entities
sequence
text
stringlengths
10
3.62k
split
stringclasses
3 values
[]
The epithelial-mesenchymal transition (EMT) correlates with disruption of cell-cell adhesion, loss of cell polarity and development of epithelial cell malignancy. Identifying novel molecules that inhibit EMT has profound potential for developing mechanism-based therapeutics. We previously demonstrated that the endoplasmic reticulum protein 29 (ERp29) is a novel factor that can drive mesenchymal-epithelial transition (MET) and induce cell growth arrest in MDA-MB-231 cells. Here, we show that ERp29 is an important molecule in establishing epithelial cell integrity during the MET. We demonstrate that ERp29 regulates MET in a cell context-dependent manner. ERp29 overexpression induced a complete MET in mesenchymal MDA-MB-231 cells through downregulating the expression of transcriptional repressors (for example, Slug, Snai1, ZEB2 and Twist) of E-cadherin. In contrast, overexpression of ERp29 induces incomplete MET in basal-like BT549 cells in which the expression of EMT-related markers (for example, vimentin; cytokeratin 19 (CK19) and E-cadherin) and the transcriptional repressors of E-cadherin were not altered. However, ERp29 overexpression in both cell-types resulted in loss of filamentous stress fibers, formation of cortical actin and restoration of an epithelial phenotype. Mechanistic studies revealed that overexpression of ERp29 in both cell-types upregulated the expression of TJ proteins (zonula-occludens-1 (ZO-1) and occludin) and the core apical-basal polarity proteins (Par3 and Scribble) at the membrane to enhance cell-cell contact and cell polarization. Knockdown of ERp29 in the epithelial MCF-7 cells decreased the expression of these proteins, leading to the disruption of cell-cell adhesion. Taken together, ERp29 is a novel molecule that regulates MET and epithelial cell integrity in breast cancer cells.
train
[ "(S)-3,4-DCPG", "glutamate" ]
The metabotropic glutamate receptor 8 agonist (S)-3,4-DCPG reverses motor deficits in prolonged but not acute models of Parkinson's disease.
train
[ "Glutamate", "DCPG", "dopamine", "(S)-3,4-dicarboxyphenylglycine", "reserpine", "glutamate", "decanoate salt", "haloperidol", "6-hydroxydopamine" ]
Metabotropic glutamate receptors (mGlus) are 7 Transmembrane Spanning Receptors (7TMs) that are differentially expressed throughout the brain and modulate synaptic transmission at both excitatory and inhibitory synapses. Recently, mGlus have been implicated as therapeutic targets for many disorders of the central nervous system, including Parkinson's disease (PD). Previous studies have shown that nonselective agonists of group III mGlus have antiparkinsonian effects in several animal models of PD, suggesting that these receptors represent promising targets for treating the motor symptoms of PD. However, the relative contributions of different group III mGlu subtypes to these effects have not been fully elucidated. Here we report that intracerebroventricular (icv) administration of the mGlu(8)-selective agonist (S)-3,4-dicarboxyphenylglycine (DCPG [ 2.5, 10, or 30 nmol]) does not alleviate motor deficits caused by acute (2 h) treatment with haloperidol or reserpine. However, following prolonged pretreatment with haloperidol (three doses evenly spaced over 18-20 h) or reserpine (18-20 h), DCPG robustly reverses haloperidol-induced catalepsy and reserpine-induced akinesia. Furthermore, DCPG (10 nmol, icv) reverses the long-lasting catalepsy induced by 20 h pretreatment with the decanoate salt of haloperidol. Finally, icv administration of DCPG ameliorates forelimb use asymmetry caused by unilateral 6-hydroxydopamine lesion of substantia nigra dopamine neurons. These findings suggest that mGlu(8) may partially mediate the antiparkinsonian effects of group III mGlu agonists in animal models of PD in which dopamine depletion or blockade of D(2)-like dopamine receptors is prolonged and indicate that selective activation of mGlu(8) may represent a novel therapeutic strategy for alleviating the motor symptoms of PD. This article is part of a Special Issue entitled 'Metabotropic Glutamate Receptors'.
train
[ "benzodiazepine", "GABA", "[(11)C]Ro15-4513" ]
The brain GABA-benzodiazepine receptor alpha-5 subtype in autism spectrum disorder: a pilot [(11)C]Ro15-4513 positron emission tomography study.
train
[ "benzodiazepine", "gamma-amino-butyric-acid", "GABA", "[(11)C]Ro15-4513" ]
GABA (gamma-amino-butyric-acid) is the primary inhibitory neurotransmitter in the human brain. It has been proposed that the symptoms of autism spectrum disorders (ASDs) are the result of deficient GABA neurotransmission, possibly including reduced expression of GABAA receptors. However, this hypothesis has not been directly tested in living adults with ASD. In this preliminary investigation, we used Positron Emission Tomography (PET) with the benzodiazepine receptor PET ligand [(11)C]Ro15-4513 to measure α1 and α5 subtypes of the GABAA receptor levels in the brain of three adult males with well-characterized high-functioning ASD compared with three healthy matched volunteers. We found significantly lower [(11)C]Ro15-4513 binding throughout the brain of participants with ASD (p < 0.0001) compared with controls. Planned region of interest analyses also revealed significant reductions in two limbic brain regions, namely the amygdala and nucleus accumbens bilaterally. Further analysis suggested that these results were driven by lower levels of the GABAA α5 subtype. These results provide initial evidence of a GABAA α5 deficit in ASD and support further investigations of the GABA system in this disorder. This article is part of the Special Issue entitled 'Neurodevelopmental Disorders'.
train
[ "Tomentomimulol", "C-geranylated flavonoids", "mimulone B" ]
Tomentomimulol and mimulone B: Two new C-geranylated flavonoids from Paulownia tomentosa fruits.
train
[ "tomentomimulol", "C-geranylated flavonoids", "methanol", "tanariflavanone D", "mimulone B" ]
Two new discovered C-geranylated flavonoids tomentomimulol (1) and mimulone B (2) were isolated from the methanol extract of Paulownia tomentosa (Thunb). Steud. (Paulowniaceae) fruits by exhaustive chromatographic separation together with one known compound tanariflavanone D (3). The identification of compounds and structure elucidation was carried out using 1D and 2D NMR experiments, as well as mass spectroscopy, ultra-violet, infra red and CD experiments.
train
[ "cyclododeca[d]oxazole" ]
A new cyclododeca[d]oxazole derivative from Streptomyces spp. CIBYL1.
train
[ "di(1H-pyrrol-2-yl)methanone", "2-phenylacetamide", "(3R,4S,5R,6R)-3,4,5,6-tetrahydro-4-hydroxy-3,5,6-trimethyl-2H-pyran-2-one", "N-trans-cinnamoyl 2-amino-3a,4,5,6,7,8,9,10,11,12,13,13a-dodecahydrocyclododeca[d]oxazole", "pimprinine", "indolyl-3-carboxylic acid" ]
A novel secondary metabolite, N-trans-cinnamoyl 2-amino-3a,4,5,6,7,8,9,10,11,12,13,13a-dodecahydrocyclododeca[d]oxazole (1), was isolated from Streptomyces spp. CIBYL1, along with five known compounds, pimprinine (2), (3R,4S,5R,6R)-3,4,5,6-tetrahydro-4-hydroxy-3,5,6-trimethyl-2H-pyran-2-one (3), indolyl-3-carboxylic acid (4), 2-phenylacetamide (5) and di(1H-pyrrol-2-yl)methanone (6). The structures of these metabolites were elucidated on the basis of extensive analysis of spectroscopic data, including OR, IR, HRMS, 1D and 2D NMR data and chemical derivation.
train
[ "glutamate" ]
Negative allosteric modulation of metabotropic glutamate receptor 5 results in broad spectrum activity relevant to treatment resistant depression.
train
[ "GRN-529", "MTEP", "glutamate" ]
Evidence suggests that 30-50% of patients suffering from major depressive disorder (MDD) are classified as suffering from treatment resistant depression (TRD) as they have an inadequate response to standard antidepressants. A key feature of this patient population is the increased incidence of co-morbid symptoms like anxiety and pain. Recognizing that current standards of care are largely focused on monoaminergic mechanisms of action (MOAs), innovative approaches to drug discovery for TRD are targeting glutamate hyperfunction. Here we describe the in vitro and in vivo profile of GRN-529, a novel negative allosteric modulator (NAM) of metabotropic glutamate receptor 5 (mGluR5). In cell based pharmacology assays, GRN-529 is a high affinity (Ki 5.4 nM), potent (IC50 3.1 nM) and selective (>1000-fold selective vs mGluR1) mGluR5 NAM. Acute administration of GRN-529 (0.1-30 mg/kg p.o.) had dose-dependent efficacy across a therapeutically relevant battery of animal models, comprising depression (decreased immobility time in tail suspension and forced swim tests) and 2 of the co-morbid symptoms overrepresented in TRD, namely anxiety (attenuation of stress-induced hyperthermia, and increased punished crossings in the four plate test) and pain (reversal of hyperalgesia due to sciatic nerve ligation or inflammation). The potential side effect liability of GRN-529 was also assessed using preclinical models: GRN-529 had no effect on rat sexual behavior or motor co-ordination (rotarod), however it impaired cognition in mice (social odor recognition). Efficacy and side effects of GRN-529 were compared to standard of care agents (antidepressant, anxiolytic or analgesics) and the tool mGluR5 NAM, MTEP. To assess the relationship between target occupancy and efficacy, ex vivo receptor occupancy was measured in parallel with efficacy testing. This revealed a strong correlation between target engagement, exposure and efficacy across behavioral endpoints, which supports the potential translational value of PET imaging to dose selection in patients. Collectively this broad spectrum profile of efficacy of GRN-529 supports our hypothesis that negative allosteric modulation of mGluR5 could represent an innovative therapeutic approach to the treatment of TRD. This article is part of a Special Issue entitled 'Metabotropic Glutamate Receptors'.
train
[]
Variation in the volatile oil composition of Eucalyptus citriodora produced by hydrodistillation and supercritical fluid extraction techniques.
train
[ "Citronellal", "oxygenated monoterpenes", "citronellal", "carbon dioxide" ]
This work reports variations in the yields and quality of volatiles produced from Eucalyptus citriodora leaves by different hydrodistillation (HD) and supercritical carbon dioxide extraction (SCE) techniques. HD techniques (1.5%) produced higher yields compared to SCE (0.7%). Citronellal, the major component, was maximum in the extract produced by SCE (79%) followed by oil produced by water-steam distillation (WSD) (72.6%) and water distillation (WD) (62.4%) techniques. Chemical composition of glycoside-bound volatiles produced by acid hydrolysis during HD was found to be very different from free volatiles, although in a minor quantity. The extent of artefact formation and release of aglycones was more profound in the bound volatile oil produced by WD than WSD. Highest oxygenated monoterpenes were found in SCE and WSD (93% each) followed by WD (91.4%). Although the SCE produced lower yields than the HD techniques, its extract is superior in quality in terms of higher concentration of citronellal.
train
[ "estrogen" ]
Sex, stroke, and inflammation: the potential for estrogen-mediated immunoprotection in stroke.
train
[ "estrogen" ]
Stroke is the third leading cause of death and the primary cause of disability in the developed world. Experimental and clinical data indicate that stroke is a sexually dimorphic disease, with males demonstrating an enhanced intrinsic sensitivity to ischemic damage throughout most of their lifespan. The neuroprotective role of estrogen in the female brain is well established, however, estrogen exposure can also be deleterious, especially in older women. The mechanisms for this remain unclear. Our current understanding is based on studies examining estrogen as it relates to neuronal injury, yet cerebral ischemia also induces a robust sterile inflammatory response involving local and systemic immune cells. Despite the potent anti-inflammatory effects of estrogen, few studies have investigated the contribution of estrogen to sex differences in the inflammatory response to stroke. This review examines the potential role for estrogen-mediated immunoprotection in ischemic injury.
train
[ "berberine hydrochloride" ]
Development of self-microemulsifying drug delivery system for oral bioavailability enhancement of berberine hydrochloride.
train
[ "oleic acid", "Berberine hydrochloride", "ethyl linoleate", "Tween-80", "BBH", "glycerol" ]
The purpose of this study was to develop a self-microemulsifying drug delivery system (SMEDDS) to improve the oral bioavailability of Berberine hydrochloride (BBH), an important bioactive compound from Chinese Medicines with poor water solubility. Pseudoternary phase diagrams were constructed using oil, surfactant and co-surfactant types to identify the efficient self-microemulsification region. SMEDDS was characterized by morphological observation, droplet size, zeta-potential determination, stability, in vitro release and in vivo bioavailability study. The optimal formulation with the best self-microemulsifying and solubilization ability consisted of 40% (w/w) of ethyl linoleate and oleic acid (2:1), 35% (w/w) Tween-80 and 25% (w/w) glycerol. The SMEDDS of BBH could exhibit good stability. In vitro release test showed a complete release of BBH from SMEDDS was in 5 h. In vivo results indicated that the peak plasma concentration (C(max)) and the area under the curve (AUC(0→12 h)) of SMEDDS of BBH were higher than the commercial tablet by 163.4% and 154.2%, respectively. The relative bioavailability of SMEDDS of BBH was enhanced about 2.42-fold compared with the commercial tablet in rats. The study confirmed that the SMEDDS formulation could be used as a possible alternative to traditional oral formulations of BBH to improve its bioavailability.
train
[]
Neuroendocrine aspects of catamenial epilepsy.
train
[ "progesterone", "THDOC", "allotetrahydrodeoxycorticosterone", "allopregnanolone", "estrogens", "GABA" ]
This review describes the neuroendocrinological aspects of catamenial epilepsy, a menstrual cycle-related seizure disorder in women with epilepsy. Catamenial epilepsy is a multifaceted neuroendocrine condition in which seizures are clustered around specific points in the menstrual cycle, most often around perimenstrual or periovulatory period. Three types of catamenial seizures (perimenstrual, periovulatory and inadequate luteal) have been identified. The molecular pathophysiology of catamenial epilepsy remains unclear. Cyclical changes in the circulating levels of estrogens and progesterone (P) play a central role in the development of catamenial epilepsy. Endogenous neurosteroids such as allopregnanolone (AP) and allotetrahydrodeoxycorticosterone (THDOC) that modulate seizure susceptibility could play a critical role in catamenial epilepsy. In addition, plasticity in GABA-A receptor subunits could play a role in the enhanced seizure susceptibility in catamenial epilepsy. P-derived neurosteroids such as AP and THDOC potentiate synaptic GABA-A receptor function and also activate extrasynaptic GABA-A receptors in the hippocampus and thus may represent endogenous regulators of catamenial seizure susceptibility. Experimental studies have shown that neurosteroids confer greater seizure protection in animal models of catamenial epilepsy, especially without evident tolerance to their actions during chronic therapy. In the recently completed NIH-sponsored, placebo controlled phase 3 clinical trial, P therapy proved to be beneficial only in women with perimenstrual catamenial epilepsy but not in non-catamenial subjects. Neurosteroid analogs with favorable profile may be useful in the treatment of catamenial epilepsy.
train
[]
The high affinity IgE receptor (FcεRI) expression and function in airway smooth muscle.
train
[]
The airway smooth muscle (ASM) is no longer considered as merely a contractile apparatus and passive recipient of growth factors, neurotransmitters and inflammatory mediators signal but a critical player in the perpetuation and modulation of airway inflammation and remodeling. In recent years, a molecular link between ASM and IgE has been established through Fc epsilon receptors (FcεRs) in modulating the phenotype and function of these cells. Particularly, the expression of high affinity IgE receptor (FcεRI) has been noted in primary human ASM cells in vitro and in vivo within bronchial biopsies of allergic asthmatic subjects. The activation of FcεRI on ASM cells suggests a critical yet almost completely ignored network which may modulate ASM cell function in allergic asthma. This review is intended to provide a historical perspective of IgE effects on ASM and highlights the recent updates in the expression and function of FcεRI, and to present future perspectives of activation of this pathway in ASM cells.
train
[]
miR-34a functions as a tumor suppressor modulating EGFR in glioblastoma multiforme.
train
[]
Chromosome 1p36.23 is frequently deleted in glioblastoma multiforme (GBM). miR-34a localizes in this region. Our experiments found that miR-34a was often deleted and epidermal growth factor receptor (EGFR) was frequently amplified in genomic DNA of 55 GBMs using single-nucleotide polymorphism DNA microarray. Notably, we found that the mean survival time was significantly shortened for patients whose GBMs had both EGFR amplification and miR-34a deletion. Expression of miR-34a was significantly lower in GBM samples compared with normal brain tissue. Forced expression of miR-34a in GBM cells decreased their ability to migrate and profoundly decreased their levels of cyclin-A1, -B1, -D1, and -D3, as well as cyclin-dependent kinase and increased expression of cyclin kinase inhibitor proteins (p21, p27). Also, human GBM cells (U251) stable overexpressing mir-34a formed smaller tumors when growing as xenografts in immunodeficient mice compared with wild-type U251 GBM cells. Furthermore, the protein expression of EGFR decreased in the cells with forced overexpression of miR-34a. Additional studies showed that mir-34a targeted Yin Yang-1 (YY1) and YY1 is a transcription factor that can stimulate the expression of EGFR. Thus, our data suggest that miR-34a acts as a tumor suppressor by inhibiting growth of GBM cells in vitro and in vivo associated with moderating the expression of cell-cycle proteins and EGFR. Moreover, we discovered for the first time that both deletion of miR-34a and amplification of EGFR were associated with significantly decreased overall survival of GBM patients.
train
[ "Fatty acid" ]
Fatty acid composition of the edible sea cucumber Athyonidium chilensis.
train
[ "monounsaturated fatty acids", "fatty acids", "polyunsaturated fatty acids", "fatty acid", "Saturated fatty acids", "arachidonic (C20 : 4ω-6) and eicosapentaenoic (C20 : 5ω-3) acids" ]
The edible sea cucumber Athyonidium chilensis is a fishery resource of high commercial value in Chile, but no information on its lipid and fatty acid composition has been previously reported. Phospholipids were the major lipid contents of the ethanolic extracts of tubules, internal organs and body wall of A. chilensis. Saturated fatty acids predominated in tubule phospholipids (40.69%), while in internal organs and body wall phospholipids, the monounsaturated fatty acids were in higher amounts (41.99% and 37.94%, respectively). The main polyunsaturated fatty acids in phospholipids were C20 : 2ω-6, arachidonic (C20 : 4ω-6) and eicosapentaenoic (C20 : 5ω-3) acids. These results demonstrate for the first time that A. chilensis is a valuable food for human consumption in terms of fatty acids.
train
[ "allylpyrocatechol" ]
The antioxidant activity of allylpyrocatechol is mediated via decreased generation of free radicals along with escalation of antioxidant mechanisms.
train
[ "acetate", "superoxide", "Allylpyrocatechol", "GSH", "myristate", "sodium ascorbate", "phorbol", "APC", "oxygen" ]
Allylpyrocatechol (APC) is responsible for the antiinflammatory activity exhibited by the methanolic extract of leaves of Piper betle. As antiinflammatory compounds may display antioxidant properties and vice versa, we investigated the antioxidant effect of APC. APC effectively reduced phorbol-myristate-acetate-induced generation of reactive oxygen species and superoxide in murine peritoneal macrophages as well as inhibited Escherichia-coli-induced phagocytic activity of macrophages. Furthermore, pBluescript SK(+) plasmid DNA damage induced by addition of sodium ascorbate was attenuated by APC as it inhibited transformation of the supercoiled form to a relaxed form. In addition, APC increased the enzymatic (catalase) and nonenzymatic (GSH) antioxidant components of murine macrophages. Taken together, APC exhibited an antioxidant activity which was mediated both via decreased generation of free radicals along with increase in cellular antioxidants. Copyright © 2012 John Wiley & Sons, Ltd.
train
[ "streptozotocin" ]
Effects of Crataegus microphylla on vascular dysfunction in streptozotocin-induced diabetic rats.
train
[ "malondialdehite", "dihydrochloride", "nitrate", "STZ", "nitrite", "N-[3(aminomethyl) benzyl]-acetamidine", "acetylcholine", "nitric oxide", "noradrenaline", "streptozotocin" ]
Vascular dysfunction plays a key role in the pathogenesis of diabetic vascular disease. In this study, we aimed to investigate whether chronic in vivo treatment of Crataegus microphylla (CM) extract in diabetic rats induced with streptozotocin (STZ, intraperitoneal, 65 mg/kg) preserves vascular function and to evaluate whether the reduction of inducible nitric oxide synthase (iNOS), proinflammatory cytokines, and lipid peroxidation mediates its mechanisms of action. Starting at 4 weeks of diabetes, CM extract (100 mg/kg) was administrated to diabetic rats for 4 weeks. In aortic rings, relaxation to acetylcholine and vasoreactivity to noradrenaline were impaired, whereas aortic iNOS expression and plasma tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6), total nitrite-nitrate, and malondialdehite levels were increased in diabetic rats compared with controls. Chronic CM treatment significantly corrected all the above abnormalities in diabetic rats. In comparison, pretreatment of the aorta of diabetic rats with N-[3(aminomethyl) benzyl]-acetamidine, dihydrochloride (10(-5)  M), a selective inhibitor of iNOS, produced a similar recovery in vascular reactivity. These results suggest that chronic in vivo treatment of CM preserves endothelium-dependent relaxation and vascular contraction in STZ-induced diabetes, possibly by reducing iNOS expression in the aorta and by decreasing plasma levels of TNF-α and IL-6 and by preventing lipid peroxidation. Copyright © 2012 John Wiley & Sons, Ltd.
train
[]
Investigation into the genotoxicity of water extracts from hypoxis species and a commercially available hypoxis preparation.
train
[]
We performed an in vitro evaluation of the genotoxic potential of water extracts from four Hypoxis species (Hypoxis hemerocallidea, H. colchicifolia, H. rigidula, H. acuminata) and a commercial preparation thereof using the neutral red uptake (NRU) assay, the alkaline comet assay and the cytome assay in human hepatoma HepG2 cells. The relative cytotoxicity of these samples was established by determining their NI50 values (50% inhibition of NRU), and these results were used for dose-finding in genotoxicity tests. None of the tested extracts were identified as genotoxic in both the alkaline comet assay and cytome assay. Copyright © 2012 John Wiley & Sons, Ltd.
train
[ "pyrimidinedione" ]
A new pyrimidinedione derivative from the gorgonian coral Verrucella umbraculum.
train
[ "pyrimidinedione", "1,3-dimethylpyrimidine-2,4(1H,3H)-dione", "9-acetyl-1,3,7-trimethyl-pyrimidinedione", "caffeine" ]
A new pyrimidinedione derivative, 9-acetyl-1,3,7-trimethyl-pyrimidinedione (1), was isolated from the gorgonian coral Verrucella umbraculum, together with two known compounds, caffeine (2) and 1,3-dimethylpyrimidine-2,4(1H,3H)-dione (3). The structure of 1 was elucidated by the aid of 1D, 2D NMR and MS experiments. The structures of the known compounds were identified by comparison of their spectroscopic data with those reported in the literature.
train
[]
MicroRNA regulation of lipid metabolism.
train
[]
MicroRNAs are structural components of an epigenetic mechanism of post-transcriptional regulation of messenger RNA translation. Recently, there is significant interest in the application of microRNA as a blood-based biomarker of underlying physiologic conditions, and the therapeutic administration of microRNA inhibitors and mimics. The purpose of this review is to describe the current body of knowledge on microRNA regulation of genes involved in lipid metabolism, and to introduce the role of microRNA in development and progression of atherosclerosis.
train
[ "curcuminoids" ]
Effects of supplementation with curcuminoids on dyslipidemia in obese patients: a randomized crossover trial.
train
[ "curcuminoids", "curcumin", "Curcumin", "cholesterol", "triglycerides" ]
Dyslipidemia is a leading risk factor for cardiovascular disease and is also a common feature of obesity. Curcumin is a bioactive phytochemical with well-known antioxidant, anti-inflammatory, and cardioprotective properties. The present study investigated the hypolipidemic activity of curcumin in obese individuals. Participants (n = 30) were treated with curcuminoids (1 g/day), or placebo in a randomized, double-blind, placebo-controlled, crossover trial. Serum concentrations of total cholesterol, triglycerides, low-density lipoprotein cholesterol and high-density lipoprotein cholesterol, together with anthropometric parameters and high-sensitivity C-reactive protein were measured before and after each treatment period. Anthropometric parameters including weight, BMI, waist circumference, hip circumference, arm circumference, and body fat remained statistically unchanged by the end of trial (p > 0.05). As for the lipid profile parameters, serum triglycerides were significantly reduced following curcumin supplementation (p = 0.009). However, curcuminoids were not found to affect serum levels of total cholesterol, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, and high-sensitivity C-reactive protein (p > 0.05). In summary, the findings of the present study indicated that curcuminoid supplementation (1 g/day for 30 days) leads to a significant reduction in serum triglycerides concentrations but do not have a significant influence on other lipid profile parameters as well as body mass index and body fat. Copyright © 2012 John Wiley & Sons, Ltd.
train
[]
Promotion of DNA repair by nuclear IKKβ phosphorylation of ATM in response to genotoxic stimuli.
train
[]
Ataxia-telangiectasia mutated (ATM) is one of the key molecules involved in the cellular response to DNA damage. A portion of activated ATM is exported from the nucleus into the cytoplasm, where it activates the I kappa B kinase/nuclear factor kappa B (IKK/NF-κB) signaling pathway. It has been thought that activated IKKβ, which is a critical kinase for NF-κB activation, generally resides in the cytoplasm and phosphorylates cytoplasmic downstream molecules, such as IκBα. Here, we identified a new role for IKKβ during the response to DNA damage. ATM phosphorylation in response to alkylating agents consisted of two phases: the early phase (up to 3 h) and late phase (after 6 h). A portion of the activated IKKβ generated during the DNA damage response was found to translocate into the nucleus and directly phosphorylate ATM in the late phase. Furthermore, the phosphorylation of ATM by nuclear IKKβ was suggested to promote DNA repair. In parallel, activated IKKβ induced classical NF-κB activation and was involved in anti-apoptosis. Our findings define the function of IKKβ during the response to DNA damage, which promotes cell survival and DNA repair, and maintains cellular homeostasis.
train
[]
The Grainyhead transcription factor Grhl3/Get1 suppresses miR-21 expression and tumorigenesis in skin: modulation of the miR-21 target MSH2 by RNA-binding protein DND1.
train
[]
Epidermal differentiation and stratification, crucial for barrier formation, are regulated by a complex interplay of transcription factors, including the evolutionarily conserved Grainyhead-like 3 (Grhl3/Get1); Grhl3-deleted mice exhibit impaired epidermal differentiation and decreased expression of multiple differentiation genes. To test whether Grhl3 regulates epidermal genes indirectly by controlling the expression of specific microRNAs (miRs), we performed miR profiling and identified 11 miRs that are differentially regulated in Grhl3(-/-) skin, one of which is miR-21, previously shown to be upregulated in diseased skin, including in psoriasis and squamous cell skin cancer. We found that miR-21 is normally expressed in the post-mitotic suprabasal layers of the epidermis, overlapping with Grhl3. The miR-21 promoter is bound and repressed by Grhl3 indicating that these two factors are involved in a regulatory loop maintaining homeostasis in the epidermis. Although miR-21 overexpression in normal keratinocytes had mild effects on the expression of several known miR-21 targets, an enhanced downregulation of the miR-21 tumor-related targets, including MSH2, was observed in Ras-transformed keratinocytes. The increased sensitivity of transformed keratinocytes to miR-21's effects occurs in part through downregulation of the RNA-binding protein DND1 during the transformation process. Additionally, we observed increased tumorigenesis in mice subcutaneously injected with transformed keratinocytes lacking Grhl3. These findings indicate that decreased Grhl3 expression contributes to tumor progression and upregulation of the oncomir miR-21 in squamous cell carcinoma of the skin.
train
[ "apigenin 7-O-β-D-cellobiosyl-4'-O-β-D-glucopyranoside" ]
The first total synthesis of apigenin 7-O-β-D-cellobiosyl-4'-O-β-D-glucopyranoside isolated from Salvia uliginosa.
train
[ "naringenin", "apigenin 7-O-β-D-cellobiosyl-4'-O-β-D-glucopyranoside", "apigenin 7-O-β-D-cellobioside" ]
The first total synthesis of apigenin 7-O-β-D-cellobioside (5) and apigenin 7-O-β-D-cellobiosyl-4'-O-β-D-glucopyranoside (8), which were isolated from petals of Salvia patens and Salvia uliginosa, were achieved in four and six steps and 76% and 57%, respectively, overall yield, from naringenin (1). The total synthesis contained two-glycosylation, acetylation, oxidation, selective deacetylation and deprotection steps. Although this route contained six steps, the targeted compounds were obtained with higher yields and easier purifications than other synthetic methods.
train
[ "vicinal diol", "NaIO4", "THF", "SiO2", "acetal triterpenes" ]
Cytotoxicity of semisynthetic acetal triterpenes from one-pot vicinal diol cleavage following by lactolization: Reaction promoted by NaIO4/SiO2 gel in THF.
train
[ "Arjunolic acid", "vicinal diol", "3-O-β-D-glucopyranosylsitosterol", "silica gel", "24-hydroxytormentic acid", "THF", "hydroxyl", "sodium periodate", "bicyclotriacetal of β-sitosterol", "lactol pentacyclic triterpenes", "C-C" ]
In situ C-C bond cleavage of vicinal diol following by the lactolisation resulted from separated treatment of Arjunolic acid (1), 24-hydroxytormentic acid (2) and 3-O-β-D-glucopyranosylsitosterol (3) with sodium periodate and silica gel in dried THF according to the strategic position of hydroxyl functions in the molecule. The reaction led to a lactol pentacyclic triterpenes 1A, 2A and a bicyclotriacetal of β-sitosterol 3A. These products were further acetylated and the cytotoxicity of all molecules was evaluated against human fibrosarcoma HT1080 cancer cells lines.
train
[]
Tea tree oil-induced transcriptional alterations in Staphylococcus aureus.
train
[ "terpene", "terpinen-4-ol" ]
Tea tree oil (TTO) is a steam distillate of Melaleuca alternifolia that demonstrates broad-spectrum antibacterial activity. This study was designed to document how TTO challenge influences the Staphylococcus aureus transcriptome. Overall, bioinformatic analyses (S. aureus microarray meta-database) revealed that both ethanol and TTO induce related transcriptional alterations. TTO challenge led to the down-regulation of genes involved with energy-intensive transcription and translation, and altered the regulation of genes involved with heat shock (e.g. clpC, clpL, ctsR, dnaK, groES, groEL, grpE and hrcA) and cell wall metabolism (e.g. cwrA, isaA, sle1, vraSR and vraX). Inactivation of the heat shock gene dnaK or vraSR which encodes a two-component regulatory system that responds to peptidoglycan biosynthesis inhibition led to an increase in TTO susceptibility which demonstrates a protective role for these genes in the S. aureus TTO response. A gene (mmpL) encoding a putative resistance, nodulation and cell division efflux pump was also highly induced by TTO. The principal antimicrobial TTO terpene, terpinen-4-ol, altered ten genes in a transcriptional direction analogous to TTO. Collectively, this study provides additional insight into the response of a bacterial pathogen to the antimicrobial terpene mixture TTO. Copyright © 2012 John Wiley & Sons, Ltd.
train
[ "methiocarb", "taurine", "vitamin E" ]
Acute effects of methiocarb on oxidative damage and the protective effects of vitamin E and taurine in the liver and kidney of Wistar rats.
train
[ "superoxide", "carbamate", "taurine", "Methiocarb", "glutathione", "malondialdehyde", "vitamin E" ]
Methiocarb (MC) is a widely used carbamate pesticide in agriculture and health programs. Although the main molecular mechanism of carbamate toxicity involves acetylcholinesterase inhibition, studies have also implicated the induction of oxidative stress. Therefore, the present study was aimed to evaluate the effect of acute MC exposure on lipid peroxidation, antioxidant defense systems, histological changes in Wistar rats and the protective effect of pretreatment with vitamin E and taurine. A total of 48 rats were randomly divided into six groups. Rats in group I were given corn oil, while those in group III were dosed with vitamin E (100 mg/kg body weight (b.w.)) and in group V were dosed with taurine (50 mg/kg b.w.). Rats in group II were administered with MC only (25 mg/kg b.w., 1/4 of median lethal dose (LD(50))), while those in groups IV and VI were pretreated with vitamin E (100 mg/kg b.w.) and taurine (50 mg/kg b.w.) for 20 days, respectively, and then exposed to MC (25 mg/kg b.w.). The rats administered with MC showed significant increase in the levels of malondialdehyde in the liver and kidney as an index of lipid peroxidation. Levels of glutathione and activities of superoxide dismutase, catalase and glutathione peroxidase were significantly increased, while activity of glutathione reductase remained unchanged in both the tissues after MC treatment. Mild degenerative histological changes were observed in liver tissue, while the changes in kidney tissue were more severe then liver after MC treatment. Pretreatment with vitamin E and taurine resulted in a significant decrease in the lipid peroxidation and alleviating effects on antioxidant defense systems in both the tissues, while protective effects on the histological changes were shown only in kidney when compared with liver. In conclusion, the study has demonstrated that the acute MC exposure in Wistar rats caused oxidative damage on liver and kidney, which were partly ameliorated by the pretreatment of vitamin E and taurine.
train
[ "sulfonamides" ]
Recent advances in medicinal chemistry of sulfonamides. Rational design as anti-tumoral, anti-bacterial and anti-inflammatory agents.
train
[ "sulfonamides", "sulfonamide" ]
Now-a-days, cancer is becoming one of the major problems of public health in the world. Pharmacology treatment is a way to increase quality and long life. Predominantly, in last decade sulfonamide derivatives have been described as potential carbonic anhydrase inhibitors. In the present work, we describe recent advances during the last decade in medicinal chemistry of sulfonamides derivatives with some examples of rational design as anti-tumoral, antibacterial and anti-inflammatory agents. We show strategy design, structure-activity relationship, biological activity and advances of new sulfonamide compounds that have more health significance than some clinically used sulfonamides.
train
[ "terpenoid" ]
Flax terpenoid pathway as a source of health promoting compounds.
train
[ "omega-3 fatty acids", "terpenes", "tocochromanols", "terpenoid", "sterols" ]
Flax is an important crop plant grown mainly for its fiber and seeds, which are also rich in omega-3 fatty acids and valuable antioxidants derived from the terpenoid pathways including carotenoids, tocochromanols and sterols. Many of those components found in flax have been recently shown to positively influence human health. Although terpenes vary greatly in their chemical structure, mainly two mechanisms of their biological activity can be considered: direct antioxidation, and a recently explored one, connected to specific receptor and cell signaling pathway activation. Recent studies show that many of the health promoting agents derived from flax act through both of the mentioned mechanisms, resulting in synergistic physiological effects. The work summarizes the two mechanisms, focusing mainly on the one involving cell signaling, as a promising target for medicine and pharmacotherapy.
train
[]
Direct Effects of Vaccinium myrtillus L. Fruit Extracts on Rat Heart Mitochondrial Functions.
train
[ "Succinate", "malvidin-3-glucoside", "malate", "cyanidin-3-galactoside", "malvidin-3-galactoside", "anthocyanins", "H2 O2", "pyruvate", "anthocyanin" ]
In this study, the direct influence of bilberry (Vaccinium myrtillus) fruit extracts (aqueous and ethanolic) rich in anthocyanins on the oxidative phosphorylation of isolated rat heart mitochondria was investigated in vitro. Higher concentrations of bilberry extracts concentration-dependently inhibited mitochondrial state 3 respiration (by 23%-61%) with pyruvate plus malate, mildly (by 1.2- to 1.3-fold) uncoupled the oxidative phosphorylation, and increased (by 30%-87%) the state 4 respiration rate in the presence of exogenous cytochrome c. Succinate oxidation was less affected. Pure anthocyanins, the main components of used extracts, malvidin-3-glucoside, malvidin-3-galactoside, and cyanidin-3-galactoside, had no effect on oxidation of pyruvate plus malate. A statistically significant decrease in H2 O2 production by mitochondria was found in the presence of bilberry fruit extracts. Our findings show that bilberry fruit anthocyanin-rich extracts possess direct effects on rat heart mitochondrial function in vitro. These findings give the first insights into the mechanism(s) of their action on cellular energy metabolism. Copyright © 2012 John Wiley & Sons, Ltd.
train
[ "Ethanol" ]
Ethanol extract of Magnolia officinalis prevents lipopolysaccharide-induced memory deficiency via its antineuroinflammatory and antiamyloidogenic effects.
train
[ "honokiol", "4-O-methylhonokiol", "nitric oxide", "obovatol", "neolignan", "ethanol", "magnolol" ]
Magnolia bark contains several compounds such as magnolol, honokiol, 4-O-methylhonokiol, obovatol, and other neolignan compounds. These compounds have been reported to have various beneficial effects in various diseases. There is sufficient possibility that ethanol extract of Magnolia officinalis is more effective in amyloidogenesis via synergism of these ingredients. Neuroinflammation has been known to play a critical role in the pathogenesis of Alzheimer's disease (AD). We investigated whether the ethanol extract of M. officinalis (10 mg/ kg in 0.05% ethanol) prevents memory dysfunction and amyloidogenesis in AD mouse model by intraperitoneal lipopolysaccharide (LPS, 250 µg/ kg/day for seven times) injection. We found that ethanol extract of M. officinalis prevented LPS-induced memory deficiency as well as inhibited the LPS-induced elevation of inflammatory proteins, such as inducible nitric oxide synthase and cyclooxygenase 2, and activation of astrocytes and microglia. In particular, administration of M. officinalis ethanol extract inhibited LPS-induced amyloidogenesis, which resulted in the inhibition of amyloid precursor protein, beta-site amyloid-precursor-protein-cleaving enzyme 1 and C99. Thus, this study shows that ethanol extract of M. officinalis prevents LPS-induced memory impairment as well as amyloidogenesis via inhibition of neuroinflammation and suggests that ethanol extract of M. officinalis might be a useful intervention for neuroinflammation-associated diseases such as AD. Copyright © 2012 John Wiley & Sons, Ltd.
train
[ "glutamate" ]
Metabotropic glutamate receptor 4 in the basal ganglia of parkinsonian monkeys: ultrastructural localization and electrophysiological effects of activation in the striatopallidal complex.
train
[ "Glutamate", "VU0155041", "L-AP4", "1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine", "glutamate", "MPTP", "6-hydroxydopamine" ]
Group III metabotropic glutamate receptors (mGluR4,7,8) are widely distributed in the basal ganglia. Injection of group III mGluR agonists into the striatopallidal complex alleviates parkinsonian symptoms in 6-hydroxydopamine-treated rats. In vitro rodent studies have suggested that this may be partly due to modulation of synaptic transmission at striatopallidal and corticostriatal synapses through mGluR4 activation. However, the in vivo electrophysiological effects of group III mGluRs activation upon basal ganglia neurons activity in nonhuman primates remain unknown. Thus, in order to examine the anatomical substrates and physiological effects of group III mGluRs activation upon striatal and pallidal neurons in monkeys, we used electron microscopy immunohistochemistry to localize mGluR4, combined with local administration of the group III mGluR agonist L-AP4, or the mGluR4 positive allosteric modulator VU0155041, to assess the effects of group III mGluR activation on the firing rate and pattern of striatal and pallidal neurons in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated parkinsonian monkeys. At the ultrastructural level, striatal mGluR4 immunoreactivity was localized in pre- (60%) and post-synaptic (30%) elements, while in the GPe, mGluR4 was mainly expressed pre-synaptically (90%). In the putamen, terminals expressing mGluR4 were evenly split between putative excitatory and inhibitory terminals, while in the GPe, most labeled terminals displayed the ultrastructural features of striatal-like inhibitory terminals, though putative excitatory boutons were also labeled. No significant difference was found between normal and parkinsonian monkeys. Extracellular recordings in awake MPTP-treated monkeys revealed that local microinjections of small volumes of L-AP4 resulted in increased firing rates in one half of striatal cells and one third of pallidal cells, while a significant number of neurons in both structures showed either opposite effects, or did not display any significant rate changes following L-AP4 application. VU0155041 administration had little effect on firing rates. Both compounds also had subtle effects on bursting and oscillatory properties, acting to increase the irregularity of firing. The occurrence of pauses in firing was reduced in the majority (80%) of GPe neurons after L-AP4 injection. Our findings indicate that glutamate can mediate multifarious physiological effects upon striatal and pallidal neurons through activation of pre-synaptic group III mGluRs at inhibitory and excitatory synapses in parkinsonian monkeys. This article is part of a Special Issue entitled 'Metabotropic Glutamate Receptors'.
train
[]
Learning to forget: manipulating extinction and reconsolidation processes to treat addiction.
train
[]
Finding effective long-lasting treatments for drug addiction has been an elusive goal. Consequently, researchers are beginning to investigate novel treatment strategies including manipulations of drug-associated memories. When environmental stimuli (cues) become associated with drug use, they become powerful motivators of continued drug use and relapse after abstinence. Reducing the strength of these cue-drug memories could decrease the number of factors that induce craving and relapse to aid in the treatment of addiction. Enhancing the consolidation of extinction learning and/or disrupting cue-drug memory reconsolidation are two strategies that have been proposed to reduce the strength of cues in motivating drug-seeking and drug-taking behavior. Here, we review the latest basic and clinical research elucidating the mechanisms underlying consolidation of extinction and reconsolidation of cue-drug memories in the hopes of developing pharmacological tools that exploit these signaling systems to treat addiction.
train
[ "Schiff bases", "16-isopropyl-5, 9-dimethyltetracyclo [10.2.2.0(1, 10).0(4, 9)] hexadec-15-ene-5, 14-dicarboxylic acid" ]
Syntheses and antibacterial activity of Schiff bases from 16-isopropyl-5, 9-dimethyltetracyclo [10.2.2.0(1, 10).0(4, 9)] hexadec-15-ene-5, 14-dicarboxylic acid.
train
[ "16-Isopropyl-5, 9-dimethyltetracyclo [10.2.2.0(1, 10).0(4, 9)] hexadec-15-ene-5, 14-dicarboxylic acid", "(1)H", "Schiff bases" ]
16-Isopropyl-5, 9-dimethyltetracyclo [10.2.2.0(1, 10).0(4, 9)] hexadec-15-ene-5, 14-dicarboxylic acid (1b) was prepared from rosin through a Diels-Alder addition reaction. Then, a group of Schiff bases derived from 1b was synthesised. Their structures were characterised by IR,(1)H-NMR, MS and elemental analysis. The antibacterial activities of these newly synthesised Schiff bases were also investigated. The results show that these compounds possess antibacterial activities against Staphylococcus aureus and Escherichia coli. Among them, compounds 5a, 5b and 5c, exhibit remarkable antibacterial activity against E. coli.
train
[]
TGF-β and NF-κB signal pathway cross-talk is mediated through TAK1 and SMAD7 in a subset of head and neck cancers.
train
[ "Celastrol" ]
Transforming growth factor-beta (TGF-β) has a dual role in epithelial malignancies, including head and neck squamous cell carcinoma (HNSCC). Attenuation of canonical TGF-β signaling enhances de novo tumor development, whereas TGF-β overexpression and signaling paradoxically promotes malignant progression. We recently observed that TGF-β-induced growth arrest response is attenuated, in association with aberrant activation of nuclear factor-κB (NF-κB), a transcription factor, which promotes malignant progression in HNSCC. However, what role cross-talk between components of the TGF-β and NF-κB pathways plays in altered activation of these pathways has not been established. Here, we show TGF-β receptor II and TGF-β-activated kinase 1 (TAK1) are predominantly expressed in a subset of HNSCC tumors with nuclear activation of NF-κB family member RELA (p65). Further, TGF-β1 treatment induced sequential phosphorylation of TAK1, IKK, IκBα and RELA in human HNSCC lines. TAK1 enhances TGF-β-induced NF-κB activation, as TAK1 siRNA knockdown decreased TGF-β1-induced phosphorylation of IKK, IκB and RELA, degradation of IκBα, RELA nuclear translocation and DNA binding, and NF-κB-induced reporter and target gene transcription. Functionally, TAK1 siRNA inhibited cell proliferation, migration and invasion. Celastrol, a TAK1 inhibitor and anti-inflammatory compound used in traditional Chinese medicine, also decreased TGF-β1-induced phosphorylation of TAK1 and RELA, and suppressed basal, TGF-β1- and tumor necrosis factor-alpha (TNF-α)-induced NF-κB reporter gene activity. Celastrol also inhibited cell proliferation, while increasing sub-G0 DNA fragmentation and Annexin V markers of apoptosis. Furthermore, TGF-β and RELA activation promoted SMAD7 expression. In turn, SMAD7 preferentially suppressed TGF-β-induced SMAD and NF-κB reporters when compared with constitutive or TNF-α-induced NF-κB reporter gene activation. Thus, cross-talk by TGF-β via TAK1 and NF-κB promotes the malignant phenotype of HNSCC. Moreover, NF-κB may contribute to the downstream attenuation of canonical TGF-β signaling through increased SMAD7 expression. Celastrol highlights the therapeutic potential of agents targeting TAK1 as a key node in this pro-oncogenic TGF-β-NF-κB signal pathway.
train
[]
Insulin resistance is not necessarily an essential element of metabolic syndrome.
train
[ "glucose", "cholesterol", "triglycerides" ]
Type 2 diabetes is frequently associated with metabolic syndrome (MetS). Insulin resistance (IR) is thought to be the underlying pathophysiology of MetS. The purpose of this study is to examine the association of MetS with IR and beta cell function. This is a cross-sectional study in NHANES 1999-2000 participants who were at least 18 years old, including 911 non-Hispanic whites (NHW), 398 non-Hispanic blacks (NHB), and 595 Mexican-Americans (MA). MetS was defined based on the revised ATP III. IR and beta cell function were calculated using homeostasis model assessment (HOMA-IR and HOMA-B). The high-risk tertile was defined as the highest HOMA-IR and lowest HOMA-B. The odds ratio (OR) was calculated against the other two tertiles. The relationship of HOAM-IR and HOMA-B with the components of MetS was also examined. IR was a risk factor of MetS in all three ethnic groups (OR 4.17-12.01, P < 0.0001). Fasting glucose, triglycerides, and HDL cholesterol were associated with IR (P < 0.001) and correlated with HOMA-IR (P < 0.001), while inconsistent results were noted in blood pressure and waist circumference among three racial/ethnic groups. However, in the MetS subjects, 32 % of NHW, 28 % of NHB, and 44 % of MA were not in the IR tertile and in the IR subjects, 25 % of NHW, 36 % NHB, and 30 % of MA did not have MetS. No relationship was found between beta cell function and MetS. Although IR is a risk factor for MetS, IR is neither necessary nor required for MetS.
train
[]
An in vitro Study on the DNA Damaging Effects of Phytochemicals Partially Isolated from an Extract of Glinus lotoides.
train
[ "hopane", "flavonoids", "saponins", "oleanane", "methanol" ]
An extract of Glinus lotoides, a medicinal plant used in Africa and Asia for various therapeutic purposes, was recently shown to cause DNA damage in vitro. To further explore the potential genotoxicity of this plant, fractionation of the crude extract was performed using reverse phase solid-phase extraction and a stepwise gradient elution of methanol in water. Four fractions were collected and subsequently analysed for their DNA damaging effects in mouse lymphoma cells using an alkaline version of the comet assay. To identify potential genotoxic and non-genotoxic principles, each fraction was then subjected to liquid chromatography coupled to mass spectrometry, LC-MS/MS. 1D and 2D nuclear magnetic resonance analyses were used to confirm the identity of some saponins. Although fractions containing a mixture of flavonoids and oleanane-type saponins or oleanane-type saponins alone produced no DNA damage, those containing hopane-type saponins exhibited a pronounced DNA damaging effect without affecting the viability of the cells. To conclude, even if this study presents evidence that hopane-type of saponins are endowed with a DNA damaging ability, further studies are needed before individual saponins can be cited as a culprit for the previously reported genotoxicity of the crude extract of G. lotoides. Copyright © 2012 John Wiley & Sons, Ltd.
train
[ "myo-inositol" ]
Chronic treatment with myo-inositol reduces white adipose tissue accretion and improves insulin sensitivity in female mice.
train
[ "glucose", "Myo-inositol", "inositol", "myo-inositol" ]
Type 2 diabetes is a complex disease characterized by a state of insulin resistance in peripheral tissues such as skeletal muscle, adipose tissue or liver. Some inositol isomers have been reported to possess insulin-mimetic activity and to be efficient in lowering blood glucose level. The aim of the present study was to assess in mice the metabolic effects of a chronic treatment with myo-inositol, the most common stereoisomer of inositol. Mice given myo-inositol treatment (0.9 or 1.2 mg g(-1) day(-1), 15 days, orally or intraperitoneally) exhibited an improved glucose tolerance due to a greater insulin sensitivity. Mice treated with myo-inositol exhibited a decreased white adipose tissue accretion (-33%, P<.005) compared with controls. The decrease in white adipose tissue deposition was due to a decrease in adipose cell volume (-33%, P<.05), while no change was noticed in total adipocyte number. In skeletal muscle, in vivo as well as ex vivo myo-inositol treatment increased protein kinase B/Akt phosphorylation under baseline and insulin-stimulated conditions, suggesting a synergistic action of myo-inositol treatment and insulin on proteins of the insulin signalling pathway. Myo-inositol could therefore constitute a viable nutritional strategy for the prevention and/or treatment of insulin resistance and type 2 diabetes.
train
[ "glutamate" ]
Molecular mechanisms that desensitize metabotropic glutamate receptor signaling: an overview.
train
[ "Glutamate", "glutamate" ]
The purpose of the present article is to review our actual knowledge on the desensitization of metabotropic glutamate receptors based on the literature available so far, with the attempt to emphasize all converging data and to give a possible explanation to those evidences that still remain controversial. 1. We review our knowledge on the regulation of mGlu receptors based on the available literature 2. We report converging data and we comment on issues that still remain controversial. This article is part of a Special Issue entitled 'Metabotropic Glutamate Receptors'.
train
[ "Azole" ]
Azole interactions with multidrug therapy in pediatric oncology.
train
[ "azoles", "corticosteroids" ]
Patients with cancer receive multidrug therapy. Antineoplastic agents and supportive care drugs are often administered together, leading to potential drug-drug interactions. These interactions may have significant clinical implications in terms of toxicity or a decrease in the efficacy of the treatment administered. Here, we focus on the role of azoles and their main pharmacokinetic interactions with the principal classes of drugs used in pediatric oncology. The co-administration of azoles and antineoplastic agents, corticosteroids, immunosuppressants, antacids, antiemetics, antiepileptic drugs and analgesics was investigated, and a practical guide on the management of these drugs when administered together is provided.
train
[]
Bioremoval of heavy metals from industrial effluent by fixed-bed column of red macroalgae.
train
[ "Zn(2+)", "Cu(2+)", "Mn(2+)", "Ni(2+)" ]
Three different species of nonliving red algal biomass Laurancia obtusa, Geldiella acerosa and Hypnea sp. were used to build three types of fixed-bed column for the removal of toxic heavy metal ions such as Cu(2+), Zn(2+), Mn(2+) and Ni(2+) from industrial effluent. In general, the highest efficiency of metal ion bioremoval was recorded for algal column of L. obtusa followed by G. acerosa and the lowest one was recorded for Hypnea sp., with mean removal values of 94%, 85% and 71%, respectively. The obtained results showed that biological treatments of industrial effluents with these algal columns, using standard algal biotest, Pseudokirchneriella subcapitata, were capable of reducing effluent toxicities from 75% to 15%, respectively. Red algal column may be considered as an inexpensive and efficient alternative treatment for conventional removal technology, for sequestering heavy metal ions from industrial effluents.
train
[]
Nuclear Receptors in atherosclerosis: a superfamily with many 'Goodfellas'.
train
[]
Nuclear Receptors form a superfamily of 48 transcription factors that exhibit a plethora of functions in steroid hormone signaling, regulation of metabolism, circadian rhythm and cellular differentiation. In this review, we describe our current knowledge on the role of Nuclear Receptors in atherosclerosis, which is a multifactorial disease of the vessel wall. Various cell types are involved in this chronic inflammatory pathology in which multiple cellular processes and numerous genes are dysregulated. Systemic risk factors for atherosclerosis are among others adverse blood lipid profiles, enhanced circulating cytokine levels, as well as increased blood pressure. Since many Nuclear Receptors modulate lipid profiles or regulate blood pressure they indirectly affect atherosclerosis. In the present review, we focus on the functional involvement of Nuclear Receptors within the atherosclerotic vessel wall, more specifically on their modulation of cellular functions in endothelial cells, smooth muscle cells and macrophages. Collectively, this overview shows that most of the Nuclear Receptors are athero-protective in atherosclerotic lesions.
train
[]
Enzyme replacement therapy for mucopolysaccharidosis VI: long-term cardiac effects of galsulfase (Naglazyme®) therapy.
train
[ "N-acetylgalactosamine" ]
Characteristic cardiac valve abnormalities and left ventricular hypertrophy are present in untreated patients with mucopolysaccharidosis type VI (MPS VI). Cardiac ultrasound was performed to investigate these findings in subjects during long-term enzyme replacement therapy (ERT) with recombinant human arylsulfatase B (rhASB, rhN-acetylgalactosamine 4-sulfatase, galsulfase, Naglazyme®). Studies were conducted in 54 subjects before ERT was begun and at specific intervals for up to 96 weeks of weekly infusions of rhASB at 1 mg/kg during phase 1/2, phase 2, and phase 3 trials of rhASB. At baseline, mitral and aortic valve obstruction was present and was significantly greater in those ≥12 years of age. Mild mitral and trace aortic regurgitation were present, the former being significantly greater in those <12 years. Left ventricular hypertrophy, with averaged z-scores ranging from 1.6-1.9 SD greater than normal, was present for ages both <12 and ≥12 years. After 96 weeks of ERT, ventricular septal hypertrophy regressed in those <12 years. For those ≥12 years, septal hypertrophy was unchanged, and aortic regurgitation increased statistically but not physiologically. Obstructive gradients across mitral and aortic valves remained unchanged. The results suggest that long-term ERT is effective in reducing intraventricular septal hypertrophy and preventing progression of cardiac valve abnormalities when administered to those <12 years of age.
train
[ "QNT3-18" ]
Preformulation and formulation of newly synthesized QNT3-18 for development of a skin whitening agent.
train
[ "QNT3-18", "QNT3-20", "(E)-2-(4-tert-butylbenzylidene) hydrazinecarbothioamide", "4-tert-butylphenylthiourea", "octanol" ]
New molecules having the structure of (E)-2-(4-tert-butylbenzylidene) hydrazinecarbothioamide (QNT3-18) or 4-tert-butylphenylthiourea (QNT3-20) was synthesized and presupposed to inhibit melanogenesis through the inhibition of tyrosinase, which is involved in melanin formation. Therefore, we seek to develop these new molecules as skin whitening agents in topical formulations based on preformulation studies. QNT3-18 or QNT3-20 showed a strong single endothermic peak at 159.34°C with 10.79 μm-sized or at 150.69°C with 9.0 μm-sized aggregated particles, respectively. Both QNT3-18 and QNT3-20 did not show cytotoxicity at effective concentration range (0.4 µM) against keratinocyte cells and QNT3-18 was more retained than QNT3-20 in the skin instead of permeating through the skin. QNT3-18 or QNT3-20 was practically insoluble in water; the aqueous solubility was 3.8 ± 0.37 or 130.6 ± 2.52 μg/mL, respectively. Also, the partition coefficient value (log P) corresponding to the quotient between aqueous and octanol concentration of the molecule was 3.9 or 2.6, respectively. The skin retention amount of QNT3-18 was 1.7-fold higher than that of QNT3-20. When the optimal SLN cream (J3 formulation) containing 4 μM QNT3-18 was applied on the backs of hairless rats for 4 days after UV irradiation for 7 days and the skin color was checked by reflectance spectrophotometer, the rat skin treated with SLN cream with QNT3-18 quickly recovered to normal compared to skin treated with SLN cream without QNT3-18. Taken together, this study suggests that topical formulations such as creams including SLNs with QNT3-18 might be appropriate carriers for skin whitening agents.
train
[]
Formulas used by tibetan doctors at men-tsee-khang in India for the treatment of neuropsychiatric disorders and their correlation with pharmacological data.
train
[]
The aim of the present study was to identify formulas used at Men-Tsee-Khang (Tibetan Medical and Astrological Institute), India, for the treatment of neuropsychiatric disorders and to compare the Tibetan usage of particular ingredients with pharmacological data from the scientific database. Using ethnographic methods, five doctors were selected and interviewed. A correlation was observed between central nervous system disorders and rLung, one of the three humors in Tibetan medicine, which imbalance is the source of mental disorders, and ten multi-ingredient formulas used to treat the imbalance of this particular humor were identified. These formulas utilize 61 ingredients; among them were 48 plant species. Each formula treats several symptoms related to rLung imbalance, so the plants may have therapeutic uses distinct from those of the formulas in which they are included. Myristica fragrans, nutmeg, is contained in 100% of the formulas, and its seeds exhibit stimulant and depressant actions affecting the central nervous system. Preclinical and clinical data from the scientific literature indicate that all of the formulas include ingredients with neuropsychiatric action and corroborate the therapeutic use of 75.6% of the plants. These findings indicate a level of congruence between the therapeutic uses of particular plant species in Tibetan and Western medicines. Copyright © 2012 John Wiley & Sons, Ltd.
train
[ "tetrabrombisphenol A" ]
Effect of tetrabrombisphenol A on induction of apoptosis in the testes and changes in expression of selected testicular genes in CD1 mice.
train
[ "TBBPA", "Tetrabromobisphenol A" ]
Tetrabromobisphenol A (TBBPA) is a substance widely used in industry as a flame retardant. TBBPA was found in the environment and was detected even in the human body. The effect of this chemical was observed in different cell lines in vitro and it is supposed that TBBPA may affect various hormonal systems in vivo. In this study we examined the effect of TBBPA on the reproductive parameters of two generations of outbred mice in vivo. Experimental and control animals of F1 generation were bred in various conditions to enable evaluation of the possible trans-generational effect. An increased incidence of apoptosis in the testes and changes in the morphometry of seminiferous tubules was detected in the experimental animals. In addition, changes in the expression pattern of selected genes encoding proteins that play an important role during spermatogenesis were observed. In contrast, sperm quality and reproduction were not affected by TBBPA.
train
[]
Mild Mitochondrial Depolarization is Involved in a Neuroprotective Mechanism of Citrus sunki Peel Extract.
train
[ "tangeretin", "acetoxymethyl ester", "calcium", "nobiletin", "Polymethoxylated flavones", "H2 O2", "poly (ADP-ribose)" ]
Mitochondrial membrane potential (∆Ψm ) contributes to determining a driving force for calcium to enter the mitochondria. It has been demonstrated that even a small mitochondrial depolarization is sufficient to prevent mitochondrial calcium overload and the subsequent apoptosis. Therefore, mild mitochondrial depolarization has been recently evaluated as a novel mechanism of neuroprotection via inhibiting neurotoxic mitochondrial calcium overload during neuronal insults. In the present study, using both real-time recording and flow cytometric analyses of ∆Ψm , we demonstrated that ethanolic peel extract of Citrus sunki Hort. ex Tanaka (CPE) and its active compounds are capable of inducing a mild mitochondrial depolarization. Polymethoxylated flavones such as nobiletin and tangeretin were found as the active compounds responsible for CPE effects on ∆Ψm . Neuronal viability was significantly increased in a dose-dependent manner by CPE treatment in H2 O2 -stimulated HT-22 cells as an in vitro neuronal insult model. CPE treatment significantly inhibited H2 O2 -induced apoptotic processes such as chromatin condensation, caspase 3 activation and anti-poly (ADP-ribose) polymerase (PARP) cleavage. CPE treatment significantly blocked mitochondrial calcium overload in H2 O2 -stimulated HT-22 neurons as indicated by rhod-2 acetoxymethyl ester. Taken together, our findings suggest that CPE and its active compounds may be considered as promising neuroprotective agents via inducing a mild mitochondrial depolarization. Copyright © 2012 John Wiley & Sons, Ltd.
train
[]
Dendritic cell migration assay: a potential prediction model for identification of contact allergens.
train
[ "2,4-dinitrochlorobenzene", "cinnamic-alcohol", "isoeugenol", "salicylic acid", "phenol", "paraphenylendiamine", "ammonium-hexachloroplatinate", "cinnamaldehyde", "eugenol", "tetramethylthiuram disulfide", "nickel-sulfate", "octanoic acid", "sodium lauryl sulfate" ]
This manuscript describes methodology and a prediction model for the MUTZ-LC migration assay. The assay represents the physiological change in Langerhans cell (LC) behavior after exposure to a sensitizing chemical, resulting in LC migration from the epidermis to the dermis. MUTZ-LC are derived from the commercially available MUTZ-3 cell line. Upon exposure to a sensitizer MUTZ-LC migrate preferentially towards CXCL12 whereas upon exposure to a non-sensitizer MUTZ-LC migrate towards CCL5. A CXCL12/CCL5 ratio >1.10 in 2/3 independent experiments is indicative of a sensitizer, whereas a CXCL12/CCL5 ratio ≤1.10 is indicative of a non-sensitizer. At non cytotoxic chemical concentrations 9 sensitizers (2,4-dinitrochlorobenzene, paraphenylendiamine, cinnamaldehyde, isoeugenol, nickel-sulfate, tetramethylthiuram disulfide, eugenol, cinnamic-alcohol, ammonium-hexachloroplatinate) were distinguished from 4 non sensitizers (sodium lauryl sulfate, salicylic acid, phenol, octanoic acid). Critical points in assay performance are (i) MUTZ-3 passage number after thawing (p6-p40); (ii) cell viability (>80%); (iii) standard curve to optimize correlation of fluorescence with cell number; and (iv) optimization of the concentration of rhCXCL12 and rhCCL5 in transwell. The protocol has been tested in three European laboratories and results suggest that it may provide working conditions for performing the DC migration assay which is aimed at distinguishing sensitizers from non sensitizers.
train
[]
Non-invasive brain stimulation in neurological diseases.
train
[]
Non-invasive brain stimulation has shown its potential to modulate brain plasticity in humans. Endeavour has been made to utilize brain stimulation in neurological diseases to enhance adaptive processes and prevent potential maladaptive ones. In stroke for instance both sensorimotor and higher cognitive impairment, such as aphasia and neglect, has been addressed to facilitate functional recovery. In Parkinson's disease, brain stimulation has been evaluated to improve motor and non-motor symptoms. In the present review we provide an update of the field of transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) as non-invasive brain stimulation techniques to improve motor and higher cognitive functions in patients suffering from stroke and Parkinson's disease. Rather than attempting to be comprehensive in regard of the reviewed scientific field, this article may be considered as a present day's framework of the application of non-invasive brain stimulation on selected examples of common neurological diseases. At the end we will briefly discuss open controversies and future directions of the field which has to be addressed in upcoming studies. This article is part of a Special Issue entitled 'Cognitive Enhancers'.
train
[]
Angiotensin-Converting Enzyme Inhibitory Activity and Antioxidant Properties of Nepeta crassifolia Boiss & Buhse and Nepeta binaludensis Jamzad.
train
[ "Apigenin-7-O-glucoside", "Fe(II)", "luteolin", "ABTS", "oleanolic acid", "ursolic acid", "ixoroside", "2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid)", "apigenin", "n-Butanol", "DPPH", "ethyl acetate", "8-hydroxycirsimaritin", "cirsimaritin", "2,2-diphenyl-1-picrylhydrazyl", "Nepetanudoside B", "butylhydroxytoluene", "n-butanol", "n-hexane", "methanol" ]
This article reports phytochemical and biological studies on Nepeta binaludensis and Nepeta crassifolia. Both species were investigated for their angiotensin-converting enzyme (ACE) inhibitory activity and antioxidant properties through three in vitro models [2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) and ferric reducing antioxidant power (FRAP) assay]. Aerial parts were extracted with methanol and partitioned between water and subsequently n-hexane, ethyl acetate and n-butanol. N. binaludensis methanol extract exerted significantly higher reducing power (1.9 μM Fe(II)/g) than did the positive control butylhydroxytoluene (63.2 μM Fe(II)/g) in FRAP assay. The highest DPPH radical scavenging activity was found for N. crassifolia, with IC50 values of 9.6 and 12.1 µg/mL for ethyl acetate and n-butanol fractions, respectively. n-Butanol fraction of both species showed the highest ACE inhibitory activity, with IC50 values of 59.3 and 81.7 µg/mL for N. binaludensis and N. crassifolia, respectively. Phytochemical investigations resulted in the isolation of ursolic acid, oleanolic acid, apigenin, luteolin and ixoroside. Apigenin-7-O-glucoside, 8-hydroxycirsimaritin and cirsimaritin were furthermore identified in N. crassifolia ethyl acetate-soluble fraction. Nepetanudoside B was isolated from the n-butanol fraction of N. binaludensis. Copyright © 2012 John Wiley & Sons, Ltd.
train
[ "anthocyanins" ]
Differences in the structure of anthocyanins from the two amphibious plants, Lobelia cardinalis and Nesaea crassicaulis.
train
[ "cyanidin", "cyanidine", "peonidin-3-O-β-glucoside", "pelargonidin-3-O-[6-O-(4-O-E-p-coumaroyl-O-α-rhamnopyranosyl)-β-glucopyrano]-5-O-β-glucopyranoside", "cyanidin-3-O-[6-O-(4-O-E-caffeoyl-O-α-rhamnopyranosyl)-β-glucopyrano]-5-O-β-glucopyranoside", "acylated anthocyanins", "-3,5-di-O-β-glucosides of delphinidin", "cyanidin-3-O-[6-O-(4-O-E-p-coumaroyl-O-α-rhamnopyranosyl)-β-glucopyrano]-5-O-β-glucopyranoside", "malvidin", "Anthocyanins", "peonidin", "anthocyanins", "petunidin", "anthocyanin" ]
The foliar anthocyanin profiles of two amphibious plants, Nesaea crassicaulis and Lobelia cardinalis were analysed for the first time. N. crassicaulis produced very simple anthocyanins, achieving the highest concentrations when grown submerged. In contrast, L. cardinalis produced leaves with a high content of very complex, acylated anthocyanins, especially when growing emergent. Anthocyanins were separated by high performance liquid chromatography. Nesaea crassicaulis anthocyanins were identified according to their fragment mass spectra and ultra-visible-violet spectral characteristics and 1D and 2D NMR spectra as -3,5-di-O-β-glucosides of delphinidin, cyanidin, petunidin, malvidin and peonidin as well as cyanidine and peonidin-3-O-β-glucoside. In L. cardinalis cyanidin-3-O-[6-O-(4-O-E-p-coumaroyl-O-α-rhamnopyranosyl)-β-glucopyrano]-5-O-β-glucopyranoside was the major anthocyanin and contributed more than 98% of total anthocyanin content. The remaining 2% was made up by cyanidin-3-O-[6-O-(4-O-E-caffeoyl-O-α-rhamnopyranosyl)-β-glucopyrano]-5-O-β-glucopyranoside and pelargonidin-3-O-[6-O-(4-O-E-p-coumaroyl-O-α-rhamnopyranosyl)-β-glucopyrano]-5-O-β-glucopyranoside.
train
[]
An optogenetic approach in epilepsy.
train
[]
Optogenetic tools comprise a variety of different light-sensitive proteins from single-cell organisms that can be expressed in mammalian neurons and effectively control their excitability. Two main classes of optogenetic tools allow to either depolarize or hyperpolarize, and respectively generate or inhibit action potentials in selective populations of neurons. This opens unprecedented possibilities for delineating the role of certain neuronal populations in brain processing and diseases. Moreover, optogenetics may be considered for developing potential treatment strategies for brain diseases, particularly for excitability disorders such as epilepsy. Expression of the inhibitory halorhodopsin NpHR in hippocampal principal cells has been recently used as a tool to effectively control chemically and electrically induced epileptiform activity in slice preparations, and to reduce in vivo spiking induced by tetanus toxin injection in the motor cortex. In this review we give a comprehensive summary of what has been achieved so far in the field of epilepsy using optogenetics, and discuss some of the possible strategies that could be envisaged in the future. We also point out some of the challenges and pitfalls in relation to possible outcomes of using optogenetics for controlling network excitability, and associated brain diseases. This article is part of the Special Issue entitled 'New Targets and Approaches to the Treatment of Epilepsy'.
train
[ "VU0360172" ]
Potentiation of mGlu5 receptors with the novel enhancer, VU0360172, reduces spontaneous absence seizures in WAG/Rij rats.
train