repository_name
stringlengths 7
55
| func_path_in_repository
stringlengths 4
223
| func_name
stringlengths 1
134
| whole_func_string
stringlengths 75
104k
| language
stringclasses 1
value | func_code_string
stringlengths 75
104k
| func_code_tokens
sequencelengths 19
28.4k
| func_documentation_string
stringlengths 1
46.9k
| func_documentation_tokens
sequencelengths 1
1.97k
| split_name
stringclasses 1
value | func_code_url
stringlengths 87
315
|
---|---|---|---|---|---|---|---|---|---|---|
mezz64/pyEight | pyeight/user.py | EightUser.last_room_temp | def last_room_temp(self):
"""Return avg room temperature for last session."""
try:
rmtemps = self.intervals[1]['timeseries']['tempRoomC']
except KeyError:
return None
tmp = 0
num_temps = len(rmtemps)
if num_temps == 0:
return None
for temp in rmtemps:
tmp += temp[1]
rmtemp = tmp/num_temps
return rmtemp | python | def last_room_temp(self):
"""Return avg room temperature for last session."""
try:
rmtemps = self.intervals[1]['timeseries']['tempRoomC']
except KeyError:
return None
tmp = 0
num_temps = len(rmtemps)
if num_temps == 0:
return None
for temp in rmtemps:
tmp += temp[1]
rmtemp = tmp/num_temps
return rmtemp | [
"def",
"last_room_temp",
"(",
"self",
")",
":",
"try",
":",
"rmtemps",
"=",
"self",
".",
"intervals",
"[",
"1",
"]",
"[",
"'timeseries'",
"]",
"[",
"'tempRoomC'",
"]",
"except",
"KeyError",
":",
"return",
"None",
"tmp",
"=",
"0",
"num_temps",
"=",
"len",
"(",
"rmtemps",
")",
"if",
"num_temps",
"==",
"0",
":",
"return",
"None",
"for",
"temp",
"in",
"rmtemps",
":",
"tmp",
"+=",
"temp",
"[",
"1",
"]",
"rmtemp",
"=",
"tmp",
"/",
"num_temps",
"return",
"rmtemp"
] | Return avg room temperature for last session. | [
"Return",
"avg",
"room",
"temperature",
"for",
"last",
"session",
"."
] | train | https://github.com/mezz64/pyEight/blob/e557e4e6876f490d0964298e9475d68b64222d4f/pyeight/user.py#L374-L389 |
mezz64/pyEight | pyeight/user.py | EightUser.last_heart_rate | def last_heart_rate(self):
"""Return avg heart rate for last session."""
try:
rates = self.intervals[1]['timeseries']['heartRate']
except KeyError:
return None
tmp = 0
num_rates = len(rates)
if num_rates == 0:
return None
for rate in rates:
tmp += rate[1]
rateavg = tmp/num_rates
return rateavg | python | def last_heart_rate(self):
"""Return avg heart rate for last session."""
try:
rates = self.intervals[1]['timeseries']['heartRate']
except KeyError:
return None
tmp = 0
num_rates = len(rates)
if num_rates == 0:
return None
for rate in rates:
tmp += rate[1]
rateavg = tmp/num_rates
return rateavg | [
"def",
"last_heart_rate",
"(",
"self",
")",
":",
"try",
":",
"rates",
"=",
"self",
".",
"intervals",
"[",
"1",
"]",
"[",
"'timeseries'",
"]",
"[",
"'heartRate'",
"]",
"except",
"KeyError",
":",
"return",
"None",
"tmp",
"=",
"0",
"num_rates",
"=",
"len",
"(",
"rates",
")",
"if",
"num_rates",
"==",
"0",
":",
"return",
"None",
"for",
"rate",
"in",
"rates",
":",
"tmp",
"+=",
"rate",
"[",
"1",
"]",
"rateavg",
"=",
"tmp",
"/",
"num_rates",
"return",
"rateavg"
] | Return avg heart rate for last session. | [
"Return",
"avg",
"heart",
"rate",
"for",
"last",
"session",
"."
] | train | https://github.com/mezz64/pyEight/blob/e557e4e6876f490d0964298e9475d68b64222d4f/pyeight/user.py#L419-L434 |
mezz64/pyEight | pyeight/user.py | EightUser.last_values | def last_values(self):
"""Return a dict of all the 'last' parameters."""
last_dict = {
'date': self.last_session_date,
'score': self.last_sleep_score,
'breakdown': self.last_sleep_breakdown,
'tnt': self.last_tnt,
'bed_temp': self.last_bed_temp,
'room_temp': self.last_room_temp,
'resp_rate': self.last_resp_rate,
'heart_rate': self.last_heart_rate,
'processing': self.last_session_processing,
}
return last_dict | python | def last_values(self):
"""Return a dict of all the 'last' parameters."""
last_dict = {
'date': self.last_session_date,
'score': self.last_sleep_score,
'breakdown': self.last_sleep_breakdown,
'tnt': self.last_tnt,
'bed_temp': self.last_bed_temp,
'room_temp': self.last_room_temp,
'resp_rate': self.last_resp_rate,
'heart_rate': self.last_heart_rate,
'processing': self.last_session_processing,
}
return last_dict | [
"def",
"last_values",
"(",
"self",
")",
":",
"last_dict",
"=",
"{",
"'date'",
":",
"self",
".",
"last_session_date",
",",
"'score'",
":",
"self",
".",
"last_sleep_score",
",",
"'breakdown'",
":",
"self",
".",
"last_sleep_breakdown",
",",
"'tnt'",
":",
"self",
".",
"last_tnt",
",",
"'bed_temp'",
":",
"self",
".",
"last_bed_temp",
",",
"'room_temp'",
":",
"self",
".",
"last_room_temp",
",",
"'resp_rate'",
":",
"self",
".",
"last_resp_rate",
",",
"'heart_rate'",
":",
"self",
".",
"last_heart_rate",
",",
"'processing'",
":",
"self",
".",
"last_session_processing",
",",
"}",
"return",
"last_dict"
] | Return a dict of all the 'last' parameters. | [
"Return",
"a",
"dict",
"of",
"all",
"the",
"last",
"parameters",
"."
] | train | https://github.com/mezz64/pyEight/blob/e557e4e6876f490d0964298e9475d68b64222d4f/pyeight/user.py#L437-L450 |
mezz64/pyEight | pyeight/user.py | EightUser.heating_stats | def heating_stats(self):
"""Calculate some heating data stats."""
local_5 = []
local_10 = []
for i in range(0, 10):
level = self.past_heating_level(i)
if level == 0:
_LOGGER.debug('Cant calculate stats yet...')
return
if i < 5:
local_5.append(level)
local_10.append(level)
_LOGGER.debug('%s Heating History: %s', self.side, local_10)
try:
# Average of 5min on the history dict.
fiveminavg = statistics.mean(local_5)
tenminavg = statistics.mean(local_10)
_LOGGER.debug('%s Heating 5 min avg: %s', self.side, fiveminavg)
_LOGGER.debug('%s Heating 10 min avg: %s', self.side, tenminavg)
# Standard deviation
fivestdev = statistics.stdev(local_5)
tenstdev = statistics.stdev(local_10)
_LOGGER.debug('%s Heating 5 min stdev: %s', self.side, fivestdev)
_LOGGER.debug('%s Heating 10 min stdev: %s', self.side, tenstdev)
# Variance
fivevar = statistics.variance(local_5)
tenvar = statistics.variance(local_10)
_LOGGER.debug('%s Heating 5 min variance: %s', self.side, fivevar)
_LOGGER.debug('%s Heating 10 min variance: %s', self.side, tenvar)
except:
_LOGGER.debug('Cant calculate stats yet...') | python | def heating_stats(self):
"""Calculate some heating data stats."""
local_5 = []
local_10 = []
for i in range(0, 10):
level = self.past_heating_level(i)
if level == 0:
_LOGGER.debug('Cant calculate stats yet...')
return
if i < 5:
local_5.append(level)
local_10.append(level)
_LOGGER.debug('%s Heating History: %s', self.side, local_10)
try:
# Average of 5min on the history dict.
fiveminavg = statistics.mean(local_5)
tenminavg = statistics.mean(local_10)
_LOGGER.debug('%s Heating 5 min avg: %s', self.side, fiveminavg)
_LOGGER.debug('%s Heating 10 min avg: %s', self.side, tenminavg)
# Standard deviation
fivestdev = statistics.stdev(local_5)
tenstdev = statistics.stdev(local_10)
_LOGGER.debug('%s Heating 5 min stdev: %s', self.side, fivestdev)
_LOGGER.debug('%s Heating 10 min stdev: %s', self.side, tenstdev)
# Variance
fivevar = statistics.variance(local_5)
tenvar = statistics.variance(local_10)
_LOGGER.debug('%s Heating 5 min variance: %s', self.side, fivevar)
_LOGGER.debug('%s Heating 10 min variance: %s', self.side, tenvar)
except:
_LOGGER.debug('Cant calculate stats yet...') | [
"def",
"heating_stats",
"(",
"self",
")",
":",
"local_5",
"=",
"[",
"]",
"local_10",
"=",
"[",
"]",
"for",
"i",
"in",
"range",
"(",
"0",
",",
"10",
")",
":",
"level",
"=",
"self",
".",
"past_heating_level",
"(",
"i",
")",
"if",
"level",
"==",
"0",
":",
"_LOGGER",
".",
"debug",
"(",
"'Cant calculate stats yet...'",
")",
"return",
"if",
"i",
"<",
"5",
":",
"local_5",
".",
"append",
"(",
"level",
")",
"local_10",
".",
"append",
"(",
"level",
")",
"_LOGGER",
".",
"debug",
"(",
"'%s Heating History: %s'",
",",
"self",
".",
"side",
",",
"local_10",
")",
"try",
":",
"# Average of 5min on the history dict.",
"fiveminavg",
"=",
"statistics",
".",
"mean",
"(",
"local_5",
")",
"tenminavg",
"=",
"statistics",
".",
"mean",
"(",
"local_10",
")",
"_LOGGER",
".",
"debug",
"(",
"'%s Heating 5 min avg: %s'",
",",
"self",
".",
"side",
",",
"fiveminavg",
")",
"_LOGGER",
".",
"debug",
"(",
"'%s Heating 10 min avg: %s'",
",",
"self",
".",
"side",
",",
"tenminavg",
")",
"# Standard deviation",
"fivestdev",
"=",
"statistics",
".",
"stdev",
"(",
"local_5",
")",
"tenstdev",
"=",
"statistics",
".",
"stdev",
"(",
"local_10",
")",
"_LOGGER",
".",
"debug",
"(",
"'%s Heating 5 min stdev: %s'",
",",
"self",
".",
"side",
",",
"fivestdev",
")",
"_LOGGER",
".",
"debug",
"(",
"'%s Heating 10 min stdev: %s'",
",",
"self",
".",
"side",
",",
"tenstdev",
")",
"# Variance",
"fivevar",
"=",
"statistics",
".",
"variance",
"(",
"local_5",
")",
"tenvar",
"=",
"statistics",
".",
"variance",
"(",
"local_10",
")",
"_LOGGER",
".",
"debug",
"(",
"'%s Heating 5 min variance: %s'",
",",
"self",
".",
"side",
",",
"fivevar",
")",
"_LOGGER",
".",
"debug",
"(",
"'%s Heating 10 min variance: %s'",
",",
"self",
".",
"side",
",",
"tenvar",
")",
"except",
":",
"_LOGGER",
".",
"debug",
"(",
"'Cant calculate stats yet...'",
")"
] | Calculate some heating data stats. | [
"Calculate",
"some",
"heating",
"data",
"stats",
"."
] | train | https://github.com/mezz64/pyEight/blob/e557e4e6876f490d0964298e9475d68b64222d4f/pyeight/user.py#L452-L487 |
mezz64/pyEight | pyeight/user.py | EightUser.dynamic_presence | def dynamic_presence(self):
"""
Determine presence based on bed heating level and end presence
time reported by the api.
Idea originated from Alex Lee Yuk Cheung SmartThings Code.
"""
# self.heating_stats()
if not self.presence:
if self.heating_level > 50:
# Can likely make this better
if not self.now_heating:
self.presence = True
elif self.heating_level - self.target_heating_level >= 8:
self.presence = True
elif self.heating_level > 25:
# Catch rising edge
if self.past_heating_level(0) - self.past_heating_level(1) >= 2 \
and self.past_heating_level(1) - self.past_heating_level(2) >= 2 \
and self.past_heating_level(2) - self.past_heating_level(3) >= 2:
# Values are increasing so we are likely in bed
if not self.now_heating:
self.presence = True
elif self.heating_level - self.target_heating_level >= 8:
self.presence = True
elif self.presence:
if self.heating_level <= 15:
# Failsafe, very slow
self.presence = False
elif self.heating_level < 50:
if self.past_heating_level(0) - self.past_heating_level(1) < 0 \
and self.past_heating_level(1) - self.past_heating_level(2) < 0 \
and self.past_heating_level(2) - self.past_heating_level(3) < 0:
# Values are decreasing so we are likely out of bed
self.presence = False
# Last seen can lag real-time by up to 35min so this is
# mostly a backup to using the heat values.
# seen_delta = datetime.fromtimestamp(time.time()) \
# - datetime.strptime(self.last_seen, '%Y-%m-%dT%H:%M:%S')
# _LOGGER.debug('%s Last seen time delta: %s', self.side,
# seen_delta.total_seconds())
# if self.presence and seen_delta.total_seconds() > 2100:
# self.presence = False
_LOGGER.debug('%s Presence Results: %s', self.side, self.presence) | python | def dynamic_presence(self):
"""
Determine presence based on bed heating level and end presence
time reported by the api.
Idea originated from Alex Lee Yuk Cheung SmartThings Code.
"""
# self.heating_stats()
if not self.presence:
if self.heating_level > 50:
# Can likely make this better
if not self.now_heating:
self.presence = True
elif self.heating_level - self.target_heating_level >= 8:
self.presence = True
elif self.heating_level > 25:
# Catch rising edge
if self.past_heating_level(0) - self.past_heating_level(1) >= 2 \
and self.past_heating_level(1) - self.past_heating_level(2) >= 2 \
and self.past_heating_level(2) - self.past_heating_level(3) >= 2:
# Values are increasing so we are likely in bed
if not self.now_heating:
self.presence = True
elif self.heating_level - self.target_heating_level >= 8:
self.presence = True
elif self.presence:
if self.heating_level <= 15:
# Failsafe, very slow
self.presence = False
elif self.heating_level < 50:
if self.past_heating_level(0) - self.past_heating_level(1) < 0 \
and self.past_heating_level(1) - self.past_heating_level(2) < 0 \
and self.past_heating_level(2) - self.past_heating_level(3) < 0:
# Values are decreasing so we are likely out of bed
self.presence = False
# Last seen can lag real-time by up to 35min so this is
# mostly a backup to using the heat values.
# seen_delta = datetime.fromtimestamp(time.time()) \
# - datetime.strptime(self.last_seen, '%Y-%m-%dT%H:%M:%S')
# _LOGGER.debug('%s Last seen time delta: %s', self.side,
# seen_delta.total_seconds())
# if self.presence and seen_delta.total_seconds() > 2100:
# self.presence = False
_LOGGER.debug('%s Presence Results: %s', self.side, self.presence) | [
"def",
"dynamic_presence",
"(",
"self",
")",
":",
"# self.heating_stats()",
"if",
"not",
"self",
".",
"presence",
":",
"if",
"self",
".",
"heating_level",
">",
"50",
":",
"# Can likely make this better",
"if",
"not",
"self",
".",
"now_heating",
":",
"self",
".",
"presence",
"=",
"True",
"elif",
"self",
".",
"heating_level",
"-",
"self",
".",
"target_heating_level",
">=",
"8",
":",
"self",
".",
"presence",
"=",
"True",
"elif",
"self",
".",
"heating_level",
">",
"25",
":",
"# Catch rising edge",
"if",
"self",
".",
"past_heating_level",
"(",
"0",
")",
"-",
"self",
".",
"past_heating_level",
"(",
"1",
")",
">=",
"2",
"and",
"self",
".",
"past_heating_level",
"(",
"1",
")",
"-",
"self",
".",
"past_heating_level",
"(",
"2",
")",
">=",
"2",
"and",
"self",
".",
"past_heating_level",
"(",
"2",
")",
"-",
"self",
".",
"past_heating_level",
"(",
"3",
")",
">=",
"2",
":",
"# Values are increasing so we are likely in bed",
"if",
"not",
"self",
".",
"now_heating",
":",
"self",
".",
"presence",
"=",
"True",
"elif",
"self",
".",
"heating_level",
"-",
"self",
".",
"target_heating_level",
">=",
"8",
":",
"self",
".",
"presence",
"=",
"True",
"elif",
"self",
".",
"presence",
":",
"if",
"self",
".",
"heating_level",
"<=",
"15",
":",
"# Failsafe, very slow",
"self",
".",
"presence",
"=",
"False",
"elif",
"self",
".",
"heating_level",
"<",
"50",
":",
"if",
"self",
".",
"past_heating_level",
"(",
"0",
")",
"-",
"self",
".",
"past_heating_level",
"(",
"1",
")",
"<",
"0",
"and",
"self",
".",
"past_heating_level",
"(",
"1",
")",
"-",
"self",
".",
"past_heating_level",
"(",
"2",
")",
"<",
"0",
"and",
"self",
".",
"past_heating_level",
"(",
"2",
")",
"-",
"self",
".",
"past_heating_level",
"(",
"3",
")",
"<",
"0",
":",
"# Values are decreasing so we are likely out of bed",
"self",
".",
"presence",
"=",
"False",
"# Last seen can lag real-time by up to 35min so this is",
"# mostly a backup to using the heat values.",
"# seen_delta = datetime.fromtimestamp(time.time()) \\",
"# - datetime.strptime(self.last_seen, '%Y-%m-%dT%H:%M:%S')",
"# _LOGGER.debug('%s Last seen time delta: %s', self.side,",
"# seen_delta.total_seconds())",
"# if self.presence and seen_delta.total_seconds() > 2100:",
"# self.presence = False",
"_LOGGER",
".",
"debug",
"(",
"'%s Presence Results: %s'",
",",
"self",
".",
"side",
",",
"self",
".",
"presence",
")"
] | Determine presence based on bed heating level and end presence
time reported by the api.
Idea originated from Alex Lee Yuk Cheung SmartThings Code. | [
"Determine",
"presence",
"based",
"on",
"bed",
"heating",
"level",
"and",
"end",
"presence",
"time",
"reported",
"by",
"the",
"api",
"."
] | train | https://github.com/mezz64/pyEight/blob/e557e4e6876f490d0964298e9475d68b64222d4f/pyeight/user.py#L494-L542 |
mezz64/pyEight | pyeight/user.py | EightUser.set_heating_level | async def set_heating_level(self, level, duration=0):
"""Update heating data json."""
url = '{}/devices/{}'.format(API_URL, self.device.deviceid)
# Catch bad inputs
level = 10 if level < 10 else level
level = 100 if level > 100 else level
if self.side == 'left':
data = {
'leftHeatingDuration': duration,
'leftTargetHeatingLevel': level
}
elif self.side == 'right':
data = {
'rightHeatingDuration': duration,
'rightTargetHeatingLevel': level
}
set_heat = await self.device.api_put(url, data)
if set_heat is None:
_LOGGER.error('Unable to set eight heating level.')
else:
# Standard device json is returned after setting
self.device.handle_device_json(set_heat['device']) | python | async def set_heating_level(self, level, duration=0):
"""Update heating data json."""
url = '{}/devices/{}'.format(API_URL, self.device.deviceid)
# Catch bad inputs
level = 10 if level < 10 else level
level = 100 if level > 100 else level
if self.side == 'left':
data = {
'leftHeatingDuration': duration,
'leftTargetHeatingLevel': level
}
elif self.side == 'right':
data = {
'rightHeatingDuration': duration,
'rightTargetHeatingLevel': level
}
set_heat = await self.device.api_put(url, data)
if set_heat is None:
_LOGGER.error('Unable to set eight heating level.')
else:
# Standard device json is returned after setting
self.device.handle_device_json(set_heat['device']) | [
"async",
"def",
"set_heating_level",
"(",
"self",
",",
"level",
",",
"duration",
"=",
"0",
")",
":",
"url",
"=",
"'{}/devices/{}'",
".",
"format",
"(",
"API_URL",
",",
"self",
".",
"device",
".",
"deviceid",
")",
"# Catch bad inputs",
"level",
"=",
"10",
"if",
"level",
"<",
"10",
"else",
"level",
"level",
"=",
"100",
"if",
"level",
">",
"100",
"else",
"level",
"if",
"self",
".",
"side",
"==",
"'left'",
":",
"data",
"=",
"{",
"'leftHeatingDuration'",
":",
"duration",
",",
"'leftTargetHeatingLevel'",
":",
"level",
"}",
"elif",
"self",
".",
"side",
"==",
"'right'",
":",
"data",
"=",
"{",
"'rightHeatingDuration'",
":",
"duration",
",",
"'rightTargetHeatingLevel'",
":",
"level",
"}",
"set_heat",
"=",
"await",
"self",
".",
"device",
".",
"api_put",
"(",
"url",
",",
"data",
")",
"if",
"set_heat",
"is",
"None",
":",
"_LOGGER",
".",
"error",
"(",
"'Unable to set eight heating level.'",
")",
"else",
":",
"# Standard device json is returned after setting",
"self",
".",
"device",
".",
"handle_device_json",
"(",
"set_heat",
"[",
"'device'",
"]",
")"
] | Update heating data json. | [
"Update",
"heating",
"data",
"json",
"."
] | train | https://github.com/mezz64/pyEight/blob/e557e4e6876f490d0964298e9475d68b64222d4f/pyeight/user.py#L555-L579 |
mezz64/pyEight | pyeight/user.py | EightUser.update_trend_data | async def update_trend_data(self, startdate, enddate):
"""Update trends data json for specified time period."""
url = '{}/users/{}/trends'.format(API_URL, self.userid)
params = {
'tz': self.device.tzone,
'from': startdate,
'to': enddate
}
trends = await self.device.api_get(url, params)
if trends is None:
_LOGGER.error('Unable to fetch eight trend data.')
else:
self.trends = trends['days'] | python | async def update_trend_data(self, startdate, enddate):
"""Update trends data json for specified time period."""
url = '{}/users/{}/trends'.format(API_URL, self.userid)
params = {
'tz': self.device.tzone,
'from': startdate,
'to': enddate
}
trends = await self.device.api_get(url, params)
if trends is None:
_LOGGER.error('Unable to fetch eight trend data.')
else:
self.trends = trends['days'] | [
"async",
"def",
"update_trend_data",
"(",
"self",
",",
"startdate",
",",
"enddate",
")",
":",
"url",
"=",
"'{}/users/{}/trends'",
".",
"format",
"(",
"API_URL",
",",
"self",
".",
"userid",
")",
"params",
"=",
"{",
"'tz'",
":",
"self",
".",
"device",
".",
"tzone",
",",
"'from'",
":",
"startdate",
",",
"'to'",
":",
"enddate",
"}",
"trends",
"=",
"await",
"self",
".",
"device",
".",
"api_get",
"(",
"url",
",",
"params",
")",
"if",
"trends",
"is",
"None",
":",
"_LOGGER",
".",
"error",
"(",
"'Unable to fetch eight trend data.'",
")",
"else",
":",
"self",
".",
"trends",
"=",
"trends",
"[",
"'days'",
"]"
] | Update trends data json for specified time period. | [
"Update",
"trends",
"data",
"json",
"for",
"specified",
"time",
"period",
"."
] | train | https://github.com/mezz64/pyEight/blob/e557e4e6876f490d0964298e9475d68b64222d4f/pyeight/user.py#L581-L594 |
mezz64/pyEight | pyeight/user.py | EightUser.update_intervals_data | async def update_intervals_data(self):
"""Update intervals data json for specified time period."""
url = '{}/users/{}/intervals'.format(API_URL, self.userid)
intervals = await self.device.api_get(url)
if intervals is None:
_LOGGER.error('Unable to fetch eight intervals data.')
else:
self.intervals = intervals['intervals'] | python | async def update_intervals_data(self):
"""Update intervals data json for specified time period."""
url = '{}/users/{}/intervals'.format(API_URL, self.userid)
intervals = await self.device.api_get(url)
if intervals is None:
_LOGGER.error('Unable to fetch eight intervals data.')
else:
self.intervals = intervals['intervals'] | [
"async",
"def",
"update_intervals_data",
"(",
"self",
")",
":",
"url",
"=",
"'{}/users/{}/intervals'",
".",
"format",
"(",
"API_URL",
",",
"self",
".",
"userid",
")",
"intervals",
"=",
"await",
"self",
".",
"device",
".",
"api_get",
"(",
"url",
")",
"if",
"intervals",
"is",
"None",
":",
"_LOGGER",
".",
"error",
"(",
"'Unable to fetch eight intervals data.'",
")",
"else",
":",
"self",
".",
"intervals",
"=",
"intervals",
"[",
"'intervals'",
"]"
] | Update intervals data json for specified time period. | [
"Update",
"intervals",
"data",
"json",
"for",
"specified",
"time",
"period",
"."
] | train | https://github.com/mezz64/pyEight/blob/e557e4e6876f490d0964298e9475d68b64222d4f/pyeight/user.py#L596-L604 |
erikvw/django-collect-offline | django_collect_offline/transaction/transaction_deserializer.py | save | def save(obj=None, m2m_data=None):
"""Saves a deserialized model object.
Uses save_base to avoid running code in model.save() and
to avoid triggering signals (if raw=True).
"""
m2m_data = {} if m2m_data is None else m2m_data
obj.save_base(raw=True)
for attr, values in m2m_data.items():
for value in values:
getattr(obj, attr).add(value) | python | def save(obj=None, m2m_data=None):
"""Saves a deserialized model object.
Uses save_base to avoid running code in model.save() and
to avoid triggering signals (if raw=True).
"""
m2m_data = {} if m2m_data is None else m2m_data
obj.save_base(raw=True)
for attr, values in m2m_data.items():
for value in values:
getattr(obj, attr).add(value) | [
"def",
"save",
"(",
"obj",
"=",
"None",
",",
"m2m_data",
"=",
"None",
")",
":",
"m2m_data",
"=",
"{",
"}",
"if",
"m2m_data",
"is",
"None",
"else",
"m2m_data",
"obj",
".",
"save_base",
"(",
"raw",
"=",
"True",
")",
"for",
"attr",
",",
"values",
"in",
"m2m_data",
".",
"items",
"(",
")",
":",
"for",
"value",
"in",
"values",
":",
"getattr",
"(",
"obj",
",",
"attr",
")",
".",
"add",
"(",
"value",
")"
] | Saves a deserialized model object.
Uses save_base to avoid running code in model.save() and
to avoid triggering signals (if raw=True). | [
"Saves",
"a",
"deserialized",
"model",
"object",
"."
] | train | https://github.com/erikvw/django-collect-offline/blob/3d5efd66c68e2db4b060a82b070ae490dc399ca7/django_collect_offline/transaction/transaction_deserializer.py#L16-L26 |
erikvw/django-collect-offline | django_collect_offline/transaction/transaction_deserializer.py | TransactionDeserializer.deserialize_transactions | def deserialize_transactions(self, transactions=None, deserialize_only=None):
"""Deserializes the encrypted serialized model
instances, tx, in a queryset of transactions.
Note: each transaction instance contains encrypted JSON text
that represents just ONE model instance.
"""
if (
not self.allow_self
and transactions.filter(producer=socket.gethostname()).exists()
):
raise TransactionDeserializerError(
f"Not deserializing own transactions. Got "
f"allow_self=False, hostname={socket.gethostname()}"
)
for transaction in transactions:
json_text = self.aes_decrypt(cipher_text=transaction.tx)
json_text = self.custom_parser(json_text)
deserialized = next(self.deserialize(json_text=json_text))
if not deserialize_only:
if transaction.action == DELETE:
deserialized.object.delete()
else:
self.save(obj=deserialized.object, m2m_data=deserialized.m2m_data)
transaction.is_consumed = True
transaction.save() | python | def deserialize_transactions(self, transactions=None, deserialize_only=None):
"""Deserializes the encrypted serialized model
instances, tx, in a queryset of transactions.
Note: each transaction instance contains encrypted JSON text
that represents just ONE model instance.
"""
if (
not self.allow_self
and transactions.filter(producer=socket.gethostname()).exists()
):
raise TransactionDeserializerError(
f"Not deserializing own transactions. Got "
f"allow_self=False, hostname={socket.gethostname()}"
)
for transaction in transactions:
json_text = self.aes_decrypt(cipher_text=transaction.tx)
json_text = self.custom_parser(json_text)
deserialized = next(self.deserialize(json_text=json_text))
if not deserialize_only:
if transaction.action == DELETE:
deserialized.object.delete()
else:
self.save(obj=deserialized.object, m2m_data=deserialized.m2m_data)
transaction.is_consumed = True
transaction.save() | [
"def",
"deserialize_transactions",
"(",
"self",
",",
"transactions",
"=",
"None",
",",
"deserialize_only",
"=",
"None",
")",
":",
"if",
"(",
"not",
"self",
".",
"allow_self",
"and",
"transactions",
".",
"filter",
"(",
"producer",
"=",
"socket",
".",
"gethostname",
"(",
")",
")",
".",
"exists",
"(",
")",
")",
":",
"raise",
"TransactionDeserializerError",
"(",
"f\"Not deserializing own transactions. Got \"",
"f\"allow_self=False, hostname={socket.gethostname()}\"",
")",
"for",
"transaction",
"in",
"transactions",
":",
"json_text",
"=",
"self",
".",
"aes_decrypt",
"(",
"cipher_text",
"=",
"transaction",
".",
"tx",
")",
"json_text",
"=",
"self",
".",
"custom_parser",
"(",
"json_text",
")",
"deserialized",
"=",
"next",
"(",
"self",
".",
"deserialize",
"(",
"json_text",
"=",
"json_text",
")",
")",
"if",
"not",
"deserialize_only",
":",
"if",
"transaction",
".",
"action",
"==",
"DELETE",
":",
"deserialized",
".",
"object",
".",
"delete",
"(",
")",
"else",
":",
"self",
".",
"save",
"(",
"obj",
"=",
"deserialized",
".",
"object",
",",
"m2m_data",
"=",
"deserialized",
".",
"m2m_data",
")",
"transaction",
".",
"is_consumed",
"=",
"True",
"transaction",
".",
"save",
"(",
")"
] | Deserializes the encrypted serialized model
instances, tx, in a queryset of transactions.
Note: each transaction instance contains encrypted JSON text
that represents just ONE model instance. | [
"Deserializes",
"the",
"encrypted",
"serialized",
"model",
"instances",
"tx",
"in",
"a",
"queryset",
"of",
"transactions",
"."
] | train | https://github.com/erikvw/django-collect-offline/blob/3d5efd66c68e2db4b060a82b070ae490dc399ca7/django_collect_offline/transaction/transaction_deserializer.py#L49-L75 |
erikvw/django-collect-offline | django_collect_offline/transaction/transaction_deserializer.py | TransactionDeserializer.custom_parser | def custom_parser(self, json_text=None):
"""Runs json_text thru custom parsers.
"""
app_config = django_apps.get_app_config("django_collect_offline")
for json_parser in app_config.custom_json_parsers:
json_text = json_parser(json_text)
return json_text | python | def custom_parser(self, json_text=None):
"""Runs json_text thru custom parsers.
"""
app_config = django_apps.get_app_config("django_collect_offline")
for json_parser in app_config.custom_json_parsers:
json_text = json_parser(json_text)
return json_text | [
"def",
"custom_parser",
"(",
"self",
",",
"json_text",
"=",
"None",
")",
":",
"app_config",
"=",
"django_apps",
".",
"get_app_config",
"(",
"\"django_collect_offline\"",
")",
"for",
"json_parser",
"in",
"app_config",
".",
"custom_json_parsers",
":",
"json_text",
"=",
"json_parser",
"(",
"json_text",
")",
"return",
"json_text"
] | Runs json_text thru custom parsers. | [
"Runs",
"json_text",
"thru",
"custom",
"parsers",
"."
] | train | https://github.com/erikvw/django-collect-offline/blob/3d5efd66c68e2db4b060a82b070ae490dc399ca7/django_collect_offline/transaction/transaction_deserializer.py#L77-L83 |
RedHatQE/python-stitches | stitches/connection.py | Connection.cli | def cli(self):
""" cli lazy property """
client = paramiko.SSHClient()
client.set_missing_host_key_policy(paramiko.AutoAddPolicy())
client.connect(hostname=self.private_hostname,
username=self.username,
key_filename=self.key_filename,
timeout=self.timeout,
look_for_keys=self.look_for_keys)
# set keepalive
transport = client.get_transport()
transport.set_keepalive(3)
return client | python | def cli(self):
""" cli lazy property """
client = paramiko.SSHClient()
client.set_missing_host_key_policy(paramiko.AutoAddPolicy())
client.connect(hostname=self.private_hostname,
username=self.username,
key_filename=self.key_filename,
timeout=self.timeout,
look_for_keys=self.look_for_keys)
# set keepalive
transport = client.get_transport()
transport.set_keepalive(3)
return client | [
"def",
"cli",
"(",
"self",
")",
":",
"client",
"=",
"paramiko",
".",
"SSHClient",
"(",
")",
"client",
".",
"set_missing_host_key_policy",
"(",
"paramiko",
".",
"AutoAddPolicy",
"(",
")",
")",
"client",
".",
"connect",
"(",
"hostname",
"=",
"self",
".",
"private_hostname",
",",
"username",
"=",
"self",
".",
"username",
",",
"key_filename",
"=",
"self",
".",
"key_filename",
",",
"timeout",
"=",
"self",
".",
"timeout",
",",
"look_for_keys",
"=",
"self",
".",
"look_for_keys",
")",
"# set keepalive",
"transport",
"=",
"client",
".",
"get_transport",
"(",
")",
"transport",
".",
"set_keepalive",
"(",
"3",
")",
"return",
"client"
] | cli lazy property | [
"cli",
"lazy",
"property"
] | train | https://github.com/RedHatQE/python-stitches/blob/957e9895e64ffd3b8157b38b9cce414969509288/stitches/connection.py#L111-L124 |
RedHatQE/python-stitches | stitches/connection.py | Connection.channel | def channel(self):
""" channel lazy property """
# start shell, non-blocking channel
chan = self.cli.invoke_shell(width=360, height=80)
chan.setblocking(0)
# set channel timeout
chan.settimeout(10)
# now waiting for shell prompt ('username@')
result = ""
count = 0
while count < 10:
try:
recv_part = chan.recv(16384).decode()
result += recv_part
except socket.timeout:
# socket.timeout here means 'no more data'
pass
if result.find('%s@' % self.username) != -1:
return chan
time.sleep(1)
count += 1
# failed to get shell prompt on channel :-(
raise StitchesConnectionException("Failed to get shell prompt") | python | def channel(self):
""" channel lazy property """
# start shell, non-blocking channel
chan = self.cli.invoke_shell(width=360, height=80)
chan.setblocking(0)
# set channel timeout
chan.settimeout(10)
# now waiting for shell prompt ('username@')
result = ""
count = 0
while count < 10:
try:
recv_part = chan.recv(16384).decode()
result += recv_part
except socket.timeout:
# socket.timeout here means 'no more data'
pass
if result.find('%s@' % self.username) != -1:
return chan
time.sleep(1)
count += 1
# failed to get shell prompt on channel :-(
raise StitchesConnectionException("Failed to get shell prompt") | [
"def",
"channel",
"(",
"self",
")",
":",
"# start shell, non-blocking channel",
"chan",
"=",
"self",
".",
"cli",
".",
"invoke_shell",
"(",
"width",
"=",
"360",
",",
"height",
"=",
"80",
")",
"chan",
".",
"setblocking",
"(",
"0",
")",
"# set channel timeout",
"chan",
".",
"settimeout",
"(",
"10",
")",
"# now waiting for shell prompt ('username@')",
"result",
"=",
"\"\"",
"count",
"=",
"0",
"while",
"count",
"<",
"10",
":",
"try",
":",
"recv_part",
"=",
"chan",
".",
"recv",
"(",
"16384",
")",
".",
"decode",
"(",
")",
"result",
"+=",
"recv_part",
"except",
"socket",
".",
"timeout",
":",
"# socket.timeout here means 'no more data'",
"pass",
"if",
"result",
".",
"find",
"(",
"'%s@'",
"%",
"self",
".",
"username",
")",
"!=",
"-",
"1",
":",
"return",
"chan",
"time",
".",
"sleep",
"(",
"1",
")",
"count",
"+=",
"1",
"# failed to get shell prompt on channel :-(",
"raise",
"StitchesConnectionException",
"(",
"\"Failed to get shell prompt\"",
")"
] | channel lazy property | [
"channel",
"lazy",
"property"
] | train | https://github.com/RedHatQE/python-stitches/blob/957e9895e64ffd3b8157b38b9cce414969509288/stitches/connection.py#L127-L150 |
RedHatQE/python-stitches | stitches/connection.py | Connection.pbm | def pbm(self):
""" Plumbum lazy property """
if not self.disable_rpyc:
from plumbum import SshMachine
return SshMachine(host=self.private_hostname, user=self.username,
keyfile=self.key_filename,
ssh_opts=["-o", "UserKnownHostsFile=/dev/null",
"-o", "StrictHostKeyChecking=no"])
else:
return None | python | def pbm(self):
""" Plumbum lazy property """
if not self.disable_rpyc:
from plumbum import SshMachine
return SshMachine(host=self.private_hostname, user=self.username,
keyfile=self.key_filename,
ssh_opts=["-o", "UserKnownHostsFile=/dev/null",
"-o", "StrictHostKeyChecking=no"])
else:
return None | [
"def",
"pbm",
"(",
"self",
")",
":",
"if",
"not",
"self",
".",
"disable_rpyc",
":",
"from",
"plumbum",
"import",
"SshMachine",
"return",
"SshMachine",
"(",
"host",
"=",
"self",
".",
"private_hostname",
",",
"user",
"=",
"self",
".",
"username",
",",
"keyfile",
"=",
"self",
".",
"key_filename",
",",
"ssh_opts",
"=",
"[",
"\"-o\"",
",",
"\"UserKnownHostsFile=/dev/null\"",
",",
"\"-o\"",
",",
"\"StrictHostKeyChecking=no\"",
"]",
")",
"else",
":",
"return",
"None"
] | Plumbum lazy property | [
"Plumbum",
"lazy",
"property"
] | train | https://github.com/RedHatQE/python-stitches/blob/957e9895e64ffd3b8157b38b9cce414969509288/stitches/connection.py#L158-L167 |
RedHatQE/python-stitches | stitches/connection.py | Connection.rpyc | def rpyc(self):
""" RPyC lazy property """
if not self.disable_rpyc:
try:
import rpyc
devnull_fd = open("/dev/null", "w")
rpyc_dirname = os.path.dirname(rpyc.__file__)
rnd_id = ''.join(random.choice(string.ascii_lowercase) for x in range(10))
pid_filename = "/tmp/%s.pid" % rnd_id
pid_dest_filename = "/tmp/%s%s.pid" % (rnd_id, rnd_id)
rnd_filename = "/tmp/" + rnd_id + ".tar.gz"
rnd_dest_filename = "/tmp/" + rnd_id + rnd_id + ".tar.gz"
subprocess.check_call(["tar", "-cz", "--exclude", "*.pyc", "--exclude", "*.pyo", "--transform",
"s,%s,%s," % (rpyc_dirname[1:][:-5], rnd_id), rpyc_dirname, "-f", rnd_filename],
stdout=devnull_fd, stderr=devnull_fd)
devnull_fd.close()
self.sftp.put(rnd_filename, rnd_dest_filename)
os.remove(rnd_filename)
self.recv_exit_status("tar -zxvf %s -C /tmp" % rnd_dest_filename, 10)
server_script = r"""
import os
print os.environ
from rpyc.utils.server import ThreadedServer
from rpyc import SlaveService
import sys
t = ThreadedServer(SlaveService, hostname = 'localhost', port = 0, reuse_addr = True)
fd = open('""" + pid_filename + r"""', 'w')
fd.write(str(t.port))
fd.close()
t.start()
"""
command = "echo \"%s\" | PYTHONPATH=\"/tmp/%s\" python " % (server_script, rnd_id)
self.stdin_rpyc, self.stdout_rpyc, self.stderr_rpyc = self.exec_command(command, get_pty=True)
self.recv_exit_status("while [ ! -f %s ]; do sleep 1; done" % (pid_filename), 10)
self.sftp.get(pid_filename, pid_dest_filename)
pid_fd = open(pid_dest_filename, 'r')
port = int(pid_fd.read())
pid_fd.close()
os.remove(pid_dest_filename)
return rpyc.classic.ssh_connect(self.pbm, port)
except Exception as err:
self.logger.debug("Failed to setup rpyc: %s" % err)
return None
else:
return None | python | def rpyc(self):
""" RPyC lazy property """
if not self.disable_rpyc:
try:
import rpyc
devnull_fd = open("/dev/null", "w")
rpyc_dirname = os.path.dirname(rpyc.__file__)
rnd_id = ''.join(random.choice(string.ascii_lowercase) for x in range(10))
pid_filename = "/tmp/%s.pid" % rnd_id
pid_dest_filename = "/tmp/%s%s.pid" % (rnd_id, rnd_id)
rnd_filename = "/tmp/" + rnd_id + ".tar.gz"
rnd_dest_filename = "/tmp/" + rnd_id + rnd_id + ".tar.gz"
subprocess.check_call(["tar", "-cz", "--exclude", "*.pyc", "--exclude", "*.pyo", "--transform",
"s,%s,%s," % (rpyc_dirname[1:][:-5], rnd_id), rpyc_dirname, "-f", rnd_filename],
stdout=devnull_fd, stderr=devnull_fd)
devnull_fd.close()
self.sftp.put(rnd_filename, rnd_dest_filename)
os.remove(rnd_filename)
self.recv_exit_status("tar -zxvf %s -C /tmp" % rnd_dest_filename, 10)
server_script = r"""
import os
print os.environ
from rpyc.utils.server import ThreadedServer
from rpyc import SlaveService
import sys
t = ThreadedServer(SlaveService, hostname = 'localhost', port = 0, reuse_addr = True)
fd = open('""" + pid_filename + r"""', 'w')
fd.write(str(t.port))
fd.close()
t.start()
"""
command = "echo \"%s\" | PYTHONPATH=\"/tmp/%s\" python " % (server_script, rnd_id)
self.stdin_rpyc, self.stdout_rpyc, self.stderr_rpyc = self.exec_command(command, get_pty=True)
self.recv_exit_status("while [ ! -f %s ]; do sleep 1; done" % (pid_filename), 10)
self.sftp.get(pid_filename, pid_dest_filename)
pid_fd = open(pid_dest_filename, 'r')
port = int(pid_fd.read())
pid_fd.close()
os.remove(pid_dest_filename)
return rpyc.classic.ssh_connect(self.pbm, port)
except Exception as err:
self.logger.debug("Failed to setup rpyc: %s" % err)
return None
else:
return None | [
"def",
"rpyc",
"(",
"self",
")",
":",
"if",
"not",
"self",
".",
"disable_rpyc",
":",
"try",
":",
"import",
"rpyc",
"devnull_fd",
"=",
"open",
"(",
"\"/dev/null\"",
",",
"\"w\"",
")",
"rpyc_dirname",
"=",
"os",
".",
"path",
".",
"dirname",
"(",
"rpyc",
".",
"__file__",
")",
"rnd_id",
"=",
"''",
".",
"join",
"(",
"random",
".",
"choice",
"(",
"string",
".",
"ascii_lowercase",
")",
"for",
"x",
"in",
"range",
"(",
"10",
")",
")",
"pid_filename",
"=",
"\"/tmp/%s.pid\"",
"%",
"rnd_id",
"pid_dest_filename",
"=",
"\"/tmp/%s%s.pid\"",
"%",
"(",
"rnd_id",
",",
"rnd_id",
")",
"rnd_filename",
"=",
"\"/tmp/\"",
"+",
"rnd_id",
"+",
"\".tar.gz\"",
"rnd_dest_filename",
"=",
"\"/tmp/\"",
"+",
"rnd_id",
"+",
"rnd_id",
"+",
"\".tar.gz\"",
"subprocess",
".",
"check_call",
"(",
"[",
"\"tar\"",
",",
"\"-cz\"",
",",
"\"--exclude\"",
",",
"\"*.pyc\"",
",",
"\"--exclude\"",
",",
"\"*.pyo\"",
",",
"\"--transform\"",
",",
"\"s,%s,%s,\"",
"%",
"(",
"rpyc_dirname",
"[",
"1",
":",
"]",
"[",
":",
"-",
"5",
"]",
",",
"rnd_id",
")",
",",
"rpyc_dirname",
",",
"\"-f\"",
",",
"rnd_filename",
"]",
",",
"stdout",
"=",
"devnull_fd",
",",
"stderr",
"=",
"devnull_fd",
")",
"devnull_fd",
".",
"close",
"(",
")",
"self",
".",
"sftp",
".",
"put",
"(",
"rnd_filename",
",",
"rnd_dest_filename",
")",
"os",
".",
"remove",
"(",
"rnd_filename",
")",
"self",
".",
"recv_exit_status",
"(",
"\"tar -zxvf %s -C /tmp\"",
"%",
"rnd_dest_filename",
",",
"10",
")",
"server_script",
"=",
"r\"\"\"\nimport os\nprint os.environ\nfrom rpyc.utils.server import ThreadedServer\nfrom rpyc import SlaveService\nimport sys\nt = ThreadedServer(SlaveService, hostname = 'localhost', port = 0, reuse_addr = True)\nfd = open('\"\"\"",
"+",
"pid_filename",
"+",
"r\"\"\"', 'w')\nfd.write(str(t.port))\nfd.close()\nt.start()\n\"\"\"",
"command",
"=",
"\"echo \\\"%s\\\" | PYTHONPATH=\\\"/tmp/%s\\\" python \"",
"%",
"(",
"server_script",
",",
"rnd_id",
")",
"self",
".",
"stdin_rpyc",
",",
"self",
".",
"stdout_rpyc",
",",
"self",
".",
"stderr_rpyc",
"=",
"self",
".",
"exec_command",
"(",
"command",
",",
"get_pty",
"=",
"True",
")",
"self",
".",
"recv_exit_status",
"(",
"\"while [ ! -f %s ]; do sleep 1; done\"",
"%",
"(",
"pid_filename",
")",
",",
"10",
")",
"self",
".",
"sftp",
".",
"get",
"(",
"pid_filename",
",",
"pid_dest_filename",
")",
"pid_fd",
"=",
"open",
"(",
"pid_dest_filename",
",",
"'r'",
")",
"port",
"=",
"int",
"(",
"pid_fd",
".",
"read",
"(",
")",
")",
"pid_fd",
".",
"close",
"(",
")",
"os",
".",
"remove",
"(",
"pid_dest_filename",
")",
"return",
"rpyc",
".",
"classic",
".",
"ssh_connect",
"(",
"self",
".",
"pbm",
",",
"port",
")",
"except",
"Exception",
"as",
"err",
":",
"self",
".",
"logger",
".",
"debug",
"(",
"\"Failed to setup rpyc: %s\"",
"%",
"err",
")",
"return",
"None",
"else",
":",
"return",
"None"
] | RPyC lazy property | [
"RPyC",
"lazy",
"property"
] | train | https://github.com/RedHatQE/python-stitches/blob/957e9895e64ffd3b8157b38b9cce414969509288/stitches/connection.py#L170-L219 |
RedHatQE/python-stitches | stitches/connection.py | Connection.disconnect | def disconnect(self):
"""
Close the connection
"""
if hasattr(self, '_lazy_sftp'):
if self.sftp is not None:
self.sftp.close()
delattr(self, '_lazy_sftp')
if hasattr(self, '_lazy_channel'):
if self.channel is not None:
self.channel.close()
delattr(self, '_lazy_channel')
if hasattr(self, '_lazy_cli'):
if self.cli is not None:
self.cli.close()
delattr(self, '_lazy_cli')
if hasattr(self, '_lazy_pbm'):
if self.pbm is not None:
self.pbm.close()
delattr(self, '_lazy_pbm')
if hasattr(self, '_lazy_rpyc'):
if self.rpyc is not None:
self.rpyc.close()
delattr(self, '_lazy_rpyc') | python | def disconnect(self):
"""
Close the connection
"""
if hasattr(self, '_lazy_sftp'):
if self.sftp is not None:
self.sftp.close()
delattr(self, '_lazy_sftp')
if hasattr(self, '_lazy_channel'):
if self.channel is not None:
self.channel.close()
delattr(self, '_lazy_channel')
if hasattr(self, '_lazy_cli'):
if self.cli is not None:
self.cli.close()
delattr(self, '_lazy_cli')
if hasattr(self, '_lazy_pbm'):
if self.pbm is not None:
self.pbm.close()
delattr(self, '_lazy_pbm')
if hasattr(self, '_lazy_rpyc'):
if self.rpyc is not None:
self.rpyc.close()
delattr(self, '_lazy_rpyc') | [
"def",
"disconnect",
"(",
"self",
")",
":",
"if",
"hasattr",
"(",
"self",
",",
"'_lazy_sftp'",
")",
":",
"if",
"self",
".",
"sftp",
"is",
"not",
"None",
":",
"self",
".",
"sftp",
".",
"close",
"(",
")",
"delattr",
"(",
"self",
",",
"'_lazy_sftp'",
")",
"if",
"hasattr",
"(",
"self",
",",
"'_lazy_channel'",
")",
":",
"if",
"self",
".",
"channel",
"is",
"not",
"None",
":",
"self",
".",
"channel",
".",
"close",
"(",
")",
"delattr",
"(",
"self",
",",
"'_lazy_channel'",
")",
"if",
"hasattr",
"(",
"self",
",",
"'_lazy_cli'",
")",
":",
"if",
"self",
".",
"cli",
"is",
"not",
"None",
":",
"self",
".",
"cli",
".",
"close",
"(",
")",
"delattr",
"(",
"self",
",",
"'_lazy_cli'",
")",
"if",
"hasattr",
"(",
"self",
",",
"'_lazy_pbm'",
")",
":",
"if",
"self",
".",
"pbm",
"is",
"not",
"None",
":",
"self",
".",
"pbm",
".",
"close",
"(",
")",
"delattr",
"(",
"self",
",",
"'_lazy_pbm'",
")",
"if",
"hasattr",
"(",
"self",
",",
"'_lazy_rpyc'",
")",
":",
"if",
"self",
".",
"rpyc",
"is",
"not",
"None",
":",
"self",
".",
"rpyc",
".",
"close",
"(",
")",
"delattr",
"(",
"self",
",",
"'_lazy_rpyc'",
")"
] | Close the connection | [
"Close",
"the",
"connection"
] | train | https://github.com/RedHatQE/python-stitches/blob/957e9895e64ffd3b8157b38b9cce414969509288/stitches/connection.py#L227-L250 |
RedHatQE/python-stitches | stitches/connection.py | Connection.exec_command | def exec_command(self, command, bufsize=-1, get_pty=False):
"""
Execute a command in the connection
@param command: command to execute
@type command: str
@param bufsize: buffer size
@type bufsize: int
@param get_pty: get pty
@type get_pty: bool
@return: the stdin, stdout, and stderr of the executing command
@rtype: tuple(L{paramiko.ChannelFile}, L{paramiko.ChannelFile},
L{paramiko.ChannelFile})
@raise SSHException: if the server fails to execute the command
"""
self.last_command = command
return self.cli.exec_command(command, bufsize, get_pty=get_pty) | python | def exec_command(self, command, bufsize=-1, get_pty=False):
"""
Execute a command in the connection
@param command: command to execute
@type command: str
@param bufsize: buffer size
@type bufsize: int
@param get_pty: get pty
@type get_pty: bool
@return: the stdin, stdout, and stderr of the executing command
@rtype: tuple(L{paramiko.ChannelFile}, L{paramiko.ChannelFile},
L{paramiko.ChannelFile})
@raise SSHException: if the server fails to execute the command
"""
self.last_command = command
return self.cli.exec_command(command, bufsize, get_pty=get_pty) | [
"def",
"exec_command",
"(",
"self",
",",
"command",
",",
"bufsize",
"=",
"-",
"1",
",",
"get_pty",
"=",
"False",
")",
":",
"self",
".",
"last_command",
"=",
"command",
"return",
"self",
".",
"cli",
".",
"exec_command",
"(",
"command",
",",
"bufsize",
",",
"get_pty",
"=",
"get_pty",
")"
] | Execute a command in the connection
@param command: command to execute
@type command: str
@param bufsize: buffer size
@type bufsize: int
@param get_pty: get pty
@type get_pty: bool
@return: the stdin, stdout, and stderr of the executing command
@rtype: tuple(L{paramiko.ChannelFile}, L{paramiko.ChannelFile},
L{paramiko.ChannelFile})
@raise SSHException: if the server fails to execute the command | [
"Execute",
"a",
"command",
"in",
"the",
"connection"
] | train | https://github.com/RedHatQE/python-stitches/blob/957e9895e64ffd3b8157b38b9cce414969509288/stitches/connection.py#L252-L272 |
RedHatQE/python-stitches | stitches/connection.py | Connection.recv_exit_status | def recv_exit_status(self, command, timeout=10, get_pty=False):
"""
Execute a command and get its return value
@param command: command to execute
@type command: str
@param timeout: command execution timeout
@type timeout: int
@param get_pty: get pty
@type get_pty: bool
@return: the exit code of the process or None in case of timeout
@rtype: int or None
"""
status = None
self.last_command = command
stdin, stdout, stderr = self.cli.exec_command(command, get_pty=get_pty)
if stdout and stderr and stdin:
for _ in range(timeout):
if stdout.channel.exit_status_ready():
status = stdout.channel.recv_exit_status()
break
time.sleep(1)
self.last_stdout = stdout.read()
self.last_stderr = stderr.read()
stdin.close()
stdout.close()
stderr.close()
return status | python | def recv_exit_status(self, command, timeout=10, get_pty=False):
"""
Execute a command and get its return value
@param command: command to execute
@type command: str
@param timeout: command execution timeout
@type timeout: int
@param get_pty: get pty
@type get_pty: bool
@return: the exit code of the process or None in case of timeout
@rtype: int or None
"""
status = None
self.last_command = command
stdin, stdout, stderr = self.cli.exec_command(command, get_pty=get_pty)
if stdout and stderr and stdin:
for _ in range(timeout):
if stdout.channel.exit_status_ready():
status = stdout.channel.recv_exit_status()
break
time.sleep(1)
self.last_stdout = stdout.read()
self.last_stderr = stderr.read()
stdin.close()
stdout.close()
stderr.close()
return status | [
"def",
"recv_exit_status",
"(",
"self",
",",
"command",
",",
"timeout",
"=",
"10",
",",
"get_pty",
"=",
"False",
")",
":",
"status",
"=",
"None",
"self",
".",
"last_command",
"=",
"command",
"stdin",
",",
"stdout",
",",
"stderr",
"=",
"self",
".",
"cli",
".",
"exec_command",
"(",
"command",
",",
"get_pty",
"=",
"get_pty",
")",
"if",
"stdout",
"and",
"stderr",
"and",
"stdin",
":",
"for",
"_",
"in",
"range",
"(",
"timeout",
")",
":",
"if",
"stdout",
".",
"channel",
".",
"exit_status_ready",
"(",
")",
":",
"status",
"=",
"stdout",
".",
"channel",
".",
"recv_exit_status",
"(",
")",
"break",
"time",
".",
"sleep",
"(",
"1",
")",
"self",
".",
"last_stdout",
"=",
"stdout",
".",
"read",
"(",
")",
"self",
".",
"last_stderr",
"=",
"stderr",
".",
"read",
"(",
")",
"stdin",
".",
"close",
"(",
")",
"stdout",
".",
"close",
"(",
")",
"stderr",
".",
"close",
"(",
")",
"return",
"status"
] | Execute a command and get its return value
@param command: command to execute
@type command: str
@param timeout: command execution timeout
@type timeout: int
@param get_pty: get pty
@type get_pty: bool
@return: the exit code of the process or None in case of timeout
@rtype: int or None | [
"Execute",
"a",
"command",
"and",
"get",
"its",
"return",
"value"
] | train | https://github.com/RedHatQE/python-stitches/blob/957e9895e64ffd3b8157b38b9cce414969509288/stitches/connection.py#L274-L306 |
gwww/elkm1 | elkm1_lib/counters.py | Counter.set | def set(self, value):
"""(Helper) Set counter to value"""
self._elk.send(cx_encode(self._index, value)) | python | def set(self, value):
"""(Helper) Set counter to value"""
self._elk.send(cx_encode(self._index, value)) | [
"def",
"set",
"(",
"self",
",",
"value",
")",
":",
"self",
".",
"_elk",
".",
"send",
"(",
"cx_encode",
"(",
"self",
".",
"_index",
",",
"value",
")",
")"
] | (Helper) Set counter to value | [
"(",
"Helper",
")",
"Set",
"counter",
"to",
"value"
] | train | https://github.com/gwww/elkm1/blob/078d0de30840c3fab46f1f8534d98df557931e91/elkm1_lib/counters.py#L13-L15 |
MonashBI/arcana | arcana/pipeline/provenance.py | Record.save | def save(self, path):
"""
Saves the provenance object to a JSON file, optionally including
checksums for inputs and outputs (which are initially produced mid-
run) to insert during the write
Parameters
----------
path : str
Path to save the generated JSON file
inputs : dict[str, str | list[str] | list[list[str]]] | None
Checksums of all pipeline inputs used by the pipeline. For inputs
of matching frequency to the output derivative associated with the
provenance object, the values of the dictionary will be single
checksums. If the output is of lower frequency they will be lists
of checksums or in the case of 'per_session' inputs to 'per_study'
outputs, lists of lists of checksum. They need to be provided here
if the provenance object was initialised without checksums
outputs : dict[str, str] | None
Checksums of all pipeline outputs. They need to be provided here
if the provenance object was initialised without checksums
"""
with open(path, 'w') as f:
try:
json.dump(self.prov, f, indent=2)
except TypeError:
raise ArcanaError(
"Could not serialise provenance record dictionary:\n{}"
.format(pformat(self.prov))) | python | def save(self, path):
"""
Saves the provenance object to a JSON file, optionally including
checksums for inputs and outputs (which are initially produced mid-
run) to insert during the write
Parameters
----------
path : str
Path to save the generated JSON file
inputs : dict[str, str | list[str] | list[list[str]]] | None
Checksums of all pipeline inputs used by the pipeline. For inputs
of matching frequency to the output derivative associated with the
provenance object, the values of the dictionary will be single
checksums. If the output is of lower frequency they will be lists
of checksums or in the case of 'per_session' inputs to 'per_study'
outputs, lists of lists of checksum. They need to be provided here
if the provenance object was initialised without checksums
outputs : dict[str, str] | None
Checksums of all pipeline outputs. They need to be provided here
if the provenance object was initialised without checksums
"""
with open(path, 'w') as f:
try:
json.dump(self.prov, f, indent=2)
except TypeError:
raise ArcanaError(
"Could not serialise provenance record dictionary:\n{}"
.format(pformat(self.prov))) | [
"def",
"save",
"(",
"self",
",",
"path",
")",
":",
"with",
"open",
"(",
"path",
",",
"'w'",
")",
"as",
"f",
":",
"try",
":",
"json",
".",
"dump",
"(",
"self",
".",
"prov",
",",
"f",
",",
"indent",
"=",
"2",
")",
"except",
"TypeError",
":",
"raise",
"ArcanaError",
"(",
"\"Could not serialise provenance record dictionary:\\n{}\"",
".",
"format",
"(",
"pformat",
"(",
"self",
".",
"prov",
")",
")",
")"
] | Saves the provenance object to a JSON file, optionally including
checksums for inputs and outputs (which are initially produced mid-
run) to insert during the write
Parameters
----------
path : str
Path to save the generated JSON file
inputs : dict[str, str | list[str] | list[list[str]]] | None
Checksums of all pipeline inputs used by the pipeline. For inputs
of matching frequency to the output derivative associated with the
provenance object, the values of the dictionary will be single
checksums. If the output is of lower frequency they will be lists
of checksums or in the case of 'per_session' inputs to 'per_study'
outputs, lists of lists of checksum. They need to be provided here
if the provenance object was initialised without checksums
outputs : dict[str, str] | None
Checksums of all pipeline outputs. They need to be provided here
if the provenance object was initialised without checksums | [
"Saves",
"the",
"provenance",
"object",
"to",
"a",
"JSON",
"file",
"optionally",
"including",
"checksums",
"for",
"inputs",
"and",
"outputs",
"(",
"which",
"are",
"initially",
"produced",
"mid",
"-",
"run",
")",
"to",
"insert",
"during",
"the",
"write"
] | train | https://github.com/MonashBI/arcana/blob/d6271a29d13733d00422d11417af8d200be62acc/arcana/pipeline/provenance.py#L112-L140 |
MonashBI/arcana | arcana/pipeline/provenance.py | Record.load | def load(cls, pipeline_name, frequency, subject_id, visit_id, from_study,
path):
"""
Loads a saved provenance object from a JSON file
Parameters
----------
path : str
Path to the provenance file
frequency : str
The frequency of the record
subject_id : str | None
The subject ID of the provenance record
visit_id : str | None
The visit ID of the provenance record
from_study : str
Name of the study the derivatives were created for
Returns
-------
record : Record
The loaded provenance record
"""
with open(path) as f:
prov = json.load(f)
return Record(pipeline_name, frequency, subject_id, visit_id,
from_study, prov) | python | def load(cls, pipeline_name, frequency, subject_id, visit_id, from_study,
path):
"""
Loads a saved provenance object from a JSON file
Parameters
----------
path : str
Path to the provenance file
frequency : str
The frequency of the record
subject_id : str | None
The subject ID of the provenance record
visit_id : str | None
The visit ID of the provenance record
from_study : str
Name of the study the derivatives were created for
Returns
-------
record : Record
The loaded provenance record
"""
with open(path) as f:
prov = json.load(f)
return Record(pipeline_name, frequency, subject_id, visit_id,
from_study, prov) | [
"def",
"load",
"(",
"cls",
",",
"pipeline_name",
",",
"frequency",
",",
"subject_id",
",",
"visit_id",
",",
"from_study",
",",
"path",
")",
":",
"with",
"open",
"(",
"path",
")",
"as",
"f",
":",
"prov",
"=",
"json",
".",
"load",
"(",
"f",
")",
"return",
"Record",
"(",
"pipeline_name",
",",
"frequency",
",",
"subject_id",
",",
"visit_id",
",",
"from_study",
",",
"prov",
")"
] | Loads a saved provenance object from a JSON file
Parameters
----------
path : str
Path to the provenance file
frequency : str
The frequency of the record
subject_id : str | None
The subject ID of the provenance record
visit_id : str | None
The visit ID of the provenance record
from_study : str
Name of the study the derivatives were created for
Returns
-------
record : Record
The loaded provenance record | [
"Loads",
"a",
"saved",
"provenance",
"object",
"from",
"a",
"JSON",
"file"
] | train | https://github.com/MonashBI/arcana/blob/d6271a29d13733d00422d11417af8d200be62acc/arcana/pipeline/provenance.py#L143-L169 |
MonashBI/arcana | arcana/pipeline/provenance.py | Record.mismatches | def mismatches(self, other, include=None, exclude=None):
"""
Compares information stored within provenance objects with the
exception of version information to see if they match. Matches are
constrained to the paths passed to the 'include' kwarg, with the
exception of sub-paths passed to the 'exclude' kwarg
Parameters
----------
other : Provenance
The provenance object to compare against
include : list[list[str]] | None
Paths in the provenance to include in the match. If None all are
incluced
exclude : list[list[str]] | None
Paths in the provenance to exclude from the match. In None all are
excluded
"""
if include is not None:
include_res = [self._gen_prov_path_regex(p) for p in include]
if exclude is not None:
exclude_res = [self._gen_prov_path_regex(p) for p in exclude]
diff = DeepDiff(self._prov, other._prov, ignore_order=True)
# Create regular expresssions for the include and exclude paths in
# the format that deepdiff uses for nested dictionary/lists
def include_change(change):
if include is None:
included = True
else:
included = any(rx.match(change) for rx in include_res)
if included and exclude is not None:
included = not any(rx.match(change) for rx in exclude_res)
return included
filtered_diff = {}
for change_type, changes in diff.items():
if isinstance(changes, dict):
filtered = dict((k, v) for k, v in changes.items()
if include_change(k))
else:
filtered = [c for c in changes if include_change(c)]
if filtered:
filtered_diff[change_type] = filtered
return filtered_diff | python | def mismatches(self, other, include=None, exclude=None):
"""
Compares information stored within provenance objects with the
exception of version information to see if they match. Matches are
constrained to the paths passed to the 'include' kwarg, with the
exception of sub-paths passed to the 'exclude' kwarg
Parameters
----------
other : Provenance
The provenance object to compare against
include : list[list[str]] | None
Paths in the provenance to include in the match. If None all are
incluced
exclude : list[list[str]] | None
Paths in the provenance to exclude from the match. In None all are
excluded
"""
if include is not None:
include_res = [self._gen_prov_path_regex(p) for p in include]
if exclude is not None:
exclude_res = [self._gen_prov_path_regex(p) for p in exclude]
diff = DeepDiff(self._prov, other._prov, ignore_order=True)
# Create regular expresssions for the include and exclude paths in
# the format that deepdiff uses for nested dictionary/lists
def include_change(change):
if include is None:
included = True
else:
included = any(rx.match(change) for rx in include_res)
if included and exclude is not None:
included = not any(rx.match(change) for rx in exclude_res)
return included
filtered_diff = {}
for change_type, changes in diff.items():
if isinstance(changes, dict):
filtered = dict((k, v) for k, v in changes.items()
if include_change(k))
else:
filtered = [c for c in changes if include_change(c)]
if filtered:
filtered_diff[change_type] = filtered
return filtered_diff | [
"def",
"mismatches",
"(",
"self",
",",
"other",
",",
"include",
"=",
"None",
",",
"exclude",
"=",
"None",
")",
":",
"if",
"include",
"is",
"not",
"None",
":",
"include_res",
"=",
"[",
"self",
".",
"_gen_prov_path_regex",
"(",
"p",
")",
"for",
"p",
"in",
"include",
"]",
"if",
"exclude",
"is",
"not",
"None",
":",
"exclude_res",
"=",
"[",
"self",
".",
"_gen_prov_path_regex",
"(",
"p",
")",
"for",
"p",
"in",
"exclude",
"]",
"diff",
"=",
"DeepDiff",
"(",
"self",
".",
"_prov",
",",
"other",
".",
"_prov",
",",
"ignore_order",
"=",
"True",
")",
"# Create regular expresssions for the include and exclude paths in",
"# the format that deepdiff uses for nested dictionary/lists",
"def",
"include_change",
"(",
"change",
")",
":",
"if",
"include",
"is",
"None",
":",
"included",
"=",
"True",
"else",
":",
"included",
"=",
"any",
"(",
"rx",
".",
"match",
"(",
"change",
")",
"for",
"rx",
"in",
"include_res",
")",
"if",
"included",
"and",
"exclude",
"is",
"not",
"None",
":",
"included",
"=",
"not",
"any",
"(",
"rx",
".",
"match",
"(",
"change",
")",
"for",
"rx",
"in",
"exclude_res",
")",
"return",
"included",
"filtered_diff",
"=",
"{",
"}",
"for",
"change_type",
",",
"changes",
"in",
"diff",
".",
"items",
"(",
")",
":",
"if",
"isinstance",
"(",
"changes",
",",
"dict",
")",
":",
"filtered",
"=",
"dict",
"(",
"(",
"k",
",",
"v",
")",
"for",
"k",
",",
"v",
"in",
"changes",
".",
"items",
"(",
")",
"if",
"include_change",
"(",
"k",
")",
")",
"else",
":",
"filtered",
"=",
"[",
"c",
"for",
"c",
"in",
"changes",
"if",
"include_change",
"(",
"c",
")",
"]",
"if",
"filtered",
":",
"filtered_diff",
"[",
"change_type",
"]",
"=",
"filtered",
"return",
"filtered_diff"
] | Compares information stored within provenance objects with the
exception of version information to see if they match. Matches are
constrained to the paths passed to the 'include' kwarg, with the
exception of sub-paths passed to the 'exclude' kwarg
Parameters
----------
other : Provenance
The provenance object to compare against
include : list[list[str]] | None
Paths in the provenance to include in the match. If None all are
incluced
exclude : list[list[str]] | None
Paths in the provenance to exclude from the match. In None all are
excluded | [
"Compares",
"information",
"stored",
"within",
"provenance",
"objects",
"with",
"the",
"exception",
"of",
"version",
"information",
"to",
"see",
"if",
"they",
"match",
".",
"Matches",
"are",
"constrained",
"to",
"the",
"paths",
"passed",
"to",
"the",
"include",
"kwarg",
"with",
"the",
"exception",
"of",
"sub",
"-",
"paths",
"passed",
"to",
"the",
"exclude",
"kwarg"
] | train | https://github.com/MonashBI/arcana/blob/d6271a29d13733d00422d11417af8d200be62acc/arcana/pipeline/provenance.py#L171-L215 |
MonashBI/arcana | arcana/study/multi.py | MultiStudy.translate | def translate(cls, substudy_name, pipeline_getter, auto_added=False):
"""
A method for translating pipeline constructors from a sub-study to the
namespace of a multi-study. Returns a new method that calls the
sub-study pipeline constructor with appropriate keyword arguments
Parameters
----------
substudy_name : str
Name of the sub-study
pipeline_getter : str
Name of method used to construct the pipeline in the sub-study
auto_added : bool
Signify that a method was automatically added by the
MultiStudyMetaClass. Used in checks when pickling Study
objects
"""
assert isinstance(substudy_name, basestring)
assert isinstance(pipeline_getter, basestring)
def translated_getter(self, **name_maps):
substudy_spec = self.substudy_spec(substudy_name)
# Combine mapping of names of sub-study specs with
return getattr(self.substudy(substudy_name), pipeline_getter)(
prefix=substudy_name + '_',
input_map=substudy_spec.name_map,
output_map=substudy_spec.name_map,
study=self, name_maps=name_maps)
# Add reduce method to allow it to be pickled
translated_getter.auto_added = auto_added
return translated_getter | python | def translate(cls, substudy_name, pipeline_getter, auto_added=False):
"""
A method for translating pipeline constructors from a sub-study to the
namespace of a multi-study. Returns a new method that calls the
sub-study pipeline constructor with appropriate keyword arguments
Parameters
----------
substudy_name : str
Name of the sub-study
pipeline_getter : str
Name of method used to construct the pipeline in the sub-study
auto_added : bool
Signify that a method was automatically added by the
MultiStudyMetaClass. Used in checks when pickling Study
objects
"""
assert isinstance(substudy_name, basestring)
assert isinstance(pipeline_getter, basestring)
def translated_getter(self, **name_maps):
substudy_spec = self.substudy_spec(substudy_name)
# Combine mapping of names of sub-study specs with
return getattr(self.substudy(substudy_name), pipeline_getter)(
prefix=substudy_name + '_',
input_map=substudy_spec.name_map,
output_map=substudy_spec.name_map,
study=self, name_maps=name_maps)
# Add reduce method to allow it to be pickled
translated_getter.auto_added = auto_added
return translated_getter | [
"def",
"translate",
"(",
"cls",
",",
"substudy_name",
",",
"pipeline_getter",
",",
"auto_added",
"=",
"False",
")",
":",
"assert",
"isinstance",
"(",
"substudy_name",
",",
"basestring",
")",
"assert",
"isinstance",
"(",
"pipeline_getter",
",",
"basestring",
")",
"def",
"translated_getter",
"(",
"self",
",",
"*",
"*",
"name_maps",
")",
":",
"substudy_spec",
"=",
"self",
".",
"substudy_spec",
"(",
"substudy_name",
")",
"# Combine mapping of names of sub-study specs with",
"return",
"getattr",
"(",
"self",
".",
"substudy",
"(",
"substudy_name",
")",
",",
"pipeline_getter",
")",
"(",
"prefix",
"=",
"substudy_name",
"+",
"'_'",
",",
"input_map",
"=",
"substudy_spec",
".",
"name_map",
",",
"output_map",
"=",
"substudy_spec",
".",
"name_map",
",",
"study",
"=",
"self",
",",
"name_maps",
"=",
"name_maps",
")",
"# Add reduce method to allow it to be pickled",
"translated_getter",
".",
"auto_added",
"=",
"auto_added",
"return",
"translated_getter"
] | A method for translating pipeline constructors from a sub-study to the
namespace of a multi-study. Returns a new method that calls the
sub-study pipeline constructor with appropriate keyword arguments
Parameters
----------
substudy_name : str
Name of the sub-study
pipeline_getter : str
Name of method used to construct the pipeline in the sub-study
auto_added : bool
Signify that a method was automatically added by the
MultiStudyMetaClass. Used in checks when pickling Study
objects | [
"A",
"method",
"for",
"translating",
"pipeline",
"constructors",
"from",
"a",
"sub",
"-",
"study",
"to",
"the",
"namespace",
"of",
"a",
"multi",
"-",
"study",
".",
"Returns",
"a",
"new",
"method",
"that",
"calls",
"the",
"sub",
"-",
"study",
"pipeline",
"constructor",
"with",
"appropriate",
"keyword",
"arguments"
] | train | https://github.com/MonashBI/arcana/blob/d6271a29d13733d00422d11417af8d200be62acc/arcana/study/multi.py#L169-L199 |
MonashBI/arcana | arcana/study/multi.py | SubStudySpec.auto_data_specs | def auto_data_specs(self):
"""
Data specs in the sub-study class that are not explicitly provided
in the name map
"""
for spec in self.study_class.data_specs():
if spec.name not in self._name_map:
yield spec | python | def auto_data_specs(self):
"""
Data specs in the sub-study class that are not explicitly provided
in the name map
"""
for spec in self.study_class.data_specs():
if spec.name not in self._name_map:
yield spec | [
"def",
"auto_data_specs",
"(",
"self",
")",
":",
"for",
"spec",
"in",
"self",
".",
"study_class",
".",
"data_specs",
"(",
")",
":",
"if",
"spec",
".",
"name",
"not",
"in",
"self",
".",
"_name_map",
":",
"yield",
"spec"
] | Data specs in the sub-study class that are not explicitly provided
in the name map | [
"Data",
"specs",
"in",
"the",
"sub",
"-",
"study",
"class",
"that",
"are",
"not",
"explicitly",
"provided",
"in",
"the",
"name",
"map"
] | train | https://github.com/MonashBI/arcana/blob/d6271a29d13733d00422d11417af8d200be62acc/arcana/study/multi.py#L264-L271 |
MonashBI/arcana | arcana/study/multi.py | SubStudySpec.auto_param_specs | def auto_param_specs(self):
"""
Parameter pecs in the sub-study class that are not explicitly provided
in the name map
"""
for spec in self.study_class.parameter_specs():
if spec.name not in self._name_map:
yield spec | python | def auto_param_specs(self):
"""
Parameter pecs in the sub-study class that are not explicitly provided
in the name map
"""
for spec in self.study_class.parameter_specs():
if spec.name not in self._name_map:
yield spec | [
"def",
"auto_param_specs",
"(",
"self",
")",
":",
"for",
"spec",
"in",
"self",
".",
"study_class",
".",
"parameter_specs",
"(",
")",
":",
"if",
"spec",
".",
"name",
"not",
"in",
"self",
".",
"_name_map",
":",
"yield",
"spec"
] | Parameter pecs in the sub-study class that are not explicitly provided
in the name map | [
"Parameter",
"pecs",
"in",
"the",
"sub",
"-",
"study",
"class",
"that",
"are",
"not",
"explicitly",
"provided",
"in",
"the",
"name",
"map"
] | train | https://github.com/MonashBI/arcana/blob/d6271a29d13733d00422d11417af8d200be62acc/arcana/study/multi.py#L274-L281 |
MonashBI/arcana | arcana/environment/base.py | MapNode._make_nodes | def _make_nodes(self, cwd=None):
"""
Cast generated nodes to be Arcana nodes
"""
for i, node in NipypeMapNode._make_nodes(self, cwd=cwd):
# "Cast" NiPype node to a Arcana Node and set Arcana Node
# parameters
node.__class__ = self.node_cls
node._environment = self._environment
node._versions = self._versions
node._wall_time = self._wall_time
node._annotations = self._annotations
yield i, node | python | def _make_nodes(self, cwd=None):
"""
Cast generated nodes to be Arcana nodes
"""
for i, node in NipypeMapNode._make_nodes(self, cwd=cwd):
# "Cast" NiPype node to a Arcana Node and set Arcana Node
# parameters
node.__class__ = self.node_cls
node._environment = self._environment
node._versions = self._versions
node._wall_time = self._wall_time
node._annotations = self._annotations
yield i, node | [
"def",
"_make_nodes",
"(",
"self",
",",
"cwd",
"=",
"None",
")",
":",
"for",
"i",
",",
"node",
"in",
"NipypeMapNode",
".",
"_make_nodes",
"(",
"self",
",",
"cwd",
"=",
"cwd",
")",
":",
"# \"Cast\" NiPype node to a Arcana Node and set Arcana Node",
"# parameters",
"node",
".",
"__class__",
"=",
"self",
".",
"node_cls",
"node",
".",
"_environment",
"=",
"self",
".",
"_environment",
"node",
".",
"_versions",
"=",
"self",
".",
"_versions",
"node",
".",
"_wall_time",
"=",
"self",
".",
"_wall_time",
"node",
".",
"_annotations",
"=",
"self",
".",
"_annotations",
"yield",
"i",
",",
"node"
] | Cast generated nodes to be Arcana nodes | [
"Cast",
"generated",
"nodes",
"to",
"be",
"Arcana",
"nodes"
] | train | https://github.com/MonashBI/arcana/blob/d6271a29d13733d00422d11417af8d200be62acc/arcana/environment/base.py#L107-L119 |
tym-xqo/nerium | nerium/query.py | get_query | def get_query(query_name):
"""Find file matching query_name, read and return query object
"""
query_file_match = list(
filter(lambda i: query_name == i.stem, FLAT_QUERIES))
if not query_file_match:
return None
# TODO: Log warning if more than one match
query_file = query_file_match[0]
with open(query_file) as f:
metadata, query_body = frontmatter.parse(f.read())
result_mod = query_file.suffix.strip('.')
query_obj = SimpleNamespace(
name=query_name,
metadata=metadata,
path=query_file,
result_mod=result_mod,
body=query_body,
error=False,
executed=datetime.utcnow().isoformat())
return query_obj | python | def get_query(query_name):
"""Find file matching query_name, read and return query object
"""
query_file_match = list(
filter(lambda i: query_name == i.stem, FLAT_QUERIES))
if not query_file_match:
return None
# TODO: Log warning if more than one match
query_file = query_file_match[0]
with open(query_file) as f:
metadata, query_body = frontmatter.parse(f.read())
result_mod = query_file.suffix.strip('.')
query_obj = SimpleNamespace(
name=query_name,
metadata=metadata,
path=query_file,
result_mod=result_mod,
body=query_body,
error=False,
executed=datetime.utcnow().isoformat())
return query_obj | [
"def",
"get_query",
"(",
"query_name",
")",
":",
"query_file_match",
"=",
"list",
"(",
"filter",
"(",
"lambda",
"i",
":",
"query_name",
"==",
"i",
".",
"stem",
",",
"FLAT_QUERIES",
")",
")",
"if",
"not",
"query_file_match",
":",
"return",
"None",
"# TODO: Log warning if more than one match",
"query_file",
"=",
"query_file_match",
"[",
"0",
"]",
"with",
"open",
"(",
"query_file",
")",
"as",
"f",
":",
"metadata",
",",
"query_body",
"=",
"frontmatter",
".",
"parse",
"(",
"f",
".",
"read",
"(",
")",
")",
"result_mod",
"=",
"query_file",
".",
"suffix",
".",
"strip",
"(",
"'.'",
")",
"query_obj",
"=",
"SimpleNamespace",
"(",
"name",
"=",
"query_name",
",",
"metadata",
"=",
"metadata",
",",
"path",
"=",
"query_file",
",",
"result_mod",
"=",
"result_mod",
",",
"body",
"=",
"query_body",
",",
"error",
"=",
"False",
",",
"executed",
"=",
"datetime",
".",
"utcnow",
"(",
")",
".",
"isoformat",
"(",
")",
")",
"return",
"query_obj"
] | Find file matching query_name, read and return query object | [
"Find",
"file",
"matching",
"query_name",
"read",
"and",
"return",
"query",
"object"
] | train | https://github.com/tym-xqo/nerium/blob/b234847d95f37c3a49dff15a189205fe5bbbc05f/nerium/query.py#L19-L39 |
tym-xqo/nerium | nerium/query.py | get_result_set | def get_result_set(query_name, **kwargs):
""" Call get_query, then submit query from file to resultset module
"""
query = get_query(query_name)
if not query:
query = SimpleNamespace()
query.error = f"No query found matching '{query_name}'"
return query
try:
result_mod = import_module(
f'nerium.contrib.resultset.{query.result_mod}')
except ModuleNotFoundError:
result_mod = import_module('nerium.resultset.sql')
query.params = {**kwargs}
query.body = process_template(sql=query.body, **query.params)
result = result_mod.result(query, **query.params)
# Dumping and reloading via json here gets us datetime and decimal
# serialization handling courtesy of `tablib`
query.result = json.loads(json.dumps(result, default=serialize_objects_handler))
try:
if 'error' in query.result[0].keys():
query.error = query.result[0]['error']
except IndexError:
pass
return query | python | def get_result_set(query_name, **kwargs):
""" Call get_query, then submit query from file to resultset module
"""
query = get_query(query_name)
if not query:
query = SimpleNamespace()
query.error = f"No query found matching '{query_name}'"
return query
try:
result_mod = import_module(
f'nerium.contrib.resultset.{query.result_mod}')
except ModuleNotFoundError:
result_mod = import_module('nerium.resultset.sql')
query.params = {**kwargs}
query.body = process_template(sql=query.body, **query.params)
result = result_mod.result(query, **query.params)
# Dumping and reloading via json here gets us datetime and decimal
# serialization handling courtesy of `tablib`
query.result = json.loads(json.dumps(result, default=serialize_objects_handler))
try:
if 'error' in query.result[0].keys():
query.error = query.result[0]['error']
except IndexError:
pass
return query | [
"def",
"get_result_set",
"(",
"query_name",
",",
"*",
"*",
"kwargs",
")",
":",
"query",
"=",
"get_query",
"(",
"query_name",
")",
"if",
"not",
"query",
":",
"query",
"=",
"SimpleNamespace",
"(",
")",
"query",
".",
"error",
"=",
"f\"No query found matching '{query_name}'\"",
"return",
"query",
"try",
":",
"result_mod",
"=",
"import_module",
"(",
"f'nerium.contrib.resultset.{query.result_mod}'",
")",
"except",
"ModuleNotFoundError",
":",
"result_mod",
"=",
"import_module",
"(",
"'nerium.resultset.sql'",
")",
"query",
".",
"params",
"=",
"{",
"*",
"*",
"kwargs",
"}",
"query",
".",
"body",
"=",
"process_template",
"(",
"sql",
"=",
"query",
".",
"body",
",",
"*",
"*",
"query",
".",
"params",
")",
"result",
"=",
"result_mod",
".",
"result",
"(",
"query",
",",
"*",
"*",
"query",
".",
"params",
")",
"# Dumping and reloading via json here gets us datetime and decimal",
"# serialization handling courtesy of `tablib`",
"query",
".",
"result",
"=",
"json",
".",
"loads",
"(",
"json",
".",
"dumps",
"(",
"result",
",",
"default",
"=",
"serialize_objects_handler",
")",
")",
"try",
":",
"if",
"'error'",
"in",
"query",
".",
"result",
"[",
"0",
"]",
".",
"keys",
"(",
")",
":",
"query",
".",
"error",
"=",
"query",
".",
"result",
"[",
"0",
"]",
"[",
"'error'",
"]",
"except",
"IndexError",
":",
"pass",
"return",
"query"
] | Call get_query, then submit query from file to resultset module | [
"Call",
"get_query",
"then",
"submit",
"query",
"from",
"file",
"to",
"resultset",
"module"
] | train | https://github.com/tym-xqo/nerium/blob/b234847d95f37c3a49dff15a189205fe5bbbc05f/nerium/query.py#L49-L73 |
tym-xqo/nerium | nerium/query.py | results_to_csv | def results_to_csv(query_name, **kwargs):
""" Generate CSV from result data
"""
query = get_result_set(query_name, **kwargs)
result = query.result
columns = list(result[0].keys())
data = [tuple(row.values()) for row in result]
frame = tablib.Dataset()
frame.headers = columns
for row in data:
frame.append(row)
csvs = frame.export('csv')
return csvs | python | def results_to_csv(query_name, **kwargs):
""" Generate CSV from result data
"""
query = get_result_set(query_name, **kwargs)
result = query.result
columns = list(result[0].keys())
data = [tuple(row.values()) for row in result]
frame = tablib.Dataset()
frame.headers = columns
for row in data:
frame.append(row)
csvs = frame.export('csv')
return csvs | [
"def",
"results_to_csv",
"(",
"query_name",
",",
"*",
"*",
"kwargs",
")",
":",
"query",
"=",
"get_result_set",
"(",
"query_name",
",",
"*",
"*",
"kwargs",
")",
"result",
"=",
"query",
".",
"result",
"columns",
"=",
"list",
"(",
"result",
"[",
"0",
"]",
".",
"keys",
"(",
")",
")",
"data",
"=",
"[",
"tuple",
"(",
"row",
".",
"values",
"(",
")",
")",
"for",
"row",
"in",
"result",
"]",
"frame",
"=",
"tablib",
".",
"Dataset",
"(",
")",
"frame",
".",
"headers",
"=",
"columns",
"for",
"row",
"in",
"data",
":",
"frame",
".",
"append",
"(",
"row",
")",
"csvs",
"=",
"frame",
".",
"export",
"(",
"'csv'",
")",
"return",
"csvs"
] | Generate CSV from result data | [
"Generate",
"CSV",
"from",
"result",
"data"
] | train | https://github.com/tym-xqo/nerium/blob/b234847d95f37c3a49dff15a189205fe5bbbc05f/nerium/query.py#L76-L88 |
erikvw/django-collect-offline | django_collect_offline/site_offline_models.py | SiteOfflineModels.register | def register(self, models=None, wrapper_cls=None):
"""Registers with app_label.modelname, wrapper_cls.
"""
self.loaded = True
for model in models:
model = model.lower()
if model not in self.registry:
self.registry.update({model: wrapper_cls or self.wrapper_cls})
if self.register_historical:
historical_model = ".historical".join(model.split("."))
self.registry.update(
{historical_model: wrapper_cls or self.wrapper_cls}
)
else:
raise AlreadyRegistered(f"Model is already registered. Got {model}.") | python | def register(self, models=None, wrapper_cls=None):
"""Registers with app_label.modelname, wrapper_cls.
"""
self.loaded = True
for model in models:
model = model.lower()
if model not in self.registry:
self.registry.update({model: wrapper_cls or self.wrapper_cls})
if self.register_historical:
historical_model = ".historical".join(model.split("."))
self.registry.update(
{historical_model: wrapper_cls or self.wrapper_cls}
)
else:
raise AlreadyRegistered(f"Model is already registered. Got {model}.") | [
"def",
"register",
"(",
"self",
",",
"models",
"=",
"None",
",",
"wrapper_cls",
"=",
"None",
")",
":",
"self",
".",
"loaded",
"=",
"True",
"for",
"model",
"in",
"models",
":",
"model",
"=",
"model",
".",
"lower",
"(",
")",
"if",
"model",
"not",
"in",
"self",
".",
"registry",
":",
"self",
".",
"registry",
".",
"update",
"(",
"{",
"model",
":",
"wrapper_cls",
"or",
"self",
".",
"wrapper_cls",
"}",
")",
"if",
"self",
".",
"register_historical",
":",
"historical_model",
"=",
"\".historical\"",
".",
"join",
"(",
"model",
".",
"split",
"(",
"\".\"",
")",
")",
"self",
".",
"registry",
".",
"update",
"(",
"{",
"historical_model",
":",
"wrapper_cls",
"or",
"self",
".",
"wrapper_cls",
"}",
")",
"else",
":",
"raise",
"AlreadyRegistered",
"(",
"f\"Model is already registered. Got {model}.\"",
")"
] | Registers with app_label.modelname, wrapper_cls. | [
"Registers",
"with",
"app_label",
".",
"modelname",
"wrapper_cls",
"."
] | train | https://github.com/erikvw/django-collect-offline/blob/3d5efd66c68e2db4b060a82b070ae490dc399ca7/django_collect_offline/site_offline_models.py#L28-L42 |
erikvw/django-collect-offline | django_collect_offline/site_offline_models.py | SiteOfflineModels.register_for_app | def register_for_app(
self, app_label=None, exclude_models=None, exclude_model_classes=None
):
"""Registers all models for this app_label.
"""
models = []
exclude_models = exclude_models or []
app_config = django_apps.get_app_config(app_label)
for model in app_config.get_models():
if model._meta.label_lower in exclude_models:
pass
elif exclude_model_classes and issubclass(model, exclude_model_classes):
pass
else:
models.append(model._meta.label_lower)
self.register(models) | python | def register_for_app(
self, app_label=None, exclude_models=None, exclude_model_classes=None
):
"""Registers all models for this app_label.
"""
models = []
exclude_models = exclude_models or []
app_config = django_apps.get_app_config(app_label)
for model in app_config.get_models():
if model._meta.label_lower in exclude_models:
pass
elif exclude_model_classes and issubclass(model, exclude_model_classes):
pass
else:
models.append(model._meta.label_lower)
self.register(models) | [
"def",
"register_for_app",
"(",
"self",
",",
"app_label",
"=",
"None",
",",
"exclude_models",
"=",
"None",
",",
"exclude_model_classes",
"=",
"None",
")",
":",
"models",
"=",
"[",
"]",
"exclude_models",
"=",
"exclude_models",
"or",
"[",
"]",
"app_config",
"=",
"django_apps",
".",
"get_app_config",
"(",
"app_label",
")",
"for",
"model",
"in",
"app_config",
".",
"get_models",
"(",
")",
":",
"if",
"model",
".",
"_meta",
".",
"label_lower",
"in",
"exclude_models",
":",
"pass",
"elif",
"exclude_model_classes",
"and",
"issubclass",
"(",
"model",
",",
"exclude_model_classes",
")",
":",
"pass",
"else",
":",
"models",
".",
"append",
"(",
"model",
".",
"_meta",
".",
"label_lower",
")",
"self",
".",
"register",
"(",
"models",
")"
] | Registers all models for this app_label. | [
"Registers",
"all",
"models",
"for",
"this",
"app_label",
"."
] | train | https://github.com/erikvw/django-collect-offline/blob/3d5efd66c68e2db4b060a82b070ae490dc399ca7/django_collect_offline/site_offline_models.py#L44-L59 |
erikvw/django-collect-offline | django_collect_offline/site_offline_models.py | SiteOfflineModels.get_wrapped_instance | def get_wrapped_instance(self, instance=None):
"""Returns a wrapped model instance.
"""
if instance._meta.label_lower not in self.registry:
raise ModelNotRegistered(f"{repr(instance)} is not registered with {self}.")
wrapper_cls = self.registry.get(instance._meta.label_lower) or self.wrapper_cls
if wrapper_cls:
return wrapper_cls(instance)
return instance | python | def get_wrapped_instance(self, instance=None):
"""Returns a wrapped model instance.
"""
if instance._meta.label_lower not in self.registry:
raise ModelNotRegistered(f"{repr(instance)} is not registered with {self}.")
wrapper_cls = self.registry.get(instance._meta.label_lower) or self.wrapper_cls
if wrapper_cls:
return wrapper_cls(instance)
return instance | [
"def",
"get_wrapped_instance",
"(",
"self",
",",
"instance",
"=",
"None",
")",
":",
"if",
"instance",
".",
"_meta",
".",
"label_lower",
"not",
"in",
"self",
".",
"registry",
":",
"raise",
"ModelNotRegistered",
"(",
"f\"{repr(instance)} is not registered with {self}.\"",
")",
"wrapper_cls",
"=",
"self",
".",
"registry",
".",
"get",
"(",
"instance",
".",
"_meta",
".",
"label_lower",
")",
"or",
"self",
".",
"wrapper_cls",
"if",
"wrapper_cls",
":",
"return",
"wrapper_cls",
"(",
"instance",
")",
"return",
"instance"
] | Returns a wrapped model instance. | [
"Returns",
"a",
"wrapped",
"model",
"instance",
"."
] | train | https://github.com/erikvw/django-collect-offline/blob/3d5efd66c68e2db4b060a82b070ae490dc399ca7/django_collect_offline/site_offline_models.py#L61-L69 |
erikvw/django-collect-offline | django_collect_offline/site_offline_models.py | SiteOfflineModels.site_models | def site_models(self, app_label=None):
"""Returns a dictionary of registered models.
"""
site_models = {}
app_configs = (
django_apps.get_app_configs()
if app_label is None
else [django_apps.get_app_config(app_label)]
)
for app_config in app_configs:
model_list = [
model
for model in app_config.get_models()
if model._meta.label_lower in self.registry
]
if model_list:
model_list.sort(key=lambda m: m._meta.verbose_name)
site_models.update({app_config.name: model_list})
return site_models | python | def site_models(self, app_label=None):
"""Returns a dictionary of registered models.
"""
site_models = {}
app_configs = (
django_apps.get_app_configs()
if app_label is None
else [django_apps.get_app_config(app_label)]
)
for app_config in app_configs:
model_list = [
model
for model in app_config.get_models()
if model._meta.label_lower in self.registry
]
if model_list:
model_list.sort(key=lambda m: m._meta.verbose_name)
site_models.update({app_config.name: model_list})
return site_models | [
"def",
"site_models",
"(",
"self",
",",
"app_label",
"=",
"None",
")",
":",
"site_models",
"=",
"{",
"}",
"app_configs",
"=",
"(",
"django_apps",
".",
"get_app_configs",
"(",
")",
"if",
"app_label",
"is",
"None",
"else",
"[",
"django_apps",
".",
"get_app_config",
"(",
"app_label",
")",
"]",
")",
"for",
"app_config",
"in",
"app_configs",
":",
"model_list",
"=",
"[",
"model",
"for",
"model",
"in",
"app_config",
".",
"get_models",
"(",
")",
"if",
"model",
".",
"_meta",
".",
"label_lower",
"in",
"self",
".",
"registry",
"]",
"if",
"model_list",
":",
"model_list",
".",
"sort",
"(",
"key",
"=",
"lambda",
"m",
":",
"m",
".",
"_meta",
".",
"verbose_name",
")",
"site_models",
".",
"update",
"(",
"{",
"app_config",
".",
"name",
":",
"model_list",
"}",
")",
"return",
"site_models"
] | Returns a dictionary of registered models. | [
"Returns",
"a",
"dictionary",
"of",
"registered",
"models",
"."
] | train | https://github.com/erikvw/django-collect-offline/blob/3d5efd66c68e2db4b060a82b070ae490dc399ca7/django_collect_offline/site_offline_models.py#L71-L89 |
MonashBI/arcana | arcana/repository/basic.py | BasicRepo.get_fileset | def get_fileset(self, fileset):
"""
Set the path of the fileset from the repository
"""
# Don't need to cache fileset as it is already local as long
# as the path is set
if fileset._path is None:
primary_path = self.fileset_path(fileset)
aux_files = fileset.format.default_aux_file_paths(primary_path)
if not op.exists(primary_path):
raise ArcanaMissingDataException(
"{} does not exist in {}"
.format(fileset, self))
for aux_name, aux_path in aux_files.items():
if not op.exists(aux_path):
raise ArcanaMissingDataException(
"{} is missing '{}' side car in {}"
.format(fileset, aux_name, self))
else:
primary_path = fileset.path
aux_files = fileset.aux_files
return primary_path, aux_files | python | def get_fileset(self, fileset):
"""
Set the path of the fileset from the repository
"""
# Don't need to cache fileset as it is already local as long
# as the path is set
if fileset._path is None:
primary_path = self.fileset_path(fileset)
aux_files = fileset.format.default_aux_file_paths(primary_path)
if not op.exists(primary_path):
raise ArcanaMissingDataException(
"{} does not exist in {}"
.format(fileset, self))
for aux_name, aux_path in aux_files.items():
if not op.exists(aux_path):
raise ArcanaMissingDataException(
"{} is missing '{}' side car in {}"
.format(fileset, aux_name, self))
else:
primary_path = fileset.path
aux_files = fileset.aux_files
return primary_path, aux_files | [
"def",
"get_fileset",
"(",
"self",
",",
"fileset",
")",
":",
"# Don't need to cache fileset as it is already local as long",
"# as the path is set",
"if",
"fileset",
".",
"_path",
"is",
"None",
":",
"primary_path",
"=",
"self",
".",
"fileset_path",
"(",
"fileset",
")",
"aux_files",
"=",
"fileset",
".",
"format",
".",
"default_aux_file_paths",
"(",
"primary_path",
")",
"if",
"not",
"op",
".",
"exists",
"(",
"primary_path",
")",
":",
"raise",
"ArcanaMissingDataException",
"(",
"\"{} does not exist in {}\"",
".",
"format",
"(",
"fileset",
",",
"self",
")",
")",
"for",
"aux_name",
",",
"aux_path",
"in",
"aux_files",
".",
"items",
"(",
")",
":",
"if",
"not",
"op",
".",
"exists",
"(",
"aux_path",
")",
":",
"raise",
"ArcanaMissingDataException",
"(",
"\"{} is missing '{}' side car in {}\"",
".",
"format",
"(",
"fileset",
",",
"aux_name",
",",
"self",
")",
")",
"else",
":",
"primary_path",
"=",
"fileset",
".",
"path",
"aux_files",
"=",
"fileset",
".",
"aux_files",
"return",
"primary_path",
",",
"aux_files"
] | Set the path of the fileset from the repository | [
"Set",
"the",
"path",
"of",
"the",
"fileset",
"from",
"the",
"repository"
] | train | https://github.com/MonashBI/arcana/blob/d6271a29d13733d00422d11417af8d200be62acc/arcana/repository/basic.py#L94-L115 |
MonashBI/arcana | arcana/repository/basic.py | BasicRepo.get_field | def get_field(self, field):
"""
Update the value of the field from the repository
"""
# Load fields JSON, locking to prevent read/write conflicts
# Would be better if only checked if locked to allow
# concurrent reads but not possible with multi-process
# locks (in my understanding at least).
fpath = self.fields_json_path(field)
try:
with InterProcessLock(fpath + self.LOCK_SUFFIX,
logger=logger), open(fpath, 'r') as f:
dct = json.load(f)
val = dct[field.name]
if field.array:
val = [field.dtype(v) for v in val]
else:
val = field.dtype(val)
except (KeyError, IOError) as e:
try:
# Check to see if the IOError wasn't just because of a
# missing file
if e.errno != errno.ENOENT:
raise
except AttributeError:
pass
raise ArcanaMissingDataException(
"{} does not exist in the local repository {}"
.format(field.name, self))
return val | python | def get_field(self, field):
"""
Update the value of the field from the repository
"""
# Load fields JSON, locking to prevent read/write conflicts
# Would be better if only checked if locked to allow
# concurrent reads but not possible with multi-process
# locks (in my understanding at least).
fpath = self.fields_json_path(field)
try:
with InterProcessLock(fpath + self.LOCK_SUFFIX,
logger=logger), open(fpath, 'r') as f:
dct = json.load(f)
val = dct[field.name]
if field.array:
val = [field.dtype(v) for v in val]
else:
val = field.dtype(val)
except (KeyError, IOError) as e:
try:
# Check to see if the IOError wasn't just because of a
# missing file
if e.errno != errno.ENOENT:
raise
except AttributeError:
pass
raise ArcanaMissingDataException(
"{} does not exist in the local repository {}"
.format(field.name, self))
return val | [
"def",
"get_field",
"(",
"self",
",",
"field",
")",
":",
"# Load fields JSON, locking to prevent read/write conflicts",
"# Would be better if only checked if locked to allow",
"# concurrent reads but not possible with multi-process",
"# locks (in my understanding at least).",
"fpath",
"=",
"self",
".",
"fields_json_path",
"(",
"field",
")",
"try",
":",
"with",
"InterProcessLock",
"(",
"fpath",
"+",
"self",
".",
"LOCK_SUFFIX",
",",
"logger",
"=",
"logger",
")",
",",
"open",
"(",
"fpath",
",",
"'r'",
")",
"as",
"f",
":",
"dct",
"=",
"json",
".",
"load",
"(",
"f",
")",
"val",
"=",
"dct",
"[",
"field",
".",
"name",
"]",
"if",
"field",
".",
"array",
":",
"val",
"=",
"[",
"field",
".",
"dtype",
"(",
"v",
")",
"for",
"v",
"in",
"val",
"]",
"else",
":",
"val",
"=",
"field",
".",
"dtype",
"(",
"val",
")",
"except",
"(",
"KeyError",
",",
"IOError",
")",
"as",
"e",
":",
"try",
":",
"# Check to see if the IOError wasn't just because of a",
"# missing file",
"if",
"e",
".",
"errno",
"!=",
"errno",
".",
"ENOENT",
":",
"raise",
"except",
"AttributeError",
":",
"pass",
"raise",
"ArcanaMissingDataException",
"(",
"\"{} does not exist in the local repository {}\"",
".",
"format",
"(",
"field",
".",
"name",
",",
"self",
")",
")",
"return",
"val"
] | Update the value of the field from the repository | [
"Update",
"the",
"value",
"of",
"the",
"field",
"from",
"the",
"repository"
] | train | https://github.com/MonashBI/arcana/blob/d6271a29d13733d00422d11417af8d200be62acc/arcana/repository/basic.py#L117-L146 |
MonashBI/arcana | arcana/repository/basic.py | BasicRepo.put_fileset | def put_fileset(self, fileset):
"""
Inserts or updates a fileset in the repository
"""
target_path = self.fileset_path(fileset)
if op.isfile(fileset.path):
shutil.copyfile(fileset.path, target_path)
# Copy side car files into repository
for aux_name, aux_path in fileset.format.default_aux_file_paths(
target_path).items():
shutil.copyfile(self.aux_file[aux_name], aux_path)
elif op.isdir(fileset.path):
if op.exists(target_path):
shutil.rmtree(target_path)
shutil.copytree(fileset.path, target_path)
else:
assert False | python | def put_fileset(self, fileset):
"""
Inserts or updates a fileset in the repository
"""
target_path = self.fileset_path(fileset)
if op.isfile(fileset.path):
shutil.copyfile(fileset.path, target_path)
# Copy side car files into repository
for aux_name, aux_path in fileset.format.default_aux_file_paths(
target_path).items():
shutil.copyfile(self.aux_file[aux_name], aux_path)
elif op.isdir(fileset.path):
if op.exists(target_path):
shutil.rmtree(target_path)
shutil.copytree(fileset.path, target_path)
else:
assert False | [
"def",
"put_fileset",
"(",
"self",
",",
"fileset",
")",
":",
"target_path",
"=",
"self",
".",
"fileset_path",
"(",
"fileset",
")",
"if",
"op",
".",
"isfile",
"(",
"fileset",
".",
"path",
")",
":",
"shutil",
".",
"copyfile",
"(",
"fileset",
".",
"path",
",",
"target_path",
")",
"# Copy side car files into repository",
"for",
"aux_name",
",",
"aux_path",
"in",
"fileset",
".",
"format",
".",
"default_aux_file_paths",
"(",
"target_path",
")",
".",
"items",
"(",
")",
":",
"shutil",
".",
"copyfile",
"(",
"self",
".",
"aux_file",
"[",
"aux_name",
"]",
",",
"aux_path",
")",
"elif",
"op",
".",
"isdir",
"(",
"fileset",
".",
"path",
")",
":",
"if",
"op",
".",
"exists",
"(",
"target_path",
")",
":",
"shutil",
".",
"rmtree",
"(",
"target_path",
")",
"shutil",
".",
"copytree",
"(",
"fileset",
".",
"path",
",",
"target_path",
")",
"else",
":",
"assert",
"False"
] | Inserts or updates a fileset in the repository | [
"Inserts",
"or",
"updates",
"a",
"fileset",
"in",
"the",
"repository"
] | train | https://github.com/MonashBI/arcana/blob/d6271a29d13733d00422d11417af8d200be62acc/arcana/repository/basic.py#L148-L164 |
MonashBI/arcana | arcana/repository/basic.py | BasicRepo.put_field | def put_field(self, field):
"""
Inserts or updates a field in the repository
"""
fpath = self.fields_json_path(field)
# Open fields JSON, locking to prevent other processes
# reading or writing
with InterProcessLock(fpath + self.LOCK_SUFFIX, logger=logger):
try:
with open(fpath, 'r') as f:
dct = json.load(f)
except IOError as e:
if e.errno == errno.ENOENT:
dct = {}
else:
raise
if field.array:
dct[field.name] = list(field.value)
else:
dct[field.name] = field.value
with open(fpath, 'w') as f:
json.dump(dct, f, indent=2) | python | def put_field(self, field):
"""
Inserts or updates a field in the repository
"""
fpath = self.fields_json_path(field)
# Open fields JSON, locking to prevent other processes
# reading or writing
with InterProcessLock(fpath + self.LOCK_SUFFIX, logger=logger):
try:
with open(fpath, 'r') as f:
dct = json.load(f)
except IOError as e:
if e.errno == errno.ENOENT:
dct = {}
else:
raise
if field.array:
dct[field.name] = list(field.value)
else:
dct[field.name] = field.value
with open(fpath, 'w') as f:
json.dump(dct, f, indent=2) | [
"def",
"put_field",
"(",
"self",
",",
"field",
")",
":",
"fpath",
"=",
"self",
".",
"fields_json_path",
"(",
"field",
")",
"# Open fields JSON, locking to prevent other processes",
"# reading or writing",
"with",
"InterProcessLock",
"(",
"fpath",
"+",
"self",
".",
"LOCK_SUFFIX",
",",
"logger",
"=",
"logger",
")",
":",
"try",
":",
"with",
"open",
"(",
"fpath",
",",
"'r'",
")",
"as",
"f",
":",
"dct",
"=",
"json",
".",
"load",
"(",
"f",
")",
"except",
"IOError",
"as",
"e",
":",
"if",
"e",
".",
"errno",
"==",
"errno",
".",
"ENOENT",
":",
"dct",
"=",
"{",
"}",
"else",
":",
"raise",
"if",
"field",
".",
"array",
":",
"dct",
"[",
"field",
".",
"name",
"]",
"=",
"list",
"(",
"field",
".",
"value",
")",
"else",
":",
"dct",
"[",
"field",
".",
"name",
"]",
"=",
"field",
".",
"value",
"with",
"open",
"(",
"fpath",
",",
"'w'",
")",
"as",
"f",
":",
"json",
".",
"dump",
"(",
"dct",
",",
"f",
",",
"indent",
"=",
"2",
")"
] | Inserts or updates a field in the repository | [
"Inserts",
"or",
"updates",
"a",
"field",
"in",
"the",
"repository"
] | train | https://github.com/MonashBI/arcana/blob/d6271a29d13733d00422d11417af8d200be62acc/arcana/repository/basic.py#L166-L187 |
MonashBI/arcana | arcana/repository/basic.py | BasicRepo.find_data | def find_data(self, subject_ids=None, visit_ids=None, **kwargs):
"""
Find all data within a repository, registering filesets, fields and
provenance with the found_fileset, found_field and found_provenance
methods, respectively
Parameters
----------
subject_ids : list(str)
List of subject IDs with which to filter the tree with. If
None all are returned
visit_ids : list(str)
List of visit IDs with which to filter the tree with. If
None all are returned
Returns
-------
filesets : list[Fileset]
All the filesets found in the repository
fields : list[Field]
All the fields found in the repository
records : list[Record]
The provenance records found in the repository
"""
all_filesets = []
all_fields = []
all_records = []
for session_path, dirs, files in os.walk(self.root_dir):
relpath = op.relpath(session_path, self.root_dir)
path_parts = relpath.split(op.sep) if relpath != '.' else []
ids = self._extract_ids_from_path(path_parts, dirs, files)
if ids is None:
continue
subj_id, visit_id, from_study = ids
# Check for summaries and filtered IDs
if subj_id == self.SUMMARY_NAME:
subj_id = None
elif subject_ids is not None and subj_id not in subject_ids:
continue
if visit_id == self.SUMMARY_NAME:
visit_id = None
elif visit_ids is not None and visit_id not in visit_ids:
continue
# Map IDs into ID space of study
subj_id = self.map_subject_id(subj_id)
visit_id = self.map_visit_id(visit_id)
# Determine frequency of session|summary
if (subj_id, visit_id) == (None, None):
frequency = 'per_study'
elif subj_id is None:
frequency = 'per_visit'
elif visit_id is None:
frequency = 'per_subject'
else:
frequency = 'per_session'
filtered_files = self._filter_files(files, session_path)
for fname in filtered_files:
basename = split_extension(fname)[0]
all_filesets.append(
Fileset.from_path(
op.join(session_path, fname),
frequency=frequency,
subject_id=subj_id, visit_id=visit_id,
repository=self,
from_study=from_study,
potential_aux_files=[
f for f in filtered_files
if (split_extension(f)[0] == basename and
f != fname)],
**kwargs))
for fname in self._filter_dirs(dirs, session_path):
all_filesets.append(
Fileset.from_path(
op.join(session_path, fname),
frequency=frequency,
subject_id=subj_id, visit_id=visit_id,
repository=self,
from_study=from_study,
**kwargs))
if self.FIELDS_FNAME in files:
with open(op.join(session_path,
self.FIELDS_FNAME), 'r') as f:
dct = json.load(f)
all_fields.extend(
Field(name=k, value=v, frequency=frequency,
subject_id=subj_id, visit_id=visit_id,
repository=self, from_study=from_study,
**kwargs)
for k, v in list(dct.items()))
if self.PROV_DIR in dirs:
if from_study is None:
raise ArcanaRepositoryError(
"Found provenance directory in session directory (i.e."
" not in study-specific sub-directory)")
base_prov_dir = op.join(session_path, self.PROV_DIR)
for fname in os.listdir(base_prov_dir):
all_records.append(Record.load(
split_extension(fname)[0],
frequency, subj_id, visit_id, from_study,
op.join(base_prov_dir, fname)))
return all_filesets, all_fields, all_records | python | def find_data(self, subject_ids=None, visit_ids=None, **kwargs):
"""
Find all data within a repository, registering filesets, fields and
provenance with the found_fileset, found_field and found_provenance
methods, respectively
Parameters
----------
subject_ids : list(str)
List of subject IDs with which to filter the tree with. If
None all are returned
visit_ids : list(str)
List of visit IDs with which to filter the tree with. If
None all are returned
Returns
-------
filesets : list[Fileset]
All the filesets found in the repository
fields : list[Field]
All the fields found in the repository
records : list[Record]
The provenance records found in the repository
"""
all_filesets = []
all_fields = []
all_records = []
for session_path, dirs, files in os.walk(self.root_dir):
relpath = op.relpath(session_path, self.root_dir)
path_parts = relpath.split(op.sep) if relpath != '.' else []
ids = self._extract_ids_from_path(path_parts, dirs, files)
if ids is None:
continue
subj_id, visit_id, from_study = ids
# Check for summaries and filtered IDs
if subj_id == self.SUMMARY_NAME:
subj_id = None
elif subject_ids is not None and subj_id not in subject_ids:
continue
if visit_id == self.SUMMARY_NAME:
visit_id = None
elif visit_ids is not None and visit_id not in visit_ids:
continue
# Map IDs into ID space of study
subj_id = self.map_subject_id(subj_id)
visit_id = self.map_visit_id(visit_id)
# Determine frequency of session|summary
if (subj_id, visit_id) == (None, None):
frequency = 'per_study'
elif subj_id is None:
frequency = 'per_visit'
elif visit_id is None:
frequency = 'per_subject'
else:
frequency = 'per_session'
filtered_files = self._filter_files(files, session_path)
for fname in filtered_files:
basename = split_extension(fname)[0]
all_filesets.append(
Fileset.from_path(
op.join(session_path, fname),
frequency=frequency,
subject_id=subj_id, visit_id=visit_id,
repository=self,
from_study=from_study,
potential_aux_files=[
f for f in filtered_files
if (split_extension(f)[0] == basename and
f != fname)],
**kwargs))
for fname in self._filter_dirs(dirs, session_path):
all_filesets.append(
Fileset.from_path(
op.join(session_path, fname),
frequency=frequency,
subject_id=subj_id, visit_id=visit_id,
repository=self,
from_study=from_study,
**kwargs))
if self.FIELDS_FNAME in files:
with open(op.join(session_path,
self.FIELDS_FNAME), 'r') as f:
dct = json.load(f)
all_fields.extend(
Field(name=k, value=v, frequency=frequency,
subject_id=subj_id, visit_id=visit_id,
repository=self, from_study=from_study,
**kwargs)
for k, v in list(dct.items()))
if self.PROV_DIR in dirs:
if from_study is None:
raise ArcanaRepositoryError(
"Found provenance directory in session directory (i.e."
" not in study-specific sub-directory)")
base_prov_dir = op.join(session_path, self.PROV_DIR)
for fname in os.listdir(base_prov_dir):
all_records.append(Record.load(
split_extension(fname)[0],
frequency, subj_id, visit_id, from_study,
op.join(base_prov_dir, fname)))
return all_filesets, all_fields, all_records | [
"def",
"find_data",
"(",
"self",
",",
"subject_ids",
"=",
"None",
",",
"visit_ids",
"=",
"None",
",",
"*",
"*",
"kwargs",
")",
":",
"all_filesets",
"=",
"[",
"]",
"all_fields",
"=",
"[",
"]",
"all_records",
"=",
"[",
"]",
"for",
"session_path",
",",
"dirs",
",",
"files",
"in",
"os",
".",
"walk",
"(",
"self",
".",
"root_dir",
")",
":",
"relpath",
"=",
"op",
".",
"relpath",
"(",
"session_path",
",",
"self",
".",
"root_dir",
")",
"path_parts",
"=",
"relpath",
".",
"split",
"(",
"op",
".",
"sep",
")",
"if",
"relpath",
"!=",
"'.'",
"else",
"[",
"]",
"ids",
"=",
"self",
".",
"_extract_ids_from_path",
"(",
"path_parts",
",",
"dirs",
",",
"files",
")",
"if",
"ids",
"is",
"None",
":",
"continue",
"subj_id",
",",
"visit_id",
",",
"from_study",
"=",
"ids",
"# Check for summaries and filtered IDs",
"if",
"subj_id",
"==",
"self",
".",
"SUMMARY_NAME",
":",
"subj_id",
"=",
"None",
"elif",
"subject_ids",
"is",
"not",
"None",
"and",
"subj_id",
"not",
"in",
"subject_ids",
":",
"continue",
"if",
"visit_id",
"==",
"self",
".",
"SUMMARY_NAME",
":",
"visit_id",
"=",
"None",
"elif",
"visit_ids",
"is",
"not",
"None",
"and",
"visit_id",
"not",
"in",
"visit_ids",
":",
"continue",
"# Map IDs into ID space of study",
"subj_id",
"=",
"self",
".",
"map_subject_id",
"(",
"subj_id",
")",
"visit_id",
"=",
"self",
".",
"map_visit_id",
"(",
"visit_id",
")",
"# Determine frequency of session|summary",
"if",
"(",
"subj_id",
",",
"visit_id",
")",
"==",
"(",
"None",
",",
"None",
")",
":",
"frequency",
"=",
"'per_study'",
"elif",
"subj_id",
"is",
"None",
":",
"frequency",
"=",
"'per_visit'",
"elif",
"visit_id",
"is",
"None",
":",
"frequency",
"=",
"'per_subject'",
"else",
":",
"frequency",
"=",
"'per_session'",
"filtered_files",
"=",
"self",
".",
"_filter_files",
"(",
"files",
",",
"session_path",
")",
"for",
"fname",
"in",
"filtered_files",
":",
"basename",
"=",
"split_extension",
"(",
"fname",
")",
"[",
"0",
"]",
"all_filesets",
".",
"append",
"(",
"Fileset",
".",
"from_path",
"(",
"op",
".",
"join",
"(",
"session_path",
",",
"fname",
")",
",",
"frequency",
"=",
"frequency",
",",
"subject_id",
"=",
"subj_id",
",",
"visit_id",
"=",
"visit_id",
",",
"repository",
"=",
"self",
",",
"from_study",
"=",
"from_study",
",",
"potential_aux_files",
"=",
"[",
"f",
"for",
"f",
"in",
"filtered_files",
"if",
"(",
"split_extension",
"(",
"f",
")",
"[",
"0",
"]",
"==",
"basename",
"and",
"f",
"!=",
"fname",
")",
"]",
",",
"*",
"*",
"kwargs",
")",
")",
"for",
"fname",
"in",
"self",
".",
"_filter_dirs",
"(",
"dirs",
",",
"session_path",
")",
":",
"all_filesets",
".",
"append",
"(",
"Fileset",
".",
"from_path",
"(",
"op",
".",
"join",
"(",
"session_path",
",",
"fname",
")",
",",
"frequency",
"=",
"frequency",
",",
"subject_id",
"=",
"subj_id",
",",
"visit_id",
"=",
"visit_id",
",",
"repository",
"=",
"self",
",",
"from_study",
"=",
"from_study",
",",
"*",
"*",
"kwargs",
")",
")",
"if",
"self",
".",
"FIELDS_FNAME",
"in",
"files",
":",
"with",
"open",
"(",
"op",
".",
"join",
"(",
"session_path",
",",
"self",
".",
"FIELDS_FNAME",
")",
",",
"'r'",
")",
"as",
"f",
":",
"dct",
"=",
"json",
".",
"load",
"(",
"f",
")",
"all_fields",
".",
"extend",
"(",
"Field",
"(",
"name",
"=",
"k",
",",
"value",
"=",
"v",
",",
"frequency",
"=",
"frequency",
",",
"subject_id",
"=",
"subj_id",
",",
"visit_id",
"=",
"visit_id",
",",
"repository",
"=",
"self",
",",
"from_study",
"=",
"from_study",
",",
"*",
"*",
"kwargs",
")",
"for",
"k",
",",
"v",
"in",
"list",
"(",
"dct",
".",
"items",
"(",
")",
")",
")",
"if",
"self",
".",
"PROV_DIR",
"in",
"dirs",
":",
"if",
"from_study",
"is",
"None",
":",
"raise",
"ArcanaRepositoryError",
"(",
"\"Found provenance directory in session directory (i.e.\"",
"\" not in study-specific sub-directory)\"",
")",
"base_prov_dir",
"=",
"op",
".",
"join",
"(",
"session_path",
",",
"self",
".",
"PROV_DIR",
")",
"for",
"fname",
"in",
"os",
".",
"listdir",
"(",
"base_prov_dir",
")",
":",
"all_records",
".",
"append",
"(",
"Record",
".",
"load",
"(",
"split_extension",
"(",
"fname",
")",
"[",
"0",
"]",
",",
"frequency",
",",
"subj_id",
",",
"visit_id",
",",
"from_study",
",",
"op",
".",
"join",
"(",
"base_prov_dir",
",",
"fname",
")",
")",
")",
"return",
"all_filesets",
",",
"all_fields",
",",
"all_records"
] | Find all data within a repository, registering filesets, fields and
provenance with the found_fileset, found_field and found_provenance
methods, respectively
Parameters
----------
subject_ids : list(str)
List of subject IDs with which to filter the tree with. If
None all are returned
visit_ids : list(str)
List of visit IDs with which to filter the tree with. If
None all are returned
Returns
-------
filesets : list[Fileset]
All the filesets found in the repository
fields : list[Field]
All the fields found in the repository
records : list[Record]
The provenance records found in the repository | [
"Find",
"all",
"data",
"within",
"a",
"repository",
"registering",
"filesets",
"fields",
"and",
"provenance",
"with",
"the",
"found_fileset",
"found_field",
"and",
"found_provenance",
"methods",
"respectively"
] | train | https://github.com/MonashBI/arcana/blob/d6271a29d13733d00422d11417af8d200be62acc/arcana/repository/basic.py#L195-L295 |
MonashBI/arcana | arcana/repository/basic.py | BasicRepo.guess_depth | def guess_depth(self, root_dir):
"""
Try to guess the depth of a directory repository (i.e. whether it has
sub-folders for multiple subjects or visits, depending on where files
and/or derived label files are found in the hierarchy of
sub-directories under the root dir.
Parameters
----------
root_dir : str
Path to the root directory of the repository
"""
deepest = -1
for path, dirs, files in os.walk(root_dir):
depth = self.path_depth(path)
filtered_files = self._filter_files(files, path)
if filtered_files:
logger.info("Guessing depth of directory repository at '{}' is"
" {} due to unfiltered files ('{}') in '{}'"
.format(root_dir, depth,
"', '".join(filtered_files), path))
return depth
if self.PROV_DIR in dirs:
depth_to_return = max(depth - 1, 0)
logger.info("Guessing depth of directory repository at '{}' is"
"{} due to \"Derived label file\" in '{}'"
.format(root_dir, depth_to_return, path))
return depth_to_return
if depth >= self.MAX_DEPTH:
logger.info("Guessing depth of directory repository at '{}' is"
" {} as '{}' is already at maximum depth"
.format(root_dir, self.MAX_DEPTH, path))
return self.MAX_DEPTH
try:
for fpath in chain(filtered_files,
self._filter_dirs(dirs, path)):
Fileset.from_path(fpath)
except ArcanaError:
pass
else:
if depth > deepest:
deepest = depth
if deepest == -1:
raise ArcanaRepositoryError(
"Could not guess depth of '{}' repository as did not find "
"a valid session directory within sub-directories."
.format(root_dir))
return deepest | python | def guess_depth(self, root_dir):
"""
Try to guess the depth of a directory repository (i.e. whether it has
sub-folders for multiple subjects or visits, depending on where files
and/or derived label files are found in the hierarchy of
sub-directories under the root dir.
Parameters
----------
root_dir : str
Path to the root directory of the repository
"""
deepest = -1
for path, dirs, files in os.walk(root_dir):
depth = self.path_depth(path)
filtered_files = self._filter_files(files, path)
if filtered_files:
logger.info("Guessing depth of directory repository at '{}' is"
" {} due to unfiltered files ('{}') in '{}'"
.format(root_dir, depth,
"', '".join(filtered_files), path))
return depth
if self.PROV_DIR in dirs:
depth_to_return = max(depth - 1, 0)
logger.info("Guessing depth of directory repository at '{}' is"
"{} due to \"Derived label file\" in '{}'"
.format(root_dir, depth_to_return, path))
return depth_to_return
if depth >= self.MAX_DEPTH:
logger.info("Guessing depth of directory repository at '{}' is"
" {} as '{}' is already at maximum depth"
.format(root_dir, self.MAX_DEPTH, path))
return self.MAX_DEPTH
try:
for fpath in chain(filtered_files,
self._filter_dirs(dirs, path)):
Fileset.from_path(fpath)
except ArcanaError:
pass
else:
if depth > deepest:
deepest = depth
if deepest == -1:
raise ArcanaRepositoryError(
"Could not guess depth of '{}' repository as did not find "
"a valid session directory within sub-directories."
.format(root_dir))
return deepest | [
"def",
"guess_depth",
"(",
"self",
",",
"root_dir",
")",
":",
"deepest",
"=",
"-",
"1",
"for",
"path",
",",
"dirs",
",",
"files",
"in",
"os",
".",
"walk",
"(",
"root_dir",
")",
":",
"depth",
"=",
"self",
".",
"path_depth",
"(",
"path",
")",
"filtered_files",
"=",
"self",
".",
"_filter_files",
"(",
"files",
",",
"path",
")",
"if",
"filtered_files",
":",
"logger",
".",
"info",
"(",
"\"Guessing depth of directory repository at '{}' is\"",
"\" {} due to unfiltered files ('{}') in '{}'\"",
".",
"format",
"(",
"root_dir",
",",
"depth",
",",
"\"', '\"",
".",
"join",
"(",
"filtered_files",
")",
",",
"path",
")",
")",
"return",
"depth",
"if",
"self",
".",
"PROV_DIR",
"in",
"dirs",
":",
"depth_to_return",
"=",
"max",
"(",
"depth",
"-",
"1",
",",
"0",
")",
"logger",
".",
"info",
"(",
"\"Guessing depth of directory repository at '{}' is\"",
"\"{} due to \\\"Derived label file\\\" in '{}'\"",
".",
"format",
"(",
"root_dir",
",",
"depth_to_return",
",",
"path",
")",
")",
"return",
"depth_to_return",
"if",
"depth",
">=",
"self",
".",
"MAX_DEPTH",
":",
"logger",
".",
"info",
"(",
"\"Guessing depth of directory repository at '{}' is\"",
"\" {} as '{}' is already at maximum depth\"",
".",
"format",
"(",
"root_dir",
",",
"self",
".",
"MAX_DEPTH",
",",
"path",
")",
")",
"return",
"self",
".",
"MAX_DEPTH",
"try",
":",
"for",
"fpath",
"in",
"chain",
"(",
"filtered_files",
",",
"self",
".",
"_filter_dirs",
"(",
"dirs",
",",
"path",
")",
")",
":",
"Fileset",
".",
"from_path",
"(",
"fpath",
")",
"except",
"ArcanaError",
":",
"pass",
"else",
":",
"if",
"depth",
">",
"deepest",
":",
"deepest",
"=",
"depth",
"if",
"deepest",
"==",
"-",
"1",
":",
"raise",
"ArcanaRepositoryError",
"(",
"\"Could not guess depth of '{}' repository as did not find \"",
"\"a valid session directory within sub-directories.\"",
".",
"format",
"(",
"root_dir",
")",
")",
"return",
"deepest"
] | Try to guess the depth of a directory repository (i.e. whether it has
sub-folders for multiple subjects or visits, depending on where files
and/or derived label files are found in the hierarchy of
sub-directories under the root dir.
Parameters
----------
root_dir : str
Path to the root directory of the repository | [
"Try",
"to",
"guess",
"the",
"depth",
"of",
"a",
"directory",
"repository",
"(",
"i",
".",
"e",
".",
"whether",
"it",
"has",
"sub",
"-",
"folders",
"for",
"multiple",
"subjects",
"or",
"visits",
"depending",
"on",
"where",
"files",
"and",
"/",
"or",
"derived",
"label",
"files",
"are",
"found",
"in",
"the",
"hierarchy",
"of",
"sub",
"-",
"directories",
"under",
"the",
"root",
"dir",
"."
] | train | https://github.com/MonashBI/arcana/blob/d6271a29d13733d00422d11417af8d200be62acc/arcana/repository/basic.py#L376-L423 |
tym-xqo/nerium | nerium/data_source.py | get_data_source | def get_data_source(query):
""" Get data source connection metadata based on config. Prefer, in order:
- Query file frontmatter
- `db.yaml` file in query subdirectory
- DATABASE_URL in environment
To allow for possible non-SQL sources to be contributed, we only
return a config value here, and leave connecting to concrete
resultset module, as required values and connection method might change.
(This is also why we return a dict, despite having a single value in the
SQL case.)
"""
# *** GET CONNECTION PARAMS: ***
# from frontmatter
try:
return query.metadata['data_source']
except KeyError:
try:
return dict(url=query.metadata['database_url'])
except KeyError:
pass
# from file in directory if present
db_file = query.path.parent / 'db.yaml'
if db_file.is_file():
with open(db_file, 'r') as dbf:
db_meta = yaml.safe_load(dbf.read())
try:
return db_meta['data_source']
except KeyError:
try:
return dict(url=db_meta['database_url'])
except KeyError:
pass
# Use env['DATABASE_URL']/sqlite if nothing else is configured
return dict(
url=os.getenv('DATABASE_URL', 'sqlite:///')) | python | def get_data_source(query):
""" Get data source connection metadata based on config. Prefer, in order:
- Query file frontmatter
- `db.yaml` file in query subdirectory
- DATABASE_URL in environment
To allow for possible non-SQL sources to be contributed, we only
return a config value here, and leave connecting to concrete
resultset module, as required values and connection method might change.
(This is also why we return a dict, despite having a single value in the
SQL case.)
"""
# *** GET CONNECTION PARAMS: ***
# from frontmatter
try:
return query.metadata['data_source']
except KeyError:
try:
return dict(url=query.metadata['database_url'])
except KeyError:
pass
# from file in directory if present
db_file = query.path.parent / 'db.yaml'
if db_file.is_file():
with open(db_file, 'r') as dbf:
db_meta = yaml.safe_load(dbf.read())
try:
return db_meta['data_source']
except KeyError:
try:
return dict(url=db_meta['database_url'])
except KeyError:
pass
# Use env['DATABASE_URL']/sqlite if nothing else is configured
return dict(
url=os.getenv('DATABASE_URL', 'sqlite:///')) | [
"def",
"get_data_source",
"(",
"query",
")",
":",
"# *** GET CONNECTION PARAMS: ***",
"# from frontmatter",
"try",
":",
"return",
"query",
".",
"metadata",
"[",
"'data_source'",
"]",
"except",
"KeyError",
":",
"try",
":",
"return",
"dict",
"(",
"url",
"=",
"query",
".",
"metadata",
"[",
"'database_url'",
"]",
")",
"except",
"KeyError",
":",
"pass",
"# from file in directory if present",
"db_file",
"=",
"query",
".",
"path",
".",
"parent",
"/",
"'db.yaml'",
"if",
"db_file",
".",
"is_file",
"(",
")",
":",
"with",
"open",
"(",
"db_file",
",",
"'r'",
")",
"as",
"dbf",
":",
"db_meta",
"=",
"yaml",
".",
"safe_load",
"(",
"dbf",
".",
"read",
"(",
")",
")",
"try",
":",
"return",
"db_meta",
"[",
"'data_source'",
"]",
"except",
"KeyError",
":",
"try",
":",
"return",
"dict",
"(",
"url",
"=",
"db_meta",
"[",
"'database_url'",
"]",
")",
"except",
"KeyError",
":",
"pass",
"# Use env['DATABASE_URL']/sqlite if nothing else is configured",
"return",
"dict",
"(",
"url",
"=",
"os",
".",
"getenv",
"(",
"'DATABASE_URL'",
",",
"'sqlite:///'",
")",
")"
] | Get data source connection metadata based on config. Prefer, in order:
- Query file frontmatter
- `db.yaml` file in query subdirectory
- DATABASE_URL in environment
To allow for possible non-SQL sources to be contributed, we only
return a config value here, and leave connecting to concrete
resultset module, as required values and connection method might change.
(This is also why we return a dict, despite having a single value in the
SQL case.) | [
"Get",
"data",
"source",
"connection",
"metadata",
"based",
"on",
"config",
".",
"Prefer",
"in",
"order",
":",
"-",
"Query",
"file",
"frontmatter",
"-",
"db",
".",
"yaml",
"file",
"in",
"query",
"subdirectory",
"-",
"DATABASE_URL",
"in",
"environment"
] | train | https://github.com/tym-xqo/nerium/blob/b234847d95f37c3a49dff15a189205fe5bbbc05f/nerium/data_source.py#L6-L43 |
MonashBI/arcana | arcana/data/collection.py | BaseCollection.item | def item(self, subject_id=None, visit_id=None):
"""
Returns a particular fileset|field in the collection corresponding to
the given subject and visit_ids. subject_id and visit_id must be
provided for relevant frequencies. Note that subject_id/visit_id can
also be provided for non-relevant frequencies, they will just be
ignored.
Parameter
---------
subject_id : str
The subject id of the item to return
visit_id : str
The visit id of the item to return
"""
if self.frequency == 'per_session':
if subject_id is None or visit_id is None:
raise ArcanaError(
"The 'subject_id' ({}) and 'visit_id' ({}) must be "
"provided to get an item from {}".format(
subject_id, visit_id, self))
try:
subj_dct = self._collection[subject_id]
except KeyError:
raise ArcanaIndexError(
subject_id,
"{} not a subject ID in '{}' collection ({})"
.format(subject_id, self.name,
', '.join(self._collection.keys())))
try:
fileset = subj_dct[visit_id]
except KeyError:
raise ArcanaIndexError(
visit_id,
"{} not a visit ID in subject {} of '{}' "
"collection ({})"
.format(visit_id, subject_id, self.name,
', '.join(subj_dct.keys())))
elif self.frequency == 'per_subject':
if subject_id is None:
raise ArcanaError(
"The 'subject_id' arg must be provided to get "
"the match from {}"
.format(self))
try:
fileset = self._collection[subject_id]
except KeyError:
raise ArcanaIndexError(
subject_id,
"{} not a subject ID in '{}' collection ({})"
.format(subject_id, self.name,
', '.join(self._collection.keys())))
elif self.frequency == 'per_visit':
if visit_id is None:
raise ArcanaError(
"The 'visit_id' arg must be provided to get "
"the match from {}"
.format(self))
try:
fileset = self._collection[visit_id]
except KeyError:
raise ArcanaIndexError(
visit_id,
"{} not a visit ID in '{}' collection ({})"
.format(visit_id, self.name,
', '.join(self._collection.keys())))
elif self.frequency == 'per_study':
try:
fileset = self._collection[0]
except IndexError:
raise ArcanaIndexError(
"'{}' Collection is empty so doesn't have a "
"per_study node".format(self.name))
return fileset | python | def item(self, subject_id=None, visit_id=None):
"""
Returns a particular fileset|field in the collection corresponding to
the given subject and visit_ids. subject_id and visit_id must be
provided for relevant frequencies. Note that subject_id/visit_id can
also be provided for non-relevant frequencies, they will just be
ignored.
Parameter
---------
subject_id : str
The subject id of the item to return
visit_id : str
The visit id of the item to return
"""
if self.frequency == 'per_session':
if subject_id is None or visit_id is None:
raise ArcanaError(
"The 'subject_id' ({}) and 'visit_id' ({}) must be "
"provided to get an item from {}".format(
subject_id, visit_id, self))
try:
subj_dct = self._collection[subject_id]
except KeyError:
raise ArcanaIndexError(
subject_id,
"{} not a subject ID in '{}' collection ({})"
.format(subject_id, self.name,
', '.join(self._collection.keys())))
try:
fileset = subj_dct[visit_id]
except KeyError:
raise ArcanaIndexError(
visit_id,
"{} not a visit ID in subject {} of '{}' "
"collection ({})"
.format(visit_id, subject_id, self.name,
', '.join(subj_dct.keys())))
elif self.frequency == 'per_subject':
if subject_id is None:
raise ArcanaError(
"The 'subject_id' arg must be provided to get "
"the match from {}"
.format(self))
try:
fileset = self._collection[subject_id]
except KeyError:
raise ArcanaIndexError(
subject_id,
"{} not a subject ID in '{}' collection ({})"
.format(subject_id, self.name,
', '.join(self._collection.keys())))
elif self.frequency == 'per_visit':
if visit_id is None:
raise ArcanaError(
"The 'visit_id' arg must be provided to get "
"the match from {}"
.format(self))
try:
fileset = self._collection[visit_id]
except KeyError:
raise ArcanaIndexError(
visit_id,
"{} not a visit ID in '{}' collection ({})"
.format(visit_id, self.name,
', '.join(self._collection.keys())))
elif self.frequency == 'per_study':
try:
fileset = self._collection[0]
except IndexError:
raise ArcanaIndexError(
"'{}' Collection is empty so doesn't have a "
"per_study node".format(self.name))
return fileset | [
"def",
"item",
"(",
"self",
",",
"subject_id",
"=",
"None",
",",
"visit_id",
"=",
"None",
")",
":",
"if",
"self",
".",
"frequency",
"==",
"'per_session'",
":",
"if",
"subject_id",
"is",
"None",
"or",
"visit_id",
"is",
"None",
":",
"raise",
"ArcanaError",
"(",
"\"The 'subject_id' ({}) and 'visit_id' ({}) must be \"",
"\"provided to get an item from {}\"",
".",
"format",
"(",
"subject_id",
",",
"visit_id",
",",
"self",
")",
")",
"try",
":",
"subj_dct",
"=",
"self",
".",
"_collection",
"[",
"subject_id",
"]",
"except",
"KeyError",
":",
"raise",
"ArcanaIndexError",
"(",
"subject_id",
",",
"\"{} not a subject ID in '{}' collection ({})\"",
".",
"format",
"(",
"subject_id",
",",
"self",
".",
"name",
",",
"', '",
".",
"join",
"(",
"self",
".",
"_collection",
".",
"keys",
"(",
")",
")",
")",
")",
"try",
":",
"fileset",
"=",
"subj_dct",
"[",
"visit_id",
"]",
"except",
"KeyError",
":",
"raise",
"ArcanaIndexError",
"(",
"visit_id",
",",
"\"{} not a visit ID in subject {} of '{}' \"",
"\"collection ({})\"",
".",
"format",
"(",
"visit_id",
",",
"subject_id",
",",
"self",
".",
"name",
",",
"', '",
".",
"join",
"(",
"subj_dct",
".",
"keys",
"(",
")",
")",
")",
")",
"elif",
"self",
".",
"frequency",
"==",
"'per_subject'",
":",
"if",
"subject_id",
"is",
"None",
":",
"raise",
"ArcanaError",
"(",
"\"The 'subject_id' arg must be provided to get \"",
"\"the match from {}\"",
".",
"format",
"(",
"self",
")",
")",
"try",
":",
"fileset",
"=",
"self",
".",
"_collection",
"[",
"subject_id",
"]",
"except",
"KeyError",
":",
"raise",
"ArcanaIndexError",
"(",
"subject_id",
",",
"\"{} not a subject ID in '{}' collection ({})\"",
".",
"format",
"(",
"subject_id",
",",
"self",
".",
"name",
",",
"', '",
".",
"join",
"(",
"self",
".",
"_collection",
".",
"keys",
"(",
")",
")",
")",
")",
"elif",
"self",
".",
"frequency",
"==",
"'per_visit'",
":",
"if",
"visit_id",
"is",
"None",
":",
"raise",
"ArcanaError",
"(",
"\"The 'visit_id' arg must be provided to get \"",
"\"the match from {}\"",
".",
"format",
"(",
"self",
")",
")",
"try",
":",
"fileset",
"=",
"self",
".",
"_collection",
"[",
"visit_id",
"]",
"except",
"KeyError",
":",
"raise",
"ArcanaIndexError",
"(",
"visit_id",
",",
"\"{} not a visit ID in '{}' collection ({})\"",
".",
"format",
"(",
"visit_id",
",",
"self",
".",
"name",
",",
"', '",
".",
"join",
"(",
"self",
".",
"_collection",
".",
"keys",
"(",
")",
")",
")",
")",
"elif",
"self",
".",
"frequency",
"==",
"'per_study'",
":",
"try",
":",
"fileset",
"=",
"self",
".",
"_collection",
"[",
"0",
"]",
"except",
"IndexError",
":",
"raise",
"ArcanaIndexError",
"(",
"\"'{}' Collection is empty so doesn't have a \"",
"\"per_study node\"",
".",
"format",
"(",
"self",
".",
"name",
")",
")",
"return",
"fileset"
] | Returns a particular fileset|field in the collection corresponding to
the given subject and visit_ids. subject_id and visit_id must be
provided for relevant frequencies. Note that subject_id/visit_id can
also be provided for non-relevant frequencies, they will just be
ignored.
Parameter
---------
subject_id : str
The subject id of the item to return
visit_id : str
The visit id of the item to return | [
"Returns",
"a",
"particular",
"fileset|field",
"in",
"the",
"collection",
"corresponding",
"to",
"the",
"given",
"subject",
"and",
"visit_ids",
".",
"subject_id",
"and",
"visit_id",
"must",
"be",
"provided",
"for",
"relevant",
"frequencies",
".",
"Note",
"that",
"subject_id",
"/",
"visit_id",
"can",
"also",
"be",
"provided",
"for",
"non",
"-",
"relevant",
"frequencies",
"they",
"will",
"just",
"be",
"ignored",
"."
] | train | https://github.com/MonashBI/arcana/blob/d6271a29d13733d00422d11417af8d200be62acc/arcana/data/collection.py#L85-L159 |
MonashBI/arcana | arcana/data/collection.py | BaseCollection.bind | def bind(self, study, **kwargs): # @UnusedVariable
"""
Used for duck typing Collection objects with Spec and Match
in source and sink initiation. Checks IDs match sessions in study.
"""
if self.frequency == 'per_subject':
tree_subject_ids = list(study.tree.subject_ids)
subject_ids = list(self._collection.keys())
if tree_subject_ids != subject_ids:
raise ArcanaUsageError(
"Subject IDs in collection provided to '{}' ('{}') "
"do not match Study tree ('{}')".format(
self.name, "', '".join(subject_ids),
"', '".join(tree_subject_ids)))
elif self.frequency == 'per_visit':
tree_visit_ids = list(study.tree.visit_ids)
visit_ids = list(self._collection.keys())
if tree_visit_ids != visit_ids:
raise ArcanaUsageError(
"Subject IDs in collection provided to '{}' ('{}') "
"do not match Study tree ('{}')".format(
self.name, "', '".join(visit_ids),
"', '".join(tree_visit_ids)))
elif self.frequency == 'per_session':
for subject in study.tree.subjects:
if subject.id not in self._collection:
raise ArcanaUsageError(
"Study subject ID '{}' was not found in colleciton "
"provided to '{}' (found '{}')".format(
subject.id, self.name,
"', '".join(self._collection.keys())))
for session in subject.sessions:
if session.visit_id not in self._collection[subject.id]:
raise ArcanaUsageError(
"Study visit ID '{}' for subject '{}' was not "
"found in colleciton provided to '{}' (found '{}')"
.format(subject.id, self.name,
"', '".join(
self._collection[subject.id].keys()))) | python | def bind(self, study, **kwargs): # @UnusedVariable
"""
Used for duck typing Collection objects with Spec and Match
in source and sink initiation. Checks IDs match sessions in study.
"""
if self.frequency == 'per_subject':
tree_subject_ids = list(study.tree.subject_ids)
subject_ids = list(self._collection.keys())
if tree_subject_ids != subject_ids:
raise ArcanaUsageError(
"Subject IDs in collection provided to '{}' ('{}') "
"do not match Study tree ('{}')".format(
self.name, "', '".join(subject_ids),
"', '".join(tree_subject_ids)))
elif self.frequency == 'per_visit':
tree_visit_ids = list(study.tree.visit_ids)
visit_ids = list(self._collection.keys())
if tree_visit_ids != visit_ids:
raise ArcanaUsageError(
"Subject IDs in collection provided to '{}' ('{}') "
"do not match Study tree ('{}')".format(
self.name, "', '".join(visit_ids),
"', '".join(tree_visit_ids)))
elif self.frequency == 'per_session':
for subject in study.tree.subjects:
if subject.id not in self._collection:
raise ArcanaUsageError(
"Study subject ID '{}' was not found in colleciton "
"provided to '{}' (found '{}')".format(
subject.id, self.name,
"', '".join(self._collection.keys())))
for session in subject.sessions:
if session.visit_id not in self._collection[subject.id]:
raise ArcanaUsageError(
"Study visit ID '{}' for subject '{}' was not "
"found in colleciton provided to '{}' (found '{}')"
.format(subject.id, self.name,
"', '".join(
self._collection[subject.id].keys()))) | [
"def",
"bind",
"(",
"self",
",",
"study",
",",
"*",
"*",
"kwargs",
")",
":",
"# @UnusedVariable",
"if",
"self",
".",
"frequency",
"==",
"'per_subject'",
":",
"tree_subject_ids",
"=",
"list",
"(",
"study",
".",
"tree",
".",
"subject_ids",
")",
"subject_ids",
"=",
"list",
"(",
"self",
".",
"_collection",
".",
"keys",
"(",
")",
")",
"if",
"tree_subject_ids",
"!=",
"subject_ids",
":",
"raise",
"ArcanaUsageError",
"(",
"\"Subject IDs in collection provided to '{}' ('{}') \"",
"\"do not match Study tree ('{}')\"",
".",
"format",
"(",
"self",
".",
"name",
",",
"\"', '\"",
".",
"join",
"(",
"subject_ids",
")",
",",
"\"', '\"",
".",
"join",
"(",
"tree_subject_ids",
")",
")",
")",
"elif",
"self",
".",
"frequency",
"==",
"'per_visit'",
":",
"tree_visit_ids",
"=",
"list",
"(",
"study",
".",
"tree",
".",
"visit_ids",
")",
"visit_ids",
"=",
"list",
"(",
"self",
".",
"_collection",
".",
"keys",
"(",
")",
")",
"if",
"tree_visit_ids",
"!=",
"visit_ids",
":",
"raise",
"ArcanaUsageError",
"(",
"\"Subject IDs in collection provided to '{}' ('{}') \"",
"\"do not match Study tree ('{}')\"",
".",
"format",
"(",
"self",
".",
"name",
",",
"\"', '\"",
".",
"join",
"(",
"visit_ids",
")",
",",
"\"', '\"",
".",
"join",
"(",
"tree_visit_ids",
")",
")",
")",
"elif",
"self",
".",
"frequency",
"==",
"'per_session'",
":",
"for",
"subject",
"in",
"study",
".",
"tree",
".",
"subjects",
":",
"if",
"subject",
".",
"id",
"not",
"in",
"self",
".",
"_collection",
":",
"raise",
"ArcanaUsageError",
"(",
"\"Study subject ID '{}' was not found in colleciton \"",
"\"provided to '{}' (found '{}')\"",
".",
"format",
"(",
"subject",
".",
"id",
",",
"self",
".",
"name",
",",
"\"', '\"",
".",
"join",
"(",
"self",
".",
"_collection",
".",
"keys",
"(",
")",
")",
")",
")",
"for",
"session",
"in",
"subject",
".",
"sessions",
":",
"if",
"session",
".",
"visit_id",
"not",
"in",
"self",
".",
"_collection",
"[",
"subject",
".",
"id",
"]",
":",
"raise",
"ArcanaUsageError",
"(",
"\"Study visit ID '{}' for subject '{}' was not \"",
"\"found in colleciton provided to '{}' (found '{}')\"",
".",
"format",
"(",
"subject",
".",
"id",
",",
"self",
".",
"name",
",",
"\"', '\"",
".",
"join",
"(",
"self",
".",
"_collection",
"[",
"subject",
".",
"id",
"]",
".",
"keys",
"(",
")",
")",
")",
")"
] | Used for duck typing Collection objects with Spec and Match
in source and sink initiation. Checks IDs match sessions in study. | [
"Used",
"for",
"duck",
"typing",
"Collection",
"objects",
"with",
"Spec",
"and",
"Match",
"in",
"source",
"and",
"sink",
"initiation",
".",
"Checks",
"IDs",
"match",
"sessions",
"in",
"study",
"."
] | train | https://github.com/MonashBI/arcana/blob/d6271a29d13733d00422d11417af8d200be62acc/arcana/data/collection.py#L167-L205 |
MonashBI/arcana | arcana/repository/tree.py | TreeNode.fileset | def fileset(self, name, from_study=None, format=None): # @ReservedAssignment @IgnorePep8
"""
Gets the fileset named 'name' produced by the Study named 'study' if
provided. If a spec is passed instead of a str to the name argument,
then the study will be set from the spec iff it is derived
Parameters
----------
name : str | FilesetSpec
The name of the fileset or a spec matching the given name
from_study : str | None
Name of the study that produced the fileset if derived. If None
and a spec is passed instaed of string to the name argument then
the study name will be taken from the spec instead.
format : FileFormat | str | None
Either the format of the fileset to return or the name of the
format. If None and only a single fileset is found for the given
name and study then that is returned otherwise an exception is
raised
"""
if isinstance(name, BaseFileset):
if from_study is None and name.derived:
from_study = name.study.name
name = name.name
try:
format_dct = self._filesets[(name, from_study)]
except KeyError:
available = [
('{}(format={})'.format(f.name, f._resource_name)
if f._resource_name is not None else f.name)
for f in self.filesets if f.from_study == from_study]
other_studies = [
(f.from_study if f.from_study is not None else '<root>')
for f in self.filesets if f.name == name]
if other_studies:
msg = (". NB: matching fileset(s) found for '{}' study(ies) "
"('{}')".format(name, "', '".join(other_studies)))
else:
msg = ''
raise ArcanaNameError(
name,
("{} doesn't have a fileset named '{}'{} "
"(available '{}'){}"
.format(self, name,
(" from study '{}'".format(from_study)
if from_study is not None else ''),
"', '".join(available), msg)))
else:
if format is None:
all_formats = list(format_dct.values())
if len(all_formats) > 1:
raise ArcanaNameError(
"Multiple filesets found for '{}'{} in {} with formats"
" {}. Need to specify a format"
.format(name, ("in '{}'".format(from_study)
if from_study is not None else ''),
self, "', '".join(format_dct.keys())))
fileset = all_formats[0]
else:
try:
if isinstance(format, str):
fileset = format_dct[format]
else:
try:
fileset = format_dct[format.ext]
except KeyError:
fileset = None
for rname, rfileset in format_dct.items():
if rname in format.resource_names(
self.tree.repository.type):
fileset = rfileset
break
if fileset is None:
raise
except KeyError:
raise ArcanaNameError(
format,
("{} doesn't have a fileset named '{}'{} with "
"format '{}' (available '{}'){}"
.format(self, name,
(" from study '{}'".format(from_study)
if from_study is not None else ''),
format,
"', '".join(format_dct.keys()), msg)))
return fileset | python | def fileset(self, name, from_study=None, format=None): # @ReservedAssignment @IgnorePep8
"""
Gets the fileset named 'name' produced by the Study named 'study' if
provided. If a spec is passed instead of a str to the name argument,
then the study will be set from the spec iff it is derived
Parameters
----------
name : str | FilesetSpec
The name of the fileset or a spec matching the given name
from_study : str | None
Name of the study that produced the fileset if derived. If None
and a spec is passed instaed of string to the name argument then
the study name will be taken from the spec instead.
format : FileFormat | str | None
Either the format of the fileset to return or the name of the
format. If None and only a single fileset is found for the given
name and study then that is returned otherwise an exception is
raised
"""
if isinstance(name, BaseFileset):
if from_study is None and name.derived:
from_study = name.study.name
name = name.name
try:
format_dct = self._filesets[(name, from_study)]
except KeyError:
available = [
('{}(format={})'.format(f.name, f._resource_name)
if f._resource_name is not None else f.name)
for f in self.filesets if f.from_study == from_study]
other_studies = [
(f.from_study if f.from_study is not None else '<root>')
for f in self.filesets if f.name == name]
if other_studies:
msg = (". NB: matching fileset(s) found for '{}' study(ies) "
"('{}')".format(name, "', '".join(other_studies)))
else:
msg = ''
raise ArcanaNameError(
name,
("{} doesn't have a fileset named '{}'{} "
"(available '{}'){}"
.format(self, name,
(" from study '{}'".format(from_study)
if from_study is not None else ''),
"', '".join(available), msg)))
else:
if format is None:
all_formats = list(format_dct.values())
if len(all_formats) > 1:
raise ArcanaNameError(
"Multiple filesets found for '{}'{} in {} with formats"
" {}. Need to specify a format"
.format(name, ("in '{}'".format(from_study)
if from_study is not None else ''),
self, "', '".join(format_dct.keys())))
fileset = all_formats[0]
else:
try:
if isinstance(format, str):
fileset = format_dct[format]
else:
try:
fileset = format_dct[format.ext]
except KeyError:
fileset = None
for rname, rfileset in format_dct.items():
if rname in format.resource_names(
self.tree.repository.type):
fileset = rfileset
break
if fileset is None:
raise
except KeyError:
raise ArcanaNameError(
format,
("{} doesn't have a fileset named '{}'{} with "
"format '{}' (available '{}'){}"
.format(self, name,
(" from study '{}'".format(from_study)
if from_study is not None else ''),
format,
"', '".join(format_dct.keys()), msg)))
return fileset | [
"def",
"fileset",
"(",
"self",
",",
"name",
",",
"from_study",
"=",
"None",
",",
"format",
"=",
"None",
")",
":",
"# @ReservedAssignment @IgnorePep8",
"if",
"isinstance",
"(",
"name",
",",
"BaseFileset",
")",
":",
"if",
"from_study",
"is",
"None",
"and",
"name",
".",
"derived",
":",
"from_study",
"=",
"name",
".",
"study",
".",
"name",
"name",
"=",
"name",
".",
"name",
"try",
":",
"format_dct",
"=",
"self",
".",
"_filesets",
"[",
"(",
"name",
",",
"from_study",
")",
"]",
"except",
"KeyError",
":",
"available",
"=",
"[",
"(",
"'{}(format={})'",
".",
"format",
"(",
"f",
".",
"name",
",",
"f",
".",
"_resource_name",
")",
"if",
"f",
".",
"_resource_name",
"is",
"not",
"None",
"else",
"f",
".",
"name",
")",
"for",
"f",
"in",
"self",
".",
"filesets",
"if",
"f",
".",
"from_study",
"==",
"from_study",
"]",
"other_studies",
"=",
"[",
"(",
"f",
".",
"from_study",
"if",
"f",
".",
"from_study",
"is",
"not",
"None",
"else",
"'<root>'",
")",
"for",
"f",
"in",
"self",
".",
"filesets",
"if",
"f",
".",
"name",
"==",
"name",
"]",
"if",
"other_studies",
":",
"msg",
"=",
"(",
"\". NB: matching fileset(s) found for '{}' study(ies) \"",
"\"('{}')\"",
".",
"format",
"(",
"name",
",",
"\"', '\"",
".",
"join",
"(",
"other_studies",
")",
")",
")",
"else",
":",
"msg",
"=",
"''",
"raise",
"ArcanaNameError",
"(",
"name",
",",
"(",
"\"{} doesn't have a fileset named '{}'{} \"",
"\"(available '{}'){}\"",
".",
"format",
"(",
"self",
",",
"name",
",",
"(",
"\" from study '{}'\"",
".",
"format",
"(",
"from_study",
")",
"if",
"from_study",
"is",
"not",
"None",
"else",
"''",
")",
",",
"\"', '\"",
".",
"join",
"(",
"available",
")",
",",
"msg",
")",
")",
")",
"else",
":",
"if",
"format",
"is",
"None",
":",
"all_formats",
"=",
"list",
"(",
"format_dct",
".",
"values",
"(",
")",
")",
"if",
"len",
"(",
"all_formats",
")",
">",
"1",
":",
"raise",
"ArcanaNameError",
"(",
"\"Multiple filesets found for '{}'{} in {} with formats\"",
"\" {}. Need to specify a format\"",
".",
"format",
"(",
"name",
",",
"(",
"\"in '{}'\"",
".",
"format",
"(",
"from_study",
")",
"if",
"from_study",
"is",
"not",
"None",
"else",
"''",
")",
",",
"self",
",",
"\"', '\"",
".",
"join",
"(",
"format_dct",
".",
"keys",
"(",
")",
")",
")",
")",
"fileset",
"=",
"all_formats",
"[",
"0",
"]",
"else",
":",
"try",
":",
"if",
"isinstance",
"(",
"format",
",",
"str",
")",
":",
"fileset",
"=",
"format_dct",
"[",
"format",
"]",
"else",
":",
"try",
":",
"fileset",
"=",
"format_dct",
"[",
"format",
".",
"ext",
"]",
"except",
"KeyError",
":",
"fileset",
"=",
"None",
"for",
"rname",
",",
"rfileset",
"in",
"format_dct",
".",
"items",
"(",
")",
":",
"if",
"rname",
"in",
"format",
".",
"resource_names",
"(",
"self",
".",
"tree",
".",
"repository",
".",
"type",
")",
":",
"fileset",
"=",
"rfileset",
"break",
"if",
"fileset",
"is",
"None",
":",
"raise",
"except",
"KeyError",
":",
"raise",
"ArcanaNameError",
"(",
"format",
",",
"(",
"\"{} doesn't have a fileset named '{}'{} with \"",
"\"format '{}' (available '{}'){}\"",
".",
"format",
"(",
"self",
",",
"name",
",",
"(",
"\" from study '{}'\"",
".",
"format",
"(",
"from_study",
")",
"if",
"from_study",
"is",
"not",
"None",
"else",
"''",
")",
",",
"format",
",",
"\"', '\"",
".",
"join",
"(",
"format_dct",
".",
"keys",
"(",
")",
")",
",",
"msg",
")",
")",
")",
"return",
"fileset"
] | Gets the fileset named 'name' produced by the Study named 'study' if
provided. If a spec is passed instead of a str to the name argument,
then the study will be set from the spec iff it is derived
Parameters
----------
name : str | FilesetSpec
The name of the fileset or a spec matching the given name
from_study : str | None
Name of the study that produced the fileset if derived. If None
and a spec is passed instaed of string to the name argument then
the study name will be taken from the spec instead.
format : FileFormat | str | None
Either the format of the fileset to return or the name of the
format. If None and only a single fileset is found for the given
name and study then that is returned otherwise an exception is
raised | [
"Gets",
"the",
"fileset",
"named",
"name",
"produced",
"by",
"the",
"Study",
"named",
"study",
"if",
"provided",
".",
"If",
"a",
"spec",
"is",
"passed",
"instead",
"of",
"a",
"str",
"to",
"the",
"name",
"argument",
"then",
"the",
"study",
"will",
"be",
"set",
"from",
"the",
"spec",
"iff",
"it",
"is",
"derived"
] | train | https://github.com/MonashBI/arcana/blob/d6271a29d13733d00422d11417af8d200be62acc/arcana/repository/tree.py#L114-L199 |
MonashBI/arcana | arcana/repository/tree.py | TreeNode.field | def field(self, name, from_study=None):
"""
Gets the field named 'name' produced by the Study named 'study' if
provided. If a spec is passed instead of a str to the name argument,
then the study will be set from the spec iff it is derived
Parameters
----------
name : str | BaseField
The name of the field or a spec matching the given name
study : str | None
Name of the study that produced the field if derived. If None
and a spec is passed instaed of string to the name argument then
the study name will be taken from the spec instead.
"""
if isinstance(name, BaseField):
if from_study is None and name.derived:
from_study = name.study.name
name = name.name
try:
return self._fields[(name, from_study)]
except KeyError:
available = [d.name for d in self.fields
if d.from_study == from_study]
other_studies = [(d.from_study if d.from_study is not None
else '<root>')
for d in self.fields
if d.name == name]
if other_studies:
msg = (". NB: matching field(s) found for '{}' study(ies) "
"('{}')".format(name, "', '".join(other_studies)))
else:
msg = ''
raise ArcanaNameError(
name, ("{} doesn't have a field named '{}'{} "
"(available '{}')"
.format(
self, name,
(" from study '{}'".format(from_study)
if from_study is not None else ''),
"', '".join(available), msg))) | python | def field(self, name, from_study=None):
"""
Gets the field named 'name' produced by the Study named 'study' if
provided. If a spec is passed instead of a str to the name argument,
then the study will be set from the spec iff it is derived
Parameters
----------
name : str | BaseField
The name of the field or a spec matching the given name
study : str | None
Name of the study that produced the field if derived. If None
and a spec is passed instaed of string to the name argument then
the study name will be taken from the spec instead.
"""
if isinstance(name, BaseField):
if from_study is None and name.derived:
from_study = name.study.name
name = name.name
try:
return self._fields[(name, from_study)]
except KeyError:
available = [d.name for d in self.fields
if d.from_study == from_study]
other_studies = [(d.from_study if d.from_study is not None
else '<root>')
for d in self.fields
if d.name == name]
if other_studies:
msg = (". NB: matching field(s) found for '{}' study(ies) "
"('{}')".format(name, "', '".join(other_studies)))
else:
msg = ''
raise ArcanaNameError(
name, ("{} doesn't have a field named '{}'{} "
"(available '{}')"
.format(
self, name,
(" from study '{}'".format(from_study)
if from_study is not None else ''),
"', '".join(available), msg))) | [
"def",
"field",
"(",
"self",
",",
"name",
",",
"from_study",
"=",
"None",
")",
":",
"if",
"isinstance",
"(",
"name",
",",
"BaseField",
")",
":",
"if",
"from_study",
"is",
"None",
"and",
"name",
".",
"derived",
":",
"from_study",
"=",
"name",
".",
"study",
".",
"name",
"name",
"=",
"name",
".",
"name",
"try",
":",
"return",
"self",
".",
"_fields",
"[",
"(",
"name",
",",
"from_study",
")",
"]",
"except",
"KeyError",
":",
"available",
"=",
"[",
"d",
".",
"name",
"for",
"d",
"in",
"self",
".",
"fields",
"if",
"d",
".",
"from_study",
"==",
"from_study",
"]",
"other_studies",
"=",
"[",
"(",
"d",
".",
"from_study",
"if",
"d",
".",
"from_study",
"is",
"not",
"None",
"else",
"'<root>'",
")",
"for",
"d",
"in",
"self",
".",
"fields",
"if",
"d",
".",
"name",
"==",
"name",
"]",
"if",
"other_studies",
":",
"msg",
"=",
"(",
"\". NB: matching field(s) found for '{}' study(ies) \"",
"\"('{}')\"",
".",
"format",
"(",
"name",
",",
"\"', '\"",
".",
"join",
"(",
"other_studies",
")",
")",
")",
"else",
":",
"msg",
"=",
"''",
"raise",
"ArcanaNameError",
"(",
"name",
",",
"(",
"\"{} doesn't have a field named '{}'{} \"",
"\"(available '{}')\"",
".",
"format",
"(",
"self",
",",
"name",
",",
"(",
"\" from study '{}'\"",
".",
"format",
"(",
"from_study",
")",
"if",
"from_study",
"is",
"not",
"None",
"else",
"''",
")",
",",
"\"', '\"",
".",
"join",
"(",
"available",
")",
",",
"msg",
")",
")",
")"
] | Gets the field named 'name' produced by the Study named 'study' if
provided. If a spec is passed instead of a str to the name argument,
then the study will be set from the spec iff it is derived
Parameters
----------
name : str | BaseField
The name of the field or a spec matching the given name
study : str | None
Name of the study that produced the field if derived. If None
and a spec is passed instaed of string to the name argument then
the study name will be taken from the spec instead. | [
"Gets",
"the",
"field",
"named",
"name",
"produced",
"by",
"the",
"Study",
"named",
"study",
"if",
"provided",
".",
"If",
"a",
"spec",
"is",
"passed",
"instead",
"of",
"a",
"str",
"to",
"the",
"name",
"argument",
"then",
"the",
"study",
"will",
"be",
"set",
"from",
"the",
"spec",
"iff",
"it",
"is",
"derived"
] | train | https://github.com/MonashBI/arcana/blob/d6271a29d13733d00422d11417af8d200be62acc/arcana/repository/tree.py#L201-L241 |
MonashBI/arcana | arcana/repository/tree.py | TreeNode.record | def record(self, pipeline_name, from_study):
"""
Returns the provenance record for a given pipeline
Parameters
----------
pipeline_name : str
The name of the pipeline that generated the record
from_study : str
The name of the study that the pipeline was generated from
Returns
-------
record : arcana.provenance.Record
The provenance record generated by the specified pipeline
"""
try:
return self._records[(pipeline_name, from_study)]
except KeyError:
found = []
for sname, pnames in groupby(sorted(self._records,
key=itemgetter(1)),
key=itemgetter(1)):
found.append(
"'{}' for '{}'".format("', '".join(p for p, _ in pnames),
sname))
raise ArcanaNameError(
(pipeline_name, from_study),
("{} doesn't have a provenance record for pipeline '{}' "
"for '{}' study (found {})".format(
self, pipeline_name, from_study,
'; '.join(found)))) | python | def record(self, pipeline_name, from_study):
"""
Returns the provenance record for a given pipeline
Parameters
----------
pipeline_name : str
The name of the pipeline that generated the record
from_study : str
The name of the study that the pipeline was generated from
Returns
-------
record : arcana.provenance.Record
The provenance record generated by the specified pipeline
"""
try:
return self._records[(pipeline_name, from_study)]
except KeyError:
found = []
for sname, pnames in groupby(sorted(self._records,
key=itemgetter(1)),
key=itemgetter(1)):
found.append(
"'{}' for '{}'".format("', '".join(p for p, _ in pnames),
sname))
raise ArcanaNameError(
(pipeline_name, from_study),
("{} doesn't have a provenance record for pipeline '{}' "
"for '{}' study (found {})".format(
self, pipeline_name, from_study,
'; '.join(found)))) | [
"def",
"record",
"(",
"self",
",",
"pipeline_name",
",",
"from_study",
")",
":",
"try",
":",
"return",
"self",
".",
"_records",
"[",
"(",
"pipeline_name",
",",
"from_study",
")",
"]",
"except",
"KeyError",
":",
"found",
"=",
"[",
"]",
"for",
"sname",
",",
"pnames",
"in",
"groupby",
"(",
"sorted",
"(",
"self",
".",
"_records",
",",
"key",
"=",
"itemgetter",
"(",
"1",
")",
")",
",",
"key",
"=",
"itemgetter",
"(",
"1",
")",
")",
":",
"found",
".",
"append",
"(",
"\"'{}' for '{}'\"",
".",
"format",
"(",
"\"', '\"",
".",
"join",
"(",
"p",
"for",
"p",
",",
"_",
"in",
"pnames",
")",
",",
"sname",
")",
")",
"raise",
"ArcanaNameError",
"(",
"(",
"pipeline_name",
",",
"from_study",
")",
",",
"(",
"\"{} doesn't have a provenance record for pipeline '{}' \"",
"\"for '{}' study (found {})\"",
".",
"format",
"(",
"self",
",",
"pipeline_name",
",",
"from_study",
",",
"'; '",
".",
"join",
"(",
"found",
")",
")",
")",
")"
] | Returns the provenance record for a given pipeline
Parameters
----------
pipeline_name : str
The name of the pipeline that generated the record
from_study : str
The name of the study that the pipeline was generated from
Returns
-------
record : arcana.provenance.Record
The provenance record generated by the specified pipeline | [
"Returns",
"the",
"provenance",
"record",
"for",
"a",
"given",
"pipeline"
] | train | https://github.com/MonashBI/arcana/blob/d6271a29d13733d00422d11417af8d200be62acc/arcana/repository/tree.py#L243-L274 |
MonashBI/arcana | arcana/repository/tree.py | TreeNode.find_mismatch | def find_mismatch(self, other, indent=''):
"""
Highlights where two nodes differ in a human-readable form
Parameters
----------
other : TreeNode
The node to compare
indent : str
The white-space with which to indent output string
Returns
-------
mismatch : str
The human-readable mismatch string
"""
if self != other:
mismatch = "\n{}{}".format(indent, type(self).__name__)
else:
mismatch = ''
sub_indent = indent + ' '
if len(list(self.filesets)) != len(list(other.filesets)):
mismatch += ('\n{indent}mismatching summary fileset lengths '
'(self={} vs other={}): '
'\n{indent} self={}\n{indent} other={}'
.format(len(list(self.filesets)),
len(list(other.filesets)),
list(self.filesets),
list(other.filesets),
indent=sub_indent))
else:
for s, o in zip(self.filesets, other.filesets):
mismatch += s.find_mismatch(o, indent=sub_indent)
if len(list(self.fields)) != len(list(other.fields)):
mismatch += ('\n{indent}mismatching summary field lengths '
'(self={} vs other={}): '
'\n{indent} self={}\n{indent} other={}'
.format(len(list(self.fields)),
len(list(other.fields)),
list(self.fields),
list(other.fields),
indent=sub_indent))
else:
for s, o in zip(self.fields, other.fields):
mismatch += s.find_mismatch(o, indent=sub_indent)
return mismatch | python | def find_mismatch(self, other, indent=''):
"""
Highlights where two nodes differ in a human-readable form
Parameters
----------
other : TreeNode
The node to compare
indent : str
The white-space with which to indent output string
Returns
-------
mismatch : str
The human-readable mismatch string
"""
if self != other:
mismatch = "\n{}{}".format(indent, type(self).__name__)
else:
mismatch = ''
sub_indent = indent + ' '
if len(list(self.filesets)) != len(list(other.filesets)):
mismatch += ('\n{indent}mismatching summary fileset lengths '
'(self={} vs other={}): '
'\n{indent} self={}\n{indent} other={}'
.format(len(list(self.filesets)),
len(list(other.filesets)),
list(self.filesets),
list(other.filesets),
indent=sub_indent))
else:
for s, o in zip(self.filesets, other.filesets):
mismatch += s.find_mismatch(o, indent=sub_indent)
if len(list(self.fields)) != len(list(other.fields)):
mismatch += ('\n{indent}mismatching summary field lengths '
'(self={} vs other={}): '
'\n{indent} self={}\n{indent} other={}'
.format(len(list(self.fields)),
len(list(other.fields)),
list(self.fields),
list(other.fields),
indent=sub_indent))
else:
for s, o in zip(self.fields, other.fields):
mismatch += s.find_mismatch(o, indent=sub_indent)
return mismatch | [
"def",
"find_mismatch",
"(",
"self",
",",
"other",
",",
"indent",
"=",
"''",
")",
":",
"if",
"self",
"!=",
"other",
":",
"mismatch",
"=",
"\"\\n{}{}\"",
".",
"format",
"(",
"indent",
",",
"type",
"(",
"self",
")",
".",
"__name__",
")",
"else",
":",
"mismatch",
"=",
"''",
"sub_indent",
"=",
"indent",
"+",
"' '",
"if",
"len",
"(",
"list",
"(",
"self",
".",
"filesets",
")",
")",
"!=",
"len",
"(",
"list",
"(",
"other",
".",
"filesets",
")",
")",
":",
"mismatch",
"+=",
"(",
"'\\n{indent}mismatching summary fileset lengths '",
"'(self={} vs other={}): '",
"'\\n{indent} self={}\\n{indent} other={}'",
".",
"format",
"(",
"len",
"(",
"list",
"(",
"self",
".",
"filesets",
")",
")",
",",
"len",
"(",
"list",
"(",
"other",
".",
"filesets",
")",
")",
",",
"list",
"(",
"self",
".",
"filesets",
")",
",",
"list",
"(",
"other",
".",
"filesets",
")",
",",
"indent",
"=",
"sub_indent",
")",
")",
"else",
":",
"for",
"s",
",",
"o",
"in",
"zip",
"(",
"self",
".",
"filesets",
",",
"other",
".",
"filesets",
")",
":",
"mismatch",
"+=",
"s",
".",
"find_mismatch",
"(",
"o",
",",
"indent",
"=",
"sub_indent",
")",
"if",
"len",
"(",
"list",
"(",
"self",
".",
"fields",
")",
")",
"!=",
"len",
"(",
"list",
"(",
"other",
".",
"fields",
")",
")",
":",
"mismatch",
"+=",
"(",
"'\\n{indent}mismatching summary field lengths '",
"'(self={} vs other={}): '",
"'\\n{indent} self={}\\n{indent} other={}'",
".",
"format",
"(",
"len",
"(",
"list",
"(",
"self",
".",
"fields",
")",
")",
",",
"len",
"(",
"list",
"(",
"other",
".",
"fields",
")",
")",
",",
"list",
"(",
"self",
".",
"fields",
")",
",",
"list",
"(",
"other",
".",
"fields",
")",
",",
"indent",
"=",
"sub_indent",
")",
")",
"else",
":",
"for",
"s",
",",
"o",
"in",
"zip",
"(",
"self",
".",
"fields",
",",
"other",
".",
"fields",
")",
":",
"mismatch",
"+=",
"s",
".",
"find_mismatch",
"(",
"o",
",",
"indent",
"=",
"sub_indent",
")",
"return",
"mismatch"
] | Highlights where two nodes differ in a human-readable form
Parameters
----------
other : TreeNode
The node to compare
indent : str
The white-space with which to indent output string
Returns
-------
mismatch : str
The human-readable mismatch string | [
"Highlights",
"where",
"two",
"nodes",
"differ",
"in",
"a",
"human",
"-",
"readable",
"form"
] | train | https://github.com/MonashBI/arcana/blob/d6271a29d13733d00422d11417af8d200be62acc/arcana/repository/tree.py#L283-L328 |
MonashBI/arcana | arcana/repository/tree.py | Tree.nodes | def nodes(self, frequency=None):
"""
Returns an iterator over all nodes in the tree for the specified
frequency. If no frequency is specified then all nodes are returned
Parameters
----------
frequency : str | None
The frequency of the nodes to iterate over. If None all
frequencies are returned
Returns
-------
nodes : iterable[TreeNode]
"""
if frequency is None:
nodes = chain(*(self._nodes(f)
for f in ('per_study', 'per_subject',
'per_visit', 'per_session')))
else:
nodes = self._nodes(frequency=frequency)
return nodes | python | def nodes(self, frequency=None):
"""
Returns an iterator over all nodes in the tree for the specified
frequency. If no frequency is specified then all nodes are returned
Parameters
----------
frequency : str | None
The frequency of the nodes to iterate over. If None all
frequencies are returned
Returns
-------
nodes : iterable[TreeNode]
"""
if frequency is None:
nodes = chain(*(self._nodes(f)
for f in ('per_study', 'per_subject',
'per_visit', 'per_session')))
else:
nodes = self._nodes(frequency=frequency)
return nodes | [
"def",
"nodes",
"(",
"self",
",",
"frequency",
"=",
"None",
")",
":",
"if",
"frequency",
"is",
"None",
":",
"nodes",
"=",
"chain",
"(",
"*",
"(",
"self",
".",
"_nodes",
"(",
"f",
")",
"for",
"f",
"in",
"(",
"'per_study'",
",",
"'per_subject'",
",",
"'per_visit'",
",",
"'per_session'",
")",
")",
")",
"else",
":",
"nodes",
"=",
"self",
".",
"_nodes",
"(",
"frequency",
"=",
"frequency",
")",
"return",
"nodes"
] | Returns an iterator over all nodes in the tree for the specified
frequency. If no frequency is specified then all nodes are returned
Parameters
----------
frequency : str | None
The frequency of the nodes to iterate over. If None all
frequencies are returned
Returns
-------
nodes : iterable[TreeNode] | [
"Returns",
"an",
"iterator",
"over",
"all",
"nodes",
"in",
"the",
"tree",
"for",
"the",
"specified",
"frequency",
".",
"If",
"no",
"frequency",
"is",
"specified",
"then",
"all",
"nodes",
"are",
"returned"
] | train | https://github.com/MonashBI/arcana/blob/d6271a29d13733d00422d11417af8d200be62acc/arcana/repository/tree.py#L488-L509 |
MonashBI/arcana | arcana/repository/tree.py | Tree.find_mismatch | def find_mismatch(self, other, indent=''):
"""
Used in debugging unittests
"""
mismatch = super(Tree, self).find_mismatch(other, indent)
sub_indent = indent + ' '
if len(list(self.subjects)) != len(list(other.subjects)):
mismatch += ('\n{indent}mismatching subject lengths '
'(self={} vs other={}): '
'\n{indent} self={}\n{indent} other={}'
.format(len(list(self.subjects)),
len(list(other.subjects)),
list(self.subjects),
list(other.subjects),
indent=sub_indent))
else:
for s, o in zip(self.subjects, other.subjects):
mismatch += s.find_mismatch(o, indent=sub_indent)
if len(list(self.visits)) != len(list(other.visits)):
mismatch += ('\n{indent}mismatching visit lengths '
'(self={} vs other={}): '
'\n{indent} self={}\n{indent} other={}'
.format(len(list(self.visits)),
len(list(other.visits)),
list(self.visits),
list(other.visits),
indent=sub_indent))
else:
for s, o in zip(self.visits, other.visits):
mismatch += s.find_mismatch(o, indent=sub_indent)
return mismatch | python | def find_mismatch(self, other, indent=''):
"""
Used in debugging unittests
"""
mismatch = super(Tree, self).find_mismatch(other, indent)
sub_indent = indent + ' '
if len(list(self.subjects)) != len(list(other.subjects)):
mismatch += ('\n{indent}mismatching subject lengths '
'(self={} vs other={}): '
'\n{indent} self={}\n{indent} other={}'
.format(len(list(self.subjects)),
len(list(other.subjects)),
list(self.subjects),
list(other.subjects),
indent=sub_indent))
else:
for s, o in zip(self.subjects, other.subjects):
mismatch += s.find_mismatch(o, indent=sub_indent)
if len(list(self.visits)) != len(list(other.visits)):
mismatch += ('\n{indent}mismatching visit lengths '
'(self={} vs other={}): '
'\n{indent} self={}\n{indent} other={}'
.format(len(list(self.visits)),
len(list(other.visits)),
list(self.visits),
list(other.visits),
indent=sub_indent))
else:
for s, o in zip(self.visits, other.visits):
mismatch += s.find_mismatch(o, indent=sub_indent)
return mismatch | [
"def",
"find_mismatch",
"(",
"self",
",",
"other",
",",
"indent",
"=",
"''",
")",
":",
"mismatch",
"=",
"super",
"(",
"Tree",
",",
"self",
")",
".",
"find_mismatch",
"(",
"other",
",",
"indent",
")",
"sub_indent",
"=",
"indent",
"+",
"' '",
"if",
"len",
"(",
"list",
"(",
"self",
".",
"subjects",
")",
")",
"!=",
"len",
"(",
"list",
"(",
"other",
".",
"subjects",
")",
")",
":",
"mismatch",
"+=",
"(",
"'\\n{indent}mismatching subject lengths '",
"'(self={} vs other={}): '",
"'\\n{indent} self={}\\n{indent} other={}'",
".",
"format",
"(",
"len",
"(",
"list",
"(",
"self",
".",
"subjects",
")",
")",
",",
"len",
"(",
"list",
"(",
"other",
".",
"subjects",
")",
")",
",",
"list",
"(",
"self",
".",
"subjects",
")",
",",
"list",
"(",
"other",
".",
"subjects",
")",
",",
"indent",
"=",
"sub_indent",
")",
")",
"else",
":",
"for",
"s",
",",
"o",
"in",
"zip",
"(",
"self",
".",
"subjects",
",",
"other",
".",
"subjects",
")",
":",
"mismatch",
"+=",
"s",
".",
"find_mismatch",
"(",
"o",
",",
"indent",
"=",
"sub_indent",
")",
"if",
"len",
"(",
"list",
"(",
"self",
".",
"visits",
")",
")",
"!=",
"len",
"(",
"list",
"(",
"other",
".",
"visits",
")",
")",
":",
"mismatch",
"+=",
"(",
"'\\n{indent}mismatching visit lengths '",
"'(self={} vs other={}): '",
"'\\n{indent} self={}\\n{indent} other={}'",
".",
"format",
"(",
"len",
"(",
"list",
"(",
"self",
".",
"visits",
")",
")",
",",
"len",
"(",
"list",
"(",
"other",
".",
"visits",
")",
")",
",",
"list",
"(",
"self",
".",
"visits",
")",
",",
"list",
"(",
"other",
".",
"visits",
")",
",",
"indent",
"=",
"sub_indent",
")",
")",
"else",
":",
"for",
"s",
",",
"o",
"in",
"zip",
"(",
"self",
".",
"visits",
",",
"other",
".",
"visits",
")",
":",
"mismatch",
"+=",
"s",
".",
"find_mismatch",
"(",
"o",
",",
"indent",
"=",
"sub_indent",
")",
"return",
"mismatch"
] | Used in debugging unittests | [
"Used",
"in",
"debugging",
"unittests"
] | train | https://github.com/MonashBI/arcana/blob/d6271a29d13733d00422d11417af8d200be62acc/arcana/repository/tree.py#L524-L554 |
MonashBI/arcana | arcana/repository/tree.py | Tree._fill_empty_sessions | def _fill_empty_sessions(self, fill_subjects, fill_visits):
"""
Fill in tree with additional empty subjects and/or visits to
allow the study to pull its inputs from external repositories
"""
if fill_subjects is None:
fill_subjects = [s.id for s in self.subjects]
if fill_visits is None:
fill_visits = [v.id for v in self.complete_visits]
for subject_id in fill_subjects:
try:
subject = self.subject(subject_id)
except ArcanaNameError:
subject = self._subjects[subject_id] = Subject(
subject_id, [], [], [])
for visit_id in fill_visits:
try:
subject.session(visit_id)
except ArcanaNameError:
session = Session(subject_id, visit_id, [], [])
subject._sessions[visit_id] = session
try:
visit = self.visit(visit_id)
except ArcanaNameError:
visit = self._visits[visit_id] = Visit(
visit_id, [], [], [])
visit._sessions[subject_id] = session | python | def _fill_empty_sessions(self, fill_subjects, fill_visits):
"""
Fill in tree with additional empty subjects and/or visits to
allow the study to pull its inputs from external repositories
"""
if fill_subjects is None:
fill_subjects = [s.id for s in self.subjects]
if fill_visits is None:
fill_visits = [v.id for v in self.complete_visits]
for subject_id in fill_subjects:
try:
subject = self.subject(subject_id)
except ArcanaNameError:
subject = self._subjects[subject_id] = Subject(
subject_id, [], [], [])
for visit_id in fill_visits:
try:
subject.session(visit_id)
except ArcanaNameError:
session = Session(subject_id, visit_id, [], [])
subject._sessions[visit_id] = session
try:
visit = self.visit(visit_id)
except ArcanaNameError:
visit = self._visits[visit_id] = Visit(
visit_id, [], [], [])
visit._sessions[subject_id] = session | [
"def",
"_fill_empty_sessions",
"(",
"self",
",",
"fill_subjects",
",",
"fill_visits",
")",
":",
"if",
"fill_subjects",
"is",
"None",
":",
"fill_subjects",
"=",
"[",
"s",
".",
"id",
"for",
"s",
"in",
"self",
".",
"subjects",
"]",
"if",
"fill_visits",
"is",
"None",
":",
"fill_visits",
"=",
"[",
"v",
".",
"id",
"for",
"v",
"in",
"self",
".",
"complete_visits",
"]",
"for",
"subject_id",
"in",
"fill_subjects",
":",
"try",
":",
"subject",
"=",
"self",
".",
"subject",
"(",
"subject_id",
")",
"except",
"ArcanaNameError",
":",
"subject",
"=",
"self",
".",
"_subjects",
"[",
"subject_id",
"]",
"=",
"Subject",
"(",
"subject_id",
",",
"[",
"]",
",",
"[",
"]",
",",
"[",
"]",
")",
"for",
"visit_id",
"in",
"fill_visits",
":",
"try",
":",
"subject",
".",
"session",
"(",
"visit_id",
")",
"except",
"ArcanaNameError",
":",
"session",
"=",
"Session",
"(",
"subject_id",
",",
"visit_id",
",",
"[",
"]",
",",
"[",
"]",
")",
"subject",
".",
"_sessions",
"[",
"visit_id",
"]",
"=",
"session",
"try",
":",
"visit",
"=",
"self",
".",
"visit",
"(",
"visit_id",
")",
"except",
"ArcanaNameError",
":",
"visit",
"=",
"self",
".",
"_visits",
"[",
"visit_id",
"]",
"=",
"Visit",
"(",
"visit_id",
",",
"[",
"]",
",",
"[",
"]",
",",
"[",
"]",
")",
"visit",
".",
"_sessions",
"[",
"subject_id",
"]",
"=",
"session"
] | Fill in tree with additional empty subjects and/or visits to
allow the study to pull its inputs from external repositories | [
"Fill",
"in",
"tree",
"with",
"additional",
"empty",
"subjects",
"and",
"/",
"or",
"visits",
"to",
"allow",
"the",
"study",
"to",
"pull",
"its",
"inputs",
"from",
"external",
"repositories"
] | train | https://github.com/MonashBI/arcana/blob/d6271a29d13733d00422d11417af8d200be62acc/arcana/repository/tree.py#L563-L589 |
MonashBI/arcana | arcana/repository/tree.py | Tree.construct | def construct(cls, repository, filesets=(), fields=(), records=(),
file_formats=(), **kwargs):
"""
Return the hierarchical tree of the filesets and fields stored in a
repository
Parameters
----------
respository : Repository
The repository that the tree comes from
filesets : list[Fileset]
List of all filesets in the tree
fields : list[Field]
List of all fields in the tree
records : list[Record]
List of all records in the tree
Returns
-------
tree : arcana.repository.Tree
A hierarchical tree of subject, session and fileset
information for the repository
"""
# Sort the data by subject and visit ID
filesets_dict = defaultdict(list)
for fset in filesets:
if file_formats:
fset.set_format(file_formats)
filesets_dict[(fset.subject_id, fset.visit_id)].append(fset)
fields_dict = defaultdict(list)
for field in fields:
fields_dict[(field.subject_id, field.visit_id)].append(field)
records_dict = defaultdict(list)
for record in records:
records_dict[(record.subject_id, record.visit_id)].append(record)
# Create all sessions
subj_sessions = defaultdict(list)
visit_sessions = defaultdict(list)
for sess_id in set(chain(filesets_dict, fields_dict,
records_dict)):
if None in sess_id:
continue # Save summaries for later
subj_id, visit_id = sess_id
session = Session(
subject_id=subj_id, visit_id=visit_id,
filesets=filesets_dict[sess_id],
fields=fields_dict[sess_id],
records=records_dict[sess_id])
subj_sessions[subj_id].append(session)
visit_sessions[visit_id].append(session)
subjects = []
for subj_id in subj_sessions:
subjects.append(Subject(
subj_id,
sorted(subj_sessions[subj_id]),
filesets_dict[(subj_id, None)],
fields_dict[(subj_id, None)],
records_dict[(subj_id, None)]))
visits = []
for visit_id in visit_sessions:
visits.append(Visit(
visit_id,
sorted(visit_sessions[visit_id]),
filesets_dict[(None, visit_id)],
fields_dict[(None, visit_id)],
records_dict[(None, visit_id)]))
return Tree(sorted(subjects),
sorted(visits),
repository,
filesets_dict[(None, None)],
fields_dict[(None, None)],
records_dict[(None, None)],
**kwargs) | python | def construct(cls, repository, filesets=(), fields=(), records=(),
file_formats=(), **kwargs):
"""
Return the hierarchical tree of the filesets and fields stored in a
repository
Parameters
----------
respository : Repository
The repository that the tree comes from
filesets : list[Fileset]
List of all filesets in the tree
fields : list[Field]
List of all fields in the tree
records : list[Record]
List of all records in the tree
Returns
-------
tree : arcana.repository.Tree
A hierarchical tree of subject, session and fileset
information for the repository
"""
# Sort the data by subject and visit ID
filesets_dict = defaultdict(list)
for fset in filesets:
if file_formats:
fset.set_format(file_formats)
filesets_dict[(fset.subject_id, fset.visit_id)].append(fset)
fields_dict = defaultdict(list)
for field in fields:
fields_dict[(field.subject_id, field.visit_id)].append(field)
records_dict = defaultdict(list)
for record in records:
records_dict[(record.subject_id, record.visit_id)].append(record)
# Create all sessions
subj_sessions = defaultdict(list)
visit_sessions = defaultdict(list)
for sess_id in set(chain(filesets_dict, fields_dict,
records_dict)):
if None in sess_id:
continue # Save summaries for later
subj_id, visit_id = sess_id
session = Session(
subject_id=subj_id, visit_id=visit_id,
filesets=filesets_dict[sess_id],
fields=fields_dict[sess_id],
records=records_dict[sess_id])
subj_sessions[subj_id].append(session)
visit_sessions[visit_id].append(session)
subjects = []
for subj_id in subj_sessions:
subjects.append(Subject(
subj_id,
sorted(subj_sessions[subj_id]),
filesets_dict[(subj_id, None)],
fields_dict[(subj_id, None)],
records_dict[(subj_id, None)]))
visits = []
for visit_id in visit_sessions:
visits.append(Visit(
visit_id,
sorted(visit_sessions[visit_id]),
filesets_dict[(None, visit_id)],
fields_dict[(None, visit_id)],
records_dict[(None, visit_id)]))
return Tree(sorted(subjects),
sorted(visits),
repository,
filesets_dict[(None, None)],
fields_dict[(None, None)],
records_dict[(None, None)],
**kwargs) | [
"def",
"construct",
"(",
"cls",
",",
"repository",
",",
"filesets",
"=",
"(",
")",
",",
"fields",
"=",
"(",
")",
",",
"records",
"=",
"(",
")",
",",
"file_formats",
"=",
"(",
")",
",",
"*",
"*",
"kwargs",
")",
":",
"# Sort the data by subject and visit ID",
"filesets_dict",
"=",
"defaultdict",
"(",
"list",
")",
"for",
"fset",
"in",
"filesets",
":",
"if",
"file_formats",
":",
"fset",
".",
"set_format",
"(",
"file_formats",
")",
"filesets_dict",
"[",
"(",
"fset",
".",
"subject_id",
",",
"fset",
".",
"visit_id",
")",
"]",
".",
"append",
"(",
"fset",
")",
"fields_dict",
"=",
"defaultdict",
"(",
"list",
")",
"for",
"field",
"in",
"fields",
":",
"fields_dict",
"[",
"(",
"field",
".",
"subject_id",
",",
"field",
".",
"visit_id",
")",
"]",
".",
"append",
"(",
"field",
")",
"records_dict",
"=",
"defaultdict",
"(",
"list",
")",
"for",
"record",
"in",
"records",
":",
"records_dict",
"[",
"(",
"record",
".",
"subject_id",
",",
"record",
".",
"visit_id",
")",
"]",
".",
"append",
"(",
"record",
")",
"# Create all sessions",
"subj_sessions",
"=",
"defaultdict",
"(",
"list",
")",
"visit_sessions",
"=",
"defaultdict",
"(",
"list",
")",
"for",
"sess_id",
"in",
"set",
"(",
"chain",
"(",
"filesets_dict",
",",
"fields_dict",
",",
"records_dict",
")",
")",
":",
"if",
"None",
"in",
"sess_id",
":",
"continue",
"# Save summaries for later",
"subj_id",
",",
"visit_id",
"=",
"sess_id",
"session",
"=",
"Session",
"(",
"subject_id",
"=",
"subj_id",
",",
"visit_id",
"=",
"visit_id",
",",
"filesets",
"=",
"filesets_dict",
"[",
"sess_id",
"]",
",",
"fields",
"=",
"fields_dict",
"[",
"sess_id",
"]",
",",
"records",
"=",
"records_dict",
"[",
"sess_id",
"]",
")",
"subj_sessions",
"[",
"subj_id",
"]",
".",
"append",
"(",
"session",
")",
"visit_sessions",
"[",
"visit_id",
"]",
".",
"append",
"(",
"session",
")",
"subjects",
"=",
"[",
"]",
"for",
"subj_id",
"in",
"subj_sessions",
":",
"subjects",
".",
"append",
"(",
"Subject",
"(",
"subj_id",
",",
"sorted",
"(",
"subj_sessions",
"[",
"subj_id",
"]",
")",
",",
"filesets_dict",
"[",
"(",
"subj_id",
",",
"None",
")",
"]",
",",
"fields_dict",
"[",
"(",
"subj_id",
",",
"None",
")",
"]",
",",
"records_dict",
"[",
"(",
"subj_id",
",",
"None",
")",
"]",
")",
")",
"visits",
"=",
"[",
"]",
"for",
"visit_id",
"in",
"visit_sessions",
":",
"visits",
".",
"append",
"(",
"Visit",
"(",
"visit_id",
",",
"sorted",
"(",
"visit_sessions",
"[",
"visit_id",
"]",
")",
",",
"filesets_dict",
"[",
"(",
"None",
",",
"visit_id",
")",
"]",
",",
"fields_dict",
"[",
"(",
"None",
",",
"visit_id",
")",
"]",
",",
"records_dict",
"[",
"(",
"None",
",",
"visit_id",
")",
"]",
")",
")",
"return",
"Tree",
"(",
"sorted",
"(",
"subjects",
")",
",",
"sorted",
"(",
"visits",
")",
",",
"repository",
",",
"filesets_dict",
"[",
"(",
"None",
",",
"None",
")",
"]",
",",
"fields_dict",
"[",
"(",
"None",
",",
"None",
")",
"]",
",",
"records_dict",
"[",
"(",
"None",
",",
"None",
")",
"]",
",",
"*",
"*",
"kwargs",
")"
] | Return the hierarchical tree of the filesets and fields stored in a
repository
Parameters
----------
respository : Repository
The repository that the tree comes from
filesets : list[Fileset]
List of all filesets in the tree
fields : list[Field]
List of all fields in the tree
records : list[Record]
List of all records in the tree
Returns
-------
tree : arcana.repository.Tree
A hierarchical tree of subject, session and fileset
information for the repository | [
"Return",
"the",
"hierarchical",
"tree",
"of",
"the",
"filesets",
"and",
"fields",
"stored",
"in",
"a",
"repository"
] | train | https://github.com/MonashBI/arcana/blob/d6271a29d13733d00422d11417af8d200be62acc/arcana/repository/tree.py#L592-L664 |
MonashBI/arcana | arcana/repository/tree.py | Session.nodes | def nodes(self, frequency=None):
"""
Returns all nodes of the specified frequency that are related to
the given Session
Parameters
----------
frequency : str | None
The frequency of the nodes to return
Returns
-------
nodes : iterable[TreeNode]
All nodes related to the Session for the specified frequency
"""
if frequency is None:
[]
elif frequency == 'per_session':
return [self]
elif frequency in ('per_visit', 'per_subject'):
return [self.parent]
elif frequency == 'per_study':
return [self.parent.parent] | python | def nodes(self, frequency=None):
"""
Returns all nodes of the specified frequency that are related to
the given Session
Parameters
----------
frequency : str | None
The frequency of the nodes to return
Returns
-------
nodes : iterable[TreeNode]
All nodes related to the Session for the specified frequency
"""
if frequency is None:
[]
elif frequency == 'per_session':
return [self]
elif frequency in ('per_visit', 'per_subject'):
return [self.parent]
elif frequency == 'per_study':
return [self.parent.parent] | [
"def",
"nodes",
"(",
"self",
",",
"frequency",
"=",
"None",
")",
":",
"if",
"frequency",
"is",
"None",
":",
"[",
"]",
"elif",
"frequency",
"==",
"'per_session'",
":",
"return",
"[",
"self",
"]",
"elif",
"frequency",
"in",
"(",
"'per_visit'",
",",
"'per_subject'",
")",
":",
"return",
"[",
"self",
".",
"parent",
"]",
"elif",
"frequency",
"==",
"'per_study'",
":",
"return",
"[",
"self",
".",
"parent",
".",
"parent",
"]"
] | Returns all nodes of the specified frequency that are related to
the given Session
Parameters
----------
frequency : str | None
The frequency of the nodes to return
Returns
-------
nodes : iterable[TreeNode]
All nodes related to the Session for the specified frequency | [
"Returns",
"all",
"nodes",
"of",
"the",
"specified",
"frequency",
"that",
"are",
"related",
"to",
"the",
"given",
"Session"
] | train | https://github.com/MonashBI/arcana/blob/d6271a29d13733d00422d11417af8d200be62acc/arcana/repository/tree.py#L1015-L1037 |
gwww/elkm1 | elkm1_lib/proto.py | Connection.write_data | def write_data(self, data, response_required=None, timeout=5.0, raw=False):
"""Write data on the asyncio Protocol"""
if self._transport is None:
return
if self._paused:
return
if self._waiting_for_response:
LOG.debug("queueing write %s", data)
self._queued_writes.append((data, response_required, timeout))
return
if response_required:
self._waiting_for_response = response_required
if timeout > 0:
self._timeout_task = self.loop.call_later(
timeout, self._response_required_timeout)
if not raw:
cksum = 256 - reduce(lambda x, y: x+y, map(ord, data)) % 256
data = data + '{:02X}'.format(cksum)
if int(data[0:2], 16) != len(data)-2:
LOG.debug("message length wrong: %s", data)
LOG.debug("write_data '%s'", data)
self._transport.write((data + '\r\n').encode()) | python | def write_data(self, data, response_required=None, timeout=5.0, raw=False):
"""Write data on the asyncio Protocol"""
if self._transport is None:
return
if self._paused:
return
if self._waiting_for_response:
LOG.debug("queueing write %s", data)
self._queued_writes.append((data, response_required, timeout))
return
if response_required:
self._waiting_for_response = response_required
if timeout > 0:
self._timeout_task = self.loop.call_later(
timeout, self._response_required_timeout)
if not raw:
cksum = 256 - reduce(lambda x, y: x+y, map(ord, data)) % 256
data = data + '{:02X}'.format(cksum)
if int(data[0:2], 16) != len(data)-2:
LOG.debug("message length wrong: %s", data)
LOG.debug("write_data '%s'", data)
self._transport.write((data + '\r\n').encode()) | [
"def",
"write_data",
"(",
"self",
",",
"data",
",",
"response_required",
"=",
"None",
",",
"timeout",
"=",
"5.0",
",",
"raw",
"=",
"False",
")",
":",
"if",
"self",
".",
"_transport",
"is",
"None",
":",
"return",
"if",
"self",
".",
"_paused",
":",
"return",
"if",
"self",
".",
"_waiting_for_response",
":",
"LOG",
".",
"debug",
"(",
"\"queueing write %s\"",
",",
"data",
")",
"self",
".",
"_queued_writes",
".",
"append",
"(",
"(",
"data",
",",
"response_required",
",",
"timeout",
")",
")",
"return",
"if",
"response_required",
":",
"self",
".",
"_waiting_for_response",
"=",
"response_required",
"if",
"timeout",
">",
"0",
":",
"self",
".",
"_timeout_task",
"=",
"self",
".",
"loop",
".",
"call_later",
"(",
"timeout",
",",
"self",
".",
"_response_required_timeout",
")",
"if",
"not",
"raw",
":",
"cksum",
"=",
"256",
"-",
"reduce",
"(",
"lambda",
"x",
",",
"y",
":",
"x",
"+",
"y",
",",
"map",
"(",
"ord",
",",
"data",
")",
")",
"%",
"256",
"data",
"=",
"data",
"+",
"'{:02X}'",
".",
"format",
"(",
"cksum",
")",
"if",
"int",
"(",
"data",
"[",
"0",
":",
"2",
"]",
",",
"16",
")",
"!=",
"len",
"(",
"data",
")",
"-",
"2",
":",
"LOG",
".",
"debug",
"(",
"\"message length wrong: %s\"",
",",
"data",
")",
"LOG",
".",
"debug",
"(",
"\"write_data '%s'\"",
",",
"data",
")",
"self",
".",
"_transport",
".",
"write",
"(",
"(",
"data",
"+",
"'\\r\\n'",
")",
".",
"encode",
"(",
")",
")"
] | Write data on the asyncio Protocol | [
"Write",
"data",
"on",
"the",
"asyncio",
"Protocol"
] | train | https://github.com/gwww/elkm1/blob/078d0de30840c3fab46f1f8534d98df557931e91/elkm1_lib/proto.py#L82-L108 |
tym-xqo/nerium | nerium/utils.py | unwrap_querystring_lists | def unwrap_querystring_lists(obj):
"""Convert responder querystring params, pulling values out of list
if there's only one.
"""
new_dict = {
key: (obj[key][0]
if len(obj[key]) == 1 else obj[key])
for key in obj.keys()
}
return new_dict | python | def unwrap_querystring_lists(obj):
"""Convert responder querystring params, pulling values out of list
if there's only one.
"""
new_dict = {
key: (obj[key][0]
if len(obj[key]) == 1 else obj[key])
for key in obj.keys()
}
return new_dict | [
"def",
"unwrap_querystring_lists",
"(",
"obj",
")",
":",
"new_dict",
"=",
"{",
"key",
":",
"(",
"obj",
"[",
"key",
"]",
"[",
"0",
"]",
"if",
"len",
"(",
"obj",
"[",
"key",
"]",
")",
"==",
"1",
"else",
"obj",
"[",
"key",
"]",
")",
"for",
"key",
"in",
"obj",
".",
"keys",
"(",
")",
"}",
"return",
"new_dict"
] | Convert responder querystring params, pulling values out of list
if there's only one. | [
"Convert",
"responder",
"querystring",
"params",
"pulling",
"values",
"out",
"of",
"list",
"if",
"there",
"s",
"only",
"one",
"."
] | train | https://github.com/tym-xqo/nerium/blob/b234847d95f37c3a49dff15a189205fe5bbbc05f/nerium/utils.py#L1-L10 |
MonashBI/arcana | arcana/data/input.py | BaseInput.pipeline_getter | def pipeline_getter(self):
"For duck-typing with *Spec types"
if not self.derivable:
raise ArcanaUsageError(
"There is no pipeline getter for {} because it doesn't "
"fallback to a derived spec".format(self))
return self._fallback.pipeline_getter | python | def pipeline_getter(self):
"For duck-typing with *Spec types"
if not self.derivable:
raise ArcanaUsageError(
"There is no pipeline getter for {} because it doesn't "
"fallback to a derived spec".format(self))
return self._fallback.pipeline_getter | [
"def",
"pipeline_getter",
"(",
"self",
")",
":",
"if",
"not",
"self",
".",
"derivable",
":",
"raise",
"ArcanaUsageError",
"(",
"\"There is no pipeline getter for {} because it doesn't \"",
"\"fallback to a derived spec\"",
".",
"format",
"(",
"self",
")",
")",
"return",
"self",
".",
"_fallback",
".",
"pipeline_getter"
] | For duck-typing with *Spec types | [
"For",
"duck",
"-",
"typing",
"with",
"*",
"Spec",
"types"
] | train | https://github.com/MonashBI/arcana/blob/d6271a29d13733d00422d11417af8d200be62acc/arcana/data/input.py#L135-L141 |
MonashBI/arcana | arcana/pipeline/base.py | Pipeline.prerequisites | def prerequisites(self):
"""
Iterates through the inputs of the pipelinen and determines the
all prerequisite pipelines
"""
# Loop through the inputs to the pipeline and add the instancemethods
# for the pipelines to generate each of the processed inputs
prereqs = defaultdict(set)
for input in self.inputs: # @ReservedAssignment
spec = self._study.spec(input)
# Could be an input to the study or optional acquired spec
if spec.is_spec and spec.derived:
prereqs[spec.pipeline_getter].add(input.name)
return prereqs | python | def prerequisites(self):
"""
Iterates through the inputs of the pipelinen and determines the
all prerequisite pipelines
"""
# Loop through the inputs to the pipeline and add the instancemethods
# for the pipelines to generate each of the processed inputs
prereqs = defaultdict(set)
for input in self.inputs: # @ReservedAssignment
spec = self._study.spec(input)
# Could be an input to the study or optional acquired spec
if spec.is_spec and spec.derived:
prereqs[spec.pipeline_getter].add(input.name)
return prereqs | [
"def",
"prerequisites",
"(",
"self",
")",
":",
"# Loop through the inputs to the pipeline and add the instancemethods",
"# for the pipelines to generate each of the processed inputs",
"prereqs",
"=",
"defaultdict",
"(",
"set",
")",
"for",
"input",
"in",
"self",
".",
"inputs",
":",
"# @ReservedAssignment",
"spec",
"=",
"self",
".",
"_study",
".",
"spec",
"(",
"input",
")",
"# Could be an input to the study or optional acquired spec",
"if",
"spec",
".",
"is_spec",
"and",
"spec",
".",
"derived",
":",
"prereqs",
"[",
"spec",
".",
"pipeline_getter",
"]",
".",
"add",
"(",
"input",
".",
"name",
")",
"return",
"prereqs"
] | Iterates through the inputs of the pipelinen and determines the
all prerequisite pipelines | [
"Iterates",
"through",
"the",
"inputs",
"of",
"the",
"pipelinen",
"and",
"determines",
"the",
"all",
"prerequisite",
"pipelines"
] | train | https://github.com/MonashBI/arcana/blob/d6271a29d13733d00422d11417af8d200be62acc/arcana/pipeline/base.py#L147-L160 |
MonashBI/arcana | arcana/pipeline/base.py | Pipeline.study_inputs | def study_inputs(self):
"""
Returns all inputs of the study used by the pipeline, including inputs
of prerequisites (and their prerequisites recursively)
"""
return set(chain(
(i for i in self.inputs if not i.derived),
*(self.study.pipeline(p, required_outputs=r).study_inputs
for p, r in self.prerequisites.items()))) | python | def study_inputs(self):
"""
Returns all inputs of the study used by the pipeline, including inputs
of prerequisites (and their prerequisites recursively)
"""
return set(chain(
(i for i in self.inputs if not i.derived),
*(self.study.pipeline(p, required_outputs=r).study_inputs
for p, r in self.prerequisites.items()))) | [
"def",
"study_inputs",
"(",
"self",
")",
":",
"return",
"set",
"(",
"chain",
"(",
"(",
"i",
"for",
"i",
"in",
"self",
".",
"inputs",
"if",
"not",
"i",
".",
"derived",
")",
",",
"*",
"(",
"self",
".",
"study",
".",
"pipeline",
"(",
"p",
",",
"required_outputs",
"=",
"r",
")",
".",
"study_inputs",
"for",
"p",
",",
"r",
"in",
"self",
".",
"prerequisites",
".",
"items",
"(",
")",
")",
")",
")"
] | Returns all inputs of the study used by the pipeline, including inputs
of prerequisites (and their prerequisites recursively) | [
"Returns",
"all",
"inputs",
"of",
"the",
"study",
"used",
"by",
"the",
"pipeline",
"including",
"inputs",
"of",
"prerequisites",
"(",
"and",
"their",
"prerequisites",
"recursively",
")"
] | train | https://github.com/MonashBI/arcana/blob/d6271a29d13733d00422d11417af8d200be62acc/arcana/pipeline/base.py#L163-L171 |
MonashBI/arcana | arcana/pipeline/base.py | Pipeline.add | def add(self, name, interface, inputs=None, outputs=None,
requirements=None, wall_time=None, annotations=None, **kwargs):
"""
Adds a processing Node to the pipeline
Parameters
----------
name : str
Name for the node
interface : nipype.Interface
The interface to use for the node
inputs : dict[str, (str, FileFormat) | (Node, str)]
Connections from inputs of the pipeline and outputs of other nodes
to inputs of node. The keys of the dictionary are the field names
and the values are 2-tuple containing either the name of the data
spec and the data format it is expected in for pipeline inputs or
the sending Node and the the name of an output of the sending Node.
Note that pipeline inputs can be specified outside this method
using the 'connect_input' method and connections between nodes with
the the 'connect' method.
outputs : dict[str, (str, FileFormat)]
Connections to outputs of the pipeline from fields of the
interface. The keys of the dictionary are the names of the data
specs that will be written to and the values are the interface
field name and the data format it is produced in. Note that output
connections can also be specified using the 'connect_output'
method.
requirements : list(Requirement)
List of required packages need for the node to run (default: [])
wall_time : float
Time required to execute the node in minutes (default: 1)
mem_gb : int
Required memory for the node in GB
n_procs : int
Preferred number of threads to run the node on (default: 1)
annotations : dict[str, *]
Additional annotations to add to the node, which may be used by
the Processor node to optimise execution (e.g. 'gpu': True)
iterfield : str
Name of field to be passed an iterable to iterator over.
If present, a MapNode will be created instead of a regular node
joinsource : str
Name of iterator field to join. Typically one of the implicit
iterators (i.e. Study.SUBJECT_ID or Study.VISIT_ID)
to join over the subjects and/or visits
joinfield : str
Name of field to pass the joined list when creating a JoinNode
Returns
-------
node : Node
The Node object that has been added to the pipeline
"""
if annotations is None:
annotations = {}
if requirements is None:
requirements = []
if wall_time is None:
wall_time = self.study.processor.default_wall_time
if 'mem_gb' not in kwargs or kwargs['mem_gb'] is None:
kwargs['mem_gb'] = self.study.processor.default_mem_gb
if 'iterfield' in kwargs:
if 'joinfield' in kwargs or 'joinsource' in kwargs:
raise ArcanaDesignError(
"Cannot provide both joinsource and iterfield to when "
"attempting to add '{}' node to {}"
.foramt(name, self._error_msg_loc))
node_cls = self.study.environment.node_types['map']
elif 'joinsource' in kwargs or 'joinfield' in kwargs:
if not ('joinfield' in kwargs and 'joinsource' in kwargs):
raise ArcanaDesignError(
"Both joinsource and joinfield kwargs are required to "
"create a JoinNode (see {})".format(name,
self._error_msg_loc))
joinsource = kwargs['joinsource']
if joinsource in self.study.ITERFIELDS:
self._iterator_joins.add(joinsource)
node_cls = self.study.environment.node_types['join']
# Prepend name of pipeline of joinsource to match name of nodes
kwargs['joinsource'] = '{}_{}'.format(self.name, joinsource)
else:
node_cls = self.study.environment.node_types['base']
# Create node
node = node_cls(self.study.environment,
interface,
name="{}_{}".format(self._name, name),
requirements=requirements,
wall_time=wall_time,
annotations=annotations,
**kwargs)
# Ensure node is added to workflow
self._workflow.add_nodes([node])
# Connect inputs, outputs and internal connections
if inputs is not None:
assert isinstance(inputs, dict)
for node_input, connect_from in inputs.items():
if isinstance(connect_from[0], basestring):
input_spec, input_format = connect_from
self.connect_input(input_spec, node,
node_input, input_format)
else:
conn_node, conn_field = connect_from
self.connect(conn_node, conn_field, node, node_input)
if outputs is not None:
assert isinstance(outputs, dict)
for output_spec, (node_output, output_format) in outputs.items():
self.connect_output(output_spec, node, node_output,
output_format)
return node | python | def add(self, name, interface, inputs=None, outputs=None,
requirements=None, wall_time=None, annotations=None, **kwargs):
"""
Adds a processing Node to the pipeline
Parameters
----------
name : str
Name for the node
interface : nipype.Interface
The interface to use for the node
inputs : dict[str, (str, FileFormat) | (Node, str)]
Connections from inputs of the pipeline and outputs of other nodes
to inputs of node. The keys of the dictionary are the field names
and the values are 2-tuple containing either the name of the data
spec and the data format it is expected in for pipeline inputs or
the sending Node and the the name of an output of the sending Node.
Note that pipeline inputs can be specified outside this method
using the 'connect_input' method and connections between nodes with
the the 'connect' method.
outputs : dict[str, (str, FileFormat)]
Connections to outputs of the pipeline from fields of the
interface. The keys of the dictionary are the names of the data
specs that will be written to and the values are the interface
field name and the data format it is produced in. Note that output
connections can also be specified using the 'connect_output'
method.
requirements : list(Requirement)
List of required packages need for the node to run (default: [])
wall_time : float
Time required to execute the node in minutes (default: 1)
mem_gb : int
Required memory for the node in GB
n_procs : int
Preferred number of threads to run the node on (default: 1)
annotations : dict[str, *]
Additional annotations to add to the node, which may be used by
the Processor node to optimise execution (e.g. 'gpu': True)
iterfield : str
Name of field to be passed an iterable to iterator over.
If present, a MapNode will be created instead of a regular node
joinsource : str
Name of iterator field to join. Typically one of the implicit
iterators (i.e. Study.SUBJECT_ID or Study.VISIT_ID)
to join over the subjects and/or visits
joinfield : str
Name of field to pass the joined list when creating a JoinNode
Returns
-------
node : Node
The Node object that has been added to the pipeline
"""
if annotations is None:
annotations = {}
if requirements is None:
requirements = []
if wall_time is None:
wall_time = self.study.processor.default_wall_time
if 'mem_gb' not in kwargs or kwargs['mem_gb'] is None:
kwargs['mem_gb'] = self.study.processor.default_mem_gb
if 'iterfield' in kwargs:
if 'joinfield' in kwargs or 'joinsource' in kwargs:
raise ArcanaDesignError(
"Cannot provide both joinsource and iterfield to when "
"attempting to add '{}' node to {}"
.foramt(name, self._error_msg_loc))
node_cls = self.study.environment.node_types['map']
elif 'joinsource' in kwargs or 'joinfield' in kwargs:
if not ('joinfield' in kwargs and 'joinsource' in kwargs):
raise ArcanaDesignError(
"Both joinsource and joinfield kwargs are required to "
"create a JoinNode (see {})".format(name,
self._error_msg_loc))
joinsource = kwargs['joinsource']
if joinsource in self.study.ITERFIELDS:
self._iterator_joins.add(joinsource)
node_cls = self.study.environment.node_types['join']
# Prepend name of pipeline of joinsource to match name of nodes
kwargs['joinsource'] = '{}_{}'.format(self.name, joinsource)
else:
node_cls = self.study.environment.node_types['base']
# Create node
node = node_cls(self.study.environment,
interface,
name="{}_{}".format(self._name, name),
requirements=requirements,
wall_time=wall_time,
annotations=annotations,
**kwargs)
# Ensure node is added to workflow
self._workflow.add_nodes([node])
# Connect inputs, outputs and internal connections
if inputs is not None:
assert isinstance(inputs, dict)
for node_input, connect_from in inputs.items():
if isinstance(connect_from[0], basestring):
input_spec, input_format = connect_from
self.connect_input(input_spec, node,
node_input, input_format)
else:
conn_node, conn_field = connect_from
self.connect(conn_node, conn_field, node, node_input)
if outputs is not None:
assert isinstance(outputs, dict)
for output_spec, (node_output, output_format) in outputs.items():
self.connect_output(output_spec, node, node_output,
output_format)
return node | [
"def",
"add",
"(",
"self",
",",
"name",
",",
"interface",
",",
"inputs",
"=",
"None",
",",
"outputs",
"=",
"None",
",",
"requirements",
"=",
"None",
",",
"wall_time",
"=",
"None",
",",
"annotations",
"=",
"None",
",",
"*",
"*",
"kwargs",
")",
":",
"if",
"annotations",
"is",
"None",
":",
"annotations",
"=",
"{",
"}",
"if",
"requirements",
"is",
"None",
":",
"requirements",
"=",
"[",
"]",
"if",
"wall_time",
"is",
"None",
":",
"wall_time",
"=",
"self",
".",
"study",
".",
"processor",
".",
"default_wall_time",
"if",
"'mem_gb'",
"not",
"in",
"kwargs",
"or",
"kwargs",
"[",
"'mem_gb'",
"]",
"is",
"None",
":",
"kwargs",
"[",
"'mem_gb'",
"]",
"=",
"self",
".",
"study",
".",
"processor",
".",
"default_mem_gb",
"if",
"'iterfield'",
"in",
"kwargs",
":",
"if",
"'joinfield'",
"in",
"kwargs",
"or",
"'joinsource'",
"in",
"kwargs",
":",
"raise",
"ArcanaDesignError",
"(",
"\"Cannot provide both joinsource and iterfield to when \"",
"\"attempting to add '{}' node to {}\"",
".",
"foramt",
"(",
"name",
",",
"self",
".",
"_error_msg_loc",
")",
")",
"node_cls",
"=",
"self",
".",
"study",
".",
"environment",
".",
"node_types",
"[",
"'map'",
"]",
"elif",
"'joinsource'",
"in",
"kwargs",
"or",
"'joinfield'",
"in",
"kwargs",
":",
"if",
"not",
"(",
"'joinfield'",
"in",
"kwargs",
"and",
"'joinsource'",
"in",
"kwargs",
")",
":",
"raise",
"ArcanaDesignError",
"(",
"\"Both joinsource and joinfield kwargs are required to \"",
"\"create a JoinNode (see {})\"",
".",
"format",
"(",
"name",
",",
"self",
".",
"_error_msg_loc",
")",
")",
"joinsource",
"=",
"kwargs",
"[",
"'joinsource'",
"]",
"if",
"joinsource",
"in",
"self",
".",
"study",
".",
"ITERFIELDS",
":",
"self",
".",
"_iterator_joins",
".",
"add",
"(",
"joinsource",
")",
"node_cls",
"=",
"self",
".",
"study",
".",
"environment",
".",
"node_types",
"[",
"'join'",
"]",
"# Prepend name of pipeline of joinsource to match name of nodes",
"kwargs",
"[",
"'joinsource'",
"]",
"=",
"'{}_{}'",
".",
"format",
"(",
"self",
".",
"name",
",",
"joinsource",
")",
"else",
":",
"node_cls",
"=",
"self",
".",
"study",
".",
"environment",
".",
"node_types",
"[",
"'base'",
"]",
"# Create node",
"node",
"=",
"node_cls",
"(",
"self",
".",
"study",
".",
"environment",
",",
"interface",
",",
"name",
"=",
"\"{}_{}\"",
".",
"format",
"(",
"self",
".",
"_name",
",",
"name",
")",
",",
"requirements",
"=",
"requirements",
",",
"wall_time",
"=",
"wall_time",
",",
"annotations",
"=",
"annotations",
",",
"*",
"*",
"kwargs",
")",
"# Ensure node is added to workflow",
"self",
".",
"_workflow",
".",
"add_nodes",
"(",
"[",
"node",
"]",
")",
"# Connect inputs, outputs and internal connections",
"if",
"inputs",
"is",
"not",
"None",
":",
"assert",
"isinstance",
"(",
"inputs",
",",
"dict",
")",
"for",
"node_input",
",",
"connect_from",
"in",
"inputs",
".",
"items",
"(",
")",
":",
"if",
"isinstance",
"(",
"connect_from",
"[",
"0",
"]",
",",
"basestring",
")",
":",
"input_spec",
",",
"input_format",
"=",
"connect_from",
"self",
".",
"connect_input",
"(",
"input_spec",
",",
"node",
",",
"node_input",
",",
"input_format",
")",
"else",
":",
"conn_node",
",",
"conn_field",
"=",
"connect_from",
"self",
".",
"connect",
"(",
"conn_node",
",",
"conn_field",
",",
"node",
",",
"node_input",
")",
"if",
"outputs",
"is",
"not",
"None",
":",
"assert",
"isinstance",
"(",
"outputs",
",",
"dict",
")",
"for",
"output_spec",
",",
"(",
"node_output",
",",
"output_format",
")",
"in",
"outputs",
".",
"items",
"(",
")",
":",
"self",
".",
"connect_output",
"(",
"output_spec",
",",
"node",
",",
"node_output",
",",
"output_format",
")",
"return",
"node"
] | Adds a processing Node to the pipeline
Parameters
----------
name : str
Name for the node
interface : nipype.Interface
The interface to use for the node
inputs : dict[str, (str, FileFormat) | (Node, str)]
Connections from inputs of the pipeline and outputs of other nodes
to inputs of node. The keys of the dictionary are the field names
and the values are 2-tuple containing either the name of the data
spec and the data format it is expected in for pipeline inputs or
the sending Node and the the name of an output of the sending Node.
Note that pipeline inputs can be specified outside this method
using the 'connect_input' method and connections between nodes with
the the 'connect' method.
outputs : dict[str, (str, FileFormat)]
Connections to outputs of the pipeline from fields of the
interface. The keys of the dictionary are the names of the data
specs that will be written to and the values are the interface
field name and the data format it is produced in. Note that output
connections can also be specified using the 'connect_output'
method.
requirements : list(Requirement)
List of required packages need for the node to run (default: [])
wall_time : float
Time required to execute the node in minutes (default: 1)
mem_gb : int
Required memory for the node in GB
n_procs : int
Preferred number of threads to run the node on (default: 1)
annotations : dict[str, *]
Additional annotations to add to the node, which may be used by
the Processor node to optimise execution (e.g. 'gpu': True)
iterfield : str
Name of field to be passed an iterable to iterator over.
If present, a MapNode will be created instead of a regular node
joinsource : str
Name of iterator field to join. Typically one of the implicit
iterators (i.e. Study.SUBJECT_ID or Study.VISIT_ID)
to join over the subjects and/or visits
joinfield : str
Name of field to pass the joined list when creating a JoinNode
Returns
-------
node : Node
The Node object that has been added to the pipeline | [
"Adds",
"a",
"processing",
"Node",
"to",
"the",
"pipeline"
] | train | https://github.com/MonashBI/arcana/blob/d6271a29d13733d00422d11417af8d200be62acc/arcana/pipeline/base.py#L173-L281 |
MonashBI/arcana | arcana/pipeline/base.py | Pipeline.connect_input | def connect_input(self, spec_name, node, node_input, format=None, **kwargs): # @ReservedAssignment @IgnorePep8
"""
Connects a study fileset_spec as an input to the provided node
Parameters
----------
spec_name : str
Name of the study data spec (or one of the IDs from the iterator
nodes, 'subject_id' or 'visit_id') to connect to the node
node : arcana.Node
The node to connect the input to
node_input : str
Name of the input on the node to connect the fileset spec to
format : FileFormat | None
The file format the input is expected in. If it differs
from the format in data spec or of study input then an implicit
conversion is performed. If None the file format in the data spec
is assumed
"""
if spec_name in self.study.ITERFIELDS:
self._iterator_conns[spec_name].append((node, node_input, format))
else:
name = self._map_name(spec_name, self._input_map)
if name not in self.study.data_spec_names():
raise ArcanaDesignError(
"Proposed input '{}' to {} is not a valid spec name ('{}')"
.format(name, self._error_msg_loc,
"', '".join(self.study.data_spec_names())))
self._input_conns[name].append((node, node_input, format, kwargs)) | python | def connect_input(self, spec_name, node, node_input, format=None, **kwargs): # @ReservedAssignment @IgnorePep8
"""
Connects a study fileset_spec as an input to the provided node
Parameters
----------
spec_name : str
Name of the study data spec (or one of the IDs from the iterator
nodes, 'subject_id' or 'visit_id') to connect to the node
node : arcana.Node
The node to connect the input to
node_input : str
Name of the input on the node to connect the fileset spec to
format : FileFormat | None
The file format the input is expected in. If it differs
from the format in data spec or of study input then an implicit
conversion is performed. If None the file format in the data spec
is assumed
"""
if spec_name in self.study.ITERFIELDS:
self._iterator_conns[spec_name].append((node, node_input, format))
else:
name = self._map_name(spec_name, self._input_map)
if name not in self.study.data_spec_names():
raise ArcanaDesignError(
"Proposed input '{}' to {} is not a valid spec name ('{}')"
.format(name, self._error_msg_loc,
"', '".join(self.study.data_spec_names())))
self._input_conns[name].append((node, node_input, format, kwargs)) | [
"def",
"connect_input",
"(",
"self",
",",
"spec_name",
",",
"node",
",",
"node_input",
",",
"format",
"=",
"None",
",",
"*",
"*",
"kwargs",
")",
":",
"# @ReservedAssignment @IgnorePep8",
"if",
"spec_name",
"in",
"self",
".",
"study",
".",
"ITERFIELDS",
":",
"self",
".",
"_iterator_conns",
"[",
"spec_name",
"]",
".",
"append",
"(",
"(",
"node",
",",
"node_input",
",",
"format",
")",
")",
"else",
":",
"name",
"=",
"self",
".",
"_map_name",
"(",
"spec_name",
",",
"self",
".",
"_input_map",
")",
"if",
"name",
"not",
"in",
"self",
".",
"study",
".",
"data_spec_names",
"(",
")",
":",
"raise",
"ArcanaDesignError",
"(",
"\"Proposed input '{}' to {} is not a valid spec name ('{}')\"",
".",
"format",
"(",
"name",
",",
"self",
".",
"_error_msg_loc",
",",
"\"', '\"",
".",
"join",
"(",
"self",
".",
"study",
".",
"data_spec_names",
"(",
")",
")",
")",
")",
"self",
".",
"_input_conns",
"[",
"name",
"]",
".",
"append",
"(",
"(",
"node",
",",
"node_input",
",",
"format",
",",
"kwargs",
")",
")"
] | Connects a study fileset_spec as an input to the provided node
Parameters
----------
spec_name : str
Name of the study data spec (or one of the IDs from the iterator
nodes, 'subject_id' or 'visit_id') to connect to the node
node : arcana.Node
The node to connect the input to
node_input : str
Name of the input on the node to connect the fileset spec to
format : FileFormat | None
The file format the input is expected in. If it differs
from the format in data spec or of study input then an implicit
conversion is performed. If None the file format in the data spec
is assumed | [
"Connects",
"a",
"study",
"fileset_spec",
"as",
"an",
"input",
"to",
"the",
"provided",
"node"
] | train | https://github.com/MonashBI/arcana/blob/d6271a29d13733d00422d11417af8d200be62acc/arcana/pipeline/base.py#L283-L311 |
MonashBI/arcana | arcana/pipeline/base.py | Pipeline.connect_output | def connect_output(self, spec_name, node, node_output, format=None, # @ReservedAssignment @IgnorePep8
**kwargs):
"""
Connects an output to a study fileset spec
Parameters
----------
spec_name : str
Name of the study fileset spec to connect to
node : arcana.Node
The node to connect the output from
node_output : str
Name of the output on the node to connect to the fileset
format : FileFormat | None
The file format the output is returned in. If it differs
from the format in data spec then an implicit conversion is
performed. If None the it is assumed to be returned in the file
format of the entry the data spec
"""
name = self._map_name(spec_name, self._output_map)
if name not in self.study.data_spec_names():
raise ArcanaDesignError(
"Proposed output '{}' to {} is not a valid spec name ('{}')"
.format(name, self._error_msg_loc,
"', '".join(self.study.data_spec_names())))
if name in self._output_conns:
prev_node, prev_node_output, _, _ = self._output_conns[name]
logger.info(
"Reassigning '{}' output from {}:{} to {}:{} in {}"
.format(name, prev_node.name, prev_node_output,
node.name, node_output, self._error_msg_loc))
self._output_conns[name] = (node, node_output, format, kwargs) | python | def connect_output(self, spec_name, node, node_output, format=None, # @ReservedAssignment @IgnorePep8
**kwargs):
"""
Connects an output to a study fileset spec
Parameters
----------
spec_name : str
Name of the study fileset spec to connect to
node : arcana.Node
The node to connect the output from
node_output : str
Name of the output on the node to connect to the fileset
format : FileFormat | None
The file format the output is returned in. If it differs
from the format in data spec then an implicit conversion is
performed. If None the it is assumed to be returned in the file
format of the entry the data spec
"""
name = self._map_name(spec_name, self._output_map)
if name not in self.study.data_spec_names():
raise ArcanaDesignError(
"Proposed output '{}' to {} is not a valid spec name ('{}')"
.format(name, self._error_msg_loc,
"', '".join(self.study.data_spec_names())))
if name in self._output_conns:
prev_node, prev_node_output, _, _ = self._output_conns[name]
logger.info(
"Reassigning '{}' output from {}:{} to {}:{} in {}"
.format(name, prev_node.name, prev_node_output,
node.name, node_output, self._error_msg_loc))
self._output_conns[name] = (node, node_output, format, kwargs) | [
"def",
"connect_output",
"(",
"self",
",",
"spec_name",
",",
"node",
",",
"node_output",
",",
"format",
"=",
"None",
",",
"# @ReservedAssignment @IgnorePep8",
"*",
"*",
"kwargs",
")",
":",
"name",
"=",
"self",
".",
"_map_name",
"(",
"spec_name",
",",
"self",
".",
"_output_map",
")",
"if",
"name",
"not",
"in",
"self",
".",
"study",
".",
"data_spec_names",
"(",
")",
":",
"raise",
"ArcanaDesignError",
"(",
"\"Proposed output '{}' to {} is not a valid spec name ('{}')\"",
".",
"format",
"(",
"name",
",",
"self",
".",
"_error_msg_loc",
",",
"\"', '\"",
".",
"join",
"(",
"self",
".",
"study",
".",
"data_spec_names",
"(",
")",
")",
")",
")",
"if",
"name",
"in",
"self",
".",
"_output_conns",
":",
"prev_node",
",",
"prev_node_output",
",",
"_",
",",
"_",
"=",
"self",
".",
"_output_conns",
"[",
"name",
"]",
"logger",
".",
"info",
"(",
"\"Reassigning '{}' output from {}:{} to {}:{} in {}\"",
".",
"format",
"(",
"name",
",",
"prev_node",
".",
"name",
",",
"prev_node_output",
",",
"node",
".",
"name",
",",
"node_output",
",",
"self",
".",
"_error_msg_loc",
")",
")",
"self",
".",
"_output_conns",
"[",
"name",
"]",
"=",
"(",
"node",
",",
"node_output",
",",
"format",
",",
"kwargs",
")"
] | Connects an output to a study fileset spec
Parameters
----------
spec_name : str
Name of the study fileset spec to connect to
node : arcana.Node
The node to connect the output from
node_output : str
Name of the output on the node to connect to the fileset
format : FileFormat | None
The file format the output is returned in. If it differs
from the format in data spec then an implicit conversion is
performed. If None the it is assumed to be returned in the file
format of the entry the data spec | [
"Connects",
"an",
"output",
"to",
"a",
"study",
"fileset",
"spec"
] | train | https://github.com/MonashBI/arcana/blob/d6271a29d13733d00422d11417af8d200be62acc/arcana/pipeline/base.py#L313-L344 |
MonashBI/arcana | arcana/pipeline/base.py | Pipeline._map_name | def _map_name(self, name, mapper):
"""
Maps a spec name to a new value based on the provided mapper
"""
if mapper is not None:
if isinstance(mapper, basestring):
name = mapper + name
try:
name = mapper[name]
except KeyError:
pass
return name | python | def _map_name(self, name, mapper):
"""
Maps a spec name to a new value based on the provided mapper
"""
if mapper is not None:
if isinstance(mapper, basestring):
name = mapper + name
try:
name = mapper[name]
except KeyError:
pass
return name | [
"def",
"_map_name",
"(",
"self",
",",
"name",
",",
"mapper",
")",
":",
"if",
"mapper",
"is",
"not",
"None",
":",
"if",
"isinstance",
"(",
"mapper",
",",
"basestring",
")",
":",
"name",
"=",
"mapper",
"+",
"name",
"try",
":",
"name",
"=",
"mapper",
"[",
"name",
"]",
"except",
"KeyError",
":",
"pass",
"return",
"name"
] | Maps a spec name to a new value based on the provided mapper | [
"Maps",
"a",
"spec",
"name",
"to",
"a",
"new",
"value",
"based",
"on",
"the",
"provided",
"mapper"
] | train | https://github.com/MonashBI/arcana/blob/d6271a29d13733d00422d11417af8d200be62acc/arcana/pipeline/base.py#L346-L357 |
MonashBI/arcana | arcana/pipeline/base.py | Pipeline.requires_conversion | def requires_conversion(cls, fileset, file_format):
"""Checks whether the fileset matches the requested file format"""
if file_format is None:
return False
try:
filset_format = fileset.format
except AttributeError:
return False # Field input
else:
return (file_format != filset_format) | python | def requires_conversion(cls, fileset, file_format):
"""Checks whether the fileset matches the requested file format"""
if file_format is None:
return False
try:
filset_format = fileset.format
except AttributeError:
return False # Field input
else:
return (file_format != filset_format) | [
"def",
"requires_conversion",
"(",
"cls",
",",
"fileset",
",",
"file_format",
")",
":",
"if",
"file_format",
"is",
"None",
":",
"return",
"False",
"try",
":",
"filset_format",
"=",
"fileset",
".",
"format",
"except",
"AttributeError",
":",
"return",
"False",
"# Field input",
"else",
":",
"return",
"(",
"file_format",
"!=",
"filset_format",
")"
] | Checks whether the fileset matches the requested file format | [
"Checks",
"whether",
"the",
"fileset",
"matches",
"the",
"requested",
"file",
"format"
] | train | https://github.com/MonashBI/arcana/blob/d6271a29d13733d00422d11417af8d200be62acc/arcana/pipeline/base.py#L449-L458 |
MonashBI/arcana | arcana/pipeline/base.py | Pipeline.save_graph | def save_graph(self, fname, style='flat', format='png', **kwargs): # @ReservedAssignment @IgnorePep8
"""
Saves a graph of the pipeline to file
Parameters
----------
fname : str
The filename for the saved graph
style : str
The style of the graph, can be one of can be one of
'orig', 'flat', 'exec', 'hierarchical'
plot : bool
Whether to load and plot the graph after it has been written
"""
fname = os.path.expanduser(fname)
if not fname.endswith('.png'):
fname += '.png'
orig_dir = os.getcwd()
tmpdir = tempfile.mkdtemp()
os.chdir(tmpdir)
workflow = self._workflow
workflow.write_graph(graph2use=style, format=format, **kwargs)
os.chdir(orig_dir)
try:
shutil.move(os.path.join(tmpdir, 'graph_detailed.{}'
.format(format)), fname)
except IOError as e:
if e.errno == errno.ENOENT:
shutil.move(os.path.join(tmpdir, 'graph.{}'.format(format)),
fname)
else:
raise
shutil.rmtree(tmpdir) | python | def save_graph(self, fname, style='flat', format='png', **kwargs): # @ReservedAssignment @IgnorePep8
"""
Saves a graph of the pipeline to file
Parameters
----------
fname : str
The filename for the saved graph
style : str
The style of the graph, can be one of can be one of
'orig', 'flat', 'exec', 'hierarchical'
plot : bool
Whether to load and plot the graph after it has been written
"""
fname = os.path.expanduser(fname)
if not fname.endswith('.png'):
fname += '.png'
orig_dir = os.getcwd()
tmpdir = tempfile.mkdtemp()
os.chdir(tmpdir)
workflow = self._workflow
workflow.write_graph(graph2use=style, format=format, **kwargs)
os.chdir(orig_dir)
try:
shutil.move(os.path.join(tmpdir, 'graph_detailed.{}'
.format(format)), fname)
except IOError as e:
if e.errno == errno.ENOENT:
shutil.move(os.path.join(tmpdir, 'graph.{}'.format(format)),
fname)
else:
raise
shutil.rmtree(tmpdir) | [
"def",
"save_graph",
"(",
"self",
",",
"fname",
",",
"style",
"=",
"'flat'",
",",
"format",
"=",
"'png'",
",",
"*",
"*",
"kwargs",
")",
":",
"# @ReservedAssignment @IgnorePep8",
"fname",
"=",
"os",
".",
"path",
".",
"expanduser",
"(",
"fname",
")",
"if",
"not",
"fname",
".",
"endswith",
"(",
"'.png'",
")",
":",
"fname",
"+=",
"'.png'",
"orig_dir",
"=",
"os",
".",
"getcwd",
"(",
")",
"tmpdir",
"=",
"tempfile",
".",
"mkdtemp",
"(",
")",
"os",
".",
"chdir",
"(",
"tmpdir",
")",
"workflow",
"=",
"self",
".",
"_workflow",
"workflow",
".",
"write_graph",
"(",
"graph2use",
"=",
"style",
",",
"format",
"=",
"format",
",",
"*",
"*",
"kwargs",
")",
"os",
".",
"chdir",
"(",
"orig_dir",
")",
"try",
":",
"shutil",
".",
"move",
"(",
"os",
".",
"path",
".",
"join",
"(",
"tmpdir",
",",
"'graph_detailed.{}'",
".",
"format",
"(",
"format",
")",
")",
",",
"fname",
")",
"except",
"IOError",
"as",
"e",
":",
"if",
"e",
".",
"errno",
"==",
"errno",
".",
"ENOENT",
":",
"shutil",
".",
"move",
"(",
"os",
".",
"path",
".",
"join",
"(",
"tmpdir",
",",
"'graph.{}'",
".",
"format",
"(",
"format",
")",
")",
",",
"fname",
")",
"else",
":",
"raise",
"shutil",
".",
"rmtree",
"(",
"tmpdir",
")"
] | Saves a graph of the pipeline to file
Parameters
----------
fname : str
The filename for the saved graph
style : str
The style of the graph, can be one of can be one of
'orig', 'flat', 'exec', 'hierarchical'
plot : bool
Whether to load and plot the graph after it has been written | [
"Saves",
"a",
"graph",
"of",
"the",
"pipeline",
"to",
"file"
] | train | https://github.com/MonashBI/arcana/blob/d6271a29d13733d00422d11417af8d200be62acc/arcana/pipeline/base.py#L473-L505 |
MonashBI/arcana | arcana/pipeline/base.py | Pipeline.iterators | def iterators(self, frequency=None):
"""
Returns the iterators (i.e. subject_id, visit_id) that the pipeline
iterates over
Parameters
----------
frequency : str | None
A selected data frequency to use to determine which iterators are
required. If None, all input frequencies of the pipeline are
assumed
"""
iterators = set()
if frequency is None:
input_freqs = list(self.input_frequencies)
else:
input_freqs = [frequency]
for freq in input_freqs:
iterators.update(self.study.FREQUENCIES[freq])
return iterators | python | def iterators(self, frequency=None):
"""
Returns the iterators (i.e. subject_id, visit_id) that the pipeline
iterates over
Parameters
----------
frequency : str | None
A selected data frequency to use to determine which iterators are
required. If None, all input frequencies of the pipeline are
assumed
"""
iterators = set()
if frequency is None:
input_freqs = list(self.input_frequencies)
else:
input_freqs = [frequency]
for freq in input_freqs:
iterators.update(self.study.FREQUENCIES[freq])
return iterators | [
"def",
"iterators",
"(",
"self",
",",
"frequency",
"=",
"None",
")",
":",
"iterators",
"=",
"set",
"(",
")",
"if",
"frequency",
"is",
"None",
":",
"input_freqs",
"=",
"list",
"(",
"self",
".",
"input_frequencies",
")",
"else",
":",
"input_freqs",
"=",
"[",
"frequency",
"]",
"for",
"freq",
"in",
"input_freqs",
":",
"iterators",
".",
"update",
"(",
"self",
".",
"study",
".",
"FREQUENCIES",
"[",
"freq",
"]",
")",
"return",
"iterators"
] | Returns the iterators (i.e. subject_id, visit_id) that the pipeline
iterates over
Parameters
----------
frequency : str | None
A selected data frequency to use to determine which iterators are
required. If None, all input frequencies of the pipeline are
assumed | [
"Returns",
"the",
"iterators",
"(",
"i",
".",
"e",
".",
"subject_id",
"visit_id",
")",
"that",
"the",
"pipeline",
"iterates",
"over"
] | train | https://github.com/MonashBI/arcana/blob/d6271a29d13733d00422d11417af8d200be62acc/arcana/pipeline/base.py#L507-L526 |
MonashBI/arcana | arcana/pipeline/base.py | Pipeline._unwrap_maps | def _unwrap_maps(self, name_maps, name, study=None, **inner_maps):
"""
Unwraps potentially nested name-mapping dictionaries to get values
for name, input_map, output_map and study. Unsed in __init__.
Parameters
----------
name_maps : dict
A dictionary containing the name_maps to apply to the values
name : str
Name passed from inner pipeline constructor
study : Study
The study to bind the pipeline to. Will be overridden by any values
in the mods dict
inner_maps : dict[str, dict[str,str]]
input and output maps from inner pipeline constructors
Returns
-------
name : str
Potentially modified name of the pipeline
study : Study
Potentially modified study
maps : dict[str, dict[str,str]]
Potentially modifed input and output maps
"""
# Set values of name and study
name = name_maps.get('name', name)
name = name_maps.get('prefix', '') + name
study = name_maps.get('study', study)
# Flatten input and output maps, combining maps from inner nests with
# those in the "mods" dictionary
maps = {}
for mtype in ('input_map', 'output_map'):
try:
inner_map = inner_maps[mtype]
except KeyError:
try:
maps[mtype] = name_maps[mtype] # Only outer map
except KeyError:
pass # No maps
else:
try:
outer_map = name_maps[mtype]
except KeyError:
maps[mtype] = inner_map # Only inner map
else:
# Work through different combinations of inner and outer
# map types (i.e. str & str, str & dict, dict & str, and
# dict & dict) and combine into a single map
if isinstance(outer_map, basestring):
if isinstance(inner_map, basestring):
# Concatenate prefixes
maps[mtype] = outer_map + inner_map
elif isinstance(inner_map, dict):
# Add outer_map prefix to all values in inner map
# dictionary
maps[mtype] = {k: outer_map + v
for k, v in inner_map.items()}
else:
raise ArcanaDesignError(
"Unrecognised type for name map in '{}' "
"pipeline can be str or dict[str,str]: {}"
.format(name, inner_map))
elif isinstance(outer_map, dict):
if isinstance(inner_map, basestring):
# Strip inner map prefix from outer dictionary
# (which should have prefix included). This should
# be an unlikely case I imagine
maps[mtype] = {k[len(inner_map):]: v
for k, v in outer_map.items()}
elif isinstance(inner_map, dict):
# Chain outer_map dictionary to inner map
# dictionary
maps[mtype] = deepcopy(outer_map)
maps[mtype].update(
{k: outer_map.get(v, v)
for k, v in inner_map.items()})
else:
raise ArcanaDesignError(
"Unrecognised type for name map in '{}' "
"pipeline can be str or dict[str,str]: {}"
.format(name, inner_map))
else:
raise ArcanaDesignError(
"Unrecognised type for name map in '{}' "
"pipeline can be str or dict[str,str]: {}"
.format(name, outer_map))
try:
outer_maps = name_maps['name_maps']
except KeyError:
pass
else:
name, study, maps = self._unwrap_maps(
outer_maps, name=name, study=study, **maps)
return name, study, maps | python | def _unwrap_maps(self, name_maps, name, study=None, **inner_maps):
"""
Unwraps potentially nested name-mapping dictionaries to get values
for name, input_map, output_map and study. Unsed in __init__.
Parameters
----------
name_maps : dict
A dictionary containing the name_maps to apply to the values
name : str
Name passed from inner pipeline constructor
study : Study
The study to bind the pipeline to. Will be overridden by any values
in the mods dict
inner_maps : dict[str, dict[str,str]]
input and output maps from inner pipeline constructors
Returns
-------
name : str
Potentially modified name of the pipeline
study : Study
Potentially modified study
maps : dict[str, dict[str,str]]
Potentially modifed input and output maps
"""
# Set values of name and study
name = name_maps.get('name', name)
name = name_maps.get('prefix', '') + name
study = name_maps.get('study', study)
# Flatten input and output maps, combining maps from inner nests with
# those in the "mods" dictionary
maps = {}
for mtype in ('input_map', 'output_map'):
try:
inner_map = inner_maps[mtype]
except KeyError:
try:
maps[mtype] = name_maps[mtype] # Only outer map
except KeyError:
pass # No maps
else:
try:
outer_map = name_maps[mtype]
except KeyError:
maps[mtype] = inner_map # Only inner map
else:
# Work through different combinations of inner and outer
# map types (i.e. str & str, str & dict, dict & str, and
# dict & dict) and combine into a single map
if isinstance(outer_map, basestring):
if isinstance(inner_map, basestring):
# Concatenate prefixes
maps[mtype] = outer_map + inner_map
elif isinstance(inner_map, dict):
# Add outer_map prefix to all values in inner map
# dictionary
maps[mtype] = {k: outer_map + v
for k, v in inner_map.items()}
else:
raise ArcanaDesignError(
"Unrecognised type for name map in '{}' "
"pipeline can be str or dict[str,str]: {}"
.format(name, inner_map))
elif isinstance(outer_map, dict):
if isinstance(inner_map, basestring):
# Strip inner map prefix from outer dictionary
# (which should have prefix included). This should
# be an unlikely case I imagine
maps[mtype] = {k[len(inner_map):]: v
for k, v in outer_map.items()}
elif isinstance(inner_map, dict):
# Chain outer_map dictionary to inner map
# dictionary
maps[mtype] = deepcopy(outer_map)
maps[mtype].update(
{k: outer_map.get(v, v)
for k, v in inner_map.items()})
else:
raise ArcanaDesignError(
"Unrecognised type for name map in '{}' "
"pipeline can be str or dict[str,str]: {}"
.format(name, inner_map))
else:
raise ArcanaDesignError(
"Unrecognised type for name map in '{}' "
"pipeline can be str or dict[str,str]: {}"
.format(name, outer_map))
try:
outer_maps = name_maps['name_maps']
except KeyError:
pass
else:
name, study, maps = self._unwrap_maps(
outer_maps, name=name, study=study, **maps)
return name, study, maps | [
"def",
"_unwrap_maps",
"(",
"self",
",",
"name_maps",
",",
"name",
",",
"study",
"=",
"None",
",",
"*",
"*",
"inner_maps",
")",
":",
"# Set values of name and study",
"name",
"=",
"name_maps",
".",
"get",
"(",
"'name'",
",",
"name",
")",
"name",
"=",
"name_maps",
".",
"get",
"(",
"'prefix'",
",",
"''",
")",
"+",
"name",
"study",
"=",
"name_maps",
".",
"get",
"(",
"'study'",
",",
"study",
")",
"# Flatten input and output maps, combining maps from inner nests with",
"# those in the \"mods\" dictionary",
"maps",
"=",
"{",
"}",
"for",
"mtype",
"in",
"(",
"'input_map'",
",",
"'output_map'",
")",
":",
"try",
":",
"inner_map",
"=",
"inner_maps",
"[",
"mtype",
"]",
"except",
"KeyError",
":",
"try",
":",
"maps",
"[",
"mtype",
"]",
"=",
"name_maps",
"[",
"mtype",
"]",
"# Only outer map",
"except",
"KeyError",
":",
"pass",
"# No maps",
"else",
":",
"try",
":",
"outer_map",
"=",
"name_maps",
"[",
"mtype",
"]",
"except",
"KeyError",
":",
"maps",
"[",
"mtype",
"]",
"=",
"inner_map",
"# Only inner map",
"else",
":",
"# Work through different combinations of inner and outer",
"# map types (i.e. str & str, str & dict, dict & str, and",
"# dict & dict) and combine into a single map",
"if",
"isinstance",
"(",
"outer_map",
",",
"basestring",
")",
":",
"if",
"isinstance",
"(",
"inner_map",
",",
"basestring",
")",
":",
"# Concatenate prefixes",
"maps",
"[",
"mtype",
"]",
"=",
"outer_map",
"+",
"inner_map",
"elif",
"isinstance",
"(",
"inner_map",
",",
"dict",
")",
":",
"# Add outer_map prefix to all values in inner map",
"# dictionary",
"maps",
"[",
"mtype",
"]",
"=",
"{",
"k",
":",
"outer_map",
"+",
"v",
"for",
"k",
",",
"v",
"in",
"inner_map",
".",
"items",
"(",
")",
"}",
"else",
":",
"raise",
"ArcanaDesignError",
"(",
"\"Unrecognised type for name map in '{}' \"",
"\"pipeline can be str or dict[str,str]: {}\"",
".",
"format",
"(",
"name",
",",
"inner_map",
")",
")",
"elif",
"isinstance",
"(",
"outer_map",
",",
"dict",
")",
":",
"if",
"isinstance",
"(",
"inner_map",
",",
"basestring",
")",
":",
"# Strip inner map prefix from outer dictionary",
"# (which should have prefix included). This should",
"# be an unlikely case I imagine",
"maps",
"[",
"mtype",
"]",
"=",
"{",
"k",
"[",
"len",
"(",
"inner_map",
")",
":",
"]",
":",
"v",
"for",
"k",
",",
"v",
"in",
"outer_map",
".",
"items",
"(",
")",
"}",
"elif",
"isinstance",
"(",
"inner_map",
",",
"dict",
")",
":",
"# Chain outer_map dictionary to inner map",
"# dictionary",
"maps",
"[",
"mtype",
"]",
"=",
"deepcopy",
"(",
"outer_map",
")",
"maps",
"[",
"mtype",
"]",
".",
"update",
"(",
"{",
"k",
":",
"outer_map",
".",
"get",
"(",
"v",
",",
"v",
")",
"for",
"k",
",",
"v",
"in",
"inner_map",
".",
"items",
"(",
")",
"}",
")",
"else",
":",
"raise",
"ArcanaDesignError",
"(",
"\"Unrecognised type for name map in '{}' \"",
"\"pipeline can be str or dict[str,str]: {}\"",
".",
"format",
"(",
"name",
",",
"inner_map",
")",
")",
"else",
":",
"raise",
"ArcanaDesignError",
"(",
"\"Unrecognised type for name map in '{}' \"",
"\"pipeline can be str or dict[str,str]: {}\"",
".",
"format",
"(",
"name",
",",
"outer_map",
")",
")",
"try",
":",
"outer_maps",
"=",
"name_maps",
"[",
"'name_maps'",
"]",
"except",
"KeyError",
":",
"pass",
"else",
":",
"name",
",",
"study",
",",
"maps",
"=",
"self",
".",
"_unwrap_maps",
"(",
"outer_maps",
",",
"name",
"=",
"name",
",",
"study",
"=",
"study",
",",
"*",
"*",
"maps",
")",
"return",
"name",
",",
"study",
",",
"maps"
] | Unwraps potentially nested name-mapping dictionaries to get values
for name, input_map, output_map and study. Unsed in __init__.
Parameters
----------
name_maps : dict
A dictionary containing the name_maps to apply to the values
name : str
Name passed from inner pipeline constructor
study : Study
The study to bind the pipeline to. Will be overridden by any values
in the mods dict
inner_maps : dict[str, dict[str,str]]
input and output maps from inner pipeline constructors
Returns
-------
name : str
Potentially modified name of the pipeline
study : Study
Potentially modified study
maps : dict[str, dict[str,str]]
Potentially modifed input and output maps | [
"Unwraps",
"potentially",
"nested",
"name",
"-",
"mapping",
"dictionaries",
"to",
"get",
"values",
"for",
"name",
"input_map",
"output_map",
"and",
"study",
".",
"Unsed",
"in",
"__init__",
"."
] | train | https://github.com/MonashBI/arcana/blob/d6271a29d13733d00422d11417af8d200be62acc/arcana/pipeline/base.py#L542-L637 |
MonashBI/arcana | arcana/pipeline/base.py | Pipeline.cap | def cap(self):
"""
"Caps" the construction of the pipeline, signifying that no more inputs
and outputs are expected to be added and therefore the input and output
nodes can be created along with the provenance.
"""
to_cap = (self._inputnodes, self._outputnodes, self._prov)
if to_cap == (None, None, None):
self._inputnodes = {
f: self._make_inputnode(f) for f in self.input_frequencies}
self._outputnodes = {
f: self._make_outputnode(f) for f in self.output_frequencies}
self._prov = self._gen_prov()
elif None in to_cap:
raise ArcanaError(
"If one of _inputnodes, _outputnodes or _prov is not None then"
" they all should be in {}".format(self)) | python | def cap(self):
"""
"Caps" the construction of the pipeline, signifying that no more inputs
and outputs are expected to be added and therefore the input and output
nodes can be created along with the provenance.
"""
to_cap = (self._inputnodes, self._outputnodes, self._prov)
if to_cap == (None, None, None):
self._inputnodes = {
f: self._make_inputnode(f) for f in self.input_frequencies}
self._outputnodes = {
f: self._make_outputnode(f) for f in self.output_frequencies}
self._prov = self._gen_prov()
elif None in to_cap:
raise ArcanaError(
"If one of _inputnodes, _outputnodes or _prov is not None then"
" they all should be in {}".format(self)) | [
"def",
"cap",
"(",
"self",
")",
":",
"to_cap",
"=",
"(",
"self",
".",
"_inputnodes",
",",
"self",
".",
"_outputnodes",
",",
"self",
".",
"_prov",
")",
"if",
"to_cap",
"==",
"(",
"None",
",",
"None",
",",
"None",
")",
":",
"self",
".",
"_inputnodes",
"=",
"{",
"f",
":",
"self",
".",
"_make_inputnode",
"(",
"f",
")",
"for",
"f",
"in",
"self",
".",
"input_frequencies",
"}",
"self",
".",
"_outputnodes",
"=",
"{",
"f",
":",
"self",
".",
"_make_outputnode",
"(",
"f",
")",
"for",
"f",
"in",
"self",
".",
"output_frequencies",
"}",
"self",
".",
"_prov",
"=",
"self",
".",
"_gen_prov",
"(",
")",
"elif",
"None",
"in",
"to_cap",
":",
"raise",
"ArcanaError",
"(",
"\"If one of _inputnodes, _outputnodes or _prov is not None then\"",
"\" they all should be in {}\"",
".",
"format",
"(",
"self",
")",
")"
] | "Caps" the construction of the pipeline, signifying that no more inputs
and outputs are expected to be added and therefore the input and output
nodes can be created along with the provenance. | [
"Caps",
"the",
"construction",
"of",
"the",
"pipeline",
"signifying",
"that",
"no",
"more",
"inputs",
"and",
"outputs",
"are",
"expected",
"to",
"be",
"added",
"and",
"therefore",
"the",
"input",
"and",
"output",
"nodes",
"can",
"be",
"created",
"along",
"with",
"the",
"provenance",
"."
] | train | https://github.com/MonashBI/arcana/blob/d6271a29d13733d00422d11417af8d200be62acc/arcana/pipeline/base.py#L694-L710 |
MonashBI/arcana | arcana/pipeline/base.py | Pipeline._make_inputnode | def _make_inputnode(self, frequency):
"""
Generates an input node for the given frequency. It also adds implicit
file format conversion nodes to the pipeline.
Parameters
----------
frequency : str
The frequency (i.e. 'per_session', 'per_visit', 'per_subject' or
'per_study') of the input node to retrieve
"""
# Check to see whether there are any outputs for the given frequency
inputs = list(self.frequency_inputs(frequency))
# Get list of input names for the requested frequency, addding fields
# to hold iterator IDs
input_names = [i.name for i in inputs]
input_names.extend(self.study.FREQUENCIES[frequency])
if not input_names:
raise ArcanaError(
"No inputs to '{}' pipeline for requested freqency '{}'"
.format(self.name, frequency))
# Generate input node and connect it to appropriate nodes
inputnode = self.add('{}_inputnode'.format(frequency),
IdentityInterface(fields=input_names))
# Loop through list of nodes connected to study data specs and
# connect them to the newly created input node
for input in inputs: # @ReservedAssignment
# Keep track of previous conversion nodes to avoid replicating the
# conversion for inputs that are used in multiple places
prev_conv_nodes = {}
for (node, node_in, format, # @ReservedAssignment @IgnorePep8
conv_kwargs) in self._input_conns[input.name]:
# If fileset formats differ between study and pipeline
# inputs create converter node (if one hasn't been already)
# and connect input to that before connecting to inputnode
if self.requires_conversion(input, format):
try:
conv = format.converter_from(input.format,
**conv_kwargs)
except ArcanaNoConverterError as e:
e.msg += (
"which is required to convert '{}' from {} to {} "
"for '{}' input of '{}' node".format(
input.name, input.format, format, node_in,
node.name))
raise e
try:
in_node = prev_conv_nodes[format.name]
except KeyError:
in_node = prev_conv_nodes[format.name] = self.add(
'conv_{}_to_{}_format'.format(input.name,
format.name),
conv.interface,
inputs={conv.input: (inputnode, input.name)},
requirements=conv.requirements,
mem_gb=conv.mem_gb,
wall_time=conv.wall_time)
in_node_out = conv.output
else:
in_node = inputnode
in_node_out = input.name
self.connect(in_node, in_node_out, node, node_in)
# Connect iterator inputs
for iterator, conns in self._iterator_conns.items():
# Check to see if this is the right frequency for the iterator
# input, i.e. if it is the only iterator for this frequency
if self.study.FREQUENCIES[frequency] == (iterator,):
for (node, node_in, format) in conns: # @ReservedAssignment
self.connect(inputnode, iterator, node, node_in)
return inputnode | python | def _make_inputnode(self, frequency):
"""
Generates an input node for the given frequency. It also adds implicit
file format conversion nodes to the pipeline.
Parameters
----------
frequency : str
The frequency (i.e. 'per_session', 'per_visit', 'per_subject' or
'per_study') of the input node to retrieve
"""
# Check to see whether there are any outputs for the given frequency
inputs = list(self.frequency_inputs(frequency))
# Get list of input names for the requested frequency, addding fields
# to hold iterator IDs
input_names = [i.name for i in inputs]
input_names.extend(self.study.FREQUENCIES[frequency])
if not input_names:
raise ArcanaError(
"No inputs to '{}' pipeline for requested freqency '{}'"
.format(self.name, frequency))
# Generate input node and connect it to appropriate nodes
inputnode = self.add('{}_inputnode'.format(frequency),
IdentityInterface(fields=input_names))
# Loop through list of nodes connected to study data specs and
# connect them to the newly created input node
for input in inputs: # @ReservedAssignment
# Keep track of previous conversion nodes to avoid replicating the
# conversion for inputs that are used in multiple places
prev_conv_nodes = {}
for (node, node_in, format, # @ReservedAssignment @IgnorePep8
conv_kwargs) in self._input_conns[input.name]:
# If fileset formats differ between study and pipeline
# inputs create converter node (if one hasn't been already)
# and connect input to that before connecting to inputnode
if self.requires_conversion(input, format):
try:
conv = format.converter_from(input.format,
**conv_kwargs)
except ArcanaNoConverterError as e:
e.msg += (
"which is required to convert '{}' from {} to {} "
"for '{}' input of '{}' node".format(
input.name, input.format, format, node_in,
node.name))
raise e
try:
in_node = prev_conv_nodes[format.name]
except KeyError:
in_node = prev_conv_nodes[format.name] = self.add(
'conv_{}_to_{}_format'.format(input.name,
format.name),
conv.interface,
inputs={conv.input: (inputnode, input.name)},
requirements=conv.requirements,
mem_gb=conv.mem_gb,
wall_time=conv.wall_time)
in_node_out = conv.output
else:
in_node = inputnode
in_node_out = input.name
self.connect(in_node, in_node_out, node, node_in)
# Connect iterator inputs
for iterator, conns in self._iterator_conns.items():
# Check to see if this is the right frequency for the iterator
# input, i.e. if it is the only iterator for this frequency
if self.study.FREQUENCIES[frequency] == (iterator,):
for (node, node_in, format) in conns: # @ReservedAssignment
self.connect(inputnode, iterator, node, node_in)
return inputnode | [
"def",
"_make_inputnode",
"(",
"self",
",",
"frequency",
")",
":",
"# Check to see whether there are any outputs for the given frequency",
"inputs",
"=",
"list",
"(",
"self",
".",
"frequency_inputs",
"(",
"frequency",
")",
")",
"# Get list of input names for the requested frequency, addding fields",
"# to hold iterator IDs",
"input_names",
"=",
"[",
"i",
".",
"name",
"for",
"i",
"in",
"inputs",
"]",
"input_names",
".",
"extend",
"(",
"self",
".",
"study",
".",
"FREQUENCIES",
"[",
"frequency",
"]",
")",
"if",
"not",
"input_names",
":",
"raise",
"ArcanaError",
"(",
"\"No inputs to '{}' pipeline for requested freqency '{}'\"",
".",
"format",
"(",
"self",
".",
"name",
",",
"frequency",
")",
")",
"# Generate input node and connect it to appropriate nodes",
"inputnode",
"=",
"self",
".",
"add",
"(",
"'{}_inputnode'",
".",
"format",
"(",
"frequency",
")",
",",
"IdentityInterface",
"(",
"fields",
"=",
"input_names",
")",
")",
"# Loop through list of nodes connected to study data specs and",
"# connect them to the newly created input node",
"for",
"input",
"in",
"inputs",
":",
"# @ReservedAssignment",
"# Keep track of previous conversion nodes to avoid replicating the",
"# conversion for inputs that are used in multiple places",
"prev_conv_nodes",
"=",
"{",
"}",
"for",
"(",
"node",
",",
"node_in",
",",
"format",
",",
"# @ReservedAssignment @IgnorePep8",
"conv_kwargs",
")",
"in",
"self",
".",
"_input_conns",
"[",
"input",
".",
"name",
"]",
":",
"# If fileset formats differ between study and pipeline",
"# inputs create converter node (if one hasn't been already)",
"# and connect input to that before connecting to inputnode",
"if",
"self",
".",
"requires_conversion",
"(",
"input",
",",
"format",
")",
":",
"try",
":",
"conv",
"=",
"format",
".",
"converter_from",
"(",
"input",
".",
"format",
",",
"*",
"*",
"conv_kwargs",
")",
"except",
"ArcanaNoConverterError",
"as",
"e",
":",
"e",
".",
"msg",
"+=",
"(",
"\"which is required to convert '{}' from {} to {} \"",
"\"for '{}' input of '{}' node\"",
".",
"format",
"(",
"input",
".",
"name",
",",
"input",
".",
"format",
",",
"format",
",",
"node_in",
",",
"node",
".",
"name",
")",
")",
"raise",
"e",
"try",
":",
"in_node",
"=",
"prev_conv_nodes",
"[",
"format",
".",
"name",
"]",
"except",
"KeyError",
":",
"in_node",
"=",
"prev_conv_nodes",
"[",
"format",
".",
"name",
"]",
"=",
"self",
".",
"add",
"(",
"'conv_{}_to_{}_format'",
".",
"format",
"(",
"input",
".",
"name",
",",
"format",
".",
"name",
")",
",",
"conv",
".",
"interface",
",",
"inputs",
"=",
"{",
"conv",
".",
"input",
":",
"(",
"inputnode",
",",
"input",
".",
"name",
")",
"}",
",",
"requirements",
"=",
"conv",
".",
"requirements",
",",
"mem_gb",
"=",
"conv",
".",
"mem_gb",
",",
"wall_time",
"=",
"conv",
".",
"wall_time",
")",
"in_node_out",
"=",
"conv",
".",
"output",
"else",
":",
"in_node",
"=",
"inputnode",
"in_node_out",
"=",
"input",
".",
"name",
"self",
".",
"connect",
"(",
"in_node",
",",
"in_node_out",
",",
"node",
",",
"node_in",
")",
"# Connect iterator inputs",
"for",
"iterator",
",",
"conns",
"in",
"self",
".",
"_iterator_conns",
".",
"items",
"(",
")",
":",
"# Check to see if this is the right frequency for the iterator",
"# input, i.e. if it is the only iterator for this frequency",
"if",
"self",
".",
"study",
".",
"FREQUENCIES",
"[",
"frequency",
"]",
"==",
"(",
"iterator",
",",
")",
":",
"for",
"(",
"node",
",",
"node_in",
",",
"format",
")",
"in",
"conns",
":",
"# @ReservedAssignment",
"self",
".",
"connect",
"(",
"inputnode",
",",
"iterator",
",",
"node",
",",
"node_in",
")",
"return",
"inputnode"
] | Generates an input node for the given frequency. It also adds implicit
file format conversion nodes to the pipeline.
Parameters
----------
frequency : str
The frequency (i.e. 'per_session', 'per_visit', 'per_subject' or
'per_study') of the input node to retrieve | [
"Generates",
"an",
"input",
"node",
"for",
"the",
"given",
"frequency",
".",
"It",
"also",
"adds",
"implicit",
"file",
"format",
"conversion",
"nodes",
"to",
"the",
"pipeline",
"."
] | train | https://github.com/MonashBI/arcana/blob/d6271a29d13733d00422d11417af8d200be62acc/arcana/pipeline/base.py#L712-L781 |
MonashBI/arcana | arcana/pipeline/base.py | Pipeline._make_outputnode | def _make_outputnode(self, frequency):
"""
Generates an output node for the given frequency. It also adds implicit
file format conversion nodes to the pipeline.
Parameters
----------
frequency : str
The frequency (i.e. 'per_session', 'per_visit', 'per_subject' or
'per_study') of the output node to retrieve
"""
# Check to see whether there are any outputs for the given frequency
outputs = list(self.frequency_outputs(frequency))
if not outputs:
raise ArcanaError(
"No outputs to '{}' pipeline for requested freqency '{}'"
.format(self.name, frequency))
# Get list of output names for the requested frequency, addding fields
# to hold iterator IDs
output_names = [o.name for o in outputs]
# Generate output node and connect it to appropriate nodes
outputnode = self.add('{}_outputnode'.format(frequency),
IdentityInterface(fields=output_names))
# Loop through list of nodes connected to study data specs and
# connect them to the newly created output node
for output in outputs: # @ReservedAssignment
(node, node_out, format, # @ReservedAssignment @IgnorePep8
conv_kwargs) = self._output_conns[output.name]
# If fileset formats differ between study and pipeline
# outputs create converter node (if one hasn't been already)
# and connect output to that before connecting to outputnode
if self.requires_conversion(output, format):
conv = output.format.converter_from(format, **conv_kwargs)
node = self.add(
'conv_{}_from_{}_format'.format(output.name, format.name),
conv.interface,
inputs={conv.input: (node, node_out)},
requirements=conv.requirements,
mem_gb=conv.mem_gb,
wall_time=conv.wall_time)
node_out = conv.output
self.connect(node, node_out, outputnode, output.name)
return outputnode | python | def _make_outputnode(self, frequency):
"""
Generates an output node for the given frequency. It also adds implicit
file format conversion nodes to the pipeline.
Parameters
----------
frequency : str
The frequency (i.e. 'per_session', 'per_visit', 'per_subject' or
'per_study') of the output node to retrieve
"""
# Check to see whether there are any outputs for the given frequency
outputs = list(self.frequency_outputs(frequency))
if not outputs:
raise ArcanaError(
"No outputs to '{}' pipeline for requested freqency '{}'"
.format(self.name, frequency))
# Get list of output names for the requested frequency, addding fields
# to hold iterator IDs
output_names = [o.name for o in outputs]
# Generate output node and connect it to appropriate nodes
outputnode = self.add('{}_outputnode'.format(frequency),
IdentityInterface(fields=output_names))
# Loop through list of nodes connected to study data specs and
# connect them to the newly created output node
for output in outputs: # @ReservedAssignment
(node, node_out, format, # @ReservedAssignment @IgnorePep8
conv_kwargs) = self._output_conns[output.name]
# If fileset formats differ between study and pipeline
# outputs create converter node (if one hasn't been already)
# and connect output to that before connecting to outputnode
if self.requires_conversion(output, format):
conv = output.format.converter_from(format, **conv_kwargs)
node = self.add(
'conv_{}_from_{}_format'.format(output.name, format.name),
conv.interface,
inputs={conv.input: (node, node_out)},
requirements=conv.requirements,
mem_gb=conv.mem_gb,
wall_time=conv.wall_time)
node_out = conv.output
self.connect(node, node_out, outputnode, output.name)
return outputnode | [
"def",
"_make_outputnode",
"(",
"self",
",",
"frequency",
")",
":",
"# Check to see whether there are any outputs for the given frequency",
"outputs",
"=",
"list",
"(",
"self",
".",
"frequency_outputs",
"(",
"frequency",
")",
")",
"if",
"not",
"outputs",
":",
"raise",
"ArcanaError",
"(",
"\"No outputs to '{}' pipeline for requested freqency '{}'\"",
".",
"format",
"(",
"self",
".",
"name",
",",
"frequency",
")",
")",
"# Get list of output names for the requested frequency, addding fields",
"# to hold iterator IDs",
"output_names",
"=",
"[",
"o",
".",
"name",
"for",
"o",
"in",
"outputs",
"]",
"# Generate output node and connect it to appropriate nodes",
"outputnode",
"=",
"self",
".",
"add",
"(",
"'{}_outputnode'",
".",
"format",
"(",
"frequency",
")",
",",
"IdentityInterface",
"(",
"fields",
"=",
"output_names",
")",
")",
"# Loop through list of nodes connected to study data specs and",
"# connect them to the newly created output node",
"for",
"output",
"in",
"outputs",
":",
"# @ReservedAssignment",
"(",
"node",
",",
"node_out",
",",
"format",
",",
"# @ReservedAssignment @IgnorePep8",
"conv_kwargs",
")",
"=",
"self",
".",
"_output_conns",
"[",
"output",
".",
"name",
"]",
"# If fileset formats differ between study and pipeline",
"# outputs create converter node (if one hasn't been already)",
"# and connect output to that before connecting to outputnode",
"if",
"self",
".",
"requires_conversion",
"(",
"output",
",",
"format",
")",
":",
"conv",
"=",
"output",
".",
"format",
".",
"converter_from",
"(",
"format",
",",
"*",
"*",
"conv_kwargs",
")",
"node",
"=",
"self",
".",
"add",
"(",
"'conv_{}_from_{}_format'",
".",
"format",
"(",
"output",
".",
"name",
",",
"format",
".",
"name",
")",
",",
"conv",
".",
"interface",
",",
"inputs",
"=",
"{",
"conv",
".",
"input",
":",
"(",
"node",
",",
"node_out",
")",
"}",
",",
"requirements",
"=",
"conv",
".",
"requirements",
",",
"mem_gb",
"=",
"conv",
".",
"mem_gb",
",",
"wall_time",
"=",
"conv",
".",
"wall_time",
")",
"node_out",
"=",
"conv",
".",
"output",
"self",
".",
"connect",
"(",
"node",
",",
"node_out",
",",
"outputnode",
",",
"output",
".",
"name",
")",
"return",
"outputnode"
] | Generates an output node for the given frequency. It also adds implicit
file format conversion nodes to the pipeline.
Parameters
----------
frequency : str
The frequency (i.e. 'per_session', 'per_visit', 'per_subject' or
'per_study') of the output node to retrieve | [
"Generates",
"an",
"output",
"node",
"for",
"the",
"given",
"frequency",
".",
"It",
"also",
"adds",
"implicit",
"file",
"format",
"conversion",
"nodes",
"to",
"the",
"pipeline",
"."
] | train | https://github.com/MonashBI/arcana/blob/d6271a29d13733d00422d11417af8d200be62acc/arcana/pipeline/base.py#L783-L825 |
MonashBI/arcana | arcana/pipeline/base.py | Pipeline._gen_prov | def _gen_prov(self):
"""
Extracts provenance information from the pipeline into a PipelineProv
object
Returns
-------
prov : dict[str, *]
A dictionary containing the provenance information to record
for the pipeline
"""
# Export worfklow graph to node-link data format
wf_dict = nx_json.node_link_data(self.workflow._graph)
# Replace references to Node objects with the node's provenance
# information and convert to a dict organised by node name to allow it
# to be compared more easily. Also change link node-references from
# node index to node ID so it is not dependent on the order the nodes
# are written to the dictionary (which for Python < 3.7 is guaranteed
# to be the same between identical runs)
for link in wf_dict['links']:
if int(networkx_version.split('.')[0]) < 2: # @UndefinedVariable
link['source'] = wf_dict['nodes'][link['source']]['id'].name
link['target'] = wf_dict['nodes'][link['target']]['id'].name
else:
link['source'] = link['source'].name
link['target'] = link['target'].name
wf_dict['nodes'] = {n['id'].name: n['id'].prov
for n in wf_dict['nodes']}
# Roundtrip to JSON to convert any tuples into lists so dictionaries
# can be compared directly
wf_dict = json.loads(json.dumps(wf_dict))
dependency_versions = {d: extract_package_version(d)
for d in ARCANA_DEPENDENCIES}
pkg_versions = {'arcana': __version__}
pkg_versions.update((k, v) for k, v in dependency_versions.items()
if v is not None)
prov = {
'__prov_version__': PROVENANCE_VERSION,
'name': self.name,
'workflow': wf_dict,
'study': self.study.prov,
'pkg_versions': pkg_versions,
'python_version': sys.version,
'joined_ids': self._joined_ids()}
return prov | python | def _gen_prov(self):
"""
Extracts provenance information from the pipeline into a PipelineProv
object
Returns
-------
prov : dict[str, *]
A dictionary containing the provenance information to record
for the pipeline
"""
# Export worfklow graph to node-link data format
wf_dict = nx_json.node_link_data(self.workflow._graph)
# Replace references to Node objects with the node's provenance
# information and convert to a dict organised by node name to allow it
# to be compared more easily. Also change link node-references from
# node index to node ID so it is not dependent on the order the nodes
# are written to the dictionary (which for Python < 3.7 is guaranteed
# to be the same between identical runs)
for link in wf_dict['links']:
if int(networkx_version.split('.')[0]) < 2: # @UndefinedVariable
link['source'] = wf_dict['nodes'][link['source']]['id'].name
link['target'] = wf_dict['nodes'][link['target']]['id'].name
else:
link['source'] = link['source'].name
link['target'] = link['target'].name
wf_dict['nodes'] = {n['id'].name: n['id'].prov
for n in wf_dict['nodes']}
# Roundtrip to JSON to convert any tuples into lists so dictionaries
# can be compared directly
wf_dict = json.loads(json.dumps(wf_dict))
dependency_versions = {d: extract_package_version(d)
for d in ARCANA_DEPENDENCIES}
pkg_versions = {'arcana': __version__}
pkg_versions.update((k, v) for k, v in dependency_versions.items()
if v is not None)
prov = {
'__prov_version__': PROVENANCE_VERSION,
'name': self.name,
'workflow': wf_dict,
'study': self.study.prov,
'pkg_versions': pkg_versions,
'python_version': sys.version,
'joined_ids': self._joined_ids()}
return prov | [
"def",
"_gen_prov",
"(",
"self",
")",
":",
"# Export worfklow graph to node-link data format",
"wf_dict",
"=",
"nx_json",
".",
"node_link_data",
"(",
"self",
".",
"workflow",
".",
"_graph",
")",
"# Replace references to Node objects with the node's provenance",
"# information and convert to a dict organised by node name to allow it",
"# to be compared more easily. Also change link node-references from",
"# node index to node ID so it is not dependent on the order the nodes",
"# are written to the dictionary (which for Python < 3.7 is guaranteed",
"# to be the same between identical runs)",
"for",
"link",
"in",
"wf_dict",
"[",
"'links'",
"]",
":",
"if",
"int",
"(",
"networkx_version",
".",
"split",
"(",
"'.'",
")",
"[",
"0",
"]",
")",
"<",
"2",
":",
"# @UndefinedVariable",
"link",
"[",
"'source'",
"]",
"=",
"wf_dict",
"[",
"'nodes'",
"]",
"[",
"link",
"[",
"'source'",
"]",
"]",
"[",
"'id'",
"]",
".",
"name",
"link",
"[",
"'target'",
"]",
"=",
"wf_dict",
"[",
"'nodes'",
"]",
"[",
"link",
"[",
"'target'",
"]",
"]",
"[",
"'id'",
"]",
".",
"name",
"else",
":",
"link",
"[",
"'source'",
"]",
"=",
"link",
"[",
"'source'",
"]",
".",
"name",
"link",
"[",
"'target'",
"]",
"=",
"link",
"[",
"'target'",
"]",
".",
"name",
"wf_dict",
"[",
"'nodes'",
"]",
"=",
"{",
"n",
"[",
"'id'",
"]",
".",
"name",
":",
"n",
"[",
"'id'",
"]",
".",
"prov",
"for",
"n",
"in",
"wf_dict",
"[",
"'nodes'",
"]",
"}",
"# Roundtrip to JSON to convert any tuples into lists so dictionaries",
"# can be compared directly",
"wf_dict",
"=",
"json",
".",
"loads",
"(",
"json",
".",
"dumps",
"(",
"wf_dict",
")",
")",
"dependency_versions",
"=",
"{",
"d",
":",
"extract_package_version",
"(",
"d",
")",
"for",
"d",
"in",
"ARCANA_DEPENDENCIES",
"}",
"pkg_versions",
"=",
"{",
"'arcana'",
":",
"__version__",
"}",
"pkg_versions",
".",
"update",
"(",
"(",
"k",
",",
"v",
")",
"for",
"k",
",",
"v",
"in",
"dependency_versions",
".",
"items",
"(",
")",
"if",
"v",
"is",
"not",
"None",
")",
"prov",
"=",
"{",
"'__prov_version__'",
":",
"PROVENANCE_VERSION",
",",
"'name'",
":",
"self",
".",
"name",
",",
"'workflow'",
":",
"wf_dict",
",",
"'study'",
":",
"self",
".",
"study",
".",
"prov",
",",
"'pkg_versions'",
":",
"pkg_versions",
",",
"'python_version'",
":",
"sys",
".",
"version",
",",
"'joined_ids'",
":",
"self",
".",
"_joined_ids",
"(",
")",
"}",
"return",
"prov"
] | Extracts provenance information from the pipeline into a PipelineProv
object
Returns
-------
prov : dict[str, *]
A dictionary containing the provenance information to record
for the pipeline | [
"Extracts",
"provenance",
"information",
"from",
"the",
"pipeline",
"into",
"a",
"PipelineProv",
"object"
] | train | https://github.com/MonashBI/arcana/blob/d6271a29d13733d00422d11417af8d200be62acc/arcana/pipeline/base.py#L827-L871 |
MonashBI/arcana | arcana/pipeline/base.py | Pipeline.expected_record | def expected_record(self, node):
"""
Constructs the provenance record that would be saved in the given node
if the pipeline was run on the current state of the repository
Parameters
----------
node : arcana.repository.tree.TreeNode
A node of the Tree representation of the study data stored in the
repository (i.e. a Session, Visit, Subject or Tree node)
Returns
-------
expected_record : arcana.provenance.Record
The record that would be produced if the pipeline is run over the
study tree.
"""
exp_inputs = {}
# Get checksums/values of all inputs that would have been used in
# previous runs of an equivalent pipeline to compare with that saved
# in provenance to see if any have been updated.
for inpt in self.inputs: # @ReservedAssignment
# Get iterators present in the input that aren't in this node
# and need to be joined
iterators_to_join = (self.iterators(inpt.frequency) -
self.iterators(node.frequency))
if not iterators_to_join:
# No iterators to join so we can just extract the checksums
# of the corresponding input
exp_inputs[inpt.name] = inpt.collection.item(
node.subject_id, node.visit_id).checksums
elif len(iterators_to_join) == 1:
# Get list of checksums dicts for each node of the input
# frequency that relates to the current node
exp_inputs[inpt.name] = [
inpt.collection.item(n.subject_id, n.visit_id).checksums
for n in node.nodes(inpt.frequency)]
else:
# In the case where the node is the whole treee and the input
# is per_seession, we need to create a list of lists to match
# how the checksums are joined in the processor
exp_inputs[inpt.name] = []
for subj in node.subjects:
exp_inputs[inpt.name].append([
inpt.collection.item(s.subject_id,
s.visit_id).checksums
for s in subj.sessions])
# Get checksums/value for all outputs of the pipeline. We are assuming
# that they exist here (otherwise they will be None)
exp_outputs = {
o.name: o.collection.item(node.subject_id, node.visit_id).checksums
for o in self.outputs}
exp_prov = copy(self.prov)
if PY2:
# Need to convert to unicode strings for Python 2
exp_inputs = json.loads(json.dumps(exp_inputs))
exp_outputs = json.loads(json.dumps(exp_outputs))
exp_prov['inputs'] = exp_inputs
exp_prov['outputs'] = exp_outputs
exp_prov['joined_ids'] = self._joined_ids()
return Record(
self.name, node.frequency, node.subject_id, node.visit_id,
self.study.name, exp_prov) | python | def expected_record(self, node):
"""
Constructs the provenance record that would be saved in the given node
if the pipeline was run on the current state of the repository
Parameters
----------
node : arcana.repository.tree.TreeNode
A node of the Tree representation of the study data stored in the
repository (i.e. a Session, Visit, Subject or Tree node)
Returns
-------
expected_record : arcana.provenance.Record
The record that would be produced if the pipeline is run over the
study tree.
"""
exp_inputs = {}
# Get checksums/values of all inputs that would have been used in
# previous runs of an equivalent pipeline to compare with that saved
# in provenance to see if any have been updated.
for inpt in self.inputs: # @ReservedAssignment
# Get iterators present in the input that aren't in this node
# and need to be joined
iterators_to_join = (self.iterators(inpt.frequency) -
self.iterators(node.frequency))
if not iterators_to_join:
# No iterators to join so we can just extract the checksums
# of the corresponding input
exp_inputs[inpt.name] = inpt.collection.item(
node.subject_id, node.visit_id).checksums
elif len(iterators_to_join) == 1:
# Get list of checksums dicts for each node of the input
# frequency that relates to the current node
exp_inputs[inpt.name] = [
inpt.collection.item(n.subject_id, n.visit_id).checksums
for n in node.nodes(inpt.frequency)]
else:
# In the case where the node is the whole treee and the input
# is per_seession, we need to create a list of lists to match
# how the checksums are joined in the processor
exp_inputs[inpt.name] = []
for subj in node.subjects:
exp_inputs[inpt.name].append([
inpt.collection.item(s.subject_id,
s.visit_id).checksums
for s in subj.sessions])
# Get checksums/value for all outputs of the pipeline. We are assuming
# that they exist here (otherwise they will be None)
exp_outputs = {
o.name: o.collection.item(node.subject_id, node.visit_id).checksums
for o in self.outputs}
exp_prov = copy(self.prov)
if PY2:
# Need to convert to unicode strings for Python 2
exp_inputs = json.loads(json.dumps(exp_inputs))
exp_outputs = json.loads(json.dumps(exp_outputs))
exp_prov['inputs'] = exp_inputs
exp_prov['outputs'] = exp_outputs
exp_prov['joined_ids'] = self._joined_ids()
return Record(
self.name, node.frequency, node.subject_id, node.visit_id,
self.study.name, exp_prov) | [
"def",
"expected_record",
"(",
"self",
",",
"node",
")",
":",
"exp_inputs",
"=",
"{",
"}",
"# Get checksums/values of all inputs that would have been used in",
"# previous runs of an equivalent pipeline to compare with that saved",
"# in provenance to see if any have been updated.",
"for",
"inpt",
"in",
"self",
".",
"inputs",
":",
"# @ReservedAssignment",
"# Get iterators present in the input that aren't in this node",
"# and need to be joined",
"iterators_to_join",
"=",
"(",
"self",
".",
"iterators",
"(",
"inpt",
".",
"frequency",
")",
"-",
"self",
".",
"iterators",
"(",
"node",
".",
"frequency",
")",
")",
"if",
"not",
"iterators_to_join",
":",
"# No iterators to join so we can just extract the checksums",
"# of the corresponding input",
"exp_inputs",
"[",
"inpt",
".",
"name",
"]",
"=",
"inpt",
".",
"collection",
".",
"item",
"(",
"node",
".",
"subject_id",
",",
"node",
".",
"visit_id",
")",
".",
"checksums",
"elif",
"len",
"(",
"iterators_to_join",
")",
"==",
"1",
":",
"# Get list of checksums dicts for each node of the input",
"# frequency that relates to the current node",
"exp_inputs",
"[",
"inpt",
".",
"name",
"]",
"=",
"[",
"inpt",
".",
"collection",
".",
"item",
"(",
"n",
".",
"subject_id",
",",
"n",
".",
"visit_id",
")",
".",
"checksums",
"for",
"n",
"in",
"node",
".",
"nodes",
"(",
"inpt",
".",
"frequency",
")",
"]",
"else",
":",
"# In the case where the node is the whole treee and the input",
"# is per_seession, we need to create a list of lists to match",
"# how the checksums are joined in the processor",
"exp_inputs",
"[",
"inpt",
".",
"name",
"]",
"=",
"[",
"]",
"for",
"subj",
"in",
"node",
".",
"subjects",
":",
"exp_inputs",
"[",
"inpt",
".",
"name",
"]",
".",
"append",
"(",
"[",
"inpt",
".",
"collection",
".",
"item",
"(",
"s",
".",
"subject_id",
",",
"s",
".",
"visit_id",
")",
".",
"checksums",
"for",
"s",
"in",
"subj",
".",
"sessions",
"]",
")",
"# Get checksums/value for all outputs of the pipeline. We are assuming",
"# that they exist here (otherwise they will be None)",
"exp_outputs",
"=",
"{",
"o",
".",
"name",
":",
"o",
".",
"collection",
".",
"item",
"(",
"node",
".",
"subject_id",
",",
"node",
".",
"visit_id",
")",
".",
"checksums",
"for",
"o",
"in",
"self",
".",
"outputs",
"}",
"exp_prov",
"=",
"copy",
"(",
"self",
".",
"prov",
")",
"if",
"PY2",
":",
"# Need to convert to unicode strings for Python 2",
"exp_inputs",
"=",
"json",
".",
"loads",
"(",
"json",
".",
"dumps",
"(",
"exp_inputs",
")",
")",
"exp_outputs",
"=",
"json",
".",
"loads",
"(",
"json",
".",
"dumps",
"(",
"exp_outputs",
")",
")",
"exp_prov",
"[",
"'inputs'",
"]",
"=",
"exp_inputs",
"exp_prov",
"[",
"'outputs'",
"]",
"=",
"exp_outputs",
"exp_prov",
"[",
"'joined_ids'",
"]",
"=",
"self",
".",
"_joined_ids",
"(",
")",
"return",
"Record",
"(",
"self",
".",
"name",
",",
"node",
".",
"frequency",
",",
"node",
".",
"subject_id",
",",
"node",
".",
"visit_id",
",",
"self",
".",
"study",
".",
"name",
",",
"exp_prov",
")"
] | Constructs the provenance record that would be saved in the given node
if the pipeline was run on the current state of the repository
Parameters
----------
node : arcana.repository.tree.TreeNode
A node of the Tree representation of the study data stored in the
repository (i.e. a Session, Visit, Subject or Tree node)
Returns
-------
expected_record : arcana.provenance.Record
The record that would be produced if the pipeline is run over the
study tree. | [
"Constructs",
"the",
"provenance",
"record",
"that",
"would",
"be",
"saved",
"in",
"the",
"given",
"node",
"if",
"the",
"pipeline",
"was",
"run",
"on",
"the",
"current",
"state",
"of",
"the",
"repository"
] | train | https://github.com/MonashBI/arcana/blob/d6271a29d13733d00422d11417af8d200be62acc/arcana/pipeline/base.py#L873-L935 |
MonashBI/arcana | arcana/pipeline/base.py | Pipeline._joined_ids | def _joined_ids(self):
"""
Adds the subjects/visits used to generate the derivatives iff there are
any joins over them in the pipeline
"""
joined_prov = {}
if self.joins_subjects:
joined_prov['subject_ids'] = list(self.study.subject_ids)
if self.joins_visits:
joined_prov['visit_ids'] = list(self.study.visit_ids)
return joined_prov | python | def _joined_ids(self):
"""
Adds the subjects/visits used to generate the derivatives iff there are
any joins over them in the pipeline
"""
joined_prov = {}
if self.joins_subjects:
joined_prov['subject_ids'] = list(self.study.subject_ids)
if self.joins_visits:
joined_prov['visit_ids'] = list(self.study.visit_ids)
return joined_prov | [
"def",
"_joined_ids",
"(",
"self",
")",
":",
"joined_prov",
"=",
"{",
"}",
"if",
"self",
".",
"joins_subjects",
":",
"joined_prov",
"[",
"'subject_ids'",
"]",
"=",
"list",
"(",
"self",
".",
"study",
".",
"subject_ids",
")",
"if",
"self",
".",
"joins_visits",
":",
"joined_prov",
"[",
"'visit_ids'",
"]",
"=",
"list",
"(",
"self",
".",
"study",
".",
"visit_ids",
")",
"return",
"joined_prov"
] | Adds the subjects/visits used to generate the derivatives iff there are
any joins over them in the pipeline | [
"Adds",
"the",
"subjects",
"/",
"visits",
"used",
"to",
"generate",
"the",
"derivatives",
"iff",
"there",
"are",
"any",
"joins",
"over",
"them",
"in",
"the",
"pipeline"
] | train | https://github.com/MonashBI/arcana/blob/d6271a29d13733d00422d11417af8d200be62acc/arcana/pipeline/base.py#L937-L947 |
MonashBI/arcana | arcana/repository/base.py | Repository.tree | def tree(self, subject_ids=None, visit_ids=None, **kwargs):
"""
Return the tree of subject and sessions information within a
project in the XNAT repository
Parameters
----------
subject_ids : list(str)
List of subject IDs with which to filter the tree with. If
None all are returned
visit_ids : list(str)
List of visit IDs with which to filter the tree with. If
None all are returned
Returns
-------
tree : arcana.repository.Tree
A hierarchical tree of subject, session and fileset
information for the repository
"""
# Find all data present in the repository (filtered by the passed IDs)
return Tree.construct(
self, *self.find_data(subject_ids=subject_ids,
visit_ids=visit_ids), **kwargs) | python | def tree(self, subject_ids=None, visit_ids=None, **kwargs):
"""
Return the tree of subject and sessions information within a
project in the XNAT repository
Parameters
----------
subject_ids : list(str)
List of subject IDs with which to filter the tree with. If
None all are returned
visit_ids : list(str)
List of visit IDs with which to filter the tree with. If
None all are returned
Returns
-------
tree : arcana.repository.Tree
A hierarchical tree of subject, session and fileset
information for the repository
"""
# Find all data present in the repository (filtered by the passed IDs)
return Tree.construct(
self, *self.find_data(subject_ids=subject_ids,
visit_ids=visit_ids), **kwargs) | [
"def",
"tree",
"(",
"self",
",",
"subject_ids",
"=",
"None",
",",
"visit_ids",
"=",
"None",
",",
"*",
"*",
"kwargs",
")",
":",
"# Find all data present in the repository (filtered by the passed IDs)",
"return",
"Tree",
".",
"construct",
"(",
"self",
",",
"*",
"self",
".",
"find_data",
"(",
"subject_ids",
"=",
"subject_ids",
",",
"visit_ids",
"=",
"visit_ids",
")",
",",
"*",
"*",
"kwargs",
")"
] | Return the tree of subject and sessions information within a
project in the XNAT repository
Parameters
----------
subject_ids : list(str)
List of subject IDs with which to filter the tree with. If
None all are returned
visit_ids : list(str)
List of visit IDs with which to filter the tree with. If
None all are returned
Returns
-------
tree : arcana.repository.Tree
A hierarchical tree of subject, session and fileset
information for the repository | [
"Return",
"the",
"tree",
"of",
"subject",
"and",
"sessions",
"information",
"within",
"a",
"project",
"in",
"the",
"XNAT",
"repository"
] | train | https://github.com/MonashBI/arcana/blob/d6271a29d13733d00422d11417af8d200be62acc/arcana/repository/base.py#L167-L190 |
MonashBI/arcana | arcana/repository/base.py | Repository.cached_tree | def cached_tree(self, subject_ids=None, visit_ids=None, fill=False):
"""
Access the repository tree and caches it for subsequent
accesses
Parameters
----------
subject_ids : list(str)
List of subject IDs with which to filter the tree with. If
None all are returned
visit_ids : list(str)
List of visit IDs with which to filter the tree with. If
None all are returned
fill : bool
Create empty sessions for any that are missing in the
subject_id x visit_id block. Typically only used if all
the inputs to the study are coming from different repositories
to the one that the derived products are stored in
Returns
-------
tree : arcana.repository.Tree
A hierarchical tree of subject, vist, session information and that
of the filesets and fields they contain
"""
if subject_ids is not None:
subject_ids = frozenset(subject_ids)
if visit_ids is not None:
visit_ids = frozenset(visit_ids)
try:
tree = self._cache[subject_ids][visit_ids]
except KeyError:
if fill:
fill_subjects = subject_ids
fill_visits = visit_ids
else:
fill_subjects = fill_visits = None
tree = self.tree(
subject_ids=subject_ids, visit_ids=visit_ids,
fill_visits=fill_visits, fill_subjects=fill_subjects)
# Save the tree within the cache under the given subject/
# visit ID filters and the IDs that were actually returned
self._cache[subject_ids][visit_ids] = self._cache[
frozenset(tree.subject_ids)][frozenset(tree.visit_ids)] = tree
return tree | python | def cached_tree(self, subject_ids=None, visit_ids=None, fill=False):
"""
Access the repository tree and caches it for subsequent
accesses
Parameters
----------
subject_ids : list(str)
List of subject IDs with which to filter the tree with. If
None all are returned
visit_ids : list(str)
List of visit IDs with which to filter the tree with. If
None all are returned
fill : bool
Create empty sessions for any that are missing in the
subject_id x visit_id block. Typically only used if all
the inputs to the study are coming from different repositories
to the one that the derived products are stored in
Returns
-------
tree : arcana.repository.Tree
A hierarchical tree of subject, vist, session information and that
of the filesets and fields they contain
"""
if subject_ids is not None:
subject_ids = frozenset(subject_ids)
if visit_ids is not None:
visit_ids = frozenset(visit_ids)
try:
tree = self._cache[subject_ids][visit_ids]
except KeyError:
if fill:
fill_subjects = subject_ids
fill_visits = visit_ids
else:
fill_subjects = fill_visits = None
tree = self.tree(
subject_ids=subject_ids, visit_ids=visit_ids,
fill_visits=fill_visits, fill_subjects=fill_subjects)
# Save the tree within the cache under the given subject/
# visit ID filters and the IDs that were actually returned
self._cache[subject_ids][visit_ids] = self._cache[
frozenset(tree.subject_ids)][frozenset(tree.visit_ids)] = tree
return tree | [
"def",
"cached_tree",
"(",
"self",
",",
"subject_ids",
"=",
"None",
",",
"visit_ids",
"=",
"None",
",",
"fill",
"=",
"False",
")",
":",
"if",
"subject_ids",
"is",
"not",
"None",
":",
"subject_ids",
"=",
"frozenset",
"(",
"subject_ids",
")",
"if",
"visit_ids",
"is",
"not",
"None",
":",
"visit_ids",
"=",
"frozenset",
"(",
"visit_ids",
")",
"try",
":",
"tree",
"=",
"self",
".",
"_cache",
"[",
"subject_ids",
"]",
"[",
"visit_ids",
"]",
"except",
"KeyError",
":",
"if",
"fill",
":",
"fill_subjects",
"=",
"subject_ids",
"fill_visits",
"=",
"visit_ids",
"else",
":",
"fill_subjects",
"=",
"fill_visits",
"=",
"None",
"tree",
"=",
"self",
".",
"tree",
"(",
"subject_ids",
"=",
"subject_ids",
",",
"visit_ids",
"=",
"visit_ids",
",",
"fill_visits",
"=",
"fill_visits",
",",
"fill_subjects",
"=",
"fill_subjects",
")",
"# Save the tree within the cache under the given subject/",
"# visit ID filters and the IDs that were actually returned",
"self",
".",
"_cache",
"[",
"subject_ids",
"]",
"[",
"visit_ids",
"]",
"=",
"self",
".",
"_cache",
"[",
"frozenset",
"(",
"tree",
".",
"subject_ids",
")",
"]",
"[",
"frozenset",
"(",
"tree",
".",
"visit_ids",
")",
"]",
"=",
"tree",
"return",
"tree"
] | Access the repository tree and caches it for subsequent
accesses
Parameters
----------
subject_ids : list(str)
List of subject IDs with which to filter the tree with. If
None all are returned
visit_ids : list(str)
List of visit IDs with which to filter the tree with. If
None all are returned
fill : bool
Create empty sessions for any that are missing in the
subject_id x visit_id block. Typically only used if all
the inputs to the study are coming from different repositories
to the one that the derived products are stored in
Returns
-------
tree : arcana.repository.Tree
A hierarchical tree of subject, vist, session information and that
of the filesets and fields they contain | [
"Access",
"the",
"repository",
"tree",
"and",
"caches",
"it",
"for",
"subsequent",
"accesses"
] | train | https://github.com/MonashBI/arcana/blob/d6271a29d13733d00422d11417af8d200be62acc/arcana/repository/base.py#L192-L236 |
MonashBI/arcana | arcana/data/file_format.py | FileFormat.resource_names | def resource_names(self, repo_type):
"""
Names of resources used to store the format on a given repository type.
Defaults to the name of the name of the format
"""
try:
names = self._resource_names[repo_type]
except KeyError:
names = [self.name, self.name.upper()]
return names | python | def resource_names(self, repo_type):
"""
Names of resources used to store the format on a given repository type.
Defaults to the name of the name of the format
"""
try:
names = self._resource_names[repo_type]
except KeyError:
names = [self.name, self.name.upper()]
return names | [
"def",
"resource_names",
"(",
"self",
",",
"repo_type",
")",
":",
"try",
":",
"names",
"=",
"self",
".",
"_resource_names",
"[",
"repo_type",
"]",
"except",
"KeyError",
":",
"names",
"=",
"[",
"self",
".",
"name",
",",
"self",
".",
"name",
".",
"upper",
"(",
")",
"]",
"return",
"names"
] | Names of resources used to store the format on a given repository type.
Defaults to the name of the name of the format | [
"Names",
"of",
"resources",
"used",
"to",
"store",
"the",
"format",
"on",
"a",
"given",
"repository",
"type",
".",
"Defaults",
"to",
"the",
"name",
"of",
"the",
"name",
"of",
"the",
"format"
] | train | https://github.com/MonashBI/arcana/blob/d6271a29d13733d00422d11417af8d200be62acc/arcana/data/file_format.py#L150-L159 |
MonashBI/arcana | arcana/data/file_format.py | FileFormat.default_aux_file_paths | def default_aux_file_paths(self, primary_path):
"""
Get the default paths for auxiliary files relative to the path of the
primary file, i.e. the same name as the primary path with a different
extension
Parameters
----------
primary_path : str
Path to the primary file in the fileset
Returns
-------
aux_paths : dict[str, str]
A dictionary of auxiliary file names and default paths
"""
return dict((n, primary_path[:-len(self.ext)] + ext)
for n, ext in self.aux_files.items()) | python | def default_aux_file_paths(self, primary_path):
"""
Get the default paths for auxiliary files relative to the path of the
primary file, i.e. the same name as the primary path with a different
extension
Parameters
----------
primary_path : str
Path to the primary file in the fileset
Returns
-------
aux_paths : dict[str, str]
A dictionary of auxiliary file names and default paths
"""
return dict((n, primary_path[:-len(self.ext)] + ext)
for n, ext in self.aux_files.items()) | [
"def",
"default_aux_file_paths",
"(",
"self",
",",
"primary_path",
")",
":",
"return",
"dict",
"(",
"(",
"n",
",",
"primary_path",
"[",
":",
"-",
"len",
"(",
"self",
".",
"ext",
")",
"]",
"+",
"ext",
")",
"for",
"n",
",",
"ext",
"in",
"self",
".",
"aux_files",
".",
"items",
"(",
")",
")"
] | Get the default paths for auxiliary files relative to the path of the
primary file, i.e. the same name as the primary path with a different
extension
Parameters
----------
primary_path : str
Path to the primary file in the fileset
Returns
-------
aux_paths : dict[str, str]
A dictionary of auxiliary file names and default paths | [
"Get",
"the",
"default",
"paths",
"for",
"auxiliary",
"files",
"relative",
"to",
"the",
"path",
"of",
"the",
"primary",
"file",
"i",
".",
"e",
".",
"the",
"same",
"name",
"as",
"the",
"primary",
"path",
"with",
"a",
"different",
"extension"
] | train | https://github.com/MonashBI/arcana/blob/d6271a29d13733d00422d11417af8d200be62acc/arcana/data/file_format.py#L161-L178 |
MonashBI/arcana | arcana/data/file_format.py | FileFormat.assort_files | def assort_files(self, candidates):
"""
Assorts candidate files into primary and auxiliary (and ignored) files
corresponding to the format by their file extensions. Can be overridden
in specialised subclasses to assort files based on other
characteristics
Parameters
----------
candidates : list[str]
The list of filenames to assort
Returns
-------
primary_file : str
Path to the selected primary file
aux_files : dict[str, str]
A dictionary mapping the auxiliary file name to the selected path
"""
by_ext = defaultdict(list)
for path in candidates:
by_ext[split_extension(path)[1].lower()].append(path)
try:
primary_file = by_ext[self.ext]
except KeyError:
raise ArcanaFileFormatError(
"No files match primary file extension of {} out of "
"potential candidates of {}"
.format(self, "', '".join(candidates)))
if not primary_file:
raise ArcanaFileFormatError(
"No potential files for primary file of {}".format(self))
elif len(primary_file) > 1:
raise ArcanaFileFormatError(
"Multiple potential files for '{}' primary file of {}"
.format("', '".join(primary_file), self))
else:
primary_file = primary_file[0]
aux_files = {}
for aux_name, aux_ext in self.aux_files.items():
try:
aux = by_ext[aux_ext]
except KeyError:
raise ArcanaFileFormatError(
"No files match auxiliary file extension '{}' of {} out of"
" potential candidates of {}"
.format(aux_ext, self, "', '".join(candidates)))
if len(aux) > 1:
raise ArcanaFileFormatError(
"Multiple potential files for '{}' auxiliary file ext. "
"({}) of {}".format("', '".join(aux),
self))
aux_files[aux_name] = aux[0]
return primary_file, aux_files | python | def assort_files(self, candidates):
"""
Assorts candidate files into primary and auxiliary (and ignored) files
corresponding to the format by their file extensions. Can be overridden
in specialised subclasses to assort files based on other
characteristics
Parameters
----------
candidates : list[str]
The list of filenames to assort
Returns
-------
primary_file : str
Path to the selected primary file
aux_files : dict[str, str]
A dictionary mapping the auxiliary file name to the selected path
"""
by_ext = defaultdict(list)
for path in candidates:
by_ext[split_extension(path)[1].lower()].append(path)
try:
primary_file = by_ext[self.ext]
except KeyError:
raise ArcanaFileFormatError(
"No files match primary file extension of {} out of "
"potential candidates of {}"
.format(self, "', '".join(candidates)))
if not primary_file:
raise ArcanaFileFormatError(
"No potential files for primary file of {}".format(self))
elif len(primary_file) > 1:
raise ArcanaFileFormatError(
"Multiple potential files for '{}' primary file of {}"
.format("', '".join(primary_file), self))
else:
primary_file = primary_file[0]
aux_files = {}
for aux_name, aux_ext in self.aux_files.items():
try:
aux = by_ext[aux_ext]
except KeyError:
raise ArcanaFileFormatError(
"No files match auxiliary file extension '{}' of {} out of"
" potential candidates of {}"
.format(aux_ext, self, "', '".join(candidates)))
if len(aux) > 1:
raise ArcanaFileFormatError(
"Multiple potential files for '{}' auxiliary file ext. "
"({}) of {}".format("', '".join(aux),
self))
aux_files[aux_name] = aux[0]
return primary_file, aux_files | [
"def",
"assort_files",
"(",
"self",
",",
"candidates",
")",
":",
"by_ext",
"=",
"defaultdict",
"(",
"list",
")",
"for",
"path",
"in",
"candidates",
":",
"by_ext",
"[",
"split_extension",
"(",
"path",
")",
"[",
"1",
"]",
".",
"lower",
"(",
")",
"]",
".",
"append",
"(",
"path",
")",
"try",
":",
"primary_file",
"=",
"by_ext",
"[",
"self",
".",
"ext",
"]",
"except",
"KeyError",
":",
"raise",
"ArcanaFileFormatError",
"(",
"\"No files match primary file extension of {} out of \"",
"\"potential candidates of {}\"",
".",
"format",
"(",
"self",
",",
"\"', '\"",
".",
"join",
"(",
"candidates",
")",
")",
")",
"if",
"not",
"primary_file",
":",
"raise",
"ArcanaFileFormatError",
"(",
"\"No potential files for primary file of {}\"",
".",
"format",
"(",
"self",
")",
")",
"elif",
"len",
"(",
"primary_file",
")",
">",
"1",
":",
"raise",
"ArcanaFileFormatError",
"(",
"\"Multiple potential files for '{}' primary file of {}\"",
".",
"format",
"(",
"\"', '\"",
".",
"join",
"(",
"primary_file",
")",
",",
"self",
")",
")",
"else",
":",
"primary_file",
"=",
"primary_file",
"[",
"0",
"]",
"aux_files",
"=",
"{",
"}",
"for",
"aux_name",
",",
"aux_ext",
"in",
"self",
".",
"aux_files",
".",
"items",
"(",
")",
":",
"try",
":",
"aux",
"=",
"by_ext",
"[",
"aux_ext",
"]",
"except",
"KeyError",
":",
"raise",
"ArcanaFileFormatError",
"(",
"\"No files match auxiliary file extension '{}' of {} out of\"",
"\" potential candidates of {}\"",
".",
"format",
"(",
"aux_ext",
",",
"self",
",",
"\"', '\"",
".",
"join",
"(",
"candidates",
")",
")",
")",
"if",
"len",
"(",
"aux",
")",
">",
"1",
":",
"raise",
"ArcanaFileFormatError",
"(",
"\"Multiple potential files for '{}' auxiliary file ext. \"",
"\"({}) of {}\"",
".",
"format",
"(",
"\"', '\"",
".",
"join",
"(",
"aux",
")",
",",
"self",
")",
")",
"aux_files",
"[",
"aux_name",
"]",
"=",
"aux",
"[",
"0",
"]",
"return",
"primary_file",
",",
"aux_files"
] | Assorts candidate files into primary and auxiliary (and ignored) files
corresponding to the format by their file extensions. Can be overridden
in specialised subclasses to assort files based on other
characteristics
Parameters
----------
candidates : list[str]
The list of filenames to assort
Returns
-------
primary_file : str
Path to the selected primary file
aux_files : dict[str, str]
A dictionary mapping the auxiliary file name to the selected path | [
"Assorts",
"candidate",
"files",
"into",
"primary",
"and",
"auxiliary",
"(",
"and",
"ignored",
")",
"files",
"corresponding",
"to",
"the",
"format",
"by",
"their",
"file",
"extensions",
".",
"Can",
"be",
"overridden",
"in",
"specialised",
"subclasses",
"to",
"assort",
"files",
"based",
"on",
"other",
"characteristics"
] | train | https://github.com/MonashBI/arcana/blob/d6271a29d13733d00422d11417af8d200be62acc/arcana/data/file_format.py#L214-L267 |
MonashBI/arcana | arcana/data/file_format.py | FileFormat.matches | def matches(self, fileset):
"""
Checks to see whether the format matches the given fileset
Parameters
----------
fileset : Fileset
The fileset to check
"""
if fileset._resource_name is not None:
return (fileset._resource_name in self.resource_names(
fileset.repository.type))
elif self.directory:
if op.isdir(fileset.path):
if self.within_dir_exts is None:
return True
else:
# Get set of all extensions in the directory
return self.within_dir_exts == frozenset(
split_extension(f)[1] for f in os.listdir(fileset.path)
if not f.startswith('.'))
else:
return False
else:
if op.isfile(fileset.path):
all_paths = [fileset.path] + fileset._potential_aux_files
try:
primary_path = self.assort_files(all_paths)[0]
except ArcanaFileFormatError:
return False
else:
return primary_path == fileset.path
else:
return False | python | def matches(self, fileset):
"""
Checks to see whether the format matches the given fileset
Parameters
----------
fileset : Fileset
The fileset to check
"""
if fileset._resource_name is not None:
return (fileset._resource_name in self.resource_names(
fileset.repository.type))
elif self.directory:
if op.isdir(fileset.path):
if self.within_dir_exts is None:
return True
else:
# Get set of all extensions in the directory
return self.within_dir_exts == frozenset(
split_extension(f)[1] for f in os.listdir(fileset.path)
if not f.startswith('.'))
else:
return False
else:
if op.isfile(fileset.path):
all_paths = [fileset.path] + fileset._potential_aux_files
try:
primary_path = self.assort_files(all_paths)[0]
except ArcanaFileFormatError:
return False
else:
return primary_path == fileset.path
else:
return False | [
"def",
"matches",
"(",
"self",
",",
"fileset",
")",
":",
"if",
"fileset",
".",
"_resource_name",
"is",
"not",
"None",
":",
"return",
"(",
"fileset",
".",
"_resource_name",
"in",
"self",
".",
"resource_names",
"(",
"fileset",
".",
"repository",
".",
"type",
")",
")",
"elif",
"self",
".",
"directory",
":",
"if",
"op",
".",
"isdir",
"(",
"fileset",
".",
"path",
")",
":",
"if",
"self",
".",
"within_dir_exts",
"is",
"None",
":",
"return",
"True",
"else",
":",
"# Get set of all extensions in the directory",
"return",
"self",
".",
"within_dir_exts",
"==",
"frozenset",
"(",
"split_extension",
"(",
"f",
")",
"[",
"1",
"]",
"for",
"f",
"in",
"os",
".",
"listdir",
"(",
"fileset",
".",
"path",
")",
"if",
"not",
"f",
".",
"startswith",
"(",
"'.'",
")",
")",
"else",
":",
"return",
"False",
"else",
":",
"if",
"op",
".",
"isfile",
"(",
"fileset",
".",
"path",
")",
":",
"all_paths",
"=",
"[",
"fileset",
".",
"path",
"]",
"+",
"fileset",
".",
"_potential_aux_files",
"try",
":",
"primary_path",
"=",
"self",
".",
"assort_files",
"(",
"all_paths",
")",
"[",
"0",
"]",
"except",
"ArcanaFileFormatError",
":",
"return",
"False",
"else",
":",
"return",
"primary_path",
"==",
"fileset",
".",
"path",
"else",
":",
"return",
"False"
] | Checks to see whether the format matches the given fileset
Parameters
----------
fileset : Fileset
The fileset to check | [
"Checks",
"to",
"see",
"whether",
"the",
"format",
"matches",
"the",
"given",
"fileset"
] | train | https://github.com/MonashBI/arcana/blob/d6271a29d13733d00422d11417af8d200be62acc/arcana/data/file_format.py#L269-L302 |
MonashBI/arcana | arcana/data/file_format.py | FileFormat.set_converter | def set_converter(self, file_format, converter):
"""
Register a Converter and the FileFormat that it is able to convert from
Parameters
----------
converter : Converter
The converter to register
file_format : FileFormat
The file format that can be converted into this format
"""
self._converters[file_format.name] = (file_format, converter) | python | def set_converter(self, file_format, converter):
"""
Register a Converter and the FileFormat that it is able to convert from
Parameters
----------
converter : Converter
The converter to register
file_format : FileFormat
The file format that can be converted into this format
"""
self._converters[file_format.name] = (file_format, converter) | [
"def",
"set_converter",
"(",
"self",
",",
"file_format",
",",
"converter",
")",
":",
"self",
".",
"_converters",
"[",
"file_format",
".",
"name",
"]",
"=",
"(",
"file_format",
",",
"converter",
")"
] | Register a Converter and the FileFormat that it is able to convert from
Parameters
----------
converter : Converter
The converter to register
file_format : FileFormat
The file format that can be converted into this format | [
"Register",
"a",
"Converter",
"and",
"the",
"FileFormat",
"that",
"it",
"is",
"able",
"to",
"convert",
"from"
] | train | https://github.com/MonashBI/arcana/blob/d6271a29d13733d00422d11417af8d200be62acc/arcana/data/file_format.py#L304-L315 |
gwww/elkm1 | elkm1_lib/util.py | parse_url | def parse_url(url):
"""Parse a Elk connection string """
scheme, dest = url.split('://')
host = None
ssl_context = None
if scheme == 'elk':
host, port = dest.split(':') if ':' in dest else (dest, 2101)
elif scheme == 'elks':
host, port = dest.split(':') if ':' in dest else (dest, 2601)
ssl_context = ssl.SSLContext(ssl.PROTOCOL_TLSv1)
ssl_context.verify_mode = ssl.CERT_NONE
elif scheme == 'serial':
host, port = dest.split(':') if ':' in dest else (dest, 115200)
else:
raise ValueError("Invalid scheme '%s'" % scheme)
return (scheme, host, int(port), ssl_context) | python | def parse_url(url):
"""Parse a Elk connection string """
scheme, dest = url.split('://')
host = None
ssl_context = None
if scheme == 'elk':
host, port = dest.split(':') if ':' in dest else (dest, 2101)
elif scheme == 'elks':
host, port = dest.split(':') if ':' in dest else (dest, 2601)
ssl_context = ssl.SSLContext(ssl.PROTOCOL_TLSv1)
ssl_context.verify_mode = ssl.CERT_NONE
elif scheme == 'serial':
host, port = dest.split(':') if ':' in dest else (dest, 115200)
else:
raise ValueError("Invalid scheme '%s'" % scheme)
return (scheme, host, int(port), ssl_context) | [
"def",
"parse_url",
"(",
"url",
")",
":",
"scheme",
",",
"dest",
"=",
"url",
".",
"split",
"(",
"'://'",
")",
"host",
"=",
"None",
"ssl_context",
"=",
"None",
"if",
"scheme",
"==",
"'elk'",
":",
"host",
",",
"port",
"=",
"dest",
".",
"split",
"(",
"':'",
")",
"if",
"':'",
"in",
"dest",
"else",
"(",
"dest",
",",
"2101",
")",
"elif",
"scheme",
"==",
"'elks'",
":",
"host",
",",
"port",
"=",
"dest",
".",
"split",
"(",
"':'",
")",
"if",
"':'",
"in",
"dest",
"else",
"(",
"dest",
",",
"2601",
")",
"ssl_context",
"=",
"ssl",
".",
"SSLContext",
"(",
"ssl",
".",
"PROTOCOL_TLSv1",
")",
"ssl_context",
".",
"verify_mode",
"=",
"ssl",
".",
"CERT_NONE",
"elif",
"scheme",
"==",
"'serial'",
":",
"host",
",",
"port",
"=",
"dest",
".",
"split",
"(",
"':'",
")",
"if",
"':'",
"in",
"dest",
"else",
"(",
"dest",
",",
"115200",
")",
"else",
":",
"raise",
"ValueError",
"(",
"\"Invalid scheme '%s'\"",
"%",
"scheme",
")",
"return",
"(",
"scheme",
",",
"host",
",",
"int",
"(",
"port",
")",
",",
"ssl_context",
")"
] | Parse a Elk connection string | [
"Parse",
"a",
"Elk",
"connection",
"string"
] | train | https://github.com/gwww/elkm1/blob/078d0de30840c3fab46f1f8534d98df557931e91/elkm1_lib/util.py#L14-L29 |
gwww/elkm1 | elkm1_lib/util.py | pretty_const | def pretty_const(value):
"""Make a constant pretty for printing in GUI"""
words = value.split('_')
pretty = words[0].capitalize()
for word in words[1:]:
pretty += ' ' + word.lower()
return pretty | python | def pretty_const(value):
"""Make a constant pretty for printing in GUI"""
words = value.split('_')
pretty = words[0].capitalize()
for word in words[1:]:
pretty += ' ' + word.lower()
return pretty | [
"def",
"pretty_const",
"(",
"value",
")",
":",
"words",
"=",
"value",
".",
"split",
"(",
"'_'",
")",
"pretty",
"=",
"words",
"[",
"0",
"]",
".",
"capitalize",
"(",
")",
"for",
"word",
"in",
"words",
"[",
"1",
":",
"]",
":",
"pretty",
"+=",
"' '",
"+",
"word",
".",
"lower",
"(",
")",
"return",
"pretty"
] | Make a constant pretty for printing in GUI | [
"Make",
"a",
"constant",
"pretty",
"for",
"printing",
"in",
"GUI"
] | train | https://github.com/gwww/elkm1/blob/078d0de30840c3fab46f1f8534d98df557931e91/elkm1_lib/util.py#L32-L38 |
gwww/elkm1 | elkm1_lib/util.py | username | def username(elk, user_number):
"""Return name of user."""
if user_number >= 0 and user_number < elk.users.max_elements:
return elk.users[user_number].name
if user_number == 201:
return "*Program*"
if user_number == 202:
return "*Elk RP*"
if user_number == 203:
return "*Quick arm*"
return "" | python | def username(elk, user_number):
"""Return name of user."""
if user_number >= 0 and user_number < elk.users.max_elements:
return elk.users[user_number].name
if user_number == 201:
return "*Program*"
if user_number == 202:
return "*Elk RP*"
if user_number == 203:
return "*Quick arm*"
return "" | [
"def",
"username",
"(",
"elk",
",",
"user_number",
")",
":",
"if",
"user_number",
">=",
"0",
"and",
"user_number",
"<",
"elk",
".",
"users",
".",
"max_elements",
":",
"return",
"elk",
".",
"users",
"[",
"user_number",
"]",
".",
"name",
"if",
"user_number",
"==",
"201",
":",
"return",
"\"*Program*\"",
"if",
"user_number",
"==",
"202",
":",
"return",
"\"*Elk RP*\"",
"if",
"user_number",
"==",
"203",
":",
"return",
"\"*Quick arm*\"",
"return",
"\"\""
] | Return name of user. | [
"Return",
"name",
"of",
"user",
"."
] | train | https://github.com/gwww/elkm1/blob/078d0de30840c3fab46f1f8534d98df557931e91/elkm1_lib/util.py#L40-L50 |
gwww/elkm1 | elkm1_lib/elk.py | Elk._connect | async def _connect(self, connection_lost_callbk=None):
"""Asyncio connection to Elk."""
self.connection_lost_callbk = connection_lost_callbk
url = self._config['url']
LOG.info("Connecting to ElkM1 at %s", url)
scheme, dest, param, ssl_context = parse_url(url)
conn = partial(Connection, self.loop, self._connected,
self._disconnected, self._got_data, self._timeout)
try:
if scheme == 'serial':
await serial_asyncio.create_serial_connection(
self.loop, conn, dest, baudrate=param)
else:
await asyncio.wait_for(self.loop.create_connection(
conn, host=dest, port=param, ssl=ssl_context), timeout=30)
except (ValueError, OSError, asyncio.TimeoutError) as err:
LOG.warning("Could not connect to ElkM1 (%s). Retrying in %d seconds",
err, self._connection_retry_timer)
self.loop.call_later(self._connection_retry_timer, self.connect)
self._connection_retry_timer = 2 * self._connection_retry_timer \
if self._connection_retry_timer < 32 else 60 | python | async def _connect(self, connection_lost_callbk=None):
"""Asyncio connection to Elk."""
self.connection_lost_callbk = connection_lost_callbk
url = self._config['url']
LOG.info("Connecting to ElkM1 at %s", url)
scheme, dest, param, ssl_context = parse_url(url)
conn = partial(Connection, self.loop, self._connected,
self._disconnected, self._got_data, self._timeout)
try:
if scheme == 'serial':
await serial_asyncio.create_serial_connection(
self.loop, conn, dest, baudrate=param)
else:
await asyncio.wait_for(self.loop.create_connection(
conn, host=dest, port=param, ssl=ssl_context), timeout=30)
except (ValueError, OSError, asyncio.TimeoutError) as err:
LOG.warning("Could not connect to ElkM1 (%s). Retrying in %d seconds",
err, self._connection_retry_timer)
self.loop.call_later(self._connection_retry_timer, self.connect)
self._connection_retry_timer = 2 * self._connection_retry_timer \
if self._connection_retry_timer < 32 else 60 | [
"async",
"def",
"_connect",
"(",
"self",
",",
"connection_lost_callbk",
"=",
"None",
")",
":",
"self",
".",
"connection_lost_callbk",
"=",
"connection_lost_callbk",
"url",
"=",
"self",
".",
"_config",
"[",
"'url'",
"]",
"LOG",
".",
"info",
"(",
"\"Connecting to ElkM1 at %s\"",
",",
"url",
")",
"scheme",
",",
"dest",
",",
"param",
",",
"ssl_context",
"=",
"parse_url",
"(",
"url",
")",
"conn",
"=",
"partial",
"(",
"Connection",
",",
"self",
".",
"loop",
",",
"self",
".",
"_connected",
",",
"self",
".",
"_disconnected",
",",
"self",
".",
"_got_data",
",",
"self",
".",
"_timeout",
")",
"try",
":",
"if",
"scheme",
"==",
"'serial'",
":",
"await",
"serial_asyncio",
".",
"create_serial_connection",
"(",
"self",
".",
"loop",
",",
"conn",
",",
"dest",
",",
"baudrate",
"=",
"param",
")",
"else",
":",
"await",
"asyncio",
".",
"wait_for",
"(",
"self",
".",
"loop",
".",
"create_connection",
"(",
"conn",
",",
"host",
"=",
"dest",
",",
"port",
"=",
"param",
",",
"ssl",
"=",
"ssl_context",
")",
",",
"timeout",
"=",
"30",
")",
"except",
"(",
"ValueError",
",",
"OSError",
",",
"asyncio",
".",
"TimeoutError",
")",
"as",
"err",
":",
"LOG",
".",
"warning",
"(",
"\"Could not connect to ElkM1 (%s). Retrying in %d seconds\"",
",",
"err",
",",
"self",
".",
"_connection_retry_timer",
")",
"self",
".",
"loop",
".",
"call_later",
"(",
"self",
".",
"_connection_retry_timer",
",",
"self",
".",
"connect",
")",
"self",
".",
"_connection_retry_timer",
"=",
"2",
"*",
"self",
".",
"_connection_retry_timer",
"if",
"self",
".",
"_connection_retry_timer",
"<",
"32",
"else",
"60"
] | Asyncio connection to Elk. | [
"Asyncio",
"connection",
"to",
"Elk",
"."
] | train | https://github.com/gwww/elkm1/blob/078d0de30840c3fab46f1f8534d98df557931e91/elkm1_lib/elk.py#L50-L70 |
gwww/elkm1 | elkm1_lib/elk.py | Elk._connected | def _connected(self, transport, conn):
"""Login and sync the ElkM1 panel to memory."""
LOG.info("Connected to ElkM1")
self._conn = conn
self._transport = transport
self._connection_retry_timer = 1
if url_scheme_is_secure(self._config['url']):
self._conn.write_data(self._config['userid'], raw=True)
self._conn.write_data(self._config['password'], raw=True)
self.call_sync_handlers()
if not self._config['url'].startswith('serial://'):
self._heartbeat = self.loop.call_later(120, self._reset_connection) | python | def _connected(self, transport, conn):
"""Login and sync the ElkM1 panel to memory."""
LOG.info("Connected to ElkM1")
self._conn = conn
self._transport = transport
self._connection_retry_timer = 1
if url_scheme_is_secure(self._config['url']):
self._conn.write_data(self._config['userid'], raw=True)
self._conn.write_data(self._config['password'], raw=True)
self.call_sync_handlers()
if not self._config['url'].startswith('serial://'):
self._heartbeat = self.loop.call_later(120, self._reset_connection) | [
"def",
"_connected",
"(",
"self",
",",
"transport",
",",
"conn",
")",
":",
"LOG",
".",
"info",
"(",
"\"Connected to ElkM1\"",
")",
"self",
".",
"_conn",
"=",
"conn",
"self",
".",
"_transport",
"=",
"transport",
"self",
".",
"_connection_retry_timer",
"=",
"1",
"if",
"url_scheme_is_secure",
"(",
"self",
".",
"_config",
"[",
"'url'",
"]",
")",
":",
"self",
".",
"_conn",
".",
"write_data",
"(",
"self",
".",
"_config",
"[",
"'userid'",
"]",
",",
"raw",
"=",
"True",
")",
"self",
".",
"_conn",
".",
"write_data",
"(",
"self",
".",
"_config",
"[",
"'password'",
"]",
",",
"raw",
"=",
"True",
")",
"self",
".",
"call_sync_handlers",
"(",
")",
"if",
"not",
"self",
".",
"_config",
"[",
"'url'",
"]",
".",
"startswith",
"(",
"'serial://'",
")",
":",
"self",
".",
"_heartbeat",
"=",
"self",
".",
"loop",
".",
"call_later",
"(",
"120",
",",
"self",
".",
"_reset_connection",
")"
] | Login and sync the ElkM1 panel to memory. | [
"Login",
"and",
"sync",
"the",
"ElkM1",
"panel",
"to",
"memory",
"."
] | train | https://github.com/gwww/elkm1/blob/078d0de30840c3fab46f1f8534d98df557931e91/elkm1_lib/elk.py#L72-L83 |
gwww/elkm1 | elkm1_lib/elk.py | Elk._sd_handler | def _sd_handler(self, desc_type, unit, desc, show_on_keypad):
"""Text description"""
if desc_type not in self._descriptions_in_progress:
LOG.debug("Text description response ignored for " + str(desc_type))
return
(max_units, results, callback) = self._descriptions_in_progress[desc_type]
if unit < 0 or unit >= max_units:
callback(results)
del self._descriptions_in_progress[desc_type]
return
results[unit] = desc
self.send(sd_encode(desc_type=desc_type, unit=unit+1)) | python | def _sd_handler(self, desc_type, unit, desc, show_on_keypad):
"""Text description"""
if desc_type not in self._descriptions_in_progress:
LOG.debug("Text description response ignored for " + str(desc_type))
return
(max_units, results, callback) = self._descriptions_in_progress[desc_type]
if unit < 0 or unit >= max_units:
callback(results)
del self._descriptions_in_progress[desc_type]
return
results[unit] = desc
self.send(sd_encode(desc_type=desc_type, unit=unit+1)) | [
"def",
"_sd_handler",
"(",
"self",
",",
"desc_type",
",",
"unit",
",",
"desc",
",",
"show_on_keypad",
")",
":",
"if",
"desc_type",
"not",
"in",
"self",
".",
"_descriptions_in_progress",
":",
"LOG",
".",
"debug",
"(",
"\"Text description response ignored for \"",
"+",
"str",
"(",
"desc_type",
")",
")",
"return",
"(",
"max_units",
",",
"results",
",",
"callback",
")",
"=",
"self",
".",
"_descriptions_in_progress",
"[",
"desc_type",
"]",
"if",
"unit",
"<",
"0",
"or",
"unit",
">=",
"max_units",
":",
"callback",
"(",
"results",
")",
"del",
"self",
".",
"_descriptions_in_progress",
"[",
"desc_type",
"]",
"return",
"results",
"[",
"unit",
"]",
"=",
"desc",
"self",
".",
"send",
"(",
"sd_encode",
"(",
"desc_type",
"=",
"desc_type",
",",
"unit",
"=",
"unit",
"+",
"1",
")",
")"
] | Text description | [
"Text",
"description"
] | train | https://github.com/gwww/elkm1/blob/078d0de30840c3fab46f1f8534d98df557931e91/elkm1_lib/elk.py#L129-L142 |
gwww/elkm1 | elkm1_lib/elk.py | Elk.send | def send(self, msg):
"""Send a message to Elk panel."""
if self._conn:
self._conn.write_data(msg.message, msg.response_command) | python | def send(self, msg):
"""Send a message to Elk panel."""
if self._conn:
self._conn.write_data(msg.message, msg.response_command) | [
"def",
"send",
"(",
"self",
",",
"msg",
")",
":",
"if",
"self",
".",
"_conn",
":",
"self",
".",
"_conn",
".",
"write_data",
"(",
"msg",
".",
"message",
",",
"msg",
".",
"response_command",
")"
] | Send a message to Elk panel. | [
"Send",
"a",
"message",
"to",
"Elk",
"panel",
"."
] | train | https://github.com/gwww/elkm1/blob/078d0de30840c3fab46f1f8534d98df557931e91/elkm1_lib/elk.py#L156-L159 |
gwww/elkm1 | elkm1_lib/zones.py | Zones.sync | def sync(self):
"""Retrieve zones from ElkM1"""
self.elk.send(az_encode())
self.elk.send(zd_encode())
self.elk.send(zp_encode())
self.elk.send(zs_encode())
self.get_descriptions(TextDescriptions.ZONE.value) | python | def sync(self):
"""Retrieve zones from ElkM1"""
self.elk.send(az_encode())
self.elk.send(zd_encode())
self.elk.send(zp_encode())
self.elk.send(zs_encode())
self.get_descriptions(TextDescriptions.ZONE.value) | [
"def",
"sync",
"(",
"self",
")",
":",
"self",
".",
"elk",
".",
"send",
"(",
"az_encode",
"(",
")",
")",
"self",
".",
"elk",
".",
"send",
"(",
"zd_encode",
"(",
")",
")",
"self",
".",
"elk",
".",
"send",
"(",
"zp_encode",
"(",
")",
")",
"self",
".",
"elk",
".",
"send",
"(",
"zs_encode",
"(",
")",
")",
"self",
".",
"get_descriptions",
"(",
"TextDescriptions",
".",
"ZONE",
".",
"value",
")"
] | Retrieve zones from ElkM1 | [
"Retrieve",
"zones",
"from",
"ElkM1"
] | train | https://github.com/gwww/elkm1/blob/078d0de30840c3fab46f1f8534d98df557931e91/elkm1_lib/zones.py#L50-L56 |
erikvw/django-collect-offline | django_collect_offline/offline_model.py | OfflineModel.has_offline_historical_manager_or_raise | def has_offline_historical_manager_or_raise(self):
"""Raises an exception if model uses a history manager and
historical model history_id is not a UUIDField.
Note: expected to use edc_model.HistoricalRecords instead of
simple_history.HistoricalRecords.
"""
try:
model = self.instance.__class__.history.model
except AttributeError:
model = self.instance.__class__
field = [field for field in model._meta.fields if field.name == "history_id"]
if field and not isinstance(field[0], UUIDField):
raise OfflineHistoricalManagerError(
f"Field 'history_id' of historical model "
f"'{model._meta.app_label}.{model._meta.model_name}' "
"must be an UUIDfield. "
"For history = HistoricalRecords() use edc_model.HistoricalRecords instead of "
"simple_history.HistoricalRecords(). "
f"See '{self.instance._meta.app_label}.{self.instance._meta.model_name}'."
) | python | def has_offline_historical_manager_or_raise(self):
"""Raises an exception if model uses a history manager and
historical model history_id is not a UUIDField.
Note: expected to use edc_model.HistoricalRecords instead of
simple_history.HistoricalRecords.
"""
try:
model = self.instance.__class__.history.model
except AttributeError:
model = self.instance.__class__
field = [field for field in model._meta.fields if field.name == "history_id"]
if field and not isinstance(field[0], UUIDField):
raise OfflineHistoricalManagerError(
f"Field 'history_id' of historical model "
f"'{model._meta.app_label}.{model._meta.model_name}' "
"must be an UUIDfield. "
"For history = HistoricalRecords() use edc_model.HistoricalRecords instead of "
"simple_history.HistoricalRecords(). "
f"See '{self.instance._meta.app_label}.{self.instance._meta.model_name}'."
) | [
"def",
"has_offline_historical_manager_or_raise",
"(",
"self",
")",
":",
"try",
":",
"model",
"=",
"self",
".",
"instance",
".",
"__class__",
".",
"history",
".",
"model",
"except",
"AttributeError",
":",
"model",
"=",
"self",
".",
"instance",
".",
"__class__",
"field",
"=",
"[",
"field",
"for",
"field",
"in",
"model",
".",
"_meta",
".",
"fields",
"if",
"field",
".",
"name",
"==",
"\"history_id\"",
"]",
"if",
"field",
"and",
"not",
"isinstance",
"(",
"field",
"[",
"0",
"]",
",",
"UUIDField",
")",
":",
"raise",
"OfflineHistoricalManagerError",
"(",
"f\"Field 'history_id' of historical model \"",
"f\"'{model._meta.app_label}.{model._meta.model_name}' \"",
"\"must be an UUIDfield. \"",
"\"For history = HistoricalRecords() use edc_model.HistoricalRecords instead of \"",
"\"simple_history.HistoricalRecords(). \"",
"f\"See '{self.instance._meta.app_label}.{self.instance._meta.model_name}'.\"",
")"
] | Raises an exception if model uses a history manager and
historical model history_id is not a UUIDField.
Note: expected to use edc_model.HistoricalRecords instead of
simple_history.HistoricalRecords. | [
"Raises",
"an",
"exception",
"if",
"model",
"uses",
"a",
"history",
"manager",
"and",
"historical",
"model",
"history_id",
"is",
"not",
"a",
"UUIDField",
"."
] | train | https://github.com/erikvw/django-collect-offline/blob/3d5efd66c68e2db4b060a82b070ae490dc399ca7/django_collect_offline/offline_model.py#L71-L91 |
erikvw/django-collect-offline | django_collect_offline/offline_model.py | OfflineModel.primary_key_field | def primary_key_field(self):
"""Return the primary key field.
Is `id` in most cases. Is `history_id` for Historical models.
"""
return [field for field in self.instance._meta.fields if field.primary_key][0] | python | def primary_key_field(self):
"""Return the primary key field.
Is `id` in most cases. Is `history_id` for Historical models.
"""
return [field for field in self.instance._meta.fields if field.primary_key][0] | [
"def",
"primary_key_field",
"(",
"self",
")",
":",
"return",
"[",
"field",
"for",
"field",
"in",
"self",
".",
"instance",
".",
"_meta",
".",
"fields",
"if",
"field",
".",
"primary_key",
"]",
"[",
"0",
"]"
] | Return the primary key field.
Is `id` in most cases. Is `history_id` for Historical models. | [
"Return",
"the",
"primary",
"key",
"field",
"."
] | train | https://github.com/erikvw/django-collect-offline/blob/3d5efd66c68e2db4b060a82b070ae490dc399ca7/django_collect_offline/offline_model.py#L103-L108 |
erikvw/django-collect-offline | django_collect_offline/offline_model.py | OfflineModel.to_outgoing_transaction | def to_outgoing_transaction(self, using, created=None, deleted=None):
""" Serialize the model instance to an AES encrypted json object
and saves the json object to the OutgoingTransaction model.
"""
OutgoingTransaction = django_apps.get_model(
"django_collect_offline", "OutgoingTransaction"
)
created = True if created is None else created
action = INSERT if created else UPDATE
timestamp_datetime = (
self.instance.created if created else self.instance.modified
)
if not timestamp_datetime:
timestamp_datetime = get_utcnow()
if deleted:
timestamp_datetime = get_utcnow()
action = DELETE
outgoing_transaction = None
if self.is_serialized:
hostname = socket.gethostname()
outgoing_transaction = OutgoingTransaction.objects.using(using).create(
tx_name=self.instance._meta.label_lower,
tx_pk=getattr(self.instance, self.primary_key_field.name),
tx=self.encrypted_json(),
timestamp=timestamp_datetime.strftime("%Y%m%d%H%M%S%f"),
producer=f"{hostname}-{using}",
action=action,
using=using,
)
return outgoing_transaction | python | def to_outgoing_transaction(self, using, created=None, deleted=None):
""" Serialize the model instance to an AES encrypted json object
and saves the json object to the OutgoingTransaction model.
"""
OutgoingTransaction = django_apps.get_model(
"django_collect_offline", "OutgoingTransaction"
)
created = True if created is None else created
action = INSERT if created else UPDATE
timestamp_datetime = (
self.instance.created if created else self.instance.modified
)
if not timestamp_datetime:
timestamp_datetime = get_utcnow()
if deleted:
timestamp_datetime = get_utcnow()
action = DELETE
outgoing_transaction = None
if self.is_serialized:
hostname = socket.gethostname()
outgoing_transaction = OutgoingTransaction.objects.using(using).create(
tx_name=self.instance._meta.label_lower,
tx_pk=getattr(self.instance, self.primary_key_field.name),
tx=self.encrypted_json(),
timestamp=timestamp_datetime.strftime("%Y%m%d%H%M%S%f"),
producer=f"{hostname}-{using}",
action=action,
using=using,
)
return outgoing_transaction | [
"def",
"to_outgoing_transaction",
"(",
"self",
",",
"using",
",",
"created",
"=",
"None",
",",
"deleted",
"=",
"None",
")",
":",
"OutgoingTransaction",
"=",
"django_apps",
".",
"get_model",
"(",
"\"django_collect_offline\"",
",",
"\"OutgoingTransaction\"",
")",
"created",
"=",
"True",
"if",
"created",
"is",
"None",
"else",
"created",
"action",
"=",
"INSERT",
"if",
"created",
"else",
"UPDATE",
"timestamp_datetime",
"=",
"(",
"self",
".",
"instance",
".",
"created",
"if",
"created",
"else",
"self",
".",
"instance",
".",
"modified",
")",
"if",
"not",
"timestamp_datetime",
":",
"timestamp_datetime",
"=",
"get_utcnow",
"(",
")",
"if",
"deleted",
":",
"timestamp_datetime",
"=",
"get_utcnow",
"(",
")",
"action",
"=",
"DELETE",
"outgoing_transaction",
"=",
"None",
"if",
"self",
".",
"is_serialized",
":",
"hostname",
"=",
"socket",
".",
"gethostname",
"(",
")",
"outgoing_transaction",
"=",
"OutgoingTransaction",
".",
"objects",
".",
"using",
"(",
"using",
")",
".",
"create",
"(",
"tx_name",
"=",
"self",
".",
"instance",
".",
"_meta",
".",
"label_lower",
",",
"tx_pk",
"=",
"getattr",
"(",
"self",
".",
"instance",
",",
"self",
".",
"primary_key_field",
".",
"name",
")",
",",
"tx",
"=",
"self",
".",
"encrypted_json",
"(",
")",
",",
"timestamp",
"=",
"timestamp_datetime",
".",
"strftime",
"(",
"\"%Y%m%d%H%M%S%f\"",
")",
",",
"producer",
"=",
"f\"{hostname}-{using}\"",
",",
"action",
"=",
"action",
",",
"using",
"=",
"using",
",",
")",
"return",
"outgoing_transaction"
] | Serialize the model instance to an AES encrypted json object
and saves the json object to the OutgoingTransaction model. | [
"Serialize",
"the",
"model",
"instance",
"to",
"an",
"AES",
"encrypted",
"json",
"object",
"and",
"saves",
"the",
"json",
"object",
"to",
"the",
"OutgoingTransaction",
"model",
"."
] | train | https://github.com/erikvw/django-collect-offline/blob/3d5efd66c68e2db4b060a82b070ae490dc399ca7/django_collect_offline/offline_model.py#L110-L139 |
erikvw/django-collect-offline | django_collect_offline/offline_model.py | OfflineModel.encrypted_json | def encrypted_json(self):
"""Returns an encrypted json serialized from self.
"""
json = serialize(objects=[self.instance])
encrypted_json = Cryptor().aes_encrypt(json, LOCAL_MODE)
return encrypted_json | python | def encrypted_json(self):
"""Returns an encrypted json serialized from self.
"""
json = serialize(objects=[self.instance])
encrypted_json = Cryptor().aes_encrypt(json, LOCAL_MODE)
return encrypted_json | [
"def",
"encrypted_json",
"(",
"self",
")",
":",
"json",
"=",
"serialize",
"(",
"objects",
"=",
"[",
"self",
".",
"instance",
"]",
")",
"encrypted_json",
"=",
"Cryptor",
"(",
")",
".",
"aes_encrypt",
"(",
"json",
",",
"LOCAL_MODE",
")",
"return",
"encrypted_json"
] | Returns an encrypted json serialized from self. | [
"Returns",
"an",
"encrypted",
"json",
"serialized",
"from",
"self",
"."
] | train | https://github.com/erikvw/django-collect-offline/blob/3d5efd66c68e2db4b060a82b070ae490dc399ca7/django_collect_offline/offline_model.py#L141-L146 |
MonashBI/arcana | arcana/environment/modules.py | ModulesEnv.map_req | def map_req(self, requirement):
"""
Maps the name of an Requirement class to the name of the corresponding
module in the environment
Parameters
----------
requirement : Requirement
The requirement to map to the name of a module on the system
"""
if isinstance(self._packages_map, dict):
local_name = self._packages_map.get(requirement, requirement.name)
else:
local_name = self._packages_map(requirement)
return local_name | python | def map_req(self, requirement):
"""
Maps the name of an Requirement class to the name of the corresponding
module in the environment
Parameters
----------
requirement : Requirement
The requirement to map to the name of a module on the system
"""
if isinstance(self._packages_map, dict):
local_name = self._packages_map.get(requirement, requirement.name)
else:
local_name = self._packages_map(requirement)
return local_name | [
"def",
"map_req",
"(",
"self",
",",
"requirement",
")",
":",
"if",
"isinstance",
"(",
"self",
".",
"_packages_map",
",",
"dict",
")",
":",
"local_name",
"=",
"self",
".",
"_packages_map",
".",
"get",
"(",
"requirement",
",",
"requirement",
".",
"name",
")",
"else",
":",
"local_name",
"=",
"self",
".",
"_packages_map",
"(",
"requirement",
")",
"return",
"local_name"
] | Maps the name of an Requirement class to the name of the corresponding
module in the environment
Parameters
----------
requirement : Requirement
The requirement to map to the name of a module on the system | [
"Maps",
"the",
"name",
"of",
"an",
"Requirement",
"class",
"to",
"the",
"name",
"of",
"the",
"corresponding",
"module",
"in",
"the",
"environment"
] | train | https://github.com/MonashBI/arcana/blob/d6271a29d13733d00422d11417af8d200be62acc/arcana/environment/modules.py#L169-L183 |
MonashBI/arcana | arcana/environment/modules.py | ModulesEnv.map_version | def map_version(self, requirement, local_version):
"""
Maps a local version name to one recognised by the Requirement class
Parameters
----------
requirement : str
Name of the requirement
version : str
version string
"""
if isinstance(self._versions_map, dict):
version = self._versions_map.get(requirement, {}).get(
local_version, local_version)
else:
version = self._versions_map(requirement, local_version)
return version | python | def map_version(self, requirement, local_version):
"""
Maps a local version name to one recognised by the Requirement class
Parameters
----------
requirement : str
Name of the requirement
version : str
version string
"""
if isinstance(self._versions_map, dict):
version = self._versions_map.get(requirement, {}).get(
local_version, local_version)
else:
version = self._versions_map(requirement, local_version)
return version | [
"def",
"map_version",
"(",
"self",
",",
"requirement",
",",
"local_version",
")",
":",
"if",
"isinstance",
"(",
"self",
".",
"_versions_map",
",",
"dict",
")",
":",
"version",
"=",
"self",
".",
"_versions_map",
".",
"get",
"(",
"requirement",
",",
"{",
"}",
")",
".",
"get",
"(",
"local_version",
",",
"local_version",
")",
"else",
":",
"version",
"=",
"self",
".",
"_versions_map",
"(",
"requirement",
",",
"local_version",
")",
"return",
"version"
] | Maps a local version name to one recognised by the Requirement class
Parameters
----------
requirement : str
Name of the requirement
version : str
version string | [
"Maps",
"a",
"local",
"version",
"name",
"to",
"one",
"recognised",
"by",
"the",
"Requirement",
"class"
] | train | https://github.com/MonashBI/arcana/blob/d6271a29d13733d00422d11417af8d200be62acc/arcana/environment/modules.py#L185-L201 |
vedvyas/doxytag2zealdb | doxytag2zealdb/doxytagfile.py | TagfileProcessor.init_tag_processors | def init_tag_processors(self):
'''Register the TagProcessors that are bundled with doxytag2zealdb.'''
register = self.register_tag_processor
register('class', classTagProcessor(**self.opts))
register('file', fileTagProcessor(**self.opts))
register('namespace', namespaceTagProcessor(**self.opts))
register('struct', structTagProcessor(**self.opts))
register('union', unionTagProcessor(**self.opts))
register('function', functionTagProcessor(**self.opts))
register('define', defineTagProcessor(**self.opts))
register('enumeration', enumerationTagProcessor(**self.opts))
register('enumvalue', enumvalueTagProcessor(**self.opts))
register('typedef', typedefTagProcessor(**self.opts))
register('variable', variableTagProcessor(**self.opts)) | python | def init_tag_processors(self):
'''Register the TagProcessors that are bundled with doxytag2zealdb.'''
register = self.register_tag_processor
register('class', classTagProcessor(**self.opts))
register('file', fileTagProcessor(**self.opts))
register('namespace', namespaceTagProcessor(**self.opts))
register('struct', structTagProcessor(**self.opts))
register('union', unionTagProcessor(**self.opts))
register('function', functionTagProcessor(**self.opts))
register('define', defineTagProcessor(**self.opts))
register('enumeration', enumerationTagProcessor(**self.opts))
register('enumvalue', enumvalueTagProcessor(**self.opts))
register('typedef', typedefTagProcessor(**self.opts))
register('variable', variableTagProcessor(**self.opts)) | [
"def",
"init_tag_processors",
"(",
"self",
")",
":",
"register",
"=",
"self",
".",
"register_tag_processor",
"register",
"(",
"'class'",
",",
"classTagProcessor",
"(",
"*",
"*",
"self",
".",
"opts",
")",
")",
"register",
"(",
"'file'",
",",
"fileTagProcessor",
"(",
"*",
"*",
"self",
".",
"opts",
")",
")",
"register",
"(",
"'namespace'",
",",
"namespaceTagProcessor",
"(",
"*",
"*",
"self",
".",
"opts",
")",
")",
"register",
"(",
"'struct'",
",",
"structTagProcessor",
"(",
"*",
"*",
"self",
".",
"opts",
")",
")",
"register",
"(",
"'union'",
",",
"unionTagProcessor",
"(",
"*",
"*",
"self",
".",
"opts",
")",
")",
"register",
"(",
"'function'",
",",
"functionTagProcessor",
"(",
"*",
"*",
"self",
".",
"opts",
")",
")",
"register",
"(",
"'define'",
",",
"defineTagProcessor",
"(",
"*",
"*",
"self",
".",
"opts",
")",
")",
"register",
"(",
"'enumeration'",
",",
"enumerationTagProcessor",
"(",
"*",
"*",
"self",
".",
"opts",
")",
")",
"register",
"(",
"'enumvalue'",
",",
"enumvalueTagProcessor",
"(",
"*",
"*",
"self",
".",
"opts",
")",
")",
"register",
"(",
"'typedef'",
",",
"typedefTagProcessor",
"(",
"*",
"*",
"self",
".",
"opts",
")",
")",
"register",
"(",
"'variable'",
",",
"variableTagProcessor",
"(",
"*",
"*",
"self",
".",
"opts",
")",
")"
] | Register the TagProcessors that are bundled with doxytag2zealdb. | [
"Register",
"the",
"TagProcessors",
"that",
"are",
"bundled",
"with",
"doxytag2zealdb",
"."
] | train | https://github.com/vedvyas/doxytag2zealdb/blob/8b07a88af6794248f8cfdabb0fda9dd61c777127/doxytag2zealdb/doxytagfile.py#L76-L90 |
vedvyas/doxytag2zealdb | doxytag2zealdb/doxytagfile.py | TagfileProcessor.process | def process(self):
'''Run all tag processors.'''
for tag_proc in self.tag_procs:
before_count = self.entry_count
self.run_tag_processor(tag_proc)
after_count = self.entry_count
if self.verbose:
print('Inserted %d entries for "%s" tag processor' % (
after_count - before_count, tag_proc), file=sys.stderr)
if self.verbose:
print('Inserted %d entries overall' % self.entry_count,
file=sys.stderr) | python | def process(self):
'''Run all tag processors.'''
for tag_proc in self.tag_procs:
before_count = self.entry_count
self.run_tag_processor(tag_proc)
after_count = self.entry_count
if self.verbose:
print('Inserted %d entries for "%s" tag processor' % (
after_count - before_count, tag_proc), file=sys.stderr)
if self.verbose:
print('Inserted %d entries overall' % self.entry_count,
file=sys.stderr) | [
"def",
"process",
"(",
"self",
")",
":",
"for",
"tag_proc",
"in",
"self",
".",
"tag_procs",
":",
"before_count",
"=",
"self",
".",
"entry_count",
"self",
".",
"run_tag_processor",
"(",
"tag_proc",
")",
"after_count",
"=",
"self",
".",
"entry_count",
"if",
"self",
".",
"verbose",
":",
"print",
"(",
"'Inserted %d entries for \"%s\" tag processor'",
"%",
"(",
"after_count",
"-",
"before_count",
",",
"tag_proc",
")",
",",
"file",
"=",
"sys",
".",
"stderr",
")",
"if",
"self",
".",
"verbose",
":",
"print",
"(",
"'Inserted %d entries overall'",
"%",
"self",
".",
"entry_count",
",",
"file",
"=",
"sys",
".",
"stderr",
")"
] | Run all tag processors. | [
"Run",
"all",
"tag",
"processors",
"."
] | train | https://github.com/vedvyas/doxytag2zealdb/blob/8b07a88af6794248f8cfdabb0fda9dd61c777127/doxytag2zealdb/doxytagfile.py#L111-L124 |
vedvyas/doxytag2zealdb | doxytag2zealdb/doxytagfile.py | TagfileProcessor.run_tag_processor | def run_tag_processor(self, tag_proc_name):
'''Run a tag processor.
Args:
tag_proc_name: A string key that maps to the TagProcessor to run.
'''
tag_processor = self.tag_procs[tag_proc_name]
for tag in tag_processor.find(self.soup):
self.process_tag(tag_proc_name, tag) | python | def run_tag_processor(self, tag_proc_name):
'''Run a tag processor.
Args:
tag_proc_name: A string key that maps to the TagProcessor to run.
'''
tag_processor = self.tag_procs[tag_proc_name]
for tag in tag_processor.find(self.soup):
self.process_tag(tag_proc_name, tag) | [
"def",
"run_tag_processor",
"(",
"self",
",",
"tag_proc_name",
")",
":",
"tag_processor",
"=",
"self",
".",
"tag_procs",
"[",
"tag_proc_name",
"]",
"for",
"tag",
"in",
"tag_processor",
".",
"find",
"(",
"self",
".",
"soup",
")",
":",
"self",
".",
"process_tag",
"(",
"tag_proc_name",
",",
"tag",
")"
] | Run a tag processor.
Args:
tag_proc_name: A string key that maps to the TagProcessor to run. | [
"Run",
"a",
"tag",
"processor",
"."
] | train | https://github.com/vedvyas/doxytag2zealdb/blob/8b07a88af6794248f8cfdabb0fda9dd61c777127/doxytag2zealdb/doxytagfile.py#L126-L135 |
vedvyas/doxytag2zealdb | doxytag2zealdb/doxytagfile.py | TagfileProcessor.process_tag | def process_tag(self, tag_proc_name, tag):
'''Process a tag with a tag processor and insert a DB entry.
Args:
tag_proc_name: A string key that maps to the TagProcessor to use.
tag: A BeautifulSoup Tag to process.
'''
tag_processor = self.tag_procs[tag_proc_name]
db_entry = (tag_processor.get_name(tag),
tag_processor.get_entry_type(tag),
tag_processor.get_filename(tag))
self.zeal_db.insert(*db_entry)
self.entry_count += 1 | python | def process_tag(self, tag_proc_name, tag):
'''Process a tag with a tag processor and insert a DB entry.
Args:
tag_proc_name: A string key that maps to the TagProcessor to use.
tag: A BeautifulSoup Tag to process.
'''
tag_processor = self.tag_procs[tag_proc_name]
db_entry = (tag_processor.get_name(tag),
tag_processor.get_entry_type(tag),
tag_processor.get_filename(tag))
self.zeal_db.insert(*db_entry)
self.entry_count += 1 | [
"def",
"process_tag",
"(",
"self",
",",
"tag_proc_name",
",",
"tag",
")",
":",
"tag_processor",
"=",
"self",
".",
"tag_procs",
"[",
"tag_proc_name",
"]",
"db_entry",
"=",
"(",
"tag_processor",
".",
"get_name",
"(",
"tag",
")",
",",
"tag_processor",
".",
"get_entry_type",
"(",
"tag",
")",
",",
"tag_processor",
".",
"get_filename",
"(",
"tag",
")",
")",
"self",
".",
"zeal_db",
".",
"insert",
"(",
"*",
"db_entry",
")",
"self",
".",
"entry_count",
"+=",
"1"
] | Process a tag with a tag processor and insert a DB entry.
Args:
tag_proc_name: A string key that maps to the TagProcessor to use.
tag: A BeautifulSoup Tag to process. | [
"Process",
"a",
"tag",
"with",
"a",
"tag",
"processor",
"and",
"insert",
"a",
"DB",
"entry",
"."
] | train | https://github.com/vedvyas/doxytag2zealdb/blob/8b07a88af6794248f8cfdabb0fda9dd61c777127/doxytag2zealdb/doxytagfile.py#L137-L152 |
brentp/toolshed | toolshed/__init__.py | groupby | def groupby(iterable, key=0, filter=None):
"""
wrapper to itertools.groupby that returns a list of each group, rather
than a generator and accepts integers or strings as the key and
automatically converts them to callables with itemgetter(key)
Arguments:
iterable: iterable
key: string, int or callable that tells how to group
Returns:
an iterable where each item is the key and a *list* of that
group. (itertools.groupby returns a generator of that group).
e.g. groupby(iterable, 0)
"""
if isinstance(key, (basestring, int)):
key = itemgetter(key)
elif isinstance(key, (tuple, list)):
key = itemgetter(*key)
for label, grp in igroupby(iterable, key):
yield label, list(grp) | python | def groupby(iterable, key=0, filter=None):
"""
wrapper to itertools.groupby that returns a list of each group, rather
than a generator and accepts integers or strings as the key and
automatically converts them to callables with itemgetter(key)
Arguments:
iterable: iterable
key: string, int or callable that tells how to group
Returns:
an iterable where each item is the key and a *list* of that
group. (itertools.groupby returns a generator of that group).
e.g. groupby(iterable, 0)
"""
if isinstance(key, (basestring, int)):
key = itemgetter(key)
elif isinstance(key, (tuple, list)):
key = itemgetter(*key)
for label, grp in igroupby(iterable, key):
yield label, list(grp) | [
"def",
"groupby",
"(",
"iterable",
",",
"key",
"=",
"0",
",",
"filter",
"=",
"None",
")",
":",
"if",
"isinstance",
"(",
"key",
",",
"(",
"basestring",
",",
"int",
")",
")",
":",
"key",
"=",
"itemgetter",
"(",
"key",
")",
"elif",
"isinstance",
"(",
"key",
",",
"(",
"tuple",
",",
"list",
")",
")",
":",
"key",
"=",
"itemgetter",
"(",
"*",
"key",
")",
"for",
"label",
",",
"grp",
"in",
"igroupby",
"(",
"iterable",
",",
"key",
")",
":",
"yield",
"label",
",",
"list",
"(",
"grp",
")"
] | wrapper to itertools.groupby that returns a list of each group, rather
than a generator and accepts integers or strings as the key and
automatically converts them to callables with itemgetter(key)
Arguments:
iterable: iterable
key: string, int or callable that tells how to group
Returns:
an iterable where each item is the key and a *list* of that
group. (itertools.groupby returns a generator of that group).
e.g. groupby(iterable, 0) | [
"wrapper",
"to",
"itertools",
".",
"groupby",
"that",
"returns",
"a",
"list",
"of",
"each",
"group",
"rather",
"than",
"a",
"generator",
"and",
"accepts",
"integers",
"or",
"strings",
"as",
"the",
"key",
"and",
"automatically",
"converts",
"them",
"to",
"callables",
"with",
"itemgetter",
"(",
"key",
")"
] | train | https://github.com/brentp/toolshed/blob/c9529d6872bf28207642896c3b416f68e79b1269/toolshed/__init__.py#L14-L35 |
brentp/toolshed | toolshed/__init__.py | groups_of | def groups_of(n, iterable):
"""
>>> groups_of(2, range(5))
"""
args = [iter(iterable)] * n
for x in izip_longest(*args):
yield [v for v in x if v is not None] | python | def groups_of(n, iterable):
"""
>>> groups_of(2, range(5))
"""
args = [iter(iterable)] * n
for x in izip_longest(*args):
yield [v for v in x if v is not None] | [
"def",
"groups_of",
"(",
"n",
",",
"iterable",
")",
":",
"args",
"=",
"[",
"iter",
"(",
"iterable",
")",
"]",
"*",
"n",
"for",
"x",
"in",
"izip_longest",
"(",
"*",
"args",
")",
":",
"yield",
"[",
"v",
"for",
"v",
"in",
"x",
"if",
"v",
"is",
"not",
"None",
"]"
] | >>> groups_of(2, range(5)) | [
">>>",
"groups_of",
"(",
"2",
"range",
"(",
"5",
"))"
] | train | https://github.com/brentp/toolshed/blob/c9529d6872bf28207642896c3b416f68e79b1269/toolshed/__init__.py#L42-L48 |
MonashBI/arcana | arcana/processor/base.py | Processor.run | def run(self, *pipelines, **kwargs):
"""
Connects all pipelines to that study's repository and runs them
in the same NiPype workflow
Parameters
----------
pipeline(s) : Pipeline, ...
The pipeline to connect to repository
required_outputs : list[set[str]]
A set of required outputs for each pipeline. If None then all
outputs are assumed to be required
subject_ids : list[str]
The subset of subject IDs to process. If None all available will be
processed. Note this is not a duplication of the study
and visit IDs passed to the Study __init__, as they define the
scope of the analysis and these simply limit the scope of the
current run (e.g. to break the analysis into smaller chunks and
run separately). Therefore, if the analysis joins over subjects,
then all subjects will be processed and this parameter will be
ignored.
visit_ids : list[str]
The same as 'subject_ids' but for visit IDs
session_ids : list[str,str]
The same as 'subject_ids' and 'visit_ids', except specifies a set
of specific combinations in tuples of (subject ID, visit ID).
force : bool | 'all'
A flag to force the reprocessing of all sessions in the filter
array, regardless of whether the parameters|pipeline used
to generate them matches the current ones. NB: if True only the
final pipeline will be reprocessed (prerequisite pipelines won't
run unless they don't match provenance). To process all
prerequisite pipelines 'all' should be passed to force.
Returns
-------
report : ReportNode
The final report node, which can be connected to subsequent
pipelines
"""
if not pipelines:
raise ArcanaUsageError("No pipelines provided to {}.run"
.format(self))
# Get filter kwargs (NB: in Python 3 they could be in the kwarg list)
subject_ids = kwargs.pop('subject_ids', None)
visit_ids = kwargs.pop('visit_ids', None)
session_ids = kwargs.pop('session_ids', None)
clean_work_dir = kwargs.pop('clean_work_dir',
self._clean_work_dir_between_runs)
required_outputs = kwargs.pop('required_outputs', repeat(None))
# Create name by combining pipelines
name = '_'.join(p.name for p in pipelines)
# Clean work dir if required
if clean_work_dir:
workflow_work_dir = op.join(self.work_dir, name)
if op.exists(workflow_work_dir):
shutil.rmtree(workflow_work_dir)
# Trim the end of very large names to avoid problems with
# workflow names exceeding system limits.
name = name[:WORKFLOW_MAX_NAME_LEN]
workflow = pe.Workflow(name=name, base_dir=self.work_dir)
# Generate filter array to optionally restrict the run to certain
# subject and visit IDs.
tree = self.study.tree
# Create maps from the subject|visit IDs to an index used to represent
# them in the filter array
subject_inds = {s.id: i for i, s in enumerate(tree.subjects)}
visit_inds = {v.id: i for i, v in enumerate(tree.visits)}
if not subject_ids and not visit_ids and not session_ids:
# No filters applied so create a full filter array
filter_array = np.ones((len(subject_inds), len(visit_inds)),
dtype=bool)
else:
# Filters applied so create an empty filter array and populate
# from filter lists
filter_array = np.zeros((len(subject_inds), len(visit_inds)),
dtype=bool)
if subject_ids is not None:
for subj_id in subject_ids:
filter_array[subject_inds[subj_id], :] = True
if visit_ids is not None:
for visit_id in visit_ids:
filter_array[:, visit_inds[visit_id]] = True
if session_ids is not None:
for subj_id, visit_id in session_ids:
filter_array[subject_inds[subj_id],
visit_inds[visit_id]] = True
if not filter_array.any():
raise ArcanaUsageError(
"Provided filters:\n" +
(" subject_ids: {}\n".format(', '.join(subject_ids))
if subject_ids is not None else '') +
(" visit_ids: {}\n".format(', '.join(visit_ids))
if visit_ids is not None else '') +
(" session_ids: {}\n".format(', '.join(session_ids))
if session_ids is not None else '') +
"Did not match any sessions in the project:\n" +
" subject_ids: {}\n".format(', '.join(subject_inds)) +
" visit_ids: {}\n".format(', '.join(visit_inds)))
# Stack of pipelines to process in reverse order of required execution
stack = OrderedDict()
def push_on_stack(pipeline, filt_array, req_outputs):
if req_outputs is None:
req_outputs = pipeline.output_names
if pipeline.name in stack:
# Pop pipeline from stack in order to add it to the end of the
# stack and ensure it is run before all downstream pipelines
prev_pipeline, prev_req_outputs, prev_filt_array = stack.pop(
pipeline.name)
if pipeline is not prev_pipeline and pipeline != prev_pipeline:
raise ArcanaDesignError(
"Attempting to run two different pipelines with the "
"same name, {} and {}".format(pipeline, prev_pipeline))
# Combined required outputs and filter array with previous
# references to the pipeline
req_outputs = copy(req_outputs)
req_outputs.update(prev_req_outputs)
filt_array = filt_array | prev_filt_array
# If the pipeline to process contains summary outputs (i.e. 'per-
# subject|visit|study' frequency), then we need to "dialate" the
# filter array to include IDs across the scope of the study, e.g.
# all subjects for per-vist, or all visits for per-subject.
output_freqs = set(pipeline.output_frequencies)
dialated_filt_array = self._dialate_array(filt_array,
pipeline.joins)
added = dialated_filt_array ^ filt_array
if added.any():
filt_array = dialated_filt_array
# Invert the index dictionaries to get index-to-ID maps
inv_subject_inds = {v: k for k, v in subject_inds.items()}
inv_visit_inds = {v: k for k, v in visit_inds.items()}
logger.warning(
"Dialated filter array used to process '{}' pipeline to "
"include {} subject/visit IDs due to its '{}' summary "
"outputs ".format(
pipeline.name,
', '.join('({},{})'.format(inv_subject_inds[s],
inv_visit_inds[v])
for s, v in zip(*np.nonzero(added))),
"' and '".join(output_freqs)))
stack[pipeline.name] = pipeline, req_outputs, filt_array
# Recursively add all prerequisites to stack
for prq_getter, prq_req_outputs in pipeline.prerequisites.items():
try:
prereq = pipeline.study.pipeline(
prq_getter, prq_req_outputs)
push_on_stack(prereq, filt_array, prq_req_outputs)
except (ArcanaMissingDataException,
ArcanaOutputNotProducedException) as e:
e.msg += ("{}, which are required as inputs to the '{}' "
"pipeline to produce '{}'".format(
pipeline.name, "', '".join(req_outputs)))
raise e
# Add all primary pipelines to the stack along with their prereqs
for pipeline, req_outputs in zip(pipelines, required_outputs):
push_on_stack(pipeline, filter_array, req_outputs)
# Iterate through stack of required pipelines from upstream to
# downstream
for pipeline, req_outputs, flt_array in reversed(list(stack.values())):
try:
self._connect_pipeline(
pipeline, req_outputs, workflow, subject_inds, visit_inds,
flt_array, **kwargs)
except ArcanaNoRunRequiredException:
logger.info("Not running '{}' pipeline as its outputs "
"are already present in the repository"
.format(pipeline.name))
# Save complete graph for debugging purposes
# workflow.write_graph(graph2use='flat', format='svg')
# print('Graph saved in {} directory'.format(os.getcwd()))
# Actually run the generated workflow
result = workflow.run(plugin=self._plugin)
# Reset the cached tree of filesets in the repository as it will
# change after the pipeline has run.
self.study.clear_caches()
return result | python | def run(self, *pipelines, **kwargs):
"""
Connects all pipelines to that study's repository and runs them
in the same NiPype workflow
Parameters
----------
pipeline(s) : Pipeline, ...
The pipeline to connect to repository
required_outputs : list[set[str]]
A set of required outputs for each pipeline. If None then all
outputs are assumed to be required
subject_ids : list[str]
The subset of subject IDs to process. If None all available will be
processed. Note this is not a duplication of the study
and visit IDs passed to the Study __init__, as they define the
scope of the analysis and these simply limit the scope of the
current run (e.g. to break the analysis into smaller chunks and
run separately). Therefore, if the analysis joins over subjects,
then all subjects will be processed and this parameter will be
ignored.
visit_ids : list[str]
The same as 'subject_ids' but for visit IDs
session_ids : list[str,str]
The same as 'subject_ids' and 'visit_ids', except specifies a set
of specific combinations in tuples of (subject ID, visit ID).
force : bool | 'all'
A flag to force the reprocessing of all sessions in the filter
array, regardless of whether the parameters|pipeline used
to generate them matches the current ones. NB: if True only the
final pipeline will be reprocessed (prerequisite pipelines won't
run unless they don't match provenance). To process all
prerequisite pipelines 'all' should be passed to force.
Returns
-------
report : ReportNode
The final report node, which can be connected to subsequent
pipelines
"""
if not pipelines:
raise ArcanaUsageError("No pipelines provided to {}.run"
.format(self))
# Get filter kwargs (NB: in Python 3 they could be in the kwarg list)
subject_ids = kwargs.pop('subject_ids', None)
visit_ids = kwargs.pop('visit_ids', None)
session_ids = kwargs.pop('session_ids', None)
clean_work_dir = kwargs.pop('clean_work_dir',
self._clean_work_dir_between_runs)
required_outputs = kwargs.pop('required_outputs', repeat(None))
# Create name by combining pipelines
name = '_'.join(p.name for p in pipelines)
# Clean work dir if required
if clean_work_dir:
workflow_work_dir = op.join(self.work_dir, name)
if op.exists(workflow_work_dir):
shutil.rmtree(workflow_work_dir)
# Trim the end of very large names to avoid problems with
# workflow names exceeding system limits.
name = name[:WORKFLOW_MAX_NAME_LEN]
workflow = pe.Workflow(name=name, base_dir=self.work_dir)
# Generate filter array to optionally restrict the run to certain
# subject and visit IDs.
tree = self.study.tree
# Create maps from the subject|visit IDs to an index used to represent
# them in the filter array
subject_inds = {s.id: i for i, s in enumerate(tree.subjects)}
visit_inds = {v.id: i for i, v in enumerate(tree.visits)}
if not subject_ids and not visit_ids and not session_ids:
# No filters applied so create a full filter array
filter_array = np.ones((len(subject_inds), len(visit_inds)),
dtype=bool)
else:
# Filters applied so create an empty filter array and populate
# from filter lists
filter_array = np.zeros((len(subject_inds), len(visit_inds)),
dtype=bool)
if subject_ids is not None:
for subj_id in subject_ids:
filter_array[subject_inds[subj_id], :] = True
if visit_ids is not None:
for visit_id in visit_ids:
filter_array[:, visit_inds[visit_id]] = True
if session_ids is not None:
for subj_id, visit_id in session_ids:
filter_array[subject_inds[subj_id],
visit_inds[visit_id]] = True
if not filter_array.any():
raise ArcanaUsageError(
"Provided filters:\n" +
(" subject_ids: {}\n".format(', '.join(subject_ids))
if subject_ids is not None else '') +
(" visit_ids: {}\n".format(', '.join(visit_ids))
if visit_ids is not None else '') +
(" session_ids: {}\n".format(', '.join(session_ids))
if session_ids is not None else '') +
"Did not match any sessions in the project:\n" +
" subject_ids: {}\n".format(', '.join(subject_inds)) +
" visit_ids: {}\n".format(', '.join(visit_inds)))
# Stack of pipelines to process in reverse order of required execution
stack = OrderedDict()
def push_on_stack(pipeline, filt_array, req_outputs):
if req_outputs is None:
req_outputs = pipeline.output_names
if pipeline.name in stack:
# Pop pipeline from stack in order to add it to the end of the
# stack and ensure it is run before all downstream pipelines
prev_pipeline, prev_req_outputs, prev_filt_array = stack.pop(
pipeline.name)
if pipeline is not prev_pipeline and pipeline != prev_pipeline:
raise ArcanaDesignError(
"Attempting to run two different pipelines with the "
"same name, {} and {}".format(pipeline, prev_pipeline))
# Combined required outputs and filter array with previous
# references to the pipeline
req_outputs = copy(req_outputs)
req_outputs.update(prev_req_outputs)
filt_array = filt_array | prev_filt_array
# If the pipeline to process contains summary outputs (i.e. 'per-
# subject|visit|study' frequency), then we need to "dialate" the
# filter array to include IDs across the scope of the study, e.g.
# all subjects for per-vist, or all visits for per-subject.
output_freqs = set(pipeline.output_frequencies)
dialated_filt_array = self._dialate_array(filt_array,
pipeline.joins)
added = dialated_filt_array ^ filt_array
if added.any():
filt_array = dialated_filt_array
# Invert the index dictionaries to get index-to-ID maps
inv_subject_inds = {v: k for k, v in subject_inds.items()}
inv_visit_inds = {v: k for k, v in visit_inds.items()}
logger.warning(
"Dialated filter array used to process '{}' pipeline to "
"include {} subject/visit IDs due to its '{}' summary "
"outputs ".format(
pipeline.name,
', '.join('({},{})'.format(inv_subject_inds[s],
inv_visit_inds[v])
for s, v in zip(*np.nonzero(added))),
"' and '".join(output_freqs)))
stack[pipeline.name] = pipeline, req_outputs, filt_array
# Recursively add all prerequisites to stack
for prq_getter, prq_req_outputs in pipeline.prerequisites.items():
try:
prereq = pipeline.study.pipeline(
prq_getter, prq_req_outputs)
push_on_stack(prereq, filt_array, prq_req_outputs)
except (ArcanaMissingDataException,
ArcanaOutputNotProducedException) as e:
e.msg += ("{}, which are required as inputs to the '{}' "
"pipeline to produce '{}'".format(
pipeline.name, "', '".join(req_outputs)))
raise e
# Add all primary pipelines to the stack along with their prereqs
for pipeline, req_outputs in zip(pipelines, required_outputs):
push_on_stack(pipeline, filter_array, req_outputs)
# Iterate through stack of required pipelines from upstream to
# downstream
for pipeline, req_outputs, flt_array in reversed(list(stack.values())):
try:
self._connect_pipeline(
pipeline, req_outputs, workflow, subject_inds, visit_inds,
flt_array, **kwargs)
except ArcanaNoRunRequiredException:
logger.info("Not running '{}' pipeline as its outputs "
"are already present in the repository"
.format(pipeline.name))
# Save complete graph for debugging purposes
# workflow.write_graph(graph2use='flat', format='svg')
# print('Graph saved in {} directory'.format(os.getcwd()))
# Actually run the generated workflow
result = workflow.run(plugin=self._plugin)
# Reset the cached tree of filesets in the repository as it will
# change after the pipeline has run.
self.study.clear_caches()
return result | [
"def",
"run",
"(",
"self",
",",
"*",
"pipelines",
",",
"*",
"*",
"kwargs",
")",
":",
"if",
"not",
"pipelines",
":",
"raise",
"ArcanaUsageError",
"(",
"\"No pipelines provided to {}.run\"",
".",
"format",
"(",
"self",
")",
")",
"# Get filter kwargs (NB: in Python 3 they could be in the kwarg list)",
"subject_ids",
"=",
"kwargs",
".",
"pop",
"(",
"'subject_ids'",
",",
"None",
")",
"visit_ids",
"=",
"kwargs",
".",
"pop",
"(",
"'visit_ids'",
",",
"None",
")",
"session_ids",
"=",
"kwargs",
".",
"pop",
"(",
"'session_ids'",
",",
"None",
")",
"clean_work_dir",
"=",
"kwargs",
".",
"pop",
"(",
"'clean_work_dir'",
",",
"self",
".",
"_clean_work_dir_between_runs",
")",
"required_outputs",
"=",
"kwargs",
".",
"pop",
"(",
"'required_outputs'",
",",
"repeat",
"(",
"None",
")",
")",
"# Create name by combining pipelines",
"name",
"=",
"'_'",
".",
"join",
"(",
"p",
".",
"name",
"for",
"p",
"in",
"pipelines",
")",
"# Clean work dir if required",
"if",
"clean_work_dir",
":",
"workflow_work_dir",
"=",
"op",
".",
"join",
"(",
"self",
".",
"work_dir",
",",
"name",
")",
"if",
"op",
".",
"exists",
"(",
"workflow_work_dir",
")",
":",
"shutil",
".",
"rmtree",
"(",
"workflow_work_dir",
")",
"# Trim the end of very large names to avoid problems with",
"# workflow names exceeding system limits.",
"name",
"=",
"name",
"[",
":",
"WORKFLOW_MAX_NAME_LEN",
"]",
"workflow",
"=",
"pe",
".",
"Workflow",
"(",
"name",
"=",
"name",
",",
"base_dir",
"=",
"self",
".",
"work_dir",
")",
"# Generate filter array to optionally restrict the run to certain",
"# subject and visit IDs.",
"tree",
"=",
"self",
".",
"study",
".",
"tree",
"# Create maps from the subject|visit IDs to an index used to represent",
"# them in the filter array",
"subject_inds",
"=",
"{",
"s",
".",
"id",
":",
"i",
"for",
"i",
",",
"s",
"in",
"enumerate",
"(",
"tree",
".",
"subjects",
")",
"}",
"visit_inds",
"=",
"{",
"v",
".",
"id",
":",
"i",
"for",
"i",
",",
"v",
"in",
"enumerate",
"(",
"tree",
".",
"visits",
")",
"}",
"if",
"not",
"subject_ids",
"and",
"not",
"visit_ids",
"and",
"not",
"session_ids",
":",
"# No filters applied so create a full filter array",
"filter_array",
"=",
"np",
".",
"ones",
"(",
"(",
"len",
"(",
"subject_inds",
")",
",",
"len",
"(",
"visit_inds",
")",
")",
",",
"dtype",
"=",
"bool",
")",
"else",
":",
"# Filters applied so create an empty filter array and populate",
"# from filter lists",
"filter_array",
"=",
"np",
".",
"zeros",
"(",
"(",
"len",
"(",
"subject_inds",
")",
",",
"len",
"(",
"visit_inds",
")",
")",
",",
"dtype",
"=",
"bool",
")",
"if",
"subject_ids",
"is",
"not",
"None",
":",
"for",
"subj_id",
"in",
"subject_ids",
":",
"filter_array",
"[",
"subject_inds",
"[",
"subj_id",
"]",
",",
":",
"]",
"=",
"True",
"if",
"visit_ids",
"is",
"not",
"None",
":",
"for",
"visit_id",
"in",
"visit_ids",
":",
"filter_array",
"[",
":",
",",
"visit_inds",
"[",
"visit_id",
"]",
"]",
"=",
"True",
"if",
"session_ids",
"is",
"not",
"None",
":",
"for",
"subj_id",
",",
"visit_id",
"in",
"session_ids",
":",
"filter_array",
"[",
"subject_inds",
"[",
"subj_id",
"]",
",",
"visit_inds",
"[",
"visit_id",
"]",
"]",
"=",
"True",
"if",
"not",
"filter_array",
".",
"any",
"(",
")",
":",
"raise",
"ArcanaUsageError",
"(",
"\"Provided filters:\\n\"",
"+",
"(",
"\" subject_ids: {}\\n\"",
".",
"format",
"(",
"', '",
".",
"join",
"(",
"subject_ids",
")",
")",
"if",
"subject_ids",
"is",
"not",
"None",
"else",
"''",
")",
"+",
"(",
"\" visit_ids: {}\\n\"",
".",
"format",
"(",
"', '",
".",
"join",
"(",
"visit_ids",
")",
")",
"if",
"visit_ids",
"is",
"not",
"None",
"else",
"''",
")",
"+",
"(",
"\" session_ids: {}\\n\"",
".",
"format",
"(",
"', '",
".",
"join",
"(",
"session_ids",
")",
")",
"if",
"session_ids",
"is",
"not",
"None",
"else",
"''",
")",
"+",
"\"Did not match any sessions in the project:\\n\"",
"+",
"\" subject_ids: {}\\n\"",
".",
"format",
"(",
"', '",
".",
"join",
"(",
"subject_inds",
")",
")",
"+",
"\" visit_ids: {}\\n\"",
".",
"format",
"(",
"', '",
".",
"join",
"(",
"visit_inds",
")",
")",
")",
"# Stack of pipelines to process in reverse order of required execution",
"stack",
"=",
"OrderedDict",
"(",
")",
"def",
"push_on_stack",
"(",
"pipeline",
",",
"filt_array",
",",
"req_outputs",
")",
":",
"if",
"req_outputs",
"is",
"None",
":",
"req_outputs",
"=",
"pipeline",
".",
"output_names",
"if",
"pipeline",
".",
"name",
"in",
"stack",
":",
"# Pop pipeline from stack in order to add it to the end of the",
"# stack and ensure it is run before all downstream pipelines",
"prev_pipeline",
",",
"prev_req_outputs",
",",
"prev_filt_array",
"=",
"stack",
".",
"pop",
"(",
"pipeline",
".",
"name",
")",
"if",
"pipeline",
"is",
"not",
"prev_pipeline",
"and",
"pipeline",
"!=",
"prev_pipeline",
":",
"raise",
"ArcanaDesignError",
"(",
"\"Attempting to run two different pipelines with the \"",
"\"same name, {} and {}\"",
".",
"format",
"(",
"pipeline",
",",
"prev_pipeline",
")",
")",
"# Combined required outputs and filter array with previous",
"# references to the pipeline",
"req_outputs",
"=",
"copy",
"(",
"req_outputs",
")",
"req_outputs",
".",
"update",
"(",
"prev_req_outputs",
")",
"filt_array",
"=",
"filt_array",
"|",
"prev_filt_array",
"# If the pipeline to process contains summary outputs (i.e. 'per-",
"# subject|visit|study' frequency), then we need to \"dialate\" the",
"# filter array to include IDs across the scope of the study, e.g.",
"# all subjects for per-vist, or all visits for per-subject.",
"output_freqs",
"=",
"set",
"(",
"pipeline",
".",
"output_frequencies",
")",
"dialated_filt_array",
"=",
"self",
".",
"_dialate_array",
"(",
"filt_array",
",",
"pipeline",
".",
"joins",
")",
"added",
"=",
"dialated_filt_array",
"^",
"filt_array",
"if",
"added",
".",
"any",
"(",
")",
":",
"filt_array",
"=",
"dialated_filt_array",
"# Invert the index dictionaries to get index-to-ID maps",
"inv_subject_inds",
"=",
"{",
"v",
":",
"k",
"for",
"k",
",",
"v",
"in",
"subject_inds",
".",
"items",
"(",
")",
"}",
"inv_visit_inds",
"=",
"{",
"v",
":",
"k",
"for",
"k",
",",
"v",
"in",
"visit_inds",
".",
"items",
"(",
")",
"}",
"logger",
".",
"warning",
"(",
"\"Dialated filter array used to process '{}' pipeline to \"",
"\"include {} subject/visit IDs due to its '{}' summary \"",
"\"outputs \"",
".",
"format",
"(",
"pipeline",
".",
"name",
",",
"', '",
".",
"join",
"(",
"'({},{})'",
".",
"format",
"(",
"inv_subject_inds",
"[",
"s",
"]",
",",
"inv_visit_inds",
"[",
"v",
"]",
")",
"for",
"s",
",",
"v",
"in",
"zip",
"(",
"*",
"np",
".",
"nonzero",
"(",
"added",
")",
")",
")",
",",
"\"' and '\"",
".",
"join",
"(",
"output_freqs",
")",
")",
")",
"stack",
"[",
"pipeline",
".",
"name",
"]",
"=",
"pipeline",
",",
"req_outputs",
",",
"filt_array",
"# Recursively add all prerequisites to stack",
"for",
"prq_getter",
",",
"prq_req_outputs",
"in",
"pipeline",
".",
"prerequisites",
".",
"items",
"(",
")",
":",
"try",
":",
"prereq",
"=",
"pipeline",
".",
"study",
".",
"pipeline",
"(",
"prq_getter",
",",
"prq_req_outputs",
")",
"push_on_stack",
"(",
"prereq",
",",
"filt_array",
",",
"prq_req_outputs",
")",
"except",
"(",
"ArcanaMissingDataException",
",",
"ArcanaOutputNotProducedException",
")",
"as",
"e",
":",
"e",
".",
"msg",
"+=",
"(",
"\"{}, which are required as inputs to the '{}' \"",
"\"pipeline to produce '{}'\"",
".",
"format",
"(",
"pipeline",
".",
"name",
",",
"\"', '\"",
".",
"join",
"(",
"req_outputs",
")",
")",
")",
"raise",
"e",
"# Add all primary pipelines to the stack along with their prereqs",
"for",
"pipeline",
",",
"req_outputs",
"in",
"zip",
"(",
"pipelines",
",",
"required_outputs",
")",
":",
"push_on_stack",
"(",
"pipeline",
",",
"filter_array",
",",
"req_outputs",
")",
"# Iterate through stack of required pipelines from upstream to",
"# downstream",
"for",
"pipeline",
",",
"req_outputs",
",",
"flt_array",
"in",
"reversed",
"(",
"list",
"(",
"stack",
".",
"values",
"(",
")",
")",
")",
":",
"try",
":",
"self",
".",
"_connect_pipeline",
"(",
"pipeline",
",",
"req_outputs",
",",
"workflow",
",",
"subject_inds",
",",
"visit_inds",
",",
"flt_array",
",",
"*",
"*",
"kwargs",
")",
"except",
"ArcanaNoRunRequiredException",
":",
"logger",
".",
"info",
"(",
"\"Not running '{}' pipeline as its outputs \"",
"\"are already present in the repository\"",
".",
"format",
"(",
"pipeline",
".",
"name",
")",
")",
"# Save complete graph for debugging purposes",
"# workflow.write_graph(graph2use='flat', format='svg')",
"# print('Graph saved in {} directory'.format(os.getcwd()))",
"# Actually run the generated workflow",
"result",
"=",
"workflow",
".",
"run",
"(",
"plugin",
"=",
"self",
".",
"_plugin",
")",
"# Reset the cached tree of filesets in the repository as it will",
"# change after the pipeline has run.",
"self",
".",
"study",
".",
"clear_caches",
"(",
")",
"return",
"result"
] | Connects all pipelines to that study's repository and runs them
in the same NiPype workflow
Parameters
----------
pipeline(s) : Pipeline, ...
The pipeline to connect to repository
required_outputs : list[set[str]]
A set of required outputs for each pipeline. If None then all
outputs are assumed to be required
subject_ids : list[str]
The subset of subject IDs to process. If None all available will be
processed. Note this is not a duplication of the study
and visit IDs passed to the Study __init__, as they define the
scope of the analysis and these simply limit the scope of the
current run (e.g. to break the analysis into smaller chunks and
run separately). Therefore, if the analysis joins over subjects,
then all subjects will be processed and this parameter will be
ignored.
visit_ids : list[str]
The same as 'subject_ids' but for visit IDs
session_ids : list[str,str]
The same as 'subject_ids' and 'visit_ids', except specifies a set
of specific combinations in tuples of (subject ID, visit ID).
force : bool | 'all'
A flag to force the reprocessing of all sessions in the filter
array, regardless of whether the parameters|pipeline used
to generate them matches the current ones. NB: if True only the
final pipeline will be reprocessed (prerequisite pipelines won't
run unless they don't match provenance). To process all
prerequisite pipelines 'all' should be passed to force.
Returns
-------
report : ReportNode
The final report node, which can be connected to subsequent
pipelines | [
"Connects",
"all",
"pipelines",
"to",
"that",
"study",
"s",
"repository",
"and",
"runs",
"them",
"in",
"the",
"same",
"NiPype",
"workflow"
] | train | https://github.com/MonashBI/arcana/blob/d6271a29d13733d00422d11417af8d200be62acc/arcana/processor/base.py#L147-L328 |
MonashBI/arcana | arcana/processor/base.py | Processor._connect_pipeline | def _connect_pipeline(self, pipeline, required_outputs, workflow,
subject_inds, visit_inds, filter_array, force=False):
"""
Connects a pipeline to a overarching workflow that sets up iterators
over subjects|visits present in the repository (if required) and
repository source and sink nodes
Parameters
----------
pipeline : Pipeline
The pipeline to connect
required_outputs : set[str] | None
The outputs required to be produced by this pipeline. If None all
are deemed to be required
workflow : nipype.pipeline.engine.Workflow
The overarching workflow to connect the pipeline to
subject_inds : dct[str, int]
A mapping of subject ID to row index in the filter array
visit_inds : dct[str, int]
A mapping of visit ID to column index in the filter array
filter_array : 2-D numpy.array[bool]
A two-dimensional boolean array, where rows correspond to
subjects and columns correspond to visits in the repository. True
values represent a combination of subject & visit ID to include
in the current round of processing. Note that if the 'force'
flag is not set, sessions won't be reprocessed unless the
save provenance doesn't match that of the given pipeline.
force : bool | 'all'
A flag to force the processing of all sessions in the filter
array, regardless of whether the parameters|pipeline used
to generate existing data matches the given pipeline
"""
if self.reprocess == 'force':
force = True
# Close-off construction of the pipeline and created, input and output
# nodes and provenance dictionary
pipeline.cap()
# Prepend prerequisite pipelines to complete workflow if they need
# to be (re)processed
final_nodes = []
# The array that represents the subject/visit pairs for which any
# prerequisite pipeline will be (re)processed, and which therefore
# needs to be included in the processing of the current pipeline. Row
# indices correspond to subjects and column indices visits
prqs_to_process_array = np.zeros((len(subject_inds), len(visit_inds)),
dtype=bool)
# The array that represents the subject/visit pairs for which any
# prerequisite pipeline will be skipped due to missing inputs. Row
# indices correspond to subjects and column indices visits
prqs_to_skip_array = np.zeros((len(subject_inds), len(visit_inds)),
dtype=bool)
for getter_name in pipeline.prerequisites:
prereq = pipeline.study.pipeline(getter_name)
if prereq.to_process_array.any():
final_nodes.append(prereq.node('final'))
prqs_to_process_array |= prereq.to_process_array
prqs_to_skip_array |= prereq.to_skip_array
# Get list of sessions that need to be processed (i.e. if
# they don't contain the outputs of this pipeline)
to_process_array, to_protect_array, to_skip_array = self._to_process(
pipeline, required_outputs, prqs_to_process_array,
prqs_to_skip_array, filter_array, subject_inds, visit_inds, force)
# Store the arrays signifying which nodes to process, protect or skip
# so they can be passed to downstream pipelines
pipeline.to_process_array = to_process_array
pipeline.to_protect_array = to_protect_array
pipeline.to_skip_array = to_skip_array
# Check to see if there are any sessions to process
if not to_process_array.any():
raise ArcanaNoRunRequiredException(
"No sessions to process for '{}' pipeline"
.format(pipeline.name))
# Set up workflow to run the pipeline, loading and saving from the
# repository
workflow.add_nodes([pipeline._workflow])
# If prerequisite pipelines need to be processed, connect their
# "final" nodes to the initial node of this pipeline to ensure that
# they are all processed before this pipeline is run.
if final_nodes:
prereqs = pipeline.add('prereqs', Merge(len(final_nodes)))
for i, final_node in enumerate(final_nodes, start=1):
workflow.connect(final_node, 'out', prereqs, 'in{}'.format(i))
else:
prereqs = None
# Construct iterator structure over subjects and sessions to be
# processed
iter_nodes = self._iterate(pipeline, to_process_array, subject_inds,
visit_inds)
sources = {}
# Loop through each frequency present in the pipeline inputs and
# create a corresponding source node
for freq in pipeline.input_frequencies:
try:
inputs = list(pipeline.frequency_inputs(freq))
except ArcanaMissingDataException as e:
raise ArcanaMissingDataException(
str(e) + ", which is required for pipeline '{}'".format(
pipeline.name))
inputnode = pipeline.inputnode(freq)
sources[freq] = source = pipeline.add(
'{}_source'.format(freq),
RepositorySource(
i.collection for i in inputs),
inputs=({'prereqs': (prereqs, 'out')} if prereqs is not None
else {}))
# Connect iter_nodes to source and input nodes
for iterator in pipeline.iterators(freq):
pipeline.connect(iter_nodes[iterator], iterator, source,
iterator)
pipeline.connect(source, iterator, inputnode,
iterator)
for input in inputs: # @ReservedAssignment
pipeline.connect(source, input.suffixed_name,
inputnode, input.name)
deiter_nodes = {}
def deiter_node_sort_key(it):
"""
If there are two iter_nodes (i.e. both subject and visit ID) and
one depends on the other (i.e. if the visit IDs per subject
vary and vice-versa) we need to ensure that the dependent
iterator is deiterated (joined) first.
"""
return iter_nodes[it].itersource is None
# Connect all outputs to the repository sink, creating a new sink for
# each frequency level (i.e 'per_session', 'per_subject', 'per_visit',
# or 'per_study')
for freq in pipeline.output_frequencies:
outputs = list(pipeline.frequency_outputs(freq))
if pipeline.iterators(freq) - pipeline.iterators():
raise ArcanaDesignError(
"Doesn't make sense to output '{}', which are of '{}' "
"frequency, when the pipeline only iterates over '{}'"
.format("', '".join(o.name for o in outputs), freq,
"', '".join(pipeline.iterators())))
outputnode = pipeline.outputnode(freq)
# Connect filesets/fields to sink to sink node, skipping outputs
# that are study inputs
to_connect = {o.suffixed_name: (outputnode, o.name)
for o in outputs if o.is_spec}
# Connect iterators to sink node
to_connect.update(
{i: (iter_nodes[i], i) for i in pipeline.iterators()})
# Connect checksums/values from sources to sink node in order to
# save in provenance, joining where necessary
for input_freq in pipeline.input_frequencies:
checksums_to_connect = [
i.checksum_suffixed_name
for i in pipeline.frequency_inputs(input_freq)]
if not checksums_to_connect:
# Rare case of a pipeline with no inputs only iter_nodes
# that will only occur in unittests in all likelihood
continue
# Loop over iterators that need to be joined, i.e. that are
# present in the input frequency but not the output frequency
# and create join nodes
source = sources[input_freq]
for iterator in (pipeline.iterators(input_freq) -
pipeline.iterators(freq)):
join = pipeline.add(
'{}_to_{}_{}_checksum_join'.format(
input_freq, freq, iterator),
IdentityInterface(
checksums_to_connect),
inputs={
tc: (source, tc) for tc in checksums_to_connect},
joinsource=iterator,
joinfield=checksums_to_connect)
source = join
to_connect.update(
{tc: (source, tc) for tc in checksums_to_connect})
# Add sink node
sink = pipeline.add(
'{}_sink'.format(freq),
RepositorySink(
(o.collection for o in outputs), pipeline),
inputs=to_connect)
# "De-iterate" (join) over iterators to get back to single child
# node by the time we connect to the final node of the pipeline Set
# the sink and subject_id as the default deiterator if there are no
# deiterates (i.e. per_study) or to use as the upstream node to
# connect the first deiterator for every frequency
deiter_nodes[freq] = sink # for per_study the "deiterator" == sink
for iterator in sorted(pipeline.iterators(freq),
key=deiter_node_sort_key):
# Connect to previous deiterator or sink
# NB: we only need to keep a reference to the last one in the
# chain in order to connect with the "final" node, so we can
# overwrite the entry in the 'deiter_nodes' dict
deiter_nodes[freq] = pipeline.add(
'{}_{}_deiter'.format(freq, iterator),
IdentityInterface(
['checksums']),
inputs={
'checksums': (deiter_nodes[freq], 'checksums')},
joinsource=iterator,
joinfield='checksums')
# Create a final node, which is used to connect with downstream
# pipelines
pipeline.add(
'final',
Merge(
len(deiter_nodes)),
inputs={
'in{}'.format(i): (di, 'checksums')
for i, di in enumerate(deiter_nodes.values(), start=1)}) | python | def _connect_pipeline(self, pipeline, required_outputs, workflow,
subject_inds, visit_inds, filter_array, force=False):
"""
Connects a pipeline to a overarching workflow that sets up iterators
over subjects|visits present in the repository (if required) and
repository source and sink nodes
Parameters
----------
pipeline : Pipeline
The pipeline to connect
required_outputs : set[str] | None
The outputs required to be produced by this pipeline. If None all
are deemed to be required
workflow : nipype.pipeline.engine.Workflow
The overarching workflow to connect the pipeline to
subject_inds : dct[str, int]
A mapping of subject ID to row index in the filter array
visit_inds : dct[str, int]
A mapping of visit ID to column index in the filter array
filter_array : 2-D numpy.array[bool]
A two-dimensional boolean array, where rows correspond to
subjects and columns correspond to visits in the repository. True
values represent a combination of subject & visit ID to include
in the current round of processing. Note that if the 'force'
flag is not set, sessions won't be reprocessed unless the
save provenance doesn't match that of the given pipeline.
force : bool | 'all'
A flag to force the processing of all sessions in the filter
array, regardless of whether the parameters|pipeline used
to generate existing data matches the given pipeline
"""
if self.reprocess == 'force':
force = True
# Close-off construction of the pipeline and created, input and output
# nodes and provenance dictionary
pipeline.cap()
# Prepend prerequisite pipelines to complete workflow if they need
# to be (re)processed
final_nodes = []
# The array that represents the subject/visit pairs for which any
# prerequisite pipeline will be (re)processed, and which therefore
# needs to be included in the processing of the current pipeline. Row
# indices correspond to subjects and column indices visits
prqs_to_process_array = np.zeros((len(subject_inds), len(visit_inds)),
dtype=bool)
# The array that represents the subject/visit pairs for which any
# prerequisite pipeline will be skipped due to missing inputs. Row
# indices correspond to subjects and column indices visits
prqs_to_skip_array = np.zeros((len(subject_inds), len(visit_inds)),
dtype=bool)
for getter_name in pipeline.prerequisites:
prereq = pipeline.study.pipeline(getter_name)
if prereq.to_process_array.any():
final_nodes.append(prereq.node('final'))
prqs_to_process_array |= prereq.to_process_array
prqs_to_skip_array |= prereq.to_skip_array
# Get list of sessions that need to be processed (i.e. if
# they don't contain the outputs of this pipeline)
to_process_array, to_protect_array, to_skip_array = self._to_process(
pipeline, required_outputs, prqs_to_process_array,
prqs_to_skip_array, filter_array, subject_inds, visit_inds, force)
# Store the arrays signifying which nodes to process, protect or skip
# so they can be passed to downstream pipelines
pipeline.to_process_array = to_process_array
pipeline.to_protect_array = to_protect_array
pipeline.to_skip_array = to_skip_array
# Check to see if there are any sessions to process
if not to_process_array.any():
raise ArcanaNoRunRequiredException(
"No sessions to process for '{}' pipeline"
.format(pipeline.name))
# Set up workflow to run the pipeline, loading and saving from the
# repository
workflow.add_nodes([pipeline._workflow])
# If prerequisite pipelines need to be processed, connect their
# "final" nodes to the initial node of this pipeline to ensure that
# they are all processed before this pipeline is run.
if final_nodes:
prereqs = pipeline.add('prereqs', Merge(len(final_nodes)))
for i, final_node in enumerate(final_nodes, start=1):
workflow.connect(final_node, 'out', prereqs, 'in{}'.format(i))
else:
prereqs = None
# Construct iterator structure over subjects and sessions to be
# processed
iter_nodes = self._iterate(pipeline, to_process_array, subject_inds,
visit_inds)
sources = {}
# Loop through each frequency present in the pipeline inputs and
# create a corresponding source node
for freq in pipeline.input_frequencies:
try:
inputs = list(pipeline.frequency_inputs(freq))
except ArcanaMissingDataException as e:
raise ArcanaMissingDataException(
str(e) + ", which is required for pipeline '{}'".format(
pipeline.name))
inputnode = pipeline.inputnode(freq)
sources[freq] = source = pipeline.add(
'{}_source'.format(freq),
RepositorySource(
i.collection for i in inputs),
inputs=({'prereqs': (prereqs, 'out')} if prereqs is not None
else {}))
# Connect iter_nodes to source and input nodes
for iterator in pipeline.iterators(freq):
pipeline.connect(iter_nodes[iterator], iterator, source,
iterator)
pipeline.connect(source, iterator, inputnode,
iterator)
for input in inputs: # @ReservedAssignment
pipeline.connect(source, input.suffixed_name,
inputnode, input.name)
deiter_nodes = {}
def deiter_node_sort_key(it):
"""
If there are two iter_nodes (i.e. both subject and visit ID) and
one depends on the other (i.e. if the visit IDs per subject
vary and vice-versa) we need to ensure that the dependent
iterator is deiterated (joined) first.
"""
return iter_nodes[it].itersource is None
# Connect all outputs to the repository sink, creating a new sink for
# each frequency level (i.e 'per_session', 'per_subject', 'per_visit',
# or 'per_study')
for freq in pipeline.output_frequencies:
outputs = list(pipeline.frequency_outputs(freq))
if pipeline.iterators(freq) - pipeline.iterators():
raise ArcanaDesignError(
"Doesn't make sense to output '{}', which are of '{}' "
"frequency, when the pipeline only iterates over '{}'"
.format("', '".join(o.name for o in outputs), freq,
"', '".join(pipeline.iterators())))
outputnode = pipeline.outputnode(freq)
# Connect filesets/fields to sink to sink node, skipping outputs
# that are study inputs
to_connect = {o.suffixed_name: (outputnode, o.name)
for o in outputs if o.is_spec}
# Connect iterators to sink node
to_connect.update(
{i: (iter_nodes[i], i) for i in pipeline.iterators()})
# Connect checksums/values from sources to sink node in order to
# save in provenance, joining where necessary
for input_freq in pipeline.input_frequencies:
checksums_to_connect = [
i.checksum_suffixed_name
for i in pipeline.frequency_inputs(input_freq)]
if not checksums_to_connect:
# Rare case of a pipeline with no inputs only iter_nodes
# that will only occur in unittests in all likelihood
continue
# Loop over iterators that need to be joined, i.e. that are
# present in the input frequency but not the output frequency
# and create join nodes
source = sources[input_freq]
for iterator in (pipeline.iterators(input_freq) -
pipeline.iterators(freq)):
join = pipeline.add(
'{}_to_{}_{}_checksum_join'.format(
input_freq, freq, iterator),
IdentityInterface(
checksums_to_connect),
inputs={
tc: (source, tc) for tc in checksums_to_connect},
joinsource=iterator,
joinfield=checksums_to_connect)
source = join
to_connect.update(
{tc: (source, tc) for tc in checksums_to_connect})
# Add sink node
sink = pipeline.add(
'{}_sink'.format(freq),
RepositorySink(
(o.collection for o in outputs), pipeline),
inputs=to_connect)
# "De-iterate" (join) over iterators to get back to single child
# node by the time we connect to the final node of the pipeline Set
# the sink and subject_id as the default deiterator if there are no
# deiterates (i.e. per_study) or to use as the upstream node to
# connect the first deiterator for every frequency
deiter_nodes[freq] = sink # for per_study the "deiterator" == sink
for iterator in sorted(pipeline.iterators(freq),
key=deiter_node_sort_key):
# Connect to previous deiterator or sink
# NB: we only need to keep a reference to the last one in the
# chain in order to connect with the "final" node, so we can
# overwrite the entry in the 'deiter_nodes' dict
deiter_nodes[freq] = pipeline.add(
'{}_{}_deiter'.format(freq, iterator),
IdentityInterface(
['checksums']),
inputs={
'checksums': (deiter_nodes[freq], 'checksums')},
joinsource=iterator,
joinfield='checksums')
# Create a final node, which is used to connect with downstream
# pipelines
pipeline.add(
'final',
Merge(
len(deiter_nodes)),
inputs={
'in{}'.format(i): (di, 'checksums')
for i, di in enumerate(deiter_nodes.values(), start=1)}) | [
"def",
"_connect_pipeline",
"(",
"self",
",",
"pipeline",
",",
"required_outputs",
",",
"workflow",
",",
"subject_inds",
",",
"visit_inds",
",",
"filter_array",
",",
"force",
"=",
"False",
")",
":",
"if",
"self",
".",
"reprocess",
"==",
"'force'",
":",
"force",
"=",
"True",
"# Close-off construction of the pipeline and created, input and output",
"# nodes and provenance dictionary",
"pipeline",
".",
"cap",
"(",
")",
"# Prepend prerequisite pipelines to complete workflow if they need",
"# to be (re)processed",
"final_nodes",
"=",
"[",
"]",
"# The array that represents the subject/visit pairs for which any",
"# prerequisite pipeline will be (re)processed, and which therefore",
"# needs to be included in the processing of the current pipeline. Row",
"# indices correspond to subjects and column indices visits",
"prqs_to_process_array",
"=",
"np",
".",
"zeros",
"(",
"(",
"len",
"(",
"subject_inds",
")",
",",
"len",
"(",
"visit_inds",
")",
")",
",",
"dtype",
"=",
"bool",
")",
"# The array that represents the subject/visit pairs for which any",
"# prerequisite pipeline will be skipped due to missing inputs. Row",
"# indices correspond to subjects and column indices visits",
"prqs_to_skip_array",
"=",
"np",
".",
"zeros",
"(",
"(",
"len",
"(",
"subject_inds",
")",
",",
"len",
"(",
"visit_inds",
")",
")",
",",
"dtype",
"=",
"bool",
")",
"for",
"getter_name",
"in",
"pipeline",
".",
"prerequisites",
":",
"prereq",
"=",
"pipeline",
".",
"study",
".",
"pipeline",
"(",
"getter_name",
")",
"if",
"prereq",
".",
"to_process_array",
".",
"any",
"(",
")",
":",
"final_nodes",
".",
"append",
"(",
"prereq",
".",
"node",
"(",
"'final'",
")",
")",
"prqs_to_process_array",
"|=",
"prereq",
".",
"to_process_array",
"prqs_to_skip_array",
"|=",
"prereq",
".",
"to_skip_array",
"# Get list of sessions that need to be processed (i.e. if",
"# they don't contain the outputs of this pipeline)",
"to_process_array",
",",
"to_protect_array",
",",
"to_skip_array",
"=",
"self",
".",
"_to_process",
"(",
"pipeline",
",",
"required_outputs",
",",
"prqs_to_process_array",
",",
"prqs_to_skip_array",
",",
"filter_array",
",",
"subject_inds",
",",
"visit_inds",
",",
"force",
")",
"# Store the arrays signifying which nodes to process, protect or skip",
"# so they can be passed to downstream pipelines",
"pipeline",
".",
"to_process_array",
"=",
"to_process_array",
"pipeline",
".",
"to_protect_array",
"=",
"to_protect_array",
"pipeline",
".",
"to_skip_array",
"=",
"to_skip_array",
"# Check to see if there are any sessions to process",
"if",
"not",
"to_process_array",
".",
"any",
"(",
")",
":",
"raise",
"ArcanaNoRunRequiredException",
"(",
"\"No sessions to process for '{}' pipeline\"",
".",
"format",
"(",
"pipeline",
".",
"name",
")",
")",
"# Set up workflow to run the pipeline, loading and saving from the",
"# repository",
"workflow",
".",
"add_nodes",
"(",
"[",
"pipeline",
".",
"_workflow",
"]",
")",
"# If prerequisite pipelines need to be processed, connect their",
"# \"final\" nodes to the initial node of this pipeline to ensure that",
"# they are all processed before this pipeline is run.",
"if",
"final_nodes",
":",
"prereqs",
"=",
"pipeline",
".",
"add",
"(",
"'prereqs'",
",",
"Merge",
"(",
"len",
"(",
"final_nodes",
")",
")",
")",
"for",
"i",
",",
"final_node",
"in",
"enumerate",
"(",
"final_nodes",
",",
"start",
"=",
"1",
")",
":",
"workflow",
".",
"connect",
"(",
"final_node",
",",
"'out'",
",",
"prereqs",
",",
"'in{}'",
".",
"format",
"(",
"i",
")",
")",
"else",
":",
"prereqs",
"=",
"None",
"# Construct iterator structure over subjects and sessions to be",
"# processed",
"iter_nodes",
"=",
"self",
".",
"_iterate",
"(",
"pipeline",
",",
"to_process_array",
",",
"subject_inds",
",",
"visit_inds",
")",
"sources",
"=",
"{",
"}",
"# Loop through each frequency present in the pipeline inputs and",
"# create a corresponding source node",
"for",
"freq",
"in",
"pipeline",
".",
"input_frequencies",
":",
"try",
":",
"inputs",
"=",
"list",
"(",
"pipeline",
".",
"frequency_inputs",
"(",
"freq",
")",
")",
"except",
"ArcanaMissingDataException",
"as",
"e",
":",
"raise",
"ArcanaMissingDataException",
"(",
"str",
"(",
"e",
")",
"+",
"\", which is required for pipeline '{}'\"",
".",
"format",
"(",
"pipeline",
".",
"name",
")",
")",
"inputnode",
"=",
"pipeline",
".",
"inputnode",
"(",
"freq",
")",
"sources",
"[",
"freq",
"]",
"=",
"source",
"=",
"pipeline",
".",
"add",
"(",
"'{}_source'",
".",
"format",
"(",
"freq",
")",
",",
"RepositorySource",
"(",
"i",
".",
"collection",
"for",
"i",
"in",
"inputs",
")",
",",
"inputs",
"=",
"(",
"{",
"'prereqs'",
":",
"(",
"prereqs",
",",
"'out'",
")",
"}",
"if",
"prereqs",
"is",
"not",
"None",
"else",
"{",
"}",
")",
")",
"# Connect iter_nodes to source and input nodes",
"for",
"iterator",
"in",
"pipeline",
".",
"iterators",
"(",
"freq",
")",
":",
"pipeline",
".",
"connect",
"(",
"iter_nodes",
"[",
"iterator",
"]",
",",
"iterator",
",",
"source",
",",
"iterator",
")",
"pipeline",
".",
"connect",
"(",
"source",
",",
"iterator",
",",
"inputnode",
",",
"iterator",
")",
"for",
"input",
"in",
"inputs",
":",
"# @ReservedAssignment",
"pipeline",
".",
"connect",
"(",
"source",
",",
"input",
".",
"suffixed_name",
",",
"inputnode",
",",
"input",
".",
"name",
")",
"deiter_nodes",
"=",
"{",
"}",
"def",
"deiter_node_sort_key",
"(",
"it",
")",
":",
"\"\"\"\n If there are two iter_nodes (i.e. both subject and visit ID) and\n one depends on the other (i.e. if the visit IDs per subject\n vary and vice-versa) we need to ensure that the dependent\n iterator is deiterated (joined) first.\n \"\"\"",
"return",
"iter_nodes",
"[",
"it",
"]",
".",
"itersource",
"is",
"None",
"# Connect all outputs to the repository sink, creating a new sink for",
"# each frequency level (i.e 'per_session', 'per_subject', 'per_visit',",
"# or 'per_study')",
"for",
"freq",
"in",
"pipeline",
".",
"output_frequencies",
":",
"outputs",
"=",
"list",
"(",
"pipeline",
".",
"frequency_outputs",
"(",
"freq",
")",
")",
"if",
"pipeline",
".",
"iterators",
"(",
"freq",
")",
"-",
"pipeline",
".",
"iterators",
"(",
")",
":",
"raise",
"ArcanaDesignError",
"(",
"\"Doesn't make sense to output '{}', which are of '{}' \"",
"\"frequency, when the pipeline only iterates over '{}'\"",
".",
"format",
"(",
"\"', '\"",
".",
"join",
"(",
"o",
".",
"name",
"for",
"o",
"in",
"outputs",
")",
",",
"freq",
",",
"\"', '\"",
".",
"join",
"(",
"pipeline",
".",
"iterators",
"(",
")",
")",
")",
")",
"outputnode",
"=",
"pipeline",
".",
"outputnode",
"(",
"freq",
")",
"# Connect filesets/fields to sink to sink node, skipping outputs",
"# that are study inputs",
"to_connect",
"=",
"{",
"o",
".",
"suffixed_name",
":",
"(",
"outputnode",
",",
"o",
".",
"name",
")",
"for",
"o",
"in",
"outputs",
"if",
"o",
".",
"is_spec",
"}",
"# Connect iterators to sink node",
"to_connect",
".",
"update",
"(",
"{",
"i",
":",
"(",
"iter_nodes",
"[",
"i",
"]",
",",
"i",
")",
"for",
"i",
"in",
"pipeline",
".",
"iterators",
"(",
")",
"}",
")",
"# Connect checksums/values from sources to sink node in order to",
"# save in provenance, joining where necessary",
"for",
"input_freq",
"in",
"pipeline",
".",
"input_frequencies",
":",
"checksums_to_connect",
"=",
"[",
"i",
".",
"checksum_suffixed_name",
"for",
"i",
"in",
"pipeline",
".",
"frequency_inputs",
"(",
"input_freq",
")",
"]",
"if",
"not",
"checksums_to_connect",
":",
"# Rare case of a pipeline with no inputs only iter_nodes",
"# that will only occur in unittests in all likelihood",
"continue",
"# Loop over iterators that need to be joined, i.e. that are",
"# present in the input frequency but not the output frequency",
"# and create join nodes",
"source",
"=",
"sources",
"[",
"input_freq",
"]",
"for",
"iterator",
"in",
"(",
"pipeline",
".",
"iterators",
"(",
"input_freq",
")",
"-",
"pipeline",
".",
"iterators",
"(",
"freq",
")",
")",
":",
"join",
"=",
"pipeline",
".",
"add",
"(",
"'{}_to_{}_{}_checksum_join'",
".",
"format",
"(",
"input_freq",
",",
"freq",
",",
"iterator",
")",
",",
"IdentityInterface",
"(",
"checksums_to_connect",
")",
",",
"inputs",
"=",
"{",
"tc",
":",
"(",
"source",
",",
"tc",
")",
"for",
"tc",
"in",
"checksums_to_connect",
"}",
",",
"joinsource",
"=",
"iterator",
",",
"joinfield",
"=",
"checksums_to_connect",
")",
"source",
"=",
"join",
"to_connect",
".",
"update",
"(",
"{",
"tc",
":",
"(",
"source",
",",
"tc",
")",
"for",
"tc",
"in",
"checksums_to_connect",
"}",
")",
"# Add sink node",
"sink",
"=",
"pipeline",
".",
"add",
"(",
"'{}_sink'",
".",
"format",
"(",
"freq",
")",
",",
"RepositorySink",
"(",
"(",
"o",
".",
"collection",
"for",
"o",
"in",
"outputs",
")",
",",
"pipeline",
")",
",",
"inputs",
"=",
"to_connect",
")",
"# \"De-iterate\" (join) over iterators to get back to single child",
"# node by the time we connect to the final node of the pipeline Set",
"# the sink and subject_id as the default deiterator if there are no",
"# deiterates (i.e. per_study) or to use as the upstream node to",
"# connect the first deiterator for every frequency",
"deiter_nodes",
"[",
"freq",
"]",
"=",
"sink",
"# for per_study the \"deiterator\" == sink",
"for",
"iterator",
"in",
"sorted",
"(",
"pipeline",
".",
"iterators",
"(",
"freq",
")",
",",
"key",
"=",
"deiter_node_sort_key",
")",
":",
"# Connect to previous deiterator or sink",
"# NB: we only need to keep a reference to the last one in the",
"# chain in order to connect with the \"final\" node, so we can",
"# overwrite the entry in the 'deiter_nodes' dict",
"deiter_nodes",
"[",
"freq",
"]",
"=",
"pipeline",
".",
"add",
"(",
"'{}_{}_deiter'",
".",
"format",
"(",
"freq",
",",
"iterator",
")",
",",
"IdentityInterface",
"(",
"[",
"'checksums'",
"]",
")",
",",
"inputs",
"=",
"{",
"'checksums'",
":",
"(",
"deiter_nodes",
"[",
"freq",
"]",
",",
"'checksums'",
")",
"}",
",",
"joinsource",
"=",
"iterator",
",",
"joinfield",
"=",
"'checksums'",
")",
"# Create a final node, which is used to connect with downstream",
"# pipelines",
"pipeline",
".",
"add",
"(",
"'final'",
",",
"Merge",
"(",
"len",
"(",
"deiter_nodes",
")",
")",
",",
"inputs",
"=",
"{",
"'in{}'",
".",
"format",
"(",
"i",
")",
":",
"(",
"di",
",",
"'checksums'",
")",
"for",
"i",
",",
"di",
"in",
"enumerate",
"(",
"deiter_nodes",
".",
"values",
"(",
")",
",",
"start",
"=",
"1",
")",
"}",
")"
] | Connects a pipeline to a overarching workflow that sets up iterators
over subjects|visits present in the repository (if required) and
repository source and sink nodes
Parameters
----------
pipeline : Pipeline
The pipeline to connect
required_outputs : set[str] | None
The outputs required to be produced by this pipeline. If None all
are deemed to be required
workflow : nipype.pipeline.engine.Workflow
The overarching workflow to connect the pipeline to
subject_inds : dct[str, int]
A mapping of subject ID to row index in the filter array
visit_inds : dct[str, int]
A mapping of visit ID to column index in the filter array
filter_array : 2-D numpy.array[bool]
A two-dimensional boolean array, where rows correspond to
subjects and columns correspond to visits in the repository. True
values represent a combination of subject & visit ID to include
in the current round of processing. Note that if the 'force'
flag is not set, sessions won't be reprocessed unless the
save provenance doesn't match that of the given pipeline.
force : bool | 'all'
A flag to force the processing of all sessions in the filter
array, regardless of whether the parameters|pipeline used
to generate existing data matches the given pipeline | [
"Connects",
"a",
"pipeline",
"to",
"a",
"overarching",
"workflow",
"that",
"sets",
"up",
"iterators",
"over",
"subjects|visits",
"present",
"in",
"the",
"repository",
"(",
"if",
"required",
")",
"and",
"repository",
"source",
"and",
"sink",
"nodes"
] | train | https://github.com/MonashBI/arcana/blob/d6271a29d13733d00422d11417af8d200be62acc/arcana/processor/base.py#L330-L536 |
MonashBI/arcana | arcana/processor/base.py | Processor._iterate | def _iterate(self, pipeline, to_process_array, subject_inds, visit_inds):
"""
Generate nodes that iterate over subjects and visits in the study that
need to be processed by the pipeline
Parameters
----------
pipeline : Pipeline
The pipeline to add iter_nodes for
to_process_array : 2-D numpy.array[bool]
A two-dimensional boolean array, where rows correspond to
subjects and columns correspond to visits in the repository. True
values represent a combination of subject & visit ID to process
the session for
subject_inds : dct[str, int]
A mapping of subject ID to row index in the 'to_process' array
visit_inds : dct[str, int]
A mapping of visit ID to column index in the 'to_process' array
Returns
-------
iter_nodes : dict[str, Node]
A dictionary containing the nodes to iterate over all subject/visit
IDs to process for each input frequency
"""
# Check to see whether the subject/visit IDs to process (as specified
# by the 'to_process' array) can be factorized into indepdent nodes,
# i.e. all subjects to process have the same visits to process and
# vice-versa.
factorizable = True
if len(list(pipeline.iterators())) == 2:
nz_rows = to_process_array[to_process_array.any(axis=1), :]
ref_row = nz_rows[0, :]
factorizable = all((r == ref_row).all() for r in nz_rows)
# If the subject/visit IDs to process cannot be factorized into
# indepedent iterators, determine which to make make dependent on the
# other in order to avoid/minimise duplicatation of download attempts
dependent = None
if not factorizable:
input_freqs = list(pipeline.input_frequencies)
# By default pick iterator the one with the most IDs to
# iterate to be the dependent in order to reduce the number of
# nodes created and any duplication of download attempts across
# the nodes (if both 'per_visit' and 'per_subject' inputs are
# required
num_subjs, num_visits = nz_rows[:, nz_rows.any(axis=0)].shape
if num_subjs > num_visits:
dependent = self.study.SUBJECT_ID
else:
dependent = self.study.VISIT_ID
if 'per_visit' in input_freqs:
if 'per_subject' in input_freqs:
logger.warning(
"Cannot factorize sessions to process into independent"
" subject and visit iterators and both 'per_visit' and"
" 'per_subject' inputs are used by pipeline therefore"
" per_{} inputs may be cached twice".format(
dependent[:-3]))
else:
dependent = self.study.SUBJECT_ID
elif 'per_subject' in input_freqs:
dependent = self.study.VISIT_ID
# Invert the index dictionaries to get index-to-ID maps
inv_subj_inds = {v: k for k, v in subject_inds.items()}
inv_visit_inds = {v: k for k, v in visit_inds.items()}
# Create iterator for subjects
iter_nodes = {}
if self.study.SUBJECT_ID in pipeline.iterators():
fields = [self.study.SUBJECT_ID]
if dependent == self.study.SUBJECT_ID:
fields.append(self.study.VISIT_ID)
# Add iterator node named after subject iterator
subj_it = pipeline.add(self.study.SUBJECT_ID,
IdentityInterface(fields))
if dependent == self.study.SUBJECT_ID:
# Subjects iterator is dependent on visit iterator (because of
# non-factorizable IDs)
subj_it.itersource = ('{}_{}'.format(pipeline.name,
self.study.VISIT_ID),
self.study.VISIT_ID)
subj_it.iterables = [(
self.study.SUBJECT_ID,
{inv_visit_inds[n]: [inv_subj_inds[m]
for m in col.nonzero()[0]]
for n, col in enumerate(to_process_array.T)})]
else:
subj_it.iterables = (
self.study.SUBJECT_ID,
[inv_subj_inds[n]
for n in to_process_array.any(axis=1).nonzero()[0]])
iter_nodes[self.study.SUBJECT_ID] = subj_it
# Create iterator for visits
if self.study.VISIT_ID in pipeline.iterators():
fields = [self.study.VISIT_ID]
if dependent == self.study.VISIT_ID:
fields.append(self.study.SUBJECT_ID)
# Add iterator node named after visit iterator
visit_it = pipeline.add(self.study.VISIT_ID,
IdentityInterface(fields))
if dependent == self.study.VISIT_ID:
visit_it.itersource = ('{}_{}'.format(pipeline.name,
self.study.SUBJECT_ID),
self.study.SUBJECT_ID)
visit_it.iterables = [(
self.study.VISIT_ID,
{inv_subj_inds[m]:[inv_visit_inds[n]
for n in row.nonzero()[0]]
for m, row in enumerate(to_process_array)})]
else:
visit_it.iterables = (
self.study.VISIT_ID,
[inv_visit_inds[n]
for n in to_process_array.any(axis=0).nonzero()[0]])
iter_nodes[self.study.VISIT_ID] = visit_it
if dependent == self.study.SUBJECT_ID:
pipeline.connect(visit_it, self.study.VISIT_ID,
subj_it, self.study.VISIT_ID)
if dependent == self.study.VISIT_ID:
pipeline.connect(subj_it, self.study.SUBJECT_ID,
visit_it, self.study.SUBJECT_ID)
return iter_nodes | python | def _iterate(self, pipeline, to_process_array, subject_inds, visit_inds):
"""
Generate nodes that iterate over subjects and visits in the study that
need to be processed by the pipeline
Parameters
----------
pipeline : Pipeline
The pipeline to add iter_nodes for
to_process_array : 2-D numpy.array[bool]
A two-dimensional boolean array, where rows correspond to
subjects and columns correspond to visits in the repository. True
values represent a combination of subject & visit ID to process
the session for
subject_inds : dct[str, int]
A mapping of subject ID to row index in the 'to_process' array
visit_inds : dct[str, int]
A mapping of visit ID to column index in the 'to_process' array
Returns
-------
iter_nodes : dict[str, Node]
A dictionary containing the nodes to iterate over all subject/visit
IDs to process for each input frequency
"""
# Check to see whether the subject/visit IDs to process (as specified
# by the 'to_process' array) can be factorized into indepdent nodes,
# i.e. all subjects to process have the same visits to process and
# vice-versa.
factorizable = True
if len(list(pipeline.iterators())) == 2:
nz_rows = to_process_array[to_process_array.any(axis=1), :]
ref_row = nz_rows[0, :]
factorizable = all((r == ref_row).all() for r in nz_rows)
# If the subject/visit IDs to process cannot be factorized into
# indepedent iterators, determine which to make make dependent on the
# other in order to avoid/minimise duplicatation of download attempts
dependent = None
if not factorizable:
input_freqs = list(pipeline.input_frequencies)
# By default pick iterator the one with the most IDs to
# iterate to be the dependent in order to reduce the number of
# nodes created and any duplication of download attempts across
# the nodes (if both 'per_visit' and 'per_subject' inputs are
# required
num_subjs, num_visits = nz_rows[:, nz_rows.any(axis=0)].shape
if num_subjs > num_visits:
dependent = self.study.SUBJECT_ID
else:
dependent = self.study.VISIT_ID
if 'per_visit' in input_freqs:
if 'per_subject' in input_freqs:
logger.warning(
"Cannot factorize sessions to process into independent"
" subject and visit iterators and both 'per_visit' and"
" 'per_subject' inputs are used by pipeline therefore"
" per_{} inputs may be cached twice".format(
dependent[:-3]))
else:
dependent = self.study.SUBJECT_ID
elif 'per_subject' in input_freqs:
dependent = self.study.VISIT_ID
# Invert the index dictionaries to get index-to-ID maps
inv_subj_inds = {v: k for k, v in subject_inds.items()}
inv_visit_inds = {v: k for k, v in visit_inds.items()}
# Create iterator for subjects
iter_nodes = {}
if self.study.SUBJECT_ID in pipeline.iterators():
fields = [self.study.SUBJECT_ID]
if dependent == self.study.SUBJECT_ID:
fields.append(self.study.VISIT_ID)
# Add iterator node named after subject iterator
subj_it = pipeline.add(self.study.SUBJECT_ID,
IdentityInterface(fields))
if dependent == self.study.SUBJECT_ID:
# Subjects iterator is dependent on visit iterator (because of
# non-factorizable IDs)
subj_it.itersource = ('{}_{}'.format(pipeline.name,
self.study.VISIT_ID),
self.study.VISIT_ID)
subj_it.iterables = [(
self.study.SUBJECT_ID,
{inv_visit_inds[n]: [inv_subj_inds[m]
for m in col.nonzero()[0]]
for n, col in enumerate(to_process_array.T)})]
else:
subj_it.iterables = (
self.study.SUBJECT_ID,
[inv_subj_inds[n]
for n in to_process_array.any(axis=1).nonzero()[0]])
iter_nodes[self.study.SUBJECT_ID] = subj_it
# Create iterator for visits
if self.study.VISIT_ID in pipeline.iterators():
fields = [self.study.VISIT_ID]
if dependent == self.study.VISIT_ID:
fields.append(self.study.SUBJECT_ID)
# Add iterator node named after visit iterator
visit_it = pipeline.add(self.study.VISIT_ID,
IdentityInterface(fields))
if dependent == self.study.VISIT_ID:
visit_it.itersource = ('{}_{}'.format(pipeline.name,
self.study.SUBJECT_ID),
self.study.SUBJECT_ID)
visit_it.iterables = [(
self.study.VISIT_ID,
{inv_subj_inds[m]:[inv_visit_inds[n]
for n in row.nonzero()[0]]
for m, row in enumerate(to_process_array)})]
else:
visit_it.iterables = (
self.study.VISIT_ID,
[inv_visit_inds[n]
for n in to_process_array.any(axis=0).nonzero()[0]])
iter_nodes[self.study.VISIT_ID] = visit_it
if dependent == self.study.SUBJECT_ID:
pipeline.connect(visit_it, self.study.VISIT_ID,
subj_it, self.study.VISIT_ID)
if dependent == self.study.VISIT_ID:
pipeline.connect(subj_it, self.study.SUBJECT_ID,
visit_it, self.study.SUBJECT_ID)
return iter_nodes | [
"def",
"_iterate",
"(",
"self",
",",
"pipeline",
",",
"to_process_array",
",",
"subject_inds",
",",
"visit_inds",
")",
":",
"# Check to see whether the subject/visit IDs to process (as specified",
"# by the 'to_process' array) can be factorized into indepdent nodes,",
"# i.e. all subjects to process have the same visits to process and",
"# vice-versa.",
"factorizable",
"=",
"True",
"if",
"len",
"(",
"list",
"(",
"pipeline",
".",
"iterators",
"(",
")",
")",
")",
"==",
"2",
":",
"nz_rows",
"=",
"to_process_array",
"[",
"to_process_array",
".",
"any",
"(",
"axis",
"=",
"1",
")",
",",
":",
"]",
"ref_row",
"=",
"nz_rows",
"[",
"0",
",",
":",
"]",
"factorizable",
"=",
"all",
"(",
"(",
"r",
"==",
"ref_row",
")",
".",
"all",
"(",
")",
"for",
"r",
"in",
"nz_rows",
")",
"# If the subject/visit IDs to process cannot be factorized into",
"# indepedent iterators, determine which to make make dependent on the",
"# other in order to avoid/minimise duplicatation of download attempts",
"dependent",
"=",
"None",
"if",
"not",
"factorizable",
":",
"input_freqs",
"=",
"list",
"(",
"pipeline",
".",
"input_frequencies",
")",
"# By default pick iterator the one with the most IDs to",
"# iterate to be the dependent in order to reduce the number of",
"# nodes created and any duplication of download attempts across",
"# the nodes (if both 'per_visit' and 'per_subject' inputs are",
"# required",
"num_subjs",
",",
"num_visits",
"=",
"nz_rows",
"[",
":",
",",
"nz_rows",
".",
"any",
"(",
"axis",
"=",
"0",
")",
"]",
".",
"shape",
"if",
"num_subjs",
">",
"num_visits",
":",
"dependent",
"=",
"self",
".",
"study",
".",
"SUBJECT_ID",
"else",
":",
"dependent",
"=",
"self",
".",
"study",
".",
"VISIT_ID",
"if",
"'per_visit'",
"in",
"input_freqs",
":",
"if",
"'per_subject'",
"in",
"input_freqs",
":",
"logger",
".",
"warning",
"(",
"\"Cannot factorize sessions to process into independent\"",
"\" subject and visit iterators and both 'per_visit' and\"",
"\" 'per_subject' inputs are used by pipeline therefore\"",
"\" per_{} inputs may be cached twice\"",
".",
"format",
"(",
"dependent",
"[",
":",
"-",
"3",
"]",
")",
")",
"else",
":",
"dependent",
"=",
"self",
".",
"study",
".",
"SUBJECT_ID",
"elif",
"'per_subject'",
"in",
"input_freqs",
":",
"dependent",
"=",
"self",
".",
"study",
".",
"VISIT_ID",
"# Invert the index dictionaries to get index-to-ID maps",
"inv_subj_inds",
"=",
"{",
"v",
":",
"k",
"for",
"k",
",",
"v",
"in",
"subject_inds",
".",
"items",
"(",
")",
"}",
"inv_visit_inds",
"=",
"{",
"v",
":",
"k",
"for",
"k",
",",
"v",
"in",
"visit_inds",
".",
"items",
"(",
")",
"}",
"# Create iterator for subjects",
"iter_nodes",
"=",
"{",
"}",
"if",
"self",
".",
"study",
".",
"SUBJECT_ID",
"in",
"pipeline",
".",
"iterators",
"(",
")",
":",
"fields",
"=",
"[",
"self",
".",
"study",
".",
"SUBJECT_ID",
"]",
"if",
"dependent",
"==",
"self",
".",
"study",
".",
"SUBJECT_ID",
":",
"fields",
".",
"append",
"(",
"self",
".",
"study",
".",
"VISIT_ID",
")",
"# Add iterator node named after subject iterator",
"subj_it",
"=",
"pipeline",
".",
"add",
"(",
"self",
".",
"study",
".",
"SUBJECT_ID",
",",
"IdentityInterface",
"(",
"fields",
")",
")",
"if",
"dependent",
"==",
"self",
".",
"study",
".",
"SUBJECT_ID",
":",
"# Subjects iterator is dependent on visit iterator (because of",
"# non-factorizable IDs)",
"subj_it",
".",
"itersource",
"=",
"(",
"'{}_{}'",
".",
"format",
"(",
"pipeline",
".",
"name",
",",
"self",
".",
"study",
".",
"VISIT_ID",
")",
",",
"self",
".",
"study",
".",
"VISIT_ID",
")",
"subj_it",
".",
"iterables",
"=",
"[",
"(",
"self",
".",
"study",
".",
"SUBJECT_ID",
",",
"{",
"inv_visit_inds",
"[",
"n",
"]",
":",
"[",
"inv_subj_inds",
"[",
"m",
"]",
"for",
"m",
"in",
"col",
".",
"nonzero",
"(",
")",
"[",
"0",
"]",
"]",
"for",
"n",
",",
"col",
"in",
"enumerate",
"(",
"to_process_array",
".",
"T",
")",
"}",
")",
"]",
"else",
":",
"subj_it",
".",
"iterables",
"=",
"(",
"self",
".",
"study",
".",
"SUBJECT_ID",
",",
"[",
"inv_subj_inds",
"[",
"n",
"]",
"for",
"n",
"in",
"to_process_array",
".",
"any",
"(",
"axis",
"=",
"1",
")",
".",
"nonzero",
"(",
")",
"[",
"0",
"]",
"]",
")",
"iter_nodes",
"[",
"self",
".",
"study",
".",
"SUBJECT_ID",
"]",
"=",
"subj_it",
"# Create iterator for visits",
"if",
"self",
".",
"study",
".",
"VISIT_ID",
"in",
"pipeline",
".",
"iterators",
"(",
")",
":",
"fields",
"=",
"[",
"self",
".",
"study",
".",
"VISIT_ID",
"]",
"if",
"dependent",
"==",
"self",
".",
"study",
".",
"VISIT_ID",
":",
"fields",
".",
"append",
"(",
"self",
".",
"study",
".",
"SUBJECT_ID",
")",
"# Add iterator node named after visit iterator",
"visit_it",
"=",
"pipeline",
".",
"add",
"(",
"self",
".",
"study",
".",
"VISIT_ID",
",",
"IdentityInterface",
"(",
"fields",
")",
")",
"if",
"dependent",
"==",
"self",
".",
"study",
".",
"VISIT_ID",
":",
"visit_it",
".",
"itersource",
"=",
"(",
"'{}_{}'",
".",
"format",
"(",
"pipeline",
".",
"name",
",",
"self",
".",
"study",
".",
"SUBJECT_ID",
")",
",",
"self",
".",
"study",
".",
"SUBJECT_ID",
")",
"visit_it",
".",
"iterables",
"=",
"[",
"(",
"self",
".",
"study",
".",
"VISIT_ID",
",",
"{",
"inv_subj_inds",
"[",
"m",
"]",
":",
"[",
"inv_visit_inds",
"[",
"n",
"]",
"for",
"n",
"in",
"row",
".",
"nonzero",
"(",
")",
"[",
"0",
"]",
"]",
"for",
"m",
",",
"row",
"in",
"enumerate",
"(",
"to_process_array",
")",
"}",
")",
"]",
"else",
":",
"visit_it",
".",
"iterables",
"=",
"(",
"self",
".",
"study",
".",
"VISIT_ID",
",",
"[",
"inv_visit_inds",
"[",
"n",
"]",
"for",
"n",
"in",
"to_process_array",
".",
"any",
"(",
"axis",
"=",
"0",
")",
".",
"nonzero",
"(",
")",
"[",
"0",
"]",
"]",
")",
"iter_nodes",
"[",
"self",
".",
"study",
".",
"VISIT_ID",
"]",
"=",
"visit_it",
"if",
"dependent",
"==",
"self",
".",
"study",
".",
"SUBJECT_ID",
":",
"pipeline",
".",
"connect",
"(",
"visit_it",
",",
"self",
".",
"study",
".",
"VISIT_ID",
",",
"subj_it",
",",
"self",
".",
"study",
".",
"VISIT_ID",
")",
"if",
"dependent",
"==",
"self",
".",
"study",
".",
"VISIT_ID",
":",
"pipeline",
".",
"connect",
"(",
"subj_it",
",",
"self",
".",
"study",
".",
"SUBJECT_ID",
",",
"visit_it",
",",
"self",
".",
"study",
".",
"SUBJECT_ID",
")",
"return",
"iter_nodes"
] | Generate nodes that iterate over subjects and visits in the study that
need to be processed by the pipeline
Parameters
----------
pipeline : Pipeline
The pipeline to add iter_nodes for
to_process_array : 2-D numpy.array[bool]
A two-dimensional boolean array, where rows correspond to
subjects and columns correspond to visits in the repository. True
values represent a combination of subject & visit ID to process
the session for
subject_inds : dct[str, int]
A mapping of subject ID to row index in the 'to_process' array
visit_inds : dct[str, int]
A mapping of visit ID to column index in the 'to_process' array
Returns
-------
iter_nodes : dict[str, Node]
A dictionary containing the nodes to iterate over all subject/visit
IDs to process for each input frequency | [
"Generate",
"nodes",
"that",
"iterate",
"over",
"subjects",
"and",
"visits",
"in",
"the",
"study",
"that",
"need",
"to",
"be",
"processed",
"by",
"the",
"pipeline"
] | train | https://github.com/MonashBI/arcana/blob/d6271a29d13733d00422d11417af8d200be62acc/arcana/processor/base.py#L538-L658 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.