id
stringlengths
14
16
text
stringlengths
36
2.73k
source
stringlengths
49
117
db1056e59def-2
"""Prepare prompts from inputs.""" stop = None if "stop" in input_list[0]: stop = input_list[0]["stop"] prompts = [] for inputs in input_list: selected_inputs = {k: inputs[k] for k in self.prompt.input_variables} prompt = self.prompt.format_prompt(**selected_inputs) _colored_text = get_colored_text(prompt.to_string(), "green") _text = "Prompt after formatting:\n" + _colored_text if run_manager: run_manager.on_text(_text, end="\n", verbose=self.verbose) if "stop" in inputs and inputs["stop"] != stop: raise ValueError( "If `stop` is present in any inputs, should be present in all." ) prompts.append(prompt) return prompts, stop [docs] async def aprep_prompts( self, input_list: List[Dict[str, Any]], run_manager: Optional[AsyncCallbackManagerForChainRun] = None, ) -> Tuple[List[PromptValue], Optional[List[str]]]: """Prepare prompts from inputs.""" stop = None if "stop" in input_list[0]: stop = input_list[0]["stop"] prompts = [] for inputs in input_list: selected_inputs = {k: inputs[k] for k in self.prompt.input_variables} prompt = self.prompt.format_prompt(**selected_inputs) _colored_text = get_colored_text(prompt.to_string(), "green") _text = "Prompt after formatting:\n" + _colored_text if run_manager: await run_manager.on_text(_text, end="\n", verbose=self.verbose)
https://python.langchain.com/en/latest/_modules/langchain/chains/llm.html
db1056e59def-3
await run_manager.on_text(_text, end="\n", verbose=self.verbose) if "stop" in inputs and inputs["stop"] != stop: raise ValueError( "If `stop` is present in any inputs, should be present in all." ) prompts.append(prompt) return prompts, stop [docs] def apply( self, input_list: List[Dict[str, Any]], callbacks: Callbacks = None ) -> List[Dict[str, str]]: """Utilize the LLM generate method for speed gains.""" callback_manager = CallbackManager.configure( callbacks, self.callbacks, self.verbose ) run_manager = callback_manager.on_chain_start( {"name": self.__class__.__name__}, {"input_list": input_list}, ) try: response = self.generate(input_list, run_manager=run_manager) except (KeyboardInterrupt, Exception) as e: run_manager.on_chain_error(e) raise e outputs = self.create_outputs(response) run_manager.on_chain_end({"outputs": outputs}) return outputs [docs] async def aapply( self, input_list: List[Dict[str, Any]], callbacks: Callbacks = None ) -> List[Dict[str, str]]: """Utilize the LLM generate method for speed gains.""" callback_manager = AsyncCallbackManager.configure( callbacks, self.callbacks, self.verbose ) run_manager = await callback_manager.on_chain_start( {"name": self.__class__.__name__}, {"input_list": input_list}, ) try: response = await self.agenerate(input_list, run_manager=run_manager) except (KeyboardInterrupt, Exception) as e:
https://python.langchain.com/en/latest/_modules/langchain/chains/llm.html
db1056e59def-4
except (KeyboardInterrupt, Exception) as e: await run_manager.on_chain_error(e) raise e outputs = self.create_outputs(response) await run_manager.on_chain_end({"outputs": outputs}) return outputs [docs] def create_outputs(self, response: LLMResult) -> List[Dict[str, str]]: """Create outputs from response.""" return [ # Get the text of the top generated string. {self.output_key: generation[0].text} for generation in response.generations ] async def _acall( self, inputs: Dict[str, Any], run_manager: Optional[AsyncCallbackManagerForChainRun] = None, ) -> Dict[str, str]: response = await self.agenerate([inputs], run_manager=run_manager) return self.create_outputs(response)[0] [docs] def predict(self, callbacks: Callbacks = None, **kwargs: Any) -> str: """Format prompt with kwargs and pass to LLM. Args: callbacks: Callbacks to pass to LLMChain **kwargs: Keys to pass to prompt template. Returns: Completion from LLM. Example: .. code-block:: python completion = llm.predict(adjective="funny") """ return self(kwargs, callbacks=callbacks)[self.output_key] [docs] async def apredict(self, callbacks: Callbacks = None, **kwargs: Any) -> str: """Format prompt with kwargs and pass to LLM. Args: callbacks: Callbacks to pass to LLMChain **kwargs: Keys to pass to prompt template. Returns: Completion from LLM. Example:
https://python.langchain.com/en/latest/_modules/langchain/chains/llm.html
db1056e59def-5
Returns: Completion from LLM. Example: .. code-block:: python completion = llm.predict(adjective="funny") """ return (await self.acall(kwargs, callbacks=callbacks))[self.output_key] [docs] def predict_and_parse( self, callbacks: Callbacks = None, **kwargs: Any ) -> Union[str, List[str], Dict[str, Any]]: """Call predict and then parse the results.""" result = self.predict(callbacks=callbacks, **kwargs) if self.prompt.output_parser is not None: return self.prompt.output_parser.parse(result) else: return result [docs] async def apredict_and_parse( self, callbacks: Callbacks = None, **kwargs: Any ) -> Union[str, List[str], Dict[str, str]]: """Call apredict and then parse the results.""" result = await self.apredict(callbacks=callbacks, **kwargs) if self.prompt.output_parser is not None: return self.prompt.output_parser.parse(result) else: return result [docs] def apply_and_parse( self, input_list: List[Dict[str, Any]], callbacks: Callbacks = None ) -> Sequence[Union[str, List[str], Dict[str, str]]]: """Call apply and then parse the results.""" result = self.apply(input_list, callbacks=callbacks) return self._parse_result(result) def _parse_result( self, result: List[Dict[str, str]] ) -> Sequence[Union[str, List[str], Dict[str, str]]]: if self.prompt.output_parser is not None: return [
https://python.langchain.com/en/latest/_modules/langchain/chains/llm.html
db1056e59def-6
if self.prompt.output_parser is not None: return [ self.prompt.output_parser.parse(res[self.output_key]) for res in result ] else: return result [docs] async def aapply_and_parse( self, input_list: List[Dict[str, Any]], callbacks: Callbacks = None ) -> Sequence[Union[str, List[str], Dict[str, str]]]: """Call apply and then parse the results.""" result = await self.aapply(input_list, callbacks=callbacks) return self._parse_result(result) @property def _chain_type(self) -> str: return "llm_chain" [docs] @classmethod def from_string(cls, llm: BaseLanguageModel, template: str) -> Chain: """Create LLMChain from LLM and template.""" prompt_template = PromptTemplate.from_template(template) return cls(llm=llm, prompt=prompt_template) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/_modules/langchain/chains/llm.html
b53caca62d6b-0
Source code for langchain.chains.hyde.base """Hypothetical Document Embeddings. https://arxiv.org/abs/2212.10496 """ from __future__ import annotations from typing import Any, Dict, List, Optional import numpy as np from pydantic import Extra from langchain.base_language import BaseLanguageModel from langchain.callbacks.manager import CallbackManagerForChainRun from langchain.chains.base import Chain from langchain.chains.hyde.prompts import PROMPT_MAP from langchain.chains.llm import LLMChain from langchain.embeddings.base import Embeddings [docs]class HypotheticalDocumentEmbedder(Chain, Embeddings): """Generate hypothetical document for query, and then embed that. Based on https://arxiv.org/abs/2212.10496 """ base_embeddings: Embeddings llm_chain: LLMChain class Config: """Configuration for this pydantic object.""" extra = Extra.forbid arbitrary_types_allowed = True @property def input_keys(self) -> List[str]: """Input keys for Hyde's LLM chain.""" return self.llm_chain.input_keys @property def output_keys(self) -> List[str]: """Output keys for Hyde's LLM chain.""" return self.llm_chain.output_keys [docs] def embed_documents(self, texts: List[str]) -> List[List[float]]: """Call the base embeddings.""" return self.base_embeddings.embed_documents(texts) [docs] def combine_embeddings(self, embeddings: List[List[float]]) -> List[float]: """Combine embeddings into final embeddings.""" return list(np.array(embeddings).mean(axis=0))
https://python.langchain.com/en/latest/_modules/langchain/chains/hyde/base.html
b53caca62d6b-1
return list(np.array(embeddings).mean(axis=0)) [docs] def embed_query(self, text: str) -> List[float]: """Generate a hypothetical document and embedded it.""" var_name = self.llm_chain.input_keys[0] result = self.llm_chain.generate([{var_name: text}]) documents = [generation.text for generation in result.generations[0]] embeddings = self.embed_documents(documents) return self.combine_embeddings(embeddings) def _call( self, inputs: Dict[str, Any], run_manager: Optional[CallbackManagerForChainRun] = None, ) -> Dict[str, str]: """Call the internal llm chain.""" _run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager() return self.llm_chain(inputs, callbacks=_run_manager.get_child()) [docs] @classmethod def from_llm( cls, llm: BaseLanguageModel, base_embeddings: Embeddings, prompt_key: str, **kwargs: Any, ) -> HypotheticalDocumentEmbedder: """Load and use LLMChain for a specific prompt key.""" prompt = PROMPT_MAP[prompt_key] llm_chain = LLMChain(llm=llm, prompt=prompt) return cls(base_embeddings=base_embeddings, llm_chain=llm_chain, **kwargs) @property def _chain_type(self) -> str: return "hyde_chain" By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/_modules/langchain/chains/hyde/base.html
ce2295d38545-0
Source code for langchain.chains.pal.base """Implements Program-Aided Language Models. As in https://arxiv.org/pdf/2211.10435.pdf. """ from __future__ import annotations import warnings from typing import Any, Dict, List, Optional from pydantic import Extra, root_validator from langchain.base_language import BaseLanguageModel from langchain.callbacks.manager import CallbackManagerForChainRun from langchain.chains.base import Chain from langchain.chains.llm import LLMChain from langchain.chains.pal.colored_object_prompt import COLORED_OBJECT_PROMPT from langchain.chains.pal.math_prompt import MATH_PROMPT from langchain.prompts.base import BasePromptTemplate from langchain.utilities import PythonREPL [docs]class PALChain(Chain): """Implements Program-Aided Language Models.""" llm_chain: LLMChain llm: Optional[BaseLanguageModel] = None """[Deprecated]""" prompt: BasePromptTemplate = MATH_PROMPT """[Deprecated]""" stop: str = "\n\n" get_answer_expr: str = "print(solution())" python_globals: Optional[Dict[str, Any]] = None python_locals: Optional[Dict[str, Any]] = None output_key: str = "result" #: :meta private: return_intermediate_steps: bool = False class Config: """Configuration for this pydantic object.""" extra = Extra.forbid arbitrary_types_allowed = True @root_validator(pre=True) def raise_deprecation(cls, values: Dict) -> Dict: if "llm" in values: warnings.warn( "Directly instantiating an PALChain with an llm is deprecated. "
https://python.langchain.com/en/latest/_modules/langchain/chains/pal/base.html
ce2295d38545-1
"Directly instantiating an PALChain with an llm is deprecated. " "Please instantiate with llm_chain argument or using the one of " "the class method constructors from_math_prompt, " "from_colored_object_prompt." ) if "llm_chain" not in values and values["llm"] is not None: values["llm_chain"] = LLMChain(llm=values["llm"], prompt=MATH_PROMPT) return values @property def input_keys(self) -> List[str]: """Return the singular input key. :meta private: """ return self.prompt.input_variables @property def output_keys(self) -> List[str]: """Return the singular output key. :meta private: """ if not self.return_intermediate_steps: return [self.output_key] else: return [self.output_key, "intermediate_steps"] def _call( self, inputs: Dict[str, Any], run_manager: Optional[CallbackManagerForChainRun] = None, ) -> Dict[str, str]: _run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager() code = self.llm_chain.predict( stop=[self.stop], callbacks=_run_manager.get_child(), **inputs ) _run_manager.on_text(code, color="green", end="\n", verbose=self.verbose) repl = PythonREPL(_globals=self.python_globals, _locals=self.python_locals) res = repl.run(code + f"\n{self.get_answer_expr}") output = {self.output_key: res.strip()} if self.return_intermediate_steps: output["intermediate_steps"] = code
https://python.langchain.com/en/latest/_modules/langchain/chains/pal/base.html
ce2295d38545-2
if self.return_intermediate_steps: output["intermediate_steps"] = code return output [docs] @classmethod def from_math_prompt(cls, llm: BaseLanguageModel, **kwargs: Any) -> PALChain: """Load PAL from math prompt.""" llm_chain = LLMChain(llm=llm, prompt=MATH_PROMPT) return cls( llm_chain=llm_chain, stop="\n\n", get_answer_expr="print(solution())", **kwargs, ) [docs] @classmethod def from_colored_object_prompt( cls, llm: BaseLanguageModel, **kwargs: Any ) -> PALChain: """Load PAL from colored object prompt.""" llm_chain = LLMChain(llm=llm, prompt=COLORED_OBJECT_PROMPT) return cls( llm_chain=llm_chain, stop="\n\n\n", get_answer_expr="print(answer)", **kwargs, ) @property def _chain_type(self) -> str: return "pal_chain" By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/_modules/langchain/chains/pal/base.html
6924a5212d04-0
Source code for langchain.chains.graph_qa.base """Question answering over a graph.""" from __future__ import annotations from typing import Any, Dict, List, Optional from pydantic import Field from langchain.base_language import BaseLanguageModel from langchain.callbacks.manager import CallbackManagerForChainRun from langchain.chains.base import Chain from langchain.chains.graph_qa.prompts import ENTITY_EXTRACTION_PROMPT, PROMPT from langchain.chains.llm import LLMChain from langchain.graphs.networkx_graph import NetworkxEntityGraph, get_entities from langchain.prompts.base import BasePromptTemplate [docs]class GraphQAChain(Chain): """Chain for question-answering against a graph.""" graph: NetworkxEntityGraph = Field(exclude=True) entity_extraction_chain: LLMChain qa_chain: LLMChain input_key: str = "query" #: :meta private: output_key: str = "result" #: :meta private: @property def input_keys(self) -> List[str]: """Return the input keys. :meta private: """ return [self.input_key] @property def output_keys(self) -> List[str]: """Return the output keys. :meta private: """ _output_keys = [self.output_key] return _output_keys [docs] @classmethod def from_llm( cls, llm: BaseLanguageModel, qa_prompt: BasePromptTemplate = PROMPT, entity_prompt: BasePromptTemplate = ENTITY_EXTRACTION_PROMPT, **kwargs: Any, ) -> GraphQAChain: """Initialize from LLM."""
https://python.langchain.com/en/latest/_modules/langchain/chains/graph_qa/base.html
6924a5212d04-1
) -> GraphQAChain: """Initialize from LLM.""" qa_chain = LLMChain(llm=llm, prompt=qa_prompt) entity_chain = LLMChain(llm=llm, prompt=entity_prompt) return cls( qa_chain=qa_chain, entity_extraction_chain=entity_chain, **kwargs, ) def _call( self, inputs: Dict[str, Any], run_manager: Optional[CallbackManagerForChainRun] = None, ) -> Dict[str, str]: """Extract entities, look up info and answer question.""" _run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager() question = inputs[self.input_key] entity_string = self.entity_extraction_chain.run(question) _run_manager.on_text("Entities Extracted:", end="\n", verbose=self.verbose) _run_manager.on_text( entity_string, color="green", end="\n", verbose=self.verbose ) entities = get_entities(entity_string) context = "" for entity in entities: triplets = self.graph.get_entity_knowledge(entity) context += "\n".join(triplets) _run_manager.on_text("Full Context:", end="\n", verbose=self.verbose) _run_manager.on_text(context, color="green", end="\n", verbose=self.verbose) result = self.qa_chain( {"question": question, "context": context}, callbacks=_run_manager.get_child(), ) return {self.output_key: result[self.qa_chain.output_key]} By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/_modules/langchain/chains/graph_qa/base.html
b8d70dee77bf-0
Source code for langchain.chains.graph_qa.cypher """Question answering over a graph.""" from __future__ import annotations import re from typing import Any, Dict, List, Optional from pydantic import Field from langchain.base_language import BaseLanguageModel from langchain.callbacks.manager import CallbackManagerForChainRun from langchain.chains.base import Chain from langchain.chains.graph_qa.prompts import CYPHER_GENERATION_PROMPT, CYPHER_QA_PROMPT from langchain.chains.llm import LLMChain from langchain.graphs.neo4j_graph import Neo4jGraph from langchain.prompts.base import BasePromptTemplate INTERMEDIATE_STEPS_KEY = "intermediate_steps" def extract_cypher(text: str) -> str: # The pattern to find Cypher code enclosed in triple backticks pattern = r"```(.*?)```" # Find all matches in the input text matches = re.findall(pattern, text, re.DOTALL) return matches[0] if matches else text [docs]class GraphCypherQAChain(Chain): """Chain for question-answering against a graph by generating Cypher statements.""" graph: Neo4jGraph = Field(exclude=True) cypher_generation_chain: LLMChain qa_chain: LLMChain input_key: str = "query" #: :meta private: output_key: str = "result" #: :meta private: top_k: int = 10 """Number of results to return from the query""" return_intermediate_steps: bool = False """Whether or not to return the intermediate steps along with the final answer.""" return_direct: bool = False """Whether or not to return the result of querying the graph directly."""
https://python.langchain.com/en/latest/_modules/langchain/chains/graph_qa/cypher.html
b8d70dee77bf-1
"""Whether or not to return the result of querying the graph directly.""" @property def input_keys(self) -> List[str]: """Return the input keys. :meta private: """ return [self.input_key] @property def output_keys(self) -> List[str]: """Return the output keys. :meta private: """ _output_keys = [self.output_key] return _output_keys [docs] @classmethod def from_llm( cls, llm: BaseLanguageModel, *, qa_prompt: BasePromptTemplate = CYPHER_QA_PROMPT, cypher_prompt: BasePromptTemplate = CYPHER_GENERATION_PROMPT, **kwargs: Any, ) -> GraphCypherQAChain: """Initialize from LLM.""" qa_chain = LLMChain(llm=llm, prompt=qa_prompt) cypher_generation_chain = LLMChain(llm=llm, prompt=cypher_prompt) return cls( qa_chain=qa_chain, cypher_generation_chain=cypher_generation_chain, **kwargs, ) def _call( self, inputs: Dict[str, Any], run_manager: Optional[CallbackManagerForChainRun] = None, ) -> Dict[str, Any]: """Generate Cypher statement, use it to look up in db and answer question.""" _run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager() callbacks = _run_manager.get_child() question = inputs[self.input_key] intermediate_steps: List = [] generated_cypher = self.cypher_generation_chain.run(
https://python.langchain.com/en/latest/_modules/langchain/chains/graph_qa/cypher.html
b8d70dee77bf-2
generated_cypher = self.cypher_generation_chain.run( {"question": question, "schema": self.graph.get_schema}, callbacks=callbacks ) # Extract Cypher code if it is wrapped in backticks generated_cypher = extract_cypher(generated_cypher) _run_manager.on_text("Generated Cypher:", end="\n", verbose=self.verbose) _run_manager.on_text( generated_cypher, color="green", end="\n", verbose=self.verbose ) intermediate_steps.append({"query": generated_cypher}) # Retrieve and limit the number of results context = self.graph.query(generated_cypher)[: self.top_k] if self.return_direct: final_result = context else: _run_manager.on_text("Full Context:", end="\n", verbose=self.verbose) _run_manager.on_text( str(context), color="green", end="\n", verbose=self.verbose ) intermediate_steps.append({"context": context}) result = self.qa_chain( {"question": question, "context": context}, callbacks=callbacks, ) final_result = result[self.qa_chain.output_key] chain_result: Dict[str, Any] = {self.output_key: final_result} if self.return_intermediate_steps: chain_result[INTERMEDIATE_STEPS_KEY] = intermediate_steps return chain_result By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/_modules/langchain/chains/graph_qa/cypher.html
5a64f19bb28a-0
Source code for langchain.chains.graph_qa.nebulagraph """Question answering over a graph.""" from __future__ import annotations from typing import Any, Dict, List, Optional from pydantic import Field from langchain.base_language import BaseLanguageModel from langchain.callbacks.manager import CallbackManagerForChainRun from langchain.chains.base import Chain from langchain.chains.graph_qa.prompts import CYPHER_QA_PROMPT, NGQL_GENERATION_PROMPT from langchain.chains.llm import LLMChain from langchain.graphs.nebula_graph import NebulaGraph from langchain.prompts.base import BasePromptTemplate [docs]class NebulaGraphQAChain(Chain): """Chain for question-answering against a graph by generating nGQL statements.""" graph: NebulaGraph = Field(exclude=True) ngql_generation_chain: LLMChain qa_chain: LLMChain input_key: str = "query" #: :meta private: output_key: str = "result" #: :meta private: @property def input_keys(self) -> List[str]: """Return the input keys. :meta private: """ return [self.input_key] @property def output_keys(self) -> List[str]: """Return the output keys. :meta private: """ _output_keys = [self.output_key] return _output_keys [docs] @classmethod def from_llm( cls, llm: BaseLanguageModel, *, qa_prompt: BasePromptTemplate = CYPHER_QA_PROMPT, ngql_prompt: BasePromptTemplate = NGQL_GENERATION_PROMPT, **kwargs: Any,
https://python.langchain.com/en/latest/_modules/langchain/chains/graph_qa/nebulagraph.html
5a64f19bb28a-1
**kwargs: Any, ) -> NebulaGraphQAChain: """Initialize from LLM.""" qa_chain = LLMChain(llm=llm, prompt=qa_prompt) ngql_generation_chain = LLMChain(llm=llm, prompt=ngql_prompt) return cls( qa_chain=qa_chain, ngql_generation_chain=ngql_generation_chain, **kwargs, ) def _call( self, inputs: Dict[str, Any], run_manager: Optional[CallbackManagerForChainRun] = None, ) -> Dict[str, str]: """Generate nGQL statement, use it to look up in db and answer question.""" _run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager() callbacks = _run_manager.get_child() question = inputs[self.input_key] generated_ngql = self.ngql_generation_chain.run( {"question": question, "schema": self.graph.get_schema}, callbacks=callbacks ) _run_manager.on_text("Generated nGQL:", end="\n", verbose=self.verbose) _run_manager.on_text( generated_ngql, color="green", end="\n", verbose=self.verbose ) context = self.graph.query(generated_ngql) _run_manager.on_text("Full Context:", end="\n", verbose=self.verbose) _run_manager.on_text( str(context), color="green", end="\n", verbose=self.verbose ) result = self.qa_chain( {"question": question, "context": context}, callbacks=callbacks, ) return {self.output_key: result[self.qa_chain.output_key]} By Harrison Chase
https://python.langchain.com/en/latest/_modules/langchain/chains/graph_qa/nebulagraph.html
5a64f19bb28a-2
By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/_modules/langchain/chains/graph_qa/nebulagraph.html
34a0cad81a9c-0
Source code for langchain.chains.conversational_retrieval.base """Chain for chatting with a vector database.""" from __future__ import annotations import warnings from abc import abstractmethod from pathlib import Path from typing import Any, Callable, Dict, List, Optional, Tuple, Union from pydantic import Extra, Field, root_validator from langchain.base_language import BaseLanguageModel from langchain.callbacks.manager import ( AsyncCallbackManagerForChainRun, CallbackManagerForChainRun, Callbacks, ) from langchain.chains.base import Chain from langchain.chains.combine_documents.base import BaseCombineDocumentsChain from langchain.chains.combine_documents.stuff import StuffDocumentsChain from langchain.chains.conversational_retrieval.prompts import CONDENSE_QUESTION_PROMPT from langchain.chains.llm import LLMChain from langchain.chains.question_answering import load_qa_chain from langchain.prompts.base import BasePromptTemplate from langchain.schema import BaseMessage, BaseRetriever, Document from langchain.vectorstores.base import VectorStore # Depending on the memory type and configuration, the chat history format may differ. # This needs to be consolidated. CHAT_TURN_TYPE = Union[Tuple[str, str], BaseMessage] _ROLE_MAP = {"human": "Human: ", "ai": "Assistant: "} def _get_chat_history(chat_history: List[CHAT_TURN_TYPE]) -> str: buffer = "" for dialogue_turn in chat_history: if isinstance(dialogue_turn, BaseMessage): role_prefix = _ROLE_MAP.get(dialogue_turn.type, f"{dialogue_turn.type}: ") buffer += f"\n{role_prefix}{dialogue_turn.content}" elif isinstance(dialogue_turn, tuple): human = "Human: " + dialogue_turn[0]
https://python.langchain.com/en/latest/_modules/langchain/chains/conversational_retrieval/base.html
34a0cad81a9c-1
human = "Human: " + dialogue_turn[0] ai = "Assistant: " + dialogue_turn[1] buffer += "\n" + "\n".join([human, ai]) else: raise ValueError( f"Unsupported chat history format: {type(dialogue_turn)}." f" Full chat history: {chat_history} " ) return buffer class BaseConversationalRetrievalChain(Chain): """Chain for chatting with an index.""" combine_docs_chain: BaseCombineDocumentsChain question_generator: LLMChain output_key: str = "answer" return_source_documents: bool = False return_generated_question: bool = False get_chat_history: Optional[Callable[[CHAT_TURN_TYPE], str]] = None """Return the source documents.""" class Config: """Configuration for this pydantic object.""" extra = Extra.forbid arbitrary_types_allowed = True allow_population_by_field_name = True @property def input_keys(self) -> List[str]: """Input keys.""" return ["question", "chat_history"] @property def output_keys(self) -> List[str]: """Return the output keys. :meta private: """ _output_keys = [self.output_key] if self.return_source_documents: _output_keys = _output_keys + ["source_documents"] if self.return_generated_question: _output_keys = _output_keys + ["generated_question"] return _output_keys @abstractmethod def _get_docs(self, question: str, inputs: Dict[str, Any]) -> List[Document]: """Get docs.""" def _call( self,
https://python.langchain.com/en/latest/_modules/langchain/chains/conversational_retrieval/base.html
34a0cad81a9c-2
"""Get docs.""" def _call( self, inputs: Dict[str, Any], run_manager: Optional[CallbackManagerForChainRun] = None, ) -> Dict[str, Any]: _run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager() question = inputs["question"] get_chat_history = self.get_chat_history or _get_chat_history chat_history_str = get_chat_history(inputs["chat_history"]) if chat_history_str: callbacks = _run_manager.get_child() new_question = self.question_generator.run( question=question, chat_history=chat_history_str, callbacks=callbacks ) else: new_question = question docs = self._get_docs(new_question, inputs) new_inputs = inputs.copy() new_inputs["question"] = new_question new_inputs["chat_history"] = chat_history_str answer = self.combine_docs_chain.run( input_documents=docs, callbacks=_run_manager.get_child(), **new_inputs ) output: Dict[str, Any] = {self.output_key: answer} if self.return_source_documents: output["source_documents"] = docs if self.return_generated_question: output["generated_question"] = new_question return output @abstractmethod async def _aget_docs(self, question: str, inputs: Dict[str, Any]) -> List[Document]: """Get docs.""" async def _acall( self, inputs: Dict[str, Any], run_manager: Optional[AsyncCallbackManagerForChainRun] = None, ) -> Dict[str, Any]: _run_manager = run_manager or AsyncCallbackManagerForChainRun.get_noop_manager() question = inputs["question"]
https://python.langchain.com/en/latest/_modules/langchain/chains/conversational_retrieval/base.html
34a0cad81a9c-3
question = inputs["question"] get_chat_history = self.get_chat_history or _get_chat_history chat_history_str = get_chat_history(inputs["chat_history"]) if chat_history_str: callbacks = _run_manager.get_child() new_question = await self.question_generator.arun( question=question, chat_history=chat_history_str, callbacks=callbacks ) else: new_question = question docs = await self._aget_docs(new_question, inputs) new_inputs = inputs.copy() new_inputs["question"] = new_question new_inputs["chat_history"] = chat_history_str answer = await self.combine_docs_chain.arun( input_documents=docs, callbacks=_run_manager.get_child(), **new_inputs ) output: Dict[str, Any] = {self.output_key: answer} if self.return_source_documents: output["source_documents"] = docs if self.return_generated_question: output["generated_question"] = new_question return output def save(self, file_path: Union[Path, str]) -> None: if self.get_chat_history: raise ValueError("Chain not savable when `get_chat_history` is not None.") super().save(file_path) [docs]class ConversationalRetrievalChain(BaseConversationalRetrievalChain): """Chain for chatting with an index.""" retriever: BaseRetriever """Index to connect to.""" max_tokens_limit: Optional[int] = None """If set, restricts the docs to return from store based on tokens, enforced only for StuffDocumentChain""" def _reduce_tokens_below_limit(self, docs: List[Document]) -> List[Document]: num_docs = len(docs)
https://python.langchain.com/en/latest/_modules/langchain/chains/conversational_retrieval/base.html
34a0cad81a9c-4
num_docs = len(docs) if self.max_tokens_limit and isinstance( self.combine_docs_chain, StuffDocumentsChain ): tokens = [ self.combine_docs_chain.llm_chain.llm.get_num_tokens(doc.page_content) for doc in docs ] token_count = sum(tokens[:num_docs]) while token_count > self.max_tokens_limit: num_docs -= 1 token_count -= tokens[num_docs] return docs[:num_docs] def _get_docs(self, question: str, inputs: Dict[str, Any]) -> List[Document]: docs = self.retriever.get_relevant_documents(question) return self._reduce_tokens_below_limit(docs) async def _aget_docs(self, question: str, inputs: Dict[str, Any]) -> List[Document]: docs = await self.retriever.aget_relevant_documents(question) return self._reduce_tokens_below_limit(docs) [docs] @classmethod def from_llm( cls, llm: BaseLanguageModel, retriever: BaseRetriever, condense_question_prompt: BasePromptTemplate = CONDENSE_QUESTION_PROMPT, chain_type: str = "stuff", verbose: bool = False, condense_question_llm: Optional[BaseLanguageModel] = None, combine_docs_chain_kwargs: Optional[Dict] = None, callbacks: Callbacks = None, **kwargs: Any, ) -> BaseConversationalRetrievalChain: """Load chain from LLM.""" combine_docs_chain_kwargs = combine_docs_chain_kwargs or {} doc_chain = load_qa_chain( llm, chain_type=chain_type, verbose=verbose, callbacks=callbacks,
https://python.langchain.com/en/latest/_modules/langchain/chains/conversational_retrieval/base.html
34a0cad81a9c-5
chain_type=chain_type, verbose=verbose, callbacks=callbacks, **combine_docs_chain_kwargs, ) _llm = condense_question_llm or llm condense_question_chain = LLMChain( llm=_llm, prompt=condense_question_prompt, verbose=verbose, callbacks=callbacks, ) return cls( retriever=retriever, combine_docs_chain=doc_chain, question_generator=condense_question_chain, callbacks=callbacks, **kwargs, ) [docs]class ChatVectorDBChain(BaseConversationalRetrievalChain): """Chain for chatting with a vector database.""" vectorstore: VectorStore = Field(alias="vectorstore") top_k_docs_for_context: int = 4 search_kwargs: dict = Field(default_factory=dict) @property def _chain_type(self) -> str: return "chat-vector-db" @root_validator() def raise_deprecation(cls, values: Dict) -> Dict: warnings.warn( "`ChatVectorDBChain` is deprecated - " "please use `from langchain.chains import ConversationalRetrievalChain`" ) return values def _get_docs(self, question: str, inputs: Dict[str, Any]) -> List[Document]: vectordbkwargs = inputs.get("vectordbkwargs", {}) full_kwargs = {**self.search_kwargs, **vectordbkwargs} return self.vectorstore.similarity_search( question, k=self.top_k_docs_for_context, **full_kwargs ) async def _aget_docs(self, question: str, inputs: Dict[str, Any]) -> List[Document]:
https://python.langchain.com/en/latest/_modules/langchain/chains/conversational_retrieval/base.html
34a0cad81a9c-6
raise NotImplementedError("ChatVectorDBChain does not support async") [docs] @classmethod def from_llm( cls, llm: BaseLanguageModel, vectorstore: VectorStore, condense_question_prompt: BasePromptTemplate = CONDENSE_QUESTION_PROMPT, chain_type: str = "stuff", combine_docs_chain_kwargs: Optional[Dict] = None, callbacks: Callbacks = None, **kwargs: Any, ) -> BaseConversationalRetrievalChain: """Load chain from LLM.""" combine_docs_chain_kwargs = combine_docs_chain_kwargs or {} doc_chain = load_qa_chain( llm, chain_type=chain_type, callbacks=callbacks, **combine_docs_chain_kwargs, ) condense_question_chain = LLMChain( llm=llm, prompt=condense_question_prompt, callbacks=callbacks ) return cls( vectorstore=vectorstore, combine_docs_chain=doc_chain, question_generator=condense_question_chain, callbacks=callbacks, **kwargs, ) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/_modules/langchain/chains/conversational_retrieval/base.html
4c64e8238a87-0
Source code for langchain.chains.llm_checker.base """Chain for question-answering with self-verification.""" from __future__ import annotations import warnings from typing import Any, Dict, List, Optional from pydantic import Extra, root_validator from langchain.base_language import BaseLanguageModel from langchain.callbacks.manager import CallbackManagerForChainRun from langchain.chains.base import Chain from langchain.chains.llm import LLMChain from langchain.chains.llm_checker.prompt import ( CHECK_ASSERTIONS_PROMPT, CREATE_DRAFT_ANSWER_PROMPT, LIST_ASSERTIONS_PROMPT, REVISED_ANSWER_PROMPT, ) from langchain.chains.sequential import SequentialChain from langchain.prompts import PromptTemplate def _load_question_to_checked_assertions_chain( llm: BaseLanguageModel, create_draft_answer_prompt: PromptTemplate, list_assertions_prompt: PromptTemplate, check_assertions_prompt: PromptTemplate, revised_answer_prompt: PromptTemplate, ) -> SequentialChain: create_draft_answer_chain = LLMChain( llm=llm, prompt=create_draft_answer_prompt, output_key="statement", ) list_assertions_chain = LLMChain( llm=llm, prompt=list_assertions_prompt, output_key="assertions", ) check_assertions_chain = LLMChain( llm=llm, prompt=check_assertions_prompt, output_key="checked_assertions", ) revised_answer_chain = LLMChain( llm=llm, prompt=revised_answer_prompt, output_key="revised_statement", ) chains = [ create_draft_answer_chain,
https://python.langchain.com/en/latest/_modules/langchain/chains/llm_checker/base.html
4c64e8238a87-1
) chains = [ create_draft_answer_chain, list_assertions_chain, check_assertions_chain, revised_answer_chain, ] question_to_checked_assertions_chain = SequentialChain( chains=chains, input_variables=["question"], output_variables=["revised_statement"], verbose=True, ) return question_to_checked_assertions_chain [docs]class LLMCheckerChain(Chain): """Chain for question-answering with self-verification. Example: .. code-block:: python from langchain import OpenAI, LLMCheckerChain llm = OpenAI(temperature=0.7) checker_chain = LLMCheckerChain.from_llm(llm) """ question_to_checked_assertions_chain: SequentialChain llm: Optional[BaseLanguageModel] = None """[Deprecated] LLM wrapper to use.""" create_draft_answer_prompt: PromptTemplate = CREATE_DRAFT_ANSWER_PROMPT """[Deprecated]""" list_assertions_prompt: PromptTemplate = LIST_ASSERTIONS_PROMPT """[Deprecated]""" check_assertions_prompt: PromptTemplate = CHECK_ASSERTIONS_PROMPT """[Deprecated]""" revised_answer_prompt: PromptTemplate = REVISED_ANSWER_PROMPT """[Deprecated] Prompt to use when questioning the documents.""" input_key: str = "query" #: :meta private: output_key: str = "result" #: :meta private: class Config: """Configuration for this pydantic object.""" extra = Extra.forbid arbitrary_types_allowed = True @root_validator(pre=True) def raise_deprecation(cls, values: Dict) -> Dict: if "llm" in values:
https://python.langchain.com/en/latest/_modules/langchain/chains/llm_checker/base.html
4c64e8238a87-2
if "llm" in values: warnings.warn( "Directly instantiating an LLMCheckerChain with an llm is deprecated. " "Please instantiate with question_to_checked_assertions_chain " "or using the from_llm class method." ) if ( "question_to_checked_assertions_chain" not in values and values["llm"] is not None ): question_to_checked_assertions_chain = ( _load_question_to_checked_assertions_chain( values["llm"], values.get( "create_draft_answer_prompt", CREATE_DRAFT_ANSWER_PROMPT ), values.get("list_assertions_prompt", LIST_ASSERTIONS_PROMPT), values.get("check_assertions_prompt", CHECK_ASSERTIONS_PROMPT), values.get("revised_answer_prompt", REVISED_ANSWER_PROMPT), ) ) values[ "question_to_checked_assertions_chain" ] = question_to_checked_assertions_chain return values @property def input_keys(self) -> List[str]: """Return the singular input key. :meta private: """ return [self.input_key] @property def output_keys(self) -> List[str]: """Return the singular output key. :meta private: """ return [self.output_key] def _call( self, inputs: Dict[str, Any], run_manager: Optional[CallbackManagerForChainRun] = None, ) -> Dict[str, str]: _run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager() question = inputs[self.input_key] output = self.question_to_checked_assertions_chain(
https://python.langchain.com/en/latest/_modules/langchain/chains/llm_checker/base.html
4c64e8238a87-3
output = self.question_to_checked_assertions_chain( {"question": question}, callbacks=_run_manager.get_child() ) return {self.output_key: output["revised_statement"]} @property def _chain_type(self) -> str: return "llm_checker_chain" [docs] @classmethod def from_llm( cls, llm: BaseLanguageModel, create_draft_answer_prompt: PromptTemplate = CREATE_DRAFT_ANSWER_PROMPT, list_assertions_prompt: PromptTemplate = LIST_ASSERTIONS_PROMPT, check_assertions_prompt: PromptTemplate = CHECK_ASSERTIONS_PROMPT, revised_answer_prompt: PromptTemplate = REVISED_ANSWER_PROMPT, **kwargs: Any, ) -> LLMCheckerChain: question_to_checked_assertions_chain = ( _load_question_to_checked_assertions_chain( llm, create_draft_answer_prompt, list_assertions_prompt, check_assertions_prompt, revised_answer_prompt, ) ) return cls( question_to_checked_assertions_chain=question_to_checked_assertions_chain, **kwargs, ) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/_modules/langchain/chains/llm_checker/base.html
49c29dd25a6d-0
Source code for langchain.chains.qa_generation.base from __future__ import annotations import json from typing import Any, Dict, List, Optional from pydantic import Field from langchain.base_language import BaseLanguageModel from langchain.callbacks.manager import CallbackManagerForChainRun from langchain.chains.base import Chain from langchain.chains.llm import LLMChain from langchain.chains.qa_generation.prompt import PROMPT_SELECTOR from langchain.prompts.base import BasePromptTemplate from langchain.text_splitter import RecursiveCharacterTextSplitter, TextSplitter [docs]class QAGenerationChain(Chain): llm_chain: LLMChain text_splitter: TextSplitter = Field( default=RecursiveCharacterTextSplitter(chunk_overlap=500) ) input_key: str = "text" output_key: str = "questions" k: Optional[int] = None [docs] @classmethod def from_llm( cls, llm: BaseLanguageModel, prompt: Optional[BasePromptTemplate] = None, **kwargs: Any, ) -> QAGenerationChain: _prompt = prompt or PROMPT_SELECTOR.get_prompt(llm) chain = LLMChain(llm=llm, prompt=_prompt) return cls(llm_chain=chain, **kwargs) @property def _chain_type(self) -> str: raise NotImplementedError @property def input_keys(self) -> List[str]: return [self.input_key] @property def output_keys(self) -> List[str]: return [self.output_key] def _call( self, inputs: Dict[str, Any],
https://python.langchain.com/en/latest/_modules/langchain/chains/qa_generation/base.html
49c29dd25a6d-1
def _call( self, inputs: Dict[str, Any], run_manager: Optional[CallbackManagerForChainRun] = None, ) -> Dict[str, List]: docs = self.text_splitter.create_documents([inputs[self.input_key]]) results = self.llm_chain.generate( [{"text": d.page_content} for d in docs], run_manager=run_manager ) qa = [json.loads(res[0].text) for res in results.generations] return {self.output_key: qa} By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/_modules/langchain/chains/qa_generation/base.html
a76c3cd8c05b-0
Source code for langchain.chains.sql_database.base """Chain for interacting with SQL Database.""" from __future__ import annotations import warnings from typing import Any, Dict, List, Optional from pydantic import Extra, Field, root_validator from langchain.base_language import BaseLanguageModel from langchain.callbacks.manager import CallbackManagerForChainRun from langchain.chains.base import Chain from langchain.chains.llm import LLMChain from langchain.chains.sql_database.prompt import DECIDER_PROMPT, PROMPT, SQL_PROMPTS from langchain.prompts.base import BasePromptTemplate from langchain.prompts.prompt import PromptTemplate from langchain.sql_database import SQLDatabase from langchain.tools.sql_database.prompt import QUERY_CHECKER INTERMEDIATE_STEPS_KEY = "intermediate_steps" [docs]class SQLDatabaseChain(Chain): """Chain for interacting with SQL Database. Example: .. code-block:: python from langchain import SQLDatabaseChain, OpenAI, SQLDatabase db = SQLDatabase(...) db_chain = SQLDatabaseChain.from_llm(OpenAI(), db) """ llm_chain: LLMChain llm: Optional[BaseLanguageModel] = None """[Deprecated] LLM wrapper to use.""" database: SQLDatabase = Field(exclude=True) """SQL Database to connect to.""" prompt: Optional[BasePromptTemplate] = None """[Deprecated] Prompt to use to translate natural language to SQL.""" top_k: int = 5 """Number of results to return from the query""" input_key: str = "query" #: :meta private: output_key: str = "result" #: :meta private: return_intermediate_steps: bool = False
https://python.langchain.com/en/latest/_modules/langchain/chains/sql_database/base.html
a76c3cd8c05b-1
return_intermediate_steps: bool = False """Whether or not to return the intermediate steps along with the final answer.""" return_direct: bool = False """Whether or not to return the result of querying the SQL table directly.""" use_query_checker: bool = False """Whether or not the query checker tool should be used to attempt to fix the initial SQL from the LLM.""" query_checker_prompt: Optional[BasePromptTemplate] = None """The prompt template that should be used by the query checker""" class Config: """Configuration for this pydantic object.""" extra = Extra.forbid arbitrary_types_allowed = True @root_validator(pre=True) def raise_deprecation(cls, values: Dict) -> Dict: if "llm" in values: warnings.warn( "Directly instantiating an SQLDatabaseChain with an llm is deprecated. " "Please instantiate with llm_chain argument or using the from_llm " "class method." ) if "llm_chain" not in values and values["llm"] is not None: database = values["database"] prompt = values.get("prompt") or SQL_PROMPTS.get( database.dialect, PROMPT ) values["llm_chain"] = LLMChain(llm=values["llm"], prompt=prompt) return values @property def input_keys(self) -> List[str]: """Return the singular input key. :meta private: """ return [self.input_key] @property def output_keys(self) -> List[str]: """Return the singular output key. :meta private: """ if not self.return_intermediate_steps:
https://python.langchain.com/en/latest/_modules/langchain/chains/sql_database/base.html
a76c3cd8c05b-2
:meta private: """ if not self.return_intermediate_steps: return [self.output_key] else: return [self.output_key, INTERMEDIATE_STEPS_KEY] def _call( self, inputs: Dict[str, Any], run_manager: Optional[CallbackManagerForChainRun] = None, ) -> Dict[str, Any]: _run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager() input_text = f"{inputs[self.input_key]}\nSQLQuery:" _run_manager.on_text(input_text, verbose=self.verbose) # If not present, then defaults to None which is all tables. table_names_to_use = inputs.get("table_names_to_use") table_info = self.database.get_table_info(table_names=table_names_to_use) llm_inputs = { "input": input_text, "top_k": str(self.top_k), "dialect": self.database.dialect, "table_info": table_info, "stop": ["\nSQLResult:"], } intermediate_steps: List = [] try: intermediate_steps.append(llm_inputs) # input: sql generation sql_cmd = self.llm_chain.predict( callbacks=_run_manager.get_child(), **llm_inputs, ).strip() if not self.use_query_checker: _run_manager.on_text(sql_cmd, color="green", verbose=self.verbose) intermediate_steps.append( sql_cmd ) # output: sql generation (no checker) intermediate_steps.append({"sql_cmd": sql_cmd}) # input: sql exec result = self.database.run(sql_cmd)
https://python.langchain.com/en/latest/_modules/langchain/chains/sql_database/base.html
a76c3cd8c05b-3
result = self.database.run(sql_cmd) intermediate_steps.append(str(result)) # output: sql exec else: query_checker_prompt = self.query_checker_prompt or PromptTemplate( template=QUERY_CHECKER, input_variables=["query", "dialect"] ) query_checker_chain = LLMChain( llm=self.llm_chain.llm, prompt=query_checker_prompt ) query_checker_inputs = { "query": sql_cmd, "dialect": self.database.dialect, } checked_sql_command: str = query_checker_chain.predict( callbacks=_run_manager.get_child(), **query_checker_inputs ).strip() intermediate_steps.append( checked_sql_command ) # output: sql generation (checker) _run_manager.on_text( checked_sql_command, color="green", verbose=self.verbose ) intermediate_steps.append( {"sql_cmd": checked_sql_command} ) # input: sql exec result = self.database.run(checked_sql_command) intermediate_steps.append(str(result)) # output: sql exec sql_cmd = checked_sql_command _run_manager.on_text("\nSQLResult: ", verbose=self.verbose) _run_manager.on_text(result, color="yellow", verbose=self.verbose) # If return direct, we just set the final result equal to # the result of the sql query result, otherwise try to get a human readable # final answer if self.return_direct: final_result = result else: _run_manager.on_text("\nAnswer:", verbose=self.verbose) input_text += f"{sql_cmd}\nSQLResult: {result}\nAnswer:" llm_inputs["input"] = input_text
https://python.langchain.com/en/latest/_modules/langchain/chains/sql_database/base.html
a76c3cd8c05b-4
llm_inputs["input"] = input_text intermediate_steps.append(llm_inputs) # input: final answer final_result = self.llm_chain.predict( callbacks=_run_manager.get_child(), **llm_inputs, ).strip() intermediate_steps.append(final_result) # output: final answer _run_manager.on_text(final_result, color="green", verbose=self.verbose) chain_result: Dict[str, Any] = {self.output_key: final_result} if self.return_intermediate_steps: chain_result[INTERMEDIATE_STEPS_KEY] = intermediate_steps return chain_result except Exception as exc: # Append intermediate steps to exception, to aid in logging and later # improvement of few shot prompt seeds exc.intermediate_steps = intermediate_steps # type: ignore raise exc @property def _chain_type(self) -> str: return "sql_database_chain" [docs] @classmethod def from_llm( cls, llm: BaseLanguageModel, db: SQLDatabase, prompt: Optional[BasePromptTemplate] = None, **kwargs: Any, ) -> SQLDatabaseChain: prompt = prompt or SQL_PROMPTS.get(db.dialect, PROMPT) llm_chain = LLMChain(llm=llm, prompt=prompt) return cls(llm_chain=llm_chain, database=db, **kwargs) [docs]class SQLDatabaseSequentialChain(Chain): """Chain for querying SQL database that is a sequential chain. The chain is as follows: 1. Based on the query, determine which tables to use. 2. Based on those tables, call the normal SQL database chain.
https://python.langchain.com/en/latest/_modules/langchain/chains/sql_database/base.html
a76c3cd8c05b-5
2. Based on those tables, call the normal SQL database chain. This is useful in cases where the number of tables in the database is large. """ decider_chain: LLMChain sql_chain: SQLDatabaseChain input_key: str = "query" #: :meta private: output_key: str = "result" #: :meta private: return_intermediate_steps: bool = False [docs] @classmethod def from_llm( cls, llm: BaseLanguageModel, database: SQLDatabase, query_prompt: BasePromptTemplate = PROMPT, decider_prompt: BasePromptTemplate = DECIDER_PROMPT, **kwargs: Any, ) -> SQLDatabaseSequentialChain: """Load the necessary chains.""" sql_chain = SQLDatabaseChain.from_llm( llm, database, prompt=query_prompt, **kwargs ) decider_chain = LLMChain( llm=llm, prompt=decider_prompt, output_key="table_names" ) return cls(sql_chain=sql_chain, decider_chain=decider_chain, **kwargs) @property def input_keys(self) -> List[str]: """Return the singular input key. :meta private: """ return [self.input_key] @property def output_keys(self) -> List[str]: """Return the singular output key. :meta private: """ if not self.return_intermediate_steps: return [self.output_key] else: return [self.output_key, INTERMEDIATE_STEPS_KEY] def _call( self, inputs: Dict[str, Any],
https://python.langchain.com/en/latest/_modules/langchain/chains/sql_database/base.html
a76c3cd8c05b-6
def _call( self, inputs: Dict[str, Any], run_manager: Optional[CallbackManagerForChainRun] = None, ) -> Dict[str, Any]: _run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager() _table_names = self.sql_chain.database.get_usable_table_names() table_names = ", ".join(_table_names) llm_inputs = { "query": inputs[self.input_key], "table_names": table_names, } _lowercased_table_names = [name.lower() for name in _table_names] table_names_from_chain = self.decider_chain.predict_and_parse(**llm_inputs) table_names_to_use = [ name for name in table_names_from_chain if name.lower() in _lowercased_table_names ] _run_manager.on_text("Table names to use:", end="\n", verbose=self.verbose) _run_manager.on_text( str(table_names_to_use), color="yellow", verbose=self.verbose ) new_inputs = { self.sql_chain.input_key: inputs[self.input_key], "table_names_to_use": table_names_to_use, } return self.sql_chain( new_inputs, callbacks=_run_manager.get_child(), return_only_outputs=True ) @property def _chain_type(self) -> str: return "sql_database_sequential_chain" By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/_modules/langchain/chains/sql_database/base.html
1b8e80a2cd38-0
Source code for langchain.chains.llm_math.base """Chain that interprets a prompt and executes python code to do math.""" from __future__ import annotations import math import re import warnings from typing import Any, Dict, List, Optional import numexpr from pydantic import Extra, root_validator from langchain.base_language import BaseLanguageModel from langchain.callbacks.manager import ( AsyncCallbackManagerForChainRun, CallbackManagerForChainRun, ) from langchain.chains.base import Chain from langchain.chains.llm import LLMChain from langchain.chains.llm_math.prompt import PROMPT from langchain.prompts.base import BasePromptTemplate [docs]class LLMMathChain(Chain): """Chain that interprets a prompt and executes python code to do math. Example: .. code-block:: python from langchain import LLMMathChain, OpenAI llm_math = LLMMathChain.from_llm(OpenAI()) """ llm_chain: LLMChain llm: Optional[BaseLanguageModel] = None """[Deprecated] LLM wrapper to use.""" prompt: BasePromptTemplate = PROMPT """[Deprecated] Prompt to use to translate to python if necessary.""" input_key: str = "question" #: :meta private: output_key: str = "answer" #: :meta private: class Config: """Configuration for this pydantic object.""" extra = Extra.forbid arbitrary_types_allowed = True @root_validator(pre=True) def raise_deprecation(cls, values: Dict) -> Dict: if "llm" in values: warnings.warn(
https://python.langchain.com/en/latest/_modules/langchain/chains/llm_math/base.html
1b8e80a2cd38-1
if "llm" in values: warnings.warn( "Directly instantiating an LLMMathChain with an llm is deprecated. " "Please instantiate with llm_chain argument or using the from_llm " "class method." ) if "llm_chain" not in values and values["llm"] is not None: prompt = values.get("prompt", PROMPT) values["llm_chain"] = LLMChain(llm=values["llm"], prompt=prompt) return values @property def input_keys(self) -> List[str]: """Expect input key. :meta private: """ return [self.input_key] @property def output_keys(self) -> List[str]: """Expect output key. :meta private: """ return [self.output_key] def _evaluate_expression(self, expression: str) -> str: try: local_dict = {"pi": math.pi, "e": math.e} output = str( numexpr.evaluate( expression.strip(), global_dict={}, # restrict access to globals local_dict=local_dict, # add common mathematical functions ) ) except Exception as e: raise ValueError( f'LLMMathChain._evaluate("{expression}") raised error: {e}.' " Please try again with a valid numerical expression" ) # Remove any leading and trailing brackets from the output return re.sub(r"^\[|\]$", "", output) def _process_llm_result( self, llm_output: str, run_manager: CallbackManagerForChainRun ) -> Dict[str, str]:
https://python.langchain.com/en/latest/_modules/langchain/chains/llm_math/base.html
1b8e80a2cd38-2
) -> Dict[str, str]: run_manager.on_text(llm_output, color="green", verbose=self.verbose) llm_output = llm_output.strip() text_match = re.search(r"^```text(.*?)```", llm_output, re.DOTALL) if text_match: expression = text_match.group(1) output = self._evaluate_expression(expression) run_manager.on_text("\nAnswer: ", verbose=self.verbose) run_manager.on_text(output, color="yellow", verbose=self.verbose) answer = "Answer: " + output elif llm_output.startswith("Answer:"): answer = llm_output elif "Answer:" in llm_output: answer = "Answer: " + llm_output.split("Answer:")[-1] else: raise ValueError(f"unknown format from LLM: {llm_output}") return {self.output_key: answer} async def _aprocess_llm_result( self, llm_output: str, run_manager: AsyncCallbackManagerForChainRun, ) -> Dict[str, str]: await run_manager.on_text(llm_output, color="green", verbose=self.verbose) llm_output = llm_output.strip() text_match = re.search(r"^```text(.*?)```", llm_output, re.DOTALL) if text_match: expression = text_match.group(1) output = self._evaluate_expression(expression) await run_manager.on_text("\nAnswer: ", verbose=self.verbose) await run_manager.on_text(output, color="yellow", verbose=self.verbose) answer = "Answer: " + output elif llm_output.startswith("Answer:"): answer = llm_output
https://python.langchain.com/en/latest/_modules/langchain/chains/llm_math/base.html
1b8e80a2cd38-3
elif llm_output.startswith("Answer:"): answer = llm_output elif "Answer:" in llm_output: answer = "Answer: " + llm_output.split("Answer:")[-1] else: raise ValueError(f"unknown format from LLM: {llm_output}") return {self.output_key: answer} def _call( self, inputs: Dict[str, str], run_manager: Optional[CallbackManagerForChainRun] = None, ) -> Dict[str, str]: _run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager() _run_manager.on_text(inputs[self.input_key]) llm_output = self.llm_chain.predict( question=inputs[self.input_key], stop=["```output"], callbacks=_run_manager.get_child(), ) return self._process_llm_result(llm_output, _run_manager) async def _acall( self, inputs: Dict[str, str], run_manager: Optional[AsyncCallbackManagerForChainRun] = None, ) -> Dict[str, str]: _run_manager = run_manager or AsyncCallbackManagerForChainRun.get_noop_manager() await _run_manager.on_text(inputs[self.input_key]) llm_output = await self.llm_chain.apredict( question=inputs[self.input_key], stop=["```output"], callbacks=_run_manager.get_child(), ) return await self._aprocess_llm_result(llm_output, _run_manager) @property def _chain_type(self) -> str: return "llm_math_chain" [docs] @classmethod def from_llm( cls,
https://python.langchain.com/en/latest/_modules/langchain/chains/llm_math/base.html
1b8e80a2cd38-4
[docs] @classmethod def from_llm( cls, llm: BaseLanguageModel, prompt: BasePromptTemplate = PROMPT, **kwargs: Any, ) -> LLMMathChain: llm_chain = LLMChain(llm=llm, prompt=prompt) return cls(llm_chain=llm_chain, **kwargs) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/_modules/langchain/chains/llm_math/base.html
5324cdfd83b2-0
Source code for langchain.chains.api.base """Chain that makes API calls and summarizes the responses to answer a question.""" from __future__ import annotations from typing import Any, Dict, List, Optional from pydantic import Field, root_validator from langchain.base_language import BaseLanguageModel from langchain.callbacks.manager import ( AsyncCallbackManagerForChainRun, CallbackManagerForChainRun, ) from langchain.chains.api.prompt import API_RESPONSE_PROMPT, API_URL_PROMPT from langchain.chains.base import Chain from langchain.chains.llm import LLMChain from langchain.prompts import BasePromptTemplate from langchain.requests import TextRequestsWrapper [docs]class APIChain(Chain): """Chain that makes API calls and summarizes the responses to answer a question.""" api_request_chain: LLMChain api_answer_chain: LLMChain requests_wrapper: TextRequestsWrapper = Field(exclude=True) api_docs: str question_key: str = "question" #: :meta private: output_key: str = "output" #: :meta private: @property def input_keys(self) -> List[str]: """Expect input key. :meta private: """ return [self.question_key] @property def output_keys(self) -> List[str]: """Expect output key. :meta private: """ return [self.output_key] @root_validator(pre=True) def validate_api_request_prompt(cls, values: Dict) -> Dict: """Check that api request prompt expects the right variables.""" input_vars = values["api_request_chain"].prompt.input_variables expected_vars = {"question", "api_docs"} if set(input_vars) != expected_vars:
https://python.langchain.com/en/latest/_modules/langchain/chains/api/base.html
5324cdfd83b2-1
if set(input_vars) != expected_vars: raise ValueError( f"Input variables should be {expected_vars}, got {input_vars}" ) return values @root_validator(pre=True) def validate_api_answer_prompt(cls, values: Dict) -> Dict: """Check that api answer prompt expects the right variables.""" input_vars = values["api_answer_chain"].prompt.input_variables expected_vars = {"question", "api_docs", "api_url", "api_response"} if set(input_vars) != expected_vars: raise ValueError( f"Input variables should be {expected_vars}, got {input_vars}" ) return values def _call( self, inputs: Dict[str, Any], run_manager: Optional[CallbackManagerForChainRun] = None, ) -> Dict[str, str]: _run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager() question = inputs[self.question_key] api_url = self.api_request_chain.predict( question=question, api_docs=self.api_docs, callbacks=_run_manager.get_child(), ) _run_manager.on_text(api_url, color="green", end="\n", verbose=self.verbose) api_response = self.requests_wrapper.get(api_url) _run_manager.on_text( api_response, color="yellow", end="\n", verbose=self.verbose ) answer = self.api_answer_chain.predict( question=question, api_docs=self.api_docs, api_url=api_url, api_response=api_response, callbacks=_run_manager.get_child(), ) return {self.output_key: answer} async def _acall( self,
https://python.langchain.com/en/latest/_modules/langchain/chains/api/base.html
5324cdfd83b2-2
async def _acall( self, inputs: Dict[str, Any], run_manager: Optional[AsyncCallbackManagerForChainRun] = None, ) -> Dict[str, str]: _run_manager = run_manager or AsyncCallbackManagerForChainRun.get_noop_manager() question = inputs[self.question_key] api_url = await self.api_request_chain.apredict( question=question, api_docs=self.api_docs, callbacks=_run_manager.get_child(), ) await _run_manager.on_text( api_url, color="green", end="\n", verbose=self.verbose ) api_response = await self.requests_wrapper.aget(api_url) await _run_manager.on_text( api_response, color="yellow", end="\n", verbose=self.verbose ) answer = await self.api_answer_chain.apredict( question=question, api_docs=self.api_docs, api_url=api_url, api_response=api_response, callbacks=_run_manager.get_child(), ) return {self.output_key: answer} [docs] @classmethod def from_llm_and_api_docs( cls, llm: BaseLanguageModel, api_docs: str, headers: Optional[dict] = None, api_url_prompt: BasePromptTemplate = API_URL_PROMPT, api_response_prompt: BasePromptTemplate = API_RESPONSE_PROMPT, **kwargs: Any, ) -> APIChain: """Load chain from just an LLM and the api docs.""" get_request_chain = LLMChain(llm=llm, prompt=api_url_prompt) requests_wrapper = TextRequestsWrapper(headers=headers)
https://python.langchain.com/en/latest/_modules/langchain/chains/api/base.html
5324cdfd83b2-3
requests_wrapper = TextRequestsWrapper(headers=headers) get_answer_chain = LLMChain(llm=llm, prompt=api_response_prompt) return cls( api_request_chain=get_request_chain, api_answer_chain=get_answer_chain, requests_wrapper=requests_wrapper, api_docs=api_docs, **kwargs, ) @property def _chain_type(self) -> str: return "api_chain" By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/_modules/langchain/chains/api/base.html
7ff2178f8c30-0
Source code for langchain.chains.api.openapi.chain """Chain that makes API calls and summarizes the responses to answer a question.""" from __future__ import annotations import json from typing import Any, Dict, List, NamedTuple, Optional, cast from pydantic import BaseModel, Field from requests import Response from langchain.base_language import BaseLanguageModel from langchain.callbacks.manager import CallbackManagerForChainRun, Callbacks from langchain.chains.api.openapi.requests_chain import APIRequesterChain from langchain.chains.api.openapi.response_chain import APIResponderChain from langchain.chains.base import Chain from langchain.chains.llm import LLMChain from langchain.requests import Requests from langchain.tools.openapi.utils.api_models import APIOperation class _ParamMapping(NamedTuple): """Mapping from parameter name to parameter value.""" query_params: List[str] body_params: List[str] path_params: List[str] [docs]class OpenAPIEndpointChain(Chain, BaseModel): """Chain interacts with an OpenAPI endpoint using natural language.""" api_request_chain: LLMChain api_response_chain: Optional[LLMChain] api_operation: APIOperation requests: Requests = Field(exclude=True, default_factory=Requests) param_mapping: _ParamMapping = Field(alias="param_mapping") return_intermediate_steps: bool = False instructions_key: str = "instructions" #: :meta private: output_key: str = "output" #: :meta private: max_text_length: Optional[int] = Field(ge=0) #: :meta private: @property def input_keys(self) -> List[str]: """Expect input key. :meta private: """ return [self.instructions_key] @property
https://python.langchain.com/en/latest/_modules/langchain/chains/api/openapi/chain.html
7ff2178f8c30-1
""" return [self.instructions_key] @property def output_keys(self) -> List[str]: """Expect output key. :meta private: """ if not self.return_intermediate_steps: return [self.output_key] else: return [self.output_key, "intermediate_steps"] def _construct_path(self, args: Dict[str, str]) -> str: """Construct the path from the deserialized input.""" path = self.api_operation.base_url + self.api_operation.path for param in self.param_mapping.path_params: path = path.replace(f"{{{param}}}", str(args.pop(param, ""))) return path def _extract_query_params(self, args: Dict[str, str]) -> Dict[str, str]: """Extract the query params from the deserialized input.""" query_params = {} for param in self.param_mapping.query_params: if param in args: query_params[param] = args.pop(param) return query_params def _extract_body_params(self, args: Dict[str, str]) -> Optional[Dict[str, str]]: """Extract the request body params from the deserialized input.""" body_params = None if self.param_mapping.body_params: body_params = {} for param in self.param_mapping.body_params: if param in args: body_params[param] = args.pop(param) return body_params [docs] def deserialize_json_input(self, serialized_args: str) -> dict: """Use the serialized typescript dictionary. Resolve the path, query params dict, and optional requestBody dict. """ args: dict = json.loads(serialized_args) path = self._construct_path(args)
https://python.langchain.com/en/latest/_modules/langchain/chains/api/openapi/chain.html
7ff2178f8c30-2
path = self._construct_path(args) body_params = self._extract_body_params(args) query_params = self._extract_query_params(args) return { "url": path, "data": body_params, "params": query_params, } def _get_output(self, output: str, intermediate_steps: dict) -> dict: """Return the output from the API call.""" if self.return_intermediate_steps: return { self.output_key: output, "intermediate_steps": intermediate_steps, } else: return {self.output_key: output} def _call( self, inputs: Dict[str, Any], run_manager: Optional[CallbackManagerForChainRun] = None, ) -> Dict[str, str]: _run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager() intermediate_steps = {} instructions = inputs[self.instructions_key] instructions = instructions[: self.max_text_length] _api_arguments = self.api_request_chain.predict_and_parse( instructions=instructions, callbacks=_run_manager.get_child() ) api_arguments = cast(str, _api_arguments) intermediate_steps["request_args"] = api_arguments _run_manager.on_text( api_arguments, color="green", end="\n", verbose=self.verbose ) if api_arguments.startswith("ERROR"): return self._get_output(api_arguments, intermediate_steps) elif api_arguments.startswith("MESSAGE:"): return self._get_output( api_arguments[len("MESSAGE:") :], intermediate_steps ) try: request_args = self.deserialize_json_input(api_arguments) method = getattr(self.requests, self.api_operation.method.value)
https://python.langchain.com/en/latest/_modules/langchain/chains/api/openapi/chain.html
7ff2178f8c30-3
method = getattr(self.requests, self.api_operation.method.value) api_response: Response = method(**request_args) if api_response.status_code != 200: method_str = str(self.api_operation.method.value) response_text = ( f"{api_response.status_code}: {api_response.reason}" + f"\nFor {method_str.upper()} {request_args['url']}\n" + f"Called with args: {request_args['params']}" ) else: response_text = api_response.text except Exception as e: response_text = f"Error with message {str(e)}" response_text = response_text[: self.max_text_length] intermediate_steps["response_text"] = response_text _run_manager.on_text( response_text, color="blue", end="\n", verbose=self.verbose ) if self.api_response_chain is not None: _answer = self.api_response_chain.predict_and_parse( response=response_text, instructions=instructions, callbacks=_run_manager.get_child(), ) answer = cast(str, _answer) _run_manager.on_text(answer, color="yellow", end="\n", verbose=self.verbose) return self._get_output(answer, intermediate_steps) else: return self._get_output(response_text, intermediate_steps) [docs] @classmethod def from_url_and_method( cls, spec_url: str, path: str, method: str, llm: BaseLanguageModel, requests: Optional[Requests] = None, return_intermediate_steps: bool = False, **kwargs: Any # TODO: Handle async ) -> "OpenAPIEndpointChain":
https://python.langchain.com/en/latest/_modules/langchain/chains/api/openapi/chain.html
7ff2178f8c30-4
# TODO: Handle async ) -> "OpenAPIEndpointChain": """Create an OpenAPIEndpoint from a spec at the specified url.""" operation = APIOperation.from_openapi_url(spec_url, path, method) return cls.from_api_operation( operation, requests=requests, llm=llm, return_intermediate_steps=return_intermediate_steps, **kwargs, ) [docs] @classmethod def from_api_operation( cls, operation: APIOperation, llm: BaseLanguageModel, requests: Optional[Requests] = None, verbose: bool = False, return_intermediate_steps: bool = False, raw_response: bool = False, callbacks: Callbacks = None, **kwargs: Any # TODO: Handle async ) -> "OpenAPIEndpointChain": """Create an OpenAPIEndpointChain from an operation and a spec.""" param_mapping = _ParamMapping( query_params=operation.query_params, body_params=operation.body_params, path_params=operation.path_params, ) requests_chain = APIRequesterChain.from_llm_and_typescript( llm, typescript_definition=operation.to_typescript(), verbose=verbose, callbacks=callbacks, ) if raw_response: response_chain = None else: response_chain = APIResponderChain.from_llm( llm, verbose=verbose, callbacks=callbacks ) _requests = requests or Requests() return cls( api_request_chain=requests_chain, api_response_chain=response_chain, api_operation=operation, requests=_requests, param_mapping=param_mapping,
https://python.langchain.com/en/latest/_modules/langchain/chains/api/openapi/chain.html
7ff2178f8c30-5
requests=_requests, param_mapping=param_mapping, verbose=verbose, return_intermediate_steps=return_intermediate_steps, callbacks=callbacks, **kwargs, ) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/_modules/langchain/chains/api/openapi/chain.html
c9dfcee453ee-0
Source code for langchain.chains.qa_with_sources.vector_db """Question-answering with sources over a vector database.""" import warnings from typing import Any, Dict, List from pydantic import Field, root_validator from langchain.chains.combine_documents.stuff import StuffDocumentsChain from langchain.chains.qa_with_sources.base import BaseQAWithSourcesChain from langchain.docstore.document import Document from langchain.vectorstores.base import VectorStore [docs]class VectorDBQAWithSourcesChain(BaseQAWithSourcesChain): """Question-answering with sources over a vector database.""" vectorstore: VectorStore = Field(exclude=True) """Vector Database to connect to.""" k: int = 4 """Number of results to return from store""" reduce_k_below_max_tokens: bool = False """Reduce the number of results to return from store based on tokens limit""" max_tokens_limit: int = 3375 """Restrict the docs to return from store based on tokens, enforced only for StuffDocumentChain and if reduce_k_below_max_tokens is to true""" search_kwargs: Dict[str, Any] = Field(default_factory=dict) """Extra search args.""" def _reduce_tokens_below_limit(self, docs: List[Document]) -> List[Document]: num_docs = len(docs) if self.reduce_k_below_max_tokens and isinstance( self.combine_documents_chain, StuffDocumentsChain ): tokens = [ self.combine_documents_chain.llm_chain.llm.get_num_tokens( doc.page_content ) for doc in docs ] token_count = sum(tokens[:num_docs]) while token_count > self.max_tokens_limit: num_docs -= 1 token_count -= tokens[num_docs]
https://python.langchain.com/en/latest/_modules/langchain/chains/qa_with_sources/vector_db.html
c9dfcee453ee-1
num_docs -= 1 token_count -= tokens[num_docs] return docs[:num_docs] def _get_docs(self, inputs: Dict[str, Any]) -> List[Document]: question = inputs[self.question_key] docs = self.vectorstore.similarity_search( question, k=self.k, **self.search_kwargs ) return self._reduce_tokens_below_limit(docs) async def _aget_docs(self, inputs: Dict[str, Any]) -> List[Document]: raise NotImplementedError("VectorDBQAWithSourcesChain does not support async") @root_validator() def raise_deprecation(cls, values: Dict) -> Dict: warnings.warn( "`VectorDBQAWithSourcesChain` is deprecated - " "please use `from langchain.chains import RetrievalQAWithSourcesChain`" ) return values @property def _chain_type(self) -> str: return "vector_db_qa_with_sources_chain" By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/_modules/langchain/chains/qa_with_sources/vector_db.html
407c37287e7f-0
Source code for langchain.chains.qa_with_sources.base """Question answering with sources over documents.""" from __future__ import annotations import re from abc import ABC, abstractmethod from typing import Any, Dict, List, Optional from pydantic import Extra, root_validator from langchain.base_language import BaseLanguageModel from langchain.callbacks.manager import ( AsyncCallbackManagerForChainRun, CallbackManagerForChainRun, ) from langchain.chains.base import Chain from langchain.chains.combine_documents.base import BaseCombineDocumentsChain from langchain.chains.combine_documents.map_reduce import MapReduceDocumentsChain from langchain.chains.combine_documents.stuff import StuffDocumentsChain from langchain.chains.llm import LLMChain from langchain.chains.qa_with_sources.loading import load_qa_with_sources_chain from langchain.chains.qa_with_sources.map_reduce_prompt import ( COMBINE_PROMPT, EXAMPLE_PROMPT, QUESTION_PROMPT, ) from langchain.docstore.document import Document from langchain.prompts.base import BasePromptTemplate class BaseQAWithSourcesChain(Chain, ABC): """Question answering with sources over documents.""" combine_documents_chain: BaseCombineDocumentsChain """Chain to use to combine documents.""" question_key: str = "question" #: :meta private: input_docs_key: str = "docs" #: :meta private: answer_key: str = "answer" #: :meta private: sources_answer_key: str = "sources" #: :meta private: return_source_documents: bool = False """Return the source documents.""" @classmethod def from_llm( cls, llm: BaseLanguageModel, document_prompt: BasePromptTemplate = EXAMPLE_PROMPT,
https://python.langchain.com/en/latest/_modules/langchain/chains/qa_with_sources/base.html
407c37287e7f-1
document_prompt: BasePromptTemplate = EXAMPLE_PROMPT, question_prompt: BasePromptTemplate = QUESTION_PROMPT, combine_prompt: BasePromptTemplate = COMBINE_PROMPT, **kwargs: Any, ) -> BaseQAWithSourcesChain: """Construct the chain from an LLM.""" llm_question_chain = LLMChain(llm=llm, prompt=question_prompt) llm_combine_chain = LLMChain(llm=llm, prompt=combine_prompt) combine_results_chain = StuffDocumentsChain( llm_chain=llm_combine_chain, document_prompt=document_prompt, document_variable_name="summaries", ) combine_document_chain = MapReduceDocumentsChain( llm_chain=llm_question_chain, combine_document_chain=combine_results_chain, document_variable_name="context", ) return cls( combine_documents_chain=combine_document_chain, **kwargs, ) @classmethod def from_chain_type( cls, llm: BaseLanguageModel, chain_type: str = "stuff", chain_type_kwargs: Optional[dict] = None, **kwargs: Any, ) -> BaseQAWithSourcesChain: """Load chain from chain type.""" _chain_kwargs = chain_type_kwargs or {} combine_document_chain = load_qa_with_sources_chain( llm, chain_type=chain_type, **_chain_kwargs ) return cls(combine_documents_chain=combine_document_chain, **kwargs) class Config: """Configuration for this pydantic object.""" extra = Extra.forbid arbitrary_types_allowed = True @property def input_keys(self) -> List[str]: """Expect input key.
https://python.langchain.com/en/latest/_modules/langchain/chains/qa_with_sources/base.html
407c37287e7f-2
def input_keys(self) -> List[str]: """Expect input key. :meta private: """ return [self.question_key] @property def output_keys(self) -> List[str]: """Return output key. :meta private: """ _output_keys = [self.answer_key, self.sources_answer_key] if self.return_source_documents: _output_keys = _output_keys + ["source_documents"] return _output_keys @root_validator(pre=True) def validate_naming(cls, values: Dict) -> Dict: """Fix backwards compatability in naming.""" if "combine_document_chain" in values: values["combine_documents_chain"] = values.pop("combine_document_chain") return values @abstractmethod def _get_docs(self, inputs: Dict[str, Any]) -> List[Document]: """Get docs to run questioning over.""" def _call( self, inputs: Dict[str, Any], run_manager: Optional[CallbackManagerForChainRun] = None, ) -> Dict[str, str]: _run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager() docs = self._get_docs(inputs) answer = self.combine_documents_chain.run( input_documents=docs, callbacks=_run_manager.get_child(), **inputs ) if re.search(r"SOURCES:\s", answer): answer, sources = re.split(r"SOURCES:\s", answer) else: sources = "" result: Dict[str, Any] = { self.answer_key: answer, self.sources_answer_key: sources, } if self.return_source_documents: result["source_documents"] = docs
https://python.langchain.com/en/latest/_modules/langchain/chains/qa_with_sources/base.html
407c37287e7f-3
} if self.return_source_documents: result["source_documents"] = docs return result @abstractmethod async def _aget_docs(self, inputs: Dict[str, Any]) -> List[Document]: """Get docs to run questioning over.""" async def _acall( self, inputs: Dict[str, Any], run_manager: Optional[AsyncCallbackManagerForChainRun] = None, ) -> Dict[str, Any]: _run_manager = run_manager or AsyncCallbackManagerForChainRun.get_noop_manager() docs = await self._aget_docs(inputs) answer = await self.combine_documents_chain.arun( input_documents=docs, callbacks=_run_manager.get_child(), **inputs ) if re.search(r"SOURCES:\s", answer): answer, sources = re.split(r"SOURCES:\s", answer) else: sources = "" result: Dict[str, Any] = { self.answer_key: answer, self.sources_answer_key: sources, } if self.return_source_documents: result["source_documents"] = docs return result [docs]class QAWithSourcesChain(BaseQAWithSourcesChain): """Question answering with sources over documents.""" input_docs_key: str = "docs" #: :meta private: @property def input_keys(self) -> List[str]: """Expect input key. :meta private: """ return [self.input_docs_key, self.question_key] def _get_docs(self, inputs: Dict[str, Any]) -> List[Document]: return inputs.pop(self.input_docs_key) async def _aget_docs(self, inputs: Dict[str, Any]) -> List[Document]:
https://python.langchain.com/en/latest/_modules/langchain/chains/qa_with_sources/base.html
407c37287e7f-4
return inputs.pop(self.input_docs_key) @property def _chain_type(self) -> str: return "qa_with_sources_chain" By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/_modules/langchain/chains/qa_with_sources/base.html
1ebe33b41017-0
Source code for langchain.chains.qa_with_sources.retrieval """Question-answering with sources over an index.""" from typing import Any, Dict, List from pydantic import Field from langchain.chains.combine_documents.stuff import StuffDocumentsChain from langchain.chains.qa_with_sources.base import BaseQAWithSourcesChain from langchain.docstore.document import Document from langchain.schema import BaseRetriever [docs]class RetrievalQAWithSourcesChain(BaseQAWithSourcesChain): """Question-answering with sources over an index.""" retriever: BaseRetriever = Field(exclude=True) """Index to connect to.""" reduce_k_below_max_tokens: bool = False """Reduce the number of results to return from store based on tokens limit""" max_tokens_limit: int = 3375 """Restrict the docs to return from store based on tokens, enforced only for StuffDocumentChain and if reduce_k_below_max_tokens is to true""" def _reduce_tokens_below_limit(self, docs: List[Document]) -> List[Document]: num_docs = len(docs) if self.reduce_k_below_max_tokens and isinstance( self.combine_documents_chain, StuffDocumentsChain ): tokens = [ self.combine_documents_chain.llm_chain.llm.get_num_tokens( doc.page_content ) for doc in docs ] token_count = sum(tokens[:num_docs]) while token_count > self.max_tokens_limit: num_docs -= 1 token_count -= tokens[num_docs] return docs[:num_docs] def _get_docs(self, inputs: Dict[str, Any]) -> List[Document]: question = inputs[self.question_key] docs = self.retriever.get_relevant_documents(question)
https://python.langchain.com/en/latest/_modules/langchain/chains/qa_with_sources/retrieval.html
1ebe33b41017-1
docs = self.retriever.get_relevant_documents(question) return self._reduce_tokens_below_limit(docs) async def _aget_docs(self, inputs: Dict[str, Any]) -> List[Document]: question = inputs[self.question_key] docs = await self.retriever.aget_relevant_documents(question) return self._reduce_tokens_below_limit(docs) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/_modules/langchain/chains/qa_with_sources/retrieval.html
c25d7c62eb01-0
Source code for langchain.chains.flare.base from __future__ import annotations import re from abc import abstractmethod from typing import Any, Dict, List, Optional, Sequence, Tuple import numpy as np from pydantic import Field from langchain.base_language import BaseLanguageModel from langchain.callbacks.manager import ( CallbackManagerForChainRun, ) from langchain.chains.base import Chain from langchain.chains.flare.prompts import ( PROMPT, QUESTION_GENERATOR_PROMPT, FinishedOutputParser, ) from langchain.chains.llm import LLMChain from langchain.llms import OpenAI from langchain.prompts import BasePromptTemplate from langchain.schema import BaseRetriever, Generation class _ResponseChain(LLMChain): prompt: BasePromptTemplate = PROMPT @property def input_keys(self) -> List[str]: return self.prompt.input_variables def generate_tokens_and_log_probs( self, _input: Dict[str, Any], *, run_manager: Optional[CallbackManagerForChainRun] = None, ) -> Tuple[Sequence[str], Sequence[float]]: llm_result = self.generate([_input], run_manager=run_manager) return self._extract_tokens_and_log_probs(llm_result.generations[0]) @abstractmethod def _extract_tokens_and_log_probs( self, generations: List[Generation] ) -> Tuple[Sequence[str], Sequence[float]]: """Extract tokens and log probs from response.""" class _OpenAIResponseChain(_ResponseChain): llm: OpenAI = Field( default_factory=lambda: OpenAI( max_tokens=32, model_kwargs={"logprobs": 1}, temperature=0 )
https://python.langchain.com/en/latest/_modules/langchain/chains/flare/base.html
c25d7c62eb01-1
) ) def _extract_tokens_and_log_probs( self, generations: List[Generation] ) -> Tuple[Sequence[str], Sequence[float]]: tokens = [] log_probs = [] for gen in generations: if gen.generation_info is None: raise ValueError tokens.extend(gen.generation_info["logprobs"]["tokens"]) log_probs.extend(gen.generation_info["logprobs"]["token_logprobs"]) return tokens, log_probs class QuestionGeneratorChain(LLMChain): prompt: BasePromptTemplate = QUESTION_GENERATOR_PROMPT @property def input_keys(self) -> List[str]: return ["user_input", "context", "response"] def _low_confidence_spans( tokens: Sequence[str], log_probs: Sequence[float], min_prob: float, min_token_gap: int, num_pad_tokens: int, ) -> List[str]: _low_idx = np.where(np.exp(log_probs) < min_prob)[0] low_idx = [i for i in _low_idx if re.search(r"\w", tokens[i])] if len(low_idx) == 0: return [] spans = [[low_idx[0], low_idx[0] + num_pad_tokens + 1]] for i, idx in enumerate(low_idx[1:]): end = idx + num_pad_tokens + 1 if idx - low_idx[i] < min_token_gap: spans[-1][1] = end else: spans.append([idx, end]) return ["".join(tokens[start:end]) for start, end in spans] [docs]class FlareChain(Chain): question_generator_chain: QuestionGeneratorChain
https://python.langchain.com/en/latest/_modules/langchain/chains/flare/base.html
c25d7c62eb01-2
[docs]class FlareChain(Chain): question_generator_chain: QuestionGeneratorChain response_chain: _ResponseChain = Field(default_factory=_OpenAIResponseChain) output_parser: FinishedOutputParser = Field(default_factory=FinishedOutputParser) retriever: BaseRetriever min_prob: float = 0.2 min_token_gap: int = 5 num_pad_tokens: int = 2 max_iter: int = 10 start_with_retrieval: bool = True @property def input_keys(self) -> List[str]: return ["user_input"] @property def output_keys(self) -> List[str]: return ["response"] def _do_generation( self, questions: List[str], user_input: str, response: str, _run_manager: CallbackManagerForChainRun, ) -> Tuple[str, bool]: callbacks = _run_manager.get_child() docs = [] for question in questions: docs.extend(self.retriever.get_relevant_documents(question)) context = "\n\n".join(d.page_content for d in docs) result = self.response_chain.predict( user_input=user_input, context=context, response=response, callbacks=callbacks, ) marginal, finished = self.output_parser.parse(result) return marginal, finished def _do_retrieval( self, low_confidence_spans: List[str], _run_manager: CallbackManagerForChainRun, user_input: str, response: str, initial_response: str, ) -> Tuple[str, bool]: question_gen_inputs = [ { "user_input": user_input,
https://python.langchain.com/en/latest/_modules/langchain/chains/flare/base.html
c25d7c62eb01-3
question_gen_inputs = [ { "user_input": user_input, "current_response": initial_response, "uncertain_span": span, } for span in low_confidence_spans ] callbacks = _run_manager.get_child() question_gen_outputs = self.question_generator_chain.apply( question_gen_inputs, callbacks=callbacks ) questions = [ output[self.question_generator_chain.output_keys[0]] for output in question_gen_outputs ] _run_manager.on_text( f"Generated Questions: {questions}", color="yellow", end="\n" ) return self._do_generation(questions, user_input, response, _run_manager) def _call( self, inputs: Dict[str, Any], run_manager: Optional[CallbackManagerForChainRun] = None, ) -> Dict[str, Any]: _run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager() user_input = inputs[self.input_keys[0]] response = "" for i in range(self.max_iter): _run_manager.on_text( f"Current Response: {response}", color="blue", end="\n" ) _input = {"user_input": user_input, "context": "", "response": response} tokens, log_probs = self.response_chain.generate_tokens_and_log_probs( _input, run_manager=_run_manager ) low_confidence_spans = _low_confidence_spans( tokens, log_probs, self.min_prob, self.min_token_gap, self.num_pad_tokens, ) initial_response = response.strip() + " " + "".join(tokens)
https://python.langchain.com/en/latest/_modules/langchain/chains/flare/base.html
c25d7c62eb01-4
) initial_response = response.strip() + " " + "".join(tokens) if not low_confidence_spans: response = initial_response final_response, finished = self.output_parser.parse(response) if finished: return {self.output_keys[0]: final_response} continue marginal, finished = self._do_retrieval( low_confidence_spans, _run_manager, user_input, response, initial_response, ) response = response.strip() + " " + marginal if finished: break return {self.output_keys[0]: response} [docs] @classmethod def from_llm( cls, llm: BaseLanguageModel, max_generation_len: int = 32, **kwargs: Any ) -> FlareChain: question_gen_chain = QuestionGeneratorChain(llm=llm) response_llm = OpenAI( max_tokens=max_generation_len, model_kwargs={"logprobs": 1}, temperature=0 ) response_chain = _OpenAIResponseChain(llm=response_llm) return cls( question_generator_chain=question_gen_chain, response_chain=response_chain, **kwargs, ) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/_modules/langchain/chains/flare/base.html
85376e47619a-0
Source code for langchain.chains.retrieval_qa.base """Chain for question-answering against a vector database.""" from __future__ import annotations import warnings from abc import abstractmethod from typing import Any, Dict, List, Optional from pydantic import Extra, Field, root_validator from langchain.base_language import BaseLanguageModel from langchain.callbacks.manager import ( AsyncCallbackManagerForChainRun, CallbackManagerForChainRun, ) from langchain.chains.base import Chain from langchain.chains.combine_documents.base import BaseCombineDocumentsChain from langchain.chains.combine_documents.stuff import StuffDocumentsChain from langchain.chains.llm import LLMChain from langchain.chains.question_answering import load_qa_chain from langchain.chains.question_answering.stuff_prompt import PROMPT_SELECTOR from langchain.prompts import PromptTemplate from langchain.schema import BaseRetriever, Document from langchain.vectorstores.base import VectorStore class BaseRetrievalQA(Chain): combine_documents_chain: BaseCombineDocumentsChain """Chain to use to combine the documents.""" input_key: str = "query" #: :meta private: output_key: str = "result" #: :meta private: return_source_documents: bool = False """Return the source documents.""" class Config: """Configuration for this pydantic object.""" extra = Extra.forbid arbitrary_types_allowed = True allow_population_by_field_name = True @property def input_keys(self) -> List[str]: """Return the input keys. :meta private: """ return [self.input_key] @property def output_keys(self) -> List[str]: """Return the output keys.
https://python.langchain.com/en/latest/_modules/langchain/chains/retrieval_qa/base.html
85376e47619a-1
def output_keys(self) -> List[str]: """Return the output keys. :meta private: """ _output_keys = [self.output_key] if self.return_source_documents: _output_keys = _output_keys + ["source_documents"] return _output_keys @classmethod def from_llm( cls, llm: BaseLanguageModel, prompt: Optional[PromptTemplate] = None, **kwargs: Any, ) -> BaseRetrievalQA: """Initialize from LLM.""" _prompt = prompt or PROMPT_SELECTOR.get_prompt(llm) llm_chain = LLMChain(llm=llm, prompt=_prompt) document_prompt = PromptTemplate( input_variables=["page_content"], template="Context:\n{page_content}" ) combine_documents_chain = StuffDocumentsChain( llm_chain=llm_chain, document_variable_name="context", document_prompt=document_prompt, ) return cls(combine_documents_chain=combine_documents_chain, **kwargs) @classmethod def from_chain_type( cls, llm: BaseLanguageModel, chain_type: str = "stuff", chain_type_kwargs: Optional[dict] = None, **kwargs: Any, ) -> BaseRetrievalQA: """Load chain from chain type.""" _chain_type_kwargs = chain_type_kwargs or {} combine_documents_chain = load_qa_chain( llm, chain_type=chain_type, **_chain_type_kwargs ) return cls(combine_documents_chain=combine_documents_chain, **kwargs) @abstractmethod def _get_docs(self, question: str) -> List[Document]:
https://python.langchain.com/en/latest/_modules/langchain/chains/retrieval_qa/base.html
85376e47619a-2
def _get_docs(self, question: str) -> List[Document]: """Get documents to do question answering over.""" def _call( self, inputs: Dict[str, Any], run_manager: Optional[CallbackManagerForChainRun] = None, ) -> Dict[str, Any]: """Run get_relevant_text and llm on input query. If chain has 'return_source_documents' as 'True', returns the retrieved documents as well under the key 'source_documents'. Example: .. code-block:: python res = indexqa({'query': 'This is my query'}) answer, docs = res['result'], res['source_documents'] """ _run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager() question = inputs[self.input_key] docs = self._get_docs(question) answer = self.combine_documents_chain.run( input_documents=docs, question=question, callbacks=_run_manager.get_child() ) if self.return_source_documents: return {self.output_key: answer, "source_documents": docs} else: return {self.output_key: answer} @abstractmethod async def _aget_docs(self, question: str) -> List[Document]: """Get documents to do question answering over.""" async def _acall( self, inputs: Dict[str, Any], run_manager: Optional[AsyncCallbackManagerForChainRun] = None, ) -> Dict[str, Any]: """Run get_relevant_text and llm on input query. If chain has 'return_source_documents' as 'True', returns the retrieved documents as well under the key 'source_documents'. Example:
https://python.langchain.com/en/latest/_modules/langchain/chains/retrieval_qa/base.html
85376e47619a-3
the retrieved documents as well under the key 'source_documents'. Example: .. code-block:: python res = indexqa({'query': 'This is my query'}) answer, docs = res['result'], res['source_documents'] """ _run_manager = run_manager or AsyncCallbackManagerForChainRun.get_noop_manager() question = inputs[self.input_key] docs = await self._aget_docs(question) answer = await self.combine_documents_chain.arun( input_documents=docs, question=question, callbacks=_run_manager.get_child() ) if self.return_source_documents: return {self.output_key: answer, "source_documents": docs} else: return {self.output_key: answer} [docs]class RetrievalQA(BaseRetrievalQA): """Chain for question-answering against an index. Example: .. code-block:: python from langchain.llms import OpenAI from langchain.chains import RetrievalQA from langchain.faiss import FAISS from langchain.vectorstores.base import VectorStoreRetriever retriever = VectorStoreRetriever(vectorstore=FAISS(...)) retrievalQA = RetrievalQA.from_llm(llm=OpenAI(), retriever=retriever) """ retriever: BaseRetriever = Field(exclude=True) def _get_docs(self, question: str) -> List[Document]: return self.retriever.get_relevant_documents(question) async def _aget_docs(self, question: str) -> List[Document]: return await self.retriever.aget_relevant_documents(question) @property def _chain_type(self) -> str: """Return the chain type."""
https://python.langchain.com/en/latest/_modules/langchain/chains/retrieval_qa/base.html
85376e47619a-4
def _chain_type(self) -> str: """Return the chain type.""" return "retrieval_qa" [docs]class VectorDBQA(BaseRetrievalQA): """Chain for question-answering against a vector database.""" vectorstore: VectorStore = Field(exclude=True, alias="vectorstore") """Vector Database to connect to.""" k: int = 4 """Number of documents to query for.""" search_type: str = "similarity" """Search type to use over vectorstore. `similarity` or `mmr`.""" search_kwargs: Dict[str, Any] = Field(default_factory=dict) """Extra search args.""" @root_validator() def raise_deprecation(cls, values: Dict) -> Dict: warnings.warn( "`VectorDBQA` is deprecated - " "please use `from langchain.chains import RetrievalQA`" ) return values @root_validator() def validate_search_type(cls, values: Dict) -> Dict: """Validate search type.""" if "search_type" in values: search_type = values["search_type"] if search_type not in ("similarity", "mmr"): raise ValueError(f"search_type of {search_type} not allowed.") return values def _get_docs(self, question: str) -> List[Document]: if self.search_type == "similarity": docs = self.vectorstore.similarity_search( question, k=self.k, **self.search_kwargs ) elif self.search_type == "mmr": docs = self.vectorstore.max_marginal_relevance_search( question, k=self.k, **self.search_kwargs )
https://python.langchain.com/en/latest/_modules/langchain/chains/retrieval_qa/base.html
85376e47619a-5
question, k=self.k, **self.search_kwargs ) else: raise ValueError(f"search_type of {self.search_type} not allowed.") return docs async def _aget_docs(self, question: str) -> List[Document]: raise NotImplementedError("VectorDBQA does not support async") @property def _chain_type(self) -> str: """Return the chain type.""" return "vector_db_qa" By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/_modules/langchain/chains/retrieval_qa/base.html
39ed26610433-0
Source code for langchain.chains.conversation.base """Chain that carries on a conversation and calls an LLM.""" from typing import Dict, List from pydantic import Extra, Field, root_validator from langchain.chains.conversation.prompt import PROMPT from langchain.chains.llm import LLMChain from langchain.memory.buffer import ConversationBufferMemory from langchain.prompts.base import BasePromptTemplate from langchain.schema import BaseMemory [docs]class ConversationChain(LLMChain): """Chain to have a conversation and load context from memory. Example: .. code-block:: python from langchain import ConversationChain, OpenAI conversation = ConversationChain(llm=OpenAI()) """ memory: BaseMemory = Field(default_factory=ConversationBufferMemory) """Default memory store.""" prompt: BasePromptTemplate = PROMPT """Default conversation prompt to use.""" input_key: str = "input" #: :meta private: output_key: str = "response" #: :meta private: class Config: """Configuration for this pydantic object.""" extra = Extra.forbid arbitrary_types_allowed = True @property def input_keys(self) -> List[str]: """Use this since so some prompt vars come from history.""" return [self.input_key] @root_validator() def validate_prompt_input_variables(cls, values: Dict) -> Dict: """Validate that prompt input variables are consistent.""" memory_keys = values["memory"].memory_variables input_key = values["input_key"] if input_key in memory_keys: raise ValueError( f"The input key {input_key} was also found in the memory keys "
https://python.langchain.com/en/latest/_modules/langchain/chains/conversation/base.html
39ed26610433-1
f"The input key {input_key} was also found in the memory keys " f"({memory_keys}) - please provide keys that don't overlap." ) prompt_variables = values["prompt"].input_variables expected_keys = memory_keys + [input_key] if set(expected_keys) != set(prompt_variables): raise ValueError( "Got unexpected prompt input variables. The prompt expects " f"{prompt_variables}, but got {memory_keys} as inputs from " f"memory, and {input_key} as the normal input key." ) return values By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/_modules/langchain/chains/conversation/base.html
b10c666cd675-0
Source code for langchain.chains.llm_bash.base """Chain that interprets a prompt and executes bash code to perform bash operations.""" from __future__ import annotations import logging import warnings from typing import Any, Dict, List, Optional from pydantic import Extra, Field, root_validator from langchain.base_language import BaseLanguageModel from langchain.callbacks.manager import CallbackManagerForChainRun from langchain.chains.base import Chain from langchain.chains.llm import LLMChain from langchain.chains.llm_bash.prompt import PROMPT from langchain.prompts.base import BasePromptTemplate from langchain.schema import OutputParserException from langchain.utilities.bash import BashProcess logger = logging.getLogger(__name__) [docs]class LLMBashChain(Chain): """Chain that interprets a prompt and executes bash code to perform bash operations. Example: .. code-block:: python from langchain import LLMBashChain, OpenAI llm_bash = LLMBashChain.from_llm(OpenAI()) """ llm_chain: LLMChain llm: Optional[BaseLanguageModel] = None """[Deprecated] LLM wrapper to use.""" input_key: str = "question" #: :meta private: output_key: str = "answer" #: :meta private: prompt: BasePromptTemplate = PROMPT """[Deprecated]""" bash_process: BashProcess = Field(default_factory=BashProcess) #: :meta private: class Config: """Configuration for this pydantic object.""" extra = Extra.forbid arbitrary_types_allowed = True @root_validator(pre=True) def raise_deprecation(cls, values: Dict) -> Dict:
https://python.langchain.com/en/latest/_modules/langchain/chains/llm_bash/base.html
b10c666cd675-1
def raise_deprecation(cls, values: Dict) -> Dict: if "llm" in values: warnings.warn( "Directly instantiating an LLMBashChain with an llm is deprecated. " "Please instantiate with llm_chain or using the from_llm class method." ) if "llm_chain" not in values and values["llm"] is not None: prompt = values.get("prompt", PROMPT) values["llm_chain"] = LLMChain(llm=values["llm"], prompt=prompt) return values @root_validator def validate_prompt(cls, values: Dict) -> Dict: if values["llm_chain"].prompt.output_parser is None: raise ValueError( "The prompt used by llm_chain is expected to have an output_parser." ) return values @property def input_keys(self) -> List[str]: """Expect input key. :meta private: """ return [self.input_key] @property def output_keys(self) -> List[str]: """Expect output key. :meta private: """ return [self.output_key] def _call( self, inputs: Dict[str, Any], run_manager: Optional[CallbackManagerForChainRun] = None, ) -> Dict[str, str]: _run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager() _run_manager.on_text(inputs[self.input_key], verbose=self.verbose) t = self.llm_chain.predict( question=inputs[self.input_key], callbacks=_run_manager.get_child() ) _run_manager.on_text(t, color="green", verbose=self.verbose)
https://python.langchain.com/en/latest/_modules/langchain/chains/llm_bash/base.html
b10c666cd675-2
) _run_manager.on_text(t, color="green", verbose=self.verbose) t = t.strip() try: parser = self.llm_chain.prompt.output_parser command_list = parser.parse(t) # type: ignore[union-attr] except OutputParserException as e: _run_manager.on_chain_error(e, verbose=self.verbose) raise e if self.verbose: _run_manager.on_text("\nCode: ", verbose=self.verbose) _run_manager.on_text( str(command_list), color="yellow", verbose=self.verbose ) output = self.bash_process.run(command_list) _run_manager.on_text("\nAnswer: ", verbose=self.verbose) _run_manager.on_text(output, color="yellow", verbose=self.verbose) return {self.output_key: output} @property def _chain_type(self) -> str: return "llm_bash_chain" [docs] @classmethod def from_llm( cls, llm: BaseLanguageModel, prompt: BasePromptTemplate = PROMPT, **kwargs: Any, ) -> LLMBashChain: llm_chain = LLMChain(llm=llm, prompt=prompt) return cls(llm_chain=llm_chain, **kwargs) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/_modules/langchain/chains/llm_bash/base.html
50d43427de4a-0
Source code for langchain.chains.llm_summarization_checker.base """Chain for summarization with self-verification.""" from __future__ import annotations import warnings from pathlib import Path from typing import Any, Dict, List, Optional from pydantic import Extra, root_validator from langchain.base_language import BaseLanguageModel from langchain.callbacks.manager import CallbackManagerForChainRun from langchain.chains.base import Chain from langchain.chains.llm import LLMChain from langchain.chains.sequential import SequentialChain from langchain.prompts.prompt import PromptTemplate PROMPTS_DIR = Path(__file__).parent / "prompts" CREATE_ASSERTIONS_PROMPT = PromptTemplate.from_file( PROMPTS_DIR / "create_facts.txt", ["summary"] ) CHECK_ASSERTIONS_PROMPT = PromptTemplate.from_file( PROMPTS_DIR / "check_facts.txt", ["assertions"] ) REVISED_SUMMARY_PROMPT = PromptTemplate.from_file( PROMPTS_DIR / "revise_summary.txt", ["checked_assertions", "summary"] ) ARE_ALL_TRUE_PROMPT = PromptTemplate.from_file( PROMPTS_DIR / "are_all_true_prompt.txt", ["checked_assertions"] ) def _load_sequential_chain( llm: BaseLanguageModel, create_assertions_prompt: PromptTemplate, check_assertions_prompt: PromptTemplate, revised_summary_prompt: PromptTemplate, are_all_true_prompt: PromptTemplate, verbose: bool = False, ) -> SequentialChain: chain = SequentialChain( chains=[ LLMChain( llm=llm, prompt=create_assertions_prompt, output_key="assertions", verbose=verbose, ), LLMChain(
https://python.langchain.com/en/latest/_modules/langchain/chains/llm_summarization_checker/base.html
50d43427de4a-1
verbose=verbose, ), LLMChain( llm=llm, prompt=check_assertions_prompt, output_key="checked_assertions", verbose=verbose, ), LLMChain( llm=llm, prompt=revised_summary_prompt, output_key="revised_summary", verbose=verbose, ), LLMChain( llm=llm, output_key="all_true", prompt=are_all_true_prompt, verbose=verbose, ), ], input_variables=["summary"], output_variables=["all_true", "revised_summary"], verbose=verbose, ) return chain [docs]class LLMSummarizationCheckerChain(Chain): """Chain for question-answering with self-verification. Example: .. code-block:: python from langchain import OpenAI, LLMSummarizationCheckerChain llm = OpenAI(temperature=0.0) checker_chain = LLMSummarizationCheckerChain.from_llm(llm) """ sequential_chain: SequentialChain llm: Optional[BaseLanguageModel] = None """[Deprecated] LLM wrapper to use.""" create_assertions_prompt: PromptTemplate = CREATE_ASSERTIONS_PROMPT """[Deprecated]""" check_assertions_prompt: PromptTemplate = CHECK_ASSERTIONS_PROMPT """[Deprecated]""" revised_summary_prompt: PromptTemplate = REVISED_SUMMARY_PROMPT """[Deprecated]""" are_all_true_prompt: PromptTemplate = ARE_ALL_TRUE_PROMPT """[Deprecated]""" input_key: str = "query" #: :meta private:
https://python.langchain.com/en/latest/_modules/langchain/chains/llm_summarization_checker/base.html
50d43427de4a-2
input_key: str = "query" #: :meta private: output_key: str = "result" #: :meta private: max_checks: int = 2 """Maximum number of times to check the assertions. Default to double-checking.""" class Config: """Configuration for this pydantic object.""" extra = Extra.forbid arbitrary_types_allowed = True @root_validator(pre=True) def raise_deprecation(cls, values: Dict) -> Dict: if "llm" in values: warnings.warn( "Directly instantiating an LLMSummarizationCheckerChain with an llm is " "deprecated. Please instantiate with" " sequential_chain argument or using the from_llm class method." ) if "sequential_chain" not in values and values["llm"] is not None: values["sequential_chain"] = _load_sequential_chain( values["llm"], values.get("create_assertions_prompt", CREATE_ASSERTIONS_PROMPT), values.get("check_assertions_prompt", CHECK_ASSERTIONS_PROMPT), values.get("revised_summary_prompt", REVISED_SUMMARY_PROMPT), values.get("are_all_true_prompt", ARE_ALL_TRUE_PROMPT), verbose=values.get("verbose", False), ) return values @property def input_keys(self) -> List[str]: """Return the singular input key. :meta private: """ return [self.input_key] @property def output_keys(self) -> List[str]: """Return the singular output key. :meta private: """ return [self.output_key] def _call( self, inputs: Dict[str, Any],
https://python.langchain.com/en/latest/_modules/langchain/chains/llm_summarization_checker/base.html
50d43427de4a-3
def _call( self, inputs: Dict[str, Any], run_manager: Optional[CallbackManagerForChainRun] = None, ) -> Dict[str, str]: _run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager() all_true = False count = 0 output = None original_input = inputs[self.input_key] chain_input = original_input while not all_true and count < self.max_checks: output = self.sequential_chain( {"summary": chain_input}, callbacks=_run_manager.get_child() ) count += 1 if output["all_true"].strip() == "True": break if self.verbose: print(output["revised_summary"]) chain_input = output["revised_summary"] if not output: raise ValueError("No output from chain") return {self.output_key: output["revised_summary"].strip()} @property def _chain_type(self) -> str: return "llm_summarization_checker_chain" [docs] @classmethod def from_llm( cls, llm: BaseLanguageModel, create_assertions_prompt: PromptTemplate = CREATE_ASSERTIONS_PROMPT, check_assertions_prompt: PromptTemplate = CHECK_ASSERTIONS_PROMPT, revised_summary_prompt: PromptTemplate = REVISED_SUMMARY_PROMPT, are_all_true_prompt: PromptTemplate = ARE_ALL_TRUE_PROMPT, verbose: bool = False, **kwargs: Any, ) -> LLMSummarizationCheckerChain: chain = _load_sequential_chain( llm, create_assertions_prompt, check_assertions_prompt, revised_summary_prompt,
https://python.langchain.com/en/latest/_modules/langchain/chains/llm_summarization_checker/base.html
50d43427de4a-4
create_assertions_prompt, check_assertions_prompt, revised_summary_prompt, are_all_true_prompt, verbose=verbose, ) return cls(sequential_chain=chain, verbose=verbose, **kwargs) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/_modules/langchain/chains/llm_summarization_checker/base.html
075462df6d33-0
Source code for langchain.chains.combine_documents.base """Base interface for chains combining documents.""" from abc import ABC, abstractmethod from typing import Any, Dict, List, Optional, Tuple from pydantic import Field from langchain.callbacks.manager import ( AsyncCallbackManagerForChainRun, CallbackManagerForChainRun, ) from langchain.chains.base import Chain from langchain.docstore.document import Document from langchain.prompts.base import BasePromptTemplate from langchain.text_splitter import RecursiveCharacterTextSplitter, TextSplitter def format_document(doc: Document, prompt: BasePromptTemplate) -> str: """Format a document into a string based on a prompt template.""" base_info = {"page_content": doc.page_content} base_info.update(doc.metadata) missing_metadata = set(prompt.input_variables).difference(base_info) if len(missing_metadata) > 0: required_metadata = [ iv for iv in prompt.input_variables if iv != "page_content" ] raise ValueError( f"Document prompt requires documents to have metadata variables: " f"{required_metadata}. Received document with missing metadata: " f"{list(missing_metadata)}." ) document_info = {k: base_info[k] for k in prompt.input_variables} return prompt.format(**document_info) class BaseCombineDocumentsChain(Chain, ABC): """Base interface for chains combining documents.""" input_key: str = "input_documents" #: :meta private: output_key: str = "output_text" #: :meta private: @property def input_keys(self) -> List[str]: """Expect input key. :meta private: """ return [self.input_key] @property
https://python.langchain.com/en/latest/_modules/langchain/chains/combine_documents/base.html
075462df6d33-1
""" return [self.input_key] @property def output_keys(self) -> List[str]: """Return output key. :meta private: """ return [self.output_key] def prompt_length(self, docs: List[Document], **kwargs: Any) -> Optional[int]: """Return the prompt length given the documents passed in. Returns None if the method does not depend on the prompt length. """ return None @abstractmethod def combine_docs(self, docs: List[Document], **kwargs: Any) -> Tuple[str, dict]: """Combine documents into a single string.""" @abstractmethod async def acombine_docs( self, docs: List[Document], **kwargs: Any ) -> Tuple[str, dict]: """Combine documents into a single string asynchronously.""" def _call( self, inputs: Dict[str, List[Document]], run_manager: Optional[CallbackManagerForChainRun] = None, ) -> Dict[str, str]: _run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager() docs = inputs[self.input_key] # Other keys are assumed to be needed for LLM prediction other_keys = {k: v for k, v in inputs.items() if k != self.input_key} output, extra_return_dict = self.combine_docs( docs, callbacks=_run_manager.get_child(), **other_keys ) extra_return_dict[self.output_key] = output return extra_return_dict async def _acall( self, inputs: Dict[str, List[Document]], run_manager: Optional[AsyncCallbackManagerForChainRun] = None, ) -> Dict[str, str]:
https://python.langchain.com/en/latest/_modules/langchain/chains/combine_documents/base.html
075462df6d33-2
) -> Dict[str, str]: _run_manager = run_manager or AsyncCallbackManagerForChainRun.get_noop_manager() docs = inputs[self.input_key] # Other keys are assumed to be needed for LLM prediction other_keys = {k: v for k, v in inputs.items() if k != self.input_key} output, extra_return_dict = await self.acombine_docs( docs, callbacks=_run_manager.get_child(), **other_keys ) extra_return_dict[self.output_key] = output return extra_return_dict [docs]class AnalyzeDocumentChain(Chain): """Chain that splits documents, then analyzes it in pieces.""" input_key: str = "input_document" #: :meta private: text_splitter: TextSplitter = Field(default_factory=RecursiveCharacterTextSplitter) combine_docs_chain: BaseCombineDocumentsChain @property def input_keys(self) -> List[str]: """Expect input key. :meta private: """ return [self.input_key] @property def output_keys(self) -> List[str]: """Return output key. :meta private: """ return self.combine_docs_chain.output_keys def _call( self, inputs: Dict[str, str], run_manager: Optional[CallbackManagerForChainRun] = None, ) -> Dict[str, str]: _run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager() document = inputs[self.input_key] docs = self.text_splitter.create_documents([document]) # Other keys are assumed to be needed for LLM prediction other_keys: Dict = {k: v for k, v in inputs.items() if k != self.input_key}
https://python.langchain.com/en/latest/_modules/langchain/chains/combine_documents/base.html
075462df6d33-3
other_keys[self.combine_docs_chain.input_key] = docs return self.combine_docs_chain( other_keys, return_only_outputs=True, callbacks=_run_manager.get_child() ) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/_modules/langchain/chains/combine_documents/base.html
8a9dca50824d-0
Source code for langchain.chains.constitutional_ai.base """Chain for applying constitutional principles to the outputs of another chain.""" from typing import Any, Dict, List, Optional from langchain.base_language import BaseLanguageModel from langchain.callbacks.manager import CallbackManagerForChainRun from langchain.chains.base import Chain from langchain.chains.constitutional_ai.models import ConstitutionalPrinciple from langchain.chains.constitutional_ai.principles import PRINCIPLES from langchain.chains.constitutional_ai.prompts import CRITIQUE_PROMPT, REVISION_PROMPT from langchain.chains.llm import LLMChain from langchain.prompts.base import BasePromptTemplate [docs]class ConstitutionalChain(Chain): """Chain for applying constitutional principles. Example: .. code-block:: python from langchain.llms import OpenAI from langchain.chains import LLMChain, ConstitutionalChain from langchain.chains.constitutional_ai.models \ import ConstitutionalPrinciple llm = OpenAI() qa_prompt = PromptTemplate( template="Q: {question} A:", input_variables=["question"], ) qa_chain = LLMChain(llm=llm, prompt=qa_prompt) constitutional_chain = ConstitutionalChain.from_llm( llm=llm, chain=qa_chain, constitutional_principles=[ ConstitutionalPrinciple( critique_request="Tell if this answer is good.", revision_request="Give a better answer.", ) ], ) constitutional_chain.run(question="What is the meaning of life?") """ chain: LLMChain constitutional_principles: List[ConstitutionalPrinciple] critique_chain: LLMChain
https://python.langchain.com/en/latest/_modules/langchain/chains/constitutional_ai/base.html
8a9dca50824d-1
critique_chain: LLMChain revision_chain: LLMChain return_intermediate_steps: bool = False [docs] @classmethod def get_principles( cls, names: Optional[List[str]] = None ) -> List[ConstitutionalPrinciple]: if names is None: return list(PRINCIPLES.values()) else: return [PRINCIPLES[name] for name in names] [docs] @classmethod def from_llm( cls, llm: BaseLanguageModel, chain: LLMChain, critique_prompt: BasePromptTemplate = CRITIQUE_PROMPT, revision_prompt: BasePromptTemplate = REVISION_PROMPT, **kwargs: Any, ) -> "ConstitutionalChain": """Create a chain from an LLM.""" critique_chain = LLMChain(llm=llm, prompt=critique_prompt) revision_chain = LLMChain(llm=llm, prompt=revision_prompt) return cls( chain=chain, critique_chain=critique_chain, revision_chain=revision_chain, **kwargs, ) @property def input_keys(self) -> List[str]: """Defines the input keys.""" return self.chain.input_keys @property def output_keys(self) -> List[str]: """Defines the output keys.""" if self.return_intermediate_steps: return ["output", "critiques_and_revisions", "initial_output"] return ["output"] def _call( self, inputs: Dict[str, Any], run_manager: Optional[CallbackManagerForChainRun] = None, ) -> Dict[str, Any]:
https://python.langchain.com/en/latest/_modules/langchain/chains/constitutional_ai/base.html
8a9dca50824d-2
) -> Dict[str, Any]: _run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager() response = self.chain.run( **inputs, callbacks=_run_manager.get_child(), ) initial_response = response input_prompt = self.chain.prompt.format(**inputs) _run_manager.on_text( text="Initial response: " + response + "\n\n", verbose=self.verbose, color="yellow", ) critiques_and_revisions = [] for constitutional_principle in self.constitutional_principles: # Do critique raw_critique = self.critique_chain.run( input_prompt=input_prompt, output_from_model=response, critique_request=constitutional_principle.critique_request, callbacks=_run_manager.get_child(), ) critique = self._parse_critique( output_string=raw_critique, ).strip() # if the critique contains "No critique needed", then we're done # in this case, initial_output is the same as output, # but we'll keep it for consistency if "no critique needed" in critique.lower(): critiques_and_revisions.append((critique, "")) continue # Do revision revision = self.revision_chain.run( input_prompt=input_prompt, output_from_model=response, critique_request=constitutional_principle.critique_request, critique=critique, revision_request=constitutional_principle.revision_request, callbacks=_run_manager.get_child(), ).strip() response = revision critiques_and_revisions.append((critique, revision)) _run_manager.on_text(
https://python.langchain.com/en/latest/_modules/langchain/chains/constitutional_ai/base.html
8a9dca50824d-3
_run_manager.on_text( text=f"Applying {constitutional_principle.name}..." + "\n\n", verbose=self.verbose, color="green", ) _run_manager.on_text( text="Critique: " + critique + "\n\n", verbose=self.verbose, color="blue", ) _run_manager.on_text( text="Updated response: " + revision + "\n\n", verbose=self.verbose, color="yellow", ) final_output: Dict[str, Any] = {"output": response} if self.return_intermediate_steps: final_output["initial_output"] = initial_response final_output["critiques_and_revisions"] = critiques_and_revisions return final_output @staticmethod def _parse_critique(output_string: str) -> str: if "Revision request:" not in output_string: return output_string output_string = output_string.split("Revision request:")[0] if "\n\n" in output_string: output_string = output_string.split("\n\n")[0] return output_string By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/_modules/langchain/chains/constitutional_ai/base.html
07ed722d47af-0
Source code for langchain.memory.token_buffer from typing import Any, Dict, List from langchain.base_language import BaseLanguageModel from langchain.memory.chat_memory import BaseChatMemory from langchain.schema import BaseMessage, get_buffer_string [docs]class ConversationTokenBufferMemory(BaseChatMemory): """Buffer for storing conversation memory.""" human_prefix: str = "Human" ai_prefix: str = "AI" llm: BaseLanguageModel memory_key: str = "history" max_token_limit: int = 2000 @property def buffer(self) -> List[BaseMessage]: """String buffer of memory.""" return self.chat_memory.messages @property def memory_variables(self) -> List[str]: """Will always return list of memory variables. :meta private: """ return [self.memory_key] [docs] def load_memory_variables(self, inputs: Dict[str, Any]) -> Dict[str, Any]: """Return history buffer.""" buffer: Any = self.buffer if self.return_messages: final_buffer: Any = buffer else: final_buffer = get_buffer_string( buffer, human_prefix=self.human_prefix, ai_prefix=self.ai_prefix, ) return {self.memory_key: final_buffer} [docs] def save_context(self, inputs: Dict[str, Any], outputs: Dict[str, str]) -> None: """Save context from this conversation to buffer. Pruned.""" super().save_context(inputs, outputs) # Prune buffer if it exceeds max token limit buffer = self.chat_memory.messages curr_buffer_length = self.llm.get_num_tokens_from_messages(buffer) if curr_buffer_length > self.max_token_limit:
https://python.langchain.com/en/latest/_modules/langchain/memory/token_buffer.html
07ed722d47af-1
if curr_buffer_length > self.max_token_limit: pruned_memory = [] while curr_buffer_length > self.max_token_limit: pruned_memory.append(buffer.pop(0)) curr_buffer_length = self.llm.get_num_tokens_from_messages(buffer) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/_modules/langchain/memory/token_buffer.html
5acc4a098776-0
Source code for langchain.memory.entity import logging from abc import ABC, abstractmethod from itertools import islice from typing import Any, Dict, Iterable, List, Optional from pydantic import BaseModel, Field from langchain.base_language import BaseLanguageModel from langchain.chains.llm import LLMChain from langchain.memory.chat_memory import BaseChatMemory from langchain.memory.prompt import ( ENTITY_EXTRACTION_PROMPT, ENTITY_SUMMARIZATION_PROMPT, ) from langchain.memory.utils import get_prompt_input_key from langchain.prompts.base import BasePromptTemplate from langchain.schema import BaseMessage, get_buffer_string logger = logging.getLogger(__name__) class BaseEntityStore(BaseModel, ABC): @abstractmethod def get(self, key: str, default: Optional[str] = None) -> Optional[str]: """Get entity value from store.""" pass @abstractmethod def set(self, key: str, value: Optional[str]) -> None: """Set entity value in store.""" pass @abstractmethod def delete(self, key: str) -> None: """Delete entity value from store.""" pass @abstractmethod def exists(self, key: str) -> bool: """Check if entity exists in store.""" pass @abstractmethod def clear(self) -> None: """Delete all entities from store.""" pass [docs]class InMemoryEntityStore(BaseEntityStore): """Basic in-memory entity store.""" store: Dict[str, Optional[str]] = {} [docs] def get(self, key: str, default: Optional[str] = None) -> Optional[str]: return self.store.get(key, default)
https://python.langchain.com/en/latest/_modules/langchain/memory/entity.html
5acc4a098776-1
return self.store.get(key, default) [docs] def set(self, key: str, value: Optional[str]) -> None: self.store[key] = value [docs] def delete(self, key: str) -> None: del self.store[key] [docs] def exists(self, key: str) -> bool: return key in self.store [docs] def clear(self) -> None: return self.store.clear() [docs]class RedisEntityStore(BaseEntityStore): """Redis-backed Entity store. Entities get a TTL of 1 day by default, and that TTL is extended by 3 days every time the entity is read back. """ redis_client: Any session_id: str = "default" key_prefix: str = "memory_store" ttl: Optional[int] = 60 * 60 * 24 recall_ttl: Optional[int] = 60 * 60 * 24 * 3 def __init__( self, session_id: str = "default", url: str = "redis://localhost:6379/0", key_prefix: str = "memory_store", ttl: Optional[int] = 60 * 60 * 24, recall_ttl: Optional[int] = 60 * 60 * 24 * 3, *args: Any, **kwargs: Any, ): try: import redis except ImportError: raise ImportError( "Could not import redis python package. " "Please install it with `pip install redis`." ) super().__init__(*args, **kwargs) try: self.redis_client = redis.Redis.from_url(url=url, decode_responses=True)
https://python.langchain.com/en/latest/_modules/langchain/memory/entity.html
5acc4a098776-2
self.redis_client = redis.Redis.from_url(url=url, decode_responses=True) except redis.exceptions.ConnectionError as error: logger.error(error) self.session_id = session_id self.key_prefix = key_prefix self.ttl = ttl self.recall_ttl = recall_ttl or ttl @property def full_key_prefix(self) -> str: return f"{self.key_prefix}:{self.session_id}" [docs] def get(self, key: str, default: Optional[str] = None) -> Optional[str]: res = ( self.redis_client.getex(f"{self.full_key_prefix}:{key}", ex=self.recall_ttl) or default or "" ) logger.debug(f"REDIS MEM get '{self.full_key_prefix}:{key}': '{res}'") return res [docs] def set(self, key: str, value: Optional[str]) -> None: if not value: return self.delete(key) self.redis_client.set(f"{self.full_key_prefix}:{key}", value, ex=self.ttl) logger.debug( f"REDIS MEM set '{self.full_key_prefix}:{key}': '{value}' EX {self.ttl}" ) [docs] def delete(self, key: str) -> None: self.redis_client.delete(f"{self.full_key_prefix}:{key}") [docs] def exists(self, key: str) -> bool: return self.redis_client.exists(f"{self.full_key_prefix}:{key}") == 1 [docs] def clear(self) -> None: # iterate a list in batches of size batch_size def batched(iterable: Iterable[Any], batch_size: int) -> Iterable[Any]: iterator = iter(iterable)
https://python.langchain.com/en/latest/_modules/langchain/memory/entity.html
5acc4a098776-3
iterator = iter(iterable) while batch := list(islice(iterator, batch_size)): yield batch for keybatch in batched( self.redis_client.scan_iter(f"{self.full_key_prefix}:*"), 500 ): self.redis_client.delete(*keybatch) [docs]class SQLiteEntityStore(BaseEntityStore): """SQLite-backed Entity store""" session_id: str = "default" table_name: str = "memory_store" def __init__( self, session_id: str = "default", db_file: str = "entities.db", table_name: str = "memory_store", *args: Any, **kwargs: Any, ): try: import sqlite3 except ImportError: raise ImportError( "Could not import sqlite3 python package. " "Please install it with `pip install sqlite3`." ) super().__init__(*args, **kwargs) self.conn = sqlite3.connect(db_file) self.session_id = session_id self.table_name = table_name self._create_table_if_not_exists() @property def full_table_name(self) -> str: return f"{self.table_name}_{self.session_id}" def _create_table_if_not_exists(self) -> None: create_table_query = f""" CREATE TABLE IF NOT EXISTS {self.full_table_name} ( key TEXT PRIMARY KEY, value TEXT ) """ with self.conn: self.conn.execute(create_table_query) [docs] def get(self, key: str, default: Optional[str] = None) -> Optional[str]: query = f""" SELECT value
https://python.langchain.com/en/latest/_modules/langchain/memory/entity.html
5acc4a098776-4
query = f""" SELECT value FROM {self.full_table_name} WHERE key = ? """ cursor = self.conn.execute(query, (key,)) result = cursor.fetchone() if result is not None: value = result[0] return value return default [docs] def set(self, key: str, value: Optional[str]) -> None: if not value: return self.delete(key) query = f""" INSERT OR REPLACE INTO {self.full_table_name} (key, value) VALUES (?, ?) """ with self.conn: self.conn.execute(query, (key, value)) [docs] def delete(self, key: str) -> None: query = f""" DELETE FROM {self.full_table_name} WHERE key = ? """ with self.conn: self.conn.execute(query, (key,)) [docs] def exists(self, key: str) -> bool: query = f""" SELECT 1 FROM {self.full_table_name} WHERE key = ? LIMIT 1 """ cursor = self.conn.execute(query, (key,)) result = cursor.fetchone() return result is not None [docs] def clear(self) -> None: query = f""" DELETE FROM {self.full_table_name} """ with self.conn: self.conn.execute(query) [docs]class ConversationEntityMemory(BaseChatMemory): """Entity extractor & summarizer to memory.""" human_prefix: str = "Human" ai_prefix: str = "AI" llm: BaseLanguageModel
https://python.langchain.com/en/latest/_modules/langchain/memory/entity.html
5acc4a098776-5
ai_prefix: str = "AI" llm: BaseLanguageModel entity_extraction_prompt: BasePromptTemplate = ENTITY_EXTRACTION_PROMPT entity_summarization_prompt: BasePromptTemplate = ENTITY_SUMMARIZATION_PROMPT entity_cache: List[str] = [] k: int = 3 chat_history_key: str = "history" entity_store: BaseEntityStore = Field(default_factory=InMemoryEntityStore) @property def buffer(self) -> List[BaseMessage]: return self.chat_memory.messages @property def memory_variables(self) -> List[str]: """Will always return list of memory variables. :meta private: """ return ["entities", self.chat_history_key] [docs] def load_memory_variables(self, inputs: Dict[str, Any]) -> Dict[str, Any]: """Return history buffer.""" chain = LLMChain(llm=self.llm, prompt=self.entity_extraction_prompt) if self.input_key is None: prompt_input_key = get_prompt_input_key(inputs, self.memory_variables) else: prompt_input_key = self.input_key buffer_string = get_buffer_string( self.buffer[-self.k * 2 :], human_prefix=self.human_prefix, ai_prefix=self.ai_prefix, ) output = chain.predict( history=buffer_string, input=inputs[prompt_input_key], ) if output.strip() == "NONE": entities = [] else: entities = [w.strip() for w in output.split(",")] entity_summaries = {} for entity in entities: entity_summaries[entity] = self.entity_store.get(entity, "") self.entity_cache = entities if self.return_messages:
https://python.langchain.com/en/latest/_modules/langchain/memory/entity.html
5acc4a098776-6
self.entity_cache = entities if self.return_messages: buffer: Any = self.buffer[-self.k * 2 :] else: buffer = buffer_string return { self.chat_history_key: buffer, "entities": entity_summaries, } [docs] def save_context(self, inputs: Dict[str, Any], outputs: Dict[str, str]) -> None: """Save context from this conversation to buffer.""" super().save_context(inputs, outputs) if self.input_key is None: prompt_input_key = get_prompt_input_key(inputs, self.memory_variables) else: prompt_input_key = self.input_key buffer_string = get_buffer_string( self.buffer[-self.k * 2 :], human_prefix=self.human_prefix, ai_prefix=self.ai_prefix, ) input_data = inputs[prompt_input_key] chain = LLMChain(llm=self.llm, prompt=self.entity_summarization_prompt) for entity in self.entity_cache: existing_summary = self.entity_store.get(entity, "") output = chain.predict( summary=existing_summary, entity=entity, history=buffer_string, input=input_data, ) self.entity_store.set(entity, output.strip()) [docs] def clear(self) -> None: """Clear memory contents.""" self.chat_memory.clear() self.entity_cache.clear() self.entity_store.clear() By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/_modules/langchain/memory/entity.html