abstract
stringlengths
122
3.03k
country
stringclasses
2 values
Hs578T human breast cancer cells secrete insulin-like growth factor binding protein 3 (IGFBP-3) as the major BP species. In addition, cell surface-associated IGFBP-3 is demonstrable by the use of cell monolayer affinity cross-linking or immunoperoxidase staining of the cell surface with a specific polyclonal anti-human IGFBP-3 antibody (alpha IGFBP-3 gamma 1). In this study, we have demonstrated that regulation of Hs578T IGFBP-3 by IGF peptides is specific, non-receptor mediated, and post-translational by showing: 1) dose-dependent increase of IGFBP-3 in conditioned media (CM) following addition of IGF-I and -II (maximum 13 fold increase at 100 ng/ml), but not by insulin up to 1 mg/ml; 2) no change in CM IGFBP-3 level by [Gln3,Ala4,Tyr15,Leu16] IGF-I, which has decreased affinity for IGFBPs; 3) no change in IGFBP-3 mRNA following addition of IGFs; 4) release of cell surface-associated IGFBP-3 into CM by the addition of IGFs, but not by [Gln3,Ala4,Tyr15,Leu16]IGF-I. These studies demonstrate that IGF peptides regulate CM concentrations of IGFBP-3 through non-receptor mediated dissociation of cell surface-associated IGFBP-3.
US
To determine whether incubation of mouse thyrotropic tissue with TRH in vitro influenced the oligosaccharide structure of TSH, thyrotropic tumor tissue or pituitary tissue was incubated in vitro with [3H]mannose or with [35S]sulfate and [3H]methionine, in the absence or presence of TRH for times up to 24 h. [3H]mannose-labeled oligosaccharides from intracellular TSH and free alpha-subunits were analyzed by paper chromatography, and were predominantly Man9GlcNAc and Man8GlcNAc units both in the absence and presence of TRH. The [35S]sulfate/[3H]methionine ratio in secreted molecules was greater for TSH than for free alpha-subunits; within TSH heterodimers the ratio was greater for beta-subunits than alpha-subunits. The [35S]/[3H] ratio was not altered in TSH or free alpha-subunits by TRH. Analyses of [3H]mannose-labeled charged oligosaccharides by HPLC anion-exchange chromatography revealed similar types of oligosaccharides present on TSH subunits and free alpha-subunits (having one or two sulfate residues, one or two sialic acid residues, or both a sulfate and a sialic acid residue). These charged oligosaccharides occurred in different proportions on TSH subunits compared to free alpha-subunits, and also differed depending on whether the tissue source was tumorous or nontumorous. The proportions of oligosaccharide unit types were not altered by TRH. Thus, while this study provided information concerning the high-mannose and complex oligosaccharides of mouse TSH, there was no evidence that short incubations of tissues with TRH in vitro caused modulation of TSH oligosaccharide structures.
US
During the course of many human autoimmune diseases, antibodies which recognize negatively charged epitopes on self antigens are detected. Trypanosoma cruzi, an intracellular protozoan parasite capable of infecting a wide variety of vertebrates, is the cause of Chagas disease in humans. Infection with the parasite frequently results in autoimmune and inflammatory pathology. We report here on an affinity-purified population of antibodies that bind to a broad class of antigens that contain runs of acidic amino acids, including tubulin. Although these antibodies can be isolated from both uninfected and T. cruzi chronically infected C3H/He mice, the antibodies from the normal mice (the natural autoantibodies) bind to tubulin poorly at physiological pH, whereas the antibodies isolated from the infected animals bind well at physiological pH. We propose that similar processes may occur in humans following other infections accounting for the detection of antibodies to negatively charged epitopes in a variety of autoimmune diseases.
US
The adult T cell repertoire is the result of positive and negative intrathymic selective processes. Since non-self antigens are not present in the thymus, self peptides are believed to play a role in the thymic T cell selection. T cell lines raised against a peptide from the second complementarity-determining region (CDR2) of the S107 germ-line immunoglobulin (Ig) do not respond to the intact Ig, indicating that in adult animals this CDR2 epitope is cryptic in the context of intact S107 Ig. To show that the response to self Ig peptide is the result of positive selection, the fetal expression of the S107 germ-line Ig was suppressed by maternal anti-idiotype (Id) injection. Id S107-suppressed mice responded poorly to the CDR2 peptide, indicating that S107 Ig selects positively T cells responding to a polymorphic self epitope. Cross-reactivity of cryptic self Ig with non-self epitopes could be a mechanism to increase the T cell repertoire for foreign antigens.
US
Programmed cell death (PCD), or apoptosis, is characterized by several morphologic alterations and eventual cleavage of nuclear DNA into oligonucleo-some-length fragments. We defined a human B cell line, Ramos, that responds with PCD following ligation of surface IgM. Of the DNA in Ramos cells 3%-10% was fragmented as early as 4 h after IgM ligation. Propidium iodide staining demonstrated that 20%-40% of Ramos cells became apoptotic by 18 h and further established that cells transiting into the S phase of the cell cycle were susceptible to PCD. Addition of several agents to the Ramos cells abrogated anti-IgM-induced PCD, including the phorbol 12-myristate 13-acetate (PMA). In contrast to the effect of PMA, the 4 alpha PMA isomer of PMA neither activated protein kinase C (PKC) nor rescued the cells from anti-IgM-induced PCD, confirming a role for PKC in negating apoptosis. To explore the effect of physiologic signals on anti-IgM-induced PCD, antibodies against the CD20 or CD40 molecules were added in concert with anti-IgM. Both CD20 and CD40 synergize with anti-IgM to augment proliferation but neither molecule activates PKC in Ramos cells. Both anti-CD20 and anti-CD40 reduced the number of cells undergoing anti-IgM-induced PCD. Unlike the effect of anti-CD40, addition of anti-CD20 to anti-IgM-stimulated cells negated PCD only in a subset of cells. Maximal rescue occurred following the addition of anti-CD40 and occurred by 4 h and at least up to 20 h of culture. These data show that (a) PCD can be initiated in B cells entering the S phase of the cell cycle, (b) PCD can be triggered by engagement of surface IgM in the absence of ancillary signals or PKC activation, and (c) rescue from PCD can occur by several mechanisms, either PKC dependent or PKC independent.
US
The mechanism of the inhibitory effect of local anesthetics on hormone secretion was studied in the GH4C1 line of rat pituitary tumor-derived cells. Lidocaine between 0.1 and 5 mM exerted significant dose-dependent inhibition on the increment in cytosol Ca2+ concentration ([Ca2+]i) and prolactin (PRL) secretion induced by 30 mM K+. For both effects the IC50 was 0.25 mM and maximal inhibition occurred at 5 mM. A normal response returned within 20 min after removal of lidocaine from the incubation medium. 1 microM tetrodotoxin had no effect on the 30 mM K+ induced [Ca2+]i transient or PRL secretion, indicating that Na+ channels are not involved in the inhibitory effect of lidocaine. Lidocaine similarly inhibited the [Ca2+]i increment and PRL secretion induced by 30% medium hyposmolarity and 1 microM Bay K 8644. Lidocaine was much less effective in inhibiting secretion induced by 1 microM phorbol 12-myristate 13-acetate (TPA) or 5 microM forskolin. 5 mM procaine produced effects similar to those of lidocaine. Our data suggest that in GH4C1 cells local anesthetics depress secretagogue-induced PRL secretion primarily by blocking Ca2+ influx, probably through L-type Ca2+ channels.
US
alpha-Adrenergic receptors are present on the plasma membrane of normal anterior pituitary cells and alpha-adrenergic agonists may play a role in the secretion of corticotropin (ACTH) and thyrotropin (TSH). However, alpha-adrenergic involvement in prolactin (PRL) secretion is uncertain. We have therefore examined this question in the PRL-secreting clonal rat pituitary tumor-derived GH4C1 cells. Norepinephrine (NE), an alpha-adrenergic agonist, had no effect on basal PRL secretion but abolished thyrotropin-releasing hormone (TRH)-induced PRL secretion in a dose-dependent manner (EC50 100 nM). NE also significantly suppressed the TRH-stimulated rise in [Ca2+]i. Phentolamine (PA), a non-selective alpha-adrenergic antagonist, reversed the inhibitory effect of NE on both the TRH-stimulated PRL secretion and [Ca2+]i rise. NE did not inhibit the rise in PRL secretion or [Ca2+]i induced by depolarizing 30 mM K+, 30% hyposmolarity or BAY K-8644, a specific L-type Ca2+ channel agonist. The inhibitory effect of NE on TRH-induced PRL and [Ca2+]i changes was also present when Ca2+ influx was prevented by removing medium Ca2+ or by blocking L-type Ca2+ channels with 2 microM nifedipine. The TRH-stimulated first-phase rise in [Ca2+]i in GH4C1 cells is believed to result primarily from release of sequestered Ca2+ from an intracellular pool through the activation of inositol 1,4,5-trisphosphate (IP3) and this [Ca2+]i spike stimulates PRL secretion. Our data thus suggest that GH4C1 cells have alpha-adrenergic receptors and that alpha-adrenergic agonists either suppress IP3 generation or block IP3 release of sequestered intracellular Ca2+.
US
The acyl transfer rate for proline, in the prior thiol capture strategy, was enhanced by changing the electronic character of the dibenzofuran template. The rate of amide bond formation between proline and cysteine by the 1-chloro-4-hydroxy-6-mercaptodibenzofuran was measured to be 0.012 min-1, which translates to a half-life of 53 min. Further enhancement of the reaction rate was accomplished by the use of a 1,3-dichloro-dibenzofuran template. The k1 for the reaction was measured to be 0.093 min-1, and the half-life was calculated to be 7 min. To test the applicability of the activated template, 1-chloro-4-hydroxy-6-mercaptodibenzofuran, in peptide synthesis, the 34 amino acid long peptide, H-RPDFCLEPPYTGPCRKARNNFKSADECMRTCGGA-OH, was synthesized. This peptide represents the condensation of the N-terminal 13-mer and the C-terminal 21-mer of the basic pancreatic trypsin inhibitor.
US
The aim of this study was to investigate the pathological and cellular basis for radiation-induced myelopathy in guinea pigs by monitoring biochemical alterations in levels of myelin basic protein and 2',3'-cyclic nucleotide phosphohydrolase. Guinea pigs were irradiated to the lumbar region with various doses of neutrons or cobalt gamma irradiation. The ED50s for paralysis were 17.2 Gy and 67.5 Gy for neutron and cobalt irradiation, respectively, and was histologically associated with demyelination. In spinal cords taken from animals at the onset of paralysis myelin basic protein levels were decreased in direct relationship to the radiation dose. The lowest doses to cause paralysis led to a 25% decrease in MBP levels. In a separate experiment, alterations in MBP were measured in the spinal cords over the time period leading up to paralysis. Surprisingly, decreases in MBP were found immediately after the end of the 4 week irradiation period. These early changes in MBP were not markedly dose dependent and occurred with nonparalyzing doses. Dose-dependent decreases were found only just before the onset of paralysis. CNPase activity measured in the same specimens showed changes that were essentially similar to those for MBP. In the CSF, MBP levels were essentially constant until onset of paralysis. This study showed that demyelination, as assessed by the levels of the myelin-associated proteins MBP and CNPase, can occur soon after spinal cord irradiation but that profound dose-dependent changes are seen only immediately preceding the onset of paralysis. Although increases in MBP in the CSF were associated with the onset of radiation-induced myelopathy, its assay is unlikely to predict this complication of irradiation.
US
Brain nitric oxide synthase (NOS), which utilizes NADPH and calcium/calmodulin as cofactors for metabolizing L-arginine to nitric oxide (NO) and L-citrulline, contains recognition sites for the flavins FAD and FMN. Using a spin-trapping technique combined with electron spin resonance spectroscopy, we report that brain NOS generates superoxide O2-. in a calcium/calmodulin-dependent manner. The "specific inhibitors" of NOS, NG-monomethyl L-arginine (L-NMMA), and NG-nitro-L-arginine methyl ester (L-NAME), have different effects on O2-. generation. For L-NMMA, O2-. production is unaffected, while for L-NAME, inhibition of this free radical is concentration-dependent.
US
Lipoprotein(a) (Lp(a)) is an atherosclerosis-causing lipoprotein that circulates in human plasma as a complex of low density lipoprotein (LDL) and apolipoprotein(a) (apo(a)). It is not known whether apo(a) attaches to LDL within hepatocytes prior to secretion or in plasma subsequent to secretion. Here we describe the development of a line of mice expressing the human apo(a) transgene under the control of the murine transferrin promoter. The apo(a) was secreted into the plasma, but circulated free of lipoproteins. When human (h)-LDL was injected intravenously, the circulating apo(a) rapidly associated with the lipoproteins, as determined by nondenaturing gel electrophoresis. Human HDL and mouse LDL had no such effect. When h-VLDL was injected, there was a delayed association of apo(a) with the lipoprotein fraction which suggests that apo(a) preferentially associated with a metabolic product of VLDL. The complex of apo(a) with LDL formed both in vivo and in vitro was resistant to boiling in the presence of detergents and denaturants, but was resolved upon disulfide reduction. These studies suggest that apo(a) fails to associate with mouse lipoproteins due to structural differences between human and mouse LDL, and that Lp(a) formation can occur in plasma through the association of apo(a) with circulating LDL.
US
We have investigated the action of the chemotherapeutic agent Fe(II)-bleomycin on yeast tRNA(Phe), an RNA of known three-dimensional structure. In the absence of Mg2+ ions, the RNA is cleaved preferentially at two major positions, A31 and G53, both of which are located at the terminal base pairs of hairpin loops, and coincide with the location of tight Mg2+ binding sites. A fragment of the tRNA (residues 47-76) containing the T stem-loop is also cleaved specifically at G53. Cleavage of both the intact tRNA and the tRNA fragment is abolished in the presence of physiological concentrations of Mg2+ (> 0.5 mM). Since Fe(II) is not displaced from bleomycin under these conditions, we infer that tight binding of Mg2+ to tRNA excludes productive interactions between Fe(II)-bleomycin and the RNA. These results also show that loss of cleavage is not due to Mg(2+)-dependent formation of tertiary interactions between the D and T loops. In contrast, cleavage of synthetic DNA analogs of the anticodon and T stem-loops is not detectably inhibited by Mg2+, even at concentrations as high as 50 mM. In addition, the site specificities observed in cleavage of RNA and DNA differ significantly. From these results, and from similar findings with other representative RNA molecules, we suggest that the cleavage of RNA by Fe(II)-bleomycin is unlikely to be important for its therapeutic action.
US
The levels of light, mid-sized, and heavy neurofilament (NF) mRNAs were compared to that of beta-actin mRNA in primary dissociated cultures of adult rat dorsal root ganglia (DRG). Decreases in the levels of all three NF mRNAs occur after 24 h in culture, mimicking the down-regulation of NF mRNAs in axotomized DRG neurons. The loss of NF mRNAs in DRG cultures is prevented by actinomycin and, to a lesser extent, by cycloheximide. Based on decay curves in actinomycin-treated cultures, the half-lives of NF mRNAs are at least 4 days in DRG neurons, but < 24 h in PC12 cells. Our data support the view that NF mRNAs are stabilized in DRG neurons and that stabilization prevents destabilization by a transcription-dependent process. We further propose that putative stabilizing factor(s) are able to prevent degradation of NF transcripts in intact neurons, but not in axotomized or cultured neurons.
US
The role of Moloney murine leukemia virus (MoMLV) reverse transcriptase (RT) in the generation of base substitution mutations during retroviral replication was analyzed. To that effect, the in vitro fidelity of the MoMLV RT was compared to the rate of base substitution mutations occurring during the replication of an MoMLV-based retroviral vector. Using the vector in an amber reversion assay, the base substitution mutation rate at a single locus was found to be 2 x 10(-6)/base pair in one cycle of vector virus replication. Analysis of the fidelity of the purified RT using the same template sequence revealed that, of the two mispairs (A.C and T.G) that would lead to reversion of the amber codon during replication, A.C occurs at a rate of 4.0 x 10(-6), and T.G occurs at a rate of 0.7 x 10(-4). While the rate of formation of A.C is very similar to the vector mutation rate, the rate of formation of T.G is more than 30 times higher. This discrepancy in rates suggests that there are other elements in the infected cells that contribute to the fidelity of viral replication.
US
Dihydrolipoamide acyltransferase (E2), a catalytic and structural component of the three functional classes of multienzyme complexes that catalyze the oxidative decarboxylation of alpha-keto acids, forms the central core to which the other components are attached. We have imaged by negative stain and cryoelectron microscopy the truncated dihydrolipoamide acetyltransferase core (60 subunits; M(r) = 2.7 x 10(6)) of the Saccharomyces cerevisiae pyruvate dehydrogenase complex. Using icosahedral particle reconstruction techniques, we determined its structure to 25 A resolution. Although the model derived from the negative stain reconstruction was approximately 20% smaller than the model derived from the frozen-hydrated data, when corrected for the effects of the electron microscope contrast transfer functions, the reconstructions showed excellent correspondence. The pentagonal dodecahedron-shaped macromolecule has a maximum diameter, as measured along the 3-fold axis, of approximately 226 A (frozen-hydrated value), and 12 large openings (approximately 63 A in diameter) on the 5-fold axes that lead into a large solvent-accessible cavity (approximately 76-140 A diameter). The 20 vertices consist of cone-shaped trimers, each with a flattened base on the outside of the structure and an apex directed toward the center. The trimers are interconnected by 20 A thick "bridges" on the 2-fold axes. These studies also show that the highest resolution features apparent in the frozen-hydrated reconstruction are revealed in a filtered reconstruction of the stained molecule.
US
Neural crest cells migrate along pathways containing laminin and other extracellular matrix molecules. In the present study, we functionally and biochemically identify an alpha 1 beta 1 integrin heterodimer which bears the HNK-1 epitope on neural crest cells. Using a quantitative cell adhesion assay, we find that this heterodimer mediates attachment to laminin substrata prepared in the presence of Ca2+. Interestingly, neural crest cells bind to laminin-Ca2+ substrata in the presence or absence of divalent cations in the cell attachment medium. In contrast, the attachment of neural crest cells to laminin substrata prepared in the presence of EDTA, heparin, Mg2+, or Mn2+ requires divalent cations. Interactions with these laminin substrata are mediated by a different integrin heterodimer, since antibodies against beta 1 but not alpha 1 integrins inhibit neural crest cell attachment. Thus, the type of laminin substratum appears to dictate the choice of laminin receptor used by neural crest cells. The laminin conformation is determined by the ratio of laminin to Ca2+, though incorporation of heparin during substratum polymerization alters the conformation even in the presence of Ca2+. Once polymerized, the substratum appears stable, not being altered by soaking in either EDTA or divalent cations. Our findings demonstrate: (a) that the alpha 1 beta 1 integrin can bind to some forms of laminin in the absence of soluble divalent cations; (b) that substratum preparation conditions alter the conformation of laminin such that plating laminin in the presence of Ca2+ and/or heparin modulates its configuration; and (c) that neural crest cells utilize different integrins to recognize different laminin conformations.
US
Motile chick skeletal fibroblasts adhere to a laminin substrate by means of clustered beta 1 integrins. These integrin "macroaggregates" are similar to classic focal contacts but do not appear dark under interference-reflection microscopy. They contain alpha 5 integrin and are associated with extracellular fibronectin. To study their behavior during cell movement, time-lapse, low-light video microscopy was used to image integrins on living cells tagged with a fluorescent anti-beta 1 integrin antibody. Integrin macroaggregates remain fixed with respect to the substratum, despite the fact that they fluctuate in size, density, and shape over a period of minutes. Upon detachment of the cell rear, as much as 85% of the beta 1 integrin density of a macroaggregate remains behind on the substrate, along with both alpha 5 integrin and fibronectin. Release of the cell rear does not involve cleavage of the beta 1 integrin cytoplasmic domain from the remainder of the protein. These results indicate that cell motility does not require regulated detachment of integrin receptors from the substrate. On the other hand, cytoskeletal components and a variable fraction of the integrins are carried forward with the cell during detachment, suggesting that some type of cortical disassembly process does occur. Integrin macroaggregate structures are not recycled intact after detachment of the cell rear from the substrate. They do not persist on the cell surface, nor can they be seen to be engulfed by vesicles; yet, some of the individual integrins that make up these macroaggregates are eventually transported forward by both vesicular and cell-surface routes. Antibody-tagged integrins accumulate in dense patches at the lateral edges and dorsal surface of the cell, and move forward on the cell surface. The tagged integrins also enter cytoplasmic vesicles, which move forward within the cytoplasm. Macroaggregates generally form and grow at the cell front; however, application of fluorescent antibody causes integrins to disappear from the leading edge. Therefore, it has not been possible to directly visualize the recycling of the forward moving tagged integrins into new macroaggregates at the cell front. Surprisingly, under these conditions cells move normally despite the absence of any delivery of tagged integrin to the leading edge, indicating that recycling of integrins to the lamella is not required for apparently normal motility.
US
The EA hy926 cell line is a continuous, clonable, human cell line that displays a number of features characteristic of vascular endothelial cells (Edgell et al., 1983). Here we report that when EA hy926 cells (EA cells) are plated on an extracellular matrix material [Matrigel], they undergo a process of morphological re-organization leading to the formation of a complex network of cord or tubelike structures. These events seem to resemble, in some respects, an in vitro process of angiogenesis. The morphological re-arrangement occurs within a 12-16 hr period and seems to require expression of new messenger RNA and protein, since it is completely blocked when actinomycin D or cycloheximide are present at the time the cells are plated on Matrigel. This is not due to overt toxicity of the drugs, since exposure of cells to actinomycin D at 2 hr or more after plating on Matrigel has little effect on the formation of the tubelike structures. The process of Matrigel-induced tube formation also apparently involves a G-protein mediated signal. Treatment of the EA cells with pertussis toxin completely blocks the process and causes the ADP-ribosylation of a 42 kD protein that is recognized by an antibody to Gi-alpha subunits. In contrast, concentrations of pertussis toxin sufficient to block tube formation have only modest effects on the adhesion or motility of EA cells on purified matrix components such as laminin or collagen IV. The process of Matrigel-induced tube formation also involves integrins since monoclonal antibodies to integrin alpha 6 or beta 1 subunits can completely block the process. The concentrations of anti-integrin antibodies needed to block tube formation are much lower than those required to block cell adhesion on purified matrix components and are sufficient to occupy less than 10% of the alpha 6 or beta 1 subunits available at the cell surface. These results suggest that integrins may be involved in this potential model of angiogenesis in processes beyond their usual role in cell adhesion. Based on these results, it seems likely that the EA hy 926 cell line will prove to be a useful model for in vitro study of angiogenic processes.
US
Pretreatment plus concomitant treatment with 10 micrograms/ml cycloheximide protected Chinese hamster ovary cells and Swiss 3T3 cells against the cytotoxicity of actinomycin D. The cycloheximide treatment reduced the intracellular concentration of actinomycin D by reducing the level of actinomycin D bound to the acid precipitable fraction of the cell. Levels of unbound actinomycin D were unaffected by cycloheximide, indicating that the plasma membrane permeability to AD was not reduced. Actinomycin D inhibited total transcription but did not reduce cytoplasmic levels of rRNA nor of most tested mRNA; however, cytoplasmic levels of c-myc mRNA were reduced below detectability. Cycloheximide treatment further inhibited total transcription and had no effect on cytoplasmic levels of rRNA nor of most tested mRNA. Cytoplasmic levels of c-myc were elevated by cycloheximide and remained so even in the presence of actinomycin D. These data suggested that a reduction in cytoplasmic levels of short lived, essential mRNA, such as c-myc mRNA, was one lethal lesion of actinomycin D. Furthermore, cycloheximide's protection may result, in part, from its ability to stabilize and/or elevate cytoplasmic levels of these mRNA, thus counteracting their depletion by actinomycin D. Protection may also result from the cycloheximide-induced reduction of actinomycin D bound to the acid precipitable fraction of the cells.
US
In isolated dispersed pancreatic acini, we have characterized the interactions between cholecystokinin (CCK) and CCK receptors by simultaneously measuring CCK-33 immunoreactivity and CCK bioactivity. Incubation of acinar cells with CCK-33 at cell density of 0.2-0.3 mg acinar protein per ml resulted in stimulation of amylase release concomitant with significant and time-dependent decrease of the immunoreactive CCK. With L-364,718 (0.1 microM), a specific CCK receptor antagonist, immunoreactive CCK levels in the media were not significantly altered during incubation; however, CCK-stimulated amylase release was almost completely abolished (94% inhibition). Vasoactive intestinal peptide (1 nM) significantly potentiated CCK stimulated amylase release without affecting immunoreactive CCK in the media. Insulin (167 nM) did not affect the CCK stimulated amylase release or immunoreactive CCK in the media. Incubation of acinar cells with CCK-33 at 4 degrees C did not affect the levels of immunoreactive CCK; however, a significant change in levels of immunoreactive CCK were found at 37 degrees C at 90 min. Incubation of cell free medium with CCK-33 in the presence or absence of secreted enzymes revealed no changes in CCK immunoreactivity in the medium at 90 min. Addition of bacitracin in the incubation media did not affect the CCK immunoreactivity or bioactivity. These findings indicate that in isolated rat pancreatic acini, CCK-33 stimulates amylase release through a receptor that is specifically blocked by L-364,718. Specificity of the interactions of CCK-33 with acinar cells in the media appears to be receptor-mediated and time- and temperature-dependent.
US
The head retractor muscle (RCCQ) of Pseudemys scripta is a useful model in which to study the mechanisms animals use to vary the force and timing of movement. Single fibers in this muscle differ significantly in attachments, length, diameter, taper characteristics, and histochemical properties, suggesting that they may be energetically and architecturally specialized for different roles in head movement. In the present paper, we report the peripheral and central efferent innervation of these diverse muscle cells, and we ask how the design of the neural apparatus is matched to the properties of its target muscle fibers. Three out of four bellies in RCCQ are supplied by multiple segmental nerves. The territories of these nerves are separated rostrocaudally within the muscle belly; thus, long muscle fibers cross the territories of two or more segmental nerves. Motor terminals in RCCQ resemble those on frog twitch muscles. Their sizes (length, bouton number) are correlated with the diameters of their target muscle fibers. Each muscle fiber bears 2-14 terminals evenly spaced (approx. 5 mm apart) along its length. Thus, single muscle fibers in RCCQ are multiterminally, and long fibers are multisegmentally innervated. Control experiments indicate that the axons in each segmental nerve arise from different motor neuron populations. Thus, short, in-series fibers are supplied by different motor neurons, and individual long fibers in RCCQ are polyneuronally innervated. These data help explain how long muscle fibers with relatively slow conduction speeds can generate rapid head movements, and they raise questions about the central mechanisms that coordinate the recruitment of RCCQ motor neurons.
US
Attempts were made to co-define afferents of the oculomotor nuclear complex (OMC) and their putative neurotransmitters in the squirrel monkey. Wheat germ agglutinin conjugated to horseradish peroxidase (WGA-HRP) and wheat germ agglutinin conjugated to enzymatically inactive HRP and coupled to colloidal gold (WGAapoHRP-AU) were used as retrograde tracers in combination with immunocytochemical methods. Primarily unilateral injections were made into portions of the OMC. Stabilized tetramethylbenzidine (TMB) and silver enhanced sections were immunoreacted with antisera for choline acetyltransferase (ChAT), glutamate (GLU), aspartate (ASP), aminobutyric acid (GABA), serotonin (5-HT) and cholecystokinin (CCK). Moderate numbers of ChAT-IR neurons in caudal regions of the medial vestibular nuclei (MVN) projected to the OMC. Tracer labeled ChAT-IR cells in the MVN projected ipsilaterally to the ventral nucleus (medial rectus subdivision) of the OMC and bilaterally with contralateral dominance to other OMC subdivisions. Cholinergic neurons in the dorsal paragigantocellular reticular nucleus (DPG) projected bilaterally to each half of the OMC. Cells of the DPG, considered to contain inhibitory burst neurons impinging upon the contralateral abducens nucleus, were shown to project to virtually all subdivision of the OMC. Abducens motor neurons were ChAT-IR, but abducens internuclear neurons were not. Cells in caudal parts of the nucleus prepositus (NPP) projecting to the ipsilateral ventral nucleus of the OMC were not ChAT-positive; ChAT-IR cells in rostral NPP did not project to the OMC. Unilateral OMC injections labeled cells ipsilaterally in the RiMLF, contralaterally in the pretectal olivary nucleus, the interstitial nucleus of Cajal and the infracerebellar nucleus and bilaterally in the superior vestibular nucleus, none of which were ChAT-IR. A small number of cells in the locus ceruleus projected ipsilaterally to the OMC. Although large numbers of vestibular neurons were GLU-IR and ASP-IR, only a few tracer labeled ASP-IR neurons in the contralateral MVN projected to the OMC. No other GLU- or ASP-positive neurons were immunoreactive for GABA, 5-HT or CCK, but cells of the lateral vestibular nucleus were surrounded by CCK-IR fibers and terminals.
US
Adverse food reactions may be secondary to food allergy (hypersensitivity) or food intolerance. The clinical manifestations of food allergies depend on the target organ affected. Gastrointestinal, respiratory, and cutaneous symptoms are the most common of the clinical responses. The medical history, physical examination, and various in vivo or in vitro tests are useful in the diagnostic evaluation. Double-blind, placebo-controlled food challenges are the standard for diagnosis of food allergies. Presumptive diagnosis of food allergy based on patient history and on results of skin test or radioallergosorbent test is no longer acceptable, except in cases of severe anaphylaxis after an isolated ingestion of a specific food. Unless the physician provides an unequivocal diagnosis of food allergy, people will continue to alter their eating habits on the basis of misconceptions of food allergy.
US
In order to be used as fertility regulators in humans, gonadotropin releasing hormone (GnRH) antagonists must be extremely potent and long acting and exhibit negligible side effects such as stimulating histamine release. To this aim, we have recently synthesized a series of analogues with the standard Ac-DNal1-DCpa2-DPal3 substitutions, where the N omega-amino function of ornithine, lysine, or p-aminophenylalanine (Aph) was converted to the aminotriazolyl (atz) derivatives at positions 5 and 6 with further modifications at positions 7 and 10. The analogues were tested for their ability to bind to pituitary cell membranes, to release histamine in a mast cell assay, to inhibit luteinizing hormone (LH) secretion by castrated male rats or cultured pituitary cells, and to interfere with the ovulation in intact female rats. While the subcutaneous (sc) injection of 50 micrograms of Azaline A (7, [Ac-DNal1,DCpa2,DPal3,Lys5(atz),DLys6++ +(atz),ILys8,DAla10]GnRH) dissolved in 0.2 mL of an aqueous media significantly inhibited LH release in the castrated male rat for 24 h, the same dose of Azaline B (11), [Ac-DNal1,DCpa2,DPal3,Aph5(atz),DAph6++ +(atz),ILys8,DAla10]GnRH, inhibited LH release for 72 h. A similar long duration of action was observed for Antide ([Ac-DNal1,DCpa2,DPal3,Lys5(Nic),DLys6(Nic ),ILys8,DAla10]GnRH) but not for Nal-Glu ([Ac-DNal1,DCpa2,DPal3,Arg5,4-(pmethoxybenzoy l)-D-2-Abu6,DAla10]GnRH). In the same paradigm, a 5-fold dilution of the peptide (50 micrograms in 1 mL) and the use of three injection sites rather than one resulted in significantly shorter duration of action for most of the peptides tested. This suggested that long duration of action might be the result of slow release from the injection site(s). In order to investigate this possibility, Nal-Glu and Azaline B were injected intravenously (i.v.) at three doses (10, 50, 250 micrograms) to castrated male rats. At all doses, both peptides significantly lowered LH levels for 8 h. By 24 h, Nal-Glu (250 micrograms) and Azaline B (50 and 250 micrograms) still measurably inhibited LH secretion. Finally, only Azaline B (250 micrograms) was still active at 48 h. These findings demonstrate that subtle structural modifications will yield peptides with different half-lives after iv administration. These findings led us to investigate the effects of other structural modifications on duration of action. We observed that systematic substitutions at positions 7 (NMeLeu) and 10 (Pro9-NHEt, and Gly-NH2) were found to be deleterious. Of interest was the observation that only the DAla10-NH2 substitution led to long duration of action and enzymatic stability under the conditions tested.(ABSTRACT TRUNCATED AT 400 WORDS)
US
Fifteen caregivers each glossed a simultaneously videotaped and audiotaped sample of their child with speech delay engaged in conversation with a clinician. One of the authors generated a reference gloss for each sample, aided by (a) prior knowledge of the child's speech-language status and error patterns, (b) glosses from the child's clinician and the child's caregiver, (c) unlimited replays of the taped sample, and (d) the information gained from completing a narrow phonetic transcription of the sample. Caregivers glossed an average of 78% of the utterances and 81% of the words. A comparison of their glosses to the reference glosses suggested that they accurately understood an average of 58% of the utterances and 73% of the words. Discussion considers the implications of such findings for methodological and theoretical issues underlying children's moment-to-moment intelligibility breakdowns during speech-language processing.
US
The present investigation is a follow-up to a longitudinal speech and academic study involving approximately 400 normally developing children begun in 1960 by Mildred Templin. From this large data base, the present project invited the participation of two groups of subjects (now aged 32 to 34): (a) 24 adults with a documented history of moderately severe phonological disorder that persisted at least through the end of first grade (probands) and (b) 28 adults from the same birth cohort and schools who were known to have had at least average articulation skills over the same period (controls). Results of follow-up testing revealed that the proband adults performed significantly more poorly than the control adults on all of the administered measures of articulation, expressive language, and receptive language. Results obtained from a screening of nonverbal reasoning ability were equivocal. On a questionnaire measure of personality, both groups scored well within the normal range for the dimensions of extroversion and neuroticism when compared to the test's normative sample. These results have been interpreted as suggesting that although many adults with a childhood history of delayed phonological development will continue to experience linguistic outcomes that are less favorable than those of controls, their performance in selected nonlanguage domains (e.g., nonverbal reasoning, personality) will be far more typical of the general population.
US
We investigated the epidemiology of hepatocellular carcinoma (HCC) in Zaire, and evaluated the association between exposure to hepatitis B virus (HBV) and the development of HCC. Two hundred and twenty-three consecutive cases of HCC diagnosed over 19 years (1966-1985) were reviewed. HCC represented 8.32% of all carcinomas and 5.56% of all cancers. Frequency was higher in males (75.7%) than in females (24.3%); a sex ratio of 3/1. The majority (82.1%) of patients were aged 14 to 55 years with a peak occurrence in the fourth decade (28.6%). The mean age in males (41.27 +/- 17.5 years) and females (37.40 +/- 15.16 years) was significantly different (p < 0.02). Sera from 40 patients and 68 age and sex-matched controls were analyzed for markers of HBV infection: patients and controls had comparable rates of exposure (96% vs 72.1%, respectively). However, patients had significantly higher HBsAg carrier rates (56.7% vs 7.35%; p < 0.001), and lower anti-HBsAg seroconversion rates (25% vs 63.2%, p < 0.05). Using immunohistochemical analysis, the livers of patients were evaluated for HBsAg and HBcAg. These HBV antigens were more frequent in non-tumourous hepatocytes (53.3% vs 23.3%, respectively) than in HCC cells (13.3% vs 3.3%). Serum alpha-fetoprotein (AFP) was abnormal (> 20 ng/ml) in 90% of patients. The geometric mean (GM) AFP was 7273.8 ng/ml. AFP levels were significantly higher in HBsAg-positive HCC cases (GM: 19,322.6 ng/ml; 95% confidence interval (CI): [3639.2, 102,565.2]) than in antigen negative cases (GM: 1939.5 ng/ml; 95% CI: [182.8, 19,952.6]), but did not correlate with HBV replication. Immunohistochemical detection of AFP revealed a similar correlation between AFP and HBsAg. Neither AFP level nor HBsAg production correlated with cellular atypia or tumor grade.
US
A murine monoclonal antibody (mAb), designated 3H12, reacts with a surface-exposed conformational epitope on the pilus of non-typable Haemophilus influenzae strain M37. This antibody does not recognize the related pilus from H. influenzae type b, strain MinnA. Although mAb 3H12 does not recognize strain M37 pilin on Western blots, mAb 3H12 recognizes the recombinant M37 pilin protein expressed by Escherichia coli. In order to map the epitope recognized by mAb 3H12, we constructed a series of chimaeric genes. The chimaeric genes were expressed in E. coli and the chimaeric proteins characterized with respect to their reactivity with mAb 3H12. Residues between 37 and 100 of the M37 pilin protein are essential for the expression of the mAb 3H12 epitope. Residues in the carboxyl half of the M37 protein enhance the reactivity of mAb 3H12 when expressed in the presence of residues 37-100. Construction of chimaeric genes may provide a general methodology for mapping of conformational epitopes expressed by one of a related pair of proteins.
US
Six synthetic 25-mer peptides corresponding to certain presumed surface-exposed regions of gonococcal porin protein I (PI) were made from strains FA19 (PIA) and MS11 (PIB). Four peptides were immunogenic in rabbits. Affinity-purified antisera against both PIA and PIB N-terminal peptides were bactericidal for homologous gonococci and many heterologous PI serovars. However, sialylation of gonococcal lipopolysaccharide (LPS) by growth of gonococci in the presence of cytidine monophosphate-neuraminic acid (CMP-NANA) abrogated the bactericidal activity of these antisera. Binding of anti-PI monoclonal antibodies to whole gonococci was reduced two- to fourfold by sialylation of LPS, suggesting that sialylation may inhibit bactericidal activity by masking porin epitopes. However, binding of anti-PII (Opa) monoclonal antibodies was not inhibited, yet complement-mediated killing was inhibited by sialylated LPS. Binding of complement components C3 and C9 was inhibited in the presence of either anti-PI or anti-PII monoclonals when gonococci were grown in the presence of CMP-NANA. Thus sialylation inhibited both anti-PI antibody binding and complement deposition, with a resultant decrease in bactericidal activity.
US
We have identified by immunoblotting and ADP-ribosylation by cholera toxin and pertussis toxin the presence of Mr 43 and 46 KDa Gs alpha, and 39 and 41 KDa Gi alpha subunits in rat parotid gland plasma membranes but not in granule membranes. A Mr 28 KDa polypeptide that served as substrate for ADP-ribosylation by both cholera toxin and pertussis toxin was present exclusively in granule membranes. Photoaffinity crosslinking of [alpha-32P]GTP showed the presence of high molecular weight GTP-binding proteins (Mr 160, 100 KDa) in granule membranes. Six low molecular weight GTP-binding proteins (Mr 21-28 KDa) were differentially distributed in both plasma membranes and granule membranes. The present study identifies various GTP-binding proteins in rat parotid gland plasma membranes and granule membranes, and demonstrates the presence of distinct molecular weight GTP-binding proteins in granule membranes. These granule-associated GTP-binding proteins may be involved in secretory processes.
US
The cell surface molecule CD2 has a signaling role in the activation of T lymphocytes and natural killer cells. Because perturbation of CD2 leads to the appearance of tyrosine-phosphorylated proteins, we investigated the possibility that CD2 associates with cytoplasmic protein tyrosine kinases. As determined by in vitro kinase assays and phosphoamino acid analysis, protein tyrosine kinase activity coprecipitated with CD2 from rat T lymphocytes, T lymphoblasts, thymocytes, interleukin-2-activated natural killer cells, and RNK-16 cells (a rat natural killer cell line). In each case, both p56lck and p59fyn were identified in the CD2 immunoprecipitate. In the thymus, the association between CD2 and these kinases occurred predominately in a small subset of thymocytes that had the cell surface phenotype of mature T cells, indicating that the association is a regulated event and occurs late in T-cell ontogeny. The finding that CD2 is associated with p56lck and p59fyn in detergent lysates suggests that interactions with these Src-like protein kinases play a critical role in CD2-mediated signal transduction.
US
We have established the human nck sequence as a new oncogene. Nck encodes one SH2 and three SH3 domains, the Src homology motifs found in nonreceptor tyrosine kinases, Ras GTPase-activating protein, phosphatidylinositol 3-kinase, and phospholipase C-gamma. Overexpression of human nck in 3Y1 rat fibroblasts results in transformation as judged by alteration of cell morphology, colony formation in soft agar, and tumor formation in nude BALB/c mice. However, overexpression of nck does not induce detectable elevation of the phosphotyrosine content of specific proteins, as is observed for v-crk, another SH2/SH3-containing oncogene. Despite this fact, we demonstrate that Nck retains the ability to bind tyrosine phosphorylated proteins in vitro, using a fusion protein of Nck with glutathione-S-transferase (GST). Moreover, when incubated with lysates prepared from v-src-transformed 3Y1 cells or the nck-overexpressing cell lines, GST-Nck binds to both p60v-src and serine/threonine kinases, respectively. Although phosphotyrosine levels are not elevated in the nck-expressing fibroblasts, vanadate treatment of these cells results in a phosphotyrosine pattern that is altered from the parental 3Y1 pattern, suggestive of a perturbation of indigenous tyrosine kinase pathways. These results suggest the possibility that human nck induces transformation in 3Y1 fibroblasts by virtue of its altered affinity or specificity for the normal substrates of its rat homolog and that Nck may play a role in linking tyrosine and serine/threonine kinase pathways within the cell.
US
As a result of examining regional-specific gene expression in the mouse epididymis, a novel cystatin-related epididymal specific (CRES) gene was identified. Substantial homology between the CRES gene and members of the cystatin family of cysteine proteinase inhibitors was observed at the amino acid level. This homology included the presence of four highly conserved cysteine residues in exact alignment with the cystatins as well as other regions of sequence characteristic of the cystatins. However, unlike the cystatins, the CRES gene does not contain specific highly conserved sequence motifs thought to be necessary for cysteine proteinase inhibitory activity. Also, in contrast to the ubiquitous expression of the cystatin C gene, Northern blot analysis and in situ hybridization demonstrated that the CRES gene is very restricted in its expression. The 0.75-kilobase CRES transcript is dramatically restricted to the very proximal caput region of the epididymis with 15- to 20-fold less expression in the testis and no expression detected in any of the other 24 tissues examined. In addition, the CRES transcript disappears 2-3 weeks after castration, suggesting a dependence on androgens. However, its expression remained undetectable even after the administration of testosterone or dihydrotestosterone. Unilateral castration also resulted in the disappearance of the CRES mRNA from the castrate epididymis, but not from the intact epididymis, suggesting that testicular factors or hormones other than androgens may be involved in the regulation of CRES gene expression. Therefore, the unique sequence of the CRES gene as well as its highly restricted expression and unusual regulation by the testis suggests that it has a very specialized role in the epididymis.
US
The proximal 5'-flanking region of the alpha-subunit gene from humans and cattle confers pituitary-specific expression to heterologous reporter genes in transgenic mice. To investigate whether these promoter regions also contain the necessary regulatory elements for cell-specific expression and hormonal regulation, we used three independent lines of transgenic mice. Two lines of transgenic mice contained chimeric genes consisting of either 1.6 kilobasepairs (kbp) of human or 3 15 basepairs of bovine alpha-subunit proximal 5'-flanking sequence linked to the bacterial gene encoding chloramphenicol acetyltransferase (CAT). A third line of transgenic mice contained the proximal 1.6 kbp of 5'-flanking sequence of the human alpha-subunit gene linked to the bacterial lacZ gene encoding beta-galactosidase (beta gal; H alpha beta gal transgenic mice). Hormonal replacement paradigms indicate that both human and bovine alpha CAT transgenes are regulated by GnRH, suggesting that their expression occurs in gonadotropes. Thus, the proximal 5'-flanking regions of both the human and bovine alpha-subunit genes must contain regulatory elements that confer both gonadotrope-specific expression and responsiveness to GnRH. In contrast to the human alpha-subunit promoter, the bovine alpha-subunit promoter lacks a functional cAMP response element, suggesting that transduction of both cell-specific and GnRH transcriptional signals occurs through cAMP response element-independent pathways. Thyrotropes also express the glycoprotein hormone alpha-subunit gene. Yet, hormone replacement paradigms with propylthiouracil and T3 were ineffective in altering CAT activity in the pituitary of human or bovine alpha CAT transgenic mice. Because a thyroid hormone response element has been localized to the proximal 5'-flanking region of the human alpha-subunit gene, these data suggest that the alpha CAT transgenes lack sufficient information to direct expression to thyrotropes. Direct evidence for this possibility was obtained through immunocytochemical studies performed on pituitaries from H alpha beta gal transgenic mice. beta-Galactosidase activity appeared in gonadotropes, but not thyrotropes. We conclude, therefore, that distinct and separable regulatory elements mediate the expression of the alpha-subunit gene in gonadotropes and thyrotropes.
US
Previous studies have suggested that peptides such as substance P and thyrotropin-releasing hormone coexist with serotonin in the same varicosities in the ventral horn and intermediate gray of the spinal cord in rat. However, coexistence of these peptides with serotonin is rare in fibers in the superficial dorsal horn. Since it has been proposed that serotonergic fibers in the superficial dorsal horn act to modulate nociception, it was hypothesized that the serotonergic neurons that contain neither substance P nor thyrotropin-releasing hormone might constitute a specifically antinociceptive subset of serotonergic neurons. This being the case, it would be expected that different types of serotonergic neurons innervate nociceptive and non-nociceptive spinal neurons. In order to test this hypothesis, a group of cells that include nociceptive neurons (spinothalamic tract neurons) and a group of predominantly non-nociceptive neurons (postsynaptic dorsal column neurons) in the spinal cord of rat were retrogradely labeled. Sections of the spinal cord containing retrogradely labeled spinothalamic tract or postsynaptic dorsal column neurons were stained for serotonin and either substance P or thyrotropin-releasing hormone using two-color immunohistochemistry. A retrogradely labeled cell was classified as "apposed" if there was no discernible distance between an immunohistochemically labeled varicosity and the cell. Eighty per cent of spinothalamic tract and 83% of postsynaptic dorsal column profiles were apposed by serotonin-immunoreactive varicosities in the spinal cord. Thirty-one per cent of the spinothalamic tract profiles that were apposed by serotonergic varicosities were apposed by serotonergic varicosities that were also stained for thyrotropin-releasing hormone. The distribution of the latter spinothalamic neurons was similar to that reported for spinothalamic tract neurons responsive to joint movement. In addition, at least 63% of the spinothalamic tract profiles which were apposed by serotonergic varicosities were apposed by "serotonin-only" varicosities, including most spinothalamic tract neurons in the marginal zone, suggesting that at least some "serotonin-only" neurons are antinociceptive. However, contrary to the hypothesis, at least 94% of the postsynaptic dorsal column profiles apposed by serotonergic varicosities were apposed by "serotonin-only" varicosities. These findings suggest that there may be a relationship between the sensory modality to which a spinal neuron responds and the type of serotonergic innervation it receives. However, it appears that "serotonin-only" neurons may not constitute a specifically antinociceptive category of serotonergic neurons.
US
The in vivo and in vitro treatment effects of pancreatic polypeptide (PP) were characterized by studying agonist-stimulated enzyme secretion in pancreatic acini prepared from 8-week-old mice treated for 2 days with PP (200 micrograms kg-1 day-1) and in pancreatic lobules from untreated male rats. In the mouse studies, enzyme secretion was evaluated on the basis of percentage total amylase released, amylase released per unit of DNA, and amylase released per unit of protein. When expressed as percentage total amylase released, the acini from mice treated with PP were significantly less responsive to pancreatic secretagogues than were acini from control animals. Chronic treatment with bovine PP lowered the maximal response to carbachol (12.3 +/- 0.3 vs. 9.0 +/- 0.3% total amylase release in control and PP treated, respectively), decreased the magnitude of the difference between basal and maximal amylase release (10.6 +/- 0.4 vs. 6.2 +/- 0.5% total amylase release in control and PP treated, respectively), and affected these changes without modifying the dose of carbachol producing half-maximal amylase release. Similarly, the percentage of total amylase released in response to all doses of cholecystokinin octapeptide (1-100 pM) was reduced by chronic treatment with PP. However, when amylase release was expressed relative to protein or DNA, no differences in enzyme release were detected between treatments with either secretagogue. Chronic treatment with PP increased the total amount of amylase in the acini (per unit DNA or protein), but the increased amylase appeared to be unavailable for release since the actual amount (per microgram DNA or milligram protein) released in response to agonists did not differ between treatments.(ABSTRACT TRUNCATED AT 250 WORDS)
US
Sensitive, monoclonal antibody-based, enzyme-linked immunosorbent assays (ELISAs) for plasma factor VIII (FVIII) antigen have been developed. The assays used five monoclonal anti-FVIII antibodies with known epitopes in four different pairwise combinations. The sensitivity of the assays was increased by use of the ELISA amplification method described by Bobrow et. al. (J. Immunol Methods 125:279, 1989). These assays can distinguish between CRM positive, CRM reduced and CRM negative hemophilia A. A total of 94 plasma samples from 78 different patients were screened and generally consistent results were obtained among the different assays. Such assays are potentially useful in the phenotypic and genotypic analysis of hemophilia A.
US
We evaluated isovolumic hemodilution with hydroxyethyl starch 200/0.5 in a rat model of focal cerebral ischemia. This compound avoids the unfavorable viscosity and erythrocyte aggregation abnormalities of low molecular weight dextran during administration over a period of several days.
US
Hepatitis C virus (HCV) is a distant relative of pestiviruses and flaviviruses, but it has a 5' untranslated region (UTR) with some features structurally similar to that of picornaviruses. In order to test the role of the 5' UTR in controlling the expression of the HCV polyprotein, we fused full-length or deleted versions of the 5' UTR of HCV-1 RNA to chloramphenicol acetyl transferase (CAT) mRNA to monitor CAT activity in vivo. We found: (1) the full-length 5' UTR of HCV-1 RNA is translationally inactive while 5' deletions which mimic a 5' subgenomic RNA detected in vivo are active, (2) an efficient cis-acting element which represses translation is found at the 5' terminus, (3) a putative element which enhances translation is found near the 3' terminus of the 5' UTR, (4) additional cis-acting elements including small open reading frames (ORFs) upstream from the putative enhancer element downregulate translation. We did not find evidence supporting the existence of an internal ribosome entry site in the 5' UTR of HCV-1 RNA. These data suggest that HCV may employ a distinctive translation control strategy such as the generation of subgenomic viral mRNA in infected cells. Translational control of HCV might be responsible for some of the characteristic pathobiology seen in viral infection.
US
The cytopathic effects of HIV-1 produced by direct infection of human T cells do not account for the disproportionate loss of CD4-positive lymphocytes during the course of HIV infection. Previous studies have demonstrated the inhibition of uninfected human T cell activation and proliferation by the HIV-1 envelope glycoproteins, presumably due to gp120-CD4 interactions. To examine the ability of HIV-1 to inhibit T cell proliferation in the absence of both direct infection and gp120-CD4 interactions, we tested the effect of HIV-1 on mouse T cell proliferation. Culture media containing HIV-1 released from infected cells inhibited T lymphocyte proliferation in response to interleukin-2 (IL-2). Studies to explore the mechanism of this inhibition suggested that the decrease in proliferation resulted from interactions between HIV-1 and the mouse cells, but did not involve IL-2/IL-2 receptor interactions. We used monoclonal antibodies to demonstrate that the HIV-1 envelope glycoproteins were required for the inhibition of murine T cell proliferation. Anti-gp120 antibodies completely restored proliferation, indicating that the surface protein gp120 was primarily required for the inhibition of proliferation. However, antibodies directed against the transmembrane protein of HIV-1 (gp41) also partially restored lymphocyte proliferation. The functional significance of the HIV-1 envelope protein epitopes recognized by the monoclonal antibodies is discussed.
US
A cDNA of the complete coding region of rat IL-10 was cloned and sequenced using RNA isolated from a cultured population of thoracic duct T-lymphocytes obtained from Trichinella spiralis infected animals. The OX8- OX22-T-helper cells were stimulated in vitro with Concanavalin A for 24 hours prior to harvest. Reverse transcription of cellular RNA was primed with oligo-dT followed by amplification of IL-10 specific cDNA by polymerase chain reaction with synthetic oligo nucleotide primers chosen from two highly conserved regions of mouse and human IL-10. The sequence of the coding region of the amplified, cloned rat IL-10 cDNA is 90% identical to the mouse and 82% identical to the human IL-10 cDNA coding regions.
US
The objective of this study was to determine whether constitutive nitric oxide (NO) synthase from rat cerebellum could be regulated by the two products of the reaction, NO and L-citrulline, utilizing L-arginine as substrate. NO synthase activity was determined by monitoring the formation of 3H-citrulline from 3H-L-arginine in the presence of added cofactors. The rate of citrulline formation in enzyme reaction mixtures was non-linear. Addition of superoxide dismutase (SOD; 100 units) inhibited NO synthase activity and made the rate of product formation more non-linear, whereas addition of oxyhemoglobin (HbO2; 30 microM) increased NO synthase activity, made the rate of product formation linear and also abolished the effect of SOD. Added NO (10 microM) inhibited NO synthase activity and this inhibition was potentiated by SOD and abolished by HbO2. Added L-citrulline (1 mM) did not alter NO synthase activity. The two NO donors, S-nitroso-N-acetylpenicillamine (200 microM) and N-methyl-N'-nitro-N-nitrosoguanidine (200 microM) mimicked the inhibitory effect of NO and inhibition of NO synthase activity by NO was reversible. These observations indicate clearly that NO formed during the NO synthase reaction or added to the enzyme reaction mixture causes a reversible inhibition of NO synthase activity. Thus, NO may function as a negative feedback modulator of its own synthesis.
US
The receptors for the brain and gastrointestinal peptide, cholecystokinin, can be classified into CCKA and CCKB subtypes. Having recently cloned the rat CCKB receptor, we used it's cDNA to isolate the human CCKB receptor homologue from brain and stomach which encodes a 447 amino acid protein with 90% identity to both rat CCKB and canine gastrin receptors. Northern hybridization identifies transcripts from stomach, pancreas, brain and gallbladder. The CCKB receptor gene maps to chromosome 11. Expression of the receptor cDNA in COS-7 cells was characteristic of a CCKB receptor subtype pharmacology. These data confirm that we have cloned a novel gene for the human brain and stomach CCKB receptor.
US
To begin to examine the function of cyclins in mammalian germ cells, we have screened an adult mouse testis cDNA library for the presence of B-type cyclins. We have isolated cDNAs that encode a murine B-type cyclin, which has been designated cycB1. cycB1 was shown to be expressed in several adult tissues and in the midgestation mouse embryo. In the adult tissues, the highest levels of cycB1 transcripts were seen in the testis and ovary, which contain germ cells at various stages of differentiation. The major transcripts corresponding to cycB1 are 1.7 and 2.5 kb, with the 1.7 kb species being the predominant testicular transcript and the 2.5 kb species more abundant in the ovary. Examination of cDNAs corresponding to the 2.5 kb and 1.7 kb mRNAs revealed that these transcripts encode identical proteins, differing only in the polyadenylation signal used and therefore in the length of their 3' untranslated regions. Northern blot and in situ hybridization analyses revealed that the predominant sites of cycB1 expression in the testis and ovary were in the germinal compartment, particularly in early round spermatids in the testis and growing oocytes in the ovary. Thus cycB1 is expressed in both meiotic and postmeiotic cells. This pattern of cycB1 expression further suggests that cycB1 may have different functions in the two cell types, only one of which correlates with progression of the cell cycle.
US
The uptake of immune complexes by macrophages (MP) may be important in disease states in which circulating immune complexes are increased. We undertook the present study to determine the effects of prostaglandin E2 (PGE2) and adenosine 3',5'-cyclic monophosphate (cAMP) on the uptake of immunoglobulin G complexes (IgG complexes) by MP. The uptake of 125I-IgG-gold particles (IgG-gold) was measured in the established MP cell line J774.16 following pretreatment with PGE2, the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (IBMX), PGE2 plus IBMX, the cyclooxygenase inhibitor indomethacin (IM), and dibutyryladenosine 3',5'-cyclic monophosphate (DBcAMP). Preincubation with PGE2 at concentrations from (10(-12)) to (10(-5) M) revealed significantly diminished uptake of IgG-gold at (10(-6)) and (10(-5) M) (in counts per min per well, PGE2 [10(-6) M], 5,401 +/- 140; control, 17,150 +/- 493, p less than 0.001); (PGE2 [10(-5) M], 3,835 +/- 172; control, 17,150 +/- 493, p less than 0.001). IBMX (10(-3) M) alone did not significantly alter IgG-gold uptake (IBMX, 14,450 +/- 1938; control, 14,840 +/- 995, p less than 1.0). PGE2 (10(-6) M) plus IBMX (10(-3) M) significantly suppressed IgG-gold uptake (in counts per min per well, PGE2 plus IBMX, 3,659 +/- 129; control 18,296 +/- 486, p less than 0.001). PGE2 (10(-6) M) alone also suppressed IgG-gold uptake versus control (PGE2, 4,578 +/- 105; control, 18,296 +/- 486, p less than 0.001).(ABSTRACT TRUNCATED AT 250 WORDS)
US
Recombinant human stem cell factor (SCF), the ligand for c-kit, has been shown to stimulate increased numbers of hematopoietic progenitor cells of multiple types to circulate in the blood of baboons, but it was not known if the cells stimulated to circulate by SCF contained cells capable of engrafting and rescuing lethally irradiated baboons. Peripheral blood mononuclear cells (PBMNC) were collected by leukapheresis from four untreated control baboons and from three baboons on the 10th or 11th day of treatment with SCF (200 micrograms/kg/d). All animals were transplanted with 1.00 to 1.04 x 10(8)/kg of cryopreserved autologous PBMNC after treatment with a single dose of 1,020 cGy total body irradiation (TBI). Three animals were transplanted with PBMNC that had been collected during SCF treatment, 24 to 38 days after the last dose of SCF. Rapid trilineage engraftment was documented by bone marrow biopsy in all three. The mean time to a total white blood cell count (WBC) > or = 500/microL, WBC > or = 1,000/microL, and an absolute neutrophil count (ANC) > or = 500/microL was 15 +/- 3 (mean +/- SD), 19 +/- 1, and 19 +/- 2 days, respectively. Two animals remain alive with stable engraftment more than 180 and 245 days posttransplant. The third died of sepsis 32 days posttransplant with a hypercellular marrow showing trilineage engraftment. The surviving animals were transfusion independent by 10 and 59 days posttransplant. Four control animals were transplanted with PBMNC collected in the absence of SCF stimulation. One was treated for 11 days with SCF (200 micrograms/kg/d) after PBMNC were collected. This animal was transplanted 25 days after the last dose of SCF. None of the four control animals engrafted and they died 13, 16, 28, and 38 days posttransplant with marrow aplasia. Treatment with SCF stimulates the circulation of cells that engraft and rescue lethally irradiated baboons. The characteristics of the transplantable cells present in the circulation are now amenable to direct study.
US