repository_name
stringlengths
7
55
func_path_in_repository
stringlengths
4
223
func_name
stringlengths
1
134
whole_func_string
stringlengths
75
104k
language
stringclasses
1 value
func_code_string
stringlengths
75
104k
func_code_tokens
sequencelengths
19
28.4k
func_documentation_string
stringlengths
1
46.9k
func_documentation_tokens
sequencelengths
1
1.97k
split_name
stringclasses
1 value
func_code_url
stringlengths
87
315
oscarlazoarjona/fast
fast/atomic_structure.py
calculate_gamma_matrix
def calculate_gamma_matrix(magnetic_states, Omega=1, einsteinA=None, numeric=True): ur"""Calculate the matrix of decay between states. This function calculates the matrix :math:`\gamma_{ij}` of decay rates between states :math:`|i\rangle` and :math:`|j\rangle` (in the units specified by the Omega argument). >>> import numpy as np >>> g = State("Rb", 87, 5, 0, 1/Integer(2)) >>> e = State("Rb", 87, 5, 1, 3/Integer(2)) >>> magnetic_states = make_list_of_states([g, e], "magnetic") To return the rates in 10^6 rad /s: >>> gamma = np.array(calculate_gamma_matrix(magnetic_states, Omega=1e6)) The :math:`5P_{3/2}, 5S_{1/2}` block of this matrix is >>> print(gamma[8:, :8]/2/np.pi) [[2.0217 2.0217 2.0217 0. 0. 0. 0. 0. ] [2.5271 2.5271 0. 0.6065 0.3033 0.1011 0. 0. ] [2.5271 0. 2.5271 0. 0.3033 0.4043 0.3033 0. ] [0. 2.5271 2.5271 0. 0. 0.1011 0.3033 0.6065] [3.0325 0. 0. 2.0217 1.0108 0. 0. 0. ] [1.5163 1.5163 0. 1.0108 0.5054 1.5163 0. 0. ] [0.5054 2.0217 0.5054 0. 1.5163 0. 1.5163 0. ] [0. 1.5163 1.5163 0. 0. 1.5163 0.5054 1.0108] [0. 0. 3.0325 0. 0. 0. 1.0108 2.0217] [0. 0. 0. 6.065 0. 0. 0. 0. ] [0. 0. 0. 2.0217 4.0433 0. 0. 0. ] [0. 0. 0. 0.4043 3.2347 2.426 0. 0. ] [0. 0. 0. 0. 1.213 3.639 1.213 0. ] [0. 0. 0. 0. 0. 2.426 3.2347 0.4043] [0. 0. 0. 0. 0. 0. 4.0433 2.0217] [0. 0. 0. 0. 0. 0. 0. 6.065 ]] Let us test if all D2 lines decay at the expected rate (6.065 MHz): >>> Gamma = [sum([gamma[i][j] for j in range(i)])/2/pi ... for i in range(len(magnetic_states))][8:] >>> for Gammai in Gamma: print("{:2.3f}".format(Gammai)) 6.065 6.065 6.065 6.065 6.065 6.065 6.065 6.065 6.065 6.065 6.065 6.065 6.065 6.065 6.065 6.065 Let us do this symbolically >>> from sympy import Matrix, pprint, symbols >>> Gamma = symbols("Gamma", positive=True) >>> einsteinA = Matrix([[0, -Gamma], [Gamma, 0]]) >>> gamma = calculate_gamma_matrix(magnetic_states, einsteinA=einsteinA, ... numeric=False) >>> pprint(Matrix(gamma)[8:, :8]) ⎑ Ξ“ Ξ“ Ξ“ ⎀ ⎒ ─ ─ ─ 0 0 0 0 0 βŽ₯ ⎒ 3 3 3 βŽ₯ ⎒ βŽ₯ ⎒5β‹…Ξ“ 5β‹…Ξ“ Ξ“ Ξ“ Ξ“ βŽ₯ βŽ’β”€β”€β”€ ─── 0 ── ── ── 0 0 βŽ₯ ⎒ 12 12 10 20 60 βŽ₯ ⎒ βŽ₯ ⎒5β‹…Ξ“ 5β‹…Ξ“ Ξ“ Ξ“ Ξ“ βŽ₯ βŽ’β”€β”€β”€ 0 ─── 0 ── ── ── 0 βŽ₯ ⎒ 12 12 20 15 20 βŽ₯ ⎒ βŽ₯ ⎒ 5β‹…Ξ“ 5β‹…Ξ“ Ξ“ Ξ“ Ξ“ βŽ₯ ⎒ 0 ─── ─── 0 0 ── ── ──βŽ₯ ⎒ 12 12 60 20 10βŽ₯ ⎒ βŽ₯ ⎒ Ξ“ Ξ“ Ξ“ βŽ₯ ⎒ ─ 0 0 ─ ─ 0 0 0 βŽ₯ ⎒ 2 3 6 βŽ₯ ⎒ βŽ₯ ⎒ Ξ“ Ξ“ Ξ“ Ξ“ Ξ“ βŽ₯ ⎒ ─ ─ 0 ─ ── ─ 0 0 βŽ₯ ⎒ 4 4 6 12 4 βŽ₯ ⎒ βŽ₯ βŽ’Ξ“ Ξ“ Ξ“ Ξ“ Ξ“ βŽ₯ βŽ’β”€β”€ ─ ── 0 ─ 0 ─ 0 βŽ₯ ⎒12 3 12 4 4 βŽ₯ ⎒ βŽ₯ ⎒ Ξ“ Ξ“ Ξ“ Ξ“ Ξ“ βŽ₯ ⎒ 0 ─ ─ 0 0 ─ ── ─ βŽ₯ ⎒ 4 4 4 12 6 βŽ₯ ⎒ βŽ₯ ⎒ Ξ“ Ξ“ Ξ“ βŽ₯ ⎒ 0 0 ─ 0 0 0 ─ ─ βŽ₯ ⎒ 2 6 3 βŽ₯ ⎒ βŽ₯ ⎒ 0 0 0 Ξ“ 0 0 0 0 βŽ₯ ⎒ βŽ₯ ⎒ Ξ“ 2β‹…Ξ“ βŽ₯ ⎒ 0 0 0 ─ ─── 0 0 0 βŽ₯ ⎒ 3 3 βŽ₯ ⎒ βŽ₯ ⎒ Ξ“ 8β‹…Ξ“ 2β‹…Ξ“ βŽ₯ ⎒ 0 0 0 ── ─── ─── 0 0 βŽ₯ ⎒ 15 15 5 βŽ₯ ⎒ βŽ₯ ⎒ Ξ“ 3β‹…Ξ“ Ξ“ βŽ₯ ⎒ 0 0 0 0 ─ ─── ─ 0 βŽ₯ ⎒ 5 5 5 βŽ₯ ⎒ βŽ₯ ⎒ 2β‹…Ξ“ 8β‹…Ξ“ Ξ“ βŽ₯ ⎒ 0 0 0 0 0 ─── ─── ──βŽ₯ ⎒ 5 15 15βŽ₯ ⎒ βŽ₯ ⎒ 2β‹…Ξ“ Ξ“ βŽ₯ ⎒ 0 0 0 0 0 0 ─── ─ βŽ₯ ⎒ 3 3 βŽ₯ ⎒ βŽ₯ ⎣ 0 0 0 0 0 0 0 Ξ“ ⎦ >>> Gamma =Matrix([sum([gamma[i][j] for j in range(i)]) ... for i in range(len(magnetic_states))][8:]) >>> pprint(Gamma) βŽ‘Ξ“βŽ€ ⎒ βŽ₯ βŽ’Ξ“βŽ₯ ⎒ βŽ₯ βŽ’Ξ“βŽ₯ ⎒ βŽ₯ βŽ’Ξ“βŽ₯ ⎒ βŽ₯ βŽ’Ξ“βŽ₯ ⎒ βŽ₯ βŽ’Ξ“βŽ₯ ⎒ βŽ₯ βŽ’Ξ“βŽ₯ ⎒ βŽ₯ βŽ’Ξ“βŽ₯ ⎒ βŽ₯ βŽ’Ξ“βŽ₯ ⎒ βŽ₯ βŽ’Ξ“βŽ₯ ⎒ βŽ₯ βŽ’Ξ“βŽ₯ ⎒ βŽ₯ βŽ’Ξ“βŽ₯ ⎒ βŽ₯ βŽ’Ξ“βŽ₯ ⎒ βŽ₯ βŽ’Ξ“βŽ₯ ⎒ βŽ₯ βŽ’Ξ“βŽ₯ ⎒ βŽ₯ βŽ£Ξ“βŽ¦ """ Ne = len(magnetic_states) fine_states = [] fine_map = {} ii = 0 for ei in magnetic_states: fine = State(ei.element, ei.isotope, ei.n, ei.l, ei.j) if fine not in fine_states: fine_states += [fine] ii += 1 fine_map.update({ei: ii-1}) II = magnetic_states[0].i gamma = [[0.0 for j in range(Ne)] for i in range(Ne)] for i in range(Ne): for j in range(i): ei = magnetic_states[i] ej = magnetic_states[j] if einsteinA is not None: iii = fine_map[ei] jjj = fine_map[ej] einsteinAij = einsteinA[iii, jjj] else: einsteinAij = Transition(ei, ej).einsteinA if einsteinAij != 0: ji = ei.j; jj = ej.j fi = ei.f; fj = ej.f mi = ei.m; mj = ej.m gammaij = (2*ji+1) gammaij *= (2*fi+1) gammaij *= (2*fj+1) if numeric: gammaij *= float(wigner_6j(ji, fi, II, fj, jj, 1)**2) gammaij *= sum([float(wigner_3j(fj, 1, fi, -mj, q, mi)**2) for q in [-1, 0, 1]]) gammaij *= einsteinAij/Omega gammaij = float(gammaij) else: gammaij *= wigner_6j(ji, fi, II, fj, jj, 1)**2 gammaij *= sum([wigner_3j(fj, 1, fi, -mj, q, mi)**2 for q in [-1, 0, 1]]) gammaij *= einsteinAij/Omega gamma[i][j] = gammaij gamma[j][i] = -gammaij return gamma
python
def calculate_gamma_matrix(magnetic_states, Omega=1, einsteinA=None, numeric=True): ur"""Calculate the matrix of decay between states. This function calculates the matrix :math:`\gamma_{ij}` of decay rates between states :math:`|i\rangle` and :math:`|j\rangle` (in the units specified by the Omega argument). >>> import numpy as np >>> g = State("Rb", 87, 5, 0, 1/Integer(2)) >>> e = State("Rb", 87, 5, 1, 3/Integer(2)) >>> magnetic_states = make_list_of_states([g, e], "magnetic") To return the rates in 10^6 rad /s: >>> gamma = np.array(calculate_gamma_matrix(magnetic_states, Omega=1e6)) The :math:`5P_{3/2}, 5S_{1/2}` block of this matrix is >>> print(gamma[8:, :8]/2/np.pi) [[2.0217 2.0217 2.0217 0. 0. 0. 0. 0. ] [2.5271 2.5271 0. 0.6065 0.3033 0.1011 0. 0. ] [2.5271 0. 2.5271 0. 0.3033 0.4043 0.3033 0. ] [0. 2.5271 2.5271 0. 0. 0.1011 0.3033 0.6065] [3.0325 0. 0. 2.0217 1.0108 0. 0. 0. ] [1.5163 1.5163 0. 1.0108 0.5054 1.5163 0. 0. ] [0.5054 2.0217 0.5054 0. 1.5163 0. 1.5163 0. ] [0. 1.5163 1.5163 0. 0. 1.5163 0.5054 1.0108] [0. 0. 3.0325 0. 0. 0. 1.0108 2.0217] [0. 0. 0. 6.065 0. 0. 0. 0. ] [0. 0. 0. 2.0217 4.0433 0. 0. 0. ] [0. 0. 0. 0.4043 3.2347 2.426 0. 0. ] [0. 0. 0. 0. 1.213 3.639 1.213 0. ] [0. 0. 0. 0. 0. 2.426 3.2347 0.4043] [0. 0. 0. 0. 0. 0. 4.0433 2.0217] [0. 0. 0. 0. 0. 0. 0. 6.065 ]] Let us test if all D2 lines decay at the expected rate (6.065 MHz): >>> Gamma = [sum([gamma[i][j] for j in range(i)])/2/pi ... for i in range(len(magnetic_states))][8:] >>> for Gammai in Gamma: print("{:2.3f}".format(Gammai)) 6.065 6.065 6.065 6.065 6.065 6.065 6.065 6.065 6.065 6.065 6.065 6.065 6.065 6.065 6.065 6.065 Let us do this symbolically >>> from sympy import Matrix, pprint, symbols >>> Gamma = symbols("Gamma", positive=True) >>> einsteinA = Matrix([[0, -Gamma], [Gamma, 0]]) >>> gamma = calculate_gamma_matrix(magnetic_states, einsteinA=einsteinA, ... numeric=False) >>> pprint(Matrix(gamma)[8:, :8]) ⎑ Ξ“ Ξ“ Ξ“ ⎀ ⎒ ─ ─ ─ 0 0 0 0 0 βŽ₯ ⎒ 3 3 3 βŽ₯ ⎒ βŽ₯ ⎒5β‹…Ξ“ 5β‹…Ξ“ Ξ“ Ξ“ Ξ“ βŽ₯ βŽ’β”€β”€β”€ ─── 0 ── ── ── 0 0 βŽ₯ ⎒ 12 12 10 20 60 βŽ₯ ⎒ βŽ₯ ⎒5β‹…Ξ“ 5β‹…Ξ“ Ξ“ Ξ“ Ξ“ βŽ₯ βŽ’β”€β”€β”€ 0 ─── 0 ── ── ── 0 βŽ₯ ⎒ 12 12 20 15 20 βŽ₯ ⎒ βŽ₯ ⎒ 5β‹…Ξ“ 5β‹…Ξ“ Ξ“ Ξ“ Ξ“ βŽ₯ ⎒ 0 ─── ─── 0 0 ── ── ──βŽ₯ ⎒ 12 12 60 20 10βŽ₯ ⎒ βŽ₯ ⎒ Ξ“ Ξ“ Ξ“ βŽ₯ ⎒ ─ 0 0 ─ ─ 0 0 0 βŽ₯ ⎒ 2 3 6 βŽ₯ ⎒ βŽ₯ ⎒ Ξ“ Ξ“ Ξ“ Ξ“ Ξ“ βŽ₯ ⎒ ─ ─ 0 ─ ── ─ 0 0 βŽ₯ ⎒ 4 4 6 12 4 βŽ₯ ⎒ βŽ₯ βŽ’Ξ“ Ξ“ Ξ“ Ξ“ Ξ“ βŽ₯ βŽ’β”€β”€ ─ ── 0 ─ 0 ─ 0 βŽ₯ ⎒12 3 12 4 4 βŽ₯ ⎒ βŽ₯ ⎒ Ξ“ Ξ“ Ξ“ Ξ“ Ξ“ βŽ₯ ⎒ 0 ─ ─ 0 0 ─ ── ─ βŽ₯ ⎒ 4 4 4 12 6 βŽ₯ ⎒ βŽ₯ ⎒ Ξ“ Ξ“ Ξ“ βŽ₯ ⎒ 0 0 ─ 0 0 0 ─ ─ βŽ₯ ⎒ 2 6 3 βŽ₯ ⎒ βŽ₯ ⎒ 0 0 0 Ξ“ 0 0 0 0 βŽ₯ ⎒ βŽ₯ ⎒ Ξ“ 2β‹…Ξ“ βŽ₯ ⎒ 0 0 0 ─ ─── 0 0 0 βŽ₯ ⎒ 3 3 βŽ₯ ⎒ βŽ₯ ⎒ Ξ“ 8β‹…Ξ“ 2β‹…Ξ“ βŽ₯ ⎒ 0 0 0 ── ─── ─── 0 0 βŽ₯ ⎒ 15 15 5 βŽ₯ ⎒ βŽ₯ ⎒ Ξ“ 3β‹…Ξ“ Ξ“ βŽ₯ ⎒ 0 0 0 0 ─ ─── ─ 0 βŽ₯ ⎒ 5 5 5 βŽ₯ ⎒ βŽ₯ ⎒ 2β‹…Ξ“ 8β‹…Ξ“ Ξ“ βŽ₯ ⎒ 0 0 0 0 0 ─── ─── ──βŽ₯ ⎒ 5 15 15βŽ₯ ⎒ βŽ₯ ⎒ 2β‹…Ξ“ Ξ“ βŽ₯ ⎒ 0 0 0 0 0 0 ─── ─ βŽ₯ ⎒ 3 3 βŽ₯ ⎒ βŽ₯ ⎣ 0 0 0 0 0 0 0 Ξ“ ⎦ >>> Gamma =Matrix([sum([gamma[i][j] for j in range(i)]) ... for i in range(len(magnetic_states))][8:]) >>> pprint(Gamma) βŽ‘Ξ“βŽ€ ⎒ βŽ₯ βŽ’Ξ“βŽ₯ ⎒ βŽ₯ βŽ’Ξ“βŽ₯ ⎒ βŽ₯ βŽ’Ξ“βŽ₯ ⎒ βŽ₯ βŽ’Ξ“βŽ₯ ⎒ βŽ₯ βŽ’Ξ“βŽ₯ ⎒ βŽ₯ βŽ’Ξ“βŽ₯ ⎒ βŽ₯ βŽ’Ξ“βŽ₯ ⎒ βŽ₯ βŽ’Ξ“βŽ₯ ⎒ βŽ₯ βŽ’Ξ“βŽ₯ ⎒ βŽ₯ βŽ’Ξ“βŽ₯ ⎒ βŽ₯ βŽ’Ξ“βŽ₯ ⎒ βŽ₯ βŽ’Ξ“βŽ₯ ⎒ βŽ₯ βŽ’Ξ“βŽ₯ ⎒ βŽ₯ βŽ’Ξ“βŽ₯ ⎒ βŽ₯ βŽ£Ξ“βŽ¦ """ Ne = len(magnetic_states) fine_states = [] fine_map = {} ii = 0 for ei in magnetic_states: fine = State(ei.element, ei.isotope, ei.n, ei.l, ei.j) if fine not in fine_states: fine_states += [fine] ii += 1 fine_map.update({ei: ii-1}) II = magnetic_states[0].i gamma = [[0.0 for j in range(Ne)] for i in range(Ne)] for i in range(Ne): for j in range(i): ei = magnetic_states[i] ej = magnetic_states[j] if einsteinA is not None: iii = fine_map[ei] jjj = fine_map[ej] einsteinAij = einsteinA[iii, jjj] else: einsteinAij = Transition(ei, ej).einsteinA if einsteinAij != 0: ji = ei.j; jj = ej.j fi = ei.f; fj = ej.f mi = ei.m; mj = ej.m gammaij = (2*ji+1) gammaij *= (2*fi+1) gammaij *= (2*fj+1) if numeric: gammaij *= float(wigner_6j(ji, fi, II, fj, jj, 1)**2) gammaij *= sum([float(wigner_3j(fj, 1, fi, -mj, q, mi)**2) for q in [-1, 0, 1]]) gammaij *= einsteinAij/Omega gammaij = float(gammaij) else: gammaij *= wigner_6j(ji, fi, II, fj, jj, 1)**2 gammaij *= sum([wigner_3j(fj, 1, fi, -mj, q, mi)**2 for q in [-1, 0, 1]]) gammaij *= einsteinAij/Omega gamma[i][j] = gammaij gamma[j][i] = -gammaij return gamma
[ "def", "calculate_gamma_matrix", "(", "magnetic_states", ",", "Omega", "=", "1", ",", "einsteinA", "=", "None", ",", "numeric", "=", "True", ")", ":", "Ne", "=", "len", "(", "magnetic_states", ")", "fine_states", "=", "[", "]", "fine_map", "=", "{", "}", "ii", "=", "0", "for", "ei", "in", "magnetic_states", ":", "fine", "=", "State", "(", "ei", ".", "element", ",", "ei", ".", "isotope", ",", "ei", ".", "n", ",", "ei", ".", "l", ",", "ei", ".", "j", ")", "if", "fine", "not", "in", "fine_states", ":", "fine_states", "+=", "[", "fine", "]", "ii", "+=", "1", "fine_map", ".", "update", "(", "{", "ei", ":", "ii", "-", "1", "}", ")", "II", "=", "magnetic_states", "[", "0", "]", ".", "i", "gamma", "=", "[", "[", "0.0", "for", "j", "in", "range", "(", "Ne", ")", "]", "for", "i", "in", "range", "(", "Ne", ")", "]", "for", "i", "in", "range", "(", "Ne", ")", ":", "for", "j", "in", "range", "(", "i", ")", ":", "ei", "=", "magnetic_states", "[", "i", "]", "ej", "=", "magnetic_states", "[", "j", "]", "if", "einsteinA", "is", "not", "None", ":", "iii", "=", "fine_map", "[", "ei", "]", "jjj", "=", "fine_map", "[", "ej", "]", "einsteinAij", "=", "einsteinA", "[", "iii", ",", "jjj", "]", "else", ":", "einsteinAij", "=", "Transition", "(", "ei", ",", "ej", ")", ".", "einsteinA", "if", "einsteinAij", "!=", "0", ":", "ji", "=", "ei", ".", "j", "jj", "=", "ej", ".", "j", "fi", "=", "ei", ".", "f", "fj", "=", "ej", ".", "f", "mi", "=", "ei", ".", "m", "mj", "=", "ej", ".", "m", "gammaij", "=", "(", "2", "*", "ji", "+", "1", ")", "gammaij", "*=", "(", "2", "*", "fi", "+", "1", ")", "gammaij", "*=", "(", "2", "*", "fj", "+", "1", ")", "if", "numeric", ":", "gammaij", "*=", "float", "(", "wigner_6j", "(", "ji", ",", "fi", ",", "II", ",", "fj", ",", "jj", ",", "1", ")", "**", "2", ")", "gammaij", "*=", "sum", "(", "[", "float", "(", "wigner_3j", "(", "fj", ",", "1", ",", "fi", ",", "-", "mj", ",", "q", ",", "mi", ")", "**", "2", ")", "for", "q", "in", "[", "-", "1", ",", "0", ",", "1", "]", "]", ")", "gammaij", "*=", "einsteinAij", "/", "Omega", "gammaij", "=", "float", "(", "gammaij", ")", "else", ":", "gammaij", "*=", "wigner_6j", "(", "ji", ",", "fi", ",", "II", ",", "fj", ",", "jj", ",", "1", ")", "**", "2", "gammaij", "*=", "sum", "(", "[", "wigner_3j", "(", "fj", ",", "1", ",", "fi", ",", "-", "mj", ",", "q", ",", "mi", ")", "**", "2", "for", "q", "in", "[", "-", "1", ",", "0", ",", "1", "]", "]", ")", "gammaij", "*=", "einsteinAij", "/", "Omega", "gamma", "[", "i", "]", "[", "j", "]", "=", "gammaij", "gamma", "[", "j", "]", "[", "i", "]", "=", "-", "gammaij", "return", "gamma" ]
ur"""Calculate the matrix of decay between states. This function calculates the matrix :math:`\gamma_{ij}` of decay rates between states :math:`|i\rangle` and :math:`|j\rangle` (in the units specified by the Omega argument). >>> import numpy as np >>> g = State("Rb", 87, 5, 0, 1/Integer(2)) >>> e = State("Rb", 87, 5, 1, 3/Integer(2)) >>> magnetic_states = make_list_of_states([g, e], "magnetic") To return the rates in 10^6 rad /s: >>> gamma = np.array(calculate_gamma_matrix(magnetic_states, Omega=1e6)) The :math:`5P_{3/2}, 5S_{1/2}` block of this matrix is >>> print(gamma[8:, :8]/2/np.pi) [[2.0217 2.0217 2.0217 0. 0. 0. 0. 0. ] [2.5271 2.5271 0. 0.6065 0.3033 0.1011 0. 0. ] [2.5271 0. 2.5271 0. 0.3033 0.4043 0.3033 0. ] [0. 2.5271 2.5271 0. 0. 0.1011 0.3033 0.6065] [3.0325 0. 0. 2.0217 1.0108 0. 0. 0. ] [1.5163 1.5163 0. 1.0108 0.5054 1.5163 0. 0. ] [0.5054 2.0217 0.5054 0. 1.5163 0. 1.5163 0. ] [0. 1.5163 1.5163 0. 0. 1.5163 0.5054 1.0108] [0. 0. 3.0325 0. 0. 0. 1.0108 2.0217] [0. 0. 0. 6.065 0. 0. 0. 0. ] [0. 0. 0. 2.0217 4.0433 0. 0. 0. ] [0. 0. 0. 0.4043 3.2347 2.426 0. 0. ] [0. 0. 0. 0. 1.213 3.639 1.213 0. ] [0. 0. 0. 0. 0. 2.426 3.2347 0.4043] [0. 0. 0. 0. 0. 0. 4.0433 2.0217] [0. 0. 0. 0. 0. 0. 0. 6.065 ]] Let us test if all D2 lines decay at the expected rate (6.065 MHz): >>> Gamma = [sum([gamma[i][j] for j in range(i)])/2/pi ... for i in range(len(magnetic_states))][8:] >>> for Gammai in Gamma: print("{:2.3f}".format(Gammai)) 6.065 6.065 6.065 6.065 6.065 6.065 6.065 6.065 6.065 6.065 6.065 6.065 6.065 6.065 6.065 6.065 Let us do this symbolically >>> from sympy import Matrix, pprint, symbols >>> Gamma = symbols("Gamma", positive=True) >>> einsteinA = Matrix([[0, -Gamma], [Gamma, 0]]) >>> gamma = calculate_gamma_matrix(magnetic_states, einsteinA=einsteinA, ... numeric=False) >>> pprint(Matrix(gamma)[8:, :8]) ⎑ Ξ“ Ξ“ Ξ“ ⎀ ⎒ ─ ─ ─ 0 0 0 0 0 βŽ₯ ⎒ 3 3 3 βŽ₯ ⎒ βŽ₯ ⎒5β‹…Ξ“ 5β‹…Ξ“ Ξ“ Ξ“ Ξ“ βŽ₯ βŽ’β”€β”€β”€ ─── 0 ── ── ── 0 0 βŽ₯ ⎒ 12 12 10 20 60 βŽ₯ ⎒ βŽ₯ ⎒5β‹…Ξ“ 5β‹…Ξ“ Ξ“ Ξ“ Ξ“ βŽ₯ βŽ’β”€β”€β”€ 0 ─── 0 ── ── ── 0 βŽ₯ ⎒ 12 12 20 15 20 βŽ₯ ⎒ βŽ₯ ⎒ 5β‹…Ξ“ 5β‹…Ξ“ Ξ“ Ξ“ Ξ“ βŽ₯ ⎒ 0 ─── ─── 0 0 ── ── ──βŽ₯ ⎒ 12 12 60 20 10βŽ₯ ⎒ βŽ₯ ⎒ Ξ“ Ξ“ Ξ“ βŽ₯ ⎒ ─ 0 0 ─ ─ 0 0 0 βŽ₯ ⎒ 2 3 6 βŽ₯ ⎒ βŽ₯ ⎒ Ξ“ Ξ“ Ξ“ Ξ“ Ξ“ βŽ₯ ⎒ ─ ─ 0 ─ ── ─ 0 0 βŽ₯ ⎒ 4 4 6 12 4 βŽ₯ ⎒ βŽ₯ βŽ’Ξ“ Ξ“ Ξ“ Ξ“ Ξ“ βŽ₯ βŽ’β”€β”€ ─ ── 0 ─ 0 ─ 0 βŽ₯ ⎒12 3 12 4 4 βŽ₯ ⎒ βŽ₯ ⎒ Ξ“ Ξ“ Ξ“ Ξ“ Ξ“ βŽ₯ ⎒ 0 ─ ─ 0 0 ─ ── ─ βŽ₯ ⎒ 4 4 4 12 6 βŽ₯ ⎒ βŽ₯ ⎒ Ξ“ Ξ“ Ξ“ βŽ₯ ⎒ 0 0 ─ 0 0 0 ─ ─ βŽ₯ ⎒ 2 6 3 βŽ₯ ⎒ βŽ₯ ⎒ 0 0 0 Ξ“ 0 0 0 0 βŽ₯ ⎒ βŽ₯ ⎒ Ξ“ 2β‹…Ξ“ βŽ₯ ⎒ 0 0 0 ─ ─── 0 0 0 βŽ₯ ⎒ 3 3 βŽ₯ ⎒ βŽ₯ ⎒ Ξ“ 8β‹…Ξ“ 2β‹…Ξ“ βŽ₯ ⎒ 0 0 0 ── ─── ─── 0 0 βŽ₯ ⎒ 15 15 5 βŽ₯ ⎒ βŽ₯ ⎒ Ξ“ 3β‹…Ξ“ Ξ“ βŽ₯ ⎒ 0 0 0 0 ─ ─── ─ 0 βŽ₯ ⎒ 5 5 5 βŽ₯ ⎒ βŽ₯ ⎒ 2β‹…Ξ“ 8β‹…Ξ“ Ξ“ βŽ₯ ⎒ 0 0 0 0 0 ─── ─── ──βŽ₯ ⎒ 5 15 15βŽ₯ ⎒ βŽ₯ ⎒ 2β‹…Ξ“ Ξ“ βŽ₯ ⎒ 0 0 0 0 0 0 ─── ─ βŽ₯ ⎒ 3 3 βŽ₯ ⎒ βŽ₯ ⎣ 0 0 0 0 0 0 0 Ξ“ ⎦ >>> Gamma =Matrix([sum([gamma[i][j] for j in range(i)]) ... for i in range(len(magnetic_states))][8:]) >>> pprint(Gamma) βŽ‘Ξ“βŽ€ ⎒ βŽ₯ βŽ’Ξ“βŽ₯ ⎒ βŽ₯ βŽ’Ξ“βŽ₯ ⎒ βŽ₯ βŽ’Ξ“βŽ₯ ⎒ βŽ₯ βŽ’Ξ“βŽ₯ ⎒ βŽ₯ βŽ’Ξ“βŽ₯ ⎒ βŽ₯ βŽ’Ξ“βŽ₯ ⎒ βŽ₯ βŽ’Ξ“βŽ₯ ⎒ βŽ₯ βŽ’Ξ“βŽ₯ ⎒ βŽ₯ βŽ’Ξ“βŽ₯ ⎒ βŽ₯ βŽ’Ξ“βŽ₯ ⎒ βŽ₯ βŽ’Ξ“βŽ₯ ⎒ βŽ₯ βŽ’Ξ“βŽ₯ ⎒ βŽ₯ βŽ’Ξ“βŽ₯ ⎒ βŽ₯ βŽ’Ξ“βŽ₯ ⎒ βŽ₯ βŽ£Ξ“βŽ¦
[ "ur", "Calculate", "the", "matrix", "of", "decay", "between", "states", "." ]
train
https://github.com/oscarlazoarjona/fast/blob/3e5400672af2a7b7cc616e7f4aa10d7672720222/fast/atomic_structure.py#L1489-L1709
oscarlazoarjona/fast
fast/atomic_structure.py
reduced_matrix_element
def reduced_matrix_element(fine_statei, fine_statej, convention=1): r"""Return the reduced matrix element of the position operator in Bohr\ radii. We have two available conventions for this 1.- [Racah]_ and [Edmonds74]_ .. math:: \langle \gamma_i, J_i, M_i| \hat{T}^k_q| \gamma_j, J_j, M_j\rangle \ = (-1)^{J_i-M_i} \ \left(\begin{matrix}J_i & k & J_j\\-M_i & q & M_j\end{matrix}\right) \ \langle \gamma_i, J_i|| \hat{T}^k|| \gamma_j, J_j \ \rangle_\mathrm{Racah} 2.- [Brink_Satchler]_ .. math:: \langle \gamma_i, J_i, M_i| \hat{T}^k_q| \gamma_j, J_j, M_j\rangle \ = (-1)^{J_i-M_i} \sqrt{2J_i+1} \ \left(\begin{matrix}J_i & k & J_j\\-M_i & q & M_j\end{matrix}\right) \ \langle \gamma_i, J_i|| \hat{T}^k|| \gamma_j, J_j\rangle \ _\mathrm{Brink} These two definitions of the reduced matrix element are related by .. math:: \langle \gamma_i, J_i|| \hat{T}^k|| \gamma_j, J_j \ \rangle_\mathrm{Racah} = \sqrt{2J_i+1} \ \langle \gamma_i, J_i|| \hat{T}^k|| \gamma_j, J_j\rangle \ _\mathrm{Brink} With the Racah element being symetric under argument exchange apart from a\ sign: .. math:: \langle \gamma_j, J_j|| (\hat{T}^k)^\dagger|| \gamma_i, J_i\rangle \ _\mathrm{Racah} = (-1)^{J_j-J_i}\ \langle \gamma_i, J_i|| \hat{T}^k|| \gamma_j, J_j\rangle \ _\mathrm{Racah} And the Brink element being asymetric under argument exchange: .. math:: \langle \gamma_j, J_j|| \hat{T}^k|| \gamma_i, J_i\rangle \ _\mathrm{Brink} = (-1)^{J_j-J_i}\ \frac{\sqrt{2J_i +1}}{\sqrt{2J_j +1}}\ \langle \gamma_i, J_i|| \hat{T}^k|| \gamma_j, J_j\rangle \ _\mathrm{Brink} References: .. [Brink_Satchler] Brink, D. M. and G. R. Satchler: 1994. "Angular\ Momentum". Oxford: Oxford University Press, 3rd edn., 182 pages. .. [Racah] Racah, G.: 1942. "Theory of complex spectra II". Phys. Rev., \ 62 438-462. .. [Edmonds74] A. R. Edmonds. Angular momentum in quantum mechanics. Investigations in physics, 4.; Investigations in physics, no. 4. Princeton, N.J., Princeton University Press, 1957.. >>> g = State("Rb", 87, 5, 0, 1/Integer(2)) >>> e = State("Rb", 87, 5, 1, 3/Integer(2)) >>> print(reduced_matrix_element(g, e)) 5.97785756147 >>> print(reduced_matrix_element(e, g)) -5.97785756146761 >>> print(reduced_matrix_element(g, e, convention=2)) 4.22698361868 >>> print(reduced_matrix_element(e, g, convention=2)) -2.11349180934051 """ if fine_statei == fine_statej: return 0.0 t = Transition(fine_statei, fine_statej) einsteinAij = t.einsteinA omega0 = t.omega Ji = fine_statei.j; Jj = fine_statej.j factor = sqrt(3*Pi*hbar*c**3*epsilon0)/e if omega0 < 0: rij = factor*sqrt((2*Jj+1)*einsteinAij/omega0**3)/a0 else: rij = reduced_matrix_element(fine_statej, fine_statei, convention=convention) rij *= (-1)**(Jj-Ji) # We return the Brink matrix element. if convention == 2: if omega0 < 0: rij = rij / sqrt(2*Ji+1) else: rij = rij / sqrt(2*Ji+1) return rij
python
def reduced_matrix_element(fine_statei, fine_statej, convention=1): r"""Return the reduced matrix element of the position operator in Bohr\ radii. We have two available conventions for this 1.- [Racah]_ and [Edmonds74]_ .. math:: \langle \gamma_i, J_i, M_i| \hat{T}^k_q| \gamma_j, J_j, M_j\rangle \ = (-1)^{J_i-M_i} \ \left(\begin{matrix}J_i & k & J_j\\-M_i & q & M_j\end{matrix}\right) \ \langle \gamma_i, J_i|| \hat{T}^k|| \gamma_j, J_j \ \rangle_\mathrm{Racah} 2.- [Brink_Satchler]_ .. math:: \langle \gamma_i, J_i, M_i| \hat{T}^k_q| \gamma_j, J_j, M_j\rangle \ = (-1)^{J_i-M_i} \sqrt{2J_i+1} \ \left(\begin{matrix}J_i & k & J_j\\-M_i & q & M_j\end{matrix}\right) \ \langle \gamma_i, J_i|| \hat{T}^k|| \gamma_j, J_j\rangle \ _\mathrm{Brink} These two definitions of the reduced matrix element are related by .. math:: \langle \gamma_i, J_i|| \hat{T}^k|| \gamma_j, J_j \ \rangle_\mathrm{Racah} = \sqrt{2J_i+1} \ \langle \gamma_i, J_i|| \hat{T}^k|| \gamma_j, J_j\rangle \ _\mathrm{Brink} With the Racah element being symetric under argument exchange apart from a\ sign: .. math:: \langle \gamma_j, J_j|| (\hat{T}^k)^\dagger|| \gamma_i, J_i\rangle \ _\mathrm{Racah} = (-1)^{J_j-J_i}\ \langle \gamma_i, J_i|| \hat{T}^k|| \gamma_j, J_j\rangle \ _\mathrm{Racah} And the Brink element being asymetric under argument exchange: .. math:: \langle \gamma_j, J_j|| \hat{T}^k|| \gamma_i, J_i\rangle \ _\mathrm{Brink} = (-1)^{J_j-J_i}\ \frac{\sqrt{2J_i +1}}{\sqrt{2J_j +1}}\ \langle \gamma_i, J_i|| \hat{T}^k|| \gamma_j, J_j\rangle \ _\mathrm{Brink} References: .. [Brink_Satchler] Brink, D. M. and G. R. Satchler: 1994. "Angular\ Momentum". Oxford: Oxford University Press, 3rd edn., 182 pages. .. [Racah] Racah, G.: 1942. "Theory of complex spectra II". Phys. Rev., \ 62 438-462. .. [Edmonds74] A. R. Edmonds. Angular momentum in quantum mechanics. Investigations in physics, 4.; Investigations in physics, no. 4. Princeton, N.J., Princeton University Press, 1957.. >>> g = State("Rb", 87, 5, 0, 1/Integer(2)) >>> e = State("Rb", 87, 5, 1, 3/Integer(2)) >>> print(reduced_matrix_element(g, e)) 5.97785756147 >>> print(reduced_matrix_element(e, g)) -5.97785756146761 >>> print(reduced_matrix_element(g, e, convention=2)) 4.22698361868 >>> print(reduced_matrix_element(e, g, convention=2)) -2.11349180934051 """ if fine_statei == fine_statej: return 0.0 t = Transition(fine_statei, fine_statej) einsteinAij = t.einsteinA omega0 = t.omega Ji = fine_statei.j; Jj = fine_statej.j factor = sqrt(3*Pi*hbar*c**3*epsilon0)/e if omega0 < 0: rij = factor*sqrt((2*Jj+1)*einsteinAij/omega0**3)/a0 else: rij = reduced_matrix_element(fine_statej, fine_statei, convention=convention) rij *= (-1)**(Jj-Ji) # We return the Brink matrix element. if convention == 2: if omega0 < 0: rij = rij / sqrt(2*Ji+1) else: rij = rij / sqrt(2*Ji+1) return rij
[ "def", "reduced_matrix_element", "(", "fine_statei", ",", "fine_statej", ",", "convention", "=", "1", ")", ":", "if", "fine_statei", "==", "fine_statej", ":", "return", "0.0", "t", "=", "Transition", "(", "fine_statei", ",", "fine_statej", ")", "einsteinAij", "=", "t", ".", "einsteinA", "omega0", "=", "t", ".", "omega", "Ji", "=", "fine_statei", ".", "j", "Jj", "=", "fine_statej", ".", "j", "factor", "=", "sqrt", "(", "3", "*", "Pi", "*", "hbar", "*", "c", "**", "3", "*", "epsilon0", ")", "/", "e", "if", "omega0", "<", "0", ":", "rij", "=", "factor", "*", "sqrt", "(", "(", "2", "*", "Jj", "+", "1", ")", "*", "einsteinAij", "/", "omega0", "**", "3", ")", "/", "a0", "else", ":", "rij", "=", "reduced_matrix_element", "(", "fine_statej", ",", "fine_statei", ",", "convention", "=", "convention", ")", "rij", "*=", "(", "-", "1", ")", "**", "(", "Jj", "-", "Ji", ")", "# We return the Brink matrix element.", "if", "convention", "==", "2", ":", "if", "omega0", "<", "0", ":", "rij", "=", "rij", "/", "sqrt", "(", "2", "*", "Ji", "+", "1", ")", "else", ":", "rij", "=", "rij", "/", "sqrt", "(", "2", "*", "Ji", "+", "1", ")", "return", "rij" ]
r"""Return the reduced matrix element of the position operator in Bohr\ radii. We have two available conventions for this 1.- [Racah]_ and [Edmonds74]_ .. math:: \langle \gamma_i, J_i, M_i| \hat{T}^k_q| \gamma_j, J_j, M_j\rangle \ = (-1)^{J_i-M_i} \ \left(\begin{matrix}J_i & k & J_j\\-M_i & q & M_j\end{matrix}\right) \ \langle \gamma_i, J_i|| \hat{T}^k|| \gamma_j, J_j \ \rangle_\mathrm{Racah} 2.- [Brink_Satchler]_ .. math:: \langle \gamma_i, J_i, M_i| \hat{T}^k_q| \gamma_j, J_j, M_j\rangle \ = (-1)^{J_i-M_i} \sqrt{2J_i+1} \ \left(\begin{matrix}J_i & k & J_j\\-M_i & q & M_j\end{matrix}\right) \ \langle \gamma_i, J_i|| \hat{T}^k|| \gamma_j, J_j\rangle \ _\mathrm{Brink} These two definitions of the reduced matrix element are related by .. math:: \langle \gamma_i, J_i|| \hat{T}^k|| \gamma_j, J_j \ \rangle_\mathrm{Racah} = \sqrt{2J_i+1} \ \langle \gamma_i, J_i|| \hat{T}^k|| \gamma_j, J_j\rangle \ _\mathrm{Brink} With the Racah element being symetric under argument exchange apart from a\ sign: .. math:: \langle \gamma_j, J_j|| (\hat{T}^k)^\dagger|| \gamma_i, J_i\rangle \ _\mathrm{Racah} = (-1)^{J_j-J_i}\ \langle \gamma_i, J_i|| \hat{T}^k|| \gamma_j, J_j\rangle \ _\mathrm{Racah} And the Brink element being asymetric under argument exchange: .. math:: \langle \gamma_j, J_j|| \hat{T}^k|| \gamma_i, J_i\rangle \ _\mathrm{Brink} = (-1)^{J_j-J_i}\ \frac{\sqrt{2J_i +1}}{\sqrt{2J_j +1}}\ \langle \gamma_i, J_i|| \hat{T}^k|| \gamma_j, J_j\rangle \ _\mathrm{Brink} References: .. [Brink_Satchler] Brink, D. M. and G. R. Satchler: 1994. "Angular\ Momentum". Oxford: Oxford University Press, 3rd edn., 182 pages. .. [Racah] Racah, G.: 1942. "Theory of complex spectra II". Phys. Rev., \ 62 438-462. .. [Edmonds74] A. R. Edmonds. Angular momentum in quantum mechanics. Investigations in physics, 4.; Investigations in physics, no. 4. Princeton, N.J., Princeton University Press, 1957.. >>> g = State("Rb", 87, 5, 0, 1/Integer(2)) >>> e = State("Rb", 87, 5, 1, 3/Integer(2)) >>> print(reduced_matrix_element(g, e)) 5.97785756147 >>> print(reduced_matrix_element(e, g)) -5.97785756146761 >>> print(reduced_matrix_element(g, e, convention=2)) 4.22698361868 >>> print(reduced_matrix_element(e, g, convention=2)) -2.11349180934051
[ "r", "Return", "the", "reduced", "matrix", "element", "of", "the", "position", "operator", "in", "Bohr", "\\", "radii", "." ]
train
https://github.com/oscarlazoarjona/fast/blob/3e5400672af2a7b7cc616e7f4aa10d7672720222/fast/atomic_structure.py#L1712-L1810
oscarlazoarjona/fast
fast/atomic_structure.py
calculate_reduced_matrix_elements
def calculate_reduced_matrix_elements(fine_states, convention=1): r"""Calculate the reduced matrix elements for a list of fine states. This function calculates the reduced matrix elments .. math:: \langle N,L,J||T^1(r)||N',L',J'\rangle given a list of fine states. We calculate the reduced matrix elements found in [SteckRb87]_ for the \ D1 and D2 lines in rubidium. >>> g = State("Rb", 87, 5, 0, 1/Integer(2)) >>> e1 = State("Rb", 87, 5, 1, 1/Integer(2)) >>> e2 = State("Rb", 87,5 , 1, 3/Integer(2)) >>> red = calculate_reduced_matrix_elements([g, e1, e2], convention=2) >>> print(red[0][1]) 2.99207750426 >>> print(red[0][2]) 4.22698361868 """ reduced_matrix_elements = [[reduced_matrix_element(ei, ej, convention=convention) for ej in fine_states] for ei in fine_states] return reduced_matrix_elements
python
def calculate_reduced_matrix_elements(fine_states, convention=1): r"""Calculate the reduced matrix elements for a list of fine states. This function calculates the reduced matrix elments .. math:: \langle N,L,J||T^1(r)||N',L',J'\rangle given a list of fine states. We calculate the reduced matrix elements found in [SteckRb87]_ for the \ D1 and D2 lines in rubidium. >>> g = State("Rb", 87, 5, 0, 1/Integer(2)) >>> e1 = State("Rb", 87, 5, 1, 1/Integer(2)) >>> e2 = State("Rb", 87,5 , 1, 3/Integer(2)) >>> red = calculate_reduced_matrix_elements([g, e1, e2], convention=2) >>> print(red[0][1]) 2.99207750426 >>> print(red[0][2]) 4.22698361868 """ reduced_matrix_elements = [[reduced_matrix_element(ei, ej, convention=convention) for ej in fine_states] for ei in fine_states] return reduced_matrix_elements
[ "def", "calculate_reduced_matrix_elements", "(", "fine_states", ",", "convention", "=", "1", ")", ":", "reduced_matrix_elements", "=", "[", "[", "reduced_matrix_element", "(", "ei", ",", "ej", ",", "convention", "=", "convention", ")", "for", "ej", "in", "fine_states", "]", "for", "ei", "in", "fine_states", "]", "return", "reduced_matrix_elements" ]
r"""Calculate the reduced matrix elements for a list of fine states. This function calculates the reduced matrix elments .. math:: \langle N,L,J||T^1(r)||N',L',J'\rangle given a list of fine states. We calculate the reduced matrix elements found in [SteckRb87]_ for the \ D1 and D2 lines in rubidium. >>> g = State("Rb", 87, 5, 0, 1/Integer(2)) >>> e1 = State("Rb", 87, 5, 1, 1/Integer(2)) >>> e2 = State("Rb", 87,5 , 1, 3/Integer(2)) >>> red = calculate_reduced_matrix_elements([g, e1, e2], convention=2) >>> print(red[0][1]) 2.99207750426 >>> print(red[0][2]) 4.22698361868
[ "r", "Calculate", "the", "reduced", "matrix", "elements", "for", "a", "list", "of", "fine", "states", "." ]
train
https://github.com/oscarlazoarjona/fast/blob/3e5400672af2a7b7cc616e7f4aa10d7672720222/fast/atomic_structure.py#L1813-L1841
oscarlazoarjona/fast
fast/atomic_structure.py
matrix_element
def matrix_element(ji, fi, mi, jj, fj, mj, II, reduced_matrix_element, q=None, numeric=True, convention=1): r"""Calculate a matrix element of the electric dipole (in the helicity basis). We calculate the matrix element for the cyclical transition of the D2 line in Rb 87. >>> from sympy import symbols >>> red = symbols("r", positive=True) >>> half = 1/Integer(2) >>> II = 3*half >>> matrix_element(3*half, 3, 3, half, 2, 2, II, red, q=1, numeric=False) r/2 If no polarization component is specified, all are returned. >>> matrix_element(3*half, 3, 3, half, 2, 2, II, red, numeric=False) [0, 0, r/2] """ if q is None: return [matrix_element(ji, fi, mi, jj, fj, mj, II, reduced_matrix_element, qi, numeric=numeric, convention=convention) for qi in [-1, 0, 1]] if numeric: from numpy import sqrt as numsqrt sqrt = numsqrt else: from sympy import sqrt as symsqrt sqrt = symsqrt rpij = (-1)**(fi-mi) rpij *= wigner_3j(fi, 1, fj, -mi, q, mj) rpij *= (-1)**(fj+ji+1+II) rpij *= sqrt(2*fj+1) rpij *= sqrt(2*fi+1) rpij *= wigner_6j(ji, jj, 1, fj, fi, II) rpij *= reduced_matrix_element if convention == 2: rpij = rpij * sqrt(2*ji+1) if numeric: rpij = float(rpij) return rpij
python
def matrix_element(ji, fi, mi, jj, fj, mj, II, reduced_matrix_element, q=None, numeric=True, convention=1): r"""Calculate a matrix element of the electric dipole (in the helicity basis). We calculate the matrix element for the cyclical transition of the D2 line in Rb 87. >>> from sympy import symbols >>> red = symbols("r", positive=True) >>> half = 1/Integer(2) >>> II = 3*half >>> matrix_element(3*half, 3, 3, half, 2, 2, II, red, q=1, numeric=False) r/2 If no polarization component is specified, all are returned. >>> matrix_element(3*half, 3, 3, half, 2, 2, II, red, numeric=False) [0, 0, r/2] """ if q is None: return [matrix_element(ji, fi, mi, jj, fj, mj, II, reduced_matrix_element, qi, numeric=numeric, convention=convention) for qi in [-1, 0, 1]] if numeric: from numpy import sqrt as numsqrt sqrt = numsqrt else: from sympy import sqrt as symsqrt sqrt = symsqrt rpij = (-1)**(fi-mi) rpij *= wigner_3j(fi, 1, fj, -mi, q, mj) rpij *= (-1)**(fj+ji+1+II) rpij *= sqrt(2*fj+1) rpij *= sqrt(2*fi+1) rpij *= wigner_6j(ji, jj, 1, fj, fi, II) rpij *= reduced_matrix_element if convention == 2: rpij = rpij * sqrt(2*ji+1) if numeric: rpij = float(rpij) return rpij
[ "def", "matrix_element", "(", "ji", ",", "fi", ",", "mi", ",", "jj", ",", "fj", ",", "mj", ",", "II", ",", "reduced_matrix_element", ",", "q", "=", "None", ",", "numeric", "=", "True", ",", "convention", "=", "1", ")", ":", "if", "q", "is", "None", ":", "return", "[", "matrix_element", "(", "ji", ",", "fi", ",", "mi", ",", "jj", ",", "fj", ",", "mj", ",", "II", ",", "reduced_matrix_element", ",", "qi", ",", "numeric", "=", "numeric", ",", "convention", "=", "convention", ")", "for", "qi", "in", "[", "-", "1", ",", "0", ",", "1", "]", "]", "if", "numeric", ":", "from", "numpy", "import", "sqrt", "as", "numsqrt", "sqrt", "=", "numsqrt", "else", ":", "from", "sympy", "import", "sqrt", "as", "symsqrt", "sqrt", "=", "symsqrt", "rpij", "=", "(", "-", "1", ")", "**", "(", "fi", "-", "mi", ")", "rpij", "*=", "wigner_3j", "(", "fi", ",", "1", ",", "fj", ",", "-", "mi", ",", "q", ",", "mj", ")", "rpij", "*=", "(", "-", "1", ")", "**", "(", "fj", "+", "ji", "+", "1", "+", "II", ")", "rpij", "*=", "sqrt", "(", "2", "*", "fj", "+", "1", ")", "rpij", "*=", "sqrt", "(", "2", "*", "fi", "+", "1", ")", "rpij", "*=", "wigner_6j", "(", "ji", ",", "jj", ",", "1", ",", "fj", ",", "fi", ",", "II", ")", "rpij", "*=", "reduced_matrix_element", "if", "convention", "==", "2", ":", "rpij", "=", "rpij", "*", "sqrt", "(", "2", "*", "ji", "+", "1", ")", "if", "numeric", ":", "rpij", "=", "float", "(", "rpij", ")", "return", "rpij" ]
r"""Calculate a matrix element of the electric dipole (in the helicity basis). We calculate the matrix element for the cyclical transition of the D2 line in Rb 87. >>> from sympy import symbols >>> red = symbols("r", positive=True) >>> half = 1/Integer(2) >>> II = 3*half >>> matrix_element(3*half, 3, 3, half, 2, 2, II, red, q=1, numeric=False) r/2 If no polarization component is specified, all are returned. >>> matrix_element(3*half, 3, 3, half, 2, 2, II, red, numeric=False) [0, 0, r/2]
[ "r", "Calculate", "a", "matrix", "element", "of", "the", "electric", "dipole", "(", "in", "the", "helicity", "basis", ")", "." ]
train
https://github.com/oscarlazoarjona/fast/blob/3e5400672af2a7b7cc616e7f4aa10d7672720222/fast/atomic_structure.py#L1844-L1891
oscarlazoarjona/fast
fast/atomic_structure.py
calculate_r_matrices
def calculate_r_matrices(fine_states, reduced_matrix_elements, q=None, numeric=True, convention=1): ur"""Calculate the matrix elements of the electric dipole (in the helicity basis). We calculate all matrix elements for the D2 line in Rb 87. >>> from sympy import symbols, pprint >>> red = symbols("r", positive=True) >>> reduced_matrix_elements = [[0, -red], [red, 0]] >>> g = State("Rb", 87, 5, 0, 1/Integer(2)) >>> e = State("Rb", 87, 5, 1, 3/Integer(2)) >>> fine_levels = [g, e] >>> r = calculate_r_matrices(fine_levels, reduced_matrix_elements, ... numeric=False) >>> pprint(r[0][8:,:8]) ⎑ √3β‹…r ⎀ ⎒ 0 0 ──── 0 0 0 0 0 βŽ₯ ⎒ 6 βŽ₯ ⎒ βŽ₯ ⎒ -√15β‹…r √15β‹…r βŽ₯ ⎒ 0 ─────── 0 0 0 ───── 0 0 βŽ₯ ⎒ 12 60 βŽ₯ ⎒ βŽ₯ ⎒ -√15β‹…r √5β‹…r βŽ₯ ⎒ 0 0 ─────── 0 0 0 ──── 0 βŽ₯ ⎒ 12 20 βŽ₯ ⎒ βŽ₯ ⎒ √10β‹…r βŽ₯ ⎒ 0 0 0 0 0 0 0 ───── βŽ₯ ⎒ 20 βŽ₯ ⎒ βŽ₯ ⎒√2β‹…r -√6β‹…r βŽ₯ βŽ’β”€β”€β”€β”€ 0 0 0 ────── 0 0 0 βŽ₯ ⎒ 4 12 βŽ₯ ⎒ βŽ₯ ⎒ r -r βŽ₯ ⎒ 0 ─ 0 0 0 ─── 0 0 βŽ₯ ⎒ 4 4 βŽ₯ ⎒ βŽ₯ ⎒ √3β‹…r -r βŽ₯ ⎒ 0 0 ──── 0 0 0 ─── 0 βŽ₯ ⎒ 12 4 βŽ₯ ⎒ βŽ₯ ⎒ -√6β‹…r βŽ₯ ⎒ 0 0 0 0 0 0 0 ──────βŽ₯ ⎒ 12 βŽ₯ ⎒ βŽ₯ ⎒ 0 0 0 0 0 0 0 0 βŽ₯ ⎒ βŽ₯ ⎒ r βŽ₯ ⎒ 0 0 0 ─ 0 0 0 0 βŽ₯ ⎒ 2 βŽ₯ ⎒ βŽ₯ ⎒ √6β‹…r βŽ₯ ⎒ 0 0 0 0 ──── 0 0 0 βŽ₯ ⎒ 6 βŽ₯ ⎒ βŽ₯ ⎒ √10β‹…r βŽ₯ ⎒ 0 0 0 0 0 ───── 0 0 βŽ₯ ⎒ 10 βŽ₯ ⎒ βŽ₯ ⎒ √5β‹…r βŽ₯ ⎒ 0 0 0 0 0 0 ──── 0 βŽ₯ ⎒ 10 βŽ₯ ⎒ βŽ₯ ⎒ √15β‹…r βŽ₯ ⎒ 0 0 0 0 0 0 0 ───── βŽ₯ ⎒ 30 βŽ₯ ⎒ βŽ₯ ⎒ 0 0 0 0 0 0 0 0 βŽ₯ ⎒ βŽ₯ ⎣ 0 0 0 0 0 0 0 0 ⎦ >>> pprint(r[1][8:,:8]) ⎑ -√3β‹…r ⎀ ⎒ 0 ────── 0 0 0 0 0 0 βŽ₯ ⎒ 6 βŽ₯ ⎒ βŽ₯ ⎒√15β‹…r -√5β‹…r βŽ₯ βŽ’β”€β”€β”€β”€β”€ 0 0 0 ────── 0 0 0 βŽ₯ ⎒ 12 20 βŽ₯ ⎒ βŽ₯ ⎒ -√15β‹…r βŽ₯ ⎒ 0 0 0 0 0 ─────── 0 0 βŽ₯ ⎒ 30 βŽ₯ ⎒ βŽ₯ ⎒ -√15β‹…r -√5β‹…r βŽ₯ ⎒ 0 0 ─────── 0 0 0 ────── 0 βŽ₯ ⎒ 12 20 βŽ₯ ⎒ βŽ₯ ⎒ √3β‹…r βŽ₯ ⎒ 0 0 0 ──── 0 0 0 0 βŽ₯ ⎒ 6 βŽ₯ ⎒ βŽ₯ ⎒ r √3β‹…r βŽ₯ ⎒ ─ 0 0 0 ──── 0 0 0 βŽ₯ ⎒ 4 12 βŽ₯ ⎒ βŽ₯ ⎒ √3β‹…r βŽ₯ ⎒ 0 ──── 0 0 0 0 0 0 βŽ₯ ⎒ 6 βŽ₯ ⎒ βŽ₯ ⎒ r -√3β‹…r βŽ₯ ⎒ 0 0 ─ 0 0 0 ────── 0 βŽ₯ ⎒ 4 12 βŽ₯ ⎒ βŽ₯ ⎒ -√3β‹…r βŽ₯ ⎒ 0 0 0 0 0 0 0 ──────βŽ₯ ⎒ 6 βŽ₯ ⎒ βŽ₯ ⎒ 0 0 0 0 0 0 0 0 βŽ₯ ⎒ βŽ₯ ⎒ √3β‹…r βŽ₯ ⎒ 0 0 0 ──── 0 0 0 0 βŽ₯ ⎒ 6 βŽ₯ ⎒ βŽ₯ ⎒ √30β‹…r βŽ₯ ⎒ 0 0 0 0 ───── 0 0 0 βŽ₯ ⎒ 15 βŽ₯ ⎒ βŽ₯ ⎒ √15β‹…r βŽ₯ ⎒ 0 0 0 0 0 ───── 0 0 βŽ₯ ⎒ 10 βŽ₯ ⎒ βŽ₯ ⎒ √30β‹…r βŽ₯ ⎒ 0 0 0 0 0 0 ───── 0 βŽ₯ ⎒ 15 βŽ₯ ⎒ βŽ₯ ⎒ √3β‹…r βŽ₯ ⎒ 0 0 0 0 0 0 0 ──── βŽ₯ ⎒ 6 βŽ₯ ⎒ βŽ₯ ⎣ 0 0 0 0 0 0 0 0 ⎦ >>> pprint(r[2][8:,:8]) ⎑√3β‹…r ⎀ βŽ’β”€β”€β”€β”€ 0 0 0 0 0 0 0βŽ₯ ⎒ 6 βŽ₯ ⎒ βŽ₯ ⎒ √10β‹…r βŽ₯ ⎒ 0 0 0 ───── 0 0 0 0βŽ₯ ⎒ 20 βŽ₯ ⎒ βŽ₯ ⎒√15β‹…r √5β‹…r βŽ₯ βŽ’β”€β”€β”€β”€β”€ 0 0 0 ──── 0 0 0βŽ₯ ⎒ 12 20 βŽ₯ ⎒ βŽ₯ ⎒ √15β‹…r √15β‹…r βŽ₯ ⎒ 0 ───── 0 0 0 ───── 0 0βŽ₯ ⎒ 12 60 βŽ₯ ⎒ βŽ₯ ⎒ 0 0 0 0 0 0 0 0βŽ₯ ⎒ βŽ₯ ⎒ √6β‹…r βŽ₯ ⎒ 0 0 0 ──── 0 0 0 0βŽ₯ ⎒ 12 βŽ₯ ⎒ βŽ₯ ⎒√3β‹…r r βŽ₯ βŽ’β”€β”€β”€β”€ 0 0 0 ─ 0 0 0βŽ₯ ⎒ 12 4 βŽ₯ ⎒ βŽ₯ ⎒ r r βŽ₯ ⎒ 0 ─ 0 0 0 ─ 0 0βŽ₯ ⎒ 4 4 βŽ₯ ⎒ βŽ₯ ⎒ √2β‹…r √6β‹…r βŽ₯ ⎒ 0 0 ──── 0 0 0 ──── 0βŽ₯ ⎒ 4 12 βŽ₯ ⎒ βŽ₯ ⎒ 0 0 0 0 0 0 0 0βŽ₯ ⎒ βŽ₯ ⎒ 0 0 0 0 0 0 0 0βŽ₯ ⎒ βŽ₯ ⎒ √15β‹…r βŽ₯ ⎒ 0 0 0 ───── 0 0 0 0βŽ₯ ⎒ 30 βŽ₯ ⎒ βŽ₯ ⎒ √5β‹…r βŽ₯ ⎒ 0 0 0 0 ──── 0 0 0βŽ₯ ⎒ 10 βŽ₯ ⎒ βŽ₯ ⎒ √10β‹…r βŽ₯ ⎒ 0 0 0 0 0 ───── 0 0βŽ₯ ⎒ 10 βŽ₯ ⎒ βŽ₯ ⎒ √6β‹…r βŽ₯ ⎒ 0 0 0 0 0 0 ──── 0βŽ₯ ⎒ 6 βŽ₯ ⎒ βŽ₯ ⎒ rβŽ₯ ⎒ 0 0 0 0 0 0 0 ─βŽ₯ ⎣ 2⎦ """ magnetic_states = make_list_of_states(fine_states, 'magnetic', verbose=0) aux = calculate_boundaries(fine_states, magnetic_states) index_list_fine, index_list_hyperfine = aux Ne = len(magnetic_states) r = [[[0 for j in range(Ne)] for i in range(Ne)] for p in range(3)] II = fine_states[0].i for p in [-1, 0, 1]: for i in range(Ne): ei = magnetic_states[i] ii = fine_index(i, index_list_fine) for j in range(Ne): ej = magnetic_states[j] jj = fine_index(j, index_list_fine) reduced_matrix_elementij = reduced_matrix_elements[ii][jj] if reduced_matrix_elementij != 0: ji = ei.j; jj = ej.j fi = ei.f; fj = ej.f mi = ei.m; mj = ej.m rpij = matrix_element(ji, fi, mi, jj, fj, mj, II, reduced_matrix_elementij, p, numeric=numeric, convention=convention) if q == 1: r[p+1][i][j] = rpij*delta_lesser(i, j) elif q == -1: r[p+1][i][j] = rpij*delta_greater(i, j) else: r[p+1][i][j] = rpij if not numeric: r = [Matrix(ri) for ri in r] return r
python
def calculate_r_matrices(fine_states, reduced_matrix_elements, q=None, numeric=True, convention=1): ur"""Calculate the matrix elements of the electric dipole (in the helicity basis). We calculate all matrix elements for the D2 line in Rb 87. >>> from sympy import symbols, pprint >>> red = symbols("r", positive=True) >>> reduced_matrix_elements = [[0, -red], [red, 0]] >>> g = State("Rb", 87, 5, 0, 1/Integer(2)) >>> e = State("Rb", 87, 5, 1, 3/Integer(2)) >>> fine_levels = [g, e] >>> r = calculate_r_matrices(fine_levels, reduced_matrix_elements, ... numeric=False) >>> pprint(r[0][8:,:8]) ⎑ √3β‹…r ⎀ ⎒ 0 0 ──── 0 0 0 0 0 βŽ₯ ⎒ 6 βŽ₯ ⎒ βŽ₯ ⎒ -√15β‹…r √15β‹…r βŽ₯ ⎒ 0 ─────── 0 0 0 ───── 0 0 βŽ₯ ⎒ 12 60 βŽ₯ ⎒ βŽ₯ ⎒ -√15β‹…r √5β‹…r βŽ₯ ⎒ 0 0 ─────── 0 0 0 ──── 0 βŽ₯ ⎒ 12 20 βŽ₯ ⎒ βŽ₯ ⎒ √10β‹…r βŽ₯ ⎒ 0 0 0 0 0 0 0 ───── βŽ₯ ⎒ 20 βŽ₯ ⎒ βŽ₯ ⎒√2β‹…r -√6β‹…r βŽ₯ βŽ’β”€β”€β”€β”€ 0 0 0 ────── 0 0 0 βŽ₯ ⎒ 4 12 βŽ₯ ⎒ βŽ₯ ⎒ r -r βŽ₯ ⎒ 0 ─ 0 0 0 ─── 0 0 βŽ₯ ⎒ 4 4 βŽ₯ ⎒ βŽ₯ ⎒ √3β‹…r -r βŽ₯ ⎒ 0 0 ──── 0 0 0 ─── 0 βŽ₯ ⎒ 12 4 βŽ₯ ⎒ βŽ₯ ⎒ -√6β‹…r βŽ₯ ⎒ 0 0 0 0 0 0 0 ──────βŽ₯ ⎒ 12 βŽ₯ ⎒ βŽ₯ ⎒ 0 0 0 0 0 0 0 0 βŽ₯ ⎒ βŽ₯ ⎒ r βŽ₯ ⎒ 0 0 0 ─ 0 0 0 0 βŽ₯ ⎒ 2 βŽ₯ ⎒ βŽ₯ ⎒ √6β‹…r βŽ₯ ⎒ 0 0 0 0 ──── 0 0 0 βŽ₯ ⎒ 6 βŽ₯ ⎒ βŽ₯ ⎒ √10β‹…r βŽ₯ ⎒ 0 0 0 0 0 ───── 0 0 βŽ₯ ⎒ 10 βŽ₯ ⎒ βŽ₯ ⎒ √5β‹…r βŽ₯ ⎒ 0 0 0 0 0 0 ──── 0 βŽ₯ ⎒ 10 βŽ₯ ⎒ βŽ₯ ⎒ √15β‹…r βŽ₯ ⎒ 0 0 0 0 0 0 0 ───── βŽ₯ ⎒ 30 βŽ₯ ⎒ βŽ₯ ⎒ 0 0 0 0 0 0 0 0 βŽ₯ ⎒ βŽ₯ ⎣ 0 0 0 0 0 0 0 0 ⎦ >>> pprint(r[1][8:,:8]) ⎑ -√3β‹…r ⎀ ⎒ 0 ────── 0 0 0 0 0 0 βŽ₯ ⎒ 6 βŽ₯ ⎒ βŽ₯ ⎒√15β‹…r -√5β‹…r βŽ₯ βŽ’β”€β”€β”€β”€β”€ 0 0 0 ────── 0 0 0 βŽ₯ ⎒ 12 20 βŽ₯ ⎒ βŽ₯ ⎒ -√15β‹…r βŽ₯ ⎒ 0 0 0 0 0 ─────── 0 0 βŽ₯ ⎒ 30 βŽ₯ ⎒ βŽ₯ ⎒ -√15β‹…r -√5β‹…r βŽ₯ ⎒ 0 0 ─────── 0 0 0 ────── 0 βŽ₯ ⎒ 12 20 βŽ₯ ⎒ βŽ₯ ⎒ √3β‹…r βŽ₯ ⎒ 0 0 0 ──── 0 0 0 0 βŽ₯ ⎒ 6 βŽ₯ ⎒ βŽ₯ ⎒ r √3β‹…r βŽ₯ ⎒ ─ 0 0 0 ──── 0 0 0 βŽ₯ ⎒ 4 12 βŽ₯ ⎒ βŽ₯ ⎒ √3β‹…r βŽ₯ ⎒ 0 ──── 0 0 0 0 0 0 βŽ₯ ⎒ 6 βŽ₯ ⎒ βŽ₯ ⎒ r -√3β‹…r βŽ₯ ⎒ 0 0 ─ 0 0 0 ────── 0 βŽ₯ ⎒ 4 12 βŽ₯ ⎒ βŽ₯ ⎒ -√3β‹…r βŽ₯ ⎒ 0 0 0 0 0 0 0 ──────βŽ₯ ⎒ 6 βŽ₯ ⎒ βŽ₯ ⎒ 0 0 0 0 0 0 0 0 βŽ₯ ⎒ βŽ₯ ⎒ √3β‹…r βŽ₯ ⎒ 0 0 0 ──── 0 0 0 0 βŽ₯ ⎒ 6 βŽ₯ ⎒ βŽ₯ ⎒ √30β‹…r βŽ₯ ⎒ 0 0 0 0 ───── 0 0 0 βŽ₯ ⎒ 15 βŽ₯ ⎒ βŽ₯ ⎒ √15β‹…r βŽ₯ ⎒ 0 0 0 0 0 ───── 0 0 βŽ₯ ⎒ 10 βŽ₯ ⎒ βŽ₯ ⎒ √30β‹…r βŽ₯ ⎒ 0 0 0 0 0 0 ───── 0 βŽ₯ ⎒ 15 βŽ₯ ⎒ βŽ₯ ⎒ √3β‹…r βŽ₯ ⎒ 0 0 0 0 0 0 0 ──── βŽ₯ ⎒ 6 βŽ₯ ⎒ βŽ₯ ⎣ 0 0 0 0 0 0 0 0 ⎦ >>> pprint(r[2][8:,:8]) ⎑√3β‹…r ⎀ βŽ’β”€β”€β”€β”€ 0 0 0 0 0 0 0βŽ₯ ⎒ 6 βŽ₯ ⎒ βŽ₯ ⎒ √10β‹…r βŽ₯ ⎒ 0 0 0 ───── 0 0 0 0βŽ₯ ⎒ 20 βŽ₯ ⎒ βŽ₯ ⎒√15β‹…r √5β‹…r βŽ₯ βŽ’β”€β”€β”€β”€β”€ 0 0 0 ──── 0 0 0βŽ₯ ⎒ 12 20 βŽ₯ ⎒ βŽ₯ ⎒ √15β‹…r √15β‹…r βŽ₯ ⎒ 0 ───── 0 0 0 ───── 0 0βŽ₯ ⎒ 12 60 βŽ₯ ⎒ βŽ₯ ⎒ 0 0 0 0 0 0 0 0βŽ₯ ⎒ βŽ₯ ⎒ √6β‹…r βŽ₯ ⎒ 0 0 0 ──── 0 0 0 0βŽ₯ ⎒ 12 βŽ₯ ⎒ βŽ₯ ⎒√3β‹…r r βŽ₯ βŽ’β”€β”€β”€β”€ 0 0 0 ─ 0 0 0βŽ₯ ⎒ 12 4 βŽ₯ ⎒ βŽ₯ ⎒ r r βŽ₯ ⎒ 0 ─ 0 0 0 ─ 0 0βŽ₯ ⎒ 4 4 βŽ₯ ⎒ βŽ₯ ⎒ √2β‹…r √6β‹…r βŽ₯ ⎒ 0 0 ──── 0 0 0 ──── 0βŽ₯ ⎒ 4 12 βŽ₯ ⎒ βŽ₯ ⎒ 0 0 0 0 0 0 0 0βŽ₯ ⎒ βŽ₯ ⎒ 0 0 0 0 0 0 0 0βŽ₯ ⎒ βŽ₯ ⎒ √15β‹…r βŽ₯ ⎒ 0 0 0 ───── 0 0 0 0βŽ₯ ⎒ 30 βŽ₯ ⎒ βŽ₯ ⎒ √5β‹…r βŽ₯ ⎒ 0 0 0 0 ──── 0 0 0βŽ₯ ⎒ 10 βŽ₯ ⎒ βŽ₯ ⎒ √10β‹…r βŽ₯ ⎒ 0 0 0 0 0 ───── 0 0βŽ₯ ⎒ 10 βŽ₯ ⎒ βŽ₯ ⎒ √6β‹…r βŽ₯ ⎒ 0 0 0 0 0 0 ──── 0βŽ₯ ⎒ 6 βŽ₯ ⎒ βŽ₯ ⎒ rβŽ₯ ⎒ 0 0 0 0 0 0 0 ─βŽ₯ ⎣ 2⎦ """ magnetic_states = make_list_of_states(fine_states, 'magnetic', verbose=0) aux = calculate_boundaries(fine_states, magnetic_states) index_list_fine, index_list_hyperfine = aux Ne = len(magnetic_states) r = [[[0 for j in range(Ne)] for i in range(Ne)] for p in range(3)] II = fine_states[0].i for p in [-1, 0, 1]: for i in range(Ne): ei = magnetic_states[i] ii = fine_index(i, index_list_fine) for j in range(Ne): ej = magnetic_states[j] jj = fine_index(j, index_list_fine) reduced_matrix_elementij = reduced_matrix_elements[ii][jj] if reduced_matrix_elementij != 0: ji = ei.j; jj = ej.j fi = ei.f; fj = ej.f mi = ei.m; mj = ej.m rpij = matrix_element(ji, fi, mi, jj, fj, mj, II, reduced_matrix_elementij, p, numeric=numeric, convention=convention) if q == 1: r[p+1][i][j] = rpij*delta_lesser(i, j) elif q == -1: r[p+1][i][j] = rpij*delta_greater(i, j) else: r[p+1][i][j] = rpij if not numeric: r = [Matrix(ri) for ri in r] return r
[ "def", "calculate_r_matrices", "(", "fine_states", ",", "reduced_matrix_elements", ",", "q", "=", "None", ",", "numeric", "=", "True", ",", "convention", "=", "1", ")", ":", "magnetic_states", "=", "make_list_of_states", "(", "fine_states", ",", "'magnetic'", ",", "verbose", "=", "0", ")", "aux", "=", "calculate_boundaries", "(", "fine_states", ",", "magnetic_states", ")", "index_list_fine", ",", "index_list_hyperfine", "=", "aux", "Ne", "=", "len", "(", "magnetic_states", ")", "r", "=", "[", "[", "[", "0", "for", "j", "in", "range", "(", "Ne", ")", "]", "for", "i", "in", "range", "(", "Ne", ")", "]", "for", "p", "in", "range", "(", "3", ")", "]", "II", "=", "fine_states", "[", "0", "]", ".", "i", "for", "p", "in", "[", "-", "1", ",", "0", ",", "1", "]", ":", "for", "i", "in", "range", "(", "Ne", ")", ":", "ei", "=", "magnetic_states", "[", "i", "]", "ii", "=", "fine_index", "(", "i", ",", "index_list_fine", ")", "for", "j", "in", "range", "(", "Ne", ")", ":", "ej", "=", "magnetic_states", "[", "j", "]", "jj", "=", "fine_index", "(", "j", ",", "index_list_fine", ")", "reduced_matrix_elementij", "=", "reduced_matrix_elements", "[", "ii", "]", "[", "jj", "]", "if", "reduced_matrix_elementij", "!=", "0", ":", "ji", "=", "ei", ".", "j", "jj", "=", "ej", ".", "j", "fi", "=", "ei", ".", "f", "fj", "=", "ej", ".", "f", "mi", "=", "ei", ".", "m", "mj", "=", "ej", ".", "m", "rpij", "=", "matrix_element", "(", "ji", ",", "fi", ",", "mi", ",", "jj", ",", "fj", ",", "mj", ",", "II", ",", "reduced_matrix_elementij", ",", "p", ",", "numeric", "=", "numeric", ",", "convention", "=", "convention", ")", "if", "q", "==", "1", ":", "r", "[", "p", "+", "1", "]", "[", "i", "]", "[", "j", "]", "=", "rpij", "*", "delta_lesser", "(", "i", ",", "j", ")", "elif", "q", "==", "-", "1", ":", "r", "[", "p", "+", "1", "]", "[", "i", "]", "[", "j", "]", "=", "rpij", "*", "delta_greater", "(", "i", ",", "j", ")", "else", ":", "r", "[", "p", "+", "1", "]", "[", "i", "]", "[", "j", "]", "=", "rpij", "if", "not", "numeric", ":", "r", "=", "[", "Matrix", "(", "ri", ")", "for", "ri", "in", "r", "]", "return", "r" ]
ur"""Calculate the matrix elements of the electric dipole (in the helicity basis). We calculate all matrix elements for the D2 line in Rb 87. >>> from sympy import symbols, pprint >>> red = symbols("r", positive=True) >>> reduced_matrix_elements = [[0, -red], [red, 0]] >>> g = State("Rb", 87, 5, 0, 1/Integer(2)) >>> e = State("Rb", 87, 5, 1, 3/Integer(2)) >>> fine_levels = [g, e] >>> r = calculate_r_matrices(fine_levels, reduced_matrix_elements, ... numeric=False) >>> pprint(r[0][8:,:8]) ⎑ √3β‹…r ⎀ ⎒ 0 0 ──── 0 0 0 0 0 βŽ₯ ⎒ 6 βŽ₯ ⎒ βŽ₯ ⎒ -√15β‹…r √15β‹…r βŽ₯ ⎒ 0 ─────── 0 0 0 ───── 0 0 βŽ₯ ⎒ 12 60 βŽ₯ ⎒ βŽ₯ ⎒ -√15β‹…r √5β‹…r βŽ₯ ⎒ 0 0 ─────── 0 0 0 ──── 0 βŽ₯ ⎒ 12 20 βŽ₯ ⎒ βŽ₯ ⎒ √10β‹…r βŽ₯ ⎒ 0 0 0 0 0 0 0 ───── βŽ₯ ⎒ 20 βŽ₯ ⎒ βŽ₯ ⎒√2β‹…r -√6β‹…r βŽ₯ βŽ’β”€β”€β”€β”€ 0 0 0 ────── 0 0 0 βŽ₯ ⎒ 4 12 βŽ₯ ⎒ βŽ₯ ⎒ r -r βŽ₯ ⎒ 0 ─ 0 0 0 ─── 0 0 βŽ₯ ⎒ 4 4 βŽ₯ ⎒ βŽ₯ ⎒ √3β‹…r -r βŽ₯ ⎒ 0 0 ──── 0 0 0 ─── 0 βŽ₯ ⎒ 12 4 βŽ₯ ⎒ βŽ₯ ⎒ -√6β‹…r βŽ₯ ⎒ 0 0 0 0 0 0 0 ──────βŽ₯ ⎒ 12 βŽ₯ ⎒ βŽ₯ ⎒ 0 0 0 0 0 0 0 0 βŽ₯ ⎒ βŽ₯ ⎒ r βŽ₯ ⎒ 0 0 0 ─ 0 0 0 0 βŽ₯ ⎒ 2 βŽ₯ ⎒ βŽ₯ ⎒ √6β‹…r βŽ₯ ⎒ 0 0 0 0 ──── 0 0 0 βŽ₯ ⎒ 6 βŽ₯ ⎒ βŽ₯ ⎒ √10β‹…r βŽ₯ ⎒ 0 0 0 0 0 ───── 0 0 βŽ₯ ⎒ 10 βŽ₯ ⎒ βŽ₯ ⎒ √5β‹…r βŽ₯ ⎒ 0 0 0 0 0 0 ──── 0 βŽ₯ ⎒ 10 βŽ₯ ⎒ βŽ₯ ⎒ √15β‹…r βŽ₯ ⎒ 0 0 0 0 0 0 0 ───── βŽ₯ ⎒ 30 βŽ₯ ⎒ βŽ₯ ⎒ 0 0 0 0 0 0 0 0 βŽ₯ ⎒ βŽ₯ ⎣ 0 0 0 0 0 0 0 0 ⎦ >>> pprint(r[1][8:,:8]) ⎑ -√3β‹…r ⎀ ⎒ 0 ────── 0 0 0 0 0 0 βŽ₯ ⎒ 6 βŽ₯ ⎒ βŽ₯ ⎒√15β‹…r -√5β‹…r βŽ₯ βŽ’β”€β”€β”€β”€β”€ 0 0 0 ────── 0 0 0 βŽ₯ ⎒ 12 20 βŽ₯ ⎒ βŽ₯ ⎒ -√15β‹…r βŽ₯ ⎒ 0 0 0 0 0 ─────── 0 0 βŽ₯ ⎒ 30 βŽ₯ ⎒ βŽ₯ ⎒ -√15β‹…r -√5β‹…r βŽ₯ ⎒ 0 0 ─────── 0 0 0 ────── 0 βŽ₯ ⎒ 12 20 βŽ₯ ⎒ βŽ₯ ⎒ √3β‹…r βŽ₯ ⎒ 0 0 0 ──── 0 0 0 0 βŽ₯ ⎒ 6 βŽ₯ ⎒ βŽ₯ ⎒ r √3β‹…r βŽ₯ ⎒ ─ 0 0 0 ──── 0 0 0 βŽ₯ ⎒ 4 12 βŽ₯ ⎒ βŽ₯ ⎒ √3β‹…r βŽ₯ ⎒ 0 ──── 0 0 0 0 0 0 βŽ₯ ⎒ 6 βŽ₯ ⎒ βŽ₯ ⎒ r -√3β‹…r βŽ₯ ⎒ 0 0 ─ 0 0 0 ────── 0 βŽ₯ ⎒ 4 12 βŽ₯ ⎒ βŽ₯ ⎒ -√3β‹…r βŽ₯ ⎒ 0 0 0 0 0 0 0 ──────βŽ₯ ⎒ 6 βŽ₯ ⎒ βŽ₯ ⎒ 0 0 0 0 0 0 0 0 βŽ₯ ⎒ βŽ₯ ⎒ √3β‹…r βŽ₯ ⎒ 0 0 0 ──── 0 0 0 0 βŽ₯ ⎒ 6 βŽ₯ ⎒ βŽ₯ ⎒ √30β‹…r βŽ₯ ⎒ 0 0 0 0 ───── 0 0 0 βŽ₯ ⎒ 15 βŽ₯ ⎒ βŽ₯ ⎒ √15β‹…r βŽ₯ ⎒ 0 0 0 0 0 ───── 0 0 βŽ₯ ⎒ 10 βŽ₯ ⎒ βŽ₯ ⎒ √30β‹…r βŽ₯ ⎒ 0 0 0 0 0 0 ───── 0 βŽ₯ ⎒ 15 βŽ₯ ⎒ βŽ₯ ⎒ √3β‹…r βŽ₯ ⎒ 0 0 0 0 0 0 0 ──── βŽ₯ ⎒ 6 βŽ₯ ⎒ βŽ₯ ⎣ 0 0 0 0 0 0 0 0 ⎦ >>> pprint(r[2][8:,:8]) ⎑√3β‹…r ⎀ βŽ’β”€β”€β”€β”€ 0 0 0 0 0 0 0βŽ₯ ⎒ 6 βŽ₯ ⎒ βŽ₯ ⎒ √10β‹…r βŽ₯ ⎒ 0 0 0 ───── 0 0 0 0βŽ₯ ⎒ 20 βŽ₯ ⎒ βŽ₯ ⎒√15β‹…r √5β‹…r βŽ₯ βŽ’β”€β”€β”€β”€β”€ 0 0 0 ──── 0 0 0βŽ₯ ⎒ 12 20 βŽ₯ ⎒ βŽ₯ ⎒ √15β‹…r √15β‹…r βŽ₯ ⎒ 0 ───── 0 0 0 ───── 0 0βŽ₯ ⎒ 12 60 βŽ₯ ⎒ βŽ₯ ⎒ 0 0 0 0 0 0 0 0βŽ₯ ⎒ βŽ₯ ⎒ √6β‹…r βŽ₯ ⎒ 0 0 0 ──── 0 0 0 0βŽ₯ ⎒ 12 βŽ₯ ⎒ βŽ₯ ⎒√3β‹…r r βŽ₯ βŽ’β”€β”€β”€β”€ 0 0 0 ─ 0 0 0βŽ₯ ⎒ 12 4 βŽ₯ ⎒ βŽ₯ ⎒ r r βŽ₯ ⎒ 0 ─ 0 0 0 ─ 0 0βŽ₯ ⎒ 4 4 βŽ₯ ⎒ βŽ₯ ⎒ √2β‹…r √6β‹…r βŽ₯ ⎒ 0 0 ──── 0 0 0 ──── 0βŽ₯ ⎒ 4 12 βŽ₯ ⎒ βŽ₯ ⎒ 0 0 0 0 0 0 0 0βŽ₯ ⎒ βŽ₯ ⎒ 0 0 0 0 0 0 0 0βŽ₯ ⎒ βŽ₯ ⎒ √15β‹…r βŽ₯ ⎒ 0 0 0 ───── 0 0 0 0βŽ₯ ⎒ 30 βŽ₯ ⎒ βŽ₯ ⎒ √5β‹…r βŽ₯ ⎒ 0 0 0 0 ──── 0 0 0βŽ₯ ⎒ 10 βŽ₯ ⎒ βŽ₯ ⎒ √10β‹…r βŽ₯ ⎒ 0 0 0 0 0 ───── 0 0βŽ₯ ⎒ 10 βŽ₯ ⎒ βŽ₯ ⎒ √6β‹…r βŽ₯ ⎒ 0 0 0 0 0 0 ──── 0βŽ₯ ⎒ 6 βŽ₯ ⎒ βŽ₯ ⎒ rβŽ₯ ⎒ 0 0 0 0 0 0 0 ─βŽ₯ ⎣ 2⎦
[ "ur", "Calculate", "the", "matrix", "elements", "of", "the", "electric", "dipole", "(", "in", "the", "helicity", "basis", ")", "." ]
train
https://github.com/oscarlazoarjona/fast/blob/3e5400672af2a7b7cc616e7f4aa10d7672720222/fast/atomic_structure.py#L1894-L2127
oscarlazoarjona/fast
fast/atomic_structure.py
calculate_matrices
def calculate_matrices(states, Omega=1): r"""Calculate the matrices omega_ij, gamma_ij, r_pij. This function calculates the matrices omega_ij, gamma_ij and r_pij given a list of atomic states. The states can be arbitrarily in their fine, hyperfine or magnetic detail. """ # We check that all states belong to the same element and the same isotope. iso = states[0].isotope element = states[0].element for state in states[1:]: if state.element != element: raise ValueError('All states must belong to the same element.') if state.isotope != iso: raise ValueError('All states must belong to the same isotope.') # We find the fine states involved in the problem. fine_states = find_fine_states(states) # We find the full magnetic states. The matrices will be first calculated # for the complete problem and later reduced to include only the states of # interest. full_magnetic_states = make_list_of_states(fine_states, 'magnetic', verbose=0) # We calculate the indices corresponding to each sub matrix of fine and # hyperfine levels. # We calculate the frequency differences between states. omega_full = calculate_omega_matrix(full_magnetic_states, Omega) # We calculate the matrix gamma. gamma_full = calculate_gamma_matrix(full_magnetic_states, Omega) # We calculate the reduced matrix elements reduced_matrix_elements = calculate_reduced_matrix_elements(fine_states) # We calculate the matrices r_-1, r_0, r_1 r_full = calculate_r_matrices(fine_states, reduced_matrix_elements) # Reduction to be implemented omega = omega_full r = r_full gamma = gamma_full return omega, gamma, r
python
def calculate_matrices(states, Omega=1): r"""Calculate the matrices omega_ij, gamma_ij, r_pij. This function calculates the matrices omega_ij, gamma_ij and r_pij given a list of atomic states. The states can be arbitrarily in their fine, hyperfine or magnetic detail. """ # We check that all states belong to the same element and the same isotope. iso = states[0].isotope element = states[0].element for state in states[1:]: if state.element != element: raise ValueError('All states must belong to the same element.') if state.isotope != iso: raise ValueError('All states must belong to the same isotope.') # We find the fine states involved in the problem. fine_states = find_fine_states(states) # We find the full magnetic states. The matrices will be first calculated # for the complete problem and later reduced to include only the states of # interest. full_magnetic_states = make_list_of_states(fine_states, 'magnetic', verbose=0) # We calculate the indices corresponding to each sub matrix of fine and # hyperfine levels. # We calculate the frequency differences between states. omega_full = calculate_omega_matrix(full_magnetic_states, Omega) # We calculate the matrix gamma. gamma_full = calculate_gamma_matrix(full_magnetic_states, Omega) # We calculate the reduced matrix elements reduced_matrix_elements = calculate_reduced_matrix_elements(fine_states) # We calculate the matrices r_-1, r_0, r_1 r_full = calculate_r_matrices(fine_states, reduced_matrix_elements) # Reduction to be implemented omega = omega_full r = r_full gamma = gamma_full return omega, gamma, r
[ "def", "calculate_matrices", "(", "states", ",", "Omega", "=", "1", ")", ":", "# We check that all states belong to the same element and the same isotope.", "iso", "=", "states", "[", "0", "]", ".", "isotope", "element", "=", "states", "[", "0", "]", ".", "element", "for", "state", "in", "states", "[", "1", ":", "]", ":", "if", "state", ".", "element", "!=", "element", ":", "raise", "ValueError", "(", "'All states must belong to the same element.'", ")", "if", "state", ".", "isotope", "!=", "iso", ":", "raise", "ValueError", "(", "'All states must belong to the same isotope.'", ")", "# We find the fine states involved in the problem.", "fine_states", "=", "find_fine_states", "(", "states", ")", "# We find the full magnetic states. The matrices will be first calculated", "# for the complete problem and later reduced to include only the states of", "# interest.", "full_magnetic_states", "=", "make_list_of_states", "(", "fine_states", ",", "'magnetic'", ",", "verbose", "=", "0", ")", "# We calculate the indices corresponding to each sub matrix of fine and", "# hyperfine levels.", "# We calculate the frequency differences between states.", "omega_full", "=", "calculate_omega_matrix", "(", "full_magnetic_states", ",", "Omega", ")", "# We calculate the matrix gamma.", "gamma_full", "=", "calculate_gamma_matrix", "(", "full_magnetic_states", ",", "Omega", ")", "# We calculate the reduced matrix elements", "reduced_matrix_elements", "=", "calculate_reduced_matrix_elements", "(", "fine_states", ")", "# We calculate the matrices r_-1, r_0, r_1", "r_full", "=", "calculate_r_matrices", "(", "fine_states", ",", "reduced_matrix_elements", ")", "# Reduction to be implemented", "omega", "=", "omega_full", "r", "=", "r_full", "gamma", "=", "gamma_full", "return", "omega", ",", "gamma", ",", "r" ]
r"""Calculate the matrices omega_ij, gamma_ij, r_pij. This function calculates the matrices omega_ij, gamma_ij and r_pij given a list of atomic states. The states can be arbitrarily in their fine, hyperfine or magnetic detail.
[ "r", "Calculate", "the", "matrices", "omega_ij", "gamma_ij", "r_pij", "." ]
train
https://github.com/oscarlazoarjona/fast/blob/3e5400672af2a7b7cc616e7f4aa10d7672720222/fast/atomic_structure.py#L2130-L2173
oscarlazoarjona/fast
fast/atomic_structure.py
vapour_density
def vapour_density(Temperature, element, isotope=None): r"""This function returns the density in a rubidium or cesium vapour in kg/m^-3. It receives as input the temperature in Kelvins, the name of the element, and optionally the isotope. If no isotope is specified, the density of a vapour with the natural abundances will be returned. This is calculated using the formulas in [SteckRb85]_, [SteckRb87]_, [SteckCs]_. >>> print(vapour_density(90.0 + 273.15,"Cs",133)) 1.85318869181e-06 If no isotope is specified, the natural abundances are used to calculate the density. >>> print(vapour_density(25.0 + 273.15,"Rb")) 1.83339788085e-09 """ atom = Atom(element, isotope) if atom.isotope is None: rho = 0.0 for iso in atom.isotopes: atom = Atom(element, iso) rho += vapour_number_density(Temperature, element) *\ atom.mass*atom.abundance return rho else: return vapour_number_density(Temperature, element)*atom.mass
python
def vapour_density(Temperature, element, isotope=None): r"""This function returns the density in a rubidium or cesium vapour in kg/m^-3. It receives as input the temperature in Kelvins, the name of the element, and optionally the isotope. If no isotope is specified, the density of a vapour with the natural abundances will be returned. This is calculated using the formulas in [SteckRb85]_, [SteckRb87]_, [SteckCs]_. >>> print(vapour_density(90.0 + 273.15,"Cs",133)) 1.85318869181e-06 If no isotope is specified, the natural abundances are used to calculate the density. >>> print(vapour_density(25.0 + 273.15,"Rb")) 1.83339788085e-09 """ atom = Atom(element, isotope) if atom.isotope is None: rho = 0.0 for iso in atom.isotopes: atom = Atom(element, iso) rho += vapour_number_density(Temperature, element) *\ atom.mass*atom.abundance return rho else: return vapour_number_density(Temperature, element)*atom.mass
[ "def", "vapour_density", "(", "Temperature", ",", "element", ",", "isotope", "=", "None", ")", ":", "atom", "=", "Atom", "(", "element", ",", "isotope", ")", "if", "atom", ".", "isotope", "is", "None", ":", "rho", "=", "0.0", "for", "iso", "in", "atom", ".", "isotopes", ":", "atom", "=", "Atom", "(", "element", ",", "iso", ")", "rho", "+=", "vapour_number_density", "(", "Temperature", ",", "element", ")", "*", "atom", ".", "mass", "*", "atom", ".", "abundance", "return", "rho", "else", ":", "return", "vapour_number_density", "(", "Temperature", ",", "element", ")", "*", "atom", ".", "mass" ]
r"""This function returns the density in a rubidium or cesium vapour in kg/m^-3. It receives as input the temperature in Kelvins, the name of the element, and optionally the isotope. If no isotope is specified, the density of a vapour with the natural abundances will be returned. This is calculated using the formulas in [SteckRb85]_, [SteckRb87]_, [SteckCs]_. >>> print(vapour_density(90.0 + 273.15,"Cs",133)) 1.85318869181e-06 If no isotope is specified, the natural abundances are used to calculate the density. >>> print(vapour_density(25.0 + 273.15,"Rb")) 1.83339788085e-09
[ "r", "This", "function", "returns", "the", "density", "in", "a", "rubidium", "or", "cesium", "vapour", "in", "kg", "/", "m^", "-", "3", ".", "It", "receives", "as", "input", "the", "temperature", "in", "Kelvins", "the", "name", "of", "the", "element", "and", "optionally", "the", "isotope", ".", "If", "no", "isotope", "is", "specified", "the", "density", "of", "a", "vapour", "with", "the", "natural", "abundances", "will", "be", "returned", "." ]
train
https://github.com/oscarlazoarjona/fast/blob/3e5400672af2a7b7cc616e7f4aa10d7672720222/fast/atomic_structure.py#L2514-L2543
oscarlazoarjona/fast
fast/atomic_structure.py
doppler_width
def doppler_width(transition, Temperature): r"""Return the Doppler width of a transition at a given temperature (in angular frequency). The usual Doppler FWHM of the rubidium D2 line (in MHz). >>> g = State("Rb", 87, 5, 0, 1/Integer(2), 2) >>> e = State("Rb", 87, 5, 1, 3/Integer(2)) >>> t = Transition(e, g) >>> omega = doppler_width(t, 273.15 + 22) >>> "{:2.3f}".format(omega/2/np.pi*1e-6) '522.477' """ atom = Atom(transition.e1.element, transition.e1.isotope) m = atom.mass omega = transition.omega return omega*np.log(8*np.sqrt(2))*np.sqrt(k_B*Temperature/m/c**2)
python
def doppler_width(transition, Temperature): r"""Return the Doppler width of a transition at a given temperature (in angular frequency). The usual Doppler FWHM of the rubidium D2 line (in MHz). >>> g = State("Rb", 87, 5, 0, 1/Integer(2), 2) >>> e = State("Rb", 87, 5, 1, 3/Integer(2)) >>> t = Transition(e, g) >>> omega = doppler_width(t, 273.15 + 22) >>> "{:2.3f}".format(omega/2/np.pi*1e-6) '522.477' """ atom = Atom(transition.e1.element, transition.e1.isotope) m = atom.mass omega = transition.omega return omega*np.log(8*np.sqrt(2))*np.sqrt(k_B*Temperature/m/c**2)
[ "def", "doppler_width", "(", "transition", ",", "Temperature", ")", ":", "atom", "=", "Atom", "(", "transition", ".", "e1", ".", "element", ",", "transition", ".", "e1", ".", "isotope", ")", "m", "=", "atom", ".", "mass", "omega", "=", "transition", ".", "omega", "return", "omega", "*", "np", ".", "log", "(", "8", "*", "np", ".", "sqrt", "(", "2", ")", ")", "*", "np", ".", "sqrt", "(", "k_B", "*", "Temperature", "/", "m", "/", "c", "**", "2", ")" ]
r"""Return the Doppler width of a transition at a given temperature (in angular frequency). The usual Doppler FWHM of the rubidium D2 line (in MHz). >>> g = State("Rb", 87, 5, 0, 1/Integer(2), 2) >>> e = State("Rb", 87, 5, 1, 3/Integer(2)) >>> t = Transition(e, g) >>> omega = doppler_width(t, 273.15 + 22) >>> "{:2.3f}".format(omega/2/np.pi*1e-6) '522.477'
[ "r", "Return", "the", "Doppler", "width", "of", "a", "transition", "at", "a", "given", "temperature", "(", "in", "angular", "frequency", ")", "." ]
train
https://github.com/oscarlazoarjona/fast/blob/3e5400672af2a7b7cc616e7f4aa10d7672720222/fast/atomic_structure.py#L2640-L2657
oscarlazoarjona/fast
fast/atomic_structure.py
thermal_state
def thermal_state(omega_level, T, return_diagonal=False): r"""Return a thermal state for a given set of levels. INPUT: - ``omega_level`` - The angular frequencies of each state. - ``T`` - The temperature of the ensemble (in Kelvin). - ``return_diagonal`` - Whether to return only the populations. >>> ground = State("Rb", 85, 5, 0, 1/Integer(2)) >>> magnetic_states = make_list_of_states([ground], "magnetic") >>> omega_level = [ei.omega for ei in magnetic_states] >>> T = 273.15 + 20 >>> print(thermal_state(omega_level, T, return_diagonal=True)) [0.0834 0.0834 0.0834 0.0834 0.0834 0.0833 0.0833 0.0833 0.0833 0.0833 0.0833 0.0833] """ Ne = len(omega_level) E = np.array([hbar*omega_level[i] for i in range(Ne)]) p = np.exp(-E/k_B/T) p = p/sum(p) if not return_diagonal: return np.diag(p) return p
python
def thermal_state(omega_level, T, return_diagonal=False): r"""Return a thermal state for a given set of levels. INPUT: - ``omega_level`` - The angular frequencies of each state. - ``T`` - The temperature of the ensemble (in Kelvin). - ``return_diagonal`` - Whether to return only the populations. >>> ground = State("Rb", 85, 5, 0, 1/Integer(2)) >>> magnetic_states = make_list_of_states([ground], "magnetic") >>> omega_level = [ei.omega for ei in magnetic_states] >>> T = 273.15 + 20 >>> print(thermal_state(omega_level, T, return_diagonal=True)) [0.0834 0.0834 0.0834 0.0834 0.0834 0.0833 0.0833 0.0833 0.0833 0.0833 0.0833 0.0833] """ Ne = len(omega_level) E = np.array([hbar*omega_level[i] for i in range(Ne)]) p = np.exp(-E/k_B/T) p = p/sum(p) if not return_diagonal: return np.diag(p) return p
[ "def", "thermal_state", "(", "omega_level", ",", "T", ",", "return_diagonal", "=", "False", ")", ":", "Ne", "=", "len", "(", "omega_level", ")", "E", "=", "np", ".", "array", "(", "[", "hbar", "*", "omega_level", "[", "i", "]", "for", "i", "in", "range", "(", "Ne", ")", "]", ")", "p", "=", "np", ".", "exp", "(", "-", "E", "/", "k_B", "/", "T", ")", "p", "=", "p", "/", "sum", "(", "p", ")", "if", "not", "return_diagonal", ":", "return", "np", ".", "diag", "(", "p", ")", "return", "p" ]
r"""Return a thermal state for a given set of levels. INPUT: - ``omega_level`` - The angular frequencies of each state. - ``T`` - The temperature of the ensemble (in Kelvin). - ``return_diagonal`` - Whether to return only the populations. >>> ground = State("Rb", 85, 5, 0, 1/Integer(2)) >>> magnetic_states = make_list_of_states([ground], "magnetic") >>> omega_level = [ei.omega for ei in magnetic_states] >>> T = 273.15 + 20 >>> print(thermal_state(omega_level, T, return_diagonal=True)) [0.0834 0.0834 0.0834 0.0834 0.0834 0.0833 0.0833 0.0833 0.0833 0.0833 0.0833 0.0833]
[ "r", "Return", "a", "thermal", "state", "for", "a", "given", "set", "of", "levels", "." ]
train
https://github.com/oscarlazoarjona/fast/blob/3e5400672af2a7b7cc616e7f4aa10d7672720222/fast/atomic_structure.py#L2660-L2685
oscarlazoarjona/fast
fast/atomic_structure.py
Atom.transitions
def transitions(self, omega_min=None, omega_max=None): r"""Find all allowed transitions. This function finds all allowed transitions (by electric-dipole selection rules) in the atom. >>> atom=Atom("Rb",85) >>> transitions=atom.transitions() >>> print(len(transitions)) 270 Arguments omega_min and omega_max can be used to make filter out the results. >>> from scipy.constants import c >>> wavelength_min=770e-9 >>> wavelength_max=790e-9 >>> omega_min=2*pi*c/wavelength_max >>> omega_max=2*pi*c/wavelength_min >>> easy_transitions=atom.transitions(omega_min=omega_min, ... omega_max=omega_max) >>> for ti in easy_transitions: ... print("{} {}".format(abs(ti.wavelength)*1e9, ti)) 780.241476935 85Rb 5S_1/2 -----> 85Rb 5P_3/2 776.157015322 85Rb 5P_3/2 -----> 85Rb 5D_3/2 775.978619616 85Rb 5P_3/2 -----> 85Rb 5D_5/2 """ states = self.states() transitions = states transitions = [] for i in range(len(states)): si = states[i] for j in range(i): sj = states[j] t = Transition(sj, si) if t.allowed: transitions += [t] if omega_min is not None: transitions = [ti for ti in transitions if abs(ti.omega) >= omega_min] if omega_max is not None: transitions = [ti for ti in transitions if abs(ti.omega) <= omega_max] return transitions
python
def transitions(self, omega_min=None, omega_max=None): r"""Find all allowed transitions. This function finds all allowed transitions (by electric-dipole selection rules) in the atom. >>> atom=Atom("Rb",85) >>> transitions=atom.transitions() >>> print(len(transitions)) 270 Arguments omega_min and omega_max can be used to make filter out the results. >>> from scipy.constants import c >>> wavelength_min=770e-9 >>> wavelength_max=790e-9 >>> omega_min=2*pi*c/wavelength_max >>> omega_max=2*pi*c/wavelength_min >>> easy_transitions=atom.transitions(omega_min=omega_min, ... omega_max=omega_max) >>> for ti in easy_transitions: ... print("{} {}".format(abs(ti.wavelength)*1e9, ti)) 780.241476935 85Rb 5S_1/2 -----> 85Rb 5P_3/2 776.157015322 85Rb 5P_3/2 -----> 85Rb 5D_3/2 775.978619616 85Rb 5P_3/2 -----> 85Rb 5D_5/2 """ states = self.states() transitions = states transitions = [] for i in range(len(states)): si = states[i] for j in range(i): sj = states[j] t = Transition(sj, si) if t.allowed: transitions += [t] if omega_min is not None: transitions = [ti for ti in transitions if abs(ti.omega) >= omega_min] if omega_max is not None: transitions = [ti for ti in transitions if abs(ti.omega) <= omega_max] return transitions
[ "def", "transitions", "(", "self", ",", "omega_min", "=", "None", ",", "omega_max", "=", "None", ")", ":", "states", "=", "self", ".", "states", "(", ")", "transitions", "=", "states", "transitions", "=", "[", "]", "for", "i", "in", "range", "(", "len", "(", "states", ")", ")", ":", "si", "=", "states", "[", "i", "]", "for", "j", "in", "range", "(", "i", ")", ":", "sj", "=", "states", "[", "j", "]", "t", "=", "Transition", "(", "sj", ",", "si", ")", "if", "t", ".", "allowed", ":", "transitions", "+=", "[", "t", "]", "if", "omega_min", "is", "not", "None", ":", "transitions", "=", "[", "ti", "for", "ti", "in", "transitions", "if", "abs", "(", "ti", ".", "omega", ")", ">=", "omega_min", "]", "if", "omega_max", "is", "not", "None", ":", "transitions", "=", "[", "ti", "for", "ti", "in", "transitions", "if", "abs", "(", "ti", ".", "omega", ")", "<=", "omega_max", "]", "return", "transitions" ]
r"""Find all allowed transitions. This function finds all allowed transitions (by electric-dipole selection rules) in the atom. >>> atom=Atom("Rb",85) >>> transitions=atom.transitions() >>> print(len(transitions)) 270 Arguments omega_min and omega_max can be used to make filter out the results. >>> from scipy.constants import c >>> wavelength_min=770e-9 >>> wavelength_max=790e-9 >>> omega_min=2*pi*c/wavelength_max >>> omega_max=2*pi*c/wavelength_min >>> easy_transitions=atom.transitions(omega_min=omega_min, ... omega_max=omega_max) >>> for ti in easy_transitions: ... print("{} {}".format(abs(ti.wavelength)*1e9, ti)) 780.241476935 85Rb 5S_1/2 -----> 85Rb 5P_3/2 776.157015322 85Rb 5P_3/2 -----> 85Rb 5D_3/2 775.978619616 85Rb 5P_3/2 -----> 85Rb 5D_5/2
[ "r", "Find", "all", "allowed", "transitions", "." ]
train
https://github.com/oscarlazoarjona/fast/blob/3e5400672af2a7b7cc616e7f4aa10d7672720222/fast/atomic_structure.py#L348-L395
oscarlazoarjona/fast
fast/inhomo.py
fast_doppler_terms
def fast_doppler_terms(v, detuning_knob, k, omega_level, xi, theta, unfolding, axes=["x", "y", "z"], matrix_form=False, file_name=None, return_code=False): r"""Return a fast function that returns the Doppler terms. >>> from sympy import Matrix, symbols >>> from scipy.constants import physical_constants >>> from fast import PlaneWave >>> from fast.bloch import phase_transformation >>> Ne = 2 >>> Nl = 1 >>> unfolding = Unfolding(Ne, True, True, True) >>> a0 = physical_constants["Bohr radius"][0] >>> rm = [Matrix([[0, 0], [a0, 0]]), ... Matrix([[0, 0], [0, 0]]), ... Matrix([[0, 0], [0, 0]])] >>> xi = np.array([[[0, 1], [1, 0]]]) >>> theta = phase_transformation(Ne, Nl, rm, xi) >>> omega_level = [1, 2.4e15] >>> detuning_knob = [symbols("delta1")] >>> v = symbols("vx vy vz") >>> laser = PlaneWave(0, 0, 0, 0, 1) >>> k = [laser.k] >>> doppler_terms = fast_doppler_terms(v, detuning_knob, k, omega_level, ... xi, theta, unfolding, ... matrix_form=True) >>> detuning_knobs = [0] >>> A, b = doppler_terms([0, 0, 167], detuning_knobs) >>> print A/2/np.pi*1e-9 [[ 0. 0. 0. ] [ 0. 0. 0.21277821] [ 0. -0.21277821 0. ]] """ # We unpack variables. if True: Ne = unfolding.Ne Nrho = unfolding.Nrho Nl = xi.shape[0] IJ = unfolding.IJ Mu = unfolding.Mu # We determine which arguments are constants. if True: try: detuning_knob = np.array([float(detuning_knob[l]) for l in range(Nl)]) variable_detuning_knob = False except: variable_detuning_knob = True # We establish the arguments of the output function. if True: code = "" code += "def doppler_terms(v, " if not matrix_form: code += "rho, " if variable_detuning_knob: code += "detuning_knob, " if code[-2:] == ", ": code = code[:-2] code += "):\n" code += ' r"""A fast calculation of the Doppler terms."""\n' # We initialize the output and auxiliaries. if True: # We introduce the factor that multiplies all terms. if unfolding.real: code += " fact = 1.0\n\n" else: code += " fact = 1.0j\n\n" if matrix_form: code += " A = np.zeros(("+str(Nrho)+", "+str(Nrho) if not unfolding.real: code += "), complex)\n\n" else: code += "))\n\n" if unfolding.normalized: code += " b = np.zeros(("+str(Nrho) if not unfolding.real: code += "), complex)\n\n" else: code += "))\n\n" else: code += " rhs = np.zeros(("+str(Nrho) if not unfolding.real: code += "), complex)\n\n" else: code += "))\n\n" # We build the degeneration simplification and is inverse (to avoid # large combinatorics). aux = define_simplification(omega_level, xi, Nl) u, invu, omega_levelu, Neu, xiu = aux # For each field we find the smallest transition frequency, and its # simplified indices. omega_min, iu0, ju0 = find_omega_min(omega_levelu, Neu, Nl, xiu) ##################################### # We get the code to calculate the non degenerate detunings. pairs = detunings_indices(Neu, Nl, xiu) if not variable_detuning_knob: code += " detuning_knob = np.zeros("+str(Nl)+")\n" for l in range(Nl): code += " detuning_knob["+str(l)+"] = " +\ str(detuning_knob[l])+"\n" # We put in the code to calculate the Doppler shift if True: # Delta omega = omega_laser /c k.v code += " # The Doppler shift\n" dimension = len(v) code += " c = %s\n" % c_num for l in range(Nl): lp1 = l+1 code += " omega_laser%s = %s" % (lp1, omega_min[l]) code += "+detuning_knob[%s]\n" % l code += " detuning_knob[%s] = 0\n" % l axeindices = {"x": 0, "y": 1, "z": 2} axeindices = [axeindices[axe] for axe in axes] for ii in axeindices[:dimension]: code += " detuning_knob[%s] += -%s" % (l, k[l][ii]) if dimension == 1: code += "*v/c*omega_laser%s\n" % lp1 else: code += "*v[%s]/c*omega_laser%s\n" % (ii, lp1) code += "\n" code_det = detunings_code(Neu, Nl, pairs, omega_levelu, iu0, ju0) code += code_det code += "\n" ##################################### # There is a term # I * Theta_ij * rho_ij = I * (omega_level_j - omega_level_i # theta_j - theta_i) # for all i != j. # This term can be re expressed as # re(Theta_ij*rho_ij) = - Theta_ij * im(rho_ij) # im(Theta_ij*rho_ij) = + Theta_ij * re(rho_ij) _omega_level, omega, gamma = define_frequencies(Ne) _omega_levelu, omega, gamma = define_frequencies(Neu) E0, omega_laser = define_laser_variables(Nl) # We build all combinations. combs = detunings_combinations(pairs) # We add all terms. for mu in range(Nrho): s, i, j = IJ(mu) if i != j: _Thetaij = _omega_levelu[u(j)] - _omega_levelu[u(i)] _Thetaij += theta[j] - theta[i] aux = (_Thetaij, combs, omega_laser, _omega_levelu, omega_levelu, iu0, ju0) assign = detunings_rewrite(*aux) if assign != "": if s == 0: nu = mu elif s == 1: assign = "-(%s)" % assign nu = Mu(-s, i, j) elif s == -1: assign = "+(%s)" % assign nu = Mu(-s, i, j) if matrix_form: term_code = " A[%s, %s] = %s\n" % (mu, nu, assign) else: term_code = " rhs[%s] = (%s)*rho[%s]\n" % (mu, assign, nu) else: term_code = "" code += term_code ##################################### # We finish the code. if True: if matrix_form: if unfolding.normalized: code += " A *= fact\n" code += " b *= fact\n" code += " return A, b\n" else: code += " A *= fact\n" code += " return A\n" else: code += " rhs *= fact\n" code += " return rhs\n" # We write the code to file if provided, and execute it. if True: if file_name is not None: f = file(file_name+".py", "w") f.write(code) f.close() doppler_terms = code if not return_code: exec doppler_terms return doppler_terms
python
def fast_doppler_terms(v, detuning_knob, k, omega_level, xi, theta, unfolding, axes=["x", "y", "z"], matrix_form=False, file_name=None, return_code=False): r"""Return a fast function that returns the Doppler terms. >>> from sympy import Matrix, symbols >>> from scipy.constants import physical_constants >>> from fast import PlaneWave >>> from fast.bloch import phase_transformation >>> Ne = 2 >>> Nl = 1 >>> unfolding = Unfolding(Ne, True, True, True) >>> a0 = physical_constants["Bohr radius"][0] >>> rm = [Matrix([[0, 0], [a0, 0]]), ... Matrix([[0, 0], [0, 0]]), ... Matrix([[0, 0], [0, 0]])] >>> xi = np.array([[[0, 1], [1, 0]]]) >>> theta = phase_transformation(Ne, Nl, rm, xi) >>> omega_level = [1, 2.4e15] >>> detuning_knob = [symbols("delta1")] >>> v = symbols("vx vy vz") >>> laser = PlaneWave(0, 0, 0, 0, 1) >>> k = [laser.k] >>> doppler_terms = fast_doppler_terms(v, detuning_knob, k, omega_level, ... xi, theta, unfolding, ... matrix_form=True) >>> detuning_knobs = [0] >>> A, b = doppler_terms([0, 0, 167], detuning_knobs) >>> print A/2/np.pi*1e-9 [[ 0. 0. 0. ] [ 0. 0. 0.21277821] [ 0. -0.21277821 0. ]] """ # We unpack variables. if True: Ne = unfolding.Ne Nrho = unfolding.Nrho Nl = xi.shape[0] IJ = unfolding.IJ Mu = unfolding.Mu # We determine which arguments are constants. if True: try: detuning_knob = np.array([float(detuning_knob[l]) for l in range(Nl)]) variable_detuning_knob = False except: variable_detuning_knob = True # We establish the arguments of the output function. if True: code = "" code += "def doppler_terms(v, " if not matrix_form: code += "rho, " if variable_detuning_knob: code += "detuning_knob, " if code[-2:] == ", ": code = code[:-2] code += "):\n" code += ' r"""A fast calculation of the Doppler terms."""\n' # We initialize the output and auxiliaries. if True: # We introduce the factor that multiplies all terms. if unfolding.real: code += " fact = 1.0\n\n" else: code += " fact = 1.0j\n\n" if matrix_form: code += " A = np.zeros(("+str(Nrho)+", "+str(Nrho) if not unfolding.real: code += "), complex)\n\n" else: code += "))\n\n" if unfolding.normalized: code += " b = np.zeros(("+str(Nrho) if not unfolding.real: code += "), complex)\n\n" else: code += "))\n\n" else: code += " rhs = np.zeros(("+str(Nrho) if not unfolding.real: code += "), complex)\n\n" else: code += "))\n\n" # We build the degeneration simplification and is inverse (to avoid # large combinatorics). aux = define_simplification(omega_level, xi, Nl) u, invu, omega_levelu, Neu, xiu = aux # For each field we find the smallest transition frequency, and its # simplified indices. omega_min, iu0, ju0 = find_omega_min(omega_levelu, Neu, Nl, xiu) ##################################### # We get the code to calculate the non degenerate detunings. pairs = detunings_indices(Neu, Nl, xiu) if not variable_detuning_knob: code += " detuning_knob = np.zeros("+str(Nl)+")\n" for l in range(Nl): code += " detuning_knob["+str(l)+"] = " +\ str(detuning_knob[l])+"\n" # We put in the code to calculate the Doppler shift if True: # Delta omega = omega_laser /c k.v code += " # The Doppler shift\n" dimension = len(v) code += " c = %s\n" % c_num for l in range(Nl): lp1 = l+1 code += " omega_laser%s = %s" % (lp1, omega_min[l]) code += "+detuning_knob[%s]\n" % l code += " detuning_knob[%s] = 0\n" % l axeindices = {"x": 0, "y": 1, "z": 2} axeindices = [axeindices[axe] for axe in axes] for ii in axeindices[:dimension]: code += " detuning_knob[%s] += -%s" % (l, k[l][ii]) if dimension == 1: code += "*v/c*omega_laser%s\n" % lp1 else: code += "*v[%s]/c*omega_laser%s\n" % (ii, lp1) code += "\n" code_det = detunings_code(Neu, Nl, pairs, omega_levelu, iu0, ju0) code += code_det code += "\n" ##################################### # There is a term # I * Theta_ij * rho_ij = I * (omega_level_j - omega_level_i # theta_j - theta_i) # for all i != j. # This term can be re expressed as # re(Theta_ij*rho_ij) = - Theta_ij * im(rho_ij) # im(Theta_ij*rho_ij) = + Theta_ij * re(rho_ij) _omega_level, omega, gamma = define_frequencies(Ne) _omega_levelu, omega, gamma = define_frequencies(Neu) E0, omega_laser = define_laser_variables(Nl) # We build all combinations. combs = detunings_combinations(pairs) # We add all terms. for mu in range(Nrho): s, i, j = IJ(mu) if i != j: _Thetaij = _omega_levelu[u(j)] - _omega_levelu[u(i)] _Thetaij += theta[j] - theta[i] aux = (_Thetaij, combs, omega_laser, _omega_levelu, omega_levelu, iu0, ju0) assign = detunings_rewrite(*aux) if assign != "": if s == 0: nu = mu elif s == 1: assign = "-(%s)" % assign nu = Mu(-s, i, j) elif s == -1: assign = "+(%s)" % assign nu = Mu(-s, i, j) if matrix_form: term_code = " A[%s, %s] = %s\n" % (mu, nu, assign) else: term_code = " rhs[%s] = (%s)*rho[%s]\n" % (mu, assign, nu) else: term_code = "" code += term_code ##################################### # We finish the code. if True: if matrix_form: if unfolding.normalized: code += " A *= fact\n" code += " b *= fact\n" code += " return A, b\n" else: code += " A *= fact\n" code += " return A\n" else: code += " rhs *= fact\n" code += " return rhs\n" # We write the code to file if provided, and execute it. if True: if file_name is not None: f = file(file_name+".py", "w") f.write(code) f.close() doppler_terms = code if not return_code: exec doppler_terms return doppler_terms
[ "def", "fast_doppler_terms", "(", "v", ",", "detuning_knob", ",", "k", ",", "omega_level", ",", "xi", ",", "theta", ",", "unfolding", ",", "axes", "=", "[", "\"x\"", ",", "\"y\"", ",", "\"z\"", "]", ",", "matrix_form", "=", "False", ",", "file_name", "=", "None", ",", "return_code", "=", "False", ")", ":", "# We unpack variables.", "if", "True", ":", "Ne", "=", "unfolding", ".", "Ne", "Nrho", "=", "unfolding", ".", "Nrho", "Nl", "=", "xi", ".", "shape", "[", "0", "]", "IJ", "=", "unfolding", ".", "IJ", "Mu", "=", "unfolding", ".", "Mu", "# We determine which arguments are constants.", "if", "True", ":", "try", ":", "detuning_knob", "=", "np", ".", "array", "(", "[", "float", "(", "detuning_knob", "[", "l", "]", ")", "for", "l", "in", "range", "(", "Nl", ")", "]", ")", "variable_detuning_knob", "=", "False", "except", ":", "variable_detuning_knob", "=", "True", "# We establish the arguments of the output function.", "if", "True", ":", "code", "=", "\"\"", "code", "+=", "\"def doppler_terms(v, \"", "if", "not", "matrix_form", ":", "code", "+=", "\"rho, \"", "if", "variable_detuning_knob", ":", "code", "+=", "\"detuning_knob, \"", "if", "code", "[", "-", "2", ":", "]", "==", "\", \"", ":", "code", "=", "code", "[", ":", "-", "2", "]", "code", "+=", "\"):\\n\"", "code", "+=", "' r\"\"\"A fast calculation of the Doppler terms.\"\"\"\\n'", "# We initialize the output and auxiliaries.", "if", "True", ":", "# We introduce the factor that multiplies all terms.", "if", "unfolding", ".", "real", ":", "code", "+=", "\" fact = 1.0\\n\\n\"", "else", ":", "code", "+=", "\" fact = 1.0j\\n\\n\"", "if", "matrix_form", ":", "code", "+=", "\" A = np.zeros((\"", "+", "str", "(", "Nrho", ")", "+", "\", \"", "+", "str", "(", "Nrho", ")", "if", "not", "unfolding", ".", "real", ":", "code", "+=", "\"), complex)\\n\\n\"", "else", ":", "code", "+=", "\"))\\n\\n\"", "if", "unfolding", ".", "normalized", ":", "code", "+=", "\" b = np.zeros((\"", "+", "str", "(", "Nrho", ")", "if", "not", "unfolding", ".", "real", ":", "code", "+=", "\"), complex)\\n\\n\"", "else", ":", "code", "+=", "\"))\\n\\n\"", "else", ":", "code", "+=", "\" rhs = np.zeros((\"", "+", "str", "(", "Nrho", ")", "if", "not", "unfolding", ".", "real", ":", "code", "+=", "\"), complex)\\n\\n\"", "else", ":", "code", "+=", "\"))\\n\\n\"", "# We build the degeneration simplification and is inverse (to avoid", "# large combinatorics).", "aux", "=", "define_simplification", "(", "omega_level", ",", "xi", ",", "Nl", ")", "u", ",", "invu", ",", "omega_levelu", ",", "Neu", ",", "xiu", "=", "aux", "# For each field we find the smallest transition frequency, and its", "# simplified indices.", "omega_min", ",", "iu0", ",", "ju0", "=", "find_omega_min", "(", "omega_levelu", ",", "Neu", ",", "Nl", ",", "xiu", ")", "#####################################", "# We get the code to calculate the non degenerate detunings.", "pairs", "=", "detunings_indices", "(", "Neu", ",", "Nl", ",", "xiu", ")", "if", "not", "variable_detuning_knob", ":", "code", "+=", "\" detuning_knob = np.zeros(\"", "+", "str", "(", "Nl", ")", "+", "\")\\n\"", "for", "l", "in", "range", "(", "Nl", ")", ":", "code", "+=", "\" detuning_knob[\"", "+", "str", "(", "l", ")", "+", "\"] = \"", "+", "str", "(", "detuning_knob", "[", "l", "]", ")", "+", "\"\\n\"", "# We put in the code to calculate the Doppler shift", "if", "True", ":", "# Delta omega = omega_laser /c k.v", "code", "+=", "\" # The Doppler shift\\n\"", "dimension", "=", "len", "(", "v", ")", "code", "+=", "\" c = %s\\n\"", "%", "c_num", "for", "l", "in", "range", "(", "Nl", ")", ":", "lp1", "=", "l", "+", "1", "code", "+=", "\" omega_laser%s = %s\"", "%", "(", "lp1", ",", "omega_min", "[", "l", "]", ")", "code", "+=", "\"+detuning_knob[%s]\\n\"", "%", "l", "code", "+=", "\" detuning_knob[%s] = 0\\n\"", "%", "l", "axeindices", "=", "{", "\"x\"", ":", "0", ",", "\"y\"", ":", "1", ",", "\"z\"", ":", "2", "}", "axeindices", "=", "[", "axeindices", "[", "axe", "]", "for", "axe", "in", "axes", "]", "for", "ii", "in", "axeindices", "[", ":", "dimension", "]", ":", "code", "+=", "\" detuning_knob[%s] += -%s\"", "%", "(", "l", ",", "k", "[", "l", "]", "[", "ii", "]", ")", "if", "dimension", "==", "1", ":", "code", "+=", "\"*v/c*omega_laser%s\\n\"", "%", "lp1", "else", ":", "code", "+=", "\"*v[%s]/c*omega_laser%s\\n\"", "%", "(", "ii", ",", "lp1", ")", "code", "+=", "\"\\n\"", "code_det", "=", "detunings_code", "(", "Neu", ",", "Nl", ",", "pairs", ",", "omega_levelu", ",", "iu0", ",", "ju0", ")", "code", "+=", "code_det", "code", "+=", "\"\\n\"", "#####################################", "# There is a term", "# I * Theta_ij * rho_ij = I * (omega_level_j - omega_level_i", "# theta_j - theta_i)", "# for all i != j.", "# This term can be re expressed as", "# re(Theta_ij*rho_ij) = - Theta_ij * im(rho_ij)", "# im(Theta_ij*rho_ij) = + Theta_ij * re(rho_ij)", "_omega_level", ",", "omega", ",", "gamma", "=", "define_frequencies", "(", "Ne", ")", "_omega_levelu", ",", "omega", ",", "gamma", "=", "define_frequencies", "(", "Neu", ")", "E0", ",", "omega_laser", "=", "define_laser_variables", "(", "Nl", ")", "# We build all combinations.", "combs", "=", "detunings_combinations", "(", "pairs", ")", "# We add all terms.", "for", "mu", "in", "range", "(", "Nrho", ")", ":", "s", ",", "i", ",", "j", "=", "IJ", "(", "mu", ")", "if", "i", "!=", "j", ":", "_Thetaij", "=", "_omega_levelu", "[", "u", "(", "j", ")", "]", "-", "_omega_levelu", "[", "u", "(", "i", ")", "]", "_Thetaij", "+=", "theta", "[", "j", "]", "-", "theta", "[", "i", "]", "aux", "=", "(", "_Thetaij", ",", "combs", ",", "omega_laser", ",", "_omega_levelu", ",", "omega_levelu", ",", "iu0", ",", "ju0", ")", "assign", "=", "detunings_rewrite", "(", "*", "aux", ")", "if", "assign", "!=", "\"\"", ":", "if", "s", "==", "0", ":", "nu", "=", "mu", "elif", "s", "==", "1", ":", "assign", "=", "\"-(%s)\"", "%", "assign", "nu", "=", "Mu", "(", "-", "s", ",", "i", ",", "j", ")", "elif", "s", "==", "-", "1", ":", "assign", "=", "\"+(%s)\"", "%", "assign", "nu", "=", "Mu", "(", "-", "s", ",", "i", ",", "j", ")", "if", "matrix_form", ":", "term_code", "=", "\" A[%s, %s] = %s\\n\"", "%", "(", "mu", ",", "nu", ",", "assign", ")", "else", ":", "term_code", "=", "\" rhs[%s] = (%s)*rho[%s]\\n\"", "%", "(", "mu", ",", "assign", ",", "nu", ")", "else", ":", "term_code", "=", "\"\"", "code", "+=", "term_code", "#####################################", "# We finish the code.", "if", "True", ":", "if", "matrix_form", ":", "if", "unfolding", ".", "normalized", ":", "code", "+=", "\" A *= fact\\n\"", "code", "+=", "\" b *= fact\\n\"", "code", "+=", "\" return A, b\\n\"", "else", ":", "code", "+=", "\" A *= fact\\n\"", "code", "+=", "\" return A\\n\"", "else", ":", "code", "+=", "\" rhs *= fact\\n\"", "code", "+=", "\" return rhs\\n\"", "# We write the code to file if provided, and execute it.", "if", "True", ":", "if", "file_name", "is", "not", "None", ":", "f", "=", "file", "(", "file_name", "+", "\".py\"", ",", "\"w\"", ")", "f", ".", "write", "(", "code", ")", "f", ".", "close", "(", ")", "doppler_terms", "=", "code", "if", "not", "return_code", ":", "exec", "doppler_terms", "return", "doppler_terms" ]
r"""Return a fast function that returns the Doppler terms. >>> from sympy import Matrix, symbols >>> from scipy.constants import physical_constants >>> from fast import PlaneWave >>> from fast.bloch import phase_transformation >>> Ne = 2 >>> Nl = 1 >>> unfolding = Unfolding(Ne, True, True, True) >>> a0 = physical_constants["Bohr radius"][0] >>> rm = [Matrix([[0, 0], [a0, 0]]), ... Matrix([[0, 0], [0, 0]]), ... Matrix([[0, 0], [0, 0]])] >>> xi = np.array([[[0, 1], [1, 0]]]) >>> theta = phase_transformation(Ne, Nl, rm, xi) >>> omega_level = [1, 2.4e15] >>> detuning_knob = [symbols("delta1")] >>> v = symbols("vx vy vz") >>> laser = PlaneWave(0, 0, 0, 0, 1) >>> k = [laser.k] >>> doppler_terms = fast_doppler_terms(v, detuning_knob, k, omega_level, ... xi, theta, unfolding, ... matrix_form=True) >>> detuning_knobs = [0] >>> A, b = doppler_terms([0, 0, 167], detuning_knobs) >>> print A/2/np.pi*1e-9 [[ 0. 0. 0. ] [ 0. 0. 0.21277821] [ 0. -0.21277821 0. ]]
[ "r", "Return", "a", "fast", "function", "that", "returns", "the", "Doppler", "terms", "." ]
train
https://github.com/oscarlazoarjona/fast/blob/3e5400672af2a7b7cc616e7f4aa10d7672720222/fast/inhomo.py#L241-L439
oscarlazoarjona/fast
fast/inhomo.py
fast_maxwell_boltzmann
def fast_maxwell_boltzmann(mass, file_name=None, return_code=False): r"""Return a function that returns values of a Maxwell-Boltzmann distribution. >>> from fast import Atom >>> mass = Atom("Rb", 87).mass >>> f = fast_maxwell_boltzmann(mass) >>> print f(0, 273.15+20) 0.00238221482739 >>> import numpy as np >>> v = np.linspace(-600, 600, 101) >>> dist = f(v, 273.15+20) >>> dv = v[1]-v[0] >>> print sum(dist)*dv 0.999704711134 """ # We get the mass of the atom. code = "" code = "def maxwell_boltzmann(v, T):\n" code += ' r"""A fast calculation of the' code += ' Maxwell-Boltzmann distribution."""\n' code += " if hasattr(v, 'shape'):\n" code += " d = 1\n" code += " m = %s\n" % mass code += " f = np.sqrt(m/2/np.pi/k_B_num/T)**d\n" code += " f = f * np.exp(-m*v**2/2/k_B_num/T)\n" code += " return f\n" code += " elif hasattr(v, '__len__'):\n" code += " d = len(v)\n" code += " m = %s\n" % mass code += " f = np.sqrt(m/2/np.pi/k_B_num/T)**d\n" code += " vsquare = sum([v[i]**2 for i in range(d)])\n" code += " f = f * np.exp(-m*vsquare/2/k_B_num/T)\n" code += " return f\n" code += " else:\n" code += " d = 1\n" code += " m = %s\n" % mass code += " f = np.sqrt(m/2/np.pi/k_B_num/T)**d\n" code += " f = f * np.exp(-m*v**2/2/k_B_num/T)\n" code += " return f\n" # We write the code to file if provided, and execute it. if file_name is not None: f = file(file_name+".py", "w") f.write(code) f.close() maxwell_boltzmann = code if not return_code: exec maxwell_boltzmann return maxwell_boltzmann
python
def fast_maxwell_boltzmann(mass, file_name=None, return_code=False): r"""Return a function that returns values of a Maxwell-Boltzmann distribution. >>> from fast import Atom >>> mass = Atom("Rb", 87).mass >>> f = fast_maxwell_boltzmann(mass) >>> print f(0, 273.15+20) 0.00238221482739 >>> import numpy as np >>> v = np.linspace(-600, 600, 101) >>> dist = f(v, 273.15+20) >>> dv = v[1]-v[0] >>> print sum(dist)*dv 0.999704711134 """ # We get the mass of the atom. code = "" code = "def maxwell_boltzmann(v, T):\n" code += ' r"""A fast calculation of the' code += ' Maxwell-Boltzmann distribution."""\n' code += " if hasattr(v, 'shape'):\n" code += " d = 1\n" code += " m = %s\n" % mass code += " f = np.sqrt(m/2/np.pi/k_B_num/T)**d\n" code += " f = f * np.exp(-m*v**2/2/k_B_num/T)\n" code += " return f\n" code += " elif hasattr(v, '__len__'):\n" code += " d = len(v)\n" code += " m = %s\n" % mass code += " f = np.sqrt(m/2/np.pi/k_B_num/T)**d\n" code += " vsquare = sum([v[i]**2 for i in range(d)])\n" code += " f = f * np.exp(-m*vsquare/2/k_B_num/T)\n" code += " return f\n" code += " else:\n" code += " d = 1\n" code += " m = %s\n" % mass code += " f = np.sqrt(m/2/np.pi/k_B_num/T)**d\n" code += " f = f * np.exp(-m*v**2/2/k_B_num/T)\n" code += " return f\n" # We write the code to file if provided, and execute it. if file_name is not None: f = file(file_name+".py", "w") f.write(code) f.close() maxwell_boltzmann = code if not return_code: exec maxwell_boltzmann return maxwell_boltzmann
[ "def", "fast_maxwell_boltzmann", "(", "mass", ",", "file_name", "=", "None", ",", "return_code", "=", "False", ")", ":", "# We get the mass of the atom.", "code", "=", "\"\"", "code", "=", "\"def maxwell_boltzmann(v, T):\\n\"", "code", "+=", "' r\"\"\"A fast calculation of the'", "code", "+=", "' Maxwell-Boltzmann distribution.\"\"\"\\n'", "code", "+=", "\" if hasattr(v, 'shape'):\\n\"", "code", "+=", "\" d = 1\\n\"", "code", "+=", "\" m = %s\\n\"", "%", "mass", "code", "+=", "\" f = np.sqrt(m/2/np.pi/k_B_num/T)**d\\n\"", "code", "+=", "\" f = f * np.exp(-m*v**2/2/k_B_num/T)\\n\"", "code", "+=", "\" return f\\n\"", "code", "+=", "\" elif hasattr(v, '__len__'):\\n\"", "code", "+=", "\" d = len(v)\\n\"", "code", "+=", "\" m = %s\\n\"", "%", "mass", "code", "+=", "\" f = np.sqrt(m/2/np.pi/k_B_num/T)**d\\n\"", "code", "+=", "\" vsquare = sum([v[i]**2 for i in range(d)])\\n\"", "code", "+=", "\" f = f * np.exp(-m*vsquare/2/k_B_num/T)\\n\"", "code", "+=", "\" return f\\n\"", "code", "+=", "\" else:\\n\"", "code", "+=", "\" d = 1\\n\"", "code", "+=", "\" m = %s\\n\"", "%", "mass", "code", "+=", "\" f = np.sqrt(m/2/np.pi/k_B_num/T)**d\\n\"", "code", "+=", "\" f = f * np.exp(-m*v**2/2/k_B_num/T)\\n\"", "code", "+=", "\" return f\\n\"", "# We write the code to file if provided, and execute it.", "if", "file_name", "is", "not", "None", ":", "f", "=", "file", "(", "file_name", "+", "\".py\"", ",", "\"w\"", ")", "f", ".", "write", "(", "code", ")", "f", ".", "close", "(", ")", "maxwell_boltzmann", "=", "code", "if", "not", "return_code", ":", "exec", "maxwell_boltzmann", "return", "maxwell_boltzmann" ]
r"""Return a function that returns values of a Maxwell-Boltzmann distribution. >>> from fast import Atom >>> mass = Atom("Rb", 87).mass >>> f = fast_maxwell_boltzmann(mass) >>> print f(0, 273.15+20) 0.00238221482739 >>> import numpy as np >>> v = np.linspace(-600, 600, 101) >>> dist = f(v, 273.15+20) >>> dv = v[1]-v[0] >>> print sum(dist)*dv 0.999704711134
[ "r", "Return", "a", "function", "that", "returns", "values", "of", "a", "Maxwell", "-", "Boltzmann", "distribution", "." ]
train
https://github.com/oscarlazoarjona/fast/blob/3e5400672af2a7b7cc616e7f4aa10d7672720222/fast/inhomo.py#L442-L496
oscarlazoarjona/fast
fast/inhomo.py
fast_inhomo_bloch_equations
def fast_inhomo_bloch_equations(Ep, epsilonp, detuning_knob, T, gamma, omega_level, rm, xi, theta, unfolding, inhomogeneity, matrix_form=False, file_name=None, return_code=False): r"""Return a fast function that returns the numeric right-hand sides of \ inhomogeneous Bloch equations. We test a basic two-level system. >>> import numpy as np >>> from scipy.constants import physical_constants >>> from sympy import Matrix, symbols >>> from fast.electric_field import electric_field_amplitude_top >>> from fast.electric_field import PlaneWave >>> from fast.symbolic import (define_laser_variables, ... polarization_vector) >>> from fast.atomic_structure import Atom >>> from fast.bloch import phase_transformation >>> Ne = 2 >>> Nl = 1 >>> a0 = physical_constants["Bohr radius"][0] >>> rm = [np.array([[0, 0], [a0, 0]]), ... np.array([[0, 0], [0, 0]]), ... np.array([[0, 0], [0, 0]])] >>> xi = np.array([[[0, 1], [1, 0]]]) >>> omega_level = [0, 2.4e15] >>> gamma21 = 2*np.pi*6e6 >>> gamma = np.array([[0, -gamma21], [gamma21, 0]]) >>> theta = phase_transformation(Ne, Nl, rm, xi) We define symbolic variables to be used as token arguments. >>> Ep, omega_laser = define_laser_variables(Nl) >>> laser = PlaneWave(0, 0, 0, 0) >>> epsilonp = [laser.epsilonp] >>> k = [laser.k] >>> detuning_knob = [symbols("delta1", real=True)] A map to unfold the density matrix. >>> unfolding = Unfolding(Ne, True, True, True) We define the Doppler broadening. >>> shape = [9] >>> stds = [[-4, 4]] >>> T = 273.15+20 >>> mass = Atom("Rb", 87).mass >>> aux = (shape, stds, T, mass, detuning_knob, k, ... omega_level, xi, theta, unfolding, ["z", "x", "y"], ... True) >>> doppler_effect = DopplerBroadening(*aux) >>> doppler_effect.domain [array([-669.86784872, -502.40088654, -334.93392436, -167.46696218, 0. , 167.46696218, 334.93392436, 502.40088654, 669.86784872])] We obtain a function to calculate the Bloch equations. >>> T_symb = symbols("T", positive=True) >>> aux = (Ep, epsilonp, detuning_knob, T_symb, gamma, ... omega_level, rm, xi, theta, unfolding, doppler_effect, ... True) >>> bloch_equations = fast_inhomo_bloch_equations(*aux) We calculate an example. >>> detuning_knobs = [0] >>> Eps = electric_field_amplitude_top(0, 1e-3, 1, "SI") >>> Eps *= np.exp(1j*np.pi) >>> Eps = [Eps] >>> A, b = bloch_equations(Eps, detuning_knobs, T) >>> print A[:, 2, 1]*1e-6/2/np.pi [ 853.49268666 640.12094531 426.74705849 213.37341005 0. -213.37317167 -426.74610495 -640.11879984 -853.49125636] >>> print b*1e-6 [[ 0. 0. 0.] [ 0. 0. 0.] [ 0. 0. 0.] [ 0. 0. 0.] [ 0. 0. 0.] [ 0. 0. 0.] [ 0. 0. 0.] [ 0. 0. 0.] [ 0. 0. 0.]] """ if not unfolding.lower_triangular: mes = "It is very inefficient to solve using all components of the " mes += "density matrix. Better set lower_triangular=True in Unfolding." raise NotImplementedError(mes) if matrix_form and (not unfolding.real) and (unfolding.lower_triangular): mes = "It is not possible to express the equations in matrix form " mes += "for complex lower triangular components only." raise ValueError(mes) Nl = len(Ep) Nrho = unfolding.Nrho # We determine which arguments are constants. if True: try: Ep = np.array([complex(Ep[l]) for l in range(Nl)]) variable_Ep = False except: variable_Ep = True try: epsilonp = [np.array([complex(epsilonp[l][i]) for i in range(3)]) for l in range(Nl)] variable_epsilonp = False except: variable_epsilonp = True try: detuning_knob = np.array([float(detuning_knob[l]) for l in range(Nl)]) variable_detuning_knob = False except: variable_detuning_knob = True try: T = float(T) variable_T = False except: variable_T = True # We obtain code for the homogeneous terms. if True: if file_name is not None: file_name_bloch = file_name+"_bloch" else: file_name_bloch = file_name aux = (Ep, epsilonp, detuning_knob, gamma, omega_level, rm, xi, theta, unfolding, matrix_form, file_name_bloch, True) bloch_equations = fast_bloch_equations(*aux) code = bloch_equations+"\n\n" # We establish the arguments of the output function. if True: code += "def inhomo_bloch_equations(" code_args = "" if not matrix_form: code_args += "rho, " if variable_Ep: code_args += "Ep, " if variable_epsilonp: code_args += "epsilonp, " if variable_detuning_knob: code_args += "detuning_knob, " code += code_args if variable_T: code += "T, " code += "inhomogeneity=inhomogeneity, " code += "bloch_equations=bloch_equations):\n" code += ' r"""A fast calculation of inhomogeneous ' code += 'Bloch equations."""\n' # We initialize the output and auxiliaries. if True: # We introduce the factor that multiplies all terms. sha = str(inhomogeneity.shape)[1:-1]+" " if matrix_form: code += " A = np.zeros(("+sha+str(Nrho)+", "+str(Nrho) if not unfolding.real: code += "), complex)\n\n" else: code += "))\n\n" if unfolding.normalized: code += " b = np.zeros(("+sha+str(Nrho) if not unfolding.real: code += "), complex)\n\n" else: code += "))\n\n" else: code += " rhs = np.zeros(("+sha+str(Nrho) if not unfolding.real: code += "), complex)\n\n" else: code += "))\n\n" # We calculate the equations for each ensemble. if True: if variable_T: code += " inhomogeneity.reset(T)\n" if code_args[-2:] == ", ": code_args = code_args[:-2] code += " homogeneous = bloch_equations("+code_args+")\n\n" code += " terms = inhomogeneity.terms\n" code += " shape = inhomogeneity.shape\n" code += " domain = inhomogeneity.domain\n" shape = inhomogeneity.shape dimension = len(shape) if dimension == 1: code += " for i in range(shape[0]):\n" code += " result = terms(domain[0][i], detuning_knob)\n" if matrix_form: if unfolding.normalized: code += " A[i] = homogeneous[0]+result[0]\n" code += " b[i] = homogeneous[1]+result[1]\n" else: code += " A[i] = homogeneous+result\n" else: code += " rhs[i] = homogeneous+result\n" # We finish the code. if True: # code = rabi_code + "\n\n" + code if matrix_form: if unfolding.normalized: code += " return A, b\n" else: code += " return A\n" else: code += " return rhs\n" # We write the code to file if provided, and execute it. if True: if file_name is not None: f = file(file_name+".py", "w") f.write(code) f.close() inhomo_bloch_equations = code if not return_code: exec inhomo_bloch_equations return inhomo_bloch_equations
python
def fast_inhomo_bloch_equations(Ep, epsilonp, detuning_knob, T, gamma, omega_level, rm, xi, theta, unfolding, inhomogeneity, matrix_form=False, file_name=None, return_code=False): r"""Return a fast function that returns the numeric right-hand sides of \ inhomogeneous Bloch equations. We test a basic two-level system. >>> import numpy as np >>> from scipy.constants import physical_constants >>> from sympy import Matrix, symbols >>> from fast.electric_field import electric_field_amplitude_top >>> from fast.electric_field import PlaneWave >>> from fast.symbolic import (define_laser_variables, ... polarization_vector) >>> from fast.atomic_structure import Atom >>> from fast.bloch import phase_transformation >>> Ne = 2 >>> Nl = 1 >>> a0 = physical_constants["Bohr radius"][0] >>> rm = [np.array([[0, 0], [a0, 0]]), ... np.array([[0, 0], [0, 0]]), ... np.array([[0, 0], [0, 0]])] >>> xi = np.array([[[0, 1], [1, 0]]]) >>> omega_level = [0, 2.4e15] >>> gamma21 = 2*np.pi*6e6 >>> gamma = np.array([[0, -gamma21], [gamma21, 0]]) >>> theta = phase_transformation(Ne, Nl, rm, xi) We define symbolic variables to be used as token arguments. >>> Ep, omega_laser = define_laser_variables(Nl) >>> laser = PlaneWave(0, 0, 0, 0) >>> epsilonp = [laser.epsilonp] >>> k = [laser.k] >>> detuning_knob = [symbols("delta1", real=True)] A map to unfold the density matrix. >>> unfolding = Unfolding(Ne, True, True, True) We define the Doppler broadening. >>> shape = [9] >>> stds = [[-4, 4]] >>> T = 273.15+20 >>> mass = Atom("Rb", 87).mass >>> aux = (shape, stds, T, mass, detuning_knob, k, ... omega_level, xi, theta, unfolding, ["z", "x", "y"], ... True) >>> doppler_effect = DopplerBroadening(*aux) >>> doppler_effect.domain [array([-669.86784872, -502.40088654, -334.93392436, -167.46696218, 0. , 167.46696218, 334.93392436, 502.40088654, 669.86784872])] We obtain a function to calculate the Bloch equations. >>> T_symb = symbols("T", positive=True) >>> aux = (Ep, epsilonp, detuning_knob, T_symb, gamma, ... omega_level, rm, xi, theta, unfolding, doppler_effect, ... True) >>> bloch_equations = fast_inhomo_bloch_equations(*aux) We calculate an example. >>> detuning_knobs = [0] >>> Eps = electric_field_amplitude_top(0, 1e-3, 1, "SI") >>> Eps *= np.exp(1j*np.pi) >>> Eps = [Eps] >>> A, b = bloch_equations(Eps, detuning_knobs, T) >>> print A[:, 2, 1]*1e-6/2/np.pi [ 853.49268666 640.12094531 426.74705849 213.37341005 0. -213.37317167 -426.74610495 -640.11879984 -853.49125636] >>> print b*1e-6 [[ 0. 0. 0.] [ 0. 0. 0.] [ 0. 0. 0.] [ 0. 0. 0.] [ 0. 0. 0.] [ 0. 0. 0.] [ 0. 0. 0.] [ 0. 0. 0.] [ 0. 0. 0.]] """ if not unfolding.lower_triangular: mes = "It is very inefficient to solve using all components of the " mes += "density matrix. Better set lower_triangular=True in Unfolding." raise NotImplementedError(mes) if matrix_form and (not unfolding.real) and (unfolding.lower_triangular): mes = "It is not possible to express the equations in matrix form " mes += "for complex lower triangular components only." raise ValueError(mes) Nl = len(Ep) Nrho = unfolding.Nrho # We determine which arguments are constants. if True: try: Ep = np.array([complex(Ep[l]) for l in range(Nl)]) variable_Ep = False except: variable_Ep = True try: epsilonp = [np.array([complex(epsilonp[l][i]) for i in range(3)]) for l in range(Nl)] variable_epsilonp = False except: variable_epsilonp = True try: detuning_knob = np.array([float(detuning_knob[l]) for l in range(Nl)]) variable_detuning_knob = False except: variable_detuning_knob = True try: T = float(T) variable_T = False except: variable_T = True # We obtain code for the homogeneous terms. if True: if file_name is not None: file_name_bloch = file_name+"_bloch" else: file_name_bloch = file_name aux = (Ep, epsilonp, detuning_knob, gamma, omega_level, rm, xi, theta, unfolding, matrix_form, file_name_bloch, True) bloch_equations = fast_bloch_equations(*aux) code = bloch_equations+"\n\n" # We establish the arguments of the output function. if True: code += "def inhomo_bloch_equations(" code_args = "" if not matrix_form: code_args += "rho, " if variable_Ep: code_args += "Ep, " if variable_epsilonp: code_args += "epsilonp, " if variable_detuning_knob: code_args += "detuning_knob, " code += code_args if variable_T: code += "T, " code += "inhomogeneity=inhomogeneity, " code += "bloch_equations=bloch_equations):\n" code += ' r"""A fast calculation of inhomogeneous ' code += 'Bloch equations."""\n' # We initialize the output and auxiliaries. if True: # We introduce the factor that multiplies all terms. sha = str(inhomogeneity.shape)[1:-1]+" " if matrix_form: code += " A = np.zeros(("+sha+str(Nrho)+", "+str(Nrho) if not unfolding.real: code += "), complex)\n\n" else: code += "))\n\n" if unfolding.normalized: code += " b = np.zeros(("+sha+str(Nrho) if not unfolding.real: code += "), complex)\n\n" else: code += "))\n\n" else: code += " rhs = np.zeros(("+sha+str(Nrho) if not unfolding.real: code += "), complex)\n\n" else: code += "))\n\n" # We calculate the equations for each ensemble. if True: if variable_T: code += " inhomogeneity.reset(T)\n" if code_args[-2:] == ", ": code_args = code_args[:-2] code += " homogeneous = bloch_equations("+code_args+")\n\n" code += " terms = inhomogeneity.terms\n" code += " shape = inhomogeneity.shape\n" code += " domain = inhomogeneity.domain\n" shape = inhomogeneity.shape dimension = len(shape) if dimension == 1: code += " for i in range(shape[0]):\n" code += " result = terms(domain[0][i], detuning_knob)\n" if matrix_form: if unfolding.normalized: code += " A[i] = homogeneous[0]+result[0]\n" code += " b[i] = homogeneous[1]+result[1]\n" else: code += " A[i] = homogeneous+result\n" else: code += " rhs[i] = homogeneous+result\n" # We finish the code. if True: # code = rabi_code + "\n\n" + code if matrix_form: if unfolding.normalized: code += " return A, b\n" else: code += " return A\n" else: code += " return rhs\n" # We write the code to file if provided, and execute it. if True: if file_name is not None: f = file(file_name+".py", "w") f.write(code) f.close() inhomo_bloch_equations = code if not return_code: exec inhomo_bloch_equations return inhomo_bloch_equations
[ "def", "fast_inhomo_bloch_equations", "(", "Ep", ",", "epsilonp", ",", "detuning_knob", ",", "T", ",", "gamma", ",", "omega_level", ",", "rm", ",", "xi", ",", "theta", ",", "unfolding", ",", "inhomogeneity", ",", "matrix_form", "=", "False", ",", "file_name", "=", "None", ",", "return_code", "=", "False", ")", ":", "if", "not", "unfolding", ".", "lower_triangular", ":", "mes", "=", "\"It is very inefficient to solve using all components of the \"", "mes", "+=", "\"density matrix. Better set lower_triangular=True in Unfolding.\"", "raise", "NotImplementedError", "(", "mes", ")", "if", "matrix_form", "and", "(", "not", "unfolding", ".", "real", ")", "and", "(", "unfolding", ".", "lower_triangular", ")", ":", "mes", "=", "\"It is not possible to express the equations in matrix form \"", "mes", "+=", "\"for complex lower triangular components only.\"", "raise", "ValueError", "(", "mes", ")", "Nl", "=", "len", "(", "Ep", ")", "Nrho", "=", "unfolding", ".", "Nrho", "# We determine which arguments are constants.", "if", "True", ":", "try", ":", "Ep", "=", "np", ".", "array", "(", "[", "complex", "(", "Ep", "[", "l", "]", ")", "for", "l", "in", "range", "(", "Nl", ")", "]", ")", "variable_Ep", "=", "False", "except", ":", "variable_Ep", "=", "True", "try", ":", "epsilonp", "=", "[", "np", ".", "array", "(", "[", "complex", "(", "epsilonp", "[", "l", "]", "[", "i", "]", ")", "for", "i", "in", "range", "(", "3", ")", "]", ")", "for", "l", "in", "range", "(", "Nl", ")", "]", "variable_epsilonp", "=", "False", "except", ":", "variable_epsilonp", "=", "True", "try", ":", "detuning_knob", "=", "np", ".", "array", "(", "[", "float", "(", "detuning_knob", "[", "l", "]", ")", "for", "l", "in", "range", "(", "Nl", ")", "]", ")", "variable_detuning_knob", "=", "False", "except", ":", "variable_detuning_knob", "=", "True", "try", ":", "T", "=", "float", "(", "T", ")", "variable_T", "=", "False", "except", ":", "variable_T", "=", "True", "# We obtain code for the homogeneous terms.", "if", "True", ":", "if", "file_name", "is", "not", "None", ":", "file_name_bloch", "=", "file_name", "+", "\"_bloch\"", "else", ":", "file_name_bloch", "=", "file_name", "aux", "=", "(", "Ep", ",", "epsilonp", ",", "detuning_knob", ",", "gamma", ",", "omega_level", ",", "rm", ",", "xi", ",", "theta", ",", "unfolding", ",", "matrix_form", ",", "file_name_bloch", ",", "True", ")", "bloch_equations", "=", "fast_bloch_equations", "(", "*", "aux", ")", "code", "=", "bloch_equations", "+", "\"\\n\\n\"", "# We establish the arguments of the output function.", "if", "True", ":", "code", "+=", "\"def inhomo_bloch_equations(\"", "code_args", "=", "\"\"", "if", "not", "matrix_form", ":", "code_args", "+=", "\"rho, \"", "if", "variable_Ep", ":", "code_args", "+=", "\"Ep, \"", "if", "variable_epsilonp", ":", "code_args", "+=", "\"epsilonp, \"", "if", "variable_detuning_knob", ":", "code_args", "+=", "\"detuning_knob, \"", "code", "+=", "code_args", "if", "variable_T", ":", "code", "+=", "\"T, \"", "code", "+=", "\"inhomogeneity=inhomogeneity, \"", "code", "+=", "\"bloch_equations=bloch_equations):\\n\"", "code", "+=", "' r\"\"\"A fast calculation of inhomogeneous '", "code", "+=", "'Bloch equations.\"\"\"\\n'", "# We initialize the output and auxiliaries.", "if", "True", ":", "# We introduce the factor that multiplies all terms.", "sha", "=", "str", "(", "inhomogeneity", ".", "shape", ")", "[", "1", ":", "-", "1", "]", "+", "\" \"", "if", "matrix_form", ":", "code", "+=", "\" A = np.zeros((\"", "+", "sha", "+", "str", "(", "Nrho", ")", "+", "\", \"", "+", "str", "(", "Nrho", ")", "if", "not", "unfolding", ".", "real", ":", "code", "+=", "\"), complex)\\n\\n\"", "else", ":", "code", "+=", "\"))\\n\\n\"", "if", "unfolding", ".", "normalized", ":", "code", "+=", "\" b = np.zeros((\"", "+", "sha", "+", "str", "(", "Nrho", ")", "if", "not", "unfolding", ".", "real", ":", "code", "+=", "\"), complex)\\n\\n\"", "else", ":", "code", "+=", "\"))\\n\\n\"", "else", ":", "code", "+=", "\" rhs = np.zeros((\"", "+", "sha", "+", "str", "(", "Nrho", ")", "if", "not", "unfolding", ".", "real", ":", "code", "+=", "\"), complex)\\n\\n\"", "else", ":", "code", "+=", "\"))\\n\\n\"", "# We calculate the equations for each ensemble.", "if", "True", ":", "if", "variable_T", ":", "code", "+=", "\" inhomogeneity.reset(T)\\n\"", "if", "code_args", "[", "-", "2", ":", "]", "==", "\", \"", ":", "code_args", "=", "code_args", "[", ":", "-", "2", "]", "code", "+=", "\" homogeneous = bloch_equations(\"", "+", "code_args", "+", "\")\\n\\n\"", "code", "+=", "\" terms = inhomogeneity.terms\\n\"", "code", "+=", "\" shape = inhomogeneity.shape\\n\"", "code", "+=", "\" domain = inhomogeneity.domain\\n\"", "shape", "=", "inhomogeneity", ".", "shape", "dimension", "=", "len", "(", "shape", ")", "if", "dimension", "==", "1", ":", "code", "+=", "\" for i in range(shape[0]):\\n\"", "code", "+=", "\" result = terms(domain[0][i], detuning_knob)\\n\"", "if", "matrix_form", ":", "if", "unfolding", ".", "normalized", ":", "code", "+=", "\" A[i] = homogeneous[0]+result[0]\\n\"", "code", "+=", "\" b[i] = homogeneous[1]+result[1]\\n\"", "else", ":", "code", "+=", "\" A[i] = homogeneous+result\\n\"", "else", ":", "code", "+=", "\" rhs[i] = homogeneous+result\\n\"", "# We finish the code.", "if", "True", ":", "# code = rabi_code + \"\\n\\n\" + code", "if", "matrix_form", ":", "if", "unfolding", ".", "normalized", ":", "code", "+=", "\" return A, b\\n\"", "else", ":", "code", "+=", "\" return A\\n\"", "else", ":", "code", "+=", "\" return rhs\\n\"", "# We write the code to file if provided, and execute it.", "if", "True", ":", "if", "file_name", "is", "not", "None", ":", "f", "=", "file", "(", "file_name", "+", "\".py\"", ",", "\"w\"", ")", "f", ".", "write", "(", "code", ")", "f", ".", "close", "(", ")", "inhomo_bloch_equations", "=", "code", "if", "not", "return_code", ":", "exec", "inhomo_bloch_equations", "return", "inhomo_bloch_equations" ]
r"""Return a fast function that returns the numeric right-hand sides of \ inhomogeneous Bloch equations. We test a basic two-level system. >>> import numpy as np >>> from scipy.constants import physical_constants >>> from sympy import Matrix, symbols >>> from fast.electric_field import electric_field_amplitude_top >>> from fast.electric_field import PlaneWave >>> from fast.symbolic import (define_laser_variables, ... polarization_vector) >>> from fast.atomic_structure import Atom >>> from fast.bloch import phase_transformation >>> Ne = 2 >>> Nl = 1 >>> a0 = physical_constants["Bohr radius"][0] >>> rm = [np.array([[0, 0], [a0, 0]]), ... np.array([[0, 0], [0, 0]]), ... np.array([[0, 0], [0, 0]])] >>> xi = np.array([[[0, 1], [1, 0]]]) >>> omega_level = [0, 2.4e15] >>> gamma21 = 2*np.pi*6e6 >>> gamma = np.array([[0, -gamma21], [gamma21, 0]]) >>> theta = phase_transformation(Ne, Nl, rm, xi) We define symbolic variables to be used as token arguments. >>> Ep, omega_laser = define_laser_variables(Nl) >>> laser = PlaneWave(0, 0, 0, 0) >>> epsilonp = [laser.epsilonp] >>> k = [laser.k] >>> detuning_knob = [symbols("delta1", real=True)] A map to unfold the density matrix. >>> unfolding = Unfolding(Ne, True, True, True) We define the Doppler broadening. >>> shape = [9] >>> stds = [[-4, 4]] >>> T = 273.15+20 >>> mass = Atom("Rb", 87).mass >>> aux = (shape, stds, T, mass, detuning_knob, k, ... omega_level, xi, theta, unfolding, ["z", "x", "y"], ... True) >>> doppler_effect = DopplerBroadening(*aux) >>> doppler_effect.domain [array([-669.86784872, -502.40088654, -334.93392436, -167.46696218, 0. , 167.46696218, 334.93392436, 502.40088654, 669.86784872])] We obtain a function to calculate the Bloch equations. >>> T_symb = symbols("T", positive=True) >>> aux = (Ep, epsilonp, detuning_knob, T_symb, gamma, ... omega_level, rm, xi, theta, unfolding, doppler_effect, ... True) >>> bloch_equations = fast_inhomo_bloch_equations(*aux) We calculate an example. >>> detuning_knobs = [0] >>> Eps = electric_field_amplitude_top(0, 1e-3, 1, "SI") >>> Eps *= np.exp(1j*np.pi) >>> Eps = [Eps] >>> A, b = bloch_equations(Eps, detuning_knobs, T) >>> print A[:, 2, 1]*1e-6/2/np.pi [ 853.49268666 640.12094531 426.74705849 213.37341005 0. -213.37317167 -426.74610495 -640.11879984 -853.49125636] >>> print b*1e-6 [[ 0. 0. 0.] [ 0. 0. 0.] [ 0. 0. 0.] [ 0. 0. 0.] [ 0. 0. 0.] [ 0. 0. 0.] [ 0. 0. 0.] [ 0. 0. 0.] [ 0. 0. 0.]]
[ "r", "Return", "a", "fast", "function", "that", "returns", "the", "numeric", "right", "-", "hand", "sides", "of", "\\", "inhomogeneous", "Bloch", "equations", "." ]
train
https://github.com/oscarlazoarjona/fast/blob/3e5400672af2a7b7cc616e7f4aa10d7672720222/fast/inhomo.py#L499-L709
oscarlazoarjona/fast
fast/inhomo.py
fast_inhomo_sweep_time_evolution
def fast_inhomo_sweep_time_evolution(Ep, epsilonp, gamma, omega_level, rm, xi, theta, inhomogeneity, semi_analytic=True, file_name=None, return_code=False): r"""Return a spectrum of time evolutions of the density matrix. We test a basic two-level system. >>> from fast.bloch import phase_transformation >>> from fast import PlaneWave, electric_field_amplitude_top, Atom >>> Ne = 2 >>> Nl = 1 >>> a0 = physical_constants["Bohr radius"][0] >>> rm = [np.array([[0, 0], [a0, 0]]), ... np.array([[0, 0], [0, 0]]), ... np.array([[0, 0], [0, 0]])] >>> xi = np.array([[[0, 1], [1, 0]]]) >>> omega_level = [0, 2.4e15] >>> gamma21 = 2*np.pi*6e6 >>> gamma = np.array([[0, -gamma21], [gamma21, 0]]) >>> theta = phase_transformation(Ne, Nl, rm, xi) >>> Ep, omega_laser = define_laser_variables(Nl) >>> laser = PlaneWave(0, 0, 0, 0) >>> epsilonp = [laser.epsilonp] >>> k = [laser.k] >>> detuning_knob = [symbols("delta1", real=True)] A map to unfold the density matrix. >>> unfolding = Unfolding(Ne, True, True, True) >>> Eps = electric_field_amplitude_top(1e-3, 1e-3, 1, "SI") >>> Eps = [Eps] >>> t = np.linspace(0, 1e-6, 11) >>> rho0 = np.array([[1, 0], [0, 0]]) >>> rho0 = unfolding(rho0) We define the Doppler broadening. >>> Nvz = 15 >>> shape = [Nvz] >>> stds = [[-4, 4]] >>> T = 273.15+20 >>> mass = Atom("Rb", 87).mass >>> aux = (shape, stds, T, mass, detuning_knob, k, ... omega_level, xi, theta, unfolding, ["z", "x", "y"], ... True) >>> doppler_effect = DopplerBroadening(*aux) We get a function for the frequency sweep of time evolution. >>> aux = (Ep, epsilonp, gamma, ... omega_level, rm, xi, theta, ... doppler_effect, ... True, ... "eqs") >>> inhomo_time_evolution = fast_inhomo_sweep_time_evolution(*aux) >>> amp = 1000e6*2*np.pi >>> Ndelta = 101 >>> detuning_knobs = [[-amp, amp, Ndelta]] >>> deltas, rhot = inhomo_time_evolution(t, rho0, Eps, detuning_knobs) >>> print rhot.shape (101, 11, 15, 3) """ # We unpack variables. if True: Nl = xi.shape[0] # We determine which arguments are constants. if True: try: Ep = np.array([complex(Ep[l]) for l in range(Nl)]) variable_Ep = False except: variable_Ep = True try: epsilonp = [np.array([complex(epsilonp[l][i]) for i in range(3)]) for l in range(Nl)] variable_epsilonp = False except: variable_epsilonp = True # We obtain code for the time evolution. if True: detuning_knob = symbols("delta1:"+str(Nl)) args = (Ep, epsilonp, detuning_knob, gamma, omega_level, rm, xi, theta, file_name, True) args = (Ep, epsilonp, detuning_knob, gamma, omega_level, rm, xi, theta, inhomogeneity, True, file_name, True) inhomo_time_evolution = fast_inhomo_time_evolution(*args) code = inhomo_time_evolution+"\n\n" # We establish the arguments of the output function. if True: code += "def inhomo_sweep_time_evolution(t, rho0, " if variable_Ep: code += "Ep, " if variable_epsilonp: code += "epsilonp, " code += "detuning_knob, " code += "inhomo_time_evolution=inhomo_time_evolution):\n" code += ' r"""A fast frequency sweep of the steady state."""\n' # Code to determine the sweep range. if True: code += """ sweepN = -1\n""" code += """ for i, delta in enumerate(detuning_knob):\n""" code += """ if hasattr(delta, "__getitem__"):\n""" code += """ sweepN = i\n""" code += """ delta0 = delta[0]\n""" code += """ deltaf = delta[1]\n""" code += """ Ndelta = delta[2]\n""" code += """ break\n\n""" code += """ if sweepN == -1:\n""" code += """ s = 'One of the detuning knobs '\n""" code += """ s += 'must be of the form '\n""" code += """ s += '(start, stop, Nsteps)'\n""" code += """ raise ValueError(s)\n\n""" code += """ deltas = np.linspace(delta0, deltaf, Ndelta)\n\n""" # We call time_evolution. if True: code += " args = [[t, rho0, " if variable_Ep: code += "Ep, " if variable_epsilonp: code += "epsilonp, " code += """list(detuning_knob[:sweepN]) +\n""" code += """ [deltas[i]] +\n""" code += """ list(detuning_knob[sweepN+1:])]\n""" code += """ for i in range(Ndelta)]\n\n""" code += " rho = np.array([inhomo_time_evolution(*argsi)\n" code += " for argsi in args])\n\n" # We finish the code. if True: code += " return deltas, rho\n" # We write the code to file if provided, and execute it. if True: if file_name is not None: f = file(file_name+".py", "w") f.write(code) f.close() inhomo_sweep_time_evolution = code if not return_code: exec inhomo_sweep_time_evolution return inhomo_sweep_time_evolution
python
def fast_inhomo_sweep_time_evolution(Ep, epsilonp, gamma, omega_level, rm, xi, theta, inhomogeneity, semi_analytic=True, file_name=None, return_code=False): r"""Return a spectrum of time evolutions of the density matrix. We test a basic two-level system. >>> from fast.bloch import phase_transformation >>> from fast import PlaneWave, electric_field_amplitude_top, Atom >>> Ne = 2 >>> Nl = 1 >>> a0 = physical_constants["Bohr radius"][0] >>> rm = [np.array([[0, 0], [a0, 0]]), ... np.array([[0, 0], [0, 0]]), ... np.array([[0, 0], [0, 0]])] >>> xi = np.array([[[0, 1], [1, 0]]]) >>> omega_level = [0, 2.4e15] >>> gamma21 = 2*np.pi*6e6 >>> gamma = np.array([[0, -gamma21], [gamma21, 0]]) >>> theta = phase_transformation(Ne, Nl, rm, xi) >>> Ep, omega_laser = define_laser_variables(Nl) >>> laser = PlaneWave(0, 0, 0, 0) >>> epsilonp = [laser.epsilonp] >>> k = [laser.k] >>> detuning_knob = [symbols("delta1", real=True)] A map to unfold the density matrix. >>> unfolding = Unfolding(Ne, True, True, True) >>> Eps = electric_field_amplitude_top(1e-3, 1e-3, 1, "SI") >>> Eps = [Eps] >>> t = np.linspace(0, 1e-6, 11) >>> rho0 = np.array([[1, 0], [0, 0]]) >>> rho0 = unfolding(rho0) We define the Doppler broadening. >>> Nvz = 15 >>> shape = [Nvz] >>> stds = [[-4, 4]] >>> T = 273.15+20 >>> mass = Atom("Rb", 87).mass >>> aux = (shape, stds, T, mass, detuning_knob, k, ... omega_level, xi, theta, unfolding, ["z", "x", "y"], ... True) >>> doppler_effect = DopplerBroadening(*aux) We get a function for the frequency sweep of time evolution. >>> aux = (Ep, epsilonp, gamma, ... omega_level, rm, xi, theta, ... doppler_effect, ... True, ... "eqs") >>> inhomo_time_evolution = fast_inhomo_sweep_time_evolution(*aux) >>> amp = 1000e6*2*np.pi >>> Ndelta = 101 >>> detuning_knobs = [[-amp, amp, Ndelta]] >>> deltas, rhot = inhomo_time_evolution(t, rho0, Eps, detuning_knobs) >>> print rhot.shape (101, 11, 15, 3) """ # We unpack variables. if True: Nl = xi.shape[0] # We determine which arguments are constants. if True: try: Ep = np.array([complex(Ep[l]) for l in range(Nl)]) variable_Ep = False except: variable_Ep = True try: epsilonp = [np.array([complex(epsilonp[l][i]) for i in range(3)]) for l in range(Nl)] variable_epsilonp = False except: variable_epsilonp = True # We obtain code for the time evolution. if True: detuning_knob = symbols("delta1:"+str(Nl)) args = (Ep, epsilonp, detuning_knob, gamma, omega_level, rm, xi, theta, file_name, True) args = (Ep, epsilonp, detuning_knob, gamma, omega_level, rm, xi, theta, inhomogeneity, True, file_name, True) inhomo_time_evolution = fast_inhomo_time_evolution(*args) code = inhomo_time_evolution+"\n\n" # We establish the arguments of the output function. if True: code += "def inhomo_sweep_time_evolution(t, rho0, " if variable_Ep: code += "Ep, " if variable_epsilonp: code += "epsilonp, " code += "detuning_knob, " code += "inhomo_time_evolution=inhomo_time_evolution):\n" code += ' r"""A fast frequency sweep of the steady state."""\n' # Code to determine the sweep range. if True: code += """ sweepN = -1\n""" code += """ for i, delta in enumerate(detuning_knob):\n""" code += """ if hasattr(delta, "__getitem__"):\n""" code += """ sweepN = i\n""" code += """ delta0 = delta[0]\n""" code += """ deltaf = delta[1]\n""" code += """ Ndelta = delta[2]\n""" code += """ break\n\n""" code += """ if sweepN == -1:\n""" code += """ s = 'One of the detuning knobs '\n""" code += """ s += 'must be of the form '\n""" code += """ s += '(start, stop, Nsteps)'\n""" code += """ raise ValueError(s)\n\n""" code += """ deltas = np.linspace(delta0, deltaf, Ndelta)\n\n""" # We call time_evolution. if True: code += " args = [[t, rho0, " if variable_Ep: code += "Ep, " if variable_epsilonp: code += "epsilonp, " code += """list(detuning_knob[:sweepN]) +\n""" code += """ [deltas[i]] +\n""" code += """ list(detuning_knob[sweepN+1:])]\n""" code += """ for i in range(Ndelta)]\n\n""" code += " rho = np.array([inhomo_time_evolution(*argsi)\n" code += " for argsi in args])\n\n" # We finish the code. if True: code += " return deltas, rho\n" # We write the code to file if provided, and execute it. if True: if file_name is not None: f = file(file_name+".py", "w") f.write(code) f.close() inhomo_sweep_time_evolution = code if not return_code: exec inhomo_sweep_time_evolution return inhomo_sweep_time_evolution
[ "def", "fast_inhomo_sweep_time_evolution", "(", "Ep", ",", "epsilonp", ",", "gamma", ",", "omega_level", ",", "rm", ",", "xi", ",", "theta", ",", "inhomogeneity", ",", "semi_analytic", "=", "True", ",", "file_name", "=", "None", ",", "return_code", "=", "False", ")", ":", "# We unpack variables.", "if", "True", ":", "Nl", "=", "xi", ".", "shape", "[", "0", "]", "# We determine which arguments are constants.", "if", "True", ":", "try", ":", "Ep", "=", "np", ".", "array", "(", "[", "complex", "(", "Ep", "[", "l", "]", ")", "for", "l", "in", "range", "(", "Nl", ")", "]", ")", "variable_Ep", "=", "False", "except", ":", "variable_Ep", "=", "True", "try", ":", "epsilonp", "=", "[", "np", ".", "array", "(", "[", "complex", "(", "epsilonp", "[", "l", "]", "[", "i", "]", ")", "for", "i", "in", "range", "(", "3", ")", "]", ")", "for", "l", "in", "range", "(", "Nl", ")", "]", "variable_epsilonp", "=", "False", "except", ":", "variable_epsilonp", "=", "True", "# We obtain code for the time evolution.", "if", "True", ":", "detuning_knob", "=", "symbols", "(", "\"delta1:\"", "+", "str", "(", "Nl", ")", ")", "args", "=", "(", "Ep", ",", "epsilonp", ",", "detuning_knob", ",", "gamma", ",", "omega_level", ",", "rm", ",", "xi", ",", "theta", ",", "file_name", ",", "True", ")", "args", "=", "(", "Ep", ",", "epsilonp", ",", "detuning_knob", ",", "gamma", ",", "omega_level", ",", "rm", ",", "xi", ",", "theta", ",", "inhomogeneity", ",", "True", ",", "file_name", ",", "True", ")", "inhomo_time_evolution", "=", "fast_inhomo_time_evolution", "(", "*", "args", ")", "code", "=", "inhomo_time_evolution", "+", "\"\\n\\n\"", "# We establish the arguments of the output function.", "if", "True", ":", "code", "+=", "\"def inhomo_sweep_time_evolution(t, rho0, \"", "if", "variable_Ep", ":", "code", "+=", "\"Ep, \"", "if", "variable_epsilonp", ":", "code", "+=", "\"epsilonp, \"", "code", "+=", "\"detuning_knob, \"", "code", "+=", "\"inhomo_time_evolution=inhomo_time_evolution):\\n\"", "code", "+=", "' r\"\"\"A fast frequency sweep of the steady state.\"\"\"\\n'", "# Code to determine the sweep range.", "if", "True", ":", "code", "+=", "\"\"\" sweepN = -1\\n\"\"\"", "code", "+=", "\"\"\" for i, delta in enumerate(detuning_knob):\\n\"\"\"", "code", "+=", "\"\"\" if hasattr(delta, \"__getitem__\"):\\n\"\"\"", "code", "+=", "\"\"\" sweepN = i\\n\"\"\"", "code", "+=", "\"\"\" delta0 = delta[0]\\n\"\"\"", "code", "+=", "\"\"\" deltaf = delta[1]\\n\"\"\"", "code", "+=", "\"\"\" Ndelta = delta[2]\\n\"\"\"", "code", "+=", "\"\"\" break\\n\\n\"\"\"", "code", "+=", "\"\"\" if sweepN == -1:\\n\"\"\"", "code", "+=", "\"\"\" s = 'One of the detuning knobs '\\n\"\"\"", "code", "+=", "\"\"\" s += 'must be of the form '\\n\"\"\"", "code", "+=", "\"\"\" s += '(start, stop, Nsteps)'\\n\"\"\"", "code", "+=", "\"\"\" raise ValueError(s)\\n\\n\"\"\"", "code", "+=", "\"\"\" deltas = np.linspace(delta0, deltaf, Ndelta)\\n\\n\"\"\"", "# We call time_evolution.", "if", "True", ":", "code", "+=", "\" args = [[t, rho0, \"", "if", "variable_Ep", ":", "code", "+=", "\"Ep, \"", "if", "variable_epsilonp", ":", "code", "+=", "\"epsilonp, \"", "code", "+=", "\"\"\"list(detuning_knob[:sweepN]) +\\n\"\"\"", "code", "+=", "\"\"\" [deltas[i]] +\\n\"\"\"", "code", "+=", "\"\"\" list(detuning_knob[sweepN+1:])]\\n\"\"\"", "code", "+=", "\"\"\" for i in range(Ndelta)]\\n\\n\"\"\"", "code", "+=", "\" rho = np.array([inhomo_time_evolution(*argsi)\\n\"", "code", "+=", "\" for argsi in args])\\n\\n\"", "# We finish the code.", "if", "True", ":", "code", "+=", "\" return deltas, rho\\n\"", "# We write the code to file if provided, and execute it.", "if", "True", ":", "if", "file_name", "is", "not", "None", ":", "f", "=", "file", "(", "file_name", "+", "\".py\"", ",", "\"w\"", ")", "f", ".", "write", "(", "code", ")", "f", ".", "close", "(", ")", "inhomo_sweep_time_evolution", "=", "code", "if", "not", "return_code", ":", "exec", "inhomo_sweep_time_evolution", "return", "inhomo_sweep_time_evolution" ]
r"""Return a spectrum of time evolutions of the density matrix. We test a basic two-level system. >>> from fast.bloch import phase_transformation >>> from fast import PlaneWave, electric_field_amplitude_top, Atom >>> Ne = 2 >>> Nl = 1 >>> a0 = physical_constants["Bohr radius"][0] >>> rm = [np.array([[0, 0], [a0, 0]]), ... np.array([[0, 0], [0, 0]]), ... np.array([[0, 0], [0, 0]])] >>> xi = np.array([[[0, 1], [1, 0]]]) >>> omega_level = [0, 2.4e15] >>> gamma21 = 2*np.pi*6e6 >>> gamma = np.array([[0, -gamma21], [gamma21, 0]]) >>> theta = phase_transformation(Ne, Nl, rm, xi) >>> Ep, omega_laser = define_laser_variables(Nl) >>> laser = PlaneWave(0, 0, 0, 0) >>> epsilonp = [laser.epsilonp] >>> k = [laser.k] >>> detuning_knob = [symbols("delta1", real=True)] A map to unfold the density matrix. >>> unfolding = Unfolding(Ne, True, True, True) >>> Eps = electric_field_amplitude_top(1e-3, 1e-3, 1, "SI") >>> Eps = [Eps] >>> t = np.linspace(0, 1e-6, 11) >>> rho0 = np.array([[1, 0], [0, 0]]) >>> rho0 = unfolding(rho0) We define the Doppler broadening. >>> Nvz = 15 >>> shape = [Nvz] >>> stds = [[-4, 4]] >>> T = 273.15+20 >>> mass = Atom("Rb", 87).mass >>> aux = (shape, stds, T, mass, detuning_knob, k, ... omega_level, xi, theta, unfolding, ["z", "x", "y"], ... True) >>> doppler_effect = DopplerBroadening(*aux) We get a function for the frequency sweep of time evolution. >>> aux = (Ep, epsilonp, gamma, ... omega_level, rm, xi, theta, ... doppler_effect, ... True, ... "eqs") >>> inhomo_time_evolution = fast_inhomo_sweep_time_evolution(*aux) >>> amp = 1000e6*2*np.pi >>> Ndelta = 101 >>> detuning_knobs = [[-amp, amp, Ndelta]] >>> deltas, rhot = inhomo_time_evolution(t, rho0, Eps, detuning_knobs) >>> print rhot.shape (101, 11, 15, 3)
[ "r", "Return", "a", "spectrum", "of", "time", "evolutions", "of", "the", "density", "matrix", "." ]
train
https://github.com/oscarlazoarjona/fast/blob/3e5400672af2a7b7cc616e7f4aa10d7672720222/fast/inhomo.py#L985-L1129
oscarlazoarjona/fast
fast/inhomo.py
Inhomogeneity.average
def average(self, rho): r"""Return the average density matrix of an inhomogeneous ensemble.""" def marginal(f, rho): remaining = len(f.shape) if remaining == 0: return rho rho = sum([f[i]*rho[i] for i in range(rho.shape[0])]) f = np.sum(f, 0) return marginal(f, rho) return marginal(self.distribution, rho)
python
def average(self, rho): r"""Return the average density matrix of an inhomogeneous ensemble.""" def marginal(f, rho): remaining = len(f.shape) if remaining == 0: return rho rho = sum([f[i]*rho[i] for i in range(rho.shape[0])]) f = np.sum(f, 0) return marginal(f, rho) return marginal(self.distribution, rho)
[ "def", "average", "(", "self", ",", "rho", ")", ":", "def", "marginal", "(", "f", ",", "rho", ")", ":", "remaining", "=", "len", "(", "f", ".", "shape", ")", "if", "remaining", "==", "0", ":", "return", "rho", "rho", "=", "sum", "(", "[", "f", "[", "i", "]", "*", "rho", "[", "i", "]", "for", "i", "in", "range", "(", "rho", ".", "shape", "[", "0", "]", ")", "]", ")", "f", "=", "np", ".", "sum", "(", "f", ",", "0", ")", "return", "marginal", "(", "f", ",", "rho", ")", "return", "marginal", "(", "self", ".", "distribution", ",", "rho", ")" ]
r"""Return the average density matrix of an inhomogeneous ensemble.
[ "r", "Return", "the", "average", "density", "matrix", "of", "an", "inhomogeneous", "ensemble", "." ]
train
https://github.com/oscarlazoarjona/fast/blob/3e5400672af2a7b7cc616e7f4aa10d7672720222/fast/inhomo.py#L104-L114
oscarlazoarjona/fast
fast/inhomo.py
DopplerBroadening.reset
def reset(self, T): r"""Recalculate the doppler broadening for a given temperature.""" self.__init__(self.shape, self.stds, T, self.mass, self.detuning_knob, self.k, self.omega_level, self.xi, self.theta, self.unfolding, self.axes, self.matrix_form)
python
def reset(self, T): r"""Recalculate the doppler broadening for a given temperature.""" self.__init__(self.shape, self.stds, T, self.mass, self.detuning_knob, self.k, self.omega_level, self.xi, self.theta, self.unfolding, self.axes, self.matrix_form)
[ "def", "reset", "(", "self", ",", "T", ")", ":", "self", ".", "__init__", "(", "self", ".", "shape", ",", "self", ".", "stds", ",", "T", ",", "self", ".", "mass", ",", "self", ".", "detuning_knob", ",", "self", ".", "k", ",", "self", ".", "omega_level", ",", "self", ".", "xi", ",", "self", ".", "theta", ",", "self", ".", "unfolding", ",", "self", ".", "axes", ",", "self", ".", "matrix_form", ")" ]
r"""Recalculate the doppler broadening for a given temperature.
[ "r", "Recalculate", "the", "doppler", "broadening", "for", "a", "given", "temperature", "." ]
train
https://github.com/oscarlazoarjona/fast/blob/3e5400672af2a7b7cc616e7f4aa10d7672720222/fast/inhomo.py#L232-L238
tdsmith/ijroi
ijroi/ijroi.py
read_roi
def read_roi(fileobj): ''' points = read_roi(fileobj) Read ImageJ's ROI format. Points are returned in a nx2 array. Each row is in [row, column] -- that is, (y,x) -- order. ''' # This is based on: # http://rsbweb.nih.gov/ij/developer/source/ij/io/RoiDecoder.java.html # http://rsbweb.nih.gov/ij/developer/source/ij/io/RoiEncoder.java.html SPLINE_FIT = 1 DOUBLE_HEADED = 2 OUTLINE = 4 OVERLAY_LABELS = 8 OVERLAY_NAMES = 16 OVERLAY_BACKGROUNDS = 32 OVERLAY_BOLD = 64 SUB_PIXEL_RESOLUTION = 128 DRAW_OFFSET = 256 class RoiType: POLYGON = 0 RECT = 1 OVAL = 2 LINE = 3 FREELINE = 4 POLYLINE = 5 NOROI = 6 FREEHAND = 7 TRACED = 8 ANGLE = 9 POINT = 10 def get8(): s = fileobj.read(1) if not s: raise IOError('readroi: Unexpected EOF') return ord(s) def get16(): b0 = get8() b1 = get8() return (b0 << 8) | b1 def get32(): s0 = get16() s1 = get16() return (s0 << 16) | s1 def getfloat(): v = np.int32(get32()) return v.view(np.float32) #=========================================================================== #Read Header data magic = fileobj.read(4) if magic != b'Iout': raise ValueError('Magic number not found') version = get16() # It seems that the roi type field occupies 2 Bytes, but only one is used roi_type = get8() # Discard second Byte: get8() top = get16() left = get16() bottom = get16() right = get16() n_coordinates = get16() x1 = getfloat() y1 = getfloat() x2 = getfloat() y2 = getfloat() stroke_width = get16() shape_roi_size = get32() stroke_color = get32() fill_color = get32() subtype = get16() options = get16() arrow_style = get8() arrow_head_size = get8() rect_arc_size = get16() position = get32() header2offset = get32() # End Header data #=========================================================================== #RoiDecoder.java checks the version when setting sub-pixel resolution, therefore so do we subPixelResolution = ((options&SUB_PIXEL_RESOLUTION)!=0) and (version>=222) # Check exceptions if roi_type not in [RoiType.FREEHAND, RoiType.TRACED, RoiType.POLYGON, RoiType.RECT, RoiType.POINT]: raise NotImplementedError('roireader: ROI type %s not supported' % roi_type) if subtype != 0: raise NotImplementedError('roireader: ROI subtype %s not supported (!= 0)' % subtype) if roi_type == RoiType.RECT: if subPixelResolution: return np.array( [[y1, x1], [y1, x1+x2], [y1+y2, x1+x2], [y1+y2, x1]], dtype=np.float32) else: return np.array( [[top, left], [top, right], [bottom, right], [bottom, left]], dtype=np.int16) if subPixelResolution: getc = getfloat points = np.empty((n_coordinates, 2), dtype=np.float32) fileobj.seek(4*n_coordinates, 1) else: getc = get16 points = np.empty((n_coordinates, 2), dtype=np.int16) points[:, 1] = [getc() for i in range(n_coordinates)] points[:, 0] = [getc() for i in range(n_coordinates)] if not subPixelResolution: points[:, 1] += left points[:, 0] += top return points
python
def read_roi(fileobj): ''' points = read_roi(fileobj) Read ImageJ's ROI format. Points are returned in a nx2 array. Each row is in [row, column] -- that is, (y,x) -- order. ''' # This is based on: # http://rsbweb.nih.gov/ij/developer/source/ij/io/RoiDecoder.java.html # http://rsbweb.nih.gov/ij/developer/source/ij/io/RoiEncoder.java.html SPLINE_FIT = 1 DOUBLE_HEADED = 2 OUTLINE = 4 OVERLAY_LABELS = 8 OVERLAY_NAMES = 16 OVERLAY_BACKGROUNDS = 32 OVERLAY_BOLD = 64 SUB_PIXEL_RESOLUTION = 128 DRAW_OFFSET = 256 class RoiType: POLYGON = 0 RECT = 1 OVAL = 2 LINE = 3 FREELINE = 4 POLYLINE = 5 NOROI = 6 FREEHAND = 7 TRACED = 8 ANGLE = 9 POINT = 10 def get8(): s = fileobj.read(1) if not s: raise IOError('readroi: Unexpected EOF') return ord(s) def get16(): b0 = get8() b1 = get8() return (b0 << 8) | b1 def get32(): s0 = get16() s1 = get16() return (s0 << 16) | s1 def getfloat(): v = np.int32(get32()) return v.view(np.float32) #=========================================================================== #Read Header data magic = fileobj.read(4) if magic != b'Iout': raise ValueError('Magic number not found') version = get16() # It seems that the roi type field occupies 2 Bytes, but only one is used roi_type = get8() # Discard second Byte: get8() top = get16() left = get16() bottom = get16() right = get16() n_coordinates = get16() x1 = getfloat() y1 = getfloat() x2 = getfloat() y2 = getfloat() stroke_width = get16() shape_roi_size = get32() stroke_color = get32() fill_color = get32() subtype = get16() options = get16() arrow_style = get8() arrow_head_size = get8() rect_arc_size = get16() position = get32() header2offset = get32() # End Header data #=========================================================================== #RoiDecoder.java checks the version when setting sub-pixel resolution, therefore so do we subPixelResolution = ((options&SUB_PIXEL_RESOLUTION)!=0) and (version>=222) # Check exceptions if roi_type not in [RoiType.FREEHAND, RoiType.TRACED, RoiType.POLYGON, RoiType.RECT, RoiType.POINT]: raise NotImplementedError('roireader: ROI type %s not supported' % roi_type) if subtype != 0: raise NotImplementedError('roireader: ROI subtype %s not supported (!= 0)' % subtype) if roi_type == RoiType.RECT: if subPixelResolution: return np.array( [[y1, x1], [y1, x1+x2], [y1+y2, x1+x2], [y1+y2, x1]], dtype=np.float32) else: return np.array( [[top, left], [top, right], [bottom, right], [bottom, left]], dtype=np.int16) if subPixelResolution: getc = getfloat points = np.empty((n_coordinates, 2), dtype=np.float32) fileobj.seek(4*n_coordinates, 1) else: getc = get16 points = np.empty((n_coordinates, 2), dtype=np.int16) points[:, 1] = [getc() for i in range(n_coordinates)] points[:, 0] = [getc() for i in range(n_coordinates)] if not subPixelResolution: points[:, 1] += left points[:, 0] += top return points
[ "def", "read_roi", "(", "fileobj", ")", ":", "# This is based on:", "# http://rsbweb.nih.gov/ij/developer/source/ij/io/RoiDecoder.java.html", "# http://rsbweb.nih.gov/ij/developer/source/ij/io/RoiEncoder.java.html", "SPLINE_FIT", "=", "1", "DOUBLE_HEADED", "=", "2", "OUTLINE", "=", "4", "OVERLAY_LABELS", "=", "8", "OVERLAY_NAMES", "=", "16", "OVERLAY_BACKGROUNDS", "=", "32", "OVERLAY_BOLD", "=", "64", "SUB_PIXEL_RESOLUTION", "=", "128", "DRAW_OFFSET", "=", "256", "class", "RoiType", ":", "POLYGON", "=", "0", "RECT", "=", "1", "OVAL", "=", "2", "LINE", "=", "3", "FREELINE", "=", "4", "POLYLINE", "=", "5", "NOROI", "=", "6", "FREEHAND", "=", "7", "TRACED", "=", "8", "ANGLE", "=", "9", "POINT", "=", "10", "def", "get8", "(", ")", ":", "s", "=", "fileobj", ".", "read", "(", "1", ")", "if", "not", "s", ":", "raise", "IOError", "(", "'readroi: Unexpected EOF'", ")", "return", "ord", "(", "s", ")", "def", "get16", "(", ")", ":", "b0", "=", "get8", "(", ")", "b1", "=", "get8", "(", ")", "return", "(", "b0", "<<", "8", ")", "|", "b1", "def", "get32", "(", ")", ":", "s0", "=", "get16", "(", ")", "s1", "=", "get16", "(", ")", "return", "(", "s0", "<<", "16", ")", "|", "s1", "def", "getfloat", "(", ")", ":", "v", "=", "np", ".", "int32", "(", "get32", "(", ")", ")", "return", "v", ".", "view", "(", "np", ".", "float32", ")", "#===========================================================================", "#Read Header data", "magic", "=", "fileobj", ".", "read", "(", "4", ")", "if", "magic", "!=", "b'Iout'", ":", "raise", "ValueError", "(", "'Magic number not found'", ")", "version", "=", "get16", "(", ")", "# It seems that the roi type field occupies 2 Bytes, but only one is used", "roi_type", "=", "get8", "(", ")", "# Discard second Byte:", "get8", "(", ")", "top", "=", "get16", "(", ")", "left", "=", "get16", "(", ")", "bottom", "=", "get16", "(", ")", "right", "=", "get16", "(", ")", "n_coordinates", "=", "get16", "(", ")", "x1", "=", "getfloat", "(", ")", "y1", "=", "getfloat", "(", ")", "x2", "=", "getfloat", "(", ")", "y2", "=", "getfloat", "(", ")", "stroke_width", "=", "get16", "(", ")", "shape_roi_size", "=", "get32", "(", ")", "stroke_color", "=", "get32", "(", ")", "fill_color", "=", "get32", "(", ")", "subtype", "=", "get16", "(", ")", "options", "=", "get16", "(", ")", "arrow_style", "=", "get8", "(", ")", "arrow_head_size", "=", "get8", "(", ")", "rect_arc_size", "=", "get16", "(", ")", "position", "=", "get32", "(", ")", "header2offset", "=", "get32", "(", ")", "# End Header data", "#===========================================================================", "#RoiDecoder.java checks the version when setting sub-pixel resolution, therefore so do we", "subPixelResolution", "=", "(", "(", "options", "&", "SUB_PIXEL_RESOLUTION", ")", "!=", "0", ")", "and", "(", "version", ">=", "222", ")", "# Check exceptions", "if", "roi_type", "not", "in", "[", "RoiType", ".", "FREEHAND", ",", "RoiType", ".", "TRACED", ",", "RoiType", ".", "POLYGON", ",", "RoiType", ".", "RECT", ",", "RoiType", ".", "POINT", "]", ":", "raise", "NotImplementedError", "(", "'roireader: ROI type %s not supported'", "%", "roi_type", ")", "if", "subtype", "!=", "0", ":", "raise", "NotImplementedError", "(", "'roireader: ROI subtype %s not supported (!= 0)'", "%", "subtype", ")", "if", "roi_type", "==", "RoiType", ".", "RECT", ":", "if", "subPixelResolution", ":", "return", "np", ".", "array", "(", "[", "[", "y1", ",", "x1", "]", ",", "[", "y1", ",", "x1", "+", "x2", "]", ",", "[", "y1", "+", "y2", ",", "x1", "+", "x2", "]", ",", "[", "y1", "+", "y2", ",", "x1", "]", "]", ",", "dtype", "=", "np", ".", "float32", ")", "else", ":", "return", "np", ".", "array", "(", "[", "[", "top", ",", "left", "]", ",", "[", "top", ",", "right", "]", ",", "[", "bottom", ",", "right", "]", ",", "[", "bottom", ",", "left", "]", "]", ",", "dtype", "=", "np", ".", "int16", ")", "if", "subPixelResolution", ":", "getc", "=", "getfloat", "points", "=", "np", ".", "empty", "(", "(", "n_coordinates", ",", "2", ")", ",", "dtype", "=", "np", ".", "float32", ")", "fileobj", ".", "seek", "(", "4", "*", "n_coordinates", ",", "1", ")", "else", ":", "getc", "=", "get16", "points", "=", "np", ".", "empty", "(", "(", "n_coordinates", ",", "2", ")", ",", "dtype", "=", "np", ".", "int16", ")", "points", "[", ":", ",", "1", "]", "=", "[", "getc", "(", ")", "for", "i", "in", "range", "(", "n_coordinates", ")", "]", "points", "[", ":", ",", "0", "]", "=", "[", "getc", "(", ")", "for", "i", "in", "range", "(", "n_coordinates", ")", "]", "if", "not", "subPixelResolution", ":", "points", "[", ":", ",", "1", "]", "+=", "left", "points", "[", ":", ",", "0", "]", "+=", "top", "return", "points" ]
points = read_roi(fileobj) Read ImageJ's ROI format. Points are returned in a nx2 array. Each row is in [row, column] -- that is, (y,x) -- order.
[ "points", "=", "read_roi", "(", "fileobj", ")" ]
train
https://github.com/tdsmith/ijroi/blob/611a220286788ff1447d79343da51cb2bb69a984/ijroi/ijroi.py#L11-L139
oscarlazoarjona/fast
fast/angular_momentum.py
perm_j
def perm_j(j1, j2): r"""Calculate the allowed total angular momenta. >>> from sympy import Integer >>> L = 1 >>> S = 1/Integer(2) >>> perm_j(L, S) [1/2, 3/2] """ jmin = abs(j1-j2) jmax = j1+j2 return [jmin + i for i in range(jmax-jmin+1)]
python
def perm_j(j1, j2): r"""Calculate the allowed total angular momenta. >>> from sympy import Integer >>> L = 1 >>> S = 1/Integer(2) >>> perm_j(L, S) [1/2, 3/2] """ jmin = abs(j1-j2) jmax = j1+j2 return [jmin + i for i in range(jmax-jmin+1)]
[ "def", "perm_j", "(", "j1", ",", "j2", ")", ":", "jmin", "=", "abs", "(", "j1", "-", "j2", ")", "jmax", "=", "j1", "+", "j2", "return", "[", "jmin", "+", "i", "for", "i", "in", "range", "(", "jmax", "-", "jmin", "+", "1", ")", "]" ]
r"""Calculate the allowed total angular momenta. >>> from sympy import Integer >>> L = 1 >>> S = 1/Integer(2) >>> perm_j(L, S) [1/2, 3/2]
[ "r", "Calculate", "the", "allowed", "total", "angular", "momenta", "." ]
train
https://github.com/oscarlazoarjona/fast/blob/3e5400672af2a7b7cc616e7f4aa10d7672720222/fast/angular_momentum.py#L31-L43
oscarlazoarjona/fast
fast/angular_momentum.py
coupling_matrix_2j
def coupling_matrix_2j(j1, j2): ur"""For angular momenta $j_1, j_2$ the unitary transformation from the \ uncoupled basis into the $j = j_1 \oplus j_2$ coupled basis. >>> from sympy import Integer, pprint >>> L = 0 >>> S = 1/Integer(2) >>> pprint(coupling_matrix_2j(L, S)) ⎑1 0⎀ ⎒ βŽ₯ ⎣0 1⎦ >>> L = 1 >>> S = 1/Integer(2) >>> pprint(coupling_matrix_2j(L, S)) ⎑ -√6 √3 ⎀ ⎒0 ──── ── 0 0 0βŽ₯ ⎒ 3 3 βŽ₯ ⎒ βŽ₯ ⎒ -√3 √6 βŽ₯ ⎒0 0 0 ──── ── 0βŽ₯ ⎒ 3 3 βŽ₯ ⎒ βŽ₯ ⎒1 0 0 0 0 0βŽ₯ ⎒ βŽ₯ ⎒ √3 √6 βŽ₯ ⎒0 ── ── 0 0 0βŽ₯ ⎒ 3 3 βŽ₯ ⎒ βŽ₯ ⎒ √6 √3 βŽ₯ ⎒0 0 0 ── ── 0βŽ₯ ⎒ 3 3 βŽ₯ ⎒ βŽ₯ ⎣0 0 0 0 0 1⎦ """ # We calculate the quantum numbers for the uncoupled basis. M1 = [-j1 + i for i in range(2*j1+1)] M2 = [-j2 + i for i in range(2*j2+1)] j1j2nums = [(j1, m1, j2, m2) for m1 in M1 for m2 in M2] # We calculate the quantum numbers for the coupled basis. Jper = perm_j(j1, j2) jmjnums = [(J, MJ-J) for J in Jper for MJ in range(2*J+1)] # We build the transformation matrix. U = zeros((2*j1+1)*(2*j2+1)) for ii, numj in enumerate(jmjnums): j, mj = numj for jj, numi in enumerate(j1j2nums): j1, m1, j2, m2 = numi U[ii, jj] = clebsch_gordan(j1, j2, j, m1, m2, mj) return U
python
def coupling_matrix_2j(j1, j2): ur"""For angular momenta $j_1, j_2$ the unitary transformation from the \ uncoupled basis into the $j = j_1 \oplus j_2$ coupled basis. >>> from sympy import Integer, pprint >>> L = 0 >>> S = 1/Integer(2) >>> pprint(coupling_matrix_2j(L, S)) ⎑1 0⎀ ⎒ βŽ₯ ⎣0 1⎦ >>> L = 1 >>> S = 1/Integer(2) >>> pprint(coupling_matrix_2j(L, S)) ⎑ -√6 √3 ⎀ ⎒0 ──── ── 0 0 0βŽ₯ ⎒ 3 3 βŽ₯ ⎒ βŽ₯ ⎒ -√3 √6 βŽ₯ ⎒0 0 0 ──── ── 0βŽ₯ ⎒ 3 3 βŽ₯ ⎒ βŽ₯ ⎒1 0 0 0 0 0βŽ₯ ⎒ βŽ₯ ⎒ √3 √6 βŽ₯ ⎒0 ── ── 0 0 0βŽ₯ ⎒ 3 3 βŽ₯ ⎒ βŽ₯ ⎒ √6 √3 βŽ₯ ⎒0 0 0 ── ── 0βŽ₯ ⎒ 3 3 βŽ₯ ⎒ βŽ₯ ⎣0 0 0 0 0 1⎦ """ # We calculate the quantum numbers for the uncoupled basis. M1 = [-j1 + i for i in range(2*j1+1)] M2 = [-j2 + i for i in range(2*j2+1)] j1j2nums = [(j1, m1, j2, m2) for m1 in M1 for m2 in M2] # We calculate the quantum numbers for the coupled basis. Jper = perm_j(j1, j2) jmjnums = [(J, MJ-J) for J in Jper for MJ in range(2*J+1)] # We build the transformation matrix. U = zeros((2*j1+1)*(2*j2+1)) for ii, numj in enumerate(jmjnums): j, mj = numj for jj, numi in enumerate(j1j2nums): j1, m1, j2, m2 = numi U[ii, jj] = clebsch_gordan(j1, j2, j, m1, m2, mj) return U
[ "def", "coupling_matrix_2j", "(", "j1", ",", "j2", ")", ":", "# We calculate the quantum numbers for the uncoupled basis.", "M1", "=", "[", "-", "j1", "+", "i", "for", "i", "in", "range", "(", "2", "*", "j1", "+", "1", ")", "]", "M2", "=", "[", "-", "j2", "+", "i", "for", "i", "in", "range", "(", "2", "*", "j2", "+", "1", ")", "]", "j1j2nums", "=", "[", "(", "j1", ",", "m1", ",", "j2", ",", "m2", ")", "for", "m1", "in", "M1", "for", "m2", "in", "M2", "]", "# We calculate the quantum numbers for the coupled basis.", "Jper", "=", "perm_j", "(", "j1", ",", "j2", ")", "jmjnums", "=", "[", "(", "J", ",", "MJ", "-", "J", ")", "for", "J", "in", "Jper", "for", "MJ", "in", "range", "(", "2", "*", "J", "+", "1", ")", "]", "# We build the transformation matrix.", "U", "=", "zeros", "(", "(", "2", "*", "j1", "+", "1", ")", "*", "(", "2", "*", "j2", "+", "1", ")", ")", "for", "ii", ",", "numj", "in", "enumerate", "(", "jmjnums", ")", ":", "j", ",", "mj", "=", "numj", "for", "jj", ",", "numi", "in", "enumerate", "(", "j1j2nums", ")", ":", "j1", ",", "m1", ",", "j2", ",", "m2", "=", "numi", "U", "[", "ii", ",", "jj", "]", "=", "clebsch_gordan", "(", "j1", ",", "j2", ",", "j", ",", "m1", ",", "m2", ",", "mj", ")", "return", "U" ]
ur"""For angular momenta $j_1, j_2$ the unitary transformation from the \ uncoupled basis into the $j = j_1 \oplus j_2$ coupled basis. >>> from sympy import Integer, pprint >>> L = 0 >>> S = 1/Integer(2) >>> pprint(coupling_matrix_2j(L, S)) ⎑1 0⎀ ⎒ βŽ₯ ⎣0 1⎦ >>> L = 1 >>> S = 1/Integer(2) >>> pprint(coupling_matrix_2j(L, S)) ⎑ -√6 √3 ⎀ ⎒0 ──── ── 0 0 0βŽ₯ ⎒ 3 3 βŽ₯ ⎒ βŽ₯ ⎒ -√3 √6 βŽ₯ ⎒0 0 0 ──── ── 0βŽ₯ ⎒ 3 3 βŽ₯ ⎒ βŽ₯ ⎒1 0 0 0 0 0βŽ₯ ⎒ βŽ₯ ⎒ √3 √6 βŽ₯ ⎒0 ── ── 0 0 0βŽ₯ ⎒ 3 3 βŽ₯ ⎒ βŽ₯ ⎒ √6 √3 βŽ₯ ⎒0 0 0 ── ── 0βŽ₯ ⎒ 3 3 βŽ₯ ⎒ βŽ₯ ⎣0 0 0 0 0 1⎦
[ "ur", "For", "angular", "momenta", "$j_1", "j_2$", "the", "unitary", "transformation", "from", "the", "\\", "uncoupled", "basis", "into", "the", "$j", "=", "j_1", "\\", "oplus", "j_2$", "coupled", "basis", "." ]
train
https://github.com/oscarlazoarjona/fast/blob/3e5400672af2a7b7cc616e7f4aa10d7672720222/fast/angular_momentum.py#L61-L113
oscarlazoarjona/fast
fast/angular_momentum.py
coupling_matrix_3j
def coupling_matrix_3j(j1, j2, j3): ur"""For angular momenta $j_1, j_2, j_3$ the unitary transformation from the \ uncoupled basis into the $j = (j_1 \oplus j_2)\oplus j_3$ coupled basis. >>> from sympy import Integer, pprint >>> L = 0 >>> S = 1/Integer(2) >>> II = 3/Integer(2) >>> pprint(coupling_matrix_3j(L, S, II)) ⎑ √3 ⎀ ⎒0 -1/2 0 0 ── 0 0 0βŽ₯ ⎒ 2 βŽ₯ ⎒ βŽ₯ ⎒ -√2 √2 βŽ₯ ⎒0 0 ──── 0 0 ── 0 0βŽ₯ ⎒ 2 2 βŽ₯ ⎒ βŽ₯ ⎒ -√3 βŽ₯ ⎒0 0 0 ──── 0 0 1/2 0βŽ₯ ⎒ 2 βŽ₯ ⎒ βŽ₯ ⎒1 0 0 0 0 0 0 0βŽ₯ ⎒ βŽ₯ ⎒ √3 βŽ₯ ⎒0 ── 0 0 1/2 0 0 0βŽ₯ ⎒ 2 βŽ₯ ⎒ βŽ₯ ⎒ √2 √2 βŽ₯ ⎒0 0 ── 0 0 ── 0 0βŽ₯ ⎒ 2 2 βŽ₯ ⎒ βŽ₯ ⎒ √3 βŽ₯ ⎒0 0 0 1/2 0 0 ── 0βŽ₯ ⎒ 2 βŽ₯ ⎒ βŽ₯ ⎣0 0 0 0 0 0 0 1⎦ """ idj3 = eye(2*j3+1) Jper = perm_j(j1, j2) U_Jj3_list = [coupling_matrix_2j(J, j3) for J in Jper] size = sum([U_Jj3_list[i].shape[0] for i in range(len(Jper))]) U_Jj3 = zeros(size, size) ind0 = 0 for i, U_Jj3i in enumerate(U_Jj3_list): sizeJ = U_Jj3i.shape[0] indf = ind0 + sizeJ U_Jj3[ind0: indf, ind0: indf] = U_Jj3_list[i] ind0 = indf return U_Jj3*TensorProduct(coupling_matrix_2j(j1, j2), idj3)
python
def coupling_matrix_3j(j1, j2, j3): ur"""For angular momenta $j_1, j_2, j_3$ the unitary transformation from the \ uncoupled basis into the $j = (j_1 \oplus j_2)\oplus j_3$ coupled basis. >>> from sympy import Integer, pprint >>> L = 0 >>> S = 1/Integer(2) >>> II = 3/Integer(2) >>> pprint(coupling_matrix_3j(L, S, II)) ⎑ √3 ⎀ ⎒0 -1/2 0 0 ── 0 0 0βŽ₯ ⎒ 2 βŽ₯ ⎒ βŽ₯ ⎒ -√2 √2 βŽ₯ ⎒0 0 ──── 0 0 ── 0 0βŽ₯ ⎒ 2 2 βŽ₯ ⎒ βŽ₯ ⎒ -√3 βŽ₯ ⎒0 0 0 ──── 0 0 1/2 0βŽ₯ ⎒ 2 βŽ₯ ⎒ βŽ₯ ⎒1 0 0 0 0 0 0 0βŽ₯ ⎒ βŽ₯ ⎒ √3 βŽ₯ ⎒0 ── 0 0 1/2 0 0 0βŽ₯ ⎒ 2 βŽ₯ ⎒ βŽ₯ ⎒ √2 √2 βŽ₯ ⎒0 0 ── 0 0 ── 0 0βŽ₯ ⎒ 2 2 βŽ₯ ⎒ βŽ₯ ⎒ √3 βŽ₯ ⎒0 0 0 1/2 0 0 ── 0βŽ₯ ⎒ 2 βŽ₯ ⎒ βŽ₯ ⎣0 0 0 0 0 0 0 1⎦ """ idj3 = eye(2*j3+1) Jper = perm_j(j1, j2) U_Jj3_list = [coupling_matrix_2j(J, j3) for J in Jper] size = sum([U_Jj3_list[i].shape[0] for i in range(len(Jper))]) U_Jj3 = zeros(size, size) ind0 = 0 for i, U_Jj3i in enumerate(U_Jj3_list): sizeJ = U_Jj3i.shape[0] indf = ind0 + sizeJ U_Jj3[ind0: indf, ind0: indf] = U_Jj3_list[i] ind0 = indf return U_Jj3*TensorProduct(coupling_matrix_2j(j1, j2), idj3)
[ "def", "coupling_matrix_3j", "(", "j1", ",", "j2", ",", "j3", ")", ":", "idj3", "=", "eye", "(", "2", "*", "j3", "+", "1", ")", "Jper", "=", "perm_j", "(", "j1", ",", "j2", ")", "U_Jj3_list", "=", "[", "coupling_matrix_2j", "(", "J", ",", "j3", ")", "for", "J", "in", "Jper", "]", "size", "=", "sum", "(", "[", "U_Jj3_list", "[", "i", "]", ".", "shape", "[", "0", "]", "for", "i", "in", "range", "(", "len", "(", "Jper", ")", ")", "]", ")", "U_Jj3", "=", "zeros", "(", "size", ",", "size", ")", "ind0", "=", "0", "for", "i", ",", "U_Jj3i", "in", "enumerate", "(", "U_Jj3_list", ")", ":", "sizeJ", "=", "U_Jj3i", ".", "shape", "[", "0", "]", "indf", "=", "ind0", "+", "sizeJ", "U_Jj3", "[", "ind0", ":", "indf", ",", "ind0", ":", "indf", "]", "=", "U_Jj3_list", "[", "i", "]", "ind0", "=", "indf", "return", "U_Jj3", "*", "TensorProduct", "(", "coupling_matrix_2j", "(", "j1", ",", "j2", ")", ",", "idj3", ")" ]
ur"""For angular momenta $j_1, j_2, j_3$ the unitary transformation from the \ uncoupled basis into the $j = (j_1 \oplus j_2)\oplus j_3$ coupled basis. >>> from sympy import Integer, pprint >>> L = 0 >>> S = 1/Integer(2) >>> II = 3/Integer(2) >>> pprint(coupling_matrix_3j(L, S, II)) ⎑ √3 ⎀ ⎒0 -1/2 0 0 ── 0 0 0βŽ₯ ⎒ 2 βŽ₯ ⎒ βŽ₯ ⎒ -√2 √2 βŽ₯ ⎒0 0 ──── 0 0 ── 0 0βŽ₯ ⎒ 2 2 βŽ₯ ⎒ βŽ₯ ⎒ -√3 βŽ₯ ⎒0 0 0 ──── 0 0 1/2 0βŽ₯ ⎒ 2 βŽ₯ ⎒ βŽ₯ ⎒1 0 0 0 0 0 0 0βŽ₯ ⎒ βŽ₯ ⎒ √3 βŽ₯ ⎒0 ── 0 0 1/2 0 0 0βŽ₯ ⎒ 2 βŽ₯ ⎒ βŽ₯ ⎒ √2 √2 βŽ₯ ⎒0 0 ── 0 0 ── 0 0βŽ₯ ⎒ 2 2 βŽ₯ ⎒ βŽ₯ ⎒ √3 βŽ₯ ⎒0 0 0 1/2 0 0 ── 0βŽ₯ ⎒ 2 βŽ₯ ⎒ βŽ₯ ⎣0 0 0 0 0 0 0 1⎦
[ "ur", "For", "angular", "momenta", "$j_1", "j_2", "j_3$", "the", "unitary", "transformation", "from", "the", "\\", "uncoupled", "basis", "into", "the", "$j", "=", "(", "j_1", "\\", "oplus", "j_2", ")", "\\", "oplus", "j_3$", "coupled", "basis", "." ]
train
https://github.com/oscarlazoarjona/fast/blob/3e5400672af2a7b7cc616e7f4aa10d7672720222/fast/angular_momentum.py#L116-L166
oscarlazoarjona/fast
fast/angular_momentum.py
angular_momentum_matrix
def angular_momentum_matrix(J, ind="z"): ur"""Return the angular momentum operator matrix (divided by hbar) for a\ given J angular momentum. INPUT: - ``ind`` - A string ("x", "y", "z", "all") indicating which direction \ to calculate, or to return them all as :math:`(J_x, J_y, J_z)`. OUTPUT: - matrix forms of angular momentum operators in the basis \ :math:`[|J, -J\rangle, \cdot, |J, J\rangle]`. >>> from sympy import Integer, pprint >>> pprint(angular_momentum_matrix(1/Integer(2))) ⎑-1/2 0 ⎀ ⎒ βŽ₯ ⎣ 0 1/2⎦ >>> pprint(angular_momentum_matrix(1/Integer(2), "all")) βŽ› ⎑ β…ˆβŽ€ ⎞ ⎜ ⎒ 0 ─βŽ₯ ⎟ ⎜⎑ 0 1/2⎀ ⎒ 2βŽ₯ ⎑-1/2 0 ⎀⎟ ⎜⎒ βŽ₯, ⎒ βŽ₯, ⎒ βŽ₯⎟ ⎜⎣1/2 0 ⎦ ⎒-β…ˆ βŽ₯ ⎣ 0 1/2⎦⎟ ⎜ βŽ’β”€β”€β”€ 0βŽ₯ ⎟ ⎝ ⎣ 2 ⎦ ⎠ >>> pprint(angular_momentum_matrix(1, "all")) βŽ›βŽ‘ √2 ⎀ ⎑ √2β‹…β…ˆ ⎀ ⎞ ⎜⎒0 ── 0 βŽ₯ ⎒ 0 ──── 0 βŽ₯ ⎟ ⎜⎒ 2 βŽ₯ ⎒ 2 βŽ₯ ⎟ ⎜⎒ βŽ₯ ⎒ βŽ₯ ⎑-1 0 0⎀⎟ ⎜⎒√2 √2βŽ₯ ⎒-√2β‹…β…ˆ √2β‹…β…ˆβŽ₯ ⎒ βŽ₯⎟ βŽœβŽ’β”€β”€ 0 ──βŽ₯, βŽ’β”€β”€β”€β”€β”€β”€ 0 ────βŽ₯, ⎒0 0 0βŽ₯⎟ ⎜⎒2 2 βŽ₯ ⎒ 2 2 βŽ₯ ⎒ βŽ₯⎟ ⎜⎒ βŽ₯ ⎒ βŽ₯ ⎣0 0 1⎦⎟ ⎜⎒ √2 βŽ₯ ⎒ -√2β‹…β…ˆ βŽ₯ ⎟ ⎜⎒0 ── 0 βŽ₯ ⎒ 0 ────── 0 βŽ₯ ⎟ ⎝⎣ 2 ⎦ ⎣ 2 ⎦ ⎠ """ MJ = [-J+i for i in range(2*J+1)] if ind == "x": JX = Matrix([[sqrt((J-mj)*(J+mj+1))/2*KroneckerDelta(mi-1, mj) for mj in MJ] for mi in MJ]) JX += Matrix([[sqrt((J+mj)*(J-mj+1))/2*KroneckerDelta(mi+1, mj) for mj in MJ] for mi in MJ]) return JX elif ind == "y": JY = Matrix([[-I*sqrt((J-mj)*(J+mj+1))/2*KroneckerDelta(mi-1, mj) for mj in MJ] for mi in MJ]) JY += Matrix([[+I*sqrt((J+mj)*(J-mj+1))/2*KroneckerDelta(mi+1, mj) for mj in MJ] for mi in MJ]) return JY elif ind == "z": JZ = Matrix([[mi*KroneckerDelta(mi, mj) for mj in MJ] for mi in MJ]) return JZ elif ind == "all": JX = angular_momentum_matrix(J, "x") JY = angular_momentum_matrix(J, "y") JZ = angular_momentum_matrix(J, "z") return JX, JY, JZ
python
def angular_momentum_matrix(J, ind="z"): ur"""Return the angular momentum operator matrix (divided by hbar) for a\ given J angular momentum. INPUT: - ``ind`` - A string ("x", "y", "z", "all") indicating which direction \ to calculate, or to return them all as :math:`(J_x, J_y, J_z)`. OUTPUT: - matrix forms of angular momentum operators in the basis \ :math:`[|J, -J\rangle, \cdot, |J, J\rangle]`. >>> from sympy import Integer, pprint >>> pprint(angular_momentum_matrix(1/Integer(2))) ⎑-1/2 0 ⎀ ⎒ βŽ₯ ⎣ 0 1/2⎦ >>> pprint(angular_momentum_matrix(1/Integer(2), "all")) βŽ› ⎑ β…ˆβŽ€ ⎞ ⎜ ⎒ 0 ─βŽ₯ ⎟ ⎜⎑ 0 1/2⎀ ⎒ 2βŽ₯ ⎑-1/2 0 ⎀⎟ ⎜⎒ βŽ₯, ⎒ βŽ₯, ⎒ βŽ₯⎟ ⎜⎣1/2 0 ⎦ ⎒-β…ˆ βŽ₯ ⎣ 0 1/2⎦⎟ ⎜ βŽ’β”€β”€β”€ 0βŽ₯ ⎟ ⎝ ⎣ 2 ⎦ ⎠ >>> pprint(angular_momentum_matrix(1, "all")) βŽ›βŽ‘ √2 ⎀ ⎑ √2β‹…β…ˆ ⎀ ⎞ ⎜⎒0 ── 0 βŽ₯ ⎒ 0 ──── 0 βŽ₯ ⎟ ⎜⎒ 2 βŽ₯ ⎒ 2 βŽ₯ ⎟ ⎜⎒ βŽ₯ ⎒ βŽ₯ ⎑-1 0 0⎀⎟ ⎜⎒√2 √2βŽ₯ ⎒-√2β‹…β…ˆ √2β‹…β…ˆβŽ₯ ⎒ βŽ₯⎟ βŽœβŽ’β”€β”€ 0 ──βŽ₯, βŽ’β”€β”€β”€β”€β”€β”€ 0 ────βŽ₯, ⎒0 0 0βŽ₯⎟ ⎜⎒2 2 βŽ₯ ⎒ 2 2 βŽ₯ ⎒ βŽ₯⎟ ⎜⎒ βŽ₯ ⎒ βŽ₯ ⎣0 0 1⎦⎟ ⎜⎒ √2 βŽ₯ ⎒ -√2β‹…β…ˆ βŽ₯ ⎟ ⎜⎒0 ── 0 βŽ₯ ⎒ 0 ────── 0 βŽ₯ ⎟ ⎝⎣ 2 ⎦ ⎣ 2 ⎦ ⎠ """ MJ = [-J+i for i in range(2*J+1)] if ind == "x": JX = Matrix([[sqrt((J-mj)*(J+mj+1))/2*KroneckerDelta(mi-1, mj) for mj in MJ] for mi in MJ]) JX += Matrix([[sqrt((J+mj)*(J-mj+1))/2*KroneckerDelta(mi+1, mj) for mj in MJ] for mi in MJ]) return JX elif ind == "y": JY = Matrix([[-I*sqrt((J-mj)*(J+mj+1))/2*KroneckerDelta(mi-1, mj) for mj in MJ] for mi in MJ]) JY += Matrix([[+I*sqrt((J+mj)*(J-mj+1))/2*KroneckerDelta(mi+1, mj) for mj in MJ] for mi in MJ]) return JY elif ind == "z": JZ = Matrix([[mi*KroneckerDelta(mi, mj) for mj in MJ] for mi in MJ]) return JZ elif ind == "all": JX = angular_momentum_matrix(J, "x") JY = angular_momentum_matrix(J, "y") JZ = angular_momentum_matrix(J, "z") return JX, JY, JZ
[ "def", "angular_momentum_matrix", "(", "J", ",", "ind", "=", "\"z\"", ")", ":", "MJ", "=", "[", "-", "J", "+", "i", "for", "i", "in", "range", "(", "2", "*", "J", "+", "1", ")", "]", "if", "ind", "==", "\"x\"", ":", "JX", "=", "Matrix", "(", "[", "[", "sqrt", "(", "(", "J", "-", "mj", ")", "*", "(", "J", "+", "mj", "+", "1", ")", ")", "/", "2", "*", "KroneckerDelta", "(", "mi", "-", "1", ",", "mj", ")", "for", "mj", "in", "MJ", "]", "for", "mi", "in", "MJ", "]", ")", "JX", "+=", "Matrix", "(", "[", "[", "sqrt", "(", "(", "J", "+", "mj", ")", "*", "(", "J", "-", "mj", "+", "1", ")", ")", "/", "2", "*", "KroneckerDelta", "(", "mi", "+", "1", ",", "mj", ")", "for", "mj", "in", "MJ", "]", "for", "mi", "in", "MJ", "]", ")", "return", "JX", "elif", "ind", "==", "\"y\"", ":", "JY", "=", "Matrix", "(", "[", "[", "-", "I", "*", "sqrt", "(", "(", "J", "-", "mj", ")", "*", "(", "J", "+", "mj", "+", "1", ")", ")", "/", "2", "*", "KroneckerDelta", "(", "mi", "-", "1", ",", "mj", ")", "for", "mj", "in", "MJ", "]", "for", "mi", "in", "MJ", "]", ")", "JY", "+=", "Matrix", "(", "[", "[", "+", "I", "*", "sqrt", "(", "(", "J", "+", "mj", ")", "*", "(", "J", "-", "mj", "+", "1", ")", ")", "/", "2", "*", "KroneckerDelta", "(", "mi", "+", "1", ",", "mj", ")", "for", "mj", "in", "MJ", "]", "for", "mi", "in", "MJ", "]", ")", "return", "JY", "elif", "ind", "==", "\"z\"", ":", "JZ", "=", "Matrix", "(", "[", "[", "mi", "*", "KroneckerDelta", "(", "mi", ",", "mj", ")", "for", "mj", "in", "MJ", "]", "for", "mi", "in", "MJ", "]", ")", "return", "JZ", "elif", "ind", "==", "\"all\"", ":", "JX", "=", "angular_momentum_matrix", "(", "J", ",", "\"x\"", ")", "JY", "=", "angular_momentum_matrix", "(", "J", ",", "\"y\"", ")", "JZ", "=", "angular_momentum_matrix", "(", "J", ",", "\"z\"", ")", "return", "JX", ",", "JY", ",", "JZ" ]
ur"""Return the angular momentum operator matrix (divided by hbar) for a\ given J angular momentum. INPUT: - ``ind`` - A string ("x", "y", "z", "all") indicating which direction \ to calculate, or to return them all as :math:`(J_x, J_y, J_z)`. OUTPUT: - matrix forms of angular momentum operators in the basis \ :math:`[|J, -J\rangle, \cdot, |J, J\rangle]`. >>> from sympy import Integer, pprint >>> pprint(angular_momentum_matrix(1/Integer(2))) ⎑-1/2 0 ⎀ ⎒ βŽ₯ ⎣ 0 1/2⎦ >>> pprint(angular_momentum_matrix(1/Integer(2), "all")) βŽ› ⎑ β…ˆβŽ€ ⎞ ⎜ ⎒ 0 ─βŽ₯ ⎟ ⎜⎑ 0 1/2⎀ ⎒ 2βŽ₯ ⎑-1/2 0 ⎀⎟ ⎜⎒ βŽ₯, ⎒ βŽ₯, ⎒ βŽ₯⎟ ⎜⎣1/2 0 ⎦ ⎒-β…ˆ βŽ₯ ⎣ 0 1/2⎦⎟ ⎜ βŽ’β”€β”€β”€ 0βŽ₯ ⎟ ⎝ ⎣ 2 ⎦ ⎠ >>> pprint(angular_momentum_matrix(1, "all")) βŽ›βŽ‘ √2 ⎀ ⎑ √2β‹…β…ˆ ⎀ ⎞ ⎜⎒0 ── 0 βŽ₯ ⎒ 0 ──── 0 βŽ₯ ⎟ ⎜⎒ 2 βŽ₯ ⎒ 2 βŽ₯ ⎟ ⎜⎒ βŽ₯ ⎒ βŽ₯ ⎑-1 0 0⎀⎟ ⎜⎒√2 √2βŽ₯ ⎒-√2β‹…β…ˆ √2β‹…β…ˆβŽ₯ ⎒ βŽ₯⎟ βŽœβŽ’β”€β”€ 0 ──βŽ₯, βŽ’β”€β”€β”€β”€β”€β”€ 0 ────βŽ₯, ⎒0 0 0βŽ₯⎟ ⎜⎒2 2 βŽ₯ ⎒ 2 2 βŽ₯ ⎒ βŽ₯⎟ ⎜⎒ βŽ₯ ⎒ βŽ₯ ⎣0 0 1⎦⎟ ⎜⎒ √2 βŽ₯ ⎒ -√2β‹…β…ˆ βŽ₯ ⎟ ⎜⎒0 ── 0 βŽ₯ ⎒ 0 ────── 0 βŽ₯ ⎟ ⎝⎣ 2 ⎦ ⎣ 2 ⎦ ⎠
[ "ur", "Return", "the", "angular", "momentum", "operator", "matrix", "(", "divided", "by", "hbar", ")", "for", "a", "\\", "given", "J", "angular", "momentum", "." ]
train
https://github.com/oscarlazoarjona/fast/blob/3e5400672af2a7b7cc616e7f4aa10d7672720222/fast/angular_momentum.py#L169-L233
oscarlazoarjona/fast
fast/angular_momentum.py
orbital_spin_nuclear_matrices
def orbital_spin_nuclear_matrices(L, S, II, ind="z"): ur"""Return the matrix representation of the orbita, electron-spin, and \ nuclear-spin angular momentum operators \ :math:`\hat{\vec{L}}, \hat{\vec{L}}, \hat{\vec{L}}` in the coupled basis \ :math:`[|J, -J\rangle, \cdot, |J, J\rangle]`. INPUT: - ``ind`` - A string ("x", "y", "z", "all") indicating which direction \ to calculate, or to return them all as :math:`(J_x, J_y, J_z)`. >>> from sympy import Integer, pprint >>> half = 1/Integer(2) >>> Lz, Sz, Iz = orbital_spin_nuclear_matrices(0, half, 3*half) >>> pprint(Lz) ⎑0 0 0 0 0 0 0 0⎀ ⎒ βŽ₯ ⎒0 0 0 0 0 0 0 0βŽ₯ ⎒ βŽ₯ ⎒0 0 0 0 0 0 0 0βŽ₯ ⎒ βŽ₯ ⎒0 0 0 0 0 0 0 0βŽ₯ ⎒ βŽ₯ ⎒0 0 0 0 0 0 0 0βŽ₯ ⎒ βŽ₯ ⎒0 0 0 0 0 0 0 0βŽ₯ ⎒ βŽ₯ ⎒0 0 0 0 0 0 0 0βŽ₯ ⎒ βŽ₯ ⎣0 0 0 0 0 0 0 0⎦ >>> pprint(Sz) ⎑ √3 ⎀ ⎒1/4 0 0 0 ── 0 0 0 βŽ₯ ⎒ 4 βŽ₯ ⎒ βŽ₯ ⎒ 0 0 0 0 0 1/2 0 0 βŽ₯ ⎒ βŽ₯ ⎒ √3 βŽ₯ ⎒ 0 0 -1/4 0 0 0 ── 0 βŽ₯ ⎒ 4 βŽ₯ ⎒ βŽ₯ ⎒ 0 0 0 -1/2 0 0 0 0 βŽ₯ ⎒ βŽ₯ ⎒√3 βŽ₯ βŽ’β”€β”€ 0 0 0 -1/4 0 0 0 βŽ₯ ⎒4 βŽ₯ ⎒ βŽ₯ ⎒ 0 1/2 0 0 0 0 0 0 βŽ₯ ⎒ βŽ₯ ⎒ √3 βŽ₯ ⎒ 0 0 ── 0 0 0 1/4 0 βŽ₯ ⎒ 4 βŽ₯ ⎒ βŽ₯ ⎣ 0 0 0 0 0 0 0 1/2⎦ >>> pprint(Iz) ⎑ -√3 ⎀ ⎒-5/4 0 0 0 ──── 0 0 0 βŽ₯ ⎒ 4 βŽ₯ ⎒ βŽ₯ ⎒ 0 0 0 0 0 -1/2 0 0 βŽ₯ ⎒ βŽ₯ ⎒ -√3 βŽ₯ ⎒ 0 0 5/4 0 0 0 ──── 0 βŽ₯ ⎒ 4 βŽ₯ ⎒ βŽ₯ ⎒ 0 0 0 -3/2 0 0 0 0 βŽ₯ ⎒ βŽ₯ ⎒-√3 βŽ₯ βŽ’β”€β”€β”€β”€ 0 0 0 -3/4 0 0 0 βŽ₯ ⎒ 4 βŽ₯ ⎒ βŽ₯ ⎒ 0 -1/2 0 0 0 0 0 0 βŽ₯ ⎒ βŽ₯ ⎒ -√3 βŽ₯ ⎒ 0 0 ──── 0 0 0 3/4 0 βŽ₯ ⎒ 4 βŽ₯ ⎒ βŽ₯ ⎣ 0 0 0 0 0 0 0 3/2⎦ >>> Lvec, Svec, Ivec = orbital_spin_nuclear_matrices(0, half, 0, "all") >>> pprint(Lvec) ⎑⎑0 0⎀ ⎑0 0⎀ ⎑0 0⎀⎀ ⎒⎒ βŽ₯, ⎒ βŽ₯, ⎒ βŽ₯βŽ₯ ⎣⎣0 0⎦ ⎣0 0⎦ ⎣0 0⎦⎦ >>> pprint(Svec) ⎑ ⎑ β…ˆβŽ€ ⎀ ⎒ ⎒ 0 ─βŽ₯ βŽ₯ ⎒⎑ 0 1/2⎀ ⎒ 2βŽ₯ ⎑-1/2 0 ⎀βŽ₯ ⎒⎒ βŽ₯, ⎒ βŽ₯, ⎒ βŽ₯βŽ₯ ⎒⎣1/2 0 ⎦ ⎒-β…ˆ βŽ₯ ⎣ 0 1/2⎦βŽ₯ ⎒ βŽ’β”€β”€β”€ 0βŽ₯ βŽ₯ ⎣ ⎣ 2 ⎦ ⎦ >>> pprint(Ivec) ⎑⎑0 0⎀ ⎑0 0⎀ ⎑0 0⎀⎀ ⎒⎒ βŽ₯, ⎒ βŽ₯, ⎒ βŽ₯βŽ₯ ⎣⎣0 0⎦ ⎣0 0⎦ ⎣0 0⎦⎦ """ if ind == "all": LSIx = orbital_spin_nuclear_matrices(L, S, II, "x") LSIy = orbital_spin_nuclear_matrices(L, S, II, "y") LSIz = orbital_spin_nuclear_matrices(L, S, II, "z") return [[LSIx[i], LSIy[i], LSIz[i]] for i in range(3)] L0 = eye(2*L+1) S0 = eye(2*S+1) I0 = eye(2*II+1) Lind = angular_momentum_matrix(L, ind=ind) Sind = angular_momentum_matrix(S, ind=ind) Iind = angular_momentum_matrix(II, ind=ind) Lind = TensorProduct(TensorProduct(Lind, S0), I0) Sind = TensorProduct(TensorProduct(L0, Sind), I0) Iind = TensorProduct(TensorProduct(L0, S0), Iind) U_LSI = coupling_matrix_3j(L, S, II) Lind = U_LSI*Lind*U_LSI.adjoint() Sind = U_LSI*Sind*U_LSI.adjoint() Iind = U_LSI*Iind*U_LSI.adjoint() return Lind, Sind, Iind
python
def orbital_spin_nuclear_matrices(L, S, II, ind="z"): ur"""Return the matrix representation of the orbita, electron-spin, and \ nuclear-spin angular momentum operators \ :math:`\hat{\vec{L}}, \hat{\vec{L}}, \hat{\vec{L}}` in the coupled basis \ :math:`[|J, -J\rangle, \cdot, |J, J\rangle]`. INPUT: - ``ind`` - A string ("x", "y", "z", "all") indicating which direction \ to calculate, or to return them all as :math:`(J_x, J_y, J_z)`. >>> from sympy import Integer, pprint >>> half = 1/Integer(2) >>> Lz, Sz, Iz = orbital_spin_nuclear_matrices(0, half, 3*half) >>> pprint(Lz) ⎑0 0 0 0 0 0 0 0⎀ ⎒ βŽ₯ ⎒0 0 0 0 0 0 0 0βŽ₯ ⎒ βŽ₯ ⎒0 0 0 0 0 0 0 0βŽ₯ ⎒ βŽ₯ ⎒0 0 0 0 0 0 0 0βŽ₯ ⎒ βŽ₯ ⎒0 0 0 0 0 0 0 0βŽ₯ ⎒ βŽ₯ ⎒0 0 0 0 0 0 0 0βŽ₯ ⎒ βŽ₯ ⎒0 0 0 0 0 0 0 0βŽ₯ ⎒ βŽ₯ ⎣0 0 0 0 0 0 0 0⎦ >>> pprint(Sz) ⎑ √3 ⎀ ⎒1/4 0 0 0 ── 0 0 0 βŽ₯ ⎒ 4 βŽ₯ ⎒ βŽ₯ ⎒ 0 0 0 0 0 1/2 0 0 βŽ₯ ⎒ βŽ₯ ⎒ √3 βŽ₯ ⎒ 0 0 -1/4 0 0 0 ── 0 βŽ₯ ⎒ 4 βŽ₯ ⎒ βŽ₯ ⎒ 0 0 0 -1/2 0 0 0 0 βŽ₯ ⎒ βŽ₯ ⎒√3 βŽ₯ βŽ’β”€β”€ 0 0 0 -1/4 0 0 0 βŽ₯ ⎒4 βŽ₯ ⎒ βŽ₯ ⎒ 0 1/2 0 0 0 0 0 0 βŽ₯ ⎒ βŽ₯ ⎒ √3 βŽ₯ ⎒ 0 0 ── 0 0 0 1/4 0 βŽ₯ ⎒ 4 βŽ₯ ⎒ βŽ₯ ⎣ 0 0 0 0 0 0 0 1/2⎦ >>> pprint(Iz) ⎑ -√3 ⎀ ⎒-5/4 0 0 0 ──── 0 0 0 βŽ₯ ⎒ 4 βŽ₯ ⎒ βŽ₯ ⎒ 0 0 0 0 0 -1/2 0 0 βŽ₯ ⎒ βŽ₯ ⎒ -√3 βŽ₯ ⎒ 0 0 5/4 0 0 0 ──── 0 βŽ₯ ⎒ 4 βŽ₯ ⎒ βŽ₯ ⎒ 0 0 0 -3/2 0 0 0 0 βŽ₯ ⎒ βŽ₯ ⎒-√3 βŽ₯ βŽ’β”€β”€β”€β”€ 0 0 0 -3/4 0 0 0 βŽ₯ ⎒ 4 βŽ₯ ⎒ βŽ₯ ⎒ 0 -1/2 0 0 0 0 0 0 βŽ₯ ⎒ βŽ₯ ⎒ -√3 βŽ₯ ⎒ 0 0 ──── 0 0 0 3/4 0 βŽ₯ ⎒ 4 βŽ₯ ⎒ βŽ₯ ⎣ 0 0 0 0 0 0 0 3/2⎦ >>> Lvec, Svec, Ivec = orbital_spin_nuclear_matrices(0, half, 0, "all") >>> pprint(Lvec) ⎑⎑0 0⎀ ⎑0 0⎀ ⎑0 0⎀⎀ ⎒⎒ βŽ₯, ⎒ βŽ₯, ⎒ βŽ₯βŽ₯ ⎣⎣0 0⎦ ⎣0 0⎦ ⎣0 0⎦⎦ >>> pprint(Svec) ⎑ ⎑ β…ˆβŽ€ ⎀ ⎒ ⎒ 0 ─βŽ₯ βŽ₯ ⎒⎑ 0 1/2⎀ ⎒ 2βŽ₯ ⎑-1/2 0 ⎀βŽ₯ ⎒⎒ βŽ₯, ⎒ βŽ₯, ⎒ βŽ₯βŽ₯ ⎒⎣1/2 0 ⎦ ⎒-β…ˆ βŽ₯ ⎣ 0 1/2⎦βŽ₯ ⎒ βŽ’β”€β”€β”€ 0βŽ₯ βŽ₯ ⎣ ⎣ 2 ⎦ ⎦ >>> pprint(Ivec) ⎑⎑0 0⎀ ⎑0 0⎀ ⎑0 0⎀⎀ ⎒⎒ βŽ₯, ⎒ βŽ₯, ⎒ βŽ₯βŽ₯ ⎣⎣0 0⎦ ⎣0 0⎦ ⎣0 0⎦⎦ """ if ind == "all": LSIx = orbital_spin_nuclear_matrices(L, S, II, "x") LSIy = orbital_spin_nuclear_matrices(L, S, II, "y") LSIz = orbital_spin_nuclear_matrices(L, S, II, "z") return [[LSIx[i], LSIy[i], LSIz[i]] for i in range(3)] L0 = eye(2*L+1) S0 = eye(2*S+1) I0 = eye(2*II+1) Lind = angular_momentum_matrix(L, ind=ind) Sind = angular_momentum_matrix(S, ind=ind) Iind = angular_momentum_matrix(II, ind=ind) Lind = TensorProduct(TensorProduct(Lind, S0), I0) Sind = TensorProduct(TensorProduct(L0, Sind), I0) Iind = TensorProduct(TensorProduct(L0, S0), Iind) U_LSI = coupling_matrix_3j(L, S, II) Lind = U_LSI*Lind*U_LSI.adjoint() Sind = U_LSI*Sind*U_LSI.adjoint() Iind = U_LSI*Iind*U_LSI.adjoint() return Lind, Sind, Iind
[ "def", "orbital_spin_nuclear_matrices", "(", "L", ",", "S", ",", "II", ",", "ind", "=", "\"z\"", ")", ":", "if", "ind", "==", "\"all\"", ":", "LSIx", "=", "orbital_spin_nuclear_matrices", "(", "L", ",", "S", ",", "II", ",", "\"x\"", ")", "LSIy", "=", "orbital_spin_nuclear_matrices", "(", "L", ",", "S", ",", "II", ",", "\"y\"", ")", "LSIz", "=", "orbital_spin_nuclear_matrices", "(", "L", ",", "S", ",", "II", ",", "\"z\"", ")", "return", "[", "[", "LSIx", "[", "i", "]", ",", "LSIy", "[", "i", "]", ",", "LSIz", "[", "i", "]", "]", "for", "i", "in", "range", "(", "3", ")", "]", "L0", "=", "eye", "(", "2", "*", "L", "+", "1", ")", "S0", "=", "eye", "(", "2", "*", "S", "+", "1", ")", "I0", "=", "eye", "(", "2", "*", "II", "+", "1", ")", "Lind", "=", "angular_momentum_matrix", "(", "L", ",", "ind", "=", "ind", ")", "Sind", "=", "angular_momentum_matrix", "(", "S", ",", "ind", "=", "ind", ")", "Iind", "=", "angular_momentum_matrix", "(", "II", ",", "ind", "=", "ind", ")", "Lind", "=", "TensorProduct", "(", "TensorProduct", "(", "Lind", ",", "S0", ")", ",", "I0", ")", "Sind", "=", "TensorProduct", "(", "TensorProduct", "(", "L0", ",", "Sind", ")", ",", "I0", ")", "Iind", "=", "TensorProduct", "(", "TensorProduct", "(", "L0", ",", "S0", ")", ",", "Iind", ")", "U_LSI", "=", "coupling_matrix_3j", "(", "L", ",", "S", ",", "II", ")", "Lind", "=", "U_LSI", "*", "Lind", "*", "U_LSI", ".", "adjoint", "(", ")", "Sind", "=", "U_LSI", "*", "Sind", "*", "U_LSI", ".", "adjoint", "(", ")", "Iind", "=", "U_LSI", "*", "Iind", "*", "U_LSI", ".", "adjoint", "(", ")", "return", "Lind", ",", "Sind", ",", "Iind" ]
ur"""Return the matrix representation of the orbita, electron-spin, and \ nuclear-spin angular momentum operators \ :math:`\hat{\vec{L}}, \hat{\vec{L}}, \hat{\vec{L}}` in the coupled basis \ :math:`[|J, -J\rangle, \cdot, |J, J\rangle]`. INPUT: - ``ind`` - A string ("x", "y", "z", "all") indicating which direction \ to calculate, or to return them all as :math:`(J_x, J_y, J_z)`. >>> from sympy import Integer, pprint >>> half = 1/Integer(2) >>> Lz, Sz, Iz = orbital_spin_nuclear_matrices(0, half, 3*half) >>> pprint(Lz) ⎑0 0 0 0 0 0 0 0⎀ ⎒ βŽ₯ ⎒0 0 0 0 0 0 0 0βŽ₯ ⎒ βŽ₯ ⎒0 0 0 0 0 0 0 0βŽ₯ ⎒ βŽ₯ ⎒0 0 0 0 0 0 0 0βŽ₯ ⎒ βŽ₯ ⎒0 0 0 0 0 0 0 0βŽ₯ ⎒ βŽ₯ ⎒0 0 0 0 0 0 0 0βŽ₯ ⎒ βŽ₯ ⎒0 0 0 0 0 0 0 0βŽ₯ ⎒ βŽ₯ ⎣0 0 0 0 0 0 0 0⎦ >>> pprint(Sz) ⎑ √3 ⎀ ⎒1/4 0 0 0 ── 0 0 0 βŽ₯ ⎒ 4 βŽ₯ ⎒ βŽ₯ ⎒ 0 0 0 0 0 1/2 0 0 βŽ₯ ⎒ βŽ₯ ⎒ √3 βŽ₯ ⎒ 0 0 -1/4 0 0 0 ── 0 βŽ₯ ⎒ 4 βŽ₯ ⎒ βŽ₯ ⎒ 0 0 0 -1/2 0 0 0 0 βŽ₯ ⎒ βŽ₯ ⎒√3 βŽ₯ βŽ’β”€β”€ 0 0 0 -1/4 0 0 0 βŽ₯ ⎒4 βŽ₯ ⎒ βŽ₯ ⎒ 0 1/2 0 0 0 0 0 0 βŽ₯ ⎒ βŽ₯ ⎒ √3 βŽ₯ ⎒ 0 0 ── 0 0 0 1/4 0 βŽ₯ ⎒ 4 βŽ₯ ⎒ βŽ₯ ⎣ 0 0 0 0 0 0 0 1/2⎦ >>> pprint(Iz) ⎑ -√3 ⎀ ⎒-5/4 0 0 0 ──── 0 0 0 βŽ₯ ⎒ 4 βŽ₯ ⎒ βŽ₯ ⎒ 0 0 0 0 0 -1/2 0 0 βŽ₯ ⎒ βŽ₯ ⎒ -√3 βŽ₯ ⎒ 0 0 5/4 0 0 0 ──── 0 βŽ₯ ⎒ 4 βŽ₯ ⎒ βŽ₯ ⎒ 0 0 0 -3/2 0 0 0 0 βŽ₯ ⎒ βŽ₯ ⎒-√3 βŽ₯ βŽ’β”€β”€β”€β”€ 0 0 0 -3/4 0 0 0 βŽ₯ ⎒ 4 βŽ₯ ⎒ βŽ₯ ⎒ 0 -1/2 0 0 0 0 0 0 βŽ₯ ⎒ βŽ₯ ⎒ -√3 βŽ₯ ⎒ 0 0 ──── 0 0 0 3/4 0 βŽ₯ ⎒ 4 βŽ₯ ⎒ βŽ₯ ⎣ 0 0 0 0 0 0 0 3/2⎦ >>> Lvec, Svec, Ivec = orbital_spin_nuclear_matrices(0, half, 0, "all") >>> pprint(Lvec) ⎑⎑0 0⎀ ⎑0 0⎀ ⎑0 0⎀⎀ ⎒⎒ βŽ₯, ⎒ βŽ₯, ⎒ βŽ₯βŽ₯ ⎣⎣0 0⎦ ⎣0 0⎦ ⎣0 0⎦⎦ >>> pprint(Svec) ⎑ ⎑ β…ˆβŽ€ ⎀ ⎒ ⎒ 0 ─βŽ₯ βŽ₯ ⎒⎑ 0 1/2⎀ ⎒ 2βŽ₯ ⎑-1/2 0 ⎀βŽ₯ ⎒⎒ βŽ₯, ⎒ βŽ₯, ⎒ βŽ₯βŽ₯ ⎒⎣1/2 0 ⎦ ⎒-β…ˆ βŽ₯ ⎣ 0 1/2⎦βŽ₯ ⎒ βŽ’β”€β”€β”€ 0βŽ₯ βŽ₯ ⎣ ⎣ 2 ⎦ ⎦ >>> pprint(Ivec) ⎑⎑0 0⎀ ⎑0 0⎀ ⎑0 0⎀⎀ ⎒⎒ βŽ₯, ⎒ βŽ₯, ⎒ βŽ₯βŽ₯ ⎣⎣0 0⎦ ⎣0 0⎦ ⎣0 0⎦⎦
[ "ur", "Return", "the", "matrix", "representation", "of", "the", "orbita", "electron", "-", "spin", "and", "\\", "nuclear", "-", "spin", "angular", "momentum", "operators", "\\", ":", "math", ":", "\\", "hat", "{", "\\", "vec", "{", "L", "}}", "\\", "hat", "{", "\\", "vec", "{", "L", "}}", "\\", "hat", "{", "\\", "vec", "{", "L", "}}", "in", "the", "coupled", "basis", "\\", ":", "math", ":", "[", "|J", "-", "J", "\\", "rangle", "\\", "cdot", "|J", "J", "\\", "rangle", "]", "." ]
train
https://github.com/oscarlazoarjona/fast/blob/3e5400672af2a7b7cc616e7f4aa10d7672720222/fast/angular_momentum.py#L236-L362
oscarlazoarjona/fast
fast/angular_momentum.py
spherical_tensor
def spherical_tensor(Ji, Jj, K, Q): ur"""Return a matrix representation of the spherical tensor with quantum numbers $J_i, J_j, K, Q$. >>> from sympy import pprint >>> pprint(spherical_tensor(1, 1, 1, 0)) ⎑-√2 ⎀ βŽ’β”€β”€β”€β”€ 0 0 βŽ₯ ⎒ 2 βŽ₯ ⎒ βŽ₯ ⎒ 0 0 0 βŽ₯ ⎒ βŽ₯ ⎒ √2βŽ₯ ⎒ 0 0 ──βŽ₯ ⎣ 2 ⎦ >>> pprint(spherical_tensor(1, 2, 1, -1)) ⎑ √10 ⎀ ⎒0 0 ─── 0 0 βŽ₯ ⎒ 10 βŽ₯ ⎒ βŽ₯ ⎒ √30 βŽ₯ ⎒0 0 0 ─── 0 βŽ₯ ⎒ 10 βŽ₯ ⎒ βŽ₯ ⎒ √15βŽ₯ ⎒0 0 0 0 ───βŽ₯ ⎣ 5 ⎦ """ keti = {(Ji, Mi): Matrix([KroneckerDelta(i, j) for j in range(2*Ji+1)]) for i, Mi in enumerate(perm_m(Ji))} braj = {(Jj, Mj): Matrix([KroneckerDelta(i, j) for j in range(2*Jj+1)]).adjoint() for i, Mj in enumerate(perm_m(Jj))} if K not in perm_j(Ji, Jj): raise ValueError("K value is not allowed.") if Q not in perm_m(K): raise ValueError("Q value is not allowed.") Ni = 2*Ji+1 Nj = 2*Jj+1 T = zeros(Ni, Nj) for i, Mi in enumerate(perm_m(Ji)): for j, Mj in enumerate(perm_m(Jj)): T += (-1)**(Jj-Mj)*clebsch_gordan(Ji, Jj, K, Mi, -Mj, Q) * \ keti[(Ji, Mi)]*braj[(Jj, Mj)] return T
python
def spherical_tensor(Ji, Jj, K, Q): ur"""Return a matrix representation of the spherical tensor with quantum numbers $J_i, J_j, K, Q$. >>> from sympy import pprint >>> pprint(spherical_tensor(1, 1, 1, 0)) ⎑-√2 ⎀ βŽ’β”€β”€β”€β”€ 0 0 βŽ₯ ⎒ 2 βŽ₯ ⎒ βŽ₯ ⎒ 0 0 0 βŽ₯ ⎒ βŽ₯ ⎒ √2βŽ₯ ⎒ 0 0 ──βŽ₯ ⎣ 2 ⎦ >>> pprint(spherical_tensor(1, 2, 1, -1)) ⎑ √10 ⎀ ⎒0 0 ─── 0 0 βŽ₯ ⎒ 10 βŽ₯ ⎒ βŽ₯ ⎒ √30 βŽ₯ ⎒0 0 0 ─── 0 βŽ₯ ⎒ 10 βŽ₯ ⎒ βŽ₯ ⎒ √15βŽ₯ ⎒0 0 0 0 ───βŽ₯ ⎣ 5 ⎦ """ keti = {(Ji, Mi): Matrix([KroneckerDelta(i, j) for j in range(2*Ji+1)]) for i, Mi in enumerate(perm_m(Ji))} braj = {(Jj, Mj): Matrix([KroneckerDelta(i, j) for j in range(2*Jj+1)]).adjoint() for i, Mj in enumerate(perm_m(Jj))} if K not in perm_j(Ji, Jj): raise ValueError("K value is not allowed.") if Q not in perm_m(K): raise ValueError("Q value is not allowed.") Ni = 2*Ji+1 Nj = 2*Jj+1 T = zeros(Ni, Nj) for i, Mi in enumerate(perm_m(Ji)): for j, Mj in enumerate(perm_m(Jj)): T += (-1)**(Jj-Mj)*clebsch_gordan(Ji, Jj, K, Mi, -Mj, Q) * \ keti[(Ji, Mi)]*braj[(Jj, Mj)] return T
[ "def", "spherical_tensor", "(", "Ji", ",", "Jj", ",", "K", ",", "Q", ")", ":", "keti", "=", "{", "(", "Ji", ",", "Mi", ")", ":", "Matrix", "(", "[", "KroneckerDelta", "(", "i", ",", "j", ")", "for", "j", "in", "range", "(", "2", "*", "Ji", "+", "1", ")", "]", ")", "for", "i", ",", "Mi", "in", "enumerate", "(", "perm_m", "(", "Ji", ")", ")", "}", "braj", "=", "{", "(", "Jj", ",", "Mj", ")", ":", "Matrix", "(", "[", "KroneckerDelta", "(", "i", ",", "j", ")", "for", "j", "in", "range", "(", "2", "*", "Jj", "+", "1", ")", "]", ")", ".", "adjoint", "(", ")", "for", "i", ",", "Mj", "in", "enumerate", "(", "perm_m", "(", "Jj", ")", ")", "}", "if", "K", "not", "in", "perm_j", "(", "Ji", ",", "Jj", ")", ":", "raise", "ValueError", "(", "\"K value is not allowed.\"", ")", "if", "Q", "not", "in", "perm_m", "(", "K", ")", ":", "raise", "ValueError", "(", "\"Q value is not allowed.\"", ")", "Ni", "=", "2", "*", "Ji", "+", "1", "Nj", "=", "2", "*", "Jj", "+", "1", "T", "=", "zeros", "(", "Ni", ",", "Nj", ")", "for", "i", ",", "Mi", "in", "enumerate", "(", "perm_m", "(", "Ji", ")", ")", ":", "for", "j", ",", "Mj", "in", "enumerate", "(", "perm_m", "(", "Jj", ")", ")", ":", "T", "+=", "(", "-", "1", ")", "**", "(", "Jj", "-", "Mj", ")", "*", "clebsch_gordan", "(", "Ji", ",", "Jj", ",", "K", ",", "Mi", ",", "-", "Mj", ",", "Q", ")", "*", "keti", "[", "(", "Ji", ",", "Mi", ")", "]", "*", "braj", "[", "(", "Jj", ",", "Mj", ")", "]", "return", "T" ]
ur"""Return a matrix representation of the spherical tensor with quantum numbers $J_i, J_j, K, Q$. >>> from sympy import pprint >>> pprint(spherical_tensor(1, 1, 1, 0)) ⎑-√2 ⎀ βŽ’β”€β”€β”€β”€ 0 0 βŽ₯ ⎒ 2 βŽ₯ ⎒ βŽ₯ ⎒ 0 0 0 βŽ₯ ⎒ βŽ₯ ⎒ √2βŽ₯ ⎒ 0 0 ──βŽ₯ ⎣ 2 ⎦ >>> pprint(spherical_tensor(1, 2, 1, -1)) ⎑ √10 ⎀ ⎒0 0 ─── 0 0 βŽ₯ ⎒ 10 βŽ₯ ⎒ βŽ₯ ⎒ √30 βŽ₯ ⎒0 0 0 ─── 0 βŽ₯ ⎒ 10 βŽ₯ ⎒ βŽ₯ ⎒ √15βŽ₯ ⎒0 0 0 0 ───βŽ₯ ⎣ 5 ⎦
[ "ur", "Return", "a", "matrix", "representation", "of", "the", "spherical", "tensor", "with", "quantum", "numbers", "$J_i", "J_j", "K", "Q$", "." ]
train
https://github.com/oscarlazoarjona/fast/blob/3e5400672af2a7b7cc616e7f4aa10d7672720222/fast/angular_momentum.py#L365-L416
oscarlazoarjona/fast
fast/angular_momentum.py
wigner_d_small
def wigner_d_small(J, beta): u"""Return the small Wigner d matrix for angular momentum J. We use the general formula from [Edmonds74]_, equation 4.1.15. Some examples form [Edmonds74]_: >>> from sympy import Integer, symbols, pi >>> half = 1/Integer(2) >>> beta = symbols("beta", real=True) >>> wigner_d_small(half, beta) Matrix([ [ cos(beta/2), sin(beta/2)], [-sin(beta/2), cos(beta/2)]]) >>> from sympy import pprint >>> pprint(wigner_d_small(2*half, beta), use_unicode=True) ⎑ 2βŽ›Ξ²βŽž βŽ›Ξ²βŽž βŽ›Ξ²βŽž 2βŽ›Ξ²βŽž ⎀ ⎒ cos βŽœβ”€βŽŸ √2β‹…sinβŽœβ”€βŽŸβ‹…cosβŽœβ”€βŽŸ sin βŽœβ”€βŽŸ βŽ₯ ⎒ ⎝2⎠ ⎝2⎠ ⎝2⎠ ⎝2⎠ βŽ₯ ⎒ βŽ₯ ⎒ βŽ›Ξ²βŽž βŽ›Ξ²βŽž 2βŽ›Ξ²βŽž 2βŽ›Ξ²βŽž βŽ›Ξ²βŽž βŽ›Ξ²βŽžβŽ₯ ⎒-√2β‹…sinβŽœβ”€βŽŸβ‹…cosβŽœβ”€βŽŸ - sin βŽœβ”€βŽŸ + cos βŽœβ”€βŽŸ √2β‹…sinβŽœβ”€βŽŸβ‹…cosβŽœβ”€βŽŸβŽ₯ ⎒ ⎝2⎠ ⎝2⎠ ⎝2⎠ ⎝2⎠ ⎝2⎠ ⎝2⎠βŽ₯ ⎒ βŽ₯ ⎒ 2βŽ›Ξ²βŽž βŽ›Ξ²βŽž βŽ›Ξ²βŽž 2βŽ›Ξ²βŽž βŽ₯ ⎒ sin βŽœβ”€βŽŸ -√2β‹…sinβŽœβ”€βŽŸβ‹…cosβŽœβ”€βŽŸ cos βŽœβ”€βŽŸ βŽ₯ ⎣ ⎝2⎠ ⎝2⎠ ⎝2⎠ ⎝2⎠ ⎦ From table 4 in [Edmonds74]_ >>> wigner_d_small(half, beta).subs({beta:pi/2}) Matrix([ [ sqrt(2)/2, sqrt(2)/2], [-sqrt(2)/2, sqrt(2)/2]]) >>> wigner_d_small(2*half, beta).subs({beta:pi/2}) Matrix([ [ 1/2, sqrt(2)/2, 1/2], [-sqrt(2)/2, 0, sqrt(2)/2], [ 1/2, -sqrt(2)/2, 1/2]]) >>> wigner_d_small(3*half, beta).subs({beta:pi/2}) Matrix([ [ sqrt(2)/4, sqrt(6)/4, sqrt(6)/4, sqrt(2)/4], [-sqrt(6)/4, -sqrt(2)/4, sqrt(2)/4, sqrt(6)/4], [ sqrt(6)/4, -sqrt(2)/4, -sqrt(2)/4, sqrt(6)/4], [-sqrt(2)/4, sqrt(6)/4, -sqrt(6)/4, sqrt(2)/4]]) >>> wigner_d_small(4*half, beta).subs({beta:pi/2}) Matrix([ [ 1/4, 1/2, sqrt(6)/4, 1/2, 1/4], [ -1/2, -1/2, 0, 1/2, 1/2], [sqrt(6)/4, 0, -1/2, 0, sqrt(6)/4], [ -1/2, 1/2, 0, -1/2, 1/2], [ 1/4, -1/2, sqrt(6)/4, -1/2, 1/4]]) """ def prod(x): p = 1 for i, xi in enumerate(x): p = p*xi return p M = [J-i for i in range(2*J+1)] d = [] for Mi in M: row = [] for Mj in M: # We get the maximum and minimum value of sigma. sigmamax = max([-Mi-Mj, J-Mj]) sigmamin = min([0, J-Mi]) dij = sqrt(factorial(J+Mi)*factorial(J-Mi) / factorial(J+Mj)/factorial(J-Mj)) terms = [[(-1)**(J-Mi-s), binomial(J+Mj, J-Mi-s), binomial(J-Mj, s), cos(beta/2)**(2*s+Mi+Mj), sin(beta/2)**(2*J-2*s-Mj-Mi)] for s in range(sigmamin, sigmamax+1)] terms = [prod(term) if 0 not in term else 0 for term in terms] dij = dij*sum(terms) row += [dij] d += [row] return Matrix(d)
python
def wigner_d_small(J, beta): u"""Return the small Wigner d matrix for angular momentum J. We use the general formula from [Edmonds74]_, equation 4.1.15. Some examples form [Edmonds74]_: >>> from sympy import Integer, symbols, pi >>> half = 1/Integer(2) >>> beta = symbols("beta", real=True) >>> wigner_d_small(half, beta) Matrix([ [ cos(beta/2), sin(beta/2)], [-sin(beta/2), cos(beta/2)]]) >>> from sympy import pprint >>> pprint(wigner_d_small(2*half, beta), use_unicode=True) ⎑ 2βŽ›Ξ²βŽž βŽ›Ξ²βŽž βŽ›Ξ²βŽž 2βŽ›Ξ²βŽž ⎀ ⎒ cos βŽœβ”€βŽŸ √2β‹…sinβŽœβ”€βŽŸβ‹…cosβŽœβ”€βŽŸ sin βŽœβ”€βŽŸ βŽ₯ ⎒ ⎝2⎠ ⎝2⎠ ⎝2⎠ ⎝2⎠ βŽ₯ ⎒ βŽ₯ ⎒ βŽ›Ξ²βŽž βŽ›Ξ²βŽž 2βŽ›Ξ²βŽž 2βŽ›Ξ²βŽž βŽ›Ξ²βŽž βŽ›Ξ²βŽžβŽ₯ ⎒-√2β‹…sinβŽœβ”€βŽŸβ‹…cosβŽœβ”€βŽŸ - sin βŽœβ”€βŽŸ + cos βŽœβ”€βŽŸ √2β‹…sinβŽœβ”€βŽŸβ‹…cosβŽœβ”€βŽŸβŽ₯ ⎒ ⎝2⎠ ⎝2⎠ ⎝2⎠ ⎝2⎠ ⎝2⎠ ⎝2⎠βŽ₯ ⎒ βŽ₯ ⎒ 2βŽ›Ξ²βŽž βŽ›Ξ²βŽž βŽ›Ξ²βŽž 2βŽ›Ξ²βŽž βŽ₯ ⎒ sin βŽœβ”€βŽŸ -√2β‹…sinβŽœβ”€βŽŸβ‹…cosβŽœβ”€βŽŸ cos βŽœβ”€βŽŸ βŽ₯ ⎣ ⎝2⎠ ⎝2⎠ ⎝2⎠ ⎝2⎠ ⎦ From table 4 in [Edmonds74]_ >>> wigner_d_small(half, beta).subs({beta:pi/2}) Matrix([ [ sqrt(2)/2, sqrt(2)/2], [-sqrt(2)/2, sqrt(2)/2]]) >>> wigner_d_small(2*half, beta).subs({beta:pi/2}) Matrix([ [ 1/2, sqrt(2)/2, 1/2], [-sqrt(2)/2, 0, sqrt(2)/2], [ 1/2, -sqrt(2)/2, 1/2]]) >>> wigner_d_small(3*half, beta).subs({beta:pi/2}) Matrix([ [ sqrt(2)/4, sqrt(6)/4, sqrt(6)/4, sqrt(2)/4], [-sqrt(6)/4, -sqrt(2)/4, sqrt(2)/4, sqrt(6)/4], [ sqrt(6)/4, -sqrt(2)/4, -sqrt(2)/4, sqrt(6)/4], [-sqrt(2)/4, sqrt(6)/4, -sqrt(6)/4, sqrt(2)/4]]) >>> wigner_d_small(4*half, beta).subs({beta:pi/2}) Matrix([ [ 1/4, 1/2, sqrt(6)/4, 1/2, 1/4], [ -1/2, -1/2, 0, 1/2, 1/2], [sqrt(6)/4, 0, -1/2, 0, sqrt(6)/4], [ -1/2, 1/2, 0, -1/2, 1/2], [ 1/4, -1/2, sqrt(6)/4, -1/2, 1/4]]) """ def prod(x): p = 1 for i, xi in enumerate(x): p = p*xi return p M = [J-i for i in range(2*J+1)] d = [] for Mi in M: row = [] for Mj in M: # We get the maximum and minimum value of sigma. sigmamax = max([-Mi-Mj, J-Mj]) sigmamin = min([0, J-Mi]) dij = sqrt(factorial(J+Mi)*factorial(J-Mi) / factorial(J+Mj)/factorial(J-Mj)) terms = [[(-1)**(J-Mi-s), binomial(J+Mj, J-Mi-s), binomial(J-Mj, s), cos(beta/2)**(2*s+Mi+Mj), sin(beta/2)**(2*J-2*s-Mj-Mi)] for s in range(sigmamin, sigmamax+1)] terms = [prod(term) if 0 not in term else 0 for term in terms] dij = dij*sum(terms) row += [dij] d += [row] return Matrix(d)
[ "def", "wigner_d_small", "(", "J", ",", "beta", ")", ":", "def", "prod", "(", "x", ")", ":", "p", "=", "1", "for", "i", ",", "xi", "in", "enumerate", "(", "x", ")", ":", "p", "=", "p", "*", "xi", "return", "p", "M", "=", "[", "J", "-", "i", "for", "i", "in", "range", "(", "2", "*", "J", "+", "1", ")", "]", "d", "=", "[", "]", "for", "Mi", "in", "M", ":", "row", "=", "[", "]", "for", "Mj", "in", "M", ":", "# We get the maximum and minimum value of sigma.", "sigmamax", "=", "max", "(", "[", "-", "Mi", "-", "Mj", ",", "J", "-", "Mj", "]", ")", "sigmamin", "=", "min", "(", "[", "0", ",", "J", "-", "Mi", "]", ")", "dij", "=", "sqrt", "(", "factorial", "(", "J", "+", "Mi", ")", "*", "factorial", "(", "J", "-", "Mi", ")", "/", "factorial", "(", "J", "+", "Mj", ")", "/", "factorial", "(", "J", "-", "Mj", ")", ")", "terms", "=", "[", "[", "(", "-", "1", ")", "**", "(", "J", "-", "Mi", "-", "s", ")", ",", "binomial", "(", "J", "+", "Mj", ",", "J", "-", "Mi", "-", "s", ")", ",", "binomial", "(", "J", "-", "Mj", ",", "s", ")", ",", "cos", "(", "beta", "/", "2", ")", "**", "(", "2", "*", "s", "+", "Mi", "+", "Mj", ")", ",", "sin", "(", "beta", "/", "2", ")", "**", "(", "2", "*", "J", "-", "2", "*", "s", "-", "Mj", "-", "Mi", ")", "]", "for", "s", "in", "range", "(", "sigmamin", ",", "sigmamax", "+", "1", ")", "]", "terms", "=", "[", "prod", "(", "term", ")", "if", "0", "not", "in", "term", "else", "0", "for", "term", "in", "terms", "]", "dij", "=", "dij", "*", "sum", "(", "terms", ")", "row", "+=", "[", "dij", "]", "d", "+=", "[", "row", "]", "return", "Matrix", "(", "d", ")" ]
u"""Return the small Wigner d matrix for angular momentum J. We use the general formula from [Edmonds74]_, equation 4.1.15. Some examples form [Edmonds74]_: >>> from sympy import Integer, symbols, pi >>> half = 1/Integer(2) >>> beta = symbols("beta", real=True) >>> wigner_d_small(half, beta) Matrix([ [ cos(beta/2), sin(beta/2)], [-sin(beta/2), cos(beta/2)]]) >>> from sympy import pprint >>> pprint(wigner_d_small(2*half, beta), use_unicode=True) ⎑ 2βŽ›Ξ²βŽž βŽ›Ξ²βŽž βŽ›Ξ²βŽž 2βŽ›Ξ²βŽž ⎀ ⎒ cos βŽœβ”€βŽŸ √2β‹…sinβŽœβ”€βŽŸβ‹…cosβŽœβ”€βŽŸ sin βŽœβ”€βŽŸ βŽ₯ ⎒ ⎝2⎠ ⎝2⎠ ⎝2⎠ ⎝2⎠ βŽ₯ ⎒ βŽ₯ ⎒ βŽ›Ξ²βŽž βŽ›Ξ²βŽž 2βŽ›Ξ²βŽž 2βŽ›Ξ²βŽž βŽ›Ξ²βŽž βŽ›Ξ²βŽžβŽ₯ ⎒-√2β‹…sinβŽœβ”€βŽŸβ‹…cosβŽœβ”€βŽŸ - sin βŽœβ”€βŽŸ + cos βŽœβ”€βŽŸ √2β‹…sinβŽœβ”€βŽŸβ‹…cosβŽœβ”€βŽŸβŽ₯ ⎒ ⎝2⎠ ⎝2⎠ ⎝2⎠ ⎝2⎠ ⎝2⎠ ⎝2⎠βŽ₯ ⎒ βŽ₯ ⎒ 2βŽ›Ξ²βŽž βŽ›Ξ²βŽž βŽ›Ξ²βŽž 2βŽ›Ξ²βŽž βŽ₯ ⎒ sin βŽœβ”€βŽŸ -√2β‹…sinβŽœβ”€βŽŸβ‹…cosβŽœβ”€βŽŸ cos βŽœβ”€βŽŸ βŽ₯ ⎣ ⎝2⎠ ⎝2⎠ ⎝2⎠ ⎝2⎠ ⎦ From table 4 in [Edmonds74]_ >>> wigner_d_small(half, beta).subs({beta:pi/2}) Matrix([ [ sqrt(2)/2, sqrt(2)/2], [-sqrt(2)/2, sqrt(2)/2]]) >>> wigner_d_small(2*half, beta).subs({beta:pi/2}) Matrix([ [ 1/2, sqrt(2)/2, 1/2], [-sqrt(2)/2, 0, sqrt(2)/2], [ 1/2, -sqrt(2)/2, 1/2]]) >>> wigner_d_small(3*half, beta).subs({beta:pi/2}) Matrix([ [ sqrt(2)/4, sqrt(6)/4, sqrt(6)/4, sqrt(2)/4], [-sqrt(6)/4, -sqrt(2)/4, sqrt(2)/4, sqrt(6)/4], [ sqrt(6)/4, -sqrt(2)/4, -sqrt(2)/4, sqrt(6)/4], [-sqrt(2)/4, sqrt(6)/4, -sqrt(6)/4, sqrt(2)/4]]) >>> wigner_d_small(4*half, beta).subs({beta:pi/2}) Matrix([ [ 1/4, 1/2, sqrt(6)/4, 1/2, 1/4], [ -1/2, -1/2, 0, 1/2, 1/2], [sqrt(6)/4, 0, -1/2, 0, sqrt(6)/4], [ -1/2, 1/2, 0, -1/2, 1/2], [ 1/4, -1/2, sqrt(6)/4, -1/2, 1/4]])
[ "u", "Return", "the", "small", "Wigner", "d", "matrix", "for", "angular", "momentum", "J", "." ]
train
https://github.com/oscarlazoarjona/fast/blob/3e5400672af2a7b7cc616e7f4aa10d7672720222/fast/angular_momentum.py#L419-L507
oscarlazoarjona/fast
fast/angular_momentum.py
wigner_d
def wigner_d(J, alpha, beta, gamma): u"""Return the Wigner D matrix for angular momentum J. We use the general formula from [Edmonds74]_, equation 4.1.12. The simplest possible example: >>> from sympy import Integer, symbols, pprint >>> half = 1/Integer(2) >>> alpha, beta, gamma = symbols("alpha, beta, gamma", real=True) >>> pprint(wigner_d(half, alpha, beta, gamma), use_unicode=True) ⎑ β…ˆβ‹…Ξ± β…ˆβ‹…Ξ³ β…ˆβ‹…Ξ± -β…ˆβ‹…Ξ³ ⎀ ⎒ ─── ─── ─── ───── βŽ₯ ⎒ 2 2 βŽ›Ξ²βŽž 2 2 βŽ›Ξ²βŽž βŽ₯ ⎒ β„― β‹…β„― β‹…cosβŽœβ”€βŽŸ β„― β‹…β„― β‹…sinβŽœβ”€βŽŸ βŽ₯ ⎒ ⎝2⎠ ⎝2⎠ βŽ₯ ⎒ βŽ₯ ⎒ -β…ˆβ‹…Ξ± β…ˆβ‹…Ξ³ -β…ˆβ‹…Ξ± -β…ˆβ‹…Ξ³ βŽ₯ ⎒ ───── ─── ───── ───── βŽ₯ ⎒ 2 2 βŽ›Ξ²βŽž 2 2 βŽ›Ξ²βŽžβŽ₯ ⎒-β„― β‹…β„― β‹…sinβŽœβ”€βŽŸ β„― β‹…β„― β‹…cosβŽœβ”€βŽŸβŽ₯ ⎣ ⎝2⎠ ⎝2⎠⎦ """ d = wigner_d_small(J, beta) M = [J-i for i in range(2*J+1)] D = [[exp(I*Mi*alpha)*d[i, j]*exp(I*Mj*gamma) for j, Mj in enumerate(M)] for i, Mi in enumerate(M)] return Matrix(D)
python
def wigner_d(J, alpha, beta, gamma): u"""Return the Wigner D matrix for angular momentum J. We use the general formula from [Edmonds74]_, equation 4.1.12. The simplest possible example: >>> from sympy import Integer, symbols, pprint >>> half = 1/Integer(2) >>> alpha, beta, gamma = symbols("alpha, beta, gamma", real=True) >>> pprint(wigner_d(half, alpha, beta, gamma), use_unicode=True) ⎑ β…ˆβ‹…Ξ± β…ˆβ‹…Ξ³ β…ˆβ‹…Ξ± -β…ˆβ‹…Ξ³ ⎀ ⎒ ─── ─── ─── ───── βŽ₯ ⎒ 2 2 βŽ›Ξ²βŽž 2 2 βŽ›Ξ²βŽž βŽ₯ ⎒ β„― β‹…β„― β‹…cosβŽœβ”€βŽŸ β„― β‹…β„― β‹…sinβŽœβ”€βŽŸ βŽ₯ ⎒ ⎝2⎠ ⎝2⎠ βŽ₯ ⎒ βŽ₯ ⎒ -β…ˆβ‹…Ξ± β…ˆβ‹…Ξ³ -β…ˆβ‹…Ξ± -β…ˆβ‹…Ξ³ βŽ₯ ⎒ ───── ─── ───── ───── βŽ₯ ⎒ 2 2 βŽ›Ξ²βŽž 2 2 βŽ›Ξ²βŽžβŽ₯ ⎒-β„― β‹…β„― β‹…sinβŽœβ”€βŽŸ β„― β‹…β„― β‹…cosβŽœβ”€βŽŸβŽ₯ ⎣ ⎝2⎠ ⎝2⎠⎦ """ d = wigner_d_small(J, beta) M = [J-i for i in range(2*J+1)] D = [[exp(I*Mi*alpha)*d[i, j]*exp(I*Mj*gamma) for j, Mj in enumerate(M)] for i, Mi in enumerate(M)] return Matrix(D)
[ "def", "wigner_d", "(", "J", ",", "alpha", ",", "beta", ",", "gamma", ")", ":", "d", "=", "wigner_d_small", "(", "J", ",", "beta", ")", "M", "=", "[", "J", "-", "i", "for", "i", "in", "range", "(", "2", "*", "J", "+", "1", ")", "]", "D", "=", "[", "[", "exp", "(", "I", "*", "Mi", "*", "alpha", ")", "*", "d", "[", "i", ",", "j", "]", "*", "exp", "(", "I", "*", "Mj", "*", "gamma", ")", "for", "j", ",", "Mj", "in", "enumerate", "(", "M", ")", "]", "for", "i", ",", "Mi", "in", "enumerate", "(", "M", ")", "]", "return", "Matrix", "(", "D", ")" ]
u"""Return the Wigner D matrix for angular momentum J. We use the general formula from [Edmonds74]_, equation 4.1.12. The simplest possible example: >>> from sympy import Integer, symbols, pprint >>> half = 1/Integer(2) >>> alpha, beta, gamma = symbols("alpha, beta, gamma", real=True) >>> pprint(wigner_d(half, alpha, beta, gamma), use_unicode=True) ⎑ β…ˆβ‹…Ξ± β…ˆβ‹…Ξ³ β…ˆβ‹…Ξ± -β…ˆβ‹…Ξ³ ⎀ ⎒ ─── ─── ─── ───── βŽ₯ ⎒ 2 2 βŽ›Ξ²βŽž 2 2 βŽ›Ξ²βŽž βŽ₯ ⎒ β„― β‹…β„― β‹…cosβŽœβ”€βŽŸ β„― β‹…β„― β‹…sinβŽœβ”€βŽŸ βŽ₯ ⎒ ⎝2⎠ ⎝2⎠ βŽ₯ ⎒ βŽ₯ ⎒ -β…ˆβ‹…Ξ± β…ˆβ‹…Ξ³ -β…ˆβ‹…Ξ± -β…ˆβ‹…Ξ³ βŽ₯ ⎒ ───── ─── ───── ───── βŽ₯ ⎒ 2 2 βŽ›Ξ²βŽž 2 2 βŽ›Ξ²βŽžβŽ₯ ⎒-β„― β‹…β„― β‹…sinβŽœβ”€βŽŸ β„― β‹…β„― β‹…cosβŽœβ”€βŽŸβŽ₯ ⎣ ⎝2⎠ ⎝2⎠⎦
[ "u", "Return", "the", "Wigner", "D", "matrix", "for", "angular", "momentum", "J", "." ]
train
https://github.com/oscarlazoarjona/fast/blob/3e5400672af2a7b7cc616e7f4aa10d7672720222/fast/angular_momentum.py#L510-L538
oscarlazoarjona/fast
fast/angular_momentum.py
density_matrix_rotation
def density_matrix_rotation(J_values, alpha, beta, gamma): r"""Return a block-wise diagonal Wigner D matrix for that rotates a density matrix of an ensemble of particles in definite total angular momentum states given by J_values. >>> from sympy import Integer, pi >>> half = 1/Integer(2) >>> J_values = [2*half, 0] >>> density_matrix_rotation(J_values, 0, pi/2, 0) Matrix([ [ 1/2, sqrt(2)/2, 1/2, 0], [-sqrt(2)/2, 0, sqrt(2)/2, 0], [ 1/2, -sqrt(2)/2, 1/2, 0], [ 0, 0, 0, 1]]) """ size = sum([2*J+1 for J in J_values]) D = zeros(size, size) ind0 = 0 for J in J_values: DJ = wigner_d(J, alpha, beta, gamma) sizeJ = 2*J+1 indf = ind0 + sizeJ D[ind0: indf, ind0: indf] = DJ ind0 += sizeJ return D
python
def density_matrix_rotation(J_values, alpha, beta, gamma): r"""Return a block-wise diagonal Wigner D matrix for that rotates a density matrix of an ensemble of particles in definite total angular momentum states given by J_values. >>> from sympy import Integer, pi >>> half = 1/Integer(2) >>> J_values = [2*half, 0] >>> density_matrix_rotation(J_values, 0, pi/2, 0) Matrix([ [ 1/2, sqrt(2)/2, 1/2, 0], [-sqrt(2)/2, 0, sqrt(2)/2, 0], [ 1/2, -sqrt(2)/2, 1/2, 0], [ 0, 0, 0, 1]]) """ size = sum([2*J+1 for J in J_values]) D = zeros(size, size) ind0 = 0 for J in J_values: DJ = wigner_d(J, alpha, beta, gamma) sizeJ = 2*J+1 indf = ind0 + sizeJ D[ind0: indf, ind0: indf] = DJ ind0 += sizeJ return D
[ "def", "density_matrix_rotation", "(", "J_values", ",", "alpha", ",", "beta", ",", "gamma", ")", ":", "size", "=", "sum", "(", "[", "2", "*", "J", "+", "1", "for", "J", "in", "J_values", "]", ")", "D", "=", "zeros", "(", "size", ",", "size", ")", "ind0", "=", "0", "for", "J", "in", "J_values", ":", "DJ", "=", "wigner_d", "(", "J", ",", "alpha", ",", "beta", ",", "gamma", ")", "sizeJ", "=", "2", "*", "J", "+", "1", "indf", "=", "ind0", "+", "sizeJ", "D", "[", "ind0", ":", "indf", ",", "ind0", ":", "indf", "]", "=", "DJ", "ind0", "+=", "sizeJ", "return", "D" ]
r"""Return a block-wise diagonal Wigner D matrix for that rotates a density matrix of an ensemble of particles in definite total angular momentum states given by J_values. >>> from sympy import Integer, pi >>> half = 1/Integer(2) >>> J_values = [2*half, 0] >>> density_matrix_rotation(J_values, 0, pi/2, 0) Matrix([ [ 1/2, sqrt(2)/2, 1/2, 0], [-sqrt(2)/2, 0, sqrt(2)/2, 0], [ 1/2, -sqrt(2)/2, 1/2, 0], [ 0, 0, 0, 1]])
[ "r", "Return", "a", "block", "-", "wise", "diagonal", "Wigner", "D", "matrix", "for", "that", "rotates", "a", "density", "matrix", "of", "an", "ensemble", "of", "particles", "in", "definite", "total", "angular", "momentum", "states", "given", "by", "J_values", "." ]
train
https://github.com/oscarlazoarjona/fast/blob/3e5400672af2a7b7cc616e7f4aa10d7672720222/fast/angular_momentum.py#L541-L567
alexwlchan/specktre
src/specktre/tilings.py
generate_unit_squares
def generate_unit_squares(image_width, image_height): """Generate coordinates for a tiling of unit squares.""" # Iterate over the required rows and cells. The for loops (x, y) # give the coordinates of the top left-hand corner of each square: # # (x, y) +-----+ (x + 1, y) # | | # | | # | | # (x, y + 1) +-----+ (x + 1, y + 1) # for x in range(image_width): for y in range(image_height): yield [(x, y), (x + 1, y), (x + 1, y + 1), (x, y + 1)]
python
def generate_unit_squares(image_width, image_height): """Generate coordinates for a tiling of unit squares.""" # Iterate over the required rows and cells. The for loops (x, y) # give the coordinates of the top left-hand corner of each square: # # (x, y) +-----+ (x + 1, y) # | | # | | # | | # (x, y + 1) +-----+ (x + 1, y + 1) # for x in range(image_width): for y in range(image_height): yield [(x, y), (x + 1, y), (x + 1, y + 1), (x, y + 1)]
[ "def", "generate_unit_squares", "(", "image_width", ",", "image_height", ")", ":", "# Iterate over the required rows and cells. The for loops (x, y)", "# give the coordinates of the top left-hand corner of each square:", "#", "# (x, y) +-----+ (x + 1, y)", "# | |", "# | |", "# | |", "# (x, y + 1) +-----+ (x + 1, y + 1)", "#", "for", "x", "in", "range", "(", "image_width", ")", ":", "for", "y", "in", "range", "(", "image_height", ")", ":", "yield", "[", "(", "x", ",", "y", ")", ",", "(", "x", "+", "1", ",", "y", ")", ",", "(", "x", "+", "1", ",", "y", "+", "1", ")", ",", "(", "x", ",", "y", "+", "1", ")", "]" ]
Generate coordinates for a tiling of unit squares.
[ "Generate", "coordinates", "for", "a", "tiling", "of", "unit", "squares", "." ]
train
https://github.com/alexwlchan/specktre/blob/dcdd0d5486e5c3f612f64221b2e0dbc6fb7adafc/src/specktre/tilings.py#L23-L36
alexwlchan/specktre
src/specktre/tilings.py
generate_unit_triangles
def generate_unit_triangles(image_width, image_height): """Generate coordinates for a tiling of unit triangles.""" # Our triangles lie with one side parallel to the x-axis. Let s be # the length of one side, and h the height of the triangle. # # The for loops (x, y) gives the coordinates of the top left-hand corner # of a pair of triangles: # # (x, y) +-----+ (x + 1, y) # \ / \ # \ / \ # (x + 1/2, y + h) +-----+ (x + 3/2, y + h) # # where h = sin(60Β°) is the height of an equilateral triangle with # side length 1. # # On odd-numbered rows, we translate by (s/2, 0) to make the triangles # line up with the even-numbered rows. # # To avoid blank spaces on the edge of the canvas, the first pair of # triangles on each row starts at (-1, 0) -- one width before the edge # of the canvas. h = math.sin(math.pi / 3) for x in range(-1, image_width): for y in range(int(image_height / h)): # Add a horizontal offset on odd numbered rows x_ = x if (y % 2 == 0) else x + 0.5 yield [(x_, y * h), (x_ + 1, y * h), (x_ + 0.5, (y + 1) * h)] yield [(x_ + 1, y * h), (x_ + 1.5, (y + 1) * h), (x_ + 0.5, (y + 1) * h)]
python
def generate_unit_triangles(image_width, image_height): """Generate coordinates for a tiling of unit triangles.""" # Our triangles lie with one side parallel to the x-axis. Let s be # the length of one side, and h the height of the triangle. # # The for loops (x, y) gives the coordinates of the top left-hand corner # of a pair of triangles: # # (x, y) +-----+ (x + 1, y) # \ / \ # \ / \ # (x + 1/2, y + h) +-----+ (x + 3/2, y + h) # # where h = sin(60Β°) is the height of an equilateral triangle with # side length 1. # # On odd-numbered rows, we translate by (s/2, 0) to make the triangles # line up with the even-numbered rows. # # To avoid blank spaces on the edge of the canvas, the first pair of # triangles on each row starts at (-1, 0) -- one width before the edge # of the canvas. h = math.sin(math.pi / 3) for x in range(-1, image_width): for y in range(int(image_height / h)): # Add a horizontal offset on odd numbered rows x_ = x if (y % 2 == 0) else x + 0.5 yield [(x_, y * h), (x_ + 1, y * h), (x_ + 0.5, (y + 1) * h)] yield [(x_ + 1, y * h), (x_ + 1.5, (y + 1) * h), (x_ + 0.5, (y + 1) * h)]
[ "def", "generate_unit_triangles", "(", "image_width", ",", "image_height", ")", ":", "# Our triangles lie with one side parallel to the x-axis. Let s be", "# the length of one side, and h the height of the triangle.", "#", "# The for loops (x, y) gives the coordinates of the top left-hand corner", "# of a pair of triangles:", "#", "# (x, y) +-----+ (x + 1, y)", "# \\ / \\", "# \\ / \\", "# (x + 1/2, y + h) +-----+ (x + 3/2, y + h)", "#", "# where h = sin(60Β°) is the height of an equilateral triangle with", "# side length 1.", "#", "# On odd-numbered rows, we translate by (s/2, 0) to make the triangles", "# line up with the even-numbered rows.", "#", "# To avoid blank spaces on the edge of the canvas, the first pair of", "# triangles on each row starts at (-1, 0) -- one width before the edge", "# of the canvas.", "h", "=", "math", ".", "sin", "(", "math", ".", "pi", "/", "3", ")", "for", "x", "in", "range", "(", "-", "1", ",", "image_width", ")", ":", "for", "y", "in", "range", "(", "int", "(", "image_height", "/", "h", ")", ")", ":", "# Add a horizontal offset on odd numbered rows", "x_", "=", "x", "if", "(", "y", "%", "2", "==", "0", ")", "else", "x", "+", "0.5", "yield", "[", "(", "x_", ",", "y", "*", "h", ")", ",", "(", "x_", "+", "1", ",", "y", "*", "h", ")", ",", "(", "x_", "+", "0.5", ",", "(", "y", "+", "1", ")", "*", "h", ")", "]", "yield", "[", "(", "x_", "+", "1", ",", "y", "*", "h", ")", ",", "(", "x_", "+", "1.5", ",", "(", "y", "+", "1", ")", "*", "h", ")", ",", "(", "x_", "+", "0.5", ",", "(", "y", "+", "1", ")", "*", "h", ")", "]" ]
Generate coordinates for a tiling of unit triangles.
[ "Generate", "coordinates", "for", "a", "tiling", "of", "unit", "triangles", "." ]
train
https://github.com/alexwlchan/specktre/blob/dcdd0d5486e5c3f612f64221b2e0dbc6fb7adafc/src/specktre/tilings.py#L44-L76
hammerlab/stancache
stancache/config.py
restore_default_settings
def restore_default_settings(): """ Restore settings to default values. """ global __DEFAULTS __DEFAULTS.CACHE_DIR = defaults.CACHE_DIR __DEFAULTS.SET_SEED = defaults.SET_SEED __DEFAULTS.SEED = defaults.SEED logging.info('Settings reverted to their default values.')
python
def restore_default_settings(): """ Restore settings to default values. """ global __DEFAULTS __DEFAULTS.CACHE_DIR = defaults.CACHE_DIR __DEFAULTS.SET_SEED = defaults.SET_SEED __DEFAULTS.SEED = defaults.SEED logging.info('Settings reverted to their default values.')
[ "def", "restore_default_settings", "(", ")", ":", "global", "__DEFAULTS", "__DEFAULTS", ".", "CACHE_DIR", "=", "defaults", ".", "CACHE_DIR", "__DEFAULTS", ".", "SET_SEED", "=", "defaults", ".", "SET_SEED", "__DEFAULTS", ".", "SEED", "=", "defaults", ".", "SEED", "logging", ".", "info", "(", "'Settings reverted to their default values.'", ")" ]
Restore settings to default values.
[ "Restore", "settings", "to", "default", "values", "." ]
train
https://github.com/hammerlab/stancache/blob/22f2548731d0960c14c0d41f4f64e418d3f22e4c/stancache/config.py#L19-L26
hammerlab/stancache
stancache/config.py
load_config
def load_config(config_file='~/.stancache.ini'): """ Load config file into default settings """ if not os.path.exists(config_file): logging.warning('Config file does not exist: {}. Using default settings.'.format(config_file)) return ## get user-level config in *.ini format config = configparser.ConfigParser() config.read(config_file) if not config.has_section('main'): raise ValueError('Config file {} has no section "main"'.format(config_file)) for (key, val) in config.items('main'): _set_value(key.upper(), val) return
python
def load_config(config_file='~/.stancache.ini'): """ Load config file into default settings """ if not os.path.exists(config_file): logging.warning('Config file does not exist: {}. Using default settings.'.format(config_file)) return ## get user-level config in *.ini format config = configparser.ConfigParser() config.read(config_file) if not config.has_section('main'): raise ValueError('Config file {} has no section "main"'.format(config_file)) for (key, val) in config.items('main'): _set_value(key.upper(), val) return
[ "def", "load_config", "(", "config_file", "=", "'~/.stancache.ini'", ")", ":", "if", "not", "os", ".", "path", ".", "exists", "(", "config_file", ")", ":", "logging", ".", "warning", "(", "'Config file does not exist: {}. Using default settings.'", ".", "format", "(", "config_file", ")", ")", "return", "## get user-level config in *.ini format", "config", "=", "configparser", ".", "ConfigParser", "(", ")", "config", ".", "read", "(", "config_file", ")", "if", "not", "config", ".", "has_section", "(", "'main'", ")", ":", "raise", "ValueError", "(", "'Config file {} has no section \"main\"'", ".", "format", "(", "config_file", ")", ")", "for", "(", "key", ",", "val", ")", "in", "config", ".", "items", "(", "'main'", ")", ":", "_set_value", "(", "key", ".", "upper", "(", ")", ",", "val", ")", "return" ]
Load config file into default settings
[ "Load", "config", "file", "into", "default", "settings" ]
train
https://github.com/hammerlab/stancache/blob/22f2548731d0960c14c0d41f4f64e418d3f22e4c/stancache/config.py#L29-L42
deployed/django-emailtemplates
emailtemplates/shortcuts.py
send_email
def send_email(name, ctx_dict, send_to=None, subject=u'Subject', **kwargs): """ Shortcut function for EmailFromTemplate class @return: None """ eft = EmailFromTemplate(name=name) eft.subject = subject eft.context = ctx_dict eft.get_object() eft.render_message() eft.send_email(send_to=send_to, **kwargs)
python
def send_email(name, ctx_dict, send_to=None, subject=u'Subject', **kwargs): """ Shortcut function for EmailFromTemplate class @return: None """ eft = EmailFromTemplate(name=name) eft.subject = subject eft.context = ctx_dict eft.get_object() eft.render_message() eft.send_email(send_to=send_to, **kwargs)
[ "def", "send_email", "(", "name", ",", "ctx_dict", ",", "send_to", "=", "None", ",", "subject", "=", "u'Subject'", ",", "*", "*", "kwargs", ")", ":", "eft", "=", "EmailFromTemplate", "(", "name", "=", "name", ")", "eft", ".", "subject", "=", "subject", "eft", ".", "context", "=", "ctx_dict", "eft", ".", "get_object", "(", ")", "eft", ".", "render_message", "(", ")", "eft", ".", "send_email", "(", "send_to", "=", "send_to", ",", "*", "*", "kwargs", ")" ]
Shortcut function for EmailFromTemplate class @return: None
[ "Shortcut", "function", "for", "EmailFromTemplate", "class" ]
train
https://github.com/deployed/django-emailtemplates/blob/0e95139989dbcf7e624153ddcd7b5b66b48eb6eb/emailtemplates/shortcuts.py#L5-L17
abn/cafeteria
cafeteria/logging/__init__.py
LoggingManager.set_level
def set_level(cls, level): """ :raises: ValueError """ level = ( level if not is_str(level) else int(LOGGING_LEVELS.get(level.upper(), level)) ) for handler in root.handlers: handler.setLevel(level) root.setLevel(level)
python
def set_level(cls, level): """ :raises: ValueError """ level = ( level if not is_str(level) else int(LOGGING_LEVELS.get(level.upper(), level)) ) for handler in root.handlers: handler.setLevel(level) root.setLevel(level)
[ "def", "set_level", "(", "cls", ",", "level", ")", ":", "level", "=", "(", "level", "if", "not", "is_str", "(", "level", ")", "else", "int", "(", "LOGGING_LEVELS", ".", "get", "(", "level", ".", "upper", "(", ")", ",", "level", ")", ")", ")", "for", "handler", "in", "root", ".", "handlers", ":", "handler", ".", "setLevel", "(", "level", ")", "root", ".", "setLevel", "(", "level", ")" ]
:raises: ValueError
[ ":", "raises", ":", "ValueError" ]
train
https://github.com/abn/cafeteria/blob/0a2efb0529484d6da08568f4364daff77f734dfd/cafeteria/logging/__init__.py#L17-L30
abn/cafeteria
cafeteria/logging/__init__.py
LoggingManager.load_config
def load_config(cls, configfile="logging.yaml"): """ :raises: ValueError """ configfile = getenv(cls.CONFIGFILE_ENV_KEY, configfile) if isfile(configfile): with open(configfile, "r") as cf: # noinspection PyBroadException try: dictConfig(load(cf)) except ValueError: debug("Learn to config foooo! Improper config at %s", configfile) except Exception: exception("Something went wrong while reading %s.", configfile) else: raise ValueError("Invalid configfile specified: {}".format(configfile))
python
def load_config(cls, configfile="logging.yaml"): """ :raises: ValueError """ configfile = getenv(cls.CONFIGFILE_ENV_KEY, configfile) if isfile(configfile): with open(configfile, "r") as cf: # noinspection PyBroadException try: dictConfig(load(cf)) except ValueError: debug("Learn to config foooo! Improper config at %s", configfile) except Exception: exception("Something went wrong while reading %s.", configfile) else: raise ValueError("Invalid configfile specified: {}".format(configfile))
[ "def", "load_config", "(", "cls", ",", "configfile", "=", "\"logging.yaml\"", ")", ":", "configfile", "=", "getenv", "(", "cls", ".", "CONFIGFILE_ENV_KEY", ",", "configfile", ")", "if", "isfile", "(", "configfile", ")", ":", "with", "open", "(", "configfile", ",", "\"r\"", ")", "as", "cf", ":", "# noinspection PyBroadException", "try", ":", "dictConfig", "(", "load", "(", "cf", ")", ")", "except", "ValueError", ":", "debug", "(", "\"Learn to config foooo! Improper config at %s\"", ",", "configfile", ")", "except", "Exception", ":", "exception", "(", "\"Something went wrong while reading %s.\"", ",", "configfile", ")", "else", ":", "raise", "ValueError", "(", "\"Invalid configfile specified: {}\"", ".", "format", "(", "configfile", ")", ")" ]
:raises: ValueError
[ ":", "raises", ":", "ValueError" ]
train
https://github.com/abn/cafeteria/blob/0a2efb0529484d6da08568f4364daff77f734dfd/cafeteria/logging/__init__.py#L33-L48
daddyd/dewiki
dewiki/parser.py
Parser.__parse
def __parse(self, string=''): ''' Parse a string to remove and replace all wiki markup tags ''' self.string = string self.string = self.wiki_re.sub('', self.string) # search for lists self.listmatch = re.search('^(\*+)', self.string) if self.listmatch: self.string = self.__list(self.listmatch) + re.sub('^(\*+)', \ '', self.string) return self.string
python
def __parse(self, string=''): ''' Parse a string to remove and replace all wiki markup tags ''' self.string = string self.string = self.wiki_re.sub('', self.string) # search for lists self.listmatch = re.search('^(\*+)', self.string) if self.listmatch: self.string = self.__list(self.listmatch) + re.sub('^(\*+)', \ '', self.string) return self.string
[ "def", "__parse", "(", "self", ",", "string", "=", "''", ")", ":", "self", ".", "string", "=", "string", "self", ".", "string", "=", "self", ".", "wiki_re", ".", "sub", "(", "''", ",", "self", ".", "string", ")", "# search for lists", "self", ".", "listmatch", "=", "re", ".", "search", "(", "'^(\\*+)'", ",", "self", ".", "string", ")", "if", "self", ".", "listmatch", ":", "self", ".", "string", "=", "self", ".", "__list", "(", "self", ".", "listmatch", ")", "+", "re", ".", "sub", "(", "'^(\\*+)'", ",", "''", ",", "self", ".", "string", ")", "return", "self", ".", "string" ]
Parse a string to remove and replace all wiki markup tags
[ "Parse", "a", "string", "to", "remove", "and", "replace", "all", "wiki", "markup", "tags" ]
train
https://github.com/daddyd/dewiki/blob/84214bb9537326e036fa65e70d7a9ce7c6659c26/dewiki/parser.py#L32-L43
daddyd/dewiki
dewiki/parser.py
Parser.parse_string
def parse_string(self, string=''): ''' Parse a string object to de-wikified text ''' self.strings = string.splitlines(1) self.strings = [self.__parse(line) for line in self.strings] return ''.join(self.strings)
python
def parse_string(self, string=''): ''' Parse a string object to de-wikified text ''' self.strings = string.splitlines(1) self.strings = [self.__parse(line) for line in self.strings] return ''.join(self.strings)
[ "def", "parse_string", "(", "self", ",", "string", "=", "''", ")", ":", "self", ".", "strings", "=", "string", ".", "splitlines", "(", "1", ")", "self", ".", "strings", "=", "[", "self", ".", "__parse", "(", "line", ")", "for", "line", "in", "self", ".", "strings", "]", "return", "''", ".", "join", "(", "self", ".", "strings", ")" ]
Parse a string object to de-wikified text
[ "Parse", "a", "string", "object", "to", "de", "-", "wikified", "text" ]
train
https://github.com/daddyd/dewiki/blob/84214bb9537326e036fa65e70d7a9ce7c6659c26/dewiki/parser.py#L45-L51
oscarlazoarjona/fast
fast/evolution.py
run_evolution
def run_evolution(path,name,E0,laser_frequencies, N_iter,dt,N_states, spectrum_of_laser=None,N_delta=None,frequency_step=None,frequency_end=None, rho0=None,print_steps=False, integrate=False, save_systems=False,save_eigenvalues=False,rk4=False,use_netcdf=True): """This function runs the Runge-Kutta method compiled in path+name...""" def py2f_bool(bool_var): if bool_var: return ".true.\n" else: return ".false.\n" if rk4: return run_rk4(path,name,E0,laser_frequencies, N_iter,dt,N_states, spectrum_of_laser=spectrum_of_laser,N_delta=N_delta, frequency_step=frequency_step, frequency_end=frequency_end, rho0=rho0,print_steps=print_steps, integrate=integrate,save_systems=save_systems) t0=time() params =str(N_iter)+'\n' params+=str(dt)+'\n' #We give the flag on wether to print each time step. params+=py2f_bool(print_steps) #We give the initial value of rho N_vars=N_states*(N_states+1)/2-1 if rho0==None: params+=''.join(['(0.0,0.0) ' for i in range(N_states**2-1)]) elif len(rho0)==N_states-1: if sage_included: params+=''.join(['('+str(real(i))+','+str(imag(i))+') ' for i in rho0]) else: params+=''.join(['('+str(i.real)+','+str(i.imag)+') ' for i in rho0]) params+=''.join(['(0.0,0.0) ' for i in range( N_states**2 -N_states)]) elif len(rho0)==N_vars: params+=''.join(['('+str(real(i))+','+str(imag(i))+') ' for i in rho0]) else: raise ValueError,'rho0 had an invalid number of elements.' params+='\n' #We give the amplitude of the electrical fields. params+=''.join([str(i)+' ' for i in E0])+'\n' #We give the detuning of each laser (taken from the lowest frequency transition). params+=''.join([str(i)+' ' for i in laser_frequencies])+'\n' #We give the flag on wether to calculate spectrums or time evolution. if spectrum_of_laser==None: params+='.false.\n' params+=py2f_bool(save_systems) params+=py2f_bool(save_eigenvalues) params+=py2f_bool(use_netcdf) params+=py2f_bool(integrate) else: if frequency_end !=None: if frequency_step !=None: raise ValueError,'both frequency_end and frequency_step were specified.' if N_delta==1: frequency_step=0.0 else: frequency_step=(frequency_end-laser_frequencies[spectrum_of_laser-1])/(N_delta-1) #frequency_step=frequency_end params+='.true.\n' params+=py2f_bool(save_systems) params+=py2f_bool(save_eigenvalues) params+=py2f_bool(use_netcdf) params+=py2f_bool(integrate) params+=str(spectrum_of_laser)+'\n' params+=str(N_delta)+'\n' params+=str(frequency_step) #print params f=file(path+name+'_params.dat','w') f.write(params) f.close() os.system(path+name) return time()-t0
python
def run_evolution(path,name,E0,laser_frequencies, N_iter,dt,N_states, spectrum_of_laser=None,N_delta=None,frequency_step=None,frequency_end=None, rho0=None,print_steps=False, integrate=False, save_systems=False,save_eigenvalues=False,rk4=False,use_netcdf=True): """This function runs the Runge-Kutta method compiled in path+name...""" def py2f_bool(bool_var): if bool_var: return ".true.\n" else: return ".false.\n" if rk4: return run_rk4(path,name,E0,laser_frequencies, N_iter,dt,N_states, spectrum_of_laser=spectrum_of_laser,N_delta=N_delta, frequency_step=frequency_step, frequency_end=frequency_end, rho0=rho0,print_steps=print_steps, integrate=integrate,save_systems=save_systems) t0=time() params =str(N_iter)+'\n' params+=str(dt)+'\n' #We give the flag on wether to print each time step. params+=py2f_bool(print_steps) #We give the initial value of rho N_vars=N_states*(N_states+1)/2-1 if rho0==None: params+=''.join(['(0.0,0.0) ' for i in range(N_states**2-1)]) elif len(rho0)==N_states-1: if sage_included: params+=''.join(['('+str(real(i))+','+str(imag(i))+') ' for i in rho0]) else: params+=''.join(['('+str(i.real)+','+str(i.imag)+') ' for i in rho0]) params+=''.join(['(0.0,0.0) ' for i in range( N_states**2 -N_states)]) elif len(rho0)==N_vars: params+=''.join(['('+str(real(i))+','+str(imag(i))+') ' for i in rho0]) else: raise ValueError,'rho0 had an invalid number of elements.' params+='\n' #We give the amplitude of the electrical fields. params+=''.join([str(i)+' ' for i in E0])+'\n' #We give the detuning of each laser (taken from the lowest frequency transition). params+=''.join([str(i)+' ' for i in laser_frequencies])+'\n' #We give the flag on wether to calculate spectrums or time evolution. if spectrum_of_laser==None: params+='.false.\n' params+=py2f_bool(save_systems) params+=py2f_bool(save_eigenvalues) params+=py2f_bool(use_netcdf) params+=py2f_bool(integrate) else: if frequency_end !=None: if frequency_step !=None: raise ValueError,'both frequency_end and frequency_step were specified.' if N_delta==1: frequency_step=0.0 else: frequency_step=(frequency_end-laser_frequencies[spectrum_of_laser-1])/(N_delta-1) #frequency_step=frequency_end params+='.true.\n' params+=py2f_bool(save_systems) params+=py2f_bool(save_eigenvalues) params+=py2f_bool(use_netcdf) params+=py2f_bool(integrate) params+=str(spectrum_of_laser)+'\n' params+=str(N_delta)+'\n' params+=str(frequency_step) #print params f=file(path+name+'_params.dat','w') f.write(params) f.close() os.system(path+name) return time()-t0
[ "def", "run_evolution", "(", "path", ",", "name", ",", "E0", ",", "laser_frequencies", ",", "N_iter", ",", "dt", ",", "N_states", ",", "spectrum_of_laser", "=", "None", ",", "N_delta", "=", "None", ",", "frequency_step", "=", "None", ",", "frequency_end", "=", "None", ",", "rho0", "=", "None", ",", "print_steps", "=", "False", ",", "integrate", "=", "False", ",", "save_systems", "=", "False", ",", "save_eigenvalues", "=", "False", ",", "rk4", "=", "False", ",", "use_netcdf", "=", "True", ")", ":", "def", "py2f_bool", "(", "bool_var", ")", ":", "if", "bool_var", ":", "return", "\".true.\\n\"", "else", ":", "return", "\".false.\\n\"", "if", "rk4", ":", "return", "run_rk4", "(", "path", ",", "name", ",", "E0", ",", "laser_frequencies", ",", "N_iter", ",", "dt", ",", "N_states", ",", "spectrum_of_laser", "=", "spectrum_of_laser", ",", "N_delta", "=", "N_delta", ",", "frequency_step", "=", "frequency_step", ",", "frequency_end", "=", "frequency_end", ",", "rho0", "=", "rho0", ",", "print_steps", "=", "print_steps", ",", "integrate", "=", "integrate", ",", "save_systems", "=", "save_systems", ")", "t0", "=", "time", "(", ")", "params", "=", "str", "(", "N_iter", ")", "+", "'\\n'", "params", "+=", "str", "(", "dt", ")", "+", "'\\n'", "#We give the flag on wether to print each time step.", "params", "+=", "py2f_bool", "(", "print_steps", ")", "#We give the initial value of rho", "N_vars", "=", "N_states", "*", "(", "N_states", "+", "1", ")", "/", "2", "-", "1", "if", "rho0", "==", "None", ":", "params", "+=", "''", ".", "join", "(", "[", "'(0.0,0.0) '", "for", "i", "in", "range", "(", "N_states", "**", "2", "-", "1", ")", "]", ")", "elif", "len", "(", "rho0", ")", "==", "N_states", "-", "1", ":", "if", "sage_included", ":", "params", "+=", "''", ".", "join", "(", "[", "'('", "+", "str", "(", "real", "(", "i", ")", ")", "+", "','", "+", "str", "(", "imag", "(", "i", ")", ")", "+", "') '", "for", "i", "in", "rho0", "]", ")", "else", ":", "params", "+=", "''", ".", "join", "(", "[", "'('", "+", "str", "(", "i", ".", "real", ")", "+", "','", "+", "str", "(", "i", ".", "imag", ")", "+", "') '", "for", "i", "in", "rho0", "]", ")", "params", "+=", "''", ".", "join", "(", "[", "'(0.0,0.0) '", "for", "i", "in", "range", "(", "N_states", "**", "2", "-", "N_states", ")", "]", ")", "elif", "len", "(", "rho0", ")", "==", "N_vars", ":", "params", "+=", "''", ".", "join", "(", "[", "'('", "+", "str", "(", "real", "(", "i", ")", ")", "+", "','", "+", "str", "(", "imag", "(", "i", ")", ")", "+", "') '", "for", "i", "in", "rho0", "]", ")", "else", ":", "raise", "ValueError", ",", "'rho0 had an invalid number of elements.'", "params", "+=", "'\\n'", "#We give the amplitude of the electrical fields.", "params", "+=", "''", ".", "join", "(", "[", "str", "(", "i", ")", "+", "' '", "for", "i", "in", "E0", "]", ")", "+", "'\\n'", "#We give the detuning of each laser (taken from the lowest frequency transition).", "params", "+=", "''", ".", "join", "(", "[", "str", "(", "i", ")", "+", "' '", "for", "i", "in", "laser_frequencies", "]", ")", "+", "'\\n'", "#We give the flag on wether to calculate spectrums or time evolution.", "if", "spectrum_of_laser", "==", "None", ":", "params", "+=", "'.false.\\n'", "params", "+=", "py2f_bool", "(", "save_systems", ")", "params", "+=", "py2f_bool", "(", "save_eigenvalues", ")", "params", "+=", "py2f_bool", "(", "use_netcdf", ")", "params", "+=", "py2f_bool", "(", "integrate", ")", "else", ":", "if", "frequency_end", "!=", "None", ":", "if", "frequency_step", "!=", "None", ":", "raise", "ValueError", ",", "'both frequency_end and frequency_step were specified.'", "if", "N_delta", "==", "1", ":", "frequency_step", "=", "0.0", "else", ":", "frequency_step", "=", "(", "frequency_end", "-", "laser_frequencies", "[", "spectrum_of_laser", "-", "1", "]", ")", "/", "(", "N_delta", "-", "1", ")", "#frequency_step=frequency_end", "params", "+=", "'.true.\\n'", "params", "+=", "py2f_bool", "(", "save_systems", ")", "params", "+=", "py2f_bool", "(", "save_eigenvalues", ")", "params", "+=", "py2f_bool", "(", "use_netcdf", ")", "params", "+=", "py2f_bool", "(", "integrate", ")", "params", "+=", "str", "(", "spectrum_of_laser", ")", "+", "'\\n'", "params", "+=", "str", "(", "N_delta", ")", "+", "'\\n'", "params", "+=", "str", "(", "frequency_step", ")", "#print params", "f", "=", "file", "(", "path", "+", "name", "+", "'_params.dat'", ",", "'w'", ")", "f", ".", "write", "(", "params", ")", "f", ".", "close", "(", ")", "os", ".", "system", "(", "path", "+", "name", ")", "return", "time", "(", ")", "-", "t0" ]
This function runs the Runge-Kutta method compiled in path+name...
[ "This", "function", "runs", "the", "Runge", "-", "Kutta", "method", "compiled", "in", "path", "+", "name", "..." ]
train
https://github.com/oscarlazoarjona/fast/blob/3e5400672af2a7b7cc616e7f4aa10d7672720222/fast/evolution.py#L477-L558
oscarlazoarjona/fast
fast/evolution.py
characteristic_times
def characteristic_times(path,name,Omega=1): r'''This function can be called after calling ``run_diagonalization`` if the option ``save_eigenvalues`` is set to ``True``. It will return the oscillation periods, and the shortest and half lives. The results are lists ordered as: ``[detunings, oscillation_periods_1, oscillation_periods_N**2-1, half_lives_1, half_lives_N**2-1]``. ''' re,im=get_eigenvalues(path,name) log12=log(0.5) Nr=len(re[0]); Nd=len(re) half_lives=[]; oscillation_periods=[] for i in range(Nr): col_half=[] col_osci=[] for j in range(Nd): if re[j][i]>=0.0 and i!=0: raise ValueError,'an eigenvalue was greater or equall to zero:'+str(re[j][i])+'.' else: col_half+=[log12/re[j][i]/Omega] if im[j][i]==0.0 and i!=0: col_osci+=[float('inf')] else: col_osci+=[abs(2*pi/im[j][i])/Omega] half_lives+=[col_half] oscillation_periods+=[col_osci] return oscillation_periods+half_lives[1:]
python
def characteristic_times(path,name,Omega=1): r'''This function can be called after calling ``run_diagonalization`` if the option ``save_eigenvalues`` is set to ``True``. It will return the oscillation periods, and the shortest and half lives. The results are lists ordered as: ``[detunings, oscillation_periods_1, oscillation_periods_N**2-1, half_lives_1, half_lives_N**2-1]``. ''' re,im=get_eigenvalues(path,name) log12=log(0.5) Nr=len(re[0]); Nd=len(re) half_lives=[]; oscillation_periods=[] for i in range(Nr): col_half=[] col_osci=[] for j in range(Nd): if re[j][i]>=0.0 and i!=0: raise ValueError,'an eigenvalue was greater or equall to zero:'+str(re[j][i])+'.' else: col_half+=[log12/re[j][i]/Omega] if im[j][i]==0.0 and i!=0: col_osci+=[float('inf')] else: col_osci+=[abs(2*pi/im[j][i])/Omega] half_lives+=[col_half] oscillation_periods+=[col_osci] return oscillation_periods+half_lives[1:]
[ "def", "characteristic_times", "(", "path", ",", "name", ",", "Omega", "=", "1", ")", ":", "re", ",", "im", "=", "get_eigenvalues", "(", "path", ",", "name", ")", "log12", "=", "log", "(", "0.5", ")", "Nr", "=", "len", "(", "re", "[", "0", "]", ")", "Nd", "=", "len", "(", "re", ")", "half_lives", "=", "[", "]", "oscillation_periods", "=", "[", "]", "for", "i", "in", "range", "(", "Nr", ")", ":", "col_half", "=", "[", "]", "col_osci", "=", "[", "]", "for", "j", "in", "range", "(", "Nd", ")", ":", "if", "re", "[", "j", "]", "[", "i", "]", ">=", "0.0", "and", "i", "!=", "0", ":", "raise", "ValueError", ",", "'an eigenvalue was greater or equall to zero:'", "+", "str", "(", "re", "[", "j", "]", "[", "i", "]", ")", "+", "'.'", "else", ":", "col_half", "+=", "[", "log12", "/", "re", "[", "j", "]", "[", "i", "]", "/", "Omega", "]", "if", "im", "[", "j", "]", "[", "i", "]", "==", "0.0", "and", "i", "!=", "0", ":", "col_osci", "+=", "[", "float", "(", "'inf'", ")", "]", "else", ":", "col_osci", "+=", "[", "abs", "(", "2", "*", "pi", "/", "im", "[", "j", "]", "[", "i", "]", ")", "/", "Omega", "]", "half_lives", "+=", "[", "col_half", "]", "oscillation_periods", "+=", "[", "col_osci", "]", "return", "oscillation_periods", "+", "half_lives", "[", "1", ":", "]" ]
r'''This function can be called after calling ``run_diagonalization`` if the option ``save_eigenvalues`` is set to ``True``. It will return the oscillation periods, and the shortest and half lives. The results are lists ordered as: ``[detunings, oscillation_periods_1, oscillation_periods_N**2-1, half_lives_1, half_lives_N**2-1]``.
[ "r", "This", "function", "can", "be", "called", "after", "calling", "run_diagonalization", "if", "the", "option", "save_eigenvalues", "is", "set", "to", "True", ".", "It", "will", "return", "the", "oscillation", "periods", "and", "the", "shortest", "and", "half", "lives", ".", "The", "results", "are", "lists", "ordered", "as", ":", "[", "detunings", "oscillation_periods_1", "oscillation_periods_N", "**", "2", "-", "1", "half_lives_1", "half_lives_N", "**", "2", "-", "1", "]", "." ]
train
https://github.com/oscarlazoarjona/fast/blob/3e5400672af2a7b7cc616e7f4aa10d7672720222/fast/evolution.py#L569-L595
oscarlazoarjona/fast
fast/evolution.py
analyze_eigenvalues
def analyze_eigenvalues(path,name,Ne): r'''This function can be called after calling ``run_diagonalization`` if the option ``save_eigenvalues`` is set to ``True``. It will return the shortest and longest oscillation period, and the shortest and longest half life. The results are lists ordered as: ``[detunings, shortest_oscillations, longest_oscillations, shortest_half_lifes, longest_half_lifes]``. The shortest oscillation period can be interpreted as a suggested size for the time step needed for a fine-grained picture of time evolution (an order of magnitude smaller is likely to be optimal). The longest half life can be interpreted as a suggested time for the stationary state to be reached (an order of magnitude larger is likely to be optimal). ''' times=characteristic_times(path,name) min_osci=min([min(times[1+i]) for i in range(Ne**2-1)]) max_osci=max([max(times[1+i]) for i in range(Ne**2-1)]) min_half=min([min(times[1+Ne**2-1+i]) for i in range(Ne**2-1)]) max_half=max([max(times[1+Ne**2-1+i]) for i in range(Ne**2-1)]) return min_osci,max_osci,min_half,max_half
python
def analyze_eigenvalues(path,name,Ne): r'''This function can be called after calling ``run_diagonalization`` if the option ``save_eigenvalues`` is set to ``True``. It will return the shortest and longest oscillation period, and the shortest and longest half life. The results are lists ordered as: ``[detunings, shortest_oscillations, longest_oscillations, shortest_half_lifes, longest_half_lifes]``. The shortest oscillation period can be interpreted as a suggested size for the time step needed for a fine-grained picture of time evolution (an order of magnitude smaller is likely to be optimal). The longest half life can be interpreted as a suggested time for the stationary state to be reached (an order of magnitude larger is likely to be optimal). ''' times=characteristic_times(path,name) min_osci=min([min(times[1+i]) for i in range(Ne**2-1)]) max_osci=max([max(times[1+i]) for i in range(Ne**2-1)]) min_half=min([min(times[1+Ne**2-1+i]) for i in range(Ne**2-1)]) max_half=max([max(times[1+Ne**2-1+i]) for i in range(Ne**2-1)]) return min_osci,max_osci,min_half,max_half
[ "def", "analyze_eigenvalues", "(", "path", ",", "name", ",", "Ne", ")", ":", "times", "=", "characteristic_times", "(", "path", ",", "name", ")", "min_osci", "=", "min", "(", "[", "min", "(", "times", "[", "1", "+", "i", "]", ")", "for", "i", "in", "range", "(", "Ne", "**", "2", "-", "1", ")", "]", ")", "max_osci", "=", "max", "(", "[", "max", "(", "times", "[", "1", "+", "i", "]", ")", "for", "i", "in", "range", "(", "Ne", "**", "2", "-", "1", ")", "]", ")", "min_half", "=", "min", "(", "[", "min", "(", "times", "[", "1", "+", "Ne", "**", "2", "-", "1", "+", "i", "]", ")", "for", "i", "in", "range", "(", "Ne", "**", "2", "-", "1", ")", "]", ")", "max_half", "=", "max", "(", "[", "max", "(", "times", "[", "1", "+", "Ne", "**", "2", "-", "1", "+", "i", "]", ")", "for", "i", "in", "range", "(", "Ne", "**", "2", "-", "1", ")", "]", ")", "return", "min_osci", ",", "max_osci", ",", "min_half", ",", "max_half" ]
r'''This function can be called after calling ``run_diagonalization`` if the option ``save_eigenvalues`` is set to ``True``. It will return the shortest and longest oscillation period, and the shortest and longest half life. The results are lists ordered as: ``[detunings, shortest_oscillations, longest_oscillations, shortest_half_lifes, longest_half_lifes]``. The shortest oscillation period can be interpreted as a suggested size for the time step needed for a fine-grained picture of time evolution (an order of magnitude smaller is likely to be optimal). The longest half life can be interpreted as a suggested time for the stationary state to be reached (an order of magnitude larger is likely to be optimal).
[ "r", "This", "function", "can", "be", "called", "after", "calling", "run_diagonalization", "if", "the", "option", "save_eigenvalues", "is", "set", "to", "True", ".", "It", "will", "return", "the", "shortest", "and", "longest", "oscillation", "period", "and", "the", "shortest", "and", "longest", "half", "life", ".", "The", "results", "are", "lists", "ordered", "as", ":", "[", "detunings", "shortest_oscillations", "longest_oscillations", "shortest_half_lifes", "longest_half_lifes", "]", "." ]
train
https://github.com/oscarlazoarjona/fast/blob/3e5400672af2a7b7cc616e7f4aa10d7672720222/fast/evolution.py#L597-L616
oscarlazoarjona/fast
build/lib/fast/electric_field.py
electric_field_amplitude_intensity
def electric_field_amplitude_intensity(s0,Omega=1.0e6): '''This function returns the value of E0 (the amplitude of the electric field) at a given saturation parameter s0=I/I0, where I0=2.50399 mW/cm^2 is the saturation intensity of the D2 line of Rubidium for linearly polarized light.''' e0=hbar*Omega/(e*a0) #This is the electric field scale. I0=2.50399 #mW/cm^2 I0=1.66889451102868 #mW/cm^2 I0=I0/1000*(100**2) #W/m^2 r_ciclic=4.226983616875483 #a0 gamma_D2=2*Pi*6.065e6/Omega # The decay frequency of the D2 line. E0_sat=gamma_D2/r_ciclic/sqrt(2.0) E0_sat=E0_sat*e0 I0=E0_sat**2/2/c/mu0 #return sqrt(c*mu0*s0*I0/2)/e0 #return sqrt(c*mu0*s0*I0)/e0 return sqrt(2*c*mu0*s0*I0)/e0
python
def electric_field_amplitude_intensity(s0,Omega=1.0e6): '''This function returns the value of E0 (the amplitude of the electric field) at a given saturation parameter s0=I/I0, where I0=2.50399 mW/cm^2 is the saturation intensity of the D2 line of Rubidium for linearly polarized light.''' e0=hbar*Omega/(e*a0) #This is the electric field scale. I0=2.50399 #mW/cm^2 I0=1.66889451102868 #mW/cm^2 I0=I0/1000*(100**2) #W/m^2 r_ciclic=4.226983616875483 #a0 gamma_D2=2*Pi*6.065e6/Omega # The decay frequency of the D2 line. E0_sat=gamma_D2/r_ciclic/sqrt(2.0) E0_sat=E0_sat*e0 I0=E0_sat**2/2/c/mu0 #return sqrt(c*mu0*s0*I0/2)/e0 #return sqrt(c*mu0*s0*I0)/e0 return sqrt(2*c*mu0*s0*I0)/e0
[ "def", "electric_field_amplitude_intensity", "(", "s0", ",", "Omega", "=", "1.0e6", ")", ":", "e0", "=", "hbar", "*", "Omega", "/", "(", "e", "*", "a0", ")", "#This is the electric field scale.\r", "I0", "=", "2.50399", "#mW/cm^2\r", "I0", "=", "1.66889451102868", "#mW/cm^2\r", "I0", "=", "I0", "/", "1000", "*", "(", "100", "**", "2", ")", "#W/m^2\r", "r_ciclic", "=", "4.226983616875483", "#a0\r", "gamma_D2", "=", "2", "*", "Pi", "*", "6.065e6", "/", "Omega", "# The decay frequency of the D2 line.\r", "E0_sat", "=", "gamma_D2", "/", "r_ciclic", "/", "sqrt", "(", "2.0", ")", "E0_sat", "=", "E0_sat", "*", "e0", "I0", "=", "E0_sat", "**", "2", "/", "2", "/", "c", "/", "mu0", "#return sqrt(c*mu0*s0*I0/2)/e0\r", "#return sqrt(c*mu0*s0*I0)/e0\r", "return", "sqrt", "(", "2", "*", "c", "*", "mu0", "*", "s0", "*", "I0", ")", "/", "e0" ]
This function returns the value of E0 (the amplitude of the electric field) at a given saturation parameter s0=I/I0, where I0=2.50399 mW/cm^2 is the saturation intensity of the D2 line of Rubidium for linearly polarized light.
[ "This", "function", "returns", "the", "value", "of", "E0", "(", "the", "amplitude", "of", "the", "electric", "field", ")", "at", "a", "given", "saturation", "parameter", "s0", "=", "I", "/", "I0", "where", "I0", "=", "2", ".", "50399", "mW", "/", "cm^2", "is", "the", "saturation", "intensity", "of", "the", "D2", "line", "of", "Rubidium", "for", "linearly", "polarized", "light", "." ]
train
https://github.com/oscarlazoarjona/fast/blob/3e5400672af2a7b7cc616e7f4aa10d7672720222/build/lib/fast/electric_field.py#L374-L393
tilde-lab/tilde
tilde/parsers/__init__.py
Output.get_checksum
def get_checksum(self): ''' Retrieve unique hash in a cross-platform manner: this is how calculation identity is determined ''' if self._checksum: return self._checksum if not self._filename: raise RuntimeError('Source calc file is required in order to properly save the data!') calc_checksum = hashlib.sha224() struc_repr = "" for ase_obj in self.structures: struc_repr += "%3.6f %3.6f %3.6f %3.6f %3.6f %3.6f %3.6f %3.6f %3.6f " % tuple(map(abs, [ase_obj.cell[0][0], ase_obj.cell[0][1], ase_obj.cell[0][2], ase_obj.cell[1][0], ase_obj.cell[1][1], ase_obj.cell[1][2], ase_obj.cell[2][0], ase_obj.cell[2][1], ase_obj.cell[2][2]])) # NB beware of length & minus zeros for atom in ase_obj: struc_repr += "%s %3.6f %3.6f %3.6f " % tuple(map(abs, [chemical_symbols.index(atom.symbol), atom.x, atom.y, atom.z])) # NB beware of length & minus zeros if self.info["energy"] is None: energy = str(None) else: energy = str(round(self.info['energy'], 11 - int(math.log10(math.fabs(self.info['energy']))))) calc_checksum.update(( struc_repr + "\n" + energy + "\n" + self.info['prog'] + "\n" + str(self.info['input']) + "\n" + str(sum([2**x for x in self.info['calctypes']])) ).encode('ascii')) # NB this is fixed and should not be changed result = base64.b32encode(calc_checksum.digest()).decode('ascii') result = result[:result.index('=')] + 'CI' return result
python
def get_checksum(self): ''' Retrieve unique hash in a cross-platform manner: this is how calculation identity is determined ''' if self._checksum: return self._checksum if not self._filename: raise RuntimeError('Source calc file is required in order to properly save the data!') calc_checksum = hashlib.sha224() struc_repr = "" for ase_obj in self.structures: struc_repr += "%3.6f %3.6f %3.6f %3.6f %3.6f %3.6f %3.6f %3.6f %3.6f " % tuple(map(abs, [ase_obj.cell[0][0], ase_obj.cell[0][1], ase_obj.cell[0][2], ase_obj.cell[1][0], ase_obj.cell[1][1], ase_obj.cell[1][2], ase_obj.cell[2][0], ase_obj.cell[2][1], ase_obj.cell[2][2]])) # NB beware of length & minus zeros for atom in ase_obj: struc_repr += "%s %3.6f %3.6f %3.6f " % tuple(map(abs, [chemical_symbols.index(atom.symbol), atom.x, atom.y, atom.z])) # NB beware of length & minus zeros if self.info["energy"] is None: energy = str(None) else: energy = str(round(self.info['energy'], 11 - int(math.log10(math.fabs(self.info['energy']))))) calc_checksum.update(( struc_repr + "\n" + energy + "\n" + self.info['prog'] + "\n" + str(self.info['input']) + "\n" + str(sum([2**x for x in self.info['calctypes']])) ).encode('ascii')) # NB this is fixed and should not be changed result = base64.b32encode(calc_checksum.digest()).decode('ascii') result = result[:result.index('=')] + 'CI' return result
[ "def", "get_checksum", "(", "self", ")", ":", "if", "self", ".", "_checksum", ":", "return", "self", ".", "_checksum", "if", "not", "self", ".", "_filename", ":", "raise", "RuntimeError", "(", "'Source calc file is required in order to properly save the data!'", ")", "calc_checksum", "=", "hashlib", ".", "sha224", "(", ")", "struc_repr", "=", "\"\"", "for", "ase_obj", "in", "self", ".", "structures", ":", "struc_repr", "+=", "\"%3.6f %3.6f %3.6f %3.6f %3.6f %3.6f %3.6f %3.6f %3.6f \"", "%", "tuple", "(", "map", "(", "abs", ",", "[", "ase_obj", ".", "cell", "[", "0", "]", "[", "0", "]", ",", "ase_obj", ".", "cell", "[", "0", "]", "[", "1", "]", ",", "ase_obj", ".", "cell", "[", "0", "]", "[", "2", "]", ",", "ase_obj", ".", "cell", "[", "1", "]", "[", "0", "]", ",", "ase_obj", ".", "cell", "[", "1", "]", "[", "1", "]", ",", "ase_obj", ".", "cell", "[", "1", "]", "[", "2", "]", ",", "ase_obj", ".", "cell", "[", "2", "]", "[", "0", "]", ",", "ase_obj", ".", "cell", "[", "2", "]", "[", "1", "]", ",", "ase_obj", ".", "cell", "[", "2", "]", "[", "2", "]", "]", ")", ")", "# NB beware of length & minus zeros", "for", "atom", "in", "ase_obj", ":", "struc_repr", "+=", "\"%s %3.6f %3.6f %3.6f \"", "%", "tuple", "(", "map", "(", "abs", ",", "[", "chemical_symbols", ".", "index", "(", "atom", ".", "symbol", ")", ",", "atom", ".", "x", ",", "atom", ".", "y", ",", "atom", ".", "z", "]", ")", ")", "# NB beware of length & minus zeros", "if", "self", ".", "info", "[", "\"energy\"", "]", "is", "None", ":", "energy", "=", "str", "(", "None", ")", "else", ":", "energy", "=", "str", "(", "round", "(", "self", ".", "info", "[", "'energy'", "]", ",", "11", "-", "int", "(", "math", ".", "log10", "(", "math", ".", "fabs", "(", "self", ".", "info", "[", "'energy'", "]", ")", ")", ")", ")", ")", "calc_checksum", ".", "update", "(", "(", "struc_repr", "+", "\"\\n\"", "+", "energy", "+", "\"\\n\"", "+", "self", ".", "info", "[", "'prog'", "]", "+", "\"\\n\"", "+", "str", "(", "self", ".", "info", "[", "'input'", "]", ")", "+", "\"\\n\"", "+", "str", "(", "sum", "(", "[", "2", "**", "x", "for", "x", "in", "self", ".", "info", "[", "'calctypes'", "]", "]", ")", ")", ")", ".", "encode", "(", "'ascii'", ")", ")", "# NB this is fixed and should not be changed", "result", "=", "base64", ".", "b32encode", "(", "calc_checksum", ".", "digest", "(", ")", ")", ".", "decode", "(", "'ascii'", ")", "result", "=", "result", "[", ":", "result", ".", "index", "(", "'='", ")", "]", "+", "'CI'", "return", "result" ]
Retrieve unique hash in a cross-platform manner: this is how calculation identity is determined
[ "Retrieve", "unique", "hash", "in", "a", "cross", "-", "platform", "manner", ":", "this", "is", "how", "calculation", "identity", "is", "determined" ]
train
https://github.com/tilde-lab/tilde/blob/59841578b3503075aa85c76f9ae647b3ff92b0a3/tilde/parsers/__init__.py#L145-L179
tilde-lab/tilde
tilde/core/symmetry.py
SymmetryFinder.refine_cell
def refine_cell(self, tilde_obj): ''' NB only used for perovskite_tilting app ''' try: lattice, positions, numbers = spg.refine_cell(tilde_obj['structures'][-1], symprec=self.accuracy, angle_tolerance=self.angle_tolerance) except Exception as ex: self.error = 'Symmetry finder error: %s' % ex else: self.refinedcell = Atoms(numbers=numbers, cell=lattice, scaled_positions=positions, pbc=tilde_obj['structures'][-1].get_pbc()) self.refinedcell.periodicity = sum(self.refinedcell.get_pbc()) self.refinedcell.dims = abs(det(tilde_obj['structures'][-1].cell))
python
def refine_cell(self, tilde_obj): ''' NB only used for perovskite_tilting app ''' try: lattice, positions, numbers = spg.refine_cell(tilde_obj['structures'][-1], symprec=self.accuracy, angle_tolerance=self.angle_tolerance) except Exception as ex: self.error = 'Symmetry finder error: %s' % ex else: self.refinedcell = Atoms(numbers=numbers, cell=lattice, scaled_positions=positions, pbc=tilde_obj['structures'][-1].get_pbc()) self.refinedcell.periodicity = sum(self.refinedcell.get_pbc()) self.refinedcell.dims = abs(det(tilde_obj['structures'][-1].cell))
[ "def", "refine_cell", "(", "self", ",", "tilde_obj", ")", ":", "try", ":", "lattice", ",", "positions", ",", "numbers", "=", "spg", ".", "refine_cell", "(", "tilde_obj", "[", "'structures'", "]", "[", "-", "1", "]", ",", "symprec", "=", "self", ".", "accuracy", ",", "angle_tolerance", "=", "self", ".", "angle_tolerance", ")", "except", "Exception", "as", "ex", ":", "self", ".", "error", "=", "'Symmetry finder error: %s'", "%", "ex", "else", ":", "self", ".", "refinedcell", "=", "Atoms", "(", "numbers", "=", "numbers", ",", "cell", "=", "lattice", ",", "scaled_positions", "=", "positions", ",", "pbc", "=", "tilde_obj", "[", "'structures'", "]", "[", "-", "1", "]", ".", "get_pbc", "(", ")", ")", "self", ".", "refinedcell", ".", "periodicity", "=", "sum", "(", "self", ".", "refinedcell", ".", "get_pbc", "(", ")", ")", "self", ".", "refinedcell", ".", "dims", "=", "abs", "(", "det", "(", "tilde_obj", "[", "'structures'", "]", "[", "-", "1", "]", ".", "cell", ")", ")" ]
NB only used for perovskite_tilting app
[ "NB", "only", "used", "for", "perovskite_tilting", "app" ]
train
https://github.com/tilde-lab/tilde/blob/59841578b3503075aa85c76f9ae647b3ff92b0a3/tilde/core/symmetry.py#L36-L46
myth/pepper8
pepper8/parser.py
Parser.parse
def parse(self): """ Reads all lines from the current data source and yields each FileResult objects """ if self.data is None: raise ValueError('No input data provided, unable to parse') for line in self.data: parts = line.strip().split() try: path = parts[0] code = parts[1] path, line, char = path.split(':')[:3] if not re.match(POSITION, line): continue if not re.match(POSITION, char): continue if not re.match(ERROR_CODE, code): continue if not re.match(FILEPATH, path): continue # For parts mismatch except IndexError: continue # For unpack mismatch except ValueError: continue yield path, code, line, char, ' '.join(parts[2:])
python
def parse(self): """ Reads all lines from the current data source and yields each FileResult objects """ if self.data is None: raise ValueError('No input data provided, unable to parse') for line in self.data: parts = line.strip().split() try: path = parts[0] code = parts[1] path, line, char = path.split(':')[:3] if not re.match(POSITION, line): continue if not re.match(POSITION, char): continue if not re.match(ERROR_CODE, code): continue if not re.match(FILEPATH, path): continue # For parts mismatch except IndexError: continue # For unpack mismatch except ValueError: continue yield path, code, line, char, ' '.join(parts[2:])
[ "def", "parse", "(", "self", ")", ":", "if", "self", ".", "data", "is", "None", ":", "raise", "ValueError", "(", "'No input data provided, unable to parse'", ")", "for", "line", "in", "self", ".", "data", ":", "parts", "=", "line", ".", "strip", "(", ")", ".", "split", "(", ")", "try", ":", "path", "=", "parts", "[", "0", "]", "code", "=", "parts", "[", "1", "]", "path", ",", "line", ",", "char", "=", "path", ".", "split", "(", "':'", ")", "[", ":", "3", "]", "if", "not", "re", ".", "match", "(", "POSITION", ",", "line", ")", ":", "continue", "if", "not", "re", ".", "match", "(", "POSITION", ",", "char", ")", ":", "continue", "if", "not", "re", ".", "match", "(", "ERROR_CODE", ",", "code", ")", ":", "continue", "if", "not", "re", ".", "match", "(", "FILEPATH", ",", "path", ")", ":", "continue", "# For parts mismatch", "except", "IndexError", ":", "continue", "# For unpack mismatch", "except", "ValueError", ":", "continue", "yield", "path", ",", "code", ",", "line", ",", "char", ",", "' '", ".", "join", "(", "parts", "[", "2", ":", "]", ")" ]
Reads all lines from the current data source and yields each FileResult objects
[ "Reads", "all", "lines", "from", "the", "current", "data", "source", "and", "yields", "each", "FileResult", "objects" ]
train
https://github.com/myth/pepper8/blob/98ffed4089241d8d3c1048995bc6777a2f3abdda/pepper8/parser.py#L26-L57
rshipp/python-dshield
dshield.py
_get
def _get(function, return_format=None): """Get and return data from the API. :returns: A str, list, or dict, depending on the input values and API data. """ if return_format: return requests.get(''.join([__BASE_URL, function, return_format])).text return requests.get(''.join([__BASE_URL, function, JSON])).json()
python
def _get(function, return_format=None): """Get and return data from the API. :returns: A str, list, or dict, depending on the input values and API data. """ if return_format: return requests.get(''.join([__BASE_URL, function, return_format])).text return requests.get(''.join([__BASE_URL, function, JSON])).json()
[ "def", "_get", "(", "function", ",", "return_format", "=", "None", ")", ":", "if", "return_format", ":", "return", "requests", ".", "get", "(", "''", ".", "join", "(", "[", "__BASE_URL", ",", "function", ",", "return_format", "]", ")", ")", ".", "text", "return", "requests", ".", "get", "(", "''", ".", "join", "(", "[", "__BASE_URL", ",", "function", ",", "JSON", "]", ")", ")", ".", "json", "(", ")" ]
Get and return data from the API. :returns: A str, list, or dict, depending on the input values and API data.
[ "Get", "and", "return", "data", "from", "the", "API", "." ]
train
https://github.com/rshipp/python-dshield/blob/1b003d0dfac0bc2ee8b86ca5f1a44b765b8cc6e0/dshield.py#L20-L27
rshipp/python-dshield
dshield.py
backscatter
def backscatter(date=None, rows=None, return_format=None): """Returns possible backscatter data. This report only includes "syn ack" data and is summarized by source port. :param date: optional string (in Y-M-D format) or datetime.date() object :param rows: optional number of rows returned (default 1000) :returns: list -- backscatter data. """ uri = 'backscatter' if date: try: uri = '/'.join([uri, date.strftime("%Y-%m-%d")]) except AttributeError: uri = '/'.join([uri, date]) if rows: uri = '/'.join([uri, str(rows)]) return _get(uri, return_format)
python
def backscatter(date=None, rows=None, return_format=None): """Returns possible backscatter data. This report only includes "syn ack" data and is summarized by source port. :param date: optional string (in Y-M-D format) or datetime.date() object :param rows: optional number of rows returned (default 1000) :returns: list -- backscatter data. """ uri = 'backscatter' if date: try: uri = '/'.join([uri, date.strftime("%Y-%m-%d")]) except AttributeError: uri = '/'.join([uri, date]) if rows: uri = '/'.join([uri, str(rows)]) return _get(uri, return_format)
[ "def", "backscatter", "(", "date", "=", "None", ",", "rows", "=", "None", ",", "return_format", "=", "None", ")", ":", "uri", "=", "'backscatter'", "if", "date", ":", "try", ":", "uri", "=", "'/'", ".", "join", "(", "[", "uri", ",", "date", ".", "strftime", "(", "\"%Y-%m-%d\"", ")", "]", ")", "except", "AttributeError", ":", "uri", "=", "'/'", ".", "join", "(", "[", "uri", ",", "date", "]", ")", "if", "rows", ":", "uri", "=", "'/'", ".", "join", "(", "[", "uri", ",", "str", "(", "rows", ")", "]", ")", "return", "_get", "(", "uri", ",", "return_format", ")" ]
Returns possible backscatter data. This report only includes "syn ack" data and is summarized by source port. :param date: optional string (in Y-M-D format) or datetime.date() object :param rows: optional number of rows returned (default 1000) :returns: list -- backscatter data.
[ "Returns", "possible", "backscatter", "data", "." ]
train
https://github.com/rshipp/python-dshield/blob/1b003d0dfac0bc2ee8b86ca5f1a44b765b8cc6e0/dshield.py#L30-L47
rshipp/python-dshield
dshield.py
ip
def ip(ip_address, return_format=None): """Returns a summary of the information our database holds for a particular IP address (similar to /ipinfo.html). In the returned data: Count: (also reports or records) total number of packets blocked from this IP. Attacks: (also targets) number of unique destination IP addresses for these packets. :param ip_address: a valid IP address """ response = _get('ip/{address}'.format(address=ip_address), return_format) if 'bad IP address' in str(response): raise Error('Bad IP address, {address}'.format(address=ip_address)) else: return response
python
def ip(ip_address, return_format=None): """Returns a summary of the information our database holds for a particular IP address (similar to /ipinfo.html). In the returned data: Count: (also reports or records) total number of packets blocked from this IP. Attacks: (also targets) number of unique destination IP addresses for these packets. :param ip_address: a valid IP address """ response = _get('ip/{address}'.format(address=ip_address), return_format) if 'bad IP address' in str(response): raise Error('Bad IP address, {address}'.format(address=ip_address)) else: return response
[ "def", "ip", "(", "ip_address", ",", "return_format", "=", "None", ")", ":", "response", "=", "_get", "(", "'ip/{address}'", ".", "format", "(", "address", "=", "ip_address", ")", ",", "return_format", ")", "if", "'bad IP address'", "in", "str", "(", "response", ")", ":", "raise", "Error", "(", "'Bad IP address, {address}'", ".", "format", "(", "address", "=", "ip_address", ")", ")", "else", ":", "return", "response" ]
Returns a summary of the information our database holds for a particular IP address (similar to /ipinfo.html). In the returned data: Count: (also reports or records) total number of packets blocked from this IP. Attacks: (also targets) number of unique destination IP addresses for these packets. :param ip_address: a valid IP address
[ "Returns", "a", "summary", "of", "the", "information", "our", "database", "holds", "for", "a", "particular", "IP", "address", "(", "similar", "to", "/", "ipinfo", ".", "html", ")", "." ]
train
https://github.com/rshipp/python-dshield/blob/1b003d0dfac0bc2ee8b86ca5f1a44b765b8cc6e0/dshield.py#L57-L74
rshipp/python-dshield
dshield.py
port
def port(port_number, return_format=None): """Summary information about a particular port. In the returned data: Records: Total number of records for a given date. Targets: Number of unique destination IP addresses. Sources: Number of unique originating IPs. :param port_number: a string or integer port number """ response = _get('port/{number}'.format(number=port_number), return_format) if 'bad port number' in str(response): raise Error('Bad port number, {number}'.format(number=port_number)) else: return response
python
def port(port_number, return_format=None): """Summary information about a particular port. In the returned data: Records: Total number of records for a given date. Targets: Number of unique destination IP addresses. Sources: Number of unique originating IPs. :param port_number: a string or integer port number """ response = _get('port/{number}'.format(number=port_number), return_format) if 'bad port number' in str(response): raise Error('Bad port number, {number}'.format(number=port_number)) else: return response
[ "def", "port", "(", "port_number", ",", "return_format", "=", "None", ")", ":", "response", "=", "_get", "(", "'port/{number}'", ".", "format", "(", "number", "=", "port_number", ")", ",", "return_format", ")", "if", "'bad port number'", "in", "str", "(", "response", ")", ":", "raise", "Error", "(", "'Bad port number, {number}'", ".", "format", "(", "number", "=", "port_number", ")", ")", "else", ":", "return", "response" ]
Summary information about a particular port. In the returned data: Records: Total number of records for a given date. Targets: Number of unique destination IP addresses. Sources: Number of unique originating IPs. :param port_number: a string or integer port number
[ "Summary", "information", "about", "a", "particular", "port", "." ]
train
https://github.com/rshipp/python-dshield/blob/1b003d0dfac0bc2ee8b86ca5f1a44b765b8cc6e0/dshield.py#L76-L91
rshipp/python-dshield
dshield.py
portdate
def portdate(port_number, date=None, return_format=None): """Information about a particular port at a particular date. If the date is ommited, today's date is used. :param port_number: a string or integer port number :param date: an optional string in 'Y-M-D' format or datetime.date() object """ uri = 'portdate/{number}'.format(number=port_number) if date: try: uri = '/'.join([uri, date.strftime("%Y-%m-%d")]) except AttributeError: uri = '/'.join([uri, date]) response = _get(uri, return_format) if 'bad port number' in str(response): raise Error('Bad port number, {number}'.format(number=port_number)) else: return response
python
def portdate(port_number, date=None, return_format=None): """Information about a particular port at a particular date. If the date is ommited, today's date is used. :param port_number: a string or integer port number :param date: an optional string in 'Y-M-D' format or datetime.date() object """ uri = 'portdate/{number}'.format(number=port_number) if date: try: uri = '/'.join([uri, date.strftime("%Y-%m-%d")]) except AttributeError: uri = '/'.join([uri, date]) response = _get(uri, return_format) if 'bad port number' in str(response): raise Error('Bad port number, {number}'.format(number=port_number)) else: return response
[ "def", "portdate", "(", "port_number", ",", "date", "=", "None", ",", "return_format", "=", "None", ")", ":", "uri", "=", "'portdate/{number}'", ".", "format", "(", "number", "=", "port_number", ")", "if", "date", ":", "try", ":", "uri", "=", "'/'", ".", "join", "(", "[", "uri", ",", "date", ".", "strftime", "(", "\"%Y-%m-%d\"", ")", "]", ")", "except", "AttributeError", ":", "uri", "=", "'/'", ".", "join", "(", "[", "uri", ",", "date", "]", ")", "response", "=", "_get", "(", "uri", ",", "return_format", ")", "if", "'bad port number'", "in", "str", "(", "response", ")", ":", "raise", "Error", "(", "'Bad port number, {number}'", ".", "format", "(", "number", "=", "port_number", ")", ")", "else", ":", "return", "response" ]
Information about a particular port at a particular date. If the date is ommited, today's date is used. :param port_number: a string or integer port number :param date: an optional string in 'Y-M-D' format or datetime.date() object
[ "Information", "about", "a", "particular", "port", "at", "a", "particular", "date", "." ]
train
https://github.com/rshipp/python-dshield/blob/1b003d0dfac0bc2ee8b86ca5f1a44b765b8cc6e0/dshield.py#L93-L111
rshipp/python-dshield
dshield.py
topports
def topports(sort_by='records', limit=10, date=None, return_format=None): """Information about top ports for a particular date with return limit. :param sort_by: one of 'records', 'targets', 'sources' :param limit: number of records to be returned :param date: an optional string in 'Y-M-D' format or datetime.date() object """ uri = '/'.join(['topports', sort_by, str(limit)]) if date: try: uri = '/'.join([uri, date.strftime("%Y-%m-%d")]) except AttributeError: uri = '/'.join([uri, date]) return _get(uri, return_format)
python
def topports(sort_by='records', limit=10, date=None, return_format=None): """Information about top ports for a particular date with return limit. :param sort_by: one of 'records', 'targets', 'sources' :param limit: number of records to be returned :param date: an optional string in 'Y-M-D' format or datetime.date() object """ uri = '/'.join(['topports', sort_by, str(limit)]) if date: try: uri = '/'.join([uri, date.strftime("%Y-%m-%d")]) except AttributeError: uri = '/'.join([uri, date]) return _get(uri, return_format)
[ "def", "topports", "(", "sort_by", "=", "'records'", ",", "limit", "=", "10", ",", "date", "=", "None", ",", "return_format", "=", "None", ")", ":", "uri", "=", "'/'", ".", "join", "(", "[", "'topports'", ",", "sort_by", ",", "str", "(", "limit", ")", "]", ")", "if", "date", ":", "try", ":", "uri", "=", "'/'", ".", "join", "(", "[", "uri", ",", "date", ".", "strftime", "(", "\"%Y-%m-%d\"", ")", "]", ")", "except", "AttributeError", ":", "uri", "=", "'/'", ".", "join", "(", "[", "uri", ",", "date", "]", ")", "return", "_get", "(", "uri", ",", "return_format", ")" ]
Information about top ports for a particular date with return limit. :param sort_by: one of 'records', 'targets', 'sources' :param limit: number of records to be returned :param date: an optional string in 'Y-M-D' format or datetime.date() object
[ "Information", "about", "top", "ports", "for", "a", "particular", "date", "with", "return", "limit", "." ]
train
https://github.com/rshipp/python-dshield/blob/1b003d0dfac0bc2ee8b86ca5f1a44b765b8cc6e0/dshield.py#L113-L126
rshipp/python-dshield
dshield.py
porthistory
def porthistory(port_number, start_date=None, end_date=None, return_format=None): """Returns port data for a range of dates. In the return data: Records: Total number of records for a given date range. Targets: Number of unique destination IP addresses. Sources: Number of unique originating IPs. :param port_number: a valid port number (required) :param start_date: string or datetime.date(), default is 30 days ago :param end_date: string or datetime.date(), default is today """ uri = 'porthistory/{port}'.format(port=port_number) if not start_date: # default 30 days ago start_date = datetime.datetime.now() - datetime.timedelta(days=30) try: uri = '/'.join([uri, start_date.strftime("%Y-%m-%d")]) except AttributeError: uri = '/'.join([uri, start_date]) if end_date: try: uri = '/'.join([uri, end_date.strftime("%Y-%m-%d")]) except AttributeError: uri = '/'.join([uri, end_date]) response = _get(uri, return_format) if 'bad port number' in str(response): raise Error('Bad port, {port}'.format(port=port_number)) else: return response
python
def porthistory(port_number, start_date=None, end_date=None, return_format=None): """Returns port data for a range of dates. In the return data: Records: Total number of records for a given date range. Targets: Number of unique destination IP addresses. Sources: Number of unique originating IPs. :param port_number: a valid port number (required) :param start_date: string or datetime.date(), default is 30 days ago :param end_date: string or datetime.date(), default is today """ uri = 'porthistory/{port}'.format(port=port_number) if not start_date: # default 30 days ago start_date = datetime.datetime.now() - datetime.timedelta(days=30) try: uri = '/'.join([uri, start_date.strftime("%Y-%m-%d")]) except AttributeError: uri = '/'.join([uri, start_date]) if end_date: try: uri = '/'.join([uri, end_date.strftime("%Y-%m-%d")]) except AttributeError: uri = '/'.join([uri, end_date]) response = _get(uri, return_format) if 'bad port number' in str(response): raise Error('Bad port, {port}'.format(port=port_number)) else: return response
[ "def", "porthistory", "(", "port_number", ",", "start_date", "=", "None", ",", "end_date", "=", "None", ",", "return_format", "=", "None", ")", ":", "uri", "=", "'porthistory/{port}'", ".", "format", "(", "port", "=", "port_number", ")", "if", "not", "start_date", ":", "# default 30 days ago", "start_date", "=", "datetime", ".", "datetime", ".", "now", "(", ")", "-", "datetime", ".", "timedelta", "(", "days", "=", "30", ")", "try", ":", "uri", "=", "'/'", ".", "join", "(", "[", "uri", ",", "start_date", ".", "strftime", "(", "\"%Y-%m-%d\"", ")", "]", ")", "except", "AttributeError", ":", "uri", "=", "'/'", ".", "join", "(", "[", "uri", ",", "start_date", "]", ")", "if", "end_date", ":", "try", ":", "uri", "=", "'/'", ".", "join", "(", "[", "uri", ",", "end_date", ".", "strftime", "(", "\"%Y-%m-%d\"", ")", "]", ")", "except", "AttributeError", ":", "uri", "=", "'/'", ".", "join", "(", "[", "uri", ",", "end_date", "]", ")", "response", "=", "_get", "(", "uri", ",", "return_format", ")", "if", "'bad port number'", "in", "str", "(", "response", ")", ":", "raise", "Error", "(", "'Bad port, {port}'", ".", "format", "(", "port", "=", "port_number", ")", ")", "else", ":", "return", "response" ]
Returns port data for a range of dates. In the return data: Records: Total number of records for a given date range. Targets: Number of unique destination IP addresses. Sources: Number of unique originating IPs. :param port_number: a valid port number (required) :param start_date: string or datetime.date(), default is 30 days ago :param end_date: string or datetime.date(), default is today
[ "Returns", "port", "data", "for", "a", "range", "of", "dates", "." ]
train
https://github.com/rshipp/python-dshield/blob/1b003d0dfac0bc2ee8b86ca5f1a44b765b8cc6e0/dshield.py#L159-L191
rshipp/python-dshield
dshield.py
asnum
def asnum(number, limit=None, return_format=None): """Returns a summary of the information our database holds for a particular ASNUM (similar to /asdetailsascii.html) with return limit. :param limit: number of records to be returned (max 2000) """ uri = 'asnum/{number}'.format(number=number) if limit: uri = '/'.join([uri, str(limit)]) return _get(uri, return_format)
python
def asnum(number, limit=None, return_format=None): """Returns a summary of the information our database holds for a particular ASNUM (similar to /asdetailsascii.html) with return limit. :param limit: number of records to be returned (max 2000) """ uri = 'asnum/{number}'.format(number=number) if limit: uri = '/'.join([uri, str(limit)]) return _get(uri, return_format)
[ "def", "asnum", "(", "number", ",", "limit", "=", "None", ",", "return_format", "=", "None", ")", ":", "uri", "=", "'asnum/{number}'", ".", "format", "(", "number", "=", "number", ")", "if", "limit", ":", "uri", "=", "'/'", ".", "join", "(", "[", "uri", ",", "str", "(", "limit", ")", "]", ")", "return", "_get", "(", "uri", ",", "return_format", ")" ]
Returns a summary of the information our database holds for a particular ASNUM (similar to /asdetailsascii.html) with return limit. :param limit: number of records to be returned (max 2000)
[ "Returns", "a", "summary", "of", "the", "information", "our", "database", "holds", "for", "a", "particular", "ASNUM", "(", "similar", "to", "/", "asdetailsascii", ".", "html", ")", "with", "return", "limit", "." ]
train
https://github.com/rshipp/python-dshield/blob/1b003d0dfac0bc2ee8b86ca5f1a44b765b8cc6e0/dshield.py#L193-L202
rshipp/python-dshield
dshield.py
dailysummary
def dailysummary(start_date=None, end_date=None, return_format=None): """Returns daily summary totals of targets, attacks and sources. Limit to 30 days at a time. (Query 2002-01-01 to present) In the return data: Sources: Distinct source IP addresses the packets originate from. Targets: Distinct target IP addresses the packets were sent to. Reports: Number of packets reported. :param start_date: string or datetime.date(), default is today :param end_date: string or datetime.date(), default is today """ uri = 'dailysummary' if not start_date: # default today start_date = datetime.datetime.now() try: uri = '/'.join([uri, start_date.strftime("%Y-%m-%d")]) except AttributeError: uri = '/'.join([uri, start_date]) if end_date: try: uri = '/'.join([uri, end_date.strftime("%Y-%m-%d")]) except AttributeError: uri = '/'.join([uri, end_date]) return _get(uri, return_format)
python
def dailysummary(start_date=None, end_date=None, return_format=None): """Returns daily summary totals of targets, attacks and sources. Limit to 30 days at a time. (Query 2002-01-01 to present) In the return data: Sources: Distinct source IP addresses the packets originate from. Targets: Distinct target IP addresses the packets were sent to. Reports: Number of packets reported. :param start_date: string or datetime.date(), default is today :param end_date: string or datetime.date(), default is today """ uri = 'dailysummary' if not start_date: # default today start_date = datetime.datetime.now() try: uri = '/'.join([uri, start_date.strftime("%Y-%m-%d")]) except AttributeError: uri = '/'.join([uri, start_date]) if end_date: try: uri = '/'.join([uri, end_date.strftime("%Y-%m-%d")]) except AttributeError: uri = '/'.join([uri, end_date]) return _get(uri, return_format)
[ "def", "dailysummary", "(", "start_date", "=", "None", ",", "end_date", "=", "None", ",", "return_format", "=", "None", ")", ":", "uri", "=", "'dailysummary'", "if", "not", "start_date", ":", "# default today", "start_date", "=", "datetime", ".", "datetime", ".", "now", "(", ")", "try", ":", "uri", "=", "'/'", ".", "join", "(", "[", "uri", ",", "start_date", ".", "strftime", "(", "\"%Y-%m-%d\"", ")", "]", ")", "except", "AttributeError", ":", "uri", "=", "'/'", ".", "join", "(", "[", "uri", ",", "start_date", "]", ")", "if", "end_date", ":", "try", ":", "uri", "=", "'/'", ".", "join", "(", "[", "uri", ",", "end_date", ".", "strftime", "(", "\"%Y-%m-%d\"", ")", "]", ")", "except", "AttributeError", ":", "uri", "=", "'/'", ".", "join", "(", "[", "uri", ",", "end_date", "]", ")", "return", "_get", "(", "uri", ",", "return_format", ")" ]
Returns daily summary totals of targets, attacks and sources. Limit to 30 days at a time. (Query 2002-01-01 to present) In the return data: Sources: Distinct source IP addresses the packets originate from. Targets: Distinct target IP addresses the packets were sent to. Reports: Number of packets reported. :param start_date: string or datetime.date(), default is today :param end_date: string or datetime.date(), default is today
[ "Returns", "daily", "summary", "totals", "of", "targets", "attacks", "and", "sources", ".", "Limit", "to", "30", "days", "at", "a", "time", ".", "(", "Query", "2002", "-", "01", "-", "01", "to", "present", ")" ]
train
https://github.com/rshipp/python-dshield/blob/1b003d0dfac0bc2ee8b86ca5f1a44b765b8cc6e0/dshield.py#L204-L232
rshipp/python-dshield
dshield.py
daily404summary
def daily404summary(date, return_format=None): """Returns daily summary information of submitted 404 Error Page Information. :param date: string or datetime.date() (required) """ uri = 'daily404summary' if date: try: uri = '/'.join([uri, date.strftime("%Y-%m-%d")]) except AttributeError: uri = '/'.join([uri, date]) return _get(uri, return_format)
python
def daily404summary(date, return_format=None): """Returns daily summary information of submitted 404 Error Page Information. :param date: string or datetime.date() (required) """ uri = 'daily404summary' if date: try: uri = '/'.join([uri, date.strftime("%Y-%m-%d")]) except AttributeError: uri = '/'.join([uri, date]) return _get(uri, return_format)
[ "def", "daily404summary", "(", "date", ",", "return_format", "=", "None", ")", ":", "uri", "=", "'daily404summary'", "if", "date", ":", "try", ":", "uri", "=", "'/'", ".", "join", "(", "[", "uri", ",", "date", ".", "strftime", "(", "\"%Y-%m-%d\"", ")", "]", ")", "except", "AttributeError", ":", "uri", "=", "'/'", ".", "join", "(", "[", "uri", ",", "date", "]", ")", "return", "_get", "(", "uri", ",", "return_format", ")" ]
Returns daily summary information of submitted 404 Error Page Information. :param date: string or datetime.date() (required)
[ "Returns", "daily", "summary", "information", "of", "submitted", "404", "Error", "Page", "Information", "." ]
train
https://github.com/rshipp/python-dshield/blob/1b003d0dfac0bc2ee8b86ca5f1a44b765b8cc6e0/dshield.py#L234-L246
rshipp/python-dshield
dshield.py
daily404detail
def daily404detail(date, limit=None, return_format=None): """Returns detail information of submitted 404 Error Page Information. :param date: string or datetime.date() (required) :param limit: string or int, limit for number of returned items """ uri = 'daily404detail' if date: try: uri = '/'.join([uri, date.strftime("%Y-%m-%d")]) except AttributeError: uri = '/'.join([uri, date]) if limit: uri = '/'.join([uri, str(limit)]) return _get(uri, return_format)
python
def daily404detail(date, limit=None, return_format=None): """Returns detail information of submitted 404 Error Page Information. :param date: string or datetime.date() (required) :param limit: string or int, limit for number of returned items """ uri = 'daily404detail' if date: try: uri = '/'.join([uri, date.strftime("%Y-%m-%d")]) except AttributeError: uri = '/'.join([uri, date]) if limit: uri = '/'.join([uri, str(limit)]) return _get(uri, return_format)
[ "def", "daily404detail", "(", "date", ",", "limit", "=", "None", ",", "return_format", "=", "None", ")", ":", "uri", "=", "'daily404detail'", "if", "date", ":", "try", ":", "uri", "=", "'/'", ".", "join", "(", "[", "uri", ",", "date", ".", "strftime", "(", "\"%Y-%m-%d\"", ")", "]", ")", "except", "AttributeError", ":", "uri", "=", "'/'", ".", "join", "(", "[", "uri", ",", "date", "]", ")", "if", "limit", ":", "uri", "=", "'/'", ".", "join", "(", "[", "uri", ",", "str", "(", "limit", ")", "]", ")", "return", "_get", "(", "uri", ",", "return_format", ")" ]
Returns detail information of submitted 404 Error Page Information. :param date: string or datetime.date() (required) :param limit: string or int, limit for number of returned items
[ "Returns", "detail", "information", "of", "submitted", "404", "Error", "Page", "Information", "." ]
train
https://github.com/rshipp/python-dshield/blob/1b003d0dfac0bc2ee8b86ca5f1a44b765b8cc6e0/dshield.py#L248-L262
rshipp/python-dshield
dshield.py
glossary
def glossary(term=None, return_format=None): """List of glossary terms and definitions. :param term: a whole or parital word to "search" in the API """ uri = 'glossary' if term: uri = '/'.join([uri, term]) return _get(uri, return_format)
python
def glossary(term=None, return_format=None): """List of glossary terms and definitions. :param term: a whole or parital word to "search" in the API """ uri = 'glossary' if term: uri = '/'.join([uri, term]) return _get(uri, return_format)
[ "def", "glossary", "(", "term", "=", "None", ",", "return_format", "=", "None", ")", ":", "uri", "=", "'glossary'", "if", "term", ":", "uri", "=", "'/'", ".", "join", "(", "[", "uri", ",", "term", "]", ")", "return", "_get", "(", "uri", ",", "return_format", ")" ]
List of glossary terms and definitions. :param term: a whole or parital word to "search" in the API
[ "List", "of", "glossary", "terms", "and", "definitions", "." ]
train
https://github.com/rshipp/python-dshield/blob/1b003d0dfac0bc2ee8b86ca5f1a44b765b8cc6e0/dshield.py#L264-L272
rshipp/python-dshield
dshield.py
webhoneypotsummary
def webhoneypotsummary(date, return_format=None): """API data for `Webhoneypot: Web Server Log Project <https://dshield.org/webhoneypot/>`_. :param date: string or datetime.date() (required) """ uri = 'webhoneypotsummary' try: uri = '/'.join([uri, date.strftime("%Y-%m-%d")]) except AttributeError: uri = '/'.join([uri, date]) return _get(uri, return_format)
python
def webhoneypotsummary(date, return_format=None): """API data for `Webhoneypot: Web Server Log Project <https://dshield.org/webhoneypot/>`_. :param date: string or datetime.date() (required) """ uri = 'webhoneypotsummary' try: uri = '/'.join([uri, date.strftime("%Y-%m-%d")]) except AttributeError: uri = '/'.join([uri, date]) return _get(uri, return_format)
[ "def", "webhoneypotsummary", "(", "date", ",", "return_format", "=", "None", ")", ":", "uri", "=", "'webhoneypotsummary'", "try", ":", "uri", "=", "'/'", ".", "join", "(", "[", "uri", ",", "date", ".", "strftime", "(", "\"%Y-%m-%d\"", ")", "]", ")", "except", "AttributeError", ":", "uri", "=", "'/'", ".", "join", "(", "[", "uri", ",", "date", "]", ")", "return", "_get", "(", "uri", ",", "return_format", ")" ]
API data for `Webhoneypot: Web Server Log Project <https://dshield.org/webhoneypot/>`_. :param date: string or datetime.date() (required)
[ "API", "data", "for", "Webhoneypot", ":", "Web", "Server", "Log", "Project", "<https", ":", "//", "dshield", ".", "org", "/", "webhoneypot", "/", ">", "_", "." ]
train
https://github.com/rshipp/python-dshield/blob/1b003d0dfac0bc2ee8b86ca5f1a44b765b8cc6e0/dshield.py#L274-L285
rshipp/python-dshield
dshield.py
webhoneypotbytype
def webhoneypotbytype(date, return_format=None): """API data for `Webhoneypot: Attack By Type <https://isc.sans.edu/webhoneypot/types.html>`_. We currently use a set of regular expressions to determine the type of attack used to attack the honeypot. Output is the top 30 attacks for the last month. :param date: string or datetime.date() (required) """ uri = 'webhoneypotbytype' try: uri = '/'.join([uri, date.strftime("%Y-%m-%d")]) except AttributeError: uri = '/'.join([uri, date]) return _get(uri, return_format)
python
def webhoneypotbytype(date, return_format=None): """API data for `Webhoneypot: Attack By Type <https://isc.sans.edu/webhoneypot/types.html>`_. We currently use a set of regular expressions to determine the type of attack used to attack the honeypot. Output is the top 30 attacks for the last month. :param date: string or datetime.date() (required) """ uri = 'webhoneypotbytype' try: uri = '/'.join([uri, date.strftime("%Y-%m-%d")]) except AttributeError: uri = '/'.join([uri, date]) return _get(uri, return_format)
[ "def", "webhoneypotbytype", "(", "date", ",", "return_format", "=", "None", ")", ":", "uri", "=", "'webhoneypotbytype'", "try", ":", "uri", "=", "'/'", ".", "join", "(", "[", "uri", ",", "date", ".", "strftime", "(", "\"%Y-%m-%d\"", ")", "]", ")", "except", "AttributeError", ":", "uri", "=", "'/'", ".", "join", "(", "[", "uri", ",", "date", "]", ")", "return", "_get", "(", "uri", ",", "return_format", ")" ]
API data for `Webhoneypot: Attack By Type <https://isc.sans.edu/webhoneypot/types.html>`_. We currently use a set of regular expressions to determine the type of attack used to attack the honeypot. Output is the top 30 attacks for the last month. :param date: string or datetime.date() (required)
[ "API", "data", "for", "Webhoneypot", ":", "Attack", "By", "Type", "<https", ":", "//", "isc", ".", "sans", ".", "edu", "/", "webhoneypot", "/", "types", ".", "html", ">", "_", ".", "We", "currently", "use", "a", "set", "of", "regular", "expressions", "to", "determine", "the", "type", "of", "attack", "used", "to", "attack", "the", "honeypot", ".", "Output", "is", "the", "top", "30", "attacks", "for", "the", "last", "month", "." ]
train
https://github.com/rshipp/python-dshield/blob/1b003d0dfac0bc2ee8b86ca5f1a44b765b8cc6e0/dshield.py#L287-L300
albertyw/syspath
syspath/syspath.py
_append_path
def _append_path(new_path): # type: (str) -> None """ Given a path string, append it to sys.path """ for path in sys.path: path = os.path.abspath(path) if new_path == path: return sys.path.append(new_path)
python
def _append_path(new_path): # type: (str) -> None """ Given a path string, append it to sys.path """ for path in sys.path: path = os.path.abspath(path) if new_path == path: return sys.path.append(new_path)
[ "def", "_append_path", "(", "new_path", ")", ":", "# type: (str) -> None", "for", "path", "in", "sys", ".", "path", ":", "path", "=", "os", ".", "path", ".", "abspath", "(", "path", ")", "if", "new_path", "==", "path", ":", "return", "sys", ".", "path", ".", "append", "(", "new_path", ")" ]
Given a path string, append it to sys.path
[ "Given", "a", "path", "string", "append", "it", "to", "sys", ".", "path" ]
train
https://github.com/albertyw/syspath/blob/af219aecfecb1ef3130165121dcad6d2e1a269b7/syspath/syspath.py#L6-L12
albertyw/syspath
syspath/syspath.py
_caller_path
def _caller_path(index): # type: (int) -> str """ Get the caller's file path, by the index of the stack, does not work when the caller is stdin through a CLI python """ module = None stack = inspect.stack() while not module: if index >= len(stack): raise RuntimeError("Cannot find import path") frame = stack[index] module = inspect.getmodule(frame[0]) index += 1 filename = module.__file__ path = os.path.dirname(os.path.realpath(filename)) return path
python
def _caller_path(index): # type: (int) -> str """ Get the caller's file path, by the index of the stack, does not work when the caller is stdin through a CLI python """ module = None stack = inspect.stack() while not module: if index >= len(stack): raise RuntimeError("Cannot find import path") frame = stack[index] module = inspect.getmodule(frame[0]) index += 1 filename = module.__file__ path = os.path.dirname(os.path.realpath(filename)) return path
[ "def", "_caller_path", "(", "index", ")", ":", "# type: (int) -> str", "module", "=", "None", "stack", "=", "inspect", ".", "stack", "(", ")", "while", "not", "module", ":", "if", "index", ">=", "len", "(", "stack", ")", ":", "raise", "RuntimeError", "(", "\"Cannot find import path\"", ")", "frame", "=", "stack", "[", "index", "]", "module", "=", "inspect", ".", "getmodule", "(", "frame", "[", "0", "]", ")", "index", "+=", "1", "filename", "=", "module", ".", "__file__", "path", "=", "os", ".", "path", ".", "dirname", "(", "os", ".", "path", ".", "realpath", "(", "filename", ")", ")", "return", "path" ]
Get the caller's file path, by the index of the stack, does not work when the caller is stdin through a CLI python
[ "Get", "the", "caller", "s", "file", "path", "by", "the", "index", "of", "the", "stack", "does", "not", "work", "when", "the", "caller", "is", "stdin", "through", "a", "CLI", "python" ]
train
https://github.com/albertyw/syspath/blob/af219aecfecb1ef3130165121dcad6d2e1a269b7/syspath/syspath.py#L15-L30
albertyw/syspath
syspath/syspath.py
get_current_path
def get_current_path(index=2): # type: (int) -> str """ Get the caller's path to sys.path If the caller is a CLI through stdin, the current working directory is used """ try: path = _caller_path(index) except RuntimeError: path = os.getcwd() return path
python
def get_current_path(index=2): # type: (int) -> str """ Get the caller's path to sys.path If the caller is a CLI through stdin, the current working directory is used """ try: path = _caller_path(index) except RuntimeError: path = os.getcwd() return path
[ "def", "get_current_path", "(", "index", "=", "2", ")", ":", "# type: (int) -> str", "try", ":", "path", "=", "_caller_path", "(", "index", ")", "except", "RuntimeError", ":", "path", "=", "os", ".", "getcwd", "(", ")", "return", "path" ]
Get the caller's path to sys.path If the caller is a CLI through stdin, the current working directory is used
[ "Get", "the", "caller", "s", "path", "to", "sys", ".", "path", "If", "the", "caller", "is", "a", "CLI", "through", "stdin", "the", "current", "working", "directory", "is", "used" ]
train
https://github.com/albertyw/syspath/blob/af219aecfecb1ef3130165121dcad6d2e1a269b7/syspath/syspath.py#L33-L42
albertyw/syspath
syspath/syspath.py
get_git_root
def get_git_root(index=3): # type: (int) -> str """ Get the path of the git root directory of the caller's file Raises a RuntimeError if a git repository cannot be found """ path = get_current_path(index=index) while True: git_path = os.path.join(path, '.git') if os.path.isdir(git_path): return path if os.path.dirname(path) == path: raise RuntimeError("Cannot find git root") path = os.path.split(path)[0]
python
def get_git_root(index=3): # type: (int) -> str """ Get the path of the git root directory of the caller's file Raises a RuntimeError if a git repository cannot be found """ path = get_current_path(index=index) while True: git_path = os.path.join(path, '.git') if os.path.isdir(git_path): return path if os.path.dirname(path) == path: raise RuntimeError("Cannot find git root") path = os.path.split(path)[0]
[ "def", "get_git_root", "(", "index", "=", "3", ")", ":", "# type: (int) -> str", "path", "=", "get_current_path", "(", "index", "=", "index", ")", "while", "True", ":", "git_path", "=", "os", ".", "path", ".", "join", "(", "path", ",", "'.git'", ")", "if", "os", ".", "path", ".", "isdir", "(", "git_path", ")", ":", "return", "path", "if", "os", ".", "path", ".", "dirname", "(", "path", ")", "==", "path", ":", "raise", "RuntimeError", "(", "\"Cannot find git root\"", ")", "path", "=", "os", ".", "path", ".", "split", "(", "path", ")", "[", "0", "]" ]
Get the path of the git root directory of the caller's file Raises a RuntimeError if a git repository cannot be found
[ "Get", "the", "path", "of", "the", "git", "root", "directory", "of", "the", "caller", "s", "file", "Raises", "a", "RuntimeError", "if", "a", "git", "repository", "cannot", "be", "found" ]
train
https://github.com/albertyw/syspath/blob/af219aecfecb1ef3130165121dcad6d2e1a269b7/syspath/syspath.py#L55-L67
albertyw/syspath
syspath/syspath.py
get_parent_path
def get_parent_path(index=2): # type: (int) -> str """ Get the caller's parent path to sys.path If the caller is a CLI through stdin, the parent of the current working directory is used """ try: path = _caller_path(index) except RuntimeError: path = os.getcwd() path = os.path.abspath(os.path.join(path, os.pardir)) return path
python
def get_parent_path(index=2): # type: (int) -> str """ Get the caller's parent path to sys.path If the caller is a CLI through stdin, the parent of the current working directory is used """ try: path = _caller_path(index) except RuntimeError: path = os.getcwd() path = os.path.abspath(os.path.join(path, os.pardir)) return path
[ "def", "get_parent_path", "(", "index", "=", "2", ")", ":", "# type: (int) -> str", "try", ":", "path", "=", "_caller_path", "(", "index", ")", "except", "RuntimeError", ":", "path", "=", "os", ".", "getcwd", "(", ")", "path", "=", "os", ".", "path", ".", "abspath", "(", "os", ".", "path", ".", "join", "(", "path", ",", "os", ".", "pardir", ")", ")", "return", "path" ]
Get the caller's parent path to sys.path If the caller is a CLI through stdin, the parent of the current working directory is used
[ "Get", "the", "caller", "s", "parent", "path", "to", "sys", ".", "path", "If", "the", "caller", "is", "a", "CLI", "through", "stdin", "the", "parent", "of", "the", "current", "working", "directory", "is", "used" ]
train
https://github.com/albertyw/syspath/blob/af219aecfecb1ef3130165121dcad6d2e1a269b7/syspath/syspath.py#L80-L91
oscarlazoarjona/fast
build/lib/fast/rk4.py
write_rk4
def write_rk4(path,name,laser,omega,gamma,r,Lij,states=None,verbose=1): r""" This function writes the Fortran code needed to calculate the time evolution of the density matrix elements `\rho_{ij}` using the Runge-Kutta method of order 4. INPUT: - ``path`` - A string with the working directory where all files will be stored. It must end with ``/``. - ``name`` - A string with the name of the experiment. All files produced will begin with this name. - ``laser`` - A list of Laser objects (see the Laser class). - ``omega`` - A matrix or list of lists containing the frequency differences `\omega_{ij}`. - ``gamma`` - A matrix or list of lists containing the spontaneous decay frequencies `\gamma_{ij}`. - ``r`` - A list of three matrices or lists of lists containing the components of the position operator `r_{-1ij},r_{0ij},r_{1ij}`. - ``Lij`` - A list with elements of the form ``[i,j,[l1,l2,...]]`` representing the sets `L_{ij}` of which lasers excite wich transitions. It does not need to contain an element for all ``i,j`` pairs, but only those which have a laser that excites them. - ``Omega`` - A floating point number indicating the frequency scale for the equations. The frequencies ``omega`` and ``gamma`` are divided by this number. If ``None`` the equations and the input are taken in SI units. OUTPUT: - A file ``name.f90`` is created in ``path``. """ global omega_rescaled t0=time() Ne=len(omega[0]) Nl=len(laser) if states==None: states=range(1,Ne+1) #We make some checks for i in range(Ne): for j in range(Ne): b1=not ('.' in str(omega[i][j]) or 'e' in str(omega[i][j])) if b1: raise ValueError,'omega must be composed of floating point numbers.' b2=not ('.' in str(gamma[i][j]) or 'e' in str(gamma[i][j])) if b2: raise ValueError,'gamma must be composed of floating point numbers.' #We rescale the frequencies as requested. #~ if Omega != None: #~ omega_rescaled=[[omega[i][j]/Omega for j in range(Ne)] for i in range(Ne)] #~ #gamma=[[gamma[i][j]/Omega for j in range(Ne)] for i in range(Ne)] #~ else: #~ omega_rescaled=omega[:] omega_rescaled=omega[:] #We determine wether it is possible to eliminate explicit time-dependance theta=find_phase_transformation(Ne,Nl,r,Lij) #We find the detunings if required #We construct the correspondence i <-> I between degenerate and non-degenerate indices. i_d,I_nd,Nnd=calculate_iI_correspondence(omega) #We get wich transitions each laser induces detunings,detuningsij=laser_detunings(Lij,Nl,i_d,I_nd,Nnd) #We get how many transitions each laser induces detuning_indices=[len(detunings[i]) for i in range(Nl)] #The number of detunings Nd=sum([len(detunings[l]) for l in range(Nl)]) combinations=detuning_combinations(detuning_indices) code0='''program evolution_rk4 implicit none complex*16, dimension('''+str(Ne*(Ne+1)/2-1)+') :: x,k1,k2,k3,k4\n' code0+=''' real*8 :: dt,t,ddelta,delta,delta0 integer :: i,j,n,ldelta,ndelta,detuning_index,n_aprox,n_mod logical :: print_steps,run_spectrum\n''' code0+=' real*8, dimension('+str(Nl)+') :: E0,detuning_knob\n' code0+=' real*8, dimension('+str(Nd)+') :: detuning\n\n' code0+=" open(unit=1,file='"+path+name+".dat',status='unknown')\n\n" code0+=' n_aprox=1500\n' code0+=' !We load the parameters\n' code0+=" open(unit=2,file='"+path+name+"_params.dat',status='unknown')\n" code0+=''' read(2,*) n read(2,*) dt read(2,*) print_steps read(2,*) x read(2,*) E0\n''' code0+=' read(2,*) detuning_knob\n' code0+=' read(2,*) run_spectrum\n\n' code0+=''' if (run_spectrum) then read(2,*) ldelta read(2,*) ndelta read(2,*) ddelta close(2) delta0=detuning_knob(ldelta) n_mod=ndelta/n_aprox else ldelta=1; ndelta=1; ddelta=0; delta=0 close(2) n_mod=n/n_aprox end if if (n_mod==0) n_mod=1\n\n\n''' #We add the code to caculate all the initial detunings for each laser. code0+=' !We calculate the initial detunings.\n' #We find the minimal frequency corresponding to each laser. omega_min,omega_min_indices=find_omega_min(omega_rescaled,Nl,detuningsij,i_d,I_nd) det_index=1 for l in range(Nl): omega0=omega_min[l] for p in detuningsij[l]: code0+=' detuning('+str(det_index)+')=' code0+=format_double(omega0-omega_rescaled[p[0]][p[1]])+'+detuning_knob('+str(l+1)+')\n' det_index+=1 code0+='\n' code0+=''' t=0 if (.not. run_spectrum) WRITE(1,*) t,real(x),imag(x('''+str(Ne)+''':))\n''' code0+=''' !We start the detuning variation\n''' code0+=' delta=detuning_knob(ldelta)\n' code0+=''' do j=1,ndelta !We run the Runge Kutta method t=0.0 do i=1,n-1\n''' code0+=' call f(x , t , k1, E0, detuning, detuning_knob)\n' code0+=' call f(x+0.5*k1*dt, t+dt*0.5, k2, E0, detuning, detuning_knob)\n' code0+=' call f(x+0.5*k2*dt, t+dt*0.5, k3, E0, detuning, detuning_knob)\n' code0+=' call f(x +k3*dt, t+dt , k4, E0, detuning, detuning_knob)\n' code0+=''' x= x+(k1+2*k2+2*k3+k4)*dt/6 if (print_steps.and. .not. run_spectrum) print*,'t=',t,'delta=',delta t= t+ dt if (isnan(real(x(1)))) stop 1 if (.not. run_spectrum .and. mod(i,n_mod)==0) WRITE(1,*) t,real(x),imag(x('''+str(Ne)+''':)) end do if (print_steps) print*, 'delta=',delta,'percentage=',100*(delta-delta0)/(ddelta*ndelta) !We recalculate the detunings if (run_spectrum) then if (mod(j,n_mod)==0) WRITE(1,*) delta,real(x),imag(x('''+str(Ne)+''':)) delta=delta+ddelta detuning_knob(ldelta)=detuning_knob(ldelta)+ddelta\n''' #We add the code to caculate all detunings for each laser #This way of assigining a global index ll to the detunings ammounts to # ll= number_of_previous_detunings # + number_of_detuning_ordered_by_row_and_from_left_to_right_column #like this #-> #-> -> #-> -> -> #for each l #We find the minimal frequency corresponding to each laser omega_min,omega_min_indices=find_omega_min(omega_rescaled,Nl,detuningsij,i_d,I_nd) det_index=1 for l in range(Nl): omega0=omega_min[l] code0+=' if (ldelta=='+str(l+1)+') then\n' for p in detuningsij[l]: code0+=' detuning('+str(det_index)+')=detuning('+str(det_index)+')' #code0+='+('+str(omega0-omega_rescaled[p[0]][p[1]])+'+ddelta\n' code0+='+ddelta\n' det_index+=1 code0+=' end if\n' code0+=''' end if end do close(1) end program\n\n''' code0+='subroutine f(x,t,y, E0, detuning,detuning_knob)\n' code0+=''' implicit none real*8, intent(in) :: t\n''' code0+=' complex*16, dimension('+str(Ne*(Ne+1)/2-1)+'), intent(in) :: x\n' code0+=' complex*16, dimension('+str(Ne*(Ne+1)/2-1)+'), intent(out) :: y\n' code0+=' real*8, dimension('+str(Nl)+'), intent(in) :: E0,detuning_knob\n' code0+=' real*8, dimension('+str(Nd)+'), intent(in) :: detuning\n\n' code0+=' complex*16 :: I,fact,aux\n' code0+=' real*8 :: rho11\n\n' code0+=' I=(0,1D0)\n' #We establish the scaling of the equations #~ if Omega==None: #~ h =1.054571726e-34; e=1.602176565e-19 #~ code0+=' fact=I*'+str(e/h)+'\n' #~ else: #~ #code0+=' fact=I*'+str(float(Omega/sqrt(2)))+'\n' #~ code0+=' fact=I*'+str(float(1/sqrt(2)))+'\n' #~ #code0+=' fact=I*'+str(float(1/(sqrt(2)*Omega)))+'\n' code0+=' fact=I*'+format_double(float(1/sqrt(2)))+'\n' #We give the code to calculate rho11 code0+=' rho11=1\n' for i in range(1,Ne): code0+=' rho11=rho11 -x('+str(i)+')\n' code0+='\n\n' #################################################################### #We produce the code for the first order equations. #################################################################### if len(theta)>0: code='' for mu in range(1,Ne*(Ne+1)/2): i,j,s=IJ(mu,Ne) #print 'ecuacion mu=',mu,',i,j=',i,j eqmu=' y('+str(mu)+')= 0\n' #################################################################### #We add the terms associated with the effective hamiltonian #other than those associated with the phase transformation. for k in range(1,Ne+1): #Case 1 if k>=j: for l in Lij[i-1][k-1]: if k>i: #print 'E0^',l,-1,'r',i,k,'rho',k,j,'case 1.1' eqmu+=add_line(Ne,mu,'+',laser,l,-1, r,i,k, k,j) elif k<i: #print 'E0^',l, 1,'r',i,k,'rho',k,j,'case 1.2' eqmu+=add_line(Ne,mu,'+',laser,l, 1, r,i,k, k,j) #Case 2 elif k<j: for l in Lij[i-1][k-1]: if k>i: #print 'E0^',l,-1,'r',i,k,'rhoa',j,k,'case 2.1' eqmu+=add_line(Ne,mu,'+',laser,l,-1, r,i,k, j,k,True) elif k<i: #print 'E0^',l, 1,'r',i,k,'rhoa',j,k,'case 2.2' eqmu+=add_line(Ne,mu,'+',laser,l, 1, r,i,k, j,k,True) #Case 3 if k<=i: for l in Lij[k-1][j-1]: if k<j: #print 'E0^',l,-1,'r',k,j,'rho',i,k,'case 3.1' eqmu+=add_line(Ne,mu,'-',laser,l,-1, r,k,j, i,k) elif k>j: #print 'E0^',l, 1,'r',k,j,'rho',i,k,'case 3.2' eqmu+=add_line(Ne,mu,'-',laser,l, 1, r,k,j, i,k) #Case 4 elif k>i: for l in Lij[k-1][j-1]: if k<j: #print 'E0^',l,-1,'r',k,j,'rhoa',k,i,'case 4.1' eqmu+=add_line(Ne,mu,'-',laser,l,-1, r,k,j, k,i,True) elif k>j: #print 'E0^',l, 1,'r',k,j,'rhoa',k,i,'case 4.2' eqmu+=add_line(Ne,mu,'-',laser,l, 1, r,k,j, k,i,True) eqmu+=' y('+str(mu)+')=y('+str(mu)+')*fact\n' #################################################################### #We add the terms associated with the phase transformation. extra=Theta(i,j,theta,omega_rescaled,omega_min,detunings,detuningsij, combinations,detuning_indices,Lij,i_d,I_nd,Nnd, verbose=verbose,states=states) if extra!='': eqmu+=' y('+str(mu)+')=y('+str(mu)+') + I*('+extra+')*x('+str(mu)+')\n' #################################################################### #~ if i==j: #~ for k in range(1,Ne+1): #~ if k < i: #~ muii=Mu(i,i,s=1,N=Ne) #~ eqmu+=' y('+str(mu)+')= y('+str(mu)+') - ('+format_double(gamma[i-1][k-1])+')*x('+str(muii)+')\n' #~ elif k > i: #~ mukk=Mu(k,k,s=1,N=Ne) #~ eqmu+=' y('+str(mu)+')= y('+str(mu)+') - ('+format_double(gamma[i-1][k-1])+')*x('+str(mukk)+')\n' #~ eqmu+='\n' #~ else: #~ eqmu+=' y('+str(mu)+')= y('+str(mu)+') - ('+format_double(gamma[i-1][j-1]/2)+')*x('+str(mu)+')\n' #~ #################################################################### code+=eqmu+'\n' #We add the terms associated with spontaneous decay. #First for populations. for i in range(2,Ne+1): mu=Mu(i,i,1,Ne) for k in range(1,Ne+1): gams=0 if k<i: gams+=gamma[i-1][k-1] elif k>i: nu=Mu(k,k,1,Ne) ga=gamma[i-1][k-1] if ga != 0: code+=' y('+str(mu)+')=y('+str(mu)+')' code+='-('+format_double(ga)+')*x('+str(nu)+')\n' if gams!=0: code+=' y('+str(mu)+')=y('+str(mu)+')' code+='-('+format_double(gams)+')*x('+str(mu)+')\n' #And now for coherences for i in range(1,Ne+1): for j in range(1,i): gams=gamma[i-1][j-1]/2 if gams!=0: for a in range(i+1,Ne+1): mu=Mu(a,i,+1,Ne) code+=' y('+str(mu)+')=y('+str(mu)+')' code+='-('+format_double(gams)+')*x('+str(mu)+')\n' #~ mu=Mu(a,i,-1,Ne) #~ code+=' y('+str(mu)+')=y('+str(mu)+')' #~ code+='-('+format_double(gams)+')*x('+str(mu)+')\n' for b in range(1,i): mu=Mu(i,b,+1,Ne) code+=' y('+str(mu)+')=y('+str(mu)+')' code+='-('+format_double(gams)+')*x('+str(mu)+')\n' #~ mu=Mu(i,b,-1,Ne) #~ code+=' y('+str(mu)+')=y('+str(mu)+')' #~ code+='-('+format_double(gams)+')*x('+str(mu)+')\n' #################################################################### #################################################################### #################################################################### #code+=' y=y/'+str(Omega)+'\n' f=file(path+name+'.f90','w') code=code0+code+'end subroutine\n' f.write(code) f.close() return time()-t0 else: print 'There was no phase transformation capable of eliminating explicit time dependance.'
python
def write_rk4(path,name,laser,omega,gamma,r,Lij,states=None,verbose=1): r""" This function writes the Fortran code needed to calculate the time evolution of the density matrix elements `\rho_{ij}` using the Runge-Kutta method of order 4. INPUT: - ``path`` - A string with the working directory where all files will be stored. It must end with ``/``. - ``name`` - A string with the name of the experiment. All files produced will begin with this name. - ``laser`` - A list of Laser objects (see the Laser class). - ``omega`` - A matrix or list of lists containing the frequency differences `\omega_{ij}`. - ``gamma`` - A matrix or list of lists containing the spontaneous decay frequencies `\gamma_{ij}`. - ``r`` - A list of three matrices or lists of lists containing the components of the position operator `r_{-1ij},r_{0ij},r_{1ij}`. - ``Lij`` - A list with elements of the form ``[i,j,[l1,l2,...]]`` representing the sets `L_{ij}` of which lasers excite wich transitions. It does not need to contain an element for all ``i,j`` pairs, but only those which have a laser that excites them. - ``Omega`` - A floating point number indicating the frequency scale for the equations. The frequencies ``omega`` and ``gamma`` are divided by this number. If ``None`` the equations and the input are taken in SI units. OUTPUT: - A file ``name.f90`` is created in ``path``. """ global omega_rescaled t0=time() Ne=len(omega[0]) Nl=len(laser) if states==None: states=range(1,Ne+1) #We make some checks for i in range(Ne): for j in range(Ne): b1=not ('.' in str(omega[i][j]) or 'e' in str(omega[i][j])) if b1: raise ValueError,'omega must be composed of floating point numbers.' b2=not ('.' in str(gamma[i][j]) or 'e' in str(gamma[i][j])) if b2: raise ValueError,'gamma must be composed of floating point numbers.' #We rescale the frequencies as requested. #~ if Omega != None: #~ omega_rescaled=[[omega[i][j]/Omega for j in range(Ne)] for i in range(Ne)] #~ #gamma=[[gamma[i][j]/Omega for j in range(Ne)] for i in range(Ne)] #~ else: #~ omega_rescaled=omega[:] omega_rescaled=omega[:] #We determine wether it is possible to eliminate explicit time-dependance theta=find_phase_transformation(Ne,Nl,r,Lij) #We find the detunings if required #We construct the correspondence i <-> I between degenerate and non-degenerate indices. i_d,I_nd,Nnd=calculate_iI_correspondence(omega) #We get wich transitions each laser induces detunings,detuningsij=laser_detunings(Lij,Nl,i_d,I_nd,Nnd) #We get how many transitions each laser induces detuning_indices=[len(detunings[i]) for i in range(Nl)] #The number of detunings Nd=sum([len(detunings[l]) for l in range(Nl)]) combinations=detuning_combinations(detuning_indices) code0='''program evolution_rk4 implicit none complex*16, dimension('''+str(Ne*(Ne+1)/2-1)+') :: x,k1,k2,k3,k4\n' code0+=''' real*8 :: dt,t,ddelta,delta,delta0 integer :: i,j,n,ldelta,ndelta,detuning_index,n_aprox,n_mod logical :: print_steps,run_spectrum\n''' code0+=' real*8, dimension('+str(Nl)+') :: E0,detuning_knob\n' code0+=' real*8, dimension('+str(Nd)+') :: detuning\n\n' code0+=" open(unit=1,file='"+path+name+".dat',status='unknown')\n\n" code0+=' n_aprox=1500\n' code0+=' !We load the parameters\n' code0+=" open(unit=2,file='"+path+name+"_params.dat',status='unknown')\n" code0+=''' read(2,*) n read(2,*) dt read(2,*) print_steps read(2,*) x read(2,*) E0\n''' code0+=' read(2,*) detuning_knob\n' code0+=' read(2,*) run_spectrum\n\n' code0+=''' if (run_spectrum) then read(2,*) ldelta read(2,*) ndelta read(2,*) ddelta close(2) delta0=detuning_knob(ldelta) n_mod=ndelta/n_aprox else ldelta=1; ndelta=1; ddelta=0; delta=0 close(2) n_mod=n/n_aprox end if if (n_mod==0) n_mod=1\n\n\n''' #We add the code to caculate all the initial detunings for each laser. code0+=' !We calculate the initial detunings.\n' #We find the minimal frequency corresponding to each laser. omega_min,omega_min_indices=find_omega_min(omega_rescaled,Nl,detuningsij,i_d,I_nd) det_index=1 for l in range(Nl): omega0=omega_min[l] for p in detuningsij[l]: code0+=' detuning('+str(det_index)+')=' code0+=format_double(omega0-omega_rescaled[p[0]][p[1]])+'+detuning_knob('+str(l+1)+')\n' det_index+=1 code0+='\n' code0+=''' t=0 if (.not. run_spectrum) WRITE(1,*) t,real(x),imag(x('''+str(Ne)+''':))\n''' code0+=''' !We start the detuning variation\n''' code0+=' delta=detuning_knob(ldelta)\n' code0+=''' do j=1,ndelta !We run the Runge Kutta method t=0.0 do i=1,n-1\n''' code0+=' call f(x , t , k1, E0, detuning, detuning_knob)\n' code0+=' call f(x+0.5*k1*dt, t+dt*0.5, k2, E0, detuning, detuning_knob)\n' code0+=' call f(x+0.5*k2*dt, t+dt*0.5, k3, E0, detuning, detuning_knob)\n' code0+=' call f(x +k3*dt, t+dt , k4, E0, detuning, detuning_knob)\n' code0+=''' x= x+(k1+2*k2+2*k3+k4)*dt/6 if (print_steps.and. .not. run_spectrum) print*,'t=',t,'delta=',delta t= t+ dt if (isnan(real(x(1)))) stop 1 if (.not. run_spectrum .and. mod(i,n_mod)==0) WRITE(1,*) t,real(x),imag(x('''+str(Ne)+''':)) end do if (print_steps) print*, 'delta=',delta,'percentage=',100*(delta-delta0)/(ddelta*ndelta) !We recalculate the detunings if (run_spectrum) then if (mod(j,n_mod)==0) WRITE(1,*) delta,real(x),imag(x('''+str(Ne)+''':)) delta=delta+ddelta detuning_knob(ldelta)=detuning_knob(ldelta)+ddelta\n''' #We add the code to caculate all detunings for each laser #This way of assigining a global index ll to the detunings ammounts to # ll= number_of_previous_detunings # + number_of_detuning_ordered_by_row_and_from_left_to_right_column #like this #-> #-> -> #-> -> -> #for each l #We find the minimal frequency corresponding to each laser omega_min,omega_min_indices=find_omega_min(omega_rescaled,Nl,detuningsij,i_d,I_nd) det_index=1 for l in range(Nl): omega0=omega_min[l] code0+=' if (ldelta=='+str(l+1)+') then\n' for p in detuningsij[l]: code0+=' detuning('+str(det_index)+')=detuning('+str(det_index)+')' #code0+='+('+str(omega0-omega_rescaled[p[0]][p[1]])+'+ddelta\n' code0+='+ddelta\n' det_index+=1 code0+=' end if\n' code0+=''' end if end do close(1) end program\n\n''' code0+='subroutine f(x,t,y, E0, detuning,detuning_knob)\n' code0+=''' implicit none real*8, intent(in) :: t\n''' code0+=' complex*16, dimension('+str(Ne*(Ne+1)/2-1)+'), intent(in) :: x\n' code0+=' complex*16, dimension('+str(Ne*(Ne+1)/2-1)+'), intent(out) :: y\n' code0+=' real*8, dimension('+str(Nl)+'), intent(in) :: E0,detuning_knob\n' code0+=' real*8, dimension('+str(Nd)+'), intent(in) :: detuning\n\n' code0+=' complex*16 :: I,fact,aux\n' code0+=' real*8 :: rho11\n\n' code0+=' I=(0,1D0)\n' #We establish the scaling of the equations #~ if Omega==None: #~ h =1.054571726e-34; e=1.602176565e-19 #~ code0+=' fact=I*'+str(e/h)+'\n' #~ else: #~ #code0+=' fact=I*'+str(float(Omega/sqrt(2)))+'\n' #~ code0+=' fact=I*'+str(float(1/sqrt(2)))+'\n' #~ #code0+=' fact=I*'+str(float(1/(sqrt(2)*Omega)))+'\n' code0+=' fact=I*'+format_double(float(1/sqrt(2)))+'\n' #We give the code to calculate rho11 code0+=' rho11=1\n' for i in range(1,Ne): code0+=' rho11=rho11 -x('+str(i)+')\n' code0+='\n\n' #################################################################### #We produce the code for the first order equations. #################################################################### if len(theta)>0: code='' for mu in range(1,Ne*(Ne+1)/2): i,j,s=IJ(mu,Ne) #print 'ecuacion mu=',mu,',i,j=',i,j eqmu=' y('+str(mu)+')= 0\n' #################################################################### #We add the terms associated with the effective hamiltonian #other than those associated with the phase transformation. for k in range(1,Ne+1): #Case 1 if k>=j: for l in Lij[i-1][k-1]: if k>i: #print 'E0^',l,-1,'r',i,k,'rho',k,j,'case 1.1' eqmu+=add_line(Ne,mu,'+',laser,l,-1, r,i,k, k,j) elif k<i: #print 'E0^',l, 1,'r',i,k,'rho',k,j,'case 1.2' eqmu+=add_line(Ne,mu,'+',laser,l, 1, r,i,k, k,j) #Case 2 elif k<j: for l in Lij[i-1][k-1]: if k>i: #print 'E0^',l,-1,'r',i,k,'rhoa',j,k,'case 2.1' eqmu+=add_line(Ne,mu,'+',laser,l,-1, r,i,k, j,k,True) elif k<i: #print 'E0^',l, 1,'r',i,k,'rhoa',j,k,'case 2.2' eqmu+=add_line(Ne,mu,'+',laser,l, 1, r,i,k, j,k,True) #Case 3 if k<=i: for l in Lij[k-1][j-1]: if k<j: #print 'E0^',l,-1,'r',k,j,'rho',i,k,'case 3.1' eqmu+=add_line(Ne,mu,'-',laser,l,-1, r,k,j, i,k) elif k>j: #print 'E0^',l, 1,'r',k,j,'rho',i,k,'case 3.2' eqmu+=add_line(Ne,mu,'-',laser,l, 1, r,k,j, i,k) #Case 4 elif k>i: for l in Lij[k-1][j-1]: if k<j: #print 'E0^',l,-1,'r',k,j,'rhoa',k,i,'case 4.1' eqmu+=add_line(Ne,mu,'-',laser,l,-1, r,k,j, k,i,True) elif k>j: #print 'E0^',l, 1,'r',k,j,'rhoa',k,i,'case 4.2' eqmu+=add_line(Ne,mu,'-',laser,l, 1, r,k,j, k,i,True) eqmu+=' y('+str(mu)+')=y('+str(mu)+')*fact\n' #################################################################### #We add the terms associated with the phase transformation. extra=Theta(i,j,theta,omega_rescaled,omega_min,detunings,detuningsij, combinations,detuning_indices,Lij,i_d,I_nd,Nnd, verbose=verbose,states=states) if extra!='': eqmu+=' y('+str(mu)+')=y('+str(mu)+') + I*('+extra+')*x('+str(mu)+')\n' #################################################################### #~ if i==j: #~ for k in range(1,Ne+1): #~ if k < i: #~ muii=Mu(i,i,s=1,N=Ne) #~ eqmu+=' y('+str(mu)+')= y('+str(mu)+') - ('+format_double(gamma[i-1][k-1])+')*x('+str(muii)+')\n' #~ elif k > i: #~ mukk=Mu(k,k,s=1,N=Ne) #~ eqmu+=' y('+str(mu)+')= y('+str(mu)+') - ('+format_double(gamma[i-1][k-1])+')*x('+str(mukk)+')\n' #~ eqmu+='\n' #~ else: #~ eqmu+=' y('+str(mu)+')= y('+str(mu)+') - ('+format_double(gamma[i-1][j-1]/2)+')*x('+str(mu)+')\n' #~ #################################################################### code+=eqmu+'\n' #We add the terms associated with spontaneous decay. #First for populations. for i in range(2,Ne+1): mu=Mu(i,i,1,Ne) for k in range(1,Ne+1): gams=0 if k<i: gams+=gamma[i-1][k-1] elif k>i: nu=Mu(k,k,1,Ne) ga=gamma[i-1][k-1] if ga != 0: code+=' y('+str(mu)+')=y('+str(mu)+')' code+='-('+format_double(ga)+')*x('+str(nu)+')\n' if gams!=0: code+=' y('+str(mu)+')=y('+str(mu)+')' code+='-('+format_double(gams)+')*x('+str(mu)+')\n' #And now for coherences for i in range(1,Ne+1): for j in range(1,i): gams=gamma[i-1][j-1]/2 if gams!=0: for a in range(i+1,Ne+1): mu=Mu(a,i,+1,Ne) code+=' y('+str(mu)+')=y('+str(mu)+')' code+='-('+format_double(gams)+')*x('+str(mu)+')\n' #~ mu=Mu(a,i,-1,Ne) #~ code+=' y('+str(mu)+')=y('+str(mu)+')' #~ code+='-('+format_double(gams)+')*x('+str(mu)+')\n' for b in range(1,i): mu=Mu(i,b,+1,Ne) code+=' y('+str(mu)+')=y('+str(mu)+')' code+='-('+format_double(gams)+')*x('+str(mu)+')\n' #~ mu=Mu(i,b,-1,Ne) #~ code+=' y('+str(mu)+')=y('+str(mu)+')' #~ code+='-('+format_double(gams)+')*x('+str(mu)+')\n' #################################################################### #################################################################### #################################################################### #code+=' y=y/'+str(Omega)+'\n' f=file(path+name+'.f90','w') code=code0+code+'end subroutine\n' f.write(code) f.close() return time()-t0 else: print 'There was no phase transformation capable of eliminating explicit time dependance.'
[ "def", "write_rk4", "(", "path", ",", "name", ",", "laser", ",", "omega", ",", "gamma", ",", "r", ",", "Lij", ",", "states", "=", "None", ",", "verbose", "=", "1", ")", ":", "global", "omega_rescaled", "t0", "=", "time", "(", ")", "Ne", "=", "len", "(", "omega", "[", "0", "]", ")", "Nl", "=", "len", "(", "laser", ")", "if", "states", "==", "None", ":", "states", "=", "range", "(", "1", ",", "Ne", "+", "1", ")", "#We make some checks", "for", "i", "in", "range", "(", "Ne", ")", ":", "for", "j", "in", "range", "(", "Ne", ")", ":", "b1", "=", "not", "(", "'.'", "in", "str", "(", "omega", "[", "i", "]", "[", "j", "]", ")", "or", "'e'", "in", "str", "(", "omega", "[", "i", "]", "[", "j", "]", ")", ")", "if", "b1", ":", "raise", "ValueError", ",", "'omega must be composed of floating point numbers.'", "b2", "=", "not", "(", "'.'", "in", "str", "(", "gamma", "[", "i", "]", "[", "j", "]", ")", "or", "'e'", "in", "str", "(", "gamma", "[", "i", "]", "[", "j", "]", ")", ")", "if", "b2", ":", "raise", "ValueError", ",", "'gamma must be composed of floating point numbers.'", "#We rescale the frequencies as requested.", "#~ if Omega != None:", "#~ omega_rescaled=[[omega[i][j]/Omega for j in range(Ne)] for i in range(Ne)]", "#~ #gamma=[[gamma[i][j]/Omega for j in range(Ne)] for i in range(Ne)]", "#~ else:", "#~ omega_rescaled=omega[:]", "omega_rescaled", "=", "omega", "[", ":", "]", "#We determine wether it is possible to eliminate explicit time-dependance", "theta", "=", "find_phase_transformation", "(", "Ne", ",", "Nl", ",", "r", ",", "Lij", ")", "#We find the detunings if required", "#We construct the correspondence i <-> I between degenerate and non-degenerate indices.", "i_d", ",", "I_nd", ",", "Nnd", "=", "calculate_iI_correspondence", "(", "omega", ")", "#We get wich transitions each laser induces", "detunings", ",", "detuningsij", "=", "laser_detunings", "(", "Lij", ",", "Nl", ",", "i_d", ",", "I_nd", ",", "Nnd", ")", "#We get how many transitions each laser induces", "detuning_indices", "=", "[", "len", "(", "detunings", "[", "i", "]", ")", "for", "i", "in", "range", "(", "Nl", ")", "]", "#The number of detunings", "Nd", "=", "sum", "(", "[", "len", "(", "detunings", "[", "l", "]", ")", "for", "l", "in", "range", "(", "Nl", ")", "]", ")", "combinations", "=", "detuning_combinations", "(", "detuning_indices", ")", "code0", "=", "'''program evolution_rk4\n\timplicit none\n\tcomplex*16, dimension('''", "+", "str", "(", "Ne", "*", "(", "Ne", "+", "1", ")", "/", "2", "-", "1", ")", "+", "') :: x,k1,k2,k3,k4\\n'", "code0", "+=", "''' real*8 :: dt,t,ddelta,delta,delta0\n\tinteger :: i,j,n,ldelta,ndelta,detuning_index,n_aprox,n_mod\n\n\tlogical :: print_steps,run_spectrum\\n'''", "code0", "+=", "' real*8, dimension('", "+", "str", "(", "Nl", ")", "+", "') :: E0,detuning_knob\\n'", "code0", "+=", "' real*8, dimension('", "+", "str", "(", "Nd", ")", "+", "') :: detuning\\n\\n'", "code0", "+=", "\" open(unit=1,file='\"", "+", "path", "+", "name", "+", "\".dat',status='unknown')\\n\\n\"", "code0", "+=", "' n_aprox=1500\\n'", "code0", "+=", "' !We load the parameters\\n'", "code0", "+=", "\" open(unit=2,file='\"", "+", "path", "+", "name", "+", "\"_params.dat',status='unknown')\\n\"", "code0", "+=", "''' read(2,*) n\n read(2,*) dt\n read(2,*) print_steps\n read(2,*) x\n read(2,*) E0\\n'''", "code0", "+=", "' read(2,*) detuning_knob\\n'", "code0", "+=", "' read(2,*) run_spectrum\\n\\n'", "code0", "+=", "''' if (run_spectrum) then\n\t\tread(2,*) ldelta\n\t\tread(2,*) ndelta\n\t\tread(2,*) ddelta\n\t\tclose(2)\n\t\tdelta0=detuning_knob(ldelta)\n\t\tn_mod=ndelta/n_aprox\n else\n\t\tldelta=1; ndelta=1; ddelta=0; delta=0\n\t\tclose(2)\n\t\tn_mod=n/n_aprox\n end if\n if (n_mod==0) n_mod=1\\n\\n\\n'''", "#We add the code to caculate all the initial detunings for each laser.", "code0", "+=", "'\t!We calculate the initial detunings.\\n'", "#We find the minimal frequency corresponding to each laser.", "omega_min", ",", "omega_min_indices", "=", "find_omega_min", "(", "omega_rescaled", ",", "Nl", ",", "detuningsij", ",", "i_d", ",", "I_nd", ")", "det_index", "=", "1", "for", "l", "in", "range", "(", "Nl", ")", ":", "omega0", "=", "omega_min", "[", "l", "]", "for", "p", "in", "detuningsij", "[", "l", "]", ":", "code0", "+=", "'\tdetuning('", "+", "str", "(", "det_index", ")", "+", "')='", "code0", "+=", "format_double", "(", "omega0", "-", "omega_rescaled", "[", "p", "[", "0", "]", "]", "[", "p", "[", "1", "]", "]", ")", "+", "'+detuning_knob('", "+", "str", "(", "l", "+", "1", ")", "+", "')\\n'", "det_index", "+=", "1", "code0", "+=", "'\\n'", "code0", "+=", "'''\tt=0\n\tif (.not. run_spectrum) WRITE(1,*) t,real(x),imag(x('''", "+", "str", "(", "Ne", ")", "+", "''':))\\n'''", "code0", "+=", "'''\t!We start the detuning variation\\n'''", "code0", "+=", "'\tdelta=detuning_knob(ldelta)\\n'", "code0", "+=", "''' do j=1,ndelta\n\t\t!We run the Runge Kutta method\n\t\tt=0.0\n\t\tdo i=1,n-1\\n'''", "code0", "+=", "' call f(x , t , k1, E0, detuning, detuning_knob)\\n'", "code0", "+=", "' call f(x+0.5*k1*dt, t+dt*0.5, k2, E0, detuning, detuning_knob)\\n'", "code0", "+=", "' call f(x+0.5*k2*dt, t+dt*0.5, k3, E0, detuning, detuning_knob)\\n'", "code0", "+=", "' call f(x +k3*dt, t+dt , k4, E0, detuning, detuning_knob)\\n'", "code0", "+=", "'''\t\t\tx= x+(k1+2*k2+2*k3+k4)*dt/6\n\t\t\tif (print_steps.and. .not. run_spectrum) print*,'t=',t,'delta=',delta\n\t\t\tt= t+ dt\n\t\t\t\n\t\t\tif (isnan(real(x(1)))) stop 1\n\t\t\tif (.not. run_spectrum .and. mod(i,n_mod)==0) WRITE(1,*) t,real(x),imag(x('''", "+", "str", "(", "Ne", ")", "+", "''':))\n\t\tend do\n\t\tif (print_steps) print*, 'delta=',delta,'percentage=',100*(delta-delta0)/(ddelta*ndelta)\n\t\t\n\t\t!We recalculate the detunings\n\t\tif (run_spectrum) then\n\t\t\tif (mod(j,n_mod)==0) WRITE(1,*) delta,real(x),imag(x('''", "+", "str", "(", "Ne", ")", "+", "''':))\n\t\t\tdelta=delta+ddelta\n\t\t\tdetuning_knob(ldelta)=detuning_knob(ldelta)+ddelta\\n'''", "#We add the code to caculate all detunings for each laser", "#This way of assigining a global index ll to the detunings ammounts to", "# ll= number_of_previous_detunings ", "# + number_of_detuning_ordered_by_row_and_from_left_to_right_column", "#like this", "#->", "#-> ->", "#-> -> ->", "#for each l", "#We find the minimal frequency corresponding to each laser\t\t", "omega_min", ",", "omega_min_indices", "=", "find_omega_min", "(", "omega_rescaled", ",", "Nl", ",", "detuningsij", ",", "i_d", ",", "I_nd", ")", "det_index", "=", "1", "for", "l", "in", "range", "(", "Nl", ")", ":", "omega0", "=", "omega_min", "[", "l", "]", "code0", "+=", "'\t\t\tif (ldelta=='", "+", "str", "(", "l", "+", "1", ")", "+", "') then\\n'", "for", "p", "in", "detuningsij", "[", "l", "]", ":", "code0", "+=", "'\t\t\t\tdetuning('", "+", "str", "(", "det_index", ")", "+", "')=detuning('", "+", "str", "(", "det_index", ")", "+", "')'", "#code0+='+('+str(omega0-omega_rescaled[p[0]][p[1]])+'+ddelta\\n'", "code0", "+=", "'+ddelta\\n'", "det_index", "+=", "1", "code0", "+=", "'\t\t\tend if\\n'", "code0", "+=", "'''\t\tend if\n\t\n\t\n\tend do\n\t\n close(1)\n \nend program\\n\\n'''", "code0", "+=", "'subroutine f(x,t,y, E0, detuning,detuning_knob)\\n'", "code0", "+=", "''' implicit none\n real*8, intent(in) :: t\\n'''", "code0", "+=", "' complex*16, dimension('", "+", "str", "(", "Ne", "*", "(", "Ne", "+", "1", ")", "/", "2", "-", "1", ")", "+", "'), intent(in) :: x\\n'", "code0", "+=", "' complex*16, dimension('", "+", "str", "(", "Ne", "*", "(", "Ne", "+", "1", ")", "/", "2", "-", "1", ")", "+", "'), intent(out) :: y\\n'", "code0", "+=", "' real*8, dimension('", "+", "str", "(", "Nl", ")", "+", "'), intent(in) :: E0,detuning_knob\\n'", "code0", "+=", "' real*8, dimension('", "+", "str", "(", "Nd", ")", "+", "'), intent(in) :: detuning\\n\\n'", "code0", "+=", "' complex*16 :: I,fact,aux\\n'", "code0", "+=", "' real*8 :: rho11\\n\\n'", "code0", "+=", "' I=(0,1D0)\\n'", "#We establish the scaling of the equations", "#~ if Omega==None:", "#~ h =1.054571726e-34; e=1.602176565e-19", "#~ code0+=' fact=I*'+str(e/h)+'\\n'", "#~ else:", "#~ #code0+=' fact=I*'+str(float(Omega/sqrt(2)))+'\\n'", "#~ code0+=' fact=I*'+str(float(1/sqrt(2)))+'\\n'", "#~ #code0+=' fact=I*'+str(float(1/(sqrt(2)*Omega)))+'\\n'", "code0", "+=", "' fact=I*'", "+", "format_double", "(", "float", "(", "1", "/", "sqrt", "(", "2", ")", ")", ")", "+", "'\\n'", "#We give the code to calculate rho11", "code0", "+=", "' rho11=1\\n'", "for", "i", "in", "range", "(", "1", ",", "Ne", ")", ":", "code0", "+=", "' rho11=rho11 -x('", "+", "str", "(", "i", ")", "+", "')\\n'", "code0", "+=", "'\\n\\n'", "####################################################################", "#We produce the code for the first order equations.", "####################################################################", "if", "len", "(", "theta", ")", ">", "0", ":", "code", "=", "''", "for", "mu", "in", "range", "(", "1", ",", "Ne", "*", "(", "Ne", "+", "1", ")", "/", "2", ")", ":", "i", ",", "j", ",", "s", "=", "IJ", "(", "mu", ",", "Ne", ")", "#print 'ecuacion mu=',mu,',i,j=',i,j", "eqmu", "=", "' y('", "+", "str", "(", "mu", ")", "+", "')= 0\\n'", "####################################################################", "#We add the terms associated with the effective hamiltonian", "#other than those associated with the phase transformation.", "for", "k", "in", "range", "(", "1", ",", "Ne", "+", "1", ")", ":", "#Case 1", "if", "k", ">=", "j", ":", "for", "l", "in", "Lij", "[", "i", "-", "1", "]", "[", "k", "-", "1", "]", ":", "if", "k", ">", "i", ":", "#print 'E0^',l,-1,'r',i,k,'rho',k,j,'case 1.1'", "eqmu", "+=", "add_line", "(", "Ne", ",", "mu", ",", "'+'", ",", "laser", ",", "l", ",", "-", "1", ",", "r", ",", "i", ",", "k", ",", "k", ",", "j", ")", "elif", "k", "<", "i", ":", "#print 'E0^',l, 1,'r',i,k,'rho',k,j,'case 1.2'", "eqmu", "+=", "add_line", "(", "Ne", ",", "mu", ",", "'+'", ",", "laser", ",", "l", ",", "1", ",", "r", ",", "i", ",", "k", ",", "k", ",", "j", ")", "#Case 2", "elif", "k", "<", "j", ":", "for", "l", "in", "Lij", "[", "i", "-", "1", "]", "[", "k", "-", "1", "]", ":", "if", "k", ">", "i", ":", "#print 'E0^',l,-1,'r',i,k,'rhoa',j,k,'case 2.1'", "eqmu", "+=", "add_line", "(", "Ne", ",", "mu", ",", "'+'", ",", "laser", ",", "l", ",", "-", "1", ",", "r", ",", "i", ",", "k", ",", "j", ",", "k", ",", "True", ")", "elif", "k", "<", "i", ":", "#print 'E0^',l, 1,'r',i,k,'rhoa',j,k,'case 2.2'", "eqmu", "+=", "add_line", "(", "Ne", ",", "mu", ",", "'+'", ",", "laser", ",", "l", ",", "1", ",", "r", ",", "i", ",", "k", ",", "j", ",", "k", ",", "True", ")", "#Case 3", "if", "k", "<=", "i", ":", "for", "l", "in", "Lij", "[", "k", "-", "1", "]", "[", "j", "-", "1", "]", ":", "if", "k", "<", "j", ":", "#print 'E0^',l,-1,'r',k,j,'rho',i,k,'case 3.1'", "eqmu", "+=", "add_line", "(", "Ne", ",", "mu", ",", "'-'", ",", "laser", ",", "l", ",", "-", "1", ",", "r", ",", "k", ",", "j", ",", "i", ",", "k", ")", "elif", "k", ">", "j", ":", "#print 'E0^',l, 1,'r',k,j,'rho',i,k,'case 3.2'", "eqmu", "+=", "add_line", "(", "Ne", ",", "mu", ",", "'-'", ",", "laser", ",", "l", ",", "1", ",", "r", ",", "k", ",", "j", ",", "i", ",", "k", ")", "#Case 4", "elif", "k", ">", "i", ":", "for", "l", "in", "Lij", "[", "k", "-", "1", "]", "[", "j", "-", "1", "]", ":", "if", "k", "<", "j", ":", "#print 'E0^',l,-1,'r',k,j,'rhoa',k,i,'case 4.1'", "eqmu", "+=", "add_line", "(", "Ne", ",", "mu", ",", "'-'", ",", "laser", ",", "l", ",", "-", "1", ",", "r", ",", "k", ",", "j", ",", "k", ",", "i", ",", "True", ")", "elif", "k", ">", "j", ":", "#print 'E0^',l, 1,'r',k,j,'rhoa',k,i,'case 4.2'", "eqmu", "+=", "add_line", "(", "Ne", ",", "mu", ",", "'-'", ",", "laser", ",", "l", ",", "1", ",", "r", ",", "k", ",", "j", ",", "k", ",", "i", ",", "True", ")", "eqmu", "+=", "' y('", "+", "str", "(", "mu", ")", "+", "')=y('", "+", "str", "(", "mu", ")", "+", "')*fact\\n'", "####################################################################", "#We add the terms associated with the phase transformation.", "extra", "=", "Theta", "(", "i", ",", "j", ",", "theta", ",", "omega_rescaled", ",", "omega_min", ",", "detunings", ",", "detuningsij", ",", "combinations", ",", "detuning_indices", ",", "Lij", ",", "i_d", ",", "I_nd", ",", "Nnd", ",", "verbose", "=", "verbose", ",", "states", "=", "states", ")", "if", "extra", "!=", "''", ":", "eqmu", "+=", "' y('", "+", "str", "(", "mu", ")", "+", "')=y('", "+", "str", "(", "mu", ")", "+", "') + I*('", "+", "extra", "+", "')*x('", "+", "str", "(", "mu", ")", "+", "')\\n'", "####################################################################", "#~ if i==j:", "#~ for k in range(1,Ne+1):", "#~ if k < i:", "#~ muii=Mu(i,i,s=1,N=Ne)", "#~ eqmu+=' y('+str(mu)+')= y('+str(mu)+') - ('+format_double(gamma[i-1][k-1])+')*x('+str(muii)+')\\n'", "#~ elif k > i:", "#~ mukk=Mu(k,k,s=1,N=Ne)", "#~ eqmu+=' y('+str(mu)+')= y('+str(mu)+') - ('+format_double(gamma[i-1][k-1])+')*x('+str(mukk)+')\\n'", "#~ eqmu+='\\n'", "#~ else:", "#~ eqmu+=' y('+str(mu)+')= y('+str(mu)+') - ('+format_double(gamma[i-1][j-1]/2)+')*x('+str(mu)+')\\n'", "#~ ", "####################################################################", "code", "+=", "eqmu", "+", "'\\n'", "#We add the terms associated with spontaneous decay.\t\t", "#First for populations.", "for", "i", "in", "range", "(", "2", ",", "Ne", "+", "1", ")", ":", "mu", "=", "Mu", "(", "i", ",", "i", ",", "1", ",", "Ne", ")", "for", "k", "in", "range", "(", "1", ",", "Ne", "+", "1", ")", ":", "gams", "=", "0", "if", "k", "<", "i", ":", "gams", "+=", "gamma", "[", "i", "-", "1", "]", "[", "k", "-", "1", "]", "elif", "k", ">", "i", ":", "nu", "=", "Mu", "(", "k", ",", "k", ",", "1", ",", "Ne", ")", "ga", "=", "gamma", "[", "i", "-", "1", "]", "[", "k", "-", "1", "]", "if", "ga", "!=", "0", ":", "code", "+=", "' y('", "+", "str", "(", "mu", ")", "+", "')=y('", "+", "str", "(", "mu", ")", "+", "')'", "code", "+=", "'-('", "+", "format_double", "(", "ga", ")", "+", "')*x('", "+", "str", "(", "nu", ")", "+", "')\\n'", "if", "gams", "!=", "0", ":", "code", "+=", "' y('", "+", "str", "(", "mu", ")", "+", "')=y('", "+", "str", "(", "mu", ")", "+", "')'", "code", "+=", "'-('", "+", "format_double", "(", "gams", ")", "+", "')*x('", "+", "str", "(", "mu", ")", "+", "')\\n'", "#And now for coherences\t", "for", "i", "in", "range", "(", "1", ",", "Ne", "+", "1", ")", ":", "for", "j", "in", "range", "(", "1", ",", "i", ")", ":", "gams", "=", "gamma", "[", "i", "-", "1", "]", "[", "j", "-", "1", "]", "/", "2", "if", "gams", "!=", "0", ":", "for", "a", "in", "range", "(", "i", "+", "1", ",", "Ne", "+", "1", ")", ":", "mu", "=", "Mu", "(", "a", ",", "i", ",", "+", "1", ",", "Ne", ")", "code", "+=", "' y('", "+", "str", "(", "mu", ")", "+", "')=y('", "+", "str", "(", "mu", ")", "+", "')'", "code", "+=", "'-('", "+", "format_double", "(", "gams", ")", "+", "')*x('", "+", "str", "(", "mu", ")", "+", "')\\n'", "#~ mu=Mu(a,i,-1,Ne)", "#~ code+=' y('+str(mu)+')=y('+str(mu)+')'", "#~ code+='-('+format_double(gams)+')*x('+str(mu)+')\\n'", "for", "b", "in", "range", "(", "1", ",", "i", ")", ":", "mu", "=", "Mu", "(", "i", ",", "b", ",", "+", "1", ",", "Ne", ")", "code", "+=", "' y('", "+", "str", "(", "mu", ")", "+", "')=y('", "+", "str", "(", "mu", ")", "+", "')'", "code", "+=", "'-('", "+", "format_double", "(", "gams", ")", "+", "')*x('", "+", "str", "(", "mu", ")", "+", "')\\n'", "#~ mu=Mu(i,b,-1,Ne)", "#~ code+=' y('+str(mu)+')=y('+str(mu)+')'", "#~ code+='-('+format_double(gams)+')*x('+str(mu)+')\\n'", "####################################################################", "####################################################################", "####################################################################", "#code+=' y=y/'+str(Omega)+'\\n'", "f", "=", "file", "(", "path", "+", "name", "+", "'.f90'", ",", "'w'", ")", "code", "=", "code0", "+", "code", "+", "'end subroutine\\n'", "f", ".", "write", "(", "code", ")", "f", ".", "close", "(", ")", "return", "time", "(", ")", "-", "t0", "else", ":", "print", "'There was no phase transformation capable of eliminating explicit time dependance.'" ]
r""" This function writes the Fortran code needed to calculate the time evolution of the density matrix elements `\rho_{ij}` using the Runge-Kutta method of order 4. INPUT: - ``path`` - A string with the working directory where all files will be stored. It must end with ``/``. - ``name`` - A string with the name of the experiment. All files produced will begin with this name. - ``laser`` - A list of Laser objects (see the Laser class). - ``omega`` - A matrix or list of lists containing the frequency differences `\omega_{ij}`. - ``gamma`` - A matrix or list of lists containing the spontaneous decay frequencies `\gamma_{ij}`. - ``r`` - A list of three matrices or lists of lists containing the components of the position operator `r_{-1ij},r_{0ij},r_{1ij}`. - ``Lij`` - A list with elements of the form ``[i,j,[l1,l2,...]]`` representing the sets `L_{ij}` of which lasers excite wich transitions. It does not need to contain an element for all ``i,j`` pairs, but only those which have a laser that excites them. - ``Omega`` - A floating point number indicating the frequency scale for the equations. The frequencies ``omega`` and ``gamma`` are divided by this number. If ``None`` the equations and the input are taken in SI units. OUTPUT: - A file ``name.f90`` is created in ``path``.
[ "r", "This", "function", "writes", "the", "Fortran", "code", "needed", "to", "calculate", "the", "time", "evolution", "of", "the", "density", "matrix", "elements", "\\", "rho_", "{", "ij", "}", "using", "the", "Runge", "-", "Kutta", "method", "of", "order", "4", "." ]
train
https://github.com/oscarlazoarjona/fast/blob/3e5400672af2a7b7cc616e7f4aa10d7672720222/build/lib/fast/rk4.py#L56-L411
oscarlazoarjona/fast
build/lib/fast/rk4.py
run_rk4
def run_rk4(path,name,E0,laser_frequencies, N_iter,dt,N_states, spectrum_of_laser=None,N_delta=None,frequency_step=None,frequency_end=None, rho0=None,print_steps=False,integrate=False, save_systems=False): """This function runs the Runge-Kutta method compiled in path+name...""" t0=time() params =str(N_iter)+'\n' params+=str(dt)+'\n' #We give the flag on wether to print each time step. if print_steps: params+='.true.\n' else: params+='.false.\n' #We give the initial value of rho N_vars=N_states*(N_states+1)/2-1 if rho0==None: params+=''.join(['(0.0,0.0) ' for i in range(N_vars)]) elif len(rho0)==N_states-1: if sage_included: params+=''.join(['('+str(real(i))+','+str(imag(i))+') ' for i in rho0]) else: params+=''.join(['('+str(i.real)+','+str(i.imag)+') ' for i in rho0]) params+=''.join(['(0.0,0.0) ' for i in range(N_vars-N_states+1)]) elif len(rho0)==N_vars: params+=''.join(['('+str(real(i))+','+str(imag(i))+') ' for i in rho0]) params+='\n' #We give the amplitude of the electrical fields. params+=''.join([str(i)+' ' for i in E0])+'\n' #We give the detuning of each laser (taken from the lowest frequency transition). params+=''.join([str(i)+' ' for i in laser_frequencies])+'\n' #We give the flag on wether to calculate spectrums or time evolution. if spectrum_of_laser==None: params+='.false.' else: if frequency_end !=None: if frequency_step !=None: raise ValueError,'both frequency_end and frequency_step were specified.' if N_delta==1: frequency_step=0.0 else: frequency_step=(frequency_end-laser_frequencies[spectrum_of_laser-1])/(N_delta-1) #frequency_step=frequency_end params+='.true.\n' params+=str(spectrum_of_laser)+'\n' params+=str(N_delta)+'\n' params+=str(frequency_step) #print params f=file(path+name+'_params.dat','w') f.write(params) f.close() os.system(path+name) return time()-t0
python
def run_rk4(path,name,E0,laser_frequencies, N_iter,dt,N_states, spectrum_of_laser=None,N_delta=None,frequency_step=None,frequency_end=None, rho0=None,print_steps=False,integrate=False, save_systems=False): """This function runs the Runge-Kutta method compiled in path+name...""" t0=time() params =str(N_iter)+'\n' params+=str(dt)+'\n' #We give the flag on wether to print each time step. if print_steps: params+='.true.\n' else: params+='.false.\n' #We give the initial value of rho N_vars=N_states*(N_states+1)/2-1 if rho0==None: params+=''.join(['(0.0,0.0) ' for i in range(N_vars)]) elif len(rho0)==N_states-1: if sage_included: params+=''.join(['('+str(real(i))+','+str(imag(i))+') ' for i in rho0]) else: params+=''.join(['('+str(i.real)+','+str(i.imag)+') ' for i in rho0]) params+=''.join(['(0.0,0.0) ' for i in range(N_vars-N_states+1)]) elif len(rho0)==N_vars: params+=''.join(['('+str(real(i))+','+str(imag(i))+') ' for i in rho0]) params+='\n' #We give the amplitude of the electrical fields. params+=''.join([str(i)+' ' for i in E0])+'\n' #We give the detuning of each laser (taken from the lowest frequency transition). params+=''.join([str(i)+' ' for i in laser_frequencies])+'\n' #We give the flag on wether to calculate spectrums or time evolution. if spectrum_of_laser==None: params+='.false.' else: if frequency_end !=None: if frequency_step !=None: raise ValueError,'both frequency_end and frequency_step were specified.' if N_delta==1: frequency_step=0.0 else: frequency_step=(frequency_end-laser_frequencies[spectrum_of_laser-1])/(N_delta-1) #frequency_step=frequency_end params+='.true.\n' params+=str(spectrum_of_laser)+'\n' params+=str(N_delta)+'\n' params+=str(frequency_step) #print params f=file(path+name+'_params.dat','w') f.write(params) f.close() os.system(path+name) return time()-t0
[ "def", "run_rk4", "(", "path", ",", "name", ",", "E0", ",", "laser_frequencies", ",", "N_iter", ",", "dt", ",", "N_states", ",", "spectrum_of_laser", "=", "None", ",", "N_delta", "=", "None", ",", "frequency_step", "=", "None", ",", "frequency_end", "=", "None", ",", "rho0", "=", "None", ",", "print_steps", "=", "False", ",", "integrate", "=", "False", ",", "save_systems", "=", "False", ")", ":", "t0", "=", "time", "(", ")", "params", "=", "str", "(", "N_iter", ")", "+", "'\\n'", "params", "+=", "str", "(", "dt", ")", "+", "'\\n'", "#We give the flag on wether to print each time step.", "if", "print_steps", ":", "params", "+=", "'.true.\\n'", "else", ":", "params", "+=", "'.false.\\n'", "#We give the initial value of rho", "N_vars", "=", "N_states", "*", "(", "N_states", "+", "1", ")", "/", "2", "-", "1", "if", "rho0", "==", "None", ":", "params", "+=", "''", ".", "join", "(", "[", "'(0.0,0.0) '", "for", "i", "in", "range", "(", "N_vars", ")", "]", ")", "elif", "len", "(", "rho0", ")", "==", "N_states", "-", "1", ":", "if", "sage_included", ":", "params", "+=", "''", ".", "join", "(", "[", "'('", "+", "str", "(", "real", "(", "i", ")", ")", "+", "','", "+", "str", "(", "imag", "(", "i", ")", ")", "+", "') '", "for", "i", "in", "rho0", "]", ")", "else", ":", "params", "+=", "''", ".", "join", "(", "[", "'('", "+", "str", "(", "i", ".", "real", ")", "+", "','", "+", "str", "(", "i", ".", "imag", ")", "+", "') '", "for", "i", "in", "rho0", "]", ")", "params", "+=", "''", ".", "join", "(", "[", "'(0.0,0.0) '", "for", "i", "in", "range", "(", "N_vars", "-", "N_states", "+", "1", ")", "]", ")", "elif", "len", "(", "rho0", ")", "==", "N_vars", ":", "params", "+=", "''", ".", "join", "(", "[", "'('", "+", "str", "(", "real", "(", "i", ")", ")", "+", "','", "+", "str", "(", "imag", "(", "i", ")", ")", "+", "') '", "for", "i", "in", "rho0", "]", ")", "params", "+=", "'\\n'", "#We give the amplitude of the electrical fields.", "params", "+=", "''", ".", "join", "(", "[", "str", "(", "i", ")", "+", "' '", "for", "i", "in", "E0", "]", ")", "+", "'\\n'", "#We give the detuning of each laser (taken from the lowest frequency transition).", "params", "+=", "''", ".", "join", "(", "[", "str", "(", "i", ")", "+", "' '", "for", "i", "in", "laser_frequencies", "]", ")", "+", "'\\n'", "#We give the flag on wether to calculate spectrums or time evolution.", "if", "spectrum_of_laser", "==", "None", ":", "params", "+=", "'.false.'", "else", ":", "if", "frequency_end", "!=", "None", ":", "if", "frequency_step", "!=", "None", ":", "raise", "ValueError", ",", "'both frequency_end and frequency_step were specified.'", "if", "N_delta", "==", "1", ":", "frequency_step", "=", "0.0", "else", ":", "frequency_step", "=", "(", "frequency_end", "-", "laser_frequencies", "[", "spectrum_of_laser", "-", "1", "]", ")", "/", "(", "N_delta", "-", "1", ")", "#frequency_step=frequency_end", "params", "+=", "'.true.\\n'", "params", "+=", "str", "(", "spectrum_of_laser", ")", "+", "'\\n'", "params", "+=", "str", "(", "N_delta", ")", "+", "'\\n'", "params", "+=", "str", "(", "frequency_step", ")", "#print params", "f", "=", "file", "(", "path", "+", "name", "+", "'_params.dat'", ",", "'w'", ")", "f", ".", "write", "(", "params", ")", "f", ".", "close", "(", ")", "os", ".", "system", "(", "path", "+", "name", ")", "return", "time", "(", ")", "-", "t0" ]
This function runs the Runge-Kutta method compiled in path+name...
[ "This", "function", "runs", "the", "Runge", "-", "Kutta", "method", "compiled", "in", "path", "+", "name", "..." ]
train
https://github.com/oscarlazoarjona/fast/blob/3e5400672af2a7b7cc616e7f4aa10d7672720222/build/lib/fast/rk4.py#L413-L473
deployed/django-emailtemplates
emailtemplates/email.py
EmailFromTemplate.send_email
def send_email(self, send_to, attachment_paths=None, fail_silently=True, *args, **kwargs): """ Sends email to recipient based on self object parameters. @param fail_silently: When it’s False, msg.send() will raise an smtplib.SMTPException if an error occurs. @param send_to: recipient email @param args: additional args passed to EmailMessage @param kwargs: kwargs passed to EmailMessage @param attachment_paths: paths to attachments as received by django EmailMessage.attach_file(path) method @return: number of sent messages """ msg = self.get_message_object(send_to, attachment_paths, *args, **kwargs) msg.content_subtype = self.content_subtype try: self.sent = msg.send() except SMTPException, e: if not fail_silently: raise logger.error(u'Problem sending email to %s: %s', send_to, e) return self.sent
python
def send_email(self, send_to, attachment_paths=None, fail_silently=True, *args, **kwargs): """ Sends email to recipient based on self object parameters. @param fail_silently: When it’s False, msg.send() will raise an smtplib.SMTPException if an error occurs. @param send_to: recipient email @param args: additional args passed to EmailMessage @param kwargs: kwargs passed to EmailMessage @param attachment_paths: paths to attachments as received by django EmailMessage.attach_file(path) method @return: number of sent messages """ msg = self.get_message_object(send_to, attachment_paths, *args, **kwargs) msg.content_subtype = self.content_subtype try: self.sent = msg.send() except SMTPException, e: if not fail_silently: raise logger.error(u'Problem sending email to %s: %s', send_to, e) return self.sent
[ "def", "send_email", "(", "self", ",", "send_to", ",", "attachment_paths", "=", "None", ",", "fail_silently", "=", "True", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "msg", "=", "self", ".", "get_message_object", "(", "send_to", ",", "attachment_paths", ",", "*", "args", ",", "*", "*", "kwargs", ")", "msg", ".", "content_subtype", "=", "self", ".", "content_subtype", "try", ":", "self", ".", "sent", "=", "msg", ".", "send", "(", ")", "except", "SMTPException", ",", "e", ":", "if", "not", "fail_silently", ":", "raise", "logger", ".", "error", "(", "u'Problem sending email to %s: %s'", ",", "send_to", ",", "e", ")", "return", "self", ".", "sent" ]
Sends email to recipient based on self object parameters. @param fail_silently: When it’s False, msg.send() will raise an smtplib.SMTPException if an error occurs. @param send_to: recipient email @param args: additional args passed to EmailMessage @param kwargs: kwargs passed to EmailMessage @param attachment_paths: paths to attachments as received by django EmailMessage.attach_file(path) method @return: number of sent messages
[ "Sends", "email", "to", "recipient", "based", "on", "self", "object", "parameters", "." ]
train
https://github.com/deployed/django-emailtemplates/blob/0e95139989dbcf7e624153ddcd7b5b66b48eb6eb/emailtemplates/email.py#L127-L148
deployed/django-emailtemplates
emailtemplates/email.py
EmailFromTemplate.send
def send(self, to, attachment_paths=None, *args, **kwargs): """This function does all the operations on eft object, that are necessary to send email. Usually one would use eft object like this: eft = EmailFromTemplate(name='sth/sth.html') eft.get_object() eft.render_message() eft.send_email(['email@example.com']) return eft.sent """ self.get_object() self.render_message() self.send_email(to, attachment_paths, *args, **kwargs) if self.sent: logger.info(u"Mail has been sent to: %s ", to) return self.sent
python
def send(self, to, attachment_paths=None, *args, **kwargs): """This function does all the operations on eft object, that are necessary to send email. Usually one would use eft object like this: eft = EmailFromTemplate(name='sth/sth.html') eft.get_object() eft.render_message() eft.send_email(['email@example.com']) return eft.sent """ self.get_object() self.render_message() self.send_email(to, attachment_paths, *args, **kwargs) if self.sent: logger.info(u"Mail has been sent to: %s ", to) return self.sent
[ "def", "send", "(", "self", ",", "to", ",", "attachment_paths", "=", "None", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "self", ".", "get_object", "(", ")", "self", ".", "render_message", "(", ")", "self", ".", "send_email", "(", "to", ",", "attachment_paths", ",", "*", "args", ",", "*", "*", "kwargs", ")", "if", "self", ".", "sent", ":", "logger", ".", "info", "(", "u\"Mail has been sent to: %s \"", ",", "to", ")", "return", "self", ".", "sent" ]
This function does all the operations on eft object, that are necessary to send email. Usually one would use eft object like this: eft = EmailFromTemplate(name='sth/sth.html') eft.get_object() eft.render_message() eft.send_email(['email@example.com']) return eft.sent
[ "This", "function", "does", "all", "the", "operations", "on", "eft", "object", "that", "are", "necessary", "to", "send", "email", ".", "Usually", "one", "would", "use", "eft", "object", "like", "this", ":", "eft", "=", "EmailFromTemplate", "(", "name", "=", "sth", "/", "sth", ".", "html", ")", "eft", ".", "get_object", "()", "eft", ".", "render_message", "()", "eft", ".", "send_email", "(", "[", "email" ]
train
https://github.com/deployed/django-emailtemplates/blob/0e95139989dbcf7e624153ddcd7b5b66b48eb6eb/emailtemplates/email.py#L150-L164
commontk/ctk-cli
ctk_cli/module.py
_tag
def _tag(element): """Return element.tag with xmlns stripped away.""" tag = element.tag if tag[0] == "{": uri, tag = tag[1:].split("}") return tag
python
def _tag(element): """Return element.tag with xmlns stripped away.""" tag = element.tag if tag[0] == "{": uri, tag = tag[1:].split("}") return tag
[ "def", "_tag", "(", "element", ")", ":", "tag", "=", "element", ".", "tag", "if", "tag", "[", "0", "]", "==", "\"{\"", ":", "uri", ",", "tag", "=", "tag", "[", "1", ":", "]", ".", "split", "(", "\"}\"", ")", "return", "tag" ]
Return element.tag with xmlns stripped away.
[ "Return", "element", ".", "tag", "with", "xmlns", "stripped", "away", "." ]
train
https://github.com/commontk/ctk-cli/blob/ddd8de62b586491ad6e6750133cc1f0e11f37b11/ctk_cli/module.py#L23-L28
commontk/ctk-cli
ctk_cli/module.py
_uriPrefix
def _uriPrefix(element): """Return xmlns prefix of the given element.""" i = element.tag.find('}') if i < 0: return "" return element.tag[:i+1]
python
def _uriPrefix(element): """Return xmlns prefix of the given element.""" i = element.tag.find('}') if i < 0: return "" return element.tag[:i+1]
[ "def", "_uriPrefix", "(", "element", ")", ":", "i", "=", "element", ".", "tag", ".", "find", "(", "'}'", ")", "if", "i", "<", "0", ":", "return", "\"\"", "return", "element", ".", "tag", "[", ":", "i", "+", "1", "]" ]
Return xmlns prefix of the given element.
[ "Return", "xmlns", "prefix", "of", "the", "given", "element", "." ]
train
https://github.com/commontk/ctk-cli/blob/ddd8de62b586491ad6e6750133cc1f0e11f37b11/ctk_cli/module.py#L30-L35
commontk/ctk-cli
ctk_cli/module.py
_parseElements
def _parseElements(self, elementTree, expectedTag = None): """Read REQUIRED_ELEMENTS and OPTIONAL_ELEMENTS and returns the rest of the children. Every read child element's text value will be filled into an attribute of the same name, i.e. <description>Test</description> will lead to 'Test' being assigned to self.description. Missing REQUIRED_ELEMENTS result in warnings.""" xmlns = _uriPrefix(elementTree) if expectedTag is not None: assert _tag(elementTree) == expectedTag, 'expected <%s>, got <%s>' % (expectedTag, _tag(elementTree)) parsed = [] for tagName in self.REQUIRED_ELEMENTS + self.OPTIONAL_ELEMENTS: tags = elementTree.findall(xmlns + tagName) if tags: parsed.extend(tags) tagValue = tags[0].text tagValue = tagValue.strip() if tagValue else "" if len(tags) > 1: logger.warning("More than one <%s> found within %r (using only first)" % (tagName, _tag(elementTree))) else: tagValue = None if tagName in self.REQUIRED_ELEMENTS: logger.warning("Required element %r not found within %r" % (tagName, _tag(elementTree))) setattr(self, _tagToIdentifier(tagName), tagValue) return [tag for tag in elementTree if tag not in parsed]
python
def _parseElements(self, elementTree, expectedTag = None): """Read REQUIRED_ELEMENTS and OPTIONAL_ELEMENTS and returns the rest of the children. Every read child element's text value will be filled into an attribute of the same name, i.e. <description>Test</description> will lead to 'Test' being assigned to self.description. Missing REQUIRED_ELEMENTS result in warnings.""" xmlns = _uriPrefix(elementTree) if expectedTag is not None: assert _tag(elementTree) == expectedTag, 'expected <%s>, got <%s>' % (expectedTag, _tag(elementTree)) parsed = [] for tagName in self.REQUIRED_ELEMENTS + self.OPTIONAL_ELEMENTS: tags = elementTree.findall(xmlns + tagName) if tags: parsed.extend(tags) tagValue = tags[0].text tagValue = tagValue.strip() if tagValue else "" if len(tags) > 1: logger.warning("More than one <%s> found within %r (using only first)" % (tagName, _tag(elementTree))) else: tagValue = None if tagName in self.REQUIRED_ELEMENTS: logger.warning("Required element %r not found within %r" % (tagName, _tag(elementTree))) setattr(self, _tagToIdentifier(tagName), tagValue) return [tag for tag in elementTree if tag not in parsed]
[ "def", "_parseElements", "(", "self", ",", "elementTree", ",", "expectedTag", "=", "None", ")", ":", "xmlns", "=", "_uriPrefix", "(", "elementTree", ")", "if", "expectedTag", "is", "not", "None", ":", "assert", "_tag", "(", "elementTree", ")", "==", "expectedTag", ",", "'expected <%s>, got <%s>'", "%", "(", "expectedTag", ",", "_tag", "(", "elementTree", ")", ")", "parsed", "=", "[", "]", "for", "tagName", "in", "self", ".", "REQUIRED_ELEMENTS", "+", "self", ".", "OPTIONAL_ELEMENTS", ":", "tags", "=", "elementTree", ".", "findall", "(", "xmlns", "+", "tagName", ")", "if", "tags", ":", "parsed", ".", "extend", "(", "tags", ")", "tagValue", "=", "tags", "[", "0", "]", ".", "text", "tagValue", "=", "tagValue", ".", "strip", "(", ")", "if", "tagValue", "else", "\"\"", "if", "len", "(", "tags", ")", ">", "1", ":", "logger", ".", "warning", "(", "\"More than one <%s> found within %r (using only first)\"", "%", "(", "tagName", ",", "_tag", "(", "elementTree", ")", ")", ")", "else", ":", "tagValue", "=", "None", "if", "tagName", "in", "self", ".", "REQUIRED_ELEMENTS", ":", "logger", ".", "warning", "(", "\"Required element %r not found within %r\"", "%", "(", "tagName", ",", "_tag", "(", "elementTree", ")", ")", ")", "setattr", "(", "self", ",", "_tagToIdentifier", "(", "tagName", ")", ",", "tagValue", ")", "return", "[", "tag", "for", "tag", "in", "elementTree", "if", "tag", "not", "in", "parsed", "]" ]
Read REQUIRED_ELEMENTS and OPTIONAL_ELEMENTS and returns the rest of the children. Every read child element's text value will be filled into an attribute of the same name, i.e. <description>Test</description> will lead to 'Test' being assigned to self.description. Missing REQUIRED_ELEMENTS result in warnings.
[ "Read", "REQUIRED_ELEMENTS", "and", "OPTIONAL_ELEMENTS", "and", "returns", "the", "rest", "of", "the", "children", ".", "Every", "read", "child", "element", "s", "text", "value", "will", "be", "filled", "into", "an", "attribute", "of", "the", "same", "name", "i", ".", "e", ".", "<description", ">", "Test<", "/", "description", ">", "will", "lead", "to", "Test", "being", "assigned", "to", "self", ".", "description", ".", "Missing", "REQUIRED_ELEMENTS", "result", "in", "warnings", "." ]
train
https://github.com/commontk/ctk-cli/blob/ddd8de62b586491ad6e6750133cc1f0e11f37b11/ctk_cli/module.py#L38-L67
commontk/ctk-cli
ctk_cli/module.py
CLIModule.classifyParameters
def classifyParameters(self): """Return (arguments, options, outputs) tuple. Together, the three lists contain all parameters (recursively fetched from all parameter groups), classified into optional parameters, required ones (with an index), and simple output parameters (that would get written to a file using --returnparameterfile). `arguments` contains the required arguments, already sorted by index.""" arguments = [] options = [] outputs = [] for parameter in self.parameters(): if parameter.channel == 'output' and not parameter.isExternalType(): outputs.append(parameter) elif parameter.index is not None: arguments.append(parameter) if parameter.flag is not None or parameter.longflag is not None: logger.warning("Parameter '%s' has both index=%d and flag set." % ( parameter.identifier(), parameter.index)) elif parameter.flag or parameter.longflag: options.append(parameter) else: logger.warning("Parameter '%s' cannot be passed (missing flag, longflag, or index)!" % parameter.name) arguments.sort(key = lambda parameter: parameter.index) return (arguments, options, outputs)
python
def classifyParameters(self): """Return (arguments, options, outputs) tuple. Together, the three lists contain all parameters (recursively fetched from all parameter groups), classified into optional parameters, required ones (with an index), and simple output parameters (that would get written to a file using --returnparameterfile). `arguments` contains the required arguments, already sorted by index.""" arguments = [] options = [] outputs = [] for parameter in self.parameters(): if parameter.channel == 'output' and not parameter.isExternalType(): outputs.append(parameter) elif parameter.index is not None: arguments.append(parameter) if parameter.flag is not None or parameter.longflag is not None: logger.warning("Parameter '%s' has both index=%d and flag set." % ( parameter.identifier(), parameter.index)) elif parameter.flag or parameter.longflag: options.append(parameter) else: logger.warning("Parameter '%s' cannot be passed (missing flag, longflag, or index)!" % parameter.name) arguments.sort(key = lambda parameter: parameter.index) return (arguments, options, outputs)
[ "def", "classifyParameters", "(", "self", ")", ":", "arguments", "=", "[", "]", "options", "=", "[", "]", "outputs", "=", "[", "]", "for", "parameter", "in", "self", ".", "parameters", "(", ")", ":", "if", "parameter", ".", "channel", "==", "'output'", "and", "not", "parameter", ".", "isExternalType", "(", ")", ":", "outputs", ".", "append", "(", "parameter", ")", "elif", "parameter", ".", "index", "is", "not", "None", ":", "arguments", ".", "append", "(", "parameter", ")", "if", "parameter", ".", "flag", "is", "not", "None", "or", "parameter", ".", "longflag", "is", "not", "None", ":", "logger", ".", "warning", "(", "\"Parameter '%s' has both index=%d and flag set.\"", "%", "(", "parameter", ".", "identifier", "(", ")", ",", "parameter", ".", "index", ")", ")", "elif", "parameter", ".", "flag", "or", "parameter", ".", "longflag", ":", "options", ".", "append", "(", "parameter", ")", "else", ":", "logger", ".", "warning", "(", "\"Parameter '%s' cannot be passed (missing flag, longflag, or index)!\"", "%", "parameter", ".", "name", ")", "arguments", ".", "sort", "(", "key", "=", "lambda", "parameter", ":", "parameter", ".", "index", ")", "return", "(", "arguments", ",", "options", ",", "outputs", ")" ]
Return (arguments, options, outputs) tuple. Together, the three lists contain all parameters (recursively fetched from all parameter groups), classified into optional parameters, required ones (with an index), and simple output parameters (that would get written to a file using --returnparameterfile). `arguments` contains the required arguments, already sorted by index.
[ "Return", "(", "arguments", "options", "outputs", ")", "tuple", ".", "Together", "the", "three", "lists", "contain", "all", "parameters", "(", "recursively", "fetched", "from", "all", "parameter", "groups", ")", "classified", "into", "optional", "parameters", "required", "ones", "(", "with", "an", "index", ")", "and", "simple", "output", "parameters", "(", "that", "would", "get", "written", "to", "a", "file", "using", "--", "returnparameterfile", ")", ".", "arguments", "contains", "the", "required", "arguments", "already", "sorted", "by", "index", "." ]
train
https://github.com/commontk/ctk-cli/blob/ddd8de62b586491ad6e6750133cc1f0e11f37b11/ctk_cli/module.py#L134-L159
commontk/ctk-cli
ctk_cli/module.py
CLIParameter.parseValue
def parseValue(self, value): """Parse the given value and return result.""" if self.isVector(): return list(map(self._pythonType, value.split(','))) if self.typ == 'boolean': return _parseBool(value) return self._pythonType(value)
python
def parseValue(self, value): """Parse the given value and return result.""" if self.isVector(): return list(map(self._pythonType, value.split(','))) if self.typ == 'boolean': return _parseBool(value) return self._pythonType(value)
[ "def", "parseValue", "(", "self", ",", "value", ")", ":", "if", "self", ".", "isVector", "(", ")", ":", "return", "list", "(", "map", "(", "self", ".", "_pythonType", ",", "value", ".", "split", "(", "','", ")", ")", ")", "if", "self", ".", "typ", "==", "'boolean'", ":", "return", "_parseBool", "(", "value", ")", "return", "self", ".", "_pythonType", "(", "value", ")" ]
Parse the given value and return result.
[ "Parse", "the", "given", "value", "and", "return", "result", "." ]
train
https://github.com/commontk/ctk-cli/blob/ddd8de62b586491ad6e6750133cc1f0e11f37b11/ctk_cli/module.py#L259-L265
commontk/ctk-cli
ctk_cli/module.py
CLIParameter.defaultExtension
def defaultExtension(self): """Return default extension for this parameter type, checked against supported fileExtensions. If the default extension is not within `fileExtensions`, return the first supported extension.""" result = self.EXTERNAL_TYPES[self.typ] if not self.fileExtensions: return result if result in self.fileExtensions: return result return self.fileExtensions[0]
python
def defaultExtension(self): """Return default extension for this parameter type, checked against supported fileExtensions. If the default extension is not within `fileExtensions`, return the first supported extension.""" result = self.EXTERNAL_TYPES[self.typ] if not self.fileExtensions: return result if result in self.fileExtensions: return result return self.fileExtensions[0]
[ "def", "defaultExtension", "(", "self", ")", ":", "result", "=", "self", ".", "EXTERNAL_TYPES", "[", "self", ".", "typ", "]", "if", "not", "self", ".", "fileExtensions", ":", "return", "result", "if", "result", "in", "self", ".", "fileExtensions", ":", "return", "result", "return", "self", ".", "fileExtensions", "[", "0", "]" ]
Return default extension for this parameter type, checked against supported fileExtensions. If the default extension is not within `fileExtensions`, return the first supported extension.
[ "Return", "default", "extension", "for", "this", "parameter", "type", "checked", "against", "supported", "fileExtensions", ".", "If", "the", "default", "extension", "is", "not", "within", "fileExtensions", "return", "the", "first", "supported", "extension", "." ]
train
https://github.com/commontk/ctk-cli/blob/ddd8de62b586491ad6e6750133cc1f0e11f37b11/ctk_cli/module.py#L291-L301
kpdyer/libfte
fte/encoder.py
DfaEncoderObject.encode
def encode(self, X, seed=None): """Given a string ``X``, returns ``unrank(X[:n]) || X[n:]`` where ``n`` is the the maximum number of bytes that can be unranked w.r.t. the capacity of the input ``dfa`` and ``unrank`` is w.r.t. to the input ``dfa``. """ if not X: return '' if not isinstance(X, str): raise InvalidInputException('Input must be of type string.') if seed is not None and len(seed) != 8: raise InvalidSeedLength('The seed is not 8 bytes long, seed length: '+str(len(seed))) ciphertext = self._encrypter.encrypt(X) maximumBytesToRank = int(math.floor(self.getCapacity() / 8.0)) unrank_payload_len = ( maximumBytesToRank - DfaEncoderObject._COVERTEXT_HEADER_LEN_CIPHERTTEXT) unrank_payload_len = min(len(ciphertext), unrank_payload_len) if unrank_payload_len <= 0: raise InsufficientCapacityException('Language doesn\'t have enough capacity') msg_len_header = fte.bit_ops.long_to_bytes(unrank_payload_len) msg_len_header = string.rjust( msg_len_header, DfaEncoderObject._COVERTEXT_HEADER_LEN_PLAINTEXT, '\x00') random_bytes = seed if seed is not None else fte.bit_ops.random_bytes(8) msg_len_header = random_bytes + msg_len_header msg_len_header = self._encrypter.encryptOneBlock(msg_len_header) unrank_payload = msg_len_header + \ ciphertext[:maximumBytesToRank - DfaEncoderObject._COVERTEXT_HEADER_LEN_CIPHERTTEXT] random_padding_bytes = maximumBytesToRank - len(unrank_payload) if random_padding_bytes > 0: unrank_payload += fte.bit_ops.random_bytes(random_padding_bytes) unrank_payload = fte.bit_ops.bytes_to_long(unrank_payload) formatted_covertext_header = self._dfa.unrank(unrank_payload) unformatted_covertext_body = ciphertext[ maximumBytesToRank - DfaEncoderObject._COVERTEXT_HEADER_LEN_CIPHERTTEXT:] covertext = formatted_covertext_header + unformatted_covertext_body return covertext
python
def encode(self, X, seed=None): """Given a string ``X``, returns ``unrank(X[:n]) || X[n:]`` where ``n`` is the the maximum number of bytes that can be unranked w.r.t. the capacity of the input ``dfa`` and ``unrank`` is w.r.t. to the input ``dfa``. """ if not X: return '' if not isinstance(X, str): raise InvalidInputException('Input must be of type string.') if seed is not None and len(seed) != 8: raise InvalidSeedLength('The seed is not 8 bytes long, seed length: '+str(len(seed))) ciphertext = self._encrypter.encrypt(X) maximumBytesToRank = int(math.floor(self.getCapacity() / 8.0)) unrank_payload_len = ( maximumBytesToRank - DfaEncoderObject._COVERTEXT_HEADER_LEN_CIPHERTTEXT) unrank_payload_len = min(len(ciphertext), unrank_payload_len) if unrank_payload_len <= 0: raise InsufficientCapacityException('Language doesn\'t have enough capacity') msg_len_header = fte.bit_ops.long_to_bytes(unrank_payload_len) msg_len_header = string.rjust( msg_len_header, DfaEncoderObject._COVERTEXT_HEADER_LEN_PLAINTEXT, '\x00') random_bytes = seed if seed is not None else fte.bit_ops.random_bytes(8) msg_len_header = random_bytes + msg_len_header msg_len_header = self._encrypter.encryptOneBlock(msg_len_header) unrank_payload = msg_len_header + \ ciphertext[:maximumBytesToRank - DfaEncoderObject._COVERTEXT_HEADER_LEN_CIPHERTTEXT] random_padding_bytes = maximumBytesToRank - len(unrank_payload) if random_padding_bytes > 0: unrank_payload += fte.bit_ops.random_bytes(random_padding_bytes) unrank_payload = fte.bit_ops.bytes_to_long(unrank_payload) formatted_covertext_header = self._dfa.unrank(unrank_payload) unformatted_covertext_body = ciphertext[ maximumBytesToRank - DfaEncoderObject._COVERTEXT_HEADER_LEN_CIPHERTTEXT:] covertext = formatted_covertext_header + unformatted_covertext_body return covertext
[ "def", "encode", "(", "self", ",", "X", ",", "seed", "=", "None", ")", ":", "if", "not", "X", ":", "return", "''", "if", "not", "isinstance", "(", "X", ",", "str", ")", ":", "raise", "InvalidInputException", "(", "'Input must be of type string.'", ")", "if", "seed", "is", "not", "None", "and", "len", "(", "seed", ")", "!=", "8", ":", "raise", "InvalidSeedLength", "(", "'The seed is not 8 bytes long, seed length: '", "+", "str", "(", "len", "(", "seed", ")", ")", ")", "ciphertext", "=", "self", ".", "_encrypter", ".", "encrypt", "(", "X", ")", "maximumBytesToRank", "=", "int", "(", "math", ".", "floor", "(", "self", ".", "getCapacity", "(", ")", "/", "8.0", ")", ")", "unrank_payload_len", "=", "(", "maximumBytesToRank", "-", "DfaEncoderObject", ".", "_COVERTEXT_HEADER_LEN_CIPHERTTEXT", ")", "unrank_payload_len", "=", "min", "(", "len", "(", "ciphertext", ")", ",", "unrank_payload_len", ")", "if", "unrank_payload_len", "<=", "0", ":", "raise", "InsufficientCapacityException", "(", "'Language doesn\\'t have enough capacity'", ")", "msg_len_header", "=", "fte", ".", "bit_ops", ".", "long_to_bytes", "(", "unrank_payload_len", ")", "msg_len_header", "=", "string", ".", "rjust", "(", "msg_len_header", ",", "DfaEncoderObject", ".", "_COVERTEXT_HEADER_LEN_PLAINTEXT", ",", "'\\x00'", ")", "random_bytes", "=", "seed", "if", "seed", "is", "not", "None", "else", "fte", ".", "bit_ops", ".", "random_bytes", "(", "8", ")", "msg_len_header", "=", "random_bytes", "+", "msg_len_header", "msg_len_header", "=", "self", ".", "_encrypter", ".", "encryptOneBlock", "(", "msg_len_header", ")", "unrank_payload", "=", "msg_len_header", "+", "ciphertext", "[", ":", "maximumBytesToRank", "-", "DfaEncoderObject", ".", "_COVERTEXT_HEADER_LEN_CIPHERTTEXT", "]", "random_padding_bytes", "=", "maximumBytesToRank", "-", "len", "(", "unrank_payload", ")", "if", "random_padding_bytes", ">", "0", ":", "unrank_payload", "+=", "fte", ".", "bit_ops", ".", "random_bytes", "(", "random_padding_bytes", ")", "unrank_payload", "=", "fte", ".", "bit_ops", ".", "bytes_to_long", "(", "unrank_payload", ")", "formatted_covertext_header", "=", "self", ".", "_dfa", ".", "unrank", "(", "unrank_payload", ")", "unformatted_covertext_body", "=", "ciphertext", "[", "maximumBytesToRank", "-", "DfaEncoderObject", ".", "_COVERTEXT_HEADER_LEN_CIPHERTTEXT", ":", "]", "covertext", "=", "formatted_covertext_header", "+", "unformatted_covertext_body", "return", "covertext" ]
Given a string ``X``, returns ``unrank(X[:n]) || X[n:]`` where ``n`` is the the maximum number of bytes that can be unranked w.r.t. the capacity of the input ``dfa`` and ``unrank`` is w.r.t. to the input ``dfa``.
[ "Given", "a", "string", "X", "returns", "unrank", "(", "X", "[", ":", "n", "]", ")", "||", "X", "[", "n", ":", "]", "where", "n", "is", "the", "the", "maximum", "number", "of", "bytes", "that", "can", "be", "unranked", "w", ".", "r", ".", "t", ".", "the", "capacity", "of", "the", "input", "dfa", "and", "unrank", "is", "w", ".", "r", ".", "t", ".", "to", "the", "input", "dfa", "." ]
train
https://github.com/kpdyer/libfte/blob/74ed6ad197b6e72d1b9709c4dbc04041e05eb9b7/fte/encoder.py#L84-L133
kpdyer/libfte
fte/encoder.py
DfaEncoderObject.decode
def decode(self, covertext): """Given an input string ``unrank(X[:n]) || X[n:]`` returns ``X``. """ if not isinstance(covertext, str): raise InvalidInputException('Input must be of type string.') insufficient = (len(covertext) < self._fixed_slice) if insufficient: raise DecodeFailureError( "Covertext is shorter than self._fixed_slice, can't decode.") maximumBytesToRank = int(math.floor(self.getCapacity() / 8.0)) rank_payload = self._dfa.rank(covertext[:self._fixed_slice]) X = fte.bit_ops.long_to_bytes(rank_payload) X = string.rjust(X, maximumBytesToRank, '\x00') msg_len_header = self._encrypter.decryptOneBlock( X[:DfaEncoderObject._COVERTEXT_HEADER_LEN_CIPHERTTEXT]) msg_len_header = msg_len_header[8:16] msg_len = fte.bit_ops.bytes_to_long( msg_len_header[:DfaEncoderObject._COVERTEXT_HEADER_LEN_PLAINTEXT]) retval = X[16:16 + msg_len] retval += covertext[self._fixed_slice:] ctxt_len = self._encrypter.getCiphertextLen(retval) remaining_buffer = retval[ctxt_len:] retval = retval[:ctxt_len] retval = self._encrypter.decrypt(retval) return retval, remaining_buffer
python
def decode(self, covertext): """Given an input string ``unrank(X[:n]) || X[n:]`` returns ``X``. """ if not isinstance(covertext, str): raise InvalidInputException('Input must be of type string.') insufficient = (len(covertext) < self._fixed_slice) if insufficient: raise DecodeFailureError( "Covertext is shorter than self._fixed_slice, can't decode.") maximumBytesToRank = int(math.floor(self.getCapacity() / 8.0)) rank_payload = self._dfa.rank(covertext[:self._fixed_slice]) X = fte.bit_ops.long_to_bytes(rank_payload) X = string.rjust(X, maximumBytesToRank, '\x00') msg_len_header = self._encrypter.decryptOneBlock( X[:DfaEncoderObject._COVERTEXT_HEADER_LEN_CIPHERTTEXT]) msg_len_header = msg_len_header[8:16] msg_len = fte.bit_ops.bytes_to_long( msg_len_header[:DfaEncoderObject._COVERTEXT_HEADER_LEN_PLAINTEXT]) retval = X[16:16 + msg_len] retval += covertext[self._fixed_slice:] ctxt_len = self._encrypter.getCiphertextLen(retval) remaining_buffer = retval[ctxt_len:] retval = retval[:ctxt_len] retval = self._encrypter.decrypt(retval) return retval, remaining_buffer
[ "def", "decode", "(", "self", ",", "covertext", ")", ":", "if", "not", "isinstance", "(", "covertext", ",", "str", ")", ":", "raise", "InvalidInputException", "(", "'Input must be of type string.'", ")", "insufficient", "=", "(", "len", "(", "covertext", ")", "<", "self", ".", "_fixed_slice", ")", "if", "insufficient", ":", "raise", "DecodeFailureError", "(", "\"Covertext is shorter than self._fixed_slice, can't decode.\"", ")", "maximumBytesToRank", "=", "int", "(", "math", ".", "floor", "(", "self", ".", "getCapacity", "(", ")", "/", "8.0", ")", ")", "rank_payload", "=", "self", ".", "_dfa", ".", "rank", "(", "covertext", "[", ":", "self", ".", "_fixed_slice", "]", ")", "X", "=", "fte", ".", "bit_ops", ".", "long_to_bytes", "(", "rank_payload", ")", "X", "=", "string", ".", "rjust", "(", "X", ",", "maximumBytesToRank", ",", "'\\x00'", ")", "msg_len_header", "=", "self", ".", "_encrypter", ".", "decryptOneBlock", "(", "X", "[", ":", "DfaEncoderObject", ".", "_COVERTEXT_HEADER_LEN_CIPHERTTEXT", "]", ")", "msg_len_header", "=", "msg_len_header", "[", "8", ":", "16", "]", "msg_len", "=", "fte", ".", "bit_ops", ".", "bytes_to_long", "(", "msg_len_header", "[", ":", "DfaEncoderObject", ".", "_COVERTEXT_HEADER_LEN_PLAINTEXT", "]", ")", "retval", "=", "X", "[", "16", ":", "16", "+", "msg_len", "]", "retval", "+=", "covertext", "[", "self", ".", "_fixed_slice", ":", "]", "ctxt_len", "=", "self", ".", "_encrypter", ".", "getCiphertextLen", "(", "retval", ")", "remaining_buffer", "=", "retval", "[", "ctxt_len", ":", "]", "retval", "=", "retval", "[", ":", "ctxt_len", "]", "retval", "=", "self", ".", "_encrypter", ".", "decrypt", "(", "retval", ")", "return", "retval", ",", "remaining_buffer" ]
Given an input string ``unrank(X[:n]) || X[n:]`` returns ``X``.
[ "Given", "an", "input", "string", "unrank", "(", "X", "[", ":", "n", "]", ")", "||", "X", "[", "n", ":", "]", "returns", "X", "." ]
train
https://github.com/kpdyer/libfte/blob/74ed6ad197b6e72d1b9709c4dbc04041e05eb9b7/fte/encoder.py#L135-L166
oscarlazoarjona/fast
fast/symbolic.py
define_symbol
def define_symbol(name, open_brace, comma, i, j, close_brace, variables, **kwds): r"""Define a nice symbol with matrix indices. >>> name = "rho" >>> from sympy import symbols >>> t, x, y, z = symbols("t, x, y, z", positive=True) >>> variables = [t, x, y, z] >>> open_brace = "" >>> comma = "" >>> close_brace = "" >>> i = 0 >>> j = 1 >>> f = define_symbol(name, open_brace, comma, i, j, close_brace, ... variables, positive=True) >>> print f rho12(t, x, y, z) """ if variables is None: return Symbol(name+open_brace+str(i+1)+comma+str(j+1) + close_brace, **kwds) else: return Function(name+open_brace+str(i+1)+comma+str(j+1) + close_brace, **kwds)(*variables)
python
def define_symbol(name, open_brace, comma, i, j, close_brace, variables, **kwds): r"""Define a nice symbol with matrix indices. >>> name = "rho" >>> from sympy import symbols >>> t, x, y, z = symbols("t, x, y, z", positive=True) >>> variables = [t, x, y, z] >>> open_brace = "" >>> comma = "" >>> close_brace = "" >>> i = 0 >>> j = 1 >>> f = define_symbol(name, open_brace, comma, i, j, close_brace, ... variables, positive=True) >>> print f rho12(t, x, y, z) """ if variables is None: return Symbol(name+open_brace+str(i+1)+comma+str(j+1) + close_brace, **kwds) else: return Function(name+open_brace+str(i+1)+comma+str(j+1) + close_brace, **kwds)(*variables)
[ "def", "define_symbol", "(", "name", ",", "open_brace", ",", "comma", ",", "i", ",", "j", ",", "close_brace", ",", "variables", ",", "*", "*", "kwds", ")", ":", "if", "variables", "is", "None", ":", "return", "Symbol", "(", "name", "+", "open_brace", "+", "str", "(", "i", "+", "1", ")", "+", "comma", "+", "str", "(", "j", "+", "1", ")", "+", "close_brace", ",", "*", "*", "kwds", ")", "else", ":", "return", "Function", "(", "name", "+", "open_brace", "+", "str", "(", "i", "+", "1", ")", "+", "comma", "+", "str", "(", "j", "+", "1", ")", "+", "close_brace", ",", "*", "*", "kwds", ")", "(", "*", "variables", ")" ]
r"""Define a nice symbol with matrix indices. >>> name = "rho" >>> from sympy import symbols >>> t, x, y, z = symbols("t, x, y, z", positive=True) >>> variables = [t, x, y, z] >>> open_brace = "" >>> comma = "" >>> close_brace = "" >>> i = 0 >>> j = 1 >>> f = define_symbol(name, open_brace, comma, i, j, close_brace, ... variables, positive=True) >>> print f rho12(t, x, y, z)
[ "r", "Define", "a", "nice", "symbol", "with", "matrix", "indices", "." ]
train
https://github.com/oscarlazoarjona/fast/blob/3e5400672af2a7b7cc616e7f4aa10d7672720222/fast/symbolic.py#L59-L83
oscarlazoarjona/fast
fast/symbolic.py
polarization_vector
def polarization_vector(phi, theta, alpha, beta, p, numeric=False, abstract=False): """This function returns a unitary vector describing the polarization of plane waves.: INPUT: - ``phi`` - The spherical coordinates azimuthal angle of the wave vector\ k. - ``theta`` - The spherical coordinates polar angle of the wave vector k. - ``alpha`` - The rotation of a half-wave plate. - ``beta`` - The rotation of a quarter-wave plate. - ``p`` - either 1 or -1 to indicate whether to return epsilon^(+) or\ epsilon^(-) respectively. If alpha and beta are zero, the result will be linearly polarized light along some fast axis. alpha and beta are measured from that fast axis. Propagation towards y, linear polarization (for pi transitions): >>> from sympy import pi >>> polarization_vector(phi=pi/2, theta=pi/2, alpha=pi/2, beta= 0,p=1) Matrix([ [0], [0], [1]]) Propagation towards +z, circular polarization (for sigma + transitions): >>> polarization_vector(phi=0, theta= 0, alpha=pi/2, beta= pi/8,p=1) Matrix([ [ -sqrt(2)/2], [-sqrt(2)*I/2], [ 0]]) Propagation towards -z, circular polarization for sigma + transitions: >>> polarization_vector(phi=0, theta=pi, alpha= 0, beta=-pi/8,p=1) Matrix([ [ -sqrt(2)/2], [-sqrt(2)*I/2], [ 0]]) Components + and - are complex conjugates of each other >>> from sympy import symbols >>> phi, theta, alpha, beta = symbols("phi theta alpha beta", real=True) >>> ep = polarization_vector(phi,theta,alpha,beta, 1) >>> em = polarization_vector(phi,theta,alpha,beta,-1) >>> ep-em.conjugate() Matrix([ [0], [0], [0]]) We can also define abstract polarization vectors without explicit \ components >>> polarization_vector(0, 0, 0, 0, 1, abstract=True) epsilonp >>> polarization_vector(0, 0, 0, 0, -1, abstract=True) epsilonm """ if abstract: Nl = symbols("N_l", integer=True) if p == 1: epsilon = Vector3D(IndexedBase("epsilonp", shape=(Nl,))) else: epsilon = Vector3D(IndexedBase("epsilonm", shape=(Nl,))) return epsilon epsilon = Matrix([cos(2*beta), p*I*sin(2*beta), 0]) R1 = Matrix([[cos(2*alpha), -sin(2*alpha), 0], [sin(2*alpha), cos(2*alpha), 0], [0, 0, 1]]) R2 = Matrix([[cos(theta), 0, sin(theta)], [0, 1, 0], [-sin(theta), 0, cos(theta)]]) R3 = Matrix([[cos(phi), -sin(phi), 0], [sin(phi), cos(phi), 0], [0, 0, 1]]) epsilon = R3*R2*R1*epsilon if numeric: epsilon = nparray([complex(epsilon[i]) for i in range(3)]) return epsilon
python
def polarization_vector(phi, theta, alpha, beta, p, numeric=False, abstract=False): """This function returns a unitary vector describing the polarization of plane waves.: INPUT: - ``phi`` - The spherical coordinates azimuthal angle of the wave vector\ k. - ``theta`` - The spherical coordinates polar angle of the wave vector k. - ``alpha`` - The rotation of a half-wave plate. - ``beta`` - The rotation of a quarter-wave plate. - ``p`` - either 1 or -1 to indicate whether to return epsilon^(+) or\ epsilon^(-) respectively. If alpha and beta are zero, the result will be linearly polarized light along some fast axis. alpha and beta are measured from that fast axis. Propagation towards y, linear polarization (for pi transitions): >>> from sympy import pi >>> polarization_vector(phi=pi/2, theta=pi/2, alpha=pi/2, beta= 0,p=1) Matrix([ [0], [0], [1]]) Propagation towards +z, circular polarization (for sigma + transitions): >>> polarization_vector(phi=0, theta= 0, alpha=pi/2, beta= pi/8,p=1) Matrix([ [ -sqrt(2)/2], [-sqrt(2)*I/2], [ 0]]) Propagation towards -z, circular polarization for sigma + transitions: >>> polarization_vector(phi=0, theta=pi, alpha= 0, beta=-pi/8,p=1) Matrix([ [ -sqrt(2)/2], [-sqrt(2)*I/2], [ 0]]) Components + and - are complex conjugates of each other >>> from sympy import symbols >>> phi, theta, alpha, beta = symbols("phi theta alpha beta", real=True) >>> ep = polarization_vector(phi,theta,alpha,beta, 1) >>> em = polarization_vector(phi,theta,alpha,beta,-1) >>> ep-em.conjugate() Matrix([ [0], [0], [0]]) We can also define abstract polarization vectors without explicit \ components >>> polarization_vector(0, 0, 0, 0, 1, abstract=True) epsilonp >>> polarization_vector(0, 0, 0, 0, -1, abstract=True) epsilonm """ if abstract: Nl = symbols("N_l", integer=True) if p == 1: epsilon = Vector3D(IndexedBase("epsilonp", shape=(Nl,))) else: epsilon = Vector3D(IndexedBase("epsilonm", shape=(Nl,))) return epsilon epsilon = Matrix([cos(2*beta), p*I*sin(2*beta), 0]) R1 = Matrix([[cos(2*alpha), -sin(2*alpha), 0], [sin(2*alpha), cos(2*alpha), 0], [0, 0, 1]]) R2 = Matrix([[cos(theta), 0, sin(theta)], [0, 1, 0], [-sin(theta), 0, cos(theta)]]) R3 = Matrix([[cos(phi), -sin(phi), 0], [sin(phi), cos(phi), 0], [0, 0, 1]]) epsilon = R3*R2*R1*epsilon if numeric: epsilon = nparray([complex(epsilon[i]) for i in range(3)]) return epsilon
[ "def", "polarization_vector", "(", "phi", ",", "theta", ",", "alpha", ",", "beta", ",", "p", ",", "numeric", "=", "False", ",", "abstract", "=", "False", ")", ":", "if", "abstract", ":", "Nl", "=", "symbols", "(", "\"N_l\"", ",", "integer", "=", "True", ")", "if", "p", "==", "1", ":", "epsilon", "=", "Vector3D", "(", "IndexedBase", "(", "\"epsilonp\"", ",", "shape", "=", "(", "Nl", ",", ")", ")", ")", "else", ":", "epsilon", "=", "Vector3D", "(", "IndexedBase", "(", "\"epsilonm\"", ",", "shape", "=", "(", "Nl", ",", ")", ")", ")", "return", "epsilon", "epsilon", "=", "Matrix", "(", "[", "cos", "(", "2", "*", "beta", ")", ",", "p", "*", "I", "*", "sin", "(", "2", "*", "beta", ")", ",", "0", "]", ")", "R1", "=", "Matrix", "(", "[", "[", "cos", "(", "2", "*", "alpha", ")", ",", "-", "sin", "(", "2", "*", "alpha", ")", ",", "0", "]", ",", "[", "sin", "(", "2", "*", "alpha", ")", ",", "cos", "(", "2", "*", "alpha", ")", ",", "0", "]", ",", "[", "0", ",", "0", ",", "1", "]", "]", ")", "R2", "=", "Matrix", "(", "[", "[", "cos", "(", "theta", ")", ",", "0", ",", "sin", "(", "theta", ")", "]", ",", "[", "0", ",", "1", ",", "0", "]", ",", "[", "-", "sin", "(", "theta", ")", ",", "0", ",", "cos", "(", "theta", ")", "]", "]", ")", "R3", "=", "Matrix", "(", "[", "[", "cos", "(", "phi", ")", ",", "-", "sin", "(", "phi", ")", ",", "0", "]", ",", "[", "sin", "(", "phi", ")", ",", "cos", "(", "phi", ")", ",", "0", "]", ",", "[", "0", ",", "0", ",", "1", "]", "]", ")", "epsilon", "=", "R3", "*", "R2", "*", "R1", "*", "epsilon", "if", "numeric", ":", "epsilon", "=", "nparray", "(", "[", "complex", "(", "epsilon", "[", "i", "]", ")", "for", "i", "in", "range", "(", "3", ")", "]", ")", "return", "epsilon" ]
This function returns a unitary vector describing the polarization of plane waves.: INPUT: - ``phi`` - The spherical coordinates azimuthal angle of the wave vector\ k. - ``theta`` - The spherical coordinates polar angle of the wave vector k. - ``alpha`` - The rotation of a half-wave plate. - ``beta`` - The rotation of a quarter-wave plate. - ``p`` - either 1 or -1 to indicate whether to return epsilon^(+) or\ epsilon^(-) respectively. If alpha and beta are zero, the result will be linearly polarized light along some fast axis. alpha and beta are measured from that fast axis. Propagation towards y, linear polarization (for pi transitions): >>> from sympy import pi >>> polarization_vector(phi=pi/2, theta=pi/2, alpha=pi/2, beta= 0,p=1) Matrix([ [0], [0], [1]]) Propagation towards +z, circular polarization (for sigma + transitions): >>> polarization_vector(phi=0, theta= 0, alpha=pi/2, beta= pi/8,p=1) Matrix([ [ -sqrt(2)/2], [-sqrt(2)*I/2], [ 0]]) Propagation towards -z, circular polarization for sigma + transitions: >>> polarization_vector(phi=0, theta=pi, alpha= 0, beta=-pi/8,p=1) Matrix([ [ -sqrt(2)/2], [-sqrt(2)*I/2], [ 0]]) Components + and - are complex conjugates of each other >>> from sympy import symbols >>> phi, theta, alpha, beta = symbols("phi theta alpha beta", real=True) >>> ep = polarization_vector(phi,theta,alpha,beta, 1) >>> em = polarization_vector(phi,theta,alpha,beta,-1) >>> ep-em.conjugate() Matrix([ [0], [0], [0]]) We can also define abstract polarization vectors without explicit \ components >>> polarization_vector(0, 0, 0, 0, 1, abstract=True) epsilonp >>> polarization_vector(0, 0, 0, 0, -1, abstract=True) epsilonm
[ "This", "function", "returns", "a", "unitary", "vector", "describing", "the", "polarization", "of", "plane", "waves", ".", ":" ]
train
https://github.com/oscarlazoarjona/fast/blob/3e5400672af2a7b7cc616e7f4aa10d7672720222/fast/symbolic.py#L208-L297
oscarlazoarjona/fast
fast/symbolic.py
cartesian_to_helicity
def cartesian_to_helicity(vector, numeric=False): r"""This function takes vectors from the cartesian basis to the helicity basis. For instance, we can check what are the vectors of the helicity basis. >>> from sympy import pi >>> em=polarization_vector(phi=0, theta= 0, alpha=0, beta=-pi/8,p= 1) >>> em Matrix([ [ sqrt(2)/2], [-sqrt(2)*I/2], [ 0]]) >>> cartesian_to_helicity(em) Matrix([ [ 0], [ 0], [-1]]) >>> e0=polarization_vector(phi=pi/2, theta=pi/2, alpha=pi/2, beta=0,p=1) >>> e0 Matrix([ [0], [0], [1]]) >>> cartesian_to_helicity(e0) Matrix([ [0], [1], [0]]) >>> ep=polarization_vector(phi=0, theta= 0, alpha=pi/2, beta= pi/8,p= 1) >>> ep Matrix([ [ -sqrt(2)/2], [-sqrt(2)*I/2], [ 0]]) >>> cartesian_to_helicity(ep) Matrix([ [-1], [ 0], [ 0]]) Note that vectors in the helicity basis are built in a weird way by convention: .. math:: \vec{a} = -a_{+1}\vec{e}_{-1} +a_0\vec{e}_0 -a_{-1}\vec{e}_{+1} >>> from sympy import symbols >>> am,a0,ap = symbols("am a0 ap") >>> a=-ap*em +a0*e0 -am*ep >>> a Matrix([ [ sqrt(2)*am/2 - sqrt(2)*ap/2], [sqrt(2)*I*am/2 + sqrt(2)*I*ap/2], [ a0]]) >>> cartesian_to_helicity(a).expand() Matrix([ [am], [a0], [ap]]) We can also convert a numeric array >>> r =[[[0.0, 1.0], ... [1.0, 0.0]], ... [[0.0, -1j], ... [ 1j, 0.0]], ... [[1.0, 0.0], ... [0.0,-1.0]]] >>> cartesian_to_helicity(r, numeric=True) array([[[ 0. +0.j, 0. +0.j], [ 1.4142+0.j, 0. +0.j]], <BLANKLINE> [[ 1. +0.j, 0. +0.j], [ 0. +0.j, -1. +0.j]], <BLANKLINE> [[-0. +0.j, -1.4142+0.j], [-0. +0.j, -0. +0.j]]]) """ if numeric: vector = list(vector) vector[0] = nparray(vector[0]) vector[1] = nparray(vector[1]) vector[2] = nparray(vector[2]) v = [(vector[0]-1j*vector[1])/npsqrt(2), vector[2], -(vector[0]+1j*vector[1])/npsqrt(2)] v = nparray(v) else: v = [(vector[0]-I*vector[1])/sqrt(2), vector[2], -(vector[0]+I*vector[1])/sqrt(2)] if type(vector[0]) in [type(Matrix([1, 0])), type(nparray([1, 0]))]: return v else: return Matrix(v)
python
def cartesian_to_helicity(vector, numeric=False): r"""This function takes vectors from the cartesian basis to the helicity basis. For instance, we can check what are the vectors of the helicity basis. >>> from sympy import pi >>> em=polarization_vector(phi=0, theta= 0, alpha=0, beta=-pi/8,p= 1) >>> em Matrix([ [ sqrt(2)/2], [-sqrt(2)*I/2], [ 0]]) >>> cartesian_to_helicity(em) Matrix([ [ 0], [ 0], [-1]]) >>> e0=polarization_vector(phi=pi/2, theta=pi/2, alpha=pi/2, beta=0,p=1) >>> e0 Matrix([ [0], [0], [1]]) >>> cartesian_to_helicity(e0) Matrix([ [0], [1], [0]]) >>> ep=polarization_vector(phi=0, theta= 0, alpha=pi/2, beta= pi/8,p= 1) >>> ep Matrix([ [ -sqrt(2)/2], [-sqrt(2)*I/2], [ 0]]) >>> cartesian_to_helicity(ep) Matrix([ [-1], [ 0], [ 0]]) Note that vectors in the helicity basis are built in a weird way by convention: .. math:: \vec{a} = -a_{+1}\vec{e}_{-1} +a_0\vec{e}_0 -a_{-1}\vec{e}_{+1} >>> from sympy import symbols >>> am,a0,ap = symbols("am a0 ap") >>> a=-ap*em +a0*e0 -am*ep >>> a Matrix([ [ sqrt(2)*am/2 - sqrt(2)*ap/2], [sqrt(2)*I*am/2 + sqrt(2)*I*ap/2], [ a0]]) >>> cartesian_to_helicity(a).expand() Matrix([ [am], [a0], [ap]]) We can also convert a numeric array >>> r =[[[0.0, 1.0], ... [1.0, 0.0]], ... [[0.0, -1j], ... [ 1j, 0.0]], ... [[1.0, 0.0], ... [0.0,-1.0]]] >>> cartesian_to_helicity(r, numeric=True) array([[[ 0. +0.j, 0. +0.j], [ 1.4142+0.j, 0. +0.j]], <BLANKLINE> [[ 1. +0.j, 0. +0.j], [ 0. +0.j, -1. +0.j]], <BLANKLINE> [[-0. +0.j, -1.4142+0.j], [-0. +0.j, -0. +0.j]]]) """ if numeric: vector = list(vector) vector[0] = nparray(vector[0]) vector[1] = nparray(vector[1]) vector[2] = nparray(vector[2]) v = [(vector[0]-1j*vector[1])/npsqrt(2), vector[2], -(vector[0]+1j*vector[1])/npsqrt(2)] v = nparray(v) else: v = [(vector[0]-I*vector[1])/sqrt(2), vector[2], -(vector[0]+I*vector[1])/sqrt(2)] if type(vector[0]) in [type(Matrix([1, 0])), type(nparray([1, 0]))]: return v else: return Matrix(v)
[ "def", "cartesian_to_helicity", "(", "vector", ",", "numeric", "=", "False", ")", ":", "if", "numeric", ":", "vector", "=", "list", "(", "vector", ")", "vector", "[", "0", "]", "=", "nparray", "(", "vector", "[", "0", "]", ")", "vector", "[", "1", "]", "=", "nparray", "(", "vector", "[", "1", "]", ")", "vector", "[", "2", "]", "=", "nparray", "(", "vector", "[", "2", "]", ")", "v", "=", "[", "(", "vector", "[", "0", "]", "-", "1j", "*", "vector", "[", "1", "]", ")", "/", "npsqrt", "(", "2", ")", ",", "vector", "[", "2", "]", ",", "-", "(", "vector", "[", "0", "]", "+", "1j", "*", "vector", "[", "1", "]", ")", "/", "npsqrt", "(", "2", ")", "]", "v", "=", "nparray", "(", "v", ")", "else", ":", "v", "=", "[", "(", "vector", "[", "0", "]", "-", "I", "*", "vector", "[", "1", "]", ")", "/", "sqrt", "(", "2", ")", ",", "vector", "[", "2", "]", ",", "-", "(", "vector", "[", "0", "]", "+", "I", "*", "vector", "[", "1", "]", ")", "/", "sqrt", "(", "2", ")", "]", "if", "type", "(", "vector", "[", "0", "]", ")", "in", "[", "type", "(", "Matrix", "(", "[", "1", ",", "0", "]", ")", ")", ",", "type", "(", "nparray", "(", "[", "1", ",", "0", "]", ")", ")", "]", ":", "return", "v", "else", ":", "return", "Matrix", "(", "v", ")" ]
r"""This function takes vectors from the cartesian basis to the helicity basis. For instance, we can check what are the vectors of the helicity basis. >>> from sympy import pi >>> em=polarization_vector(phi=0, theta= 0, alpha=0, beta=-pi/8,p= 1) >>> em Matrix([ [ sqrt(2)/2], [-sqrt(2)*I/2], [ 0]]) >>> cartesian_to_helicity(em) Matrix([ [ 0], [ 0], [-1]]) >>> e0=polarization_vector(phi=pi/2, theta=pi/2, alpha=pi/2, beta=0,p=1) >>> e0 Matrix([ [0], [0], [1]]) >>> cartesian_to_helicity(e0) Matrix([ [0], [1], [0]]) >>> ep=polarization_vector(phi=0, theta= 0, alpha=pi/2, beta= pi/8,p= 1) >>> ep Matrix([ [ -sqrt(2)/2], [-sqrt(2)*I/2], [ 0]]) >>> cartesian_to_helicity(ep) Matrix([ [-1], [ 0], [ 0]]) Note that vectors in the helicity basis are built in a weird way by convention: .. math:: \vec{a} = -a_{+1}\vec{e}_{-1} +a_0\vec{e}_0 -a_{-1}\vec{e}_{+1} >>> from sympy import symbols >>> am,a0,ap = symbols("am a0 ap") >>> a=-ap*em +a0*e0 -am*ep >>> a Matrix([ [ sqrt(2)*am/2 - sqrt(2)*ap/2], [sqrt(2)*I*am/2 + sqrt(2)*I*ap/2], [ a0]]) >>> cartesian_to_helicity(a).expand() Matrix([ [am], [a0], [ap]]) We can also convert a numeric array >>> r =[[[0.0, 1.0], ... [1.0, 0.0]], ... [[0.0, -1j], ... [ 1j, 0.0]], ... [[1.0, 0.0], ... [0.0,-1.0]]] >>> cartesian_to_helicity(r, numeric=True) array([[[ 0. +0.j, 0. +0.j], [ 1.4142+0.j, 0. +0.j]], <BLANKLINE> [[ 1. +0.j, 0. +0.j], [ 0. +0.j, -1. +0.j]], <BLANKLINE> [[-0. +0.j, -1.4142+0.j], [-0. +0.j, -0. +0.j]]])
[ "r", "This", "function", "takes", "vectors", "from", "the", "cartesian", "basis", "to", "the", "helicity", "basis", ".", "For", "instance", "we", "can", "check", "what", "are", "the", "vectors", "of", "the", "helicity", "basis", "." ]
train
https://github.com/oscarlazoarjona/fast/blob/3e5400672af2a7b7cc616e7f4aa10d7672720222/fast/symbolic.py#L300-L400
oscarlazoarjona/fast
fast/symbolic.py
define_r_components
def define_r_components(Ne, xi=None, explicitly_hermitian=False, helicity=False, real=True, p=None): r"""Define the components of the position operators. In general, these are representations of the position operators x, y, z >>> define_r_components(2) [Matrix([ [ 0, x_{12}], [x_{21}, 0]]), Matrix([ [ 0, y_{12}], [y_{21}, 0]]), Matrix([ [ 0, z_{12}], [z_{21}, 0]])] We can make these operators explicitly hermitian >>> define_r_components(2, explicitly_hermitian=True) [Matrix([ [ 0, x_{21}], [x_{21}, 0]]), Matrix([ [ 0, y_{21}], [y_{21}, 0]]), Matrix([ [ 0, z_{21}], [z_{21}, 0]])] Make them real >>> r = define_r_components(2, real=True, explicitly_hermitian=True) >>> print [r[p]-r[p].transpose() for p in range(3)] [Matrix([ [0, 0], [0, 0]]), Matrix([ [0, 0], [0, 0]]), Matrix([ [0, 0], [0, 0]])] We can get the components of the operator in the helicity basis >>> define_r_components(2, helicity=True) [Matrix([ [ 0, r_{-1;12}], [r_{-1;21}, 0]]), Matrix([ [ 0, r_{0;12}], [r_{0;21}, 0]]), Matrix([ [ 0, r_{+1;12}], [r_{+1;21}, 0]])] And combinations thereof. For instance, let us check that the components in the helicity basis produce hermitian operators in the cartesian basis. >>> r_helicity = define_r_components(2, helicity=True, ... explicitly_hermitian=True) [Matrix([ [ 0, -r_{+1;21}], [r_{-1;21}, 0]]), Matrix([ [ 0, r_{0;21}], [r_{0;21}, 0]]), Matrix([ [ 0, -r_{-1;21}], [r_{+1;21}, 0]])] >>> r_cartesian = helicity_to_cartesian(r_helicity) >>> r_cartesian[0] Matrix([ [ 0, sqrt(2)*(-r_{+1;21} + r_{-1;21})/2], [sqrt(2)*(-r_{+1;21} + r_{-1;21})/2, 0]]) >>> [(r_cartesian[p]-r_cartesian[p].adjoint()).expand() for p in range(3)] [Matrix([ [0, 0], [0, 0]]), Matrix([ [0, 0], [0, 0]]), Matrix([ [0, 0], [0, 0]])] """ frequency_sign = p if Ne > 9: comma = "," else: comma = "" if helicity: names = ["r_{-1;", "r_{0;", "r_{+1;"] else: names = ["x", "y", "z"] r = [] if helicity: for p in range(3): r_comp = [] for i in range(Ne): r_row = [] for j in range(Ne): if i == j: r_row += [0] elif i > j: r_row += [Symbol(names[p]+str(i+1)+comma+str(j+1)+"}", real=real)] elif explicitly_hermitian: sign = int((-1)**(p-1)) r_row += [sign*conjugate(Symbol(names[2-p]+str(j+1) + comma+str(i+1)+"}", real=real))] else: r_row += [Symbol(names[p]+str(i+1)+comma+str(j+1)+"}", real=real)] r_comp += [r_row] r_comp = Matrix(r_comp) r += [r_comp] else: for p in range(3): r_comp = [] for i in range(Ne): r_row = [] for j in range(Ne): if i == j: r_row += [0] elif i > j: r_row += [Symbol(names[p]+r"_{"+str(i+1) + comma+str(j+1)+"}", real=real)] elif explicitly_hermitian: r_row += [conjugate(Symbol(names[p]+r"_{"+str(j+1) + comma+str(i+1)+"}", real=real))] else: r_row += [Symbol(names[p]+r"_{"+str(i+1) + comma+str(j+1)+"}", real=real)] r_comp += [r_row] r_comp = Matrix(r_comp) r += [r_comp] # We select only the upper diagonal or lower diagonal components according # to the sign r^(+) or r^(-) provided. if frequency_sign == 1: r = [Matrix([[r[p][i, j]*delta_lesser(i, j) for j in range(Ne)] for i in range(Ne)]) for p in range(3)] elif frequency_sign == -1: r = [Matrix([[r[p][i, j]*delta_greater(i, j) for j in range(Ne)] for i in range(Ne)]) for p in range(3)] if xi is not None: Nl = len(xi) for p in range(3): for i in range(Ne): for j in range(Ne): zero = True for l in range(Nl): if xi[l][i, j] != 0: zero = False if zero: r[p][i, j] = 0 return r
python
def define_r_components(Ne, xi=None, explicitly_hermitian=False, helicity=False, real=True, p=None): r"""Define the components of the position operators. In general, these are representations of the position operators x, y, z >>> define_r_components(2) [Matrix([ [ 0, x_{12}], [x_{21}, 0]]), Matrix([ [ 0, y_{12}], [y_{21}, 0]]), Matrix([ [ 0, z_{12}], [z_{21}, 0]])] We can make these operators explicitly hermitian >>> define_r_components(2, explicitly_hermitian=True) [Matrix([ [ 0, x_{21}], [x_{21}, 0]]), Matrix([ [ 0, y_{21}], [y_{21}, 0]]), Matrix([ [ 0, z_{21}], [z_{21}, 0]])] Make them real >>> r = define_r_components(2, real=True, explicitly_hermitian=True) >>> print [r[p]-r[p].transpose() for p in range(3)] [Matrix([ [0, 0], [0, 0]]), Matrix([ [0, 0], [0, 0]]), Matrix([ [0, 0], [0, 0]])] We can get the components of the operator in the helicity basis >>> define_r_components(2, helicity=True) [Matrix([ [ 0, r_{-1;12}], [r_{-1;21}, 0]]), Matrix([ [ 0, r_{0;12}], [r_{0;21}, 0]]), Matrix([ [ 0, r_{+1;12}], [r_{+1;21}, 0]])] And combinations thereof. For instance, let us check that the components in the helicity basis produce hermitian operators in the cartesian basis. >>> r_helicity = define_r_components(2, helicity=True, ... explicitly_hermitian=True) [Matrix([ [ 0, -r_{+1;21}], [r_{-1;21}, 0]]), Matrix([ [ 0, r_{0;21}], [r_{0;21}, 0]]), Matrix([ [ 0, -r_{-1;21}], [r_{+1;21}, 0]])] >>> r_cartesian = helicity_to_cartesian(r_helicity) >>> r_cartesian[0] Matrix([ [ 0, sqrt(2)*(-r_{+1;21} + r_{-1;21})/2], [sqrt(2)*(-r_{+1;21} + r_{-1;21})/2, 0]]) >>> [(r_cartesian[p]-r_cartesian[p].adjoint()).expand() for p in range(3)] [Matrix([ [0, 0], [0, 0]]), Matrix([ [0, 0], [0, 0]]), Matrix([ [0, 0], [0, 0]])] """ frequency_sign = p if Ne > 9: comma = "," else: comma = "" if helicity: names = ["r_{-1;", "r_{0;", "r_{+1;"] else: names = ["x", "y", "z"] r = [] if helicity: for p in range(3): r_comp = [] for i in range(Ne): r_row = [] for j in range(Ne): if i == j: r_row += [0] elif i > j: r_row += [Symbol(names[p]+str(i+1)+comma+str(j+1)+"}", real=real)] elif explicitly_hermitian: sign = int((-1)**(p-1)) r_row += [sign*conjugate(Symbol(names[2-p]+str(j+1) + comma+str(i+1)+"}", real=real))] else: r_row += [Symbol(names[p]+str(i+1)+comma+str(j+1)+"}", real=real)] r_comp += [r_row] r_comp = Matrix(r_comp) r += [r_comp] else: for p in range(3): r_comp = [] for i in range(Ne): r_row = [] for j in range(Ne): if i == j: r_row += [0] elif i > j: r_row += [Symbol(names[p]+r"_{"+str(i+1) + comma+str(j+1)+"}", real=real)] elif explicitly_hermitian: r_row += [conjugate(Symbol(names[p]+r"_{"+str(j+1) + comma+str(i+1)+"}", real=real))] else: r_row += [Symbol(names[p]+r"_{"+str(i+1) + comma+str(j+1)+"}", real=real)] r_comp += [r_row] r_comp = Matrix(r_comp) r += [r_comp] # We select only the upper diagonal or lower diagonal components according # to the sign r^(+) or r^(-) provided. if frequency_sign == 1: r = [Matrix([[r[p][i, j]*delta_lesser(i, j) for j in range(Ne)] for i in range(Ne)]) for p in range(3)] elif frequency_sign == -1: r = [Matrix([[r[p][i, j]*delta_greater(i, j) for j in range(Ne)] for i in range(Ne)]) for p in range(3)] if xi is not None: Nl = len(xi) for p in range(3): for i in range(Ne): for j in range(Ne): zero = True for l in range(Nl): if xi[l][i, j] != 0: zero = False if zero: r[p][i, j] = 0 return r
[ "def", "define_r_components", "(", "Ne", ",", "xi", "=", "None", ",", "explicitly_hermitian", "=", "False", ",", "helicity", "=", "False", ",", "real", "=", "True", ",", "p", "=", "None", ")", ":", "frequency_sign", "=", "p", "if", "Ne", ">", "9", ":", "comma", "=", "\",\"", "else", ":", "comma", "=", "\"\"", "if", "helicity", ":", "names", "=", "[", "\"r_{-1;\"", ",", "\"r_{0;\"", ",", "\"r_{+1;\"", "]", "else", ":", "names", "=", "[", "\"x\"", ",", "\"y\"", ",", "\"z\"", "]", "r", "=", "[", "]", "if", "helicity", ":", "for", "p", "in", "range", "(", "3", ")", ":", "r_comp", "=", "[", "]", "for", "i", "in", "range", "(", "Ne", ")", ":", "r_row", "=", "[", "]", "for", "j", "in", "range", "(", "Ne", ")", ":", "if", "i", "==", "j", ":", "r_row", "+=", "[", "0", "]", "elif", "i", ">", "j", ":", "r_row", "+=", "[", "Symbol", "(", "names", "[", "p", "]", "+", "str", "(", "i", "+", "1", ")", "+", "comma", "+", "str", "(", "j", "+", "1", ")", "+", "\"}\"", ",", "real", "=", "real", ")", "]", "elif", "explicitly_hermitian", ":", "sign", "=", "int", "(", "(", "-", "1", ")", "**", "(", "p", "-", "1", ")", ")", "r_row", "+=", "[", "sign", "*", "conjugate", "(", "Symbol", "(", "names", "[", "2", "-", "p", "]", "+", "str", "(", "j", "+", "1", ")", "+", "comma", "+", "str", "(", "i", "+", "1", ")", "+", "\"}\"", ",", "real", "=", "real", ")", ")", "]", "else", ":", "r_row", "+=", "[", "Symbol", "(", "names", "[", "p", "]", "+", "str", "(", "i", "+", "1", ")", "+", "comma", "+", "str", "(", "j", "+", "1", ")", "+", "\"}\"", ",", "real", "=", "real", ")", "]", "r_comp", "+=", "[", "r_row", "]", "r_comp", "=", "Matrix", "(", "r_comp", ")", "r", "+=", "[", "r_comp", "]", "else", ":", "for", "p", "in", "range", "(", "3", ")", ":", "r_comp", "=", "[", "]", "for", "i", "in", "range", "(", "Ne", ")", ":", "r_row", "=", "[", "]", "for", "j", "in", "range", "(", "Ne", ")", ":", "if", "i", "==", "j", ":", "r_row", "+=", "[", "0", "]", "elif", "i", ">", "j", ":", "r_row", "+=", "[", "Symbol", "(", "names", "[", "p", "]", "+", "r\"_{\"", "+", "str", "(", "i", "+", "1", ")", "+", "comma", "+", "str", "(", "j", "+", "1", ")", "+", "\"}\"", ",", "real", "=", "real", ")", "]", "elif", "explicitly_hermitian", ":", "r_row", "+=", "[", "conjugate", "(", "Symbol", "(", "names", "[", "p", "]", "+", "r\"_{\"", "+", "str", "(", "j", "+", "1", ")", "+", "comma", "+", "str", "(", "i", "+", "1", ")", "+", "\"}\"", ",", "real", "=", "real", ")", ")", "]", "else", ":", "r_row", "+=", "[", "Symbol", "(", "names", "[", "p", "]", "+", "r\"_{\"", "+", "str", "(", "i", "+", "1", ")", "+", "comma", "+", "str", "(", "j", "+", "1", ")", "+", "\"}\"", ",", "real", "=", "real", ")", "]", "r_comp", "+=", "[", "r_row", "]", "r_comp", "=", "Matrix", "(", "r_comp", ")", "r", "+=", "[", "r_comp", "]", "# We select only the upper diagonal or lower diagonal components according", "# to the sign r^(+) or r^(-) provided.", "if", "frequency_sign", "==", "1", ":", "r", "=", "[", "Matrix", "(", "[", "[", "r", "[", "p", "]", "[", "i", ",", "j", "]", "*", "delta_lesser", "(", "i", ",", "j", ")", "for", "j", "in", "range", "(", "Ne", ")", "]", "for", "i", "in", "range", "(", "Ne", ")", "]", ")", "for", "p", "in", "range", "(", "3", ")", "]", "elif", "frequency_sign", "==", "-", "1", ":", "r", "=", "[", "Matrix", "(", "[", "[", "r", "[", "p", "]", "[", "i", ",", "j", "]", "*", "delta_greater", "(", "i", ",", "j", ")", "for", "j", "in", "range", "(", "Ne", ")", "]", "for", "i", "in", "range", "(", "Ne", ")", "]", ")", "for", "p", "in", "range", "(", "3", ")", "]", "if", "xi", "is", "not", "None", ":", "Nl", "=", "len", "(", "xi", ")", "for", "p", "in", "range", "(", "3", ")", ":", "for", "i", "in", "range", "(", "Ne", ")", ":", "for", "j", "in", "range", "(", "Ne", ")", ":", "zero", "=", "True", "for", "l", "in", "range", "(", "Nl", ")", ":", "if", "xi", "[", "l", "]", "[", "i", ",", "j", "]", "!=", "0", ":", "zero", "=", "False", "if", "zero", ":", "r", "[", "p", "]", "[", "i", ",", "j", "]", "=", "0", "return", "r" ]
r"""Define the components of the position operators. In general, these are representations of the position operators x, y, z >>> define_r_components(2) [Matrix([ [ 0, x_{12}], [x_{21}, 0]]), Matrix([ [ 0, y_{12}], [y_{21}, 0]]), Matrix([ [ 0, z_{12}], [z_{21}, 0]])] We can make these operators explicitly hermitian >>> define_r_components(2, explicitly_hermitian=True) [Matrix([ [ 0, x_{21}], [x_{21}, 0]]), Matrix([ [ 0, y_{21}], [y_{21}, 0]]), Matrix([ [ 0, z_{21}], [z_{21}, 0]])] Make them real >>> r = define_r_components(2, real=True, explicitly_hermitian=True) >>> print [r[p]-r[p].transpose() for p in range(3)] [Matrix([ [0, 0], [0, 0]]), Matrix([ [0, 0], [0, 0]]), Matrix([ [0, 0], [0, 0]])] We can get the components of the operator in the helicity basis >>> define_r_components(2, helicity=True) [Matrix([ [ 0, r_{-1;12}], [r_{-1;21}, 0]]), Matrix([ [ 0, r_{0;12}], [r_{0;21}, 0]]), Matrix([ [ 0, r_{+1;12}], [r_{+1;21}, 0]])] And combinations thereof. For instance, let us check that the components in the helicity basis produce hermitian operators in the cartesian basis. >>> r_helicity = define_r_components(2, helicity=True, ... explicitly_hermitian=True) [Matrix([ [ 0, -r_{+1;21}], [r_{-1;21}, 0]]), Matrix([ [ 0, r_{0;21}], [r_{0;21}, 0]]), Matrix([ [ 0, -r_{-1;21}], [r_{+1;21}, 0]])] >>> r_cartesian = helicity_to_cartesian(r_helicity) >>> r_cartesian[0] Matrix([ [ 0, sqrt(2)*(-r_{+1;21} + r_{-1;21})/2], [sqrt(2)*(-r_{+1;21} + r_{-1;21})/2, 0]]) >>> [(r_cartesian[p]-r_cartesian[p].adjoint()).expand() for p in range(3)] [Matrix([ [0, 0], [0, 0]]), Matrix([ [0, 0], [0, 0]]), Matrix([ [0, 0], [0, 0]])]
[ "r", "Define", "the", "components", "of", "the", "position", "operators", "." ]
train
https://github.com/oscarlazoarjona/fast/blob/3e5400672af2a7b7cc616e7f4aa10d7672720222/fast/symbolic.py#L530-L687
oscarlazoarjona/fast
fast/symbolic.py
vector_element
def vector_element(r, i, j): r"""Extract an matrix element of a vector operator. >>> r = define_r_components(2) >>> vector_element(r, 1, 0) Matrix([ [x_{21}], [y_{21}], [z_{21}]]) """ return Matrix([r[p][i, j] for p in range(3)])
python
def vector_element(r, i, j): r"""Extract an matrix element of a vector operator. >>> r = define_r_components(2) >>> vector_element(r, 1, 0) Matrix([ [x_{21}], [y_{21}], [z_{21}]]) """ return Matrix([r[p][i, j] for p in range(3)])
[ "def", "vector_element", "(", "r", ",", "i", ",", "j", ")", ":", "return", "Matrix", "(", "[", "r", "[", "p", "]", "[", "i", ",", "j", "]", "for", "p", "in", "range", "(", "3", ")", "]", ")" ]
r"""Extract an matrix element of a vector operator. >>> r = define_r_components(2) >>> vector_element(r, 1, 0) Matrix([ [x_{21}], [y_{21}], [z_{21}]])
[ "r", "Extract", "an", "matrix", "element", "of", "a", "vector", "operator", "." ]
train
https://github.com/oscarlazoarjona/fast/blob/3e5400672af2a7b7cc616e7f4aa10d7672720222/fast/symbolic.py#L690-L701
oscarlazoarjona/fast
fast/symbolic.py
define_frequencies
def define_frequencies(Ne, explicitly_antisymmetric=False): u"""Define all frequencies omega_level, omega, gamma. >>> from sympy import pprint >>> pprint(define_frequencies(2), use_unicode=True) βŽ› ⎑ 0 Ο‰β‚β‚‚βŽ€ ⎑ 0 Ξ³β‚β‚‚βŽ€βŽž ⎜[ω₁, Ο‰β‚‚], ⎒ βŽ₯, ⎒ βŽ₯⎟ ⎝ βŽ£Ο‰β‚‚β‚ 0 ⎦ βŽ£Ξ³β‚‚β‚ 0 ⎦⎠ We can make these matrices explicitly antisymmetric. >>> pprint(define_frequencies(2, explicitly_antisymmetric=True), ... use_unicode=True) βŽ› ⎑ 0 -Ο‰β‚‚β‚βŽ€ ⎑ 0 -Ξ³β‚‚β‚βŽ€βŽž ⎜[ω₁, Ο‰β‚‚], ⎒ βŽ₯, ⎒ βŽ₯⎟ ⎝ βŽ£Ο‰β‚‚β‚ 0 ⎦ βŽ£Ξ³β‚‚β‚ 0 ⎦⎠ """ omega_level = [Symbol('omega_'+str(i+1), real=True) for i in range(Ne)] if Ne > 9: opening = "\\" comma = "," open_brace = "{" close_brace = "}" else: opening = r"" comma = "" open_brace = "" close_brace = "" omega = []; gamma = [] for i in range(Ne): row_omega = []; row_gamma = [] for j in range(Ne): if i == j: om = 0; ga = 0 elif i > j: om = Symbol(opening+r"omega_" + open_brace+str(i+1)+comma+str(j+1) + close_brace, real=True) ga = Symbol(opening+r"gamma_" + open_brace+str(i+1)+comma+str(j+1) + close_brace, real=True) elif explicitly_antisymmetric: om = -Symbol(opening+r"omega_" + open_brace+str(j+1)+comma+str(i+1) + close_brace, real=True) ga = -Symbol(opening+r"gamma_" + open_brace+str(j+1)+comma+str(i+1) + close_brace, real=True) else: om = Symbol(opening+r"omega_" + open_brace+str(i+1)+comma+str(j+1) + close_brace, real=True) ga = Symbol(opening+r"gamma_" + open_brace+str(i+1)+comma+str(j+1) + close_brace, real=True) row_omega += [om] row_gamma += [ga] omega += [row_omega] gamma += [row_gamma] omega = Matrix(omega) gamma = Matrix(gamma) return omega_level, omega, gamma
python
def define_frequencies(Ne, explicitly_antisymmetric=False): u"""Define all frequencies omega_level, omega, gamma. >>> from sympy import pprint >>> pprint(define_frequencies(2), use_unicode=True) βŽ› ⎑ 0 Ο‰β‚β‚‚βŽ€ ⎑ 0 Ξ³β‚β‚‚βŽ€βŽž ⎜[ω₁, Ο‰β‚‚], ⎒ βŽ₯, ⎒ βŽ₯⎟ ⎝ βŽ£Ο‰β‚‚β‚ 0 ⎦ βŽ£Ξ³β‚‚β‚ 0 ⎦⎠ We can make these matrices explicitly antisymmetric. >>> pprint(define_frequencies(2, explicitly_antisymmetric=True), ... use_unicode=True) βŽ› ⎑ 0 -Ο‰β‚‚β‚βŽ€ ⎑ 0 -Ξ³β‚‚β‚βŽ€βŽž ⎜[ω₁, Ο‰β‚‚], ⎒ βŽ₯, ⎒ βŽ₯⎟ ⎝ βŽ£Ο‰β‚‚β‚ 0 ⎦ βŽ£Ξ³β‚‚β‚ 0 ⎦⎠ """ omega_level = [Symbol('omega_'+str(i+1), real=True) for i in range(Ne)] if Ne > 9: opening = "\\" comma = "," open_brace = "{" close_brace = "}" else: opening = r"" comma = "" open_brace = "" close_brace = "" omega = []; gamma = [] for i in range(Ne): row_omega = []; row_gamma = [] for j in range(Ne): if i == j: om = 0; ga = 0 elif i > j: om = Symbol(opening+r"omega_" + open_brace+str(i+1)+comma+str(j+1) + close_brace, real=True) ga = Symbol(opening+r"gamma_" + open_brace+str(i+1)+comma+str(j+1) + close_brace, real=True) elif explicitly_antisymmetric: om = -Symbol(opening+r"omega_" + open_brace+str(j+1)+comma+str(i+1) + close_brace, real=True) ga = -Symbol(opening+r"gamma_" + open_brace+str(j+1)+comma+str(i+1) + close_brace, real=True) else: om = Symbol(opening+r"omega_" + open_brace+str(i+1)+comma+str(j+1) + close_brace, real=True) ga = Symbol(opening+r"gamma_" + open_brace+str(i+1)+comma+str(j+1) + close_brace, real=True) row_omega += [om] row_gamma += [ga] omega += [row_omega] gamma += [row_gamma] omega = Matrix(omega) gamma = Matrix(gamma) return omega_level, omega, gamma
[ "def", "define_frequencies", "(", "Ne", ",", "explicitly_antisymmetric", "=", "False", ")", ":", "omega_level", "=", "[", "Symbol", "(", "'omega_'", "+", "str", "(", "i", "+", "1", ")", ",", "real", "=", "True", ")", "for", "i", "in", "range", "(", "Ne", ")", "]", "if", "Ne", ">", "9", ":", "opening", "=", "\"\\\\\"", "comma", "=", "\",\"", "open_brace", "=", "\"{\"", "close_brace", "=", "\"}\"", "else", ":", "opening", "=", "r\"\"", "comma", "=", "\"\"", "open_brace", "=", "\"\"", "close_brace", "=", "\"\"", "omega", "=", "[", "]", "gamma", "=", "[", "]", "for", "i", "in", "range", "(", "Ne", ")", ":", "row_omega", "=", "[", "]", "row_gamma", "=", "[", "]", "for", "j", "in", "range", "(", "Ne", ")", ":", "if", "i", "==", "j", ":", "om", "=", "0", "ga", "=", "0", "elif", "i", ">", "j", ":", "om", "=", "Symbol", "(", "opening", "+", "r\"omega_\"", "+", "open_brace", "+", "str", "(", "i", "+", "1", ")", "+", "comma", "+", "str", "(", "j", "+", "1", ")", "+", "close_brace", ",", "real", "=", "True", ")", "ga", "=", "Symbol", "(", "opening", "+", "r\"gamma_\"", "+", "open_brace", "+", "str", "(", "i", "+", "1", ")", "+", "comma", "+", "str", "(", "j", "+", "1", ")", "+", "close_brace", ",", "real", "=", "True", ")", "elif", "explicitly_antisymmetric", ":", "om", "=", "-", "Symbol", "(", "opening", "+", "r\"omega_\"", "+", "open_brace", "+", "str", "(", "j", "+", "1", ")", "+", "comma", "+", "str", "(", "i", "+", "1", ")", "+", "close_brace", ",", "real", "=", "True", ")", "ga", "=", "-", "Symbol", "(", "opening", "+", "r\"gamma_\"", "+", "open_brace", "+", "str", "(", "j", "+", "1", ")", "+", "comma", "+", "str", "(", "i", "+", "1", ")", "+", "close_brace", ",", "real", "=", "True", ")", "else", ":", "om", "=", "Symbol", "(", "opening", "+", "r\"omega_\"", "+", "open_brace", "+", "str", "(", "i", "+", "1", ")", "+", "comma", "+", "str", "(", "j", "+", "1", ")", "+", "close_brace", ",", "real", "=", "True", ")", "ga", "=", "Symbol", "(", "opening", "+", "r\"gamma_\"", "+", "open_brace", "+", "str", "(", "i", "+", "1", ")", "+", "comma", "+", "str", "(", "j", "+", "1", ")", "+", "close_brace", ",", "real", "=", "True", ")", "row_omega", "+=", "[", "om", "]", "row_gamma", "+=", "[", "ga", "]", "omega", "+=", "[", "row_omega", "]", "gamma", "+=", "[", "row_gamma", "]", "omega", "=", "Matrix", "(", "omega", ")", "gamma", "=", "Matrix", "(", "gamma", ")", "return", "omega_level", ",", "omega", ",", "gamma" ]
u"""Define all frequencies omega_level, omega, gamma. >>> from sympy import pprint >>> pprint(define_frequencies(2), use_unicode=True) βŽ› ⎑ 0 Ο‰β‚β‚‚βŽ€ ⎑ 0 Ξ³β‚β‚‚βŽ€βŽž ⎜[ω₁, Ο‰β‚‚], ⎒ βŽ₯, ⎒ βŽ₯⎟ ⎝ βŽ£Ο‰β‚‚β‚ 0 ⎦ βŽ£Ξ³β‚‚β‚ 0 ⎦⎠ We can make these matrices explicitly antisymmetric. >>> pprint(define_frequencies(2, explicitly_antisymmetric=True), ... use_unicode=True) βŽ› ⎑ 0 -Ο‰β‚‚β‚βŽ€ ⎑ 0 -Ξ³β‚‚β‚βŽ€βŽž ⎜[ω₁, Ο‰β‚‚], ⎒ βŽ₯, ⎒ βŽ₯⎟ ⎝ βŽ£Ο‰β‚‚β‚ 0 ⎦ βŽ£Ξ³β‚‚β‚ 0 ⎦⎠
[ "u", "Define", "all", "frequencies", "omega_level", "omega", "gamma", "." ]
train
https://github.com/oscarlazoarjona/fast/blob/3e5400672af2a7b7cc616e7f4aa10d7672720222/fast/symbolic.py#L704-L772
oscarlazoarjona/fast
fast/symbolic.py
bra
def bra(i, Ne): r"""This function returns the transpose of the i-th element of the canonical basis of a Hilbert space of dimension Ne (in the form of a row vector). >>> bra(2,4) Matrix([[0, 1, 0, 0]]) This will return an error if i is not in [1 .. Ne]: >>> bra(5,3) Traceback (most recent call last): ... ValueError: i must be in [1 .. Ne]. """ if i not in range(1, Ne+1): raise ValueError("i must be in [1 .. Ne].") return Matrix([KroneckerDelta(i-1, j) for j in range(Ne)]).transpose()
python
def bra(i, Ne): r"""This function returns the transpose of the i-th element of the canonical basis of a Hilbert space of dimension Ne (in the form of a row vector). >>> bra(2,4) Matrix([[0, 1, 0, 0]]) This will return an error if i is not in [1 .. Ne]: >>> bra(5,3) Traceback (most recent call last): ... ValueError: i must be in [1 .. Ne]. """ if i not in range(1, Ne+1): raise ValueError("i must be in [1 .. Ne].") return Matrix([KroneckerDelta(i-1, j) for j in range(Ne)]).transpose()
[ "def", "bra", "(", "i", ",", "Ne", ")", ":", "if", "i", "not", "in", "range", "(", "1", ",", "Ne", "+", "1", ")", ":", "raise", "ValueError", "(", "\"i must be in [1 .. Ne].\"", ")", "return", "Matrix", "(", "[", "KroneckerDelta", "(", "i", "-", "1", ",", "j", ")", "for", "j", "in", "range", "(", "Ne", ")", "]", ")", ".", "transpose", "(", ")" ]
r"""This function returns the transpose of the i-th element of the canonical basis of a Hilbert space of dimension Ne (in the form of a row vector). >>> bra(2,4) Matrix([[0, 1, 0, 0]]) This will return an error if i is not in [1 .. Ne]: >>> bra(5,3) Traceback (most recent call last): ... ValueError: i must be in [1 .. Ne].
[ "r", "This", "function", "returns", "the", "transpose", "of", "the", "i", "-", "th", "element", "of", "the", "canonical", "basis", "of", "a", "Hilbert", "space", "of", "dimension", "Ne", "(", "in", "the", "form", "of", "a", "row", "vector", ")", "." ]
train
https://github.com/oscarlazoarjona/fast/blob/3e5400672af2a7b7cc616e7f4aa10d7672720222/fast/symbolic.py#L801-L819
oscarlazoarjona/fast
fast/symbolic.py
ket
def ket(i, Ne): r"""This function returns the i-th element of the canonical basis of a Hilbert space of dimension Ne (in the form of a column vector). >>> ket(2,4) Matrix([ [0], [1], [0], [0]]) This will return an error if i is not in [1 .. Ne]: >>> ket(5,3) Traceback (most recent call last): ... ValueError: i must be in [1 .. Ne]. """ if i not in range(1, Ne+1): raise ValueError("i must be in [1 .. Ne].") return Matrix([KroneckerDelta(i-1, j) for j in range(Ne)])
python
def ket(i, Ne): r"""This function returns the i-th element of the canonical basis of a Hilbert space of dimension Ne (in the form of a column vector). >>> ket(2,4) Matrix([ [0], [1], [0], [0]]) This will return an error if i is not in [1 .. Ne]: >>> ket(5,3) Traceback (most recent call last): ... ValueError: i must be in [1 .. Ne]. """ if i not in range(1, Ne+1): raise ValueError("i must be in [1 .. Ne].") return Matrix([KroneckerDelta(i-1, j) for j in range(Ne)])
[ "def", "ket", "(", "i", ",", "Ne", ")", ":", "if", "i", "not", "in", "range", "(", "1", ",", "Ne", "+", "1", ")", ":", "raise", "ValueError", "(", "\"i must be in [1 .. Ne].\"", ")", "return", "Matrix", "(", "[", "KroneckerDelta", "(", "i", "-", "1", ",", "j", ")", "for", "j", "in", "range", "(", "Ne", ")", "]", ")" ]
r"""This function returns the i-th element of the canonical basis of a Hilbert space of dimension Ne (in the form of a column vector). >>> ket(2,4) Matrix([ [0], [1], [0], [0]]) This will return an error if i is not in [1 .. Ne]: >>> ket(5,3) Traceback (most recent call last): ... ValueError: i must be in [1 .. Ne].
[ "r", "This", "function", "returns", "the", "i", "-", "th", "element", "of", "the", "canonical", "basis", "of", "a", "Hilbert", "space", "of", "dimension", "Ne", "(", "in", "the", "form", "of", "a", "column", "vector", ")", "." ]
train
https://github.com/oscarlazoarjona/fast/blob/3e5400672af2a7b7cc616e7f4aa10d7672720222/fast/symbolic.py#L822-L843
oscarlazoarjona/fast
fast/symbolic.py
ketbra
def ketbra(i, j, Ne): """This function returns the outer product :math:`|i><j|` where\ :math:`|i>` and :math:`|j>` are elements of the canonical basis of an\ Ne-dimensional Hilbert space (in matrix form). >>> ketbra(2, 3, 3) Matrix([ [0, 0, 0], [0, 0, 1], [0, 0, 0]]) """ return ket(i, Ne)*bra(j, Ne)
python
def ketbra(i, j, Ne): """This function returns the outer product :math:`|i><j|` where\ :math:`|i>` and :math:`|j>` are elements of the canonical basis of an\ Ne-dimensional Hilbert space (in matrix form). >>> ketbra(2, 3, 3) Matrix([ [0, 0, 0], [0, 0, 1], [0, 0, 0]]) """ return ket(i, Ne)*bra(j, Ne)
[ "def", "ketbra", "(", "i", ",", "j", ",", "Ne", ")", ":", "return", "ket", "(", "i", ",", "Ne", ")", "*", "bra", "(", "j", ",", "Ne", ")" ]
This function returns the outer product :math:`|i><j|` where\ :math:`|i>` and :math:`|j>` are elements of the canonical basis of an\ Ne-dimensional Hilbert space (in matrix form). >>> ketbra(2, 3, 3) Matrix([ [0, 0, 0], [0, 0, 1], [0, 0, 0]])
[ "This", "function", "returns", "the", "outer", "product", ":", "math", ":", "|i", ">", "<j|", "where", "\\", ":", "math", ":", "|i", ">", "and", ":", "math", ":", "|j", ">", "are", "elements", "of", "the", "canonical", "basis", "of", "an", "\\", "Ne", "-", "dimensional", "Hilbert", "space", "(", "in", "matrix", "form", ")", "." ]
train
https://github.com/oscarlazoarjona/fast/blob/3e5400672af2a7b7cc616e7f4aa10d7672720222/fast/symbolic.py#L846-L858
oscarlazoarjona/fast
fast/symbolic.py
sigma_operator_indices
def sigma_operator_indices(A): r"""If A is an outer-product type operator |a><b| return a, b. >>> sig = ket(2, 3)*bra(1, 3) >>> sigma_operator_indices(sig) (1, 0) >>> sigma_operator_indices(sig+sig.adjoint()) (None, None) """ Ne = A.shape[0] band = True if sum(A) != 1: band = False a = None; b = None for i in range(Ne): for j in range(Ne): if A[i, j] == 1: a = i; b = j elif A[i, j] != 0: band = False if band: return a, b else: return None, None
python
def sigma_operator_indices(A): r"""If A is an outer-product type operator |a><b| return a, b. >>> sig = ket(2, 3)*bra(1, 3) >>> sigma_operator_indices(sig) (1, 0) >>> sigma_operator_indices(sig+sig.adjoint()) (None, None) """ Ne = A.shape[0] band = True if sum(A) != 1: band = False a = None; b = None for i in range(Ne): for j in range(Ne): if A[i, j] == 1: a = i; b = j elif A[i, j] != 0: band = False if band: return a, b else: return None, None
[ "def", "sigma_operator_indices", "(", "A", ")", ":", "Ne", "=", "A", ".", "shape", "[", "0", "]", "band", "=", "True", "if", "sum", "(", "A", ")", "!=", "1", ":", "band", "=", "False", "a", "=", "None", "b", "=", "None", "for", "i", "in", "range", "(", "Ne", ")", ":", "for", "j", "in", "range", "(", "Ne", ")", ":", "if", "A", "[", "i", ",", "j", "]", "==", "1", ":", "a", "=", "i", "b", "=", "j", "elif", "A", "[", "i", ",", "j", "]", "!=", "0", ":", "band", "=", "False", "if", "band", ":", "return", "a", ",", "b", "else", ":", "return", "None", ",", "None" ]
r"""If A is an outer-product type operator |a><b| return a, b. >>> sig = ket(2, 3)*bra(1, 3) >>> sigma_operator_indices(sig) (1, 0) >>> sigma_operator_indices(sig+sig.adjoint()) (None, None)
[ "r", "If", "A", "is", "an", "outer", "-", "product", "type", "operator", "|a", ">", "<b|", "return", "a", "b", "." ]
train
https://github.com/oscarlazoarjona/fast/blob/3e5400672af2a7b7cc616e7f4aa10d7672720222/fast/symbolic.py#L861-L886
oscarlazoarjona/fast
fast/symbolic.py
lindblad_operator
def lindblad_operator(A, rho): r"""This function returns the action of a Lindblad operator A on a density\ matrix rho. This is defined as : .. math:: \mathcal{L}(A, \rho) = A \rho A^\dagger - (A^\dagger A \rho + \rho A^\dagger A)/2. >>> rho=define_density_matrix(3) >>> lindblad_operator( ketbra(1,2,3) ,rho ) Matrix([ [ rho22, -rho12/2, 0], [-rho21/2, -rho22, -rho23/2], [ 0, -rho32/2, 0]]) """ a, b = sigma_operator_indices(A) # print(111, a, b) if a is not None and b is not None: Ne = A.shape[0] L = zeros(Ne, Ne) L[a, a] += rho[b, b] for j in range(Ne): L[b, j] += -rho[b, j]/2 for i in range(Ne): L[i, b] += -rho[i, b]/2 return L else: return A*rho*A.adjoint() - (A.adjoint()*A*rho + rho*A.adjoint()*A)/2
python
def lindblad_operator(A, rho): r"""This function returns the action of a Lindblad operator A on a density\ matrix rho. This is defined as : .. math:: \mathcal{L}(A, \rho) = A \rho A^\dagger - (A^\dagger A \rho + \rho A^\dagger A)/2. >>> rho=define_density_matrix(3) >>> lindblad_operator( ketbra(1,2,3) ,rho ) Matrix([ [ rho22, -rho12/2, 0], [-rho21/2, -rho22, -rho23/2], [ 0, -rho32/2, 0]]) """ a, b = sigma_operator_indices(A) # print(111, a, b) if a is not None and b is not None: Ne = A.shape[0] L = zeros(Ne, Ne) L[a, a] += rho[b, b] for j in range(Ne): L[b, j] += -rho[b, j]/2 for i in range(Ne): L[i, b] += -rho[i, b]/2 return L else: return A*rho*A.adjoint() - (A.adjoint()*A*rho + rho*A.adjoint()*A)/2
[ "def", "lindblad_operator", "(", "A", ",", "rho", ")", ":", "a", ",", "b", "=", "sigma_operator_indices", "(", "A", ")", "# print(111, a, b)", "if", "a", "is", "not", "None", "and", "b", "is", "not", "None", ":", "Ne", "=", "A", ".", "shape", "[", "0", "]", "L", "=", "zeros", "(", "Ne", ",", "Ne", ")", "L", "[", "a", ",", "a", "]", "+=", "rho", "[", "b", ",", "b", "]", "for", "j", "in", "range", "(", "Ne", ")", ":", "L", "[", "b", ",", "j", "]", "+=", "-", "rho", "[", "b", ",", "j", "]", "/", "2", "for", "i", "in", "range", "(", "Ne", ")", ":", "L", "[", "i", ",", "b", "]", "+=", "-", "rho", "[", "i", ",", "b", "]", "/", "2", "return", "L", "else", ":", "return", "A", "*", "rho", "*", "A", ".", "adjoint", "(", ")", "-", "(", "A", ".", "adjoint", "(", ")", "*", "A", "*", "rho", "+", "rho", "*", "A", ".", "adjoint", "(", ")", "*", "A", ")", "/", "2" ]
r"""This function returns the action of a Lindblad operator A on a density\ matrix rho. This is defined as : .. math:: \mathcal{L}(A, \rho) = A \rho A^\dagger - (A^\dagger A \rho + \rho A^\dagger A)/2. >>> rho=define_density_matrix(3) >>> lindblad_operator( ketbra(1,2,3) ,rho ) Matrix([ [ rho22, -rho12/2, 0], [-rho21/2, -rho22, -rho23/2], [ 0, -rho32/2, 0]])
[ "r", "This", "function", "returns", "the", "action", "of", "a", "Lindblad", "operator", "A", "on", "a", "density", "\\", "matrix", "rho", ".", "This", "is", "defined", "as", ":" ]
train
https://github.com/oscarlazoarjona/fast/blob/3e5400672af2a7b7cc616e7f4aa10d7672720222/fast/symbolic.py#L889-L920
oscarlazoarjona/fast
fast/symbolic.py
lindblad_terms
def lindblad_terms(gamma, rho, Ne, verbose=1): u"""Return the Lindblad terms for decays gamma in matrix form. >>> from sympy import pprint >>> aux = define_frequencies(4, explicitly_antisymmetric=True) >>> omega_level, omega, gamma = aux >>> gamma = gamma.subs({gamma[2, 0]:0, gamma[3, 0]:0, gamma[3, 1]:0}) >>> pprint(gamma, use_unicode=True) ⎑ 0 -γ₂₁ 0 0 ⎀ ⎒ βŽ₯ βŽ’Ξ³β‚‚β‚ 0 -γ₃₂ 0 βŽ₯ ⎒ βŽ₯ ⎒ 0 γ₃₂ 0 -γ₄₃βŽ₯ ⎒ βŽ₯ ⎣ 0 0 γ₄₃ 0 ⎦ >>> rho = define_density_matrix(4) >>> pprint(lindblad_terms(gamma, rho, 4), use_unicode=True) ⎑ -γ₂₁⋅ρ₁₂ -γ₃₂⋅ρ₁₃ -γ₄₃⋅ρ₁₄ ⎀ ⎒ γ₂₁⋅ρ₂₂ ───────── ───────── ───────── βŽ₯ ⎒ 2 2 2 βŽ₯ ⎒ βŽ₯ ⎒-γ₂₁⋅ρ₂₁ γ₂₁⋅ρ₂₃ γ₃₂⋅ρ₂₃ γ₂₁⋅ρ₂₄ γ₄₃⋅ρ₂₄βŽ₯ βŽ’β”€β”€β”€β”€β”€β”€β”€β”€β”€ -γ₂₁⋅ρ₂₂ + γ₃₂⋅ρ₃₃ - ─────── - ─────── - ─────── - ───────βŽ₯ ⎒ 2 2 2 2 2 βŽ₯ ⎒ βŽ₯ ⎒-γ₃₂⋅ρ₃₁ γ₂₁⋅ρ₃₂ γ₃₂⋅ρ₃₂ γ₃₂⋅ρ₃₄ γ₄₃⋅ρ₃₄βŽ₯ βŽ’β”€β”€β”€β”€β”€β”€β”€β”€β”€ - ─────── - ─────── -γ₃₂⋅ρ₃₃ + γ₄₃⋅ρ₄₄ - ─────── - ───────βŽ₯ ⎒ 2 2 2 2 2 βŽ₯ ⎒ βŽ₯ ⎒-γ₄₃⋅ρ₄₁ γ₂₁⋅ρ₄₂ γ₄₃⋅ρ₄₂ γ₃₂⋅ρ₄₃ γ₄₃⋅ρ₄₃ βŽ₯ βŽ’β”€β”€β”€β”€β”€β”€β”€β”€β”€ - ─────── - ─────── - ─────── - ─────── -γ₄₃⋅ρ₄₄ βŽ₯ ⎣ 2 2 2 2 2 ⎦ Notice that there are more terms than simply adding a decay gamma_ij*rho_ij/2 for each coherence. """ # We count the necessary Lindblad operators. Nterms = 0 for i in range(Ne): for j in range(i): if gamma[i, j] != 0: Nterms += 1 L = zeros(Ne) counter = 0 t0 = time() for i in range(Ne): for j in range(i): if gamma[i, j] != 0: counter += 1 sig = ket(j+1, Ne)*bra(i+1, Ne) L += gamma[i, j]*lindblad_operator(sig, rho) tn = time() if tn-t0 > 1: aux = "Calculated up to i={}, j={}, or {}/{} = {:2.2f} %." if verbose > 0: print(aux.format(i, j, counter, Nterms, float(counter+1)/Nterms*100)) t0 = tn return L
python
def lindblad_terms(gamma, rho, Ne, verbose=1): u"""Return the Lindblad terms for decays gamma in matrix form. >>> from sympy import pprint >>> aux = define_frequencies(4, explicitly_antisymmetric=True) >>> omega_level, omega, gamma = aux >>> gamma = gamma.subs({gamma[2, 0]:0, gamma[3, 0]:0, gamma[3, 1]:0}) >>> pprint(gamma, use_unicode=True) ⎑ 0 -γ₂₁ 0 0 ⎀ ⎒ βŽ₯ βŽ’Ξ³β‚‚β‚ 0 -γ₃₂ 0 βŽ₯ ⎒ βŽ₯ ⎒ 0 γ₃₂ 0 -γ₄₃βŽ₯ ⎒ βŽ₯ ⎣ 0 0 γ₄₃ 0 ⎦ >>> rho = define_density_matrix(4) >>> pprint(lindblad_terms(gamma, rho, 4), use_unicode=True) ⎑ -γ₂₁⋅ρ₁₂ -γ₃₂⋅ρ₁₃ -γ₄₃⋅ρ₁₄ ⎀ ⎒ γ₂₁⋅ρ₂₂ ───────── ───────── ───────── βŽ₯ ⎒ 2 2 2 βŽ₯ ⎒ βŽ₯ ⎒-γ₂₁⋅ρ₂₁ γ₂₁⋅ρ₂₃ γ₃₂⋅ρ₂₃ γ₂₁⋅ρ₂₄ γ₄₃⋅ρ₂₄βŽ₯ βŽ’β”€β”€β”€β”€β”€β”€β”€β”€β”€ -γ₂₁⋅ρ₂₂ + γ₃₂⋅ρ₃₃ - ─────── - ─────── - ─────── - ───────βŽ₯ ⎒ 2 2 2 2 2 βŽ₯ ⎒ βŽ₯ ⎒-γ₃₂⋅ρ₃₁ γ₂₁⋅ρ₃₂ γ₃₂⋅ρ₃₂ γ₃₂⋅ρ₃₄ γ₄₃⋅ρ₃₄βŽ₯ βŽ’β”€β”€β”€β”€β”€β”€β”€β”€β”€ - ─────── - ─────── -γ₃₂⋅ρ₃₃ + γ₄₃⋅ρ₄₄ - ─────── - ───────βŽ₯ ⎒ 2 2 2 2 2 βŽ₯ ⎒ βŽ₯ ⎒-γ₄₃⋅ρ₄₁ γ₂₁⋅ρ₄₂ γ₄₃⋅ρ₄₂ γ₃₂⋅ρ₄₃ γ₄₃⋅ρ₄₃ βŽ₯ βŽ’β”€β”€β”€β”€β”€β”€β”€β”€β”€ - ─────── - ─────── - ─────── - ─────── -γ₄₃⋅ρ₄₄ βŽ₯ ⎣ 2 2 2 2 2 ⎦ Notice that there are more terms than simply adding a decay gamma_ij*rho_ij/2 for each coherence. """ # We count the necessary Lindblad operators. Nterms = 0 for i in range(Ne): for j in range(i): if gamma[i, j] != 0: Nterms += 1 L = zeros(Ne) counter = 0 t0 = time() for i in range(Ne): for j in range(i): if gamma[i, j] != 0: counter += 1 sig = ket(j+1, Ne)*bra(i+1, Ne) L += gamma[i, j]*lindblad_operator(sig, rho) tn = time() if tn-t0 > 1: aux = "Calculated up to i={}, j={}, or {}/{} = {:2.2f} %." if verbose > 0: print(aux.format(i, j, counter, Nterms, float(counter+1)/Nterms*100)) t0 = tn return L
[ "def", "lindblad_terms", "(", "gamma", ",", "rho", ",", "Ne", ",", "verbose", "=", "1", ")", ":", "# We count the necessary Lindblad operators.", "Nterms", "=", "0", "for", "i", "in", "range", "(", "Ne", ")", ":", "for", "j", "in", "range", "(", "i", ")", ":", "if", "gamma", "[", "i", ",", "j", "]", "!=", "0", ":", "Nterms", "+=", "1", "L", "=", "zeros", "(", "Ne", ")", "counter", "=", "0", "t0", "=", "time", "(", ")", "for", "i", "in", "range", "(", "Ne", ")", ":", "for", "j", "in", "range", "(", "i", ")", ":", "if", "gamma", "[", "i", ",", "j", "]", "!=", "0", ":", "counter", "+=", "1", "sig", "=", "ket", "(", "j", "+", "1", ",", "Ne", ")", "*", "bra", "(", "i", "+", "1", ",", "Ne", ")", "L", "+=", "gamma", "[", "i", ",", "j", "]", "*", "lindblad_operator", "(", "sig", ",", "rho", ")", "tn", "=", "time", "(", ")", "if", "tn", "-", "t0", ">", "1", ":", "aux", "=", "\"Calculated up to i={}, j={}, or {}/{} = {:2.2f} %.\"", "if", "verbose", ">", "0", ":", "print", "(", "aux", ".", "format", "(", "i", ",", "j", ",", "counter", ",", "Nterms", ",", "float", "(", "counter", "+", "1", ")", "/", "Nterms", "*", "100", ")", ")", "t0", "=", "tn", "return", "L" ]
u"""Return the Lindblad terms for decays gamma in matrix form. >>> from sympy import pprint >>> aux = define_frequencies(4, explicitly_antisymmetric=True) >>> omega_level, omega, gamma = aux >>> gamma = gamma.subs({gamma[2, 0]:0, gamma[3, 0]:0, gamma[3, 1]:0}) >>> pprint(gamma, use_unicode=True) ⎑ 0 -γ₂₁ 0 0 ⎀ ⎒ βŽ₯ βŽ’Ξ³β‚‚β‚ 0 -γ₃₂ 0 βŽ₯ ⎒ βŽ₯ ⎒ 0 γ₃₂ 0 -γ₄₃βŽ₯ ⎒ βŽ₯ ⎣ 0 0 γ₄₃ 0 ⎦ >>> rho = define_density_matrix(4) >>> pprint(lindblad_terms(gamma, rho, 4), use_unicode=True) ⎑ -γ₂₁⋅ρ₁₂ -γ₃₂⋅ρ₁₃ -γ₄₃⋅ρ₁₄ ⎀ ⎒ γ₂₁⋅ρ₂₂ ───────── ───────── ───────── βŽ₯ ⎒ 2 2 2 βŽ₯ ⎒ βŽ₯ ⎒-γ₂₁⋅ρ₂₁ γ₂₁⋅ρ₂₃ γ₃₂⋅ρ₂₃ γ₂₁⋅ρ₂₄ γ₄₃⋅ρ₂₄βŽ₯ βŽ’β”€β”€β”€β”€β”€β”€β”€β”€β”€ -γ₂₁⋅ρ₂₂ + γ₃₂⋅ρ₃₃ - ─────── - ─────── - ─────── - ───────βŽ₯ ⎒ 2 2 2 2 2 βŽ₯ ⎒ βŽ₯ ⎒-γ₃₂⋅ρ₃₁ γ₂₁⋅ρ₃₂ γ₃₂⋅ρ₃₂ γ₃₂⋅ρ₃₄ γ₄₃⋅ρ₃₄βŽ₯ βŽ’β”€β”€β”€β”€β”€β”€β”€β”€β”€ - ─────── - ─────── -γ₃₂⋅ρ₃₃ + γ₄₃⋅ρ₄₄ - ─────── - ───────βŽ₯ ⎒ 2 2 2 2 2 βŽ₯ ⎒ βŽ₯ ⎒-γ₄₃⋅ρ₄₁ γ₂₁⋅ρ₄₂ γ₄₃⋅ρ₄₂ γ₃₂⋅ρ₄₃ γ₄₃⋅ρ₄₃ βŽ₯ βŽ’β”€β”€β”€β”€β”€β”€β”€β”€β”€ - ─────── - ─────── - ─────── - ─────── -γ₄₃⋅ρ₄₄ βŽ₯ ⎣ 2 2 2 2 2 ⎦ Notice that there are more terms than simply adding a decay gamma_ij*rho_ij/2 for each coherence.
[ "u", "Return", "the", "Lindblad", "terms", "for", "decays", "gamma", "in", "matrix", "form", "." ]
train
https://github.com/oscarlazoarjona/fast/blob/3e5400672af2a7b7cc616e7f4aa10d7672720222/fast/symbolic.py#L923-L983
oscarlazoarjona/fast
fast/symbolic.py
define_rho_vector
def define_rho_vector(rho, Ne): u"""Define the vectorized density matrix. >>> from sympy import pprint >>> rho = define_density_matrix(3) >>> pprint(define_rho_vector(rho, 3), use_unicode=True) ⎑ ρ₂₂ ⎀ ⎒ βŽ₯ ⎒ ρ₃₃ βŽ₯ ⎒ βŽ₯ ⎒re(ρ₂₁)βŽ₯ ⎒ βŽ₯ ⎒re(ρ₃₁)βŽ₯ ⎒ βŽ₯ ⎒re(ρ₃₂)βŽ₯ ⎒ βŽ₯ ⎒im(ρ₂₁)βŽ₯ ⎒ βŽ₯ ⎒im(ρ₃₁)βŽ₯ ⎒ βŽ₯ ⎣im(ρ₃₂)⎦ """ rho_vect = [] for mu in range(1, Ne**2): i, j, s = IJ(mu, Ne) i = i-1; j = j-1 rho_vect += [part_symbolic(rho[i, j], s)] return Matrix(rho_vect)
python
def define_rho_vector(rho, Ne): u"""Define the vectorized density matrix. >>> from sympy import pprint >>> rho = define_density_matrix(3) >>> pprint(define_rho_vector(rho, 3), use_unicode=True) ⎑ ρ₂₂ ⎀ ⎒ βŽ₯ ⎒ ρ₃₃ βŽ₯ ⎒ βŽ₯ ⎒re(ρ₂₁)βŽ₯ ⎒ βŽ₯ ⎒re(ρ₃₁)βŽ₯ ⎒ βŽ₯ ⎒re(ρ₃₂)βŽ₯ ⎒ βŽ₯ ⎒im(ρ₂₁)βŽ₯ ⎒ βŽ₯ ⎒im(ρ₃₁)βŽ₯ ⎒ βŽ₯ ⎣im(ρ₃₂)⎦ """ rho_vect = [] for mu in range(1, Ne**2): i, j, s = IJ(mu, Ne) i = i-1; j = j-1 rho_vect += [part_symbolic(rho[i, j], s)] return Matrix(rho_vect)
[ "def", "define_rho_vector", "(", "rho", ",", "Ne", ")", ":", "rho_vect", "=", "[", "]", "for", "mu", "in", "range", "(", "1", ",", "Ne", "**", "2", ")", ":", "i", ",", "j", ",", "s", "=", "IJ", "(", "mu", ",", "Ne", ")", "i", "=", "i", "-", "1", "j", "=", "j", "-", "1", "rho_vect", "+=", "[", "part_symbolic", "(", "rho", "[", "i", ",", "j", "]", ",", "s", ")", "]", "return", "Matrix", "(", "rho_vect", ")" ]
u"""Define the vectorized density matrix. >>> from sympy import pprint >>> rho = define_density_matrix(3) >>> pprint(define_rho_vector(rho, 3), use_unicode=True) ⎑ ρ₂₂ ⎀ ⎒ βŽ₯ ⎒ ρ₃₃ βŽ₯ ⎒ βŽ₯ ⎒re(ρ₂₁)βŽ₯ ⎒ βŽ₯ ⎒re(ρ₃₁)βŽ₯ ⎒ βŽ₯ ⎒re(ρ₃₂)βŽ₯ ⎒ βŽ₯ ⎒im(ρ₂₁)βŽ₯ ⎒ βŽ₯ ⎒im(ρ₃₁)βŽ₯ ⎒ βŽ₯ ⎣im(ρ₃₂)⎦
[ "u", "Define", "the", "vectorized", "density", "matrix", "." ]
train
https://github.com/oscarlazoarjona/fast/blob/3e5400672af2a7b7cc616e7f4aa10d7672720222/fast/symbolic.py#L1021-L1049
oscarlazoarjona/fast
fast/symbolic.py
calculate_A_b
def calculate_A_b(eqs, unfolding, verbose=0): u"""Calculate the equations in matrix form. >>> from sympy import symbols, pprint, I >>> rho = define_density_matrix(2, explicitly_hermitian=True, ... normalized=True) >>> Omega = symbols("Omega") >>> delta = symbols("delta", real=True) >>> hbar = symbols("hbar", positive=True) >>> H = hbar*Matrix([[0, Omega.conjugate()/2], [Omega/2, -delta]]) >>> Ne = 2 >>> aux = define_frequencies(Ne, explicitly_antisymmetric=True) >>> omega_level, omega, gamma = aux >>> eqs = I/hbar*(rho*H-H*rho) + lindblad_terms(gamma, rho, 2) >>> from fast import Unfolding >>> unfolding = Unfolding(Ne, True, True, True) >>> A, b = calculate_A_b(eqs, unfolding) >>> pprint(A, use_unicode=True) ⎑ -γ₂₁ im(Ξ©) -re(Ξ©)⎀ ⎒ βŽ₯ ⎒ -γ₂₁ βŽ₯ ⎒-im(Ξ©) ───── -Ξ΄ βŽ₯ ⎒ 2 βŽ₯ ⎒ βŽ₯ ⎒ -γ₂₁ βŽ₯ ⎒re(Ξ©) Ξ΄ ───── βŽ₯ ⎣ 2 ⎦ >>> pprint(b, use_unicode=True) ⎑ 0 ⎀ ⎒ βŽ₯ ⎒-im(Ξ©) βŽ₯ βŽ’β”€β”€β”€β”€β”€β”€β”€βŽ₯ ⎒ 2 βŽ₯ ⎒ βŽ₯ ⎒ re(Ξ©) βŽ₯ ⎒ ───── βŽ₯ ⎣ 2 ⎦ """ Ne = unfolding.Ne Nrho = unfolding.Nrho lower_triangular = unfolding.lower_triangular rho = define_density_matrix(Ne, explicitly_hermitian=lower_triangular, normalized=unfolding.normalized) rho_vect = unfolding(rho) if unfolding.real: ss_comp = {rho[i, j]: re(rho[i, j])+I*im(rho[i, j]) for j in range(Ne) for i in range(Ne)} A = []; b = [] for mu in range(Nrho): s, i, j = unfolding.IJ(mu) if verbose > 0: print mu eq = part_symbolic(eqs[i, j].subs(ss_comp), s) eq_new = 0 row = [] for nu in range(Nrho): variable = rho_vect[nu] coefficient = Derivative(eq, variable).doit() row += [coefficient] eq_new += coefficient*variable b += [-(eq-eq_new).expand()] A += [row] A = Matrix(A); b = Matrix(b) return A, b
python
def calculate_A_b(eqs, unfolding, verbose=0): u"""Calculate the equations in matrix form. >>> from sympy import symbols, pprint, I >>> rho = define_density_matrix(2, explicitly_hermitian=True, ... normalized=True) >>> Omega = symbols("Omega") >>> delta = symbols("delta", real=True) >>> hbar = symbols("hbar", positive=True) >>> H = hbar*Matrix([[0, Omega.conjugate()/2], [Omega/2, -delta]]) >>> Ne = 2 >>> aux = define_frequencies(Ne, explicitly_antisymmetric=True) >>> omega_level, omega, gamma = aux >>> eqs = I/hbar*(rho*H-H*rho) + lindblad_terms(gamma, rho, 2) >>> from fast import Unfolding >>> unfolding = Unfolding(Ne, True, True, True) >>> A, b = calculate_A_b(eqs, unfolding) >>> pprint(A, use_unicode=True) ⎑ -γ₂₁ im(Ξ©) -re(Ξ©)⎀ ⎒ βŽ₯ ⎒ -γ₂₁ βŽ₯ ⎒-im(Ξ©) ───── -Ξ΄ βŽ₯ ⎒ 2 βŽ₯ ⎒ βŽ₯ ⎒ -γ₂₁ βŽ₯ ⎒re(Ξ©) Ξ΄ ───── βŽ₯ ⎣ 2 ⎦ >>> pprint(b, use_unicode=True) ⎑ 0 ⎀ ⎒ βŽ₯ ⎒-im(Ξ©) βŽ₯ βŽ’β”€β”€β”€β”€β”€β”€β”€βŽ₯ ⎒ 2 βŽ₯ ⎒ βŽ₯ ⎒ re(Ξ©) βŽ₯ ⎒ ───── βŽ₯ ⎣ 2 ⎦ """ Ne = unfolding.Ne Nrho = unfolding.Nrho lower_triangular = unfolding.lower_triangular rho = define_density_matrix(Ne, explicitly_hermitian=lower_triangular, normalized=unfolding.normalized) rho_vect = unfolding(rho) if unfolding.real: ss_comp = {rho[i, j]: re(rho[i, j])+I*im(rho[i, j]) for j in range(Ne) for i in range(Ne)} A = []; b = [] for mu in range(Nrho): s, i, j = unfolding.IJ(mu) if verbose > 0: print mu eq = part_symbolic(eqs[i, j].subs(ss_comp), s) eq_new = 0 row = [] for nu in range(Nrho): variable = rho_vect[nu] coefficient = Derivative(eq, variable).doit() row += [coefficient] eq_new += coefficient*variable b += [-(eq-eq_new).expand()] A += [row] A = Matrix(A); b = Matrix(b) return A, b
[ "def", "calculate_A_b", "(", "eqs", ",", "unfolding", ",", "verbose", "=", "0", ")", ":", "Ne", "=", "unfolding", ".", "Ne", "Nrho", "=", "unfolding", ".", "Nrho", "lower_triangular", "=", "unfolding", ".", "lower_triangular", "rho", "=", "define_density_matrix", "(", "Ne", ",", "explicitly_hermitian", "=", "lower_triangular", ",", "normalized", "=", "unfolding", ".", "normalized", ")", "rho_vect", "=", "unfolding", "(", "rho", ")", "if", "unfolding", ".", "real", ":", "ss_comp", "=", "{", "rho", "[", "i", ",", "j", "]", ":", "re", "(", "rho", "[", "i", ",", "j", "]", ")", "+", "I", "*", "im", "(", "rho", "[", "i", ",", "j", "]", ")", "for", "j", "in", "range", "(", "Ne", ")", "for", "i", "in", "range", "(", "Ne", ")", "}", "A", "=", "[", "]", "b", "=", "[", "]", "for", "mu", "in", "range", "(", "Nrho", ")", ":", "s", ",", "i", ",", "j", "=", "unfolding", ".", "IJ", "(", "mu", ")", "if", "verbose", ">", "0", ":", "print", "mu", "eq", "=", "part_symbolic", "(", "eqs", "[", "i", ",", "j", "]", ".", "subs", "(", "ss_comp", ")", ",", "s", ")", "eq_new", "=", "0", "row", "=", "[", "]", "for", "nu", "in", "range", "(", "Nrho", ")", ":", "variable", "=", "rho_vect", "[", "nu", "]", "coefficient", "=", "Derivative", "(", "eq", ",", "variable", ")", ".", "doit", "(", ")", "row", "+=", "[", "coefficient", "]", "eq_new", "+=", "coefficient", "*", "variable", "b", "+=", "[", "-", "(", "eq", "-", "eq_new", ")", ".", "expand", "(", ")", "]", "A", "+=", "[", "row", "]", "A", "=", "Matrix", "(", "A", ")", "b", "=", "Matrix", "(", "b", ")", "return", "A", ",", "b" ]
u"""Calculate the equations in matrix form. >>> from sympy import symbols, pprint, I >>> rho = define_density_matrix(2, explicitly_hermitian=True, ... normalized=True) >>> Omega = symbols("Omega") >>> delta = symbols("delta", real=True) >>> hbar = symbols("hbar", positive=True) >>> H = hbar*Matrix([[0, Omega.conjugate()/2], [Omega/2, -delta]]) >>> Ne = 2 >>> aux = define_frequencies(Ne, explicitly_antisymmetric=True) >>> omega_level, omega, gamma = aux >>> eqs = I/hbar*(rho*H-H*rho) + lindblad_terms(gamma, rho, 2) >>> from fast import Unfolding >>> unfolding = Unfolding(Ne, True, True, True) >>> A, b = calculate_A_b(eqs, unfolding) >>> pprint(A, use_unicode=True) ⎑ -γ₂₁ im(Ξ©) -re(Ξ©)⎀ ⎒ βŽ₯ ⎒ -γ₂₁ βŽ₯ ⎒-im(Ξ©) ───── -Ξ΄ βŽ₯ ⎒ 2 βŽ₯ ⎒ βŽ₯ ⎒ -γ₂₁ βŽ₯ ⎒re(Ξ©) Ξ΄ ───── βŽ₯ ⎣ 2 ⎦ >>> pprint(b, use_unicode=True) ⎑ 0 ⎀ ⎒ βŽ₯ ⎒-im(Ξ©) βŽ₯ βŽ’β”€β”€β”€β”€β”€β”€β”€βŽ₯ ⎒ 2 βŽ₯ ⎒ βŽ₯ ⎒ re(Ξ©) βŽ₯ ⎒ ───── βŽ₯ ⎣ 2 ⎦
[ "u", "Calculate", "the", "equations", "in", "matrix", "form", "." ]
train
https://github.com/oscarlazoarjona/fast/blob/3e5400672af2a7b7cc616e7f4aa10d7672720222/fast/symbolic.py#L1052-L1124
oscarlazoarjona/fast
fast/symbolic.py
phase_transformation
def phase_transformation(Ne, Nl, r, Lij, omega_laser, phase): r"""Obtain a phase transformation to eliminate explicit time dependence. >>> Ne = 2 """ ph = find_phase_transformation(Ne, Nl, r, Lij) return {phase[i]: sum([ph[i][j]*omega_laser[j] for j in range(Nl)]) for i in range(Ne)}
python
def phase_transformation(Ne, Nl, r, Lij, omega_laser, phase): r"""Obtain a phase transformation to eliminate explicit time dependence. >>> Ne = 2 """ ph = find_phase_transformation(Ne, Nl, r, Lij) return {phase[i]: sum([ph[i][j]*omega_laser[j] for j in range(Nl)]) for i in range(Ne)}
[ "def", "phase_transformation", "(", "Ne", ",", "Nl", ",", "r", ",", "Lij", ",", "omega_laser", ",", "phase", ")", ":", "ph", "=", "find_phase_transformation", "(", "Ne", ",", "Nl", ",", "r", ",", "Lij", ")", "return", "{", "phase", "[", "i", "]", ":", "sum", "(", "[", "ph", "[", "i", "]", "[", "j", "]", "*", "omega_laser", "[", "j", "]", "for", "j", "in", "range", "(", "Nl", ")", "]", ")", "for", "i", "in", "range", "(", "Ne", ")", "}" ]
r"""Obtain a phase transformation to eliminate explicit time dependence. >>> Ne = 2
[ "r", "Obtain", "a", "phase", "transformation", "to", "eliminate", "explicit", "time", "dependence", "." ]
train
https://github.com/oscarlazoarjona/fast/blob/3e5400672af2a7b7cc616e7f4aa10d7672720222/fast/symbolic.py#L1127-L1136
oscarlazoarjona/fast
fast/symbolic.py
hamiltonian
def hamiltonian(Ep, epsilonp, detuning_knob, rm, omega_level, omega_laser, xi, RWA=True, RF=True): r"""Return symbolic Hamiltonian. >>> from sympy import zeros, pi, pprint, symbols >>> Ne = 3 >>> Nl = 2 >>> Ep, omega_laser = define_laser_variables(Nl) >>> epsilonp = [polarization_vector(0, -pi/2, 0, 0, 1) for l in range(Nl)] >>> detuning_knob = symbols("delta1 delta2", real=True) >>> xi = [zeros(Ne, Ne) for l in range(Nl)] >>> coup = [[(1, 0)], [(2, 0)]] >>> for l in range(Nl): ... for pair in coup[l]: ... xi[l][pair[0], pair[1]] = 1 ... xi[l][pair[1], pair[0]] = 1 >>> rm = define_r_components(Ne, xi, explicitly_hermitian=True, ... helicity=True, p=-1) >>> rm = helicity_to_cartesian(rm) >>> omega_level, omega, gamma = define_frequencies(Ne, True) >>> H = hamiltonian(Ep, epsilonp, detuning_knob, rm, omega_level, ... omega_laser, xi, RWA=True, RF=False) >>> print H[1, 0] -E_{01}*e*r_{0;21}*exp(-I*t*varpi_1)/2 >>> print H[2, 0] -E_{02}*e*r_{0;31}*exp(-I*t*varpi_2)/2 >>> print H[2, 2] hbar*omega_3 """ # We check what RF is. if type(RF) == list: theta = RF[:] RF = True elif type(RF) == Matrix: theta = [RF[i, 0] for i in range(RF.shape[0])] RF = True elif RF: # theta should be calculate here! s = "We are still missing automatic calculation of phase " s += "transformations." raise ValueError(s) if not RWA and RF: s = "The rotating frame does not exist without the rotating wave \ approximation, as far as I know." raise ValueError(s) # We check that the epsilonp is a list of vectors. if not isinstance(epsilonp, list): raise ValueError("epsilonp must be a list of polarization vectors.") if not isinstance(epsilonp[0], Matrix): raise ValueError("epsilonp must be a list of polarization vectors.") Ne = len(omega_level) Nl = len(omega_laser) H = zeros(Ne, Ne) hbar, e = symbols("hbar e", positive=True) t = symbols("t", real=True) for i in range(Ne): for j in range(Ne): rmij = vector_element(rm, i, j) rpij = vector_element(rm, j, i).conjugate() for l in range(Nl): epsilonpl = epsilonp[l] epsilonml = epsilonpl.conjugate() if RF: Epl = xi[l][i, j]*Ep[l] Epl *= exp(-I*(theta[j]-theta[i]-t*omega_laser[l])) Eml = xi[l][i, j]*Ep[l].conjugate() Eml *= exp(-I*(theta[j]-theta[i]+t*omega_laser[l])) else: Epl = Ep[l]*xi[l][i, j]*exp(-I*omega_laser[l]*t) Eml = Epl.conjugate() # The E^(+)r^(-) term H[i, j] += -e*Epl/2*cartesian_dot_product(epsilonpl, rmij) # The E^(-)r^(+) term H[i, j] += -e*Eml/2*cartesian_dot_product(epsilonml, rpij) if not RWA: # The E^(+)r^(+) term H[i, j] += -e*Epl/2*cartesian_dot_product(epsilonpl, rpij) # The E^(-)r^(-) term H[i, j] += -e*Eml/2*cartesian_dot_product(epsilonml, rmij) if i == j: if RF: H[i, j] += hbar*(omega_level[i]+diff(theta[i], t)) else: H[i, j] += hbar*omega_level[i] return H
python
def hamiltonian(Ep, epsilonp, detuning_knob, rm, omega_level, omega_laser, xi, RWA=True, RF=True): r"""Return symbolic Hamiltonian. >>> from sympy import zeros, pi, pprint, symbols >>> Ne = 3 >>> Nl = 2 >>> Ep, omega_laser = define_laser_variables(Nl) >>> epsilonp = [polarization_vector(0, -pi/2, 0, 0, 1) for l in range(Nl)] >>> detuning_knob = symbols("delta1 delta2", real=True) >>> xi = [zeros(Ne, Ne) for l in range(Nl)] >>> coup = [[(1, 0)], [(2, 0)]] >>> for l in range(Nl): ... for pair in coup[l]: ... xi[l][pair[0], pair[1]] = 1 ... xi[l][pair[1], pair[0]] = 1 >>> rm = define_r_components(Ne, xi, explicitly_hermitian=True, ... helicity=True, p=-1) >>> rm = helicity_to_cartesian(rm) >>> omega_level, omega, gamma = define_frequencies(Ne, True) >>> H = hamiltonian(Ep, epsilonp, detuning_knob, rm, omega_level, ... omega_laser, xi, RWA=True, RF=False) >>> print H[1, 0] -E_{01}*e*r_{0;21}*exp(-I*t*varpi_1)/2 >>> print H[2, 0] -E_{02}*e*r_{0;31}*exp(-I*t*varpi_2)/2 >>> print H[2, 2] hbar*omega_3 """ # We check what RF is. if type(RF) == list: theta = RF[:] RF = True elif type(RF) == Matrix: theta = [RF[i, 0] for i in range(RF.shape[0])] RF = True elif RF: # theta should be calculate here! s = "We are still missing automatic calculation of phase " s += "transformations." raise ValueError(s) if not RWA and RF: s = "The rotating frame does not exist without the rotating wave \ approximation, as far as I know." raise ValueError(s) # We check that the epsilonp is a list of vectors. if not isinstance(epsilonp, list): raise ValueError("epsilonp must be a list of polarization vectors.") if not isinstance(epsilonp[0], Matrix): raise ValueError("epsilonp must be a list of polarization vectors.") Ne = len(omega_level) Nl = len(omega_laser) H = zeros(Ne, Ne) hbar, e = symbols("hbar e", positive=True) t = symbols("t", real=True) for i in range(Ne): for j in range(Ne): rmij = vector_element(rm, i, j) rpij = vector_element(rm, j, i).conjugate() for l in range(Nl): epsilonpl = epsilonp[l] epsilonml = epsilonpl.conjugate() if RF: Epl = xi[l][i, j]*Ep[l] Epl *= exp(-I*(theta[j]-theta[i]-t*omega_laser[l])) Eml = xi[l][i, j]*Ep[l].conjugate() Eml *= exp(-I*(theta[j]-theta[i]+t*omega_laser[l])) else: Epl = Ep[l]*xi[l][i, j]*exp(-I*omega_laser[l]*t) Eml = Epl.conjugate() # The E^(+)r^(-) term H[i, j] += -e*Epl/2*cartesian_dot_product(epsilonpl, rmij) # The E^(-)r^(+) term H[i, j] += -e*Eml/2*cartesian_dot_product(epsilonml, rpij) if not RWA: # The E^(+)r^(+) term H[i, j] += -e*Epl/2*cartesian_dot_product(epsilonpl, rpij) # The E^(-)r^(-) term H[i, j] += -e*Eml/2*cartesian_dot_product(epsilonml, rmij) if i == j: if RF: H[i, j] += hbar*(omega_level[i]+diff(theta[i], t)) else: H[i, j] += hbar*omega_level[i] return H
[ "def", "hamiltonian", "(", "Ep", ",", "epsilonp", ",", "detuning_knob", ",", "rm", ",", "omega_level", ",", "omega_laser", ",", "xi", ",", "RWA", "=", "True", ",", "RF", "=", "True", ")", ":", "# We check what RF is.", "if", "type", "(", "RF", ")", "==", "list", ":", "theta", "=", "RF", "[", ":", "]", "RF", "=", "True", "elif", "type", "(", "RF", ")", "==", "Matrix", ":", "theta", "=", "[", "RF", "[", "i", ",", "0", "]", "for", "i", "in", "range", "(", "RF", ".", "shape", "[", "0", "]", ")", "]", "RF", "=", "True", "elif", "RF", ":", "# theta should be calculate here!", "s", "=", "\"We are still missing automatic calculation of phase \"", "s", "+=", "\"transformations.\"", "raise", "ValueError", "(", "s", ")", "if", "not", "RWA", "and", "RF", ":", "s", "=", "\"The rotating frame does not exist without the rotating wave \\\napproximation, as far as I know.\"", "raise", "ValueError", "(", "s", ")", "# We check that the epsilonp is a list of vectors.", "if", "not", "isinstance", "(", "epsilonp", ",", "list", ")", ":", "raise", "ValueError", "(", "\"epsilonp must be a list of polarization vectors.\"", ")", "if", "not", "isinstance", "(", "epsilonp", "[", "0", "]", ",", "Matrix", ")", ":", "raise", "ValueError", "(", "\"epsilonp must be a list of polarization vectors.\"", ")", "Ne", "=", "len", "(", "omega_level", ")", "Nl", "=", "len", "(", "omega_laser", ")", "H", "=", "zeros", "(", "Ne", ",", "Ne", ")", "hbar", ",", "e", "=", "symbols", "(", "\"hbar e\"", ",", "positive", "=", "True", ")", "t", "=", "symbols", "(", "\"t\"", ",", "real", "=", "True", ")", "for", "i", "in", "range", "(", "Ne", ")", ":", "for", "j", "in", "range", "(", "Ne", ")", ":", "rmij", "=", "vector_element", "(", "rm", ",", "i", ",", "j", ")", "rpij", "=", "vector_element", "(", "rm", ",", "j", ",", "i", ")", ".", "conjugate", "(", ")", "for", "l", "in", "range", "(", "Nl", ")", ":", "epsilonpl", "=", "epsilonp", "[", "l", "]", "epsilonml", "=", "epsilonpl", ".", "conjugate", "(", ")", "if", "RF", ":", "Epl", "=", "xi", "[", "l", "]", "[", "i", ",", "j", "]", "*", "Ep", "[", "l", "]", "Epl", "*=", "exp", "(", "-", "I", "*", "(", "theta", "[", "j", "]", "-", "theta", "[", "i", "]", "-", "t", "*", "omega_laser", "[", "l", "]", ")", ")", "Eml", "=", "xi", "[", "l", "]", "[", "i", ",", "j", "]", "*", "Ep", "[", "l", "]", ".", "conjugate", "(", ")", "Eml", "*=", "exp", "(", "-", "I", "*", "(", "theta", "[", "j", "]", "-", "theta", "[", "i", "]", "+", "t", "*", "omega_laser", "[", "l", "]", ")", ")", "else", ":", "Epl", "=", "Ep", "[", "l", "]", "*", "xi", "[", "l", "]", "[", "i", ",", "j", "]", "*", "exp", "(", "-", "I", "*", "omega_laser", "[", "l", "]", "*", "t", ")", "Eml", "=", "Epl", ".", "conjugate", "(", ")", "# The E^(+)r^(-) term", "H", "[", "i", ",", "j", "]", "+=", "-", "e", "*", "Epl", "/", "2", "*", "cartesian_dot_product", "(", "epsilonpl", ",", "rmij", ")", "# The E^(-)r^(+) term", "H", "[", "i", ",", "j", "]", "+=", "-", "e", "*", "Eml", "/", "2", "*", "cartesian_dot_product", "(", "epsilonml", ",", "rpij", ")", "if", "not", "RWA", ":", "# The E^(+)r^(+) term", "H", "[", "i", ",", "j", "]", "+=", "-", "e", "*", "Epl", "/", "2", "*", "cartesian_dot_product", "(", "epsilonpl", ",", "rpij", ")", "# The E^(-)r^(-) term", "H", "[", "i", ",", "j", "]", "+=", "-", "e", "*", "Eml", "/", "2", "*", "cartesian_dot_product", "(", "epsilonml", ",", "rmij", ")", "if", "i", "==", "j", ":", "if", "RF", ":", "H", "[", "i", ",", "j", "]", "+=", "hbar", "*", "(", "omega_level", "[", "i", "]", "+", "diff", "(", "theta", "[", "i", "]", ",", "t", ")", ")", "else", ":", "H", "[", "i", ",", "j", "]", "+=", "hbar", "*", "omega_level", "[", "i", "]", "return", "H" ]
r"""Return symbolic Hamiltonian. >>> from sympy import zeros, pi, pprint, symbols >>> Ne = 3 >>> Nl = 2 >>> Ep, omega_laser = define_laser_variables(Nl) >>> epsilonp = [polarization_vector(0, -pi/2, 0, 0, 1) for l in range(Nl)] >>> detuning_knob = symbols("delta1 delta2", real=True) >>> xi = [zeros(Ne, Ne) for l in range(Nl)] >>> coup = [[(1, 0)], [(2, 0)]] >>> for l in range(Nl): ... for pair in coup[l]: ... xi[l][pair[0], pair[1]] = 1 ... xi[l][pair[1], pair[0]] = 1 >>> rm = define_r_components(Ne, xi, explicitly_hermitian=True, ... helicity=True, p=-1) >>> rm = helicity_to_cartesian(rm) >>> omega_level, omega, gamma = define_frequencies(Ne, True) >>> H = hamiltonian(Ep, epsilonp, detuning_knob, rm, omega_level, ... omega_laser, xi, RWA=True, RF=False) >>> print H[1, 0] -E_{01}*e*r_{0;21}*exp(-I*t*varpi_1)/2 >>> print H[2, 0] -E_{02}*e*r_{0;31}*exp(-I*t*varpi_2)/2 >>> print H[2, 2] hbar*omega_3
[ "r", "Return", "symbolic", "Hamiltonian", "." ]
train
https://github.com/oscarlazoarjona/fast/blob/3e5400672af2a7b7cc616e7f4aa10d7672720222/fast/symbolic.py#L1163-L1262
oscarlazoarjona/fast
fast/symbolic.py
dot
def dot(a, b): r"""Dot product of two 3d vectors.""" if isinstance(a, Mul): a = a.expand() avect = 1 aivect = -1 for ai, fact in enumerate(a.args): if isinstance(fact, Vector3D): avect = fact aivect = ai break acoef = a.args[:aivect] + a.args[aivect+1:] acoef = Mul(*acoef) return acoef*dot(avect, b) if isinstance(b, Mul): b = b.expand() bvect = 1 bivect = -1 for bi, fact in enumerate(b.args): if isinstance(fact, Vector3D): bvect = fact bivect = bi break bcoef = b.args[:bivect] + b.args[bivect+1:] bcoef = Mul(*bcoef) return bcoef*dot(a, bvect) if isinstance(a, Vector3D) and isinstance(b, Vector3D): return DotProduct(a, b) if hasattr(a, "shape") and hasattr(b, "shape"): return cartesian_dot_product(a, b) print a, b, type(a), type(b), print isinstance(a, Vector3D), isinstance(b, Vector3D) raise NotImplementedError("could not catch these instances in dot!")
python
def dot(a, b): r"""Dot product of two 3d vectors.""" if isinstance(a, Mul): a = a.expand() avect = 1 aivect = -1 for ai, fact in enumerate(a.args): if isinstance(fact, Vector3D): avect = fact aivect = ai break acoef = a.args[:aivect] + a.args[aivect+1:] acoef = Mul(*acoef) return acoef*dot(avect, b) if isinstance(b, Mul): b = b.expand() bvect = 1 bivect = -1 for bi, fact in enumerate(b.args): if isinstance(fact, Vector3D): bvect = fact bivect = bi break bcoef = b.args[:bivect] + b.args[bivect+1:] bcoef = Mul(*bcoef) return bcoef*dot(a, bvect) if isinstance(a, Vector3D) and isinstance(b, Vector3D): return DotProduct(a, b) if hasattr(a, "shape") and hasattr(b, "shape"): return cartesian_dot_product(a, b) print a, b, type(a), type(b), print isinstance(a, Vector3D), isinstance(b, Vector3D) raise NotImplementedError("could not catch these instances in dot!")
[ "def", "dot", "(", "a", ",", "b", ")", ":", "if", "isinstance", "(", "a", ",", "Mul", ")", ":", "a", "=", "a", ".", "expand", "(", ")", "avect", "=", "1", "aivect", "=", "-", "1", "for", "ai", ",", "fact", "in", "enumerate", "(", "a", ".", "args", ")", ":", "if", "isinstance", "(", "fact", ",", "Vector3D", ")", ":", "avect", "=", "fact", "aivect", "=", "ai", "break", "acoef", "=", "a", ".", "args", "[", ":", "aivect", "]", "+", "a", ".", "args", "[", "aivect", "+", "1", ":", "]", "acoef", "=", "Mul", "(", "*", "acoef", ")", "return", "acoef", "*", "dot", "(", "avect", ",", "b", ")", "if", "isinstance", "(", "b", ",", "Mul", ")", ":", "b", "=", "b", ".", "expand", "(", ")", "bvect", "=", "1", "bivect", "=", "-", "1", "for", "bi", ",", "fact", "in", "enumerate", "(", "b", ".", "args", ")", ":", "if", "isinstance", "(", "fact", ",", "Vector3D", ")", ":", "bvect", "=", "fact", "bivect", "=", "bi", "break", "bcoef", "=", "b", ".", "args", "[", ":", "bivect", "]", "+", "b", ".", "args", "[", "bivect", "+", "1", ":", "]", "bcoef", "=", "Mul", "(", "*", "bcoef", ")", "return", "bcoef", "*", "dot", "(", "a", ",", "bvect", ")", "if", "isinstance", "(", "a", ",", "Vector3D", ")", "and", "isinstance", "(", "b", ",", "Vector3D", ")", ":", "return", "DotProduct", "(", "a", ",", "b", ")", "if", "hasattr", "(", "a", ",", "\"shape\"", ")", "and", "hasattr", "(", "b", ",", "\"shape\"", ")", ":", "return", "cartesian_dot_product", "(", "a", ",", "b", ")", "print", "a", ",", "b", ",", "type", "(", "a", ")", ",", "type", "(", "b", ")", ",", "print", "isinstance", "(", "a", ",", "Vector3D", ")", ",", "isinstance", "(", "b", ",", "Vector3D", ")", "raise", "NotImplementedError", "(", "\"could not catch these instances in dot!\"", ")" ]
r"""Dot product of two 3d vectors.
[ "r", "Dot", "product", "of", "two", "3d", "vectors", "." ]
train
https://github.com/oscarlazoarjona/fast/blob/3e5400672af2a7b7cc616e7f4aa10d7672720222/fast/symbolic.py#L1390-L1428
oscarlazoarjona/fast
fast/symbolic.py
cross
def cross(a, b): r"""Cross product of two 3d vectors.""" if isinstance(a, Mul): a = a.expand() avect = 1 aivect = -1 for ai, fact in enumerate(a.args): if isinstance(fact, Vector3D): avect = fact aivect = ai break acoef = a.args[:aivect] + a.args[aivect+1:] acoef = Mul(*acoef) return acoef*cross(avect, b) if isinstance(b, Mul): b = b.expand() bvect = 1 bivect = -1 for bi, fact in enumerate(b.args): if isinstance(fact, Vector3D): bvect = fact bivect = bi break bcoef = b.args[:bivect] + b.args[bivect+1:] bcoef = Mul(*bcoef) return bcoef*cross(a, bvect) if isinstance(a, Vector3D) and isinstance(b, Vector3D): return CrossProduct(a, b)
python
def cross(a, b): r"""Cross product of two 3d vectors.""" if isinstance(a, Mul): a = a.expand() avect = 1 aivect = -1 for ai, fact in enumerate(a.args): if isinstance(fact, Vector3D): avect = fact aivect = ai break acoef = a.args[:aivect] + a.args[aivect+1:] acoef = Mul(*acoef) return acoef*cross(avect, b) if isinstance(b, Mul): b = b.expand() bvect = 1 bivect = -1 for bi, fact in enumerate(b.args): if isinstance(fact, Vector3D): bvect = fact bivect = bi break bcoef = b.args[:bivect] + b.args[bivect+1:] bcoef = Mul(*bcoef) return bcoef*cross(a, bvect) if isinstance(a, Vector3D) and isinstance(b, Vector3D): return CrossProduct(a, b)
[ "def", "cross", "(", "a", ",", "b", ")", ":", "if", "isinstance", "(", "a", ",", "Mul", ")", ":", "a", "=", "a", ".", "expand", "(", ")", "avect", "=", "1", "aivect", "=", "-", "1", "for", "ai", ",", "fact", "in", "enumerate", "(", "a", ".", "args", ")", ":", "if", "isinstance", "(", "fact", ",", "Vector3D", ")", ":", "avect", "=", "fact", "aivect", "=", "ai", "break", "acoef", "=", "a", ".", "args", "[", ":", "aivect", "]", "+", "a", ".", "args", "[", "aivect", "+", "1", ":", "]", "acoef", "=", "Mul", "(", "*", "acoef", ")", "return", "acoef", "*", "cross", "(", "avect", ",", "b", ")", "if", "isinstance", "(", "b", ",", "Mul", ")", ":", "b", "=", "b", ".", "expand", "(", ")", "bvect", "=", "1", "bivect", "=", "-", "1", "for", "bi", ",", "fact", "in", "enumerate", "(", "b", ".", "args", ")", ":", "if", "isinstance", "(", "fact", ",", "Vector3D", ")", ":", "bvect", "=", "fact", "bivect", "=", "bi", "break", "bcoef", "=", "b", ".", "args", "[", ":", "bivect", "]", "+", "b", ".", "args", "[", "bivect", "+", "1", ":", "]", "bcoef", "=", "Mul", "(", "*", "bcoef", ")", "return", "bcoef", "*", "cross", "(", "a", ",", "bvect", ")", "if", "isinstance", "(", "a", ",", "Vector3D", ")", "and", "isinstance", "(", "b", ",", "Vector3D", ")", ":", "return", "CrossProduct", "(", "a", ",", "b", ")" ]
r"""Cross product of two 3d vectors.
[ "r", "Cross", "product", "of", "two", "3d", "vectors", "." ]
train
https://github.com/oscarlazoarjona/fast/blob/3e5400672af2a7b7cc616e7f4aa10d7672720222/fast/symbolic.py#L1431-L1462
tilde-lab/tilde
tilde/core/settings.py
write_settings
def write_settings(settings): ''' Saves user's settings @returns True on success @returns False on failure ''' if not os.access(DATA_DIR, os.W_OK): return False try: f = open(DATA_DIR + os.sep + SETTINGS_FILE, 'w') f.writelines(json.dumps(settings, indent=0)) f.close() os.chmod(os.path.abspath(DATA_DIR + os.sep + SETTINGS_FILE), 0o777) # to avoid (or create?) IO problems with multiple users except IOError: return False else: return True
python
def write_settings(settings): ''' Saves user's settings @returns True on success @returns False on failure ''' if not os.access(DATA_DIR, os.W_OK): return False try: f = open(DATA_DIR + os.sep + SETTINGS_FILE, 'w') f.writelines(json.dumps(settings, indent=0)) f.close() os.chmod(os.path.abspath(DATA_DIR + os.sep + SETTINGS_FILE), 0o777) # to avoid (or create?) IO problems with multiple users except IOError: return False else: return True
[ "def", "write_settings", "(", "settings", ")", ":", "if", "not", "os", ".", "access", "(", "DATA_DIR", ",", "os", ".", "W_OK", ")", ":", "return", "False", "try", ":", "f", "=", "open", "(", "DATA_DIR", "+", "os", ".", "sep", "+", "SETTINGS_FILE", ",", "'w'", ")", "f", ".", "writelines", "(", "json", ".", "dumps", "(", "settings", ",", "indent", "=", "0", ")", ")", "f", ".", "close", "(", ")", "os", ".", "chmod", "(", "os", ".", "path", ".", "abspath", "(", "DATA_DIR", "+", "os", ".", "sep", "+", "SETTINGS_FILE", ")", ",", "0o777", ")", "# to avoid (or create?) IO problems with multiple users", "except", "IOError", ":", "return", "False", "else", ":", "return", "True" ]
Saves user's settings @returns True on success @returns False on failure
[ "Saves", "user", "s", "settings" ]
train
https://github.com/tilde-lab/tilde/blob/59841578b3503075aa85c76f9ae647b3ff92b0a3/tilde/core/settings.py#L109-L124
tilde-lab/tilde
tilde/core/settings.py
get_hierarchy
def get_hierarchy(settings): ''' Gets main mapping source according to what a data classification is made Gets the hierarchy groups (only for GUI) Gets the hierarchy values ''' hierarchy, hierarchy_groups, hierarchy_values = [], [], {} hgroup_ids, enumerated_vals = {}, set() session = connect_database(settings) for item in session.query(model.Hierarchy_value).all(): try: hierarchy_values[item.cid].update({item.num: item.name}) except KeyError: hierarchy_values[item.cid] = {item.num: item.name} enumerated_vals.add(item.cid) try: for item in session.query(model.Hierarchy).all(): if item.has_facet and not item.has_topic: raise RuntimeError('Fatal error: "has_facet" implies "has_topic"') if item.slider and not '.' in item.slider: raise RuntimeError('Fatal error: "has_slider" must have a reference to some table field') hierarchy.append({ 'cid':item.cid, 'category':item.name, 'source':item.source, 'html':item.html, 'has_slider':item.slider, 'sort':item.sort, 'multiple':item.multiple, 'optional':item.optional, 'has_summary_contrb':item.has_summary_contrb, 'has_column':item.has_column, 'has_facet':item.has_facet, 'creates_topic':item.has_topic, 'is_chem_formula':item.chem_formula, 'plottable':item.plottable, 'enumerated':True if item.cid in enumerated_vals else False }) try: hgroup_ids[item.hgroup_id].append(item.cid) except KeyError: hgroup_ids[item.hgroup_id] = [item.cid] except RuntimeError as e: session.close() sys.exit(e) for item in session.query(model.Hierarchy_group).all(): hierarchy_groups.append({ 'id': item.hgroup_id, 'category': item.name, 'html_pocket': '', # specially for JavaScript client 'landing_group': item.landing_group, 'settings_group': item.settings_group, 'includes': hgroup_ids[item.hgroup_id] }) session.close() return hierarchy, hierarchy_groups, hierarchy_values
python
def get_hierarchy(settings): ''' Gets main mapping source according to what a data classification is made Gets the hierarchy groups (only for GUI) Gets the hierarchy values ''' hierarchy, hierarchy_groups, hierarchy_values = [], [], {} hgroup_ids, enumerated_vals = {}, set() session = connect_database(settings) for item in session.query(model.Hierarchy_value).all(): try: hierarchy_values[item.cid].update({item.num: item.name}) except KeyError: hierarchy_values[item.cid] = {item.num: item.name} enumerated_vals.add(item.cid) try: for item in session.query(model.Hierarchy).all(): if item.has_facet and not item.has_topic: raise RuntimeError('Fatal error: "has_facet" implies "has_topic"') if item.slider and not '.' in item.slider: raise RuntimeError('Fatal error: "has_slider" must have a reference to some table field') hierarchy.append({ 'cid':item.cid, 'category':item.name, 'source':item.source, 'html':item.html, 'has_slider':item.slider, 'sort':item.sort, 'multiple':item.multiple, 'optional':item.optional, 'has_summary_contrb':item.has_summary_contrb, 'has_column':item.has_column, 'has_facet':item.has_facet, 'creates_topic':item.has_topic, 'is_chem_formula':item.chem_formula, 'plottable':item.plottable, 'enumerated':True if item.cid in enumerated_vals else False }) try: hgroup_ids[item.hgroup_id].append(item.cid) except KeyError: hgroup_ids[item.hgroup_id] = [item.cid] except RuntimeError as e: session.close() sys.exit(e) for item in session.query(model.Hierarchy_group).all(): hierarchy_groups.append({ 'id': item.hgroup_id, 'category': item.name, 'html_pocket': '', # specially for JavaScript client 'landing_group': item.landing_group, 'settings_group': item.settings_group, 'includes': hgroup_ids[item.hgroup_id] }) session.close() return hierarchy, hierarchy_groups, hierarchy_values
[ "def", "get_hierarchy", "(", "settings", ")", ":", "hierarchy", ",", "hierarchy_groups", ",", "hierarchy_values", "=", "[", "]", ",", "[", "]", ",", "{", "}", "hgroup_ids", ",", "enumerated_vals", "=", "{", "}", ",", "set", "(", ")", "session", "=", "connect_database", "(", "settings", ")", "for", "item", "in", "session", ".", "query", "(", "model", ".", "Hierarchy_value", ")", ".", "all", "(", ")", ":", "try", ":", "hierarchy_values", "[", "item", ".", "cid", "]", ".", "update", "(", "{", "item", ".", "num", ":", "item", ".", "name", "}", ")", "except", "KeyError", ":", "hierarchy_values", "[", "item", ".", "cid", "]", "=", "{", "item", ".", "num", ":", "item", ".", "name", "}", "enumerated_vals", ".", "add", "(", "item", ".", "cid", ")", "try", ":", "for", "item", "in", "session", ".", "query", "(", "model", ".", "Hierarchy", ")", ".", "all", "(", ")", ":", "if", "item", ".", "has_facet", "and", "not", "item", ".", "has_topic", ":", "raise", "RuntimeError", "(", "'Fatal error: \"has_facet\" implies \"has_topic\"'", ")", "if", "item", ".", "slider", "and", "not", "'.'", "in", "item", ".", "slider", ":", "raise", "RuntimeError", "(", "'Fatal error: \"has_slider\" must have a reference to some table field'", ")", "hierarchy", ".", "append", "(", "{", "'cid'", ":", "item", ".", "cid", ",", "'category'", ":", "item", ".", "name", ",", "'source'", ":", "item", ".", "source", ",", "'html'", ":", "item", ".", "html", ",", "'has_slider'", ":", "item", ".", "slider", ",", "'sort'", ":", "item", ".", "sort", ",", "'multiple'", ":", "item", ".", "multiple", ",", "'optional'", ":", "item", ".", "optional", ",", "'has_summary_contrb'", ":", "item", ".", "has_summary_contrb", ",", "'has_column'", ":", "item", ".", "has_column", ",", "'has_facet'", ":", "item", ".", "has_facet", ",", "'creates_topic'", ":", "item", ".", "has_topic", ",", "'is_chem_formula'", ":", "item", ".", "chem_formula", ",", "'plottable'", ":", "item", ".", "plottable", ",", "'enumerated'", ":", "True", "if", "item", ".", "cid", "in", "enumerated_vals", "else", "False", "}", ")", "try", ":", "hgroup_ids", "[", "item", ".", "hgroup_id", "]", ".", "append", "(", "item", ".", "cid", ")", "except", "KeyError", ":", "hgroup_ids", "[", "item", ".", "hgroup_id", "]", "=", "[", "item", ".", "cid", "]", "except", "RuntimeError", "as", "e", ":", "session", ".", "close", "(", ")", "sys", ".", "exit", "(", "e", ")", "for", "item", "in", "session", ".", "query", "(", "model", ".", "Hierarchy_group", ")", ".", "all", "(", ")", ":", "hierarchy_groups", ".", "append", "(", "{", "'id'", ":", "item", ".", "hgroup_id", ",", "'category'", ":", "item", ".", "name", ",", "'html_pocket'", ":", "''", ",", "# specially for JavaScript client", "'landing_group'", ":", "item", ".", "landing_group", ",", "'settings_group'", ":", "item", ".", "settings_group", ",", "'includes'", ":", "hgroup_ids", "[", "item", ".", "hgroup_id", "]", "}", ")", "session", ".", "close", "(", ")", "return", "hierarchy", ",", "hierarchy_groups", ",", "hierarchy_values" ]
Gets main mapping source according to what a data classification is made Gets the hierarchy groups (only for GUI) Gets the hierarchy values
[ "Gets", "main", "mapping", "source", "according", "to", "what", "a", "data", "classification", "is", "made", "Gets", "the", "hierarchy", "groups", "(", "only", "for", "GUI", ")", "Gets", "the", "hierarchy", "values" ]
train
https://github.com/tilde-lab/tilde/blob/59841578b3503075aa85c76f9ae647b3ff92b0a3/tilde/core/settings.py#L126-L177
hammerlab/stancache
stancache/utils.py
is_field_unique_by_group
def is_field_unique_by_group(df, field_col, group_col): ''' Determine if field is constant by group in df ''' def num_unique(x): return len(pd.unique(x)) num_distinct = df.groupby(group_col)[field_col].agg(num_unique) return all(num_distinct == 1)
python
def is_field_unique_by_group(df, field_col, group_col): ''' Determine if field is constant by group in df ''' def num_unique(x): return len(pd.unique(x)) num_distinct = df.groupby(group_col)[field_col].agg(num_unique) return all(num_distinct == 1)
[ "def", "is_field_unique_by_group", "(", "df", ",", "field_col", ",", "group_col", ")", ":", "def", "num_unique", "(", "x", ")", ":", "return", "len", "(", "pd", ".", "unique", "(", "x", ")", ")", "num_distinct", "=", "df", ".", "groupby", "(", "group_col", ")", "[", "field_col", "]", ".", "agg", "(", "num_unique", ")", "return", "all", "(", "num_distinct", "==", "1", ")" ]
Determine if field is constant by group in df
[ "Determine", "if", "field", "is", "constant", "by", "group", "in", "df" ]
train
https://github.com/hammerlab/stancache/blob/22f2548731d0960c14c0d41f4f64e418d3f22e4c/stancache/utils.py#L36-L42
hammerlab/stancache
stancache/utils.py
_list_files_in_path
def _list_files_in_path(path, pattern="*.stan"): """ indexes a directory of stan files returns as dictionary containing contents of files """ results = [] for dirname, subdirs, files in os.walk(path): for name in files: if fnmatch(name, pattern): results.append(os.path.join(dirname, name)) return(results)
python
def _list_files_in_path(path, pattern="*.stan"): """ indexes a directory of stan files returns as dictionary containing contents of files """ results = [] for dirname, subdirs, files in os.walk(path): for name in files: if fnmatch(name, pattern): results.append(os.path.join(dirname, name)) return(results)
[ "def", "_list_files_in_path", "(", "path", ",", "pattern", "=", "\"*.stan\"", ")", ":", "results", "=", "[", "]", "for", "dirname", ",", "subdirs", ",", "files", "in", "os", ".", "walk", "(", "path", ")", ":", "for", "name", "in", "files", ":", "if", "fnmatch", "(", "name", ",", "pattern", ")", ":", "results", ".", "append", "(", "os", ".", "path", ".", "join", "(", "dirname", ",", "name", ")", ")", "return", "(", "results", ")" ]
indexes a directory of stan files returns as dictionary containing contents of files
[ "indexes", "a", "directory", "of", "stan", "files", "returns", "as", "dictionary", "containing", "contents", "of", "files" ]
train
https://github.com/hammerlab/stancache/blob/22f2548731d0960c14c0d41f4f64e418d3f22e4c/stancache/utils.py#L45-L56
tilde-lab/tilde
tilde/classifiers/perovskites.py
generate_random_perovskite
def generate_random_perovskite(lat=None): ''' This generates a random valid perovskite structure in ASE format. Useful for testing. Binary and organic perovskites are not considered. ''' if not lat: lat = round(random.uniform(3.5, Perovskite_tilting.OCTAHEDRON_BOND_LENGTH_LIMIT*2), 3) A_site = random.choice(Perovskite_Structure.A) B_site = random.choice(Perovskite_Structure.B) Ci_site = random.choice(Perovskite_Structure.C) Cii_site = random.choice(Perovskite_Structure.C) while covalent_radii[chemical_symbols.index(A_site)] - \ covalent_radii[chemical_symbols.index(B_site)] < 0.05 or \ covalent_radii[chemical_symbols.index(A_site)] - \ covalent_radii[chemical_symbols.index(B_site)] > 0.5: A_site = random.choice(Perovskite_Structure.A) B_site = random.choice(Perovskite_Structure.B) return crystal( [A_site, B_site, Ci_site, Cii_site], [(0.5, 0.25, 0.0), (0.0, 0.0, 0.0), (0.0, 0.25, 0.0), (0.25, 0.0, 0.75)], spacegroup=62, cellpar=[lat*math.sqrt(2), 2*lat, lat*math.sqrt(2), 90, 90, 90] )
python
def generate_random_perovskite(lat=None): ''' This generates a random valid perovskite structure in ASE format. Useful for testing. Binary and organic perovskites are not considered. ''' if not lat: lat = round(random.uniform(3.5, Perovskite_tilting.OCTAHEDRON_BOND_LENGTH_LIMIT*2), 3) A_site = random.choice(Perovskite_Structure.A) B_site = random.choice(Perovskite_Structure.B) Ci_site = random.choice(Perovskite_Structure.C) Cii_site = random.choice(Perovskite_Structure.C) while covalent_radii[chemical_symbols.index(A_site)] - \ covalent_radii[chemical_symbols.index(B_site)] < 0.05 or \ covalent_radii[chemical_symbols.index(A_site)] - \ covalent_radii[chemical_symbols.index(B_site)] > 0.5: A_site = random.choice(Perovskite_Structure.A) B_site = random.choice(Perovskite_Structure.B) return crystal( [A_site, B_site, Ci_site, Cii_site], [(0.5, 0.25, 0.0), (0.0, 0.0, 0.0), (0.0, 0.25, 0.0), (0.25, 0.0, 0.75)], spacegroup=62, cellpar=[lat*math.sqrt(2), 2*lat, lat*math.sqrt(2), 90, 90, 90] )
[ "def", "generate_random_perovskite", "(", "lat", "=", "None", ")", ":", "if", "not", "lat", ":", "lat", "=", "round", "(", "random", ".", "uniform", "(", "3.5", ",", "Perovskite_tilting", ".", "OCTAHEDRON_BOND_LENGTH_LIMIT", "*", "2", ")", ",", "3", ")", "A_site", "=", "random", ".", "choice", "(", "Perovskite_Structure", ".", "A", ")", "B_site", "=", "random", ".", "choice", "(", "Perovskite_Structure", ".", "B", ")", "Ci_site", "=", "random", ".", "choice", "(", "Perovskite_Structure", ".", "C", ")", "Cii_site", "=", "random", ".", "choice", "(", "Perovskite_Structure", ".", "C", ")", "while", "covalent_radii", "[", "chemical_symbols", ".", "index", "(", "A_site", ")", "]", "-", "covalent_radii", "[", "chemical_symbols", ".", "index", "(", "B_site", ")", "]", "<", "0.05", "or", "covalent_radii", "[", "chemical_symbols", ".", "index", "(", "A_site", ")", "]", "-", "covalent_radii", "[", "chemical_symbols", ".", "index", "(", "B_site", ")", "]", ">", "0.5", ":", "A_site", "=", "random", ".", "choice", "(", "Perovskite_Structure", ".", "A", ")", "B_site", "=", "random", ".", "choice", "(", "Perovskite_Structure", ".", "B", ")", "return", "crystal", "(", "[", "A_site", ",", "B_site", ",", "Ci_site", ",", "Cii_site", "]", ",", "[", "(", "0.5", ",", "0.25", ",", "0.0", ")", ",", "(", "0.0", ",", "0.0", ",", "0.0", ")", ",", "(", "0.0", ",", "0.25", ",", "0.0", ")", ",", "(", "0.25", ",", "0.0", ",", "0.75", ")", "]", ",", "spacegroup", "=", "62", ",", "cellpar", "=", "[", "lat", "*", "math", ".", "sqrt", "(", "2", ")", ",", "2", "*", "lat", ",", "lat", "*", "math", ".", "sqrt", "(", "2", ")", ",", "90", ",", "90", ",", "90", "]", ")" ]
This generates a random valid perovskite structure in ASE format. Useful for testing. Binary and organic perovskites are not considered.
[ "This", "generates", "a", "random", "valid", "perovskite", "structure", "in", "ASE", "format", ".", "Useful", "for", "testing", ".", "Binary", "and", "organic", "perovskites", "are", "not", "considered", "." ]
train
https://github.com/tilde-lab/tilde/blob/59841578b3503075aa85c76f9ae647b3ff92b0a3/tilde/classifiers/perovskites.py#L126-L151
alexwlchan/specktre
src/specktre/cli.py
check_positive_integer
def check_positive_integer(name, value): """Check a value is a positive integer. Returns the value if so, raises ValueError otherwise. """ try: value = int(value) is_positive = (value > 0) except ValueError: raise ValueError('%s should be an integer; got %r' % (name, value)) if is_positive: return value else: raise ValueError('%s should be positive; got %r' % (name, value))
python
def check_positive_integer(name, value): """Check a value is a positive integer. Returns the value if so, raises ValueError otherwise. """ try: value = int(value) is_positive = (value > 0) except ValueError: raise ValueError('%s should be an integer; got %r' % (name, value)) if is_positive: return value else: raise ValueError('%s should be positive; got %r' % (name, value))
[ "def", "check_positive_integer", "(", "name", ",", "value", ")", ":", "try", ":", "value", "=", "int", "(", "value", ")", "is_positive", "=", "(", "value", ">", "0", ")", "except", "ValueError", ":", "raise", "ValueError", "(", "'%s should be an integer; got %r'", "%", "(", "name", ",", "value", ")", ")", "if", "is_positive", ":", "return", "value", "else", ":", "raise", "ValueError", "(", "'%s should be positive; got %r'", "%", "(", "name", ",", "value", ")", ")" ]
Check a value is a positive integer. Returns the value if so, raises ValueError otherwise.
[ "Check", "a", "value", "is", "a", "positive", "integer", "." ]
train
https://github.com/alexwlchan/specktre/blob/dcdd0d5486e5c3f612f64221b2e0dbc6fb7adafc/src/specktre/cli.py#L40-L55
alexwlchan/specktre
src/specktre/cli.py
check_color_input
def check_color_input(value): """Check a value is a valid colour input. Returns a parsed `RGBColor` instance if so, raises ValueError otherwise. """ value = value.lower() # Trim a leading hash if value.startswith('#'): value = value[1:] if len(value) != 6: raise ValueError( 'Color should be six hexadecimal digits, got %r (%s)' % (value, len(value))) if re.sub(r'[a-f0-9]', '', value): raise ValueError( 'Color should only contain hex characters, got %r' % value) red = int(value[0:2], base=16) green = int(value[2:4], base=16) blue = int(value[4:6], base=16) return RGBColor(red, green, blue)
python
def check_color_input(value): """Check a value is a valid colour input. Returns a parsed `RGBColor` instance if so, raises ValueError otherwise. """ value = value.lower() # Trim a leading hash if value.startswith('#'): value = value[1:] if len(value) != 6: raise ValueError( 'Color should be six hexadecimal digits, got %r (%s)' % (value, len(value))) if re.sub(r'[a-f0-9]', '', value): raise ValueError( 'Color should only contain hex characters, got %r' % value) red = int(value[0:2], base=16) green = int(value[2:4], base=16) blue = int(value[4:6], base=16) return RGBColor(red, green, blue)
[ "def", "check_color_input", "(", "value", ")", ":", "value", "=", "value", ".", "lower", "(", ")", "# Trim a leading hash", "if", "value", ".", "startswith", "(", "'#'", ")", ":", "value", "=", "value", "[", "1", ":", "]", "if", "len", "(", "value", ")", "!=", "6", ":", "raise", "ValueError", "(", "'Color should be six hexadecimal digits, got %r (%s)'", "%", "(", "value", ",", "len", "(", "value", ")", ")", ")", "if", "re", ".", "sub", "(", "r'[a-f0-9]'", ",", "''", ",", "value", ")", ":", "raise", "ValueError", "(", "'Color should only contain hex characters, got %r'", "%", "value", ")", "red", "=", "int", "(", "value", "[", "0", ":", "2", "]", ",", "base", "=", "16", ")", "green", "=", "int", "(", "value", "[", "2", ":", "4", "]", ",", "base", "=", "16", ")", "blue", "=", "int", "(", "value", "[", "4", ":", "6", "]", ",", "base", "=", "16", ")", "return", "RGBColor", "(", "red", ",", "green", ",", "blue", ")" ]
Check a value is a valid colour input. Returns a parsed `RGBColor` instance if so, raises ValueError otherwise.
[ "Check", "a", "value", "is", "a", "valid", "colour", "input", "." ]
train
https://github.com/alexwlchan/specktre/blob/dcdd0d5486e5c3f612f64221b2e0dbc6fb7adafc/src/specktre/cli.py#L58-L82
tilde-lab/tilde
tilde/apps/perovskite_tilting/perovskite_tilting.py
Perovskite_tilting.get_octahedra
def get_octahedra(self, atoms, periodicity=3): ''' Extract octahedra as lists of sequence numbers of corner atoms ''' octahedra = [] for n, i in enumerate(atoms): found = [] if i.symbol in Perovskite_Structure.B: for m, j in enumerate(self.virtual_atoms): if j.symbol in Perovskite_Structure.C and self.virtual_atoms.get_distance(n, m) <= self.OCTAHEDRON_BOND_LENGTH_LIMIT: found.append(m) if (periodicity == 3 and len(found) == 6) or (periodicity == 2 and len(found) in [5, 6]): octahedra.append([n, found]) if not len(octahedra): raise ModuleError("Cannot extract valid octahedra: not enough corner atoms found!") return octahedra
python
def get_octahedra(self, atoms, periodicity=3): ''' Extract octahedra as lists of sequence numbers of corner atoms ''' octahedra = [] for n, i in enumerate(atoms): found = [] if i.symbol in Perovskite_Structure.B: for m, j in enumerate(self.virtual_atoms): if j.symbol in Perovskite_Structure.C and self.virtual_atoms.get_distance(n, m) <= self.OCTAHEDRON_BOND_LENGTH_LIMIT: found.append(m) if (periodicity == 3 and len(found) == 6) or (periodicity == 2 and len(found) in [5, 6]): octahedra.append([n, found]) if not len(octahedra): raise ModuleError("Cannot extract valid octahedra: not enough corner atoms found!") return octahedra
[ "def", "get_octahedra", "(", "self", ",", "atoms", ",", "periodicity", "=", "3", ")", ":", "octahedra", "=", "[", "]", "for", "n", ",", "i", "in", "enumerate", "(", "atoms", ")", ":", "found", "=", "[", "]", "if", "i", ".", "symbol", "in", "Perovskite_Structure", ".", "B", ":", "for", "m", ",", "j", "in", "enumerate", "(", "self", ".", "virtual_atoms", ")", ":", "if", "j", ".", "symbol", "in", "Perovskite_Structure", ".", "C", "and", "self", ".", "virtual_atoms", ".", "get_distance", "(", "n", ",", "m", ")", "<=", "self", ".", "OCTAHEDRON_BOND_LENGTH_LIMIT", ":", "found", ".", "append", "(", "m", ")", "if", "(", "periodicity", "==", "3", "and", "len", "(", "found", ")", "==", "6", ")", "or", "(", "periodicity", "==", "2", "and", "len", "(", "found", ")", "in", "[", "5", ",", "6", "]", ")", ":", "octahedra", ".", "append", "(", "[", "n", ",", "found", "]", ")", "if", "not", "len", "(", "octahedra", ")", ":", "raise", "ModuleError", "(", "\"Cannot extract valid octahedra: not enough corner atoms found!\"", ")", "return", "octahedra" ]
Extract octahedra as lists of sequence numbers of corner atoms
[ "Extract", "octahedra", "as", "lists", "of", "sequence", "numbers", "of", "corner", "atoms" ]
train
https://github.com/tilde-lab/tilde/blob/59841578b3503075aa85c76f9ae647b3ff92b0a3/tilde/apps/perovskite_tilting/perovskite_tilting.py#L141-L157
tilde-lab/tilde
tilde/apps/perovskite_tilting/perovskite_tilting.py
Perovskite_tilting.get_tiltplane
def get_tiltplane(self, sequence): ''' Extract the main tilting plane basing on Z coordinate ''' sequence = sorted(sequence, key=lambda x: self.virtual_atoms[ x ].z) in_plane = [] for i in range(0, len(sequence)-4): if abs(self.virtual_atoms[ sequence[i] ].z - self.virtual_atoms[ sequence[i+1] ].z) < self.OCTAHEDRON_ATOMS_Z_DIFFERENCE and \ abs(self.virtual_atoms[ sequence[i+1] ].z - self.virtual_atoms[ sequence[i+2] ].z) < self.OCTAHEDRON_ATOMS_Z_DIFFERENCE and \ abs(self.virtual_atoms[ sequence[i+2] ].z - self.virtual_atoms[ sequence[i+3] ].z) < self.OCTAHEDRON_ATOMS_Z_DIFFERENCE: in_plane = [sequence[j] for j in range(i, i+4)] return in_plane
python
def get_tiltplane(self, sequence): ''' Extract the main tilting plane basing on Z coordinate ''' sequence = sorted(sequence, key=lambda x: self.virtual_atoms[ x ].z) in_plane = [] for i in range(0, len(sequence)-4): if abs(self.virtual_atoms[ sequence[i] ].z - self.virtual_atoms[ sequence[i+1] ].z) < self.OCTAHEDRON_ATOMS_Z_DIFFERENCE and \ abs(self.virtual_atoms[ sequence[i+1] ].z - self.virtual_atoms[ sequence[i+2] ].z) < self.OCTAHEDRON_ATOMS_Z_DIFFERENCE and \ abs(self.virtual_atoms[ sequence[i+2] ].z - self.virtual_atoms[ sequence[i+3] ].z) < self.OCTAHEDRON_ATOMS_Z_DIFFERENCE: in_plane = [sequence[j] for j in range(i, i+4)] return in_plane
[ "def", "get_tiltplane", "(", "self", ",", "sequence", ")", ":", "sequence", "=", "sorted", "(", "sequence", ",", "key", "=", "lambda", "x", ":", "self", ".", "virtual_atoms", "[", "x", "]", ".", "z", ")", "in_plane", "=", "[", "]", "for", "i", "in", "range", "(", "0", ",", "len", "(", "sequence", ")", "-", "4", ")", ":", "if", "abs", "(", "self", ".", "virtual_atoms", "[", "sequence", "[", "i", "]", "]", ".", "z", "-", "self", ".", "virtual_atoms", "[", "sequence", "[", "i", "+", "1", "]", "]", ".", "z", ")", "<", "self", ".", "OCTAHEDRON_ATOMS_Z_DIFFERENCE", "and", "abs", "(", "self", ".", "virtual_atoms", "[", "sequence", "[", "i", "+", "1", "]", "]", ".", "z", "-", "self", ".", "virtual_atoms", "[", "sequence", "[", "i", "+", "2", "]", "]", ".", "z", ")", "<", "self", ".", "OCTAHEDRON_ATOMS_Z_DIFFERENCE", "and", "abs", "(", "self", ".", "virtual_atoms", "[", "sequence", "[", "i", "+", "2", "]", "]", ".", "z", "-", "self", ".", "virtual_atoms", "[", "sequence", "[", "i", "+", "3", "]", "]", ".", "z", ")", "<", "self", ".", "OCTAHEDRON_ATOMS_Z_DIFFERENCE", ":", "in_plane", "=", "[", "sequence", "[", "j", "]", "for", "j", "in", "range", "(", "i", ",", "i", "+", "4", ")", "]", "return", "in_plane" ]
Extract the main tilting plane basing on Z coordinate
[ "Extract", "the", "main", "tilting", "plane", "basing", "on", "Z", "coordinate" ]
train
https://github.com/tilde-lab/tilde/blob/59841578b3503075aa85c76f9ae647b3ff92b0a3/tilde/apps/perovskite_tilting/perovskite_tilting.py#L159-L170