input
stringlengths
49
3.53k
target
stringclasses
19 values
def upload_s3(cfg, path_to_zip_file, *use_s3): """Upload a function to AWS S3.""" print("Uploading your new Lambda function") profile_name = cfg.get("profile") aws_access_key_id = cfg.get("aws_access_key_id") aws_secret_access_key = cfg.get("aws_secret_access_key") client = get_client( "s3", profile_name, aws_access_key_id, aws_secret_access_key, cfg.get("region"), ) byte_stream = b"" with open(path_to_zip_file, mode="rb") as fh: byte_stream = fh.read() s3_key_prefix = cfg.get("s3_key_prefix", "/dist") checksum = hashlib.new("md5", byte_stream).hexdigest() timestamp = str(time.time()) filename = "{prefix}{checksum}-{ts}.zip".format( prefix=s3_key_prefix, checksum=checksum, ts=timestamp, ) # Do we prefer development variable over config? buck_name = os.environ.get("S3_BUCKET_NAME") or cfg.get("bucket_name") func_name = os.environ.get("LAMBDA_FUNCTION_NAME") or cfg.get( "function_name" ) kwargs = { "Bucket": "{}".format(buck_name), "Key": "{}".format(filename), "Body": byte_stream, } client.put_object(**kwargs) print("Finished uploading {} to S3 bucket {}".format(func_name, buck_name)) if use_s3: return filename
def load_source(module_name, module_path): """Loads a python module from the path of the corresponding file.""" if sys.version_info[0] == 3 and sys.version_info[1] >= 5: import importlib.util spec = importlib.util.spec_from_file_location(module_name, module_path) module = importlib.util.module_from_spec(spec) spec.loader.exec_module(module) elif sys.version_info[0] == 3 and sys.version_info[1] < 5: import importlib.machinery loader = importlib.machinery.SourceFileLoader(module_name, module_path) module = loader.load_module() return module
def upload_s3(cfg, path_to_zip_file, *use_s3): """Upload a function to AWS S3.""" print("Uploading your new Lambda function") profile_name = cfg.get("profile") aws_access_key_id = cfg.get("aws_access_key_id") aws_secret_access_key = cfg.get("aws_secret_access_key") client = get_client( "s3", profile_name, aws_access_key_id, aws_secret_access_key, cfg.get("region"), ) byte_stream = b"" with open(path_to_zip_file, mode="rb") as fh: byte_stream = fh.read() s3_key_prefix = cfg.get("s3_key_prefix", "/dist") checksum = hashlib.new("md5", byte_stream).hexdigest() timestamp = str(time.time()) filename = "{prefix}{checksum}-{ts}.zip".format( prefix=s3_key_prefix, checksum=checksum, ts=timestamp, ) # Do we prefer development variable over config? buck_name = os.environ.get("S3_BUCKET_NAME") or cfg.get("bucket_name") func_name = os.environ.get("LAMBDA_FUNCTION_NAME") or cfg.get( "function_name" ) kwargs = { "Bucket": "{}".format(buck_name), "Key": "{}".format(filename), "Body": byte_stream, } client.put_object(**kwargs) print("Finished uploading {} to S3 bucket {}".format(func_name, buck_name)) if use_s3: return filename
def __init__(self, field): self.field = field
def upload_s3(cfg, path_to_zip_file, *use_s3): """Upload a function to AWS S3.""" print("Uploading your new Lambda function") profile_name = cfg.get("profile") aws_access_key_id = cfg.get("aws_access_key_id") aws_secret_access_key = cfg.get("aws_secret_access_key") client = get_client( "s3", profile_name, aws_access_key_id, aws_secret_access_key, cfg.get("region"), ) byte_stream = b"" with open(path_to_zip_file, mode="rb") as fh: byte_stream = fh.read() s3_key_prefix = cfg.get("s3_key_prefix", "/dist") checksum = hashlib.new("md5", byte_stream).hexdigest() timestamp = str(time.time()) filename = "{prefix}{checksum}-{ts}.zip".format( prefix=s3_key_prefix, checksum=checksum, ts=timestamp, ) # Do we prefer development variable over config? buck_name = os.environ.get("S3_BUCKET_NAME") or cfg.get("bucket_name") func_name = os.environ.get("LAMBDA_FUNCTION_NAME") or cfg.get( "function_name" ) kwargs = { "Bucket": "{}".format(buck_name), "Key": "{}".format(filename), "Body": byte_stream, } client.put_object(**kwargs) print("Finished uploading {} to S3 bucket {}".format(func_name, buck_name)) if use_s3: return filename
def __get__(self, instance, owner): if instance is None: raise AttributeError # ?
def upload_s3(cfg, path_to_zip_file, *use_s3): """Upload a function to AWS S3.""" print("Uploading your new Lambda function") profile_name = cfg.get("profile") aws_access_key_id = cfg.get("aws_access_key_id") aws_secret_access_key = cfg.get("aws_secret_access_key") client = get_client( "s3", profile_name, aws_access_key_id, aws_secret_access_key, cfg.get("region"), ) byte_stream = b"" with open(path_to_zip_file, mode="rb") as fh: byte_stream = fh.read() s3_key_prefix = cfg.get("s3_key_prefix", "/dist") checksum = hashlib.new("md5", byte_stream).hexdigest() timestamp = str(time.time()) filename = "{prefix}{checksum}-{ts}.zip".format( prefix=s3_key_prefix, checksum=checksum, ts=timestamp, ) # Do we prefer development variable over config? buck_name = os.environ.get("S3_BUCKET_NAME") or cfg.get("bucket_name") func_name = os.environ.get("LAMBDA_FUNCTION_NAME") or cfg.get( "function_name" ) kwargs = { "Bucket": "{}".format(buck_name), "Key": "{}".format(filename), "Body": byte_stream, } client.put_object(**kwargs) print("Finished uploading {} to S3 bucket {}".format(func_name, buck_name)) if use_s3: return filename
def __set__(self, instance, value): instance.__dict__[self.field.name] = value setattr(instance, self.field.attname, json.dumps(value))
def upload_s3(cfg, path_to_zip_file, *use_s3): """Upload a function to AWS S3.""" print("Uploading your new Lambda function") profile_name = cfg.get("profile") aws_access_key_id = cfg.get("aws_access_key_id") aws_secret_access_key = cfg.get("aws_secret_access_key") client = get_client( "s3", profile_name, aws_access_key_id, aws_secret_access_key, cfg.get("region"), ) byte_stream = b"" with open(path_to_zip_file, mode="rb") as fh: byte_stream = fh.read() s3_key_prefix = cfg.get("s3_key_prefix", "/dist") checksum = hashlib.new("md5", byte_stream).hexdigest() timestamp = str(time.time()) filename = "{prefix}{checksum}-{ts}.zip".format( prefix=s3_key_prefix, checksum=checksum, ts=timestamp, ) # Do we prefer development variable over config? buck_name = os.environ.get("S3_BUCKET_NAME") or cfg.get("bucket_name") func_name = os.environ.get("LAMBDA_FUNCTION_NAME") or cfg.get( "function_name" ) kwargs = { "Bucket": "{}".format(buck_name), "Key": "{}".format(filename), "Body": byte_stream, } client.put_object(**kwargs) print("Finished uploading {} to S3 bucket {}".format(func_name, buck_name)) if use_s3: return filename
def __delete__(self, instance): del(instance.__dict__[self.field.name]) setattr(instance, self.field.attname, json.dumps(None))
def upload_s3(cfg, path_to_zip_file, *use_s3): """Upload a function to AWS S3.""" print("Uploading your new Lambda function") profile_name = cfg.get("profile") aws_access_key_id = cfg.get("aws_access_key_id") aws_secret_access_key = cfg.get("aws_secret_access_key") client = get_client( "s3", profile_name, aws_access_key_id, aws_secret_access_key, cfg.get("region"), ) byte_stream = b"" with open(path_to_zip_file, mode="rb") as fh: byte_stream = fh.read() s3_key_prefix = cfg.get("s3_key_prefix", "/dist") checksum = hashlib.new("md5", byte_stream).hexdigest() timestamp = str(time.time()) filename = "{prefix}{checksum}-{ts}.zip".format( prefix=s3_key_prefix, checksum=checksum, ts=timestamp, ) # Do we prefer development variable over config? buck_name = os.environ.get("S3_BUCKET_NAME") or cfg.get("bucket_name") func_name = os.environ.get("LAMBDA_FUNCTION_NAME") or cfg.get( "function_name" ) kwargs = { "Bucket": "{}".format(buck_name), "Key": "{}".format(filename), "Body": byte_stream, } client.put_object(**kwargs) print("Finished uploading {} to S3 bucket {}".format(func_name, buck_name)) if use_s3: return filename
def get_attname(self): return "%s_json" % self.name
def upload_s3(cfg, path_to_zip_file, *use_s3): """Upload a function to AWS S3.""" print("Uploading your new Lambda function") profile_name = cfg.get("profile") aws_access_key_id = cfg.get("aws_access_key_id") aws_secret_access_key = cfg.get("aws_secret_access_key") client = get_client( "s3", profile_name, aws_access_key_id, aws_secret_access_key, cfg.get("region"), ) byte_stream = b"" with open(path_to_zip_file, mode="rb") as fh: byte_stream = fh.read() s3_key_prefix = cfg.get("s3_key_prefix", "/dist") checksum = hashlib.new("md5", byte_stream).hexdigest() timestamp = str(time.time()) filename = "{prefix}{checksum}-{ts}.zip".format( prefix=s3_key_prefix, checksum=checksum, ts=timestamp, ) # Do we prefer development variable over config? buck_name = os.environ.get("S3_BUCKET_NAME") or cfg.get("bucket_name") func_name = os.environ.get("LAMBDA_FUNCTION_NAME") or cfg.get( "function_name" ) kwargs = { "Bucket": "{}".format(buck_name), "Key": "{}".format(filename), "Body": byte_stream, } client.put_object(**kwargs) print("Finished uploading {} to S3 bucket {}".format(func_name, buck_name)) if use_s3: return filename
def contribute_to_class(self, cls, name): super(JSONField, self).contribute_to_class(cls, name) setattr(cls, name, JSONDescriptor(self)) models.signals.pre_init.connect(self.fix_init_kwarg, sender=cls)
def upload_s3(cfg, path_to_zip_file, *use_s3): """Upload a function to AWS S3.""" print("Uploading your new Lambda function") profile_name = cfg.get("profile") aws_access_key_id = cfg.get("aws_access_key_id") aws_secret_access_key = cfg.get("aws_secret_access_key") client = get_client( "s3", profile_name, aws_access_key_id, aws_secret_access_key, cfg.get("region"), ) byte_stream = b"" with open(path_to_zip_file, mode="rb") as fh: byte_stream = fh.read() s3_key_prefix = cfg.get("s3_key_prefix", "/dist") checksum = hashlib.new("md5", byte_stream).hexdigest() timestamp = str(time.time()) filename = "{prefix}{checksum}-{ts}.zip".format( prefix=s3_key_prefix, checksum=checksum, ts=timestamp, ) # Do we prefer development variable over config? buck_name = os.environ.get("S3_BUCKET_NAME") or cfg.get("bucket_name") func_name = os.environ.get("LAMBDA_FUNCTION_NAME") or cfg.get( "function_name" ) kwargs = { "Bucket": "{}".format(buck_name), "Key": "{}".format(filename), "Body": byte_stream, } client.put_object(**kwargs) print("Finished uploading {} to S3 bucket {}".format(func_name, buck_name)) if use_s3: return filename
def init(src, minimal=False): """Copies template files to a given directory. :param str src: The path to output the template lambda project files. :param bool minimal: Minimal possible template files (excludes event.json). """ templates_path = os.path.join( os.path.dirname(os.path.abspath(__file__)), "project_templates", ) for filename in os.listdir(templates_path): if (minimal and filename == "event.json") or filename.endswith(".pyc"): continue dest_path = os.path.join(templates_path, filename) if not os.path.isdir(dest_path): copy(dest_path, src)
def upload_s3(cfg, path_to_zip_file, *use_s3): """Upload a function to AWS S3.""" print("Uploading your new Lambda function") profile_name = cfg.get("profile") aws_access_key_id = cfg.get("aws_access_key_id") aws_secret_access_key = cfg.get("aws_secret_access_key") client = get_client( "s3", profile_name, aws_access_key_id, aws_secret_access_key, cfg.get("region"), ) byte_stream = b"" with open(path_to_zip_file, mode="rb") as fh: byte_stream = fh.read() s3_key_prefix = cfg.get("s3_key_prefix", "/dist") checksum = hashlib.new("md5", byte_stream).hexdigest() timestamp = str(time.time()) filename = "{prefix}{checksum}-{ts}.zip".format( prefix=s3_key_prefix, checksum=checksum, ts=timestamp, ) # Do we prefer development variable over config? buck_name = os.environ.get("S3_BUCKET_NAME") or cfg.get("bucket_name") func_name = os.environ.get("LAMBDA_FUNCTION_NAME") or cfg.get( "function_name" ) kwargs = { "Bucket": "{}".format(buck_name), "Key": "{}".format(filename), "Body": byte_stream, } client.put_object(**kwargs) print("Finished uploading {} to S3 bucket {}".format(func_name, buck_name)) if use_s3: return filename
def cleanup_old_versions( src, keep_last_versions, config_file="config.yaml", profile_name=None, ): """Deletes old deployed versions of the function in AWS Lambda. Won't delete $Latest and any aliased version :param str src: The path to your Lambda ready project (folder must contain a valid config.yaml and handler module (e.g.: service.py). :param int keep_last_versions: The number of recent versions to keep and not delete """ if keep_last_versions <= 0: print("Won't delete all versions. Please do this manually") else: path_to_config_file = os.path.join(src, config_file) cfg = read_cfg(path_to_config_file, profile_name) profile_name = cfg.get("profile") aws_access_key_id = cfg.get("aws_access_key_id") aws_secret_access_key = cfg.get("aws_secret_access_key") client = get_client( "lambda", profile_name, aws_access_key_id, aws_secret_access_key, cfg.get("region"), ) response = client.list_versions_by_function( FunctionName=cfg.get("function_name"), ) versions = response.get("Versions") if len(response.get("Versions")) < keep_last_versions: print("Nothing to delete. (Too few versions published)") else: version_numbers = [ elem.get("Version") for elem in versions[1:-keep_last_versions] ] for version_number in version_numbers: try: client.delete_function( FunctionName=cfg.get("function_name"), Qualifier=version_number, ) except botocore.exceptions.ClientError as e: print(f"Skipping Version {version_number}: {e}")
def upload_s3(cfg, path_to_zip_file, *use_s3): """Upload a function to AWS S3.""" print("Uploading your new Lambda function") profile_name = cfg.get("profile") aws_access_key_id = cfg.get("aws_access_key_id") aws_secret_access_key = cfg.get("aws_secret_access_key") client = get_client( "s3", profile_name, aws_access_key_id, aws_secret_access_key, cfg.get("region"), ) byte_stream = b"" with open(path_to_zip_file, mode="rb") as fh: byte_stream = fh.read() s3_key_prefix = cfg.get("s3_key_prefix", "/dist") checksum = hashlib.new("md5", byte_stream).hexdigest() timestamp = str(time.time()) filename = "{prefix}{checksum}-{ts}.zip".format( prefix=s3_key_prefix, checksum=checksum, ts=timestamp, ) # Do we prefer development variable over config? buck_name = os.environ.get("S3_BUCKET_NAME") or cfg.get("bucket_name") func_name = os.environ.get("LAMBDA_FUNCTION_NAME") or cfg.get( "function_name" ) kwargs = { "Bucket": "{}".format(buck_name), "Key": "{}".format(filename), "Body": byte_stream, } client.put_object(**kwargs) print("Finished uploading {} to S3 bucket {}".format(func_name, buck_name)) if use_s3: return filename
def deploy( src, requirements=None, local_package=None, config_file="config.yaml", profile_name=None, preserve_vpc=False, ): """Deploys a new function to AWS Lambda. :param str src: The path to your Lambda ready project (folder must contain a valid config.yaml and handler module (e.g.: service.py). :param str local_package: The path to a local package with should be included in the deploy as well (and/or is not available on PyPi) """ # Load and parse the config file. path_to_config_file = os.path.join(src, config_file) cfg = read_cfg(path_to_config_file, profile_name) # Copy all the pip dependencies required to run your code into a temporary # folder then add the handler file in the root of this directory. # Zip the contents of this folder into a single file and output to the dist # directory. path_to_zip_file = build( src, config_file=config_file, requirements=requirements, local_package=local_package, ) existing_config = get_function_config(cfg) if existing_config: update_function( cfg, path_to_zip_file, existing_config, preserve_vpc=preserve_vpc ) else: create_function(cfg, path_to_zip_file)
def upload_s3(cfg, path_to_zip_file, *use_s3): """Upload a function to AWS S3.""" print("Uploading your new Lambda function") profile_name = cfg.get("profile") aws_access_key_id = cfg.get("aws_access_key_id") aws_secret_access_key = cfg.get("aws_secret_access_key") client = get_client( "s3", profile_name, aws_access_key_id, aws_secret_access_key, cfg.get("region"), ) byte_stream = b"" with open(path_to_zip_file, mode="rb") as fh: byte_stream = fh.read() s3_key_prefix = cfg.get("s3_key_prefix", "/dist") checksum = hashlib.new("md5", byte_stream).hexdigest() timestamp = str(time.time()) filename = "{prefix}{checksum}-{ts}.zip".format( prefix=s3_key_prefix, checksum=checksum, ts=timestamp, ) # Do we prefer development variable over config? buck_name = os.environ.get("S3_BUCKET_NAME") or cfg.get("bucket_name") func_name = os.environ.get("LAMBDA_FUNCTION_NAME") or cfg.get( "function_name" ) kwargs = { "Bucket": "{}".format(buck_name), "Key": "{}".format(filename), "Body": byte_stream, } client.put_object(**kwargs) print("Finished uploading {} to S3 bucket {}".format(func_name, buck_name)) if use_s3: return filename
def deploy_s3( src, requirements=None, local_package=None, config_file="config.yaml", profile_name=None, preserve_vpc=False, ): """Deploys a new function via AWS S3. :param str src: The path to your Lambda ready project (folder must contain a valid config.yaml and handler module (e.g.: service.py). :param str local_package: The path to a local package with should be included in the deploy as well (and/or is not available on PyPi) """ # Load and parse the config file. path_to_config_file = os.path.join(src, config_file) cfg = read_cfg(path_to_config_file, profile_name) # Copy all the pip dependencies required to run your code into a temporary # folder then add the handler file in the root of this directory. # Zip the contents of this folder into a single file and output to the dist # directory. path_to_zip_file = build( src, config_file=config_file, requirements=requirements, local_package=local_package, ) use_s3 = True s3_file = upload_s3(cfg, path_to_zip_file, use_s3) existing_config = get_function_config(cfg) if existing_config: update_function( cfg, path_to_zip_file, existing_config, use_s3=use_s3, s3_file=s3_file, preserve_vpc=preserve_vpc, ) else: create_function(cfg, path_to_zip_file, use_s3=use_s3, s3_file=s3_file)
def upload_s3(cfg, path_to_zip_file, *use_s3): """Upload a function to AWS S3.""" print("Uploading your new Lambda function") profile_name = cfg.get("profile") aws_access_key_id = cfg.get("aws_access_key_id") aws_secret_access_key = cfg.get("aws_secret_access_key") client = get_client( "s3", profile_name, aws_access_key_id, aws_secret_access_key, cfg.get("region"), ) byte_stream = b"" with open(path_to_zip_file, mode="rb") as fh: byte_stream = fh.read() s3_key_prefix = cfg.get("s3_key_prefix", "/dist") checksum = hashlib.new("md5", byte_stream).hexdigest() timestamp = str(time.time()) filename = "{prefix}{checksum}-{ts}.zip".format( prefix=s3_key_prefix, checksum=checksum, ts=timestamp, ) # Do we prefer development variable over config? buck_name = os.environ.get("S3_BUCKET_NAME") or cfg.get("bucket_name") func_name = os.environ.get("LAMBDA_FUNCTION_NAME") or cfg.get( "function_name" ) kwargs = { "Bucket": "{}".format(buck_name), "Key": "{}".format(filename), "Body": byte_stream, } client.put_object(**kwargs) print("Finished uploading {} to S3 bucket {}".format(func_name, buck_name)) if use_s3: return filename
def upload( src, requirements=None, local_package=None, config_file="config.yaml", profile_name=None, ): """Uploads a new function to AWS S3. :param str src: The path to your Lambda ready project (folder must contain a valid config.yaml and handler module (e.g.: service.py). :param str local_package: The path to a local package with should be included in the deploy as well (and/or is not available on PyPi) """ # Load and parse the config file. path_to_config_file = os.path.join(src, config_file) cfg = read_cfg(path_to_config_file, profile_name) # Copy all the pip dependencies required to run your code into a temporary # folder then add the handler file in the root of this directory. # Zip the contents of this folder into a single file and output to the dist # directory. path_to_zip_file = build( src, config_file=config_file, requirements=requirements, local_package=local_package, ) upload_s3(cfg, path_to_zip_file)
def upload_s3(cfg, path_to_zip_file, *use_s3): """Upload a function to AWS S3.""" print("Uploading your new Lambda function") profile_name = cfg.get("profile") aws_access_key_id = cfg.get("aws_access_key_id") aws_secret_access_key = cfg.get("aws_secret_access_key") client = get_client( "s3", profile_name, aws_access_key_id, aws_secret_access_key, cfg.get("region"), ) byte_stream = b"" with open(path_to_zip_file, mode="rb") as fh: byte_stream = fh.read() s3_key_prefix = cfg.get("s3_key_prefix", "/dist") checksum = hashlib.new("md5", byte_stream).hexdigest() timestamp = str(time.time()) filename = "{prefix}{checksum}-{ts}.zip".format( prefix=s3_key_prefix, checksum=checksum, ts=timestamp, ) # Do we prefer development variable over config? buck_name = os.environ.get("S3_BUCKET_NAME") or cfg.get("bucket_name") func_name = os.environ.get("LAMBDA_FUNCTION_NAME") or cfg.get( "function_name" ) kwargs = { "Bucket": "{}".format(buck_name), "Key": "{}".format(filename), "Body": byte_stream, } client.put_object(**kwargs) print("Finished uploading {} to S3 bucket {}".format(func_name, buck_name)) if use_s3: return filename
def invoke( src, event_file="event.json", config_file="config.yaml", profile_name=None, verbose=False, ): """Simulates a call to your function. :param str src: The path to your Lambda ready project (folder must contain a valid config.yaml and handler module (e.g.: service.py). :param str alt_event: An optional argument to override which event file to use. :param bool verbose: Whether to print out verbose details. """ # Load and parse the config file. path_to_config_file = os.path.join(src, config_file) cfg = read_cfg(path_to_config_file, profile_name) # Set AWS_PROFILE environment variable based on `--profile` option. if profile_name: os.environ["AWS_PROFILE"] = profile_name # Load environment variables from the config file into the actual # environment. env_vars = cfg.get("environment_variables") if env_vars: for key, value in env_vars.items(): os.environ[key] = get_environment_variable_value(value) # Load and parse event file. path_to_event_file = os.path.join(src, event_file) event = read(path_to_event_file, loader=json.loads) # Tweak to allow module to import local modules try: sys.path.index(src) except ValueError: sys.path.append(src) handler = cfg.get("handler") # Inspect the handler string (<module>.<function name>) and translate it # into a function we can execute. fn = get_callable_handler_function(src, handler) timeout = cfg.get("timeout") if timeout: context = LambdaContext(cfg.get("function_name"), timeout) else: context = LambdaContext(cfg.get("function_name")) start = time.time() results = fn(event, context) end = time.time() print("{0}".format(results)) if verbose: print( "\nexecution time: {:.8f}s\nfunction execution " "timeout: {:2}s".format(end - start, cfg.get("timeout", 15)) )
def upload_s3(cfg, path_to_zip_file, *use_s3): """Upload a function to AWS S3.""" print("Uploading your new Lambda function") profile_name = cfg.get("profile") aws_access_key_id = cfg.get("aws_access_key_id") aws_secret_access_key = cfg.get("aws_secret_access_key") client = get_client( "s3", profile_name, aws_access_key_id, aws_secret_access_key, cfg.get("region"), ) byte_stream = b"" with open(path_to_zip_file, mode="rb") as fh: byte_stream = fh.read() s3_key_prefix = cfg.get("s3_key_prefix", "/dist") checksum = hashlib.new("md5", byte_stream).hexdigest() timestamp = str(time.time()) filename = "{prefix}{checksum}-{ts}.zip".format( prefix=s3_key_prefix, checksum=checksum, ts=timestamp, ) # Do we prefer development variable over config? buck_name = os.environ.get("S3_BUCKET_NAME") or cfg.get("bucket_name") func_name = os.environ.get("LAMBDA_FUNCTION_NAME") or cfg.get( "function_name" ) kwargs = { "Bucket": "{}".format(buck_name), "Key": "{}".format(filename), "Body": byte_stream, } client.put_object(**kwargs) print("Finished uploading {} to S3 bucket {}".format(func_name, buck_name)) if use_s3: return filename
def to_python(self, value): if not value: return []
def upload_s3(cfg, path_to_zip_file, *use_s3): """Upload a function to AWS S3.""" print("Uploading your new Lambda function") profile_name = cfg.get("profile") aws_access_key_id = cfg.get("aws_access_key_id") aws_secret_access_key = cfg.get("aws_secret_access_key") client = get_client( "s3", profile_name, aws_access_key_id, aws_secret_access_key, cfg.get("region"), ) byte_stream = b"" with open(path_to_zip_file, mode="rb") as fh: byte_stream = fh.read() s3_key_prefix = cfg.get("s3_key_prefix", "/dist") checksum = hashlib.new("md5", byte_stream).hexdigest() timestamp = str(time.time()) filename = "{prefix}{checksum}-{ts}.zip".format( prefix=s3_key_prefix, checksum=checksum, ts=timestamp, ) # Do we prefer development variable over config? buck_name = os.environ.get("S3_BUCKET_NAME") or cfg.get("bucket_name") func_name = os.environ.get("LAMBDA_FUNCTION_NAME") or cfg.get( "function_name" ) kwargs = { "Bucket": "{}".format(buck_name), "Key": "{}".format(filename), "Body": byte_stream, } client.put_object(**kwargs) print("Finished uploading {} to S3 bucket {}".format(func_name, buck_name)) if use_s3: return filename
def get_prep_value(self, value): return ','.join(value)
def upload_s3(cfg, path_to_zip_file, *use_s3): """Upload a function to AWS S3.""" print("Uploading your new Lambda function") profile_name = cfg.get("profile") aws_access_key_id = cfg.get("aws_access_key_id") aws_secret_access_key = cfg.get("aws_secret_access_key") client = get_client( "s3", profile_name, aws_access_key_id, aws_secret_access_key, cfg.get("region"), ) byte_stream = b"" with open(path_to_zip_file, mode="rb") as fh: byte_stream = fh.read() s3_key_prefix = cfg.get("s3_key_prefix", "/dist") checksum = hashlib.new("md5", byte_stream).hexdigest() timestamp = str(time.time()) filename = "{prefix}{checksum}-{ts}.zip".format( prefix=s3_key_prefix, checksum=checksum, ts=timestamp, ) # Do we prefer development variable over config? buck_name = os.environ.get("S3_BUCKET_NAME") or cfg.get("bucket_name") func_name = os.environ.get("LAMBDA_FUNCTION_NAME") or cfg.get( "function_name" ) kwargs = { "Bucket": "{}".format(buck_name), "Key": "{}".format(filename), "Body": byte_stream, } client.put_object(**kwargs) print("Finished uploading {} to S3 bucket {}".format(func_name, buck_name)) if use_s3: return filename
def get_concurrency(cfg): """Return the Reserved Concurrent Executions if present in the config""" concurrency = int(cfg.get("concurrency", 0)) return max(0, concurrency)
def upload_s3(cfg, path_to_zip_file, *use_s3): """Upload a function to AWS S3.""" print("Uploading your new Lambda function") profile_name = cfg.get("profile") aws_access_key_id = cfg.get("aws_access_key_id") aws_secret_access_key = cfg.get("aws_secret_access_key") client = get_client( "s3", profile_name, aws_access_key_id, aws_secret_access_key, cfg.get("region"), ) byte_stream = b"" with open(path_to_zip_file, mode="rb") as fh: byte_stream = fh.read() s3_key_prefix = cfg.get("s3_key_prefix", "/dist") checksum = hashlib.new("md5", byte_stream).hexdigest() timestamp = str(time.time()) filename = "{prefix}{checksum}-{ts}.zip".format( prefix=s3_key_prefix, checksum=checksum, ts=timestamp, ) # Do we prefer development variable over config? buck_name = os.environ.get("S3_BUCKET_NAME") or cfg.get("bucket_name") func_name = os.environ.get("LAMBDA_FUNCTION_NAME") or cfg.get( "function_name" ) kwargs = { "Bucket": "{}".format(buck_name), "Key": "{}".format(filename), "Body": byte_stream, } client.put_object(**kwargs) print("Finished uploading {} to S3 bucket {}".format(func_name, buck_name)) if use_s3: return filename
def test_iterators_are_a_type(self): it = iter(range(1,6)) total = 0 for num in it: total += num self.assertEqual(15 , total)
def upload_s3(cfg, path_to_zip_file, *use_s3): """Upload a function to AWS S3.""" print("Uploading your new Lambda function") profile_name = cfg.get("profile") aws_access_key_id = cfg.get("aws_access_key_id") aws_secret_access_key = cfg.get("aws_secret_access_key") client = get_client( "s3", profile_name, aws_access_key_id, aws_secret_access_key, cfg.get("region"), ) byte_stream = b"" with open(path_to_zip_file, mode="rb") as fh: byte_stream = fh.read() s3_key_prefix = cfg.get("s3_key_prefix", "/dist") checksum = hashlib.new("md5", byte_stream).hexdigest() timestamp = str(time.time()) filename = "{prefix}{checksum}-{ts}.zip".format( prefix=s3_key_prefix, checksum=checksum, ts=timestamp, ) # Do we prefer development variable over config? buck_name = os.environ.get("S3_BUCKET_NAME") or cfg.get("bucket_name") func_name = os.environ.get("LAMBDA_FUNCTION_NAME") or cfg.get( "function_name" ) kwargs = { "Bucket": "{}".format(buck_name), "Key": "{}".format(filename), "Body": byte_stream, } client.put_object(**kwargs) print("Finished uploading {} to S3 bucket {}".format(func_name, buck_name)) if use_s3: return filename
def test_iterating_with_next(self): stages = iter(['alpha','beta','gamma']) try: self.assertEqual('alpha', next(stages)) next(stages) self.assertEqual('gamma', next(stages)) next(stages) except StopIteration as ex: err_msg = 'Ran out of iterations' self.assertRegex(err_msg, 'Ran out')
def get_function_config(cfg): """Check whether a function exists or not and return its config""" function_name = cfg.get("function_name") profile_name = cfg.get("profile") aws_access_key_id = cfg.get("aws_access_key_id") aws_secret_access_key = cfg.get("aws_secret_access_key") client = get_client( "lambda", profile_name, aws_access_key_id, aws_secret_access_key, cfg.get("region"), ) try: return client.get_function(FunctionName=function_name) except client.exceptions.ResourceNotFoundException as e: if "Function not found" in str(e): return False
def __init__(self, allow=None, disallow=None, secure=True, *args, **kwargs): super(TemplateField, self).__init__(*args, **kwargs) self.validators.append(TemplateValidator(allow, disallow, secure))
def get_function_config(cfg): """Check whether a function exists or not and return its config""" function_name = cfg.get("function_name") profile_name = cfg.get("profile") aws_access_key_id = cfg.get("aws_access_key_id") aws_secret_access_key = cfg.get("aws_secret_access_key") client = get_client( "lambda", profile_name, aws_access_key_id, aws_secret_access_key, cfg.get("region"), ) try: return client.get_function(FunctionName=function_name) except client.exceptions.ResourceNotFoundException as e: if "Function not found" in str(e): return False
def load_source(module_name, module_path): """Loads a python module from the path of the corresponding file.""" if sys.version_info[0] == 3 and sys.version_info[1] >= 5: import importlib.util spec = importlib.util.spec_from_file_location(module_name, module_path) module = importlib.util.module_from_spec(spec) spec.loader.exec_module(module) elif sys.version_info[0] == 3 and sys.version_info[1] < 5: import importlib.machinery loader = importlib.machinery.SourceFileLoader(module_name, module_path) module = loader.load_module() return module
def get_function_config(cfg): """Check whether a function exists or not and return its config""" function_name = cfg.get("function_name") profile_name = cfg.get("profile") aws_access_key_id = cfg.get("aws_access_key_id") aws_secret_access_key = cfg.get("aws_secret_access_key") client = get_client( "lambda", profile_name, aws_access_key_id, aws_secret_access_key, cfg.get("region"), ) try: return client.get_function(FunctionName=function_name) except client.exceptions.ResourceNotFoundException as e: if "Function not found" in str(e): return False
def __init__(self, field): self.field = field
def get_function_config(cfg): """Check whether a function exists or not and return its config""" function_name = cfg.get("function_name") profile_name = cfg.get("profile") aws_access_key_id = cfg.get("aws_access_key_id") aws_secret_access_key = cfg.get("aws_secret_access_key") client = get_client( "lambda", profile_name, aws_access_key_id, aws_secret_access_key, cfg.get("region"), ) try: return client.get_function(FunctionName=function_name) except client.exceptions.ResourceNotFoundException as e: if "Function not found" in str(e): return False
def __get__(self, instance, owner): if instance is None: raise AttributeError # ?
def get_function_config(cfg): """Check whether a function exists or not and return its config""" function_name = cfg.get("function_name") profile_name = cfg.get("profile") aws_access_key_id = cfg.get("aws_access_key_id") aws_secret_access_key = cfg.get("aws_secret_access_key") client = get_client( "lambda", profile_name, aws_access_key_id, aws_secret_access_key, cfg.get("region"), ) try: return client.get_function(FunctionName=function_name) except client.exceptions.ResourceNotFoundException as e: if "Function not found" in str(e): return False
def __set__(self, instance, value): instance.__dict__[self.field.name] = value setattr(instance, self.field.attname, json.dumps(value))
def get_function_config(cfg): """Check whether a function exists or not and return its config""" function_name = cfg.get("function_name") profile_name = cfg.get("profile") aws_access_key_id = cfg.get("aws_access_key_id") aws_secret_access_key = cfg.get("aws_secret_access_key") client = get_client( "lambda", profile_name, aws_access_key_id, aws_secret_access_key, cfg.get("region"), ) try: return client.get_function(FunctionName=function_name) except client.exceptions.ResourceNotFoundException as e: if "Function not found" in str(e): return False
def __delete__(self, instance): del(instance.__dict__[self.field.name]) setattr(instance, self.field.attname, json.dumps(None))
def get_function_config(cfg): """Check whether a function exists or not and return its config""" function_name = cfg.get("function_name") profile_name = cfg.get("profile") aws_access_key_id = cfg.get("aws_access_key_id") aws_secret_access_key = cfg.get("aws_secret_access_key") client = get_client( "lambda", profile_name, aws_access_key_id, aws_secret_access_key, cfg.get("region"), ) try: return client.get_function(FunctionName=function_name) except client.exceptions.ResourceNotFoundException as e: if "Function not found" in str(e): return False
def get_attname(self): return "%s_json" % self.name
def get_function_config(cfg): """Check whether a function exists or not and return its config""" function_name = cfg.get("function_name") profile_name = cfg.get("profile") aws_access_key_id = cfg.get("aws_access_key_id") aws_secret_access_key = cfg.get("aws_secret_access_key") client = get_client( "lambda", profile_name, aws_access_key_id, aws_secret_access_key, cfg.get("region"), ) try: return client.get_function(FunctionName=function_name) except client.exceptions.ResourceNotFoundException as e: if "Function not found" in str(e): return False
def contribute_to_class(self, cls, name): super(JSONField, self).contribute_to_class(cls, name) setattr(cls, name, JSONDescriptor(self)) models.signals.pre_init.connect(self.fix_init_kwarg, sender=cls)
def get_function_config(cfg): """Check whether a function exists or not and return its config""" function_name = cfg.get("function_name") profile_name = cfg.get("profile") aws_access_key_id = cfg.get("aws_access_key_id") aws_secret_access_key = cfg.get("aws_secret_access_key") client = get_client( "lambda", profile_name, aws_access_key_id, aws_secret_access_key, cfg.get("region"), ) try: return client.get_function(FunctionName=function_name) except client.exceptions.ResourceNotFoundException as e: if "Function not found" in str(e): return False
def init(src, minimal=False): """Copies template files to a given directory. :param str src: The path to output the template lambda project files. :param bool minimal: Minimal possible template files (excludes event.json). """ templates_path = os.path.join( os.path.dirname(os.path.abspath(__file__)), "project_templates", ) for filename in os.listdir(templates_path): if (minimal and filename == "event.json") or filename.endswith(".pyc"): continue dest_path = os.path.join(templates_path, filename) if not os.path.isdir(dest_path): copy(dest_path, src)
def get_function_config(cfg): """Check whether a function exists or not and return its config""" function_name = cfg.get("function_name") profile_name = cfg.get("profile") aws_access_key_id = cfg.get("aws_access_key_id") aws_secret_access_key = cfg.get("aws_secret_access_key") client = get_client( "lambda", profile_name, aws_access_key_id, aws_secret_access_key, cfg.get("region"), ) try: return client.get_function(FunctionName=function_name) except client.exceptions.ResourceNotFoundException as e: if "Function not found" in str(e): return False
def cleanup_old_versions( src, keep_last_versions, config_file="config.yaml", profile_name=None, ): """Deletes old deployed versions of the function in AWS Lambda. Won't delete $Latest and any aliased version :param str src: The path to your Lambda ready project (folder must contain a valid config.yaml and handler module (e.g.: service.py). :param int keep_last_versions: The number of recent versions to keep and not delete """ if keep_last_versions <= 0: print("Won't delete all versions. Please do this manually") else: path_to_config_file = os.path.join(src, config_file) cfg = read_cfg(path_to_config_file, profile_name) profile_name = cfg.get("profile") aws_access_key_id = cfg.get("aws_access_key_id") aws_secret_access_key = cfg.get("aws_secret_access_key") client = get_client( "lambda", profile_name, aws_access_key_id, aws_secret_access_key, cfg.get("region"), ) response = client.list_versions_by_function( FunctionName=cfg.get("function_name"), ) versions = response.get("Versions") if len(response.get("Versions")) < keep_last_versions: print("Nothing to delete. (Too few versions published)") else: version_numbers = [ elem.get("Version") for elem in versions[1:-keep_last_versions] ] for version_number in version_numbers: try: client.delete_function( FunctionName=cfg.get("function_name"), Qualifier=version_number, ) except botocore.exceptions.ClientError as e: print(f"Skipping Version {version_number}: {e}")
def get_function_config(cfg): """Check whether a function exists or not and return its config""" function_name = cfg.get("function_name") profile_name = cfg.get("profile") aws_access_key_id = cfg.get("aws_access_key_id") aws_secret_access_key = cfg.get("aws_secret_access_key") client = get_client( "lambda", profile_name, aws_access_key_id, aws_secret_access_key, cfg.get("region"), ) try: return client.get_function(FunctionName=function_name) except client.exceptions.ResourceNotFoundException as e: if "Function not found" in str(e): return False
def deploy( src, requirements=None, local_package=None, config_file="config.yaml", profile_name=None, preserve_vpc=False, ): """Deploys a new function to AWS Lambda. :param str src: The path to your Lambda ready project (folder must contain a valid config.yaml and handler module (e.g.: service.py). :param str local_package: The path to a local package with should be included in the deploy as well (and/or is not available on PyPi) """ # Load and parse the config file. path_to_config_file = os.path.join(src, config_file) cfg = read_cfg(path_to_config_file, profile_name) # Copy all the pip dependencies required to run your code into a temporary # folder then add the handler file in the root of this directory. # Zip the contents of this folder into a single file and output to the dist # directory. path_to_zip_file = build( src, config_file=config_file, requirements=requirements, local_package=local_package, ) existing_config = get_function_config(cfg) if existing_config: update_function( cfg, path_to_zip_file, existing_config, preserve_vpc=preserve_vpc ) else: create_function(cfg, path_to_zip_file)
def get_function_config(cfg): """Check whether a function exists or not and return its config""" function_name = cfg.get("function_name") profile_name = cfg.get("profile") aws_access_key_id = cfg.get("aws_access_key_id") aws_secret_access_key = cfg.get("aws_secret_access_key") client = get_client( "lambda", profile_name, aws_access_key_id, aws_secret_access_key, cfg.get("region"), ) try: return client.get_function(FunctionName=function_name) except client.exceptions.ResourceNotFoundException as e: if "Function not found" in str(e): return False
def deploy_s3( src, requirements=None, local_package=None, config_file="config.yaml", profile_name=None, preserve_vpc=False, ): """Deploys a new function via AWS S3. :param str src: The path to your Lambda ready project (folder must contain a valid config.yaml and handler module (e.g.: service.py). :param str local_package: The path to a local package with should be included in the deploy as well (and/or is not available on PyPi) """ # Load and parse the config file. path_to_config_file = os.path.join(src, config_file) cfg = read_cfg(path_to_config_file, profile_name) # Copy all the pip dependencies required to run your code into a temporary # folder then add the handler file in the root of this directory. # Zip the contents of this folder into a single file and output to the dist # directory. path_to_zip_file = build( src, config_file=config_file, requirements=requirements, local_package=local_package, ) use_s3 = True s3_file = upload_s3(cfg, path_to_zip_file, use_s3) existing_config = get_function_config(cfg) if existing_config: update_function( cfg, path_to_zip_file, existing_config, use_s3=use_s3, s3_file=s3_file, preserve_vpc=preserve_vpc, ) else: create_function(cfg, path_to_zip_file, use_s3=use_s3, s3_file=s3_file)
def get_function_config(cfg): """Check whether a function exists or not and return its config""" function_name = cfg.get("function_name") profile_name = cfg.get("profile") aws_access_key_id = cfg.get("aws_access_key_id") aws_secret_access_key = cfg.get("aws_secret_access_key") client = get_client( "lambda", profile_name, aws_access_key_id, aws_secret_access_key, cfg.get("region"), ) try: return client.get_function(FunctionName=function_name) except client.exceptions.ResourceNotFoundException as e: if "Function not found" in str(e): return False
def upload( src, requirements=None, local_package=None, config_file="config.yaml", profile_name=None, ): """Uploads a new function to AWS S3. :param str src: The path to your Lambda ready project (folder must contain a valid config.yaml and handler module (e.g.: service.py). :param str local_package: The path to a local package with should be included in the deploy as well (and/or is not available on PyPi) """ # Load and parse the config file. path_to_config_file = os.path.join(src, config_file) cfg = read_cfg(path_to_config_file, profile_name) # Copy all the pip dependencies required to run your code into a temporary # folder then add the handler file in the root of this directory. # Zip the contents of this folder into a single file and output to the dist # directory. path_to_zip_file = build( src, config_file=config_file, requirements=requirements, local_package=local_package, ) upload_s3(cfg, path_to_zip_file)
def get_function_config(cfg): """Check whether a function exists or not and return its config""" function_name = cfg.get("function_name") profile_name = cfg.get("profile") aws_access_key_id = cfg.get("aws_access_key_id") aws_secret_access_key = cfg.get("aws_secret_access_key") client = get_client( "lambda", profile_name, aws_access_key_id, aws_secret_access_key, cfg.get("region"), ) try: return client.get_function(FunctionName=function_name) except client.exceptions.ResourceNotFoundException as e: if "Function not found" in str(e): return False
def invoke( src, event_file="event.json", config_file="config.yaml", profile_name=None, verbose=False, ): """Simulates a call to your function. :param str src: The path to your Lambda ready project (folder must contain a valid config.yaml and handler module (e.g.: service.py). :param str alt_event: An optional argument to override which event file to use. :param bool verbose: Whether to print out verbose details. """ # Load and parse the config file. path_to_config_file = os.path.join(src, config_file) cfg = read_cfg(path_to_config_file, profile_name) # Set AWS_PROFILE environment variable based on `--profile` option. if profile_name: os.environ["AWS_PROFILE"] = profile_name # Load environment variables from the config file into the actual # environment. env_vars = cfg.get("environment_variables") if env_vars: for key, value in env_vars.items(): os.environ[key] = get_environment_variable_value(value) # Load and parse event file. path_to_event_file = os.path.join(src, event_file) event = read(path_to_event_file, loader=json.loads) # Tweak to allow module to import local modules try: sys.path.index(src) except ValueError: sys.path.append(src) handler = cfg.get("handler") # Inspect the handler string (<module>.<function name>) and translate it # into a function we can execute. fn = get_callable_handler_function(src, handler) timeout = cfg.get("timeout") if timeout: context = LambdaContext(cfg.get("function_name"), timeout) else: context = LambdaContext(cfg.get("function_name")) start = time.time() results = fn(event, context) end = time.time() print("{0}".format(results)) if verbose: print( "\nexecution time: {:.8f}s\nfunction execution " "timeout: {:2}s".format(end - start, cfg.get("timeout", 15)) )
def get_function_config(cfg): """Check whether a function exists or not and return its config""" function_name = cfg.get("function_name") profile_name = cfg.get("profile") aws_access_key_id = cfg.get("aws_access_key_id") aws_secret_access_key = cfg.get("aws_secret_access_key") client = get_client( "lambda", profile_name, aws_access_key_id, aws_secret_access_key, cfg.get("region"), ) try: return client.get_function(FunctionName=function_name) except client.exceptions.ResourceNotFoundException as e: if "Function not found" in str(e): return False
def to_python(self, value): if not value: return []
def get_function_config(cfg): """Check whether a function exists or not and return its config""" function_name = cfg.get("function_name") profile_name = cfg.get("profile") aws_access_key_id = cfg.get("aws_access_key_id") aws_secret_access_key = cfg.get("aws_secret_access_key") client = get_client( "lambda", profile_name, aws_access_key_id, aws_secret_access_key, cfg.get("region"), ) try: return client.get_function(FunctionName=function_name) except client.exceptions.ResourceNotFoundException as e: if "Function not found" in str(e): return False
def get_prep_value(self, value): return ','.join(value)
def get_function_config(cfg): """Check whether a function exists or not and return its config""" function_name = cfg.get("function_name") profile_name = cfg.get("profile") aws_access_key_id = cfg.get("aws_access_key_id") aws_secret_access_key = cfg.get("aws_secret_access_key") client = get_client( "lambda", profile_name, aws_access_key_id, aws_secret_access_key, cfg.get("region"), ) try: return client.get_function(FunctionName=function_name) except client.exceptions.ResourceNotFoundException as e: if "Function not found" in str(e): return False
def get_concurrency(cfg): """Return the Reserved Concurrent Executions if present in the config""" concurrency = int(cfg.get("concurrency", 0)) return max(0, concurrency)
def get_function_config(cfg): """Check whether a function exists or not and return its config""" function_name = cfg.get("function_name") profile_name = cfg.get("profile") aws_access_key_id = cfg.get("aws_access_key_id") aws_secret_access_key = cfg.get("aws_secret_access_key") client = get_client( "lambda", profile_name, aws_access_key_id, aws_secret_access_key, cfg.get("region"), ) try: return client.get_function(FunctionName=function_name) except client.exceptions.ResourceNotFoundException as e: if "Function not found" in str(e): return False
def test_iterators_are_a_type(self): it = iter(range(1,6)) total = 0 for num in it: total += num self.assertEqual(15 , total)
def get_function_config(cfg): """Check whether a function exists or not and return its config""" function_name = cfg.get("function_name") profile_name = cfg.get("profile") aws_access_key_id = cfg.get("aws_access_key_id") aws_secret_access_key = cfg.get("aws_secret_access_key") client = get_client( "lambda", profile_name, aws_access_key_id, aws_secret_access_key, cfg.get("region"), ) try: return client.get_function(FunctionName=function_name) except client.exceptions.ResourceNotFoundException as e: if "Function not found" in str(e): return False
def test_iterating_with_next(self): stages = iter(['alpha','beta','gamma']) try: self.assertEqual('alpha', next(stages)) next(stages) self.assertEqual('gamma', next(stages)) next(stages) except StopIteration as ex: err_msg = 'Ran out of iterations' self.assertRegex(err_msg, 'Ran out')
def add_ten(self, item): return item + 10
def __init__(self, allow=None, disallow=None, secure=True, *args, **kwargs): super(TemplateField, self).__init__(*args, **kwargs) self.validators.append(TemplateValidator(allow, disallow, secure))
def add_ten(self, item): return item + 10
def load_source(module_name, module_path): """Loads a python module from the path of the corresponding file.""" if sys.version_info[0] == 3 and sys.version_info[1] >= 5: import importlib.util spec = importlib.util.spec_from_file_location(module_name, module_path) module = importlib.util.module_from_spec(spec) spec.loader.exec_module(module) elif sys.version_info[0] == 3 and sys.version_info[1] < 5: import importlib.machinery loader = importlib.machinery.SourceFileLoader(module_name, module_path) module = loader.load_module() return module
def add_ten(self, item): return item + 10
def __init__(self, field): self.field = field
def add_ten(self, item): return item + 10
def __get__(self, instance, owner): if instance is None: raise AttributeError # ?
def add_ten(self, item): return item + 10
def __set__(self, instance, value): instance.__dict__[self.field.name] = value setattr(instance, self.field.attname, json.dumps(value))
def add_ten(self, item): return item + 10
def __delete__(self, instance): del(instance.__dict__[self.field.name]) setattr(instance, self.field.attname, json.dumps(None))
def add_ten(self, item): return item + 10
def get_attname(self): return "%s_json" % self.name
def add_ten(self, item): return item + 10
def contribute_to_class(self, cls, name): super(JSONField, self).contribute_to_class(cls, name) setattr(cls, name, JSONDescriptor(self)) models.signals.pre_init.connect(self.fix_init_kwarg, sender=cls)
def add_ten(self, item): return item + 10
def init(src, minimal=False): """Copies template files to a given directory. :param str src: The path to output the template lambda project files. :param bool minimal: Minimal possible template files (excludes event.json). """ templates_path = os.path.join( os.path.dirname(os.path.abspath(__file__)), "project_templates", ) for filename in os.listdir(templates_path): if (minimal and filename == "event.json") or filename.endswith(".pyc"): continue dest_path = os.path.join(templates_path, filename) if not os.path.isdir(dest_path): copy(dest_path, src)
def add_ten(self, item): return item + 10
def cleanup_old_versions( src, keep_last_versions, config_file="config.yaml", profile_name=None, ): """Deletes old deployed versions of the function in AWS Lambda. Won't delete $Latest and any aliased version :param str src: The path to your Lambda ready project (folder must contain a valid config.yaml and handler module (e.g.: service.py). :param int keep_last_versions: The number of recent versions to keep and not delete """ if keep_last_versions <= 0: print("Won't delete all versions. Please do this manually") else: path_to_config_file = os.path.join(src, config_file) cfg = read_cfg(path_to_config_file, profile_name) profile_name = cfg.get("profile") aws_access_key_id = cfg.get("aws_access_key_id") aws_secret_access_key = cfg.get("aws_secret_access_key") client = get_client( "lambda", profile_name, aws_access_key_id, aws_secret_access_key, cfg.get("region"), ) response = client.list_versions_by_function( FunctionName=cfg.get("function_name"), ) versions = response.get("Versions") if len(response.get("Versions")) < keep_last_versions: print("Nothing to delete. (Too few versions published)") else: version_numbers = [ elem.get("Version") for elem in versions[1:-keep_last_versions] ] for version_number in version_numbers: try: client.delete_function( FunctionName=cfg.get("function_name"), Qualifier=version_number, ) except botocore.exceptions.ClientError as e: print(f"Skipping Version {version_number}: {e}")
def add_ten(self, item): return item + 10
def deploy( src, requirements=None, local_package=None, config_file="config.yaml", profile_name=None, preserve_vpc=False, ): """Deploys a new function to AWS Lambda. :param str src: The path to your Lambda ready project (folder must contain a valid config.yaml and handler module (e.g.: service.py). :param str local_package: The path to a local package with should be included in the deploy as well (and/or is not available on PyPi) """ # Load and parse the config file. path_to_config_file = os.path.join(src, config_file) cfg = read_cfg(path_to_config_file, profile_name) # Copy all the pip dependencies required to run your code into a temporary # folder then add the handler file in the root of this directory. # Zip the contents of this folder into a single file and output to the dist # directory. path_to_zip_file = build( src, config_file=config_file, requirements=requirements, local_package=local_package, ) existing_config = get_function_config(cfg) if existing_config: update_function( cfg, path_to_zip_file, existing_config, preserve_vpc=preserve_vpc ) else: create_function(cfg, path_to_zip_file)
def add_ten(self, item): return item + 10
def deploy_s3( src, requirements=None, local_package=None, config_file="config.yaml", profile_name=None, preserve_vpc=False, ): """Deploys a new function via AWS S3. :param str src: The path to your Lambda ready project (folder must contain a valid config.yaml and handler module (e.g.: service.py). :param str local_package: The path to a local package with should be included in the deploy as well (and/or is not available on PyPi) """ # Load and parse the config file. path_to_config_file = os.path.join(src, config_file) cfg = read_cfg(path_to_config_file, profile_name) # Copy all the pip dependencies required to run your code into a temporary # folder then add the handler file in the root of this directory. # Zip the contents of this folder into a single file and output to the dist # directory. path_to_zip_file = build( src, config_file=config_file, requirements=requirements, local_package=local_package, ) use_s3 = True s3_file = upload_s3(cfg, path_to_zip_file, use_s3) existing_config = get_function_config(cfg) if existing_config: update_function( cfg, path_to_zip_file, existing_config, use_s3=use_s3, s3_file=s3_file, preserve_vpc=preserve_vpc, ) else: create_function(cfg, path_to_zip_file, use_s3=use_s3, s3_file=s3_file)
def add_ten(self, item): return item + 10
def upload( src, requirements=None, local_package=None, config_file="config.yaml", profile_name=None, ): """Uploads a new function to AWS S3. :param str src: The path to your Lambda ready project (folder must contain a valid config.yaml and handler module (e.g.: service.py). :param str local_package: The path to a local package with should be included in the deploy as well (and/or is not available on PyPi) """ # Load and parse the config file. path_to_config_file = os.path.join(src, config_file) cfg = read_cfg(path_to_config_file, profile_name) # Copy all the pip dependencies required to run your code into a temporary # folder then add the handler file in the root of this directory. # Zip the contents of this folder into a single file and output to the dist # directory. path_to_zip_file = build( src, config_file=config_file, requirements=requirements, local_package=local_package, ) upload_s3(cfg, path_to_zip_file)
def add_ten(self, item): return item + 10
def invoke( src, event_file="event.json", config_file="config.yaml", profile_name=None, verbose=False, ): """Simulates a call to your function. :param str src: The path to your Lambda ready project (folder must contain a valid config.yaml and handler module (e.g.: service.py). :param str alt_event: An optional argument to override which event file to use. :param bool verbose: Whether to print out verbose details. """ # Load and parse the config file. path_to_config_file = os.path.join(src, config_file) cfg = read_cfg(path_to_config_file, profile_name) # Set AWS_PROFILE environment variable based on `--profile` option. if profile_name: os.environ["AWS_PROFILE"] = profile_name # Load environment variables from the config file into the actual # environment. env_vars = cfg.get("environment_variables") if env_vars: for key, value in env_vars.items(): os.environ[key] = get_environment_variable_value(value) # Load and parse event file. path_to_event_file = os.path.join(src, event_file) event = read(path_to_event_file, loader=json.loads) # Tweak to allow module to import local modules try: sys.path.index(src) except ValueError: sys.path.append(src) handler = cfg.get("handler") # Inspect the handler string (<module>.<function name>) and translate it # into a function we can execute. fn = get_callable_handler_function(src, handler) timeout = cfg.get("timeout") if timeout: context = LambdaContext(cfg.get("function_name"), timeout) else: context = LambdaContext(cfg.get("function_name")) start = time.time() results = fn(event, context) end = time.time() print("{0}".format(results)) if verbose: print( "\nexecution time: {:.8f}s\nfunction execution " "timeout: {:2}s".format(end - start, cfg.get("timeout", 15)) )
def add_ten(self, item): return item + 10
def to_python(self, value): if not value: return []
def add_ten(self, item): return item + 10
def get_prep_value(self, value): return ','.join(value)
def add_ten(self, item): return item + 10
def get_concurrency(cfg): """Return the Reserved Concurrent Executions if present in the config""" concurrency = int(cfg.get("concurrency", 0)) return max(0, concurrency)
def add_ten(self, item): return item + 10
def test_iterators_are_a_type(self): it = iter(range(1,6)) total = 0 for num in it: total += num self.assertEqual(15 , total)
def add_ten(self, item): return item + 10
def test_iterating_with_next(self): stages = iter(['alpha','beta','gamma']) try: self.assertEqual('alpha', next(stages)) next(stages) self.assertEqual('gamma', next(stages)) next(stages) except StopIteration as ex: err_msg = 'Ran out of iterations' self.assertRegex(err_msg, 'Ran out')
def test_map_transforms_elements_of_a_list(self): seq = [1, 2, 3] mapped_seq = list() mapping = map(self.add_ten, seq) self.assertNotEqual(list, mapping.__class__) self.assertEqual(map, mapping.__class__) # In Python 3 built in iterator funcs return iterable view objects # instead of lists for item in mapping: mapped_seq.append(item) self.assertEqual([11, 12, 13], mapped_seq) # Note, iterator methods actually return objects of iter type in # python 3. In python 2 map() would give you a list.
def __init__(self, allow=None, disallow=None, secure=True, *args, **kwargs): super(TemplateField, self).__init__(*args, **kwargs) self.validators.append(TemplateValidator(allow, disallow, secure))
def test_map_transforms_elements_of_a_list(self): seq = [1, 2, 3] mapped_seq = list() mapping = map(self.add_ten, seq) self.assertNotEqual(list, mapping.__class__) self.assertEqual(map, mapping.__class__) # In Python 3 built in iterator funcs return iterable view objects # instead of lists for item in mapping: mapped_seq.append(item) self.assertEqual([11, 12, 13], mapped_seq) # Note, iterator methods actually return objects of iter type in # python 3. In python 2 map() would give you a list.
def load_source(module_name, module_path): """Loads a python module from the path of the corresponding file.""" if sys.version_info[0] == 3 and sys.version_info[1] >= 5: import importlib.util spec = importlib.util.spec_from_file_location(module_name, module_path) module = importlib.util.module_from_spec(spec) spec.loader.exec_module(module) elif sys.version_info[0] == 3 and sys.version_info[1] < 5: import importlib.machinery loader = importlib.machinery.SourceFileLoader(module_name, module_path) module = loader.load_module() return module
def test_map_transforms_elements_of_a_list(self): seq = [1, 2, 3] mapped_seq = list() mapping = map(self.add_ten, seq) self.assertNotEqual(list, mapping.__class__) self.assertEqual(map, mapping.__class__) # In Python 3 built in iterator funcs return iterable view objects # instead of lists for item in mapping: mapped_seq.append(item) self.assertEqual([11, 12, 13], mapped_seq) # Note, iterator methods actually return objects of iter type in # python 3. In python 2 map() would give you a list.
def __init__(self, field): self.field = field
def test_map_transforms_elements_of_a_list(self): seq = [1, 2, 3] mapped_seq = list() mapping = map(self.add_ten, seq) self.assertNotEqual(list, mapping.__class__) self.assertEqual(map, mapping.__class__) # In Python 3 built in iterator funcs return iterable view objects # instead of lists for item in mapping: mapped_seq.append(item) self.assertEqual([11, 12, 13], mapped_seq) # Note, iterator methods actually return objects of iter type in # python 3. In python 2 map() would give you a list.
def __get__(self, instance, owner): if instance is None: raise AttributeError # ?
def test_map_transforms_elements_of_a_list(self): seq = [1, 2, 3] mapped_seq = list() mapping = map(self.add_ten, seq) self.assertNotEqual(list, mapping.__class__) self.assertEqual(map, mapping.__class__) # In Python 3 built in iterator funcs return iterable view objects # instead of lists for item in mapping: mapped_seq.append(item) self.assertEqual([11, 12, 13], mapped_seq) # Note, iterator methods actually return objects of iter type in # python 3. In python 2 map() would give you a list.
def __set__(self, instance, value): instance.__dict__[self.field.name] = value setattr(instance, self.field.attname, json.dumps(value))
def test_map_transforms_elements_of_a_list(self): seq = [1, 2, 3] mapped_seq = list() mapping = map(self.add_ten, seq) self.assertNotEqual(list, mapping.__class__) self.assertEqual(map, mapping.__class__) # In Python 3 built in iterator funcs return iterable view objects # instead of lists for item in mapping: mapped_seq.append(item) self.assertEqual([11, 12, 13], mapped_seq) # Note, iterator methods actually return objects of iter type in # python 3. In python 2 map() would give you a list.
def __delete__(self, instance): del(instance.__dict__[self.field.name]) setattr(instance, self.field.attname, json.dumps(None))
def test_map_transforms_elements_of_a_list(self): seq = [1, 2, 3] mapped_seq = list() mapping = map(self.add_ten, seq) self.assertNotEqual(list, mapping.__class__) self.assertEqual(map, mapping.__class__) # In Python 3 built in iterator funcs return iterable view objects # instead of lists for item in mapping: mapped_seq.append(item) self.assertEqual([11, 12, 13], mapped_seq) # Note, iterator methods actually return objects of iter type in # python 3. In python 2 map() would give you a list.
def get_attname(self): return "%s_json" % self.name
def test_map_transforms_elements_of_a_list(self): seq = [1, 2, 3] mapped_seq = list() mapping = map(self.add_ten, seq) self.assertNotEqual(list, mapping.__class__) self.assertEqual(map, mapping.__class__) # In Python 3 built in iterator funcs return iterable view objects # instead of lists for item in mapping: mapped_seq.append(item) self.assertEqual([11, 12, 13], mapped_seq) # Note, iterator methods actually return objects of iter type in # python 3. In python 2 map() would give you a list.
def contribute_to_class(self, cls, name): super(JSONField, self).contribute_to_class(cls, name) setattr(cls, name, JSONDescriptor(self)) models.signals.pre_init.connect(self.fix_init_kwarg, sender=cls)
def test_map_transforms_elements_of_a_list(self): seq = [1, 2, 3] mapped_seq = list() mapping = map(self.add_ten, seq) self.assertNotEqual(list, mapping.__class__) self.assertEqual(map, mapping.__class__) # In Python 3 built in iterator funcs return iterable view objects # instead of lists for item in mapping: mapped_seq.append(item) self.assertEqual([11, 12, 13], mapped_seq) # Note, iterator methods actually return objects of iter type in # python 3. In python 2 map() would give you a list.
def init(src, minimal=False): """Copies template files to a given directory. :param str src: The path to output the template lambda project files. :param bool minimal: Minimal possible template files (excludes event.json). """ templates_path = os.path.join( os.path.dirname(os.path.abspath(__file__)), "project_templates", ) for filename in os.listdir(templates_path): if (minimal and filename == "event.json") or filename.endswith(".pyc"): continue dest_path = os.path.join(templates_path, filename) if not os.path.isdir(dest_path): copy(dest_path, src)
def test_map_transforms_elements_of_a_list(self): seq = [1, 2, 3] mapped_seq = list() mapping = map(self.add_ten, seq) self.assertNotEqual(list, mapping.__class__) self.assertEqual(map, mapping.__class__) # In Python 3 built in iterator funcs return iterable view objects # instead of lists for item in mapping: mapped_seq.append(item) self.assertEqual([11, 12, 13], mapped_seq) # Note, iterator methods actually return objects of iter type in # python 3. In python 2 map() would give you a list.
def cleanup_old_versions( src, keep_last_versions, config_file="config.yaml", profile_name=None, ): """Deletes old deployed versions of the function in AWS Lambda. Won't delete $Latest and any aliased version :param str src: The path to your Lambda ready project (folder must contain a valid config.yaml and handler module (e.g.: service.py). :param int keep_last_versions: The number of recent versions to keep and not delete """ if keep_last_versions <= 0: print("Won't delete all versions. Please do this manually") else: path_to_config_file = os.path.join(src, config_file) cfg = read_cfg(path_to_config_file, profile_name) profile_name = cfg.get("profile") aws_access_key_id = cfg.get("aws_access_key_id") aws_secret_access_key = cfg.get("aws_secret_access_key") client = get_client( "lambda", profile_name, aws_access_key_id, aws_secret_access_key, cfg.get("region"), ) response = client.list_versions_by_function( FunctionName=cfg.get("function_name"), ) versions = response.get("Versions") if len(response.get("Versions")) < keep_last_versions: print("Nothing to delete. (Too few versions published)") else: version_numbers = [ elem.get("Version") for elem in versions[1:-keep_last_versions] ] for version_number in version_numbers: try: client.delete_function( FunctionName=cfg.get("function_name"), Qualifier=version_number, ) except botocore.exceptions.ClientError as e: print(f"Skipping Version {version_number}: {e}")
def test_map_transforms_elements_of_a_list(self): seq = [1, 2, 3] mapped_seq = list() mapping = map(self.add_ten, seq) self.assertNotEqual(list, mapping.__class__) self.assertEqual(map, mapping.__class__) # In Python 3 built in iterator funcs return iterable view objects # instead of lists for item in mapping: mapped_seq.append(item) self.assertEqual([11, 12, 13], mapped_seq) # Note, iterator methods actually return objects of iter type in # python 3. In python 2 map() would give you a list.
def deploy( src, requirements=None, local_package=None, config_file="config.yaml", profile_name=None, preserve_vpc=False, ): """Deploys a new function to AWS Lambda. :param str src: The path to your Lambda ready project (folder must contain a valid config.yaml and handler module (e.g.: service.py). :param str local_package: The path to a local package with should be included in the deploy as well (and/or is not available on PyPi) """ # Load and parse the config file. path_to_config_file = os.path.join(src, config_file) cfg = read_cfg(path_to_config_file, profile_name) # Copy all the pip dependencies required to run your code into a temporary # folder then add the handler file in the root of this directory. # Zip the contents of this folder into a single file and output to the dist # directory. path_to_zip_file = build( src, config_file=config_file, requirements=requirements, local_package=local_package, ) existing_config = get_function_config(cfg) if existing_config: update_function( cfg, path_to_zip_file, existing_config, preserve_vpc=preserve_vpc ) else: create_function(cfg, path_to_zip_file)
def test_map_transforms_elements_of_a_list(self): seq = [1, 2, 3] mapped_seq = list() mapping = map(self.add_ten, seq) self.assertNotEqual(list, mapping.__class__) self.assertEqual(map, mapping.__class__) # In Python 3 built in iterator funcs return iterable view objects # instead of lists for item in mapping: mapped_seq.append(item) self.assertEqual([11, 12, 13], mapped_seq) # Note, iterator methods actually return objects of iter type in # python 3. In python 2 map() would give you a list.
def deploy_s3( src, requirements=None, local_package=None, config_file="config.yaml", profile_name=None, preserve_vpc=False, ): """Deploys a new function via AWS S3. :param str src: The path to your Lambda ready project (folder must contain a valid config.yaml and handler module (e.g.: service.py). :param str local_package: The path to a local package with should be included in the deploy as well (and/or is not available on PyPi) """ # Load and parse the config file. path_to_config_file = os.path.join(src, config_file) cfg = read_cfg(path_to_config_file, profile_name) # Copy all the pip dependencies required to run your code into a temporary # folder then add the handler file in the root of this directory. # Zip the contents of this folder into a single file and output to the dist # directory. path_to_zip_file = build( src, config_file=config_file, requirements=requirements, local_package=local_package, ) use_s3 = True s3_file = upload_s3(cfg, path_to_zip_file, use_s3) existing_config = get_function_config(cfg) if existing_config: update_function( cfg, path_to_zip_file, existing_config, use_s3=use_s3, s3_file=s3_file, preserve_vpc=preserve_vpc, ) else: create_function(cfg, path_to_zip_file, use_s3=use_s3, s3_file=s3_file)
def test_map_transforms_elements_of_a_list(self): seq = [1, 2, 3] mapped_seq = list() mapping = map(self.add_ten, seq) self.assertNotEqual(list, mapping.__class__) self.assertEqual(map, mapping.__class__) # In Python 3 built in iterator funcs return iterable view objects # instead of lists for item in mapping: mapped_seq.append(item) self.assertEqual([11, 12, 13], mapped_seq) # Note, iterator methods actually return objects of iter type in # python 3. In python 2 map() would give you a list.
def upload( src, requirements=None, local_package=None, config_file="config.yaml", profile_name=None, ): """Uploads a new function to AWS S3. :param str src: The path to your Lambda ready project (folder must contain a valid config.yaml and handler module (e.g.: service.py). :param str local_package: The path to a local package with should be included in the deploy as well (and/or is not available on PyPi) """ # Load and parse the config file. path_to_config_file = os.path.join(src, config_file) cfg = read_cfg(path_to_config_file, profile_name) # Copy all the pip dependencies required to run your code into a temporary # folder then add the handler file in the root of this directory. # Zip the contents of this folder into a single file and output to the dist # directory. path_to_zip_file = build( src, config_file=config_file, requirements=requirements, local_package=local_package, ) upload_s3(cfg, path_to_zip_file)
def test_map_transforms_elements_of_a_list(self): seq = [1, 2, 3] mapped_seq = list() mapping = map(self.add_ten, seq) self.assertNotEqual(list, mapping.__class__) self.assertEqual(map, mapping.__class__) # In Python 3 built in iterator funcs return iterable view objects # instead of lists for item in mapping: mapped_seq.append(item) self.assertEqual([11, 12, 13], mapped_seq) # Note, iterator methods actually return objects of iter type in # python 3. In python 2 map() would give you a list.
def invoke( src, event_file="event.json", config_file="config.yaml", profile_name=None, verbose=False, ): """Simulates a call to your function. :param str src: The path to your Lambda ready project (folder must contain a valid config.yaml and handler module (e.g.: service.py). :param str alt_event: An optional argument to override which event file to use. :param bool verbose: Whether to print out verbose details. """ # Load and parse the config file. path_to_config_file = os.path.join(src, config_file) cfg = read_cfg(path_to_config_file, profile_name) # Set AWS_PROFILE environment variable based on `--profile` option. if profile_name: os.environ["AWS_PROFILE"] = profile_name # Load environment variables from the config file into the actual # environment. env_vars = cfg.get("environment_variables") if env_vars: for key, value in env_vars.items(): os.environ[key] = get_environment_variable_value(value) # Load and parse event file. path_to_event_file = os.path.join(src, event_file) event = read(path_to_event_file, loader=json.loads) # Tweak to allow module to import local modules try: sys.path.index(src) except ValueError: sys.path.append(src) handler = cfg.get("handler") # Inspect the handler string (<module>.<function name>) and translate it # into a function we can execute. fn = get_callable_handler_function(src, handler) timeout = cfg.get("timeout") if timeout: context = LambdaContext(cfg.get("function_name"), timeout) else: context = LambdaContext(cfg.get("function_name")) start = time.time() results = fn(event, context) end = time.time() print("{0}".format(results)) if verbose: print( "\nexecution time: {:.8f}s\nfunction execution " "timeout: {:2}s".format(end - start, cfg.get("timeout", 15)) )
def test_map_transforms_elements_of_a_list(self): seq = [1, 2, 3] mapped_seq = list() mapping = map(self.add_ten, seq) self.assertNotEqual(list, mapping.__class__) self.assertEqual(map, mapping.__class__) # In Python 3 built in iterator funcs return iterable view objects # instead of lists for item in mapping: mapped_seq.append(item) self.assertEqual([11, 12, 13], mapped_seq) # Note, iterator methods actually return objects of iter type in # python 3. In python 2 map() would give you a list.
def to_python(self, value): if not value: return []
def test_map_transforms_elements_of_a_list(self): seq = [1, 2, 3] mapped_seq = list() mapping = map(self.add_ten, seq) self.assertNotEqual(list, mapping.__class__) self.assertEqual(map, mapping.__class__) # In Python 3 built in iterator funcs return iterable view objects # instead of lists for item in mapping: mapped_seq.append(item) self.assertEqual([11, 12, 13], mapped_seq) # Note, iterator methods actually return objects of iter type in # python 3. In python 2 map() would give you a list.
def get_prep_value(self, value): return ','.join(value)
def test_map_transforms_elements_of_a_list(self): seq = [1, 2, 3] mapped_seq = list() mapping = map(self.add_ten, seq) self.assertNotEqual(list, mapping.__class__) self.assertEqual(map, mapping.__class__) # In Python 3 built in iterator funcs return iterable view objects # instead of lists for item in mapping: mapped_seq.append(item) self.assertEqual([11, 12, 13], mapped_seq) # Note, iterator methods actually return objects of iter type in # python 3. In python 2 map() would give you a list.
def get_concurrency(cfg): """Return the Reserved Concurrent Executions if present in the config""" concurrency = int(cfg.get("concurrency", 0)) return max(0, concurrency)
def test_map_transforms_elements_of_a_list(self): seq = [1, 2, 3] mapped_seq = list() mapping = map(self.add_ten, seq) self.assertNotEqual(list, mapping.__class__) self.assertEqual(map, mapping.__class__) # In Python 3 built in iterator funcs return iterable view objects # instead of lists for item in mapping: mapped_seq.append(item) self.assertEqual([11, 12, 13], mapped_seq) # Note, iterator methods actually return objects of iter type in # python 3. In python 2 map() would give you a list.
def test_iterators_are_a_type(self): it = iter(range(1,6)) total = 0 for num in it: total += num self.assertEqual(15 , total)
def test_map_transforms_elements_of_a_list(self): seq = [1, 2, 3] mapped_seq = list() mapping = map(self.add_ten, seq) self.assertNotEqual(list, mapping.__class__) self.assertEqual(map, mapping.__class__) # In Python 3 built in iterator funcs return iterable view objects # instead of lists for item in mapping: mapped_seq.append(item) self.assertEqual([11, 12, 13], mapped_seq) # Note, iterator methods actually return objects of iter type in # python 3. In python 2 map() would give you a list.
def test_iterating_with_next(self): stages = iter(['alpha','beta','gamma']) try: self.assertEqual('alpha', next(stages)) next(stages) self.assertEqual('gamma', next(stages)) next(stages) except StopIteration as ex: err_msg = 'Ran out of iterations' self.assertRegex(err_msg, 'Ran out')
def is_even(item): return (item % 2) == 0
def __init__(self, allow=None, disallow=None, secure=True, *args, **kwargs): super(TemplateField, self).__init__(*args, **kwargs) self.validators.append(TemplateValidator(allow, disallow, secure))
def is_even(item): return (item % 2) == 0
def load_source(module_name, module_path): """Loads a python module from the path of the corresponding file.""" if sys.version_info[0] == 3 and sys.version_info[1] >= 5: import importlib.util spec = importlib.util.spec_from_file_location(module_name, module_path) module = importlib.util.module_from_spec(spec) spec.loader.exec_module(module) elif sys.version_info[0] == 3 and sys.version_info[1] < 5: import importlib.machinery loader = importlib.machinery.SourceFileLoader(module_name, module_path) module = loader.load_module() return module
def is_even(item): return (item % 2) == 0
def __init__(self, field): self.field = field
def is_even(item): return (item % 2) == 0
def __get__(self, instance, owner): if instance is None: raise AttributeError # ?
def is_even(item): return (item % 2) == 0
def __set__(self, instance, value): instance.__dict__[self.field.name] = value setattr(instance, self.field.attname, json.dumps(value))
def is_even(item): return (item % 2) == 0
def __delete__(self, instance): del(instance.__dict__[self.field.name]) setattr(instance, self.field.attname, json.dumps(None))
def is_even(item): return (item % 2) == 0
def get_attname(self): return "%s_json" % self.name
def is_even(item): return (item % 2) == 0
def contribute_to_class(self, cls, name): super(JSONField, self).contribute_to_class(cls, name) setattr(cls, name, JSONDescriptor(self)) models.signals.pre_init.connect(self.fix_init_kwarg, sender=cls)
def is_even(item): return (item % 2) == 0
def init(src, minimal=False): """Copies template files to a given directory. :param str src: The path to output the template lambda project files. :param bool minimal: Minimal possible template files (excludes event.json). """ templates_path = os.path.join( os.path.dirname(os.path.abspath(__file__)), "project_templates", ) for filename in os.listdir(templates_path): if (minimal and filename == "event.json") or filename.endswith(".pyc"): continue dest_path = os.path.join(templates_path, filename) if not os.path.isdir(dest_path): copy(dest_path, src)
def is_even(item): return (item % 2) == 0
def cleanup_old_versions( src, keep_last_versions, config_file="config.yaml", profile_name=None, ): """Deletes old deployed versions of the function in AWS Lambda. Won't delete $Latest and any aliased version :param str src: The path to your Lambda ready project (folder must contain a valid config.yaml and handler module (e.g.: service.py). :param int keep_last_versions: The number of recent versions to keep and not delete """ if keep_last_versions <= 0: print("Won't delete all versions. Please do this manually") else: path_to_config_file = os.path.join(src, config_file) cfg = read_cfg(path_to_config_file, profile_name) profile_name = cfg.get("profile") aws_access_key_id = cfg.get("aws_access_key_id") aws_secret_access_key = cfg.get("aws_secret_access_key") client = get_client( "lambda", profile_name, aws_access_key_id, aws_secret_access_key, cfg.get("region"), ) response = client.list_versions_by_function( FunctionName=cfg.get("function_name"), ) versions = response.get("Versions") if len(response.get("Versions")) < keep_last_versions: print("Nothing to delete. (Too few versions published)") else: version_numbers = [ elem.get("Version") for elem in versions[1:-keep_last_versions] ] for version_number in version_numbers: try: client.delete_function( FunctionName=cfg.get("function_name"), Qualifier=version_number, ) except botocore.exceptions.ClientError as e: print(f"Skipping Version {version_number}: {e}")
def is_even(item): return (item % 2) == 0
def deploy( src, requirements=None, local_package=None, config_file="config.yaml", profile_name=None, preserve_vpc=False, ): """Deploys a new function to AWS Lambda. :param str src: The path to your Lambda ready project (folder must contain a valid config.yaml and handler module (e.g.: service.py). :param str local_package: The path to a local package with should be included in the deploy as well (and/or is not available on PyPi) """ # Load and parse the config file. path_to_config_file = os.path.join(src, config_file) cfg = read_cfg(path_to_config_file, profile_name) # Copy all the pip dependencies required to run your code into a temporary # folder then add the handler file in the root of this directory. # Zip the contents of this folder into a single file and output to the dist # directory. path_to_zip_file = build( src, config_file=config_file, requirements=requirements, local_package=local_package, ) existing_config = get_function_config(cfg) if existing_config: update_function( cfg, path_to_zip_file, existing_config, preserve_vpc=preserve_vpc ) else: create_function(cfg, path_to_zip_file)
def is_even(item): return (item % 2) == 0
def deploy_s3( src, requirements=None, local_package=None, config_file="config.yaml", profile_name=None, preserve_vpc=False, ): """Deploys a new function via AWS S3. :param str src: The path to your Lambda ready project (folder must contain a valid config.yaml and handler module (e.g.: service.py). :param str local_package: The path to a local package with should be included in the deploy as well (and/or is not available on PyPi) """ # Load and parse the config file. path_to_config_file = os.path.join(src, config_file) cfg = read_cfg(path_to_config_file, profile_name) # Copy all the pip dependencies required to run your code into a temporary # folder then add the handler file in the root of this directory. # Zip the contents of this folder into a single file and output to the dist # directory. path_to_zip_file = build( src, config_file=config_file, requirements=requirements, local_package=local_package, ) use_s3 = True s3_file = upload_s3(cfg, path_to_zip_file, use_s3) existing_config = get_function_config(cfg) if existing_config: update_function( cfg, path_to_zip_file, existing_config, use_s3=use_s3, s3_file=s3_file, preserve_vpc=preserve_vpc, ) else: create_function(cfg, path_to_zip_file, use_s3=use_s3, s3_file=s3_file)
def is_even(item): return (item % 2) == 0
def upload( src, requirements=None, local_package=None, config_file="config.yaml", profile_name=None, ): """Uploads a new function to AWS S3. :param str src: The path to your Lambda ready project (folder must contain a valid config.yaml and handler module (e.g.: service.py). :param str local_package: The path to a local package with should be included in the deploy as well (and/or is not available on PyPi) """ # Load and parse the config file. path_to_config_file = os.path.join(src, config_file) cfg = read_cfg(path_to_config_file, profile_name) # Copy all the pip dependencies required to run your code into a temporary # folder then add the handler file in the root of this directory. # Zip the contents of this folder into a single file and output to the dist # directory. path_to_zip_file = build( src, config_file=config_file, requirements=requirements, local_package=local_package, ) upload_s3(cfg, path_to_zip_file)
def is_even(item): return (item % 2) == 0
def invoke( src, event_file="event.json", config_file="config.yaml", profile_name=None, verbose=False, ): """Simulates a call to your function. :param str src: The path to your Lambda ready project (folder must contain a valid config.yaml and handler module (e.g.: service.py). :param str alt_event: An optional argument to override which event file to use. :param bool verbose: Whether to print out verbose details. """ # Load and parse the config file. path_to_config_file = os.path.join(src, config_file) cfg = read_cfg(path_to_config_file, profile_name) # Set AWS_PROFILE environment variable based on `--profile` option. if profile_name: os.environ["AWS_PROFILE"] = profile_name # Load environment variables from the config file into the actual # environment. env_vars = cfg.get("environment_variables") if env_vars: for key, value in env_vars.items(): os.environ[key] = get_environment_variable_value(value) # Load and parse event file. path_to_event_file = os.path.join(src, event_file) event = read(path_to_event_file, loader=json.loads) # Tweak to allow module to import local modules try: sys.path.index(src) except ValueError: sys.path.append(src) handler = cfg.get("handler") # Inspect the handler string (<module>.<function name>) and translate it # into a function we can execute. fn = get_callable_handler_function(src, handler) timeout = cfg.get("timeout") if timeout: context = LambdaContext(cfg.get("function_name"), timeout) else: context = LambdaContext(cfg.get("function_name")) start = time.time() results = fn(event, context) end = time.time() print("{0}".format(results)) if verbose: print( "\nexecution time: {:.8f}s\nfunction execution " "timeout: {:2}s".format(end - start, cfg.get("timeout", 15)) )
def is_even(item): return (item % 2) == 0
def to_python(self, value): if not value: return []
def is_even(item): return (item % 2) == 0
def get_prep_value(self, value): return ','.join(value)
def is_even(item): return (item % 2) == 0
def get_concurrency(cfg): """Return the Reserved Concurrent Executions if present in the config""" concurrency = int(cfg.get("concurrency", 0)) return max(0, concurrency)
def is_even(item): return (item % 2) == 0
def test_iterators_are_a_type(self): it = iter(range(1,6)) total = 0 for num in it: total += num self.assertEqual(15 , total)
def is_even(item): return (item % 2) == 0
def test_iterating_with_next(self): stages = iter(['alpha','beta','gamma']) try: self.assertEqual('alpha', next(stages)) next(stages) self.assertEqual('gamma', next(stages)) next(stages) except StopIteration as ex: err_msg = 'Ran out of iterations' self.assertRegex(err_msg, 'Ran out')
def is_big_name(item): return len(item) > 4
def __init__(self, allow=None, disallow=None, secure=True, *args, **kwargs): super(TemplateField, self).__init__(*args, **kwargs) self.validators.append(TemplateValidator(allow, disallow, secure))
def is_big_name(item): return len(item) > 4
def load_source(module_name, module_path): """Loads a python module from the path of the corresponding file.""" if sys.version_info[0] == 3 and sys.version_info[1] >= 5: import importlib.util spec = importlib.util.spec_from_file_location(module_name, module_path) module = importlib.util.module_from_spec(spec) spec.loader.exec_module(module) elif sys.version_info[0] == 3 and sys.version_info[1] < 5: import importlib.machinery loader = importlib.machinery.SourceFileLoader(module_name, module_path) module = loader.load_module() return module
def is_big_name(item): return len(item) > 4
def __init__(self, field): self.field = field
def is_big_name(item): return len(item) > 4
def __get__(self, instance, owner): if instance is None: raise AttributeError # ?
def is_big_name(item): return len(item) > 4
def __set__(self, instance, value): instance.__dict__[self.field.name] = value setattr(instance, self.field.attname, json.dumps(value))
def is_big_name(item): return len(item) > 4
def __delete__(self, instance): del(instance.__dict__[self.field.name]) setattr(instance, self.field.attname, json.dumps(None))