repository_name
stringlengths
7
55
func_path_in_repository
stringlengths
4
223
func_name
stringlengths
1
134
whole_func_string
stringlengths
75
104k
language
stringclasses
1 value
func_code_string
stringlengths
75
104k
func_code_tokens
sequencelengths
19
28.4k
func_documentation_string
stringlengths
1
46.9k
func_documentation_tokens
sequencelengths
1
1.97k
split_name
stringclasses
1 value
func_code_url
stringlengths
87
315
KeithSSmith/switcheo-python
switcheo/authenticated_client.py
AuthenticatedClient.execute_order
def execute_order(self, order_params, private_key): """ This function executes the order created before it and signs the transaction to be submitted to the blockchain. Execution of this function is as follows:: execute_order(order_params=create_order, private_key=kp) The expected return result for this function is the same as the execute_order function:: { 'id': '4e6a59fd-d750-4332-aaf0-f2babfa8ad67', 'blockchain': 'neo', 'contract_hash': 'a195c1549e7da61b8da315765a790ac7e7633b82', 'address': 'fea2b883725ef2d194c9060f606cd0a0468a2c59', 'side': 'buy', 'offer_asset_id': 'c56f33fc6ecfcd0c225c4ab356fee59390af8560be0e930faebe74a6daff7c9b', 'want_asset_id': 'ab38352559b8b203bde5fddfa0b07d8b2525e132', 'offer_amount': '2000000', 'want_amount': '10000000000', 'transfer_amount': '0', 'priority_gas_amount': '0', 'use_native_token': True, 'native_fee_transfer_amount': 0, 'deposit_txn': None, 'created_at': '2018-08-05T10:38:37.714Z', 'status': 'processed', 'fills': [], 'makes': [ { 'id': 'e30a7fdf-779c-4623-8f92-8a961450d843', 'offer_hash': 'b45ddfb97ade5e0363d9e707dac9ad1c530448db263e86494225a0025006f968', 'available_amount': '2000000', 'offer_asset_id': 'c56f33fc6ecfcd0c225c4ab356fee59390af8560be0e930faebe74a6daff7c9b', 'offer_amount': '2000000', 'want_asset_id': 'ab38352559b8b203bde5fddfa0b07d8b2525e132', 'want_amount': '10000000000', 'filled_amount': '0.0', 'txn': None, 'cancel_txn': None, 'price': '0.0002', 'status': 'confirming', 'created_at': '2018-08-05T10:38:37.731Z', 'transaction_hash': '5c4cb1e73b9f2e608b6e768e0654649a4d15e08a7fe63fc536c454fa563a2f0f', 'trades': [] } ] } :param order_params: Dictionary generated from the create order function. :type order_params: dict :param private_key: The Private Key (ETH) or KeyPair (NEO) for the wallet being used to sign deposit message. :type private_key: KeyPair or str :return: Dictionary of the transaction on the order book. """ order_id = order_params['id'] api_params = self.sign_execute_order_function[self.blockchain](order_params, private_key) return self.request.post(path='/orders/{}/broadcast'.format(order_id), json_data=api_params)
python
def execute_order(self, order_params, private_key): """ This function executes the order created before it and signs the transaction to be submitted to the blockchain. Execution of this function is as follows:: execute_order(order_params=create_order, private_key=kp) The expected return result for this function is the same as the execute_order function:: { 'id': '4e6a59fd-d750-4332-aaf0-f2babfa8ad67', 'blockchain': 'neo', 'contract_hash': 'a195c1549e7da61b8da315765a790ac7e7633b82', 'address': 'fea2b883725ef2d194c9060f606cd0a0468a2c59', 'side': 'buy', 'offer_asset_id': 'c56f33fc6ecfcd0c225c4ab356fee59390af8560be0e930faebe74a6daff7c9b', 'want_asset_id': 'ab38352559b8b203bde5fddfa0b07d8b2525e132', 'offer_amount': '2000000', 'want_amount': '10000000000', 'transfer_amount': '0', 'priority_gas_amount': '0', 'use_native_token': True, 'native_fee_transfer_amount': 0, 'deposit_txn': None, 'created_at': '2018-08-05T10:38:37.714Z', 'status': 'processed', 'fills': [], 'makes': [ { 'id': 'e30a7fdf-779c-4623-8f92-8a961450d843', 'offer_hash': 'b45ddfb97ade5e0363d9e707dac9ad1c530448db263e86494225a0025006f968', 'available_amount': '2000000', 'offer_asset_id': 'c56f33fc6ecfcd0c225c4ab356fee59390af8560be0e930faebe74a6daff7c9b', 'offer_amount': '2000000', 'want_asset_id': 'ab38352559b8b203bde5fddfa0b07d8b2525e132', 'want_amount': '10000000000', 'filled_amount': '0.0', 'txn': None, 'cancel_txn': None, 'price': '0.0002', 'status': 'confirming', 'created_at': '2018-08-05T10:38:37.731Z', 'transaction_hash': '5c4cb1e73b9f2e608b6e768e0654649a4d15e08a7fe63fc536c454fa563a2f0f', 'trades': [] } ] } :param order_params: Dictionary generated from the create order function. :type order_params: dict :param private_key: The Private Key (ETH) or KeyPair (NEO) for the wallet being used to sign deposit message. :type private_key: KeyPair or str :return: Dictionary of the transaction on the order book. """ order_id = order_params['id'] api_params = self.sign_execute_order_function[self.blockchain](order_params, private_key) return self.request.post(path='/orders/{}/broadcast'.format(order_id), json_data=api_params)
[ "def", "execute_order", "(", "self", ",", "order_params", ",", "private_key", ")", ":", "order_id", "=", "order_params", "[", "'id'", "]", "api_params", "=", "self", ".", "sign_execute_order_function", "[", "self", ".", "blockchain", "]", "(", "order_params", ",", "private_key", ")", "return", "self", ".", "request", ".", "post", "(", "path", "=", "'/orders/{}/broadcast'", ".", "format", "(", "order_id", ")", ",", "json_data", "=", "api_params", ")" ]
This function executes the order created before it and signs the transaction to be submitted to the blockchain. Execution of this function is as follows:: execute_order(order_params=create_order, private_key=kp) The expected return result for this function is the same as the execute_order function:: { 'id': '4e6a59fd-d750-4332-aaf0-f2babfa8ad67', 'blockchain': 'neo', 'contract_hash': 'a195c1549e7da61b8da315765a790ac7e7633b82', 'address': 'fea2b883725ef2d194c9060f606cd0a0468a2c59', 'side': 'buy', 'offer_asset_id': 'c56f33fc6ecfcd0c225c4ab356fee59390af8560be0e930faebe74a6daff7c9b', 'want_asset_id': 'ab38352559b8b203bde5fddfa0b07d8b2525e132', 'offer_amount': '2000000', 'want_amount': '10000000000', 'transfer_amount': '0', 'priority_gas_amount': '0', 'use_native_token': True, 'native_fee_transfer_amount': 0, 'deposit_txn': None, 'created_at': '2018-08-05T10:38:37.714Z', 'status': 'processed', 'fills': [], 'makes': [ { 'id': 'e30a7fdf-779c-4623-8f92-8a961450d843', 'offer_hash': 'b45ddfb97ade5e0363d9e707dac9ad1c530448db263e86494225a0025006f968', 'available_amount': '2000000', 'offer_asset_id': 'c56f33fc6ecfcd0c225c4ab356fee59390af8560be0e930faebe74a6daff7c9b', 'offer_amount': '2000000', 'want_asset_id': 'ab38352559b8b203bde5fddfa0b07d8b2525e132', 'want_amount': '10000000000', 'filled_amount': '0.0', 'txn': None, 'cancel_txn': None, 'price': '0.0002', 'status': 'confirming', 'created_at': '2018-08-05T10:38:37.731Z', 'transaction_hash': '5c4cb1e73b9f2e608b6e768e0654649a4d15e08a7fe63fc536c454fa563a2f0f', 'trades': [] } ] } :param order_params: Dictionary generated from the create order function. :type order_params: dict :param private_key: The Private Key (ETH) or KeyPair (NEO) for the wallet being used to sign deposit message. :type private_key: KeyPair or str :return: Dictionary of the transaction on the order book.
[ "This", "function", "executes", "the", "order", "created", "before", "it", "and", "signs", "the", "transaction", "to", "be", "submitted", "to", "the", "blockchain", ".", "Execution", "of", "this", "function", "is", "as", "follows", "::" ]
train
https://github.com/KeithSSmith/switcheo-python/blob/22f943dea1ad7d692b2bfcd9f0822ec80f4641a6/switcheo/authenticated_client.py#L595-L651
KeithSSmith/switcheo-python
switcheo/authenticated_client.py
AuthenticatedClient.withdrawal
def withdrawal(self, asset, amount, private_key): """ This function is a wrapper function around the create and execute withdrawal functions to help make this processes simpler for the end user by combining these requests in 1 step. Execution of this function is as follows:: withdrawal(asset="SWTH", amount=1.1, private_key=kp)) The expected return result for this function is the same as the execute_withdrawal function:: { 'event_type': 'withdrawal', 'amount': -100000, 'asset_id': 'ab38352559b8b203bde5fddfa0b07d8b2525e132', 'status': 'confirming', 'id': '96e5f797-435b-40ab-9085-4e95c6749218', 'blockchain': 'neo', 'reason_code': 9, 'address': 'fea2b883725ef2d194c9060f606cd0a0468a2c59', 'transaction_hash': None, 'created_at': '2018-08-05T10:03:58.885Z', 'updated_at': '2018-08-05T10:03:59.828Z', 'contract_hash': 'a195c1549e7da61b8da315765a790ac7e7633b82' } :param asset: Script Hash of asset ID from the available products. :type asset: str :param amount: The amount of coins/tokens to be withdrawn. :type amount: float :param private_key: The Private Key (ETH) or KeyPair (NEO) for the wallet being used to sign deposit message. :type private_key: KeyPair or str :return: Dictionary with the status of the withdrawal request and blockchain details. """ create_withdrawal = self.create_withdrawal(asset=asset, amount=amount, private_key=private_key) return self.execute_withdrawal(withdrawal_params=create_withdrawal, private_key=private_key)
python
def withdrawal(self, asset, amount, private_key): """ This function is a wrapper function around the create and execute withdrawal functions to help make this processes simpler for the end user by combining these requests in 1 step. Execution of this function is as follows:: withdrawal(asset="SWTH", amount=1.1, private_key=kp)) The expected return result for this function is the same as the execute_withdrawal function:: { 'event_type': 'withdrawal', 'amount': -100000, 'asset_id': 'ab38352559b8b203bde5fddfa0b07d8b2525e132', 'status': 'confirming', 'id': '96e5f797-435b-40ab-9085-4e95c6749218', 'blockchain': 'neo', 'reason_code': 9, 'address': 'fea2b883725ef2d194c9060f606cd0a0468a2c59', 'transaction_hash': None, 'created_at': '2018-08-05T10:03:58.885Z', 'updated_at': '2018-08-05T10:03:59.828Z', 'contract_hash': 'a195c1549e7da61b8da315765a790ac7e7633b82' } :param asset: Script Hash of asset ID from the available products. :type asset: str :param amount: The amount of coins/tokens to be withdrawn. :type amount: float :param private_key: The Private Key (ETH) or KeyPair (NEO) for the wallet being used to sign deposit message. :type private_key: KeyPair or str :return: Dictionary with the status of the withdrawal request and blockchain details. """ create_withdrawal = self.create_withdrawal(asset=asset, amount=amount, private_key=private_key) return self.execute_withdrawal(withdrawal_params=create_withdrawal, private_key=private_key)
[ "def", "withdrawal", "(", "self", ",", "asset", ",", "amount", ",", "private_key", ")", ":", "create_withdrawal", "=", "self", ".", "create_withdrawal", "(", "asset", "=", "asset", ",", "amount", "=", "amount", ",", "private_key", "=", "private_key", ")", "return", "self", ".", "execute_withdrawal", "(", "withdrawal_params", "=", "create_withdrawal", ",", "private_key", "=", "private_key", ")" ]
This function is a wrapper function around the create and execute withdrawal functions to help make this processes simpler for the end user by combining these requests in 1 step. Execution of this function is as follows:: withdrawal(asset="SWTH", amount=1.1, private_key=kp)) The expected return result for this function is the same as the execute_withdrawal function:: { 'event_type': 'withdrawal', 'amount': -100000, 'asset_id': 'ab38352559b8b203bde5fddfa0b07d8b2525e132', 'status': 'confirming', 'id': '96e5f797-435b-40ab-9085-4e95c6749218', 'blockchain': 'neo', 'reason_code': 9, 'address': 'fea2b883725ef2d194c9060f606cd0a0468a2c59', 'transaction_hash': None, 'created_at': '2018-08-05T10:03:58.885Z', 'updated_at': '2018-08-05T10:03:59.828Z', 'contract_hash': 'a195c1549e7da61b8da315765a790ac7e7633b82' } :param asset: Script Hash of asset ID from the available products. :type asset: str :param amount: The amount of coins/tokens to be withdrawn. :type amount: float :param private_key: The Private Key (ETH) or KeyPair (NEO) for the wallet being used to sign deposit message. :type private_key: KeyPair or str :return: Dictionary with the status of the withdrawal request and blockchain details.
[ "This", "function", "is", "a", "wrapper", "function", "around", "the", "create", "and", "execute", "withdrawal", "functions", "to", "help", "make", "this", "processes", "simpler", "for", "the", "end", "user", "by", "combining", "these", "requests", "in", "1", "step", ".", "Execution", "of", "this", "function", "is", "as", "follows", "::" ]
train
https://github.com/KeithSSmith/switcheo-python/blob/22f943dea1ad7d692b2bfcd9f0822ec80f4641a6/switcheo/authenticated_client.py#L653-L687
KeithSSmith/switcheo-python
switcheo/authenticated_client.py
AuthenticatedClient.create_withdrawal
def create_withdrawal(self, asset, amount, private_key): """ Function to create a withdrawal request by generating a withdrawal ID request from the Switcheo API. Execution of this function is as follows:: create_withdrawal(asset="SWTH", amount=1.1, private_key=kp) The expected return result for this function is as follows:: { 'id': 'a5a4d396-fa9f-4191-bf50-39a3d06d5e0d' } :param asset: Script Hash of asset ID from the available products. :type asset: str :param amount: The amount of coins/tokens to be withdrawn. :type amount: float :param private_key: The Private Key (ETH) or KeyPair (NEO) for the wallet being used to sign deposit message. :type private_key: KeyPair or str :return: Dictionary with the withdrawal ID generated by the Switcheo API. """ signable_params = { 'blockchain': self.blockchain, 'asset_id': asset, 'amount': str(self.blockchain_amount[self.blockchain](amount)), 'timestamp': get_epoch_milliseconds(), 'contract_hash': self.contract_hash } api_params = self.sign_create_withdrawal_function[self.blockchain](signable_params, private_key) return self.request.post(path='/withdrawals', json_data=api_params)
python
def create_withdrawal(self, asset, amount, private_key): """ Function to create a withdrawal request by generating a withdrawal ID request from the Switcheo API. Execution of this function is as follows:: create_withdrawal(asset="SWTH", amount=1.1, private_key=kp) The expected return result for this function is as follows:: { 'id': 'a5a4d396-fa9f-4191-bf50-39a3d06d5e0d' } :param asset: Script Hash of asset ID from the available products. :type asset: str :param amount: The amount of coins/tokens to be withdrawn. :type amount: float :param private_key: The Private Key (ETH) or KeyPair (NEO) for the wallet being used to sign deposit message. :type private_key: KeyPair or str :return: Dictionary with the withdrawal ID generated by the Switcheo API. """ signable_params = { 'blockchain': self.blockchain, 'asset_id': asset, 'amount': str(self.blockchain_amount[self.blockchain](amount)), 'timestamp': get_epoch_milliseconds(), 'contract_hash': self.contract_hash } api_params = self.sign_create_withdrawal_function[self.blockchain](signable_params, private_key) return self.request.post(path='/withdrawals', json_data=api_params)
[ "def", "create_withdrawal", "(", "self", ",", "asset", ",", "amount", ",", "private_key", ")", ":", "signable_params", "=", "{", "'blockchain'", ":", "self", ".", "blockchain", ",", "'asset_id'", ":", "asset", ",", "'amount'", ":", "str", "(", "self", ".", "blockchain_amount", "[", "self", ".", "blockchain", "]", "(", "amount", ")", ")", ",", "'timestamp'", ":", "get_epoch_milliseconds", "(", ")", ",", "'contract_hash'", ":", "self", ".", "contract_hash", "}", "api_params", "=", "self", ".", "sign_create_withdrawal_function", "[", "self", ".", "blockchain", "]", "(", "signable_params", ",", "private_key", ")", "return", "self", ".", "request", ".", "post", "(", "path", "=", "'/withdrawals'", ",", "json_data", "=", "api_params", ")" ]
Function to create a withdrawal request by generating a withdrawal ID request from the Switcheo API. Execution of this function is as follows:: create_withdrawal(asset="SWTH", amount=1.1, private_key=kp) The expected return result for this function is as follows:: { 'id': 'a5a4d396-fa9f-4191-bf50-39a3d06d5e0d' } :param asset: Script Hash of asset ID from the available products. :type asset: str :param amount: The amount of coins/tokens to be withdrawn. :type amount: float :param private_key: The Private Key (ETH) or KeyPair (NEO) for the wallet being used to sign deposit message. :type private_key: KeyPair or str :return: Dictionary with the withdrawal ID generated by the Switcheo API.
[ "Function", "to", "create", "a", "withdrawal", "request", "by", "generating", "a", "withdrawal", "ID", "request", "from", "the", "Switcheo", "API", ".", "Execution", "of", "this", "function", "is", "as", "follows", "::" ]
train
https://github.com/KeithSSmith/switcheo-python/blob/22f943dea1ad7d692b2bfcd9f0822ec80f4641a6/switcheo/authenticated_client.py#L689-L718
KeithSSmith/switcheo-python
switcheo/authenticated_client.py
AuthenticatedClient.execute_withdrawal
def execute_withdrawal(self, withdrawal_params, private_key): """ This function is to sign the message generated from the create withdrawal function and submit it to the blockchain for transfer from the smart contract to the owners address. Execution of this function is as follows:: execute_withdrawal(withdrawal_params=create_withdrawal, private_key=kp) The expected return result for this function is as follows:: { 'event_type': 'withdrawal', 'amount': -100000, 'asset_id': 'ab38352559b8b203bde5fddfa0b07d8b2525e132', 'status': 'confirming', 'id': '96e5f797-435b-40ab-9085-4e95c6749218', 'blockchain': 'neo', 'reason_code': 9, 'address': 'fea2b883725ef2d194c9060f606cd0a0468a2c59', 'transaction_hash': None, 'created_at': '2018-08-05T10:03:58.885Z', 'updated_at': '2018-08-05T10:03:59.828Z', 'contract_hash': 'a195c1549e7da61b8da315765a790ac7e7633b82' } :param withdrawal_params: Dictionary from the create withdrawal function to sign and submit to the blockchain. :type withdrawal_params: dict :param private_key: The Private Key (ETH) or KeyPair (NEO) for the wallet being used to sign deposit message. :type private_key: KeyPair or str :return: Dictionary with the status of the withdrawal request and blockchain transaction details. """ withdrawal_id = withdrawal_params['id'] api_params = self.sign_execute_withdrawal_function[self.blockchain](withdrawal_params, private_key) return self.request.post(path='/withdrawals/{}/broadcast'.format(withdrawal_id), json_data=api_params)
python
def execute_withdrawal(self, withdrawal_params, private_key): """ This function is to sign the message generated from the create withdrawal function and submit it to the blockchain for transfer from the smart contract to the owners address. Execution of this function is as follows:: execute_withdrawal(withdrawal_params=create_withdrawal, private_key=kp) The expected return result for this function is as follows:: { 'event_type': 'withdrawal', 'amount': -100000, 'asset_id': 'ab38352559b8b203bde5fddfa0b07d8b2525e132', 'status': 'confirming', 'id': '96e5f797-435b-40ab-9085-4e95c6749218', 'blockchain': 'neo', 'reason_code': 9, 'address': 'fea2b883725ef2d194c9060f606cd0a0468a2c59', 'transaction_hash': None, 'created_at': '2018-08-05T10:03:58.885Z', 'updated_at': '2018-08-05T10:03:59.828Z', 'contract_hash': 'a195c1549e7da61b8da315765a790ac7e7633b82' } :param withdrawal_params: Dictionary from the create withdrawal function to sign and submit to the blockchain. :type withdrawal_params: dict :param private_key: The Private Key (ETH) or KeyPair (NEO) for the wallet being used to sign deposit message. :type private_key: KeyPair or str :return: Dictionary with the status of the withdrawal request and blockchain transaction details. """ withdrawal_id = withdrawal_params['id'] api_params = self.sign_execute_withdrawal_function[self.blockchain](withdrawal_params, private_key) return self.request.post(path='/withdrawals/{}/broadcast'.format(withdrawal_id), json_data=api_params)
[ "def", "execute_withdrawal", "(", "self", ",", "withdrawal_params", ",", "private_key", ")", ":", "withdrawal_id", "=", "withdrawal_params", "[", "'id'", "]", "api_params", "=", "self", ".", "sign_execute_withdrawal_function", "[", "self", ".", "blockchain", "]", "(", "withdrawal_params", ",", "private_key", ")", "return", "self", ".", "request", ".", "post", "(", "path", "=", "'/withdrawals/{}/broadcast'", ".", "format", "(", "withdrawal_id", ")", ",", "json_data", "=", "api_params", ")" ]
This function is to sign the message generated from the create withdrawal function and submit it to the blockchain for transfer from the smart contract to the owners address. Execution of this function is as follows:: execute_withdrawal(withdrawal_params=create_withdrawal, private_key=kp) The expected return result for this function is as follows:: { 'event_type': 'withdrawal', 'amount': -100000, 'asset_id': 'ab38352559b8b203bde5fddfa0b07d8b2525e132', 'status': 'confirming', 'id': '96e5f797-435b-40ab-9085-4e95c6749218', 'blockchain': 'neo', 'reason_code': 9, 'address': 'fea2b883725ef2d194c9060f606cd0a0468a2c59', 'transaction_hash': None, 'created_at': '2018-08-05T10:03:58.885Z', 'updated_at': '2018-08-05T10:03:59.828Z', 'contract_hash': 'a195c1549e7da61b8da315765a790ac7e7633b82' } :param withdrawal_params: Dictionary from the create withdrawal function to sign and submit to the blockchain. :type withdrawal_params: dict :param private_key: The Private Key (ETH) or KeyPair (NEO) for the wallet being used to sign deposit message. :type private_key: KeyPair or str :return: Dictionary with the status of the withdrawal request and blockchain transaction details.
[ "This", "function", "is", "to", "sign", "the", "message", "generated", "from", "the", "create", "withdrawal", "function", "and", "submit", "it", "to", "the", "blockchain", "for", "transfer", "from", "the", "smart", "contract", "to", "the", "owners", "address", ".", "Execution", "of", "this", "function", "is", "as", "follows", "::" ]
train
https://github.com/KeithSSmith/switcheo-python/blob/22f943dea1ad7d692b2bfcd9f0822ec80f4641a6/switcheo/authenticated_client.py#L720-L753
MFreidank/ARSpy
arspy/ars.py
adaptive_rejection_sampling
def adaptive_rejection_sampling(logpdf: callable, a: float, b: float, domain: Tuple[float, float], n_samples: int, random_stream=None): """ Adaptive rejection sampling samples exactly (all samples are i.i.d) and efficiently from any univariate log-concave distribution. The basic idea is to successively determine an envelope of straight-line segments to construct an increasingly accurate approximation of the logarithm. It does not require any normalization of the target distribution. Parameters ---------- logpdf: callable Univariate function that computes :math:`log(f(u))` for a given :math:`u`, where :math:`f(u)` is proportional to the target density to sample from. a: float Lower starting point used to initialize the hulls. Must lie in the domain of the logpdf and it must hold: :math:`a < b`. b: float Upper starting point used to initialize the hulls. Must lie in the domain of the logpdf and it must hold: :math:`a < b`. domain : Tuple[float, float] Domain of `logpdf`. May be unbounded on either or both sides, in which case `(float("-inf"), float("inf"))` would be passed. If this domain is unbounded to the left, the derivative of the logpdf for x<= a must be positive. If this domain is unbounded to the right the derivative of the logpdf for x>=b must be negative. n_samples: int Number of samples to draw. random_stream : RandomState, optional Seeded random number generator object with same interface as a NumPy RandomState object. Defaults to `None` in which case a NumPy RandomState seeded from `/dev/urandom` if available or the clock if not will be used. Returns ---------- samples : list A list of samples drawn from the target distribution :math:`f` with the given `logpdf`. Examples ---------- Sampling from a simple gaussian, adaptive rejection sampling style. We use the logpdf of a standard gaussian and this small code snippet demonstrates that our sample approximation accurately approximates the mean: >>> from math import isclose >>> from numpy import log, exp, mean >>> gaussian_logpdf = lambda x, sigma=1: log(exp(-x ** 2 / sigma)) >>> a, b = -2, 2 # a < b must hold >>> domain = (float("-inf"), float("inf")) >>> n_samples = 10000 >>> samples = adaptive_rejection_sampling(logpdf=gaussian_logpdf, a=a, b=b, domain=domain, n_samples=n_samples) >>> isclose(mean(samples), 0.0, abs_tol=1e-02) True """ assert(hasattr(logpdf, "__call__")) assert(len(domain) == 2), "Domain must be two-element iterable." assert(domain[1] >= domain[0]), "Invalid domain, it must hold: domain[1] >= domain[0]." assert(n_samples >= 0), "Number of samples must be >= 0." if random_stream is None: random_stream = RandomState() if a >= b or isinf(a) or isinf(b) or a < domain[0] or b > domain[1]: raise ValueError("invalid a and b") n_derivative_steps = 1e-3 * (b - a) S = (a, a + n_derivative_steps, b - n_derivative_steps, b) if domain[0] == float("-inf"): # ensure positive derivative at 'a' derivative_sign = sign(logpdf(a + n_derivative_steps) - logpdf(a)) positive_derivative = derivative_sign > 0 assert(positive_derivative), "derivative at 'a' must be positive, since the domain is unbounded to the left" if domain[1] == float("inf"): # ensure negative derivative at 'b' derivative_sign = sign(logpdf(b) - logpdf(b - n_derivative_steps)) negative_derivative = derivative_sign < 0 assert(negative_derivative), "derivative at 'b' must be negative, since the domain is unbounded to the right" # initialize a mesh on which to create upper & lower hulls n_initial_mesh_points = 3 S = unique( (S[0], *(linspace(S[1], S[2], num=n_initial_mesh_points + 2)), S[3]) ) fS = tuple(logpdf(s) for s in S) lower_hull, upper_hull = compute_hulls(S=S, fS=fS, domain=domain) samples = [] while len(samples) < n_samples: mesh_changed = False x = sample_upper_hull(upper_hull, random_stream=random_stream) lh_val, uh_val = evaluate_hulls(x, lower_hull, upper_hull) U = random_stream.rand() if log(U) <= lh_val - uh_val: # accept u is below lower bound samples.append(x) elif log(U) <= logpdf(x) - uh_val: # accept, u is between lower bound and f samples.append(x) mesh_changed = True else: # reject, u is between f and upper_bound mesh_changed = True if mesh_changed: S = sorted([*S, x]) fS = tuple(logpdf(s) for s in S) lower_hull, upper_hull = compute_hulls(S=S, fS=fS, domain=domain) return samples
python
def adaptive_rejection_sampling(logpdf: callable, a: float, b: float, domain: Tuple[float, float], n_samples: int, random_stream=None): """ Adaptive rejection sampling samples exactly (all samples are i.i.d) and efficiently from any univariate log-concave distribution. The basic idea is to successively determine an envelope of straight-line segments to construct an increasingly accurate approximation of the logarithm. It does not require any normalization of the target distribution. Parameters ---------- logpdf: callable Univariate function that computes :math:`log(f(u))` for a given :math:`u`, where :math:`f(u)` is proportional to the target density to sample from. a: float Lower starting point used to initialize the hulls. Must lie in the domain of the logpdf and it must hold: :math:`a < b`. b: float Upper starting point used to initialize the hulls. Must lie in the domain of the logpdf and it must hold: :math:`a < b`. domain : Tuple[float, float] Domain of `logpdf`. May be unbounded on either or both sides, in which case `(float("-inf"), float("inf"))` would be passed. If this domain is unbounded to the left, the derivative of the logpdf for x<= a must be positive. If this domain is unbounded to the right the derivative of the logpdf for x>=b must be negative. n_samples: int Number of samples to draw. random_stream : RandomState, optional Seeded random number generator object with same interface as a NumPy RandomState object. Defaults to `None` in which case a NumPy RandomState seeded from `/dev/urandom` if available or the clock if not will be used. Returns ---------- samples : list A list of samples drawn from the target distribution :math:`f` with the given `logpdf`. Examples ---------- Sampling from a simple gaussian, adaptive rejection sampling style. We use the logpdf of a standard gaussian and this small code snippet demonstrates that our sample approximation accurately approximates the mean: >>> from math import isclose >>> from numpy import log, exp, mean >>> gaussian_logpdf = lambda x, sigma=1: log(exp(-x ** 2 / sigma)) >>> a, b = -2, 2 # a < b must hold >>> domain = (float("-inf"), float("inf")) >>> n_samples = 10000 >>> samples = adaptive_rejection_sampling(logpdf=gaussian_logpdf, a=a, b=b, domain=domain, n_samples=n_samples) >>> isclose(mean(samples), 0.0, abs_tol=1e-02) True """ assert(hasattr(logpdf, "__call__")) assert(len(domain) == 2), "Domain must be two-element iterable." assert(domain[1] >= domain[0]), "Invalid domain, it must hold: domain[1] >= domain[0]." assert(n_samples >= 0), "Number of samples must be >= 0." if random_stream is None: random_stream = RandomState() if a >= b or isinf(a) or isinf(b) or a < domain[0] or b > domain[1]: raise ValueError("invalid a and b") n_derivative_steps = 1e-3 * (b - a) S = (a, a + n_derivative_steps, b - n_derivative_steps, b) if domain[0] == float("-inf"): # ensure positive derivative at 'a' derivative_sign = sign(logpdf(a + n_derivative_steps) - logpdf(a)) positive_derivative = derivative_sign > 0 assert(positive_derivative), "derivative at 'a' must be positive, since the domain is unbounded to the left" if domain[1] == float("inf"): # ensure negative derivative at 'b' derivative_sign = sign(logpdf(b) - logpdf(b - n_derivative_steps)) negative_derivative = derivative_sign < 0 assert(negative_derivative), "derivative at 'b' must be negative, since the domain is unbounded to the right" # initialize a mesh on which to create upper & lower hulls n_initial_mesh_points = 3 S = unique( (S[0], *(linspace(S[1], S[2], num=n_initial_mesh_points + 2)), S[3]) ) fS = tuple(logpdf(s) for s in S) lower_hull, upper_hull = compute_hulls(S=S, fS=fS, domain=domain) samples = [] while len(samples) < n_samples: mesh_changed = False x = sample_upper_hull(upper_hull, random_stream=random_stream) lh_val, uh_val = evaluate_hulls(x, lower_hull, upper_hull) U = random_stream.rand() if log(U) <= lh_val - uh_val: # accept u is below lower bound samples.append(x) elif log(U) <= logpdf(x) - uh_val: # accept, u is between lower bound and f samples.append(x) mesh_changed = True else: # reject, u is between f and upper_bound mesh_changed = True if mesh_changed: S = sorted([*S, x]) fS = tuple(logpdf(s) for s in S) lower_hull, upper_hull = compute_hulls(S=S, fS=fS, domain=domain) return samples
[ "def", "adaptive_rejection_sampling", "(", "logpdf", ":", "callable", ",", "a", ":", "float", ",", "b", ":", "float", ",", "domain", ":", "Tuple", "[", "float", ",", "float", "]", ",", "n_samples", ":", "int", ",", "random_stream", "=", "None", ")", ":", "assert", "(", "hasattr", "(", "logpdf", ",", "\"__call__\"", ")", ")", "assert", "(", "len", "(", "domain", ")", "==", "2", ")", ",", "\"Domain must be two-element iterable.\"", "assert", "(", "domain", "[", "1", "]", ">=", "domain", "[", "0", "]", ")", ",", "\"Invalid domain, it must hold: domain[1] >= domain[0].\"", "assert", "(", "n_samples", ">=", "0", ")", ",", "\"Number of samples must be >= 0.\"", "if", "random_stream", "is", "None", ":", "random_stream", "=", "RandomState", "(", ")", "if", "a", ">=", "b", "or", "isinf", "(", "a", ")", "or", "isinf", "(", "b", ")", "or", "a", "<", "domain", "[", "0", "]", "or", "b", ">", "domain", "[", "1", "]", ":", "raise", "ValueError", "(", "\"invalid a and b\"", ")", "n_derivative_steps", "=", "1e-3", "*", "(", "b", "-", "a", ")", "S", "=", "(", "a", ",", "a", "+", "n_derivative_steps", ",", "b", "-", "n_derivative_steps", ",", "b", ")", "if", "domain", "[", "0", "]", "==", "float", "(", "\"-inf\"", ")", ":", "# ensure positive derivative at 'a'", "derivative_sign", "=", "sign", "(", "logpdf", "(", "a", "+", "n_derivative_steps", ")", "-", "logpdf", "(", "a", ")", ")", "positive_derivative", "=", "derivative_sign", ">", "0", "assert", "(", "positive_derivative", ")", ",", "\"derivative at 'a' must be positive, since the domain is unbounded to the left\"", "if", "domain", "[", "1", "]", "==", "float", "(", "\"inf\"", ")", ":", "# ensure negative derivative at 'b'", "derivative_sign", "=", "sign", "(", "logpdf", "(", "b", ")", "-", "logpdf", "(", "b", "-", "n_derivative_steps", ")", ")", "negative_derivative", "=", "derivative_sign", "<", "0", "assert", "(", "negative_derivative", ")", ",", "\"derivative at 'b' must be negative, since the domain is unbounded to the right\"", "# initialize a mesh on which to create upper & lower hulls", "n_initial_mesh_points", "=", "3", "S", "=", "unique", "(", "(", "S", "[", "0", "]", ",", "*", "(", "linspace", "(", "S", "[", "1", "]", ",", "S", "[", "2", "]", ",", "num", "=", "n_initial_mesh_points", "+", "2", ")", ")", ",", "S", "[", "3", "]", ")", ")", "fS", "=", "tuple", "(", "logpdf", "(", "s", ")", "for", "s", "in", "S", ")", "lower_hull", ",", "upper_hull", "=", "compute_hulls", "(", "S", "=", "S", ",", "fS", "=", "fS", ",", "domain", "=", "domain", ")", "samples", "=", "[", "]", "while", "len", "(", "samples", ")", "<", "n_samples", ":", "mesh_changed", "=", "False", "x", "=", "sample_upper_hull", "(", "upper_hull", ",", "random_stream", "=", "random_stream", ")", "lh_val", ",", "uh_val", "=", "evaluate_hulls", "(", "x", ",", "lower_hull", ",", "upper_hull", ")", "U", "=", "random_stream", ".", "rand", "(", ")", "if", "log", "(", "U", ")", "<=", "lh_val", "-", "uh_val", ":", "# accept u is below lower bound", "samples", ".", "append", "(", "x", ")", "elif", "log", "(", "U", ")", "<=", "logpdf", "(", "x", ")", "-", "uh_val", ":", "# accept, u is between lower bound and f", "samples", ".", "append", "(", "x", ")", "mesh_changed", "=", "True", "else", ":", "# reject, u is between f and upper_bound", "mesh_changed", "=", "True", "if", "mesh_changed", ":", "S", "=", "sorted", "(", "[", "*", "S", ",", "x", "]", ")", "fS", "=", "tuple", "(", "logpdf", "(", "s", ")", "for", "s", "in", "S", ")", "lower_hull", ",", "upper_hull", "=", "compute_hulls", "(", "S", "=", "S", ",", "fS", "=", "fS", ",", "domain", "=", "domain", ")", "return", "samples" ]
Adaptive rejection sampling samples exactly (all samples are i.i.d) and efficiently from any univariate log-concave distribution. The basic idea is to successively determine an envelope of straight-line segments to construct an increasingly accurate approximation of the logarithm. It does not require any normalization of the target distribution. Parameters ---------- logpdf: callable Univariate function that computes :math:`log(f(u))` for a given :math:`u`, where :math:`f(u)` is proportional to the target density to sample from. a: float Lower starting point used to initialize the hulls. Must lie in the domain of the logpdf and it must hold: :math:`a < b`. b: float Upper starting point used to initialize the hulls. Must lie in the domain of the logpdf and it must hold: :math:`a < b`. domain : Tuple[float, float] Domain of `logpdf`. May be unbounded on either or both sides, in which case `(float("-inf"), float("inf"))` would be passed. If this domain is unbounded to the left, the derivative of the logpdf for x<= a must be positive. If this domain is unbounded to the right the derivative of the logpdf for x>=b must be negative. n_samples: int Number of samples to draw. random_stream : RandomState, optional Seeded random number generator object with same interface as a NumPy RandomState object. Defaults to `None` in which case a NumPy RandomState seeded from `/dev/urandom` if available or the clock if not will be used. Returns ---------- samples : list A list of samples drawn from the target distribution :math:`f` with the given `logpdf`. Examples ---------- Sampling from a simple gaussian, adaptive rejection sampling style. We use the logpdf of a standard gaussian and this small code snippet demonstrates that our sample approximation accurately approximates the mean: >>> from math import isclose >>> from numpy import log, exp, mean >>> gaussian_logpdf = lambda x, sigma=1: log(exp(-x ** 2 / sigma)) >>> a, b = -2, 2 # a < b must hold >>> domain = (float("-inf"), float("inf")) >>> n_samples = 10000 >>> samples = adaptive_rejection_sampling(logpdf=gaussian_logpdf, a=a, b=b, domain=domain, n_samples=n_samples) >>> isclose(mean(samples), 0.0, abs_tol=1e-02) True
[ "Adaptive", "rejection", "sampling", "samples", "exactly", "(", "all", "samples", "are", "i", ".", "i", ".", "d", ")", "and", "efficiently", "from", "any", "univariate", "log", "-", "concave", "distribution", ".", "The", "basic", "idea", "is", "to", "successively", "determine", "an", "envelope", "of", "straight", "-", "line", "segments", "to", "construct", "an", "increasingly", "accurate", "approximation", "of", "the", "logarithm", ".", "It", "does", "not", "require", "any", "normalization", "of", "the", "target", "distribution", "." ]
train
https://github.com/MFreidank/ARSpy/blob/866885071b43e36a529f2fecf584ceef5248d800/arspy/ars.py#L29-L168
KeithSSmith/switcheo-python
switcheo/neo/signatures.py
sign_create_cancellation
def sign_create_cancellation(cancellation_params, key_pair): """ Function to sign the parameters required to create a cancellation request from the Switcheo Exchange. Execution of this function is as follows:: sign_create_cancellation(cancellation_params=signable_params, key_pair=key_pair) The expected return result for this function is as follows:: { 'order_id': 'aa647b95-d546-4d29-961e-bd62b18b07bf', 'timestamp': 1542092600331, 'address': 'fea2b883725ef2d194c9060f606cd0a0468a2c59', 'signature': '475bc3ecd2310201a3b5357b52b1866aaf5a5618932500e43503ebb....' } :param cancellation_params: Dictionary with Order ID and timestamp to sign for creating the cancellation. :type cancellation_params: dict :param key_pair: The KeyPair for the wallet being used to sign deposit message. :type key_pair: KeyPair :return: Dictionary of signed message to send to the Switcheo API. """ encoded_message = encode_message(cancellation_params) create_params = cancellation_params.copy() create_params['address'] = neo_get_scripthash_from_private_key(private_key=key_pair.PrivateKey).ToString() create_params['signature'] = sign_message(encoded_message=encoded_message, private_key_hex=private_key_to_hex(key_pair=key_pair)) return create_params
python
def sign_create_cancellation(cancellation_params, key_pair): """ Function to sign the parameters required to create a cancellation request from the Switcheo Exchange. Execution of this function is as follows:: sign_create_cancellation(cancellation_params=signable_params, key_pair=key_pair) The expected return result for this function is as follows:: { 'order_id': 'aa647b95-d546-4d29-961e-bd62b18b07bf', 'timestamp': 1542092600331, 'address': 'fea2b883725ef2d194c9060f606cd0a0468a2c59', 'signature': '475bc3ecd2310201a3b5357b52b1866aaf5a5618932500e43503ebb....' } :param cancellation_params: Dictionary with Order ID and timestamp to sign for creating the cancellation. :type cancellation_params: dict :param key_pair: The KeyPair for the wallet being used to sign deposit message. :type key_pair: KeyPair :return: Dictionary of signed message to send to the Switcheo API. """ encoded_message = encode_message(cancellation_params) create_params = cancellation_params.copy() create_params['address'] = neo_get_scripthash_from_private_key(private_key=key_pair.PrivateKey).ToString() create_params['signature'] = sign_message(encoded_message=encoded_message, private_key_hex=private_key_to_hex(key_pair=key_pair)) return create_params
[ "def", "sign_create_cancellation", "(", "cancellation_params", ",", "key_pair", ")", ":", "encoded_message", "=", "encode_message", "(", "cancellation_params", ")", "create_params", "=", "cancellation_params", ".", "copy", "(", ")", "create_params", "[", "'address'", "]", "=", "neo_get_scripthash_from_private_key", "(", "private_key", "=", "key_pair", ".", "PrivateKey", ")", ".", "ToString", "(", ")", "create_params", "[", "'signature'", "]", "=", "sign_message", "(", "encoded_message", "=", "encoded_message", ",", "private_key_hex", "=", "private_key_to_hex", "(", "key_pair", "=", "key_pair", ")", ")", "return", "create_params" ]
Function to sign the parameters required to create a cancellation request from the Switcheo Exchange. Execution of this function is as follows:: sign_create_cancellation(cancellation_params=signable_params, key_pair=key_pair) The expected return result for this function is as follows:: { 'order_id': 'aa647b95-d546-4d29-961e-bd62b18b07bf', 'timestamp': 1542092600331, 'address': 'fea2b883725ef2d194c9060f606cd0a0468a2c59', 'signature': '475bc3ecd2310201a3b5357b52b1866aaf5a5618932500e43503ebb....' } :param cancellation_params: Dictionary with Order ID and timestamp to sign for creating the cancellation. :type cancellation_params: dict :param key_pair: The KeyPair for the wallet being used to sign deposit message. :type key_pair: KeyPair :return: Dictionary of signed message to send to the Switcheo API.
[ "Function", "to", "sign", "the", "parameters", "required", "to", "create", "a", "cancellation", "request", "from", "the", "Switcheo", "Exchange", ".", "Execution", "of", "this", "function", "is", "as", "follows", "::" ]
train
https://github.com/KeithSSmith/switcheo-python/blob/22f943dea1ad7d692b2bfcd9f0822ec80f4641a6/switcheo/neo/signatures.py#L15-L42
KeithSSmith/switcheo-python
switcheo/neo/signatures.py
sign_execute_cancellation
def sign_execute_cancellation(cancellation_params, key_pair): """ Function to sign the parameters required to execute a cancellation request on the Switcheo Exchange. Execution of this function is as follows:: sign_execute_cancellation(cancellation_params=signable_params, key_pair=key_pair) The expected return result for this function is as follows:: { 'signature': '6a40d6c011b7517f8fd3f2d0de32dd486adfd1d424d06d56c80eb....' } :param cancellation_params: Parameters the Switcheo Exchange returns from the create cancellation. :type cancellation_params: dict :param key_pair: The KeyPair for the wallet being used to sign deposit message. :type key_pair: KeyPair :return: Dictionary of signed message to send to the Switcheo API. """ signature = sign_transaction(transaction=cancellation_params['transaction'], private_key_hex=private_key_to_hex(key_pair=key_pair)) return {'signature': signature}
python
def sign_execute_cancellation(cancellation_params, key_pair): """ Function to sign the parameters required to execute a cancellation request on the Switcheo Exchange. Execution of this function is as follows:: sign_execute_cancellation(cancellation_params=signable_params, key_pair=key_pair) The expected return result for this function is as follows:: { 'signature': '6a40d6c011b7517f8fd3f2d0de32dd486adfd1d424d06d56c80eb....' } :param cancellation_params: Parameters the Switcheo Exchange returns from the create cancellation. :type cancellation_params: dict :param key_pair: The KeyPair for the wallet being used to sign deposit message. :type key_pair: KeyPair :return: Dictionary of signed message to send to the Switcheo API. """ signature = sign_transaction(transaction=cancellation_params['transaction'], private_key_hex=private_key_to_hex(key_pair=key_pair)) return {'signature': signature}
[ "def", "sign_execute_cancellation", "(", "cancellation_params", ",", "key_pair", ")", ":", "signature", "=", "sign_transaction", "(", "transaction", "=", "cancellation_params", "[", "'transaction'", "]", ",", "private_key_hex", "=", "private_key_to_hex", "(", "key_pair", "=", "key_pair", ")", ")", "return", "{", "'signature'", ":", "signature", "}" ]
Function to sign the parameters required to execute a cancellation request on the Switcheo Exchange. Execution of this function is as follows:: sign_execute_cancellation(cancellation_params=signable_params, key_pair=key_pair) The expected return result for this function is as follows:: { 'signature': '6a40d6c011b7517f8fd3f2d0de32dd486adfd1d424d06d56c80eb....' } :param cancellation_params: Parameters the Switcheo Exchange returns from the create cancellation. :type cancellation_params: dict :param key_pair: The KeyPair for the wallet being used to sign deposit message. :type key_pair: KeyPair :return: Dictionary of signed message to send to the Switcheo API.
[ "Function", "to", "sign", "the", "parameters", "required", "to", "execute", "a", "cancellation", "request", "on", "the", "Switcheo", "Exchange", ".", "Execution", "of", "this", "function", "is", "as", "follows", "::" ]
train
https://github.com/KeithSSmith/switcheo-python/blob/22f943dea1ad7d692b2bfcd9f0822ec80f4641a6/switcheo/neo/signatures.py#L45-L66
KeithSSmith/switcheo-python
switcheo/neo/signatures.py
sign_create_deposit
def sign_create_deposit(deposit_params, key_pair): """ Function to create a deposit request by generating a transaction request from the Switcheo API. Execution of this function is as follows:: sign_create_deposit(deposit_details=create_deposit, key_pair=key_pair) The expected return result for this function is as follows:: { 'blockchain': 'neo', 'asset_id': 'SWTH', 'amount': '100', 'timestamp': 1542091927575, 'contract_hash': 'a195c1549e7da61b8da315765a790ac7e7633b82', 'address': 'fea2b883725ef2d194c9060f606cd0a0468a2c59', 'signature': '24ef6c63964988a2efe5fe67f04f46fdc2f1504fb5....' } :param deposit_params: The parameters generated by the create deposit function that now requires signature. :type deposit_params: dict :param key_pair: The KeyPair for the wallet being used to sign deposit message. :type key_pair: KeyPair :return: Dictionary response of signed deposit request that is ready to be executed on the NEO blockchain. """ encoded_message = encode_message(deposit_params) create_params = deposit_params.copy() create_params['address'] = neo_get_scripthash_from_private_key(private_key=key_pair.PrivateKey).ToString() create_params['signature'] = sign_message(encoded_message=encoded_message, private_key_hex=private_key_to_hex(key_pair=key_pair)) return create_params
python
def sign_create_deposit(deposit_params, key_pair): """ Function to create a deposit request by generating a transaction request from the Switcheo API. Execution of this function is as follows:: sign_create_deposit(deposit_details=create_deposit, key_pair=key_pair) The expected return result for this function is as follows:: { 'blockchain': 'neo', 'asset_id': 'SWTH', 'amount': '100', 'timestamp': 1542091927575, 'contract_hash': 'a195c1549e7da61b8da315765a790ac7e7633b82', 'address': 'fea2b883725ef2d194c9060f606cd0a0468a2c59', 'signature': '24ef6c63964988a2efe5fe67f04f46fdc2f1504fb5....' } :param deposit_params: The parameters generated by the create deposit function that now requires signature. :type deposit_params: dict :param key_pair: The KeyPair for the wallet being used to sign deposit message. :type key_pair: KeyPair :return: Dictionary response of signed deposit request that is ready to be executed on the NEO blockchain. """ encoded_message = encode_message(deposit_params) create_params = deposit_params.copy() create_params['address'] = neo_get_scripthash_from_private_key(private_key=key_pair.PrivateKey).ToString() create_params['signature'] = sign_message(encoded_message=encoded_message, private_key_hex=private_key_to_hex(key_pair=key_pair)) return create_params
[ "def", "sign_create_deposit", "(", "deposit_params", ",", "key_pair", ")", ":", "encoded_message", "=", "encode_message", "(", "deposit_params", ")", "create_params", "=", "deposit_params", ".", "copy", "(", ")", "create_params", "[", "'address'", "]", "=", "neo_get_scripthash_from_private_key", "(", "private_key", "=", "key_pair", ".", "PrivateKey", ")", ".", "ToString", "(", ")", "create_params", "[", "'signature'", "]", "=", "sign_message", "(", "encoded_message", "=", "encoded_message", ",", "private_key_hex", "=", "private_key_to_hex", "(", "key_pair", "=", "key_pair", ")", ")", "return", "create_params" ]
Function to create a deposit request by generating a transaction request from the Switcheo API. Execution of this function is as follows:: sign_create_deposit(deposit_details=create_deposit, key_pair=key_pair) The expected return result for this function is as follows:: { 'blockchain': 'neo', 'asset_id': 'SWTH', 'amount': '100', 'timestamp': 1542091927575, 'contract_hash': 'a195c1549e7da61b8da315765a790ac7e7633b82', 'address': 'fea2b883725ef2d194c9060f606cd0a0468a2c59', 'signature': '24ef6c63964988a2efe5fe67f04f46fdc2f1504fb5....' } :param deposit_params: The parameters generated by the create deposit function that now requires signature. :type deposit_params: dict :param key_pair: The KeyPair for the wallet being used to sign deposit message. :type key_pair: KeyPair :return: Dictionary response of signed deposit request that is ready to be executed on the NEO blockchain.
[ "Function", "to", "create", "a", "deposit", "request", "by", "generating", "a", "transaction", "request", "from", "the", "Switcheo", "API", ".", "Execution", "of", "this", "function", "is", "as", "follows", "::" ]
train
https://github.com/KeithSSmith/switcheo-python/blob/22f943dea1ad7d692b2bfcd9f0822ec80f4641a6/switcheo/neo/signatures.py#L69-L99
KeithSSmith/switcheo-python
switcheo/neo/signatures.py
sign_execute_deposit
def sign_execute_deposit(deposit_params, key_pair): """ Function to execute the deposit request by signing the transaction generated by the create deposit function. Execution of this function is as follows:: sign_execute_deposit(deposit_details=create_deposit, key_pair=key_pair) The expected return result for this function is as follows:: { 'signature': '3cc4a5cb7b7d50383e799add2ba35382b6f2f1b2e3b97802....' } :param deposit_params: The parameters generated by the create deposit function that now requires signature. :type deposit_params: dict :param key_pair: The KeyPair for the wallet being used to sign deposit message. :type key_pair: KeyPair :return: Dictionary with the result status of the deposit attempt. """ signature = sign_transaction(transaction=deposit_params['transaction'], private_key_hex=private_key_to_hex(key_pair=key_pair)) return {'signature': signature}
python
def sign_execute_deposit(deposit_params, key_pair): """ Function to execute the deposit request by signing the transaction generated by the create deposit function. Execution of this function is as follows:: sign_execute_deposit(deposit_details=create_deposit, key_pair=key_pair) The expected return result for this function is as follows:: { 'signature': '3cc4a5cb7b7d50383e799add2ba35382b6f2f1b2e3b97802....' } :param deposit_params: The parameters generated by the create deposit function that now requires signature. :type deposit_params: dict :param key_pair: The KeyPair for the wallet being used to sign deposit message. :type key_pair: KeyPair :return: Dictionary with the result status of the deposit attempt. """ signature = sign_transaction(transaction=deposit_params['transaction'], private_key_hex=private_key_to_hex(key_pair=key_pair)) return {'signature': signature}
[ "def", "sign_execute_deposit", "(", "deposit_params", ",", "key_pair", ")", ":", "signature", "=", "sign_transaction", "(", "transaction", "=", "deposit_params", "[", "'transaction'", "]", ",", "private_key_hex", "=", "private_key_to_hex", "(", "key_pair", "=", "key_pair", ")", ")", "return", "{", "'signature'", ":", "signature", "}" ]
Function to execute the deposit request by signing the transaction generated by the create deposit function. Execution of this function is as follows:: sign_execute_deposit(deposit_details=create_deposit, key_pair=key_pair) The expected return result for this function is as follows:: { 'signature': '3cc4a5cb7b7d50383e799add2ba35382b6f2f1b2e3b97802....' } :param deposit_params: The parameters generated by the create deposit function that now requires signature. :type deposit_params: dict :param key_pair: The KeyPair for the wallet being used to sign deposit message. :type key_pair: KeyPair :return: Dictionary with the result status of the deposit attempt.
[ "Function", "to", "execute", "the", "deposit", "request", "by", "signing", "the", "transaction", "generated", "by", "the", "create", "deposit", "function", ".", "Execution", "of", "this", "function", "is", "as", "follows", "::" ]
train
https://github.com/KeithSSmith/switcheo-python/blob/22f943dea1ad7d692b2bfcd9f0822ec80f4641a6/switcheo/neo/signatures.py#L102-L123
KeithSSmith/switcheo-python
switcheo/neo/signatures.py
sign_create_order
def sign_create_order(order_params, key_pair): """ Function to sign the create order parameters and send to the Switcheo API. Execution of this function is as follows:: sign_create_order(order_params=signable_params, key_pair=key_pair) The expected return result for this function is as follows:: { 'blockchain': 'neo', 'pair': 'SWTH_NEO', 'side': 'buy', 'price': '0.00001000', 'want_amount': '1000000000000', 'use_native_tokens': True, 'order_type': 'limit', 'timestamp': 1542091535839, 'contract_hash': 'a195c1549e7da61b8da315765a790ac7e7633b82', 'address': 'fea2b883725ef2d194c9060f606cd0a0468a2c59', 'signature': '88e93c14a7d3c2cf30dec012ad5cb69f5ff26fe2a....' } :param order_params: Parameters to create an order to be submitted to the Switcheo Order Book. :type order_params: dict :param key_pair: The NEO key pair to be used to sign messages for the NEO Blockchain. :type key_pair: KeyPair :return: Dictionary of signed message to send to the Switcheo API. """ encoded_message = encode_message(order_params) create_params = order_params.copy() create_params['address'] = neo_get_scripthash_from_private_key(private_key=key_pair.PrivateKey).ToString() create_params['signature'] = sign_message(encoded_message=encoded_message, private_key_hex=private_key_to_hex(key_pair=key_pair)) return create_params
python
def sign_create_order(order_params, key_pair): """ Function to sign the create order parameters and send to the Switcheo API. Execution of this function is as follows:: sign_create_order(order_params=signable_params, key_pair=key_pair) The expected return result for this function is as follows:: { 'blockchain': 'neo', 'pair': 'SWTH_NEO', 'side': 'buy', 'price': '0.00001000', 'want_amount': '1000000000000', 'use_native_tokens': True, 'order_type': 'limit', 'timestamp': 1542091535839, 'contract_hash': 'a195c1549e7da61b8da315765a790ac7e7633b82', 'address': 'fea2b883725ef2d194c9060f606cd0a0468a2c59', 'signature': '88e93c14a7d3c2cf30dec012ad5cb69f5ff26fe2a....' } :param order_params: Parameters to create an order to be submitted to the Switcheo Order Book. :type order_params: dict :param key_pair: The NEO key pair to be used to sign messages for the NEO Blockchain. :type key_pair: KeyPair :return: Dictionary of signed message to send to the Switcheo API. """ encoded_message = encode_message(order_params) create_params = order_params.copy() create_params['address'] = neo_get_scripthash_from_private_key(private_key=key_pair.PrivateKey).ToString() create_params['signature'] = sign_message(encoded_message=encoded_message, private_key_hex=private_key_to_hex(key_pair=key_pair)) return create_params
[ "def", "sign_create_order", "(", "order_params", ",", "key_pair", ")", ":", "encoded_message", "=", "encode_message", "(", "order_params", ")", "create_params", "=", "order_params", ".", "copy", "(", ")", "create_params", "[", "'address'", "]", "=", "neo_get_scripthash_from_private_key", "(", "private_key", "=", "key_pair", ".", "PrivateKey", ")", ".", "ToString", "(", ")", "create_params", "[", "'signature'", "]", "=", "sign_message", "(", "encoded_message", "=", "encoded_message", ",", "private_key_hex", "=", "private_key_to_hex", "(", "key_pair", "=", "key_pair", ")", ")", "return", "create_params" ]
Function to sign the create order parameters and send to the Switcheo API. Execution of this function is as follows:: sign_create_order(order_params=signable_params, key_pair=key_pair) The expected return result for this function is as follows:: { 'blockchain': 'neo', 'pair': 'SWTH_NEO', 'side': 'buy', 'price': '0.00001000', 'want_amount': '1000000000000', 'use_native_tokens': True, 'order_type': 'limit', 'timestamp': 1542091535839, 'contract_hash': 'a195c1549e7da61b8da315765a790ac7e7633b82', 'address': 'fea2b883725ef2d194c9060f606cd0a0468a2c59', 'signature': '88e93c14a7d3c2cf30dec012ad5cb69f5ff26fe2a....' } :param order_params: Parameters to create an order to be submitted to the Switcheo Order Book. :type order_params: dict :param key_pair: The NEO key pair to be used to sign messages for the NEO Blockchain. :type key_pair: KeyPair :return: Dictionary of signed message to send to the Switcheo API.
[ "Function", "to", "sign", "the", "create", "order", "parameters", "and", "send", "to", "the", "Switcheo", "API", ".", "Execution", "of", "this", "function", "is", "as", "follows", "::" ]
train
https://github.com/KeithSSmith/switcheo-python/blob/22f943dea1ad7d692b2bfcd9f0822ec80f4641a6/switcheo/neo/signatures.py#L126-L160
KeithSSmith/switcheo-python
switcheo/neo/signatures.py
sign_execute_order
def sign_execute_order(order_params, key_pair): """ Function to execute the order request by signing the transaction generated from the create order function. Execution of this function is as follows:: sign_execute_order(order_params=signable_params, key_pair=key_pair) The expected return result for this function is as follows:: { 'signatures': { 'fill_groups': {}, 'fills': {}, 'makes': { '952defd3-ad8a-4db3-bbd1-27d58ff6c7bd': '3f5aa331a731a808fe260502421cbb06ae3d5ea5ddfb1....' } } } :param order_params: The parameters generated by the create function that now require signing. :type order_params: dict :param key_pair: The NEO key pair to be used to sign messages for the NEO Blockchain. :type key_pair: KeyPair :return: Dictionary of the signed transaction to place an order on the Switcheo Order Book. """ execute_params = { 'signatures': { 'fill_groups': {}, 'fills': sign_txn_array(messages=order_params['fills'], private_key_hex=private_key_to_hex(key_pair=key_pair)), 'makes': sign_txn_array(messages=order_params['makes'], private_key_hex=private_key_to_hex(key_pair=key_pair)) } } return execute_params
python
def sign_execute_order(order_params, key_pair): """ Function to execute the order request by signing the transaction generated from the create order function. Execution of this function is as follows:: sign_execute_order(order_params=signable_params, key_pair=key_pair) The expected return result for this function is as follows:: { 'signatures': { 'fill_groups': {}, 'fills': {}, 'makes': { '952defd3-ad8a-4db3-bbd1-27d58ff6c7bd': '3f5aa331a731a808fe260502421cbb06ae3d5ea5ddfb1....' } } } :param order_params: The parameters generated by the create function that now require signing. :type order_params: dict :param key_pair: The NEO key pair to be used to sign messages for the NEO Blockchain. :type key_pair: KeyPair :return: Dictionary of the signed transaction to place an order on the Switcheo Order Book. """ execute_params = { 'signatures': { 'fill_groups': {}, 'fills': sign_txn_array(messages=order_params['fills'], private_key_hex=private_key_to_hex(key_pair=key_pair)), 'makes': sign_txn_array(messages=order_params['makes'], private_key_hex=private_key_to_hex(key_pair=key_pair)) } } return execute_params
[ "def", "sign_execute_order", "(", "order_params", ",", "key_pair", ")", ":", "execute_params", "=", "{", "'signatures'", ":", "{", "'fill_groups'", ":", "{", "}", ",", "'fills'", ":", "sign_txn_array", "(", "messages", "=", "order_params", "[", "'fills'", "]", ",", "private_key_hex", "=", "private_key_to_hex", "(", "key_pair", "=", "key_pair", ")", ")", ",", "'makes'", ":", "sign_txn_array", "(", "messages", "=", "order_params", "[", "'makes'", "]", ",", "private_key_hex", "=", "private_key_to_hex", "(", "key_pair", "=", "key_pair", ")", ")", "}", "}", "return", "execute_params" ]
Function to execute the order request by signing the transaction generated from the create order function. Execution of this function is as follows:: sign_execute_order(order_params=signable_params, key_pair=key_pair) The expected return result for this function is as follows:: { 'signatures': { 'fill_groups': {}, 'fills': {}, 'makes': { '952defd3-ad8a-4db3-bbd1-27d58ff6c7bd': '3f5aa331a731a808fe260502421cbb06ae3d5ea5ddfb1....' } } } :param order_params: The parameters generated by the create function that now require signing. :type order_params: dict :param key_pair: The NEO key pair to be used to sign messages for the NEO Blockchain. :type key_pair: KeyPair :return: Dictionary of the signed transaction to place an order on the Switcheo Order Book.
[ "Function", "to", "execute", "the", "order", "request", "by", "signing", "the", "transaction", "generated", "from", "the", "create", "order", "function", ".", "Execution", "of", "this", "function", "is", "as", "follows", "::" ]
train
https://github.com/KeithSSmith/switcheo-python/blob/22f943dea1ad7d692b2bfcd9f0822ec80f4641a6/switcheo/neo/signatures.py#L163-L197
KeithSSmith/switcheo-python
switcheo/neo/signatures.py
sign_create_withdrawal
def sign_create_withdrawal(withdrawal_params, key_pair): """ Function to create the withdrawal request by signing the parameters necessary for withdrawal. Execution of this function is as follows:: sign_create_withdrawal(withdrawal_params=signable_params, private_key=eth_private_key) The expected return result for this function is as follows:: { 'blockchain': 'neo', 'asset_id': 'SWTH', 'amount': '100', 'timestamp': 1542090737236, 'contract_hash': 'a195c1549e7da61b8da315765a790ac7e7633b82', 'address': 'fea2b883725ef2d194c9060f606cd0a0468a2c59', 'signature': 'f66d604c0a80940bf70ce9e13c0fd47bc79de....' } :param withdrawal_params: Dictionary specifications for withdrawal from the Switcheo Smart Contract. :type withdrawal_params: dict :param key_pair: The NEO key pair to be used to sign messages for the NEO Blockchain. :type key_pair: KeyPair :return: Dictionary of parameters to be sent to the Switcheo API """ encoded_message = encode_message(withdrawal_params) create_params = withdrawal_params.copy() create_params['address'] = neo_get_scripthash_from_private_key(private_key=key_pair.PrivateKey).ToString() create_params['signature'] = sign_message(encoded_message=encoded_message, private_key_hex=private_key_to_hex(key_pair=key_pair)) return create_params
python
def sign_create_withdrawal(withdrawal_params, key_pair): """ Function to create the withdrawal request by signing the parameters necessary for withdrawal. Execution of this function is as follows:: sign_create_withdrawal(withdrawal_params=signable_params, private_key=eth_private_key) The expected return result for this function is as follows:: { 'blockchain': 'neo', 'asset_id': 'SWTH', 'amount': '100', 'timestamp': 1542090737236, 'contract_hash': 'a195c1549e7da61b8da315765a790ac7e7633b82', 'address': 'fea2b883725ef2d194c9060f606cd0a0468a2c59', 'signature': 'f66d604c0a80940bf70ce9e13c0fd47bc79de....' } :param withdrawal_params: Dictionary specifications for withdrawal from the Switcheo Smart Contract. :type withdrawal_params: dict :param key_pair: The NEO key pair to be used to sign messages for the NEO Blockchain. :type key_pair: KeyPair :return: Dictionary of parameters to be sent to the Switcheo API """ encoded_message = encode_message(withdrawal_params) create_params = withdrawal_params.copy() create_params['address'] = neo_get_scripthash_from_private_key(private_key=key_pair.PrivateKey).ToString() create_params['signature'] = sign_message(encoded_message=encoded_message, private_key_hex=private_key_to_hex(key_pair=key_pair)) return create_params
[ "def", "sign_create_withdrawal", "(", "withdrawal_params", ",", "key_pair", ")", ":", "encoded_message", "=", "encode_message", "(", "withdrawal_params", ")", "create_params", "=", "withdrawal_params", ".", "copy", "(", ")", "create_params", "[", "'address'", "]", "=", "neo_get_scripthash_from_private_key", "(", "private_key", "=", "key_pair", ".", "PrivateKey", ")", ".", "ToString", "(", ")", "create_params", "[", "'signature'", "]", "=", "sign_message", "(", "encoded_message", "=", "encoded_message", ",", "private_key_hex", "=", "private_key_to_hex", "(", "key_pair", "=", "key_pair", ")", ")", "return", "create_params" ]
Function to create the withdrawal request by signing the parameters necessary for withdrawal. Execution of this function is as follows:: sign_create_withdrawal(withdrawal_params=signable_params, private_key=eth_private_key) The expected return result for this function is as follows:: { 'blockchain': 'neo', 'asset_id': 'SWTH', 'amount': '100', 'timestamp': 1542090737236, 'contract_hash': 'a195c1549e7da61b8da315765a790ac7e7633b82', 'address': 'fea2b883725ef2d194c9060f606cd0a0468a2c59', 'signature': 'f66d604c0a80940bf70ce9e13c0fd47bc79de....' } :param withdrawal_params: Dictionary specifications for withdrawal from the Switcheo Smart Contract. :type withdrawal_params: dict :param key_pair: The NEO key pair to be used to sign messages for the NEO Blockchain. :type key_pair: KeyPair :return: Dictionary of parameters to be sent to the Switcheo API
[ "Function", "to", "create", "the", "withdrawal", "request", "by", "signing", "the", "parameters", "necessary", "for", "withdrawal", ".", "Execution", "of", "this", "function", "is", "as", "follows", "::" ]
train
https://github.com/KeithSSmith/switcheo-python/blob/22f943dea1ad7d692b2bfcd9f0822ec80f4641a6/switcheo/neo/signatures.py#L200-L230
KeithSSmith/switcheo-python
switcheo/neo/signatures.py
sign_execute_withdrawal
def sign_execute_withdrawal(withdrawal_params, key_pair): """ Function to execute the withdrawal request by signing the transaction generated from the create withdrawal function. Execution of this function is as follows:: sign_execute_withdrawal(withdrawal_params=signable_params, private_key=eth_private_key) The expected return result for this function is as follows:: { 'id': '3e1c0802-b44e-4681-a94d-29c1dec2f518', 'timestamp': 1542090738192, 'signature': 'e05a7b7bd30eb85959d75ea634cee06ad35d96502a763ae40....' } :param withdrawal_params: Parameters passed from the create withdrawal function to be signed and confirmed. :type withdrawal_params: dict :param key_pair: The NEO key pair to be used to sign messages for the NEO Blockchain. :type key_pair: KeyPair :return: Dictionary of parameters to be sent to the Switcheo API """ withdrawal_id = withdrawal_params['id'] signable_params = { 'id': withdrawal_id, 'timestamp': get_epoch_milliseconds() } encoded_message = encode_message(signable_params) execute_params = signable_params.copy() execute_params['signature'] = sign_message(encoded_message=encoded_message, private_key_hex=private_key_to_hex(key_pair=key_pair)) return execute_params
python
def sign_execute_withdrawal(withdrawal_params, key_pair): """ Function to execute the withdrawal request by signing the transaction generated from the create withdrawal function. Execution of this function is as follows:: sign_execute_withdrawal(withdrawal_params=signable_params, private_key=eth_private_key) The expected return result for this function is as follows:: { 'id': '3e1c0802-b44e-4681-a94d-29c1dec2f518', 'timestamp': 1542090738192, 'signature': 'e05a7b7bd30eb85959d75ea634cee06ad35d96502a763ae40....' } :param withdrawal_params: Parameters passed from the create withdrawal function to be signed and confirmed. :type withdrawal_params: dict :param key_pair: The NEO key pair to be used to sign messages for the NEO Blockchain. :type key_pair: KeyPair :return: Dictionary of parameters to be sent to the Switcheo API """ withdrawal_id = withdrawal_params['id'] signable_params = { 'id': withdrawal_id, 'timestamp': get_epoch_milliseconds() } encoded_message = encode_message(signable_params) execute_params = signable_params.copy() execute_params['signature'] = sign_message(encoded_message=encoded_message, private_key_hex=private_key_to_hex(key_pair=key_pair)) return execute_params
[ "def", "sign_execute_withdrawal", "(", "withdrawal_params", ",", "key_pair", ")", ":", "withdrawal_id", "=", "withdrawal_params", "[", "'id'", "]", "signable_params", "=", "{", "'id'", ":", "withdrawal_id", ",", "'timestamp'", ":", "get_epoch_milliseconds", "(", ")", "}", "encoded_message", "=", "encode_message", "(", "signable_params", ")", "execute_params", "=", "signable_params", ".", "copy", "(", ")", "execute_params", "[", "'signature'", "]", "=", "sign_message", "(", "encoded_message", "=", "encoded_message", ",", "private_key_hex", "=", "private_key_to_hex", "(", "key_pair", "=", "key_pair", ")", ")", "return", "execute_params" ]
Function to execute the withdrawal request by signing the transaction generated from the create withdrawal function. Execution of this function is as follows:: sign_execute_withdrawal(withdrawal_params=signable_params, private_key=eth_private_key) The expected return result for this function is as follows:: { 'id': '3e1c0802-b44e-4681-a94d-29c1dec2f518', 'timestamp': 1542090738192, 'signature': 'e05a7b7bd30eb85959d75ea634cee06ad35d96502a763ae40....' } :param withdrawal_params: Parameters passed from the create withdrawal function to be signed and confirmed. :type withdrawal_params: dict :param key_pair: The NEO key pair to be used to sign messages for the NEO Blockchain. :type key_pair: KeyPair :return: Dictionary of parameters to be sent to the Switcheo API
[ "Function", "to", "execute", "the", "withdrawal", "request", "by", "signing", "the", "transaction", "generated", "from", "the", "create", "withdrawal", "function", ".", "Execution", "of", "this", "function", "is", "as", "follows", "::" ]
train
https://github.com/KeithSSmith/switcheo-python/blob/22f943dea1ad7d692b2bfcd9f0822ec80f4641a6/switcheo/neo/signatures.py#L233-L263
runfalk/spans
spans/settypes.py
MetaRangeSet.register
def register(cls, range_mixin): """ Decorator for registering range set mixins for global use. This works the same as :meth:`~spans.settypes.MetaRangeSet.add` :param range_mixin: A :class:`~spans.types.Range` mixin class to to register a decorated range set mixin class for :return: A decorator to use on a range set mixin class """ def decorator(range_set_mixin): cls.add(range_mixin, range_set_mixin) return range_set_mixin return decorator
python
def register(cls, range_mixin): """ Decorator for registering range set mixins for global use. This works the same as :meth:`~spans.settypes.MetaRangeSet.add` :param range_mixin: A :class:`~spans.types.Range` mixin class to to register a decorated range set mixin class for :return: A decorator to use on a range set mixin class """ def decorator(range_set_mixin): cls.add(range_mixin, range_set_mixin) return range_set_mixin return decorator
[ "def", "register", "(", "cls", ",", "range_mixin", ")", ":", "def", "decorator", "(", "range_set_mixin", ")", ":", "cls", ".", "add", "(", "range_mixin", ",", "range_set_mixin", ")", "return", "range_set_mixin", "return", "decorator" ]
Decorator for registering range set mixins for global use. This works the same as :meth:`~spans.settypes.MetaRangeSet.add` :param range_mixin: A :class:`~spans.types.Range` mixin class to to register a decorated range set mixin class for :return: A decorator to use on a range set mixin class
[ "Decorator", "for", "registering", "range", "set", "mixins", "for", "global", "use", ".", "This", "works", "the", "same", "as", ":", "meth", ":", "~spans", ".", "settypes", ".", "MetaRangeSet", ".", "add" ]
train
https://github.com/runfalk/spans/blob/59ed73407a569c3be86cfdb4b8f438cb8c794540/spans/settypes.py#L60-L73
deshima-dev/decode
decode/models/functions.py
pca
def pca(onarray, offarray, n=10, exchs=None, pc=False, mode='mean'): """Apply Principal Component Analysis (PCA) method to estimate baselines at each time. Args: onarray (decode.array): Decode array of on-point observations. offarray (decode.array): Decode array of off-point observations. n (int): The number of pricipal components. pc (bool): When True, this function also returns eigen vectors and their coefficients. mode (None or str): The way of correcting offsets. 'mean': Mean. 'median': Median. None: No correction. Returns: filtered (decode.array): Baseline-subtracted array. When pc is True: Ps (list(np.ndarray)): Eigen vectors. Cs (list(np.ndarray)): Coefficients. """ logger = getLogger('decode.models.pca') logger.info('n_components exchs mode') if exchs is None: exchs = [16, 44, 46] logger.info('{} {} {}'.format(n, exchs, mode)) offid = np.unique(offarray.scanid) onid = np.unique(onarray.scanid) onarray = onarray.copy() # Xarray onarray[:, exchs] = 0 onvalues = onarray.values onscanid = onarray.scanid.values offarray = offarray.copy() # Xarray offarray[:, exchs] = 0 offvalues = offarray.values offscanid = offarray.scanid.values Ps, Cs = [], [] Xatm = dc.full_like(onarray, onarray) Xatmvalues = Xatm.values model = TruncatedSVD(n_components=n) for i in onid: leftid = np.searchsorted(offid, i) - 1 rightid = np.searchsorted(offid, i) Xon = onvalues[onscanid == i] if leftid == -1: Xoff = offvalues[offscanid == offid[rightid]] Xoff_m = getattr(np, 'nan'+mode)(Xoff, axis=0) if mode is not None else 0 Xon_m = Xoff_m model.fit(Xoff - Xoff_m) elif rightid == len(offid): Xoff = offvalues[offscanid == offid[leftid]] Xoff_m = getattr(np, 'nan'+mode)(Xoff, axis=0) if mode is not None else 0 Xon_m = Xoff_m model.fit(Xoff - Xoff_m) else: Xoff_l = offvalues[offscanid == offid[leftid]] Xoff_lm = getattr(np, 'nan'+mode)(Xoff_l, axis=0) if mode is not None else 0 Xoff_r = offvalues[offscanid == offid[rightid]] Xoff_rm = getattr(np, 'nan'+mode)(Xoff_r, axis=0) if mode is not None else 0 Xon_m = getattr(np, 'nan'+mode)(np.vstack([Xoff_l, Xoff_r]), axis=0) if mode is not None else 0 model.fit(np.vstack([Xoff_l - Xoff_lm, Xoff_r - Xoff_rm])) P = model.components_ C = model.transform(Xon - Xon_m) Xatmvalues[onscanid == i] = C @ P + Xon_m # Xatms.append(dc.full_like(Xon, C @ P + Xon_m.values)) Ps.append(P) Cs.append(C) if pc: return Xatm, Ps, Cs else: return Xatm
python
def pca(onarray, offarray, n=10, exchs=None, pc=False, mode='mean'): """Apply Principal Component Analysis (PCA) method to estimate baselines at each time. Args: onarray (decode.array): Decode array of on-point observations. offarray (decode.array): Decode array of off-point observations. n (int): The number of pricipal components. pc (bool): When True, this function also returns eigen vectors and their coefficients. mode (None or str): The way of correcting offsets. 'mean': Mean. 'median': Median. None: No correction. Returns: filtered (decode.array): Baseline-subtracted array. When pc is True: Ps (list(np.ndarray)): Eigen vectors. Cs (list(np.ndarray)): Coefficients. """ logger = getLogger('decode.models.pca') logger.info('n_components exchs mode') if exchs is None: exchs = [16, 44, 46] logger.info('{} {} {}'.format(n, exchs, mode)) offid = np.unique(offarray.scanid) onid = np.unique(onarray.scanid) onarray = onarray.copy() # Xarray onarray[:, exchs] = 0 onvalues = onarray.values onscanid = onarray.scanid.values offarray = offarray.copy() # Xarray offarray[:, exchs] = 0 offvalues = offarray.values offscanid = offarray.scanid.values Ps, Cs = [], [] Xatm = dc.full_like(onarray, onarray) Xatmvalues = Xatm.values model = TruncatedSVD(n_components=n) for i in onid: leftid = np.searchsorted(offid, i) - 1 rightid = np.searchsorted(offid, i) Xon = onvalues[onscanid == i] if leftid == -1: Xoff = offvalues[offscanid == offid[rightid]] Xoff_m = getattr(np, 'nan'+mode)(Xoff, axis=0) if mode is not None else 0 Xon_m = Xoff_m model.fit(Xoff - Xoff_m) elif rightid == len(offid): Xoff = offvalues[offscanid == offid[leftid]] Xoff_m = getattr(np, 'nan'+mode)(Xoff, axis=0) if mode is not None else 0 Xon_m = Xoff_m model.fit(Xoff - Xoff_m) else: Xoff_l = offvalues[offscanid == offid[leftid]] Xoff_lm = getattr(np, 'nan'+mode)(Xoff_l, axis=0) if mode is not None else 0 Xoff_r = offvalues[offscanid == offid[rightid]] Xoff_rm = getattr(np, 'nan'+mode)(Xoff_r, axis=0) if mode is not None else 0 Xon_m = getattr(np, 'nan'+mode)(np.vstack([Xoff_l, Xoff_r]), axis=0) if mode is not None else 0 model.fit(np.vstack([Xoff_l - Xoff_lm, Xoff_r - Xoff_rm])) P = model.components_ C = model.transform(Xon - Xon_m) Xatmvalues[onscanid == i] = C @ P + Xon_m # Xatms.append(dc.full_like(Xon, C @ P + Xon_m.values)) Ps.append(P) Cs.append(C) if pc: return Xatm, Ps, Cs else: return Xatm
[ "def", "pca", "(", "onarray", ",", "offarray", ",", "n", "=", "10", ",", "exchs", "=", "None", ",", "pc", "=", "False", ",", "mode", "=", "'mean'", ")", ":", "logger", "=", "getLogger", "(", "'decode.models.pca'", ")", "logger", ".", "info", "(", "'n_components exchs mode'", ")", "if", "exchs", "is", "None", ":", "exchs", "=", "[", "16", ",", "44", ",", "46", "]", "logger", ".", "info", "(", "'{} {} {}'", ".", "format", "(", "n", ",", "exchs", ",", "mode", ")", ")", "offid", "=", "np", ".", "unique", "(", "offarray", ".", "scanid", ")", "onid", "=", "np", ".", "unique", "(", "onarray", ".", "scanid", ")", "onarray", "=", "onarray", ".", "copy", "(", ")", "# Xarray", "onarray", "[", ":", ",", "exchs", "]", "=", "0", "onvalues", "=", "onarray", ".", "values", "onscanid", "=", "onarray", ".", "scanid", ".", "values", "offarray", "=", "offarray", ".", "copy", "(", ")", "# Xarray", "offarray", "[", ":", ",", "exchs", "]", "=", "0", "offvalues", "=", "offarray", ".", "values", "offscanid", "=", "offarray", ".", "scanid", ".", "values", "Ps", ",", "Cs", "=", "[", "]", ",", "[", "]", "Xatm", "=", "dc", ".", "full_like", "(", "onarray", ",", "onarray", ")", "Xatmvalues", "=", "Xatm", ".", "values", "model", "=", "TruncatedSVD", "(", "n_components", "=", "n", ")", "for", "i", "in", "onid", ":", "leftid", "=", "np", ".", "searchsorted", "(", "offid", ",", "i", ")", "-", "1", "rightid", "=", "np", ".", "searchsorted", "(", "offid", ",", "i", ")", "Xon", "=", "onvalues", "[", "onscanid", "==", "i", "]", "if", "leftid", "==", "-", "1", ":", "Xoff", "=", "offvalues", "[", "offscanid", "==", "offid", "[", "rightid", "]", "]", "Xoff_m", "=", "getattr", "(", "np", ",", "'nan'", "+", "mode", ")", "(", "Xoff", ",", "axis", "=", "0", ")", "if", "mode", "is", "not", "None", "else", "0", "Xon_m", "=", "Xoff_m", "model", ".", "fit", "(", "Xoff", "-", "Xoff_m", ")", "elif", "rightid", "==", "len", "(", "offid", ")", ":", "Xoff", "=", "offvalues", "[", "offscanid", "==", "offid", "[", "leftid", "]", "]", "Xoff_m", "=", "getattr", "(", "np", ",", "'nan'", "+", "mode", ")", "(", "Xoff", ",", "axis", "=", "0", ")", "if", "mode", "is", "not", "None", "else", "0", "Xon_m", "=", "Xoff_m", "model", ".", "fit", "(", "Xoff", "-", "Xoff_m", ")", "else", ":", "Xoff_l", "=", "offvalues", "[", "offscanid", "==", "offid", "[", "leftid", "]", "]", "Xoff_lm", "=", "getattr", "(", "np", ",", "'nan'", "+", "mode", ")", "(", "Xoff_l", ",", "axis", "=", "0", ")", "if", "mode", "is", "not", "None", "else", "0", "Xoff_r", "=", "offvalues", "[", "offscanid", "==", "offid", "[", "rightid", "]", "]", "Xoff_rm", "=", "getattr", "(", "np", ",", "'nan'", "+", "mode", ")", "(", "Xoff_r", ",", "axis", "=", "0", ")", "if", "mode", "is", "not", "None", "else", "0", "Xon_m", "=", "getattr", "(", "np", ",", "'nan'", "+", "mode", ")", "(", "np", ".", "vstack", "(", "[", "Xoff_l", ",", "Xoff_r", "]", ")", ",", "axis", "=", "0", ")", "if", "mode", "is", "not", "None", "else", "0", "model", ".", "fit", "(", "np", ".", "vstack", "(", "[", "Xoff_l", "-", "Xoff_lm", ",", "Xoff_r", "-", "Xoff_rm", "]", ")", ")", "P", "=", "model", ".", "components_", "C", "=", "model", ".", "transform", "(", "Xon", "-", "Xon_m", ")", "Xatmvalues", "[", "onscanid", "==", "i", "]", "=", "C", "@", "P", "+", "Xon_m", "# Xatms.append(dc.full_like(Xon, C @ P + Xon_m.values))", "Ps", ".", "append", "(", "P", ")", "Cs", ".", "append", "(", "C", ")", "if", "pc", ":", "return", "Xatm", ",", "Ps", ",", "Cs", "else", ":", "return", "Xatm" ]
Apply Principal Component Analysis (PCA) method to estimate baselines at each time. Args: onarray (decode.array): Decode array of on-point observations. offarray (decode.array): Decode array of off-point observations. n (int): The number of pricipal components. pc (bool): When True, this function also returns eigen vectors and their coefficients. mode (None or str): The way of correcting offsets. 'mean': Mean. 'median': Median. None: No correction. Returns: filtered (decode.array): Baseline-subtracted array. When pc is True: Ps (list(np.ndarray)): Eigen vectors. Cs (list(np.ndarray)): Coefficients.
[ "Apply", "Principal", "Component", "Analysis", "(", "PCA", ")", "method", "to", "estimate", "baselines", "at", "each", "time", "." ]
train
https://github.com/deshima-dev/decode/blob/e789e174cd316e7ec8bc55be7009ad35baced3c0/decode/models/functions.py#L21-L95
deshima-dev/decode
decode/models/functions.py
r_division
def r_division(onarray, offarray, rarray, mode='mean'): """Apply R division. Args: onarray (decode.array): Decode array of on-point observations. offarray (decode.array): Decode array of off-point observations. rarray (decode.array): Decode array of R observations. mode (str): Method for the selection of nominal R value. 'mean': Mean. 'median': Median. Returns: onarray_cal (decode.array): Calibrated array of on-point observations. offarray_cal (decode.array): Calibrated array of off-point observations. """ logger = getLogger('decode.models.r_division') logger.info('mode') logger.info('{}'.format(mode)) offid = np.unique(offarray.scanid) onid = np.unique(onarray.scanid) rid = np.unique(rarray.scanid) onarray = onarray.copy() # Xarray onvalues = onarray.values onscanid = onarray.scanid.values offarray = offarray.copy() # Xarray offvalues = offarray.values offscanid = offarray.scanid.values rarray = rarray.copy() # Xarray rvalues = rarray.values rscanid = rarray.scanid.values for i in onid: rleftid = np.searchsorted(rid, i) - 1 rrightid = np.searchsorted(rid, i) if rleftid == -1: Xr = rvalues[rscanid == rid[rrightid]] Xr_m = getattr(np, 'nan'+mode)(Xr, axis=0) elif rrightid == len(rid): Xr = rvalues[rscanid == rid[rleftid]] Xr_m = getattr(np, 'nan'+mode)(Xr, axis=0) else: Xr_l = rvalues[rscanid == rid[rleftid]] Xr_r = rvalues[rscanid == rid[rrightid]] Xr_m = getattr(np, 'nan'+mode)(np.vstack([Xr_l, Xr_r]), axis=0) onvalues[onscanid == i] /= Xr_m for j in offid: rleftid = np.searchsorted(rid, j) - 1 rrightid = np.searchsorted(rid, j) Xoff_m = getattr(np, 'nan'+mode)(offvalues[offscanid == j], axis=0) if rleftid == -1: Xr = rvalues[rscanid == rid[rrightid]] Xr_m = getattr(np, 'nan'+mode)(Xr, axis=0) elif rrightid == len(rid): Xr = rvalues[rscanid == rid[rleftid]] Xr_m = getattr(np, 'nan'+mode)(Xr, axis=0) else: Xr_l = rvalues[rscanid == rid[rleftid]] Xr_r = rvalues[rscanid == rid[rrightid]] Xr_m = getattr(np, 'nan'+mode)(np.vstack([Xr_l, Xr_r]), axis=0) offvalues[offscanid == j] /= Xr_m Xon_rdiv = dc.full_like(onarray, onarray) Xoff_rdiv = dc.full_like(offarray, offarray) Xonoff_rdiv = dc.concat([Xon_rdiv, Xoff_rdiv], dim='t') Xonoff_rdiv_sorted = Xonoff_rdiv[np.argsort(Xonoff_rdiv.time.values)] scantype = Xonoff_rdiv_sorted.scantype.values newscanid = np.cumsum(np.hstack([False, scantype[1:] != scantype[:-1]])) onmask = np.in1d(Xonoff_rdiv_sorted.scanid, onid) offmask = np.in1d(Xonoff_rdiv_sorted.scanid, offid) Xon_rdiv = Xonoff_rdiv_sorted[onmask] Xoff_rdiv = Xonoff_rdiv_sorted[offmask] Xon_rdiv.coords.update({'scanid': ('t', newscanid[onmask])}) Xoff_rdiv.coords.update({'scanid': ('t', newscanid[offmask])}) return Xon_rdiv, Xoff_rdiv
python
def r_division(onarray, offarray, rarray, mode='mean'): """Apply R division. Args: onarray (decode.array): Decode array of on-point observations. offarray (decode.array): Decode array of off-point observations. rarray (decode.array): Decode array of R observations. mode (str): Method for the selection of nominal R value. 'mean': Mean. 'median': Median. Returns: onarray_cal (decode.array): Calibrated array of on-point observations. offarray_cal (decode.array): Calibrated array of off-point observations. """ logger = getLogger('decode.models.r_division') logger.info('mode') logger.info('{}'.format(mode)) offid = np.unique(offarray.scanid) onid = np.unique(onarray.scanid) rid = np.unique(rarray.scanid) onarray = onarray.copy() # Xarray onvalues = onarray.values onscanid = onarray.scanid.values offarray = offarray.copy() # Xarray offvalues = offarray.values offscanid = offarray.scanid.values rarray = rarray.copy() # Xarray rvalues = rarray.values rscanid = rarray.scanid.values for i in onid: rleftid = np.searchsorted(rid, i) - 1 rrightid = np.searchsorted(rid, i) if rleftid == -1: Xr = rvalues[rscanid == rid[rrightid]] Xr_m = getattr(np, 'nan'+mode)(Xr, axis=0) elif rrightid == len(rid): Xr = rvalues[rscanid == rid[rleftid]] Xr_m = getattr(np, 'nan'+mode)(Xr, axis=0) else: Xr_l = rvalues[rscanid == rid[rleftid]] Xr_r = rvalues[rscanid == rid[rrightid]] Xr_m = getattr(np, 'nan'+mode)(np.vstack([Xr_l, Xr_r]), axis=0) onvalues[onscanid == i] /= Xr_m for j in offid: rleftid = np.searchsorted(rid, j) - 1 rrightid = np.searchsorted(rid, j) Xoff_m = getattr(np, 'nan'+mode)(offvalues[offscanid == j], axis=0) if rleftid == -1: Xr = rvalues[rscanid == rid[rrightid]] Xr_m = getattr(np, 'nan'+mode)(Xr, axis=0) elif rrightid == len(rid): Xr = rvalues[rscanid == rid[rleftid]] Xr_m = getattr(np, 'nan'+mode)(Xr, axis=0) else: Xr_l = rvalues[rscanid == rid[rleftid]] Xr_r = rvalues[rscanid == rid[rrightid]] Xr_m = getattr(np, 'nan'+mode)(np.vstack([Xr_l, Xr_r]), axis=0) offvalues[offscanid == j] /= Xr_m Xon_rdiv = dc.full_like(onarray, onarray) Xoff_rdiv = dc.full_like(offarray, offarray) Xonoff_rdiv = dc.concat([Xon_rdiv, Xoff_rdiv], dim='t') Xonoff_rdiv_sorted = Xonoff_rdiv[np.argsort(Xonoff_rdiv.time.values)] scantype = Xonoff_rdiv_sorted.scantype.values newscanid = np.cumsum(np.hstack([False, scantype[1:] != scantype[:-1]])) onmask = np.in1d(Xonoff_rdiv_sorted.scanid, onid) offmask = np.in1d(Xonoff_rdiv_sorted.scanid, offid) Xon_rdiv = Xonoff_rdiv_sorted[onmask] Xoff_rdiv = Xonoff_rdiv_sorted[offmask] Xon_rdiv.coords.update({'scanid': ('t', newscanid[onmask])}) Xoff_rdiv.coords.update({'scanid': ('t', newscanid[offmask])}) return Xon_rdiv, Xoff_rdiv
[ "def", "r_division", "(", "onarray", ",", "offarray", ",", "rarray", ",", "mode", "=", "'mean'", ")", ":", "logger", "=", "getLogger", "(", "'decode.models.r_division'", ")", "logger", ".", "info", "(", "'mode'", ")", "logger", ".", "info", "(", "'{}'", ".", "format", "(", "mode", ")", ")", "offid", "=", "np", ".", "unique", "(", "offarray", ".", "scanid", ")", "onid", "=", "np", ".", "unique", "(", "onarray", ".", "scanid", ")", "rid", "=", "np", ".", "unique", "(", "rarray", ".", "scanid", ")", "onarray", "=", "onarray", ".", "copy", "(", ")", "# Xarray", "onvalues", "=", "onarray", ".", "values", "onscanid", "=", "onarray", ".", "scanid", ".", "values", "offarray", "=", "offarray", ".", "copy", "(", ")", "# Xarray", "offvalues", "=", "offarray", ".", "values", "offscanid", "=", "offarray", ".", "scanid", ".", "values", "rarray", "=", "rarray", ".", "copy", "(", ")", "# Xarray", "rvalues", "=", "rarray", ".", "values", "rscanid", "=", "rarray", ".", "scanid", ".", "values", "for", "i", "in", "onid", ":", "rleftid", "=", "np", ".", "searchsorted", "(", "rid", ",", "i", ")", "-", "1", "rrightid", "=", "np", ".", "searchsorted", "(", "rid", ",", "i", ")", "if", "rleftid", "==", "-", "1", ":", "Xr", "=", "rvalues", "[", "rscanid", "==", "rid", "[", "rrightid", "]", "]", "Xr_m", "=", "getattr", "(", "np", ",", "'nan'", "+", "mode", ")", "(", "Xr", ",", "axis", "=", "0", ")", "elif", "rrightid", "==", "len", "(", "rid", ")", ":", "Xr", "=", "rvalues", "[", "rscanid", "==", "rid", "[", "rleftid", "]", "]", "Xr_m", "=", "getattr", "(", "np", ",", "'nan'", "+", "mode", ")", "(", "Xr", ",", "axis", "=", "0", ")", "else", ":", "Xr_l", "=", "rvalues", "[", "rscanid", "==", "rid", "[", "rleftid", "]", "]", "Xr_r", "=", "rvalues", "[", "rscanid", "==", "rid", "[", "rrightid", "]", "]", "Xr_m", "=", "getattr", "(", "np", ",", "'nan'", "+", "mode", ")", "(", "np", ".", "vstack", "(", "[", "Xr_l", ",", "Xr_r", "]", ")", ",", "axis", "=", "0", ")", "onvalues", "[", "onscanid", "==", "i", "]", "/=", "Xr_m", "for", "j", "in", "offid", ":", "rleftid", "=", "np", ".", "searchsorted", "(", "rid", ",", "j", ")", "-", "1", "rrightid", "=", "np", ".", "searchsorted", "(", "rid", ",", "j", ")", "Xoff_m", "=", "getattr", "(", "np", ",", "'nan'", "+", "mode", ")", "(", "offvalues", "[", "offscanid", "==", "j", "]", ",", "axis", "=", "0", ")", "if", "rleftid", "==", "-", "1", ":", "Xr", "=", "rvalues", "[", "rscanid", "==", "rid", "[", "rrightid", "]", "]", "Xr_m", "=", "getattr", "(", "np", ",", "'nan'", "+", "mode", ")", "(", "Xr", ",", "axis", "=", "0", ")", "elif", "rrightid", "==", "len", "(", "rid", ")", ":", "Xr", "=", "rvalues", "[", "rscanid", "==", "rid", "[", "rleftid", "]", "]", "Xr_m", "=", "getattr", "(", "np", ",", "'nan'", "+", "mode", ")", "(", "Xr", ",", "axis", "=", "0", ")", "else", ":", "Xr_l", "=", "rvalues", "[", "rscanid", "==", "rid", "[", "rleftid", "]", "]", "Xr_r", "=", "rvalues", "[", "rscanid", "==", "rid", "[", "rrightid", "]", "]", "Xr_m", "=", "getattr", "(", "np", ",", "'nan'", "+", "mode", ")", "(", "np", ".", "vstack", "(", "[", "Xr_l", ",", "Xr_r", "]", ")", ",", "axis", "=", "0", ")", "offvalues", "[", "offscanid", "==", "j", "]", "/=", "Xr_m", "Xon_rdiv", "=", "dc", ".", "full_like", "(", "onarray", ",", "onarray", ")", "Xoff_rdiv", "=", "dc", ".", "full_like", "(", "offarray", ",", "offarray", ")", "Xonoff_rdiv", "=", "dc", ".", "concat", "(", "[", "Xon_rdiv", ",", "Xoff_rdiv", "]", ",", "dim", "=", "'t'", ")", "Xonoff_rdiv_sorted", "=", "Xonoff_rdiv", "[", "np", ".", "argsort", "(", "Xonoff_rdiv", ".", "time", ".", "values", ")", "]", "scantype", "=", "Xonoff_rdiv_sorted", ".", "scantype", ".", "values", "newscanid", "=", "np", ".", "cumsum", "(", "np", ".", "hstack", "(", "[", "False", ",", "scantype", "[", "1", ":", "]", "!=", "scantype", "[", ":", "-", "1", "]", "]", ")", ")", "onmask", "=", "np", ".", "in1d", "(", "Xonoff_rdiv_sorted", ".", "scanid", ",", "onid", ")", "offmask", "=", "np", ".", "in1d", "(", "Xonoff_rdiv_sorted", ".", "scanid", ",", "offid", ")", "Xon_rdiv", "=", "Xonoff_rdiv_sorted", "[", "onmask", "]", "Xoff_rdiv", "=", "Xonoff_rdiv_sorted", "[", "offmask", "]", "Xon_rdiv", ".", "coords", ".", "update", "(", "{", "'scanid'", ":", "(", "'t'", ",", "newscanid", "[", "onmask", "]", ")", "}", ")", "Xoff_rdiv", ".", "coords", ".", "update", "(", "{", "'scanid'", ":", "(", "'t'", ",", "newscanid", "[", "offmask", "]", ")", "}", ")", "return", "Xon_rdiv", ",", "Xoff_rdiv" ]
Apply R division. Args: onarray (decode.array): Decode array of on-point observations. offarray (decode.array): Decode array of off-point observations. rarray (decode.array): Decode array of R observations. mode (str): Method for the selection of nominal R value. 'mean': Mean. 'median': Median. Returns: onarray_cal (decode.array): Calibrated array of on-point observations. offarray_cal (decode.array): Calibrated array of off-point observations.
[ "Apply", "R", "division", "." ]
train
https://github.com/deshima-dev/decode/blob/e789e174cd316e7ec8bc55be7009ad35baced3c0/decode/models/functions.py#L139-L218
deshima-dev/decode
decode/models/functions.py
gauss_fit
def gauss_fit(map_data, chs=None, mode='deg', amplitude=1, x_mean=0, y_mean=0, x_stddev=None, y_stddev=None, theta=None, cov_matrix=None, noise=0, **kwargs): """make a 2D Gaussian model and fit the observed data with the model. Args: map_data (xarray.Dataarray): Dataarray of cube or single chs. chs (list of int): in prep. mode (str): Coordinates for the fitting 'pix' 'deg' amplitude (float or None): Initial amplitude value of Gaussian fitting. x_mean (float): Initial value of mean of the fitting Gaussian in x. y_mean (float): Initial value of mean of the fitting Gaussian in y. x_stddev (float or None): Standard deviation of the Gaussian in x before rotating by theta. y_stddev (float or None): Standard deviation of the Gaussian in y before rotating by theta. theta (float, optional or None): Rotation angle in radians. cov_matrix (ndarray, optional): A 2x2 covariance matrix. If specified, overrides the ``x_stddev``, ``y_stddev``, and ``theta`` defaults. Returns: decode cube (xarray cube) with fitting results in array and attrs. """ if chs is None: chs = np.ogrid[0:63] # the number of channels would be changed if len(chs) > 1: for n,ch in enumerate(chs): subdata = np.transpose(np.full_like(map_data[:, :, ch], map_data.values[:, :, ch])) subdata[np.isnan(subdata)] = 0 if mode == 'deg': mX, mY = np.meshgrid(map_data.x, map_data.y) elif mode == 'pix': mX, mY = np.mgrid[0:len(map_data.y), 0:len(map_data.x)] g_init = models.Gaussian2D(amplitude=np.nanmax(subdata), x_mean=x_mean, y_mean=y_mean, x_stddev=x_stddev, y_stddev=y_stddev, theta=theta, cov_matrix=cov_matrix, **kwargs) + models.Const2D(noise) fit_g = fitting.LevMarLSQFitter() g = fit_g(g_init, mX, mY, subdata) g_init2 = models.Gaussian2D(amplitude=np.nanmax(subdata-g.amplitude_1), x_mean=x_mean, y_mean=y_mean, x_stddev=x_stddev, y_stddev=y_stddev, theta=theta, cov_matrix=cov_matrix, **kwargs) fit_g2 = fitting.LevMarLSQFitter() g2 = fit_g2(g_init2, mX, mY, subdata) if n == 0: results = np.array([g2(mX,mY)]) peaks = np.array([g2.amplitude.value]) x_means = np.array([g2.x_mean.value]) y_means = np.array([g2.y_mean.value]) x_stddevs = np.array([g2.x_stddev.value]) y_stddevs = np.array([g2.y_stddev.value]) thetas = np.array([g2.theta.value]) if fit_g2.fit_info['param_cov'] is None: unserts = nop.array([0]) else: error = np.diag(fit_g2.fit_info['param_cov'])**0.5 uncerts = np.array([error[0]]) else: results = np.append(results, [g2(mX,mY)], axis=0) peaks = np.append(peaks, [g2.amplitude.value], axis=0) x_means = np.append(x_means, [g2.x_mean.value], axis=0) y_means = np.append(y_means, [g2.y_mean.value], axis=0) x_stddevs = np.append(x_stddevs, [g2.x_stddev.value], axis=0) y_stddevs = np.append(y_stddevs, [g2.y_stddev.value], axis=0) thetas = np.append(thetas, [g2.theta.value], axis=0) if fit_g2.fit_info['param_cov'] is None: uncerts = np.append(uncerts, [0], axis=0) else: error = np.diag(fit_g2.fit_info['param_cov'])**0.5 uncerts = np.append(uncerts, [error[0]], axis=0) result = map_data.copy() result.values = np.transpose(results) result.attrs.update({'peak': peaks, 'x_mean': x_means, 'y_mean': y_means, 'x_stddev': x_stddevs, 'y_stddev': y_stddevs, 'theta': thetas, 'uncert': uncerts}) else: subdata = np.transpose(np.full_like(map_data[:, :, 0], map_data.values[:, :, 0])) subdata[np.isnan(subdata)] = 0 if mode == 'deg': mX, mY = np.meshgrid(map_data.x, map_data.y) elif mode == 'pix': mX, mY = np.mgrid[0:len(map_data.y), 0:len(map_data.x)] g_init = models.Gaussian2D(amplitude=np.nanmax(subdata), x_mean=x_mean, y_mean=y_mean, x_stddev=x_stddev, y_stddev=y_stddev, theta=theta, cov_matrix=cov_matrix, **kwargs) + models.Const2D(noise) fit_g = fitting.LevMarLSQFitter() g = fit_g(g_init, mX, mY, subdata) g_init2 = models.Gaussian2D(amplitude=np.nanmax(subdata-g.amplitude_1), x_mean=x_mean, y_mean=y_mean, x_stddev=x_stddev, y_stddev=y_stddev, theta=theta, cov_matrix=cov_matrix, **kwargs) fit_g2 = fitting.LevMarLSQFitter() g2 = fit_g2(g_init2, mX, mY, subdata) results = np.array([g2(mX, mY)]) peaks = np.array([g2.amplitude.value]) x_means = np.array([g2.x_mean.value]) y_means = np.array([g2.y_mean.value]) x_stddevs = np.array([g2.x_stddev.value]) y_stddevs = np.array([g2.y_stddev.value]) thetas = np.array([g2.theta.value]) error = np.diag(fit_g2.fit_info['param_cov'])**0.5 uncerts = np.array(error[0]) result = map_data.copy() result.values = np.transpose(results) result.attrs.update({'peak': peaks, 'x_mean': x_means, 'y_mean': y_means, 'x_stddev': x_stddevs, 'y_stddev': y_stddevs, 'theta': thetas, 'uncert': uncerts}) return result
python
def gauss_fit(map_data, chs=None, mode='deg', amplitude=1, x_mean=0, y_mean=0, x_stddev=None, y_stddev=None, theta=None, cov_matrix=None, noise=0, **kwargs): """make a 2D Gaussian model and fit the observed data with the model. Args: map_data (xarray.Dataarray): Dataarray of cube or single chs. chs (list of int): in prep. mode (str): Coordinates for the fitting 'pix' 'deg' amplitude (float or None): Initial amplitude value of Gaussian fitting. x_mean (float): Initial value of mean of the fitting Gaussian in x. y_mean (float): Initial value of mean of the fitting Gaussian in y. x_stddev (float or None): Standard deviation of the Gaussian in x before rotating by theta. y_stddev (float or None): Standard deviation of the Gaussian in y before rotating by theta. theta (float, optional or None): Rotation angle in radians. cov_matrix (ndarray, optional): A 2x2 covariance matrix. If specified, overrides the ``x_stddev``, ``y_stddev``, and ``theta`` defaults. Returns: decode cube (xarray cube) with fitting results in array and attrs. """ if chs is None: chs = np.ogrid[0:63] # the number of channels would be changed if len(chs) > 1: for n,ch in enumerate(chs): subdata = np.transpose(np.full_like(map_data[:, :, ch], map_data.values[:, :, ch])) subdata[np.isnan(subdata)] = 0 if mode == 'deg': mX, mY = np.meshgrid(map_data.x, map_data.y) elif mode == 'pix': mX, mY = np.mgrid[0:len(map_data.y), 0:len(map_data.x)] g_init = models.Gaussian2D(amplitude=np.nanmax(subdata), x_mean=x_mean, y_mean=y_mean, x_stddev=x_stddev, y_stddev=y_stddev, theta=theta, cov_matrix=cov_matrix, **kwargs) + models.Const2D(noise) fit_g = fitting.LevMarLSQFitter() g = fit_g(g_init, mX, mY, subdata) g_init2 = models.Gaussian2D(amplitude=np.nanmax(subdata-g.amplitude_1), x_mean=x_mean, y_mean=y_mean, x_stddev=x_stddev, y_stddev=y_stddev, theta=theta, cov_matrix=cov_matrix, **kwargs) fit_g2 = fitting.LevMarLSQFitter() g2 = fit_g2(g_init2, mX, mY, subdata) if n == 0: results = np.array([g2(mX,mY)]) peaks = np.array([g2.amplitude.value]) x_means = np.array([g2.x_mean.value]) y_means = np.array([g2.y_mean.value]) x_stddevs = np.array([g2.x_stddev.value]) y_stddevs = np.array([g2.y_stddev.value]) thetas = np.array([g2.theta.value]) if fit_g2.fit_info['param_cov'] is None: unserts = nop.array([0]) else: error = np.diag(fit_g2.fit_info['param_cov'])**0.5 uncerts = np.array([error[0]]) else: results = np.append(results, [g2(mX,mY)], axis=0) peaks = np.append(peaks, [g2.amplitude.value], axis=0) x_means = np.append(x_means, [g2.x_mean.value], axis=0) y_means = np.append(y_means, [g2.y_mean.value], axis=0) x_stddevs = np.append(x_stddevs, [g2.x_stddev.value], axis=0) y_stddevs = np.append(y_stddevs, [g2.y_stddev.value], axis=0) thetas = np.append(thetas, [g2.theta.value], axis=0) if fit_g2.fit_info['param_cov'] is None: uncerts = np.append(uncerts, [0], axis=0) else: error = np.diag(fit_g2.fit_info['param_cov'])**0.5 uncerts = np.append(uncerts, [error[0]], axis=0) result = map_data.copy() result.values = np.transpose(results) result.attrs.update({'peak': peaks, 'x_mean': x_means, 'y_mean': y_means, 'x_stddev': x_stddevs, 'y_stddev': y_stddevs, 'theta': thetas, 'uncert': uncerts}) else: subdata = np.transpose(np.full_like(map_data[:, :, 0], map_data.values[:, :, 0])) subdata[np.isnan(subdata)] = 0 if mode == 'deg': mX, mY = np.meshgrid(map_data.x, map_data.y) elif mode == 'pix': mX, mY = np.mgrid[0:len(map_data.y), 0:len(map_data.x)] g_init = models.Gaussian2D(amplitude=np.nanmax(subdata), x_mean=x_mean, y_mean=y_mean, x_stddev=x_stddev, y_stddev=y_stddev, theta=theta, cov_matrix=cov_matrix, **kwargs) + models.Const2D(noise) fit_g = fitting.LevMarLSQFitter() g = fit_g(g_init, mX, mY, subdata) g_init2 = models.Gaussian2D(amplitude=np.nanmax(subdata-g.amplitude_1), x_mean=x_mean, y_mean=y_mean, x_stddev=x_stddev, y_stddev=y_stddev, theta=theta, cov_matrix=cov_matrix, **kwargs) fit_g2 = fitting.LevMarLSQFitter() g2 = fit_g2(g_init2, mX, mY, subdata) results = np.array([g2(mX, mY)]) peaks = np.array([g2.amplitude.value]) x_means = np.array([g2.x_mean.value]) y_means = np.array([g2.y_mean.value]) x_stddevs = np.array([g2.x_stddev.value]) y_stddevs = np.array([g2.y_stddev.value]) thetas = np.array([g2.theta.value]) error = np.diag(fit_g2.fit_info['param_cov'])**0.5 uncerts = np.array(error[0]) result = map_data.copy() result.values = np.transpose(results) result.attrs.update({'peak': peaks, 'x_mean': x_means, 'y_mean': y_means, 'x_stddev': x_stddevs, 'y_stddev': y_stddevs, 'theta': thetas, 'uncert': uncerts}) return result
[ "def", "gauss_fit", "(", "map_data", ",", "chs", "=", "None", ",", "mode", "=", "'deg'", ",", "amplitude", "=", "1", ",", "x_mean", "=", "0", ",", "y_mean", "=", "0", ",", "x_stddev", "=", "None", ",", "y_stddev", "=", "None", ",", "theta", "=", "None", ",", "cov_matrix", "=", "None", ",", "noise", "=", "0", ",", "*", "*", "kwargs", ")", ":", "if", "chs", "is", "None", ":", "chs", "=", "np", ".", "ogrid", "[", "0", ":", "63", "]", "# the number of channels would be changed", "if", "len", "(", "chs", ")", ">", "1", ":", "for", "n", ",", "ch", "in", "enumerate", "(", "chs", ")", ":", "subdata", "=", "np", ".", "transpose", "(", "np", ".", "full_like", "(", "map_data", "[", ":", ",", ":", ",", "ch", "]", ",", "map_data", ".", "values", "[", ":", ",", ":", ",", "ch", "]", ")", ")", "subdata", "[", "np", ".", "isnan", "(", "subdata", ")", "]", "=", "0", "if", "mode", "==", "'deg'", ":", "mX", ",", "mY", "=", "np", ".", "meshgrid", "(", "map_data", ".", "x", ",", "map_data", ".", "y", ")", "elif", "mode", "==", "'pix'", ":", "mX", ",", "mY", "=", "np", ".", "mgrid", "[", "0", ":", "len", "(", "map_data", ".", "y", ")", ",", "0", ":", "len", "(", "map_data", ".", "x", ")", "]", "g_init", "=", "models", ".", "Gaussian2D", "(", "amplitude", "=", "np", ".", "nanmax", "(", "subdata", ")", ",", "x_mean", "=", "x_mean", ",", "y_mean", "=", "y_mean", ",", "x_stddev", "=", "x_stddev", ",", "y_stddev", "=", "y_stddev", ",", "theta", "=", "theta", ",", "cov_matrix", "=", "cov_matrix", ",", "*", "*", "kwargs", ")", "+", "models", ".", "Const2D", "(", "noise", ")", "fit_g", "=", "fitting", ".", "LevMarLSQFitter", "(", ")", "g", "=", "fit_g", "(", "g_init", ",", "mX", ",", "mY", ",", "subdata", ")", "g_init2", "=", "models", ".", "Gaussian2D", "(", "amplitude", "=", "np", ".", "nanmax", "(", "subdata", "-", "g", ".", "amplitude_1", ")", ",", "x_mean", "=", "x_mean", ",", "y_mean", "=", "y_mean", ",", "x_stddev", "=", "x_stddev", ",", "y_stddev", "=", "y_stddev", ",", "theta", "=", "theta", ",", "cov_matrix", "=", "cov_matrix", ",", "*", "*", "kwargs", ")", "fit_g2", "=", "fitting", ".", "LevMarLSQFitter", "(", ")", "g2", "=", "fit_g2", "(", "g_init2", ",", "mX", ",", "mY", ",", "subdata", ")", "if", "n", "==", "0", ":", "results", "=", "np", ".", "array", "(", "[", "g2", "(", "mX", ",", "mY", ")", "]", ")", "peaks", "=", "np", ".", "array", "(", "[", "g2", ".", "amplitude", ".", "value", "]", ")", "x_means", "=", "np", ".", "array", "(", "[", "g2", ".", "x_mean", ".", "value", "]", ")", "y_means", "=", "np", ".", "array", "(", "[", "g2", ".", "y_mean", ".", "value", "]", ")", "x_stddevs", "=", "np", ".", "array", "(", "[", "g2", ".", "x_stddev", ".", "value", "]", ")", "y_stddevs", "=", "np", ".", "array", "(", "[", "g2", ".", "y_stddev", ".", "value", "]", ")", "thetas", "=", "np", ".", "array", "(", "[", "g2", ".", "theta", ".", "value", "]", ")", "if", "fit_g2", ".", "fit_info", "[", "'param_cov'", "]", "is", "None", ":", "unserts", "=", "nop", ".", "array", "(", "[", "0", "]", ")", "else", ":", "error", "=", "np", ".", "diag", "(", "fit_g2", ".", "fit_info", "[", "'param_cov'", "]", ")", "**", "0.5", "uncerts", "=", "np", ".", "array", "(", "[", "error", "[", "0", "]", "]", ")", "else", ":", "results", "=", "np", ".", "append", "(", "results", ",", "[", "g2", "(", "mX", ",", "mY", ")", "]", ",", "axis", "=", "0", ")", "peaks", "=", "np", ".", "append", "(", "peaks", ",", "[", "g2", ".", "amplitude", ".", "value", "]", ",", "axis", "=", "0", ")", "x_means", "=", "np", ".", "append", "(", "x_means", ",", "[", "g2", ".", "x_mean", ".", "value", "]", ",", "axis", "=", "0", ")", "y_means", "=", "np", ".", "append", "(", "y_means", ",", "[", "g2", ".", "y_mean", ".", "value", "]", ",", "axis", "=", "0", ")", "x_stddevs", "=", "np", ".", "append", "(", "x_stddevs", ",", "[", "g2", ".", "x_stddev", ".", "value", "]", ",", "axis", "=", "0", ")", "y_stddevs", "=", "np", ".", "append", "(", "y_stddevs", ",", "[", "g2", ".", "y_stddev", ".", "value", "]", ",", "axis", "=", "0", ")", "thetas", "=", "np", ".", "append", "(", "thetas", ",", "[", "g2", ".", "theta", ".", "value", "]", ",", "axis", "=", "0", ")", "if", "fit_g2", ".", "fit_info", "[", "'param_cov'", "]", "is", "None", ":", "uncerts", "=", "np", ".", "append", "(", "uncerts", ",", "[", "0", "]", ",", "axis", "=", "0", ")", "else", ":", "error", "=", "np", ".", "diag", "(", "fit_g2", ".", "fit_info", "[", "'param_cov'", "]", ")", "**", "0.5", "uncerts", "=", "np", ".", "append", "(", "uncerts", ",", "[", "error", "[", "0", "]", "]", ",", "axis", "=", "0", ")", "result", "=", "map_data", ".", "copy", "(", ")", "result", ".", "values", "=", "np", ".", "transpose", "(", "results", ")", "result", ".", "attrs", ".", "update", "(", "{", "'peak'", ":", "peaks", ",", "'x_mean'", ":", "x_means", ",", "'y_mean'", ":", "y_means", ",", "'x_stddev'", ":", "x_stddevs", ",", "'y_stddev'", ":", "y_stddevs", ",", "'theta'", ":", "thetas", ",", "'uncert'", ":", "uncerts", "}", ")", "else", ":", "subdata", "=", "np", ".", "transpose", "(", "np", ".", "full_like", "(", "map_data", "[", ":", ",", ":", ",", "0", "]", ",", "map_data", ".", "values", "[", ":", ",", ":", ",", "0", "]", ")", ")", "subdata", "[", "np", ".", "isnan", "(", "subdata", ")", "]", "=", "0", "if", "mode", "==", "'deg'", ":", "mX", ",", "mY", "=", "np", ".", "meshgrid", "(", "map_data", ".", "x", ",", "map_data", ".", "y", ")", "elif", "mode", "==", "'pix'", ":", "mX", ",", "mY", "=", "np", ".", "mgrid", "[", "0", ":", "len", "(", "map_data", ".", "y", ")", ",", "0", ":", "len", "(", "map_data", ".", "x", ")", "]", "g_init", "=", "models", ".", "Gaussian2D", "(", "amplitude", "=", "np", ".", "nanmax", "(", "subdata", ")", ",", "x_mean", "=", "x_mean", ",", "y_mean", "=", "y_mean", ",", "x_stddev", "=", "x_stddev", ",", "y_stddev", "=", "y_stddev", ",", "theta", "=", "theta", ",", "cov_matrix", "=", "cov_matrix", ",", "*", "*", "kwargs", ")", "+", "models", ".", "Const2D", "(", "noise", ")", "fit_g", "=", "fitting", ".", "LevMarLSQFitter", "(", ")", "g", "=", "fit_g", "(", "g_init", ",", "mX", ",", "mY", ",", "subdata", ")", "g_init2", "=", "models", ".", "Gaussian2D", "(", "amplitude", "=", "np", ".", "nanmax", "(", "subdata", "-", "g", ".", "amplitude_1", ")", ",", "x_mean", "=", "x_mean", ",", "y_mean", "=", "y_mean", ",", "x_stddev", "=", "x_stddev", ",", "y_stddev", "=", "y_stddev", ",", "theta", "=", "theta", ",", "cov_matrix", "=", "cov_matrix", ",", "*", "*", "kwargs", ")", "fit_g2", "=", "fitting", ".", "LevMarLSQFitter", "(", ")", "g2", "=", "fit_g2", "(", "g_init2", ",", "mX", ",", "mY", ",", "subdata", ")", "results", "=", "np", ".", "array", "(", "[", "g2", "(", "mX", ",", "mY", ")", "]", ")", "peaks", "=", "np", ".", "array", "(", "[", "g2", ".", "amplitude", ".", "value", "]", ")", "x_means", "=", "np", ".", "array", "(", "[", "g2", ".", "x_mean", ".", "value", "]", ")", "y_means", "=", "np", ".", "array", "(", "[", "g2", ".", "y_mean", ".", "value", "]", ")", "x_stddevs", "=", "np", ".", "array", "(", "[", "g2", ".", "x_stddev", ".", "value", "]", ")", "y_stddevs", "=", "np", ".", "array", "(", "[", "g2", ".", "y_stddev", ".", "value", "]", ")", "thetas", "=", "np", ".", "array", "(", "[", "g2", ".", "theta", ".", "value", "]", ")", "error", "=", "np", ".", "diag", "(", "fit_g2", ".", "fit_info", "[", "'param_cov'", "]", ")", "**", "0.5", "uncerts", "=", "np", ".", "array", "(", "error", "[", "0", "]", ")", "result", "=", "map_data", ".", "copy", "(", ")", "result", ".", "values", "=", "np", ".", "transpose", "(", "results", ")", "result", ".", "attrs", ".", "update", "(", "{", "'peak'", ":", "peaks", ",", "'x_mean'", ":", "x_means", ",", "'y_mean'", ":", "y_means", ",", "'x_stddev'", ":", "x_stddevs", ",", "'y_stddev'", ":", "y_stddevs", ",", "'theta'", ":", "thetas", ",", "'uncert'", ":", "uncerts", "}", ")", "return", "result" ]
make a 2D Gaussian model and fit the observed data with the model. Args: map_data (xarray.Dataarray): Dataarray of cube or single chs. chs (list of int): in prep. mode (str): Coordinates for the fitting 'pix' 'deg' amplitude (float or None): Initial amplitude value of Gaussian fitting. x_mean (float): Initial value of mean of the fitting Gaussian in x. y_mean (float): Initial value of mean of the fitting Gaussian in y. x_stddev (float or None): Standard deviation of the Gaussian in x before rotating by theta. y_stddev (float or None): Standard deviation of the Gaussian in y before rotating by theta. theta (float, optional or None): Rotation angle in radians. cov_matrix (ndarray, optional): A 2x2 covariance matrix. If specified, overrides the ``x_stddev``, ``y_stddev``, and ``theta`` defaults. Returns: decode cube (xarray cube) with fitting results in array and attrs.
[ "make", "a", "2D", "Gaussian", "model", "and", "fit", "the", "observed", "data", "with", "the", "model", "." ]
train
https://github.com/deshima-dev/decode/blob/e789e174cd316e7ec8bc55be7009ad35baced3c0/decode/models/functions.py#L221-L345
facelessuser/pyspelling
pyspelling/filters/url.py
URLFilter.setup
def setup(self): """Setup.""" self.emails = self.config['emails'] self.urls = self.config['urls']
python
def setup(self): """Setup.""" self.emails = self.config['emails'] self.urls = self.config['urls']
[ "def", "setup", "(", "self", ")", ":", "self", ".", "emails", "=", "self", ".", "config", "[", "'emails'", "]", "self", ".", "urls", "=", "self", ".", "config", "[", "'urls'", "]" ]
Setup.
[ "Setup", "." ]
train
https://github.com/facelessuser/pyspelling/blob/c25d5292cc2687ad65891a12ead43f7182ca8bb3/pyspelling/filters/url.py#L49-L53
facelessuser/pyspelling
pyspelling/filters/url.py
URLFilter._filter
def _filter(self, text): """Filter out the URL and email addresses.""" if self.urls: text = RE_LINK.sub('', text) if self.emails: text = RE_MAIL.sub('', text) return text
python
def _filter(self, text): """Filter out the URL and email addresses.""" if self.urls: text = RE_LINK.sub('', text) if self.emails: text = RE_MAIL.sub('', text) return text
[ "def", "_filter", "(", "self", ",", "text", ")", ":", "if", "self", ".", "urls", ":", "text", "=", "RE_LINK", ".", "sub", "(", "''", ",", "text", ")", "if", "self", ".", "emails", ":", "text", "=", "RE_MAIL", ".", "sub", "(", "''", ",", "text", ")", "return", "text" ]
Filter out the URL and email addresses.
[ "Filter", "out", "the", "URL", "and", "email", "addresses", "." ]
train
https://github.com/facelessuser/pyspelling/blob/c25d5292cc2687ad65891a12ead43f7182ca8bb3/pyspelling/filters/url.py#L55-L62
JMSwag/dsdev-utils
dsdev_utils/paths.py
get_mac_dot_app_dir
def get_mac_dot_app_dir(directory): """Returns parent directory of mac .app Args: directory (str): Current directory Returns: (str): Parent directory of mac .app """ return os.path.dirname(os.path.dirname(os.path.dirname(directory)))
python
def get_mac_dot_app_dir(directory): """Returns parent directory of mac .app Args: directory (str): Current directory Returns: (str): Parent directory of mac .app """ return os.path.dirname(os.path.dirname(os.path.dirname(directory)))
[ "def", "get_mac_dot_app_dir", "(", "directory", ")", ":", "return", "os", ".", "path", ".", "dirname", "(", "os", ".", "path", ".", "dirname", "(", "os", ".", "path", ".", "dirname", "(", "directory", ")", ")", ")" ]
Returns parent directory of mac .app Args: directory (str): Current directory Returns: (str): Parent directory of mac .app
[ "Returns", "parent", "directory", "of", "mac", ".", "app" ]
train
https://github.com/JMSwag/dsdev-utils/blob/5adbf9b3fd9fff92d1dd714423b08e26a5038e14/dsdev_utils/paths.py#L36-L47
deshima-dev/decode
decode/utils/misc/functions.py
copy_function
def copy_function(func, name=None): """Copy a function object with different name. Args: func (function): Function to be copied. name (string, optional): Name of the new function. If not spacified, the same name of `func` will be used. Returns: newfunc (function): New function with different name. """ code = func.__code__ newname = name or func.__name__ newcode = CodeType( code.co_argcount, code.co_kwonlyargcount, code.co_nlocals, code.co_stacksize, code.co_flags, code.co_code, code.co_consts, code.co_names, code.co_varnames, code.co_filename, newname, code.co_firstlineno, code.co_lnotab, code.co_freevars, code.co_cellvars, ) newfunc = FunctionType( newcode, func.__globals__, newname, func.__defaults__, func.__closure__, ) newfunc.__dict__.update(func.__dict__) return newfunc
python
def copy_function(func, name=None): """Copy a function object with different name. Args: func (function): Function to be copied. name (string, optional): Name of the new function. If not spacified, the same name of `func` will be used. Returns: newfunc (function): New function with different name. """ code = func.__code__ newname = name or func.__name__ newcode = CodeType( code.co_argcount, code.co_kwonlyargcount, code.co_nlocals, code.co_stacksize, code.co_flags, code.co_code, code.co_consts, code.co_names, code.co_varnames, code.co_filename, newname, code.co_firstlineno, code.co_lnotab, code.co_freevars, code.co_cellvars, ) newfunc = FunctionType( newcode, func.__globals__, newname, func.__defaults__, func.__closure__, ) newfunc.__dict__.update(func.__dict__) return newfunc
[ "def", "copy_function", "(", "func", ",", "name", "=", "None", ")", ":", "code", "=", "func", ".", "__code__", "newname", "=", "name", "or", "func", ".", "__name__", "newcode", "=", "CodeType", "(", "code", ".", "co_argcount", ",", "code", ".", "co_kwonlyargcount", ",", "code", ".", "co_nlocals", ",", "code", ".", "co_stacksize", ",", "code", ".", "co_flags", ",", "code", ".", "co_code", ",", "code", ".", "co_consts", ",", "code", ".", "co_names", ",", "code", ".", "co_varnames", ",", "code", ".", "co_filename", ",", "newname", ",", "code", ".", "co_firstlineno", ",", "code", ".", "co_lnotab", ",", "code", ".", "co_freevars", ",", "code", ".", "co_cellvars", ",", ")", "newfunc", "=", "FunctionType", "(", "newcode", ",", "func", ".", "__globals__", ",", "newname", ",", "func", ".", "__defaults__", ",", "func", ".", "__closure__", ",", ")", "newfunc", ".", "__dict__", ".", "update", "(", "func", ".", "__dict__", ")", "return", "newfunc" ]
Copy a function object with different name. Args: func (function): Function to be copied. name (string, optional): Name of the new function. If not spacified, the same name of `func` will be used. Returns: newfunc (function): New function with different name.
[ "Copy", "a", "function", "object", "with", "different", "name", "." ]
train
https://github.com/deshima-dev/decode/blob/e789e174cd316e7ec8bc55be7009ad35baced3c0/decode/utils/misc/functions.py#L61-L100
deshima-dev/decode
decode/utils/misc/functions.py
one_thread_per_process
def one_thread_per_process(): """Return a context manager where only one thread is allocated to a process. This function is intended to be used as a with statement like:: >>> with process_per_thread(): ... do_something() # one thread per process Notes: This function only works when MKL (Intel Math Kernel Library) is installed and used in, for example, NumPy and SciPy. Otherwise this function does nothing. """ try: import mkl is_mkl = True except ImportError: is_mkl = False if is_mkl: n_threads = mkl.get_max_threads() mkl.set_num_threads(1) try: # block nested in the with statement yield finally: # revert to the original value mkl.set_num_threads(n_threads) else: yield
python
def one_thread_per_process(): """Return a context manager where only one thread is allocated to a process. This function is intended to be used as a with statement like:: >>> with process_per_thread(): ... do_something() # one thread per process Notes: This function only works when MKL (Intel Math Kernel Library) is installed and used in, for example, NumPy and SciPy. Otherwise this function does nothing. """ try: import mkl is_mkl = True except ImportError: is_mkl = False if is_mkl: n_threads = mkl.get_max_threads() mkl.set_num_threads(1) try: # block nested in the with statement yield finally: # revert to the original value mkl.set_num_threads(n_threads) else: yield
[ "def", "one_thread_per_process", "(", ")", ":", "try", ":", "import", "mkl", "is_mkl", "=", "True", "except", "ImportError", ":", "is_mkl", "=", "False", "if", "is_mkl", ":", "n_threads", "=", "mkl", ".", "get_max_threads", "(", ")", "mkl", ".", "set_num_threads", "(", "1", ")", "try", ":", "# block nested in the with statement", "yield", "finally", ":", "# revert to the original value", "mkl", ".", "set_num_threads", "(", "n_threads", ")", "else", ":", "yield" ]
Return a context manager where only one thread is allocated to a process. This function is intended to be used as a with statement like:: >>> with process_per_thread(): ... do_something() # one thread per process Notes: This function only works when MKL (Intel Math Kernel Library) is installed and used in, for example, NumPy and SciPy. Otherwise this function does nothing.
[ "Return", "a", "context", "manager", "where", "only", "one", "thread", "is", "allocated", "to", "a", "process", "." ]
train
https://github.com/deshima-dev/decode/blob/e789e174cd316e7ec8bc55be7009ad35baced3c0/decode/utils/misc/functions.py#L104-L134
MFreidank/ARSpy
arspy/hull.py
compute_hulls
def compute_hulls(S, fS, domain): """ (Re-)compute upper and lower hull given the segment points `S` with function values `fS` and the `domain` of the logpdf. Parameters ---------- S : np.ndarray (N, 1) Straight-line segment points accumulated thus far. fS : tuple Value of the `logpdf` under sampling for each of the given segment points in `S`. domain : Tuple[float, float] Domain of `logpdf`. May be unbounded on either or both sides, in which case `(float("-inf"), float("inf"))` would be passed. If this domain is unbounded to the left, the derivative of the logpdf for x<= a must be positive. If this domain is unbounded to the right the derivative of the logpdf for x>=b must be negative. Returns ---------- lower_hull: List[arspy.hull.HullNode] upper_hull: List[arspy.hull.HullNode] """ assert(len(S) == len(fS)) assert(len(domain) == 2) lower_hull = [] for li in range(len(S) - 1): m = (fS[li + 1] - fS[li]) / (S[li + 1] - S[li]) b = fS[li] - m * S[li] left = S[li] right = S[li + 1] lower_hull.append(HullNode(m=m, b=b, left=left, right=right)) # compute upper piecewise-linear hull # expected final length of upper hull after full computation n_upper_segments = 2 * (len(S) - 2) + isinf(domain[0]) + isinf(domain[1]) upper_hull = [] if isinf(domain[0]): # first line (from -infinity) m = (fS[1] - fS[0]) / (S[1] - S[0]) b = fS[0] - m * S[0] pr = compute_segment_log_prob(float("-inf"), S[0], m, b) upper_hull.append( HullNode(m=m, b=b, pr=pr, left=float("-inf"), right=S[0]) ) # second line m = (fS[2] - fS[1]) / (S[2] - S[1]) b = fS[1] - m * S[1] pr = compute_segment_log_prob(S[0], S[1], m, b) upper_hull.append(HullNode(m=m, b=b, pr=pr, left=S[0], right=S[1])) # interior lines # there are two lines between each abscissa for li in range(1, len(S) - 2): m1 = (fS[li] - fS[li - 1]) / (S[li] - S[li - 1]) b1 = fS[li] - m1 * S[li] m2 = (fS[li + 2] - fS[li + 1]) / (S[li + 2] - S[li + 1]) b2 = fS[li + 1] - m2 * S[li + 1] if isinf(m1) and isinf(m2): raise ValueError("both hull slopes are infinite") dx1 = S[li] - S[li - 1] df1 = fS[li] - fS[li - 1] dx2 = S[li + 2] - S[li + 1] df2 = fS[li + 2] - fS[li + 1] f1 = fS[li] f2 = fS[li + 1] x1 = S[li] x2 = S[li + 1] # more numerically stable than above ix = ((f1 * dx1 - df1 * x1) * dx2 - (f2 * dx2 - df2 * x2) * dx1) / (df2 * dx1 - df1 * dx2) if isinf(m1) or abs(m1 - m2) < 10.0 ** 8 * eps(m1): ix = S[li] pr1 = float("-inf") pr2 = compute_segment_log_prob(ix, S[li + 1], m2, b2) elif isinf(m2): ix = S[li + 1] pr1 = compute_segment_log_prob(S[li], ix, m1, b1) pr2 = float("-inf") else: if isinf(ix): raise ValueError("Non finite intersection") if abs(ix - S[li]) < 10.0 ** 12 * eps(S[li]): ix = S[li] elif abs(ix - S[li + 1]) < 10.0**12 * eps(S[li + 1]): ix = S[li + 1] if ix < S[li] or ix > S[li + 1]: raise ValueError("Intersection out of bounds -- logpdf is not concave") pr1 = compute_segment_log_prob(S[li], ix, m1, b1) pr2 = compute_segment_log_prob(ix, S[li + 1], m2, b2) upper_hull.append(HullNode(m=m1, b=b1, pr=pr1, left=S[li], right=ix)) upper_hull.append(HullNode(m=m2, b=b2, pr=pr2, left=ix, right=S[li + 1])) # second last line m = (fS[-2] - fS[-3]) / float(S[-2] - S[-3]) b = fS[-2] - m * S[-2] pr = compute_segment_log_prob(S[-2], S[-1], m, b) upper_hull.append(HullNode(m=m, b=b, pr=pr, left=S[-2], right=S[-1])) if isinf(domain[1]): # last line (to infinity) m = (fS[-1] - fS[-2]) / (S[-1] - S[-2]) b = fS[-1] - m * S[-1] pr = compute_segment_log_prob(S[-1], float("inf"), m, b) upper_hull.append( HullNode(m=m, b=b, pr=pr, left=S[-1], right=float("inf")) ) # normalize probabilities normalized_probabilities = exp_normalize( asarray([node.pr for node in upper_hull]) ) for node, probability in zip(upper_hull, normalized_probabilities): node.pr = probability assert(len(lower_hull) == len(S) - 1) assert(len(upper_hull) == n_upper_segments) return lower_hull, upper_hull
python
def compute_hulls(S, fS, domain): """ (Re-)compute upper and lower hull given the segment points `S` with function values `fS` and the `domain` of the logpdf. Parameters ---------- S : np.ndarray (N, 1) Straight-line segment points accumulated thus far. fS : tuple Value of the `logpdf` under sampling for each of the given segment points in `S`. domain : Tuple[float, float] Domain of `logpdf`. May be unbounded on either or both sides, in which case `(float("-inf"), float("inf"))` would be passed. If this domain is unbounded to the left, the derivative of the logpdf for x<= a must be positive. If this domain is unbounded to the right the derivative of the logpdf for x>=b must be negative. Returns ---------- lower_hull: List[arspy.hull.HullNode] upper_hull: List[arspy.hull.HullNode] """ assert(len(S) == len(fS)) assert(len(domain) == 2) lower_hull = [] for li in range(len(S) - 1): m = (fS[li + 1] - fS[li]) / (S[li + 1] - S[li]) b = fS[li] - m * S[li] left = S[li] right = S[li + 1] lower_hull.append(HullNode(m=m, b=b, left=left, right=right)) # compute upper piecewise-linear hull # expected final length of upper hull after full computation n_upper_segments = 2 * (len(S) - 2) + isinf(domain[0]) + isinf(domain[1]) upper_hull = [] if isinf(domain[0]): # first line (from -infinity) m = (fS[1] - fS[0]) / (S[1] - S[0]) b = fS[0] - m * S[0] pr = compute_segment_log_prob(float("-inf"), S[0], m, b) upper_hull.append( HullNode(m=m, b=b, pr=pr, left=float("-inf"), right=S[0]) ) # second line m = (fS[2] - fS[1]) / (S[2] - S[1]) b = fS[1] - m * S[1] pr = compute_segment_log_prob(S[0], S[1], m, b) upper_hull.append(HullNode(m=m, b=b, pr=pr, left=S[0], right=S[1])) # interior lines # there are two lines between each abscissa for li in range(1, len(S) - 2): m1 = (fS[li] - fS[li - 1]) / (S[li] - S[li - 1]) b1 = fS[li] - m1 * S[li] m2 = (fS[li + 2] - fS[li + 1]) / (S[li + 2] - S[li + 1]) b2 = fS[li + 1] - m2 * S[li + 1] if isinf(m1) and isinf(m2): raise ValueError("both hull slopes are infinite") dx1 = S[li] - S[li - 1] df1 = fS[li] - fS[li - 1] dx2 = S[li + 2] - S[li + 1] df2 = fS[li + 2] - fS[li + 1] f1 = fS[li] f2 = fS[li + 1] x1 = S[li] x2 = S[li + 1] # more numerically stable than above ix = ((f1 * dx1 - df1 * x1) * dx2 - (f2 * dx2 - df2 * x2) * dx1) / (df2 * dx1 - df1 * dx2) if isinf(m1) or abs(m1 - m2) < 10.0 ** 8 * eps(m1): ix = S[li] pr1 = float("-inf") pr2 = compute_segment_log_prob(ix, S[li + 1], m2, b2) elif isinf(m2): ix = S[li + 1] pr1 = compute_segment_log_prob(S[li], ix, m1, b1) pr2 = float("-inf") else: if isinf(ix): raise ValueError("Non finite intersection") if abs(ix - S[li]) < 10.0 ** 12 * eps(S[li]): ix = S[li] elif abs(ix - S[li + 1]) < 10.0**12 * eps(S[li + 1]): ix = S[li + 1] if ix < S[li] or ix > S[li + 1]: raise ValueError("Intersection out of bounds -- logpdf is not concave") pr1 = compute_segment_log_prob(S[li], ix, m1, b1) pr2 = compute_segment_log_prob(ix, S[li + 1], m2, b2) upper_hull.append(HullNode(m=m1, b=b1, pr=pr1, left=S[li], right=ix)) upper_hull.append(HullNode(m=m2, b=b2, pr=pr2, left=ix, right=S[li + 1])) # second last line m = (fS[-2] - fS[-3]) / float(S[-2] - S[-3]) b = fS[-2] - m * S[-2] pr = compute_segment_log_prob(S[-2], S[-1], m, b) upper_hull.append(HullNode(m=m, b=b, pr=pr, left=S[-2], right=S[-1])) if isinf(domain[1]): # last line (to infinity) m = (fS[-1] - fS[-2]) / (S[-1] - S[-2]) b = fS[-1] - m * S[-1] pr = compute_segment_log_prob(S[-1], float("inf"), m, b) upper_hull.append( HullNode(m=m, b=b, pr=pr, left=S[-1], right=float("inf")) ) # normalize probabilities normalized_probabilities = exp_normalize( asarray([node.pr for node in upper_hull]) ) for node, probability in zip(upper_hull, normalized_probabilities): node.pr = probability assert(len(lower_hull) == len(S) - 1) assert(len(upper_hull) == n_upper_segments) return lower_hull, upper_hull
[ "def", "compute_hulls", "(", "S", ",", "fS", ",", "domain", ")", ":", "assert", "(", "len", "(", "S", ")", "==", "len", "(", "fS", ")", ")", "assert", "(", "len", "(", "domain", ")", "==", "2", ")", "lower_hull", "=", "[", "]", "for", "li", "in", "range", "(", "len", "(", "S", ")", "-", "1", ")", ":", "m", "=", "(", "fS", "[", "li", "+", "1", "]", "-", "fS", "[", "li", "]", ")", "/", "(", "S", "[", "li", "+", "1", "]", "-", "S", "[", "li", "]", ")", "b", "=", "fS", "[", "li", "]", "-", "m", "*", "S", "[", "li", "]", "left", "=", "S", "[", "li", "]", "right", "=", "S", "[", "li", "+", "1", "]", "lower_hull", ".", "append", "(", "HullNode", "(", "m", "=", "m", ",", "b", "=", "b", ",", "left", "=", "left", ",", "right", "=", "right", ")", ")", "# compute upper piecewise-linear hull", "# expected final length of upper hull after full computation", "n_upper_segments", "=", "2", "*", "(", "len", "(", "S", ")", "-", "2", ")", "+", "isinf", "(", "domain", "[", "0", "]", ")", "+", "isinf", "(", "domain", "[", "1", "]", ")", "upper_hull", "=", "[", "]", "if", "isinf", "(", "domain", "[", "0", "]", ")", ":", "# first line (from -infinity)", "m", "=", "(", "fS", "[", "1", "]", "-", "fS", "[", "0", "]", ")", "/", "(", "S", "[", "1", "]", "-", "S", "[", "0", "]", ")", "b", "=", "fS", "[", "0", "]", "-", "m", "*", "S", "[", "0", "]", "pr", "=", "compute_segment_log_prob", "(", "float", "(", "\"-inf\"", ")", ",", "S", "[", "0", "]", ",", "m", ",", "b", ")", "upper_hull", ".", "append", "(", "HullNode", "(", "m", "=", "m", ",", "b", "=", "b", ",", "pr", "=", "pr", ",", "left", "=", "float", "(", "\"-inf\"", ")", ",", "right", "=", "S", "[", "0", "]", ")", ")", "# second line", "m", "=", "(", "fS", "[", "2", "]", "-", "fS", "[", "1", "]", ")", "/", "(", "S", "[", "2", "]", "-", "S", "[", "1", "]", ")", "b", "=", "fS", "[", "1", "]", "-", "m", "*", "S", "[", "1", "]", "pr", "=", "compute_segment_log_prob", "(", "S", "[", "0", "]", ",", "S", "[", "1", "]", ",", "m", ",", "b", ")", "upper_hull", ".", "append", "(", "HullNode", "(", "m", "=", "m", ",", "b", "=", "b", ",", "pr", "=", "pr", ",", "left", "=", "S", "[", "0", "]", ",", "right", "=", "S", "[", "1", "]", ")", ")", "# interior lines", "# there are two lines between each abscissa", "for", "li", "in", "range", "(", "1", ",", "len", "(", "S", ")", "-", "2", ")", ":", "m1", "=", "(", "fS", "[", "li", "]", "-", "fS", "[", "li", "-", "1", "]", ")", "/", "(", "S", "[", "li", "]", "-", "S", "[", "li", "-", "1", "]", ")", "b1", "=", "fS", "[", "li", "]", "-", "m1", "*", "S", "[", "li", "]", "m2", "=", "(", "fS", "[", "li", "+", "2", "]", "-", "fS", "[", "li", "+", "1", "]", ")", "/", "(", "S", "[", "li", "+", "2", "]", "-", "S", "[", "li", "+", "1", "]", ")", "b2", "=", "fS", "[", "li", "+", "1", "]", "-", "m2", "*", "S", "[", "li", "+", "1", "]", "if", "isinf", "(", "m1", ")", "and", "isinf", "(", "m2", ")", ":", "raise", "ValueError", "(", "\"both hull slopes are infinite\"", ")", "dx1", "=", "S", "[", "li", "]", "-", "S", "[", "li", "-", "1", "]", "df1", "=", "fS", "[", "li", "]", "-", "fS", "[", "li", "-", "1", "]", "dx2", "=", "S", "[", "li", "+", "2", "]", "-", "S", "[", "li", "+", "1", "]", "df2", "=", "fS", "[", "li", "+", "2", "]", "-", "fS", "[", "li", "+", "1", "]", "f1", "=", "fS", "[", "li", "]", "f2", "=", "fS", "[", "li", "+", "1", "]", "x1", "=", "S", "[", "li", "]", "x2", "=", "S", "[", "li", "+", "1", "]", "# more numerically stable than above", "ix", "=", "(", "(", "f1", "*", "dx1", "-", "df1", "*", "x1", ")", "*", "dx2", "-", "(", "f2", "*", "dx2", "-", "df2", "*", "x2", ")", "*", "dx1", ")", "/", "(", "df2", "*", "dx1", "-", "df1", "*", "dx2", ")", "if", "isinf", "(", "m1", ")", "or", "abs", "(", "m1", "-", "m2", ")", "<", "10.0", "**", "8", "*", "eps", "(", "m1", ")", ":", "ix", "=", "S", "[", "li", "]", "pr1", "=", "float", "(", "\"-inf\"", ")", "pr2", "=", "compute_segment_log_prob", "(", "ix", ",", "S", "[", "li", "+", "1", "]", ",", "m2", ",", "b2", ")", "elif", "isinf", "(", "m2", ")", ":", "ix", "=", "S", "[", "li", "+", "1", "]", "pr1", "=", "compute_segment_log_prob", "(", "S", "[", "li", "]", ",", "ix", ",", "m1", ",", "b1", ")", "pr2", "=", "float", "(", "\"-inf\"", ")", "else", ":", "if", "isinf", "(", "ix", ")", ":", "raise", "ValueError", "(", "\"Non finite intersection\"", ")", "if", "abs", "(", "ix", "-", "S", "[", "li", "]", ")", "<", "10.0", "**", "12", "*", "eps", "(", "S", "[", "li", "]", ")", ":", "ix", "=", "S", "[", "li", "]", "elif", "abs", "(", "ix", "-", "S", "[", "li", "+", "1", "]", ")", "<", "10.0", "**", "12", "*", "eps", "(", "S", "[", "li", "+", "1", "]", ")", ":", "ix", "=", "S", "[", "li", "+", "1", "]", "if", "ix", "<", "S", "[", "li", "]", "or", "ix", ">", "S", "[", "li", "+", "1", "]", ":", "raise", "ValueError", "(", "\"Intersection out of bounds -- logpdf is not concave\"", ")", "pr1", "=", "compute_segment_log_prob", "(", "S", "[", "li", "]", ",", "ix", ",", "m1", ",", "b1", ")", "pr2", "=", "compute_segment_log_prob", "(", "ix", ",", "S", "[", "li", "+", "1", "]", ",", "m2", ",", "b2", ")", "upper_hull", ".", "append", "(", "HullNode", "(", "m", "=", "m1", ",", "b", "=", "b1", ",", "pr", "=", "pr1", ",", "left", "=", "S", "[", "li", "]", ",", "right", "=", "ix", ")", ")", "upper_hull", ".", "append", "(", "HullNode", "(", "m", "=", "m2", ",", "b", "=", "b2", ",", "pr", "=", "pr2", ",", "left", "=", "ix", ",", "right", "=", "S", "[", "li", "+", "1", "]", ")", ")", "# second last line", "m", "=", "(", "fS", "[", "-", "2", "]", "-", "fS", "[", "-", "3", "]", ")", "/", "float", "(", "S", "[", "-", "2", "]", "-", "S", "[", "-", "3", "]", ")", "b", "=", "fS", "[", "-", "2", "]", "-", "m", "*", "S", "[", "-", "2", "]", "pr", "=", "compute_segment_log_prob", "(", "S", "[", "-", "2", "]", ",", "S", "[", "-", "1", "]", ",", "m", ",", "b", ")", "upper_hull", ".", "append", "(", "HullNode", "(", "m", "=", "m", ",", "b", "=", "b", ",", "pr", "=", "pr", ",", "left", "=", "S", "[", "-", "2", "]", ",", "right", "=", "S", "[", "-", "1", "]", ")", ")", "if", "isinf", "(", "domain", "[", "1", "]", ")", ":", "# last line (to infinity)", "m", "=", "(", "fS", "[", "-", "1", "]", "-", "fS", "[", "-", "2", "]", ")", "/", "(", "S", "[", "-", "1", "]", "-", "S", "[", "-", "2", "]", ")", "b", "=", "fS", "[", "-", "1", "]", "-", "m", "*", "S", "[", "-", "1", "]", "pr", "=", "compute_segment_log_prob", "(", "S", "[", "-", "1", "]", ",", "float", "(", "\"inf\"", ")", ",", "m", ",", "b", ")", "upper_hull", ".", "append", "(", "HullNode", "(", "m", "=", "m", ",", "b", "=", "b", ",", "pr", "=", "pr", ",", "left", "=", "S", "[", "-", "1", "]", ",", "right", "=", "float", "(", "\"inf\"", ")", ")", ")", "# normalize probabilities", "normalized_probabilities", "=", "exp_normalize", "(", "asarray", "(", "[", "node", ".", "pr", "for", "node", "in", "upper_hull", "]", ")", ")", "for", "node", ",", "probability", "in", "zip", "(", "upper_hull", ",", "normalized_probabilities", ")", ":", "node", ".", "pr", "=", "probability", "assert", "(", "len", "(", "lower_hull", ")", "==", "len", "(", "S", ")", "-", "1", ")", "assert", "(", "len", "(", "upper_hull", ")", "==", "n_upper_segments", ")", "return", "lower_hull", ",", "upper_hull" ]
(Re-)compute upper and lower hull given the segment points `S` with function values `fS` and the `domain` of the logpdf. Parameters ---------- S : np.ndarray (N, 1) Straight-line segment points accumulated thus far. fS : tuple Value of the `logpdf` under sampling for each of the given segment points in `S`. domain : Tuple[float, float] Domain of `logpdf`. May be unbounded on either or both sides, in which case `(float("-inf"), float("inf"))` would be passed. If this domain is unbounded to the left, the derivative of the logpdf for x<= a must be positive. If this domain is unbounded to the right the derivative of the logpdf for x>=b must be negative. Returns ---------- lower_hull: List[arspy.hull.HullNode] upper_hull: List[arspy.hull.HullNode]
[ "(", "Re", "-", ")", "compute", "upper", "and", "lower", "hull", "given", "the", "segment", "points", "S", "with", "function", "values", "fS", "and", "the", "domain", "of", "the", "logpdf", "." ]
train
https://github.com/MFreidank/ARSpy/blob/866885071b43e36a529f2fecf584ceef5248d800/arspy/hull.py#L44-L193
MFreidank/ARSpy
arspy/hull.py
sample_upper_hull
def sample_upper_hull(upper_hull, random_stream): """ Return a single value randomly sampled from the given `upper_hull`. Parameters ---------- upper_hull : List[pyars.hull.HullNode] Upper hull to evaluate. random_stream : numpy.random.RandomState (Seeded) stream of random values to use during sampling. Returns ---------- sample : float Single value randomly sampled from `upper_hull`. """ cdf = cumsum([node.pr for node in upper_hull]) # randomly choose a line segment U = random_stream.rand() node = next( (node for node, cdf_value in zip(upper_hull, cdf) if U < cdf_value), upper_hull[-1] # default is last line segment ) # sample along that line segment U = random_stream.rand() m, left, right = node.m, node.left, node.right M = max(m * right, m * left) x = (log(U * (exp(m * right - M) - exp(m * left - M)) + exp(m * left - M)) + M) / m assert(x >= left and x <= right) if isinf(x) or isnan(x): raise ValueError("sampled an infinite or 'nan' x") return x
python
def sample_upper_hull(upper_hull, random_stream): """ Return a single value randomly sampled from the given `upper_hull`. Parameters ---------- upper_hull : List[pyars.hull.HullNode] Upper hull to evaluate. random_stream : numpy.random.RandomState (Seeded) stream of random values to use during sampling. Returns ---------- sample : float Single value randomly sampled from `upper_hull`. """ cdf = cumsum([node.pr for node in upper_hull]) # randomly choose a line segment U = random_stream.rand() node = next( (node for node, cdf_value in zip(upper_hull, cdf) if U < cdf_value), upper_hull[-1] # default is last line segment ) # sample along that line segment U = random_stream.rand() m, left, right = node.m, node.left, node.right M = max(m * right, m * left) x = (log(U * (exp(m * right - M) - exp(m * left - M)) + exp(m * left - M)) + M) / m assert(x >= left and x <= right) if isinf(x) or isnan(x): raise ValueError("sampled an infinite or 'nan' x") return x
[ "def", "sample_upper_hull", "(", "upper_hull", ",", "random_stream", ")", ":", "cdf", "=", "cumsum", "(", "[", "node", ".", "pr", "for", "node", "in", "upper_hull", "]", ")", "# randomly choose a line segment", "U", "=", "random_stream", ".", "rand", "(", ")", "node", "=", "next", "(", "(", "node", "for", "node", ",", "cdf_value", "in", "zip", "(", "upper_hull", ",", "cdf", ")", "if", "U", "<", "cdf_value", ")", ",", "upper_hull", "[", "-", "1", "]", "# default is last line segment", ")", "# sample along that line segment", "U", "=", "random_stream", ".", "rand", "(", ")", "m", ",", "left", ",", "right", "=", "node", ".", "m", ",", "node", ".", "left", ",", "node", ".", "right", "M", "=", "max", "(", "m", "*", "right", ",", "m", "*", "left", ")", "x", "=", "(", "log", "(", "U", "*", "(", "exp", "(", "m", "*", "right", "-", "M", ")", "-", "exp", "(", "m", "*", "left", "-", "M", ")", ")", "+", "exp", "(", "m", "*", "left", "-", "M", ")", ")", "+", "M", ")", "/", "m", "assert", "(", "x", ">=", "left", "and", "x", "<=", "right", ")", "if", "isinf", "(", "x", ")", "or", "isnan", "(", "x", ")", ":", "raise", "ValueError", "(", "\"sampled an infinite or 'nan' x\"", ")", "return", "x" ]
Return a single value randomly sampled from the given `upper_hull`. Parameters ---------- upper_hull : List[pyars.hull.HullNode] Upper hull to evaluate. random_stream : numpy.random.RandomState (Seeded) stream of random values to use during sampling. Returns ---------- sample : float Single value randomly sampled from `upper_hull`.
[ "Return", "a", "single", "value", "randomly", "sampled", "from", "the", "given", "upper_hull", "." ]
train
https://github.com/MFreidank/ARSpy/blob/866885071b43e36a529f2fecf584ceef5248d800/arspy/hull.py#L207-L249
mrcagney/make_gtfs
make_gtfs/validators.py
check_for_required_columns
def check_for_required_columns(problems, table, df): """ Check that the given ProtoFeed table has the required columns. Parameters ---------- problems : list A four-tuple containing 1. A problem type (string) equal to ``'error'`` or ``'warning'``; ``'error'`` means the ProtoFeed is violated; ``'warning'`` means there is a problem but it is not a ProtoFeed violation 2. A message (string) that describes the problem 3. A ProtoFeed table name, e.g. ``'meta'``, in which the problem occurs 4. A list of rows (integers) of the table's DataFrame where the problem occurs table : string Name of a ProtoFeed table df : DataFrame The ProtoFeed table corresponding to ``table`` Returns ------- list The ``problems`` list extended as follows. Check that the DataFrame contains the colums required by the ProtoFeed spec and append to the problems list one error for each column missing. """ r = cs.PROTOFEED_REF req_columns = r.loc[(r['table'] == table) & r['column_required'], 'column'].values for col in req_columns: if col not in df.columns: problems.append(['error', 'Missing column {!s}'.format(col), table, []]) return problems
python
def check_for_required_columns(problems, table, df): """ Check that the given ProtoFeed table has the required columns. Parameters ---------- problems : list A four-tuple containing 1. A problem type (string) equal to ``'error'`` or ``'warning'``; ``'error'`` means the ProtoFeed is violated; ``'warning'`` means there is a problem but it is not a ProtoFeed violation 2. A message (string) that describes the problem 3. A ProtoFeed table name, e.g. ``'meta'``, in which the problem occurs 4. A list of rows (integers) of the table's DataFrame where the problem occurs table : string Name of a ProtoFeed table df : DataFrame The ProtoFeed table corresponding to ``table`` Returns ------- list The ``problems`` list extended as follows. Check that the DataFrame contains the colums required by the ProtoFeed spec and append to the problems list one error for each column missing. """ r = cs.PROTOFEED_REF req_columns = r.loc[(r['table'] == table) & r['column_required'], 'column'].values for col in req_columns: if col not in df.columns: problems.append(['error', 'Missing column {!s}'.format(col), table, []]) return problems
[ "def", "check_for_required_columns", "(", "problems", ",", "table", ",", "df", ")", ":", "r", "=", "cs", ".", "PROTOFEED_REF", "req_columns", "=", "r", ".", "loc", "[", "(", "r", "[", "'table'", "]", "==", "table", ")", "&", "r", "[", "'column_required'", "]", ",", "'column'", "]", ".", "values", "for", "col", "in", "req_columns", ":", "if", "col", "not", "in", "df", ".", "columns", ":", "problems", ".", "append", "(", "[", "'error'", ",", "'Missing column {!s}'", ".", "format", "(", "col", ")", ",", "table", ",", "[", "]", "]", ")", "return", "problems" ]
Check that the given ProtoFeed table has the required columns. Parameters ---------- problems : list A four-tuple containing 1. A problem type (string) equal to ``'error'`` or ``'warning'``; ``'error'`` means the ProtoFeed is violated; ``'warning'`` means there is a problem but it is not a ProtoFeed violation 2. A message (string) that describes the problem 3. A ProtoFeed table name, e.g. ``'meta'``, in which the problem occurs 4. A list of rows (integers) of the table's DataFrame where the problem occurs table : string Name of a ProtoFeed table df : DataFrame The ProtoFeed table corresponding to ``table`` Returns ------- list The ``problems`` list extended as follows. Check that the DataFrame contains the colums required by the ProtoFeed spec and append to the problems list one error for each column missing.
[ "Check", "that", "the", "given", "ProtoFeed", "table", "has", "the", "required", "columns", "." ]
train
https://github.com/mrcagney/make_gtfs/blob/37b6f88e03bac708c2e85d6f4b6d48a0c92e4a59/make_gtfs/validators.py#L24-L66
mrcagney/make_gtfs
make_gtfs/validators.py
check_for_invalid_columns
def check_for_invalid_columns(problems, table, df): """ Check for invalid columns in the given ProtoFeed DataFrame. Parameters ---------- problems : list A four-tuple containing 1. A problem type (string) equal to ``'error'`` or ``'warning'``; ``'error'`` means the ProtoFeed is violated; ``'warning'`` means there is a problem but it is not a ProtoFeed violation 2. A message (string) that describes the problem 3. A ProtoFeed table name, e.g. ``'meta'``, in which the problem occurs 4. A list of rows (integers) of the table's DataFrame where the problem occurs table : string Name of a ProtoFeed table df : DataFrame The ProtoFeed table corresponding to ``table`` Returns ------- list The ``problems`` list extended as follows. Check whether the DataFrame contains extra columns not in the ProtoFeed and append to the problems list one warning for each extra column. """ r = cs.PROTOFEED_REF valid_columns = r.loc[r['table'] == table, 'column'].values for col in df.columns: if col not in valid_columns: problems.append(['warning', 'Unrecognized column {!s}'.format(col), table, []]) return problems
python
def check_for_invalid_columns(problems, table, df): """ Check for invalid columns in the given ProtoFeed DataFrame. Parameters ---------- problems : list A four-tuple containing 1. A problem type (string) equal to ``'error'`` or ``'warning'``; ``'error'`` means the ProtoFeed is violated; ``'warning'`` means there is a problem but it is not a ProtoFeed violation 2. A message (string) that describes the problem 3. A ProtoFeed table name, e.g. ``'meta'``, in which the problem occurs 4. A list of rows (integers) of the table's DataFrame where the problem occurs table : string Name of a ProtoFeed table df : DataFrame The ProtoFeed table corresponding to ``table`` Returns ------- list The ``problems`` list extended as follows. Check whether the DataFrame contains extra columns not in the ProtoFeed and append to the problems list one warning for each extra column. """ r = cs.PROTOFEED_REF valid_columns = r.loc[r['table'] == table, 'column'].values for col in df.columns: if col not in valid_columns: problems.append(['warning', 'Unrecognized column {!s}'.format(col), table, []]) return problems
[ "def", "check_for_invalid_columns", "(", "problems", ",", "table", ",", "df", ")", ":", "r", "=", "cs", ".", "PROTOFEED_REF", "valid_columns", "=", "r", ".", "loc", "[", "r", "[", "'table'", "]", "==", "table", ",", "'column'", "]", ".", "values", "for", "col", "in", "df", ".", "columns", ":", "if", "col", "not", "in", "valid_columns", ":", "problems", ".", "append", "(", "[", "'warning'", ",", "'Unrecognized column {!s}'", ".", "format", "(", "col", ")", ",", "table", ",", "[", "]", "]", ")", "return", "problems" ]
Check for invalid columns in the given ProtoFeed DataFrame. Parameters ---------- problems : list A four-tuple containing 1. A problem type (string) equal to ``'error'`` or ``'warning'``; ``'error'`` means the ProtoFeed is violated; ``'warning'`` means there is a problem but it is not a ProtoFeed violation 2. A message (string) that describes the problem 3. A ProtoFeed table name, e.g. ``'meta'``, in which the problem occurs 4. A list of rows (integers) of the table's DataFrame where the problem occurs table : string Name of a ProtoFeed table df : DataFrame The ProtoFeed table corresponding to ``table`` Returns ------- list The ``problems`` list extended as follows. Check whether the DataFrame contains extra columns not in the ProtoFeed and append to the problems list one warning for each extra column.
[ "Check", "for", "invalid", "columns", "in", "the", "given", "ProtoFeed", "DataFrame", "." ]
train
https://github.com/mrcagney/make_gtfs/blob/37b6f88e03bac708c2e85d6f4b6d48a0c92e4a59/make_gtfs/validators.py#L68-L110
mrcagney/make_gtfs
make_gtfs/validators.py
check_frequencies
def check_frequencies(pfeed, *, as_df=False, include_warnings=False): """ Check that ``pfeed.frequency`` follows the ProtoFeed spec. Return a list of problems of the form described in :func:`gt.check_table`; the list will be empty if no problems are found. """ table = 'frequencies' problems = [] # Preliminary checks if pfeed.frequencies is None: problems.append(['error', 'Missing table', table, []]) else: f = pfeed.frequencies.copy() problems = check_for_required_columns(problems, table, f) if problems: return gt.format_problems(problems, as_df=as_df) if include_warnings: problems = check_for_invalid_columns(problems, table, f) # Check route_short_name and route_long_name for column in ['route_short_name', 'route_long_name']: problems = gt.check_column(problems, table, f, column, gt.valid_str, column_required=False) cond = ~(f['route_short_name'].notnull() | f['route_long_name'].notnull()) problems = gt.check_table(problems, table, f, cond, 'route_short_name and route_long_name both empty') # Check route_type v = lambda x: x in range(8) problems = gt.check_column(problems, table, f, 'route_type', v) # Check service window ID problems = gt.check_column_linked_id(problems, table, f, 'service_window_id', pfeed.service_windows) # Check direction v = lambda x: x in range(3) problems = gt.check_column(problems, table, f, 'direction', v) # Check frequency v = lambda x: isinstance(x, int) problems = gt.check_column(problems, table, f, 'frequency', v) # Check speed problems = gt.check_column(problems, table, f, 'speed', valid_speed, column_required=False) # Check shape ID problems = gt.check_column_linked_id(problems, table, f, 'shape_id', pfeed.shapes) return gt.format_problems(problems, as_df=as_df)
python
def check_frequencies(pfeed, *, as_df=False, include_warnings=False): """ Check that ``pfeed.frequency`` follows the ProtoFeed spec. Return a list of problems of the form described in :func:`gt.check_table`; the list will be empty if no problems are found. """ table = 'frequencies' problems = [] # Preliminary checks if pfeed.frequencies is None: problems.append(['error', 'Missing table', table, []]) else: f = pfeed.frequencies.copy() problems = check_for_required_columns(problems, table, f) if problems: return gt.format_problems(problems, as_df=as_df) if include_warnings: problems = check_for_invalid_columns(problems, table, f) # Check route_short_name and route_long_name for column in ['route_short_name', 'route_long_name']: problems = gt.check_column(problems, table, f, column, gt.valid_str, column_required=False) cond = ~(f['route_short_name'].notnull() | f['route_long_name'].notnull()) problems = gt.check_table(problems, table, f, cond, 'route_short_name and route_long_name both empty') # Check route_type v = lambda x: x in range(8) problems = gt.check_column(problems, table, f, 'route_type', v) # Check service window ID problems = gt.check_column_linked_id(problems, table, f, 'service_window_id', pfeed.service_windows) # Check direction v = lambda x: x in range(3) problems = gt.check_column(problems, table, f, 'direction', v) # Check frequency v = lambda x: isinstance(x, int) problems = gt.check_column(problems, table, f, 'frequency', v) # Check speed problems = gt.check_column(problems, table, f, 'speed', valid_speed, column_required=False) # Check shape ID problems = gt.check_column_linked_id(problems, table, f, 'shape_id', pfeed.shapes) return gt.format_problems(problems, as_df=as_df)
[ "def", "check_frequencies", "(", "pfeed", ",", "*", ",", "as_df", "=", "False", ",", "include_warnings", "=", "False", ")", ":", "table", "=", "'frequencies'", "problems", "=", "[", "]", "# Preliminary checks", "if", "pfeed", ".", "frequencies", "is", "None", ":", "problems", ".", "append", "(", "[", "'error'", ",", "'Missing table'", ",", "table", ",", "[", "]", "]", ")", "else", ":", "f", "=", "pfeed", ".", "frequencies", ".", "copy", "(", ")", "problems", "=", "check_for_required_columns", "(", "problems", ",", "table", ",", "f", ")", "if", "problems", ":", "return", "gt", ".", "format_problems", "(", "problems", ",", "as_df", "=", "as_df", ")", "if", "include_warnings", ":", "problems", "=", "check_for_invalid_columns", "(", "problems", ",", "table", ",", "f", ")", "# Check route_short_name and route_long_name", "for", "column", "in", "[", "'route_short_name'", ",", "'route_long_name'", "]", ":", "problems", "=", "gt", ".", "check_column", "(", "problems", ",", "table", ",", "f", ",", "column", ",", "gt", ".", "valid_str", ",", "column_required", "=", "False", ")", "cond", "=", "~", "(", "f", "[", "'route_short_name'", "]", ".", "notnull", "(", ")", "|", "f", "[", "'route_long_name'", "]", ".", "notnull", "(", ")", ")", "problems", "=", "gt", ".", "check_table", "(", "problems", ",", "table", ",", "f", ",", "cond", ",", "'route_short_name and route_long_name both empty'", ")", "# Check route_type", "v", "=", "lambda", "x", ":", "x", "in", "range", "(", "8", ")", "problems", "=", "gt", ".", "check_column", "(", "problems", ",", "table", ",", "f", ",", "'route_type'", ",", "v", ")", "# Check service window ID", "problems", "=", "gt", ".", "check_column_linked_id", "(", "problems", ",", "table", ",", "f", ",", "'service_window_id'", ",", "pfeed", ".", "service_windows", ")", "# Check direction", "v", "=", "lambda", "x", ":", "x", "in", "range", "(", "3", ")", "problems", "=", "gt", ".", "check_column", "(", "problems", ",", "table", ",", "f", ",", "'direction'", ",", "v", ")", "# Check frequency", "v", "=", "lambda", "x", ":", "isinstance", "(", "x", ",", "int", ")", "problems", "=", "gt", ".", "check_column", "(", "problems", ",", "table", ",", "f", ",", "'frequency'", ",", "v", ")", "# Check speed", "problems", "=", "gt", ".", "check_column", "(", "problems", ",", "table", ",", "f", ",", "'speed'", ",", "valid_speed", ",", "column_required", "=", "False", ")", "# Check shape ID", "problems", "=", "gt", ".", "check_column_linked_id", "(", "problems", ",", "table", ",", "f", ",", "'shape_id'", ",", "pfeed", ".", "shapes", ")", "return", "gt", ".", "format_problems", "(", "problems", ",", "as_df", "=", "as_df", ")" ]
Check that ``pfeed.frequency`` follows the ProtoFeed spec. Return a list of problems of the form described in :func:`gt.check_table`; the list will be empty if no problems are found.
[ "Check", "that", "pfeed", ".", "frequency", "follows", "the", "ProtoFeed", "spec", ".", "Return", "a", "list", "of", "problems", "of", "the", "form", "described", "in", ":", "func", ":", "gt", ".", "check_table", ";", "the", "list", "will", "be", "empty", "if", "no", "problems", "are", "found", "." ]
train
https://github.com/mrcagney/make_gtfs/blob/37b6f88e03bac708c2e85d6f4b6d48a0c92e4a59/make_gtfs/validators.py#L112-L167
mrcagney/make_gtfs
make_gtfs/validators.py
check_meta
def check_meta(pfeed, *, as_df=False, include_warnings=False): """ Analog of :func:`check_frequencies` for ``pfeed.meta`` """ table = 'meta' problems = [] # Preliminary checks if pfeed.meta is None: problems.append(['error', 'Missing table', table, []]) else: f = pfeed.meta.copy() problems = check_for_required_columns(problems, table, f) if problems: return gt.format_problems(problems, as_df=as_df) if include_warnings: problems = check_for_invalid_columns(problems, table, f) if f.shape[0] > 1: problems.append(['error', 'Meta must have only one row', table, list(range(1, f.shape[0]))]) # Check agency_name problems = gt.check_column(problems, table, f, 'agency_name', gt.valid_str) # Check agency_url problems = gt.check_column(problems, table, f, 'agency_url', gt.valid_url) # Check agency_timezone problems = gt.check_column(problems, table, f, 'agency_timezone', gt.valid_timezone) # Check start_date and end_date for col in ['start_date', 'end_date']: problems = gt.check_column(problems, table, f, col, gt.valid_date) # Check default_route_speed problems = gt.check_column(problems, table, f, 'default_route_speed', valid_speed) return gt.format_problems(problems, as_df=as_df)
python
def check_meta(pfeed, *, as_df=False, include_warnings=False): """ Analog of :func:`check_frequencies` for ``pfeed.meta`` """ table = 'meta' problems = [] # Preliminary checks if pfeed.meta is None: problems.append(['error', 'Missing table', table, []]) else: f = pfeed.meta.copy() problems = check_for_required_columns(problems, table, f) if problems: return gt.format_problems(problems, as_df=as_df) if include_warnings: problems = check_for_invalid_columns(problems, table, f) if f.shape[0] > 1: problems.append(['error', 'Meta must have only one row', table, list(range(1, f.shape[0]))]) # Check agency_name problems = gt.check_column(problems, table, f, 'agency_name', gt.valid_str) # Check agency_url problems = gt.check_column(problems, table, f, 'agency_url', gt.valid_url) # Check agency_timezone problems = gt.check_column(problems, table, f, 'agency_timezone', gt.valid_timezone) # Check start_date and end_date for col in ['start_date', 'end_date']: problems = gt.check_column(problems, table, f, col, gt.valid_date) # Check default_route_speed problems = gt.check_column(problems, table, f, 'default_route_speed', valid_speed) return gt.format_problems(problems, as_df=as_df)
[ "def", "check_meta", "(", "pfeed", ",", "*", ",", "as_df", "=", "False", ",", "include_warnings", "=", "False", ")", ":", "table", "=", "'meta'", "problems", "=", "[", "]", "# Preliminary checks", "if", "pfeed", ".", "meta", "is", "None", ":", "problems", ".", "append", "(", "[", "'error'", ",", "'Missing table'", ",", "table", ",", "[", "]", "]", ")", "else", ":", "f", "=", "pfeed", ".", "meta", ".", "copy", "(", ")", "problems", "=", "check_for_required_columns", "(", "problems", ",", "table", ",", "f", ")", "if", "problems", ":", "return", "gt", ".", "format_problems", "(", "problems", ",", "as_df", "=", "as_df", ")", "if", "include_warnings", ":", "problems", "=", "check_for_invalid_columns", "(", "problems", ",", "table", ",", "f", ")", "if", "f", ".", "shape", "[", "0", "]", ">", "1", ":", "problems", ".", "append", "(", "[", "'error'", ",", "'Meta must have only one row'", ",", "table", ",", "list", "(", "range", "(", "1", ",", "f", ".", "shape", "[", "0", "]", ")", ")", "]", ")", "# Check agency_name", "problems", "=", "gt", ".", "check_column", "(", "problems", ",", "table", ",", "f", ",", "'agency_name'", ",", "gt", ".", "valid_str", ")", "# Check agency_url", "problems", "=", "gt", ".", "check_column", "(", "problems", ",", "table", ",", "f", ",", "'agency_url'", ",", "gt", ".", "valid_url", ")", "# Check agency_timezone", "problems", "=", "gt", ".", "check_column", "(", "problems", ",", "table", ",", "f", ",", "'agency_timezone'", ",", "gt", ".", "valid_timezone", ")", "# Check start_date and end_date", "for", "col", "in", "[", "'start_date'", ",", "'end_date'", "]", ":", "problems", "=", "gt", ".", "check_column", "(", "problems", ",", "table", ",", "f", ",", "col", ",", "gt", ".", "valid_date", ")", "# Check default_route_speed", "problems", "=", "gt", ".", "check_column", "(", "problems", ",", "table", ",", "f", ",", "'default_route_speed'", ",", "valid_speed", ")", "return", "gt", ".", "format_problems", "(", "problems", ",", "as_df", "=", "as_df", ")" ]
Analog of :func:`check_frequencies` for ``pfeed.meta``
[ "Analog", "of", ":", "func", ":", "check_frequencies", "for", "pfeed", ".", "meta" ]
train
https://github.com/mrcagney/make_gtfs/blob/37b6f88e03bac708c2e85d6f4b6d48a0c92e4a59/make_gtfs/validators.py#L169-L210
mrcagney/make_gtfs
make_gtfs/validators.py
check_service_windows
def check_service_windows(pfeed, *, as_df=False, include_warnings=False): """ Analog of :func:`check_frequencies` for ``pfeed.service_windows`` """ table = 'service_windows' problems = [] # Preliminary checks if pfeed.service_windows is None: problems.append(['error', 'Missing table', table, []]) else: f = pfeed.service_windows.copy() problems = check_for_required_columns(problems, table, f) if problems: return gt.format_problems(problems, as_df=as_df) if include_warnings: problems = check_for_invalid_columns(problems, table, f) # Check service window ID problems = gt.check_column_id(problems, table, f, 'service_window_id') # Check start_time and end_time for column in ['start_time', 'end_time']: problems = gt.check_column(problems, table, f, column, gt.valid_time) # Check weekday columns v = lambda x: x in range(2) for col in ['monday', 'tuesday', 'wednesday', 'thursday', 'friday', 'saturday', 'sunday']: problems = gt.check_column(problems, table, f, col, v) return gt.format_problems(problems, as_df=as_df)
python
def check_service_windows(pfeed, *, as_df=False, include_warnings=False): """ Analog of :func:`check_frequencies` for ``pfeed.service_windows`` """ table = 'service_windows' problems = [] # Preliminary checks if pfeed.service_windows is None: problems.append(['error', 'Missing table', table, []]) else: f = pfeed.service_windows.copy() problems = check_for_required_columns(problems, table, f) if problems: return gt.format_problems(problems, as_df=as_df) if include_warnings: problems = check_for_invalid_columns(problems, table, f) # Check service window ID problems = gt.check_column_id(problems, table, f, 'service_window_id') # Check start_time and end_time for column in ['start_time', 'end_time']: problems = gt.check_column(problems, table, f, column, gt.valid_time) # Check weekday columns v = lambda x: x in range(2) for col in ['monday', 'tuesday', 'wednesday', 'thursday', 'friday', 'saturday', 'sunday']: problems = gt.check_column(problems, table, f, col, v) return gt.format_problems(problems, as_df=as_df)
[ "def", "check_service_windows", "(", "pfeed", ",", "*", ",", "as_df", "=", "False", ",", "include_warnings", "=", "False", ")", ":", "table", "=", "'service_windows'", "problems", "=", "[", "]", "# Preliminary checks", "if", "pfeed", ".", "service_windows", "is", "None", ":", "problems", ".", "append", "(", "[", "'error'", ",", "'Missing table'", ",", "table", ",", "[", "]", "]", ")", "else", ":", "f", "=", "pfeed", ".", "service_windows", ".", "copy", "(", ")", "problems", "=", "check_for_required_columns", "(", "problems", ",", "table", ",", "f", ")", "if", "problems", ":", "return", "gt", ".", "format_problems", "(", "problems", ",", "as_df", "=", "as_df", ")", "if", "include_warnings", ":", "problems", "=", "check_for_invalid_columns", "(", "problems", ",", "table", ",", "f", ")", "# Check service window ID", "problems", "=", "gt", ".", "check_column_id", "(", "problems", ",", "table", ",", "f", ",", "'service_window_id'", ")", "# Check start_time and end_time", "for", "column", "in", "[", "'start_time'", ",", "'end_time'", "]", ":", "problems", "=", "gt", ".", "check_column", "(", "problems", ",", "table", ",", "f", ",", "column", ",", "gt", ".", "valid_time", ")", "# Check weekday columns", "v", "=", "lambda", "x", ":", "x", "in", "range", "(", "2", ")", "for", "col", "in", "[", "'monday'", ",", "'tuesday'", ",", "'wednesday'", ",", "'thursday'", ",", "'friday'", ",", "'saturday'", ",", "'sunday'", "]", ":", "problems", "=", "gt", ".", "check_column", "(", "problems", ",", "table", ",", "f", ",", "col", ",", "v", ")", "return", "gt", ".", "format_problems", "(", "problems", ",", "as_df", "=", "as_df", ")" ]
Analog of :func:`check_frequencies` for ``pfeed.service_windows``
[ "Analog", "of", ":", "func", ":", "check_frequencies", "for", "pfeed", ".", "service_windows" ]
train
https://github.com/mrcagney/make_gtfs/blob/37b6f88e03bac708c2e85d6f4b6d48a0c92e4a59/make_gtfs/validators.py#L212-L245
mrcagney/make_gtfs
make_gtfs/validators.py
check_shapes
def check_shapes(pfeed, *, as_df=False, include_warnings=False): """ Analog of :func:`check_frequencies` for ``pfeed.shapes`` """ table = 'shapes' problems = [] # Preliminary checks if pfeed.shapes is None: return problems f = pfeed.shapes.copy() problems = check_for_required_columns(problems, table, f) if problems: return gt.format_problems(problems, as_df=as_df) if include_warnings: problems = check_for_invalid_columns(problems, table, f) # Check shape_id problems = gt.check_column(problems, table, f, 'shape_id', gt.valid_str) # Check geometry v = lambda x: isinstance(x, sg.LineString) and not x.is_empty problems = gt.check_column(problems, table, f, 'geometry', v) return gt.format_problems(problems, as_df=as_df)
python
def check_shapes(pfeed, *, as_df=False, include_warnings=False): """ Analog of :func:`check_frequencies` for ``pfeed.shapes`` """ table = 'shapes' problems = [] # Preliminary checks if pfeed.shapes is None: return problems f = pfeed.shapes.copy() problems = check_for_required_columns(problems, table, f) if problems: return gt.format_problems(problems, as_df=as_df) if include_warnings: problems = check_for_invalid_columns(problems, table, f) # Check shape_id problems = gt.check_column(problems, table, f, 'shape_id', gt.valid_str) # Check geometry v = lambda x: isinstance(x, sg.LineString) and not x.is_empty problems = gt.check_column(problems, table, f, 'geometry', v) return gt.format_problems(problems, as_df=as_df)
[ "def", "check_shapes", "(", "pfeed", ",", "*", ",", "as_df", "=", "False", ",", "include_warnings", "=", "False", ")", ":", "table", "=", "'shapes'", "problems", "=", "[", "]", "# Preliminary checks", "if", "pfeed", ".", "shapes", "is", "None", ":", "return", "problems", "f", "=", "pfeed", ".", "shapes", ".", "copy", "(", ")", "problems", "=", "check_for_required_columns", "(", "problems", ",", "table", ",", "f", ")", "if", "problems", ":", "return", "gt", ".", "format_problems", "(", "problems", ",", "as_df", "=", "as_df", ")", "if", "include_warnings", ":", "problems", "=", "check_for_invalid_columns", "(", "problems", ",", "table", ",", "f", ")", "# Check shape_id", "problems", "=", "gt", ".", "check_column", "(", "problems", ",", "table", ",", "f", ",", "'shape_id'", ",", "gt", ".", "valid_str", ")", "# Check geometry", "v", "=", "lambda", "x", ":", "isinstance", "(", "x", ",", "sg", ".", "LineString", ")", "and", "not", "x", ".", "is_empty", "problems", "=", "gt", ".", "check_column", "(", "problems", ",", "table", ",", "f", ",", "'geometry'", ",", "v", ")", "return", "gt", ".", "format_problems", "(", "problems", ",", "as_df", "=", "as_df", ")" ]
Analog of :func:`check_frequencies` for ``pfeed.shapes``
[ "Analog", "of", ":", "func", ":", "check_frequencies", "for", "pfeed", ".", "shapes" ]
train
https://github.com/mrcagney/make_gtfs/blob/37b6f88e03bac708c2e85d6f4b6d48a0c92e4a59/make_gtfs/validators.py#L247-L273
mrcagney/make_gtfs
make_gtfs/validators.py
check_stops
def check_stops(pfeed, *, as_df=False, include_warnings=False): """ Analog of :func:`check_frequencies` for ``pfeed.stops`` """ # Use gtfstk's stop validator if pfeed.stops is not None: stop_times = pd.DataFrame(columns=['stop_id']) feed = gt.Feed(stops=pfeed.stops, stop_times=stop_times, dist_units='km') return gt.check_stops(feed, as_df=as_df, include_warnings=False)
python
def check_stops(pfeed, *, as_df=False, include_warnings=False): """ Analog of :func:`check_frequencies` for ``pfeed.stops`` """ # Use gtfstk's stop validator if pfeed.stops is not None: stop_times = pd.DataFrame(columns=['stop_id']) feed = gt.Feed(stops=pfeed.stops, stop_times=stop_times, dist_units='km') return gt.check_stops(feed, as_df=as_df, include_warnings=False)
[ "def", "check_stops", "(", "pfeed", ",", "*", ",", "as_df", "=", "False", ",", "include_warnings", "=", "False", ")", ":", "# Use gtfstk's stop validator", "if", "pfeed", ".", "stops", "is", "not", "None", ":", "stop_times", "=", "pd", ".", "DataFrame", "(", "columns", "=", "[", "'stop_id'", "]", ")", "feed", "=", "gt", ".", "Feed", "(", "stops", "=", "pfeed", ".", "stops", ",", "stop_times", "=", "stop_times", ",", "dist_units", "=", "'km'", ")", "return", "gt", ".", "check_stops", "(", "feed", ",", "as_df", "=", "as_df", ",", "include_warnings", "=", "False", ")" ]
Analog of :func:`check_frequencies` for ``pfeed.stops``
[ "Analog", "of", ":", "func", ":", "check_frequencies", "for", "pfeed", ".", "stops" ]
train
https://github.com/mrcagney/make_gtfs/blob/37b6f88e03bac708c2e85d6f4b6d48a0c92e4a59/make_gtfs/validators.py#L275-L284
mrcagney/make_gtfs
make_gtfs/validators.py
validate
def validate(pfeed, *, as_df=True, include_warnings=True): """ Check whether the given pfeed satisfies the ProtoFeed spec. Parameters ---------- pfeed : ProtoFeed as_df : boolean If ``True``, then return the resulting report as a DataFrame; otherwise return the result as a list include_warnings : boolean If ``True``, then include problems of types ``'error'`` and ``'warning'``; otherwise, only return problems of type ``'error'`` Returns ------- list or DataFrame Run all the table-checking functions: :func:`check_agency`, :func:`check_calendar`, etc. This yields a possibly empty list of items [problem type, message, table, rows]. If ``as_df``, then format the error list as a DataFrame with the columns - ``'type'``: 'error' or 'warning'; 'error' means the ProtoFeed spec is violated; 'warning' means there is a problem but it's not a ProtoFeed spec violation - ``'message'``: description of the problem - ``'table'``: table in which problem occurs, e.g. 'routes' - ``'rows'``: rows of the table's DataFrame where problem occurs Return early if the pfeed is missing required tables or required columns. """ problems = [] # Check for invalid columns and check the required tables checkers = [ 'check_frequencies', 'check_meta', 'check_service_windows', 'check_shapes', 'check_stops', ] for checker in checkers: problems.extend(globals()[checker](pfeed, include_warnings=include_warnings)) return gt.format_problems(problems, as_df=as_df)
python
def validate(pfeed, *, as_df=True, include_warnings=True): """ Check whether the given pfeed satisfies the ProtoFeed spec. Parameters ---------- pfeed : ProtoFeed as_df : boolean If ``True``, then return the resulting report as a DataFrame; otherwise return the result as a list include_warnings : boolean If ``True``, then include problems of types ``'error'`` and ``'warning'``; otherwise, only return problems of type ``'error'`` Returns ------- list or DataFrame Run all the table-checking functions: :func:`check_agency`, :func:`check_calendar`, etc. This yields a possibly empty list of items [problem type, message, table, rows]. If ``as_df``, then format the error list as a DataFrame with the columns - ``'type'``: 'error' or 'warning'; 'error' means the ProtoFeed spec is violated; 'warning' means there is a problem but it's not a ProtoFeed spec violation - ``'message'``: description of the problem - ``'table'``: table in which problem occurs, e.g. 'routes' - ``'rows'``: rows of the table's DataFrame where problem occurs Return early if the pfeed is missing required tables or required columns. """ problems = [] # Check for invalid columns and check the required tables checkers = [ 'check_frequencies', 'check_meta', 'check_service_windows', 'check_shapes', 'check_stops', ] for checker in checkers: problems.extend(globals()[checker](pfeed, include_warnings=include_warnings)) return gt.format_problems(problems, as_df=as_df)
[ "def", "validate", "(", "pfeed", ",", "*", ",", "as_df", "=", "True", ",", "include_warnings", "=", "True", ")", ":", "problems", "=", "[", "]", "# Check for invalid columns and check the required tables", "checkers", "=", "[", "'check_frequencies'", ",", "'check_meta'", ",", "'check_service_windows'", ",", "'check_shapes'", ",", "'check_stops'", ",", "]", "for", "checker", "in", "checkers", ":", "problems", ".", "extend", "(", "globals", "(", ")", "[", "checker", "]", "(", "pfeed", ",", "include_warnings", "=", "include_warnings", ")", ")", "return", "gt", ".", "format_problems", "(", "problems", ",", "as_df", "=", "as_df", ")" ]
Check whether the given pfeed satisfies the ProtoFeed spec. Parameters ---------- pfeed : ProtoFeed as_df : boolean If ``True``, then return the resulting report as a DataFrame; otherwise return the result as a list include_warnings : boolean If ``True``, then include problems of types ``'error'`` and ``'warning'``; otherwise, only return problems of type ``'error'`` Returns ------- list or DataFrame Run all the table-checking functions: :func:`check_agency`, :func:`check_calendar`, etc. This yields a possibly empty list of items [problem type, message, table, rows]. If ``as_df``, then format the error list as a DataFrame with the columns - ``'type'``: 'error' or 'warning'; 'error' means the ProtoFeed spec is violated; 'warning' means there is a problem but it's not a ProtoFeed spec violation - ``'message'``: description of the problem - ``'table'``: table in which problem occurs, e.g. 'routes' - ``'rows'``: rows of the table's DataFrame where problem occurs Return early if the pfeed is missing required tables or required columns.
[ "Check", "whether", "the", "given", "pfeed", "satisfies", "the", "ProtoFeed", "spec", "." ]
train
https://github.com/mrcagney/make_gtfs/blob/37b6f88e03bac708c2e85d6f4b6d48a0c92e4a59/make_gtfs/validators.py#L286-L336
deshima-dev/decode
decode/joke/functions.py
youtube
def youtube(keyword=None): """Open youtube. Args: keyword (optional): Search word. """ if keyword is None: web.open('https://www.youtube.com/watch?v=L_mBVT2jBFw') else: web.open(quote('https://www.youtube.com/results?search_query={}'.format(keyword), RESERVED))
python
def youtube(keyword=None): """Open youtube. Args: keyword (optional): Search word. """ if keyword is None: web.open('https://www.youtube.com/watch?v=L_mBVT2jBFw') else: web.open(quote('https://www.youtube.com/results?search_query={}'.format(keyword), RESERVED))
[ "def", "youtube", "(", "keyword", "=", "None", ")", ":", "if", "keyword", "is", "None", ":", "web", ".", "open", "(", "'https://www.youtube.com/watch?v=L_mBVT2jBFw'", ")", "else", ":", "web", ".", "open", "(", "quote", "(", "'https://www.youtube.com/results?search_query={}'", ".", "format", "(", "keyword", ")", ",", "RESERVED", ")", ")" ]
Open youtube. Args: keyword (optional): Search word.
[ "Open", "youtube", "." ]
train
https://github.com/deshima-dev/decode/blob/e789e174cd316e7ec8bc55be7009ad35baced3c0/decode/joke/functions.py#L21-L30
facelessuser/pyspelling
pyspelling/filters/javascript.py
JavaScriptFilter.setup
def setup(self): """Setup.""" self.blocks = self.config['block_comments'] self.lines = self.config['line_comments'] self.group_comments = self.config['group_comments'] self.jsdocs = self.config['jsdocs'] self.decode_escapes = self.config['decode_escapes'] self.strings = self.config['strings'] self.prefix = 'js'
python
def setup(self): """Setup.""" self.blocks = self.config['block_comments'] self.lines = self.config['line_comments'] self.group_comments = self.config['group_comments'] self.jsdocs = self.config['jsdocs'] self.decode_escapes = self.config['decode_escapes'] self.strings = self.config['strings'] self.prefix = 'js'
[ "def", "setup", "(", "self", ")", ":", "self", ".", "blocks", "=", "self", ".", "config", "[", "'block_comments'", "]", "self", ".", "lines", "=", "self", ".", "config", "[", "'line_comments'", "]", "self", ".", "group_comments", "=", "self", ".", "config", "[", "'group_comments'", "]", "self", ".", "jsdocs", "=", "self", ".", "config", "[", "'jsdocs'", "]", "self", ".", "decode_escapes", "=", "self", ".", "config", "[", "'decode_escapes'", "]", "self", ".", "strings", "=", "self", ".", "config", "[", "'strings'", "]", "self", ".", "prefix", "=", "'js'" ]
Setup.
[ "Setup", "." ]
train
https://github.com/facelessuser/pyspelling/blob/c25d5292cc2687ad65891a12ead43f7182ca8bb3/pyspelling/filters/javascript.py#L71-L80
facelessuser/pyspelling
pyspelling/filters/javascript.py
JavaScriptFilter.replace_escapes
def replace_escapes(self, m): """Replace escapes.""" groups = m.groupdict() esc = m.group(0) if groups.get('special'): value = BACK_SLASH_TRANSLATION[esc] elif groups.get('char'): try: if esc.endswith('}'): value = chr(int(esc[3:-1], 16)) else: value = chr(int(esc[2:], 16)) except Exception: value = esc elif groups.get('oct'): # JavaScript only supports hex range. # So \400 would be \40 + '0' value = int(esc[1:], 8) overflow = '' if value > 255: value = esc[1:-1] overflow + esc[-1] value = chr(value) + overflow elif('other'): value = esc[1:] return value.replace('\x00', '\n')
python
def replace_escapes(self, m): """Replace escapes.""" groups = m.groupdict() esc = m.group(0) if groups.get('special'): value = BACK_SLASH_TRANSLATION[esc] elif groups.get('char'): try: if esc.endswith('}'): value = chr(int(esc[3:-1], 16)) else: value = chr(int(esc[2:], 16)) except Exception: value = esc elif groups.get('oct'): # JavaScript only supports hex range. # So \400 would be \40 + '0' value = int(esc[1:], 8) overflow = '' if value > 255: value = esc[1:-1] overflow + esc[-1] value = chr(value) + overflow elif('other'): value = esc[1:] return value.replace('\x00', '\n')
[ "def", "replace_escapes", "(", "self", ",", "m", ")", ":", "groups", "=", "m", ".", "groupdict", "(", ")", "esc", "=", "m", ".", "group", "(", "0", ")", "if", "groups", ".", "get", "(", "'special'", ")", ":", "value", "=", "BACK_SLASH_TRANSLATION", "[", "esc", "]", "elif", "groups", ".", "get", "(", "'char'", ")", ":", "try", ":", "if", "esc", ".", "endswith", "(", "'}'", ")", ":", "value", "=", "chr", "(", "int", "(", "esc", "[", "3", ":", "-", "1", "]", ",", "16", ")", ")", "else", ":", "value", "=", "chr", "(", "int", "(", "esc", "[", "2", ":", "]", ",", "16", ")", ")", "except", "Exception", ":", "value", "=", "esc", "elif", "groups", ".", "get", "(", "'oct'", ")", ":", "# JavaScript only supports hex range.", "# So \\400 would be \\40 + '0'", "value", "=", "int", "(", "esc", "[", "1", ":", "]", ",", "8", ")", "overflow", "=", "''", "if", "value", ">", "255", ":", "value", "=", "esc", "[", "1", ":", "-", "1", "]", "overflow", "+", "esc", "[", "-", "1", "]", "value", "=", "chr", "(", "value", ")", "+", "overflow", "elif", "(", "'other'", ")", ":", "value", "=", "esc", "[", "1", ":", "]", "return", "value", ".", "replace", "(", "'\\x00'", ",", "'\\n'", ")" ]
Replace escapes.
[ "Replace", "escapes", "." ]
train
https://github.com/facelessuser/pyspelling/blob/c25d5292cc2687ad65891a12ead43f7182ca8bb3/pyspelling/filters/javascript.py#L82-L108
facelessuser/pyspelling
pyspelling/filters/javascript.py
JavaScriptFilter.replace_surrogates
def replace_surrogates(self, m): """Replace surrogates.""" high, low = ord(m.group(1)), ord(m.group(2)) return chr((high - 0xD800) * 0x400 + low - 0xDC00 + 0x10000)
python
def replace_surrogates(self, m): """Replace surrogates.""" high, low = ord(m.group(1)), ord(m.group(2)) return chr((high - 0xD800) * 0x400 + low - 0xDC00 + 0x10000)
[ "def", "replace_surrogates", "(", "self", ",", "m", ")", ":", "high", ",", "low", "=", "ord", "(", "m", ".", "group", "(", "1", ")", ")", ",", "ord", "(", "m", ".", "group", "(", "2", ")", ")", "return", "chr", "(", "(", "high", "-", "0xD800", ")", "*", "0x400", "+", "low", "-", "0xDC00", "+", "0x10000", ")" ]
Replace surrogates.
[ "Replace", "surrogates", "." ]
train
https://github.com/facelessuser/pyspelling/blob/c25d5292cc2687ad65891a12ead43f7182ca8bb3/pyspelling/filters/javascript.py#L110-L114
facelessuser/pyspelling
pyspelling/filters/javascript.py
JavaScriptFilter.evaluate_strings
def evaluate_strings(self, string, temp=False): """Evaluate strings.""" value = '' if self.strings: if self.decode_escapes: value = RE_SURROGATES.sub( self.replace_surrogates, (RE_TEMP_ESC if temp else RE_ESC).sub(self.replace_escapes, string) ) else: value = string if not temp: self.quoted_strings.append([value, self.line_num, 'utf-8']) return value
python
def evaluate_strings(self, string, temp=False): """Evaluate strings.""" value = '' if self.strings: if self.decode_escapes: value = RE_SURROGATES.sub( self.replace_surrogates, (RE_TEMP_ESC if temp else RE_ESC).sub(self.replace_escapes, string) ) else: value = string if not temp: self.quoted_strings.append([value, self.line_num, 'utf-8']) return value
[ "def", "evaluate_strings", "(", "self", ",", "string", ",", "temp", "=", "False", ")", ":", "value", "=", "''", "if", "self", ".", "strings", ":", "if", "self", ".", "decode_escapes", ":", "value", "=", "RE_SURROGATES", ".", "sub", "(", "self", ".", "replace_surrogates", ",", "(", "RE_TEMP_ESC", "if", "temp", "else", "RE_ESC", ")", ".", "sub", "(", "self", ".", "replace_escapes", ",", "string", ")", ")", "else", ":", "value", "=", "string", "if", "not", "temp", ":", "self", ".", "quoted_strings", ".", "append", "(", "[", "value", ",", "self", ".", "line_num", ",", "'utf-8'", "]", ")", "return", "value" ]
Evaluate strings.
[ "Evaluate", "strings", "." ]
train
https://github.com/facelessuser/pyspelling/blob/c25d5292cc2687ad65891a12ead43f7182ca8bb3/pyspelling/filters/javascript.py#L116-L130
facelessuser/pyspelling
pyspelling/filters/javascript.py
JavaScriptFilter.evaluate_block
def evaluate_block(self, comments): """Evaluate block comments.""" if self.jsdocs: m1 = RE_JSDOC.match(comments) if m1: lines = [] for line in m1.group(1).splitlines(True): l = line.lstrip() lines.append(l[1:] if l.startswith('*') else l) self.jsdoc_comments.append([''.join(lines), self.line_num, self.current_encoding]) elif self.blocks: self.block_comments.append([comments[2:-2], self.line_num, self.current_encoding]) elif self.blocks: self.block_comments.append([comments[2:-2], self.line_num, self.current_encoding])
python
def evaluate_block(self, comments): """Evaluate block comments.""" if self.jsdocs: m1 = RE_JSDOC.match(comments) if m1: lines = [] for line in m1.group(1).splitlines(True): l = line.lstrip() lines.append(l[1:] if l.startswith('*') else l) self.jsdoc_comments.append([''.join(lines), self.line_num, self.current_encoding]) elif self.blocks: self.block_comments.append([comments[2:-2], self.line_num, self.current_encoding]) elif self.blocks: self.block_comments.append([comments[2:-2], self.line_num, self.current_encoding])
[ "def", "evaluate_block", "(", "self", ",", "comments", ")", ":", "if", "self", ".", "jsdocs", ":", "m1", "=", "RE_JSDOC", ".", "match", "(", "comments", ")", "if", "m1", ":", "lines", "=", "[", "]", "for", "line", "in", "m1", ".", "group", "(", "1", ")", ".", "splitlines", "(", "True", ")", ":", "l", "=", "line", ".", "lstrip", "(", ")", "lines", ".", "append", "(", "l", "[", "1", ":", "]", "if", "l", ".", "startswith", "(", "'*'", ")", "else", "l", ")", "self", ".", "jsdoc_comments", ".", "append", "(", "[", "''", ".", "join", "(", "lines", ")", ",", "self", ".", "line_num", ",", "self", ".", "current_encoding", "]", ")", "elif", "self", ".", "blocks", ":", "self", ".", "block_comments", ".", "append", "(", "[", "comments", "[", "2", ":", "-", "2", "]", ",", "self", ".", "line_num", ",", "self", ".", "current_encoding", "]", ")", "elif", "self", ".", "blocks", ":", "self", ".", "block_comments", ".", "append", "(", "[", "comments", "[", "2", ":", "-", "2", "]", ",", "self", ".", "line_num", ",", "self", ".", "current_encoding", "]", ")" ]
Evaluate block comments.
[ "Evaluate", "block", "comments", "." ]
train
https://github.com/facelessuser/pyspelling/blob/c25d5292cc2687ad65891a12ead43f7182ca8bb3/pyspelling/filters/javascript.py#L157-L171
facelessuser/pyspelling
pyspelling/filters/javascript.py
JavaScriptFilter.find_content
def find_content(self, text, index=0, backtick=False): """Find content.""" curly_count = 0 last = '\n' self.lines_num = 1 length = len(text) while index < length: start_index = index c = text[index] if c == '{' and backtick: curly_count += 1 elif c == '}' and backtick: if curly_count: curly_count -= 1 else: index += 1 return index elif c == '`': done = False first = True backtick_content = [] start_index = index while not done: m = (RE_TEMPLATE_START if first else RE_TEMPLATE_MIDDLE_END).match(text, index) first = False if m: self.line_num += m.group(0).count('\n') content = self.evaluate_strings(m.group(1), True) if content: backtick_content.append(content) index = m.end(0) if m.group(2) == '${': index = self.find_content(text, index, True) else: done = True else: done = True if backtick_content: self.quoted_strings.append([' '.join(backtick_content), self.line_num, 'utf-8']) elif c in ('\'', '"'): m = RE_STRING.match(text, index) if m: self.evaluate_strings(m.group(0)[1:-1]) self.line_num += m.group(0).count('\n') index = m.end(0) elif c == '\n': self.line_num += 1 elif last == '\n' or c == '/': m = RE_COMMENT.match(text, index) if m: g = m.groupdict() if g['start'] is None: self.evaluate_inline_tail(g) else: self.evaluate_inline(g) index = m.end(0) elif c == '/': m = RE_BLOCK_COMMENT.match(text, index) if m: self.evaluate_block(m.group(0)) self.line_num += m.group(0).count('\n') index = m.end(0) if index == start_index: index += 1 last = text[index - 1]
python
def find_content(self, text, index=0, backtick=False): """Find content.""" curly_count = 0 last = '\n' self.lines_num = 1 length = len(text) while index < length: start_index = index c = text[index] if c == '{' and backtick: curly_count += 1 elif c == '}' and backtick: if curly_count: curly_count -= 1 else: index += 1 return index elif c == '`': done = False first = True backtick_content = [] start_index = index while not done: m = (RE_TEMPLATE_START if first else RE_TEMPLATE_MIDDLE_END).match(text, index) first = False if m: self.line_num += m.group(0).count('\n') content = self.evaluate_strings(m.group(1), True) if content: backtick_content.append(content) index = m.end(0) if m.group(2) == '${': index = self.find_content(text, index, True) else: done = True else: done = True if backtick_content: self.quoted_strings.append([' '.join(backtick_content), self.line_num, 'utf-8']) elif c in ('\'', '"'): m = RE_STRING.match(text, index) if m: self.evaluate_strings(m.group(0)[1:-1]) self.line_num += m.group(0).count('\n') index = m.end(0) elif c == '\n': self.line_num += 1 elif last == '\n' or c == '/': m = RE_COMMENT.match(text, index) if m: g = m.groupdict() if g['start'] is None: self.evaluate_inline_tail(g) else: self.evaluate_inline(g) index = m.end(0) elif c == '/': m = RE_BLOCK_COMMENT.match(text, index) if m: self.evaluate_block(m.group(0)) self.line_num += m.group(0).count('\n') index = m.end(0) if index == start_index: index += 1 last = text[index - 1]
[ "def", "find_content", "(", "self", ",", "text", ",", "index", "=", "0", ",", "backtick", "=", "False", ")", ":", "curly_count", "=", "0", "last", "=", "'\\n'", "self", ".", "lines_num", "=", "1", "length", "=", "len", "(", "text", ")", "while", "index", "<", "length", ":", "start_index", "=", "index", "c", "=", "text", "[", "index", "]", "if", "c", "==", "'{'", "and", "backtick", ":", "curly_count", "+=", "1", "elif", "c", "==", "'}'", "and", "backtick", ":", "if", "curly_count", ":", "curly_count", "-=", "1", "else", ":", "index", "+=", "1", "return", "index", "elif", "c", "==", "'`'", ":", "done", "=", "False", "first", "=", "True", "backtick_content", "=", "[", "]", "start_index", "=", "index", "while", "not", "done", ":", "m", "=", "(", "RE_TEMPLATE_START", "if", "first", "else", "RE_TEMPLATE_MIDDLE_END", ")", ".", "match", "(", "text", ",", "index", ")", "first", "=", "False", "if", "m", ":", "self", ".", "line_num", "+=", "m", ".", "group", "(", "0", ")", ".", "count", "(", "'\\n'", ")", "content", "=", "self", ".", "evaluate_strings", "(", "m", ".", "group", "(", "1", ")", ",", "True", ")", "if", "content", ":", "backtick_content", ".", "append", "(", "content", ")", "index", "=", "m", ".", "end", "(", "0", ")", "if", "m", ".", "group", "(", "2", ")", "==", "'${'", ":", "index", "=", "self", ".", "find_content", "(", "text", ",", "index", ",", "True", ")", "else", ":", "done", "=", "True", "else", ":", "done", "=", "True", "if", "backtick_content", ":", "self", ".", "quoted_strings", ".", "append", "(", "[", "' '", ".", "join", "(", "backtick_content", ")", ",", "self", ".", "line_num", ",", "'utf-8'", "]", ")", "elif", "c", "in", "(", "'\\''", ",", "'\"'", ")", ":", "m", "=", "RE_STRING", ".", "match", "(", "text", ",", "index", ")", "if", "m", ":", "self", ".", "evaluate_strings", "(", "m", ".", "group", "(", "0", ")", "[", "1", ":", "-", "1", "]", ")", "self", ".", "line_num", "+=", "m", ".", "group", "(", "0", ")", ".", "count", "(", "'\\n'", ")", "index", "=", "m", ".", "end", "(", "0", ")", "elif", "c", "==", "'\\n'", ":", "self", ".", "line_num", "+=", "1", "elif", "last", "==", "'\\n'", "or", "c", "==", "'/'", ":", "m", "=", "RE_COMMENT", ".", "match", "(", "text", ",", "index", ")", "if", "m", ":", "g", "=", "m", ".", "groupdict", "(", ")", "if", "g", "[", "'start'", "]", "is", "None", ":", "self", ".", "evaluate_inline_tail", "(", "g", ")", "else", ":", "self", ".", "evaluate_inline", "(", "g", ")", "index", "=", "m", ".", "end", "(", "0", ")", "elif", "c", "==", "'/'", ":", "m", "=", "RE_BLOCK_COMMENT", ".", "match", "(", "text", ",", "index", ")", "if", "m", ":", "self", ".", "evaluate_block", "(", "m", ".", "group", "(", "0", ")", ")", "self", ".", "line_num", "+=", "m", ".", "group", "(", "0", ")", ".", "count", "(", "'\\n'", ")", "index", "=", "m", ".", "end", "(", "0", ")", "if", "index", "==", "start_index", ":", "index", "+=", "1", "last", "=", "text", "[", "index", "-", "1", "]" ]
Find content.
[ "Find", "content", "." ]
train
https://github.com/facelessuser/pyspelling/blob/c25d5292cc2687ad65891a12ead43f7182ca8bb3/pyspelling/filters/javascript.py#L196-L262
facelessuser/pyspelling
pyspelling/plugin.py
Plugin.override_config
def override_config(self, options): """Override the default configuration.""" for k, v in options.items(): # Reject names not in the default configuration if k not in self.config: raise KeyError("'{}' is not a valid option for '{}'".format(k, self.__class__.__name__)) self.validate_options(k, v) self.config[k] = v
python
def override_config(self, options): """Override the default configuration.""" for k, v in options.items(): # Reject names not in the default configuration if k not in self.config: raise KeyError("'{}' is not a valid option for '{}'".format(k, self.__class__.__name__)) self.validate_options(k, v) self.config[k] = v
[ "def", "override_config", "(", "self", ",", "options", ")", ":", "for", "k", ",", "v", "in", "options", ".", "items", "(", ")", ":", "# Reject names not in the default configuration", "if", "k", "not", "in", "self", ".", "config", ":", "raise", "KeyError", "(", "\"'{}' is not a valid option for '{}'\"", ".", "format", "(", "k", ",", "self", ".", "__class__", ".", "__name__", ")", ")", "self", ".", "validate_options", "(", "k", ",", "v", ")", "self", ".", "config", "[", "k", "]", "=", "v" ]
Override the default configuration.
[ "Override", "the", "default", "configuration", "." ]
train
https://github.com/facelessuser/pyspelling/blob/c25d5292cc2687ad65891a12ead43f7182ca8bb3/pyspelling/plugin.py#L33-L41
facelessuser/pyspelling
pyspelling/plugin.py
Plugin.validate_options
def validate_options(self, k, v): """Validate options.""" args = [self.__class__.__name__, k] # Booleans if isinstance(self.config[k], bool) and not isinstance(v, bool): raise ValueError("{}: option '{}' must be a bool type.".format(*args)) # Strings elif isinstance(self.config[k], str) and not isinstance(v, str): raise ValueError("{}: option '{}' must be a str type.".format(*args)) # Integers (whole floats allowed) elif ( isinstance(self.config[k], int) and (not isinstance(v, int) and not (isinstance(v, float) and v.is_integer())) ): raise ValueError("{}: option '{}' must be a int type.".format(*args)) # Floats (integers allowed) elif isinstance(self.config[k], float) and not isinstance(v, (int, float)): raise ValueError("{}: option '{}' must be a float type.".format(*args)) # Basic iterables (list, tuple, sets) elif isinstance(self.config[k], (list, tuple, set)) and not isinstance(v, list): raise ValueError("{}: option '{}' must be a float type.".format(*args)) # Dictionaries elif isinstance(self.config[k], (dict, OrderedDict)) and not isinstance(v, (dict, OrderedDict)): raise ValueError("{}: option '{}' must be a dict type.".format(*args))
python
def validate_options(self, k, v): """Validate options.""" args = [self.__class__.__name__, k] # Booleans if isinstance(self.config[k], bool) and not isinstance(v, bool): raise ValueError("{}: option '{}' must be a bool type.".format(*args)) # Strings elif isinstance(self.config[k], str) and not isinstance(v, str): raise ValueError("{}: option '{}' must be a str type.".format(*args)) # Integers (whole floats allowed) elif ( isinstance(self.config[k], int) and (not isinstance(v, int) and not (isinstance(v, float) and v.is_integer())) ): raise ValueError("{}: option '{}' must be a int type.".format(*args)) # Floats (integers allowed) elif isinstance(self.config[k], float) and not isinstance(v, (int, float)): raise ValueError("{}: option '{}' must be a float type.".format(*args)) # Basic iterables (list, tuple, sets) elif isinstance(self.config[k], (list, tuple, set)) and not isinstance(v, list): raise ValueError("{}: option '{}' must be a float type.".format(*args)) # Dictionaries elif isinstance(self.config[k], (dict, OrderedDict)) and not isinstance(v, (dict, OrderedDict)): raise ValueError("{}: option '{}' must be a dict type.".format(*args))
[ "def", "validate_options", "(", "self", ",", "k", ",", "v", ")", ":", "args", "=", "[", "self", ".", "__class__", ".", "__name__", ",", "k", "]", "# Booleans", "if", "isinstance", "(", "self", ".", "config", "[", "k", "]", ",", "bool", ")", "and", "not", "isinstance", "(", "v", ",", "bool", ")", ":", "raise", "ValueError", "(", "\"{}: option '{}' must be a bool type.\"", ".", "format", "(", "*", "args", ")", ")", "# Strings", "elif", "isinstance", "(", "self", ".", "config", "[", "k", "]", ",", "str", ")", "and", "not", "isinstance", "(", "v", ",", "str", ")", ":", "raise", "ValueError", "(", "\"{}: option '{}' must be a str type.\"", ".", "format", "(", "*", "args", ")", ")", "# Integers (whole floats allowed)", "elif", "(", "isinstance", "(", "self", ".", "config", "[", "k", "]", ",", "int", ")", "and", "(", "not", "isinstance", "(", "v", ",", "int", ")", "and", "not", "(", "isinstance", "(", "v", ",", "float", ")", "and", "v", ".", "is_integer", "(", ")", ")", ")", ")", ":", "raise", "ValueError", "(", "\"{}: option '{}' must be a int type.\"", ".", "format", "(", "*", "args", ")", ")", "# Floats (integers allowed)", "elif", "isinstance", "(", "self", ".", "config", "[", "k", "]", ",", "float", ")", "and", "not", "isinstance", "(", "v", ",", "(", "int", ",", "float", ")", ")", ":", "raise", "ValueError", "(", "\"{}: option '{}' must be a float type.\"", ".", "format", "(", "*", "args", ")", ")", "# Basic iterables (list, tuple, sets)", "elif", "isinstance", "(", "self", ".", "config", "[", "k", "]", ",", "(", "list", ",", "tuple", ",", "set", ")", ")", "and", "not", "isinstance", "(", "v", ",", "list", ")", ":", "raise", "ValueError", "(", "\"{}: option '{}' must be a float type.\"", ".", "format", "(", "*", "args", ")", ")", "# Dictionaries", "elif", "isinstance", "(", "self", ".", "config", "[", "k", "]", ",", "(", "dict", ",", "OrderedDict", ")", ")", "and", "not", "isinstance", "(", "v", ",", "(", "dict", ",", "OrderedDict", ")", ")", ":", "raise", "ValueError", "(", "\"{}: option '{}' must be a dict type.\"", ".", "format", "(", "*", "args", ")", ")" ]
Validate options.
[ "Validate", "options", "." ]
train
https://github.com/facelessuser/pyspelling/blob/c25d5292cc2687ad65891a12ead43f7182ca8bb3/pyspelling/plugin.py#L43-L67
mrcagney/make_gtfs
make_gtfs/main.py
get_duration
def get_duration(timestr1, timestr2, units='s'): """ Return the duration of the time period between the first and second time string in the given units. Allowable units are 's' (seconds), 'min' (minutes), 'h' (hours). Assume ``timestr1 < timestr2``. """ valid_units = ['s', 'min', 'h'] assert units in valid_units,\ "Units must be one of {!s}".format(valid_units) duration = ( gt.timestr_to_seconds(timestr2) - gt.timestr_to_seconds(timestr1) ) if units == 's': return duration elif units == 'min': return duration/60 else: return duration/3600
python
def get_duration(timestr1, timestr2, units='s'): """ Return the duration of the time period between the first and second time string in the given units. Allowable units are 's' (seconds), 'min' (minutes), 'h' (hours). Assume ``timestr1 < timestr2``. """ valid_units = ['s', 'min', 'h'] assert units in valid_units,\ "Units must be one of {!s}".format(valid_units) duration = ( gt.timestr_to_seconds(timestr2) - gt.timestr_to_seconds(timestr1) ) if units == 's': return duration elif units == 'min': return duration/60 else: return duration/3600
[ "def", "get_duration", "(", "timestr1", ",", "timestr2", ",", "units", "=", "'s'", ")", ":", "valid_units", "=", "[", "'s'", ",", "'min'", ",", "'h'", "]", "assert", "units", "in", "valid_units", ",", "\"Units must be one of {!s}\"", ".", "format", "(", "valid_units", ")", "duration", "=", "(", "gt", ".", "timestr_to_seconds", "(", "timestr2", ")", "-", "gt", ".", "timestr_to_seconds", "(", "timestr1", ")", ")", "if", "units", "==", "'s'", ":", "return", "duration", "elif", "units", "==", "'min'", ":", "return", "duration", "/", "60", "else", ":", "return", "duration", "/", "3600" ]
Return the duration of the time period between the first and second time string in the given units. Allowable units are 's' (seconds), 'min' (minutes), 'h' (hours). Assume ``timestr1 < timestr2``.
[ "Return", "the", "duration", "of", "the", "time", "period", "between", "the", "first", "and", "second", "time", "string", "in", "the", "given", "units", ".", "Allowable", "units", "are", "s", "(", "seconds", ")", "min", "(", "minutes", ")", "h", "(", "hours", ")", ".", "Assume", "timestr1", "<", "timestr2", "." ]
train
https://github.com/mrcagney/make_gtfs/blob/37b6f88e03bac708c2e85d6f4b6d48a0c92e4a59/make_gtfs/main.py#L10-L30
mrcagney/make_gtfs
make_gtfs/main.py
build_stop_ids
def build_stop_ids(shape_id): """ Create a pair of stop IDs based on the given shape ID. """ return [cs.SEP.join(['stp', shape_id, str(i)]) for i in range(2)]
python
def build_stop_ids(shape_id): """ Create a pair of stop IDs based on the given shape ID. """ return [cs.SEP.join(['stp', shape_id, str(i)]) for i in range(2)]
[ "def", "build_stop_ids", "(", "shape_id", ")", ":", "return", "[", "cs", ".", "SEP", ".", "join", "(", "[", "'stp'", ",", "shape_id", ",", "str", "(", "i", ")", "]", ")", "for", "i", "in", "range", "(", "2", ")", "]" ]
Create a pair of stop IDs based on the given shape ID.
[ "Create", "a", "pair", "of", "stop", "IDs", "based", "on", "the", "given", "shape", "ID", "." ]
train
https://github.com/mrcagney/make_gtfs/blob/37b6f88e03bac708c2e85d6f4b6d48a0c92e4a59/make_gtfs/main.py#L32-L36
mrcagney/make_gtfs
make_gtfs/main.py
build_agency
def build_agency(pfeed): """ Given a ProtoFeed, return a DataFrame representing ``agency.txt`` """ return pd.DataFrame({ 'agency_name': pfeed.meta['agency_name'].iat[0], 'agency_url': pfeed.meta['agency_url'].iat[0], 'agency_timezone': pfeed.meta['agency_timezone'].iat[0], }, index=[0])
python
def build_agency(pfeed): """ Given a ProtoFeed, return a DataFrame representing ``agency.txt`` """ return pd.DataFrame({ 'agency_name': pfeed.meta['agency_name'].iat[0], 'agency_url': pfeed.meta['agency_url'].iat[0], 'agency_timezone': pfeed.meta['agency_timezone'].iat[0], }, index=[0])
[ "def", "build_agency", "(", "pfeed", ")", ":", "return", "pd", ".", "DataFrame", "(", "{", "'agency_name'", ":", "pfeed", ".", "meta", "[", "'agency_name'", "]", ".", "iat", "[", "0", "]", ",", "'agency_url'", ":", "pfeed", ".", "meta", "[", "'agency_url'", "]", ".", "iat", "[", "0", "]", ",", "'agency_timezone'", ":", "pfeed", ".", "meta", "[", "'agency_timezone'", "]", ".", "iat", "[", "0", "]", ",", "}", ",", "index", "=", "[", "0", "]", ")" ]
Given a ProtoFeed, return a DataFrame representing ``agency.txt``
[ "Given", "a", "ProtoFeed", "return", "a", "DataFrame", "representing", "agency", ".", "txt" ]
train
https://github.com/mrcagney/make_gtfs/blob/37b6f88e03bac708c2e85d6f4b6d48a0c92e4a59/make_gtfs/main.py#L45-L53
mrcagney/make_gtfs
make_gtfs/main.py
build_calendar_etc
def build_calendar_etc(pfeed): """ Given a ProtoFeed, return a DataFrame representing ``calendar.txt`` and a dictionary of the form <service window ID> -> <service ID>, respectively. """ windows = pfeed.service_windows.copy() # Create a service ID for each distinct days_active field and map the # service windows to those service IDs def get_sid(bitlist): return 'srv' + ''.join([str(b) for b in bitlist]) weekdays = ['monday', 'tuesday', 'wednesday', 'thursday', 'friday', 'saturday', 'sunday'] bitlists = set() # Create a dictionary <service window ID> -> <service ID> d = dict() for index, window in windows.iterrows(): bitlist = window[weekdays].tolist() d[window['service_window_id']] = get_sid(bitlist) bitlists.add(tuple(bitlist)) service_by_window = d # Create calendar start_date = pfeed.meta['start_date'].iat[0] end_date = pfeed.meta['end_date'].iat[0] F = [] for bitlist in bitlists: F.append([get_sid(bitlist)] + list(bitlist) + [start_date, end_date]) calendar = pd.DataFrame(F, columns=( ['service_id'] + weekdays + ['start_date', 'end_date'])) return calendar, service_by_window
python
def build_calendar_etc(pfeed): """ Given a ProtoFeed, return a DataFrame representing ``calendar.txt`` and a dictionary of the form <service window ID> -> <service ID>, respectively. """ windows = pfeed.service_windows.copy() # Create a service ID for each distinct days_active field and map the # service windows to those service IDs def get_sid(bitlist): return 'srv' + ''.join([str(b) for b in bitlist]) weekdays = ['monday', 'tuesday', 'wednesday', 'thursday', 'friday', 'saturday', 'sunday'] bitlists = set() # Create a dictionary <service window ID> -> <service ID> d = dict() for index, window in windows.iterrows(): bitlist = window[weekdays].tolist() d[window['service_window_id']] = get_sid(bitlist) bitlists.add(tuple(bitlist)) service_by_window = d # Create calendar start_date = pfeed.meta['start_date'].iat[0] end_date = pfeed.meta['end_date'].iat[0] F = [] for bitlist in bitlists: F.append([get_sid(bitlist)] + list(bitlist) + [start_date, end_date]) calendar = pd.DataFrame(F, columns=( ['service_id'] + weekdays + ['start_date', 'end_date'])) return calendar, service_by_window
[ "def", "build_calendar_etc", "(", "pfeed", ")", ":", "windows", "=", "pfeed", ".", "service_windows", ".", "copy", "(", ")", "# Create a service ID for each distinct days_active field and map the", "# service windows to those service IDs", "def", "get_sid", "(", "bitlist", ")", ":", "return", "'srv'", "+", "''", ".", "join", "(", "[", "str", "(", "b", ")", "for", "b", "in", "bitlist", "]", ")", "weekdays", "=", "[", "'monday'", ",", "'tuesday'", ",", "'wednesday'", ",", "'thursday'", ",", "'friday'", ",", "'saturday'", ",", "'sunday'", "]", "bitlists", "=", "set", "(", ")", "# Create a dictionary <service window ID> -> <service ID>", "d", "=", "dict", "(", ")", "for", "index", ",", "window", "in", "windows", ".", "iterrows", "(", ")", ":", "bitlist", "=", "window", "[", "weekdays", "]", ".", "tolist", "(", ")", "d", "[", "window", "[", "'service_window_id'", "]", "]", "=", "get_sid", "(", "bitlist", ")", "bitlists", ".", "add", "(", "tuple", "(", "bitlist", ")", ")", "service_by_window", "=", "d", "# Create calendar", "start_date", "=", "pfeed", ".", "meta", "[", "'start_date'", "]", ".", "iat", "[", "0", "]", "end_date", "=", "pfeed", ".", "meta", "[", "'end_date'", "]", ".", "iat", "[", "0", "]", "F", "=", "[", "]", "for", "bitlist", "in", "bitlists", ":", "F", ".", "append", "(", "[", "get_sid", "(", "bitlist", ")", "]", "+", "list", "(", "bitlist", ")", "+", "[", "start_date", ",", "end_date", "]", ")", "calendar", "=", "pd", ".", "DataFrame", "(", "F", ",", "columns", "=", "(", "[", "'service_id'", "]", "+", "weekdays", "+", "[", "'start_date'", ",", "'end_date'", "]", ")", ")", "return", "calendar", ",", "service_by_window" ]
Given a ProtoFeed, return a DataFrame representing ``calendar.txt`` and a dictionary of the form <service window ID> -> <service ID>, respectively.
[ "Given", "a", "ProtoFeed", "return", "a", "DataFrame", "representing", "calendar", ".", "txt", "and", "a", "dictionary", "of", "the", "form", "<service", "window", "ID", ">", "-", ">", "<service", "ID", ">", "respectively", "." ]
train
https://github.com/mrcagney/make_gtfs/blob/37b6f88e03bac708c2e85d6f4b6d48a0c92e4a59/make_gtfs/main.py#L55-L90
mrcagney/make_gtfs
make_gtfs/main.py
build_routes
def build_routes(pfeed): """ Given a ProtoFeed, return a DataFrame representing ``routes.txt``. """ f = pfeed.frequencies[['route_short_name', 'route_long_name', 'route_type', 'shape_id']].drop_duplicates().copy() # Create route IDs f['route_id'] = 'r' + f['route_short_name'].map(str) del f['shape_id'] return f
python
def build_routes(pfeed): """ Given a ProtoFeed, return a DataFrame representing ``routes.txt``. """ f = pfeed.frequencies[['route_short_name', 'route_long_name', 'route_type', 'shape_id']].drop_duplicates().copy() # Create route IDs f['route_id'] = 'r' + f['route_short_name'].map(str) del f['shape_id'] return f
[ "def", "build_routes", "(", "pfeed", ")", ":", "f", "=", "pfeed", ".", "frequencies", "[", "[", "'route_short_name'", ",", "'route_long_name'", ",", "'route_type'", ",", "'shape_id'", "]", "]", ".", "drop_duplicates", "(", ")", ".", "copy", "(", ")", "# Create route IDs", "f", "[", "'route_id'", "]", "=", "'r'", "+", "f", "[", "'route_short_name'", "]", ".", "map", "(", "str", ")", "del", "f", "[", "'shape_id'", "]", "return", "f" ]
Given a ProtoFeed, return a DataFrame representing ``routes.txt``.
[ "Given", "a", "ProtoFeed", "return", "a", "DataFrame", "representing", "routes", ".", "txt", "." ]
train
https://github.com/mrcagney/make_gtfs/blob/37b6f88e03bac708c2e85d6f4b6d48a0c92e4a59/make_gtfs/main.py#L92-L104
mrcagney/make_gtfs
make_gtfs/main.py
build_shapes
def build_shapes(pfeed): """ Given a ProtoFeed, return DataFrame representing ``shapes.txt``. Only use shape IDs that occur in both ``pfeed.shapes`` and ``pfeed.frequencies``. Create reversed shapes where routes traverse shapes in both directions. """ rows = [] for shape, geom in pfeed.shapes[['shape_id', 'geometry']].itertuples(index=False): if shape not in pfeed.shapes_extra: continue if pfeed.shapes_extra[shape] == 2: # Add shape and its reverse shid = shape + '-1' new_rows = [[shid, i, lon, lat] for i, (lon, lat) in enumerate(geom.coords)] rows.extend(new_rows) shid = shape + '-0' new_rows = [[shid, i, lon, lat] for i, (lon, lat) in enumerate(reversed(geom.coords))] rows.extend(new_rows) else: # Add shape shid = '{}{}{}'.format(shape, cs.SEP, pfeed.shapes_extra[shape]) new_rows = [[shid, i, lon, lat] for i, (lon, lat) in enumerate(geom.coords)] rows.extend(new_rows) return pd.DataFrame(rows, columns=['shape_id', 'shape_pt_sequence', 'shape_pt_lon', 'shape_pt_lat'])
python
def build_shapes(pfeed): """ Given a ProtoFeed, return DataFrame representing ``shapes.txt``. Only use shape IDs that occur in both ``pfeed.shapes`` and ``pfeed.frequencies``. Create reversed shapes where routes traverse shapes in both directions. """ rows = [] for shape, geom in pfeed.shapes[['shape_id', 'geometry']].itertuples(index=False): if shape not in pfeed.shapes_extra: continue if pfeed.shapes_extra[shape] == 2: # Add shape and its reverse shid = shape + '-1' new_rows = [[shid, i, lon, lat] for i, (lon, lat) in enumerate(geom.coords)] rows.extend(new_rows) shid = shape + '-0' new_rows = [[shid, i, lon, lat] for i, (lon, lat) in enumerate(reversed(geom.coords))] rows.extend(new_rows) else: # Add shape shid = '{}{}{}'.format(shape, cs.SEP, pfeed.shapes_extra[shape]) new_rows = [[shid, i, lon, lat] for i, (lon, lat) in enumerate(geom.coords)] rows.extend(new_rows) return pd.DataFrame(rows, columns=['shape_id', 'shape_pt_sequence', 'shape_pt_lon', 'shape_pt_lat'])
[ "def", "build_shapes", "(", "pfeed", ")", ":", "rows", "=", "[", "]", "for", "shape", ",", "geom", "in", "pfeed", ".", "shapes", "[", "[", "'shape_id'", ",", "'geometry'", "]", "]", ".", "itertuples", "(", "index", "=", "False", ")", ":", "if", "shape", "not", "in", "pfeed", ".", "shapes_extra", ":", "continue", "if", "pfeed", ".", "shapes_extra", "[", "shape", "]", "==", "2", ":", "# Add shape and its reverse", "shid", "=", "shape", "+", "'-1'", "new_rows", "=", "[", "[", "shid", ",", "i", ",", "lon", ",", "lat", "]", "for", "i", ",", "(", "lon", ",", "lat", ")", "in", "enumerate", "(", "geom", ".", "coords", ")", "]", "rows", ".", "extend", "(", "new_rows", ")", "shid", "=", "shape", "+", "'-0'", "new_rows", "=", "[", "[", "shid", ",", "i", ",", "lon", ",", "lat", "]", "for", "i", ",", "(", "lon", ",", "lat", ")", "in", "enumerate", "(", "reversed", "(", "geom", ".", "coords", ")", ")", "]", "rows", ".", "extend", "(", "new_rows", ")", "else", ":", "# Add shape", "shid", "=", "'{}{}{}'", ".", "format", "(", "shape", ",", "cs", ".", "SEP", ",", "pfeed", ".", "shapes_extra", "[", "shape", "]", ")", "new_rows", "=", "[", "[", "shid", ",", "i", ",", "lon", ",", "lat", "]", "for", "i", ",", "(", "lon", ",", "lat", ")", "in", "enumerate", "(", "geom", ".", "coords", ")", "]", "rows", ".", "extend", "(", "new_rows", ")", "return", "pd", ".", "DataFrame", "(", "rows", ",", "columns", "=", "[", "'shape_id'", ",", "'shape_pt_sequence'", ",", "'shape_pt_lon'", ",", "'shape_pt_lat'", "]", ")" ]
Given a ProtoFeed, return DataFrame representing ``shapes.txt``. Only use shape IDs that occur in both ``pfeed.shapes`` and ``pfeed.frequencies``. Create reversed shapes where routes traverse shapes in both directions.
[ "Given", "a", "ProtoFeed", "return", "DataFrame", "representing", "shapes", ".", "txt", ".", "Only", "use", "shape", "IDs", "that", "occur", "in", "both", "pfeed", ".", "shapes", "and", "pfeed", ".", "frequencies", ".", "Create", "reversed", "shapes", "where", "routes", "traverse", "shapes", "in", "both", "directions", "." ]
train
https://github.com/mrcagney/make_gtfs/blob/37b6f88e03bac708c2e85d6f4b6d48a0c92e4a59/make_gtfs/main.py#L106-L137
mrcagney/make_gtfs
make_gtfs/main.py
build_stops
def build_stops(pfeed, shapes=None): """ Given a ProtoFeed, return a DataFrame representing ``stops.txt``. If ``pfeed.stops`` is not ``None``, then return that. Otherwise, require built shapes output by :func:`build_shapes`, create one stop at the beginning (the first point) of each shape and one at the end (the last point) of each shape, and drop stops with duplicate coordinates. Note that this will yield one stop for shapes that are loops. """ if pfeed.stops is not None: stops = pfeed.stops.copy() else: if shapes is None: raise ValueError('Must input shapes built by build_shapes()') geo_shapes = gt.geometrize_shapes(shapes) rows = [] for shape, geom in geo_shapes[['shape_id', 'geometry']].itertuples(index=False): stop_ids = build_stop_ids(shape) stop_names = build_stop_names(shape) for i in range(2): stop_id = stop_ids[i] stop_name = stop_names[i] stop_lon, stop_lat = geom.interpolate(i, normalized=True).coords[0] rows.append([stop_id, stop_name, stop_lon, stop_lat]) stops = ( pd.DataFrame(rows, columns=['stop_id', 'stop_name', 'stop_lon', 'stop_lat']) .drop_duplicates(subset=['stop_lon', 'stop_lat']) ) return stops
python
def build_stops(pfeed, shapes=None): """ Given a ProtoFeed, return a DataFrame representing ``stops.txt``. If ``pfeed.stops`` is not ``None``, then return that. Otherwise, require built shapes output by :func:`build_shapes`, create one stop at the beginning (the first point) of each shape and one at the end (the last point) of each shape, and drop stops with duplicate coordinates. Note that this will yield one stop for shapes that are loops. """ if pfeed.stops is not None: stops = pfeed.stops.copy() else: if shapes is None: raise ValueError('Must input shapes built by build_shapes()') geo_shapes = gt.geometrize_shapes(shapes) rows = [] for shape, geom in geo_shapes[['shape_id', 'geometry']].itertuples(index=False): stop_ids = build_stop_ids(shape) stop_names = build_stop_names(shape) for i in range(2): stop_id = stop_ids[i] stop_name = stop_names[i] stop_lon, stop_lat = geom.interpolate(i, normalized=True).coords[0] rows.append([stop_id, stop_name, stop_lon, stop_lat]) stops = ( pd.DataFrame(rows, columns=['stop_id', 'stop_name', 'stop_lon', 'stop_lat']) .drop_duplicates(subset=['stop_lon', 'stop_lat']) ) return stops
[ "def", "build_stops", "(", "pfeed", ",", "shapes", "=", "None", ")", ":", "if", "pfeed", ".", "stops", "is", "not", "None", ":", "stops", "=", "pfeed", ".", "stops", ".", "copy", "(", ")", "else", ":", "if", "shapes", "is", "None", ":", "raise", "ValueError", "(", "'Must input shapes built by build_shapes()'", ")", "geo_shapes", "=", "gt", ".", "geometrize_shapes", "(", "shapes", ")", "rows", "=", "[", "]", "for", "shape", ",", "geom", "in", "geo_shapes", "[", "[", "'shape_id'", ",", "'geometry'", "]", "]", ".", "itertuples", "(", "index", "=", "False", ")", ":", "stop_ids", "=", "build_stop_ids", "(", "shape", ")", "stop_names", "=", "build_stop_names", "(", "shape", ")", "for", "i", "in", "range", "(", "2", ")", ":", "stop_id", "=", "stop_ids", "[", "i", "]", "stop_name", "=", "stop_names", "[", "i", "]", "stop_lon", ",", "stop_lat", "=", "geom", ".", "interpolate", "(", "i", ",", "normalized", "=", "True", ")", ".", "coords", "[", "0", "]", "rows", ".", "append", "(", "[", "stop_id", ",", "stop_name", ",", "stop_lon", ",", "stop_lat", "]", ")", "stops", "=", "(", "pd", ".", "DataFrame", "(", "rows", ",", "columns", "=", "[", "'stop_id'", ",", "'stop_name'", ",", "'stop_lon'", ",", "'stop_lat'", "]", ")", ".", "drop_duplicates", "(", "subset", "=", "[", "'stop_lon'", ",", "'stop_lat'", "]", ")", ")", "return", "stops" ]
Given a ProtoFeed, return a DataFrame representing ``stops.txt``. If ``pfeed.stops`` is not ``None``, then return that. Otherwise, require built shapes output by :func:`build_shapes`, create one stop at the beginning (the first point) of each shape and one at the end (the last point) of each shape, and drop stops with duplicate coordinates. Note that this will yield one stop for shapes that are loops.
[ "Given", "a", "ProtoFeed", "return", "a", "DataFrame", "representing", "stops", ".", "txt", ".", "If", "pfeed", ".", "stops", "is", "not", "None", "then", "return", "that", ".", "Otherwise", "require", "built", "shapes", "output", "by", ":", "func", ":", "build_shapes", "create", "one", "stop", "at", "the", "beginning", "(", "the", "first", "point", ")", "of", "each", "shape", "and", "one", "at", "the", "end", "(", "the", "last", "point", ")", "of", "each", "shape", "and", "drop", "stops", "with", "duplicate", "coordinates", ".", "Note", "that", "this", "will", "yield", "one", "stop", "for", "shapes", "that", "are", "loops", "." ]
train
https://github.com/mrcagney/make_gtfs/blob/37b6f88e03bac708c2e85d6f4b6d48a0c92e4a59/make_gtfs/main.py#L139-L174
mrcagney/make_gtfs
make_gtfs/main.py
build_trips
def build_trips(pfeed, routes, service_by_window): """ Given a ProtoFeed and its corresponding routes (DataFrame), service-by-window (dictionary), return a DataFrame representing ``trips.txt``. Trip IDs encode route, direction, and service window information to make it easy to compute stop times later. """ # Put together the route and service data routes = pd.merge(routes[['route_id', 'route_short_name']], pfeed.frequencies) routes = pd.merge(routes, pfeed.service_windows) # For each row in routes, add trips at the specified frequency in # the specified direction rows = [] for index, row in routes.iterrows(): shape = row['shape_id'] route = row['route_id'] window = row['service_window_id'] start, end = row[['start_time', 'end_time']].values duration = get_duration(start, end, 'h') frequency = row['frequency'] if not frequency: # No trips during this service window continue # Rounding down occurs here if the duration isn't integral # (bad input) num_trips_per_direction = int(frequency*duration) service = service_by_window[window] direction = row['direction'] if direction == 2: directions = [0, 1] else: directions = [direction] for direction in directions: # Warning: this shape-ID-making logic needs to match that # in ``build_shapes`` shid = '{}{}{}'.format(shape, cs.SEP, direction) rows.extend([[ route, cs.SEP.join(['t', route, window, start, str(direction), str(i)]), direction, shid, service ] for i in range(num_trips_per_direction)]) return pd.DataFrame(rows, columns=['route_id', 'trip_id', 'direction_id', 'shape_id', 'service_id'])
python
def build_trips(pfeed, routes, service_by_window): """ Given a ProtoFeed and its corresponding routes (DataFrame), service-by-window (dictionary), return a DataFrame representing ``trips.txt``. Trip IDs encode route, direction, and service window information to make it easy to compute stop times later. """ # Put together the route and service data routes = pd.merge(routes[['route_id', 'route_short_name']], pfeed.frequencies) routes = pd.merge(routes, pfeed.service_windows) # For each row in routes, add trips at the specified frequency in # the specified direction rows = [] for index, row in routes.iterrows(): shape = row['shape_id'] route = row['route_id'] window = row['service_window_id'] start, end = row[['start_time', 'end_time']].values duration = get_duration(start, end, 'h') frequency = row['frequency'] if not frequency: # No trips during this service window continue # Rounding down occurs here if the duration isn't integral # (bad input) num_trips_per_direction = int(frequency*duration) service = service_by_window[window] direction = row['direction'] if direction == 2: directions = [0, 1] else: directions = [direction] for direction in directions: # Warning: this shape-ID-making logic needs to match that # in ``build_shapes`` shid = '{}{}{}'.format(shape, cs.SEP, direction) rows.extend([[ route, cs.SEP.join(['t', route, window, start, str(direction), str(i)]), direction, shid, service ] for i in range(num_trips_per_direction)]) return pd.DataFrame(rows, columns=['route_id', 'trip_id', 'direction_id', 'shape_id', 'service_id'])
[ "def", "build_trips", "(", "pfeed", ",", "routes", ",", "service_by_window", ")", ":", "# Put together the route and service data", "routes", "=", "pd", ".", "merge", "(", "routes", "[", "[", "'route_id'", ",", "'route_short_name'", "]", "]", ",", "pfeed", ".", "frequencies", ")", "routes", "=", "pd", ".", "merge", "(", "routes", ",", "pfeed", ".", "service_windows", ")", "# For each row in routes, add trips at the specified frequency in", "# the specified direction", "rows", "=", "[", "]", "for", "index", ",", "row", "in", "routes", ".", "iterrows", "(", ")", ":", "shape", "=", "row", "[", "'shape_id'", "]", "route", "=", "row", "[", "'route_id'", "]", "window", "=", "row", "[", "'service_window_id'", "]", "start", ",", "end", "=", "row", "[", "[", "'start_time'", ",", "'end_time'", "]", "]", ".", "values", "duration", "=", "get_duration", "(", "start", ",", "end", ",", "'h'", ")", "frequency", "=", "row", "[", "'frequency'", "]", "if", "not", "frequency", ":", "# No trips during this service window", "continue", "# Rounding down occurs here if the duration isn't integral", "# (bad input)", "num_trips_per_direction", "=", "int", "(", "frequency", "*", "duration", ")", "service", "=", "service_by_window", "[", "window", "]", "direction", "=", "row", "[", "'direction'", "]", "if", "direction", "==", "2", ":", "directions", "=", "[", "0", ",", "1", "]", "else", ":", "directions", "=", "[", "direction", "]", "for", "direction", "in", "directions", ":", "# Warning: this shape-ID-making logic needs to match that", "# in ``build_shapes``", "shid", "=", "'{}{}{}'", ".", "format", "(", "shape", ",", "cs", ".", "SEP", ",", "direction", ")", "rows", ".", "extend", "(", "[", "[", "route", ",", "cs", ".", "SEP", ".", "join", "(", "[", "'t'", ",", "route", ",", "window", ",", "start", ",", "str", "(", "direction", ")", ",", "str", "(", "i", ")", "]", ")", ",", "direction", ",", "shid", ",", "service", "]", "for", "i", "in", "range", "(", "num_trips_per_direction", ")", "]", ")", "return", "pd", ".", "DataFrame", "(", "rows", ",", "columns", "=", "[", "'route_id'", ",", "'trip_id'", ",", "'direction_id'", ",", "'shape_id'", ",", "'service_id'", "]", ")" ]
Given a ProtoFeed and its corresponding routes (DataFrame), service-by-window (dictionary), return a DataFrame representing ``trips.txt``. Trip IDs encode route, direction, and service window information to make it easy to compute stop times later.
[ "Given", "a", "ProtoFeed", "and", "its", "corresponding", "routes", "(", "DataFrame", ")", "service", "-", "by", "-", "window", "(", "dictionary", ")", "return", "a", "DataFrame", "representing", "trips", ".", "txt", ".", "Trip", "IDs", "encode", "route", "direction", "and", "service", "window", "information", "to", "make", "it", "easy", "to", "compute", "stop", "times", "later", "." ]
train
https://github.com/mrcagney/make_gtfs/blob/37b6f88e03bac708c2e85d6f4b6d48a0c92e4a59/make_gtfs/main.py#L176-L225
mrcagney/make_gtfs
make_gtfs/main.py
buffer_side
def buffer_side(linestring, side, buffer): """ Given a Shapely LineString, a side of the LineString (string; 'left' = left hand side of LineString, 'right' = right hand side of LineString, or 'both' = both sides), and a buffer size in the distance units of the LineString, buffer the LineString on the given side by the buffer size and return the resulting Shapely polygon. """ b = linestring.buffer(buffer, cap_style=2) if side in ['left', 'right'] and buffer > 0: # Make a tiny buffer to split the normal-size buffer # in half across the linestring eps = min(buffer/2, 0.001) b0 = linestring.buffer(eps, cap_style=3) diff = b.difference(b0) polys = so.polygonize(diff) # Buffer sides slightly to include original linestring if side == 'left': b = list(polys)[0].buffer(1.1*eps) else: b = list(polys)[-1].buffer(1.1*eps) return b
python
def buffer_side(linestring, side, buffer): """ Given a Shapely LineString, a side of the LineString (string; 'left' = left hand side of LineString, 'right' = right hand side of LineString, or 'both' = both sides), and a buffer size in the distance units of the LineString, buffer the LineString on the given side by the buffer size and return the resulting Shapely polygon. """ b = linestring.buffer(buffer, cap_style=2) if side in ['left', 'right'] and buffer > 0: # Make a tiny buffer to split the normal-size buffer # in half across the linestring eps = min(buffer/2, 0.001) b0 = linestring.buffer(eps, cap_style=3) diff = b.difference(b0) polys = so.polygonize(diff) # Buffer sides slightly to include original linestring if side == 'left': b = list(polys)[0].buffer(1.1*eps) else: b = list(polys)[-1].buffer(1.1*eps) return b
[ "def", "buffer_side", "(", "linestring", ",", "side", ",", "buffer", ")", ":", "b", "=", "linestring", ".", "buffer", "(", "buffer", ",", "cap_style", "=", "2", ")", "if", "side", "in", "[", "'left'", ",", "'right'", "]", "and", "buffer", ">", "0", ":", "# Make a tiny buffer to split the normal-size buffer", "# in half across the linestring", "eps", "=", "min", "(", "buffer", "/", "2", ",", "0.001", ")", "b0", "=", "linestring", ".", "buffer", "(", "eps", ",", "cap_style", "=", "3", ")", "diff", "=", "b", ".", "difference", "(", "b0", ")", "polys", "=", "so", ".", "polygonize", "(", "diff", ")", "# Buffer sides slightly to include original linestring", "if", "side", "==", "'left'", ":", "b", "=", "list", "(", "polys", ")", "[", "0", "]", ".", "buffer", "(", "1.1", "*", "eps", ")", "else", ":", "b", "=", "list", "(", "polys", ")", "[", "-", "1", "]", ".", "buffer", "(", "1.1", "*", "eps", ")", "return", "b" ]
Given a Shapely LineString, a side of the LineString (string; 'left' = left hand side of LineString, 'right' = right hand side of LineString, or 'both' = both sides), and a buffer size in the distance units of the LineString, buffer the LineString on the given side by the buffer size and return the resulting Shapely polygon.
[ "Given", "a", "Shapely", "LineString", "a", "side", "of", "the", "LineString", "(", "string", ";", "left", "=", "left", "hand", "side", "of", "LineString", "right", "=", "right", "hand", "side", "of", "LineString", "or", "both", "=", "both", "sides", ")", "and", "a", "buffer", "size", "in", "the", "distance", "units", "of", "the", "LineString", "buffer", "the", "LineString", "on", "the", "given", "side", "by", "the", "buffer", "size", "and", "return", "the", "resulting", "Shapely", "polygon", "." ]
train
https://github.com/mrcagney/make_gtfs/blob/37b6f88e03bac708c2e85d6f4b6d48a0c92e4a59/make_gtfs/main.py#L227-L250
mrcagney/make_gtfs
make_gtfs/main.py
get_nearby_stops
def get_nearby_stops(geo_stops, linestring, side, buffer=cs.BUFFER): """ Given a GeoDataFrame of stops, a Shapely LineString in the same coordinate system, a side of the LineString (string; 'left' = left hand side of LineString, 'right' = right hand side of LineString, or 'both' = both sides), and a buffer in the distance units of that coordinate system, do the following. Return a GeoDataFrame of all the stops that lie within ``buffer`` distance units to the ``side`` of the LineString. """ b = buffer_side(linestring, side, buffer) # Collect stops return geo_stops.loc[geo_stops.intersects(b)].copy()
python
def get_nearby_stops(geo_stops, linestring, side, buffer=cs.BUFFER): """ Given a GeoDataFrame of stops, a Shapely LineString in the same coordinate system, a side of the LineString (string; 'left' = left hand side of LineString, 'right' = right hand side of LineString, or 'both' = both sides), and a buffer in the distance units of that coordinate system, do the following. Return a GeoDataFrame of all the stops that lie within ``buffer`` distance units to the ``side`` of the LineString. """ b = buffer_side(linestring, side, buffer) # Collect stops return geo_stops.loc[geo_stops.intersects(b)].copy()
[ "def", "get_nearby_stops", "(", "geo_stops", ",", "linestring", ",", "side", ",", "buffer", "=", "cs", ".", "BUFFER", ")", ":", "b", "=", "buffer_side", "(", "linestring", ",", "side", ",", "buffer", ")", "# Collect stops", "return", "geo_stops", ".", "loc", "[", "geo_stops", ".", "intersects", "(", "b", ")", "]", ".", "copy", "(", ")" ]
Given a GeoDataFrame of stops, a Shapely LineString in the same coordinate system, a side of the LineString (string; 'left' = left hand side of LineString, 'right' = right hand side of LineString, or 'both' = both sides), and a buffer in the distance units of that coordinate system, do the following. Return a GeoDataFrame of all the stops that lie within ``buffer`` distance units to the ``side`` of the LineString.
[ "Given", "a", "GeoDataFrame", "of", "stops", "a", "Shapely", "LineString", "in", "the", "same", "coordinate", "system", "a", "side", "of", "the", "LineString", "(", "string", ";", "left", "=", "left", "hand", "side", "of", "LineString", "right", "=", "right", "hand", "side", "of", "LineString", "or", "both", "=", "both", "sides", ")", "and", "a", "buffer", "in", "the", "distance", "units", "of", "that", "coordinate", "system", "do", "the", "following", ".", "Return", "a", "GeoDataFrame", "of", "all", "the", "stops", "that", "lie", "within", "buffer", "distance", "units", "to", "the", "side", "of", "the", "LineString", "." ]
train
https://github.com/mrcagney/make_gtfs/blob/37b6f88e03bac708c2e85d6f4b6d48a0c92e4a59/make_gtfs/main.py#L252-L266
mrcagney/make_gtfs
make_gtfs/main.py
build_stop_times
def build_stop_times(pfeed, routes, shapes, stops, trips, buffer=cs.BUFFER): """ Given a ProtoFeed and its corresponding routes (DataFrame), shapes (DataFrame), stops (DataFrame), trips (DataFrame), return DataFrame representing ``stop_times.txt``. Includes the optional ``shape_dist_traveled`` column. Don't make stop times for trips with no nearby stops. """ # Get the table of trips and add frequency and service window details routes = ( routes .filter(['route_id', 'route_short_name']) .merge(pfeed.frequencies.drop(['shape_id'], axis=1)) ) trips = ( trips .assign(service_window_id=lambda x: x.trip_id.map( lambda y: y.split(cs.SEP)[2])) .merge(routes) ) # Get the geometries of ``shapes`` and not ``pfeed.shapes`` geometry_by_shape = dict( gt.geometrize_shapes(shapes, use_utm=True) .filter(['shape_id', 'geometry']) .values ) # Save on distance computations by memoizing dist_by_stop_by_shape = {shape: {} for shape in geometry_by_shape} def compute_stops_dists_times(geo_stops, linestring, shape, start_time, end_time): """ Given a GeoDataFrame of stops on one side of a given Shapely LineString with given shape ID, compute distances and departure times of a trip traversing the LineString from start to end at the given start and end times (in seconds past midnight) and stopping at the stops encountered along the way. Do not assume that the stops are ordered by trip encounter. Return three lists of the same length: the stop IDs in order that the trip encounters them, the shape distances traveled along distances at the stops, and the times the stops are encountered, respectively. """ g = geo_stops.copy() dists_and_stops = [] for i, stop in enumerate(g['stop_id'].values): if stop in dist_by_stop_by_shape[shape]: d = dist_by_stop_by_shape[shape][stop] else: d = gt.get_segment_length(linestring, g.geometry.iat[i])/1000 # km dist_by_stop_by_shape[shape][stop] = d dists_and_stops.append((d, stop)) dists, stops = zip(*sorted(dists_and_stops)) D = linestring.length/1000 dists_are_reasonable = all([d < D + 100 for d in dists]) if not dists_are_reasonable: # Assume equal distances between stops :-( n = len(stops) delta = D/(n - 1) dists = [i*delta for i in range(n)] # Compute times using distances, start and end stop times, # and linear interpolation t0, t1 = start_time, end_time d0, d1 = dists[0], dists[-1] # Interpolate times = np.interp(dists, [d0, d1], [t0, t1]) return stops, dists, times # Iterate through trips and set stop times based on stop ID # and service window frequency. # Remember that every trip has a valid shape ID. # Gather stops geographically from ``stops``. rows = [] geo_stops = gt.geometrize_stops(stops, use_utm=True) # Look on the side of the traffic side of street for this timezone side = cs.traffic_by_timezone[pfeed.meta.agency_timezone.iat[0]] for index, row in trips.iterrows(): shape = row['shape_id'] geom = geometry_by_shape[shape] stops = get_nearby_stops(geo_stops, geom, side, buffer=buffer) # Don't make stop times for trips without nearby stops if stops.empty: continue length = geom.length/1000 # km speed = row['speed'] # km/h duration = int((length/speed)*3600) # seconds frequency = row['frequency'] if not frequency: # No stop times for this trip/frequency combo continue headway = 3600/frequency # seconds trip = row['trip_id'] __, route, window, base_timestr, direction, i = ( trip.split(cs.SEP)) direction = int(direction) base_time = gt.timestr_to_seconds(base_timestr) start_time = base_time + headway*int(i) end_time = start_time + duration stops, dists, times = compute_stops_dists_times(stops, geom, shape, start_time, end_time) new_rows = [[trip, stop, j, time, time, dist] for j, (stop, time, dist) in enumerate(zip(stops, times, dists))] rows.extend(new_rows) g = pd.DataFrame(rows, columns=['trip_id', 'stop_id', 'stop_sequence', 'arrival_time', 'departure_time', 'shape_dist_traveled']) # Convert seconds back to time strings g[['arrival_time', 'departure_time']] =\ g[['arrival_time', 'departure_time']].applymap( lambda x: gt.timestr_to_seconds(x, inverse=True)) return g
python
def build_stop_times(pfeed, routes, shapes, stops, trips, buffer=cs.BUFFER): """ Given a ProtoFeed and its corresponding routes (DataFrame), shapes (DataFrame), stops (DataFrame), trips (DataFrame), return DataFrame representing ``stop_times.txt``. Includes the optional ``shape_dist_traveled`` column. Don't make stop times for trips with no nearby stops. """ # Get the table of trips and add frequency and service window details routes = ( routes .filter(['route_id', 'route_short_name']) .merge(pfeed.frequencies.drop(['shape_id'], axis=1)) ) trips = ( trips .assign(service_window_id=lambda x: x.trip_id.map( lambda y: y.split(cs.SEP)[2])) .merge(routes) ) # Get the geometries of ``shapes`` and not ``pfeed.shapes`` geometry_by_shape = dict( gt.geometrize_shapes(shapes, use_utm=True) .filter(['shape_id', 'geometry']) .values ) # Save on distance computations by memoizing dist_by_stop_by_shape = {shape: {} for shape in geometry_by_shape} def compute_stops_dists_times(geo_stops, linestring, shape, start_time, end_time): """ Given a GeoDataFrame of stops on one side of a given Shapely LineString with given shape ID, compute distances and departure times of a trip traversing the LineString from start to end at the given start and end times (in seconds past midnight) and stopping at the stops encountered along the way. Do not assume that the stops are ordered by trip encounter. Return three lists of the same length: the stop IDs in order that the trip encounters them, the shape distances traveled along distances at the stops, and the times the stops are encountered, respectively. """ g = geo_stops.copy() dists_and_stops = [] for i, stop in enumerate(g['stop_id'].values): if stop in dist_by_stop_by_shape[shape]: d = dist_by_stop_by_shape[shape][stop] else: d = gt.get_segment_length(linestring, g.geometry.iat[i])/1000 # km dist_by_stop_by_shape[shape][stop] = d dists_and_stops.append((d, stop)) dists, stops = zip(*sorted(dists_and_stops)) D = linestring.length/1000 dists_are_reasonable = all([d < D + 100 for d in dists]) if not dists_are_reasonable: # Assume equal distances between stops :-( n = len(stops) delta = D/(n - 1) dists = [i*delta for i in range(n)] # Compute times using distances, start and end stop times, # and linear interpolation t0, t1 = start_time, end_time d0, d1 = dists[0], dists[-1] # Interpolate times = np.interp(dists, [d0, d1], [t0, t1]) return stops, dists, times # Iterate through trips and set stop times based on stop ID # and service window frequency. # Remember that every trip has a valid shape ID. # Gather stops geographically from ``stops``. rows = [] geo_stops = gt.geometrize_stops(stops, use_utm=True) # Look on the side of the traffic side of street for this timezone side = cs.traffic_by_timezone[pfeed.meta.agency_timezone.iat[0]] for index, row in trips.iterrows(): shape = row['shape_id'] geom = geometry_by_shape[shape] stops = get_nearby_stops(geo_stops, geom, side, buffer=buffer) # Don't make stop times for trips without nearby stops if stops.empty: continue length = geom.length/1000 # km speed = row['speed'] # km/h duration = int((length/speed)*3600) # seconds frequency = row['frequency'] if not frequency: # No stop times for this trip/frequency combo continue headway = 3600/frequency # seconds trip = row['trip_id'] __, route, window, base_timestr, direction, i = ( trip.split(cs.SEP)) direction = int(direction) base_time = gt.timestr_to_seconds(base_timestr) start_time = base_time + headway*int(i) end_time = start_time + duration stops, dists, times = compute_stops_dists_times(stops, geom, shape, start_time, end_time) new_rows = [[trip, stop, j, time, time, dist] for j, (stop, time, dist) in enumerate(zip(stops, times, dists))] rows.extend(new_rows) g = pd.DataFrame(rows, columns=['trip_id', 'stop_id', 'stop_sequence', 'arrival_time', 'departure_time', 'shape_dist_traveled']) # Convert seconds back to time strings g[['arrival_time', 'departure_time']] =\ g[['arrival_time', 'departure_time']].applymap( lambda x: gt.timestr_to_seconds(x, inverse=True)) return g
[ "def", "build_stop_times", "(", "pfeed", ",", "routes", ",", "shapes", ",", "stops", ",", "trips", ",", "buffer", "=", "cs", ".", "BUFFER", ")", ":", "# Get the table of trips and add frequency and service window details", "routes", "=", "(", "routes", ".", "filter", "(", "[", "'route_id'", ",", "'route_short_name'", "]", ")", ".", "merge", "(", "pfeed", ".", "frequencies", ".", "drop", "(", "[", "'shape_id'", "]", ",", "axis", "=", "1", ")", ")", ")", "trips", "=", "(", "trips", ".", "assign", "(", "service_window_id", "=", "lambda", "x", ":", "x", ".", "trip_id", ".", "map", "(", "lambda", "y", ":", "y", ".", "split", "(", "cs", ".", "SEP", ")", "[", "2", "]", ")", ")", ".", "merge", "(", "routes", ")", ")", "# Get the geometries of ``shapes`` and not ``pfeed.shapes``", "geometry_by_shape", "=", "dict", "(", "gt", ".", "geometrize_shapes", "(", "shapes", ",", "use_utm", "=", "True", ")", ".", "filter", "(", "[", "'shape_id'", ",", "'geometry'", "]", ")", ".", "values", ")", "# Save on distance computations by memoizing", "dist_by_stop_by_shape", "=", "{", "shape", ":", "{", "}", "for", "shape", "in", "geometry_by_shape", "}", "def", "compute_stops_dists_times", "(", "geo_stops", ",", "linestring", ",", "shape", ",", "start_time", ",", "end_time", ")", ":", "\"\"\"\n Given a GeoDataFrame of stops on one side of a given Shapely\n LineString with given shape ID, compute distances and departure\n times of a trip traversing the LineString from start to end\n at the given start and end times (in seconds past midnight)\n and stopping at the stops encountered along the way.\n Do not assume that the stops are ordered by trip encounter.\n Return three lists of the same length: the stop IDs in order\n that the trip encounters them, the shape distances traveled\n along distances at the stops, and the times the stops are\n encountered, respectively.\n \"\"\"", "g", "=", "geo_stops", ".", "copy", "(", ")", "dists_and_stops", "=", "[", "]", "for", "i", ",", "stop", "in", "enumerate", "(", "g", "[", "'stop_id'", "]", ".", "values", ")", ":", "if", "stop", "in", "dist_by_stop_by_shape", "[", "shape", "]", ":", "d", "=", "dist_by_stop_by_shape", "[", "shape", "]", "[", "stop", "]", "else", ":", "d", "=", "gt", ".", "get_segment_length", "(", "linestring", ",", "g", ".", "geometry", ".", "iat", "[", "i", "]", ")", "/", "1000", "# km", "dist_by_stop_by_shape", "[", "shape", "]", "[", "stop", "]", "=", "d", "dists_and_stops", ".", "append", "(", "(", "d", ",", "stop", ")", ")", "dists", ",", "stops", "=", "zip", "(", "*", "sorted", "(", "dists_and_stops", ")", ")", "D", "=", "linestring", ".", "length", "/", "1000", "dists_are_reasonable", "=", "all", "(", "[", "d", "<", "D", "+", "100", "for", "d", "in", "dists", "]", ")", "if", "not", "dists_are_reasonable", ":", "# Assume equal distances between stops :-(", "n", "=", "len", "(", "stops", ")", "delta", "=", "D", "/", "(", "n", "-", "1", ")", "dists", "=", "[", "i", "*", "delta", "for", "i", "in", "range", "(", "n", ")", "]", "# Compute times using distances, start and end stop times,", "# and linear interpolation", "t0", ",", "t1", "=", "start_time", ",", "end_time", "d0", ",", "d1", "=", "dists", "[", "0", "]", ",", "dists", "[", "-", "1", "]", "# Interpolate", "times", "=", "np", ".", "interp", "(", "dists", ",", "[", "d0", ",", "d1", "]", ",", "[", "t0", ",", "t1", "]", ")", "return", "stops", ",", "dists", ",", "times", "# Iterate through trips and set stop times based on stop ID", "# and service window frequency.", "# Remember that every trip has a valid shape ID.", "# Gather stops geographically from ``stops``.", "rows", "=", "[", "]", "geo_stops", "=", "gt", ".", "geometrize_stops", "(", "stops", ",", "use_utm", "=", "True", ")", "# Look on the side of the traffic side of street for this timezone", "side", "=", "cs", ".", "traffic_by_timezone", "[", "pfeed", ".", "meta", ".", "agency_timezone", ".", "iat", "[", "0", "]", "]", "for", "index", ",", "row", "in", "trips", ".", "iterrows", "(", ")", ":", "shape", "=", "row", "[", "'shape_id'", "]", "geom", "=", "geometry_by_shape", "[", "shape", "]", "stops", "=", "get_nearby_stops", "(", "geo_stops", ",", "geom", ",", "side", ",", "buffer", "=", "buffer", ")", "# Don't make stop times for trips without nearby stops", "if", "stops", ".", "empty", ":", "continue", "length", "=", "geom", ".", "length", "/", "1000", "# km", "speed", "=", "row", "[", "'speed'", "]", "# km/h", "duration", "=", "int", "(", "(", "length", "/", "speed", ")", "*", "3600", ")", "# seconds", "frequency", "=", "row", "[", "'frequency'", "]", "if", "not", "frequency", ":", "# No stop times for this trip/frequency combo", "continue", "headway", "=", "3600", "/", "frequency", "# seconds", "trip", "=", "row", "[", "'trip_id'", "]", "__", ",", "route", ",", "window", ",", "base_timestr", ",", "direction", ",", "i", "=", "(", "trip", ".", "split", "(", "cs", ".", "SEP", ")", ")", "direction", "=", "int", "(", "direction", ")", "base_time", "=", "gt", ".", "timestr_to_seconds", "(", "base_timestr", ")", "start_time", "=", "base_time", "+", "headway", "*", "int", "(", "i", ")", "end_time", "=", "start_time", "+", "duration", "stops", ",", "dists", ",", "times", "=", "compute_stops_dists_times", "(", "stops", ",", "geom", ",", "shape", ",", "start_time", ",", "end_time", ")", "new_rows", "=", "[", "[", "trip", ",", "stop", ",", "j", ",", "time", ",", "time", ",", "dist", "]", "for", "j", ",", "(", "stop", ",", "time", ",", "dist", ")", "in", "enumerate", "(", "zip", "(", "stops", ",", "times", ",", "dists", ")", ")", "]", "rows", ".", "extend", "(", "new_rows", ")", "g", "=", "pd", ".", "DataFrame", "(", "rows", ",", "columns", "=", "[", "'trip_id'", ",", "'stop_id'", ",", "'stop_sequence'", ",", "'arrival_time'", ",", "'departure_time'", ",", "'shape_dist_traveled'", "]", ")", "# Convert seconds back to time strings", "g", "[", "[", "'arrival_time'", ",", "'departure_time'", "]", "]", "=", "g", "[", "[", "'arrival_time'", ",", "'departure_time'", "]", "]", ".", "applymap", "(", "lambda", "x", ":", "gt", ".", "timestr_to_seconds", "(", "x", ",", "inverse", "=", "True", ")", ")", "return", "g" ]
Given a ProtoFeed and its corresponding routes (DataFrame), shapes (DataFrame), stops (DataFrame), trips (DataFrame), return DataFrame representing ``stop_times.txt``. Includes the optional ``shape_dist_traveled`` column. Don't make stop times for trips with no nearby stops.
[ "Given", "a", "ProtoFeed", "and", "its", "corresponding", "routes", "(", "DataFrame", ")", "shapes", "(", "DataFrame", ")", "stops", "(", "DataFrame", ")", "trips", "(", "DataFrame", ")", "return", "DataFrame", "representing", "stop_times", ".", "txt", ".", "Includes", "the", "optional", "shape_dist_traveled", "column", ".", "Don", "t", "make", "stop", "times", "for", "trips", "with", "no", "nearby", "stops", "." ]
train
https://github.com/mrcagney/make_gtfs/blob/37b6f88e03bac708c2e85d6f4b6d48a0c92e4a59/make_gtfs/main.py#L268-L384
j0ack/flask-codemirror
flask_codemirror/widgets.py
CodeMirrorWidget._generate_content
def _generate_content(self): """Dumps content using JSON to send to CodeMirror""" # concat into a dict dic = self.config dic['mode'] = self.language if self.theme: dic['theme'] = self.theme # dumps with json return json.dumps(dic, indent=8, separators=(',', ': '))
python
def _generate_content(self): """Dumps content using JSON to send to CodeMirror""" # concat into a dict dic = self.config dic['mode'] = self.language if self.theme: dic['theme'] = self.theme # dumps with json return json.dumps(dic, indent=8, separators=(',', ': '))
[ "def", "_generate_content", "(", "self", ")", ":", "# concat into a dict", "dic", "=", "self", ".", "config", "dic", "[", "'mode'", "]", "=", "self", ".", "language", "if", "self", ".", "theme", ":", "dic", "[", "'theme'", "]", "=", "self", ".", "theme", "# dumps with json", "return", "json", ".", "dumps", "(", "dic", ",", "indent", "=", "8", ",", "separators", "=", "(", "','", ",", "': '", ")", ")" ]
Dumps content using JSON to send to CodeMirror
[ "Dumps", "content", "using", "JSON", "to", "send", "to", "CodeMirror" ]
train
https://github.com/j0ack/flask-codemirror/blob/81ad831ff849b60bb34de5db727ad626ff3c9bdc/flask_codemirror/widgets.py#L70-L78
KeithSSmith/switcheo-python
switcheo/public_client.py
PublicClient.get_token_details
def get_token_details(self, show_listing_details=False, show_inactive=False): """ Function to fetch the available tokens available to trade on the Switcheo exchange. Execution of this function is as follows:: get_token_details() get_token_details(show_listing_details=True) get_token_details(show_inactive=True) get_token_details(show_listing_details=True, show_inactive=True) The expected return result for this function is as follows:: { 'NEO': { 'hash': 'c56f33fc6ecfcd0c225c4ab356fee59390af8560be0e930faebe74a6daff7c9b', 'decimals': 8 }, 'GAS': { 'hash': '602c79718b16e442de58778e148d0b1084e3b2dffd5de6b7b16cee7969282de7', 'decimals': 8 }, 'SWTH': { 'hash': 'ab38352559b8b203bde5fddfa0b07d8b2525e132', 'decimals': 8 }, ... } :param show_listing_details: Parameter flag to indicate whether or not to show the token listing details. :type show_listing_details: bool :param show_inactive: Flag to return the tokens that are no longer traded on the Switcheo Exchange. :type show_inactive: bool :return: Dictionary in the form of a JSON message with the available tokens for trade on the Switcheo exchange. """ api_params = { "show_listing_details": show_listing_details, "show_inactive": show_inactive } return self.request.get(path='/exchange/tokens', params=api_params)
python
def get_token_details(self, show_listing_details=False, show_inactive=False): """ Function to fetch the available tokens available to trade on the Switcheo exchange. Execution of this function is as follows:: get_token_details() get_token_details(show_listing_details=True) get_token_details(show_inactive=True) get_token_details(show_listing_details=True, show_inactive=True) The expected return result for this function is as follows:: { 'NEO': { 'hash': 'c56f33fc6ecfcd0c225c4ab356fee59390af8560be0e930faebe74a6daff7c9b', 'decimals': 8 }, 'GAS': { 'hash': '602c79718b16e442de58778e148d0b1084e3b2dffd5de6b7b16cee7969282de7', 'decimals': 8 }, 'SWTH': { 'hash': 'ab38352559b8b203bde5fddfa0b07d8b2525e132', 'decimals': 8 }, ... } :param show_listing_details: Parameter flag to indicate whether or not to show the token listing details. :type show_listing_details: bool :param show_inactive: Flag to return the tokens that are no longer traded on the Switcheo Exchange. :type show_inactive: bool :return: Dictionary in the form of a JSON message with the available tokens for trade on the Switcheo exchange. """ api_params = { "show_listing_details": show_listing_details, "show_inactive": show_inactive } return self.request.get(path='/exchange/tokens', params=api_params)
[ "def", "get_token_details", "(", "self", ",", "show_listing_details", "=", "False", ",", "show_inactive", "=", "False", ")", ":", "api_params", "=", "{", "\"show_listing_details\"", ":", "show_listing_details", ",", "\"show_inactive\"", ":", "show_inactive", "}", "return", "self", ".", "request", ".", "get", "(", "path", "=", "'/exchange/tokens'", ",", "params", "=", "api_params", ")" ]
Function to fetch the available tokens available to trade on the Switcheo exchange. Execution of this function is as follows:: get_token_details() get_token_details(show_listing_details=True) get_token_details(show_inactive=True) get_token_details(show_listing_details=True, show_inactive=True) The expected return result for this function is as follows:: { 'NEO': { 'hash': 'c56f33fc6ecfcd0c225c4ab356fee59390af8560be0e930faebe74a6daff7c9b', 'decimals': 8 }, 'GAS': { 'hash': '602c79718b16e442de58778e148d0b1084e3b2dffd5de6b7b16cee7969282de7', 'decimals': 8 }, 'SWTH': { 'hash': 'ab38352559b8b203bde5fddfa0b07d8b2525e132', 'decimals': 8 }, ... } :param show_listing_details: Parameter flag to indicate whether or not to show the token listing details. :type show_listing_details: bool :param show_inactive: Flag to return the tokens that are no longer traded on the Switcheo Exchange. :type show_inactive: bool :return: Dictionary in the form of a JSON message with the available tokens for trade on the Switcheo exchange.
[ "Function", "to", "fetch", "the", "available", "tokens", "available", "to", "trade", "on", "the", "Switcheo", "exchange", ".", "Execution", "of", "this", "function", "is", "as", "follows", "::" ]
train
https://github.com/KeithSSmith/switcheo-python/blob/22f943dea1ad7d692b2bfcd9f0822ec80f4641a6/switcheo/public_client.py#L94-L132
KeithSSmith/switcheo-python
switcheo/public_client.py
PublicClient.get_candlesticks
def get_candlesticks(self, pair, start_time, end_time, interval): """ Function to fetch trading metrics from the past 24 hours for all trading pairs offered on the exchange. Execution of this function is as follows:: get_candlesticks(pair="SWTH_NEO", start_time=round(time.time()) - 350000, end_time=round(time.time()), interval=360)) The expected return result for this function is as follows:: [{ 'time': '1533168000', 'open': '0.00046835', 'close': '0.00046835', 'high': '0.00046835', 'low': '0.00046835', 'volume': '240315335.0', 'quote_volume': '513110569018.0' },{ 'time': '1533081600', 'open': '0.00046835', 'close': '0.00046835', 'high': '0.00046835', 'low': '0.00046835', 'volume': '1170875.0', 'quote_volume': '2500000000.0' }, ... ] :param pair: The trading pair used to request candle statistics. :type pair: str :param start_time: The start time (in epoch seconds) range for collecting candle statistics. :type start_time: int :param end_time: The end time (in epoch seconds) range for collecting candle statistics. :type end_time: int :param interval: The time interval (in minutes) for candle statistics. Allowed values: 1, 5, 30, 60, 360, 1440 :type interval: int :return: List of dictionaries containing the candles statistics based on the parameter filters. """ api_params = { "pair": pair, "interval": interval, "start_time": start_time, "end_time": end_time, "contract_hash": self.contract_hash } return self.request.get(path='/tickers/candlesticks', params=api_params)
python
def get_candlesticks(self, pair, start_time, end_time, interval): """ Function to fetch trading metrics from the past 24 hours for all trading pairs offered on the exchange. Execution of this function is as follows:: get_candlesticks(pair="SWTH_NEO", start_time=round(time.time()) - 350000, end_time=round(time.time()), interval=360)) The expected return result for this function is as follows:: [{ 'time': '1533168000', 'open': '0.00046835', 'close': '0.00046835', 'high': '0.00046835', 'low': '0.00046835', 'volume': '240315335.0', 'quote_volume': '513110569018.0' },{ 'time': '1533081600', 'open': '0.00046835', 'close': '0.00046835', 'high': '0.00046835', 'low': '0.00046835', 'volume': '1170875.0', 'quote_volume': '2500000000.0' }, ... ] :param pair: The trading pair used to request candle statistics. :type pair: str :param start_time: The start time (in epoch seconds) range for collecting candle statistics. :type start_time: int :param end_time: The end time (in epoch seconds) range for collecting candle statistics. :type end_time: int :param interval: The time interval (in minutes) for candle statistics. Allowed values: 1, 5, 30, 60, 360, 1440 :type interval: int :return: List of dictionaries containing the candles statistics based on the parameter filters. """ api_params = { "pair": pair, "interval": interval, "start_time": start_time, "end_time": end_time, "contract_hash": self.contract_hash } return self.request.get(path='/tickers/candlesticks', params=api_params)
[ "def", "get_candlesticks", "(", "self", ",", "pair", ",", "start_time", ",", "end_time", ",", "interval", ")", ":", "api_params", "=", "{", "\"pair\"", ":", "pair", ",", "\"interval\"", ":", "interval", ",", "\"start_time\"", ":", "start_time", ",", "\"end_time\"", ":", "end_time", ",", "\"contract_hash\"", ":", "self", ".", "contract_hash", "}", "return", "self", ".", "request", ".", "get", "(", "path", "=", "'/tickers/candlesticks'", ",", "params", "=", "api_params", ")" ]
Function to fetch trading metrics from the past 24 hours for all trading pairs offered on the exchange. Execution of this function is as follows:: get_candlesticks(pair="SWTH_NEO", start_time=round(time.time()) - 350000, end_time=round(time.time()), interval=360)) The expected return result for this function is as follows:: [{ 'time': '1533168000', 'open': '0.00046835', 'close': '0.00046835', 'high': '0.00046835', 'low': '0.00046835', 'volume': '240315335.0', 'quote_volume': '513110569018.0' },{ 'time': '1533081600', 'open': '0.00046835', 'close': '0.00046835', 'high': '0.00046835', 'low': '0.00046835', 'volume': '1170875.0', 'quote_volume': '2500000000.0' }, ... ] :param pair: The trading pair used to request candle statistics. :type pair: str :param start_time: The start time (in epoch seconds) range for collecting candle statistics. :type start_time: int :param end_time: The end time (in epoch seconds) range for collecting candle statistics. :type end_time: int :param interval: The time interval (in minutes) for candle statistics. Allowed values: 1, 5, 30, 60, 360, 1440 :type interval: int :return: List of dictionaries containing the candles statistics based on the parameter filters.
[ "Function", "to", "fetch", "trading", "metrics", "from", "the", "past", "24", "hours", "for", "all", "trading", "pairs", "offered", "on", "the", "exchange", ".", "Execution", "of", "this", "function", "is", "as", "follows", "::" ]
train
https://github.com/KeithSSmith/switcheo-python/blob/22f943dea1ad7d692b2bfcd9f0822ec80f4641a6/switcheo/public_client.py#L134-L183
KeithSSmith/switcheo-python
switcheo/public_client.py
PublicClient.get_last_price
def get_last_price(self, symbols=None, bases=None): """ Function to fetch the most recently executed trade on the order book for each trading pair. Execution of this function is as follows:: get_last_price() get_last_price(symbols=['SWTH','GAS']) get_last_price(bases=['NEO']) get_last_price(symbols=['SWTH','GAS'], bases=['NEO']) The expected return result for this function is as follows:: { 'SWTH': { 'GAS': '0.0015085', 'NEO': '0.00040911' }, 'GAS': { 'NEO': '0.30391642' }, .... } :param symbols: The trading symbols to retrieve the last price on the Switcheo Exchange. :type symbols: list :param bases: The base pair to retrieve the last price of symbols on the Switcheo Exchange. :type bases: list :return: Dictionary of trade symbols with the most recently executed trade price. """ api_params = {} if symbols is not None: api_params['symbols'] = symbols if bases is not None: api_params['bases'] = bases return self.request.get(path='/tickers/last_price', params=api_params)
python
def get_last_price(self, symbols=None, bases=None): """ Function to fetch the most recently executed trade on the order book for each trading pair. Execution of this function is as follows:: get_last_price() get_last_price(symbols=['SWTH','GAS']) get_last_price(bases=['NEO']) get_last_price(symbols=['SWTH','GAS'], bases=['NEO']) The expected return result for this function is as follows:: { 'SWTH': { 'GAS': '0.0015085', 'NEO': '0.00040911' }, 'GAS': { 'NEO': '0.30391642' }, .... } :param symbols: The trading symbols to retrieve the last price on the Switcheo Exchange. :type symbols: list :param bases: The base pair to retrieve the last price of symbols on the Switcheo Exchange. :type bases: list :return: Dictionary of trade symbols with the most recently executed trade price. """ api_params = {} if symbols is not None: api_params['symbols'] = symbols if bases is not None: api_params['bases'] = bases return self.request.get(path='/tickers/last_price', params=api_params)
[ "def", "get_last_price", "(", "self", ",", "symbols", "=", "None", ",", "bases", "=", "None", ")", ":", "api_params", "=", "{", "}", "if", "symbols", "is", "not", "None", ":", "api_params", "[", "'symbols'", "]", "=", "symbols", "if", "bases", "is", "not", "None", ":", "api_params", "[", "'bases'", "]", "=", "bases", "return", "self", ".", "request", ".", "get", "(", "path", "=", "'/tickers/last_price'", ",", "params", "=", "api_params", ")" ]
Function to fetch the most recently executed trade on the order book for each trading pair. Execution of this function is as follows:: get_last_price() get_last_price(symbols=['SWTH','GAS']) get_last_price(bases=['NEO']) get_last_price(symbols=['SWTH','GAS'], bases=['NEO']) The expected return result for this function is as follows:: { 'SWTH': { 'GAS': '0.0015085', 'NEO': '0.00040911' }, 'GAS': { 'NEO': '0.30391642' }, .... } :param symbols: The trading symbols to retrieve the last price on the Switcheo Exchange. :type symbols: list :param bases: The base pair to retrieve the last price of symbols on the Switcheo Exchange. :type bases: list :return: Dictionary of trade symbols with the most recently executed trade price.
[ "Function", "to", "fetch", "the", "most", "recently", "executed", "trade", "on", "the", "order", "book", "for", "each", "trading", "pair", ".", "Execution", "of", "this", "function", "is", "as", "follows", "::" ]
train
https://github.com/KeithSSmith/switcheo-python/blob/22f943dea1ad7d692b2bfcd9f0822ec80f4641a6/switcheo/public_client.py#L218-L252
KeithSSmith/switcheo-python
switcheo/public_client.py
PublicClient.get_offers
def get_offers(self, pair="SWTH_NEO"): """ Function to fetch the open orders on the order book for the trade pair requested. Execution of this function is as follows:: get_offers(pair="SWTH_NEO") The expected return result for this function is as follows:: [{ 'id': '2716c0ca-59bb-4c86-8ee4-6b9528d0e5d2', 'offer_asset': 'GAS', 'want_asset': 'NEO', 'available_amount': 9509259, 'offer_amount': 30000000, 'want_amount': 300000000, 'address': '7f345d1a031c4099540dbbbc220d4e5640ab2b6f' }, { .... }] :param pair: The trading pair that will be used to request open offers on the order book. :type pair: str :return: List of dictionaries consisting of the open offers for the requested trading pair. """ api_params = { "pair": pair, "contract_hash": self.contract_hash } return self.request.get(path='/offers', params=api_params)
python
def get_offers(self, pair="SWTH_NEO"): """ Function to fetch the open orders on the order book for the trade pair requested. Execution of this function is as follows:: get_offers(pair="SWTH_NEO") The expected return result for this function is as follows:: [{ 'id': '2716c0ca-59bb-4c86-8ee4-6b9528d0e5d2', 'offer_asset': 'GAS', 'want_asset': 'NEO', 'available_amount': 9509259, 'offer_amount': 30000000, 'want_amount': 300000000, 'address': '7f345d1a031c4099540dbbbc220d4e5640ab2b6f' }, { .... }] :param pair: The trading pair that will be used to request open offers on the order book. :type pair: str :return: List of dictionaries consisting of the open offers for the requested trading pair. """ api_params = { "pair": pair, "contract_hash": self.contract_hash } return self.request.get(path='/offers', params=api_params)
[ "def", "get_offers", "(", "self", ",", "pair", "=", "\"SWTH_NEO\"", ")", ":", "api_params", "=", "{", "\"pair\"", ":", "pair", ",", "\"contract_hash\"", ":", "self", ".", "contract_hash", "}", "return", "self", ".", "request", ".", "get", "(", "path", "=", "'/offers'", ",", "params", "=", "api_params", ")" ]
Function to fetch the open orders on the order book for the trade pair requested. Execution of this function is as follows:: get_offers(pair="SWTH_NEO") The expected return result for this function is as follows:: [{ 'id': '2716c0ca-59bb-4c86-8ee4-6b9528d0e5d2', 'offer_asset': 'GAS', 'want_asset': 'NEO', 'available_amount': 9509259, 'offer_amount': 30000000, 'want_amount': 300000000, 'address': '7f345d1a031c4099540dbbbc220d4e5640ab2b6f' }, { .... }] :param pair: The trading pair that will be used to request open offers on the order book. :type pair: str :return: List of dictionaries consisting of the open offers for the requested trading pair.
[ "Function", "to", "fetch", "the", "open", "orders", "on", "the", "order", "book", "for", "the", "trade", "pair", "requested", ".", "Execution", "of", "this", "function", "is", "as", "follows", "::" ]
train
https://github.com/KeithSSmith/switcheo-python/blob/22f943dea1ad7d692b2bfcd9f0822ec80f4641a6/switcheo/public_client.py#L254-L283
KeithSSmith/switcheo-python
switcheo/public_client.py
PublicClient.get_trades
def get_trades(self, pair="SWTH_NEO", start_time=None, end_time=None, limit=5000): """ Function to fetch a list of filled trades for the parameters requested. Execution of this function is as follows:: get_trades(pair="SWTH_NEO", limit=3) The expected return result for this function is as follows:: [{ 'id': '15bb16e2-7a80-4de1-bb59-bcaff877dee0', 'fill_amount': 100000000, 'take_amount': 100000000, 'event_time': '2018-08-04T15:00:12.634Z', 'is_buy': True }, { 'id': 'b6f9e530-60ff-46ff-9a71-362097a2025e', 'fill_amount': 47833882, 'take_amount': 97950000000, 'event_time': '2018-08-03T02:44:47.706Z', 'is_buy': True }, { 'id': '7a308ccc-b7f5-46a3-bf6b-752ab076cc9f', 'fill_amount': 1001117, 'take_amount': 2050000000, 'event_time': '2018-08-03T02:32:50.703Z', 'is_buy': True }] :param pair: The trading pair that will be used to request filled trades. :type pair: str :param start_time: Only return trades after this time (in epoch seconds). :type start_time: int :param end_time: Only return trades before this time (in epoch seconds). :type end_time: int :param limit: The number of filled trades to return. Min: 1, Max: 10000, Default: 5000 :type limit: int :return: List of dictionaries consisting of filled orders that meet requirements of the parameters passed to it. """ if limit > 10000 or limit < 1: raise ValueError("Attempting to request more trades than allowed by the API.") api_params = { "blockchain": self.blockchain, "pair": pair, "contract_hash": self.contract_hash } if start_time is not None: api_params['from'] = start_time if end_time is not None: api_params['to'] = end_time if limit != 5000: api_params['limit'] = limit return self.request.get(path='/trades', params=api_params)
python
def get_trades(self, pair="SWTH_NEO", start_time=None, end_time=None, limit=5000): """ Function to fetch a list of filled trades for the parameters requested. Execution of this function is as follows:: get_trades(pair="SWTH_NEO", limit=3) The expected return result for this function is as follows:: [{ 'id': '15bb16e2-7a80-4de1-bb59-bcaff877dee0', 'fill_amount': 100000000, 'take_amount': 100000000, 'event_time': '2018-08-04T15:00:12.634Z', 'is_buy': True }, { 'id': 'b6f9e530-60ff-46ff-9a71-362097a2025e', 'fill_amount': 47833882, 'take_amount': 97950000000, 'event_time': '2018-08-03T02:44:47.706Z', 'is_buy': True }, { 'id': '7a308ccc-b7f5-46a3-bf6b-752ab076cc9f', 'fill_amount': 1001117, 'take_amount': 2050000000, 'event_time': '2018-08-03T02:32:50.703Z', 'is_buy': True }] :param pair: The trading pair that will be used to request filled trades. :type pair: str :param start_time: Only return trades after this time (in epoch seconds). :type start_time: int :param end_time: Only return trades before this time (in epoch seconds). :type end_time: int :param limit: The number of filled trades to return. Min: 1, Max: 10000, Default: 5000 :type limit: int :return: List of dictionaries consisting of filled orders that meet requirements of the parameters passed to it. """ if limit > 10000 or limit < 1: raise ValueError("Attempting to request more trades than allowed by the API.") api_params = { "blockchain": self.blockchain, "pair": pair, "contract_hash": self.contract_hash } if start_time is not None: api_params['from'] = start_time if end_time is not None: api_params['to'] = end_time if limit != 5000: api_params['limit'] = limit return self.request.get(path='/trades', params=api_params)
[ "def", "get_trades", "(", "self", ",", "pair", "=", "\"SWTH_NEO\"", ",", "start_time", "=", "None", ",", "end_time", "=", "None", ",", "limit", "=", "5000", ")", ":", "if", "limit", ">", "10000", "or", "limit", "<", "1", ":", "raise", "ValueError", "(", "\"Attempting to request more trades than allowed by the API.\"", ")", "api_params", "=", "{", "\"blockchain\"", ":", "self", ".", "blockchain", ",", "\"pair\"", ":", "pair", ",", "\"contract_hash\"", ":", "self", ".", "contract_hash", "}", "if", "start_time", "is", "not", "None", ":", "api_params", "[", "'from'", "]", "=", "start_time", "if", "end_time", "is", "not", "None", ":", "api_params", "[", "'to'", "]", "=", "end_time", "if", "limit", "!=", "5000", ":", "api_params", "[", "'limit'", "]", "=", "limit", "return", "self", ".", "request", ".", "get", "(", "path", "=", "'/trades'", ",", "params", "=", "api_params", ")" ]
Function to fetch a list of filled trades for the parameters requested. Execution of this function is as follows:: get_trades(pair="SWTH_NEO", limit=3) The expected return result for this function is as follows:: [{ 'id': '15bb16e2-7a80-4de1-bb59-bcaff877dee0', 'fill_amount': 100000000, 'take_amount': 100000000, 'event_time': '2018-08-04T15:00:12.634Z', 'is_buy': True }, { 'id': 'b6f9e530-60ff-46ff-9a71-362097a2025e', 'fill_amount': 47833882, 'take_amount': 97950000000, 'event_time': '2018-08-03T02:44:47.706Z', 'is_buy': True }, { 'id': '7a308ccc-b7f5-46a3-bf6b-752ab076cc9f', 'fill_amount': 1001117, 'take_amount': 2050000000, 'event_time': '2018-08-03T02:32:50.703Z', 'is_buy': True }] :param pair: The trading pair that will be used to request filled trades. :type pair: str :param start_time: Only return trades after this time (in epoch seconds). :type start_time: int :param end_time: Only return trades before this time (in epoch seconds). :type end_time: int :param limit: The number of filled trades to return. Min: 1, Max: 10000, Default: 5000 :type limit: int :return: List of dictionaries consisting of filled orders that meet requirements of the parameters passed to it.
[ "Function", "to", "fetch", "a", "list", "of", "filled", "trades", "for", "the", "parameters", "requested", ".", "Execution", "of", "this", "function", "is", "as", "follows", "::" ]
train
https://github.com/KeithSSmith/switcheo-python/blob/22f943dea1ad7d692b2bfcd9f0822ec80f4641a6/switcheo/public_client.py#L325-L377
KeithSSmith/switcheo-python
switcheo/public_client.py
PublicClient.get_recent_trades
def get_recent_trades(self, pair="SWTH_NEO"): """ Function to fetch a list of the 20 most recently filled trades for the parameters requested. Execution of this function is as follows:: get_recent_trades(pair="SWTH_NEO") The expected return result for this function is as follows:: [{ 'id': '15bb16e2-7a80-4de1-bb59-bcaff877dee0', 'fill_amount': 100000000, 'take_amount': 100000000, 'event_time': '2018-08-04T15:00:12.634Z', 'is_buy': True }, { 'id': 'b6f9e530-60ff-46ff-9a71-362097a2025e', 'fill_amount': 47833882, 'take_amount': 97950000000, 'event_time': '2018-08-03T02:44:47.706Z', 'is_buy': True }, ...., { 'id': '7a308ccc-b7f5-46a3-bf6b-752ab076cc9f', 'fill_amount': 1001117, 'take_amount': 2050000000, 'event_time': '2018-08-03T02:32:50.703Z', 'is_buy': True }] :param pair: The trading pair that will be used to request filled trades. :type pair: str :return: List of 20 dictionaries consisting of filled orders for the trade pair. """ api_params = { "pair": pair } return self.request.get(path='/trades/recent', params=api_params)
python
def get_recent_trades(self, pair="SWTH_NEO"): """ Function to fetch a list of the 20 most recently filled trades for the parameters requested. Execution of this function is as follows:: get_recent_trades(pair="SWTH_NEO") The expected return result for this function is as follows:: [{ 'id': '15bb16e2-7a80-4de1-bb59-bcaff877dee0', 'fill_amount': 100000000, 'take_amount': 100000000, 'event_time': '2018-08-04T15:00:12.634Z', 'is_buy': True }, { 'id': 'b6f9e530-60ff-46ff-9a71-362097a2025e', 'fill_amount': 47833882, 'take_amount': 97950000000, 'event_time': '2018-08-03T02:44:47.706Z', 'is_buy': True }, ...., { 'id': '7a308ccc-b7f5-46a3-bf6b-752ab076cc9f', 'fill_amount': 1001117, 'take_amount': 2050000000, 'event_time': '2018-08-03T02:32:50.703Z', 'is_buy': True }] :param pair: The trading pair that will be used to request filled trades. :type pair: str :return: List of 20 dictionaries consisting of filled orders for the trade pair. """ api_params = { "pair": pair } return self.request.get(path='/trades/recent', params=api_params)
[ "def", "get_recent_trades", "(", "self", ",", "pair", "=", "\"SWTH_NEO\"", ")", ":", "api_params", "=", "{", "\"pair\"", ":", "pair", "}", "return", "self", ".", "request", ".", "get", "(", "path", "=", "'/trades/recent'", ",", "params", "=", "api_params", ")" ]
Function to fetch a list of the 20 most recently filled trades for the parameters requested. Execution of this function is as follows:: get_recent_trades(pair="SWTH_NEO") The expected return result for this function is as follows:: [{ 'id': '15bb16e2-7a80-4de1-bb59-bcaff877dee0', 'fill_amount': 100000000, 'take_amount': 100000000, 'event_time': '2018-08-04T15:00:12.634Z', 'is_buy': True }, { 'id': 'b6f9e530-60ff-46ff-9a71-362097a2025e', 'fill_amount': 47833882, 'take_amount': 97950000000, 'event_time': '2018-08-03T02:44:47.706Z', 'is_buy': True }, ...., { 'id': '7a308ccc-b7f5-46a3-bf6b-752ab076cc9f', 'fill_amount': 1001117, 'take_amount': 2050000000, 'event_time': '2018-08-03T02:32:50.703Z', 'is_buy': True }] :param pair: The trading pair that will be used to request filled trades. :type pair: str :return: List of 20 dictionaries consisting of filled orders for the trade pair.
[ "Function", "to", "fetch", "a", "list", "of", "the", "20", "most", "recently", "filled", "trades", "for", "the", "parameters", "requested", ".", "Execution", "of", "this", "function", "is", "as", "follows", "::" ]
train
https://github.com/KeithSSmith/switcheo-python/blob/22f943dea1ad7d692b2bfcd9f0822ec80f4641a6/switcheo/public_client.py#L379-L415
KeithSSmith/switcheo-python
switcheo/public_client.py
PublicClient.get_pairs
def get_pairs(self, base=None, show_details=False): """ Function to fetch a list of trading pairs offered on the Switcheo decentralized exchange. Execution of this function is as follows:: get_pairs() # Fetch all pairs get_pairs(base="SWTH") # Fetch only SWTH base pairs get_pairs(show_details=True) # Fetch all pairs with extended information !Attention return value changes! The expected return result for this function is as follows:: [ 'GAS_NEO', 'SWTH_NEO', 'MCT_NEO', 'NKN_NEO', .... 'SWTH_GAS', 'MCT_GAS', 'NKN_GAS', .... 'MCT_SWTH', 'NKN_SWTH' ] If you use the show_details parameter the server return a list with dictionaries as follows:: [ {'name': 'GAS_NEO', 'precision': 3}, {'name': 'SWTH_NEO', 'precision': 6}, {'name': 'ACAT_NEO', 'precision': 8}, {'name': 'APH_NEO', 'precision': 5}, {'name': 'ASA_NEO', 'precision': 8}, .... ] :param base: The base trade pair to optionally filter available trade pairs. :type base: str :param show_details: Extended information for the pairs. :type show_details: bool :return: List of trade pairs available for trade on Switcheo. """ api_params = {} if show_details: api_params["show_details"] = show_details if base is not None and base in ["NEO", "GAS", "SWTH", "USD", "ETH"]: api_params["bases"] = [base] return self.request.get(path='/exchange/pairs', params=api_params)
python
def get_pairs(self, base=None, show_details=False): """ Function to fetch a list of trading pairs offered on the Switcheo decentralized exchange. Execution of this function is as follows:: get_pairs() # Fetch all pairs get_pairs(base="SWTH") # Fetch only SWTH base pairs get_pairs(show_details=True) # Fetch all pairs with extended information !Attention return value changes! The expected return result for this function is as follows:: [ 'GAS_NEO', 'SWTH_NEO', 'MCT_NEO', 'NKN_NEO', .... 'SWTH_GAS', 'MCT_GAS', 'NKN_GAS', .... 'MCT_SWTH', 'NKN_SWTH' ] If you use the show_details parameter the server return a list with dictionaries as follows:: [ {'name': 'GAS_NEO', 'precision': 3}, {'name': 'SWTH_NEO', 'precision': 6}, {'name': 'ACAT_NEO', 'precision': 8}, {'name': 'APH_NEO', 'precision': 5}, {'name': 'ASA_NEO', 'precision': 8}, .... ] :param base: The base trade pair to optionally filter available trade pairs. :type base: str :param show_details: Extended information for the pairs. :type show_details: bool :return: List of trade pairs available for trade on Switcheo. """ api_params = {} if show_details: api_params["show_details"] = show_details if base is not None and base in ["NEO", "GAS", "SWTH", "USD", "ETH"]: api_params["bases"] = [base] return self.request.get(path='/exchange/pairs', params=api_params)
[ "def", "get_pairs", "(", "self", ",", "base", "=", "None", ",", "show_details", "=", "False", ")", ":", "api_params", "=", "{", "}", "if", "show_details", ":", "api_params", "[", "\"show_details\"", "]", "=", "show_details", "if", "base", "is", "not", "None", "and", "base", "in", "[", "\"NEO\"", ",", "\"GAS\"", ",", "\"SWTH\"", ",", "\"USD\"", ",", "\"ETH\"", "]", ":", "api_params", "[", "\"bases\"", "]", "=", "[", "base", "]", "return", "self", ".", "request", ".", "get", "(", "path", "=", "'/exchange/pairs'", ",", "params", "=", "api_params", ")" ]
Function to fetch a list of trading pairs offered on the Switcheo decentralized exchange. Execution of this function is as follows:: get_pairs() # Fetch all pairs get_pairs(base="SWTH") # Fetch only SWTH base pairs get_pairs(show_details=True) # Fetch all pairs with extended information !Attention return value changes! The expected return result for this function is as follows:: [ 'GAS_NEO', 'SWTH_NEO', 'MCT_NEO', 'NKN_NEO', .... 'SWTH_GAS', 'MCT_GAS', 'NKN_GAS', .... 'MCT_SWTH', 'NKN_SWTH' ] If you use the show_details parameter the server return a list with dictionaries as follows:: [ {'name': 'GAS_NEO', 'precision': 3}, {'name': 'SWTH_NEO', 'precision': 6}, {'name': 'ACAT_NEO', 'precision': 8}, {'name': 'APH_NEO', 'precision': 5}, {'name': 'ASA_NEO', 'precision': 8}, .... ] :param base: The base trade pair to optionally filter available trade pairs. :type base: str :param show_details: Extended information for the pairs. :type show_details: bool :return: List of trade pairs available for trade on Switcheo.
[ "Function", "to", "fetch", "a", "list", "of", "trading", "pairs", "offered", "on", "the", "Switcheo", "decentralized", "exchange", ".", "Execution", "of", "this", "function", "is", "as", "follows", "::" ]
train
https://github.com/KeithSSmith/switcheo-python/blob/22f943dea1ad7d692b2bfcd9f0822ec80f4641a6/switcheo/public_client.py#L417-L464
KeithSSmith/switcheo-python
switcheo/public_client.py
PublicClient.get_orders
def get_orders(self, address, chain_name='NEO', contract_version='V2', pair=None, from_epoch_time=None, order_status=None, before_id=None, limit=50): """ Function to fetch the order history of the given address. Execution of this function is as follows:: get_orders(address=neo_get_scripthash_from_address(address=address)) The expected return result for this function is as follows:: [{ 'id': '7cbdf481-6acf-4bf3-a1ed-4773f31e6931', 'blockchain': 'neo', 'contract_hash': 'a195c1549e7da61b8da315765a790ac7e7633b82', 'address': 'fea2b883725ef2d194c9060f606cd0a0468a2c59', 'side': 'buy', 'offer_asset_id': 'c56f33fc6ecfcd0c225c4ab356fee59390af8560be0e930faebe74a6daff7c9b', 'want_asset_id': 'ab38352559b8b203bde5fddfa0b07d8b2525e132', 'offer_amount': '53718500', 'want_amount': '110000000000', 'transfer_amount': '0', 'priority_gas_amount': '0', 'use_native_token': True, 'native_fee_transfer_amount': 0, 'deposit_txn': None, 'created_at': '2018-08-03T02:44:47.692Z', 'status': 'processed', 'fills': [{ 'id': 'b6f9e530-60ff-46ff-9a71-362097a2025e', 'offer_hash': '95b3b03be0bff8f58aa86a8dd599700bbaeaffc05078329d5b726b6b995f4cda', 'offer_asset_id': 'c56f33fc6ecfcd0c225c4ab356fee59390af8560be0e930faebe74a6daff7c9b', 'want_asset_id': 'ab38352559b8b203bde5fddfa0b07d8b2525e132', 'fill_amount': '47833882', 'want_amount': '97950000000', 'filled_amount': '', 'fee_asset_id': 'ab38352559b8b203bde5fddfa0b07d8b2525e132', 'fee_amount': '73462500', 'price': '0.00048835', 'txn': None, 'status': 'success', 'created_at': '2018-08-03T02:44:47.706Z', 'transaction_hash': '694745a09e33845ec008cfb79c73986a556e619799ec73274f82b30d85bda13a' }], 'makes': [{ 'id': '357088a0-cc80-49ab-acdd-980589c2d7d8', 'offer_hash': '420cc85abf02feaceb1bcd91489a0c1949c972d2a9a05ae922fa15d79de80c00', 'available_amount': '0', 'offer_asset_id': 'c56f33fc6ecfcd0c225c4ab356fee59390af8560be0e930faebe74a6daff7c9b', 'offer_amount': '5884618', 'want_asset_id': 'ab38352559b8b203bde5fddfa0b07d8b2525e132', 'want_amount': '12050000000', 'filled_amount': '0.0', 'txn': None, 'cancel_txn': None, 'price': '0.000488350041493775933609958506224066390041494', 'status': 'cancelled', 'created_at': '2018-08-03T02:44:47.708Z', 'transaction_hash': '1afa946546550151bbbd19f197a87cec92e9be58c44ec431cae42076298548b7', 'trades': [] }] }, { .... }] :param address: The ScriptHash of the address to filter orders for. :type address: str :param pair: The trading pair to filter order requests on. :type pair: str :param chain_name: The name of the chain to find orders against. :type chain_name: str :param contract_version: The version of the contract to find orders against. :type contract_version: str :param from_epoch_time: Only return orders that are last updated at or after this time. :type from_epoch_time: int :param order_status: Only return orders have this status. Possible values are open, cancelled, completed. :type order_status: str :param before_id: Only return orders that are created before the order with this id. :type before_id: str :param limit: Only return up to this number of orders (min: 1, max: 200, default: 50). :type limit: int :return: List of dictionaries containing the orders for the given NEO address and (optional) trading pair. """ api_params = { "address": address, "contract_hash": self.get_contracts()[chain_name.upper()][contract_version.upper()], "limit": limit } if pair is not None: api_params['pair'] = pair if from_epoch_time is not None: api_params['from_epoch_time'] = from_epoch_time if order_status is not None: api_params['order_status'] = order_status if before_id is not None: api_params['before_id'] = before_id return self.request.get(path='/orders', params=api_params)
python
def get_orders(self, address, chain_name='NEO', contract_version='V2', pair=None, from_epoch_time=None, order_status=None, before_id=None, limit=50): """ Function to fetch the order history of the given address. Execution of this function is as follows:: get_orders(address=neo_get_scripthash_from_address(address=address)) The expected return result for this function is as follows:: [{ 'id': '7cbdf481-6acf-4bf3-a1ed-4773f31e6931', 'blockchain': 'neo', 'contract_hash': 'a195c1549e7da61b8da315765a790ac7e7633b82', 'address': 'fea2b883725ef2d194c9060f606cd0a0468a2c59', 'side': 'buy', 'offer_asset_id': 'c56f33fc6ecfcd0c225c4ab356fee59390af8560be0e930faebe74a6daff7c9b', 'want_asset_id': 'ab38352559b8b203bde5fddfa0b07d8b2525e132', 'offer_amount': '53718500', 'want_amount': '110000000000', 'transfer_amount': '0', 'priority_gas_amount': '0', 'use_native_token': True, 'native_fee_transfer_amount': 0, 'deposit_txn': None, 'created_at': '2018-08-03T02:44:47.692Z', 'status': 'processed', 'fills': [{ 'id': 'b6f9e530-60ff-46ff-9a71-362097a2025e', 'offer_hash': '95b3b03be0bff8f58aa86a8dd599700bbaeaffc05078329d5b726b6b995f4cda', 'offer_asset_id': 'c56f33fc6ecfcd0c225c4ab356fee59390af8560be0e930faebe74a6daff7c9b', 'want_asset_id': 'ab38352559b8b203bde5fddfa0b07d8b2525e132', 'fill_amount': '47833882', 'want_amount': '97950000000', 'filled_amount': '', 'fee_asset_id': 'ab38352559b8b203bde5fddfa0b07d8b2525e132', 'fee_amount': '73462500', 'price': '0.00048835', 'txn': None, 'status': 'success', 'created_at': '2018-08-03T02:44:47.706Z', 'transaction_hash': '694745a09e33845ec008cfb79c73986a556e619799ec73274f82b30d85bda13a' }], 'makes': [{ 'id': '357088a0-cc80-49ab-acdd-980589c2d7d8', 'offer_hash': '420cc85abf02feaceb1bcd91489a0c1949c972d2a9a05ae922fa15d79de80c00', 'available_amount': '0', 'offer_asset_id': 'c56f33fc6ecfcd0c225c4ab356fee59390af8560be0e930faebe74a6daff7c9b', 'offer_amount': '5884618', 'want_asset_id': 'ab38352559b8b203bde5fddfa0b07d8b2525e132', 'want_amount': '12050000000', 'filled_amount': '0.0', 'txn': None, 'cancel_txn': None, 'price': '0.000488350041493775933609958506224066390041494', 'status': 'cancelled', 'created_at': '2018-08-03T02:44:47.708Z', 'transaction_hash': '1afa946546550151bbbd19f197a87cec92e9be58c44ec431cae42076298548b7', 'trades': [] }] }, { .... }] :param address: The ScriptHash of the address to filter orders for. :type address: str :param pair: The trading pair to filter order requests on. :type pair: str :param chain_name: The name of the chain to find orders against. :type chain_name: str :param contract_version: The version of the contract to find orders against. :type contract_version: str :param from_epoch_time: Only return orders that are last updated at or after this time. :type from_epoch_time: int :param order_status: Only return orders have this status. Possible values are open, cancelled, completed. :type order_status: str :param before_id: Only return orders that are created before the order with this id. :type before_id: str :param limit: Only return up to this number of orders (min: 1, max: 200, default: 50). :type limit: int :return: List of dictionaries containing the orders for the given NEO address and (optional) trading pair. """ api_params = { "address": address, "contract_hash": self.get_contracts()[chain_name.upper()][contract_version.upper()], "limit": limit } if pair is not None: api_params['pair'] = pair if from_epoch_time is not None: api_params['from_epoch_time'] = from_epoch_time if order_status is not None: api_params['order_status'] = order_status if before_id is not None: api_params['before_id'] = before_id return self.request.get(path='/orders', params=api_params)
[ "def", "get_orders", "(", "self", ",", "address", ",", "chain_name", "=", "'NEO'", ",", "contract_version", "=", "'V2'", ",", "pair", "=", "None", ",", "from_epoch_time", "=", "None", ",", "order_status", "=", "None", ",", "before_id", "=", "None", ",", "limit", "=", "50", ")", ":", "api_params", "=", "{", "\"address\"", ":", "address", ",", "\"contract_hash\"", ":", "self", ".", "get_contracts", "(", ")", "[", "chain_name", ".", "upper", "(", ")", "]", "[", "contract_version", ".", "upper", "(", ")", "]", ",", "\"limit\"", ":", "limit", "}", "if", "pair", "is", "not", "None", ":", "api_params", "[", "'pair'", "]", "=", "pair", "if", "from_epoch_time", "is", "not", "None", ":", "api_params", "[", "'from_epoch_time'", "]", "=", "from_epoch_time", "if", "order_status", "is", "not", "None", ":", "api_params", "[", "'order_status'", "]", "=", "order_status", "if", "before_id", "is", "not", "None", ":", "api_params", "[", "'before_id'", "]", "=", "before_id", "return", "self", ".", "request", ".", "get", "(", "path", "=", "'/orders'", ",", "params", "=", "api_params", ")" ]
Function to fetch the order history of the given address. Execution of this function is as follows:: get_orders(address=neo_get_scripthash_from_address(address=address)) The expected return result for this function is as follows:: [{ 'id': '7cbdf481-6acf-4bf3-a1ed-4773f31e6931', 'blockchain': 'neo', 'contract_hash': 'a195c1549e7da61b8da315765a790ac7e7633b82', 'address': 'fea2b883725ef2d194c9060f606cd0a0468a2c59', 'side': 'buy', 'offer_asset_id': 'c56f33fc6ecfcd0c225c4ab356fee59390af8560be0e930faebe74a6daff7c9b', 'want_asset_id': 'ab38352559b8b203bde5fddfa0b07d8b2525e132', 'offer_amount': '53718500', 'want_amount': '110000000000', 'transfer_amount': '0', 'priority_gas_amount': '0', 'use_native_token': True, 'native_fee_transfer_amount': 0, 'deposit_txn': None, 'created_at': '2018-08-03T02:44:47.692Z', 'status': 'processed', 'fills': [{ 'id': 'b6f9e530-60ff-46ff-9a71-362097a2025e', 'offer_hash': '95b3b03be0bff8f58aa86a8dd599700bbaeaffc05078329d5b726b6b995f4cda', 'offer_asset_id': 'c56f33fc6ecfcd0c225c4ab356fee59390af8560be0e930faebe74a6daff7c9b', 'want_asset_id': 'ab38352559b8b203bde5fddfa0b07d8b2525e132', 'fill_amount': '47833882', 'want_amount': '97950000000', 'filled_amount': '', 'fee_asset_id': 'ab38352559b8b203bde5fddfa0b07d8b2525e132', 'fee_amount': '73462500', 'price': '0.00048835', 'txn': None, 'status': 'success', 'created_at': '2018-08-03T02:44:47.706Z', 'transaction_hash': '694745a09e33845ec008cfb79c73986a556e619799ec73274f82b30d85bda13a' }], 'makes': [{ 'id': '357088a0-cc80-49ab-acdd-980589c2d7d8', 'offer_hash': '420cc85abf02feaceb1bcd91489a0c1949c972d2a9a05ae922fa15d79de80c00', 'available_amount': '0', 'offer_asset_id': 'c56f33fc6ecfcd0c225c4ab356fee59390af8560be0e930faebe74a6daff7c9b', 'offer_amount': '5884618', 'want_asset_id': 'ab38352559b8b203bde5fddfa0b07d8b2525e132', 'want_amount': '12050000000', 'filled_amount': '0.0', 'txn': None, 'cancel_txn': None, 'price': '0.000488350041493775933609958506224066390041494', 'status': 'cancelled', 'created_at': '2018-08-03T02:44:47.708Z', 'transaction_hash': '1afa946546550151bbbd19f197a87cec92e9be58c44ec431cae42076298548b7', 'trades': [] }] }, { .... }] :param address: The ScriptHash of the address to filter orders for. :type address: str :param pair: The trading pair to filter order requests on. :type pair: str :param chain_name: The name of the chain to find orders against. :type chain_name: str :param contract_version: The version of the contract to find orders against. :type contract_version: str :param from_epoch_time: Only return orders that are last updated at or after this time. :type from_epoch_time: int :param order_status: Only return orders have this status. Possible values are open, cancelled, completed. :type order_status: str :param before_id: Only return orders that are created before the order with this id. :type before_id: str :param limit: Only return up to this number of orders (min: 1, max: 200, default: 50). :type limit: int :return: List of dictionaries containing the orders for the given NEO address and (optional) trading pair.
[ "Function", "to", "fetch", "the", "order", "history", "of", "the", "given", "address", ".", "Execution", "of", "this", "function", "is", "as", "follows", "::" ]
train
https://github.com/KeithSSmith/switcheo-python/blob/22f943dea1ad7d692b2bfcd9f0822ec80f4641a6/switcheo/public_client.py#L490-L585
KeithSSmith/switcheo-python
switcheo/public_client.py
PublicClient.get_balance
def get_balance(self, addresses, contracts): """ Function to fetch the current account balance for the given address in the Switcheo smart contract. Execution of this function is as follows:: get_balance(address=neo_get_scripthash_from_address(address=address)) The expected return result for this function is as follows:: { 'confirming': {}, 'confirmed': { 'GAS': '100000000.0', 'SWTH': '97976537500.0', 'NEO': '52166118.0' }, 'locked': {} } :param addresses: The ScriptHash of the address(es) to retrieve its Smart Contract balance. :type addresses: list :param contracts: The contract hash(es) to retrieve all addresses Smart Contract balance. :type contracts: list :return: Dictionary containing the sum of all addresses smart contract balances by processing state. """ api_params = { "addresses[]": addresses, "contract_hashes[]": contracts } return self.request.get(path='/balances', params=api_params)
python
def get_balance(self, addresses, contracts): """ Function to fetch the current account balance for the given address in the Switcheo smart contract. Execution of this function is as follows:: get_balance(address=neo_get_scripthash_from_address(address=address)) The expected return result for this function is as follows:: { 'confirming': {}, 'confirmed': { 'GAS': '100000000.0', 'SWTH': '97976537500.0', 'NEO': '52166118.0' }, 'locked': {} } :param addresses: The ScriptHash of the address(es) to retrieve its Smart Contract balance. :type addresses: list :param contracts: The contract hash(es) to retrieve all addresses Smart Contract balance. :type contracts: list :return: Dictionary containing the sum of all addresses smart contract balances by processing state. """ api_params = { "addresses[]": addresses, "contract_hashes[]": contracts } return self.request.get(path='/balances', params=api_params)
[ "def", "get_balance", "(", "self", ",", "addresses", ",", "contracts", ")", ":", "api_params", "=", "{", "\"addresses[]\"", ":", "addresses", ",", "\"contract_hashes[]\"", ":", "contracts", "}", "return", "self", ".", "request", ".", "get", "(", "path", "=", "'/balances'", ",", "params", "=", "api_params", ")" ]
Function to fetch the current account balance for the given address in the Switcheo smart contract. Execution of this function is as follows:: get_balance(address=neo_get_scripthash_from_address(address=address)) The expected return result for this function is as follows:: { 'confirming': {}, 'confirmed': { 'GAS': '100000000.0', 'SWTH': '97976537500.0', 'NEO': '52166118.0' }, 'locked': {} } :param addresses: The ScriptHash of the address(es) to retrieve its Smart Contract balance. :type addresses: list :param contracts: The contract hash(es) to retrieve all addresses Smart Contract balance. :type contracts: list :return: Dictionary containing the sum of all addresses smart contract balances by processing state.
[ "Function", "to", "fetch", "the", "current", "account", "balance", "for", "the", "given", "address", "in", "the", "Switcheo", "smart", "contract", ".", "Execution", "of", "this", "function", "is", "as", "follows", "::" ]
train
https://github.com/KeithSSmith/switcheo-python/blob/22f943dea1ad7d692b2bfcd9f0822ec80f4641a6/switcheo/public_client.py#L587-L616
tjwalch/django-livereload-server
livereload/server.py
Server.ignore_file_extension
def ignore_file_extension(self, extension): """ Configure a file extension to be ignored. :param extension: file extension to be ignored (ex. .less, .scss, etc) """ logger.info('Ignoring file extension: {}'.format(extension)) self.watcher.ignore_file_extension(extension)
python
def ignore_file_extension(self, extension): """ Configure a file extension to be ignored. :param extension: file extension to be ignored (ex. .less, .scss, etc) """ logger.info('Ignoring file extension: {}'.format(extension)) self.watcher.ignore_file_extension(extension)
[ "def", "ignore_file_extension", "(", "self", ",", "extension", ")", ":", "logger", ".", "info", "(", "'Ignoring file extension: {}'", ".", "format", "(", "extension", ")", ")", "self", ".", "watcher", ".", "ignore_file_extension", "(", "extension", ")" ]
Configure a file extension to be ignored. :param extension: file extension to be ignored (ex. .less, .scss, etc)
[ "Configure", "a", "file", "extension", "to", "be", "ignored", "." ]
train
https://github.com/tjwalch/django-livereload-server/blob/ea3edaa1a5b2f8cb49761dd32f2fcc4554c4aa0c/livereload/server.py#L97-L105
tjwalch/django-livereload-server
livereload/server.py
Server.watch
def watch(self, filepath, func=None, delay=None): """Add the given filepath for watcher list. Once you have intialized a server, watch file changes before serve the server:: server.watch('static/*.stylus', 'make static') def alert(): print('foo') server.watch('foo.txt', alert) server.serve() :param filepath: files to be watched, it can be a filepath, a directory, or a glob pattern :param func: the function to be called, it can be a string of shell command, or any callable object without parameters :param delay: Delay sending the reload message. Use 'forever' to not send it. This is useful to compile sass files to css, but reload on changed css files then only. """ if isinstance(func, string_types): func = shell(func) self.watcher.watch(filepath, func, delay)
python
def watch(self, filepath, func=None, delay=None): """Add the given filepath for watcher list. Once you have intialized a server, watch file changes before serve the server:: server.watch('static/*.stylus', 'make static') def alert(): print('foo') server.watch('foo.txt', alert) server.serve() :param filepath: files to be watched, it can be a filepath, a directory, or a glob pattern :param func: the function to be called, it can be a string of shell command, or any callable object without parameters :param delay: Delay sending the reload message. Use 'forever' to not send it. This is useful to compile sass files to css, but reload on changed css files then only. """ if isinstance(func, string_types): func = shell(func) self.watcher.watch(filepath, func, delay)
[ "def", "watch", "(", "self", ",", "filepath", ",", "func", "=", "None", ",", "delay", "=", "None", ")", ":", "if", "isinstance", "(", "func", ",", "string_types", ")", ":", "func", "=", "shell", "(", "func", ")", "self", ".", "watcher", ".", "watch", "(", "filepath", ",", "func", ",", "delay", ")" ]
Add the given filepath for watcher list. Once you have intialized a server, watch file changes before serve the server:: server.watch('static/*.stylus', 'make static') def alert(): print('foo') server.watch('foo.txt', alert) server.serve() :param filepath: files to be watched, it can be a filepath, a directory, or a glob pattern :param func: the function to be called, it can be a string of shell command, or any callable object without parameters :param delay: Delay sending the reload message. Use 'forever' to not send it. This is useful to compile sass files to css, but reload on changed css files then only.
[ "Add", "the", "given", "filepath", "for", "watcher", "list", "." ]
train
https://github.com/tjwalch/django-livereload-server/blob/ea3edaa1a5b2f8cb49761dd32f2fcc4554c4aa0c/livereload/server.py#L107-L131
tjwalch/django-livereload-server
livereload/server.py
Server.serve
def serve(self, liveport=None, host=None, restart_delay=2): """Start serve the server with the given port. :param liveport: live reload on this port :param host: serve on this hostname, default is 127.0.0.1 :param open_url_delay: open webbrowser after the delay seconds """ host = host or '127.0.0.1' logger.info('Serving on http://%s:%s' % (host, liveport)) self.application(host, liveport=liveport) try: self.watcher._changes.append(('__livereload__', restart_delay)) LiveReloadHandler.start_tasks() IOLoop.instance().start() except KeyboardInterrupt: logger.info('Shutting down...')
python
def serve(self, liveport=None, host=None, restart_delay=2): """Start serve the server with the given port. :param liveport: live reload on this port :param host: serve on this hostname, default is 127.0.0.1 :param open_url_delay: open webbrowser after the delay seconds """ host = host or '127.0.0.1' logger.info('Serving on http://%s:%s' % (host, liveport)) self.application(host, liveport=liveport) try: self.watcher._changes.append(('__livereload__', restart_delay)) LiveReloadHandler.start_tasks() IOLoop.instance().start() except KeyboardInterrupt: logger.info('Shutting down...')
[ "def", "serve", "(", "self", ",", "liveport", "=", "None", ",", "host", "=", "None", ",", "restart_delay", "=", "2", ")", ":", "host", "=", "host", "or", "'127.0.0.1'", "logger", ".", "info", "(", "'Serving on http://%s:%s'", "%", "(", "host", ",", "liveport", ")", ")", "self", ".", "application", "(", "host", ",", "liveport", "=", "liveport", ")", "try", ":", "self", ".", "watcher", ".", "_changes", ".", "append", "(", "(", "'__livereload__'", ",", "restart_delay", ")", ")", "LiveReloadHandler", ".", "start_tasks", "(", ")", "IOLoop", ".", "instance", "(", ")", ".", "start", "(", ")", "except", "KeyboardInterrupt", ":", "logger", ".", "info", "(", "'Shutting down...'", ")" ]
Start serve the server with the given port. :param liveport: live reload on this port :param host: serve on this hostname, default is 127.0.0.1 :param open_url_delay: open webbrowser after the delay seconds
[ "Start", "serve", "the", "server", "with", "the", "given", "port", "." ]
train
https://github.com/tjwalch/django-livereload-server/blob/ea3edaa1a5b2f8cb49761dd32f2fcc4554c4aa0c/livereload/server.py#L143-L160
tjwalch/django-livereload-server
livereload/watcher.py
Watcher.should_ignore
def should_ignore(self, filename): """Should ignore a given filename?""" _, ext = os.path.splitext(filename) return ext in self.ignored_file_extensions
python
def should_ignore(self, filename): """Should ignore a given filename?""" _, ext = os.path.splitext(filename) return ext in self.ignored_file_extensions
[ "def", "should_ignore", "(", "self", ",", "filename", ")", ":", "_", ",", "ext", "=", "os", ".", "path", ".", "splitext", "(", "filename", ")", "return", "ext", "in", "self", ".", "ignored_file_extensions" ]
Should ignore a given filename?
[ "Should", "ignore", "a", "given", "filename?" ]
train
https://github.com/tjwalch/django-livereload-server/blob/ea3edaa1a5b2f8cb49761dd32f2fcc4554c4aa0c/livereload/watcher.py#L37-L40
tjwalch/django-livereload-server
livereload/watcher.py
Watcher.examine
def examine(self): """Check if there are changes, if true, run the given task.""" if self._changes: return self._changes.pop() # clean filepath self.filepath = None delays = set([0]) for path in self._tasks: item = self._tasks[path] if self.is_changed(path, item['ignore']): func = item['func'] func and func() delay = item['delay'] if delay: delays.add(delay) if 'forever' in delays: delay = 'forever' else: delay = max(delays) return self.filepath, delay
python
def examine(self): """Check if there are changes, if true, run the given task.""" if self._changes: return self._changes.pop() # clean filepath self.filepath = None delays = set([0]) for path in self._tasks: item = self._tasks[path] if self.is_changed(path, item['ignore']): func = item['func'] func and func() delay = item['delay'] if delay: delays.add(delay) if 'forever' in delays: delay = 'forever' else: delay = max(delays) return self.filepath, delay
[ "def", "examine", "(", "self", ")", ":", "if", "self", ".", "_changes", ":", "return", "self", ".", "_changes", ".", "pop", "(", ")", "# clean filepath", "self", ".", "filepath", "=", "None", "delays", "=", "set", "(", "[", "0", "]", ")", "for", "path", "in", "self", ".", "_tasks", ":", "item", "=", "self", ".", "_tasks", "[", "path", "]", "if", "self", ".", "is_changed", "(", "path", ",", "item", "[", "'ignore'", "]", ")", ":", "func", "=", "item", "[", "'func'", "]", "func", "and", "func", "(", ")", "delay", "=", "item", "[", "'delay'", "]", "if", "delay", ":", "delays", ".", "add", "(", "delay", ")", "if", "'forever'", "in", "delays", ":", "delay", "=", "'forever'", "else", ":", "delay", "=", "max", "(", "delays", ")", "return", "self", ".", "filepath", ",", "delay" ]
Check if there are changes, if true, run the given task.
[ "Check", "if", "there", "are", "changes", "if", "true", "run", "the", "given", "task", "." ]
train
https://github.com/tjwalch/django-livereload-server/blob/ea3edaa1a5b2f8cb49761dd32f2fcc4554c4aa0c/livereload/watcher.py#L67-L88
tjwalch/django-livereload-server
livereload/management/commands/runserver.py
Command.livereload_request
def livereload_request(self, **options): """ Performs the LiveReload request. """ style = color_style() verbosity = int(options['verbosity']) host = '%s:%d' % ( options['livereload_host'], options['livereload_port'], ) try: urlopen('http://%s/forcereload' % host) self.message('LiveReload request emitted.\n', verbosity, style.HTTP_INFO) except IOError: pass
python
def livereload_request(self, **options): """ Performs the LiveReload request. """ style = color_style() verbosity = int(options['verbosity']) host = '%s:%d' % ( options['livereload_host'], options['livereload_port'], ) try: urlopen('http://%s/forcereload' % host) self.message('LiveReload request emitted.\n', verbosity, style.HTTP_INFO) except IOError: pass
[ "def", "livereload_request", "(", "self", ",", "*", "*", "options", ")", ":", "style", "=", "color_style", "(", ")", "verbosity", "=", "int", "(", "options", "[", "'verbosity'", "]", ")", "host", "=", "'%s:%d'", "%", "(", "options", "[", "'livereload_host'", "]", ",", "options", "[", "'livereload_port'", "]", ",", ")", "try", ":", "urlopen", "(", "'http://%s/forcereload'", "%", "host", ")", "self", ".", "message", "(", "'LiveReload request emitted.\\n'", ",", "verbosity", ",", "style", ".", "HTTP_INFO", ")", "except", "IOError", ":", "pass" ]
Performs the LiveReload request.
[ "Performs", "the", "LiveReload", "request", "." ]
train
https://github.com/tjwalch/django-livereload-server/blob/ea3edaa1a5b2f8cb49761dd32f2fcc4554c4aa0c/livereload/management/commands/runserver.py#L53-L68
tjwalch/django-livereload-server
livereload/management/commands/runserver.py
Command.get_handler
def get_handler(self, *args, **options): """ Entry point to plug the LiveReload feature. """ handler = super(Command, self).get_handler(*args, **options) if options['use_livereload']: threading.Timer(1, self.livereload_request, kwargs=options).start() return handler
python
def get_handler(self, *args, **options): """ Entry point to plug the LiveReload feature. """ handler = super(Command, self).get_handler(*args, **options) if options['use_livereload']: threading.Timer(1, self.livereload_request, kwargs=options).start() return handler
[ "def", "get_handler", "(", "self", ",", "*", "args", ",", "*", "*", "options", ")", ":", "handler", "=", "super", "(", "Command", ",", "self", ")", ".", "get_handler", "(", "*", "args", ",", "*", "*", "options", ")", "if", "options", "[", "'use_livereload'", "]", ":", "threading", ".", "Timer", "(", "1", ",", "self", ".", "livereload_request", ",", "kwargs", "=", "options", ")", ".", "start", "(", ")", "return", "handler" ]
Entry point to plug the LiveReload feature.
[ "Entry", "point", "to", "plug", "the", "LiveReload", "feature", "." ]
train
https://github.com/tjwalch/django-livereload-server/blob/ea3edaa1a5b2f8cb49761dd32f2fcc4554c4aa0c/livereload/management/commands/runserver.py#L70-L77
brutasse/django-password-reset
password_reset/views.py
loads_with_timestamp
def loads_with_timestamp(value, salt): """Returns the unsigned value along with its timestamp, the time when it got dumped.""" try: signing.loads(value, salt=salt, max_age=-999999) except signing.SignatureExpired as e: age = float(str(e).split('Signature age ')[1].split(' >')[0]) timestamp = timezone.now() - datetime.timedelta(seconds=age) return timestamp, signing.loads(value, salt=salt)
python
def loads_with_timestamp(value, salt): """Returns the unsigned value along with its timestamp, the time when it got dumped.""" try: signing.loads(value, salt=salt, max_age=-999999) except signing.SignatureExpired as e: age = float(str(e).split('Signature age ')[1].split(' >')[0]) timestamp = timezone.now() - datetime.timedelta(seconds=age) return timestamp, signing.loads(value, salt=salt)
[ "def", "loads_with_timestamp", "(", "value", ",", "salt", ")", ":", "try", ":", "signing", ".", "loads", "(", "value", ",", "salt", "=", "salt", ",", "max_age", "=", "-", "999999", ")", "except", "signing", ".", "SignatureExpired", "as", "e", ":", "age", "=", "float", "(", "str", "(", "e", ")", ".", "split", "(", "'Signature age '", ")", "[", "1", "]", ".", "split", "(", "' >'", ")", "[", "0", "]", ")", "timestamp", "=", "timezone", ".", "now", "(", ")", "-", "datetime", ".", "timedelta", "(", "seconds", "=", "age", ")", "return", "timestamp", ",", "signing", ".", "loads", "(", "value", ",", "salt", "=", "salt", ")" ]
Returns the unsigned value along with its timestamp, the time when it got dumped.
[ "Returns", "the", "unsigned", "value", "along", "with", "its", "timestamp", "the", "time", "when", "it", "got", "dumped", "." ]
train
https://github.com/brutasse/django-password-reset/blob/3f3a531d8bbd7e456af214757afccdf06b0d12d1/password_reset/views.py#L27-L35
socialwifi/RouterOS-api
routeros_api/api_socket.py
set_keepalive
def set_keepalive(sock, after_idle_sec=1, interval_sec=3, max_fails=5): """Set TCP keepalive on an open socket. It activates after 1 second (after_idle_sec) of idleness, then sends a keepalive ping once every 3 seconds (interval_sec), and closes the connection after 5 failed ping (max_fails), or 15 seconds """ if hasattr(socket, "SO_KEEPALIVE"): sock.setsockopt(socket.SOL_SOCKET, socket.SO_KEEPALIVE, 1) if hasattr(socket, "TCP_KEEPIDLE"): sock.setsockopt(socket.IPPROTO_TCP, socket.TCP_KEEPIDLE, after_idle_sec) if hasattr(socket, "TCP_KEEPINTVL"): sock.setsockopt(socket.IPPROTO_TCP, socket.TCP_KEEPINTVL, interval_sec) if hasattr(socket, "TCP_KEEPCNT"): sock.setsockopt(socket.IPPROTO_TCP, socket.TCP_KEEPCNT, max_fails)
python
def set_keepalive(sock, after_idle_sec=1, interval_sec=3, max_fails=5): """Set TCP keepalive on an open socket. It activates after 1 second (after_idle_sec) of idleness, then sends a keepalive ping once every 3 seconds (interval_sec), and closes the connection after 5 failed ping (max_fails), or 15 seconds """ if hasattr(socket, "SO_KEEPALIVE"): sock.setsockopt(socket.SOL_SOCKET, socket.SO_KEEPALIVE, 1) if hasattr(socket, "TCP_KEEPIDLE"): sock.setsockopt(socket.IPPROTO_TCP, socket.TCP_KEEPIDLE, after_idle_sec) if hasattr(socket, "TCP_KEEPINTVL"): sock.setsockopt(socket.IPPROTO_TCP, socket.TCP_KEEPINTVL, interval_sec) if hasattr(socket, "TCP_KEEPCNT"): sock.setsockopt(socket.IPPROTO_TCP, socket.TCP_KEEPCNT, max_fails)
[ "def", "set_keepalive", "(", "sock", ",", "after_idle_sec", "=", "1", ",", "interval_sec", "=", "3", ",", "max_fails", "=", "5", ")", ":", "if", "hasattr", "(", "socket", ",", "\"SO_KEEPALIVE\"", ")", ":", "sock", ".", "setsockopt", "(", "socket", ".", "SOL_SOCKET", ",", "socket", ".", "SO_KEEPALIVE", ",", "1", ")", "if", "hasattr", "(", "socket", ",", "\"TCP_KEEPIDLE\"", ")", ":", "sock", ".", "setsockopt", "(", "socket", ".", "IPPROTO_TCP", ",", "socket", ".", "TCP_KEEPIDLE", ",", "after_idle_sec", ")", "if", "hasattr", "(", "socket", ",", "\"TCP_KEEPINTVL\"", ")", ":", "sock", ".", "setsockopt", "(", "socket", ".", "IPPROTO_TCP", ",", "socket", ".", "TCP_KEEPINTVL", ",", "interval_sec", ")", "if", "hasattr", "(", "socket", ",", "\"TCP_KEEPCNT\"", ")", ":", "sock", ".", "setsockopt", "(", "socket", ".", "IPPROTO_TCP", ",", "socket", ".", "TCP_KEEPCNT", ",", "max_fails", ")" ]
Set TCP keepalive on an open socket. It activates after 1 second (after_idle_sec) of idleness, then sends a keepalive ping once every 3 seconds (interval_sec), and closes the connection after 5 failed ping (max_fails), or 15 seconds
[ "Set", "TCP", "keepalive", "on", "an", "open", "socket", "." ]
train
https://github.com/socialwifi/RouterOS-api/blob/d4eb2422f2437b3c99193a79fa857fc1e2c672af/routeros_api/api_socket.py#L37-L51
thespacedoctor/sherlock
sherlock/imports/veron.py
veron.ingest
def ingest(self): """ingest the veron catalogue into the catalogues database See class docstring for usage. """ self.log.debug('starting the ``get`` method') dictList = self._create_dictionary_of_veron() tableName = self.dbTableName createStatement = """ CREATE TABLE `%(tableName)s` ( `primaryId` bigint(20) NOT NULL AUTO_INCREMENT COMMENT 'An internal counter', `B_V` float DEFAULT NULL, `U_B` float DEFAULT NULL, `abs_magnitude` float DEFAULT NULL, `dateCreated` datetime DEFAULT CURRENT_TIMESTAMP, `decDeg` double DEFAULT NULL, `magnitude` float DEFAULT NULL, `raDeg` double DEFAULT NULL, `class` varchar(10) COLLATE utf8_unicode_ci DEFAULT NULL, `name` varchar(100) COLLATE utf8_unicode_ci DEFAULT NULL, `redshift` float DEFAULT NULL, `not_radio` varchar(10) COLLATE utf8_unicode_ci DEFAULT NULL, `magnitude_filter` varchar(10) COLLATE utf8_unicode_ci DEFAULT 'V', `htm16ID` bigint(20) DEFAULT NULL, `redshift_flag` varchar(100) COLLATE utf8_unicode_ci DEFAULT NULL, `spectral_classification` varchar(100) COLLATE utf8_unicode_ci DEFAULT NULL, `dateLastModified` datetime DEFAULT CURRENT_TIMESTAMP, `updated` varchar(45) DEFAULT '0', `htm10ID` bigint(20) DEFAULT NULL, `htm13ID` bigint(20) DEFAULT NULL, PRIMARY KEY (`primaryId`), UNIQUE KEY `radeg_decdeg` (`raDeg`,`decDeg`), KEY `idx_htm16ID` (`htm16ID`), KEY `idx_htm10ID` (`htm10ID`), KEY `idx_htm13ID` (`htm13ID`) ) ENGINE=MyISAM AUTO_INCREMENT=168945 DEFAULT CHARSET=utf8 COLLATE=utf8_unicode_ci; """ % locals() self.add_data_to_database_table( dictList=dictList, createStatement=createStatement ) self.log.debug('completed the ``get`` method') return None
python
def ingest(self): """ingest the veron catalogue into the catalogues database See class docstring for usage. """ self.log.debug('starting the ``get`` method') dictList = self._create_dictionary_of_veron() tableName = self.dbTableName createStatement = """ CREATE TABLE `%(tableName)s` ( `primaryId` bigint(20) NOT NULL AUTO_INCREMENT COMMENT 'An internal counter', `B_V` float DEFAULT NULL, `U_B` float DEFAULT NULL, `abs_magnitude` float DEFAULT NULL, `dateCreated` datetime DEFAULT CURRENT_TIMESTAMP, `decDeg` double DEFAULT NULL, `magnitude` float DEFAULT NULL, `raDeg` double DEFAULT NULL, `class` varchar(10) COLLATE utf8_unicode_ci DEFAULT NULL, `name` varchar(100) COLLATE utf8_unicode_ci DEFAULT NULL, `redshift` float DEFAULT NULL, `not_radio` varchar(10) COLLATE utf8_unicode_ci DEFAULT NULL, `magnitude_filter` varchar(10) COLLATE utf8_unicode_ci DEFAULT 'V', `htm16ID` bigint(20) DEFAULT NULL, `redshift_flag` varchar(100) COLLATE utf8_unicode_ci DEFAULT NULL, `spectral_classification` varchar(100) COLLATE utf8_unicode_ci DEFAULT NULL, `dateLastModified` datetime DEFAULT CURRENT_TIMESTAMP, `updated` varchar(45) DEFAULT '0', `htm10ID` bigint(20) DEFAULT NULL, `htm13ID` bigint(20) DEFAULT NULL, PRIMARY KEY (`primaryId`), UNIQUE KEY `radeg_decdeg` (`raDeg`,`decDeg`), KEY `idx_htm16ID` (`htm16ID`), KEY `idx_htm10ID` (`htm10ID`), KEY `idx_htm13ID` (`htm13ID`) ) ENGINE=MyISAM AUTO_INCREMENT=168945 DEFAULT CHARSET=utf8 COLLATE=utf8_unicode_ci; """ % locals() self.add_data_to_database_table( dictList=dictList, createStatement=createStatement ) self.log.debug('completed the ``get`` method') return None
[ "def", "ingest", "(", "self", ")", ":", "self", ".", "log", ".", "debug", "(", "'starting the ``get`` method'", ")", "dictList", "=", "self", ".", "_create_dictionary_of_veron", "(", ")", "tableName", "=", "self", ".", "dbTableName", "createStatement", "=", "\"\"\"\n CREATE TABLE `%(tableName)s` (\n `primaryId` bigint(20) NOT NULL AUTO_INCREMENT COMMENT 'An internal counter',\n `B_V` float DEFAULT NULL,\n `U_B` float DEFAULT NULL,\n `abs_magnitude` float DEFAULT NULL,\n `dateCreated` datetime DEFAULT CURRENT_TIMESTAMP,\n `decDeg` double DEFAULT NULL,\n `magnitude` float DEFAULT NULL,\n `raDeg` double DEFAULT NULL,\n `class` varchar(10) COLLATE utf8_unicode_ci DEFAULT NULL,\n `name` varchar(100) COLLATE utf8_unicode_ci DEFAULT NULL,\n `redshift` float DEFAULT NULL,\n `not_radio` varchar(10) COLLATE utf8_unicode_ci DEFAULT NULL,\n `magnitude_filter` varchar(10) COLLATE utf8_unicode_ci DEFAULT 'V',\n `htm16ID` bigint(20) DEFAULT NULL,\n `redshift_flag` varchar(100) COLLATE utf8_unicode_ci DEFAULT NULL,\n `spectral_classification` varchar(100) COLLATE utf8_unicode_ci DEFAULT NULL,\n `dateLastModified` datetime DEFAULT CURRENT_TIMESTAMP,\n `updated` varchar(45) DEFAULT '0',\n `htm10ID` bigint(20) DEFAULT NULL,\n `htm13ID` bigint(20) DEFAULT NULL,\n PRIMARY KEY (`primaryId`),\n UNIQUE KEY `radeg_decdeg` (`raDeg`,`decDeg`),\n KEY `idx_htm16ID` (`htm16ID`),\n KEY `idx_htm10ID` (`htm10ID`),\n KEY `idx_htm13ID` (`htm13ID`)\n ) ENGINE=MyISAM AUTO_INCREMENT=168945 DEFAULT CHARSET=utf8 COLLATE=utf8_unicode_ci;\n\"\"\"", "%", "locals", "(", ")", "self", ".", "add_data_to_database_table", "(", "dictList", "=", "dictList", ",", "createStatement", "=", "createStatement", ")", "self", ".", "log", ".", "debug", "(", "'completed the ``get`` method'", ")", "return", "None" ]
ingest the veron catalogue into the catalogues database See class docstring for usage.
[ "ingest", "the", "veron", "catalogue", "into", "the", "catalogues", "database" ]
train
https://github.com/thespacedoctor/sherlock/blob/2c80fb6fa31b04e7820e6928e3d437a21e692dd3/sherlock/imports/veron.py#L75-L121
thespacedoctor/sherlock
sherlock/imports/veron.py
veron._create_dictionary_of_veron
def _create_dictionary_of_veron( self): """create a list of dictionaries containing all the rows in the veron catalogue **Return:** - ``dictList`` - a list of dictionaries containing all the rows in the veron catalogue .. todo :: - update key arguments values and definitions with defaults - update return values and definitions - update usage examples and text - update docstring text - check sublime snippet exists - clip any useful text to docs mindmap - regenerate the docs and check redendering of this docstring """ self.log.debug( 'starting the ``_create_dictionary_of_veron`` method') dictList = [] lines = string.split(self.catData, '\n') totalCount = len(lines) count = 0 switch = 0 for line in lines: if (len(line) == 0 or line[0] in ["#", " "]) and switch == 0: continue else: switch = 1 count += 1 if count > 1: # Cursor up one line and clear line sys.stdout.write("\x1b[1A\x1b[2K") print "%(count)s / %(totalCount)s veron data added to memory" % locals() if count == 1: theseKeys = [] someKeys = string.split(line, '|') for key in someKeys: if key == "_RAJ2000": key = "raDeg" if key == "_DEJ2000": key = "decDeg" if key == "Cl": key = "class" if key == "nR": key = "not_radio" if key == "Name": key = "name" if key == "l_z": key = "redshift_flag" if key == "z": key = "redshift" if key == "Sp": key = "spectral_classification" if key == "n_Vmag": key = "magnitude_filter" if key == "Vmag": key = "magnitude" if key == "B-V": key = "B_V" if key == "U-B": key = "U_B" if key == "Mabs": key = "abs_magnitude" theseKeys.append(key) continue if count in [2, 3]: continue thisDict = {} theseValues = string.split(line, '|') for k, v in zip(theseKeys, theseValues): v = v.strip() if len(v) == 0 or v == "-": v = None thisDict[k] = v dictList.append(thisDict) self.log.debug( 'completed the ``_create_dictionary_of_veron`` method') return dictList
python
def _create_dictionary_of_veron( self): """create a list of dictionaries containing all the rows in the veron catalogue **Return:** - ``dictList`` - a list of dictionaries containing all the rows in the veron catalogue .. todo :: - update key arguments values and definitions with defaults - update return values and definitions - update usage examples and text - update docstring text - check sublime snippet exists - clip any useful text to docs mindmap - regenerate the docs and check redendering of this docstring """ self.log.debug( 'starting the ``_create_dictionary_of_veron`` method') dictList = [] lines = string.split(self.catData, '\n') totalCount = len(lines) count = 0 switch = 0 for line in lines: if (len(line) == 0 or line[0] in ["#", " "]) and switch == 0: continue else: switch = 1 count += 1 if count > 1: # Cursor up one line and clear line sys.stdout.write("\x1b[1A\x1b[2K") print "%(count)s / %(totalCount)s veron data added to memory" % locals() if count == 1: theseKeys = [] someKeys = string.split(line, '|') for key in someKeys: if key == "_RAJ2000": key = "raDeg" if key == "_DEJ2000": key = "decDeg" if key == "Cl": key = "class" if key == "nR": key = "not_radio" if key == "Name": key = "name" if key == "l_z": key = "redshift_flag" if key == "z": key = "redshift" if key == "Sp": key = "spectral_classification" if key == "n_Vmag": key = "magnitude_filter" if key == "Vmag": key = "magnitude" if key == "B-V": key = "B_V" if key == "U-B": key = "U_B" if key == "Mabs": key = "abs_magnitude" theseKeys.append(key) continue if count in [2, 3]: continue thisDict = {} theseValues = string.split(line, '|') for k, v in zip(theseKeys, theseValues): v = v.strip() if len(v) == 0 or v == "-": v = None thisDict[k] = v dictList.append(thisDict) self.log.debug( 'completed the ``_create_dictionary_of_veron`` method') return dictList
[ "def", "_create_dictionary_of_veron", "(", "self", ")", ":", "self", ".", "log", ".", "debug", "(", "'starting the ``_create_dictionary_of_veron`` method'", ")", "dictList", "=", "[", "]", "lines", "=", "string", ".", "split", "(", "self", ".", "catData", ",", "'\\n'", ")", "totalCount", "=", "len", "(", "lines", ")", "count", "=", "0", "switch", "=", "0", "for", "line", "in", "lines", ":", "if", "(", "len", "(", "line", ")", "==", "0", "or", "line", "[", "0", "]", "in", "[", "\"#\"", ",", "\" \"", "]", ")", "and", "switch", "==", "0", ":", "continue", "else", ":", "switch", "=", "1", "count", "+=", "1", "if", "count", ">", "1", ":", "# Cursor up one line and clear line", "sys", ".", "stdout", ".", "write", "(", "\"\\x1b[1A\\x1b[2K\"", ")", "print", "\"%(count)s / %(totalCount)s veron data added to memory\"", "%", "locals", "(", ")", "if", "count", "==", "1", ":", "theseKeys", "=", "[", "]", "someKeys", "=", "string", ".", "split", "(", "line", ",", "'|'", ")", "for", "key", "in", "someKeys", ":", "if", "key", "==", "\"_RAJ2000\"", ":", "key", "=", "\"raDeg\"", "if", "key", "==", "\"_DEJ2000\"", ":", "key", "=", "\"decDeg\"", "if", "key", "==", "\"Cl\"", ":", "key", "=", "\"class\"", "if", "key", "==", "\"nR\"", ":", "key", "=", "\"not_radio\"", "if", "key", "==", "\"Name\"", ":", "key", "=", "\"name\"", "if", "key", "==", "\"l_z\"", ":", "key", "=", "\"redshift_flag\"", "if", "key", "==", "\"z\"", ":", "key", "=", "\"redshift\"", "if", "key", "==", "\"Sp\"", ":", "key", "=", "\"spectral_classification\"", "if", "key", "==", "\"n_Vmag\"", ":", "key", "=", "\"magnitude_filter\"", "if", "key", "==", "\"Vmag\"", ":", "key", "=", "\"magnitude\"", "if", "key", "==", "\"B-V\"", ":", "key", "=", "\"B_V\"", "if", "key", "==", "\"U-B\"", ":", "key", "=", "\"U_B\"", "if", "key", "==", "\"Mabs\"", ":", "key", "=", "\"abs_magnitude\"", "theseKeys", ".", "append", "(", "key", ")", "continue", "if", "count", "in", "[", "2", ",", "3", "]", ":", "continue", "thisDict", "=", "{", "}", "theseValues", "=", "string", ".", "split", "(", "line", ",", "'|'", ")", "for", "k", ",", "v", "in", "zip", "(", "theseKeys", ",", "theseValues", ")", ":", "v", "=", "v", ".", "strip", "(", ")", "if", "len", "(", "v", ")", "==", "0", "or", "v", "==", "\"-\"", ":", "v", "=", "None", "thisDict", "[", "k", "]", "=", "v", "dictList", ".", "append", "(", "thisDict", ")", "self", ".", "log", ".", "debug", "(", "'completed the ``_create_dictionary_of_veron`` method'", ")", "return", "dictList" ]
create a list of dictionaries containing all the rows in the veron catalogue **Return:** - ``dictList`` - a list of dictionaries containing all the rows in the veron catalogue .. todo :: - update key arguments values and definitions with defaults - update return values and definitions - update usage examples and text - update docstring text - check sublime snippet exists - clip any useful text to docs mindmap - regenerate the docs and check redendering of this docstring
[ "create", "a", "list", "of", "dictionaries", "containing", "all", "the", "rows", "in", "the", "veron", "catalogue" ]
train
https://github.com/thespacedoctor/sherlock/blob/2c80fb6fa31b04e7820e6928e3d437a21e692dd3/sherlock/imports/veron.py#L123-L208
thespacedoctor/sherlock
sherlock/cl_utils.py
main
def main(arguments=None): """ The main function used when ``cl_utils.py`` is run as a single script from the cl, or when installed as a cl command .. todo :: - update key arguments values and definitions with defaults - update return values and definitions - update usage examples and text - update docstring text - check sublime snippet exists - clip any useful text to docs mindmap - regenerate the docs and check redendering of this docstring """ # setup the command-line util settings su = tools( arguments=arguments, docString=__doc__, logLevel="WARNING", options_first=False, projectName="sherlock" ) arguments, settings, log, dbConn = su.setup() # unpack remaining cl arguments using `exec` to setup the variable names # automatically for arg, val in arguments.iteritems(): if arg[0] == "-": varname = arg.replace("-", "") + "Flag" else: varname = arg.replace("<", "").replace(">", "") if varname == "import": varname = "iimport" if isinstance(val, str) or isinstance(val, unicode): exec(varname + " = '%s'" % (val,)) else: exec(varname + " = %s" % (val,)) if arg == "--dbConn": dbConn = val log.debug('%s = %s' % (varname, val,)) ## START LOGGING ## startTime = times.get_now_sql_datetime() log.debug( '--- STARTING TO RUN THE cl_utils.py AT %s' % (startTime,)) # call the worker function # x-if-settings-or-database-credientials if init: from os.path import expanduser home = expanduser("~") filepath = home + "/.config/sherlock/sherlock.yaml" cmd = """open %(filepath)s""" % locals() p = Popen(cmd, stdout=PIPE, stderr=PIPE, shell=True) try: cmd = """open %(filepath)s""" % locals() p = Popen(cmd, stdout=PIPE, stderr=PIPE, shell=True) except: pass try: cmd = """start %(filepath)s""" % locals() p = Popen(cmd, stdout=PIPE, stderr=PIPE, shell=True) except: pass if match or dbmatch: if verboseFlag: verbose = 2 else: verbose = 1 if skipNedUpdateFlag: updateNed = False else: updateNed = True if skipMagUpdateFlag: updatePeakMags = False else: updatePeakMags = True classifier = transient_classifier.transient_classifier( log=log, settings=settings, ra=ra, dec=dec, name=False, verbose=verbose, update=updateFlag, updateNed=updateNed, updatePeakMags=updatePeakMags ) classifier.classify() if clean: cleaner = database_cleaner( log=log, settings=settings ) cleaner.clean() if wiki: updateWiki = update_wiki_pages( log=log, settings=settings ) updateWiki.update() if iimport and ned: ned = nedStreamImporter( log=log, settings=settings, coordinateList=["%(ra)s %(dec)s" % locals()], radiusArcsec=radiusArcsec ) ned.ingest() if iimport and cat: if cat_name == "veron": catalogue = veronImporter( log=log, settings=settings, pathToDataFile=pathToDataFile, version=cat_version, catalogueName=cat_name ) catalogue.ingest() if "ned_d" in cat_name: catalogue = nedImporter( log=log, settings=settings, pathToDataFile=pathToDataFile, version=cat_version, catalogueName=cat_name ) catalogue.ingest() if iimport and stream: if "marshall" in stream_name: stream = marshallImporter( log=log, settings=settings, ) stream.ingest() if "ifs" in stream_name: stream = ifsImporter( log=log, settings=settings ) stream.ingest() if not init and not match and not clean and not wiki and not iimport and ra: classifier = transient_classifier.transient_classifier( log=log, settings=settings, ra=ra, dec=dec, name=False, verbose=verboseFlag ) classifier.classify() if info: print "sherlock-catalogues" wiki = update_wiki_pages( log=log, settings=settings ) table = list(wiki._get_table_infos(trimmed=True)) dataSet = list_of_dictionaries( log=log, listOfDictionaries=table ) tableData = dataSet.reST(filepath=None) print tableData print print "Crossmatch Streams" table = list(wiki._get_stream_view_infos(trimmed=True)) dataSet = list_of_dictionaries( log=log, listOfDictionaries=table ) tableData = dataSet.reST(filepath=None) print tableData print print "Views on Catalogues and Streams" table = list(wiki._get_view_infos(trimmed=True)) dataSet = list_of_dictionaries( log=log, listOfDictionaries=table ) tableData = dataSet.reST(filepath=None) print tableData if "dbConn" in locals() and dbConn: dbConn.commit() dbConn.close() ## FINISH LOGGING ## endTime = times.get_now_sql_datetime() runningTime = times.calculate_time_difference(startTime, endTime) log.debug('-- FINISHED ATTEMPT TO RUN THE cl_utils.py AT %s (RUNTIME: %s) --' % (endTime, runningTime, )) return
python
def main(arguments=None): """ The main function used when ``cl_utils.py`` is run as a single script from the cl, or when installed as a cl command .. todo :: - update key arguments values and definitions with defaults - update return values and definitions - update usage examples and text - update docstring text - check sublime snippet exists - clip any useful text to docs mindmap - regenerate the docs and check redendering of this docstring """ # setup the command-line util settings su = tools( arguments=arguments, docString=__doc__, logLevel="WARNING", options_first=False, projectName="sherlock" ) arguments, settings, log, dbConn = su.setup() # unpack remaining cl arguments using `exec` to setup the variable names # automatically for arg, val in arguments.iteritems(): if arg[0] == "-": varname = arg.replace("-", "") + "Flag" else: varname = arg.replace("<", "").replace(">", "") if varname == "import": varname = "iimport" if isinstance(val, str) or isinstance(val, unicode): exec(varname + " = '%s'" % (val,)) else: exec(varname + " = %s" % (val,)) if arg == "--dbConn": dbConn = val log.debug('%s = %s' % (varname, val,)) ## START LOGGING ## startTime = times.get_now_sql_datetime() log.debug( '--- STARTING TO RUN THE cl_utils.py AT %s' % (startTime,)) # call the worker function # x-if-settings-or-database-credientials if init: from os.path import expanduser home = expanduser("~") filepath = home + "/.config/sherlock/sherlock.yaml" cmd = """open %(filepath)s""" % locals() p = Popen(cmd, stdout=PIPE, stderr=PIPE, shell=True) try: cmd = """open %(filepath)s""" % locals() p = Popen(cmd, stdout=PIPE, stderr=PIPE, shell=True) except: pass try: cmd = """start %(filepath)s""" % locals() p = Popen(cmd, stdout=PIPE, stderr=PIPE, shell=True) except: pass if match or dbmatch: if verboseFlag: verbose = 2 else: verbose = 1 if skipNedUpdateFlag: updateNed = False else: updateNed = True if skipMagUpdateFlag: updatePeakMags = False else: updatePeakMags = True classifier = transient_classifier.transient_classifier( log=log, settings=settings, ra=ra, dec=dec, name=False, verbose=verbose, update=updateFlag, updateNed=updateNed, updatePeakMags=updatePeakMags ) classifier.classify() if clean: cleaner = database_cleaner( log=log, settings=settings ) cleaner.clean() if wiki: updateWiki = update_wiki_pages( log=log, settings=settings ) updateWiki.update() if iimport and ned: ned = nedStreamImporter( log=log, settings=settings, coordinateList=["%(ra)s %(dec)s" % locals()], radiusArcsec=radiusArcsec ) ned.ingest() if iimport and cat: if cat_name == "veron": catalogue = veronImporter( log=log, settings=settings, pathToDataFile=pathToDataFile, version=cat_version, catalogueName=cat_name ) catalogue.ingest() if "ned_d" in cat_name: catalogue = nedImporter( log=log, settings=settings, pathToDataFile=pathToDataFile, version=cat_version, catalogueName=cat_name ) catalogue.ingest() if iimport and stream: if "marshall" in stream_name: stream = marshallImporter( log=log, settings=settings, ) stream.ingest() if "ifs" in stream_name: stream = ifsImporter( log=log, settings=settings ) stream.ingest() if not init and not match and not clean and not wiki and not iimport and ra: classifier = transient_classifier.transient_classifier( log=log, settings=settings, ra=ra, dec=dec, name=False, verbose=verboseFlag ) classifier.classify() if info: print "sherlock-catalogues" wiki = update_wiki_pages( log=log, settings=settings ) table = list(wiki._get_table_infos(trimmed=True)) dataSet = list_of_dictionaries( log=log, listOfDictionaries=table ) tableData = dataSet.reST(filepath=None) print tableData print print "Crossmatch Streams" table = list(wiki._get_stream_view_infos(trimmed=True)) dataSet = list_of_dictionaries( log=log, listOfDictionaries=table ) tableData = dataSet.reST(filepath=None) print tableData print print "Views on Catalogues and Streams" table = list(wiki._get_view_infos(trimmed=True)) dataSet = list_of_dictionaries( log=log, listOfDictionaries=table ) tableData = dataSet.reST(filepath=None) print tableData if "dbConn" in locals() and dbConn: dbConn.commit() dbConn.close() ## FINISH LOGGING ## endTime = times.get_now_sql_datetime() runningTime = times.calculate_time_difference(startTime, endTime) log.debug('-- FINISHED ATTEMPT TO RUN THE cl_utils.py AT %s (RUNTIME: %s) --' % (endTime, runningTime, )) return
[ "def", "main", "(", "arguments", "=", "None", ")", ":", "# setup the command-line util settings", "su", "=", "tools", "(", "arguments", "=", "arguments", ",", "docString", "=", "__doc__", ",", "logLevel", "=", "\"WARNING\"", ",", "options_first", "=", "False", ",", "projectName", "=", "\"sherlock\"", ")", "arguments", ",", "settings", ",", "log", ",", "dbConn", "=", "su", ".", "setup", "(", ")", "# unpack remaining cl arguments using `exec` to setup the variable names", "# automatically", "for", "arg", ",", "val", "in", "arguments", ".", "iteritems", "(", ")", ":", "if", "arg", "[", "0", "]", "==", "\"-\"", ":", "varname", "=", "arg", ".", "replace", "(", "\"-\"", ",", "\"\"", ")", "+", "\"Flag\"", "else", ":", "varname", "=", "arg", ".", "replace", "(", "\"<\"", ",", "\"\"", ")", ".", "replace", "(", "\">\"", ",", "\"\"", ")", "if", "varname", "==", "\"import\"", ":", "varname", "=", "\"iimport\"", "if", "isinstance", "(", "val", ",", "str", ")", "or", "isinstance", "(", "val", ",", "unicode", ")", ":", "exec", "(", "varname", "+", "\" = '%s'\"", "%", "(", "val", ",", ")", ")", "else", ":", "exec", "(", "varname", "+", "\" = %s\"", "%", "(", "val", ",", ")", ")", "if", "arg", "==", "\"--dbConn\"", ":", "dbConn", "=", "val", "log", ".", "debug", "(", "'%s = %s'", "%", "(", "varname", ",", "val", ",", ")", ")", "## START LOGGING ##", "startTime", "=", "times", ".", "get_now_sql_datetime", "(", ")", "log", ".", "debug", "(", "'--- STARTING TO RUN THE cl_utils.py AT %s'", "%", "(", "startTime", ",", ")", ")", "# call the worker function", "# x-if-settings-or-database-credientials", "if", "init", ":", "from", "os", ".", "path", "import", "expanduser", "home", "=", "expanduser", "(", "\"~\"", ")", "filepath", "=", "home", "+", "\"/.config/sherlock/sherlock.yaml\"", "cmd", "=", "\"\"\"open %(filepath)s\"\"\"", "%", "locals", "(", ")", "p", "=", "Popen", "(", "cmd", ",", "stdout", "=", "PIPE", ",", "stderr", "=", "PIPE", ",", "shell", "=", "True", ")", "try", ":", "cmd", "=", "\"\"\"open %(filepath)s\"\"\"", "%", "locals", "(", ")", "p", "=", "Popen", "(", "cmd", ",", "stdout", "=", "PIPE", ",", "stderr", "=", "PIPE", ",", "shell", "=", "True", ")", "except", ":", "pass", "try", ":", "cmd", "=", "\"\"\"start %(filepath)s\"\"\"", "%", "locals", "(", ")", "p", "=", "Popen", "(", "cmd", ",", "stdout", "=", "PIPE", ",", "stderr", "=", "PIPE", ",", "shell", "=", "True", ")", "except", ":", "pass", "if", "match", "or", "dbmatch", ":", "if", "verboseFlag", ":", "verbose", "=", "2", "else", ":", "verbose", "=", "1", "if", "skipNedUpdateFlag", ":", "updateNed", "=", "False", "else", ":", "updateNed", "=", "True", "if", "skipMagUpdateFlag", ":", "updatePeakMags", "=", "False", "else", ":", "updatePeakMags", "=", "True", "classifier", "=", "transient_classifier", ".", "transient_classifier", "(", "log", "=", "log", ",", "settings", "=", "settings", ",", "ra", "=", "ra", ",", "dec", "=", "dec", ",", "name", "=", "False", ",", "verbose", "=", "verbose", ",", "update", "=", "updateFlag", ",", "updateNed", "=", "updateNed", ",", "updatePeakMags", "=", "updatePeakMags", ")", "classifier", ".", "classify", "(", ")", "if", "clean", ":", "cleaner", "=", "database_cleaner", "(", "log", "=", "log", ",", "settings", "=", "settings", ")", "cleaner", ".", "clean", "(", ")", "if", "wiki", ":", "updateWiki", "=", "update_wiki_pages", "(", "log", "=", "log", ",", "settings", "=", "settings", ")", "updateWiki", ".", "update", "(", ")", "if", "iimport", "and", "ned", ":", "ned", "=", "nedStreamImporter", "(", "log", "=", "log", ",", "settings", "=", "settings", ",", "coordinateList", "=", "[", "\"%(ra)s %(dec)s\"", "%", "locals", "(", ")", "]", ",", "radiusArcsec", "=", "radiusArcsec", ")", "ned", ".", "ingest", "(", ")", "if", "iimport", "and", "cat", ":", "if", "cat_name", "==", "\"veron\"", ":", "catalogue", "=", "veronImporter", "(", "log", "=", "log", ",", "settings", "=", "settings", ",", "pathToDataFile", "=", "pathToDataFile", ",", "version", "=", "cat_version", ",", "catalogueName", "=", "cat_name", ")", "catalogue", ".", "ingest", "(", ")", "if", "\"ned_d\"", "in", "cat_name", ":", "catalogue", "=", "nedImporter", "(", "log", "=", "log", ",", "settings", "=", "settings", ",", "pathToDataFile", "=", "pathToDataFile", ",", "version", "=", "cat_version", ",", "catalogueName", "=", "cat_name", ")", "catalogue", ".", "ingest", "(", ")", "if", "iimport", "and", "stream", ":", "if", "\"marshall\"", "in", "stream_name", ":", "stream", "=", "marshallImporter", "(", "log", "=", "log", ",", "settings", "=", "settings", ",", ")", "stream", ".", "ingest", "(", ")", "if", "\"ifs\"", "in", "stream_name", ":", "stream", "=", "ifsImporter", "(", "log", "=", "log", ",", "settings", "=", "settings", ")", "stream", ".", "ingest", "(", ")", "if", "not", "init", "and", "not", "match", "and", "not", "clean", "and", "not", "wiki", "and", "not", "iimport", "and", "ra", ":", "classifier", "=", "transient_classifier", ".", "transient_classifier", "(", "log", "=", "log", ",", "settings", "=", "settings", ",", "ra", "=", "ra", ",", "dec", "=", "dec", ",", "name", "=", "False", ",", "verbose", "=", "verboseFlag", ")", "classifier", ".", "classify", "(", ")", "if", "info", ":", "print", "\"sherlock-catalogues\"", "wiki", "=", "update_wiki_pages", "(", "log", "=", "log", ",", "settings", "=", "settings", ")", "table", "=", "list", "(", "wiki", ".", "_get_table_infos", "(", "trimmed", "=", "True", ")", ")", "dataSet", "=", "list_of_dictionaries", "(", "log", "=", "log", ",", "listOfDictionaries", "=", "table", ")", "tableData", "=", "dataSet", ".", "reST", "(", "filepath", "=", "None", ")", "print", "tableData", "print", "print", "\"Crossmatch Streams\"", "table", "=", "list", "(", "wiki", ".", "_get_stream_view_infos", "(", "trimmed", "=", "True", ")", ")", "dataSet", "=", "list_of_dictionaries", "(", "log", "=", "log", ",", "listOfDictionaries", "=", "table", ")", "tableData", "=", "dataSet", ".", "reST", "(", "filepath", "=", "None", ")", "print", "tableData", "print", "print", "\"Views on Catalogues and Streams\"", "table", "=", "list", "(", "wiki", ".", "_get_view_infos", "(", "trimmed", "=", "True", ")", ")", "dataSet", "=", "list_of_dictionaries", "(", "log", "=", "log", ",", "listOfDictionaries", "=", "table", ")", "tableData", "=", "dataSet", ".", "reST", "(", "filepath", "=", "None", ")", "print", "tableData", "if", "\"dbConn\"", "in", "locals", "(", ")", "and", "dbConn", ":", "dbConn", ".", "commit", "(", ")", "dbConn", ".", "close", "(", ")", "## FINISH LOGGING ##", "endTime", "=", "times", ".", "get_now_sql_datetime", "(", ")", "runningTime", "=", "times", ".", "calculate_time_difference", "(", "startTime", ",", "endTime", ")", "log", ".", "debug", "(", "'-- FINISHED ATTEMPT TO RUN THE cl_utils.py AT %s (RUNTIME: %s) --'", "%", "(", "endTime", ",", "runningTime", ",", ")", ")", "return" ]
The main function used when ``cl_utils.py`` is run as a single script from the cl, or when installed as a cl command .. todo :: - update key arguments values and definitions with defaults - update return values and definitions - update usage examples and text - update docstring text - check sublime snippet exists - clip any useful text to docs mindmap - regenerate the docs and check redendering of this docstring
[ "The", "main", "function", "used", "when", "cl_utils", ".", "py", "is", "run", "as", "a", "single", "script", "from", "the", "cl", "or", "when", "installed", "as", "a", "cl", "command" ]
train
https://github.com/thespacedoctor/sherlock/blob/2c80fb6fa31b04e7820e6928e3d437a21e692dd3/sherlock/cl_utils.py#L75-L283
andrewda/frc-livescore
livescore/simpleocr_utils/segmentation_filters.py
Filter.display
def display(self, display_before=False): """shows the effect of this filter""" try: copy = self.image.copy() except AttributeError: raise Exception("You need to set the Filter.image attribute for displaying") copy = BrightnessProcessor(brightness=0.6).process(copy) s, g = self._input, self.good_segments_indexes draw_segments(copy, s[g], (0, 255, 0)) draw_segments(copy, s[True ^ g], (0, 0, 255)) show_image_and_wait_for_key(copy, "segments filtered by " + self.__class__.__name__)
python
def display(self, display_before=False): """shows the effect of this filter""" try: copy = self.image.copy() except AttributeError: raise Exception("You need to set the Filter.image attribute for displaying") copy = BrightnessProcessor(brightness=0.6).process(copy) s, g = self._input, self.good_segments_indexes draw_segments(copy, s[g], (0, 255, 0)) draw_segments(copy, s[True ^ g], (0, 0, 255)) show_image_and_wait_for_key(copy, "segments filtered by " + self.__class__.__name__)
[ "def", "display", "(", "self", ",", "display_before", "=", "False", ")", ":", "try", ":", "copy", "=", "self", ".", "image", ".", "copy", "(", ")", "except", "AttributeError", ":", "raise", "Exception", "(", "\"You need to set the Filter.image attribute for displaying\"", ")", "copy", "=", "BrightnessProcessor", "(", "brightness", "=", "0.6", ")", ".", "process", "(", "copy", ")", "s", ",", "g", "=", "self", ".", "_input", ",", "self", ".", "good_segments_indexes", "draw_segments", "(", "copy", ",", "s", "[", "g", "]", ",", "(", "0", ",", "255", ",", "0", ")", ")", "draw_segments", "(", "copy", ",", "s", "[", "True", "^", "g", "]", ",", "(", "0", ",", "0", ",", "255", ")", ")", "show_image_and_wait_for_key", "(", "copy", ",", "\"segments filtered by \"", "+", "self", ".", "__class__", ".", "__name__", ")" ]
shows the effect of this filter
[ "shows", "the", "effect", "of", "this", "filter" ]
train
https://github.com/andrewda/frc-livescore/blob/71594cd6d2c8b6c5feb3889bb05552d09b8128b1/livescore/simpleocr_utils/segmentation_filters.py#L18-L28
Clinical-Genomics/trailblazer
trailblazer/mip/trending.py
parse_mip_analysis
def parse_mip_analysis(mip_config_raw: dict, qcmetrics_raw: dict, sampleinfo_raw: dict) -> dict: """Parse the output analysis files from MIP for adding info to trend database Args: mip_config_raw (dict): raw YAML input from MIP analysis config file qcmetrics_raw (dict): raw YAML input from MIP analysis qc metric file sampleinfo_raw (dict): raw YAML input from MIP analysis qc sample info file Returns: dict: parsed data """ outdata = _define_output_dict() _config(mip_config_raw, outdata) _qc_metrics(outdata, qcmetrics_raw) _qc_sample_info(outdata, sampleinfo_raw) return outdata
python
def parse_mip_analysis(mip_config_raw: dict, qcmetrics_raw: dict, sampleinfo_raw: dict) -> dict: """Parse the output analysis files from MIP for adding info to trend database Args: mip_config_raw (dict): raw YAML input from MIP analysis config file qcmetrics_raw (dict): raw YAML input from MIP analysis qc metric file sampleinfo_raw (dict): raw YAML input from MIP analysis qc sample info file Returns: dict: parsed data """ outdata = _define_output_dict() _config(mip_config_raw, outdata) _qc_metrics(outdata, qcmetrics_raw) _qc_sample_info(outdata, sampleinfo_raw) return outdata
[ "def", "parse_mip_analysis", "(", "mip_config_raw", ":", "dict", ",", "qcmetrics_raw", ":", "dict", ",", "sampleinfo_raw", ":", "dict", ")", "->", "dict", ":", "outdata", "=", "_define_output_dict", "(", ")", "_config", "(", "mip_config_raw", ",", "outdata", ")", "_qc_metrics", "(", "outdata", ",", "qcmetrics_raw", ")", "_qc_sample_info", "(", "outdata", ",", "sampleinfo_raw", ")", "return", "outdata" ]
Parse the output analysis files from MIP for adding info to trend database Args: mip_config_raw (dict): raw YAML input from MIP analysis config file qcmetrics_raw (dict): raw YAML input from MIP analysis qc metric file sampleinfo_raw (dict): raw YAML input from MIP analysis qc sample info file Returns: dict: parsed data
[ "Parse", "the", "output", "analysis", "files", "from", "MIP", "for", "adding", "info", "to", "trend", "database" ]
train
https://github.com/Clinical-Genomics/trailblazer/blob/27f3cd21043a1077bd7029e85783459a50a7b798/trailblazer/mip/trending.py#L7-L24
thespacedoctor/sherlock
sherlock/database_cleaner.py
database_cleaner.clean
def clean(self): """*clean up and run some maintance tasks on the crossmatch catalogue helper tables* .. todo :: - update key arguments values and definitions with defaults - update return values and definitions - update usage examples and text - update docstring text - check sublime snippet exists - clip any useful text to docs mindmap - regenerate the docs and check redendering of this docstring """ self.log.debug('starting the ``get`` method') self._update_tcs_helper_catalogue_tables_info_with_new_tables() self._updated_row_counts_in_tcs_helper_catalogue_tables_info() self._clean_up_columns() self._update_tcs_helper_catalogue_views_info_with_new_views() self._clean_up_columns() self._updated_row_counts_in_tcs_helper_catalogue_tables_info() print "`tcs_helper_catalogue_tables_info` & `tcs_helper_catalogue_views_info` database tables updated" self.log.debug('completed the ``get`` method') return None
python
def clean(self): """*clean up and run some maintance tasks on the crossmatch catalogue helper tables* .. todo :: - update key arguments values and definitions with defaults - update return values and definitions - update usage examples and text - update docstring text - check sublime snippet exists - clip any useful text to docs mindmap - regenerate the docs and check redendering of this docstring """ self.log.debug('starting the ``get`` method') self._update_tcs_helper_catalogue_tables_info_with_new_tables() self._updated_row_counts_in_tcs_helper_catalogue_tables_info() self._clean_up_columns() self._update_tcs_helper_catalogue_views_info_with_new_views() self._clean_up_columns() self._updated_row_counts_in_tcs_helper_catalogue_tables_info() print "`tcs_helper_catalogue_tables_info` & `tcs_helper_catalogue_views_info` database tables updated" self.log.debug('completed the ``get`` method') return None
[ "def", "clean", "(", "self", ")", ":", "self", ".", "log", ".", "debug", "(", "'starting the ``get`` method'", ")", "self", ".", "_update_tcs_helper_catalogue_tables_info_with_new_tables", "(", ")", "self", ".", "_updated_row_counts_in_tcs_helper_catalogue_tables_info", "(", ")", "self", ".", "_clean_up_columns", "(", ")", "self", ".", "_update_tcs_helper_catalogue_views_info_with_new_views", "(", ")", "self", ".", "_clean_up_columns", "(", ")", "self", ".", "_updated_row_counts_in_tcs_helper_catalogue_tables_info", "(", ")", "print", "\"`tcs_helper_catalogue_tables_info` & `tcs_helper_catalogue_views_info` database tables updated\"", "self", ".", "log", ".", "debug", "(", "'completed the ``get`` method'", ")", "return", "None" ]
*clean up and run some maintance tasks on the crossmatch catalogue helper tables* .. todo :: - update key arguments values and definitions with defaults - update return values and definitions - update usage examples and text - update docstring text - check sublime snippet exists - clip any useful text to docs mindmap - regenerate the docs and check redendering of this docstring
[ "*", "clean", "up", "and", "run", "some", "maintance", "tasks", "on", "the", "crossmatch", "catalogue", "helper", "tables", "*" ]
train
https://github.com/thespacedoctor/sherlock/blob/2c80fb6fa31b04e7820e6928e3d437a21e692dd3/sherlock/database_cleaner.py#L86-L111
thespacedoctor/sherlock
sherlock/database_cleaner.py
database_cleaner._updated_row_counts_in_tcs_helper_catalogue_tables_info
def _updated_row_counts_in_tcs_helper_catalogue_tables_info( self): """ updated row counts in tcs catalogue tables .. todo :: - update key arguments values and definitions with defaults - update return values and definitions - update usage examples and text - update docstring text - check sublime snippet exists - clip any useful text to docs mindmap - regenerate the docs and check redendering of this docstring """ self.log.debug( 'starting the ``_updated_row_counts_in_tcs_helper_catalogue_tables_info`` method') sqlQuery = u""" select * from tcs_helper_catalogue_tables_info where table_name like "%%stream" or (number_of_rows is null and legacy_table = 0) """ % locals() rows = readquery( log=self.log, sqlQuery=sqlQuery, dbConn=self.cataloguesDbConn, quiet=False ) for row in rows: tbName = row["table_name"] sqlQuery = u""" update tcs_helper_catalogue_tables_info set number_of_rows = (select count(*) as count from %(tbName)s) where table_name = "%(tbName)s" """ % locals() writequery( log=self.log, sqlQuery=sqlQuery, dbConn=self.cataloguesDbConn, ) sqlQuery = u""" select * from tcs_helper_catalogue_views_info where (number_of_rows is null and legacy_view = 0) """ % locals() rows = readquery( log=self.log, sqlQuery=sqlQuery, dbConn=self.cataloguesDbConn, quiet=False ) for row in rows: tbName = row["view_name"] print tbName sqlQuery = u""" update tcs_helper_catalogue_views_info set number_of_rows = (select count(*) as count from %(tbName)s) where view_name = "%(tbName)s" """ % locals() writequery( log=self.log, sqlQuery=sqlQuery, dbConn=self.cataloguesDbConn, ) self.log.debug( 'completed the ``_updated_row_counts_in_tcs_helper_catalogue_tables_info`` method') return None
python
def _updated_row_counts_in_tcs_helper_catalogue_tables_info( self): """ updated row counts in tcs catalogue tables .. todo :: - update key arguments values and definitions with defaults - update return values and definitions - update usage examples and text - update docstring text - check sublime snippet exists - clip any useful text to docs mindmap - regenerate the docs and check redendering of this docstring """ self.log.debug( 'starting the ``_updated_row_counts_in_tcs_helper_catalogue_tables_info`` method') sqlQuery = u""" select * from tcs_helper_catalogue_tables_info where table_name like "%%stream" or (number_of_rows is null and legacy_table = 0) """ % locals() rows = readquery( log=self.log, sqlQuery=sqlQuery, dbConn=self.cataloguesDbConn, quiet=False ) for row in rows: tbName = row["table_name"] sqlQuery = u""" update tcs_helper_catalogue_tables_info set number_of_rows = (select count(*) as count from %(tbName)s) where table_name = "%(tbName)s" """ % locals() writequery( log=self.log, sqlQuery=sqlQuery, dbConn=self.cataloguesDbConn, ) sqlQuery = u""" select * from tcs_helper_catalogue_views_info where (number_of_rows is null and legacy_view = 0) """ % locals() rows = readquery( log=self.log, sqlQuery=sqlQuery, dbConn=self.cataloguesDbConn, quiet=False ) for row in rows: tbName = row["view_name"] print tbName sqlQuery = u""" update tcs_helper_catalogue_views_info set number_of_rows = (select count(*) as count from %(tbName)s) where view_name = "%(tbName)s" """ % locals() writequery( log=self.log, sqlQuery=sqlQuery, dbConn=self.cataloguesDbConn, ) self.log.debug( 'completed the ``_updated_row_counts_in_tcs_helper_catalogue_tables_info`` method') return None
[ "def", "_updated_row_counts_in_tcs_helper_catalogue_tables_info", "(", "self", ")", ":", "self", ".", "log", ".", "debug", "(", "'starting the ``_updated_row_counts_in_tcs_helper_catalogue_tables_info`` method'", ")", "sqlQuery", "=", "u\"\"\"\n select * from tcs_helper_catalogue_tables_info where table_name like \"%%stream\" or (number_of_rows is null and legacy_table = 0)\n \"\"\"", "%", "locals", "(", ")", "rows", "=", "readquery", "(", "log", "=", "self", ".", "log", ",", "sqlQuery", "=", "sqlQuery", ",", "dbConn", "=", "self", ".", "cataloguesDbConn", ",", "quiet", "=", "False", ")", "for", "row", "in", "rows", ":", "tbName", "=", "row", "[", "\"table_name\"", "]", "sqlQuery", "=", "u\"\"\"\n update tcs_helper_catalogue_tables_info set number_of_rows = (select count(*) as count from %(tbName)s) where table_name = \"%(tbName)s\"\n \"\"\"", "%", "locals", "(", ")", "writequery", "(", "log", "=", "self", ".", "log", ",", "sqlQuery", "=", "sqlQuery", ",", "dbConn", "=", "self", ".", "cataloguesDbConn", ",", ")", "sqlQuery", "=", "u\"\"\"\n select * from tcs_helper_catalogue_views_info where (number_of_rows is null and legacy_view = 0)\n \"\"\"", "%", "locals", "(", ")", "rows", "=", "readquery", "(", "log", "=", "self", ".", "log", ",", "sqlQuery", "=", "sqlQuery", ",", "dbConn", "=", "self", ".", "cataloguesDbConn", ",", "quiet", "=", "False", ")", "for", "row", "in", "rows", ":", "tbName", "=", "row", "[", "\"view_name\"", "]", "print", "tbName", "sqlQuery", "=", "u\"\"\"\n update tcs_helper_catalogue_views_info set number_of_rows = (select count(*) as count from %(tbName)s) where view_name = \"%(tbName)s\"\n \"\"\"", "%", "locals", "(", ")", "writequery", "(", "log", "=", "self", ".", "log", ",", "sqlQuery", "=", "sqlQuery", ",", "dbConn", "=", "self", ".", "cataloguesDbConn", ",", ")", "self", ".", "log", ".", "debug", "(", "'completed the ``_updated_row_counts_in_tcs_helper_catalogue_tables_info`` method'", ")", "return", "None" ]
updated row counts in tcs catalogue tables .. todo :: - update key arguments values and definitions with defaults - update return values and definitions - update usage examples and text - update docstring text - check sublime snippet exists - clip any useful text to docs mindmap - regenerate the docs and check redendering of this docstring
[ "updated", "row", "counts", "in", "tcs", "catalogue", "tables" ]
train
https://github.com/thespacedoctor/sherlock/blob/2c80fb6fa31b04e7820e6928e3d437a21e692dd3/sherlock/database_cleaner.py#L113-L177
thespacedoctor/sherlock
sherlock/database_cleaner.py
database_cleaner._update_tcs_helper_catalogue_tables_info_with_new_tables
def _update_tcs_helper_catalogue_tables_info_with_new_tables( self): """update tcs helper catalogue tables info with new tables .. todo :: - update key arguments values and definitions with defaults - update return values and definitions - update usage examples and text - update docstring text - check sublime snippet exists - clip any useful text to docs mindmap - regenerate the docs and check redendering of this docstring """ self.log.debug( 'starting the ``_update_tcs_helper_catalogue_tables_info_with_new_tables`` method') sqlQuery = u""" SELECT max(id) as thisId FROM tcs_helper_catalogue_tables_info; """ % locals() thisId = readquery( log=self.log, sqlQuery=sqlQuery, dbConn=self.cataloguesDbConn, quiet=False ) try: highestId = thisId[0]["thisId"] + 1 except: highestId = 1 sqlQuery = u""" SELECT TABLE_NAME FROM INFORMATION_SCHEMA.TABLES WHERE TABLE_TYPE='BASE TABLE' AND TABLE_SCHEMA like '%%catalogues%%' and TABLE_NAME like "tcs_cat%%"; """ % locals() tablesInDatabase = readquery( log=self.log, sqlQuery=sqlQuery, dbConn=self.cataloguesDbConn, quiet=False ) sqlQuery = u""" SELECT table_name, old_table_name FROM tcs_helper_catalogue_tables_info; """ % locals() tableList = readquery( log=self.log, sqlQuery=sqlQuery, dbConn=self.cataloguesDbConn, quiet=False ) tbList = [] oldList = [] for tb in tableList: oldList.append(tb["old_table_name"]) for tb in tableList: if tb["old_table_name"] not in tbList: tbList.append(tb["old_table_name"]) if tb["table_name"] not in tbList: tbList.append(tb["table_name"]) for tb in tablesInDatabase: if tb["TABLE_NAME"] not in tbList: thisTableName = tb["TABLE_NAME"] print "`%(thisTableName)s` added to `tcs_helper_catalogue_tables_info` database table" % locals() sqlQuery = u""" INSERT INTO tcs_helper_catalogue_tables_info ( id, table_name ) VALUES ( %(highestId)s, "%(thisTableName)s" )""" % locals() writequery( log=self.log, sqlQuery=sqlQuery, dbConn=self.cataloguesDbConn, ) highestId += 1 self.log.debug( 'completed the ``_update_tcs_helper_catalogue_tables_info_with_new_tables`` method') return None
python
def _update_tcs_helper_catalogue_tables_info_with_new_tables( self): """update tcs helper catalogue tables info with new tables .. todo :: - update key arguments values and definitions with defaults - update return values and definitions - update usage examples and text - update docstring text - check sublime snippet exists - clip any useful text to docs mindmap - regenerate the docs and check redendering of this docstring """ self.log.debug( 'starting the ``_update_tcs_helper_catalogue_tables_info_with_new_tables`` method') sqlQuery = u""" SELECT max(id) as thisId FROM tcs_helper_catalogue_tables_info; """ % locals() thisId = readquery( log=self.log, sqlQuery=sqlQuery, dbConn=self.cataloguesDbConn, quiet=False ) try: highestId = thisId[0]["thisId"] + 1 except: highestId = 1 sqlQuery = u""" SELECT TABLE_NAME FROM INFORMATION_SCHEMA.TABLES WHERE TABLE_TYPE='BASE TABLE' AND TABLE_SCHEMA like '%%catalogues%%' and TABLE_NAME like "tcs_cat%%"; """ % locals() tablesInDatabase = readquery( log=self.log, sqlQuery=sqlQuery, dbConn=self.cataloguesDbConn, quiet=False ) sqlQuery = u""" SELECT table_name, old_table_name FROM tcs_helper_catalogue_tables_info; """ % locals() tableList = readquery( log=self.log, sqlQuery=sqlQuery, dbConn=self.cataloguesDbConn, quiet=False ) tbList = [] oldList = [] for tb in tableList: oldList.append(tb["old_table_name"]) for tb in tableList: if tb["old_table_name"] not in tbList: tbList.append(tb["old_table_name"]) if tb["table_name"] not in tbList: tbList.append(tb["table_name"]) for tb in tablesInDatabase: if tb["TABLE_NAME"] not in tbList: thisTableName = tb["TABLE_NAME"] print "`%(thisTableName)s` added to `tcs_helper_catalogue_tables_info` database table" % locals() sqlQuery = u""" INSERT INTO tcs_helper_catalogue_tables_info ( id, table_name ) VALUES ( %(highestId)s, "%(thisTableName)s" )""" % locals() writequery( log=self.log, sqlQuery=sqlQuery, dbConn=self.cataloguesDbConn, ) highestId += 1 self.log.debug( 'completed the ``_update_tcs_helper_catalogue_tables_info_with_new_tables`` method') return None
[ "def", "_update_tcs_helper_catalogue_tables_info_with_new_tables", "(", "self", ")", ":", "self", ".", "log", ".", "debug", "(", "'starting the ``_update_tcs_helper_catalogue_tables_info_with_new_tables`` method'", ")", "sqlQuery", "=", "u\"\"\"\n SELECT max(id) as thisId FROM tcs_helper_catalogue_tables_info;\n \"\"\"", "%", "locals", "(", ")", "thisId", "=", "readquery", "(", "log", "=", "self", ".", "log", ",", "sqlQuery", "=", "sqlQuery", ",", "dbConn", "=", "self", ".", "cataloguesDbConn", ",", "quiet", "=", "False", ")", "try", ":", "highestId", "=", "thisId", "[", "0", "]", "[", "\"thisId\"", "]", "+", "1", "except", ":", "highestId", "=", "1", "sqlQuery", "=", "u\"\"\"\n SELECT TABLE_NAME FROM INFORMATION_SCHEMA.TABLES WHERE TABLE_TYPE='BASE TABLE' AND TABLE_SCHEMA like '%%catalogues%%' and TABLE_NAME like \"tcs_cat%%\";\n \"\"\"", "%", "locals", "(", ")", "tablesInDatabase", "=", "readquery", "(", "log", "=", "self", ".", "log", ",", "sqlQuery", "=", "sqlQuery", ",", "dbConn", "=", "self", ".", "cataloguesDbConn", ",", "quiet", "=", "False", ")", "sqlQuery", "=", "u\"\"\"\n SELECT table_name, old_table_name FROM tcs_helper_catalogue_tables_info;\n \"\"\"", "%", "locals", "(", ")", "tableList", "=", "readquery", "(", "log", "=", "self", ".", "log", ",", "sqlQuery", "=", "sqlQuery", ",", "dbConn", "=", "self", ".", "cataloguesDbConn", ",", "quiet", "=", "False", ")", "tbList", "=", "[", "]", "oldList", "=", "[", "]", "for", "tb", "in", "tableList", ":", "oldList", ".", "append", "(", "tb", "[", "\"old_table_name\"", "]", ")", "for", "tb", "in", "tableList", ":", "if", "tb", "[", "\"old_table_name\"", "]", "not", "in", "tbList", ":", "tbList", ".", "append", "(", "tb", "[", "\"old_table_name\"", "]", ")", "if", "tb", "[", "\"table_name\"", "]", "not", "in", "tbList", ":", "tbList", ".", "append", "(", "tb", "[", "\"table_name\"", "]", ")", "for", "tb", "in", "tablesInDatabase", ":", "if", "tb", "[", "\"TABLE_NAME\"", "]", "not", "in", "tbList", ":", "thisTableName", "=", "tb", "[", "\"TABLE_NAME\"", "]", "print", "\"`%(thisTableName)s` added to `tcs_helper_catalogue_tables_info` database table\"", "%", "locals", "(", ")", "sqlQuery", "=", "u\"\"\"\n INSERT INTO tcs_helper_catalogue_tables_info (\n id,\n table_name\n )\n VALUES (\n %(highestId)s,\n \"%(thisTableName)s\"\n )\"\"\"", "%", "locals", "(", ")", "writequery", "(", "log", "=", "self", ".", "log", ",", "sqlQuery", "=", "sqlQuery", ",", "dbConn", "=", "self", ".", "cataloguesDbConn", ",", ")", "highestId", "+=", "1", "self", ".", "log", ".", "debug", "(", "'completed the ``_update_tcs_helper_catalogue_tables_info_with_new_tables`` method'", ")", "return", "None" ]
update tcs helper catalogue tables info with new tables .. todo :: - update key arguments values and definitions with defaults - update return values and definitions - update usage examples and text - update docstring text - check sublime snippet exists - clip any useful text to docs mindmap - regenerate the docs and check redendering of this docstring
[ "update", "tcs", "helper", "catalogue", "tables", "info", "with", "new", "tables" ]
train
https://github.com/thespacedoctor/sherlock/blob/2c80fb6fa31b04e7820e6928e3d437a21e692dd3/sherlock/database_cleaner.py#L179-L262
thespacedoctor/sherlock
sherlock/database_cleaner.py
database_cleaner._clean_up_columns
def _clean_up_columns( self): """clean up columns .. todo :: - update key arguments values and definitions with defaults - update return values and definitions - update usage examples and text - update docstring text - check sublime snippet exists - clip any useful text to docs mindmap - regenerate the docs and check redendering of this docstring """ self.log.debug('starting the ``_clean_up_columns`` method') sqlQueries = [ "update tcs_helper_catalogue_tables_info set old_table_name = table_name where old_table_name is null;", "update tcs_helper_catalogue_tables_info set version_number = 'stream' where table_name like '%%stream' and version_number is null;", """update tcs_helper_catalogue_tables_info set in_ned = 0 where table_name like '%%stream' and in_ned is null;""", """update tcs_helper_catalogue_tables_info set vizier_link = 0 where table_name like '%%stream' and vizier_link is null;""", "update tcs_helper_catalogue_views_info set old_view_name = view_name where old_view_name is null;", ] for sqlQuery in sqlQueries: writequery( log=self.log, sqlQuery=sqlQuery, dbConn=self.cataloguesDbConn, ) # VIEW OBJECT TYPES sqlQuery = u""" SELECT view_name FROM tcs_helper_catalogue_views_info where legacy_view = 0 and object_type is null; """ % locals() rows = readquery( log=self.log, sqlQuery=sqlQuery, dbConn=self.cataloguesDbConn, quiet=False ) for row in rows: view_name = row["view_name"] object_type = view_name.replace("tcs_view_", "").split("_")[0] sqlQuery = u""" update tcs_helper_catalogue_views_info set object_type = "%(object_type)s" where view_name = "%(view_name)s" """ % locals() writequery( log=self.log, sqlQuery=sqlQuery, dbConn=self.cataloguesDbConn, ) # MASTER TABLE ID FOR VIEWS sqlQuery = u""" SELECT view_name FROM tcs_helper_catalogue_views_info where legacy_view = 0 and table_id is null; """ % locals() rows = readquery( log=self.log, sqlQuery=sqlQuery, dbConn=self.cataloguesDbConn, quiet=False ) for row in rows: view_name = row["view_name"] table_name = view_name.replace("tcs_view_", "").split("_")[1:] table_name = ("_").join(table_name) table_name = "tcs_cat_%(table_name)s" % locals() sqlQuery = u""" update tcs_helper_catalogue_views_info set table_id = (select id from tcs_helper_catalogue_tables_info where table_name = "%(table_name)s") where view_name = "%(view_name)s" """ % locals() writequery( log=self.log, sqlQuery=sqlQuery, dbConn=self.cataloguesDbConn, ) self.log.debug('completed the ``_clean_up_columns`` method') return None
python
def _clean_up_columns( self): """clean up columns .. todo :: - update key arguments values and definitions with defaults - update return values and definitions - update usage examples and text - update docstring text - check sublime snippet exists - clip any useful text to docs mindmap - regenerate the docs and check redendering of this docstring """ self.log.debug('starting the ``_clean_up_columns`` method') sqlQueries = [ "update tcs_helper_catalogue_tables_info set old_table_name = table_name where old_table_name is null;", "update tcs_helper_catalogue_tables_info set version_number = 'stream' where table_name like '%%stream' and version_number is null;", """update tcs_helper_catalogue_tables_info set in_ned = 0 where table_name like '%%stream' and in_ned is null;""", """update tcs_helper_catalogue_tables_info set vizier_link = 0 where table_name like '%%stream' and vizier_link is null;""", "update tcs_helper_catalogue_views_info set old_view_name = view_name where old_view_name is null;", ] for sqlQuery in sqlQueries: writequery( log=self.log, sqlQuery=sqlQuery, dbConn=self.cataloguesDbConn, ) # VIEW OBJECT TYPES sqlQuery = u""" SELECT view_name FROM tcs_helper_catalogue_views_info where legacy_view = 0 and object_type is null; """ % locals() rows = readquery( log=self.log, sqlQuery=sqlQuery, dbConn=self.cataloguesDbConn, quiet=False ) for row in rows: view_name = row["view_name"] object_type = view_name.replace("tcs_view_", "").split("_")[0] sqlQuery = u""" update tcs_helper_catalogue_views_info set object_type = "%(object_type)s" where view_name = "%(view_name)s" """ % locals() writequery( log=self.log, sqlQuery=sqlQuery, dbConn=self.cataloguesDbConn, ) # MASTER TABLE ID FOR VIEWS sqlQuery = u""" SELECT view_name FROM tcs_helper_catalogue_views_info where legacy_view = 0 and table_id is null; """ % locals() rows = readquery( log=self.log, sqlQuery=sqlQuery, dbConn=self.cataloguesDbConn, quiet=False ) for row in rows: view_name = row["view_name"] table_name = view_name.replace("tcs_view_", "").split("_")[1:] table_name = ("_").join(table_name) table_name = "tcs_cat_%(table_name)s" % locals() sqlQuery = u""" update tcs_helper_catalogue_views_info set table_id = (select id from tcs_helper_catalogue_tables_info where table_name = "%(table_name)s") where view_name = "%(view_name)s" """ % locals() writequery( log=self.log, sqlQuery=sqlQuery, dbConn=self.cataloguesDbConn, ) self.log.debug('completed the ``_clean_up_columns`` method') return None
[ "def", "_clean_up_columns", "(", "self", ")", ":", "self", ".", "log", ".", "debug", "(", "'starting the ``_clean_up_columns`` method'", ")", "sqlQueries", "=", "[", "\"update tcs_helper_catalogue_tables_info set old_table_name = table_name where old_table_name is null;\"", ",", "\"update tcs_helper_catalogue_tables_info set version_number = 'stream' where table_name like '%%stream' and version_number is null;\"", ",", "\"\"\"update tcs_helper_catalogue_tables_info set in_ned = 0 where table_name like '%%stream' and in_ned is null;\"\"\"", ",", "\"\"\"update tcs_helper_catalogue_tables_info set vizier_link = 0 where table_name like '%%stream' and vizier_link is null;\"\"\"", ",", "\"update tcs_helper_catalogue_views_info set old_view_name = view_name where old_view_name is null;\"", ",", "]", "for", "sqlQuery", "in", "sqlQueries", ":", "writequery", "(", "log", "=", "self", ".", "log", ",", "sqlQuery", "=", "sqlQuery", ",", "dbConn", "=", "self", ".", "cataloguesDbConn", ",", ")", "# VIEW OBJECT TYPES", "sqlQuery", "=", "u\"\"\"\n SELECT view_name FROM tcs_helper_catalogue_views_info where legacy_view = 0 and object_type is null;\n \"\"\"", "%", "locals", "(", ")", "rows", "=", "readquery", "(", "log", "=", "self", ".", "log", ",", "sqlQuery", "=", "sqlQuery", ",", "dbConn", "=", "self", ".", "cataloguesDbConn", ",", "quiet", "=", "False", ")", "for", "row", "in", "rows", ":", "view_name", "=", "row", "[", "\"view_name\"", "]", "object_type", "=", "view_name", ".", "replace", "(", "\"tcs_view_\"", ",", "\"\"", ")", ".", "split", "(", "\"_\"", ")", "[", "0", "]", "sqlQuery", "=", "u\"\"\"\n update tcs_helper_catalogue_views_info set object_type = \"%(object_type)s\" where view_name = \"%(view_name)s\"\n \"\"\"", "%", "locals", "(", ")", "writequery", "(", "log", "=", "self", ".", "log", ",", "sqlQuery", "=", "sqlQuery", ",", "dbConn", "=", "self", ".", "cataloguesDbConn", ",", ")", "# MASTER TABLE ID FOR VIEWS", "sqlQuery", "=", "u\"\"\"\n SELECT view_name FROM tcs_helper_catalogue_views_info where legacy_view = 0 and table_id is null;\n \"\"\"", "%", "locals", "(", ")", "rows", "=", "readquery", "(", "log", "=", "self", ".", "log", ",", "sqlQuery", "=", "sqlQuery", ",", "dbConn", "=", "self", ".", "cataloguesDbConn", ",", "quiet", "=", "False", ")", "for", "row", "in", "rows", ":", "view_name", "=", "row", "[", "\"view_name\"", "]", "table_name", "=", "view_name", ".", "replace", "(", "\"tcs_view_\"", ",", "\"\"", ")", ".", "split", "(", "\"_\"", ")", "[", "1", ":", "]", "table_name", "=", "(", "\"_\"", ")", ".", "join", "(", "table_name", ")", "table_name", "=", "\"tcs_cat_%(table_name)s\"", "%", "locals", "(", ")", "sqlQuery", "=", "u\"\"\"\n update tcs_helper_catalogue_views_info set table_id = (select id from tcs_helper_catalogue_tables_info where table_name = \"%(table_name)s\") where view_name = \"%(view_name)s\"\n \"\"\"", "%", "locals", "(", ")", "writequery", "(", "log", "=", "self", ".", "log", ",", "sqlQuery", "=", "sqlQuery", ",", "dbConn", "=", "self", ".", "cataloguesDbConn", ",", ")", "self", ".", "log", ".", "debug", "(", "'completed the ``_clean_up_columns`` method'", ")", "return", "None" ]
clean up columns .. todo :: - update key arguments values and definitions with defaults - update return values and definitions - update usage examples and text - update docstring text - check sublime snippet exists - clip any useful text to docs mindmap - regenerate the docs and check redendering of this docstring
[ "clean", "up", "columns" ]
train
https://github.com/thespacedoctor/sherlock/blob/2c80fb6fa31b04e7820e6928e3d437a21e692dd3/sherlock/database_cleaner.py#L264-L346
thespacedoctor/sherlock
sherlock/database_cleaner.py
database_cleaner._update_tcs_helper_catalogue_views_info_with_new_views
def _update_tcs_helper_catalogue_views_info_with_new_views( self): """ update tcs helper catalogue tables info with new tables .. todo :: - update key arguments values and definitions with defaults - update return values and definitions - update usage examples and text - update docstring text - check sublime snippet exists - clip any useful text to docs mindmap - regenerate the docs and check redendering of this docstring """ self.log.debug( 'starting the ``_update_tcs_helper_catalogue_views_info_with_new_views`` method') sqlQuery = u""" SELECT max(id) as thisId FROM tcs_helper_catalogue_views_info; """ % locals() thisId = readquery( log=self.log, sqlQuery=sqlQuery, dbConn=self.cataloguesDbConn, quiet=False ) try: highestId = thisId[0]["thisId"] + 1 except: highestId = 1 sqlQuery = u""" SELECT TABLE_NAME FROM INFORMATION_SCHEMA.TABLES WHERE TABLE_TYPE='VIEW' AND TABLE_SCHEMA like '%%catalogues%%' and TABLE_NAME like "tcs_view%%" and TABLE_NAME not like "%%helper%%"; """ % locals() tablesInDatabase = readquery( log=self.log, sqlQuery=sqlQuery, dbConn=self.cataloguesDbConn, quiet=False ) sqlQuery = u""" SELECT view_name FROM tcs_helper_catalogue_views_info; """ % locals() tableList = readquery( log=self.log, sqlQuery=sqlQuery, dbConn=self.cataloguesDbConn, quiet=False ) tbList = [] for tb in tableList: tbList.append(tb["view_name"]) for tb in tablesInDatabase: if tb["TABLE_NAME"] not in tbList: thisViewName = tb["TABLE_NAME"] print "`%(thisViewName)s` added to `tcs_helper_catalogue_views_info` database table" % locals() sqlQuery = u""" INSERT INTO tcs_helper_catalogue_views_info ( id, view_name ) VALUES ( %(highestId)s, "%(thisViewName)s" )""" % locals() writequery( log=self.log, sqlQuery=sqlQuery, dbConn=self.cataloguesDbConn, ) highestId += 1 self.log.debug( 'completed the ``_update_tcs_helper_catalogue_views_info_with_new_views`` method') return None
python
def _update_tcs_helper_catalogue_views_info_with_new_views( self): """ update tcs helper catalogue tables info with new tables .. todo :: - update key arguments values and definitions with defaults - update return values and definitions - update usage examples and text - update docstring text - check sublime snippet exists - clip any useful text to docs mindmap - regenerate the docs and check redendering of this docstring """ self.log.debug( 'starting the ``_update_tcs_helper_catalogue_views_info_with_new_views`` method') sqlQuery = u""" SELECT max(id) as thisId FROM tcs_helper_catalogue_views_info; """ % locals() thisId = readquery( log=self.log, sqlQuery=sqlQuery, dbConn=self.cataloguesDbConn, quiet=False ) try: highestId = thisId[0]["thisId"] + 1 except: highestId = 1 sqlQuery = u""" SELECT TABLE_NAME FROM INFORMATION_SCHEMA.TABLES WHERE TABLE_TYPE='VIEW' AND TABLE_SCHEMA like '%%catalogues%%' and TABLE_NAME like "tcs_view%%" and TABLE_NAME not like "%%helper%%"; """ % locals() tablesInDatabase = readquery( log=self.log, sqlQuery=sqlQuery, dbConn=self.cataloguesDbConn, quiet=False ) sqlQuery = u""" SELECT view_name FROM tcs_helper_catalogue_views_info; """ % locals() tableList = readquery( log=self.log, sqlQuery=sqlQuery, dbConn=self.cataloguesDbConn, quiet=False ) tbList = [] for tb in tableList: tbList.append(tb["view_name"]) for tb in tablesInDatabase: if tb["TABLE_NAME"] not in tbList: thisViewName = tb["TABLE_NAME"] print "`%(thisViewName)s` added to `tcs_helper_catalogue_views_info` database table" % locals() sqlQuery = u""" INSERT INTO tcs_helper_catalogue_views_info ( id, view_name ) VALUES ( %(highestId)s, "%(thisViewName)s" )""" % locals() writequery( log=self.log, sqlQuery=sqlQuery, dbConn=self.cataloguesDbConn, ) highestId += 1 self.log.debug( 'completed the ``_update_tcs_helper_catalogue_views_info_with_new_views`` method') return None
[ "def", "_update_tcs_helper_catalogue_views_info_with_new_views", "(", "self", ")", ":", "self", ".", "log", ".", "debug", "(", "'starting the ``_update_tcs_helper_catalogue_views_info_with_new_views`` method'", ")", "sqlQuery", "=", "u\"\"\"\n SELECT max(id) as thisId FROM tcs_helper_catalogue_views_info;\n \"\"\"", "%", "locals", "(", ")", "thisId", "=", "readquery", "(", "log", "=", "self", ".", "log", ",", "sqlQuery", "=", "sqlQuery", ",", "dbConn", "=", "self", ".", "cataloguesDbConn", ",", "quiet", "=", "False", ")", "try", ":", "highestId", "=", "thisId", "[", "0", "]", "[", "\"thisId\"", "]", "+", "1", "except", ":", "highestId", "=", "1", "sqlQuery", "=", "u\"\"\"\n SELECT TABLE_NAME FROM INFORMATION_SCHEMA.TABLES WHERE TABLE_TYPE='VIEW' AND TABLE_SCHEMA like '%%catalogues%%' and TABLE_NAME like \"tcs_view%%\" and TABLE_NAME not like \"%%helper%%\";\n \"\"\"", "%", "locals", "(", ")", "tablesInDatabase", "=", "readquery", "(", "log", "=", "self", ".", "log", ",", "sqlQuery", "=", "sqlQuery", ",", "dbConn", "=", "self", ".", "cataloguesDbConn", ",", "quiet", "=", "False", ")", "sqlQuery", "=", "u\"\"\"\n SELECT view_name FROM tcs_helper_catalogue_views_info;\n \"\"\"", "%", "locals", "(", ")", "tableList", "=", "readquery", "(", "log", "=", "self", ".", "log", ",", "sqlQuery", "=", "sqlQuery", ",", "dbConn", "=", "self", ".", "cataloguesDbConn", ",", "quiet", "=", "False", ")", "tbList", "=", "[", "]", "for", "tb", "in", "tableList", ":", "tbList", ".", "append", "(", "tb", "[", "\"view_name\"", "]", ")", "for", "tb", "in", "tablesInDatabase", ":", "if", "tb", "[", "\"TABLE_NAME\"", "]", "not", "in", "tbList", ":", "thisViewName", "=", "tb", "[", "\"TABLE_NAME\"", "]", "print", "\"`%(thisViewName)s` added to `tcs_helper_catalogue_views_info` database table\"", "%", "locals", "(", ")", "sqlQuery", "=", "u\"\"\"\n INSERT INTO tcs_helper_catalogue_views_info (\n id,\n view_name\n )\n VALUES (\n %(highestId)s,\n \"%(thisViewName)s\"\n )\"\"\"", "%", "locals", "(", ")", "writequery", "(", "log", "=", "self", ".", "log", ",", "sqlQuery", "=", "sqlQuery", ",", "dbConn", "=", "self", ".", "cataloguesDbConn", ",", ")", "highestId", "+=", "1", "self", ".", "log", ".", "debug", "(", "'completed the ``_update_tcs_helper_catalogue_views_info_with_new_views`` method'", ")", "return", "None" ]
update tcs helper catalogue tables info with new tables .. todo :: - update key arguments values and definitions with defaults - update return values and definitions - update usage examples and text - update docstring text - check sublime snippet exists - clip any useful text to docs mindmap - regenerate the docs and check redendering of this docstring
[ "update", "tcs", "helper", "catalogue", "tables", "info", "with", "new", "tables" ]
train
https://github.com/thespacedoctor/sherlock/blob/2c80fb6fa31b04e7820e6928e3d437a21e692dd3/sherlock/database_cleaner.py#L348-L424
pytroll/posttroll
posttroll/listener.py
ListenerContainer.restart_listener
def restart_listener(self, topics): '''Restart listener after configuration update. ''' if self.listener is not None: if self.listener.running: self.stop() self.__init__(topics=topics)
python
def restart_listener(self, topics): '''Restart listener after configuration update. ''' if self.listener is not None: if self.listener.running: self.stop() self.__init__(topics=topics)
[ "def", "restart_listener", "(", "self", ",", "topics", ")", ":", "if", "self", ".", "listener", "is", "not", "None", ":", "if", "self", ".", "listener", ".", "running", ":", "self", ".", "stop", "(", ")", "self", ".", "__init__", "(", "topics", "=", "topics", ")" ]
Restart listener after configuration update.
[ "Restart", "listener", "after", "configuration", "update", "." ]
train
https://github.com/pytroll/posttroll/blob/8e811a0544b5182c4a72aed074b2ff8c4324e94d/posttroll/listener.py#L65-L71
pytroll/posttroll
posttroll/listener.py
ListenerContainer.stop
def stop(self): '''Stop listener.''' self.logger.debug("Stopping listener.") self.listener.stop() if self.thread is not None: self.thread.join() self.thread = None self.logger.debug("Listener stopped.")
python
def stop(self): '''Stop listener.''' self.logger.debug("Stopping listener.") self.listener.stop() if self.thread is not None: self.thread.join() self.thread = None self.logger.debug("Listener stopped.")
[ "def", "stop", "(", "self", ")", ":", "self", ".", "logger", ".", "debug", "(", "\"Stopping listener.\"", ")", "self", ".", "listener", ".", "stop", "(", ")", "if", "self", ".", "thread", "is", "not", "None", ":", "self", ".", "thread", ".", "join", "(", ")", "self", ".", "thread", "=", "None", "self", ".", "logger", ".", "debug", "(", "\"Listener stopped.\"", ")" ]
Stop listener.
[ "Stop", "listener", "." ]
train
https://github.com/pytroll/posttroll/blob/8e811a0544b5182c4a72aed074b2ff8c4324e94d/posttroll/listener.py#L73-L80
pytroll/posttroll
posttroll/listener.py
Listener.create_subscriber
def create_subscriber(self): '''Create a subscriber instance using specified addresses and message types. ''' if self.subscriber is None: if self.topics: self.subscriber = NSSubscriber(self.services, self.topics, addr_listener=True, addresses=self.addresses, nameserver=self.nameserver) self.recv = self.subscriber.start().recv
python
def create_subscriber(self): '''Create a subscriber instance using specified addresses and message types. ''' if self.subscriber is None: if self.topics: self.subscriber = NSSubscriber(self.services, self.topics, addr_listener=True, addresses=self.addresses, nameserver=self.nameserver) self.recv = self.subscriber.start().recv
[ "def", "create_subscriber", "(", "self", ")", ":", "if", "self", ".", "subscriber", "is", "None", ":", "if", "self", ".", "topics", ":", "self", ".", "subscriber", "=", "NSSubscriber", "(", "self", ".", "services", ",", "self", ".", "topics", ",", "addr_listener", "=", "True", ",", "addresses", "=", "self", ".", "addresses", ",", "nameserver", "=", "self", ".", "nameserver", ")", "self", ".", "recv", "=", "self", ".", "subscriber", ".", "start", "(", ")", ".", "recv" ]
Create a subscriber instance using specified addresses and message types.
[ "Create", "a", "subscriber", "instance", "using", "specified", "addresses", "and", "message", "types", "." ]
train
https://github.com/pytroll/posttroll/blob/8e811a0544b5182c4a72aed074b2ff8c4324e94d/posttroll/listener.py#L105-L115
pytroll/posttroll
posttroll/listener.py
Listener.run
def run(self): '''Run listener ''' self.running = True for msg in self.recv(1): if msg is None: if self.running: continue else: break self.logger.debug("New message received: %s", str(msg)) self.add_to_queue(msg)
python
def run(self): '''Run listener ''' self.running = True for msg in self.recv(1): if msg is None: if self.running: continue else: break self.logger.debug("New message received: %s", str(msg)) self.add_to_queue(msg)
[ "def", "run", "(", "self", ")", ":", "self", ".", "running", "=", "True", "for", "msg", "in", "self", ".", "recv", "(", "1", ")", ":", "if", "msg", "is", "None", ":", "if", "self", ".", "running", ":", "continue", "else", ":", "break", "self", ".", "logger", ".", "debug", "(", "\"New message received: %s\"", ",", "str", "(", "msg", ")", ")", "self", ".", "add_to_queue", "(", "msg", ")" ]
Run listener
[ "Run", "listener" ]
train
https://github.com/pytroll/posttroll/blob/8e811a0544b5182c4a72aed074b2ff8c4324e94d/posttroll/listener.py#L122-L136
pytroll/posttroll
posttroll/listener.py
Listener.stop
def stop(self): '''Stop subscriber and delete the instance ''' self.running = False time.sleep(1) if self.subscriber is not None: self.subscriber.stop() self.subscriber = None
python
def stop(self): '''Stop subscriber and delete the instance ''' self.running = False time.sleep(1) if self.subscriber is not None: self.subscriber.stop() self.subscriber = None
[ "def", "stop", "(", "self", ")", ":", "self", ".", "running", "=", "False", "time", ".", "sleep", "(", "1", ")", "if", "self", ".", "subscriber", "is", "not", "None", ":", "self", ".", "subscriber", ".", "stop", "(", ")", "self", ".", "subscriber", "=", "None" ]
Stop subscriber and delete the instance
[ "Stop", "subscriber", "and", "delete", "the", "instance" ]
train
https://github.com/pytroll/posttroll/blob/8e811a0544b5182c4a72aed074b2ff8c4324e94d/posttroll/listener.py#L138-L145
ARMmbed/autoversion
src/auto_version/semver.py
get_current_semver
def get_current_semver(data): """Given a dictionary of all version data available, determine the current version""" # get the not-none values from data known = { key: data.get(alias) for key, alias in config._forward_aliases.items() if data.get(alias) is not None } # prefer the strict field, if available potentials = [ known.pop(Constants.VERSION_STRICT_FIELD, None), known.pop(Constants.VERSION_FIELD, None), ] from_components = [known.get(k) for k in SemVerSigFig._fields if k in known] if len(from_components) == 3: potentials.append(".".join(from_components)) versions = set() for potential in potentials: if not potential: continue match = re_semver.match(potential) if match: parts = match.groupdict() parts.pop("tail") versions.add(SemVer(**parts)) if len(versions) > 1: raise ValueError("conflicting versions within project: %s" % versions) if not versions: _LOG.debug("key pairs found: \n%r", known) raise ValueError("could not find existing semver") return versions.pop()
python
def get_current_semver(data): """Given a dictionary of all version data available, determine the current version""" # get the not-none values from data known = { key: data.get(alias) for key, alias in config._forward_aliases.items() if data.get(alias) is not None } # prefer the strict field, if available potentials = [ known.pop(Constants.VERSION_STRICT_FIELD, None), known.pop(Constants.VERSION_FIELD, None), ] from_components = [known.get(k) for k in SemVerSigFig._fields if k in known] if len(from_components) == 3: potentials.append(".".join(from_components)) versions = set() for potential in potentials: if not potential: continue match = re_semver.match(potential) if match: parts = match.groupdict() parts.pop("tail") versions.add(SemVer(**parts)) if len(versions) > 1: raise ValueError("conflicting versions within project: %s" % versions) if not versions: _LOG.debug("key pairs found: \n%r", known) raise ValueError("could not find existing semver") return versions.pop()
[ "def", "get_current_semver", "(", "data", ")", ":", "# get the not-none values from data", "known", "=", "{", "key", ":", "data", ".", "get", "(", "alias", ")", "for", "key", ",", "alias", "in", "config", ".", "_forward_aliases", ".", "items", "(", ")", "if", "data", ".", "get", "(", "alias", ")", "is", "not", "None", "}", "# prefer the strict field, if available", "potentials", "=", "[", "known", ".", "pop", "(", "Constants", ".", "VERSION_STRICT_FIELD", ",", "None", ")", ",", "known", ".", "pop", "(", "Constants", ".", "VERSION_FIELD", ",", "None", ")", ",", "]", "from_components", "=", "[", "known", ".", "get", "(", "k", ")", "for", "k", "in", "SemVerSigFig", ".", "_fields", "if", "k", "in", "known", "]", "if", "len", "(", "from_components", ")", "==", "3", ":", "potentials", ".", "append", "(", "\".\"", ".", "join", "(", "from_components", ")", ")", "versions", "=", "set", "(", ")", "for", "potential", "in", "potentials", ":", "if", "not", "potential", ":", "continue", "match", "=", "re_semver", ".", "match", "(", "potential", ")", "if", "match", ":", "parts", "=", "match", ".", "groupdict", "(", ")", "parts", ".", "pop", "(", "\"tail\"", ")", "versions", ".", "add", "(", "SemVer", "(", "*", "*", "parts", ")", ")", "if", "len", "(", "versions", ")", ">", "1", ":", "raise", "ValueError", "(", "\"conflicting versions within project: %s\"", "%", "versions", ")", "if", "not", "versions", ":", "_LOG", ".", "debug", "(", "\"key pairs found: \\n%r\"", ",", "known", ")", "raise", "ValueError", "(", "\"could not find existing semver\"", ")", "return", "versions", ".", "pop", "(", ")" ]
Given a dictionary of all version data available, determine the current version
[ "Given", "a", "dictionary", "of", "all", "version", "data", "available", "determine", "the", "current", "version" ]
train
https://github.com/ARMmbed/autoversion/blob/c5b127d2059c8219f5637fe45bf9e1be3a0af2aa/src/auto_version/semver.py#L15-L50
ARMmbed/autoversion
src/auto_version/semver.py
make_new_semver
def make_new_semver(current_semver, all_triggers, **overrides): """Defines how to increment semver based on which significant figure is triggered""" new_semver = {} bumped = False for sig_fig in SemVerSigFig: # iterate sig figs in order of significance value = getattr(current_semver, sig_fig) override = overrides.get(sig_fig) if override is not None: new_semver[sig_fig] = override if int(override) > int(value): bumped = True elif bumped: new_semver[sig_fig] = "0" elif sig_fig in all_triggers: new_semver[sig_fig] = str(int(value) + 1) bumped = True else: new_semver[sig_fig] = value return SemVer(**new_semver)
python
def make_new_semver(current_semver, all_triggers, **overrides): """Defines how to increment semver based on which significant figure is triggered""" new_semver = {} bumped = False for sig_fig in SemVerSigFig: # iterate sig figs in order of significance value = getattr(current_semver, sig_fig) override = overrides.get(sig_fig) if override is not None: new_semver[sig_fig] = override if int(override) > int(value): bumped = True elif bumped: new_semver[sig_fig] = "0" elif sig_fig in all_triggers: new_semver[sig_fig] = str(int(value) + 1) bumped = True else: new_semver[sig_fig] = value return SemVer(**new_semver)
[ "def", "make_new_semver", "(", "current_semver", ",", "all_triggers", ",", "*", "*", "overrides", ")", ":", "new_semver", "=", "{", "}", "bumped", "=", "False", "for", "sig_fig", "in", "SemVerSigFig", ":", "# iterate sig figs in order of significance", "value", "=", "getattr", "(", "current_semver", ",", "sig_fig", ")", "override", "=", "overrides", ".", "get", "(", "sig_fig", ")", "if", "override", "is", "not", "None", ":", "new_semver", "[", "sig_fig", "]", "=", "override", "if", "int", "(", "override", ")", ">", "int", "(", "value", ")", ":", "bumped", "=", "True", "elif", "bumped", ":", "new_semver", "[", "sig_fig", "]", "=", "\"0\"", "elif", "sig_fig", "in", "all_triggers", ":", "new_semver", "[", "sig_fig", "]", "=", "str", "(", "int", "(", "value", ")", "+", "1", ")", "bumped", "=", "True", "else", ":", "new_semver", "[", "sig_fig", "]", "=", "value", "return", "SemVer", "(", "*", "*", "new_semver", ")" ]
Defines how to increment semver based on which significant figure is triggered
[ "Defines", "how", "to", "increment", "semver", "based", "on", "which", "significant", "figure", "is", "triggered" ]
train
https://github.com/ARMmbed/autoversion/blob/c5b127d2059c8219f5637fe45bf9e1be3a0af2aa/src/auto_version/semver.py#L53-L71
lbenitez000/trparse
trparse.py
loads
def loads(data): """Parser entry point. Parses the output of a traceroute execution""" data += "\n_EOS_" # Append EOS token. Helps to match last RE_HOP # Get headers match_dest = RE_HEADER.search(data) dest_name = match_dest.group(1) dest_ip = match_dest.group(2) # The Traceroute is the root of the tree. traceroute = Traceroute(dest_name, dest_ip) # Get hops matches_hop = RE_HOP.findall(data) for match_hop in matches_hop: # Initialize a hop idx = int(match_hop[0]) if match_hop[1]: asn = int(match_hop[1]) else: asn = None hop = Hop(idx, asn) # Parse probes data: <name> | <(IP)> | <rtt> | 'ms' | '*' probes_data = match_hop[2].split() # Get rid of 'ms': <name> | <(IP)> | <rtt> | '*' probes_data = filter(lambda s: s.lower() != 'ms', probes_data) i = 0 while i < len(probes_data): # For each hop parse probes name = None ip = None rtt = None anno = '' # RTT check comes first because RE_PROBE_NAME can confuse rtt with an IP as name # The regex RE_PROBE_NAME can be improved if RE_PROBE_RTT.match(probes_data[i]): # Matched rtt, so name and IP have been parsed before rtt = float(probes_data[i]) i += 1 elif RE_PROBE_NAME.match(probes_data[i]): # Matched a name, so next elements are IP and rtt name = probes_data[i] ip = probes_data[i+1].strip('()') rtt = float(probes_data[i+2]) i += 3 elif RE_PROBE_TIMEOUT.match(probes_data[i]): # Its a timeout, so maybe name and IP have been parsed before # or maybe not. But it's Hop job to deal with it rtt = None i += 1 else: ext = "i: %d\nprobes_data: %s\nname: %s\nip: %s\nrtt: %s\nanno: %s" % (i, probes_data, name, ip, rtt, anno) raise ParseError("Parse error \n%s" % ext) # Check for annotation try: if RE_PROBE_ANNOTATION.match(probes_data[i]): anno = probes_data[i] i += 1 except IndexError: pass probe = Probe(name, ip, rtt, anno) hop.add_probe(probe) traceroute.add_hop(hop) return traceroute
python
def loads(data): """Parser entry point. Parses the output of a traceroute execution""" data += "\n_EOS_" # Append EOS token. Helps to match last RE_HOP # Get headers match_dest = RE_HEADER.search(data) dest_name = match_dest.group(1) dest_ip = match_dest.group(2) # The Traceroute is the root of the tree. traceroute = Traceroute(dest_name, dest_ip) # Get hops matches_hop = RE_HOP.findall(data) for match_hop in matches_hop: # Initialize a hop idx = int(match_hop[0]) if match_hop[1]: asn = int(match_hop[1]) else: asn = None hop = Hop(idx, asn) # Parse probes data: <name> | <(IP)> | <rtt> | 'ms' | '*' probes_data = match_hop[2].split() # Get rid of 'ms': <name> | <(IP)> | <rtt> | '*' probes_data = filter(lambda s: s.lower() != 'ms', probes_data) i = 0 while i < len(probes_data): # For each hop parse probes name = None ip = None rtt = None anno = '' # RTT check comes first because RE_PROBE_NAME can confuse rtt with an IP as name # The regex RE_PROBE_NAME can be improved if RE_PROBE_RTT.match(probes_data[i]): # Matched rtt, so name and IP have been parsed before rtt = float(probes_data[i]) i += 1 elif RE_PROBE_NAME.match(probes_data[i]): # Matched a name, so next elements are IP and rtt name = probes_data[i] ip = probes_data[i+1].strip('()') rtt = float(probes_data[i+2]) i += 3 elif RE_PROBE_TIMEOUT.match(probes_data[i]): # Its a timeout, so maybe name and IP have been parsed before # or maybe not. But it's Hop job to deal with it rtt = None i += 1 else: ext = "i: %d\nprobes_data: %s\nname: %s\nip: %s\nrtt: %s\nanno: %s" % (i, probes_data, name, ip, rtt, anno) raise ParseError("Parse error \n%s" % ext) # Check for annotation try: if RE_PROBE_ANNOTATION.match(probes_data[i]): anno = probes_data[i] i += 1 except IndexError: pass probe = Probe(name, ip, rtt, anno) hop.add_probe(probe) traceroute.add_hop(hop) return traceroute
[ "def", "loads", "(", "data", ")", ":", "data", "+=", "\"\\n_EOS_\"", "# Append EOS token. Helps to match last RE_HOP", "# Get headers", "match_dest", "=", "RE_HEADER", ".", "search", "(", "data", ")", "dest_name", "=", "match_dest", ".", "group", "(", "1", ")", "dest_ip", "=", "match_dest", ".", "group", "(", "2", ")", "# The Traceroute is the root of the tree.", "traceroute", "=", "Traceroute", "(", "dest_name", ",", "dest_ip", ")", "# Get hops", "matches_hop", "=", "RE_HOP", ".", "findall", "(", "data", ")", "for", "match_hop", "in", "matches_hop", ":", "# Initialize a hop", "idx", "=", "int", "(", "match_hop", "[", "0", "]", ")", "if", "match_hop", "[", "1", "]", ":", "asn", "=", "int", "(", "match_hop", "[", "1", "]", ")", "else", ":", "asn", "=", "None", "hop", "=", "Hop", "(", "idx", ",", "asn", ")", "# Parse probes data: <name> | <(IP)> | <rtt> | 'ms' | '*'", "probes_data", "=", "match_hop", "[", "2", "]", ".", "split", "(", ")", "# Get rid of 'ms': <name> | <(IP)> | <rtt> | '*'", "probes_data", "=", "filter", "(", "lambda", "s", ":", "s", ".", "lower", "(", ")", "!=", "'ms'", ",", "probes_data", ")", "i", "=", "0", "while", "i", "<", "len", "(", "probes_data", ")", ":", "# For each hop parse probes", "name", "=", "None", "ip", "=", "None", "rtt", "=", "None", "anno", "=", "''", "# RTT check comes first because RE_PROBE_NAME can confuse rtt with an IP as name", "# The regex RE_PROBE_NAME can be improved", "if", "RE_PROBE_RTT", ".", "match", "(", "probes_data", "[", "i", "]", ")", ":", "# Matched rtt, so name and IP have been parsed before", "rtt", "=", "float", "(", "probes_data", "[", "i", "]", ")", "i", "+=", "1", "elif", "RE_PROBE_NAME", ".", "match", "(", "probes_data", "[", "i", "]", ")", ":", "# Matched a name, so next elements are IP and rtt", "name", "=", "probes_data", "[", "i", "]", "ip", "=", "probes_data", "[", "i", "+", "1", "]", ".", "strip", "(", "'()'", ")", "rtt", "=", "float", "(", "probes_data", "[", "i", "+", "2", "]", ")", "i", "+=", "3", "elif", "RE_PROBE_TIMEOUT", ".", "match", "(", "probes_data", "[", "i", "]", ")", ":", "# Its a timeout, so maybe name and IP have been parsed before", "# or maybe not. But it's Hop job to deal with it", "rtt", "=", "None", "i", "+=", "1", "else", ":", "ext", "=", "\"i: %d\\nprobes_data: %s\\nname: %s\\nip: %s\\nrtt: %s\\nanno: %s\"", "%", "(", "i", ",", "probes_data", ",", "name", ",", "ip", ",", "rtt", ",", "anno", ")", "raise", "ParseError", "(", "\"Parse error \\n%s\"", "%", "ext", ")", "# Check for annotation", "try", ":", "if", "RE_PROBE_ANNOTATION", ".", "match", "(", "probes_data", "[", "i", "]", ")", ":", "anno", "=", "probes_data", "[", "i", "]", "i", "+=", "1", "except", "IndexError", ":", "pass", "probe", "=", "Probe", "(", "name", ",", "ip", ",", "rtt", ",", "anno", ")", "hop", ".", "add_probe", "(", "probe", ")", "traceroute", ".", "add_hop", "(", "hop", ")", "return", "traceroute" ]
Parser entry point. Parses the output of a traceroute execution
[ "Parser", "entry", "point", ".", "Parses", "the", "output", "of", "a", "traceroute", "execution" ]
train
https://github.com/lbenitez000/trparse/blob/1f932d882a98b062b540b6f4bc2ecb0f35b92e97/trparse.py#L88-L158
lbenitez000/trparse
trparse.py
Hop.add_probe
def add_probe(self, probe): """Adds a Probe instance to this hop's results.""" if self.probes: probe_last = self.probes[-1] if not probe.ip: probe.ip = probe_last.ip probe.name = probe_last.name self.probes.append(probe)
python
def add_probe(self, probe): """Adds a Probe instance to this hop's results.""" if self.probes: probe_last = self.probes[-1] if not probe.ip: probe.ip = probe_last.ip probe.name = probe_last.name self.probes.append(probe)
[ "def", "add_probe", "(", "self", ",", "probe", ")", ":", "if", "self", ".", "probes", ":", "probe_last", "=", "self", ".", "probes", "[", "-", "1", "]", "if", "not", "probe", ".", "ip", ":", "probe", ".", "ip", "=", "probe_last", ".", "ip", "probe", ".", "name", "=", "probe_last", ".", "name", "self", ".", "probes", ".", "append", "(", "probe", ")" ]
Adds a Probe instance to this hop's results.
[ "Adds", "a", "Probe", "instance", "to", "this", "hop", "s", "results", "." ]
train
https://github.com/lbenitez000/trparse/blob/1f932d882a98b062b540b6f4bc2ecb0f35b92e97/trparse.py#L48-L55
emichael/PyREM
pyrem/utils.py
synchronized
def synchronized(func, *args, **kwargs): """Function decorator to make function synchronized on ``self._lock``. If the first argument to the function (hopefully self) does not have a _lock attribute, then this decorator does nothing. """ if not (args and hasattr(args[0], '_lock')): return func(*args, **kwargs) with args[0]._lock: # pylint: disable=W0212 return func(*args, **kwargs)
python
def synchronized(func, *args, **kwargs): """Function decorator to make function synchronized on ``self._lock``. If the first argument to the function (hopefully self) does not have a _lock attribute, then this decorator does nothing. """ if not (args and hasattr(args[0], '_lock')): return func(*args, **kwargs) with args[0]._lock: # pylint: disable=W0212 return func(*args, **kwargs)
[ "def", "synchronized", "(", "func", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "if", "not", "(", "args", "and", "hasattr", "(", "args", "[", "0", "]", ",", "'_lock'", ")", ")", ":", "return", "func", "(", "*", "args", ",", "*", "*", "kwargs", ")", "with", "args", "[", "0", "]", ".", "_lock", ":", "# pylint: disable=W0212", "return", "func", "(", "*", "args", ",", "*", "*", "kwargs", ")" ]
Function decorator to make function synchronized on ``self._lock``. If the first argument to the function (hopefully self) does not have a _lock attribute, then this decorator does nothing.
[ "Function", "decorator", "to", "make", "function", "synchronized", "on", "self", ".", "_lock", "." ]
train
https://github.com/emichael/PyREM/blob/2609249ead197cd9496d164f4998ca9985503579/pyrem/utils.py#L10-L19
zeroSteiner/smoke-zephyr
smoke_zephyr/job.py
normalize_job_id
def normalize_job_id(job_id): """ Convert a value to a job id. :param job_id: Value to convert. :type job_id: int, str :return: The job id. :rtype: :py:class:`uuid.UUID` """ if not isinstance(job_id, uuid.UUID): job_id = uuid.UUID(job_id) return job_id
python
def normalize_job_id(job_id): """ Convert a value to a job id. :param job_id: Value to convert. :type job_id: int, str :return: The job id. :rtype: :py:class:`uuid.UUID` """ if not isinstance(job_id, uuid.UUID): job_id = uuid.UUID(job_id) return job_id
[ "def", "normalize_job_id", "(", "job_id", ")", ":", "if", "not", "isinstance", "(", "job_id", ",", "uuid", ".", "UUID", ")", ":", "job_id", "=", "uuid", ".", "UUID", "(", "job_id", ")", "return", "job_id" ]
Convert a value to a job id. :param job_id: Value to convert. :type job_id: int, str :return: The job id. :rtype: :py:class:`uuid.UUID`
[ "Convert", "a", "value", "to", "a", "job", "id", "." ]
train
https://github.com/zeroSteiner/smoke-zephyr/blob/a6d2498aeacc72ee52e7806f783a4d83d537ffb2/smoke_zephyr/job.py#L41-L52
zeroSteiner/smoke-zephyr
smoke_zephyr/job.py
JobManager.now
def now(self): """ Return a :py:class:`datetime.datetime` instance representing the current time. :rtype: :py:class:`datetime.datetime` """ if self.use_utc: return datetime.datetime.utcnow() else: return datetime.datetime.now()
python
def now(self): """ Return a :py:class:`datetime.datetime` instance representing the current time. :rtype: :py:class:`datetime.datetime` """ if self.use_utc: return datetime.datetime.utcnow() else: return datetime.datetime.now()
[ "def", "now", "(", "self", ")", ":", "if", "self", ".", "use_utc", ":", "return", "datetime", ".", "datetime", ".", "utcnow", "(", ")", "else", ":", "return", "datetime", ".", "datetime", ".", "now", "(", ")" ]
Return a :py:class:`datetime.datetime` instance representing the current time. :rtype: :py:class:`datetime.datetime`
[ "Return", "a", ":", "py", ":", "class", ":", "datetime", ".", "datetime", "instance", "representing", "the", "current", "time", "." ]
train
https://github.com/zeroSteiner/smoke-zephyr/blob/a6d2498aeacc72ee52e7806f783a4d83d537ffb2/smoke_zephyr/job.py#L176-L185
zeroSteiner/smoke-zephyr
smoke_zephyr/job.py
JobManager.start
def start(self): """ Start the JobManager thread. """ if self._thread_running.is_set(): raise RuntimeError('the JobManager has already been started') self._thread.start() self._thread_running.wait() return
python
def start(self): """ Start the JobManager thread. """ if self._thread_running.is_set(): raise RuntimeError('the JobManager has already been started') self._thread.start() self._thread_running.wait() return
[ "def", "start", "(", "self", ")", ":", "if", "self", ".", "_thread_running", ".", "is_set", "(", ")", ":", "raise", "RuntimeError", "(", "'the JobManager has already been started'", ")", "self", ".", "_thread", ".", "start", "(", ")", "self", ".", "_thread_running", ".", "wait", "(", ")", "return" ]
Start the JobManager thread.
[ "Start", "the", "JobManager", "thread", "." ]
train
https://github.com/zeroSteiner/smoke-zephyr/blob/a6d2498aeacc72ee52e7806f783a4d83d537ffb2/smoke_zephyr/job.py#L209-L217
zeroSteiner/smoke-zephyr
smoke_zephyr/job.py
JobManager.stop
def stop(self): """ Stop the JobManager thread. """ self.logger.debug('stopping the job manager') self._thread_running.clear() self._thread_shutdown.wait() self._job_lock.acquire() self.logger.debug('waiting on ' + str(len(self._jobs)) + ' job threads') for job_desc in self._jobs.values(): if job_desc['job'] is None: continue if not job_desc['job'].is_alive(): continue job_desc['job'].join() # the job lock must be released before the thread can be joined because the thread routine acquires it before # checking if it should exit, see https://github.com/zeroSteiner/smoke-zephyr/issues/4 for more details self._job_lock.release() self._thread.join() self.logger.info('the job manager has been stopped') return
python
def stop(self): """ Stop the JobManager thread. """ self.logger.debug('stopping the job manager') self._thread_running.clear() self._thread_shutdown.wait() self._job_lock.acquire() self.logger.debug('waiting on ' + str(len(self._jobs)) + ' job threads') for job_desc in self._jobs.values(): if job_desc['job'] is None: continue if not job_desc['job'].is_alive(): continue job_desc['job'].join() # the job lock must be released before the thread can be joined because the thread routine acquires it before # checking if it should exit, see https://github.com/zeroSteiner/smoke-zephyr/issues/4 for more details self._job_lock.release() self._thread.join() self.logger.info('the job manager has been stopped') return
[ "def", "stop", "(", "self", ")", ":", "self", ".", "logger", ".", "debug", "(", "'stopping the job manager'", ")", "self", ".", "_thread_running", ".", "clear", "(", ")", "self", ".", "_thread_shutdown", ".", "wait", "(", ")", "self", ".", "_job_lock", ".", "acquire", "(", ")", "self", ".", "logger", ".", "debug", "(", "'waiting on '", "+", "str", "(", "len", "(", "self", ".", "_jobs", ")", ")", "+", "' job threads'", ")", "for", "job_desc", "in", "self", ".", "_jobs", ".", "values", "(", ")", ":", "if", "job_desc", "[", "'job'", "]", "is", "None", ":", "continue", "if", "not", "job_desc", "[", "'job'", "]", ".", "is_alive", "(", ")", ":", "continue", "job_desc", "[", "'job'", "]", ".", "join", "(", ")", "# the job lock must be released before the thread can be joined because the thread routine acquires it before", "# checking if it should exit, see https://github.com/zeroSteiner/smoke-zephyr/issues/4 for more details", "self", ".", "_job_lock", ".", "release", "(", ")", "self", ".", "_thread", ".", "join", "(", ")", "self", ".", "logger", ".", "info", "(", "'the job manager has been stopped'", ")", "return" ]
Stop the JobManager thread.
[ "Stop", "the", "JobManager", "thread", "." ]
train
https://github.com/zeroSteiner/smoke-zephyr/blob/a6d2498aeacc72ee52e7806f783a4d83d537ffb2/smoke_zephyr/job.py#L219-L241
zeroSteiner/smoke-zephyr
smoke_zephyr/job.py
JobManager.job_run
def job_run(self, callback, parameters=None): """ Add a job and run it once immediately. :param function callback: The function to run asynchronously. :param parameters: The parameters to be provided to the callback. :type parameters: list, tuple :return: The job id. :rtype: :py:class:`uuid.UUID` """ if not self._thread_running.is_set(): raise RuntimeError('the JobManager is not running') parameters = (parameters or ()) if not isinstance(parameters, (list, tuple)): parameters = (parameters,) job_desc = {} job_desc['job'] = JobRun(callback, parameters) job_desc['last_run'] = None job_desc['run_every'] = datetime.timedelta(0, 1) job_desc['callback'] = callback job_desc['parameters'] = parameters job_desc['enabled'] = True job_desc['tolerate_exceptions'] = False job_desc['run_count'] = 0 job_desc['expiration'] = 0 job_id = uuid.uuid4() self.logger.info('adding new job with id: ' + str(job_id) + ' and callback function: ' + callback.__name__) with self._job_lock: self._jobs[job_id] = job_desc self._job_execute(job_id) return job_id
python
def job_run(self, callback, parameters=None): """ Add a job and run it once immediately. :param function callback: The function to run asynchronously. :param parameters: The parameters to be provided to the callback. :type parameters: list, tuple :return: The job id. :rtype: :py:class:`uuid.UUID` """ if not self._thread_running.is_set(): raise RuntimeError('the JobManager is not running') parameters = (parameters or ()) if not isinstance(parameters, (list, tuple)): parameters = (parameters,) job_desc = {} job_desc['job'] = JobRun(callback, parameters) job_desc['last_run'] = None job_desc['run_every'] = datetime.timedelta(0, 1) job_desc['callback'] = callback job_desc['parameters'] = parameters job_desc['enabled'] = True job_desc['tolerate_exceptions'] = False job_desc['run_count'] = 0 job_desc['expiration'] = 0 job_id = uuid.uuid4() self.logger.info('adding new job with id: ' + str(job_id) + ' and callback function: ' + callback.__name__) with self._job_lock: self._jobs[job_id] = job_desc self._job_execute(job_id) return job_id
[ "def", "job_run", "(", "self", ",", "callback", ",", "parameters", "=", "None", ")", ":", "if", "not", "self", ".", "_thread_running", ".", "is_set", "(", ")", ":", "raise", "RuntimeError", "(", "'the JobManager is not running'", ")", "parameters", "=", "(", "parameters", "or", "(", ")", ")", "if", "not", "isinstance", "(", "parameters", ",", "(", "list", ",", "tuple", ")", ")", ":", "parameters", "=", "(", "parameters", ",", ")", "job_desc", "=", "{", "}", "job_desc", "[", "'job'", "]", "=", "JobRun", "(", "callback", ",", "parameters", ")", "job_desc", "[", "'last_run'", "]", "=", "None", "job_desc", "[", "'run_every'", "]", "=", "datetime", ".", "timedelta", "(", "0", ",", "1", ")", "job_desc", "[", "'callback'", "]", "=", "callback", "job_desc", "[", "'parameters'", "]", "=", "parameters", "job_desc", "[", "'enabled'", "]", "=", "True", "job_desc", "[", "'tolerate_exceptions'", "]", "=", "False", "job_desc", "[", "'run_count'", "]", "=", "0", "job_desc", "[", "'expiration'", "]", "=", "0", "job_id", "=", "uuid", ".", "uuid4", "(", ")", "self", ".", "logger", ".", "info", "(", "'adding new job with id: '", "+", "str", "(", "job_id", ")", "+", "' and callback function: '", "+", "callback", ".", "__name__", ")", "with", "self", ".", "_job_lock", ":", "self", ".", "_jobs", "[", "job_id", "]", "=", "job_desc", "self", ".", "_job_execute", "(", "job_id", ")", "return", "job_id" ]
Add a job and run it once immediately. :param function callback: The function to run asynchronously. :param parameters: The parameters to be provided to the callback. :type parameters: list, tuple :return: The job id. :rtype: :py:class:`uuid.UUID`
[ "Add", "a", "job", "and", "run", "it", "once", "immediately", "." ]
train
https://github.com/zeroSteiner/smoke-zephyr/blob/a6d2498aeacc72ee52e7806f783a4d83d537ffb2/smoke_zephyr/job.py#L243-L273
zeroSteiner/smoke-zephyr
smoke_zephyr/job.py
JobManager.job_add
def job_add(self, callback, parameters=None, hours=0, minutes=0, seconds=0, tolerate_exceptions=True, expiration=None): """ Add a job to the job manager. :param function callback: The function to run asynchronously. :param parameters: The parameters to be provided to the callback. :type parameters: list, tuple :param int hours: Number of hours to sleep between running the callback. :param int minutes: Number of minutes to sleep between running the callback. :param int seconds: Number of seconds to sleep between running the callback. :param bool tolerate_execptions: Whether to continue running a job after it has thrown an exception. :param expiration: When to expire and remove the job. If an integer is provided, the job will be executed that many times. If a datetime or timedelta instance is provided, then the job will be removed after the specified time. :type expiration: int, :py:class:`datetime.timedelta`, :py:class:`datetime.datetime` :return: The job id. :rtype: :py:class:`uuid.UUID` """ if not self._thread_running.is_set(): raise RuntimeError('the JobManager is not running') parameters = (parameters or ()) if not isinstance(parameters, (list, tuple)): parameters = (parameters,) job_desc = {} job_desc['job'] = JobRun(callback, parameters) job_desc['last_run'] = None job_desc['run_every'] = datetime.timedelta(0, ((hours * 60 * 60) + (minutes * 60) + seconds)) job_desc['callback'] = callback job_desc['parameters'] = parameters job_desc['enabled'] = True job_desc['tolerate_exceptions'] = tolerate_exceptions job_desc['run_count'] = 0 if isinstance(expiration, int): job_desc['expiration'] = expiration elif isinstance(expiration, datetime.timedelta): job_desc['expiration'] = self.now() + expiration elif isinstance(expiration, datetime.datetime): job_desc['expiration'] = expiration else: job_desc['expiration'] = None job_id = uuid.uuid4() self.logger.info('adding new job with id: ' + str(job_id) + ' and callback function: ' + callback.__name__) with self._job_lock: self._jobs[job_id] = job_desc return job_id
python
def job_add(self, callback, parameters=None, hours=0, minutes=0, seconds=0, tolerate_exceptions=True, expiration=None): """ Add a job to the job manager. :param function callback: The function to run asynchronously. :param parameters: The parameters to be provided to the callback. :type parameters: list, tuple :param int hours: Number of hours to sleep between running the callback. :param int minutes: Number of minutes to sleep between running the callback. :param int seconds: Number of seconds to sleep between running the callback. :param bool tolerate_execptions: Whether to continue running a job after it has thrown an exception. :param expiration: When to expire and remove the job. If an integer is provided, the job will be executed that many times. If a datetime or timedelta instance is provided, then the job will be removed after the specified time. :type expiration: int, :py:class:`datetime.timedelta`, :py:class:`datetime.datetime` :return: The job id. :rtype: :py:class:`uuid.UUID` """ if not self._thread_running.is_set(): raise RuntimeError('the JobManager is not running') parameters = (parameters or ()) if not isinstance(parameters, (list, tuple)): parameters = (parameters,) job_desc = {} job_desc['job'] = JobRun(callback, parameters) job_desc['last_run'] = None job_desc['run_every'] = datetime.timedelta(0, ((hours * 60 * 60) + (minutes * 60) + seconds)) job_desc['callback'] = callback job_desc['parameters'] = parameters job_desc['enabled'] = True job_desc['tolerate_exceptions'] = tolerate_exceptions job_desc['run_count'] = 0 if isinstance(expiration, int): job_desc['expiration'] = expiration elif isinstance(expiration, datetime.timedelta): job_desc['expiration'] = self.now() + expiration elif isinstance(expiration, datetime.datetime): job_desc['expiration'] = expiration else: job_desc['expiration'] = None job_id = uuid.uuid4() self.logger.info('adding new job with id: ' + str(job_id) + ' and callback function: ' + callback.__name__) with self._job_lock: self._jobs[job_id] = job_desc return job_id
[ "def", "job_add", "(", "self", ",", "callback", ",", "parameters", "=", "None", ",", "hours", "=", "0", ",", "minutes", "=", "0", ",", "seconds", "=", "0", ",", "tolerate_exceptions", "=", "True", ",", "expiration", "=", "None", ")", ":", "if", "not", "self", ".", "_thread_running", ".", "is_set", "(", ")", ":", "raise", "RuntimeError", "(", "'the JobManager is not running'", ")", "parameters", "=", "(", "parameters", "or", "(", ")", ")", "if", "not", "isinstance", "(", "parameters", ",", "(", "list", ",", "tuple", ")", ")", ":", "parameters", "=", "(", "parameters", ",", ")", "job_desc", "=", "{", "}", "job_desc", "[", "'job'", "]", "=", "JobRun", "(", "callback", ",", "parameters", ")", "job_desc", "[", "'last_run'", "]", "=", "None", "job_desc", "[", "'run_every'", "]", "=", "datetime", ".", "timedelta", "(", "0", ",", "(", "(", "hours", "*", "60", "*", "60", ")", "+", "(", "minutes", "*", "60", ")", "+", "seconds", ")", ")", "job_desc", "[", "'callback'", "]", "=", "callback", "job_desc", "[", "'parameters'", "]", "=", "parameters", "job_desc", "[", "'enabled'", "]", "=", "True", "job_desc", "[", "'tolerate_exceptions'", "]", "=", "tolerate_exceptions", "job_desc", "[", "'run_count'", "]", "=", "0", "if", "isinstance", "(", "expiration", ",", "int", ")", ":", "job_desc", "[", "'expiration'", "]", "=", "expiration", "elif", "isinstance", "(", "expiration", ",", "datetime", ".", "timedelta", ")", ":", "job_desc", "[", "'expiration'", "]", "=", "self", ".", "now", "(", ")", "+", "expiration", "elif", "isinstance", "(", "expiration", ",", "datetime", ".", "datetime", ")", ":", "job_desc", "[", "'expiration'", "]", "=", "expiration", "else", ":", "job_desc", "[", "'expiration'", "]", "=", "None", "job_id", "=", "uuid", ".", "uuid4", "(", ")", "self", ".", "logger", ".", "info", "(", "'adding new job with id: '", "+", "str", "(", "job_id", ")", "+", "' and callback function: '", "+", "callback", ".", "__name__", ")", "with", "self", ".", "_job_lock", ":", "self", ".", "_jobs", "[", "job_id", "]", "=", "job_desc", "return", "job_id" ]
Add a job to the job manager. :param function callback: The function to run asynchronously. :param parameters: The parameters to be provided to the callback. :type parameters: list, tuple :param int hours: Number of hours to sleep between running the callback. :param int minutes: Number of minutes to sleep between running the callback. :param int seconds: Number of seconds to sleep between running the callback. :param bool tolerate_execptions: Whether to continue running a job after it has thrown an exception. :param expiration: When to expire and remove the job. If an integer is provided, the job will be executed that many times. If a datetime or timedelta instance is provided, then the job will be removed after the specified time. :type expiration: int, :py:class:`datetime.timedelta`, :py:class:`datetime.datetime` :return: The job id. :rtype: :py:class:`uuid.UUID`
[ "Add", "a", "job", "to", "the", "job", "manager", "." ]
train
https://github.com/zeroSteiner/smoke-zephyr/blob/a6d2498aeacc72ee52e7806f783a4d83d537ffb2/smoke_zephyr/job.py#L275-L320
zeroSteiner/smoke-zephyr
smoke_zephyr/job.py
JobManager.job_count_enabled
def job_count_enabled(self): """ Return the number of enabled jobs. :return: The number of jobs that are enabled. :rtype: int """ enabled = 0 for job_desc in self._jobs.values(): if job_desc['enabled']: enabled += 1 return enabled
python
def job_count_enabled(self): """ Return the number of enabled jobs. :return: The number of jobs that are enabled. :rtype: int """ enabled = 0 for job_desc in self._jobs.values(): if job_desc['enabled']: enabled += 1 return enabled
[ "def", "job_count_enabled", "(", "self", ")", ":", "enabled", "=", "0", "for", "job_desc", "in", "self", ".", "_jobs", ".", "values", "(", ")", ":", "if", "job_desc", "[", "'enabled'", "]", ":", "enabled", "+=", "1", "return", "enabled" ]
Return the number of enabled jobs. :return: The number of jobs that are enabled. :rtype: int
[ "Return", "the", "number", "of", "enabled", "jobs", "." ]
train
https://github.com/zeroSteiner/smoke-zephyr/blob/a6d2498aeacc72ee52e7806f783a4d83d537ffb2/smoke_zephyr/job.py#L331-L342
zeroSteiner/smoke-zephyr
smoke_zephyr/job.py
JobManager.job_enable
def job_enable(self, job_id): """ Enable a job. :param job_id: Job identifier to enable. :type job_id: :py:class:`uuid.UUID` """ job_id = normalize_job_id(job_id) with self._job_lock: job_desc = self._jobs[job_id] job_desc['enabled'] = True
python
def job_enable(self, job_id): """ Enable a job. :param job_id: Job identifier to enable. :type job_id: :py:class:`uuid.UUID` """ job_id = normalize_job_id(job_id) with self._job_lock: job_desc = self._jobs[job_id] job_desc['enabled'] = True
[ "def", "job_enable", "(", "self", ",", "job_id", ")", ":", "job_id", "=", "normalize_job_id", "(", "job_id", ")", "with", "self", ".", "_job_lock", ":", "job_desc", "=", "self", ".", "_jobs", "[", "job_id", "]", "job_desc", "[", "'enabled'", "]", "=", "True" ]
Enable a job. :param job_id: Job identifier to enable. :type job_id: :py:class:`uuid.UUID`
[ "Enable", "a", "job", "." ]
train
https://github.com/zeroSteiner/smoke-zephyr/blob/a6d2498aeacc72ee52e7806f783a4d83d537ffb2/smoke_zephyr/job.py#L344-L354
zeroSteiner/smoke-zephyr
smoke_zephyr/job.py
JobManager.job_disable
def job_disable(self, job_id): """ Disable a job. Disabled jobs will not be executed. :param job_id: Job identifier to disable. :type job_id: :py:class:`uuid.UUID` """ job_id = normalize_job_id(job_id) with self._job_lock: job_desc = self._jobs[job_id] job_desc['enabled'] = False
python
def job_disable(self, job_id): """ Disable a job. Disabled jobs will not be executed. :param job_id: Job identifier to disable. :type job_id: :py:class:`uuid.UUID` """ job_id = normalize_job_id(job_id) with self._job_lock: job_desc = self._jobs[job_id] job_desc['enabled'] = False
[ "def", "job_disable", "(", "self", ",", "job_id", ")", ":", "job_id", "=", "normalize_job_id", "(", "job_id", ")", "with", "self", ".", "_job_lock", ":", "job_desc", "=", "self", ".", "_jobs", "[", "job_id", "]", "job_desc", "[", "'enabled'", "]", "=", "False" ]
Disable a job. Disabled jobs will not be executed. :param job_id: Job identifier to disable. :type job_id: :py:class:`uuid.UUID`
[ "Disable", "a", "job", ".", "Disabled", "jobs", "will", "not", "be", "executed", "." ]
train
https://github.com/zeroSteiner/smoke-zephyr/blob/a6d2498aeacc72ee52e7806f783a4d83d537ffb2/smoke_zephyr/job.py#L356-L366