entry
stringlengths 6
10
| entry_name
stringlengths 5
11
| protein_name
stringlengths 3
2.44k
| sequence
stringlengths 2
35.2k
| function
stringlengths 7
11k
|
---|---|---|---|---|
A0A0D2UG83 | H2AY_CAPO3 | Histone macroH2A1.1 | MAKSKKIVAATSGSRSRSSRAGLAFPVGRVHRLLRKGHFADRIGSGSAVYLAAVLEYLTAEILELAGNAARDNRKTRINPRHIQLAVRNDEELSKLFTGVVIPSGGTLPHIWPALIPNEAKDSSTASASFNAPAKSATVKALAAAKSAGKKPAAVSSSSAAASSSSSASSSSSVAPKKPVRGFTILSKKTLHLGQTLYVVNGDLTEVRCDAVVHPTNGTMSFAGQVGGAIRAAAGAGVDAEVNSYMSEHSQLQVTKAAITSGHNLPSKWIVHVHSPNYSNAATATDALTQTIRNALTLADTKSIKTIAFPSIGSGNNHFPKHIAAQTILQAISAYFMSIMSSSIKEVYFVLFDQESINVYNAELINTN | Variant histone H2A which replaces conventional H2A in a subset of nucleosomes where it represses transcription. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. Specifically binds poly-ADP-ribose and plays a key role in NAD(+) metabolism. Able to bind to the ends of poly-ADP-ribose chains created by PARP1 and cap them. This prevents PARP1 from further addition of ADP-ribose and thus limits the consumption of nuclear NAD(+), allowing the cell to maintain proper NAD(+) levels in both the nucleus and the mitochondria to promote proper mitochondrial respiration. |
A0A0D2Y5A7 | ODP2_FUSO4 | Dihydrolipoyllysine-residue acetyltransferase component of pyruvate dehydrogenase complex, mitochondrial (EC 2.3.1.12) (FoDLAT) (DLAT) | MLSAALRRRVLAPTHSALRTGFAAHVVRHYASFPEHQVIKMPALSPTMQAGNIGAWQKKPGDSIAPGDVLVEIETDKAQMDFEFQEEGVIAKILKDAGEKDIPVGSPIAVLVEEGTDISAFEKFSIEDAGGDAAKPAAPKKEEKSESKSESASAPEPTPEPQQYQSQGRLQTALDRLPNISASAKRLAREKGISIDGLKGTGKNGQITEEDVKKAISSPAASSAPSATYEDIPISGMRKTIANRLVESTQTNPHFYVTSSISVSKLLKLRQALNSSADGKYKLSVNDFLIKAIAVASRKVPQVNSSWRDGNIRQFNNVDVSVAVSTPTGLITPIVTGVEGRGLEAISSQVKSLAKKARDGKLKPEEYQGGTISISNMGMNPAVDHFTAVINPPQAAILAVGTTKKVAIPAENEAGVEFDDQITLTASFDHKVVDGAVGAEWLKELKQVLENPLELLL | The pyruvate dehydrogenase complex catalyzes the overall conversion of pyruvate to acetyl-CoA and CO(2). High pyruvate dehydrogenase complex activity is required for sufficient energy production during germination of conidia. |
A0A0D4WTV1 | B1D1_LOXAR | Dermonecrotic toxin LarSicTox-betaID1 (EC 4.6.1.-) (Phospholipase D) (PLD) (Sphingomyelin phosphodiesterase D) (SMD) (SMase D) (Sphingomyelinase D) | EGAEQDGSERTDGGRPIWNIAHMVNNKQAIDKYLDKGANSVESDVSFDSDGKPEKMLHGIPCDCGRKCLNQMSFTDYLDYMRQLTTPGDPKFRENLILIMLDLKLKSVAANLAYSSGQEVALQMLNTYWKRGESGARAYIVLSIPTIKRVTFVRGFYDKLHSEGFDQYREKVGVDFSGNEDLDETGRILSSQNILDHIWQSDGITNCIFRVMTRLKKAINKRDSNGYMVKVYYWSVDKYTIMRKTLRAGADGMITNFPDRLVSVLNEREFSGKFRLATYDDNPWERYKA | Dermonecrotic toxins cleave the phosphodiester linkage between the phosphate and headgroup of certain phospholipids (sphingolipid and lysolipid substrates), forming an alcohol (often choline) and a cyclic phosphate. This toxin acts on sphingomyelin (SM) and on ceramide phosphoethanolamine (CPE) with high activity. It also acts on lysophosphatidylcholine (LPC) and on lysophosphatidylethanolamine (LPE) with moderate activity. It is not active on lysophosphatidylserine (LPS), and lysophosphatidylglycerol (LPG). It acts by transphosphatidylation, releasing exclusively cyclic phosphate as second products. It is not surprising that spider toxins have affinity for ethanolamine-containing sphingolipids since they are common in insect prey. On mammals, induces dermonecrosis, hemolysis, increased vascular permeability, edema, inflammatory response, and platelet aggregation (By similarity). |
A0A0D4WV12 | BIB11_SICTE | Dermonecrotic toxin StSicTox-betaIB1i (EC 4.6.1.-) (Phospholipase D) (PLD) (Sphingomyelin phosphodiesterase D) (SMD) (SMase D) (Sphingomyelinase D) | GDSRRPIWNIAHMVNDLDLVDEYLDDGANSLELDVEFSKSGTALRTYHGVPCDCFRSCTRSEKFSKYLDYIRQLTTPGNSKFRSRLILLVLDLKLNPLSSSAAYNAGADVARNLLDNYWQRGDSKARAYIVLSLETIAGAEFITGFKDTMKKEGFDEKYYDKIGWDFSGNEDLGKIRDVLESHGIREHIWQGDGITNCLPRDDNRLKQAISRRYSPTYVYADKVYTWSIDKESSIENALRLGVDGVMTNYPARVISVLGEREFSGKLRLATYDDNPWEK | Dermonecrotic toxins cleave the phosphodiester linkage between the phosphate and headgroup of certain phospholipids (sphingolipid and lysolipid substrates), forming an alcohol (often choline) and a cyclic phosphate. This toxin acts on lysophosphatidylethanolamine (LPE) and ceramide phosphoethanolamine (CPE) with high activity. This toxin acts on sphingomyelin (SM) with very low activity and is not active on lysophosphatidylserine (LPS), lysophosphatidylcholine (LPC) and lysophosphatidylglycerol (LPG). It acts by transphosphatidylation, releasing exclusively cyclic phosphate as second products. It is not surprising that spider toxins have affinity for ethanolamine-containing sphingolipids since they are common in insect prey. Induces dermonecrosis, hemolysis, increased vascular permeability, edema, inflammatory response, and platelet aggregation (By similarity). |
A0A0D9S1R0 | APOE_CHLSB | Apolipoprotein E (Apo-E) | MKVLWAALLVTFLAGCQAAADAPIKVEQPVEPETEPELRPQTEWQSGQPWELALGRFWDYLRWVQTLSEQVQEELLSPQVTQELTTLMDETMKELKAYKSELEEQLSPVAEETRARLSKELQAAQARLGADMEDVRSRLVQYRSEVQAMLGQSTEELRARLASHLRKLRKRLLRDADDLQKRLAVYQAGAREGAERGVSAIRERLGPLVEQGRVRAATVGSLASQPLQERAQALGERLRARMEEMGSRTRDRLDEVKEQVAEVRAKLEEQAQQISLQAEAFQARLKSWFEPLVEDMQRQWAGLVEKVQAAVGASTAPVPSDNH | APOE is an apolipoprotein, a protein associating with lipid particles, that mainly functions in lipoprotein-mediated lipid transport between organs via the plasma and interstitial fluids. APOE is a core component of plasma lipoproteins and is involved in their production, conversion and clearance. Apolipoproteins are amphipathic molecules that interact both with lipids of the lipoprotein particle core and the aqueous environment of the plasma. As such, APOE associates with chylomicrons, chylomicron remnants, very low density lipoproteins (VLDL) and intermediate density lipoproteins (IDL) but shows a preferential binding to high-density lipoproteins (HDL). It also binds a wide range of cellular receptors including the LDL receptor/LDLR, the LDL receptor-related proteins LRP1, LRP2 and LRP8 and the very low-density lipoprotein receptor/VLDLR that mediate the cellular uptake of the APOE-containing lipoprotein particles. Finally, APOE has also a heparin-binding activity and binds heparan-sulfate proteoglycans on the surface of cells, a property that supports the capture and the receptor-mediated uptake of APOE-containing lipoproteins by cells. A main function of APOE is to mediate lipoprotein clearance through the uptake of chylomicrons, VLDLs, and HDLs by hepatocytes. APOE is also involved in the biosynthesis by the liver of VLDLs as well as their uptake by peripheral tissues ensuring the delivery of triglycerides and energy storage in muscle, heart and adipose tissues. By participating in the lipoprotein-mediated distribution of lipids among tissues, APOE plays a critical role in plasma and tissues lipid homeostasis. APOE is also involved in two steps of reverse cholesterol transport, the HDLs-mediated transport of cholesterol from peripheral tissues to the liver, and thereby plays an important role in cholesterol homeostasis. First, it is functionally associated with ABCA1 in the biogenesis of HDLs in tissues. Second, it is enriched in circulating HDLs and mediates their uptake by hepatocytes. APOE also plays an important role in lipid transport in the central nervous system, regulating neuron survival and sprouting. |
A0A0E3D8M9 | JANG_PENJA | Geranylgeranyl pyrophosphate synthase janG (GGPP synthase) (GGPPSase) (EC 2.5.1.-) ((2E,6E)-farnesyl diphosphate synthase) (Dimethylallyltranstransferase) (EC 2.5.1.1) (Farnesyl diphosphate synthase) (Farnesyltranstransferase) (EC 2.5.1.29) (Geranylgeranyl diphosphate synthase) (Geranyltranstransferase) (EC 2.5.1.10) (Janthitremanes biosynthesis cluster protein G) | MLYFLAETIFGFICQYVPIGFWNGYSPAPTDRYRRLDLKSSQGFRAEPNLAPLPTTKPRRERYYGPNQIIRAPLDYLLSIPGKDIRGKLINAFNEWLQLPDDKLAIVKEVINLLHTASLLIDDIQDGSRLRRGRPVAHEVFGVAQTINAANYAYFLQQERLSEIGDPRAFHIFTNALLDLHRGQGMDLYWREAVVCPTEEEYIRMVIYKTGGLFRLALELMQVQSNSTTDFSELVELLGIIFQIRDDYMNLQSGLYAEKKGSMEDLTEGKFSYPVIHSIHAAPENSMLVDILKQRTEDNVVKVRAVHYMESTGSFQYCRENLARLTKQARHHVKELEVSLGPNRGIHAILDLLHVQQPNEKPLV | Geranylgeranyl pyrophosphate synthase part of the gene cluster that mediates the biosynthesis of the indole diterpenes janthitremanes such as shearinine K or shearinine A. The geranylgeranyl diphosphate (GGPP) synthase janG catalyzes the first step in janthitremane biosynthesis via conversion of farnesyl pyrophosphate and isopentyl pyrophosphate into geranylgeranyl pyrophosphate (GGPP). Condensation of indole-3-glycerol phosphate with GGPP by the prenyl transferase janC then forms 3-geranylgeranylindole (3-GGI). Epoxidation by the FAD-dependent monooxygenase janM leads to a epoxidized-GGI that is substrate of the terpene cyclase janB for cyclization to yield paspaline. Paspaline is subsequently converted to 13-desoxypaspaline by the cytochrome P450 monooxygenase janP, via beta-PC-M6 in a series of alpha-face oxidations (Probable). The cytochrome P450 monooxygenase janQ is proposed to carry out sequential beta-face oxidation steps at C-7 and C-13 of 13-desoxypaspaline to form paspalicine and paspalinine respectively (Probable). The indole diterpene prenyltransferase janD may then convert paspalinine into shearinine K which is substrate of janO and/or additional enzymes for oxidation and cyclization to generate shearinine A (Probable). |
A0A0E3D8P4 | PENG_PENCR | Geranylgeranyl pyrophosphate synthase penG (GGPP synthase) (GGPPSase) (EC 2.5.1.-) ((2E,6E)-farnesyl diphosphate synthase) (Dimethylallyltranstransferase) (EC 2.5.1.1) (Farnesyl diphosphate synthase) (Farnesyltranstransferase) (EC 2.5.1.29) (Geranylgeranyl diphosphate synthase) (Geranyltranstransferase) (EC 2.5.1.10) (Penitrem biosynthesis cluster protein G) | MLFLAPGYIFPNVATPVTVAIDFAQAVKQGAYNVLDLKASPIPNPELFQPPSRIIRGPLNYLLSLPGKDIRGKLIDALNEWFRVPEDKLNIIKEIVVILHTASLLIDDIQDSSELRRGNPVAHRIFGVAQTINSANYAYFLAQAKLADLNDSRAFDIFTKGLLKLHRGQGMELYWRDNLICPTEEEYVEMVSCKTGGLFYLAVQLMQLNSEVTVNFSNFINLLGIIFQIRDDYMNLQSGTMTKTKGFSEDLTEGKFGYPIIHSIHAAPNDSQLIQILKLKTKDEVIKQYAVRYIESTGSFVYCREKLDMYLEEANETFRGLEMLLGPSKGIRAILDFLRTR | Geranylgeranyl pyrophosphate synthase part of the gene cluster that mediates the biosynthesis of the indole diterpenes penitrems. The geranylgeranyl diphosphate (GGPP) synthase penG catalyzes the first step in penitrem biosynthesis via conversion of farnesyl pyrophosphate and isopentyl pyrophosphate into geranylgeranyl pyrophosphate (GGPP) (Probable). Condensation of indole-3-glycerol phosphate with GGPP by the prenyl transferase penC then forms 3-geranylgeranylindole (3-GGI) (Probable). Epoxidation by the FAD-dependent monooxygenase penM leads to a epoxidized-GGI that is substrate of the terpene cyclase penB for cyclization to yield paspaline (Probable). Paspaline is subsequently converted to 13-desoxypaxilline by the cytochrome P450 monooxygenase penP, the latter being then converted to paxilline by the cytochrome P450 monooxygenase penQ. Paxilline is converted to beta-paxitriol via C-10 ketoreduction by the short-chain dehydrogenase PC-15 which can be monoprenylated at the C-20 by the indole diterpene prenyltransferase penD (Probable). A two-step elimination (acetylation and elimination) process performed by the O-acetyltransferase PC-16 and the P.simplicissimum ptmI-ortholog not yet identified in P.crustosum, leads to the production of the prenylated form of penijanthine (Probable). The FAD-linked oxidoreductase ptmO then converts the prenylated form of penijanthine into PC-M5 which is in turn transformed into PC-M4 by the aromatic dimethylallyltransferase PC-22 (Probable). A series of oxidation steps involving 4 cytochrome P450 monooxygenases (PC-21, PC-05, PC-23, PC-20) and a FAD-dependent monooxygenase (PC-14) are required for the transformation of PC-M4 to penitrems A and E. Synthesis of these final products is proposed to proceed via penitrems D and C (PC-21, PC-05, PC-14) and penitrems B and F (PC-21, PC-05, PC-14, PC-23) (Probable). |
A0A0E3KBH3 | OFOB_SACSO | 2-oxoacid:ferredoxin oxidoreductase subunit beta (OFOR) (EC 1.2.7.11) | MAGLKVEWNDWCPGCGNFGILSAEQQAIQELGLDPKKVVLVSGIGCSGKIPHFIRLPASGVHTLHGRALTFAIGIKLANPSLEVIVNGGDGDQLGIGVGHFVSAGRRNVDLTVIVHNNGVYGLTKGQASPTLKLGVKTKSLPKPNINSDINPIALAISSGYTFVARGYAYDVKHLKEIIKKAIKHKGLAMIDVLQPCPTYNDIHTKEYYDKRVYKLDEDPSWDPIVKKPEEMDDKMSKAILKSMEWGDRTPIGIFYQNELVSTYEQRIAERSPSYLDNPPAHDVIEFEGKPTTDVEDILKERRVT | Catalyzes the coenzyme A-dependent oxidative decarboxylation of different 2-oxoacids such as 2-oxoglutarate, pyruvate and 2-oxobutyrate to form their CoA derivatives. |
A0A0E3T3B5 | AADH2_MALDO | Aminoaldehyde dehydrogenase 2, peroxisomal (MdAMADH2) (EC 1.2.1.-) (Aminobutyraldehyde dehydrogenase AMADH2) (EC 1.2.1.19) | MAIQIPSRQLFIDGEWREPVLKKRIPIINPATEQIIGDIPAATAEDVEIAVEAARKALARNKGRDWALAPGAVRAKYLRAIAAKIAERKSEIAKLEAIDCGKPLDEAAWDIDDVSGCFEYYADLAEGLDAQQKTPISLPMEQFKSHVLKEPIGVVGLITPWNYPLLMATWKVAPALAAGCAAILKPSELASVTCLELADVCREVGLPPGVLNILTGLGHEAGAPLASHPHVDKIAFTGSTMTGSKIMTAAAQLVKPVSLELGGKSPIVVFDDVDIDKAAEWTAFGIFWTNGQICSATSRLIIHENIAAKFLDRLVQWCKNIKIADPLEEGCRLGPVVSGGQYEKILKFIATAKSEGARVLSGGARPEHLKKGFFIEPTIITDVTTSMQIWREEVFGPVLCVKTFSSEDEALELANDSHYGLGAAVISKDLERCERVSKALQAGIVWINCSQPCFCQAPWGGNKRSGFGRELGKWGLDNYLTVKQVTEYVSDDPWGWYKSPSKL | Dehydrogenase that catalyzes the oxidation of several aminoaldehydes. Metabolizes and detoxifies aldehyde products of polyamine degradation to non-toxic amino acids (Probable). Catalyzes the oxidation of 4-aminobutanal and 3-aminopropanal to 4-aminobutanoate and beta-alanine, respectively. |
A0A0E3T552 | AADH1_MALDO | Aminoaldehyde dehydrogenase 1, peroxisomal (MdAMADH1) (EC 1.2.1.-) (Aminobutyraldehyde dehydrogenase AMADH1) (EC 1.2.1.19) | MAIQIPSRLLFIDGEWREPVLKKRIPIINPATEEIIGHIPAATAEDVELAVEAARRALSRNKGRDWASAPGAVRAKYLRAIAAKIGERKPEIAKLEAIDCGKPLDEAAWDIDDVSGCFEYYAELAEGLDAQQKAPISLPMEQFKSHVLKEPIGVVGLITPWNYPLLMATWKVAPALAAGCAAILKPSELASVTCLELADVCREVGLPPGVLNILTGLGHEAGAPLVSHPHVDKIAFTGSTMTGSKIMTAAAQLVKPVSLELGGKSPIVVFDDVDIDKAAEWTAFGCFWTNGQICSATSRLILHENIATEFLDRLLKWCKNIKIADPLEEGCRLGPVVSGGQYEKILKSIETAKSEGARVLSGGDRPEHLKKGFFIEPTIITDVTTSMQIWREEVFGPVLCVKTFSSEDEALELANDTHYGLGAAVISKDLERCDRFSKGLQAGIVWINCSQPCFCQAPWGGNKRSGFGRELGKWGLDNYLTVKQVTEYVSDDPWGWYTSPSKL | Dehydrogenase that catalyzes the oxidation of several aminoaldehydes. Metabolizes and detoxifies aldehyde products of polyamine degradation to non-toxic amino acids (Probable). Catalyzes the oxidation of 4-aminobutanal and 3-aminopropanal to 4-aminobutanoate and beta-alanine, respectively. |
A0A0E4AZP0 | FSA1_FUSSF | Hybrid PKS-NRPS synthetase fsa1 (EC 2.3.1.-) (EC 6.3.2.-) (Fusarisetin A biosynthesis protein 1) | MDASEPIAVIGSACRFPGGSDSPSKLWELLKEPRDLLSKVPPERYNADAFYHADATHHGTTNVRHSYFLSEDPSSFDNNFFNIQPGEAEAIDPQQRLLMEVVYQGLCSAGQTIEGLRGSPTAVYVGVMCDDWSGIITRDLEVFPRYGATGMARSIMSNRISYFFDWHGPSMTIDTACSSSLVAVHQAIQTLRSGESEVAIAAGANLILTPGMYVAESKLSMLSPSGRSKMWDQDVDGYARGEGIAAVVLKPLSAAIRDNDHIDCIIRATGINQDGRTPGLTMPSATAQADLIRSTYARAGLDINKAEDRPQFFHAHGTGTPAGDPREAEAISRAFYSPDNLSKDDKLYVGSIKTIIGHTEGTAGLASLIGTSLAIQNKVIPPNMHLDVLNPKVAPFYNNLEVPTSALEWPETRSGQPRRASINSFGFGGTNAHAIIEAYEPNATAHVSGALFSPLTFSASSEPSLRSLLMSYSEYLKLNPQISLKDLAYSLQTRRSTLAYRVAITASTAENASKQLDAIVDGEQSSSISTRQLSKSSPKILGIFTGQGTQWPRMGARLLEESPFASKRLAELDDALSSLPADDRPTWTLREMILADSESSRVAEAAISQPLCTAVQVVLVDLLRHAGIELSAVVGHSSGEIGAAYAAGLLTARDAIRVAYYRGLYAKLAQSPNGHKGAMMAVGTTFEDAADFCELEAFQGRIQIAAKNSPSSITLSGDEDAIIEAIEIFKDEGKFARQLKVDTAYHSSHVIPCAKPYLEAMNRCGIETATATKTQWYSSVHGGQIMSADSLTTSYWVDNMTSAVLFSPAVAQAWEEGGPYDLAIEVGPHPALKTPALDTIEAISEGRPPYTGVIARGKDDIQQFSNALGFIWTHLGPGSIAFENFESVVSGSKDRPSFIQDLPNYPFDHAKQFMSMSRVSGWFNSIQEAPHPLLGRRCHDRETSHSVQWRNVLSHKEIPWLQGHQLQGQIIFPATGYISMAVEAIKILAEPSSLGLITIEDLSITRALAFADEDASIETLFELRILSRSETEIQAEFCCYSGIPHTHTATMGLNATAQIKASLGTPTSDQLSNIAVDDYDLRPVSVDRFYDFLARLGYNYSWPFRGTTSIRRKANFATGTLEDQSGSNWEDQLMVHPGMLDSSLQTTFAAFCCPGDERLWALHLPTSFRSIAINPYFTSAGIGKQNSFTYQSVAIEERKTSKVLVELNLLSEETGDTFLQIEGMELVPFSPATPANDAVLFSRFDYRLAGPDGELTAAEYSFKPEDYKMALDCERIAFYYLRRLVETITPEEKANTLVHYRHLVDWAAYVVPQVANGGNPHIPASAQQDTHDDIQQLLKKHYERVDIRLLESVGENLPQVIRDSGNILEHMTKDGMLQDVYEQGFGLNLVNQYIAHMTAQIAHRYPRMNILEIGAGTGGSTREILPRLGSAFSTYTYTDVSGGFFDMAQDRFKDYADRMIFKTFDMNISPASQGFTEGAYDLVIASNVLHATLELEDMMKHVRSFLKPGGFLIILETVNNDCLRVGLPMGSLPGWWLGAEHGRRWGPTLTLPQWDSLLSKCGFGGIDTTTPPVHKILPGHVFCAQALDERIEILRSPMEHLATLPETKSTQLAVIGGQTLKVHRMCDQISRRLSSRYSSISRFNSIEELNDTGLPESCTVLSLTELDEPLFANMTYGKLEALKILWKQGGSILWITSGARAENPHSYMTTGVGRCMRFEYPNITLQALDIKQISDRCPELIVDHLLRLEILDKWSKELRSDELLWSLEPEIYIEEETAIIPRLYPYESGNARYNAERRKVIKQADMETDRVVFAEFEGKWEIQHASPLHIAQELPSSSDISARTIQITHLSPATVNIAPGVSAMAWAGVDTASNEPVVAVTHIAESPVSIPAGWCIPLDKLDPVKTLTGVSATLIASSILERLVKGETLVVHDAPPHIRAALDKLAKPVSIAIFYTSSDEAMSKLGARYIDRRSPLRVIRASLPKSASKFISLSQDFGKDETSKVISMCLPRDCETINTAHLFGPRNVAQQSAFEKDVSSSLKKAFEEVGSQVNTTASTDLISLKDTPNPIADQVRFAILDCTDTPIQASVHPIDDGRIFRADKTFLLIGLTGELGQSLCKWMVEQGARSIVLTSRRPNVSEHFLGSFAETGAIVKALPMDVTDRTSIEACLETIKKTLPPIAGVVNGAMVLRDALFENMPYEDFMKVLNPKVVGSQLLDEMFYDTPLDFFIFFSSTTAVMGNSGQSNYIAGNMYMNALAAQRKKRGVAASSIDISSIIGLGYVERAEDLSEDTFIKMGYKPMSEQDLQKLFAEAIVLGRPDCHEVCELVTGVTPIYTDAQASDQYLKDVKFGHFLMERLDTQTYTGKTSTVPVRVQLADVKTRADAVAIIKESFIVRLRRVLAVGPDEIINEKVTLVEQGVDSLMAVEVRSWFIKELDVDIPVLKILGGMSVPDLVDESLDLLSPSILDVSSLEAGNAHPAKPTTVIPQTPTRVTPPESSQGTSDQDKPHTGSDSSRSPIDTPLTSWDRQDLSPPDKSDDAPNSTDNLTPPRTFPNELPSIMSYGQAGFWFLNDYLVNKKAFNMAVMLKLTGSIRTQPLENAVQLVAERHEILRTRFFWSEDGDERTPMQGINPPTMKLTIKTIADEKEAETELKRLHDEDWDLGSGEGVKIILLRLSDQVHFLLSGMHHIYLDGYSFSVFFKDLESAYINHRLPPLPVESQYRTFALQQRKMYDDGDLLKSIEYYRQSFPKEFAPIRLFPFATTASRQLANEYSQHEAKLSITPDVSAKVRQLARANRSTSFHVYLAALKILLFSLLPDTEELFIGIADANRGDKKFMGSLGFFLNLLPLRFQRGKPRSRVSSAIQTARDAAYGALQHSQLPFDVLLRELNVPRSDKHTPIFQVFMDYRQVVQERSSWGGCKLSDEKWCNAGTGYDVALEVTENINTDTLLSLRLQKQLYSEEHTQVLLRSYLSVLEYMIRGSDKSVDAAPAWSSYDLKVAVDAGKAPEFKSKWPPTVSHQIDQVIQNNPDKIALKDGNGNVLTYAQMGNRIDTISKALIDAGTVQGTVVGVFQEPSADWICSLLAIFKAGAVYVPLDLRNSIPRLASIVKASRPSVIITDITTDDKVDLIGAKFVTKLQLGSLDESTRQDSTEINHAKVGSLAVILFTSGSTGEPKGLMMTHTNLLSYAEVSSKTFARVDEDLVVLQQSPFSFDFSLDQTMAALTNGGYLYVVPASKRGDPDEISKIMVEESVTYTTATPSEYDLWLRYSTETLQQCNSWKYAFSGGEAMSYKLAREFGTLKLTNLHVFNGYGPAETTILSHRIDLKYADPDLPDPLPAGYPLPGFSVCIVDDKMRPVPLGVQGEIVLGGPCIVSGYLNMPESTRDKFLPDTFFGTSGTVYRSGDRGRLCYDGLLFCDGRLEGNTMIKLRGFRVELDEVEKTIVSHSAGALSHAVATVRGTEEGRYLVAHIVFAPEFPEQDREGVMKSLRQMLPLPPYMRPSVFQVLPDIPRTAHLKIDRKAIQDIPVQTTQSEISKSLTASEKRLSELWRRVLPLDPGTLTHESDFFLIGGNSILLVKLQALLREGLWMAPKLVTLMGSSTLGAMASVLEDCGPVNVIHWDEEIKFPNDLQLATPLRAAGKSTDINVLLTGSSGYLGRHLLLSLLKDHRVAQVHCLCRTSSDQQVVNDPGSKANIVQSDLAQHNLGIPESTYSQLATEVDVIIHCAANRSFWDRYEALKADNLDSTKELVKFVVSSGRAIPLHFLSSGAVAKYNSGLTPPADGGDGYVATKWASEVFMKQAADSTNLPVFSHRPVACESAQQSEEETISIVNELMQIVKLLGCRPSFDGVGGFVDVMPVNEIVEAIHETALNSQTGEGLCILEHKAHQRAYVRSFATVVESDDGLSKLPCIPILEWFGRAKKAGFSYFLASQDLILGSQLFSRR | Hybrid PKS-NRPS synthetase part of the gene cluster that mediates the biosynthesis of HIV-1 integrase inhibitor equisetin and of fusarisetin A, both trans-fused decalin-containing tetramic acids showing also antimicrobial activity. The PKS module of fsa1 together with the enoylreductase fsa3 catalyze the formation of the polyketide unit which is then conjugated to L-serine by the condensation domain of the fsa1 NRPS module. Activity of the Dieckmann cyclase domain (RED) results in release of the Dieckmann product intermediate. Diels-Alderase fsa2 is involved in endo-selective Diels-Alder cycloaddition to form the decalin ring, leading to the production of N-desmethylequisetin also called trichosetin. Subsequent N-methylation is carried out by fsa4 to give equisetin. The enzymatic gene responsible for the conversion of equisetin to fusarisetin A has not been identified yet and is probably located outside of the fsa cluster. |
A0A0F5HNH9 | IMEF_BACTR | Ferritin-like protein (EC 1.16.3.1) (IMEF cargo protein) | MKEELDAFHQIFTTTKEAIERFMAMLTPVIENAEDDHERLYYHHIYEEEEQRLSRLDVLIPLIEKFQDETDEGLFSPSNNAFNRLLQELNLEKFGLHNFIEHVDLALFSFTDEERQTLLKELRKDAYEGYQYVKEKLAEINARFDHDYADPHAHHDEHRDHLADMPSAGSSHEEVQPVAHKKKGFTVGSLIQ | Cargo protein of a type 1 encapsulin nanocompartment. A ferritin-like iron-binding protein probably involved in iron mineralization in the encapsulin nanocompartment. Has ferroxidase activity even when encapsulated, the rate is probably controlled by the rate of Fe flux across the nanocompartment pores. Part of the iron-mineralizing encapsulin-associated Firmicute (IMEF) system. 2 different cargo proteins have been identified (IMEF and Fer) when both are expressed in E.coli with the shell protein only IMEF is detected within the nanocompartment. E.coli expressing all 3 genes stores the largest amount of iron and is protected from Fe/H2O2-induced oxidative stress. |
A0A0G2JDV3 | GBP6_MOUSE | Guanylate-binding protein 6 (EC 3.6.5.-) (GTP-binding protein 6) (GBP-6) (Guanine nucleotide-binding protein 6) (Macrophage activation 2 like protein) | MTQPQMAPICLVENHNEQLSVNQEAIEILDKISQPVVVVAIVGLYRTGKSYLMNCLAGQNHGFPLGSTVQSQTKGIWMWCMPHPTKPEHTLVLLDTEGLGDVEKGDPKNDLWIFALSVLLSSTFIYNSMITINHQALEQLQYVTELTELIRAKSSPNPAGIKNSTEFVSFFPDFVWTVRDFMLELKLNGEDITSDDYLENALKLIPGDKPRMQASNSCRECIRLFFPNRKCFVFDRPTHDKELLQKLDSITEDQLDPKFQEVTKAFVSYIFTYAKIKTLKEGIKVTGNRLGILVTTYVNAINSGAVPCLDDAVTTLAQRENSVAVQKAADHYSEQMAQRLRLPTETLQELLDVHAACEKEAMAVFMEHSFKDENQQFLKKLVELIGENKELFLSKNEEASNKYCQEELDRLSKDFMENISTFFVPCGHKLYMDKREKIEHDYWQVPRKGVKASEVFQSFLQSQAFIESSILQADTALTAGEKAIAEERAQKVAAEKEQELLRQKQKEQQEYMEAQEKSHKENLEQLRRKLEQEREQDIKDHDMMLKKLMKDQKAFLEEGFKKKAEEMNKEIQQLRDVIKDKKRNTDRIKEALLNGFSTVLFHYLVRYLKHL | Interferon (IFN)-inducible GTPase that plays important roles in innate immunity against a diverse range of bacterial, viral and protozoan pathogens, such as bacterial pathogens Listeria monocytogenes and Mycobacterium bovis BCG as well as the protozoan pathogen Toxoplasma gondii. Confers protection to several pathogens, including the bacterial pathogens Listeria monocytogenes and Mycobacterium bovis BCG as well as the protozoan pathogen Toxoplasma gondii. |
A0A0G2JTR4 | ABR_RAT | Active breakpoint cluster region-related protein | MEPLSHRGLPRLSWIDTLYSNFSYGAEDYDAEGHEEQKGPPEGSETMPYIDESPTMSPQLSARSQGGGESISPTPPEGLAPGVEAGKGLEMRKLVLSGFLASEEIYINQLEALLLPMKPLKATATTSQPVLTIQQIETIFYKIQDIYEIHKEFYDNLCPKVQQWDSQVTMGHLFQKLASQLGVYKAFVDNYKVALETAEKCSQSNNQFQKISEELKVKGPKDSKDSHTSVTMEALLYKPIDRVTRSTLVLHDLLKHTPVDHPDYPLLQDALRISQNFLSSINEDIDPRRTAVTTPKGETRQLVKDGFLVEMSESSRKLRHVFLFTDVLLCAKLKKTSAGKHQQYDCKWYIPLADLVFPSPEESEASPQVHPFPDHELEDMKVKISALKSEIQKEKANKGQSRAIERLKKKMFENEFLLLLNSPTIPFRIHNRNGKSYLFLLSSDYERSEWREAIQKLQKKDLQAFVLSSVELQVLTGSCFKLRTVHNIPVTSNKDDDESPGLYGFLHVIVHSAKGFKQSANLYCTLEVDSFGYFVSKAKTRVFRDTTEPKWDEEFEIELEGSQSLRILCYEKCYDKTKVNKDNNEIVDKIMGKGQIQLDPQTVESKNWHTDVIEMNGIKVEFSMKFTSRDMSLKRTPSKKQTGVFGVKISVVTKRERSKVPYIVRQCIEEVEKRGIEEVGIYRISGVATDIQALKAVFDANNKDILLMLSDMDINAIAGTLKLYFRELPEPLLTDRLYPAFMEGIALSDPAAKENCMMHLLRSLPDPNLITFLFLLEHLKRVAEKEPINKMSLHNLATVFGPTLLRPSEVESKAHLTSAADIWSHDVMAQVQVLLYYLQHPPISFAELKRNTLYFSTDV | Protein with a unique structure having two opposing regulatory activities toward small GTP-binding proteins. The C-terminus is a GTPase-activating protein domain which stimulates GTP hydrolysis by RAC1, RAC2 and CDC42. Accelerates the intrinsic rate of GTP hydrolysis of RAC1 or CDC42, leading to down-regulation of the active GTP-bound form. The central Dbl homology (DH) domain functions as guanine nucleotide exchange factor (GEF) that modulates the GTPases CDC42, RHOA and RAC1. Promotes the conversion of CDC42, RHOA and RAC1 from the GDP-bound to the GTP-bound form (By similarity). Functions as an important negative regulator of neuronal RAC1 activity (By similarity). Regulates macrophage functions such as CSF-1 directed motility and phagocytosis through the modulation of RAC1 activity (By similarity). |
A0A0G2JTZ2 | SOX6_RAT | Transcription factor SOX-6 | MSSKQATSPFACTVDGEETMTQDLTSREKEEGSDQHPASHLPLHPIMHNKPHSEELPTLVSTIQQDADWDSVLSSQQRMESENNKLCSLYSFRNTSTSPHKPDEGSREREIMNSVTFGTPERRKGSLADVVDTLKQKKLEEMTRTEQEDSSCMEKLLSKDWKEKMERLNTSELLGEIKGTPESLAEKERQLSTMITQLISLREQLLAAHDEQKKLAASQIEKQRQQMDLARQQQEQIARQQQQLLQQQHKINLLQQQIQVQGHMPPLMIPIFPHDQRTLAAAAAAQQGFLFPPGITYKPGDNYPVQFIPSTMAAAAASGLSPLQLQKGHVSHPQINPRLKGISDRLGRNLDPYEHGGGHSYNHKQIEQLYAAQLASMQVSPGAKMPSTPQPPNSAGAVSPTGIKNEKRGTSPVTQVKDETTAQPLNLSSRPKTAEPVKSPTSPTQSLFPASKTSPVNLPNKSSIPSPIGGSLGRGSSLDILSSLNSPALFGDQDTVMKAIQEARKMREQIQREQQQQPHGVDGKLSSMNSMGLSNCRNEKERTRFENLGPQLTGKSSEDGKLGPGVIDLTRPEDAEGSKAMNGSAAKLQQYYCWPTGGATVAEARVYRDARGRASSEPHIKRPMNAFMVWAKDERRKILQAFPDMHNSNISKILGSRWKSMSNQEKQPYYEEQARLSKIHLEKYPNYKYKPRPKRTCIVDGKKLRIGEYKQLMRSRRQEMRQFFTVGQQPQIPITTGTGVVYPGAITMATTTPSPQMTSDCSSTSASPEPSLPVIQSTYGMKMDGASLAGNDMINGEDEMEAYDDYEDDPKSDYSSENEAPEPVSAN | Transcription factor that plays a key role in several developmental processes, including neurogenesis, chondrocytes differentiation and cartilage formation (By similarity). Specifically binds the 5'-AACAAT-3' DNA motif present in enhancers and super-enhancers and promotes expression of genes important for chondrogenesis (By similarity). Required for overt chondrogenesis when condensed prechondrocytes differentiate into early stage chondrocytes: SOX5 and SOX6 cooperatively bind with SOX9 on active enhancers and super-enhancers associated with cartilage-specific genes, and thereby potentiate SOX9's ability to transactivate. Not involved in precartilaginous condensation, the first step in chondrogenesis, during which skeletal progenitors differentiate into prechondrocytes (By similarity). Together with SOX5, required to form and maintain a pool of highly proliferating chondroblasts between epiphyses and metaphyses, to form columnar chondroblasts, delay chondrocyte prehypertrophy but promote hypertrophy, and to delay terminal differentiation of chondrocytes on contact with ossification fronts (By similarity). Binds to the proximal promoter region of the myelin protein MPZ gene, and is thereby involved in the differentiation of oligodendroglia in the developing spinal tube (By similarity). Binds to the gene promoter of MBP and acts as a transcriptional repressor (By similarity). |
A0A0G2JUG7 | IQEC1_RAT | IQ motif and SEC7 domain-containing protein 1 | MACRRRYLSSLETGSSLSTDRYSVEGEAPSSETGTSLDSPSAYHQGPLVPGSSLSPDHYEHTSVGAYGLYAGPGPQQRTRRPRLQHSTSVLRKQAEEEAIKRSRSLSESYELSSDLQDKQVEMLERKYGGRLVTRHAARTIQTAFRQYQMNKNFERLRSSMSENRMSRRIVLSNMRMQFSFEGPEKVHSSYFEGKQVSVTNDGSQLGALVPSECGDLSDPALKSPAPSSDFADAITELEDAFSRQVKSLAESIDDALNCRSLHSEEVPASDTARARDTEPKPGLHGMDHRKLDEMTASYSDVTLYIDEEELSPPLPLSQAGDRPSSTESDLRLRSGGAAQDYWALAHKEDKADTDTSCRSTPSLERPEPRLRVEHLPLLTIEPPSDSSVELSDRSDRSSLKRQSAYERSLGGQQGSPKHGPHGGPPKGLPREEPELRPRPPRPLESHLAINGSANRQSKSESDYSDGDNDSINSTSNSNDTINCSSESSSRDSLREQTLSKQTYHKETRNSWDSPAFSNDVIRKRHYRIGLNLFNKKPEKGIQYLIERGFVPDTPVGVAHFLLQRKGLSRQMIGEFLGNRQKQFNRDVLDCVVDEMDFSAMELDEALRKFQAHIRVQGEAQKVERLIEAFSQRYCVCNPGVVRQFRNPDTIFILAFAIILLNTDMYSPNVKPERKMKLEDFVKNLRGVDDGEDIPRETLIGIYERIRKRELKTNEDHVSQVQKVEKLIVGKKPIGSLHHGLGCVLSLPHRRLVCYCRLFEVPDPNKPQKLGLHQREIFLFNDLLVVTKIFQKKKNSVTYSFRQSFSLYGMQVLLFENQYYPNGIRLTSAVPGADIKVLINFNAPNPQDRKKFTDDLRESVAEVQEMEKHRIESELEKQKGVVRPSMSQCSSLKKESGNGTLSRACLDDSYASGEGLKRSALSSSLRDLSEAGKRGRRSSAGSLESNVEFQPFQPSQPPVLCS | Guanine nucleotide exchange factor for ARF1 and ARF6. Guanine nucleotide exchange factor activity is enhanced by lipid binding. Accelerates GTP binding by ARFs of all three classes. Guanine nucleotide exchange protein for ARF6, mediating internalization of beta-1 integrin. Involved in neuronal development (By similarity). In neurons, plays a role in the control of vesicle formation by endocytoc cargo. Upon long term depression, interacts with GRIA2 and mediates the activation of ARF6 to internalize synaptic AMPAR receptors. |
A0A0G2JV04 | GGA3_RAT | ADP-ribosylation factor-binding protein GGA3 (Golgi-localized, gamma ear-containing, ARF-binding protein 3) | MAEAEGESLESWLNKATNPSNRQEDWEYIIGFCDQINKELEGPQIAVRLLAHKIQSPQEWEAVQALTVLEACMKNCGRRLHNEVGKFRFLNELIKVVSPKYLGDRVSEKVKAKVIELLFSWTLALPEEAKIKDAYHMLKRQGIVQSDPPIPMDRTLIPSPPPRPKNPVFDDEEKSKLLAKLLRSKNPDDLQEANQLIKSMVKEDEARIQKVTKRLHTLEEVNNNVKLLHEMLLHYSQEFSSEADKELMKELFDRCENKRRTLFKLASETEDNDNSLGDILQASDNLSRVINSYKTIIEGQIINGEVTTSTVPDSEGNSHCGNQGALIDLAELDTPSSSSPVLAPAPAPPTSGIPILPPPPQTSGPPRSRSSSQAEAPSGPDSTNNALSLLDEELLCLGLSDPAPTAPKESAGNSPWHLFQNEPSSDLDFFSPRLVSAASCPSEGSLLPPPVSTSSLSQAPLPAAFPAPVVPASAVTHSTGSFTFSSGPAPALVPKAEPEGPEYPSSSISHRLDALDQLLEEAKVTSGLVKPVSCFSPGPTASPLLPASTPARPLLPFSTGPGSPLFQSPAFQSQGSPQKGPELSLASVHVPLESIKPSSALPVTAYDKNGFRILFHFAKECPPGRPDVLVVVVSMLNTAPLPVKSIVLQAAVPKSMKVKLQPPSGTELSPFSPIQPPAAITQVMLLANPMKEKVRLRYKLTFALGEQLSTELGEVDQFPPVEQWGNL | Plays a role in protein sorting and trafficking between the trans-Golgi network (TGN) and endosomes. Mediates the ARF-dependent recruitment of clathrin to the TGN and binds ubiquitinated proteins and membrane cargo molecules with a cytosolic acidic cluster-dileucine (DXXLL) motif. Mediates export of the GPCR receptor ADRA2B to the cell surface. Involved in BACE1 transport and sorting as well as regulation of BACE1 protein levels. Regulates retrograde transport of BACE1 from endosomes to the trans-Golgi network via interaction through the VHS motif and dependent of BACE1 phosphorylation. Modulates BACE1 protein levels independently of the interaction between VHS domain and DXXLL motif through recognition of ubiquitination (By similarity). Key player in a novel DXXLL-mediated endosomal sorting machinery to the recycling pathway that targets NTRK1 to the plasma membrane. |
A0A0G2JXN2 | TRI46_RAT | Tripartite motif-containing protein 46 | MAEGEDMQTFTSIMDALVRISTSMKNMEKELLCPVCQEMYKQPLVLPCTHNVCQACAREVLGQQGYIGHGGDPSSEPTSPASTPSTRSPRLSRRTLPKPDRLDRLLKSGFGTYPGRKRGALHPQTILFPCPACQGDVELGERGLSGLFRNLTLERVVERYRQSVSVGGAILCQLCKPPPLEATKGCSECRATFCNECFKLFHPWGTQKAQHEPTLPTLSFRPKGLMCPDHKEEVTHYCKTCQRLVCQLCRVRRTHSGHKITPVLSAYQALKDKLTKSLAYILGNQDTVQTQICELEETIRHTEVSGQQAKEEVSQLVRGLGAVLEEKRSSLLQAIEECQQERLSRLSAQIHEHQSLLDGSGLVGYAQEVLKETDQPCFVQAAKQLHNRIARATEALQTFRPAASSSFRHCQLDVGREMKLLTELNFLRVPEAPVIDTQRTFAYDQIFLCWRLPPHSPPAWHYTVEFRRTDVPAQPGPTRWQRREEVRGTSALLENPDTGSVYVLRVRGCNKAGYGEYSEDVHLHTPPAPVLHFFLDGRWGASRERLAISKDQRAVRSIPGLPLLLAAERLLTGCHLSVDVVLGDVAVTQGRSYWACAVDPASYLVKVGVGLESKLQESFQGAPDVISPRYDPDSGHDSGAEDAAVEALPPFAFLTIGMGKILLGSGASSNAGLTGRDGPAASCTVPLPPRLGICLDYERGRVSFLDAVSFRGLLECPLDCSGPVCPAFCFIGGGAVQLQEPVGTKPERKVTIGGFAKLD | Microtubule-associated protein that is involved in the formation of parallel microtubule bundles linked by cross-bridges in the proximal axon. Required for the uniform orientation and maintenance of the parallel microtubule fascicles, which are important for efficient cargo delivery and trafficking in axons. Thereby also required for proper axon specification, the establishment of neuronal polarity and proper neuronal migration. |
A0A0G2JXT6 | MTMR6_RAT | Myotubularin-related protein 6 (Phosphatidylinositol-3,5-bisphosphate 3-phosphatase) (EC 3.1.3.95) (Phosphatidylinositol-3-phosphate phosphatase) (EC 3.1.3.64) | MEHIRTTKVEQVKLLDRFSTNNKSLTGTLYLTATHLLFIDAHQKETWILHHHIASVEKLALTTSGCPLVIQCKNFRIVHFIVPRERDCHDIYNSLLQLSKQAKYEDLYAFSYNPKQNDTERLNGWQLIDLAAEYERMGVPNANWQLSDANREYKVCETYPRELYVPRTASRPVIVGSSNFRSKGRLPVLSYCQQGTEAAICRCSQPLSGFSARCLEDEHLLQAISKANPGNRYMYVVDTRPKLRMQSWWDTQKDIGRIIVRISSKIWNDEKIRESDEKKRLNAMANRAAGKGYENEDNYSNIRFQFVGIENIHVMRSSLQKLLEVNGSKGLSVNDFYSGLESSGWLRHIKAVLDAAIFLAKAIVVENASVLVHCSDGWDRTSQVCSLGSLLLDSYYRTMKGFMVLIEKDWISFGHKFSERCGHLDGDPKEVSPVFTQFLECVWHLTEQFPQAFEFNEAFLLQIHEHIHSCQFGNFLGNCQKEREELRLKEKTYSLWPFLLADKKKYLNPLYSSKSQRLTVLEPNTASFNFKFWRNMYHQFDRTLHPRQSVLNIIMNMNEQNKQLEEDVKDLEAKIKQCKSGILTKDLLHAVHPESPSLKTSLCLKEQSLLPVKDTLRAVEGSSPADNRYCDYTEEFSKSEPAVVSLEYGVARMTC | Phosphatase that acts on lipids with a phosphoinositol headgroup. Dephosphorylates phosphatidylinositol 3-phosphate (PtdIns(3)P) and phosphatidylinositol 3,5-bisphosphate. Binds with high affinity to phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2) but also to phosphatidylinositol 3-phosphate (PtdIns(3)P), phosphatidylinositol 4-phosphate (PtdIns(4)P), and phosphatidylinositol 5-phosphate (PtdIns(5)P), phosphatidic acid and phosphatidylserine (By similarity). Negatively regulates ER-Golgi protein transport. Probably in association with MTMR9, plays a role in the late stages of macropinocytosis by dephosphorylating phosphatidylinositol 3-phosphate in membrane ruffles. Acts as a negative regulator of KCNN4/KCa3.1 channel activity in CD4(+) T-cells possibly by decreasing intracellular levels of phosphatidylinositol 3-phosphate. Negatively regulates proliferation of reactivated CD4(+) T-cells. In complex with MTMR9, negatively regulates DNA damage-induced apoptosis. The formation of the MTMR6-MTMR9 complex stabilizes both MTMR6 and MTMR9 protein levels (By similarity). |
A0A0G2JZ79 | SIR1_RAT | NAD-dependent protein deacetylase sirtuin-1 (EC 2.3.1.286) (NAD-dependent protein deacylase sirtuin-1) (EC 2.3.1.-) | MIGTDPRTILKDLLPETIPPPELDDMTLWQIVINILSEPPKRKKRKDINTIEDAVKLLQECKKIIVLTGAGVSVSCGIPDFRSRDGIYARLAVDFPDLPDPQAMFDIEYFRKDPRPFFKFAKEIYPGQFQPSLCHKFIALSDKEGKLLRNYTQNIDTLEQVAGIQRIIQCHGSFATASCLICKYKVDCEAVRGDIFNQVVPRCPRCPADEPLAIMKPEIVFFGENLPEQFHRAMKYDKDEVDLLIVIGSSLKVRPVALIPSSIPHEVPQILINREPLPHLHFDVELLGDCDVIINELCHRLGGEYAKLCCNPVKLSEITEKPPRTQKELVHLSELPPTPLHISEDSSSPERTVPQDSSVIATLVDQTIKNKVDDLEVSEPKSCVEEKSQEVQTYRNVESINVENPDFKAVGSSTGDKNERTSVAETVRKCWPNRLAKEQISKRLDGNQYLFVPPNRYIFHGAEVYSDSEDDALSSSSCGSNSDSGTCQSPSLEEPLEDESEIEEFYNGLEDDADRPECAGGSGADGGDQEAVNEAIAMKQELTDVNCTPDKSEHY | NAD-dependent protein deacetylase that links transcriptional regulation directly to intracellular energetics and participates in the coordination of several separated cellular functions such as cell cycle, response to DNA damage, metabolism, apoptosis and autophagy. Can modulate chromatin function through deacetylation of histones and can promote alterations in the methylation of histones and DNA, leading to transcriptional repression. Deacetylates a broad range of transcription factors and coregulators, thereby regulating target gene expression positively and negatively. Serves as a sensor of the cytosolic ratio of NAD(+)/NADH which is altered by glucose deprivation and metabolic changes associated with caloric restriction. Is essential in skeletal muscle cell differentiation and in response to low nutrients mediates the inhibitory effect on skeletal myoblast differentiation which also involves 5'-AMP-activated protein kinase (AMPK) and nicotinamide phosphoribosyltransferase (NAMPT). Component of the eNoSC (energy-dependent nucleolar silencing) complex, a complex that mediates silencing of rDNA in response to intracellular energy status and acts by recruiting histone-modifying enzymes. The eNoSC complex is able to sense the energy status of cell: upon glucose starvation, elevation of NAD(+)/NADP(+) ratio activates SIRT1, leading to histone H3 deacetylation followed by dimethylation of H3 at 'Lys-9' (H3K9me2) by SUV39H1 and the formation of silent chromatin in the rDNA locus. Deacetylates 'Lys-266' of SUV39H1, leading to its activation. Inhibits skeletal muscle differentiation by deacetylating PCAF and MYOD1. Deacetylates H2A and 'Lys-26' of H1-4. Deacetylates 'Lys-16' of histone H4 (in vitro). Involved in NR0B2/SHP corepression function through chromatin remodeling: Recruited to LRH1 target gene promoters by NR0B2/SHP thereby stimulating histone H3 and H4 deacetylation leading to transcriptional repression. Proposed to contribute to genomic integrity via positive regulation of telomere length however, reports on localization to pericentromeric heterochromatin are conflicting. Proposed to play a role in constitutive heterochromatin (CH) formation and/or maintenance through regulation of the available pool of nuclear SUV39H1. Upon oxidative/metabolic stress decreases SUV39H1 degradation by inhibiting SUV39H1 polyubiquitination by MDM2. This increase in SUV39H1 levels enhances SUV39H1 turnover in CH, which in turn seems to accelerate renewal of the heterochromatin which correlates with greater genomic integrity during stress response. Deacetylates 'Lys-382' of p53/TP53 and impairs its ability to induce transcription-dependent proapoptotic program and modulate cell senescence. Deacetylates TAF1B and thereby represses rDNA transcription by the RNA polymerase I. Deacetylates MYC, promotes the association of MYC with MAX and decreases MYC stability leading to compromised transformational capability. Deacetylates FOXO3 in response to oxidative stress thereby increasing its ability to induce cell cycle arrest and resistance to oxidative stress but inhibiting FOXO3-mediated induction of apoptosis transcriptional activity also leading to FOXO3 ubiquitination and protesomal degradation. Appears to have a similar effect on MLLT7/FOXO4 in regulation of transcriptional activity and apoptosis. Deacetylates DNMT1 thereby impairs DNMT1 methyltransferase-independent transcription repressor activity, modulates DNMT1 cell cycle regulatory function and DNMT1-mediated gene silencing. Deacetylates RELA/NF-kappa-B p65 thereby inhibiting its transactivating potential and augments apoptosis in response to TNF-alpha. Deacetylates HIF1A, KAT5/TIP60, RB1 and HIC1. Deacetylates FOXO1 resulting in its nuclear retention and enhancement of its transcriptional activity leading to increased gluconeogenesis in liver. Inhibits E2F1 transcriptional activity and apoptotic function, possibly by deacetylation. Involved in HES1- and HEY2-mediated transcriptional repression. In cooperation with MYCN seems to be involved in transcriptional repression of DUSP6/MAPK3 leading to MYCN stabilization by phosphorylation at 'Ser-62'. Deacetylates MEF2D. Required for antagonist-mediated transcription suppression of AR-dependent genes which may be linked to local deacetylation of histone H3. Represses HNF1A-mediated transcription. Required for the repression of ESRRG by CREBZF. Deacetylates NR1H3 AND NR1H2 and deacetylation of NR1H3 at 'Lys-434' positively regulates transcription of NR1H3:RXR target genes, promotes NR1H3 proteasomal degradation and results in cholesterol efflux a promoter clearing mechanism after reach round of transcription is proposed. Involved in lipid metabolism: deacetylates LPIN1, thereby inhibiting diacylglycerol synthesis. Implicated in regulation of adipogenesis and fat mobilization in white adipocytes by repression of PPARG which probably involves association with NCOR1 and SMRT/NCOR2. Deacetylates p300/EP300 and PRMT1. Deacetylates ACSS2 leading to its activation, and HMGCS1 deacetylation. Involved in liver and muscle metabolism. Through deacetylation and activation of PPARGC1A is required to activate fatty acid oxidation in skeletal muscle under low-glucose conditions and is involved in glucose homeostasis. Involved in regulation of PPARA and fatty acid beta-oxidation in liver. Involved in positive regulation of insulin secretion in pancreatic beta cells in response to glucose the function seems to imply transcriptional repression of UCP2. Proposed to deacetylate IRS2 thereby facilitating its insulin-induced tyrosine phosphorylation. Deacetylates SREBF1 isoform SREBP-1C thereby decreasing its stability and transactivation in lipogenic gene expression. Involved in DNA damage response by repressing genes which are involved in DNA repair, such as XPC and TP73, deacetylating XRCC6/Ku70, and facilitating recruitment of additional factors to sites of damaged DNA, such as SIRT1-deacetylated NBN can recruit ATM to initiate DNA repair and SIRT1-deacetylated XPA interacts with RPA2. Also involved in DNA repair of DNA double-strand breaks by homologous recombination and specifically single-strand annealing independently of XRCC6/Ku70 and NBN. Promotes DNA double-strand breaks by mediating deacetylation of SIRT6. Transcriptional suppression of XPC probably involves an E2F4:RBL2 suppressor complex and protein kinase B (AKT) signaling. Transcriptional suppression of TP73 probably involves E2F4 and PCAF. Deacetylates WRN thereby regulating its helicase and exonuclease activities and regulates WRN nuclear translocation in response to DNA damage. Deacetylates APEX1 at 'Lys-6' and 'Lys-7' and stimulates cellular AP endonuclease activity by promoting the association of APEX1 to XRCC1. Catalyzes deacetylation of ERCC4/XPF, thereby impairing interaction with ERCC1 and nucleotide excision repair (NER). Increases p53/TP53-mediated transcription-independent apoptosis by blocking nuclear translocation of cytoplasmic p53/TP53 and probably redirecting it to mitochondria. Deacetylates XRCC6/Ku70 at 'Lys-539' and 'Lys-542' causing it to sequester BAX away from mitochondria thereby inhibiting stress-induced apoptosis. Is involved in autophagy, presumably by deacetylating ATG5, ATG7 and MAP1LC3B/ATG8. Deacetylates AKT1 which leads to enhanced binding of AKT1 and PDK1 to PIP3 and promotes their activation. Proposed to play role in regulation of STK11/LBK1-dependent AMPK signaling pathways implicated in cellular senescence which seems to involve the regulation of the acetylation status of STK11/LBK1. Can deacetylate STK11/LBK1 and thereby increase its activity, cytoplasmic localization and association with STRAD however, the relevance of such activity in normal cells is unclear. In endothelial cells is shown to inhibit STK11/LBK1 activity and to promote its degradation. Deacetylates SMAD7 at 'Lys-64' and 'Lys-70' thereby promoting its degradation. Deacetylates CIITA and augments its MHC class II transactivation and contributes to its stability. Deacetylates MECOM/EVI1. Deacetylates PML at 'Lys-487' and this deacetylation promotes PML control of PER2 nuclear localization. During the neurogenic transition, represses selective NOTCH1-target genes through histone deacetylation in a BCL6-dependent manner and leading to neuronal differentiation. Regulates the circadian expression of several core clock genes, including BMAL1, RORC, PER2 and CRY1 and plays a critical role in maintaining a controlled rhythmicity in histone acetylation, thereby contributing to circadian chromatin remodeling. Deacetylates BMAL1 and histones at the circadian gene promoters in order to facilitate repression by inhibitory components of the circadian oscillator. Deacetylates PER2, facilitating its ubiquitination and degradation by the proteasome. Protects cardiomyocytes against palmitate-induced apoptosis. Deacetylates XBP1 isoform 2 deacetylation decreases protein stability of XBP1 isoform 2 and inhibits its transcriptional activity. Deacetylates PCK1 and directs its activity toward phosphoenolpyruvate production promoting gluconeogenesis. Involved in the CCAR2-mediated regulation of PCK1 and NR1D1. Deacetylates CTNB1 at 'Lys-49'. In POMC (pro-opiomelanocortin) neurons, required for leptin-induced activation of PI3K signaling. In addition to protein deacetylase activity, also acts as protein-lysine deacylase by mediating protein depropionylation and decrotonylation. Mediates depropionylation of Osterix (SP7). Catalyzes decrotonylation of histones it however does not represent a major histone decrotonylase. Deacetylates SOX9 promoting SOX9 nuclear localization and transactivation activity. Involved in the regulation of centrosome duplication. Deacetylates CENATAC in G1 phase, allowing for SASS6 accumulation on the centrosome and subsequent procentriole assembly (By similarity). Deacetylates NDC80/HEC1 (By similarity). |
A0A0G2K047 | ACSS3_RAT | Acyl-CoA synthetase short-chain family member 3, mitochondrial (EC 6.2.1.1) (Acetate--CoA ligase 3) (Acyl-CoA synthetase short-chain family member 3) (Propionate--CoA ligase) (EC 6.2.1.17) | MKPSWLQCRKVTGAGTLGAPLPGSPSVRGAGVARRALVAGFGGRGCRALTTSSGGGEYKTHFAASVADPERFWGKAAEQISWYKPWTKTLENRYPPSTSWFVEGMLNICYNAIDRHIENGQGDKIAIIYDSPVTDTKATISYKEVLEQVSKLAGVLVKQGVKKGDTVVIYMPMIPQAIYAMLACARIGAIHSLIFGGFASKELSTRIDHVKPKVVVTASFGIEPGRKVEYMPLLEEALRIGQHKPDRLLIYNRPNMEKVPLMSGRDLDWEEEMAKAQSHDCVPVLSEHPLYILYTSGTTGLPKGVVRPTGGYAVMLNWTMSSIYGLKPGEVWWAASDLGWVVGHSYICYGPLLHGNTTVLYEGKPVGTPDAGAYFRVLAEHGVAALFTAPTAIRAIRQQDPGAALGKQYSLTRFKTLFVAGERCDVETLEWSKKVFRVPVLDHWWQTETGSPITASCIGLGNSKTPPPGQAGKCVPGYNVMILDDNMQKLKARSLGNIVVKLPLPPGAFSGLWKNQEAFKHLYFEKFPGYYDTMDAGYMDEEGYLYVMSRVDDVINVAGHRISAGAIEESVLSHGTVTDCAVVGKEDPLKGHVPLALCVLKKDVNATEEQVLEEIVKHVRQSIGPVAAFRNAVFVKQLPKTRSGKIPRSTLSALVNGKPYKVTPTIEDPSIFGHIEEVLKQAL | Catalyzes the synthesis of acetyl-CoA from short-chain fatty acids. Propionate is the preferred substrate but can also utilize acetate and butyrate with a much lower affinity. |
A0A0G2K1Q8 | ABCA3_RAT | Phospholipid-transporting ATPase ABCA3 (EC 7.6.2.1) (ATP-binding cassette sub-family A member 3) (Xenobiotic-transporting ATPase ABCA3) (EC 7.6.2.2) [Cleaved into: 150 Kda mature form] | MVVLRQLRLLLWKNYTLKKRKVLVTVLELFLPLLFSGILIWLRLKIQSENVPNATVYPDQHIQELPLFFSFPPPGGSWELAYVPSHSDAARTITEAVRREFMIKMRVHGFSSEKDFEDYVRYDNHSSNVLAAVVFEHTFNHSKDPLPLAVRYHLRFSYTRRNYMWTQTGNLFLKETEGWHTASLFPLFPSPGPREPSSPDGGEPGYIREGFLAVQHAVDKAIMHYHANASAHQLFQKLTVITKRFPFPPYISDPFLIAIQYQLPLLLMLSFTYTSLTIIRAVVQEKEKKLKEYMRMMGLSSWLHWSAWFLMFLLFSLIVVSFMTLLFCVKVKKDIAVLSNSDPSLVLAFLLCFAISSISFSFMVSTFFSKANMAATVGGFLYFFTYTPYFFVAPRYNWMTLSQKLLSCLLSNVAMAMGAQLIGKFEAKGTGIQWCDLLNPVNVDDDFCFGQVLGMLLLDSVLYGLVTWYVEAVFPGQFGVPQPWYFFLMPSYWCGNPRTVVGKEEEGGDPEKAFRTEYFEAEPEDLAAGIKIKHLSKVFQVGNKDKMGIRDLTLNLYEGQITVLLGHNGAGKTTTMSMLTGLFPPTSGHAYIRGYEISQDMVQIRKSLGLCPQHDVLFDNLTVAEHLYFYAQLKGLSVQKCPEEVKQMLHTLGLEDKRDSRSKFLSGGMKRKLAIGIALIAGSKVLMLDEPTSGMDAVSRRAIWDLLQQQKSDRTVLLTTHFMDEADLLGDRIAILAKGELQCCGSSLFLKQKYGAGYHMTLVKEPHCNPEGISQLVHHHVPNAMLESHAGAELSFILPKESTHRFESLFAKLEKKQKELGIASFGASVTTMEEVFLRVGKLVDTSMDIQAIQLPALQYQHERRASDWALDSNLCGVMDPTNGIGALIEEEEVLVKLNTGLALHCQQFWAMFLKKAAYSWREWRMVAAQILVPVTCLTLALLAINYTSEIFDDPPLKLSLNEYGTTVVPFSVPGTSRLGQQLSEHLRDMLQAERQEPREVLGDLEEFLVFRASVEGGGFNERCLVATSFKDSGERTVVTALFNNQAYHSPATALAIVDNLLFKLLCGPRASIEISNYPQPRSTLQVAKDQFNEGRKGFDIALNLLIAMAFLASTFSILAVSERAVQAKHVQFVSGVHVATFWLSALLWDLISFLVPSLLLLVVFRAFDVHAFTRDGHMADLLLLLMLYGWAIIPLMYLLSFFFSAASTAYTRLTIFNILSGIATFIVVTIMRIPAVKLEELSRTLDHVFLVLPNHCLGMAVSNFYENYETRRYCTSSEVATHYCKKYNIQYQENFYAWSTPGIGKFVTSMAASGGIYLTLLFLIETNLLWRLRTFVCAFRRRWTLAELQNRTSVLPEDQDVADERSRVLVPSLDSMLDTPLIINELSKVYDQRAPLLAVDRISLAVQKGECFGLLGFNGAGKTTTFKMLTGEETITSGDAFVGGYSISSDIGKVRQRMGYCPQFDALLDHMTGREMLVMYARLRGIPERLIDACVENTLRGLLLEPHANKLVKTYSGGNKRKLSTGIALIGEPAVIFLDEPSTGMDPVARRLLWDTVARARESGKAIVITSHSMEECEALCTRLAIMVQGQFKCLGSPQHLKSKFGSGYSLQAKVRSEGKQEVLEEFKAFVDLTFPGSVLEDEHQDMVHYHLPGCDLSWAKVFGILEKAKEKYGVDDYSVSQISLEQVFLSFAHLQPPTTEDGR | Catalyzes the ATP-dependent transport of phospholipids such as phosphatidylcholine and phosphoglycerol from the cytoplasm into the lumen side of lamellar bodies, in turn participates in the lamellar bodies biogenesis and homeostasis of pulmonary surfactant. Transports preferentially phosphatidylcholine containing short acyl chains. In addition plays a role as an efflux transporter of miltefosine across macrophage membranes and free cholesterol (FC) through intralumenal vesicles by removing FC from the cell as a component of surfactant and protects cells from free cholesterol toxicity. |
A0A0G2K2P5 | ZO1_RAT | Tight junction protein ZO-1 (Tight junction protein 1) (Zona occludens protein 1) (Zonula occludens protein 1) | MSARAAAAKSTAMEETAIWEQHTVTLHRAPGFGFGIAISGGRDNPHFQSGETSIVISDVLKGGPAEGQLQENDRVAMVNGVSMDNVEHAFAVQQLRKSGKNAKITIRRKKKVQIPVSHPDPDPVSDNEDDSYDEDVHDPRSGRGALANRRGEKSWARDRSASRDRSLSPRSDRRSVASSQPAKPTKVTLVKSRKNEEYGLRLASHIFVKEISQDSLAARDGNIQEGDVVLKINGTVTENMSLTDAKTLIERSKGKLKMVVQRDERATLLNVPDLSDSIHSANASERDDISEIQSLASDHSVRSHDRPPRRSQSRSPDQRSEPSDHSTQSPQQPSNGSLRSREEERMSKPGAVSTPVKHVDDHTPKAVEEVTVEKHEKQTPTLPEPKPVYAQVGQPDVDLPVSPSDGVLPNSTHEDGILRPSMKLVKFRKGDSVGLRLAGGNDVGIFVAGVLEDSPAAKEGLEEGDQILRVNNVDFTNIIREEAVLFLLDLPKGEEVTILAQKKKDVYRRIVESDVGDSFYIRTHFEYEKESPYGLSFNKGEVFRVVDTLYNGKLGSWLAIRIGKNHKEVERGIVPNKNRAEQLASVQYTLPKTAGGDRADFWRFRGLRSSKRNLRKSREDLSAQPVQTKFPAYERVVLREAGFLRPVTIFGPIADVAREKLAREEPDIYQIAKSEPRDAGTDHRSSGIIRLHTIKQIIDQDKHALLDVTPNAVDRLNYAQWYPIVVFLNPDSKQGVKTMRMRLCPESRKSARKLYERSHKLRKNNHHLFTTTINLNSMNDGWYGALKEAIQQQQNQLVWVSEGKADGATSDDLDLHDDRLSYLSAPGSEYSMYSTDSRHTSDYEDTDTEGGAYTDQELDETLNDEVGTPPESAITRSSEPVREDSSGMHHENQTYPPYSPQAQPQAIHRIDSPGLKTASQQKAEASSPVPYLSPETNPASSASAVKHNVNLTNVNLEEPTPAPPTSHVSQADCLGAPSPEAPHTMLRDEGVSLPSHVDPAKVYRKEPYPEEMMRQNHILKQPALGHPGQRLDKEPNPAYDPQLPYVEKQASRDLEQPPYRYESSSYTDQFSRNYDHRLRFEDRVPTYEDQWSYYDDKQPYPTRPFDTQHPRDLDSRQHPEEASERGYFQRFEEPAPLPYDSRPRYEQLPRTSTLRHEEQPTSGYEVHNRYRPEAQPYAPAGPKSSEPKQYFDQYPRSYEQVPPPGFTSKTGHYEPLHGAAVVPPLIPSSQHKPEVLPSATKPQPPPPALTEEEEDPAMKPQSVLTRVKMFENKRSASLENKKDVNDTASFKPPEVASKPPSASLVGPKPVSQTQFSEHDKTLYRLPEPQKPQAKPPEDIVRSNHYDPEEDEEYYRKQLSYFDRRSFESKPPAHIPAGHHSEPAKPVHSQSQPNFSSYSSKGKPETDAMDRSFSEKRYDPTQAMPPPPPLPSQYSQPVPPLSNSSLHIHSKAAQSEGNSVSLDFQNSYISKPDPPPSQSKPATFRPPTREDPPQTFYPQKSFPDKASVNGAEQTQKTITPAYNRFTPKPYTSSARPFERKFESPKFNHNLLPSETVHKPELSSKPPPSPKTLMKAHSSTQPPEFDSGVETFSVHTDKPKYQINNISTMPKAVPVSPSAVEEDEDEDGHTVVATARGIFNSNGGVLSSIETGVSIIIPQGAIPEGIEQEIYFKVCRDNSILPPLDKEKGETLLSPLVMCGPHGLKFLKPVELRLPHCASMTPDGWSFALKSSDSSSGDPKTWQNKCLPGDPNYLVGANCVSVLIDHF | TjpP1, Tjp2, and Tjp3 are closely related scaffolding proteins that link tight junction (TJ) transmembrane proteins such as claudins, junctional adhesion molecules, and occludin to the actin cytoskeleton. The tight junction acts to limit movement of substances through the paracellular space and as a boundary between the compositionally distinct apical and basolateral plasma membrane domains of epithelial and endothelial cells. Necessary for lumenogenesis, and particularly efficient epithelial polarization and barrier formation (By similarity). Plays a role in the regulation of cell migration by targeting Cdc42bpb to the leading edge of migrating cells (By similarity). Plays an important role in podosome formation and associated function, thus regulating cell adhesion and matrix remodeling (By similarity). With Tjp2 and Tjp3, participates in the junctional retention and stability of the transcription factor Dbpa, but is not involved in its shuttling to the nucleus (By similarity). |
A0A0G2K309 | ORNT1_RAT | Mitochondrial ornithine transporter 1 (Solute carrier family 25 member 15) | MKSNPAIQAAIDLTAGAAGGTACVLTGQPFDTMKVKMQTFPDLYRGLTDCCLRTYSQVGFRGFYKGTSPALIANIAENSVLFMCYGFCQQVVRKVVGLDRQAKLSDLQNAAAGSFASAFAALVLCPTELVKCRLQTMYEMETSGKIAASQNTVWSVVKEIFRKDGPLGFYHGLSSTLLREVPGYFFFFGGYELSRSFFASGRSKDELGPIPLMLSGGFGGICLWLAVYPVDCIKSRIQVLSMTGKQTGLIRTFLSIVKNEGITALYSGLKPTMIRAFPANGALFLAYEYSRKLMMSQLEAC | Mitochondrial ornithine-citrulline antiporter. Catalyzes the exchange between cytosolic ornithine and mitochondrial citrulline plus an H(+), the proton compensates the positive charge of ornithine thus leading to an electroneutral transport. Plays a crucial role in the urea cycle, by connecting the cytosolic and the intramitochondrial reactions of the urea cycle. Lysine and arginine are also transported by the antiport mechanism (By similarity). In addition, catalyzes an electroneutral exchange of ornithine or lysine for H(+), a reaction driven by the pH gradient across the inner membrane. |
A0A0G2K344 | PK3CA_RAT | Phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoform (PI3-kinase subunit alpha) (PI3K-alpha) (PI3Kalpha) (PtdIns-3-kinase subunit alpha) (EC 2.7.1.137) (EC 2.7.1.153) (Phosphatidylinositol 4,5-bisphosphate 3-kinase 110 kDa catalytic subunit alpha) (PtdIns-3-kinase subunit p110-alpha) (p110alpha) (Phosphoinositide-3-kinase catalytic alpha polypeptide) (Serine/threonine protein kinase PIK3CA) (EC 2.7.11.1) | MPPRPSSGELWGIHLMPPRILVECLLPNGMIVTLECLREATLVTIKHELFKEARKYPLHQLLQDESSYIFVSVTQEAEREEFFDETRRLCDLRLFQPFLKVIEPVGNREEKILNREIGFVIGMPVCEFDMVKDPEVQDFRRNILNVCKEAVDLRDLNSPHSRAMYVYPPNVESSPELPKHIYNKLDKGQIIVVIWVIVSPNNDKQKYTLKINHDCVPEQVIAEAIRKKTRSMLLSSEQLKLCVLEYQGKYILKVCGCDEYFLEKYPLSQYKYIRSCIMLGRMPNLMLMAKESLYSQLPIDSFTMPSYSRRISTATPYMNGETATKSLWVINSALRIKILCATYVNVNIRDIDKIYVRTGIYHGGEPLCDNVNTQRVPCSNPRWNEWLNYDIYIPDLPRAARLCLSICSVKGRKGAKEEHCPLAWGNINLFDYTDTLVSGKMALNLWPVPHGLEDLLNPIGVTGSNPNKETPCLELEFDWFSSVVKFPDMSVIEEHANWSVSREAGFSYSHTGLSNRLARDNELRENDKEQLRALCTRDPLSEITEQEKDFLWSHRHYCVTIPEILPKLLLSVKWNSRDEVAQMYCLVKDWPPIKPEQAMELLDCNYPDPMVRSFAVRCLEKYLTDDKLSQYLIQLVQVLKYEQYLDNLLVRFLLKKALTNQRIGHFFFWHLKSEMHNKTVSQRFGLLLESYCRACGMYLKHLNRQVEAMEKLINLTDILKQEKKDETQKVQMKFLVEQMRQPDFMDALQGFLSPLNPAHQLGNLRLEECRIMSSAKRPLWLNWENPDIMSELLFQNNEIIFKNGDDLRQDMLTLQIIRIMENIWQNQGLDLRMLPYGCLSIGDCVGLIEVVRNSHTIMQIQCKGGLKGALQFNSHTLHQWLKDKNKGEIYDAAIDLFTRSCAGYCVATFILGIGDRHNSNIMVKDDGQLFHIDFGHFLDHKKKKFGYKRERVPFVLTQDFLIVISKGAQEYTKTREFERFQEMCYKAYLAIRQHANLFINLFSMMLGSGMPELQSFDDIAYIRKTLALDKTEQEALEYFTKQMNDAHHGGWTTKMDWIFHTIKQHALN | Phosphoinositide-3-kinase (PI3K) phosphorylates phosphatidylinositol (PI) and its phosphorylated derivatives at position 3 of the inositol ring to produce 3-phosphoinositides. Uses ATP and PtdIns(4,5)P2 (phosphatidylinositol 4,5-bisphosphate) to generate phosphatidylinositol 3,4,5-trisphosphate (PIP3). PIP3 plays a key role by recruiting PH domain-containing proteins to the membrane, including AKT1 and PDPK1, activating signaling cascades involved in cell growth, survival, proliferation, motility and morphology. Participates in cellular signaling in response to various growth factors. Involved in the activation of AKT1 upon stimulation by receptor tyrosine kinases ligands such as EGF, insulin, IGF1, VEGFA and PDGF. Involved in signaling via insulin-receptor substrate (IRS) proteins. Essential in endothelial cell migration during vascular development through VEGFA signaling, possibly by regulating RhoA activity. Required for lymphatic vasculature development, possibly by binding to RAS and by activation by EGF and FGF2, but not by PDGF. Regulates invadopodia formation through the PDPK1-AKT1 pathway. Participates in cardiomyogenesis in embryonic stem cells through a AKT1 pathway. Participates in vasculogenesis in embryonic stem cells through PDK1 and protein kinase C pathway. In addition to its lipid kinase activity, it displays a serine-protein kinase activity that results in the autophosphorylation of the p85alpha regulatory subunit as well as phosphorylation of other proteins such as 4EBP1, H-Ras, the IL-3 beta c receptor and possibly others (By similarity). Plays a role in the positive regulation of phagocytosis and pinocytosis (By similarity). |
A0A0G2KQY6 | S39AE_DANRE | Metal cation symporter ZIP14 (Solute carrier family 39 member 14) (Zrt- and Irt-like protein 14) (ZIP-14) | MTLRRASGCRQLTLTIGLALTLGLLQWPIGDVRGQDGASPAQVLQELLTRYGDNASISVPQLRSLLVRLNGGQSEDHDSKTQPTRTNASKCLAADTLAVYGMSEQSRIDERGLQQICPTMIQQLDSQACKTQPNQESESSPRPTEAEVWGYGLLCVTVISLCSLVGASVVPFMRKTFYKRLLLYFIALAIGTLYSNALFQLIPEAFGFDPMEDYYVPKSAVVFGGFYLFFFTEKILKMILKPKDTGGHGHGHSHFPAERYANSNGDLEDGVMEKLQNGEAGGAALPRAEADGRGVGEDDKMLSTGQTVQDTQSSGGGGTGGCYWLKGRAYSDIGTLAWMITLSDGLHNFIDGLAIGASFTASVFQGISTSVAILCEEFPHELGDFVILLNAGMSIQQALFFNFLSACCCYLGMGFGILAGNNFSPNWIFALAGGMFLYIALADMFPEMNEVSREEEEAGGSGFLLTFALQNAGLLTGFAIMLVLTIYSGQIQLG | Broad-scope metal ion transporter with a preference for zinc uptake. Also mediates cellular uptake of nontransferrin-bound iron. Electroneutral transporter of the plasma membrane mediating the cellular uptake of the divalent metal cations zinc, manganese and iron that are important for tissue homeostasis, metabolism, development and immunity. Functions as an energy-dependent symporter, transporting through the membranes an electroneutral complex composed of a divalent metal cation and two bicarbonate anions (By similarity). Beside these endogenous cellular substrates, can also import cadmium a non-essential metal which is cytotoxic and carcinogenic (By similarity). |
A0A0G2KTI4 | S12A2_DANRE | Solute carrier family 12 member 2 (Na-K-Cl cotransporter 1) | MSASPPISAGDYLSAPEPDALKPAGPTPSQSRFQVDLVTESAGDGETTVGFDSSPPEYVAEPPPDGLRDSVSGGEEAKGRFRVVNFAASSPDAAPAETAQNGDTVMSEGSLHSSTGGQQHHHYDTHTNTYYLRTFGHNTIDAVPKIDFYRQTAAPLGEKLIRPTLSELHDELDKEPFEDGFANGEELTPAEESAAKDVSESKGVVKFGWIKGVLVRCMLNIWGVMLFIRMTWIVGQAGIAYSCIIVIMATVVTTITGCSTSAIATNGFVRGGGAYYLISRSLGPEFGGSIGLIFAFANAVAVAMYVVGFAETVVELLMDSGLLMIDQTNDIRVIGTITVILLLGISVAGMEWEAKAQIFLLVILITAIFNYFIGSFIAVDSKKKFGFFSYDAGILAENFGPDFRGQTFFSVFSIFFPAATGILAGANISGDLADPQMAIPKGTLLAILITGLVYVGVAISAGACIVRDATGIESNFTLISNCTDAACKYGYDFSSCRPTVEGEVSSCKFGLHNDFQVMSVVSGFSPLISAGIFSATLSSALASLVSAPKVFQALCKDNIYPGIAIFGKGYGKNNEPLRGYFLTFGIALAFILIAELNVIAPIISNFFLASYALINFSVFHASLANSPGWRPSFKYYNMWASLAGAILCCVVMFIINWWAALLTNVIVLSLYIYVSYKKPDVNWGSSTQALTYHQALTHSLQLCGVADHIKTFRPQCLVMTGAPNSRPAILHLVHAFTKNVGLMLCGHVRISSRRPNFKELNSDMLRYQRWLLNNNSKAFYTCVVAEDLRQGTQYMLQAAGLGRLRPNTLVIGFKNDWRTGDIKEVETYINLIHDAFDFQYGVVILRLREGLDISHIQGQDDSSGMKDVVVSVDISKDSDGDSSKPSSKATSVQNSPAVQKDEDDDGKAHTQPLLKKDKKSPTVPLNVADQRLLDASQQFQQKQGKGTVDVWWLFDDGGLTLLIPYLIANKKKWKDCKIRVFIGGKINRIDHDRRAMATLLSKFRIDFSDITVLGDINTKPKSEGLTEFAEMIEPYKLREDDMEQEAAEKLKSEEPWRITDNELELYKAKGNRQIRLNELLKEHSSTANLIVMSMPLARKGAVSSALYMAWLDTLSKDLPPILLVRGNHQSVLTFYS | Cation-chloride cotransporter which mediates the electroneutral transport of chloride, potassium and/or sodium ions across the membrane. Plays a vital role in the regulation of ionic balance and cell volume. Important for maintenance of endolymph volume in the otic vesicle, probably by regulating ion homeostasis. Also plays a role in normal development of the swim bladder. |
A0A0G2L7I0 | SPRTN_DANRE | DNA-dependent metalloprotease SPRTN (EC 3.4.24.-) (Protein with SprT-like domain at the N terminus) (Spartan) | MMEDEDFLLALRLQEQFDQETPAAGWPDEDCPSSKRRRVDPSGGLDVIPFTQPRAERPLSIVDESWETLDPNPDVRAMFLQFNDKFFWGKLSGVEVKWSPRMTLCAGVCSYEGRGGLCSIRLSEPLLKLRPRKDLVQTLLHEMIHALLFVTQNNRDRDGHGPEFCKHMNRINQASGTNITIYHSFHDEVDVYRQHWWRCNGPCQNRRPFFGYVKRAMNRPPSARDPWWADHQRSCGGTYTKIKEPENYGKTGKSDKQRDKMPATEMPKKSKPPSSTSSSGSQDIRNIIPFSGRGFVLGGNAQIPTNKQIQSPPKAPPEPLHSPPDSPLLPRLQLNEDNLKRLSSGTSNIPRKRSVGNTNAFINVNGSPVRISNGNGSGGKQRSVRDLFQAIVLKSPDRGASAVGSSKSSTDASTADYRSNSALDAKPSGKTSLITDHLSYTISGPKTLSAESNISKYFGGSAKTDVQDSKLKTFGSPQKSAIGTPGYVSKAFGSNQRPDSTSSGIRNTGSPQRSHASATSGSSFKHFRGPAKPESNFPSPRNIGSPRTSGTTPSGAKKRSWEEHNSERVFDYFQRTVGESATSTDKKREEVRSEAPPPVRDQQANNPPAQITVHCPVCHIRLPESTINDHLDSCLL | DNA-dependent metalloendopeptidase that mediates the proteolytic cleavage of covalent DNA-protein cross-links (DPCs) during DNA synthesis, thereby playing a key role in maintaining genomic integrity (By similarity). DPCs are highly toxic DNA lesions that interfere with essential chromatin transactions, such as replication and transcription, and which are induced by reactive agents, such as UV light or formaldehyde. Associates with the DNA replication machinery and specifically removes DPCs during DNA synthesis. Acts as a pleiotropic protease for DNA-binding proteins cross-linked with DNA, such as top1, top2a, histones H3 and H4 (By similarity). Mediates degradation of DPCs that are not ubiquitinated, while it is not able to degrade ubiquitinated DPCs. SPRTN activation requires polymerase collision with DPCs followed by helicase bypass of DPCs (By similarity). May also act as a 'reader' of ubiquitinated pcna: facilitates chromatin association of rad18 and is required for efficient pcna monoubiquitination, promoting a feed-forward loop to enhance pcna ubiquitination and translesion DNA synthesis. Acts as a regulator of translesion DNA synthesis by recruiting vcp/p97 to sites of DNA damage (By similarity). |
A0A0G2Q9D6 | GYRB_MYCBP | DNA gyrase subunit B (EC 5.6.2.2) | MGKNEARRSALAPDHGTVVCDPLRRLNRMHATPEESIRIVAAQKKKAQDEYGAASITILEGLEAVRKRPGMYIGSTGERGLHHLIWEVVDNAVDEAMAGYATTVNVVLLEDGGVEVADDGRGIPVATHASGIPTVDVVMTQLHAGGKFDSDAYAISGGLHGVGVSVVNALSTRLEVEIKRDGYEWSQVYEKSEPLGLKQGAPTKKTGSTVRFWADPAVFETTEYDFETVARRLQEMAFLNKGLTINLTDERVTQDEVVDEVVSDVAEAPKSASERAAESTAPHKVKSRTFHYPGGLVDFVKHINRTKNAIHSSIVDFSGKGTGHEVEIAMQWNAGYSESVHTFANTINTHEGGTHEEGFRSALTSVVNKYAKDRKLLKDKDPNLTGDDIREGLAAVISVKVSEPQFEGQTKTKLGNTEVKSFVQKVCNEQLTHWFEANPTDSKVVVNKAVSSAQARIAARKARELVRRKSATDIGGLPGKLADCRSTDPRKSELYVVEGDSAGGSAKSGRDSMFQAILPLRGKIINVEKARIDRVLKNTEVQAIITALGTGIHDEFDIGKLRYHKIVLMADADVDGQHISTLLLTLLFRFMRPLIENGHVFLAQPPLYKLKWQRSDPEFAYSDRERDGLLEAGLKAGKKINKEDGIQRYKGLGEMDAKELWETTMDPSVRVLRQVTLDDAAAADELFSILMGEDVDARRSFITRNAKDVRFLDV | A type II topoisomerase that negatively supercoils closed circular double-stranded DNA in an ATP-dependent manner and also catalyzes the interconversion of other topological isomers of double-stranded DNA rings, including catenanes and knotted rings. Relaxes negatively supercoiled DNA in an ATP-independent manner. A linear reaction intermediate can be trapped in the presence of the antibiotic ciprofloxacin. Negative supercoiling favors strand separation, and DNA replication, transcription, recombination and repair, all of which involve strand separation. Type II topoisomerases break and join 2 DNA strands simultaneously in an ATP-dependent manner. |
A0A0G2Q9F8 | GYRA_MYCBP | DNA gyrase subunit A (EC 5.6.2.2) | MTDTTLPPDDSLDRIEPVDIQQEMQRSYIDYAMSVIVGRALPEVRDGLKPVHRRVLYAMFDSGFRPDRSHAKSARSVAETMGNYHPHGDASIYDTLVRMAQPWSLRYPLVDGQGNFGSPGNDPPAAMRYTEARLTPLAMEMLREIDEETVDFIPNYDGRVQEPTVLPSRFPNLLANGSGGIAVGMATNIPPHNLRELADAVFWALENHDADEEETLAAVMGRVKGPDFPTAGLIVGSQGTADAYKTGRGSIRMRGVVEVEEDSRGRTSLVITELPYQVNHDNFITSIAEQVRDGKLAGISNIEDQSSDRVGLRIVIEIKRDAVAKVVINNLYKHTQLQTSFGANMLAIVDGVPRTLRLDQLIRYYVDHQLDVIVRRTTYRLRKANERAHILRGLVKALDALDEVIALIRASETVDIARAGLIELLDIDEIQAQAILDMQLRRLAALERQRIIDDLAKIEAEIADLEDILAKPERQRGIVRDELAEIVDRHGDDRRTRIIAADGDVSDEDLIAREDVVVTITETGYAKRTKTDLYRSQKRGGKGVQGAGLKQDDIVAHFFVCSTHDLILFFTTQGRVYRAKAYDLPEASRTARGQHVANLLAFQPEERIAQVIQIRGYTDAPYLVLATRNGLVKKSKLTDFDSNRSGGIVAVNLRDNDELVGAVLCSADDDLLLVSANGQSIRFSATDEALRPMGRATSGVQGMRFNIDDRLLSLNVVREGTYLLVATSGGYAKRTAIEEYPVQGRGGKGVLTVMYDRRRGRLVGALIVDDDSELYAVTSGGGVIRTAARQVRKAGRQTKGVRLMNLGEGDTLLAIARNAEESGDDNAVDANGADQTGN | A type II topoisomerase that negatively supercoils closed circular double-stranded (ds) DNA in an ATP-dependent manner to modulate DNA topology and maintain chromosomes in an underwound state. Also catalyzes the interconversion of other topological isomers of double-stranded DNA rings, including catenanes and knotted rings. Relaxes negatively supercoiled DNA in an ATP-independent manner. A linear reaction intermediate can be trapped in the presence of the antibiotic ciprofloxacin. Negative supercoiling favors strand separation, and DNA replication, transcription, recombination and repair, all of which involve strand separation. Type II topoisomerases break and join 2 DNA strands simultaneously in an ATP-dependent manner. |
A0A0G2QC33 | ATG4B_RAT | Cysteine protease ATG4B (EC 3.4.22.-) (Autophagy-related protein 4 homolog B) | MDAATLTYDTLRFAEFEDFPETSEPVWILGRKYSIFTEKDEILSDVASRLWFTYRRNFPAIGGTGPTSDTGWGCMLRCGQMIFAQALVCRHLGRDWRWTQRKRQPDSYFSVLNAFLDRKDSYYSIHQIAQMGVGEGKSIGQWYGPNTVAQVLKKLAVFDTWSSLAVHIAMDNTVVMEEIRRLCRASLPCAGAAALSMESERHCNGLPAGAEVTNRPLAWRPLVLLIPLRLGLTDINEAYVETLKHCFMMPQSLGVIGGKPNSAHYFIGYVGEELIYLDPHTTQPAVELTDSCFIPDESFHCQHPPCRMGIGELDPSIAVGFFCKTEEDFNDWCQQVKKLSQLGGALPMFELVEQQPSHLACQDVLNLSLDSSDVERLERFFDSEDEDFEILSL | Cysteine protease that plays a key role in autophagy by mediating both proteolytic activation and delipidation of ATG8 family proteins. Required for canonical autophagy (macroautophagy), non-canonical autophagy as well as for mitophagy. The protease activity is required for proteolytic activation of ATG8 family proteins: cleaves the C-terminal amino acid of ATG8 proteins MAP1LC3A, MAP1LC3B, MAP1LC3C, GABARAPL1, GABARAPL2 and GABARAP, to reveal a C-terminal glycine. Exposure of the glycine at the C-terminus is essential for ATG8 proteins conjugation to phosphatidylethanolamine (PE) and insertion to membranes, which is necessary for autophagy. Protease activity is also required to counteract formation of high-molecular weight conjugates of ATG8 proteins (ATG8ylation): acts as a deubiquitinating-like enzyme that removes ATG8 conjugated to other proteins, such as ATG3. In addition to the protease activity, also mediates delipidation of ATG8 family proteins. Catalyzes delipidation of PE-conjugated forms of ATG8 proteins during macroautophagy. Also involved in non-canonical autophagy, a parallel pathway involving conjugation of ATG8 proteins to single membranes at endolysosomal compartments, by catalyzing delipidation of ATG8 proteins conjugated to phosphatidylserine (PS). Compared to other members of the family (ATG4A, ATG4C or ATG4C), constitutes the major protein for proteolytic activation of ATG8 proteins, while it displays weaker delipidation activity than other ATG4 paralogs. Involved in phagophore growth during mitophagy independently of its protease activity and of ATG8 proteins: acts by regulating ATG9A trafficking to mitochondria and promoting phagophore-endoplasmic reticulum contacts during the lipid transfer phase of mitophagy. |
A0A0G2UGT2 | LEC_MYTTR | D-galactose-binding lectin (GalNAc/Gal-specific lectin) (MTL) | MTTFLIKHKASGKYFHPKGGTSNPPNGTNLVLHSDIHERMYFQFEVVNERWRYIKHVASEKIVHPFGGKADPLNGTNMVLHQDRHDRALFAMDFFNDNIRHKGGKYIHPKGGSKNPSNGNLTVMHGDEHGAMEFIFVSPKNKDKRVLVYA | D-galactose-binding lectin (PubMed:26802895, Ref.2). Binds both alpha and beta anomer of galactose (Gal). Binds strongly to branched beta-Gal-terminated glycans and weakly to unbranched glycans with alpha-Gal on the end of chains. Has strong affinity for both Gal and GalNAc. Binds glycoproteins containing mucin-type chains. Has hemagglutinating activity towards human group A erythrocytes (Ref.2). Has hemagglutinating activity towards rabbit erythrocytes. Agglutinates V.proteolyticus bacteria. Binds strongly to fungi including species from genera Aspergillus, Alternaria, Fusarium and Haematonectria, and to a lesser extent to fungi from genera Trichoderma. Decreases conidia germination and hyphal growth of fungi. At high concentration, stimulates secretion of cytokines TNF-alpha and IFN-gamma from human peripheral blood cells, and at low concentration reduces hyperexpression of cytokine IL-10 in these cells, indicative of immunomodulatory capability. However, has no effect on IL-4 production (Ref.2). Recognizes pathogen-associated molecular patterns (PAMPs) and binds to peptidoglycan from S.aureus, but has only little binding to beta-1,3-glucan from E.gracilis and lipopolysaccharide (LPS) from E.coli. May be involved in innate immunity acting as an antibacterial or antifungal agent recognizing carbohydrate ligands on the surface of pathogens. |
A0A0H2UNG0 | PULA_STRPN | Pullulanase A (EC 3.2.1.41) (Alpha-dextrin endo-1,6-alpha-glucosidase) (Pullulan 6-glucanohydrolase) | MRKTPSHTEKKMVYSIRSLKNGTGSVLIGASLVLLAMATPTISSDESTPTTNEPNNRNTTTLAQPLTDTAAGSGKNESDISSPGNANASLEKTEEKPAASPADPAPQTGQDRSSEPTTSTSPVTTETKAEEPIEDNYFRIHVKKLPEENKDAQGLWTWDDVEKPSENWPNGALSFKDAKKDDYGYYLDVKLKGEQAKKISFLINNTAGKNLTGDKSVEKLVPKMNEAWLDQDYKVFSYEPQPAGTVRVNYYRTDGNYDKKSLWYWGDVKNPSSAQWPDGTDFTATGKYGRYIDIPLNEAAREFGFLLLDESKQGDDVKIRKENYKFTDLKNHSQIFLKDDDESIYTNPYYVHDIRMTGAQHVGTSSIESSFSTLVGAKKEDILKHSNITNHLGNKVTITDVAIDEAGKKVTYSGDFSDTKHPYTVSYNSDQFTTKTSWRLKDETYSYDGKLGADLKEEGKQVDLTLWSPSADKVSVVVYDKNDPDKVVGTVALEKGERGTWKQTLDSTNKLGITDFTGYYYQYQIERQGKTVLALDPYAKSLAAWNSDDSKIDDAHKVAKAAFVDPAKLGPQDLTYGKIHNFKTREDAVIYEAHVRDFTSDPAIAKDLTKPFGTFEAFIEKLDYLKDLGVTHIQLLPVLSYYFVNELKNHERLSDYASSNSNYNWGYDPQNYFSLTGMYSSDPKNPEKRIAEFKNLINEIHKRGMGAILDVVYNHTAKVDLFEDLEPNYYHFMDADGTPRTSFGGGRLGTTHHMTKRLLIDSIKYLVDTYKVDGFRFDMMGDHDAASIEEAYKAARALNPNLIMLGEGWRTYAGDENMPTKAADQDWMKHTDTVAVFSDDIRNNLKSGYPNEGQPAFITGGKRDVNTIFKNLIAQPTNFEADSPGDVIQYIAAHDNLTLFDIIAQSIKKDPSKAENYAEIHRRLRLGNLMVLTAQGTPFIHSGQEYGRTKQFRDPAYKTPVAEDKVPNKSHLLRDKDGNPFDYPYFIHDSYDSSDAVNKFDWTKATDGKAYPENVKSRDYMKGLIALRQSTDAFRLKSLQDIKDRVHLITVPGQNGVEKEDVVIGYQITAPNGDIYAVFVNADEKAREFNLGTAFAHLRNAEVLADENQAGPVGIANPKGLEWTEKGLKLNALTATVLRVSQNGTSHESTAEEKPDSTPSKPEHQNEASHPAHQDPAPEARPDSTKPDAKVADAENKPSQATADSQAEQPAQEAQASSVKEAVRNESVENSSKENIPATPDKQAELPNTGIKNENKLLFAGISLLALLGLGFLLKNKKEN | Virulence factor (By similarity). Involved in the degradation of glycogen of the mammalian host cells. Hydrolyzes the alpha-1,6-branchpoints of glycogen. Hydrolyzes pullulan. Does not hydrolyze dextran. Binds to mouse lung alveolar type II cells that are rich in glycogen stores. Is an alpha-glucan-specific carbohydrate-binding protein, which binds to amylose (pure alpha-(1,4)-linked glucose), amylopectin (alpha-(1,4)-linked glucose with alpha-(1,6) branch points), pullulan (linear polymer of mixed alpha-(1,4)- and alpha-(1,6)-linked glucose) and glycogen (similar to amylopectin with more frequent alpha-(1,6) branch points) in vitro. Does not bind to dextran (a linear polymer of alpha-(1,6)-linked glucose). |
A0A0H2URG7 | GTFA_STRPN | UDP-N-acetylglucosamine--peptide N-acetylglucosaminyltransferase GtfA subunit (EC 2.4.1.-) (Glycosyltransferase GtfA) (O-linked N-acetyl-D-glucosamine (O-GlcNAc) transferase) | MTIYNINLGIGWASSGVEYAQAYRAGVFRKLNLSSKFIFTDMILADNIQHLTANIGFDDNQVIWLYNHFTDIKIAPTSVTVDDVLAYFGGEESHREKNGKVLRVFFFDQDKFVTCYLVDENKDLVQHAEYVFKGNLIRKDYFSYTRYCSEYFAPKDNVAVLYQRTFYNEDGTPVYDILMNQGKEEVYHFKDKIFYGKQAFVRAFMKSLNLNKSDLVILDRETGIGQVVFEEAQTAHLAVVVHAEHYSENATNEDYILWNNYYDYQFTNADKVDFFIVSTDRQNEVLQEQFAKYTQHQPKIVTIPVGSIDSLTDSSQGRKPFSLITASRLAKEKHIDWLVKAVIEAHKELPELTFDIYGSGGEDSLLREIIANHQAEDYIQLKGHAELSQIYSQYEVYLTASTSEGFGLTLMEAIGSGLPLIGFDVPYGNQTFIEDGQNGYLIPSSSDHVEDQIKQAYAAKICQLYQENRLEAMRAYSYQIAEGFLTKEILEKWKKTVEEVLHD | Required for the polymorphic O-glycosylation of serine-rich repeat protein PsrP. Catalyzes the first step in glycosylation by transferring N-acetylglucosamine from UDP-GlcNAc to serine residues in PsrP. Part of the accessory SecA2/SecY2 system specifically required to export serine-rich repeat cell wall proteins encoded upstream in the same operon (Probable). The GtfA-GtfB complex adds GlcNAc from UDP-GlcNAc to PsrP (experimentally characterized with truncated PsrP-SSR1 constructs) this subunit alone has weak N-acetylglucosaminyl transferase activity that is 10-fold stimulated by GtfB. The complex requires at least a 25 residue-long peptide for activity the in vitro assay has only been seen to glycosylate Ser residues. The alpha linkage was shown in L.reuteri. |
A0A0H2URJ6 | GLYE_STRPN | Glycosyltransferase GlyE (PsrP glycosyltransferase GlyE) | MRNTKRAVVFAGDYAYIRQIETAMKSLCRHNSHLKIYLLNQDIPQEWFSQIRIYLQEMGGDLIDCKLIGSQFQMNWSNKLPHINHMTFARYFIPDFVTEDKVLYLDSDLIVTGDLTDLFELDLGENYLAAARSCFGAGVGFNAGVLLINNKKWGSETIRQKLIDLTEKEHENVEEGDQSILNMLFKDQYSSLEDQYNFQIGYDYGAATFKHQFIFDIPLEPLPLILHYISQDKPWNQFSVGRLREVWWEYSLMDWSVILNEWFSKSVKYPSKSQIFKLQCVNLTNSWCVEKIDYLAEQLPEVHFHIVAYTNMANELLALTRFPNVTVYPNSLPMLLEQIVIASDLYLDLNHDRKLEDAYEFVLKYKKPMIAFDNTCSENLSEISYEGIYPSSIPKKMVAAIRSYMR | Involved in the polymorphic O-glycosylation of the serine-rich repeat protein PsrP. Catalyzes the third step in glycosylation of PsrP in this bacteria. Transfers galactose from UDP-galactose to the terminal glucose moiety of already-glycosylated PsrP (using the short substrate PsrP-GlcNAc-Glc). Has a very marked preference for PsrP substrate that has already been modified by GlcNAc and glucose. Has hydrolytic activity against UDP-galactose but none against UDP-glucose. |
A0A0H2URK1 | PSRP_STRPN | Pneumococcal serine-rich repeat protein (PsrP) (Adhesin PsrP) (Serine-rich repeat protein PsrP) | MTETVEDKVSHSITGLDILKGIVAAGAVISGTVATQTKVFTNESAVLEKTVEKTDALATNDTVVLGTISTSNSASSTSLSASESASTSASESASTSASTSASTSASESASTSASTSISASSTVVGSQTAAATEATAKKVEEDRKKPASDYVASVTNVNLQSYAKRRKRSVDSIEQLLASIKNAAVFSGNTIVNGAPAINASLNIAKSETKVYTGEGVDSVYRVPIYYKLKVTNDGSKLTFTYTVTYVNPKTNDLGNISSMRPGYSIYNSGTSTQTMLTLGSDLGKPSGVKNYITDKNGRQVLSYNTSTMTTQGSGYTWGNGAQMNGFFAKKGYGLTSSWTVPITGTDTSFTFTPYAARTDRIGINYFNGGGKVVESSTTSQSLSQSKSLSVSASQSASASASTSASASASTSASASASTSASASASTSASVSASTSASASASTSASASASTSASESASTSASASASTSASASASTSASASASTSASESASTSASASASTSASESASTSASASASTSASASASTSASGSASTSTSASASTSASASASTSASASASISASESASTSASESASTSTSASASTSASESASTSASASASTSASASASTSASASASTSASASTSASESASTSASASASTSASASASTSASASASTSASASASTSASVSASTSASASASTSASASASTSASESASTSASASASTSASASASTSASASASTSASASASTSASASASTSASESASTSASASASTSASASASTSASASASTSASASASTSASASASISASESASTSASASASTSASASASTSASASASTSASESASTSASASASTSASASASTSASASASTSASASASTSASASASTSASASASTSASESASTSASASASTSASESASTSASASASTSASASASTSASASASTSASASASTSASASASTSASASASTSASASTSASESASTSASASASTSASASASTSASASASTSASESASTSASASASTSASASASTSASASASTSASASASTSASASASISASESASTSASASASTSASVSASTSASASASTSASESASTSASASASTSASESASTSASASASTSASASASISASESASTSASASASTSASASASTSASASASTSASESASTSTSASASTSASESASTSASASASTSASASASTSASASASTSASASASTSASASTSASESASTSASASASTSASASASTSASASASTSASASASTSASASASTSASASASTSASASASTSASASASTSASESASTSASASASTSASASASTSASASASTSASASASTSASVSASTSASESASTSASASASTSASASASTSASESASTSASASASTSASESASTSASASASTSASASASTSASASASTSASASASTSASASASTSASASASTSASASASTSASASASTSASASASTSASASASTSASASASTSASASASTSASASASISASESASTSASASASTSASASASTSASVSASTSASASASTSASASASISASESASTSASASASTSASASASTSASASASTSASASASISASESASTSASASASTSASASASTSASASASTSASASASTSASASASTSASASASTSASASASTSASASASTSASASASTSASESASTSASASASTSASASASTSASASASTSASVSASTSASESASTSASASASTSASASASTSASASASTSASESASTSASASASTSASASASTSASESASTSASASASTSASASASTSASASASTSASASASASTSASASASTSASASASTSASASASISASESASTSASESASTSTSASASTSASESASTSASASASTSASASASTSASASASTSASASTSASESASTSASASASTSASASASTSASASASTSASASASTSASASASTSASVSASTSASASASTSASASASTSASESASTSASASASTSASASASTSASASASTSASASASTSASASASTSASESASTSASASASTSASASASTSASASASTSASASASTSASASASISASESASTSASASASTSASASASTSASASASTSASESASTSASASASTSASASASTSASASASTSASASASTSASASASTSASASASTSASESASTSASASASTSASESASTSASASASTSASASASTSASASASTSASASASTSASASASTSASASASTSASASTSASESASTSASASASTSASASASTSASASASTSASESASTSASASASTSASASASTSASASASTSASASASTSASASASISASESASTSASASASTSASVSASTSASASASTSASESASTSASASASTSASESASTSASASASTSASASASISASESASTSASASASTSASASASTSASASASTSASESASTSTSASASTSASESASTSASASASTSASASASTSASASASTSASASASTSASASTSASESASTSASASASTSASASASTSASASASTSASASASTSASASASTSASASASTSASASASTSASASASTSASASASTSASASASTSASASASTSASESASTSASASASTSASASASTSASASASTSASVSASTSASESASTSASASASTSASASASTSASASASTSASESASTSASASASTSASASASTSASESASTSASASASTSASASASTSASASASTSASASASASTSASASASTSASASASTSASASASISASESASTSASASASASTSASASASTSASASASTSASASASISASESASTSASESASTSTSASASTSASESASTSASASASTSASASASTSASASASTSASASTSASESASTSASASASTSASASASTSASASASTSASASASTSASASASTSASVSASTSASASASTSASASASTSASESASTSASASTSASESASTSASASASTSASASASTSASASASTSASESASTSASASASTSASASASTSASESASTSASASASTSASASASTSASASASTSASESASTSASASASTSASESASTSASASASTSASASASTSASGSASTSTSASASTSASASASTSASASASISASESASTSASESASTSTSASASTSASESASTSASASASTSASASASTSASASASTSASASTSASESASTSASASASTSASASASTSASASASTSASASASTSASVSASTSASASASTSASASASTSASESASTSASASASTSASASASTSASASASTSASASASTSASASASTSASESASTSASASASTSASASASTSASASASTSASASASTSASASASISASESASTSASASASTSASASASTSASASASTSASESASTSASASASTSASASASTSASASASTSASASASTSASASASTSASASASTSASESASTSASASASTSASESASTSASASASTSASASASTSASASASTSASASASTSASASASTSASASASTSASASTSASESASTSASASASTSASASASTSASASASTSASESASTSASASASTSASASASTSASASASTSASASASTSASASASISASESASTSASASASTSASVSASTSASASASTSASESASTSASASASTSASESASTSASASASTSASASASISASESASTSASASASTSASASASTSASASASTSASESASTSTSASASTSASESASTSASASASTSASASASTSASASASTSASASASTSASASTSASESASTSASASASTSASASASTSASASASTSASASASTSASASASTSASASASTSASASASTSASASASTSASESASTSASASASTSASASASTSASASASTSASASASTSASVSASTSASESASTSASASASTSASASASTSASESASTSASASASTSASESASTSASASASTSASASASTSASASASTSASASASTSASASASTSASASASTSASASASTSASASASTSASASASTSASASASTSASASASTSASASASTSASASASISASESASTSASASASTSASASASTSASVSASTSASASASTSASASASISASESASTSASASASTSASASASTSASASASTSASASASISASESASTSASASASTSASASASTSASASASTSASASASTSASASASTSASASASTSASASASTSASASASTSASASASTSASESASTSASASASTSASASASISASESASTSASASASTSASASASTSASASASTSASESASTSTSASASTSASESASTSASASASTSASASASTSASASASTSASASASTSASASTSASESASTSASASASTSASASASTSASASASTSASASASTSASASASTSASASASTSASASASTSASASASTSASESASTSASASASTSASASASTSASASASTSASASASTSASVSASTSASESASTSASASASTSASASASTSASESASTSASASASTSASESASTSASASASTSASASASTSASASASTSASASASTSASASASTSASASASTSASASASTSASASASTSASASASTSASASASTSASASASTSASASASTSASASASISASESASTSASASASTSASASASTSASVSASTSASASASTSASASASISASESASTSASASASTSASASASTSASASASTSASASASISASESASTSASASASTSASASASTSASASASTSASASASTSASASASTSASASASTSASASASTSASASASTSASASASTSASASASTSASASASTSASASASTSASASASTSASASASTSVSNSANHSNSQVGNTSGSTGKSQKELPNTGTESSIGSVLLGVLAAVTGIGLVAKRRKRDEEE | Protein that allows bacteria to adhere to mammalian host cells. Required for full virulence in mouse infection models when infected intranasally. Required for adhesion to host cells in vitro and for persistence in the lower respiratory tract. Binds host keratin 10 (KRT10) on lung cells which mediates adhesion via the C-terminus of the basic region (BR, residues 273-341) glycosylation of either protein is not required for the interaction. A region in the N-terminus (residues 122-166) self aggregates, contributing to mature biofilm formation. The basic region (BR, residues 187-385) also self aggregates the BR binds DNA which enhances self aggregation. |
A0A0H2US87 | OSPC3_SHIFL | Arginine ADP-riboxanase OspC3 (EC 4.3.99.-) | MKIPEAVNHINVQNNIDLVDGKINPNKDTKALQKNISCVTNSSSSGISEKHLDHCADTVKSFLRKSIAAQSYSKMFSQGTSFKSLNLSIEAPSGARSSFRSLEHLDKVSRHYLSEIIQKTHPLSSDERHLLSIIINSDFNFRHQSNANLSNNTLNIKSFDKIKSENIQTYKNTFSEDIEEIANHDFVFFGVEISNHQETLPLNKTHHTVDFGANAYIIDHDSPYGYMTLTDHFDNAIPPVFYHEHQSFFLDNFKEVVDEVSRYVHGNQGKTDVPIFNTKDMRLGIGLHLIDFIRKSKDQRFREFCYNKNIDPVSLDRIINFVFQLEYHIPRMLSTDNFKKIKLRDISLEDAIKASNYEEINNKVTDKKMAHQALAYSLGNKKADIALYLLSKFNFTKQDVAEMEKMKNNRYCNLYDVEYLLSKDGANYKVLEYFINNGLVDVNKKFQKVNSGDTMLDNAMKSKDSKMIDFLLKNGAILGKRFEI | ADP-riboxanase effector that inhibits host cell pyroptosis. Acts by mediating arginine ADP-riboxanation of host CASP4/CASP11, blocking CASP4/CASP11 autoprocessing. This prevents CASP4 activation and ability to recognize and cleave GSDMD, thereby inhibiting LPS-induced pyroptosis. ADP-riboxanation takes place in two steps: OspC3 first catalyzes ADP-ribosylation of target Arg, and then initiates a deamination to remove one N-omega group. Independently of its ADP-riboxanase activity, acts as an inhibitor of calcium signaling by inhibiting host calmodulin, preventing activation of the JAK-STAT signaling pathway in response to interferon-beta. Mechanistically, acts by binding to the apo form of calmodulin, preventing calcium-binding and ability to activate host CaMK2 (CAMKII), which is required to stimulate the JAK-STAT signaling pathway in response to interferon-beta. |
A0A0H2V871 | IROE_ECOL6 | Apo-salmochelin esterase (EC 3.1.1.107) (Enterobactin hydrolase IroE) | MYAREYRSTRPHKAIFFHLSCLTLICSAQVYAKPDMRPLGPNIADKGSVFYHFSATSFDSVDGTRHYRVWTAVPNTTAPASGYPILYMLDGNAVMDRLDDELLKQLSEKTPPVIVAVGYQTNLPFDLNSRAYDYTPAAESRKTDLHSGRFSRKSGGSNNFRQLLETRIAPKVEQGLNIDRQRRGLWGHSYGGLFVLDSWLSSSYFRSYYSASPSLGRGYDALLSRVTAVEPLQFCTKHLAIMEGSATQGDNRETHAVGVLSKIHTTLTILKDKGVNAVFWDFPNLGHGPMFNASFRQALLDISGENANYTAGCHELSH | Catalyzes the hydrolysis of both the apo and Fe3(+)-bound forms of enterobactin (Ent), monoglucosyl-C-Ent (MGE), diglucosyl-C-Ent (DGE) and triglucosyl-C-Ent (TGE). It prefers apo siderophores as substrates and hydrolyzes the Fe3(+)-bound siderophores very inefficiently. Tends to hydrolyze the trilactone just once to produce linearized trimers. May hydrolyze and linearize some or all of apo enterobactins while they are being exported. |
A0A0H2V8B5 | TCPC_ECOL6 | NAD(+) hydrolase TcpC (EC 3.2.2.6) (NADP(+) hydrolase TcpC) (EC 3.2.2.-) (TIR domain-containing protein in E.coli) (tcpC) | MIAYENIEFFICLVNVLGNNMYNILFFIFLSIAIPFLLFLAWKQHLKTKEIRSYLLKEGYNIIFNGEGNSYLAFNISNATFRAGNLTSNDYFQASISYIHDYRWEWKEVEAKKINNIFIIYISNIDFPSQKLFYRNNKSLAEIDWAKLQAIFHQPYEIQNDVMQDNNNTHYDFFISHAKEDKDTFVRPLVDELNRLGVIIWYDEQTLEVGDSLRRNIDLGLRKANYGIVILSHNFLNKKWTQYELDSLINRAVYDDNKIILPIWHNINAQEVSKYSHYLADKMALQTSLYSVKEIARELAEIAYRRR | Virulence factor that suppresses host Toll-like receptor (TLR)-mediated cytokine production upon infection, thereby increasing bacterial burden in the urinary tract and promoting renal tissue damage. Acts as a NAD(+) hydrolase (NADase) by catalyzing cleavage of NAD(+) into ADP-D-ribose (ADPR) and nicotinamide. Also able to hydrolyze NADP(+), but not other NAD(+)-related molecules. |
A0A0H2VG78 | GLCP_STAES | Glucose transporter GlcP (Glucose/H(+) symporter) | MKANKYLIFILGALGGLLYGYDNGVISGALLFIHKDIPLNSTTEGIVVSSMLIGAIVGAGSSGPLADKLGRRRLVMLIAIVFIIGALILAASTNLALLIIGRLIIGLAVGGSMSTVPVYLSEMAPTEYRGSLGSLNQLMITIGILAAYLVNYAFADIEGWRWMLGLAVVPSVILLVGIYFMPESPRWLLENRNEEAARQVMKITYDDSEIDKELKEMKEINAISESTWTVIKSPWLGRILIVGCIFAIFQQFIGINAVIFYSSSIFAKAGLGEAASILGSVGIGTINVLVTIVAIFVVDKIDRKKLLVGGNIGMIASLLIMAILIWTIGIASSAWIIIVCLSLFIVFFGISWGPVLWVMLPELFPMRARGAATGISALVLNIGTLIVSLFFPILSDALSTEWVFLIFAFIGVLAMIFVIKFLPETRGRSLEEIEYELRERTGARTE | Transporter highly specific for glucose uptake. |
A0A0H2WWV6 | TARM_STAAC | Poly(ribitol-phosphate) alpha-N-acetylglucosaminyltransferase (EC 2.4.1.70) (WTA GlcNAc-transferase) | MKKIFMMVHELDVNKGGMTSSMFNRSKEFYDADIPADIVTFDYKGNYDEIIKALKKQGKMDRRTKMYNVFEYFKQISNNKHFKSNKLLYKHISERLKNTIEIEESKGISRYFDITTGTYIAYIRKSKSEKVIDFFKDNKRIERFSFIDNKVHMKETFNVDNKVCYQVFYDEKGYPYISRNINANNGAVGKTYVLVNKKEFKNNLALCVYYLEKLIKDSKDSIMICDGPGSFPKMFNTNHKNAQKYGVIHVNHHENFDDTGAFKKSEKYIIENANKINGVIVLTEAQRLDILNQFDVENIFTISNFVKIHNAPKHFQTEKIVGHISRMVPTKRIDLLIEVAELVVKKDNAVKFHIYGEGSVKDKIAKMIEDKNLERNVFLKGYTTTPQKCLEDFKLVVSTSQYEGQGLSMIEAMISKRPVVAFDIKYGPSDFIEDNKNGYLIENHNINDMADKILQLVNNDVLAAEFGSKARENIIEKYSTESILEKWLNLFNS | Attaches N-acetyl-alpha-D-glucosamine residues to poly(RboP)-wall teichoic acids (WTAs). |
A0A0H2WZ38 | GATD_STAAC | Lipid II isoglutaminyl synthase (glutamine-hydrolyzing) subunit GatD (EC 6.3.5.13) (Lipid II isoglutaminyl synthase glutaminase subunit) (EC 3.5.1.2) | MHELTIYHFMSDKLNLYSDIGNIIALRQRAKKRNIKVNVVEINETEGITFDECDIFFIGGGSDREQALATKELSKIKTPLKEAIEDGMPGLTICGGYQFLGKKYITPDGTELEGLGILDFYTESKTNRLTGDIVIESDTFGTIVGFENHGGRTYHDFGTLGHVTFGYGNNDEDKKEGIHYKNLLGTYLHGPILPKNYEITDYLLEKACERKGIPFEPKEIDNEAEIQAKQVLIDRANRQKKSR | The lipid II isoglutaminyl synthase complex catalyzes the formation of alpha-D-isoglutamine in the cell wall lipid II stem peptide. The GatD subunit catalyzes the hydrolysis of glutamine to glutamate and ammonia. The resulting ammonia molecule is channeled to the active site of MurT. |
A0A0H2Z7X0 | TPBB_PSEAB | Diguanylate cyclase TpbB (EC 2.7.7.65) | MNRRRRYTGSNPSLRRVLYRAHLGVALVAVFTAGLAVTLVGLLTLRAYADPNQQLIARSISYTVEAAVVFGDAQAAEESLALIASSEEVSSAIVYDRQGQPLASWHRESTGPLHLLEQQLAHWLLSAPTEQPILHDGQKIGSVEVKGSGGSLLRFLLTGFAGMVLCLLLTALGAFYLSRRLVRGIVGPLDQLAKVAHTVRRERDFEKRVPEAGIAELSQLGEDFNALLDELESWQARLQDENASLAHQAHHDSLTSLPNRAFFEGRLSRALRDASEHREQLAVLFIDSDRFKEINDRLGHAAGDTVLVNIAMRIRGQLRESDLVARLGGDEFAVLLAPLASGADALRIADNIIASMQAPIRLSDGSTVSTSLTIGIALYPEHADTPAALLHDADMAMYIAKRQARGSRRLAELNDPRILQEEKEIDSATPEAPPK | Catalyzes the synthesis of cyclic-di-GMP (c-di-GMP) via the condensation of 2 GTP molecules. Important for the regulation of biofilm maintenance when exposed to peroxide. Part of the YfiB-TpbB-YfiR (or yfiBNR) system, encoding a tripartite signaling module that modulates intracellular c-di-GMP levels. The system is a key regulator of the small colony variant (SCV) phenotype, and plays an important role in biofilm formation and in vivo persistence. The c-di-GMP produced by TpbB/YfiN stimulates the production of the Pel and Psl exopolysaccharides, which promotes surface attachment, generates an SCV phenotype and confers resistance against phagocytosis. |
A0A0H2ZFK2 | TPBA_PSEAB | Dual specificity protein phosphatase TpbA (DUSP) (EC 3.1.3.16) (EC 3.1.3.48) (Dual specific tyrosine phosphatase) (Protein tyrosine phosphatase) (Tyrosine phosphatase related to biofilm formation) | MHRSPLAWLRLLLAAVLGAFLLGGPLHAAETAAPRSPAWAQAVDPSINLYRMSPTLYRSALPNAQSVALLQRLQVKTVVSFIKDDDRAWLGQAPVRVVSLPTHADRVDDAEVLSVLRQLQAAEREGPVLMHCKHGNNRTGLFAAMYRIVVQGWDKQAALEEMQRGGFGDEDDMRDASAYVRGADVDGLRLAMANGECSPSRFALCHVREWMAQALDRP | Phosphatase that regulates diverse phenotypes in P.aeruginosa via regulation of the concentration of cellular c-di-GMP. Acts by dephosphorylating the membrane-anchored diguanylate cyclase TpbB at tyrosine and serine/threonine sites, leading to inactivation of TpbB and reduced c-di-GMP production. The reduced cellular c-di-GMP concentration leads to reduced adhesin expression, reduced extracellular polysaccharide (EPS) production, pellicule production, cell aggregation and biofilm formation, and enhanced swimming and swarming. It affects colony morphology and controls rugose colony formation. TpbA also acts as a positive regulator of extracellular DNA (eDNA, a major component of the biofilm matrix) and cell lysis by reducing c-di-GMP concentrations. In vitro shows phosphatase activity toward p-nitrophenyl phosphate (pNPP), tyrosine phosphopeptides and a threonine phosphopeptide. Does not have phosphodiesterases (PDE) activity, and cannot degrade c-di-GMP. |
A0A0H2ZL64 | PULA_STRP2 | Pullulanase A (EC 3.2.1.41) (Alpha-dextrin endo-1,6-alpha-glucosidase) (Pullulan 6-glucanohydrolase) | MRKTPSHTEKKMVYSIRSLKNGTGSVLIGASLVLLAMATPTISSDESTPTTNEPNNRNTTTLAQPLTDTAADSGKNESDISSPRNANASLEKTEEKPATEPTTSTSPVTTETKAEEPIEDNYFRIHVKKLPEENKDAQGLWTWDDVEKPSENWPNGALSFKDAKKDDYGYYLDVKLKGEQAKKISFLINNTAGKNLTGDKSVEKLVPKMNEAWLDQDYKVFSYEPQPAGTVRVNYYRTDGNYDKKSLWYWGDVKNPSSAQWPDGTDFTATGKYGRYIDIPLNEAAREFGFLLLDESKQGDDVKIRKENYKFTDLKNHSQIFLKDDDESIYTNPYYVHDIRMTGAQHVGTSSIESSFSTLVGAKKEDILKHSNITNHLGNKVTITDVAIDEAGKKVTYSGDFSDTKHPYTVSYNSDQFTTKTSWHLKDETYSYDGKLGADLKEEGKQVDLTLWSPSADKVSVVVYDKNDPDKVVGTVALEKGERGTWKQTLDSTNKLGITDFTGYYYQYQIERQGKTVLALDPYAKSLAAWNSDDAKIDDAHKVAKAAFVDPAKLGPQDLTYGKIHNFKTREDAVIYEAHVRDFTSDPAIAKDLTKPFGTFEAFIEKLDYLKDLGVTHIQLLPVLSYYFVNELKNHERLSDYASSNSNYNWGYDPQNYFSLTGMYSSDPKNPEKRIAEFKNLINEIHKRGMGAILDVVYNHTAKVDIFEDLEPNYYHFMDADGTPRTSFGGGRLGTTHHMTKRLLVDSIKYLVDTYKVDGFRFDMMGDHDAASIEEAYKAARALNPNLIMLGEGWRTYAGDENMPTKAADQDWMKHTDTVAVFSDDIRNNLKSGYPNEGQPAFITGGKRDVNTIFKNLIAQPTNFEADSPGDVIQYIAAHDNLTLFDIIAQSIKKDPSKAENYAEIHRRLRLGNLMVLTAQGTPFIHSGQEYGRTKQFRDPAYKTPVAEDKVPNKSHLLRDKDGNPFDYPYFIHDSYDSSDAVNKFDWTKATDGKAYPENVKSRDYMKGLIALRQSTDAFRLKSLQDIKDRVHLITVPGQNGVEKEDVVIGYQITAPNGDIYAVFVNADEKAREFNLGTAFAHLRNAEVLADENQAGSVGIANPKGLEWTEKGLKLNALTATVLRVSQNGTSHESTAEEKPDSTPSKPEHQDPAPEARPDSTKPDAKVADAENKPSQATADSQAEQPAQEAQASSVKEAVQNESVENSSKKNIPATPDRQAELPNTGIKNENKLLFAGISLLALLGLGFLLKNKKEN | Virulence factor. Involved in the degradation of glycogen of the mammalian host cells. Hydrolyzes the alpha-1,6-branchpoints of glycogen. Hydrolyzes pullulan. Does not hydrolyze dextran. Binds to mouse lung alveolar type II cells that are rich in glycogen stores. Is an alpha-glucan-specific carbohydrate-binding protein, which binds to amylose (pure alpha-(1,4)-linked glucose), amylopectin (alpha-(1,4)-linked glucose with alpha-(1,6) branch points), pullulan (linear polymer of mixed alpha-(1,4)- and alpha-(1,6)-linked glucose) and glycogen (similar to amylopectin with more frequent alpha-(1,6) branch points) in vitro. Does not bind to dextran (a linear polymer of alpha-(1,6)-linked glucose) (By similarity). |
A0A0H2ZMF9 | PBP2A_STRP2 | Penicillin-binding protein 2a (PBP2a) (Cell wall synthase PBP2a) [Includes: Penicillin-insensitive transglycosylase (EC 2.4.1.129) (Peptidoglycan TGase) (Peptidoglycan glycosyltransferase); Penicillin-sensitive transpeptidase (EC 3.4.16.4) (DD-transpeptidase)] | MKLDKLFEKFLSLFKKETSELEDSDSTILRRSRSDRKKLAQVGPIRKFWRRYHLTKIILILGLSAGLLVGIYLFAVAKSTNVNDLQNALKTRTLIFDREEKEAGALSGQKGTYVELTDISKNLQNAVIATEDRSFYKNDGINYGRFFLAIVTAGRSGGGSTITQQLAKNAYLSQDQTVERKAKEFFLALELSKKYSKEQILTMYLNNAYFGNGVWGVEDASKKYFGVSASEVSLDQAATLAGMLKGPELYNPLNSVEDSTNRRDTVLQNMVAAGYIDKNQETEAAEVDMTSQLHDKYEGKISDYRYPSYFDAVVNEAVSKYNLTEEEIVNNGYRIYTELDQNYQANMQIVYENTSLFPRAEDGTFAQSGSVALEPKTGGVRGVVGQVADNDKTGFRNFNYATQSKRSPGSTIKPLVVYTPAVEAGWALNKQLDNHTMQYDSYKVDNYAGIKTSREVPMYQSLAESLNLPAVATVNDLGVDKAFEAGEKFGLNMEKVDRVLGVALGSGVETNPLQMAQAYAAFANEGLMPEAHFISRIENASGQVIASHKNSQKRVIDKSVADKMTSMMLGTFTNGTGISSSPADYVMAGKTGTTEAVFNPEYTSDQWVIGYTPDVVISHWLGFPTTDENHYLAGSTSNGAAHVFRNIANTILPYTPGSTFTVENAYKQNGIAPANTKRQVQTNDNSQTDDNLSDIRGRAQSLVDEASRAISDAKIKEKAQTIWDSIVNLFR | Cell wall formation. Synthesis of cross-linked peptidoglycan (PG) from the lipid intermediates (By similarity). Binds dansylated lipid II and catalyzes the polymerization of glycan chains. Hydrolyzes S2d (N-benzoyl-D-alanylmercaptoacetic acid) molecule, a synthetic thiolester analog of cell wall stem peptide. Active against bocillin, a fluorescent penicillin. No transpeptidase activity with non-fluorescent lysine-containing lipid II as substrate (By similarity). |
A0A0H2ZNH9 | WALK_STRP2 | Sensor histidine protein kinase/phosphatase WalK (EC 2.7.13.3) (EC 3.9.1.-) | MLDLLKQTIFTRDFIFILILLGFILVVTLLLLENRRDNIQLKQINQKVKDLIAGDYSKVLDMQGGSEITNITNNLNDLSEVIRLTQENLEQESKRLNSILFYMTDGVLATNRRGQIIMINDTAKKQLGLVKEDVLNRSILELLKIEENYELRDLITQSPELLLDSQDINGEYLNLRVRFALIRRESGFISGLVAVLHDTTEQEKEERERRLFVSNVSHELRTPLTSVKSYLEALDEGALCETVAPDFIKVSLDETNRMMRMVTDLLHLSRIDNATSHLDVELINFTAFITFILNRFDKMKGQEKEKKYELVRDYPINSIWMEIDTDKMTQVVDNILNNAIKYSPDGGKITVRMKTTEDQMILSISDHGLGIPKQDLPRIFDRFYRVDRARSRAQGGTGLGLSIAKEIIKQHKGFIWAKSEYGKGSTFTIVLPYDKDAVKEEVWEDEVED | Member of the two-component regulatory system WalK/WalR that regulates genes involved in cell wall metabolism (By similarity). Functions as a sensor protein kinase which is autophosphorylated at a histidine residue and transfers its phosphate group to WalR (By similarity). In turn, WalR binds to the upstream promoter regions of target genes to positively and negatively regulate their expression (By similarity). Required to maintain expression of WalRK regulon genes in exponentially growing cells, including peptidoglycan hydrolase pcsB. Phosphorylates WalR and also capable of dephosphorylation of WalR. WalK phosphatase activity is probably involved in preventing cross-talk from PnpS and other non-cognate sensor kinases during exponential growth. May be considered a potential virulence factor. |
A0A0H2ZQL5 | CCRZ_STRP2 | Cell cycle regulator CcrZ (EC 2.7.1.15) (EC 2.7.1.229) (Cell cycle regulator protein interacting with FtsZ) | MDLGDNELTLTPIPGKSGKAYMGSYPDGKRIFVKMNTSPILPGLAREQIAPQLLWSRRLADGRDMCAQEWLTGKILTPYDMNRKQIVNILTRLHRSRPLMTQLSRLGYAMETPVDLLQSWQETAPDALRKNHFISEVMADLRQTIPGFREDHATIVHGDVRHSNWIETDSGLIYLVDWDSVRLTDRMFDVAHMLCHYISEHQWKEWLTYYGYKYNQTVLSKLYWYGQLSYLSQISKYYMNQDLENVNREIHGLRHFRDKYGKRR | Plays a role in cell cycle regulation and chromosome integrity. Activates DnaA-dependent chromosomal DNA replication initiation ensuring that the chromosome is replicated at the right time during the cell cycle. May regulate replication initiation through phosphorylation of a possible second messenger or metabolite, and by interacting with replication initiation proteins. Has ATPase activity with D-ribose and 2-deoxy-D-ribose in vitro, but not with choline. Involved in DNA damage response (By similarity). |
A0A0H3AIG7 | VGRG1_VIBC3 | Actin cross-linking toxin VgrG1 (EC 6.3.2.-) | MATLAYSIEVEGLEDETLVVRGFHGQESLSNSVFLGQACYGFRYEVQLASRVSNLTAEQMVDKRAELKLYRNSQLVQRVHGIVRAFSQGDIGHHHTFYQLTLVPALERLSLRHNSRIFQKQTVPEILSILLQEMGINDYAFALKRDGVQREFCVQYRESDIDFLHRLAAEEGLVYSFVHEAGKHTLYFSDASDSLSKLPEPIPYNALVGGAIDTPYIHGLTYRTQAEVSEVQLKDYSFKKPAYSFLQTVQGTELDYQQTRYQHFDAPGRYKDDVNGAAFSQIRLDYLRRHAHTATGQSNEPLLRAGYKFDLQEHLDPAMNRDWVVVSINHQGEQPQALQEDGGSGATTYSNQFSLIPGHLHWRAEPQPKPQVDGPMIATVVGPEGEEIFCDEHGRVKIHFPWDRYSNGNEQSSCWVRVSQGWAGSQYGFIAIPRIGHEVIVEFLNGDPDQPIITGRTYHATNTPPYTLPEHKTKTVLRTETHQGEGFNELSFEDQAGKEQIYLHAQKDFDGLIENDQFTQIKHNQHLTVEWESREAVTGEQVLSIEGSLHVKTGKVRVNEAGTEIHVKAGQKVVIEAGSEITVKAGGSFVKVDPAGVHLSGALVNLNSGGSAGSGSGFGGAMPALPGGLEPAVALAPPQTISYQALLQAEQANVPAVKVCPLAAQEATPAVNSITPPPPPPIAPPMAPPQPIMNPQPTANAQPNLGRSTKATPDFPTHFPKSSIGIENELAGLVVAMPANSAQKFGYVKSAQGDALFMLTKDMNQGSYQRPPSLQDGKNYQNWQTHTVELVSYPCEMDDKAAVETRKQAMLWLATHFTTHIDQSNHQPLAPIQSEDGRFVIEITNAKHVIAAGNGISAESQGQTITMTPSGQQATVGVAAKGFGTSATPELRLLESAPWYQKSLKSQFASLTSAENLDDKELAANVFAYLTSIYLKTAELAKKFGIYINEWDPMSEQITPNANGLTDPKVKNAWEILPRTKPSKIVEILSKSDAKAVMKHIKPQLQSRYSESLSKNVFQYFQDGGEVAGHGINNATVGDKHSPELAILFEFRTVPNELQSYLPKTESTTKSEVKLLDQFDPMKRKTVIQQVESLV | Part of the type VI secretion system (T6SS) specialized secretion system, which delivers several virulence factors in both prokaryotic and eukaryotic cells during infection (By similarity). Forms the spike at the tip of the elongating tube probably formed by hemolysin co-regulated protein/Hcp. Allows the delivery of the TseL antibacterial toxin to target cells where it exerts its toxicity (By similarity). Acts also directly as an actin-directed toxin that catalyzes the covalent cross-linking of host cytoplasmic monomeric actin. Mediates the cross-link between 'Lys-50' of one monomer and 'Glu-270' of another actin monomer, resulting in formation of highly toxic actin oligomers that cause cell rounding. The toxin can be highly efficient at very low concentrations by acting on formin homology family proteins: toxic actin oligomers bind with high affinity to formins and adversely affect both nucleation and elongation abilities of formins, causing their potent inhibition in both profilin-dependent and independent manners. Acts as an acid--amino-acid ligase that transfers the gamma-phosphoryl group of ATP to the 'Glu-270' actin residue, resulting in the formation of an activated acyl phosphate intermediate. This intermediate is further hydrolyzed and the energy of hydrolysis is utilized for the formation of the amide bond between actin subunits. |
A0A0H3AMJ9 | CHEY3_VIBC3 | Chemotaxis protein CheY-3 (Chemotaxis response regulator CheY-3) | MEAILNKNMKILIVDDFSTMRRIVKNLLRDLGFNNTQEADDGLTALPMLKKGDFDFVVTDWNMPGMQGIDLLKNIRADEELKHLPVLMITAEAKREQIIEAAQAGVNGYIVKPFTAATLKEKLDKIFERL | Acts as a response regulator to control chemotaxis. Involved in the transmission of sensory signals from the chemoreceptors to the flagellar motors. Switches the flagellar rotation by binding to the flagellar motor switch protein FliM. In its active (phosphorylated or acetylated) form, exhibits enhanced binding to a switch component, FliM, at the flagellar motor which induces a change from counterclockwise to clockwise flagellar rotation (By similarity). |
A0A0H3GDH9 | PGDA_LISM4 | Peptidoglycan-N-acetylglucosamine deacetylase PgdA (Peptidoglycan GlcNAc deacetylase) (EC 3.5.1.104) (N-acetylglucosamine deacetylase Pgd) (Peptidoglycan N-deacetylase) (PG N-deacetylase) (Petptidoglycan deacetylase) (PG deacetylase) | MKIRWIRLSLVAILIIAVVFIGVIGFQKYQFSKSRNKVIMQMDRLMKDQDGGNFRRLDKKENGVEIISYIPKTTEKKDNEIIQKEIGKATDAEVKKLNRDKETQGIIFYTYQKHRMAEQAISYKAVQSEYVKEGRTKFVLKDKKDICKNIVTDAETGALLTLGEVLIKSNQTKLNLKTAVEEELIKTGDFSLKDVGNLGKIKSLVKWNQTDFEITNSEIILPVKIPGAPEPKKVKVKLADIASSVNKRYLPSSVKVPEVPKAKTNKRIALTFDDGPSSSVTPGVLDTLKRHNVKATFFVLGSSVIQNPGLVKRELEEGHQVGSHSWDHPQLTKQSTQEVYNQILKTQKAVFDQTGYFPTTMRPPYGAVNKQVAEEIGLPIIQWSVDTEDWKYRNAGIVTKKVLAGATDGAIVLMHDIHKTTAASLDTTLTKLKSQGYEFVTIDELYGEKLQIGKQYFDKTDSRMVK | Catalyzes the deacetylation of N-acetylglucosamine (GlcNAc) residues in peptidoglycan (PG). Deacetylates also N-acetylated PG. Does not deacetylate N-acetylmuramic acid (By similarity). Confers host lysozyme resistance. Critical for virulence and escape from innate immune response of the host. Required for intracellular survival of bacteria in macrophages of the host. Required for successful host colonization. Controls the production of inflammatory mediators in the bone marrow derived macrophages (BMMs) of the infected mouse. Suppresses Toll-like receptor 2 (TLR2)-dependent secretion of interleukin 6 (IL-6) and interferon-beta (IFN-beta) in the macrophages of the infected mouse. May decrease accessibility of pattern recognition receptors (PRRs) such as nucleotide-binding oligomerization domain protein (NOD) 1 of the host to the bacterial cell wall components (By similarity). Protects cells from autolysis induced by lysozyme or by other autolysis-inducing agents (By similarity). |
A0A0H3GGY3 | PGPH_LISM4 | Cyclic-di-AMP phosphodiesterase PgpH (c-di-AMP phosphodiesterase) (EC 3.1.4.59) | MKLAKKWRDWYIESGKKYLFPLLLVCFAVIAYFLVCQMTKPESYNVKLFQVAEKTIRSPQTVEDTEKTKEERTKASDAVEDVYVYNRETGQNRVALIQSLFAYVNEVNAEAQEKDTKNKEKAKKENKPAPAPTSTEDKLKNLKDKLSSNVSEKITSNISDEVFTTLIEAKSKDFNVMEDVVTTEVEKSMENKIRDENLNSVKIRARDDIELSAIPAYYKNVSKALVSYAIVPNEVYDEEQTDARRKEAAQSVVPVKILQGQVIVQEGQIVDRETYRQLKMLHLLDQKMPVKQYAGFAIFIIALAAILFLYTKKQTQPKAKKMQTMLIFSSVYLVSLFMLFIILFLETQNIANIAFLFPAAFAPMILKILLNEKYAFLSVIFIAVTSLLTFQNDATSGITIFILLSGATSVVMLRDYSRRSAIMLSGFMVGLINMIYVLLLLLINNSTLLQVSTLMALGYAFLGGFGAFILGVGVIPLFETIFGLLTTSRLVELANPNHPLLKKILMKAPGTYHHSMMVANLAEACADKIGANSLLVRVGCFYHDIGKTLRPPYFVENQLQGINPHDRLTPEQSRDIILSHTKDGAEILKENHMPQPIIDIALQHHGTTLLKYFYFKAKETNPDVKEADYRYSGPKPQTKEIAIINISDSVEAAVRSSTEPTMAKITEIIDGIIKDRFLDGQFTECDITIQEIKIIRDTLIATLNGIYHQRIQYPDDKD | A phosphodiesterase (PDE) that hydrolyzes cyclic di-3',5'-adenylate (c-di-AMP) there are at least 2 PDEs for c-di-AMP in this bacteria (this and pdeA), this may be the major PDE for growth in liquid culture. During host infection c-di-AMP is secreted into the host cytoplasm which leads to interferon-beta production and secretion by the host (Probable). The cytoplasmic HD domain binds and hydrolyzes c-di-AMP to 5'-pApA has very low activity against c-di-GMP, does not hydrolyze ppGpp. |
A0A0H3JN63 | GATD_STAAN | Lipid II isoglutaminyl synthase (glutamine-hydrolyzing) subunit GatD (EC 6.3.5.13) (Lipid II isoglutaminyl synthase glutaminase subunit) (EC 3.5.1.2) | MHELTIYHFMSDKLNLYSDIGNIIALRQRAKKRNIKVNVVEINETEGITFDECDIFFIGGGSDREQALATKELSKIKTPLKEAIEDGMPGLTICGGYQFLGKKYITPDGTELEGLGILDFYTESKTNRLTGDIVIESDTFGTIVGFENHGGRTYHDFGTLGHVTFGYGNNDEDKKEGIHYKNLLGTYLHGPILPKNYEITDYLLEKACERKGIPFEPKEIDNEAEIQAKQVLIDRANRQKKSR | The lipid II isoglutaminyl synthase complex catalyzes the formation of alpha-D-isoglutamine in the cell wall lipid II stem peptide. The GatD subunit catalyzes the hydrolysis of glutamine to glutamate and ammonia. The resulting ammonia molecule is channeled to the active site of MurT. |
A0A0H3JNB0 | TARP_STAAN | Poly(ribitol-phosphate) beta-N-acetylglucosaminyltransferase TarP (EC 2.4.1.-) (WTA glycosyltransferase) | MKKVSVIMPTFNNGEKLHRTISSVLNQTMKSTDYELIIIDDHSNDNGETLNVIKKYKGLVRFKQLKKNSGNASVPRNTGLKMSKAEYVFFLDSDDLLHERALEDLYNYGKENNSDLIIGKYGVEGKGRSVPKAIFEKGNVAKADIIDNSIFYALSVLKMFKKSVIDKNKIKFKTFSKTAEDQLFTIEFLMNSKNYSIKTDYEYYIVVNDFESSNHLSVNKSTGNQYFATINEIYKAIYKSPIYKNQEKRHQLAGKYTTRLLRHGQKKNFANSKMKYEDKIEWLNNFSKTINKVPRDSDKYVTQIFNLKLEAIRQNDLLAVMIADKLL | Attaches beta-O-GlcNAc (beta-O-N-acetyl-D-glucosamine) residues to the C3 position of poly(RboP)-wall teichoic acids (WTAs). Attenuates immunogenicity of WTA and protects S.aureus against adaptative host defenses by allowing bacteria to evade recognition by preexisting anti-S.aureus antibodies. Also protects the cell from podophage infection. |
A0A0H3JPC6 | TARS_STAAM | Poly(ribitol-phosphate) beta-N-acetylglucosaminyltransferase TarS (EC 2.4.1.355) (Beta-O-GlcNAc transferase) (Beta-O-GlcNAc-WTA transferase) (WTA glycosyltransferase) (Wall teichoic acid beta-glycosyltransferase) | MMKFSVIVPTYNSEKYITELLNSLAKQDFPKTEFEVVVVDDCSTDQTLQIVEKYRNKLNLKVSQLETNSGGPGKPRNVALKQAEGEFVLFVDSDDYINKETLKDAAAFIDEHHSDVLLIKMKGVNGRGVPQSMFKETAPEVTLLNSRIIYTLSPTKIYRTALLKDNDIYFPEELKSAEDQLFTMKAYLNANRISVLSDKAYYYATKREGEHMSSAYVSPEDFYEVMRLIAVEILNADLEEAHKDQILAEFLNRHFSFSRTNGFSLKVKLEEQPQWINALGDFIQAVPERVDALVMSKLRPLLHYARAKDIDNYRTVEESYRQGQYYRFDIVDGKLNIQFNEGEPYFEGIDIAKPKVKMTAFKFDNHKIVTELTLNEFMIGEGHYDVRLKLHSRNKKHTMYVPLSVNANKQYRFNIMLEDIKAYLPKEKIWDVFLEVQIGTEVFEVRVGNQRNKYAYTAETSALIHLNNDFYRLTPYFTKDFNNISLYFTAITLTDSISMKLKGKNKIILTGLDRGYVFEEGMASVVLKDDMIMGMLSQTSENEVEILLSKDIKKRDFKNIVKLNTAHMTYSLK | Attaches beta-O-GlcNAc (beta-O-N-acetyl-D-glucosamine) residues to the C4 position of poly(RboP)-wall teichoic acids (WTAs). Mediates beta-lactam resistance in methicillin resistant Staphylococcus aureus (MRSA) strains. |
A0A0H3JRU9 | PYC_STAAM | Pyruvate carboxylase (EC 6.4.1.1) | MKQIKKLLVANRGEIAIRIFRAAAELDISTVAIYSNEDKSSLHRYKADESYLVGSDLGPAESYLNIERIIDVAKQANVDAIHPGYGFLSENEQFARRCAEEGIKFIGPHLEHLDMFGDKVKARTTAIKADLPVIPGTDGPIKSYELAKEFAEEAGFPLMIKATSGGGGKGMRIVREESELEDAFHRAKSEAEKSFGNSEVYIERYIDNPKHIEVQVIGDEHGNIVHLFERDCSVQRRHQKVVEVAPSVGLSPTLRQRICDAAIQLMENIKYVNAGTVEFLVSGDEFFFIEVNPRVQVEHTITEMVTGIDIVKTQILVAAGADLFGEEINMPQQKDITTLGYAIQCRITTEDPLNDFMPDTGTIIAYRSSGGFGVRLDAGDGFQGAEISPYYDSLLVKLSTHAISFKQAEEKMVRSLREMRIRGVKTNIPFLINVMKNKKFTSGDYTTKFIEETPELFDIQPSLDRGTKTLEYIGNVTINGFPNVEKRPKPDYELASIPTVSSSKIASFSGTKQLLDEVGPKGVAEWVKKQDDVLLTDTTFRDAHQSLLATRVRTKDMINIASKTADVFKDGFSLEMWGGATFDVAYNFLKENPWERLERLRKAIPNVLFQMLLRASNAVGYKNYPDNVIHKFVQESAKAGIDVFRIFDSLNWVDQMKVANEAVQEAGKISEGTICYTGDILNPERSNIYTLEYYVKLAKELEREGFHILAIKDMAGLLKPKAAYELIGELKSAVDLPIHLHTHDTSGNGLLTYKQAIDAGVDIIDTAVASMSGLTSQPSANSLYYALNGFPRHLRTDIEGMESLSHYWSTVRTYYSDFESDIKSPNTEIYQHEMPGGQYSNLSQQAKSLGLGERFDEVKDMYRRVNFLFGDIVKVTPSSKVVGDMALYMVQNDLDEQSVITDGYKLDFPESVVSFFKGEIGQPVNGFNKDLQAVILKGQEALTARPGEYLEPVDFEKVRELLEEEQQGPVTEQDIISYVLYPKVYEQYIQTRNQYGNLSLLDTPTFFFGMRNGETVEIEIDKGKRLIIKLETISEPDENGNRTIYYAMNGQARRIYIKDENVHTNANVKPKADKSNPSHIGAQMPGSVTEVKVSVGETVKANQPLLITEAMKMETTIQAPFDGVIKQVTVNNGDTIATGDLLIEIEKATD | Catalyzes a 2-step reaction, involving the ATP-dependent carboxylation of the covalently attached biotin in the first step and the transfer of the carboxyl group to pyruvate in the second. |
A0A0H3JUU7 | MURT_STAAN | Lipid II isoglutaminyl synthase (glutamine-hydrolyzing) subunit MurT (EC 6.3.5.13) | MRQWTAIHLAKLARKASRAVGKRGTDLPGQIARKVDTDVLRKLAEQVDDIVFISGTNGKTTTSNLIGHTLKANNIQIIHNNEGANMAAGITSAFIMQSTPKTKIAVIEIDEGSIPRVLKEVTPSMMVFTNFFRDQMDRFGEIDIMVNNIAETISNKGIKLLLNADDPFVSRLKIASDTIVYYGMKAHAHEFEQSTMNESRYCPNCGRLLQYDYIHYNQIGHYHCQCGFKREQAKYEISSFDVAPFLYLNINDEKYDMKIAGDFNAYNALAAYTVLRELGLNEQTIKNGFETYTSDNGRMQYFKKERKEAMINLAKNPAGMNASLSVGEQLEGEKVYVISLNDNAADGRDTSWIYDADFEKLSKQQIEAIIVTGTRAEELQLRLKLAEVEVPIIVERDIYKATAKTMDYKGFTVAIPNYTSLAPMLEQLNRSFEGGQS | The lipid II isoglutaminyl synthase complex catalyzes the formation of alpha-D-isoglutamine in the cell wall lipid II stem peptide. The MurT subunit catalyzes the ATP-dependent amidation of D-glutamate residue of lipid II, converting it to an isoglutamine residue. |
A0A0H3K686 | SPA_STAAE | Immunoglobulin G-binding protein A (IgG-binding protein A) (Staphylococcal protein A) (SpA) | MKKKNIYSIRKLGVGIASVTLGTLLISGGVTPAANAAQHDEAQQNAFYQVLNMPNLNADQRNGFIQSLKDDPSQSANVLGEAQKLNDSQAPKADAQQNNFNKDQQSAFYEILNMPNLNEAQRNGFIQSLKDDPSQSTNVLGEAKKLNESQAPKADNNFNKEQQNAFYEILNMPNLNEEQRNGFIQSLKDDPSQSANLLSEAKKLNESQAPKADNKFNKEQQNAFYEILHLPNLNEEQRNGFIQSLKDDPSQSANLLAEAKKLNDAQAPKADNKFNKEQQNAFYEILHLPNLTEEQRNGFIQSLKDDPSVSKEILAEAKKLNDAQAPKEEDNNKPGKEDNNKPGKEDNNKPGKEDNNKPGKEDGNKPGKEDNKKPGKEDGNKPGKEDNKKPGKEDGNKPGKEDGNKPGKEDGNGVHVVKPGDTVNDIAKANGTTADKIAADNKLADKNMIKPGQELVVDKKQPANHADANKAQALPETGEENPFIGTTVFGGLSLALGAALLAGRRREL | Plays a role in the inhibition of the host innate and adaptive immune responses. Possesses five immunoglobulin-binding domains that capture both the fragment crystallizable region (Fc region) and the Fab region (part of Ig that identifies antigen) of immunoglobulins (By similarity). In turn, Staphylococcus aureus is protected from phagocytic killing via inhibition of Ig Fc region. In addition, the host elicited B-cell response is prevented due to a decrease of antibody-secreting cell proliferation that enter the bone marrow, thereby decreasing long-term antibody production. Inhibits osteogenesis by preventing osteoblast proliferation and expression of alkaline phosphatase, type I collagen, osteopontin and osteocalcin. Acts directly as a pro-inflammatory factor in the lung through its ability to bind and activate tumor necrosis factor alpha receptor 1/TNFRSF1A. |
A0A0H3KB22 | QUEE_BURM1 | 7-carboxy-7-deazaguanine synthase (CDG synthase) (EC 4.3.99.3) (Queuosine biosynthesis protein QueE) | MTYAVKEIFYTLQGEGANAGRPAVFCRFAGCNLWSGREEDRAQAVCRFCDTDFVGTDGENGGKFKDADALVATIAGLWPAGEAHRFVVCTGGEPMLQLDQPLVDALHAAGFGIAIETNGSLPVLESIDWICVSPKADAPLVVTKGNELKVVIPQDNQRLADYAKLDFEYFLVQPMDGPSRDLNTKLAIDWCKRHPQWRLSMQTHKYLNIP | Catalyzes the complex heterocyclic radical-mediated conversion of 6-carboxy-5,6,7,8-tetrahydropterin (CPH4) to 7-carboxy-7-deazaguanine (CDG), a step common to the biosynthetic pathways of all 7-deazapurine-containing compounds. {ECO:0000255|HAMAP-Rule:MF_00917, ECO:0000269|PubMed:24362703}. |
A0A0H3LKL4 | 6HN3M_BORBR | 6-hydroxynicotinate 3-monooxygenase (6-HNA monooxygenase) (EC 1.14.13.114) | MQGKPRIAVIGAGLGGTAGAALMARAGFNVRLYEQAPAFSRLGAGIHLGPNVMKIMRRIGIEDELNRQGSHPDYWYSRDWQSGAELARIPLGDYAVSHYGATYLTVHRGDFHALMTAALPAGLLQFNKRLTRVDEDDDVVRLHFADGSVEEAEIVIGADGVNSRLREHLLGAELPKYTGYVAHRAVFPTPLDSGSLPFDMCVKWWSDDRHMMVYFVTGKRDEIYYVTGVPEQQWDMGKSWVPSSKAEMRAAFAGWHPTVQALIEATPEVSKWPLLERDPLPLWSRGRIVLLGDACHPMKPHMAQGAAMAIEDAAMLTRIFEQTGLQDHAAAFRLYEDNRAERASRVQRVSHDNTWLRTNENPDWCFGYDVYAEPLVEGRRAAA | Flavin-dependent monooxygenase (FMO) that catalyzes the decarboxylative hydroxylation of 6-hydroxynicotinic acid (6-HNA) to 2,5-dihydroxypyridine (2,5-DHP) with concomitant oxidation of NADH, a step in the aerobic nicotinate degradation pathway. Is also active on the non-natural substrate 5-chloro-6-hydroxynicotinate, and is much less efficient on the substrate analog 4-hydroxybenzoate. |
A0A0H3LM39 | ZIP_BORBR | Zinc transporter ZIPB (BbZIP) | MNQPSSLAADLRGAWHAQAQSHPLITLGLAASAAGVVLLLVAGIVNALTGENRVHVGYAVLGGAAGFAATALGALMALGLRAISARTQDAMLGFAAGMMLAASAFSLILPGLDAAGTIVGPGPAAAAVVALGLGLGVLLMLGLDYFTPHEHERTGHQGPEAARVNRVWLFVLTIILHNLPEGMAIGVSFATGDLRIGLPLTSAIAIQDVPEGLAVALALRAVGLPIGRAVLVAVASGLMEPLGALVGVGISSGFALAYPISMGLAAGAMIFVVSHEVIPETHRNGHETTATVGLMAGFALMMFLDTALG | Selective electrodiffusional channel that mediates the uptake of Zn(2+). Exploits in vivo zinc concentration gradients (maintained by cellular zinc homeostasis) to passively move zinc ions into the cytoplasm. ZIPB-mediated zinc flux is dependent upon pH, but independent of the proton motive force. Is also able to import Cd(2+), but is not permeable to Co(2+), Cu(2+), Fe(2+), Mn(2+) and Ni(2+). |
A0A0H3M5A8 | PPMNT_MYCBP | Bifunctional apolipoprotein N-acyltransferase/polyprenol monophosphomannose synthase [Includes: Apolipoprotein N-acyltransferase (ALP N-acyltransferase) (EC 2.3.1.269); Polyprenol monophosphomannose synthase (PPM synthase) (Polyprenol-P-Man synthase) (Ppm1) (EC 2.4.1.-) (Dolichol-phosphate mannose synthase) (EC 2.4.1.83)] | MKLGAWVAAQLPTTRTAVRTRLTRLVVSIVAGLLLYASFPPRNCWWAAVVALALLAWVLTHRATTPVGGLGYGLLFGLVFYVSLLPWIGELVGPGPWLALATTCALFPGIFGLFAVVVRLLPGWPIWFAVGWAAQEWLKSILPFGGFPWGSVAFGQAEGPLLPLVQLGGVALLSTGVALVGCGLTAIALEIEKWWRTGGQGDAPPAVVLPAACICLVLFAAIVVWPQVRHAGSGSGGEPTVTVAVVQGNVPRLGLDFNAQRRAVLDNHVEETLRLAADVHAGLAQQPQFVIWPENSSDIDPFVNPDAGQRISAAAEAIGAPILIGTLMDVPGRPRENPEWTNTAIVWNPGTGPADRHDKAIVQPFGEYLPMPWLFRHLSGYADRAGHFVPGNGTGVVRIAGVPVGVATCWEVIFDRAPRKSILGGAQLLTVPSNNATFNKTMSEQQLAFAKVRAVEHDRYVVVAGTTGISAVIAPDGGELIRTDFFQPAYLDSQVRLKTRLTPATRWGPILQWILVGAAAAVVLVAMRQNGWFPRPRRSEPKGENDDSDAPPGRSEASGPPALSESDDELIQPEQGGRHSSGFGRHRATSRSYMTTGQPAPPAPGNRPSQRVLVIIPTFNERENLPVIHRRLTQACPAVHVLVVDDSSPDGTGQLADELAQADPGRTHVMHRTAKNGLGAAYLAGFAWGLSREYSVLVEMDADGSHAPEQLQRLLDAVDAGADLAIGSRYVAGGTVRNWPWRRLVLSKTANTYSRLALGIGIHDITAGYRAYRREALEAIDLDGVDSKGYCFQIDLTWRTVSNGFVVTEVPITFTERELGVSKMSGSNIREALVKVARWGIEGRLSRSDHARARPDIARPGAGGSRVSRADVTE | Catalyzes the phospholipid dependent N-acylation of the N-terminal cysteine of apolipoprotein, the last step in lipoprotein maturation. Transfers mannose from GDP-mannose to lipid acceptors to form polyprenol monophosphomannose (PPM). PMM is an alkai-stable sugar donor which adds mannose-phosphate residues to triacylated-phosphatidyl-myo-inositol mannosides (PIM2), eventually leading to generation of the cell wall glycolipid lipoglycan modulins lipoarabinomannan (LAM) and lipomannan (LM). |
A0A0H3MDW1 | CHXR_CHLT2 | Atypical response regulator protein ChxR (Transcriptional regulatory protein) | MAGPKHVLLVSEHWDLFFQTKELLNPEEYRCTIGQQYKQELSADLVVCEYSLLPREIRSPKSLEGSFVLVLLDFFDEETSVDLLDRGFWYLIRPITPRILKSAISLFLSQHSLHSVPESIRFGPNVFYVLKLTVETPEGSVHLTPSESGILKRLLINKGQLCLRKHLLEEIKNHAKAIVARNVDVHIASLRKKLGAYGSRIVTLRGVGYLFSDDGDKKFSQQDTKLS | May be a global positive regulator of transcription. Binds a cis-acting element of its own promoter DNA sequence and is hence probably also involved in its own transcription activation. The recognition sequence is 5'-WHGAWNH-N(3-5)-WHGAWNH-3', where W is A/T, H is C/A/T, N is G/C/A/T and the linker length in the middle is 3 to 5 nucleotides. |
A0A0H3NK84 | SSEK1_SALTS | Protein-arginine N-acetylglucosaminyltransferase SseK1 (Arginine GlcNAcyltransferase SseK1) (EC 2.4.1.-) (Salmonella secreted effector K1) | MIPPLNRYVPALSKNELVKTVTNRDIQFTSFNGKDYPLCFLDEKTPLLFQWFERNPARFGKNDIPIINTEKNPYLNNIIKAATIEKERLIGIFVDGDFFPGQKDAFSKLEYDYENIKVIYRNDIDFSMYDKKLSEIYMENISKQESMPEEKRDCHLLQLLKKELSDIQEGNDSLIKSYLLDKGHGWFDFYRNMAMLKAGQLFLEADKVGCYDLSTNSGCIYLDADMIITEKLGGIYIPDGIAVHVERIDGRASMENGIIAVDRNNHPALLAGLEIMHTKFDADPYSDGVCNGIRKHFNYSLNEDYNSFCDFIEFKHDNIIMNTSQFTQSSWARHVQ | Protein-arginine N-acetylglucosaminyltransferase effector that disrupts TNF signaling in infected cells, including NF-kappa-B signaling, apoptosis and necroptosis. Acts by catalyzing the transfer of a single N-acetylglucosamine (GlcNAc) to a conserved arginine residue in the death domain of host proteins TRADD and, to a lower extent, FADD: arginine GlcNAcylation prevents homotypic/heterotypic death domain interactions and assembly of the oligomeric TNF-alpha receptor complex, thereby disrupting TNF signaling. Also acts on host proteins without a death domain: catalyzes arginine GlcNAcylation of host GAPDH protein, thereby preventing GAPDH interaction with TRAF2, leading to inhibit NF-kappa-B signaling (By similarity). Catalyzes GlcNAcylation of host tubulin-folding cofactor TBCB, thereby promoting microtubule stability (By similarity). Also mediates auto-GlcNAcylation, which is required for activity toward death domain-containing host target proteins. |
A0A0H3PEK7 | TLYA_CAMJJ | 23S rRNA (cytidine-2'-O)-methyltransferase TlyA (EC 2.1.1.226) (23S rRNA (cytidine1920-2'-O)-methyltransferase) (Hemolysin A) | MRFDFFVSKRLNISRNKALELIENEEVLLNGKSFKASFDVKNFLENLKKTQDLNPEDILLTDGLKLDLLSEIYVSRAALKLKNFLEENGIEIKHKNCLDIGSSTGGFVQILLENQALKITALDVGNNQLHLSLRTNEKIILHENTDLRTFKSEEKFELITCDVSFISLINLLYYIDNLALKEIILLFKPQFEVGKNIKRDKKGVLKDDKAILKARMDFEKACAKLGWLLKNTQKSSIKGKEGNVEYFYYYIKN | Catalyzes the 2'-O-methylation at nucleotide C1920 in 23S rRNA. Enhances motility. Enhances biofilm formation. Involved in the assembly of 70S ribosomes. Involved in virulence by promoting adherence and invasion to host cells. Involved in pathogenicity by modulating secretion of host-protective chemokine interleukin 8 (IL-8). Involved in susceptibility to antibiotic capreomycin. |
A0A0H3PJK4 | DLP2_CAMJJ | Dynamin-like protein 2 (DLP2) | MQINLLNDFIKAYENTYSVSFDDSFKGRIQELCKELNEPFMHASYALENELKELVFSLDKNVNIAIIGQFSSGKSSLLNLILGRDCLPTGVVPVTFKPTFLRYAKEYFLRVEFEDGSDIITNIEKLAFYTDQRNEVKQAKSLHIFAPIPLLEKITLVDTPGLNANENDTLTTLDELKNIHGAIWLSLIDNAGKKSEEDAIKANLELLGENSICVLNQKDKLSAEELDNVLNYAKSVFLKYFNELIAISCKEAKDEQSYEKSNFQSLLDFLTQLDTTVLKEKFVKRKILNLCEILEDENQLFVGIFDRLLNQFQSYEKHLLLAYENFLKEIEILNHQILEQLKSISERISSEIFASVKEKDAYFYKESKGFLKKDLYTRYDYKAPYISSDDAFLAMFYNSDVMSKEFKKIKNELYKSFEEIKMKLKDFINILEREILLFKAEFSNIQKDHIFQSDKNFSELRAFCNASDEYFLKDFKELLFKSILELDLFFEKLNLKAFTNYENATKLSLAFFSRKINESRVLYELDSSEFVLFYPKKSEIYERVLNELNVYEFETLLINKPILTKIAKNFLEQSQNLIQEKNKFLDLKKAELQKRRAQILNVRESIKED | The heterotetrameric DLP1(2)-DLP2(2) complex tethers liposomes and may mediate their fusion. Initial binding is probably mediated by DLP1, while DLP2 couples DLP1 subunits and increases the effective reach of the complex up to 45 nm. The role of the nucleotide is unknown. This subunit alone very weakly binds to liposomes GTP, GDP, GMPPCP and GMPPNP do not change heterotetramer binding. Tetramerization is required for GTPase activity, suggesting the GTPase domains (dynamin-type G) from DLP1 and DLP2 must dimerize to reconstitute the GTPase active site. |
A0A0H5BMX5 | TCEB1_TULGE | Tuliposide B-converting enzyme 1, amyloplastic (TgTCEB1) (EC 4.2.99.23) | MSIVSFCSSLPAGPHGFKHGRGTRDMVHMPCIVRRTARSPAQACRLLRWNKYHCAAVPTNSSLSPSPTPLDVEIELDLEPFLIKYKSGRIERLGRFGDRTDYVEASLDPATEVTSRDAITDTGVPVRIYLPKVDDSPPNSLRVLVYFHGGAFLVEDSASPPYHNYLNNLASKANILIVSVNYRLAPEYPLPVAYDDCMEALNWVNKHSDGTGQEDWINKHGDFDHLFISGDSAGGNITHNIAMSTDAPKNIEGIALVHPYFFGKVALETELQDPTNLLLHRKLWSFITPESEGLDDPRVNPLGPTAPSLEKIKCKRAVVFVAGEDFHSERGRKYSEKLKSEFKGEVPLLCNHDGVGHVYHLSVDATEEEIESAAAWKMMTDLLKFYKDNDVVLEGSIVESLKAKTTEGIKKMKEIEKGMSERMMEQLVAFYNGKPVPYSS | Lactone-forming carboxylesterase, specifically catalyzing intramolecular transesterification, but not hydrolysis. Involved in the biosynthesis of tulipalins, defensive chemicals that show antimicrobial activities against a broad range of strains of bacteria and fungi. Substrates are 6-tuliposide B > 6-tuliposide A. |
A0A0J5ZXG5 | PYCC_BURCE | Uridylate cyclase (EC 4.6.1.26) (BcPycC) (Cyclic UMP synthase) (cUMP synthase) | MALADDLKKWVGETFTGKWEVQETTSVPNPEDLRLNSNHAKDLKAATVLYADLDGSTDMVNTKKWQFSAQIYKTFLKCASDIIRDEGGNITAYDGDRVMAVFTGNSKNTSAARCALKINSAVLDIIQPAIAKKWQTDFVLRHVVGIDTSQLRTARIGIRGDNDLVWIGRAANYAAKLTNLAGKPTRITADVYNKLADKLKYANGVDMWAPEHWDDMGIWTYTSTWKWTV | Pycsar (pyrimidine cyclase system for antiphage resistance) provides immunity against bacteriophage. The pyrimidine cyclase (PycC) synthesizes cyclic nucleotides in response to infection these serve as specific second messenger signals. The signals activate the adjacent effector, leading to bacterial cell death and abortive phage infection. A clade B Pycsar system. The pyrimidine cyclase gene of a two-gene Pycsar system, generates cyclic UMP (cUMP) from UTP, has little to no activity on ATP, CTP or GTP. Expression of this and adjacent effector BcPycTIR (AC A0A0J5WTU0) probably confers resistance to bacteriophage. The genes are probably only expressed in response to bacteriophage infection (Probable). |
A0A0J9UVG7 | SIR5_FUSO4 | NAD-dependent protein deacylase SIR5 (EC 2.3.1.-) (FoSIR5) (NAD-dependent protein deacetylase SIR5) (EC 2.3.1.286) (Protein decrotonylase SIR5) (EC 2.3.1.-) | MRLLRPTPRLSSIFSSKTATSNLRFFTAMAPHNDVGAFHEALRSSKRILALCGAGLSASSGLPTFRGAGGLWRNHDATSLATLSAFKNDPGLVWLFYNYRRHMCLRAEPNPAHYALAALAEKNKDFLCLTQNVDNLSQQAGHPQDQLRTLHGSLFDIKCTNCDWIQRGNYDDPFCPALAPASVDVEPGKPFPLLDASLPLDPISPDDIPKCPQCKIGFQRPGVVWFGENLDEVMMMGITNWLLEDKVDLMLVIGTSAQVYPAAGYIDKAKRKGARIAVINPEAENEEEMYKVKPGDFAFGKDAAEYLPLLLEPVIGKLETDKKERS | NAD-dependent protein-lysine deacylase that decrotonylates the PDC (pyruvate dehydrogenase complex) subunit LAT1 at 'Lys-148' to inhibit PDC activity and consequently ATP production. Also decrotonylates histone H3 crotonylated at 'Lys-18' (H3K18cr), to repress the expression of genes involved in aerobic respiration. May also act as a NAD-dependent deacetylase (By similarity). Does not mediate desuccinylation, demalonylation, or deglutarylation of LAT1. |
A0A0K0JFP3 | HXK_BRUMA | Hexokinase (BmHK) (EC 2.7.1.1) | MLGLLTITSVFRNWRNSLQRKEDYDECHMRGINNENEISGKSEKNFKLDEPPISLETVMAEFKLSNETLRRMMAHMSRNMDKGLEGGPENSTISMLPSFVPELPNGTEEGRFIAMDLGGTNLRVMLMDIKPGEELKTEQFNTRIPNWAMRGTGEQLFDYITKCLAEFLIEKGIENDGLPVGFTFSYPCDQKSLRSATLLRWTKGFETTGVVGEDVVELLEQSIARRGDIKVEVVALINDTVGTMVAAAHESGGECHIGVIIATGTNASYMEDTSKIKYGLSKAIAAYNYPEMIIDTEWGGFGDRSEADYILTQYDKIVDSRSEHPGVNTFDKLVGGKCMGEVVRVVLEKLTRARVLFNGKGSDALFQQDSFPTKYISEILRDESGSYVHTRDILGELGIDHYSFSDMLLLREVCVVVSRRSANLGAAAIACVLNRVRKQNMVVGIDGSTYKYHPFFDFWVHDKLKELVDPGLKFKLLQTADGSGKGAALITAIVARLKKRNLKQQQQQQQQQQQHVTMVEQNVVEQIAETKGSREQFMNGNQKINLVTNDIPIYDSFNGDIENGVIHLSTDH | Active against glucose, fructose, mannose, maltose and galactose. |
A0A0K0MJN3 | FABP4_PYGPA | Fatty acid-binding protein, adipocyte (Adipocyte lipid-binding protein) (ALBP) (Adipocyte-type fatty acid-binding protein) (AFABP) (Fatty acid-binding protein 4) | MCDQFVGTWKFLSSENFEDYMKELGVGFATRKMAGVAKPNVTISINGDVITIKTESTFKNTEVSFRLGEEFDETTADDRKTKNVITLDNGILNQVQKWDGKETVIKRKVMDGNLVVECTMNTVTSKRVYERA | Lipid transport protein in adipocytes. Binds both long chain fatty acids and retinoic acid. Delivers long-chain fatty acids and retinoic acid to their cognate receptors in the nucleus (By similarity). Has the highest binding affinity for linoleic acid and decreasing relative affinity for eicosapentaenoic acid (EPA), alpha-linolenic acid (ALA), docosahexaenoic acid (DHA), oleic acid, palmitic acid and stearic acid, respectively. |
A0A0K0PVW1 | UGT10_PANGI | UDP-glycosyltransferase 100 (UGTPg100) (EC 2.4.1.367) | MKSELIFLPVPAFGHLVGMVEMAKLFISRHENLSVTVLISKFFIDTGIDNYNKSLLAKPTPRLTIINLPEIDPQKYLLKPRCAIFPSLIENQKTHVRDVMSRMTQSESTRVVGLLADILFVDIFDIADEFNVPTYVYSPAGAGFLGLAFHLQTLNDDKKQDVTEFRNSDTELLVPSFANPVPAEFLPSIFLEKDGRHDVLLSLYWRCREAKGIIVNTFEELEPYAINSLRMDSMIPPIYPVGPILNLNGEGQNSDEAAVILGWLDDQPPSSVVFLCFGSFGSFPENQVKEIAMGLERSGHRFLWSLRPCISEGETTLQLKYSNLELPAGFLDRTSCVGKVIGWAPQMAILAHEAVGGFVSHCGWNSVLESVWYGMPVATWPMYGEQQLNAFEMVKELGLAVEIEVDYRNEYNKSDFIVKADEIETKIKKLMMDGKNSKIRKKVKEMKEKSRVAMSENGSSYTSLAKLFEEIM | Component of the dammarane-type triterpene saponins (e.g. PPT-type ginsenosides or panaxosides) biosynthetic pathway. Glycosyltransferase that catalyzes the biosynthesis of ginsenoside Rh1 from protopanaxatriol (PPT) and the conversion of ginsenoside F1 to ginsenoside Rg1. |
A0A0K1YW63 | SECP_APICE | Secapin (AcSecapin-1) | MRFQVYILHLCFFILVVLTYLSQGQSYTTTTTTSTTEQPTFLQKIHETFKKVKENAKIHNLYIFDPPTWIYTTTTEKPVESTENFDITNRQLITVPVRCPPNYDFIKGRCREKIP | Serine protease inhibitor which exhibits antifibrinolytic, antielastolytic and antimicrobial activities. Displays antimicrobial activity against bacteria and fungi. Likely functions in the innate immune response to microbial infection and possibly in the venom, as an antifibrinolytic agent. The recombinant form inhibits trypsin (IC(50)=80.02 nM, Ki=127.25 nM), chymotrypsin (IC(50)=393.78 nM, Ki=432.59 nM), the microbial serine proteases subtilisin A (IC(50)=379.20 nM, Ki=492.77 nM) and proteinase K (IC(50)=189.43 nM, Ki=271.76 nM), plasmin (IC(50)=457.98 nM, Ki=502.91 nM), human elastase (IC(50)=347.81 nM, Ki=469.90 nM) and porcine elastase (IC(50)=94.70 nM, Ki=125.62 nM). Does not inhibit thrombin. Binds to human plasmin and inhibits the plasmin-mediated degradation of fibrin to fibrin degradation products. Also binds to bacterial and fungal surfaces and exhibits antimicrobial activity against the Gram-positive bacteria B.thuringiensis (MIC=4.21 uM) and P.larvae (MIC=11.13 uM), the Gram-negative bacterium E.coli (MIC=6.50 uM), and the fungus B.bassiana (IC(50)=2.57 uM). The synthetic peptide also exhibits antimicrobial activity against the Gram-positive bacterium P.larvae (MIC=41.12 uM), the Gram-negative bacterium P.aeruginosa (MIC=65.75 uM), and the fungus B.bassiana (IC(50)=44.27 uM) (Ref.2). In vitro it does not induce an inflammatory response and has no cytotoxic activity against mouse embryo cells (Ref.2). |
A0A0K2JL82 | CRED_STRCM | Nitrosuccinate lyase (EC 4.3.99.5) | MTRPPAPPPGAPGADELLDCGLLSPVRAGTPVEALVCDSAWLQAMLDAEAALTRAQARTGFLPAAAAEAITAAARADRIDLLAVARGARETANPVVGLVAALTAAVRRDDPAAAEYVHRGSTSQDVLDTGAMLVARRALRLIGDDLDRAADALAALAADHRDTPMAGRTLALHAVPTTFGLKAAGWLELVSEAAGRVARLRDGLPFSLGGAAGTLAGYFGDRTDRGDPAVLLDRLLDAYAAETGLARPVLPWHVLRTPVADLAAVLAFTAGALGKIAVDVQSLARTEVAEVAEPAVEGRGASSAMPHKRNPVLSTLIRSAALQVPALATGLTQCLVSEDERSAGAWHAEWQPLRECLRLTGGAARTAVELAAGLEVDAARMRANLDLTDGRIVSESVAVALTPLLGRQAAKELLTRAAFTAGHEGRTLGEVLGELPELDGVLPKERWEALLDPARATGVAGALVDGALARRRPPAR | Part of a gene cluster involved in the biosynthesis of cremeomycin, a light-sensitive o-diazoquinone with antibacterial and antiproliferative effects. Catalyzes the formation of nitrous acid from nitrosuccinic acid (2-nitrobutanedioate) by elimination of its nitro group. |
A0A0K2S4Q6 | CD3CH_HUMAN | Protein CD300H (CD300 antigen-like family member H) | MTQRAGAAMLPSALLLLCVPGCLTVSGPSTVMGAVGESLSVQCRYEEKYKTFNKYWCRQPCLPIWHEMVETGGSEGVVRSDQVIITDHPGDLTFTVTLENLTADDAGKYRCGIATILQEDGLSGFLPDPFFQVQVLVSSASSTENSVKTPASPTRPSQCQGSLPSSTCFLLLPLLKVPLLLSILGAILWVNRPWRTPWTES | May play an important role in innate immunity by mediating a signal for the production of a neutrophil chemoattractant. |
A0A0K3AUE4 | SEA2_CAEEL | Signal element on autosome protein 2 | MGREYKFTGIAAKLNPLNCRLKLEIAEDLDERVPTTSTSCSVASVAAATATINTTAPTVLTKSELQKTLQKTSSSFSSSLATTTTTSSHLNAPVESMEGHSSLASYSHHHPSSSHHHHPGQQQSSSSSSSSHLQDFQSPPSASHPYYHQQQPQHQHQQAQQYGQATGSTNGGGQQQMTSMYGGNDYDQHQLHHQNQQHQASTSTQQFHHPQRPPPPQYDQPSSSTGSSLPPLHTVRYEQLPPPPSNQRTPTQQLQYPVKVVEAGGQAYAQQVQQAQQSNRSGAAGVNSALQPKPLPPLSSITSISSSAAGSSISAPSTSQPSTTSSLITSPPSTSSSSMAPRKTPPNASSSSLIKRQSQDVQEQQRVDFEVARNVSQIMSKNGLKVMHEPLLTGSLPQLAPLAPLPPPKSGVYQCPNCNRNLANARNLQRHRQTCGSAQHAAPQLAAMLQRSPPPCASAPPVAPPTAPSTSFQHHNSTGNLTLSYSSSSSRHQSSLYSPQLEHQDLVGNPNVMLSDGYEYKDDPMLYQGPSGLSDSIWSRDDSFHSEPPSASHDQLDMDHLGFPDPLQDPLHHLDSFDSADHRKETPRECHEPDELMTLDPTPPQCGSERFYGINIDDMPLSLDCDEPLMRSESASLSSSSQGRNTPAAVFTCEACKKSVSSERSLRRHYNTCKMFQTELAASGEERPPTTKRKPATKRPSKKKEASEGPEKNSAILAALRKEPAAPQQPQQLQFQQNYQPSPQFQAPYGGGSLPSISASWLHSASTSAAAAAPERSEMFTSPIVTSAPNPYIHQLPHQQPQQQKSSPLEDLLNEQDESADDDGDSRSSSGTVSNSTTTTTTATTTSSKSTGNPLFTCEHCARQLCSMSNLKRHRATCKVAASSSSNSAASRPPSQPSTPATAPATPMLQASQAPQPLQAPPQSPMETTATVTYTKTTVPPSVANTWNTEKAQLISPKPRSQTIFSEASSSMTVGDALRAQQHQQKMDQQIQIQFQQQQQQRFQHHQQQQQAGRIPPRPPNPILNQVQNPPQQVQHNQHQNQMLNPIRQPLLQSPPPPPPKKGLIEHKNTDLVLITSEPLAERMDAKRRSSEGLVAVTSTPLPPIQLPQRSQAPAPSRQQQQQPPVAYQVQFNGRPLPPMQLPPLQNPHNQQQQHQMLHQSQMNYQQVQQVQQVQHVQQQQNLQNQHHHQQQHHQQNQQQAPGNRSRSHSNVGKMEQEAQRQGSPLDSIITSVPLSIEVHHHIMKPGPLEQGQSSVDSQSTAEPSPRKASQQAYICPECKKTYASRKNVKRHRMAVHKLTLDEILANPEQPALDPLSAVGGAGRRHTVAGLETPDSALKPAPTKRKASEAPSAGVATKKGKAMAASVDEIQVKEEEEDQKEETVGSVERQEPPKKPVADDHKSAIAPLPPANTIMPPPPPYNQASAVPLNPPRTALPPLQLPPLQPLQSESPSWASMSAPPTALIPRTPRSSEFADEEDTRAMAKIAAELKRSAEDWPVLAVIEGVAAEPTNGEDIDEDEILIKRLRQGGVLEDVGDVSDLLRDVQGGVDGEPFSEDMLLEKNLSTASSVGLPSLASPGEQFGYQQYSQHPQQHPQQHPQQHPQQQQQVWNPNYEFQGYMQQQHPPMPVSQQFQQPLLQRPASQPPPARPIVKNSRRPSTTPKPPPNLTCSGCKKILGSDYSLRRHRAGCADVQQALNPEYPRPPKRKAAREAQKINEAEILASMPDPQMVAERSAAVAEAAAAEAAVERIGALPPPSVVHEIVHQVNADRQSMKKHNKTTSPPPAQEAPPTCAPDDPMSSSSSSSTSSASPLQGGAKPSTNQARHYCQFPECGKNFSSEWNLARHTRESCKMTTRAHSYEPTSAADKIDLIFMDKSKRRVSRTFLCTVSSLISYWLGEQGDRLELDTKWEHFQLLLDVHTLKVAITADNINLIAEQSKKYQLEHVIRMADQFMMNTNYTTPPTHVQL | RNA-binding protein, which regulates the expression of proteins required to control developmental timing of events during the L2 to L3 larval stage switch. Binds to the 3'UTR of the transcript of the heterochronic protein lin-28 to post-transcriptionally negatively regulate its expression in certain tissue types in the later larval stages. During larval development, controls the timing of seam cell division and terminal differentiation into adult alae. In vitro, it can also bind to DNA through its first zinc finger. May bind directly or indirectly to the promoter of the sex-determining factor xol-1 to activate its transcription. Its activation of xol-1 transcription controls sex determination and X chromosome dosage compensation to promote male development. Through the negative regulation of lin-28 transcript, it also has a role in the fox-1-sex-1-mediated determination of sexual fate. Acts in the intestine to play a role in regulating adult lifespan. |
A0A0K3AUJ9 | PRDX_CAEEL | Peroxiredoxin prdx-2 (EC 1.11.1.24) (2-Cys peroxiredoxin 2) | MSLAPKMSKAFIGKPAPQFKTQAVVDGEFVDVSLSDYKGKYVVLFFYPLDFTFVCPTEIIAFSDRAEEFKAINTVVLAASTDSVFSHLAWINQPRKHGGLGEMNIPVLADTNHQISRDYGVLKEDEGIAFRGLFIIDPSQNLRQITINDLPVGRSVDETLRLVQAFQFVEKHGEVCPAGWTPGSDTIKPGVKESQEYFKKH | Thiol-specific peroxidase that catalyzes the reduction of hydrogen peroxide and organic hydroperoxides to water and alcohols, respectively. In I2 pharyngeal neurons, required for the inhibition of feeding in response to light and hydrogen peroxide. In the intestine, plays a role in protecting cells against oxidative stress by detoxifying peroxides such as hydrogen peroxide. In addition, plays a role in the recovery from oxidative stress induced by hydrogen peroxide. In its hyperoxidized form (induced by hydrogen peroxide), confers protection against heat stress. However, has a low tendency for overoxidation during the normal lifespan. Increases sensitivity to cytotoxity caused by metalloids and heavy metals such as arsenic and cadmium by playing a role in inhibiting the expression of phase II detoxification genes such as gcs-1 in intestinal cells. In addition, in response to arsenite, promotes the secretion of the insulin ligand daf-28 into the pseudocoelom, which negatively regulates the activities of daf-16 and skn-1. Plays a role in promoting longevity. Plays a role in the mitohormetic pathway by promoting the activation of pmk-1 in response to the drug metformin. |
A0A0K3AV08 | MLK1_CAEEL | Mitogen-activated protein kinase kinase kinase mlk-1 (EC 2.7.11.25) (Mixed lineage kinase homolog 1) | MEQASVPSYVNIPPIAKTRSTSHLAPTPEHHRSVSYEDTTTASTSTDSVPEVRIRSESSQVSRESPPIRASKAFVASYEYEAQKDDELNLPLGAIITLVTVETNEDGWYRGELNGKVGLFPSNYAREVTYKDNLVEFKQDEIMLPVAVRTLSDCQIGHGATATVFKMDIKIKKELQNGRMGEAVGDQMKAALKRFNRHASNFRADVVSTDEQLEQLKREANLVNGLSHNNIVRLLGICLEDPYFGLLLELCEGSSLRNVCRNLNSDAAIPLGVLIDWATQVAEGMEYLTKQGYVHRDLKADNVLVKEEVCLCMDEEMFQYAYCLKCGKRPFDKLQLKITDFGVTRKMTADANRFSTAGTYAWLAPEAFKEGTWSEASDVWSYGVVLWELLTREEPYQGHIPATIAFQIANKGQNLSIGDSCPDRWKKLMQDCWNLEPNFRPKFSTLAISFKQYAKEFKDTHLQRAPSKMAVKELYSECFADKTKEEFEKRFHDLYAGSGDINRKNRHSIAPETKARRLKHHKPKKADITGPTEVKHILSVQKDDKNFRVKTYDQSSTGGTLPRLNERQSTLSLSSPDLFHISNLISGSNTVGHSAHRISRKNAIRHKKNQHRMFESPVVSPTMDDSNTFSTIDNADEVDPNHSKESKKGGTLSRAWAKLPWNKRDSKEDHDERAVAGSISSRSSSTTSSNRLITGQTTRGASAAGLLEIGARSRAQSTADGWEDPNTTKKHKVSPSDKRPVKTTNQTERYVKDLEKDTPLRPAQLPPTHRKSALDQTIPASPNSPDSINNFHPMPLSSRRTTANSSSDGAPCYDALVSHSYGAGHGHKNHFGLSDTIPLFPEEPTHYDMGPGRPFGTNGRAIVNQGGDYYGNISGQNYEGFGHGRSINQSTQYYPVGGGCDDYIPIVQKTVIKPTVGEVGNSPYSENIRCATRNVQNPQYIQCKKNQNPRRIPALPMKIQSESNLVTSGMVFTPRDEQLNGIGNSLSSLSLNEPPDIPAPLPPVVTYPIPASLISPSNRVSMSPPTRMAPVLPLGAMSSPRIMDKEILKNSSVEGTEIY | Serine/threonine-protein kinase which, by phosphorylating and activating mek-1, plays an important role in the activation of the JNK pathway composed of mlk-1, mek-1 and kgb-1. Involved in the response to environmental stress such as heavy metals. By activating the JNK pathway downstream of tyrosine receptor svh-2, plays a role in axon regeneration after injury. |
A0A0K3AWM6 | MOM5_CAEEL | Protein mom-5 | MHRHILILFLFGCLSADQRLSSTSISSMNGFSTTRKCEHITIPMCKNLDYNQTVFPNLLGHTTQSEAGPAIAQFNPLIKVKCSEDIRLFLCTVYAPVCTVLEKPIQPCRELCLSAKNGCESLMKKFGFQWPDQLDCNKFPVTDLCVGKNSSESSNSKNYRSSNDVTFGVSTIANEVVLSPKKCPHHMHTTSGSHFSLPLLSGRLPECSLTCEADNQVPMMFDGRVRRILRIWTAAWSVACFVCSLFTLVTFLVDLSRFAYPVRPILYLAFCYLAISTVYMIGVVGEDGFACGTYGSTPTTLVTQGGENVGCSALAVVHYFFFMSSCAWWLVLCLAWFLAANLKWGAESIAALSPYFHAMCWGVPAVLSVTVLVTNSVDGDVFTGICSVGNLNPSALVYFFFTPIVVSLALGAVLLVCGIWSMIRIRSYIKLQHADVERNISKLEKLMLRIGAFAIMYSLPTAMNAAIMWYQAVNMPAWLEGWLHHRCVRLQDRELFGFTYPVDDCPMDPKVAAPEIIVFLLKYVSQLVVGITCAIWVVSSKTLSSYHKAYLALSSRSPTVPAHVDQVNMR | Receptor for Wnt proteins. Most frizzled receptors are coupled to the beta-catenin canonical signaling pathway, which leads to the activation of disheveled proteins, inhibition of gsk-3 kinase, nuclear accumulation of beta-catenin and activation of Wnt target genes (Probable). A second signaling pathway involving PKC and calcium fluxes has been seen for some family members, but it is not yet clear if it represents a distinct pathway or if it can be integrated in the canonical pathway, as pkc seems to be required for Wnt-mediated inactivation of gsk-3 kinase (Probable). Both pathways seem to involve interactions with G-proteins (Probable). Required in embryonic development for the correct positioning and orientation of the mitotic spindles and division planes in blastomere cells. During early embryonic cell divisions, directs the asymmetric positioning of transcription factors such as pop-1 and dsh-2 in daughter cells in order to determine cell fate specification. Acts redundantly with other Wnt receptors such as lin-17 to control vulval precursor cell specification and also the polarity of different cell types including distal tip cells, seam cells, AVG interneurons and P-cells and their descendants. Plays a role in the migration of cell types including distal tip cells and the QR neuroblast descendants, QR.p and QR.pa during larval development. Negatively regulates the unc-6/Netrin receptors unc-5 and unc-40 to control distal tip cell polarity and migration. Acts through ced-5/DOCK180 and ced-10/Rac to control both distal tip cell migration and the phagocytic clearance of apoptotic cell corpses. Furthermore, it is also required for the migration and axon guidance of the different neuronal cell types including CAN, ALM, HSN and the two mechanosensory neurons AVM and PVM. Mediates Wnt receptor cfz-2 in directing ALM migration, but may also act redundantly with the Wnt receptors cfz-2 and mig-1 to direct the migration of other neuronal cell types including CAN and HSN. Mediates Wnt ligand egl-20 in the control of the anterior-posterior axon guidance of AVM and PVM neurons. |
A0A0K3AXH1 | ARID1_CAEEL | AT-rich interactive domain-containing protein arid-1 | MSDDPAFLALGTEVSAKFKGAYCEAKIQKVDRSLKVKVSLKESPFGQMIVQDNDLPNAKFEINELTDVVFQRKFIRCQIQSIKDQSKYHVVFNDGDEKELRRTQLVLKGGKHFAADGNLDSMPLTNPESFSTPVIRGAAKRGAQKIRNAISEASGSRGGAVLLHNDDDENDEEDQEDGENEEDADDDDDDTEEQQQPRERRRAAAISAIGVLKKAIEDTQSEESSADSSEERERARSRRKRKDEASSAVTSDEEDQEDLATTDSENPVINGASSAAALSKTLQRKLEKQAMKREKQRLKEEEREEKLRLKEENREKKRREKARIMELKRLEKVYRTSNARIQENHEKSMTQIISHRSVRYFARFSDLKHRRKKKKLYLHEHRQKVNSRIRNVKLYFAWRFVAHKARLSYFARYALQWWRTSEDQAYSLIRTEKLLRSQRRRDWVGSWLEGLEREKIRFVVIHESYTQARRILKYIERGTEKRTFAERCDIEYEDIESSTVSSHFRDQEWFPAVLFPQVFSDENGSEGRQRIVRHMGNGQLVQVWEDDLVPFDWLPEYSFADVTAMTEKKPVEMRRKFKLAWRFATDYAQNRLDARSIRSILEWKFIRPSSRRLKITPIPVQAPSPNRCGEDHDDLVSTPNESDYDSDATIKNVDAETKDLFVAMLVQFHDAHNSVIDTNPTIQGHEVDLYYLYELAKKTGGPKKVYAANLWSDYAKKLVPAATDAEEELKTIFKNFLESYLAINTKLSWPMESLQPRTERKVVLPGQYSESRKKRTQAIMSQVQTPPTAPGSSKKGRVGSGGTRGRKRKVSSESVQLKKRNRKSSSRATTASPGPSEDRFSFQRPQDSDDVTDVPDDMTDHEDLLPEAATRKKYERKSQTPGRRSLSSRRDDTTPVSSMAAAPPKKGRPRKNTTVTTPVLSVPKSEGRGPRKEDTTTKFVRANVLSHILSGQKLRAFYGDEWFRANAIEDATDCTDEIMDIMLAHQDFFTPDTPRLSPSAIQDLDKVLKKIRAKTHYTGWNQRYDEFMKLEKLMVTVEDQMIARGRFRHLPRGRELKAETLALVEKHFRADDEDDGVPKTLAFYLKIAQEALSLSEKRAVADDDESSDSDTDFEQKPDTSAAAAVNGGKSESEEEEEEKTVVMGGDEEAEEEVKSEDVLVESVDQESPPTTSQGTTTPETAATGGLESESDEPEYPPVPEELVPPPPVLLENFPSTDRFSSGGSSNYPTLSRQGSINSMASPMFSPNSDLSLSGPLTLPRSGPLTMANIRQSPTPDEVVGSLRKRLSQTSESSESSELPPPPSAASKSKRIRRASERSIDSASEHHRMMRSPRILTTQHSSGALIFDISTTQPTDTSGPIEALSVRKPGRRKTVFAASPTLLTSGPLTLSSSAPPPPPASPAPPQHAQKTLGRPRKTPSTSSRKPEEEDEAEQIPTTVVGVTEEASVADSSAKEDLTSEDGSATPQDEKDDSESTTTTDTITPKSIRGGKRRRGGGRFGGSYPVKPAKPGRKPKDPHAEEGADEKDPEDQTPTTMTTSTPTRADSFQTQKNRMAKLMEGKPHDYSFLDLPDFDKIIEEAPKEDINILMEERTYELREIFAQCKADLSALEKRYRQQNEAKRKAEFAAKTASSAAAAQASSSTCSTPRP | DNA-binding protein which modulates activity of several transcription factors (By similarity). Plays a role in the modulation of endoplasmic reticulum (ER) homeostasis during chemical and pathogen stress, including exposure to the Gram-negative bacterium P.aeruginosa. |
A0A0K8P6T7 | PETH_IDESA | Poly(ethylene terephthalate) hydrolase (PET hydrolase) (PETase) (EC 3.1.1.101) (PET-digesting enzyme) | MNFPRASRLMQAAVLGGLMAVSAAATAQTNPYARGPNPTAASLEASAGPFTVRSFTVSRPSGYGAGTVYYPTNAGGTVGAIAIVPGYTARQSSIKWWGPRLASHGFVVITIDTNSTLDQPSSRSSQQMAALRQVASLNGTSSSPIYGKVDTARMGVMGWSMGGGGSLISAANNPSLKAAAPQAPWDSSTNFSSVTVPTLIFACENDSIAPVNSSALPIYDSMSRNAKQFLEINGGSHSCANSGNSNQALIGKKGVAWMKRFMDNDTRYSTFACENPNSTRVSDFRTANCS | Involved in the degradation and assimilation of the plastic poly(ethylene terephthalate) (PET), which allows I.sakaiensis to use PET as its major energy and carbon source for growth. Likely acts synergistically with MHETase to depolymerize PET. Catalyzes the hydrolysis of PET to produce mono(2-hydroxyethyl) terephthalate (MHET) as the major product. Also depolymerizes another semiaromatic polyester, poly(ethylene-2,5-furandicarboxylate) (PEF), which is an emerging, bioderived PET replacement with improved gas barrier properties. In contrast, PETase does not degrade aliphatic polyesters such as polylactic acid (PLA) and polybutylene succinate (PBS). Is also able to hydrolyze bis(hydroxyethyl) terephthalate (BHET) to yield MHET with no further decomposition, but terephthalate (TPA) can also be observed. Shows esterase activity towards p-nitrophenol-linked aliphatic esters (pNP-aliphatic esters) in vitro. |
A0A0K8P8E7 | MHETH_IDESA | Mono(2-hydroxyethyl) terephthalate hydrolase (MHET hydrolase) (MHETase) (EC 3.1.1.102) | MQTTVTTMLLASVALAACAGGGSTPLPLPQQQPPQQEPPPPPVPLASRAACEALKDGNGDMVWPNAATVVEVAAWRDAAPATASAAALPEHCEVSGAIAKRTGIDGYPYEIKFRLRMPAEWNGRFFMEGGSGTNGSLSAATGSIGGGQIASALSRNFATIATDGGHDNAVNDNPDALGTVAFGLDPQARLDMGYNSYDQVTQAGKAAVARFYGRAADKSYFIGCSEGGREGMMLSQRFPSHYDGIVAGAPGYQLPKAGISGAWTTQSLAPAAVGLDAQGVPLINKSFSDADLHLLSQAILGTCDALDGLADGIVDNYRACQAAFDPATAANPANGQALQCVGAKTADCLSPVQVTAIKRAMAGPVNSAGTPLYNRWAWDAGMSGLSGTTYNQGWRSWWLGSFNSSANNAQRVSGFSARSWLVDFATPPEPMPMTQVAARMMKFDFDIDPLKIWATSGQFTQSSMDWHGATSTDLAAFRDRGGKMILYHGMSDAAFSALDTADYYERLGAAMPGAAGFARLFLVPGMNHCSGGPGTDRFDMLTPLVAWVERGEAPDQISAWSGTPGYFGVAARTRPLCPYPQIARYKGSGDINTEANFACAAPP | Involved in the degradation and assimilation of the plastic poly(ethylene terephthalate) (PET), which allows I.sakaiensis to use PET as its major energy and carbon source for growth. Likely acts synergistically with PETase to depolymerize PET. Catalyzes the hydrolysis of mono(2-hydroxyethyl) terephthalate (MHET) into its two environmentally benign monomers, terephthalate and ethylene glycol. Does not show activity against PET, bis(hydroxyethyl) terephthalate (BHET), pNP-aliphatic esters or typical aromatic ester compounds catalyzed by the tannase family enzymes, such as ethyl gallate and ethyl ferulate. |
A0A0L7KF24 | FCLN_PLAFX | Falcilysin (EC 3.4.24.-) | MNLTKLMKVFGYINIITNCVQSFTNRADKKRYNVFAKSFINTINTNLYTFKAVMSKTPEWIHEKSPKHNSYDIIEKRYNEEFKMTYTVYQHKKAKTQVISLGTNDPLDVEQAFAFYVKTLTHSGKGIPHILEHSVLSGSKNYNYKNSIGLLEKGTLHTHLNAYTFNDRTVYMAGSMNNKDFFNIMGVYMDSVFQPNVLENKYIFETEGWTYEVEKLKEDEKGKAEIPQMKDYKVSFNGIVYNEMKGALSSPLEDLYHEEMKYMFPDNVHSNNSGGDPKEITNLTYEEFKEFYYKNYNPKKVKVFFFSKNNPTELLNFVDQYLGQLDYSKYRDDAVESVEYQTYKKGPFYIKKKYGDHSEEKENLVSVAWLLNPKVDKTNNHNNNHSNNQSSENNGYSNGSHSSDLSLENPTDYFVLLIINNLLIHTPESVLYKALTDCGLGNNVIDRGLNDSLVQYIFSIGLKGIKRNNEKIKIFDKVHYEVEDVIMNALKKVVKEGFNKSAVEASINNIEFILKEANLKTSKSIDFVFEMTSKLNYNRDPLLIFEFEKYLNIVKNKIKNEPMYLEKFVEKHFINNAHRSVILLEGDENYAQEQENLEKQELKKRIENFNEQEKEQVIKNFEELSKYKNAEESPEHLNKFPIISISDLNKKTLEVPVNVYFTNINENNNIMETYNKLKTNEHMLKDNMDVFLKKYVLKNDKHNTNNNNNNNNNMDYSFTETKYEGNVPILVYEMPTTGIVYLQFVFSLDHLTVDELAYLNLFKTLILENKTNKRSSEDFVILREKNIGSMSANVALYSKDDHLNVTDKYNAQALFNLEMHVLSHKCNDALNIALEAVKESDFSNKKKVIDILKRKINGMKTTFSEKGYAILMKYVKAHLNSKHYAHNIIYGYENYLKLQEQLELAENDFKTLENILVRIRNKIFNKKNLMVSVTSDYGALKHLFVNSNESLKNLVSYFEENDKYINDMQNKVNDPTVMGWNEEIKSKKLFDEEKVKKEFFVLPTFVNSVSMSGILFKPGEYLDPSFTVIVAALKNSYLWDTVRGLNGAYGVFADIEYDGSVVFLSARDPNLEKTLATFRESAKGLRKMADTMTENDLLRYIINTIGTIDKPRRGIELSKLSFLRLISNESEQDRVEFRKRIMNTKKEDFYKFADLLESKVNEFEKNIVIITTKEKANEYIANVDGEFKKVLIE | In the food vacuole, acts downstream of proteases plasmepsins PMI and PMII and falcipains during the catabolism of host hemoglobin by cleaving peptide fragments of alpha and beta hemoglobin subunits generated by PMI and PMII and falcipains. In the apicoplast, degrades apicoplast transit peptides after their cleavage (By similarity). Prefers bulky hydrophobic amino acids in the P1' position at both acidic and neutral pH. At P2', prefers hydrophobic residues at acidic pH at neutral pH, these same residues are abundant but prefers Arg. At P3', prefers hydrophobic residues, especially Met, at both pH conditions. At P4' and P5', prefers acidic residues at acidic pH, however, at neutral pH, the enzyme is less selective at these positions. The optimal site cleavage at acidic pH is YNEHS-|-FFMEE and, at neutral pH, MKRHS-|-FRMRG. |
A0A0M3Q1Q3 | GTPS1_THYVU | Gamma-terpinene synthase 1 (EC 4.2.3.114) (Alpha-terpinene synthase 1) (EC 4.2.3.115) (Terpene synthase 1) (TvTPS1) | MRRSGNYQAPVWNNDFIQSFSTDKYKDEKFLKKKEELIAQVKVLLNTKMEAVKQLELIEDLRNLGLTYYFEDEFKKILTSIYNEHKGFKNEQVGDLYFTSLAFRLLRLHGFDVSEDVFNFFKNEDGSDFKASLGENTKDVLELYEASFLIRVGEVTLEQARVFSTKILEKKVEEGIKDEKLLAWIQHSLALPLHWRIQRLEARWFLDAYKARKDMNPIIYELGKIDFHIIQETQLQEVQEVSQWWTNTNLAEKLPFVRDRIVECYFWALGLFEPHEYGYQRKMAAIIITFVTIIDDVYDVYDTLDELQLFTDAIRKWDVESISTLPYYMQVCYLAVFTYASELAYDILKDQGFNSISYLQRSWLSLVEGFFQEAKWYYAGYTPTLAEYLENAKVSISSPTIISQVYFTLPNSTERTVVENVFGYHNILYLSGMILRLADDLGTTQFELKRGDVQKAIQCYMNDNNATEEEGTEHVKYLLREAWQEMNSAMADPDCPLSEDLVFAAANLGRTSQFIYLDGDGHGVQHSEIHNQMGGLIFEPYV | Involved in the biosynthesis of phenolic monoterpenes natural products thymol and carvacrol which have a broad range of biological activities acting as antimicrobial compounds, insecticides, antioxidants and pharmaceutical agents. Monoterpene synthase which catalyzes the conversion of geranyl diphosphate (GPP) to gamma-terpinene and the minor products alpha-thujene, alpha-terpinene, myrcene, sabinene, (+)-R-limonene, alpha-pinene and alpha-phellandrene. |
A0A0N7CSQ4 | TX41A_SCOMU | Tau-scoloptoxin(04)-Sm1b (Tau-SLPTX(04)-Sm1b) (Toxin RhTx2) [Cleaved into: Tau-scoloptoxin(04)-Sm1a (Tau-SLPTX(04)-Sm1a) (Toxin RhTx)] | MLKSFCILSVFMVLFLAKFPDLCSGEEISPLKIVVRNSEYLNNPCNGVTCPSGYRCSIVDKQCIKKEK | [Tau-scoloptoxin(04)-Sm1a]: Extremely potent agonist and potentiator of TRPV1 (EC(50)=470-521.5 nM (mouse)). It strongly promotes the heat activation process by downshifting the activation threshold temperature. It preferably binds to the activated channel and promotes its opening. Holding the channel closed by cooling prevents binding of this toxin, leaving it ineffective. The toxin binds to the charge-rich outer pore region of the channel where it directly interacts with the pore helix and turret, two adjacent structural elements known to be critical for activation gating of TRPV1. In comparison with Sm1b, induces a TRPV1 desensitization with slower kinetics (20 seconds). In vivo, induces pain in mice after intraplantar injection. [Tau-scoloptoxin(04)-Sm1b]: Potent agonist and probable potentiator of TRPV1 (EC(50)=38.35 uM (mouse)). Also binds to the outer pore region of TRPV1. In comparison with Sm1a, induces a TRPV1 desensitization with faster kinetics (2 seconds) and leads to a more complete TRPV1 desensitization. Desensitization is achieved by reducing both the open probability and the single-channel conductance upon prolonged exposure. |
A0A0N7KJT8 | APL25_ORYSJ | APETALA2-like protein 5 (Protein SHATTERING ABORTION 1) | MWDLNDSPAAEAAPPPLSPSADDSGASSSSAAAVVEIPDDADDDSAAVVVVTRQFFPPAVPGGGGDPAPGNARAGWLRLAGAAPPVAATGPAASAAVSKKSRRGPRSRSSQYRGVTFYRRTGRWESHIWDCGKQVYLGGFDTAHAAARAYDRAAIKFRGVEADINFSLEDYEDDLKQMSNLTKEEFVHVLRRQSTGFPRGSSKYRGVTLHKCGRWEARMGQFLGKKYVYLGLFDTEEEAARAYDRAAIKCNGKDAVTNFDPSIYAGEFEPPAAATGDAAEHNLDLSLGSSAGSKRGNVDGGGDDEITGGGGGGAGSDQRVPMAFDLDWQTAAARSTKAKFDQNSNHPQMPPVLQVTHLPFSPRHHHQFLSNGDPGTAGGLSLTIGAGMAGHWPPQQQQGWGNAGGMSWPHPPHPPPPPTNAAAAATATAAAASSRFPPYIATQASTWLQKNGFHSLTRPT | Transcription factor. Involved in spikelet transition and development (Probable). Prevents lemma and palea elongation as well as grain growth. Required for seed shattering through specifying abscission zone (AZ) development. |
A0A0N9E2K8 | MMP21_DANRE | Matrix metallopeptidase-21 (MMP-21) (EC 3.4.24.-) | MLTVIRRIFIIQTFIFITAEKIFHSRDHSDVLNNIHQAELITDTDTAQRFLSKYGFIKAAGSEESQLSESSGDLDFSLSLDLHEGGTTSGSSSSDLQFVSALRDFQRLSDLPVTGVFDDATKAAMNKPRCGVMDDDQELKDVTGSNSTRNHIRTSTNTSHNHEHQAPVRKKRHLSALLKNTSLQKRDVSKWTGHMAFSKSVLKWRLIGEGYSSQLSIQEQKYIFRLAFRMWSEISPLQFIEDLHSPLENIDIRLGFGTGRHLGCSQRFDGAGREFAHAWFLGDIHFDDDEHFTVPNTGSGISLLKVAVHEIGHVLGLPHIYRPGSIMQPSYLPQDAGFEIDWMDRKSIQRLYGVCTGRFSTVFDWIRKEQTPYGEVVVRFNTYFMRDGLYWLYENRNNRTRYGDPVAVQVGWHGLPSGGVDAYVHVWNRKTDAVYFFKGMQYWRYDSENDHVFSHAPDGRLYPRLISEDFPGVSGPLDTAYYDRRDAHIYFFKGSQVFRFDVRMRRLASSSPQEMTEVFPAIVSGDHPVRSLDAAYFSYTHNTVFLLKGSLFWRVLSGKERRRRAFLPMNGLLAHRRVHEQWFDICDVHSSSLRTTRRR | Plays a specialized role in the generation of left-right asymmetry during embryogenesis. May act as a negative regulator of the NOTCH-signaling pathway. |
A0A0N9HMN6 | POMT3_SINHE | Pluviatolide O-methyltransferase (PhOMT3) (EC 2.1.1.323) | MEMAPTMDLEIRNGNGYGDSGEELLAAQAHIYNHIFNFISSMALKCAVELNIPEILHNHQPKAVTLSELVQALQIPQAKSACLYRLLRILVHSGFFAITKIQSEGDEEGYLPTLSSKLLLKNHPMSMSPCLLGLVNPTMVAPMHFFSDWFKRSDDMTPFEATHGASLWKYFGETPHMAEIFNEAMGCETRLAMSVVLKECKGKLEGISSLVDVGGGTGNVGRAIAEAFPNVKCTVLDLPQVVGNLKGSNNLEFVSGDMFQFIPPADVVFLKWILHDWNDEECIKILKRCKEAIPSKEEGGKLIIIDMVVNDHNKGSYESTETQLFYDLTLMALLTGTERTETEWKKLFVAAGFTSYIISPVLGLKSIIEVFP | O-methyltransferase involved in the biosynthesis of etoposide, a chemotherapeutic compound of the topoisomerase inhibitor family. Catalyzes the methylation of (-)-pluviatolide to produce (-)-bursehernin. |
A0A0N9HTA1 | DOMT1_SINHE | Desmethyl-yatein O-methyltransferase (EC 2.1.1.330) | MDTRADAEIKAMELIGIGVLPLAMKAIIELNVLEILSKAGPDTQLTAAQIVTDIPTTNPNAGFQLDRILRLLASHSVLSSSITKSGERVYGLTPMCKYFLPDQDGVSLAPMVVTIHDKVLLQSWHYLKDSVLKQGSLPFTEAFGMSPFEYSVSDTRFNKVFNAGMFDHSTLCMRDVLQRYKGFQGLGELVDVGGGTGGSLKMILSQYPNLKGINFDLPHVVADAPSFPGVKHIGGDMFESVPSGDAIFMKWILHDWDDGRCLTLLKNCWNALPEHGKVIIVEWILPSDAATDPTSRRVFTADLMMLAFSEGGKERTLGDYGALAKEAGFTTVKDFPCANGISVIEFHKK | O-methyltransferase involved in the biosynthesis of etoposide, a chemotherapeutic compound of the topoisomerase inhibitor family. Catalyzes the methylation of (-)-5'-demethylyatein to produce (-)-yatein. |
A0A0N9NCU6 | YOPJ_YERPU | Serine/threonine-protein acetyltransferase YopJ (EC 2.3.1.-) (Virulence factor YopJ) | MIGPISQINISGGLSEKETSSLISNEELKNIITQLETDISDGSWFHKNYSRMDVEVMPALVIQANNKYPEMNLNLVTSPLDLSIEIKNVIENGVRSSRFIINMGEGGIHFSVIDYKHINGKTSLILFEPANFNSMGPAMLAIRTKTAIERYQLPDCHFSMVEMDIQRSSSECGIFSFALAKKLYIERDSLLKIHEDNIKGILSDGENPLPHDKLDPYLPVTFYKHTQGKKRLNEYLNTNPQGVGTVVNKKNETIVNRFDNNKSIVDGKELSVSVHKKRIAEYKTLLKV | Serine/threonine-protein acetyltransferase translocated into infected cells, which inhibits the host immune response and induces cell death by mediating acetylation of target proteins. Inhibits the MAPK and NF-kappa-B signaling pathways by acetylating protein-kinases such as MAP2K1, MAP2K6, MAP3K7/TAK1 and I-kappa-B kinase (CHUK/IKKA and IKBKB) on serine and threonine residues critical for their activation by phosphorylation, thereby preventing protein-kinase activation (PubMed:16728640, Ref.9, PubMed:30361383). Promotes pyroptosis, a programmed cell death, in host cells by mediating acetylation of MAP3K7/TAK1: MAP3K7/TAK1 inactivation triggers activation of caspase-8 (CASP8), followed by CASP8-dependent cleavage of gasdermin-D (GSDMD) and induction of pyroptosis. Also able to induce intestinal barrier dysfunction by acetylating and inhibiting host protein-kinases RIPK2/RICK and MAP3K7/TAK1, thereby promoting cell death (By similarity). |
A0A0P0VIP0 | LRSK7_ORYSJ | L-type lectin-domain containing receptor kinase S.7 (OsLecRK-S.7) (EC 2.7.11.1) (Protein DEFECTIVE IN APERTURE FORMATION 1) (OsDAF1) | MPPRCRRLPLLFILLLAVRPLSAAAASSIAAAPASSYRRISWASNLTLLGSASLLPGAAGVALTTPSRDGVGAGRALFSEPVRLLLPQDAAASASASRAATPASFSTRFTFRITPSPTYGDGLAFLLTSSRTFLGASNGFLGLFPSSSASDEGELRDVSTVAVEIDTHLDVALHDPDGNHVALDAGSIFSVASAQPGVDLKAGVPITAWVEYRAPRRRLNVWLSYSPSRRPEKPALSADVDLSGLLRTYMYAGFSASNGNGAALHVVERWTFRTFGFPNSSYAPPPTKYIGPMPPNNQPLPPPPSPSPSPPPPSPPPPPHPNHRRRHLFYKVLGGVLGGMVLLGLVVVGSAVLLGRSVRRKNQEHAVASEDMGEATLSMEVARAATKGFDSGNVIGVGGSGATVYEGVLPSGSRVAVKRFQAIGSCTKAFDSELKAMLNCPHHPNLVPLAGWCRSKDELVLVYEFMPNGNLDSALHTLGGATLPWEARFRAVYGVASALAYLHDECENRIIHRDVKSSNVMLDAEFNARLGDFGLARTVSHGGLPLTTQPAGTLGYLAPEYVHTGVATERSDVYSFGVLALEVATGRRPAERGISVVNWVWTLWGRRRLVDAADRRLQGRFVADEMRRVLLVGLCCVHPDCRKRPGMRRVVSMLDGTAPLILVPDKMPPVLLQPVPNASSMNSADTANTAFFSCR | Legume-lectin receptor-like kinase required for normal pollen development and male fertility. Regulates pollen exine assembly and aperture development. Plays a critical role in annulus formation, and may participate in the formation of the fibrillar-granular layer underneath the operculum. May function by regulating the expression of genes involved in pollen exine development. Kinase activity is required for its function in pollen development. |
A0A0P0WGX7 | ENL1_ORYSJ | SNF2 domain-containing protein ENL1 (EC 3.6.4.-) (Protein ENDOSPERMLESS 1) | MASPPPFDICGDLDDDPTPPAPTPLAAPTPNGLNDRLLRLTRTHQRGPSQNPNPNPNPNPKPPPPPPPQEPEPAKVKLAGRRRLCKLSTAGDESAGDDDSIRDILDDLTTRLDSLSVDRPTARPRPHVSPLPCALHADPDPSQSQLNDGTKPSSSFVDCDDDDDDAGGAYGGFGVKEEVTRKVFKASSSFGGRGNDDKMKAKGAYAFDTVSRKTTTESKASKFFGDYDDEDDIDQDAENGKENHADDVGWEKTEDFKMEPTGTGVTRKPYNLPGRIFNMLYPHQREGLRWLWVLHCRGTGGILGDDMGLGKTMQVSAFLAGLFHSRLIKRVLVVAPKTLLTHWTKELSVVSLKDKIRDYSGPNANARNYELKYAFKEGGILLTTYDIVRNNFKMIKGNFTNDFDDEEETLWNYVILDEGHIIKNPKTQRAQSLFEIPCAHRIVISGTPIQNNLKEMWALFYFCCPEVLGDKEQFKARYEHAIIQGNDKNATNRQKHIGSNVAKELRERIKPYFLRRMKNEVFLDSGTGEDKKLAKKNELIIWLKLTSCQRQLYEAFLNSELVHSSMQGSPLAAITILKKICDHPLLLTKKAAEGVLEGMDAMLNNQEMGMVEKMAMNLADMAHDDDDVELQVGQDVSCKLSFMMSLLQNLVSEGHNVLIFSQTRKMLNIIQEAIILEGYKFLRIDGTTKISERERIVKDFQEGPGAPIFLLTTQVGGLGLTLTKAARVIVVDPAWNPSTDNQSVDRAYRIGQMKDVIVYRLMTSGTIEEKIYKLQVFKGALFRTATEHKEQTRYFSKRDIQELFSLPEQGFDVSLTQKQLQEEHGQQLVMDDSLRKHIQFLEQQGIAGVSHHSLLFSKTAILPTLNDNDGLDSRRAMPMAKHYYKGASSDYVANGAAYAMKPKEFIARTYSPNSTSTESPEEIKAKINRLSQTLANTVLVAKLPDRGDKIRRQINELDEKLTVIESSPEPLERKGPTEVICLDDLSV | DNA helicase that acts as an essential component of the spindle assembly checkpoint (By similarity). Plays an indispensable role in the development of seed endosperm. Is required to secure sister chromosome separation during endosperm syncytial mitosis, which involves extremely rapid free nuclear cycles. |
A0A0P0X9Z7 | CWZF7_ORYSJ | Cysteine-tryptophan domain-containing zinc finger protein 7 (OsCW-ZF7) (Protein WIDE GRAIN 7) | MLSVRRRQEDARGVGLRGGAAAGGMEDDAELEEGEACGDETAFVDPDVALSYIDEKIQDVLGHFQKDFEGAVSAENLGSKFGGYGSFLPTYQRSPLPQTRSPPKAANVSSRSPYHQPTESMSQNTLAVAAPSVSKHNGSMVPLSDDSSKKEVHQSTKVERASSTQDSLNGLSKSSDHNRFKVRIKVGSDNGLARNNAAIYSGLGLDISSPSSIEDSPDGCGSLSPEFNNVPIESPRTILQIMTCFSVPGGFLLSPLRDDLVQLTQKVVPTSKKWETNANTENVQERYEGYAAKRVKSDAKKKKAVDTKRSKSRNDVSAVMKNEIDIETPAGQKIVLEALNIPLLSNPRTMEAKDGSQFEEDPMRDTLVENKDARLKERTINSDLMAIKYENVKAEAAECLENSGPGSSGMDFSAVKGEVKFKAEKAEIHVEDRNTTSEKDFQSDRKQERKIKTESKCNATGVNFEGNKVMNERTPVVGRSIGKVSSKETLLNDINEENVSKSESRRSQKEQNMNASSSSDFLEDDRGVLSSGAVKERKNDSQSKSSHPGRKPKAKSHRDVREHLPEGSYGGKDDTLENGSGLGELRPKKIWKNDSERDSDMPGTSKREISSSLKNDRHTPAEEQRMHVPPSVSAPTANAAPMLPAPVVIEEHWVCCDICQKWRLLPYKMNPSLLPKKWKCSMLQWLPGMNRCEVSEDETTNALNALYVSPAPGNGVASVGHSHVASSGLTTSNTLNVNGHVEQSRKRKNTLSDGNVSFDVSQQMQGSVYPLSNQHAPIRSKSAADSIQFPVERDSKSVDHFVEKKRSKSKNHGSSSDGGHLVERSKKHSKVKSKREMDHDEYRTSKKIKKEERRQRQSGIDSNPGYDLASGDVPDEAKALPSKSMALQGSSERSDVPPSKYKSVSKYNSSEKSKRSKDGDVFLPEDKNKEHSYPSDAQKPDLSSKKRIVKEWEESQHNSTPPVSKMSIVNQSSSSKETCKDQNLKETKSKLTKSEEPFAMTDSKSIKVAHSNQTSRNLNNELFEDSTPFAVKSGMSEPPENRSSEQALDLAEPASSDLAYFQTTAVTSSSSKASGSQRRKQNFHVAKTSPIESVSSSPPRISNNDKVSHDKILGKDGSTCANTNNMQSLVKNTEVIVDNVRQARKSHESMLASEPVMNGFSQGNSDKDNELPQLTQGHASNGIISGRSLDDDLQHASGRKDSSLKSSNAARSHNHLHYANKNNLLTDGSSIQHRMAVLDTKGDSMVHENKRSVTSLQDRNGSTHYPPDGNPQSEVSFGKEKSHPKSNKHDMQNSKAQMLPSPLKESKVESHSAPLRSNASKLTAQLKRGNVENGGQHGITKQAISNPADTSSPVRKDNNSTGYALKEARDLKHKANRLKEEGKEQESTRLYFESALKYLHVASTLEPPPSIDGFKQCDAAQNLYSDTAKLCNFVGHAYEKSKKMAAAALAYKCVEVAYLKAAYYKYPTASKDRQMLQAIVQNPPGESPSSSASDIDNLNNNGLSKGPSSKDANSPQVTGNNLLLAARNQPHLTRLLAYTNDVNCAFDATRKSQMAIASAASNQENGIDGLSSVKTVLDFNFQSVNDLLRLVRLSMESISC | Transcriptional activator that acts as a positive regulator of grain size. Binds directly to the DNA core sequence 5'-CATTTC-3' found in the promoter of MADS1, and activates MADS1 transcription. Increases grain width via direct up-regulation of MADS1 expression. Promotes active chromatin modification at the MADS1 locus by increasing its level of histone H3K4me3. In GST pull-down assay, binds specifically to histone H3K4me3, but not to H3K4me1 or H3K4me2. May facilitate the recruitment of effectors to mediate gene expression. |
A0A0P0XCU3 | SSY3A_ORYSJ | Soluble starch synthase 3a, chloroplastic/amyloplastic (EC 2.4.1.21) (Protein FLOURY ENDOSPERM 5) (Soluble starch synthase IIIa) (OsSSIIIa) | MEMALRPQSLLCPRSRLKVVIRPASSASGGGLAQYFLMTRRYTGSRIVRCMVSSSDCPNRKAKRTISLHTEVASSRGYAPRIAAESSIQEREHINSDEETFDTYNRLLRNESTEWKKLDTTEVDLSQDVSSSSMRKVDATDEAKLDILEDDLPRNLLNGVTMGEVDMLDEAGAEDDVFEVDLSALHNSTVGKMDAVNEVGTENDLFEVDLSALHSAAVGKVDVVDGAKAKEDLFEMDSLALHSVTMGKVDAINAAGAEGDKFEVDLSALASNNSMIEAVNVMDEAKAIEDTLEVDLSGNATSSSTYGEVKFEVDSLGNTSSTVMYGPADGAYEPRSDEVTFKVDSSENASNNVMYGRADVVDESWADEGIFEVDFFTNASSGAEYGKVDVVDEAKTDDFTFEIDSLEKDSNNKMHGKAHMVDEAWDDEAIFEVDLFGNASSIPIYGEVNVLDEARADDGKFEVDLLGNTSSNSTHEEVDVVDEAQTGEATFEVDLLGNALSSAIYKEVPVMGGAQDDEVDVDFSINASITETEKEADAVDEARVEDETFDMDLVGKQISIDSMNDDVVEEGTKHHRYPMLSSAFIEVKTIHETPVSLKPELMSVVMDQEQDKPISSVYQQEGSIFNLHAENQSTVDFHEREQMAITFDKQKESVAKLSKEDQQTAGLPEQNMSFDGVHRKSQSIIGLPFQHQSIVSSPEKYRSIVGFHGQNQSIISSHKQDKSIVGVPKKIQSIVGSTKHDDSIVGFRKQDRSIVSVPEQKQSIVGFHKQDLSIVAVSEQNLSIVAIPRESQSKQISIVRRHDPLHLKEVETKDRDGISKKSGGDDDLPHMLFEEELSQVEDVARAIAYKKQHEVDVISLTPDIQESPQDNIDPQELRRMLQELADQNCSMGNKLFVFPEAVKANSTIDVYLNRNLSALANEPDVHIKGAFNSWRWRPFTERLHKSELSGDWWSCKLHIPKEAYRLDFVFFNGRLVYDNNDSNDFVLQVESTMDEDSFEEFLVEEKKRELERVATEEAERRRHAEEQQRMGEQRAAEQAAREQAKKEIELKKNKLQNLLSSARTHVDNLWHIEPSTYRQGDTVRLYYNRNSRPLMHSTEIWMHGGCNSWTDGLSIVERLVECDDENGDWWYANVHIPEKAFVLDWVFADGPPGNARNYDNNGRQDFHAILPNAMTNEEYWVEEENCIYTRLLHEIREREEAIKIKVEKRAKMKSEMKEKTMRMFLLSQKHIVYTEPLEIRAGTTVDVLYNPSNTVLNGKPEVWFRWSFNRWMHPSGVLPPKKMVKTEDGCHLKATVSVPSDAYMMDFVFSESEEGGIYDNRNGTDYHIPVSGSNAKEPPIHIVHIAVEMAPIAKVGGLADVVTSLSRAIQELGHHVEVILPKYNFMNQSNVKNLHVRQSFSLGGTEIKVWFGLVEDLSVYFLEPQNGMFGGGWVYGGNDAGRFGLFCQSALEFLLQSGSSPHIIHCHDWSSAPVAWLYKEHYAESRLATARIIFTIHNLEFGAHFIGKAMTYCDKATTVSHTYSKEVAGHGAIAPHRGKFYGILNGIDPDIWDPYTDNFIPMHYTSENVVEGKNAAKRALQQRFGLQQTDVPIVGIITRLTAQKGIHLIKHALHRTLERNGQVVLLGSAPDPRIQSDFCRLADSLHGENHGRVRLCLTYDEPLSHLIYAGSDFILVPSIFEPCGLTQLVAMRYGSIPIVRKTGGLYDTVFDVDHDKDRARVLGLEPNGFSFDGADCNGVDYALNRQQSLLGLKPAVGSTPSAKGSWSKTGPGTGLPWTTLNCTIQLTNFEAPIQRWQEKASIGRYYKLNETWLKVKIFYLSCRYKLTQTWFKVKIFYLSYTYICRIKTLYSMHKQLWEYVSAMFPILSFNYEYLI | Involved in starch synthesis in endosperm amyloplasts. Plays an important role in the elongation of amylopectin B chains. |
A0A0P0XII1 | CERK1_ORYSJ | Chitin elicitor receptor kinase 1 (OsCERK1) (EC 2.7.11.1) (LysM domain receptor-like kinase 1) (LysM RLK1) (LysM-containing receptor-like kinase 1) (LysM domain receptor-like kinase 9) (OsLysM-RLK9) | MEASTSLLVLVLAAAAFAAGTVTEAAGDGCSAGCDLALASFYVTPNQNVTNMADLFGIGAANYRSLAPYNPNIPNLDFINVGGRVNVYFTCGCRSLPGSPGATYLAGAFPFQMSRGQIYTSVAANYNNLTTAEWLQATNSYPANNIPDTAVINATVNCSCGDASISPDYGLFLTYPLRAEDTLASVAATYGLSSQLDVVRRYNPGMESATGSGIVYIPVKDPNGSYLPLKSPGKGASAGAIAGGVVAGVVVLAAIFLYIIFYRRRKAKQATLLQSSEDSTQLGTISMDKVTPSTIVGPSPVAGITVDKSVEFSYEELSNATQGFSIGNKIGQGGFGAVYYAELRGEKAAIKKMDMQATHEFLAELKVLTHVHHLNLVRLIGYCIESSLFLVYEFIENGNLSQHLRGMGYEPLSWAARIQIALDSARGLEYIHEHTVPVYIHRDIKSANILIDKNYRAKVADFGLTKLTEVGGTSMPTGTRVVGTFGYMPPEYARYGDVSPKVDVYAFGVVLYELISAKEAIVRSTESSSDSKGLVYLFEEALNSPDPKEGLRTLIDPKLGEDYPIDSILKLTQLAKVCTQEDPKLRPSMRSVVVALMTLSSTSEFWDMNNLYENQGLVNLMSGR | Lysin motif (LysM) receptor kinase required as a cell surface receptor for chitin elicitor (chitooligosaccharides) signaling leading to innate immunity in response to biotic stresses. Involved in the resistance to pathogenic fungi, probably by sensing microbe-associated molecular patterns (MAMP) and pathogen-associated molecular patterns (PAMP). Involved in the detection of microbial peptidoglycans (PGNs) and mediates PGN response. Plays dual roles in PGN and chitin signaling during innate immunity. Acts as an adapter for LYP4 and LYP6 and mediates signal transduction from the extracellular to intracellular spaces. Participates in the activation of defense genes during response to PGN and chitin. Phosphorylates the downstream partner RLCK185 in response to chitin elicitation. |
A0A0P0ZBS7 | MENC_GEOSE | o-succinylbenzoate synthase (OSB synthase) (OSBS) (EC 4.2.1.113) (4-(2'-carboxyphenyl)-4-oxybutyric acid synthase) (N-acylamino acid racemase) (NAAAR) (N-succinylamino acid racemase) (NSAAR) (NSAR) (EC 5.1.1.-) (o-succinylbenzoic acid synthase) | MAINIEYVILRHLQMELKAPFTTSFGTFQRKELILVEVVDRDGVSGWGESVAFSAPWYSEETVKTNWHMLEDFLVPLALAEPIHHPEELSKRFSAIRQNNMAKAALEGAVWDLYAKRLGVPLSQALGGAKKDIEVGVSIGIQPTVADLLQVIERYVAQGYRRIKVKIKPSWDVDVIREVRRVFPDVPLMADANSAYTLVDADRLKALDEFGLLMIEQPLAADDLVDHARLQPLLQTPICLDESIRSYDDARKALDLGSCRIINIKIGRVGGLGEAKRIHDLCAERGAPVWCGGMLEAGVGRAHNIAITTLENFTLPGDTAASSHYWERDIITPEVEVHGGLIRVPDAPGIGYDVDRRQVERYTQFAKVFHRTATA | Converts 2-succinyl-6-hydroxy-2,4-cyclohexadiene-1-carboxylate (SHCHC) to 2-succinylbenzoate (OSB) (By similarity). Also acts as a N-succinylamino acid racemase (NSAR) that catalyzes the racemization of N-succinyl-D/L-phenylalanine. Can catalyze the racemization of a broad range of N-acylamino acids, including N-acetyl-D-methionine, N-formyl-D/L-methionine, N-formyl-D/L-norleucine, N-formyl-D/L-aminobutyric acid, N-formyl-D/L-norvaline, N-formyl-D/L-homophenylalanine, N-carbamoyl-D-methionine and N-carbamoyl-D-norleucine. May be a bifunctional enzyme involved in menaquinone biosynthesis and in an irreversible pathway for the conversion of D- to L-amino acids, thereby facilitating the survival and/or growth of the organism (By similarity). |
A0A0P6JG37 | ASAH1_HETGA | Acid ceramidase (AC) (ACDase) (Acid CDase) (EC 3.5.1.23) [Cleaved into: Acid ceramidase subunit alpha; Acid ceramidase subunit beta] | MLGRSRLTFVLLAAAVTCAEAQHAPPWTEDCRKSTYPPSGPTYRGPVPWYTINLDLPPYKRWHELMVDKGPMLKIIVNSFKNMVNTFVPSGKVMQMVDQKLPDLLGQFSGPYEEEMKGIADVTEIPLGEIISFNIFYELFTMCTSIITEDKKGHLLHVRNMDFGIFLGWNINNNTWVITEELKPLTVNLDFQRNSKTVFKATSFAGYVGMLTGFKPGQFSLTLNERFSMNGGYLGLLEWILGKKDASWIGFITRSVLENATSYEEAKNILAKTKLLAPAYFILGGNQSGEGCVITRERKDSLDIYELDPKQGRWYVVQTNYDRWKNPLFLDDRRTPAQTCLKRTTQENLSFATLYDILSTKPVLNKLTVFTALMDVTKNHYEAYLRDCPDPCVGW | Lysosomal ceramidase that hydrolyzes sphingolipid ceramides into sphingosine and free fatty acids at acidic pH (By similarity). Ceramides, sphingosine, and its phosphorylated form sphingosine-1-phosphate are bioactive lipids that mediate cellular signaling pathways regulating several biological processes including cell proliferation, apoptosis and differentiation (By similarity). Has a higher catalytic efficiency towards C12-ceramides versus other ceramides (By similarity). Also catalyzes the reverse reaction allowing the synthesis of ceramides from fatty acids and sphingosine (By similarity). For the reverse synthetic reaction, the natural sphingosine D-erythro isomer is more efficiently utilized as a substrate compared to D-erythro-dihydrosphingosine and D-erythro-phytosphingosine, while the fatty acids with chain lengths of 12 or 14 carbons are the most efficiently used (By similarity). Has also an N-acylethanolamine hydrolase activity (By similarity). By regulating the levels of ceramides, sphingosine and sphingosine-1-phosphate in the epidermis, mediates the calcium-induced differentiation of epidermal keratinocytes (By similarity). Also indirectly regulates tumor necrosis factor/TNF-induced apoptosis (By similarity). By regulating the intracellular balance between ceramides and sphingosine, in adrenocortical cells, probably also acts as a regulator of steroidogenesis (By similarity). |
A0A0R4I9Y1 | R213B_DANRE | E3 ubiquitin-protein ligase rnf213-beta (EC 2.3.2.27) (EC 3.6.4.-) (E3 ubiquitin-lipopolysaccharide ligase rnf213-beta) (EC 2.3.2.-) (Mysterin-B) (Mysterin-beta) (RING finger protein 213-B) (RING finger protein 213-beta) | MTRKRKSGKKGKPLAQKKEAQKRGGSTSSSTTQKEGAQKGDGSSSSSTTQKDGAQKRDDSTSSSSTAQKEEGQKSDGSTSSSTTNKEGAQKRDGSTSSRLQKKGPQKRKGSTSSSRAHSRSRSKSKQTSYPSQARSRSHGQHNISTTESGPLSKEAQTQTSASLLVDKDTQTETVGQASQQTQTEINGNTETAEVSQPPQLSHEDVEMEGTVQPRTKGSESDGEKEESVKRKKRKLSEIGEPAKETEDSTKLSHECEEKVGDNQKNEDTNKHYGGDSLKDLKSVTEEPKSYAAAAATGKTGKVSKEQTNQIEANQDSTMESKSTQRKPSPVRAPAGPPMLTFYIYAVLDKRFRFNEQYDSLFLDYGNGNIKLQMKHFNIGKDGYLIEATFSVEDSAVRGGTIQYKYVVQQRQNQKSEIAVRYIEVPSYTTEKEFHLYEGYISCSSTVSITEWMMSLFHSEQKAVYKGWETSAHVLLDRIFLKWHPSNEESNMTFVQHLRSYKNAFESGFVEFPGNYTPFPIKVSELISAKLRMILKKESEALRTSESLDGVKSEALSVALSVFKVCCGCDVDLSLKDWGKLCQVVSECMGSFGEIQTTQTAPFINTVTGLMNLCAKKLITEVVLLVPVLHLLRNSEVNEAGPGSSMDEQRWTGLENISYQSFRERIRGLPDKRRMILKLIKDNLPMTKDNPKLLKSWLSLVAFEDVSEFVQLTGSFPELLIQSLMCRIIEAEKNTDANRTEKNLEVTGKVLNLLLKSIKKDRERIMKTEQLKLILQCCCNVHKSVCKTARLVPQYKVTVLSFQLLLKMAEIVYDGFFKGGEQMKQHQNEVLSKLNIIQEDFRKWRVELLLKPLMQTTGFTYPREMELWNDLYGIESSIPGVTERWKGFLDHDLRRRISQISDTDKIVVYVLVTSAKAVENSHANIQSCLKELCEAAIKNQCQSKKEGTLLCHLFSKTISWPVLSSIIVESAACFGEDHKGRLLDPQSAINFFLSQDKWNEWKLEDGASQLIAESQSFLGRLIQTLCQGSIPLGHLKTIFKYKTQFQKLYNQYKNNNKEMNVSISVSDLLSQREDDLKAFEQQKGYMTNLINMLGKISDVINVPELSSLEEIAKTNVQEVALDKLVEVETYFSKDDLKKNNTRRVLFYSDDQQVQDMAREMHDVNSSNLILSFWQEKAKDYFMAGPELLSLDLTEIYEDIWTPCLTKFLNFGNRIAVGQACFKEVEEALVGCGETGEGDRLKKEFMLMATMLDGHNENWPEQRLKQIREYRCLYDAAESAEVILKLKDRLGLQGDFSHIHSLTLVRDDSFKQNTLGSLSEDLIKARQKLADVERRHTACLEAFLKSDTLIKWIKAEIPSLKELKVFMELATISAGENDADIDRLASFETAVMGYAPLLYSLPQNVGFEEFFDYAKQVLDTLNKDEKLGDKLVDSNRWLDWLKGLRETHGSVEQSSLSLASAINTGGVYHVGWPDDFNGKTGLDNIFYVKVTKNNEEKTYRLNELLELQNKLMLMSSKGEKGKEQVIKFTQVFEGIQRMGRILLQLHRSGNMLFRNWAAEITCNHQNQPCIQVKFPLLSKCIVYQGEVEEELQKLSRSLEDFHKDWCNHLTKMRSQYYPLNHYSSEQIVYLCEWINSINIKKKPVPQQVWHLLTPIKPDCMLNDIKEAFEIATEPQSILQEDTAEELGPNSDFDLPLSFSLLDVSTECLEDLWKQFKENMSGFLTHHVDVETLGRFLSNLSNMNQLHIKRKIPSFLQEGRPNLVQCPAAELMSTTLSFYMESPENPLPTTDEVLMCQEETTEEEVEIFLRRCLGGAASNHKKIYTLVNPGSMSYDVSVALVEYFETQEVCAGPYYRLVMVCPVNQDRYIPSFFSNYKVQTGITISAERSQKYIRHHFKISYELATHSSVYPERLSVWMIASKRPAVGKSLYVRRLFEKFKGEFPRATLLTIRLIDPYIDMDGFVQTLSERLAPLRQQDPVLLHIDVAAVCHGLEEFLFKLLILECISDSKGTIWRRNKAHLVVIETLQRGHKTQTKMEPSHGFLNTLPTIFCRPPKDIKEIMKTNESFRSLDPLMDKEEFESEDIQRPYQYLRRFNRSMNLDRFTYQAHSVEGDPVDCLHHLLSNYGLKDPSWAELKHFTWFLNLQLKDCEKSLFCDSDFCGETLSGFKDFIVKFMIHMARDFASPSIDISDQSPSFFSKNEDEEEILSFRKRWENESHPYIFFNADHVSMSFLGFHVKQNGTILNAVDSKSGKVLMRNVMTQELFSDIQRQMINLSKDFDDLTREDKLQKMSFVVGAEKGCEKGKFDPDPTYELTTDNVMKMLAIHMRFRCEIPVIIMGETGCGKTRLVRFLCDLQREGRDVENMKLVKVHGGTTSETIYKKVREAEELAQKNRQKYKLDTVLFFDEANTTEAIFAIKEVLCDKTVKGYPLKKNSGLKIIAACNPYRRHTTKMVDRLERAGLGYRVKAEETEDRLGKVPMRQLVYRVHPLPPSMVPLVWDFGQLSDSTELSYIRQIVKKKMRDHRLPLSCQNVITNVLAASQKYMRNQADECSFVSLRDVERSMGVLLWFYNHRDIFFPSQDFPRFENVQMVLKCLVLAVGVCYYPSLENKRPYLATISKCFPDQFNSEESLEQEIASCQDFLLKNIQTRETIAKNMALKENVFLMVVCIELRIPLFLVGKPGSSKSLAKTVIADAMQRQASHCDLFKKLKEVHMVSFQCSPHSSPEGIIGTFRNCARFQKDKNLDEYVSVVVLDEIGLAEDSPQMPLKTLHPLLEDGCIDSDNPESYMKVGFVGISNWALDPAKMNRGIFVSRWDPSEKDLVETAEGICSSSQPVLLKIKHLLSKLAKCFLSICKTDSEQFFGLRDYYGLIKMLFDTVKCSDQEPSDKELAEAVLRNFSGQRDGFDPLDYFKDIFQNIQNVQRPNTLNMIEQNLDHHIDKECRYLLLLTTNNAALYIIQHHIFSKENYTQKCPEIVFGSGFPKDQEYAQICRNVSRIKACMETGRTVILLNLLNLYESLYDALNQYYVYFSGQQYVDLGLGSHRVKCRVHRDFRLVVVEDQEKVYKKFPVPLKNRLEKHKVDRSTDLAPWQHRVLEKLKKWAREFSKIQHSDSSEANFSVTDAFVGFHGDACASALLQALKKIDKLHHNKEENREESEAHHIDREFTEFQEKVNKFPDEAQEDDASMEVDKVQDAEIDEEMETLEDDSDLVKMVEGPVFVETRDKIESNKTMDEEEVYEIAKSFLLNCSTPDSVLRLKYSEFGNQETEELQKMYFHLQTHQSLRDLLNNHLNKTNQDKNRFLEVTTFSNLLTGADVRNLGPALGLSTERFLLLSLHQFDTEASFCNKIQSFLRESGPSVHILLIQMDMEESLCKNELIASAKYCTMNEILHLKSDECNIYTVFITKLSRIGEQCTSITGDKYIGFQGGVWLSAHIDDLRDSDDLCLNLKAFCGIPISQLISQTIESDVKESDEMNTNRQQSEKGDSVHLHSLSLLRSCTQKAVSLLRDTDEKTSRSMERMNILLGLLACDPGRTGARFQQVLLKRLVFALIQKEELIPNAKDWVYKVAKNHEALQECGTLRHTLWRYLQDFLTPVLARILEVIDRDCNLYQLYGEGLSEGLTQFWLDIFEDQQLLDLIPSQNTRAPDQEINVQCHLFVGEVEQPCAAPYSWLIKTYCQSLWEESEFVRSSEQDIKARIQQFVSAVSGSRLGSYIQKLSDVENVELGQRYLTDYVLLAFKVNSEDEHWVLQSAVLGCVFTLQTMMSVSPELSPSWIHAAAQIYNPRMDTLSHVLQLNPQLVSLIQQERPKRESPDMCEDILAVGICVEETKLLPVTSLTECLTFLQRVEQLQPCIERVLSPDYSALCSPGCLKYLETIQSVWQGILLVAVFIEKVVIKMKKGDERIIALTLKHCSQLHGLVEGSPDFRSKDNLQQIIRILNDYHEESISSELRYGVKCRVCLMELSEPFALPCEHVFCRSCLRRSMEREEAQHCPVCREPLSNNYQPTVSTTLNYSFALKQHKEIIKCCNTFFLEVVSRFCLTDDQDPPDDLVELLFSLLISAQGDVYKTRELTPFLECVDQSPVVRSVLPKLLMQYSLKQVKKHIQSYLEDLENKLLDKEDRTELYRLFVNCFQDTLLCSDSNGDHKHLRENTNFLSRLARKQTPSRQNDPAEFLMSMARLRMCLDSAAYILSKAICQKNNFVEAEFKFMEQVKAVCDYCDNDWYRVYLLRALNRQAGMDFLQALINSTDYEWIFPAEMMRLHRLIPAEVDRFLCCGQSYRALRDGVGESTQVGTTDGLKEALQASVGSSPLKNALLTLAVFRQVTCHFMSPERTLHPQEQQISILEKVIRDNMSGHAREFCTALLSNHIGGPGSNLRLGTGVPAQRRPVLELLVHACTVFYSGNRLISPLFNIASQPQNMTGAFLPTMPDDHTSEAKQWLSEKKLKMYFCSNSHACFVGECGRPMAKSKCATCGVEIGGEGHIPVPGFTEAYGDYDRTRPGHILGQARTRSEAPNRKLTLAQSCVLRLCLHLAMLQGLIHYQQGIRNMIHPEVSDVYQFLWQHLEKDMEVLGKTLTLNIDDSAIVIHLIFSRFLQTTPVANVDLSTRKSREQWEITVCKTAISPVLQNLDRELNNAQDLIAADNRLSNSPLVKVLRGDPQRMLQLPANCPTEHSAFWSPSSVLAVESISQQIDQAQAPLLTLFVQKVHYIRQLDCLPALAALLSDLIKVLPPGSETQNHTIASLLHCIPAGHQKKLMSERVEIYMKVWNQLRMEISSNASLGLDSTHCEKDITSESSGQFLFPSRKGAGSCLHAVIDVLSETHNSLVREARKLCQQTDSDYKVPLAVLSKSQLALCHPEREFLPLVLANCHYTLEKGQQTVSSYDHQGIERELSRRFFAGKPRIQTDTEKYLRRHHQNFTEVLNEVRAKIPQEMFWNPKQIHQAFSTNYHSTNRHKGLSRFYPDQPLSITTVPDLVIPRRPVGFQTQERHTLTPPGSHLTALNSLPAFSFCAPPISIRSTMELHLEEKDITSFPGLDSLPEELTWAKAAEIWRLAVQFKH | Atypical E3 ubiquitin ligase that can catalyze ubiquitination of both proteins and lipids, and which is involved in various processes, such as lipid metabolism, angiogenesis and cell-autonomous immunity. Acts as a key immune sensor by catalyzing ubiquitination of the lipid A moiety of bacterial lipopolysaccharide (LPS) via its RZ-type zinc-finger: restricts the proliferation of cytosolic bacteria, such as Salmonella, by generating the bacterial ubiquitin coat through the ubiquitination of LPS. Ubiquitination of LPS triggers cell-autonomous immunity, such as antibacterial autophagy, leading to degradation of the microbial invader (By similarity). Involved in lipid metabolism by regulating fat storage and lipid droplet formation act by inhibiting the lipolytic process (By similarity). Also regulates lipotoxicity by inhibiting desaturation of fatty acids. Also acts as an E3 ubiquitin-protein ligase via its RING-type zinc finger. Involved in the non-canonical Wnt signaling pathway in vascular development: acts by mediating ubiquitination and degradation of proteins downstream of rspo3, leading to inhibit the non-canonical Wnt signaling pathway and promoting vessel regression. Also has ATPase activity ATPase activity is required for ubiquitination of LPS (By similarity). |
A0A0R4IBK5 | R213A_DANRE | E3 ubiquitin-protein ligase rnf213-alpha (EC 2.3.2.27) (EC 3.6.4.-) (E3 ubiquitin-lipopolysaccharide ligase rnf213-alpha) (EC 2.3.2.-) (Mysterin-A) (Mysterin-alpha) (RING finger protein 213-A) (RING finger protein 213-alpha) | MKCPKCSHEALEKAPKFCSECGHKLQSQSYETTQGTPHDKSQTPSIVPQITNAEMDETGSESKSLEIQNANVSPKRPNENTSPNPKKKKRKKRKKEKKKKSGVSEGPSSLTSDLSDISLTDKEKKMDTDQSSDSDCSSCIVEDTPTPAEPSSHLSPPENETAGPAQLSASALTTGSSKDGEESIGTTQKPVSASASKAPLGVDQQTKEEKVKCKDEGQKSLSAKAQHTPNANVDQNANVQSDANIDKDSQNVEPQKSSSVKTKPSKSTVADPKKTESEKQKSGERDNENSTQPVSSPKLKRNQTEESQKMVFGPNSAPKKNRGSSADSAMKVEKKPAGGKKDSSADQKSKESEDTESQCVTLPKRNTRSTQHISSSDRLTIYFHAVLSKDFKFNPEEDLIFIRAGGPIGNWEENLVELSVSRDLKEHGFLVEGKFICRKIDAEAVSIPYKYVVYKQKKNKYDYEYIYKLDAEVPTNRCLFIKSHLLNDEGEWHQYDDIICAQPAKNMFEWVKKTIWSDEKKNVLQGRKIAGTIMLETIFDLLRSWSKINLNNFFSQLRQFYEIYRNPFVFEKKQTKWYQLDYDEKDVRELLKNFMLMHVTPELQKDSNEKSKFIQEPLKAGLIMLYVWKQYDLKLDYGTLSRLCTAVCLPNLPKDEFLSLWTDITESFSVINSFSDMVEALISKLKAENMPRWIIVIPLLHLLKGTSKPFEQVITKVNSKYEQSWAGLQGLRSNILSPGPQERRAMLNLMKTYGHLVEVDRLLIRSWMYLMPLDDLVECGSIFPVELLDILQLFTMKCPNNISFTSSESTAEALAHIQSQLLQHRYSCPDVDYGIQCIQAACKLLEKICSLVRYFGHSQNFTDIPVACMNLVASVSGFAQTKQEADTFAEKTLVLLNDTKQTVRAWMRQTFKGRLLNSHLFSSHLTGTSFSTETEVWNNIIAIDFVCKDFIKEWRDTFTTDFEGKYQQEDHLDQIEAYCSNIEKLKVSQPYLVNSVEKCALQAVSTICQTKSEWKLFARFNKFRINWRFGNLVSTIILKSWPKDDKGTYFEEEEAVLKHLLGWAAAKNIFQLHGADEKLIDQLSDEAKEKFAMATSLFTNVLNQLVTGKIKMKLLNHILEKKSVFLELLTLDCFSEEEQYKDIDAMKALIQTRQEEVKAIYHERALAGALIAMCHNVEEHVKVDYKYLEDLYSNDMNEMDLDLFMDVHELNQIPTEASLEVPYFELQDDVRSMAEILNIFKDSYIFKLRWGNEAALFVERAEDEELDELDELPITLDVLNEEIFLPCHAAYRNIYTSLKDGSIDFEDIDEIFRAYKGKYEKLAAEVAIMSKQDFNDDQHWVQTRIQQIKQYHELHLAVESAKVVMMVKETLCLQGDFQVLEKLLITTHSDFKSERLDSIDNELIQAKNVLVDITEPRRLCLQELGHRKNFVIWVKEALEDINELKVFVDLASISAGENDLDVDRVACFHDAVLGYSSMLYDLKPDAGFSLFNEMLKKLWKALDNDSNLPKKLCDSARHIEWLKTVKDSHGSVELSSLSLASAINSKGIYVINAQNQKKLALENILKLHIMEEHDGGCETRVYSLEDLRDLQNKLMLMSGKGEQGQCEVDQFAEVFASVQRLVSAFIDLYVAGNPLFRHWEANINCNSKEACIIIDFNLGSVVSVVMVEGDVTEQLPEVCKKMESCLRFWQDFMDKQRSQHYYLNYYTAEQLVYLCHQLAHNNMEEIDDQVLMMLSFIKPSCSTSDLRKAWHILQYDLIRKGPDQNDDLDFQTFVEVSSMTENESTEKSCPTSDDLIQQLGDASGSTKLGVIWNNYMRDMKAFLPDSLDVPSLGYLLEILANSHREDEGDMSQRDKTRTILRELPNGIASGRPNLIICPSEEILISCISIYMNSKNEPLPTYDEVLLCSATTPYEEVELFLRRCLSAGYRGKKIYTMLYVNQLNYEVSYKVEKFFQNQNAHTTNDYRLVLICESNKEHAYLPSAFSQFRLHLIPQQPIPSIQQYLHRHFAVPVGISSAAAVFKDRQNVGVVSSERSGVGKSLYIKRLYEKLKLNSKKPSQLKCIRLTEPKVDENVIIQSLISVLKKNDLSVYHFDVTTMVKKGLHEFLFRLLILGYLMDSKGNMWKSSNKHLYVIEILRPGLSQNDRRAGAKVSFNFLDVFPIVYCRSPKEVLELEMRMEEHPSFGLSDDPLMDDQEFRSEAYQRPYQYLQRFYNGINLDEFLYQGVEGSHVECLQMLFEYCGIIDPSWAELRNFAWFLNLQLQDCEKSVFCDFSFVGDTLLGFKNFVVEFMILMAKDFATPSLSISDQSPGRLHEDFSSANEEDLAPFKIRKRWESEPHPYIFFNDDHDSMTFIGFHLQPNAQKGVDAVDPSNNRVIKQNIMTMELYEGLKLQRVPFNIDFDQLPRWEKIERLSRVLGIQWPLDPDETYELTTDNMLKMLAVHMRFRCGIPVIIMGETGCGKTRLIKFLCEMHRSGVATDNMKLVKVHGGTSSEMIYTKVREAEAMALRNKLDYGFDTVLFFDEANTTEAISSIKEILCDNSAEGQNLTENTGLKIIAACNPYRKHTDVMIKRLESAGLGYRVRAEETDEKLGSIPLRQLVYRVQALPPSMIPLIWDFGQLNDHTEKMYIKQIVERVAETHSIDSGYITVITDVLSASQKYMRTRQDECSFVSLRDVERCMQVFGWFYKKHLMLLSELDKFESIQRTEKTDQHPKDTDERNPILWSLLMAVGVCYHACLEDKEKYRKKICKYFPAAYSPMKVMQEISVIQDIFLEGVPMGENIARNNALKENVFMMVICIELRIPLFLVGKPGSSKSLSKTLVADGMQGQAAHSDLFRKLKQIHLVSFQCSPHSTPEGIINTFKQCARFQEGKNLSEYVSVVVLDEIGLAEDSQKMPLKTLHPLLEEGCIDDQPSPHKKVGFIGISNWALDPAKMNRGIFVSRGDPDENELIESAKGICSSDVMILEKVRECFKPFAHAYLRICKKQEKGFFGLRDYYSLIKMMFAVAKACDQKPSAEQIVKAVLRNFSGKDDVDAVTFFTSRLNIKPELETISAIELVRENVTAIGQDEECRYLLVLTKNYAALRILQQTFFSDQCQPEIIFGSSFPKDQEYTQICRNINRVKICMETGQTIVLLNLQNLYESLYDALNQYYVTLGGQKYVDLGLGTHRVKCRVHKDFRLIVIEEKDIVYKQFPIPLINRLEKHYLDLNTLLKSEQKDIVKNLEQWVQCFTDVKNKHSVAPSARRYSPADAFIGYHTDTCASVVMQVTEQLKGQELSDPRKGILDESKLILLNCATPDAVVRLDCTSLFNVESEHLSRVYFEDQMHNSLAEFILSHIQQEGCSGAFFTEVTTFSRLLTASETQQLQNVVQNIELLSLQQFDTEQSFLKKIKNYLENTTGDKILLIQTDFDEGFQKLNVIASAKYSSINEINKFKKEGSGKIFVYFITKLPRMDGGTSYIGFNGGPWKSIHIDDLRRPKDIVSDIKALQGLTISQLFEEKAEKVDETEAMEVEDMYAGGEDEEDEEKMELEENNGCKDVLDTTALVRSCVQSAVGMLRDQTEGGMRSTKRVEILLMLLAEDQTLQAEFLKTLKTRLHSLLVAHDDNTISAKSWVSREALNVDALHEGGTFRHALWRRVQAVVTPFLAQLVSVVDRDCNLDLLLDRNSGEPLKKLWLEIFRDDKFLSVSPYTRTENNSATKTILVQNYMSVDRNKGCTMPFSWRIKDYLEDLWKHALQQEGHTVKQFEEFFWKTPLGRYISEATNEMQMEFFYRYLQDFISMTMNVTSEVDFEVLRGAFTSSVNEVRIAHEAHESEALSLVWIHVAYHHFKNRIQNLHRMMSLEPQISQMLLENRYASEGKELVLDVLAAVACIEYLEPQNLDGDDQSLAWLRRVKKLQVPVELVCSLESLHNRGDRCRQMVTNIQHGWRRIYSLVLFVEHMLLGVGDLQQKLKPVVLEHTQLLAQVLEQDSNLKKKKPFEAVITVLKTCKDKASQRIIRFGLQLCPVCMGDPRDPLSLPCDHIYCLTCIRQWLVPGQMHCPLCVQEVPDNFELKPSDELRRLISQNASFRMRCNAFFIDLVSTMCFKDNTPPSKDIILHLLSLLMVEASSLPPFKGRDRRFLTKALSPFDDSVDKNPVVRSVVLKLLLNYSFDHVKDYLQQHLTEVEQSKILEETDKAELYCLYMNCLEDSMYDRTQWHTVAEQQNCFLEETRFLLEFLQSDSVSAHTATVEHLQRLARVRLCLDMAADLLVANAGIHDDPSAFIQAFWNNVVNLCRQSRNDWYRVYLIRKLCSLQGVECVKNLLLQETYRWLFPQEILEMNQDDSQIDQYLACGADYKTIRDAVAKFMLDLHINGIQKAIEDCNCTPMKKAVYVLMAFFREVTSLHRTGNPNMHPKPEHCAGLEHFIKNSAIFVNNEMKAFAEKLVRNQLGALRVRPHMPSRDLSLVEVTIHMAAVLLCGNLLLLQPLQKLALSPNNMMASFIPTMPDDMLAVAQQAMGHLQWYFCPNGHPCTVGECGQPMEVSRCPDCDAEIGGSNHRPVDGFRAMQIQADRTQSGHILGDAQRRDLPDMQDTKNMSPAPFALLRLLTHMSMLIGTQNNPQSIMQIIKPAVVHPDAFLMQHLLKDMEQLSKALGKGVDDTVSTIHLAIHSLLEPHQTSQWPDPYDPNLSTKDARNGWENAMNNDVITHHLKVLEHQLKEVNAFIREDERVSSNPVMKLTFGEPGRFLRSLPQNSLIHNSSIWSCRNKVSLMSLTHIVEQNNGRDTLPVLWRFLQREAELRLVRFLPDILVLQRDLVKKFQNITDLTYKTIREFLQDQKAASLTAWYEKRIKIFLTTWNQIRVSLANTGEIKLPADYTEKDLGLDADLQVLLPQRRGLGLCSTALVSYLITIHNDLMYTVEKHTGDDSDYKISPAELTELHVIRYEYDRDLLPLVLANCQYSMECGQETLLEYDLPKIQQQILTRFLQGKPLITINGIPTLVNRQDRNYEIIFKDVKGKVQQELLQPLTQYDLVKELQSYSDVCEALSTVELAVGFLAMTGGEPNMQLGVYLKDVLQMTDHMATHVFKALSRCSLKHCVALWQLLSSLKSETMLRLKRDPFVGISKEYKQPLQEEHKRLLTSFFTKSSADAFLLEMHEFLLLVLKSPKATDTYRPDWRLKHTVVSYMERKDLDVPPEVEEFFPKEILLSEYTSTWNFSVNLRQKRSQS | Atypical E3 ubiquitin ligase that can catalyze ubiquitination of both proteins and lipids, and which is involved in various processes, such as lipid metabolism, angiogenesis and cell-autonomous immunity (By similarity). Acts as a key immune sensor by catalyzing ubiquitination of the lipid A moiety of bacterial lipopolysaccharide (LPS) via its RZ-type zinc-finger: restricts the proliferation of cytosolic bacteria, such as Salmonella, by generating the bacterial ubiquitin coat through the ubiquitination of LPS (By similarity). Ubiquitination of LPS triggers cell-autonomous immunity, such as antibacterial autophagy, leading to degradation of the microbial invader (By similarity). Involved in lipid metabolism by regulating fat storage and lipid droplet formation act by inhibiting the lipolytic process. Also regulates lipotoxicity by inhibiting desaturation of fatty acids (By similarity). Also acts as an E3 ubiquitin-protein ligase via its RING-type zinc finger (By similarity). Involved in the non-canonical Wnt signaling pathway in vascular development: acts by mediating ubiquitination and degradation of proteins downstream of rspo3, leading to inhibit the non-canonical Wnt signaling pathway and promoting vessel regression (By similarity). Also has ATPase activity ATPase activity is required for ubiquitination of LPS (By similarity). Also involved in neuromuscular regulation. |
A0A0R4IDP3 | ZH15A_DANRE | Palmitoyltransferase ZDHHC15A (EC 2.3.1.225) (Acyltransferase ZDHHC15A) (EC 2.3.1.-) (Zinc finger DHHC domain-containing protein 15A) | MLLPACLRRCARLLFWIPVLVVIVVVMWSYYAYVVHFCWILLSSATQRVVFLCLFHLCFGMFSWSFWKAVSTPPSSPSVEFQFSTSDSLLYELERDDVAKSPILLEISQKLPVHTRTATGAIRFCHHCQLIKPDRCHHCSVCQTCVLKMDHHCLWLNNCMGFSNYKFFMLFLLYSLLYCLLIVSTVTPTVIQLWRGRLFDSCVKLHVLFLTLVSAIFAITLCFLLIFHIWLLTSNKTTLEWLSVPFFANGPGSKAFDVGVQANFLQVFGKKKRLWLFPVFSSEGDGHSFPLSCQMSSHGPPVMNGHERCATLRTVASPKEAAVTIAVD | Palmitoyltransferase that catalyzes the addition of palmitate onto various protein substrates (By similarity). Has no stringent fatty acid selectivity and in addition to palmitate can also transfer onto target proteins myristate from tetradecanoyl-CoA and stearate from octadecanoyl-CoA (By similarity). May thereby regulate target proteins association and localization to membranes (By similarity). |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.