f: if "train" in line: to_return["train_loss"].append(float(line.split()[2])) to_return["train_acc"].append(float(line.split()[4])) elif "val" in line and not "Best" in line: #avoid last line to_return["val_loss"].append(float(line.split()[2])) to_return["val_acc"].append(float(line.split()[4])) return(to_return) d = get_info("TL_2fam1.out") with open("../../Analyse/your_results/train_accuracy_TL2f1.csv", "a") as csv: csv.write("\nacc_TL2f1,") for i in range(len(d["train_acc"])): if i < len(d["train_acc"])-1: csv.write(str(d["train_acc"][i])+ ",") else: csv.write(str(d["train_acc"][i])) with open("../../Analyse/your_results/train_accuracy_TL2f1.csv", "a") as csv: csv.write("\nloss_TL2f1,") for i in range(len(d["train_loss"])): if i < len(d["train_loss"])-1: csv.write(str(d["train_loss"][i])+ ",") else: csv.write(str(d["train_loss"][i])) with open("../../Analyse/your_results/accuracies.csv", "a") as csv: csv.write("\nacc_T2f1,") for i in range(len(d["val_acc"])): if i < len(d["val_acc"])-1: csv.write(str(d["val_acc"][i])+ ",") else: csv.write(str(d["val_acc"][i])) with open("../../Analyse/your_results/accuracies.csv", "a") as csv: csv.write("\nloss_T2f1,") for i in range(len(d["val_loss"])): if i < len(d["val_loss"])-1: csv.write(str(d["val_loss"][i])+ ",") else: csv.write(str(d["val_loss"][i]))
""" pythonbible-api is an API wrapper for the pythonbible library using FastAPI. """ __version__ = "0.0.2"
# adding a label to gui import tkinter as tk from tkinter import ttk #ttk = themed tk win = tk.Tk() # win is short for windows #constructor win.title("Python GUI with label") ttk.Label(win, text="A Label").grid(column=0, row=0) #set label text name an grid coordinates win.mainloop()
import struct import pytest from puslib import get_policy from puslib.ident import PusIdent from puslib.packet import PusTcPacket, AckFlag from puslib.parameter import UInt32Parameter, Int16Parameter, Real64Parameter from puslib.services import RequestVerification, PusService20 from puslib.streams.buffer import QueuedOutput @pytest.fixture(name="service_20_setup") def fixture_service_20_setup(): ident = PusIdent(apid=10) tm_stream = QueuedOutput() pus_service_1 = RequestVerification(ident, tm_stream) params = { 0: UInt32Parameter(1), 3: Int16Parameter(-2), 5: Real64Parameter(3.0) } pus_service_20 = PusService20(ident, pus_service_1, tm_stream, params) return pus_service_20, ident, tm_stream, params def test_report_parameter_values(service_20_setup): pus_service_20, ident, tm_stream, _ = service_20_setup app_data = get_policy().function_management.count_type(1).to_bytes() + get_policy().common.param_id_type(0).to_bytes() packet = PusTcPacket.create(apid=ident.apid, name=0, ack_flags=AckFlag.NONE, service_type=20, service_subtype=1, data=app_data) pus_service_20.enqueue(packet) pus_service_20.process() assert tm_stream.size == 1 report = tm_stream.get() assert report.service == 20 assert report.subservice == 2 assert report.source_data is not None fmt = '>' + (get_policy().function_management.count_type().format + get_policy().common.param_id_type().format + UInt32Parameter().format).replace('>', '') num_values, param_id, param_value = struct.unpack(fmt, report.source_data) assert num_values == 1 assert param_id == 0 assert param_value == 1 app_data = get_policy().function_management.count_type(2).to_bytes() + get_policy().common.param_id_type(0).to_bytes() + get_policy().common.param_id_type(3).to_bytes() packet = PusTcPacket.create(apid=ident.apid, name=0, ack_flags=AckFlag.NONE, service_type=20, service_subtype=1, data=app_data) pus_service_20.enqueue(packet) pus_service_20.process() assert tm_stream.size == 1 report = tm_stream.get() assert report.service == 20 assert report.subservice == 2 assert report.source_data is not None fmt = '>' + (get_policy().function_management.count_type().format + get_policy().common.param_id_type().format + UInt32Parameter().format + get_policy().common.param_id_type().format + Int16Parameter().format).replace('>', '') num_values, param1_id, param1_value, param2_id, param2_value = struct.unpack(fmt, report.source_data) assert num_values == 2 assert param1_id == 0 assert param1_value == 1 assert param2_id == 3 assert param2_value == -2 app_data = get_policy().function_management.count_type(1).to_bytes() + get_policy().common.param_id_type(1).to_bytes() # non-existant parameter ID packet = PusTcPacket.create(apid=ident.apid, name=0, ack_flags=AckFlag.ACCEPTANCE, service_type=20, service_subtype=1, data=app_data) pus_service_20.enqueue(packet) pus_service_20.process() assert tm_stream.size == 1 report = tm_stream.get() assert report.service == 1 assert report.subservice == 2 app_data = get_policy().function_management.count_type(2).to_bytes() + get_policy().common.param_id_type(0).to_bytes() + get_policy().common.param_id_type(1).to_bytes() # non-existant parameter ID packet = PusTcPacket.create(apid=ident.apid, name=0, ack_flags=AckFlag.ACCEPTANCE, service_type=20, service_subtype=1, data=app_data) pus_service_20.enqueue(packet) pus_service_20.process() assert tm_stream.size == 1 report = tm_stream.get() assert report.service == 1 assert report.subservice == 2 app_data = get_policy().function_management.count_type(3).to_bytes() + get_policy().common.param_id_type(0).to_bytes() + get_policy().common.param_id_type(1).to_bytes() # mismatch between N and number of parameter IDs packet = PusTcPacket.create(apid=ident.apid, name=0, ack_flags=AckFlag.ACCEPTANCE, service_type=20, service_subtype=1, data=app_data) pus_service_20.enqueue(packet) pus_service_20.process() assert tm_stream.size == 1 report = tm_stream.get() assert report.service == 1 assert report.subservice == 2 def test_set_parameter_values(service_20_setup): pus_service_20, ident, tm_stream, params = service_20_setup app_data = get_policy().function_management.count_type(1).to_bytes() + get_policy().common.param_id_type(0).to_bytes() + UInt32Parameter(11).to_bytes() packet = PusTcPacket.create(apid=ident.apid, name=0, ack_flags=AckFlag.NONE, service_type=20, service_subtype=3, data=app_data) pus_service_20.enqueue(packet) pus_service_20.process() assert tm_stream.size == 0 assert params[0].value == 11 assert params[3].value == -2 assert params[5].value == 3.0 app_data = get_policy().function_management.count_type(2).to_bytes() + get_policy().common.param_id_type(3).to_bytes() + Int16Parameter(-12).to_bytes() + get_policy().common.param_id_type(5).to_bytes() + Real64Parameter(13.0).to_bytes() packet = PusTcPacket.create(apid=ident.apid, name=0, ack_flags=AckFlag.NONE, service_type=20, service_subtype=3, data=app_data) pus_service_20.enqueue(packet) pus_service_20.process() assert tm_stream.size == 0 assert params[0].value == 11 assert params[3].value == -12 assert params[5].value == 13.0 app_data = get_policy().function_management.count_type(1).to_bytes() + get_policy().common.param_id_type(1).to_bytes() + UInt32Parameter(11).to_bytes() # non-existant parameter ID packet = PusTcPacket.create(apid=ident.apid, name=0, ack_flags=AckFlag.ACCEPTANCE, service_type=20, service_subtype=3, data=app_data) pus_service_20.enqueue(packet) pus_service_20.process() assert tm_stream.size == 1 report = tm_stream.get() assert report.service == 1 assert report.subservice == 2 assert params[0].value == 11 assert params[3].value == -12 assert params[5].value == 13.0 app_data = get_policy().function_management.count_type(1).to_bytes() + get_policy().common.param_id_type(1).to_bytes() + UInt32Parameter(1).to_bytes() + get_policy().common.param_id_type(2).to_bytes() + UInt32Parameter(666).to_bytes() # non-existant parameter ID packet = PusTcPacket.create(apid=ident.apid, name=0, ack_flags=AckFlag.ACCEPTANCE, service_type=20, service_subtype=3, data=app_data) pus_service_20.enqueue(packet) pus_service_20.process() assert tm_stream.size == 1 report = tm_stream.get() assert report.service == 1 assert report.subservice == 2 assert params[0].value == 11 assert params[3].value == -12 assert params[5].value == 13.0
# -*- coding: utf-8 -*- # # Copyright (C) Red Hat, Inc # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import logging import os CELERY_BROKER_URL = os.getenv('CELERY_BROKER_URL', 'amqp://guest:guest@localhost:5672//') CELERY_PROJECT_NAME = os.getenv('CELERY_PROJECT_NAME', 'dcifeeder') API_URL = os.getenv('API_URL', 'http://127.0.0.1:5000') API_DEBUG = os.getenv('API_DEBUG', False) LOGLEVEL = logging.DEBUG
import computer import numpy as np import time Position = (0, 0) Canvas = np.full([200, 200], -1, dtype=int) Canvas[0, 0] = 1 Corners = [(0, 0), (0, 0)] TileCount = 0 Direction = 0 def AddVectors(vec1, vec2): if(len(vec1) != len(vec2)): return None out = [] for v in range(len(vec1)): out += [vec1[v] + vec2[v]] return tuple(out) def SendInput(): global Canvas global Position if(Canvas[Position] == 1): return 1 else: return 0 def MoveRobot(): global Direction global Position global Corners if(Direction == 0): Position = AddVectors(Position, (0, 1)) elif(Direction == 1): Position = AddVectors(Position, (1, 0)) elif(Direction == 2): Position = AddVectors(Position, (0, -1)) elif(Direction == 3): Position = AddVectors(Position, (-1, 0)) print(Position) if(Position[0] < Corners[0][0] or Position[1] < Corners[0][1]): Corners[0] = Position elif(Position[0] > Corners[1][0] or Position[1] > Corners[1][1]): Corners[1] = Position Turning = False def RecieveOutput(out): global Turning global Direction global Canvas global Position global TileCount if(not Turning): if(Canvas[Position] == -1): TileCount += 1 Canvas[Position] = out else: if(out == 0): Direction -= 1 else: Direction += 1 if(Direction < 0): Direction += 4 elif(Direction > 3): Direction -= 4 MoveRobot() Turning = not Turning computer.Run(RecieveOutput, SendInput) blackChar = u"\u25A0" whiteChar = u"\u25A1" for x in range(Corners[0][0] - 1, Corners[1][0] + 2): out = "" for y in range(Corners[0][1] - 1, Corners[1][1] + 2): if(Canvas[x, y] == 1): out += whiteChar else: out += blackChar print(out) time.sleep(0.2)
import os import argparse import json import torch from torch.optim.lr_scheduler import ReduceLROnPlateau from torch.utils.data import DataLoader import pytorch_lightning as pl from pytorch_lightning.callbacks import ModelCheckpoint, EarlyStopping # from asteroid import TransMask from asteroid import DPTrans # from asteroid.engine import schedulers # from asteroid.data.wham_dataset import WhamDataset from asteroid.data import LibriMix from asteroid.engine.optimizers import make_optimizer from asteroid.engine.system import System from asteroid.losses import PITLossWrapper, pairwise_neg_sisdr # Keys which are not in the conf.yml file can be added here. # In the hierarchical dictionary created when parsing, the key `key` can be # found at dic['main_args'][key] # By default train.py will use all available GPUs. The `id` option in run.sh # will limit the number of available GPUs for train.py . parser = argparse.ArgumentParser() parser.add_argument("--exp_dir", default="exp/tmp", help="Full path to save best validation model") parser.add_argument("--config", default="local/conf.yml", help="config yaml file") def main(conf): # train_set = WhamDataset( # conf["data"]["train_dir"], # conf["data"]["task"], # sample_rate=conf["data"]["sample_rate"], # segment=conf["data"]["segment"], # nondefault_nsrc=conf["data"]["nondefault_nsrc"], # ) # val_set = WhamDataset( # conf["data"]["valid_dir"], # conf["data"]["task"], # sample_rate=conf["data"]["sample_rate"], # nondefault_nsrc=conf["data"]["nondefault_nsrc"], # ) train_set = LibriMix( csv_dir=conf["data"]["train_dir"], task=conf["data"]["task"], sample_rate=conf["data"]["sample_rate"], n_src=conf["masknet"]["n_src"], segment=conf["data"]["segment"], ) print(conf["data"]["train_dir"]) val_set = LibriMix( csv_dir=conf["data"]["valid_dir"], task=conf["data"]["task"], sample_rate=conf["data"]["sample_rate"], n_src=conf["masknet"]["n_src"], segment=conf["data"]["segment"], ) train_loader = DataLoader( train_set, shuffle=True, batch_size=conf["training"]["batch_size"], num_workers=conf["training"]["num_workers"], drop_last=True, ) val_loader = DataLoader( val_set, shuffle=False, batch_size=conf["training"]["batch_size"], num_workers=conf["training"]["num_workers"], drop_last=True, ) # Update number of source values (It depends on the task) conf["masknet"].update({"n_src": train_set.n_src}) # TODO params # model = TransMask(**conf["filterbank"], **conf["masknet"]) model = DPTrans(**conf["filterbank"], **conf["masknet"], sample_rate=conf['data']['sample_rate']) # from torchsummary import summary # model.cuda() # summary(model, (24000,)) # import pdb # pdb.set_trace() optimizer = make_optimizer(model.parameters(), **conf["optim"]) # Define scheduler scheduler = None if conf["training"]["half_lr"]: scheduler = ReduceLROnPlateau(optimizer=optimizer, factor=0.5, patience=5) # # TODO warmup for transformer # from asteroid.engine.schedulers import DPTNetScheduler # schedulers = { # "scheduler": DPTNetScheduler( # # optimizer, len(train_loader) // conf["training"]["batch_size"], 64 # # optimizer, len(train_loader), 64, # optimizer, len(train_loader), 128, # stride=2, # # exp_max=0.0004 * 16, # # warmup_steps=1000 # ), # "interval": "batch", # } # from torch.optim.lr_scheduler import ReduceLROnPlateau # if conf["training"]["half_lr"]: # print('Use ReduceLROnPlateau halflr...........') # schedulers = ReduceLROnPlateau(optimizer=optimizer, factor=0.5, patience=5) # Just after instantiating, save the args. Easy loading in the future. exp_dir = conf["main_args"]["exp_dir"] os.makedirs(exp_dir, exist_ok=True) conf_path = os.path.join(exp_dir, "conf.yml") with open(conf_path, "w") as outfile: yaml.safe_dump(conf, outfile) # Define Loss function. loss_func = PITLossWrapper(pairwise_neg_sisdr, pit_from="pw_mtx") system = System( model=model, loss_func=loss_func, optimizer=optimizer, train_loader=train_loader, val_loader=val_loader, scheduler=scheduler, config=conf, ) # Define callbacks callbacks = [] checkpoint_dir = os.path.join(exp_dir, "checkpoints/") # checkpoint_dir = os.path.join(exp_dir) checkpoint = ModelCheckpoint( checkpoint_dir, monitor="val_loss", mode="min", save_top_k=5, verbose=True ) callbacks.append(checkpoint) if conf["training"]["early_stop"]: callbacks.append(EarlyStopping(monitor="val_loss", mode="min", patience=30, verbose=True)) # Don't ask GPU if they are not available. gpus = -1 if torch.cuda.is_available() else None distributed_backend = "ddp" if torch.cuda.is_available() else None if conf["training"]["cont"]: from glob import glob ckpts = glob('%s/*.ckpt' % checkpoint_dir) ckpts.sort() latest_ckpt = ckpts[-1] trainer = pl.Trainer( max_epochs=conf["training"]["epochs"], callbacks=callbacks, default_root_dir=exp_dir, gpus=gpus, distributed_backend=distributed_backend, limit_train_batches=1.0, # Useful for fast experiment gradient_clip_val=conf["training"]["gradient_clipping"], resume_from_checkpoint=latest_ckpt ) else: trainer = pl.Trainer( max_epochs=conf["training"]["epochs"], callbacks=callbacks, default_root_dir=exp_dir, gpus=gpus, distributed_backend=distributed_backend, limit_train_batches=1.0, # Useful for fast experiment gradient_clip_val=conf["training"]["gradient_clipping"], ) trainer.fit(system) best_k = {k: v.item() for k, v in checkpoint.best_k_models.items()} with open(os.path.join(exp_dir, "best_k_models.json"), "w") as f: json.dump(best_k, f, indent=0) state_dict = torch.load(checkpoint.best_model_path) # state_dict = torch.load('exp/train_transmask_rnn_acous_gelu_6layer_peconv_stride2_batch6/_ckpt_epoch_208.ckpt') system.load_state_dict(state_dict=state_dict["state_dict"]) system.cpu() to_save = system.model.serialize() to_save.update(train_set.get_infos()) torch.save(to_save, os.path.join(exp_dir, "best_model.pth")) if __name__ == "__main__": import yaml from pprint import pprint as print from asteroid.utils import prepare_parser_from_dict, parse_args_as_dict # We start with opening the config file conf.yml as a dictionary from # which we can create parsers. Each top level key in the dictionary defined # by the YAML file creates a group in the parser. with open(parser.parse_args().config) as f: def_conf = yaml.safe_load(f) parser = prepare_parser_from_dict(def_conf, parser=parser) # Arguments are then parsed into a hierarchical dictionary (instead of # flat, as returned by argparse) to facilitate calls to the different # asteroid methods (see in main). # plain_args is the direct output of parser.parse_args() and contains all # the attributes in an non-hierarchical structure. It can be useful to also # have it so we included it here but it is not used. arg_dic, plain_args = parse_args_as_dict(parser, return_plain_args=True) print(arg_dic) main(arg_dic)
#!/usr/bin/env python """Django's command-line utility for administrative tasks.""" import os import sys def main(): os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'plain_base_29138.settings') try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc execute_from_command_line(sys.argv) if __name__ == '__main__': main()
def f(x): # Primera operación respuesta = 0 # Segunda operacion. Sin importar de x este loop correrá 1000 veces. for i in range(1000): respuesta += 1 # Tercera operación. Este loop correrá el valor de x for i in range(x): respuesta += x # Cuarta operación. Esta parte esta corriendo 2 loop. Esto será 2x² for i in range(x): for j in range(x): respuesta += 1 respuesta += 1 # Quinta operación. return respuesta if __name__ == '__main__': print(f(2))
# -*- coding: utf-8 -*- # Copyright 2019, IBM. # # This source code is licensed under the Apache License, Version 2.0 found in # the LICENSE.txt file in the root directory of this source tree. """ Parameter Class for variable parameters. """ class Parameter(): """Parameter Class for variable parameters""" def __init__(self, name): self.name = name def __str__(self): return self.name def __eq__(self, other): return self.name == other.name def __hash__(self): return hash(self.name)
from xdist.plugin import ( is_xdist_worker, is_xdist_master, get_xdist_worker_id, is_xdist_controller, ) from xdist._version import version as __version__ __all__ = [ "__version__", "is_xdist_worker", "is_xdist_master", "is_xdist_controller", "get_xdist_worker_id", ]
import _plotly_utils.basevalidators class LenValidator(_plotly_utils.basevalidators.NumberValidator): def __init__(self, plotly_name="len", parent_name="volume.colorbar", **kwargs): super(LenValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "calc"), min=kwargs.pop("min", 0), **kwargs, )
# predict functions for predict.py # Danny Olesh 22.11.2021 # Resources used: # Study learning notes and code from the course # https://pytorch.org/ # Udacity deeplearning pytorch help # Self study and experiminationion using ATOM in Anaconda3 environment # Edited code snippets for certain Network definitions https://github.com/silviomori/udacity-deeplearning-pytorch-challenge-lab ################################################# # imports # ################################################# import sys import os from os.path import exists import argparse import matplotlib.pyplot as plt import numpy as np import torch from torch import nn from torch import optim import torch.nn.functional as F from torchvision import datasets, transforms, models import torchvision.transforms.functional as TF from torch.utils.data.dataset import Subset from collections import OrderedDict from PIL import Image ################################################# # Get args and process # ################################################# #get all the options required (after the fist 3, predict.py /path/to/image /path/to/checkpoint) def getOptions(args=sys.argv[3:]): parser = argparse.ArgumentParser(description="Parses command.") parser.add_argument("--top_k", "--top_k", type=int, help="Return top KK most likely classes", default=3) parser.add_argument("--catagory_names", "--catagory_names", help="Use a mapping of categories to real names(json file).", default="cat_to_name.json") parser.add_argument("--gpu", dest='gpu',action='store_false', help="GPU mode True or False.", default=True ) options = parser.parse_args(args) if options.gpu: #assign GPU if true print("GPU mode is ON if available") else: print("GPU mode is OFF") if exists(options.catagory_names)==True: #check catagory name file exists print('Catagory names :', options.catagory_names) else: print('Catagory names file cannot be found please enter valid name') sys.exit(2) if options.top_k > 1 or options.top_k < 100: #check top k valid range print('The number of classes to compare :', options.top_k) else: print('top K needs to be a number between 1 and 100') sys.exit(2) return options ################################################# # Process an image # ################################################# def process_image(image, normalize_mean, normalize_std): # Process a PIL image for use in a PyTorch model image = TF.resize(image, 256) upper_pixel = (image.height - 224) // 2 left_pixel = (image.width - 224) // 2 image = TF.crop(image, upper_pixel, left_pixel, 224, 224) image = TF.to_tensor(image) image = TF.normalize(image, normalize_mean, normalize_std) return image ################################################# # Predictions # ################################################# def predict(image_path, model_ft, topk,normalize_mean, normalize_std, device): # Implement the code to predict the class from an image file image = Image.open(image_path) image = process_image(image, normalize_mean, normalize_std) with torch.no_grad(): model_ft.eval() image = image.view(1,3,224,224) image = image.to(device) predictions = model_ft.forward(image) predictions = torch.exp(predictions) top_ps, top_class = predictions.topk(topk, dim=1) return top_ps, top_class
""" MIT License Copyright (c) 2020 Airbyte Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import json import pkgutil from typing import List import requests from airbyte_protocol import AirbyteCatalog, ConnectorSpecification from base_python_test import StandardSourceTestIface class GoogleAnalyticsStandardSourceTest(StandardSourceTestIface): def get_spec(self) -> ConnectorSpecification: raw_spec = pkgutil.get_data(self.__class__.__module__.split(".")[0], "spec.json") return ConnectorSpecification.parse_obj(json.loads(raw_spec)) def get_config(self) -> object: return json.loads(pkgutil.get_data(self.__class__.__module__.split(".")[0], "config.json")) def get_catalog(self) -> AirbyteCatalog: raw_spec = pkgutil.get_data(self.__class__.__module__.split(".")[0], "test_catalog.json") return AirbyteCatalog.parse_obj(json.loads(raw_spec)) # send a page view to GA using a URL constructed with # the documentation from https://developers.google.com/analytics/devguides/collection/protocol/v1/devguide#page # and the hit builder at https://ga-dev-tools.appspot.com/hit-builder/ # and converted into Python def setup(self) -> None: tracker = pkgutil.get_data(self.__class__.__module__.split(".")[0], "tracker.txt").strip() url = "https://www.google-analytics.com/collect" payload = {"v": "1", "t": "pageview", "tid": tracker, "cid": "555", "dh": "mydemo.com", "dp": "/home5", "dt": "homepage"} headers = { "user-agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_4) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/85.0.4183.102 Safari/537.36", "content-type": "application/x-www-form-urlencoded; charset=UTF-8", "origin": "https://ga-dev-tools.appspot.com", "referer": "https://ga-dev-tools.appspot.com/", } requests.post(url, data=payload, headers=headers) def get_regex_tests(self) -> List[str]: return [ "(.*)RECORD(.*)website_overview(.*)", "(.*)RECORD(.*)traffic_sources(.*)", "(.*)RECORD(.*)pages(.*)", "(.*)RECORD(.*)locations(.*)", "(.*)RECORD(.*)monthly_active_users(.*)", "(.*)RECORD(.*)four_weekly_active_users(.*)", "(.*)RECORD(.*)two_weekly_active_users(.*)", "(.*)RECORD(.*)weekly_active_users(.*)", "(.*)RECORD(.*)daily_active_users(.*)", "(.*)RECORD(.*)devices(.*)", ] def teardown(self) -> None: pass # todo: add regexes that must match and regexes that must not match
#The is_positive function should return True if the number received is positive and False if it isn't. #Can you fill in the gaps to make that happen? def is_positive(number): if number > 0: return True else: return False
import os class Base(object): """ Base object designed for providing generic functionality. The Base object has the functionality to set title, set working directories and make directories. Attributes ---------- title : str Title of the object. cwdir : str Current working directory. """ def __init__(self, title="Unnamed"): """ Create a new Base object.""" self._title = title self._cwdir = os.path.join(os.getcwd(), '') def set_title(self, title): """ Set a new title for a curve. Parameters ------- title : str Title of the object. """ self._title = str(title).strip() return def get_title(self): """ Returns a title of a curve. Returns ------- out : str Title of the object. """ return self._title def set_cwdir(self, path): """ Set path for current working directory. Parameters ---------- path : str Path of current working directory. """ self._cwdir = os.path.normpath(os.path.join(os.getcwd(), path, '')) return def get_cwdir(self): """ Get path for current working directory. Returns ------- out : str Path of current working directory. """ return self._cwdir @staticmethod def _mkdir(dir_name): """ Create a directory. Parameters ---------- dir_name : str Name of the directory. """ if os.path.isdir(dir_name): print("Such folder already exists: {name}".format(name=dir_name)) return else: os.mkdir(dir_name) return
# Copyright 2020-2021 The Kubeflow Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from http.server import BaseHTTPRequestHandler, HTTPServer import json import os import base64 def main(): settings = get_settings_from_env() server = server_factory(**settings) server.serve_forever() def get_settings_from_env(controller_port=None, visualization_server_image=None, frontend_image=None, visualization_server_tag=None, frontend_tag=None, disable_istio_sidecar=None, minio_access_key=None, minio_secret_key=None, kfp_default_pipeline_root=None): """ Returns a dict of settings from environment variables relevant to the controller Environment settings can be overridden by passing them here as arguments. Settings are pulled from the all-caps version of the setting name. The following defaults are used if those environment variables are not set to enable backwards compatibility with previous versions of this script: visualization_server_image: gcr.io/ml-pipeline/visualization-server visualization_server_tag: value of KFP_VERSION environment variable frontend_image: gcr.io/ml-pipeline/frontend frontend_tag: value of KFP_VERSION environment variable disable_istio_sidecar: Required (no default) minio_access_key: Required (no default) minio_secret_key: Required (no default) """ settings = dict() settings["controller_port"] = \ controller_port or \ os.environ.get("CONTROLLER_PORT", "8080") settings["visualization_server_image"] = \ visualization_server_image or \ os.environ.get("VISUALIZATION_SERVER_IMAGE", "gcr.io/ml-pipeline/visualization-server") settings["frontend_image"] = \ frontend_image or \ os.environ.get("FRONTEND_IMAGE", "gcr.io/ml-pipeline/frontend") # Look for specific tags for each image first, falling back to # previously used KFP_VERSION environment variable for backwards # compatibility settings["visualization_server_tag"] = \ visualization_server_tag or \ os.environ.get("VISUALIZATION_SERVER_TAG") or \ os.environ["KFP_VERSION"] settings["frontend_tag"] = \ frontend_tag or \ os.environ.get("FRONTEND_TAG") or \ os.environ["KFP_VERSION"] settings["disable_istio_sidecar"] = \ disable_istio_sidecar if disable_istio_sidecar is not None \ else os.environ.get("DISABLE_ISTIO_SIDECAR") == "true" settings["minio_access_key"] = \ minio_access_key or \ base64.b64encode(bytes(os.environ.get("MINIO_ACCESS_KEY"), 'utf-8')).decode('utf-8') settings["minio_secret_key"] = \ minio_secret_key or \ base64.b64encode(bytes(os.environ.get("MINIO_SECRET_KEY"), 'utf-8')).decode('utf-8') # KFP_DEFAULT_PIPELINE_ROOT is optional settings["kfp_default_pipeline_root"] = \ kfp_default_pipeline_root or \ os.environ.get("KFP_DEFAULT_PIPELINE_ROOT") return settings def server_factory(visualization_server_image, visualization_server_tag, frontend_image, frontend_tag, disable_istio_sidecar, minio_access_key, minio_secret_key, kfp_default_pipeline_root=None, url="", controller_port=8080): """ Returns an HTTPServer populated with Handler with customized settings """ class Controller(BaseHTTPRequestHandler): def sync(self, parent, children): # parent is a namespace namespace = parent.get("metadata", {}).get("name") pipeline_enabled = parent.get("metadata", {}).get( "labels", {}).get("pipelines.kubeflow.org/enabled") if pipeline_enabled != "true": return {"status": {}, "children": []} desired_configmap_count = 1 desired_resources = [] if kfp_default_pipeline_root: desired_configmap_count = 2 desired_resources += [{ "apiVersion": "v1", "kind": "ConfigMap", "metadata": { "name": "kfp-launcher", "namespace": namespace, }, "data": { "defaultPipelineRoot": kfp_default_pipeline_root, }, }] # Compute status based on observed state. desired_status = { "kubeflow-pipelines-ready": len(children["Secret.v1"]) == 1 and len(children["ConfigMap.v1"]) == desired_configmap_count and len(children["Deployment.apps/v1"]) == 2 and len(children["Service.v1"]) == 2 and len(children["DestinationRule.networking.istio.io/v1alpha3"]) == 1 and len(children["AuthorizationPolicy.security.istio.io/v1beta1"]) == 1 and "True" or "False" } # Generate the desired child object(s). desired_resources += [ { "apiVersion": "v1", "kind": "ConfigMap", "metadata": { "name": "metadata-grpc-configmap", "namespace": namespace, }, "data": { "METADATA_GRPC_SERVICE_HOST": "metadata-grpc-service.kubeflow", "METADATA_GRPC_SERVICE_PORT": "8080", }, }, # Visualization server related manifests below { "apiVersion": "apps/v1", "kind": "Deployment", "metadata": { "labels": { "app": "ml-pipeline-visualizationserver" }, "name": "ml-pipeline-visualizationserver", "namespace": namespace, }, "spec": { "selector": { "matchLabels": { "app": "ml-pipeline-visualizationserver" }, }, "template": { "metadata": { "labels": { "app": "ml-pipeline-visualizationserver" }, "annotations": disable_istio_sidecar and { "sidecar.istio.io/inject": "false" } or {}, }, "spec": { "containers": [{ "image": f"{visualization_server_image}:{visualization_server_tag}", "imagePullPolicy": "IfNotPresent", "name": "ml-pipeline-visualizationserver", "ports": [{ "containerPort": 8888 }], "resources": { "requests": { "cpu": "50m", "memory": "200Mi" }, "limits": { "cpu": "500m", "memory": "1Gi" }, } }], "serviceAccountName": "default-editor", }, }, }, }, { "apiVersion": "networking.istio.io/v1alpha3", "kind": "DestinationRule", "metadata": { "name": "ml-pipeline-visualizationserver", "namespace": namespace, }, "spec": { "host": "ml-pipeline-visualizationserver", "trafficPolicy": { "tls": { "mode": "ISTIO_MUTUAL" } } } }, { "apiVersion": "security.istio.io/v1beta1", "kind": "AuthorizationPolicy", "metadata": { "name": "ml-pipeline-visualizationserver", "namespace": namespace, }, "spec": { "selector": { "matchLabels": { "app": "ml-pipeline-visualizationserver" } }, "rules": [{ "from": [{ "source": { "principals": ["cluster.local/ns/kubeflow/sa/ml-pipeline"] } }] }] } }, { "apiVersion": "v1", "kind": "Service", "metadata": { "name": "ml-pipeline-visualizationserver", "namespace": namespace, }, "spec": { "ports": [{ "name": "http", "port": 8888, "protocol": "TCP", "targetPort": 8888, }], "selector": { "app": "ml-pipeline-visualizationserver", }, }, }, # Artifact fetcher related resources below. { "apiVersion": "apps/v1", "kind": "Deployment", "metadata": { "labels": { "app": "ml-pipeline-ui-artifact" }, "name": "ml-pipeline-ui-artifact", "namespace": namespace, }, "spec": { "selector": { "matchLabels": { "app": "ml-pipeline-ui-artifact" } }, "template": { "metadata": { "labels": { "app": "ml-pipeline-ui-artifact" }, "annotations": disable_istio_sidecar and { "sidecar.istio.io/inject": "false" } or {}, }, "spec": { "containers": [{ "name": "ml-pipeline-ui-artifact", "image": f"{frontend_image}:{frontend_tag}", "imagePullPolicy": "IfNotPresent", "ports": [{ "containerPort": 3000 }], "env": [ { "name": "MINIO_ACCESS_KEY", "valueFrom": { "secretKeyRef": { "key": "accesskey", "name": "mlpipeline-minio-artifact" } } }, { "name": "MINIO_SECRET_KEY", "valueFrom": { "secretKeyRef": { "key": "secretkey", "name": "mlpipeline-minio-artifact" } } } ], "resources": { "requests": { "cpu": "10m", "memory": "70Mi" }, "limits": { "cpu": "100m", "memory": "500Mi" }, } }], "serviceAccountName": "default-editor" } } } }, { "apiVersion": "v1", "kind": "Service", "metadata": { "name": "ml-pipeline-ui-artifact", "namespace": namespace, "labels": { "app": "ml-pipeline-ui-artifact" } }, "spec": { "ports": [{ "name": "http", # name is required to let istio understand request protocol "port": 80, "protocol": "TCP", "targetPort": 3000 }], "selector": { "app": "ml-pipeline-ui-artifact" } } }, ] print('Received request:\n', json.dumps(parent, sort_keys=True)) print('Desired resources except secrets:\n', json.dumps(desired_resources, sort_keys=True)) # Moved after the print argument because this is sensitive data. desired_resources.append({ "apiVersion": "v1", "kind": "Secret", "metadata": { "name": "mlpipeline-minio-artifact", "namespace": namespace, }, "data": { "accesskey": minio_access_key, "secretkey": minio_secret_key, }, }) return {"status": desired_status, "children": desired_resources} def do_POST(self): # Serve the sync() function as a JSON webhook. observed = json.loads( self.rfile.read(int(self.headers.get("content-length")))) desired = self.sync(observed["parent"], observed["children"]) self.send_response(200) self.send_header("Content-type", "application/json") self.end_headers() self.wfile.write(bytes(json.dumps(desired), 'utf-8')) return HTTPServer((url, int(controller_port)), Controller) if __name__ == "__main__": main()
# This file is distributed under the same license as the Django package. # # The *_FORMAT strings use the Django date format syntax, # see http://docs.djangoproject.com/en/dev/ref/templates/builtins/#date DATE_FORMAT = 'j F Y' # '25 Hydref 2006' TIME_FORMAT = 'P' # '2:30 y.b.' DATETIME_FORMAT = 'j F Y, P' # '25 Hydref 2006, 2:30 y.b.' YEAR_MONTH_FORMAT = 'F Y' # 'Hydref 2006' MONTH_DAY_FORMAT = 'j F' # '25 Hydref' SHORT_DATE_FORMAT = 'd/m/Y' # '25/10/2006' SHORT_DATETIME_FORMAT = 'd/m/Y P' # '25/10/2006 2:30 y.b.' FIRST_DAY_OF_WEEK = 1 # 'Dydd Llun' # The *_INPUT_FORMATS strings use the Python strftime format syntax, # see http://docs.python.org/library/datetime.html#strftime-strptime-behavior DATE_INPUT_FORMATS = [ '%d/%m/%Y', '%d/%m/%y', # '25/10/2006', '25/10/06' ] DATETIME_INPUT_FORMATS = [ '%Y-%m-%d %H:%M:%S', # '2006-10-25 14:30:59' '%Y-%m-%d %H:%M:%S.%f', # '2006-10-25 14:30:59.000200' '%Y-%m-%d %H:%M', # '2006-10-25 14:30' '%Y-%m-%d', # '2006-10-25' '%d/%m/%Y %H:%M:%S', # '25/10/2006 14:30:59' '%d/%m/%Y %H:%M:%S.%f', # '25/10/2006 14:30:59.000200' '%d/%m/%Y %H:%M', # '25/10/2006 14:30' '%d/%m/%Y', # '25/10/2006' '%d/%m/%y %H:%M:%S', # '25/10/06 14:30:59' '%d/%m/%y %H:%M:%S.%f', # '25/10/06 14:30:59.000200' '%d/%m/%y %H:%M', # '25/10/06 14:30' '%d/%m/%y', # '25/10/06' ] DECIMAL_SEPARATOR = '.' THOUSAND_SEPARATOR = ',' NUMBER_GROUPING = 3
''' A custom Keras layer to generate anchor boxes. Copyright (C) 2018 Pierluigi Ferrari Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ''' from __future__ import division import numpy as np import tensorflow.keras.backend as K from tensorflow.keras.layers import InputSpec,Layer from bounding_box_utils.bounding_box_utils import convert_coordinates class AnchorBoxes(Layer): ''' A Keras layer to create an output tensor containing anchor box coordinates and variances based on the input tensor and the passed arguments. A set of 2D anchor boxes of different aspect ratios is created for each spatial unit of the input tensor. The number of anchor boxes created per unit depends on the arguments `aspect_ratios` and `two_boxes_for_ar1`, in the default case it is 4. The boxes are parameterized by the coordinate tuple `(xmin, xmax, ymin, ymax)`. The logic implemented by this layer is identical to the logic in the module `ssd_box_encode_decode_utils.py`. The purpose of having this layer in the network is to make the model self-sufficient at inference time. Since the model is predicting offsets to the anchor boxes (rather than predicting absolute box coordinates directly), one needs to know the anchor box coordinates in order to construct the final prediction boxes from the predicted offsets. If the model's output tensor did not contain the anchor box coordinates, the necessary information to convert the predicted offsets back to absolute coordinates would be missing in the model output. The reason why it is necessary to predict offsets to the anchor boxes rather than to predict absolute box coordinates directly is explained in `README.md`. Input shape: 4D tensor of shape `(batch, channels, height, width)` if `dim_ordering = 'th'` or `(batch, height, width, channels)` if `dim_ordering = 'tf'`. Output shape: 5D tensor of shape `(batch, height, width, n_boxes, 8)`. The last axis contains the four anchor box coordinates and the four variance values for each box. ''' def __init__(self, img_height, img_width, this_scale, next_scale, aspect_ratios=[0.5, 1.0, 2.0], two_boxes_for_ar1=True, this_steps=None, this_offsets=None, clip_boxes=False, variances=[0.1, 0.1, 0.2, 0.2], coords='centroids', normalize_coords=False, **kwargs): ''' All arguments need to be set to the same values as in the box encoding process, otherwise the behavior is undefined. Some of these arguments are explained in more detail in the documentation of the `SSDBoxEncoder` class. Arguments: img_height (int): The height of the input images. img_width (int): The width of the input images. this_scale (float): A float in [0, 1], the scaling factor for the size of the generated anchor boxes as a fraction of the shorter side of the input image. next_scale (float): A float in [0, 1], the next larger scaling factor. Only relevant if `self.two_boxes_for_ar1 == True`. aspect_ratios (list, optional): The list of aspect ratios for which default boxes are to be generated for this layer. two_boxes_for_ar1 (bool, optional): Only relevant if `aspect_ratios` contains 1. If `True`, two default boxes will be generated for aspect ratio 1. The first will be generated using the scaling factor for the respective layer, the second one will be generated using geometric mean of said scaling factor and next bigger scaling factor. clip_boxes (bool, optional): If `True`, clips the anchor box coordinates to stay within image boundaries. variances (list, optional): A list of 4 floats >0. The anchor box offset for each coordinate will be divided by its respective variance value. coords (str, optional): The box coordinate format to be used internally in the model (i.e. this is not the input format of the ground truth labels). Can be either 'centroids' for the format `(cx, cy, w, h)` (box center coordinates, width, and height), 'corners' for the format `(xmin, ymin, xmax, ymax)`, or 'minmax' for the format `(xmin, xmax, ymin, ymax)`. normalize_coords (bool, optional): Set to `True` if the model uses relative instead of absolute coordinates, i.e. if the model predicts box coordinates within [0,1] instead of absolute coordinates. ''' if K.backend() != 'tensorflow': raise TypeError("This layer only supports TensorFlow at the moment, but you are using the {} backend.".format(K.backend())) if (this_scale < 0) or (next_scale < 0) or (this_scale > 1): raise ValueError("`this_scale` must be in [0, 1] and `next_scale` must be >0, but `this_scale` == {}, `next_scale` == {}".format(this_scale, next_scale)) if len(variances) != 4: raise ValueError("4 variance values must be pased, but {} values were received.".format(len(variances))) variances = np.array(variances) if np.any(variances <= 0): raise ValueError("All variances must be >0, but the variances given are {}".format(variances)) self.img_height = img_height self.img_width = img_width self.this_scale = this_scale self.next_scale = next_scale self.aspect_ratios = aspect_ratios self.two_boxes_for_ar1 = two_boxes_for_ar1 self.this_steps = this_steps self.this_offsets = this_offsets self.clip_boxes = clip_boxes self.variances = variances self.coords = coords self.normalize_coords = normalize_coords # Compute the number of boxes per cell if (1 in aspect_ratios) and two_boxes_for_ar1: self.n_boxes = len(aspect_ratios) + 1 else: self.n_boxes = len(aspect_ratios) super(AnchorBoxes, self).__init__(**kwargs) def build(self, input_shape): self.input_spec = [InputSpec(shape=input_shape)] super(AnchorBoxes, self).build(input_shape) def call(self, x, mask=None): ''' Return an anchor box tensor based on the shape of the input tensor. The logic implemented here is identical to the logic in the module `ssd_box_encode_decode_utils.py`. Note that this tensor does not participate in any graph computations at runtime. It is being created as a constant once during graph creation and is just being output along with the rest of the model output during runtime. Because of this, all logic is implemented as Numpy array operations and it is sufficient to convert the resulting Numpy array into a Keras tensor at the very end before outputting it. Arguments: x (tensor): 4D tensor of shape `(batch, channels, height, width)` if `dim_ordering = 'th'` or `(batch, height, width, channels)` if `dim_ordering = 'tf'`. The input for this layer must be the output of the localization predictor layer. ''' # Compute box width and height for each aspect ratio # The shorter side of the image will be used to compute `w` and `h` using `scale` and `aspect_ratios`. size = min(self.img_height, self.img_width) # Compute the box widths and and heights for all aspect ratios wh_list = [] for ar in self.aspect_ratios: if (ar == 1): # Compute the regular anchor box for aspect ratio 1. box_height = box_width = self.this_scale * size wh_list.append((box_width, box_height)) if self.two_boxes_for_ar1: # Compute one slightly larger version using the geometric mean of this scale value and the next. box_height = box_width = np.sqrt(self.this_scale * self.next_scale) * size wh_list.append((box_width, box_height)) else: box_height = self.this_scale * size / np.sqrt(ar) box_width = self.this_scale * size * np.sqrt(ar) wh_list.append((box_width, box_height)) wh_list = np.array(wh_list) # We need the shape of the input tensor if K.image_data_format() == 'channels_last': batch_size, feature_map_height, feature_map_width, feature_map_channels = x.shape else: # Not yet relevant since TensorFlow is the only supported backend right now, but it can't harm to have this in here for the future batch_size, feature_map_channels, feature_map_height, feature_map_width = x.shape # Compute the grid of box center points. They are identical for all aspect ratios. # Compute the step sizes, i.e. how far apart the anchor box center points will be vertically and horizontally. if (self.this_steps is None): step_height = self.img_height / feature_map_height step_width = self.img_width / feature_map_width else: if isinstance(self.this_steps, (list, tuple)) and (len(self.this_steps) == 2): step_height = self.this_steps[0] step_width = self.this_steps[1] elif isinstance(self.this_steps, (int, float)): step_height = self.this_steps step_width = self.this_steps # Compute the offsets, i.e. at what pixel values the first anchor box center point will be from the top and from the left of the image. if (self.this_offsets is None): offset_height = 0.5 offset_width = 0.5 else: if isinstance(self.this_offsets, (list, tuple)) and (len(self.this_offsets) == 2): offset_height = self.this_offsets[0] offset_width = self.this_offsets[1] elif isinstance(self.this_offsets, (int, float)): offset_height = self.this_offsets offset_width = self.this_offsets # Now that we have the offsets and step sizes, compute the grid of anchor box center points. cy = np.linspace(offset_height * step_height, (offset_height + feature_map_height - 1) * step_height, feature_map_height) cx = np.linspace(offset_width * step_width, (offset_width + feature_map_width - 1) * step_width, feature_map_width) cx_grid, cy_grid = np.meshgrid(cx, cy) cx_grid = np.expand_dims(cx_grid, -1) # This is necessary for np.tile() to do what we want further down cy_grid = np.expand_dims(cy_grid, -1) # This is necessary for np.tile() to do what we want further down # Create a 4D tensor template of shape `(feature_map_height, feature_map_width, n_boxes, 4)` # where the last dimension will contain `(cx, cy, w, h)` boxes_tensor = np.zeros((feature_map_height, feature_map_width, self.n_boxes, 4)) boxes_tensor[:, :, :, 0] = np.tile(cx_grid, (1, 1, self.n_boxes)) # Set cx boxes_tensor[:, :, :, 1] = np.tile(cy_grid, (1, 1, self.n_boxes)) # Set cy boxes_tensor[:, :, :, 2] = wh_list[:, 0] # Set w boxes_tensor[:, :, :, 3] = wh_list[:, 1] # Set h # Convert `(cx, cy, w, h)` to `(xmin, xmax, ymin, ymax)` boxes_tensor = convert_coordinates(boxes_tensor, start_index=0, conversion='centroids2corners') # If `clip_boxes` is enabled, clip the coordinates to lie within the image boundaries if self.clip_boxes: x_coords = boxes_tensor[:,:,:,[0, 2]] x_coords[x_coords >= self.img_width] = self.img_width - 1 x_coords[x_coords < 0] = 0 boxes_tensor[:,:,:,[0, 2]] = x_coords y_coords = boxes_tensor[:,:,:,[1, 3]] y_coords[y_coords >= self.img_height] = self.img_height - 1 y_coords[y_coords < 0] = 0 boxes_tensor[:,:,:,[1, 3]] = y_coords # If `normalize_coords` is enabled, normalize the coordinates to be within [0,1] if self.normalize_coords: boxes_tensor[:, :, :, [0, 2]] /= self.img_width boxes_tensor[:, :, :, [1, 3]] /= self.img_height # TODO: Implement box limiting directly for `(cx, cy, w, h)` so that we don't have to unnecessarily convert back and forth. if self.coords == 'centroids': # Convert `(xmin, ymin, xmax, ymax)` back to `(cx, cy, w, h)`. boxes_tensor = convert_coordinates(boxes_tensor, start_index=0, conversion='corners2centroids', border_pixels='half') elif self.coords == 'minmax': # Convert `(xmin, ymin, xmax, ymax)` to `(xmin, xmax, ymin, ymax). boxes_tensor = convert_coordinates(boxes_tensor, start_index=0, conversion='corners2minmax', border_pixels='half') # Create a tensor to contain the variances and append it to `boxes_tensor`. This tensor has the same shape # as `boxes_tensor` and simply contains the same 4 variance values for every position in the last axis. variances_tensor = np.zeros_like(boxes_tensor) # Has shape `(feature_map_height, feature_map_width, n_boxes, 4)` variances_tensor += self.variances # Long live broadcasting # Now `boxes_tensor` becomes a tensor of shape `(feature_map_height, feature_map_width, n_boxes, 8)` boxes_tensor = np.concatenate((boxes_tensor, variances_tensor), axis=-1) # Now prepend one dimension to `boxes_tensor` to account for the batch size and tile it along # The result will be a 5D tensor of shape `(batch_size, feature_map_height, feature_map_width, n_boxes, 8)` boxes_tensor = np.expand_dims(boxes_tensor, axis=0) boxes_tensor = K.tile(K.constant(boxes_tensor, dtype='float32'), (K.shape(x)[0], 1, 1, 1, 1)) return boxes_tensor def compute_output_shape(self, input_shape): if K.common.image_dim_ordering() == 'tf': batch_size, feature_map_height, feature_map_width, feature_map_channels = input_shape else: # Not yet relevant since TensorFlow is the only supported backend right now, but it can't harm to have this in here for the future batch_size, feature_map_channels, feature_map_height, feature_map_width = input_shape return (batch_size, feature_map_height, feature_map_width, self.n_boxes, 8) def get_config(self): config = { 'img_height': self.img_height, 'img_width': self.img_width, 'this_scale': self.this_scale, 'next_scale': self.next_scale, 'aspect_ratios': list(self.aspect_ratios), 'two_boxes_for_ar1': self.two_boxes_for_ar1, 'clip_boxes': self.clip_boxes, 'variances': list(self.variances), 'coords': self.coords, 'normalize_coords': self.normalize_coords } base_config = super(AnchorBoxes, self).get_config() return dict(list(base_config.items()) + list(config.items()))
# coding: utf-8 import pprint import re import six from huaweicloudsdkcore.sdk_response import SdkResponse class UpdateRuleResponse(SdkResponse): """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ sensitive_list = [] openapi_types = { 'rule_id': 'str', 'name': 'str', 'description': 'str', 'condition_group': 'ConditionGroup', 'actions': 'list[RuleAction]', 'rule_type': 'str', 'status': 'str', 'app_id': 'str', 'edge_node_ids': 'list[str]', 'last_update_time': 'str' } attribute_map = { 'rule_id': 'rule_id', 'name': 'name', 'description': 'description', 'condition_group': 'condition_group', 'actions': 'actions', 'rule_type': 'rule_type', 'status': 'status', 'app_id': 'app_id', 'edge_node_ids': 'edge_node_ids', 'last_update_time': 'last_update_time' } def __init__(self, rule_id=None, name=None, description=None, condition_group=None, actions=None, rule_type=None, status=None, app_id=None, edge_node_ids=None, last_update_time=None): """UpdateRuleResponse - a model defined in huaweicloud sdk""" super().__init__() self._rule_id = None self._name = None self._description = None self._condition_group = None self._actions = None self._rule_type = None self._status = None self._app_id = None self._edge_node_ids = None self._last_update_time = None self.discriminator = None if rule_id is not None: self.rule_id = rule_id if name is not None: self.name = name if description is not None: self.description = description if condition_group is not None: self.condition_group = condition_group if actions is not None: self.actions = actions if rule_type is not None: self.rule_type = rule_type if status is not None: self.status = status if app_id is not None: self.app_id = app_id if edge_node_ids is not None: self.edge_node_ids = edge_node_ids if last_update_time is not None: self.last_update_time = last_update_time @property def rule_id(self): """Gets the rule_id of this UpdateRuleResponse. 规则id。 :return: The rule_id of this UpdateRuleResponse. :rtype: str """ return self._rule_id @rule_id.setter def rule_id(self, rule_id): """Sets the rule_id of this UpdateRuleResponse. 规则id。 :param rule_id: The rule_id of this UpdateRuleResponse. :type: str """ self._rule_id = rule_id @property def name(self): """Gets the name of this UpdateRuleResponse. 规则名称。 :return: The name of this UpdateRuleResponse. :rtype: str """ return self._name @name.setter def name(self, name): """Sets the name of this UpdateRuleResponse. 规则名称。 :param name: The name of this UpdateRuleResponse. :type: str """ self._name = name @property def description(self): """Gets the description of this UpdateRuleResponse. 规则的描述信息。 :return: The description of this UpdateRuleResponse. :rtype: str """ return self._description @description.setter def description(self, description): """Sets the description of this UpdateRuleResponse. 规则的描述信息。 :param description: The description of this UpdateRuleResponse. :type: str """ self._description = description @property def condition_group(self): """Gets the condition_group of this UpdateRuleResponse. :return: The condition_group of this UpdateRuleResponse. :rtype: ConditionGroup """ return self._condition_group @condition_group.setter def condition_group(self, condition_group): """Sets the condition_group of this UpdateRuleResponse. :param condition_group: The condition_group of this UpdateRuleResponse. :type: ConditionGroup """ self._condition_group = condition_group @property def actions(self): """Gets the actions of this UpdateRuleResponse. 规则的动作列表,单个规则最多支持设置10个动作。 :return: The actions of this UpdateRuleResponse. :rtype: list[RuleAction] """ return self._actions @actions.setter def actions(self, actions): """Sets the actions of this UpdateRuleResponse. 规则的动作列表,单个规则最多支持设置10个动作。 :param actions: The actions of this UpdateRuleResponse. :type: list[RuleAction] """ self._actions = actions @property def rule_type(self): """Gets the rule_type of this UpdateRuleResponse. 规则的类型 - DEVICE_LINKAGE:设备联动。 - DATA_FORWARDING:数据转发。 - EDGE:边缘侧。 :return: The rule_type of this UpdateRuleResponse. :rtype: str """ return self._rule_type @rule_type.setter def rule_type(self, rule_type): """Sets the rule_type of this UpdateRuleResponse. 规则的类型 - DEVICE_LINKAGE:设备联动。 - DATA_FORWARDING:数据转发。 - EDGE:边缘侧。 :param rule_type: The rule_type of this UpdateRuleResponse. :type: str """ self._rule_type = rule_type @property def status(self): """Gets the status of this UpdateRuleResponse. 规则的状态,默认值:active。 - active:激活。 - inactive:未激活。 :return: The status of this UpdateRuleResponse. :rtype: str """ return self._status @status.setter def status(self, status): """Sets the status of this UpdateRuleResponse. 规则的状态,默认值:active。 - active:激活。 - inactive:未激活。 :param status: The status of this UpdateRuleResponse. :type: str """ self._status = status @property def app_id(self): """Gets the app_id of this UpdateRuleResponse. 资源空间ID。此参数为非必选参数,存在多资源空间的用户需要使用该接口时,建议携带该参数指定创建的规则归属到哪个资源空间下,否则创建的规则将会归属到[默认资源空间](https://support.huaweicloud.com/usermanual-iothub/iot_01_0006.html#section0)下。 :return: The app_id of this UpdateRuleResponse. :rtype: str """ return self._app_id @app_id.setter def app_id(self, app_id): """Sets the app_id of this UpdateRuleResponse. 资源空间ID。此参数为非必选参数,存在多资源空间的用户需要使用该接口时,建议携带该参数指定创建的规则归属到哪个资源空间下,否则创建的规则将会归属到[默认资源空间](https://support.huaweicloud.com/usermanual-iothub/iot_01_0006.html#section0)下。 :param app_id: The app_id of this UpdateRuleResponse. :type: str """ self._app_id = app_id @property def edge_node_ids(self): """Gets the edge_node_ids of this UpdateRuleResponse. 归属边缘侧节点设备ID列表。 :return: The edge_node_ids of this UpdateRuleResponse. :rtype: list[str] """ return self._edge_node_ids @edge_node_ids.setter def edge_node_ids(self, edge_node_ids): """Sets the edge_node_ids of this UpdateRuleResponse. 归属边缘侧节点设备ID列表。 :param edge_node_ids: The edge_node_ids of this UpdateRuleResponse. :type: list[str] """ self._edge_node_ids = edge_node_ids @property def last_update_time(self): """Gets the last_update_time of this UpdateRuleResponse. 规则最后更新时间,使用UTC时区,格式:yyyyMMdd'T'HHmmss'Z'。 :return: The last_update_time of this UpdateRuleResponse. :rtype: str """ return self._last_update_time @last_update_time.setter def last_update_time(self, last_update_time): """Sets the last_update_time of this UpdateRuleResponse. 规则最后更新时间,使用UTC时区,格式:yyyyMMdd'T'HHmmss'Z'。 :param last_update_time: The last_update_time of this UpdateRuleResponse. :type: str """ self._last_update_time = last_update_time def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: if attr in self.sensitive_list: result[attr] = "****" else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, UpdateRuleResponse): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
""" Some useful functions to port a model from lasagne to tensorflow. * Lasagne uses the format BCHW, while tensorflow uses BHWC (B = batch_size, C = channels, H = height, W = width) * By default, lasagne uses convolution, while tensorflow implements cross-correlation (convolution is equivalent to cross-correlation with flipped filters) Here we define some functions to change the filters from one format to the other """ import numpy as np class copy_initializer: def __init__(self, value_to_copy): self.value_to_copy = value_to_copy def __call__(self, shape, **kwargs): expected_shape = list(shape) actual_shape = list(self.value_to_copy.shape) assert actual_shape == expected_shape, 'Invalid shape for initilizer. Expected: %s. Given: %s.' % (expected_shape, actual_shape) return self.value_to_copy class flipping_copy_initializer (copy_initializer): def __init__(self, value_to_copy): v = np.transpose(value_to_copy, [2,3,1,0]) v = v [::-1,::-1,:,:] self.value_to_copy = v class transpose_copy_initializer (copy_initializer): def __init__(self, value_to_copy): v = np.transpose(value_to_copy, [2,3,1,0]) self.value_to_copy = v
# -*- coding: utf-8 -*- """Test atomic values from expression Parser""" from inspect import isclass import locale import math from json import JSONDecodeError import pytest import lark.exceptions from lark_expr import Expression from methods import list_methods # pylint: disable=attribute-defined-outside-init class exactly(object): """An identity match with type""" def __init__(self, value): """init""" self.value = value def __eq__(self, other): """exact comparision""" if self.value != other: return False if self.value.__class__ != other.__class__: return False return True def __repr__(self): """repr""" return repr(self.value) def __str__(self): """str""" return str(self.value) class nearly(object): """An identity match with type""" def __init__(self, value): """init""" self.value = value def __eq__(self, other): """exact comparision""" if isinstance(self.value, float) and isinstance(other, float): if not math.isclose(self.value, other): return False elif self.value != other: return False if self.value.__class__ != other.__class__: return False return True def __repr__(self): """repr""" return repr(self.value) def __str__(self): """str""" return str(self.value) class sametype(object): """Match any value of same type""" def __init__(self, value): """init""" self.value = value def __eq__(self, other): """exact comparision""" if type(other) == type(self.value): # pylint: disable=C0123 return True return False def __repr__(self): """repr""" return repr(self.value) def __str__(self): """str""" return str(self.value) class SkipIf(object): """Skip test if subexpression fails""" def __init__(self, value, skip_condition): """init""" self.value = value self.skip_condition = skip_condition def check_skip(self): """check_skip""" if callable(self.skip_condition): try: self.skip_condition() except Exception: pytest.skip('Unsupported test') return self.value # pylint: disable=line-too-long FUNCTION_TESTS = [ ('join(", ", "one", "two", "three")', 'one, two, three'), ('split("one,two,three", ",")', ['one', 'two', 'three']), ('copysign(1,-5)', -1), ('printf("%5.3f", 0.2)', '0.200'), ('abs(-5)', 5), ('factorial(5)', 120), ('len(1,2,3)', TypeError), ('len([1,2,3])', 3), ('len(name)', 4), ('ceil(.5)', 1), ('ceil(".5")', 1), ('sum(.1, .1, .1, .1, .1, .1, .1, .1, .1, .1)', exactly(1.0)), ('sum([.1, .1, .1, .1, .1, .1, .1, .1, .1, .1])', exactly(1.0)), ('sum(".1", ".1", ".1", ".1", ".1", ".1", ".1", ".1", ".1", ".1")', exactly(1.0)), ('gcd(24, 36)', 12), ('gcd(24, "a")', TypeError), ( 'locale_currency(5000.99, grouping=True)', SkipIf('$5,000.99', lambda: locale.setlocale(locale.LC_ALL, 'EN_us')), ), ( 'asdf', NameError( 'asdf', ), ), ('acos(1)', 0.0), ('acos(0)', 1.5707963267948966), ( "acox('f')", ValueError( 'Function acox not found', ), ), ( "acos('f')", TypeError( 'must be real number, not literal', ), ), ( 'acosh(0)', ValueError( 'math domain error', ), ), ('acosh(1)', 0.0), ('acosh(2)', 1.3169578969248166), ( "acosh('f')", TypeError( 'must be real number, not literal', ), ), ('asin(0)', 0.0), ('asin(1)', 1.5707963267948966), ( "asin('f')", TypeError( 'must be real number, not literal', ), ), ( 'asinh(0))', SyntaxError( "Unexpected token Token(RPAR, ')') at line 1, column 9.", ), ), ('asinh(0)', 0.0), ('asinh(1)', 0.881373587019543), ('asinh(pi/2)', 1.233403117511217), ( "asinh('f')", TypeError( 'must be real number, not literal', ), ), ('atan(0)', 0.0), ('atan(1)', 0.7853981633974483), ('atan(pi)', 1.2626272556789115), ( "atan('f')", TypeError( 'must be real number, not literal', ), ), ('atanh(0)', 0.0), ( 'atanh(1)', ValueError( 'math domain error', ), ), ( "atanh('f')", TypeError( 'must be real number, not literal', ), ), ( 'atanh(pi)', ValueError( 'math domain error', ), ), ( 'b64encode(1)', TypeError( "a bytes-like object is required, not 'int'", ), ), ("b64encode('foo')", 'Zm9v'), ("b64decode('Zm9v')", 'foo'), ( 'b64decode()', TypeError( "f_b64decode() missing 1 required positional argument: 's'", ), ), ( 'b64decode(1)', TypeError( "argument should be a bytes-like object or ASCII string, not 'int'", ), ), ("bytes('a')", b'a'), ("bytes('a','ascii')", b'a'), ("center('a', 20)", ' a '), ("choice(False, 'True Choice', 'False Choice')", 'False Choice'), ("choice(True, 'True Choice', 'False Choice')", 'True Choice'), ("choice(True, 'True Choice')", 'True Choice'), ('choice(True)', None), ( 'choice()', TypeError( "f_choice() missing 1 required positional argument: 'condition'", ), ), ('chr(65)', 'A'), ( "chr('x')", TypeError( 'an integer is required (got type literal)', ), ), ( 'chr(-1)', ValueError( 'chr() arg not in range(0x110000)', ), ), ('chr(257)', 'ā'), ('cos(0)', 1.0), ('cos(1)', 0.5403023058681398), ('cos(-1)', 0.5403023058681398), ( "cos('x')", TypeError( 'must be real number, not literal', ), ), ('cosh(0)', 1.0), ('cosh(1)', 1.5430806348152437), ( "cosh('x')", TypeError( 'must be real number, not literal', ), ), ("datetime('July 4, 1776')", '1776-07-04T00:00:00'), ('datetime(157900000)', '1975-01-02T13:06:40+00:00'), ( "datetime('foo')", RuntimeError( 'Could not format input (foo) to datetime string.', ), ), ('degrees(2*pi)', 360.0), ( "degrees('f')", TypeError( 'must be real number, not literal', ), ), ('erf(1)', 0.842700792949715), ( "erf('x')", TypeError( 'must be real number, not literal', ), ), ('erfc(1)', 0.157299207050285), ( "erfc('x')", TypeError( 'must be real number, not literal', ), ), ('exp(1)', 2.718281828459045), ('exp(2)', 7.38905609893065), ( "exp('x')", TypeError( 'must be real number, not literal', ), ), ('expm1(1)', 1.7182818284590453), ('expm1(0)', 0.0), ( "expm1('x')", TypeError( 'must be real number, not literal', ), ), ( 'find()', TypeError( "f_find() missing 2 required positional arguments: 'ob' and 'value'", ), ), ("find('fool', 'foo')", 0), ("find('I pity the foo', 'foo')", 11), ("find('I pity the foo', 'Foo')", -1), ( "find('I pity the foo', 1)", TypeError( 'must be str, not int', ), ), ( 'find(1, 1)', AttributeError( "'int' object has no attribute 'index'", ), ), ('flatten({})', {}), ("flatten({'a': 1'})", lark.exceptions.UnexpectedCharacters), ("flatten({'a': 1})", {'a': '1'}), ("flatten({'a': 1, 'b': {'erp': 0, 'ulp': 5}})", {'a': '1', 'b.erp': '0', 'b.ulp': '5'}), ('float(1)', 1.0), ('float(.1)', 0.1), ( "float('x')", ValueError( "could not convert string to float: 'x'", ), ), ( 'format()', TypeError( "f_format() missing 1 required positional argument: 's'", ), ), ("format('a')", 'a'), ("format('{pi}')", '3.141592653589793'), ("format('{pi} / 2 = {f}', f=pi/2)", '3.141592653589793 / 2 = 1.5707963267948966'), ( 'gamma(0)', ValueError( 'math domain error', ), ), ('gamma(1)', 1.0), ('gamma(e)', 1.5674682557740531), ( "gamma('x')", TypeError( 'must be real number, not literal', ), ), ( 'hypot(0)', TypeError( "missing a required argument: 'y'", ), ), ('hypot(0,1)', 1.0), ("index('I pity the foo', 'foo')", 11), ( "index('I pity the foo', 'Foo')", ValueError( 'substring not found', ), ), ('index((1,2,3), 2)', 1), ( 'index((1,2,3), 2, 4)', ValueError( 'tuple.index(x): x not in tuple', ), ), ('int(1)', 1), ('int(1.1)', 1), ( "int('1.1')", ValueError( "invalid literal for int() with base 10: '1.1'", ), ), ("int('1')", 1), ( "int('foo')", ValueError( "invalid literal for int() with base 10: 'foo'", ), ), ( 'items()', TypeError( "f_items() missing 1 required positional argument: 'ob'", ), ), ( "items('1')", AttributeError( "'literal' object has no attribute 'items'", ), ), ( 'items([1,2,3])', AttributeError( "'frozen_list' object has no attribute 'items'", ), ), ( "items({'a'", SyntaxError( "Unexpected token Token($END, '') at line 1, column 8.", ), ), ("items({'a': 1, 'b': 1})", [('a', 1), ('b', 1)]), ( "jmespath({ 'a': 1, 'b': [{'i': 0}, {'i': 1}]})", TypeError( "f_jmespath() missing 1 required positional argument: 'ob'", ), ), ("jmespath('a', { 'a': 1, 'b': [{'i': 0}, {'i': 1}]})", 1), ("jmespath('c', { 'a': 1, 'b': [{'i': 0}, {'i': 1}]})", None), ("jmespath('b', { 'a': 1, 'b': [{'i': 0}, {'i': 1}]})", [{'i': 0}, {'i': 1}]), ("jmespath('*.i', { 'a': 1, 'b': [{'i': 0}, {'i': 1}]})", []), ("jmespath('b[].i', { 'a': 1, 'b': [{'i': 0}, {'i': 1}]})", [0, 1]), ( "json({ 'a': 1, 'b': [{'i': 0}, {'i': 1}]})", '{\n "a": 1,\n "b": [\n {\n "i": 0\n },\n {\n "i": 1\n }\n ]\n}', ), ( 'json()', TypeError( "f_json() missing 1 required positional argument: 'ob'", ), ), ("json('x')", '"x"'), ( "json_dump({ 'a': 1, 'b': [{'i': 0}, {'i': 1}]})", '{\n "a": 1,\n "b": [\n {\n "i": 0\n },\n {\n "i": 1\n }\n ]\n}', ), ( "json_dump({ 'a': 1, 'b': [{'i': 0}, {'i': 1}]},indent=0)", '{\n"a": 1,\n"b": [\n{\n"i": 0\n},\n{\n"i": 1\n}\n]\n}', ), ( "json_load({ 'a': 1, 'b': [{'i': 0}, {'i': 1}]})", TypeError( "the JSON object must be str, bytes or bytearray, not 'dict'", ), ), ('json_load("{ \'a\': 1, \'b\': [{\'i\': 0}, {\'i\': 1}]}")', JSONDecodeError), ( 'json_load("{ \'a\': 1, \'b\': [{\'i\': 0}, {\'i\': 1}]})', lark.exceptions.UnexpectedCharacters, ), ('json_load(\'{ "a": 1, "b": [{"i": 0}, {"i": 1}]}\')', {'a': 1, 'b': [{'i': 0}, {'i': 1}]}), ("keys({ 'a': 1, 'b': [{'i': 0}, {'i': 1}]})", ['a', 'b']), ( 'lgamma(0)', ValueError( 'math domain error', ), ), ('lgamma(1)', 0.0), ('lgamma(e)', 0.4494617418200675), ( "locale_format('%5.3f', pi)", SkipIf('3.142', lambda: locale.setlocale(locale.LC_ALL, 'EN_us')), ), ( "locale_format('%5.3f', pi*1000)", SkipIf('3141.593', lambda: locale.setlocale(locale.LC_ALL, 'EN_us')), ), ( "locale_format('%5.3f', pi*1000, grouping=True)", SkipIf('3,141.593', lambda: locale.setlocale(locale.LC_ALL, 'EN_us')), ), ( "locale_format('%5.3f', pi*1000, grouping=True, monetary=True)", SkipIf('3,141.593', lambda: locale.setlocale(locale.LC_ALL, 'EN_us')), ), ( 'locale_currency(pi*1000)', SkipIf('$3141.59', lambda: locale.setlocale(locale.LC_ALL, 'EN_us')), ), ( 'locale_currency(pi*1000, grouping=True)', SkipIf('$3,141.59', lambda: locale.setlocale(locale.LC_ALL, 'EN_us')), ), ( 'locale_currency(pi*1000, symbol=False, grouping=True)', SkipIf('3,141.59', lambda: locale.setlocale(locale.LC_ALL, 'EN_us')), ), ( 'locale_currency(pi*1000, grouping=True, international=True)', SkipIf('USD 3,141.59', lambda: locale.setlocale(locale.LC_ALL, 'EN_us')), ), ( 'locale_currency(pi*1000, grouping=True, locale="ES_es")', SkipIf('3.141,59 Eu', lambda: locale.setlocale(locale.LC_ALL, 'ES_es')), ), ( 'locale_currency(pi*1000, grouping=True, locale="EN_gb")', SkipIf('£3,141.59', lambda: locale.setlocale(locale.LC_ALL, 'EN_gb')), ), ('log(10)', 2.302585092994046), ('log(10,2)', 3.3219280948873626), ('log(16,2)', 4.0), ('log10(100)', 2.0), ('log10(1000)', 3.0), ('log10(5)', 0.6989700043360189), ( "log10('x')", TypeError( 'must be real number, not literal', ), ), ('log1p(10)', 2.3978952727983707), ('log2(16)', 4.0), ('log2(10)', 3.321928094887362), ("lower('UPPER')", 'upper'), ("lstrip('foo')", 'foo'), ("lstrip(' foo')", 'foo'), ("lstrip(' foo ')", 'foo '), ( 'namevallist()', TypeError( "f_namevallist() missing 1 required positional argument: 'ob'", ), ), ( 'namevallist(pi)', AttributeError( "'float' object has no attribute 'items'", ), ), ("namevallist({'a': 1, 'b': 2})", [{'name': 'a', 'value': 1}, {'name': 'b', 'value': 2}]), ("ord('A')", 65), ( 'ord()', TypeError( "f_ord() missing 1 required positional argument: 'char'", ), ), ( "ord('')", TypeError( 'ord() expected a character, but string of length 0 found', ), ), ( "ord('AB')", TypeError( 'ord() expected a character, but string of length 2 found', ), ), ( 'pow(0)', TypeError( "missing a required argument: 'y'", ), ), ('pow(0,1)', 0.0), ('radians(360)', 6.283185307179586), ('radians(180)', 3.141592653589793), ( "radians('x')", TypeError( 'must be real number, not literal', ), ), ('range(0)', []), ( 'range()', TypeError( "f_range() missing 1 required positional argument: 'start_or_stop'", ), ), ('range(5)', [0, 1, 2, 3, 4]), ('range(5,1)', []), ('range(1, 5)', [1, 2, 3, 4]), ('range(5, 0, -1)', [5, 4, 3, 2, 1]), ("replace('foo', 'o', 'e')", 'fee'), ( "replace('foo')", TypeError( "missing a required argument: 'source'", ), ), ("replace(5, 'o', 'e')", '5'), ("rstrip('foo')", 'foo'), ("rstrip(' foo ')", ' foo'), ("rstrip(' foo ')", ' foo'), ('sin(0)', 0.0), ('sin(1)', 0.8414709848078965), ('sin(pi)', 1.2246467991473532e-16), ('sinh(0)', 0.0), ('sinh(1)', 1.1752011936438014), ( "sinh('x')", TypeError( 'must be real number, not literal', ), ), ( 'sinh(1,2)', TypeError( 'too many positional arguments', ), ), ('sort((1,2,3))', [1, 2, 3]), ('sort((3,2,1))', [1, 2, 3]), ("sort('abc')", ['abc']), ('sort(1,2,3)', [1, 2, 3]), ('sort(3,2,1)', [1, 2, 3]), ('sqrt(2)', 1.4142135623730951), ( "sqrt('')", TypeError( 'must be real number, not literal', ), ), ('str(pi)', '3.141592653589793'), ("strip(' foo ')", 'foo'), ('tan(0)', 0.0), ('tan(1)', 1.557407724654902), ( "tan('x')", TypeError( 'must be real number, not literal', ), ), ('tanh(0)', 0.0), ('tanh(1)', 0.7615941559557649), ( "tanh('x')", TypeError( 'must be real number, not literal', ), ), ( "timedelta('July 4, 1776', 'July 4, 2020')", { 'datetime_1': '1776-07-04T00:00:00', 'datetime_2': '2020-07-04T00:00:00', 'years': -244, 'months': 0, 'weeks': 0, 'days': 0, 'hours': 0, 'minutes': 0, 'seconds': 0, 'microseconds': 0, 'total_months': -2928, 'total_weeks': -24400, 'total_days': -89119, 'total_hours': -2138856, 'total_minutes': -128331360, 'total_seconds': -7699881600, 'total_microseconds': -7699881600000, }, ), ("title('foo')", 'Foo'), ("title('foo the first')", 'Foo The First'), ('trunc(1.1)', 1), ("upper('foo')", 'FOO'), ("values({'a': 1, 'b': 2})", [1, 2]), ( "values('a')", AttributeError( "'literal' object has no attribute 'values'", ), ), ( 'values(1)', AttributeError( "'int' object has no attribute 'values'", ), ), ( 'values([1])', AttributeError( "'int' object has no attribute 'values'", ), ), ('min(1,2,3)', 1), ('min(3,2,1)', 1), ('min([3,2,1])', 1), ( 'min()3,2,1))', SyntaxError( "Unexpected token Token(INT, '3') at line 1, column 6.", ), ), ('min((3,2,1))', 1), ("min('wxyza')", 'a'), ("max('wxyza')", 'z'), ('max(1,2,3)', 3), ('max(3,2,1)', 3), ("min({'a': 'foo', 'b': 'bla'})", 'a'), ("max({'a': 'foo', 'b': 'bla'})", 'b'), ("pad('foo', 7)", 'foo '), ("pad('foo', 7, '*')", 'foo****'), ( "pad('foo', 7, '**')", ValueError( 'pad value must be string of length one', ), ), ("pad('foofoofoo', 7)", 'foofoofoo'), ("pad('foofoof', 7)", 'foofoof'), ("pad('foofoo', 7)", 'foofoo '), ('pad([1,2,3], 7)', [1, 2, 3, None, None, None, None]), ('pad([1,2,3,4,5,6,7], 7)', [1, 2, 3, 4, 5, 6, 7]), ('pad([1,2,3,4,5,6,7,8], 7)', [1, 2, 3, 4, 5, 6, 7, 8]), ( "pad([1,2,3,4,5,6,7,8], 'a')", TypeError( 'length must be integer', ), ), ("research('\\d{4}-\\d{2}-\\d{2}', '2017-07-01T16:18:19')", '2017-07-01'), ("rematch('\\d{4}-\\d{2}-\\d{2}', '2017-07-01T16:18:19')", '2017-07-01'), ('pformat(1)', '1'), ("pformat('foo')", "'foo'"), ("pformat({'a': 1, 'b': {'c': 2}})", "{'a': 1, 'b': {'c': 2}}"), ('csvread("a,b,c,1,2,3.5")', ['a', 'b', 'c', 1, 2, 3.5]), ( 'csvread("a,b,c,1,2,3.5\\na,b,c",convert=False)', [['a', 'b', 'c', '1', '2', '3.5'], ['a', 'b', 'c']], ), ('csvread("a,b,c,1,2,3.5\\na,b,c",rows=1)', ['a', 'b', 'c', 1, 2, 3.5]), ('csvread("a,b,c,1,2,3.5\\na,b,c",rows=1,columns=3)', ['a', 'b', 'c']), ('csvread("a,b,c,1,2,3.5\\nx,y,z",rows=1,columns=3,header=True)', ['x', 'y', 'z']), ( 'csvwrite(["Mary had a little lamb, whose fleece was white as snow", 1, 2, 3.5])', '"Mary had a little lamb, whose fleece was white as snow",1,2,3.5\r\n', ), ( 'csvwrite(["Mary had a little lamb, whose fleece was white as snow", 1, 2, 3.5], ' 'delimiter=\'|\')', 'Mary had a little lamb, whose fleece was white as snow|1|2|3.5\r\n', ), ("md5('foo')", 'acbd18db4cc2f85cedef654fccc4a4d8'), ("md5(bytes('foo', 'utf-8'))", 'acbd18db4cc2f85cedef654fccc4a4d8'), ("md5(['foo', 'bla'])", 'fff5d68e6fd4f50ab7d7668481c534aa'), ("sha1('foo')", '0beec7b5ea3f0fdbc95d0dd47f3c5bc275da8a33'), ("sha256('foo')", '2c26b46b68ffc68ff99b453c1d30413413422d706483bfa0f98a5e886266e7ae'), ('sha256(None)', 'dc937b59892604f5a86ac96936cd7ff09e25f18ae6b758e8014a24c7fa039e91'), ("sha256('')", 'e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855'), ("fuzzydist(spamsum('foo '*512 + ' bla'), spamsum('foo '*513))", 2), ("fuzzyhash('foo bla blerg woot growl bark')", 'NQFu2URFUKSJ9Ee'), ("fuzzyhash('foo bla blerg woot Growl bark')", 'NQFu2URF0Ge'), ("fuzzydist('NQFu2URFUKSJ9Ee', 'NQFu2URF0Ge')", 8), ( "refindall(urlre, 'this contains www.foo.com https://www.foo.com/bla/oog as a url" " and foo.bla.org/path?param=f&z=y and 1.2.3.4 and matt@domain.com')", ['www.foo.com', 'https://www.foo.com/bla/oog', 'foo.bla.org/path?param=f&z=y'], ), ( "urlparse('https://foo.com/path/to/html?query=None#fragment')", ('https', 'foo.com', '/path/to/html', '', 'query=None', 'fragment'), ), ("urlparse_qs('foo=bla&bla=oog').foo[0]", 'bla'), ('unique((1,2,3,4,5,2,1,{"foo": "bla"}))', [1, 2, 3, 4, 5, {'foo': 'bla'}]), ("fuzzymatch('bla'+'foo'*63, 'foo'*63+'bla')", 98.17708333333333), ("fuzzymatch('foo bla zoid', 'foo bla21 blerg')", 74.07407407407408), ("fuzzymatch('foo bla zoid', 'foo bla21 blerg')>75", False), ('unnest((1,2,3,(4,5,6,(7,8,9))))', [1, 2, 3, 4, 5, 6, 7, 8, 9]), ("unnest((1,2,3,(4,5,6,(7,8,9),{'foo':'bla'})))", [1, 2, 3, 4, 5, 6, 7, 8, 9, {'foo': 'bla'}]), ("unnest('abcd')", 'abcd'), ('unnest(1)', 1), ( 'unnest(1,2,3)', TypeError( 'f_unnest() takes 1 positional argument but 3 were given', ), ), ('twoscompliment(160)', 160), ('twoscompliment(-160)', -4294967456), ('twoscompliment(-160,64)', -18446744073709551776), ('hex(-4294967456)', '-1000000a0'), ('hex(-4294967456, False)', '1000000a0'), ("int('100000a0', 16)", 268435616), ("int('1000000a0', 16)", 4294967456), ("int('-1000000a0', 16)", -4294967456), ('bin(2)', '10'), ('bin(3)', '11'), ('bin(-3)', '-11'), ('bin(5)', '101'), ('bin(-5)', '-101'), ("binary('foo')", b'foo'), ("bytes('foo')", b'foo'), ("str(bytes('foo'))", 'foo'), ("conform([{'a': 1}, {'b': 2}])", [{'a': 1, 'b': None}, {'b': 2, 'a': None}]), ("conform([{'a': 1}, {'b': 2}], missing_value='')", [{'a': 1, 'b': ''}, {'b': 2, 'a': ''}]), ("prune(conform([{'a': 1}, {'b': 2}], missing_value=''))", [{'a': 1}, {'b': 2}]), ('structure(12345)', 'int'), ("structure('12345')", 'int'), ("structure(datetime('now'))", 'iso8601'), ("structure(md5('now'))", 'md5'), ("structure(sha1('now'))", 'sha1'), ("structure(sha256('now'))", 'sha256'), ("update({'a': 1}, {'b': 2})", {'a': 1, 'b': 2}), ( 'rexxparse(\'Mary had a little lamb\', \'name . "had a" . thing\')', {'name': 'Mary', 'thing': 'lamb'}, ), ( 'rexxparse(\'Mary had a little lamb\', \'name . "had a " thing\')', {'name': 'Mary', 'thing': 'little lamb'}, ), ( 'rexxparse(\'Mary had a little lamb\', \'name . "had a " size thing\')', {'name': 'Mary', 'size': 'little', 'thing': 'lamb'}, ), ( 'rexxparse(\'Mary had a little lamb\', \'name . "had a " size thing 1 phrase\')', {'name': 'Mary', 'size': 'little', 'thing': 'lamb', 'phrase': 'Mary had a little lamb'}, ), ( 'rexxparse(\'Mary had a little lamb\', \'name . "had a " size thing 1 phrase 1 name +4\')', {'name': 'Mary', 'size': 'little', 'thing': 'lamb', 'phrase': 'Mary had a little lamb'}, ), ( ( 'rexxparse(\'127.0.0.1 - frank [10/Oct/2000:13:55:36 -0700] ' '"GET /apache_pb.gif ' 'HTTP/1.0" 200 2326\', "ip id user \' [\' date \'] \\"\'method url ' 'protocol\'\\" \' status size")' ), { 'ip': '127.0.0.1', 'id': '-', 'user': 'frank', 'date': '10/Oct/2000:13:55:36 -0700', 'method': 'GET', 'url': '/apache_pb.gif', 'protocol': 'HTTP/1.0', 'status': '200', 'size': '2326', }, ), ( 'rexxparse(\'Mary had a little lamb\', \'"little " chop +2 -2 animal +3\')', {'chop': 'li', 'animal': 'lit'}, ), ( 'rexxparse(\'Mary had a little lamb\', \'"little " chop +2 -2 animal +3 1 phrase\' )', {'chop': 'li', 'animal': 'lit', 'phrase': 'Mary had a little lamb'}, ), ("uuid3('dns', 'mtu.edu')", '93ea5ad7-ae2d-3509-bbbc-958b90bfe336'), ("uuid5('dns', 'mtu.edu')", 'b796a2f3-fcde-53a1-9123-e11e6c8f3216'), ('uuid4()', sametype('b796a2f3-fcde-53a1-9123-e11e6c8f3216')), ("structure(uuid4()) == 'guid'", True), ( "xmlread('<people><person><name>Matt</name><job>Developer</job></person></people>'," 'compact=True)', {'people': {'person': {'Matt': 'Developer'}}}, ), ( "xmlwrite({'people': {'person': {'Matt': 'Developer'}}})", '<people><person><Matt>Developer</Matt></person></people>', ), ( "xmlread('<people><person><name>Matt</name><job>Developer</job></person></people>', " 'compact=False)', {'people': [{'person': [{'name': 'Matt'}, {'job': 'Developer'}]}]}, ), ( "xmlwrite({'people': [{'person': [{'name': 'Matt'}, {'job': 'Developer'}]}]})", '<people><person><name>Matt</name><job>Developer</job></person></people>', ), ('chardet(kosme).encoding', 'utf-8'), ( 'indicator_patterns()', RuntimeError( 'TCEX not initialized, cannot retrieve patterns', ), ), ("fang('user@threatconnect.com')", 'user@threatconnect.com'), ("defang('user@threatconnect.com')", 'user(at)threatconnect[.]com'), ("fang('user(at)threatconnect[.]com')", 'user@threatconnect.com'), ( "extract_indicators('ASN1721 is whack but ASN1271 is not')", RuntimeError( 'TCEX not initialized, cannot retrieve patterns', ), ), ( "fetch_indicators('ASN1271', default_type='ASN')", RuntimeError( 'TCEX not initialized, cannot retrieve indicators', ), ), ( 'indicator_types()', RuntimeError( 'TCEX not initialized, cannot retrieve types', ), ), ( "pivot(('a', 'b', 'c'), (1,2,3), (1.0, 2.0, 3.0))", TypeError( 'f_pivot() takes from 1 to 2 positional arguments but 3 were given', ), ), ( "pivot((('a', 'b', 'c'), (1,2,3), (1.0, 2.0, 3.0)))", [['a', 1, 1.0], ['b', 2, 2.0], ['c', 3, 3.0]], ), ( "pivot((('a', 'b', 'c'), (1,2,3), (1.0, 2.0)))", [['a', 1, 1.0], ['b', 2, 2.0], ['c', 3, None]], ), ( "pivot((('a', 'b', 'c'), (1,), (1.0, 2.0)))", [['a', 1, 1.0], ['b', None, 2.0], ['c', None, None]], ), ( "pivot((('a', 'b', 'c'), [], (1.0, 2.0)))", [['a', None, 1.0], ['b', None, 2.0], ['c', None, None]], ), ( "pivot((('a', 'b', 'c'), [], (1.0, 2.0)), pad='')", [['a', '', 1.0], ['b', '', 2.0], ['c', '', '']], ), ( "build((1,2,3), ('a', 'b', 'c'), keys=('number', 'letter'))", [{'number': 1, 'letter': 'a'}, {'number': 2, 'letter': 'b'}, {'number': 3, 'letter': 'c'}], ), ( "build((1,2,3), ('a', 'b', 'c'), keys=('number', 'letter', 'extra'))", [{'number': 1, 'letter': 'a'}, {'number': 2, 'letter': 'b'}, {'number': 3, 'letter': 'c'}], ), ( "build((1,2,3), ('a', 'b'), keys=('number', 'letter', 'extra'))", [{'number': 1, 'letter': 'a'}, {'number': 2, 'letter': 'b'}], ), ( "build((1,2,3), ('a', 'b', 'c'), keys=('number',))", [{'number': 1}, {'number': 2}, {'number': 3}], ), ( "update([{'number': 1}, {'number': 2}, {'number': 3}], {'foo': 'bla'})", [{'number': 1, 'foo': 'bla'}, {'number': 2, 'foo': 'bla'}, {'number': 3, 'foo': 'bla'}], ), ( "update([{'number': 1}, {'number': 2}, {'number': 3}], {'foo': 'bla', 'number': 0})", [{'number': 0, 'foo': 'bla'}, {'number': 0, 'foo': 'bla'}, {'number': 0, 'foo': 'bla'}], ), ( "update([{'number': 1}, {'number': 2}, {'number': 3}], {'foo': 'bla', 'number': 0}, " 'replace=False)', [{'number': 1, 'foo': 'bla'}, {'number': 2, 'foo': 'bla'}, {'number': 3, 'foo': 'bla'}], ), ( "update([{'number': 1}, {'number': 2}, {'number': 3}, 'foo'], {'foo': 'bla'})", TypeError( 'update must work on dictionaries or lists of dictionaries', ), ), ("merge((1,2,3), ('a','b','c'))", [[1, 'a'], [2, 'b'], [3, 'c']]), ("merge((1,2,3), ('a','b','c', 'd'))", [[1, 'a'], [2, 'b'], [3, 'c']]), ( "merge(({'a': 1}, {'a': 2}, {'a': 3}), ({'b': 1}, {'b': 2}, {'b': 3}))", [{'a': 1, 'b': 1}, {'a': 2, 'b': 2}, {'a': 3, 'b': 3}], ), ( "merge(({'a': 1}, {'a': 2}, {'a': 3}), ({'b': 1}, {'b': 2}, {'b': 3, 'a': 0}))", [{'a': 1, 'b': 1}, {'a': 2, 'b': 2}, {'a': 3, 'b': 3}], ), ( "merge(({'a': 1}, {'a': 2}, {'a': 3}), ({'b': 1}, {'b': 2}, {'b': 3, 'a': 0}), " 'replace=True)', [{'a': 1, 'b': 1}, {'a': 2, 'b': 2}, {'a': 0, 'b': 3}], ), ("alter({}, 'a', 1)", 1), ( "report( ( ('a', 'b', 'c'), (1, 'bollux', 3), ('foo', 'bla', 'rumplestiltskin') ), header=True, title='Report', width=20)", '\n\n Report \n ------ \n\nA B C \n--- ------ ---------\n1 bollux 3 \nfoo bla rum- \n plestilt-\n skin ', ), ( "report( ( ('a', 'b', 'c'), (1, 'bollux', 3), ('foo', 'bla', 'rumplestiltskin') ), header=True, title='Report', width=80)", '\n\n Report \n ------ \n\nA B C \n--- ------ --------------- \n1 bollux 3 \nfoo bla rumplestiltskin', ), ( "report( ( ('a', 'b', 'c'), (1, 'bollux', 3), ('foo', 'bla', 'rumplestiltskin') ), header=True, title='Report', width=80, prolog='Report Prolog', epilog='Report Epilog')", '\n\n Report \n ------ \n\n\nReport Prolog \n\nA B C \n--- ------ --------------- \n1 bollux 3 \nfoo bla rumplestiltskin\n\nReport Epilog \n', ), ('dict(one=1, two=2)', {'one': 1, 'two': 2}), ( "kvlist( { 'name': 'Foo', 'value': 'Foo Value'}, {'name': 'Bla', 'value': 'Bla Value'})", TypeError( 'dictlist must be a list of dictionaries', ), ), ( "kvlist(({ 'key': 'Foo', 'value': 'Foo Value'}, {'key': 'Bla', 'value': 'Bla Value'}))", {'Foo': 'Foo Value', 'Bla': 'Bla Value'}, ), ] class TestFunctions(object): """Test atomic values""" def setup_class(self): """setup""" self.expr = Expression() self.expr.set('name', 'Matt') self.expr.set('one', 1) self.expr.set('two', 2.0) self.expr.set('self', self) self.expr.set('kosme', bytes('κόσμε', 'utf-8')) true = True @pytest.mark.parametrize('expression,result', FUNCTION_TESTS) def test_atom(self, expression, result): """test atomic values""" if isinstance(result, SkipIf): result = result.check_skip() if isinstance(result, float): result = nearly(result) if isclass(result) and issubclass(result, Exception): with pytest.raises(result): value = self.expr.eval(expression) elif isinstance(result, Exception): with pytest.raises(result.__class__): value = self.expr.eval(expression) result = result.args[0] assert value == result, f'{expression} == {result}' else: value = self.expr.eval(expression) assert value == result, f'{expression} == {result}' @staticmethod def test_list_methods(): """test_list_methods""" methods = list_methods() tested = {} scanning = False for method in methods.split('\n'): if method: method = method.strip() if method == '## Functions': scanning = True continue if not scanning: continue if not method: continue if method.startswith('#'): continue if method.startswith('* '): method = method[3:-1] else: continue name = method.strip().split('(')[0].strip() tested[name] = False for test, _ in FUNCTION_TESTS: method = test.split('(')[0].strip() if method in tested: tested[method] = True missing = [] for method, checked in tested.items(): if checked: continue missing.append(method) missing.sort() missing_tests = ', '.join(missing) assert not missing, f'Missing tests for {missing_tests}'
""" Django settings for commerce project. Generated by 'django-admin startproject' using Django 3.0.2. For more information on this file, see https://docs.djangoproject.com/en/3.0/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.0/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.0/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '6ps8j!crjgrxt34cqbqn7x&b3y%(fny8k8nh21+qa)%ws3fh!q' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'auctions', 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'commerce.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', 'auctions.context_processors.get_watchlist', ], }, }, ] WSGI_APPLICATION = 'commerce.wsgi.application' # Database # https://docs.djangoproject.com/en/3.0/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } AUTH_USER_MODEL = 'auctions.User' # Password validation # https://docs.djangoproject.com/en/3.0/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.0/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.0/howto/static-files/ STATIC_URL = '/static/' DEFAULT_AUTO_FIELD='django.db.models.AutoField'
from pathlib import Path from aiohttp import web from aiohttp_apiset import SwaggerRouter def test_app(loop, swagger_router): app = web.Application(loop=loop) swagger_router.setup(app) def test_search_dirs(): d = Path(__file__).parent r = SwaggerRouter(d / 'data/include.yaml') r.add_search_dir(d) def test_merge_spec(): d = Path(__file__).parent r = SwaggerRouter(d / 'data/include.yaml', search_dirs=[d]) r.include('data/file.yaml', basePath='/inc') def test_routes(swagger_router: SwaggerRouter): paths = [route.url_for().human_repr() for route in swagger_router.routes()] assert '/api/1/file/image' in paths def test_route_include(swagger_router: SwaggerRouter): paths = [route.url_for().human_repr() for route in swagger_router.routes()] assert '/api/1/include2/inc/image' in paths, paths def test_handler(swagger_router: SwaggerRouter): paths = [(route.method, route.url_for().human_repr()) for route in swagger_router.routes()] assert ('GET', '/api/1/include/image') in paths async def test_cbv_handler_get(client, swagger_router): url = swagger_router['file:simple:view'].url() res = await client.get(url) assert (await res.text()) == 'simple handler get' async def test_cbv_handler_post(client, swagger_router): url = swagger_router['file:simple:view'].url() res = await client.post(url) assert (await res.text()) == 'simple handler post' def test_override_basePath(loop): router = SwaggerRouter(search_dirs=['tests']) web.Application(router=router, loop=loop) prefix = '/override' router.include('data/root.yaml', basePath=prefix) paths = [url for url in [ route.url_for().human_repr() for route in router.routes() ] if url.startswith(prefix)] assert prefix in router._swagger_data assert paths def test_Path(): base = Path(__file__).parent router = SwaggerRouter( search_dirs=[base], swagger_ui=False, ) spec = base / 'data/root.yaml' router.include(spec) assert router._swagger_data
from . import VecEnvWrapper from baselines.common.running_mean_std import RunningMeanStd import numpy as np class VecNormalize(VecEnvWrapper): """ A vectorized wrapper that normalizes the observations and returns from an environment. """ def __init__(self, venv, ob=True, ret=True, clipob=10., cliprew=10., gamma=0.99, epsilon=1e-8, training=True): VecEnvWrapper.__init__(self, venv) self.ob_rms = RunningMeanStd(shape=self.observation_space.shape) if ob else None self.ret_rms = RunningMeanStd(shape=()) if ret else None self.clipob = clipob self.cliprew = cliprew self.ret = np.zeros(self.num_envs) self.gamma = gamma self.epsilon = epsilon self.training = training def step_wait(self): obs, rews, news, infos = self.venv.step_wait() self.ret = self.ret * self.gamma + rews obs = self._obfilt(obs) if self.ret_rms: if self.training: self.ret_rms.update(self.ret) rews = np.clip(rews / np.sqrt(self.ret_rms.var + self.epsilon), -self.cliprew, self.cliprew) return obs, rews, news, infos def _obfilt(self, obs): if self.ob_rms: if self.training: self.ob_rms.update(obs) obs = np.clip((obs - self.ob_rms.mean) / np.sqrt(self.ob_rms.var + self.epsilon), -self.clipob, self.clipob) return obs else: return obs def _deobfilt(self, obs): return obs # For now return it directly def reset(self): obs = self.venv.reset() return self._obfilt(obs)
#Imagine you're writing the software for an inventory system for #a store. Part of the software needs to check to see if inputted #product codes are valid. # #A product code is valid if all of the following conditions are #true: # # - The length of the product code is a multiple of 4. It could # be 4, 8, 12, 16, 20, etc. characters long. # - Every character in the product code is either an uppercase # character or a numeral. No lowercase letters or punctuation # marks are permitted. # - The character sequence "A1" appears somewhere in the # product code. # #Write a function called valid_product_code. valid_product_code #should have one parameter, a string. It should return True if #the string is a valid product code, and False if it is not. # capital letter = 65 - 90 # numbers = 48 - 57 # Add your code here! def valid_product_code( code ): code_array = list( map( str, code )) test = 0 if "A1" in code: if len(code) % 4 == 0: for i in code_array: if ord(i) <= 90 and ord(i) >=65: pass else: if ord(i) <= 57 and ord(i) >= 48: pass else: test += 1 else: return False else: return False if test > 0: return False else: return True #Below are some lines of code that will test your function. #You can change the value of the variable(s) to test your #function with different inputs. # #If your function works correctly, this will originally # print: True, True, False, False, False print(valid_product_code("A12B44BP")) print(valid_product_code("BFDSAUSA98932RWEFOEWA9FEAA1DSFSF")) print(valid_product_code("A1BBD5")) print(valid_product_code("BDD5664S")) print(valid_product_code("66aBSaA1fdsv"))
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Gradients for operators defined in nn_ops.py.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python.eager import backprop from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops from tensorflow.python.ops import gen_nn_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import nn_ops import tensorflow as tf @ops.RegisterGradient("Conv2DBackpropInput") def _Conv2DBackpropInputGrad(op, grad): """The derivatives for deconvolution. Args: op: the Deconvolution op. grad: the tensor representing the gradient w.r.t. the output Returns: the gradients w.r.t. the input and the filter """ # We call the gen_nn_ops backprop functions instead of nn_ops backprop # functions for performance reasons in Eager mode. See _Conv2DGrad. return [ None, gen_nn_ops.conv2d_backprop_filter( grad, array_ops.shape(op.inputs[1]), op.inputs[2], dilations=op.get_attr("dilations"), strides=op.get_attr("strides"), padding=op.get_attr("padding"), explicit_paddings=op.get_attr("explicit_paddings"), use_cudnn_on_gpu=op.get_attr("use_cudnn_on_gpu"), data_format=op.get_attr("data_format").decode()), gen_nn_ops.conv2d( grad, op.inputs[1], dilations=op.get_attr("dilations"), strides=op.get_attr("strides"), padding=op.get_attr("padding"), explicit_paddings=op.get_attr("explicit_paddings"), use_cudnn_on_gpu=op.get_attr("use_cudnn_on_gpu"), data_format=op.get_attr("data_format").decode()) ] @ops.RegisterGradient("Conv2DBackpropFilter") def _Conv2DBackpropFilterGrad(op, grad): # We call the gen_nn_ops backprop functions instead of nn_ops backprop # functions for performance reasons in Eager mode. See _Conv2DGrad. return [ gen_nn_ops.conv2d_backprop_input( array_ops.shape(op.inputs[0]), grad, op.inputs[2], dilations=op.get_attr("dilations"), strides=op.get_attr("strides"), padding=op.get_attr("padding"), explicit_paddings=op.get_attr("explicit_paddings"), use_cudnn_on_gpu=op.get_attr("use_cudnn_on_gpu"), data_format=op.get_attr("data_format").decode()), None, gen_nn_ops.conv2d( op.inputs[0], grad, dilations=op.get_attr("dilations"), strides=op.get_attr("strides"), padding=op.get_attr("padding"), explicit_paddings=op.get_attr("explicit_paddings"), use_cudnn_on_gpu=op.get_attr("use_cudnn_on_gpu"), data_format=op.get_attr("data_format").decode()) ] @ops.RegisterGradient("DepthwiseConv2dNativeBackpropInput") def _DepthwiseConv2dNativeBackpropInputGrad(op, grad): """The derivatives for deconvolution. Args: op: the Deconvolution op. grad: the tensor representing the gradient w.r.t. the output Returns: the gradients w.r.t. the input and the filter """ return [ None, gen_nn_ops.depthwise_conv2d_native_backprop_filter( grad, array_ops.shape(op.inputs[1]), op.inputs[2], dilations=op.get_attr("dilations"), strides=op.get_attr("strides"), padding=op.get_attr("padding"), explicit_paddings=op.get_attr("explicit_paddings"), data_format=op.get_attr("data_format")), gen_nn_ops.depthwise_conv2d_native( grad, op.inputs[1], dilations=op.get_attr("dilations"), strides=op.get_attr("strides"), padding=op.get_attr("padding"), explicit_paddings=op.get_attr("explicit_paddings"), data_format=op.get_attr("data_format")) ] @ops.RegisterGradient("DepthwiseConv2dNativeBackpropFilter") def _DepthwiseConv2dNativeBackpropFilterGrad(op, grad): return [ gen_nn_ops.depthwise_conv2d_native_backprop_input( array_ops.shape(op.inputs[0]), grad, op.inputs[2], dilations=op.get_attr("dilations"), strides=op.get_attr("strides"), padding=op.get_attr("padding"), explicit_paddings=op.get_attr("explicit_paddings"), data_format=op.get_attr("data_format")), None, gen_nn_ops.depthwise_conv2d_native( op.inputs[0], grad, dilations=op.get_attr("dilations"), strides=op.get_attr("strides"), padding=op.get_attr("padding"), explicit_paddings=op.get_attr("explicit_paddings"), data_format=op.get_attr("data_format")) ] @ops.RegisterGradient("Conv3D") def _Conv3DGrad(op, grad): data_format = op.get_attr("data_format").decode() return [ nn_ops.conv3d_backprop_input_v2( array_ops.shape(op.inputs[0]), op.inputs[1], grad, dilations=op.get_attr("dilations"), strides=op.get_attr("strides"), padding=op.get_attr("padding"), data_format=data_format), nn_ops.conv3d_backprop_filter_v2( op.inputs[0], array_ops.shape(op.inputs[1]), grad, dilations=op.get_attr("dilations"), strides=op.get_attr("strides"), padding=op.get_attr("padding"), data_format=data_format) ] @ops.RegisterGradient("Conv3DBackpropInputV2") def _Conv3DBackpropInputGrad(op, grad): data_format = op.get_attr("data_format").decode() return [ None, nn_ops.conv3d_backprop_filter_v2( grad, array_ops.shape(op.inputs[1]), op.inputs[2], dilations=op.get_attr("dilations"), strides=op.get_attr("strides"), padding=op.get_attr("padding"), data_format=data_format), nn_ops.conv3d( grad, op.inputs[1], dilations=op.get_attr("dilations"), strides=op.get_attr("strides"), padding=op.get_attr("padding"), data_format=data_format) ] @ops.RegisterGradient("Conv3DBackpropFilterV2") def _Conv3DBackpropFilterGrad(op, grad): data_format = op.get_attr("data_format").decode() return [ nn_ops.conv3d_backprop_input_v2( array_ops.shape(op.inputs[0]), grad, op.inputs[2], dilations=op.get_attr("dilations"), strides=op.get_attr("strides"), padding=op.get_attr("padding"), data_format=data_format), None, nn_ops.conv3d( op.inputs[0], grad, dilations=op.get_attr("dilations"), strides=op.get_attr("strides"), padding=op.get_attr("padding"), data_format=data_format) ] @ops.RegisterGradient("AvgPool3D") def _AvgPool3DGrad(op, grad): return gen_nn_ops.avg_pool3d_grad( array_ops.shape(op.inputs[0]), grad, ksize=op.get_attr("ksize"), strides=op.get_attr("strides"), padding=op.get_attr("padding"), data_format=op.get_attr("data_format").decode()) @ops.RegisterGradient("AvgPool3DGrad") def _AvgPool3DGradGrad(op, grad): return (array_ops.stop_gradient(op.inputs[0]), gen_nn_ops.avg_pool3d( grad, op.get_attr("ksize"), op.get_attr("strides"), op.get_attr("padding"), data_format=op.get_attr("data_format").decode())) @ops.RegisterGradient("MaxPool3D") def _MaxPool3DGrad(op, grad): return gen_nn_ops.max_pool3d_grad( op.inputs[0], op.outputs[0], grad, ksize=op.get_attr("ksize"), strides=op.get_attr("strides"), padding=op.get_attr("padding"), data_format=op.get_attr("data_format").decode()) @ops.RegisterGradient("MaxPool3DGrad") def _MaxPool3DGradGrad(op, grad): return (array_ops.zeros( shape=array_ops.shape(op.inputs[0]), dtype=op.inputs[0].dtype), array_ops.zeros( shape=array_ops.shape(op.inputs[1]), dtype=op.inputs[1].dtype), gen_nn_ops.max_pool3d_grad_grad( op.inputs[0], op.inputs[1], grad, op.get_attr("ksize"), op.get_attr("strides"), padding=op.get_attr("padding"), data_format=op.get_attr("data_format").decode())) @ops.RegisterGradient("MaxPool3DGradGrad") def _MaxPool3DGradGradGrad(op, grad): return (array_ops.zeros( shape=array_ops.shape(op.inputs[0]), dtype=op.inputs[0].dtype), array_ops.zeros( shape=array_ops.shape(op.inputs[1]), dtype=op.inputs[1].dtype), gen_nn_ops.max_pool3d_grad( op.inputs[0], op.inputs[1], grad, op.get_attr("ksize"), op.get_attr("strides"), padding=op.get_attr("padding"), data_format=op.get_attr("data_format").decode())) @ops.RegisterGradient("Softmax") def _SoftmaxGrad(op, grad_softmax): """The derivative of the softmax nonlinearity. We assume that probs is of shape [batch_size * dim] The formula for dsoftmax / dx = (diag(softmax) - softmax * softmax'). This matrix is diagonal minus a rank one matrix, so it is easy to implement as follows: grad_x = grad_softmax * softmax - sum(grad_softmax * softmax) * softmax Args: op: the Softmax op. grad_softmax: the tensor representing the gradient w.r.t. the softmax output. Returns: gradient w.r.t the input to the softmax """ softmax = op.outputs[0] sum_channels = math_ops.reduce_sum(grad_softmax * softmax, -1, keepdims=True) return (grad_softmax - sum_channels) * softmax @ops.RegisterGradient("LogSoftmax") def _LogSoftmaxGrad(op, grad): """The gradient for log_softmax. log_softmax = input - log(sum(exp(input)) dlog_softmax/dinput = diag - softmax(input) Args: op: The log softmax op. grad: The tensor representing the gradient w.r.t. the output. Returns: The gradients w.r.t. the input. """ softmax = math_ops.exp(op.outputs[0]) return grad - math_ops.reduce_sum(grad, -1, keepdims=True) * softmax @ops.RegisterGradient("BiasAdd") def _BiasAddGrad(op, received_grad): """Return the gradients for the 2 inputs of bias_op. The first input of unused_bias_op is the tensor t, and its gradient is just the gradient the unused_bias_op received. The second input of unused_bias_op is the bias vector which has one fewer dimension than "received_grad" (the batch dimension.) Its gradient is the received gradient Summed on the batch dimension, which is the first dimension. Args: op: The BiasOp for which we need to generate gradients. received_grad: Tensor. The gradients passed to the BiasOp. Returns: Two tensors, the first one for the "tensor" input of the BiasOp, the second one for the "bias" input of the BiasOp. """ try: data_format = op.get_attr("data_format") except ValueError: data_format = None return (received_grad, gen_nn_ops.bias_add_grad( out_backprop=received_grad, data_format=data_format)) @ops.RegisterGradient("BiasAddGrad") def _BiasAddGradGrad(op, received_grad): """Gradient for the BiasAddGrad op. Args: op: BiasAddGrad op for which we are calculating gradients. received_grad: The gradients passed to the BiasAddGrad op. Returns: A single gradient Tensor for the input to BiasAddGrad (which is the gradient of the bias term in BiasAdd) """ try: data_format = op.get_attr("data_format") except ValueError: data_format = None shape = array_ops.shape(op.inputs[0]) bias_shape = array_ops.shape(received_grad) if data_format == b"NCHW": expanded_shape = array_ops.concat([ array_ops.ones_like(shape[:1]), bias_shape, array_ops.ones_like(shape[2:]) ], 0) tile_mults = array_ops.concat([shape[:1], [1], shape[2:]], 0) else: expanded_shape = array_ops.concat( [array_ops.ones_like(shape[:-1]), bias_shape], 0) tile_mults = array_ops.concat([shape[:-1], [1]], 0) expanded_grad = array_ops.reshape(received_grad, expanded_shape) return array_ops.tile(expanded_grad, tile_mults) @ops.RegisterGradient("BiasAddV1") def _BiasAddGradV1(unused_bias_op, received_grad): """Return the gradients for the 2 inputs of bias_op. The first input of unused_bias_op is the tensor t, and its gradient is just the gradient the unused_bias_op received. The second input of unused_bias_op is the bias vector which has one fewer dimension than "received_grad" (the batch dimension.) Its gradient is the received gradient Summed on the batch dimension, which is the first dimension. Args: unused_bias_op: The BiasOp for which we need to generate gradients. received_grad: Tensor. The gradients passed to the BiasOp. Returns: Two tensors, the first one for the "tensor" input of the BiasOp, the second one for the "bias" input of the BiasOp. """ reduction_dim_tensor = math_ops.range(array_ops.rank(received_grad) - 1) return (received_grad, math_ops.reduce_sum(received_grad, reduction_dim_tensor)) @ops.RegisterGradient("Relu") def _ReluGrad(op, grad): return gen_nn_ops.relu_grad(grad, op.outputs[0]) @ops.RegisterGradient("EluGrad") def _EluGradGrad(op, grad): elu_x = op.inputs[1] return (gen_nn_ops.elu_grad(grad, elu_x), array_ops.where( elu_x < 0, grad * op.inputs[0], array_ops.zeros_like(elu_x))) @ops.RegisterGradient("SeluGrad") def _SeluGradGrad(op, grad): selu_x = op.inputs[1] return (gen_nn_ops.selu_grad(grad, selu_x), array_ops.where( selu_x < 0., grad * op.inputs[0], array_ops.zeros_like(selu_x))) @ops.RegisterGradient("Relu6") def _Relu6Grad(op, grad): return gen_nn_ops.relu6_grad(grad, op.outputs[0]) @ops.RegisterGradient("Relu6Grad") def _Relu6GradGrad(op, grad): x = op.inputs[1] return (gen_nn_ops.relu6_grad(grad, x), array_ops.zeros(shape=array_ops.shape(x), dtype=x.dtype)) @ops.RegisterGradient("LeakyRelu") def _LeakyReluGrad(op, grad): x = op.inputs[0] alpha = op.get_attr("alpha") return gen_nn_ops.leaky_relu_grad(grad, x, alpha=alpha) @ops.RegisterGradient("LeakyReluGrad") def _LeakyReluGradGrad(op, grad): x = op.inputs[1] alpha = op.get_attr("alpha") return (gen_nn_ops.leaky_relu_grad(grad, x, alpha=alpha), array_ops.zeros(shape=array_ops.shape(x), dtype=x.dtype)) @ops.RegisterGradient("Elu") def _EluGrad(op, grad): return gen_nn_ops.elu_grad(grad, op.outputs[0]) @ops.RegisterGradient("Selu") def _SeluGrad(op, grad): return gen_nn_ops.selu_grad(grad, op.outputs[0]) @ops.RegisterGradient("Softplus") def _SoftplusGrad(op, grad): return grad * math_ops.sigmoid(op.inputs[0]) @ops.RegisterGradient("SoftplusGrad") def _SoftplusGradGrad(op, grad): # Let: # y = tf.nn.softplus(x) # dx = gen_nn_ops.softplus_grad(dy, x) = dy / (1 + exp(-x)) # This op computes (ddy, d2x) from op.inputs == [dy, x] and grad == ddx. dy, x = op.inputs with ops.control_dependencies([grad]): ddy = gen_nn_ops.softplus_grad(grad, x) d2x = grad * dy / (math_ops.exp(-x) + 2.0 + math_ops.exp(x)) return (ddy, d2x) @ops.RegisterGradient("Softsign") def _SoftsignGrad(op, grad): return gen_nn_ops.softsign_grad(grad, op.inputs[0]) @ops.RegisterGradient("ReluGrad") def _ReluGradGrad(op, grad): x = op.inputs[1] return (gen_nn_ops.relu_grad(grad, x), array_ops.zeros(shape=array_ops.shape(x), dtype=x.dtype)) def _BroadcastMul(vec, mat): """Multiply after broadcasting vec to match dimensions of mat. Args: vec: A 1-D tensor of dimension [D0] mat: A 2-D tensor of dimension [D0, D1] Returns: A tensor of dimension [D0, D1], the result of vec * mat """ # Reshape vec to [D0, 1] vec = array_ops.expand_dims(vec, -1) return vec * mat @ops.RegisterGradient("SoftmaxCrossEntropyWithLogits") def _SoftmaxCrossEntropyWithLogitsGrad(op, grad_loss, grad_grad): """Gradient function for SoftmaxCrossEntropyWithLogits.""" # grad_loss is the backprop for cost, and we multiply it with the gradients # (which is output[1]) # grad_grad is the backprop for softmax gradient. # # Second derivative is just softmax derivative w.r.t. logits. softmax_grad = op.outputs[1] grad = _BroadcastMul(grad_loss, softmax_grad) logits = op.inputs[0] if (grad_grad is not None and not getattr(grad_grad, "_is_zeros_tensor", False)): softmax = nn_ops.softmax(logits) grad += ((grad_grad - array_ops.squeeze( math_ops.matmul( array_ops.expand_dims(grad_grad, 1), array_ops.expand_dims(softmax, 2)), axis=1)) * softmax) return grad, _BroadcastMul(grad_loss, -nn_ops.log_softmax(logits)) @ops.RegisterGradient("SparseSoftmaxCrossEntropyWithLogits") def _SparseSoftmaxCrossEntropyWithLogitsGrad(op, grad_loss, grad_grad): """Gradient function for SparseSoftmaxCrossEntropyWithLogits.""" # grad_loss is the backprop for cost, and we multiply it with the gradients # (which is output[1]) # grad_grad is the backprop for softmax gradient. # There is no gradient for the labels # # Second derivative is just softmax derivative w.r.t. logits. softmax_grad = op.outputs[1] grad = _BroadcastMul(grad_loss, softmax_grad) logits = op.inputs[0] if (grad_grad is not None and not getattr(grad_grad, "_is_zeros_tensor", False)): softmax = nn_ops.softmax(logits) grad += ((grad_grad - array_ops.squeeze( math_ops.matmul( array_ops.expand_dims(grad_grad, 1), array_ops.expand_dims(softmax, 2)), axis=1)) * softmax) return grad, None class _DummyTensorManager: def __init__(self): self.dummy_tensor_dict = dict() self.dummy_tensor_id = 0; def get_tensor(self, shape): #if shape not in self.dummy_tensor_dict.keys(): # self.dummy_tensor_dict[shape] \ # = tf.stop_gradient(tf.Variable(tf.zeros_like(shape), name=f"dummy_tensor{self.dummy_tensor_id}")) # self.dummy_tensor_id += 1; #return self.dummy_tensor_dict[shape] self.dummy_tensor_id += 1; return tf.stop_gradient(tf.Variable(tf.zeros_like(shape), name=f"dummy_tensor{self.dummy_tensor_id}")) dummy_tensor_manager = _DummyTensorManager(); @ops.RegisterGradient("Conv2D") def _Conv2DGrad(op, grad): global dummy_tensor_manager """Gradient function for Conv2D.""" dilations = op.get_attr("dilations") strides = op.get_attr("strides") padding = op.get_attr("padding") explicit_paddings = op.get_attr("explicit_paddings") use_cudnn_on_gpu = op.get_attr("use_cudnn_on_gpu") data_format = op.get_attr("data_format") shape_0, shape_1 = array_ops.shape_n([op.inputs[0], op.inputs[1]]) # We call the gen_nn_ops backprop functions instead of nn_ops backprop # functions for performance reasons in Eager mode. gen_nn_ops functions take a # `explicit_paddings` parameter, but nn_ops functions do not. So if were were # to use the nn_ops functions, we would have to convert `padding` and # `explicit_paddings` into a single `padding` parameter, increasing overhead # in Eager mode. if ("FWD" in op.name): dummy_input1 = dummy_tensor_manager.get_tensor(op.inputs[0]) dummy_input2 = dummy_tensor_manager.get_tensor(grad) weight_grad_op = gen_nn_ops.conv2d_backprop_filter( dummy_input1, shape_1, dummy_input2, dilations=dilations, strides=strides, padding=padding, explicit_paddings=explicit_paddings, use_cudnn_on_gpu=use_cudnn_on_gpu, data_format=data_format, name="Conv2DBackpropFilter") input_grad_op = gen_nn_ops.conv2d_backprop_input( shape_0, op.inputs[1], grad, dilations=dilations, strides=strides, padding=padding, explicit_paddings=explicit_paddings, use_cudnn_on_gpu=use_cudnn_on_gpu, data_format=data_format, name="Conv2DBackpropInput") fake_weight_grad_op = gen_nn_ops.conv2d_backprop_filter( op.inputs[0], shape_1, grad, dilations=dilations, strides=strides, padding=padding, explicit_paddings=explicit_paddings, use_cudnn_on_gpu=use_cudnn_on_gpu, data_format=data_format, name="DummyConv2DBackpropFilter") # TODO JY : zero_variables, dummy input1, dummy input2는 나중에 python파일로 뺌 dummy_input3 = dummy_tensor_manager.get_tensor(fake_weight_grad_op) fake_variable = tf.math.multiply(fake_weight_grad_op, dummy_input3, name="fake_variable") fake_op = tf.math.add(weight_grad_op, fake_variable, name="fake_op") return [input_grad_op, fake_op] else: return [ gen_nn_ops.conv2d_backprop_input( shape_0, op.inputs[1], grad, dilations=dilations, strides=strides, padding=padding, explicit_paddings=explicit_paddings, use_cudnn_on_gpu=use_cudnn_on_gpu, data_format=data_format), gen_nn_ops.conv2d_backprop_filter( op.inputs[0], shape_1, grad, dilations=dilations, strides=strides, padding=padding, explicit_paddings=explicit_paddings, use_cudnn_on_gpu=use_cudnn_on_gpu, data_format=data_format) ] @ops.RegisterGradient("DepthwiseConv2dNative") def _DepthwiseConv2dNativeGrad(op, grad): return [ gen_nn_ops.depthwise_conv2d_native_backprop_input( array_ops.shape(op.inputs[0]), op.inputs[1], grad, dilations=op.get_attr("dilations"), strides=op.get_attr("strides"), padding=op.get_attr("padding"), explicit_paddings=op.get_attr("explicit_paddings"), data_format=op.get_attr("data_format")), gen_nn_ops.depthwise_conv2d_native_backprop_filter( op.inputs[0], array_ops.shape(op.inputs[1]), grad, dilations=op.get_attr("dilations"), strides=op.get_attr("strides"), padding=op.get_attr("padding"), explicit_paddings=op.get_attr("explicit_paddings"), data_format=op.get_attr("data_format")) ] @ops.RegisterGradient("Dilation2D") def _Dilation2DGrad(op, grad): return [ nn_ops.dilation2d_backprop_input(op.inputs[0], op.inputs[1], grad, op.get_attr("strides"), op.get_attr("rates"), op.get_attr("padding")), nn_ops.dilation2d_backprop_filter(op.inputs[0], op.inputs[1], grad, op.get_attr("strides"), op.get_attr("rates"), op.get_attr("padding")) ] @ops.RegisterGradient("LRN") def _LRNGrad(op, grad): depth_radius = op.get_attr("depth_radius") bias = op.get_attr("bias") alpha = op.get_attr("alpha") beta = op.get_attr("beta") return [ gen_nn_ops.lrn_grad(grad, op.inputs[0], op.outputs[0], depth_radius, bias, alpha, beta) ] @ops.RegisterGradient("AvgPool") def _AvgPoolGrad(op, grad): return gen_nn_ops.avg_pool_grad( array_ops.shape(op.inputs[0]), grad, op.get_attr("ksize"), op.get_attr("strides"), op.get_attr("padding"), data_format=op.get_attr("data_format")) @ops.RegisterGradient("AvgPoolGrad") def _AvgPoolGradGrad(op, grad): return (array_ops.stop_gradient(op.inputs[0]), gen_nn_ops.avg_pool( grad, op.get_attr("ksize"), op.get_attr("strides"), op.get_attr("padding"), data_format=op.get_attr("data_format"))) @ops.RegisterGradient("MaxPool") def _MaxPoolGrad(op, grad): return gen_nn_ops.max_pool_grad( op.inputs[0], op.outputs[0], grad, op.get_attr("ksize"), op.get_attr("strides"), padding=op.get_attr("padding"), explicit_paddings=op.get_attr("explicit_paddings"), data_format=op.get_attr("data_format")) @ops.RegisterGradient("MaxPoolV2") def _MaxPoolGradV2(op, grad): ksize = op.inputs[1] strides = op.inputs[2] return gen_nn_ops.max_pool_grad_v2( op.inputs[0], op.outputs[0], grad, ksize, strides, padding=op.get_attr("padding"), data_format=op.get_attr("data_format")), None, None @ops.RegisterGradient("MaxPoolWithArgmax") def _MaxPoolGradWithArgmax(op, grad, unused_argmax_grad): del unused_argmax_grad return gen_nn_ops.max_pool_grad_with_argmax( op.inputs[0], grad, op.outputs[1], op.get_attr("ksize"), op.get_attr("strides"), padding=op.get_attr("padding"), include_batch_in_index=op.get_attr("include_batch_in_index")) @ops.RegisterGradient("MaxPoolGrad") def _MaxPoolGradGrad(op, grad): return (array_ops.zeros( shape=array_ops.shape(op.inputs[0]), dtype=op.inputs[0].dtype), array_ops.zeros( shape=array_ops.shape(op.inputs[1]), dtype=op.inputs[1].dtype), gen_nn_ops.max_pool_grad_grad( op.inputs[0], op.inputs[1], grad, op.get_attr("ksize"), op.get_attr("strides"), padding=op.get_attr("padding"), data_format=op.get_attr("data_format"))) @ops.RegisterGradient("MaxPoolGradV2") def _MaxPoolGradGradV2(op, grad): ksize = op.inputs[3] strides = op.inputs[4] return (array_ops.zeros( shape=array_ops.shape(op.inputs[0]), dtype=op.inputs[0].dtype), array_ops.zeros( shape=array_ops.shape(op.inputs[1]), dtype=op.inputs[1].dtype), gen_nn_ops.max_pool_grad_grad_v2( op.inputs[0], op.inputs[1], grad, ksize, strides, padding=op.get_attr("padding"), data_format=op.get_attr("data_format")), None, None) @ops.RegisterGradient("MaxPoolGradGrad") def _MaxPoolGradGradGrad(op, grad): return (array_ops.zeros( shape=array_ops.shape(op.inputs[0]), dtype=op.inputs[0].dtype), array_ops.zeros( shape=array_ops.shape(op.inputs[1]), dtype=op.inputs[1].dtype), gen_nn_ops.max_pool_grad( op.inputs[0], op.inputs[1], grad, op.get_attr("ksize"), op.get_attr("strides"), padding=op.get_attr("padding"), data_format=op.get_attr("data_format"))) @ops.RegisterGradient("FractionalMaxPool") def _FractionalMaxPoolGrad(op, grad_0, unused_grad_1, unused_grad_2): """Returns gradient for FractionalMaxPool. Since FractionalMaxPool has three outputs, there are three gradients passed in for each of the outputs. Only the first one is useful, the other two gradients are empty. Args: op: The FractionalMaxPoolOp. grad_0: Gradient with respect to op.outputs[0] unused_grad_1: Gradient with respect to op.outputs[1]/row_seq. It is empty. unused_grad_2: Gradient with respect to op.outputs[2]/col_seq. It is empty. Returns: Input backprop for FractionalMaxPool op. """ return gen_nn_ops.fractional_max_pool_grad( op.inputs[0], op.outputs[0], grad_0, op.outputs[1], op.outputs[2], op.get_attr("overlapping")) @ops.RegisterGradient("FractionalAvgPool") def _FractionalAvgPoolGrad(op, grad_0, unused_grad_1, unused_grad_2): """Returns gradient for FractionalAvgPool. Since FractionalAvgPool has three outputs, there are three gradients passed in for each of the outputs. Only the first one is useful, the other two gradients are empty. Args: op: The FractionalAvgPoolOp. grad_0: Gradient with respect to op.outputs[0] unused_grad_1: Gradient with respect to op.outputs[1]/row_seq. It is empty. unused_grad_2: Gradient with respect to op.outputs[2]/col_seq. It is empty. Returns: Input backprop for FractionalAvgPool op. """ return gen_nn_ops.fractional_avg_pool_grad(op.inputs[0].get_shape(), grad_0, op.outputs[1], op.outputs[2], op.get_attr("overlapping")) @ops.RegisterGradient("BatchNormWithGlobalNormalization") def _BatchNormWithGlobalNormalizationGrad(op, grad): """Return the gradients for the 5 inputs of BatchNormWithGlobalNormalization. We do not backprop anything for the mean and var intentionally as they are not being trained with backprop in the operation. Args: op: The BatchNormOp for which we need to generate gradients. grad: Tensor. The gradients passed to the BatchNormOp. Returns: dx: Backprop for input, which is (grad * (g * rsqrt(v + epsilon))) dm: Backprop for mean, which is sum_over_rest(grad * g) * (-1 / rsqrt(v + epsilon)) dv: Backprop for variance, which is sum_over_rest(grad * g * (x - m)) * (-1/2) * (v + epsilon) ^ (-3/2) db: Backprop for beta, which is grad reduced in all except the last dimension. dg: Backprop for gamma, which is (grad * ((x - m) * rsqrt(v + epsilon))) """ dx, dm, dv, db, dg = gen_nn_ops.batch_norm_with_global_normalization_grad( op.inputs[0], op.inputs[1], op.inputs[2], op.inputs[4], grad, op.get_attr("variance_epsilon"), op.get_attr("scale_after_normalization")) return dx, dm, dv, db, dg def _BaseFusedBatchNormGrad(op, version, *grad): """Return the gradients for the 3 inputs of BatchNorm. Args: op: The BatchNormOp for which we need to compute gradients. version: Integer indicating which version to use of the fused batch norm gradient. *grad: An argument list for tensors of gradients wrt the outputs with grad[0] as grad_y. Returns: grad_x: gradient for x, which is scale * rsqrt(variance + epsilon) * [grad_y - mean(grad_y) - (x - mean(x)) * mean(grad_y * (x - mean(x))) / (variance + epsilon)] in training mode; grad_y * scale * rsqrt(pop_variance + epsilon) in freeze mode. grad_scale: gradient for scale, which is sum(grad_y * (x - mean(x)) * rsqrt(variance + epsilon)) in training mode; sum(grad_y * (x - pop_mean) * rsqrt(pop_variance + epsilon)) in freeze mode. grad_offset: gradient for offset, which is sum(grad_y) in training mode; sum(grad_y) in freeze mode. """ x = op.inputs[0] grad_y = grad[0] scale = op.inputs[1] epsilon = op.get_attr("epsilon") data_format = op.get_attr("data_format") is_training = op.get_attr("is_training") if version == 2: grad_fun = gen_nn_ops.fused_batch_norm_grad_v3 elif version == 1: grad_fun = gen_nn_ops.fused_batch_norm_grad_v2 else: grad_fun = gen_nn_ops.fused_batch_norm_grad if is_training: args = { "y_backprop": grad_y, "x": x, "scale": scale, "reserve_space_1": op.outputs[3], "reserve_space_2": op.outputs[4], "epsilon": epsilon, "data_format": data_format, "is_training": is_training } if version == 2: args["reserve_space_3"] = op.outputs[5] dx, dscale, doffset, _, _ = grad_fun(**args) else: pop_mean = op.inputs[3] pop_var = op.inputs[4] if data_format == b"NCHW": x = array_ops.transpose(x, [0, 2, 3, 1]) grad_y = array_ops.transpose(grad_y, [0, 2, 3, 1]) elif data_format == b"NCDHW": x = array_ops.transpose(x, [0, 2, 3, 4, 1]) grad_y = array_ops.transpose(grad_y, [0, 2, 3, 4, 1]) target_data_format = ("NHWC" if data_format in (b"NCHW", b"NHWC") else "NDHWC") args = { "y_backprop": grad_y, "x": x, "scale": scale, "reserve_space_1": pop_mean, "reserve_space_2": pop_var, "epsilon": epsilon, "data_format": target_data_format, "is_training": is_training } if version == 2: args["reserve_space_3"] = op.outputs[5] dx, dscale, doffset, _, _ = grad_fun(**args) if data_format == b"NCHW": dx = array_ops.transpose(dx, [0, 3, 1, 2]) elif data_format == b"NCDHW": dx = array_ops.transpose(dx, [0, 4, 1, 2, 3]) return dx, dscale, doffset, None, None @ops.RegisterGradient("FusedBatchNorm") def _FusedBatchNormGrad(op, *grad): return _BaseFusedBatchNormGrad(op, 0, *grad) @ops.RegisterGradient("FusedBatchNormV2") def _FusedBatchNormV2Grad(op, *grad): return _BaseFusedBatchNormGrad(op, 1, *grad) @ops.RegisterGradient("FusedBatchNormV3") def _FusedBatchNormV3Grad(op, *grad): return _BaseFusedBatchNormGrad(op, 2, *grad) def _BatchNormGrad(grad_y, x, scale, pop_mean, pop_var, epsilon, data_format, is_training=True): """Returns the gradients for the 3 inputs of BatchNorm. Args: grad_y: A `Tensor` of 4 or 5 dimensions for gradient for y. x: A `Tensor` of 4 or 5 dimensions for x. scale: A `Tensor` of 1 dimension for scaling. pop_mean: A `Tensor` of 1 dimension for the population mean. Only used when is_training=False. pop_var: A `Tensor` of 1 dimension for the population variance. Only used when is_training=False. epsilon: A small float number added to the variance of x. data_format: The data format for input. Either b"NHWC" or b"NCHW". is_training: A bool value to indicate the operation is for training (default) or inference. Returns: A tuple (grad_x, grad_scale, grad_offset), where grad_x is the gradient for x, grad_scale the gradient for scale, and grad_offset the gradient for offset. """ x_dtype = x.dtype.base_dtype if x_dtype == dtypes.float16: # float16 math is too imprecise, so we do the batch norm gradient # computations in float32. x = math_ops.cast(x, dtypes.float32) grad_y = math_ops.cast(grad_y, dtypes.float32) if is_training: if data_format == b"NHWC": keepdims = False reduce_axis = [0, 1, 2] elif data_format == b"NDHWC": keepdims = False reduce_axis = [0, 1, 2, 3] elif data_format == b"NCHW": keepdims = True reduce_axis = [0, 2, 3] shape = [1, array_ops.size(scale), 1, 1] scale = array_ops.reshape(scale, shape) else: keepdims = True reduce_axis = [0, 2, 3, 4] shape = [1, array_ops.size(scale), 1, 1, 1] scale = array_ops.reshape(scale, shape) mean_grad_y = math_ops.reduce_mean(grad_y, reduce_axis, keepdims=keepdims) mean_x = math_ops.reduce_mean(x, reduce_axis, keepdims=keepdims) var_x = math_ops.reduce_mean( math_ops.squared_difference(x, array_ops.stop_gradient(mean_x)), reduce_axis, keepdims=keepdims) grad_y_offset = grad_y - mean_grad_y x_offset = x - mean_x mean = math_ops.reduce_mean( grad_y * x_offset, axis=reduce_axis, keepdims=keepdims) grad_x = scale * math_ops.rsqrt(var_x + epsilon) * ( grad_y_offset - math_ops.reciprocal(var_x + epsilon) * mean * x_offset) grad_scale = math_ops.rsqrt(var_x + epsilon) * math_ops.reduce_sum( grad_y * x_offset, axis=reduce_axis, keepdims=keepdims) if data_format == b"NCHW" or data_format == b"NCDHW": grad_scale = array_ops.squeeze(grad_scale) grad_offset = math_ops.reduce_sum(grad_y, axis=reduce_axis) return math_ops.cast(grad_x, x_dtype), grad_scale, grad_offset else: if data_format == b"NHWC": reduce_axis = [0, 1, 2] elif data_format == b"NDHWC": reduce_axis = [0, 1, 2, 3] elif data_format == b"NCHW": reduce_axis = [0, 2, 3] shape = [1, array_ops.size(pop_mean), 1, 1] pop_mean = array_ops.reshape(pop_mean, shape) pop_var = array_ops.reshape(pop_var, shape) scale = array_ops.reshape(scale, shape) else: reduce_axis = [0, 2, 3, 4] shape = [1, array_ops.size(pop_mean), 1, 1, 1] pop_mean = array_ops.reshape(pop_mean, shape) pop_var = array_ops.reshape(pop_var, shape) scale = array_ops.reshape(scale, shape) grad_offset = math_ops.reduce_sum(grad_y, axis=reduce_axis) var_rsqrt = math_ops.rsqrt(pop_var + epsilon) grad_scale = math_ops.reduce_sum( grad_y * (x - pop_mean) * var_rsqrt, axis=reduce_axis) grad_x = grad_y * scale * var_rsqrt return math_ops.cast(grad_x, x_dtype), grad_scale, grad_offset @ops.RegisterGradient("FusedBatchNormGrad") def _FusedBatchNormGradGrad(op, *grad): """Returns the gradients for the 3 inputs of FusedBatchNormGrad. Args: op: The FusedBatchNormGradOp for which we need to compute gradients. *grad: An argument list for tensors of gradients wrt the outputs with grad[0] as grad_grad_x, grad[1] as grad_grad_scale, grad[2] as grad_grad_offset. Returns: A tuple (grad_grad_y, grad_x, grad_scale, None, None), where grad_grad_y is the gradient for grad_y, grad_x the gradient for x, grad_scale the gradient for scale. """ data_format = op.get_attr("data_format") epsilon = op.get_attr("epsilon") is_training = op.get_attr("is_training") grad_y = op.inputs[0] x = op.inputs[1] scale = op.inputs[2] pop_mean = op.inputs[3] pop_var = op.inputs[4] grad_grad_x = grad[0] grad_grad_scale = grad[1] grad_grad_offset = grad[2] with backprop.GradientTape() as tape: tape.watch(grad_y) tape.watch(x) tape.watch(scale) grad_x, grad_scale, grad_offset = _BatchNormGrad( grad_y, x, scale, pop_mean, pop_var, epsilon, data_format, is_training) grad_initial = [grad_grad_x, grad_grad_scale, grad_grad_offset] grad_grad_y, grad_x, grad_scale = tape.gradient( [grad_x, grad_scale, grad_offset], [grad_y, x, scale], grad_initial) return grad_grad_y, grad_x, grad_scale, None, None @ops.RegisterGradient("FusedBatchNormGradV2") def _FusedBatchNormGradGradV2(op, *grad): return _FusedBatchNormGradGrad(op, *grad) @ops.RegisterGradient("FusedBatchNormGradV3") def _FusedBatchNormGradGradV3(op, *grad): grad_grad_y, grad_x, grad_scale, _, _ = _FusedBatchNormGradGrad(op, *grad) return grad_grad_y, grad_x, grad_scale, None, None, None @ops.RegisterGradient("L2Loss") def _L2LossGrad(op, grad): """Return the gradients for L2Loss. Args: op: The L2LossOp for which we need to generate gradients. grad: Tensor containing a single number. Returns: The gradient, which is (x * grad). """ return op.inputs[0] * grad @ops.RegisterGradient("TopK") @ops.RegisterGradient("TopKV2") def _TopKGrad(op, grad, _): """Return the gradients for TopK. Args: op: The TopKOp for which we need to generate gradients. grad: Tensor. The gradients passed to the TopKOp. Returns: A list of two tensors, the first being the gradient w.r.t to the input and TopK, and the second being the gradient w.r.t. to the indices (all zero). """ in_shape = array_ops.shape(op.inputs[0]) ind_shape = array_ops.shape(op.outputs[1]) # int32 is not supported on GPU hence up-casting ind_lastdim = array_ops.gather( math_ops.cast(ind_shape, dtypes.int64), array_ops.size(ind_shape) - 1) # Flatten indices to 2D. ind_2d = array_ops.reshape(op.outputs[1], array_ops.stack([-1, ind_lastdim])) in_lastdim = array_ops.gather( math_ops.cast(in_shape, dtypes.int64), array_ops.size(in_shape) - 1) outerdim = array_ops.shape(ind_2d)[0] # Compute linear indices (flattened to 1D). ind = array_ops.reshape( ind_2d + math_ops.cast( array_ops.expand_dims( math_ops.range(0, math_ops.cast(outerdim, dtypes.int64) * in_lastdim, in_lastdim), -1), dtypes.int32), [-1]) # Substitute grad to appropriate locations and fill the rest with zeros, # finally reshaping it to the original input shape. return [ array_ops.reshape( array_ops.scatter_nd( array_ops.expand_dims(ind, -1), array_ops.reshape(grad, [-1]), [math_ops.reduce_prod(in_shape)]), in_shape), array_ops.zeros([], dtype=dtypes.int32) ] @ops.RegisterGradient("NthElement") def _NthElementGrad(op, grad): """Return the gradients for NthElement. Args: op: The NthElementOp for which we need to generate gradients. grad: Tensor. The gradients passed to the NthElementOp Returns: A list of two tensors, the first being the gradient w.r.t. the input, the second being the gradient w.r.t. the N (None). """ input = op.inputs[0] # pylint: disable=redefined-builtin output = op.outputs[0] # Compute the number of elements which equal to output in each reduction # dimension. If there are multiple elements then the gradient will be # divided between them. indicators = math_ops.cast( math_ops.equal(array_ops.expand_dims(output, -1), input), grad.dtype) grad = array_ops.expand_dims(grad, -1) num_selected = array_ops.expand_dims(math_ops.reduce_sum(indicators, -1), -1) return [math_ops.divide(indicators, num_selected) * grad, None] def _MeanAggregator(inputs, segments): """Replaces each segment with its mean along the last axis. Specifically, each value in the `inputs` tensor gets replaced by the mean value computed from the values that belong to the same segment. Args: inputs: A 2-tensor. Aggregation is done over dimension 1. segments: A 2-tensor, same shape as `input`. Returns: The result, same shape and type as `inputs`. """ result = [] for inputs_i, segments_i in zip( array_ops.split(inputs, inputs.shape[0]), array_ops.split(segments, segments.shape[0])): # Note that we do not use tf.math.segment_mean, as it has no TPU support. means_i = math_ops.unsorted_segment_mean( inputs_i, segments_i, num_segments=math_ops.reduce_max(segments_i) + 1) result.append( array_ops.reshape(array_ops.gather(means_i, segments_i), [-1])) return array_ops.stack(result, axis=0) # We have to register the gradients for these ops so that tensorflow will know # how to differentiate them. @ops.RegisterGradient("IsotonicRegression") def _IsotonicRegressionGrad(op, grad_output, grad_segments): """Gradient for the isotonic regression function. Args: op: The IsotonicRegression tensorflow op. grad_output: Tensor of incoming gradients with respect to the output. grad_segments: Tensor of incoming gradients with respect to the segments. Returns: A tensor, same size as `grad_output` with the gradient with respect to the input. """ del grad_segments # Discrete, non-differentiable. segments = op.outputs[1] return _MeanAggregator(grad_output, segments)
#!/usr/bin/env python # coding: utf-8 # In[1]: # Load dependencies import numpy as np import pandas as pd from uncertainties import ufloat from uncertainties import unumpy # # Biomass C content estimation # # Biomass is presented in the paper on a dry-weight basis. As part of the biomass calculation, we converted biomass in carbon-weight basis to dry-weight basis by multiplying by a conversion factor. # # ## Conversion factor calculation # # The conversion factor was calculated based on C content estimates of the different plant compartments (leaves, stems and roots) of different biomes, from [Tang et al.](https://doi.org/10.1073/pnas.1700295114) (units: (mg/g)). # In[2]: # Upload C content data from Tang et al., units [mg/g] c_content = pd.read_excel("C_content_Tang.xlsx") c_content # In[3]: # Save parameters to unumpy arrays cleaf = unumpy.uarray(list(c_content['leaf']), list(c_content['leaf std'])) cstem = unumpy.uarray(list(c_content['stem'].fillna(0)), list(c_content['stem std'].fillna(0))) croot = unumpy.uarray(list(c_content['root']), list(c_content['root std'])) # For each biome, we calculate the weighted average C content according to the mass fraction of each plant compartment. Information on plants compartmental mass composition was obtained from [Poorter et al.](https://nph.onlinelibrary.wiley.com/doi/full/10.1111/j.1469-8137.2011.03952.x). # In[4]: # Upload compartmental mass composition, from Poorter et al., classified according to Tang et al. biomes compart_comp = pd.read_excel("compartment_comp_Poorter.xlsx") compart_comp # In[5]: # Save parameters to unumpy arrays fleaf = unumpy.uarray(list(compart_comp['leaf']), list(compart_comp['leaf std'])) fstem = unumpy.uarray(list(compart_comp['stem'].fillna(0)), list(compart_comp['stem std'].fillna(0))) froot = unumpy.uarray(list(compart_comp['root']), list(compart_comp['root std'])) # In[6]: # Calculate the weighted average for each biome cbiome = (cleaf*fleaf)+(cstem*fstem)+(croot*froot) # Next, we calculate the plants conversion factor, according to the mass fraction of each biome, which was calculated by the corresponding mass of each of the biome categories, derived from [Erb et al.](https://doi.org/10.1038/nature25138). # In[7]: # Upload biomes biomass, from Erb et al., classified according to Tang et al. biomes mbiome = pd.read_excel('biome_mass_Erb.xlsx') mbiome # In[8]: # Save to unumpy array mbiomes = unumpy.uarray(list(mbiome['biomass [Gt C]']), list(mbiome['biomass std'])) # Calculate the overall conversion factor cplants_factor = 1000/np.sum((cbiome* (mbiomes/np.sum(mbiomes)))) # In the overall carbon-weight to dry-weight conversion factor, we also accounted the C content of non-plant biomass, which was based on estimates from [Heldal et al.](https://aem.asm.org/content/50/5/1251.short) and [von Stockar](https://www.sciencedirect.com/science/article/pii/S0005272899000651). We used the current estimate of non-plant biomass fraction - about 10% of the total biomass, according to [Bar-On et al.](https://doi.org/10.1073/pnas.1711842115) and [updates](https://doi.org/10.1038/s41561-018-0221-6). # In[9]: # Upload non plant C content data, units [g/g] cnon_plant = pd.read_excel('C_content_non_plant.xlsx') cnon_plant # In[10]: # Calculate conversion factors cnon_plant_factor = ufloat(np.average(cnon_plant['C content']) ,np.std(cnon_plant['C content'], ddof = 1)) cfactor = (cplants_factor*0.9) +(0.1*(1/cnon_plant_factor)) cfactor print 'Our best estimate of the C content conversion factor is: ' + "%.2f" % (cfactor.n) + ', with uncertainty (±1 standard deviation): ' + "%.2f" % (cfactor.s)
from core.advbase import * class Cecile(Adv): def prerun(self): self.manachew_gauge = 0 self.manachew_mode = ModeManager( group="manachew", buffs=[Selfbuff("manachew_defense", 0.2, -1, "defense", "passive"), Selfbuff("manachew_sd", 0.1, -1, "s", "passive"), Selfbuff("manachew_sp", 0.08, -1, "sp", "passive")], fs=True, s1=True, s2=True, duration=20, pause=("s", "dragon"), ) Event("dragon_end").listener(self.dshift_manachew_gauge) def a1_update(self, gauge): if self.manachew_mode.get(): max_add = self.manachew_mode.duration - self.manachew_mode.timeleft() add_time = min(gauge / 10000 * self.manachew_mode.duration, max_add) self.manachew_mode.add_time(add_time) else: self.manachew_gauge += gauge if self.manachew_gauge == 10000: self.manachew_mode.on() self.manachew_gauge = 0 def dshift_manachew_gauge(self, e): self.a1_update(5000) def hitattr_make(self, name, base, group, aseq, attr, onhit=None, dtype=None): self.a1_update(attr.get("cp", 0)) super().hitattr_make(name, base, group, aseq, attr, onhit=onhit, dtype=dtype) def a1_add_manachew_time(self): self.manachew_mode.add_time(2) def a3_dodge_gauge_fill(self): self.charge_p("a3", 0.2, target="s1") self.charge_p("a3", 0.2, target="s2") class Cecile_DODGE(Cecile): def prerun(self): super().prerun() Event("dodge").listener(self.a1_a3_dodge) self.comment = "enable a1/a3 dodge every 15 seconds" def a1_a3_dodge(self, e): if not self.is_set_cd("a1_a3", 15): self.a3_dodge_gauge_fill() if self.manachew_mode.get(): self.a1_add_manachew_time() variants = {None: Cecile, "DODGE": Cecile_DODGE}
# Copyright 2015 NEC Corporation. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import enum class Extensions(enum.Enum): __order__ = ('AUTHORITY_KEY_IDENTIFIER SUBJECT_KEY_IDENTIFIER ' 'AUTHORITY_INFORMATION_ACCESS BASIC_CONSTRAINTS ' 'CRL_DISTRIBUTION_POINTS CERTIFICATE_POLICIES ' 'EXTENDED_KEY_USAGE OCSP_NO_CHECK INHIBIT_ANY_POLICY ' 'KEY_USAGE NAME_CONSTRAINTS SUBJECT_ALTERNATIVE_NAME ' 'ISSUER_ALTERNATIVE_NAME') AUTHORITY_KEY_IDENTIFIER = "authorityKeyIdentifier" SUBJECT_KEY_IDENTIFIER = "subjectKeyIdentifier" AUTHORITY_INFORMATION_ACCESS = "authorityInfoAccess" BASIC_CONSTRAINTS = "basicConstraints" CRL_DISTRIBUTION_POINTS = "cRLDistributionPoints" CERTIFICATE_POLICIES = "certificatePolicies" EXTENDED_KEY_USAGE = "extendedKeyUsage" OCSP_NO_CHECK = "OCSPNoCheck" INHIBIT_ANY_POLICY = "inhibitAnyPolicy" KEY_USAGE = "keyUsage" NAME_CONSTRAINTS = "nameConstraints" SUBJECT_ALTERNATIVE_NAME = "subjectAltName" ISSUER_ALTERNATIVE_NAME = "issuerAltName" class KeyUsages(enum.Enum): __order__ = ('DIGITAL_SIGNATURE CONTENT_COMMITMENT KEY_ENCIPHERMENT ' 'DATA_ENCIPHERMENT KEY_AGREEMENT KEY_CERT_SIGN ' 'CRL_SIGN ENCIPHER_ONLY DECIPHER_ONLY') DIGITAL_SIGNATURE = ("Digital Signature", "digital_signature") CONTENT_COMMITMENT = ("Non Repudiation", "content_commitment") KEY_ENCIPHERMENT = ("Key Encipherment", "key_encipherment") DATA_ENCIPHERMENT = ("Data Encipherment", "data_encipherment") KEY_AGREEMENT = ("Key Agreement", "key_agreement") KEY_CERT_SIGN = ("Certificate Sign", "key_cert_sign") CRL_SIGN = ("CRL Sign", "crl_sign") ENCIPHER_ONLY = ("Encipher Only", "encipher_only") DECIPHER_ONLY = ("Decipher Only", "decipher_only")
# -*- coding: utf-8 -*- """ Based entirely on Django's own ``setup.py``. """ import os import sys import setuptools from distutils.command.install import INSTALL_SCHEMES from distutils.command.install_data import install_data from setuptools import setup try: from setuptools.command.test import test as TestCommand class PyTest(TestCommand): user_options = TestCommand.user_options[:] + [ ('pytest-args=', 'a', "Arguments to pass into py.test"), ('exitfirst', 'x', "exit instantly on first error or failed test."), ('no-cov', 'C', "Disable coverage report completely"), ] exitfirst = False no_cov = False def initialize_options(self): TestCommand.initialize_options(self) self.pytest_args = 'tests django_extensions --ds=tests.testapp.settings --cov=django_extensions --cov-report html --cov-report term' def finalize_options(self): TestCommand.finalize_options(self) self.test_args = [] self.test_suite = True if self.exitfirst: self.pytest_args += " -x" if self.no_cov: self.pytest_args += " --no-cov" def run_tests(self): import shlex import pytest errno = pytest.main(shlex.split(self.pytest_args)) sys.exit(errno) except ImportError: PyTest = None class osx_install_data(install_data): # On MacOS, the platform-specific lib dir is at: # /System/Library/Framework/Python/.../ # which is wrong. Python 2.5 supplied with MacOS 10.5 has an Apple-specific # fix for this in distutils.command.install_data#306. It fixes install_lib # but not install_data, which is why we roll our own install_data class. def finalize_options(self): # By the time finalize_options is called, install.install_lib is set to # the fixed directory, so we set the installdir to install_lib. The # install_data class uses ('install_data', 'install_dir') instead. self.set_undefined_options('install', ('install_lib', 'install_dir')) install_data.finalize_options(self) if sys.platform == "darwin": cmdclasses = {'install_data': osx_install_data} else: cmdclasses = {'install_data': install_data} if PyTest: cmdclasses['test'] = PyTest def fullsplit(path, result=None): """ Split a pathname into components (the opposite of os.path.join) in a platform-neutral way. """ if result is None: result = [] head, tail = os.path.split(path) if head == '': return [tail] + result if head == path: return result return fullsplit(head, [tail] + result) # Tell distutils to put the data_files in platform-specific installation # locations. See here for an explanation: # http://groups.google.com/group/comp.lang.python/browse_thread/thread/35ec7b2fed36eaec/2105ee4d9e8042cb for scheme in INSTALL_SCHEMES.values(): scheme['data'] = scheme['purelib'] # Compile the list of packages available, because distutils doesn't have # an easy way to do this. packages, package_data = [], {} root_dir = os.path.dirname(__file__) if root_dir != '': os.chdir(root_dir) extensions_dir = 'django_extensions' for dirpath, dirnames, filenames in os.walk(extensions_dir): # Ignore PEP 3147 cache dirs and those whose names start with '.' dirnames[:] = [d for d in dirnames if not d.startswith('.') and d != '__pycache__'] parts = fullsplit(dirpath) package_name = '.'.join(parts) if '__init__.py' in filenames: packages.append(package_name) elif filenames: relative_path = [] while '.'.join(parts) not in packages: relative_path.append(parts.pop()) relative_path.reverse() path = os.path.join(*relative_path) package_files = package_data.setdefault('.'.join(parts), []) package_files.extend([os.path.join(path, f) for f in filenames]) version = __import__('django_extensions').__version__ install_requires = ['six>=1.2'] extras_require = {} if int(setuptools.__version__.split(".", 1)[0]) < 18: assert "bdist_wheel" not in sys.argv, "setuptools 18 or later is required for wheels." if sys.version_info[:2] < (3, 5): install_requires.append('typing') elif int(setuptools.__version__.split(".", 1)[0]) >= 36: install_requires.append('typing;python_version<"3.5"') else: extras_require[":python_version<'3.5'"] = ["typing"] long_description = """django-extensions bundles several useful additions for Django projects. See the project page for more information: http://github.com/django-extensions/django-extensions""" if os.path.isfile("README.rst"): with open("README.rst") as f: long_description = f.read() setup( name='django-extensions', version=version, description="Extensions for Django", long_description=long_description, author='Michael Trier', author_email='mtrier@gmail.com', maintainer='Bas van Oostveen', maintainer_email='v.oostveen@gmail.com', url='http://github.com/django-extensions/django-extensions', license='MIT License', platforms=['any'], packages=packages, cmdclass=cmdclasses, package_data=package_data, install_requires=install_requires, extras_require=extras_require, tests_require=[ 'Django', 'Werkzeug', 'factory-boy', 'mock', 'pytest', 'pytest-cov', 'pytest-django', 'python-dateutil', 'shortuuid', 'tox', 'vobject', ], classifiers=[ 'Development Status :: 5 - Production/Stable', 'Environment :: Web Environment', 'Framework :: Django', 'Framework :: Django :: 1.11', 'Framework :: Django :: 2.1', 'Framework :: Django :: 2.2', 'Intended Audience :: Developers', 'License :: OSI Approved :: MIT License', 'Operating System :: OS Independent', 'Programming Language :: Python', 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Programming Language :: Python :: Implementation :: CPython', 'Programming Language :: Python :: Implementation :: PyPy', 'Topic :: Utilities', ], )
# coding: utf-8 """ Main BDF class. Defines: - BDFInputPy """ import os from collections import defaultdict from itertools import count from typing import List, Tuple, Optional, Union, Any, cast from io import StringIO import numpy as np from cpylog import get_logger2 from pyNastran.nptyping import NDArrayN2int from pyNastran.utils import print_bad_path, _filename from pyNastran.bdf import BULK_DATA_CARDS, CASE_BULK_CARDS from pyNastran.bdf.errors import MissingDeckSections from pyNastran.bdf.bdf_interface.utils import _parse_pynastran_header from pyNastran.bdf.bdf_interface.include_file import get_include_filename # these allow spaces FILE_MANAGEMENT = ( 'ACQUIRE ', 'ASSIGN ', 'CONNECT ', 'DBCLEAN ', 'DBDICT ', 'DBDIR ', 'DBFIX ', 'DBLOAD ', 'DBLOCATE ', 'DBSETDEL ', 'DBUNLOAD ', 'DBUPDATE ', 'ENDJOB ', 'EXPAND ', 'INCLUDE ', 'INIT ', 'NASTRAN ', 'PROJ ', ) EXECUTIVE_SPACES = ('ALTER ', 'APP ', 'COMPILE ', 'COMPILER ', 'DIAG ', 'GEOMCHECK ', 'ID ', 'LINK ', 'MALTER ', 'SOL ', 'TIME ') #CASE_BULK_CARDS = { ## of the form 'LOAD = 5', so 'PARAM,POST,-1' doesn't count #'LOAD', 'SPC', 'FREQ', 'MPC', # case control + bulk data cards #'FORCE', 'TRIM', 'DESVAR', 'TSTEP', 'TSTEPNL', 'NSM', 'CLOAD', 'SUPORT1', #'CSSCHD', 'SDAMPING', 'DLOAD', 'TRIM', #'SUPORT', # short for SUPORT1 #'ACCEL', # short for ACCELERATION ## 'PARAM', # equals sign is problematic #} CASE_CARDS_NO_BULK = ( #'LOAD' #NX 2019.2 'A2GG', 'ACCE', # ACCELERATION 'ACINTENSITY', 'ACORDCHK', 'ACPOWER', 'ACVELOCITY', 'ADAMSMNF', 'ADAPTERR', 'ADMRECVR', 'AECONFIG', 'AEROF', 'AESYMXY', 'AESYMXZ', 'ALOAD', 'ANALYSIS', 'APRESSURE', 'ATVOUT', 'AUXCASE', 'B2GG', 'B2PP', 'BC', 'BCRESULTS', 'BCSET', 'BGRESULTS', 'BGSET', 'BOLTID', 'BOLTRESULTS', 'BOUTPUT', 'CKGAP', #CLOAD - in bulk 'CMETHOD', 'CRSTRN', 'CSMSET', #CSSCHD - in bulk 'CYCFORCES', 'CYCSET', 'CZRESULTS', 'DEFORM', 'DESGLB', 'DESOBJ', 'DESSUB', 'DISP', # DISPLACEMENT #DIVERG - in bulk #DLOAD - in bulk 'DMTRCOEF', 'DMTRLOSS', 'DRSPAN', 'DSAPRT', 'DSYM', 'DTEMP', 'EBDSET', #'ECHO' 'EDE', 'EFLOAD', 'EKE', 'ELAR', 'ELAROUT', 'ELSDCON', 'ELSTRN', 'ELSUM', 'ENTHALPY', 'ERP', 'ESE', 'EXTSEOUT', 'FLSFSEL', 'FLSPOUT', 'FLSTCNT', 'FLUX', 'FLXSLI', 'FLXRESULTS', 'FMETHOD', #FORCE - in bulk 'FREQU', # 'FREQUENCY', 'FRFIN', 'GCRSTRN', 'GELSTRN', 'GKRESULTS', 'GPFORCE', 'GPKE', 'GPLSTRN', 'GPRSORT', 'GPSDCON', 'GPSTRAIN', 'GPSTRESS', 'GRDCON', 'GROUNDCHECK', 'GSTRAIN', 'GSTRESS', 'GTHSTRN', 'GUST', 'HARMONICS', 'HDOT', 'HOUTPUT', 'IC', 'IMPERF', #INCLUDE - already handled 'INITS', 'INPOWER', 'JCONSET', 'JRESULTS', 'JINTEG', 'K2GG', 'K2PP', 'LABEL', 'LINE', #LOAD - in bulk 'LOADSET', 'M2GG', 'M2PP', 'MASTER', 'MAXLINES', 'MAXMIN', 'MBDEXPORT', 'MBDRECVR', 'MEFFMASS', 'METHOD', 'MFLUID', 'MODALE', 'MODCON', 'MODES', 'MODSEL', 'MODTRAK', 'MONITOR', 'MONVAR' #MPC - in bulk 'MPCF', # MPCFORCES 'MPRES', 'NLARCL', 'NLCNTL', 'NLLOAD', 'NLPARM', 'NLSTRESS', 'NONLINEAR', 'NOUTPUT', #NSM - in bulk 'OFREQUENCY', 'OLOAD', 'OMODES', 'OPRESS', 'OSTNINI', 'OTEMP', 'OTIME', 'OTMFORC', 'OUTPUT', 'P2G', 'PANCON', #PARAM - in bulk 'PARTN', 'PEAKOUT', 'PFRESULTS', 'PLOTID', 'PLSTRN', 'PRESSURE', 'RANDOM', 'RCROSS', 'REPCASE', 'RESVEC', 'RIGID', 'RMAXMIN', 'RMETHOD', 'RSMETHOD', 'SACCEL' # SACCELERATION 'SDAMPING', 'SDISP', # SDISPLACEMENT 'SEALL', 'SEDR', 'SEDV', 'SEEXCLUDE', 'SEFINAL', 'SEKREDUCE', 'SELGENERATE', 'SELREDUCE', 'SEMGENERATE', 'SEMREDUCE', 'SEQDEP', 'SERESP', #SET - in bulk 'SETMC', 'SETMCNAME', 'SETS DEFINITION', 'SHELLTHK', 'SKIP', 'SMETHOD', # SPC - in bulk 'SPCF', # SPCFORCES 'STATSUB', 'STATVAR', 'STRAIN', 'STRESS', 'STRFIELD', 'SUBCASE', 'SUBCOM', 'SUBSEQ', 'SUBT', # SUBTITLE #'SUPER', #SUPORT - in bulk #SUPORT1 - in bulk 'SVECTOR', 'SVELO', # SVELOCITY 'SYM', 'SYMCOM', 'SYMSEQ', 'TEMPERATURE', 'TFL', 'THERMAL', 'TITLE' #TRIM - in bulk 'TRLOSS', 'TRPOWER', # TSTEP - in bulk # TSTEPNL - in bulk 'TSTRU', 'VATVOUT', 'VELO', # VELOCITY 'VOLUME', 'WEIGHTCHECK' ) EXECUTIVE_CASE_SPACES = tuple( list(FILE_MANAGEMENT) + list(EXECUTIVE_SPACES) + ['SET ', 'SUBCASE '], ) class BDFInputPy: """BDF reader class that only handles lines and not building cards or parsing cards""" def __init__(self, read_includes: bool, dumplines: bool, encoding: str, nastran_format: str='msc', consider_superelements: bool=True, log: Any=None, debug: bool=False): """ BDF reader class that only handles lines and not building cards or parsing cards Parameters ---------- read_includes : bool should include files be read dumplines : bool Writes 'pyNastran_dump.bdf' up to some failed line index encoding : str the character encoding (e.g., utf8, latin1, cp1252) nastran_format : str; default='msc' 'zona' has a special read method {msc, nx, zona} consider_superelements : bool; default=True parse 'begin super=2' log : logger(); default=None a logger for printing INCLUDE files that are loadaed debug : bool; default=False used when testing; for the logger """ self.dumplines = dumplines self.encoding = encoding self.nastran_format = nastran_format self.include_dir = '' self.include_lines = defaultdict(list) self.read_includes = read_includes self.active_filenames = [] self.active_filename = None self.consider_superelements = consider_superelements self.debug = debug self.log = get_logger2(log, debug) def get_lines(self, bdf_filename: Union[str, StringIO], punch: Optional[bool]=False, make_ilines: bool=True) -> List[str]: """ Opens the bdf and extracts the lines by group Parameters ---------- bdf_filename : str the main bdf_filename punch : bool / None; default=False is this a punch file None : guess True : no executive/case control decks False : executive/case control decks exist make_ilines : bool; default=True flag for bulk_data_ilines Returns ------- system_lines : List[str] the system control lines (typically empty; used for alters) executive_control_lines : List[str] the executive control lines (stores SOL 101) case_control_lines : List[str] the case control lines (stores subcases) bulk_data_lines : List[str] the bulk data lines (stores geometry, boundary conditions, loads, etc.) bulk_data_ilines : None / (nlines, 2) int ndarray if make_ilines = True: the [ifile, iline] pair for each line in the file if make_ilines = False: ilines = None """ main_lines = self.get_main_lines(bdf_filename) all_lines, ilines = self.lines_to_deck_lines(main_lines, make_ilines=make_ilines) out = _lines_to_decks(all_lines, ilines, punch, self.log, keep_enddata=True, consider_superelements=self.consider_superelements, nastran_format=self.nastran_format) ( system_lines, executive_control_lines, case_control_lines, bulk_data_lines, bulk_data_ilines, superelement_lines, superelement_ilines) = out if self.nastran_format in {'msc', 'nx', 'optistruct', 'nasa95', 'mystran'}: pass elif self.nastran_format == 'zona': bulk_data_lines, bulk_data_ilines, system_lines = self._get_lines_zona( system_lines, bulk_data_lines, bulk_data_ilines, punch) else: msg = f'nastran_format={self.nastran_format!r} and must be msc, nx, optistruct, nasa95, mystran, or zona' raise NotImplementedError(msg) return (system_lines, executive_control_lines, case_control_lines, bulk_data_lines, bulk_data_ilines, superelement_lines, superelement_ilines) def _get_lines_zona(self, system_lines: List[str], bulk_data_lines: List[str], bulk_data_ilines: NDArrayN2int, punch: bool) -> Tuple[List[str], NDArrayN2int, List[str]]: """load and update the lines for ZONA""" system_lines2 = [] for system_line in system_lines: if system_line.upper().startswith('ASSIGN'): split_system = system_line.split(',') header = split_system[0] header_upper = header.upper() if header_upper.startswith('ASSIGN FEM'): unused_fem, filename = header.split('=') filename = filename.strip('"\'') self.log.debug('reading %s' % filename) if filename.lower().endswith('.f06'): filename = os.path.splitext(filename)[0] + '.bdf' if not filename.endswith('.bdf'): raise RuntimeError('filename must end in bdf; %s' % filename) _main_lines = self.get_main_lines(filename) make_ilines = bulk_data_ilines is not None _all_lines, _ilines = self.lines_to_deck_lines( _main_lines, make_ilines=make_ilines) _out = _lines_to_decks(_all_lines, _ilines, punch, self.log, keep_enddata=False, consider_superelements=self.consider_superelements) ( _system_lines, _executive_control_lines, _case_control_lines, bulk_data_lines2, bulk_data_ilines2, _superelement_lines, _superelement_ilines, ) = _out bulk_data_lines = bulk_data_lines2 + bulk_data_lines #print("bulk_data_ilines2 =", bulk_data_ilines2, bulk_data_ilines2.shape) #print("bulk_data_ilines =", bulk_data_ilines, bulk_data_ilines.shape) bulk_data_ilines = np.vstack([bulk_data_ilines2, bulk_data_ilines]) continue elif header_upper.startswith('ASSIGN MATRIX'): pass elif header_upper.startswith('ASSIGN OUTPUT4'): pass else: # pragma: no cover raise NotImplementedError(system_line) system_lines2.append(system_line) system_lines = system_lines return bulk_data_lines, bulk_data_ilines, system_lines def get_main_lines(self, bdf_filename: Union[str, StringIO]) -> List[str]: """ Opens the bdf and extracts the lines Parameters ---------- bdf_filename : str / StringIO the main bdf_filename Returns ------- lines : List[str] all the lines packed into a single line stream """ #print('bdf_filename_main =', bdf_filename) if hasattr(bdf_filename, 'read') and hasattr(bdf_filename, 'write'): bdf_filename = cast(StringIO, bdf_filename) lines = bdf_filename.readlines() if len(lines) == 0: raise RuntimeError('lines in %s is empty' % bdf_filename) return lines bdf_filename = cast(str, bdf_filename) self.bdf_filename = bdf_filename # the directory of the 1st BDF (include BDFs are relative to this one) self.include_dir = os.path.dirname(os.path.abspath(bdf_filename)) with self._open_file(bdf_filename, basename=True) as bdf_file: try: lines = bdf_file.readlines() except UnicodeDecodeError: _show_bad_file(self, bdf_filename, encoding=self.encoding) return lines def lines_to_deck_lines(self, lines: List[str], make_ilines: bool=True) -> Tuple[List[str], int]: """ Merges the includes into the main deck. Parameters ---------- lines : List[str] the lines from the main BDF make_ilines : bool; default=True flag for ilines Returns ------- active_lines : List[str] all the active lines in the deck ilines : (nlines, 2) int ndarray if make_ilines = True: the [ifile, iline] pair for each line in the file if make_ilines = False: ilines = None """ nlines = len(lines) #bdf_filenames = [self.bdf_filename] ilines = None if make_ilines: ilines = _make_ilines(nlines, ifile=0) i = 0 ifile = 1 while i < nlines: try: line = lines[i].rstrip('\r\n\t') except IndexError: break line_upper = line.upper() if line_upper.startswith('INCLUDE'): j, include_lines = self._get_include_lines(lines, line, i, nlines) bdf_filename2 = get_include_filename(include_lines, include_dir=self.include_dir) #bdf_filenames.append(bdf_filename2) jfile = ilines[i, 0] # these are the lines associated with the 1st/2nd include file found self.include_lines[jfile].append((include_lines, bdf_filename2)) if self.read_includes: lines, nlines, ilines = self._update_include( lines, nlines, ilines, include_lines, bdf_filename2, i, j, ifile, make_ilines=make_ilines) ifile += 1 else: lines = lines[:i] + lines[j:] if make_ilines: ilines = np.vstack([ ilines[:i, :], ilines[j:, :], ]) #assert len(ilines[:, 1]) == len(np.unique(ilines[:, 1])) #self.include_lines[ifile].append(include_lines) #self.reject_lines.append(write_include(bdf_filename2)) i += 1 if self.dumplines: self._dump_file('pyNastran_dump.bdf', lines, i) #print(bdf_filenames) #if make_ilines: #nilines = ilines.shape[0] #assert nlines == ilines.shape[0], 'nlines=%s nilines=%s' % (nlines, nilines) return lines, ilines def _update_include(self, lines: List[str], nlines: int, ilines, include_lines: List[str], bdf_filename2: str, i: int, j: int, ifile: int, make_ilines: bool=False): """incorporates an include file into the lines""" try: self._open_file_checks(bdf_filename2) except IOError: crash_name = 'pyNastran_crash.bdf' self._dump_file(crash_name, lines, j) msg = 'There was an invalid filename found while parsing.\n' msg += 'Check the end of %r\n' % crash_name msg += 'bdf_filename2 = %r\n' % bdf_filename2 msg += 'abs_filename2 = %r\n' % os.path.abspath(bdf_filename2) msg += 'include_lines = %s' % include_lines #msg += 'len(bdf_filename2) = %s' % len(bdf_filename2) print(msg) raise #raise IOError(msg) read_again = False with self._open_file(bdf_filename2, basename=False) as bdf_file: #print('bdf_file.name = %s' % bdf_file.name) try: lines2 = bdf_file.readlines() except UnicodeDecodeError: #try: bdf_file.seek(0) try: encoding2 = _check_pynastran_encoding(bdf_filename2, encoding=self.encoding) except UnicodeDecodeError: encoding2 = self.encoding #print('***encoding=%s encoding2=%s' % (self.encoding, encoding2)) if self.encoding != encoding2: read_again = True else: msg = ( 'Invalid Encoding: encoding=%r. Fix it by:\n' ' 1. try a different encoding (e.g., latin1, cp1252, utf8)\n' " 2. call read_bdf(...) with `encoding`'\n" " 3. Add '$ pyNastran : encoding=latin1" ' (or other encoding) to the top of the main/INCLUDE file\n' % ( self.encoding)) raise RuntimeError(msg) if read_again: self.active_filenames.pop() with self._open_file(bdf_filename2, basename=False, encoding=encoding2) as bdf_file: #print('bdf_file.name = %s' % bdf_file.name) try: lines2 = bdf_file.readlines() except UnicodeDecodeError: msg = ( 'Incorrect Encoding: encoding=%r. Fix it by:\n' ' 1. try a different encoding (e.g., latin1, cp1252, utf8)\n' " 2. call read_bdf(...) with `encoding`'\n" " 3. Add '$ pyNastran : encoding=latin1" ' (or other encoding) to the top of the main/INCLUDE file\n' % encoding2) raise RuntimeError(msg) #print('lines2 = %s' % lines2) #line2 = lines[j].split('$') #if not line2[0].isalpha(): #print('** %s' % line2) include_comment = '\n$ INCLUDE processed: %s\n' % bdf_filename2 #for line in lines2: #print(" ?%s" % line.rstrip()) #for ii, line in enumerate(lines): #print(' %i %r' % (ii, line)) #for ii in range(i): #print('i=%i %r' % (ii, lines[ii])) #print('---------') #for jj in range(j, len(lines)): #print('j=%i %r' % (jj, lines[jj])) #print('include_comment = %r' % include_comment) nlines2 = len(lines2) if make_ilines: ilines2 = _make_ilines(nlines2, ifile) #n_ilines = ilines.shape[0] #print(ilines[j:, :]) #assert len(lines[:i]) == ilines[:i+1, :].shape[0] - ifile, 'A: nlines=%s nilines=%s' % (len(lines[:i]), ilines[:i+1, :].shape[0]) #assert len(lines[j:]) == ilines[j:, :].shape[0], 'B: nlines=%s nilines=%s' % (len(lines[j:]), ilines[j:, :].shape[0]) #assert len(lines2) == ilines2.shape[0], 'C: nlines=%s nilines=%s' % (len(lines2), ilines2.shape[0]) #assert nlines == ilines.shape[0], 'B: nlines=%s nilines=%s' % (nlines, nilines) #assert nlines == ilines.shape[0], 'C: nlines=%s nilines=%s' % (nlines, nilines) #print(nlines-ifile+1, nlines2) #print( #len(lines[:i]), #len([include_comment]), #len(lines2), #len(lines[j:]), #) #print( #ilines[:i+1, :].shape[0], #ilines2.shape[0], #ilines[j:, :].shape[0], #) #print('ilines:\n%s' % ilines) #print('ilines2:\n%s' % ilines2) #print('lines2:\n%s' % ''.join(lines2)) ilines = np.vstack([ ilines[:i+1, :], ilines2, ilines[j:, :], ]) #dij = j - i nlines += nlines2 lines = lines[:i] + [include_comment] + lines2 + lines[j:] #print('*lines:\n%s' % ''.join(lines)) #for ifile_iline, line in zip(ilines, lines): #print(ifile_iline, line.rstrip()) #if make_ilines: #n_ilines = ilines.shape[0] #ncompare = n_ilines - dij #assert n_ilines == n_ilines, 'nlines=%s dij=%s n_ilines=%s' % (n_ilines, dij, n_ilines) #for line in lines: #print(" *%s" % line.rstrip()) return lines, nlines, ilines def _get_include_lines(self, lines: List[str], line: str, i: int, nlines: int) -> Tuple[int, List[str]]: """ gets the lines for the include file INCLUDE 'Satellite_V02_INCLUDE:Satellite_V02_Panneau_Externe.dat' INCLUDE '../../BULK/COORDS/satellite_V02_Coord.blk' """ j = i + 1 line_base = line.split('$')[0] include_lines = [line_base.strip()] if "'" not in line_base: pass else: #print('----------------------') line_base = line_base[8:].strip() if line_base.startswith("'") and line_base.endswith("'"): pass else: while not line.split('$')[0].endswith("'") and j < nlines: #print('j=%s nlines=%s less?=%s' % (j, nlines, j < nlines)) try: line = lines[j].split('$')[0].strip() except IndexError: #print('bdf_filename=%r' % bdf_filename) crash_name = 'pyNastran_crash.bdf' self._dump_file(crash_name, lines, i+1) msg = 'There was an invalid filename found while parsing (index).\n' msg += 'Check the end of %r\n' % crash_name #msg += 'bdf_filename2 = %r\n' % bdf_filename msg += 'include_lines = %s' % include_lines raise IndexError(msg) #print('endswith_quote=%s; %r' % ( #line.split('$')[0].strip().endswith(""), line.strip())) include_lines.append(line.strip()) j += 1 #print('j=%s nlines=%s less?=%s' % (j, nlines, j < nlines)) #print('*** %s' % line) #bdf_filename2 = line[7:].strip(" '") #include_lines = [line] + lines[i+1:j] #print(include_lines) return j, include_lines def _dump_file(self, bdf_dump_filename: str, lines: List[str], i: int) -> None: """ Writes a BDF up to some failed line index Parameters ---------- bdf_dump_filename : str the bdf filename to dump lines : List[str] the entire list of lines i : int the last index to write """ with open(_filename(bdf_dump_filename), 'w', encoding=self.encoding) as crash_file: for line in lines[:i]: crash_file.write(line) def _open_file_checks(self, bdf_filename: str, basename: bool=False) -> None: """ Verifies that the BDF about to be opened: 1. Exists 2. Is Unique 3. Isn't an OP2 4. Is a File Parameters ---------- bdf_filename : str the bdf filename to open basename : bool; default=False only take the basename of the bdf """ if basename: bdf_filename_inc = os.path.join(self.include_dir, os.path.basename(bdf_filename)) else: bdf_filename_inc = os.path.join(self.include_dir, bdf_filename) if not os.path.exists(_filename(bdf_filename_inc)): msg = 'No such bdf_filename: %r\n' % bdf_filename_inc msg += 'cwd: %r\n' % os.getcwd() msg += 'include_dir: %r\n' % self.include_dir msg += print_bad_path(bdf_filename_inc) self.log.error(msg) raise IOError(msg) elif bdf_filename_inc.endswith('.op2'): msg = 'Invalid filetype: bdf_filename=%r' % bdf_filename_inc self.log.error(msg) raise IOError(msg) bdf_filename = bdf_filename_inc if bdf_filename in self.active_filenames: msg = 'bdf_filename=%s is already active.\nactive_filenames=%s' \ % (bdf_filename, self.active_filenames) self.log.error(msg) raise RuntimeError(msg) elif os.path.isdir(_filename(bdf_filename)): current_filename = self.active_filename if len(self.active_filenames) > 0 else 'None' msg = 'Found a directory: bdf_filename=%r\ncurrent_file=%s' % ( bdf_filename_inc, current_filename) self.log.error(msg) raise IOError(msg) elif not os.path.isfile(_filename(bdf_filename)): msg = 'Not a file: bdf_filename=%r' % bdf_filename self.log.error(msg) raise IOError(msg) def _open_file(self, bdf_filename: Union[str, StringIO], basename: bool=False, check: bool=True, encoding: Optional[str]=None) -> Any: """ Opens a new bdf_filename with the proper encoding and include directory Parameters ---------- bdf_filename : str the filename to open basename : bool (default=False) should the basename of bdf_filename be appended to the include directory check : bool; default=True you can disable the checks Returns ------- bdf_file : file a file object """ if encoding is None: encoding = self.encoding if basename: bdf_filename_inc = os.path.join(self.include_dir, os.path.basename(bdf_filename)) else: bdf_filename_inc = os.path.join(self.include_dir, bdf_filename) self._validate_open_file(bdf_filename, bdf_filename_inc, check) self.log.debug('opening %r' % bdf_filename_inc) self.active_filenames.append(bdf_filename_inc) #print('ENCODING - _open_file=%r' % self.encoding) #self._check_pynastran_header(lines) bdf_file = open(_filename(bdf_filename_inc), 'r', encoding=encoding) return bdf_file def _validate_open_file(self, bdf_filename: Union[str, StringIO], bdf_filename_inc: str, check: bool=True) -> None: """ checks that the file doesn't have obvious errors - hasn't been used - not a directory - is a file Parameters ---------- bdf_filename : str the current bdf filename bdf_filename_inc : str the next bdf filename check : bool; default=True you can disable the checks Raises ------ RuntimeError : file is active IOError : Invalid file type """ if check: if not os.path.exists(_filename(bdf_filename_inc)): msg = 'No such bdf_filename: %r\n' % bdf_filename_inc msg += 'cwd: %r\n' % os.getcwd() msg += 'include_dir: %r\n' % self.include_dir msg += print_bad_path(bdf_filename_inc) raise IOError(msg) elif bdf_filename_inc.endswith('.op2'): raise IOError('Invalid filetype: bdf_filename=%r' % bdf_filename_inc) bdf_filename = bdf_filename_inc if bdf_filename in self.active_filenames: msg = 'bdf_filename=%s is already active.\nactive_filenames=%s' \ % (bdf_filename, self.active_filenames) raise RuntimeError(msg) elif os.path.isdir(_filename(bdf_filename)): current_fname = self.active_filename if len(self.active_filenames) > 0 else 'None' raise IOError('Found a directory: bdf_filename=%r\ncurrent_file=%s' % ( bdf_filename_inc, current_fname)) elif not os.path.isfile(_filename(bdf_filename)): raise IOError('Not a file: bdf_filename=%r' % bdf_filename) def _is_bulk_data_line(text: str) -> bool: """ Returns True if there is a Bulk Data Deck Parameters ---------- text : str a line in the deck Returns ------- is_bulk_line : bool is this a bulk data line """ # # Stripping the data isn't ideal as a GRID card cannot have a leading space. # # We strip the data because we need to support: # ' SUPORT1 = 10' # if you use text[0:8].strip('* ').upper() # we get: # ' SUPO', which is not a case control card called 'SUPORT1' # text2 = text.split('$')[0].rstrip() #card_name = text2.strip().replace(' ', '')[0:8].split(',')[0].upper().rstrip('*') card_name = text2.strip()[0:8].split(',')[0].upper().rstrip('*') #card_name2 = text2.split(',')[0].upper() #print('card_name =%r' % card_name) #print('card_name2=%r' % card_name2) # bulk data cards if card_name in BULK_DATA_CARDS: # case control + bulk data cards if '=' in text2 and card_name in CASE_BULK_CARDS or text2.startswith(' '): return False elif card_name == 'PARAM': # The PARAM card can have a comma or tab, but no equals sign. # If there is a PARAM card, we have to assume we're not in the # case control. return False return True return False def _is_case_control_line(text: str) -> bool: """ Returns True if there is a Case Control Deck Parameters ---------- text : str a line in the deck Returns ------- is_case_line : bool is this a case control line """ line_upper = text.split('$')[0].strip().upper() if line_upper.startswith(CASE_CARDS_NO_BULK): return True return False def _check_pynastran_encoding(bdf_filename: Union[str, StringIO], encoding: str) -> str: """updates the $pyNastran: key=value variables""" line = '$pyNastran: punch=False' #line_temp = u'é à è ê'.encode('utf8').decode('ascii') skip_keys = [ 'version', 'punch', 'nnodes', 'nelements', 'dumplines', 'is_superelements', 'skip_cards', 'units'] with open(bdf_filename, 'rb') as bdf_file: line = bdf_file.readline() line_str = line.decode('ascii') while '$' in line_str: #if not line.startswith('$'): #break key, value = _parse_pynastran_header(line_str) if not key: break # key/value are lowercase if key == 'encoding': encoding = value break elif key in skip_keys or 'skip ' in key: pass else: raise NotImplementedError(key) line = bdf_file.readline() line_str = line.decode('ascii') return encoding IGNORE_COMMENTS = ( '$EXECUTIVE CONTROL DECK', '$CASE CONTROL DECK', 'NODES', 'SPOINTS', 'EPOINTS', 'ELEMENTS', 'PARAMS', 'PROPERTIES', 'ELEMENTS_WITH_PROPERTIES', 'ELEMENTS_WITH_NO_PROPERTIES (PID=0 and unanalyzed properties)', 'UNASSOCIATED_PROPERTIES', 'MATERIALS', 'THERMAL MATERIALS', 'CONSTRAINTS', 'SPCs', 'MPCs', 'RIGID ELEMENTS', 'LOADS', 'AERO', 'STATIC AERO', 'AERO CONTROL SURFACES', 'FLUTTER', 'GUST', 'DYNAMIC', 'OPTIMIZATION', 'COORDS', 'THERMAL', 'TABLES', 'RANDOM TABLES', 'SETS', 'CONTACT', 'REJECTS', 'REJECT_CARDS', 'REJECT_LINES', 'PROPERTIES_MASS', 'MASSES') def _clean_comment(comment: str) -> Optional[str]: """ Removes specific pyNastran comment lines so duplicate lines aren't created. Parameters ---------- comment : str the comment to possibly remove Returns ------- updated_comment : str the comment """ if comment == '': pass elif comment in IGNORE_COMMENTS: comment = None elif 'pynastran' in comment.lower(): csline = comment.lower().split('pynastran', 1) if csline[1].strip()[0] == ':': comment = None #if comment: #print(comment) return comment def _lines_to_decks(lines: List[str], ilines: NDArrayN2int, punch: Optional[bool], log: Any, keep_enddata: bool=True, consider_superelements: bool=False, nastran_format: str='msc') -> Tuple[ List[str], List[str], List[str], List[str], NDArrayN2int, List[str], List[str], List[str]]: """ Splits the BDF lines into: - system lines - executive control deck - case control deck - bulk data deck Parameters ---------- lines : List[str] all the active lines in the deck ilines : None / (nlines, 2) int ndarray None : the old behavior narray : the [iline, ifile] pair for each line in the file punch : bool / None None : guess True : starts from the bulk data deck False : read the entire deck keep_enddata : bool; default=True True : don't throw away the enddata card False : throw away the enddata card Returns ------- system_lines : List[str] the system control lines (typically empty; used for alters) executive_control_lines : List[str] the executive control lines (stores SOL 101) case_control_lines : List[str] the case control lines (stores subcases) bulk_data_lines : List[str] the bulk data lines (stores geometry, boundary conditions, loads, etc.) bulk_data_ilines : None / (nlines, 2) int ndarray None : the old behavior narray : the [ifile, iline] pair for each line in the file superelement_lines : List[str] ??? superelement_ilines : List[str] ??? auxmodel_lines : List[str] ??? """ if punch: # True system_lines = [] executive_control_lines = [] case_control_lines = [] bulk_data_lines = lines bulk_data_ilines = ilines superelement_lines = {} superelement_ilines = {} #auxmodel_lines = {} return ( system_lines, executive_control_lines, case_control_lines, bulk_data_lines, bulk_data_ilines, superelement_lines, superelement_ilines) # typical deck out = _lines_to_decks_main(lines, ilines, log, punch=punch, keep_enddata=keep_enddata, consider_superelements=consider_superelements, nastran_format=nastran_format) (executive_control_lines, case_control_lines, bulk_data_lines, bulk_data_ilines, superelement_lines, superelement_ilines, auxmodel_lines, afpm_lines) = out # break out system commands system_lines, executive_control_lines = _break_system_lines(executive_control_lines) for super_id, _lines in superelement_lines.items(): # cqrsee101b2.bdf if len(_lines) == 0: raise RuntimeError('lines in superelement %i is empty' % super_id) #assert len(_lines) == len(superelement_ilines[super_id]), 'superelement %i ilines is the wrong length' % (super_id) for auxmodel_id, _lines in auxmodel_lines.items(): # C:\MSC.Software\MSC.Nastran2005r3\msc20055\nast\tpl\motion21.dat # C:\MSC.Software\MSC.Nastran2005r3\msc20055\nast\tpl\d200am1.dat # C:\MSC.Software\MSC.Nastran2005r3\msc20055\nast\tpl\d200am2.dat log.warning('skipping auxmodel=%i' % auxmodel_id) raise RuntimeError('lines in auxmodel %i is empty' % auxmodel_id) for afpm_id, _lines in afpm_lines.items(): log.warning('skipping AFPM=%i' % afpm_id) raise RuntimeError('lines in AFPM %i is empty' % afpm_id) # clean comments system_lines = [_clean_comment(line) for line in system_lines if _clean_comment(line) is not None] executive_control_lines = [_clean_comment(line) for line in executive_control_lines if _clean_comment(line) is not None] case_control_lines = [_clean_comment(line) for line in case_control_lines if _clean_comment(line) is not None] return ( system_lines, executive_control_lines, case_control_lines, bulk_data_lines, bulk_data_ilines, superelement_lines, superelement_ilines) def _lines_to_decks_main(lines: List[str], ilines: Any, log: Any, punch: Optional[bool]=False, keep_enddata: bool=True, consider_superelements: bool=False, nastran_format: str='msc') -> Tuple[ List[str], List[str], List[str], List[str], NDArrayN2int, List[str], List[str], List[str]]: """ Splits the BDF lines into: - system lines - executive control deck - case control deck - bulk data deck Parameters ---------- lines : List[str] all the active lines in the deck ilines : None / (nlines, 2) int ndarray None : the old behavior narray : the [iline, ifile] pair for each line in the file punch : bool / None; default=False None : guess True : punch file (skipped previously, so this can't be True) False : not a punch file keep_enddata : bool; default=True True : don't throw away the enddata card False : throw away the enddata card consider_superelements : bool; default=True parse 'begin super=2' Returns ------- system_executive_control_lines : List[str] the system control lines (typically empty; used for alters) and the executive control lines (stores SOL 101) case_control_lines : List[str] the case control lines (stores subcases) bulk_data_lines : List[str] the bulk data lines (stores geometry, boundary conditions, loads, etc.) bulk_data_ilines : None / (nlines, 2) int ndarray None : the old behavior narray : the [ifile, iline] pair for each line in the file superelement_lines : List[str] ??? superelement_ilines : List[str] ??? auxmodel_lines : List[str] ??? """ make_ilines = ilines is not None guess_deck_sections = punch is None executive_control_lines = [] case_control_lines = [] bulk_data_lines = [] superelement_lines = defaultdict(list) superelement_ilines = defaultdict(list) auxmodel_lines = defaultdict(list) afpm_lines = defaultdict(list) auxmodels_found = set() afpms_found = set() auxmodels_to_find = [] afpms_to_find = [] is_auxmodel = False is_afpm = False is_superelement = False is_auxmodel_active = False is_afpm_active = False auxmodel_id = None afpm_id = None #--------------------------------------------- current_lines = executive_control_lines if nastran_format in ['msc', 'nx', 'nasa95', 'mystran', 'zona']: flag_word = 'executive' flag = 1 # start from executive control deck elif nastran_format == 'optistruct': flag_word = 'case control' flag = 2 # case from control deck else: # pragma: no cover raise RuntimeError(nastran_format) #flag = 1 old_flags = [] bulk_data_ilines = [] if ilines is None: ilines = count() #guess_deck_sections = True #print('guess_deck_sections =', guess_deck_sections, punch) for i, ifile_iline, line in zip(count(), ilines, lines): #print('%s %-8s %s' % (ifile_iline, flag_word, line.rstrip())) #print('%s %i %s' % (ifile_iline, flag, line.rstrip())) line_upper = line.split('$')[0].upper().strip() if guess_deck_sections and flag == 1 and line_upper.startswith('BEGIN'): # we're in the executive deck and found the bulk data deck section_name_map = { 1 : 'executive control', 2 : 'case control', } section_name = section_name_map[flag] if _is_begin_bulk(line_upper): #old_flags.append(flag) log.warning(f'currently in {section_name} deck and skipping ' 'directly to bulk data section') flag = 3 current_ilines = bulk_data_ilines current_lines = bulk_data_lines bulk_data_ilines = _bulk_data_lines_extract( lines, ilines, bulk_data_lines, i, make_ilines=make_ilines, keep_enddata=keep_enddata) else: raise RuntimeError(f'currently in {section_name} deck and unexpectedly ' f'found the following line:\n{line}') break if guess_deck_sections and flag in [1, 2] and _is_bulk_data_line(line): # we found the case control deck successfully from the executive deck # then we found the bulk data deck unexpectedly section_name_map = { 1 : 'executive control', 2 : 'case control', } section_name = section_name_map[flag] log.warning(f'currently in {section_name} deck and skipping directly ' f'to bulk data section\n{line}') log.warning(line) flag = 3 current_ilines = bulk_data_ilines current_lines = bulk_data_lines bulk_data_ilines = _bulk_data_lines_extract( lines, ilines, bulk_data_lines, i-1, make_ilines=make_ilines, keep_enddata=keep_enddata) break elif flag == 1: # handles ' CEND' if line_upper.startswith('CEND'): # case control old_flags.append(flag) if flag != 1: raise RuntimeError('expected a flag of 1 (executive control deck) ' 'when going to the case control deck') flag = 2 flag_word = 'case' current_lines = case_control_lines #print('executive: ', line.rstrip()) executive_control_lines.append(line.rstrip()) elif flag == 2 or flag < 0: # we're in the case control deck right now and looking # for one of the following: # - 'BEGIN BULK' # - 'BEGIN SUPER=1' # - 'BEGIN BULK AUXMODEL=200' # - 'BEGIN BULK AFPM=300' # # There's a special case for 'BEGIN AUXMODEL=1', so we flag # AUXCASE/AUXMODEL, and do some extra parsing in flag=3. # # flag=2 (BEGIN BULK) # flag=-1 (BEGIN SUPER=1) # flag=-2 (BEGIN SUPER=2) # ... # # We haven't yet tried to handle the AFPM special case # we have to handle the comment because we could incorrectly # flag the model as flipping to the BULK data section if we # have BEGIN BULK in a comment if '$' in line: line, comment = line.split('$', 1) current_lines.append('$' + comment.rstrip()) #print('%s: %s' % (flag_word, '$' + comment.rstrip())) # just reuse the existing one #line_upper = line.upper().strip() if line_upper.startswith('BEGIN'): if _is_begin_bulk(line_upper): old_flags.append(flag) #assert flag == 2, flag # we're about to break because we found begin bulk flag = 3 current_ilines = bulk_data_ilines #or not keep_enddata is_extra_bulk = (is_auxmodel or is_afpm or is_superelement or consider_superelements) if not is_extra_bulk: #print('breaking begin bulk...') bulk_data_ilines = _bulk_data_lines_extract( lines, ilines, bulk_data_lines, i, make_ilines=make_ilines, keep_enddata=keep_enddata) break #print('setting lines to bulk---') current_lines = bulk_data_lines flag_word = 'bulk' #print('case: %s' % (line.rstrip())) case_control_lines.append(line.rstrip()) continue elif 'SUPER' in line_upper and '=' in line_upper: super_id = _get_super_id(line, line_upper) old_flags.append(flag) flag = -super_id flag_word = 'SUPER=%s' % super_id current_lines = superelement_lines[super_id] current_ilines = superelement_ilines[super_id] elif ('AUXMODEL' in line_upper or 'AFPM' in line_upper) and '=' in line_upper: out = _read_bulk_for_auxmodel( ifile_iline, line, flag, bulk_data_lines, current_lines, current_ilines, old_flags, is_auxmodel, auxmodel_lines, auxmodels_to_find, auxmodels_found, is_afpm, afpm_lines, afpms_to_find, afpms_found, superelement_lines, superelement_ilines, is_auxmodel_active, auxmodel_id, is_afpm_active, afpm_id, bulk_data_ilines) (is_broken, auxmodel_id, is_auxmodel_active, afpm_id, is_afpm_active, flag, current_lines) = out if is_broken: break else: msg = f'expected "BEGIN BULK" or "BEGIN SUPER=1"\nline = {line}' raise RuntimeError(msg) print('%s: %s' % (flag_word, line.rstrip())) current_lines.append(line.rstrip()) elif line_upper.startswith('SUPER'): # case control line # SUPER = ALL #auxmodel_idi = int(line_upper.split('=')[1]) #auxmodels_to_find.append(auxmodel_idi) if flag != 2: raise RuntimeError('expected a flag of 2 (case control deck) ' 'when going to an SUPER model') is_superelement = True elif line_upper.startswith('AUXMODEL'): # case control line # AUXMODEL = 10 auxmodel_idi = int(line_upper.split('=')[1]) auxmodels_to_find.append(auxmodel_idi) if flag != 2: raise RuntimeError('expected a flag of 2 (case control deck) ' 'when going to an AUXMODEL') is_auxmodel = True elif line_upper.startswith('AFPM'): # case control line # AFPM = 10 afpm_idi = int(line_upper.split('=')[1]) afpms_to_find.append(afpm_idi) if flag != 2: raise RuntimeError('expected a flag of 2 (case control deck) ' 'when going to an AFPM model') is_afpm = True #print('%s: %s' % (flag_word, line.rstrip())) current_lines.append(line.rstrip()) elif flag == 3: if not(is_auxmodel is True or is_superelement is True or consider_superelements): raise RuntimeError(f'one must be True: is_auxmodel={is_auxmodel}; ' 'is_superelement={is_superelement}; ' 'consider_superelements={consider_superelements}') #assert is_auxmodel is True or is_superelement is True or consider_superelements # we have to handle the comment because we could incorrectly # flag the model as flipping to the BULK data section if we # have BEGIN BULK in a comment if '$' in line: line, comment = line.split('$', 1) current_lines.append('$' + comment.rstrip()) if bulk_data_ilines != current_ilines: raise RuntimeError('bulk_data_ilines != current_ilines') current_ilines.append(ifile_iline) #bulk_data_ilines.append(ifile_iline) out = _read_bulk_for_auxmodel( ifile_iline, line, flag, bulk_data_lines, current_lines, current_ilines, old_flags, is_auxmodel, auxmodel_lines, auxmodels_to_find, auxmodels_found, is_afpm, afpm_lines, afpms_to_find, afpms_found, superelement_lines, superelement_ilines, is_auxmodel_active, auxmodel_id, is_afpm_active, afpm_id, bulk_data_ilines) (is_broken, auxmodel_id, is_auxmodel_active, afpm_id, is_afpm_active, flag, current_lines) = out if is_broken: #print('breaking...') break else: raise RuntimeError(line) _check_valid_deck(flag, old_flags, nastran_format) if len(bulk_data_lines) == 0: raise RuntimeError('no bulk data lines were found') #print('nbulk=%s nilines=%s' % (len(bulk_data_lines), #len(bulk_data_ilines)), bulk_data_ilines.shape) #if bulk_data_ilines is not None and len(bulk_data_lines) != len(bulk_data_ilines): #raise RuntimeError('nbulk=%s nilines=%s' % (len(bulk_data_lines), len(bulk_data_ilines))) #print('nbulk=%s nilines=%s' % ( #len(bulk_data_lines), len(bulk_data_ilines)), bulk_data_ilines.shape) bulk_data_ilines = np.asarray(bulk_data_ilines) out = ( executive_control_lines, case_control_lines, bulk_data_lines, bulk_data_ilines, superelement_lines, superelement_ilines, auxmodel_lines, afpm_lines, ) return out def _bulk_data_lines_extract(lines: List[str], ilines: Any, bulk_data_lines: List[str], i: int, make_ilines: bool=True, keep_enddata: bool=True) -> NDArrayN2int: """grabs the bulk data lines and ilines when we're breaking""" if keep_enddata: for line in lines[i+1:]: bulk_data_lines.append(line.rstrip()) if make_ilines: bulk_data_ilines = ilines[i+1:, :] else: bulk_data_ilines = None j = 0 for j, line in enumerate(lines[i+1:]): rline = line.rstrip() if rline.upper().startswith('ENDDATA'): break bulk_data_lines.append(rline) if make_ilines: bulk_data_ilines = ilines[i+1:i+j+1, :] #if not len(bulk_data_lines) == len(bulk_data_ilines): #msg = 'len(bulk_data_lines)=%s len(bulk_data_ilines)=%s' % ( #len(bulk_data_lines), len(bulk_data_ilines)) #raise RuntimeError(msg) return bulk_data_ilines def _is_begin_bulk(line_upper: str) -> bool: """ is this a: 'BEGIN BULK' but not: 'BEGIN BULK SUPER=2' 'BEGIN BULK AUXMODEL=2' 'BEGIN BULK AFPM=2' """ is_begin_bulk = 'BULK' in line_upper and ( 'AUXMODEL' not in line_upper and 'AFPM' not in line_upper and 'SUPER' not in line_upper) return is_begin_bulk def _read_bulk_for_auxmodel(ifile_iline, line, flag: int, bulk_data_lines: List[str], current_lines, current_ilines, old_flags, unused_is_auxmodel, auxmodel_lines, auxmodels_to_find, auxmodels_found, unused_is_afpm, afpm_lines, afpm_to_find, afpm_found, superelement_lines, superelement_ilines, is_auxmodel_active: bool, auxmodel_id: int, is_afpm_active: bool, afpm_id: int, bulk_data_ilines): """ Reads a BEGIN BULK section searching for 'BEGIN AUXMODEL=1' and BEGIN SUPER=1' """ # we're in the bulk data deck right now and looking # for a 'BEGIN AUXMODEL=1' or ???. # #print(len(bulk_data_lines), len(bulk_data_ilines)) if len(bulk_data_lines) != len(bulk_data_ilines): raise RuntimeError('len(bulk_data_lines)=%s len(bulk_data_ilines)=%s are not equal' % ( len(bulk_data_lines), len(bulk_data_ilines))) is_broken = False #if not is_auxmodel: #print('breaking B', flag) #is_broken = True #return is_broken, auxmodel_id, is_auxmodel_active, flag, current_lines line_upper = line.upper().strip() if line_upper.startswith('BEGIN'): if 'AUXMODEL' in line_upper: is_auxmodel_active = True auxmodel_id = _get_auxmodel_id(line, line_upper) old_flags.append(flag) flag = -auxmodel_id current_lines = auxmodel_lines[auxmodel_id] current_ilines = [] auxmodels_found.add(auxmodel_id) if len(auxmodels_found) == len(auxmodels_to_find) and len(auxmodels_found): #print('broken...final', len(bulk_data_lines), len(bulk_data_ilines)) is_broken = True out = (is_broken, auxmodel_id, is_auxmodel_active, afpm_id, is_afpm_active, flag, current_lines) return out elif 'SUPER' in line_upper: super_id = _get_super_id(line, line_upper) old_flags.append(flag) flag = -super_id current_lines = superelement_lines[super_id] current_ilines = superelement_ilines[super_id] elif 'AFPM' in line_upper: is_afpm_active = True afpm_id = _get_afpm_id(line, line_upper) old_flags.append(flag) flag = -afpm_id current_lines = afpm_lines[afpm_id] current_ilines = [] afpm_found.add(afpm_id) if len(afpm_found) == len(afpm_to_find) and len(afpm_found): #print('broken...final', len(bulk_data_lines), len(bulk_data_ilines)) is_broken = True return is_broken, auxmodel_id, is_auxmodel_active, flag, current_lines else: msg = 'expected "BEGIN SUPER=1", "BEGIN AUXMODEL=1" or "BEGIN AFPM=1"\nline = %s' % line raise RuntimeError(msg) rline = line.rstrip() if rline: #if flag == 3: #bulk_data_ilines.append(ifile_iline) current_lines.append(rline) current_ilines.append(ifile_iline) out = ( is_broken, auxmodel_id, is_auxmodel_active, afpm_id, is_afpm_active, flag, current_lines) return out def _break_system_lines(executive_control_lines: List[str]) -> Tuple[List[str], List[str]]: """ Extracts the Nastran system lines. System lines may be interspersed with executive lines. Per NX Nastran 10: Header Description ====== =========== ACQUIRE Selects NDDL schema and NX Nastran Delivery Database. ASSIGN Assigns physical files to DBset members or special FORTRAN files. CONNECT Groups geometry data by evaluator and database. DBCLEAN Deletes selected database version(s) and/or projects. DBDICT Prints the database directory in user-defined format. DBDIR Prints the database directory. DBFIX Identifies and optionally corrects errors found in the database. DBLOAD Loads a database previously unloaded by DBUNLOAD. DBLOCATE Obtains data blocks and parameters from databases. DBSETDEL Deletes DBsets. DBUNLOAD Unloads a database for compression, transfer, or archival storage. DBUPDATE Specifies the time between updates of the database directory. ENDJOB Terminates a job upon completion of FMS statements. EXPAND Concatenates additional DBset members to an existing DBset. ID Flag to name the run. INCLUDE Inserts an external file in the input file. INIT Creates a temporary or permanent DBset. NASTRAN Specifies values for system cells. PROJ Defines the current or default project identifier. F:\\Program Files\\Siemens\\NXNastran\\nxn10p1\\nxn10p1\\nast\\tpl\\mdb01.dat """ j = None sol_line = None isol_line = None system_lines = [] executive_control_lines2 = [] # add all the lines before and including the file management section # to the system lines # # add the other lines (and the SOL 101) to the executive control lines for i, line in enumerate(executive_control_lines): line_upper = line.strip().upper() if line_upper.startswith('SOL '): isol_line = i+1 sol_line = line if line_upper.startswith(FILE_MANAGEMENT): system_lines += executive_control_lines[j:i+1] j = i+1 # remove SOL 101 from the system lines if it's there system_lines2 = [ line for line in system_lines if not line.upper().strip().startswith('SOL ') and not line.upper().strip().startswith('CEND') ] if j is None: # no system lines executive_control_lines2 = executive_control_lines else: # append SOL 101 to the executive lines if we found it # inside the system section append_sol_line = isol_line is not None and j is not None and isol_line < j if append_sol_line: executive_control_lines2.append(sol_line) # add the rest of the executive control cards for iline in range(j, len(executive_control_lines)): executive_control_lines2.append(executive_control_lines[iline]) #for line in executive_control_lines: #print('eline = %r' % line) #for line in system_lines2: #print('sline2 = %r' % line) #for line in executive_control_lines2: #print('eline2 = %r' % line) return system_lines2, executive_control_lines2 def _check_valid_deck(flag: int, old_flags: List[int], nastran_format: str) -> None: """Crashes if the flag is set wrong""" if flag != 3: if flag == 1: found = ' - Executive Control Deck\n' missing = ' - Case Control Deck\n' missing += ' - Bulk Data Deck\n' elif flag == 2: found = ' - Executive Control Deck\n' found += ' - Case Control Deck\n' missing = ' - Bulk Data Deck\n' elif flag < 0: # superelement/auxmodel found = str('old_flags=%s' % old_flags) missing = '???' return else: raise RuntimeError('flag=%r is not [1, 2, 3]' % flag) msg = f'This is not a valid {nastran_format} BDF (a BDF capable of running Nastran).\n\n' msg += f'The following sections were found:\n{found}\n' msg += f'The following sections are missing:\n{missing}\n' msg += 'If you do not have an Executive Control Deck or a Case Control Deck:\n' msg += ' 1. call read_bdf(...) with `punch=True`\n' msg += " 2. Add '$ pyNastran : punch=True' to the top of the main file\n" msg += ' 3. Name your file *.pch\n\n' msg += 'You cannot read a deck that has an Executive Control Deck, but\n' msg += 'not a Case Control Deck (or vice versa), even if you have a Bulk Data Deck.\n' raise MissingDeckSections(msg) return def _show_bad_file(self: Any, bdf_filename: Union[str, StringIO], encoding: str, nlines_previous: int=10) -> None: """ Prints the 10 lines before the UnicodeDecodeError occurred. Parameters ---------- bdf_filename : str the filename to print the lines of encoding : str the file encoding nlines_previous : int; default=10 the number of lines to show """ lines = [] # type: List[str] print('ENCODING - show_bad_file=%r' % encoding) with open(_filename(bdf_filename), 'r', encoding=encoding) as bdf_file: iline = 0 nblank = 0 while 1: try: line = bdf_file.readline().rstrip() except UnicodeDecodeError: iline0 = max([iline - nlines_previous, 0]) self.log.error('filename=%s' % bdf_filename) for iline1, line in enumerate(lines[iline0:iline]): self.log.error('lines[%i]=%r' % (iline0 + iline1, line)) msg = "\n%s encoding error on line=%s of %s; not '%s'" % ( encoding, iline, bdf_filename, encoding) raise RuntimeError(msg) if line: nblank = 0 else: nblank += 1 if nblank == 20: raise RuntimeError('20 blank lines') iline += 1 lines.append(line) def _get_auxmodel_id(line: str, line_upper: str) -> int: """ parses the superelement header:: BEGIN AUXMODEL=2 BEGIN BULK AUXMODEL=2 BEGIN BULK AUXMODEL = 2 """ #if '=' in line_upper: sline = line_upper.split('=') #else: #sline = line_upper.split() try: auxmodel_id = int(sline[1]) except (IndexError, ValueError): msg = 'expected "BEGIN AUXMODEL=1"\nline = %s' % line raise SyntaxError(msg) if auxmodel_id < 0: raise SyntaxError('auxmodel_id=%i must be greater than 0; line=%s' % ( auxmodel_id, line)) return auxmodel_id def _get_afpm_id(line: str, line_upper: str) -> int: """ parses the superelement header:: BEGIN AFPM=2 BEGIN BULK AFPM=2 BEGIN BULK AFPM = 2 """ sline = line_upper.split('=') try: afpm_id = int(sline[1]) except (IndexError, ValueError): msg = 'expected "BEGIN AFPM=1"\nline = %s' % line raise SyntaxError(msg) if afpm_id < 0: raise SyntaxError('afpm_id=%i must be greater than 0; line=%s' % ( afpm_id, line)) return afpm_id def _get_super_id(line: str, line_upper: str) -> int: """ parses the superelement header:: BEGIN SUPER=2 BEGIN BULK SUPER=2 BEGIN BULK SUPER = 2 BEGIN BULK SUPER 2 """ if '=' in line_upper: sline = line_upper.split('=') super_id_str = sline[1] if len(sline) != 2: msg = 'expected "BEGIN SUPER=1"\nline = %s' % line raise SyntaxError(msg) else: sline = line_upper.split() if len(sline) not in [3, 4]: msg = 'expected "BEGIN SUPER=1"\nline = %s' % line raise SyntaxError(msg) if len(sline) == 3: # BEGIN SUPER 2 super_id_str = sline[2] elif len(sline) == 4: super_id_str = sline[3] try: super_id = int(super_id_str) except (IndexError, ValueError): msg = 'expected "BEGIN SUPER=1"\nline = %s' % line raise SyntaxError(msg) if super_id < 0: raise SyntaxError('super_id=%i must be greater than 0; line=%s' % ( super_id, line)) return super_id def _clean_comment_bulk(comment: str) -> str: """ Removes specific pyNastran comment lines so duplicate lines aren't created. Parameters ---------- comment : str the comment to possibly remove Returns ------- updated_comment : str the comment """ if comment == '': pass elif comment in IGNORE_COMMENTS: comment = '' elif 'pynastran' in comment.lower(): csline = comment.lower().split('pynastran', 1) if csline[1].strip() == ':': comment = '' #if comment: #print(comment) return comment def _make_ilines(nlines: int, ifile: int) -> NDArrayN2int: """helper method""" ilines = np.empty((nlines, 2), dtype='int32') ilines[:, 0] = ifile ilines[:, 1] = np.arange(nlines) # 0 to N-1 return ilines
""" Utilities required for Ip packages(Storing, removing and checking IP's efficiently). """ __version__ = "3.0.0" __author__ = "rakesht2499"
__author__ = 'jonestj1' import mbuild as mb class PegMonomer(mb.Compound): def __init__(self): super(PegMonomer, self).__init__() mb.load('peg_monomer.pdb', compound=self, relative_to_module=self.__module__) self.translate(-self[0].pos) self.add(mb.Port(anchor=self[0]), 'down') self['down'].translate([0, -0.07, 0]) self.add(mb.Port(anchor=self[6]), 'up') self['up'].translate([0, 0.073, 0]) if __name__ == '__main__': peg = PegMonomer() peg.save('peg.mol2')
#################################################################### # # # THIS FILE IS PART OF THE pycollada LIBRARY SOURCE CODE. # # USE, DISTRIBUTION AND REPRODUCTION OF THIS LIBRARY SOURCE IS # # GOVERNED BY A BSD-STYLE SOURCE LICENSE INCLUDED WITH THIS SOURCE # # IN 'COPYING'. PLEASE READ THESE TERMS BEFORE DISTRIBUTING. # # # # THE pycollada SOURCE CODE IS (C) COPYRIGHT 2011 # # by Jeff Terrace and contributors # # # #################################################################### """Module containing classes and functions for the <polylist> primitive.""" import numpy from collada import primitive from collada import triangleset from collada.common import E, tag from collada.common import DaeIncompleteError, DaeBrokenRefError, \ DaeMalformedError, DaeUnsupportedError from collada.util import toUnitVec, checkSource, xrange from collada.xmlutil import etree as ElementTree class Polygon(object): """Single polygon representation. Represents a polygon of N points.""" def __init__(self, indices, vertices, normal_indices, normals, texcoord_indices, texcoords, material): """A Polygon should not be created manually.""" self.vertices = vertices """A (N, 3) float array containing the points in the polygon.""" self.normals = normals """A (N, 3) float array with the normals for points in the polygon. Can be None.""" self.texcoords = texcoords """A tuple where entries are numpy float arrays of size (N, 2) containing the texture coordinates for the points in the polygon for each texture coordinate set. Can be length 0 if there are no texture coordinates.""" self.material = material """If coming from an unbound :class:`collada.polylist.Polylist`, contains a string with the material symbol. If coming from a bound :class:`collada.polylist.BoundPolylist`, contains the actual :class:`collada.material.Effect` the line is bound to.""" self.indices = indices """A (N,) int array containing the indices for the vertices of the N points in the polygon.""" self.normal_indices = normal_indices """A (N,) int array containing the indices for the normals of the N points in the polygon""" self.texcoord_indices = texcoord_indices """A (N,2) int array with texture coordinate indexes for the texcoords of the N points in the polygon""" def triangles(self): """This triangulates the polygon using a simple fanning method. :rtype: generator of :class:`collada.polylist.Polygon` """ npts = len(self.vertices) for i in range(npts-2): tri_indices = numpy.array([ self.indices[0], self.indices[i+1], self.indices[i+2] ], dtype=numpy.float32) tri_vertices = numpy.array([ self.vertices[0], self.vertices[i+1], self.vertices[i+2] ], dtype=numpy.float32) if self.normals is None: tri_normals = None normal_indices = None else: tri_normals = numpy.array([ self.normals[0], self.normals[i+1], self.normals[i+2] ], dtype=numpy.float32) normal_indices = numpy.array([ self.normal_indices[0], self.normal_indices[i+1], self.normal_indices[i+2] ], dtype=numpy.float32) tri_texcoords = [] tri_texcoord_indices = [] for texcoord, texcoord_indices in zip( self.texcoords, self.texcoord_indices): tri_texcoords.append(numpy.array([ texcoord[0], texcoord[i+1], texcoord[i+2] ], dtype=numpy.float32)) tri_texcoord_indices.append(numpy.array([ texcoord_indices[0], texcoord_indices[i+1], texcoord_indices[i+2] ], dtype=numpy.float32)) tri = triangleset.Triangle( tri_indices, tri_vertices, normal_indices, tri_normals, tri_texcoord_indices, tri_texcoords, self.material) yield tri def __repr__(self): return '<Polygon vertices=%d>' % len(self.vertices) def __str__(self): return repr(self) class Polylist(primitive.Primitive): """Class containing the data COLLADA puts in a <polylist> tag, a collection of polygons. The Polylist object is read-only. To modify a Polylist, create a new instance using :meth:`collada.geometry.Geometry.createPolylist`. * If ``P`` is an instance of :class:`collada.polylist.Polylist`, then ``len(P)`` returns the number of polygons in the set. ``P[i]`` returns the i\ :sup:`th` polygon in the set. """ def __init__(self, sources, material, index, vcounts, xmlnode=None): """A Polylist should not be created manually. Instead, call the :meth:`collada.geometry.Geometry.createPolylist` method after creating a geometry instance. """ if len(sources) == 0: raise DaeIncompleteError('A polylist set needs at least one input for vertex positions') if not 'VERTEX' in sources: raise DaeIncompleteError('Polylist requires vertex input') #find max offset max_offset = max([ max([input[0] for input in input_type_array]) for input_type_array in sources.values() if len(input_type_array) > 0]) self.material = material self.index = index self.indices = self.index self.nindices = max_offset + 1 self.vcounts = vcounts self.sources = sources self.index.shape = (-1, self.nindices) self.npolygons = len(self.vcounts) self.nvertices = numpy.sum(self.vcounts) if len(self.index) > 0 else 0 self.polyends = numpy.cumsum(self.vcounts) self.polystarts = self.polyends - self.vcounts self.polyindex = numpy.dstack((self.polystarts, self.polyends))[0] if len(self.index) > 0: self._vertex = sources['VERTEX'][0][4].data self._vertex_index = self.index[:,sources['VERTEX'][0][0]] self.maxvertexindex = numpy.max( self._vertex_index ) checkSource(sources['VERTEX'][0][4], ('X', 'Y', 'Z'), self.maxvertexindex) else: self._vertex = None self._vertex_index = None self.maxvertexindex = -1 if 'NORMAL' in sources and len(sources['NORMAL']) > 0 and len(self.index) > 0: self._normal = sources['NORMAL'][0][4].data self._normal_index = self.index[:,sources['NORMAL'][0][0]] self.maxnormalindex = numpy.max( self._normal_index ) checkSource(sources['NORMAL'][0][4], ('X', 'Y', 'Z'), self.maxnormalindex) else: self._normal = None self._normal_index = None self.maxnormalindex = -1 if 'TEXCOORD' in sources and len(sources['TEXCOORD']) > 0 \ and len(self.index) > 0: self._texcoordset = tuple([texinput[4].data for texinput in sources['TEXCOORD']]) self._texcoord_indexset = tuple([ self.index[:,sources['TEXCOORD'][i][0]] for i in xrange(len(sources['TEXCOORD'])) ]) self.maxtexcoordsetindex = [numpy.max(each) for each in self._texcoord_indexset] for i, texinput in enumerate(sources['TEXCOORD']): checkSource(texinput[4], ('S', 'T'), self.maxtexcoordsetindex[i]) else: self._texcoordset = tuple() self._texcoord_indexset = tuple() self.maxtexcoordsetindex = -1 if xmlnode is not None: self.xmlnode = xmlnode """ElementTree representation of the line set.""" else: txtindices = ' '.join(map(str, self.indices.flatten().tolist())) acclen = len(self.indices) self.xmlnode = E.polylist(count=str(self.npolygons), material=self.material) all_inputs = [] for semantic_list in self.sources.values(): all_inputs.extend(semantic_list) for offset, semantic, sourceid, set, src in all_inputs: inpnode = E.input(offset=str(offset), semantic=semantic, source=sourceid) if set is not None: inpnode.set('set', str(set)) self.xmlnode.append(inpnode) vcountnode = E.vcount(' '.join(map(str, self.vcounts))) self.xmlnode.append(vcountnode) self.xmlnode.append(E.p(txtindices)) def __len__(self): return self.npolygons def __getitem__(self, i): polyrange = self.polyindex[i] vertindex = self._vertex_index[polyrange[0]:polyrange[1]] v = self._vertex[vertindex] normalindex = None if self.normal is None: n = None else: normalindex = self._normal_index[polyrange[0]:polyrange[1]] n = self._normal[normalindex] uvindices = [] uv = [] for j, uvindex in enumerate(self._texcoord_indexset): uvindices.append( uvindex[polyrange[0]:polyrange[1]] ) uv.append( self._texcoordset[j][ uvindex[polyrange[0]:polyrange[1]] ] ) return Polygon(vertindex, v, normalindex, n, uvindices, uv, self.material) _triangleset = None def triangleset(self): """This performs a simple triangulation of the polylist using the fanning method. :rtype: :class:`collada.triangleset.TriangleSet` """ if self._triangleset is None: indexselector = numpy.zeros(self.nvertices) == 0 indexselector[self.polyindex[:,1]-1] = False indexselector[self.polyindex[:,1]-2] = False indexselector = numpy.arange(self.nvertices)[indexselector] firstpolyindex = numpy.arange(self.nvertices) firstpolyindex = firstpolyindex - numpy.repeat(self.polyends - self.vcounts, self.vcounts) firstpolyindex = firstpolyindex[indexselector] if len(self.index) > 0: triindex = numpy.dstack( (self.index[indexselector-firstpolyindex], self.index[indexselector+1], self.index[indexselector+2]) ) triindex = numpy.swapaxes(triindex, 1,2).flatten() else: triindex = numpy.array([], dtype=self.index.dtype) triset = triangleset.TriangleSet(self.sources, self.material, triindex, self.xmlnode) self._triangleset = triset return self._triangleset @staticmethod def load( collada, localscope, node ): indexnode = node.find(tag('p')) if indexnode is None: raise DaeIncompleteError('Missing index in polylist') vcountnode = node.find(tag('vcount')) if vcountnode is None: raise DaeIncompleteError('Missing vcount in polylist') try: if vcountnode.text is None: vcounts = numpy.array([], dtype=numpy.int32) else: vcounts = numpy.fromstring(vcountnode.text, dtype=numpy.int32, sep=' ') vcounts[numpy.isnan(vcounts)] = 0 except ValueError as ex: raise DaeMalformedError('Corrupted vcounts in polylist') all_inputs = primitive.Primitive._getInputs(collada, localscope, node.findall(tag('input'))) try: if indexnode.text is None: index = numpy.array([], dtype=numpy.int32) else: index = numpy.fromstring(indexnode.text, dtype=numpy.int32, sep=' ') index[numpy.isnan(index)] = 0 except: raise DaeMalformedError('Corrupted index in polylist') polylist = Polylist(all_inputs, node.get('material'), index, vcounts, node) return polylist def bind(self, matrix, materialnodebysymbol): """Create a bound polylist from this polylist, transform and material mapping""" return BoundPolylist( self, matrix, materialnodebysymbol) def __str__(self): return '<Polylist length=%d>' % len(self) def __repr__(self): return str(self) class BoundPolylist(primitive.BoundPrimitive): """A polylist bound to a transform matrix and materials mapping. * If ``P`` is an instance of :class:`collada.polylist.BoundPolylist`, then ``len(P)`` returns the number of polygons in the set. ``P[i]`` returns the i\ :sup:`th` polygon in the set. """ def __init__(self, pl, matrix, materialnodebysymbol): """Create a bound polylist from a polylist, transform and material mapping. This gets created when a polylist is instantiated in a scene. Do not create this manually.""" M = numpy.asmatrix(matrix).transpose() self._vertex = None if pl._vertex is None else numpy.asarray(pl._vertex * M[:3,:3]) + matrix[:3,3] self._normal = None if pl._normal is None else numpy.asarray(pl._normal * M[:3,:3]) self._texcoordset = pl._texcoordset matnode = materialnodebysymbol.get( pl.material ) if matnode: self.material = matnode.target self.inputmap = dict([ (sem, (input_sem, set)) for sem, input_sem, set in matnode.inputs ]) else: self.inputmap = self.material = None self.index = pl.index self.nvertices = pl.nvertices self._vertex_index = pl._vertex_index self._normal_index = pl._normal_index self._texcoord_indexset = pl._texcoord_indexset self.polyindex = pl.polyindex self.npolygons = pl.npolygons self.matrix = matrix self.materialnodebysymbol = materialnodebysymbol self.original = pl def __len__(self): return self.npolygons def __getitem__(self, i): polyrange = self.polyindex[i] vertindex = self._vertex_index[polyrange[0]:polyrange[1]] v = self._vertex[vertindex] normalindex = None if self.normal is None: n = None else: normalindex = self._normal_index[polyrange[0]:polyrange[1]] n = self._normal[normalindex] uvindices = [] uv = [] for j, uvindex in enumerate(self._texcoord_indexset): uvindices.append( uvindex[polyrange[0]:polyrange[1]] ) uv.append( self._texcoordset[j][ uvindex[polyrange[0]:polyrange[1]] ] ) return Polygon(vertindex, v, normalindex, n, uvindices, uv, self.material) _triangleset = None def triangleset(self): """This performs a simple triangulation of the polylist using the fanning method. :rtype: :class:`collada.triangleset.BoundTriangleSet` """ if self._triangleset is None: triset = self.original.triangleset() boundtriset = triset.bind(self.matrix, self.materialnodebysymbol) self._triangleset = boundtriset return self._triangleset def polygons(self): """Iterate through all the polygons contained in the set. :rtype: generator of :class:`collada.polylist.Polygon` """ for i in xrange(self.npolygons): yield self[i] def shapes(self): """Iterate through all the polygons contained in the set. :rtype: generator of :class:`collada.polylist.Polygon` """ return self.polygons() def __str__(self): return '<BoundPolylist length=%d>' % len(self) def __repr__(self): return str(self)
# coding: utf-8 """ Megaputer Text Mining API Megaputer Text Mining API # noqa: E501 OpenAPI spec version: 1.0 Generated by: https://openapi-generator.tech """ import pprint import re # noqa: F401 import six class PerOperationLimitPeriodic1Response(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = { 'ntu_period1': 'str', 'ntu_in_period1_limit': 'int', 'ntu_in_period1_tokens': 'int', 'ntu_in_period1_keywords': 'int', 'ntu_in_period1_entities': 'int', 'ntu_in_period1_languages': 'int', 'ntu_in_period1_sentiments': 'int', 'ntu_in_period1_facts': 'int' } attribute_map = { 'ntu_period1': 'NTUPeriod1', 'ntu_in_period1_limit': 'NTUInPeriod1Limit', 'ntu_in_period1_tokens': 'NTUInPeriod1Tokens', 'ntu_in_period1_keywords': 'NTUInPeriod1Keywords', 'ntu_in_period1_entities': 'NTUInPeriod1Entities', 'ntu_in_period1_languages': 'NTUInPeriod1Languages', 'ntu_in_period1_sentiments': 'NTUInPeriod1Sentiments', 'ntu_in_period1_facts': 'NTUInPeriod1Facts' } def __init__(self, ntu_period1=None, ntu_in_period1_limit=None, ntu_in_period1_tokens=None, ntu_in_period1_keywords=None, ntu_in_period1_entities=None, ntu_in_period1_languages=None, ntu_in_period1_sentiments=None, ntu_in_period1_facts=None): # noqa: E501 """PerOperationLimitPeriodic1Response - a model defined in OpenAPI""" # noqa: E501 self._ntu_period1 = None self._ntu_in_period1_limit = None self._ntu_in_period1_tokens = None self._ntu_in_period1_keywords = None self._ntu_in_period1_entities = None self._ntu_in_period1_languages = None self._ntu_in_period1_sentiments = None self._ntu_in_period1_facts = None self.discriminator = None if ntu_period1 is not None: self.ntu_period1 = ntu_period1 if ntu_in_period1_limit is not None: self.ntu_in_period1_limit = ntu_in_period1_limit if ntu_in_period1_tokens is not None: self.ntu_in_period1_tokens = ntu_in_period1_tokens if ntu_in_period1_keywords is not None: self.ntu_in_period1_keywords = ntu_in_period1_keywords if ntu_in_period1_entities is not None: self.ntu_in_period1_entities = ntu_in_period1_entities if ntu_in_period1_languages is not None: self.ntu_in_period1_languages = ntu_in_period1_languages if ntu_in_period1_sentiments is not None: self.ntu_in_period1_sentiments = ntu_in_period1_sentiments if ntu_in_period1_facts is not None: self.ntu_in_period1_facts = ntu_in_period1_facts @property def ntu_period1(self): """Gets the ntu_period1 of this PerOperationLimitPeriodic1Response. # noqa: E501 A period when limitations apply # noqa: E501 :return: The ntu_period1 of this PerOperationLimitPeriodic1Response. # noqa: E501 :rtype: str """ return self._ntu_period1 @ntu_period1.setter def ntu_period1(self, ntu_period1): """Sets the ntu_period1 of this PerOperationLimitPeriodic1Response. A period when limitations apply # noqa: E501 :param ntu_period1: The ntu_period1 of this PerOperationLimitPeriodic1Response. # noqa: E501 :type: str """ allowed_values = ["Second", "Minute", "Hour", "Day", "Month"] # noqa: E501 if ntu_period1 not in allowed_values: raise ValueError( "Invalid value for `ntu_period1` ({0}), must be one of {1}" # noqa: E501 .format(ntu_period1, allowed_values) ) self._ntu_period1 = ntu_period1 @property def ntu_in_period1_limit(self): """Gets the ntu_in_period1_limit of this PerOperationLimitPeriodic1Response. # noqa: E501 A maximum number of requests in the specified period # noqa: E501 :return: The ntu_in_period1_limit of this PerOperationLimitPeriodic1Response. # noqa: E501 :rtype: int """ return self._ntu_in_period1_limit @ntu_in_period1_limit.setter def ntu_in_period1_limit(self, ntu_in_period1_limit): """Sets the ntu_in_period1_limit of this PerOperationLimitPeriodic1Response. A maximum number of requests in the specified period # noqa: E501 :param ntu_in_period1_limit: The ntu_in_period1_limit of this PerOperationLimitPeriodic1Response. # noqa: E501 :type: int """ self._ntu_in_period1_limit = ntu_in_period1_limit @property def ntu_in_period1_tokens(self): """Gets the ntu_in_period1_tokens of this PerOperationLimitPeriodic1Response. # noqa: E501 A number of requests that have already been processed for operation Text parsing # noqa: E501 :return: The ntu_in_period1_tokens of this PerOperationLimitPeriodic1Response. # noqa: E501 :rtype: int """ return self._ntu_in_period1_tokens @ntu_in_period1_tokens.setter def ntu_in_period1_tokens(self, ntu_in_period1_tokens): """Sets the ntu_in_period1_tokens of this PerOperationLimitPeriodic1Response. A number of requests that have already been processed for operation Text parsing # noqa: E501 :param ntu_in_period1_tokens: The ntu_in_period1_tokens of this PerOperationLimitPeriodic1Response. # noqa: E501 :type: int """ self._ntu_in_period1_tokens = ntu_in_period1_tokens @property def ntu_in_period1_keywords(self): """Gets the ntu_in_period1_keywords of this PerOperationLimitPeriodic1Response. # noqa: E501 A number of requests that have already been processed for operation Keywords extraction # noqa: E501 :return: The ntu_in_period1_keywords of this PerOperationLimitPeriodic1Response. # noqa: E501 :rtype: int """ return self._ntu_in_period1_keywords @ntu_in_period1_keywords.setter def ntu_in_period1_keywords(self, ntu_in_period1_keywords): """Sets the ntu_in_period1_keywords of this PerOperationLimitPeriodic1Response. A number of requests that have already been processed for operation Keywords extraction # noqa: E501 :param ntu_in_period1_keywords: The ntu_in_period1_keywords of this PerOperationLimitPeriodic1Response. # noqa: E501 :type: int """ self._ntu_in_period1_keywords = ntu_in_period1_keywords @property def ntu_in_period1_entities(self): """Gets the ntu_in_period1_entities of this PerOperationLimitPeriodic1Response. # noqa: E501 A number of requests that have already been processed for operation Entities extraction # noqa: E501 :return: The ntu_in_period1_entities of this PerOperationLimitPeriodic1Response. # noqa: E501 :rtype: int """ return self._ntu_in_period1_entities @ntu_in_period1_entities.setter def ntu_in_period1_entities(self, ntu_in_period1_entities): """Sets the ntu_in_period1_entities of this PerOperationLimitPeriodic1Response. A number of requests that have already been processed for operation Entities extraction # noqa: E501 :param ntu_in_period1_entities: The ntu_in_period1_entities of this PerOperationLimitPeriodic1Response. # noqa: E501 :type: int """ self._ntu_in_period1_entities = ntu_in_period1_entities @property def ntu_in_period1_languages(self): """Gets the ntu_in_period1_languages of this PerOperationLimitPeriodic1Response. # noqa: E501 A number of requests that have already been processed for operation Language detection # noqa: E501 :return: The ntu_in_period1_languages of this PerOperationLimitPeriodic1Response. # noqa: E501 :rtype: int """ return self._ntu_in_period1_languages @ntu_in_period1_languages.setter def ntu_in_period1_languages(self, ntu_in_period1_languages): """Sets the ntu_in_period1_languages of this PerOperationLimitPeriodic1Response. A number of requests that have already been processed for operation Language detection # noqa: E501 :param ntu_in_period1_languages: The ntu_in_period1_languages of this PerOperationLimitPeriodic1Response. # noqa: E501 :type: int """ self._ntu_in_period1_languages = ntu_in_period1_languages @property def ntu_in_period1_sentiments(self): """Gets the ntu_in_period1_sentiments of this PerOperationLimitPeriodic1Response. # noqa: E501 A number of requests that have already been processed for operation Sentiments analysis # noqa: E501 :return: The ntu_in_period1_sentiments of this PerOperationLimitPeriodic1Response. # noqa: E501 :rtype: int """ return self._ntu_in_period1_sentiments @ntu_in_period1_sentiments.setter def ntu_in_period1_sentiments(self, ntu_in_period1_sentiments): """Sets the ntu_in_period1_sentiments of this PerOperationLimitPeriodic1Response. A number of requests that have already been processed for operation Sentiments analysis # noqa: E501 :param ntu_in_period1_sentiments: The ntu_in_period1_sentiments of this PerOperationLimitPeriodic1Response. # noqa: E501 :type: int """ self._ntu_in_period1_sentiments = ntu_in_period1_sentiments @property def ntu_in_period1_facts(self): """Gets the ntu_in_period1_facts of this PerOperationLimitPeriodic1Response. # noqa: E501 A number of requests that have already been processed for operation Facts extraction # noqa: E501 :return: The ntu_in_period1_facts of this PerOperationLimitPeriodic1Response. # noqa: E501 :rtype: int """ return self._ntu_in_period1_facts @ntu_in_period1_facts.setter def ntu_in_period1_facts(self, ntu_in_period1_facts): """Sets the ntu_in_period1_facts of this PerOperationLimitPeriodic1Response. A number of requests that have already been processed for operation Facts extraction # noqa: E501 :param ntu_in_period1_facts: The ntu_in_period1_facts of this PerOperationLimitPeriodic1Response. # noqa: E501 :type: int """ self._ntu_in_period1_facts = ntu_in_period1_facts def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, PerOperationLimitPeriodic1Response): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
import json import argparse from websocket import create_connection from urllib.parse import urlparse import tornado.ioloop import tornado.web import tornado.websocket from blockchain import Blockchain, Block from server import Peer from const import RESPONSE_BLOCKCHAIN, QUERY_LATEST, QUERY_ALL parser = argparse.ArgumentParser( description='Pychain is an implementation of NaiveChain in Python3') parser.add_argument('--http-port', action='store', default=8000, type=int, help='http port(default:8000)') args = parser.parse_args() blockchain = Blockchain() peers = [] class BlockHandler(tornado.web.RequestHandler): def get(self): json_blockchain = blockchain.to_json() self.write(json_blockchain) class MineBlockHandler(tornado.web.RequestHandler): def post(self): dic = json.loads(self.request.body) blockchain.add(data=dic["data"]) resp = { "type": RESPONSE_BLOCKCHAIN, "data": [blockchain.blocks[-1].to_dict()] } print(resp) broadcast(resp) return class PeerHandler(tornado.web.RequestHandler): def get(self): json_peers = json.dumps([str(p) for p in peers]) self.write(json_peers) class AddPeerHandler(tornado.web.RequestHandler): def post(self): dic = json.loads(self.request.body) url = urlparse(dic["peer"]) try: sock = create_connection("ws://" + url.hostname + ":" + str(url.port) + "/websocket") # r = requests.get("http://" + url.hostname + ":" + str(url.port) + "/peers") p = Peer(url.hostname, url.port, sock) peers.append(p) resp = { 'type': QUERY_LATEST, 'host': 'localhost:' + str(args.http_port) } print(sock) p.send(data=resp) except ConnectionRefusedError: print("socket connection error") return class WebSocket(tornado.websocket.WebSocketHandler): def open(self): print("open websocket connection") def on_message(self, message): message = json.loads(message) if message["type"] == QUERY_LATEST: resp = { 'type': RESPONSE_BLOCKCHAIN, 'data': [blockchain.blocks[-1].to_dict()], } sock = create_connection("ws://" + message["host"] + "/websocket") sock.send(json.dumps(resp).encode('utf-8')) if message["type"] == QUERY_ALL: resp = { 'type': RESPONSE_BLOCKCHAIN, 'data': blockchain.to_dict(), } sock = create_connection("ws://" + message["host"] + "/websocket") sock.send(json.dumps(resp).encode('utf-8')) if message["type"] == RESPONSE_BLOCKCHAIN: handle_blockchain_response(message) def on_close(self): print("close websocket connection") def handle_blockchain_response(message): received_blocks = sorted(message["data"], key=lambda k: k["index"]) latest_block = received_blocks[-1] my_latest_block = blockchain.get_latest_block() if latest_block["index"] > my_latest_block.index: if(my_latest_block.hash == latest_block["previous_hash"]): block = Block.make_from_dict(latest_block) blockchain.add(block=block) resp = { 'type': RESPONSE_BLOCKCHAIN, 'data': [latest_block] } broadcast(resp) elif(len(received_blocks) == 1): resp = { 'type': QUERY_ALL, 'host': 'localhost:' + str(args.http_port) } broadcast(resp) else: blocks = [Block.make_from_dict(b) for b in received_blocks] blockchain.replace(blocks) def broadcast(resp): for p in peers: p.send(resp) app = tornado.web.Application([ (r"/blocks", BlockHandler), (r"/mineBlock", MineBlockHandler), (r"/peers", PeerHandler), (r"/addPeer", AddPeerHandler), (r"/websocket", WebSocket), ]) if __name__ == "__main__": app.listen(args.http_port) tornado.ioloop.IOLoop.instance().start()
from typing import Dict def login_admin(admin: Dict) -> bool: admin_all = [{"username": "renan", "password": "12345"}] if admin.get("username") and admin.get("password"): for index in admin_all: if str(admin.get("username")).lower() == str(index.get("username")).lower(): if admin.get("password") == index.get("password"): return True return False
""" Django settings for yatube project. Generated by 'django-admin startproject' using Django 2.2.19. For more information on this file, see https://docs.djangoproject.com/en/2.2/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.2/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.2/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '5@0*t-w_1u_-a&!418bd5qu49nzly1(5zw3ogbrs^7bxeh&as$' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'yatube.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'yatube.wsgi.application' # Database # https://docs.djangoproject.com/en/2.2/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/2.2/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/2.2/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.2/howto/static-files/ STATIC_URL = '/static/'
import pytest from capreolus import Benchmark, Task, module_registry from capreolus.tests.common_fixtures import dummy_index, tmpdir_as_cache tasks = set(module_registry.get_module_names("task")) @pytest.mark.parametrize("task_name", tasks) def test_task_creatable(tmpdir_as_cache, dummy_index, task_name): provide = {"index": dummy_index, "benchmark": Benchmark.create("dummy"), "collection": dummy_index.collection} task = Task.create(task_name, provide=provide)
#!/usr/bin/python # -*- coding: utf-8 -*- # Copyright (c) 2021, Cisco Systems # GNU General Public License v3.0+ (see LICENSE or https://www.gnu.org/licenses/gpl-3.0.txt) DOCUMENTATION = r""" --- module: network_access_profiles_info short_description: Information module for Network Access Profiles description: - Get all Network Access Profiles. version_added: '1.0.0' extends_documentation_fragment: - cisco.ise.module_info author: Rafael Campos (@racampos) options: {} requirements: - ciscoisesdk >= 1.1.0 - python >= 3.5 seealso: # Reference by Internet resource - name: Network Access Profiles reference description: Complete reference of the Network Access Profiles object model. link: https://ciscoisesdk.readthedocs.io/en/latest/api/api.html#v3-0-0-summary """ EXAMPLES = r""" - name: Get all Network Access Profiles cisco.ise.network_access_profiles_info: ise_hostname: "{{ise_hostname}}" ise_username: "{{ise_username}}" ise_password: "{{ise_password}}" ise_verify: "{{ise_verify}}" register: result """ RETURN = r""" ise_response: description: A dictionary or list with the response returned by the Cisco ISE Python SDK returned: always type: list elements: dict sample: > [ { "id": "string", "name": "string" } ] """
# coding=utf-8 # *** WARNING: this file was generated by pulumigen. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from ... import _utilities from . import outputs from ... import meta as _meta from ._inputs import * __all__ = ['NetworkPolicyInitArgs', 'NetworkPolicy'] @pulumi.input_type class NetworkPolicyInitArgs: def __init__(__self__, *, api_version: Optional[pulumi.Input[str]] = None, kind: Optional[pulumi.Input[str]] = None, metadata: Optional[pulumi.Input['_meta.v1.ObjectMetaArgs']] = None, spec: Optional[pulumi.Input['NetworkPolicySpecArgs']] = None): """ The set of arguments for constructing a NetworkPolicy resource. :param pulumi.Input[str] api_version: APIVersion defines the versioned schema of this representation of an object. Servers should convert recognized schemas to the latest internal value, and may reject unrecognized values. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#resources :param pulumi.Input[str] kind: Kind is a string value representing the REST resource this object represents. Servers may infer this from the endpoint the client submits requests to. Cannot be updated. In CamelCase. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#types-kinds :param pulumi.Input['_meta.v1.ObjectMetaArgs'] metadata: Standard object's metadata. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#metadata :param pulumi.Input['NetworkPolicySpecArgs'] spec: Specification of the desired behavior for this NetworkPolicy. """ if api_version is not None: pulumi.set(__self__, "api_version", 'extensions/v1beta1') if kind is not None: pulumi.set(__self__, "kind", 'NetworkPolicy') if metadata is not None: pulumi.set(__self__, "metadata", metadata) if spec is not None: pulumi.set(__self__, "spec", spec) @property @pulumi.getter(name="apiVersion") def api_version(self) -> Optional[pulumi.Input[str]]: """ APIVersion defines the versioned schema of this representation of an object. Servers should convert recognized schemas to the latest internal value, and may reject unrecognized values. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#resources """ return pulumi.get(self, "api_version") @api_version.setter def api_version(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "api_version", value) @property @pulumi.getter def kind(self) -> Optional[pulumi.Input[str]]: """ Kind is a string value representing the REST resource this object represents. Servers may infer this from the endpoint the client submits requests to. Cannot be updated. In CamelCase. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#types-kinds """ return pulumi.get(self, "kind") @kind.setter def kind(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "kind", value) @property @pulumi.getter def metadata(self) -> Optional[pulumi.Input['_meta.v1.ObjectMetaArgs']]: """ Standard object's metadata. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#metadata """ return pulumi.get(self, "metadata") @metadata.setter def metadata(self, value: Optional[pulumi.Input['_meta.v1.ObjectMetaArgs']]): pulumi.set(self, "metadata", value) @property @pulumi.getter def spec(self) -> Optional[pulumi.Input['NetworkPolicySpecArgs']]: """ Specification of the desired behavior for this NetworkPolicy. """ return pulumi.get(self, "spec") @spec.setter def spec(self, value: Optional[pulumi.Input['NetworkPolicySpecArgs']]): pulumi.set(self, "spec", value) class NetworkPolicy(pulumi.CustomResource): @overload def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, api_version: Optional[pulumi.Input[str]] = None, kind: Optional[pulumi.Input[str]] = None, metadata: Optional[pulumi.Input[pulumi.InputType['_meta.v1.ObjectMetaArgs']]] = None, spec: Optional[pulumi.Input[pulumi.InputType['NetworkPolicySpecArgs']]] = None, __props__=None): """ DEPRECATED 1.9 - This group version of NetworkPolicy is deprecated by networking/v1/NetworkPolicy. NetworkPolicy describes what network traffic is allowed for a set of Pods :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] api_version: APIVersion defines the versioned schema of this representation of an object. Servers should convert recognized schemas to the latest internal value, and may reject unrecognized values. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#resources :param pulumi.Input[str] kind: Kind is a string value representing the REST resource this object represents. Servers may infer this from the endpoint the client submits requests to. Cannot be updated. In CamelCase. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#types-kinds :param pulumi.Input[pulumi.InputType['_meta.v1.ObjectMetaArgs']] metadata: Standard object's metadata. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#metadata :param pulumi.Input[pulumi.InputType['NetworkPolicySpecArgs']] spec: Specification of the desired behavior for this NetworkPolicy. """ ... @overload def __init__(__self__, resource_name: str, args: Optional[NetworkPolicyInitArgs] = None, opts: Optional[pulumi.ResourceOptions] = None): """ DEPRECATED 1.9 - This group version of NetworkPolicy is deprecated by networking/v1/NetworkPolicy. NetworkPolicy describes what network traffic is allowed for a set of Pods :param str resource_name: The name of the resource. :param NetworkPolicyInitArgs args: The arguments to use to populate this resource's properties. :param pulumi.ResourceOptions opts: Options for the resource. """ ... def __init__(__self__, resource_name: str, *args, **kwargs): resource_args, opts = _utilities.get_resource_args_opts(NetworkPolicyInitArgs, pulumi.ResourceOptions, *args, **kwargs) if resource_args is not None: __self__._internal_init(resource_name, opts, **resource_args.__dict__) else: __self__._internal_init(resource_name, *args, **kwargs) def _internal_init(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, api_version: Optional[pulumi.Input[str]] = None, kind: Optional[pulumi.Input[str]] = None, metadata: Optional[pulumi.Input[pulumi.InputType['_meta.v1.ObjectMetaArgs']]] = None, spec: Optional[pulumi.Input[pulumi.InputType['NetworkPolicySpecArgs']]] = None, __props__=None): if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = NetworkPolicyInitArgs.__new__(NetworkPolicyInitArgs) __props__.__dict__["api_version"] = 'extensions/v1beta1' __props__.__dict__["kind"] = 'NetworkPolicy' __props__.__dict__["metadata"] = metadata __props__.__dict__["spec"] = spec alias_opts = pulumi.ResourceOptions(aliases=[pulumi.Alias(type_="kubernetes:networking.k8s.io/v1:NetworkPolicy")]) opts = pulumi.ResourceOptions.merge(opts, alias_opts) super(NetworkPolicy, __self__).__init__( 'kubernetes:extensions/v1beta1:NetworkPolicy', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None) -> 'NetworkPolicy': """ Get an existing NetworkPolicy resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = NetworkPolicyInitArgs.__new__(NetworkPolicyInitArgs) __props__.__dict__["api_version"] = None __props__.__dict__["kind"] = None __props__.__dict__["metadata"] = None __props__.__dict__["spec"] = None return NetworkPolicy(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter(name="apiVersion") def api_version(self) -> pulumi.Output[Optional[str]]: """ APIVersion defines the versioned schema of this representation of an object. Servers should convert recognized schemas to the latest internal value, and may reject unrecognized values. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#resources """ return pulumi.get(self, "api_version") @property @pulumi.getter def kind(self) -> pulumi.Output[Optional[str]]: """ Kind is a string value representing the REST resource this object represents. Servers may infer this from the endpoint the client submits requests to. Cannot be updated. In CamelCase. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#types-kinds """ return pulumi.get(self, "kind") @property @pulumi.getter def metadata(self) -> pulumi.Output[Optional['_meta.v1.outputs.ObjectMeta']]: """ Standard object's metadata. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#metadata """ return pulumi.get(self, "metadata") @property @pulumi.getter def spec(self) -> pulumi.Output[Optional['outputs.NetworkPolicySpec']]: """ Specification of the desired behavior for this NetworkPolicy. """ return pulumi.get(self, "spec")
from . import local import unittest class LocalDestinationTestCase(unittest.TestCase): def test_out_dir(self): config = local.Config(out_dir='~/test/') destination = local.LocalDestination(config) # Weakly verify out_dir is expanded. self.assertNotIn('~', destination.out_dir) if __name__ == '__main__': unittest.main()
import math from warriorpy.warriorpyGeography.src.relativeDirections import BACKWARD, FORWARD from .base import AbilityBase class Attack(AbilityBase): def perform(self, direction="forward"): self.verify_direction(direction) receiver = self.unit(direction) if receiver: self._unit.say("attacks %s and hits %s" % (direction, receiver.__class__.__name__)) if direction == "backward": power = math.ceil(self._unit.attack_power/2.0) else: power = self._unit.attack_power self.damage(receiver, power) else: self._unit.say("attacks %s and hits nothing" % direction) def description(self): return "Attacks a unit in given direction (forward by default)."
import os basedir = os.path.abspath(os.path.dirname(__file__)) class Config(object): SERVER_NAME = os.environ.get('SERVER_NAME') or 'localhost.dev:5000' SECRET_KEY = os.environ.get('SECRET_KEY') or 'nunca-lo-adivinaras' SQLALCHEMY_DATABASE_URI = os.environ.get('DATABASE_URL') or \ 'sqlite:///' + os.path.join(basedir,'app.db') SQLALCHEMY_TRACK_MODIFICATIONS = False BOOTSTRAP_SERVE_LOCAL=True MAIL_SERVER = os.environ.get('MAIL_SERVER') MAIL_PORT = int(os.environ.get('MAIL_PORT') or 25) MAIL_USE_TLS = os.environ.get('MAIL_USE_TLS') MAIL_USERNAME = os.environ.get('MAIL_USERNAME') MAIL_PASSWORD = os.environ.get('MAIL_PASSWORD') ADMINS = ['your-email@example.com'] BOOTSTRAP_SERVE_LOCAL = True
import collections import concurrent.futures import copy import datetime import decimal import functools import hashlib import itertools import json import os from contextlib import contextmanager from enum import Enum from typing_extensions import Protocol from typing import ( Tuple, Type, Any, Optional, TypeVar, Dict, Union, Callable, List, Iterator, Mapping, Iterable, AbstractSet, Set, Sequence ) import dbt.exceptions from dbt.node_types import NodeType DECIMALS: Tuple[Type[Any], ...] try: import cdecimal # typing: ignore except ImportError: DECIMALS = (decimal.Decimal,) else: DECIMALS = (decimal.Decimal, cdecimal.Decimal) class ExitCodes(int, Enum): Success = 0 ModelError = 1 UnhandledError = 2 def coalesce(*args): for arg in args: if arg is not None: return arg return None def get_profile_from_project(project): target_name = project.get('target', {}) profile = project.get('outputs', {}).get(target_name, {}) return profile def get_model_name_or_none(model): if model is None: name = '<None>' elif isinstance(model, str): name = model elif isinstance(model, dict): name = model.get('alias', model.get('name')) elif hasattr(model, 'alias'): name = model.alias elif hasattr(model, 'name'): name = model.name else: name = str(model) return name MACRO_PREFIX = 'dbt_macro__' DOCS_PREFIX = 'dbt_docs__' def get_dbt_macro_name(name): if name is None: raise dbt.exceptions.InternalException('Got None for a macro name!') return '{}{}'.format(MACRO_PREFIX, name) def get_dbt_docs_name(name): if name is None: raise dbt.exceptions.InternalException('Got None for a doc name!') return '{}{}'.format(DOCS_PREFIX, name) def get_materialization_macro_name(materialization_name, adapter_type=None, with_prefix=True): if adapter_type is None: adapter_type = 'default' name = 'materialization_{}_{}'.format(materialization_name, adapter_type) if with_prefix: return get_dbt_macro_name(name) else: return name def get_docs_macro_name(docs_name, with_prefix=True): if with_prefix: return get_dbt_docs_name(docs_name) else: return docs_name def split_path(path): return path.split(os.sep) def merge(*args): if len(args) == 0: return None if len(args) == 1: return args[0] lst = list(args) last = lst.pop(len(lst) - 1) return _merge(merge(*lst), last) def _merge(a, b): to_return = a.copy() to_return.update(b) return to_return # http://stackoverflow.com/questions/20656135/python-deep-merge-dictionary-data def deep_merge(*args): """ >>> dbt.utils.deep_merge({'a': 1, 'b': 2, 'c': 3}, {'a': 2}, {'a': 3, 'b': 1}) # noqa {'a': 3, 'b': 1, 'c': 3} """ if len(args) == 0: return None if len(args) == 1: return copy.deepcopy(args[0]) lst = list(args) last = copy.deepcopy(lst.pop(len(lst) - 1)) return _deep_merge(deep_merge(*lst), last) def _deep_merge(destination, source): if isinstance(source, dict): for key, value in source.items(): deep_merge_item(destination, key, value) return destination def deep_merge_item(destination, key, value): if isinstance(value, dict): node = destination.setdefault(key, {}) destination[key] = deep_merge(node, value) elif isinstance(value, tuple) or isinstance(value, list): if key in destination: destination[key] = list(value) + list(destination[key]) else: destination[key] = value else: destination[key] = value def _deep_map( func: Callable[[Any, Tuple[Union[str, int], ...]], Any], value: Any, keypath: Tuple[Union[str, int], ...], ) -> Any: atomic_types: Tuple[Type[Any], ...] = (int, float, str, type(None), bool) ret: Any if isinstance(value, list): ret = [ _deep_map(func, v, (keypath + (idx,))) for idx, v in enumerate(value) ] elif isinstance(value, dict): ret = { k: _deep_map(func, v, (keypath + (str(k),))) for k, v in value.items() } elif isinstance(value, atomic_types): ret = func(value, keypath) else: container_types: Tuple[Type[Any], ...] = (list, dict) ok_types = container_types + atomic_types raise dbt.exceptions.DbtConfigError( 'in _deep_map, expected one of {!r}, got {!r}' .format(ok_types, type(value)) ) return ret def deep_map( func: Callable[[Any, Tuple[Union[str, int], ...]], Any], value: Any ) -> Any: """map the function func() onto each non-container value in 'value' recursively, returning a new value. As long as func does not manipulate value, then deep_map will also not manipulate it. value should be a value returned by `yaml.safe_load` or `json.load` - the only expected types are list, dict, native python number, str, NoneType, and bool. func() will be called on numbers, strings, Nones, and booleans. Its first parameter will be the value, and the second will be its keypath, an iterable over the __getitem__ keys needed to get to it. :raises: If there are cycles in the value, raises a dbt.exceptions.RecursionException """ try: return _deep_map(func, value, ()) except RuntimeError as exc: if 'maximum recursion depth exceeded' in str(exc): raise dbt.exceptions.RecursionException( 'Cycle detected in deep_map' ) raise class AttrDict(dict): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.__dict__ = self def get_pseudo_test_path(node_name, source_path, test_type): "schema tests all come from schema.yml files. fake a source sql file" source_path_parts = split_path(source_path) source_path_parts.pop() # ignore filename suffix = [test_type, "{}.sql".format(node_name)] pseudo_path_parts = source_path_parts + suffix return os.path.join(*pseudo_path_parts) def get_pseudo_hook_path(hook_name): path_parts = ['hooks', "{}.sql".format(hook_name)] return os.path.join(*path_parts) def md5(string): return hashlib.md5(string.encode('utf-8')).hexdigest() def get_hash(model): return hashlib.md5(model.unique_id.encode('utf-8')).hexdigest() def get_hashed_contents(model): return hashlib.md5(model.raw_sql.encode('utf-8')).hexdigest() def flatten_nodes(dep_list): return list(itertools.chain.from_iterable(dep_list)) class memoized: '''Decorator. Caches a function's return value each time it is called. If called later with the same arguments, the cached value is returned (not reevaluated). Taken from https://wiki.python.org/moin/PythonDecoratorLibrary#Memoize''' def __init__(self, func): self.func = func self.cache = {} def __call__(self, *args): if not isinstance(args, collections.abc.Hashable): # uncacheable. a list, for instance. # better to not cache than blow up. return self.func(*args) if args in self.cache: return self.cache[args] value = self.func(*args) self.cache[args] = value return value def __repr__(self): '''Return the function's docstring.''' return self.func.__doc__ def __get__(self, obj, objtype): '''Support instance methods.''' return functools.partial(self.__call__, obj) K_T = TypeVar('K_T') V_T = TypeVar('V_T') def filter_null_values(input: Dict[K_T, Optional[V_T]]) -> Dict[K_T, V_T]: return {k: v for k, v in input.items() if v is not None} def add_ephemeral_model_prefix(s: str) -> str: return '__dbt__cte__{}'.format(s) def timestring() -> str: """Get the current datetime as an RFC 3339-compliant string""" # isoformat doesn't include the mandatory trailing 'Z' for UTC. return datetime.datetime.utcnow().isoformat() + 'Z' class JSONEncoder(json.JSONEncoder): """A 'custom' json encoder that does normal json encoder things, but also handles `Decimal`s. Naturally, this can lose precision because they get converted to floats. """ def default(self, obj): if isinstance(obj, DECIMALS): return float(obj) if isinstance(obj, (datetime.datetime, datetime.date, datetime.time)): return obj.isoformat() if hasattr(obj, 'to_dict'): # if we have a to_dict we should try to serialize the result of # that! return obj.to_dict(omit_none=True) return super().default(obj) class ForgivingJSONEncoder(JSONEncoder): def default(self, obj): # let dbt's default JSON encoder handle it if possible, fallback to # str() try: return super().default(obj) except TypeError: return str(obj) class Translator: def __init__(self, aliases: Mapping[str, str], recursive: bool = False): self.aliases = aliases self.recursive = recursive def translate_mapping( self, kwargs: Mapping[str, Any] ) -> Dict[str, Any]: result: Dict[str, Any] = {} for key, value in kwargs.items(): canonical_key = self.aliases.get(key, key) if canonical_key in result: dbt.exceptions.raise_duplicate_alias( kwargs, self.aliases, canonical_key ) result[canonical_key] = self.translate_value(value) return result def translate_sequence(self, value: Sequence[Any]) -> List[Any]: return [self.translate_value(v) for v in value] def translate_value(self, value: Any) -> Any: if self.recursive: if isinstance(value, Mapping): return self.translate_mapping(value) elif isinstance(value, (list, tuple)): return self.translate_sequence(value) return value def translate(self, value: Mapping[str, Any]) -> Dict[str, Any]: try: return self.translate_mapping(value) except RuntimeError as exc: if 'maximum recursion depth exceeded' in str(exc): raise dbt.exceptions.RecursionException( 'Cycle detected in a value passed to translate!' ) raise def translate_aliases( kwargs: Dict[str, Any], aliases: Dict[str, str], recurse: bool = False, ) -> Dict[str, Any]: """Given a dict of keyword arguments and a dict mapping aliases to their canonical values, canonicalize the keys in the kwargs dict. If recurse is True, perform this operation recursively. :return: A dict containing all the values in kwargs referenced by their canonical key. :raises: `AliasException`, if a canonical key is defined more than once. """ translator = Translator(aliases, recurse) return translator.translate(kwargs) def _pluralize(string: Union[str, NodeType]) -> str: try: convert = NodeType(string) except ValueError: return f'{string}s' else: return convert.pluralize() def pluralize(count, string: Union[str, NodeType]): pluralized: str = str(string) if count != 1: pluralized = _pluralize(string) return f'{count} {pluralized}' def restrict_to(*restrictions): """Create the metadata for a restricted dataclass field""" return {'restrict': list(restrictions)} def coerce_dict_str(value: Any) -> Optional[Dict[str, Any]]: """For annoying mypy reasons, this helper makes dealing with nested dicts easier. You get either `None` if it's not a Dict[str, Any], or the Dict[str, Any] you expected (to pass it to dbtClassMixin.from_dict(...)). """ if (isinstance(value, dict) and all(isinstance(k, str) for k in value)): return value else: return None def lowercase(value: Optional[str]) -> Optional[str]: if value is None: return None else: return value.lower() # some types need to make constants available to the jinja context as # attributes, and regular properties only work with objects. maybe this should # be handled by the RelationProxy? class classproperty(object): def __init__(self, func): self.func = func def __get__(self, obj, objtype): return self.func(objtype) def format_bytes(num_bytes): for unit in ['Bytes', 'KB', 'MB', 'GB', 'TB', 'PB']: if abs(num_bytes) < 1024.0: return f"{num_bytes:3.1f} {unit}" num_bytes /= 1024.0 num_bytes *= 1024.0 return f"{num_bytes:3.1f} {unit}" def format_rows_number(rows_number): for unit in ['', 'k', 'm', 'b', 't']: if abs(rows_number) < 1000.0: return f"{rows_number:3.1f}{unit}".strip() rows_number /= 1000.0 rows_number *= 1000.0 return f"{rows_number:3.1f}{unit}".strip() class ConnectingExecutor(concurrent.futures.Executor): def submit_connected(self, adapter, conn_name, func, *args, **kwargs): def connected(conn_name, func, *args, **kwargs): with self.connection_named(adapter, conn_name): return func(*args, **kwargs) return self.submit(connected, conn_name, func, *args, **kwargs) # a little concurrent.futures.Executor for single-threaded mode class SingleThreadedExecutor(ConnectingExecutor): def submit(*args, **kwargs): # this basic pattern comes from concurrent.futures.Executor itself, # but without handling the `fn=` form. if len(args) >= 2: self, fn, *args = args elif not args: raise TypeError( "descriptor 'submit' of 'SingleThreadedExecutor' object needs " "an argument" ) else: raise TypeError( 'submit expected at least 1 positional argument, ' 'got %d' % (len(args) - 1) ) fut = concurrent.futures.Future() try: result = fn(*args, **kwargs) except Exception as exc: fut.set_exception(exc) else: fut.set_result(result) return fut @contextmanager def connection_named(self, adapter, name): yield class MultiThreadedExecutor( ConnectingExecutor, concurrent.futures.ThreadPoolExecutor, ): @contextmanager def connection_named(self, adapter, name): with adapter.connection_named(name): yield class ThreadedArgs(Protocol): single_threaded: bool class HasThreadingConfig(Protocol): args: ThreadedArgs threads: Optional[int] def executor(config: HasThreadingConfig) -> ConnectingExecutor: if config.args.single_threaded: return SingleThreadedExecutor() else: return MultiThreadedExecutor(max_workers=config.threads) def fqn_search( root: Dict[str, Any], fqn: List[str] ) -> Iterator[Dict[str, Any]]: """Iterate into a nested dictionary, looking for keys in the fqn as levels. Yield the level config. """ yield root for level in fqn: level_config = root.get(level, None) if not isinstance(level_config, dict): break # This used to do a 'deepcopy', # but it didn't seem to be necessary yield level_config root = level_config StringMap = Mapping[str, Any] StringMapList = List[StringMap] StringMapIter = Iterable[StringMap] class MultiDict(Mapping[str, Any]): """Implement the mapping protocol using a list of mappings. The most recently added mapping "wins". """ def __init__(self, sources: Optional[StringMapList] = None) -> None: super().__init__() self.sources: StringMapList if sources is None: self.sources = [] else: self.sources = sources def add_from(self, sources: StringMapIter): self.sources.extend(sources) def add(self, source: StringMap): self.sources.append(source) def _keyset(self) -> AbstractSet[str]: # return the set of keys keys: Set[str] = set() for entry in self._itersource(): keys.update(entry) return keys def _itersource(self) -> StringMapIter: return reversed(self.sources) def __iter__(self) -> Iterator[str]: # we need to avoid duplicate keys return iter(self._keyset()) def __len__(self): return len(self._keyset()) def __getitem__(self, name: str) -> Any: for entry in self._itersource(): if name in entry: return entry[name] raise KeyError(name) def __contains__(self, name) -> bool: return any((name in entry for entry in self._itersource()))
import sys def is_one(x): return x == 1 or x == 1.0 or x == '1' or x == '1.0' def is_negone(x): return x == -1 or x == -1.0 or x == '-1' or x == '-1.0' def is_nonzero(x): return x != 0 and x != 0.0 and x != -0.0 and x != '0' and x != '0.0' and x != '-0.0' def contain_nontrivial( coeffs ): for coeff in coeffs: if ( ( not is_one( coeff ) ) and ( not is_negone( coeff ) ) and ( is_nonzero( coeff ) ) ): return True return False def write_line(myfile, num_indent, code): ''' Write the line of code with num_indent number of indents. ''' myfile.write(' ' * 4 * num_indent + code + '\n') def write_break(myfile, num_breaks=1): ''' Write a break (new line) in the file myfile. ''' myfile.write('\n' * num_breaks) def data_access( mat_name, ind="" ): return '%s[ i + j * ld%s ]' % ( mat_name + str(ind), mat_name ) def transpose(coeffs): ''' Given a list of rows, return a list of columns. ''' return [[x[i] for x in coeffs] for i in range(len(coeffs[0]))] #def transpose( twodim_list ): # result_list = [] # for jj in range( len( twodim_list[ 0 ] ) ): # cur_list = [] # for ii in range( len( twodim_list ) ): # cur_list.append( int(twodim_list[ ii ][ jj ]) ) # #cur_list.append( twodim_list[ ii ][ jj ] ) # result_list.append( cur_list ) # # return result_list #def transpose( twodim_list ): # result_list = [] # for jj in range( len( twodim_list[ 0 ] ) ): # #cur_list = [] # #for row in twodim_list: # # cur_list.append( row[ jj ] ) # #result_list.append( cur_list ) # result_list.append( [ row[ jj ] for row in twodim_list ] ) # # return result_list #def transpose( twodim_list ): # return [[row[i] for row in twodim_list] for i in range( len( twodim_list[ 0 ] ) )] def printmat( X ): for jj in range( len(X[0]) ): mystr = "" for ii in range( len(X) ): #mystr += '{:04.2f}'.format( float(X[ii][jj]) ) + " " mystr += '%5.2f' % ( float(X[ii][jj]) ) + " " print mystr def writeCoeffs( coeffs ): U = transpose( coeffs[ 0 ] ) V = transpose( coeffs[ 1 ] ) W = transpose( coeffs[ 2 ] ) print ( "U:" ) printmat( U ) print ( "V:" ) printmat( V ) print ( "W:" ) printmat( W ) print "" def genSubmatID( submat_id_queue, split_num ): res_submat_id_queue = [] for elem in submat_id_queue: for idx in range( split_num ): res_submat_id_queue.append( elem + '_' + str(idx) ) return res_submat_id_queue # composition operation? def phantomMatMul( A, B ): m_A = len( A[0] ) n_A = len( A ) m_B = len( B[0] ) n_B = len( B ) m_C = m_A * m_B n_C = n_A * n_B C = [ [0 for x in range( m_C )] for y in range( n_C ) ] #print C for colid_A in range( n_A ): vec_A = A[ colid_A ] for rowid_A in range( m_A ): elem_A = vec_A[ rowid_A ] if ( elem_A != 0 ): for colid_B in range( n_B ): vec_B = B[ colid_B ] for rowid_B in range( m_B ): elem_B = vec_B[ rowid_B ] if ( elem_B != 0 ): rowid_C = rowid_A * m_B + rowid_B colid_C = colid_A * n_B + colid_B elem_C = str( float(elem_A) * float(elem_B) ) C[ colid_C ][ rowid_C ] = elem_C #print C return C def parse_coeff(coeff): ''' Parse a coefficient. The grammar is: * --> *i | -* | *p | [a-z] | [floating point number] p --> 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 *i --> 1 / (*) -* --> -(*) *p --> (*)^p So -x2i is parsed as - (1 / ((x)^2)) ''' coeff = coeff.strip() # First try to convert to float try: val = float(coeff) return coeff except: pass # Parameterized coefficient if len(coeff) == 1: # Coeff is like 'x'. We will use 'x' instead of whatever is provided. # For now, this means that we only support one paramterized coefficient. return 'x' elif coeff[0] == '(': assert(coeff[-1] == ')') expr = coeff[1:-1].split('+') return '(' + ' + '.join([parse_coeff(e) for e in expr]) + ')' elif coeff[0] == '-': return '-(%s)' % parse_coeff(coeff[1:]) elif coeff[-1] == 'i': return '1.0 / (%s)' % parse_coeff(coeff[:-1]) else: # Test for a multiplier out in front try: mult = float(coeff[0]) return '%s * (%s)' % (mult, parse_coeff(coeff[1:])) except: pass # Test for an exponent try: exp = int(coeff[-1]) return ' * '.join([parse_coeff(coeff[:-1]) for i in xrange(exp)]) except: raise Exception('Cannot parse coefficient: %s' % coeff) def read_coeffs(filename): ''' Read the coefficient file. There is one group of coefficients for each of the three matrices. filename is the name of the file from which coefficients are read ''' coeffs = [] with open(filename, 'r') as coeff_file: curr_group = [] for line in coeff_file: if line[0] == '#': if len(curr_group) > 0: coeffs.append(curr_group) curr_group = [] else: curr_group.append([parse_coeff(val) for val in line.split()]) coeffs.append(curr_group) # There should be three sets of coefficients: one for each matrix. if (len(coeffs) < 3): raise Exception('Expected three sets of coefficients!') return coeffs def writeFMM( myfile, coeffs, dims, level=1 ): print "eq_num:"+str(len( coeffs[0][0] )) print "coeff_num:"+str(len( coeffs )) for eq_index in range( len( coeffs[0][0] ) ): for coeff_index in range( len(coeffs) ): #print "coeff_index:" + str(coeff_index) name_list = getName( coeff_index ) # 0: a, gamma; 1: b, delta; 2: c, alpha coeff_list = transpose( coeffs[ coeff_index ] ) my_eq_coeff_list = coeff_list[ eq_index ] write_line( myfile, 0, "len_{0} = {1};".format( name_list[ 0 ], str(sum([ abs(int(elem_coeff)) for elem_coeff in my_eq_coeff_list ])) ) ) nz_index = 0 for item_index in range( len(my_eq_coeff_list) ): if ( my_eq_coeff_list[ item_index ] != 0 ): #write_line( myfile, 0, str( coeff_index ) + " " + str( item_index ) ) write_line( myfile, 0, "{0}_list[{1}] = {2}; {3}_list[{1}] = {4};".format( name_list[0], str(nz_index), getBlockName( coeff_index, item_index, dims, level ), name_list[1], my_eq_coeff_list[ item_index ] ) ) nz_index += 1 write_line( myfile, 0, """bl_dgemm_str_abc( ms, ns, ks, len_a, lda, a_list, gamma_list, len_b, ldb, b_list, delta_list, len_c, ldc, c_list, alpha_list, packA, packB, bl_ic_nt );""" ) write_break( myfile ) def writeSubmat( myfile, mat_name, dim1, dim2, split1, split2, src_mat_id ): if mat_name == 'C': decl = "T *" else: decl = "const T *" sep_symbol = "" for ii in range( split1 ): for jj in range( split2 ): decl+=sep_symbol+mat_name+str(src_mat_id)+'_'+str(ii * split2 + jj) sep_symbol=", *" decl+=";" write_line( myfile, 1, decl ) for ii in range( split1 ): for jj in range( split2 ): #write_line( myfile, 1, "stra_acquire_mpart( {0}, {1}, {2}, ld{3}, {4}, {5}, {6}, {7}, &{2}{8} );".format( dim1, dim2, mat_name+str(src_mat_id), mat_name, split1, split2, ii, jj, '_'+str(ii * split2 + jj) ) ) write_line( myfile, 1, "stra_acquire_tpart( my_sub_len_{0}, my_sub_len_{1}, my_stride_{2}_{0}, my_stride_{2}_{1}, {5}, {6}, {7}, {8}, {2}{3}, &{2}{3}{4} );".format( dim1, dim2, mat_name, str(src_mat_id), '_'+str(ii * split2 + jj), split1, split2, ii, jj ) ) def exp_dim( dims, level ): res = [ 1, 1, 1 ] for i in range( level ): res[ 0 ] = res[ 0 ] * dims[ 0 ] res[ 1 ] = res[ 1 ] * dims[ 1 ] res[ 2 ] = res[ 2 ] * dims[ 2 ] return tuple( res ) def writePartition( myfile, dims, level=1 ): #write_line( myfile, 0, "assert(m % {0} == 0);".format( dims[0] ) ); #write_line( myfile, 0, "assert(k % {0} == 0);".format( dims[1] ) ); #write_line( myfile, 0, "assert(n % {0} == 0);".format( dims[2] ) ); write_line( myfile, 1, "std::vector<len_type> my_sub_len_AB;" ) write_line( myfile, 1, "std::vector<len_type> my_sub_len_AC;" ) write_line( myfile, 1, "std::vector<len_type> my_sub_len_BC;" ) #write_line( myfile, 1, "double *a = XA, *b= XB, *c = XC;" ) write_break( myfile ) level_dim = exp_dim( dims, level ) ##write_line( myfile, 1, "mr = m %% ( %d * DGEMM_MR ), kr = k %% ( %d ), nr = n %% ( %d * DGEMM_NR );" % ( level_dim[0], level_dim[1], level_dim[2] ) ) #write_line( myfile, 1, "mr = m %% ( %d ), kr = k %% ( %d ), nr = n %% ( %d );" % ( level_dim[0], level_dim[1], level_dim[2] ) ) #write_line( myfile, 1, "md = m - mr, kd = k - kr, nd = n - nr;" ) write_break( myfile ) triple_combinations = [ ( "A", "AC", "AB", dims[0], dims[1] ), ( "B", "AB", "BC", dims[1], dims[2] ), ( "C", "AC", "BC", dims[0], dims[2] ) ] for ( mat_name, dim1, dim2, split1, split2 ) in triple_combinations: write_line( myfile, 1, "my_sub_len_AB = my_len_AB;" ) write_line( myfile, 1, "my_sub_len_AC = my_len_AC;" ) write_line( myfile, 1, "my_sub_len_BC = my_len_BC;" ) submat_id_queue = [""] for level_id in range( level ): for src_mat_id in submat_id_queue: writeSubmat( myfile, mat_name, dim1, dim2, split1, split2, src_mat_id ) #Generate next level myqueue submat_id_queue = genSubmatID( submat_id_queue, split1 * split2 ) # Get the current submat size if ( level_id != level - 1 ): #write_line( myfile, 1, "ms=ms/{0}, ks=ks/{1}, ns=ns/{2};".format( dims[0], dims[1], dims[2] ) ) write_line( myfile, 1, "stra_divide_vector( my_sub_len_AB, 2 );" ) write_line( myfile, 1, "stra_divide_vector( my_sub_len_AC, 2 );" ) write_line( myfile, 1, "stra_divide_vector( my_sub_len_BC, 2 );" ) #write_break( myfile ) write_break( myfile ) #write_line( myfile, 1, "ms=ms/{0}, ks=ks/{1}, ns=ns/{2};".format( dims[0], dims[1], dims[2] ) ) write_line( myfile, 1, "stra_divide_vector( my_sub_len_AB, 2 );" ) write_line( myfile, 1, "stra_divide_vector( my_sub_len_AC, 2 );" ) write_line( myfile, 1, "stra_divide_vector( my_sub_len_BC, 2 );" ) write_break( myfile ) def getActualMatName( idx ): if ( idx == 0 ): matname = "A" elif( idx == 1 ): matname = "B" elif( idx == 2 ): matname = "C" else: print "Not supported!\n" return matname def getActualBlockName( coeff_index, item_index, dims, level=1 ): my_mat_name = getActualMatName( coeff_index ) if( coeff_index == 0 ): mm = dims[0] nn = dims[1] elif( coeff_index == 1 ): mm = dims[1] nn = dims[2] elif( coeff_index == 2 ): mm = dims[0] nn = dims[2] else: print "Wrong coeff_index\n" #my_partition_ii = item_index / nn #my_partition_jj = item_index % nn submat_index = "" dividend = item_index mm_base = 1 nn_base = 1 ii_index = 0 jj_index = 0 for level_index in range( level ): remainder = dividend % ( mm * nn ) #remainder -> i, j (m_axis, n_axis) ii = remainder / nn jj = remainder % nn ii_index = ii * mm_base + ii_index jj_index = jj * nn_base + jj_index #submat_index = str(remainder) + submat_index dividend = dividend / ( mm * nn ) mm_base = mm_base * mm nn_base = nn_base * nn return my_mat_name + "(" + str( ii_index ) + "," + str( jj_index ) + ")" def writeEquation( coeffs, dims, level ): for eq_index in range( len( coeffs[0][0] ) ): m_mat_name = "M"+str(eq_index) my_eq_str = "" for coeff_index in range( len(coeffs) ): #print "coeff_index:" + str(coeff_index) name_list = getName( coeff_index ) # 0: a, gamma; 1: b, delta; 2: c, alpha coeff_list = transpose( coeffs[ coeff_index ] ) my_eq_coeff_list = coeff_list[ eq_index ] if ( coeff_index == 0 ): #A my_eq_str = my_eq_str + m_mat_name + "=( " elif ( coeff_index == 1 ): #B my_eq_str = my_eq_str + " )( " elif ( coeff_index == 2 ): #C my_eq_str += " );\n " else: print "Coeff_index not supported!\n" nz_index = 0 for item_index in range( len(my_eq_coeff_list) ): if ( is_nonzero( my_eq_coeff_list[ item_index ] ) ): mat_name = getActualBlockName( coeff_index, item_index, dims, level ) if ( coeff_index == 0 or coeff_index == 1 ): # A or B mat_prefix = "" if ( is_negone( my_eq_coeff_list[ item_index ] ) ): mat_prefix = "-" elif ( is_one( my_eq_coeff_list[ item_index ] ) ): if ( nz_index == 0 ): mat_prefix = "" else: mat_prefix = "+" else: mat_prefix = "+(" + str( my_eq_coeff_list[ item_index ] )+")" #print "%d:%s" % ( item_index, my_eq_coeff_list[ item_index ] ) #print "entry should be either 1 or -1!" my_eq_str += mat_prefix + mat_name elif ( coeff_index == 2 ): mat_suffix = "" if ( is_negone( my_eq_coeff_list[ item_index ] ) ): mat_suffix = "-=" elif ( is_one( my_eq_coeff_list[ item_index ] ) ): mat_suffix = "+=" else: mat_suffix = "+=(" + str( my_eq_coeff_list[ item_index ] ) + ") " #print "%d:%s" % ( item_index, my_eq_coeff_list[ item_index ] ) #print "entry should be either 1 or -1!" my_eq_str += mat_name + mat_suffix + m_mat_name + ";" else: print "Coeff_index not support!\n" #write_line( myfile, 0, str( coeff_index ) + " " + str( item_index ) ) #write_line( myfile, 0, "{0}_list[{1}] = {2}; {3}_list[{1}] = {4};".format( name_list[0], str(nz_index), getBlockName( coeff_index, item_index, dims, level ), name_list[1], my_eq_coeff_list[ item_index ] ) ) nz_index += 1 print my_eq_str #print "" def num_nonzero(arr): ''' Returns number of non-zero entries in the array arr. ''' return len(filter(is_nonzero, arr)) def getSubMatName( coeff_index, item_index, dims, level=1 ): my_mat_name = (getName( coeff_index )) [ 0 ] if( coeff_index == 0 ): mm = dims[0] nn = dims[1] elif( coeff_index == 1 ): mm = dims[1] nn = dims[2] elif( coeff_index == 2 ): mm = dims[0] nn = dims[2] else: print "Wrong coeff_index\n" #my_partition_ii = item_index / nn #my_partition_jj = item_index % nn submat_index = "" dividend = item_index for ii in range( level ): remainder = dividend % ( mm * nn ) submat_index = str(remainder) + submat_index #submat_index = submat_index + str(remainder) dividend = dividend / ( mm * nn ) return my_mat_name + str( submat_index ) def getBlockName( coeff_index, item_index, dims, level=1 ): my_mat_name = (getName( coeff_index )) [ 0 ] if( coeff_index == 0 ): mm = dims[0] nn = dims[1] elif( coeff_index == 1 ): mm = dims[1] nn = dims[2] elif( coeff_index == 2 ): mm = dims[0] nn = dims[2] else: print "Wrong coeff_index\n" #my_partition_ii = item_index / nn #my_partition_jj = item_index % nn submat_index = "" dividend = item_index for ii in range( level ): remainder = dividend % ( mm * nn ) submat_index = '_' + str(remainder) + submat_index #submat_index = submat_index + str(remainder) dividend = dividend / ( mm * nn ) return my_mat_name + str( submat_index ) def getName( idx ): if ( idx == 0 ): my_list = [ 'A', 'gamma' ] elif( idx == 1 ): my_list = [ 'B', 'delta' ] elif( idx == 2 ): my_list = [ 'C', 'alpha' ] else: my_list = [] print "Not supported!\n" return my_list def generateCoeffs( coeffs, level ): U = transpose( coeffs[ 0 ] ) V = transpose( coeffs[ 1 ] ) W = transpose( coeffs[ 2 ] ) UM = U VM = V WM = W for ii in range( level - 1 ): UM = phantomMatMul( UM, U ) VM = phantomMatMul( VM, V ) WM = phantomMatMul( WM, W ) #print ( "U2:" ) #printmat( U2 ) #print ( "V2:" ) #printmat( V2 ) #print ( "W2:" ) #printmat( W2 ) res_coeffs = [ transpose( UM ), transpose( VM ), transpose( WM ) ] return res_coeffs
_base_ = [ '../../lvis/mask_rcnn_r50_fpn_sample1e-3_mstrain_1x_lvis_v1.py' ] # data = dict(train=dict(oversample_thr=0.0)) # model = dict(roi_head=dict(bbox_head=dict(loss_cls=dict(type="Icloglog",activation='normal'), # init_cfg = dict(type='Constant',val=0.01, bias=-3.45, override=dict(name='fc_cls'))))) model = dict(roi_head=dict(bbox_head=dict(loss_cls=dict(type="Icloglog",activation='gumbel'), init_cfg = dict(type='Constant',val=0.001, bias=-2, override=dict(name='fc_cls'))))) # work_dir='./experiments/gumbel_debug/' work_dir='./experiments/test/' # get_stats=1
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import pytest from tests.common.custom_cluster_test_suite import CustomClusterTestSuite from tests.common.skip import SkipIfS3, SkipIfABFS, SkipIfADLS, SkipIfLocal, SkipIfGCS from tests.util.filesystem_utils import IS_ISILON, WAREHOUSE from tests.util.hdfs_util import ( HdfsConfig, get_webhdfs_client, get_webhdfs_client_from_conf) TEST_TBL = "insert_inherit_permission" @SkipIfS3.hdfs_acls @SkipIfGCS.hdfs_acls @SkipIfABFS.hdfs_acls @SkipIfADLS.hdfs_acls class TestInsertBehaviourCustomCluster(CustomClusterTestSuite): @classmethod def setup_class(cls): super(TestInsertBehaviourCustomCluster, cls).setup_class() if pytest.config.option.namenode_http_address is None: hdfs_conf = HdfsConfig(pytest.config.option.minicluster_xml_conf) cls.hdfs_client = get_webhdfs_client_from_conf(hdfs_conf) else: host, port = pytest.config.option.namenode_http_address.split(":") cls.hdfs_client = get_webhdfs_client(host, port) def _check_partition_perms(self, part, perms): ls = self.hdfs_client.get_file_dir_status("test-warehouse/%s/%s" % (TEST_TBL, part)) assert ls['FileStatus']['permission'] == perms def _get_impala_client(self): impalad = self.cluster.get_any_impalad() return impalad.service.create_beeswax_client() def _create_test_tbl(self): client = self._get_impala_client() options = {'sync_ddl': '1'} try: self.execute_query_expect_success(client, "DROP TABLE IF EXISTS %s" % TEST_TBL, query_options=options) self.execute_query_expect_success(client, "CREATE TABLE {0} (col int) PARTITIONED" " BY (p1 int, p2 int, p3 int) location" " '{1}/{0}'".format(TEST_TBL, WAREHOUSE), query_options=options) self.execute_query_expect_success(client, "ALTER TABLE %s" " ADD PARTITION(p1=1, p2=1, p3=1)" % TEST_TBL, query_options=options) finally: client.close() def _drop_test_tbl(self): client = self._get_impala_client() self.execute_query_expect_success(client, "drop table if exists %s" % TEST_TBL) client.close() def setup_method(cls, method): super(TestInsertBehaviourCustomCluster, cls).setup_method(method) cls._create_test_tbl() def teardown_method(cls, method): cls._drop_test_tbl() super(TestInsertBehaviourCustomCluster, cls).teardown_method(method) @SkipIfLocal.hdfs_client @SkipIfLocal.root_path @pytest.mark.execute_serially @CustomClusterTestSuite.with_args("--insert_inherit_permissions=true") def test_insert_inherit_permission(self): """Create a table with three partition columns to test permission inheritance""" client = self._get_impala_client() try: self.hdfs_client.chmod("test-warehouse/%s/p1=1/" % TEST_TBL, "777") # 1. INSERT that creates two new directories gets permissions from parent self.execute_query_expect_success(client, "INSERT INTO %s" " PARTITION(p1=1, p2=2, p3=2) VALUES(1)" % TEST_TBL) self._check_partition_perms("p1=1/p2=2/", "777") self._check_partition_perms("p1=1/p2=2/p3=2/", "777") # 2. INSERT that creates one new directory gets permissions from parent self.execute_query_expect_success(client, "INSERT INTO %s" " PARTITION(p1=1, p2=2, p3=3) VALUES(1)" % TEST_TBL) self._check_partition_perms("p1=1/p2=2/p3=3/", "777") # 3. INSERT that creates no new directories keeps standard permissions self.hdfs_client.chmod("test-warehouse/%s/p1=1/p2=2" % TEST_TBL, "744") self.execute_query_expect_success(client, "INSERT INTO %s" " PARTITION(p1=1, p2=2, p3=3) VALUES(1)" % TEST_TBL) self._check_partition_perms("p1=1/p2=2/", "744") self._check_partition_perms("p1=1/p2=2/p3=3/", "777") finally: client.close() @SkipIfLocal.hdfs_client @pytest.mark.execute_serially @CustomClusterTestSuite.with_args("--insert_inherit_permissions=false") def test_insert_inherit_permission_disabled(self): """Check that turning off insert permission inheritance works correctly.""" impalad = self.cluster.get_any_impalad() client = impalad.service.create_beeswax_client() try: ls = self.hdfs_client.get_file_dir_status("test-warehouse/%s/p1=1/" % TEST_TBL) default_perms = ls['FileStatus']['permission'] self.hdfs_client.chmod("test-warehouse/%s/p1=1/" % TEST_TBL, "777") self.execute_query_expect_success(client, "INSERT INTO %s" " PARTITION(p1=1, p2=3, p3=4) VALUES(1)" % TEST_TBL) # Would be 777 if inheritance was enabled if not IS_ISILON: # IMPALA-4221 self._check_partition_perms("p1=1/p2=3/", default_perms) self._check_partition_perms("p1=1/p2=3/p3=4/", default_perms) finally: client.close()
"""Structured representations of system events.""" import logging import os from collections import namedtuple from enum import Enum from dagster import check from dagster.core.definitions import ( AssetMaterialization, EventMetadataEntry, ExpectationResult, Materialization, SolidHandle, TypeCheck, ) from dagster.core.definitions.events import AssetStoreOperationType, ObjectStoreOperationType from dagster.core.execution.context.system import ( HookContext, SystemExecutionContext, SystemStepExecutionContext, ) from dagster.core.execution.plan.objects import StepOutputData from dagster.core.log_manager import DagsterLogManager from dagster.serdes import register_serdes_tuple_fallbacks, whitelist_for_serdes from dagster.utils.error import SerializableErrorInfo, serializable_error_info_from_exc_info from dagster.utils.timing import format_duration class DagsterEventType(Enum): """The types of events that may be yielded by solid and pipeline execution.""" STEP_OUTPUT = "STEP_OUTPUT" STEP_INPUT = "STEP_INPUT" STEP_FAILURE = "STEP_FAILURE" STEP_START = "STEP_START" STEP_SUCCESS = "STEP_SUCCESS" STEP_SKIPPED = "STEP_SKIPPED" STEP_UP_FOR_RETRY = "STEP_UP_FOR_RETRY" # "failed" but want to retry STEP_RESTARTED = "STEP_RESTARTED" STEP_MATERIALIZATION = "STEP_MATERIALIZATION" STEP_EXPECTATION_RESULT = "STEP_EXPECTATION_RESULT" PIPELINE_INIT_FAILURE = "PIPELINE_INIT_FAILURE" PIPELINE_ENQUEUED = "PIPELINE_ENQUEUED" PIPELINE_DEQUEUED = "PIPELINE_DEQUEUED" PIPELINE_START = "PIPELINE_START" PIPELINE_SUCCESS = "PIPELINE_SUCCESS" PIPELINE_FAILURE = "PIPELINE_FAILURE" OBJECT_STORE_OPERATION = "OBJECT_STORE_OPERATION" ASSET_STORE_OPERATION = "ASSET_STORE_OPERATION" ENGINE_EVENT = "ENGINE_EVENT" HOOK_COMPLETED = "HOOK_COMPLETED" HOOK_ERRORED = "HOOK_ERRORED" HOOK_SKIPPED = "HOOK_SKIPPED" STEP_EVENTS = { DagsterEventType.STEP_INPUT, DagsterEventType.STEP_START, DagsterEventType.STEP_OUTPUT, DagsterEventType.STEP_FAILURE, DagsterEventType.STEP_SUCCESS, DagsterEventType.STEP_SKIPPED, DagsterEventType.STEP_MATERIALIZATION, DagsterEventType.STEP_EXPECTATION_RESULT, DagsterEventType.OBJECT_STORE_OPERATION, DagsterEventType.STEP_RESTARTED, DagsterEventType.STEP_UP_FOR_RETRY, } FAILURE_EVENTS = { DagsterEventType.PIPELINE_INIT_FAILURE, DagsterEventType.PIPELINE_FAILURE, DagsterEventType.STEP_FAILURE, } PIPELINE_EVENTS = { DagsterEventType.PIPELINE_ENQUEUED, DagsterEventType.PIPELINE_DEQUEUED, DagsterEventType.PIPELINE_START, DagsterEventType.PIPELINE_SUCCESS, DagsterEventType.PIPELINE_FAILURE, } HOOK_EVENTS = { DagsterEventType.HOOK_COMPLETED, DagsterEventType.HOOK_ERRORED, DagsterEventType.HOOK_SKIPPED, } def _assert_type(method, expected_type, actual_type): check.invariant( expected_type == actual_type, ( "{method} only callable when event_type is {expected_type}, called on {actual_type}" ).format(method=method, expected_type=expected_type, actual_type=actual_type), ) def _validate_event_specific_data(event_type, event_specific_data): from dagster.core.execution.plan.objects import StepFailureData, StepSuccessData, StepInputData if event_type == DagsterEventType.STEP_OUTPUT: check.inst_param(event_specific_data, "event_specific_data", StepOutputData) elif event_type == DagsterEventType.STEP_FAILURE: check.inst_param(event_specific_data, "event_specific_data", StepFailureData) elif event_type == DagsterEventType.STEP_SUCCESS: check.inst_param(event_specific_data, "event_specific_data", StepSuccessData) elif event_type == DagsterEventType.STEP_MATERIALIZATION: check.inst_param(event_specific_data, "event_specific_data", StepMaterializationData) elif event_type == DagsterEventType.STEP_EXPECTATION_RESULT: check.inst_param(event_specific_data, "event_specific_data", StepExpectationResultData) elif event_type == DagsterEventType.STEP_INPUT: check.inst_param(event_specific_data, "event_specific_data", StepInputData) elif event_type == DagsterEventType.ENGINE_EVENT: check.inst_param(event_specific_data, "event_specific_data", EngineEventData) elif event_type == DagsterEventType.HOOK_ERRORED: check.inst_param(event_specific_data, "event_specific_data", HookErroredData) return event_specific_data def log_step_event(step_context, event): check.inst_param(step_context, "step_context", SystemStepExecutionContext) check.inst_param(event, "event", DagsterEvent) event_type = DagsterEventType(event.event_type_value) log_fn = step_context.log.error if event_type in FAILURE_EVENTS else step_context.log.debug log_fn( event.message or "{event_type} for step {step_key}".format( event_type=event_type, step_key=step_context.step.key ), dagster_event=event, pipeline_name=step_context.pipeline_def.name, ) def log_pipeline_event(pipeline_context, event, step_key): event_type = DagsterEventType(event.event_type_value) log_fn = ( pipeline_context.log.error if event_type in FAILURE_EVENTS else pipeline_context.log.debug ) log_fn( event.message or "{event_type} for pipeline {pipeline_name}".format( event_type=event_type, pipeline_name=pipeline_context.pipeline_def.name ), dagster_event=event, pipeline_name=pipeline_context.pipeline_def.name, step_key=step_key, ) def log_resource_event(log_manager, pipeline_name, event): check.inst_param(log_manager, "log_manager", DagsterLogManager) check.inst_param(event, "event", DagsterEvent) check.inst(event.event_specific_data, EngineEventData) log_fn = log_manager.error if event.event_specific_data.error else log_manager.debug log_fn(event.message, dagster_event=event, pipeline_name=pipeline_name, step_key=event.step_key) @whitelist_for_serdes class DagsterEvent( namedtuple( "_DagsterEvent", "event_type_value pipeline_name step_key solid_handle step_kind_value " "logging_tags event_specific_data message pid", ) ): """Events yielded by solid and pipeline execution. Users should not instantiate this class. Attributes: event_type_value (str): Value for a DagsterEventType. pipeline_name (str) step_key (str) solid_handle (SolidHandle) step_kind_value (str): Value for a StepKind. logging_tags (Dict[str, str]) event_specific_data (Any): Type must correspond to event_type_value. message (str) pid (int) """ @staticmethod def from_step(event_type, step_context, event_specific_data=None, message=None): check.inst_param(step_context, "step_context", SystemStepExecutionContext) event = DagsterEvent( check.inst_param(event_type, "event_type", DagsterEventType).value, step_context.pipeline_def.name, step_context.step.key, step_context.step.solid_handle, step_context.step.kind.value, step_context.logging_tags, _validate_event_specific_data(event_type, event_specific_data), check.opt_str_param(message, "message"), pid=os.getpid(), ) log_step_event(step_context, event) return event @staticmethod def from_pipeline( event_type, pipeline_context, message=None, event_specific_data=None, step_key=None ): check.inst_param(pipeline_context, "pipeline_context", SystemExecutionContext) pipeline_name = pipeline_context.pipeline_def.name event = DagsterEvent( check.inst_param(event_type, "event_type", DagsterEventType).value, check.str_param(pipeline_name, "pipeline_name"), message=check.opt_str_param(message, "message"), event_specific_data=_validate_event_specific_data(event_type, event_specific_data), step_key=step_key, pid=os.getpid(), ) log_pipeline_event(pipeline_context, event, step_key) return event @staticmethod def from_resource(execution_plan, log_manager, message=None, event_specific_data=None): from dagster.core.execution.plan.plan import ExecutionPlan check.inst_param(execution_plan, "execution_plan", ExecutionPlan) pipeline_name = execution_plan.pipeline_def.name event = DagsterEvent( DagsterEventType.ENGINE_EVENT.value, pipeline_name=pipeline_name, message=check.opt_str_param(message, "message"), event_specific_data=_validate_event_specific_data( DagsterEventType.ENGINE_EVENT, event_specific_data ), step_key=execution_plan.step_key_for_single_step_plans(), pid=os.getpid(), ) log_resource_event(log_manager, pipeline_name, event) return event def __new__( cls, event_type_value, pipeline_name, step_key=None, solid_handle=None, step_kind_value=None, logging_tags=None, event_specific_data=None, message=None, pid=None, ): event_type_value, event_specific_data = _handle_back_compat( event_type_value, event_specific_data ) return super(DagsterEvent, cls).__new__( cls, check.str_param(event_type_value, "event_type_value"), check.str_param(pipeline_name, "pipeline_name"), check.opt_str_param(step_key, "step_key"), check.opt_inst_param(solid_handle, "solid_handle", SolidHandle), check.opt_str_param(step_kind_value, "step_kind_value"), check.opt_dict_param(logging_tags, "logging_tags"), _validate_event_specific_data(DagsterEventType(event_type_value), event_specific_data), check.opt_str_param(message, "message"), check.opt_int_param(pid, "pid"), ) @property def solid_name(self): return self.solid_handle.name @property def event_type(self): """DagsterEventType: The type of this event.""" return DagsterEventType(self.event_type_value) @property def is_step_event(self): return self.event_type in STEP_EVENTS @property def is_hook_event(self): return self.event_type in HOOK_EVENTS @property def step_kind(self): from dagster.core.execution.plan.objects import StepKind return StepKind(self.step_kind_value) @property def is_step_success(self): return self.event_type == DagsterEventType.STEP_SUCCESS @property def is_successful_output(self): return self.event_type == DagsterEventType.STEP_OUTPUT @property def is_step_start(self): return self.event_type == DagsterEventType.STEP_START @property def is_step_failure(self): return self.event_type == DagsterEventType.STEP_FAILURE @property def is_step_skipped(self): return self.event_type == DagsterEventType.STEP_SKIPPED @property def is_step_up_for_retry(self): return self.event_type == DagsterEventType.STEP_UP_FOR_RETRY @property def is_step_restarted(self): return self.event_type == DagsterEventType.STEP_RESTARTED @property def is_pipeline_success(self): return self.event_type == DagsterEventType.PIPELINE_SUCCESS @property def is_pipeline_failure(self): return self.event_type == DagsterEventType.PIPELINE_FAILURE @property def is_pipeline_init_failure(self): return self.event_type == DagsterEventType.PIPELINE_INIT_FAILURE @property def is_failure(self): return self.event_type in FAILURE_EVENTS @property def is_pipeline_event(self): return self.event_type in PIPELINE_EVENTS @property def is_engine_event(self): return self.event_type == DagsterEventType.ENGINE_EVENT @property def is_asset_store_operation(self): return self.event_type == DagsterEventType.ASSET_STORE_OPERATION @property def is_step_materialization(self): return self.event_type == DagsterEventType.STEP_MATERIALIZATION @property def asset_key(self): if self.event_type != DagsterEventType.STEP_MATERIALIZATION: return None return self.step_materialization_data.materialization.asset_key @property def step_input_data(self): _assert_type("step_input_data", DagsterEventType.STEP_INPUT, self.event_type) return self.event_specific_data @property def step_output_data(self): _assert_type("step_output_data", DagsterEventType.STEP_OUTPUT, self.event_type) return self.event_specific_data @property def step_success_data(self): _assert_type("step_success_data", DagsterEventType.STEP_SUCCESS, self.event_type) return self.event_specific_data @property def step_failure_data(self): _assert_type("step_failure_data", DagsterEventType.STEP_FAILURE, self.event_type) return self.event_specific_data @property def step_retry_data(self): _assert_type("step_retry_data", DagsterEventType.STEP_UP_FOR_RETRY, self.event_type) return self.event_specific_data @property def step_materialization_data(self): _assert_type( "step_materialization_data", DagsterEventType.STEP_MATERIALIZATION, self.event_type ) return self.event_specific_data @property def step_expectation_result_data(self): _assert_type( "step_expectation_result_data", DagsterEventType.STEP_EXPECTATION_RESULT, self.event_type, ) return self.event_specific_data @property def pipeline_init_failure_data(self): _assert_type( "pipeline_init_failure_data", DagsterEventType.PIPELINE_INIT_FAILURE, self.event_type ) return self.event_specific_data @property def pipeline_failure_data(self): _assert_type("pipeline_failure_data", DagsterEventType.PIPELINE_FAILURE, self.event_type) return self.event_specific_data @property def engine_event_data(self): _assert_type("engine_event_data", DagsterEventType.ENGINE_EVENT, self.event_type) return self.event_specific_data @property def hook_completed_data(self): _assert_type("hook_completed_data", DagsterEventType.HOOK_COMPLETED, self.event_type) return self.event_specific_data @property def hook_errored_data(self): _assert_type("hook_errored_data", DagsterEventType.HOOK_ERRORED, self.event_type) return self.event_specific_data @property def hook_skipped_data(self): _assert_type("hook_skipped_data", DagsterEventType.HOOK_SKIPPED, self.event_type) return self.event_specific_data @staticmethod def step_output_event(step_context, step_output_data): check.inst_param(step_output_data, "step_output_data", StepOutputData) return DagsterEvent.from_step( event_type=DagsterEventType.STEP_OUTPUT, step_context=step_context, event_specific_data=step_output_data, message='Yielded output "{output_name}" of type "{output_type}".{type_check_clause}'.format( output_name=step_output_data.step_output_handle.output_name, output_type=step_context.step.step_output_named( step_output_data.step_output_handle.output_name ).dagster_type.display_name, type_check_clause=( " Warning! Type check failed." if not step_output_data.type_check_data.success else " (Type check passed)." ) if step_output_data.type_check_data else " (No type check).", ), ) @staticmethod def step_failure_event(step_context, step_failure_data): return DagsterEvent.from_step( event_type=DagsterEventType.STEP_FAILURE, step_context=step_context, event_specific_data=step_failure_data, message='Execution of step "{step_key}" failed.'.format(step_key=step_context.step.key), ) @staticmethod def step_retry_event(step_context, step_retry_data): return DagsterEvent.from_step( event_type=DagsterEventType.STEP_UP_FOR_RETRY, step_context=step_context, event_specific_data=step_retry_data, message='Execution of step "{step_key}" failed and has requested a retry{wait_str}.'.format( step_key=step_context.step.key, wait_str=" in {n} seconds".format(n=step_retry_data.seconds_to_wait) if step_retry_data.seconds_to_wait else "", ), ) @staticmethod def step_input_event(step_context, step_input_data): return DagsterEvent.from_step( event_type=DagsterEventType.STEP_INPUT, step_context=step_context, event_specific_data=step_input_data, message='Got input "{input_name}" of type "{input_type}".{type_check_clause}'.format( input_name=step_input_data.input_name, input_type=step_context.step.step_input_named( step_input_data.input_name ).dagster_type.display_name, type_check_clause=( " Warning! Type check failed." if not step_input_data.type_check_data.success else " (Type check passed)." ) if step_input_data.type_check_data else " (No type check).", ), ) @staticmethod def step_start_event(step_context): return DagsterEvent.from_step( event_type=DagsterEventType.STEP_START, step_context=step_context, message='Started execution of step "{step_key}".'.format( step_key=step_context.step.key ), ) @staticmethod def step_restarted_event(step_context, previous_attempts): return DagsterEvent.from_step( event_type=DagsterEventType.STEP_RESTARTED, step_context=step_context, message='Started re-execution (attempt # {n}) of step "{step_key}".'.format( step_key=step_context.step.key, n=previous_attempts + 1 ), ) @staticmethod def step_success_event(step_context, success): return DagsterEvent.from_step( event_type=DagsterEventType.STEP_SUCCESS, step_context=step_context, event_specific_data=success, message='Finished execution of step "{step_key}" in {duration}.'.format( # TODO: Make duration human readable # See: https://github.com/dagster-io/dagster/issues/1602 step_key=step_context.step.key, duration=format_duration(success.duration_ms), ), ) @staticmethod def step_skipped_event(step_context): return DagsterEvent.from_step( event_type=DagsterEventType.STEP_SKIPPED, step_context=step_context, message='Skipped execution of step "{step_key}".'.format( step_key=step_context.step.key ), ) @staticmethod def step_materialization(step_context, materialization): check.inst_param( materialization, "materialization", (AssetMaterialization, Materialization) ) return DagsterEvent.from_step( event_type=DagsterEventType.STEP_MATERIALIZATION, step_context=step_context, event_specific_data=StepMaterializationData(materialization), message=materialization.description if materialization.description else "Materialized value{label_clause}.".format( label_clause=" {label}".format(label=materialization.label) if materialization.label else "" ), ) @staticmethod def step_expectation_result(step_context, expectation_result): check.inst_param(expectation_result, "expectation_result", ExpectationResult) def _msg(): if expectation_result.description: return expectation_result.description return "Expectation{label_clause} {result_verb}".format( label_clause=" " + expectation_result.label if expectation_result.label else "", result_verb="passed" if expectation_result.success else "failed", ) return DagsterEvent.from_step( event_type=DagsterEventType.STEP_EXPECTATION_RESULT, step_context=step_context, event_specific_data=StepExpectationResultData(expectation_result), message=_msg(), ) @staticmethod def pipeline_start(pipeline_context): return DagsterEvent.from_pipeline( DagsterEventType.PIPELINE_START, pipeline_context, message='Started execution of pipeline "{pipeline_name}".'.format( pipeline_name=pipeline_context.pipeline_def.name ), ) @staticmethod def pipeline_success(pipeline_context): return DagsterEvent.from_pipeline( DagsterEventType.PIPELINE_SUCCESS, pipeline_context, message='Finished execution of pipeline "{pipeline_name}".'.format( pipeline_name=pipeline_context.pipeline_def.name ), ) @staticmethod def pipeline_failure(pipeline_context, context_msg, error_info=None): return DagsterEvent.from_pipeline( DagsterEventType.PIPELINE_FAILURE, pipeline_context, message='Execution of pipeline "{pipeline_name}" failed. {context_msg}'.format( pipeline_name=pipeline_context.pipeline_def.name, context_msg=check.str_param(context_msg, "context_msg"), ), event_specific_data=PipelineFailureData( check.opt_inst_param(error_info, "error_info", SerializableErrorInfo) ), ) @staticmethod def resource_init_start(execution_plan, log_manager, resource_keys): from dagster.core.execution.plan.plan import ExecutionPlan return DagsterEvent.from_resource( execution_plan=check.inst_param(execution_plan, "execution_plan", ExecutionPlan), log_manager=check.inst_param(log_manager, "log_manager", DagsterLogManager), message="Starting initialization of resources [{}].".format( ", ".join(sorted(resource_keys)) ), event_specific_data=EngineEventData(metadata_entries=[], marker_start="resources"), ) @staticmethod def resource_init_success(execution_plan, log_manager, resource_instances, resource_init_times): from dagster.core.execution.plan.plan import ExecutionPlan metadata_entries = [] for resource_key in resource_instances.keys(): resource_obj = resource_instances[resource_key] resource_time = resource_init_times[resource_key] metadata_entries.append( EventMetadataEntry.python_artifact( resource_obj.__class__, resource_key, "Initialized in {}".format(resource_time) ) ) return DagsterEvent.from_resource( execution_plan=check.inst_param(execution_plan, "execution_plan", ExecutionPlan), log_manager=check.inst_param(log_manager, "log_manager", DagsterLogManager), message="Finished initialization of resources [{}].".format( ", ".join(sorted(resource_init_times.keys())) ), event_specific_data=EngineEventData( metadata_entries=metadata_entries, marker_end="resources", ), ) @staticmethod def resource_init_failure(execution_plan, log_manager, resource_keys, error): from dagster.core.execution.plan.plan import ExecutionPlan return DagsterEvent.from_resource( execution_plan=check.inst_param(execution_plan, "execution_plan", ExecutionPlan), log_manager=check.inst_param(log_manager, "log_manager", DagsterLogManager), message="Initialization of resources [{}] failed.".format(", ".join(resource_keys)), event_specific_data=EngineEventData( metadata_entries=[], marker_end="resources", error=error, ), ) @staticmethod def resource_teardown_failure(execution_plan, log_manager, resource_keys, error): from dagster.core.execution.plan.plan import ExecutionPlan return DagsterEvent.from_resource( execution_plan=check.inst_param(execution_plan, "execution_plan", ExecutionPlan), log_manager=check.inst_param(log_manager, "log_manager", DagsterLogManager), message="Teardown of resources [{}] failed.".format(", ".join(resource_keys)), event_specific_data=EngineEventData( metadata_entries=[], marker_start=None, marker_end=None, error=error, ), ) @staticmethod def pipeline_init_failure(pipeline_name, failure_data, log_manager): check.inst_param(failure_data, "failure_data", PipelineInitFailureData) check.inst_param(log_manager, "log_manager", DagsterLogManager) # this failure happens trying to bring up context so can't use from_pipeline event = DagsterEvent( event_type_value=DagsterEventType.PIPELINE_INIT_FAILURE.value, pipeline_name=pipeline_name, event_specific_data=failure_data, message=( 'Pipeline failure during initialization of pipeline "{pipeline_name}". ' "This may be due to a failure in initializing a resource or logger." ).format(pipeline_name=pipeline_name), pid=os.getpid(), ) log_manager.error( event.message or "{event_type} for pipeline {pipeline_name}".format( event_type=DagsterEventType.PIPELINE_INIT_FAILURE, pipeline_name=pipeline_name ), dagster_event=event, pipeline_name=pipeline_name, ) return event @staticmethod def engine_event(pipeline_context, message, event_specific_data=None, step_key=None): return DagsterEvent.from_pipeline( DagsterEventType.ENGINE_EVENT, pipeline_context, message, event_specific_data=event_specific_data, step_key=step_key, ) @staticmethod def object_store_operation(step_context, object_store_operation_result): from dagster.core.definitions.events import ObjectStoreOperation check.inst_param( object_store_operation_result, "object_store_operation_result", ObjectStoreOperation ) object_store_name = ( "{object_store_name} ".format( object_store_name=object_store_operation_result.object_store_name ) if object_store_operation_result.object_store_name else "" ) serialization_strategy_modifier = ( " using {serialization_strategy_name}".format( serialization_strategy_name=object_store_operation_result.serialization_strategy_name ) if object_store_operation_result.serialization_strategy_name else "" ) value_name = object_store_operation_result.value_name if ( ObjectStoreOperationType(object_store_operation_result.op) == ObjectStoreOperationType.SET_OBJECT ): message = ( "Stored intermediate object for output {value_name} in " "{object_store_name}object store{serialization_strategy_modifier}." ).format( value_name=value_name, object_store_name=object_store_name, serialization_strategy_modifier=serialization_strategy_modifier, ) elif ( ObjectStoreOperationType(object_store_operation_result.op) == ObjectStoreOperationType.GET_OBJECT ): message = ( "Retrieved intermediate object for input {value_name} in " "{object_store_name}object store{serialization_strategy_modifier}." ).format( value_name=value_name, object_store_name=object_store_name, serialization_strategy_modifier=serialization_strategy_modifier, ) elif ( ObjectStoreOperationType(object_store_operation_result.op) == ObjectStoreOperationType.CP_OBJECT ): message = ( "Copied intermediate object for input {value_name} from {key} to {dest_key}" ).format( value_name=value_name, key=object_store_operation_result.key, dest_key=object_store_operation_result.dest_key, ) else: message = "" return DagsterEvent.from_step( DagsterEventType.OBJECT_STORE_OPERATION, step_context, event_specific_data=ObjectStoreOperationResultData( op=object_store_operation_result.op, value_name=value_name, address=object_store_operation_result.key, metadata_entries=[ EventMetadataEntry.path(object_store_operation_result.key, label="key") ], version=object_store_operation_result.version, ), message=message, ) @staticmethod def asset_store_operation(step_context, asset_store_operation): from dagster.core.definitions.events import AssetStoreOperation check.inst_param(asset_store_operation, "asset_store_operation", AssetStoreOperation) if AssetStoreOperationType(asset_store_operation.op) == AssetStoreOperationType.SET_ASSET: message = ( 'Stored output "{output_name}" using asset store "{asset_store_key}".' ).format( asset_store_key=asset_store_operation.asset_store_handle.asset_store_key, output_name=asset_store_operation.step_output_handle.output_name, ) elif AssetStoreOperationType(asset_store_operation.op) == AssetStoreOperationType.GET_ASSET: message = ( 'Retrieved output "{output_name}" from step "{step_key}" ' 'using asset store "{asset_store_key}".' ).format( asset_store_key=asset_store_operation.asset_store_handle.asset_store_key, output_name=asset_store_operation.step_output_handle.output_name, step_key=asset_store_operation.step_output_handle.step_key, ) else: message = "" return DagsterEvent.from_step( event_type=DagsterEventType.ASSET_STORE_OPERATION, step_context=step_context, event_specific_data=AssetStoreOperationData( op=asset_store_operation.op, step_key=asset_store_operation.step_output_handle.step_key, output_name=asset_store_operation.step_output_handle.output_name, asset_store_key=asset_store_operation.asset_store_handle.asset_store_key, ), message=message, ) @staticmethod def hook_completed(hook_context, hook_def): event_type = DagsterEventType.HOOK_COMPLETED check.inst_param(hook_context, "hook_context", HookContext) event = DagsterEvent( event_type_value=event_type.value, pipeline_name=hook_context.pipeline_def.name, step_key=hook_context.step.key, solid_handle=hook_context.step.solid_handle, step_kind_value=hook_context.step.kind.value, logging_tags=hook_context.logging_tags, message=( 'Finished the execution of hook "{hook_name}" triggered for solid "{solid_name}".' ).format(hook_name=hook_def.name, solid_name=hook_context.solid.name), ) hook_context.log.debug( event.message, dagster_event=event, pipeline_name=hook_context.pipeline_def.name, ) return event @staticmethod def hook_errored(hook_context, error): event_type = DagsterEventType.HOOK_ERRORED check.inst_param(hook_context, "hook_context", HookContext) event = DagsterEvent( event_type_value=event_type.value, pipeline_name=hook_context.pipeline_def.name, step_key=hook_context.step.key, solid_handle=hook_context.step.solid_handle, step_kind_value=hook_context.step.kind.value, logging_tags=hook_context.logging_tags, event_specific_data=_validate_event_specific_data( event_type, HookErroredData( error=serializable_error_info_from_exc_info(error.original_exc_info) ), ), ) hook_context.log.error( str(error), dagster_event=event, pipeline_name=hook_context.pipeline_def.name, ) return event @staticmethod def hook_skipped(hook_context, hook_def): event_type = DagsterEventType.HOOK_SKIPPED check.inst_param(hook_context, "hook_context", HookContext) event = DagsterEvent( event_type_value=event_type.value, pipeline_name=hook_context.pipeline_def.name, step_key=hook_context.step.key, solid_handle=hook_context.step.solid_handle, step_kind_value=hook_context.step.kind.value, logging_tags=hook_context.logging_tags, message=( 'Skipped the execution of hook "{hook_name}". It did not meet its triggering ' 'condition during the execution of solid "{solid_name}".' ).format(hook_name=hook_def.name, solid_name=hook_context.solid.name), ) hook_context.log.debug( event.message, dagster_event=event, pipeline_name=hook_context.pipeline_def.name, ) return event def get_step_output_event(events, step_key, output_name="result"): check.list_param(events, "events", of_type=DagsterEvent) check.str_param(step_key, "step_key") check.str_param(output_name, "output_name") for event in events: if ( event.event_type == DagsterEventType.STEP_OUTPUT and event.step_key == step_key and event.step_output_data.output_name == output_name ): return event return None @whitelist_for_serdes class StepMaterializationData(namedtuple("_StepMaterializationData", "materialization")): pass @whitelist_for_serdes class StepExpectationResultData(namedtuple("_StepExpectationResultData", "expectation_result")): pass @whitelist_for_serdes class AssetStoreOperationData( namedtuple("_AssetStoreOperationData", "op step_key output_name asset_store_key") ): pass @whitelist_for_serdes class ObjectStoreOperationResultData( namedtuple("_ObjectStoreOperationResultData", "op value_name metadata_entries address version") ): def __new__(cls, op, value_name, metadata_entries, address=None, version=None): return super(ObjectStoreOperationResultData, cls).__new__( cls, op=check.opt_str_param(op, "op"), value_name=check.opt_str_param(value_name, "value_name"), metadata_entries=check.opt_list_param(metadata_entries, "metadata_entries"), address=check.opt_str_param(address, "address"), version=check.opt_str_param(version, "version"), ) @whitelist_for_serdes class EngineEventData( namedtuple("_EngineEventData", "metadata_entries error marker_start marker_end") ): # serdes log # * added optional error # * added marker_start / marker_end # def __new__(cls, metadata_entries=None, error=None, marker_start=None, marker_end=None): return super(EngineEventData, cls).__new__( cls, metadata_entries=check.opt_list_param( metadata_entries, "metadata_entries", EventMetadataEntry ), error=check.opt_inst_param(error, "error", SerializableErrorInfo), marker_start=check.opt_str_param(marker_start, "marker_start"), marker_end=check.opt_str_param(marker_end, "marker_end"), ) @staticmethod def in_process(pid, step_keys_to_execute=None, marker_end=None): check.int_param(pid, "pid") check.opt_list_param(step_keys_to_execute, "step_keys_to_execute") return EngineEventData( metadata_entries=[EventMetadataEntry.text(str(pid), "pid")] + ( [EventMetadataEntry.text(str(step_keys_to_execute), "step_keys")] if step_keys_to_execute else [] ), marker_end=marker_end, ) @staticmethod def multiprocess(pid, step_keys_to_execute=None): check.int_param(pid, "pid") check.opt_list_param(step_keys_to_execute, "step_keys_to_execute") return EngineEventData( metadata_entries=[EventMetadataEntry.text(str(pid), "pid")] + ( [EventMetadataEntry.text(str(step_keys_to_execute), "step_keys")] if step_keys_to_execute else [] ) ) @staticmethod def interrupted(steps_interrupted): check.list_param(steps_interrupted, "steps_interrupted", str) return EngineEventData( metadata_entries=[EventMetadataEntry.text(str(steps_interrupted), "steps_interrupted")] ) @staticmethod def engine_error(error): check.inst_param(error, "error", SerializableErrorInfo) return EngineEventData(metadata_entries=[], error=error) @whitelist_for_serdes class PipelineInitFailureData(namedtuple("_PipelineInitFailureData", "error")): def __new__(cls, error): return super(PipelineInitFailureData, cls).__new__( cls, error=check.inst_param(error, "error", SerializableErrorInfo) ) @whitelist_for_serdes class PipelineFailureData(namedtuple("_PipelineFailureData", "error")): def __new__(cls, error): return super(PipelineFailureData, cls).__new__( cls, error=check.opt_inst_param(error, "error", SerializableErrorInfo) ) @whitelist_for_serdes class HookErroredData(namedtuple("_HookErroredData", "error")): def __new__(cls, error): return super(HookErroredData, cls).__new__( cls, error=check.inst_param(error, "error", SerializableErrorInfo), ) ################################################################################################### # THE GRAVEYARD # # -|- # | # _-'~~~~~`-_ # .' '. # | R I P | # | | # | Synthetic | # | Process | # | Events | # | | ################################################################################################### def _handle_back_compat(event_type_value, event_specific_data): if event_type_value == "PIPELINE_PROCESS_START": return DagsterEventType.ENGINE_EVENT.value, EngineEventData([]) elif event_type_value == "PIPELINE_PROCESS_STARTED": return DagsterEventType.ENGINE_EVENT.value, EngineEventData([]) elif event_type_value == "PIPELINE_PROCESS_EXITED": return DagsterEventType.ENGINE_EVENT.value, EngineEventData([]) else: return event_type_value, event_specific_data register_serdes_tuple_fallbacks( { "PipelineProcessStartedData": None, "PipelineProcessExitedData": None, "PipelineProcessStartData": None, } )
from argostrain.dataset import * from argostrain.utils import * from collections import deque from argostranslate import package, translate MIN_TAG_TEXT_LENGTH = 10 OPEN_TOKEN = '<x>' CLOSE_TOKEN = '</x>' def generate_xml_data(source_code, target_code, source_and_target_line): installed_languages = translate.get_installed_languages() source_translation = list(filter( lambda x: x.code == source_code, installed_languages))[0] target_translation = list(filter( lambda x: x.code == target_code, installed_languages))[0] source_translation = source_translation.get_translation(target_translation) source_line, target_line = source_and_target_line info(f'Processing xml ' + \ f'source_line={source_line} ' + \ f'target_line={target_line} ') best_source_start_index = None best_source_end_index = None best_matching_index = None best_target_end_index = None best_score = None for source_start_index in range(len(source_line) - 1): for source_end_index in range(source_start_index, len(source_line) + 1): source_sub_string = source_line[source_start_index:source_end_index] if len(source_sub_string) < MIN_TAG_TEXT_LENGTH: continue translation_hypothesis = source_translation.hypotheses(source_sub_string, 1)[0] translated_sub_string = translation_hypothesis.value score = translation_hypothesis.score matching_index = target_line.find(translated_sub_string) if matching_index == -1: continue if best_score == None or score > best_score: best_source_start_index = source_start_index best_source_end_index = source_end_index best_matching_index = matching_index best_target_end_index = matching_index + len(translated_sub_string) best_score = score if best_score == None: return None generated_source_line = source_line[:best_source_start_index] + \ OPEN_TOKEN + \ source_line[best_source_start_index:best_source_end_index] + \ CLOSE_TOKEN + \ source_line[best_source_end_index:] generated_target_line = target_line[:best_matching_index] + \ OPEN_TOKEN + \ target_line[best_matching_index:best_target_end_index] + \ CLOSE_TOKEN + \ target_line[best_target_end_index:] info(f'Generated tag data ' + \ f'generated_source_line={generated_source_line} ' + \ f'generated_target_line={generated_target_line} ') return (generated_source_line, generated_target_line)
import codecs import os import re import sys from setuptools import setup, Extension from setuptools.command.test import test as TestCommand # Some general-purpose code stolen from # https://github.com/jeffknupp/sandman/blob/5c4b7074e8ba5a60b00659760e222c57ad24ef91/setup.py here = os.path.abspath(os.path.dirname(__file__)) class Tox(TestCommand): def finalize_options(self): TestCommand.finalize_options(self) self.test_args = [] self.test_suite = True def run_tests(self): # import here, cause outside the eggs aren't loaded import tox errcode = tox.cmdline(self.test_args) sys.exit(errcode) def read(*parts): # intentionally *not* adding an encoding option to open with codecs.open(os.path.join(here, *parts), 'r') as f: return f.read() def find_version(*file_paths): version_file = read(*file_paths) version_match = re.search(r"^__version__ = ['\"]([^'\"]*)['\"]", version_file, re.M) if version_match: return version_match.group(1) raise RuntimeError("Unable to find version string.") # Make sure build path exists. build_path = os.path.join(here, 'build') if not os.path.exists(build_path): os.mkdir(build_path) # Generate Python bindings for bundled C++ library. module_fname = os.path.join(build_path, "rabinkarprh.cpp") try: import pybindgen # @UnusedImport except ImportError: print("WARNING: Failed to import pybindgen. If you called setup.py egg_info, this is probably acceptable; " "otherwise, build will fail. You can resolve this problem by installing pybindgen beforehand.") else: with open(module_fname, "wt") as file_: print("Generating file {}".format(module_fname)) from lib.rabinkarp_gen import generate generate(file_) setup( name='fastchunking', version=find_version('fastchunking', '__init__.py'), description='Fast chunking library.', long_description=read('README.rst'), url='https://github.com/netleibi/fastchunking', author='Dominik Leibenger', author_email='python-fastchunking@mails.dominik-leibenger.de', license='Apache Software License', classifiers=[ 'Development Status :: 2 - Pre-Alpha', 'Intended Audience :: Developers', 'Topic :: Software Development :: Libraries :: Python Modules', 'License :: OSI Approved :: Apache Software License', 'Operating System :: OS Independent', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.5' ], keywords=['text chunking', 'SC', 'static chunking', 'CDC', 'content-defined chunking', 'ML-*', 'multi-level chunking', 'ML-SC', 'ML-CDC', 'Rabin Karp', 'rolling hash'], packages=['fastchunking', 'lib'], setup_requires=['pybindgen'], install_requires=['pybindgen'], ext_modules=[ Extension('fastchunking._rabinkarprh', sources=[module_fname, 'lib/rabinkarp.cpp'], include_dirs=['lib'] ) ], test_suite='fastchunking.test', tests_require=['tox'], cmdclass={'test': Tox} )
""" This Module start the route and start Flask """ from flask import Flask, make_response, request from flask_restx import Api, Resource, fields from src.users import UsersDAO app = Flask(__name__) api = Api( app, version="1.0", title="UserMVC API", description="A simple UserMVC API", ) doc_user = api.namespace("users", description="Users list") doc_balance = api.namespace("balance", description="How to get balance") doc_reset = api.namespace("reset", description="Reset list of users") doc_event = api.namespace("event", description="Activate event") user = api.model( "UsersDAO", { "id": fields.Integer(required=True, description="The unique identifier"), "balance": fields.Integer(required=True, description="The user balance"), }, ) event1 = api.model( "Operation", { "type": fields.String( required=True, default="deposit", description="Type of transaction, deposit or withdraw", ), "destination": fields.Integer( required=True, default=1234, description="User id" ), "amount": fields.Integer( required=True, default=15, description="Value to deposit or withdraw" ), }, ) DAO = UsersDAO() DAO.create(0, 100) DAO.create(1, 200) DAO.create(3, 300) @doc_user.route("/") class UsersList(Resource): """Shows a list of all users""" @doc_user.doc("list_users") @doc_user.marshal_list_with(user) @classmethod def get(cls): """List all tasks""" return DAO.users, 200 @doc_balance.route("", doc={"params": {"account_id": "An user id"}}) class Balance(Resource): """Show the user balance""" @doc_balance.doc("show_balance") @doc_balance.response(200, "Success") @doc_balance.response(404, "User <user_id> does not exist") @classmethod def get(cls): """Get the balance of id""" user_id = request.args.get("account_id", None) _, user_ = DAO.get(user_id) if user_ is None: return 0, 404 return user_.balance, 200 @doc_reset.route("") class Reset(Resource): """Reset all the data""" @doc_reset.doc("reset_data") @classmethod def post(cls): """Reset all data""" while len(DAO.users) > 0: DAO.users.clear() response = make_response("OK", 200) response.mimetype = "text/plain" return response @doc_event.route("") class Event(Resource): """Reset all the data""" @doc_event.doc("event_data") @doc_event.expect(event1) @classmethod def post(cls): """Execute deposit, withdraw and transfer""" post_data = request.get_json() response_object = {} type_ = post_data.get("type") if type_ == "deposit": destination = post_data.get("destination") amount = post_data.get("amount") _, user_ = DAO.get(destination) if not user_: user_updated = DAO.create(destination, amount) else: user_updated = DAO.update(user_.id, user_.balance + amount) response_object = { "destination": {"id": user_updated.id, "balance": user_updated.balance} } return response_object, 201 if type_ == "withdraw": origin = post_data.get("origin") amount = post_data.get("amount") _, user_ = DAO.get(origin) if not user_: return 0, 404 if user_.balance - amount >= 0: user_updated = DAO.update(user_.id, user_.balance - amount) else: return 0, 404 response_object = { "origin": {"id": user_updated.id, "balance": user_updated.balance} } return response_object, 201 if type_ == "transfer": origin = post_data.get("origin") destination = post_data.get("destination") amount = post_data.get("amount") _, user1 = DAO.get(origin) _, user2 = DAO.get(destination) if not user1 or (origin == destination): return 0, 404 if user1.balance - amount >= 0: user1 = DAO.update(user1.id, user1.balance - amount) if not user2: user2 = DAO.create(destination, amount) else: user2 = DAO.update(user2.id, user2.balance + amount) response_object = { "origin": {"id": user1.id, "balance": user1.balance}, "destination": {"id": user2.id, "balance": user2.balance}, } return response_object, 201 else: return 0, 404 api.abort(404, f"Invalid type {type} does not exist") if __name__ == "__main__": app.run(debug=True)
"""Perform communication related functions.""" from time import sleep from plugins import USBRelay can_use_comm = True try: from .low_level import low_comm except Exception as e: print("[XbeeComm]:", e) can_use_comm = False SECRET_KEY = "CURE" from json import loads class Comm: def __init__(self, conf): self.conf = conf self.antenna = low_comm.Antenna( remote_address=conf.REMOTE_XBEE_ID ) def read_comm(self, read_time=None): """ Read communication for meta-state changes. """ return self.antenna.read_time(read_time) def send(self, data, skip_time=0.25, as_json=False): """Async send data to specific XBee network.""" return self.antenna.send( data, skip_time=skip_time, as_json=as_json ) def loop(conf, data): if not can_use_comm: return ant = Comm(conf) while True: # Send data ant.send(data.to_dict()) # Read incoming incoming = ant.read_comm() command = "" if incoming != "": try: info = loads(incoming) if info.get("key", "") == SECRET_KEY: command = info.get("command", "") except Exception as e: print("ERROR!!!!", e) pass if command not in ["", "{}"]: print(f"\nIncoming Data: <{incoming}> <{command}>\n") if command == "a": print("\nGot command to ARM!") conf.state = "ARM" if command == "s": print("\nGot command to SIMULATE!") if command == "h": print("\nGot command to HALT!") conf.state = "HALT" if command == "e1": print("\nGot command to EJECT_APOGEE!") USBRelay.Relay1(conf, data) if command == "e2": print("\nGot command to EJECT_MAIN!") USBRelay.Relay2(conf, data)
# coding: utf-8 """ Salt Edge Account Information API API Reference for services # noqa: E501 OpenAPI spec version: 5.0.0 Contact: support@saltedge.com Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six class CategoriesResponseData(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'business': 'object', 'personal': 'object' } attribute_map = { 'business': 'business', 'personal': 'personal' } def __init__(self, business=None, personal=None): # noqa: E501 """CategoriesResponseData - a model defined in Swagger""" # noqa: E501 self._business = None self._personal = None self.discriminator = None if business is not None: self.business = business if personal is not None: self.personal = personal @property def business(self): """Gets the business of this CategoriesResponseData. # noqa: E501 [Business categories](/data_enrichment/v5/#business-categories) # noqa: E501 :return: The business of this CategoriesResponseData. # noqa: E501 :rtype: object """ return self._business @business.setter def business(self, business): """Sets the business of this CategoriesResponseData. [Business categories](/data_enrichment/v5/#business-categories) # noqa: E501 :param business: The business of this CategoriesResponseData. # noqa: E501 :type: object """ self._business = business @property def personal(self): """Gets the personal of this CategoriesResponseData. # noqa: E501 [Personal categories](/data_enrichment/v5/#personal-categories) # noqa: E501 :return: The personal of this CategoriesResponseData. # noqa: E501 :rtype: object """ return self._personal @personal.setter def personal(self, personal): """Sets the personal of this CategoriesResponseData. [Personal categories](/data_enrichment/v5/#personal-categories) # noqa: E501 :param personal: The personal of this CategoriesResponseData. # noqa: E501 :type: object """ self._personal = personal def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(CategoriesResponseData, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, CategoriesResponseData): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
import numpy as np import time import os import shutil from tridesclous.dataio import DataIO from tridesclous.catalogueconstructor import CatalogueConstructor from tridesclous import mkQApp, CatalogueWindow from matplotlib import pyplot from tridesclous.tests.testingtools import setup_catalogue #~ dataset_name='olfactory_bulb' dataset_name = 'purkinje' #~ dataset_name='locust' #~ dataset_name='striatum_rat' def setup_module(): cc, params = setup_catalogue('test_cleancluster', dataset_name=dataset_name) cc.find_clusters(method=params['cluster_method'], **params['cluster_kargs']) cc.create_savepoint(name='after_find_clusters') def restore_savepoint(dirname, savepoint=None): folder = os.path.join(dirname, 'channel_group_0', 'catalogue_constructor') savepoint_folder = os.path.join(dirname, 'channel_group_0', 'catalogue_constructor_SAVEPOINT_' + savepoint) assert os.path.exists(savepoint_folder) shutil.rmtree(folder) shutil.copytree(savepoint_folder, folder) def test_auto_split(): dirname = 'test_cleancluster' restore_savepoint(dirname, savepoint='after_find_clusters') dataio = DataIO(dirname=dirname) cc = CatalogueConstructor(dataio=dataio) cc.find_clusters(method='pruningshears') print(cc) print(cc.n_jobs) t1 = time.perf_counter() cc.auto_split_cluster() t2 = time.perf_counter() print('auto_split_cluster', t2-t1) print(cc) cc.create_savepoint(name='after_auto_split') def test_trash_not_aligned(): dirname = 'test_cleancluster' restore_savepoint(dirname, savepoint='after_auto_split') dataio = DataIO(dirname=dirname) cc = CatalogueConstructor(dataio=dataio) t1 = time.perf_counter() cc.trash_not_aligned() t2 = time.perf_counter() print('trash_not_aligned', t2-t1) cc.create_savepoint(name='after_trash_not_aligned') def test_auto_merge(): dirname = 'test_cleancluster' restore_savepoint(dirname, savepoint='after_trash_not_aligned') dataio = DataIO(dirname=dirname) cc = CatalogueConstructor(dataio=dataio) t1 = time.perf_counter() cc.auto_merge_cluster() t2 = time.perf_counter() print('auto_merge_cluster', t2-t1) cc.create_savepoint(name='after_auto_merge_cluster') def test_trash_low_extremum(): dirname = 'test_cleancluster' restore_savepoint(dirname, savepoint='after_auto_merge_cluster') dataio = DataIO(dirname=dirname) cc = CatalogueConstructor(dataio=dataio) print(cc) t1 = time.perf_counter() cc.trash_low_extremum() t2 = time.perf_counter() print('trash_low_extremum', t2-t1) cc.create_savepoint(name='after_trash_low_extremum') print(cc) def test_trash_small_cluster(): dirname = 'test_cleancluster' restore_savepoint(dirname, savepoint='after_trash_low_extremum') dataio = DataIO(dirname=dirname) cc = CatalogueConstructor(dataio=dataio) t1 = time.perf_counter() cc.trash_small_cluster() t2 = time.perf_counter() print('trash_small_cluster', t2-t1) if __name__ == '__main__': #~ setup_module() #~ test_auto_split() #~ test_trash_not_aligned() #~ test_auto_merge() #~ test_trash_low_extremum() test_trash_small_cluster()
from a10sdk.common.A10BaseClass import A10BaseClass class SignZoneNow(A10BaseClass): """ :param zone_name: {"description": "Specify the name for the DNS zone, empty means sign all zones", "format": "string", "minLength": 1, "optional": true, "maxLength": 127, "type": "string"} :param DeviceProxy: The device proxy for REST operations and session handling. Refer to `common/device_proxy.py` Class Description:: sign zone right now. Class sign-zone-now supports CRUD Operations and inherits from `common/A10BaseClass`. This class is the `"PARENT"` class for this module.` URL for this object:: `https://<Hostname|Ip address>//axapi/v3/dnssec/sign-zone-now`. """ def __init__(self, **kwargs): self.ERROR_MSG = "" self.required=[] self.b_key = "sign-zone-now" self.a10_url="/axapi/v3/dnssec/sign-zone-now" self.DeviceProxy = "" self.zone_name = "" for keys, value in kwargs.items(): setattr(self,keys, value)
""" The :mod:`sklearn.feature_extraction.image` submodule gathers utilities to extract features from images. """ # Authors: Emmanuelle Gouillart <emmanuelle.gouillart@normalesup.org> # Gael Varoquaux <gael.varoquaux@normalesup.org> # Olivier Grisel # Vlad Niculae # License: BSD 3 clause from itertools import product import numbers import numpy as np from scipy import sparse from numpy.lib.stride_tricks import as_strided from ..utils import check_array, check_random_state from ..base import BaseEstimator __all__ = [ "PatchExtractor", "extract_patches_2d", "grid_to_graph", "img_to_graph", "reconstruct_from_patches_2d", ] ############################################################################### # From an image to a graph def _make_edges_3d(n_x, n_y, n_z=1): """Returns a list of edges for a 3D image. Parameters ---------- n_x : int The size of the grid in the x direction. n_y : int The size of the grid in the y direction. n_z : integer, default=1 The size of the grid in the z direction, defaults to 1 """ vertices = np.arange(n_x * n_y * n_z).reshape((n_x, n_y, n_z)) edges_deep = np.vstack((vertices[:, :, :-1].ravel(), vertices[:, :, 1:].ravel())) edges_right = np.vstack((vertices[:, :-1].ravel(), vertices[:, 1:].ravel())) edges_down = np.vstack((vertices[:-1].ravel(), vertices[1:].ravel())) edges = np.hstack((edges_deep, edges_right, edges_down)) return edges def _compute_gradient_3d(edges, img): _, n_y, n_z = img.shape gradient = np.abs( img[ edges[0] // (n_y * n_z), (edges[0] % (n_y * n_z)) // n_z, (edges[0] % (n_y * n_z)) % n_z, ] - img[ edges[1] // (n_y * n_z), (edges[1] % (n_y * n_z)) // n_z, (edges[1] % (n_y * n_z)) % n_z, ] ) return gradient # XXX: Why mask the image after computing the weights? def _mask_edges_weights(mask, edges, weights=None): """Apply a mask to edges (weighted or not)""" inds = np.arange(mask.size) inds = inds[mask.ravel()] ind_mask = np.logical_and(np.in1d(edges[0], inds), np.in1d(edges[1], inds)) edges = edges[:, ind_mask] if weights is not None: weights = weights[ind_mask] if len(edges.ravel()): maxval = edges.max() else: maxval = 0 order = np.searchsorted(np.flatnonzero(mask), np.arange(maxval + 1)) edges = order[edges] if weights is None: return edges else: return edges, weights def _to_graph( n_x, n_y, n_z, mask=None, img=None, return_as=sparse.coo_matrix, dtype=None ): """Auxiliary function for img_to_graph and grid_to_graph""" edges = _make_edges_3d(n_x, n_y, n_z) if dtype is None: if img is None: dtype = int else: dtype = img.dtype if img is not None: img = np.atleast_3d(img) weights = _compute_gradient_3d(edges, img) if mask is not None: edges, weights = _mask_edges_weights(mask, edges, weights) diag = img.squeeze()[mask] else: diag = img.ravel() n_voxels = diag.size else: if mask is not None: mask = mask.astype(dtype=bool, copy=False) mask = np.asarray(mask, dtype=bool) edges = _mask_edges_weights(mask, edges) n_voxels = np.sum(mask) else: n_voxels = n_x * n_y * n_z weights = np.ones(edges.shape[1], dtype=dtype) diag = np.ones(n_voxels, dtype=dtype) diag_idx = np.arange(n_voxels) i_idx = np.hstack((edges[0], edges[1])) j_idx = np.hstack((edges[1], edges[0])) graph = sparse.coo_matrix( ( np.hstack((weights, weights, diag)), (np.hstack((i_idx, diag_idx)), np.hstack((j_idx, diag_idx))), ), (n_voxels, n_voxels), dtype=dtype, ) if return_as is np.ndarray: return graph.toarray() return return_as(graph) def img_to_graph(img, *, mask=None, return_as=sparse.coo_matrix, dtype=None): """Graph of the pixel-to-pixel gradient connections. Edges are weighted with the gradient values. Read more in the :ref:`User Guide <image_feature_extraction>`. Parameters ---------- img : ndarray of shape (height, width) or (height, width, channel) 2D or 3D image. mask : ndarray of shape (height, width) or \ (height, width, channel), dtype=bool, default=None An optional mask of the image, to consider only part of the pixels. return_as : np.ndarray or a sparse matrix class, \ default=sparse.coo_matrix The class to use to build the returned adjacency matrix. dtype : dtype, default=None The data of the returned sparse matrix. By default it is the dtype of img. Returns ------- graph : ndarray or a sparse matrix class The computed adjacency matrix. Notes ----- For scikit-learn versions 0.14.1 and prior, return_as=np.ndarray was handled by returning a dense np.matrix instance. Going forward, np.ndarray returns an np.ndarray, as expected. For compatibility, user code relying on this method should wrap its calls in ``np.asarray`` to avoid type issues. """ img = np.atleast_3d(img) n_x, n_y, n_z = img.shape return _to_graph(n_x, n_y, n_z, mask, img, return_as, dtype) def grid_to_graph( n_x, n_y, n_z=1, *, mask=None, return_as=sparse.coo_matrix, dtype=int ): """Graph of the pixel-to-pixel connections. Edges exist if 2 voxels are connected. Parameters ---------- n_x : int Dimension in x axis. n_y : int Dimension in y axis. n_z : int, default=1 Dimension in z axis. mask : ndarray of shape (n_x, n_y, n_z), dtype=bool, default=None An optional mask of the image, to consider only part of the pixels. return_as : np.ndarray or a sparse matrix class, \ default=sparse.coo_matrix The class to use to build the returned adjacency matrix. dtype : dtype, default=int The data of the returned sparse matrix. By default it is int. Returns ------- graph : np.ndarray or a sparse matrix class The computed adjacency matrix. Notes ----- For scikit-learn versions 0.14.1 and prior, return_as=np.ndarray was handled by returning a dense np.matrix instance. Going forward, np.ndarray returns an np.ndarray, as expected. For compatibility, user code relying on this method should wrap its calls in ``np.asarray`` to avoid type issues. """ return _to_graph(n_x, n_y, n_z, mask=mask, return_as=return_as, dtype=dtype) ############################################################################### # From an image to a set of small image patches def _compute_n_patches(i_h, i_w, p_h, p_w, max_patches=None): """Compute the number of patches that will be extracted in an image. Read more in the :ref:`User Guide <image_feature_extraction>`. Parameters ---------- i_h : int The image height i_w : int The image with p_h : int The height of a patch p_w : int The width of a patch max_patches : int or float, default=None The maximum number of patches to extract. If max_patches is a float between 0 and 1, it is taken to be a proportion of the total number of patches. """ n_h = i_h - p_h + 1 n_w = i_w - p_w + 1 all_patches = n_h * n_w if max_patches: if isinstance(max_patches, (numbers.Integral)) and max_patches < all_patches: return max_patches elif isinstance(max_patches, (numbers.Integral)) and max_patches >= all_patches: return all_patches elif isinstance(max_patches, (numbers.Real)) and 0 < max_patches < 1: return int(max_patches * all_patches) else: raise ValueError("Invalid value for max_patches: %r" % max_patches) else: return all_patches def _extract_patches(arr, patch_shape=8, extraction_step=1): """Extracts patches of any n-dimensional array in place using strides. Given an n-dimensional array it will return a 2n-dimensional array with the first n dimensions indexing patch position and the last n indexing the patch content. This operation is immediate (O(1)). A reshape performed on the first n dimensions will cause numpy to copy data, leading to a list of extracted patches. Read more in the :ref:`User Guide <image_feature_extraction>`. Parameters ---------- arr : ndarray n-dimensional array of which patches are to be extracted patch_shape : int or tuple of length arr.ndim.default=8 Indicates the shape of the patches to be extracted. If an integer is given, the shape will be a hypercube of sidelength given by its value. extraction_step : int or tuple of length arr.ndim, default=1 Indicates step size at which extraction shall be performed. If integer is given, then the step is uniform in all dimensions. Returns ------- patches : strided ndarray 2n-dimensional array indexing patches on first n dimensions and containing patches on the last n dimensions. These dimensions are fake, but this way no data is copied. A simple reshape invokes a copying operation to obtain a list of patches: result.reshape([-1] + list(patch_shape)) """ arr_ndim = arr.ndim if isinstance(patch_shape, numbers.Number): patch_shape = tuple([patch_shape] * arr_ndim) if isinstance(extraction_step, numbers.Number): extraction_step = tuple([extraction_step] * arr_ndim) patch_strides = arr.strides slices = tuple(slice(None, None, st) for st in extraction_step) indexing_strides = arr[slices].strides patch_indices_shape = ( (np.array(arr.shape) - np.array(patch_shape)) // np.array(extraction_step) ) + 1 shape = tuple(list(patch_indices_shape) + list(patch_shape)) strides = tuple(list(indexing_strides) + list(patch_strides)) patches = as_strided(arr, shape=shape, strides=strides) return patches def extract_patches_2d(image, patch_size, *, max_patches=None, random_state=None): """Reshape a 2D image into a collection of patches The resulting patches are allocated in a dedicated array. Read more in the :ref:`User Guide <image_feature_extraction>`. Parameters ---------- image : ndarray of shape (image_height, image_width) or \ (image_height, image_width, n_channels) The original image data. For color images, the last dimension specifies the channel: a RGB image would have `n_channels=3`. patch_size : tuple of int (patch_height, patch_width) The dimensions of one patch. max_patches : int or float, default=None The maximum number of patches to extract. If `max_patches` is a float between 0 and 1, it is taken to be a proportion of the total number of patches. random_state : int, RandomState instance, default=None Determines the random number generator used for random sampling when `max_patches` is not None. Use an int to make the randomness deterministic. See :term:`Glossary <random_state>`. Returns ------- patches : array of shape (n_patches, patch_height, patch_width) or \ (n_patches, patch_height, patch_width, n_channels) The collection of patches extracted from the image, where `n_patches` is either `max_patches` or the total number of patches that can be extracted. Examples -------- >>> from sklearn.datasets import load_sample_image >>> from sklearn.feature_extraction import image >>> # Use the array data from the first image in this dataset: >>> one_image = load_sample_image("china.jpg") >>> print('Image shape: {}'.format(one_image.shape)) Image shape: (427, 640, 3) >>> patches = image.extract_patches_2d(one_image, (2, 2)) >>> print('Patches shape: {}'.format(patches.shape)) Patches shape: (272214, 2, 2, 3) >>> # Here are just two of these patches: >>> print(patches[1]) [[[174 201 231] [174 201 231]] [[173 200 230] [173 200 230]]] >>> print(patches[800]) [[[187 214 243] [188 215 244]] [[187 214 243] [188 215 244]]] """ i_h, i_w = image.shape[:2] p_h, p_w = patch_size if p_h > i_h: raise ValueError( "Height of the patch should be less than the height of the image." ) if p_w > i_w: raise ValueError( "Width of the patch should be less than the width of the image." ) image = check_array(image, allow_nd=True) image = image.reshape((i_h, i_w, -1)) n_colors = image.shape[-1] extracted_patches = _extract_patches( image, patch_shape=(p_h, p_w, n_colors), extraction_step=1 ) n_patches = _compute_n_patches(i_h, i_w, p_h, p_w, max_patches) if max_patches: rng = check_random_state(random_state) i_s = rng.randint(i_h - p_h + 1, size=n_patches) j_s = rng.randint(i_w - p_w + 1, size=n_patches) patches = extracted_patches[i_s, j_s, 0] else: patches = extracted_patches patches = patches.reshape(-1, p_h, p_w, n_colors) # remove the color dimension if useless if patches.shape[-1] == 1: return patches.reshape((n_patches, p_h, p_w)) else: return patches def reconstruct_from_patches_2d(patches, image_size): """Reconstruct the image from all of its patches. Patches are assumed to overlap and the image is constructed by filling in the patches from left to right, top to bottom, averaging the overlapping regions. Read more in the :ref:`User Guide <image_feature_extraction>`. Parameters ---------- patches : ndarray of shape (n_patches, patch_height, patch_width) or \ (n_patches, patch_height, patch_width, n_channels) The complete set of patches. If the patches contain colour information, channels are indexed along the last dimension: RGB patches would have `n_channels=3`. image_size : tuple of int (image_height, image_width) or \ (image_height, image_width, n_channels) The size of the image that will be reconstructed. Returns ------- image : ndarray of shape image_size The reconstructed image. """ i_h, i_w = image_size[:2] p_h, p_w = patches.shape[1:3] img = np.zeros(image_size) # compute the dimensions of the patches array n_h = i_h - p_h + 1 n_w = i_w - p_w + 1 for p, (i, j) in zip(patches, product(range(n_h), range(n_w))): img[i : i + p_h, j : j + p_w] += p for i in range(i_h): for j in range(i_w): # divide by the amount of overlap # XXX: is this the most efficient way? memory-wise yes, cpu wise? img[i, j] /= float(min(i + 1, p_h, i_h - i) * min(j + 1, p_w, i_w - j)) return img class PatchExtractor(BaseEstimator): """Extracts patches from a collection of images. Read more in the :ref:`User Guide <image_feature_extraction>`. .. versionadded:: 0.9 Parameters ---------- patch_size : tuple of int (patch_height, patch_width), default=None The dimensions of one patch. max_patches : int or float, default=None The maximum number of patches per image to extract. If `max_patches` is a float in (0, 1), it is taken to mean a proportion of the total number of patches. random_state : int, RandomState instance, default=None Determines the random number generator used for random sampling when `max_patches is not None`. Use an int to make the randomness deterministic. See :term:`Glossary <random_state>`. See Also -------- reconstruct_from_patches_2d : Reconstruct image from all of its patches. Examples -------- >>> from sklearn.datasets import load_sample_images >>> from sklearn.feature_extraction import image >>> # Use the array data from the second image in this dataset: >>> X = load_sample_images().images[1] >>> print('Image shape: {}'.format(X.shape)) Image shape: (427, 640, 3) >>> pe = image.PatchExtractor(patch_size=(2, 2)) >>> pe_fit = pe.fit(X) >>> pe_trans = pe.transform(X) >>> print('Patches shape: {}'.format(pe_trans.shape)) Patches shape: (545706, 2, 2) """ def __init__(self, *, patch_size=None, max_patches=None, random_state=None): self.patch_size = patch_size self.max_patches = max_patches self.random_state = random_state def fit(self, X, y=None): """Do nothing and return the estimator unchanged. This method is just there to implement the usual API and hence work in pipelines. Parameters ---------- X : array-like of shape (n_samples, n_features) Training data. y : Ignored Not used, present for API consistency by convention. Returns ------- self : object Returns the instance itself. """ return self def transform(self, X): """Transform the image samples in `X` into a matrix of patch data. Parameters ---------- X : ndarray of shape (n_samples, image_height, image_width) or \ (n_samples, image_height, image_width, n_channels) Array of images from which to extract patches. For color images, the last dimension specifies the channel: a RGB image would have `n_channels=3`. Returns ------- patches : array of shape (n_patches, patch_height, patch_width) or \ (n_patches, patch_height, patch_width, n_channels) The collection of patches extracted from the images, where `n_patches` is either `n_samples * max_patches` or the total number of patches that can be extracted. """ self.random_state = check_random_state(self.random_state) n_images, i_h, i_w = X.shape[:3] X = np.reshape(X, (n_images, i_h, i_w, -1)) n_channels = X.shape[-1] if self.patch_size is None: patch_size = i_h // 10, i_w // 10 else: patch_size = self.patch_size # compute the dimensions of the patches array p_h, p_w = patch_size n_patches = _compute_n_patches(i_h, i_w, p_h, p_w, self.max_patches) patches_shape = (n_images * n_patches,) + patch_size if n_channels > 1: patches_shape += (n_channels,) # extract the patches patches = np.empty(patches_shape) for ii, image in enumerate(X): patches[ii * n_patches : (ii + 1) * n_patches] = extract_patches_2d( image, patch_size, max_patches=self.max_patches, random_state=self.random_state, ) return patches def _more_tags(self): return {"X_types": ["3darray"]}
import os, sys import json import ctypes from cerver import * from cerver.http import * web_service = None # end def end (signum, frame): http_cerver_all_stats_print (http_cerver_get (web_service)) cerver_teardown (web_service) cerver_end () sys.exit ("Done!") # GET / @ctypes.CFUNCTYPE (None, ctypes.c_void_p, ctypes.c_void_p) def main_handler (http_receive, request): http_send_response ( http_receive, HTTP_STATUS_OK, { "oki": "doki!" } ) # GET /echo @ctypes.CFUNCTYPE (None, ctypes.c_void_p, ctypes.c_void_p) def echo_handler (http_receive, request): body_values = http_request_get_query_params (request) value = http_request_get_query_value (body_values, "value") http_send_response ( http_receive, HTTP_STATUS_OK, { "echo": f"Values received: {value}" } ) # POST /data @ctypes.CFUNCTYPE (None, ctypes.c_void_p, ctypes.c_void_p) def data_handler (http_receive, request): body = http_request_get_body_json (request) http_send_response (http_receive, HTTP_STATUS_OK, { "echo": body }) # POST /token @ctypes.CFUNCTYPE (None, ctypes.c_void_p, ctypes.c_void_p) def token_handler (http_receive, request): body = http_request_get_body_json (request) http_jwt_create_and_send (http_receive, HTTP_STATUS_OK, body) # GET /auth @ctypes.CFUNCTYPE (None, ctypes.c_void_p, ctypes.c_void_p) def auth_handler (http_receive, request): token_values = http_jwt_token_decode (request) http_send_response ( http_receive, HTTP_STATUS_OK, { "oki": "doki", "values": token_values }) # GET /parent @ctypes.CFUNCTYPE (None, ctypes.c_void_p, ctypes.c_void_p) def parent_handler (http_receive, request): pass # GET /child @ctypes.CFUNCTYPE (None, ctypes.c_void_p, ctypes.c_void_p) def child_handler (http_receive, request): pass def start (): global web_service web_service = http_cerver_configuration ("web") http_cerver = http_cerver_get (web_service) http_cerver_auth_configuration ( http_cerver, JWT_ALG_RS256, "./web/keys/key.key", "./web/keys/key.pub" ) # GET / main_route = http_create_route ( http_cerver, REQUEST_METHOD_GET, "/", main_handler ) # GET /echo echo_route = http_create_route ( http_cerver, REQUEST_METHOD_GET, "echo", echo_handler ) # POST /data data_route = http_create_route ( http_cerver, REQUEST_METHOD_POST, "data", data_handler ) # POST /token token_route = http_create_route ( http_cerver, REQUEST_METHOD_POST, "token", token_handler ) # GET /auth auth_route = http_create_route ( http_cerver, REQUEST_METHOD_GET, "auth", auth_handler, HTTP_ROUTE_AUTH_TYPE_BEARER ) # GET /parent parent_route = http_create_route ( http_cerver, REQUEST_METHOD_GET, "parent", parent_handler, HTTP_ROUTE_AUTH_TYPE_BEARER ) # GET /parent/child auth_route = http_create_child_route ( parent_route, REQUEST_METHOD_GET, "child", child_handler, HTTP_ROUTE_AUTH_TYPE_BEARER ) cerver_start (web_service) if __name__ == "__main__": signal.signal (signal.SIGINT, end) signal.signal (signal.SIGTERM, end) signal.signal (signal.SIGPIPE, signal.SIG_IGN) cerver_init () cerver_version_print_full () pycerver_version_print_full () start ()
import base64 def replace_b64_in_dict(item): """ Replace base64 string in python dictionary of inference data. Refer to https://github.com/tensorflow/serving/blob/master/tensorflow_serving/g3doc/api_rest.md#encoding-binary-values . For example: {'inputs': {'images': {'b64': 'YWJjZGVmZ2hpMTIz'}, 'foo': 'bar'}} to {'inputs': {'images': 'abcdefghi123', 'foo': 'bar'}}. """ if isinstance(item, dict): # Use items for Python 3 instead of iteritems for key, value in item.items(): if isinstance(value, dict) and list(value.keys())[0] == "b64": # Use list to wrap .keys() and .values() for Python 3 b64_string = list(value.values())[0] # TODO: unicode string to string b64_string = str(b64_string) bytearray_string = base64.urlsafe_b64decode(b64_string) item[key] = bytearray_string else: replace_b64_in_dict(value) elif isinstance(item, list): for index, value in enumerate(item): if isinstance(value, dict) and list(value.keys())[0] == "b64": b64_string = list(value.values())[0] b64_string = str(b64_string) bytearray_string = base64.urlsafe_b64decode(b64_string) item[index] = bytearray_string else: replace_b64_in_dict(value)
from collections import defaultdict from promise import Promise from ....attribute.models import ( AssignedProductAttribute, AssignedProductAttributeValue, AssignedVariantAttribute, AssignedVariantAttributeValue, AttributeProduct, AttributeVariant, ) from ....core.permissions import ProductPermissions from ...attribute.dataloaders import AttributesByAttributeId, AttributeValueByIdLoader from ...core.dataloaders import DataLoader from ...utils import get_user_or_app_from_context from .products import ProductByIdLoader, ProductVariantByIdLoader class BaseProductAttributesByProductTypeIdLoader(DataLoader): """Loads product attributes by product type ID.""" model_name = None def batch_load(self, keys): if not self.model_name: raise ValueError("Provide a model_name for this dataloader.") requestor = get_user_or_app_from_context(self.context) if requestor.is_active and requestor.has_perm( ProductPermissions.MANAGE_PRODUCTS ): qs = self.model_name.objects.using(self.database_connection_name).all() else: qs = self.model_name.objects.using(self.database_connection_name).filter( attribute__visible_in_storefront=True ) product_type_attribute_pairs = qs.filter(product_type_id__in=keys).values_list( "product_type_id", "attribute_id" ) product_type_to_attributes_map = defaultdict(list) for product_type_id, attr_id in product_type_attribute_pairs: product_type_to_attributes_map[product_type_id].append(attr_id) def map_attributes(attributes): attributes_map = {attr.id: attr for attr in attributes} return [ [ attributes_map[attr_id] for attr_id in product_type_to_attributes_map[product_type_id] ] for product_type_id in keys ] return ( AttributesByAttributeId(self.context) .load_many(set(attr_id for _, attr_id in product_type_attribute_pairs)) .then(map_attributes) ) class ProductAttributesByProductTypeIdLoader( BaseProductAttributesByProductTypeIdLoader ): """Loads product attributes by product type ID.""" context_key = "product_attributes_by_producttype" model_name = AttributeProduct class VariantAttributesByProductTypeIdLoader( BaseProductAttributesByProductTypeIdLoader ): """Loads variant attributes by product type ID.""" context_key = "variant_attributes_by_producttype" model_name = AttributeVariant class AttributeProductsByProductTypeIdLoader(DataLoader): """Loads AttributeProduct objects by product type ID.""" context_key = "attributeproducts_by_producttype" def batch_load(self, keys): requestor = get_user_or_app_from_context(self.context) if requestor.is_active and requestor.has_perm( ProductPermissions.MANAGE_PRODUCTS ): qs = AttributeProduct.objects.using(self.database_connection_name).all() else: qs = AttributeProduct.objects.using(self.database_connection_name).filter( attribute__visible_in_storefront=True ) attribute_products = qs.filter(product_type_id__in=keys) producttype_to_attributeproducts = defaultdict(list) for attribute_product in attribute_products: producttype_to_attributeproducts[attribute_product.product_type_id].append( attribute_product ) return [producttype_to_attributeproducts[key] for key in keys] class AttributeVariantsByProductTypeIdLoader(DataLoader): context_key = "attributevariants_by_producttype" def batch_load(self, keys): requestor = get_user_or_app_from_context(self.context) if requestor.is_active and requestor.has_perm( ProductPermissions.MANAGE_PRODUCTS ): qs = AttributeVariant.objects.using(self.database_connection_name).all() else: qs = AttributeVariant.objects.using(self.database_connection_name).filter( attribute__visible_in_storefront=True ) attribute_variants = qs.filter(product_type_id__in=keys) producttype_to_attributevariants = defaultdict(list) for attribute_variant in attribute_variants: producttype_to_attributevariants[attribute_variant.product_type_id].append( attribute_variant ) return [producttype_to_attributevariants[key] for key in keys] class AssignedProductAttributesByProductIdLoader(DataLoader): context_key = "assignedproductattributes_by_product" def batch_load(self, keys): requestor = get_user_or_app_from_context(self.context) if requestor.is_active and requestor.has_perm( ProductPermissions.MANAGE_PRODUCTS ): qs = AssignedProductAttribute.objects.using( self.database_connection_name ).all() else: qs = AssignedProductAttribute.objects.using( self.database_connection_name ).filter(assignment__attribute__visible_in_storefront=True) assigned_product_attributes = qs.filter(product_id__in=keys) product_to_assignedproductattributes = defaultdict(list) for assigned_product_attribute in assigned_product_attributes: product_to_assignedproductattributes[ assigned_product_attribute.product_id ].append(assigned_product_attribute) return [product_to_assignedproductattributes[product_id] for product_id in keys] class AssignedVariantAttributesByProductVariantId(DataLoader): context_key = "assignedvariantattributes_by_productvariant" def batch_load(self, keys): requestor = get_user_or_app_from_context(self.context) if requestor.is_active and requestor.has_perm( ProductPermissions.MANAGE_PRODUCTS ): qs = AssignedVariantAttribute.objects.using( self.database_connection_name ).all() else: qs = AssignedVariantAttribute.objects.using( self.database_connection_name ).filter(assignment__attribute__visible_in_storefront=True) assigned_variant_attributes = qs.filter(variant_id__in=keys).select_related( "assignment__attribute" ) variant_attributes = defaultdict(list) for assigned_variant_attribute in assigned_variant_attributes: variant_attributes[assigned_variant_attribute.variant_id].append( assigned_variant_attribute ) return [variant_attributes[variant_id] for variant_id in keys] class AttributeValuesByAssignedProductAttributeIdLoader(DataLoader): context_key = "attributevalues_by_assignedproductattribute" def batch_load(self, keys): attribute_values = AssignedProductAttributeValue.objects.using( self.database_connection_name ).filter(assignment_id__in=keys) value_ids = [a.value_id for a in attribute_values] def map_assignment_to_values(values): value_map = dict(zip(value_ids, values)) assigned_product_map = defaultdict(list) for attribute_value in attribute_values: assigned_product_map[attribute_value.assignment_id].append( value_map.get(attribute_value.value_id) ) return [assigned_product_map[key] for key in keys] return ( AttributeValueByIdLoader(self.context) .load_many(value_ids) .then(map_assignment_to_values) ) class AttributeValuesByAssignedVariantAttributeIdLoader(DataLoader): context_key = "attributevalues_by_assignedvariantattribute" def batch_load(self, keys): attribute_values = AssignedVariantAttributeValue.objects.using( self.database_connection_name ).filter(assignment_id__in=keys) value_ids = [a.value_id for a in attribute_values] def map_assignment_to_values(values): value_map = dict(zip(value_ids, values)) assigned_variant_map = defaultdict(list) for attribute_value in attribute_values: assigned_variant_map[attribute_value.assignment_id].append( value_map.get(attribute_value.value_id) ) return [assigned_variant_map[key] for key in keys] return ( AttributeValueByIdLoader(self.context) .load_many(value_ids) .then(map_assignment_to_values) ) class SelectedAttributesByProductIdLoader(DataLoader): context_key = "selectedattributes_by_product" def batch_load(self, keys): def with_products_and_assigned_attributes(result): products, product_attributes = result products = [product for product in products if product is not None] assigned_product_attribute_ids = [ a.id for attrs in product_attributes for a in attrs ] product_type_ids = list({p.product_type_id for p in products}) product_attributes = dict(zip(keys, product_attributes)) def with_attributeproducts_and_values(result): attribute_products, attribute_values = result attribute_ids = list( {ap.attribute_id for aps in attribute_products for ap in aps} ) attribute_products = dict(zip(product_type_ids, attribute_products)) attribute_values = dict( zip(assigned_product_attribute_ids, attribute_values) ) def with_attributes(attributes): id_to_attribute = dict(zip(attribute_ids, attributes)) selected_attributes_map = defaultdict(list) for key, product in zip(keys, products): assigned_producttype_attributes = attribute_products[ product.product_type_id ] assigned_product_attributes = product_attributes[key] for ( assigned_producttype_attribute ) in assigned_producttype_attributes: product_assignment = next( ( apa for apa in assigned_product_attributes if apa.assignment_id == assigned_producttype_attribute.id ), None, ) attribute = id_to_attribute[ assigned_producttype_attribute.attribute_id ] if product_assignment: values = attribute_values[product_assignment.id] else: values = [] selected_attributes_map[key].append( {"values": values, "attribute": attribute} ) return [selected_attributes_map[key] for key in keys] return ( AttributesByAttributeId(self.context) .load_many(attribute_ids) .then(with_attributes) ) attribute_products = AttributeProductsByProductTypeIdLoader( self.context ).load_many(product_type_ids) attribute_values = AttributeValuesByAssignedProductAttributeIdLoader( self.context ).load_many(assigned_product_attribute_ids) return Promise.all([attribute_products, attribute_values]).then( with_attributeproducts_and_values ) products = ProductByIdLoader(self.context).load_many(keys) assigned_attributes = AssignedProductAttributesByProductIdLoader( self.context ).load_many(keys) return Promise.all([products, assigned_attributes]).then( with_products_and_assigned_attributes ) class SelectedAttributesByProductVariantIdLoader(DataLoader): context_key = "selectedattributes_by_productvariant" def batch_load(self, keys): def with_variants_and_assigned_attributed(results): product_variants, variant_attributes = results product_ids = list({v.product_id for v in product_variants}) assigned_variant_attribute_ids = [ a.id for attrs in variant_attributes for a in attrs ] variant_attributes = dict(zip(keys, variant_attributes)) def with_products_and_attribute_values(results): products, attribute_values = results product_type_ids = list({p.product_type_id for p in products}) products = dict(zip(product_ids, products)) attribute_values = dict( zip(assigned_variant_attribute_ids, attribute_values) ) def with_attribute_products(attribute_products): attribute_ids = list( {ap.attribute_id for aps in attribute_products for ap in aps} ) attribute_products = dict(zip(product_type_ids, attribute_products)) def with_attributes(attributes): id_to_attribute = dict(zip(attribute_ids, attributes)) selected_attributes_map = defaultdict(list) for key, product_variant in zip(keys, product_variants): product = products[product_variant.product_id] assigned_producttype_attributes = attribute_products[ product.product_type_id ] assigned_variant_attributes = variant_attributes[key] for ( assigned_producttype_attribute ) in assigned_producttype_attributes: variant_assignment = next( ( apa for apa in assigned_variant_attributes if apa.assignment_id == assigned_producttype_attribute.id ), None, ) attribute = id_to_attribute[ assigned_producttype_attribute.attribute_id ] if variant_assignment: values = attribute_values[variant_assignment.id] else: values = [] selected_attributes_map[key].append( {"values": values, "attribute": attribute} ) return [selected_attributes_map[key] for key in keys] return ( AttributesByAttributeId(self.context) .load_many(attribute_ids) .then(with_attributes) ) return ( AttributeVariantsByProductTypeIdLoader(self.context) .load_many(product_type_ids) .then(with_attribute_products) ) products = ProductByIdLoader(self.context).load_many(product_ids) attribute_values = AttributeValuesByAssignedVariantAttributeIdLoader( self.context ).load_many(assigned_variant_attribute_ids) return Promise.all([products, attribute_values]).then( with_products_and_attribute_values ) product_variants = ProductVariantByIdLoader(self.context).load_many(keys) assigned_attributes = AssignedVariantAttributesByProductVariantId( self.context ).load_many(keys) return Promise.all([product_variants, assigned_attributes]).then( with_variants_and_assigned_attributed )
from django.contrib import admin from .models import * admin.site.register(Topic) admin.site.register(Comment)
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # # train backbone network with imagenet dataset # import os, sys, argparse import numpy as np from multiprocessing import cpu_count import tensorflow.keras.backend as K from tensorflow.keras.optimizers import Adam, SGD, RMSprop from tensorflow.keras.preprocessing.image import ImageDataGenerator from tensorflow.keras.applications.resnet50 import preprocess_input, decode_predictions from tensorflow.keras.callbacks import TensorBoard, ModelCheckpoint, ReduceLROnPlateau, LearningRateScheduler, TerminateOnNaN from tensorflow.keras.utils import multi_gpu_model sys.path.append(os.path.join(os.path.dirname(os.path.realpath(__file__)), '..')) from shufflenet import ShuffleNet from shufflenet_v2 import ShuffleNetV2 sys.path.append(os.path.join(os.path.dirname(os.path.realpath(__file__)), '..', '..', '..')) from yolo3.models.yolo3_nano import NanoNet from yolo3.models.yolo3_darknet import DarkNet53 from yolo4.models.yolo4_darknet import CSPDarkNet53 os.environ["CUDA_VISIBLE_DEVICES"] = "0" os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' #import tensorflow as tf #config = tf.ConfigProto() #config.gpu_options.allow_growth=True #dynamic alloc GPU resource #config.gpu_options.per_process_gpu_memory_fraction = 0.9 #GPU memory threshold 0.3 #session = tf.Session(config=config) ## set session #K.set_session(session) def preprocess(x): x = np.expand_dims(x, axis=0) """ "mode" option description in preprocess_input mode: One of "caffe", "tf" or "torch". - caffe: will convert the images from RGB to BGR, then will zero-center each color channel with respect to the ImageNet dataset, without scaling. - tf: will scale pixels between -1 and 1, sample-wise. - torch: will scale pixels between 0 and 1 and then will normalize each channel with respect to the ImageNet dataset. """ #x = preprocess_input(x, mode='tf') x /= 255.0 x -= 0.5 x *= 2.0 return x def get_model(model_type, include_top=True): if model_type == 'shufflenet': input_shape = (224, 224, 3) model = ShuffleNet(groups=3, weights=None, include_top=include_top) elif model_type == 'shufflenet_v2': input_shape = (224, 224, 3) model = ShuffleNetV2(bottleneck_ratio=1, weights=None, include_top=include_top) elif model_type == 'nanonet': input_shape = (224, 224, 3) model = NanoNet(weights=None, include_top=include_top) elif model_type == 'darknet53': input_shape = (224, 224, 3) model = DarkNet53(weights=None, include_top=include_top) elif model_type == 'cspdarknet53': input_shape = (224, 224, 3) model = CSPDarkNet53(weights=None, include_top=include_top) else: raise ValueError('Unsupported model type') return model, input_shape[:2] def get_optimizer(optim_type, learning_rate): if optim_type == 'sgd': optimizer = SGD(lr=learning_rate, decay=5e-4, momentum=0.9) elif optim_type == 'rmsprop': optimizer = RMSprop(lr=learning_rate) elif optim_type == 'adam': optimizer = Adam(lr=learning_rate, decay=5e-4) else: raise ValueError('Unsupported optimizer type') return optimizer def train(args, model, input_shape): log_dir = 'logs' # callbacks for training process checkpoint = ModelCheckpoint(os.path.join(log_dir, 'ep{epoch:03d}-val_loss{val_loss:.3f}-val_acc{val_acc:.3f}-val_top_k_categorical_accuracy{val_top_k_categorical_accuracy:.3f}.h5'), monitor='val_acc', mode='max', verbose=1, save_weights_only=False, save_best_only=True, period=1) logging = TensorBoard(log_dir=log_dir, histogram_freq=0, write_graph=False, write_grads=False, write_images=False, update_freq='batch') terminate_on_nan = TerminateOnNaN() learn_rates = [0.05, 0.01, 0.005, 0.001, 0.0005] lr_scheduler = LearningRateScheduler(lambda epoch: learn_rates[epoch // 30]) # data generator train_datagen = ImageDataGenerator(preprocessing_function=preprocess, zoom_range=0.25, width_shift_range=0.05, height_shift_range=0.05, brightness_range=[0.5,1.5], rotation_range=30, shear_range=0.2, channel_shift_range=0.1, #rescale=1./255, vertical_flip=True, horizontal_flip=True) test_datagen = ImageDataGenerator(preprocessing_function=preprocess) train_generator = train_datagen.flow_from_directory( args.train_data_path, target_size=input_shape, batch_size=args.batch_size) test_generator = test_datagen.flow_from_directory( args.val_data_path, target_size=input_shape, batch_size=args.batch_size) # get optimizer optimizer = get_optimizer(args.optim_type, args.learning_rate) # start training model.compile( optimizer=optimizer, metrics=['accuracy', 'top_k_categorical_accuracy'], loss='categorical_crossentropy') print('Train on {} samples, val on {} samples, with batch size {}.'.format(train_generator.samples, test_generator.samples, args.batch_size)) model.fit_generator( train_generator, steps_per_epoch=train_generator.samples // args.batch_size, epochs=args.total_epoch, workers=cpu_count()-1, #Try to parallized feeding image data but leave one cpu core idle initial_epoch=args.init_epoch, use_multiprocessing=True, max_queue_size=10, validation_data=test_generator, validation_steps=test_generator.samples // args.batch_size, callbacks=[logging, checkpoint, lr_scheduler, terminate_on_nan]) # Finally store model model.save(os.path.join(log_dir, 'trained_final.h5')) def evaluate_model(args, model, input_shape): # eval data generator eval_datagen = ImageDataGenerator(preprocessing_function=preprocess) eval_generator = eval_datagen.flow_from_directory( args.val_data_path, target_size=input_shape, batch_size=args.batch_size) # get optimizer optimizer = get_optimizer(args.optim_type, args.learning_rate) # start training model.compile( optimizer=optimizer, metrics=['accuracy', 'top_k_categorical_accuracy'], loss='categorical_crossentropy') print('Evaluate on {} samples, with batch size {}.'.format(eval_generator.samples, args.batch_size)) scores = model.evaluate_generator( eval_generator, steps=eval_generator.samples // args.batch_size, max_queue_size=10, workers=1, use_multiprocessing=False, verbose=1) print('Evaluate loss:', scores[0]) print('Top-1 accuracy:', scores[1]) print('Top-k accuracy:', scores[2]) def verify_with_image(model, input_shape): from tensorflow.keras.applications.resnet50 import decode_predictions from PIL import Image while True: img_file = input('Input image filename:') try: img = Image.open(img_file) resized_img = img.resize(input_shape, Image.BICUBIC) except: print('Open Error! Try again!') continue else: img_array = np.asarray(resized_img).astype('float32') x = preprocess(img_array) preds = model.predict(x) print('Predict result:', decode_predictions(preds)) img.show() def main(args): include_top = True if args.dump_headless: include_top = False # prepare model model, input_shape = get_model(args.model_type, include_top=include_top) if args.weights_path: model.load_weights(args.weights_path, by_name=True) # support multi-gpu training if args.gpu_num >= 2: model = multi_gpu_model(model, gpus=args.gpu_num) model.summary() if args.evaluate: K.set_learning_phase(0) evaluate_model(args, model, input_shape) elif args.verify_with_image: K.set_learning_phase(0) verify_with_image(model, input_shape) elif args.dump_headless: K.set_learning_phase(0) model.save(args.output_model_file) print('export headless model to %s' % str(args.output_model_file)) else: train(args, model, input_shape) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--model_type', type=str, required=False, default='shufflenet_v2', help='backbone model type: shufflenet/shufflenet_v2/nanonet/darknet53/cspdarknet53, default=shufflenet_v2') parser.add_argument('--train_data_path', type=str,# required=True, help='path to Imagenet train data') parser.add_argument('--val_data_path', type=str,# required=True, help='path to Imagenet validation dataset') parser.add_argument('--weights_path', type=str,required=False, default=None, help = "Pretrained model/weights file for fine tune") parser.add_argument('--batch_size', type=int,required=False, default=128, help = "batch size for train, default=128") parser.add_argument('--optim_type', type=str, required=False, default='sgd', help='optimizer type: sgd/rmsprop/adam, default=sgd') parser.add_argument('--learning_rate', type=float,required=False, default=.05, help = "Initial learning rate, default=0.05") parser.add_argument('--init_epoch', type=int,required=False, default=0, help = "Initial training epochs for fine tune training, default=0") parser.add_argument('--total_epoch', type=int,required=False, default=200, help = "Total training epochs, default=200") parser.add_argument('--gpu_num', type=int, required=False, default=1, help='Number of GPU to use, default=1') parser.add_argument('--evaluate', default=False, action="store_true", help='Evaluate a trained model with validation dataset') parser.add_argument('--verify_with_image', default=False, action="store_true", help='Verify trained model with image') parser.add_argument('--dump_headless', default=False, action="store_true", help='Dump out classification model to headless backbone model') parser.add_argument('--output_model_file', type=str, help='output headless backbone model file') args = parser.parse_args() main(args)
""" Django settings for project project. Generated by 'django-admin startproject' using Django 4.0.3. For more information on this file, see https://docs.djangoproject.com/en/4.0/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/4.0/ref/settings/ """ import os from pathlib import Path # Build paths inside the project like this: BASE_DIR / 'subdir'. BASE_DIR = Path(__file__).resolve().parent.parent # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/4.0/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = "django-insecure-e^2(ic*d1hmigz(^i2x3a7ij9n$9uls%s7)a6puaubu$j!t1l7" # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ "django.contrib.admin", "django.contrib.auth", "django.contrib.contenttypes", "django.contrib.sessions", "django.contrib.messages", "django.contrib.staticfiles", "django.contrib.sites", "django.contrib.flatpages", "fpages", ] SITE_ID = 1 MIDDLEWARE = [ "django.middleware.security.SecurityMiddleware", "django.contrib.sessions.middleware.SessionMiddleware", "django.middleware.common.CommonMiddleware", "django.middleware.csrf.CsrfViewMiddleware", "django.contrib.auth.middleware.AuthenticationMiddleware", "django.contrib.messages.middleware.MessageMiddleware", "django.middleware.clickjacking.XFrameOptionsMiddleware", "django.contrib.flatpages.middleware.FlatpageFallbackMiddleware", ] ROOT_URLCONF = "project.urls" TEMPLATES = [ { "BACKEND": "django.template.backends.django.DjangoTemplates", "DIRS": [os.path.join(BASE_DIR, "templates")], "APP_DIRS": True, "OPTIONS": { "context_processors": [ "django.template.context_processors.debug", "django.template.context_processors.request", "django.contrib.auth.context_processors.auth", "django.contrib.messages.context_processors.messages", ], }, }, ] WSGI_APPLICATION = "project.wsgi.application" # Database # https://docs.djangoproject.com/en/4.0/ref/settings/#databases DATABASES = { "default": { "ENGINE": "django.db.backends.sqlite3", "NAME": BASE_DIR / "db.sqlite3", } } # Password validation # https://docs.djangoproject.com/en/4.0/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { "NAME": "django.contrib.auth.password_validation.UserAttributeSimilarityValidator", }, { "NAME": "django.contrib.auth.password_validation.MinimumLengthValidator", }, { "NAME": "django.contrib.auth.password_validation.CommonPasswordValidator", }, { "NAME": "django.contrib.auth.password_validation.NumericPasswordValidator", }, ] # Internationalization # https://docs.djangoproject.com/en/4.0/topics/i18n/ LANGUAGE_CODE = "en-us" TIME_ZONE = "UTC" USE_I18N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/4.0/howto/static-files/ STATIC_URL = "static/" STATICFILES_DIRS = [ BASE_DIR / "static", ] # Default primary key field type # https://docs.djangoproject.com/en/4.0/ref/settings/#default-auto-field DEFAULT_AUTO_FIELD = "django.db.models.BigAutoField"
""" Utility functions for training Author: Zhuo Su, Wenzhe Liu Date: Aug 22, 2020 """ from __future__ import absolute_import from __future__ import unicode_literals from __future__ import print_function from __future__ import division import os import shutil import math import time import random import skimage import numpy as np from skimage import io from skimage.transform import resize import torch import torch.nn as nn import torch.nn.functional as F from torch.utils.data import Dataset ###################################### # measurement functions # ###################################### def get_model_parm_nums(model): total = sum([param.numel() for param in model.parameters()]) total = float(total) / 1e6 return total ###################################### # basic functions # ###################################### def load_checkpoint(args, running_file): model_dir = os.path.join(args.savedir, 'save_models') latest_filename = os.path.join(model_dir, 'latest.txt') model_filename = '' if args.evaluate is not None: model_filename = args.evaluate else: if os.path.exists(latest_filename): with open(latest_filename, 'r') as fin: model_filename = fin.readlines()[0].strip() loadinfo = "=> loading checkpoint from '{}'".format(model_filename) print(loadinfo) state = None if os.path.exists(model_filename): state = torch.load(model_filename, map_location='cpu') loadinfo2 = "=> loaded checkpoint '{}' successfully".format(model_filename) else: loadinfo2 = "no checkpoint loaded" print(loadinfo2) running_file.write('%s\n%s\n' % (loadinfo, loadinfo2)) running_file.flush() return state def save_checkpoint(state, epoch, root, saveID, keep_freq=10): filename = 'checkpoint_%03d.pth.tar' % epoch model_dir = os.path.join(root, 'save_models') model_filename = os.path.join(model_dir, filename) latest_filename = os.path.join(model_dir, 'latest.txt') if not os.path.exists(model_dir): os.makedirs(model_dir) # write new checkpoint torch.save(state, model_filename) with open(latest_filename, 'w') as fout: fout.write(model_filename) print("=> saved checkpoint '{}'".format(model_filename)) # remove old model if saveID is not None and (saveID + 1) % keep_freq != 0: filename = 'checkpoint_%03d.pth.tar' % saveID model_filename = os.path.join(model_dir, filename) if os.path.exists(model_filename): os.remove(model_filename) print('=> removed checkpoint %s' % model_filename) print('##########Time##########', time.strftime('%Y-%m-%d %H:%M:%S')) return epoch class AverageMeter(object): """Computes and stores the average and current value""" def __init__(self): self.reset() def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val #self.sum += val * n self.sum += val self.count += n self.avg = self.sum / self.count def adjust_learning_rate(optimizer, epoch, args): method = args.lr_type if method == 'cosine': T_total = float(args.epochs) T_cur = float(epoch) lr = 0.5 * args.lr * (1 + math.cos(math.pi * T_cur / T_total)) elif method == 'multistep': lr = args.lr for epoch_step in args.lr_steps: if epoch >= epoch_step: lr = lr * 0.1 for param_group in optimizer.param_groups: param_group['lr'] = lr str_lr = '%.6f' % lr return str_lr ###################################### # edge specific functions # ###################################### def cross_entropy_loss_RCF(prediction, labelf, beta): label = labelf.long() mask = labelf.clone() num_positive = torch.sum(label==1).float() num_negative = torch.sum(label==0).float() mask[label == 1] = 1.0 * num_negative / (num_positive + num_negative) mask[label == 0] = beta * num_positive / (num_positive + num_negative) mask[label == 2] = 0 cost = F.binary_cross_entropy( prediction, labelf, weight=mask, reduction='sum') return cost ###################################### # debug functions # ###################################### # no function currently
# This software is open source software available under the BSD-3 license. # # Copyright (c) 2020 Triad National Security, LLC. All rights reserved. # Copyright (c) 2020 Lawrence Livermore National Security, LLC. All rights # reserved. # Copyright (c) 2020 UT-Battelle, LLC. All rights reserved. # # Additional copyright and license information can be found in the LICENSE file # distributed with this code, or at # https://raw.githubusercontent.com/MPAS-Dev/MPAS-Analysis/master/LICENSE ''' Defines the base class for analysis tasks. ''' # Authors # ------- # Xylar Asay-Davis from __future__ import absolute_import, division, print_function, \ unicode_literals from multiprocessing import Process, Value import time import traceback import logging import sys from mpas_analysis.shared.io import NameList, StreamsFile from mpas_analysis.shared.io.utility import build_config_full_path, \ make_directories, get_files_year_month class AnalysisTask(Process): # {{{ ''' The base class for analysis tasks. Attributes ---------- config : ``MpasAnalysisConfigParser`` Contains configuration options taskName : str The name of the task, typically the same as the class name except starting with lowercase (e.g. 'myTask' for class 'MyTask') componentName : {'ocean', 'seaIce'} The name of the component (same as the folder where the task resides) tags : list of str Tags used to describe the task (e.g. 'timeSeries', 'climatology', horizontalMap', 'index', 'transect'). These are used to determine which tasks are generated (e.g. 'all_transect' or 'no_climatology' in the 'generate' flags) runDirectory : str The base input directory for namelists, streams files and restart files historyDirectory : str The base input directory for history files plotsDirectory : str The directory for writing plots (which is also created if it doesn't exist) namelist : ``shared.io.NameList`` the namelist reader runStreams : ``shared.io.StreamsFile`` the streams file reader for streams in the run directory (e.g. restart files) historyStreams : ``shared.io.StreamsFile`` the streams file reader for streams in the history directory (most streams other than restart files) calendar : {'gregorian', 'gregoraian_noleap'} The calendar used in the MPAS run runAfterTasks : list of ``AnalysisTasks`` tasks that must be complete before this task can run subtasks : ``OrderedDict`` of ``AnalysisTasks`` Subtasks of this task, with subtask names as keys xmlFileNames : list of strings The XML file associated with each plot produced by this analysis, empty if no plots were produced logger : ``logging.Logger`` A logger for output during the run phase of an analysis task ''' # Authors # ------- # Xylar Asay-Davis # flags for run status UNSET = 0 READY = 1 BLOCKED = 2 RUNNING = 3 SUCCESS = 4 FAIL = 5 def __init__(self, config, taskName, componentName, tags=[], subtaskName=None): # {{{ ''' Construct the analysis task. Individual tasks (children classes of this base class) should first call this method to perform basic initialization, then, define the ``taskName``, ``componentName`` and list of ``tags`` for the task. Parameters ---------- config : instance of MpasAnalysisConfigParser Contains configuration options taskName : str The name of the task, typically the same as the class name except starting with lowercase (e.g. 'myTask' for class 'MyTask') componentName : {'ocean', 'seaIce'} The name of the component (same as the folder where the task resides) tags : list of str, optional Tags used to describe the task (e.g. 'timeSeries', 'climatology', horizontalMap', 'index', 'transect'). These are used to determine which tasks are generated (e.g. 'all_transect' or 'no_climatology' in the 'generate' flags) subtaskName : str, optional If this is a subtask of ``taskName``, the name of the subtask ''' # Authors # ------- # Xylar Asay-Davis if subtaskName is None: self.fullTaskName = taskName self.printTaskName = taskName else: self.fullTaskName = '{}_{}'.format(taskName, subtaskName) self.printTaskName = '{}: {}'.format(taskName, subtaskName) # call the constructor from the base class (Process) super(AnalysisTask, self).__init__(name=self.fullTaskName) self.config = config self.taskName = taskName self.subtaskName = subtaskName self.componentName = componentName self.tags = tags self.subtasks = [] self.logger = None self.runAfterTasks = [] self.xmlFileNames = [] # non-public attributes related to multiprocessing and logging self.daemon = True self._setupStatus = None self._runStatus = Value('i', AnalysisTask.UNSET) self._stackTrace = None self._logFileName = None # the number of subprocesses run by this process, typically 1 but # could be 12 for ncclimo in bck or mpi mode self.subprocessCount = 1 # run the task directly as opposed to launching it as a new process # even in parallel because it has subprocesses such as Pools self.runDirectly = False # }}} def setup_and_check(self): # {{{ ''' Perform steps to set up the analysis (e.g. reading namelists and streams files). After this call, the following attributes are set (see documentation for the class): runDirectory, historyDirectory, plotsDirectory, namelist, runStreams, historyStreams, calendar Individual tasks (children classes of this base class) should first call this method to perform basic setup, then, check whether the configuration is correct for a given analysis and perform additional, analysis-specific setup. For example, this function could check if necessary observations and other data files are found, then, determine the list of files to be read when the analysis is run. ''' # Authors # ------- # Xylar Asay-Davis # read parameters from config file # the run directory contains the restart files self.runDirectory = build_config_full_path(self.config, 'input', 'runSubdirectory') # if the history directory exists, use it; if not, fall back on # runDirectory self.historyDirectory = build_config_full_path( self.config, 'input', '{}HistorySubdirectory'.format(self.componentName), defaultPath=self.runDirectory) self.plotsDirectory = build_config_full_path(self.config, 'output', 'plotsSubdirectory') namelistFileName = build_config_full_path( self.config, 'input', '{}NamelistFileName'.format(self.componentName)) self.namelist = NameList(namelistFileName) streamsFileName = build_config_full_path( self.config, 'input', '{}StreamsFileName'.format(self.componentName)) self.runStreams = StreamsFile(streamsFileName, streamsdir=self.runDirectory) self.historyStreams = StreamsFile(streamsFileName, streamsdir=self.historyDirectory) self.calendar = self.namelist.get('config_calendar_type') make_directories(self.plotsDirectory) # set the start and end dates for each type of analysis for tag in ['climatology', 'timeSeries', 'index']: if tag in self.tags: self.set_start_end_date(section=tag) # redirect output to a log file logsDirectory = build_config_full_path(self.config, 'output', 'logsSubdirectory') self._logFileName = '{}/{}.log'.format(logsDirectory, self.fullTaskName) # }}} def run_task(self): # {{{ ''' Run the analysis. Each task should override this function to do the work of computing and/or plotting analysis ''' # Authors # ------- # Xylar Asay-Davis return # }}} def run_after(self, task): # {{{ ''' Only run this task after the given task has completed. This allows a task to be constructed of multiple subtasks, some of which may block later tasks, while allowing some subtasks to run in parallel. It also allows for tasks to depend on other tasks (e.g. for computing climatologies or extracting time series for many variables at once). Parameters ---------- task : ``AnalysisTask`` The task that should finish before this one begins ''' # Authors # ------- # Xylar Asay-Davis if task not in self.runAfterTasks: self.runAfterTasks.append(task) # }}} def add_subtask(self, subtask): # {{{ ''' Add a subtask to this tasks. This task always runs after the subtask has finished. However, this task gets set up *before* the subtask, so the setup of the subtask can depend on fields defined during the setup of this task (the parent). Parameters ---------- subtask : ``AnalysisTask`` The subtask to run as part of this task ''' # Authors # ------- # Xylar Asay-Davis if subtask not in self.subtasks: self.subtasks.append(subtask) # }}} def run(self, writeLogFile=True): # {{{ ''' Sets up logging and then runs the analysis task. Parameters ---------- writeLogFile : bool, optional If ``True``, output to stderr and stdout get written to a log file. Otherwise, the internal logger ``self.logger`` points to stdout and no log file is created. The intention is for logging to take place in parallel mode but not in serial mode. ''' # Authors # ------- # Xylar Asay-Davis # redirect output to a log file if writeLogFile: self.logger = logging.getLogger(self.fullTaskName) handler = logging.FileHandler(self._logFileName) else: self.logger = logging.getLogger() handler = logging.StreamHandler(sys.stdout) formatter = AnalysisFormatter() handler.setFormatter(formatter) self.logger.addHandler(handler) self.logger.setLevel(logging.INFO) self.logger.propagate = False if writeLogFile: oldStdout = sys.stdout oldStderr = sys.stderr sys.stdout = StreamToLogger(self.logger, logging.INFO) sys.stderr = StreamToLogger(self.logger, logging.ERROR) startTime = time.time() try: self.run_task() self._runStatus.value = AnalysisTask.SUCCESS except (Exception, BaseException) as e: if isinstance(e, KeyboardInterrupt): raise e self._stackTrace = traceback.format_exc() self.logger.error("analysis task {} failed during run \n" "{}".format(self.fullTaskName, self._stackTrace)) self._runStatus.value = AnalysisTask.FAIL runDuration = time.time() - startTime m, s = divmod(runDuration, 60) h, m = divmod(int(m), 60) self.logger.info('Execution time: {}:{:02d}:{:05.2f}'.format(h, m, s)) if writeLogFile: handler.close() # restore stdout and stderr sys.stdout = oldStdout sys.stderr = oldStderr # remove the handlers from the logger (probably only necessary if # writeLogFile==False) self.logger.handlers = [] # }}} def check_generate(self): # {{{ ''' Determines if this analysis should be generated, based on the ``generate`` config option and ``taskName``, ``componentName`` and ``tags``. Individual tasks do not need to create their own versions of this function. Returns ------- generate : bool Whether or not this task should be run. Raises ------ ValueError : If one of ``self.taskName``, ``self.componentName`` or ``self.tags`` has not been set. ''' # Authors # ------- # Xylar Asay-Davis for memberName in ['taskName', 'componentName', 'tags']: if not hasattr(self, memberName): raise ValueError('Analysis tasks must define self.{} in their ' '__init__ method.'.format(memberName)) if (not isinstance(self.tags, list) and self.tags is not None): raise ValueError('Analysis tasks\'s member self.tags ' 'must be None or a list of strings.') config = self.config generateList = config.getExpression('output', 'generate') if len(generateList) > 0 and generateList[0][0:5] == 'only_': # add 'all' if the first item in the list has the 'only' prefix. # Otherwise, we would not run any tasks generateList = ['all'] + generateList generate = False for element in generateList: if '_' in element: (prefix, suffix) = element.split('_', 1) else: prefix = element suffix = None allSuffixes = [self.componentName] if self.tags is not None: allSuffixes = allSuffixes + self.tags noSuffixes = [self.taskName] + allSuffixes if prefix == 'all': if (suffix in allSuffixes) or (suffix is None): generate = True elif prefix == 'no': if suffix in noSuffixes: generate = False if prefix == 'only': if suffix not in allSuffixes: generate = False elif element == self.taskName: generate = True return generate # }}} def check_analysis_enabled(self, analysisOptionName, default=False, raiseException=True): ''' Check to make sure a given analysis is turned on, issuing a warning or raising an exception if not. Parameters ---------- analysisOptionName : str The name of a boolean namelist option indicating whether the given analysis member is enabled default : bool, optional If no analysis option with the given name can be found, indicates whether the given analysis is assumed to be enabled by default. raiseException : bool, optional Whether Returns ------- enabled : bool Whether the given analysis is enabled Raises ------ RuntimeError If the given analysis option is not found and ``default`` is not ``True`` or if the analysis option is found and is ``False``. The exception is only raised if ``raiseException = True``. ''' # Authors # ------- # Xylar Asay-Davis try: optionName = analysisOptionName enabled = self.namelist.getbool(optionName) except ValueError: enabled = default if default: print('Warning: namelist option {} not found.\n' 'This likely indicates that the simulation you ' 'are analyzing was run with an\n' 'older version of MPAS-O that did not support ' 'this flag. Assuming enabled.'.format( analysisOptionName)) if not enabled and raiseException: raise RuntimeError('*** MPAS-Analysis relies on {} = .true.\n' '*** Make sure to enable this analysis ' 'member.'.format(analysisOptionName)) return enabled def set_start_end_date(self, section): # {{{ ''' Set the start and end dates in the ``config`` correspond to the start and end years in a given category of analysis Parameters ---------- section : str The name of a section in the config file containing ``startYear`` and ``endYear`` options. ``section`` is typically one of ``climatology``, ``timeSeries`` or ``index`` ''' # Authors # ------- # Xylar Asay-Davis if not self.config.has_option(section, 'startDate'): startDate = '{:04d}-01-01_00:00:00'.format( self.config.getint(section, 'startYear')) self.config.set(section, 'startDate', startDate) if not self.config.has_option(section, 'endDate'): endDate = '{:04d}-12-31_23:59:59'.format( self.config.getint(section, 'endYear')) self.config.set(section, 'endDate', endDate) # }}} # }}} class AnalysisFormatter(logging.Formatter): # {{{ """ A custom formatter for logging Modified from: https://stackoverflow.com/a/8349076/7728169 """ # Authors # ------- # Xylar Asay-Davis # printing error messages without a prefix because they are sometimes # errors and sometimes only warnings sent to stderr dbg_fmt = "DEBUG: %(module)s: %(lineno)d: %(msg)s" info_fmt = "%(msg)s" err_fmt = info_fmt def __init__(self, fmt=info_fmt): logging.Formatter.__init__(self, fmt) def format(self, record): # Save the original format configured by the user # when the logger formatter was instantiated format_orig = self._fmt # Replace the original format with one customized by logging level if record.levelno == logging.DEBUG: self._fmt = AnalysisFormatter.dbg_fmt elif record.levelno == logging.INFO: self._fmt = AnalysisFormatter.info_fmt elif record.levelno == logging.ERROR: self._fmt = AnalysisFormatter.err_fmt # Call the original formatter class to do the grunt work result = logging.Formatter.format(self, record) # Restore the original format configured by the user self._fmt = format_orig return result # }}} class StreamToLogger(object): # {{{ """ Modified based on code by: https://www.electricmonk.nl/log/2011/08/14/redirect-stdout-and-stderr-to-a-logger-in-python/ Copyright (C) 2011 Ferry Boender License: "available under the GPL" (the author does not provide more details) Fake file-like stream object that redirects writes to a logger instance. """ def __init__(self, logger, log_level=logging.INFO): self.logger = logger self.log_level = log_level self.linebuf = '' def write(self, buf): for line in buf.rstrip().splitlines(): self.logger.log(self.log_level, str(line.rstrip())) def flush(self): pass # }}} def update_time_bounds_from_file_names(config, section, componentName): # {{{ """ Update the start and end years and dates for time series, climatologies or climate indices based on the years actually available in the list of files. """ # Authors # ------- # Xylar Asay-Davis # read parameters from config file # the run directory contains the restart files runDirectory = build_config_full_path(config, 'input', 'runSubdirectory') # if the history directory exists, use it; if not, fall back on # runDirectory historyDirectory = build_config_full_path( config, 'input', '{}HistorySubdirectory'.format(componentName), defaultPath=runDirectory) errorOnMissing = config.getboolean('input', 'errorOnMissing') namelistFileName = build_config_full_path( config, 'input', '{}NamelistFileName'.format(componentName)) try: namelist = NameList(namelistFileName) except (OSError, IOError): # this component likely doesn't have output in this run return streamsFileName = build_config_full_path( config, 'input', '{}StreamsFileName'.format(componentName)) try: historyStreams = StreamsFile(streamsFileName, streamsdir=historyDirectory) except (OSError, IOError): # this component likely doesn't have output in this run return calendar = namelist.get('config_calendar_type') requestedStartYear = config.getint(section, 'startYear') requestedEndYear = config.get(section, 'endYear') if requestedEndYear == 'end': requestedEndYear = None else: # get it again as an integer requestedEndYear = config.getint(section, 'endYear') startDate = '{:04d}-01-01_00:00:00'.format(requestedStartYear) if requestedEndYear is None: endDate = None else: endDate = '{:04d}-12-31_23:59:59'.format(requestedEndYear) streamName = 'timeSeriesStatsMonthlyOutput' try: inputFiles = historyStreams.readpath( streamName, startDate=startDate, endDate=endDate, calendar=calendar) except ValueError: # this component likely doesn't have output in this run return if len(inputFiles) == 0: raise ValueError('No input files found for stream {} in {} between ' '{} and {}'.format(streamName, componentName, requestedStartYear, requestedEndYear)) years, months = get_files_year_month(sorted(inputFiles), historyStreams, streamName) # search for the start of the first full year firstIndex = 0 while(firstIndex < len(years) and months[firstIndex] != 1): firstIndex += 1 startYear = years[firstIndex] # search for the end of the last full year lastIndex = len(years) - 1 while(lastIndex >= 0 and months[lastIndex] != 12): lastIndex -= 1 endYear = years[lastIndex] if requestedEndYear is None: config.set(section, 'endYear', str(endYear)) requestedEndYear = endYear if startYear != requestedStartYear or endYear != requestedEndYear: if errorOnMissing: raise ValueError( "{} start and/or end year different from requested\n" "requested: {:04d}-{:04d}\n" "actual: {:04d}-{:04d}\n".format( section, requestedStartYear, requestedEndYear, startYear, endYear)) else: print("Warning: {} start and/or end year different from " "requested\n" "requested: {:04d}-{:04d}\n" "actual: {:04d}-{:04d}\n".format(section, requestedStartYear, requestedEndYear, startYear, endYear)) config.set(section, 'startYear', str(startYear)) config.set(section, 'endYear', str(endYear)) startDate = '{:04d}-01-01_00:00:00'.format(startYear) config.set(section, 'startDate', startDate) endDate = '{:04d}-12-31_23:59:59'.format(endYear) config.set(section, 'endDate', endDate) # }}} # vim: foldmethod=marker ai ts=4 sts=4 et sw=4 ft=python
#!/usr/bin/env python #-*- coding: utf-8 -*- import sys sys.dont_write_bytecode = 1 from PyQt4 import QtGui from MainWindow import MainWindow __author__ = "Uname" __version__ = "0.1" __email__ = "ehcapa@qq.com" def main(): app = QtGui.QApplication(sys.argv) app.setStyle("cleanlooks") window = MainWindow() window.show() sys.exit(app.exec_()) if __name__ == "__main__": main()
import struct fp = open('test.jbig2', 'rb') # headerFlags, = struct.unpack('>B', fp.read(1)) # fileOrganisation = headerFlags & 1 # randomAccessOrganisation = fileOrganisation == 0 # pagesKnown = headerFlags & 2 # noOfPagesKnown = pagesKnown == 0 # print('headerFlags:', headerFlags) segmentNumber = struct.unpack('>4H', fp.read(8)) segmentHeaderFlags, = struct.unpack('>B', fp.read(1)) # referedToSegmentCountAndRetentionFlags, = struct.unpack('>B', fp.read(1)) # referredToSegmentCount = (referedToSegmentCountAndRetentionFlags & 224) >> 5 # retentionFlags = (referedToSegmentCountAndRetentionFlags & 31) print('segmentNumber:', segmentNumber) print('segmentHeaderFlags:', segmentHeaderFlags) # print('referredToSegmentCount:', referredToSegmentCount) # print('retentionFlags:', retentionFlags) fp.close()
from qutip.cy.spmatfuncs import *
# Copyright 2013 by Rackspace Hosting, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Response class.""" import functools import mimetypes from falcon.constants import _UNSET from falcon.constants import DEFAULT_MEDIA_TYPE from falcon.errors import HeaderNotSupported from falcon.media import Handlers from falcon.response_helpers import format_content_disposition from falcon.response_helpers import format_etag_header from falcon.response_helpers import format_header_value_list from falcon.response_helpers import format_range from falcon.response_helpers import header_property from falcon.response_helpers import is_ascii_encodable from falcon.util import dt_to_http from falcon.util import http_cookies from falcon.util import structures from falcon.util import TimezoneGMT from falcon.util.deprecation import deprecated from falcon.util.uri import encode_check_escaped as uri_encode from falcon.util.uri import encode_value_check_escaped as uri_encode_value GMT_TIMEZONE = TimezoneGMT() _ADD_LINK_DEPRECATED_MSG = ( 'The add_link() method has been deprecated and will be removed in Falcon 4.0. ' 'Please use append_link() instead.' ) _STREAM_LEN_REMOVED_MSG = ( 'The deprecated stream_len property was removed in Falcon 3.0. ' 'Please use Response.set_stream() or Response.content_length instead.' ) _RESERVED_CROSSORIGIN_VALUES = frozenset({'anonymous', 'use-credentials'}) _RESERVED_SAMESITE_VALUES = frozenset({'lax', 'strict', 'none'}) class Response: """Represents an HTTP response to a client request. Note: ``Response`` is not meant to be instantiated directly by responders. Keyword Arguments: options (dict): Set of global options passed from the App handler. Attributes: status: HTTP status code or line (e.g., ``'200 OK'``). This may be set to a member of :class:`http.HTTPStatus`, an HTTP status line string or byte string (e.g., ``'200 OK'``), or an ``int``. Note: The Falcon framework itself provides a number of constants for common status codes. They all start with the ``HTTP_`` prefix, as in: ``falcon.HTTP_204``. (See also: :ref:`status`.) media (object): A serializable object supported by the media handlers configured via :class:`falcon.RequestOptions`. Note: See also :ref:`media` for more information regarding media handling. text (str): String representing response content. Note: Falcon will encode the given text as UTF-8 in the response. If the content is already a byte string, use the :attr:`data` attribute instead (it's faster). body (str): Deprecated alias for :attr:`text`. Will be removed in a future Falcon version. data (bytes): Byte string representing response content. Use this attribute in lieu of `text` when your content is already a byte string (of type ``bytes``). See also the note below. Warning: Always use the `text` attribute for text, or encode it first to ``bytes`` when using the `data` attribute, to ensure Unicode characters are properly encoded in the HTTP response. stream: Either a file-like object with a `read()` method that takes an optional size argument and returns a block of bytes, or an iterable object, representing response content, and yielding blocks as byte strings. Falcon will use *wsgi.file_wrapper*, if provided by the WSGI server, in order to efficiently serve file-like objects. Note: If the stream is set to an iterable object that requires resource cleanup, it can implement a close() method to do so. The close() method will be called upon completion of the request. context (object): Empty object to hold any data (in its attributes) about the response which is specific to your app (e.g. session object). Falcon itself will not interact with this attribute after it has been initialized. Note: **New in 2.0:** The default `context_type` (see below) was changed from :class:`dict` to a bare class; the preferred way to pass response-specific data is now to set attributes directly on the `context` object. For example:: resp.context.cache_strategy = 'lru' context_type (class): Class variable that determines the factory or type to use for initializing the `context` attribute. By default, the framework will instantiate bare objects (instances of the bare :class:`falcon.Context` class). However, you may override this behavior by creating a custom child class of :class:`falcon.Response`, and then passing that new class to ``falcon.App()`` by way of the latter's `response_type` parameter. Note: When overriding `context_type` with a factory function (as opposed to a class), the function is called like a method of the current Response instance. Therefore the first argument is the Response instance itself (self). options (dict): Set of global options passed from the App handler. headers (dict): Copy of all headers set for the response, sans cookies. Note that a new copy is created and returned each time this property is referenced. complete (bool): Set to ``True`` from within a middleware method to signal to the framework that request processing should be short-circuited (see also :ref:`Middleware <middleware>`). """ __slots__ = ( 'text', 'context', 'options', 'status', 'stream', '_cookies', '_data', '_extra_headers', '_headers', '_media', '_media_rendered', '__dict__', ) complete = False # Child classes may override this context_type = structures.Context def __init__(self, options=None): self.status = '200 OK' self._headers = {} # NOTE(kgriffs): Collection of additional headers as a list of raw # tuples, to use in cases where we need more control over setting # headers and duplicates are allowable or even necessary. # # PERF(kgriffs): Save some CPU cycles and a few bytes of RAM by # only instantiating the list object later on IFF it is needed. self._extra_headers = None self.options = options if options else ResponseOptions() # NOTE(tbug): will be set to a SimpleCookie object # when cookie is set via set_cookie self._cookies = None self.text = None self.stream = None self._data = None self._media = None self._media_rendered = _UNSET self.context = self.context_type() @property # type: ignore @deprecated('Please use text instead.', is_property=True) def body(self): return self.text @body.setter # type: ignore @deprecated('Please use text instead.', is_property=True) def body(self, value): self.text = value @property def data(self): return self._data @data.setter def data(self, value): self._data = value @property def headers(self): return self._headers.copy() @property def media(self): return self._media @media.setter def media(self, value): self._media = value self._media_rendered = _UNSET @property def stream_len(self): # NOTE(kgriffs): Provide some additional information by raising the # error explicitly. raise AttributeError(_STREAM_LEN_REMOVED_MSG) @stream_len.setter def stream_len(self, value): # NOTE(kgriffs): We explicitly disallow setting the deprecated attribute # so that apps relying on it do not fail silently. raise AttributeError(_STREAM_LEN_REMOVED_MSG) def render_body(self): """Get the raw bytestring content for the response body. This method returns the raw data for the HTTP response body, taking into account the :attr:`~.text`, :attr:`~.data`, and :attr:`~.media` attributes. Note: This method ignores :attr:`~.stream`; the caller must check and handle that attribute directly. Returns: bytes: The UTF-8 encoded value of the `text` attribute, if set. Otherwise, the value of the `data` attribute if set, or finally the serialized value of the `media` attribute. If none of these attributes are set, ``None`` is returned. """ text = self.text if text is None: data = self._data if data is None and self._media is not None: # NOTE(kgriffs): We use a special _UNSET singleton since # None is ambiguous (the media handler might return None). if self._media_rendered is _UNSET: if not self.content_type: self.content_type = self.options.default_media_type handler, _, _ = self.options.media_handlers._resolve( self.content_type, self.options.default_media_type ) self._media_rendered = handler.serialize( self._media, self.content_type ) data = self._media_rendered else: try: # NOTE(kgriffs): Normally we expect text to be a string data = text.encode() except AttributeError: # NOTE(kgriffs): Assume it was a bytes object already data = text return data def __repr__(self): return '<%s: %s>' % (self.__class__.__name__, self.status) def set_stream(self, stream, content_length): """Set both `stream` and `content_length`. Although the :attr:`~falcon.Response.stream` and :attr:`~falcon.Response.content_length` properties may be set directly, using this method ensures :attr:`~falcon.Response.content_length` is not accidentally neglected when the length of the stream is known in advance. Using this method is also slightly more performant as compared to setting the properties individually. Note: If the stream length is unknown, you can set :attr:`~falcon.Response.stream` directly, and ignore :attr:`~falcon.Response.content_length`. In this case, the ASGI server may choose to use chunked encoding or one of the other strategies suggested by PEP-3333. Args: stream: A readable file-like object. content_length (int): Length of the stream, used for the Content-Length header in the response. """ self.stream = stream # PERF(kgriffs): Set directly rather than incur the overhead of # the self.content_length property. self._headers['content-length'] = str(content_length) def set_cookie( self, name, value, expires=None, max_age=None, domain=None, path=None, secure=None, http_only=True, same_site=None, ): """Set a response cookie. Note: This method can be called multiple times to add one or more cookies to the response. See Also: To learn more about setting cookies, see :ref:`Setting Cookies <setting-cookies>`. The parameters listed below correspond to those defined in `RFC 6265`_. Args: name (str): Cookie name value (str): Cookie value Keyword Args: expires (datetime): Specifies when the cookie should expire. By default, cookies expire when the user agent exits. (See also: RFC 6265, Section 4.1.2.1) max_age (int): Defines the lifetime of the cookie in seconds. By default, cookies expire when the user agent exits. If both `max_age` and `expires` are set, the latter is ignored by the user agent. Note: Coercion to ``int`` is attempted if provided with ``float`` or ``str``. (See also: RFC 6265, Section 4.1.2.2) domain (str): Restricts the cookie to a specific domain and any subdomains of that domain. By default, the user agent will return the cookie only to the origin server. When overriding this default behavior, the specified domain must include the origin server. Otherwise, the user agent will reject the cookie. Note: Cookies do not provide isolation by port, so the domain should not provide one. (See also: RFC 6265, Section 8.5) (See also: RFC 6265, Section 4.1.2.3) path (str): Scopes the cookie to the given path plus any subdirectories under that path (the "/" character is interpreted as a directory separator). If the cookie does not specify a path, the user agent defaults to the path component of the requested URI. Warning: User agent interfaces do not always isolate cookies by path, and so this should not be considered an effective security measure. (See also: RFC 6265, Section 4.1.2.4) secure (bool): Direct the client to only return the cookie in subsequent requests if they are made over HTTPS (default: ``True``). This prevents attackers from reading sensitive cookie data. Note: The default value for this argument is normally ``True``, but can be modified by setting :py:attr:`~.ResponseOptions.secure_cookies_by_default` via :any:`App.resp_options`. Warning: For the `secure` cookie attribute to be effective, your application will need to enforce HTTPS. (See also: RFC 6265, Section 4.1.2.5) http_only (bool): The HttpOnly attribute limits the scope of the cookie to HTTP requests. In particular, the attribute instructs the user agent to omit the cookie when providing access to cookies via "non-HTTP" APIs. This is intended to mitigate some forms of cross-site scripting. (default: ``True``) Note: HttpOnly cookies are not visible to javascript scripts in the browser. They are automatically sent to the server on javascript ``XMLHttpRequest`` or ``Fetch`` requests. (See also: RFC 6265, Section 4.1.2.6) same_site (str): Helps protect against CSRF attacks by restricting when a cookie will be attached to the request by the user agent. When set to ``'Strict'``, the cookie will only be sent along with "same-site" requests. If the value is ``'Lax'``, the cookie will be sent with same-site requests, and with "cross-site" top-level navigations. If the value is ``'None'``, the cookie will be sent with same-site and cross-site requests. Finally, when this attribute is not set on the cookie, the attribute will be treated as if it had been set to ``'None'``. (See also: `Same-Site RFC Draft`_) Raises: KeyError: `name` is not a valid cookie name. ValueError: `value` is not a valid cookie value. .. _RFC 6265: http://tools.ietf.org/html/rfc6265 .. _Same-Site RFC Draft: https://tools.ietf.org/html/draft-ietf-httpbis-rfc6265bis-03#section-4.1.2.7 """ if not is_ascii_encodable(name): raise KeyError('name is not ascii encodable') if not is_ascii_encodable(value): raise ValueError('value is not ascii encodable') value = str(value) if self._cookies is None: self._cookies = http_cookies.SimpleCookie() try: self._cookies[name] = value except http_cookies.CookieError as e: # pragma: no cover # NOTE(tbug): we raise a KeyError here, to avoid leaking # the CookieError to the user. SimpleCookie (well, BaseCookie) # only throws CookieError on issues with the cookie key raise KeyError(str(e)) if expires: # set Expires on cookie. Format is Wdy, DD Mon YYYY HH:MM:SS GMT # NOTE(tbug): we never actually need to # know that GMT is named GMT when formatting cookies. # It is a function call less to just write "GMT" in the fmt string: fmt = '%a, %d %b %Y %H:%M:%S GMT' if expires.tzinfo is None: # naive self._cookies[name]['expires'] = expires.strftime(fmt) else: # aware gmt_expires = expires.astimezone(GMT_TIMEZONE) self._cookies[name]['expires'] = gmt_expires.strftime(fmt) if max_age: # RFC 6265 section 5.2.2 says about the max-age value: # "If the remainder of attribute-value contains a non-DIGIT # character, ignore the cookie-av." # That is, RFC-compliant response parsers will ignore the max-age # attribute if the value contains a dot, as in floating point # numbers. Therefore, attempt to convert the value to an integer. self._cookies[name]['max-age'] = int(max_age) if domain: self._cookies[name]['domain'] = domain if path: self._cookies[name]['path'] = path is_secure = self.options.secure_cookies_by_default if secure is None else secure if is_secure: self._cookies[name]['secure'] = True if http_only: self._cookies[name]['httponly'] = http_only # PERF(kgriffs): Morsel.__setitem__() will lowercase this anyway, # so we can just pass this in and when __setitem__() calls # lower() it will be very slightly faster. if same_site: same_site = same_site.lower() if same_site not in _RESERVED_SAMESITE_VALUES: raise ValueError( "same_site must be set to either 'lax', 'strict', or 'none'" ) self._cookies[name]['samesite'] = same_site.capitalize() def unset_cookie(self, name, domain=None, path=None): """Unset a cookie in the response. Clears the contents of the cookie, and instructs the user agent to immediately expire its own copy of the cookie. Note: Modern browsers place restriction on cookies without the "same-site" cookie attribute set. To that end this attribute is set to ``'Lax'`` by this method. (See also: `Same-Site warnings`_) Warning: In order to successfully remove a cookie, both the path and the domain must match the values that were used when the cookie was created. Args: name (str): Cookie name Keyword Args: domain (str): Restricts the cookie to a specific domain and any subdomains of that domain. By default, the user agent will return the cookie only to the origin server. When overriding this default behavior, the specified domain must include the origin server. Otherwise, the user agent will reject the cookie. Note: Cookies do not provide isolation by port, so the domain should not provide one. (See also: RFC 6265, Section 8.5) (See also: RFC 6265, Section 4.1.2.3) path (str): Scopes the cookie to the given path plus any subdirectories under that path (the "/" character is interpreted as a directory separator). If the cookie does not specify a path, the user agent defaults to the path component of the requested URI. Warning: User agent interfaces do not always isolate cookies by path, and so this should not be considered an effective security measure. (See also: RFC 6265, Section 4.1.2.4) .. _Same-Site warnings: https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie/SameSite#Fixing_common_warnings """ # noqa: E501 if self._cookies is None: self._cookies = http_cookies.SimpleCookie() self._cookies[name] = '' # NOTE(Freezerburn): SimpleCookie apparently special cases the # expires attribute to automatically use strftime and set the # time as a delta from the current time. We use -1 here to # basically tell the browser to immediately expire the cookie, # thus removing it from future request objects. self._cookies[name]['expires'] = -1 # NOTE(CaselIT): Set SameSite to Lax to avoid setting invalid cookies. # See https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie/SameSite#Fixing_common_warnings # noqa: E501 self._cookies[name]['samesite'] = 'Lax' if domain: self._cookies[name]['domain'] = domain if path: self._cookies[name]['path'] = path def get_header(self, name, default=None): """Retrieve the raw string value for the given header. Normally, when a header has multiple values, they will be returned as a single, comma-delimited string. However, the Set-Cookie header does not support this format, and so attempting to retrieve it will raise an error. Args: name (str): Header name, case-insensitive. Must be of type ``str`` or ``StringType``, and only character values 0x00 through 0xFF may be used on platforms that use wide characters. Keyword Args: default: Value to return if the header is not found (default ``None``). Raises: ValueError: The value of the 'Set-Cookie' header(s) was requested. Returns: str: The value of the specified header if set, or the default value if not set. """ # NOTE(kgriffs): normalize name by lowercasing it name = name.lower() if name == 'set-cookie': raise HeaderNotSupported('Getting Set-Cookie is not currently supported.') return self._headers.get(name, default) def set_header(self, name, value): """Set a header for this response to a given value. Warning: Calling this method overwrites any values already set for this header. To append an additional value for this header, use :meth:`~.append_header` instead. Warning: This method cannot be used to set cookies; instead, use :meth:`~.append_header` or :meth:`~.set_cookie`. Args: name (str): Header name (case-insensitive). The name may contain only US-ASCII characters. value (str): Value for the header. As with the header's name, the value may contain only US-ASCII characters. Raises: ValueError: `name` cannot be ``'Set-Cookie'``. """ # NOTE(kgriffs): uwsgi fails with a TypeError if any header # is not a str, so do the conversion here. It's actually # faster to not do an isinstance check. str() will encode # to US-ASCII. value = str(value) # NOTE(kgriffs): normalize name by lowercasing it name = name.lower() if name == 'set-cookie': raise HeaderNotSupported('This method cannot be used to set cookies') self._headers[name] = value def delete_header(self, name): """Delete a header that was previously set for this response. If the header was not previously set, nothing is done (no error is raised). Otherwise, all values set for the header will be removed from the response. Note that calling this method is equivalent to setting the corresponding header property (when said property is available) to ``None``. For example:: resp.etag = None Warning: This method cannot be used with the Set-Cookie header. Instead, use :meth:`~.unset_cookie` to remove a cookie and ensure that the user agent expires its own copy of the data as well. Args: name (str): Header name (case-insensitive). The name may contain only US-ASCII characters. Raises: ValueError: `name` cannot be ``'Set-Cookie'``. """ # NOTE(kgriffs): normalize name by lowercasing it name = name.lower() if name == 'set-cookie': raise HeaderNotSupported('This method cannot be used to remove cookies') self._headers.pop(name, None) def append_header(self, name, value): """Set or append a header for this response. If the header already exists, the new value will normally be appended to it, delimited by a comma. The notable exception to this rule is Set-Cookie, in which case a separate header line for each value will be included in the response. Note: While this method can be used to efficiently append raw Set-Cookie headers to the response, you may find :py:meth:`~.set_cookie` to be more convenient. Args: name (str): Header name (case-insensitive). The name may contain only US-ASCII characters. value (str): Value for the header. As with the header's name, the value may contain only US-ASCII characters. """ # NOTE(kgriffs): uwsgi fails with a TypeError if any header # is not a str, so do the conversion here. It's actually # faster to not do an isinstance check. str() will encode # to US-ASCII. value = str(value) # NOTE(kgriffs): normalize name by lowercasing it name = name.lower() if name == 'set-cookie': if not self._extra_headers: self._extra_headers = [(name, value)] else: self._extra_headers.append((name, value)) else: if name in self._headers: value = self._headers[name] + ', ' + value self._headers[name] = value def set_headers(self, headers): """Set several headers at once. This method can be used to set a collection of raw header names and values all at once. Warning: Calling this method overwrites any existing values for the given header. If a list containing multiple instances of the same header is provided, only the last value will be used. To add multiple values to the response for a given header, see :meth:`~.append_header`. Warning: This method cannot be used to set cookies; instead, use :meth:`~.append_header` or :meth:`~.set_cookie`. Args: headers (Iterable[[str, str]]): An iterable of ``[name, value]`` two-member iterables, or a dict-like object that implements an ``items()`` method. Both *name* and *value* must be of type ``str`` and contain only US-ASCII characters. Note: Falcon can process an iterable of tuples slightly faster than a dict. Raises: ValueError: `headers` was not a ``dict`` or ``list`` of ``tuple`` or ``Iterable[[str, str]]``. """ header_items = getattr(headers, 'items', None) if callable(header_items): headers = header_items() # NOTE(kgriffs): We can't use dict.update because we have to # normalize the header names. _headers = self._headers for name, value in headers: # NOTE(kgriffs): uwsgi fails with a TypeError if any header # is not a str, so do the conversion here. It's actually # faster to not do an isinstance check. str() will encode # to US-ASCII. value = str(value) name = name.lower() if name == 'set-cookie': raise HeaderNotSupported('This method cannot be used to set cookies') _headers[name] = value def append_link( self, target, rel, title=None, title_star=None, anchor=None, hreflang=None, type_hint=None, crossorigin=None, ): """Append a link header to the response. (See also: RFC 5988, Section 1) Note: Calling this method repeatedly will cause each link to be appended to the Link header value, separated by commas. Note: So-called "link-extension" elements, as defined by RFC 5988, are not yet supported. See also Issue #288. Args: target (str): Target IRI for the resource identified by the link. Will be converted to a URI, if necessary, per RFC 3987, Section 3.1. rel (str): Relation type of the link, such as "next" or "bookmark". (See also: http://www.iana.org/assignments/link-relations/link-relations.xhtml) Keyword Args: title (str): Human-readable label for the destination of the link (default ``None``). If the title includes non-ASCII characters, you will need to use `title_star` instead, or provide both a US-ASCII version using `title` and a Unicode version using `title_star`. title_star (tuple of str): Localized title describing the destination of the link (default ``None``). The value must be a two-member tuple in the form of (*language-tag*, *text*), where *language-tag* is a standard language identifier as defined in RFC 5646, Section 2.1, and *text* is a Unicode string. Note: *language-tag* may be an empty string, in which case the client will assume the language from the general context of the current request. Note: *text* will always be encoded as UTF-8. anchor (str): Override the context IRI with a different URI (default None). By default, the context IRI for the link is simply the IRI of the requested resource. The value provided may be a relative URI. hreflang (str or iterable): Either a single *language-tag*, or a ``list`` or ``tuple`` of such tags to provide a hint to the client as to the language of the result of following the link. A list of tags may be given in order to indicate to the client that the target resource is available in multiple languages. type_hint(str): Provides a hint as to the media type of the result of dereferencing the link (default ``None``). As noted in RFC 5988, this is only a hint and does not override the Content-Type header returned when the link is followed. crossorigin(str): Determines how cross origin requests are handled. Can take values 'anonymous' or 'use-credentials' or None. (See: https://www.w3.org/TR/html50/infrastructure.html#cors-settings-attribute) """ # PERF(kgriffs): Heuristic to detect possiblity of an extension # relation type, in which case it will be a URL that may contain # reserved characters. Otherwise, don't waste time running the # string through uri.encode # # Example values for rel: # # "next" # "http://example.com/ext-type" # "https://example.com/ext-type" # "alternate http://example.com/ext-type" # "http://example.com/ext-type alternate" # if '//' in rel: if ' ' in rel: rel = '"' + ' '.join([uri_encode(r) for r in rel.split()]) + '"' else: rel = '"' + uri_encode(rel) + '"' value = '<' + uri_encode(target) + '>; rel=' + rel if title is not None: value += '; title="' + title + '"' if title_star is not None: value += ( "; title*=UTF-8'" + title_star[0] + "'" + uri_encode_value(title_star[1]) ) if type_hint is not None: value += '; type="' + type_hint + '"' if hreflang is not None: if isinstance(hreflang, str): value += '; hreflang=' + hreflang else: value += '; ' value += '; '.join(['hreflang=' + lang for lang in hreflang]) if anchor is not None: value += '; anchor="' + uri_encode(anchor) + '"' if crossorigin is not None: crossorigin = crossorigin.lower() if crossorigin not in _RESERVED_CROSSORIGIN_VALUES: raise ValueError( 'crossorigin must be set to either ' "'anonymous' or 'use-credentials'" ) if crossorigin == 'anonymous': value += '; crossorigin' else: # crossorigin == 'use-credentials' # PERF(vytas): the only remaining value is inlined. # Un-inline in case more values are supported in the future. value += '; crossorigin="use-credentials"' _headers = self._headers if 'link' in _headers: _headers['link'] += ', ' + value else: _headers['link'] = value # NOTE(kgriffs): Alias deprecated as of 3.0 add_link = deprecated(_ADD_LINK_DEPRECATED_MSG, method_name='add_link')(append_link) cache_control = header_property( 'Cache-Control', """Set the Cache-Control header. Used to set a list of cache directives to use as the value of the Cache-Control header. The list will be joined with ", " to produce the value for the header. """, format_header_value_list, ) content_location = header_property( 'Content-Location', """Set the Content-Location header. This value will be URI encoded per RFC 3986. If the value that is being set is already URI encoded it should be decoded first or the header should be set manually using the set_header method. """, uri_encode, ) content_length = header_property( 'Content-Length', """Set the Content-Length header. This property can be used for responding to HEAD requests when you aren't actually providing the response body, or when streaming the response. If either the `text` property or the `data` property is set on the response, the framework will force Content-Length to be the length of the given text bytes. Therefore, it is only necessary to manually set the content length when those properties are not used. Note: In cases where the response content is a stream (readable file-like object), Falcon will not supply a Content-Length header to the server unless `content_length` is explicitly set. Consequently, the server may choose to use chunked encoding in this case. """, ) content_range = header_property( 'Content-Range', """A tuple to use in constructing a value for the Content-Range header. The tuple has the form (*start*, *end*, *length*, [*unit*]), where *start* and *end* designate the range (inclusive), and *length* is the total length, or '\\*' if unknown. You may pass ``int``'s for these numbers (no need to convert to ``str`` beforehand). The optional value *unit* describes the range unit and defaults to 'bytes' Note: You only need to use the alternate form, 'bytes \\*/1234', for responses that use the status '416 Range Not Satisfiable'. In this case, raising ``falcon.HTTPRangeNotSatisfiable`` will do the right thing. (See also: RFC 7233, Section 4.2) """, format_range, ) content_type = header_property( 'Content-Type', """Sets the Content-Type header. The ``falcon`` module provides a number of constants for common media types, including ``falcon.MEDIA_JSON``, ``falcon.MEDIA_MSGPACK``, ``falcon.MEDIA_YAML``, ``falcon.MEDIA_XML``, ``falcon.MEDIA_HTML``, ``falcon.MEDIA_JS``, ``falcon.MEDIA_TEXT``, ``falcon.MEDIA_JPEG``, ``falcon.MEDIA_PNG``, and ``falcon.MEDIA_GIF``. """, ) downloadable_as = header_property( 'Content-Disposition', """Set the Content-Disposition header using the given filename. The value will be used for the ``filename`` directive. For example, given ``'report.pdf'``, the Content-Disposition header would be set to: ``'attachment; filename="report.pdf"'``. As per `RFC 6266 <https://tools.ietf.org/html/rfc6266#appendix-D>`_ recommendations, non-ASCII filenames will be encoded using the ``filename*`` directive, whereas ``filename`` will contain the US ASCII fallback. """, functools.partial(format_content_disposition, disposition_type='attachment'), ) viewable_as = header_property( 'Content-Disposition', """Set an inline Content-Disposition header using the given filename. The value will be used for the ``filename`` directive. For example, given ``'report.pdf'``, the Content-Disposition header would be set to: ``'inline; filename="report.pdf"'``. As per `RFC 6266 <https://tools.ietf.org/html/rfc6266#appendix-D>`_ recommendations, non-ASCII filenames will be encoded using the ``filename*`` directive, whereas ``filename`` will contain the US ASCII fallback. .. versionadded:: 3.1 """, functools.partial(format_content_disposition, disposition_type='inline'), ) etag = header_property( 'ETag', """Set the ETag header. The ETag header will be wrapped with double quotes ``"value"`` in case the user didn't pass it. """, format_etag_header, ) expires = header_property( 'Expires', """Set the Expires header. Set to a ``datetime`` (UTC) instance. Note: Falcon will format the ``datetime`` as an HTTP date string. """, dt_to_http, ) last_modified = header_property( 'Last-Modified', """Set the Last-Modified header. Set to a ``datetime`` (UTC) instance. Note: Falcon will format the ``datetime`` as an HTTP date string. """, dt_to_http, ) location = header_property( 'Location', """Set the Location header. This value will be URI encoded per RFC 3986. If the value that is being set is already URI encoded it should be decoded first or the header should be set manually using the set_header method. """, uri_encode, ) retry_after = header_property( 'Retry-After', """Set the Retry-After header. The expected value is an integral number of seconds to use as the value for the header. The HTTP-date syntax is not supported. """, str, ) vary = header_property( 'Vary', """Value to use for the Vary header. Set this property to an iterable of header names. For a single asterisk or field value, simply pass a single-element ``list`` or ``tuple``. The "Vary" header field in a response describes what parts of a request message, aside from the method, Host header field, and request target, might influence the origin server's process for selecting and representing this response. The value consists of either a single asterisk ("*") or a list of header field names (case-insensitive). (See also: RFC 7231, Section 7.1.4) """, format_header_value_list, ) accept_ranges = header_property( 'Accept-Ranges', """Set the Accept-Ranges header. The Accept-Ranges header field indicates to the client which range units are supported (e.g. "bytes") for the target resource. If range requests are not supported for the target resource, the header may be set to "none" to advise the client not to attempt any such requests. Note: "none" is the literal string, not Python's built-in ``None`` type. """, ) def _set_media_type(self, media_type=None): """Set a content-type; wrapper around set_header. Args: media_type: Media type to use for the Content-Type header. """ # PERF(kgriffs): Using "in" like this is faster than dict.setdefault() # in most cases, except on PyPy where it is only a fraction of a # nanosecond slower. Last tested on Python versions 3.5-3.7. if media_type is not None and 'content-type' not in self._headers: self._headers['content-type'] = media_type def _wsgi_headers(self, media_type=None): """Convert headers into the format expected by WSGI servers. Args: media_type: Default media type to use for the Content-Type header if the header was not set explicitly (default ``None``). """ headers = self._headers # PERF(vytas): uglier inline version of Response._set_media_type if media_type is not None and 'content-type' not in headers: headers['content-type'] = media_type items = list(headers.items()) if self._extra_headers: items += self._extra_headers # NOTE(kgriffs): It is important to append these after self._extra_headers # in case the latter contains Set-Cookie headers that should be # overridden by a call to unset_cookie(). if self._cookies is not None: # PERF(tbug): # The below implementation is ~23% faster than # the alternative: # # self._cookies.output().split("\\r\\n") # # Even without the .split("\\r\\n"), the below # is still ~17% faster, so don't use .output() items += [('set-cookie', c.OutputString()) for c in self._cookies.values()] return items class ResponseOptions: """Defines a set of configurable response options. An instance of this class is exposed via :attr:`falcon.App.resp_options` and :attr:`falcon.asgi.App.resp_options` for configuring certain :py:class:`~.Response` behaviors. Attributes: secure_cookies_by_default (bool): Set to ``False`` in development environments to make the `secure` attribute for all cookies default to ``False``. This can make testing easier by not requiring HTTPS. Note, however, that this setting can be overridden via `set_cookie()`'s `secure` kwarg. default_media_type (str): The default Internet media type (RFC 2046) to use when rendering a response, when the Content-Type header is not set explicitly. This value is normally set to the media type provided when a :class:`falcon.App` is initialized; however, if created independently, this will default to :attr:`falcon.DEFAULT_MEDIA_TYPE`.. media_handlers (Handlers): A dict-like object for configuring the media-types to handle. By default, handlers are provided for the ``application/json``, ``application/x-www-form-urlencoded`` and ``multipart/form-data`` media types. static_media_types (dict): A mapping of dot-prefixed file extensions to Internet media types (RFC 2046). Defaults to ``mimetypes.types_map`` after calling ``mimetypes.init()``. """ __slots__ = ( 'secure_cookies_by_default', 'default_media_type', 'media_handlers', 'static_media_types', ) def __init__(self): self.secure_cookies_by_default = True self.default_media_type = DEFAULT_MEDIA_TYPE self.media_handlers = Handlers() if not mimetypes.inited: mimetypes.init() self.static_media_types = mimetypes.types_map
from hamcrest import assert_that from allure_commons_test.report import has_test_case from allure_commons_test.result import with_status from allure_commons_test.result import has_status_details from allure_commons_test.result import with_message_contains from allure_commons_test.result import with_trace_contains def test_passed(executed_docstring_source): """ >>> def test_passed_example(): ... pass """ assert_that(executed_docstring_source.allure_report, has_test_case("test_passed_example", with_status("passed") ) ) def test_failed(executed_docstring_source): """ >>> def test_failed_example(): ... assert False """ assert_that(executed_docstring_source.allure_report, has_test_case("test_failed_example", with_status("failed"), has_status_details(with_message_contains("AssertionError"), with_trace_contains("def test_failed_example():") ) ) ) def test_broken(executed_docstring_source): """ >>> def test_broken_example(): ... raise IndentationError() """ assert_that(executed_docstring_source.allure_report, has_test_case("test_broken_example", with_status("broken"), has_status_details(with_message_contains("IndentationError"), with_trace_contains("def test_broken_example():") ) ) ) def test_call_pytest_fail(executed_docstring_source): """ >>> import pytest >>> def test_call_pytest_fail_example(): ... pytest.fail() """ assert_that(executed_docstring_source.allure_report, has_test_case("test_call_pytest_fail_example", with_status("failed"), has_status_details(with_message_contains("Failed: <Failed instance>"), with_trace_contains("def test_call_pytest_fail_example():") ) ) ) def test_call_pytest_fail_with_reason(executed_docstring_source): """ >>> import pytest >>> def test_call_pytest_fail_with_reason_example(): ... pytest.fail("Fail message") """ assert_that(executed_docstring_source.allure_report, has_test_case("test_call_pytest_fail_with_reason_example", with_status("failed"), has_status_details(with_message_contains("Fail message"), with_trace_contains("def test_call_pytest_fail_with_reason_example():") ) ) )
#!/bin/python3.6 """ Date Created: Feb 10 2020 This file contains the model descriptions, including original x-vector architecture. The first two models are in active developement. All others are provided below """ import torch import torch.nn as nn from torch.nn import functional as F class simpleTDNN(nn.Module): def __init__(self, numSpkrs, p_dropout): super(simpleTDNN, self).__init__() self.tdnn1 = nn.Conv1d(in_channels=30, out_channels=128, kernel_size=5, dilation=1) self.bn_tdnn1 = nn.BatchNorm1d(128, momentum=0.1, affine=False) self.dropout_tdnn1 = nn.Dropout(p=p_dropout) self.tdnn2 = nn.Conv1d(in_channels=128, out_channels=128, kernel_size=5, dilation=2) self.bn_tdnn2 = nn.BatchNorm1d(128, momentum=0.1, affine=False) self.dropout_tdnn2 = nn.Dropout(p=p_dropout) self.tdnn3 = nn.Conv1d(in_channels=128, out_channels=128, kernel_size=1, dilation=1) self.bn_tdnn3 = nn.BatchNorm1d(128, momentum=0.1, affine=False) self.dropout_tdnn3 = nn.Dropout(p=p_dropout) self.fc1 = nn.Linear(2*128,128) self.bn_fc1 = nn.BatchNorm1d(128, momentum=0.1, affine=False) self.dropout_fc1 = nn.Dropout(p=p_dropout) self.fc2 = nn.Linear(128,64) self.bn_fc2 = nn.BatchNorm1d(64, momentum=0.1, affine=False) self.dropout_fc2 = nn.Dropout(p=p_dropout) self.fc3 = nn.Linear(64,numSpkrs) def forward(self, x, eps): # Note: x must be (batch_size, feat_dim, chunk_len) x = self.dropout_tdnn1(self.bn_tdnn1(F.relu(self.tdnn1(x)))) x = self.dropout_tdnn2(self.bn_tdnn2(F.relu(self.tdnn2(x)))) x = self.dropout_tdnn3(self.bn_tdnn3(F.relu(self.tdnn3(x)))) if self.training: x = x + torch.randn(x.size()).cuda()*eps stats = torch.cat((x.mean(dim=2), x.std(dim=2)), dim=1) x = self.dropout_fc1(self.bn_fc1(F.relu(self.fc1(stats)))) x = self.dropout_fc2(self.bn_fc2(F.relu(self.fc2(x)))) x = self.fc3(x) return x class xvecTDNN(nn.Module): def __init__(self, numSpkrs, p_dropout): super(xvecTDNN, self).__init__() self.tdnn1 = nn.Conv1d(in_channels=30, out_channels=512, kernel_size=5, dilation=1) self.bn_tdnn1 = nn.BatchNorm1d(512, momentum=0.1, affine=False) self.dropout_tdnn1 = nn.Dropout(p=p_dropout) self.tdnn2 = nn.Conv1d(in_channels=512, out_channels=512, kernel_size=5, dilation=2) self.bn_tdnn2 = nn.BatchNorm1d(512, momentum=0.1, affine=False) self.dropout_tdnn2 = nn.Dropout(p=p_dropout) self.tdnn3 = nn.Conv1d(in_channels=512, out_channels=512, kernel_size=7, dilation=3) self.bn_tdnn3 = nn.BatchNorm1d(512, momentum=0.1, affine=False) self.dropout_tdnn3 = nn.Dropout(p=p_dropout) self.tdnn4 = nn.Conv1d(in_channels=512, out_channels=512, kernel_size=1, dilation=1) self.bn_tdnn4 = nn.BatchNorm1d(512, momentum=0.1, affine=False) self.dropout_tdnn4 = nn.Dropout(p=p_dropout) self.tdnn5 = nn.Conv1d(in_channels=512, out_channels=1500, kernel_size=1, dilation=1) self.bn_tdnn5 = nn.BatchNorm1d(1500, momentum=0.1, affine=False) self.dropout_tdnn5 = nn.Dropout(p=p_dropout) self.fc1 = nn.Linear(3000,512) self.bn_fc1 = nn.BatchNorm1d(512, momentum=0.1, affine=False) self.dropout_fc1 = nn.Dropout(p=p_dropout) self.fc2 = nn.Linear(512,512) self.bn_fc2 = nn.BatchNorm1d(512, momentum=0.1, affine=False) self.dropout_fc2 = nn.Dropout(p=p_dropout) self.fc3 = nn.Linear(512,numSpkrs) def forward(self, x, eps): # Note: x must be (batch_size, feat_dim, chunk_len) x = self.dropout_tdnn1(self.bn_tdnn1(F.relu(self.tdnn1(x)))) x = self.dropout_tdnn2(self.bn_tdnn2(F.relu(self.tdnn2(x)))) x = self.dropout_tdnn3(self.bn_tdnn3(F.relu(self.tdnn3(x)))) x = self.dropout_tdnn4(self.bn_tdnn4(F.relu(self.tdnn4(x)))) x = self.dropout_tdnn5(self.bn_tdnn5(F.relu(self.tdnn5(x)))) if self.training: shape=x.size() noise = torch.cuda.FloatTensor(shape) if torch.cuda.is_available() else torch.FloatTensor(shape) torch.randn(shape, out=noise) x += noise*eps stats = torch.cat((x.mean(dim=2), x.std(dim=2)), dim=1) x = self.dropout_fc1(self.bn_fc1(F.relu(self.fc1(stats)))) x = self.dropout_fc2(self.bn_fc2(F.relu(self.fc2(x)))) x = self.fc3(x) return x """============================ OLD MODELS ===============================""" class simpleCNN(nn.Module): def __init__(self): super(simpleCNN, self).__init__() # 1 input image channel, 6 output channels, 3x3 square convolution # kernel self.conv1 = nn.Conv2d(1, 16, 5) self.conv2 = nn.Conv2d(16, 16, 3) # an affine operation: y = Wx + b self.fc1 = nn.Linear(16 * 21 * 1, 64) # 6*6 from image dimension self.fc2 = nn.Linear(64, 64) self.fc3 = nn.Linear(64, 460) def forward(self, x): # Max pooling over a (2, 2) window x = F.max_pool2d(F.relu(self.conv1(x)), (5, 5)) # If the size is a square you can only specify a single number x = F.max_pool2d(F.relu(self.conv2(x)), 3) x = x.view(-1, self.num_flat_features(x)) x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x) return x def num_flat_features(self, x): size = x.size()[1:] # all dimensions except the batch dimension num_features = 1 for s in size: num_features *= s return num_features class simpleLSTM(nn.Module): def __init__(self): super(simpleLSTM, self).__init__() self.lstm1 = nn.LSTM(input_size=30, hidden_size=128, num_layers=1, batch_first=True) self.fc1 = nn.Linear(128,64) self.fc2 = nn.Linear(64,64) self.fc3 = nn.Linear(64,460) def forward(self, x): # x's shape must be (batch, seq_len, input_size) _,(h,_) = self.lstm1(x) x = F.relu(self.fc1(h.view(h.shape[1], h.shape[2]))) x = F.relu(self.fc2(x)) x = self.fc3(x) return x
import sys def pwpath(): import os SPLIT_STR = '/' if os.name == 'nt': SPLIT_STR = '\\' RPATH = os.path.realpath(__file__) PPATH = SPLIT_STR.join(RPATH.split(SPLIT_STR)[:-1]) PWS_PATH = os.path.join(PPATH, os.path.pardir) RPWPATH = os.path.realpath(PWS_PATH) return RPWPATH sys.path.append(pwpath()) import pwserver import app
from rest_framework.response import Response from iaso.tasks.copy_version import copy_version from iaso.api.tasks import TaskSerializer from iaso.models import DataSource, SourceVersion, Task, OrgUnit from rest_framework import viewsets, permissions, serializers from iaso.api.common import HasPermission from django.shortcuts import get_object_or_404 import logging logger = logging.getLogger(__name__) class CopyVersionSerializer(serializers.Serializer): source_source_id = serializers.IntegerField(required=True) source_version_number = serializers.IntegerField(required=True) destination_source_id = serializers.IntegerField(required=False, default=None) destination_version_number = serializers.CharField(max_length=200, required=False, default=None) force = serializers.BooleanField(required=False, default=False) def validate(self, attrs): validated_data = super().validate(attrs) request = self.context["request"] user = request.user account = user.iaso_profile.account possible_data_sources = ( DataSource.objects.filter(projects__in=account.project_set.all()).distinct().values_list("id", flat=True) ) possible_data_sources = list(possible_data_sources) force = attrs["force"] source_source_id = attrs["source_source_id"] destination_source_id = attrs["destination_source_id"] source_version = get_object_or_404( SourceVersion, data_source_id=source_source_id, number=attrs["source_version_number"] ) try: destination_version = SourceVersion.objects.get( data_source_id=destination_source_id, number=attrs["destination_version_number"] ) except: destination_version = None if destination_version and source_version.id == destination_version.id: raise serializers.ValidationError("Cannot copy a version to the same version") version_count = OrgUnit.objects.filter(version=destination_version).count() if version_count > 0 and not force and destination_version is not None: raise serializers.ValidationError( "This is going to delete %d org units records. Use the force parameter to proceed" % version_count ) if validated_data["source_source_id"] not in possible_data_sources: raise serializers.ValidationError("Unauthorized source_source_id") if destination_version and validated_data["destination_source_id"] not in possible_data_sources: raise serializers.ValidationError("Unauthorized destination_source_id") return validated_data class CopyVersionViewSet(viewsets.ViewSet): permission_classes = [permissions.IsAuthenticated, HasPermission("menupermissions.iaso_sources")] serializer_class = CopyVersionSerializer def create(self, request): data = request.data serializer = CopyVersionSerializer( data=request.data, context={"request": request}, ) serializer.is_valid(raise_exception=True) source_source_id = data.get("source_source_id", None) source_version_number = data.get("source_version_number", None) destination_source_id = data.get("destination_source_id", None) destination_version_number = data.get("destination_version_number", None) force = data.get("force", False) task = copy_version( source_source_id, source_version_number, destination_source_id, destination_version_number, force, user=request.user, ) return Response({"task": TaskSerializer(instance=task).data})
""" Project: Author: """ from .mqtt_controller import MQTTController from .handlers.hello_world_handler import HelloWorldHandler from .handlers.esp32_handler import Esp32Handler class FridayController(MQTTController): """ MQTT Controller with setting for Friday project """ HANDLER_LIST = [ HelloWorldHandler(), Esp32Handler(), ] if __name__ == "__main__": import os hostname = os.getenv("FRIDAY_HOSTNAME", "localhost") port = os.getenv("FRIDAY_PORT", 1883) mqttc = FridayController() mqttc.initialize(hostname, port, 60) rc = mqttc.run() print("rc: " + str(rc))
"""Change pdp_users.password to bytea Revision ID: f3d30db17bed Revises: 41da831646e4 Create Date: 2020-12-16 21:26:08.548724 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = "f3d30db17bed" down_revision = "41da831646e4" branch_labels = None depends_on = None def upgrade(): op.drop_column("pdp_users", "password") op.add_column("pdp_users", sa.Column("password", sa.LargeBinary, nullable=False)) def downgrade(): op.drop_column("pdp_users", "password") op.add_column("pdp_users", "password", sa.String(50), nullable=False),
import contextlib import os import re import sys import time from enum import IntEnum from logging import getLogger import sqlparse from rpy2 import robjects from . import util from .dsl import interpreter logger = getLogger('squares') class ExitCode(IntEnum): OK = 0 NON_OPTIMAL = 3 ERROR = 1 SQL_FAILED = 2 SQL_FAILED_NON_OPTIMAL = 4 END_SEARCH_SPACE = 5 start_time = time.time() specification = None solution = None solution_found = False solution_size = None n_cubes = 0 blocked_cubes = 0 n_attempts = 0 n_rejects = 0 n_fails = 0 n_blocks = 0 exit_code = ExitCode.ERROR exceeded_max_loc = False analysis_time = 0 enum_time = 0 init_time = 0 block_time = 0 empty_output = 0 redundant_lines = 0 def handle_sigint(signal, stackframe): print() print_results() exit(exit_code) def beautifier(sql): sql = re.sub(r'\.(?=other(\.other)*`)', '_', sql) sql = re.sub(r"""`(?=([^"'\\]*(\\.|"([^"'\\]*\\.)*[^"'\\]*"))*[^"']*$)""", '', sql) # remove backticks if not inside strings return sqlparse.format(sql, reindent=True, keyword_case='upper') def print_results(): global exit_code logger.info('Statistics:') if n_cubes: logger.info('\tGenerated cubes: %d', n_cubes) logger.info('\tBlocked cubes: %d (%f / generated avg.)', blocked_cubes, blocked_cubes / n_cubes if n_cubes else 0) logger.info('\tAttempted programs: %d (approx)', n_attempts) logger.info('\t\tRejected: %d (approx)', n_rejects) logger.info('\t\tFailed: %d (approx)', n_fails) logger.info('\t\tEmpty outputs: %d (%.1f%%) (approx)', empty_output, empty_output / n_attempts * 100 if n_attempts else 0) logger.info('\t\tRedundant lines: %d (approx)', redundant_lines) logger.info('\tBlocked programs: %d (%f / attempted avg.) (approx)', n_blocks, n_blocks / n_attempts if n_attempts else 0) logger.info('\tTotal time spent in enumerator init: %f (approx)', init_time) logger.info('\tTotal time spent in enumerator: %f (approx)', enum_time) if enum_time != 0: logger.info('\t\tEnumerated %f programs/s avg. (just enumeration time)', n_attempts / enum_time) logger.info('\t\tEnumerated %f programs/s avg. (overall)', n_attempts / (time.time() - start_time)) logger.info('\tTotal time spent in evaluation & testing: %f (approx)', analysis_time) logger.info('\tTotal time spent blocking cubes/programs: %f (approx)', block_time) if solution: logger.info(f'Solution found: {solution}') logger.info(f'Solution size: {solution_size}') old_cache = util.get_config().cache_ops util.get_config().cache_ops = True interp = interpreter.SquaresInterpreter(specification, True) evaluation = interp.eval(solution, specification.tables) assert interp.equals(evaluation, 'expected_output')[0] # this call makes it so that the select() appears in the output util.get_config().cache_ops = old_cache try: program = specification.r_init + interp.program robjects.r(program) sql_query = robjects.r(f'sink(); sql_render(out, bare_identifier_ok=T)') except: logger.error('Error while trying to convert R code to SQL.') sql_query = None exit_code = ExitCode.SQL_FAILED if exit_code != ExitCode.NON_OPTIMAL else ExitCode.SQL_FAILED_NON_OPTIMAL print() if util.get_config().print_r: pass print("------------------------------------- R Solution ---------------------------------------\n") print(specification.r_init + '\n' + interp.program) if sql_query is not None: print() print("+++++++++++++++++++++++++++++++++++++ SQL Solution +++++++++++++++++++++++++++++++++++++\n") print(beautifier(str(sql_query)[6:])) else: print('Failed to generate SQL query') else: if exceeded_max_loc: exit_code = ExitCode.END_SEARCH_SPACE if not solution_found: print("No solution found") def update_stats(attempts, rejects, fails, blocks, emptys, enum_t, analysis_t, init_t, block_t, redundant): global n_attempts, n_rejects, n_fails, n_blocks, empty_output, enum_time, analysis_time, init_time, block_time, redundant_lines n_attempts += attempts n_rejects += rejects n_fails += fails n_blocks += blocks empty_output += emptys enum_time += enum_t analysis_time += analysis_t init_time += init_t block_time += block_t redundant_lines += redundant def increment_cubes(): global n_cubes n_cubes += 1 def store_solution(sol, size: int, optimal: bool): global solution, solution_size, exit_code, solution_found solution = sol solution_size = size exit_code = ExitCode.OK if optimal else ExitCode.NON_OPTIMAL solution_found = True
#!/usr/bin/env python import chess import chess.svg from board import Board from flask import Flask, request, make_response, render_template app = Flask(__name__) game = Board() moves = [] # Flask route for home page. @app.route('/') def index(): game = Board() moves.clear() return render_template("index.html") @app.route('/about') def about(): return render_template("about.html") @app.route('/ai') def ai(): game = Board() moves.clear() return render_template("ai.html") @app.route('/contact') def contact(): return render_template("contact.html") @app.route('/bots') def bots(): return render_template("bots.html") @app.route('/leaderboard') def leaderboard(): return render_template("leaderboard.html") @app.route('/player') def player(): game = Board() moves.clear() return render_template("player.html") @app.route('/login') def login(): return render_template("login.html") @app.route('/register') def register(): return render_template("register.html") @app.route('/updates') def updates(): return render_template("updates.html") @app.route("/reset") def reset(): game.board.reset() moves.clear() return make_response(game.board.fen()) # Return if the game is over or not. @app.route('/is_game_over') def is_game_over(): return str(game.board.is_game_over()) # Return current board state. @app.route('/current_board_state') def current_board_state(): return make_response(game.board.fen()) # Return current board pgn. @app.route('/past_moves') def past_moves(): return make_response(str(moves)) # Flask route for moving the pieces. @app.route('/move') def move(): # print(game.board.piece_map()) # Get the source and target of the piece moved by a request. source = int(request.args.get('source')) target = int(request.args.get('target')) depth = int(request.args.get('depth')) ai = request.args.get('ai') # Create a san board state move with source and target. move = chess.Move( source, target, promotion=chess.QUEEN if request.args.get('promotion') == "true" else None) print("User's Move: " + str(move)) if move in list(game.board.legal_moves): try: moves.append(game.board.san(move)) game.board.push(move) comp_move = game.comp_move(depth, ai) moves.append(game.board.san(comp_move)) game.board.push(comp_move) except Exception as e: print(e) # Return response. return make_response(game.board.fen()) @app.route('/selfplay') def self_play_move(): depth = int(request.args.get('depth')) player = request.args.get('player') ai = request.args.get('ai') print(depth, player, ai) try: comp_move = game.comp_move(depth, ai) moves.append(game.board.san(comp_move)) game.board.push(comp_move) except Exception as e: print(e) # Return response. return make_response(game.board.fen()) # Create new Flask Application. if __name__ == '__main__': app.run(debug=True)
import tempfile from numpy.testing import assert_equal from statsmodels.compat.python import lrange, BytesIO from statsmodels.iolib.smpickle import save_pickle, load_pickle def test_pickle(): tmpdir = tempfile.mkdtemp(prefix='pickle') a = lrange(10) save_pickle(a, tmpdir+'/res.pkl') b = load_pickle(tmpdir+'/res.pkl') assert_equal(a, b) # cleanup, tested on Windows try: import os os.remove(tmpdir+'/res.pkl') os.rmdir(tmpdir) except (OSError, IOError): pass assert not os.path.exists(tmpdir) # test with file handle fh = BytesIO() save_pickle(a, fh) fh.seek(0, 0) c = load_pickle(fh) fh.close() assert_equal(a, c)
class ClockCollection(object,ICollection[Clock],IEnumerable[Clock],IEnumerable): """ Represents an ordered collection of System.Windows.Media.Animation.Clock objects. """ def Add(self,item): """ Add(self: ClockCollection,item: Clock) Adds a new System.Windows.Media.Animation.Clock object to the end of this System.Windows.Media.Animation.ClockCollection. item: The object to add. """ pass def Clear(self): """ Clear(self: ClockCollection) Removes all items from this System.Windows.Media.Animation.ClockCollection. """ pass def Contains(self,item): """ Contains(self: ClockCollection,item: Clock) -> bool Indicates whether the System.Windows.Media.Animation.ClockCollection contains the specified System.Windows.Media.Animation.Clock object. item: The object to locate. Returns: true if item is found; otherwise,false. """ pass def CopyTo(self,array,index): """ CopyTo(self: ClockCollection,array: Array[Clock],index: int) Copies the System.Windows.Media.Animation.Clock objects of this System.Windows.Media.Animation.ClockCollection to an array of Clocks,starting at the specified index position. array: The destination array. index: The zero-based index position where copying begins. """ pass def Equals(self,*__args): """ Equals(objA: ClockCollection,objB: ClockCollection) -> bool Indicates whether the two specified System.Windows.Media.Animation.ClockCollection collections are equal. objA: The first value to compare. objB: The second value to compare. Returns: true if objA and objB are equal; otherwise,false. Equals(self: ClockCollection,obj: object) -> bool Indicates whether this instance is equal to the specified object. obj: The object to compare with this instance. Returns: true if obj is equal to this instance; otherwise false. """ pass def GetHashCode(self): """ GetHashCode(self: ClockCollection) -> int Returns a 32-bit signed integer hash code representing this instance. Returns: A 32-bit signed integer. """ pass def Remove(self,item): """ Remove(self: ClockCollection,item: Clock) -> bool Removes the specified System.Windows.Media.Animation.Clock from the System.Windows.Media.Animation.ClockCollection. item: The object to remove. Returns: true if item was successfully removed; otherwise,false. """ pass def __add__(self,*args): """ x.__add__(y) <==> x+y """ pass def __contains__(self,*args): """ __contains__(self: ICollection[Clock],item: Clock) -> bool """ pass def __eq__(self,*args): """ x.__eq__(y) <==> x==y """ pass def __getitem__(self,*args): """ x.__getitem__(y) <==> x[y] """ pass def __init__(self,*args): """ x.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signature """ pass def __iter__(self,*args): """ __iter__(self: IEnumerable) -> object """ pass def __len__(self,*args): """ x.__len__() <==> len(x) """ pass def __ne__(self,*args): pass def __repr__(self,*args): """ __repr__(self: object) -> str """ pass Count=property(lambda self: object(),lambda self,v: None,lambda self: None) """Gets the number of items contained in this System.Windows.Media.Animation.ClockCollection. Get: Count(self: ClockCollection) -> int """ IsReadOnly=property(lambda self: object(),lambda self,v: None,lambda self: None) """Gets a value indicating whether the System.Windows.Media.Animation.ClockCollection is read-only. Get: IsReadOnly(self: ClockCollection) -> bool """
#!/usr/bin/env python from distutils.core import setup from catkin_pkg.python_setup import generate_distutils_setup # fetch values from package.xml setup_args = generate_distutils_setup( packages=['rqt_servicebot_pan_tilt'], package_dir={'': 'src'}, requires=['std_msgs', 'rospy'] ) setup(**setup_args)
#!/usr/bin/env python import rospy from lowpass import LowPassFilter from yaw_controller import YawController from pid import PID GAS_DENSITY = 2.858 ONE_MPH = 0.44704 class Controller(object): def __init__(self, vehicle_mass, fuel_capacity, brake_deadband, decel_limit, accel_limit, wheel_radius, wheel_base, steer_ratio, max_lat_accel, max_steer_angle): # TODO: Implement self.yaw_controller = YawController(wheel_base, steer_ratio, 0.1, max_lat_accel, max_steer_angle) kp = 0.3 ki = 0.1 kd = 0.0 mn = 0.0 # min throttle mx = 0.2 # max throttle self.throttle_controller = PID(kp, ki, kd, mn, mx) tau = 0.5 # 1/(2pi*tau) = curoff freq ts = 0.02 # sample time self.vel_lpf = LowPassFilter(tau, ts) self.vehicle_mass = vehicle_mass self.fuel_capacity = fuel_capacity self.brake_deadband = brake_deadband self.decel_limit = decel_limit self.accel_limit = accel_limit self.wheel_radius = wheel_radius self.last_time = rospy.get_time() def control(self, current_vel, dbw_enabled, linear_vel, angular_vel): # TODO: Change the arg, kwarg list to suit your needs # Return throttle, brake, steer if not dbw_enabled: self.throttle_controller.reset() return 0., 0., 0. current_vel = self.vel_lpf.filt(current_vel) # rospy.logwarn("Angular vel: {0}".format(angular_vel)) # rospy.logwarn("Target vel: {0}".format(linear_vel)) # rospy.logwarn("Target angular vel: {0}\n".format(angular_vel)) # rospy.logwarn("Current vel: {0}".format(current_vel)) # rospy.logwarn("Filtered vel: {0}".format(self.vel_lpf.get())) steering = self.yaw_controller.get_steering(linear_vel, angular_vel, current_vel) vel_error = linear_vel - current_vel self.last_vel = current_vel current_time = rospy.get_time() sample_time = current_time - self.last_time self.last_time = current_time throttle = self.throttle_controller.step(vel_error, sample_time) brake = 0 # original: car slows down but never stop. # if linear_vel == 0. and current_vel < 0: # throttle = 0 # decel = max(vel_error, self.decel_limit) # brake = abs(decel)*self.vehicle_mass*self.wheel_radius # Torque N*m if linear_vel == 0. and current_vel < 0.1: throttle = 0 brake = 400 # N to hold the car elif throttle < 0.1 and vel_error < 0: throttle = 0 decel = max(vel_error, self.decel_limit) brake = abs(decel)*self.vehicle_mass*self.wheel_radius # Torque N*m return throttle, brake, steering
# -*- coding: utf-8 -*- """ """ import concurrent.futures import imaplib import warnings from pprint import pprint from typing import List, Tuple, Dict from pymaillib.imap.entity.email_message import ImapFetchedItem, EmailMessage from pymaillib.imap.query.builders.fetch import FetchQueryBuilder from pymaillib.imap.client import ImapClient, ImapFolder from pymaillib.imap.entity.server import ImapNamespace, Namespaces from pymaillib.mailbox import UserMailbox from pymaillib.settings import Config #imaplib.Debug = 55 from_config = Config().from_config_file('./from_server.ini') from_mailbox = UserMailbox('sxadmin', '1', from_config) to_config = Config().from_config_file('./to_server.ini') to_mailbox = UserMailbox('migrate', '123456', from_config) def get_folders(namespace: ImapNamespace, imap: ImapClient) -> List[ImapFolder]: """ :param namespace: :param imap: :return: """ res = [] for _namespace in namespace: if _namespace.name: print(_namespace) res.append(ImapFolder(_namespace.name.strip('/'), _namespace.separator, {b'\\Noselect': b''})) res.extend(imap.folders(namespace=_namespace)) return res def get_user_folders(namespaces: Namespaces, imap: ImapClient) -> \ Tuple[List[str], Dict[str, ImapFolder]]: """ :param namespaces: :param imap: :return: """ folders = {} public_folders = [] for namespace in [namespaces.public_folders, namespaces.other_users]: for folder_ in get_folders(namespace, imap): public_folders.append(folder_.name) for folder_ in get_folders(namespaces.private, imap): if folder_.name in public_folders: continue folders[folder_.name] = folder_ return public_folders, folders from_folders = [] from_public_folders = [] with from_mailbox.imap() as imap: from_public_folders, from_folders = get_user_folders(imap.namespace(), imap) print('Skipped following not private folders') pprint(from_public_folders) print('Private folders in server migrating from is:') pprint(list(from_folders)) to_folders = [] to_public_folders = [] with to_mailbox.imap() as imap: to_public_folders, to_folders = get_user_folders(imap.namespace(), imap) print('Skipped non private folders at destination server') pprint(to_public_folders) print('Private folders in destination server is:') pprint(list(to_folders)) folder_diff = set(from_folders).difference(set(to_folders)) if folder_diff: print('Destination mailbox does not have such folders') pprint(folder_diff) print('Lets create them') with to_mailbox.imap() as imap: for folder_name in iter(folder_diff): folder = from_folders.get(folder_name) parent = folder.parent() top_level = [folder] while parent: top_level.append(parent) parent = parent.parent() for top_folder in reversed(top_level): if not imap.folder_exists(top_folder): imap.create_folder(top_folder.name) def get_folder_messages(folder:ImapFolder, imap:ImapClient) -> \ List[ImapFetchedItem]: """ :param folder: :param imap: :return: """ res = {} if not folder.total: return res data = range(1, folder.total) n = 200 # by chunks for item in [data[i:i + n] for i in range(1, len(data), n)]: fp = FetchQueryBuilder(list(item)).fetch_envelope() for item in imap.fetch(fp): res[item.envelope.message_id] = item return res def guess_email_class(email: EmailMessage) -> str : """ :param email: :return: """ for part in email.walk(): if part.get_content_type() == 'text/calendar': return 'IPM.Appointment' else: return 'IPM.Note' def fill_mailbox(source_mailbox, dest_mailbox, folder:ImapFolder): if not folder.selectable: warnings.warn('Folder {} is not selectable'.format(folder.name), RuntimeWarning) return from_messages = {} with source_mailbox.imap() as imap: imap.update_folder_info(folder) from_messages = get_folder_messages(folder, imap) to_messages = {} with dest_mailbox.imap() as imap: imap.update_folder_info(folder) to_messages = get_folder_messages(folder, imap) msgs_diff = set(from_messages).difference(set(to_messages)) count = 0 print('New messages', msgs_diff) if not msgs_diff: return count with source_mailbox.imap() as from_imap: with dest_mailbox.imap(True) as dest_imap: dest_imap.select_folder(folder) for msg_id in msgs_diff: msg = from_messages.get(msg_id) if not msg: warnings.warn('Oops not found {}'.format(msg_id), RuntimeWarning) continue fp = FetchQueryBuilder(uids=msg.uid).fetch_rfc822()\ .fetch_flags() msg = list(from_imap.fetch(fp))[-1] if not msg: warnings.warn('Oops not found {}'.format(msg_id), RuntimeWarning) continue rfc822 = msg.rfc822 if not rfc822['X-Scalix-Class']: rfc822.add_header('X-Scalix-Class', guess_email_class(rfc822)) print('Migrate message UID', msg.uid) dest_imap.append_message(rfc822, folder, msg.flags) #dest_imap.check() count += 1 return count with concurrent.futures.ThreadPoolExecutor(max_workers=2) as executor: # Start the load operations and mark each future with its URL future_to_url = {executor.submit(fill_mailbox, from_mailbox.clone(), to_mailbox.clone(), folder): folder for folder in from_folders.values()} for future in concurrent.futures.as_completed(future_to_url): folder = future_to_url[future] try: data = future.result() except Exception as exc: print('{} generated an exception: {}'.format(folder, exc)) else: print('{} msgs synched {}'.format(folder, data))
import os import signal import gc import time import sys import select import curses import threading import contextlib import kaa import kaa.log from . import keydef, color, dialog from kaa import clipboard from kaa import document from kaa import keyboard from kaa import macro from kaa.exceptions import KaaError class CuiApp: DEFAULT_MENU_MESSAGE = 'Type F1 or alt+m for menu.' DEFAULT_THEME = 'basic' DEFAULT_PALETTE = 'dark' NUM_NEWFILE = 1 def __init__(self, config): self.config = config self.clipboard = clipboard.select_clipboard() self.colors = None self._idleprocs = None self.lastcommands = () self.focus = None self._quit = False self.theme = self.DEFAULT_THEME self.last_dir = '.' self._input_readers = [] self._lock = threading.RLock() self._tasks = [] self.commands = {} self.is_availables = {} self.sigwinch_rfd, self.sigwinch_wfd = os.pipe() signal.signal(signal.SIGWINCH, lambda *args: os.write(self.sigwinch_wfd, b'0')) def register_commandobj(self, cmds): self.commands.update(cmds.get_commands()) self.is_availables.update(cmds.get_commands_is_enable()) def init_commands(self): from kaa.commands import appcommand, toolcommand, filecommand, gitcommand self.app_commands = appcommand.ApplicationCommands() self.register_commandobj(self.app_commands) self.file_commands = filecommand.FileCommands() self.register_commandobj(self.file_commands) self.register_commandobj(toolcommand.ToolCommands()) self.register_commandobj(appcommand.MacroCommands()) self.register_commandobj(gitcommand.GitCommands()) for name in dir(self): attr = getattr(self, name) if hasattr(attr, 'COMMAND_ID') and callable(attr): self.commands[getattr(attr, 'COMMAND_ID')] = attr def init(self, mainframe): self.init_commands() if self.config.palette: self.set_palette(self.config.palette) elif not self.colors: self.set_palette(self.DEFAULT_PALETTE) self.config.init_history() from kaa.ui.messagebar import messagebarmode self.messagebar = messagebarmode.MessageBarMode() doc = document.Document() doc.setmode(self.messagebar) mainframe.set_messagebar(doc) self.mainframe = mainframe self.focus = self.mainframe self.macro = macro.Macro() self.mainframe.on_console_resized() self.messagebar.set_message(self.DEFAULT_MENU_MESSAGE) def on_shutdown(self): os.close(self.sigwinch_rfd) os.close(self.sigwinch_wfd) self.config.close() def get_current_theme(self): return self.theme def set_palette(self, name): palette = self.get_palette(name) self.colors = color.Colors(palette) def get_palette(self, name): if name == 'light': return color.LightPalette() else: return color.DarkPalette() def quit(self): self._quit = True def call_later(self, secs, f, *args, **kwargs): with self._lock: self._tasks.append((time.time() + secs, f, args, kwargs)) SCHEDULE_WAIT_MARGIN = 0.05 def _next_scheduled_task(self): with self._lock: tasks = sorted(t for t, f, a, k in self._tasks) if tasks: wait = max(0, tasks[0] - time.time()) return wait + wait * self.SCHEDULE_WAIT_MARGIN def _run_scheduled_task(self): with self._lock: now = time.time() for n, (t, f, a, k) in enumerate(self._tasks): if t <= now: del self._tasks[n] f(*a, **k) return def get_command(self, commandid): cmd = self.commands.get(commandid, None) if cmd: is_available = self.is_availables.get(commandid, None) return (is_available, cmd) def set_idlejob(self): self._idleprocs = [ doc.mode.on_idle for doc in document.Document.all if doc.mode] def on_idle(self): if self._idleprocs: proc = self._idleprocs.pop(0) # proc() returns True if proc() still has job to be done. if proc(): self._idleprocs.append(proc) return True else: return False def translate_theme(self, theme): overlays = {} for name, overlay in theme.overlays.items(): fg = bg = None if overlay.fgcolor: fg = self.colors.colornames.get(overlay.fgcolor.upper()) if overlay.bgcolor: bg = self.colors.colornames.get(overlay.bgcolor.upper()) overlays[name] = (fg, bg) for style in theme.styles.values(): fg, bg = (self.colors.colornames.get(style.fgcolor.upper()), self.colors.colornames.get(style.bgcolor.upper())) attr = self.colors.get_color(fg, bg) style.cui_colorattr = attr style.cui_overlays = {} for name, (o_fg, o_bg) in overlays.items(): if o_fg is None: o_fg = fg if o_bg is None: o_bg = bg style.cui_overlays[name] = self.colors.get_color(o_fg, o_bg) def get_keyname(self, key): try: if not isinstance(key, int): key = ord(key) return str(curses.keyname(key), 'utf-8', 'replace') except Exception: return '?' def translate_key(self, mod, c): """Translate kaa's key value to curses keycode""" alt = keyboard.alt in mod ctrl = keyboard.ctrl in mod shift = keyboard.shift in mod if alt: meta = '\x1b' else: meta = '' if isinstance(c, str): if shift: raise KaaError( 'Cannot use shift key for character: {!r}'.format((mod, c))) if ctrl: c = c.upper() if not (0x40 <= ord(c) <= 0x5f): raise KaaError( 'Cannot use control key for character: {!r}'.format((mod, c))) return meta + chr(ord(c) - 0x40) else: return meta + c else: ret = keydef.keyfromname(c, ctrl, shift) if ret is None: raise KaaError( 'Cannot convert character: {!r}'.format((mod, c))) return [ret] if not meta else [meta, ret] def set_focus(self, wnd): if wnd is self.focus: return if self.focus: self.focus.on_killfocus() self.focus = wnd if wnd: wnd.on_focus() def show_doc(self, doc): ''' Create new window for the doc and show it. ''' ret = self.mainframe.show_doc(doc) return ret def show_inputline(self, doc): self._idleprocs = None # Reschedule idle procs dlg = dialog.DialogWnd(parent=self.mainframe, doc=doc) self.mainframe.show_inputline(dlg) return dlg def show_dialog(self, doc): dlg = dialog.DialogWnd(parent=self.mainframe, doc=doc) self.mainframe.show_dialog(dlg) return dlg def get_frames(self): return self.mainframe.childframes[:] def get_activeframe(self): return self.mainframe.activeframe def show_cursor(self, f): try: curses.curs_set(f) except curses.error: # curses.curs_set() occasionally fails if $TERM=xterm-color pass @contextlib.contextmanager def restore_teminal(self): curses.def_prog_mode() curses.endwin() try: yield finally: curses.reset_prog_mode() self.mainframe.refresh() def add_input_reader(self, reader): self._input_readers.append(reader) def del_input_reader(self, reader): if reader in self._input_readers: self._input_readers.remove(reader) def dump_panel(self): import curses.panel panels = [] p = curses.panel.top_panel() while p: panels.append(p) p = p.below() for w in self.mainframe.walk_children(): idx = panels.index(w._panel) d = getattr(w, 'document', w) m = getattr(d, 'mode', w) panels[idx] = m def run(self): # def f(t, i): # _trace(t, i) # gc.callbacks.append(f) gc.set_threshold(2000, 10, 10) nonblocking = True while not self._quit: try: if not self.focus: kaa.log.error('Internal error: invalid focus window.') break self.focus.restore_cursor_pos() if not nonblocking: # update screen before sleep. curses.panel.update_panels() curses.doupdate() rd = [] for f in self._input_readers: rd.extend(f.get_reader()) try: rlist, _, _ = select.select( [sys.stdin, self.sigwinch_rfd] + rd, [], [], 0 if nonblocking else self._next_scheduled_task()) except InterruptedError: pass if not nonblocking and not rlist: # timeout self._run_scheduled_task() self.set_idlejob() # Reschedule idle procs if self.sigwinch_rfd in rlist: os.read(self.sigwinch_rfd, 1) # sigh. pep-0475 prevents us to handling SIGWINCH. # force curses to resize window. import struct import fcntl import termios v = fcntl.ioctl(0, termios.TIOCGWINSZ, struct.pack('HHHH', 0, 0, 0, 0)) lines, cols, _, _ = struct.unpack('HHHH', v) curses.resizeterm(lines, cols) self.mainframe.on_console_resized() ready = [r for r in rlist if r not in (sys.stdin, self.sigwinch_rfd)] if ready: nonblocking = True for r in ready: idx = rd.index(r) self._input_readers[idx].read_input(r) self.set_idlejob() # Reschedule idle procs inputs = self.focus.do_input(nonblocking=True) for c in inputs: if isinstance(c, keydef.KeyEvent): nonblocking = True if c.key == curses.KEY_RESIZE: self.mainframe.on_console_resized() continue if self.focus.editmode: self.focus.editmode.on_keyevent(self.focus, c) if self.focus: self.focus.update_window() if not inputs: if self.mainframe.on_idle(): self.set_idlejob() # Reschedule idle procs continue # no input if not self.on_idle(): # No more idle jobs nonblocking = False else: self.set_idlejob() # Reschedule idle procs except Exception as e: kaa.log.error('Unhandled exception', exc_info=True) kaa.app.messagebar.set_message(' '.join(str(e).split('\n'))) nonblocking = True
class ApxSignature(object): def __init__(self,mainType,name,dsg,attr=""): self.mainType=mainType self.name=name self.dsg=dsg self.attr=attr def __str__(self): if (self.attr != None) and len(self.attr)>0: return '%s"%s"%s:%s'%(self.mainType,self.name,self.dsg,self.attr) else: return '%s"%s"%s'%(self.mainType,self.name,self.dsg) class ApxType(object): @staticmethod def _calcUIntTypeLen(dataType): if dataType['type']=='integer': if dataType['min'] == 0: return int(math.ceil(math.log(dataType['max'],2))) return None @staticmethod def _calcIntTypeLen(dataType): if dataType['type']=='integer': if dataType['min'] < 0: return int(math.ceil(math.log(abs(dataType['max']),2)))+1 return None @staticmethod def _calcDataSignature(dataType): global typeData global args typeCode = None if dataType['type']=='boolean': return 'C(0,1)' if dataType['type']=='integer': return ApxType._getIntegerTypeCode(dataType) elif dataType['type'] == 'array': typeCode = ApxType._getIntegerTypeCode(typeData.find(dataType['typeRef'])) if typeCode != None: return "%s[%d]"%(typeCode,int(dataType['length'])) else: raise Exception("unsupported type: %s"%typeData.find(dataType['typeRef'])) elif dataType['type'] == 'string': typeCode = 'a' if typeCode != None: return "%s[%d]"%(typeCode,int(dataType['length'])+1) elif dataType['type'] == 'record': result="{" for elem in dataType['elements']: #uncomment to remove _RE from end of element names #if elem['name'].endswith('_RE'): #elem['name']=elem['name'][:-3] childType = typeData.find(elem['typeRef']) result+='"%s"%s'%(elem['name'],ApxType._calcDataSignature(childType)) result+="}" return result else: raise Exception('uhandled data type: %s'%dataType['type']) return "" @staticmethod def _getIntegerTypeCode(dataType): global args if dataType['min'] >= 0: bits = ApxType._calcUIntTypeLen(dataType) if bits <=8: if (dataType['min']>0) or (dataType['max']<255): return 'C(%d,%d)'%(dataType['min'],dataType['max']) else: return 'C' elif bits <=16: return 'S' elif bits <=32: return 'L' elif bits <=64: return 'U' elif dataType['min']<0: bits = ApxType._calcIntTypeLen(dataType) if bits <=8: if (dataType['min']>-128) or dataType['max']<127: return 'c(%d,%d)'%(dataType['min'],dataType['max']) else: return 'c' elif bits <=16: return 's' elif bits <=32: return 'l' elif bits <=64: return 'u' else: print("not implemented (min=%s)"%dataType['min']) @staticmethod def _calcAttribute(dataType): if dataType['type']=='integer': typeSemantics = typeData.find('/DataType/Semantics/%s'%dataType['name']) if (typeSemantics != None) and ('valueTable' in typeSemantics): v=','.join(['"%s"'%x for x in typeSemantics['valueTable']]) return "VT(%s)"%v return None def __init__(self,dataType): self.name = dataType['name'] self.signature = ApxSignature('T',dataType['name'],ApxType._calcDataSignature(dataType),ApxType._calcAttribute(dataType)) class ApxPort(object): def __init__(self,name,typeIndex,attrib): self.name = name self.typeIndex = typeIndex self.attrib=attrib def getAttrStr(self): result="" if self.attrib['initValue']!=None: result+="=%s"%self.attrib['initValue'] if self.attrib['isQueued']: if self.attrib['queueLen']!=None: result+="Q[%d]"%self.attrib['queueLen'] else: result+="Q" if self.attrib['isParameter']: result+="P" return result
#!/usr/bin/env python3 """ Author : Adam Matteck Date : 2021-12-02 """ import argparse def get_args(): """Get command-line arguments""" parser = argparse.ArgumentParser( description="Picnic game", formatter_class=argparse.ArgumentDefaultsHelpFormatter, ) parser.add_argument( "items", metavar="str", help="Item(s) to bring", nargs="+" ) parser.add_argument( "-s", "--sorted", help="Sort the items", action="store_true" ) return parser.parse_args() def get_output(items): """Generate correct program output according to specs""" brought = '' if len(items) == 1: brought = items[0] elif len(items) == 2: brought = ' and '.join(items) elif len(items) >= 3: items[-1] = 'and ' + items[-1] brought = ', '.join(items) return f'You are bringing {brought}.' def main(): """Main program logic""" args = get_args() items = args.items sorted = args.sorted if sorted: items.sort() print(get_output(items)) if __name__ == "__main__": main()
import argparse import time import numpy as np from pycompss.api.api import barrier, compss_wait_on import dislib as ds from dislib.classification import RandomForestClassifier def main(): parser = argparse.ArgumentParser() parser.add_argument("--svmlight", help="read files in SVMLight format", action="store_true") parser.add_argument("-dt", "--detailed_times", help="get detailed execution times (read and fit)", action="store_true") parser.add_argument("-e", "--estimators", metavar="N_ESTIMATORS", type=int, help="default is 10", default=10) parser.add_argument("-b", "--block_size", metavar="BLOCK_SIZE", type=str, help="two comma separated ints that represent the " "size of the blocks in which to divide the input " "data (default is 100,100)", default="100,100") parser.add_argument("-md", "--max_depth", metavar="MAX_DEPTH", type=int, help="default is np.inf", required=False) parser.add_argument("-dd", "--dist_depth", metavar="DIST_DEPTH", type=int, help="default is auto", required=False) parser.add_argument("-f", "--features", metavar="N_FEATURES", help="number of features of the input data " "(only for SVMLight files)", type=int, default=None, required=False) parser.add_argument("--dense", help="use dense data structures", action="store_true") parser.add_argument("-t", "--test-file", metavar="TEST_FILE_PATH", help="test file path", type=str, required=False) parser.add_argument("train_data", help="input file in CSV or SVMLight format", type=str) args = parser.parse_args() train_data = args.train_data s_time = time.time() read_time = 0 sparse = not args.dense bsize = args.block_size.split(",") block_size = (int(bsize[0]), int(bsize[1])) if args.svmlight: x, y = ds.load_svmlight_file(train_data, block_size, args.features, sparse) else: x = ds.load_txt_file(train_data, block_size) y = x[:, x.shape[1] - 2: x.shape[1] - 1] x = x[:, :x.shape[1] - 1] if args.detailed_times: barrier() read_time = time.time() - s_time s_time = time.time() if args.dist_depth: dist_depth = args.dist_depth else: dist_depth = "auto" if args.max_depth: max_depth = args.max_depth else: max_depth = np.inf forest = RandomForestClassifier(n_estimators=args.estimators, max_depth=max_depth, distr_depth=dist_depth) forest.fit(x, y) barrier() fit_time = time.time() - s_time out = [forest.n_estimators, forest.distr_depth, forest.max_depth, read_time, fit_time] if args.test_file: if args.svmlight: x_test, y_test = ds.load_svmlight_file(args.test_file, block_size, args.features, sparse) else: x_test = ds.load_txt_file(args.test_file, block_size) y_test = x_test[:, x_test.shape[1] - 1: x_test.shape[1]] x_test = x_test[:, :x_test.shape[1] - 1] out.append(compss_wait_on(forest.score(x_test, y_test))) print(out) if __name__ == "__main__": main()
#Here we import the libraries #requests is a library to make webcalls #beautifulsoup is our scraping library #unicodecsv is a replacement for the normal Python csv library, this on supports unicode characters #New on this one is 're' which allows for regular expressions import requests, re from bs4 import BeautifulSoup #getting our html file r = requests.get('http://www.knmi.nl/cms/content/23519/kouderecord_van_nederland') #Making it a beautiful soup object soup = BeautifulSoup(r.text) article = soup.find('div',{'class':'article'}) #Quickly get only link containing the word Apple (or apple because IGNORECASE) values = re.findall('-?([0-9]+)(,[0-9]+)?(?=\s?graden)',article.text) for value in values: print ''.join(value) #done!