repository_name
stringlengths
7
55
func_path_in_repository
stringlengths
4
223
func_name
stringlengths
1
134
whole_func_string
stringlengths
75
104k
language
stringclasses
1 value
func_code_string
stringlengths
75
104k
func_code_tokens
listlengths
19
28.4k
func_documentation_string
stringlengths
1
46.9k
func_documentation_tokens
listlengths
1
1.97k
split_name
stringclasses
1 value
func_code_url
stringlengths
87
315
robmcmullen/atrcopy
atrcopy/segments.py
get_style_bits
def get_style_bits(match=False, comment=False, selected=False, data=False, diff=False, user=0): """ Return an int value that contains the specified style bits set. Available styles for each byte are: match: part of the currently matched search comment: user commented area selected: selected region data: labeled in the disassembler as a data region (i.e. not disassembled) """ style_bits = 0 if user: style_bits |= (user & user_bit_mask) if diff: style_bits |= diff_bit_mask if match: style_bits |= match_bit_mask if comment: style_bits |= comment_bit_mask if data: style_bits |= (data_style & user_bit_mask) if selected: style_bits |= selected_bit_mask return style_bits
python
def get_style_bits(match=False, comment=False, selected=False, data=False, diff=False, user=0): """ Return an int value that contains the specified style bits set. Available styles for each byte are: match: part of the currently matched search comment: user commented area selected: selected region data: labeled in the disassembler as a data region (i.e. not disassembled) """ style_bits = 0 if user: style_bits |= (user & user_bit_mask) if diff: style_bits |= diff_bit_mask if match: style_bits |= match_bit_mask if comment: style_bits |= comment_bit_mask if data: style_bits |= (data_style & user_bit_mask) if selected: style_bits |= selected_bit_mask return style_bits
[ "def", "get_style_bits", "(", "match", "=", "False", ",", "comment", "=", "False", ",", "selected", "=", "False", ",", "data", "=", "False", ",", "diff", "=", "False", ",", "user", "=", "0", ")", ":", "style_bits", "=", "0", "if", "user", ":", "style_bits", "|=", "(", "user", "&", "user_bit_mask", ")", "if", "diff", ":", "style_bits", "|=", "diff_bit_mask", "if", "match", ":", "style_bits", "|=", "match_bit_mask", "if", "comment", ":", "style_bits", "|=", "comment_bit_mask", "if", "data", ":", "style_bits", "|=", "(", "data_style", "&", "user_bit_mask", ")", "if", "selected", ":", "style_bits", "|=", "selected_bit_mask", "return", "style_bits" ]
Return an int value that contains the specified style bits set. Available styles for each byte are: match: part of the currently matched search comment: user commented area selected: selected region data: labeled in the disassembler as a data region (i.e. not disassembled)
[ "Return", "an", "int", "value", "that", "contains", "the", "specified", "style", "bits", "set", "." ]
train
https://github.com/robmcmullen/atrcopy/blob/dafba8e74c718e95cf81fd72c184fa193ecec730/atrcopy/segments.py#L22-L45
robmcmullen/atrcopy
atrcopy/segments.py
get_style_mask
def get_style_mask(**kwargs): """Get the bit mask that, when anded with data, will turn off the selected bits """ bits = get_style_bits(**kwargs) if 'user' in kwargs and kwargs['user']: bits |= user_bit_mask else: bits &= (0xff ^ user_bit_mask) return 0xff ^ bits
python
def get_style_mask(**kwargs): """Get the bit mask that, when anded with data, will turn off the selected bits """ bits = get_style_bits(**kwargs) if 'user' in kwargs and kwargs['user']: bits |= user_bit_mask else: bits &= (0xff ^ user_bit_mask) return 0xff ^ bits
[ "def", "get_style_mask", "(", "*", "*", "kwargs", ")", ":", "bits", "=", "get_style_bits", "(", "*", "*", "kwargs", ")", "if", "'user'", "in", "kwargs", "and", "kwargs", "[", "'user'", "]", ":", "bits", "|=", "user_bit_mask", "else", ":", "bits", "&=", "(", "0xff", "^", "user_bit_mask", ")", "return", "0xff", "^", "bits" ]
Get the bit mask that, when anded with data, will turn off the selected bits
[ "Get", "the", "bit", "mask", "that", "when", "anded", "with", "data", "will", "turn", "off", "the", "selected", "bits" ]
train
https://github.com/robmcmullen/atrcopy/blob/dafba8e74c718e95cf81fd72c184fa193ecec730/atrcopy/segments.py#L48-L57
robmcmullen/atrcopy
atrcopy/segments.py
SegmentData.byte_bounds_offset
def byte_bounds_offset(self): """Return start and end offsets of this segment's data into the base array's data. This ignores the byte order index. Arrays using the byte order index will have the entire base array's raw data. """ if self.data.base is None: if self.is_indexed: basearray = self.data.np_data else: basearray = self.data return 0, len(basearray) return int(self.data_start - self.base_start), int(self.data_end - self.base_start)
python
def byte_bounds_offset(self): """Return start and end offsets of this segment's data into the base array's data. This ignores the byte order index. Arrays using the byte order index will have the entire base array's raw data. """ if self.data.base is None: if self.is_indexed: basearray = self.data.np_data else: basearray = self.data return 0, len(basearray) return int(self.data_start - self.base_start), int(self.data_end - self.base_start)
[ "def", "byte_bounds_offset", "(", "self", ")", ":", "if", "self", ".", "data", ".", "base", "is", "None", ":", "if", "self", ".", "is_indexed", ":", "basearray", "=", "self", ".", "data", ".", "np_data", "else", ":", "basearray", "=", "self", ".", "data", "return", "0", ",", "len", "(", "basearray", ")", "return", "int", "(", "self", ".", "data_start", "-", "self", ".", "base_start", ")", ",", "int", "(", "self", ".", "data_end", "-", "self", ".", "base_start", ")" ]
Return start and end offsets of this segment's data into the base array's data. This ignores the byte order index. Arrays using the byte order index will have the entire base array's raw data.
[ "Return", "start", "and", "end", "offsets", "of", "this", "segment", "s", "data", "into", "the", "base", "array", "s", "data", "." ]
train
https://github.com/robmcmullen/atrcopy/blob/dafba8e74c718e95cf81fd72c184fa193ecec730/atrcopy/segments.py#L268-L281
robmcmullen/atrcopy
atrcopy/segments.py
SegmentData.get_raw_index
def get_raw_index(self, i): """Get index into base array's raw data, given the index into this segment """ if self.is_indexed: return int(self.order[i]) if self.data.base is None: return int(i) return int(self.data_start - self.base_start + i)
python
def get_raw_index(self, i): """Get index into base array's raw data, given the index into this segment """ if self.is_indexed: return int(self.order[i]) if self.data.base is None: return int(i) return int(self.data_start - self.base_start + i)
[ "def", "get_raw_index", "(", "self", ",", "i", ")", ":", "if", "self", ".", "is_indexed", ":", "return", "int", "(", "self", ".", "order", "[", "i", "]", ")", "if", "self", ".", "data", ".", "base", "is", "None", ":", "return", "int", "(", "i", ")", "return", "int", "(", "self", ".", "data_start", "-", "self", ".", "base_start", "+", "i", ")" ]
Get index into base array's raw data, given the index into this segment
[ "Get", "index", "into", "base", "array", "s", "raw", "data", "given", "the", "index", "into", "this", "segment" ]
train
https://github.com/robmcmullen/atrcopy/blob/dafba8e74c718e95cf81fd72c184fa193ecec730/atrcopy/segments.py#L283-L291
robmcmullen/atrcopy
atrcopy/segments.py
SegmentData.get_indexes_from_base
def get_indexes_from_base(self): """Get array of indexes from the base array, as if this raw data were indexed. """ if self.is_indexed: return np.copy(self.order[i]) if self.data.base is None: i = 0 else: i = self.get_raw_index(0) return np.arange(i, i + len(self), dtype=np.uint32)
python
def get_indexes_from_base(self): """Get array of indexes from the base array, as if this raw data were indexed. """ if self.is_indexed: return np.copy(self.order[i]) if self.data.base is None: i = 0 else: i = self.get_raw_index(0) return np.arange(i, i + len(self), dtype=np.uint32)
[ "def", "get_indexes_from_base", "(", "self", ")", ":", "if", "self", ".", "is_indexed", ":", "return", "np", ".", "copy", "(", "self", ".", "order", "[", "i", "]", ")", "if", "self", ".", "data", ".", "base", "is", "None", ":", "i", "=", "0", "else", ":", "i", "=", "self", ".", "get_raw_index", "(", "0", ")", "return", "np", ".", "arange", "(", "i", ",", "i", "+", "len", "(", "self", ")", ",", "dtype", "=", "np", ".", "uint32", ")" ]
Get array of indexes from the base array, as if this raw data were indexed.
[ "Get", "array", "of", "indexes", "from", "the", "base", "array", "as", "if", "this", "raw", "data", "were", "indexed", "." ]
train
https://github.com/robmcmullen/atrcopy/blob/dafba8e74c718e95cf81fd72c184fa193ecec730/atrcopy/segments.py#L293-L303
robmcmullen/atrcopy
atrcopy/segments.py
SegmentData.reverse_index_mapping
def reverse_index_mapping(self): """Get mapping from this segment's indexes to the indexes of the base array. If the index is < 0, the index is out of range, meaning that it doesn't exist in this segment and is not mapped to the base array """ if self._reverse_index_mapping is None: if self.is_indexed: # Initialize array to out of range r = np.zeros(self.base_length, dtype=np.int32) - 1 r[self.order] = np.arange(len(self.order), dtype=np.int32) elif self.data.base is None: # Starts at the beginning; produces the identity r = np.arange(self.data_length, dtype=np.int32) else: r = np.zeros(self.base_length, dtype=np.int32) - 1 r[self.data_start - self.base_start:self.data_end - self.base_start] = np.arange(self.data_length, dtype=np.int32) self._reverse_index_mapping = r return self._reverse_index_mapping
python
def reverse_index_mapping(self): """Get mapping from this segment's indexes to the indexes of the base array. If the index is < 0, the index is out of range, meaning that it doesn't exist in this segment and is not mapped to the base array """ if self._reverse_index_mapping is None: if self.is_indexed: # Initialize array to out of range r = np.zeros(self.base_length, dtype=np.int32) - 1 r[self.order] = np.arange(len(self.order), dtype=np.int32) elif self.data.base is None: # Starts at the beginning; produces the identity r = np.arange(self.data_length, dtype=np.int32) else: r = np.zeros(self.base_length, dtype=np.int32) - 1 r[self.data_start - self.base_start:self.data_end - self.base_start] = np.arange(self.data_length, dtype=np.int32) self._reverse_index_mapping = r return self._reverse_index_mapping
[ "def", "reverse_index_mapping", "(", "self", ")", ":", "if", "self", ".", "_reverse_index_mapping", "is", "None", ":", "if", "self", ".", "is_indexed", ":", "# Initialize array to out of range", "r", "=", "np", ".", "zeros", "(", "self", ".", "base_length", ",", "dtype", "=", "np", ".", "int32", ")", "-", "1", "r", "[", "self", ".", "order", "]", "=", "np", ".", "arange", "(", "len", "(", "self", ".", "order", ")", ",", "dtype", "=", "np", ".", "int32", ")", "elif", "self", ".", "data", ".", "base", "is", "None", ":", "# Starts at the beginning; produces the identity", "r", "=", "np", ".", "arange", "(", "self", ".", "data_length", ",", "dtype", "=", "np", ".", "int32", ")", "else", ":", "r", "=", "np", ".", "zeros", "(", "self", ".", "base_length", ",", "dtype", "=", "np", ".", "int32", ")", "-", "1", "r", "[", "self", ".", "data_start", "-", "self", ".", "base_start", ":", "self", ".", "data_end", "-", "self", ".", "base_start", "]", "=", "np", ".", "arange", "(", "self", ".", "data_length", ",", "dtype", "=", "np", ".", "int32", ")", "self", ".", "_reverse_index_mapping", "=", "r", "return", "self", ".", "_reverse_index_mapping" ]
Get mapping from this segment's indexes to the indexes of the base array. If the index is < 0, the index is out of range, meaning that it doesn't exist in this segment and is not mapped to the base array
[ "Get", "mapping", "from", "this", "segment", "s", "indexes", "to", "the", "indexes", "of", "the", "base", "array", "." ]
train
https://github.com/robmcmullen/atrcopy/blob/dafba8e74c718e95cf81fd72c184fa193ecec730/atrcopy/segments.py#L358-L377
robmcmullen/atrcopy
atrcopy/segments.py
SegmentData.get_reverse_index
def get_reverse_index(self, base_index): """Get index into this segment's data given the index into the base data Raises IndexError if the base index doesn't map to anything in this segment's data """ r = self.reverse_index_mapping[base_index] if r < 0: raise IndexError("index %d not mapped in this segment" % base_index) return r
python
def get_reverse_index(self, base_index): """Get index into this segment's data given the index into the base data Raises IndexError if the base index doesn't map to anything in this segment's data """ r = self.reverse_index_mapping[base_index] if r < 0: raise IndexError("index %d not mapped in this segment" % base_index) return r
[ "def", "get_reverse_index", "(", "self", ",", "base_index", ")", ":", "r", "=", "self", ".", "reverse_index_mapping", "[", "base_index", "]", "if", "r", "<", "0", ":", "raise", "IndexError", "(", "\"index %d not mapped in this segment\"", "%", "base_index", ")", "return", "r" ]
Get index into this segment's data given the index into the base data Raises IndexError if the base index doesn't map to anything in this segment's data
[ "Get", "index", "into", "this", "segment", "s", "data", "given", "the", "index", "into", "the", "base", "data" ]
train
https://github.com/robmcmullen/atrcopy/blob/dafba8e74c718e95cf81fd72c184fa193ecec730/atrcopy/segments.py#L379-L388
robmcmullen/atrcopy
atrcopy/segments.py
DefaultSegment.resize
def resize(self, newsize, zeros=True): """ Resize the data arrays. This can only be performed on the container segment. Child segments must adjust their rawdata to point to the correct place. Since segments don't keep references to other segments, it is the user's responsibility to update any child segments that point to this segment's data. Numpy can't do an in-place resize on an array that has a view, so the data must be replaced and all segments that point to that raw data must also be changed. This has to happen outside this method because it doesn't know the segment list of segments using itself as a base. """ if not self.can_resize: raise ValueError("Segment %s can't be resized" % str(self)) # only makes sense for the container (outermost) object if not self.rawdata.is_base: raise ValueError("Only container segments can be resized") origsize = len(self) self.rawdata.resize(newsize) self.set_raw(self.rawdata) # force attributes to be reset newsize = len(self) if zeros: if newsize > origsize: self.data[origsize:] = 0 self.style[origsize:] = 0 return origsize, newsize
python
def resize(self, newsize, zeros=True): """ Resize the data arrays. This can only be performed on the container segment. Child segments must adjust their rawdata to point to the correct place. Since segments don't keep references to other segments, it is the user's responsibility to update any child segments that point to this segment's data. Numpy can't do an in-place resize on an array that has a view, so the data must be replaced and all segments that point to that raw data must also be changed. This has to happen outside this method because it doesn't know the segment list of segments using itself as a base. """ if not self.can_resize: raise ValueError("Segment %s can't be resized" % str(self)) # only makes sense for the container (outermost) object if not self.rawdata.is_base: raise ValueError("Only container segments can be resized") origsize = len(self) self.rawdata.resize(newsize) self.set_raw(self.rawdata) # force attributes to be reset newsize = len(self) if zeros: if newsize > origsize: self.data[origsize:] = 0 self.style[origsize:] = 0 return origsize, newsize
[ "def", "resize", "(", "self", ",", "newsize", ",", "zeros", "=", "True", ")", ":", "if", "not", "self", ".", "can_resize", ":", "raise", "ValueError", "(", "\"Segment %s can't be resized\"", "%", "str", "(", "self", ")", ")", "# only makes sense for the container (outermost) object", "if", "not", "self", ".", "rawdata", ".", "is_base", ":", "raise", "ValueError", "(", "\"Only container segments can be resized\"", ")", "origsize", "=", "len", "(", "self", ")", "self", ".", "rawdata", ".", "resize", "(", "newsize", ")", "self", ".", "set_raw", "(", "self", ".", "rawdata", ")", "# force attributes to be reset", "newsize", "=", "len", "(", "self", ")", "if", "zeros", ":", "if", "newsize", ">", "origsize", ":", "self", ".", "data", "[", "origsize", ":", "]", "=", "0", "self", ".", "style", "[", "origsize", ":", "]", "=", "0", "return", "origsize", ",", "newsize" ]
Resize the data arrays. This can only be performed on the container segment. Child segments must adjust their rawdata to point to the correct place. Since segments don't keep references to other segments, it is the user's responsibility to update any child segments that point to this segment's data. Numpy can't do an in-place resize on an array that has a view, so the data must be replaced and all segments that point to that raw data must also be changed. This has to happen outside this method because it doesn't know the segment list of segments using itself as a base.
[ "Resize", "the", "data", "arrays", "." ]
train
https://github.com/robmcmullen/atrcopy/blob/dafba8e74c718e95cf81fd72c184fa193ecec730/atrcopy/segments.py#L430-L458
robmcmullen/atrcopy
atrcopy/segments.py
DefaultSegment.restore_renamed_serializable_attributes
def restore_renamed_serializable_attributes(self): """Hook for the future if attributes have been renamed. The old attribute names will have been restored in the __dict__.update in __setstate__, so this routine should move attribute values to their new names. """ if hasattr(self, 'start_addr'): self.origin = self.start_addr log.debug(f"moving start_addr to origin: {self.start_addr}") delattr(self, 'start_addr')
python
def restore_renamed_serializable_attributes(self): """Hook for the future if attributes have been renamed. The old attribute names will have been restored in the __dict__.update in __setstate__, so this routine should move attribute values to their new names. """ if hasattr(self, 'start_addr'): self.origin = self.start_addr log.debug(f"moving start_addr to origin: {self.start_addr}") delattr(self, 'start_addr')
[ "def", "restore_renamed_serializable_attributes", "(", "self", ")", ":", "if", "hasattr", "(", "self", ",", "'start_addr'", ")", ":", "self", ".", "origin", "=", "self", ".", "start_addr", "log", ".", "debug", "(", "f\"moving start_addr to origin: {self.start_addr}\"", ")", "delattr", "(", "self", ",", "'start_addr'", ")" ]
Hook for the future if attributes have been renamed. The old attribute names will have been restored in the __dict__.update in __setstate__, so this routine should move attribute values to their new names.
[ "Hook", "for", "the", "future", "if", "attributes", "have", "been", "renamed", ".", "The", "old", "attribute", "names", "will", "have", "been", "restored", "in", "the", "__dict__", ".", "update", "in", "__setstate__", "so", "this", "routine", "should", "move", "attribute", "values", "to", "their", "new", "names", "." ]
train
https://github.com/robmcmullen/atrcopy/blob/dafba8e74c718e95cf81fd72c184fa193ecec730/atrcopy/segments.py#L518-L527
robmcmullen/atrcopy
atrcopy/segments.py
DefaultSegment.reconstruct_raw
def reconstruct_raw(self, rawdata): """Reconstruct the pointers to the parent data arrays Each segment is a view into the primary segment's data, so those pointers and the order must be restored in the child segments. """ start, end = self._rawdata_bounds r = rawdata[start:end] delattr(self, '_rawdata_bounds') try: if self._order_list: order = to_numpy_list(self._order_list) r = r.get_indexed(order) delattr(self, '_order_list') except AttributeError: pass self.set_raw(r)
python
def reconstruct_raw(self, rawdata): """Reconstruct the pointers to the parent data arrays Each segment is a view into the primary segment's data, so those pointers and the order must be restored in the child segments. """ start, end = self._rawdata_bounds r = rawdata[start:end] delattr(self, '_rawdata_bounds') try: if self._order_list: order = to_numpy_list(self._order_list) r = r.get_indexed(order) delattr(self, '_order_list') except AttributeError: pass self.set_raw(r)
[ "def", "reconstruct_raw", "(", "self", ",", "rawdata", ")", ":", "start", ",", "end", "=", "self", ".", "_rawdata_bounds", "r", "=", "rawdata", "[", "start", ":", "end", "]", "delattr", "(", "self", ",", "'_rawdata_bounds'", ")", "try", ":", "if", "self", ".", "_order_list", ":", "order", "=", "to_numpy_list", "(", "self", ".", "_order_list", ")", "r", "=", "r", ".", "get_indexed", "(", "order", ")", "delattr", "(", "self", ",", "'_order_list'", ")", "except", "AttributeError", ":", "pass", "self", ".", "set_raw", "(", "r", ")" ]
Reconstruct the pointers to the parent data arrays Each segment is a view into the primary segment's data, so those pointers and the order must be restored in the child segments.
[ "Reconstruct", "the", "pointers", "to", "the", "parent", "data", "arrays" ]
train
https://github.com/robmcmullen/atrcopy/blob/dafba8e74c718e95cf81fd72c184fa193ecec730/atrcopy/segments.py#L529-L545
robmcmullen/atrcopy
atrcopy/segments.py
DefaultSegment.get_parallel_raw_data
def get_parallel_raw_data(self, other): """ Get the raw data that is similar to the specified other segment """ start, end = other.byte_bounds_offset() r = self.rawdata[start:end] if other.rawdata.is_indexed: r = r.get_indexed[other.order] return r
python
def get_parallel_raw_data(self, other): """ Get the raw data that is similar to the specified other segment """ start, end = other.byte_bounds_offset() r = self.rawdata[start:end] if other.rawdata.is_indexed: r = r.get_indexed[other.order] return r
[ "def", "get_parallel_raw_data", "(", "self", ",", "other", ")", ":", "start", ",", "end", "=", "other", ".", "byte_bounds_offset", "(", ")", "r", "=", "self", ".", "rawdata", "[", "start", ":", "end", "]", "if", "other", ".", "rawdata", ".", "is_indexed", ":", "r", "=", "r", ".", "get_indexed", "[", "other", ".", "order", "]", "return", "r" ]
Get the raw data that is similar to the specified other segment
[ "Get", "the", "raw", "data", "that", "is", "similar", "to", "the", "specified", "other", "segment" ]
train
https://github.com/robmcmullen/atrcopy/blob/dafba8e74c718e95cf81fd72c184fa193ecec730/atrcopy/segments.py#L547-L554
robmcmullen/atrcopy
atrcopy/segments.py
DefaultSegment.serialize_session
def serialize_session(self, mdict): """Save extra metadata to a dict so that it can be serialized This is not saved by __getstate__ because child segments will point to the same data and this allows it to only be saved for the base segment. As well as allowing it to be pulled out of the main json so that it can be more easily edited by hand if desired. """ mdict["comment ranges"] = [list(a) for a in self.get_style_ranges(comment=True)] mdict["data ranges"] = [list(a) for a in self.get_style_ranges(data=True)] for i in range(1, user_bit_mask): r = [list(a) for a in self.get_style_ranges(user=i)] if r: slot = "user style %d" % i mdict[slot] = r # json serialization doesn't allow int keys, so convert to list of # pairs mdict["comments"] = self.get_sorted_comments()
python
def serialize_session(self, mdict): """Save extra metadata to a dict so that it can be serialized This is not saved by __getstate__ because child segments will point to the same data and this allows it to only be saved for the base segment. As well as allowing it to be pulled out of the main json so that it can be more easily edited by hand if desired. """ mdict["comment ranges"] = [list(a) for a in self.get_style_ranges(comment=True)] mdict["data ranges"] = [list(a) for a in self.get_style_ranges(data=True)] for i in range(1, user_bit_mask): r = [list(a) for a in self.get_style_ranges(user=i)] if r: slot = "user style %d" % i mdict[slot] = r # json serialization doesn't allow int keys, so convert to list of # pairs mdict["comments"] = self.get_sorted_comments()
[ "def", "serialize_session", "(", "self", ",", "mdict", ")", ":", "mdict", "[", "\"comment ranges\"", "]", "=", "[", "list", "(", "a", ")", "for", "a", "in", "self", ".", "get_style_ranges", "(", "comment", "=", "True", ")", "]", "mdict", "[", "\"data ranges\"", "]", "=", "[", "list", "(", "a", ")", "for", "a", "in", "self", ".", "get_style_ranges", "(", "data", "=", "True", ")", "]", "for", "i", "in", "range", "(", "1", ",", "user_bit_mask", ")", ":", "r", "=", "[", "list", "(", "a", ")", "for", "a", "in", "self", ".", "get_style_ranges", "(", "user", "=", "i", ")", "]", "if", "r", ":", "slot", "=", "\"user style %d\"", "%", "i", "mdict", "[", "slot", "]", "=", "r", "# json serialization doesn't allow int keys, so convert to list of", "# pairs", "mdict", "[", "\"comments\"", "]", "=", "self", ".", "get_sorted_comments", "(", ")" ]
Save extra metadata to a dict so that it can be serialized This is not saved by __getstate__ because child segments will point to the same data and this allows it to only be saved for the base segment. As well as allowing it to be pulled out of the main json so that it can be more easily edited by hand if desired.
[ "Save", "extra", "metadata", "to", "a", "dict", "so", "that", "it", "can", "be", "serialized" ]
train
https://github.com/robmcmullen/atrcopy/blob/dafba8e74c718e95cf81fd72c184fa193ecec730/atrcopy/segments.py#L556-L574
robmcmullen/atrcopy
atrcopy/segments.py
DefaultSegment.get_index_from_base_index
def get_index_from_base_index(self, base_index): """Get index into this array's data given the index into the base array """ r = self.rawdata try: index = r.get_reverse_index(base_index) except IndexError: raise IndexError("index %d not in this segment" % base_index) if index < 0: raise IndexError("index %d not in this segment" % base_index) return int(index)
python
def get_index_from_base_index(self, base_index): """Get index into this array's data given the index into the base array """ r = self.rawdata try: index = r.get_reverse_index(base_index) except IndexError: raise IndexError("index %d not in this segment" % base_index) if index < 0: raise IndexError("index %d not in this segment" % base_index) return int(index)
[ "def", "get_index_from_base_index", "(", "self", ",", "base_index", ")", ":", "r", "=", "self", ".", "rawdata", "try", ":", "index", "=", "r", ".", "get_reverse_index", "(", "base_index", ")", "except", "IndexError", ":", "raise", "IndexError", "(", "\"index %d not in this segment\"", "%", "base_index", ")", "if", "index", "<", "0", ":", "raise", "IndexError", "(", "\"index %d not in this segment\"", "%", "base_index", ")", "return", "int", "(", "index", ")" ]
Get index into this array's data given the index into the base array
[ "Get", "index", "into", "this", "array", "s", "data", "given", "the", "index", "into", "the", "base", "array" ]
train
https://github.com/robmcmullen/atrcopy/blob/dafba8e74c718e95cf81fd72c184fa193ecec730/atrcopy/segments.py#L652-L662
robmcmullen/atrcopy
atrcopy/segments.py
DefaultSegment.get_style_ranges
def get_style_ranges(self, **kwargs): """Return a list of start, end pairs that match the specified style """ style_bits = self.get_style_bits(**kwargs) matches = (self.style & style_bits) == style_bits return self.bool_to_ranges(matches)
python
def get_style_ranges(self, **kwargs): """Return a list of start, end pairs that match the specified style """ style_bits = self.get_style_bits(**kwargs) matches = (self.style & style_bits) == style_bits return self.bool_to_ranges(matches)
[ "def", "get_style_ranges", "(", "self", ",", "*", "*", "kwargs", ")", ":", "style_bits", "=", "self", ".", "get_style_bits", "(", "*", "*", "kwargs", ")", "matches", "=", "(", "self", ".", "style", "&", "style_bits", ")", "==", "style_bits", "return", "self", ".", "bool_to_ranges", "(", "matches", ")" ]
Return a list of start, end pairs that match the specified style
[ "Return", "a", "list", "of", "start", "end", "pairs", "that", "match", "the", "specified", "style" ]
train
https://github.com/robmcmullen/atrcopy/blob/dafba8e74c718e95cf81fd72c184fa193ecec730/atrcopy/segments.py#L689-L694
robmcmullen/atrcopy
atrcopy/segments.py
DefaultSegment.fixup_comments
def fixup_comments(self): """Remove any style bytes that are marked as commented but have no comment, and add any style bytes where there's a comment but it isn't marked in the style data. This happens on the base data, so only need to do this on one segment that uses this base data. """ style_base = self.rawdata.style_base comment_text_indexes = np.asarray(list(self.rawdata.extra.comments.keys()), dtype=np.uint32) comment_mask = self.get_style_mask(comment=True) has_comments = np.where(style_base & comment_bit_mask > 0)[0] both = np.intersect1d(comment_text_indexes, has_comments) log.info("fixup comments: %d correctly marked, %d without style, %d empty text" % (np.alen(both), np.alen(comment_text_indexes) - np.alen(both), np.alen(has_comments) - np.alen(both))) style_base &= comment_mask comment_style = self.get_style_bits(comment=True) style_base[comment_text_indexes] |= comment_style
python
def fixup_comments(self): """Remove any style bytes that are marked as commented but have no comment, and add any style bytes where there's a comment but it isn't marked in the style data. This happens on the base data, so only need to do this on one segment that uses this base data. """ style_base = self.rawdata.style_base comment_text_indexes = np.asarray(list(self.rawdata.extra.comments.keys()), dtype=np.uint32) comment_mask = self.get_style_mask(comment=True) has_comments = np.where(style_base & comment_bit_mask > 0)[0] both = np.intersect1d(comment_text_indexes, has_comments) log.info("fixup comments: %d correctly marked, %d without style, %d empty text" % (np.alen(both), np.alen(comment_text_indexes) - np.alen(both), np.alen(has_comments) - np.alen(both))) style_base &= comment_mask comment_style = self.get_style_bits(comment=True) style_base[comment_text_indexes] |= comment_style
[ "def", "fixup_comments", "(", "self", ")", ":", "style_base", "=", "self", ".", "rawdata", ".", "style_base", "comment_text_indexes", "=", "np", ".", "asarray", "(", "list", "(", "self", ".", "rawdata", ".", "extra", ".", "comments", ".", "keys", "(", ")", ")", ",", "dtype", "=", "np", ".", "uint32", ")", "comment_mask", "=", "self", ".", "get_style_mask", "(", "comment", "=", "True", ")", "has_comments", "=", "np", ".", "where", "(", "style_base", "&", "comment_bit_mask", ">", "0", ")", "[", "0", "]", "both", "=", "np", ".", "intersect1d", "(", "comment_text_indexes", ",", "has_comments", ")", "log", ".", "info", "(", "\"fixup comments: %d correctly marked, %d without style, %d empty text\"", "%", "(", "np", ".", "alen", "(", "both", ")", ",", "np", ".", "alen", "(", "comment_text_indexes", ")", "-", "np", ".", "alen", "(", "both", ")", ",", "np", ".", "alen", "(", "has_comments", ")", "-", "np", ".", "alen", "(", "both", ")", ")", ")", "style_base", "&=", "comment_mask", "comment_style", "=", "self", ".", "get_style_bits", "(", "comment", "=", "True", ")", "style_base", "[", "comment_text_indexes", "]", "|=", "comment_style" ]
Remove any style bytes that are marked as commented but have no comment, and add any style bytes where there's a comment but it isn't marked in the style data. This happens on the base data, so only need to do this on one segment that uses this base data.
[ "Remove", "any", "style", "bytes", "that", "are", "marked", "as", "commented", "but", "have", "no", "comment", "and", "add", "any", "style", "bytes", "where", "there", "s", "a", "comment", "but", "it", "isn", "t", "marked", "in", "the", "style", "data", "." ]
train
https://github.com/robmcmullen/atrcopy/blob/dafba8e74c718e95cf81fd72c184fa193ecec730/atrcopy/segments.py#L696-L712
robmcmullen/atrcopy
atrcopy/segments.py
DefaultSegment.get_entire_style_ranges
def get_entire_style_ranges(self, split_comments=None, **kwargs): """Find sections of the segment that have the same style value. The arguments to this function are used as a mask for the style to determine where to split the styles. Style bits that aren't included in the list will be ignored when splitting. The returned list covers the entire length of the segment. Returns a list of tuples, each tuple containing two items: a start, end tuple; and an integer with the style value. """ style_bits = self.get_style_bits(**kwargs) matches = self.get_comment_locations(**kwargs) groups = np.split(matches, np.where(np.diff(matches) != 0)[0] + 1) if split_comments is None: split_comments = [] # print groups # split into groups with the same numbers ranges = [] last_end = 0 if len(groups) == 1 and len(groups[0]) == 0: # check for degenerate case return last_style = -1 for group in groups: # each group is guaranteed to have the same style size = len(group) next_end = last_end + size style = matches[last_end] masked_style = style & style_bits # print last_end, next_end, style, masked_style, size, group if style & comment_bit_mask: if masked_style in split_comments: # print "interesting comment", last_end, next_end ranges.append(((last_end, next_end), masked_style)) else: # print "non-interesting comment", last_end, next_end if last_style == masked_style: ((prev_end, _), _) = ranges.pop() ranges.append(((prev_end, next_end), masked_style)) else: ranges.append(((last_end, next_end), masked_style)) else: if last_style == masked_style: ((prev_end, _), _) = ranges.pop() ranges.append(((prev_end, next_end), masked_style)) else: ranges.append(((last_end, next_end), masked_style)) last_style = masked_style last_end = next_end return ranges
python
def get_entire_style_ranges(self, split_comments=None, **kwargs): """Find sections of the segment that have the same style value. The arguments to this function are used as a mask for the style to determine where to split the styles. Style bits that aren't included in the list will be ignored when splitting. The returned list covers the entire length of the segment. Returns a list of tuples, each tuple containing two items: a start, end tuple; and an integer with the style value. """ style_bits = self.get_style_bits(**kwargs) matches = self.get_comment_locations(**kwargs) groups = np.split(matches, np.where(np.diff(matches) != 0)[0] + 1) if split_comments is None: split_comments = [] # print groups # split into groups with the same numbers ranges = [] last_end = 0 if len(groups) == 1 and len(groups[0]) == 0: # check for degenerate case return last_style = -1 for group in groups: # each group is guaranteed to have the same style size = len(group) next_end = last_end + size style = matches[last_end] masked_style = style & style_bits # print last_end, next_end, style, masked_style, size, group if style & comment_bit_mask: if masked_style in split_comments: # print "interesting comment", last_end, next_end ranges.append(((last_end, next_end), masked_style)) else: # print "non-interesting comment", last_end, next_end if last_style == masked_style: ((prev_end, _), _) = ranges.pop() ranges.append(((prev_end, next_end), masked_style)) else: ranges.append(((last_end, next_end), masked_style)) else: if last_style == masked_style: ((prev_end, _), _) = ranges.pop() ranges.append(((prev_end, next_end), masked_style)) else: ranges.append(((last_end, next_end), masked_style)) last_style = masked_style last_end = next_end return ranges
[ "def", "get_entire_style_ranges", "(", "self", ",", "split_comments", "=", "None", ",", "*", "*", "kwargs", ")", ":", "style_bits", "=", "self", ".", "get_style_bits", "(", "*", "*", "kwargs", ")", "matches", "=", "self", ".", "get_comment_locations", "(", "*", "*", "kwargs", ")", "groups", "=", "np", ".", "split", "(", "matches", ",", "np", ".", "where", "(", "np", ".", "diff", "(", "matches", ")", "!=", "0", ")", "[", "0", "]", "+", "1", ")", "if", "split_comments", "is", "None", ":", "split_comments", "=", "[", "]", "# print groups", "# split into groups with the same numbers", "ranges", "=", "[", "]", "last_end", "=", "0", "if", "len", "(", "groups", ")", "==", "1", "and", "len", "(", "groups", "[", "0", "]", ")", "==", "0", ":", "# check for degenerate case", "return", "last_style", "=", "-", "1", "for", "group", "in", "groups", ":", "# each group is guaranteed to have the same style", "size", "=", "len", "(", "group", ")", "next_end", "=", "last_end", "+", "size", "style", "=", "matches", "[", "last_end", "]", "masked_style", "=", "style", "&", "style_bits", "# print last_end, next_end, style, masked_style, size, group", "if", "style", "&", "comment_bit_mask", ":", "if", "masked_style", "in", "split_comments", ":", "# print \"interesting comment\", last_end, next_end", "ranges", ".", "append", "(", "(", "(", "last_end", ",", "next_end", ")", ",", "masked_style", ")", ")", "else", ":", "# print \"non-interesting comment\", last_end, next_end", "if", "last_style", "==", "masked_style", ":", "(", "(", "prev_end", ",", "_", ")", ",", "_", ")", "=", "ranges", ".", "pop", "(", ")", "ranges", ".", "append", "(", "(", "(", "prev_end", ",", "next_end", ")", ",", "masked_style", ")", ")", "else", ":", "ranges", ".", "append", "(", "(", "(", "last_end", ",", "next_end", ")", ",", "masked_style", ")", ")", "else", ":", "if", "last_style", "==", "masked_style", ":", "(", "(", "prev_end", ",", "_", ")", ",", "_", ")", "=", "ranges", ".", "pop", "(", ")", "ranges", ".", "append", "(", "(", "(", "prev_end", ",", "next_end", ")", ",", "masked_style", ")", ")", "else", ":", "ranges", ".", "append", "(", "(", "(", "last_end", ",", "next_end", ")", ",", "masked_style", ")", ")", "last_style", "=", "masked_style", "last_end", "=", "next_end", "return", "ranges" ]
Find sections of the segment that have the same style value. The arguments to this function are used as a mask for the style to determine where to split the styles. Style bits that aren't included in the list will be ignored when splitting. The returned list covers the entire length of the segment. Returns a list of tuples, each tuple containing two items: a start, end tuple; and an integer with the style value.
[ "Find", "sections", "of", "the", "segment", "that", "have", "the", "same", "style", "value", "." ]
train
https://github.com/robmcmullen/atrcopy/blob/dafba8e74c718e95cf81fd72c184fa193ecec730/atrcopy/segments.py#L725-L775
robmcmullen/atrcopy
atrcopy/segments.py
DefaultSegment.get_comments_at_indexes
def get_comments_at_indexes(self, indexes): """Get a list of comments at specified indexes""" s = self.style[indexes] has_comments = np.where(s & comment_bit_mask > 0)[0] comments = [] for where_index in has_comments: raw = self.get_raw_index(indexes[where_index]) try: comment = self.rawdata.extra.comments[raw] except KeyError: comment = None comments.append(comment) return has_comments, comments
python
def get_comments_at_indexes(self, indexes): """Get a list of comments at specified indexes""" s = self.style[indexes] has_comments = np.where(s & comment_bit_mask > 0)[0] comments = [] for where_index in has_comments: raw = self.get_raw_index(indexes[where_index]) try: comment = self.rawdata.extra.comments[raw] except KeyError: comment = None comments.append(comment) return has_comments, comments
[ "def", "get_comments_at_indexes", "(", "self", ",", "indexes", ")", ":", "s", "=", "self", ".", "style", "[", "indexes", "]", "has_comments", "=", "np", ".", "where", "(", "s", "&", "comment_bit_mask", ">", "0", ")", "[", "0", "]", "comments", "=", "[", "]", "for", "where_index", "in", "has_comments", ":", "raw", "=", "self", ".", "get_raw_index", "(", "indexes", "[", "where_index", "]", ")", "try", ":", "comment", "=", "self", ".", "rawdata", ".", "extra", ".", "comments", "[", "raw", "]", "except", "KeyError", ":", "comment", "=", "None", "comments", ".", "append", "(", "comment", ")", "return", "has_comments", ",", "comments" ]
Get a list of comments at specified indexes
[ "Get", "a", "list", "of", "comments", "at", "specified", "indexes" ]
train
https://github.com/robmcmullen/atrcopy/blob/dafba8e74c718e95cf81fd72c184fa193ecec730/atrcopy/segments.py#L947-L959
robmcmullen/atrcopy
atrcopy/segments.py
DefaultSegment.get_comment_restore_data
def get_comment_restore_data(self, ranges): """Get a chunk of data (designed to be opaque) containing comments, styles & locations that can be used to recreate the comments on an undo """ restore_data = [] for start, end in ranges: log.debug("range: %d-%d" % (start, end)) styles = self.style[start:end].copy() items = {} for i in range(start, end): rawindex = self.get_raw_index(i) try: comment = self.rawdata.extra.comments[rawindex] log.debug(" index: %d rawindex=%d '%s'" % (i, rawindex, comment)) items[i] = (rawindex, comment) except KeyError: log.debug(" index: %d rawindex=%d NO COMMENT TO SAVE" % (i, rawindex)) items[i] = (rawindex, None) restore_data.append((start, end, styles, items)) return restore_data
python
def get_comment_restore_data(self, ranges): """Get a chunk of data (designed to be opaque) containing comments, styles & locations that can be used to recreate the comments on an undo """ restore_data = [] for start, end in ranges: log.debug("range: %d-%d" % (start, end)) styles = self.style[start:end].copy() items = {} for i in range(start, end): rawindex = self.get_raw_index(i) try: comment = self.rawdata.extra.comments[rawindex] log.debug(" index: %d rawindex=%d '%s'" % (i, rawindex, comment)) items[i] = (rawindex, comment) except KeyError: log.debug(" index: %d rawindex=%d NO COMMENT TO SAVE" % (i, rawindex)) items[i] = (rawindex, None) restore_data.append((start, end, styles, items)) return restore_data
[ "def", "get_comment_restore_data", "(", "self", ",", "ranges", ")", ":", "restore_data", "=", "[", "]", "for", "start", ",", "end", "in", "ranges", ":", "log", ".", "debug", "(", "\"range: %d-%d\"", "%", "(", "start", ",", "end", ")", ")", "styles", "=", "self", ".", "style", "[", "start", ":", "end", "]", ".", "copy", "(", ")", "items", "=", "{", "}", "for", "i", "in", "range", "(", "start", ",", "end", ")", ":", "rawindex", "=", "self", ".", "get_raw_index", "(", "i", ")", "try", ":", "comment", "=", "self", ".", "rawdata", ".", "extra", ".", "comments", "[", "rawindex", "]", "log", ".", "debug", "(", "\" index: %d rawindex=%d '%s'\"", "%", "(", "i", ",", "rawindex", ",", "comment", ")", ")", "items", "[", "i", "]", "=", "(", "rawindex", ",", "comment", ")", "except", "KeyError", ":", "log", ".", "debug", "(", "\" index: %d rawindex=%d NO COMMENT TO SAVE\"", "%", "(", "i", ",", "rawindex", ")", ")", "items", "[", "i", "]", "=", "(", "rawindex", ",", "None", ")", "restore_data", ".", "append", "(", "(", "start", ",", "end", ",", "styles", ",", "items", ")", ")", "return", "restore_data" ]
Get a chunk of data (designed to be opaque) containing comments, styles & locations that can be used to recreate the comments on an undo
[ "Get", "a", "chunk", "of", "data", "(", "designed", "to", "be", "opaque", ")", "containing", "comments", "styles", "&", "locations", "that", "can", "be", "used", "to", "recreate", "the", "comments", "on", "an", "undo" ]
train
https://github.com/robmcmullen/atrcopy/blob/dafba8e74c718e95cf81fd72c184fa193ecec730/atrcopy/segments.py#L961-L981
robmcmullen/atrcopy
atrcopy/segments.py
DefaultSegment.restore_comments
def restore_comments(self, restore_data): """Restore comment styles and data """ for start, end, styles, items in restore_data: log.debug("range: %d-%d" % (start, end)) self.style[start:end] = styles for i in range(start, end): rawindex, comment = items[i] if comment: log.debug(" restoring comment: rawindex=%d, '%s'" % (rawindex, comment)) self.rawdata.extra.comments[rawindex] = comment else: # no comment in original data, remove any if exists try: del self.rawdata.extra.comments[rawindex] log.debug(" no comment in original data, removed comment in current data at rawindex=%d" % rawindex) except KeyError: log.debug(" no comment in original data or current data at rawindex=%d" % rawindex) pass
python
def restore_comments(self, restore_data): """Restore comment styles and data """ for start, end, styles, items in restore_data: log.debug("range: %d-%d" % (start, end)) self.style[start:end] = styles for i in range(start, end): rawindex, comment = items[i] if comment: log.debug(" restoring comment: rawindex=%d, '%s'" % (rawindex, comment)) self.rawdata.extra.comments[rawindex] = comment else: # no comment in original data, remove any if exists try: del self.rawdata.extra.comments[rawindex] log.debug(" no comment in original data, removed comment in current data at rawindex=%d" % rawindex) except KeyError: log.debug(" no comment in original data or current data at rawindex=%d" % rawindex) pass
[ "def", "restore_comments", "(", "self", ",", "restore_data", ")", ":", "for", "start", ",", "end", ",", "styles", ",", "items", "in", "restore_data", ":", "log", ".", "debug", "(", "\"range: %d-%d\"", "%", "(", "start", ",", "end", ")", ")", "self", ".", "style", "[", "start", ":", "end", "]", "=", "styles", "for", "i", "in", "range", "(", "start", ",", "end", ")", ":", "rawindex", ",", "comment", "=", "items", "[", "i", "]", "if", "comment", ":", "log", ".", "debug", "(", "\" restoring comment: rawindex=%d, '%s'\"", "%", "(", "rawindex", ",", "comment", ")", ")", "self", ".", "rawdata", ".", "extra", ".", "comments", "[", "rawindex", "]", "=", "comment", "else", ":", "# no comment in original data, remove any if exists", "try", ":", "del", "self", ".", "rawdata", ".", "extra", ".", "comments", "[", "rawindex", "]", "log", ".", "debug", "(", "\" no comment in original data, removed comment in current data at rawindex=%d\"", "%", "rawindex", ")", "except", "KeyError", ":", "log", ".", "debug", "(", "\" no comment in original data or current data at rawindex=%d\"", "%", "rawindex", ")", "pass" ]
Restore comment styles and data
[ "Restore", "comment", "styles", "and", "data" ]
train
https://github.com/robmcmullen/atrcopy/blob/dafba8e74c718e95cf81fd72c184fa193ecec730/atrcopy/segments.py#L983-L1001
robmcmullen/atrcopy
atrcopy/segments.py
DefaultSegment.get_comments_in_range
def get_comments_in_range(self, start, end): """Get a list of comments at specified indexes""" comments = {} # Naive way, but maybe it's fast enough: loop over all comments # gathering those within the bounds for rawindex, comment in self.rawdata.extra.comments.items(): try: index = self.get_index_from_base_index(rawindex) except IndexError: continue if index >= start and index < end: comments[index] = comment return comments
python
def get_comments_in_range(self, start, end): """Get a list of comments at specified indexes""" comments = {} # Naive way, but maybe it's fast enough: loop over all comments # gathering those within the bounds for rawindex, comment in self.rawdata.extra.comments.items(): try: index = self.get_index_from_base_index(rawindex) except IndexError: continue if index >= start and index < end: comments[index] = comment return comments
[ "def", "get_comments_in_range", "(", "self", ",", "start", ",", "end", ")", ":", "comments", "=", "{", "}", "# Naive way, but maybe it's fast enough: loop over all comments", "# gathering those within the bounds", "for", "rawindex", ",", "comment", "in", "self", ".", "rawdata", ".", "extra", ".", "comments", ".", "items", "(", ")", ":", "try", ":", "index", "=", "self", ".", "get_index_from_base_index", "(", "rawindex", ")", "except", "IndexError", ":", "continue", "if", "index", ">=", "start", "and", "index", "<", "end", ":", "comments", "[", "index", "]", "=", "comment", "return", "comments" ]
Get a list of comments at specified indexes
[ "Get", "a", "list", "of", "comments", "at", "specified", "indexes" ]
train
https://github.com/robmcmullen/atrcopy/blob/dafba8e74c718e95cf81fd72c184fa193ecec730/atrcopy/segments.py#L1003-L1016
robmcmullen/atrcopy
atrcopy/segments.py
DefaultSegment.copy_user_data
def copy_user_data(self, source, index_offset=0): """Copy comments and other user data from the source segment to this segment. The index offset is the offset into self based on the index of source. """ for index, comment in source.iter_comments_in_segment(): self.set_comment_at(index + index_offset, comment)
python
def copy_user_data(self, source, index_offset=0): """Copy comments and other user data from the source segment to this segment. The index offset is the offset into self based on the index of source. """ for index, comment in source.iter_comments_in_segment(): self.set_comment_at(index + index_offset, comment)
[ "def", "copy_user_data", "(", "self", ",", "source", ",", "index_offset", "=", "0", ")", ":", "for", "index", ",", "comment", "in", "source", ".", "iter_comments_in_segment", "(", ")", ":", "self", ".", "set_comment_at", "(", "index", "+", "index_offset", ",", "comment", ")" ]
Copy comments and other user data from the source segment to this segment. The index offset is the offset into self based on the index of source.
[ "Copy", "comments", "and", "other", "user", "data", "from", "the", "source", "segment", "to", "this", "segment", "." ]
train
https://github.com/robmcmullen/atrcopy/blob/dafba8e74c718e95cf81fd72c184fa193ecec730/atrcopy/segments.py#L1062-L1069
openstax/cnx-archive
cnxarchive/views/xpath.py
xpath_book
def xpath_book(request, uuid, version, return_json=True): """ Given a request, book UUID and version: returns a JSON object or HTML list of results, each result containing: module_name, module_uuid, xpath_results, an array of strings, each an individual xpath result. """ xpath_string = request.params.get('q') results = execute_xpath(xpath_string, 'xpath', uuid, version) if return_json: return results else: return xpath_book_html(request, results)
python
def xpath_book(request, uuid, version, return_json=True): """ Given a request, book UUID and version: returns a JSON object or HTML list of results, each result containing: module_name, module_uuid, xpath_results, an array of strings, each an individual xpath result. """ xpath_string = request.params.get('q') results = execute_xpath(xpath_string, 'xpath', uuid, version) if return_json: return results else: return xpath_book_html(request, results)
[ "def", "xpath_book", "(", "request", ",", "uuid", ",", "version", ",", "return_json", "=", "True", ")", ":", "xpath_string", "=", "request", ".", "params", ".", "get", "(", "'q'", ")", "results", "=", "execute_xpath", "(", "xpath_string", ",", "'xpath'", ",", "uuid", ",", "version", ")", "if", "return_json", ":", "return", "results", "else", ":", "return", "xpath_book_html", "(", "request", ",", "results", ")" ]
Given a request, book UUID and version: returns a JSON object or HTML list of results, each result containing: module_name, module_uuid, xpath_results, an array of strings, each an individual xpath result.
[ "Given", "a", "request", "book", "UUID", "and", "version", ":" ]
train
https://github.com/openstax/cnx-archive/blob/d31d34aa8bbc8a9fde6cd4227a0df92726e8daf4/cnxarchive/views/xpath.py#L44-L59
openstax/cnx-archive
cnxarchive/views/xpath.py
xpath_page
def xpath_page(request, uuid, version): """Given a page UUID (and optional version), returns a JSON object of results, as in xpath_book()""" xpath_string = request.params.get('q') return execute_xpath(xpath_string, 'xpath-module', uuid, version)
python
def xpath_page(request, uuid, version): """Given a page UUID (and optional version), returns a JSON object of results, as in xpath_book()""" xpath_string = request.params.get('q') return execute_xpath(xpath_string, 'xpath-module', uuid, version)
[ "def", "xpath_page", "(", "request", ",", "uuid", ",", "version", ")", ":", "xpath_string", "=", "request", ".", "params", ".", "get", "(", "'q'", ")", "return", "execute_xpath", "(", "xpath_string", ",", "'xpath-module'", ",", "uuid", ",", "version", ")" ]
Given a page UUID (and optional version), returns a JSON object of results, as in xpath_book()
[ "Given", "a", "page", "UUID", "(", "and", "optional", "version", ")", "returns", "a", "JSON", "object", "of", "results", "as", "in", "xpath_book", "()" ]
train
https://github.com/openstax/cnx-archive/blob/d31d34aa8bbc8a9fde6cd4227a0df92726e8daf4/cnxarchive/views/xpath.py#L116-L120
openstax/cnx-archive
cnxarchive/views/xpath.py
execute_xpath
def execute_xpath(xpath_string, sql_function, uuid, version): """Executes either xpath or xpath-module SQL function with given input params.""" settings = get_current_registry().settings with db_connect() as db_connection: with db_connection.cursor() as cursor: try: cursor.execute(SQL[sql_function], {'document_uuid': uuid, 'document_version': version, 'xpath_string': xpath_string}) except psycopg2.Error as e: exc = httpexceptions.HTTPBadRequest() exc.explanation = e.pgerror raise exc for res in cursor.fetchall(): yield {'name': res[0], 'uuid': res[1], 'version': res[2], 'xpath_results': res[3]}
python
def execute_xpath(xpath_string, sql_function, uuid, version): """Executes either xpath or xpath-module SQL function with given input params.""" settings = get_current_registry().settings with db_connect() as db_connection: with db_connection.cursor() as cursor: try: cursor.execute(SQL[sql_function], {'document_uuid': uuid, 'document_version': version, 'xpath_string': xpath_string}) except psycopg2.Error as e: exc = httpexceptions.HTTPBadRequest() exc.explanation = e.pgerror raise exc for res in cursor.fetchall(): yield {'name': res[0], 'uuid': res[1], 'version': res[2], 'xpath_results': res[3]}
[ "def", "execute_xpath", "(", "xpath_string", ",", "sql_function", ",", "uuid", ",", "version", ")", ":", "settings", "=", "get_current_registry", "(", ")", ".", "settings", "with", "db_connect", "(", ")", "as", "db_connection", ":", "with", "db_connection", ".", "cursor", "(", ")", "as", "cursor", ":", "try", ":", "cursor", ".", "execute", "(", "SQL", "[", "sql_function", "]", ",", "{", "'document_uuid'", ":", "uuid", ",", "'document_version'", ":", "version", ",", "'xpath_string'", ":", "xpath_string", "}", ")", "except", "psycopg2", ".", "Error", "as", "e", ":", "exc", "=", "httpexceptions", ".", "HTTPBadRequest", "(", ")", "exc", ".", "explanation", "=", "e", ".", "pgerror", "raise", "exc", "for", "res", "in", "cursor", ".", "fetchall", "(", ")", ":", "yield", "{", "'name'", ":", "res", "[", "0", "]", ",", "'uuid'", ":", "res", "[", "1", "]", ",", "'version'", ":", "res", "[", "2", "]", ",", "'xpath_results'", ":", "res", "[", "3", "]", "}" ]
Executes either xpath or xpath-module SQL function with given input params.
[ "Executes", "either", "xpath", "or", "xpath", "-", "module", "SQL", "function", "with", "given", "input", "params", "." ]
train
https://github.com/openstax/cnx-archive/blob/d31d34aa8bbc8a9fde6cd4227a0df92726e8daf4/cnxarchive/views/xpath.py#L123-L144
openstax/cnx-archive
cnxarchive/views/xpath.py
xpath
def xpath(request): """View for the route. Determines UUID and version from input request and determines the type of UUID (collection or module) and executes the corresponding method.""" ident_hash = request.params.get('id') xpath_string = request.params.get('q') if not ident_hash or not xpath_string: exc = httpexceptions.HTTPBadRequest exc.explanation = 'You must supply both a UUID and an xpath' raise exc try: uuid, version = split_ident_hash(ident_hash) except IdentHashShortId as e: uuid = get_uuid(e.id) version = e.version except IdentHashMissingVersion as e: uuid = e.id version = get_latest_version(e.id) except IdentHashSyntaxError: raise httpexceptions.HTTPBadRequest settings = get_current_registry().settings with db_connect() as db_connection: with db_connection.cursor() as cursor: result = get_content_metadata(uuid, version, cursor) resp = request.response if result['mediaType'] == COLLECTION_MIMETYPE: matched_route = request.matched_route.name results = xpath_book(request, uuid, version, return_json=matched_route.endswith('json')) if matched_route.endswith('json'): results = {'results': list(results)} resp.body = json.dumps(results) resp.content_type = 'application/json' else: resp.body = results resp.content_type = 'application/xhtml+xml' else: results = {'results': list(xpath_page(request, uuid, version))} resp.body = json.dumps(results) resp.content_type = 'application/json' resp.status = "200 OK" return resp
python
def xpath(request): """View for the route. Determines UUID and version from input request and determines the type of UUID (collection or module) and executes the corresponding method.""" ident_hash = request.params.get('id') xpath_string = request.params.get('q') if not ident_hash or not xpath_string: exc = httpexceptions.HTTPBadRequest exc.explanation = 'You must supply both a UUID and an xpath' raise exc try: uuid, version = split_ident_hash(ident_hash) except IdentHashShortId as e: uuid = get_uuid(e.id) version = e.version except IdentHashMissingVersion as e: uuid = e.id version = get_latest_version(e.id) except IdentHashSyntaxError: raise httpexceptions.HTTPBadRequest settings = get_current_registry().settings with db_connect() as db_connection: with db_connection.cursor() as cursor: result = get_content_metadata(uuid, version, cursor) resp = request.response if result['mediaType'] == COLLECTION_MIMETYPE: matched_route = request.matched_route.name results = xpath_book(request, uuid, version, return_json=matched_route.endswith('json')) if matched_route.endswith('json'): results = {'results': list(results)} resp.body = json.dumps(results) resp.content_type = 'application/json' else: resp.body = results resp.content_type = 'application/xhtml+xml' else: results = {'results': list(xpath_page(request, uuid, version))} resp.body = json.dumps(results) resp.content_type = 'application/json' resp.status = "200 OK" return resp
[ "def", "xpath", "(", "request", ")", ":", "ident_hash", "=", "request", ".", "params", ".", "get", "(", "'id'", ")", "xpath_string", "=", "request", ".", "params", ".", "get", "(", "'q'", ")", "if", "not", "ident_hash", "or", "not", "xpath_string", ":", "exc", "=", "httpexceptions", ".", "HTTPBadRequest", "exc", ".", "explanation", "=", "'You must supply both a UUID and an xpath'", "raise", "exc", "try", ":", "uuid", ",", "version", "=", "split_ident_hash", "(", "ident_hash", ")", "except", "IdentHashShortId", "as", "e", ":", "uuid", "=", "get_uuid", "(", "e", ".", "id", ")", "version", "=", "e", ".", "version", "except", "IdentHashMissingVersion", "as", "e", ":", "uuid", "=", "e", ".", "id", "version", "=", "get_latest_version", "(", "e", ".", "id", ")", "except", "IdentHashSyntaxError", ":", "raise", "httpexceptions", ".", "HTTPBadRequest", "settings", "=", "get_current_registry", "(", ")", ".", "settings", "with", "db_connect", "(", ")", "as", "db_connection", ":", "with", "db_connection", ".", "cursor", "(", ")", "as", "cursor", ":", "result", "=", "get_content_metadata", "(", "uuid", ",", "version", ",", "cursor", ")", "resp", "=", "request", ".", "response", "if", "result", "[", "'mediaType'", "]", "==", "COLLECTION_MIMETYPE", ":", "matched_route", "=", "request", ".", "matched_route", ".", "name", "results", "=", "xpath_book", "(", "request", ",", "uuid", ",", "version", ",", "return_json", "=", "matched_route", ".", "endswith", "(", "'json'", ")", ")", "if", "matched_route", ".", "endswith", "(", "'json'", ")", ":", "results", "=", "{", "'results'", ":", "list", "(", "results", ")", "}", "resp", ".", "body", "=", "json", ".", "dumps", "(", "results", ")", "resp", ".", "content_type", "=", "'application/json'", "else", ":", "resp", ".", "body", "=", "results", "resp", ".", "content_type", "=", "'application/xhtml+xml'", "else", ":", "results", "=", "{", "'results'", ":", "list", "(", "xpath_page", "(", "request", ",", "uuid", ",", "version", ")", ")", "}", "resp", ".", "body", "=", "json", ".", "dumps", "(", "results", ")", "resp", ".", "content_type", "=", "'application/json'", "resp", ".", "status", "=", "\"200 OK\"", "return", "resp" ]
View for the route. Determines UUID and version from input request and determines the type of UUID (collection or module) and executes the corresponding method.
[ "View", "for", "the", "route", ".", "Determines", "UUID", "and", "version", "from", "input", "request", "and", "determines", "the", "type", "of", "UUID", "(", "collection", "or", "module", ")", "and", "executes", "the", "corresponding", "method", "." ]
train
https://github.com/openstax/cnx-archive/blob/d31d34aa8bbc8a9fde6cd4227a0df92726e8daf4/cnxarchive/views/xpath.py#L156-L203
openstax/cnx-archive
cnxarchive/views/content.py
tree_to_html
def tree_to_html(tree): """Return html list version of book tree.""" ul = etree.Element('ul') html_listify([tree], ul) return HTML_WRAPPER.format(etree.tostring(ul))
python
def tree_to_html(tree): """Return html list version of book tree.""" ul = etree.Element('ul') html_listify([tree], ul) return HTML_WRAPPER.format(etree.tostring(ul))
[ "def", "tree_to_html", "(", "tree", ")", ":", "ul", "=", "etree", ".", "Element", "(", "'ul'", ")", "html_listify", "(", "[", "tree", "]", ",", "ul", ")", "return", "HTML_WRAPPER", ".", "format", "(", "etree", ".", "tostring", "(", "ul", ")", ")" ]
Return html list version of book tree.
[ "Return", "html", "list", "version", "of", "book", "tree", "." ]
train
https://github.com/openstax/cnx-archive/blob/d31d34aa8bbc8a9fde6cd4227a0df92726e8daf4/cnxarchive/views/content.py#L48-L52
openstax/cnx-archive
cnxarchive/views/content.py
_get_content_json
def _get_content_json(ident_hash=None): """Return a content as a dict from its ident-hash (uuid@version).""" request = get_current_request() routing_args = request and request.matchdict or {} if not ident_hash: ident_hash = routing_args['ident_hash'] as_collated = asbool(request.GET.get('as_collated', True)) page_ident_hash = routing_args.get('page_ident_hash', '') p_id, p_version = (None, None) if page_ident_hash: try: p_id, p_version = split_ident_hash(page_ident_hash) except IdentHashShortId as e: p_id = get_uuid(e.id) p_version = e.version except IdentHashMissingVersion as e: # page ident hash doesn't need a version p_id = e.id p_version = None id, version = split_ident_hash(ident_hash, containing=p_id) with db_connect() as db_connection: with db_connection.cursor() as cursor: result = get_content_metadata(id, version, cursor) # Build url for canonical link header result['canon_url'] = get_canonical_url(result, request) if result['mediaType'] == COLLECTION_MIMETYPE: # Grab the collection tree. result['tree'] = get_tree(ident_hash, cursor, as_collated=as_collated) result['collated'] = as_collated if not result['tree']: # If collated tree is not available, get the uncollated # tree. result['tree'] = get_tree(ident_hash, cursor) result['collated'] = False if page_ident_hash: for id_ in flatten_tree_to_ident_hashes(result['tree']): id, version = split_ident_hash(id_) if id == p_id and ( version == p_version or not p_version): content = None if as_collated: content = get_collated_content( id_, ident_hash, cursor) if content: result = get_content_metadata( id, version, cursor) # Build url for canonical link header result['canon_url'] = ( get_canonical_url(result, request)) result['content'] = content[:] return result # 302 'cause lack of baked content may be temporary raise httpexceptions.HTTPFound(request.route_path( request.matched_route.name, _query=request.params, ident_hash=join_ident_hash(id, version), ext=routing_args['ext']), headers=[("Cache-Control", "max-age=60, public")]) raise httpexceptions.HTTPNotFound() else: result = get_content_metadata(id, version, cursor) # Build url for canonical link header result['canon_url'] = get_canonical_url(result, request) # Grab the html content. args = dict(id=id, version=result['version'], filename='index.cnxml.html') cursor.execute(SQL['get-resource-by-filename'], args) try: content = cursor.fetchone()[0] except (TypeError, IndexError,): # None returned logger.debug("module found, but " "'index.cnxml.html' is missing.") raise httpexceptions.HTTPNotFound() result['content'] = content[:] return result
python
def _get_content_json(ident_hash=None): """Return a content as a dict from its ident-hash (uuid@version).""" request = get_current_request() routing_args = request and request.matchdict or {} if not ident_hash: ident_hash = routing_args['ident_hash'] as_collated = asbool(request.GET.get('as_collated', True)) page_ident_hash = routing_args.get('page_ident_hash', '') p_id, p_version = (None, None) if page_ident_hash: try: p_id, p_version = split_ident_hash(page_ident_hash) except IdentHashShortId as e: p_id = get_uuid(e.id) p_version = e.version except IdentHashMissingVersion as e: # page ident hash doesn't need a version p_id = e.id p_version = None id, version = split_ident_hash(ident_hash, containing=p_id) with db_connect() as db_connection: with db_connection.cursor() as cursor: result = get_content_metadata(id, version, cursor) # Build url for canonical link header result['canon_url'] = get_canonical_url(result, request) if result['mediaType'] == COLLECTION_MIMETYPE: # Grab the collection tree. result['tree'] = get_tree(ident_hash, cursor, as_collated=as_collated) result['collated'] = as_collated if not result['tree']: # If collated tree is not available, get the uncollated # tree. result['tree'] = get_tree(ident_hash, cursor) result['collated'] = False if page_ident_hash: for id_ in flatten_tree_to_ident_hashes(result['tree']): id, version = split_ident_hash(id_) if id == p_id and ( version == p_version or not p_version): content = None if as_collated: content = get_collated_content( id_, ident_hash, cursor) if content: result = get_content_metadata( id, version, cursor) # Build url for canonical link header result['canon_url'] = ( get_canonical_url(result, request)) result['content'] = content[:] return result # 302 'cause lack of baked content may be temporary raise httpexceptions.HTTPFound(request.route_path( request.matched_route.name, _query=request.params, ident_hash=join_ident_hash(id, version), ext=routing_args['ext']), headers=[("Cache-Control", "max-age=60, public")]) raise httpexceptions.HTTPNotFound() else: result = get_content_metadata(id, version, cursor) # Build url for canonical link header result['canon_url'] = get_canonical_url(result, request) # Grab the html content. args = dict(id=id, version=result['version'], filename='index.cnxml.html') cursor.execute(SQL['get-resource-by-filename'], args) try: content = cursor.fetchone()[0] except (TypeError, IndexError,): # None returned logger.debug("module found, but " "'index.cnxml.html' is missing.") raise httpexceptions.HTTPNotFound() result['content'] = content[:] return result
[ "def", "_get_content_json", "(", "ident_hash", "=", "None", ")", ":", "request", "=", "get_current_request", "(", ")", "routing_args", "=", "request", "and", "request", ".", "matchdict", "or", "{", "}", "if", "not", "ident_hash", ":", "ident_hash", "=", "routing_args", "[", "'ident_hash'", "]", "as_collated", "=", "asbool", "(", "request", ".", "GET", ".", "get", "(", "'as_collated'", ",", "True", ")", ")", "page_ident_hash", "=", "routing_args", ".", "get", "(", "'page_ident_hash'", ",", "''", ")", "p_id", ",", "p_version", "=", "(", "None", ",", "None", ")", "if", "page_ident_hash", ":", "try", ":", "p_id", ",", "p_version", "=", "split_ident_hash", "(", "page_ident_hash", ")", "except", "IdentHashShortId", "as", "e", ":", "p_id", "=", "get_uuid", "(", "e", ".", "id", ")", "p_version", "=", "e", ".", "version", "except", "IdentHashMissingVersion", "as", "e", ":", "# page ident hash doesn't need a version", "p_id", "=", "e", ".", "id", "p_version", "=", "None", "id", ",", "version", "=", "split_ident_hash", "(", "ident_hash", ",", "containing", "=", "p_id", ")", "with", "db_connect", "(", ")", "as", "db_connection", ":", "with", "db_connection", ".", "cursor", "(", ")", "as", "cursor", ":", "result", "=", "get_content_metadata", "(", "id", ",", "version", ",", "cursor", ")", "# Build url for canonical link header", "result", "[", "'canon_url'", "]", "=", "get_canonical_url", "(", "result", ",", "request", ")", "if", "result", "[", "'mediaType'", "]", "==", "COLLECTION_MIMETYPE", ":", "# Grab the collection tree.", "result", "[", "'tree'", "]", "=", "get_tree", "(", "ident_hash", ",", "cursor", ",", "as_collated", "=", "as_collated", ")", "result", "[", "'collated'", "]", "=", "as_collated", "if", "not", "result", "[", "'tree'", "]", ":", "# If collated tree is not available, get the uncollated", "# tree.", "result", "[", "'tree'", "]", "=", "get_tree", "(", "ident_hash", ",", "cursor", ")", "result", "[", "'collated'", "]", "=", "False", "if", "page_ident_hash", ":", "for", "id_", "in", "flatten_tree_to_ident_hashes", "(", "result", "[", "'tree'", "]", ")", ":", "id", ",", "version", "=", "split_ident_hash", "(", "id_", ")", "if", "id", "==", "p_id", "and", "(", "version", "==", "p_version", "or", "not", "p_version", ")", ":", "content", "=", "None", "if", "as_collated", ":", "content", "=", "get_collated_content", "(", "id_", ",", "ident_hash", ",", "cursor", ")", "if", "content", ":", "result", "=", "get_content_metadata", "(", "id", ",", "version", ",", "cursor", ")", "# Build url for canonical link header", "result", "[", "'canon_url'", "]", "=", "(", "get_canonical_url", "(", "result", ",", "request", ")", ")", "result", "[", "'content'", "]", "=", "content", "[", ":", "]", "return", "result", "# 302 'cause lack of baked content may be temporary", "raise", "httpexceptions", ".", "HTTPFound", "(", "request", ".", "route_path", "(", "request", ".", "matched_route", ".", "name", ",", "_query", "=", "request", ".", "params", ",", "ident_hash", "=", "join_ident_hash", "(", "id", ",", "version", ")", ",", "ext", "=", "routing_args", "[", "'ext'", "]", ")", ",", "headers", "=", "[", "(", "\"Cache-Control\"", ",", "\"max-age=60, public\"", ")", "]", ")", "raise", "httpexceptions", ".", "HTTPNotFound", "(", ")", "else", ":", "result", "=", "get_content_metadata", "(", "id", ",", "version", ",", "cursor", ")", "# Build url for canonical link header", "result", "[", "'canon_url'", "]", "=", "get_canonical_url", "(", "result", ",", "request", ")", "# Grab the html content.", "args", "=", "dict", "(", "id", "=", "id", ",", "version", "=", "result", "[", "'version'", "]", ",", "filename", "=", "'index.cnxml.html'", ")", "cursor", ".", "execute", "(", "SQL", "[", "'get-resource-by-filename'", "]", ",", "args", ")", "try", ":", "content", "=", "cursor", ".", "fetchone", "(", ")", "[", "0", "]", "except", "(", "TypeError", ",", "IndexError", ",", ")", ":", "# None returned", "logger", ".", "debug", "(", "\"module found, but \"", "\"'index.cnxml.html' is missing.\"", ")", "raise", "httpexceptions", ".", "HTTPNotFound", "(", ")", "result", "[", "'content'", "]", "=", "content", "[", ":", "]", "return", "result" ]
Return a content as a dict from its ident-hash (uuid@version).
[ "Return", "a", "content", "as", "a", "dict", "from", "its", "ident", "-", "hash", "(", "uuid" ]
train
https://github.com/openstax/cnx-archive/blob/d31d34aa8bbc8a9fde6cd4227a0df92726e8daf4/cnxarchive/views/content.py#L55-L137
openstax/cnx-archive
cnxarchive/views/content.py
get_content_json
def get_content_json(request): """Retrieve content as JSON using the ident-hash (uuid@version).""" result = _get_content_json() resp = request.response resp.status = "200 OK" resp.content_type = 'application/json' resp.body = json.dumps(result) return result, resp
python
def get_content_json(request): """Retrieve content as JSON using the ident-hash (uuid@version).""" result = _get_content_json() resp = request.response resp.status = "200 OK" resp.content_type = 'application/json' resp.body = json.dumps(result) return result, resp
[ "def", "get_content_json", "(", "request", ")", ":", "result", "=", "_get_content_json", "(", ")", "resp", "=", "request", ".", "response", "resp", ".", "status", "=", "\"200 OK\"", "resp", ".", "content_type", "=", "'application/json'", "resp", ".", "body", "=", "json", ".", "dumps", "(", "result", ")", "return", "result", ",", "resp" ]
Retrieve content as JSON using the ident-hash (uuid@version).
[ "Retrieve", "content", "as", "JSON", "using", "the", "ident", "-", "hash", "(", "uuid" ]
train
https://github.com/openstax/cnx-archive/blob/d31d34aa8bbc8a9fde6cd4227a0df92726e8daf4/cnxarchive/views/content.py#L140-L148
openstax/cnx-archive
cnxarchive/views/content.py
get_content_html
def get_content_html(request): """Retrieve content as HTML using the ident-hash (uuid@version).""" result = _get_content_json() media_type = result['mediaType'] if media_type == COLLECTION_MIMETYPE: content = tree_to_html(result['tree']) else: content = result['content'] resp = request.response resp.body = content resp.status = "200 OK" resp.content_type = 'application/xhtml+xml' return result, resp
python
def get_content_html(request): """Retrieve content as HTML using the ident-hash (uuid@version).""" result = _get_content_json() media_type = result['mediaType'] if media_type == COLLECTION_MIMETYPE: content = tree_to_html(result['tree']) else: content = result['content'] resp = request.response resp.body = content resp.status = "200 OK" resp.content_type = 'application/xhtml+xml' return result, resp
[ "def", "get_content_html", "(", "request", ")", ":", "result", "=", "_get_content_json", "(", ")", "media_type", "=", "result", "[", "'mediaType'", "]", "if", "media_type", "==", "COLLECTION_MIMETYPE", ":", "content", "=", "tree_to_html", "(", "result", "[", "'tree'", "]", ")", "else", ":", "content", "=", "result", "[", "'content'", "]", "resp", "=", "request", ".", "response", "resp", ".", "body", "=", "content", "resp", ".", "status", "=", "\"200 OK\"", "resp", ".", "content_type", "=", "'application/xhtml+xml'", "return", "result", ",", "resp" ]
Retrieve content as HTML using the ident-hash (uuid@version).
[ "Retrieve", "content", "as", "HTML", "using", "the", "ident", "-", "hash", "(", "uuid" ]
train
https://github.com/openstax/cnx-archive/blob/d31d34aa8bbc8a9fde6cd4227a0df92726e8daf4/cnxarchive/views/content.py#L151-L165
openstax/cnx-archive
cnxarchive/views/content.py
html_listify
def html_listify(tree, root_ul_element, parent_id=None): """Recursively construct HTML nested list version of book tree. The original caller should not call this function with the `parent_id` defined. """ request = get_current_request() is_first_node = parent_id is None if is_first_node: parent_id = tree[0]['id'] for node in tree: li_elm = etree.SubElement(root_ul_element, 'li') a_elm = etree.SubElement(li_elm, 'a') a_elm.text = node['title'] if node['id'] != 'subcol': if is_first_node: a_elm.set('href', request.route_path( 'content', ident_hash=node['id'], ext='.html')) else: a_elm.set('href', request.route_path( 'content', separator=':', ident_hash=parent_id, page_ident_hash=node['id'], ext='.html')) if 'contents' in node: elm = etree.SubElement(li_elm, 'ul') html_listify(node['contents'], elm, parent_id)
python
def html_listify(tree, root_ul_element, parent_id=None): """Recursively construct HTML nested list version of book tree. The original caller should not call this function with the `parent_id` defined. """ request = get_current_request() is_first_node = parent_id is None if is_first_node: parent_id = tree[0]['id'] for node in tree: li_elm = etree.SubElement(root_ul_element, 'li') a_elm = etree.SubElement(li_elm, 'a') a_elm.text = node['title'] if node['id'] != 'subcol': if is_first_node: a_elm.set('href', request.route_path( 'content', ident_hash=node['id'], ext='.html')) else: a_elm.set('href', request.route_path( 'content', separator=':', ident_hash=parent_id, page_ident_hash=node['id'], ext='.html')) if 'contents' in node: elm = etree.SubElement(li_elm, 'ul') html_listify(node['contents'], elm, parent_id)
[ "def", "html_listify", "(", "tree", ",", "root_ul_element", ",", "parent_id", "=", "None", ")", ":", "request", "=", "get_current_request", "(", ")", "is_first_node", "=", "parent_id", "is", "None", "if", "is_first_node", ":", "parent_id", "=", "tree", "[", "0", "]", "[", "'id'", "]", "for", "node", "in", "tree", ":", "li_elm", "=", "etree", ".", "SubElement", "(", "root_ul_element", ",", "'li'", ")", "a_elm", "=", "etree", ".", "SubElement", "(", "li_elm", ",", "'a'", ")", "a_elm", ".", "text", "=", "node", "[", "'title'", "]", "if", "node", "[", "'id'", "]", "!=", "'subcol'", ":", "if", "is_first_node", ":", "a_elm", ".", "set", "(", "'href'", ",", "request", ".", "route_path", "(", "'content'", ",", "ident_hash", "=", "node", "[", "'id'", "]", ",", "ext", "=", "'.html'", ")", ")", "else", ":", "a_elm", ".", "set", "(", "'href'", ",", "request", ".", "route_path", "(", "'content'", ",", "separator", "=", "':'", ",", "ident_hash", "=", "parent_id", ",", "page_ident_hash", "=", "node", "[", "'id'", "]", ",", "ext", "=", "'.html'", ")", ")", "if", "'contents'", "in", "node", ":", "elm", "=", "etree", ".", "SubElement", "(", "li_elm", ",", "'ul'", ")", "html_listify", "(", "node", "[", "'contents'", "]", ",", "elm", ",", "parent_id", ")" ]
Recursively construct HTML nested list version of book tree. The original caller should not call this function with the `parent_id` defined.
[ "Recursively", "construct", "HTML", "nested", "list", "version", "of", "book", "tree", ".", "The", "original", "caller", "should", "not", "call", "this", "function", "with", "the", "parent_id", "defined", "." ]
train
https://github.com/openstax/cnx-archive/blob/d31d34aa8bbc8a9fde6cd4227a0df92726e8daf4/cnxarchive/views/content.py#L168-L195
openstax/cnx-archive
cnxarchive/views/content.py
get_export_allowable_types
def get_export_allowable_types(cursor, exports_dirs, id, version): """Return export types.""" request = get_current_request() type_settings = request.registry.settings['_type_info'] type_names = [k for k, v in type_settings] type_infos = [v for k, v in type_settings] # We took the type_names directly from the setting this function uses to # check for valid types, so it should never raise an ExportError here file_tuples = get_export_files(cursor, id, version, type_names, exports_dirs, read_file=False) type_settings = dict(type_settings) for filename, mimetype, file_size, file_created, state, file_content \ in file_tuples: type_name = filename.rsplit('.', 1)[-1] type_info = type_settings[type_name] yield { 'format': type_info['user_friendly_name'], 'filename': filename, 'size': file_size, 'created': file_created and file_created.isoformat() or None, 'state': state, 'details': type_info['description'], 'path': request.route_path( 'export', ident_hash=join_ident_hash(id, version), type=type_name, ignore=u'/{}'.format(filename)) }
python
def get_export_allowable_types(cursor, exports_dirs, id, version): """Return export types.""" request = get_current_request() type_settings = request.registry.settings['_type_info'] type_names = [k for k, v in type_settings] type_infos = [v for k, v in type_settings] # We took the type_names directly from the setting this function uses to # check for valid types, so it should never raise an ExportError here file_tuples = get_export_files(cursor, id, version, type_names, exports_dirs, read_file=False) type_settings = dict(type_settings) for filename, mimetype, file_size, file_created, state, file_content \ in file_tuples: type_name = filename.rsplit('.', 1)[-1] type_info = type_settings[type_name] yield { 'format': type_info['user_friendly_name'], 'filename': filename, 'size': file_size, 'created': file_created and file_created.isoformat() or None, 'state': state, 'details': type_info['description'], 'path': request.route_path( 'export', ident_hash=join_ident_hash(id, version), type=type_name, ignore=u'/{}'.format(filename)) }
[ "def", "get_export_allowable_types", "(", "cursor", ",", "exports_dirs", ",", "id", ",", "version", ")", ":", "request", "=", "get_current_request", "(", ")", "type_settings", "=", "request", ".", "registry", ".", "settings", "[", "'_type_info'", "]", "type_names", "=", "[", "k", "for", "k", ",", "v", "in", "type_settings", "]", "type_infos", "=", "[", "v", "for", "k", ",", "v", "in", "type_settings", "]", "# We took the type_names directly from the setting this function uses to", "# check for valid types, so it should never raise an ExportError here", "file_tuples", "=", "get_export_files", "(", "cursor", ",", "id", ",", "version", ",", "type_names", ",", "exports_dirs", ",", "read_file", "=", "False", ")", "type_settings", "=", "dict", "(", "type_settings", ")", "for", "filename", ",", "mimetype", ",", "file_size", ",", "file_created", ",", "state", ",", "file_content", "in", "file_tuples", ":", "type_name", "=", "filename", ".", "rsplit", "(", "'.'", ",", "1", ")", "[", "-", "1", "]", "type_info", "=", "type_settings", "[", "type_name", "]", "yield", "{", "'format'", ":", "type_info", "[", "'user_friendly_name'", "]", ",", "'filename'", ":", "filename", ",", "'size'", ":", "file_size", ",", "'created'", ":", "file_created", "and", "file_created", ".", "isoformat", "(", ")", "or", "None", ",", "'state'", ":", "state", ",", "'details'", ":", "type_info", "[", "'description'", "]", ",", "'path'", ":", "request", ".", "route_path", "(", "'export'", ",", "ident_hash", "=", "join_ident_hash", "(", "id", ",", "version", ")", ",", "type", "=", "type_name", ",", "ignore", "=", "u'/{}'", ".", "format", "(", "filename", ")", ")", "}" ]
Return export types.
[ "Return", "export", "types", "." ]
train
https://github.com/openstax/cnx-archive/blob/d31d34aa8bbc8a9fde6cd4227a0df92726e8daf4/cnxarchive/views/content.py#L222-L247
openstax/cnx-archive
cnxarchive/views/content.py
get_book_info
def get_book_info(cursor, real_dict_cursor, book_id, book_version, page_id, page_version): """Return information about a given book. Return the book's title, id, shortId, authors and revised date. Raise HTTPNotFound if the page is not in the book. """ book_ident_hash = join_ident_hash(book_id, book_version) page_ident_hash = join_ident_hash(page_id, page_version) tree = get_tree(book_ident_hash, cursor) # Check if the page appears in the book tree if not tree or page_ident_hash not in flatten_tree_to_ident_hashes(tree): # Return a 404 error if the page is not actually in the book tree raise httpexceptions.HTTPNotFound() sql_statement = """ SELECT m.name as title, ident_hash(m.uuid, m.major_version, m.minor_version) as ident_hash, short_ident_hash(m.uuid, m.major_version, m.minor_version) as shortId, ARRAY( SELECT row_to_json(user_row) FROM ( SELECT u.username, u.first_name as firstname, u.last_name as surname, u.full_name as fullname, u.title, u.suffix ) as user_row ) as authors, m.revised FROM modules m JOIN users as u on u.username = ANY(m.authors) WHERE ident_hash(m.uuid, m.major_version, m.minor_version) = %s """ real_dict_cursor.execute(sql_statement, vars=(book_ident_hash,)) return real_dict_cursor.fetchone()
python
def get_book_info(cursor, real_dict_cursor, book_id, book_version, page_id, page_version): """Return information about a given book. Return the book's title, id, shortId, authors and revised date. Raise HTTPNotFound if the page is not in the book. """ book_ident_hash = join_ident_hash(book_id, book_version) page_ident_hash = join_ident_hash(page_id, page_version) tree = get_tree(book_ident_hash, cursor) # Check if the page appears in the book tree if not tree or page_ident_hash not in flatten_tree_to_ident_hashes(tree): # Return a 404 error if the page is not actually in the book tree raise httpexceptions.HTTPNotFound() sql_statement = """ SELECT m.name as title, ident_hash(m.uuid, m.major_version, m.minor_version) as ident_hash, short_ident_hash(m.uuid, m.major_version, m.minor_version) as shortId, ARRAY( SELECT row_to_json(user_row) FROM ( SELECT u.username, u.first_name as firstname, u.last_name as surname, u.full_name as fullname, u.title, u.suffix ) as user_row ) as authors, m.revised FROM modules m JOIN users as u on u.username = ANY(m.authors) WHERE ident_hash(m.uuid, m.major_version, m.minor_version) = %s """ real_dict_cursor.execute(sql_statement, vars=(book_ident_hash,)) return real_dict_cursor.fetchone()
[ "def", "get_book_info", "(", "cursor", ",", "real_dict_cursor", ",", "book_id", ",", "book_version", ",", "page_id", ",", "page_version", ")", ":", "book_ident_hash", "=", "join_ident_hash", "(", "book_id", ",", "book_version", ")", "page_ident_hash", "=", "join_ident_hash", "(", "page_id", ",", "page_version", ")", "tree", "=", "get_tree", "(", "book_ident_hash", ",", "cursor", ")", "# Check if the page appears in the book tree", "if", "not", "tree", "or", "page_ident_hash", "not", "in", "flatten_tree_to_ident_hashes", "(", "tree", ")", ":", "# Return a 404 error if the page is not actually in the book tree", "raise", "httpexceptions", ".", "HTTPNotFound", "(", ")", "sql_statement", "=", "\"\"\"\n SELECT m.name as title,\n ident_hash(m.uuid, m.major_version, m.minor_version)\n as ident_hash,\n short_ident_hash(m.uuid, m.major_version, m.minor_version)\n as shortId, ARRAY(\n SELECT row_to_json(user_row)\n FROM (\n SELECT u.username, u.first_name as firstname,\n u.last_name as surname, u.full_name as fullname,\n u.title, u.suffix\n ) as user_row\n ) as authors,\n m.revised\n FROM modules m\n JOIN users as u on u.username = ANY(m.authors)\n WHERE ident_hash(m.uuid, m.major_version, m.minor_version) = %s\n \"\"\"", "real_dict_cursor", ".", "execute", "(", "sql_statement", ",", "vars", "=", "(", "book_ident_hash", ",", ")", ")", "return", "real_dict_cursor", ".", "fetchone", "(", ")" ]
Return information about a given book. Return the book's title, id, shortId, authors and revised date. Raise HTTPNotFound if the page is not in the book.
[ "Return", "information", "about", "a", "given", "book", "." ]
train
https://github.com/openstax/cnx-archive/blob/d31d34aa8bbc8a9fde6cd4227a0df92726e8daf4/cnxarchive/views/content.py#L251-L286
openstax/cnx-archive
cnxarchive/views/content.py
get_portal_type
def get_portal_type(cursor, id, version): """Return the module's portal_type.""" args = join_ident_hash(id, version) sql_statement = """ SELECT m.portal_type FROM modules as m WHERE ident_hash(uuid, major_version, minor_version) = %s """ cursor.execute(sql_statement, vars=(args,)) res = cursor.fetchone() if res is None: return None else: return res[0]
python
def get_portal_type(cursor, id, version): """Return the module's portal_type.""" args = join_ident_hash(id, version) sql_statement = """ SELECT m.portal_type FROM modules as m WHERE ident_hash(uuid, major_version, minor_version) = %s """ cursor.execute(sql_statement, vars=(args,)) res = cursor.fetchone() if res is None: return None else: return res[0]
[ "def", "get_portal_type", "(", "cursor", ",", "id", ",", "version", ")", ":", "args", "=", "join_ident_hash", "(", "id", ",", "version", ")", "sql_statement", "=", "\"\"\"\n SELECT m.portal_type\n FROM modules as m\n WHERE ident_hash(uuid, major_version, minor_version) = %s\n \"\"\"", "cursor", ".", "execute", "(", "sql_statement", ",", "vars", "=", "(", "args", ",", ")", ")", "res", "=", "cursor", ".", "fetchone", "(", ")", "if", "res", "is", "None", ":", "return", "None", "else", ":", "return", "res", "[", "0", "]" ]
Return the module's portal_type.
[ "Return", "the", "module", "s", "portal_type", "." ]
train
https://github.com/openstax/cnx-archive/blob/d31d34aa8bbc8a9fde6cd4227a0df92726e8daf4/cnxarchive/views/content.py#L290-L304
openstax/cnx-archive
cnxarchive/views/content.py
get_books_containing_page
def get_books_containing_page(cursor, uuid, version, context_uuid=None, context_version=None): """Return a list of book names and UUIDs that contain a given module UUID.""" with db_connect() as db_connection: # Uses a RealDictCursor instead of the regular cursor with db_connection.cursor( cursor_factory=psycopg2.extras.RealDictCursor ) as real_dict_cursor: # In the future the books-containing-page SQL might handle # all of these cases. For now we branch the code out in here. if context_uuid and context_version: return [get_book_info(cursor, real_dict_cursor, context_uuid, context_version, uuid, version)] else: portal_type = get_portal_type(cursor, uuid, version) if portal_type == 'Module': real_dict_cursor.execute(SQL['get-books-containing-page'], {'document_uuid': uuid, 'document_version': version}) return real_dict_cursor.fetchall() else: # Books are currently not in any other book return []
python
def get_books_containing_page(cursor, uuid, version, context_uuid=None, context_version=None): """Return a list of book names and UUIDs that contain a given module UUID.""" with db_connect() as db_connection: # Uses a RealDictCursor instead of the regular cursor with db_connection.cursor( cursor_factory=psycopg2.extras.RealDictCursor ) as real_dict_cursor: # In the future the books-containing-page SQL might handle # all of these cases. For now we branch the code out in here. if context_uuid and context_version: return [get_book_info(cursor, real_dict_cursor, context_uuid, context_version, uuid, version)] else: portal_type = get_portal_type(cursor, uuid, version) if portal_type == 'Module': real_dict_cursor.execute(SQL['get-books-containing-page'], {'document_uuid': uuid, 'document_version': version}) return real_dict_cursor.fetchall() else: # Books are currently not in any other book return []
[ "def", "get_books_containing_page", "(", "cursor", ",", "uuid", ",", "version", ",", "context_uuid", "=", "None", ",", "context_version", "=", "None", ")", ":", "with", "db_connect", "(", ")", "as", "db_connection", ":", "# Uses a RealDictCursor instead of the regular cursor", "with", "db_connection", ".", "cursor", "(", "cursor_factory", "=", "psycopg2", ".", "extras", ".", "RealDictCursor", ")", "as", "real_dict_cursor", ":", "# In the future the books-containing-page SQL might handle", "# all of these cases. For now we branch the code out in here.", "if", "context_uuid", "and", "context_version", ":", "return", "[", "get_book_info", "(", "cursor", ",", "real_dict_cursor", ",", "context_uuid", ",", "context_version", ",", "uuid", ",", "version", ")", "]", "else", ":", "portal_type", "=", "get_portal_type", "(", "cursor", ",", "uuid", ",", "version", ")", "if", "portal_type", "==", "'Module'", ":", "real_dict_cursor", ".", "execute", "(", "SQL", "[", "'get-books-containing-page'", "]", ",", "{", "'document_uuid'", ":", "uuid", ",", "'document_version'", ":", "version", "}", ")", "return", "real_dict_cursor", ".", "fetchall", "(", ")", "else", ":", "# Books are currently not in any other book", "return", "[", "]" ]
Return a list of book names and UUIDs that contain a given module UUID.
[ "Return", "a", "list", "of", "book", "names", "and", "UUIDs", "that", "contain", "a", "given", "module", "UUID", "." ]
train
https://github.com/openstax/cnx-archive/blob/d31d34aa8bbc8a9fde6cd4227a0df92726e8daf4/cnxarchive/views/content.py#L307-L330
openstax/cnx-archive
cnxarchive/views/content.py
get_canonical_url
def get_canonical_url(metadata, request): """Builds canonical in book url from a pages metadata.""" slug_title = u'/{}'.format('-'.join(metadata['title'].split())) settings = get_current_registry().settings canon_host = settings.get('canonical-hostname', re.sub('archive.', '', request.host)) if metadata['canonical'] is None: canon_url = request.route_url( 'content', ident_hash=metadata['id'], ignore=slug_title) else: canon_url = request.route_url( 'content', ident_hash=metadata['canonical'], separator=':', page_ident_hash=metadata['id'], ignore=slug_title) return re.sub(request.host, canon_host, canon_url)
python
def get_canonical_url(metadata, request): """Builds canonical in book url from a pages metadata.""" slug_title = u'/{}'.format('-'.join(metadata['title'].split())) settings = get_current_registry().settings canon_host = settings.get('canonical-hostname', re.sub('archive.', '', request.host)) if metadata['canonical'] is None: canon_url = request.route_url( 'content', ident_hash=metadata['id'], ignore=slug_title) else: canon_url = request.route_url( 'content', ident_hash=metadata['canonical'], separator=':', page_ident_hash=metadata['id'], ignore=slug_title) return re.sub(request.host, canon_host, canon_url)
[ "def", "get_canonical_url", "(", "metadata", ",", "request", ")", ":", "slug_title", "=", "u'/{}'", ".", "format", "(", "'-'", ".", "join", "(", "metadata", "[", "'title'", "]", ".", "split", "(", ")", ")", ")", "settings", "=", "get_current_registry", "(", ")", ".", "settings", "canon_host", "=", "settings", ".", "get", "(", "'canonical-hostname'", ",", "re", ".", "sub", "(", "'archive.'", ",", "''", ",", "request", ".", "host", ")", ")", "if", "metadata", "[", "'canonical'", "]", "is", "None", ":", "canon_url", "=", "request", ".", "route_url", "(", "'content'", ",", "ident_hash", "=", "metadata", "[", "'id'", "]", ",", "ignore", "=", "slug_title", ")", "else", ":", "canon_url", "=", "request", ".", "route_url", "(", "'content'", ",", "ident_hash", "=", "metadata", "[", "'canonical'", "]", ",", "separator", "=", "':'", ",", "page_ident_hash", "=", "metadata", "[", "'id'", "]", ",", "ignore", "=", "slug_title", ")", "return", "re", ".", "sub", "(", "request", ".", "host", ",", "canon_host", ",", "canon_url", ")" ]
Builds canonical in book url from a pages metadata.
[ "Builds", "canonical", "in", "book", "url", "from", "a", "pages", "metadata", "." ]
train
https://github.com/openstax/cnx-archive/blob/d31d34aa8bbc8a9fde6cd4227a0df92726e8daf4/cnxarchive/views/content.py#L333-L353
openstax/cnx-archive
cnxarchive/views/content.py
get_content
def get_content(request): """Retrieve content using the ident-hash (uuid@version). Depending on extension or HTTP_ACCEPT header return HTML or JSON. """ ext = request.matchdict.get('ext') accept = request.headers.get('ACCEPT', '') if not ext: if ('application/xhtml+xml' in accept): result, resp = get_content_html(request) else: # default to json result, resp = get_content_json(request) elif ext == '.html': result, resp = get_content_html(request) elif ext == '.json': result, resp = get_content_json(request) else: raise httpexceptions.HTTPNotFound() if result['stateid'] not in [1, 8]: # state 1 = current, state 8 = fallback cc = resp.cache_control cc.prevent_auto = True cc.no_cache = True cc.no_store = True cc.must_revalidate = True else: resp.cache_control.public = True # Build the canonical link resp.headerlist.append( ('Link', '<{}> ;rel="Canonical"'.format(result['canon_url']))) return resp
python
def get_content(request): """Retrieve content using the ident-hash (uuid@version). Depending on extension or HTTP_ACCEPT header return HTML or JSON. """ ext = request.matchdict.get('ext') accept = request.headers.get('ACCEPT', '') if not ext: if ('application/xhtml+xml' in accept): result, resp = get_content_html(request) else: # default to json result, resp = get_content_json(request) elif ext == '.html': result, resp = get_content_html(request) elif ext == '.json': result, resp = get_content_json(request) else: raise httpexceptions.HTTPNotFound() if result['stateid'] not in [1, 8]: # state 1 = current, state 8 = fallback cc = resp.cache_control cc.prevent_auto = True cc.no_cache = True cc.no_store = True cc.must_revalidate = True else: resp.cache_control.public = True # Build the canonical link resp.headerlist.append( ('Link', '<{}> ;rel="Canonical"'.format(result['canon_url']))) return resp
[ "def", "get_content", "(", "request", ")", ":", "ext", "=", "request", ".", "matchdict", ".", "get", "(", "'ext'", ")", "accept", "=", "request", ".", "headers", ".", "get", "(", "'ACCEPT'", ",", "''", ")", "if", "not", "ext", ":", "if", "(", "'application/xhtml+xml'", "in", "accept", ")", ":", "result", ",", "resp", "=", "get_content_html", "(", "request", ")", "else", ":", "# default to json", "result", ",", "resp", "=", "get_content_json", "(", "request", ")", "elif", "ext", "==", "'.html'", ":", "result", ",", "resp", "=", "get_content_html", "(", "request", ")", "elif", "ext", "==", "'.json'", ":", "result", ",", "resp", "=", "get_content_json", "(", "request", ")", "else", ":", "raise", "httpexceptions", ".", "HTTPNotFound", "(", ")", "if", "result", "[", "'stateid'", "]", "not", "in", "[", "1", ",", "8", "]", ":", "# state 1 = current, state 8 = fallback", "cc", "=", "resp", ".", "cache_control", "cc", ".", "prevent_auto", "=", "True", "cc", ".", "no_cache", "=", "True", "cc", ".", "no_store", "=", "True", "cc", ".", "must_revalidate", "=", "True", "else", ":", "resp", ".", "cache_control", ".", "public", "=", "True", "# Build the canonical link", "resp", ".", "headerlist", ".", "append", "(", "(", "'Link'", ",", "'<{}> ;rel=\"Canonical\"'", ".", "format", "(", "result", "[", "'canon_url'", "]", ")", ")", ")", "return", "resp" ]
Retrieve content using the ident-hash (uuid@version). Depending on extension or HTTP_ACCEPT header return HTML or JSON.
[ "Retrieve", "content", "using", "the", "ident", "-", "hash", "(", "uuid@version", ")", "." ]
train
https://github.com/openstax/cnx-archive/blob/d31d34aa8bbc8a9fde6cd4227a0df92726e8daf4/cnxarchive/views/content.py#L362-L395
openstax/cnx-archive
cnxarchive/views/content.py
get_extra
def get_extra(request): """Return information about a module / collection that cannot be cached.""" settings = get_current_registry().settings exports_dirs = settings['exports-directories'].split() args = request.matchdict if args['page_ident_hash']: context_id, context_version = split_ident_hash(args['ident_hash']) try: id, version = split_ident_hash(args['page_ident_hash']) except IdentHashShortId as e: id = get_uuid(e.id) version = e.version except IdentHashMissingVersion as e: # Ideally we would find the page version # that is in the book instead of latest id = e.id version = get_latest_version(e.id) else: context_id = context_version = None id, version = split_ident_hash(args['ident_hash']) results = {} with db_connect() as db_connection: with db_connection.cursor() as cursor: results['downloads'] = \ list(get_export_allowable_types(cursor, exports_dirs, id, version)) results['isLatest'] = is_latest(id, version) results['latestVersion'] = get_latest_version(id) results['headVersion'] = get_head_version(id) results['canPublish'] = get_module_can_publish(cursor, id) results['state'] = get_state(cursor, id, version) results['books'] = get_books_containing_page(cursor, id, version, context_id, context_version) formatAuthors(results['books']) resp = request.response resp.content_type = 'application/json' resp.body = json.dumps(results, default=json_serial) return resp
python
def get_extra(request): """Return information about a module / collection that cannot be cached.""" settings = get_current_registry().settings exports_dirs = settings['exports-directories'].split() args = request.matchdict if args['page_ident_hash']: context_id, context_version = split_ident_hash(args['ident_hash']) try: id, version = split_ident_hash(args['page_ident_hash']) except IdentHashShortId as e: id = get_uuid(e.id) version = e.version except IdentHashMissingVersion as e: # Ideally we would find the page version # that is in the book instead of latest id = e.id version = get_latest_version(e.id) else: context_id = context_version = None id, version = split_ident_hash(args['ident_hash']) results = {} with db_connect() as db_connection: with db_connection.cursor() as cursor: results['downloads'] = \ list(get_export_allowable_types(cursor, exports_dirs, id, version)) results['isLatest'] = is_latest(id, version) results['latestVersion'] = get_latest_version(id) results['headVersion'] = get_head_version(id) results['canPublish'] = get_module_can_publish(cursor, id) results['state'] = get_state(cursor, id, version) results['books'] = get_books_containing_page(cursor, id, version, context_id, context_version) formatAuthors(results['books']) resp = request.response resp.content_type = 'application/json' resp.body = json.dumps(results, default=json_serial) return resp
[ "def", "get_extra", "(", "request", ")", ":", "settings", "=", "get_current_registry", "(", ")", ".", "settings", "exports_dirs", "=", "settings", "[", "'exports-directories'", "]", ".", "split", "(", ")", "args", "=", "request", ".", "matchdict", "if", "args", "[", "'page_ident_hash'", "]", ":", "context_id", ",", "context_version", "=", "split_ident_hash", "(", "args", "[", "'ident_hash'", "]", ")", "try", ":", "id", ",", "version", "=", "split_ident_hash", "(", "args", "[", "'page_ident_hash'", "]", ")", "except", "IdentHashShortId", "as", "e", ":", "id", "=", "get_uuid", "(", "e", ".", "id", ")", "version", "=", "e", ".", "version", "except", "IdentHashMissingVersion", "as", "e", ":", "# Ideally we would find the page version", "# that is in the book instead of latest", "id", "=", "e", ".", "id", "version", "=", "get_latest_version", "(", "e", ".", "id", ")", "else", ":", "context_id", "=", "context_version", "=", "None", "id", ",", "version", "=", "split_ident_hash", "(", "args", "[", "'ident_hash'", "]", ")", "results", "=", "{", "}", "with", "db_connect", "(", ")", "as", "db_connection", ":", "with", "db_connection", ".", "cursor", "(", ")", "as", "cursor", ":", "results", "[", "'downloads'", "]", "=", "list", "(", "get_export_allowable_types", "(", "cursor", ",", "exports_dirs", ",", "id", ",", "version", ")", ")", "results", "[", "'isLatest'", "]", "=", "is_latest", "(", "id", ",", "version", ")", "results", "[", "'latestVersion'", "]", "=", "get_latest_version", "(", "id", ")", "results", "[", "'headVersion'", "]", "=", "get_head_version", "(", "id", ")", "results", "[", "'canPublish'", "]", "=", "get_module_can_publish", "(", "cursor", ",", "id", ")", "results", "[", "'state'", "]", "=", "get_state", "(", "cursor", ",", "id", ",", "version", ")", "results", "[", "'books'", "]", "=", "get_books_containing_page", "(", "cursor", ",", "id", ",", "version", ",", "context_id", ",", "context_version", ")", "formatAuthors", "(", "results", "[", "'books'", "]", ")", "resp", "=", "request", ".", "response", "resp", ".", "content_type", "=", "'application/json'", "resp", ".", "body", "=", "json", ".", "dumps", "(", "results", ",", "default", "=", "json_serial", ")", "return", "resp" ]
Return information about a module / collection that cannot be cached.
[ "Return", "information", "about", "a", "module", "/", "collection", "that", "cannot", "be", "cached", "." ]
train
https://github.com/openstax/cnx-archive/blob/d31d34aa8bbc8a9fde6cd4227a0df92726e8daf4/cnxarchive/views/content.py#L400-L439
ZELLMECHANIK-DRESDEN/dclab
dclab/rtdc_dataset/fmt_hierarchy.py
map_indices_child2parent
def map_indices_child2parent(child, child_indices): """Map child RTDCBase event indices to parent RTDCBase Parameters ---------- child: RTDC_Hierarchy hierarchy child with `child_indices` child_indices: 1d ndarray child indices to map Returns ------- parent_indices: 1d ndarray hierarchy parent indices """ parent = child.hparent # filters pf = parent.filter.all # indices corresponding to all child events idx = np.where(pf)[0] # True means present in the child # indices corresponding to selected child events parent_indices = idx[child_indices] return parent_indices
python
def map_indices_child2parent(child, child_indices): """Map child RTDCBase event indices to parent RTDCBase Parameters ---------- child: RTDC_Hierarchy hierarchy child with `child_indices` child_indices: 1d ndarray child indices to map Returns ------- parent_indices: 1d ndarray hierarchy parent indices """ parent = child.hparent # filters pf = parent.filter.all # indices corresponding to all child events idx = np.where(pf)[0] # True means present in the child # indices corresponding to selected child events parent_indices = idx[child_indices] return parent_indices
[ "def", "map_indices_child2parent", "(", "child", ",", "child_indices", ")", ":", "parent", "=", "child", ".", "hparent", "# filters", "pf", "=", "parent", ".", "filter", ".", "all", "# indices corresponding to all child events", "idx", "=", "np", ".", "where", "(", "pf", ")", "[", "0", "]", "# True means present in the child", "# indices corresponding to selected child events", "parent_indices", "=", "idx", "[", "child_indices", "]", "return", "parent_indices" ]
Map child RTDCBase event indices to parent RTDCBase Parameters ---------- child: RTDC_Hierarchy hierarchy child with `child_indices` child_indices: 1d ndarray child indices to map Returns ------- parent_indices: 1d ndarray hierarchy parent indices
[ "Map", "child", "RTDCBase", "event", "indices", "to", "parent", "RTDCBase" ]
train
https://github.com/ZELLMECHANIK-DRESDEN/dclab/blob/79002c4356e7020c2ba73ab0a3819c9abd4affec/dclab/rtdc_dataset/fmt_hierarchy.py#L310-L332
ZELLMECHANIK-DRESDEN/dclab
dclab/rtdc_dataset/fmt_hierarchy.py
map_indices_child2root
def map_indices_child2root(child, child_indices): """Map RTDC_Hierarchy event indices to root RTDCBase Parameters ---------- child: RTDC_Hierarchy RTDCBase hierarchy child child_indices: 1d ndarray child indices to map Returns ------- root_indices: 1d ndarray hierarchy root indices (not necessarily the indices of `parent`) """ while True: indices = map_indices_child2parent(child=child, child_indices=child_indices) if isinstance(child.hparent, RTDC_Hierarchy): child = child.hparent child_indices = indices else: break return indices
python
def map_indices_child2root(child, child_indices): """Map RTDC_Hierarchy event indices to root RTDCBase Parameters ---------- child: RTDC_Hierarchy RTDCBase hierarchy child child_indices: 1d ndarray child indices to map Returns ------- root_indices: 1d ndarray hierarchy root indices (not necessarily the indices of `parent`) """ while True: indices = map_indices_child2parent(child=child, child_indices=child_indices) if isinstance(child.hparent, RTDC_Hierarchy): child = child.hparent child_indices = indices else: break return indices
[ "def", "map_indices_child2root", "(", "child", ",", "child_indices", ")", ":", "while", "True", ":", "indices", "=", "map_indices_child2parent", "(", "child", "=", "child", ",", "child_indices", "=", "child_indices", ")", "if", "isinstance", "(", "child", ".", "hparent", ",", "RTDC_Hierarchy", ")", ":", "child", "=", "child", ".", "hparent", "child_indices", "=", "indices", "else", ":", "break", "return", "indices" ]
Map RTDC_Hierarchy event indices to root RTDCBase Parameters ---------- child: RTDC_Hierarchy RTDCBase hierarchy child child_indices: 1d ndarray child indices to map Returns ------- root_indices: 1d ndarray hierarchy root indices (not necessarily the indices of `parent`)
[ "Map", "RTDC_Hierarchy", "event", "indices", "to", "root", "RTDCBase" ]
train
https://github.com/ZELLMECHANIK-DRESDEN/dclab/blob/79002c4356e7020c2ba73ab0a3819c9abd4affec/dclab/rtdc_dataset/fmt_hierarchy.py#L335-L359
ZELLMECHANIK-DRESDEN/dclab
dclab/rtdc_dataset/fmt_hierarchy.py
map_indices_parent2child
def map_indices_parent2child(child, parent_indices): """Map parent RTDCBase event indices to RTDC_Hierarchy Parameters ---------- parent: RTDC_Hierarchy hierarchy child parent_indices: 1d ndarray hierarchy parent (`child.hparent`) indices to map Returns ------- child_indices: 1d ndarray child indices """ parent = child.hparent # filters pf = parent.filter.all # indices in child child_indices = [] count = 0 for ii in range(len(pf)): if pf[ii]: # only append indices if they exist in child if ii in parent_indices: # current child event count is the child index child_indices.append(count) # increment child event count count += 1 return np.array(child_indices)
python
def map_indices_parent2child(child, parent_indices): """Map parent RTDCBase event indices to RTDC_Hierarchy Parameters ---------- parent: RTDC_Hierarchy hierarchy child parent_indices: 1d ndarray hierarchy parent (`child.hparent`) indices to map Returns ------- child_indices: 1d ndarray child indices """ parent = child.hparent # filters pf = parent.filter.all # indices in child child_indices = [] count = 0 for ii in range(len(pf)): if pf[ii]: # only append indices if they exist in child if ii in parent_indices: # current child event count is the child index child_indices.append(count) # increment child event count count += 1 return np.array(child_indices)
[ "def", "map_indices_parent2child", "(", "child", ",", "parent_indices", ")", ":", "parent", "=", "child", ".", "hparent", "# filters", "pf", "=", "parent", ".", "filter", ".", "all", "# indices in child", "child_indices", "=", "[", "]", "count", "=", "0", "for", "ii", "in", "range", "(", "len", "(", "pf", ")", ")", ":", "if", "pf", "[", "ii", "]", ":", "# only append indices if they exist in child", "if", "ii", "in", "parent_indices", ":", "# current child event count is the child index", "child_indices", ".", "append", "(", "count", ")", "# increment child event count", "count", "+=", "1", "return", "np", ".", "array", "(", "child_indices", ")" ]
Map parent RTDCBase event indices to RTDC_Hierarchy Parameters ---------- parent: RTDC_Hierarchy hierarchy child parent_indices: 1d ndarray hierarchy parent (`child.hparent`) indices to map Returns ------- child_indices: 1d ndarray child indices
[ "Map", "parent", "RTDCBase", "event", "indices", "to", "RTDC_Hierarchy" ]
train
https://github.com/ZELLMECHANIK-DRESDEN/dclab/blob/79002c4356e7020c2ba73ab0a3819c9abd4affec/dclab/rtdc_dataset/fmt_hierarchy.py#L362-L392
ZELLMECHANIK-DRESDEN/dclab
dclab/rtdc_dataset/fmt_hierarchy.py
map_indices_root2child
def map_indices_root2child(child, root_indices): """Map root RTDCBase event indices to child RTDCBase Parameters ---------- parent: RTDCBase hierarchy parent of `child`. root_indices: 1d ndarray hierarchy root indices to map (not necessarily the indices of `parent`) Returns ------- child_indices: 1d ndarray child indices """ # construct hierarchy tree containing only RTDC_Hierarchy instances hierarchy = [child] while True: if isinstance(child.hparent, RTDC_Hierarchy): # the parent is a hierarchy tree hierarchy.append(child.hparent) child = child.hparent else: break indices = root_indices for hp in hierarchy[::-1]: # reverse order # For each hierarchy parent, map the indices down the # hierarchy tree. indices = map_indices_parent2child(child=hp, parent_indices=indices) return indices
python
def map_indices_root2child(child, root_indices): """Map root RTDCBase event indices to child RTDCBase Parameters ---------- parent: RTDCBase hierarchy parent of `child`. root_indices: 1d ndarray hierarchy root indices to map (not necessarily the indices of `parent`) Returns ------- child_indices: 1d ndarray child indices """ # construct hierarchy tree containing only RTDC_Hierarchy instances hierarchy = [child] while True: if isinstance(child.hparent, RTDC_Hierarchy): # the parent is a hierarchy tree hierarchy.append(child.hparent) child = child.hparent else: break indices = root_indices for hp in hierarchy[::-1]: # reverse order # For each hierarchy parent, map the indices down the # hierarchy tree. indices = map_indices_parent2child(child=hp, parent_indices=indices) return indices
[ "def", "map_indices_root2child", "(", "child", ",", "root_indices", ")", ":", "# construct hierarchy tree containing only RTDC_Hierarchy instances", "hierarchy", "=", "[", "child", "]", "while", "True", ":", "if", "isinstance", "(", "child", ".", "hparent", ",", "RTDC_Hierarchy", ")", ":", "# the parent is a hierarchy tree", "hierarchy", ".", "append", "(", "child", ".", "hparent", ")", "child", "=", "child", ".", "hparent", "else", ":", "break", "indices", "=", "root_indices", "for", "hp", "in", "hierarchy", "[", ":", ":", "-", "1", "]", ":", "# reverse order", "# For each hierarchy parent, map the indices down the", "# hierarchy tree.", "indices", "=", "map_indices_parent2child", "(", "child", "=", "hp", ",", "parent_indices", "=", "indices", ")", "return", "indices" ]
Map root RTDCBase event indices to child RTDCBase Parameters ---------- parent: RTDCBase hierarchy parent of `child`. root_indices: 1d ndarray hierarchy root indices to map (not necessarily the indices of `parent`) Returns ------- child_indices: 1d ndarray child indices
[ "Map", "root", "RTDCBase", "event", "indices", "to", "child", "RTDCBase" ]
train
https://github.com/ZELLMECHANIK-DRESDEN/dclab/blob/79002c4356e7020c2ba73ab0a3819c9abd4affec/dclab/rtdc_dataset/fmt_hierarchy.py#L395-L427
ZELLMECHANIK-DRESDEN/dclab
dclab/rtdc_dataset/fmt_hierarchy.py
HierarchyFilter.apply_manual_indices
def apply_manual_indices(self, manual_indices): """Write to `self.manual` Write `manual_indices` to the boolean array `self.manual` and also store the indices as `self._man_root_ids`. Notes ----- If `self.parent_changed` is `True`, i.e. the parent applied a filter and the child did not yet hear about this, then `HierarchyFilterError` is raised. This is important, because the size of the current filter would not match the size of the filtered events of the parent and thus index-mapping would not work. """ if self.parent_changed: msg = "Cannot apply filter, because parent changed: " \ + "dataset {}. ".format(self.rtdc_ds) \ + "Run `RTDC_Hierarchy.apply_filter()` first!" raise HierarchyFilterError(msg) else: self._man_root_ids = list(manual_indices) cidx = map_indices_root2child(child=self.rtdc_ds, root_indices=manual_indices) if len(cidx): self.manual[cidx] = False
python
def apply_manual_indices(self, manual_indices): """Write to `self.manual` Write `manual_indices` to the boolean array `self.manual` and also store the indices as `self._man_root_ids`. Notes ----- If `self.parent_changed` is `True`, i.e. the parent applied a filter and the child did not yet hear about this, then `HierarchyFilterError` is raised. This is important, because the size of the current filter would not match the size of the filtered events of the parent and thus index-mapping would not work. """ if self.parent_changed: msg = "Cannot apply filter, because parent changed: " \ + "dataset {}. ".format(self.rtdc_ds) \ + "Run `RTDC_Hierarchy.apply_filter()` first!" raise HierarchyFilterError(msg) else: self._man_root_ids = list(manual_indices) cidx = map_indices_root2child(child=self.rtdc_ds, root_indices=manual_indices) if len(cidx): self.manual[cidx] = False
[ "def", "apply_manual_indices", "(", "self", ",", "manual_indices", ")", ":", "if", "self", ".", "parent_changed", ":", "msg", "=", "\"Cannot apply filter, because parent changed: \"", "+", "\"dataset {}. \"", ".", "format", "(", "self", ".", "rtdc_ds", ")", "+", "\"Run `RTDC_Hierarchy.apply_filter()` first!\"", "raise", "HierarchyFilterError", "(", "msg", ")", "else", ":", "self", ".", "_man_root_ids", "=", "list", "(", "manual_indices", ")", "cidx", "=", "map_indices_root2child", "(", "child", "=", "self", ".", "rtdc_ds", ",", "root_indices", "=", "manual_indices", ")", "if", "len", "(", "cidx", ")", ":", "self", ".", "manual", "[", "cidx", "]", "=", "False" ]
Write to `self.manual` Write `manual_indices` to the boolean array `self.manual` and also store the indices as `self._man_root_ids`. Notes ----- If `self.parent_changed` is `True`, i.e. the parent applied a filter and the child did not yet hear about this, then `HierarchyFilterError` is raised. This is important, because the size of the current filter would not match the size of the filtered events of the parent and thus index-mapping would not work.
[ "Write", "to", "self", ".", "manual" ]
train
https://github.com/ZELLMECHANIK-DRESDEN/dclab/blob/79002c4356e7020c2ba73ab0a3819c9abd4affec/dclab/rtdc_dataset/fmt_hierarchy.py#L93-L118
ZELLMECHANIK-DRESDEN/dclab
dclab/rtdc_dataset/fmt_hierarchy.py
HierarchyFilter.retrieve_manual_indices
def retrieve_manual_indices(self): """Read from self.manual Read from the boolean array `self.manual`, index all occurences of `False` and find the corresponding indices in the root hierarchy parent, return those and store them in `self._man_root_ids` as well. Notes ----- This method also retrieves hidden indices, i.e. events that are not part of the current hierarchy child but which have been manually excluded before and are now hidden because a hierarchy parent filtered it out. If `self.parent_changed` is `True`, i.e. the parent applied a filter and the child did not yet hear about this, then nothing is computed and `self._man_root_ids` as-is. This is important, because the size of the current filter would not match the size of the filtered events of the parent and thus index-mapping would not work. """ if self.parent_changed: # ignore pass else: # indices from boolean array pbool = map_indices_child2root( child=self.rtdc_ds, child_indices=np.where(~self.manual)[0]).tolist() # retrieve all indices that are currently not visible # previous indices pold = self._man_root_ids # all indices previously selected either via # - self.manual or # - self.apply_manual_indices pall = sorted(list(set(pbool + pold))) # visible indices (only available child indices are returned) pvis_c = map_indices_root2child(child=self.rtdc_ds, root_indices=pall).tolist() # map visible child indices back to root indices pvis_p = map_indices_child2root(child=self.rtdc_ds, child_indices=pvis_c).tolist() # hidden indices phid = list(set(pall) - set(pvis_p)) # Why not set `all_idx` to `pall`: # - pbool is considered to be correct # - pold contains hidden indices, but also might contain # excess indices from before, i.e. if self.apply_manual_indices # is called, self.manual is also updated. If however, # self.manual is updated, self._man_root_ids are not updated. # Thus, we trust pbool (self.manual) and only use pold # (self._man_root_ids) to determine hidden indices. all_idx = list(set(pbool + phid)) self._man_root_ids = sorted(all_idx) return self._man_root_ids
python
def retrieve_manual_indices(self): """Read from self.manual Read from the boolean array `self.manual`, index all occurences of `False` and find the corresponding indices in the root hierarchy parent, return those and store them in `self._man_root_ids` as well. Notes ----- This method also retrieves hidden indices, i.e. events that are not part of the current hierarchy child but which have been manually excluded before and are now hidden because a hierarchy parent filtered it out. If `self.parent_changed` is `True`, i.e. the parent applied a filter and the child did not yet hear about this, then nothing is computed and `self._man_root_ids` as-is. This is important, because the size of the current filter would not match the size of the filtered events of the parent and thus index-mapping would not work. """ if self.parent_changed: # ignore pass else: # indices from boolean array pbool = map_indices_child2root( child=self.rtdc_ds, child_indices=np.where(~self.manual)[0]).tolist() # retrieve all indices that are currently not visible # previous indices pold = self._man_root_ids # all indices previously selected either via # - self.manual or # - self.apply_manual_indices pall = sorted(list(set(pbool + pold))) # visible indices (only available child indices are returned) pvis_c = map_indices_root2child(child=self.rtdc_ds, root_indices=pall).tolist() # map visible child indices back to root indices pvis_p = map_indices_child2root(child=self.rtdc_ds, child_indices=pvis_c).tolist() # hidden indices phid = list(set(pall) - set(pvis_p)) # Why not set `all_idx` to `pall`: # - pbool is considered to be correct # - pold contains hidden indices, but also might contain # excess indices from before, i.e. if self.apply_manual_indices # is called, self.manual is also updated. If however, # self.manual is updated, self._man_root_ids are not updated. # Thus, we trust pbool (self.manual) and only use pold # (self._man_root_ids) to determine hidden indices. all_idx = list(set(pbool + phid)) self._man_root_ids = sorted(all_idx) return self._man_root_ids
[ "def", "retrieve_manual_indices", "(", "self", ")", ":", "if", "self", ".", "parent_changed", ":", "# ignore", "pass", "else", ":", "# indices from boolean array", "pbool", "=", "map_indices_child2root", "(", "child", "=", "self", ".", "rtdc_ds", ",", "child_indices", "=", "np", ".", "where", "(", "~", "self", ".", "manual", ")", "[", "0", "]", ")", ".", "tolist", "(", ")", "# retrieve all indices that are currently not visible", "# previous indices", "pold", "=", "self", ".", "_man_root_ids", "# all indices previously selected either via", "# - self.manual or", "# - self.apply_manual_indices", "pall", "=", "sorted", "(", "list", "(", "set", "(", "pbool", "+", "pold", ")", ")", ")", "# visible indices (only available child indices are returned)", "pvis_c", "=", "map_indices_root2child", "(", "child", "=", "self", ".", "rtdc_ds", ",", "root_indices", "=", "pall", ")", ".", "tolist", "(", ")", "# map visible child indices back to root indices", "pvis_p", "=", "map_indices_child2root", "(", "child", "=", "self", ".", "rtdc_ds", ",", "child_indices", "=", "pvis_c", ")", ".", "tolist", "(", ")", "# hidden indices", "phid", "=", "list", "(", "set", "(", "pall", ")", "-", "set", "(", "pvis_p", ")", ")", "# Why not set `all_idx` to `pall`:", "# - pbool is considered to be correct", "# - pold contains hidden indices, but also might contain", "# excess indices from before, i.e. if self.apply_manual_indices", "# is called, self.manual is also updated. If however,", "# self.manual is updated, self._man_root_ids are not updated.", "# Thus, we trust pbool (self.manual) and only use pold", "# (self._man_root_ids) to determine hidden indices.", "all_idx", "=", "list", "(", "set", "(", "pbool", "+", "phid", ")", ")", "self", ".", "_man_root_ids", "=", "sorted", "(", "all_idx", ")", "return", "self", ".", "_man_root_ids" ]
Read from self.manual Read from the boolean array `self.manual`, index all occurences of `False` and find the corresponding indices in the root hierarchy parent, return those and store them in `self._man_root_ids` as well. Notes ----- This method also retrieves hidden indices, i.e. events that are not part of the current hierarchy child but which have been manually excluded before and are now hidden because a hierarchy parent filtered it out. If `self.parent_changed` is `True`, i.e. the parent applied a filter and the child did not yet hear about this, then nothing is computed and `self._man_root_ids` as-is. This is important, because the size of the current filter would not match the size of the filtered events of the parent and thus index-mapping would not work.
[ "Read", "from", "self", ".", "manual" ]
train
https://github.com/ZELLMECHANIK-DRESDEN/dclab/blob/79002c4356e7020c2ba73ab0a3819c9abd4affec/dclab/rtdc_dataset/fmt_hierarchy.py#L120-L175
ZELLMECHANIK-DRESDEN/dclab
dclab/rtdc_dataset/fmt_hierarchy.py
RTDC_Hierarchy.apply_filter
def apply_filter(self, *args, **kwargs): """Overridden `apply_filter` to perform tasks for hierarchy child""" if self.filter is not None: # make sure self.filter knows about root manual indices self.filter.retrieve_manual_indices() # Copy event data from hierarchy parent self.hparent.apply_filter() # update event index event_count = np.sum(self.hparent._filter) self._events = {} self._events["index"] = np.arange(1, event_count + 1) # set non-scalar column data if "contour" in self.hparent: self._events["contour"] = ChildContour(self) if "image" in self.hparent: self._events["image"] = ChildImage(self) if "mask" in self.hparent: self._events["mask"] = ChildMask(self) if "trace" in self.hparent: trdict = {} for flname in dfn.FLUOR_TRACES: if flname in self.hparent["trace"]: trdict[flname] = ChildTrace(self, flname) self._events["trace"] = trdict # update config self.config["experiment"]["event count"] = event_count self._init_filters() super(RTDC_Hierarchy, self).apply_filter(*args, **kwargs)
python
def apply_filter(self, *args, **kwargs): """Overridden `apply_filter` to perform tasks for hierarchy child""" if self.filter is not None: # make sure self.filter knows about root manual indices self.filter.retrieve_manual_indices() # Copy event data from hierarchy parent self.hparent.apply_filter() # update event index event_count = np.sum(self.hparent._filter) self._events = {} self._events["index"] = np.arange(1, event_count + 1) # set non-scalar column data if "contour" in self.hparent: self._events["contour"] = ChildContour(self) if "image" in self.hparent: self._events["image"] = ChildImage(self) if "mask" in self.hparent: self._events["mask"] = ChildMask(self) if "trace" in self.hparent: trdict = {} for flname in dfn.FLUOR_TRACES: if flname in self.hparent["trace"]: trdict[flname] = ChildTrace(self, flname) self._events["trace"] = trdict # update config self.config["experiment"]["event count"] = event_count self._init_filters() super(RTDC_Hierarchy, self).apply_filter(*args, **kwargs)
[ "def", "apply_filter", "(", "self", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "if", "self", ".", "filter", "is", "not", "None", ":", "# make sure self.filter knows about root manual indices", "self", ".", "filter", ".", "retrieve_manual_indices", "(", ")", "# Copy event data from hierarchy parent", "self", ".", "hparent", ".", "apply_filter", "(", ")", "# update event index", "event_count", "=", "np", ".", "sum", "(", "self", ".", "hparent", ".", "_filter", ")", "self", ".", "_events", "=", "{", "}", "self", ".", "_events", "[", "\"index\"", "]", "=", "np", ".", "arange", "(", "1", ",", "event_count", "+", "1", ")", "# set non-scalar column data", "if", "\"contour\"", "in", "self", ".", "hparent", ":", "self", ".", "_events", "[", "\"contour\"", "]", "=", "ChildContour", "(", "self", ")", "if", "\"image\"", "in", "self", ".", "hparent", ":", "self", ".", "_events", "[", "\"image\"", "]", "=", "ChildImage", "(", "self", ")", "if", "\"mask\"", "in", "self", ".", "hparent", ":", "self", ".", "_events", "[", "\"mask\"", "]", "=", "ChildMask", "(", "self", ")", "if", "\"trace\"", "in", "self", ".", "hparent", ":", "trdict", "=", "{", "}", "for", "flname", "in", "dfn", ".", "FLUOR_TRACES", ":", "if", "flname", "in", "self", ".", "hparent", "[", "\"trace\"", "]", ":", "trdict", "[", "flname", "]", "=", "ChildTrace", "(", "self", ",", "flname", ")", "self", ".", "_events", "[", "\"trace\"", "]", "=", "trdict", "# update config", "self", ".", "config", "[", "\"experiment\"", "]", "[", "\"event count\"", "]", "=", "event_count", "self", ".", "_init_filters", "(", ")", "super", "(", "RTDC_Hierarchy", ",", "self", ")", ".", "apply_filter", "(", "*", "args", ",", "*", "*", "kwargs", ")" ]
Overridden `apply_filter` to perform tasks for hierarchy child
[ "Overridden", "apply_filter", "to", "perform", "tasks", "for", "hierarchy", "child" ]
train
https://github.com/ZELLMECHANIK-DRESDEN/dclab/blob/79002c4356e7020c2ba73ab0a3819c9abd4affec/dclab/rtdc_dataset/fmt_hierarchy.py#L269-L298
ZELLMECHANIK-DRESDEN/dclab
dclab/rtdc_dataset/fmt_hierarchy.py
RTDC_Hierarchy.hash
def hash(self): """Hashes of a hierarchy child changes if the parent changes""" # Do not apply filters here (speed) hph = self.hparent.hash hpfilt = hashobj(self.hparent._filter) dhash = hashobj(hph + hpfilt) return dhash
python
def hash(self): """Hashes of a hierarchy child changes if the parent changes""" # Do not apply filters here (speed) hph = self.hparent.hash hpfilt = hashobj(self.hparent._filter) dhash = hashobj(hph + hpfilt) return dhash
[ "def", "hash", "(", "self", ")", ":", "# Do not apply filters here (speed)", "hph", "=", "self", ".", "hparent", ".", "hash", "hpfilt", "=", "hashobj", "(", "self", ".", "hparent", ".", "_filter", ")", "dhash", "=", "hashobj", "(", "hph", "+", "hpfilt", ")", "return", "dhash" ]
Hashes of a hierarchy child changes if the parent changes
[ "Hashes", "of", "a", "hierarchy", "child", "changes", "if", "the", "parent", "changes" ]
train
https://github.com/ZELLMECHANIK-DRESDEN/dclab/blob/79002c4356e7020c2ba73ab0a3819c9abd4affec/dclab/rtdc_dataset/fmt_hierarchy.py#L301-L307
ZELLMECHANIK-DRESDEN/dclab
dclab/rtdc_dataset/fmt_tdms/event_image.py
ImageColumn.find_video_file
def find_video_file(rtdc_dataset): """Tries to find a video file that belongs to an RTDC dataset Returns None if no video file is found. """ video = None if rtdc_dataset._fdir.exists(): # Cell images (video) videos = [v.name for v in rtdc_dataset._fdir.rglob("*.avi")] # Filter videos according to measurement number meas_id = rtdc_dataset._mid videos = [v for v in videos if v.split("_")[0] == meas_id] videos.sort() if len(videos) != 0: # Defaults to first avi file video = videos[0] # g/q video file names. q comes first. for v in videos: if v.endswith("imag.avi"): video = v break # add this here, because fRT-DC measurements also contain # videos ..._proc.avi elif v.endswith("imaq.avi"): video = v break if video is None: return None else: return rtdc_dataset._fdir / video
python
def find_video_file(rtdc_dataset): """Tries to find a video file that belongs to an RTDC dataset Returns None if no video file is found. """ video = None if rtdc_dataset._fdir.exists(): # Cell images (video) videos = [v.name for v in rtdc_dataset._fdir.rglob("*.avi")] # Filter videos according to measurement number meas_id = rtdc_dataset._mid videos = [v for v in videos if v.split("_")[0] == meas_id] videos.sort() if len(videos) != 0: # Defaults to first avi file video = videos[0] # g/q video file names. q comes first. for v in videos: if v.endswith("imag.avi"): video = v break # add this here, because fRT-DC measurements also contain # videos ..._proc.avi elif v.endswith("imaq.avi"): video = v break if video is None: return None else: return rtdc_dataset._fdir / video
[ "def", "find_video_file", "(", "rtdc_dataset", ")", ":", "video", "=", "None", "if", "rtdc_dataset", ".", "_fdir", ".", "exists", "(", ")", ":", "# Cell images (video)", "videos", "=", "[", "v", ".", "name", "for", "v", "in", "rtdc_dataset", ".", "_fdir", ".", "rglob", "(", "\"*.avi\"", ")", "]", "# Filter videos according to measurement number", "meas_id", "=", "rtdc_dataset", ".", "_mid", "videos", "=", "[", "v", "for", "v", "in", "videos", "if", "v", ".", "split", "(", "\"_\"", ")", "[", "0", "]", "==", "meas_id", "]", "videos", ".", "sort", "(", ")", "if", "len", "(", "videos", ")", "!=", "0", ":", "# Defaults to first avi file", "video", "=", "videos", "[", "0", "]", "# g/q video file names. q comes first.", "for", "v", "in", "videos", ":", "if", "v", ".", "endswith", "(", "\"imag.avi\"", ")", ":", "video", "=", "v", "break", "# add this here, because fRT-DC measurements also contain", "# videos ..._proc.avi", "elif", "v", ".", "endswith", "(", "\"imaq.avi\"", ")", ":", "video", "=", "v", "break", "if", "video", "is", "None", ":", "return", "None", "else", ":", "return", "rtdc_dataset", ".", "_fdir", "/", "video" ]
Tries to find a video file that belongs to an RTDC dataset Returns None if no video file is found.
[ "Tries", "to", "find", "a", "video", "file", "that", "belongs", "to", "an", "RTDC", "dataset" ]
train
https://github.com/ZELLMECHANIK-DRESDEN/dclab/blob/79002c4356e7020c2ba73ab0a3819c9abd4affec/dclab/rtdc_dataset/fmt_tdms/event_image.py#L66-L95
ZELLMECHANIK-DRESDEN/dclab
dclab/rtdc_dataset/fmt_tdms/event_image.py
ImageMap._get_image_workaround_seek
def _get_image_workaround_seek(self, idx): """Same as __getitem__ but seek through the video beforehand This is a workaround for an all-zero image returned by `imageio`. """ warnings.warn("imageio workaround used!") cap = self.video_handle mult = 50 for ii in range(idx//mult): cap.get_data(ii*mult) final = cap.get_data(idx) return final
python
def _get_image_workaround_seek(self, idx): """Same as __getitem__ but seek through the video beforehand This is a workaround for an all-zero image returned by `imageio`. """ warnings.warn("imageio workaround used!") cap = self.video_handle mult = 50 for ii in range(idx//mult): cap.get_data(ii*mult) final = cap.get_data(idx) return final
[ "def", "_get_image_workaround_seek", "(", "self", ",", "idx", ")", ":", "warnings", ".", "warn", "(", "\"imageio workaround used!\"", ")", "cap", "=", "self", ".", "video_handle", "mult", "=", "50", "for", "ii", "in", "range", "(", "idx", "//", "mult", ")", ":", "cap", ".", "get_data", "(", "ii", "*", "mult", ")", "final", "=", "cap", ".", "get_data", "(", "idx", ")", "return", "final" ]
Same as __getitem__ but seek through the video beforehand This is a workaround for an all-zero image returned by `imageio`.
[ "Same", "as", "__getitem__", "but", "seek", "through", "the", "video", "beforehand" ]
train
https://github.com/ZELLMECHANIK-DRESDEN/dclab/blob/79002c4356e7020c2ba73ab0a3819c9abd4affec/dclab/rtdc_dataset/fmt_tdms/event_image.py#L146-L157
mhostetter/nhl
nhl/list.py
List.select
def select(self, attr, default=None): """ Select a given attribute (or chain or attributes) from the objects within the list. Args: attr (str): attributes to be selected (with initial `.` omitted) default (any): value to return if given element in list doesn't contain desired attribute Returns: nhl.List: list of selected attribute values """ return List([_select(item, attr, default) for item in self])
python
def select(self, attr, default=None): """ Select a given attribute (or chain or attributes) from the objects within the list. Args: attr (str): attributes to be selected (with initial `.` omitted) default (any): value to return if given element in list doesn't contain desired attribute Returns: nhl.List: list of selected attribute values """ return List([_select(item, attr, default) for item in self])
[ "def", "select", "(", "self", ",", "attr", ",", "default", "=", "None", ")", ":", "return", "List", "(", "[", "_select", "(", "item", ",", "attr", ",", "default", ")", "for", "item", "in", "self", "]", ")" ]
Select a given attribute (or chain or attributes) from the objects within the list. Args: attr (str): attributes to be selected (with initial `.` omitted) default (any): value to return if given element in list doesn't contain desired attribute Returns: nhl.List: list of selected attribute values
[ "Select", "a", "given", "attribute", "(", "or", "chain", "or", "attributes", ")", "from", "the", "objects", "within", "the", "list", "." ]
train
https://github.com/mhostetter/nhl/blob/32c91cc392826e9de728563d57ab527421734ee1/nhl/list.py#L44-L57
mhostetter/nhl
nhl/list.py
List.filter
def filter(self, attr, value, compare="=="): """ Filter list by a comparison of a given attribute (or chain or attributes). Args: attr (str): attributes to be compared (with initial `.` omitted) value (any): value to compare attr against compare (str): comparison type "=": `attr == value` "==": `attr == value` ">": `attr > value` ">=": `attr >= value` "<": `attr < value` "<=": `attr <= value` "in": `value in attr` "contains": `value in attr` Returns: nhl.List: reduced list with items that satisfy filter criterion """ return List([item for item in self if _filter(_select(item, attr), value, compare)])
python
def filter(self, attr, value, compare="=="): """ Filter list by a comparison of a given attribute (or chain or attributes). Args: attr (str): attributes to be compared (with initial `.` omitted) value (any): value to compare attr against compare (str): comparison type "=": `attr == value` "==": `attr == value` ">": `attr > value` ">=": `attr >= value` "<": `attr < value` "<=": `attr <= value` "in": `value in attr` "contains": `value in attr` Returns: nhl.List: reduced list with items that satisfy filter criterion """ return List([item for item in self if _filter(_select(item, attr), value, compare)])
[ "def", "filter", "(", "self", ",", "attr", ",", "value", ",", "compare", "=", "\"==\"", ")", ":", "return", "List", "(", "[", "item", "for", "item", "in", "self", "if", "_filter", "(", "_select", "(", "item", ",", "attr", ")", ",", "value", ",", "compare", ")", "]", ")" ]
Filter list by a comparison of a given attribute (or chain or attributes). Args: attr (str): attributes to be compared (with initial `.` omitted) value (any): value to compare attr against compare (str): comparison type "=": `attr == value` "==": `attr == value` ">": `attr > value` ">=": `attr >= value` "<": `attr < value` "<=": `attr <= value` "in": `value in attr` "contains": `value in attr` Returns: nhl.List: reduced list with items that satisfy filter criterion
[ "Filter", "list", "by", "a", "comparison", "of", "a", "given", "attribute", "(", "or", "chain", "or", "attributes", ")", "." ]
train
https://github.com/mhostetter/nhl/blob/32c91cc392826e9de728563d57ab527421734ee1/nhl/list.py#L59-L79
robmcmullen/atrcopy
atrcopy/ataridos.py
AtariDosDiskImage.as_new_format
def as_new_format(self, format="ATR"): """ Create a new disk image in the specified format """ first_data = len(self.header) raw = self.rawdata[first_data:] data = add_atr_header(raw) newraw = SegmentData(data) image = self.__class__(newraw) return image
python
def as_new_format(self, format="ATR"): """ Create a new disk image in the specified format """ first_data = len(self.header) raw = self.rawdata[first_data:] data = add_atr_header(raw) newraw = SegmentData(data) image = self.__class__(newraw) return image
[ "def", "as_new_format", "(", "self", ",", "format", "=", "\"ATR\"", ")", ":", "first_data", "=", "len", "(", "self", ".", "header", ")", "raw", "=", "self", ".", "rawdata", "[", "first_data", ":", "]", "data", "=", "add_atr_header", "(", "raw", ")", "newraw", "=", "SegmentData", "(", "data", ")", "image", "=", "self", ".", "__class__", "(", "newraw", ")", "return", "image" ]
Create a new disk image in the specified format
[ "Create", "a", "new", "disk", "image", "in", "the", "specified", "format" ]
train
https://github.com/robmcmullen/atrcopy/blob/dafba8e74c718e95cf81fd72c184fa193ecec730/atrcopy/ataridos.py#L489-L497
simse/pymitv
pymitv/tv.py
TV.set_source
def set_source(self, source): """Selects and saves source.""" route = Navigator(source=self.source).navigate_to_source(source) # Save new source self.source = source return self._send_keystroke(route, wait=True)
python
def set_source(self, source): """Selects and saves source.""" route = Navigator(source=self.source).navigate_to_source(source) # Save new source self.source = source return self._send_keystroke(route, wait=True)
[ "def", "set_source", "(", "self", ",", "source", ")", ":", "route", "=", "Navigator", "(", "source", "=", "self", ".", "source", ")", ".", "navigate_to_source", "(", "source", ")", "# Save new source\r", "self", ".", "source", "=", "source", "return", "self", ".", "_send_keystroke", "(", "route", ",", "wait", "=", "True", ")" ]
Selects and saves source.
[ "Selects", "and", "saves", "source", "." ]
train
https://github.com/simse/pymitv/blob/03213f591d70fbf90ba2b6af372e474c9bfb99f6/pymitv/tv.py#L100-L107
openstax/cnx-archive
cnxarchive/__init__.py
find_migrations_directory
def find_migrations_directory(): """Finds and returns the location of the database migrations directory. This function is used from a setuptools entry-point for db-migrator. """ here = os.path.abspath(os.path.dirname(__file__)) return os.path.join(here, 'sql/migrations')
python
def find_migrations_directory(): """Finds and returns the location of the database migrations directory. This function is used from a setuptools entry-point for db-migrator. """ here = os.path.abspath(os.path.dirname(__file__)) return os.path.join(here, 'sql/migrations')
[ "def", "find_migrations_directory", "(", ")", ":", "here", "=", "os", ".", "path", ".", "abspath", "(", "os", ".", "path", ".", "dirname", "(", "__file__", ")", ")", "return", "os", ".", "path", ".", "join", "(", "here", ",", "'sql/migrations'", ")" ]
Finds and returns the location of the database migrations directory. This function is used from a setuptools entry-point for db-migrator.
[ "Finds", "and", "returns", "the", "location", "of", "the", "database", "migrations", "directory", ".", "This", "function", "is", "used", "from", "a", "setuptools", "entry", "-", "point", "for", "db", "-", "migrator", "." ]
train
https://github.com/openstax/cnx-archive/blob/d31d34aa8bbc8a9fde6cd4227a0df92726e8daf4/cnxarchive/__init__.py#L34-L39
openstax/cnx-archive
cnxarchive/__init__.py
declare_api_routes
def declare_api_routes(config): """Declare routes, with a custom pregenerator.""" # The pregenerator makes sure we can generate a path using # request.route_path even if we don't have all the variables. # # For example, instead of having to do this: # request.route_path('resource', hash=hash, ignore='') # it's possible to do this: # request.route_path('resource', hash=hash) def pregenerator(path): # find all the variables in the path variables = [(s.split(':')[0], '') for s in path.split('{')[1:]] def wrapper(request, elements, kwargs): modified_kwargs = dict(variables) modified_kwargs.update(kwargs) return elements, modified_kwargs return wrapper def add_route(name, path, *args, **kwargs): return config.add_route(name, path, *args, pregenerator=pregenerator(path), **kwargs) add_route('content', '/contents/{ident_hash:([^:/@.]+(@[0-9.]*[0-9]+)?)}{separator:(:?)}{page_ident_hash:([^:/@.]+(@[0-9.]*[0-9]+)?)?}{ignore:(/[^/.]*?/?)?}{ext:([.](html|json))?}') # noqa cnxarchive.views:get_content add_route('resource', '/resources/{hash}{ignore:(/.*)?}') # noqa cnxarchive.views:get_resource add_route('export', '/exports/{ident_hash}.{type}{ignore:(/.*)?}') # noqa cnxarchive.views:get_export add_route('extras', '/extras{key:(/(featured|messages|licenses|subjects|languages))?}') # noqa cnxarchive.views:extras add_route('content-extras', '/extras/{ident_hash:([^:/@.]+(@[0-9.]*[0-9]+)?)}{separator:(:?)}{page_ident_hash:([^:/@.]+(@[0-9.]*[0-9]+)?)?}') # noqa cnxarchive.views:get_extra add_route('search', '/search') # cnxarchive.views:search add_route('in-book-search', '/search/{ident_hash:([^:/]+)}') # noqa cnxarchive.views:in-book-search add_route('in-book-search-page', '/search/{ident_hash:([^:/]+)}:{page_ident_hash}') # noqa cnxarchive.views:in_book_search_highlighted_results add_route('sitemap-index', '/sitemap_index.xml') # noqa cnxarchive.views:sitemap add_route('sitemap', '/sitemap-{from_id}.xml') # noqa cnxarchive.views:sitemap add_route('robots', '/robots.txt') # noqa cnxarchive.views:robots add_route('legacy-redirect', '/content/{objid}{ignore:(/)?}') # noqa cnxarchive.views:redirect_legacy_content add_route('legacy-redirect-latest', '/content/{objid}/latest{ignore:(/)?}{filename:(.+)?}') # noqa cnxarchive.views:redirect_legacy_content add_route('legacy-redirect-w-version', '/content/{objid}/{objver}{ignore:(/)?}{filename:(.+)?}') # noqa cnxarchive.views:redirect_legacy_content add_route('recent', '/feeds/recent.rss') # cnxarchive.views:recent add_route('oai', '/feeds/oai') # cnxarchive.views:oai add_route('xpath', '/xpath.html') # cnxarchive.views.xpath add_route('xpath-json', '/xpath.json')
python
def declare_api_routes(config): """Declare routes, with a custom pregenerator.""" # The pregenerator makes sure we can generate a path using # request.route_path even if we don't have all the variables. # # For example, instead of having to do this: # request.route_path('resource', hash=hash, ignore='') # it's possible to do this: # request.route_path('resource', hash=hash) def pregenerator(path): # find all the variables in the path variables = [(s.split(':')[0], '') for s in path.split('{')[1:]] def wrapper(request, elements, kwargs): modified_kwargs = dict(variables) modified_kwargs.update(kwargs) return elements, modified_kwargs return wrapper def add_route(name, path, *args, **kwargs): return config.add_route(name, path, *args, pregenerator=pregenerator(path), **kwargs) add_route('content', '/contents/{ident_hash:([^:/@.]+(@[0-9.]*[0-9]+)?)}{separator:(:?)}{page_ident_hash:([^:/@.]+(@[0-9.]*[0-9]+)?)?}{ignore:(/[^/.]*?/?)?}{ext:([.](html|json))?}') # noqa cnxarchive.views:get_content add_route('resource', '/resources/{hash}{ignore:(/.*)?}') # noqa cnxarchive.views:get_resource add_route('export', '/exports/{ident_hash}.{type}{ignore:(/.*)?}') # noqa cnxarchive.views:get_export add_route('extras', '/extras{key:(/(featured|messages|licenses|subjects|languages))?}') # noqa cnxarchive.views:extras add_route('content-extras', '/extras/{ident_hash:([^:/@.]+(@[0-9.]*[0-9]+)?)}{separator:(:?)}{page_ident_hash:([^:/@.]+(@[0-9.]*[0-9]+)?)?}') # noqa cnxarchive.views:get_extra add_route('search', '/search') # cnxarchive.views:search add_route('in-book-search', '/search/{ident_hash:([^:/]+)}') # noqa cnxarchive.views:in-book-search add_route('in-book-search-page', '/search/{ident_hash:([^:/]+)}:{page_ident_hash}') # noqa cnxarchive.views:in_book_search_highlighted_results add_route('sitemap-index', '/sitemap_index.xml') # noqa cnxarchive.views:sitemap add_route('sitemap', '/sitemap-{from_id}.xml') # noqa cnxarchive.views:sitemap add_route('robots', '/robots.txt') # noqa cnxarchive.views:robots add_route('legacy-redirect', '/content/{objid}{ignore:(/)?}') # noqa cnxarchive.views:redirect_legacy_content add_route('legacy-redirect-latest', '/content/{objid}/latest{ignore:(/)?}{filename:(.+)?}') # noqa cnxarchive.views:redirect_legacy_content add_route('legacy-redirect-w-version', '/content/{objid}/{objver}{ignore:(/)?}{filename:(.+)?}') # noqa cnxarchive.views:redirect_legacy_content add_route('recent', '/feeds/recent.rss') # cnxarchive.views:recent add_route('oai', '/feeds/oai') # cnxarchive.views:oai add_route('xpath', '/xpath.html') # cnxarchive.views.xpath add_route('xpath-json', '/xpath.json')
[ "def", "declare_api_routes", "(", "config", ")", ":", "# The pregenerator makes sure we can generate a path using", "# request.route_path even if we don't have all the variables.", "#", "# For example, instead of having to do this:", "# request.route_path('resource', hash=hash, ignore='')", "# it's possible to do this:", "# request.route_path('resource', hash=hash)", "def", "pregenerator", "(", "path", ")", ":", "# find all the variables in the path", "variables", "=", "[", "(", "s", ".", "split", "(", "':'", ")", "[", "0", "]", ",", "''", ")", "for", "s", "in", "path", ".", "split", "(", "'{'", ")", "[", "1", ":", "]", "]", "def", "wrapper", "(", "request", ",", "elements", ",", "kwargs", ")", ":", "modified_kwargs", "=", "dict", "(", "variables", ")", "modified_kwargs", ".", "update", "(", "kwargs", ")", "return", "elements", ",", "modified_kwargs", "return", "wrapper", "def", "add_route", "(", "name", ",", "path", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "return", "config", ".", "add_route", "(", "name", ",", "path", ",", "*", "args", ",", "pregenerator", "=", "pregenerator", "(", "path", ")", ",", "*", "*", "kwargs", ")", "add_route", "(", "'content'", ",", "'/contents/{ident_hash:([^:/@.]+(@[0-9.]*[0-9]+)?)}{separator:(:?)}{page_ident_hash:([^:/@.]+(@[0-9.]*[0-9]+)?)?}{ignore:(/[^/.]*?/?)?}{ext:([.](html|json))?}'", ")", "# noqa cnxarchive.views:get_content", "add_route", "(", "'resource'", ",", "'/resources/{hash}{ignore:(/.*)?}'", ")", "# noqa cnxarchive.views:get_resource", "add_route", "(", "'export'", ",", "'/exports/{ident_hash}.{type}{ignore:(/.*)?}'", ")", "# noqa cnxarchive.views:get_export", "add_route", "(", "'extras'", ",", "'/extras{key:(/(featured|messages|licenses|subjects|languages))?}'", ")", "# noqa cnxarchive.views:extras", "add_route", "(", "'content-extras'", ",", "'/extras/{ident_hash:([^:/@.]+(@[0-9.]*[0-9]+)?)}{separator:(:?)}{page_ident_hash:([^:/@.]+(@[0-9.]*[0-9]+)?)?}'", ")", "# noqa cnxarchive.views:get_extra", "add_route", "(", "'search'", ",", "'/search'", ")", "# cnxarchive.views:search", "add_route", "(", "'in-book-search'", ",", "'/search/{ident_hash:([^:/]+)}'", ")", "# noqa cnxarchive.views:in-book-search", "add_route", "(", "'in-book-search-page'", ",", "'/search/{ident_hash:([^:/]+)}:{page_ident_hash}'", ")", "# noqa cnxarchive.views:in_book_search_highlighted_results", "add_route", "(", "'sitemap-index'", ",", "'/sitemap_index.xml'", ")", "# noqa cnxarchive.views:sitemap", "add_route", "(", "'sitemap'", ",", "'/sitemap-{from_id}.xml'", ")", "# noqa cnxarchive.views:sitemap", "add_route", "(", "'robots'", ",", "'/robots.txt'", ")", "# noqa cnxarchive.views:robots", "add_route", "(", "'legacy-redirect'", ",", "'/content/{objid}{ignore:(/)?}'", ")", "# noqa cnxarchive.views:redirect_legacy_content", "add_route", "(", "'legacy-redirect-latest'", ",", "'/content/{objid}/latest{ignore:(/)?}{filename:(.+)?}'", ")", "# noqa cnxarchive.views:redirect_legacy_content", "add_route", "(", "'legacy-redirect-w-version'", ",", "'/content/{objid}/{objver}{ignore:(/)?}{filename:(.+)?}'", ")", "# noqa cnxarchive.views:redirect_legacy_content", "add_route", "(", "'recent'", ",", "'/feeds/recent.rss'", ")", "# cnxarchive.views:recent", "add_route", "(", "'oai'", ",", "'/feeds/oai'", ")", "# cnxarchive.views:oai", "add_route", "(", "'xpath'", ",", "'/xpath.html'", ")", "# cnxarchive.views.xpath", "add_route", "(", "'xpath-json'", ",", "'/xpath.json'", ")" ]
Declare routes, with a custom pregenerator.
[ "Declare", "routes", "with", "a", "custom", "pregenerator", "." ]
train
https://github.com/openstax/cnx-archive/blob/d31d34aa8bbc8a9fde6cd4227a0df92726e8daf4/cnxarchive/__init__.py#L42-L82
openstax/cnx-archive
cnxarchive/__init__.py
declare_type_info
def declare_type_info(config): """Lookup type info from app configuration.""" settings = config.registry.settings settings['_type_info'] = [] for line in settings['exports-allowable-types'].splitlines(): if not line.strip(): continue type_name, type_info = line.strip().split(':', 1) type_info = type_info.split(',', 3) settings['_type_info'].append((type_name, { 'type_name': type_name, 'file_extension': type_info[0], 'mimetype': type_info[1], 'user_friendly_name': type_info[2], 'description': type_info[3], }))
python
def declare_type_info(config): """Lookup type info from app configuration.""" settings = config.registry.settings settings['_type_info'] = [] for line in settings['exports-allowable-types'].splitlines(): if not line.strip(): continue type_name, type_info = line.strip().split(':', 1) type_info = type_info.split(',', 3) settings['_type_info'].append((type_name, { 'type_name': type_name, 'file_extension': type_info[0], 'mimetype': type_info[1], 'user_friendly_name': type_info[2], 'description': type_info[3], }))
[ "def", "declare_type_info", "(", "config", ")", ":", "settings", "=", "config", ".", "registry", ".", "settings", "settings", "[", "'_type_info'", "]", "=", "[", "]", "for", "line", "in", "settings", "[", "'exports-allowable-types'", "]", ".", "splitlines", "(", ")", ":", "if", "not", "line", ".", "strip", "(", ")", ":", "continue", "type_name", ",", "type_info", "=", "line", ".", "strip", "(", ")", ".", "split", "(", "':'", ",", "1", ")", "type_info", "=", "type_info", ".", "split", "(", "','", ",", "3", ")", "settings", "[", "'_type_info'", "]", ".", "append", "(", "(", "type_name", ",", "{", "'type_name'", ":", "type_name", ",", "'file_extension'", ":", "type_info", "[", "0", "]", ",", "'mimetype'", ":", "type_info", "[", "1", "]", ",", "'user_friendly_name'", ":", "type_info", "[", "2", "]", ",", "'description'", ":", "type_info", "[", "3", "]", ",", "}", ")", ")" ]
Lookup type info from app configuration.
[ "Lookup", "type", "info", "from", "app", "configuration", "." ]
train
https://github.com/openstax/cnx-archive/blob/d31d34aa8bbc8a9fde6cd4227a0df92726e8daf4/cnxarchive/__init__.py#L85-L100
openstax/cnx-archive
cnxarchive/__init__.py
main
def main(global_config, **settings): """Main WSGI application factory.""" initialize_sentry_integration() config = Configurator(settings=settings) declare_api_routes(config) declare_type_info(config) # allowing the pyramid templates to render rss and xml config.include('pyramid_jinja2') config.add_jinja2_renderer('.rss') config.add_jinja2_renderer('.xml') mandatory_settings = ['exports-directories', 'exports-allowable-types'] for setting in mandatory_settings: if not settings.get(setting, None): raise ValueError('Missing {} config setting.'.format(setting)) config.scan(ignore='.tests') config.include('cnxarchive.events.main') config.add_tween('cnxarchive.tweens.conditional_http_tween_factory') return config.make_wsgi_app()
python
def main(global_config, **settings): """Main WSGI application factory.""" initialize_sentry_integration() config = Configurator(settings=settings) declare_api_routes(config) declare_type_info(config) # allowing the pyramid templates to render rss and xml config.include('pyramid_jinja2') config.add_jinja2_renderer('.rss') config.add_jinja2_renderer('.xml') mandatory_settings = ['exports-directories', 'exports-allowable-types'] for setting in mandatory_settings: if not settings.get(setting, None): raise ValueError('Missing {} config setting.'.format(setting)) config.scan(ignore='.tests') config.include('cnxarchive.events.main') config.add_tween('cnxarchive.tweens.conditional_http_tween_factory') return config.make_wsgi_app()
[ "def", "main", "(", "global_config", ",", "*", "*", "settings", ")", ":", "initialize_sentry_integration", "(", ")", "config", "=", "Configurator", "(", "settings", "=", "settings", ")", "declare_api_routes", "(", "config", ")", "declare_type_info", "(", "config", ")", "# allowing the pyramid templates to render rss and xml", "config", ".", "include", "(", "'pyramid_jinja2'", ")", "config", ".", "add_jinja2_renderer", "(", "'.rss'", ")", "config", ".", "add_jinja2_renderer", "(", "'.xml'", ")", "mandatory_settings", "=", "[", "'exports-directories'", ",", "'exports-allowable-types'", "]", "for", "setting", "in", "mandatory_settings", ":", "if", "not", "settings", ".", "get", "(", "setting", ",", "None", ")", ":", "raise", "ValueError", "(", "'Missing {} config setting.'", ".", "format", "(", "setting", ")", ")", "config", ".", "scan", "(", "ignore", "=", "'.tests'", ")", "config", ".", "include", "(", "'cnxarchive.events.main'", ")", "config", ".", "add_tween", "(", "'cnxarchive.tweens.conditional_http_tween_factory'", ")", "return", "config", ".", "make_wsgi_app", "(", ")" ]
Main WSGI application factory.
[ "Main", "WSGI", "application", "factory", "." ]
train
https://github.com/openstax/cnx-archive/blob/d31d34aa8bbc8a9fde6cd4227a0df92726e8daf4/cnxarchive/__init__.py#L137-L159
lucasmaystre/choix
choix/lsr.py
_init_lsr
def _init_lsr(n_items, alpha, initial_params): """Initialize the LSR Markov chain and the weights.""" if initial_params is None: weights = np.ones(n_items) else: weights = exp_transform(initial_params) chain = alpha * np.ones((n_items, n_items), dtype=float) return weights, chain
python
def _init_lsr(n_items, alpha, initial_params): """Initialize the LSR Markov chain and the weights.""" if initial_params is None: weights = np.ones(n_items) else: weights = exp_transform(initial_params) chain = alpha * np.ones((n_items, n_items), dtype=float) return weights, chain
[ "def", "_init_lsr", "(", "n_items", ",", "alpha", ",", "initial_params", ")", ":", "if", "initial_params", "is", "None", ":", "weights", "=", "np", ".", "ones", "(", "n_items", ")", "else", ":", "weights", "=", "exp_transform", "(", "initial_params", ")", "chain", "=", "alpha", "*", "np", ".", "ones", "(", "(", "n_items", ",", "n_items", ")", ",", "dtype", "=", "float", ")", "return", "weights", ",", "chain" ]
Initialize the LSR Markov chain and the weights.
[ "Initialize", "the", "LSR", "Markov", "chain", "and", "the", "weights", "." ]
train
https://github.com/lucasmaystre/choix/blob/05a57a10bb707338113a9d91601ca528ead7a881/choix/lsr.py#L10-L17
lucasmaystre/choix
choix/lsr.py
_ilsr
def _ilsr(fun, params, max_iter, tol): """Iteratively refine LSR estimates until convergence. Raises ------ RuntimeError If the algorithm does not converge after ``max_iter`` iterations. """ converged = NormOfDifferenceTest(tol, order=1) for _ in range(max_iter): params = fun(initial_params=params) if converged(params): return params raise RuntimeError("Did not converge after {} iterations".format(max_iter))
python
def _ilsr(fun, params, max_iter, tol): """Iteratively refine LSR estimates until convergence. Raises ------ RuntimeError If the algorithm does not converge after ``max_iter`` iterations. """ converged = NormOfDifferenceTest(tol, order=1) for _ in range(max_iter): params = fun(initial_params=params) if converged(params): return params raise RuntimeError("Did not converge after {} iterations".format(max_iter))
[ "def", "_ilsr", "(", "fun", ",", "params", ",", "max_iter", ",", "tol", ")", ":", "converged", "=", "NormOfDifferenceTest", "(", "tol", ",", "order", "=", "1", ")", "for", "_", "in", "range", "(", "max_iter", ")", ":", "params", "=", "fun", "(", "initial_params", "=", "params", ")", "if", "converged", "(", "params", ")", ":", "return", "params", "raise", "RuntimeError", "(", "\"Did not converge after {} iterations\"", ".", "format", "(", "max_iter", ")", ")" ]
Iteratively refine LSR estimates until convergence. Raises ------ RuntimeError If the algorithm does not converge after ``max_iter`` iterations.
[ "Iteratively", "refine", "LSR", "estimates", "until", "convergence", "." ]
train
https://github.com/lucasmaystre/choix/blob/05a57a10bb707338113a9d91601ca528ead7a881/choix/lsr.py#L20-L33
lucasmaystre/choix
choix/lsr.py
lsr_pairwise
def lsr_pairwise(n_items, data, alpha=0.0, initial_params=None): """Compute the LSR estimate of model parameters. This function implements the Luce Spectral Ranking inference algorithm [MG15]_ for pairwise-comparison data (see :ref:`data-pairwise`). The argument ``initial_params`` can be used to iteratively refine an existing parameter estimate (see the implementation of :func:`~choix.ilsr_pairwise` for an idea on how this works). If it is set to `None` (the default), the all-ones vector is used. The transition rates of the LSR Markov chain are initialized with ``alpha``. When ``alpha > 0``, this corresponds to a form of regularization (see :ref:`regularization` for details). Parameters ---------- n_items : int Number of distinct items. data : list of lists Pairwise-comparison data. alpha : float, optional Regularization parameter. initial_params : array_like, optional Parameters used to build the transition rates of the LSR Markov chain. Returns ------- params : numpy.ndarray An estimate of model parameters. """ weights, chain = _init_lsr(n_items, alpha, initial_params) for winner, loser in data: chain[loser, winner] += 1 / (weights[winner] + weights[loser]) chain -= np.diag(chain.sum(axis=1)) return log_transform(statdist(chain))
python
def lsr_pairwise(n_items, data, alpha=0.0, initial_params=None): """Compute the LSR estimate of model parameters. This function implements the Luce Spectral Ranking inference algorithm [MG15]_ for pairwise-comparison data (see :ref:`data-pairwise`). The argument ``initial_params`` can be used to iteratively refine an existing parameter estimate (see the implementation of :func:`~choix.ilsr_pairwise` for an idea on how this works). If it is set to `None` (the default), the all-ones vector is used. The transition rates of the LSR Markov chain are initialized with ``alpha``. When ``alpha > 0``, this corresponds to a form of regularization (see :ref:`regularization` for details). Parameters ---------- n_items : int Number of distinct items. data : list of lists Pairwise-comparison data. alpha : float, optional Regularization parameter. initial_params : array_like, optional Parameters used to build the transition rates of the LSR Markov chain. Returns ------- params : numpy.ndarray An estimate of model parameters. """ weights, chain = _init_lsr(n_items, alpha, initial_params) for winner, loser in data: chain[loser, winner] += 1 / (weights[winner] + weights[loser]) chain -= np.diag(chain.sum(axis=1)) return log_transform(statdist(chain))
[ "def", "lsr_pairwise", "(", "n_items", ",", "data", ",", "alpha", "=", "0.0", ",", "initial_params", "=", "None", ")", ":", "weights", ",", "chain", "=", "_init_lsr", "(", "n_items", ",", "alpha", ",", "initial_params", ")", "for", "winner", ",", "loser", "in", "data", ":", "chain", "[", "loser", ",", "winner", "]", "+=", "1", "/", "(", "weights", "[", "winner", "]", "+", "weights", "[", "loser", "]", ")", "chain", "-=", "np", ".", "diag", "(", "chain", ".", "sum", "(", "axis", "=", "1", ")", ")", "return", "log_transform", "(", "statdist", "(", "chain", ")", ")" ]
Compute the LSR estimate of model parameters. This function implements the Luce Spectral Ranking inference algorithm [MG15]_ for pairwise-comparison data (see :ref:`data-pairwise`). The argument ``initial_params`` can be used to iteratively refine an existing parameter estimate (see the implementation of :func:`~choix.ilsr_pairwise` for an idea on how this works). If it is set to `None` (the default), the all-ones vector is used. The transition rates of the LSR Markov chain are initialized with ``alpha``. When ``alpha > 0``, this corresponds to a form of regularization (see :ref:`regularization` for details). Parameters ---------- n_items : int Number of distinct items. data : list of lists Pairwise-comparison data. alpha : float, optional Regularization parameter. initial_params : array_like, optional Parameters used to build the transition rates of the LSR Markov chain. Returns ------- params : numpy.ndarray An estimate of model parameters.
[ "Compute", "the", "LSR", "estimate", "of", "model", "parameters", "." ]
train
https://github.com/lucasmaystre/choix/blob/05a57a10bb707338113a9d91601ca528ead7a881/choix/lsr.py#L36-L71
lucasmaystre/choix
choix/lsr.py
ilsr_pairwise
def ilsr_pairwise( n_items, data, alpha=0.0, initial_params=None, max_iter=100, tol=1e-8): """Compute the ML estimate of model parameters using I-LSR. This function computes the maximum-likelihood (ML) estimate of model parameters given pairwise-comparison data (see :ref:`data-pairwise`), using the iterative Luce Spectral Ranking algorithm [MG15]_. The transition rates of the LSR Markov chain are initialized with ``alpha``. When ``alpha > 0``, this corresponds to a form of regularization (see :ref:`regularization` for details). Parameters ---------- n_items : int Number of distinct items. data : list of lists Pairwise-comparison data. alpha : float, optional Regularization parameter. initial_params : array_like, optional Parameters used to initialize the iterative procedure. max_iter : int, optional Maximum number of iterations allowed. tol : float, optional Maximum L1-norm of the difference between successive iterates to declare convergence. Returns ------- params : numpy.ndarray The ML estimate of model parameters. """ fun = functools.partial( lsr_pairwise, n_items=n_items, data=data, alpha=alpha) return _ilsr(fun, initial_params, max_iter, tol)
python
def ilsr_pairwise( n_items, data, alpha=0.0, initial_params=None, max_iter=100, tol=1e-8): """Compute the ML estimate of model parameters using I-LSR. This function computes the maximum-likelihood (ML) estimate of model parameters given pairwise-comparison data (see :ref:`data-pairwise`), using the iterative Luce Spectral Ranking algorithm [MG15]_. The transition rates of the LSR Markov chain are initialized with ``alpha``. When ``alpha > 0``, this corresponds to a form of regularization (see :ref:`regularization` for details). Parameters ---------- n_items : int Number of distinct items. data : list of lists Pairwise-comparison data. alpha : float, optional Regularization parameter. initial_params : array_like, optional Parameters used to initialize the iterative procedure. max_iter : int, optional Maximum number of iterations allowed. tol : float, optional Maximum L1-norm of the difference between successive iterates to declare convergence. Returns ------- params : numpy.ndarray The ML estimate of model parameters. """ fun = functools.partial( lsr_pairwise, n_items=n_items, data=data, alpha=alpha) return _ilsr(fun, initial_params, max_iter, tol)
[ "def", "ilsr_pairwise", "(", "n_items", ",", "data", ",", "alpha", "=", "0.0", ",", "initial_params", "=", "None", ",", "max_iter", "=", "100", ",", "tol", "=", "1e-8", ")", ":", "fun", "=", "functools", ".", "partial", "(", "lsr_pairwise", ",", "n_items", "=", "n_items", ",", "data", "=", "data", ",", "alpha", "=", "alpha", ")", "return", "_ilsr", "(", "fun", ",", "initial_params", ",", "max_iter", ",", "tol", ")" ]
Compute the ML estimate of model parameters using I-LSR. This function computes the maximum-likelihood (ML) estimate of model parameters given pairwise-comparison data (see :ref:`data-pairwise`), using the iterative Luce Spectral Ranking algorithm [MG15]_. The transition rates of the LSR Markov chain are initialized with ``alpha``. When ``alpha > 0``, this corresponds to a form of regularization (see :ref:`regularization` for details). Parameters ---------- n_items : int Number of distinct items. data : list of lists Pairwise-comparison data. alpha : float, optional Regularization parameter. initial_params : array_like, optional Parameters used to initialize the iterative procedure. max_iter : int, optional Maximum number of iterations allowed. tol : float, optional Maximum L1-norm of the difference between successive iterates to declare convergence. Returns ------- params : numpy.ndarray The ML estimate of model parameters.
[ "Compute", "the", "ML", "estimate", "of", "model", "parameters", "using", "I", "-", "LSR", "." ]
train
https://github.com/lucasmaystre/choix/blob/05a57a10bb707338113a9d91601ca528ead7a881/choix/lsr.py#L74-L109
lucasmaystre/choix
choix/lsr.py
lsr_pairwise_dense
def lsr_pairwise_dense(comp_mat, alpha=0.0, initial_params=None): """Compute the LSR estimate of model parameters given dense data. This function implements the Luce Spectral Ranking inference algorithm [MG15]_ for dense pairwise-comparison data. The data is described by a pairwise-comparison matrix ``comp_mat`` such that ``comp_mat[i,j]`` contains the number of times that item ``i`` wins against item ``j``. In comparison to :func:`~choix.lsr_pairwise`, this function is particularly efficient for dense pairwise-comparison datasets (i.e., containing many comparisons for a large fraction of item pairs). The argument ``initial_params`` can be used to iteratively refine an existing parameter estimate (see the implementation of :func:`~choix.ilsr_pairwise` for an idea on how this works). If it is set to `None` (the default), the all-ones vector is used. The transition rates of the LSR Markov chain are initialized with ``alpha``. When ``alpha > 0``, this corresponds to a form of regularization (see :ref:`regularization` for details). Parameters ---------- comp_mat : np.array 2D square matrix describing the pairwise-comparison outcomes. alpha : float, optional Regularization parameter. initial_params : array_like, optional Parameters used to build the transition rates of the LSR Markov chain. Returns ------- params : np.array An estimate of model parameters. """ n_items = comp_mat.shape[0] ws, chain = _init_lsr(n_items, alpha, initial_params) denom = np.tile(ws, (n_items, 1)) chain += comp_mat.T / (denom + denom.T) chain -= np.diag(chain.sum(axis=1)) return log_transform(statdist(chain))
python
def lsr_pairwise_dense(comp_mat, alpha=0.0, initial_params=None): """Compute the LSR estimate of model parameters given dense data. This function implements the Luce Spectral Ranking inference algorithm [MG15]_ for dense pairwise-comparison data. The data is described by a pairwise-comparison matrix ``comp_mat`` such that ``comp_mat[i,j]`` contains the number of times that item ``i`` wins against item ``j``. In comparison to :func:`~choix.lsr_pairwise`, this function is particularly efficient for dense pairwise-comparison datasets (i.e., containing many comparisons for a large fraction of item pairs). The argument ``initial_params`` can be used to iteratively refine an existing parameter estimate (see the implementation of :func:`~choix.ilsr_pairwise` for an idea on how this works). If it is set to `None` (the default), the all-ones vector is used. The transition rates of the LSR Markov chain are initialized with ``alpha``. When ``alpha > 0``, this corresponds to a form of regularization (see :ref:`regularization` for details). Parameters ---------- comp_mat : np.array 2D square matrix describing the pairwise-comparison outcomes. alpha : float, optional Regularization parameter. initial_params : array_like, optional Parameters used to build the transition rates of the LSR Markov chain. Returns ------- params : np.array An estimate of model parameters. """ n_items = comp_mat.shape[0] ws, chain = _init_lsr(n_items, alpha, initial_params) denom = np.tile(ws, (n_items, 1)) chain += comp_mat.T / (denom + denom.T) chain -= np.diag(chain.sum(axis=1)) return log_transform(statdist(chain))
[ "def", "lsr_pairwise_dense", "(", "comp_mat", ",", "alpha", "=", "0.0", ",", "initial_params", "=", "None", ")", ":", "n_items", "=", "comp_mat", ".", "shape", "[", "0", "]", "ws", ",", "chain", "=", "_init_lsr", "(", "n_items", ",", "alpha", ",", "initial_params", ")", "denom", "=", "np", ".", "tile", "(", "ws", ",", "(", "n_items", ",", "1", ")", ")", "chain", "+=", "comp_mat", ".", "T", "/", "(", "denom", "+", "denom", ".", "T", ")", "chain", "-=", "np", ".", "diag", "(", "chain", ".", "sum", "(", "axis", "=", "1", ")", ")", "return", "log_transform", "(", "statdist", "(", "chain", ")", ")" ]
Compute the LSR estimate of model parameters given dense data. This function implements the Luce Spectral Ranking inference algorithm [MG15]_ for dense pairwise-comparison data. The data is described by a pairwise-comparison matrix ``comp_mat`` such that ``comp_mat[i,j]`` contains the number of times that item ``i`` wins against item ``j``. In comparison to :func:`~choix.lsr_pairwise`, this function is particularly efficient for dense pairwise-comparison datasets (i.e., containing many comparisons for a large fraction of item pairs). The argument ``initial_params`` can be used to iteratively refine an existing parameter estimate (see the implementation of :func:`~choix.ilsr_pairwise` for an idea on how this works). If it is set to `None` (the default), the all-ones vector is used. The transition rates of the LSR Markov chain are initialized with ``alpha``. When ``alpha > 0``, this corresponds to a form of regularization (see :ref:`regularization` for details). Parameters ---------- comp_mat : np.array 2D square matrix describing the pairwise-comparison outcomes. alpha : float, optional Regularization parameter. initial_params : array_like, optional Parameters used to build the transition rates of the LSR Markov chain. Returns ------- params : np.array An estimate of model parameters.
[ "Compute", "the", "LSR", "estimate", "of", "model", "parameters", "given", "dense", "data", "." ]
train
https://github.com/lucasmaystre/choix/blob/05a57a10bb707338113a9d91601ca528ead7a881/choix/lsr.py#L112-L154
lucasmaystre/choix
choix/lsr.py
ilsr_pairwise_dense
def ilsr_pairwise_dense( comp_mat, alpha=0.0, initial_params=None, max_iter=100, tol=1e-8): """Compute the ML estimate of model parameters given dense data. This function computes the maximum-likelihood (ML) estimate of model parameters given dense pairwise-comparison data. The data is described by a pairwise-comparison matrix ``comp_mat`` such that ``comp_mat[i,j]`` contains the number of times that item ``i`` wins against item ``j``. In comparison to :func:`~choix.ilsr_pairwise`, this function is particularly efficient for dense pairwise-comparison datasets (i.e., containing many comparisons for a large fraction of item pairs). The transition rates of the LSR Markov chain are initialized with ``alpha``. When ``alpha > 0``, this corresponds to a form of regularization (see :ref:`regularization` for details). Parameters ---------- comp_mat : np.array 2D square matrix describing the pairwise-comparison outcomes. alpha : float, optional Regularization parameter. initial_params : array_like, optional Parameters used to initialize the iterative procedure. max_iter : int, optional Maximum number of iterations allowed. tol : float, optional Maximum L1-norm of the difference between successive iterates to declare convergence. Returns ------- params : numpy.ndarray The ML estimate of model parameters. """ fun = functools.partial( lsr_pairwise_dense, comp_mat=comp_mat, alpha=alpha) return _ilsr(fun, initial_params, max_iter, tol)
python
def ilsr_pairwise_dense( comp_mat, alpha=0.0, initial_params=None, max_iter=100, tol=1e-8): """Compute the ML estimate of model parameters given dense data. This function computes the maximum-likelihood (ML) estimate of model parameters given dense pairwise-comparison data. The data is described by a pairwise-comparison matrix ``comp_mat`` such that ``comp_mat[i,j]`` contains the number of times that item ``i`` wins against item ``j``. In comparison to :func:`~choix.ilsr_pairwise`, this function is particularly efficient for dense pairwise-comparison datasets (i.e., containing many comparisons for a large fraction of item pairs). The transition rates of the LSR Markov chain are initialized with ``alpha``. When ``alpha > 0``, this corresponds to a form of regularization (see :ref:`regularization` for details). Parameters ---------- comp_mat : np.array 2D square matrix describing the pairwise-comparison outcomes. alpha : float, optional Regularization parameter. initial_params : array_like, optional Parameters used to initialize the iterative procedure. max_iter : int, optional Maximum number of iterations allowed. tol : float, optional Maximum L1-norm of the difference between successive iterates to declare convergence. Returns ------- params : numpy.ndarray The ML estimate of model parameters. """ fun = functools.partial( lsr_pairwise_dense, comp_mat=comp_mat, alpha=alpha) return _ilsr(fun, initial_params, max_iter, tol)
[ "def", "ilsr_pairwise_dense", "(", "comp_mat", ",", "alpha", "=", "0.0", ",", "initial_params", "=", "None", ",", "max_iter", "=", "100", ",", "tol", "=", "1e-8", ")", ":", "fun", "=", "functools", ".", "partial", "(", "lsr_pairwise_dense", ",", "comp_mat", "=", "comp_mat", ",", "alpha", "=", "alpha", ")", "return", "_ilsr", "(", "fun", ",", "initial_params", ",", "max_iter", ",", "tol", ")" ]
Compute the ML estimate of model parameters given dense data. This function computes the maximum-likelihood (ML) estimate of model parameters given dense pairwise-comparison data. The data is described by a pairwise-comparison matrix ``comp_mat`` such that ``comp_mat[i,j]`` contains the number of times that item ``i`` wins against item ``j``. In comparison to :func:`~choix.ilsr_pairwise`, this function is particularly efficient for dense pairwise-comparison datasets (i.e., containing many comparisons for a large fraction of item pairs). The transition rates of the LSR Markov chain are initialized with ``alpha``. When ``alpha > 0``, this corresponds to a form of regularization (see :ref:`regularization` for details). Parameters ---------- comp_mat : np.array 2D square matrix describing the pairwise-comparison outcomes. alpha : float, optional Regularization parameter. initial_params : array_like, optional Parameters used to initialize the iterative procedure. max_iter : int, optional Maximum number of iterations allowed. tol : float, optional Maximum L1-norm of the difference between successive iterates to declare convergence. Returns ------- params : numpy.ndarray The ML estimate of model parameters.
[ "Compute", "the", "ML", "estimate", "of", "model", "parameters", "given", "dense", "data", "." ]
train
https://github.com/lucasmaystre/choix/blob/05a57a10bb707338113a9d91601ca528ead7a881/choix/lsr.py#L157-L197
lucasmaystre/choix
choix/lsr.py
rank_centrality
def rank_centrality(n_items, data, alpha=0.0): """Compute the Rank Centrality estimate of model parameters. This function implements Negahban et al.'s Rank Centrality algorithm [NOS12]_. The algorithm is similar to :func:`~choix.ilsr_pairwise`, but considers the *ratio* of wins for each pair (instead of the total count). The transition rates of the Rank Centrality Markov chain are initialized with ``alpha``. When ``alpha > 0``, this corresponds to a form of regularization (see :ref:`regularization` for details). Parameters ---------- n_items : int Number of distinct items. data : list of lists Pairwise-comparison data. alpha : float, optional Regularization parameter. Returns ------- params : numpy.ndarray An estimate of model parameters. """ _, chain = _init_lsr(n_items, alpha, None) for winner, loser in data: chain[loser, winner] += 1.0 # Transform the counts into ratios. idx = chain > 0 # Indices (i,j) of non-zero entries. chain[idx] = chain[idx] / (chain + chain.T)[idx] # Finalize the Markov chain by adding the self-transition rate. chain -= np.diag(chain.sum(axis=1)) return log_transform(statdist(chain))
python
def rank_centrality(n_items, data, alpha=0.0): """Compute the Rank Centrality estimate of model parameters. This function implements Negahban et al.'s Rank Centrality algorithm [NOS12]_. The algorithm is similar to :func:`~choix.ilsr_pairwise`, but considers the *ratio* of wins for each pair (instead of the total count). The transition rates of the Rank Centrality Markov chain are initialized with ``alpha``. When ``alpha > 0``, this corresponds to a form of regularization (see :ref:`regularization` for details). Parameters ---------- n_items : int Number of distinct items. data : list of lists Pairwise-comparison data. alpha : float, optional Regularization parameter. Returns ------- params : numpy.ndarray An estimate of model parameters. """ _, chain = _init_lsr(n_items, alpha, None) for winner, loser in data: chain[loser, winner] += 1.0 # Transform the counts into ratios. idx = chain > 0 # Indices (i,j) of non-zero entries. chain[idx] = chain[idx] / (chain + chain.T)[idx] # Finalize the Markov chain by adding the self-transition rate. chain -= np.diag(chain.sum(axis=1)) return log_transform(statdist(chain))
[ "def", "rank_centrality", "(", "n_items", ",", "data", ",", "alpha", "=", "0.0", ")", ":", "_", ",", "chain", "=", "_init_lsr", "(", "n_items", ",", "alpha", ",", "None", ")", "for", "winner", ",", "loser", "in", "data", ":", "chain", "[", "loser", ",", "winner", "]", "+=", "1.0", "# Transform the counts into ratios.", "idx", "=", "chain", ">", "0", "# Indices (i,j) of non-zero entries.", "chain", "[", "idx", "]", "=", "chain", "[", "idx", "]", "/", "(", "chain", "+", "chain", ".", "T", ")", "[", "idx", "]", "# Finalize the Markov chain by adding the self-transition rate.", "chain", "-=", "np", ".", "diag", "(", "chain", ".", "sum", "(", "axis", "=", "1", ")", ")", "return", "log_transform", "(", "statdist", "(", "chain", ")", ")" ]
Compute the Rank Centrality estimate of model parameters. This function implements Negahban et al.'s Rank Centrality algorithm [NOS12]_. The algorithm is similar to :func:`~choix.ilsr_pairwise`, but considers the *ratio* of wins for each pair (instead of the total count). The transition rates of the Rank Centrality Markov chain are initialized with ``alpha``. When ``alpha > 0``, this corresponds to a form of regularization (see :ref:`regularization` for details). Parameters ---------- n_items : int Number of distinct items. data : list of lists Pairwise-comparison data. alpha : float, optional Regularization parameter. Returns ------- params : numpy.ndarray An estimate of model parameters.
[ "Compute", "the", "Rank", "Centrality", "estimate", "of", "model", "parameters", "." ]
train
https://github.com/lucasmaystre/choix/blob/05a57a10bb707338113a9d91601ca528ead7a881/choix/lsr.py#L200-L233
lucasmaystre/choix
choix/lsr.py
lsr_rankings
def lsr_rankings(n_items, data, alpha=0.0, initial_params=None): """Compute the LSR estimate of model parameters. This function implements the Luce Spectral Ranking inference algorithm [MG15]_ for ranking data (see :ref:`data-rankings`). The argument ``initial_params`` can be used to iteratively refine an existing parameter estimate (see the implementation of :func:`~choix.ilsr_rankings` for an idea on how this works). If it is set to `None` (the default), the all-ones vector is used. The transition rates of the LSR Markov chain are initialized with ``alpha``. When ``alpha > 0``, this corresponds to a form of regularization (see :ref:`regularization` for details). Parameters ---------- n_items : int Number of distinct items. data : list of lists Ranking data. alpha : float, optional Regularization parameter. initial_params : array_like, optional Parameters used to build the transition rates of the LSR Markov chain. Returns ------- params : numpy.ndarray An estimate of model parameters. """ weights, chain = _init_lsr(n_items, alpha, initial_params) for ranking in data: sum_ = weights.take(ranking).sum() for i, winner in enumerate(ranking[:-1]): val = 1.0 / sum_ for loser in ranking[i+1:]: chain[loser, winner] += val sum_ -= weights[winner] chain -= np.diag(chain.sum(axis=1)) return log_transform(statdist(chain))
python
def lsr_rankings(n_items, data, alpha=0.0, initial_params=None): """Compute the LSR estimate of model parameters. This function implements the Luce Spectral Ranking inference algorithm [MG15]_ for ranking data (see :ref:`data-rankings`). The argument ``initial_params`` can be used to iteratively refine an existing parameter estimate (see the implementation of :func:`~choix.ilsr_rankings` for an idea on how this works). If it is set to `None` (the default), the all-ones vector is used. The transition rates of the LSR Markov chain are initialized with ``alpha``. When ``alpha > 0``, this corresponds to a form of regularization (see :ref:`regularization` for details). Parameters ---------- n_items : int Number of distinct items. data : list of lists Ranking data. alpha : float, optional Regularization parameter. initial_params : array_like, optional Parameters used to build the transition rates of the LSR Markov chain. Returns ------- params : numpy.ndarray An estimate of model parameters. """ weights, chain = _init_lsr(n_items, alpha, initial_params) for ranking in data: sum_ = weights.take(ranking).sum() for i, winner in enumerate(ranking[:-1]): val = 1.0 / sum_ for loser in ranking[i+1:]: chain[loser, winner] += val sum_ -= weights[winner] chain -= np.diag(chain.sum(axis=1)) return log_transform(statdist(chain))
[ "def", "lsr_rankings", "(", "n_items", ",", "data", ",", "alpha", "=", "0.0", ",", "initial_params", "=", "None", ")", ":", "weights", ",", "chain", "=", "_init_lsr", "(", "n_items", ",", "alpha", ",", "initial_params", ")", "for", "ranking", "in", "data", ":", "sum_", "=", "weights", ".", "take", "(", "ranking", ")", ".", "sum", "(", ")", "for", "i", ",", "winner", "in", "enumerate", "(", "ranking", "[", ":", "-", "1", "]", ")", ":", "val", "=", "1.0", "/", "sum_", "for", "loser", "in", "ranking", "[", "i", "+", "1", ":", "]", ":", "chain", "[", "loser", ",", "winner", "]", "+=", "val", "sum_", "-=", "weights", "[", "winner", "]", "chain", "-=", "np", ".", "diag", "(", "chain", ".", "sum", "(", "axis", "=", "1", ")", ")", "return", "log_transform", "(", "statdist", "(", "chain", ")", ")" ]
Compute the LSR estimate of model parameters. This function implements the Luce Spectral Ranking inference algorithm [MG15]_ for ranking data (see :ref:`data-rankings`). The argument ``initial_params`` can be used to iteratively refine an existing parameter estimate (see the implementation of :func:`~choix.ilsr_rankings` for an idea on how this works). If it is set to `None` (the default), the all-ones vector is used. The transition rates of the LSR Markov chain are initialized with ``alpha``. When ``alpha > 0``, this corresponds to a form of regularization (see :ref:`regularization` for details). Parameters ---------- n_items : int Number of distinct items. data : list of lists Ranking data. alpha : float, optional Regularization parameter. initial_params : array_like, optional Parameters used to build the transition rates of the LSR Markov chain. Returns ------- params : numpy.ndarray An estimate of model parameters.
[ "Compute", "the", "LSR", "estimate", "of", "model", "parameters", "." ]
train
https://github.com/lucasmaystre/choix/blob/05a57a10bb707338113a9d91601ca528ead7a881/choix/lsr.py#L236-L276
lucasmaystre/choix
choix/lsr.py
ilsr_rankings
def ilsr_rankings( n_items, data, alpha=0.0, initial_params=None, max_iter=100, tol=1e-8): """Compute the ML estimate of model parameters using I-LSR. This function computes the maximum-likelihood (ML) estimate of model parameters given ranking data (see :ref:`data-rankings`), using the iterative Luce Spectral Ranking algorithm [MG15]_. The transition rates of the LSR Markov chain are initialized with ``alpha``. When ``alpha > 0``, this corresponds to a form of regularization (see :ref:`regularization` for details). Parameters ---------- n_items : int Number of distinct items. data : list of lists Ranking data. alpha : float, optional Regularization parameter. initial_params : array_like, optional Parameters used to initialize the iterative procedure. max_iter : int, optional Maximum number of iterations allowed. tol : float, optional Maximum L1-norm of the difference between successive iterates to declare convergence. Returns ------- params : numpy.ndarray The ML estimate of model parameters. """ fun = functools.partial( lsr_rankings, n_items=n_items, data=data, alpha=alpha) return _ilsr(fun, initial_params, max_iter, tol)
python
def ilsr_rankings( n_items, data, alpha=0.0, initial_params=None, max_iter=100, tol=1e-8): """Compute the ML estimate of model parameters using I-LSR. This function computes the maximum-likelihood (ML) estimate of model parameters given ranking data (see :ref:`data-rankings`), using the iterative Luce Spectral Ranking algorithm [MG15]_. The transition rates of the LSR Markov chain are initialized with ``alpha``. When ``alpha > 0``, this corresponds to a form of regularization (see :ref:`regularization` for details). Parameters ---------- n_items : int Number of distinct items. data : list of lists Ranking data. alpha : float, optional Regularization parameter. initial_params : array_like, optional Parameters used to initialize the iterative procedure. max_iter : int, optional Maximum number of iterations allowed. tol : float, optional Maximum L1-norm of the difference between successive iterates to declare convergence. Returns ------- params : numpy.ndarray The ML estimate of model parameters. """ fun = functools.partial( lsr_rankings, n_items=n_items, data=data, alpha=alpha) return _ilsr(fun, initial_params, max_iter, tol)
[ "def", "ilsr_rankings", "(", "n_items", ",", "data", ",", "alpha", "=", "0.0", ",", "initial_params", "=", "None", ",", "max_iter", "=", "100", ",", "tol", "=", "1e-8", ")", ":", "fun", "=", "functools", ".", "partial", "(", "lsr_rankings", ",", "n_items", "=", "n_items", ",", "data", "=", "data", ",", "alpha", "=", "alpha", ")", "return", "_ilsr", "(", "fun", ",", "initial_params", ",", "max_iter", ",", "tol", ")" ]
Compute the ML estimate of model parameters using I-LSR. This function computes the maximum-likelihood (ML) estimate of model parameters given ranking data (see :ref:`data-rankings`), using the iterative Luce Spectral Ranking algorithm [MG15]_. The transition rates of the LSR Markov chain are initialized with ``alpha``. When ``alpha > 0``, this corresponds to a form of regularization (see :ref:`regularization` for details). Parameters ---------- n_items : int Number of distinct items. data : list of lists Ranking data. alpha : float, optional Regularization parameter. initial_params : array_like, optional Parameters used to initialize the iterative procedure. max_iter : int, optional Maximum number of iterations allowed. tol : float, optional Maximum L1-norm of the difference between successive iterates to declare convergence. Returns ------- params : numpy.ndarray The ML estimate of model parameters.
[ "Compute", "the", "ML", "estimate", "of", "model", "parameters", "using", "I", "-", "LSR", "." ]
train
https://github.com/lucasmaystre/choix/blob/05a57a10bb707338113a9d91601ca528ead7a881/choix/lsr.py#L279-L314
lucasmaystre/choix
choix/lsr.py
lsr_top1
def lsr_top1(n_items, data, alpha=0.0, initial_params=None): """Compute the LSR estimate of model parameters. This function implements the Luce Spectral Ranking inference algorithm [MG15]_ for top-1 data (see :ref:`data-top1`). The argument ``initial_params`` can be used to iteratively refine an existing parameter estimate (see the implementation of :func:`~choix.ilsr_top1` for an idea on how this works). If it is set to `None` (the default), the all-ones vector is used. The transition rates of the LSR Markov chain are initialized with ``alpha``. When ``alpha > 0``, this corresponds to a form of regularization (see :ref:`regularization` for details). Parameters ---------- n_items : int Number of distinct items. data : list of lists Top-1 data. alpha : float Regularization parameter. initial_params : array_like Parameters used to build the transition rates of the LSR Markov chain. Returns ------- params : numpy.ndarray An estimate of model parameters. """ weights, chain = _init_lsr(n_items, alpha, initial_params) for winner, losers in data: val = 1 / (weights.take(losers).sum() + weights[winner]) for loser in losers: chain[loser, winner] += val chain -= np.diag(chain.sum(axis=1)) return log_transform(statdist(chain))
python
def lsr_top1(n_items, data, alpha=0.0, initial_params=None): """Compute the LSR estimate of model parameters. This function implements the Luce Spectral Ranking inference algorithm [MG15]_ for top-1 data (see :ref:`data-top1`). The argument ``initial_params`` can be used to iteratively refine an existing parameter estimate (see the implementation of :func:`~choix.ilsr_top1` for an idea on how this works). If it is set to `None` (the default), the all-ones vector is used. The transition rates of the LSR Markov chain are initialized with ``alpha``. When ``alpha > 0``, this corresponds to a form of regularization (see :ref:`regularization` for details). Parameters ---------- n_items : int Number of distinct items. data : list of lists Top-1 data. alpha : float Regularization parameter. initial_params : array_like Parameters used to build the transition rates of the LSR Markov chain. Returns ------- params : numpy.ndarray An estimate of model parameters. """ weights, chain = _init_lsr(n_items, alpha, initial_params) for winner, losers in data: val = 1 / (weights.take(losers).sum() + weights[winner]) for loser in losers: chain[loser, winner] += val chain -= np.diag(chain.sum(axis=1)) return log_transform(statdist(chain))
[ "def", "lsr_top1", "(", "n_items", ",", "data", ",", "alpha", "=", "0.0", ",", "initial_params", "=", "None", ")", ":", "weights", ",", "chain", "=", "_init_lsr", "(", "n_items", ",", "alpha", ",", "initial_params", ")", "for", "winner", ",", "losers", "in", "data", ":", "val", "=", "1", "/", "(", "weights", ".", "take", "(", "losers", ")", ".", "sum", "(", ")", "+", "weights", "[", "winner", "]", ")", "for", "loser", "in", "losers", ":", "chain", "[", "loser", ",", "winner", "]", "+=", "val", "chain", "-=", "np", ".", "diag", "(", "chain", ".", "sum", "(", "axis", "=", "1", ")", ")", "return", "log_transform", "(", "statdist", "(", "chain", ")", ")" ]
Compute the LSR estimate of model parameters. This function implements the Luce Spectral Ranking inference algorithm [MG15]_ for top-1 data (see :ref:`data-top1`). The argument ``initial_params`` can be used to iteratively refine an existing parameter estimate (see the implementation of :func:`~choix.ilsr_top1` for an idea on how this works). If it is set to `None` (the default), the all-ones vector is used. The transition rates of the LSR Markov chain are initialized with ``alpha``. When ``alpha > 0``, this corresponds to a form of regularization (see :ref:`regularization` for details). Parameters ---------- n_items : int Number of distinct items. data : list of lists Top-1 data. alpha : float Regularization parameter. initial_params : array_like Parameters used to build the transition rates of the LSR Markov chain. Returns ------- params : numpy.ndarray An estimate of model parameters.
[ "Compute", "the", "LSR", "estimate", "of", "model", "parameters", "." ]
train
https://github.com/lucasmaystre/choix/blob/05a57a10bb707338113a9d91601ca528ead7a881/choix/lsr.py#L317-L354
lucasmaystre/choix
choix/lsr.py
ilsr_top1
def ilsr_top1( n_items, data, alpha=0.0, initial_params=None, max_iter=100, tol=1e-8): """Compute the ML estimate of model parameters using I-LSR. This function computes the maximum-likelihood (ML) estimate of model parameters given top-1 data (see :ref:`data-top1`), using the iterative Luce Spectral Ranking algorithm [MG15]_. The transition rates of the LSR Markov chain are initialized with ``alpha``. When ``alpha > 0``, this corresponds to a form of regularization (see :ref:`regularization` for details). Parameters ---------- n_items : int Number of distinct items. data : list of lists Top-1 data. alpha : float, optional Regularization parameter. initial_params : array_like, optional Parameters used to initialize the iterative procedure. max_iter : int, optional Maximum number of iterations allowed. tol : float, optional Maximum L1-norm of the difference between successive iterates to declare convergence. Returns ------- params : numpy.ndarray The ML estimate of model parameters. """ fun = functools.partial(lsr_top1, n_items=n_items, data=data, alpha=alpha) return _ilsr(fun, initial_params, max_iter, tol)
python
def ilsr_top1( n_items, data, alpha=0.0, initial_params=None, max_iter=100, tol=1e-8): """Compute the ML estimate of model parameters using I-LSR. This function computes the maximum-likelihood (ML) estimate of model parameters given top-1 data (see :ref:`data-top1`), using the iterative Luce Spectral Ranking algorithm [MG15]_. The transition rates of the LSR Markov chain are initialized with ``alpha``. When ``alpha > 0``, this corresponds to a form of regularization (see :ref:`regularization` for details). Parameters ---------- n_items : int Number of distinct items. data : list of lists Top-1 data. alpha : float, optional Regularization parameter. initial_params : array_like, optional Parameters used to initialize the iterative procedure. max_iter : int, optional Maximum number of iterations allowed. tol : float, optional Maximum L1-norm of the difference between successive iterates to declare convergence. Returns ------- params : numpy.ndarray The ML estimate of model parameters. """ fun = functools.partial(lsr_top1, n_items=n_items, data=data, alpha=alpha) return _ilsr(fun, initial_params, max_iter, tol)
[ "def", "ilsr_top1", "(", "n_items", ",", "data", ",", "alpha", "=", "0.0", ",", "initial_params", "=", "None", ",", "max_iter", "=", "100", ",", "tol", "=", "1e-8", ")", ":", "fun", "=", "functools", ".", "partial", "(", "lsr_top1", ",", "n_items", "=", "n_items", ",", "data", "=", "data", ",", "alpha", "=", "alpha", ")", "return", "_ilsr", "(", "fun", ",", "initial_params", ",", "max_iter", ",", "tol", ")" ]
Compute the ML estimate of model parameters using I-LSR. This function computes the maximum-likelihood (ML) estimate of model parameters given top-1 data (see :ref:`data-top1`), using the iterative Luce Spectral Ranking algorithm [MG15]_. The transition rates of the LSR Markov chain are initialized with ``alpha``. When ``alpha > 0``, this corresponds to a form of regularization (see :ref:`regularization` for details). Parameters ---------- n_items : int Number of distinct items. data : list of lists Top-1 data. alpha : float, optional Regularization parameter. initial_params : array_like, optional Parameters used to initialize the iterative procedure. max_iter : int, optional Maximum number of iterations allowed. tol : float, optional Maximum L1-norm of the difference between successive iterates to declare convergence. Returns ------- params : numpy.ndarray The ML estimate of model parameters.
[ "Compute", "the", "ML", "estimate", "of", "model", "parameters", "using", "I", "-", "LSR", "." ]
train
https://github.com/lucasmaystre/choix/blob/05a57a10bb707338113a9d91601ca528ead7a881/choix/lsr.py#L357-L391
lucasmaystre/choix
choix/ep.py
ep_pairwise
def ep_pairwise(n_items, data, alpha, model="logit", max_iter=100, initial_state=None): """Compute a distribution of model parameters using the EP algorithm. This function computes an approximate Bayesian posterior probability distribution over model parameters, given pairwise-comparison data (see :ref:`data-pairwise`). It uses the expectation propagation algorithm, as presented, e.g., in [CG05]_. The prior distribution is assumed to be isotropic Gaussian with variance ``1 / alpha``. The posterior is approximated by a a general multivariate Gaussian distribution, described by a mean vector and a covariance matrix. Two different observation models are available. ``logit`` (default) assumes that pairwise-comparison outcomes follow from a Bradley-Terry model. ``probit`` assumes that the outcomes follow from Thurstone's model. Parameters ---------- n_items : int Number of distinct items. data : list of lists Pairwise-comparison data. alpha : float Inverse variance of the (isotropic) prior. model : str, optional Observation model. Either "logit" or "probit". max_iter : int, optional Maximum number of iterations allowed. initial_state : tuple of array_like, optional Natural parameters used to initialize the EP algorithm. Returns ------- mean : numpy.ndarray The mean vector of the approximate Gaussian posterior. cov : numpy.ndarray The covariance matrix of the approximate Gaussian posterior. Raises ------ ValueError If the observation model is not "logit" or "probit". """ if model == "logit": match_moments = _match_moments_logit elif model == "probit": match_moments = _match_moments_probit else: raise ValueError("unknown model '{}'".format(model)) return _ep_pairwise( n_items, data, alpha, match_moments, max_iter, initial_state)
python
def ep_pairwise(n_items, data, alpha, model="logit", max_iter=100, initial_state=None): """Compute a distribution of model parameters using the EP algorithm. This function computes an approximate Bayesian posterior probability distribution over model parameters, given pairwise-comparison data (see :ref:`data-pairwise`). It uses the expectation propagation algorithm, as presented, e.g., in [CG05]_. The prior distribution is assumed to be isotropic Gaussian with variance ``1 / alpha``. The posterior is approximated by a a general multivariate Gaussian distribution, described by a mean vector and a covariance matrix. Two different observation models are available. ``logit`` (default) assumes that pairwise-comparison outcomes follow from a Bradley-Terry model. ``probit`` assumes that the outcomes follow from Thurstone's model. Parameters ---------- n_items : int Number of distinct items. data : list of lists Pairwise-comparison data. alpha : float Inverse variance of the (isotropic) prior. model : str, optional Observation model. Either "logit" or "probit". max_iter : int, optional Maximum number of iterations allowed. initial_state : tuple of array_like, optional Natural parameters used to initialize the EP algorithm. Returns ------- mean : numpy.ndarray The mean vector of the approximate Gaussian posterior. cov : numpy.ndarray The covariance matrix of the approximate Gaussian posterior. Raises ------ ValueError If the observation model is not "logit" or "probit". """ if model == "logit": match_moments = _match_moments_logit elif model == "probit": match_moments = _match_moments_probit else: raise ValueError("unknown model '{}'".format(model)) return _ep_pairwise( n_items, data, alpha, match_moments, max_iter, initial_state)
[ "def", "ep_pairwise", "(", "n_items", ",", "data", ",", "alpha", ",", "model", "=", "\"logit\"", ",", "max_iter", "=", "100", ",", "initial_state", "=", "None", ")", ":", "if", "model", "==", "\"logit\"", ":", "match_moments", "=", "_match_moments_logit", "elif", "model", "==", "\"probit\"", ":", "match_moments", "=", "_match_moments_probit", "else", ":", "raise", "ValueError", "(", "\"unknown model '{}'\"", ".", "format", "(", "model", ")", ")", "return", "_ep_pairwise", "(", "n_items", ",", "data", ",", "alpha", ",", "match_moments", ",", "max_iter", ",", "initial_state", ")" ]
Compute a distribution of model parameters using the EP algorithm. This function computes an approximate Bayesian posterior probability distribution over model parameters, given pairwise-comparison data (see :ref:`data-pairwise`). It uses the expectation propagation algorithm, as presented, e.g., in [CG05]_. The prior distribution is assumed to be isotropic Gaussian with variance ``1 / alpha``. The posterior is approximated by a a general multivariate Gaussian distribution, described by a mean vector and a covariance matrix. Two different observation models are available. ``logit`` (default) assumes that pairwise-comparison outcomes follow from a Bradley-Terry model. ``probit`` assumes that the outcomes follow from Thurstone's model. Parameters ---------- n_items : int Number of distinct items. data : list of lists Pairwise-comparison data. alpha : float Inverse variance of the (isotropic) prior. model : str, optional Observation model. Either "logit" or "probit". max_iter : int, optional Maximum number of iterations allowed. initial_state : tuple of array_like, optional Natural parameters used to initialize the EP algorithm. Returns ------- mean : numpy.ndarray The mean vector of the approximate Gaussian posterior. cov : numpy.ndarray The covariance matrix of the approximate Gaussian posterior. Raises ------ ValueError If the observation model is not "logit" or "probit".
[ "Compute", "a", "distribution", "of", "model", "parameters", "using", "the", "EP", "algorithm", "." ]
train
https://github.com/lucasmaystre/choix/blob/05a57a10bb707338113a9d91601ca528ead7a881/choix/ep.py#L32-L83
lucasmaystre/choix
choix/ep.py
_ep_pairwise
def _ep_pairwise( n_items, comparisons, alpha, match_moments, max_iter, initial_state): """Compute a distribution of model parameters using the EP algorithm. Raises ------ RuntimeError If the algorithm does not converge after ``max_iter`` iterations. """ # Static variable that allows to check the # of iterations after the call. _ep_pairwise.iterations = 0 m = len(comparisons) prior_inv = alpha * np.eye(n_items) if initial_state is None: # Initially, mean and covariance come from the prior. mean = np.zeros(n_items) cov = (1 / alpha) * np.eye(n_items) # Initialize the natural params in the function space. tau = np.zeros(m) nu = np.zeros(m) # Initialize the natural params in the space of thetas. prec = np.zeros((n_items, n_items)) xs = np.zeros(n_items) else: tau, nu = initial_state mean, cov, xs, prec = _init_ws( n_items, comparisons, prior_inv, tau, nu) for _ in range(max_iter): _ep_pairwise.iterations += 1 # Keep a copy of the old parameters for convergence testing. tau_old = np.array(tau, copy=True) nu_old = np.array(nu, copy=True) for i in nprand.permutation(m): a, b = comparisons[i] # Update mean and variance in function space. f_var = cov[a,a] + cov[b,b] - 2 * cov[a,b] f_mean = mean[a] - mean[b] # Cavity distribution. tau_tot = 1.0 / f_var nu_tot = tau_tot * f_mean tau_cav = tau_tot - tau[i] nu_cav = nu_tot - nu[i] cov_cav = 1.0 / tau_cav mean_cav = cov_cav * nu_cav # Moment matching. logpart, dlogpart, d2logpart = match_moments(mean_cav, cov_cav) # Update factor params in the function space. tau[i] = -d2logpart / (1 + d2logpart / tau_cav) delta_tau = tau[i] - tau_old[i] nu[i] = ((dlogpart - (nu_cav / tau_cav) * d2logpart) / (1 + d2logpart / tau_cav)) delta_nu = nu[i] - nu_old[i] # Update factor params in the weight space. prec[(a, a, b, b), (a, b, a, b)] += delta_tau * MAT_ONE_FLAT xs[a] += delta_nu xs[b] -= delta_nu # Update mean and covariance. if abs(delta_tau) > 0: phi = -1.0 / ((1.0 / delta_tau) + f_var) * MAT_ONE upd_mat = cov.take([a, b], axis=0) cov = cov + upd_mat.T.dot(phi).dot(upd_mat) mean = cov.dot(xs) # Recompute the global parameters for stability. cov = inv_posdef(prior_inv + prec) mean = cov.dot(xs) if _converged((tau, nu), (tau_old, nu_old)): return mean, cov raise RuntimeError( "EP did not converge after {} iterations".format(max_iter))
python
def _ep_pairwise( n_items, comparisons, alpha, match_moments, max_iter, initial_state): """Compute a distribution of model parameters using the EP algorithm. Raises ------ RuntimeError If the algorithm does not converge after ``max_iter`` iterations. """ # Static variable that allows to check the # of iterations after the call. _ep_pairwise.iterations = 0 m = len(comparisons) prior_inv = alpha * np.eye(n_items) if initial_state is None: # Initially, mean and covariance come from the prior. mean = np.zeros(n_items) cov = (1 / alpha) * np.eye(n_items) # Initialize the natural params in the function space. tau = np.zeros(m) nu = np.zeros(m) # Initialize the natural params in the space of thetas. prec = np.zeros((n_items, n_items)) xs = np.zeros(n_items) else: tau, nu = initial_state mean, cov, xs, prec = _init_ws( n_items, comparisons, prior_inv, tau, nu) for _ in range(max_iter): _ep_pairwise.iterations += 1 # Keep a copy of the old parameters for convergence testing. tau_old = np.array(tau, copy=True) nu_old = np.array(nu, copy=True) for i in nprand.permutation(m): a, b = comparisons[i] # Update mean and variance in function space. f_var = cov[a,a] + cov[b,b] - 2 * cov[a,b] f_mean = mean[a] - mean[b] # Cavity distribution. tau_tot = 1.0 / f_var nu_tot = tau_tot * f_mean tau_cav = tau_tot - tau[i] nu_cav = nu_tot - nu[i] cov_cav = 1.0 / tau_cav mean_cav = cov_cav * nu_cav # Moment matching. logpart, dlogpart, d2logpart = match_moments(mean_cav, cov_cav) # Update factor params in the function space. tau[i] = -d2logpart / (1 + d2logpart / tau_cav) delta_tau = tau[i] - tau_old[i] nu[i] = ((dlogpart - (nu_cav / tau_cav) * d2logpart) / (1 + d2logpart / tau_cav)) delta_nu = nu[i] - nu_old[i] # Update factor params in the weight space. prec[(a, a, b, b), (a, b, a, b)] += delta_tau * MAT_ONE_FLAT xs[a] += delta_nu xs[b] -= delta_nu # Update mean and covariance. if abs(delta_tau) > 0: phi = -1.0 / ((1.0 / delta_tau) + f_var) * MAT_ONE upd_mat = cov.take([a, b], axis=0) cov = cov + upd_mat.T.dot(phi).dot(upd_mat) mean = cov.dot(xs) # Recompute the global parameters for stability. cov = inv_posdef(prior_inv + prec) mean = cov.dot(xs) if _converged((tau, nu), (tau_old, nu_old)): return mean, cov raise RuntimeError( "EP did not converge after {} iterations".format(max_iter))
[ "def", "_ep_pairwise", "(", "n_items", ",", "comparisons", ",", "alpha", ",", "match_moments", ",", "max_iter", ",", "initial_state", ")", ":", "# Static variable that allows to check the # of iterations after the call.", "_ep_pairwise", ".", "iterations", "=", "0", "m", "=", "len", "(", "comparisons", ")", "prior_inv", "=", "alpha", "*", "np", ".", "eye", "(", "n_items", ")", "if", "initial_state", "is", "None", ":", "# Initially, mean and covariance come from the prior.", "mean", "=", "np", ".", "zeros", "(", "n_items", ")", "cov", "=", "(", "1", "/", "alpha", ")", "*", "np", ".", "eye", "(", "n_items", ")", "# Initialize the natural params in the function space.", "tau", "=", "np", ".", "zeros", "(", "m", ")", "nu", "=", "np", ".", "zeros", "(", "m", ")", "# Initialize the natural params in the space of thetas.", "prec", "=", "np", ".", "zeros", "(", "(", "n_items", ",", "n_items", ")", ")", "xs", "=", "np", ".", "zeros", "(", "n_items", ")", "else", ":", "tau", ",", "nu", "=", "initial_state", "mean", ",", "cov", ",", "xs", ",", "prec", "=", "_init_ws", "(", "n_items", ",", "comparisons", ",", "prior_inv", ",", "tau", ",", "nu", ")", "for", "_", "in", "range", "(", "max_iter", ")", ":", "_ep_pairwise", ".", "iterations", "+=", "1", "# Keep a copy of the old parameters for convergence testing.", "tau_old", "=", "np", ".", "array", "(", "tau", ",", "copy", "=", "True", ")", "nu_old", "=", "np", ".", "array", "(", "nu", ",", "copy", "=", "True", ")", "for", "i", "in", "nprand", ".", "permutation", "(", "m", ")", ":", "a", ",", "b", "=", "comparisons", "[", "i", "]", "# Update mean and variance in function space.", "f_var", "=", "cov", "[", "a", ",", "a", "]", "+", "cov", "[", "b", ",", "b", "]", "-", "2", "*", "cov", "[", "a", ",", "b", "]", "f_mean", "=", "mean", "[", "a", "]", "-", "mean", "[", "b", "]", "# Cavity distribution.", "tau_tot", "=", "1.0", "/", "f_var", "nu_tot", "=", "tau_tot", "*", "f_mean", "tau_cav", "=", "tau_tot", "-", "tau", "[", "i", "]", "nu_cav", "=", "nu_tot", "-", "nu", "[", "i", "]", "cov_cav", "=", "1.0", "/", "tau_cav", "mean_cav", "=", "cov_cav", "*", "nu_cav", "# Moment matching.", "logpart", ",", "dlogpart", ",", "d2logpart", "=", "match_moments", "(", "mean_cav", ",", "cov_cav", ")", "# Update factor params in the function space.", "tau", "[", "i", "]", "=", "-", "d2logpart", "/", "(", "1", "+", "d2logpart", "/", "tau_cav", ")", "delta_tau", "=", "tau", "[", "i", "]", "-", "tau_old", "[", "i", "]", "nu", "[", "i", "]", "=", "(", "(", "dlogpart", "-", "(", "nu_cav", "/", "tau_cav", ")", "*", "d2logpart", ")", "/", "(", "1", "+", "d2logpart", "/", "tau_cav", ")", ")", "delta_nu", "=", "nu", "[", "i", "]", "-", "nu_old", "[", "i", "]", "# Update factor params in the weight space.", "prec", "[", "(", "a", ",", "a", ",", "b", ",", "b", ")", ",", "(", "a", ",", "b", ",", "a", ",", "b", ")", "]", "+=", "delta_tau", "*", "MAT_ONE_FLAT", "xs", "[", "a", "]", "+=", "delta_nu", "xs", "[", "b", "]", "-=", "delta_nu", "# Update mean and covariance.", "if", "abs", "(", "delta_tau", ")", ">", "0", ":", "phi", "=", "-", "1.0", "/", "(", "(", "1.0", "/", "delta_tau", ")", "+", "f_var", ")", "*", "MAT_ONE", "upd_mat", "=", "cov", ".", "take", "(", "[", "a", ",", "b", "]", ",", "axis", "=", "0", ")", "cov", "=", "cov", "+", "upd_mat", ".", "T", ".", "dot", "(", "phi", ")", ".", "dot", "(", "upd_mat", ")", "mean", "=", "cov", ".", "dot", "(", "xs", ")", "# Recompute the global parameters for stability.", "cov", "=", "inv_posdef", "(", "prior_inv", "+", "prec", ")", "mean", "=", "cov", ".", "dot", "(", "xs", ")", "if", "_converged", "(", "(", "tau", ",", "nu", ")", ",", "(", "tau_old", ",", "nu_old", ")", ")", ":", "return", "mean", ",", "cov", "raise", "RuntimeError", "(", "\"EP did not converge after {} iterations\"", ".", "format", "(", "max_iter", ")", ")" ]
Compute a distribution of model parameters using the EP algorithm. Raises ------ RuntimeError If the algorithm does not converge after ``max_iter`` iterations.
[ "Compute", "a", "distribution", "of", "model", "parameters", "using", "the", "EP", "algorithm", "." ]
train
https://github.com/lucasmaystre/choix/blob/05a57a10bb707338113a9d91601ca528ead7a881/choix/ep.py#L86-L154
lucasmaystre/choix
choix/ep.py
_log_phi
def _log_phi(z): """Stable computation of the log of the Normal CDF and its derivative.""" # Adapted from the GPML function `logphi.m`. if z * z < 0.0492: # First case: z close to zero. coef = -z / SQRT2PI val = functools.reduce(lambda acc, c: coef * (c + acc), CS, 0) res = -2 * val - log(2) dres = exp(-(z * z) / 2 - res) / SQRT2PI elif z < -11.3137: # Second case: z very small. num = functools.reduce( lambda acc, r: -z * acc / SQRT2 + r, RS, 0.5641895835477550741) den = functools.reduce(lambda acc, q: -z * acc / SQRT2 + q, QS, 1.0) res = log(num / (2 * den)) - (z * z) / 2 dres = abs(den / num) * sqrt(2.0 / pi) else: res = log(normal_cdf(z)) dres = exp(-(z * z) / 2 - res) / SQRT2PI return res, dres
python
def _log_phi(z): """Stable computation of the log of the Normal CDF and its derivative.""" # Adapted from the GPML function `logphi.m`. if z * z < 0.0492: # First case: z close to zero. coef = -z / SQRT2PI val = functools.reduce(lambda acc, c: coef * (c + acc), CS, 0) res = -2 * val - log(2) dres = exp(-(z * z) / 2 - res) / SQRT2PI elif z < -11.3137: # Second case: z very small. num = functools.reduce( lambda acc, r: -z * acc / SQRT2 + r, RS, 0.5641895835477550741) den = functools.reduce(lambda acc, q: -z * acc / SQRT2 + q, QS, 1.0) res = log(num / (2 * den)) - (z * z) / 2 dres = abs(den / num) * sqrt(2.0 / pi) else: res = log(normal_cdf(z)) dres = exp(-(z * z) / 2 - res) / SQRT2PI return res, dres
[ "def", "_log_phi", "(", "z", ")", ":", "# Adapted from the GPML function `logphi.m`.", "if", "z", "*", "z", "<", "0.0492", ":", "# First case: z close to zero.", "coef", "=", "-", "z", "/", "SQRT2PI", "val", "=", "functools", ".", "reduce", "(", "lambda", "acc", ",", "c", ":", "coef", "*", "(", "c", "+", "acc", ")", ",", "CS", ",", "0", ")", "res", "=", "-", "2", "*", "val", "-", "log", "(", "2", ")", "dres", "=", "exp", "(", "-", "(", "z", "*", "z", ")", "/", "2", "-", "res", ")", "/", "SQRT2PI", "elif", "z", "<", "-", "11.3137", ":", "# Second case: z very small.", "num", "=", "functools", ".", "reduce", "(", "lambda", "acc", ",", "r", ":", "-", "z", "*", "acc", "/", "SQRT2", "+", "r", ",", "RS", ",", "0.5641895835477550741", ")", "den", "=", "functools", ".", "reduce", "(", "lambda", "acc", ",", "q", ":", "-", "z", "*", "acc", "/", "SQRT2", "+", "q", ",", "QS", ",", "1.0", ")", "res", "=", "log", "(", "num", "/", "(", "2", "*", "den", ")", ")", "-", "(", "z", "*", "z", ")", "/", "2", "dres", "=", "abs", "(", "den", "/", "num", ")", "*", "sqrt", "(", "2.0", "/", "pi", ")", "else", ":", "res", "=", "log", "(", "normal_cdf", "(", "z", ")", ")", "dres", "=", "exp", "(", "-", "(", "z", "*", "z", ")", "/", "2", "-", "res", ")", "/", "SQRT2PI", "return", "res", ",", "dres" ]
Stable computation of the log of the Normal CDF and its derivative.
[ "Stable", "computation", "of", "the", "log", "of", "the", "Normal", "CDF", "and", "its", "derivative", "." ]
train
https://github.com/lucasmaystre/choix/blob/05a57a10bb707338113a9d91601ca528ead7a881/choix/ep.py#L157-L176
lucasmaystre/choix
choix/ep.py
_init_ws
def _init_ws(n_items, comparisons, prior_inv, tau, nu): """Initialize parameters in the weight space.""" prec = np.zeros((n_items, n_items)) xs = np.zeros(n_items) for i, (a, b) in enumerate(comparisons): prec[(a, a, b, b), (a, b, a, b)] += tau[i] * MAT_ONE_FLAT xs[a] += nu[i] xs[b] -= nu[i] cov = inv_posdef(prior_inv + prec) mean = cov.dot(xs) return mean, cov, xs , prec
python
def _init_ws(n_items, comparisons, prior_inv, tau, nu): """Initialize parameters in the weight space.""" prec = np.zeros((n_items, n_items)) xs = np.zeros(n_items) for i, (a, b) in enumerate(comparisons): prec[(a, a, b, b), (a, b, a, b)] += tau[i] * MAT_ONE_FLAT xs[a] += nu[i] xs[b] -= nu[i] cov = inv_posdef(prior_inv + prec) mean = cov.dot(xs) return mean, cov, xs , prec
[ "def", "_init_ws", "(", "n_items", ",", "comparisons", ",", "prior_inv", ",", "tau", ",", "nu", ")", ":", "prec", "=", "np", ".", "zeros", "(", "(", "n_items", ",", "n_items", ")", ")", "xs", "=", "np", ".", "zeros", "(", "n_items", ")", "for", "i", ",", "(", "a", ",", "b", ")", "in", "enumerate", "(", "comparisons", ")", ":", "prec", "[", "(", "a", ",", "a", ",", "b", ",", "b", ")", ",", "(", "a", ",", "b", ",", "a", ",", "b", ")", "]", "+=", "tau", "[", "i", "]", "*", "MAT_ONE_FLAT", "xs", "[", "a", "]", "+=", "nu", "[", "i", "]", "xs", "[", "b", "]", "-=", "nu", "[", "i", "]", "cov", "=", "inv_posdef", "(", "prior_inv", "+", "prec", ")", "mean", "=", "cov", ".", "dot", "(", "xs", ")", "return", "mean", ",", "cov", ",", "xs", ",", "prec" ]
Initialize parameters in the weight space.
[ "Initialize", "parameters", "in", "the", "weight", "space", "." ]
train
https://github.com/lucasmaystre/choix/blob/05a57a10bb707338113a9d91601ca528ead7a881/choix/ep.py#L227-L237
lucasmaystre/choix
choix/utils.py
exp_transform
def exp_transform(params): """Transform parameters into exp-scale weights.""" weights = np.exp(np.asarray(params) - np.mean(params)) return (len(weights) / weights.sum()) * weights
python
def exp_transform(params): """Transform parameters into exp-scale weights.""" weights = np.exp(np.asarray(params) - np.mean(params)) return (len(weights) / weights.sum()) * weights
[ "def", "exp_transform", "(", "params", ")", ":", "weights", "=", "np", ".", "exp", "(", "np", ".", "asarray", "(", "params", ")", "-", "np", ".", "mean", "(", "params", ")", ")", "return", "(", "len", "(", "weights", ")", "/", "weights", ".", "sum", "(", ")", ")", "*", "weights" ]
Transform parameters into exp-scale weights.
[ "Transform", "parameters", "into", "exp", "-", "scale", "weights", "." ]
train
https://github.com/lucasmaystre/choix/blob/05a57a10bb707338113a9d91601ca528ead7a881/choix/utils.py#L22-L25
lucasmaystre/choix
choix/utils.py
softmax
def softmax(xs): """Stable implementation of the softmax function.""" ys = xs - np.max(xs) exps = np.exp(ys) return exps / exps.sum(axis=0)
python
def softmax(xs): """Stable implementation of the softmax function.""" ys = xs - np.max(xs) exps = np.exp(ys) return exps / exps.sum(axis=0)
[ "def", "softmax", "(", "xs", ")", ":", "ys", "=", "xs", "-", "np", ".", "max", "(", "xs", ")", "exps", "=", "np", ".", "exp", "(", "ys", ")", "return", "exps", "/", "exps", ".", "sum", "(", "axis", "=", "0", ")" ]
Stable implementation of the softmax function.
[ "Stable", "implementation", "of", "the", "softmax", "function", "." ]
train
https://github.com/lucasmaystre/choix/blob/05a57a10bb707338113a9d91601ca528ead7a881/choix/utils.py#L28-L32
lucasmaystre/choix
choix/utils.py
inv_posdef
def inv_posdef(mat): """Stable inverse of a positive definite matrix.""" # See: # - http://www.seas.ucla.edu/~vandenbe/103/lectures/chol.pdf # - http://scicomp.stackexchange.com/questions/3188 chol = np.linalg.cholesky(mat) ident = np.eye(mat.shape[0]) res = solve_triangular(chol, ident, lower=True, overwrite_b=True) return np.transpose(res).dot(res)
python
def inv_posdef(mat): """Stable inverse of a positive definite matrix.""" # See: # - http://www.seas.ucla.edu/~vandenbe/103/lectures/chol.pdf # - http://scicomp.stackexchange.com/questions/3188 chol = np.linalg.cholesky(mat) ident = np.eye(mat.shape[0]) res = solve_triangular(chol, ident, lower=True, overwrite_b=True) return np.transpose(res).dot(res)
[ "def", "inv_posdef", "(", "mat", ")", ":", "# See:", "# - http://www.seas.ucla.edu/~vandenbe/103/lectures/chol.pdf", "# - http://scicomp.stackexchange.com/questions/3188", "chol", "=", "np", ".", "linalg", ".", "cholesky", "(", "mat", ")", "ident", "=", "np", ".", "eye", "(", "mat", ".", "shape", "[", "0", "]", ")", "res", "=", "solve_triangular", "(", "chol", ",", "ident", ",", "lower", "=", "True", ",", "overwrite_b", "=", "True", ")", "return", "np", ".", "transpose", "(", "res", ")", ".", "dot", "(", "res", ")" ]
Stable inverse of a positive definite matrix.
[ "Stable", "inverse", "of", "a", "positive", "definite", "matrix", "." ]
train
https://github.com/lucasmaystre/choix/blob/05a57a10bb707338113a9d91601ca528ead7a881/choix/utils.py#L46-L54
lucasmaystre/choix
choix/utils.py
footrule_dist
def footrule_dist(params1, params2=None): r"""Compute Spearman's footrule distance between two models. This function computes Spearman's footrule distance between the rankings induced by two parameter vectors. Let :math:`\sigma_i` be the rank of item ``i`` in the model described by ``params1``, and :math:`\tau_i` be its rank in the model described by ``params2``. Spearman's footrule distance is defined by .. math:: \sum_{i=1}^N | \sigma_i - \tau_i | By convention, items with the lowest parameters are ranked first (i.e., sorted using the natural order). If the argument ``params2`` is ``None``, the second model is assumed to rank the items by their index: item ``0`` has rank 1, item ``1`` has rank 2, etc. Parameters ---------- params1 : array_like Parameters of the first model. params2 : array_like, optional Parameters of the second model. Returns ------- dist : float Spearman's footrule distance. """ assert params2 is None or len(params1) == len(params2) ranks1 = rankdata(params1, method="average") if params2 is None: ranks2 = np.arange(1, len(params1) + 1, dtype=float) else: ranks2 = rankdata(params2, method="average") return np.sum(np.abs(ranks1 - ranks2))
python
def footrule_dist(params1, params2=None): r"""Compute Spearman's footrule distance between two models. This function computes Spearman's footrule distance between the rankings induced by two parameter vectors. Let :math:`\sigma_i` be the rank of item ``i`` in the model described by ``params1``, and :math:`\tau_i` be its rank in the model described by ``params2``. Spearman's footrule distance is defined by .. math:: \sum_{i=1}^N | \sigma_i - \tau_i | By convention, items with the lowest parameters are ranked first (i.e., sorted using the natural order). If the argument ``params2`` is ``None``, the second model is assumed to rank the items by their index: item ``0`` has rank 1, item ``1`` has rank 2, etc. Parameters ---------- params1 : array_like Parameters of the first model. params2 : array_like, optional Parameters of the second model. Returns ------- dist : float Spearman's footrule distance. """ assert params2 is None or len(params1) == len(params2) ranks1 = rankdata(params1, method="average") if params2 is None: ranks2 = np.arange(1, len(params1) + 1, dtype=float) else: ranks2 = rankdata(params2, method="average") return np.sum(np.abs(ranks1 - ranks2))
[ "def", "footrule_dist", "(", "params1", ",", "params2", "=", "None", ")", ":", "assert", "params2", "is", "None", "or", "len", "(", "params1", ")", "==", "len", "(", "params2", ")", "ranks1", "=", "rankdata", "(", "params1", ",", "method", "=", "\"average\"", ")", "if", "params2", "is", "None", ":", "ranks2", "=", "np", ".", "arange", "(", "1", ",", "len", "(", "params1", ")", "+", "1", ",", "dtype", "=", "float", ")", "else", ":", "ranks2", "=", "rankdata", "(", "params2", ",", "method", "=", "\"average\"", ")", "return", "np", ".", "sum", "(", "np", ".", "abs", "(", "ranks1", "-", "ranks2", ")", ")" ]
r"""Compute Spearman's footrule distance between two models. This function computes Spearman's footrule distance between the rankings induced by two parameter vectors. Let :math:`\sigma_i` be the rank of item ``i`` in the model described by ``params1``, and :math:`\tau_i` be its rank in the model described by ``params2``. Spearman's footrule distance is defined by .. math:: \sum_{i=1}^N | \sigma_i - \tau_i | By convention, items with the lowest parameters are ranked first (i.e., sorted using the natural order). If the argument ``params2`` is ``None``, the second model is assumed to rank the items by their index: item ``0`` has rank 1, item ``1`` has rank 2, etc. Parameters ---------- params1 : array_like Parameters of the first model. params2 : array_like, optional Parameters of the second model. Returns ------- dist : float Spearman's footrule distance.
[ "r", "Compute", "Spearman", "s", "footrule", "distance", "between", "two", "models", "." ]
train
https://github.com/lucasmaystre/choix/blob/05a57a10bb707338113a9d91601ca528ead7a881/choix/utils.py#L57-L95
lucasmaystre/choix
choix/utils.py
kendalltau_dist
def kendalltau_dist(params1, params2=None): r"""Compute the Kendall tau distance between two models. This function computes the Kendall tau distance between the rankings induced by two parameter vectors. Let :math:`\sigma_i` be the rank of item ``i`` in the model described by ``params1``, and :math:`\tau_i` be its rank in the model described by ``params2``. The Kendall tau distance is defined as the number of pairwise disagreements between the two rankings, i.e., .. math:: \sum_{i=1}^N \sum_{j=1}^N \mathbf{1} \{ \sigma_i > \sigma_j \wedge \tau_i < \tau_j \} By convention, items with the lowest parameters are ranked first (i.e., sorted using the natural order). If the argument ``params2`` is ``None``, the second model is assumed to rank the items by their index: item ``0`` has rank 1, item ``1`` has rank 2, etc. If some values are equal within a parameter vector, all items are given a distinct rank, corresponding to the order in which the values occur. Parameters ---------- params1 : array_like Parameters of the first model. params2 : array_like, optional Parameters of the second model. Returns ------- dist : float Kendall tau distance. """ assert params2 is None or len(params1) == len(params2) ranks1 = rankdata(params1, method="ordinal") if params2 is None: ranks2 = np.arange(1, len(params1) + 1, dtype=float) else: ranks2 = rankdata(params2, method="ordinal") tau, _ = kendalltau(ranks1, ranks2) n_items = len(params1) n_pairs = n_items * (n_items - 1) / 2 return round((n_pairs - n_pairs * tau) / 2)
python
def kendalltau_dist(params1, params2=None): r"""Compute the Kendall tau distance between two models. This function computes the Kendall tau distance between the rankings induced by two parameter vectors. Let :math:`\sigma_i` be the rank of item ``i`` in the model described by ``params1``, and :math:`\tau_i` be its rank in the model described by ``params2``. The Kendall tau distance is defined as the number of pairwise disagreements between the two rankings, i.e., .. math:: \sum_{i=1}^N \sum_{j=1}^N \mathbf{1} \{ \sigma_i > \sigma_j \wedge \tau_i < \tau_j \} By convention, items with the lowest parameters are ranked first (i.e., sorted using the natural order). If the argument ``params2`` is ``None``, the second model is assumed to rank the items by their index: item ``0`` has rank 1, item ``1`` has rank 2, etc. If some values are equal within a parameter vector, all items are given a distinct rank, corresponding to the order in which the values occur. Parameters ---------- params1 : array_like Parameters of the first model. params2 : array_like, optional Parameters of the second model. Returns ------- dist : float Kendall tau distance. """ assert params2 is None or len(params1) == len(params2) ranks1 = rankdata(params1, method="ordinal") if params2 is None: ranks2 = np.arange(1, len(params1) + 1, dtype=float) else: ranks2 = rankdata(params2, method="ordinal") tau, _ = kendalltau(ranks1, ranks2) n_items = len(params1) n_pairs = n_items * (n_items - 1) / 2 return round((n_pairs - n_pairs * tau) / 2)
[ "def", "kendalltau_dist", "(", "params1", ",", "params2", "=", "None", ")", ":", "assert", "params2", "is", "None", "or", "len", "(", "params1", ")", "==", "len", "(", "params2", ")", "ranks1", "=", "rankdata", "(", "params1", ",", "method", "=", "\"ordinal\"", ")", "if", "params2", "is", "None", ":", "ranks2", "=", "np", ".", "arange", "(", "1", ",", "len", "(", "params1", ")", "+", "1", ",", "dtype", "=", "float", ")", "else", ":", "ranks2", "=", "rankdata", "(", "params2", ",", "method", "=", "\"ordinal\"", ")", "tau", ",", "_", "=", "kendalltau", "(", "ranks1", ",", "ranks2", ")", "n_items", "=", "len", "(", "params1", ")", "n_pairs", "=", "n_items", "*", "(", "n_items", "-", "1", ")", "/", "2", "return", "round", "(", "(", "n_pairs", "-", "n_pairs", "*", "tau", ")", "/", "2", ")" ]
r"""Compute the Kendall tau distance between two models. This function computes the Kendall tau distance between the rankings induced by two parameter vectors. Let :math:`\sigma_i` be the rank of item ``i`` in the model described by ``params1``, and :math:`\tau_i` be its rank in the model described by ``params2``. The Kendall tau distance is defined as the number of pairwise disagreements between the two rankings, i.e., .. math:: \sum_{i=1}^N \sum_{j=1}^N \mathbf{1} \{ \sigma_i > \sigma_j \wedge \tau_i < \tau_j \} By convention, items with the lowest parameters are ranked first (i.e., sorted using the natural order). If the argument ``params2`` is ``None``, the second model is assumed to rank the items by their index: item ``0`` has rank 1, item ``1`` has rank 2, etc. If some values are equal within a parameter vector, all items are given a distinct rank, corresponding to the order in which the values occur. Parameters ---------- params1 : array_like Parameters of the first model. params2 : array_like, optional Parameters of the second model. Returns ------- dist : float Kendall tau distance.
[ "r", "Compute", "the", "Kendall", "tau", "distance", "between", "two", "models", "." ]
train
https://github.com/lucasmaystre/choix/blob/05a57a10bb707338113a9d91601ca528ead7a881/choix/utils.py#L98-L143
lucasmaystre/choix
choix/utils.py
rmse
def rmse(params1, params2): r"""Compute the root-mean-squared error between two models. Parameters ---------- params1 : array_like Parameters of the first model. params2 : array_like Parameters of the second model. Returns ------- error : float Root-mean-squared error. """ assert len(params1) == len(params2) params1 = np.asarray(params1) - np.mean(params1) params2 = np.asarray(params2) - np.mean(params2) sqrt_n = math.sqrt(len(params1)) return np.linalg.norm(params1 - params2, ord=2) / sqrt_n
python
def rmse(params1, params2): r"""Compute the root-mean-squared error between two models. Parameters ---------- params1 : array_like Parameters of the first model. params2 : array_like Parameters of the second model. Returns ------- error : float Root-mean-squared error. """ assert len(params1) == len(params2) params1 = np.asarray(params1) - np.mean(params1) params2 = np.asarray(params2) - np.mean(params2) sqrt_n = math.sqrt(len(params1)) return np.linalg.norm(params1 - params2, ord=2) / sqrt_n
[ "def", "rmse", "(", "params1", ",", "params2", ")", ":", "assert", "len", "(", "params1", ")", "==", "len", "(", "params2", ")", "params1", "=", "np", ".", "asarray", "(", "params1", ")", "-", "np", ".", "mean", "(", "params1", ")", "params2", "=", "np", ".", "asarray", "(", "params2", ")", "-", "np", ".", "mean", "(", "params2", ")", "sqrt_n", "=", "math", ".", "sqrt", "(", "len", "(", "params1", ")", ")", "return", "np", ".", "linalg", ".", "norm", "(", "params1", "-", "params2", ",", "ord", "=", "2", ")", "/", "sqrt_n" ]
r"""Compute the root-mean-squared error between two models. Parameters ---------- params1 : array_like Parameters of the first model. params2 : array_like Parameters of the second model. Returns ------- error : float Root-mean-squared error.
[ "r", "Compute", "the", "root", "-", "mean", "-", "squared", "error", "between", "two", "models", "." ]
train
https://github.com/lucasmaystre/choix/blob/05a57a10bb707338113a9d91601ca528ead7a881/choix/utils.py#L146-L165
lucasmaystre/choix
choix/utils.py
log_likelihood_pairwise
def log_likelihood_pairwise(data, params): """Compute the log-likelihood of model parameters.""" loglik = 0 for winner, loser in data: loglik -= np.logaddexp(0, -(params[winner] - params[loser])) return loglik
python
def log_likelihood_pairwise(data, params): """Compute the log-likelihood of model parameters.""" loglik = 0 for winner, loser in data: loglik -= np.logaddexp(0, -(params[winner] - params[loser])) return loglik
[ "def", "log_likelihood_pairwise", "(", "data", ",", "params", ")", ":", "loglik", "=", "0", "for", "winner", ",", "loser", "in", "data", ":", "loglik", "-=", "np", ".", "logaddexp", "(", "0", ",", "-", "(", "params", "[", "winner", "]", "-", "params", "[", "loser", "]", ")", ")", "return", "loglik" ]
Compute the log-likelihood of model parameters.
[ "Compute", "the", "log", "-", "likelihood", "of", "model", "parameters", "." ]
train
https://github.com/lucasmaystre/choix/blob/05a57a10bb707338113a9d91601ca528ead7a881/choix/utils.py#L168-L173
lucasmaystre/choix
choix/utils.py
log_likelihood_rankings
def log_likelihood_rankings(data, params): """Compute the log-likelihood of model parameters.""" loglik = 0 params = np.asarray(params) for ranking in data: for i, winner in enumerate(ranking[:-1]): loglik -= logsumexp(params.take(ranking[i:]) - params[winner]) return loglik
python
def log_likelihood_rankings(data, params): """Compute the log-likelihood of model parameters.""" loglik = 0 params = np.asarray(params) for ranking in data: for i, winner in enumerate(ranking[:-1]): loglik -= logsumexp(params.take(ranking[i:]) - params[winner]) return loglik
[ "def", "log_likelihood_rankings", "(", "data", ",", "params", ")", ":", "loglik", "=", "0", "params", "=", "np", ".", "asarray", "(", "params", ")", "for", "ranking", "in", "data", ":", "for", "i", ",", "winner", "in", "enumerate", "(", "ranking", "[", ":", "-", "1", "]", ")", ":", "loglik", "-=", "logsumexp", "(", "params", ".", "take", "(", "ranking", "[", "i", ":", "]", ")", "-", "params", "[", "winner", "]", ")", "return", "loglik" ]
Compute the log-likelihood of model parameters.
[ "Compute", "the", "log", "-", "likelihood", "of", "model", "parameters", "." ]
train
https://github.com/lucasmaystre/choix/blob/05a57a10bb707338113a9d91601ca528ead7a881/choix/utils.py#L176-L183
lucasmaystre/choix
choix/utils.py
log_likelihood_top1
def log_likelihood_top1(data, params): """Compute the log-likelihood of model parameters.""" loglik = 0 params = np.asarray(params) for winner, losers in data: idx = np.append(winner, losers) loglik -= logsumexp(params.take(idx) - params[winner]) return loglik
python
def log_likelihood_top1(data, params): """Compute the log-likelihood of model parameters.""" loglik = 0 params = np.asarray(params) for winner, losers in data: idx = np.append(winner, losers) loglik -= logsumexp(params.take(idx) - params[winner]) return loglik
[ "def", "log_likelihood_top1", "(", "data", ",", "params", ")", ":", "loglik", "=", "0", "params", "=", "np", ".", "asarray", "(", "params", ")", "for", "winner", ",", "losers", "in", "data", ":", "idx", "=", "np", ".", "append", "(", "winner", ",", "losers", ")", "loglik", "-=", "logsumexp", "(", "params", ".", "take", "(", "idx", ")", "-", "params", "[", "winner", "]", ")", "return", "loglik" ]
Compute the log-likelihood of model parameters.
[ "Compute", "the", "log", "-", "likelihood", "of", "model", "parameters", "." ]
train
https://github.com/lucasmaystre/choix/blob/05a57a10bb707338113a9d91601ca528ead7a881/choix/utils.py#L186-L193
lucasmaystre/choix
choix/utils.py
log_likelihood_network
def log_likelihood_network( digraph, traffic_in, traffic_out, params, weight=None): """ Compute the log-likelihood of model parameters. If ``weight`` is not ``None``, the log-likelihood is correct only up to a constant (independent of the parameters). """ loglik = 0 for i in range(len(traffic_in)): loglik += traffic_in[i] * params[i] if digraph.out_degree(i) > 0: neighbors = list(digraph.successors(i)) if weight is None: loglik -= traffic_out[i] * logsumexp(params.take(neighbors)) else: weights = [digraph[i][j][weight] for j in neighbors] loglik -= traffic_out[i] * logsumexp( params.take(neighbors), b=weights) return loglik
python
def log_likelihood_network( digraph, traffic_in, traffic_out, params, weight=None): """ Compute the log-likelihood of model parameters. If ``weight`` is not ``None``, the log-likelihood is correct only up to a constant (independent of the parameters). """ loglik = 0 for i in range(len(traffic_in)): loglik += traffic_in[i] * params[i] if digraph.out_degree(i) > 0: neighbors = list(digraph.successors(i)) if weight is None: loglik -= traffic_out[i] * logsumexp(params.take(neighbors)) else: weights = [digraph[i][j][weight] for j in neighbors] loglik -= traffic_out[i] * logsumexp( params.take(neighbors), b=weights) return loglik
[ "def", "log_likelihood_network", "(", "digraph", ",", "traffic_in", ",", "traffic_out", ",", "params", ",", "weight", "=", "None", ")", ":", "loglik", "=", "0", "for", "i", "in", "range", "(", "len", "(", "traffic_in", ")", ")", ":", "loglik", "+=", "traffic_in", "[", "i", "]", "*", "params", "[", "i", "]", "if", "digraph", ".", "out_degree", "(", "i", ")", ">", "0", ":", "neighbors", "=", "list", "(", "digraph", ".", "successors", "(", "i", ")", ")", "if", "weight", "is", "None", ":", "loglik", "-=", "traffic_out", "[", "i", "]", "*", "logsumexp", "(", "params", ".", "take", "(", "neighbors", ")", ")", "else", ":", "weights", "=", "[", "digraph", "[", "i", "]", "[", "j", "]", "[", "weight", "]", "for", "j", "in", "neighbors", "]", "loglik", "-=", "traffic_out", "[", "i", "]", "*", "logsumexp", "(", "params", ".", "take", "(", "neighbors", ")", ",", "b", "=", "weights", ")", "return", "loglik" ]
Compute the log-likelihood of model parameters. If ``weight`` is not ``None``, the log-likelihood is correct only up to a constant (independent of the parameters).
[ "Compute", "the", "log", "-", "likelihood", "of", "model", "parameters", "." ]
train
https://github.com/lucasmaystre/choix/blob/05a57a10bb707338113a9d91601ca528ead7a881/choix/utils.py#L196-L215
lucasmaystre/choix
choix/utils.py
statdist
def statdist(generator): """Compute the stationary distribution of a Markov chain. Parameters ---------- generator : array_like Infinitesimal generator matrix of the Markov chain. Returns ------- dist : numpy.ndarray The unnormalized stationary distribution of the Markov chain. Raises ------ ValueError If the Markov chain does not have a unique stationary distribution. """ generator = np.asarray(generator) n = generator.shape[0] with warnings.catch_warnings(): # The LU decomposition raises a warning when the generator matrix is # singular (which it, by construction, is!). warnings.filterwarnings("ignore") lu, piv = spl.lu_factor(generator.T, check_finite=False) # The last row contains 0's only. left = lu[:-1,:-1] right = -lu[:-1,-1] # Solves system `left * x = right`. Assumes that `left` is # upper-triangular (ignores lower triangle). try: res = spl.solve_triangular(left, right, check_finite=False) except: # Ideally we would like to catch `spl.LinAlgError` only, but there seems # to be a bug in scipy, in the code that raises the LinAlgError (!!). raise ValueError( "stationary distribution could not be computed. " "Perhaps the Markov chain has more than one absorbing class?") res = np.append(res, 1.0) return (n / res.sum()) * res
python
def statdist(generator): """Compute the stationary distribution of a Markov chain. Parameters ---------- generator : array_like Infinitesimal generator matrix of the Markov chain. Returns ------- dist : numpy.ndarray The unnormalized stationary distribution of the Markov chain. Raises ------ ValueError If the Markov chain does not have a unique stationary distribution. """ generator = np.asarray(generator) n = generator.shape[0] with warnings.catch_warnings(): # The LU decomposition raises a warning when the generator matrix is # singular (which it, by construction, is!). warnings.filterwarnings("ignore") lu, piv = spl.lu_factor(generator.T, check_finite=False) # The last row contains 0's only. left = lu[:-1,:-1] right = -lu[:-1,-1] # Solves system `left * x = right`. Assumes that `left` is # upper-triangular (ignores lower triangle). try: res = spl.solve_triangular(left, right, check_finite=False) except: # Ideally we would like to catch `spl.LinAlgError` only, but there seems # to be a bug in scipy, in the code that raises the LinAlgError (!!). raise ValueError( "stationary distribution could not be computed. " "Perhaps the Markov chain has more than one absorbing class?") res = np.append(res, 1.0) return (n / res.sum()) * res
[ "def", "statdist", "(", "generator", ")", ":", "generator", "=", "np", ".", "asarray", "(", "generator", ")", "n", "=", "generator", ".", "shape", "[", "0", "]", "with", "warnings", ".", "catch_warnings", "(", ")", ":", "# The LU decomposition raises a warning when the generator matrix is", "# singular (which it, by construction, is!).", "warnings", ".", "filterwarnings", "(", "\"ignore\"", ")", "lu", ",", "piv", "=", "spl", ".", "lu_factor", "(", "generator", ".", "T", ",", "check_finite", "=", "False", ")", "# The last row contains 0's only.", "left", "=", "lu", "[", ":", "-", "1", ",", ":", "-", "1", "]", "right", "=", "-", "lu", "[", ":", "-", "1", ",", "-", "1", "]", "# Solves system `left * x = right`. Assumes that `left` is", "# upper-triangular (ignores lower triangle).", "try", ":", "res", "=", "spl", ".", "solve_triangular", "(", "left", ",", "right", ",", "check_finite", "=", "False", ")", "except", ":", "# Ideally we would like to catch `spl.LinAlgError` only, but there seems", "# to be a bug in scipy, in the code that raises the LinAlgError (!!).", "raise", "ValueError", "(", "\"stationary distribution could not be computed. \"", "\"Perhaps the Markov chain has more than one absorbing class?\"", ")", "res", "=", "np", ".", "append", "(", "res", ",", "1.0", ")", "return", "(", "n", "/", "res", ".", "sum", "(", ")", ")", "*", "res" ]
Compute the stationary distribution of a Markov chain. Parameters ---------- generator : array_like Infinitesimal generator matrix of the Markov chain. Returns ------- dist : numpy.ndarray The unnormalized stationary distribution of the Markov chain. Raises ------ ValueError If the Markov chain does not have a unique stationary distribution.
[ "Compute", "the", "stationary", "distribution", "of", "a", "Markov", "chain", "." ]
train
https://github.com/lucasmaystre/choix/blob/05a57a10bb707338113a9d91601ca528ead7a881/choix/utils.py#L218-L257
lucasmaystre/choix
choix/utils.py
generate_params
def generate_params(n_items, interval=5.0, ordered=False): r"""Generate random model parameters. This function samples a parameter independently and uniformly for each item. ``interval`` defines the width of the uniform distribution. Parameters ---------- n_items : int Number of distinct items. interval : float Sampling interval. ordered : bool, optional If true, the parameters are ordered from lowest to highest. Returns ------- params : numpy.ndarray Model parameters. """ params = np.random.uniform(low=0, high=interval, size=n_items) if ordered: params.sort() return params - params.mean()
python
def generate_params(n_items, interval=5.0, ordered=False): r"""Generate random model parameters. This function samples a parameter independently and uniformly for each item. ``interval`` defines the width of the uniform distribution. Parameters ---------- n_items : int Number of distinct items. interval : float Sampling interval. ordered : bool, optional If true, the parameters are ordered from lowest to highest. Returns ------- params : numpy.ndarray Model parameters. """ params = np.random.uniform(low=0, high=interval, size=n_items) if ordered: params.sort() return params - params.mean()
[ "def", "generate_params", "(", "n_items", ",", "interval", "=", "5.0", ",", "ordered", "=", "False", ")", ":", "params", "=", "np", ".", "random", ".", "uniform", "(", "low", "=", "0", ",", "high", "=", "interval", ",", "size", "=", "n_items", ")", "if", "ordered", ":", "params", ".", "sort", "(", ")", "return", "params", "-", "params", ".", "mean", "(", ")" ]
r"""Generate random model parameters. This function samples a parameter independently and uniformly for each item. ``interval`` defines the width of the uniform distribution. Parameters ---------- n_items : int Number of distinct items. interval : float Sampling interval. ordered : bool, optional If true, the parameters are ordered from lowest to highest. Returns ------- params : numpy.ndarray Model parameters.
[ "r", "Generate", "random", "model", "parameters", "." ]
train
https://github.com/lucasmaystre/choix/blob/05a57a10bb707338113a9d91601ca528ead7a881/choix/utils.py#L260-L283
lucasmaystre/choix
choix/utils.py
generate_pairwise
def generate_pairwise(params, n_comparisons=10): """Generate pairwise comparisons from a Bradley--Terry model. This function samples comparisons pairs independently and uniformly at random over the ``len(params)`` choose 2 possibilities, and samples the corresponding comparison outcomes from a Bradley--Terry model parametrized by ``params``. Parameters ---------- params : array_like Model parameters. n_comparisons : int Number of comparisons to be returned. Returns ------- data : list of (int, int) Pairwise-comparison samples (see :ref:`data-pairwise`). """ n = len(params) items = tuple(range(n)) params = np.asarray(params) data = list() for _ in range(n_comparisons): # Pick the pair uniformly at random. a, b = random.sample(items, 2) if compare((a, b), params) == a: data.append((a, b)) else: data.append((b, a)) return tuple(data)
python
def generate_pairwise(params, n_comparisons=10): """Generate pairwise comparisons from a Bradley--Terry model. This function samples comparisons pairs independently and uniformly at random over the ``len(params)`` choose 2 possibilities, and samples the corresponding comparison outcomes from a Bradley--Terry model parametrized by ``params``. Parameters ---------- params : array_like Model parameters. n_comparisons : int Number of comparisons to be returned. Returns ------- data : list of (int, int) Pairwise-comparison samples (see :ref:`data-pairwise`). """ n = len(params) items = tuple(range(n)) params = np.asarray(params) data = list() for _ in range(n_comparisons): # Pick the pair uniformly at random. a, b = random.sample(items, 2) if compare((a, b), params) == a: data.append((a, b)) else: data.append((b, a)) return tuple(data)
[ "def", "generate_pairwise", "(", "params", ",", "n_comparisons", "=", "10", ")", ":", "n", "=", "len", "(", "params", ")", "items", "=", "tuple", "(", "range", "(", "n", ")", ")", "params", "=", "np", ".", "asarray", "(", "params", ")", "data", "=", "list", "(", ")", "for", "_", "in", "range", "(", "n_comparisons", ")", ":", "# Pick the pair uniformly at random.", "a", ",", "b", "=", "random", ".", "sample", "(", "items", ",", "2", ")", "if", "compare", "(", "(", "a", ",", "b", ")", ",", "params", ")", "==", "a", ":", "data", ".", "append", "(", "(", "a", ",", "b", ")", ")", "else", ":", "data", ".", "append", "(", "(", "b", ",", "a", ")", ")", "return", "tuple", "(", "data", ")" ]
Generate pairwise comparisons from a Bradley--Terry model. This function samples comparisons pairs independently and uniformly at random over the ``len(params)`` choose 2 possibilities, and samples the corresponding comparison outcomes from a Bradley--Terry model parametrized by ``params``. Parameters ---------- params : array_like Model parameters. n_comparisons : int Number of comparisons to be returned. Returns ------- data : list of (int, int) Pairwise-comparison samples (see :ref:`data-pairwise`).
[ "Generate", "pairwise", "comparisons", "from", "a", "Bradley", "--", "Terry", "model", "." ]
train
https://github.com/lucasmaystre/choix/blob/05a57a10bb707338113a9d91601ca528ead7a881/choix/utils.py#L286-L317
lucasmaystre/choix
choix/utils.py
generate_rankings
def generate_rankings(params, n_rankings, size=3): """Generate rankings according to a Plackett--Luce model. This function samples subsets of items (of size ``size``) independently and uniformly at random, and samples the correspoding partial ranking from a Plackett--Luce model parametrized by ``params``. Parameters ---------- params : array_like Model parameters. n_rankings : int Number of rankings to generate. size : int, optional Number of items to include in each ranking. Returns ------- data : list of numpy.ndarray A list of (partial) rankings generated according to a Plackett--Luce model with the specified model parameters. """ n = len(params) items = tuple(range(n)) params = np.asarray(params) data = list() for _ in range(n_rankings): # Pick the alternatives uniformly at random. alts = random.sample(items, size) ranking = compare(alts, params, rank=True) data.append(ranking) return tuple(data)
python
def generate_rankings(params, n_rankings, size=3): """Generate rankings according to a Plackett--Luce model. This function samples subsets of items (of size ``size``) independently and uniformly at random, and samples the correspoding partial ranking from a Plackett--Luce model parametrized by ``params``. Parameters ---------- params : array_like Model parameters. n_rankings : int Number of rankings to generate. size : int, optional Number of items to include in each ranking. Returns ------- data : list of numpy.ndarray A list of (partial) rankings generated according to a Plackett--Luce model with the specified model parameters. """ n = len(params) items = tuple(range(n)) params = np.asarray(params) data = list() for _ in range(n_rankings): # Pick the alternatives uniformly at random. alts = random.sample(items, size) ranking = compare(alts, params, rank=True) data.append(ranking) return tuple(data)
[ "def", "generate_rankings", "(", "params", ",", "n_rankings", ",", "size", "=", "3", ")", ":", "n", "=", "len", "(", "params", ")", "items", "=", "tuple", "(", "range", "(", "n", ")", ")", "params", "=", "np", ".", "asarray", "(", "params", ")", "data", "=", "list", "(", ")", "for", "_", "in", "range", "(", "n_rankings", ")", ":", "# Pick the alternatives uniformly at random.", "alts", "=", "random", ".", "sample", "(", "items", ",", "size", ")", "ranking", "=", "compare", "(", "alts", ",", "params", ",", "rank", "=", "True", ")", "data", ".", "append", "(", "ranking", ")", "return", "tuple", "(", "data", ")" ]
Generate rankings according to a Plackett--Luce model. This function samples subsets of items (of size ``size``) independently and uniformly at random, and samples the correspoding partial ranking from a Plackett--Luce model parametrized by ``params``. Parameters ---------- params : array_like Model parameters. n_rankings : int Number of rankings to generate. size : int, optional Number of items to include in each ranking. Returns ------- data : list of numpy.ndarray A list of (partial) rankings generated according to a Plackett--Luce model with the specified model parameters.
[ "Generate", "rankings", "according", "to", "a", "Plackett", "--", "Luce", "model", "." ]
train
https://github.com/lucasmaystre/choix/blob/05a57a10bb707338113a9d91601ca528ead7a881/choix/utils.py#L320-L351
lucasmaystre/choix
choix/utils.py
compare
def compare(items, params, rank=False): """Generate a comparison outcome that follows Luce's axiom. This function samples an outcome for the comparison of a subset of items, from a model parametrized by ``params``. If ``rank`` is True, it returns a ranking over the items, otherwise it returns a single item. Parameters ---------- items : list Subset of items to compare. params : array_like Model parameters. rank : bool, optional If true, returns a ranking over the items instead of a single item. Returns ------- outcome : int or list of int The chosen item, or a ranking over ``items``. """ probs = probabilities(items, params) if rank: return np.random.choice(items, size=len(items), replace=False, p=probs) else: return np.random.choice(items, p=probs)
python
def compare(items, params, rank=False): """Generate a comparison outcome that follows Luce's axiom. This function samples an outcome for the comparison of a subset of items, from a model parametrized by ``params``. If ``rank`` is True, it returns a ranking over the items, otherwise it returns a single item. Parameters ---------- items : list Subset of items to compare. params : array_like Model parameters. rank : bool, optional If true, returns a ranking over the items instead of a single item. Returns ------- outcome : int or list of int The chosen item, or a ranking over ``items``. """ probs = probabilities(items, params) if rank: return np.random.choice(items, size=len(items), replace=False, p=probs) else: return np.random.choice(items, p=probs)
[ "def", "compare", "(", "items", ",", "params", ",", "rank", "=", "False", ")", ":", "probs", "=", "probabilities", "(", "items", ",", "params", ")", "if", "rank", ":", "return", "np", ".", "random", ".", "choice", "(", "items", ",", "size", "=", "len", "(", "items", ")", ",", "replace", "=", "False", ",", "p", "=", "probs", ")", "else", ":", "return", "np", ".", "random", ".", "choice", "(", "items", ",", "p", "=", "probs", ")" ]
Generate a comparison outcome that follows Luce's axiom. This function samples an outcome for the comparison of a subset of items, from a model parametrized by ``params``. If ``rank`` is True, it returns a ranking over the items, otherwise it returns a single item. Parameters ---------- items : list Subset of items to compare. params : array_like Model parameters. rank : bool, optional If true, returns a ranking over the items instead of a single item. Returns ------- outcome : int or list of int The chosen item, or a ranking over ``items``.
[ "Generate", "a", "comparison", "outcome", "that", "follows", "Luce", "s", "axiom", "." ]
train
https://github.com/lucasmaystre/choix/blob/05a57a10bb707338113a9d91601ca528ead7a881/choix/utils.py#L354-L379
lucasmaystre/choix
choix/utils.py
probabilities
def probabilities(items, params): """Compute the comparison outcome probabilities given a subset of items. This function computes, for each item in ``items``, the probability that it would win (i.e., be chosen) in a comparison involving the items, given model parameters. Parameters ---------- items : list Subset of items to compare. params : array_like Model parameters. Returns ------- probs : numpy.ndarray A probability distribution over ``items``. """ params = np.asarray(params) return softmax(params.take(items))
python
def probabilities(items, params): """Compute the comparison outcome probabilities given a subset of items. This function computes, for each item in ``items``, the probability that it would win (i.e., be chosen) in a comparison involving the items, given model parameters. Parameters ---------- items : list Subset of items to compare. params : array_like Model parameters. Returns ------- probs : numpy.ndarray A probability distribution over ``items``. """ params = np.asarray(params) return softmax(params.take(items))
[ "def", "probabilities", "(", "items", ",", "params", ")", ":", "params", "=", "np", ".", "asarray", "(", "params", ")", "return", "softmax", "(", "params", ".", "take", "(", "items", ")", ")" ]
Compute the comparison outcome probabilities given a subset of items. This function computes, for each item in ``items``, the probability that it would win (i.e., be chosen) in a comparison involving the items, given model parameters. Parameters ---------- items : list Subset of items to compare. params : array_like Model parameters. Returns ------- probs : numpy.ndarray A probability distribution over ``items``.
[ "Compute", "the", "comparison", "outcome", "probabilities", "given", "a", "subset", "of", "items", "." ]
train
https://github.com/lucasmaystre/choix/blob/05a57a10bb707338113a9d91601ca528ead7a881/choix/utils.py#L382-L402
lucasmaystre/choix
choix/opt.py
opt_pairwise
def opt_pairwise(n_items, data, alpha=1e-6, method="Newton-CG", initial_params=None, max_iter=None, tol=1e-5): """Compute the ML estimate of model parameters using ``scipy.optimize``. This function computes the maximum-likelihood estimate of model parameters given pairwise-comparison data (see :ref:`data-pairwise`), using optimizers provided by the ``scipy.optimize`` module. If ``alpha > 0``, the function returns the maximum a-posteriori (MAP) estimate under an isotropic Gaussian prior with variance ``1 / alpha``. See :ref:`regularization` for details. Parameters ---------- n_items : int Number of distinct items. data : list of lists Pairwise-comparison data. alpha : float, optional Regularization strength. method : str, optional Optimization method. Either "BFGS" or "Newton-CG". initial_params : array_like, optional Parameters used to initialize the iterative procedure. max_iter : int, optional Maximum number of iterations allowed. tol : float, optional Tolerance for termination (method-specific). Returns ------- params : numpy.ndarray The (penalized) ML estimate of model parameters. Raises ------ ValueError If the method is not "BFGS" or "Newton-CG". """ fcts = PairwiseFcts(data, alpha) return _opt(n_items, fcts, method, initial_params, max_iter, tol)
python
def opt_pairwise(n_items, data, alpha=1e-6, method="Newton-CG", initial_params=None, max_iter=None, tol=1e-5): """Compute the ML estimate of model parameters using ``scipy.optimize``. This function computes the maximum-likelihood estimate of model parameters given pairwise-comparison data (see :ref:`data-pairwise`), using optimizers provided by the ``scipy.optimize`` module. If ``alpha > 0``, the function returns the maximum a-posteriori (MAP) estimate under an isotropic Gaussian prior with variance ``1 / alpha``. See :ref:`regularization` for details. Parameters ---------- n_items : int Number of distinct items. data : list of lists Pairwise-comparison data. alpha : float, optional Regularization strength. method : str, optional Optimization method. Either "BFGS" or "Newton-CG". initial_params : array_like, optional Parameters used to initialize the iterative procedure. max_iter : int, optional Maximum number of iterations allowed. tol : float, optional Tolerance for termination (method-specific). Returns ------- params : numpy.ndarray The (penalized) ML estimate of model parameters. Raises ------ ValueError If the method is not "BFGS" or "Newton-CG". """ fcts = PairwiseFcts(data, alpha) return _opt(n_items, fcts, method, initial_params, max_iter, tol)
[ "def", "opt_pairwise", "(", "n_items", ",", "data", ",", "alpha", "=", "1e-6", ",", "method", "=", "\"Newton-CG\"", ",", "initial_params", "=", "None", ",", "max_iter", "=", "None", ",", "tol", "=", "1e-5", ")", ":", "fcts", "=", "PairwiseFcts", "(", "data", ",", "alpha", ")", "return", "_opt", "(", "n_items", ",", "fcts", ",", "method", ",", "initial_params", ",", "max_iter", ",", "tol", ")" ]
Compute the ML estimate of model parameters using ``scipy.optimize``. This function computes the maximum-likelihood estimate of model parameters given pairwise-comparison data (see :ref:`data-pairwise`), using optimizers provided by the ``scipy.optimize`` module. If ``alpha > 0``, the function returns the maximum a-posteriori (MAP) estimate under an isotropic Gaussian prior with variance ``1 / alpha``. See :ref:`regularization` for details. Parameters ---------- n_items : int Number of distinct items. data : list of lists Pairwise-comparison data. alpha : float, optional Regularization strength. method : str, optional Optimization method. Either "BFGS" or "Newton-CG". initial_params : array_like, optional Parameters used to initialize the iterative procedure. max_iter : int, optional Maximum number of iterations allowed. tol : float, optional Tolerance for termination (method-specific). Returns ------- params : numpy.ndarray The (penalized) ML estimate of model parameters. Raises ------ ValueError If the method is not "BFGS" or "Newton-CG".
[ "Compute", "the", "ML", "estimate", "of", "model", "parameters", "using", "scipy", ".", "optimize", "." ]
train
https://github.com/lucasmaystre/choix/blob/05a57a10bb707338113a9d91601ca528ead7a881/choix/opt.py#L126-L166
lucasmaystre/choix
choix/opt.py
opt_rankings
def opt_rankings(n_items, data, alpha=1e-6, method="Newton-CG", initial_params=None, max_iter=None, tol=1e-5): """Compute the ML estimate of model parameters using ``scipy.optimize``. This function computes the maximum-likelihood estimate of model parameters given ranking data (see :ref:`data-rankings`), using optimizers provided by the ``scipy.optimize`` module. If ``alpha > 0``, the function returns the maximum a-posteriori (MAP) estimate under an isotropic Gaussian prior with variance ``1 / alpha``. See :ref:`regularization` for details. Parameters ---------- n_items : int Number of distinct items. data : list of lists Ranking data. alpha : float, optional Regularization strength. method : str, optional Optimization method. Either "BFGS" or "Newton-CG". initial_params : array_like, optional Parameters used to initialize the iterative procedure. max_iter : int, optional Maximum number of iterations allowed. tol : float, optional Tolerance for termination (method-specific). Returns ------- params : numpy.ndarray The (penalized) ML estimate of model parameters. Raises ------ ValueError If the method is not "BFGS" or "Newton-CG". """ fcts = Top1Fcts.from_rankings(data, alpha) return _opt(n_items, fcts, method, initial_params, max_iter, tol)
python
def opt_rankings(n_items, data, alpha=1e-6, method="Newton-CG", initial_params=None, max_iter=None, tol=1e-5): """Compute the ML estimate of model parameters using ``scipy.optimize``. This function computes the maximum-likelihood estimate of model parameters given ranking data (see :ref:`data-rankings`), using optimizers provided by the ``scipy.optimize`` module. If ``alpha > 0``, the function returns the maximum a-posteriori (MAP) estimate under an isotropic Gaussian prior with variance ``1 / alpha``. See :ref:`regularization` for details. Parameters ---------- n_items : int Number of distinct items. data : list of lists Ranking data. alpha : float, optional Regularization strength. method : str, optional Optimization method. Either "BFGS" or "Newton-CG". initial_params : array_like, optional Parameters used to initialize the iterative procedure. max_iter : int, optional Maximum number of iterations allowed. tol : float, optional Tolerance for termination (method-specific). Returns ------- params : numpy.ndarray The (penalized) ML estimate of model parameters. Raises ------ ValueError If the method is not "BFGS" or "Newton-CG". """ fcts = Top1Fcts.from_rankings(data, alpha) return _opt(n_items, fcts, method, initial_params, max_iter, tol)
[ "def", "opt_rankings", "(", "n_items", ",", "data", ",", "alpha", "=", "1e-6", ",", "method", "=", "\"Newton-CG\"", ",", "initial_params", "=", "None", ",", "max_iter", "=", "None", ",", "tol", "=", "1e-5", ")", ":", "fcts", "=", "Top1Fcts", ".", "from_rankings", "(", "data", ",", "alpha", ")", "return", "_opt", "(", "n_items", ",", "fcts", ",", "method", ",", "initial_params", ",", "max_iter", ",", "tol", ")" ]
Compute the ML estimate of model parameters using ``scipy.optimize``. This function computes the maximum-likelihood estimate of model parameters given ranking data (see :ref:`data-rankings`), using optimizers provided by the ``scipy.optimize`` module. If ``alpha > 0``, the function returns the maximum a-posteriori (MAP) estimate under an isotropic Gaussian prior with variance ``1 / alpha``. See :ref:`regularization` for details. Parameters ---------- n_items : int Number of distinct items. data : list of lists Ranking data. alpha : float, optional Regularization strength. method : str, optional Optimization method. Either "BFGS" or "Newton-CG". initial_params : array_like, optional Parameters used to initialize the iterative procedure. max_iter : int, optional Maximum number of iterations allowed. tol : float, optional Tolerance for termination (method-specific). Returns ------- params : numpy.ndarray The (penalized) ML estimate of model parameters. Raises ------ ValueError If the method is not "BFGS" or "Newton-CG".
[ "Compute", "the", "ML", "estimate", "of", "model", "parameters", "using", "scipy", ".", "optimize", "." ]
train
https://github.com/lucasmaystre/choix/blob/05a57a10bb707338113a9d91601ca528ead7a881/choix/opt.py#L169-L209
lucasmaystre/choix
choix/opt.py
opt_top1
def opt_top1(n_items, data, alpha=1e-6, method="Newton-CG", initial_params=None, max_iter=None, tol=1e-5): """Compute the ML estimate of model parameters using ``scipy.optimize``. This function computes the maximum-likelihood estimate of model parameters given top-1 data (see :ref:`data-top1`), using optimizers provided by the ``scipy.optimize`` module. If ``alpha > 0``, the function returns the maximum a-posteriori (MAP) estimate under an isotropic Gaussian prior with variance ``1 / alpha``. See :ref:`regularization` for details. Parameters ---------- n_items : int Number of distinct items. data : list of lists Top-1 data. alpha : float, optional Regularization strength. method : str, optional Optimization method. Either "BFGS" or "Newton-CG". initial_params : array_like, optional Parameters used to initialize the iterative procedure. max_iter : int, optional Maximum number of iterations allowed. tol : float, optional Tolerance for termination (method-specific). Returns ------- params : numpy.ndarray The (penalized) ML estimate of model parameters. Raises ------ ValueError If the method is not "BFGS" or "Newton-CG". """ fcts = Top1Fcts(data, alpha) return _opt(n_items, fcts, method, initial_params, max_iter, tol)
python
def opt_top1(n_items, data, alpha=1e-6, method="Newton-CG", initial_params=None, max_iter=None, tol=1e-5): """Compute the ML estimate of model parameters using ``scipy.optimize``. This function computes the maximum-likelihood estimate of model parameters given top-1 data (see :ref:`data-top1`), using optimizers provided by the ``scipy.optimize`` module. If ``alpha > 0``, the function returns the maximum a-posteriori (MAP) estimate under an isotropic Gaussian prior with variance ``1 / alpha``. See :ref:`regularization` for details. Parameters ---------- n_items : int Number of distinct items. data : list of lists Top-1 data. alpha : float, optional Regularization strength. method : str, optional Optimization method. Either "BFGS" or "Newton-CG". initial_params : array_like, optional Parameters used to initialize the iterative procedure. max_iter : int, optional Maximum number of iterations allowed. tol : float, optional Tolerance for termination (method-specific). Returns ------- params : numpy.ndarray The (penalized) ML estimate of model parameters. Raises ------ ValueError If the method is not "BFGS" or "Newton-CG". """ fcts = Top1Fcts(data, alpha) return _opt(n_items, fcts, method, initial_params, max_iter, tol)
[ "def", "opt_top1", "(", "n_items", ",", "data", ",", "alpha", "=", "1e-6", ",", "method", "=", "\"Newton-CG\"", ",", "initial_params", "=", "None", ",", "max_iter", "=", "None", ",", "tol", "=", "1e-5", ")", ":", "fcts", "=", "Top1Fcts", "(", "data", ",", "alpha", ")", "return", "_opt", "(", "n_items", ",", "fcts", ",", "method", ",", "initial_params", ",", "max_iter", ",", "tol", ")" ]
Compute the ML estimate of model parameters using ``scipy.optimize``. This function computes the maximum-likelihood estimate of model parameters given top-1 data (see :ref:`data-top1`), using optimizers provided by the ``scipy.optimize`` module. If ``alpha > 0``, the function returns the maximum a-posteriori (MAP) estimate under an isotropic Gaussian prior with variance ``1 / alpha``. See :ref:`regularization` for details. Parameters ---------- n_items : int Number of distinct items. data : list of lists Top-1 data. alpha : float, optional Regularization strength. method : str, optional Optimization method. Either "BFGS" or "Newton-CG". initial_params : array_like, optional Parameters used to initialize the iterative procedure. max_iter : int, optional Maximum number of iterations allowed. tol : float, optional Tolerance for termination (method-specific). Returns ------- params : numpy.ndarray The (penalized) ML estimate of model parameters. Raises ------ ValueError If the method is not "BFGS" or "Newton-CG".
[ "Compute", "the", "ML", "estimate", "of", "model", "parameters", "using", "scipy", ".", "optimize", "." ]
train
https://github.com/lucasmaystre/choix/blob/05a57a10bb707338113a9d91601ca528ead7a881/choix/opt.py#L212-L252
lucasmaystre/choix
choix/opt.py
PairwiseFcts.objective
def objective(self, params): """Compute the negative penalized log-likelihood.""" val = self._penalty * np.sum(params**2) for win, los in self._data: val += np.logaddexp(0, -(params[win] - params[los])) return val
python
def objective(self, params): """Compute the negative penalized log-likelihood.""" val = self._penalty * np.sum(params**2) for win, los in self._data: val += np.logaddexp(0, -(params[win] - params[los])) return val
[ "def", "objective", "(", "self", ",", "params", ")", ":", "val", "=", "self", ".", "_penalty", "*", "np", ".", "sum", "(", "params", "**", "2", ")", "for", "win", ",", "los", "in", "self", ".", "_data", ":", "val", "+=", "np", ".", "logaddexp", "(", "0", ",", "-", "(", "params", "[", "win", "]", "-", "params", "[", "los", "]", ")", ")", "return", "val" ]
Compute the negative penalized log-likelihood.
[ "Compute", "the", "negative", "penalized", "log", "-", "likelihood", "." ]
train
https://github.com/lucasmaystre/choix/blob/05a57a10bb707338113a9d91601ca528ead7a881/choix/opt.py#L28-L33
lucasmaystre/choix
choix/opt.py
Top1Fcts.from_rankings
def from_rankings(cls, data, penalty): """Alternative constructor for ranking data.""" top1 = list() for ranking in data: for i, winner in enumerate(ranking[:-1]): top1.append((winner, ranking[i+1:])) return cls(top1, penalty)
python
def from_rankings(cls, data, penalty): """Alternative constructor for ranking data.""" top1 = list() for ranking in data: for i, winner in enumerate(ranking[:-1]): top1.append((winner, ranking[i+1:])) return cls(top1, penalty)
[ "def", "from_rankings", "(", "cls", ",", "data", ",", "penalty", ")", ":", "top1", "=", "list", "(", ")", "for", "ranking", "in", "data", ":", "for", "i", ",", "winner", "in", "enumerate", "(", "ranking", "[", ":", "-", "1", "]", ")", ":", "top1", ".", "append", "(", "(", "winner", ",", "ranking", "[", "i", "+", "1", ":", "]", ")", ")", "return", "cls", "(", "top1", ",", "penalty", ")" ]
Alternative constructor for ranking data.
[ "Alternative", "constructor", "for", "ranking", "data", "." ]
train
https://github.com/lucasmaystre/choix/blob/05a57a10bb707338113a9d91601ca528ead7a881/choix/opt.py#L69-L75
lucasmaystre/choix
choix/opt.py
Top1Fcts.objective
def objective(self, params): """Compute the negative penalized log-likelihood.""" val = self._penalty * np.sum(params**2) for winner, losers in self._data: idx = np.append(winner, losers) val += logsumexp(params.take(idx) - params[winner]) return val
python
def objective(self, params): """Compute the negative penalized log-likelihood.""" val = self._penalty * np.sum(params**2) for winner, losers in self._data: idx = np.append(winner, losers) val += logsumexp(params.take(idx) - params[winner]) return val
[ "def", "objective", "(", "self", ",", "params", ")", ":", "val", "=", "self", ".", "_penalty", "*", "np", ".", "sum", "(", "params", "**", "2", ")", "for", "winner", ",", "losers", "in", "self", ".", "_data", ":", "idx", "=", "np", ".", "append", "(", "winner", ",", "losers", ")", "val", "+=", "logsumexp", "(", "params", ".", "take", "(", "idx", ")", "-", "params", "[", "winner", "]", ")", "return", "val" ]
Compute the negative penalized log-likelihood.
[ "Compute", "the", "negative", "penalized", "log", "-", "likelihood", "." ]
train
https://github.com/lucasmaystre/choix/blob/05a57a10bb707338113a9d91601ca528ead7a881/choix/opt.py#L77-L83
lucasmaystre/choix
choix/mm.py
_mm
def _mm(n_items, data, initial_params, alpha, max_iter, tol, mm_fun): """ Iteratively refine MM estimates until convergence. Raises ------ RuntimeError If the algorithm does not converge after `max_iter` iterations. """ if initial_params is None: params = np.zeros(n_items) else: params = initial_params converged = NormOfDifferenceTest(tol=tol, order=1) for _ in range(max_iter): nums, denoms = mm_fun(n_items, data, params) params = log_transform((nums + alpha) / (denoms + alpha)) if converged(params): return params raise RuntimeError("Did not converge after {} iterations".format(max_iter))
python
def _mm(n_items, data, initial_params, alpha, max_iter, tol, mm_fun): """ Iteratively refine MM estimates until convergence. Raises ------ RuntimeError If the algorithm does not converge after `max_iter` iterations. """ if initial_params is None: params = np.zeros(n_items) else: params = initial_params converged = NormOfDifferenceTest(tol=tol, order=1) for _ in range(max_iter): nums, denoms = mm_fun(n_items, data, params) params = log_transform((nums + alpha) / (denoms + alpha)) if converged(params): return params raise RuntimeError("Did not converge after {} iterations".format(max_iter))
[ "def", "_mm", "(", "n_items", ",", "data", ",", "initial_params", ",", "alpha", ",", "max_iter", ",", "tol", ",", "mm_fun", ")", ":", "if", "initial_params", "is", "None", ":", "params", "=", "np", ".", "zeros", "(", "n_items", ")", "else", ":", "params", "=", "initial_params", "converged", "=", "NormOfDifferenceTest", "(", "tol", "=", "tol", ",", "order", "=", "1", ")", "for", "_", "in", "range", "(", "max_iter", ")", ":", "nums", ",", "denoms", "=", "mm_fun", "(", "n_items", ",", "data", ",", "params", ")", "params", "=", "log_transform", "(", "(", "nums", "+", "alpha", ")", "/", "(", "denoms", "+", "alpha", ")", ")", "if", "converged", "(", "params", ")", ":", "return", "params", "raise", "RuntimeError", "(", "\"Did not converge after {} iterations\"", ".", "format", "(", "max_iter", ")", ")" ]
Iteratively refine MM estimates until convergence. Raises ------ RuntimeError If the algorithm does not converge after `max_iter` iterations.
[ "Iteratively", "refine", "MM", "estimates", "until", "convergence", "." ]
train
https://github.com/lucasmaystre/choix/blob/05a57a10bb707338113a9d91601ca528ead7a881/choix/mm.py#L10-L29
lucasmaystre/choix
choix/mm.py
_mm_pairwise
def _mm_pairwise(n_items, data, params): """Inner loop of MM algorithm for pairwise data.""" weights = exp_transform(params) wins = np.zeros(n_items, dtype=float) denoms = np.zeros(n_items, dtype=float) for winner, loser in data: wins[winner] += 1.0 val = 1.0 / (weights[winner] + weights[loser]) denoms[winner] += val denoms[loser] += val return wins, denoms
python
def _mm_pairwise(n_items, data, params): """Inner loop of MM algorithm for pairwise data.""" weights = exp_transform(params) wins = np.zeros(n_items, dtype=float) denoms = np.zeros(n_items, dtype=float) for winner, loser in data: wins[winner] += 1.0 val = 1.0 / (weights[winner] + weights[loser]) denoms[winner] += val denoms[loser] += val return wins, denoms
[ "def", "_mm_pairwise", "(", "n_items", ",", "data", ",", "params", ")", ":", "weights", "=", "exp_transform", "(", "params", ")", "wins", "=", "np", ".", "zeros", "(", "n_items", ",", "dtype", "=", "float", ")", "denoms", "=", "np", ".", "zeros", "(", "n_items", ",", "dtype", "=", "float", ")", "for", "winner", ",", "loser", "in", "data", ":", "wins", "[", "winner", "]", "+=", "1.0", "val", "=", "1.0", "/", "(", "weights", "[", "winner", "]", "+", "weights", "[", "loser", "]", ")", "denoms", "[", "winner", "]", "+=", "val", "denoms", "[", "loser", "]", "+=", "val", "return", "wins", ",", "denoms" ]
Inner loop of MM algorithm for pairwise data.
[ "Inner", "loop", "of", "MM", "algorithm", "for", "pairwise", "data", "." ]
train
https://github.com/lucasmaystre/choix/blob/05a57a10bb707338113a9d91601ca528ead7a881/choix/mm.py#L32-L42
lucasmaystre/choix
choix/mm.py
mm_pairwise
def mm_pairwise( n_items, data, initial_params=None, alpha=0.0, max_iter=10000, tol=1e-8): """Compute the ML estimate of model parameters using the MM algorithm. This function computes the maximum-likelihood (ML) estimate of model parameters given pairwise-comparison data (see :ref:`data-pairwise`), using the minorization-maximization (MM) algorithm [Hun04]_, [CD12]_. If ``alpha > 0``, the function returns the maximum a-posteriori (MAP) estimate under a (peaked) Dirichlet prior. See :ref:`regularization` for details. Parameters ---------- n_items : int Number of distinct items. data : list of lists Pairwise-comparison data. initial_params : array_like, optional Parameters used to initialize the iterative procedure. alpha : float, optional Regularization parameter. max_iter : int, optional Maximum number of iterations allowed. tol : float, optional Maximum L1-norm of the difference between successive iterates to declare convergence. Returns ------- params : numpy.ndarray The ML estimate of model parameters. """ return _mm( n_items, data, initial_params, alpha, max_iter, tol, _mm_pairwise)
python
def mm_pairwise( n_items, data, initial_params=None, alpha=0.0, max_iter=10000, tol=1e-8): """Compute the ML estimate of model parameters using the MM algorithm. This function computes the maximum-likelihood (ML) estimate of model parameters given pairwise-comparison data (see :ref:`data-pairwise`), using the minorization-maximization (MM) algorithm [Hun04]_, [CD12]_. If ``alpha > 0``, the function returns the maximum a-posteriori (MAP) estimate under a (peaked) Dirichlet prior. See :ref:`regularization` for details. Parameters ---------- n_items : int Number of distinct items. data : list of lists Pairwise-comparison data. initial_params : array_like, optional Parameters used to initialize the iterative procedure. alpha : float, optional Regularization parameter. max_iter : int, optional Maximum number of iterations allowed. tol : float, optional Maximum L1-norm of the difference between successive iterates to declare convergence. Returns ------- params : numpy.ndarray The ML estimate of model parameters. """ return _mm( n_items, data, initial_params, alpha, max_iter, tol, _mm_pairwise)
[ "def", "mm_pairwise", "(", "n_items", ",", "data", ",", "initial_params", "=", "None", ",", "alpha", "=", "0.0", ",", "max_iter", "=", "10000", ",", "tol", "=", "1e-8", ")", ":", "return", "_mm", "(", "n_items", ",", "data", ",", "initial_params", ",", "alpha", ",", "max_iter", ",", "tol", ",", "_mm_pairwise", ")" ]
Compute the ML estimate of model parameters using the MM algorithm. This function computes the maximum-likelihood (ML) estimate of model parameters given pairwise-comparison data (see :ref:`data-pairwise`), using the minorization-maximization (MM) algorithm [Hun04]_, [CD12]_. If ``alpha > 0``, the function returns the maximum a-posteriori (MAP) estimate under a (peaked) Dirichlet prior. See :ref:`regularization` for details. Parameters ---------- n_items : int Number of distinct items. data : list of lists Pairwise-comparison data. initial_params : array_like, optional Parameters used to initialize the iterative procedure. alpha : float, optional Regularization parameter. max_iter : int, optional Maximum number of iterations allowed. tol : float, optional Maximum L1-norm of the difference between successive iterates to declare convergence. Returns ------- params : numpy.ndarray The ML estimate of model parameters.
[ "Compute", "the", "ML", "estimate", "of", "model", "parameters", "using", "the", "MM", "algorithm", "." ]
train
https://github.com/lucasmaystre/choix/blob/05a57a10bb707338113a9d91601ca528ead7a881/choix/mm.py#L45-L80
lucasmaystre/choix
choix/mm.py
_mm_rankings
def _mm_rankings(n_items, data, params): """Inner loop of MM algorithm for ranking data.""" weights = exp_transform(params) wins = np.zeros(n_items, dtype=float) denoms = np.zeros(n_items, dtype=float) for ranking in data: sum_ = weights.take(ranking).sum() for i, winner in enumerate(ranking[:-1]): wins[winner] += 1 val = 1.0 / sum_ for item in ranking[i:]: denoms[item] += val sum_ -= weights[winner] return wins, denoms
python
def _mm_rankings(n_items, data, params): """Inner loop of MM algorithm for ranking data.""" weights = exp_transform(params) wins = np.zeros(n_items, dtype=float) denoms = np.zeros(n_items, dtype=float) for ranking in data: sum_ = weights.take(ranking).sum() for i, winner in enumerate(ranking[:-1]): wins[winner] += 1 val = 1.0 / sum_ for item in ranking[i:]: denoms[item] += val sum_ -= weights[winner] return wins, denoms
[ "def", "_mm_rankings", "(", "n_items", ",", "data", ",", "params", ")", ":", "weights", "=", "exp_transform", "(", "params", ")", "wins", "=", "np", ".", "zeros", "(", "n_items", ",", "dtype", "=", "float", ")", "denoms", "=", "np", ".", "zeros", "(", "n_items", ",", "dtype", "=", "float", ")", "for", "ranking", "in", "data", ":", "sum_", "=", "weights", ".", "take", "(", "ranking", ")", ".", "sum", "(", ")", "for", "i", ",", "winner", "in", "enumerate", "(", "ranking", "[", ":", "-", "1", "]", ")", ":", "wins", "[", "winner", "]", "+=", "1", "val", "=", "1.0", "/", "sum_", "for", "item", "in", "ranking", "[", "i", ":", "]", ":", "denoms", "[", "item", "]", "+=", "val", "sum_", "-=", "weights", "[", "winner", "]", "return", "wins", ",", "denoms" ]
Inner loop of MM algorithm for ranking data.
[ "Inner", "loop", "of", "MM", "algorithm", "for", "ranking", "data", "." ]
train
https://github.com/lucasmaystre/choix/blob/05a57a10bb707338113a9d91601ca528ead7a881/choix/mm.py#L83-L96
lucasmaystre/choix
choix/mm.py
mm_rankings
def mm_rankings(n_items, data, initial_params=None, alpha=0.0, max_iter=10000, tol=1e-8): """Compute the ML estimate of model parameters using the MM algorithm. This function computes the maximum-likelihood (ML) estimate of model parameters given ranking data (see :ref:`data-rankings`), using the minorization-maximization (MM) algorithm [Hun04]_, [CD12]_. If ``alpha > 0``, the function returns the maximum a-posteriori (MAP) estimate under a (peaked) Dirichlet prior. See :ref:`regularization` for details. Parameters ---------- n_items : int Number of distinct items. data : list of lists Ranking data. initial_params : array_like, optional Parameters used to initialize the iterative procedure. alpha : float, optional Regularization parameter. max_iter : int, optional Maximum number of iterations allowed. tol : float, optional Maximum L1-norm of the difference between successive iterates to declare convergence. Returns ------- params : numpy.ndarray The ML estimate of model parameters. """ return _mm(n_items, data, initial_params, alpha, max_iter, tol, _mm_rankings)
python
def mm_rankings(n_items, data, initial_params=None, alpha=0.0, max_iter=10000, tol=1e-8): """Compute the ML estimate of model parameters using the MM algorithm. This function computes the maximum-likelihood (ML) estimate of model parameters given ranking data (see :ref:`data-rankings`), using the minorization-maximization (MM) algorithm [Hun04]_, [CD12]_. If ``alpha > 0``, the function returns the maximum a-posteriori (MAP) estimate under a (peaked) Dirichlet prior. See :ref:`regularization` for details. Parameters ---------- n_items : int Number of distinct items. data : list of lists Ranking data. initial_params : array_like, optional Parameters used to initialize the iterative procedure. alpha : float, optional Regularization parameter. max_iter : int, optional Maximum number of iterations allowed. tol : float, optional Maximum L1-norm of the difference between successive iterates to declare convergence. Returns ------- params : numpy.ndarray The ML estimate of model parameters. """ return _mm(n_items, data, initial_params, alpha, max_iter, tol, _mm_rankings)
[ "def", "mm_rankings", "(", "n_items", ",", "data", ",", "initial_params", "=", "None", ",", "alpha", "=", "0.0", ",", "max_iter", "=", "10000", ",", "tol", "=", "1e-8", ")", ":", "return", "_mm", "(", "n_items", ",", "data", ",", "initial_params", ",", "alpha", ",", "max_iter", ",", "tol", ",", "_mm_rankings", ")" ]
Compute the ML estimate of model parameters using the MM algorithm. This function computes the maximum-likelihood (ML) estimate of model parameters given ranking data (see :ref:`data-rankings`), using the minorization-maximization (MM) algorithm [Hun04]_, [CD12]_. If ``alpha > 0``, the function returns the maximum a-posteriori (MAP) estimate under a (peaked) Dirichlet prior. See :ref:`regularization` for details. Parameters ---------- n_items : int Number of distinct items. data : list of lists Ranking data. initial_params : array_like, optional Parameters used to initialize the iterative procedure. alpha : float, optional Regularization parameter. max_iter : int, optional Maximum number of iterations allowed. tol : float, optional Maximum L1-norm of the difference between successive iterates to declare convergence. Returns ------- params : numpy.ndarray The ML estimate of model parameters.
[ "Compute", "the", "ML", "estimate", "of", "model", "parameters", "using", "the", "MM", "algorithm", "." ]
train
https://github.com/lucasmaystre/choix/blob/05a57a10bb707338113a9d91601ca528ead7a881/choix/mm.py#L99-L133
lucasmaystre/choix
choix/mm.py
_mm_top1
def _mm_top1(n_items, data, params): """Inner loop of MM algorithm for top1 data.""" weights = exp_transform(params) wins = np.zeros(n_items, dtype=float) denoms = np.zeros(n_items, dtype=float) for winner, losers in data: wins[winner] += 1 val = 1 / (weights.take(losers).sum() + weights[winner]) for item in itertools.chain([winner], losers): denoms[item] += val return wins, denoms
python
def _mm_top1(n_items, data, params): """Inner loop of MM algorithm for top1 data.""" weights = exp_transform(params) wins = np.zeros(n_items, dtype=float) denoms = np.zeros(n_items, dtype=float) for winner, losers in data: wins[winner] += 1 val = 1 / (weights.take(losers).sum() + weights[winner]) for item in itertools.chain([winner], losers): denoms[item] += val return wins, denoms
[ "def", "_mm_top1", "(", "n_items", ",", "data", ",", "params", ")", ":", "weights", "=", "exp_transform", "(", "params", ")", "wins", "=", "np", ".", "zeros", "(", "n_items", ",", "dtype", "=", "float", ")", "denoms", "=", "np", ".", "zeros", "(", "n_items", ",", "dtype", "=", "float", ")", "for", "winner", ",", "losers", "in", "data", ":", "wins", "[", "winner", "]", "+=", "1", "val", "=", "1", "/", "(", "weights", ".", "take", "(", "losers", ")", ".", "sum", "(", ")", "+", "weights", "[", "winner", "]", ")", "for", "item", "in", "itertools", ".", "chain", "(", "[", "winner", "]", ",", "losers", ")", ":", "denoms", "[", "item", "]", "+=", "val", "return", "wins", ",", "denoms" ]
Inner loop of MM algorithm for top1 data.
[ "Inner", "loop", "of", "MM", "algorithm", "for", "top1", "data", "." ]
train
https://github.com/lucasmaystre/choix/blob/05a57a10bb707338113a9d91601ca528ead7a881/choix/mm.py#L136-L146
lucasmaystre/choix
choix/mm.py
mm_top1
def mm_top1( n_items, data, initial_params=None, alpha=0.0, max_iter=10000, tol=1e-8): """Compute the ML estimate of model parameters using the MM algorithm. This function computes the maximum-likelihood (ML) estimate of model parameters given top-1 data (see :ref:`data-top1`), using the minorization-maximization (MM) algorithm [Hun04]_, [CD12]_. If ``alpha > 0``, the function returns the maximum a-posteriori (MAP) estimate under a (peaked) Dirichlet prior. See :ref:`regularization` for details. Parameters ---------- n_items : int Number of distinct items. data : list of lists Top-1 data. initial_params : array_like, optional Parameters used to initialize the iterative procedure. alpha : float, optional Regularization parameter. max_iter : int, optional Maximum number of iterations allowed. tol : float, optional Maximum L1-norm of the difference between successive iterates to declare convergence. Returns ------- params : numpy.ndarray The ML estimate of model parameters. """ return _mm(n_items, data, initial_params, alpha, max_iter, tol, _mm_top1)
python
def mm_top1( n_items, data, initial_params=None, alpha=0.0, max_iter=10000, tol=1e-8): """Compute the ML estimate of model parameters using the MM algorithm. This function computes the maximum-likelihood (ML) estimate of model parameters given top-1 data (see :ref:`data-top1`), using the minorization-maximization (MM) algorithm [Hun04]_, [CD12]_. If ``alpha > 0``, the function returns the maximum a-posteriori (MAP) estimate under a (peaked) Dirichlet prior. See :ref:`regularization` for details. Parameters ---------- n_items : int Number of distinct items. data : list of lists Top-1 data. initial_params : array_like, optional Parameters used to initialize the iterative procedure. alpha : float, optional Regularization parameter. max_iter : int, optional Maximum number of iterations allowed. tol : float, optional Maximum L1-norm of the difference between successive iterates to declare convergence. Returns ------- params : numpy.ndarray The ML estimate of model parameters. """ return _mm(n_items, data, initial_params, alpha, max_iter, tol, _mm_top1)
[ "def", "mm_top1", "(", "n_items", ",", "data", ",", "initial_params", "=", "None", ",", "alpha", "=", "0.0", ",", "max_iter", "=", "10000", ",", "tol", "=", "1e-8", ")", ":", "return", "_mm", "(", "n_items", ",", "data", ",", "initial_params", ",", "alpha", ",", "max_iter", ",", "tol", ",", "_mm_top1", ")" ]
Compute the ML estimate of model parameters using the MM algorithm. This function computes the maximum-likelihood (ML) estimate of model parameters given top-1 data (see :ref:`data-top1`), using the minorization-maximization (MM) algorithm [Hun04]_, [CD12]_. If ``alpha > 0``, the function returns the maximum a-posteriori (MAP) estimate under a (peaked) Dirichlet prior. See :ref:`regularization` for details. Parameters ---------- n_items : int Number of distinct items. data : list of lists Top-1 data. initial_params : array_like, optional Parameters used to initialize the iterative procedure. alpha : float, optional Regularization parameter. max_iter : int, optional Maximum number of iterations allowed. tol : float, optional Maximum L1-norm of the difference between successive iterates to declare convergence. Returns ------- params : numpy.ndarray The ML estimate of model parameters.
[ "Compute", "the", "ML", "estimate", "of", "model", "parameters", "using", "the", "MM", "algorithm", "." ]
train
https://github.com/lucasmaystre/choix/blob/05a57a10bb707338113a9d91601ca528ead7a881/choix/mm.py#L149-L183
lucasmaystre/choix
choix/mm.py
_choicerank
def _choicerank(n_items, data, params): """Inner loop of ChoiceRank algorithm.""" weights = exp_transform(params) adj, adj_t, traffic_in, traffic_out = data # First phase of message passing. zs = adj.dot(weights) # Second phase of message passing. with np.errstate(invalid="ignore"): denoms = adj_t.dot(traffic_out / zs) return traffic_in, denoms
python
def _choicerank(n_items, data, params): """Inner loop of ChoiceRank algorithm.""" weights = exp_transform(params) adj, adj_t, traffic_in, traffic_out = data # First phase of message passing. zs = adj.dot(weights) # Second phase of message passing. with np.errstate(invalid="ignore"): denoms = adj_t.dot(traffic_out / zs) return traffic_in, denoms
[ "def", "_choicerank", "(", "n_items", ",", "data", ",", "params", ")", ":", "weights", "=", "exp_transform", "(", "params", ")", "adj", ",", "adj_t", ",", "traffic_in", ",", "traffic_out", "=", "data", "# First phase of message passing.", "zs", "=", "adj", ".", "dot", "(", "weights", ")", "# Second phase of message passing.", "with", "np", ".", "errstate", "(", "invalid", "=", "\"ignore\"", ")", ":", "denoms", "=", "adj_t", ".", "dot", "(", "traffic_out", "/", "zs", ")", "return", "traffic_in", ",", "denoms" ]
Inner loop of ChoiceRank algorithm.
[ "Inner", "loop", "of", "ChoiceRank", "algorithm", "." ]
train
https://github.com/lucasmaystre/choix/blob/05a57a10bb707338113a9d91601ca528ead7a881/choix/mm.py#L186-L195