code
stringlengths
87
55.2k
code_codestyle
int64
0
349
style_context
stringlengths
135
49.1k
style_context_codestyle
int64
0
349
label
int64
0
1
from sklearn.metrics import fa_score import datasets SCREAMING_SNAKE_CASE : Any = "\nThe F1 score is the harmonic mean of the precision and recall. It can be computed with the equation:\nF1 = 2 * (precision * recall) / (precision + recall)\n" SCREAMING_SNAKE_CASE : List[Any] = "\nArgs:\n predictions (`list` of `int`): Predicted labels.\n references (`list` of `int`): Ground truth labels.\n labels (`list` of `int`): The set of labels to include when `average` is not set to `'binary'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None.\n pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1.\n average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`.\n\n - 'binary': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary.\n - 'micro': Calculate metrics globally by counting the total true positives, false negatives and false positives.\n - 'macro': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - 'weighted': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. This option can result in an F-score that is not between precision and recall.\n - 'samples': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n sample_weight (`list` of `float`): Sample weights Defaults to None.\n\nReturns:\n f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better.\n\nExamples:\n\n Example 1-A simple binary example\n >>> f1_metric = datasets.load_metric(\"f1\")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0])\n >>> print(results)\n {'f1': 0.5}\n\n Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`.\n >>> f1_metric = datasets.load_metric(\"f1\")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0)\n >>> print(round(results['f1'], 2))\n 0.67\n\n Example 3-The same simple binary example as in Example 1, but with `sample_weight` included.\n >>> f1_metric = datasets.load_metric(\"f1\")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3])\n >>> print(round(results['f1'], 2))\n 0.35\n\n Example 4-A multiclass example, with different values for the `average` input.\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"macro\")\n >>> print(round(results['f1'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"micro\")\n >>> print(round(results['f1'], 2))\n 0.33\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"weighted\")\n >>> print(round(results['f1'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {'f1': array([0.8, 0. , 0. ])}\n" SCREAMING_SNAKE_CASE : List[Any] = "\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class _lowerCamelCase( datasets.Metric ): def UpperCamelCase ( self) -> Dict: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('int32')), 'references': datasets.Sequence(datasets.Value('int32')), } if self.config_name == 'multilabel' else { 'predictions': datasets.Value('int32'), 'references': datasets.Value('int32'), }), reference_urls=['https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html'], ) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase=None, lowerCamelCase=1, lowerCamelCase="binary", lowerCamelCase=None) -> Union[str, Any]: """simple docstring""" _lowercase : int = fa_score( lowerCamelCase, lowerCamelCase, labels=lowerCamelCase, pos_label=lowerCamelCase, average=lowerCamelCase, sample_weight=lowerCamelCase) return {"f1": float(lowerCamelCase) if score.size == 1 else score}
21
'''simple docstring''' import warnings from ...utils import logging from .image_processing_flava import FlavaImageProcessor __snake_case =logging.get_logger(__name__) class UpperCAmelCase_ ( __lowercase ): def __init__( self : Dict , *UpperCAmelCase__ : Dict , **UpperCAmelCase__ : List[str] ) -> None: warnings.warn( 'The class FlavaFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use FlavaImageProcessor instead.' , UpperCAmelCase__ , ) super().__init__(*UpperCAmelCase__ , **UpperCAmelCase__ )
4
0
'''simple docstring''' import inspect import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py __SCREAMING_SNAKE_CASE :Optional[Any] = '''src/transformers''' # This is to make sure the transformers module imported is the one in the repo. __SCREAMING_SNAKE_CASE :Tuple = direct_transformers_import(PATH_TO_TRANSFORMERS) __SCREAMING_SNAKE_CASE :Tuple = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` __SCREAMING_SNAKE_CASE :List[str] = re.compile(R'''\[(.+?)\]\((https://huggingface\.co/.+?)\)''') __SCREAMING_SNAKE_CASE :Union[str, Any] = { '''DecisionTransformerConfig''', '''EncoderDecoderConfig''', '''MusicgenConfig''', '''RagConfig''', '''SpeechEncoderDecoderConfig''', '''TimmBackboneConfig''', '''VisionEncoderDecoderConfig''', '''VisionTextDualEncoderConfig''', '''LlamaConfig''', } def UpperCAmelCase_ ( __lowercase : List[Any] ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase = None # source code of `config_class` _UpperCAmelCase = inspect.getsource(__lowercase ) _UpperCAmelCase = _re_checkpoint.findall(__lowercase ) # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` for ckpt_name, ckpt_link in checkpoints: # allow the link to end with `/` if ckpt_link.endswith("/" ): _UpperCAmelCase = ckpt_link[:-1] # verify the checkpoint name corresponds to the checkpoint link _UpperCAmelCase = f'https://huggingface.co/{ckpt_name}' if ckpt_link == ckpt_link_from_name: _UpperCAmelCase = ckpt_name break return checkpoint def UpperCAmelCase_ ( ) -> List[str]: '''simple docstring''' _UpperCAmelCase = [] for config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in config_class.__module__: continue _UpperCAmelCase = get_checkpoint_from_config_class(__lowercase ) _UpperCAmelCase = config_class.__name__ if checkpoint is None and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(__lowercase ) if len(__lowercase ) > 0: _UpperCAmelCase = "\n".join(sorted(__lowercase ) ) raise ValueError(f'The following configurations don\'t contain any valid checkpoint:\n{message}' ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
22
'''simple docstring''' from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer __snake_case =logging.get_logger(__name__) __snake_case ={ """vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_config_file""": """tokenizer_config.json""", } __snake_case ={ """vocab_file""": { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json""" }, """merges_file""": { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt""" }, """tokenizer_config_file""": { """facebook/blenderbot_small-90M""": ( """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json""" ) }, } __snake_case ={ """facebook/blenderbot_small-90M""": 512, } class UpperCAmelCase_ ( __lowercase ): lowerCamelCase : Tuple = VOCAB_FILES_NAMES lowerCamelCase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : Optional[Any] = BlenderbotSmallTokenizer def __init__( self : Any , UpperCAmelCase__ : Union[str, Any]=None , UpperCAmelCase__ : Dict=None , UpperCAmelCase__ : int="<|endoftext|>" , UpperCAmelCase__ : Dict="<|endoftext|>" , UpperCAmelCase__ : str="<|endoftext|>" , UpperCAmelCase__ : str=False , UpperCAmelCase__ : Tuple=True , **UpperCAmelCase__ : Optional[Any] , ) -> Any: super().__init__( ByteLevelBPETokenizer( vocab=UpperCAmelCase__ , merges=UpperCAmelCase__ , add_prefix_space=UpperCAmelCase__ , trim_offsets=UpperCAmelCase__ , ) , bos_token=UpperCAmelCase__ , eos_token=UpperCAmelCase__ , unk_token=UpperCAmelCase__ , **UpperCAmelCase__ , ) lowerCAmelCase = add_prefix_space def __UpperCAmelCase ( self : List[Any] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Dict=None ) -> Any: lowerCAmelCase = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def __UpperCAmelCase ( self : Any , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None ) -> List[int]: lowerCAmelCase = [self.sep_token_id] lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
4
0
'''simple docstring''' import os import unittest from transformers import MobileBertTokenizer, MobileBertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class SCREAMING_SNAKE_CASE( A__ , unittest.TestCase ): """simple docstring""" lowerCamelCase__ = MobileBertTokenizer lowerCamelCase__ = MobileBertTokenizerFast lowerCamelCase__ = True lowerCamelCase__ = True lowerCamelCase__ = filter_non_english lowerCamelCase__ = """google/mobilebert-uncased""" def A ( self : Any ) -> int: super().setUp() UpperCAmelCase : str = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] UpperCAmelCase : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) UpperCAmelCase : List[Any] = [ (tokenizer_def[0], self.pre_trained_model_path, tokenizer_def[2]) # else the 'google/' prefix is stripped for tokenizer_def in self.tokenizers_list ] def A ( self : Optional[Any] , __snake_case : Union[str, Any] ) -> Optional[Any]: UpperCAmelCase : Optional[Any] = '''UNwant\u00E9d,running''' UpperCAmelCase : int = '''unwanted, running''' return input_text, output_text def A ( self : Optional[Any] ) -> Dict: UpperCAmelCase : List[str] = self.tokenizer_class(self.vocab_file ) UpperCAmelCase : Dict = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(__snake_case , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__snake_case ) , [9, 6, 7, 12, 10, 11] ) def A ( self : Any ) -> int: if not self.test_rust_tokenizer: return UpperCAmelCase : Optional[int] = self.get_tokenizer() UpperCAmelCase : Any = self.get_rust_tokenizer() UpperCAmelCase : int = '''UNwant\u00E9d,running''' UpperCAmelCase : Dict = tokenizer.tokenize(__snake_case ) UpperCAmelCase : Optional[int] = rust_tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) UpperCAmelCase : Optional[int] = tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) UpperCAmelCase : int = rust_tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) self.assertListEqual(__snake_case , __snake_case ) UpperCAmelCase : int = self.get_rust_tokenizer() UpperCAmelCase : int = tokenizer.encode(__snake_case ) UpperCAmelCase : str = rust_tokenizer.encode(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) # With lower casing UpperCAmelCase : Dict = self.get_tokenizer(do_lower_case=__snake_case ) UpperCAmelCase : int = self.get_rust_tokenizer(do_lower_case=__snake_case ) UpperCAmelCase : Dict = '''UNwant\u00E9d,running''' UpperCAmelCase : int = tokenizer.tokenize(__snake_case ) UpperCAmelCase : List[Any] = rust_tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) UpperCAmelCase : int = tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) UpperCAmelCase : List[Any] = rust_tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) self.assertListEqual(__snake_case , __snake_case ) UpperCAmelCase : Optional[Any] = self.get_rust_tokenizer() UpperCAmelCase : Union[str, Any] = tokenizer.encode(__snake_case ) UpperCAmelCase : Union[str, Any] = rust_tokenizer.encode(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) def A ( self : List[str] ) -> List[str]: UpperCAmelCase : str = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''' ) , ['''ah''', '''\u535A''', '''\u63A8''', '''zz'''] ) def A ( self : Optional[int] ) -> Any: UpperCAmelCase : Tuple = BasicTokenizer(do_lower_case=__snake_case ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def A ( self : Optional[int] ) -> int: UpperCAmelCase : Optional[Any] = BasicTokenizer(do_lower_case=__snake_case , strip_accents=__snake_case ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''h\u00E9llo'''] ) def A ( self : Union[str, Any] ) -> Optional[Any]: UpperCAmelCase : Dict = BasicTokenizer(do_lower_case=__snake_case , strip_accents=__snake_case ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def A ( self : str ) -> Optional[int]: UpperCAmelCase : Any = BasicTokenizer(do_lower_case=__snake_case ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def A ( self : Union[str, Any] ) -> Optional[int]: UpperCAmelCase : Dict = BasicTokenizer(do_lower_case=__snake_case ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def A ( self : Tuple ) -> Any: UpperCAmelCase : Dict = BasicTokenizer(do_lower_case=__snake_case , strip_accents=__snake_case ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def A ( self : Optional[int] ) -> Union[str, Any]: UpperCAmelCase : List[str] = BasicTokenizer(do_lower_case=__snake_case , strip_accents=__snake_case ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def A ( self : Optional[Any] ) -> Union[str, Any]: UpperCAmelCase : Tuple = BasicTokenizer(do_lower_case=__snake_case , never_split=['''[UNK]'''] ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]'''] ) def A ( self : List[Any] ) -> Dict: UpperCAmelCase : List[Any] = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing'''] UpperCAmelCase : Tuple = {} for i, token in enumerate(__snake_case ): UpperCAmelCase : List[str] = i UpperCAmelCase : str = WordpieceTokenizer(vocab=__snake_case , unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) , [] ) self.assertListEqual(tokenizer.tokenize('''unwanted running''' ) , ['''un''', '''##want''', '''##ed''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.tokenize('''unwantedX running''' ) , ['''[UNK]''', '''runn''', '''##ing'''] ) def A ( self : Union[str, Any] ) -> Tuple: self.assertTrue(_is_whitespace(''' ''' ) ) self.assertTrue(_is_whitespace('''\t''' ) ) self.assertTrue(_is_whitespace('''\r''' ) ) self.assertTrue(_is_whitespace('''\n''' ) ) self.assertTrue(_is_whitespace('''\u00A0''' ) ) self.assertFalse(_is_whitespace('''A''' ) ) self.assertFalse(_is_whitespace('''-''' ) ) def A ( self : Union[str, Any] ) -> Any: self.assertTrue(_is_control('''\u0005''' ) ) self.assertFalse(_is_control('''A''' ) ) self.assertFalse(_is_control(''' ''' ) ) self.assertFalse(_is_control('''\t''' ) ) self.assertFalse(_is_control('''\r''' ) ) def A ( self : Optional[int] ) -> Tuple: self.assertTrue(_is_punctuation('''-''' ) ) self.assertTrue(_is_punctuation('''$''' ) ) self.assertTrue(_is_punctuation('''`''' ) ) self.assertTrue(_is_punctuation('''.''' ) ) self.assertFalse(_is_punctuation('''A''' ) ) self.assertFalse(_is_punctuation(''' ''' ) ) def A ( self : Union[str, Any] ) -> List[str]: UpperCAmelCase : Dict = self.get_tokenizer() UpperCAmelCase : int = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(__snake_case ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) self.assertListEqual( [rust_tokenizer.tokenize(__snake_case ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) @slow def A ( self : Union[str, Any] ) -> Optional[int]: UpperCAmelCase : Optional[Any] = self.tokenizer_class.from_pretrained('''google/mobilebert-uncased''' ) UpperCAmelCase : Dict = tokenizer.encode('''sequence builders''' , add_special_tokens=__snake_case ) UpperCAmelCase : List[str] = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__snake_case ) UpperCAmelCase : Any = tokenizer.build_inputs_with_special_tokens(__snake_case ) UpperCAmelCase : Tuple = tokenizer.build_inputs_with_special_tokens(__snake_case , __snake_case ) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_a + [102] def A ( self : Optional[Any] ) -> Any: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): UpperCAmelCase : Dict = self.rust_tokenizer_class.from_pretrained(__snake_case , **__snake_case ) UpperCAmelCase : str = F"""A, naïve {tokenizer_r.mask_token} AllenNLP sentence.""" UpperCAmelCase : Optional[int] = tokenizer_r.encode_plus( __snake_case , return_attention_mask=__snake_case , return_token_type_ids=__snake_case , return_offsets_mapping=__snake_case , add_special_tokens=__snake_case , ) UpperCAmelCase : List[Any] = tokenizer_r.do_lower_case if hasattr(__snake_case , '''do_lower_case''' ) else False UpperCAmelCase : str = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''A'''), ((1, 2), ''','''), ((3, 5), '''na'''), ((5, 6), '''##ï'''), ((6, 8), '''##ve'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''Allen'''), ((21, 23), '''##NL'''), ((23, 24), '''##P'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''a'''), ((1, 2), ''','''), ((3, 8), '''naive'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''allen'''), ((21, 23), '''##nl'''), ((23, 24), '''##p'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['''input_ids'''] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['''offset_mapping'''] ) def A ( self : Optional[int] ) -> str: UpperCAmelCase : str = ['''的''', '''人''', '''有'''] UpperCAmelCase : List[Any] = ''''''.join(__snake_case ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): UpperCAmelCase : Union[str, Any] = True UpperCAmelCase : List[str] = self.tokenizer_class.from_pretrained(__snake_case , **__snake_case ) UpperCAmelCase : int = self.rust_tokenizer_class.from_pretrained(__snake_case , **__snake_case ) UpperCAmelCase : List[Any] = tokenizer_p.encode(__snake_case , add_special_tokens=__snake_case ) UpperCAmelCase : Tuple = tokenizer_r.encode(__snake_case , add_special_tokens=__snake_case ) UpperCAmelCase : Any = tokenizer_r.convert_ids_to_tokens(__snake_case ) UpperCAmelCase : Optional[int] = tokenizer_p.convert_ids_to_tokens(__snake_case ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(__snake_case , __snake_case ) self.assertListEqual(__snake_case , __snake_case ) UpperCAmelCase : Union[str, Any] = False UpperCAmelCase : int = self.rust_tokenizer_class.from_pretrained(__snake_case , **__snake_case ) UpperCAmelCase : int = self.tokenizer_class.from_pretrained(__snake_case , **__snake_case ) UpperCAmelCase : List[Any] = tokenizer_r.encode(__snake_case , add_special_tokens=__snake_case ) UpperCAmelCase : Tuple = tokenizer_p.encode(__snake_case , add_special_tokens=__snake_case ) UpperCAmelCase : List[str] = tokenizer_r.convert_ids_to_tokens(__snake_case ) UpperCAmelCase : Optional[int] = tokenizer_p.convert_ids_to_tokens(__snake_case ) # it is expected that only the first Chinese character is not preceded by "##". UpperCAmelCase : Optional[Any] = [ F"""##{token}""" if idx != 0 else token for idx, token in enumerate(__snake_case ) ] self.assertListEqual(__snake_case , __snake_case ) self.assertListEqual(__snake_case , __snake_case )
23
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case =logging.get_logger(__name__) __snake_case ={ """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json""" ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class UpperCAmelCase_ ( __lowercase ): lowerCamelCase : Union[str, Any] = '''speech_to_text_2''' lowerCamelCase : Any = ['''past_key_values'''] lowerCamelCase : Optional[Any] = {'''num_attention_heads''': '''decoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self : Optional[int] , UpperCAmelCase__ : Optional[Any]=1_0_0_0_0 , UpperCAmelCase__ : int=6 , UpperCAmelCase__ : Optional[Any]=2_0_4_8 , UpperCAmelCase__ : Union[str, Any]=4 , UpperCAmelCase__ : List[Any]=0.0 , UpperCAmelCase__ : str=True , UpperCAmelCase__ : str="relu" , UpperCAmelCase__ : Any=2_5_6 , UpperCAmelCase__ : Optional[Any]=0.1 , UpperCAmelCase__ : Any=0.0 , UpperCAmelCase__ : Tuple=0.0 , UpperCAmelCase__ : List[Any]=0.02 , UpperCAmelCase__ : List[Any]=2 , UpperCAmelCase__ : str=True , UpperCAmelCase__ : List[str]=1 , UpperCAmelCase__ : Any=0 , UpperCAmelCase__ : Dict=2 , UpperCAmelCase__ : int=1_0_2_4 , **UpperCAmelCase__ : Optional[Any] , ) -> Dict: lowerCAmelCase = vocab_size lowerCAmelCase = d_model lowerCAmelCase = decoder_ffn_dim lowerCAmelCase = decoder_layers lowerCAmelCase = decoder_attention_heads lowerCAmelCase = dropout lowerCAmelCase = attention_dropout lowerCAmelCase = activation_dropout lowerCAmelCase = activation_function lowerCAmelCase = init_std lowerCAmelCase = decoder_layerdrop lowerCAmelCase = use_cache lowerCAmelCase = decoder_layers lowerCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True lowerCAmelCase = max_target_positions super().__init__( pad_token_id=UpperCAmelCase__ , bos_token_id=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ , decoder_start_token_id=UpperCAmelCase__ , **UpperCAmelCase__ , )
4
0
import math def lowerCamelCase__ ( snake_case_ : int ) -> bool: assert isinstance(snake_case_ , snake_case_ ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or not number % 2: # Negatives, 0, 1 and all even numbers are not primes return False __snake_case = range(3 , int(math.sqrt(snake_case_ ) + 1 ) , 2 ) return not any(not number % i for i in odd_numbers ) def lowerCamelCase__ ( snake_case_ : Optional[Any] , snake_case_ : Dict=1 , **snake_case_ : List[Any] ) -> str: __snake_case = factor * value __snake_case = value while not is_prime(snake_case_ ): value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1 , **snake_case_ ) return value
24
'''simple docstring''' from __future__ import annotations from bisect import bisect_left from functools import total_ordering from heapq import merge @total_ordering class UpperCAmelCase_ ( __lowercase ): def __lt__( self : Optional[int] , UpperCAmelCase__ : List[str] ) -> List[Any]: return self[-1] < other[-1] def __eq__( self : str , UpperCAmelCase__ : List[str] ) -> Tuple: return self[-1] == other[-1] def a_ ( lowerCamelCase : list ): lowerCAmelCase = [] # sort into stacks for element in collection: lowerCAmelCase = Stack([element] ) lowerCAmelCase = bisect_left(lowerCamelCase , lowerCamelCase ) if i != len(lowerCamelCase ): stacks[i].append(lowerCamelCase ) else: stacks.append(lowerCamelCase ) # use a heap-based merge to merge stack efficiently lowerCAmelCase = merge(*(reversed(lowerCamelCase ) for stack in stacks) ) return collection if __name__ == "__main__": __snake_case =input("""Enter numbers separated by a comma:\n""").strip() __snake_case =[int(item) for item in user_input.split(""",""")] print(patience_sort(unsorted))
4
0
"""simple docstring""" from __future__ import annotations from numpy import array, cos, cross, floataa, radians, sin from numpy.typing import NDArray def lowercase_ ( _snake_case ,_snake_case ,_snake_case = False ): if radian_mode: return [magnitude * cos(_snake_case ), magnitude * sin(_snake_case )] return [magnitude * cos(radians(_snake_case ) ), magnitude * sin(radians(_snake_case ) )] def lowercase_ ( _snake_case ,_snake_case ,_snake_case = 10**-1 ): SCREAMING_SNAKE_CASE__ : NDArray[floataa] = cross(_snake_case ,_snake_case ) SCREAMING_SNAKE_CASE__ : float = sum(_snake_case ) return abs(_snake_case ) < eps if __name__ == "__main__": # Test to check if it works UpperCAmelCase__ : int = array( [ polar_force(718.4, 1_8_0 - 3_0), polar_force(879.54, 4_5), polar_force(1_0_0, -9_0), ] ) UpperCAmelCase__ : NDArray[floataa] = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem 1 in image_data/2D_problems.jpg UpperCAmelCase__ : List[str] = array( [ polar_force(3_0 * 9.81, 1_5), polar_force(2_1_5, 1_8_0 - 4_5), polar_force(2_6_4, 9_0 - 3_0), ] ) UpperCAmelCase__ : Optional[int] = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem in image_data/2D_problems_1.jpg UpperCAmelCase__ : str = array([[0, -2_0_0_0], [0, -1_2_0_0], [0, 1_5_6_0_0], [0, -1_2_4_0_0]]) UpperCAmelCase__ : Tuple = array([[0, 0], [6, 0], [1_0, 0], [1_2, 0]]) assert in_static_equilibrium(forces, location) import doctest doctest.testmod()
25
'''simple docstring''' import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py __snake_case ="""\ @INPROCEEDINGS{Papineni02bleu:a, author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu}, title = {BLEU: a Method for Automatic Evaluation of Machine Translation}, booktitle = {}, year = {2002}, pages = {311--318} } @inproceedings{lin-och-2004-orange, title = \"{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation\", author = \"Lin, Chin-Yew and Och, Franz Josef\", booktitle = \"{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics\", month = \"aug 23{--}aug 27\", year = \"2004\", address = \"Geneva, Switzerland\", publisher = \"COLING\", url = \"https://www.aclweb.org/anthology/C04-1072\", pages = \"501--507\", } """ __snake_case ="""\ BLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another. Quality is considered to be the correspondence between a machine's output and that of a human: \"the closer a machine translation is to a professional human translation, the better it is\" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and remains one of the most popular automated and inexpensive metrics. Scores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations. Those scores are then averaged over the whole corpus to reach an estimate of the translation's overall quality. Intelligibility or grammatical correctness are not taken into account[citation needed]. BLEU's output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1 representing more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the reference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional reference translations will increase the BLEU score. """ __snake_case =""" Computes BLEU score of translated segments against one or more references. Args: predictions: list of translations to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. max_order: Maximum n-gram order to use when computing BLEU score. smooth: Whether or not to apply Lin et al. 2004 smoothing. Returns: 'bleu': bleu score, 'precisions': geometric mean of n-gram precisions, 'brevity_penalty': brevity penalty, 'length_ratio': ratio of lengths, 'translation_length': translation_length, 'reference_length': reference_length Examples: >>> predictions = [ ... [\"hello\", \"there\", \"general\", \"kenobi\"], # tokenized prediction of the first sample ... [\"foo\", \"bar\", \"foobar\"] # tokenized prediction of the second sample ... ] >>> references = [ ... [[\"hello\", \"there\", \"general\", \"kenobi\"], [\"hello\", \"there\", \"!\"]], # tokenized references for the first sample (2 references) ... [[\"foo\", \"bar\", \"foobar\"]] # tokenized references for the second sample (1 reference) ... ] >>> bleu = datasets.load_metric(\"bleu\") >>> results = bleu.compute(predictions=predictions, references=references) >>> print(results[\"bleu\"]) 1.0 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): def __UpperCAmelCase ( self : Tuple ) -> int: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ), 'references': datasets.Sequence( datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ) , id='references' ), } ) , codebase_urls=['https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py'] , reference_urls=[ 'https://en.wikipedia.org/wiki/BLEU', 'https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213', ] , ) def __UpperCAmelCase ( self : Optional[int] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Any , UpperCAmelCase__ : Union[str, Any]=4 , UpperCAmelCase__ : Optional[int]=False ) -> int: lowerCAmelCase = compute_bleu( reference_corpus=UpperCAmelCase__ , translation_corpus=UpperCAmelCase__ , max_order=UpperCAmelCase__ , smooth=UpperCAmelCase__ ) ((lowerCAmelCase) , (lowerCAmelCase) , (lowerCAmelCase) , (lowerCAmelCase) , (lowerCAmelCase) , (lowerCAmelCase)) = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
4
0
import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( "The `image_to_image.py` script is outdated. Please use directly `from diffusers import" " StableDiffusionImg2ImgPipeline` instead." )
26
'''simple docstring''' from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record __snake_case ="""\ @article{wang2019superglue, title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems}, author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R}, journal={arXiv preprint arXiv:1905.00537}, year={2019} } """ __snake_case ="""\ SuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after GLUE with a new set of more difficult language understanding tasks, improved resources, and a new public leaderboard. """ __snake_case =""" Compute SuperGLUE evaluation metric associated to each SuperGLUE dataset. Args: predictions: list of predictions to score. Depending on the SuperGlUE subset: - for 'record': list of question-answer dictionaries with the following keys: - 'idx': index of the question as specified by the dataset - 'prediction_text': the predicted answer text - for 'multirc': list of question-answer dictionaries with the following keys: - 'idx': index of the question-answer pair as specified by the dataset - 'prediction': the predicted answer label - otherwise: list of predicted labels references: list of reference labels. Depending on the SuperGLUE subset: - for 'record': list of question-answers dictionaries with the following keys: - 'idx': index of the question as specified by the dataset - 'answers': list of possible answers - otherwise: list of reference labels Returns: depending on the SuperGLUE subset: - for 'record': - 'exact_match': Exact match between answer and gold answer - 'f1': F1 score - for 'multirc': - 'exact_match': Exact match between answer and gold answer - 'f1_m': Per-question macro-F1 score - 'f1_a': Average F1 score over all answers - for 'axb': 'matthews_correlation': Matthew Correlation - for 'cb': - 'accuracy': Accuracy - 'f1': F1 score - for all others: - 'accuracy': Accuracy Examples: >>> super_glue_metric = datasets.load_metric('super_glue', 'copa') # any of [\"copa\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"boolq\", \"axg\"] >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'cb') >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0, 'f1': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'record') >>> predictions = [{'idx': {'passage': 0, 'query': 0}, 'prediction_text': 'answer'}] >>> references = [{'idx': {'passage': 0, 'query': 0}, 'answers': ['answer', 'another_answer']}] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'exact_match': 1.0, 'f1': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'multirc') >>> predictions = [{'idx': {'answer': 0, 'paragraph': 0, 'question': 0}, 'prediction': 0}, {'idx': {'answer': 1, 'paragraph': 2, 'question': 3}, 'prediction': 1}] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'exact_match': 1.0, 'f1_m': 1.0, 'f1_a': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'axb') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'matthews_correlation': 1.0} """ def a_ ( lowerCamelCase : str , lowerCamelCase : Union[str, Any] ): return float((preds == labels).mean() ) def a_ ( lowerCamelCase : Union[str, Any] , lowerCamelCase : Dict , lowerCamelCase : str="binary" ): lowerCAmelCase = simple_accuracy(lowerCamelCase , lowerCamelCase ) lowerCAmelCase = float(fa_score(y_true=lowerCamelCase , y_pred=lowerCamelCase , average=lowerCamelCase ) ) return { "accuracy": acc, "f1": fa, } def a_ ( lowerCamelCase : List[Any] , lowerCamelCase : List[Any] ): lowerCAmelCase = {} for id_pred, label in zip(lowerCamelCase , lowerCamelCase ): lowerCAmelCase = f'''{id_pred['idx']['paragraph']}-{id_pred['idx']['question']}''' lowerCAmelCase = id_pred['prediction'] if question_id in question_map: question_map[question_id].append((pred, label) ) else: lowerCAmelCase = [(pred, label)] lowerCAmelCase , lowerCAmelCase = [], [] for question, preds_labels in question_map.items(): lowerCAmelCase , lowerCAmelCase = zip(*lowerCamelCase ) lowerCAmelCase = fa_score(y_true=lowerCamelCase , y_pred=lowerCamelCase , average='macro' ) fas.append(lowerCamelCase ) lowerCAmelCase = int(sum(pred == label for pred, label in preds_labels ) == len(lowerCamelCase ) ) ems.append(lowerCamelCase ) lowerCAmelCase = float(sum(lowerCamelCase ) / len(lowerCamelCase ) ) lowerCAmelCase = sum(lowerCamelCase ) / len(lowerCamelCase ) lowerCAmelCase = float(fa_score(y_true=lowerCamelCase , y_pred=[id_pred['prediction'] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): def __UpperCAmelCase ( self : List[str] ) -> List[Any]: if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( 'You should supply a configuration name selected in ' '["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format='numpy' if not self.config_name == 'record' and not self.config_name == 'multirc' else None , ) def __UpperCAmelCase ( self : Union[str, Any] ) -> str: if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value('int64' ), "query": datasets.Value('int64' ), }, "prediction_text": datasets.Value('string' ), }, "references": { "idx": { "passage": datasets.Value('int64' ), "query": datasets.Value('int64' ), }, "answers": datasets.Sequence(datasets.Value('string' ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value('int64' ), "paragraph": datasets.Value('int64' ), "question": datasets.Value('int64' ), }, "prediction": datasets.Value('int64' ), }, "references": datasets.Value('int64' ), } else: return { "predictions": datasets.Value('int64' ), "references": datasets.Value('int64' ), } def __UpperCAmelCase ( self : List[str] , UpperCAmelCase__ : Any , UpperCAmelCase__ : Optional[Any] ) -> Any: if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(UpperCAmelCase__ , UpperCAmelCase__ )} elif self.config_name == "cb": return acc_and_fa(UpperCAmelCase__ , UpperCAmelCase__ , fa_avg='macro' ) elif self.config_name == "record": lowerCAmelCase = [ { 'qas': [ {'id': ref['idx']['query'], 'answers': [{'text': ans} for ans in ref['answers']]} for ref in references ] } ] lowerCAmelCase = {pred['idx']['query']: pred['prediction_text'] for pred in predictions} return evaluate_record(UpperCAmelCase__ , UpperCAmelCase__ )[0] elif self.config_name == "multirc": return evaluate_multirc(UpperCAmelCase__ , UpperCAmelCase__ ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(UpperCAmelCase__ , UpperCAmelCase__ )} else: raise KeyError( 'You should supply a configuration name selected in ' '["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]' )
4
0
'''simple docstring''' import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available from transformers.models.gpta.tokenization_gpta import GPTaTokenizer from transformers.testing_utils import require_keras_nlp, require_tf, slow if is_tf_available(): import tensorflow as tf if is_keras_nlp_available(): from transformers.models.gpta import TFGPTaTokenizer __lowercase : List[str] = ['gpt2'] __lowercase : int = 'gpt2' if is_tf_available(): class __UpperCamelCase ( tf.Module ): def __init__( self , __a ): '''simple docstring''' super().__init__() __a : Dict = tokenizer __a : List[Any] = AutoConfig.from_pretrained(__a ) __a : List[Any] = TFGPTaLMHeadModel.from_config(__a ) @tf.function(input_signature=(tf.TensorSpec((None,) , tf.string , name='text' ),) ) def __UpperCAmelCase ( self , __a ): '''simple docstring''' __a : Optional[Any] = self.tokenizer(__a ) __a : Optional[int] = tokenized['input_ids'].to_tensor() __a : Union[str, Any] = tf.cast(input_ids_dense > 0 , tf.intaa ) # input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN]) __a : str = self.model(input_ids=__a , attention_mask=__a )['logits'] return outputs @require_tf @require_keras_nlp class __UpperCamelCase ( unittest.TestCase ): def __UpperCAmelCase ( self ): '''simple docstring''' super().setUp() __a : List[str] = [GPTaTokenizer.from_pretrained(__a ) for checkpoint in (TOKENIZER_CHECKPOINTS)] __a : Any = [TFGPTaTokenizer.from_pretrained(__a ) for checkpoint in TOKENIZER_CHECKPOINTS] assert len(self.tokenizers ) == len(self.tf_tokenizers ) __a : int = [ 'This is a straightforward English test sentence.', 'This one has some weird characters\rto\nsee\r\nif those\u00E9break things.', 'Now we\'re going to add some Chinese: 一 二 三 一二三', 'And some much more rare Chinese: 齉 堃 齉堃', 'Je vais aussi écrire en français pour tester les accents', 'Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ', ] __a : int = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def __UpperCAmelCase ( self ): '''simple docstring''' for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in self.test_sentences: __a : List[Any] = tokenizer([test_inputs] , return_tensors='tf' ) __a : List[str] = tf_tokenizer([test_inputs] ) for key in python_outputs.keys(): # convert them to numpy to avoid messing with ragged tensors __a : Optional[Any] = python_outputs[key].numpy() __a : str = tf_outputs[key].numpy() self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape ) ) self.assertTrue(tf.reduce_all(tf.cast(__a , tf.intaa ) == tf_outputs_values ) ) @slow def __UpperCAmelCase ( self ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: __a : int = tf.function(__a ) for test_inputs in self.test_sentences: __a : Dict = tf.constant(__a ) __a : List[str] = compiled_tokenizer(__a ) __a : str = tf_tokenizer(__a ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def __UpperCAmelCase ( self ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: __a : int = ModelToSave(tokenizer=__a ) __a : List[Any] = tf.convert_to_tensor([self.test_sentences[0]] ) __a : Optional[Any] = model.serving(__a ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: __a : int = Path(__a ) / 'saved.model' tf.saved_model.save(__a , __a , signatures={'serving_default': model.serving} ) __a : List[Any] = tf.saved_model.load(__a ) __a : List[Any] = loaded_model.signatures['serving_default'](__a )['output_0'] # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertTrue(tf.reduce_all(out == loaded_output ) ) @slow def __UpperCAmelCase ( self ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: __a : List[str] = tf.convert_to_tensor([self.test_sentences[0]] ) __a : str = tf_tokenizer(__a ) # Build model with some sample inputs __a : Union[str, Any] = tf_tokenizer.get_config() __a : List[Any] = TFGPTaTokenizer.from_config(__a ) __a : Tuple = model_from_config(__a ) for key in from_config_output.keys(): self.assertTrue(tf.reduce_all(from_config_output[key] == out[key] ) ) @slow def __UpperCAmelCase ( self ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: # for the test to run __a : List[Any] = 12_3123 for max_length in [3, 5, 1024]: __a : Union[str, Any] = tf.convert_to_tensor([self.test_sentences[0]] ) __a : Dict = tf_tokenizer(__a , max_length=__a ) __a : Dict = out['input_ids'].numpy().shape[1] assert out_length == max_length
27
'''simple docstring''' print((lambda quine: quine % quine)("""print((lambda quine: quine %% quine)(%r))"""))
4
0
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..utils import cached_file # docstyle-ignore _lowerCamelCase : Tuple = "\nHuman: <<task>>\n\nAssistant: " _lowerCamelCase : List[Any] = "huggingface-tools/default-prompts" _lowerCamelCase : Union[str, Any] = {"chat": "chat_prompt_template.txt", "run": "run_prompt_template.txt"} def __lowerCamelCase ( A__ , A__ , A__="run" ) -> List[Any]: """simple docstring""" if prompt_or_repo_id is None: UpperCamelCase = DEFAULT_PROMPTS_REPO # prompt is considered a repo ID when it does not contain any kind of space if re.search('\\s' , A__ ) is not None: return prompt_or_repo_id UpperCamelCase = cached_file( A__ , PROMPT_FILES[mode] , repo_type='dataset' , user_agent={'agent': agent_name} ) with open(A__ , 'r' , encoding='utf-8' ) as f: return f.read()
28
'''simple docstring''' import os __snake_case ={"""I""": 1, """V""": 5, """X""": 10, """L""": 50, """C""": 100, """D""": 500, """M""": 1_000} def a_ ( lowerCamelCase : str ): lowerCAmelCase = 0 lowerCAmelCase = 0 while index < len(lowerCamelCase ) - 1: lowerCAmelCase = SYMBOLS[numerals[index]] lowerCAmelCase = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def a_ ( lowerCamelCase : int ): lowerCAmelCase = '' lowerCAmelCase = num // 1000 numerals += m_count * "M" num %= 1000 lowerCAmelCase = num // 100 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 100 lowerCAmelCase = num // 10 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 10 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def a_ ( lowerCamelCase : str = "/p089_roman.txt" ): lowerCAmelCase = 0 with open(os.path.dirname(lowerCamelCase ) + roman_numerals_filename ) as filea: lowerCAmelCase = filea.readlines() for line in lines: lowerCAmelCase = line.strip() lowerCAmelCase = parse_roman_numerals(lowerCamelCase ) lowerCAmelCase = generate_roman_numerals(lowerCamelCase ) savings += len(lowerCamelCase ) - len(lowerCamelCase ) return savings if __name__ == "__main__": print(F'''{solution() = }''')
4
0
from abc import ABC, abstractmethod from typing import Optional, Union from .. import Dataset, DatasetDict, Features, IterableDataset, IterableDatasetDict, NamedSplit from ..utils.typing import NestedDataStructureLike, PathLike class lowerCamelCase (_snake_case ): '''simple docstring''' def __init__( self , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = False , _UpperCamelCase = False , _UpperCamelCase = None , **_UpperCamelCase , ) -> int: UpperCAmelCase_ : Dict = path_or_paths UpperCAmelCase_ : Union[str, Any] = split if split or isinstance(_UpperCamelCase , _UpperCamelCase ) else 'train' UpperCAmelCase_ : Dict = features UpperCAmelCase_ : Optional[int] = cache_dir UpperCAmelCase_ : int = keep_in_memory UpperCAmelCase_ : List[str] = streaming UpperCAmelCase_ : Any = num_proc UpperCAmelCase_ : List[Any] = kwargs @abstractmethod def __UpperCAmelCase ( self ) -> Union[Dataset, DatasetDict, IterableDataset, IterableDatasetDict]: pass class lowerCamelCase (_snake_case ): '''simple docstring''' def __init__( self , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = False , _UpperCamelCase = False , _UpperCamelCase = None , **_UpperCamelCase , ) -> Any: UpperCAmelCase_ : Any = features UpperCAmelCase_ : List[Any] = cache_dir UpperCAmelCase_ : List[Any] = keep_in_memory UpperCAmelCase_ : Any = streaming UpperCAmelCase_ : str = num_proc UpperCAmelCase_ : Optional[Any] = kwargs @abstractmethod def __UpperCAmelCase ( self ) -> Union[Dataset, IterableDataset]: pass
29
'''simple docstring''' import itertools import random import unittest import numpy as np from transformers import ASTFeatureExtractor from transformers.testing_utils import require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin __snake_case =random.Random() if is_torch_available(): import torch def a_ ( lowerCamelCase : Dict , lowerCamelCase : Dict=1.0 , lowerCamelCase : List[Any]=None , lowerCamelCase : Union[str, Any]=None ): if rng is None: lowerCAmelCase = global_rng lowerCAmelCase = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class UpperCAmelCase_ ( unittest.TestCase ): def __init__( self : List[Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : List[str]=7 , UpperCAmelCase__ : int=4_0_0 , UpperCAmelCase__ : int=2_0_0_0 , UpperCAmelCase__ : List[str]=1 , UpperCAmelCase__ : Tuple=0.0 , UpperCAmelCase__ : Tuple=1_6_0_0_0 , UpperCAmelCase__ : Tuple=True , UpperCAmelCase__ : Union[str, Any]=True , ) -> Any: lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = min_seq_length lowerCAmelCase = max_seq_length lowerCAmelCase = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) lowerCAmelCase = feature_size lowerCAmelCase = padding_value lowerCAmelCase = sampling_rate lowerCAmelCase = return_attention_mask lowerCAmelCase = do_normalize def __UpperCAmelCase ( self : Optional[Any] ) -> List[str]: return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def __UpperCAmelCase ( self : str , UpperCAmelCase__ : Union[str, Any]=False , UpperCAmelCase__ : Union[str, Any]=False ) -> Optional[Any]: def _flatten(UpperCAmelCase__ : int ): return list(itertools.chain(*UpperCAmelCase__ ) ) if equal_length: lowerCAmelCase = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size lowerCAmelCase = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: lowerCAmelCase = [np.asarray(UpperCAmelCase__ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): lowerCamelCase : Dict = ASTFeatureExtractor def __UpperCAmelCase ( self : str ) -> Optional[int]: lowerCAmelCase = ASTFeatureExtractionTester(self ) def __UpperCAmelCase ( self : Optional[int] ) -> Optional[int]: # Tests that all call wrap to encode_plus and batch_encode_plus lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 lowerCAmelCase = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] lowerCAmelCase = [np.asarray(UpperCAmelCase__ ) for speech_input in speech_inputs] # Test not batched input lowerCAmelCase = feat_extract(speech_inputs[0] , return_tensors='np' ).input_values lowerCAmelCase = feat_extract(np_speech_inputs[0] , return_tensors='np' ).input_values self.assertTrue(np.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1E-3 ) ) # Test batched lowerCAmelCase = feat_extract(UpperCAmelCase__ , padding=UpperCAmelCase__ , return_tensors='np' ).input_values lowerCAmelCase = feat_extract(UpperCAmelCase__ , padding=UpperCAmelCase__ , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(UpperCAmelCase__ , UpperCAmelCase__ ): self.assertTrue(np.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. lowerCAmelCase = [floats_list((1, x) )[0] for x in (8_0_0, 8_0_0, 8_0_0)] lowerCAmelCase = np.asarray(UpperCAmelCase__ ) lowerCAmelCase = feat_extract(UpperCAmelCase__ , return_tensors='np' ).input_values lowerCAmelCase = feat_extract(UpperCAmelCase__ , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(UpperCAmelCase__ , UpperCAmelCase__ ): self.assertTrue(np.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1E-3 ) ) @require_torch def __UpperCAmelCase ( self : Union[str, Any] ) -> Optional[int]: import torch lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCAmelCase = np.random.rand(1_0_0 ).astype(np.floataa ) lowerCAmelCase = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: lowerCAmelCase = feature_extractor.pad([{'input_values': inputs}] , return_tensors='np' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) lowerCAmelCase = feature_extractor.pad([{'input_values': inputs}] , return_tensors='pt' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def __UpperCAmelCase ( self : int , UpperCAmelCase__ : str ) -> Tuple: from datasets import load_dataset lowerCAmelCase = load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' ) # automatic decoding with librispeech lowerCAmelCase = ds.sort('id' ).select(range(UpperCAmelCase__ ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] @require_torch def __UpperCAmelCase ( self : str ) -> Optional[Any]: # fmt: off lowerCAmelCase = torch.tensor( [-0.9_894, -1.2_776, -0.9_066, -1.2_776, -0.9_349, -1.2_609, -1.0_386, -1.2_776, -1.1_561, -1.2_776, -1.2_052, -1.2_723, -1.2_190, -1.2_132, -1.2_776, -1.1_133, -1.1_953, -1.1_343, -1.1_584, -1.2_203, -1.1_770, -1.2_474, -1.2_381, -1.1_936, -0.9_270, -0.8_317, -0.8_049, -0.7_706, -0.7_565, -0.7_869] ) # fmt: on lowerCAmelCase = self._load_datasamples(1 ) lowerCAmelCase = ASTFeatureExtractor() lowerCAmelCase = feature_extractor(UpperCAmelCase__ , return_tensors='pt' ).input_values self.assertEquals(input_values.shape , (1, 1_0_2_4, 1_2_8) ) self.assertTrue(torch.allclose(input_values[0, 0, :3_0] , UpperCAmelCase__ , atol=1E-4 ) )
4
0
from __future__ import annotations def a ( snake_case__: list , snake_case__: int , snake_case__: int , snake_case__: int ): '''simple docstring''' lowercase_ = [] lowercase_ , lowercase_ = input_list[low:mid], input_list[mid : high + 1] while left and right: result.append((left if left[0] <= right[0] else right).pop(0 ) ) lowercase_ = result + left + right return input_list def a ( snake_case__: list ): '''simple docstring''' if len(snake_case__ ) <= 1: return input_list lowercase_ = list(snake_case__ ) # iteration for two-way merging lowercase_ = 2 while p <= len(snake_case__ ): # getting low, high and middle value for merge-sort of single list for i in range(0 , len(snake_case__ ) , snake_case__ ): lowercase_ = i lowercase_ = i + p - 1 lowercase_ = (low + high + 1) // 2 lowercase_ = merge(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) # final merge of last two parts if p * 2 >= len(snake_case__ ): lowercase_ = i lowercase_ = merge(snake_case__ , 0 , snake_case__ , len(snake_case__ ) - 1 ) break p *= 2 return input_list if __name__ == "__main__": __a = input('Enter numbers separated by a comma:\n').strip() if user_input == "": __a = [] else: __a = [int(item.strip()) for item in user_input.split(',')] print(iter_merge_sort(unsorted))
30
'''simple docstring''' import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class UpperCAmelCase_ ( unittest.TestCase ): def __UpperCAmelCase ( self : str ) -> List[Any]: lowerCAmelCase = torch.nn.Linear(1_0 , 1_0 ) lowerCAmelCase = torch.optim.SGD(model.parameters() , 0.1 ) lowerCAmelCase = Accelerator() lowerCAmelCase = accelerator.prepare(UpperCAmelCase__ ) try: pickle.loads(pickle.dumps(UpperCAmelCase__ ) ) except Exception as e: self.fail(F'''Accelerated optimizer pickling failed with {e}''' ) AcceleratorState._reset_state()
4
0
'''simple docstring''' from ... import PretrainedConfig __SCREAMING_SNAKE_CASE : str = { """sijunhe/nezha-cn-base""": """https://huggingface.co/sijunhe/nezha-cn-base/resolve/main/config.json""", } class lowerCamelCase_ (snake_case__ ): '''simple docstring''' __UpperCamelCase: Optional[int] = NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP __UpperCamelCase: str = "nezha" def __init__( self : Optional[int] , A : Optional[Any]=21128 , A : Any=768 , A : Optional[int]=12 , A : Dict=12 , A : List[str]=3072 , A : Dict="gelu" , A : List[str]=0.1 , A : Optional[int]=0.1 , A : str=512 , A : int=64 , A : Optional[int]=2 , A : str=0.02 , A : List[str]=1E-12 , A : List[Any]=0.1 , A : Dict=0 , A : Any=2 , A : Union[str, Any]=3 , A : str=True , **A : Any , ): super().__init__(pad_token_id=A , bos_token_id=A , eos_token_id=A , **A ) _UpperCAmelCase : List[str] = vocab_size _UpperCAmelCase : str = hidden_size _UpperCAmelCase : int = num_hidden_layers _UpperCAmelCase : Dict = num_attention_heads _UpperCAmelCase : Dict = hidden_act _UpperCAmelCase : Optional[int] = intermediate_size _UpperCAmelCase : int = hidden_dropout_prob _UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob _UpperCAmelCase : int = max_position_embeddings _UpperCAmelCase : Union[str, Any] = max_relative_position _UpperCAmelCase : Union[str, Any] = type_vocab_size _UpperCAmelCase : Union[str, Any] = initializer_range _UpperCAmelCase : str = layer_norm_eps _UpperCAmelCase : Dict = classifier_dropout _UpperCAmelCase : List[Any] = use_cache
31
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot import BlenderbotTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __snake_case =logging.get_logger(__name__) __snake_case ={ """vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_config_file""": """tokenizer_config.json""", } __snake_case ={ """vocab_file""": {"""facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"""}, """merges_file""": {"""facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"""}, """tokenizer_config_file""": { """facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json""" }, } __snake_case ={"""facebook/blenderbot-3B""": 128} class UpperCAmelCase_ ( __lowercase ): lowerCamelCase : List[Any] = VOCAB_FILES_NAMES lowerCamelCase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : Optional[Any] = ['''input_ids''', '''attention_mask'''] lowerCamelCase : List[Any] = BlenderbotTokenizer def __init__( self : Union[str, Any] , UpperCAmelCase__ : Tuple=None , UpperCAmelCase__ : Tuple=None , UpperCAmelCase__ : List[Any]=None , UpperCAmelCase__ : str="replace" , UpperCAmelCase__ : Dict="<s>" , UpperCAmelCase__ : Tuple="</s>" , UpperCAmelCase__ : Optional[Any]="</s>" , UpperCAmelCase__ : Any="<s>" , UpperCAmelCase__ : List[str]="<unk>" , UpperCAmelCase__ : int="<pad>" , UpperCAmelCase__ : Union[str, Any]="<mask>" , UpperCAmelCase__ : str=False , UpperCAmelCase__ : Union[str, Any]=True , **UpperCAmelCase__ : Optional[int] , ) -> int: super().__init__( UpperCAmelCase__ , UpperCAmelCase__ , tokenizer_file=UpperCAmelCase__ , errors=UpperCAmelCase__ , bos_token=UpperCAmelCase__ , eos_token=UpperCAmelCase__ , sep_token=UpperCAmelCase__ , cls_token=UpperCAmelCase__ , unk_token=UpperCAmelCase__ , pad_token=UpperCAmelCase__ , mask_token=UpperCAmelCase__ , add_prefix_space=UpperCAmelCase__ , trim_offsets=UpperCAmelCase__ , **UpperCAmelCase__ , ) lowerCAmelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , UpperCAmelCase__ ) != add_prefix_space: lowerCAmelCase = getattr(UpperCAmelCase__ , pre_tok_state.pop('type' ) ) lowerCAmelCase = add_prefix_space lowerCAmelCase = pre_tok_class(**UpperCAmelCase__ ) lowerCAmelCase = add_prefix_space lowerCAmelCase = 'post_processor' lowerCAmelCase = getattr(self.backend_tokenizer , UpperCAmelCase__ , UpperCAmelCase__ ) if tokenizer_component_instance: lowerCAmelCase = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: lowerCAmelCase = tuple(state['sep'] ) if "cls" in state: lowerCAmelCase = tuple(state['cls'] ) lowerCAmelCase = False if state.get('add_prefix_space' , UpperCAmelCase__ ) != add_prefix_space: lowerCAmelCase = add_prefix_space lowerCAmelCase = True if state.get('trim_offsets' , UpperCAmelCase__ ) != trim_offsets: lowerCAmelCase = trim_offsets lowerCAmelCase = True if changes_to_apply: lowerCAmelCase = getattr(UpperCAmelCase__ , state.pop('type' ) ) lowerCAmelCase = component_class(**UpperCAmelCase__ ) setattr(self.backend_tokenizer , UpperCAmelCase__ , UpperCAmelCase__ ) @property # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot def __UpperCAmelCase ( self : Union[str, Any] ) -> str: if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def __UpperCAmelCase ( self : int , UpperCAmelCase__ : Optional[Any] ) -> Tuple: lowerCAmelCase = AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else value lowerCAmelCase = value def __UpperCAmelCase ( self : Optional[Any] , *UpperCAmelCase__ : Union[str, Any] , **UpperCAmelCase__ : List[str] ) -> BatchEncoding: lowerCAmelCase = kwargs.get('is_split_into_words' , UpperCAmelCase__ ) assert self.add_prefix_space or not is_split_into_words, ( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*UpperCAmelCase__ , **UpperCAmelCase__ ) def __UpperCAmelCase ( self : List[str] , *UpperCAmelCase__ : str , **UpperCAmelCase__ : List[str] ) -> BatchEncoding: lowerCAmelCase = kwargs.get('is_split_into_words' , UpperCAmelCase__ ) assert self.add_prefix_space or not is_split_into_words, ( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*UpperCAmelCase__ , **UpperCAmelCase__ ) def __UpperCAmelCase ( self : str , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[str] = None ) -> Tuple[str]: lowerCAmelCase = self._tokenizer.model.save(UpperCAmelCase__ , name=UpperCAmelCase__ ) return tuple(UpperCAmelCase__ ) def __UpperCAmelCase ( self : Optional[int] , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None ) -> List[int]: lowerCAmelCase = [self.sep_token_id] lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __UpperCAmelCase ( self : List[str] , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None ) -> Any: return token_ids_a + [self.eos_token_id] def __UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase__ : "Conversation" ) -> List[int]: lowerCAmelCase = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(' ' + text ) else: # Generated responses should contain them already. inputs.append(UpperCAmelCase__ ) lowerCAmelCase = ' '.join(UpperCAmelCase__ ) lowerCAmelCase = self.encode(UpperCAmelCase__ ) if len(UpperCAmelCase__ ) > self.model_max_length: lowerCAmelCase = input_ids[-self.model_max_length :] logger.warning(F'''Trimmed input from conversation as it was longer than {self.model_max_length} tokens.''' ) return input_ids
4
0
from __future__ import annotations import math def SCREAMING_SNAKE_CASE_ ( __A : int ) -> list[int]: """simple docstring""" if num <= 0: a_ : str = F"""{num}: Invalid input, please enter a positive integer.""" raise ValueError(__A ) a_ : Tuple = [True] * (num + 1) a_ : Union[str, Any] = [] a_ : Optional[int] = 2 a_ : Optional[Any] = int(math.sqrt(__A ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(__A ) # Set multiples of start be False for i in range(start * start , num + 1 , __A ): if sieve[i] is True: a_ : Any = False start += 1 for j in range(end + 1 , num + 1 ): if sieve[j] is True: prime.append(__A ) return prime if __name__ == "__main__": print(prime_sieve(int(input('Enter a positive integer: ').strip())))
32
'''simple docstring''' from __future__ import annotations from statistics import mean def a_ ( lowerCamelCase : list[int] , lowerCamelCase : list[int] , lowerCamelCase : int ): lowerCAmelCase = [0] * no_of_processes lowerCAmelCase = [0] * no_of_processes # Initialize remaining_time to waiting_time. for i in range(lowerCamelCase ): lowerCAmelCase = burst_time[i] lowerCAmelCase = [] lowerCAmelCase = 0 lowerCAmelCase = 0 # When processes are not completed, # A process whose arrival time has passed \ # and has remaining execution time is put into the ready_process. # The shortest process in the ready_process, target_process is executed. while completed != no_of_processes: lowerCAmelCase = [] lowerCAmelCase = -1 for i in range(lowerCamelCase ): if (arrival_time[i] <= total_time) and (remaining_time[i] > 0): ready_process.append(lowerCamelCase ) if len(lowerCamelCase ) > 0: lowerCAmelCase = ready_process[0] for i in ready_process: if remaining_time[i] < remaining_time[target_process]: lowerCAmelCase = i total_time += burst_time[target_process] completed += 1 lowerCAmelCase = 0 lowerCAmelCase = ( total_time - arrival_time[target_process] - burst_time[target_process] ) else: total_time += 1 return waiting_time def a_ ( lowerCamelCase : list[int] , lowerCamelCase : int , lowerCamelCase : list[int] ): lowerCAmelCase = [0] * no_of_processes for i in range(lowerCamelCase ): lowerCAmelCase = burst_time[i] + waiting_time[i] return turn_around_time if __name__ == "__main__": print("""[TEST CASE 01]""") __snake_case =4 __snake_case =[2, 5, 3, 7] __snake_case =[0, 0, 0, 0] __snake_case =calculate_waitingtime(arrival_time, burst_time, no_of_processes) __snake_case =calculate_turnaroundtime( burst_time, no_of_processes, waiting_time ) # Printing the Result print("""PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time""") for i, process_id in enumerate(list(range(1, 5))): print( F'''{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t''' F'''{waiting_time[i]}\t\t\t\t{turn_around_time[i]}''' ) print(F'''\nAverage waiting time = {mean(waiting_time):.5f}''') print(F'''Average turnaround time = {mean(turn_around_time):.5f}''')
4
0
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING __A : List[str] = logging.get_logger(__name__) __A : int = { '''ut/deta''': '''https://huggingface.co/ut/deta/resolve/main/config.json''', } class _UpperCAmelCase ( _A ): SCREAMING_SNAKE_CASE_ : int = "deta" SCREAMING_SNAKE_CASE_ : List[str] = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self : Union[str, Any] , A : Optional[int]=None , A : Union[str, Any]=9_00 , A : Tuple=20_48 , A : int=6 , A : str=20_48 , A : Any=8 , A : Optional[int]=6 , A : Dict=10_24 , A : str=8 , A : Dict=0.0 , A : Union[str, Any]=True , A : List[Any]="relu" , A : Tuple=2_56 , A : Optional[int]=0.1 , A : int=0.0 , A : str=0.0 , A : List[Any]=0.02 , A : Union[str, Any]=1.0 , A : str=True , A : str=False , A : Optional[int]="sine" , A : Optional[Any]=5 , A : str=4 , A : Union[str, Any]=4 , A : Tuple=True , A : Union[str, Any]=3_00 , A : Optional[Any]=True , A : int=True , A : Dict=1 , A : Tuple=5 , A : Optional[Any]=2 , A : Optional[Any]=1 , A : Any=1 , A : int=5 , A : Optional[Any]=2 , A : List[str]=0.1 , A : Dict=0.25 , **A : Tuple , ) -> Dict: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) lowercase_ : Optional[int] = CONFIG_MAPPING['''resnet'''](out_features=['''stage2''', '''stage3''', '''stage4'''] ) else: if isinstance(A , A ): lowercase_ : List[str] = backbone_config.pop('''model_type''' ) lowercase_ : List[str] = CONFIG_MAPPING[backbone_model_type] lowercase_ : Union[str, Any] = config_class.from_dict(A ) lowercase_ : List[str] = backbone_config lowercase_ : Optional[int] = num_queries lowercase_ : str = max_position_embeddings lowercase_ : Any = d_model lowercase_ : Optional[Any] = encoder_ffn_dim lowercase_ : List[str] = encoder_layers lowercase_ : Dict = encoder_attention_heads lowercase_ : int = decoder_ffn_dim lowercase_ : List[Any] = decoder_layers lowercase_ : int = decoder_attention_heads lowercase_ : Optional[Any] = dropout lowercase_ : Tuple = attention_dropout lowercase_ : str = activation_dropout lowercase_ : List[str] = activation_function lowercase_ : int = init_std lowercase_ : Dict = init_xavier_std lowercase_ : List[Any] = encoder_layerdrop lowercase_ : str = auxiliary_loss lowercase_ : Dict = position_embedding_type # deformable attributes lowercase_ : Union[str, Any] = num_feature_levels lowercase_ : Optional[int] = encoder_n_points lowercase_ : Dict = decoder_n_points lowercase_ : Tuple = two_stage lowercase_ : Union[str, Any] = two_stage_num_proposals lowercase_ : Tuple = with_box_refine lowercase_ : Optional[int] = assign_first_stage if two_stage is True and with_box_refine is False: raise ValueError('''If two_stage is True, with_box_refine must be True.''' ) # Hungarian matcher lowercase_ : Optional[Any] = class_cost lowercase_ : Dict = bbox_cost lowercase_ : Optional[int] = giou_cost # Loss coefficients lowercase_ : Optional[int] = mask_loss_coefficient lowercase_ : Optional[Any] = dice_loss_coefficient lowercase_ : Dict = bbox_loss_coefficient lowercase_ : int = giou_loss_coefficient lowercase_ : Union[str, Any] = eos_coefficient lowercase_ : Dict = focal_alpha super().__init__(is_encoder_decoder=A , **A ) @property def A ( self : Any ) -> int: return self.encoder_attention_heads @property def A ( self : Optional[int] ) -> int: return self.d_model def A ( self : List[Any] ) -> Dict: lowercase_ : str = copy.deepcopy(self.__dict__ ) lowercase_ : Union[str, Any] = self.backbone_config.to_dict() lowercase_ : List[Any] = self.__class__.model_type return output
33
'''simple docstring''' import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase ): def __UpperCAmelCase ( self : Optional[int] ) -> int: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCAmelCase ( self : Tuple ) -> Any: lowerCAmelCase = StableDiffusionKDiffusionPipeline.from_pretrained('CompVis/stable-diffusion-v1-4' ) lowerCAmelCase = sd_pipe.to(UpperCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) sd_pipe.set_scheduler('sample_euler' ) lowerCAmelCase = 'A painting of a squirrel eating a burger' lowerCAmelCase = torch.manual_seed(0 ) lowerCAmelCase = sd_pipe([prompt] , generator=UpperCAmelCase__ , guidance_scale=9.0 , num_inference_steps=2_0 , output_type='np' ) lowerCAmelCase = output.images lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) lowerCAmelCase = np.array([0.0_447, 0.0_492, 0.0_468, 0.0_408, 0.0_383, 0.0_408, 0.0_354, 0.0_380, 0.0_339] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __UpperCAmelCase ( self : List[str] ) -> Dict: lowerCAmelCase = StableDiffusionKDiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' ) lowerCAmelCase = sd_pipe.to(UpperCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) sd_pipe.set_scheduler('sample_euler' ) lowerCAmelCase = 'A painting of a squirrel eating a burger' lowerCAmelCase = torch.manual_seed(0 ) lowerCAmelCase = sd_pipe([prompt] , generator=UpperCAmelCase__ , guidance_scale=9.0 , num_inference_steps=2_0 , output_type='np' ) lowerCAmelCase = output.images lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) lowerCAmelCase = np.array([0.1_237, 0.1_320, 0.1_438, 0.1_359, 0.1_390, 0.1_132, 0.1_277, 0.1_175, 0.1_112] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-1 def __UpperCAmelCase ( self : Optional[Any] ) -> List[str]: lowerCAmelCase = StableDiffusionKDiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' ) lowerCAmelCase = sd_pipe.to(UpperCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) sd_pipe.set_scheduler('sample_dpmpp_2m' ) lowerCAmelCase = 'A painting of a squirrel eating a burger' lowerCAmelCase = torch.manual_seed(0 ) lowerCAmelCase = sd_pipe( [prompt] , generator=UpperCAmelCase__ , guidance_scale=7.5 , num_inference_steps=1_5 , output_type='np' , use_karras_sigmas=UpperCAmelCase__ , ) lowerCAmelCase = output.images lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) lowerCAmelCase = np.array( [0.11_381_689, 0.12_112_921, 0.1_389_457, 0.12_549_606, 0.1_244_964, 0.10_831_517, 0.11_562_866, 0.10_867_816, 0.10_499_048] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
4
0
'''simple docstring''' import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class _a : def __init__( self : str , lowercase : List[Any] , lowercase : Dict=2 , lowercase : str=32 , lowercase : Optional[Any]=16 , lowercase : Optional[Any]=3 , lowercase : Union[str, Any]=True , lowercase : List[Any]=True , lowercase : Optional[int]=32 , lowercase : Any=4 , lowercase : str=[0, 1, 2, 3] , lowercase : List[Any]=4 , lowercase : str=37 , lowercase : Optional[Any]="gelu" , lowercase : Tuple=0.1 , lowercase : Tuple=0.1 , lowercase : Union[str, Any]=0.02 , lowercase : int=3 , lowercase : int=[1, 384, 24, 24] , lowercase : str=True , lowercase : List[Any]=None , ): '''simple docstring''' UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = image_size UpperCAmelCase = patch_size UpperCAmelCase = num_channels UpperCAmelCase = is_training UpperCAmelCase = use_labels UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = backbone_out_indices UpperCAmelCase = num_attention_heads UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_act UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = initializer_range UpperCAmelCase = num_labels UpperCAmelCase = backbone_featmap_shape UpperCAmelCase = scope UpperCAmelCase = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) UpperCAmelCase = (image_size // patch_size) ** 2 UpperCAmelCase = num_patches + 1 def A ( self : int ): '''simple docstring''' UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase = None if self.use_labels: UpperCAmelCase = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) UpperCAmelCase = self.get_config() return config, pixel_values, labels def A ( self : str ): '''simple docstring''' UpperCAmelCase = { '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, '''hidden_sizes''': [96, 192, 384, 768], '''num_groups''': 2, } return DPTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowercase , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=lowercase , backbone_featmap_shape=self.backbone_featmap_shape , ) def A ( self : Optional[int] , lowercase : str , lowercase : Optional[Any] , lowercase : List[str] ): '''simple docstring''' UpperCAmelCase = DPTModel(config=lowercase ) model.to(lowercase ) model.eval() UpperCAmelCase = model(lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A ( self : List[str] , lowercase : Tuple , lowercase : Optional[int] , lowercase : List[str] ): '''simple docstring''' UpperCAmelCase = self.num_labels UpperCAmelCase = DPTForDepthEstimation(lowercase ) model.to(lowercase ) model.eval() UpperCAmelCase = model(lowercase ) self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size) ) def A ( self : int , lowercase : Dict , lowercase : Union[str, Any] , lowercase : int ): '''simple docstring''' UpperCAmelCase = self.num_labels UpperCAmelCase = DPTForSemanticSegmentation(lowercase ) model.to(lowercase ) model.eval() UpperCAmelCase = model(lowercase , labels=lowercase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def A ( self : Tuple ): '''simple docstring''' UpperCAmelCase = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = config_and_inputs UpperCAmelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _a ( __a , __a , unittest.TestCase ): __a : Dict = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () __a : Optional[int] = ( { """depth-estimation""": DPTForDepthEstimation, """feature-extraction""": DPTModel, """image-segmentation""": DPTForSemanticSegmentation, } if is_torch_available() else {} ) __a : Any = False __a : List[Any] = False __a : Dict = False def A ( self : int ): '''simple docstring''' UpperCAmelCase = DPTModelTester(self ) UpperCAmelCase = ConfigTester(self , config_class=lowercase , has_text_modality=lowercase , hidden_size=37 ) def A ( self : int ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='''DPT does not use inputs_embeds''' ) def A ( self : List[str] ): '''simple docstring''' pass def A ( self : int ): '''simple docstring''' UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = model_class(lowercase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowercase , nn.Linear ) ) def A ( self : Any ): '''simple docstring''' UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = model_class(lowercase ) UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase = [*signature.parameters.keys()] UpperCAmelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowercase ) def A ( self : Tuple ): '''simple docstring''' UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase ) def A ( self : Dict ): '''simple docstring''' UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*lowercase ) def A ( self : Any ): '''simple docstring''' UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*lowercase ) def A ( self : List[str] ): '''simple docstring''' for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase = True if model_class in get_values(lowercase ): continue UpperCAmelCase = model_class(lowercase ) model.to(lowercase ) model.train() UpperCAmelCase = self._prepare_for_class(lowercase , lowercase , return_labels=lowercase ) UpperCAmelCase = model(**lowercase ).loss loss.backward() def A ( self : str ): '''simple docstring''' for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase = False UpperCAmelCase = True if model_class in get_values(lowercase ) or not model_class.supports_gradient_checkpointing: continue UpperCAmelCase = model_class(lowercase ) model.to(lowercase ) model.gradient_checkpointing_enable() model.train() UpperCAmelCase = self._prepare_for_class(lowercase , lowercase , return_labels=lowercase ) UpperCAmelCase = model(**lowercase ).loss loss.backward() def A ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase = _config_zero_init(lowercase ) for model_class in self.all_model_classes: UpperCAmelCase = model_class(config=lowercase ) # Skip the check for the backbone UpperCAmelCase = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": UpperCAmelCase = [f"{name}.{key}" for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f"Parameter {name} of model {model_class} seems not properly initialized" , ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def A ( self : int ): '''simple docstring''' pass @slow def A ( self : Any ): '''simple docstring''' for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: UpperCAmelCase = DPTModel.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) def A ( self : str ): '''simple docstring''' UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase = '''add''' with self.assertRaises(lowercase ): UpperCAmelCase = DPTForDepthEstimation(lowercase ) def snake_case_ (): UpperCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision @slow class _a ( unittest.TestCase ): def A ( self : Dict ): '''simple docstring''' UpperCAmelCase = DPTImageProcessor.from_pretrained('''Intel/dpt-hybrid-midas''' ) UpperCAmelCase = DPTForDepthEstimation.from_pretrained('''Intel/dpt-hybrid-midas''' ).to(lowercase ) UpperCAmelCase = prepare_img() UpperCAmelCase = image_processor(images=lowercase , return_tensors='''pt''' ).to(lowercase ) # forward pass with torch.no_grad(): UpperCAmelCase = model(**lowercase ) UpperCAmelCase = outputs.predicted_depth # verify the predicted depth UpperCAmelCase = torch.Size((1, 384, 384) ) self.assertEqual(predicted_depth.shape , lowercase ) UpperCAmelCase = torch.tensor( [[[5.6437, 5.6146, 5.6511], [5.4371, 5.5649, 5.5958], [5.5215, 5.5184, 5.5293]]] ).to(lowercase ) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 100 , lowercase , atol=1E-4 ) )
34
'''simple docstring''' # Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #################################################################################################### # # Note: If when running this conversion script you're getting an exception: # ModuleNotFoundError: No module named 'megatron.model.enums' # you need to tell python where to find the clone of Megatron-LM, e.g.: # # cd /tmp # git clone https://github.com/NVIDIA/Megatron-LM # PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ... # # if you already have it cloned elsewhere, simply adjust the path to the existing path # # If the training was done using a Megatron-LM fork, e.g., # https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one # in your path, i.e., /path/to/Megatron-DeepSpeed/ # import argparse import os import re import zipfile import torch from transformers import AutoTokenizer, GPTaConfig def a_ ( lowerCamelCase : int , lowerCamelCase : Optional[Any] , lowerCamelCase : Union[str, Any]=0 ): # Format the message. if name is None: lowerCAmelCase = None else: lowerCAmelCase = '.' * max(0 , spaces - 2 ) + '# {:' + str(50 - spaces ) + 's}' lowerCAmelCase = fmt.format(lowerCamelCase ) # Print and recurse (if needed). if isinstance(lowerCamelCase , lowerCamelCase ): if msg is not None: print(lowerCamelCase ) for k in val.keys(): recursive_print(lowerCamelCase , val[k] , spaces + 2 ) elif isinstance(lowerCamelCase , torch.Tensor ): print(lowerCamelCase , ':' , val.size() ) else: print(lowerCamelCase , ':' , lowerCamelCase ) def a_ ( lowerCamelCase : Optional[int] , lowerCamelCase : List[str] , lowerCamelCase : List[Any] , lowerCamelCase : Dict , lowerCamelCase : Tuple ): # Permutes layout of param tensor to [num_splits * num_heads * hidden_size, :] # for compatibility with later versions of NVIDIA Megatron-LM. # The inverse operation is performed inside Megatron-LM to read checkpoints: # https://github.com/NVIDIA/Megatron-LM/blob/v2.4/megatron/checkpointing.py#L209 # If param is the weight tensor of the self-attention block, the returned tensor # will have to be transposed one more time to be read by HuggingFace GPT2. lowerCAmelCase = param.size() if checkpoint_version == 1.0: # version 1.0 stores [num_heads * hidden_size * num_splits, :] lowerCAmelCase = (num_heads, hidden_size, num_splits) + input_shape[1:] lowerCAmelCase = param.view(*lowerCamelCase ) lowerCAmelCase = param.transpose(0 , 2 ) lowerCAmelCase = param.transpose(1 , 2 ).contiguous() elif checkpoint_version >= 2.0: # other versions store [num_heads * num_splits * hidden_size, :] lowerCAmelCase = (num_heads, num_splits, hidden_size) + input_shape[1:] lowerCAmelCase = param.view(*lowerCamelCase ) lowerCAmelCase = param.transpose(0 , 1 ).contiguous() lowerCAmelCase = param.view(*lowerCamelCase ) return param def a_ ( lowerCamelCase : Optional[int] , lowerCamelCase : Optional[int] , lowerCamelCase : str ): # The converted output model. lowerCAmelCase = {} # old versions did not store training args lowerCAmelCase = input_state_dict.get('args' , lowerCamelCase ) if ds_args is not None: # do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint # from pprint import pprint # pprint(vars(ds_args)) lowerCAmelCase = ds_args.padded_vocab_size lowerCAmelCase = ds_args.max_position_embeddings lowerCAmelCase = ds_args.hidden_size lowerCAmelCase = ds_args.num_layers lowerCAmelCase = ds_args.num_attention_heads lowerCAmelCase = ds_args.ffn_hidden_size # pprint(config) # The number of heads. lowerCAmelCase = config.n_head # The hidden_size per head. lowerCAmelCase = config.n_embd // config.n_head # Megatron-LM checkpoint version if "checkpoint_version" in input_state_dict.keys(): lowerCAmelCase = input_state_dict['checkpoint_version'] else: lowerCAmelCase = 0.0 # The model. lowerCAmelCase = input_state_dict['model'] # The language model. lowerCAmelCase = model['language_model'] # The embeddings. lowerCAmelCase = lm['embedding'] # The word embeddings. lowerCAmelCase = embeddings['word_embeddings']['weight'] # Truncate the embedding table to vocab_size rows. lowerCAmelCase = word_embeddings[: config.vocab_size, :] lowerCAmelCase = word_embeddings # The position embeddings. lowerCAmelCase = embeddings['position_embeddings']['weight'] # Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size] lowerCAmelCase = pos_embeddings.size(0 ) if n_positions != config.n_positions: raise ValueError( f'''pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don\'t match''' ) # Store the position embeddings. lowerCAmelCase = pos_embeddings # The transformer. lowerCAmelCase = lm['transformer'] if 'transformer' in lm.keys() else lm['encoder'] # The regex to extract layer names. lowerCAmelCase = re.compile(R'layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)' ) # The simple map of names for "automated" rules. lowerCAmelCase = { 'attention.dense': '.attn.c_proj.', 'self_attention.dense': '.attn.c_proj.', 'mlp.dense_h_to_4h': '.mlp.c_fc.', 'mlp.dense_4h_to_h': '.mlp.c_proj.', } # Extract the layers. for key, val in transformer.items(): # Match the name. lowerCAmelCase = layer_re.match(lowerCamelCase ) # Stop if that's not a layer if m is None: break # The index of the layer. lowerCAmelCase = int(m.group(1 ) ) # The name of the operation. lowerCAmelCase = m.group(2 ) # Is it a weight or a bias? lowerCAmelCase = m.group(3 ) # The name of the layer. lowerCAmelCase = f'''transformer.h.{layer_idx}''' # For layernorm(s), simply store the layer norm. if op_name.endswith('layernorm' ): lowerCAmelCase = 'ln_1' if op_name.startswith('input' ) else 'ln_2' lowerCAmelCase = val # Transpose the QKV matrix. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "weight": # Insert a tensor of 1x1xDxD bias. lowerCAmelCase = torch.tril(torch.ones((n_positions, n_positions) , dtype=torch.floataa ) ).view( 1 , 1 , lowerCamelCase , lowerCamelCase ) lowerCAmelCase = causal_mask # Insert a "dummy" tensor for masked_bias. lowerCAmelCase = torch.tensor(-1e4 , dtype=torch.floataa ) lowerCAmelCase = masked_bias lowerCAmelCase = fix_query_key_value_ordering(lowerCamelCase , lowerCamelCase , 3 , lowerCamelCase , lowerCamelCase ) # Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D. lowerCAmelCase = out_val.transpose(0 , 1 ).contiguous() # Store. lowerCAmelCase = out_val # Transpose the bias. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "bias": lowerCAmelCase = fix_query_key_value_ordering(lowerCamelCase , lowerCamelCase , 3 , lowerCamelCase , lowerCamelCase ) # Store. No change of shape. lowerCAmelCase = out_val # Transpose the weights. elif weight_or_bias == "weight": lowerCAmelCase = megatron_to_transformers[op_name] lowerCAmelCase = val.transpose(0 , 1 ) # Copy the bias. elif weight_or_bias == "bias": lowerCAmelCase = megatron_to_transformers[op_name] lowerCAmelCase = val # DEBUG. assert config.n_layer == layer_idx + 1 # The final layernorm. lowerCAmelCase = transformer['final_layernorm.weight'] lowerCAmelCase = transformer['final_layernorm.bias'] # For LM head, transformers' wants the matrix to weight embeddings. lowerCAmelCase = word_embeddings # It should be done! return output_state_dict def a_ ( ): # Create the argument parser. lowerCAmelCase = argparse.ArgumentParser() parser.add_argument('--print-checkpoint-structure' , action='store_true' ) parser.add_argument( 'path_to_checkpoint' , type=lowerCamelCase , help='Path to the checkpoint file (.zip archive or direct .pt file)' , ) parser.add_argument( '--config_file' , default='' , type=lowerCamelCase , help='An optional config json file describing the pre-trained model.' , ) lowerCAmelCase = parser.parse_args() # Extract the basename. lowerCAmelCase = os.path.dirname(args.path_to_checkpoint ) # Load the model. # the .zip is very optional, let's keep it for backward compatibility print(f'''Extracting PyTorch state dictionary from {args.path_to_checkpoint}''' ) if args.path_to_checkpoint.endswith('.zip' ): with zipfile.ZipFile(args.path_to_checkpoint , 'r' ) as checkpoint: with checkpoint.open('release/mp_rank_00/model_optim_rng.pt' ) as pytorch_dict: lowerCAmelCase = torch.load(lowerCamelCase , map_location='cpu' ) else: lowerCAmelCase = torch.load(args.path_to_checkpoint , map_location='cpu' ) lowerCAmelCase = input_state_dict.get('args' , lowerCamelCase ) # Read the config, or default to the model released by NVIDIA. if args.config_file == "": if ds_args is not None: if ds_args.bias_gelu_fusion: lowerCAmelCase = 'gelu_fast' elif ds_args.openai_gelu: lowerCAmelCase = 'gelu_new' else: lowerCAmelCase = 'gelu' else: # in the very early days this used to be "gelu_new" lowerCAmelCase = 'gelu_new' # Spell out all parameters in case the defaults change. lowerCAmelCase = GPTaConfig( vocab_size=50257 , n_positions=1024 , n_embd=1024 , n_layer=24 , n_head=16 , n_inner=4096 , activation_function=lowerCamelCase , resid_pdrop=0.1 , embd_pdrop=0.1 , attn_pdrop=0.1 , layer_norm_epsilon=1e-5 , initializer_range=0.02 , summary_type='cls_index' , summary_use_proj=lowerCamelCase , summary_activation=lowerCamelCase , summary_proj_to_labels=lowerCamelCase , summary_first_dropout=0.1 , scale_attn_weights=lowerCamelCase , use_cache=lowerCamelCase , bos_token_id=50256 , eos_token_id=50256 , ) else: lowerCAmelCase = GPTaConfig.from_json_file(args.config_file ) lowerCAmelCase = ['GPT2LMHeadModel'] # Convert. print('Converting' ) lowerCAmelCase = convert_megatron_checkpoint(lowerCamelCase , lowerCamelCase , lowerCamelCase ) # Print the structure of converted state dict. if args.print_checkpoint_structure: recursive_print(lowerCamelCase , lowerCamelCase ) # Add tokenizer class info to config # see https://github.com/huggingface/transformers/issues/13906) if ds_args is not None: lowerCAmelCase = ds_args.tokenizer_type if tokenizer_type == "GPT2BPETokenizer": lowerCAmelCase = 'gpt2' elif tokenizer_type == "PretrainedFromHF": lowerCAmelCase = ds_args.tokenizer_name_or_path else: raise ValueError(f'''Unrecognized tokenizer_type {tokenizer_type}''' ) else: lowerCAmelCase = 'gpt2' lowerCAmelCase = AutoTokenizer.from_pretrained(lowerCamelCase ) lowerCAmelCase = type(lowerCamelCase ).__name__ lowerCAmelCase = tokenizer_class # Store the config to file. print('Saving config' ) config.save_pretrained(lowerCamelCase ) # Save tokenizer based on args print(f'''Adding {tokenizer_class} tokenizer files''' ) tokenizer.save_pretrained(lowerCamelCase ) # Store the state_dict to file. lowerCAmelCase = os.path.join(lowerCamelCase , 'pytorch_model.bin' ) print(f'''Saving checkpoint to "{output_checkpoint_file}"''' ) torch.save(lowerCamelCase , lowerCamelCase ) #################################################################################################### if __name__ == "__main__": main() ####################################################################################################
4
0
'''simple docstring''' class UpperCAmelCase_ : """simple docstring""" def __init__( self : int , snake_case_ : int ): snake_case__ : Tuple = n snake_case__ : int = [None] * self.n snake_case__ : Optional[int] = 0 # index of the first element snake_case__ : List[Any] = 0 snake_case__ : str = 0 def __len__( self : Optional[Any] ): return self.size def lowerCamelCase ( self : Dict ): return self.size == 0 def lowerCamelCase ( self : Optional[int] ): return False if self.is_empty() else self.array[self.front] def lowerCamelCase ( self : Optional[int] , snake_case_ : str ): if self.size >= self.n: raise Exception("""QUEUE IS FULL""" ) snake_case__ : Optional[int] = data snake_case__ : Optional[int] = (self.rear + 1) % self.n self.size += 1 return self def lowerCamelCase ( self : List[Any] ): if self.size == 0: raise Exception("""UNDERFLOW""" ) snake_case__ : List[str] = self.array[self.front] snake_case__ : str = None snake_case__ : Any = (self.front + 1) % self.n self.size -= 1 return temp
35
'''simple docstring''' from __future__ import annotations from typing import Any class UpperCAmelCase_ : def __init__( self : Optional[int] , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : float = 0 ) -> None: lowerCAmelCase , lowerCAmelCase = row, column lowerCAmelCase = [[default_value for c in range(UpperCAmelCase__ )] for r in range(UpperCAmelCase__ )] def __str__( self : List[str] ) -> str: lowerCAmelCase = F'''Matrix consist of {self.row} rows and {self.column} columns\n''' # Make string identifier lowerCAmelCase = 0 for row_vector in self.array: for obj in row_vector: lowerCAmelCase = max(UpperCAmelCase__ , len(str(UpperCAmelCase__ ) ) ) lowerCAmelCase = F'''%{max_element_length}s''' # Make string and return def single_line(UpperCAmelCase__ : list[float] ) -> str: nonlocal string_format_identifier lowerCAmelCase = '[' line += ", ".join(string_format_identifier % (obj,) for obj in row_vector ) line += "]" return line s += "\n".join(single_line(UpperCAmelCase__ ) for row_vector in self.array ) return s def __repr__( self : List[str] ) -> str: return str(self ) def __UpperCAmelCase ( self : Optional[int] , UpperCAmelCase__ : tuple[int, int] ) -> bool: if not (isinstance(UpperCAmelCase__ , (list, tuple) ) and len(UpperCAmelCase__ ) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__( self : Any , UpperCAmelCase__ : tuple[int, int] ) -> Any: assert self.validate_indicies(UpperCAmelCase__ ) return self.array[loc[0]][loc[1]] def __setitem__( self : Dict , UpperCAmelCase__ : tuple[int, int] , UpperCAmelCase__ : float ) -> None: assert self.validate_indicies(UpperCAmelCase__ ) lowerCAmelCase = value def __add__( self : Any , UpperCAmelCase__ : Matrix ) -> Matrix: assert isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) assert self.row == another.row and self.column == another.column # Add lowerCAmelCase = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): lowerCAmelCase = self[r, c] + another[r, c] return result def __neg__( self : int ) -> Matrix: lowerCAmelCase = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): lowerCAmelCase = -self[r, c] return result def __sub__( self : str , UpperCAmelCase__ : Matrix ) -> Matrix: return self + (-another) def __mul__( self : str , UpperCAmelCase__ : int | float | Matrix ) -> Matrix: if isinstance(UpperCAmelCase__ , (int, float) ): # Scalar multiplication lowerCAmelCase = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): lowerCAmelCase = self[r, c] * another return result elif isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): # Matrix multiplication assert self.column == another.row lowerCAmelCase = Matrix(self.row , another.column ) for r in range(self.row ): for c in range(another.column ): for i in range(self.column ): result[r, c] += self[r, i] * another[i, c] return result else: lowerCAmelCase = F'''Unsupported type given for another ({type(UpperCAmelCase__ )})''' raise TypeError(UpperCAmelCase__ ) def __UpperCAmelCase ( self : Optional[Any] ) -> Matrix: lowerCAmelCase = Matrix(self.column , self.row ) for r in range(self.row ): for c in range(self.column ): lowerCAmelCase = self[r, c] return result def __UpperCAmelCase ( self : List[str] , UpperCAmelCase__ : Matrix , UpperCAmelCase__ : Matrix ) -> Any: assert isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) and isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate lowerCAmelCase = v.transpose() lowerCAmelCase = (v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def a_ ( ): # a^(-1) lowerCAmelCase = Matrix(3 , 3 , 0 ) for i in range(3 ): lowerCAmelCase = 1 print(f'''a^(-1) is {ainv}''' ) # u, v lowerCAmelCase = Matrix(3 , 1 , 0 ) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = 1, 2, -3 lowerCAmelCase = Matrix(3 , 1 , 0 ) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = 4, -2, 5 print(f'''u is {u}''' ) print(f'''v is {v}''' ) print(f'''uv^T is {u * v.transpose()}''' ) # Sherman Morrison print(f'''(a + uv^T)^(-1) is {ainv.sherman_morrison(lowerCamelCase , lowerCamelCase )}''' ) def a_ ( ): import doctest doctest.testmod() testa()
4
0
import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import evaluate import numpy as np from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt") _snake_case = logging.getLogger(__name__) @dataclass class UpperCAmelCase_ : lowerCamelCase__ = field( default=128 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowerCamelCase__ = field( default=a , metadata={'help': 'Overwrite the cached preprocessed datasets or not.'}) lowerCamelCase__ = field( default=a , metadata={ 'help': ( 'Whether to pad all samples to `max_seq_length`. ' 'If False, will pad the samples dynamically when batching to the maximum length in the batch.' ) } , ) lowerCamelCase__ = field( default=a , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) lowerCamelCase__ = field( default=a , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) lowerCamelCase__ = field( default=a , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of prediction examples to this ' 'value if set.' ) } , ) @dataclass class UpperCAmelCase_ : lowerCamelCase__ = field( default=a , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'}) lowerCamelCase__ = field( default=a , metadata={'help': 'Evaluation language. Also train language if `train_language` is set to None.'}) lowerCamelCase__ = field( default=a , metadata={'help': 'Train language if it is different from the evaluation language.'}) lowerCamelCase__ = field( default=a , metadata={'help': 'Pretrained config name or path if not the same as model_name'}) lowerCamelCase__ = field( default=a , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'}) lowerCamelCase__ = field( default=a , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) lowerCamelCase__ = field( default=a , metadata={'help': 'arg to indicate if tokenizer should do lower case in AutoTokenizer.from_pretrained()'} , ) lowerCamelCase__ = field( default=a , metadata={'help': 'Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'} , ) lowerCamelCase__ = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) lowerCamelCase__ = field( default=a , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) lowerCamelCase__ = field( default=a , metadata={'help': 'Will enable to load a pretrained model whose head dimensions are different.'} , ) def A ( ): '''simple docstring''' _lowerCAmelCase : int = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : int = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_xnli" , _lowerCamelCase ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _lowerCAmelCase : str = training_args.get_process_log_level() logger.setLevel(_lowerCamelCase ) datasets.utils.logging.set_verbosity(_lowerCamelCase ) transformers.utils.logging.set_verbosity(_lowerCamelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + F"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) logger.info(F"Training/evaluation parameters {training_args}" ) # Detecting last checkpoint. _lowerCAmelCase : Optional[Any] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _lowerCAmelCase : Tuple = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. " "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None: logger.info( F"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Set seed before initializing model. set_seed(training_args.seed ) # In distributed training, the load_dataset function guarantees that only one local process can concurrently # download the dataset. # Downloading and loading xnli dataset from the hub. if training_args.do_train: if model_args.train_language is None: _lowerCAmelCase : List[Any] = load_dataset( "xnli" , model_args.language , split="train" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: _lowerCAmelCase : Union[str, Any] = load_dataset( "xnli" , model_args.train_language , split="train" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) _lowerCAmelCase : Optional[Any] = train_dataset.features["label"].names if training_args.do_eval: _lowerCAmelCase : int = load_dataset( "xnli" , model_args.language , split="validation" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) _lowerCAmelCase : Dict = eval_dataset.features["label"].names if training_args.do_predict: _lowerCAmelCase : Optional[Any] = load_dataset( "xnli" , model_args.language , split="test" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) _lowerCAmelCase : List[str] = predict_dataset.features["label"].names # Labels _lowerCAmelCase : List[Any] = len(_lowerCamelCase ) # Load pretrained model and tokenizer # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _lowerCAmelCase : str = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_lowerCamelCase , idalabel={str(_lowerCamelCase ): label for i, label in enumerate(_lowerCamelCase )} , labelaid={label: i for i, label in enumerate(_lowerCamelCase )} , finetuning_task="xnli" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) _lowerCAmelCase : Optional[int] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , do_lower_case=model_args.do_lower_case , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) _lowerCAmelCase : Any = AutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=_lowerCamelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # Preprocessing the datasets # Padding strategy if data_args.pad_to_max_length: _lowerCAmelCase : List[Any] = "max_length" else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch _lowerCAmelCase : Optional[Any] = False def preprocess_function(_lowerCamelCase ): # Tokenize the texts return tokenizer( examples["premise"] , examples["hypothesis"] , padding=_lowerCamelCase , max_length=data_args.max_seq_length , truncation=_lowerCamelCase , ) if training_args.do_train: if data_args.max_train_samples is not None: _lowerCAmelCase : Any = min(len(_lowerCamelCase ) , data_args.max_train_samples ) _lowerCAmelCase : Optional[Any] = train_dataset.select(range(_lowerCamelCase ) ) with training_args.main_process_first(desc="train dataset map pre-processing" ): _lowerCAmelCase : Dict = train_dataset.map( _lowerCamelCase , batched=_lowerCamelCase , load_from_cache_file=not data_args.overwrite_cache , desc="Running tokenizer on train dataset" , ) # Log a few random samples from the training set: for index in random.sample(range(len(_lowerCamelCase ) ) , 3 ): logger.info(F"Sample {index} of the training set: {train_dataset[index]}." ) if training_args.do_eval: if data_args.max_eval_samples is not None: _lowerCAmelCase : Union[str, Any] = min(len(_lowerCamelCase ) , data_args.max_eval_samples ) _lowerCAmelCase : Union[str, Any] = eval_dataset.select(range(_lowerCamelCase ) ) with training_args.main_process_first(desc="validation dataset map pre-processing" ): _lowerCAmelCase : Tuple = eval_dataset.map( _lowerCamelCase , batched=_lowerCamelCase , load_from_cache_file=not data_args.overwrite_cache , desc="Running tokenizer on validation dataset" , ) if training_args.do_predict: if data_args.max_predict_samples is not None: _lowerCAmelCase : List[Any] = min(len(_lowerCamelCase ) , data_args.max_predict_samples ) _lowerCAmelCase : List[str] = predict_dataset.select(range(_lowerCamelCase ) ) with training_args.main_process_first(desc="prediction dataset map pre-processing" ): _lowerCAmelCase : Optional[int] = predict_dataset.map( _lowerCamelCase , batched=_lowerCamelCase , load_from_cache_file=not data_args.overwrite_cache , desc="Running tokenizer on prediction dataset" , ) # Get the metric function _lowerCAmelCase : List[str] = evaluate.load("xnli" ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(_lowerCamelCase ): _lowerCAmelCase : Optional[Any] = p.predictions[0] if isinstance(p.predictions , _lowerCamelCase ) else p.predictions _lowerCAmelCase : Dict = np.argmax(_lowerCamelCase , axis=1 ) return metric.compute(predictions=_lowerCamelCase , references=p.label_ids ) # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: _lowerCAmelCase : int = default_data_collator elif training_args.fpaa: _lowerCAmelCase : List[str] = DataCollatorWithPadding(_lowerCamelCase , pad_to_multiple_of=8 ) else: _lowerCAmelCase : Union[str, Any] = None # Initialize our Trainer _lowerCAmelCase : Dict = Trainer( model=_lowerCamelCase , args=_lowerCamelCase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=_lowerCamelCase , tokenizer=_lowerCamelCase , data_collator=_lowerCamelCase , ) # Training if training_args.do_train: _lowerCAmelCase : Union[str, Any] = None if training_args.resume_from_checkpoint is not None: _lowerCAmelCase : List[Any] = training_args.resume_from_checkpoint elif last_checkpoint is not None: _lowerCAmelCase : int = last_checkpoint _lowerCAmelCase : Any = trainer.train(resume_from_checkpoint=_lowerCamelCase ) _lowerCAmelCase : List[str] = train_result.metrics _lowerCAmelCase : Dict = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(_lowerCamelCase ) ) _lowerCAmelCase : Tuple = min(_lowerCamelCase , len(_lowerCamelCase ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics("train" , _lowerCamelCase ) trainer.save_metrics("train" , _lowerCamelCase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***" ) _lowerCAmelCase : Optional[int] = trainer.evaluate(eval_dataset=_lowerCamelCase ) _lowerCAmelCase : Dict = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = min(_lowerCamelCase , len(_lowerCamelCase ) ) trainer.log_metrics("eval" , _lowerCamelCase ) trainer.save_metrics("eval" , _lowerCamelCase ) # Prediction if training_args.do_predict: logger.info("*** Predict ***" ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = trainer.predict(_lowerCamelCase , metric_key_prefix="predict" ) _lowerCAmelCase : str = ( data_args.max_predict_samples if data_args.max_predict_samples is not None else len(_lowerCamelCase ) ) _lowerCAmelCase : int = min(_lowerCamelCase , len(_lowerCamelCase ) ) trainer.log_metrics("predict" , _lowerCamelCase ) trainer.save_metrics("predict" , _lowerCamelCase ) _lowerCAmelCase : str = np.argmax(_lowerCamelCase , axis=1 ) _lowerCAmelCase : Any = os.path.join(training_args.output_dir , "predictions.txt" ) if trainer.is_world_process_zero(): with open(_lowerCamelCase , "w" ) as writer: writer.write("index\tprediction\n" ) for index, item in enumerate(_lowerCamelCase ): _lowerCAmelCase : str = label_list[item] writer.write(F"{index}\t{item}\n" ) if __name__ == "__main__": main()
36
'''simple docstring''' class UpperCAmelCase_ : def __init__( self : List[str] , UpperCAmelCase__ : list[int] ) -> None: lowerCAmelCase = len(UpperCAmelCase__ ) lowerCAmelCase = [0] * len_array if len_array > 0: lowerCAmelCase = array[0] for i in range(1 , UpperCAmelCase__ ): lowerCAmelCase = self.prefix_sum[i - 1] + array[i] def __UpperCAmelCase ( self : Optional[Any] , UpperCAmelCase__ : int , UpperCAmelCase__ : int ) -> int: if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def __UpperCAmelCase ( self : int , UpperCAmelCase__ : int ) -> bool: lowerCAmelCase = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(UpperCAmelCase__ ) return False if __name__ == "__main__": import doctest doctest.testmod()
4
0
'''simple docstring''' import importlib import json import os import sys import tempfile import unittest from pathlib import Path import transformers import transformers.models.auto from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.bert.configuration_bert import BertConfig from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 _lowerCAmelCase = get_tests_dir('''fixtures/dummy-config.json''') class lowerCAmelCase_( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self ) -> Optional[int]: lowerCAmelCase__ : Any = 0 def UpperCAmelCase_ ( self ) -> List[Any]: self.assertIsNotNone(transformers.models.auto.__spec__ ) self.assertIsNotNone(importlib.util.find_spec("""transformers.models.auto""" ) ) def UpperCAmelCase_ ( self ) -> List[str]: lowerCAmelCase__ : Dict = AutoConfig.from_pretrained("""bert-base-uncased""" ) self.assertIsInstance(__UpperCAmelCase ,__UpperCAmelCase ) def UpperCAmelCase_ ( self ) -> Optional[int]: lowerCAmelCase__ : Optional[Any] = AutoConfig.from_pretrained(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase ,__UpperCAmelCase ) def UpperCAmelCase_ ( self ) -> Optional[Any]: lowerCAmelCase__ : Tuple = AutoConfig.from_pretrained(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase ,__UpperCAmelCase ) def UpperCAmelCase_ ( self ) -> Union[str, Any]: lowerCAmelCase__ : Optional[Any] = AutoConfig.for_model("""roberta""" ) self.assertIsInstance(__UpperCAmelCase ,__UpperCAmelCase ) def UpperCAmelCase_ ( self ) -> List[Any]: with tempfile.TemporaryDirectory() as tmp_dir: # This model name contains bert and roberta, but roberta ends up being picked. lowerCAmelCase__ : List[str] = os.path.join(__UpperCAmelCase ,"""fake-roberta""" ) os.makedirs(__UpperCAmelCase ,exist_ok=__UpperCAmelCase ) with open(os.path.join(__UpperCAmelCase ,"""config.json""" ) ,"""w""" ) as f: f.write(json.dumps({} ) ) lowerCAmelCase__ : int = AutoConfig.from_pretrained(__UpperCAmelCase ) self.assertEqual(type(__UpperCAmelCase ) ,__UpperCAmelCase ) def UpperCAmelCase_ ( self ) -> Optional[Any]: try: AutoConfig.register("""custom""" ,__UpperCAmelCase ) # Wrong model type will raise an error with self.assertRaises(__UpperCAmelCase ): AutoConfig.register("""model""" ,__UpperCAmelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__UpperCAmelCase ): AutoConfig.register("""bert""" ,__UpperCAmelCase ) # Now that the config is registered, it can be used as any other config with the auto-API lowerCAmelCase__ : Any = CustomConfig() with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__UpperCAmelCase ) lowerCAmelCase__ : int = AutoConfig.from_pretrained(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase ,__UpperCAmelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] def UpperCAmelCase_ ( self ) -> List[Any]: with self.assertRaisesRegex( __UpperCAmelCase ,"""bert-base is not a local folder and is not a valid model identifier""" ): lowerCAmelCase__ : List[Any] = AutoConfig.from_pretrained("""bert-base""" ) def UpperCAmelCase_ ( self ) -> List[str]: with self.assertRaisesRegex( __UpperCAmelCase ,R"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): lowerCAmelCase__ : str = AutoConfig.from_pretrained(__UpperCAmelCase ,revision="""aaaaaa""" ) def UpperCAmelCase_ ( self ) -> Dict: with self.assertRaisesRegex( __UpperCAmelCase ,"""hf-internal-testing/no-config-test-repo does not appear to have a file named config.json.""" ,): lowerCAmelCase__ : List[Any] = AutoConfig.from_pretrained("""hf-internal-testing/no-config-test-repo""" ) def UpperCAmelCase_ ( self ) -> List[str]: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(__UpperCAmelCase ): lowerCAmelCase__ : Optional[int] = AutoConfig.from_pretrained("""hf-internal-testing/test_dynamic_model""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(__UpperCAmelCase ): lowerCAmelCase__ : List[str] = AutoConfig.from_pretrained("""hf-internal-testing/test_dynamic_model""" ,trust_remote_code=__UpperCAmelCase ) lowerCAmelCase__ : Union[str, Any] = AutoConfig.from_pretrained("""hf-internal-testing/test_dynamic_model""" ,trust_remote_code=__UpperCAmelCase ) self.assertEqual(config.__class__.__name__ ,"""NewModelConfig""" ) # Test config can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__UpperCAmelCase ) lowerCAmelCase__ : Optional[int] = AutoConfig.from_pretrained(__UpperCAmelCase ,trust_remote_code=__UpperCAmelCase ) self.assertEqual(reloaded_config.__class__.__name__ ,"""NewModelConfig""" ) def UpperCAmelCase_ ( self ) -> Union[str, Any]: class lowerCAmelCase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : Union[str, Any] = '''new-model''' try: AutoConfig.register("""new-model""" ,__UpperCAmelCase ) # If remote code is not set, the default is to use local lowerCAmelCase__ : Union[str, Any] = AutoConfig.from_pretrained("""hf-internal-testing/test_dynamic_model""" ) self.assertEqual(config.__class__.__name__ ,"""NewModelConfigLocal""" ) # If remote code is disabled, we load the local one. lowerCAmelCase__ : List[str] = AutoConfig.from_pretrained("""hf-internal-testing/test_dynamic_model""" ,trust_remote_code=__UpperCAmelCase ) self.assertEqual(config.__class__.__name__ ,"""NewModelConfigLocal""" ) # If remote is enabled, we load from the Hub lowerCAmelCase__ : str = AutoConfig.from_pretrained("""hf-internal-testing/test_dynamic_model""" ,trust_remote_code=__UpperCAmelCase ) self.assertEqual(config.__class__.__name__ ,"""NewModelConfig""" ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"]
37
'''simple docstring''' def a_ ( lowerCamelCase : Optional[Any] ): return [ { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], }, { 0: [6], 1: [9], 2: [4, 5], 3: [4], 4: [2, 3], 5: [2], 6: [0, 7], 7: [6], 8: [], 9: [1], }, { 0: [4], 1: [6], 2: [], 3: [5, 6, 7], 4: [0, 6], 5: [3, 8, 9], 6: [1, 3, 4, 7], 7: [3, 6, 8, 9], 8: [5, 7], 9: [5, 7], }, { 0: [1, 3], 1: [0, 2, 4], 2: [1, 3, 4], 3: [0, 2, 4], 4: [1, 2, 3], }, ][index] def a_ ( lowerCamelCase : dict[int, list[int]] ): lowerCAmelCase = 0 lowerCAmelCase = len(lowerCamelCase ) # No of vertices in graph lowerCAmelCase = [0] * n lowerCAmelCase = [False] * n def dfs(lowerCamelCase : Tuple , lowerCamelCase : str , lowerCamelCase : Dict , lowerCamelCase : str ): lowerCAmelCase = True lowerCAmelCase = id_ id_ += 1 for to in graph[at]: if to == parent: pass elif not visited[to]: dfs(lowerCamelCase , lowerCamelCase , lowerCamelCase , id_ ) lowerCAmelCase = min(low[at] , low[to] ) if id_ <= low[to]: bridges.append((at, to) if at < to else (to, at) ) else: # This edge is a back edge and cannot be a bridge lowerCAmelCase = min(low[at] , low[to] ) lowerCAmelCase = [] for i in range(lowerCamelCase ): if not visited[i]: dfs(lowerCamelCase , -1 , lowerCamelCase , id_ ) return bridges if __name__ == "__main__": import doctest doctest.testmod()
4
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCAmelCase_ : List[Any] = { '''configuration_xlm''': ['''XLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLMConfig''', '''XLMOnnxConfig'''], '''tokenization_xlm''': ['''XLMTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Optional[int] = [ '''XLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLMForMultipleChoice''', '''XLMForQuestionAnswering''', '''XLMForQuestionAnsweringSimple''', '''XLMForSequenceClassification''', '''XLMForTokenClassification''', '''XLMModel''', '''XLMPreTrainedModel''', '''XLMWithLMHeadModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Dict = [ '''TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXLMForMultipleChoice''', '''TFXLMForQuestionAnsweringSimple''', '''TFXLMForSequenceClassification''', '''TFXLMForTokenClassification''', '''TFXLMMainLayer''', '''TFXLMModel''', '''TFXLMPreTrainedModel''', '''TFXLMWithLMHeadModel''', ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys UpperCAmelCase_ : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
38
'''simple docstring''' import argparse from collections import OrderedDict from pathlib import Path import requests import torch from PIL import Image from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor from transformers.utils import logging logging.set_verbosity_info() __snake_case =logging.get_logger(__name__) def a_ ( lowerCamelCase : Any ): lowerCAmelCase = OrderedDict() for key, value in state_dict.items(): if key.startswith('module.encoder' ): lowerCAmelCase = key.replace('module.encoder' , 'glpn.encoder' ) if key.startswith('module.decoder' ): lowerCAmelCase = key.replace('module.decoder' , 'decoder.stages' ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 lowerCAmelCase = key[key.find('patch_embed' ) + len('patch_embed' )] lowerCAmelCase = key.replace(f'''patch_embed{idx}''' , f'''patch_embeddings.{int(lowerCamelCase )-1}''' ) if "norm" in key: lowerCAmelCase = key.replace('norm' , 'layer_norm' ) if "glpn.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 lowerCAmelCase = key[key.find('glpn.encoder.layer_norm' ) + len('glpn.encoder.layer_norm' )] lowerCAmelCase = key.replace(f'''layer_norm{idx}''' , f'''layer_norm.{int(lowerCamelCase )-1}''' ) if "layer_norm1" in key: lowerCAmelCase = key.replace('layer_norm1' , 'layer_norm_1' ) if "layer_norm2" in key: lowerCAmelCase = key.replace('layer_norm2' , 'layer_norm_2' ) if "block" in key: # replace for example block1 by block.0 lowerCAmelCase = key[key.find('block' ) + len('block' )] lowerCAmelCase = key.replace(f'''block{idx}''' , f'''block.{int(lowerCamelCase )-1}''' ) if "attn.q" in key: lowerCAmelCase = key.replace('attn.q' , 'attention.self.query' ) if "attn.proj" in key: lowerCAmelCase = key.replace('attn.proj' , 'attention.output.dense' ) if "attn" in key: lowerCAmelCase = key.replace('attn' , 'attention.self' ) if "fc1" in key: lowerCAmelCase = key.replace('fc1' , 'dense1' ) if "fc2" in key: lowerCAmelCase = key.replace('fc2' , 'dense2' ) if "linear_pred" in key: lowerCAmelCase = key.replace('linear_pred' , 'classifier' ) if "linear_fuse" in key: lowerCAmelCase = key.replace('linear_fuse.conv' , 'linear_fuse' ) lowerCAmelCase = key.replace('linear_fuse.bn' , 'batch_norm' ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 lowerCAmelCase = key[key.find('linear_c' ) + len('linear_c' )] lowerCAmelCase = key.replace(f'''linear_c{idx}''' , f'''linear_c.{int(lowerCamelCase )-1}''' ) if "bot_conv" in key: lowerCAmelCase = key.replace('bot_conv' , '0.convolution' ) if "skip_conv1" in key: lowerCAmelCase = key.replace('skip_conv1' , '1.convolution' ) if "skip_conv2" in key: lowerCAmelCase = key.replace('skip_conv2' , '2.convolution' ) if "fusion1" in key: lowerCAmelCase = key.replace('fusion1' , '1.fusion' ) if "fusion2" in key: lowerCAmelCase = key.replace('fusion2' , '2.fusion' ) if "fusion3" in key: lowerCAmelCase = key.replace('fusion3' , '3.fusion' ) if "fusion" in key and "conv" in key: lowerCAmelCase = key.replace('conv' , 'convolutional_layer' ) if key.startswith('module.last_layer_depth' ): lowerCAmelCase = key.replace('module.last_layer_depth' , 'head.head' ) lowerCAmelCase = value return new_state_dict def a_ ( lowerCamelCase : List[str] , lowerCamelCase : str ): # for each of the encoder blocks: for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) lowerCAmelCase = state_dict.pop(f'''glpn.encoder.block.{i}.{j}.attention.self.kv.weight''' ) lowerCAmelCase = state_dict.pop(f'''glpn.encoder.block.{i}.{j}.attention.self.kv.bias''' ) # next, add keys and values (in that order) to the state dict lowerCAmelCase = kv_weight[ : config.hidden_sizes[i], : ] lowerCAmelCase = kv_bias[: config.hidden_sizes[i]] lowerCAmelCase = kv_weight[ config.hidden_sizes[i] :, : ] lowerCAmelCase = kv_bias[config.hidden_sizes[i] :] def a_ ( ): lowerCAmelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowerCAmelCase = Image.open(requests.get(lowerCamelCase , stream=lowerCamelCase ).raw ) return image @torch.no_grad() def a_ ( lowerCamelCase : List[Any] , lowerCamelCase : Tuple , lowerCamelCase : Optional[Any]=False , lowerCamelCase : List[str]=None ): lowerCAmelCase = GLPNConfig(hidden_sizes=[64, 128, 320, 512] , decoder_hidden_size=64 , depths=[3, 8, 27, 3] ) # load image processor (only resize + rescale) lowerCAmelCase = GLPNImageProcessor() # prepare image lowerCAmelCase = prepare_img() lowerCAmelCase = image_processor(images=lowerCamelCase , return_tensors='pt' ).pixel_values logger.info('Converting model...' ) # load original state dict lowerCAmelCase = torch.load(lowerCamelCase , map_location=torch.device('cpu' ) ) # rename keys lowerCAmelCase = rename_keys(lowerCamelCase ) # key and value matrices need special treatment read_in_k_v(lowerCamelCase , lowerCamelCase ) # create HuggingFace model and load state dict lowerCAmelCase = GLPNForDepthEstimation(lowerCamelCase ) model.load_state_dict(lowerCamelCase ) model.eval() # forward pass lowerCAmelCase = model(lowerCamelCase ) lowerCAmelCase = outputs.predicted_depth # verify output if model_name is not None: if "nyu" in model_name: lowerCAmelCase = torch.tensor( [[4.4_147, 4.0_873, 4.0_673], [3.7_890, 3.2_881, 3.1_525], [3.7_674, 3.5_423, 3.4_913]] ) elif "kitti" in model_name: lowerCAmelCase = torch.tensor( [[3.4_291, 2.7_865, 2.5_151], [3.2_841, 2.7_021, 2.3_502], [3.1_147, 2.4_625, 2.2_481]] ) else: raise ValueError(f'''Unknown model name: {model_name}''' ) lowerCAmelCase = torch.Size([1, 480, 640] ) assert predicted_depth.shape == expected_shape assert torch.allclose(predicted_depth[0, :3, :3] , lowerCamelCase , atol=1e-4 ) print('Looks ok!' ) # finally, push to hub if required if push_to_hub: logger.info('Pushing model and image processor to the hub...' ) model.push_to_hub( repo_path_or_name=Path(lowerCamelCase , lowerCamelCase ) , organization='nielsr' , commit_message='Add model' , use_temp_dir=lowerCamelCase , ) image_processor.push_to_hub( repo_path_or_name=Path(lowerCamelCase , lowerCamelCase ) , organization='nielsr' , commit_message='Add image processor' , use_temp_dir=lowerCamelCase , ) if __name__ == "__main__": __snake_case =argparse.ArgumentParser() parser.add_argument( """--checkpoint_path""", default=None, type=str, help="""Path to the original PyTorch checkpoint (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to upload the model to the HuggingFace hub.""" ) parser.add_argument( """--model_name""", default="""glpn-kitti""", type=str, help="""Name of the model in case you're pushing to the hub.""", ) __snake_case =parser.parse_args() convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
4
0
class __lowerCamelCase : """simple docstring""" def __init__( self , UpperCAmelCase = "" , UpperCAmelCase = False ): """simple docstring""" _UpperCAmelCase = {} # A node will be a leaf if the tree contains its word _UpperCAmelCase = is_leaf _UpperCAmelCase = prefix def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = 0 for q, w in zip(self.prefix , UpperCAmelCase ): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" for word in words: self.insert(UpperCAmelCase ) def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" if self.prefix == word: _UpperCAmelCase = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: _UpperCAmelCase = RadixNode(prefix=UpperCAmelCase , is_leaf=UpperCAmelCase ) else: _UpperCAmelCase = self.nodes[word[0]] _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = incoming_node.match( UpperCAmelCase ) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(UpperCAmelCase ) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: _UpperCAmelCase = remaining_prefix _UpperCAmelCase = self.nodes[matching_string[0]] _UpperCAmelCase = RadixNode(UpperCAmelCase , UpperCAmelCase ) _UpperCAmelCase = aux_node if remaining_word == "": _UpperCAmelCase = True else: self.nodes[matching_string[0]].insert(UpperCAmelCase ) def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = self.nodes.get(word[0] , UpperCAmelCase ) if not incoming_node: return False else: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = incoming_node.match( UpperCAmelCase ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(UpperCAmelCase ) def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = self.nodes.get(word[0] , UpperCAmelCase ) if not incoming_node: return False else: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = incoming_node.match( UpperCAmelCase ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(UpperCAmelCase ) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes ) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes ) == 1 and not self.is_leaf: _UpperCAmelCase = list(self.nodes.values() )[0] _UpperCAmelCase = merging_node.is_leaf self.prefix += merging_node.prefix _UpperCAmelCase = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes ) > 1: _UpperCAmelCase = False # If there is 1 edge, we merge it with its child else: _UpperCAmelCase = list(incoming_node.nodes.values() )[0] _UpperCAmelCase = merging_node.is_leaf incoming_node.prefix += merging_node.prefix _UpperCAmelCase = merging_node.nodes return True def UpperCamelCase ( self , UpperCAmelCase = 0 ): """simple docstring""" if self.prefix != "": print('-' * height , self.prefix , ' (leaf)' if self.is_leaf else '' ) for value in self.nodes.values(): value.print_tree(height + 1 ) def __A ( )-> bool: """simple docstring""" _UpperCAmelCase = 'banana bananas bandana band apple all beast'.split() _UpperCAmelCase = RadixNode() root.insert_many(__lowerCAmelCase ) assert all(root.find(__lowerCAmelCase ) for word in words ) assert not root.find('bandanas' ) assert not root.find('apps' ) root.delete('all' ) assert not root.find('all' ) root.delete('banana' ) assert not root.find('banana' ) assert root.find('bananas' ) return True def __A ( )-> None: """simple docstring""" assert test_trie() def __A ( )-> None: """simple docstring""" _UpperCAmelCase = RadixNode() _UpperCAmelCase = 'banana bananas bandanas bandana band apple all beast'.split() root.insert_many(__lowerCAmelCase ) print('Words:' , __lowerCAmelCase ) print('Tree:' ) root.print_tree() if __name__ == "__main__": main()
39
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class UpperCAmelCase_ ( unittest.TestCase ): @slow def __UpperCAmelCase ( self : str ) -> List[str]: lowerCAmelCase = XLMRobertaModel.from_pretrained('xlm-roberta-base' ) lowerCAmelCase = torch.tensor([[0, 5_8_1, 1_0_2_6_9, 8_3, 9_9_9_4_2, 1_3_6, 6_0_7_4_2, 2_3, 7_0, 8_0_5_8_3, 1_8_2_7_6, 2]] ) # The dog is cute and lives in the garden house lowerCAmelCase = torch.Size((1, 1_2, 7_6_8) ) # batch_size, sequence_length, embedding_vector_dim lowerCAmelCase = torch.tensor( [[-0.0_101, 0.1_218, -0.0_803, 0.0_801, 0.1_327, 0.0_776, -0.1_215, 0.2_383, 0.3_338, 0.3_106, 0.0_300, 0.0_252]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): lowerCAmelCase = model(UpperCAmelCase__ )['last_hidden_state'].detach() self.assertEqual(output.shape , UpperCAmelCase__ ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , UpperCAmelCase__ , atol=1E-3 ) ) @slow def __UpperCAmelCase ( self : List[Any] ) -> Tuple: lowerCAmelCase = XLMRobertaModel.from_pretrained('xlm-roberta-large' ) lowerCAmelCase = torch.tensor([[0, 5_8_1, 1_0_2_6_9, 8_3, 9_9_9_4_2, 1_3_6, 6_0_7_4_2, 2_3, 7_0, 8_0_5_8_3, 1_8_2_7_6, 2]] ) # The dog is cute and lives in the garden house lowerCAmelCase = torch.Size((1, 1_2, 1_0_2_4) ) # batch_size, sequence_length, embedding_vector_dim lowerCAmelCase = torch.tensor( [[-0.0_699, -0.0_318, 0.0_705, -0.1_241, 0.0_999, -0.0_520, 0.1_004, -0.1_838, -0.4_704, 0.1_437, 0.0_821, 0.0_126]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): lowerCAmelCase = model(UpperCAmelCase__ )['last_hidden_state'].detach() self.assertEqual(output.shape , UpperCAmelCase__ ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , UpperCAmelCase__ , atol=1E-3 ) )
4
0
"""simple docstring""" import math def lowercase ( A_ , A_ = 0 , A_ = 0 )-> list: '''simple docstring''' a : Optional[Any] = end or len(A_ ) for i in range(A_ , A_ ): a : Optional[Any] = i a : Dict = array[i] while temp_index != start and temp_index_value < array[temp_index - 1]: a : str = array[temp_index - 1] temp_index -= 1 a : Optional[Any] = temp_index_value return array def lowercase ( A_ , A_ , A_ )-> None: # Max Heap '''simple docstring''' a : Union[str, Any] = index a : str = 2 * index + 1 # Left Node a : Optional[int] = 2 * index + 2 # Right Node if left_index < heap_size and array[largest] < array[left_index]: a : List[Any] = left_index if right_index < heap_size and array[largest] < array[right_index]: a : Optional[int] = right_index if largest != index: a , a : List[Any] = array[largest], array[index] heapify(A_ , A_ , A_ ) def lowercase ( A_ )-> list: '''simple docstring''' a : Optional[int] = len(A_ ) for i in range(n // 2 , -1 , -1 ): heapify(A_ , A_ , A_ ) for i in range(n - 1 , 0 , -1 ): a , a : Any = array[0], array[i] heapify(A_ , 0 , A_ ) return array def lowercase ( A_ , A_ , A_ , A_ )-> int: '''simple docstring''' if (array[first_index] > array[middle_index]) != ( array[first_index] > array[last_index] ): return array[first_index] elif (array[middle_index] > array[first_index]) != ( array[middle_index] > array[last_index] ): return array[middle_index] else: return array[last_index] def lowercase ( A_ , A_ , A_ , A_ )-> int: '''simple docstring''' a : str = low a : int = high while True: while array[i] < pivot: i += 1 j -= 1 while pivot < array[j]: j -= 1 if i >= j: return i a , a : int = array[j], array[i] i += 1 def lowercase ( A_ )-> list: '''simple docstring''' if len(A_ ) == 0: return array a : Union[str, Any] = 2 * math.ceil(math.loga(len(A_ ) ) ) a : Optional[int] = 16 return intro_sort(A_ , 0 , len(A_ ) , A_ , A_ ) def lowercase ( A_ , A_ , A_ , A_ , A_ )-> list: '''simple docstring''' while end - start > size_threshold: if max_depth == 0: return heap_sort(A_ ) max_depth -= 1 a : Tuple = median_of_a(A_ , A_ , start + ((end - start) // 2) + 1 , end - 1 ) a : Optional[Any] = partition(A_ , A_ , A_ , A_ ) intro_sort(A_ , A_ , A_ , A_ , A_ ) a : Dict = p return insertion_sort(A_ , A_ , A_ ) if __name__ == "__main__": import doctest doctest.testmod() __lowercase = input("""Enter numbers separated by a comma : """).strip() __lowercase = [float(item) for item in user_input.split(""",""")] print(sort(unsorted))
40
'''simple docstring''' import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def a_ ( lowerCamelCase : Dict ): lowerCAmelCase = {} lowerCAmelCase = tokenizer(example['content'] , truncation=lowerCamelCase )['input_ids'] lowerCAmelCase = len(example['content'] ) / len(output['input_ids'] ) return output __snake_case =HfArgumentParser(PretokenizationArguments) __snake_case =parser.parse_args() if args.num_workers is None: __snake_case =multiprocessing.cpu_count() __snake_case =AutoTokenizer.from_pretrained(args.tokenizer_dir) __snake_case =time.time() __snake_case =load_dataset(args.dataset_name, split="""train""") print(F'''Dataset loaded in {time.time()-t_start:.2f}s''') __snake_case =time.time() __snake_case =ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ """repo_name""", """path""", """copies""", """size""", """content""", """license""", """hash""", """line_mean""", """line_max""", """alpha_frac""", """autogenerated""", ], ) print(F'''Dataset tokenized in {time.time()-t_start:.2f}s''') __snake_case =time.time() ds.push_to_hub(args.tokenized_data_repo) print(F'''Data pushed to the hub in {time.time()-t_start:.2f}s''')
4
0
'''simple docstring''' import os def SCREAMING_SNAKE_CASE_ () -> Optional[Any]: with open(os.path.dirname(UpperCamelCase ) + """/grid.txt""" ) as f: lowerCamelCase__ : Tuple = [] # noqa: E741 for _ in range(20 ): l.append([int(UpperCamelCase ) for x in f.readline().split()] ) lowerCamelCase__ : Dict = 0 # right for i in range(20 ): for j in range(17 ): lowerCamelCase__ : Any = l[i][j] * l[i][j + 1] * l[i][j + 2] * l[i][j + 3] if temp > maximum: lowerCamelCase__ : List[str] = temp # down for i in range(17 ): for j in range(20 ): lowerCamelCase__ : Dict = l[i][j] * l[i + 1][j] * l[i + 2][j] * l[i + 3][j] if temp > maximum: lowerCamelCase__ : Dict = temp # diagonal 1 for i in range(17 ): for j in range(17 ): lowerCamelCase__ : List[str] = l[i][j] * l[i + 1][j + 1] * l[i + 2][j + 2] * l[i + 3][j + 3] if temp > maximum: lowerCamelCase__ : Optional[int] = temp # diagonal 2 for i in range(17 ): for j in range(3 , 20 ): lowerCamelCase__ : int = l[i][j] * l[i + 1][j - 1] * l[i + 2][j - 2] * l[i + 3][j - 3] if temp > maximum: lowerCamelCase__ : Tuple = temp return maximum if __name__ == "__main__": print(solution())
41
'''simple docstring''' import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings __snake_case =logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class UpperCAmelCase_ ( __lowercase ): lowerCamelCase : bool = field(default=__lowercase , metadata={'''help''': '''Whether to use SortishSampler or not.'''} ) lowerCamelCase : bool = field( default=__lowercase , metadata={'''help''': '''Whether to use generate to calculate generative metrics (ROUGE, BLEU).'''} ) lowerCamelCase : Optional[int] = field( default=__lowercase , metadata={ '''help''': ( '''The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default ''' '''to the `max_length` value of the model configuration.''' ) } , ) lowerCamelCase : Optional[int] = field( default=__lowercase , metadata={ '''help''': ( '''The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default ''' '''to the `num_beams` value of the model configuration.''' ) } , ) lowerCamelCase : Optional[Union[str, Path, GenerationConfig]] = field( default=__lowercase , metadata={ '''help''': '''Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.''' } , ) def __UpperCAmelCase ( self : Dict ) -> List[str]: lowerCAmelCase = super().to_dict() for k, v in d.items(): if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): lowerCAmelCase = v.to_dict() return d
4
0
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DetrConfig, DetrForObjectDetection, DetrForSegmentation, DetrImageProcessor, ResNetConfig from transformers.utils import logging logging.set_verbosity_info() lowercase : Optional[int] = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE__ ( __A ) -> Optional[int]: # initialize config if "resnet-50" in model_name: _snake_case = ResNetConfig.from_pretrained('microsoft/resnet-50' ) elif "resnet-101" in model_name: _snake_case = ResNetConfig.from_pretrained('microsoft/resnet-101' ) else: raise ValueError('Model name should include either resnet50 or resnet101' ) _snake_case = DetrConfig(use_timm_backbone=__A , backbone_config=__A ) # set label attributes _snake_case = 'panoptic' in model_name if is_panoptic: _snake_case = 250 else: _snake_case = 91 _snake_case = 'huggingface/label-files' _snake_case = 'coco-detection-id2label.json' _snake_case = json.load(open(hf_hub_download(__A , __A , repo_type='dataset' ) , 'r' ) ) _snake_case = {int(__A ): v for k, v in idalabel.items()} _snake_case = idalabel _snake_case = {v: k for k, v in idalabel.items()} return config, is_panoptic def SCREAMING_SNAKE_CASE__ ( __A ) -> Tuple: # here we list all keys to be renamed (original name on the left, our name on the right) _snake_case = [] # stem # fmt: off rename_keys.append(('backbone.0.body.conv1.weight', 'backbone.conv_encoder.model.embedder.embedder.convolution.weight') ) rename_keys.append(('backbone.0.body.bn1.weight', 'backbone.conv_encoder.model.embedder.embedder.normalization.weight') ) rename_keys.append(('backbone.0.body.bn1.bias', 'backbone.conv_encoder.model.embedder.embedder.normalization.bias') ) rename_keys.append(('backbone.0.body.bn1.running_mean', 'backbone.conv_encoder.model.embedder.embedder.normalization.running_mean') ) rename_keys.append(('backbone.0.body.bn1.running_var', 'backbone.conv_encoder.model.embedder.embedder.normalization.running_var') ) # stages for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): # shortcut if layer_idx == 0: rename_keys.append( ( F'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.0.weight', F'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.convolution.weight', ) ) rename_keys.append( ( F'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.weight', F'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.weight', ) ) rename_keys.append( ( F'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.bias', F'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.bias', ) ) rename_keys.append( ( F'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_mean', F'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_mean', ) ) rename_keys.append( ( F'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_var', F'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_var', ) ) # 3 convs for i in range(3 ): rename_keys.append( ( F'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.conv{i+1}.weight', F'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.convolution.weight', ) ) rename_keys.append( ( F'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.weight', F'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.weight', ) ) rename_keys.append( ( F'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.bias', F'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.bias', ) ) rename_keys.append( ( F'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_mean', F'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_mean', ) ) rename_keys.append( ( F'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_var', F'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_var', ) ) # fmt: on for i in range(config.encoder_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( ( F'transformer.encoder.layers.{i}.self_attn.out_proj.weight', F'encoder.layers.{i}.self_attn.out_proj.weight', ) ) rename_keys.append( (F'transformer.encoder.layers.{i}.self_attn.out_proj.bias', F'encoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append((F'transformer.encoder.layers.{i}.linear1.weight', F'encoder.layers.{i}.fc1.weight') ) rename_keys.append((F'transformer.encoder.layers.{i}.linear1.bias', F'encoder.layers.{i}.fc1.bias') ) rename_keys.append((F'transformer.encoder.layers.{i}.linear2.weight', F'encoder.layers.{i}.fc2.weight') ) rename_keys.append((F'transformer.encoder.layers.{i}.linear2.bias', F'encoder.layers.{i}.fc2.bias') ) rename_keys.append( (F'transformer.encoder.layers.{i}.norm1.weight', F'encoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append( (F'transformer.encoder.layers.{i}.norm1.bias', F'encoder.layers.{i}.self_attn_layer_norm.bias') ) rename_keys.append( (F'transformer.encoder.layers.{i}.norm2.weight', F'encoder.layers.{i}.final_layer_norm.weight') ) rename_keys.append((F'transformer.encoder.layers.{i}.norm2.bias', F'encoder.layers.{i}.final_layer_norm.bias') ) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( ( F'transformer.decoder.layers.{i}.self_attn.out_proj.weight', F'decoder.layers.{i}.self_attn.out_proj.weight', ) ) rename_keys.append( (F'transformer.decoder.layers.{i}.self_attn.out_proj.bias', F'decoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append( ( F'transformer.decoder.layers.{i}.multihead_attn.out_proj.weight', F'decoder.layers.{i}.encoder_attn.out_proj.weight', ) ) rename_keys.append( ( F'transformer.decoder.layers.{i}.multihead_attn.out_proj.bias', F'decoder.layers.{i}.encoder_attn.out_proj.bias', ) ) rename_keys.append((F'transformer.decoder.layers.{i}.linear1.weight', F'decoder.layers.{i}.fc1.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.linear1.bias', F'decoder.layers.{i}.fc1.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.linear2.weight', F'decoder.layers.{i}.fc2.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.linear2.bias', F'decoder.layers.{i}.fc2.bias') ) rename_keys.append( (F'transformer.decoder.layers.{i}.norm1.weight', F'decoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.norm1.bias', F'decoder.layers.{i}.self_attn_layer_norm.bias') ) rename_keys.append( (F'transformer.decoder.layers.{i}.norm2.weight', F'decoder.layers.{i}.encoder_attn_layer_norm.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.norm2.bias', F'decoder.layers.{i}.encoder_attn_layer_norm.bias') ) rename_keys.append( (F'transformer.decoder.layers.{i}.norm3.weight', F'decoder.layers.{i}.final_layer_norm.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.norm3.bias', F'decoder.layers.{i}.final_layer_norm.bias') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ('input_proj.weight', 'input_projection.weight'), ('input_proj.bias', 'input_projection.bias'), ('query_embed.weight', 'query_position_embeddings.weight'), ('transformer.decoder.norm.weight', 'decoder.layernorm.weight'), ('transformer.decoder.norm.bias', 'decoder.layernorm.bias'), ('class_embed.weight', 'class_labels_classifier.weight'), ('class_embed.bias', 'class_labels_classifier.bias'), ('bbox_embed.layers.0.weight', 'bbox_predictor.layers.0.weight'), ('bbox_embed.layers.0.bias', 'bbox_predictor.layers.0.bias'), ('bbox_embed.layers.1.weight', 'bbox_predictor.layers.1.weight'), ('bbox_embed.layers.1.bias', 'bbox_predictor.layers.1.bias'), ('bbox_embed.layers.2.weight', 'bbox_predictor.layers.2.weight'), ('bbox_embed.layers.2.bias', 'bbox_predictor.layers.2.bias'), ] ) return rename_keys def SCREAMING_SNAKE_CASE__ ( __A , __A , __A ) -> Union[str, Any]: _snake_case = state_dict.pop(__A ) _snake_case = val def SCREAMING_SNAKE_CASE__ ( __A , __A=False ) -> int: _snake_case = '' if is_panoptic: _snake_case = 'detr.' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) _snake_case = state_dict.pop(F'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight' ) _snake_case = state_dict.pop(F'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict _snake_case = in_proj_weight[:256, :] _snake_case = in_proj_bias[:256] _snake_case = in_proj_weight[256:512, :] _snake_case = in_proj_bias[256:512] _snake_case = in_proj_weight[-256:, :] _snake_case = in_proj_bias[-256:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention _snake_case = state_dict.pop(F'{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight' ) _snake_case = state_dict.pop(F'{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict _snake_case = in_proj_weight[:256, :] _snake_case = in_proj_bias[:256] _snake_case = in_proj_weight[256:512, :] _snake_case = in_proj_bias[256:512] _snake_case = in_proj_weight[-256:, :] _snake_case = in_proj_bias[-256:] # read in weights + bias of input projection layer of cross-attention _snake_case = state_dict.pop( F'{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight' ) _snake_case = state_dict.pop(F'{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias' ) # next, add query, keys and values (in that order) of cross-attention to the state dict _snake_case = in_proj_weight_cross_attn[:256, :] _snake_case = in_proj_bias_cross_attn[:256] _snake_case = in_proj_weight_cross_attn[256:512, :] _snake_case = in_proj_bias_cross_attn[256:512] _snake_case = in_proj_weight_cross_attn[-256:, :] _snake_case = in_proj_bias_cross_attn[-256:] def SCREAMING_SNAKE_CASE__ ( ) -> Optional[int]: _snake_case = 'http://images.cocodataset.org/val2017/000000039769.jpg' _snake_case = Image.open(requests.get(__A , stream=__A ).raw ) return im @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( __A , __A=None , __A=False ) -> Optional[int]: _snake_case , _snake_case = get_detr_config(__A ) # load original model from torch hub _snake_case = { 'detr-resnet-50': 'detr_resnet50', 'detr-resnet-101': 'detr_resnet101', } logger.info(F'Converting model {model_name}...' ) _snake_case = torch.hub.load('facebookresearch/detr' , model_name_to_original_name[model_name] , pretrained=__A ).eval() _snake_case = detr.state_dict() # rename keys for src, dest in create_rename_keys(__A ): if is_panoptic: _snake_case = 'detr.' + src rename_key(__A , __A , __A ) # query, key and value matrices need special treatment read_in_q_k_v(__A , is_panoptic=__A ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them _snake_case = 'detr.model.' if is_panoptic else 'model.' for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith('detr' ) and not key.startswith('class_labels_classifier' ) and not key.startswith('bbox_predictor' ) ): _snake_case = state_dict.pop(__A ) _snake_case = val elif "class_labels_classifier" in key or "bbox_predictor" in key: _snake_case = state_dict.pop(__A ) _snake_case = val elif key.startswith('bbox_attention' ) or key.startswith('mask_head' ): continue else: _snake_case = state_dict.pop(__A ) _snake_case = val else: if not key.startswith('class_labels_classifier' ) and not key.startswith('bbox_predictor' ): _snake_case = state_dict.pop(__A ) _snake_case = val # finally, create HuggingFace model and load state dict _snake_case = DetrForSegmentation(__A ) if is_panoptic else DetrForObjectDetection(__A ) model.load_state_dict(__A ) model.eval() # verify our conversion on an image _snake_case = 'coco_panoptic' if is_panoptic else 'coco_detection' _snake_case = DetrImageProcessor(format=__A ) _snake_case = processor(images=prepare_img() , return_tensors='pt' ) _snake_case = encoding['pixel_values'] _snake_case = detr(__A ) _snake_case = model(__A ) assert torch.allclose(outputs.logits , original_outputs['pred_logits'] , atol=1e-3 ) assert torch.allclose(outputs.pred_boxes , original_outputs['pred_boxes'] , atol=1e-3 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs['pred_masks'] , atol=1e-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(F'Saving PyTorch model and image processor to {pytorch_dump_folder_path}...' ) Path(__A ).mkdir(exist_ok=__A ) model.save_pretrained(__A ) processor.save_pretrained(__A ) if push_to_hub: # Upload model and image processor to the hub logger.info('Uploading PyTorch model and image processor to the hub...' ) model.push_to_hub(F'nielsr/{model_name}' ) processor.push_to_hub(F'nielsr/{model_name}' ) if __name__ == "__main__": lowercase : Optional[int] = argparse.ArgumentParser() parser.add_argument( "--model_name", default="detr-resnet-50", type=str, choices=["detr-resnet-50", "detr-resnet-101"], help="Name of the DETR model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) parser.add_argument("--push_to_hub", action="store_true", help="Whether to push the model to the hub or not.") lowercase : Any = parser.parse_args() convert_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
42
'''simple docstring''' import argparse import torch from transformers import ( EncodecConfig, EncodecFeatureExtractor, EncodecModel, logging, ) # checkpoints downloaded from: # https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th # https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin # https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th logging.set_verbosity_info() __snake_case =logging.get_logger("""transformers.models.encodec""") __snake_case ={ """quantizer.vq.layers.*._codebook.inited""": """quantizer.layers.*.codebook.inited""", """quantizer.vq.layers.*._codebook.cluster_size""": """quantizer.layers.*.codebook.cluster_size""", """quantizer.vq.layers.*._codebook.embed""": """quantizer.layers.*.codebook.embed""", """quantizer.vq.layers.*._codebook.embed_avg""": """quantizer.layers.*.codebook.embed_avg""", } __snake_case ={ """encoder.model.0.conv.conv""": """encoder.layers.0.conv""", """encoder.model.1.block.1.conv.conv""": """encoder.layers.1.block.1.conv""", """encoder.model.1.block.3.conv.conv""": """encoder.layers.1.block.3.conv""", """encoder.model.1.shortcut.conv.conv""": """encoder.layers.1.shortcut.conv""", """encoder.model.3.conv.conv""": """encoder.layers.3.conv""", """encoder.model.4.block.1.conv.conv""": """encoder.layers.4.block.1.conv""", """encoder.model.4.block.3.conv.conv""": """encoder.layers.4.block.3.conv""", """encoder.model.4.shortcut.conv.conv""": """encoder.layers.4.shortcut.conv""", """encoder.model.6.conv.conv""": """encoder.layers.6.conv""", """encoder.model.7.block.1.conv.conv""": """encoder.layers.7.block.1.conv""", """encoder.model.7.block.3.conv.conv""": """encoder.layers.7.block.3.conv""", """encoder.model.7.shortcut.conv.conv""": """encoder.layers.7.shortcut.conv""", """encoder.model.9.conv.conv""": """encoder.layers.9.conv""", """encoder.model.10.block.1.conv.conv""": """encoder.layers.10.block.1.conv""", """encoder.model.10.block.3.conv.conv""": """encoder.layers.10.block.3.conv""", """encoder.model.10.shortcut.conv.conv""": """encoder.layers.10.shortcut.conv""", """encoder.model.12.conv.conv""": """encoder.layers.12.conv""", """encoder.model.13.lstm""": """encoder.layers.13.lstm""", """encoder.model.15.conv.conv""": """encoder.layers.15.conv""", } __snake_case ={ """encoder.model.0.conv.norm""": """encoder.layers.0.norm""", """encoder.model.1.block.1.conv.norm""": """encoder.layers.1.block.1.norm""", """encoder.model.1.block.3.conv.norm""": """encoder.layers.1.block.3.norm""", """encoder.model.1.shortcut.conv.norm""": """encoder.layers.1.shortcut.norm""", """encoder.model.3.conv.norm""": """encoder.layers.3.norm""", """encoder.model.4.block.1.conv.norm""": """encoder.layers.4.block.1.norm""", """encoder.model.4.block.3.conv.norm""": """encoder.layers.4.block.3.norm""", """encoder.model.4.shortcut.conv.norm""": """encoder.layers.4.shortcut.norm""", """encoder.model.6.conv.norm""": """encoder.layers.6.norm""", """encoder.model.7.block.1.conv.norm""": """encoder.layers.7.block.1.norm""", """encoder.model.7.block.3.conv.norm""": """encoder.layers.7.block.3.norm""", """encoder.model.7.shortcut.conv.norm""": """encoder.layers.7.shortcut.norm""", """encoder.model.9.conv.norm""": """encoder.layers.9.norm""", """encoder.model.10.block.1.conv.norm""": """encoder.layers.10.block.1.norm""", """encoder.model.10.block.3.conv.norm""": """encoder.layers.10.block.3.norm""", """encoder.model.10.shortcut.conv.norm""": """encoder.layers.10.shortcut.norm""", """encoder.model.12.conv.norm""": """encoder.layers.12.norm""", """encoder.model.15.conv.norm""": """encoder.layers.15.norm""", } __snake_case ={ """decoder.model.0.conv.conv""": """decoder.layers.0.conv""", """decoder.model.1.lstm""": """decoder.layers.1.lstm""", """decoder.model.3.convtr.convtr""": """decoder.layers.3.conv""", """decoder.model.4.block.1.conv.conv""": """decoder.layers.4.block.1.conv""", """decoder.model.4.block.3.conv.conv""": """decoder.layers.4.block.3.conv""", """decoder.model.4.shortcut.conv.conv""": """decoder.layers.4.shortcut.conv""", """decoder.model.6.convtr.convtr""": """decoder.layers.6.conv""", """decoder.model.7.block.1.conv.conv""": """decoder.layers.7.block.1.conv""", """decoder.model.7.block.3.conv.conv""": """decoder.layers.7.block.3.conv""", """decoder.model.7.shortcut.conv.conv""": """decoder.layers.7.shortcut.conv""", """decoder.model.9.convtr.convtr""": """decoder.layers.9.conv""", """decoder.model.10.block.1.conv.conv""": """decoder.layers.10.block.1.conv""", """decoder.model.10.block.3.conv.conv""": """decoder.layers.10.block.3.conv""", """decoder.model.10.shortcut.conv.conv""": """decoder.layers.10.shortcut.conv""", """decoder.model.12.convtr.convtr""": """decoder.layers.12.conv""", """decoder.model.13.block.1.conv.conv""": """decoder.layers.13.block.1.conv""", """decoder.model.13.block.3.conv.conv""": """decoder.layers.13.block.3.conv""", """decoder.model.13.shortcut.conv.conv""": """decoder.layers.13.shortcut.conv""", """decoder.model.15.conv.conv""": """decoder.layers.15.conv""", } __snake_case ={ """decoder.model.0.conv.norm""": """decoder.layers.0.norm""", """decoder.model.3.convtr.norm""": """decoder.layers.3.norm""", """decoder.model.4.block.1.conv.norm""": """decoder.layers.4.block.1.norm""", """decoder.model.4.block.3.conv.norm""": """decoder.layers.4.block.3.norm""", """decoder.model.4.shortcut.conv.norm""": """decoder.layers.4.shortcut.norm""", """decoder.model.6.convtr.norm""": """decoder.layers.6.norm""", """decoder.model.7.block.1.conv.norm""": """decoder.layers.7.block.1.norm""", """decoder.model.7.block.3.conv.norm""": """decoder.layers.7.block.3.norm""", """decoder.model.7.shortcut.conv.norm""": """decoder.layers.7.shortcut.norm""", """decoder.model.9.convtr.norm""": """decoder.layers.9.norm""", """decoder.model.10.block.1.conv.norm""": """decoder.layers.10.block.1.norm""", """decoder.model.10.block.3.conv.norm""": """decoder.layers.10.block.3.norm""", """decoder.model.10.shortcut.conv.norm""": """decoder.layers.10.shortcut.norm""", """decoder.model.12.convtr.norm""": """decoder.layers.12.norm""", """decoder.model.13.block.1.conv.norm""": """decoder.layers.13.block.1.norm""", """decoder.model.13.block.3.conv.norm""": """decoder.layers.13.block.3.norm""", """decoder.model.13.shortcut.conv.norm""": """decoder.layers.13.shortcut.norm""", """decoder.model.15.conv.norm""": """decoder.layers.15.norm""", } __snake_case ={ **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_DECODER, } __snake_case ={ **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_ENCODER_48K, **MAPPING_DECODER, **MAPPING_DECODER_48K, } __snake_case =[] __snake_case =[] def a_ ( lowerCamelCase : Optional[Any] , lowerCamelCase : Union[str, Any] , lowerCamelCase : int , lowerCamelCase : Any , lowerCamelCase : List[str] ): for attribute in key.split('.' ): lowerCAmelCase = getattr(lowerCamelCase , lowerCamelCase ) if weight_type is not None: lowerCAmelCase = getattr(lowerCamelCase , lowerCamelCase ).shape else: lowerCAmelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": lowerCAmelCase = value elif weight_type == "weight_g": lowerCAmelCase = value elif weight_type == "weight_v": lowerCAmelCase = value elif weight_type == "bias": lowerCAmelCase = value elif weight_type == "running_mean": lowerCAmelCase = value elif weight_type == "running_var": lowerCAmelCase = value elif weight_type == "num_batches_tracked": lowerCAmelCase = value elif weight_type == "weight_ih_l0": lowerCAmelCase = value elif weight_type == "weight_hh_l0": lowerCAmelCase = value elif weight_type == "bias_ih_l0": lowerCAmelCase = value elif weight_type == "bias_hh_l0": lowerCAmelCase = value elif weight_type == "weight_ih_l1": lowerCAmelCase = value elif weight_type == "weight_hh_l1": lowerCAmelCase = value elif weight_type == "bias_ih_l1": lowerCAmelCase = value elif weight_type == "bias_hh_l1": lowerCAmelCase = value else: lowerCAmelCase = value logger.info(f'''{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}.''' ) def a_ ( lowerCamelCase : Optional[Any] , lowerCamelCase : Optional[Any] ): for key in ignore_keys: if key.endswith('.*' ): if name.startswith(key[:-1] ): return True elif ".*." in key: lowerCAmelCase , lowerCAmelCase = key.split('.*.' ) if prefix in name and suffix in name: return True elif key in name: return True return False def a_ ( lowerCamelCase : List[Any] , lowerCamelCase : Any , lowerCamelCase : str ): lowerCAmelCase = [] if model_name == "encodec_24khz" or "encodec_32khz": lowerCAmelCase = MAPPING_24K elif model_name == "encodec_48khz": lowerCAmelCase = MAPPING_48K else: raise ValueError(f'''Unsupported model: {model_name}''' ) for name, value in orig_dict.items(): if should_ignore(lowerCamelCase , lowerCamelCase ): logger.info(f'''{name} was ignored''' ) continue lowerCAmelCase = False for key, mapped_key in MAPPING.items(): if "*" in key: lowerCAmelCase , lowerCAmelCase = key.split('.*.' ) if prefix in name and suffix in name: lowerCAmelCase = suffix if key in name: # HACK otherwise .embed gets initialized with .embed_avg too if key.endswith('embed' ) and name.endswith('embed_avg' ): continue lowerCAmelCase = True if "*" in mapped_key: lowerCAmelCase = name.split(lowerCamelCase )[0].split('.' )[-2] lowerCAmelCase = mapped_key.replace('*' , lowerCamelCase ) if "weight_g" in name: lowerCAmelCase = 'weight_g' elif "weight_v" in name: lowerCAmelCase = 'weight_v' elif "weight_ih_l0" in name: lowerCAmelCase = 'weight_ih_l0' elif "weight_hh_l0" in name: lowerCAmelCase = 'weight_hh_l0' elif "bias_ih_l0" in name: lowerCAmelCase = 'bias_ih_l0' elif "bias_hh_l0" in name: lowerCAmelCase = 'bias_hh_l0' elif "weight_ih_l1" in name: lowerCAmelCase = 'weight_ih_l1' elif "weight_hh_l1" in name: lowerCAmelCase = 'weight_hh_l1' elif "bias_ih_l1" in name: lowerCAmelCase = 'bias_ih_l1' elif "bias_hh_l1" in name: lowerCAmelCase = 'bias_hh_l1' elif "bias" in name: lowerCAmelCase = 'bias' elif "weight" in name: lowerCAmelCase = 'weight' elif "running_mean" in name: lowerCAmelCase = 'running_mean' elif "running_var" in name: lowerCAmelCase = 'running_var' elif "num_batches_tracked" in name: lowerCAmelCase = 'num_batches_tracked' else: lowerCAmelCase = None set_recursively(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) continue if not is_used: unused_weights.append(lowerCamelCase ) logger.warning(f'''Unused weights: {unused_weights}''' ) @torch.no_grad() def a_ ( lowerCamelCase : Optional[int] , lowerCamelCase : Union[str, Any] , lowerCamelCase : str , lowerCamelCase : Dict=None , lowerCamelCase : Union[str, Any]=None , ): if config_path is not None: lowerCAmelCase = EncodecConfig.from_pretrained(lowerCamelCase ) else: lowerCAmelCase = EncodecConfig() if model_name == "encodec_24khz": pass # config is already correct elif model_name == "encodec_32khz": lowerCAmelCase = [8, 5, 4, 4] lowerCAmelCase = [2.2] lowerCAmelCase = 64 lowerCAmelCase = 32000 lowerCAmelCase = 2048 lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False elif model_name == "encodec_48khz": lowerCAmelCase = [8, 5, 4, 2] lowerCAmelCase = [3.0, 6.0, 12.0, 24.0] lowerCAmelCase = 48000 lowerCAmelCase = 2 lowerCAmelCase = False lowerCAmelCase = 'time_group_norm' lowerCAmelCase = True lowerCAmelCase = 1.0 lowerCAmelCase = 0.01 else: raise ValueError(f'''Unknown model name: {model_name}''' ) lowerCAmelCase = EncodecModel(lowerCamelCase ) lowerCAmelCase = EncodecFeatureExtractor( feature_size=config.audio_channels , sampling_rate=config.sampling_rate , chunk_length_s=config.chunk_length_s , overlap=config.overlap , ) feature_extractor.save_pretrained(lowerCamelCase ) lowerCAmelCase = torch.load(lowerCamelCase ) if "best_state" in original_checkpoint: # we might have a training state saved, in which case discard the yaml results and just retain the weights lowerCAmelCase = original_checkpoint['best_state'] recursively_load_weights(lowerCamelCase , lowerCamelCase , lowerCamelCase ) model.save_pretrained(lowerCamelCase ) if repo_id: print('Pushing to the hub...' ) feature_extractor.push_to_hub(lowerCamelCase ) model.push_to_hub(lowerCamelCase ) if __name__ == "__main__": __snake_case =argparse.ArgumentParser() parser.add_argument( """--model""", default="""encodec_24khz""", type=str, help="""The model to convert. Should be one of 'encodec_24khz', 'encodec_32khz', 'encodec_48khz'.""", ) parser.add_argument("""--checkpoint_path""", required=True, default=None, type=str, help="""Path to original checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--pytorch_dump_folder_path""", required=True, default=None, type=str, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) __snake_case =parser.parse_args() convert_checkpoint( args.model, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
4
0
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import datasets import datasets.config from .utils import require_beam class lowerCamelCase_ ( datasets.BeamBasedBuilder ): '''simple docstring''' def UpperCamelCase__ ( self) -> Union[str, Any]: return datasets.DatasetInfo( features=datasets.Features({'''content''': datasets.Value('''string''')}) , supervised_keys=__lowercase , ) def UpperCamelCase__ ( self , __lowercase , __lowercase) -> Optional[int]: return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''examples''': get_test_dummy_examples()})] def UpperCamelCase__ ( self , __lowercase , __lowercase) -> List[str]: import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(__lowercase) class lowerCamelCase_ ( datasets.BeamBasedBuilder ): '''simple docstring''' def UpperCamelCase__ ( self) -> Dict: return datasets.DatasetInfo( features=datasets.Features({'''a''': datasets.Sequence({'''b''': datasets.Value('''string''')})}) , supervised_keys=__lowercase , ) def UpperCamelCase__ ( self , __lowercase , __lowercase) -> Dict: return [ datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''examples''': get_test_nested_examples()}) ] def UpperCamelCase__ ( self , __lowercase , __lowercase) -> Optional[int]: import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(__lowercase) def lowerCamelCase ( ): '''simple docstring''' return [(i, {"content": content}) for i, content in enumerate(['''foo''', '''bar''', '''foobar'''] )] def lowerCamelCase ( ): '''simple docstring''' return [(i, {"a": {"b": [content]}}) for i, content in enumerate(['''foo''', '''bar''', '''foobar'''] )] class lowerCamelCase_ ( UpperCAmelCase_ ): '''simple docstring''' @require_beam def UpperCamelCase__ ( self) -> List[Any]: __UpperCamelCase :Any = len(get_test_dummy_examples()) with tempfile.TemporaryDirectory() as tmp_cache_dir: __UpperCamelCase :Optional[int] = DummyBeamDataset(cache_dir=__lowercase , beam_runner='''DirectRunner''') builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(__lowercase , builder.name , '''default''' , '''0.0.0''' , f"""{builder.name}-train.arrow"""))) self.assertDictEqual(builder.info.features , datasets.Features({'''content''': datasets.Value('''string''')})) __UpperCamelCase :str = builder.as_dataset() self.assertEqual(dset['''train'''].num_rows , __lowercase) self.assertEqual(dset['''train'''].info.splits['''train'''].num_examples , __lowercase) self.assertDictEqual(dset['''train'''][0] , get_test_dummy_examples()[0][1]) self.assertDictEqual( dset['''train'''][expected_num_examples - 1] , get_test_dummy_examples()[expected_num_examples - 1][1]) self.assertTrue( os.path.exists(os.path.join(__lowercase , builder.name , '''default''' , '''0.0.0''' , '''dataset_info.json'''))) del dset @require_beam def UpperCamelCase__ ( self) -> Any: import apache_beam as beam __UpperCamelCase :int = beam.io.parquetio.WriteToParquet __UpperCamelCase :Optional[int] = len(get_test_dummy_examples()) with tempfile.TemporaryDirectory() as tmp_cache_dir: __UpperCamelCase :Optional[int] = DummyBeamDataset(cache_dir=__lowercase , beam_runner='''DirectRunner''') with patch('''apache_beam.io.parquetio.WriteToParquet''') as write_parquet_mock: __UpperCamelCase :List[Any] = partial(__lowercase , num_shards=2) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join( __lowercase , builder.name , '''default''' , '''0.0.0''' , f"""{builder.name}-train-00000-of-00002.arrow"""))) self.assertTrue( os.path.exists( os.path.join( __lowercase , builder.name , '''default''' , '''0.0.0''' , f"""{builder.name}-train-00000-of-00002.arrow"""))) self.assertDictEqual(builder.info.features , datasets.Features({'''content''': datasets.Value('''string''')})) __UpperCamelCase :Dict = builder.as_dataset() self.assertEqual(dset['''train'''].num_rows , __lowercase) self.assertEqual(dset['''train'''].info.splits['''train'''].num_examples , __lowercase) # Order is not preserved when sharding, so we just check that all the elements are there self.assertListEqual(sorted(dset['''train''']['''content''']) , sorted(['''foo''', '''bar''', '''foobar'''])) self.assertTrue( os.path.exists(os.path.join(__lowercase , builder.name , '''default''' , '''0.0.0''' , '''dataset_info.json'''))) del dset @require_beam def UpperCamelCase__ ( self) -> List[Any]: with tempfile.TemporaryDirectory() as tmp_cache_dir: __UpperCamelCase :Optional[int] = DummyBeamDataset(cache_dir=__lowercase) self.assertRaises(datasets.builder.MissingBeamOptions , builder.download_and_prepare) @require_beam def UpperCamelCase__ ( self) -> Optional[int]: __UpperCamelCase :Dict = len(get_test_nested_examples()) with tempfile.TemporaryDirectory() as tmp_cache_dir: __UpperCamelCase :Tuple = NestedBeamDataset(cache_dir=__lowercase , beam_runner='''DirectRunner''') builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(__lowercase , builder.name , '''default''' , '''0.0.0''' , f"""{builder.name}-train.arrow"""))) self.assertDictEqual( builder.info.features , datasets.Features({'''a''': datasets.Sequence({'''b''': datasets.Value('''string''')})})) __UpperCamelCase :Union[str, Any] = builder.as_dataset() self.assertEqual(dset['''train'''].num_rows , __lowercase) self.assertEqual(dset['''train'''].info.splits['''train'''].num_examples , __lowercase) self.assertDictEqual(dset['''train'''][0] , get_test_nested_examples()[0][1]) self.assertDictEqual( dset['''train'''][expected_num_examples - 1] , get_test_nested_examples()[expected_num_examples - 1][1]) self.assertTrue( os.path.exists(os.path.join(__lowercase , builder.name , '''default''' , '''0.0.0''' , '''dataset_info.json'''))) del dset
43
'''simple docstring''' import warnings from ...utils import logging from .image_processing_flava import FlavaImageProcessor __snake_case =logging.get_logger(__name__) class UpperCAmelCase_ ( __lowercase ): def __init__( self : Dict , *UpperCAmelCase__ : Dict , **UpperCAmelCase__ : List[str] ) -> None: warnings.warn( 'The class FlavaFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use FlavaImageProcessor instead.' , UpperCAmelCase__ , ) super().__init__(*UpperCAmelCase__ , **UpperCAmelCase__ )
4
0
"""simple docstring""" from math import factorial class __A : def __init__( self , a__ , a__ ): _lowerCAmelCase : Dict = real if isinstance(a__ , a__ ): _lowerCAmelCase : int = [1] * rank else: _lowerCAmelCase : int = rank def __repr__( self ): return ( F"{self.real}+" F"{'+'.join(str(a__ )+'E'+str(n+1 )for n,dual in enumerate(self.duals ) )}" ) def __A ( self ): _lowerCAmelCase : str = self.duals.copy() while cur[-1] == 0: cur.pop(-1 ) return Dual(self.real , a__ ) def __add__( self , a__ ): if not isinstance(a__ , a__ ): return Dual(self.real + other , self.duals ) _lowerCAmelCase : List[str] = self.duals.copy() _lowerCAmelCase : Optional[int] = other.duals.copy() if len(a__ ) > len(a__ ): o_dual.extend([1] * (len(a__ ) - len(a__ )) ) elif len(a__ ) < len(a__ ): s_dual.extend([1] * (len(a__ ) - len(a__ )) ) _lowerCAmelCase : List[str] = [] for i in range(len(a__ ) ): new_duals.append(s_dual[i] + o_dual[i] ) return Dual(self.real + other.real , a__ ) _UpperCamelCase : Optional[Any] = __add__ def __sub__( self , a__ ): return self + other * -1 def __mul__( self , a__ ): if not isinstance(a__ , a__ ): _lowerCAmelCase : Any = [] for i in self.duals: new_duals.append(i * other ) return Dual(self.real * other , a__ ) _lowerCAmelCase : Union[str, Any] = [0] * (len(self.duals ) + len(other.duals ) + 1) for i, item in enumerate(self.duals ): for j, jtem in enumerate(other.duals ): new_duals[i + j + 1] += item * jtem for k in range(len(self.duals ) ): new_duals[k] += self.duals[k] * other.real for index in range(len(other.duals ) ): new_duals[index] += other.duals[index] * self.real return Dual(self.real * other.real , a__ ) _UpperCamelCase : Optional[Any] = __mul__ def __truediv__( self , a__ ): if not isinstance(a__ , a__ ): _lowerCAmelCase : Tuple = [] for i in self.duals: new_duals.append(i / other ) return Dual(self.real / other , a__ ) raise ValueError def __floordiv__( self , a__ ): if not isinstance(a__ , a__ ): _lowerCAmelCase : List[str] = [] for i in self.duals: new_duals.append(i // other ) return Dual(self.real // other , a__ ) raise ValueError def __pow__( self , a__ ): if n < 0 or isinstance(a__ , a__ ): raise ValueError("""power must be a positive integer""" ) if n == 0: return 1 if n == 1: return self _lowerCAmelCase : Union[str, Any] = self for _ in range(n - 1 ): x *= self return x def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Union[str, Any] ,_lowerCamelCase : int ,_lowerCamelCase : List[str] ) -> Tuple: if not callable(_lowerCamelCase ): raise ValueError("""differentiate() requires a function as input for func""" ) if not isinstance(_lowerCamelCase ,(float, int) ): raise ValueError("""differentiate() requires a float as input for position""" ) if not isinstance(_lowerCamelCase ,_lowerCamelCase ): raise ValueError("""differentiate() requires an int as input for order""" ) _lowerCAmelCase : int = Dual(_lowerCamelCase ,1 ) _lowerCAmelCase : str = func(_lowerCamelCase ) if order == 0: return result.real return result.duals[order - 1] * factorial(_lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod() def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Dict ) -> Dict: return y**2 * y**4 print(differentiate(f, 9, 2))
44
'''simple docstring''' from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer __snake_case =logging.get_logger(__name__) __snake_case ={ """vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_config_file""": """tokenizer_config.json""", } __snake_case ={ """vocab_file""": { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json""" }, """merges_file""": { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt""" }, """tokenizer_config_file""": { """facebook/blenderbot_small-90M""": ( """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json""" ) }, } __snake_case ={ """facebook/blenderbot_small-90M""": 512, } class UpperCAmelCase_ ( __lowercase ): lowerCamelCase : Tuple = VOCAB_FILES_NAMES lowerCamelCase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : Optional[Any] = BlenderbotSmallTokenizer def __init__( self : Any , UpperCAmelCase__ : Union[str, Any]=None , UpperCAmelCase__ : Dict=None , UpperCAmelCase__ : int="<|endoftext|>" , UpperCAmelCase__ : Dict="<|endoftext|>" , UpperCAmelCase__ : str="<|endoftext|>" , UpperCAmelCase__ : str=False , UpperCAmelCase__ : Tuple=True , **UpperCAmelCase__ : Optional[Any] , ) -> Any: super().__init__( ByteLevelBPETokenizer( vocab=UpperCAmelCase__ , merges=UpperCAmelCase__ , add_prefix_space=UpperCAmelCase__ , trim_offsets=UpperCAmelCase__ , ) , bos_token=UpperCAmelCase__ , eos_token=UpperCAmelCase__ , unk_token=UpperCAmelCase__ , **UpperCAmelCase__ , ) lowerCAmelCase = add_prefix_space def __UpperCAmelCase ( self : List[Any] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Dict=None ) -> Any: lowerCAmelCase = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def __UpperCAmelCase ( self : Any , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None ) -> List[int]: lowerCAmelCase = [self.sep_token_id] lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
4
0
"""simple docstring""" def lowercase ( lowerCAmelCase__ : float ) -> float: return 10 - x * x def lowercase ( lowerCAmelCase__ : float , lowerCAmelCase__ : float ) -> float: # Bolzano theory in order to find if there is a root between a and b if equation(lowerCAmelCase__ ) * equation(lowerCAmelCase__ ) >= 0: raise ValueError('''Wrong space!''' ) __a = a while (b - a) >= 0.01: # Find middle point __a = (a + b) / 2 # Check if middle point is root if equation(lowerCAmelCase__ ) == 0.0: break # Decide the side to repeat the steps if equation(lowerCAmelCase__ ) * equation(lowerCAmelCase__ ) < 0: __a = c else: __a = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
45
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case =logging.get_logger(__name__) __snake_case ={ """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json""" ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class UpperCAmelCase_ ( __lowercase ): lowerCamelCase : Union[str, Any] = '''speech_to_text_2''' lowerCamelCase : Any = ['''past_key_values'''] lowerCamelCase : Optional[Any] = {'''num_attention_heads''': '''decoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self : Optional[int] , UpperCAmelCase__ : Optional[Any]=1_0_0_0_0 , UpperCAmelCase__ : int=6 , UpperCAmelCase__ : Optional[Any]=2_0_4_8 , UpperCAmelCase__ : Union[str, Any]=4 , UpperCAmelCase__ : List[Any]=0.0 , UpperCAmelCase__ : str=True , UpperCAmelCase__ : str="relu" , UpperCAmelCase__ : Any=2_5_6 , UpperCAmelCase__ : Optional[Any]=0.1 , UpperCAmelCase__ : Any=0.0 , UpperCAmelCase__ : Tuple=0.0 , UpperCAmelCase__ : List[Any]=0.02 , UpperCAmelCase__ : List[Any]=2 , UpperCAmelCase__ : str=True , UpperCAmelCase__ : List[str]=1 , UpperCAmelCase__ : Any=0 , UpperCAmelCase__ : Dict=2 , UpperCAmelCase__ : int=1_0_2_4 , **UpperCAmelCase__ : Optional[Any] , ) -> Dict: lowerCAmelCase = vocab_size lowerCAmelCase = d_model lowerCAmelCase = decoder_ffn_dim lowerCAmelCase = decoder_layers lowerCAmelCase = decoder_attention_heads lowerCAmelCase = dropout lowerCAmelCase = attention_dropout lowerCAmelCase = activation_dropout lowerCAmelCase = activation_function lowerCAmelCase = init_std lowerCAmelCase = decoder_layerdrop lowerCAmelCase = use_cache lowerCAmelCase = decoder_layers lowerCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True lowerCAmelCase = max_target_positions super().__init__( pad_token_id=UpperCAmelCase__ , bos_token_id=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ , decoder_start_token_id=UpperCAmelCase__ , **UpperCAmelCase__ , )
4
0
"""simple docstring""" from abc import ABC, abstractmethod from typing import Optional, Union from .. import Dataset, DatasetDict, Features, IterableDataset, IterableDatasetDict, NamedSplit from ..utils.typing import NestedDataStructureLike, PathLike class lowercase ( _UpperCAmelCase ): def __init__( self , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = False , lowercase = False , lowercase = None , **lowercase , ) -> Tuple: lowerCAmelCase = path_or_paths lowerCAmelCase = split if split or isinstance(lowercase , lowercase ) else """train""" lowerCAmelCase = features lowerCAmelCase = cache_dir lowerCAmelCase = keep_in_memory lowerCAmelCase = streaming lowerCAmelCase = num_proc lowerCAmelCase = kwargs @abstractmethod def _snake_case ( self ) -> Union[Dataset, DatasetDict, IterableDataset, IterableDatasetDict]: pass class lowercase ( _UpperCAmelCase ): def __init__( self , lowercase = None , lowercase = None , lowercase = False , lowercase = False , lowercase = None , **lowercase , ) -> str: lowerCAmelCase = features lowerCAmelCase = cache_dir lowerCAmelCase = keep_in_memory lowerCAmelCase = streaming lowerCAmelCase = num_proc lowerCAmelCase = kwargs @abstractmethod def _snake_case ( self ) -> Union[Dataset, IterableDataset]: pass
46
'''simple docstring''' from __future__ import annotations from bisect import bisect_left from functools import total_ordering from heapq import merge @total_ordering class UpperCAmelCase_ ( __lowercase ): def __lt__( self : Optional[int] , UpperCAmelCase__ : List[str] ) -> List[Any]: return self[-1] < other[-1] def __eq__( self : str , UpperCAmelCase__ : List[str] ) -> Tuple: return self[-1] == other[-1] def a_ ( lowerCamelCase : list ): lowerCAmelCase = [] # sort into stacks for element in collection: lowerCAmelCase = Stack([element] ) lowerCAmelCase = bisect_left(lowerCamelCase , lowerCamelCase ) if i != len(lowerCamelCase ): stacks[i].append(lowerCamelCase ) else: stacks.append(lowerCamelCase ) # use a heap-based merge to merge stack efficiently lowerCAmelCase = merge(*(reversed(lowerCamelCase ) for stack in stacks) ) return collection if __name__ == "__main__": __snake_case =input("""Enter numbers separated by a comma:\n""").strip() __snake_case =[int(item) for item in user_input.split(""",""")] print(patience_sort(unsorted))
4
0
'''simple docstring''' import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm lowerCamelCase : List[str] = re.compile("[^A-Za-z_0-9]") # parameters used in DuplicationIndex lowerCamelCase : Any = 1_0 lowerCamelCase : Tuple = 2_5_6 def _lowerCAmelCase ( _UpperCamelCase : List[str] ) -> Optional[MinHash]: """simple docstring""" if len(_UpperCamelCase ) < MIN_NUM_TOKENS: return None _SCREAMING_SNAKE_CASE =MinHash(num_perm=_UpperCamelCase ) for token in set(_UpperCamelCase ): min_hash.update(token.encode() ) return min_hash def _lowerCAmelCase ( _UpperCamelCase : str ) -> Set[str]: """simple docstring""" return {t for t in NON_ALPHA.split(_UpperCamelCase ) if len(t.strip() ) > 0} class A__ : def __init__( self : Dict , *, _a : float = 0.85 , ) -> List[str]: '''simple docstring''' _SCREAMING_SNAKE_CASE =duplication_jaccard_threshold _SCREAMING_SNAKE_CASE =NUM_PERM _SCREAMING_SNAKE_CASE =MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) _SCREAMING_SNAKE_CASE =defaultdict(_a ) def A ( self : Tuple , _a : Tuple , _a : MinHash ) -> None: '''simple docstring''' _SCREAMING_SNAKE_CASE =self._index.query(_a ) if code_key in self._index.keys: print(f"Duplicate key {code_key}" ) return self._index.insert(_a , _a ) if len(_a ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(_a ) break else: self._duplicate_clusters[close_duplicates[0]].add(_a ) def A ( self : int ) -> List[List[Dict]]: '''simple docstring''' _SCREAMING_SNAKE_CASE =[] for base, duplicates in self._duplicate_clusters.items(): _SCREAMING_SNAKE_CASE =[base] + list(_a ) # reformat the cluster to be a list of dict _SCREAMING_SNAKE_CASE =[{'base_index': el[0], 'repo_name': el[1], 'path': el[2]} for el in cluster] duplicate_clusters.append(_a ) return duplicate_clusters def A ( self : Union[str, Any] , _a : Optional[Any] ) -> None: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.get_duplicate_clusters() with open(_a , 'w' ) as f: json.dump(_a , _a ) def _lowerCAmelCase ( _UpperCamelCase : Tuple ) -> Tuple: """simple docstring""" _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =element _SCREAMING_SNAKE_CASE =get_min_hash([t for t in NON_ALPHA.split(data['content'] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def _lowerCAmelCase ( _UpperCamelCase : Type[Dataset] ) -> List[Any]: """simple docstring""" with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(_UpperCamelCase , max_queue_size=1_00_00 ) , chunksize=1_00 , ): if data is not None: yield data def _lowerCAmelCase ( _UpperCamelCase : Type[Dataset] , _UpperCamelCase : float ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE =DuplicationIndex(duplication_jaccard_threshold=_UpperCamelCase ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(_UpperCamelCase ) ) , max_queue_size=1_00 ) ): di.add(_UpperCamelCase , _UpperCamelCase ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def _lowerCAmelCase ( _UpperCamelCase : str , _UpperCamelCase : str ) -> float: """simple docstring""" _SCREAMING_SNAKE_CASE =get_tokens(_UpperCamelCase ) _SCREAMING_SNAKE_CASE =get_tokens(_UpperCamelCase ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) lowerCamelCase : Union[str, Any] = None def _lowerCAmelCase ( _UpperCamelCase : List[Any] , _UpperCamelCase : Tuple ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE =[] for elementa in cluster: _SCREAMING_SNAKE_CASE =_shared_dataset[elementa['base_index']]['content'] for elementa in extremes: _SCREAMING_SNAKE_CASE =_shared_dataset[elementa['base_index']]['content'] if jaccard_similarity(_UpperCamelCase , _UpperCamelCase ) >= jaccard_threshold: elementa["copies"] += 1 break else: _SCREAMING_SNAKE_CASE =1 extremes.append(_UpperCamelCase ) return extremes def _lowerCAmelCase ( _UpperCamelCase : int , _UpperCamelCase : str , _UpperCamelCase : Any ) -> Optional[Any]: """simple docstring""" global _shared_dataset _SCREAMING_SNAKE_CASE =dataset _SCREAMING_SNAKE_CASE =[] _SCREAMING_SNAKE_CASE =partial(_find_cluster_extremes_shared , jaccard_threshold=_UpperCamelCase ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( _UpperCamelCase , _UpperCamelCase , ) , total=len(_UpperCamelCase ) , ): extremes_list.append(_UpperCamelCase ) return extremes_list def _lowerCAmelCase ( _UpperCamelCase : Type[Dataset] , _UpperCamelCase : float = 0.85 ) -> Tuple[Type[Dataset], List[List[Dict]]]: """simple docstring""" _SCREAMING_SNAKE_CASE =make_duplicate_clusters(_UpperCamelCase , _UpperCamelCase ) _SCREAMING_SNAKE_CASE ={x['base_index'] for cluster in duplicate_clusters for x in cluster} _SCREAMING_SNAKE_CASE ={} _SCREAMING_SNAKE_CASE =find_extremes(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) for extremes in extremes_clusters: for element in extremes: _SCREAMING_SNAKE_CASE =element _SCREAMING_SNAKE_CASE =duplicate_indices - set(extreme_dict.keys() ) _SCREAMING_SNAKE_CASE =dataset.filter(lambda _UpperCamelCase , _UpperCamelCase : idx not in remove_indices , with_indices=_UpperCamelCase ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: _SCREAMING_SNAKE_CASE =element['base_index'] in extreme_dict if element["is_extreme"]: _SCREAMING_SNAKE_CASE =extreme_dict[element['base_index']]['copies'] print(f"Original dataset size: {len(_UpperCamelCase )}" ) print(f"Number of duplicate clusters: {len(_UpperCamelCase )}" ) print(f"Files in duplicate cluster: {len(_UpperCamelCase )}" ) print(f"Unique files in duplicate cluster: {len(_UpperCamelCase )}" ) print(f"Filtered dataset size: {len(_UpperCamelCase )}" ) return ds_filter, duplicate_clusters
47
'''simple docstring''' import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py __snake_case ="""\ @INPROCEEDINGS{Papineni02bleu:a, author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu}, title = {BLEU: a Method for Automatic Evaluation of Machine Translation}, booktitle = {}, year = {2002}, pages = {311--318} } @inproceedings{lin-och-2004-orange, title = \"{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation\", author = \"Lin, Chin-Yew and Och, Franz Josef\", booktitle = \"{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics\", month = \"aug 23{--}aug 27\", year = \"2004\", address = \"Geneva, Switzerland\", publisher = \"COLING\", url = \"https://www.aclweb.org/anthology/C04-1072\", pages = \"501--507\", } """ __snake_case ="""\ BLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another. Quality is considered to be the correspondence between a machine's output and that of a human: \"the closer a machine translation is to a professional human translation, the better it is\" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and remains one of the most popular automated and inexpensive metrics. Scores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations. Those scores are then averaged over the whole corpus to reach an estimate of the translation's overall quality. Intelligibility or grammatical correctness are not taken into account[citation needed]. BLEU's output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1 representing more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the reference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional reference translations will increase the BLEU score. """ __snake_case =""" Computes BLEU score of translated segments against one or more references. Args: predictions: list of translations to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. max_order: Maximum n-gram order to use when computing BLEU score. smooth: Whether or not to apply Lin et al. 2004 smoothing. Returns: 'bleu': bleu score, 'precisions': geometric mean of n-gram precisions, 'brevity_penalty': brevity penalty, 'length_ratio': ratio of lengths, 'translation_length': translation_length, 'reference_length': reference_length Examples: >>> predictions = [ ... [\"hello\", \"there\", \"general\", \"kenobi\"], # tokenized prediction of the first sample ... [\"foo\", \"bar\", \"foobar\"] # tokenized prediction of the second sample ... ] >>> references = [ ... [[\"hello\", \"there\", \"general\", \"kenobi\"], [\"hello\", \"there\", \"!\"]], # tokenized references for the first sample (2 references) ... [[\"foo\", \"bar\", \"foobar\"]] # tokenized references for the second sample (1 reference) ... ] >>> bleu = datasets.load_metric(\"bleu\") >>> results = bleu.compute(predictions=predictions, references=references) >>> print(results[\"bleu\"]) 1.0 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): def __UpperCAmelCase ( self : Tuple ) -> int: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ), 'references': datasets.Sequence( datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ) , id='references' ), } ) , codebase_urls=['https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py'] , reference_urls=[ 'https://en.wikipedia.org/wiki/BLEU', 'https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213', ] , ) def __UpperCAmelCase ( self : Optional[int] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Any , UpperCAmelCase__ : Union[str, Any]=4 , UpperCAmelCase__ : Optional[int]=False ) -> int: lowerCAmelCase = compute_bleu( reference_corpus=UpperCAmelCase__ , translation_corpus=UpperCAmelCase__ , max_order=UpperCAmelCase__ , smooth=UpperCAmelCase__ ) ((lowerCAmelCase) , (lowerCAmelCase) , (lowerCAmelCase) , (lowerCAmelCase) , (lowerCAmelCase) , (lowerCAmelCase)) = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
4
0
class UpperCamelCase__ : '''simple docstring''' def __init__( self , UpperCamelCase__ ) -> List[Any]: lowerCamelCase : int = val lowerCamelCase : Optional[int] = None lowerCamelCase : Any = None def _lowercase ( self , UpperCamelCase__ ) -> List[str]: if self.val: if val < self.val: if self.left is None: lowerCamelCase : Union[str, Any] = Node(UpperCamelCase__ ) else: self.left.insert(UpperCamelCase__ ) elif val > self.val: if self.right is None: lowerCamelCase : Optional[Any] = Node(UpperCamelCase__ ) else: self.right.insert(UpperCamelCase__ ) else: lowerCamelCase : List[str] = val def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> Optional[int]: # Recursive traversal if root: inorder(root.left ,_SCREAMING_SNAKE_CASE ) res.append(root.val ) inorder(root.right ,_SCREAMING_SNAKE_CASE ) def A ( _SCREAMING_SNAKE_CASE ) -> Dict: # Build BST if len(_SCREAMING_SNAKE_CASE ) == 0: return arr lowerCamelCase : List[Any] = Node(arr[0] ) for i in range(1 ,len(_SCREAMING_SNAKE_CASE ) ): root.insert(arr[i] ) # Traverse BST in order. lowerCamelCase : Optional[Any] = [] inorder(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) return res if __name__ == "__main__": print(tree_sort([10, 1, 3, 2, 9, 14, 13]))
48
'''simple docstring''' from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record __snake_case ="""\ @article{wang2019superglue, title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems}, author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R}, journal={arXiv preprint arXiv:1905.00537}, year={2019} } """ __snake_case ="""\ SuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after GLUE with a new set of more difficult language understanding tasks, improved resources, and a new public leaderboard. """ __snake_case =""" Compute SuperGLUE evaluation metric associated to each SuperGLUE dataset. Args: predictions: list of predictions to score. Depending on the SuperGlUE subset: - for 'record': list of question-answer dictionaries with the following keys: - 'idx': index of the question as specified by the dataset - 'prediction_text': the predicted answer text - for 'multirc': list of question-answer dictionaries with the following keys: - 'idx': index of the question-answer pair as specified by the dataset - 'prediction': the predicted answer label - otherwise: list of predicted labels references: list of reference labels. Depending on the SuperGLUE subset: - for 'record': list of question-answers dictionaries with the following keys: - 'idx': index of the question as specified by the dataset - 'answers': list of possible answers - otherwise: list of reference labels Returns: depending on the SuperGLUE subset: - for 'record': - 'exact_match': Exact match between answer and gold answer - 'f1': F1 score - for 'multirc': - 'exact_match': Exact match between answer and gold answer - 'f1_m': Per-question macro-F1 score - 'f1_a': Average F1 score over all answers - for 'axb': 'matthews_correlation': Matthew Correlation - for 'cb': - 'accuracy': Accuracy - 'f1': F1 score - for all others: - 'accuracy': Accuracy Examples: >>> super_glue_metric = datasets.load_metric('super_glue', 'copa') # any of [\"copa\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"boolq\", \"axg\"] >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'cb') >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0, 'f1': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'record') >>> predictions = [{'idx': {'passage': 0, 'query': 0}, 'prediction_text': 'answer'}] >>> references = [{'idx': {'passage': 0, 'query': 0}, 'answers': ['answer', 'another_answer']}] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'exact_match': 1.0, 'f1': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'multirc') >>> predictions = [{'idx': {'answer': 0, 'paragraph': 0, 'question': 0}, 'prediction': 0}, {'idx': {'answer': 1, 'paragraph': 2, 'question': 3}, 'prediction': 1}] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'exact_match': 1.0, 'f1_m': 1.0, 'f1_a': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'axb') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'matthews_correlation': 1.0} """ def a_ ( lowerCamelCase : str , lowerCamelCase : Union[str, Any] ): return float((preds == labels).mean() ) def a_ ( lowerCamelCase : Union[str, Any] , lowerCamelCase : Dict , lowerCamelCase : str="binary" ): lowerCAmelCase = simple_accuracy(lowerCamelCase , lowerCamelCase ) lowerCAmelCase = float(fa_score(y_true=lowerCamelCase , y_pred=lowerCamelCase , average=lowerCamelCase ) ) return { "accuracy": acc, "f1": fa, } def a_ ( lowerCamelCase : List[Any] , lowerCamelCase : List[Any] ): lowerCAmelCase = {} for id_pred, label in zip(lowerCamelCase , lowerCamelCase ): lowerCAmelCase = f'''{id_pred['idx']['paragraph']}-{id_pred['idx']['question']}''' lowerCAmelCase = id_pred['prediction'] if question_id in question_map: question_map[question_id].append((pred, label) ) else: lowerCAmelCase = [(pred, label)] lowerCAmelCase , lowerCAmelCase = [], [] for question, preds_labels in question_map.items(): lowerCAmelCase , lowerCAmelCase = zip(*lowerCamelCase ) lowerCAmelCase = fa_score(y_true=lowerCamelCase , y_pred=lowerCamelCase , average='macro' ) fas.append(lowerCamelCase ) lowerCAmelCase = int(sum(pred == label for pred, label in preds_labels ) == len(lowerCamelCase ) ) ems.append(lowerCamelCase ) lowerCAmelCase = float(sum(lowerCamelCase ) / len(lowerCamelCase ) ) lowerCAmelCase = sum(lowerCamelCase ) / len(lowerCamelCase ) lowerCAmelCase = float(fa_score(y_true=lowerCamelCase , y_pred=[id_pred['prediction'] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): def __UpperCAmelCase ( self : List[str] ) -> List[Any]: if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( 'You should supply a configuration name selected in ' '["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format='numpy' if not self.config_name == 'record' and not self.config_name == 'multirc' else None , ) def __UpperCAmelCase ( self : Union[str, Any] ) -> str: if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value('int64' ), "query": datasets.Value('int64' ), }, "prediction_text": datasets.Value('string' ), }, "references": { "idx": { "passage": datasets.Value('int64' ), "query": datasets.Value('int64' ), }, "answers": datasets.Sequence(datasets.Value('string' ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value('int64' ), "paragraph": datasets.Value('int64' ), "question": datasets.Value('int64' ), }, "prediction": datasets.Value('int64' ), }, "references": datasets.Value('int64' ), } else: return { "predictions": datasets.Value('int64' ), "references": datasets.Value('int64' ), } def __UpperCAmelCase ( self : List[str] , UpperCAmelCase__ : Any , UpperCAmelCase__ : Optional[Any] ) -> Any: if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(UpperCAmelCase__ , UpperCAmelCase__ )} elif self.config_name == "cb": return acc_and_fa(UpperCAmelCase__ , UpperCAmelCase__ , fa_avg='macro' ) elif self.config_name == "record": lowerCAmelCase = [ { 'qas': [ {'id': ref['idx']['query'], 'answers': [{'text': ans} for ans in ref['answers']]} for ref in references ] } ] lowerCAmelCase = {pred['idx']['query']: pred['prediction_text'] for pred in predictions} return evaluate_record(UpperCAmelCase__ , UpperCAmelCase__ )[0] elif self.config_name == "multirc": return evaluate_multirc(UpperCAmelCase__ , UpperCAmelCase__ ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(UpperCAmelCase__ , UpperCAmelCase__ )} else: raise KeyError( 'You should supply a configuration name selected in ' '["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]' )
4
0
from __future__ import annotations import unittest from transformers import DebertaVaConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, TFDebertaVaModel, ) class _A : def __init__( self : int , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[int]=13 , __SCREAMING_SNAKE_CASE : Union[str, Any]=7 , __SCREAMING_SNAKE_CASE : int=True , __SCREAMING_SNAKE_CASE : Union[str, Any]=True , __SCREAMING_SNAKE_CASE : Tuple=True , __SCREAMING_SNAKE_CASE : Optional[int]=True , __SCREAMING_SNAKE_CASE : Optional[int]=99 , __SCREAMING_SNAKE_CASE : List[str]=32 , __SCREAMING_SNAKE_CASE : Dict=2 , __SCREAMING_SNAKE_CASE : Optional[Any]=4 , __SCREAMING_SNAKE_CASE : Any=37 , __SCREAMING_SNAKE_CASE : Any="gelu" , __SCREAMING_SNAKE_CASE : int=0.1 , __SCREAMING_SNAKE_CASE : Tuple=0.1 , __SCREAMING_SNAKE_CASE : Optional[Any]=512 , __SCREAMING_SNAKE_CASE : Dict=16 , __SCREAMING_SNAKE_CASE : Union[str, Any]=2 , __SCREAMING_SNAKE_CASE : int=0.02 , __SCREAMING_SNAKE_CASE : Dict=False , __SCREAMING_SNAKE_CASE : int=True , __SCREAMING_SNAKE_CASE : str="None" , __SCREAMING_SNAKE_CASE : str=3 , __SCREAMING_SNAKE_CASE : Optional[int]=4 , __SCREAMING_SNAKE_CASE : List[str]=None , ): '''simple docstring''' __a = parent __a = batch_size __a = seq_length __a = is_training __a = use_input_mask __a = use_token_type_ids __a = use_labels __a = vocab_size __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = intermediate_size __a = hidden_act __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = type_vocab_size __a = type_sequence_label_size __a = initializer_range __a = num_labels __a = num_choices __a = relative_attention __a = position_biased_input __a = pos_att_type __a = scope def _lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' __a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) __a = None if self.use_input_mask: __a = random_attention_mask([self.batch_size, self.seq_length]) __a = None if self.use_token_type_ids: __a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) __a = None __a = None __a = None if self.use_labels: __a = ids_tensor([self.batch_size] , self.type_sequence_label_size) __a = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) __a = DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , initializer_range=self.initializer_range , return_dict=__SCREAMING_SNAKE_CASE , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowerCamelCase ( self : List[Any] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Tuple): '''simple docstring''' __a = TFDebertaVaModel(config=__SCREAMING_SNAKE_CASE) __a = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} __a = [input_ids, input_mask] __a = model(__SCREAMING_SNAKE_CASE) __a = model(__SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def _lowerCamelCase ( self : List[Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Dict): '''simple docstring''' __a = TFDebertaVaForMaskedLM(config=__SCREAMING_SNAKE_CASE) __a = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } __a = model(__SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def _lowerCamelCase ( self : Tuple , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : int): '''simple docstring''' __a = self.num_labels __a = TFDebertaVaForSequenceClassification(config=__SCREAMING_SNAKE_CASE) __a = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } __a = model(__SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def _lowerCamelCase ( self : Dict , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : str): '''simple docstring''' __a = self.num_labels __a = TFDebertaVaForTokenClassification(config=__SCREAMING_SNAKE_CASE) __a = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } __a = model(__SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def _lowerCamelCase ( self : Tuple , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Optional[int]): '''simple docstring''' __a = TFDebertaVaForQuestionAnswering(config=__SCREAMING_SNAKE_CASE) __a = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } __a = model(__SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def _lowerCamelCase ( self : Dict): '''simple docstring''' __a = self.prepare_config_and_inputs() ( ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ) = config_and_inputs __a = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class _A ( __UpperCAmelCase ,__UpperCAmelCase ,unittest.TestCase ): UpperCamelCase__ : Dict = ( ( TFDebertaVaModel, TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, ) if is_tf_available() else () ) UpperCamelCase__ : Optional[int] = ( { '''feature-extraction''': TFDebertaVaModel, '''fill-mask''': TFDebertaVaForMaskedLM, '''question-answering''': TFDebertaVaForQuestionAnswering, '''text-classification''': TFDebertaVaForSequenceClassification, '''token-classification''': TFDebertaVaForTokenClassification, '''zero-shot''': TFDebertaVaForSequenceClassification, } if is_tf_available() else {} ) UpperCamelCase__ : int = False UpperCamelCase__ : Optional[int] = False def _lowerCamelCase ( self : Optional[Any]): '''simple docstring''' __a = TFDebertaVaModelTester(self) __a = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , hidden_size=37) def _lowerCamelCase ( self : List[str]): '''simple docstring''' self.config_tester.run_common_tests() def _lowerCamelCase ( self : Optional[int]): '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : List[Any]): '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : List[Any]): '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : List[str]): '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : int): '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__SCREAMING_SNAKE_CASE) @slow def _lowerCamelCase ( self : List[str]): '''simple docstring''' __a = TFDebertaVaModel.from_pretrained('''kamalkraj/deberta-v2-xlarge''') self.assertIsNotNone(__SCREAMING_SNAKE_CASE) @require_tf class _A ( unittest.TestCase ): @unittest.skip(reason='''Model not available yet''') def _lowerCamelCase ( self : Optional[Any]): '''simple docstring''' pass @slow def _lowerCamelCase ( self : Any): '''simple docstring''' __a = TFDebertaVaModel.from_pretrained('''kamalkraj/deberta-v2-xlarge''') __a = tf.constant([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]]) __a = tf.constant([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]) __a = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE)[0] __a = tf.constant( [[[0.23_56, 0.19_48, 0.03_69], [-0.10_63, 0.35_86, -0.51_52], [-0.63_99, -0.02_59, -0.25_25]]]) tf.debugging.assert_near(output[:, 1:4, 1:4] , __SCREAMING_SNAKE_CASE , atol=1E-4)
49
'''simple docstring''' print((lambda quine: quine % quine)("""print((lambda quine: quine %% quine)(%r))"""))
4
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer _UpperCAmelCase : Any = logging.get_logger(__name__) _UpperCAmelCase : Optional[Any] = {"""vocab_file""": """vocab.txt"""} _UpperCAmelCase : Union[str, Any] = { """vocab_file""": { """YituTech/conv-bert-base""": """https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt""", """YituTech/conv-bert-medium-small""": ( """https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt""" ), """YituTech/conv-bert-small""": """https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt""", } } _UpperCAmelCase : Dict = { """YituTech/conv-bert-base""": 5_12, """YituTech/conv-bert-medium-small""": 5_12, """YituTech/conv-bert-small""": 5_12, } _UpperCAmelCase : List[str] = { """YituTech/conv-bert-base""": {"""do_lower_case""": True}, """YituTech/conv-bert-medium-small""": {"""do_lower_case""": True}, """YituTech/conv-bert-small""": {"""do_lower_case""": True}, } class lowerCAmelCase ( __UpperCamelCase ): UpperCAmelCase__ = VOCAB_FILES_NAMES UpperCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ = PRETRAINED_INIT_CONFIGURATION UpperCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ = ConvBertTokenizer def __init__( self : Optional[Any] , UpperCAmelCase : int=None , UpperCAmelCase : Dict=None , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : Tuple="[UNK]" , UpperCAmelCase : Optional[int]="[SEP]" , UpperCAmelCase : List[Any]="[PAD]" , UpperCAmelCase : List[Any]="[CLS]" , UpperCAmelCase : Union[str, Any]="[MASK]" , UpperCAmelCase : Any=True , UpperCAmelCase : int=None , **UpperCAmelCase : Union[str, Any] , ) -> List[str]: super().__init__( UpperCAmelCase , tokenizer_file=UpperCAmelCase , do_lower_case=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , pad_token=UpperCAmelCase , cls_token=UpperCAmelCase , mask_token=UpperCAmelCase , tokenize_chinese_chars=UpperCAmelCase , strip_accents=UpperCAmelCase , **UpperCAmelCase , ) lowerCamelCase__ : int = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , UpperCAmelCase ) != do_lower_case or normalizer_state.get('strip_accents' , UpperCAmelCase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , UpperCAmelCase ) != tokenize_chinese_chars ): lowerCamelCase__ : Union[str, Any] = getattr(UpperCAmelCase , normalizer_state.pop('type' ) ) lowerCamelCase__ : Dict = do_lower_case lowerCamelCase__ : Dict = strip_accents lowerCamelCase__ : Union[str, Any] = tokenize_chinese_chars lowerCamelCase__ : Tuple = normalizer_class(**UpperCAmelCase ) lowerCamelCase__ : Union[str, Any] = do_lower_case def A_ ( self : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : Any=None ) -> Dict: lowerCamelCase__ : List[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def A_ ( self : Union[str, Any] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: lowerCamelCase__ : List[Any] = [self.sep_token_id] lowerCamelCase__ : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A_ ( self : List[str] , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: lowerCamelCase__ : List[Any] = self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase ) return tuple(UpperCAmelCase )
50
'''simple docstring''' import os __snake_case ={"""I""": 1, """V""": 5, """X""": 10, """L""": 50, """C""": 100, """D""": 500, """M""": 1_000} def a_ ( lowerCamelCase : str ): lowerCAmelCase = 0 lowerCAmelCase = 0 while index < len(lowerCamelCase ) - 1: lowerCAmelCase = SYMBOLS[numerals[index]] lowerCAmelCase = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def a_ ( lowerCamelCase : int ): lowerCAmelCase = '' lowerCAmelCase = num // 1000 numerals += m_count * "M" num %= 1000 lowerCAmelCase = num // 100 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 100 lowerCAmelCase = num // 10 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 10 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def a_ ( lowerCamelCase : str = "/p089_roman.txt" ): lowerCAmelCase = 0 with open(os.path.dirname(lowerCamelCase ) + roman_numerals_filename ) as filea: lowerCAmelCase = filea.readlines() for line in lines: lowerCAmelCase = line.strip() lowerCAmelCase = parse_roman_numerals(lowerCamelCase ) lowerCAmelCase = generate_roman_numerals(lowerCamelCase ) savings += len(lowerCamelCase ) - len(lowerCamelCase ) return savings if __name__ == "__main__": print(F'''{solution() = }''')
4
0
from __future__ import annotations def A (__A : str ) -> list[int]: """simple docstring""" return [ord(__A ) - 96 for elem in plain] def A (__A : list[int] ) -> str: """simple docstring""" return "".join(chr(elem + 96 ) for elem in encoded ) def A () -> None: """simple docstring""" UpperCAmelCase_ = encode(input('''-> ''' ).strip().lower() ) print('''Encoded: ''' , __A ) print('''Decoded:''' , decode(__A ) ) if __name__ == "__main__": main()
51
'''simple docstring''' import itertools import random import unittest import numpy as np from transformers import ASTFeatureExtractor from transformers.testing_utils import require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin __snake_case =random.Random() if is_torch_available(): import torch def a_ ( lowerCamelCase : Dict , lowerCamelCase : Dict=1.0 , lowerCamelCase : List[Any]=None , lowerCamelCase : Union[str, Any]=None ): if rng is None: lowerCAmelCase = global_rng lowerCAmelCase = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class UpperCAmelCase_ ( unittest.TestCase ): def __init__( self : List[Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : List[str]=7 , UpperCAmelCase__ : int=4_0_0 , UpperCAmelCase__ : int=2_0_0_0 , UpperCAmelCase__ : List[str]=1 , UpperCAmelCase__ : Tuple=0.0 , UpperCAmelCase__ : Tuple=1_6_0_0_0 , UpperCAmelCase__ : Tuple=True , UpperCAmelCase__ : Union[str, Any]=True , ) -> Any: lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = min_seq_length lowerCAmelCase = max_seq_length lowerCAmelCase = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) lowerCAmelCase = feature_size lowerCAmelCase = padding_value lowerCAmelCase = sampling_rate lowerCAmelCase = return_attention_mask lowerCAmelCase = do_normalize def __UpperCAmelCase ( self : Optional[Any] ) -> List[str]: return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def __UpperCAmelCase ( self : str , UpperCAmelCase__ : Union[str, Any]=False , UpperCAmelCase__ : Union[str, Any]=False ) -> Optional[Any]: def _flatten(UpperCAmelCase__ : int ): return list(itertools.chain(*UpperCAmelCase__ ) ) if equal_length: lowerCAmelCase = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size lowerCAmelCase = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: lowerCAmelCase = [np.asarray(UpperCAmelCase__ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): lowerCamelCase : Dict = ASTFeatureExtractor def __UpperCAmelCase ( self : str ) -> Optional[int]: lowerCAmelCase = ASTFeatureExtractionTester(self ) def __UpperCAmelCase ( self : Optional[int] ) -> Optional[int]: # Tests that all call wrap to encode_plus and batch_encode_plus lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 lowerCAmelCase = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] lowerCAmelCase = [np.asarray(UpperCAmelCase__ ) for speech_input in speech_inputs] # Test not batched input lowerCAmelCase = feat_extract(speech_inputs[0] , return_tensors='np' ).input_values lowerCAmelCase = feat_extract(np_speech_inputs[0] , return_tensors='np' ).input_values self.assertTrue(np.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1E-3 ) ) # Test batched lowerCAmelCase = feat_extract(UpperCAmelCase__ , padding=UpperCAmelCase__ , return_tensors='np' ).input_values lowerCAmelCase = feat_extract(UpperCAmelCase__ , padding=UpperCAmelCase__ , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(UpperCAmelCase__ , UpperCAmelCase__ ): self.assertTrue(np.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. lowerCAmelCase = [floats_list((1, x) )[0] for x in (8_0_0, 8_0_0, 8_0_0)] lowerCAmelCase = np.asarray(UpperCAmelCase__ ) lowerCAmelCase = feat_extract(UpperCAmelCase__ , return_tensors='np' ).input_values lowerCAmelCase = feat_extract(UpperCAmelCase__ , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(UpperCAmelCase__ , UpperCAmelCase__ ): self.assertTrue(np.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1E-3 ) ) @require_torch def __UpperCAmelCase ( self : Union[str, Any] ) -> Optional[int]: import torch lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCAmelCase = np.random.rand(1_0_0 ).astype(np.floataa ) lowerCAmelCase = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: lowerCAmelCase = feature_extractor.pad([{'input_values': inputs}] , return_tensors='np' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) lowerCAmelCase = feature_extractor.pad([{'input_values': inputs}] , return_tensors='pt' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def __UpperCAmelCase ( self : int , UpperCAmelCase__ : str ) -> Tuple: from datasets import load_dataset lowerCAmelCase = load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' ) # automatic decoding with librispeech lowerCAmelCase = ds.sort('id' ).select(range(UpperCAmelCase__ ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] @require_torch def __UpperCAmelCase ( self : str ) -> Optional[Any]: # fmt: off lowerCAmelCase = torch.tensor( [-0.9_894, -1.2_776, -0.9_066, -1.2_776, -0.9_349, -1.2_609, -1.0_386, -1.2_776, -1.1_561, -1.2_776, -1.2_052, -1.2_723, -1.2_190, -1.2_132, -1.2_776, -1.1_133, -1.1_953, -1.1_343, -1.1_584, -1.2_203, -1.1_770, -1.2_474, -1.2_381, -1.1_936, -0.9_270, -0.8_317, -0.8_049, -0.7_706, -0.7_565, -0.7_869] ) # fmt: on lowerCAmelCase = self._load_datasamples(1 ) lowerCAmelCase = ASTFeatureExtractor() lowerCAmelCase = feature_extractor(UpperCAmelCase__ , return_tensors='pt' ).input_values self.assertEquals(input_values.shape , (1, 1_0_2_4, 1_2_8) ) self.assertTrue(torch.allclose(input_values[0, 0, :3_0] , UpperCAmelCase__ , atol=1E-4 ) )
4
0
import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def A_ ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> List[Any]: UpperCamelCase : Dict = ("dense.weight", "attention.self.query", "attention.self.key", "attention.self.value") UpperCamelCase : Any = ( ("layer.", "layer_"), ("word_embeddings.weight", "word_embeddings"), ("position_embeddings.weight", "position_embeddings"), ("token_type_embeddings.weight", "token_type_embeddings"), (".", "/"), ("LayerNorm/weight", "LayerNorm/gamma"), ("LayerNorm/bias", "LayerNorm/beta"), ("weight", "kernel"), ) if not os.path.isdir(_lowerCAmelCase ): os.makedirs(_lowerCAmelCase ) UpperCamelCase : str = model.state_dict() def to_tf_var_name(_lowerCAmelCase ): for patt, repl in iter(_lowerCAmelCase ): UpperCamelCase : str = name.replace(_lowerCAmelCase , _lowerCAmelCase ) return F"""bert/{name}""" def create_tf_var(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): UpperCamelCase : str = tf.dtypes.as_dtype(tensor.dtype ) UpperCamelCase : str = tf.get_variable(dtype=_lowerCAmelCase , shape=tensor.shape , name=_lowerCAmelCase , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(_lowerCAmelCase ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: UpperCamelCase : str = to_tf_var_name(_lowerCAmelCase ) UpperCamelCase : Union[str, Any] = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): UpperCamelCase : Any = torch_tensor.T UpperCamelCase : Any = create_tf_var(tensor=_lowerCAmelCase , name=_lowerCAmelCase , session=_lowerCAmelCase ) tf.keras.backend.set_value(_lowerCAmelCase , _lowerCAmelCase ) UpperCamelCase : List[str] = session.run(_lowerCAmelCase ) print(F"""Successfully created {tf_name}: {np.allclose(_lowerCAmelCase , _lowerCAmelCase )}""" ) UpperCamelCase : Optional[Any] = tf.train.Saver(tf.trainable_variables() ) saver.save(_lowerCAmelCase , os.path.join(_lowerCAmelCase , model_name.replace("-" , "_" ) + ".ckpt" ) ) def A_ ( _lowerCAmelCase=None ) -> Dict: UpperCamelCase : str = argparse.ArgumentParser() parser.add_argument("--model_name" , type=_lowerCAmelCase , required=_lowerCAmelCase , help="model name e.g. bert-base-uncased" ) parser.add_argument( "--cache_dir" , type=_lowerCAmelCase , default=_lowerCAmelCase , required=_lowerCAmelCase , help="Directory containing pytorch model" ) parser.add_argument("--pytorch_model_path" , type=_lowerCAmelCase , required=_lowerCAmelCase , help="/path/to/<pytorch-model-name>.bin" ) parser.add_argument("--tf_cache_dir" , type=_lowerCAmelCase , required=_lowerCAmelCase , help="Directory in which to save tensorflow model" ) UpperCamelCase : List[Any] = parser.parse_args(_lowerCAmelCase ) UpperCamelCase : Dict = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=_lowerCAmelCase , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
52
'''simple docstring''' import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class UpperCAmelCase_ ( unittest.TestCase ): def __UpperCAmelCase ( self : str ) -> List[Any]: lowerCAmelCase = torch.nn.Linear(1_0 , 1_0 ) lowerCAmelCase = torch.optim.SGD(model.parameters() , 0.1 ) lowerCAmelCase = Accelerator() lowerCAmelCase = accelerator.prepare(UpperCAmelCase__ ) try: pickle.loads(pickle.dumps(UpperCAmelCase__ ) ) except Exception as e: self.fail(F'''Accelerated optimizer pickling failed with {e}''' ) AcceleratorState._reset_state()
4
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) a__ : Optional[Any] ={ '''configuration_mobilebert''': [ '''MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MobileBertConfig''', '''MobileBertOnnxConfig''', ], '''tokenization_mobilebert''': ['''MobileBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Any =['''MobileBertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Dict =[ '''MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MobileBertForMaskedLM''', '''MobileBertForMultipleChoice''', '''MobileBertForNextSentencePrediction''', '''MobileBertForPreTraining''', '''MobileBertForQuestionAnswering''', '''MobileBertForSequenceClassification''', '''MobileBertForTokenClassification''', '''MobileBertLayer''', '''MobileBertModel''', '''MobileBertPreTrainedModel''', '''load_tf_weights_in_mobilebert''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : List[Any] =[ '''TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFMobileBertForMaskedLM''', '''TFMobileBertForMultipleChoice''', '''TFMobileBertForNextSentencePrediction''', '''TFMobileBertForPreTraining''', '''TFMobileBertForQuestionAnswering''', '''TFMobileBertForSequenceClassification''', '''TFMobileBertForTokenClassification''', '''TFMobileBertMainLayer''', '''TFMobileBertModel''', '''TFMobileBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mobilebert import ( MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig, MobileBertOnnxConfig, ) from .tokenization_mobilebert import MobileBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mobilebert_fast import MobileBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilebert import ( MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertLayer, MobileBertModel, MobileBertPreTrainedModel, load_tf_weights_in_mobilebert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilebert import ( TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertMainLayer, TFMobileBertModel, TFMobileBertPreTrainedModel, ) else: import sys a__ : Tuple =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
53
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot import BlenderbotTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __snake_case =logging.get_logger(__name__) __snake_case ={ """vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_config_file""": """tokenizer_config.json""", } __snake_case ={ """vocab_file""": {"""facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"""}, """merges_file""": {"""facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"""}, """tokenizer_config_file""": { """facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json""" }, } __snake_case ={"""facebook/blenderbot-3B""": 128} class UpperCAmelCase_ ( __lowercase ): lowerCamelCase : List[Any] = VOCAB_FILES_NAMES lowerCamelCase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : Optional[Any] = ['''input_ids''', '''attention_mask'''] lowerCamelCase : List[Any] = BlenderbotTokenizer def __init__( self : Union[str, Any] , UpperCAmelCase__ : Tuple=None , UpperCAmelCase__ : Tuple=None , UpperCAmelCase__ : List[Any]=None , UpperCAmelCase__ : str="replace" , UpperCAmelCase__ : Dict="<s>" , UpperCAmelCase__ : Tuple="</s>" , UpperCAmelCase__ : Optional[Any]="</s>" , UpperCAmelCase__ : Any="<s>" , UpperCAmelCase__ : List[str]="<unk>" , UpperCAmelCase__ : int="<pad>" , UpperCAmelCase__ : Union[str, Any]="<mask>" , UpperCAmelCase__ : str=False , UpperCAmelCase__ : Union[str, Any]=True , **UpperCAmelCase__ : Optional[int] , ) -> int: super().__init__( UpperCAmelCase__ , UpperCAmelCase__ , tokenizer_file=UpperCAmelCase__ , errors=UpperCAmelCase__ , bos_token=UpperCAmelCase__ , eos_token=UpperCAmelCase__ , sep_token=UpperCAmelCase__ , cls_token=UpperCAmelCase__ , unk_token=UpperCAmelCase__ , pad_token=UpperCAmelCase__ , mask_token=UpperCAmelCase__ , add_prefix_space=UpperCAmelCase__ , trim_offsets=UpperCAmelCase__ , **UpperCAmelCase__ , ) lowerCAmelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , UpperCAmelCase__ ) != add_prefix_space: lowerCAmelCase = getattr(UpperCAmelCase__ , pre_tok_state.pop('type' ) ) lowerCAmelCase = add_prefix_space lowerCAmelCase = pre_tok_class(**UpperCAmelCase__ ) lowerCAmelCase = add_prefix_space lowerCAmelCase = 'post_processor' lowerCAmelCase = getattr(self.backend_tokenizer , UpperCAmelCase__ , UpperCAmelCase__ ) if tokenizer_component_instance: lowerCAmelCase = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: lowerCAmelCase = tuple(state['sep'] ) if "cls" in state: lowerCAmelCase = tuple(state['cls'] ) lowerCAmelCase = False if state.get('add_prefix_space' , UpperCAmelCase__ ) != add_prefix_space: lowerCAmelCase = add_prefix_space lowerCAmelCase = True if state.get('trim_offsets' , UpperCAmelCase__ ) != trim_offsets: lowerCAmelCase = trim_offsets lowerCAmelCase = True if changes_to_apply: lowerCAmelCase = getattr(UpperCAmelCase__ , state.pop('type' ) ) lowerCAmelCase = component_class(**UpperCAmelCase__ ) setattr(self.backend_tokenizer , UpperCAmelCase__ , UpperCAmelCase__ ) @property # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot def __UpperCAmelCase ( self : Union[str, Any] ) -> str: if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def __UpperCAmelCase ( self : int , UpperCAmelCase__ : Optional[Any] ) -> Tuple: lowerCAmelCase = AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else value lowerCAmelCase = value def __UpperCAmelCase ( self : Optional[Any] , *UpperCAmelCase__ : Union[str, Any] , **UpperCAmelCase__ : List[str] ) -> BatchEncoding: lowerCAmelCase = kwargs.get('is_split_into_words' , UpperCAmelCase__ ) assert self.add_prefix_space or not is_split_into_words, ( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*UpperCAmelCase__ , **UpperCAmelCase__ ) def __UpperCAmelCase ( self : List[str] , *UpperCAmelCase__ : str , **UpperCAmelCase__ : List[str] ) -> BatchEncoding: lowerCAmelCase = kwargs.get('is_split_into_words' , UpperCAmelCase__ ) assert self.add_prefix_space or not is_split_into_words, ( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*UpperCAmelCase__ , **UpperCAmelCase__ ) def __UpperCAmelCase ( self : str , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[str] = None ) -> Tuple[str]: lowerCAmelCase = self._tokenizer.model.save(UpperCAmelCase__ , name=UpperCAmelCase__ ) return tuple(UpperCAmelCase__ ) def __UpperCAmelCase ( self : Optional[int] , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None ) -> List[int]: lowerCAmelCase = [self.sep_token_id] lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __UpperCAmelCase ( self : List[str] , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None ) -> Any: return token_ids_a + [self.eos_token_id] def __UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase__ : "Conversation" ) -> List[int]: lowerCAmelCase = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(' ' + text ) else: # Generated responses should contain them already. inputs.append(UpperCAmelCase__ ) lowerCAmelCase = ' '.join(UpperCAmelCase__ ) lowerCAmelCase = self.encode(UpperCAmelCase__ ) if len(UpperCAmelCase__ ) > self.model_max_length: lowerCAmelCase = input_ids[-self.model_max_length :] logger.warning(F'''Trimmed input from conversation as it was longer than {self.model_max_length} tokens.''' ) return input_ids
4
0
"""simple docstring""" import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class UpperCamelCase_ ( UpperCamelCase): """simple docstring""" def UpperCAmelCase_ ( self : Optional[Any] , UpperCAmelCase__ : str ) -> Optional[int]: with open(UpperCAmelCase__ , encoding="utf-8" ) as input_file: __SCREAMING_SNAKE_CASE = re.compile(R"(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)" ) __SCREAMING_SNAKE_CASE = input_file.read() __SCREAMING_SNAKE_CASE = regexp.search(UpperCAmelCase__ ) return match def UpperCAmelCase_ ( self : int , UpperCAmelCase__ : str ) -> Union[str, Any]: with open(UpperCAmelCase__ , encoding="utf-8" ) as input_file: __SCREAMING_SNAKE_CASE = re.compile(R"#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()" , re.DOTALL ) __SCREAMING_SNAKE_CASE = input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` __SCREAMING_SNAKE_CASE = regexp.finditer(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = [match for match in matches if match is not None and match.group(1 ) is not None] return matches[0] if matches else None def UpperCAmelCase_ ( self : Dict ) -> Dict: __SCREAMING_SNAKE_CASE = Path("./datasets" ) __SCREAMING_SNAKE_CASE = list(dataset_paths.absolute().glob("**/*.py" ) ) for dataset in dataset_files: if self._no_encoding_on_file_open(str(UpperCAmelCase__ ) ): raise AssertionError(F"""open(...) must use utf-8 encoding in {dataset}""" ) def UpperCAmelCase_ ( self : str ) -> int: __SCREAMING_SNAKE_CASE = Path("./datasets" ) __SCREAMING_SNAKE_CASE = list(dataset_paths.absolute().glob("**/*.py" ) ) for dataset in dataset_files: if self._no_print_statements(str(UpperCAmelCase__ ) ): raise AssertionError(F"""print statement found in {dataset}. Use datasets.logger/logging instead.""" )
54
'''simple docstring''' from __future__ import annotations from statistics import mean def a_ ( lowerCamelCase : list[int] , lowerCamelCase : list[int] , lowerCamelCase : int ): lowerCAmelCase = [0] * no_of_processes lowerCAmelCase = [0] * no_of_processes # Initialize remaining_time to waiting_time. for i in range(lowerCamelCase ): lowerCAmelCase = burst_time[i] lowerCAmelCase = [] lowerCAmelCase = 0 lowerCAmelCase = 0 # When processes are not completed, # A process whose arrival time has passed \ # and has remaining execution time is put into the ready_process. # The shortest process in the ready_process, target_process is executed. while completed != no_of_processes: lowerCAmelCase = [] lowerCAmelCase = -1 for i in range(lowerCamelCase ): if (arrival_time[i] <= total_time) and (remaining_time[i] > 0): ready_process.append(lowerCamelCase ) if len(lowerCamelCase ) > 0: lowerCAmelCase = ready_process[0] for i in ready_process: if remaining_time[i] < remaining_time[target_process]: lowerCAmelCase = i total_time += burst_time[target_process] completed += 1 lowerCAmelCase = 0 lowerCAmelCase = ( total_time - arrival_time[target_process] - burst_time[target_process] ) else: total_time += 1 return waiting_time def a_ ( lowerCamelCase : list[int] , lowerCamelCase : int , lowerCamelCase : list[int] ): lowerCAmelCase = [0] * no_of_processes for i in range(lowerCamelCase ): lowerCAmelCase = burst_time[i] + waiting_time[i] return turn_around_time if __name__ == "__main__": print("""[TEST CASE 01]""") __snake_case =4 __snake_case =[2, 5, 3, 7] __snake_case =[0, 0, 0, 0] __snake_case =calculate_waitingtime(arrival_time, burst_time, no_of_processes) __snake_case =calculate_turnaroundtime( burst_time, no_of_processes, waiting_time ) # Printing the Result print("""PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time""") for i, process_id in enumerate(list(range(1, 5))): print( F'''{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t''' F'''{waiting_time[i]}\t\t\t\t{turn_around_time[i]}''' ) print(F'''\nAverage waiting time = {mean(waiting_time):.5f}''') print(F'''Average turnaround time = {mean(turn_around_time):.5f}''')
4
0
'''simple docstring''' def __snake_case ( UpperCAmelCase_ : float ): return 10 - x * x def __snake_case ( UpperCAmelCase_ : float , UpperCAmelCase_ : float ): # Bolzano theory in order to find if there is a root between a and b if equation(UpperCAmelCase_ ) * equation(UpperCAmelCase_ ) >= 0: raise ValueError("Wrong space!" ) lowerCamelCase_ = a while (b - a) >= 0.01: # Find middle point lowerCamelCase_ = (a + b) / 2 # Check if middle point is root if equation(UpperCAmelCase_ ) == 0.0: break # Decide the side to repeat the steps if equation(UpperCAmelCase_ ) * equation(UpperCAmelCase_ ) < 0: lowerCamelCase_ = c else: lowerCamelCase_ = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
55
'''simple docstring''' import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase ): def __UpperCAmelCase ( self : Optional[int] ) -> int: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCAmelCase ( self : Tuple ) -> Any: lowerCAmelCase = StableDiffusionKDiffusionPipeline.from_pretrained('CompVis/stable-diffusion-v1-4' ) lowerCAmelCase = sd_pipe.to(UpperCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) sd_pipe.set_scheduler('sample_euler' ) lowerCAmelCase = 'A painting of a squirrel eating a burger' lowerCAmelCase = torch.manual_seed(0 ) lowerCAmelCase = sd_pipe([prompt] , generator=UpperCAmelCase__ , guidance_scale=9.0 , num_inference_steps=2_0 , output_type='np' ) lowerCAmelCase = output.images lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) lowerCAmelCase = np.array([0.0_447, 0.0_492, 0.0_468, 0.0_408, 0.0_383, 0.0_408, 0.0_354, 0.0_380, 0.0_339] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __UpperCAmelCase ( self : List[str] ) -> Dict: lowerCAmelCase = StableDiffusionKDiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' ) lowerCAmelCase = sd_pipe.to(UpperCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) sd_pipe.set_scheduler('sample_euler' ) lowerCAmelCase = 'A painting of a squirrel eating a burger' lowerCAmelCase = torch.manual_seed(0 ) lowerCAmelCase = sd_pipe([prompt] , generator=UpperCAmelCase__ , guidance_scale=9.0 , num_inference_steps=2_0 , output_type='np' ) lowerCAmelCase = output.images lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) lowerCAmelCase = np.array([0.1_237, 0.1_320, 0.1_438, 0.1_359, 0.1_390, 0.1_132, 0.1_277, 0.1_175, 0.1_112] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-1 def __UpperCAmelCase ( self : Optional[Any] ) -> List[str]: lowerCAmelCase = StableDiffusionKDiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' ) lowerCAmelCase = sd_pipe.to(UpperCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) sd_pipe.set_scheduler('sample_dpmpp_2m' ) lowerCAmelCase = 'A painting of a squirrel eating a burger' lowerCAmelCase = torch.manual_seed(0 ) lowerCAmelCase = sd_pipe( [prompt] , generator=UpperCAmelCase__ , guidance_scale=7.5 , num_inference_steps=1_5 , output_type='np' , use_karras_sigmas=UpperCAmelCase__ , ) lowerCAmelCase = output.images lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) lowerCAmelCase = np.array( [0.11_381_689, 0.12_112_921, 0.1_389_457, 0.12_549_606, 0.1_244_964, 0.10_831_517, 0.11_562_866, 0.10_867_816, 0.10_499_048] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
4
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_owlvit import OwlViTImageProcessor a : Dict = logging.get_logger(__name__) class a ( _lowerCamelCase ): def __init__( self : List[str] , *lowercase_ : Union[str, Any] , **lowercase_ : Tuple ): warnings.warn( '''The class OwlViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use OwlViTImageProcessor instead.''' , lowercase_ , ) super().__init__(*lowercase_ , **lowercase_ )
56
'''simple docstring''' # Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #################################################################################################### # # Note: If when running this conversion script you're getting an exception: # ModuleNotFoundError: No module named 'megatron.model.enums' # you need to tell python where to find the clone of Megatron-LM, e.g.: # # cd /tmp # git clone https://github.com/NVIDIA/Megatron-LM # PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ... # # if you already have it cloned elsewhere, simply adjust the path to the existing path # # If the training was done using a Megatron-LM fork, e.g., # https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one # in your path, i.e., /path/to/Megatron-DeepSpeed/ # import argparse import os import re import zipfile import torch from transformers import AutoTokenizer, GPTaConfig def a_ ( lowerCamelCase : int , lowerCamelCase : Optional[Any] , lowerCamelCase : Union[str, Any]=0 ): # Format the message. if name is None: lowerCAmelCase = None else: lowerCAmelCase = '.' * max(0 , spaces - 2 ) + '# {:' + str(50 - spaces ) + 's}' lowerCAmelCase = fmt.format(lowerCamelCase ) # Print and recurse (if needed). if isinstance(lowerCamelCase , lowerCamelCase ): if msg is not None: print(lowerCamelCase ) for k in val.keys(): recursive_print(lowerCamelCase , val[k] , spaces + 2 ) elif isinstance(lowerCamelCase , torch.Tensor ): print(lowerCamelCase , ':' , val.size() ) else: print(lowerCamelCase , ':' , lowerCamelCase ) def a_ ( lowerCamelCase : Optional[int] , lowerCamelCase : List[str] , lowerCamelCase : List[Any] , lowerCamelCase : Dict , lowerCamelCase : Tuple ): # Permutes layout of param tensor to [num_splits * num_heads * hidden_size, :] # for compatibility with later versions of NVIDIA Megatron-LM. # The inverse operation is performed inside Megatron-LM to read checkpoints: # https://github.com/NVIDIA/Megatron-LM/blob/v2.4/megatron/checkpointing.py#L209 # If param is the weight tensor of the self-attention block, the returned tensor # will have to be transposed one more time to be read by HuggingFace GPT2. lowerCAmelCase = param.size() if checkpoint_version == 1.0: # version 1.0 stores [num_heads * hidden_size * num_splits, :] lowerCAmelCase = (num_heads, hidden_size, num_splits) + input_shape[1:] lowerCAmelCase = param.view(*lowerCamelCase ) lowerCAmelCase = param.transpose(0 , 2 ) lowerCAmelCase = param.transpose(1 , 2 ).contiguous() elif checkpoint_version >= 2.0: # other versions store [num_heads * num_splits * hidden_size, :] lowerCAmelCase = (num_heads, num_splits, hidden_size) + input_shape[1:] lowerCAmelCase = param.view(*lowerCamelCase ) lowerCAmelCase = param.transpose(0 , 1 ).contiguous() lowerCAmelCase = param.view(*lowerCamelCase ) return param def a_ ( lowerCamelCase : Optional[int] , lowerCamelCase : Optional[int] , lowerCamelCase : str ): # The converted output model. lowerCAmelCase = {} # old versions did not store training args lowerCAmelCase = input_state_dict.get('args' , lowerCamelCase ) if ds_args is not None: # do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint # from pprint import pprint # pprint(vars(ds_args)) lowerCAmelCase = ds_args.padded_vocab_size lowerCAmelCase = ds_args.max_position_embeddings lowerCAmelCase = ds_args.hidden_size lowerCAmelCase = ds_args.num_layers lowerCAmelCase = ds_args.num_attention_heads lowerCAmelCase = ds_args.ffn_hidden_size # pprint(config) # The number of heads. lowerCAmelCase = config.n_head # The hidden_size per head. lowerCAmelCase = config.n_embd // config.n_head # Megatron-LM checkpoint version if "checkpoint_version" in input_state_dict.keys(): lowerCAmelCase = input_state_dict['checkpoint_version'] else: lowerCAmelCase = 0.0 # The model. lowerCAmelCase = input_state_dict['model'] # The language model. lowerCAmelCase = model['language_model'] # The embeddings. lowerCAmelCase = lm['embedding'] # The word embeddings. lowerCAmelCase = embeddings['word_embeddings']['weight'] # Truncate the embedding table to vocab_size rows. lowerCAmelCase = word_embeddings[: config.vocab_size, :] lowerCAmelCase = word_embeddings # The position embeddings. lowerCAmelCase = embeddings['position_embeddings']['weight'] # Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size] lowerCAmelCase = pos_embeddings.size(0 ) if n_positions != config.n_positions: raise ValueError( f'''pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don\'t match''' ) # Store the position embeddings. lowerCAmelCase = pos_embeddings # The transformer. lowerCAmelCase = lm['transformer'] if 'transformer' in lm.keys() else lm['encoder'] # The regex to extract layer names. lowerCAmelCase = re.compile(R'layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)' ) # The simple map of names for "automated" rules. lowerCAmelCase = { 'attention.dense': '.attn.c_proj.', 'self_attention.dense': '.attn.c_proj.', 'mlp.dense_h_to_4h': '.mlp.c_fc.', 'mlp.dense_4h_to_h': '.mlp.c_proj.', } # Extract the layers. for key, val in transformer.items(): # Match the name. lowerCAmelCase = layer_re.match(lowerCamelCase ) # Stop if that's not a layer if m is None: break # The index of the layer. lowerCAmelCase = int(m.group(1 ) ) # The name of the operation. lowerCAmelCase = m.group(2 ) # Is it a weight or a bias? lowerCAmelCase = m.group(3 ) # The name of the layer. lowerCAmelCase = f'''transformer.h.{layer_idx}''' # For layernorm(s), simply store the layer norm. if op_name.endswith('layernorm' ): lowerCAmelCase = 'ln_1' if op_name.startswith('input' ) else 'ln_2' lowerCAmelCase = val # Transpose the QKV matrix. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "weight": # Insert a tensor of 1x1xDxD bias. lowerCAmelCase = torch.tril(torch.ones((n_positions, n_positions) , dtype=torch.floataa ) ).view( 1 , 1 , lowerCamelCase , lowerCamelCase ) lowerCAmelCase = causal_mask # Insert a "dummy" tensor for masked_bias. lowerCAmelCase = torch.tensor(-1e4 , dtype=torch.floataa ) lowerCAmelCase = masked_bias lowerCAmelCase = fix_query_key_value_ordering(lowerCamelCase , lowerCamelCase , 3 , lowerCamelCase , lowerCamelCase ) # Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D. lowerCAmelCase = out_val.transpose(0 , 1 ).contiguous() # Store. lowerCAmelCase = out_val # Transpose the bias. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "bias": lowerCAmelCase = fix_query_key_value_ordering(lowerCamelCase , lowerCamelCase , 3 , lowerCamelCase , lowerCamelCase ) # Store. No change of shape. lowerCAmelCase = out_val # Transpose the weights. elif weight_or_bias == "weight": lowerCAmelCase = megatron_to_transformers[op_name] lowerCAmelCase = val.transpose(0 , 1 ) # Copy the bias. elif weight_or_bias == "bias": lowerCAmelCase = megatron_to_transformers[op_name] lowerCAmelCase = val # DEBUG. assert config.n_layer == layer_idx + 1 # The final layernorm. lowerCAmelCase = transformer['final_layernorm.weight'] lowerCAmelCase = transformer['final_layernorm.bias'] # For LM head, transformers' wants the matrix to weight embeddings. lowerCAmelCase = word_embeddings # It should be done! return output_state_dict def a_ ( ): # Create the argument parser. lowerCAmelCase = argparse.ArgumentParser() parser.add_argument('--print-checkpoint-structure' , action='store_true' ) parser.add_argument( 'path_to_checkpoint' , type=lowerCamelCase , help='Path to the checkpoint file (.zip archive or direct .pt file)' , ) parser.add_argument( '--config_file' , default='' , type=lowerCamelCase , help='An optional config json file describing the pre-trained model.' , ) lowerCAmelCase = parser.parse_args() # Extract the basename. lowerCAmelCase = os.path.dirname(args.path_to_checkpoint ) # Load the model. # the .zip is very optional, let's keep it for backward compatibility print(f'''Extracting PyTorch state dictionary from {args.path_to_checkpoint}''' ) if args.path_to_checkpoint.endswith('.zip' ): with zipfile.ZipFile(args.path_to_checkpoint , 'r' ) as checkpoint: with checkpoint.open('release/mp_rank_00/model_optim_rng.pt' ) as pytorch_dict: lowerCAmelCase = torch.load(lowerCamelCase , map_location='cpu' ) else: lowerCAmelCase = torch.load(args.path_to_checkpoint , map_location='cpu' ) lowerCAmelCase = input_state_dict.get('args' , lowerCamelCase ) # Read the config, or default to the model released by NVIDIA. if args.config_file == "": if ds_args is not None: if ds_args.bias_gelu_fusion: lowerCAmelCase = 'gelu_fast' elif ds_args.openai_gelu: lowerCAmelCase = 'gelu_new' else: lowerCAmelCase = 'gelu' else: # in the very early days this used to be "gelu_new" lowerCAmelCase = 'gelu_new' # Spell out all parameters in case the defaults change. lowerCAmelCase = GPTaConfig( vocab_size=50257 , n_positions=1024 , n_embd=1024 , n_layer=24 , n_head=16 , n_inner=4096 , activation_function=lowerCamelCase , resid_pdrop=0.1 , embd_pdrop=0.1 , attn_pdrop=0.1 , layer_norm_epsilon=1e-5 , initializer_range=0.02 , summary_type='cls_index' , summary_use_proj=lowerCamelCase , summary_activation=lowerCamelCase , summary_proj_to_labels=lowerCamelCase , summary_first_dropout=0.1 , scale_attn_weights=lowerCamelCase , use_cache=lowerCamelCase , bos_token_id=50256 , eos_token_id=50256 , ) else: lowerCAmelCase = GPTaConfig.from_json_file(args.config_file ) lowerCAmelCase = ['GPT2LMHeadModel'] # Convert. print('Converting' ) lowerCAmelCase = convert_megatron_checkpoint(lowerCamelCase , lowerCamelCase , lowerCamelCase ) # Print the structure of converted state dict. if args.print_checkpoint_structure: recursive_print(lowerCamelCase , lowerCamelCase ) # Add tokenizer class info to config # see https://github.com/huggingface/transformers/issues/13906) if ds_args is not None: lowerCAmelCase = ds_args.tokenizer_type if tokenizer_type == "GPT2BPETokenizer": lowerCAmelCase = 'gpt2' elif tokenizer_type == "PretrainedFromHF": lowerCAmelCase = ds_args.tokenizer_name_or_path else: raise ValueError(f'''Unrecognized tokenizer_type {tokenizer_type}''' ) else: lowerCAmelCase = 'gpt2' lowerCAmelCase = AutoTokenizer.from_pretrained(lowerCamelCase ) lowerCAmelCase = type(lowerCamelCase ).__name__ lowerCAmelCase = tokenizer_class # Store the config to file. print('Saving config' ) config.save_pretrained(lowerCamelCase ) # Save tokenizer based on args print(f'''Adding {tokenizer_class} tokenizer files''' ) tokenizer.save_pretrained(lowerCamelCase ) # Store the state_dict to file. lowerCAmelCase = os.path.join(lowerCamelCase , 'pytorch_model.bin' ) print(f'''Saving checkpoint to "{output_checkpoint_file}"''' ) torch.save(lowerCamelCase , lowerCamelCase ) #################################################################################################### if __name__ == "__main__": main() ####################################################################################################
4
0
"""simple docstring""" def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' return "".join(chr(ord(_UpperCamelCase ) - 32 ) if "a" <= char <= "z" else char for char in word ) if __name__ == "__main__": from doctest import testmod testmod()
57
'''simple docstring''' from __future__ import annotations from typing import Any class UpperCAmelCase_ : def __init__( self : Optional[int] , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : float = 0 ) -> None: lowerCAmelCase , lowerCAmelCase = row, column lowerCAmelCase = [[default_value for c in range(UpperCAmelCase__ )] for r in range(UpperCAmelCase__ )] def __str__( self : List[str] ) -> str: lowerCAmelCase = F'''Matrix consist of {self.row} rows and {self.column} columns\n''' # Make string identifier lowerCAmelCase = 0 for row_vector in self.array: for obj in row_vector: lowerCAmelCase = max(UpperCAmelCase__ , len(str(UpperCAmelCase__ ) ) ) lowerCAmelCase = F'''%{max_element_length}s''' # Make string and return def single_line(UpperCAmelCase__ : list[float] ) -> str: nonlocal string_format_identifier lowerCAmelCase = '[' line += ", ".join(string_format_identifier % (obj,) for obj in row_vector ) line += "]" return line s += "\n".join(single_line(UpperCAmelCase__ ) for row_vector in self.array ) return s def __repr__( self : List[str] ) -> str: return str(self ) def __UpperCAmelCase ( self : Optional[int] , UpperCAmelCase__ : tuple[int, int] ) -> bool: if not (isinstance(UpperCAmelCase__ , (list, tuple) ) and len(UpperCAmelCase__ ) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__( self : Any , UpperCAmelCase__ : tuple[int, int] ) -> Any: assert self.validate_indicies(UpperCAmelCase__ ) return self.array[loc[0]][loc[1]] def __setitem__( self : Dict , UpperCAmelCase__ : tuple[int, int] , UpperCAmelCase__ : float ) -> None: assert self.validate_indicies(UpperCAmelCase__ ) lowerCAmelCase = value def __add__( self : Any , UpperCAmelCase__ : Matrix ) -> Matrix: assert isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) assert self.row == another.row and self.column == another.column # Add lowerCAmelCase = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): lowerCAmelCase = self[r, c] + another[r, c] return result def __neg__( self : int ) -> Matrix: lowerCAmelCase = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): lowerCAmelCase = -self[r, c] return result def __sub__( self : str , UpperCAmelCase__ : Matrix ) -> Matrix: return self + (-another) def __mul__( self : str , UpperCAmelCase__ : int | float | Matrix ) -> Matrix: if isinstance(UpperCAmelCase__ , (int, float) ): # Scalar multiplication lowerCAmelCase = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): lowerCAmelCase = self[r, c] * another return result elif isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): # Matrix multiplication assert self.column == another.row lowerCAmelCase = Matrix(self.row , another.column ) for r in range(self.row ): for c in range(another.column ): for i in range(self.column ): result[r, c] += self[r, i] * another[i, c] return result else: lowerCAmelCase = F'''Unsupported type given for another ({type(UpperCAmelCase__ )})''' raise TypeError(UpperCAmelCase__ ) def __UpperCAmelCase ( self : Optional[Any] ) -> Matrix: lowerCAmelCase = Matrix(self.column , self.row ) for r in range(self.row ): for c in range(self.column ): lowerCAmelCase = self[r, c] return result def __UpperCAmelCase ( self : List[str] , UpperCAmelCase__ : Matrix , UpperCAmelCase__ : Matrix ) -> Any: assert isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) and isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate lowerCAmelCase = v.transpose() lowerCAmelCase = (v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def a_ ( ): # a^(-1) lowerCAmelCase = Matrix(3 , 3 , 0 ) for i in range(3 ): lowerCAmelCase = 1 print(f'''a^(-1) is {ainv}''' ) # u, v lowerCAmelCase = Matrix(3 , 1 , 0 ) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = 1, 2, -3 lowerCAmelCase = Matrix(3 , 1 , 0 ) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = 4, -2, 5 print(f'''u is {u}''' ) print(f'''v is {v}''' ) print(f'''uv^T is {u * v.transpose()}''' ) # Sherman Morrison print(f'''(a + uv^T)^(-1) is {ainv.sherman_morrison(lowerCamelCase , lowerCamelCase )}''' ) def a_ ( ): import doctest doctest.testmod() testa()
4
0
'''simple docstring''' import datasets from .evaluate import evaluate lowercase_ = """\ @inproceedings{Rajpurkar2016SQuAD10, title={SQuAD: 100, 000+ Questions for Machine Comprehension of Text}, author={Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang}, booktitle={EMNLP}, year={2016} } """ lowercase_ = """ This metric wrap the official scoring script for version 1 of the Stanford Question Answering Dataset (SQuAD). Stanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by crowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span, from the corresponding reading passage, or the question might be unanswerable. """ lowercase_ = """ Computes SQuAD scores (F1 and EM). Args: predictions: List of question-answers dictionaries with the following key-values: - 'id': id of the question-answer pair as given in the references (see below) - 'prediction_text': the text of the answer references: List of question-answers dictionaries with the following key-values: - 'id': id of the question-answer pair (see above), - 'answers': a Dict in the SQuAD dataset format { 'text': list of possible texts for the answer, as a list of strings 'answer_start': list of start positions for the answer, as a list of ints } Note that answer_start values are not taken into account to compute the metric. Returns: 'exact_match': Exact match (the normalized answer exactly match the gold answer) 'f1': The F-score of predicted tokens versus the gold answer Examples: >>> predictions = [{'prediction_text': '1976', 'id': '56e10a3be3433e1400422b22'}] >>> references = [{'answers': {'answer_start': [97], 'text': ['1976']}, 'id': '56e10a3be3433e1400422b22'}] >>> squad_metric = datasets.load_metric(\"squad\") >>> results = squad_metric.compute(predictions=predictions, references=references) >>> print(results) {'exact_match': 100.0, 'f1': 100.0} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a_ ( datasets.Metric ): '''simple docstring''' def snake_case_( self ) -> int: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": {"""id""": datasets.Value("""string""" ), """prediction_text""": datasets.Value("""string""" )}, """references""": { """id""": datasets.Value("""string""" ), """answers""": datasets.features.Sequence( { """text""": datasets.Value("""string""" ), """answer_start""": datasets.Value("""int32""" ), } ), }, } ) , codebase_urls=["""https://rajpurkar.github.io/SQuAD-explorer/"""] , reference_urls=["""https://rajpurkar.github.io/SQuAD-explorer/"""] , ) def snake_case_( self , A , A ) -> List[str]: _SCREAMING_SNAKE_CASE = {prediction["""id"""]: prediction["""prediction_text"""] for prediction in predictions} _SCREAMING_SNAKE_CASE = [ { """paragraphs""": [ { """qas""": [ { """answers""": [{"""text""": answer_text} for answer_text in ref["""answers"""]["""text"""]], """id""": ref["""id"""], } for ref in references ] } ] } ] _SCREAMING_SNAKE_CASE = evaluate(dataset=A , predictions=A ) return score
58
'''simple docstring''' class UpperCAmelCase_ : def __init__( self : List[str] , UpperCAmelCase__ : list[int] ) -> None: lowerCAmelCase = len(UpperCAmelCase__ ) lowerCAmelCase = [0] * len_array if len_array > 0: lowerCAmelCase = array[0] for i in range(1 , UpperCAmelCase__ ): lowerCAmelCase = self.prefix_sum[i - 1] + array[i] def __UpperCAmelCase ( self : Optional[Any] , UpperCAmelCase__ : int , UpperCAmelCase__ : int ) -> int: if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def __UpperCAmelCase ( self : int , UpperCAmelCase__ : int ) -> bool: lowerCAmelCase = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(UpperCAmelCase__ ) return False if __name__ == "__main__": import doctest doctest.testmod()
4
0
from __future__ import annotations __lowerCamelCase = list[list[int]] # assigning initial values to the grid __lowerCamelCase = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution __lowerCamelCase = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def UpperCamelCase ( __lowerCamelCase : Matrix , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int ): for i in range(9 ): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3 ): for j in range(3 ): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def UpperCamelCase ( __lowerCamelCase : Matrix ): for i in range(9 ): for j in range(9 ): if grid[i][j] == 0: return i, j return None def UpperCamelCase ( __lowerCamelCase : Matrix ): if location := find_empty_location(__lowerCamelCase ): snake_case , snake_case : Union[str, Any] = location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1 , 10 ): if is_safe(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): snake_case : List[Any] = digit if sudoku(__lowerCamelCase ) is not None: return grid snake_case : Union[str, Any] = 0 return None def UpperCamelCase ( __lowerCamelCase : Matrix ): for row in grid: for cell in row: print(__lowerCamelCase , end=" " ) print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print("""\nExample grid:\n""" + """=""" * 20) print_solution(example_grid) print("""\nExample grid solution:""") __lowerCamelCase = sudoku(example_grid) if solution is not None: print_solution(solution) else: print("""Cannot find a solution.""")
59
'''simple docstring''' def a_ ( lowerCamelCase : Optional[Any] ): return [ { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], }, { 0: [6], 1: [9], 2: [4, 5], 3: [4], 4: [2, 3], 5: [2], 6: [0, 7], 7: [6], 8: [], 9: [1], }, { 0: [4], 1: [6], 2: [], 3: [5, 6, 7], 4: [0, 6], 5: [3, 8, 9], 6: [1, 3, 4, 7], 7: [3, 6, 8, 9], 8: [5, 7], 9: [5, 7], }, { 0: [1, 3], 1: [0, 2, 4], 2: [1, 3, 4], 3: [0, 2, 4], 4: [1, 2, 3], }, ][index] def a_ ( lowerCamelCase : dict[int, list[int]] ): lowerCAmelCase = 0 lowerCAmelCase = len(lowerCamelCase ) # No of vertices in graph lowerCAmelCase = [0] * n lowerCAmelCase = [False] * n def dfs(lowerCamelCase : Tuple , lowerCamelCase : str , lowerCamelCase : Dict , lowerCamelCase : str ): lowerCAmelCase = True lowerCAmelCase = id_ id_ += 1 for to in graph[at]: if to == parent: pass elif not visited[to]: dfs(lowerCamelCase , lowerCamelCase , lowerCamelCase , id_ ) lowerCAmelCase = min(low[at] , low[to] ) if id_ <= low[to]: bridges.append((at, to) if at < to else (to, at) ) else: # This edge is a back edge and cannot be a bridge lowerCAmelCase = min(low[at] , low[to] ) lowerCAmelCase = [] for i in range(lowerCamelCase ): if not visited[i]: dfs(lowerCamelCase , -1 , lowerCamelCase , id_ ) return bridges if __name__ == "__main__": import doctest doctest.testmod()
4
0
"""simple docstring""" def _snake_case ( _snake_case : int , _snake_case : int ): return int((input_a, input_a).count(1 ) != 0 ) def _snake_case ( ): assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
60
'''simple docstring''' import argparse from collections import OrderedDict from pathlib import Path import requests import torch from PIL import Image from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor from transformers.utils import logging logging.set_verbosity_info() __snake_case =logging.get_logger(__name__) def a_ ( lowerCamelCase : Any ): lowerCAmelCase = OrderedDict() for key, value in state_dict.items(): if key.startswith('module.encoder' ): lowerCAmelCase = key.replace('module.encoder' , 'glpn.encoder' ) if key.startswith('module.decoder' ): lowerCAmelCase = key.replace('module.decoder' , 'decoder.stages' ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 lowerCAmelCase = key[key.find('patch_embed' ) + len('patch_embed' )] lowerCAmelCase = key.replace(f'''patch_embed{idx}''' , f'''patch_embeddings.{int(lowerCamelCase )-1}''' ) if "norm" in key: lowerCAmelCase = key.replace('norm' , 'layer_norm' ) if "glpn.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 lowerCAmelCase = key[key.find('glpn.encoder.layer_norm' ) + len('glpn.encoder.layer_norm' )] lowerCAmelCase = key.replace(f'''layer_norm{idx}''' , f'''layer_norm.{int(lowerCamelCase )-1}''' ) if "layer_norm1" in key: lowerCAmelCase = key.replace('layer_norm1' , 'layer_norm_1' ) if "layer_norm2" in key: lowerCAmelCase = key.replace('layer_norm2' , 'layer_norm_2' ) if "block" in key: # replace for example block1 by block.0 lowerCAmelCase = key[key.find('block' ) + len('block' )] lowerCAmelCase = key.replace(f'''block{idx}''' , f'''block.{int(lowerCamelCase )-1}''' ) if "attn.q" in key: lowerCAmelCase = key.replace('attn.q' , 'attention.self.query' ) if "attn.proj" in key: lowerCAmelCase = key.replace('attn.proj' , 'attention.output.dense' ) if "attn" in key: lowerCAmelCase = key.replace('attn' , 'attention.self' ) if "fc1" in key: lowerCAmelCase = key.replace('fc1' , 'dense1' ) if "fc2" in key: lowerCAmelCase = key.replace('fc2' , 'dense2' ) if "linear_pred" in key: lowerCAmelCase = key.replace('linear_pred' , 'classifier' ) if "linear_fuse" in key: lowerCAmelCase = key.replace('linear_fuse.conv' , 'linear_fuse' ) lowerCAmelCase = key.replace('linear_fuse.bn' , 'batch_norm' ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 lowerCAmelCase = key[key.find('linear_c' ) + len('linear_c' )] lowerCAmelCase = key.replace(f'''linear_c{idx}''' , f'''linear_c.{int(lowerCamelCase )-1}''' ) if "bot_conv" in key: lowerCAmelCase = key.replace('bot_conv' , '0.convolution' ) if "skip_conv1" in key: lowerCAmelCase = key.replace('skip_conv1' , '1.convolution' ) if "skip_conv2" in key: lowerCAmelCase = key.replace('skip_conv2' , '2.convolution' ) if "fusion1" in key: lowerCAmelCase = key.replace('fusion1' , '1.fusion' ) if "fusion2" in key: lowerCAmelCase = key.replace('fusion2' , '2.fusion' ) if "fusion3" in key: lowerCAmelCase = key.replace('fusion3' , '3.fusion' ) if "fusion" in key and "conv" in key: lowerCAmelCase = key.replace('conv' , 'convolutional_layer' ) if key.startswith('module.last_layer_depth' ): lowerCAmelCase = key.replace('module.last_layer_depth' , 'head.head' ) lowerCAmelCase = value return new_state_dict def a_ ( lowerCamelCase : List[str] , lowerCamelCase : str ): # for each of the encoder blocks: for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) lowerCAmelCase = state_dict.pop(f'''glpn.encoder.block.{i}.{j}.attention.self.kv.weight''' ) lowerCAmelCase = state_dict.pop(f'''glpn.encoder.block.{i}.{j}.attention.self.kv.bias''' ) # next, add keys and values (in that order) to the state dict lowerCAmelCase = kv_weight[ : config.hidden_sizes[i], : ] lowerCAmelCase = kv_bias[: config.hidden_sizes[i]] lowerCAmelCase = kv_weight[ config.hidden_sizes[i] :, : ] lowerCAmelCase = kv_bias[config.hidden_sizes[i] :] def a_ ( ): lowerCAmelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowerCAmelCase = Image.open(requests.get(lowerCamelCase , stream=lowerCamelCase ).raw ) return image @torch.no_grad() def a_ ( lowerCamelCase : List[Any] , lowerCamelCase : Tuple , lowerCamelCase : Optional[Any]=False , lowerCamelCase : List[str]=None ): lowerCAmelCase = GLPNConfig(hidden_sizes=[64, 128, 320, 512] , decoder_hidden_size=64 , depths=[3, 8, 27, 3] ) # load image processor (only resize + rescale) lowerCAmelCase = GLPNImageProcessor() # prepare image lowerCAmelCase = prepare_img() lowerCAmelCase = image_processor(images=lowerCamelCase , return_tensors='pt' ).pixel_values logger.info('Converting model...' ) # load original state dict lowerCAmelCase = torch.load(lowerCamelCase , map_location=torch.device('cpu' ) ) # rename keys lowerCAmelCase = rename_keys(lowerCamelCase ) # key and value matrices need special treatment read_in_k_v(lowerCamelCase , lowerCamelCase ) # create HuggingFace model and load state dict lowerCAmelCase = GLPNForDepthEstimation(lowerCamelCase ) model.load_state_dict(lowerCamelCase ) model.eval() # forward pass lowerCAmelCase = model(lowerCamelCase ) lowerCAmelCase = outputs.predicted_depth # verify output if model_name is not None: if "nyu" in model_name: lowerCAmelCase = torch.tensor( [[4.4_147, 4.0_873, 4.0_673], [3.7_890, 3.2_881, 3.1_525], [3.7_674, 3.5_423, 3.4_913]] ) elif "kitti" in model_name: lowerCAmelCase = torch.tensor( [[3.4_291, 2.7_865, 2.5_151], [3.2_841, 2.7_021, 2.3_502], [3.1_147, 2.4_625, 2.2_481]] ) else: raise ValueError(f'''Unknown model name: {model_name}''' ) lowerCAmelCase = torch.Size([1, 480, 640] ) assert predicted_depth.shape == expected_shape assert torch.allclose(predicted_depth[0, :3, :3] , lowerCamelCase , atol=1e-4 ) print('Looks ok!' ) # finally, push to hub if required if push_to_hub: logger.info('Pushing model and image processor to the hub...' ) model.push_to_hub( repo_path_or_name=Path(lowerCamelCase , lowerCamelCase ) , organization='nielsr' , commit_message='Add model' , use_temp_dir=lowerCamelCase , ) image_processor.push_to_hub( repo_path_or_name=Path(lowerCamelCase , lowerCamelCase ) , organization='nielsr' , commit_message='Add image processor' , use_temp_dir=lowerCamelCase , ) if __name__ == "__main__": __snake_case =argparse.ArgumentParser() parser.add_argument( """--checkpoint_path""", default=None, type=str, help="""Path to the original PyTorch checkpoint (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to upload the model to the HuggingFace hub.""" ) parser.add_argument( """--model_name""", default="""glpn-kitti""", type=str, help="""Name of the model in case you're pushing to the hub.""", ) __snake_case =parser.parse_args() convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
4
0
"""simple docstring""" import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device _a = False class A_ (unittest.TestCase ): '''simple docstring''' pass @nightly @require_torch_gpu class A_ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self ): """simple docstring""" # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = VersatileDiffusionPipeline.from_pretrained("shi-labs/versatile-diffusion" , torch_dtype=torch.floataa ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase_ : List[str] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg" ) UpperCAmelCase_ : List[str] = torch.manual_seed(0 ) UpperCAmelCase_ : int = pipe.dual_guided( prompt="first prompt" , image=lowercase_ , text_to_image_strength=0.75 , generator=lowercase_ , guidance_scale=7.5 , num_inference_steps=2 , output_type="numpy" , ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowercase_ ) UpperCAmelCase_ : Tuple = VersatileDiffusionPipeline.from_pretrained(lowercase_ , torch_dtype=torch.floataa ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase_ : Optional[int] = generator.manual_seed(0 ) UpperCAmelCase_ : List[Any] = pipe.dual_guided( prompt="first prompt" , image=lowercase_ , text_to_image_strength=0.75 , generator=lowercase_ , guidance_scale=7.5 , num_inference_steps=2 , output_type="numpy" , ).images assert np.abs(image - new_image ).sum() < 1E-5, "Models don't have the same forward pass" def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[str] = VersatileDiffusionPipeline.from_pretrained("shi-labs/versatile-diffusion" , torch_dtype=torch.floataa ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase_ : Union[str, Any] = "cyberpunk 2077" UpperCAmelCase_ : Optional[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg" ) UpperCAmelCase_ : List[Any] = torch.manual_seed(0 ) UpperCAmelCase_ : Tuple = pipe.dual_guided( prompt=lowercase_ , image=lowercase_ , text_to_image_strength=0.75 , generator=lowercase_ , guidance_scale=7.5 , num_inference_steps=50 , output_type="numpy" , ).images UpperCAmelCase_ : Union[str, Any] = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase_ : Optional[Any] = np.array([0.14_48, 0.16_19, 0.17_41, 0.10_86, 0.11_47, 0.11_28, 0.11_99, 0.11_65, 0.10_01] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 UpperCAmelCase_ : Any = "A painting of a squirrel eating a burger " UpperCAmelCase_ : Dict = torch.manual_seed(0 ) UpperCAmelCase_ : Tuple = pipe.text_to_image( prompt=lowercase_ , generator=lowercase_ , guidance_scale=7.5 , num_inference_steps=50 , output_type="numpy" ).images UpperCAmelCase_ : List[str] = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase_ : int = np.array([0.33_67, 0.31_69, 0.26_56, 0.38_70, 0.47_90, 0.37_96, 0.40_09, 0.48_78, 0.47_78] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 UpperCAmelCase_ : Optional[Any] = pipe.image_variation(lowercase_ , generator=lowercase_ , output_type="numpy" ).images UpperCAmelCase_ : Tuple = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase_ : Union[str, Any] = np.array([0.30_76, 0.31_23, 0.32_84, 0.37_82, 0.37_70, 0.38_94, 0.42_97, 0.43_31, 0.44_56] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
61
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class UpperCAmelCase_ ( unittest.TestCase ): @slow def __UpperCAmelCase ( self : str ) -> List[str]: lowerCAmelCase = XLMRobertaModel.from_pretrained('xlm-roberta-base' ) lowerCAmelCase = torch.tensor([[0, 5_8_1, 1_0_2_6_9, 8_3, 9_9_9_4_2, 1_3_6, 6_0_7_4_2, 2_3, 7_0, 8_0_5_8_3, 1_8_2_7_6, 2]] ) # The dog is cute and lives in the garden house lowerCAmelCase = torch.Size((1, 1_2, 7_6_8) ) # batch_size, sequence_length, embedding_vector_dim lowerCAmelCase = torch.tensor( [[-0.0_101, 0.1_218, -0.0_803, 0.0_801, 0.1_327, 0.0_776, -0.1_215, 0.2_383, 0.3_338, 0.3_106, 0.0_300, 0.0_252]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): lowerCAmelCase = model(UpperCAmelCase__ )['last_hidden_state'].detach() self.assertEqual(output.shape , UpperCAmelCase__ ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , UpperCAmelCase__ , atol=1E-3 ) ) @slow def __UpperCAmelCase ( self : List[Any] ) -> Tuple: lowerCAmelCase = XLMRobertaModel.from_pretrained('xlm-roberta-large' ) lowerCAmelCase = torch.tensor([[0, 5_8_1, 1_0_2_6_9, 8_3, 9_9_9_4_2, 1_3_6, 6_0_7_4_2, 2_3, 7_0, 8_0_5_8_3, 1_8_2_7_6, 2]] ) # The dog is cute and lives in the garden house lowerCAmelCase = torch.Size((1, 1_2, 1_0_2_4) ) # batch_size, sequence_length, embedding_vector_dim lowerCAmelCase = torch.tensor( [[-0.0_699, -0.0_318, 0.0_705, -0.1_241, 0.0_999, -0.0_520, 0.1_004, -0.1_838, -0.4_704, 0.1_437, 0.0_821, 0.0_126]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): lowerCAmelCase = model(UpperCAmelCase__ )['last_hidden_state'].detach() self.assertEqual(output.shape , UpperCAmelCase__ ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , UpperCAmelCase__ , atol=1E-3 ) )
4
0
import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, Pipeline, ZeroShotClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. _A = {'LayoutLMv2Config', 'LayoutLMv3Config'} @is_pipeline_test class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Tuple = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING UpperCAmelCase__ : Any = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: UpperCAmelCase__ : Tuple = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: UpperCAmelCase__ : List[str] = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } def _a ( self , A_ , A_ , A_ ) -> List[str]: __UpperCamelCase =ZeroShotClassificationPipeline( model=A_ , tokenizer=A_ , candidate_labels=['polics', 'health'] ) return classifier, ["Who are you voting for in 2020?", "My stomach hurts."] def _a ( self , A_ , A_ ) -> Any: __UpperCamelCase =classifier('Who are you voting for in 2020?' , candidate_labels='politics' ) self.assertEqual(A_ , {'sequence': ANY(A_ ), 'labels': [ANY(A_ )], 'scores': [ANY(A_ )]} ) # No kwarg __UpperCamelCase =classifier('Who are you voting for in 2020?' , ['politics'] ) self.assertEqual(A_ , {'sequence': ANY(A_ ), 'labels': [ANY(A_ )], 'scores': [ANY(A_ )]} ) __UpperCamelCase =classifier('Who are you voting for in 2020?' , candidate_labels=['politics'] ) self.assertEqual(A_ , {'sequence': ANY(A_ ), 'labels': [ANY(A_ )], 'scores': [ANY(A_ )]} ) __UpperCamelCase =classifier('Who are you voting for in 2020?' , candidate_labels='politics, public health' ) self.assertEqual( A_ , {'sequence': ANY(A_ ), 'labels': [ANY(A_ ), ANY(A_ )], 'scores': [ANY(A_ ), ANY(A_ )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs['scores'] ) ) , 1.0 ) __UpperCamelCase =classifier('Who are you voting for in 2020?' , candidate_labels=['politics', 'public health'] ) self.assertEqual( A_ , {'sequence': ANY(A_ ), 'labels': [ANY(A_ ), ANY(A_ )], 'scores': [ANY(A_ ), ANY(A_ )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs['scores'] ) ) , 1.0 ) __UpperCamelCase =classifier( 'Who are you voting for in 2020?' , candidate_labels='politics' , hypothesis_template='This text is about {}' ) self.assertEqual(A_ , {'sequence': ANY(A_ ), 'labels': [ANY(A_ )], 'scores': [ANY(A_ )]} ) # https://github.com/huggingface/transformers/issues/13846 __UpperCamelCase =classifier(['I am happy'] , ['positive', 'negative'] ) self.assertEqual( A_ , [ {'sequence': ANY(A_ ), 'labels': [ANY(A_ ), ANY(A_ )], 'scores': [ANY(A_ ), ANY(A_ )]} for i in range(1 ) ] , ) __UpperCamelCase =classifier(['I am happy', 'I am sad'] , ['positive', 'negative'] ) self.assertEqual( A_ , [ {'sequence': ANY(A_ ), 'labels': [ANY(A_ ), ANY(A_ )], 'scores': [ANY(A_ ), ANY(A_ )]} for i in range(2 ) ] , ) with self.assertRaises(A_ ): classifier('' , candidate_labels='politics' ) with self.assertRaises(A_ ): classifier(A_ , candidate_labels='politics' ) with self.assertRaises(A_ ): classifier('Who are you voting for in 2020?' , candidate_labels='' ) with self.assertRaises(A_ ): classifier('Who are you voting for in 2020?' , candidate_labels=A_ ) with self.assertRaises(A_ ): classifier( 'Who are you voting for in 2020?' , candidate_labels='politics' , hypothesis_template='Not formatting template' , ) with self.assertRaises(A_ ): classifier( 'Who are you voting for in 2020?' , candidate_labels='politics' , hypothesis_template=A_ , ) self.run_entailment_id(A_ ) def _a ( self , A_ ) -> Dict: __UpperCamelCase =zero_shot_classifier.model.config __UpperCamelCase =config.labelaid __UpperCamelCase =zero_shot_classifier.entailment_id __UpperCamelCase ={'LABEL_0': 0, 'LABEL_1': 1, 'LABEL_2': 2} self.assertEqual(zero_shot_classifier.entailment_id , -1 ) __UpperCamelCase ={'entailment': 0, 'neutral': 1, 'contradiction': 2} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) __UpperCamelCase ={'ENTAIL': 0, 'NON-ENTAIL': 1} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) __UpperCamelCase ={'ENTAIL': 2, 'NEUTRAL': 1, 'CONTR': 0} self.assertEqual(zero_shot_classifier.entailment_id , 2 ) __UpperCamelCase =original_labelaid self.assertEqual(A_ , zero_shot_classifier.entailment_id ) @require_torch def _a ( self ) -> Optional[Any]: __UpperCamelCase =pipeline( 'zero-shot-classification' , model='sshleifer/tiny-distilbert-base-cased-distilled-squad' , framework='pt' , ) # There was a regression in 4.10 for this # Adding a test so we don't make the mistake again. # https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499 zero_shot_classifier( 'Who are you voting for in 2020?' * 100 , candidate_labels=['politics', 'public health', 'science'] ) @require_torch def _a ( self ) -> int: __UpperCamelCase =pipeline( 'zero-shot-classification' , model='sshleifer/tiny-distilbert-base-cased-distilled-squad' , framework='pt' , ) __UpperCamelCase =zero_shot_classifier( 'Who are you voting for in 2020?' , candidate_labels=['politics', 'public health', 'science'] ) self.assertEqual( nested_simplify(A_ ) , { 'sequence': 'Who are you voting for in 2020?', 'labels': ['science', 'public health', 'politics'], 'scores': [0.333, 0.333, 0.333], } , ) @require_tf def _a ( self ) -> List[Any]: __UpperCamelCase =pipeline( 'zero-shot-classification' , model='sshleifer/tiny-distilbert-base-cased-distilled-squad' , framework='tf' , ) __UpperCamelCase =zero_shot_classifier( 'Who are you voting for in 2020?' , candidate_labels=['politics', 'public health', 'science'] ) self.assertEqual( nested_simplify(A_ ) , { 'sequence': 'Who are you voting for in 2020?', 'labels': ['science', 'public health', 'politics'], 'scores': [0.333, 0.333, 0.333], } , ) @slow @require_torch def _a ( self ) -> List[Any]: __UpperCamelCase =pipeline('zero-shot-classification' , model='roberta-large-mnli' , framework='pt' ) __UpperCamelCase =zero_shot_classifier( 'Who are you voting for in 2020?' , candidate_labels=['politics', 'public health', 'science'] ) self.assertEqual( nested_simplify(A_ ) , { 'sequence': 'Who are you voting for in 2020?', 'labels': ['politics', 'public health', 'science'], 'scores': [0.976, 0.015, 0.009], } , ) __UpperCamelCase =zero_shot_classifier( 'The dominant sequence transduction models are based on complex recurrent or convolutional neural networks' ' in an encoder-decoder configuration. The best performing models also connect the encoder and decoder' ' through an attention mechanism. We propose a new simple network architecture, the Transformer, based' ' solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two' ' machine translation tasks show these models to be superior in quality while being more parallelizable' ' and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014' ' English-to-German translation task, improving over the existing best results, including ensembles by' ' over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new' ' single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small' ' fraction of the training costs of the best models from the literature. We show that the Transformer' ' generalizes well to other tasks by applying it successfully to English constituency parsing both with' ' large and limited training data.' , candidate_labels=['machine learning', 'statistics', 'translation', 'vision'] , multi_label=A_ , ) self.assertEqual( nested_simplify(A_ ) , { 'sequence': ( 'The dominant sequence transduction models are based on complex recurrent or convolutional neural' ' networks in an encoder-decoder configuration. The best performing models also connect the' ' encoder and decoder through an attention mechanism. We propose a new simple network' ' architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence' ' and convolutions entirely. Experiments on two machine translation tasks show these models to be' ' superior in quality while being more parallelizable and requiring significantly less time to' ' train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,' ' improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014' ' English-to-French translation task, our model establishes a new single-model state-of-the-art' ' BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training' ' costs of the best models from the literature. We show that the Transformer generalizes well to' ' other tasks by applying it successfully to English constituency parsing both with large and' ' limited training data.' ), 'labels': ['translation', 'machine learning', 'vision', 'statistics'], 'scores': [0.817, 0.713, 0.018, 0.018], } , ) @slow @require_tf def _a ( self ) -> List[str]: __UpperCamelCase =pipeline('zero-shot-classification' , model='roberta-large-mnli' , framework='tf' ) __UpperCamelCase =zero_shot_classifier( 'Who are you voting for in 2020?' , candidate_labels=['politics', 'public health', 'science'] ) self.assertEqual( nested_simplify(A_ ) , { 'sequence': 'Who are you voting for in 2020?', 'labels': ['politics', 'public health', 'science'], 'scores': [0.976, 0.015, 0.009], } , ) __UpperCamelCase =zero_shot_classifier( 'The dominant sequence transduction models are based on complex recurrent or convolutional neural networks' ' in an encoder-decoder configuration. The best performing models also connect the encoder and decoder' ' through an attention mechanism. We propose a new simple network architecture, the Transformer, based' ' solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two' ' machine translation tasks show these models to be superior in quality while being more parallelizable' ' and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014' ' English-to-German translation task, improving over the existing best results, including ensembles by' ' over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new' ' single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small' ' fraction of the training costs of the best models from the literature. We show that the Transformer' ' generalizes well to other tasks by applying it successfully to English constituency parsing both with' ' large and limited training data.' , candidate_labels=['machine learning', 'statistics', 'translation', 'vision'] , multi_label=A_ , ) self.assertEqual( nested_simplify(A_ ) , { 'sequence': ( 'The dominant sequence transduction models are based on complex recurrent or convolutional neural' ' networks in an encoder-decoder configuration. The best performing models also connect the' ' encoder and decoder through an attention mechanism. We propose a new simple network' ' architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence' ' and convolutions entirely. Experiments on two machine translation tasks show these models to be' ' superior in quality while being more parallelizable and requiring significantly less time to' ' train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,' ' improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014' ' English-to-French translation task, our model establishes a new single-model state-of-the-art' ' BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training' ' costs of the best models from the literature. We show that the Transformer generalizes well to' ' other tasks by applying it successfully to English constituency parsing both with large and' ' limited training data.' ), 'labels': ['translation', 'machine learning', 'vision', 'statistics'], 'scores': [0.817, 0.713, 0.018, 0.018], } , )
62
'''simple docstring''' import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def a_ ( lowerCamelCase : Dict ): lowerCAmelCase = {} lowerCAmelCase = tokenizer(example['content'] , truncation=lowerCamelCase )['input_ids'] lowerCAmelCase = len(example['content'] ) / len(output['input_ids'] ) return output __snake_case =HfArgumentParser(PretokenizationArguments) __snake_case =parser.parse_args() if args.num_workers is None: __snake_case =multiprocessing.cpu_count() __snake_case =AutoTokenizer.from_pretrained(args.tokenizer_dir) __snake_case =time.time() __snake_case =load_dataset(args.dataset_name, split="""train""") print(F'''Dataset loaded in {time.time()-t_start:.2f}s''') __snake_case =time.time() __snake_case =ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ """repo_name""", """path""", """copies""", """size""", """content""", """license""", """hash""", """line_mean""", """line_max""", """alpha_frac""", """autogenerated""", ], ) print(F'''Dataset tokenized in {time.time()-t_start:.2f}s''') __snake_case =time.time() ds.push_to_hub(args.tokenized_data_repo) print(F'''Data pushed to the hub in {time.time()-t_start:.2f}s''')
4
0
'''simple docstring''' import gc import math import unittest import torch from diffusers import UNetaDModel from diffusers.utils import floats_tensor, logging, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin lowerCAmelCase_ : List[Any] = logging.get_logger(__name__) enable_full_determinism() class __SCREAMING_SNAKE_CASE (lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): """simple docstring""" __a =UNetaDModel __a ='sample' @property def UpperCamelCase__ ( self : Tuple ): _a = 4 _a = 3 _a = (32, 32) _a = floats_tensor((batch_size, num_channels) + sizes ).to(__a ) _a = torch.tensor([10] ).to(__a ) return {"sample": noise, "timestep": time_step} @property def UpperCamelCase__ ( self : List[Any] ): return (3, 32, 32) @property def UpperCamelCase__ ( self : Optional[Any] ): return (3, 32, 32) def UpperCamelCase__ ( self : Union[str, Any] ): _a = { "block_out_channels": (32, 64), "down_block_types": ("DownBlock2D", "AttnDownBlock2D"), "up_block_types": ("AttnUpBlock2D", "UpBlock2D"), "attention_head_dim": 3, "out_channels": 3, "in_channels": 3, "layers_per_block": 2, "sample_size": 32, } _a = self.dummy_input return init_dict, inputs_dict class __SCREAMING_SNAKE_CASE (lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): """simple docstring""" __a =UNetaDModel __a ='sample' @property def UpperCamelCase__ ( self : List[Any] ): _a = 4 _a = 4 _a = (32, 32) _a = floats_tensor((batch_size, num_channels) + sizes ).to(__a ) _a = torch.tensor([10] ).to(__a ) return {"sample": noise, "timestep": time_step} @property def UpperCamelCase__ ( self : List[str] ): return (4, 32, 32) @property def UpperCamelCase__ ( self : List[Any] ): return (4, 32, 32) def UpperCamelCase__ ( self : Optional[int] ): _a = { "sample_size": 32, "in_channels": 4, "out_channels": 4, "layers_per_block": 2, "block_out_channels": (32, 64), "attention_head_dim": 32, "down_block_types": ("DownBlock2D", "DownBlock2D"), "up_block_types": ("UpBlock2D", "UpBlock2D"), } _a = self.dummy_input return init_dict, inputs_dict def UpperCamelCase__ ( self : str ): _a , _a = UNetaDModel.from_pretrained("fusing/unet-ldm-dummy-update" , output_loading_info=__a ) self.assertIsNotNone(__a ) self.assertEqual(len(loading_info["missing_keys"] ) , 0 ) model.to(__a ) _a = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != "cuda" , "This test is supposed to run on GPU" ) def UpperCamelCase__ ( self : int ): _a , _a = UNetaDModel.from_pretrained("fusing/unet-ldm-dummy-update" , output_loading_info=__a ) model.to(__a ) _a = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != "cuda" , "This test is supposed to run on GPU" ) def UpperCamelCase__ ( self : Any ): # by defautl model loading will use accelerate as `low_cpu_mem_usage=True` _a , _a = UNetaDModel.from_pretrained("fusing/unet-ldm-dummy-update" , output_loading_info=__a ) model_accelerate.to(__a ) model_accelerate.eval() _a = torch.randn( 1 , model_accelerate.config.in_channels , model_accelerate.config.sample_size , model_accelerate.config.sample_size , generator=torch.manual_seed(0 ) , ) _a = noise.to(__a ) _a = torch.tensor([10] * noise.shape[0] ).to(__a ) _a = model_accelerate(__a , __a )["sample"] # two models don't need to stay in the device at the same time del model_accelerate torch.cuda.empty_cache() gc.collect() _a , _a = UNetaDModel.from_pretrained( "fusing/unet-ldm-dummy-update" , output_loading_info=__a , low_cpu_mem_usage=__a ) model_normal_load.to(__a ) model_normal_load.eval() _a = model_normal_load(__a , __a )["sample"] assert torch_all_close(__a , __a , rtol=1e-3 ) def UpperCamelCase__ ( self : Dict ): _a = UNetaDModel.from_pretrained("fusing/unet-ldm-dummy-update" ) model.eval() model.to(__a ) _a = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) _a = noise.to(__a ) _a = torch.tensor([10] * noise.shape[0] ).to(__a ) with torch.no_grad(): _a = model(__a , __a ).sample _a = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off _a = torch.tensor([-13.3258, -20.1100, -15.9873, -17.6617, -23.0596, -17.9419, -13.3675, -16.1889, -12.3800] ) # fmt: on self.assertTrue(torch_all_close(__a , __a , rtol=1e-3 ) ) class __SCREAMING_SNAKE_CASE (lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): """simple docstring""" __a =UNetaDModel __a ='sample' @property def UpperCamelCase__ ( self : Union[str, Any] , __a : List[Any]=(32, 32) ): _a = 4 _a = 3 _a = floats_tensor((batch_size, num_channels) + sizes ).to(__a ) _a = torch.tensor(batch_size * [10] ).to(dtype=torch.intaa , device=__a ) return {"sample": noise, "timestep": time_step} @property def UpperCamelCase__ ( self : List[Any] ): return (3, 32, 32) @property def UpperCamelCase__ ( self : Union[str, Any] ): return (3, 32, 32) def UpperCamelCase__ ( self : List[str] ): _a = { "block_out_channels": [32, 64, 64, 64], "in_channels": 3, "layers_per_block": 1, "out_channels": 3, "time_embedding_type": "fourier", "norm_eps": 1e-6, "mid_block_scale_factor": math.sqrt(2.0 ), "norm_num_groups": None, "down_block_types": [ "SkipDownBlock2D", "AttnSkipDownBlock2D", "SkipDownBlock2D", "SkipDownBlock2D", ], "up_block_types": [ "SkipUpBlock2D", "SkipUpBlock2D", "AttnSkipUpBlock2D", "SkipUpBlock2D", ], } _a = self.dummy_input return init_dict, inputs_dict @slow def UpperCamelCase__ ( self : Optional[Any] ): _a , _a = UNetaDModel.from_pretrained("google/ncsnpp-celebahq-256" , output_loading_info=__a ) self.assertIsNotNone(__a ) self.assertEqual(len(loading_info["missing_keys"] ) , 0 ) model.to(__a ) _a = self.dummy_input _a = floats_tensor((4, 3) + (2_56, 2_56) ).to(__a ) _a = noise _a = model(**__a ) assert image is not None, "Make sure output is not None" @slow def UpperCamelCase__ ( self : Union[str, Any] ): _a = UNetaDModel.from_pretrained("google/ncsnpp-celebahq-256" ) model.to(__a ) _a = 4 _a = 3 _a = (2_56, 2_56) _a = torch.ones((batch_size, num_channels) + sizes ).to(__a ) _a = torch.tensor(batch_size * [1e-4] ).to(__a ) with torch.no_grad(): _a = model(__a , __a ).sample _a = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off _a = torch.tensor([-4842.8691, -6499.6631, -3800.1953, -7978.2686, -10980.7129, -20028.8535, 8148.2822, 2342.2905, 567.7608] ) # fmt: on self.assertTrue(torch_all_close(__a , __a , rtol=1e-2 ) ) def UpperCamelCase__ ( self : Dict ): _a = UNetaDModel.from_pretrained("fusing/ncsnpp-ffhq-ve-dummy-update" ) model.to(__a ) _a = 4 _a = 3 _a = (32, 32) _a = torch.ones((batch_size, num_channels) + sizes ).to(__a ) _a = torch.tensor(batch_size * [1e-4] ).to(__a ) with torch.no_grad(): _a = model(__a , __a ).sample _a = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off _a = torch.tensor([-0.0325, -0.0900, -0.0869, -0.0332, -0.0725, -0.0270, -0.0101, 0.0227, 0.0256] ) # fmt: on self.assertTrue(torch_all_close(__a , __a , rtol=1e-2 ) ) def UpperCamelCase__ ( self : Tuple ): # not required for this model pass
63
'''simple docstring''' import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings __snake_case =logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class UpperCAmelCase_ ( __lowercase ): lowerCamelCase : bool = field(default=__lowercase , metadata={'''help''': '''Whether to use SortishSampler or not.'''} ) lowerCamelCase : bool = field( default=__lowercase , metadata={'''help''': '''Whether to use generate to calculate generative metrics (ROUGE, BLEU).'''} ) lowerCamelCase : Optional[int] = field( default=__lowercase , metadata={ '''help''': ( '''The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default ''' '''to the `max_length` value of the model configuration.''' ) } , ) lowerCamelCase : Optional[int] = field( default=__lowercase , metadata={ '''help''': ( '''The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default ''' '''to the `num_beams` value of the model configuration.''' ) } , ) lowerCamelCase : Optional[Union[str, Path, GenerationConfig]] = field( default=__lowercase , metadata={ '''help''': '''Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.''' } , ) def __UpperCAmelCase ( self : Dict ) -> List[str]: lowerCAmelCase = super().to_dict() for k, v in d.items(): if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): lowerCAmelCase = v.to_dict() return d
4
0
"""simple docstring""" def UpperCAmelCase__ (snake_case__ : list ): """simple docstring""" def merge(snake_case__ : list , snake_case__ : list ) -> list: def _merge(): while left and right: yield (left if left[0] <= right[0] else right).pop(0 ) yield from left yield from right return list(_merge() ) if len(snake_case__ ) <= 1: return collection _snake_case : str = len(snake_case__ ) // 2 return merge(merge_sort(collection[:mid] ) , merge_sort(collection[mid:] ) ) if __name__ == "__main__": import doctest doctest.testmod() A_ = input('''Enter numbers separated by a comma:\n''').strip() A_ = [int(item) for item in user_input.split(''',''')] print(*merge_sort(unsorted), sep=''',''')
64
'''simple docstring''' import argparse import torch from transformers import ( EncodecConfig, EncodecFeatureExtractor, EncodecModel, logging, ) # checkpoints downloaded from: # https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th # https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin # https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th logging.set_verbosity_info() __snake_case =logging.get_logger("""transformers.models.encodec""") __snake_case ={ """quantizer.vq.layers.*._codebook.inited""": """quantizer.layers.*.codebook.inited""", """quantizer.vq.layers.*._codebook.cluster_size""": """quantizer.layers.*.codebook.cluster_size""", """quantizer.vq.layers.*._codebook.embed""": """quantizer.layers.*.codebook.embed""", """quantizer.vq.layers.*._codebook.embed_avg""": """quantizer.layers.*.codebook.embed_avg""", } __snake_case ={ """encoder.model.0.conv.conv""": """encoder.layers.0.conv""", """encoder.model.1.block.1.conv.conv""": """encoder.layers.1.block.1.conv""", """encoder.model.1.block.3.conv.conv""": """encoder.layers.1.block.3.conv""", """encoder.model.1.shortcut.conv.conv""": """encoder.layers.1.shortcut.conv""", """encoder.model.3.conv.conv""": """encoder.layers.3.conv""", """encoder.model.4.block.1.conv.conv""": """encoder.layers.4.block.1.conv""", """encoder.model.4.block.3.conv.conv""": """encoder.layers.4.block.3.conv""", """encoder.model.4.shortcut.conv.conv""": """encoder.layers.4.shortcut.conv""", """encoder.model.6.conv.conv""": """encoder.layers.6.conv""", """encoder.model.7.block.1.conv.conv""": """encoder.layers.7.block.1.conv""", """encoder.model.7.block.3.conv.conv""": """encoder.layers.7.block.3.conv""", """encoder.model.7.shortcut.conv.conv""": """encoder.layers.7.shortcut.conv""", """encoder.model.9.conv.conv""": """encoder.layers.9.conv""", """encoder.model.10.block.1.conv.conv""": """encoder.layers.10.block.1.conv""", """encoder.model.10.block.3.conv.conv""": """encoder.layers.10.block.3.conv""", """encoder.model.10.shortcut.conv.conv""": """encoder.layers.10.shortcut.conv""", """encoder.model.12.conv.conv""": """encoder.layers.12.conv""", """encoder.model.13.lstm""": """encoder.layers.13.lstm""", """encoder.model.15.conv.conv""": """encoder.layers.15.conv""", } __snake_case ={ """encoder.model.0.conv.norm""": """encoder.layers.0.norm""", """encoder.model.1.block.1.conv.norm""": """encoder.layers.1.block.1.norm""", """encoder.model.1.block.3.conv.norm""": """encoder.layers.1.block.3.norm""", """encoder.model.1.shortcut.conv.norm""": """encoder.layers.1.shortcut.norm""", """encoder.model.3.conv.norm""": """encoder.layers.3.norm""", """encoder.model.4.block.1.conv.norm""": """encoder.layers.4.block.1.norm""", """encoder.model.4.block.3.conv.norm""": """encoder.layers.4.block.3.norm""", """encoder.model.4.shortcut.conv.norm""": """encoder.layers.4.shortcut.norm""", """encoder.model.6.conv.norm""": """encoder.layers.6.norm""", """encoder.model.7.block.1.conv.norm""": """encoder.layers.7.block.1.norm""", """encoder.model.7.block.3.conv.norm""": """encoder.layers.7.block.3.norm""", """encoder.model.7.shortcut.conv.norm""": """encoder.layers.7.shortcut.norm""", """encoder.model.9.conv.norm""": """encoder.layers.9.norm""", """encoder.model.10.block.1.conv.norm""": """encoder.layers.10.block.1.norm""", """encoder.model.10.block.3.conv.norm""": """encoder.layers.10.block.3.norm""", """encoder.model.10.shortcut.conv.norm""": """encoder.layers.10.shortcut.norm""", """encoder.model.12.conv.norm""": """encoder.layers.12.norm""", """encoder.model.15.conv.norm""": """encoder.layers.15.norm""", } __snake_case ={ """decoder.model.0.conv.conv""": """decoder.layers.0.conv""", """decoder.model.1.lstm""": """decoder.layers.1.lstm""", """decoder.model.3.convtr.convtr""": """decoder.layers.3.conv""", """decoder.model.4.block.1.conv.conv""": """decoder.layers.4.block.1.conv""", """decoder.model.4.block.3.conv.conv""": """decoder.layers.4.block.3.conv""", """decoder.model.4.shortcut.conv.conv""": """decoder.layers.4.shortcut.conv""", """decoder.model.6.convtr.convtr""": """decoder.layers.6.conv""", """decoder.model.7.block.1.conv.conv""": """decoder.layers.7.block.1.conv""", """decoder.model.7.block.3.conv.conv""": """decoder.layers.7.block.3.conv""", """decoder.model.7.shortcut.conv.conv""": """decoder.layers.7.shortcut.conv""", """decoder.model.9.convtr.convtr""": """decoder.layers.9.conv""", """decoder.model.10.block.1.conv.conv""": """decoder.layers.10.block.1.conv""", """decoder.model.10.block.3.conv.conv""": """decoder.layers.10.block.3.conv""", """decoder.model.10.shortcut.conv.conv""": """decoder.layers.10.shortcut.conv""", """decoder.model.12.convtr.convtr""": """decoder.layers.12.conv""", """decoder.model.13.block.1.conv.conv""": """decoder.layers.13.block.1.conv""", """decoder.model.13.block.3.conv.conv""": """decoder.layers.13.block.3.conv""", """decoder.model.13.shortcut.conv.conv""": """decoder.layers.13.shortcut.conv""", """decoder.model.15.conv.conv""": """decoder.layers.15.conv""", } __snake_case ={ """decoder.model.0.conv.norm""": """decoder.layers.0.norm""", """decoder.model.3.convtr.norm""": """decoder.layers.3.norm""", """decoder.model.4.block.1.conv.norm""": """decoder.layers.4.block.1.norm""", """decoder.model.4.block.3.conv.norm""": """decoder.layers.4.block.3.norm""", """decoder.model.4.shortcut.conv.norm""": """decoder.layers.4.shortcut.norm""", """decoder.model.6.convtr.norm""": """decoder.layers.6.norm""", """decoder.model.7.block.1.conv.norm""": """decoder.layers.7.block.1.norm""", """decoder.model.7.block.3.conv.norm""": """decoder.layers.7.block.3.norm""", """decoder.model.7.shortcut.conv.norm""": """decoder.layers.7.shortcut.norm""", """decoder.model.9.convtr.norm""": """decoder.layers.9.norm""", """decoder.model.10.block.1.conv.norm""": """decoder.layers.10.block.1.norm""", """decoder.model.10.block.3.conv.norm""": """decoder.layers.10.block.3.norm""", """decoder.model.10.shortcut.conv.norm""": """decoder.layers.10.shortcut.norm""", """decoder.model.12.convtr.norm""": """decoder.layers.12.norm""", """decoder.model.13.block.1.conv.norm""": """decoder.layers.13.block.1.norm""", """decoder.model.13.block.3.conv.norm""": """decoder.layers.13.block.3.norm""", """decoder.model.13.shortcut.conv.norm""": """decoder.layers.13.shortcut.norm""", """decoder.model.15.conv.norm""": """decoder.layers.15.norm""", } __snake_case ={ **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_DECODER, } __snake_case ={ **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_ENCODER_48K, **MAPPING_DECODER, **MAPPING_DECODER_48K, } __snake_case =[] __snake_case =[] def a_ ( lowerCamelCase : Optional[Any] , lowerCamelCase : Union[str, Any] , lowerCamelCase : int , lowerCamelCase : Any , lowerCamelCase : List[str] ): for attribute in key.split('.' ): lowerCAmelCase = getattr(lowerCamelCase , lowerCamelCase ) if weight_type is not None: lowerCAmelCase = getattr(lowerCamelCase , lowerCamelCase ).shape else: lowerCAmelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": lowerCAmelCase = value elif weight_type == "weight_g": lowerCAmelCase = value elif weight_type == "weight_v": lowerCAmelCase = value elif weight_type == "bias": lowerCAmelCase = value elif weight_type == "running_mean": lowerCAmelCase = value elif weight_type == "running_var": lowerCAmelCase = value elif weight_type == "num_batches_tracked": lowerCAmelCase = value elif weight_type == "weight_ih_l0": lowerCAmelCase = value elif weight_type == "weight_hh_l0": lowerCAmelCase = value elif weight_type == "bias_ih_l0": lowerCAmelCase = value elif weight_type == "bias_hh_l0": lowerCAmelCase = value elif weight_type == "weight_ih_l1": lowerCAmelCase = value elif weight_type == "weight_hh_l1": lowerCAmelCase = value elif weight_type == "bias_ih_l1": lowerCAmelCase = value elif weight_type == "bias_hh_l1": lowerCAmelCase = value else: lowerCAmelCase = value logger.info(f'''{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}.''' ) def a_ ( lowerCamelCase : Optional[Any] , lowerCamelCase : Optional[Any] ): for key in ignore_keys: if key.endswith('.*' ): if name.startswith(key[:-1] ): return True elif ".*." in key: lowerCAmelCase , lowerCAmelCase = key.split('.*.' ) if prefix in name and suffix in name: return True elif key in name: return True return False def a_ ( lowerCamelCase : List[Any] , lowerCamelCase : Any , lowerCamelCase : str ): lowerCAmelCase = [] if model_name == "encodec_24khz" or "encodec_32khz": lowerCAmelCase = MAPPING_24K elif model_name == "encodec_48khz": lowerCAmelCase = MAPPING_48K else: raise ValueError(f'''Unsupported model: {model_name}''' ) for name, value in orig_dict.items(): if should_ignore(lowerCamelCase , lowerCamelCase ): logger.info(f'''{name} was ignored''' ) continue lowerCAmelCase = False for key, mapped_key in MAPPING.items(): if "*" in key: lowerCAmelCase , lowerCAmelCase = key.split('.*.' ) if prefix in name and suffix in name: lowerCAmelCase = suffix if key in name: # HACK otherwise .embed gets initialized with .embed_avg too if key.endswith('embed' ) and name.endswith('embed_avg' ): continue lowerCAmelCase = True if "*" in mapped_key: lowerCAmelCase = name.split(lowerCamelCase )[0].split('.' )[-2] lowerCAmelCase = mapped_key.replace('*' , lowerCamelCase ) if "weight_g" in name: lowerCAmelCase = 'weight_g' elif "weight_v" in name: lowerCAmelCase = 'weight_v' elif "weight_ih_l0" in name: lowerCAmelCase = 'weight_ih_l0' elif "weight_hh_l0" in name: lowerCAmelCase = 'weight_hh_l0' elif "bias_ih_l0" in name: lowerCAmelCase = 'bias_ih_l0' elif "bias_hh_l0" in name: lowerCAmelCase = 'bias_hh_l0' elif "weight_ih_l1" in name: lowerCAmelCase = 'weight_ih_l1' elif "weight_hh_l1" in name: lowerCAmelCase = 'weight_hh_l1' elif "bias_ih_l1" in name: lowerCAmelCase = 'bias_ih_l1' elif "bias_hh_l1" in name: lowerCAmelCase = 'bias_hh_l1' elif "bias" in name: lowerCAmelCase = 'bias' elif "weight" in name: lowerCAmelCase = 'weight' elif "running_mean" in name: lowerCAmelCase = 'running_mean' elif "running_var" in name: lowerCAmelCase = 'running_var' elif "num_batches_tracked" in name: lowerCAmelCase = 'num_batches_tracked' else: lowerCAmelCase = None set_recursively(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) continue if not is_used: unused_weights.append(lowerCamelCase ) logger.warning(f'''Unused weights: {unused_weights}''' ) @torch.no_grad() def a_ ( lowerCamelCase : Optional[int] , lowerCamelCase : Union[str, Any] , lowerCamelCase : str , lowerCamelCase : Dict=None , lowerCamelCase : Union[str, Any]=None , ): if config_path is not None: lowerCAmelCase = EncodecConfig.from_pretrained(lowerCamelCase ) else: lowerCAmelCase = EncodecConfig() if model_name == "encodec_24khz": pass # config is already correct elif model_name == "encodec_32khz": lowerCAmelCase = [8, 5, 4, 4] lowerCAmelCase = [2.2] lowerCAmelCase = 64 lowerCAmelCase = 32000 lowerCAmelCase = 2048 lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False elif model_name == "encodec_48khz": lowerCAmelCase = [8, 5, 4, 2] lowerCAmelCase = [3.0, 6.0, 12.0, 24.0] lowerCAmelCase = 48000 lowerCAmelCase = 2 lowerCAmelCase = False lowerCAmelCase = 'time_group_norm' lowerCAmelCase = True lowerCAmelCase = 1.0 lowerCAmelCase = 0.01 else: raise ValueError(f'''Unknown model name: {model_name}''' ) lowerCAmelCase = EncodecModel(lowerCamelCase ) lowerCAmelCase = EncodecFeatureExtractor( feature_size=config.audio_channels , sampling_rate=config.sampling_rate , chunk_length_s=config.chunk_length_s , overlap=config.overlap , ) feature_extractor.save_pretrained(lowerCamelCase ) lowerCAmelCase = torch.load(lowerCamelCase ) if "best_state" in original_checkpoint: # we might have a training state saved, in which case discard the yaml results and just retain the weights lowerCAmelCase = original_checkpoint['best_state'] recursively_load_weights(lowerCamelCase , lowerCamelCase , lowerCamelCase ) model.save_pretrained(lowerCamelCase ) if repo_id: print('Pushing to the hub...' ) feature_extractor.push_to_hub(lowerCamelCase ) model.push_to_hub(lowerCamelCase ) if __name__ == "__main__": __snake_case =argparse.ArgumentParser() parser.add_argument( """--model""", default="""encodec_24khz""", type=str, help="""The model to convert. Should be one of 'encodec_24khz', 'encodec_32khz', 'encodec_48khz'.""", ) parser.add_argument("""--checkpoint_path""", required=True, default=None, type=str, help="""Path to original checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--pytorch_dump_folder_path""", required=True, default=None, type=str, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) __snake_case =parser.parse_args() convert_checkpoint( args.model, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
4
0
import argparse from pathlib import Path from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration def lowerCAmelCase_ ( __A, __A, __A, __A, __A = None, __A = None, __A = None, ) -> str: '''simple docstring''' if config_name_or_path is None: UpperCAmelCase__ = "facebook/rag-token-base" if model_type == "rag_token" else "facebook/rag-sequence-base" if generator_tokenizer_name_or_path is None: UpperCAmelCase__ = generator_name_or_path if question_encoder_tokenizer_name_or_path is None: UpperCAmelCase__ = question_encoder_name_or_path UpperCAmelCase__ = RagTokenForGeneration if model_type == "rag_token" else RagSequenceForGeneration # Save model. UpperCAmelCase__ = RagConfig.from_pretrained(__A ) UpperCAmelCase__ = AutoConfig.from_pretrained(__A ) UpperCAmelCase__ = AutoConfig.from_pretrained(__A ) UpperCAmelCase__ = gen_config UpperCAmelCase__ = question_encoder_config UpperCAmelCase__ = model_class.from_pretrained_question_encoder_generator( __A, __A, config=__A ) rag_model.save_pretrained(__A ) # Sanity check. model_class.from_pretrained(__A ) # Save tokenizers. UpperCAmelCase__ = AutoTokenizer.from_pretrained(__A ) gen_tokenizer.save_pretrained(dest_dir / "generator_tokenizer/" ) UpperCAmelCase__ = AutoTokenizer.from_pretrained(__A ) question_encoder_tokenizer.save_pretrained(dest_dir / "question_encoder_tokenizer/" ) if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() parser.add_argument( '--model_type', choices=['rag_sequence', 'rag_token'], required=True, type=str, help='RAG model type: rag_sequence, rag_token', ) parser.add_argument('--dest', type=str, required=True, help='Path to the output checkpoint directory.') parser.add_argument('--generator_name_or_path', type=str, required=True, help='Generator model identifier') parser.add_argument( '--question_encoder_name_or_path', type=str, required=True, help='Question encoder model identifier' ) parser.add_argument( '--generator_tokenizer_name_or_path', type=str, help='Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``', ) parser.add_argument( '--question_encoder_tokenizer_name_or_path', type=str, help='Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``', ) parser.add_argument( '--config_name_or_path', type=str, help=( 'Identifier of the model config to use, if not provided, resolves to a base config for a given' ' ``model_type``' ), ) UpperCamelCase__ = parser.parse_args() UpperCamelCase__ = Path(args.dest) dest_dir.mkdir(exist_ok=True) consolidate( args.model_type, args.generator_name_or_path, args.question_encoder_name_or_path, dest_dir, args.config_name_or_path, args.generator_tokenizer_name_or_path, args.question_encoder_tokenizer_name_or_path, )
65
'''simple docstring''' import warnings from ...utils import logging from .image_processing_flava import FlavaImageProcessor __snake_case =logging.get_logger(__name__) class UpperCAmelCase_ ( __lowercase ): def __init__( self : Dict , *UpperCAmelCase__ : Dict , **UpperCAmelCase__ : List[str] ) -> None: warnings.warn( 'The class FlavaFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use FlavaImageProcessor instead.' , UpperCAmelCase__ , ) super().__init__(*UpperCAmelCase__ , **UpperCAmelCase__ )
4
0
"""simple docstring""" import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class lowerCamelCase ( _lowerCAmelCase ): '''simple docstring''' def __init__( self: List[Any] , snake_case: str = "▁" , snake_case: bool = True , snake_case: Union[str, AddedToken] = "<unk>" , snake_case: Union[str, AddedToken] = "</s>" , snake_case: Union[str, AddedToken] = "<pad>" , ) -> Any: snake_case_ :Any = { """pad""": {"""id""": 0, """token""": pad_token}, """eos""": {"""id""": 1, """token""": eos_token}, """unk""": {"""id""": 2, """token""": unk_token}, } snake_case_ :Dict = [None] * len(self.special_tokens ) for token_dict in self.special_tokens.values(): snake_case_ :Tuple = token_dict["""token"""] snake_case_ :Union[str, Any] = Tokenizer(Unigram() ) snake_case_ :Tuple = normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(""" {2,}""" ) , """ """ ), normalizers.Lowercase(), ] ) snake_case_ :str = pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=snake_case , add_prefix_space=snake_case ), pre_tokenizers.Digits(individual_digits=snake_case ), pre_tokenizers.Punctuation(), ] ) snake_case_ :Dict = decoders.Metaspace(replacement=snake_case , add_prefix_space=snake_case ) snake_case_ :str = TemplateProcessing( single=f"""$A {self.special_tokens['eos']['token']}""" , special_tokens=[(self.special_tokens["""eos"""]["""token"""], self.special_tokens["""eos"""]["""id"""])] , ) snake_case_ :Tuple = { """model""": """SentencePieceUnigram""", """replacement""": replacement, """add_prefix_space""": add_prefix_space, } super().__init__(snake_case , snake_case ) def lowerCAmelCase_ ( self: Dict , snake_case: Union[str, List[str]] , snake_case: int = 8_000 , snake_case: bool = True , ) -> int: snake_case_ :List[Any] = trainers.UnigramTrainer( vocab_size=snake_case , special_tokens=self.special_tokens_list , show_progress=snake_case , ) if isinstance(snake_case , snake_case ): snake_case_ :int = [files] self._tokenizer.train(snake_case , trainer=snake_case ) self.add_unk_id() def lowerCAmelCase_ ( self: Dict , snake_case: Union[Iterator[str], Iterator[Iterator[str]]] , snake_case: int = 8_000 , snake_case: bool = True , ) -> List[str]: snake_case_ :Optional[Any] = trainers.UnigramTrainer( vocab_size=snake_case , special_tokens=self.special_tokens_list , show_progress=snake_case , ) self._tokenizer.train_from_iterator(snake_case , trainer=snake_case ) self.add_unk_id() def lowerCAmelCase_ ( self: List[Any] ) -> Tuple: snake_case_ :Dict = json.loads(self._tokenizer.to_str() ) snake_case_ :Optional[int] = self.special_tokens["""unk"""]["""id"""] snake_case_ :Optional[int] = Tokenizer.from_str(json.dumps(snake_case ) )
66
'''simple docstring''' from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer __snake_case =logging.get_logger(__name__) __snake_case ={ """vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_config_file""": """tokenizer_config.json""", } __snake_case ={ """vocab_file""": { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json""" }, """merges_file""": { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt""" }, """tokenizer_config_file""": { """facebook/blenderbot_small-90M""": ( """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json""" ) }, } __snake_case ={ """facebook/blenderbot_small-90M""": 512, } class UpperCAmelCase_ ( __lowercase ): lowerCamelCase : Tuple = VOCAB_FILES_NAMES lowerCamelCase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : Optional[Any] = BlenderbotSmallTokenizer def __init__( self : Any , UpperCAmelCase__ : Union[str, Any]=None , UpperCAmelCase__ : Dict=None , UpperCAmelCase__ : int="<|endoftext|>" , UpperCAmelCase__ : Dict="<|endoftext|>" , UpperCAmelCase__ : str="<|endoftext|>" , UpperCAmelCase__ : str=False , UpperCAmelCase__ : Tuple=True , **UpperCAmelCase__ : Optional[Any] , ) -> Any: super().__init__( ByteLevelBPETokenizer( vocab=UpperCAmelCase__ , merges=UpperCAmelCase__ , add_prefix_space=UpperCAmelCase__ , trim_offsets=UpperCAmelCase__ , ) , bos_token=UpperCAmelCase__ , eos_token=UpperCAmelCase__ , unk_token=UpperCAmelCase__ , **UpperCAmelCase__ , ) lowerCAmelCase = add_prefix_space def __UpperCAmelCase ( self : List[Any] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Dict=None ) -> Any: lowerCAmelCase = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def __UpperCAmelCase ( self : Any , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None ) -> List[int]: lowerCAmelCase = [self.sep_token_id] lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
4
0
'''simple docstring''' import numpy as np from sklearn.datasets import fetch_california_housing from sklearn.metrics import mean_absolute_error, mean_squared_error from sklearn.model_selection import train_test_split from xgboost import XGBRegressor def __lowerCAmelCase ( UpperCamelCase__ ) -> tuple: return (data["data"], data["target"]) def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> np.ndarray: __lowerCamelCase = XGBRegressor(verbosity=0 , random_state=42 ) xgb.fit(UpperCamelCase__ , UpperCamelCase__ ) # Predict target for test data __lowerCamelCase = xgb.predict(UpperCamelCase__ ) __lowerCamelCase = predictions.reshape(len(UpperCamelCase__ ) , 1 ) return predictions def __lowerCAmelCase ( ) -> None: __lowerCamelCase = fetch_california_housing() __lowerCamelCase , __lowerCamelCase = data_handling(UpperCamelCase__ ) __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = train_test_split( UpperCamelCase__ , UpperCamelCase__ , test_size=0.2_5 , random_state=1 ) __lowerCamelCase = xgboost(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Error printing print(f"""Mean Absolute Error : {mean_absolute_error(UpperCamelCase__ , UpperCamelCase__ )}""" ) print(f"""Mean Square Error : {mean_squared_error(UpperCamelCase__ , UpperCamelCase__ )}""" ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
67
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case =logging.get_logger(__name__) __snake_case ={ """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json""" ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class UpperCAmelCase_ ( __lowercase ): lowerCamelCase : Union[str, Any] = '''speech_to_text_2''' lowerCamelCase : Any = ['''past_key_values'''] lowerCamelCase : Optional[Any] = {'''num_attention_heads''': '''decoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self : Optional[int] , UpperCAmelCase__ : Optional[Any]=1_0_0_0_0 , UpperCAmelCase__ : int=6 , UpperCAmelCase__ : Optional[Any]=2_0_4_8 , UpperCAmelCase__ : Union[str, Any]=4 , UpperCAmelCase__ : List[Any]=0.0 , UpperCAmelCase__ : str=True , UpperCAmelCase__ : str="relu" , UpperCAmelCase__ : Any=2_5_6 , UpperCAmelCase__ : Optional[Any]=0.1 , UpperCAmelCase__ : Any=0.0 , UpperCAmelCase__ : Tuple=0.0 , UpperCAmelCase__ : List[Any]=0.02 , UpperCAmelCase__ : List[Any]=2 , UpperCAmelCase__ : str=True , UpperCAmelCase__ : List[str]=1 , UpperCAmelCase__ : Any=0 , UpperCAmelCase__ : Dict=2 , UpperCAmelCase__ : int=1_0_2_4 , **UpperCAmelCase__ : Optional[Any] , ) -> Dict: lowerCAmelCase = vocab_size lowerCAmelCase = d_model lowerCAmelCase = decoder_ffn_dim lowerCAmelCase = decoder_layers lowerCAmelCase = decoder_attention_heads lowerCAmelCase = dropout lowerCAmelCase = attention_dropout lowerCAmelCase = activation_dropout lowerCAmelCase = activation_function lowerCAmelCase = init_std lowerCAmelCase = decoder_layerdrop lowerCAmelCase = use_cache lowerCAmelCase = decoder_layers lowerCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True lowerCAmelCase = max_target_positions super().__init__( pad_token_id=UpperCAmelCase__ , bos_token_id=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ , decoder_start_token_id=UpperCAmelCase__ , **UpperCAmelCase__ , )
4
0
from __future__ import annotations import time import numpy as np lowerCAmelCase__ = [8, 5, 9, 7] lowerCAmelCase__ = [ [2, 0, 1, 1], [0, 1, 2, 1], [4, 0, 0, 3], [0, 2, 1, 0], [1, 0, 3, 0], ] lowerCAmelCase__ = [ [3, 2, 1, 4], [0, 2, 5, 2], [5, 1, 0, 5], [1, 5, 3, 0], [3, 0, 3, 3], ] class a__ : """simple docstring""" def __init__( self , lowercase , lowercase , lowercase , ) -> None: '''simple docstring''' A__ = claim_vector A__ = allocated_resources_table A__ = maximum_claim_table def UpperCamelCase ( self ) -> list[int]: '''simple docstring''' return [ sum(p_item[i] for p_item in self.__allocated_resources_table ) for i in range(len(self.__allocated_resources_table[0] ) ) ] def UpperCamelCase ( self ) -> list[int]: '''simple docstring''' return np.array(self.__claim_vector ) - np.array( self.__processes_resource_summation() ) def UpperCamelCase ( self ) -> list[list[int]]: '''simple docstring''' return [ list(np.array(self.__maximum_claim_table[i] ) - np.array(lowercase ) ) for i, allocated_resource in enumerate(self.__allocated_resources_table ) ] def UpperCamelCase ( self ) -> dict[int, list[int]]: '''simple docstring''' return {self.__need().index(lowercase ): i for i in self.__need()} def UpperCamelCase ( self , **lowercase ) -> None: '''simple docstring''' A__ = self.__need() A__ = self.__allocated_resources_table A__ = self.__available_resources() A__ = self.__need_index_manager() for kw, val in kwargs.items(): if kw and val is True: self.__pretty_data() print("_" * 50 + "\n" ) while need_list: A__ = False for each_need in need_list: A__ = True for index, need in enumerate(lowercase ): if need > available_resources[index]: A__ = False break if execution: A__ = True # get the original index of the process from ind_ctrl db for original_need_index, need_clone in need_index_manager.items(): if each_need == need_clone: A__ = original_need_index print(F'Process {process_number + 1} is executing.' ) # remove the process run from stack need_list.remove(lowercase ) # update available/freed resources stack A__ = np.array(lowercase ) + np.array( alloc_resources_table[process_number] ) print( "Updated available resource stack for processes: " + " ".join([str(lowercase ) for x in available_resources] ) ) break if safe: print("The process is in a safe state.\n" ) else: print("System in unsafe state. Aborting...\n" ) break def UpperCamelCase ( self ) -> Tuple: '''simple docstring''' print(" " * 9 + "Allocated Resource Table" ) for item in self.__allocated_resources_table: print( F'P{self.__allocated_resources_table.index(lowercase ) + 1}' + " ".join(F'{it:>8}' for it in item ) + "\n" ) print(" " * 9 + "System Resource Table" ) for item in self.__maximum_claim_table: print( F'P{self.__maximum_claim_table.index(lowercase ) + 1}' + " ".join(F'{it:>8}' for it in item ) + "\n" ) print( "Current Usage by Active Processes: " + " ".join(str(lowercase ) for x in self.__claim_vector ) ) print( "Initial Available Resources: " + " ".join(str(lowercase ) for x in self.__available_resources() ) ) time.sleep(1 ) if __name__ == "__main__": import doctest doctest.testmod()
68
'''simple docstring''' from __future__ import annotations from bisect import bisect_left from functools import total_ordering from heapq import merge @total_ordering class UpperCAmelCase_ ( __lowercase ): def __lt__( self : Optional[int] , UpperCAmelCase__ : List[str] ) -> List[Any]: return self[-1] < other[-1] def __eq__( self : str , UpperCAmelCase__ : List[str] ) -> Tuple: return self[-1] == other[-1] def a_ ( lowerCamelCase : list ): lowerCAmelCase = [] # sort into stacks for element in collection: lowerCAmelCase = Stack([element] ) lowerCAmelCase = bisect_left(lowerCamelCase , lowerCamelCase ) if i != len(lowerCamelCase ): stacks[i].append(lowerCamelCase ) else: stacks.append(lowerCamelCase ) # use a heap-based merge to merge stack efficiently lowerCAmelCase = merge(*(reversed(lowerCamelCase ) for stack in stacks) ) return collection if __name__ == "__main__": __snake_case =input("""Enter numbers separated by a comma:\n""").strip() __snake_case =[int(item) for item in user_input.split(""",""")] print(patience_sort(unsorted))
4
0
"""simple docstring""" from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass __UpperCamelCase = (3, 9, -11, 0, 7, 5, 1, -1) __UpperCamelCase = (4, 6, 2, 0, 8, 10, 3, -2) @dataclass class UpperCamelCase : SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 class UpperCamelCase : def __init__( self, lowerCAmelCase__) -> None: snake_case_ = None for i in sorted(lowerCAmelCase__, reverse=lowerCAmelCase__): snake_case_ = Node(lowerCAmelCase__, self.head) def __iter__( self) -> Iterator[int]: snake_case_ = self.head while node: yield node.data snake_case_ = node.next_node def __len__( self) -> int: return sum(1 for _ in self) def __str__( self) -> str: return " -> ".join([str(lowerCAmelCase__) for node in self]) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> SortedLinkedList: return SortedLinkedList(list(UpperCAmelCase ) + list(UpperCAmelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() __UpperCamelCase = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
69
'''simple docstring''' import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py __snake_case ="""\ @INPROCEEDINGS{Papineni02bleu:a, author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu}, title = {BLEU: a Method for Automatic Evaluation of Machine Translation}, booktitle = {}, year = {2002}, pages = {311--318} } @inproceedings{lin-och-2004-orange, title = \"{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation\", author = \"Lin, Chin-Yew and Och, Franz Josef\", booktitle = \"{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics\", month = \"aug 23{--}aug 27\", year = \"2004\", address = \"Geneva, Switzerland\", publisher = \"COLING\", url = \"https://www.aclweb.org/anthology/C04-1072\", pages = \"501--507\", } """ __snake_case ="""\ BLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another. Quality is considered to be the correspondence between a machine's output and that of a human: \"the closer a machine translation is to a professional human translation, the better it is\" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and remains one of the most popular automated and inexpensive metrics. Scores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations. Those scores are then averaged over the whole corpus to reach an estimate of the translation's overall quality. Intelligibility or grammatical correctness are not taken into account[citation needed]. BLEU's output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1 representing more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the reference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional reference translations will increase the BLEU score. """ __snake_case =""" Computes BLEU score of translated segments against one or more references. Args: predictions: list of translations to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. max_order: Maximum n-gram order to use when computing BLEU score. smooth: Whether or not to apply Lin et al. 2004 smoothing. Returns: 'bleu': bleu score, 'precisions': geometric mean of n-gram precisions, 'brevity_penalty': brevity penalty, 'length_ratio': ratio of lengths, 'translation_length': translation_length, 'reference_length': reference_length Examples: >>> predictions = [ ... [\"hello\", \"there\", \"general\", \"kenobi\"], # tokenized prediction of the first sample ... [\"foo\", \"bar\", \"foobar\"] # tokenized prediction of the second sample ... ] >>> references = [ ... [[\"hello\", \"there\", \"general\", \"kenobi\"], [\"hello\", \"there\", \"!\"]], # tokenized references for the first sample (2 references) ... [[\"foo\", \"bar\", \"foobar\"]] # tokenized references for the second sample (1 reference) ... ] >>> bleu = datasets.load_metric(\"bleu\") >>> results = bleu.compute(predictions=predictions, references=references) >>> print(results[\"bleu\"]) 1.0 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): def __UpperCAmelCase ( self : Tuple ) -> int: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ), 'references': datasets.Sequence( datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ) , id='references' ), } ) , codebase_urls=['https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py'] , reference_urls=[ 'https://en.wikipedia.org/wiki/BLEU', 'https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213', ] , ) def __UpperCAmelCase ( self : Optional[int] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Any , UpperCAmelCase__ : Union[str, Any]=4 , UpperCAmelCase__ : Optional[int]=False ) -> int: lowerCAmelCase = compute_bleu( reference_corpus=UpperCAmelCase__ , translation_corpus=UpperCAmelCase__ , max_order=UpperCAmelCase__ , smooth=UpperCAmelCase__ ) ((lowerCAmelCase) , (lowerCAmelCase) , (lowerCAmelCase) , (lowerCAmelCase) , (lowerCAmelCase) , (lowerCAmelCase)) = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
4
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL A__ : List[str] =logging.get_logger(__name__) def UpperCamelCase__ ( lowerCAmelCase ): """simple docstring""" if isinstance(lowerCAmelCase , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(lowerCAmelCase , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(lowerCAmelCase ): return [[videos]] raise ValueError(f"Could not make batched video from {videos}" ) class UpperCAmelCase ( snake_case_ ): _lowercase: Any = ['''pixel_values'''] def __init__( self : Tuple , __snake_case : bool = True , __snake_case : Dict[str, int] = None , __snake_case : PILImageResampling = PILImageResampling.BILINEAR , __snake_case : bool = True , __snake_case : Dict[str, int] = None , __snake_case : bool = True , __snake_case : Union[int, float] = 1 / 2_55 , __snake_case : bool = True , __snake_case : bool = True , __snake_case : Optional[Union[float, List[float]]] = None , __snake_case : Optional[Union[float, List[float]]] = None , **__snake_case : str , ) -> None: super().__init__(**__snake_case ) _lowerCAmelCase = size if size is not None else {"""shortest_edge""": 2_56} _lowerCAmelCase = get_size_dict(__snake_case , default_to_square=__snake_case ) _lowerCAmelCase = crop_size if crop_size is not None else {"""height""": 2_24, """width""": 2_24} _lowerCAmelCase = get_size_dict(__snake_case , param_name="""crop_size""" ) _lowerCAmelCase = do_resize _lowerCAmelCase = size _lowerCAmelCase = do_center_crop _lowerCAmelCase = crop_size _lowerCAmelCase = resample _lowerCAmelCase = do_rescale _lowerCAmelCase = rescale_factor _lowerCAmelCase = offset _lowerCAmelCase = do_normalize _lowerCAmelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _lowerCAmelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowercase__ ( self : int , __snake_case : np.ndarray , __snake_case : Dict[str, int] , __snake_case : PILImageResampling = PILImageResampling.BILINEAR , __snake_case : Optional[Union[str, ChannelDimension]] = None , **__snake_case : Optional[Any] , ) -> np.ndarray: _lowerCAmelCase = get_size_dict(__snake_case , default_to_square=__snake_case ) if "shortest_edge" in size: _lowerCAmelCase = get_resize_output_image_size(__snake_case , size["""shortest_edge"""] , default_to_square=__snake_case ) elif "height" in size and "width" in size: _lowerCAmelCase = (size["""height"""], size["""width"""]) else: raise ValueError(f"Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}" ) return resize(__snake_case , size=__snake_case , resample=__snake_case , data_format=__snake_case , **__snake_case ) def lowercase__ ( self : Union[str, Any] , __snake_case : np.ndarray , __snake_case : Dict[str, int] , __snake_case : Optional[Union[str, ChannelDimension]] = None , **__snake_case : List[Any] , ) -> np.ndarray: _lowerCAmelCase = get_size_dict(__snake_case ) if "height" not in size or "width" not in size: raise ValueError(f"Size must have 'height' and 'width' as keys. Got {size.keys()}" ) return center_crop(__snake_case , size=(size["""height"""], size["""width"""]) , data_format=__snake_case , **__snake_case ) def lowercase__ ( self : Union[str, Any] , __snake_case : np.ndarray , __snake_case : Union[int, float] , __snake_case : bool = True , __snake_case : Optional[Union[str, ChannelDimension]] = None , **__snake_case : Optional[Any] , ) -> Dict: _lowerCAmelCase = image.astype(np.floataa ) if offset: _lowerCAmelCase = image - (scale / 2) return rescale(__snake_case , scale=__snake_case , data_format=__snake_case , **__snake_case ) def lowercase__ ( self : Optional[int] , __snake_case : np.ndarray , __snake_case : Union[float, List[float]] , __snake_case : Union[float, List[float]] , __snake_case : Optional[Union[str, ChannelDimension]] = None , **__snake_case : Tuple , ) -> np.ndarray: return normalize(__snake_case , mean=__snake_case , std=__snake_case , data_format=__snake_case , **__snake_case ) def lowercase__ ( self : List[Any] , __snake_case : ImageInput , __snake_case : bool = None , __snake_case : Dict[str, int] = None , __snake_case : PILImageResampling = None , __snake_case : bool = None , __snake_case : Dict[str, int] = None , __snake_case : bool = None , __snake_case : float = None , __snake_case : bool = None , __snake_case : bool = None , __snake_case : Optional[Union[float, List[float]]] = None , __snake_case : Optional[Union[float, List[float]]] = None , __snake_case : Optional[ChannelDimension] = ChannelDimension.FIRST , ) -> np.ndarray: if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) if offset and not do_rescale: raise ValueError("""For offset, do_rescale must also be set to True.""" ) # All transformations expect numpy arrays. _lowerCAmelCase = to_numpy_array(__snake_case ) if do_resize: _lowerCAmelCase = self.resize(image=__snake_case , size=__snake_case , resample=__snake_case ) if do_center_crop: _lowerCAmelCase = self.center_crop(__snake_case , size=__snake_case ) if do_rescale: _lowerCAmelCase = self.rescale(image=__snake_case , scale=__snake_case , offset=__snake_case ) if do_normalize: _lowerCAmelCase = self.normalize(image=__snake_case , mean=__snake_case , std=__snake_case ) _lowerCAmelCase = to_channel_dimension_format(__snake_case , __snake_case ) return image def lowercase__ ( self : List[Any] , __snake_case : ImageInput , __snake_case : bool = None , __snake_case : Dict[str, int] = None , __snake_case : PILImageResampling = None , __snake_case : bool = None , __snake_case : Dict[str, int] = None , __snake_case : bool = None , __snake_case : float = None , __snake_case : bool = None , __snake_case : bool = None , __snake_case : Optional[Union[float, List[float]]] = None , __snake_case : Optional[Union[float, List[float]]] = None , __snake_case : Optional[Union[str, TensorType]] = None , __snake_case : ChannelDimension = ChannelDimension.FIRST , **__snake_case : List[str] , ) -> PIL.Image.Image: _lowerCAmelCase = do_resize if do_resize is not None else self.do_resize _lowerCAmelCase = resample if resample is not None else self.resample _lowerCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop _lowerCAmelCase = do_rescale if do_rescale is not None else self.do_rescale _lowerCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _lowerCAmelCase = offset if offset is not None else self.offset _lowerCAmelCase = do_normalize if do_normalize is not None else self.do_normalize _lowerCAmelCase = image_mean if image_mean is not None else self.image_mean _lowerCAmelCase = image_std if image_std is not None else self.image_std _lowerCAmelCase = size if size is not None else self.size _lowerCAmelCase = get_size_dict(__snake_case , default_to_square=__snake_case ) _lowerCAmelCase = crop_size if crop_size is not None else self.crop_size _lowerCAmelCase = get_size_dict(__snake_case , param_name="""crop_size""" ) if not valid_images(__snake_case ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) _lowerCAmelCase = make_batched(__snake_case ) _lowerCAmelCase = [ [ self._preprocess_image( image=__snake_case , do_resize=__snake_case , size=__snake_case , resample=__snake_case , do_center_crop=__snake_case , crop_size=__snake_case , do_rescale=__snake_case , rescale_factor=__snake_case , offset=__snake_case , do_normalize=__snake_case , image_mean=__snake_case , image_std=__snake_case , data_format=__snake_case , ) for img in video ] for video in videos ] _lowerCAmelCase = {"""pixel_values""": videos} return BatchFeature(data=__snake_case , tensor_type=__snake_case )
70
'''simple docstring''' from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record __snake_case ="""\ @article{wang2019superglue, title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems}, author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R}, journal={arXiv preprint arXiv:1905.00537}, year={2019} } """ __snake_case ="""\ SuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after GLUE with a new set of more difficult language understanding tasks, improved resources, and a new public leaderboard. """ __snake_case =""" Compute SuperGLUE evaluation metric associated to each SuperGLUE dataset. Args: predictions: list of predictions to score. Depending on the SuperGlUE subset: - for 'record': list of question-answer dictionaries with the following keys: - 'idx': index of the question as specified by the dataset - 'prediction_text': the predicted answer text - for 'multirc': list of question-answer dictionaries with the following keys: - 'idx': index of the question-answer pair as specified by the dataset - 'prediction': the predicted answer label - otherwise: list of predicted labels references: list of reference labels. Depending on the SuperGLUE subset: - for 'record': list of question-answers dictionaries with the following keys: - 'idx': index of the question as specified by the dataset - 'answers': list of possible answers - otherwise: list of reference labels Returns: depending on the SuperGLUE subset: - for 'record': - 'exact_match': Exact match between answer and gold answer - 'f1': F1 score - for 'multirc': - 'exact_match': Exact match between answer and gold answer - 'f1_m': Per-question macro-F1 score - 'f1_a': Average F1 score over all answers - for 'axb': 'matthews_correlation': Matthew Correlation - for 'cb': - 'accuracy': Accuracy - 'f1': F1 score - for all others: - 'accuracy': Accuracy Examples: >>> super_glue_metric = datasets.load_metric('super_glue', 'copa') # any of [\"copa\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"boolq\", \"axg\"] >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'cb') >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0, 'f1': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'record') >>> predictions = [{'idx': {'passage': 0, 'query': 0}, 'prediction_text': 'answer'}] >>> references = [{'idx': {'passage': 0, 'query': 0}, 'answers': ['answer', 'another_answer']}] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'exact_match': 1.0, 'f1': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'multirc') >>> predictions = [{'idx': {'answer': 0, 'paragraph': 0, 'question': 0}, 'prediction': 0}, {'idx': {'answer': 1, 'paragraph': 2, 'question': 3}, 'prediction': 1}] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'exact_match': 1.0, 'f1_m': 1.0, 'f1_a': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'axb') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'matthews_correlation': 1.0} """ def a_ ( lowerCamelCase : str , lowerCamelCase : Union[str, Any] ): return float((preds == labels).mean() ) def a_ ( lowerCamelCase : Union[str, Any] , lowerCamelCase : Dict , lowerCamelCase : str="binary" ): lowerCAmelCase = simple_accuracy(lowerCamelCase , lowerCamelCase ) lowerCAmelCase = float(fa_score(y_true=lowerCamelCase , y_pred=lowerCamelCase , average=lowerCamelCase ) ) return { "accuracy": acc, "f1": fa, } def a_ ( lowerCamelCase : List[Any] , lowerCamelCase : List[Any] ): lowerCAmelCase = {} for id_pred, label in zip(lowerCamelCase , lowerCamelCase ): lowerCAmelCase = f'''{id_pred['idx']['paragraph']}-{id_pred['idx']['question']}''' lowerCAmelCase = id_pred['prediction'] if question_id in question_map: question_map[question_id].append((pred, label) ) else: lowerCAmelCase = [(pred, label)] lowerCAmelCase , lowerCAmelCase = [], [] for question, preds_labels in question_map.items(): lowerCAmelCase , lowerCAmelCase = zip(*lowerCamelCase ) lowerCAmelCase = fa_score(y_true=lowerCamelCase , y_pred=lowerCamelCase , average='macro' ) fas.append(lowerCamelCase ) lowerCAmelCase = int(sum(pred == label for pred, label in preds_labels ) == len(lowerCamelCase ) ) ems.append(lowerCamelCase ) lowerCAmelCase = float(sum(lowerCamelCase ) / len(lowerCamelCase ) ) lowerCAmelCase = sum(lowerCamelCase ) / len(lowerCamelCase ) lowerCAmelCase = float(fa_score(y_true=lowerCamelCase , y_pred=[id_pred['prediction'] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): def __UpperCAmelCase ( self : List[str] ) -> List[Any]: if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( 'You should supply a configuration name selected in ' '["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format='numpy' if not self.config_name == 'record' and not self.config_name == 'multirc' else None , ) def __UpperCAmelCase ( self : Union[str, Any] ) -> str: if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value('int64' ), "query": datasets.Value('int64' ), }, "prediction_text": datasets.Value('string' ), }, "references": { "idx": { "passage": datasets.Value('int64' ), "query": datasets.Value('int64' ), }, "answers": datasets.Sequence(datasets.Value('string' ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value('int64' ), "paragraph": datasets.Value('int64' ), "question": datasets.Value('int64' ), }, "prediction": datasets.Value('int64' ), }, "references": datasets.Value('int64' ), } else: return { "predictions": datasets.Value('int64' ), "references": datasets.Value('int64' ), } def __UpperCAmelCase ( self : List[str] , UpperCAmelCase__ : Any , UpperCAmelCase__ : Optional[Any] ) -> Any: if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(UpperCAmelCase__ , UpperCAmelCase__ )} elif self.config_name == "cb": return acc_and_fa(UpperCAmelCase__ , UpperCAmelCase__ , fa_avg='macro' ) elif self.config_name == "record": lowerCAmelCase = [ { 'qas': [ {'id': ref['idx']['query'], 'answers': [{'text': ans} for ans in ref['answers']]} for ref in references ] } ] lowerCAmelCase = {pred['idx']['query']: pred['prediction_text'] for pred in predictions} return evaluate_record(UpperCAmelCase__ , UpperCAmelCase__ )[0] elif self.config_name == "multirc": return evaluate_multirc(UpperCAmelCase__ , UpperCAmelCase__ ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(UpperCAmelCase__ , UpperCAmelCase__ )} else: raise KeyError( 'You should supply a configuration name selected in ' '["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]' )
4
0
def A ( a_ ,a_ ) -> int: return 1 if input_a == input_a else 0 def A ( ) -> None: assert xnor_gate(0 ,0 ) == 1 assert xnor_gate(0 ,1 ) == 0 assert xnor_gate(1 ,0 ) == 0 assert xnor_gate(1 ,1 ) == 1 if __name__ == "__main__": print(xnor_gate(0, 0)) print(xnor_gate(0, 1)) print(xnor_gate(1, 0)) print(xnor_gate(1, 1))
71
'''simple docstring''' print((lambda quine: quine % quine)("""print((lambda quine: quine %% quine)(%r))"""))
4
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase__ = { '''configuration_time_series_transformer''': [ '''TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TimeSeriesTransformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TimeSeriesTransformerForPrediction''', '''TimeSeriesTransformerModel''', '''TimeSeriesTransformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
72
'''simple docstring''' import os __snake_case ={"""I""": 1, """V""": 5, """X""": 10, """L""": 50, """C""": 100, """D""": 500, """M""": 1_000} def a_ ( lowerCamelCase : str ): lowerCAmelCase = 0 lowerCAmelCase = 0 while index < len(lowerCamelCase ) - 1: lowerCAmelCase = SYMBOLS[numerals[index]] lowerCAmelCase = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def a_ ( lowerCamelCase : int ): lowerCAmelCase = '' lowerCAmelCase = num // 1000 numerals += m_count * "M" num %= 1000 lowerCAmelCase = num // 100 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 100 lowerCAmelCase = num // 10 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 10 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def a_ ( lowerCamelCase : str = "/p089_roman.txt" ): lowerCAmelCase = 0 with open(os.path.dirname(lowerCamelCase ) + roman_numerals_filename ) as filea: lowerCAmelCase = filea.readlines() for line in lines: lowerCAmelCase = line.strip() lowerCAmelCase = parse_roman_numerals(lowerCamelCase ) lowerCAmelCase = generate_roman_numerals(lowerCamelCase ) savings += len(lowerCamelCase ) - len(lowerCamelCase ) return savings if __name__ == "__main__": print(F'''{solution() = }''')
4
0
from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def SCREAMING_SNAKE_CASE__ ( ) -> Optional[int]: __lowerCamelCase : Optional[int] = HfArgumentParser(lowerCamelCase__ ) __lowerCamelCase : Dict = parser.parse_args_into_dataclasses()[0] __lowerCamelCase : Any = TensorFlowBenchmark(args=lowerCamelCase__ ) try: __lowerCamelCase : Union[str, Any] = parser.parse_args_into_dataclasses()[0] except ValueError as e: __lowerCamelCase : str = 'Arg --no_{0} is no longer used, please use --no-{0} instead.' __lowerCamelCase : Dict = ' '.join(str(lowerCamelCase__ ).split(' ' )[:-1] ) __lowerCamelCase : List[Any] = '' __lowerCamelCase : Dict = eval(str(lowerCamelCase__ ).split(' ' )[-1] ) __lowerCamelCase : Optional[int] = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(lowerCamelCase__ ) if len(lowerCamelCase__ ) > 0: __lowerCamelCase : Tuple = full_error_msg + begin_error_msg + str(lowerCamelCase__ ) raise ValueError(lowerCamelCase__ ) benchmark.run() if __name__ == "__main__": main()
73
'''simple docstring''' import itertools import random import unittest import numpy as np from transformers import ASTFeatureExtractor from transformers.testing_utils import require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin __snake_case =random.Random() if is_torch_available(): import torch def a_ ( lowerCamelCase : Dict , lowerCamelCase : Dict=1.0 , lowerCamelCase : List[Any]=None , lowerCamelCase : Union[str, Any]=None ): if rng is None: lowerCAmelCase = global_rng lowerCAmelCase = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class UpperCAmelCase_ ( unittest.TestCase ): def __init__( self : List[Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : List[str]=7 , UpperCAmelCase__ : int=4_0_0 , UpperCAmelCase__ : int=2_0_0_0 , UpperCAmelCase__ : List[str]=1 , UpperCAmelCase__ : Tuple=0.0 , UpperCAmelCase__ : Tuple=1_6_0_0_0 , UpperCAmelCase__ : Tuple=True , UpperCAmelCase__ : Union[str, Any]=True , ) -> Any: lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = min_seq_length lowerCAmelCase = max_seq_length lowerCAmelCase = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) lowerCAmelCase = feature_size lowerCAmelCase = padding_value lowerCAmelCase = sampling_rate lowerCAmelCase = return_attention_mask lowerCAmelCase = do_normalize def __UpperCAmelCase ( self : Optional[Any] ) -> List[str]: return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def __UpperCAmelCase ( self : str , UpperCAmelCase__ : Union[str, Any]=False , UpperCAmelCase__ : Union[str, Any]=False ) -> Optional[Any]: def _flatten(UpperCAmelCase__ : int ): return list(itertools.chain(*UpperCAmelCase__ ) ) if equal_length: lowerCAmelCase = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size lowerCAmelCase = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: lowerCAmelCase = [np.asarray(UpperCAmelCase__ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): lowerCamelCase : Dict = ASTFeatureExtractor def __UpperCAmelCase ( self : str ) -> Optional[int]: lowerCAmelCase = ASTFeatureExtractionTester(self ) def __UpperCAmelCase ( self : Optional[int] ) -> Optional[int]: # Tests that all call wrap to encode_plus and batch_encode_plus lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 lowerCAmelCase = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] lowerCAmelCase = [np.asarray(UpperCAmelCase__ ) for speech_input in speech_inputs] # Test not batched input lowerCAmelCase = feat_extract(speech_inputs[0] , return_tensors='np' ).input_values lowerCAmelCase = feat_extract(np_speech_inputs[0] , return_tensors='np' ).input_values self.assertTrue(np.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1E-3 ) ) # Test batched lowerCAmelCase = feat_extract(UpperCAmelCase__ , padding=UpperCAmelCase__ , return_tensors='np' ).input_values lowerCAmelCase = feat_extract(UpperCAmelCase__ , padding=UpperCAmelCase__ , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(UpperCAmelCase__ , UpperCAmelCase__ ): self.assertTrue(np.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. lowerCAmelCase = [floats_list((1, x) )[0] for x in (8_0_0, 8_0_0, 8_0_0)] lowerCAmelCase = np.asarray(UpperCAmelCase__ ) lowerCAmelCase = feat_extract(UpperCAmelCase__ , return_tensors='np' ).input_values lowerCAmelCase = feat_extract(UpperCAmelCase__ , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(UpperCAmelCase__ , UpperCAmelCase__ ): self.assertTrue(np.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1E-3 ) ) @require_torch def __UpperCAmelCase ( self : Union[str, Any] ) -> Optional[int]: import torch lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCAmelCase = np.random.rand(1_0_0 ).astype(np.floataa ) lowerCAmelCase = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: lowerCAmelCase = feature_extractor.pad([{'input_values': inputs}] , return_tensors='np' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) lowerCAmelCase = feature_extractor.pad([{'input_values': inputs}] , return_tensors='pt' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def __UpperCAmelCase ( self : int , UpperCAmelCase__ : str ) -> Tuple: from datasets import load_dataset lowerCAmelCase = load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' ) # automatic decoding with librispeech lowerCAmelCase = ds.sort('id' ).select(range(UpperCAmelCase__ ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] @require_torch def __UpperCAmelCase ( self : str ) -> Optional[Any]: # fmt: off lowerCAmelCase = torch.tensor( [-0.9_894, -1.2_776, -0.9_066, -1.2_776, -0.9_349, -1.2_609, -1.0_386, -1.2_776, -1.1_561, -1.2_776, -1.2_052, -1.2_723, -1.2_190, -1.2_132, -1.2_776, -1.1_133, -1.1_953, -1.1_343, -1.1_584, -1.2_203, -1.1_770, -1.2_474, -1.2_381, -1.1_936, -0.9_270, -0.8_317, -0.8_049, -0.7_706, -0.7_565, -0.7_869] ) # fmt: on lowerCAmelCase = self._load_datasamples(1 ) lowerCAmelCase = ASTFeatureExtractor() lowerCAmelCase = feature_extractor(UpperCAmelCase__ , return_tensors='pt' ).input_values self.assertEquals(input_values.shape , (1, 1_0_2_4, 1_2_8) ) self.assertTrue(torch.allclose(input_values[0, 0, :3_0] , UpperCAmelCase__ , atol=1E-4 ) )
4
0
"""simple docstring""" # Function to print upper half of diamond (pyramid) def _snake_case ( snake_case__ : Dict ): for i in range(0 , snake_case__ ): for _ in range(0 , n - i - 1 ): # printing spaces print(' ' , end='' ) for _ in range(0 , i + 1 ): # printing stars print('* ' , end='' ) print() def _snake_case ( snake_case__ : Tuple ): for i in range(snake_case__ , 0 , -1 ): for _ in range(snake_case__ , 0 , -1 ): # printing stars print('* ' , end='' ) print() for _ in range(n - i + 1 , 0 , -1 ): # printing spaces print(' ' , end='' ) def _snake_case ( snake_case__ : Dict ): if n <= 0: print(' ... .... nothing printing :(' ) return floyd(snake_case__ ) # upper half reverse_floyd(snake_case__ ) # lower half if __name__ == "__main__": print(r'''| /\ | |- | |- |--| |\ /| |-''') print(r'''|/ \| |- |_ |_ |__| | \/ | |_''') _lowercase = 1 while K: _lowercase = int(input('''enter the number and , and see the magic : ''')) print() pretty_print(user_number) _lowercase = int(input('''press 0 to exit... and 1 to continue...''')) print('''Good Bye...''')
74
'''simple docstring''' import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class UpperCAmelCase_ ( unittest.TestCase ): def __UpperCAmelCase ( self : str ) -> List[Any]: lowerCAmelCase = torch.nn.Linear(1_0 , 1_0 ) lowerCAmelCase = torch.optim.SGD(model.parameters() , 0.1 ) lowerCAmelCase = Accelerator() lowerCAmelCase = accelerator.prepare(UpperCAmelCase__ ) try: pickle.loads(pickle.dumps(UpperCAmelCase__ ) ) except Exception as e: self.fail(F'''Accelerated optimizer pickling failed with {e}''' ) AcceleratorState._reset_state()
4
0
'''simple docstring''' import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin a_ : List[str] = get_tests_dir("""fixtures/test_sentencepiece_no_bos.model""") @require_sentencepiece @require_tokenizers class __UpperCamelCase ( lowerCamelCase__ , unittest.TestCase ): lowercase : Dict =PegasusTokenizer lowercase : List[str] =PegasusTokenizerFast lowercase : Any =True lowercase : Tuple =True def lowercase__ ( self ): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing lowerCamelCase_ =PegasusTokenizer(lowerCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowercase__ ( self ): """simple docstring""" return PegasusTokenizer.from_pretrained('''google/pegasus-large''' ) def lowercase__ ( self, **lowerCAmelCase ): """simple docstring""" return PegasusTokenizer.from_pretrained(self.tmpdirname, **lowerCAmelCase ) def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" return ("This is a test", "This is a test") def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ ='''</s>''' lowerCamelCase_ =1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase ), lowerCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase ), lowerCAmelCase ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0], '''<pad>''' ) self.assertEqual(vocab_keys[1], '''</s>''' ) self.assertEqual(vocab_keys[-1], '''v''' ) self.assertEqual(len(lowerCAmelCase ), 1_103 ) def lowercase__ ( self ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size, 1_103 ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowerCamelCase_ =self.tokenizer_class.from_pretrained(self.tmpdirname ) lowerCamelCase_ =( '''Let\'s see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important''' ''' </s> <pad> <pad> <pad>''' ) lowerCamelCase_ =rust_tokenizer([raw_input_str], return_tensors=lowerCAmelCase, add_special_tokens=lowerCAmelCase ).input_ids[0] lowerCamelCase_ =py_tokenizer([raw_input_str], return_tensors=lowerCAmelCase, add_special_tokens=lowerCAmelCase ).input_ids[0] self.assertListEqual(lowerCAmelCase, lowerCAmelCase ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word lowerCamelCase_ ='''<mask_1> To ensure a <mask_2> flow of bank resolutions.''' lowerCamelCase_ =[2, 413, 615, 114, 3, 1_971, 113, 1_679, 10_710, 107, 1] lowerCamelCase_ =tokenizer([raw_input_str], return_tensors=lowerCAmelCase ).input_ids[0] self.assertListEqual(lowerCAmelCase, lowerCAmelCase ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 96_103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1_024 lowerCamelCase_ ='''To ensure a smooth flow of bank resolutions.''' lowerCamelCase_ =[413, 615, 114, 2_291, 1_971, 113, 1_679, 10_710, 107, 1] lowerCamelCase_ =tokenizer([raw_input_str], return_tensors=lowerCAmelCase ).input_ids[0] self.assertListEqual(lowerCAmelCase, lowerCAmelCase ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =['''This is going to be way too long.''' * 150, '''short example'''] lowerCamelCase_ =['''not super long but more than 5 tokens''', '''tiny'''] lowerCamelCase_ =self._large_tokenizer(lowerCAmelCase, padding=lowerCAmelCase, truncation=lowerCAmelCase, return_tensors='''pt''' ) lowerCamelCase_ =self._large_tokenizer( text_target=lowerCAmelCase, max_length=5, padding=lowerCAmelCase, truncation=lowerCAmelCase, return_tensors='''pt''' ) assert batch.input_ids.shape == (2, 1_024) assert batch.attention_mask.shape == (2, 1_024) assert targets["input_ids"].shape == (2, 5) assert len(lowerCAmelCase ) == 2 # input_ids, attention_mask. @slow def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ ={'''input_ids''': [[38_979, 143, 18_485, 606, 130, 26_669, 87_686, 121, 54_189, 1_129, 111, 26_669, 87_686, 121, 9_114, 14_787, 121, 13_249, 158, 592, 956, 121, 14_621, 31_576, 143, 62_613, 108, 9_688, 930, 43_430, 11_562, 62_613, 304, 108, 11_443, 897, 108, 9_314, 17_415, 63_399, 108, 11_443, 7_614, 18_316, 118, 4_284, 7_148, 12_430, 143, 1_400, 25_703, 158, 111, 4_284, 7_148, 11_772, 143, 21_297, 1_064, 158, 122, 204, 3_506, 1_754, 1_133, 14_787, 1_581, 115, 33_224, 4_482, 111, 1_355, 110, 29_173, 317, 50_833, 108, 20_147, 94_665, 111, 77_198, 107, 1], [110, 62_613, 117, 638, 112, 1_133, 121, 20_098, 1_355, 79_050, 13_872, 135, 1_596, 53_541, 1_352, 141, 13_039, 5_542, 124, 302, 518, 111, 268, 2_956, 115, 149, 4_427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1_235, 2_799, 18_289, 17_780, 204, 109, 9_474, 1_296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase, model_name='''google/bigbird-pegasus-large-arxiv''', revision='''ba85d0851d708441f91440d509690f1ab6353415''', ) @require_sentencepiece @require_tokenizers class __UpperCamelCase ( lowerCamelCase__ , unittest.TestCase ): lowercase : List[Any] =PegasusTokenizer lowercase : List[str] =PegasusTokenizerFast lowercase : List[Any] =True lowercase : Union[str, Any] =True def lowercase__ ( self ): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing lowerCamelCase_ =PegasusTokenizer(lowerCAmelCase, offset=0, mask_token_sent=lowerCAmelCase, mask_token='''[MASK]''' ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowercase__ ( self ): """simple docstring""" return PegasusTokenizer.from_pretrained('''google/bigbird-pegasus-large-arxiv''' ) def lowercase__ ( self, **lowerCAmelCase ): """simple docstring""" return PegasusTokenizer.from_pretrained(self.tmpdirname, **lowerCAmelCase ) def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" return ("This is a test", "This is a test") def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowerCamelCase_ =self.tokenizer_class.from_pretrained(self.tmpdirname ) lowerCamelCase_ =( '''Let\'s see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>''' ''' <pad> <pad> <pad>''' ) lowerCamelCase_ =rust_tokenizer([raw_input_str], return_tensors=lowerCAmelCase, add_special_tokens=lowerCAmelCase ).input_ids[0] lowerCamelCase_ =py_tokenizer([raw_input_str], return_tensors=lowerCAmelCase, add_special_tokens=lowerCAmelCase ).input_ids[0] self.assertListEqual(lowerCAmelCase, lowerCAmelCase ) @require_torch def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =['''This is going to be way too long.''' * 1_000, '''short example'''] lowerCamelCase_ =['''not super long but more than 5 tokens''', '''tiny'''] lowerCamelCase_ =self._large_tokenizer(lowerCAmelCase, padding=lowerCAmelCase, truncation=lowerCAmelCase, return_tensors='''pt''' ) lowerCamelCase_ =self._large_tokenizer( text_target=lowerCAmelCase, max_length=5, padding=lowerCAmelCase, truncation=lowerCAmelCase, return_tensors='''pt''' ) assert batch.input_ids.shape == (2, 4_096) assert batch.attention_mask.shape == (2, 4_096) assert targets["input_ids"].shape == (2, 5) assert len(lowerCAmelCase ) == 2 # input_ids, attention_mask. def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =( '''This is an example string that is used to test the original TF implementation against the HF''' ''' implementation''' ) lowerCamelCase_ =self._large_tokenizer(lowerCAmelCase ).input_ids self.assertListEqual( lowerCAmelCase, [182, 117, 142, 587, 4_211, 120, 117, 263, 112, 804, 109, 856, 25_016, 3_137, 464, 109, 26_955, 3_137, 1], )
75
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot import BlenderbotTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __snake_case =logging.get_logger(__name__) __snake_case ={ """vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_config_file""": """tokenizer_config.json""", } __snake_case ={ """vocab_file""": {"""facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"""}, """merges_file""": {"""facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"""}, """tokenizer_config_file""": { """facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json""" }, } __snake_case ={"""facebook/blenderbot-3B""": 128} class UpperCAmelCase_ ( __lowercase ): lowerCamelCase : List[Any] = VOCAB_FILES_NAMES lowerCamelCase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : Optional[Any] = ['''input_ids''', '''attention_mask'''] lowerCamelCase : List[Any] = BlenderbotTokenizer def __init__( self : Union[str, Any] , UpperCAmelCase__ : Tuple=None , UpperCAmelCase__ : Tuple=None , UpperCAmelCase__ : List[Any]=None , UpperCAmelCase__ : str="replace" , UpperCAmelCase__ : Dict="<s>" , UpperCAmelCase__ : Tuple="</s>" , UpperCAmelCase__ : Optional[Any]="</s>" , UpperCAmelCase__ : Any="<s>" , UpperCAmelCase__ : List[str]="<unk>" , UpperCAmelCase__ : int="<pad>" , UpperCAmelCase__ : Union[str, Any]="<mask>" , UpperCAmelCase__ : str=False , UpperCAmelCase__ : Union[str, Any]=True , **UpperCAmelCase__ : Optional[int] , ) -> int: super().__init__( UpperCAmelCase__ , UpperCAmelCase__ , tokenizer_file=UpperCAmelCase__ , errors=UpperCAmelCase__ , bos_token=UpperCAmelCase__ , eos_token=UpperCAmelCase__ , sep_token=UpperCAmelCase__ , cls_token=UpperCAmelCase__ , unk_token=UpperCAmelCase__ , pad_token=UpperCAmelCase__ , mask_token=UpperCAmelCase__ , add_prefix_space=UpperCAmelCase__ , trim_offsets=UpperCAmelCase__ , **UpperCAmelCase__ , ) lowerCAmelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , UpperCAmelCase__ ) != add_prefix_space: lowerCAmelCase = getattr(UpperCAmelCase__ , pre_tok_state.pop('type' ) ) lowerCAmelCase = add_prefix_space lowerCAmelCase = pre_tok_class(**UpperCAmelCase__ ) lowerCAmelCase = add_prefix_space lowerCAmelCase = 'post_processor' lowerCAmelCase = getattr(self.backend_tokenizer , UpperCAmelCase__ , UpperCAmelCase__ ) if tokenizer_component_instance: lowerCAmelCase = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: lowerCAmelCase = tuple(state['sep'] ) if "cls" in state: lowerCAmelCase = tuple(state['cls'] ) lowerCAmelCase = False if state.get('add_prefix_space' , UpperCAmelCase__ ) != add_prefix_space: lowerCAmelCase = add_prefix_space lowerCAmelCase = True if state.get('trim_offsets' , UpperCAmelCase__ ) != trim_offsets: lowerCAmelCase = trim_offsets lowerCAmelCase = True if changes_to_apply: lowerCAmelCase = getattr(UpperCAmelCase__ , state.pop('type' ) ) lowerCAmelCase = component_class(**UpperCAmelCase__ ) setattr(self.backend_tokenizer , UpperCAmelCase__ , UpperCAmelCase__ ) @property # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot def __UpperCAmelCase ( self : Union[str, Any] ) -> str: if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def __UpperCAmelCase ( self : int , UpperCAmelCase__ : Optional[Any] ) -> Tuple: lowerCAmelCase = AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else value lowerCAmelCase = value def __UpperCAmelCase ( self : Optional[Any] , *UpperCAmelCase__ : Union[str, Any] , **UpperCAmelCase__ : List[str] ) -> BatchEncoding: lowerCAmelCase = kwargs.get('is_split_into_words' , UpperCAmelCase__ ) assert self.add_prefix_space or not is_split_into_words, ( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*UpperCAmelCase__ , **UpperCAmelCase__ ) def __UpperCAmelCase ( self : List[str] , *UpperCAmelCase__ : str , **UpperCAmelCase__ : List[str] ) -> BatchEncoding: lowerCAmelCase = kwargs.get('is_split_into_words' , UpperCAmelCase__ ) assert self.add_prefix_space or not is_split_into_words, ( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*UpperCAmelCase__ , **UpperCAmelCase__ ) def __UpperCAmelCase ( self : str , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[str] = None ) -> Tuple[str]: lowerCAmelCase = self._tokenizer.model.save(UpperCAmelCase__ , name=UpperCAmelCase__ ) return tuple(UpperCAmelCase__ ) def __UpperCAmelCase ( self : Optional[int] , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None ) -> List[int]: lowerCAmelCase = [self.sep_token_id] lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __UpperCAmelCase ( self : List[str] , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None ) -> Any: return token_ids_a + [self.eos_token_id] def __UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase__ : "Conversation" ) -> List[int]: lowerCAmelCase = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(' ' + text ) else: # Generated responses should contain them already. inputs.append(UpperCAmelCase__ ) lowerCAmelCase = ' '.join(UpperCAmelCase__ ) lowerCAmelCase = self.encode(UpperCAmelCase__ ) if len(UpperCAmelCase__ ) > self.model_max_length: lowerCAmelCase = input_ids[-self.model_max_length :] logger.warning(F'''Trimmed input from conversation as it was longer than {self.model_max_length} tokens.''' ) return input_ids
4
0
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class _UpperCamelCase ( __A ): '''simple docstring''' @slow @require_torch def __UpperCamelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = EncoderDecoderModel.from_encoder_decoder_pretrained("prajjwal1/bert-tiny" , "prajjwal1/bert-tiny" ) SCREAMING_SNAKE_CASE : Any = BertTokenizer.from_pretrained("bert-base-uncased" ) SCREAMING_SNAKE_CASE : int = bertabert.config.encoder.vocab_size SCREAMING_SNAKE_CASE : Optional[int] = tokenizer.sep_token_id SCREAMING_SNAKE_CASE : Tuple = tokenizer.cls_token_id SCREAMING_SNAKE_CASE : Optional[int] = 128 SCREAMING_SNAKE_CASE : str = datasets.load_dataset("cnn_dailymail" , "3.0.0" , split="train[:1%]" ) SCREAMING_SNAKE_CASE : Optional[int] = datasets.load_dataset("cnn_dailymail" , "3.0.0" , split="validation[:1%]" ) SCREAMING_SNAKE_CASE : List[str] = train_dataset.select(range(32 ) ) SCREAMING_SNAKE_CASE : Dict = val_dataset.select(range(16 ) ) SCREAMING_SNAKE_CASE : str = 4 def _map_to_encoder_decoder_inputs(a : List[str] ): # Tokenizer will automatically set [BOS] <text> [EOS] SCREAMING_SNAKE_CASE : Any = tokenizer(batch["article"] , padding="max_length" , truncation=a , max_length=512 ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer(batch["highlights"] , padding="max_length" , truncation=a , max_length=128 ) SCREAMING_SNAKE_CASE : Optional[Any] = inputs.input_ids SCREAMING_SNAKE_CASE : List[str] = inputs.attention_mask SCREAMING_SNAKE_CASE : str = outputs.input_ids SCREAMING_SNAKE_CASE : List[str] = outputs.input_ids.copy() SCREAMING_SNAKE_CASE : List[str] = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["labels"] ] SCREAMING_SNAKE_CASE : Any = outputs.attention_mask assert all(len(a ) == 512 for x in inputs.input_ids ) assert all(len(a ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(a : int ): SCREAMING_SNAKE_CASE : Dict = pred.label_ids SCREAMING_SNAKE_CASE : Optional[Any] = pred.predictions # all unnecessary tokens are removed SCREAMING_SNAKE_CASE : Optional[int] = tokenizer.batch_decode(a , skip_special_tokens=a ) SCREAMING_SNAKE_CASE : int = tokenizer.batch_decode(a , skip_special_tokens=a ) SCREAMING_SNAKE_CASE : int = sum([int(pred_str[i] == label_str[i] ) for i in range(len(a ) )] ) / len(a ) return {"accuracy": accuracy} # map train dataset SCREAMING_SNAKE_CASE : Optional[Any] = train_dataset.map( _map_to_encoder_decoder_inputs , batched=a , batch_size=a , remove_columns=["article", "highlights"] , ) train_dataset.set_format( type="torch" , columns=["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "labels"] , ) # same for validation dataset SCREAMING_SNAKE_CASE : Union[str, Any] = val_dataset.map( _map_to_encoder_decoder_inputs , batched=a , batch_size=a , remove_columns=["article", "highlights"] , ) val_dataset.set_format( type="torch" , columns=["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "labels"] , ) SCREAMING_SNAKE_CASE : int = self.get_auto_remove_tmp_dir() SCREAMING_SNAKE_CASE : Any = SeqaSeqTrainingArguments( output_dir=a , per_device_train_batch_size=a , per_device_eval_batch_size=a , predict_with_generate=a , evaluation_strategy="steps" , do_train=a , do_eval=a , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer SCREAMING_SNAKE_CASE : Optional[Any] = SeqaSeqTrainer( model=a , args=a , compute_metrics=_compute_metrics , train_dataset=a , eval_dataset=a , tokenizer=a , ) # start training trainer.train()
76
'''simple docstring''' from __future__ import annotations from statistics import mean def a_ ( lowerCamelCase : list[int] , lowerCamelCase : list[int] , lowerCamelCase : int ): lowerCAmelCase = [0] * no_of_processes lowerCAmelCase = [0] * no_of_processes # Initialize remaining_time to waiting_time. for i in range(lowerCamelCase ): lowerCAmelCase = burst_time[i] lowerCAmelCase = [] lowerCAmelCase = 0 lowerCAmelCase = 0 # When processes are not completed, # A process whose arrival time has passed \ # and has remaining execution time is put into the ready_process. # The shortest process in the ready_process, target_process is executed. while completed != no_of_processes: lowerCAmelCase = [] lowerCAmelCase = -1 for i in range(lowerCamelCase ): if (arrival_time[i] <= total_time) and (remaining_time[i] > 0): ready_process.append(lowerCamelCase ) if len(lowerCamelCase ) > 0: lowerCAmelCase = ready_process[0] for i in ready_process: if remaining_time[i] < remaining_time[target_process]: lowerCAmelCase = i total_time += burst_time[target_process] completed += 1 lowerCAmelCase = 0 lowerCAmelCase = ( total_time - arrival_time[target_process] - burst_time[target_process] ) else: total_time += 1 return waiting_time def a_ ( lowerCamelCase : list[int] , lowerCamelCase : int , lowerCamelCase : list[int] ): lowerCAmelCase = [0] * no_of_processes for i in range(lowerCamelCase ): lowerCAmelCase = burst_time[i] + waiting_time[i] return turn_around_time if __name__ == "__main__": print("""[TEST CASE 01]""") __snake_case =4 __snake_case =[2, 5, 3, 7] __snake_case =[0, 0, 0, 0] __snake_case =calculate_waitingtime(arrival_time, burst_time, no_of_processes) __snake_case =calculate_turnaroundtime( burst_time, no_of_processes, waiting_time ) # Printing the Result print("""PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time""") for i, process_id in enumerate(list(range(1, 5))): print( F'''{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t''' F'''{waiting_time[i]}\t\t\t\t{turn_around_time[i]}''' ) print(F'''\nAverage waiting time = {mean(waiting_time):.5f}''') print(F'''Average turnaround time = {mean(turn_around_time):.5f}''')
4
0
"""simple docstring""" import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class UpperCAmelCase_ ( _a): lowerCamelCase__ : Optional[Any] = (DDPMScheduler,) def _UpperCAmelCase ( self , **a ) -> str: lowercase__ : int = { 'num_train_timesteps': 1_0_0_0, 'beta_start': 0.0_001, 'beta_end': 0.02, 'beta_schedule': 'linear', 'variance_type': 'fixed_small', 'clip_sample': True, } config.update(**a ) return config def _UpperCAmelCase ( self ) -> Any: for timesteps in [1, 5, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=a ) def _UpperCAmelCase ( self ) -> Dict: for beta_start, beta_end in zip([0.0_001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=a , beta_end=a ) def _UpperCAmelCase ( self ) -> Any: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=a ) def _UpperCAmelCase ( self ) -> str: for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=a ) def _UpperCAmelCase ( self ) -> Any: for clip_sample in [True, False]: self.check_over_configs(clip_sample=a ) def _UpperCAmelCase ( self ) -> Optional[int]: self.check_over_configs(thresholding=a ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=a , prediction_type=a , sample_max_value=a , ) def _UpperCAmelCase ( self ) -> List[str]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=a ) def _UpperCAmelCase ( self ) -> List[str]: for t in [0, 5_0_0, 9_9_9]: self.check_over_forward(time_step=a ) def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : Optional[Any] = self.scheduler_classes[0] lowercase__ : List[Any] = self.get_scheduler_config() lowercase__ : Union[str, Any] = scheduler_class(**a ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_8_7 ) - 0.00_979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_9_9 ) - 0.02 ) ) < 1e-5 def _UpperCAmelCase ( self ) -> Any: lowercase__ : Optional[Any] = self.scheduler_classes[0] lowercase__ : Optional[Any] = self.get_scheduler_config() lowercase__ : Union[str, Any] = scheduler_class(**a ) lowercase__ : List[Any] = len(a ) lowercase__ : List[Any] = self.dummy_model() lowercase__ : str = self.dummy_sample_deter lowercase__ : List[Any] = torch.manual_seed(0 ) for t in reversed(range(a ) ): # 1. predict noise residual lowercase__ : Dict = model(a , a ) # 2. predict previous mean of sample x_t-1 lowercase__ : Optional[int] = scheduler.step(a , a , a , generator=a ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance lowercase__ : List[str] = pred_prev_sample lowercase__ : Any = torch.sum(torch.abs(a ) ) lowercase__ : str = torch.mean(torch.abs(a ) ) assert abs(result_sum.item() - 258.9_606 ) < 1e-2 assert abs(result_mean.item() - 0.3_372 ) < 1e-3 def _UpperCAmelCase ( self ) -> Optional[int]: lowercase__ : Any = self.scheduler_classes[0] lowercase__ : Optional[int] = self.get_scheduler_config(prediction_type='v_prediction' ) lowercase__ : Optional[Any] = scheduler_class(**a ) lowercase__ : int = len(a ) lowercase__ : Dict = self.dummy_model() lowercase__ : Optional[int] = self.dummy_sample_deter lowercase__ : List[Any] = torch.manual_seed(0 ) for t in reversed(range(a ) ): # 1. predict noise residual lowercase__ : Optional[Any] = model(a , a ) # 2. predict previous mean of sample x_t-1 lowercase__ : Optional[int] = scheduler.step(a , a , a , generator=a ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance lowercase__ : List[Any] = pred_prev_sample lowercase__ : Dict = torch.sum(torch.abs(a ) ) lowercase__ : List[str] = torch.mean(torch.abs(a ) ) assert abs(result_sum.item() - 202.0_296 ) < 1e-2 assert abs(result_mean.item() - 0.2_631 ) < 1e-3 def _UpperCAmelCase ( self ) -> Union[str, Any]: lowercase__ : Optional[Any] = self.scheduler_classes[0] lowercase__ : Any = self.get_scheduler_config() lowercase__ : List[Any] = scheduler_class(**a ) lowercase__ : Any = [1_0_0, 8_7, 5_0, 1, 0] scheduler.set_timesteps(timesteps=a ) lowercase__ : List[Any] = scheduler.timesteps for i, timestep in enumerate(a ): if i == len(a ) - 1: lowercase__ : Union[str, Any] = -1 else: lowercase__ : int = timesteps[i + 1] lowercase__ : Tuple = scheduler.previous_timestep(a ) lowercase__ : List[Any] = prev_t.item() self.assertEqual(a , a ) def _UpperCAmelCase ( self ) -> Optional[int]: lowercase__ : Union[str, Any] = self.scheduler_classes[0] lowercase__ : List[str] = self.get_scheduler_config() lowercase__ : Any = scheduler_class(**a ) lowercase__ : Optional[Any] = [1_0_0, 8_7, 5_0, 5_1, 0] with self.assertRaises(a , msg='`custom_timesteps` must be in descending order.' ): scheduler.set_timesteps(timesteps=a ) def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : Tuple = self.scheduler_classes[0] lowercase__ : int = self.get_scheduler_config() lowercase__ : int = scheduler_class(**a ) lowercase__ : Dict = [1_0_0, 8_7, 5_0, 1, 0] lowercase__ : Dict = len(a ) with self.assertRaises(a , msg='Can only pass one of `num_inference_steps` or `custom_timesteps`.' ): scheduler.set_timesteps(num_inference_steps=a , timesteps=a ) def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : Union[str, Any] = self.scheduler_classes[0] lowercase__ : str = self.get_scheduler_config() lowercase__ : List[Any] = scheduler_class(**a ) lowercase__ : Union[str, Any] = [scheduler.config.num_train_timesteps] with self.assertRaises( a , msg='`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}' , ): scheduler.set_timesteps(timesteps=a )
77
'''simple docstring''' import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase ): def __UpperCAmelCase ( self : Optional[int] ) -> int: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCAmelCase ( self : Tuple ) -> Any: lowerCAmelCase = StableDiffusionKDiffusionPipeline.from_pretrained('CompVis/stable-diffusion-v1-4' ) lowerCAmelCase = sd_pipe.to(UpperCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) sd_pipe.set_scheduler('sample_euler' ) lowerCAmelCase = 'A painting of a squirrel eating a burger' lowerCAmelCase = torch.manual_seed(0 ) lowerCAmelCase = sd_pipe([prompt] , generator=UpperCAmelCase__ , guidance_scale=9.0 , num_inference_steps=2_0 , output_type='np' ) lowerCAmelCase = output.images lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) lowerCAmelCase = np.array([0.0_447, 0.0_492, 0.0_468, 0.0_408, 0.0_383, 0.0_408, 0.0_354, 0.0_380, 0.0_339] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __UpperCAmelCase ( self : List[str] ) -> Dict: lowerCAmelCase = StableDiffusionKDiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' ) lowerCAmelCase = sd_pipe.to(UpperCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) sd_pipe.set_scheduler('sample_euler' ) lowerCAmelCase = 'A painting of a squirrel eating a burger' lowerCAmelCase = torch.manual_seed(0 ) lowerCAmelCase = sd_pipe([prompt] , generator=UpperCAmelCase__ , guidance_scale=9.0 , num_inference_steps=2_0 , output_type='np' ) lowerCAmelCase = output.images lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) lowerCAmelCase = np.array([0.1_237, 0.1_320, 0.1_438, 0.1_359, 0.1_390, 0.1_132, 0.1_277, 0.1_175, 0.1_112] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-1 def __UpperCAmelCase ( self : Optional[Any] ) -> List[str]: lowerCAmelCase = StableDiffusionKDiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' ) lowerCAmelCase = sd_pipe.to(UpperCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) sd_pipe.set_scheduler('sample_dpmpp_2m' ) lowerCAmelCase = 'A painting of a squirrel eating a burger' lowerCAmelCase = torch.manual_seed(0 ) lowerCAmelCase = sd_pipe( [prompt] , generator=UpperCAmelCase__ , guidance_scale=7.5 , num_inference_steps=1_5 , output_type='np' , use_karras_sigmas=UpperCAmelCase__ , ) lowerCAmelCase = output.images lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) lowerCAmelCase = np.array( [0.11_381_689, 0.12_112_921, 0.1_389_457, 0.12_549_606, 0.1_244_964, 0.10_831_517, 0.11_562_866, 0.10_867_816, 0.10_499_048] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
4
0
"""simple docstring""" import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetrImageProcessor class A_ ( unittest.TestCase ): """simple docstring""" def __init__( self :int , lowercase_ :Union[str, Any] , lowercase_ :List[str]=7 , lowercase_ :Any=3 , lowercase_ :List[str]=30 , lowercase_ :Union[str, Any]=4_00 , lowercase_ :int=True , lowercase_ :Optional[int]=None , lowercase_ :Any=True , lowercase_ :Optional[Any]=1 / 2_55 , lowercase_ :Union[str, Any]=True , lowercase_ :Any=[0.5, 0.5, 0.5] , lowercase_ :int=[0.5, 0.5, 0.5] , lowercase_ :List[Any]=True , ) -> Tuple: # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p UpperCAmelCase = size if size is not None else {'shortest_edge': 18, 'longest_edge': 13_33} UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = num_channels UpperCAmelCase = min_resolution UpperCAmelCase = max_resolution UpperCAmelCase = do_resize UpperCAmelCase = size UpperCAmelCase = do_rescale UpperCAmelCase = rescale_factor UpperCAmelCase = do_normalize UpperCAmelCase = image_mean UpperCAmelCase = image_std UpperCAmelCase = do_pad def UpperCAmelCase__ ( self :Union[str, Any] ) -> Union[str, Any]: return { "do_resize": self.do_resize, "size": self.size, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_pad": self.do_pad, } def UpperCAmelCase__ ( self :int , lowercase_ :List[str] , lowercase_ :List[str]=False ) -> Union[str, Any]: if not batched: UpperCAmelCase = image_inputs[0] if isinstance(lowercase_ , Image.Image ): UpperCAmelCase , UpperCAmelCase = image.size else: UpperCAmelCase , UpperCAmelCase = image.shape[1], image.shape[2] if w < h: UpperCAmelCase = int(self.size['shortest_edge'] * h / w ) UpperCAmelCase = self.size['shortest_edge'] elif w > h: UpperCAmelCase = self.size['shortest_edge'] UpperCAmelCase = int(self.size['shortest_edge'] * w / h ) else: UpperCAmelCase = self.size['shortest_edge'] UpperCAmelCase = self.size['shortest_edge'] else: UpperCAmelCase = [] for image in image_inputs: UpperCAmelCase , UpperCAmelCase = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) UpperCAmelCase = max(lowercase_ , key=lambda lowercase_ : item[0] )[0] UpperCAmelCase = max(lowercase_ , key=lambda lowercase_ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class A_ ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" __UpperCamelCase = DetrImageProcessor if is_vision_available() else None def UpperCAmelCase__ ( self :Any ) -> Tuple: UpperCAmelCase = DetrImageProcessingTester(self ) @property def UpperCAmelCase__ ( self :Optional[int] ) -> Dict: return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase__ ( self :List[str] ) -> Tuple: UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase_ , 'image_mean' ) ) self.assertTrue(hasattr(lowercase_ , 'image_std' ) ) self.assertTrue(hasattr(lowercase_ , 'do_normalize' ) ) self.assertTrue(hasattr(lowercase_ , 'do_rescale' ) ) self.assertTrue(hasattr(lowercase_ , 'rescale_factor' ) ) self.assertTrue(hasattr(lowercase_ , 'do_resize' ) ) self.assertTrue(hasattr(lowercase_ , 'size' ) ) self.assertTrue(hasattr(lowercase_ , 'do_pad' ) ) def UpperCAmelCase__ ( self :Dict ) -> Optional[Any]: UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 18, 'longest_edge': 13_33} ) self.assertEqual(image_processor.do_pad , lowercase_ ) UpperCAmelCase = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=lowercase_ ) self.assertEqual(image_processor.size , {'shortest_edge': 42, 'longest_edge': 84} ) self.assertEqual(image_processor.do_pad , lowercase_ ) def UpperCAmelCase__ ( self :List[Any] ) -> Union[str, Any]: pass def UpperCAmelCase__ ( self :Tuple ) -> Union[str, Any]: # Initialize image_processing UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , Image.Image ) # Test not batched input UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values UpperCAmelCase , UpperCAmelCase = self.image_processor_tester.get_expected_values(lowercase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase , UpperCAmelCase = self.image_processor_tester.get_expected_values(lowercase_ , batched=lowercase_ ) UpperCAmelCase = image_processing(lowercase_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase__ ( self :int ) -> Optional[int]: # Initialize image_processing UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ , numpify=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , np.ndarray ) # Test not batched input UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values UpperCAmelCase , UpperCAmelCase = self.image_processor_tester.get_expected_values(lowercase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase = image_processing(lowercase_ , return_tensors='pt' ).pixel_values UpperCAmelCase , UpperCAmelCase = self.image_processor_tester.get_expected_values(lowercase_ , batched=lowercase_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase__ ( self :Dict ) -> int: # Initialize image_processing UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ , torchify=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , torch.Tensor ) # Test not batched input UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values UpperCAmelCase , UpperCAmelCase = self.image_processor_tester.get_expected_values(lowercase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase = image_processing(lowercase_ , return_tensors='pt' ).pixel_values UpperCAmelCase , UpperCAmelCase = self.image_processor_tester.get_expected_values(lowercase_ , batched=lowercase_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def UpperCAmelCase__ ( self :List[str] ) -> List[str]: # prepare image and target UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' , 'r' ) as f: UpperCAmelCase = json.loads(f.read() ) UpperCAmelCase = {'image_id': 3_97_69, 'annotations': target} # encode them UpperCAmelCase = DetrImageProcessor.from_pretrained('facebook/detr-resnet-50' ) UpperCAmelCase = image_processing(images=lowercase_ , annotations=lowercase_ , return_tensors='pt' ) # verify pixel values UpperCAmelCase = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding['pixel_values'].shape , lowercase_ ) UpperCAmelCase = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , lowercase_ , atol=1E-4 ) ) # verify area UpperCAmelCase = torch.tensor([5887.9600, 1_1250.2061, 48_9353.8438, 83_7122.7500, 14_7967.5156, 16_5732.3438] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , lowercase_ ) ) # verify boxes UpperCAmelCase = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , lowercase_ ) UpperCAmelCase = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , lowercase_ , atol=1E-3 ) ) # verify image_id UpperCAmelCase = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , lowercase_ ) ) # verify is_crowd UpperCAmelCase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , lowercase_ ) ) # verify class_labels UpperCAmelCase = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , lowercase_ ) ) # verify orig_size UpperCAmelCase = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , lowercase_ ) ) # verify size UpperCAmelCase = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , lowercase_ ) ) @slow def UpperCAmelCase__ ( self :Optional[Any] ) -> Union[str, Any]: # prepare image, target and masks_path UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' , 'r' ) as f: UpperCAmelCase = json.loads(f.read() ) UpperCAmelCase = {'file_name': '000000039769.png', 'image_id': 3_97_69, 'segments_info': target} UpperCAmelCase = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' ) # encode them UpperCAmelCase = DetrImageProcessor.from_pretrained('facebook/detr-resnet-50-panoptic' ) UpperCAmelCase = image_processing(images=lowercase_ , annotations=lowercase_ , masks_path=lowercase_ , return_tensors='pt' ) # verify pixel values UpperCAmelCase = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding['pixel_values'].shape , lowercase_ ) UpperCAmelCase = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , lowercase_ , atol=1E-4 ) ) # verify area UpperCAmelCase = torch.tensor([14_7979.6875, 16_5527.0469, 48_4638.5938, 1_1292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , lowercase_ ) ) # verify boxes UpperCAmelCase = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , lowercase_ ) UpperCAmelCase = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , lowercase_ , atol=1E-3 ) ) # verify image_id UpperCAmelCase = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , lowercase_ ) ) # verify is_crowd UpperCAmelCase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , lowercase_ ) ) # verify class_labels UpperCAmelCase = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , lowercase_ ) ) # verify masks UpperCAmelCase = 82_28_73 self.assertEqual(encoding['labels'][0]['masks'].sum().item() , lowercase_ ) # verify orig_size UpperCAmelCase = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , lowercase_ ) ) # verify size UpperCAmelCase = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , lowercase_ ) )
78
'''simple docstring''' # Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #################################################################################################### # # Note: If when running this conversion script you're getting an exception: # ModuleNotFoundError: No module named 'megatron.model.enums' # you need to tell python where to find the clone of Megatron-LM, e.g.: # # cd /tmp # git clone https://github.com/NVIDIA/Megatron-LM # PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ... # # if you already have it cloned elsewhere, simply adjust the path to the existing path # # If the training was done using a Megatron-LM fork, e.g., # https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one # in your path, i.e., /path/to/Megatron-DeepSpeed/ # import argparse import os import re import zipfile import torch from transformers import AutoTokenizer, GPTaConfig def a_ ( lowerCamelCase : int , lowerCamelCase : Optional[Any] , lowerCamelCase : Union[str, Any]=0 ): # Format the message. if name is None: lowerCAmelCase = None else: lowerCAmelCase = '.' * max(0 , spaces - 2 ) + '# {:' + str(50 - spaces ) + 's}' lowerCAmelCase = fmt.format(lowerCamelCase ) # Print and recurse (if needed). if isinstance(lowerCamelCase , lowerCamelCase ): if msg is not None: print(lowerCamelCase ) for k in val.keys(): recursive_print(lowerCamelCase , val[k] , spaces + 2 ) elif isinstance(lowerCamelCase , torch.Tensor ): print(lowerCamelCase , ':' , val.size() ) else: print(lowerCamelCase , ':' , lowerCamelCase ) def a_ ( lowerCamelCase : Optional[int] , lowerCamelCase : List[str] , lowerCamelCase : List[Any] , lowerCamelCase : Dict , lowerCamelCase : Tuple ): # Permutes layout of param tensor to [num_splits * num_heads * hidden_size, :] # for compatibility with later versions of NVIDIA Megatron-LM. # The inverse operation is performed inside Megatron-LM to read checkpoints: # https://github.com/NVIDIA/Megatron-LM/blob/v2.4/megatron/checkpointing.py#L209 # If param is the weight tensor of the self-attention block, the returned tensor # will have to be transposed one more time to be read by HuggingFace GPT2. lowerCAmelCase = param.size() if checkpoint_version == 1.0: # version 1.0 stores [num_heads * hidden_size * num_splits, :] lowerCAmelCase = (num_heads, hidden_size, num_splits) + input_shape[1:] lowerCAmelCase = param.view(*lowerCamelCase ) lowerCAmelCase = param.transpose(0 , 2 ) lowerCAmelCase = param.transpose(1 , 2 ).contiguous() elif checkpoint_version >= 2.0: # other versions store [num_heads * num_splits * hidden_size, :] lowerCAmelCase = (num_heads, num_splits, hidden_size) + input_shape[1:] lowerCAmelCase = param.view(*lowerCamelCase ) lowerCAmelCase = param.transpose(0 , 1 ).contiguous() lowerCAmelCase = param.view(*lowerCamelCase ) return param def a_ ( lowerCamelCase : Optional[int] , lowerCamelCase : Optional[int] , lowerCamelCase : str ): # The converted output model. lowerCAmelCase = {} # old versions did not store training args lowerCAmelCase = input_state_dict.get('args' , lowerCamelCase ) if ds_args is not None: # do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint # from pprint import pprint # pprint(vars(ds_args)) lowerCAmelCase = ds_args.padded_vocab_size lowerCAmelCase = ds_args.max_position_embeddings lowerCAmelCase = ds_args.hidden_size lowerCAmelCase = ds_args.num_layers lowerCAmelCase = ds_args.num_attention_heads lowerCAmelCase = ds_args.ffn_hidden_size # pprint(config) # The number of heads. lowerCAmelCase = config.n_head # The hidden_size per head. lowerCAmelCase = config.n_embd // config.n_head # Megatron-LM checkpoint version if "checkpoint_version" in input_state_dict.keys(): lowerCAmelCase = input_state_dict['checkpoint_version'] else: lowerCAmelCase = 0.0 # The model. lowerCAmelCase = input_state_dict['model'] # The language model. lowerCAmelCase = model['language_model'] # The embeddings. lowerCAmelCase = lm['embedding'] # The word embeddings. lowerCAmelCase = embeddings['word_embeddings']['weight'] # Truncate the embedding table to vocab_size rows. lowerCAmelCase = word_embeddings[: config.vocab_size, :] lowerCAmelCase = word_embeddings # The position embeddings. lowerCAmelCase = embeddings['position_embeddings']['weight'] # Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size] lowerCAmelCase = pos_embeddings.size(0 ) if n_positions != config.n_positions: raise ValueError( f'''pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don\'t match''' ) # Store the position embeddings. lowerCAmelCase = pos_embeddings # The transformer. lowerCAmelCase = lm['transformer'] if 'transformer' in lm.keys() else lm['encoder'] # The regex to extract layer names. lowerCAmelCase = re.compile(R'layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)' ) # The simple map of names for "automated" rules. lowerCAmelCase = { 'attention.dense': '.attn.c_proj.', 'self_attention.dense': '.attn.c_proj.', 'mlp.dense_h_to_4h': '.mlp.c_fc.', 'mlp.dense_4h_to_h': '.mlp.c_proj.', } # Extract the layers. for key, val in transformer.items(): # Match the name. lowerCAmelCase = layer_re.match(lowerCamelCase ) # Stop if that's not a layer if m is None: break # The index of the layer. lowerCAmelCase = int(m.group(1 ) ) # The name of the operation. lowerCAmelCase = m.group(2 ) # Is it a weight or a bias? lowerCAmelCase = m.group(3 ) # The name of the layer. lowerCAmelCase = f'''transformer.h.{layer_idx}''' # For layernorm(s), simply store the layer norm. if op_name.endswith('layernorm' ): lowerCAmelCase = 'ln_1' if op_name.startswith('input' ) else 'ln_2' lowerCAmelCase = val # Transpose the QKV matrix. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "weight": # Insert a tensor of 1x1xDxD bias. lowerCAmelCase = torch.tril(torch.ones((n_positions, n_positions) , dtype=torch.floataa ) ).view( 1 , 1 , lowerCamelCase , lowerCamelCase ) lowerCAmelCase = causal_mask # Insert a "dummy" tensor for masked_bias. lowerCAmelCase = torch.tensor(-1e4 , dtype=torch.floataa ) lowerCAmelCase = masked_bias lowerCAmelCase = fix_query_key_value_ordering(lowerCamelCase , lowerCamelCase , 3 , lowerCamelCase , lowerCamelCase ) # Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D. lowerCAmelCase = out_val.transpose(0 , 1 ).contiguous() # Store. lowerCAmelCase = out_val # Transpose the bias. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "bias": lowerCAmelCase = fix_query_key_value_ordering(lowerCamelCase , lowerCamelCase , 3 , lowerCamelCase , lowerCamelCase ) # Store. No change of shape. lowerCAmelCase = out_val # Transpose the weights. elif weight_or_bias == "weight": lowerCAmelCase = megatron_to_transformers[op_name] lowerCAmelCase = val.transpose(0 , 1 ) # Copy the bias. elif weight_or_bias == "bias": lowerCAmelCase = megatron_to_transformers[op_name] lowerCAmelCase = val # DEBUG. assert config.n_layer == layer_idx + 1 # The final layernorm. lowerCAmelCase = transformer['final_layernorm.weight'] lowerCAmelCase = transformer['final_layernorm.bias'] # For LM head, transformers' wants the matrix to weight embeddings. lowerCAmelCase = word_embeddings # It should be done! return output_state_dict def a_ ( ): # Create the argument parser. lowerCAmelCase = argparse.ArgumentParser() parser.add_argument('--print-checkpoint-structure' , action='store_true' ) parser.add_argument( 'path_to_checkpoint' , type=lowerCamelCase , help='Path to the checkpoint file (.zip archive or direct .pt file)' , ) parser.add_argument( '--config_file' , default='' , type=lowerCamelCase , help='An optional config json file describing the pre-trained model.' , ) lowerCAmelCase = parser.parse_args() # Extract the basename. lowerCAmelCase = os.path.dirname(args.path_to_checkpoint ) # Load the model. # the .zip is very optional, let's keep it for backward compatibility print(f'''Extracting PyTorch state dictionary from {args.path_to_checkpoint}''' ) if args.path_to_checkpoint.endswith('.zip' ): with zipfile.ZipFile(args.path_to_checkpoint , 'r' ) as checkpoint: with checkpoint.open('release/mp_rank_00/model_optim_rng.pt' ) as pytorch_dict: lowerCAmelCase = torch.load(lowerCamelCase , map_location='cpu' ) else: lowerCAmelCase = torch.load(args.path_to_checkpoint , map_location='cpu' ) lowerCAmelCase = input_state_dict.get('args' , lowerCamelCase ) # Read the config, or default to the model released by NVIDIA. if args.config_file == "": if ds_args is not None: if ds_args.bias_gelu_fusion: lowerCAmelCase = 'gelu_fast' elif ds_args.openai_gelu: lowerCAmelCase = 'gelu_new' else: lowerCAmelCase = 'gelu' else: # in the very early days this used to be "gelu_new" lowerCAmelCase = 'gelu_new' # Spell out all parameters in case the defaults change. lowerCAmelCase = GPTaConfig( vocab_size=50257 , n_positions=1024 , n_embd=1024 , n_layer=24 , n_head=16 , n_inner=4096 , activation_function=lowerCamelCase , resid_pdrop=0.1 , embd_pdrop=0.1 , attn_pdrop=0.1 , layer_norm_epsilon=1e-5 , initializer_range=0.02 , summary_type='cls_index' , summary_use_proj=lowerCamelCase , summary_activation=lowerCamelCase , summary_proj_to_labels=lowerCamelCase , summary_first_dropout=0.1 , scale_attn_weights=lowerCamelCase , use_cache=lowerCamelCase , bos_token_id=50256 , eos_token_id=50256 , ) else: lowerCAmelCase = GPTaConfig.from_json_file(args.config_file ) lowerCAmelCase = ['GPT2LMHeadModel'] # Convert. print('Converting' ) lowerCAmelCase = convert_megatron_checkpoint(lowerCamelCase , lowerCamelCase , lowerCamelCase ) # Print the structure of converted state dict. if args.print_checkpoint_structure: recursive_print(lowerCamelCase , lowerCamelCase ) # Add tokenizer class info to config # see https://github.com/huggingface/transformers/issues/13906) if ds_args is not None: lowerCAmelCase = ds_args.tokenizer_type if tokenizer_type == "GPT2BPETokenizer": lowerCAmelCase = 'gpt2' elif tokenizer_type == "PretrainedFromHF": lowerCAmelCase = ds_args.tokenizer_name_or_path else: raise ValueError(f'''Unrecognized tokenizer_type {tokenizer_type}''' ) else: lowerCAmelCase = 'gpt2' lowerCAmelCase = AutoTokenizer.from_pretrained(lowerCamelCase ) lowerCAmelCase = type(lowerCamelCase ).__name__ lowerCAmelCase = tokenizer_class # Store the config to file. print('Saving config' ) config.save_pretrained(lowerCamelCase ) # Save tokenizer based on args print(f'''Adding {tokenizer_class} tokenizer files''' ) tokenizer.save_pretrained(lowerCamelCase ) # Store the state_dict to file. lowerCAmelCase = os.path.join(lowerCamelCase , 'pytorch_model.bin' ) print(f'''Saving checkpoint to "{output_checkpoint_file}"''' ) torch.save(lowerCamelCase , lowerCamelCase ) #################################################################################################### if __name__ == "__main__": main() ####################################################################################################
4
0
'''simple docstring''' from __future__ import annotations import pandas as pd def __lowercase ( __lowercase , __lowercase , __lowercase ) -> list[int]: '''simple docstring''' _A = [0] * no_of_processes _A = [0] * no_of_processes # Copy the burst time into remaining_time[] for i in range(__lowercase ): _A = burst_time[i] _A = 0 _A = 0 _A = 9_9999_9999 _A = 0 _A = False # Process until all processes are completed while complete != no_of_processes: for j in range(__lowercase ): if arrival_time[j] <= increment_time and remaining_time[j] > 0: if remaining_time[j] < minm: _A = remaining_time[j] _A = j _A = True if not check: increment_time += 1 continue remaining_time[short] -= 1 _A = remaining_time[short] if minm == 0: _A = 9_9999_9999 if remaining_time[short] == 0: complete += 1 _A = False # Find finish time of current process _A = increment_time + 1 # Calculate waiting time _A = finish_time - arrival_time[short] _A = finar - burst_time[short] if waiting_time[short] < 0: _A = 0 # Increment time increment_time += 1 return waiting_time def __lowercase ( __lowercase , __lowercase , __lowercase ) -> list[int]: '''simple docstring''' _A = [0] * no_of_processes for i in range(__lowercase ): _A = burst_time[i] + waiting_time[i] return turn_around_time def __lowercase ( __lowercase , __lowercase , __lowercase ) -> None: '''simple docstring''' _A = 0 _A = 0 for i in range(__lowercase ): _A = total_waiting_time + waiting_time[i] _A = total_turn_around_time + turn_around_time[i] print(F'''Average waiting time = {total_waiting_time / no_of_processes:.5f}''' ) print("Average turn around time =" , total_turn_around_time / no_of_processes ) if __name__ == "__main__": print('''Enter how many process you want to analyze''') lowerCamelCase_ = int(input()) lowerCamelCase_ = [0] * no_of_processes lowerCamelCase_ = [0] * no_of_processes lowerCamelCase_ = list(range(1, no_of_processes + 1)) for i in range(no_of_processes): print('''Enter the arrival time and burst time for process:--''' + str(i + 1)) lowerCamelCase_ , lowerCamelCase_ = map(int, input().split()) lowerCamelCase_ = calculate_waitingtime(arrival_time, burst_time, no_of_processes) lowerCamelCase_ = burst_time lowerCamelCase_ = no_of_processes lowerCamelCase_ = waiting_time lowerCamelCase_ = calculate_turnaroundtime(bt, n, wt) calculate_average_times(waiting_time, turn_around_time, no_of_processes) lowerCamelCase_ = pd.DataFrame( list(zip(processes, burst_time, arrival_time, waiting_time, turn_around_time)), columns=[ '''Process''', '''BurstTime''', '''ArrivalTime''', '''WaitingTime''', '''TurnAroundTime''', ], ) # Printing the dataFrame pd.set_option('''display.max_rows''', fcfs.shape[0] + 1) print(fcfs)
79
'''simple docstring''' from __future__ import annotations from typing import Any class UpperCAmelCase_ : def __init__( self : Optional[int] , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : float = 0 ) -> None: lowerCAmelCase , lowerCAmelCase = row, column lowerCAmelCase = [[default_value for c in range(UpperCAmelCase__ )] for r in range(UpperCAmelCase__ )] def __str__( self : List[str] ) -> str: lowerCAmelCase = F'''Matrix consist of {self.row} rows and {self.column} columns\n''' # Make string identifier lowerCAmelCase = 0 for row_vector in self.array: for obj in row_vector: lowerCAmelCase = max(UpperCAmelCase__ , len(str(UpperCAmelCase__ ) ) ) lowerCAmelCase = F'''%{max_element_length}s''' # Make string and return def single_line(UpperCAmelCase__ : list[float] ) -> str: nonlocal string_format_identifier lowerCAmelCase = '[' line += ", ".join(string_format_identifier % (obj,) for obj in row_vector ) line += "]" return line s += "\n".join(single_line(UpperCAmelCase__ ) for row_vector in self.array ) return s def __repr__( self : List[str] ) -> str: return str(self ) def __UpperCAmelCase ( self : Optional[int] , UpperCAmelCase__ : tuple[int, int] ) -> bool: if not (isinstance(UpperCAmelCase__ , (list, tuple) ) and len(UpperCAmelCase__ ) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__( self : Any , UpperCAmelCase__ : tuple[int, int] ) -> Any: assert self.validate_indicies(UpperCAmelCase__ ) return self.array[loc[0]][loc[1]] def __setitem__( self : Dict , UpperCAmelCase__ : tuple[int, int] , UpperCAmelCase__ : float ) -> None: assert self.validate_indicies(UpperCAmelCase__ ) lowerCAmelCase = value def __add__( self : Any , UpperCAmelCase__ : Matrix ) -> Matrix: assert isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) assert self.row == another.row and self.column == another.column # Add lowerCAmelCase = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): lowerCAmelCase = self[r, c] + another[r, c] return result def __neg__( self : int ) -> Matrix: lowerCAmelCase = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): lowerCAmelCase = -self[r, c] return result def __sub__( self : str , UpperCAmelCase__ : Matrix ) -> Matrix: return self + (-another) def __mul__( self : str , UpperCAmelCase__ : int | float | Matrix ) -> Matrix: if isinstance(UpperCAmelCase__ , (int, float) ): # Scalar multiplication lowerCAmelCase = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): lowerCAmelCase = self[r, c] * another return result elif isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): # Matrix multiplication assert self.column == another.row lowerCAmelCase = Matrix(self.row , another.column ) for r in range(self.row ): for c in range(another.column ): for i in range(self.column ): result[r, c] += self[r, i] * another[i, c] return result else: lowerCAmelCase = F'''Unsupported type given for another ({type(UpperCAmelCase__ )})''' raise TypeError(UpperCAmelCase__ ) def __UpperCAmelCase ( self : Optional[Any] ) -> Matrix: lowerCAmelCase = Matrix(self.column , self.row ) for r in range(self.row ): for c in range(self.column ): lowerCAmelCase = self[r, c] return result def __UpperCAmelCase ( self : List[str] , UpperCAmelCase__ : Matrix , UpperCAmelCase__ : Matrix ) -> Any: assert isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) and isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate lowerCAmelCase = v.transpose() lowerCAmelCase = (v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def a_ ( ): # a^(-1) lowerCAmelCase = Matrix(3 , 3 , 0 ) for i in range(3 ): lowerCAmelCase = 1 print(f'''a^(-1) is {ainv}''' ) # u, v lowerCAmelCase = Matrix(3 , 1 , 0 ) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = 1, 2, -3 lowerCAmelCase = Matrix(3 , 1 , 0 ) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = 4, -2, 5 print(f'''u is {u}''' ) print(f'''v is {v}''' ) print(f'''uv^T is {u * v.transpose()}''' ) # Sherman Morrison print(f'''(a + uv^T)^(-1) is {ainv.sherman_morrison(lowerCamelCase , lowerCamelCase )}''' ) def a_ ( ): import doctest doctest.testmod() testa()
4
0
'''simple docstring''' import os from typing import List, Optional, Union from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import AddedToken from ...utils import logging a__ : List[str] = logging.get_logger(__name__) a__ : Optional[int] = {'vocab_file': 'vocab.txt'} a__ : Optional[Any] = { 'vocab_file': { 'facebook/esm2_t6_8M_UR50D': 'https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt', 'facebook/esm2_t12_35M_UR50D': 'https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt', }, } a__ : Optional[int] = { 'facebook/esm2_t6_8M_UR50D': 1_0_2_4, 'facebook/esm2_t12_35M_UR50D': 1_0_2_4, } def _UpperCamelCase ( __A ) -> str: '''simple docstring''' with open(__A , "r" ) as f: UpperCamelCase__ = f.read().splitlines() return [l.strip() for l in lines] class lowercase_ ( a__ ): __UpperCAmelCase = VOCAB_FILES_NAMES __UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase = ['input_ids', 'attention_mask'] def __init__( self , a , a="<unk>" , a="<cls>" , a="<pad>" , a="<mask>" , a="<eos>" , **a , ): super().__init__(**a ) UpperCamelCase__ = load_vocab_file(a ) UpperCamelCase__ = dict(enumerate(self.all_tokens ) ) UpperCamelCase__ = {tok: ind for ind, tok in enumerate(self.all_tokens )} UpperCamelCase__ = unk_token UpperCamelCase__ = cls_token UpperCamelCase__ = pad_token UpperCamelCase__ = mask_token UpperCamelCase__ = eos_token UpperCamelCase__ = self.all_tokens self._create_trie(self.unique_no_split_tokens ) def __a ( self , a ): return self._id_to_token.get(a , self.unk_token ) def __a ( self , a ): return self._token_to_id.get(a , self._token_to_id.get(self.unk_token ) ) def __a ( self , a , **a ): return text.split() def __a ( self , a=False ): return len(self._id_to_token ) def __a ( self ): return {token: i for i, token in enumerate(self.all_tokens )} def __a ( self , a ): return self._token_to_id.get(a , self._token_to_id.get(self.unk_token ) ) def __a ( self , a ): return self._id_to_token.get(a , self.unk_token ) def __a ( self , a , a = None ): UpperCamelCase__ = [self.cls_token_id] UpperCamelCase__ = [self.eos_token_id] # No sep token in ESM vocabulary if token_ids_a is None: if self.eos_token_id is None: return cls + token_ids_a else: return cls + token_ids_a + sep elif self.eos_token_id is None: raise ValueError("Cannot tokenize multiple sequences when EOS token is not set!" ) return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token def __a ( self , a , a = None , a = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formatted with special tokens for the model." ) return [1 if token in self.all_special_ids else 0 for token in token_ids_a] UpperCamelCase__ = [1] + ([0] * len(a )) + [1] if token_ids_a is not None: mask += [0] * len(a ) + [1] return mask def __a ( self , a , a ): UpperCamelCase__ = os.path.join(a , (filename_prefix + "-" if filename_prefix else "") + "vocab.txt" ) with open(a , "w" ) as f: f.write("\n".join(self.all_tokens ) ) return (vocab_file,) @property def __a ( self ): return self.get_vocab_size(with_added_tokens=a ) def __a ( self , a , a = False ): return super()._add_tokens(a , special_tokens=a )
80
'''simple docstring''' class UpperCAmelCase_ : def __init__( self : List[str] , UpperCAmelCase__ : list[int] ) -> None: lowerCAmelCase = len(UpperCAmelCase__ ) lowerCAmelCase = [0] * len_array if len_array > 0: lowerCAmelCase = array[0] for i in range(1 , UpperCAmelCase__ ): lowerCAmelCase = self.prefix_sum[i - 1] + array[i] def __UpperCAmelCase ( self : Optional[Any] , UpperCAmelCase__ : int , UpperCAmelCase__ : int ) -> int: if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def __UpperCAmelCase ( self : int , UpperCAmelCase__ : int ) -> bool: lowerCAmelCase = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(UpperCAmelCase__ ) return False if __name__ == "__main__": import doctest doctest.testmod()
4
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCamelCase_ : Optional[Any] = {"""configuration_encoder_decoder""": ["""EncoderDecoderConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Dict = ["""EncoderDecoderModel"""] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Tuple = ["""TFEncoderDecoderModel"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Optional[int] = ["""FlaxEncoderDecoderModel"""] if TYPE_CHECKING: from .configuration_encoder_decoder import EncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encoder_decoder import EncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_encoder_decoder import TFEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_encoder_decoder import FlaxEncoderDecoderModel else: import sys lowerCamelCase_ : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
81
'''simple docstring''' def a_ ( lowerCamelCase : Optional[Any] ): return [ { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], }, { 0: [6], 1: [9], 2: [4, 5], 3: [4], 4: [2, 3], 5: [2], 6: [0, 7], 7: [6], 8: [], 9: [1], }, { 0: [4], 1: [6], 2: [], 3: [5, 6, 7], 4: [0, 6], 5: [3, 8, 9], 6: [1, 3, 4, 7], 7: [3, 6, 8, 9], 8: [5, 7], 9: [5, 7], }, { 0: [1, 3], 1: [0, 2, 4], 2: [1, 3, 4], 3: [0, 2, 4], 4: [1, 2, 3], }, ][index] def a_ ( lowerCamelCase : dict[int, list[int]] ): lowerCAmelCase = 0 lowerCAmelCase = len(lowerCamelCase ) # No of vertices in graph lowerCAmelCase = [0] * n lowerCAmelCase = [False] * n def dfs(lowerCamelCase : Tuple , lowerCamelCase : str , lowerCamelCase : Dict , lowerCamelCase : str ): lowerCAmelCase = True lowerCAmelCase = id_ id_ += 1 for to in graph[at]: if to == parent: pass elif not visited[to]: dfs(lowerCamelCase , lowerCamelCase , lowerCamelCase , id_ ) lowerCAmelCase = min(low[at] , low[to] ) if id_ <= low[to]: bridges.append((at, to) if at < to else (to, at) ) else: # This edge is a back edge and cannot be a bridge lowerCAmelCase = min(low[at] , low[to] ) lowerCAmelCase = [] for i in range(lowerCamelCase ): if not visited[i]: dfs(lowerCamelCase , -1 , lowerCamelCase , id_ ) return bridges if __name__ == "__main__": import doctest doctest.testmod()
4
0
import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class __lowerCAmelCase ( unittest.TestCase ): def snake_case ( self ): """simple docstring""" _lowerCAmelCase = { """task_specific_params""": { """summarization""": {"""length_penalty""": 1.0, """max_length""": 128, """min_length""": 12, """num_beams""": 4}, """summarization_cnn""": {"""length_penalty""": 2.0, """max_length""": 142, """min_length""": 56, """num_beams""": 4}, """summarization_xsum""": {"""length_penalty""": 1.0, """max_length""": 62, """min_length""": 11, """num_beams""": 6}, } } _lowerCAmelCase = { """task_specific_params.summarization.length_penalty""": 1.0, """task_specific_params.summarization.max_length""": 128, """task_specific_params.summarization.min_length""": 12, """task_specific_params.summarization.num_beams""": 4, """task_specific_params.summarization_cnn.length_penalty""": 2.0, """task_specific_params.summarization_cnn.max_length""": 142, """task_specific_params.summarization_cnn.min_length""": 56, """task_specific_params.summarization_cnn.num_beams""": 4, """task_specific_params.summarization_xsum.length_penalty""": 1.0, """task_specific_params.summarization_xsum.max_length""": 62, """task_specific_params.summarization_xsum.min_length""": 11, """task_specific_params.summarization_xsum.num_beams""": 6, } self.assertEqual(flatten_dict(_snake_case ) , _snake_case ) def snake_case ( self ): """simple docstring""" _lowerCAmelCase = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(transpose(_snake_case ) , x.transpose() ) ) _lowerCAmelCase = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(transpose(_snake_case , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) ) @require_torch def snake_case ( self ): """simple docstring""" _lowerCAmelCase = np.random.randn(3 , 4 ) _lowerCAmelCase = torch.tensor(_snake_case ) self.assertTrue(np.allclose(transpose(_snake_case ) , transpose(_snake_case ).numpy() ) ) _lowerCAmelCase = np.random.randn(3 , 4 , 5 ) _lowerCAmelCase = torch.tensor(_snake_case ) self.assertTrue(np.allclose(transpose(_snake_case , axes=(1, 2, 0) ) , transpose(_snake_case , axes=(1, 2, 0) ).numpy() ) ) @require_tf def snake_case ( self ): """simple docstring""" _lowerCAmelCase = np.random.randn(3 , 4 ) _lowerCAmelCase = tf.constant(_snake_case ) self.assertTrue(np.allclose(transpose(_snake_case ) , transpose(_snake_case ).numpy() ) ) _lowerCAmelCase = np.random.randn(3 , 4 , 5 ) _lowerCAmelCase = tf.constant(_snake_case ) self.assertTrue(np.allclose(transpose(_snake_case , axes=(1, 2, 0) ) , transpose(_snake_case , axes=(1, 2, 0) ).numpy() ) ) @require_flax def snake_case ( self ): """simple docstring""" _lowerCAmelCase = np.random.randn(3 , 4 ) _lowerCAmelCase = jnp.array(_snake_case ) self.assertTrue(np.allclose(transpose(_snake_case ) , np.asarray(transpose(_snake_case ) ) ) ) _lowerCAmelCase = np.random.randn(3 , 4 , 5 ) _lowerCAmelCase = jnp.array(_snake_case ) self.assertTrue(np.allclose(transpose(_snake_case , axes=(1, 2, 0) ) , np.asarray(transpose(_snake_case , axes=(1, 2, 0) ) ) ) ) def snake_case ( self ): """simple docstring""" _lowerCAmelCase = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(reshape(_snake_case , (4, 3) ) , np.reshape(_snake_case , (4, 3) ) ) ) _lowerCAmelCase = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(reshape(_snake_case , (12, 5) ) , np.reshape(_snake_case , (12, 5) ) ) ) @require_torch def snake_case ( self ): """simple docstring""" _lowerCAmelCase = np.random.randn(3 , 4 ) _lowerCAmelCase = torch.tensor(_snake_case ) self.assertTrue(np.allclose(reshape(_snake_case , (4, 3) ) , reshape(_snake_case , (4, 3) ).numpy() ) ) _lowerCAmelCase = np.random.randn(3 , 4 , 5 ) _lowerCAmelCase = torch.tensor(_snake_case ) self.assertTrue(np.allclose(reshape(_snake_case , (12, 5) ) , reshape(_snake_case , (12, 5) ).numpy() ) ) @require_tf def snake_case ( self ): """simple docstring""" _lowerCAmelCase = np.random.randn(3 , 4 ) _lowerCAmelCase = tf.constant(_snake_case ) self.assertTrue(np.allclose(reshape(_snake_case , (4, 3) ) , reshape(_snake_case , (4, 3) ).numpy() ) ) _lowerCAmelCase = np.random.randn(3 , 4 , 5 ) _lowerCAmelCase = tf.constant(_snake_case ) self.assertTrue(np.allclose(reshape(_snake_case , (12, 5) ) , reshape(_snake_case , (12, 5) ).numpy() ) ) @require_flax def snake_case ( self ): """simple docstring""" _lowerCAmelCase = np.random.randn(3 , 4 ) _lowerCAmelCase = jnp.array(_snake_case ) self.assertTrue(np.allclose(reshape(_snake_case , (4, 3) ) , np.asarray(reshape(_snake_case , (4, 3) ) ) ) ) _lowerCAmelCase = np.random.randn(3 , 4 , 5 ) _lowerCAmelCase = jnp.array(_snake_case ) self.assertTrue(np.allclose(reshape(_snake_case , (12, 5) ) , np.asarray(reshape(_snake_case , (12, 5) ) ) ) ) def snake_case ( self ): """simple docstring""" _lowerCAmelCase = np.random.randn(1 , 3 , 4 ) self.assertTrue(np.allclose(squeeze(_snake_case ) , np.squeeze(_snake_case ) ) ) _lowerCAmelCase = np.random.randn(1 , 4 , 1 , 5 ) self.assertTrue(np.allclose(squeeze(_snake_case , axis=2 ) , np.squeeze(_snake_case , axis=2 ) ) ) @require_torch def snake_case ( self ): """simple docstring""" _lowerCAmelCase = np.random.randn(1 , 3 , 4 ) _lowerCAmelCase = torch.tensor(_snake_case ) self.assertTrue(np.allclose(squeeze(_snake_case ) , squeeze(_snake_case ).numpy() ) ) _lowerCAmelCase = np.random.randn(1 , 4 , 1 , 5 ) _lowerCAmelCase = torch.tensor(_snake_case ) self.assertTrue(np.allclose(squeeze(_snake_case , axis=2 ) , squeeze(_snake_case , axis=2 ).numpy() ) ) @require_tf def snake_case ( self ): """simple docstring""" _lowerCAmelCase = np.random.randn(1 , 3 , 4 ) _lowerCAmelCase = tf.constant(_snake_case ) self.assertTrue(np.allclose(squeeze(_snake_case ) , squeeze(_snake_case ).numpy() ) ) _lowerCAmelCase = np.random.randn(1 , 4 , 1 , 5 ) _lowerCAmelCase = tf.constant(_snake_case ) self.assertTrue(np.allclose(squeeze(_snake_case , axis=2 ) , squeeze(_snake_case , axis=2 ).numpy() ) ) @require_flax def snake_case ( self ): """simple docstring""" _lowerCAmelCase = np.random.randn(1 , 3 , 4 ) _lowerCAmelCase = jnp.array(_snake_case ) self.assertTrue(np.allclose(squeeze(_snake_case ) , np.asarray(squeeze(_snake_case ) ) ) ) _lowerCAmelCase = np.random.randn(1 , 4 , 1 , 5 ) _lowerCAmelCase = jnp.array(_snake_case ) self.assertTrue(np.allclose(squeeze(_snake_case , axis=2 ) , np.asarray(squeeze(_snake_case , axis=2 ) ) ) ) def snake_case ( self ): """simple docstring""" _lowerCAmelCase = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(expand_dims(_snake_case , axis=1 ) , np.expand_dims(_snake_case , axis=1 ) ) ) @require_torch def snake_case ( self ): """simple docstring""" _lowerCAmelCase = np.random.randn(3 , 4 ) _lowerCAmelCase = torch.tensor(_snake_case ) self.assertTrue(np.allclose(expand_dims(_snake_case , axis=1 ) , expand_dims(_snake_case , axis=1 ).numpy() ) ) @require_tf def snake_case ( self ): """simple docstring""" _lowerCAmelCase = np.random.randn(3 , 4 ) _lowerCAmelCase = tf.constant(_snake_case ) self.assertTrue(np.allclose(expand_dims(_snake_case , axis=1 ) , expand_dims(_snake_case , axis=1 ).numpy() ) ) @require_flax def snake_case ( self ): """simple docstring""" _lowerCAmelCase = np.random.randn(3 , 4 ) _lowerCAmelCase = jnp.array(_snake_case ) self.assertTrue(np.allclose(expand_dims(_snake_case , axis=1 ) , np.asarray(expand_dims(_snake_case , axis=1 ) ) ) )
82
'''simple docstring''' import argparse from collections import OrderedDict from pathlib import Path import requests import torch from PIL import Image from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor from transformers.utils import logging logging.set_verbosity_info() __snake_case =logging.get_logger(__name__) def a_ ( lowerCamelCase : Any ): lowerCAmelCase = OrderedDict() for key, value in state_dict.items(): if key.startswith('module.encoder' ): lowerCAmelCase = key.replace('module.encoder' , 'glpn.encoder' ) if key.startswith('module.decoder' ): lowerCAmelCase = key.replace('module.decoder' , 'decoder.stages' ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 lowerCAmelCase = key[key.find('patch_embed' ) + len('patch_embed' )] lowerCAmelCase = key.replace(f'''patch_embed{idx}''' , f'''patch_embeddings.{int(lowerCamelCase )-1}''' ) if "norm" in key: lowerCAmelCase = key.replace('norm' , 'layer_norm' ) if "glpn.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 lowerCAmelCase = key[key.find('glpn.encoder.layer_norm' ) + len('glpn.encoder.layer_norm' )] lowerCAmelCase = key.replace(f'''layer_norm{idx}''' , f'''layer_norm.{int(lowerCamelCase )-1}''' ) if "layer_norm1" in key: lowerCAmelCase = key.replace('layer_norm1' , 'layer_norm_1' ) if "layer_norm2" in key: lowerCAmelCase = key.replace('layer_norm2' , 'layer_norm_2' ) if "block" in key: # replace for example block1 by block.0 lowerCAmelCase = key[key.find('block' ) + len('block' )] lowerCAmelCase = key.replace(f'''block{idx}''' , f'''block.{int(lowerCamelCase )-1}''' ) if "attn.q" in key: lowerCAmelCase = key.replace('attn.q' , 'attention.self.query' ) if "attn.proj" in key: lowerCAmelCase = key.replace('attn.proj' , 'attention.output.dense' ) if "attn" in key: lowerCAmelCase = key.replace('attn' , 'attention.self' ) if "fc1" in key: lowerCAmelCase = key.replace('fc1' , 'dense1' ) if "fc2" in key: lowerCAmelCase = key.replace('fc2' , 'dense2' ) if "linear_pred" in key: lowerCAmelCase = key.replace('linear_pred' , 'classifier' ) if "linear_fuse" in key: lowerCAmelCase = key.replace('linear_fuse.conv' , 'linear_fuse' ) lowerCAmelCase = key.replace('linear_fuse.bn' , 'batch_norm' ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 lowerCAmelCase = key[key.find('linear_c' ) + len('linear_c' )] lowerCAmelCase = key.replace(f'''linear_c{idx}''' , f'''linear_c.{int(lowerCamelCase )-1}''' ) if "bot_conv" in key: lowerCAmelCase = key.replace('bot_conv' , '0.convolution' ) if "skip_conv1" in key: lowerCAmelCase = key.replace('skip_conv1' , '1.convolution' ) if "skip_conv2" in key: lowerCAmelCase = key.replace('skip_conv2' , '2.convolution' ) if "fusion1" in key: lowerCAmelCase = key.replace('fusion1' , '1.fusion' ) if "fusion2" in key: lowerCAmelCase = key.replace('fusion2' , '2.fusion' ) if "fusion3" in key: lowerCAmelCase = key.replace('fusion3' , '3.fusion' ) if "fusion" in key and "conv" in key: lowerCAmelCase = key.replace('conv' , 'convolutional_layer' ) if key.startswith('module.last_layer_depth' ): lowerCAmelCase = key.replace('module.last_layer_depth' , 'head.head' ) lowerCAmelCase = value return new_state_dict def a_ ( lowerCamelCase : List[str] , lowerCamelCase : str ): # for each of the encoder blocks: for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) lowerCAmelCase = state_dict.pop(f'''glpn.encoder.block.{i}.{j}.attention.self.kv.weight''' ) lowerCAmelCase = state_dict.pop(f'''glpn.encoder.block.{i}.{j}.attention.self.kv.bias''' ) # next, add keys and values (in that order) to the state dict lowerCAmelCase = kv_weight[ : config.hidden_sizes[i], : ] lowerCAmelCase = kv_bias[: config.hidden_sizes[i]] lowerCAmelCase = kv_weight[ config.hidden_sizes[i] :, : ] lowerCAmelCase = kv_bias[config.hidden_sizes[i] :] def a_ ( ): lowerCAmelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowerCAmelCase = Image.open(requests.get(lowerCamelCase , stream=lowerCamelCase ).raw ) return image @torch.no_grad() def a_ ( lowerCamelCase : List[Any] , lowerCamelCase : Tuple , lowerCamelCase : Optional[Any]=False , lowerCamelCase : List[str]=None ): lowerCAmelCase = GLPNConfig(hidden_sizes=[64, 128, 320, 512] , decoder_hidden_size=64 , depths=[3, 8, 27, 3] ) # load image processor (only resize + rescale) lowerCAmelCase = GLPNImageProcessor() # prepare image lowerCAmelCase = prepare_img() lowerCAmelCase = image_processor(images=lowerCamelCase , return_tensors='pt' ).pixel_values logger.info('Converting model...' ) # load original state dict lowerCAmelCase = torch.load(lowerCamelCase , map_location=torch.device('cpu' ) ) # rename keys lowerCAmelCase = rename_keys(lowerCamelCase ) # key and value matrices need special treatment read_in_k_v(lowerCamelCase , lowerCamelCase ) # create HuggingFace model and load state dict lowerCAmelCase = GLPNForDepthEstimation(lowerCamelCase ) model.load_state_dict(lowerCamelCase ) model.eval() # forward pass lowerCAmelCase = model(lowerCamelCase ) lowerCAmelCase = outputs.predicted_depth # verify output if model_name is not None: if "nyu" in model_name: lowerCAmelCase = torch.tensor( [[4.4_147, 4.0_873, 4.0_673], [3.7_890, 3.2_881, 3.1_525], [3.7_674, 3.5_423, 3.4_913]] ) elif "kitti" in model_name: lowerCAmelCase = torch.tensor( [[3.4_291, 2.7_865, 2.5_151], [3.2_841, 2.7_021, 2.3_502], [3.1_147, 2.4_625, 2.2_481]] ) else: raise ValueError(f'''Unknown model name: {model_name}''' ) lowerCAmelCase = torch.Size([1, 480, 640] ) assert predicted_depth.shape == expected_shape assert torch.allclose(predicted_depth[0, :3, :3] , lowerCamelCase , atol=1e-4 ) print('Looks ok!' ) # finally, push to hub if required if push_to_hub: logger.info('Pushing model and image processor to the hub...' ) model.push_to_hub( repo_path_or_name=Path(lowerCamelCase , lowerCamelCase ) , organization='nielsr' , commit_message='Add model' , use_temp_dir=lowerCamelCase , ) image_processor.push_to_hub( repo_path_or_name=Path(lowerCamelCase , lowerCamelCase ) , organization='nielsr' , commit_message='Add image processor' , use_temp_dir=lowerCamelCase , ) if __name__ == "__main__": __snake_case =argparse.ArgumentParser() parser.add_argument( """--checkpoint_path""", default=None, type=str, help="""Path to the original PyTorch checkpoint (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to upload the model to the HuggingFace hub.""" ) parser.add_argument( """--model_name""", default="""glpn-kitti""", type=str, help="""Name of the model in case you're pushing to the hub.""", ) __snake_case =parser.parse_args() convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
4
0
'''simple docstring''' from manim import * class lowercase__ ( lowercase ): def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' _UpperCamelCase : Any = Rectangle(height=0.5 ,width=0.5 ) _UpperCamelCase : Tuple = Rectangle(height=0.4_6 ,width=0.4_6 ).set_stroke(width=0 ) _UpperCamelCase : Union[str, Any] = [mem.copy() for i in range(6 )] _UpperCamelCase : Dict = [mem.copy() for i in range(6 )] _UpperCamelCase : Any = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ ,buff=0 ) _UpperCamelCase : Tuple = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ ,buff=0 ) _UpperCamelCase : List[Any] = VGroup(lowerCamelCase__ ,lowerCamelCase__ ).arrange(lowerCamelCase__ ,buff=0 ) _UpperCamelCase : Tuple = Text('CPU' ,font_size=24 ) _UpperCamelCase : Optional[Any] = Group(lowerCamelCase__ ,lowerCamelCase__ ).arrange(lowerCamelCase__ ,buff=0.5 ,aligned_edge=lowerCamelCase__ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(lowerCamelCase__ ) _UpperCamelCase : Optional[Any] = [mem.copy() for i in range(1 )] _UpperCamelCase : int = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ ,buff=0 ) _UpperCamelCase : Any = Text('GPU' ,font_size=24 ) _UpperCamelCase : Dict = Group(lowerCamelCase__ ,lowerCamelCase__ ).arrange(lowerCamelCase__ ,buff=0.5 ,aligned_edge=lowerCamelCase__ ) gpu.align_to(lowerCamelCase__ ,lowerCamelCase__ ) gpu.set_x(gpu.get_x() - 1 ) self.add(lowerCamelCase__ ) _UpperCamelCase : int = [mem.copy() for i in range(6 )] _UpperCamelCase : Dict = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ ,buff=0 ) _UpperCamelCase : Optional[Any] = Text('Model' ,font_size=24 ) _UpperCamelCase : int = Group(lowerCamelCase__ ,lowerCamelCase__ ).arrange(lowerCamelCase__ ,buff=0.5 ,aligned_edge=lowerCamelCase__ ) model.move_to([3, -1.0, 0] ) self.play( Create(lowerCamelCase__ ,run_time=1 ) ,Create(lowerCamelCase__ ,run_time=1 ) ,Create(lowerCamelCase__ ,run_time=1 ) ,) _UpperCamelCase : List[Any] = MarkupText( F'First, an empty model skeleton is loaded\ninto <span fgcolor=\'{YELLOW}\'>memory</span> without using much RAM.' ,font_size=24 ,) _UpperCamelCase : int = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) _UpperCamelCase : Tuple = MarkupText( F'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model' ,font_size=18 ,) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(lowerCamelCase__ ,run_time=2.5 ) ,Write(lowerCamelCase__ ) ,Write(lowerCamelCase__ ) ) self.add(lowerCamelCase__ ) _UpperCamelCase : int = [] _UpperCamelCase : Optional[Any] = [] _UpperCamelCase : str = [] for i, rect in enumerate(lowerCamelCase__ ): _UpperCamelCase : Any = Rectangle(height=0.4_6 ,width=0.4_6 ).set_stroke(width=0.0 ).set_fill(lowerCamelCase__ ,opacity=0.7 ) cpu_target.move_to(lowerCamelCase__ ) cpu_target.generate_target() _UpperCamelCase : List[Any] = 0.4_6 / 4 _UpperCamelCase : Optional[Any] = 0.4_6 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) ,buff=0.0_2 ,direction=lowerCamelCase__ ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target ,direction=lowerCamelCase__ ,buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target ,direction=lowerCamelCase__ ,buff=0.0 ) cpu_targs.append(lowerCamelCase__ ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(lowerCamelCase__ ) ) second_animations.append(MoveToTarget(lowerCamelCase__ ,run_time=1.5 ) ) self.play(*lowerCamelCase__ ) self.play(*lowerCamelCase__ ) self.wait()
83
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class UpperCAmelCase_ ( unittest.TestCase ): @slow def __UpperCAmelCase ( self : str ) -> List[str]: lowerCAmelCase = XLMRobertaModel.from_pretrained('xlm-roberta-base' ) lowerCAmelCase = torch.tensor([[0, 5_8_1, 1_0_2_6_9, 8_3, 9_9_9_4_2, 1_3_6, 6_0_7_4_2, 2_3, 7_0, 8_0_5_8_3, 1_8_2_7_6, 2]] ) # The dog is cute and lives in the garden house lowerCAmelCase = torch.Size((1, 1_2, 7_6_8) ) # batch_size, sequence_length, embedding_vector_dim lowerCAmelCase = torch.tensor( [[-0.0_101, 0.1_218, -0.0_803, 0.0_801, 0.1_327, 0.0_776, -0.1_215, 0.2_383, 0.3_338, 0.3_106, 0.0_300, 0.0_252]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): lowerCAmelCase = model(UpperCAmelCase__ )['last_hidden_state'].detach() self.assertEqual(output.shape , UpperCAmelCase__ ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , UpperCAmelCase__ , atol=1E-3 ) ) @slow def __UpperCAmelCase ( self : List[Any] ) -> Tuple: lowerCAmelCase = XLMRobertaModel.from_pretrained('xlm-roberta-large' ) lowerCAmelCase = torch.tensor([[0, 5_8_1, 1_0_2_6_9, 8_3, 9_9_9_4_2, 1_3_6, 6_0_7_4_2, 2_3, 7_0, 8_0_5_8_3, 1_8_2_7_6, 2]] ) # The dog is cute and lives in the garden house lowerCAmelCase = torch.Size((1, 1_2, 1_0_2_4) ) # batch_size, sequence_length, embedding_vector_dim lowerCAmelCase = torch.tensor( [[-0.0_699, -0.0_318, 0.0_705, -0.1_241, 0.0_999, -0.0_520, 0.1_004, -0.1_838, -0.4_704, 0.1_437, 0.0_821, 0.0_126]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): lowerCAmelCase = model(UpperCAmelCase__ )['last_hidden_state'].detach() self.assertEqual(output.shape , UpperCAmelCase__ ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , UpperCAmelCase__ , atol=1E-3 ) )
4
0
"""simple docstring""" def _snake_case ( lowercase__ : int = 5_0 ) -> int: '''simple docstring''' lowerCAmelCase_ :Any = [1] * (length + 1) for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): ways_number[row_length] += ways_number[ row_length - tile_start - tile_length ] return ways_number[length] if __name__ == "__main__": print(F"""{solution() = }""")
84
'''simple docstring''' import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def a_ ( lowerCamelCase : Dict ): lowerCAmelCase = {} lowerCAmelCase = tokenizer(example['content'] , truncation=lowerCamelCase )['input_ids'] lowerCAmelCase = len(example['content'] ) / len(output['input_ids'] ) return output __snake_case =HfArgumentParser(PretokenizationArguments) __snake_case =parser.parse_args() if args.num_workers is None: __snake_case =multiprocessing.cpu_count() __snake_case =AutoTokenizer.from_pretrained(args.tokenizer_dir) __snake_case =time.time() __snake_case =load_dataset(args.dataset_name, split="""train""") print(F'''Dataset loaded in {time.time()-t_start:.2f}s''') __snake_case =time.time() __snake_case =ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ """repo_name""", """path""", """copies""", """size""", """content""", """license""", """hash""", """line_mean""", """line_max""", """alpha_frac""", """autogenerated""", ], ) print(F'''Dataset tokenized in {time.time()-t_start:.2f}s''') __snake_case =time.time() ds.push_to_hub(args.tokenized_data_repo) print(F'''Data pushed to the hub in {time.time()-t_start:.2f}s''')
4
0
'''simple docstring''' import argparse import os import jax as jnp import numpy as onp import torch import torch.nn as nn from music_spectrogram_diffusion import inference from tax import checkpoints from diffusers import DDPMScheduler, OnnxRuntimeModel, SpectrogramDiffusionPipeline from diffusers.pipelines.spectrogram_diffusion import SpectrogramContEncoder, SpectrogramNotesEncoder, TaFilmDecoder _SCREAMING_SNAKE_CASE : Dict = "base_with_context" def UpperCamelCase_( snake_case : int , snake_case : int ): '''simple docstring''' snake_case_ = nn.Parameter(torch.FloatTensor(weights["token_embedder"]["embedding"] ) ) snake_case_ = nn.Parameter( torch.FloatTensor(weights["Embed_0"]["embedding"] ) , requires_grad=snake_case ) for lyr_num, lyr in enumerate(model.encoders ): snake_case_ = weights[f'layers_{lyr_num}'] snake_case_ = nn.Parameter( torch.FloatTensor(ly_weight["pre_attention_layer_norm"]["scale"] ) ) snake_case_ = ly_weight["attention"] snake_case_ = nn.Parameter(torch.FloatTensor(attention_weights["query"]["kernel"].T ) ) snake_case_ = nn.Parameter(torch.FloatTensor(attention_weights["key"]["kernel"].T ) ) snake_case_ = nn.Parameter(torch.FloatTensor(attention_weights["value"]["kernel"].T ) ) snake_case_ = nn.Parameter(torch.FloatTensor(attention_weights["out"]["kernel"].T ) ) snake_case_ = nn.Parameter(torch.FloatTensor(ly_weight["pre_mlp_layer_norm"]["scale"] ) ) snake_case_ = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_0"]["kernel"].T ) ) snake_case_ = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_1"]["kernel"].T ) ) snake_case_ = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wo"]["kernel"].T ) ) snake_case_ = nn.Parameter(torch.FloatTensor(weights["encoder_norm"]["scale"] ) ) return model def UpperCamelCase_( snake_case : Optional[Any] , snake_case : Tuple ): '''simple docstring''' snake_case_ = nn.Parameter(torch.FloatTensor(weights["input_proj"]["kernel"].T ) ) snake_case_ = nn.Parameter( torch.FloatTensor(weights["Embed_0"]["embedding"] ) , requires_grad=snake_case ) for lyr_num, lyr in enumerate(model.encoders ): snake_case_ = weights[f'layers_{lyr_num}'] snake_case_ = ly_weight["attention"] snake_case_ = nn.Parameter(torch.FloatTensor(attention_weights["query"]["kernel"].T ) ) snake_case_ = nn.Parameter(torch.FloatTensor(attention_weights["key"]["kernel"].T ) ) snake_case_ = nn.Parameter(torch.FloatTensor(attention_weights["value"]["kernel"].T ) ) snake_case_ = nn.Parameter(torch.FloatTensor(attention_weights["out"]["kernel"].T ) ) snake_case_ = nn.Parameter( torch.FloatTensor(ly_weight["pre_attention_layer_norm"]["scale"] ) ) snake_case_ = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_0"]["kernel"].T ) ) snake_case_ = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_1"]["kernel"].T ) ) snake_case_ = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wo"]["kernel"].T ) ) snake_case_ = nn.Parameter(torch.FloatTensor(ly_weight["pre_mlp_layer_norm"]["scale"] ) ) snake_case_ = nn.Parameter(torch.FloatTensor(weights["encoder_norm"]["scale"] ) ) return model def UpperCamelCase_( snake_case : Dict , snake_case : int ): '''simple docstring''' snake_case_ = nn.Parameter(torch.FloatTensor(weights["time_emb_dense0"]["kernel"].T ) ) snake_case_ = nn.Parameter(torch.FloatTensor(weights["time_emb_dense1"]["kernel"].T ) ) snake_case_ = nn.Parameter( torch.FloatTensor(weights["Embed_0"]["embedding"] ) , requires_grad=snake_case ) snake_case_ = nn.Parameter( torch.FloatTensor(weights["continuous_inputs_projection"]["kernel"].T ) ) for lyr_num, lyr in enumerate(model.decoders ): snake_case_ = weights[f'layers_{lyr_num}'] snake_case_ = nn.Parameter( torch.FloatTensor(ly_weight["pre_self_attention_layer_norm"]["scale"] ) ) snake_case_ = nn.Parameter( torch.FloatTensor(ly_weight["FiLMLayer_0"]["DenseGeneral_0"]["kernel"].T ) ) snake_case_ = ly_weight["self_attention"] snake_case_ = nn.Parameter(torch.FloatTensor(attention_weights["query"]["kernel"].T ) ) snake_case_ = nn.Parameter(torch.FloatTensor(attention_weights["key"]["kernel"].T ) ) snake_case_ = nn.Parameter(torch.FloatTensor(attention_weights["value"]["kernel"].T ) ) snake_case_ = nn.Parameter(torch.FloatTensor(attention_weights["out"]["kernel"].T ) ) snake_case_ = ly_weight["MultiHeadDotProductAttention_0"] snake_case_ = nn.Parameter(torch.FloatTensor(attention_weights["query"]["kernel"].T ) ) snake_case_ = nn.Parameter(torch.FloatTensor(attention_weights["key"]["kernel"].T ) ) snake_case_ = nn.Parameter(torch.FloatTensor(attention_weights["value"]["kernel"].T ) ) snake_case_ = nn.Parameter(torch.FloatTensor(attention_weights["out"]["kernel"].T ) ) snake_case_ = nn.Parameter( torch.FloatTensor(ly_weight["pre_cross_attention_layer_norm"]["scale"] ) ) snake_case_ = nn.Parameter(torch.FloatTensor(ly_weight["pre_mlp_layer_norm"]["scale"] ) ) snake_case_ = nn.Parameter( torch.FloatTensor(ly_weight["FiLMLayer_1"]["DenseGeneral_0"]["kernel"].T ) ) snake_case_ = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_0"]["kernel"].T ) ) snake_case_ = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_1"]["kernel"].T ) ) snake_case_ = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wo"]["kernel"].T ) ) snake_case_ = nn.Parameter(torch.FloatTensor(weights["decoder_norm"]["scale"] ) ) snake_case_ = nn.Parameter(torch.FloatTensor(weights["spec_out_dense"]["kernel"].T ) ) return model def UpperCamelCase_( snake_case : Any ): '''simple docstring''' snake_case_ = checkpoints.load_tax_checkpoint(args.checkpoint_path ) snake_case_ = jnp.tree_util.tree_map(onp.array , snake_case ) snake_case_ = [ "from __gin__ import dynamic_registration", "from music_spectrogram_diffusion.models.diffusion import diffusion_utils", "diffusion_utils.ClassifierFreeGuidanceConfig.eval_condition_weight = 2.0", "diffusion_utils.DiffusionConfig.classifier_free_guidance = @diffusion_utils.ClassifierFreeGuidanceConfig()", ] snake_case_ = os.path.join(args.checkpoint_path , ".." , "config.gin" ) snake_case_ = inference.parse_training_gin_file(snake_case , snake_case ) snake_case_ = inference.InferenceModel(args.checkpoint_path , snake_case ) snake_case_ = DDPMScheduler(beta_schedule="squaredcos_cap_v2" , variance_type="fixed_large" ) snake_case_ = SpectrogramNotesEncoder( max_length=synth_model.sequence_length["inputs"] , vocab_size=synth_model.model.module.config.vocab_size , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj="gated-gelu" , ) snake_case_ = SpectrogramContEncoder( input_dims=synth_model.audio_codec.n_dims , targets_context_length=synth_model.sequence_length["targets_context"] , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj="gated-gelu" , ) snake_case_ = TaFilmDecoder( input_dims=synth_model.audio_codec.n_dims , targets_length=synth_model.sequence_length["targets_context"] , max_decoder_noise_time=synth_model.model.module.config.max_decoder_noise_time , d_model=synth_model.model.module.config.emb_dim , num_layers=synth_model.model.module.config.num_decoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , dropout_rate=synth_model.model.module.config.dropout_rate , ) snake_case_ = load_notes_encoder(ta_checkpoint["target"]["token_encoder"] , snake_case ) snake_case_ = load_continuous_encoder(ta_checkpoint["target"]["continuous_encoder"] , snake_case ) snake_case_ = load_decoder(ta_checkpoint["target"]["decoder"] , snake_case ) snake_case_ = OnnxRuntimeModel.from_pretrained("kashif/soundstream_mel_decoder" ) snake_case_ = SpectrogramDiffusionPipeline( notes_encoder=snake_case , continuous_encoder=snake_case , decoder=snake_case , scheduler=snake_case , melgan=snake_case , ) if args.save: pipe.save_pretrained(args.output_path ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE : str = argparse.ArgumentParser() parser.add_argument("--output_path", default=None, type=str, required=True, help="Path to the converted model.") parser.add_argument( "--save", default=True, type=bool, required=False, help="Whether to save the converted model or not." ) parser.add_argument( "--checkpoint_path", default=F"{MODEL}/checkpoint_500000", type=str, required=False, help="Path to the original jax model checkpoint.", ) _SCREAMING_SNAKE_CASE : Any = parser.parse_args() main(args)
85
'''simple docstring''' import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings __snake_case =logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class UpperCAmelCase_ ( __lowercase ): lowerCamelCase : bool = field(default=__lowercase , metadata={'''help''': '''Whether to use SortishSampler or not.'''} ) lowerCamelCase : bool = field( default=__lowercase , metadata={'''help''': '''Whether to use generate to calculate generative metrics (ROUGE, BLEU).'''} ) lowerCamelCase : Optional[int] = field( default=__lowercase , metadata={ '''help''': ( '''The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default ''' '''to the `max_length` value of the model configuration.''' ) } , ) lowerCamelCase : Optional[int] = field( default=__lowercase , metadata={ '''help''': ( '''The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default ''' '''to the `num_beams` value of the model configuration.''' ) } , ) lowerCamelCase : Optional[Union[str, Path, GenerationConfig]] = field( default=__lowercase , metadata={ '''help''': '''Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.''' } , ) def __UpperCAmelCase ( self : Dict ) -> List[str]: lowerCAmelCase = super().to_dict() for k, v in d.items(): if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): lowerCAmelCase = v.to_dict() return d
4
0
"""simple docstring""" import torch from diffusers import DDPMParallelScheduler from .test_schedulers import SchedulerCommonTest class A__ ( _lowerCamelCase): A_ : Dict = (DDPMParallelScheduler,) def __lowerCamelCase ( self , **_SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Any = { 'num_train_timesteps': 10_00, 'beta_start': 0.0001, 'beta_end': 0.02, 'beta_schedule': 'linear', 'variance_type': 'fixed_small', 'clip_sample': True, } config.update(**_SCREAMING_SNAKE_CASE ) return config def __lowerCamelCase ( self ): for timesteps in [1, 5, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=_SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=_SCREAMING_SNAKE_CASE , beta_end=_SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=_SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=_SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): self.check_over_configs(thresholding=_SCREAMING_SNAKE_CASE ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=_SCREAMING_SNAKE_CASE , prediction_type=_SCREAMING_SNAKE_CASE , sample_max_value=_SCREAMING_SNAKE_CASE , ) def __lowerCamelCase ( self ): for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=_SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): for t in [0, 5_00, 9_99]: self.check_over_forward(time_step=_SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): __lowerCAmelCase : Optional[Any] = self.scheduler_classes[0] __lowerCAmelCase : Dict = self.get_scheduler_config() __lowerCAmelCase : Any = scheduler_class(**_SCREAMING_SNAKE_CASE ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_87 ) - 0.0_0979 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_99 ) - 0.02 ) ) < 1E-5 def __lowerCamelCase ( self ): __lowerCAmelCase : Union[str, Any] = self.scheduler_classes[0] __lowerCAmelCase : str = self.get_scheduler_config() __lowerCAmelCase : Any = scheduler_class(**_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Union[str, Any] = len(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[int] = self.dummy_model() __lowerCAmelCase : List[Any] = self.dummy_sample_deter __lowerCAmelCase : int = self.dummy_sample_deter + 0.1 __lowerCAmelCase : Tuple = self.dummy_sample_deter - 0.1 __lowerCAmelCase : Tuple = samplea.shape[0] __lowerCAmelCase : Tuple = torch.stack([samplea, samplea, samplea] , dim=0 ) __lowerCAmelCase : str = torch.arange(_SCREAMING_SNAKE_CASE )[0:3, None].repeat(1 , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[str] = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) __lowerCAmelCase : Tuple = scheduler.batch_step_no_noise(_SCREAMING_SNAKE_CASE , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) ) __lowerCAmelCase : Optional[Any] = torch.sum(torch.abs(_SCREAMING_SNAKE_CASE ) ) __lowerCAmelCase : int = torch.mean(torch.abs(_SCREAMING_SNAKE_CASE ) ) assert abs(result_sum.item() - 1153.1833 ) < 1E-2 assert abs(result_mean.item() - 0.5005 ) < 1E-3 def __lowerCamelCase ( self ): __lowerCAmelCase : Optional[int] = self.scheduler_classes[0] __lowerCAmelCase : Any = self.get_scheduler_config() __lowerCAmelCase : Optional[Any] = scheduler_class(**_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[Any] = len(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Tuple = self.dummy_model() __lowerCAmelCase : List[str] = self.dummy_sample_deter __lowerCAmelCase : str = torch.manual_seed(0 ) for t in reversed(range(_SCREAMING_SNAKE_CASE ) ): # 1. predict noise residual __lowerCAmelCase : Optional[int] = model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # 2. predict previous mean of sample x_t-1 __lowerCAmelCase : Tuple = scheduler.step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE ).prev_sample __lowerCAmelCase : Any = pred_prev_sample __lowerCAmelCase : Union[str, Any] = torch.sum(torch.abs(_SCREAMING_SNAKE_CASE ) ) __lowerCAmelCase : List[str] = torch.mean(torch.abs(_SCREAMING_SNAKE_CASE ) ) assert abs(result_sum.item() - 258.9606 ) < 1E-2 assert abs(result_mean.item() - 0.3372 ) < 1E-3 def __lowerCamelCase ( self ): __lowerCAmelCase : List[str] = self.scheduler_classes[0] __lowerCAmelCase : str = self.get_scheduler_config(prediction_type='v_prediction' ) __lowerCAmelCase : Tuple = scheduler_class(**_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Dict = len(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Any = self.dummy_model() __lowerCAmelCase : Any = self.dummy_sample_deter __lowerCAmelCase : int = torch.manual_seed(0 ) for t in reversed(range(_SCREAMING_SNAKE_CASE ) ): # 1. predict noise residual __lowerCAmelCase : str = model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # 2. predict previous mean of sample x_t-1 __lowerCAmelCase : List[Any] = scheduler.step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE ).prev_sample __lowerCAmelCase : int = pred_prev_sample __lowerCAmelCase : int = torch.sum(torch.abs(_SCREAMING_SNAKE_CASE ) ) __lowerCAmelCase : Optional[Any] = torch.mean(torch.abs(_SCREAMING_SNAKE_CASE ) ) assert abs(result_sum.item() - 202.0296 ) < 1E-2 assert abs(result_mean.item() - 0.2631 ) < 1E-3 def __lowerCamelCase ( self ): __lowerCAmelCase : Tuple = self.scheduler_classes[0] __lowerCAmelCase : Optional[Any] = self.get_scheduler_config() __lowerCAmelCase : Tuple = scheduler_class(**_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : int = [1_00, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Any = scheduler.timesteps for i, timestep in enumerate(_SCREAMING_SNAKE_CASE ): if i == len(_SCREAMING_SNAKE_CASE ) - 1: __lowerCAmelCase : Optional[int] = -1 else: __lowerCAmelCase : Dict = timesteps[i + 1] __lowerCAmelCase : Optional[int] = scheduler.previous_timestep(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[Any] = prev_t.item() self.assertEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): __lowerCAmelCase : Optional[int] = self.scheduler_classes[0] __lowerCAmelCase : List[Any] = self.get_scheduler_config() __lowerCAmelCase : Union[str, Any] = scheduler_class(**_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Union[str, Any] = [1_00, 87, 50, 51, 0] with self.assertRaises(_SCREAMING_SNAKE_CASE , msg='`custom_timesteps` must be in descending order.' ): scheduler.set_timesteps(timesteps=_SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): __lowerCAmelCase : Optional[int] = self.scheduler_classes[0] __lowerCAmelCase : List[str] = self.get_scheduler_config() __lowerCAmelCase : Optional[Any] = scheduler_class(**_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[Any] = [1_00, 87, 50, 1, 0] __lowerCAmelCase : Union[str, Any] = len(_SCREAMING_SNAKE_CASE ) with self.assertRaises(_SCREAMING_SNAKE_CASE , msg='Can only pass one of `num_inference_steps` or `custom_timesteps`.' ): scheduler.set_timesteps(num_inference_steps=_SCREAMING_SNAKE_CASE , timesteps=_SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): __lowerCAmelCase : Union[str, Any] = self.scheduler_classes[0] __lowerCAmelCase : Any = self.get_scheduler_config() __lowerCAmelCase : Optional[int] = scheduler_class(**_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Dict = [scheduler.config.num_train_timesteps] with self.assertRaises( _SCREAMING_SNAKE_CASE , msg='`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}' , ): scheduler.set_timesteps(timesteps=_SCREAMING_SNAKE_CASE )
86
'''simple docstring''' import argparse import torch from transformers import ( EncodecConfig, EncodecFeatureExtractor, EncodecModel, logging, ) # checkpoints downloaded from: # https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th # https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin # https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th logging.set_verbosity_info() __snake_case =logging.get_logger("""transformers.models.encodec""") __snake_case ={ """quantizer.vq.layers.*._codebook.inited""": """quantizer.layers.*.codebook.inited""", """quantizer.vq.layers.*._codebook.cluster_size""": """quantizer.layers.*.codebook.cluster_size""", """quantizer.vq.layers.*._codebook.embed""": """quantizer.layers.*.codebook.embed""", """quantizer.vq.layers.*._codebook.embed_avg""": """quantizer.layers.*.codebook.embed_avg""", } __snake_case ={ """encoder.model.0.conv.conv""": """encoder.layers.0.conv""", """encoder.model.1.block.1.conv.conv""": """encoder.layers.1.block.1.conv""", """encoder.model.1.block.3.conv.conv""": """encoder.layers.1.block.3.conv""", """encoder.model.1.shortcut.conv.conv""": """encoder.layers.1.shortcut.conv""", """encoder.model.3.conv.conv""": """encoder.layers.3.conv""", """encoder.model.4.block.1.conv.conv""": """encoder.layers.4.block.1.conv""", """encoder.model.4.block.3.conv.conv""": """encoder.layers.4.block.3.conv""", """encoder.model.4.shortcut.conv.conv""": """encoder.layers.4.shortcut.conv""", """encoder.model.6.conv.conv""": """encoder.layers.6.conv""", """encoder.model.7.block.1.conv.conv""": """encoder.layers.7.block.1.conv""", """encoder.model.7.block.3.conv.conv""": """encoder.layers.7.block.3.conv""", """encoder.model.7.shortcut.conv.conv""": """encoder.layers.7.shortcut.conv""", """encoder.model.9.conv.conv""": """encoder.layers.9.conv""", """encoder.model.10.block.1.conv.conv""": """encoder.layers.10.block.1.conv""", """encoder.model.10.block.3.conv.conv""": """encoder.layers.10.block.3.conv""", """encoder.model.10.shortcut.conv.conv""": """encoder.layers.10.shortcut.conv""", """encoder.model.12.conv.conv""": """encoder.layers.12.conv""", """encoder.model.13.lstm""": """encoder.layers.13.lstm""", """encoder.model.15.conv.conv""": """encoder.layers.15.conv""", } __snake_case ={ """encoder.model.0.conv.norm""": """encoder.layers.0.norm""", """encoder.model.1.block.1.conv.norm""": """encoder.layers.1.block.1.norm""", """encoder.model.1.block.3.conv.norm""": """encoder.layers.1.block.3.norm""", """encoder.model.1.shortcut.conv.norm""": """encoder.layers.1.shortcut.norm""", """encoder.model.3.conv.norm""": """encoder.layers.3.norm""", """encoder.model.4.block.1.conv.norm""": """encoder.layers.4.block.1.norm""", """encoder.model.4.block.3.conv.norm""": """encoder.layers.4.block.3.norm""", """encoder.model.4.shortcut.conv.norm""": """encoder.layers.4.shortcut.norm""", """encoder.model.6.conv.norm""": """encoder.layers.6.norm""", """encoder.model.7.block.1.conv.norm""": """encoder.layers.7.block.1.norm""", """encoder.model.7.block.3.conv.norm""": """encoder.layers.7.block.3.norm""", """encoder.model.7.shortcut.conv.norm""": """encoder.layers.7.shortcut.norm""", """encoder.model.9.conv.norm""": """encoder.layers.9.norm""", """encoder.model.10.block.1.conv.norm""": """encoder.layers.10.block.1.norm""", """encoder.model.10.block.3.conv.norm""": """encoder.layers.10.block.3.norm""", """encoder.model.10.shortcut.conv.norm""": """encoder.layers.10.shortcut.norm""", """encoder.model.12.conv.norm""": """encoder.layers.12.norm""", """encoder.model.15.conv.norm""": """encoder.layers.15.norm""", } __snake_case ={ """decoder.model.0.conv.conv""": """decoder.layers.0.conv""", """decoder.model.1.lstm""": """decoder.layers.1.lstm""", """decoder.model.3.convtr.convtr""": """decoder.layers.3.conv""", """decoder.model.4.block.1.conv.conv""": """decoder.layers.4.block.1.conv""", """decoder.model.4.block.3.conv.conv""": """decoder.layers.4.block.3.conv""", """decoder.model.4.shortcut.conv.conv""": """decoder.layers.4.shortcut.conv""", """decoder.model.6.convtr.convtr""": """decoder.layers.6.conv""", """decoder.model.7.block.1.conv.conv""": """decoder.layers.7.block.1.conv""", """decoder.model.7.block.3.conv.conv""": """decoder.layers.7.block.3.conv""", """decoder.model.7.shortcut.conv.conv""": """decoder.layers.7.shortcut.conv""", """decoder.model.9.convtr.convtr""": """decoder.layers.9.conv""", """decoder.model.10.block.1.conv.conv""": """decoder.layers.10.block.1.conv""", """decoder.model.10.block.3.conv.conv""": """decoder.layers.10.block.3.conv""", """decoder.model.10.shortcut.conv.conv""": """decoder.layers.10.shortcut.conv""", """decoder.model.12.convtr.convtr""": """decoder.layers.12.conv""", """decoder.model.13.block.1.conv.conv""": """decoder.layers.13.block.1.conv""", """decoder.model.13.block.3.conv.conv""": """decoder.layers.13.block.3.conv""", """decoder.model.13.shortcut.conv.conv""": """decoder.layers.13.shortcut.conv""", """decoder.model.15.conv.conv""": """decoder.layers.15.conv""", } __snake_case ={ """decoder.model.0.conv.norm""": """decoder.layers.0.norm""", """decoder.model.3.convtr.norm""": """decoder.layers.3.norm""", """decoder.model.4.block.1.conv.norm""": """decoder.layers.4.block.1.norm""", """decoder.model.4.block.3.conv.norm""": """decoder.layers.4.block.3.norm""", """decoder.model.4.shortcut.conv.norm""": """decoder.layers.4.shortcut.norm""", """decoder.model.6.convtr.norm""": """decoder.layers.6.norm""", """decoder.model.7.block.1.conv.norm""": """decoder.layers.7.block.1.norm""", """decoder.model.7.block.3.conv.norm""": """decoder.layers.7.block.3.norm""", """decoder.model.7.shortcut.conv.norm""": """decoder.layers.7.shortcut.norm""", """decoder.model.9.convtr.norm""": """decoder.layers.9.norm""", """decoder.model.10.block.1.conv.norm""": """decoder.layers.10.block.1.norm""", """decoder.model.10.block.3.conv.norm""": """decoder.layers.10.block.3.norm""", """decoder.model.10.shortcut.conv.norm""": """decoder.layers.10.shortcut.norm""", """decoder.model.12.convtr.norm""": """decoder.layers.12.norm""", """decoder.model.13.block.1.conv.norm""": """decoder.layers.13.block.1.norm""", """decoder.model.13.block.3.conv.norm""": """decoder.layers.13.block.3.norm""", """decoder.model.13.shortcut.conv.norm""": """decoder.layers.13.shortcut.norm""", """decoder.model.15.conv.norm""": """decoder.layers.15.norm""", } __snake_case ={ **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_DECODER, } __snake_case ={ **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_ENCODER_48K, **MAPPING_DECODER, **MAPPING_DECODER_48K, } __snake_case =[] __snake_case =[] def a_ ( lowerCamelCase : Optional[Any] , lowerCamelCase : Union[str, Any] , lowerCamelCase : int , lowerCamelCase : Any , lowerCamelCase : List[str] ): for attribute in key.split('.' ): lowerCAmelCase = getattr(lowerCamelCase , lowerCamelCase ) if weight_type is not None: lowerCAmelCase = getattr(lowerCamelCase , lowerCamelCase ).shape else: lowerCAmelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": lowerCAmelCase = value elif weight_type == "weight_g": lowerCAmelCase = value elif weight_type == "weight_v": lowerCAmelCase = value elif weight_type == "bias": lowerCAmelCase = value elif weight_type == "running_mean": lowerCAmelCase = value elif weight_type == "running_var": lowerCAmelCase = value elif weight_type == "num_batches_tracked": lowerCAmelCase = value elif weight_type == "weight_ih_l0": lowerCAmelCase = value elif weight_type == "weight_hh_l0": lowerCAmelCase = value elif weight_type == "bias_ih_l0": lowerCAmelCase = value elif weight_type == "bias_hh_l0": lowerCAmelCase = value elif weight_type == "weight_ih_l1": lowerCAmelCase = value elif weight_type == "weight_hh_l1": lowerCAmelCase = value elif weight_type == "bias_ih_l1": lowerCAmelCase = value elif weight_type == "bias_hh_l1": lowerCAmelCase = value else: lowerCAmelCase = value logger.info(f'''{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}.''' ) def a_ ( lowerCamelCase : Optional[Any] , lowerCamelCase : Optional[Any] ): for key in ignore_keys: if key.endswith('.*' ): if name.startswith(key[:-1] ): return True elif ".*." in key: lowerCAmelCase , lowerCAmelCase = key.split('.*.' ) if prefix in name and suffix in name: return True elif key in name: return True return False def a_ ( lowerCamelCase : List[Any] , lowerCamelCase : Any , lowerCamelCase : str ): lowerCAmelCase = [] if model_name == "encodec_24khz" or "encodec_32khz": lowerCAmelCase = MAPPING_24K elif model_name == "encodec_48khz": lowerCAmelCase = MAPPING_48K else: raise ValueError(f'''Unsupported model: {model_name}''' ) for name, value in orig_dict.items(): if should_ignore(lowerCamelCase , lowerCamelCase ): logger.info(f'''{name} was ignored''' ) continue lowerCAmelCase = False for key, mapped_key in MAPPING.items(): if "*" in key: lowerCAmelCase , lowerCAmelCase = key.split('.*.' ) if prefix in name and suffix in name: lowerCAmelCase = suffix if key in name: # HACK otherwise .embed gets initialized with .embed_avg too if key.endswith('embed' ) and name.endswith('embed_avg' ): continue lowerCAmelCase = True if "*" in mapped_key: lowerCAmelCase = name.split(lowerCamelCase )[0].split('.' )[-2] lowerCAmelCase = mapped_key.replace('*' , lowerCamelCase ) if "weight_g" in name: lowerCAmelCase = 'weight_g' elif "weight_v" in name: lowerCAmelCase = 'weight_v' elif "weight_ih_l0" in name: lowerCAmelCase = 'weight_ih_l0' elif "weight_hh_l0" in name: lowerCAmelCase = 'weight_hh_l0' elif "bias_ih_l0" in name: lowerCAmelCase = 'bias_ih_l0' elif "bias_hh_l0" in name: lowerCAmelCase = 'bias_hh_l0' elif "weight_ih_l1" in name: lowerCAmelCase = 'weight_ih_l1' elif "weight_hh_l1" in name: lowerCAmelCase = 'weight_hh_l1' elif "bias_ih_l1" in name: lowerCAmelCase = 'bias_ih_l1' elif "bias_hh_l1" in name: lowerCAmelCase = 'bias_hh_l1' elif "bias" in name: lowerCAmelCase = 'bias' elif "weight" in name: lowerCAmelCase = 'weight' elif "running_mean" in name: lowerCAmelCase = 'running_mean' elif "running_var" in name: lowerCAmelCase = 'running_var' elif "num_batches_tracked" in name: lowerCAmelCase = 'num_batches_tracked' else: lowerCAmelCase = None set_recursively(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) continue if not is_used: unused_weights.append(lowerCamelCase ) logger.warning(f'''Unused weights: {unused_weights}''' ) @torch.no_grad() def a_ ( lowerCamelCase : Optional[int] , lowerCamelCase : Union[str, Any] , lowerCamelCase : str , lowerCamelCase : Dict=None , lowerCamelCase : Union[str, Any]=None , ): if config_path is not None: lowerCAmelCase = EncodecConfig.from_pretrained(lowerCamelCase ) else: lowerCAmelCase = EncodecConfig() if model_name == "encodec_24khz": pass # config is already correct elif model_name == "encodec_32khz": lowerCAmelCase = [8, 5, 4, 4] lowerCAmelCase = [2.2] lowerCAmelCase = 64 lowerCAmelCase = 32000 lowerCAmelCase = 2048 lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False elif model_name == "encodec_48khz": lowerCAmelCase = [8, 5, 4, 2] lowerCAmelCase = [3.0, 6.0, 12.0, 24.0] lowerCAmelCase = 48000 lowerCAmelCase = 2 lowerCAmelCase = False lowerCAmelCase = 'time_group_norm' lowerCAmelCase = True lowerCAmelCase = 1.0 lowerCAmelCase = 0.01 else: raise ValueError(f'''Unknown model name: {model_name}''' ) lowerCAmelCase = EncodecModel(lowerCamelCase ) lowerCAmelCase = EncodecFeatureExtractor( feature_size=config.audio_channels , sampling_rate=config.sampling_rate , chunk_length_s=config.chunk_length_s , overlap=config.overlap , ) feature_extractor.save_pretrained(lowerCamelCase ) lowerCAmelCase = torch.load(lowerCamelCase ) if "best_state" in original_checkpoint: # we might have a training state saved, in which case discard the yaml results and just retain the weights lowerCAmelCase = original_checkpoint['best_state'] recursively_load_weights(lowerCamelCase , lowerCamelCase , lowerCamelCase ) model.save_pretrained(lowerCamelCase ) if repo_id: print('Pushing to the hub...' ) feature_extractor.push_to_hub(lowerCamelCase ) model.push_to_hub(lowerCamelCase ) if __name__ == "__main__": __snake_case =argparse.ArgumentParser() parser.add_argument( """--model""", default="""encodec_24khz""", type=str, help="""The model to convert. Should be one of 'encodec_24khz', 'encodec_32khz', 'encodec_48khz'.""", ) parser.add_argument("""--checkpoint_path""", required=True, default=None, type=str, help="""Path to original checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--pytorch_dump_folder_path""", required=True, default=None, type=str, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) __snake_case =parser.parse_args() convert_checkpoint( args.model, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
4
0
import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = {'''vocab_file''': '''vocab.txt'''} UpperCamelCase = { '''vocab_file''': { '''openbmb/cpm-ant-10b''': '''https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt''', }, } UpperCamelCase = { '''openbmb/cpm-ant-10b''': 1024, } def lowercase_ ( _lowerCamelCase : int): lowercase__ : Tuple = collections.OrderedDict() with open(_lowerCamelCase , "r" , encoding="utf-8") as reader: lowercase__ : Tuple = reader.readlines() for index, token in enumerate(_lowerCamelCase): lowercase__ : Optional[int] = token.rstrip("\n") lowercase__ : Optional[int] = index return vocab class snake_case_ ( __A ): def __init__( self : str , lowercase_ : int , lowercase_ : str="<unk>" , lowercase_ : List[Any]=2_00 ) -> Union[str, Any]: lowercase__ : Any = vocab lowercase__ : int = unk_token lowercase__ : Union[str, Any] = max_input_chars_per_word def __UpperCamelCase ( self : Dict , lowercase_ : Any ) -> List[Any]: lowercase__ : List[str] = list(lowercase_ ) if len(lowercase_ ) > self.max_input_chars_per_word: return [self.unk_token] lowercase__ : int = 0 lowercase__ : Union[str, Any] = [] while start < len(lowercase_ ): lowercase__ : int = len(lowercase_ ) lowercase__ : List[Any] = None while start < end: lowercase__ : int = "".join(chars[start:end] ) if substr in self.vocab: lowercase__ : Tuple = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token ) start += 1 else: sub_tokens.append(lowercase_ ) lowercase__ : Dict = end return sub_tokens class snake_case_ ( __A ): __A : List[str] = VOCAB_FILES_NAMES __A : str = PRETRAINED_VOCAB_FILES_MAP __A : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A : int = ["input_ids", "attention_mask"] __A : Optional[Any] = False def __init__( self : Optional[Any] , lowercase_ : str , lowercase_ : str="<d>" , lowercase_ : Dict="</d>" , lowercase_ : str="<s>" , lowercase_ : List[Any]="</s>" , lowercase_ : Tuple="<pad>" , lowercase_ : Optional[Any]="<unk>" , lowercase_ : Optional[Any]="</n>" , lowercase_ : int="</_>" , lowercase_ : List[Any]="left" , **lowercase_ : Union[str, Any] , ) -> Dict: requires_backends(self , ["jieba"] ) super().__init__( bod_token=lowercase_ , eod_token=lowercase_ , bos_token=lowercase_ , eos_token=lowercase_ , pad_token=lowercase_ , unk_token=lowercase_ , line_token=lowercase_ , space_token=lowercase_ , padding_side=lowercase_ , **lowercase_ , ) lowercase__ : Dict = bod_token lowercase__ : List[Any] = eod_token lowercase__ : List[str] = load_vocab(lowercase_ ) lowercase__ : Tuple = self.encoder[space_token] lowercase__ : Union[str, Any] = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] lowercase__ : Union[str, Any] = collections.OrderedDict(sorted(self.encoder.items() , key=lambda lowercase_ : x[1] ) ) lowercase__ : Optional[Any] = {v: k for k, v in self.encoder.items()} lowercase__ : Dict = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token ) @property def __UpperCamelCase ( self : Optional[Any] ) -> Optional[Any]: return self.encoder[self.bod_token] @property def __UpperCamelCase ( self : List[str] ) -> List[Any]: return self.encoder[self.eod_token] @property def __UpperCamelCase ( self : Optional[Any] ) -> int: return self.encoder["\n"] @property def __UpperCamelCase ( self : Any ) -> int: return len(self.encoder ) def __UpperCamelCase ( self : List[str] ) -> List[str]: return dict(self.encoder , **self.added_tokens_encoder ) def __UpperCamelCase ( self : Union[str, Any] , lowercase_ : int ) -> Tuple: lowercase__ : Any = [] for x in jieba.cut(lowercase_ , cut_all=lowercase_ ): output_tokens.extend(self.wordpiece_tokenizer.tokenize(lowercase_ ) ) return output_tokens def __UpperCamelCase ( self : Any , lowercase_ : Union[str, Any] , **lowercase_ : str ) -> Dict: lowercase__ : str = [i for i in token_ids if i >= 0] lowercase__ : List[str] = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(lowercase_ , **lowercase_ ) def __UpperCamelCase ( self : List[str] , lowercase_ : Dict ) -> int: return token in self.encoder def __UpperCamelCase ( self : str , lowercase_ : List[str] ) -> str: return "".join(lowercase_ ) def __UpperCamelCase ( self : Optional[Any] , lowercase_ : Union[str, Any] ) -> List[str]: return self.encoder.get(lowercase_ , self.encoder.get(self.unk_token ) ) def __UpperCamelCase ( self : Any , lowercase_ : List[str] ) -> Optional[int]: return self.decoder.get(lowercase_ , self.unk_token ) def __UpperCamelCase ( self : Union[str, Any] , lowercase_ : str , lowercase_ : Optional[str] = None ) -> Tuple[str]: if os.path.isdir(lowercase_ ): lowercase__ : Dict = os.path.join( lowercase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) else: lowercase__ : Optional[Any] = (filename_prefix + "-" if filename_prefix else "") + save_directory lowercase__ : int = 0 if " " in self.encoder: lowercase__ : Tuple = self.encoder[" "] del self.encoder[" "] if "\n" in self.encoder: lowercase__ : List[str] = self.encoder["\n"] del self.encoder["\n"] lowercase__ : Optional[Any] = collections.OrderedDict(sorted(self.encoder.items() , key=lambda lowercase_ : x[1] ) ) with open(lowercase_ , "w" , encoding="utf-8" ) as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( F'''Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.''' " Please check that the vocabulary is not corrupted!" ) lowercase__ : Union[str, Any] = token_index writer.write(token + "\n" ) index += 1 return (vocab_file,) def __UpperCamelCase ( self : Union[str, Any] , lowercase_ : List[int] , lowercase_ : List[int] = None ) -> List[int]: if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def __UpperCamelCase ( self : List[Any] , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None , lowercase_ : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase_ , token_ids_a=lowercase_ , already_has_special_tokens=lowercase_ ) if token_ids_a is not None: return [1] + ([0] * len(lowercase_ )) + [1] + ([0] * len(lowercase_ )) return [1] + ([0] * len(lowercase_ ))
87
'''simple docstring''' import warnings from ...utils import logging from .image_processing_flava import FlavaImageProcessor __snake_case =logging.get_logger(__name__) class UpperCAmelCase_ ( __lowercase ): def __init__( self : Dict , *UpperCAmelCase__ : Dict , **UpperCAmelCase__ : List[str] ) -> None: warnings.warn( 'The class FlavaFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use FlavaImageProcessor instead.' , UpperCAmelCase__ , ) super().__init__(*UpperCAmelCase__ , **UpperCAmelCase__ )
4
0
import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotConfig, is_flax_available from transformers.testing_utils import jax_device, require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html __lowerCAmelCase : int = 'platform' import jax import jax.numpy as jnp from transformers import BlenderbotTokenizer from transformers.models.blenderbot.modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, shift_tokens_right, ) def a__ ( A_, A_, A_=None, A_=None, A_=None, A_=None, A_=None, A_=None, ): '''simple docstring''' if attention_mask is None: __magic_name__ = np.where(input_ids != config.pad_token_id, 1, 0 ) if decoder_attention_mask is None: __magic_name__ = np.where(decoder_input_ids != config.pad_token_id, 1, 0 ) if head_mask is None: __magic_name__ = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: __magic_name__ = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: __magic_name__ = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class UpperCAmelCase_ : '''simple docstring''' def __init__( self : int , UpperCamelCase__ : str , UpperCamelCase__ : List[Any]=13 , UpperCamelCase__ : Any=7 , UpperCamelCase__ : Tuple=True , UpperCamelCase__ : int=False , UpperCamelCase__ : int=99 , UpperCamelCase__ : str=16 , UpperCamelCase__ : int=2 , UpperCamelCase__ : str=4 , UpperCamelCase__ : int=4 , UpperCamelCase__ : Optional[int]="gelu" , UpperCamelCase__ : Dict=0.1 , UpperCamelCase__ : Dict=0.1 , UpperCamelCase__ : Union[str, Any]=32 , UpperCamelCase__ : Union[str, Any]=2 , UpperCamelCase__ : Optional[int]=1 , UpperCamelCase__ : Tuple=0 , UpperCamelCase__ : str=0.02 , ) -> Optional[Any]: """simple docstring""" __magic_name__ = parent __magic_name__ = batch_size __magic_name__ = seq_length __magic_name__ = is_training __magic_name__ = use_labels __magic_name__ = vocab_size __magic_name__ = hidden_size __magic_name__ = num_hidden_layers __magic_name__ = num_attention_heads __magic_name__ = intermediate_size __magic_name__ = hidden_act __magic_name__ = hidden_dropout_prob __magic_name__ = attention_probs_dropout_prob __magic_name__ = max_position_embeddings __magic_name__ = eos_token_id __magic_name__ = pad_token_id __magic_name__ = bos_token_id __magic_name__ = initializer_range def _lowercase ( self : Dict ) -> Any: """simple docstring""" __magic_name__ = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) __magic_name__ = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) __magic_name__ = shift_tokens_right(UpperCamelCase__ , 1 , 2 ) __magic_name__ = BlenderbotConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=UpperCamelCase__ , ) __magic_name__ = prepare_blenderbot_inputs_dict(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) return config, inputs_dict def _lowercase ( self : str ) -> Optional[Any]: """simple docstring""" __magic_name__ , __magic_name__ = self.prepare_config_and_inputs() return config, inputs_dict def _lowercase ( self : Tuple , UpperCamelCase__ : List[Any] , UpperCamelCase__ : int , UpperCamelCase__ : Optional[Any] ) -> int: """simple docstring""" __magic_name__ = 20 __magic_name__ = model_class_name(UpperCamelCase__ ) __magic_name__ = model.encode(inputs_dict["""input_ids"""] ) __magic_name__ , __magic_name__ = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) __magic_name__ = model.init_cache(decoder_input_ids.shape[0] , UpperCamelCase__ , UpperCamelCase__ ) __magic_name__ = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="""i4""" ) __magic_name__ = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) __magic_name__ = model.decode( decoder_input_ids[:, :-1] , UpperCamelCase__ , decoder_attention_mask=UpperCamelCase__ , past_key_values=UpperCamelCase__ , decoder_position_ids=UpperCamelCase__ , ) __magic_name__ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" ) __magic_name__ = model.decode( decoder_input_ids[:, -1:] , UpperCamelCase__ , decoder_attention_mask=UpperCamelCase__ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=UpperCamelCase__ , ) __magic_name__ = model.decode(UpperCamelCase__ , UpperCamelCase__ ) __magic_name__ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''' ) def _lowercase ( self : str , UpperCamelCase__ : int , UpperCamelCase__ : Any , UpperCamelCase__ : Tuple ) -> Union[str, Any]: """simple docstring""" __magic_name__ = 20 __magic_name__ = model_class_name(UpperCamelCase__ ) __magic_name__ = model.encode(inputs_dict["""input_ids"""] ) __magic_name__ , __magic_name__ = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) __magic_name__ = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) __magic_name__ = model.init_cache(decoder_input_ids.shape[0] , UpperCamelCase__ , UpperCamelCase__ ) __magic_name__ = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) __magic_name__ = model.decode( decoder_input_ids[:, :-1] , UpperCamelCase__ , decoder_attention_mask=UpperCamelCase__ , past_key_values=UpperCamelCase__ , decoder_position_ids=UpperCamelCase__ , ) __magic_name__ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" ) __magic_name__ = model.decode( decoder_input_ids[:, -1:] , UpperCamelCase__ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=UpperCamelCase__ , decoder_position_ids=UpperCamelCase__ , ) __magic_name__ = model.decode(UpperCamelCase__ , UpperCamelCase__ , decoder_attention_mask=UpperCamelCase__ ) __magic_name__ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''' ) @require_flax class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' a__ = 99 def _lowercase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" __magic_name__ = np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) __magic_name__ = input_ids.shape[0] __magic_name__ = BlenderbotConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def _lowercase ( self : Tuple ) -> Dict: """simple docstring""" __magic_name__ , __magic_name__ , __magic_name__ = self._get_config_and_data() __magic_name__ = FlaxBlenderbotForConditionalGeneration(UpperCamelCase__ ) __magic_name__ = lm_model(input_ids=UpperCamelCase__ ) __magic_name__ = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs["""logits"""].shape , UpperCamelCase__ ) def _lowercase ( self : Any ) -> List[Any]: """simple docstring""" __magic_name__ = BlenderbotConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) __magic_name__ = FlaxBlenderbotForConditionalGeneration(UpperCamelCase__ ) __magic_name__ = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa ) __magic_name__ = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa ) __magic_name__ = lm_model(input_ids=UpperCamelCase__ , decoder_input_ids=UpperCamelCase__ ) __magic_name__ = (*summary.shape, config.vocab_size) self.assertEqual(outputs["""logits"""].shape , UpperCamelCase__ ) def _lowercase ( self : Union[str, Any] ) -> List[str]: """simple docstring""" __magic_name__ = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa ) __magic_name__ = shift_tokens_right(UpperCamelCase__ , 1 , 2 ) __magic_name__ = np.equal(UpperCamelCase__ , 1 ).astype(np.floataa ).sum() __magic_name__ = np.equal(UpperCamelCase__ , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(UpperCamelCase__ , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class UpperCAmelCase_ ( _A , unittest.TestCase , _A ): '''simple docstring''' a__ = True a__ = ( ( FlaxBlenderbotModel, FlaxBlenderbotForConditionalGeneration, ) if is_flax_available() else () ) a__ = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else () def _lowercase ( self : List[str] ) -> Optional[int]: """simple docstring""" __magic_name__ = FlaxBlenderbotModelTester(self ) def _lowercase ( self : Optional[int] ) -> Tuple: """simple docstring""" __magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def _lowercase ( self : Dict ) -> Dict: """simple docstring""" __magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def _lowercase ( self : Any ) -> int: """simple docstring""" __magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __magic_name__ = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) __magic_name__ = model_class(UpperCamelCase__ ) @jax.jit def encode_jitted(UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Dict=None , **UpperCamelCase__ : Union[str, Any] ): return model.encode(input_ids=UpperCamelCase__ , attention_mask=UpperCamelCase__ ) with self.subTest("""JIT Enabled""" ): __magic_name__ = encode_jitted(**UpperCamelCase__ ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): __magic_name__ = encode_jitted(**UpperCamelCase__ ).to_tuple() self.assertEqual(len(UpperCamelCase__ ) , len(UpperCamelCase__ ) ) for jitted_output, output in zip(UpperCamelCase__ , UpperCamelCase__ ): self.assertEqual(jitted_output.shape , output.shape ) def _lowercase ( self : int ) -> List[Any]: """simple docstring""" __magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __magic_name__ = model_class(UpperCamelCase__ ) __magic_name__ = model.encode(inputs_dict["""input_ids"""] , inputs_dict["""attention_mask"""] ) __magic_name__ = { """decoder_input_ids""": inputs_dict["""decoder_input_ids"""], """decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""], """encoder_outputs""": encoder_outputs, } @jax.jit def decode_jitted(UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[int] ): return model.decode( decoder_input_ids=UpperCamelCase__ , decoder_attention_mask=UpperCamelCase__ , encoder_outputs=UpperCamelCase__ , ) with self.subTest("""JIT Enabled""" ): __magic_name__ = decode_jitted(**UpperCamelCase__ ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): __magic_name__ = decode_jitted(**UpperCamelCase__ ).to_tuple() self.assertEqual(len(UpperCamelCase__ ) , len(UpperCamelCase__ ) ) for jitted_output, output in zip(UpperCamelCase__ , UpperCamelCase__ ): self.assertEqual(jitted_output.shape , output.shape ) @slow def _lowercase ( self : Dict ) -> Optional[Any]: """simple docstring""" for model_class_name in self.all_model_classes: __magic_name__ = model_class_name.from_pretrained("""facebook/blenderbot-400M-distill""" ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids __magic_name__ = np.ones((1, 1) ) * model.config.eos_token_id __magic_name__ = model(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) @unittest.skipUnless(jax_device != """cpu""" , """3B test too slow on CPU.""" ) @slow def _lowercase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" __magic_name__ = {"""num_beams""": 1, """early_stopping""": True, """min_length""": 15, """max_length""": 25} __magic_name__ = {"""skip_special_tokens""": True, """clean_up_tokenization_spaces""": True} __magic_name__ = FlaxBlenderbotForConditionalGeneration.from_pretrained("""facebook/blenderbot-3B""" , from_pt=UpperCamelCase__ ) __magic_name__ = BlenderbotTokenizer.from_pretrained("""facebook/blenderbot-3B""" ) __magic_name__ = ["""Sam"""] __magic_name__ = tokenizer(UpperCamelCase__ , return_tensors="""jax""" ) __magic_name__ = model.generate(**UpperCamelCase__ , **UpperCamelCase__ ) __magic_name__ = """Sam is a great name. It means \"sun\" in Gaelic.""" __magic_name__ = tokenizer.batch_decode(UpperCamelCase__ , **UpperCamelCase__ ) assert generated_txt[0].strip() == tgt_text
88
'''simple docstring''' from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer __snake_case =logging.get_logger(__name__) __snake_case ={ """vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_config_file""": """tokenizer_config.json""", } __snake_case ={ """vocab_file""": { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json""" }, """merges_file""": { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt""" }, """tokenizer_config_file""": { """facebook/blenderbot_small-90M""": ( """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json""" ) }, } __snake_case ={ """facebook/blenderbot_small-90M""": 512, } class UpperCAmelCase_ ( __lowercase ): lowerCamelCase : Tuple = VOCAB_FILES_NAMES lowerCamelCase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : Optional[Any] = BlenderbotSmallTokenizer def __init__( self : Any , UpperCAmelCase__ : Union[str, Any]=None , UpperCAmelCase__ : Dict=None , UpperCAmelCase__ : int="<|endoftext|>" , UpperCAmelCase__ : Dict="<|endoftext|>" , UpperCAmelCase__ : str="<|endoftext|>" , UpperCAmelCase__ : str=False , UpperCAmelCase__ : Tuple=True , **UpperCAmelCase__ : Optional[Any] , ) -> Any: super().__init__( ByteLevelBPETokenizer( vocab=UpperCAmelCase__ , merges=UpperCAmelCase__ , add_prefix_space=UpperCAmelCase__ , trim_offsets=UpperCAmelCase__ , ) , bos_token=UpperCAmelCase__ , eos_token=UpperCAmelCase__ , unk_token=UpperCAmelCase__ , **UpperCAmelCase__ , ) lowerCAmelCase = add_prefix_space def __UpperCAmelCase ( self : List[Any] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Dict=None ) -> Any: lowerCAmelCase = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def __UpperCAmelCase ( self : Any , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None ) -> List[int]: lowerCAmelCase = [self.sep_token_id] lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
4
0
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''ctc_proj''', '''mask_emb''': '''masked_spec_embed''', } __lowerCAmelCase = [ '''ctc_proj''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> int: for attribute in key.split('.' ): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models _a : List[Any] = 'lm_head' _a : Tuple = getattr(lowerCAmelCase_ , lowerCAmelCase_ ) if weight_type is not None: _a : int = getattr(lowerCAmelCase_ , lowerCAmelCase_ ).shape else: _a : List[Any] = hf_pointer.shape assert hf_shape == value.shape, ( f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": _a : Optional[Any] = value elif weight_type == "weight_g": _a : str = value elif weight_type == "weight_v": _a : Optional[int] = value elif weight_type == "bias": _a : Any = value else: _a : Tuple = value logger.info(f"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Any: _a : List[Any] = [] _a : Dict = fairseq_model.state_dict() _a : Union[str, Any] = hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): _a : Tuple = False if "conv_layers" in name: load_conv_layer( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , hf_model.config.feat_extract_norm == 'group' , ) _a : Union[str, Any] = True else: for key, mapped_key in MAPPING.items(): _a : List[str] = 'unispeech.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: _a : int = True if "*" in mapped_key: _a : Dict = name.split(lowerCAmelCase_ )[0].split('.' )[-2] _a : int = mapped_key.replace('*' , lowerCAmelCase_ ) if "weight_g" in name: _a : Any = 'weight_g' elif "weight_v" in name: _a : List[Any] = 'weight_v' elif "bias" in name: _a : Union[str, Any] = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj _a : int = 'weight' else: _a : List[str] = None set_recursively(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) continue if not is_used: unused_weights.append(lowerCAmelCase_ ) logger.warning(f"""Unused weights: {unused_weights}""" ) def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Any: _a : int = full_name.split('conv_layers.' )[-1] _a : Tuple = name.split('.' ) _a : Optional[Any] = int(items[0] ) _a : List[Any] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) _a : int = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) _a : Optional[Any] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) _a : List[Any] = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) _a : Optional[Any] = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(lowerCAmelCase_ ) @torch.no_grad() def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=True ) -> Dict: if config_path is not None: _a : List[str] = UniSpeechConfig.from_pretrained(lowerCAmelCase_ ) else: _a : Tuple = UniSpeechConfig() if is_finetuned: if dict_path: _a : Optional[Any] = Dictionary.load_from_json(lowerCAmelCase_ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _a : Any = target_dict.pad_index _a : Optional[Any] = target_dict.bos_index _a : Optional[int] = target_dict.eos_index _a : List[Any] = len(target_dict.symbols ) _a : Tuple = os.path.join(lowerCAmelCase_ , 'vocab.json' ) if not os.path.isdir(lowerCAmelCase_ ): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(lowerCAmelCase_ ) ) return os.makedirs(lowerCAmelCase_ , exist_ok=lowerCAmelCase_ ) _a : List[str] = target_dict.indices # fairseq has the <pad> and <s> switched _a : List[Any] = 42 _a : Any = 43 with open(lowerCAmelCase_ , 'w' , encoding='utf-8' ) as vocab_handle: json.dump(lowerCAmelCase_ , lowerCAmelCase_ ) _a : Optional[Any] = WavaVecaPhonemeCTCTokenizer( lowerCAmelCase_ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=lowerCAmelCase_ , ) _a : List[Any] = True if config.feat_extract_norm == 'layer' else False _a : List[str] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , ) _a : Dict = WavaVecaProcessor(feature_extractor=lowerCAmelCase_ , tokenizer=lowerCAmelCase_ ) processor.save_pretrained(lowerCAmelCase_ ) _a : List[str] = UniSpeechForCTC(lowerCAmelCase_ ) else: _a : int = UniSpeechForPreTraining(lowerCAmelCase_ ) if is_finetuned: _a , _a , _a : List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] ), 'w2v_path': checkpoint_path} ) else: _a , _a , _a : int = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) _a : Optional[Any] = model[0].eval() recursively_load_weights(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) hf_unispeech.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) __lowerCAmelCase = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
89
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case =logging.get_logger(__name__) __snake_case ={ """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json""" ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class UpperCAmelCase_ ( __lowercase ): lowerCamelCase : Union[str, Any] = '''speech_to_text_2''' lowerCamelCase : Any = ['''past_key_values'''] lowerCamelCase : Optional[Any] = {'''num_attention_heads''': '''decoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self : Optional[int] , UpperCAmelCase__ : Optional[Any]=1_0_0_0_0 , UpperCAmelCase__ : int=6 , UpperCAmelCase__ : Optional[Any]=2_0_4_8 , UpperCAmelCase__ : Union[str, Any]=4 , UpperCAmelCase__ : List[Any]=0.0 , UpperCAmelCase__ : str=True , UpperCAmelCase__ : str="relu" , UpperCAmelCase__ : Any=2_5_6 , UpperCAmelCase__ : Optional[Any]=0.1 , UpperCAmelCase__ : Any=0.0 , UpperCAmelCase__ : Tuple=0.0 , UpperCAmelCase__ : List[Any]=0.02 , UpperCAmelCase__ : List[Any]=2 , UpperCAmelCase__ : str=True , UpperCAmelCase__ : List[str]=1 , UpperCAmelCase__ : Any=0 , UpperCAmelCase__ : Dict=2 , UpperCAmelCase__ : int=1_0_2_4 , **UpperCAmelCase__ : Optional[Any] , ) -> Dict: lowerCAmelCase = vocab_size lowerCAmelCase = d_model lowerCAmelCase = decoder_ffn_dim lowerCAmelCase = decoder_layers lowerCAmelCase = decoder_attention_heads lowerCAmelCase = dropout lowerCAmelCase = attention_dropout lowerCAmelCase = activation_dropout lowerCAmelCase = activation_function lowerCAmelCase = init_std lowerCAmelCase = decoder_layerdrop lowerCAmelCase = use_cache lowerCAmelCase = decoder_layers lowerCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True lowerCAmelCase = max_target_positions super().__init__( pad_token_id=UpperCAmelCase__ , bos_token_id=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ , decoder_start_token_id=UpperCAmelCase__ , **UpperCAmelCase__ , )
4
0
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __A = logging.get_logger(__name__) __A = { "shi-labs/nat-mini-in1k-224": "https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json", # See all Nat models at https://huggingface.co/models?filter=nat } class __lowerCAmelCase ( __magic_name__ , __magic_name__ ): """simple docstring""" snake_case_ = '''nat''' snake_case_ = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self , lowerCamelCase__=4 , lowerCamelCase__=3 , lowerCamelCase__=64 , lowerCamelCase__=[3, 4, 6, 5] , lowerCamelCase__=[2, 4, 8, 16] , lowerCamelCase__=7 , lowerCamelCase__=3.0 , lowerCamelCase__=True , lowerCamelCase__=0.0 , lowerCamelCase__=0.0 , lowerCamelCase__=0.1 , lowerCamelCase__="gelu" , lowerCamelCase__=0.02 , lowerCamelCase__=1e-5 , lowerCamelCase__=0.0 , lowerCamelCase__=None , lowerCamelCase__=None , **lowerCamelCase__ , ) -> List[Any]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) __lowerCamelCase = patch_size __lowerCamelCase = num_channels __lowerCamelCase = embed_dim __lowerCamelCase = depths __lowerCamelCase = len(lowerCamelCase__ ) __lowerCamelCase = num_heads __lowerCamelCase = kernel_size __lowerCamelCase = mlp_ratio __lowerCamelCase = qkv_bias __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = drop_path_rate __lowerCamelCase = hidden_act __lowerCamelCase = layer_norm_eps __lowerCamelCase = initializer_range # we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model __lowerCamelCase = int(embed_dim * 2 ** (len(lowerCamelCase__ ) - 1) ) __lowerCamelCase = layer_scale_init_value __lowerCamelCase = ['stem'] + [f"""stage{idx}""" for idx in range(1 , len(lowerCamelCase__ ) + 1 )] __lowerCamelCase , __lowerCamelCase = get_aligned_output_features_output_indices( out_features=lowerCamelCase__ , out_indices=lowerCamelCase__ , stage_names=self.stage_names )
90
'''simple docstring''' from __future__ import annotations from bisect import bisect_left from functools import total_ordering from heapq import merge @total_ordering class UpperCAmelCase_ ( __lowercase ): def __lt__( self : Optional[int] , UpperCAmelCase__ : List[str] ) -> List[Any]: return self[-1] < other[-1] def __eq__( self : str , UpperCAmelCase__ : List[str] ) -> Tuple: return self[-1] == other[-1] def a_ ( lowerCamelCase : list ): lowerCAmelCase = [] # sort into stacks for element in collection: lowerCAmelCase = Stack([element] ) lowerCAmelCase = bisect_left(lowerCamelCase , lowerCamelCase ) if i != len(lowerCamelCase ): stacks[i].append(lowerCamelCase ) else: stacks.append(lowerCamelCase ) # use a heap-based merge to merge stack efficiently lowerCAmelCase = merge(*(reversed(lowerCamelCase ) for stack in stacks) ) return collection if __name__ == "__main__": __snake_case =input("""Enter numbers separated by a comma:\n""").strip() __snake_case =[int(item) for item in user_input.split(""",""")] print(patience_sort(unsorted))
4
0
"""simple docstring""" # Lint as: python3 import dataclasses import re from dataclasses import dataclass from functools import total_ordering from typing import Optional, Union UpperCAmelCase_ : List[str] = re.compile(r"""^(?P<major>\d+)""" r"""\.(?P<minor>\d+)""" r"""\.(?P<patch>\d+)$""") @total_ordering @dataclass class lowerCAmelCase__ : '''simple docstring''' __UpperCamelCase = 42 __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = None def _SCREAMING_SNAKE_CASE ( self : Optional[int]): '''simple docstring''' SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = _str_to_version_tuple(self.version_str) def __repr__( self : Optional[Any]): '''simple docstring''' return F'{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}' @property def _SCREAMING_SNAKE_CASE ( self : Tuple): '''simple docstring''' return self.major, self.minor, self.patch def _SCREAMING_SNAKE_CASE ( self : Tuple , lowercase_ : List[Any]): '''simple docstring''' if isinstance(lowercase_ , lowercase_): return Version(lowercase_) elif isinstance(lowercase_ , lowercase_): return other raise TypeError(F'{other} (type {type(lowercase_)}) cannot be compared to version.') def __eq__( self : str , lowercase_ : Optional[Any]): '''simple docstring''' try: SCREAMING_SNAKE_CASE_ : List[str] = self._validate_operand(lowercase_) except (TypeError, ValueError): return False else: return self.tuple == other.tuple def __lt__( self : Dict , lowercase_ : List[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : str = self._validate_operand(lowercase_) return self.tuple < other.tuple def __hash__( self : List[Any]): '''simple docstring''' return hash(_version_tuple_to_str(self.tuple)) @classmethod def _SCREAMING_SNAKE_CASE ( cls : Tuple , lowercase_ : List[str]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = {f.name for f in dataclasses.fields(cls)} return cls(**{k: v for k, v in dic.items() if k in field_names}) def _SCREAMING_SNAKE_CASE ( self : List[Any]): '''simple docstring''' return self.version_str def _A (__a ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : str = _VERSION_REG.match(__a ) if not res: raise ValueError(f'Invalid version \'{version_str}\'. Format should be x.y.z with {{x,y,z}} being digits.' ) return tuple(int(__a ) for v in [res.group('''major''' ), res.group('''minor''' ), res.group('''patch''' )] ) def _A (__a ) -> List[str]: """simple docstring""" return ".".join(str(__a ) for v in version_tuple )
91
'''simple docstring''' import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py __snake_case ="""\ @INPROCEEDINGS{Papineni02bleu:a, author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu}, title = {BLEU: a Method for Automatic Evaluation of Machine Translation}, booktitle = {}, year = {2002}, pages = {311--318} } @inproceedings{lin-och-2004-orange, title = \"{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation\", author = \"Lin, Chin-Yew and Och, Franz Josef\", booktitle = \"{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics\", month = \"aug 23{--}aug 27\", year = \"2004\", address = \"Geneva, Switzerland\", publisher = \"COLING\", url = \"https://www.aclweb.org/anthology/C04-1072\", pages = \"501--507\", } """ __snake_case ="""\ BLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another. Quality is considered to be the correspondence between a machine's output and that of a human: \"the closer a machine translation is to a professional human translation, the better it is\" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and remains one of the most popular automated and inexpensive metrics. Scores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations. Those scores are then averaged over the whole corpus to reach an estimate of the translation's overall quality. Intelligibility or grammatical correctness are not taken into account[citation needed]. BLEU's output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1 representing more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the reference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional reference translations will increase the BLEU score. """ __snake_case =""" Computes BLEU score of translated segments against one or more references. Args: predictions: list of translations to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. max_order: Maximum n-gram order to use when computing BLEU score. smooth: Whether or not to apply Lin et al. 2004 smoothing. Returns: 'bleu': bleu score, 'precisions': geometric mean of n-gram precisions, 'brevity_penalty': brevity penalty, 'length_ratio': ratio of lengths, 'translation_length': translation_length, 'reference_length': reference_length Examples: >>> predictions = [ ... [\"hello\", \"there\", \"general\", \"kenobi\"], # tokenized prediction of the first sample ... [\"foo\", \"bar\", \"foobar\"] # tokenized prediction of the second sample ... ] >>> references = [ ... [[\"hello\", \"there\", \"general\", \"kenobi\"], [\"hello\", \"there\", \"!\"]], # tokenized references for the first sample (2 references) ... [[\"foo\", \"bar\", \"foobar\"]] # tokenized references for the second sample (1 reference) ... ] >>> bleu = datasets.load_metric(\"bleu\") >>> results = bleu.compute(predictions=predictions, references=references) >>> print(results[\"bleu\"]) 1.0 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): def __UpperCAmelCase ( self : Tuple ) -> int: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ), 'references': datasets.Sequence( datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ) , id='references' ), } ) , codebase_urls=['https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py'] , reference_urls=[ 'https://en.wikipedia.org/wiki/BLEU', 'https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213', ] , ) def __UpperCAmelCase ( self : Optional[int] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Any , UpperCAmelCase__ : Union[str, Any]=4 , UpperCAmelCase__ : Optional[int]=False ) -> int: lowerCAmelCase = compute_bleu( reference_corpus=UpperCAmelCase__ , translation_corpus=UpperCAmelCase__ , max_order=UpperCAmelCase__ , smooth=UpperCAmelCase__ ) ((lowerCAmelCase) , (lowerCAmelCase) , (lowerCAmelCase) , (lowerCAmelCase) , (lowerCAmelCase) , (lowerCAmelCase)) = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
4
0
from __future__ import annotations from math import pow, sqrt def _a ( SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float ): if (resistance, reactance, impedance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if resistance == 0: return {"resistance": sqrt(pow(SCREAMING_SNAKE_CASE_ , 2 ) - pow(SCREAMING_SNAKE_CASE_ , 2 ) )} elif reactance == 0: return {"reactance": sqrt(pow(SCREAMING_SNAKE_CASE_ , 2 ) - pow(SCREAMING_SNAKE_CASE_ , 2 ) )} elif impedance == 0: return {"impedance": sqrt(pow(SCREAMING_SNAKE_CASE_ , 2 ) + pow(SCREAMING_SNAKE_CASE_ , 2 ) )} else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
92
'''simple docstring''' from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record __snake_case ="""\ @article{wang2019superglue, title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems}, author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R}, journal={arXiv preprint arXiv:1905.00537}, year={2019} } """ __snake_case ="""\ SuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after GLUE with a new set of more difficult language understanding tasks, improved resources, and a new public leaderboard. """ __snake_case =""" Compute SuperGLUE evaluation metric associated to each SuperGLUE dataset. Args: predictions: list of predictions to score. Depending on the SuperGlUE subset: - for 'record': list of question-answer dictionaries with the following keys: - 'idx': index of the question as specified by the dataset - 'prediction_text': the predicted answer text - for 'multirc': list of question-answer dictionaries with the following keys: - 'idx': index of the question-answer pair as specified by the dataset - 'prediction': the predicted answer label - otherwise: list of predicted labels references: list of reference labels. Depending on the SuperGLUE subset: - for 'record': list of question-answers dictionaries with the following keys: - 'idx': index of the question as specified by the dataset - 'answers': list of possible answers - otherwise: list of reference labels Returns: depending on the SuperGLUE subset: - for 'record': - 'exact_match': Exact match between answer and gold answer - 'f1': F1 score - for 'multirc': - 'exact_match': Exact match between answer and gold answer - 'f1_m': Per-question macro-F1 score - 'f1_a': Average F1 score over all answers - for 'axb': 'matthews_correlation': Matthew Correlation - for 'cb': - 'accuracy': Accuracy - 'f1': F1 score - for all others: - 'accuracy': Accuracy Examples: >>> super_glue_metric = datasets.load_metric('super_glue', 'copa') # any of [\"copa\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"boolq\", \"axg\"] >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'cb') >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0, 'f1': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'record') >>> predictions = [{'idx': {'passage': 0, 'query': 0}, 'prediction_text': 'answer'}] >>> references = [{'idx': {'passage': 0, 'query': 0}, 'answers': ['answer', 'another_answer']}] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'exact_match': 1.0, 'f1': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'multirc') >>> predictions = [{'idx': {'answer': 0, 'paragraph': 0, 'question': 0}, 'prediction': 0}, {'idx': {'answer': 1, 'paragraph': 2, 'question': 3}, 'prediction': 1}] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'exact_match': 1.0, 'f1_m': 1.0, 'f1_a': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'axb') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'matthews_correlation': 1.0} """ def a_ ( lowerCamelCase : str , lowerCamelCase : Union[str, Any] ): return float((preds == labels).mean() ) def a_ ( lowerCamelCase : Union[str, Any] , lowerCamelCase : Dict , lowerCamelCase : str="binary" ): lowerCAmelCase = simple_accuracy(lowerCamelCase , lowerCamelCase ) lowerCAmelCase = float(fa_score(y_true=lowerCamelCase , y_pred=lowerCamelCase , average=lowerCamelCase ) ) return { "accuracy": acc, "f1": fa, } def a_ ( lowerCamelCase : List[Any] , lowerCamelCase : List[Any] ): lowerCAmelCase = {} for id_pred, label in zip(lowerCamelCase , lowerCamelCase ): lowerCAmelCase = f'''{id_pred['idx']['paragraph']}-{id_pred['idx']['question']}''' lowerCAmelCase = id_pred['prediction'] if question_id in question_map: question_map[question_id].append((pred, label) ) else: lowerCAmelCase = [(pred, label)] lowerCAmelCase , lowerCAmelCase = [], [] for question, preds_labels in question_map.items(): lowerCAmelCase , lowerCAmelCase = zip(*lowerCamelCase ) lowerCAmelCase = fa_score(y_true=lowerCamelCase , y_pred=lowerCamelCase , average='macro' ) fas.append(lowerCamelCase ) lowerCAmelCase = int(sum(pred == label for pred, label in preds_labels ) == len(lowerCamelCase ) ) ems.append(lowerCamelCase ) lowerCAmelCase = float(sum(lowerCamelCase ) / len(lowerCamelCase ) ) lowerCAmelCase = sum(lowerCamelCase ) / len(lowerCamelCase ) lowerCAmelCase = float(fa_score(y_true=lowerCamelCase , y_pred=[id_pred['prediction'] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): def __UpperCAmelCase ( self : List[str] ) -> List[Any]: if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( 'You should supply a configuration name selected in ' '["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format='numpy' if not self.config_name == 'record' and not self.config_name == 'multirc' else None , ) def __UpperCAmelCase ( self : Union[str, Any] ) -> str: if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value('int64' ), "query": datasets.Value('int64' ), }, "prediction_text": datasets.Value('string' ), }, "references": { "idx": { "passage": datasets.Value('int64' ), "query": datasets.Value('int64' ), }, "answers": datasets.Sequence(datasets.Value('string' ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value('int64' ), "paragraph": datasets.Value('int64' ), "question": datasets.Value('int64' ), }, "prediction": datasets.Value('int64' ), }, "references": datasets.Value('int64' ), } else: return { "predictions": datasets.Value('int64' ), "references": datasets.Value('int64' ), } def __UpperCAmelCase ( self : List[str] , UpperCAmelCase__ : Any , UpperCAmelCase__ : Optional[Any] ) -> Any: if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(UpperCAmelCase__ , UpperCAmelCase__ )} elif self.config_name == "cb": return acc_and_fa(UpperCAmelCase__ , UpperCAmelCase__ , fa_avg='macro' ) elif self.config_name == "record": lowerCAmelCase = [ { 'qas': [ {'id': ref['idx']['query'], 'answers': [{'text': ans} for ans in ref['answers']]} for ref in references ] } ] lowerCAmelCase = {pred['idx']['query']: pred['prediction_text'] for pred in predictions} return evaluate_record(UpperCAmelCase__ , UpperCAmelCase__ )[0] elif self.config_name == "multirc": return evaluate_multirc(UpperCAmelCase__ , UpperCAmelCase__ ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(UpperCAmelCase__ , UpperCAmelCase__ )} else: raise KeyError( 'You should supply a configuration name selected in ' '["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]' )
4
0
'''simple docstring''' import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class lowerCAmelCase__ : def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=sys.maxsize ): """simple docstring""" lowercase_ : str = '''bilinear''' lowercase_ : int = max_size lowercase_ : int = short_edge_length def __call__( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : Tuple = [] for img in imgs: lowercase_ , lowercase_ : int = img.shape[:2] # later: provide list and randomly choose index for resize lowercase_ : int = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1 ) if size == 0: return img lowercase_ : str = size * 1.0 / min(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if h < w: lowercase_ , lowercase_ : Tuple = size, scale * w else: lowercase_ , lowercase_ : str = scale * h, size if max(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) > self.max_size: lowercase_ : Union[str, Any] = self.max_size * 1.0 / max(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) lowercase_ : Optional[Any] = newh * scale lowercase_ : Union[str, Any] = neww * scale lowercase_ : Tuple = int(neww + 0.5 ) lowercase_ : List[str] = int(newh + 0.5 ) if img.dtype == np.uinta: lowercase_ : Union[str, Any] = Image.fromarray(__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[Any] = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR ) lowercase_ : Any = np.asarray(__SCREAMING_SNAKE_CASE ) else: lowercase_ : List[Any] = img.permute(2 , 0 , 1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw lowercase_ : int = nn.functional.interpolate( __SCREAMING_SNAKE_CASE , (newh, neww) , mode=self.interp_method , align_corners=__SCREAMING_SNAKE_CASE ).squeeze(0 ) img_augs.append(__SCREAMING_SNAKE_CASE ) return img_augs class lowerCAmelCase__ : def __init__( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : Union[str, Any] = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST ) lowercase_ : int = cfg.INPUT.FORMAT lowercase_ : Optional[int] = cfg.SIZE_DIVISIBILITY lowercase_ : List[Any] = cfg.PAD_VALUE lowercase_ : Optional[Any] = cfg.INPUT.MAX_SIZE_TEST lowercase_ : Tuple = cfg.MODEL.DEVICE lowercase_ : int = torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) lowercase_ : List[Any] = torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) lowercase_ : Union[str, Any] = lambda __SCREAMING_SNAKE_CASE : (x - self.pixel_mean) / self.pixel_std def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : Union[str, Any] = tuple(max(__SCREAMING_SNAKE_CASE ) for s in zip(*[img.shape for img in images] ) ) lowercase_ : List[Any] = [im.shape[-2:] for im in images] lowercase_ : int = [ nn.functional.pad( __SCREAMING_SNAKE_CASE , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , ) for size, im in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ] return torch.stack(__SCREAMING_SNAKE_CASE ), torch.tensor(__SCREAMING_SNAKE_CASE ) def __call__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=False ): """simple docstring""" with torch.no_grad(): if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowercase_ : Dict = [images] if single_image: assert len(__SCREAMING_SNAKE_CASE ) == 1 for i in range(len(__SCREAMING_SNAKE_CASE ) ): if isinstance(images[i] , torch.Tensor ): images.insert(__SCREAMING_SNAKE_CASE , images.pop(__SCREAMING_SNAKE_CASE ).to(self.device ).float() ) elif not isinstance(images[i] , torch.Tensor ): images.insert( __SCREAMING_SNAKE_CASE , torch.as_tensor(img_tensorize(images.pop(__SCREAMING_SNAKE_CASE ) , input_format=self.input_format ) ) .to(self.device ) .float() , ) # resize smallest edge lowercase_ : Any = torch.tensor([im.shape[:2] for im in images] ) lowercase_ : Tuple = self.aug(__SCREAMING_SNAKE_CASE ) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic lowercase_ : Any = [self.normalizer(__SCREAMING_SNAKE_CASE ) for x in images] # now pad them to do the following operations lowercase_ , lowercase_ : Optional[Any] = self.pad(__SCREAMING_SNAKE_CASE ) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad lowercase_ : List[str] = torch.true_divide(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def snake_case_ ( __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Dict ): """simple docstring""" boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def snake_case_ ( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Tuple[int, int] ): """simple docstring""" assert torch.isfinite(__SCREAMING_SNAKE_CASE ).all(), "Box tensor contains infinite or NaN!" lowercase_ , lowercase_ : Union[str, Any] = box_size tensor[:, 0].clamp_(min=0 , max=__SCREAMING_SNAKE_CASE ) tensor[:, 1].clamp_(min=0 , max=__SCREAMING_SNAKE_CASE ) tensor[:, 2].clamp_(min=0 , max=__SCREAMING_SNAKE_CASE ) tensor[:, 3].clamp_(min=0 , max=__SCREAMING_SNAKE_CASE )
93
'''simple docstring''' print((lambda quine: quine % quine)("""print((lambda quine: quine %% quine)(%r))"""))
4
0
import warnings from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging snake_case : Any = logging.get_logger(__name__) class _snake_case ( _snake_case ): SCREAMING_SNAKE_CASE__ = ['input_values', 'attention_mask'] def __init__( self , _lowerCamelCase = 1 , _lowerCamelCase = 1_6000 , _lowerCamelCase = 0.0 , _lowerCamelCase = False , _lowerCamelCase = 80 , _lowerCamelCase = 16 , _lowerCamelCase = 64 , _lowerCamelCase = "hann_window" , _lowerCamelCase = 1.0 , _lowerCamelCase = 80 , _lowerCamelCase = 7600 , _lowerCamelCase = 1e-10 , _lowerCamelCase = 2 , _lowerCamelCase = True , **_lowerCamelCase , ): super().__init__(feature_size=_lowerCamelCase , sampling_rate=_lowerCamelCase , padding_value=_lowerCamelCase , **_lowerCamelCase ) a :Union[str, Any] = do_normalize a :List[Any] = return_attention_mask a :List[str] = num_mel_bins a :List[str] = hop_length a :List[Any] = win_length a :List[Any] = win_function a :List[str] = frame_signal_scale a :List[str] = fmin a :Tuple = fmax a :List[Any] = mel_floor a :Union[str, Any] = reduction_factor a :Union[str, Any] = win_length * sampling_rate // 1000 a :Dict = hop_length * sampling_rate // 1000 a :Any = optimal_fft_length(self.sample_size ) a :List[Any] = (self.n_fft // 2) + 1 a :Any = window_function(window_length=self.sample_size , name=self.win_function , periodic=_lowerCamelCase ) a :str = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.num_mel_bins , min_frequency=self.fmin , max_frequency=self.fmax , sampling_rate=self.sampling_rate , norm='''slaney''' , mel_scale='''slaney''' , ) if frame_signal_scale != 1.0: warnings.warn( '''The argument `frame_signal_scale` is deprecated and will be removed in version 4.30.0 of Transformers''' , _lowerCamelCase , ) if reduction_factor != 2.0: warnings.warn( '''The argument `reduction_factor` is deprecated and will be removed in version 4.30.0 of Transformers''' , _lowerCamelCase , ) @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def SCREAMING_SNAKE_CASE__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 0.0 ): if attention_mask is not None: a :List[Any] = np.array(_lowerCamelCase , np.intaa ) a :List[str] = [] for vector, length in zip(_lowerCamelCase , attention_mask.sum(-1 ) ): a :Dict = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1e-7 ) if length < normed_slice.shape[0]: a :Union[str, Any] = padding_value normed_input_values.append(_lowerCamelCase ) else: a :List[str] = [(x - x.mean()) / np.sqrt(x.var() + 1e-7 ) for x in input_values] return normed_input_values def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , ): a :Union[str, Any] = spectrogram( _lowerCamelCase , window=self.window , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , mel_filters=self.mel_filters , mel_floor=self.mel_floor , log_mel='''log10''' , ) return log_mel_spec.T def __call__( self , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = False , _lowerCamelCase = None , _lowerCamelCase = False , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , **_lowerCamelCase , ): if audio is None and audio_target is None: raise ValueError('''You must provide either `audio` or `audio_target` values.''' ) if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' F''' {self.sampling_rate}. Please make sure that the provided audio input was sampled with''' F''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( '''It is strongly recommended to pass the ``sampling_rate`` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) if audio is not None: a :Optional[Any] = self._process_audio( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase , ) else: a :int = None if audio_target is not None: a :Optional[int] = self._process_audio( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase , ) if inputs is None: return inputs_target else: a :Optional[Any] = inputs_target['''input_values'''] a :Union[str, Any] = inputs_target.get('''attention_mask''' ) if decoder_attention_mask is not None: a :str = decoder_attention_mask return inputs def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase = False , _lowerCamelCase = False , _lowerCamelCase = None , _lowerCamelCase = False , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , **_lowerCamelCase , ): a :Optional[int] = isinstance(_lowerCamelCase , np.ndarray ) and len(speech.shape ) > 1 if is_batched_numpy and len(speech.shape ) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' ) a :List[Any] = is_batched_numpy or ( isinstance(_lowerCamelCase , (list, tuple) ) and (isinstance(speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: a :str = [np.asarray(_lowerCamelCase , dtype=np.floataa ) for speech in speech] elif not is_batched and not isinstance(_lowerCamelCase , np.ndarray ): a :Union[str, Any] = np.asarray(_lowerCamelCase , dtype=np.floataa ) elif isinstance(_lowerCamelCase , np.ndarray ) and speech.dtype is np.dtype(np.floataa ): a :List[Any] = speech.astype(np.floataa ) # always return batch if not is_batched: a :List[Any] = [speech] # needed to make pad() work on spectrogram inputs a :Optional[int] = self.feature_size # convert into correct format for padding if is_target: a :List[Any] = [self._extract_mel_features(_lowerCamelCase ) for waveform in speech] a :List[Any] = BatchFeature({'''input_values''': features} ) a :List[Any] = self.num_mel_bins else: a :List[str] = BatchFeature({'''input_values''': speech} ) a :Optional[int] = self.pad( _lowerCamelCase , padding=_lowerCamelCase , max_length=_lowerCamelCase , truncation=_lowerCamelCase , pad_to_multiple_of=_lowerCamelCase , return_attention_mask=_lowerCamelCase , **_lowerCamelCase , ) a :List[str] = feature_size_hack # convert input values to correct format a :Tuple = padded_inputs['''input_values'''] if not isinstance(input_values[0] , np.ndarray ): a :int = [np.asarray(_lowerCamelCase , dtype=np.floataa ) for array in input_values] elif ( not isinstance(_lowerCamelCase , np.ndarray ) and isinstance(input_values[0] , np.ndarray ) and input_values[0].dtype is np.dtype(np.floataa ) ): a :Union[str, Any] = [array.astype(np.floataa ) for array in input_values] elif isinstance(_lowerCamelCase , np.ndarray ) and input_values.dtype is np.dtype(np.floataa ): a :Optional[int] = input_values.astype(np.floataa ) # convert attention_mask to correct format a :Any = padded_inputs.get('''attention_mask''' ) if attention_mask is not None: a :Union[str, Any] = [np.asarray(_lowerCamelCase , dtype=np.intaa ) for array in attention_mask] # zero-mean and unit-variance normalization if not is_target and self.do_normalize: a :Union[str, Any] = ( attention_mask if self._get_padding_strategies(_lowerCamelCase , max_length=_lowerCamelCase ) is not PaddingStrategy.DO_NOT_PAD else None ) a :List[str] = self.zero_mean_unit_var_norm( padded_inputs['''input_values'''] , attention_mask=_lowerCamelCase , padding_value=self.padding_value ) if return_tensors is not None: a :Any = padded_inputs.convert_to_tensors(_lowerCamelCase ) return padded_inputs def SCREAMING_SNAKE_CASE__ ( self ): a :List[str] = super().to_dict() # Don't serialize these as they are derived from the other properties. a :Tuple = ['''window''', '''mel_filters''', '''sample_size''', '''sample_stride''', '''n_fft''', '''n_freqs'''] for name in names: if name in output: del output[name] return output
94
'''simple docstring''' import os __snake_case ={"""I""": 1, """V""": 5, """X""": 10, """L""": 50, """C""": 100, """D""": 500, """M""": 1_000} def a_ ( lowerCamelCase : str ): lowerCAmelCase = 0 lowerCAmelCase = 0 while index < len(lowerCamelCase ) - 1: lowerCAmelCase = SYMBOLS[numerals[index]] lowerCAmelCase = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def a_ ( lowerCamelCase : int ): lowerCAmelCase = '' lowerCAmelCase = num // 1000 numerals += m_count * "M" num %= 1000 lowerCAmelCase = num // 100 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 100 lowerCAmelCase = num // 10 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 10 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def a_ ( lowerCamelCase : str = "/p089_roman.txt" ): lowerCAmelCase = 0 with open(os.path.dirname(lowerCamelCase ) + roman_numerals_filename ) as filea: lowerCAmelCase = filea.readlines() for line in lines: lowerCAmelCase = line.strip() lowerCAmelCase = parse_roman_numerals(lowerCamelCase ) lowerCAmelCase = generate_roman_numerals(lowerCamelCase ) savings += len(lowerCamelCase ) - len(lowerCamelCase ) return savings if __name__ == "__main__": print(F'''{solution() = }''')
4
0
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCAmelCase : int = { """configuration_efficientnet""": [ """EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """EfficientNetConfig""", """EfficientNetOnnxConfig""", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Optional[int] = ["""EfficientNetImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Dict = [ """EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """EfficientNetForImageClassification""", """EfficientNetModel""", """EfficientNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_efficientnet import ( EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientNetConfig, EfficientNetOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientnet import EfficientNetImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientnet import ( EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientNetForImageClassification, EfficientNetModel, EfficientNetPreTrainedModel, ) else: import sys UpperCAmelCase : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
95
'''simple docstring''' import itertools import random import unittest import numpy as np from transformers import ASTFeatureExtractor from transformers.testing_utils import require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin __snake_case =random.Random() if is_torch_available(): import torch def a_ ( lowerCamelCase : Dict , lowerCamelCase : Dict=1.0 , lowerCamelCase : List[Any]=None , lowerCamelCase : Union[str, Any]=None ): if rng is None: lowerCAmelCase = global_rng lowerCAmelCase = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class UpperCAmelCase_ ( unittest.TestCase ): def __init__( self : List[Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : List[str]=7 , UpperCAmelCase__ : int=4_0_0 , UpperCAmelCase__ : int=2_0_0_0 , UpperCAmelCase__ : List[str]=1 , UpperCAmelCase__ : Tuple=0.0 , UpperCAmelCase__ : Tuple=1_6_0_0_0 , UpperCAmelCase__ : Tuple=True , UpperCAmelCase__ : Union[str, Any]=True , ) -> Any: lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = min_seq_length lowerCAmelCase = max_seq_length lowerCAmelCase = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) lowerCAmelCase = feature_size lowerCAmelCase = padding_value lowerCAmelCase = sampling_rate lowerCAmelCase = return_attention_mask lowerCAmelCase = do_normalize def __UpperCAmelCase ( self : Optional[Any] ) -> List[str]: return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def __UpperCAmelCase ( self : str , UpperCAmelCase__ : Union[str, Any]=False , UpperCAmelCase__ : Union[str, Any]=False ) -> Optional[Any]: def _flatten(UpperCAmelCase__ : int ): return list(itertools.chain(*UpperCAmelCase__ ) ) if equal_length: lowerCAmelCase = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size lowerCAmelCase = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: lowerCAmelCase = [np.asarray(UpperCAmelCase__ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): lowerCamelCase : Dict = ASTFeatureExtractor def __UpperCAmelCase ( self : str ) -> Optional[int]: lowerCAmelCase = ASTFeatureExtractionTester(self ) def __UpperCAmelCase ( self : Optional[int] ) -> Optional[int]: # Tests that all call wrap to encode_plus and batch_encode_plus lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 lowerCAmelCase = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] lowerCAmelCase = [np.asarray(UpperCAmelCase__ ) for speech_input in speech_inputs] # Test not batched input lowerCAmelCase = feat_extract(speech_inputs[0] , return_tensors='np' ).input_values lowerCAmelCase = feat_extract(np_speech_inputs[0] , return_tensors='np' ).input_values self.assertTrue(np.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1E-3 ) ) # Test batched lowerCAmelCase = feat_extract(UpperCAmelCase__ , padding=UpperCAmelCase__ , return_tensors='np' ).input_values lowerCAmelCase = feat_extract(UpperCAmelCase__ , padding=UpperCAmelCase__ , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(UpperCAmelCase__ , UpperCAmelCase__ ): self.assertTrue(np.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. lowerCAmelCase = [floats_list((1, x) )[0] for x in (8_0_0, 8_0_0, 8_0_0)] lowerCAmelCase = np.asarray(UpperCAmelCase__ ) lowerCAmelCase = feat_extract(UpperCAmelCase__ , return_tensors='np' ).input_values lowerCAmelCase = feat_extract(UpperCAmelCase__ , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(UpperCAmelCase__ , UpperCAmelCase__ ): self.assertTrue(np.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1E-3 ) ) @require_torch def __UpperCAmelCase ( self : Union[str, Any] ) -> Optional[int]: import torch lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCAmelCase = np.random.rand(1_0_0 ).astype(np.floataa ) lowerCAmelCase = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: lowerCAmelCase = feature_extractor.pad([{'input_values': inputs}] , return_tensors='np' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) lowerCAmelCase = feature_extractor.pad([{'input_values': inputs}] , return_tensors='pt' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def __UpperCAmelCase ( self : int , UpperCAmelCase__ : str ) -> Tuple: from datasets import load_dataset lowerCAmelCase = load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' ) # automatic decoding with librispeech lowerCAmelCase = ds.sort('id' ).select(range(UpperCAmelCase__ ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] @require_torch def __UpperCAmelCase ( self : str ) -> Optional[Any]: # fmt: off lowerCAmelCase = torch.tensor( [-0.9_894, -1.2_776, -0.9_066, -1.2_776, -0.9_349, -1.2_609, -1.0_386, -1.2_776, -1.1_561, -1.2_776, -1.2_052, -1.2_723, -1.2_190, -1.2_132, -1.2_776, -1.1_133, -1.1_953, -1.1_343, -1.1_584, -1.2_203, -1.1_770, -1.2_474, -1.2_381, -1.1_936, -0.9_270, -0.8_317, -0.8_049, -0.7_706, -0.7_565, -0.7_869] ) # fmt: on lowerCAmelCase = self._load_datasamples(1 ) lowerCAmelCase = ASTFeatureExtractor() lowerCAmelCase = feature_extractor(UpperCAmelCase__ , return_tensors='pt' ).input_values self.assertEquals(input_values.shape , (1, 1_0_2_4, 1_2_8) ) self.assertTrue(torch.allclose(input_values[0, 0, :3_0] , UpperCAmelCase__ , atol=1E-4 ) )
4
0
"""simple docstring""" from __future__ import annotations def _snake_case ( lowercase__ ): _lowerCamelCase : List[str] = 0.0_0 _lowerCamelCase : Tuple = 0 for resistor in resistors: if resistor <= 0: _lowerCamelCase : Optional[int] = f'''Resistor at index {index} has a negative or zero value!''' raise ValueError(lowercase__ ) first_sum += 1 / float(lowercase__ ) index += 1 return 1 / first_sum def _snake_case ( lowercase__ ): _lowerCamelCase : Dict = 0.0_0 _lowerCamelCase : int = 0 for resistor in resistors: sum_r += resistor if resistor < 0: _lowerCamelCase : Any = f'''Resistor at index {index} has a negative value!''' raise ValueError(lowercase__ ) index += 1 return sum_r if __name__ == "__main__": import doctest doctest.testmod()
96
'''simple docstring''' import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class UpperCAmelCase_ ( unittest.TestCase ): def __UpperCAmelCase ( self : str ) -> List[Any]: lowerCAmelCase = torch.nn.Linear(1_0 , 1_0 ) lowerCAmelCase = torch.optim.SGD(model.parameters() , 0.1 ) lowerCAmelCase = Accelerator() lowerCAmelCase = accelerator.prepare(UpperCAmelCase__ ) try: pickle.loads(pickle.dumps(UpperCAmelCase__ ) ) except Exception as e: self.fail(F'''Accelerated optimizer pickling failed with {e}''' ) AcceleratorState._reset_state()
4
0
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class lowercase ( unittest.TestCase ): """simple docstring""" def __init__( self , UpperCamelCase_ , UpperCamelCase_=7 , UpperCamelCase_=3 , UpperCamelCase_=18 , UpperCamelCase_=30 , UpperCamelCase_=400 , UpperCamelCase_=True , UpperCamelCase_=None , UpperCamelCase_=True , ): '''simple docstring''' UpperCamelCase__ :Any = size if size is not None else {'''height''': 18, '''width''': 18} UpperCamelCase__ :Union[str, Any] = parent UpperCamelCase__ :Tuple = batch_size UpperCamelCase__ :int = num_channels UpperCamelCase__ :Optional[Any] = image_size UpperCamelCase__ :List[str] = min_resolution UpperCamelCase__ :Optional[int] = max_resolution UpperCamelCase__ :Optional[Any] = do_resize UpperCamelCase__ :Optional[int] = size UpperCamelCase__ :List[Any] = apply_ocr def lowerCAmelCase__ ( self ): '''simple docstring''' return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class lowercase ( A__ , unittest.TestCase ): """simple docstring""" _a = LayoutLMvaImageProcessor if is_pytesseract_available() else None def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :List[Any] = LayoutLMvaImageProcessingTester(self ) @property def lowerCAmelCase__ ( self ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Tuple = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase_ , '''do_resize''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''size''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''apply_ocr''' ) ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Any = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 18, '''width''': 18} ) UpperCamelCase__ :Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) def lowerCAmelCase__ ( self ): '''simple docstring''' pass def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase__ :Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase_ , Image.Image ) # Test not batched input UpperCamelCase__ :List[str] = image_processing(image_inputs[0] , return_tensors='''pt''' ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) self.assertIsInstance(encoding.words , UpperCamelCase_ ) self.assertIsInstance(encoding.boxes , UpperCamelCase_ ) # Test batched UpperCamelCase__ :int = image_processing(UpperCamelCase_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase__ :Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase_ , numpify=UpperCamelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase_ , np.ndarray ) # Test not batched input UpperCamelCase__ :Optional[int] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched UpperCamelCase__ :Tuple = image_processing(UpperCamelCase_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase__ :List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase_ , torchify=UpperCamelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase_ , torch.Tensor ) # Test not batched input UpperCamelCase__ :Union[str, Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched UpperCamelCase__ :Dict = image_processing(UpperCamelCase_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Union[str, Any] = LayoutLMvaImageProcessor() from datasets import load_dataset UpperCamelCase__ :int = load_dataset('''hf-internal-testing/fixtures_docvqa''' , split='''test''' ) UpperCamelCase__ :int = Image.open(ds[0]['''file'''] ).convert('''RGB''' ) UpperCamelCase__ :str = image_processing(UpperCamelCase_ , return_tensors='''pt''' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 UpperCamelCase__ :Tuple = [['''11:14''', '''to''', '''11:39''', '''a.m''', '''11:39''', '''to''', '''11:44''', '''a.m.''', '''11:44''', '''a.m.''', '''to''', '''12:25''', '''p.m.''', '''12:25''', '''to''', '''12:58''', '''p.m.''', '''12:58''', '''to''', '''4:00''', '''p.m.''', '''2:00''', '''to''', '''5:00''', '''p.m.''', '''Coffee''', '''Break''', '''Coffee''', '''will''', '''be''', '''served''', '''for''', '''men''', '''and''', '''women''', '''in''', '''the''', '''lobby''', '''adjacent''', '''to''', '''exhibit''', '''area.''', '''Please''', '''move''', '''into''', '''exhibit''', '''area.''', '''(Exhibits''', '''Open)''', '''TRRF''', '''GENERAL''', '''SESSION''', '''(PART''', '''|)''', '''Presiding:''', '''Lee''', '''A.''', '''Waller''', '''TRRF''', '''Vice''', '''President''', '''“Introductory''', '''Remarks”''', '''Lee''', '''A.''', '''Waller,''', '''TRRF''', '''Vice''', '''Presi-''', '''dent''', '''Individual''', '''Interviews''', '''with''', '''TRRF''', '''Public''', '''Board''', '''Members''', '''and''', '''Sci-''', '''entific''', '''Advisory''', '''Council''', '''Mem-''', '''bers''', '''Conducted''', '''by''', '''TRRF''', '''Treasurer''', '''Philip''', '''G.''', '''Kuehn''', '''to''', '''get''', '''answers''', '''which''', '''the''', '''public''', '''refrigerated''', '''warehousing''', '''industry''', '''is''', '''looking''', '''for.''', '''Plus''', '''questions''', '''from''', '''the''', '''floor.''', '''Dr.''', '''Emil''', '''M.''', '''Mrak,''', '''University''', '''of''', '''Cal-''', '''ifornia,''', '''Chairman,''', '''TRRF''', '''Board;''', '''Sam''', '''R.''', '''Cecil,''', '''University''', '''of''', '''Georgia''', '''College''', '''of''', '''Agriculture;''', '''Dr.''', '''Stanley''', '''Charm,''', '''Tufts''', '''University''', '''School''', '''of''', '''Medicine;''', '''Dr.''', '''Robert''', '''H.''', '''Cotton,''', '''ITT''', '''Continental''', '''Baking''', '''Company;''', '''Dr.''', '''Owen''', '''Fennema,''', '''University''', '''of''', '''Wis-''', '''consin;''', '''Dr.''', '''Robert''', '''E.''', '''Hardenburg,''', '''USDA.''', '''Questions''', '''and''', '''Answers''', '''Exhibits''', '''Open''', '''Capt.''', '''Jack''', '''Stoney''', '''Room''', '''TRRF''', '''Scientific''', '''Advisory''', '''Council''', '''Meeting''', '''Ballroom''', '''Foyer''']] # noqa: E231 UpperCamelCase__ :Dict = [[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , UpperCamelCase_ ) self.assertListEqual(encoding.boxes , UpperCamelCase_ ) # with apply_OCR = False UpperCamelCase__ :List[str] = LayoutLMvaImageProcessor(apply_ocr=UpperCamelCase_ ) UpperCamelCase__ :Tuple = image_processing(UpperCamelCase_ , return_tensors='''pt''' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) )
97
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot import BlenderbotTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __snake_case =logging.get_logger(__name__) __snake_case ={ """vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_config_file""": """tokenizer_config.json""", } __snake_case ={ """vocab_file""": {"""facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"""}, """merges_file""": {"""facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"""}, """tokenizer_config_file""": { """facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json""" }, } __snake_case ={"""facebook/blenderbot-3B""": 128} class UpperCAmelCase_ ( __lowercase ): lowerCamelCase : List[Any] = VOCAB_FILES_NAMES lowerCamelCase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : Optional[Any] = ['''input_ids''', '''attention_mask'''] lowerCamelCase : List[Any] = BlenderbotTokenizer def __init__( self : Union[str, Any] , UpperCAmelCase__ : Tuple=None , UpperCAmelCase__ : Tuple=None , UpperCAmelCase__ : List[Any]=None , UpperCAmelCase__ : str="replace" , UpperCAmelCase__ : Dict="<s>" , UpperCAmelCase__ : Tuple="</s>" , UpperCAmelCase__ : Optional[Any]="</s>" , UpperCAmelCase__ : Any="<s>" , UpperCAmelCase__ : List[str]="<unk>" , UpperCAmelCase__ : int="<pad>" , UpperCAmelCase__ : Union[str, Any]="<mask>" , UpperCAmelCase__ : str=False , UpperCAmelCase__ : Union[str, Any]=True , **UpperCAmelCase__ : Optional[int] , ) -> int: super().__init__( UpperCAmelCase__ , UpperCAmelCase__ , tokenizer_file=UpperCAmelCase__ , errors=UpperCAmelCase__ , bos_token=UpperCAmelCase__ , eos_token=UpperCAmelCase__ , sep_token=UpperCAmelCase__ , cls_token=UpperCAmelCase__ , unk_token=UpperCAmelCase__ , pad_token=UpperCAmelCase__ , mask_token=UpperCAmelCase__ , add_prefix_space=UpperCAmelCase__ , trim_offsets=UpperCAmelCase__ , **UpperCAmelCase__ , ) lowerCAmelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , UpperCAmelCase__ ) != add_prefix_space: lowerCAmelCase = getattr(UpperCAmelCase__ , pre_tok_state.pop('type' ) ) lowerCAmelCase = add_prefix_space lowerCAmelCase = pre_tok_class(**UpperCAmelCase__ ) lowerCAmelCase = add_prefix_space lowerCAmelCase = 'post_processor' lowerCAmelCase = getattr(self.backend_tokenizer , UpperCAmelCase__ , UpperCAmelCase__ ) if tokenizer_component_instance: lowerCAmelCase = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: lowerCAmelCase = tuple(state['sep'] ) if "cls" in state: lowerCAmelCase = tuple(state['cls'] ) lowerCAmelCase = False if state.get('add_prefix_space' , UpperCAmelCase__ ) != add_prefix_space: lowerCAmelCase = add_prefix_space lowerCAmelCase = True if state.get('trim_offsets' , UpperCAmelCase__ ) != trim_offsets: lowerCAmelCase = trim_offsets lowerCAmelCase = True if changes_to_apply: lowerCAmelCase = getattr(UpperCAmelCase__ , state.pop('type' ) ) lowerCAmelCase = component_class(**UpperCAmelCase__ ) setattr(self.backend_tokenizer , UpperCAmelCase__ , UpperCAmelCase__ ) @property # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot def __UpperCAmelCase ( self : Union[str, Any] ) -> str: if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def __UpperCAmelCase ( self : int , UpperCAmelCase__ : Optional[Any] ) -> Tuple: lowerCAmelCase = AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else value lowerCAmelCase = value def __UpperCAmelCase ( self : Optional[Any] , *UpperCAmelCase__ : Union[str, Any] , **UpperCAmelCase__ : List[str] ) -> BatchEncoding: lowerCAmelCase = kwargs.get('is_split_into_words' , UpperCAmelCase__ ) assert self.add_prefix_space or not is_split_into_words, ( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*UpperCAmelCase__ , **UpperCAmelCase__ ) def __UpperCAmelCase ( self : List[str] , *UpperCAmelCase__ : str , **UpperCAmelCase__ : List[str] ) -> BatchEncoding: lowerCAmelCase = kwargs.get('is_split_into_words' , UpperCAmelCase__ ) assert self.add_prefix_space or not is_split_into_words, ( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*UpperCAmelCase__ , **UpperCAmelCase__ ) def __UpperCAmelCase ( self : str , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[str] = None ) -> Tuple[str]: lowerCAmelCase = self._tokenizer.model.save(UpperCAmelCase__ , name=UpperCAmelCase__ ) return tuple(UpperCAmelCase__ ) def __UpperCAmelCase ( self : Optional[int] , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None ) -> List[int]: lowerCAmelCase = [self.sep_token_id] lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __UpperCAmelCase ( self : List[str] , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None ) -> Any: return token_ids_a + [self.eos_token_id] def __UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase__ : "Conversation" ) -> List[int]: lowerCAmelCase = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(' ' + text ) else: # Generated responses should contain them already. inputs.append(UpperCAmelCase__ ) lowerCAmelCase = ' '.join(UpperCAmelCase__ ) lowerCAmelCase = self.encode(UpperCAmelCase__ ) if len(UpperCAmelCase__ ) > self.model_max_length: lowerCAmelCase = input_ids[-self.model_max_length :] logger.warning(F'''Trimmed input from conversation as it was longer than {self.model_max_length} tokens.''' ) return input_ids
4
0
"""simple docstring""" from typing import Dict, Iterable, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract lowerCAmelCase__ : Union[str, Any] = logging.get_logger(__name__) def a_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): return [ int(1_0_0_0 * (box[0] / width) ), int(1_0_0_0 * (box[1] / height) ), int(1_0_0_0 * (box[2] / width) ), int(1_0_0_0 * (box[3] / height) ), ] def a_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): UpperCAmelCase__ = to_pil_image(lowerCamelCase ) UpperCAmelCase__ , UpperCAmelCase__ = pil_image.size UpperCAmelCase__ = pytesseract.image_to_data(lowerCamelCase , lang=lowerCamelCase , output_type='dict' , config=lowerCamelCase ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = data['text'], data['left'], data['top'], data['width'], data['height'] # filter empty words and corresponding coordinates UpperCAmelCase__ = [idx for idx, word in enumerate(lowerCamelCase ) if not word.strip()] UpperCAmelCase__ = [word for idx, word in enumerate(lowerCamelCase ) if idx not in irrelevant_indices] UpperCAmelCase__ = [coord for idx, coord in enumerate(lowerCamelCase ) if idx not in irrelevant_indices] UpperCAmelCase__ = [coord for idx, coord in enumerate(lowerCamelCase ) if idx not in irrelevant_indices] UpperCAmelCase__ = [coord for idx, coord in enumerate(lowerCamelCase ) if idx not in irrelevant_indices] UpperCAmelCase__ = [coord for idx, coord in enumerate(lowerCamelCase ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format UpperCAmelCase__ = [] for x, y, w, h in zip(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): UpperCAmelCase__ = [x, y, x + w, y + h] actual_boxes.append(lowerCamelCase ) # finally, normalize the bounding boxes UpperCAmelCase__ = [] for box in actual_boxes: normalized_boxes.append(normalize_box(lowerCamelCase , lowerCamelCase , lowerCamelCase ) ) assert len(lowerCamelCase ) == len(lowerCamelCase ), "Not as many words as there are bounding boxes" return words, normalized_boxes class snake_case ( __UpperCAmelCase ): """simple docstring""" snake_case__ = ["pixel_values"] def __init__( self : int ,lowerCamelCase__ : bool = True ,lowerCamelCase__ : Dict[str, int] = None ,lowerCamelCase__ : PILImageResampling = PILImageResampling.BILINEAR ,lowerCamelCase__ : bool = True ,lowerCamelCase__ : float = 1 / 255 ,lowerCamelCase__ : bool = True ,lowerCamelCase__ : Union[float, Iterable[float]] = None ,lowerCamelCase__ : Union[float, Iterable[float]] = None ,lowerCamelCase__ : bool = True ,lowerCamelCase__ : Optional[str] = None ,lowerCamelCase__ : Optional[str] = "" ,**lowerCamelCase__ : Any ,): super().__init__(**lowerCamelCase__ ) UpperCAmelCase__ = size if size is not None else {'height': 224, 'width': 224} UpperCAmelCase__ = get_size_dict(lowerCamelCase__ ) UpperCAmelCase__ = do_resize UpperCAmelCase__ = size UpperCAmelCase__ = resample UpperCAmelCase__ = do_rescale UpperCAmelCase__ = rescale_value UpperCAmelCase__ = do_normalize UpperCAmelCase__ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase__ = image_std if image_std is not None else IMAGENET_STANDARD_STD UpperCAmelCase__ = apply_ocr UpperCAmelCase__ = ocr_lang UpperCAmelCase__ = tesseract_config def __lowerCAmelCase ( self : List[str] ,lowerCamelCase__ : np.ndarray ,lowerCamelCase__ : Dict[str, int] ,lowerCamelCase__ : PILImageResampling = PILImageResampling.BILINEAR ,lowerCamelCase__ : Optional[Union[str, ChannelDimension]] = None ,**lowerCamelCase__ : str ,): UpperCAmelCase__ = get_size_dict(lowerCamelCase__ ) if "height" not in size or "width" not in size: raise ValueError(f'''The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}''' ) UpperCAmelCase__ = (size['height'], size['width']) return resize(lowerCamelCase__ ,size=lowerCamelCase__ ,resample=lowerCamelCase__ ,data_format=lowerCamelCase__ ,**lowerCamelCase__ ) def __lowerCAmelCase ( self : str ,lowerCamelCase__ : np.ndarray ,lowerCamelCase__ : Union[int, float] ,lowerCamelCase__ : Optional[Union[str, ChannelDimension]] = None ,**lowerCamelCase__ : Dict ,): return rescale(lowerCamelCase__ ,scale=lowerCamelCase__ ,data_format=lowerCamelCase__ ,**lowerCamelCase__ ) def __lowerCAmelCase ( self : Dict ,lowerCamelCase__ : np.ndarray ,lowerCamelCase__ : Union[float, Iterable[float]] ,lowerCamelCase__ : Union[float, Iterable[float]] ,lowerCamelCase__ : Optional[Union[str, ChannelDimension]] = None ,**lowerCamelCase__ : Optional[int] ,): return normalize(lowerCamelCase__ ,mean=lowerCamelCase__ ,std=lowerCamelCase__ ,data_format=lowerCamelCase__ ,**lowerCamelCase__ ) def __lowerCAmelCase ( self : List[Any] ,lowerCamelCase__ : ImageInput ,lowerCamelCase__ : bool = None ,lowerCamelCase__ : Dict[str, int] = None ,lowerCamelCase__ : Union[str, Any]=None ,lowerCamelCase__ : bool = None ,lowerCamelCase__ : float = None ,lowerCamelCase__ : bool = None ,lowerCamelCase__ : Union[float, Iterable[float]] = None ,lowerCamelCase__ : Union[float, Iterable[float]] = None ,lowerCamelCase__ : bool = None ,lowerCamelCase__ : Optional[str] = None ,lowerCamelCase__ : Optional[str] = None ,lowerCamelCase__ : Optional[Union[str, TensorType]] = None ,lowerCamelCase__ : ChannelDimension = ChannelDimension.FIRST ,**lowerCamelCase__ : str ,): UpperCAmelCase__ = do_resize if do_resize is not None else self.do_resize UpperCAmelCase__ = size if size is not None else self.size UpperCAmelCase__ = get_size_dict(lowerCamelCase__ ) UpperCAmelCase__ = resample if resample is not None else self.resample UpperCAmelCase__ = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase__ = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase__ = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase__ = image_mean if image_mean is not None else self.image_mean UpperCAmelCase__ = image_std if image_std is not None else self.image_std UpperCAmelCase__ = apply_ocr if apply_ocr is not None else self.apply_ocr UpperCAmelCase__ = ocr_lang if ocr_lang is not None else self.ocr_lang UpperCAmelCase__ = tesseract_config if tesseract_config is not None else self.tesseract_config UpperCAmelCase__ = make_list_of_images(lowerCamelCase__ ) if not valid_images(lowerCamelCase__ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('If do_normalize is True, image_mean and image_std must be specified.' ) # All transformations expect numpy arrays. UpperCAmelCase__ = [to_numpy_array(lowerCamelCase__ ) for image in images] # Tesseract OCR to get words + normalized bounding boxes if apply_ocr: requires_backends(self ,'pytesseract' ) UpperCAmelCase__ = [] UpperCAmelCase__ = [] for image in images: UpperCAmelCase__ , UpperCAmelCase__ = apply_tesseract(lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ) words_batch.append(lowerCamelCase__ ) boxes_batch.append(lowerCamelCase__ ) if do_resize: UpperCAmelCase__ = [self.resize(image=lowerCamelCase__ ,size=lowerCamelCase__ ,resample=lowerCamelCase__ ) for image in images] if do_rescale: UpperCAmelCase__ = [self.rescale(image=lowerCamelCase__ ,scale=lowerCamelCase__ ) for image in images] if do_normalize: UpperCAmelCase__ = [self.normalize(image=lowerCamelCase__ ,mean=lowerCamelCase__ ,std=lowerCamelCase__ ) for image in images] UpperCAmelCase__ = [to_channel_dimension_format(lowerCamelCase__ ,lowerCamelCase__ ) for image in images] UpperCAmelCase__ = BatchFeature(data={'pixel_values': images} ,tensor_type=lowerCamelCase__ ) if apply_ocr: UpperCAmelCase__ = words_batch UpperCAmelCase__ = boxes_batch return data
98
'''simple docstring''' from __future__ import annotations from statistics import mean def a_ ( lowerCamelCase : list[int] , lowerCamelCase : list[int] , lowerCamelCase : int ): lowerCAmelCase = [0] * no_of_processes lowerCAmelCase = [0] * no_of_processes # Initialize remaining_time to waiting_time. for i in range(lowerCamelCase ): lowerCAmelCase = burst_time[i] lowerCAmelCase = [] lowerCAmelCase = 0 lowerCAmelCase = 0 # When processes are not completed, # A process whose arrival time has passed \ # and has remaining execution time is put into the ready_process. # The shortest process in the ready_process, target_process is executed. while completed != no_of_processes: lowerCAmelCase = [] lowerCAmelCase = -1 for i in range(lowerCamelCase ): if (arrival_time[i] <= total_time) and (remaining_time[i] > 0): ready_process.append(lowerCamelCase ) if len(lowerCamelCase ) > 0: lowerCAmelCase = ready_process[0] for i in ready_process: if remaining_time[i] < remaining_time[target_process]: lowerCAmelCase = i total_time += burst_time[target_process] completed += 1 lowerCAmelCase = 0 lowerCAmelCase = ( total_time - arrival_time[target_process] - burst_time[target_process] ) else: total_time += 1 return waiting_time def a_ ( lowerCamelCase : list[int] , lowerCamelCase : int , lowerCamelCase : list[int] ): lowerCAmelCase = [0] * no_of_processes for i in range(lowerCamelCase ): lowerCAmelCase = burst_time[i] + waiting_time[i] return turn_around_time if __name__ == "__main__": print("""[TEST CASE 01]""") __snake_case =4 __snake_case =[2, 5, 3, 7] __snake_case =[0, 0, 0, 0] __snake_case =calculate_waitingtime(arrival_time, burst_time, no_of_processes) __snake_case =calculate_turnaroundtime( burst_time, no_of_processes, waiting_time ) # Printing the Result print("""PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time""") for i, process_id in enumerate(list(range(1, 5))): print( F'''{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t''' F'''{waiting_time[i]}\t\t\t\t{turn_around_time[i]}''' ) print(F'''\nAverage waiting time = {mean(waiting_time):.5f}''') print(F'''Average turnaround time = {mean(turn_around_time):.5f}''')
4
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..utils import cached_file # docstyle-ignore lowercase : Any = """ Human: <<task>> Assistant: """ lowercase : List[str] = """huggingface-tools/default-prompts""" lowercase : str = {"""chat""": """chat_prompt_template.txt""", """run""": """run_prompt_template.txt"""} def A_ ( A__ , A__ , A__="run" ) -> Dict: if prompt_or_repo_id is None: a__ : Any = DEFAULT_PROMPTS_REPO # prompt is considered a repo ID when it does not contain any kind of space if re.search('\\s' , A__ ) is not None: return prompt_or_repo_id a__ : List[str] = cached_file( A__ , PROMPT_FILES[mode] , repo_type='dataset' , user_agent={'agent': agent_name} ) with open(A__ , 'r' , encoding='utf-8' ) as f: return f.read()
99
'''simple docstring''' import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase ): def __UpperCAmelCase ( self : Optional[int] ) -> int: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCAmelCase ( self : Tuple ) -> Any: lowerCAmelCase = StableDiffusionKDiffusionPipeline.from_pretrained('CompVis/stable-diffusion-v1-4' ) lowerCAmelCase = sd_pipe.to(UpperCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) sd_pipe.set_scheduler('sample_euler' ) lowerCAmelCase = 'A painting of a squirrel eating a burger' lowerCAmelCase = torch.manual_seed(0 ) lowerCAmelCase = sd_pipe([prompt] , generator=UpperCAmelCase__ , guidance_scale=9.0 , num_inference_steps=2_0 , output_type='np' ) lowerCAmelCase = output.images lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) lowerCAmelCase = np.array([0.0_447, 0.0_492, 0.0_468, 0.0_408, 0.0_383, 0.0_408, 0.0_354, 0.0_380, 0.0_339] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __UpperCAmelCase ( self : List[str] ) -> Dict: lowerCAmelCase = StableDiffusionKDiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' ) lowerCAmelCase = sd_pipe.to(UpperCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) sd_pipe.set_scheduler('sample_euler' ) lowerCAmelCase = 'A painting of a squirrel eating a burger' lowerCAmelCase = torch.manual_seed(0 ) lowerCAmelCase = sd_pipe([prompt] , generator=UpperCAmelCase__ , guidance_scale=9.0 , num_inference_steps=2_0 , output_type='np' ) lowerCAmelCase = output.images lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) lowerCAmelCase = np.array([0.1_237, 0.1_320, 0.1_438, 0.1_359, 0.1_390, 0.1_132, 0.1_277, 0.1_175, 0.1_112] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-1 def __UpperCAmelCase ( self : Optional[Any] ) -> List[str]: lowerCAmelCase = StableDiffusionKDiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' ) lowerCAmelCase = sd_pipe.to(UpperCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) sd_pipe.set_scheduler('sample_dpmpp_2m' ) lowerCAmelCase = 'A painting of a squirrel eating a burger' lowerCAmelCase = torch.manual_seed(0 ) lowerCAmelCase = sd_pipe( [prompt] , generator=UpperCAmelCase__ , guidance_scale=7.5 , num_inference_steps=1_5 , output_type='np' , use_karras_sigmas=UpperCAmelCase__ , ) lowerCAmelCase = output.images lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) lowerCAmelCase = np.array( [0.11_381_689, 0.12_112_921, 0.1_389_457, 0.12_549_606, 0.1_244_964, 0.10_831_517, 0.11_562_866, 0.10_867_816, 0.10_499_048] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
4
0
"""simple docstring""" import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( "The `inpainting.py` script is outdated. Please use directly `from diffusers import" " StableDiffusionInpaintPipeline` instead." )
100
'''simple docstring''' # Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #################################################################################################### # # Note: If when running this conversion script you're getting an exception: # ModuleNotFoundError: No module named 'megatron.model.enums' # you need to tell python where to find the clone of Megatron-LM, e.g.: # # cd /tmp # git clone https://github.com/NVIDIA/Megatron-LM # PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ... # # if you already have it cloned elsewhere, simply adjust the path to the existing path # # If the training was done using a Megatron-LM fork, e.g., # https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one # in your path, i.e., /path/to/Megatron-DeepSpeed/ # import argparse import os import re import zipfile import torch from transformers import AutoTokenizer, GPTaConfig def a_ ( lowerCamelCase : int , lowerCamelCase : Optional[Any] , lowerCamelCase : Union[str, Any]=0 ): # Format the message. if name is None: lowerCAmelCase = None else: lowerCAmelCase = '.' * max(0 , spaces - 2 ) + '# {:' + str(50 - spaces ) + 's}' lowerCAmelCase = fmt.format(lowerCamelCase ) # Print and recurse (if needed). if isinstance(lowerCamelCase , lowerCamelCase ): if msg is not None: print(lowerCamelCase ) for k in val.keys(): recursive_print(lowerCamelCase , val[k] , spaces + 2 ) elif isinstance(lowerCamelCase , torch.Tensor ): print(lowerCamelCase , ':' , val.size() ) else: print(lowerCamelCase , ':' , lowerCamelCase ) def a_ ( lowerCamelCase : Optional[int] , lowerCamelCase : List[str] , lowerCamelCase : List[Any] , lowerCamelCase : Dict , lowerCamelCase : Tuple ): # Permutes layout of param tensor to [num_splits * num_heads * hidden_size, :] # for compatibility with later versions of NVIDIA Megatron-LM. # The inverse operation is performed inside Megatron-LM to read checkpoints: # https://github.com/NVIDIA/Megatron-LM/blob/v2.4/megatron/checkpointing.py#L209 # If param is the weight tensor of the self-attention block, the returned tensor # will have to be transposed one more time to be read by HuggingFace GPT2. lowerCAmelCase = param.size() if checkpoint_version == 1.0: # version 1.0 stores [num_heads * hidden_size * num_splits, :] lowerCAmelCase = (num_heads, hidden_size, num_splits) + input_shape[1:] lowerCAmelCase = param.view(*lowerCamelCase ) lowerCAmelCase = param.transpose(0 , 2 ) lowerCAmelCase = param.transpose(1 , 2 ).contiguous() elif checkpoint_version >= 2.0: # other versions store [num_heads * num_splits * hidden_size, :] lowerCAmelCase = (num_heads, num_splits, hidden_size) + input_shape[1:] lowerCAmelCase = param.view(*lowerCamelCase ) lowerCAmelCase = param.transpose(0 , 1 ).contiguous() lowerCAmelCase = param.view(*lowerCamelCase ) return param def a_ ( lowerCamelCase : Optional[int] , lowerCamelCase : Optional[int] , lowerCamelCase : str ): # The converted output model. lowerCAmelCase = {} # old versions did not store training args lowerCAmelCase = input_state_dict.get('args' , lowerCamelCase ) if ds_args is not None: # do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint # from pprint import pprint # pprint(vars(ds_args)) lowerCAmelCase = ds_args.padded_vocab_size lowerCAmelCase = ds_args.max_position_embeddings lowerCAmelCase = ds_args.hidden_size lowerCAmelCase = ds_args.num_layers lowerCAmelCase = ds_args.num_attention_heads lowerCAmelCase = ds_args.ffn_hidden_size # pprint(config) # The number of heads. lowerCAmelCase = config.n_head # The hidden_size per head. lowerCAmelCase = config.n_embd // config.n_head # Megatron-LM checkpoint version if "checkpoint_version" in input_state_dict.keys(): lowerCAmelCase = input_state_dict['checkpoint_version'] else: lowerCAmelCase = 0.0 # The model. lowerCAmelCase = input_state_dict['model'] # The language model. lowerCAmelCase = model['language_model'] # The embeddings. lowerCAmelCase = lm['embedding'] # The word embeddings. lowerCAmelCase = embeddings['word_embeddings']['weight'] # Truncate the embedding table to vocab_size rows. lowerCAmelCase = word_embeddings[: config.vocab_size, :] lowerCAmelCase = word_embeddings # The position embeddings. lowerCAmelCase = embeddings['position_embeddings']['weight'] # Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size] lowerCAmelCase = pos_embeddings.size(0 ) if n_positions != config.n_positions: raise ValueError( f'''pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don\'t match''' ) # Store the position embeddings. lowerCAmelCase = pos_embeddings # The transformer. lowerCAmelCase = lm['transformer'] if 'transformer' in lm.keys() else lm['encoder'] # The regex to extract layer names. lowerCAmelCase = re.compile(R'layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)' ) # The simple map of names for "automated" rules. lowerCAmelCase = { 'attention.dense': '.attn.c_proj.', 'self_attention.dense': '.attn.c_proj.', 'mlp.dense_h_to_4h': '.mlp.c_fc.', 'mlp.dense_4h_to_h': '.mlp.c_proj.', } # Extract the layers. for key, val in transformer.items(): # Match the name. lowerCAmelCase = layer_re.match(lowerCamelCase ) # Stop if that's not a layer if m is None: break # The index of the layer. lowerCAmelCase = int(m.group(1 ) ) # The name of the operation. lowerCAmelCase = m.group(2 ) # Is it a weight or a bias? lowerCAmelCase = m.group(3 ) # The name of the layer. lowerCAmelCase = f'''transformer.h.{layer_idx}''' # For layernorm(s), simply store the layer norm. if op_name.endswith('layernorm' ): lowerCAmelCase = 'ln_1' if op_name.startswith('input' ) else 'ln_2' lowerCAmelCase = val # Transpose the QKV matrix. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "weight": # Insert a tensor of 1x1xDxD bias. lowerCAmelCase = torch.tril(torch.ones((n_positions, n_positions) , dtype=torch.floataa ) ).view( 1 , 1 , lowerCamelCase , lowerCamelCase ) lowerCAmelCase = causal_mask # Insert a "dummy" tensor for masked_bias. lowerCAmelCase = torch.tensor(-1e4 , dtype=torch.floataa ) lowerCAmelCase = masked_bias lowerCAmelCase = fix_query_key_value_ordering(lowerCamelCase , lowerCamelCase , 3 , lowerCamelCase , lowerCamelCase ) # Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D. lowerCAmelCase = out_val.transpose(0 , 1 ).contiguous() # Store. lowerCAmelCase = out_val # Transpose the bias. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "bias": lowerCAmelCase = fix_query_key_value_ordering(lowerCamelCase , lowerCamelCase , 3 , lowerCamelCase , lowerCamelCase ) # Store. No change of shape. lowerCAmelCase = out_val # Transpose the weights. elif weight_or_bias == "weight": lowerCAmelCase = megatron_to_transformers[op_name] lowerCAmelCase = val.transpose(0 , 1 ) # Copy the bias. elif weight_or_bias == "bias": lowerCAmelCase = megatron_to_transformers[op_name] lowerCAmelCase = val # DEBUG. assert config.n_layer == layer_idx + 1 # The final layernorm. lowerCAmelCase = transformer['final_layernorm.weight'] lowerCAmelCase = transformer['final_layernorm.bias'] # For LM head, transformers' wants the matrix to weight embeddings. lowerCAmelCase = word_embeddings # It should be done! return output_state_dict def a_ ( ): # Create the argument parser. lowerCAmelCase = argparse.ArgumentParser() parser.add_argument('--print-checkpoint-structure' , action='store_true' ) parser.add_argument( 'path_to_checkpoint' , type=lowerCamelCase , help='Path to the checkpoint file (.zip archive or direct .pt file)' , ) parser.add_argument( '--config_file' , default='' , type=lowerCamelCase , help='An optional config json file describing the pre-trained model.' , ) lowerCAmelCase = parser.parse_args() # Extract the basename. lowerCAmelCase = os.path.dirname(args.path_to_checkpoint ) # Load the model. # the .zip is very optional, let's keep it for backward compatibility print(f'''Extracting PyTorch state dictionary from {args.path_to_checkpoint}''' ) if args.path_to_checkpoint.endswith('.zip' ): with zipfile.ZipFile(args.path_to_checkpoint , 'r' ) as checkpoint: with checkpoint.open('release/mp_rank_00/model_optim_rng.pt' ) as pytorch_dict: lowerCAmelCase = torch.load(lowerCamelCase , map_location='cpu' ) else: lowerCAmelCase = torch.load(args.path_to_checkpoint , map_location='cpu' ) lowerCAmelCase = input_state_dict.get('args' , lowerCamelCase ) # Read the config, or default to the model released by NVIDIA. if args.config_file == "": if ds_args is not None: if ds_args.bias_gelu_fusion: lowerCAmelCase = 'gelu_fast' elif ds_args.openai_gelu: lowerCAmelCase = 'gelu_new' else: lowerCAmelCase = 'gelu' else: # in the very early days this used to be "gelu_new" lowerCAmelCase = 'gelu_new' # Spell out all parameters in case the defaults change. lowerCAmelCase = GPTaConfig( vocab_size=50257 , n_positions=1024 , n_embd=1024 , n_layer=24 , n_head=16 , n_inner=4096 , activation_function=lowerCamelCase , resid_pdrop=0.1 , embd_pdrop=0.1 , attn_pdrop=0.1 , layer_norm_epsilon=1e-5 , initializer_range=0.02 , summary_type='cls_index' , summary_use_proj=lowerCamelCase , summary_activation=lowerCamelCase , summary_proj_to_labels=lowerCamelCase , summary_first_dropout=0.1 , scale_attn_weights=lowerCamelCase , use_cache=lowerCamelCase , bos_token_id=50256 , eos_token_id=50256 , ) else: lowerCAmelCase = GPTaConfig.from_json_file(args.config_file ) lowerCAmelCase = ['GPT2LMHeadModel'] # Convert. print('Converting' ) lowerCAmelCase = convert_megatron_checkpoint(lowerCamelCase , lowerCamelCase , lowerCamelCase ) # Print the structure of converted state dict. if args.print_checkpoint_structure: recursive_print(lowerCamelCase , lowerCamelCase ) # Add tokenizer class info to config # see https://github.com/huggingface/transformers/issues/13906) if ds_args is not None: lowerCAmelCase = ds_args.tokenizer_type if tokenizer_type == "GPT2BPETokenizer": lowerCAmelCase = 'gpt2' elif tokenizer_type == "PretrainedFromHF": lowerCAmelCase = ds_args.tokenizer_name_or_path else: raise ValueError(f'''Unrecognized tokenizer_type {tokenizer_type}''' ) else: lowerCAmelCase = 'gpt2' lowerCAmelCase = AutoTokenizer.from_pretrained(lowerCamelCase ) lowerCAmelCase = type(lowerCamelCase ).__name__ lowerCAmelCase = tokenizer_class # Store the config to file. print('Saving config' ) config.save_pretrained(lowerCamelCase ) # Save tokenizer based on args print(f'''Adding {tokenizer_class} tokenizer files''' ) tokenizer.save_pretrained(lowerCamelCase ) # Store the state_dict to file. lowerCAmelCase = os.path.join(lowerCamelCase , 'pytorch_model.bin' ) print(f'''Saving checkpoint to "{output_checkpoint_file}"''' ) torch.save(lowerCamelCase , lowerCamelCase ) #################################################################################################### if __name__ == "__main__": main() ####################################################################################################
4
0
import copy import os import cva import numpy as np from matplotlib import pyplot as plt class lowercase : def __init__( self): lowercase = '''''' lowercase = '''''' lowercase = [] lowercase = 0 lowercase = 2_5_6 lowercase = 0 lowercase = 0 lowercase = 0 lowercase = 0 def A__ ( self ,A__): lowercase = cva.imread(A__ ,0) lowercase = copy.deepcopy(self.img) lowercase , lowercase , lowercase = plt.hist(self.img.ravel() ,2_5_6 ,[0, 2_5_6] ,label='''x''') lowercase = np.sum(A__) for i in range(len(A__)): lowercase = x[i] / self.k self.sk += prk lowercase = (self.L - 1) * self.sk if self.rem != 0: lowercase = int(last % last) lowercase = int(last + 1 if self.rem >= 0.5 else last) self.last_list.append(A__) lowercase = int(np.ma.count(self.img) / self.img[1].size) lowercase = self.img[1].size for i in range(self.number_of_cols): for j in range(self.number_of_rows): lowercase = self.img[j][i] if num != self.last_list[num]: lowercase = self.last_list[num] cva.imwrite('''output_data/output.jpg''' ,self.img) def A__ ( self): plt.hist(self.img.ravel() ,2_5_6 ,[0, 2_5_6]) def A__ ( self): cva.imshow('''Output-Image''' ,self.img) cva.imshow('''Input-Image''' ,self.original_image) cva.waitKey(5_0_0_0) cva.destroyAllWindows() if __name__ == "__main__": lowercase__ :List[Any] = os.path.join(os.path.basename(__file__), "image_data/input.jpg") lowercase__ :str = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
101
'''simple docstring''' from __future__ import annotations from typing import Any class UpperCAmelCase_ : def __init__( self : Optional[int] , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : float = 0 ) -> None: lowerCAmelCase , lowerCAmelCase = row, column lowerCAmelCase = [[default_value for c in range(UpperCAmelCase__ )] for r in range(UpperCAmelCase__ )] def __str__( self : List[str] ) -> str: lowerCAmelCase = F'''Matrix consist of {self.row} rows and {self.column} columns\n''' # Make string identifier lowerCAmelCase = 0 for row_vector in self.array: for obj in row_vector: lowerCAmelCase = max(UpperCAmelCase__ , len(str(UpperCAmelCase__ ) ) ) lowerCAmelCase = F'''%{max_element_length}s''' # Make string and return def single_line(UpperCAmelCase__ : list[float] ) -> str: nonlocal string_format_identifier lowerCAmelCase = '[' line += ", ".join(string_format_identifier % (obj,) for obj in row_vector ) line += "]" return line s += "\n".join(single_line(UpperCAmelCase__ ) for row_vector in self.array ) return s def __repr__( self : List[str] ) -> str: return str(self ) def __UpperCAmelCase ( self : Optional[int] , UpperCAmelCase__ : tuple[int, int] ) -> bool: if not (isinstance(UpperCAmelCase__ , (list, tuple) ) and len(UpperCAmelCase__ ) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__( self : Any , UpperCAmelCase__ : tuple[int, int] ) -> Any: assert self.validate_indicies(UpperCAmelCase__ ) return self.array[loc[0]][loc[1]] def __setitem__( self : Dict , UpperCAmelCase__ : tuple[int, int] , UpperCAmelCase__ : float ) -> None: assert self.validate_indicies(UpperCAmelCase__ ) lowerCAmelCase = value def __add__( self : Any , UpperCAmelCase__ : Matrix ) -> Matrix: assert isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) assert self.row == another.row and self.column == another.column # Add lowerCAmelCase = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): lowerCAmelCase = self[r, c] + another[r, c] return result def __neg__( self : int ) -> Matrix: lowerCAmelCase = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): lowerCAmelCase = -self[r, c] return result def __sub__( self : str , UpperCAmelCase__ : Matrix ) -> Matrix: return self + (-another) def __mul__( self : str , UpperCAmelCase__ : int | float | Matrix ) -> Matrix: if isinstance(UpperCAmelCase__ , (int, float) ): # Scalar multiplication lowerCAmelCase = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): lowerCAmelCase = self[r, c] * another return result elif isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): # Matrix multiplication assert self.column == another.row lowerCAmelCase = Matrix(self.row , another.column ) for r in range(self.row ): for c in range(another.column ): for i in range(self.column ): result[r, c] += self[r, i] * another[i, c] return result else: lowerCAmelCase = F'''Unsupported type given for another ({type(UpperCAmelCase__ )})''' raise TypeError(UpperCAmelCase__ ) def __UpperCAmelCase ( self : Optional[Any] ) -> Matrix: lowerCAmelCase = Matrix(self.column , self.row ) for r in range(self.row ): for c in range(self.column ): lowerCAmelCase = self[r, c] return result def __UpperCAmelCase ( self : List[str] , UpperCAmelCase__ : Matrix , UpperCAmelCase__ : Matrix ) -> Any: assert isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) and isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate lowerCAmelCase = v.transpose() lowerCAmelCase = (v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def a_ ( ): # a^(-1) lowerCAmelCase = Matrix(3 , 3 , 0 ) for i in range(3 ): lowerCAmelCase = 1 print(f'''a^(-1) is {ainv}''' ) # u, v lowerCAmelCase = Matrix(3 , 1 , 0 ) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = 1, 2, -3 lowerCAmelCase = Matrix(3 , 1 , 0 ) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = 4, -2, 5 print(f'''u is {u}''' ) print(f'''v is {v}''' ) print(f'''uv^T is {u * v.transpose()}''' ) # Sherman Morrison print(f'''(a + uv^T)^(-1) is {ainv.sherman_morrison(lowerCamelCase , lowerCamelCase )}''' ) def a_ ( ): import doctest doctest.testmod() testa()
4
0
"""simple docstring""" from timeit import timeit SCREAMING_SNAKE_CASE : Dict = { """MALAYALAM""": True, """String""": False, """rotor""": True, """level""": True, """A""": True, """BB""": True, """ABC""": False, """amanaplanacanalpanama""": True, # "a man a plan a canal panama" } # Ensure our test data is valid assert all((key == key[::-1]) is value for key, value in test_data.items()) def lowercase ( _snake_case : str ) ->bool: """simple docstring""" __snake_case : Dict = 0 __snake_case : int = len(_snake_case ) - 1 while start_i < end_i: if s[start_i] == s[end_i]: start_i += 1 end_i -= 1 else: return False return True def lowercase ( _snake_case : str ) ->bool: """simple docstring""" __snake_case : List[Any] = len(_snake_case ) // 2 __snake_case : Optional[Any] = len(_snake_case ) # We need to traverse till half of the length of string # as we can get access of the i'th last element from # i'th index. # eg: [0,1,2,3,4,5] => 4th index can be accessed # with the help of 1st index (i==n-i-1) # where n is length of string return all(s[i] == s[n - i - 1] for i in range(_snake_case ) ) def lowercase ( _snake_case : str ) ->bool: """simple docstring""" if len(_snake_case ) <= 2: return True if s[0] == s[len(_snake_case ) - 1]: return is_palindrome_recursive(s[1:-1] ) else: return False def lowercase ( _snake_case : str ) ->bool: """simple docstring""" return s == s[::-1] def lowercase ( _snake_case : str ) ->None: """simple docstring""" __snake_case : List[str] = f"""all({name}(key) is value for key, value in test_data.items())""" __snake_case : Optional[int] = f"""from __main__ import test_data, {name}""" __snake_case : List[str] = 500_000 __snake_case : Any = timeit(stmt=_snake_case , setup=_snake_case , number=_snake_case ) print(f"""{name:<35} finished {number:,} runs in {result:.5f} seconds""" ) if __name__ == "__main__": for key, value in test_data.items(): assert is_palindrome(key) is is_palindrome_recursive(key) assert is_palindrome(key) is is_palindrome_slice(key) print(F'{key:21} {value}') print("""a man a plan a canal panama""") # finished 500,000 runs in 0.46793 seconds benchmark_function("""is_palindrome_slice""") # finished 500,000 runs in 0.85234 seconds benchmark_function("""is_palindrome""") # finished 500,000 runs in 1.32028 seconds benchmark_function("""is_palindrome_recursive""") # finished 500,000 runs in 2.08679 seconds benchmark_function("""is_palindrome_traversal""")
102
'''simple docstring''' class UpperCAmelCase_ : def __init__( self : List[str] , UpperCAmelCase__ : list[int] ) -> None: lowerCAmelCase = len(UpperCAmelCase__ ) lowerCAmelCase = [0] * len_array if len_array > 0: lowerCAmelCase = array[0] for i in range(1 , UpperCAmelCase__ ): lowerCAmelCase = self.prefix_sum[i - 1] + array[i] def __UpperCAmelCase ( self : Optional[Any] , UpperCAmelCase__ : int , UpperCAmelCase__ : int ) -> int: if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def __UpperCAmelCase ( self : int , UpperCAmelCase__ : int ) -> bool: lowerCAmelCase = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(UpperCAmelCase__ ) return False if __name__ == "__main__": import doctest doctest.testmod()
4
0
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class __snake_case : def __init__( self : Optional[Any] , A_ : Dict , A_ : Optional[Any]=2 , A_ : List[str]=True , A_ : Dict=False , A_ : Union[str, Any]=1_0 , A_ : Optional[Any]=3 , A_ : str=3_2 * 8 , A_ : List[str]=3_2 * 8 , A_ : Dict=4 , A_ : List[Any]=6_4 , ): lowerCAmelCase_ : Any = parent lowerCAmelCase_ : Union[str, Any] = batch_size lowerCAmelCase_ : List[Any] = is_training lowerCAmelCase_ : int = use_auxiliary_loss lowerCAmelCase_ : str = num_queries lowerCAmelCase_ : Any = num_channels lowerCAmelCase_ : Union[str, Any] = min_size lowerCAmelCase_ : Optional[int] = max_size lowerCAmelCase_ : List[str] = num_labels lowerCAmelCase_ : str = hidden_dim lowerCAmelCase_ : List[str] = hidden_dim def UpperCAmelCase__ ( self : List[str]): lowerCAmelCase_ : str = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size]).to( A_) lowerCAmelCase_ : Optional[int] = torch.ones([self.batch_size, self.min_size, self.max_size] , device=A_) lowerCAmelCase_ : List[str] = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=A_) > 0.5 ).float() lowerCAmelCase_ : Any = (torch.rand((self.batch_size, self.num_labels) , device=A_) > 0.5).long() lowerCAmelCase_ : Optional[int] = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def UpperCAmelCase__ ( self : Optional[Any]): lowerCAmelCase_ : Optional[Any] = MaskaFormerConfig( hidden_size=self.hidden_dim , ) lowerCAmelCase_ : Dict = self.num_queries lowerCAmelCase_ : str = self.num_labels lowerCAmelCase_ : str = [1, 1, 1, 1] lowerCAmelCase_ : Dict = self.num_channels lowerCAmelCase_ : List[str] = 6_4 lowerCAmelCase_ : Union[str, Any] = 1_2_8 lowerCAmelCase_ : str = self.hidden_dim lowerCAmelCase_ : Optional[Any] = self.hidden_dim lowerCAmelCase_ : Any = self.hidden_dim return config def UpperCAmelCase__ ( self : Union[str, Any]): lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Optional[Any] = self.prepare_config_and_inputs() lowerCAmelCase_ : List[str] = {'''pixel_values''': pixel_values, '''pixel_mask''': pixel_mask} return config, inputs_dict def UpperCAmelCase__ ( self : Optional[Any] , A_ : List[Any] , A_ : Tuple): lowerCAmelCase_ : Any = output.encoder_hidden_states lowerCAmelCase_ : int = output.pixel_decoder_hidden_states lowerCAmelCase_ : Union[str, Any] = output.transformer_decoder_hidden_states self.parent.assertTrue(len(A_) , len(config.backbone_config.depths)) self.parent.assertTrue(len(A_) , len(config.backbone_config.depths)) self.parent.assertTrue(len(A_) , config.decoder_layers) def UpperCAmelCase__ ( self : Optional[int] , A_ : int , A_ : Union[str, Any] , A_ : Union[str, Any] , A_ : str=False): with torch.no_grad(): lowerCAmelCase_ : Union[str, Any] = MaskaFormerModel(config=A_) model.to(A_) model.eval() lowerCAmelCase_ : List[Any] = model(pixel_values=A_ , pixel_mask=A_) lowerCAmelCase_ : Any = model(A_ , output_hidden_states=A_) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None) self.parent.assertTrue(output.encoder_last_hidden_state is not None) if output_hidden_states: self.check_output_hidden_state(A_ , A_) def UpperCAmelCase__ ( self : List[Any] , A_ : Union[str, Any] , A_ : List[str] , A_ : List[Any] , A_ : Tuple , A_ : Any): lowerCAmelCase_ : Any = MaskaFormerForUniversalSegmentation(config=A_) model.to(A_) model.eval() def comm_check_on_output(A_ : Optional[int]): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None) self.parent.assertTrue(result.encoder_last_hidden_state is not None) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1)) with torch.no_grad(): lowerCAmelCase_ : List[Any] = model(pixel_values=A_ , pixel_mask=A_) lowerCAmelCase_ : List[Any] = model(A_) comm_check_on_output(A_) lowerCAmelCase_ : Any = model( pixel_values=A_ , pixel_mask=A_ , mask_labels=A_ , class_labels=A_) comm_check_on_output(A_) self.parent.assertTrue(result.loss is not None) self.parent.assertEqual(result.loss.shape , torch.Size([1])) @require_torch class __snake_case ( UpperCamelCase_ ,UpperCamelCase_ ,unittest.TestCase ): _a = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () _a = {'''feature-extraction''': MaskaFormerModel} if is_torch_available() else {} _a = False _a = False _a = False _a = False def UpperCAmelCase__ ( self : Any): lowerCAmelCase_ : Tuple = MaskaFormerModelTester(self) lowerCAmelCase_ : Optional[Any] = ConfigTester(self , config_class=A_ , has_text_modality=A_) def UpperCAmelCase__ ( self : Optional[int]): self.config_tester.run_common_tests() def UpperCAmelCase__ ( self : Optional[Any]): lowerCAmelCase_ , lowerCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(A_ , **A_ , output_hidden_states=A_) def UpperCAmelCase__ ( self : List[Any]): lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*A_) @unittest.skip(reason='''Mask2Former does not use inputs_embeds''') def UpperCAmelCase__ ( self : Optional[Any]): pass @unittest.skip(reason='''Mask2Former does not have a get_input_embeddings method''') def UpperCAmelCase__ ( self : str): pass @unittest.skip(reason='''Mask2Former is not a generative model''') def UpperCAmelCase__ ( self : int): pass @unittest.skip(reason='''Mask2Former does not use token embeddings''') def UpperCAmelCase__ ( self : Tuple): pass @require_torch_multi_gpu @unittest.skip( reason='''Mask2Former has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''') def UpperCAmelCase__ ( self : List[str]): pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''') def UpperCAmelCase__ ( self : Tuple): pass def UpperCAmelCase__ ( self : Dict): lowerCAmelCase_ , lowerCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ : Union[str, Any] = model_class(A_) lowerCAmelCase_ : Dict = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase_ : Tuple = [*signature.parameters.keys()] lowerCAmelCase_ : Dict = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , A_) @slow def UpperCAmelCase__ ( self : List[str]): for model_name in ["facebook/mask2former-swin-small-coco-instance"]: lowerCAmelCase_ : List[str] = MaskaFormerModel.from_pretrained(A_) self.assertIsNotNone(A_) def UpperCAmelCase__ ( self : Optional[Any]): lowerCAmelCase_ : Optional[int] = (self.model_tester.min_size,) * 2 lowerCAmelCase_ : str = { '''pixel_values''': torch.randn((2, 3, *size) , device=A_), '''mask_labels''': torch.randn((2, 1_0, *size) , device=A_), '''class_labels''': torch.zeros(2 , 1_0 , device=A_).long(), } lowerCAmelCase_ : Union[str, Any] = self.model_tester.get_config() lowerCAmelCase_ : Any = MaskaFormerForUniversalSegmentation(A_).to(A_) lowerCAmelCase_ : Union[str, Any] = model(**A_) self.assertTrue(outputs.loss is not None) def UpperCAmelCase__ ( self : Tuple): lowerCAmelCase_ , lowerCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(A_ , **A_ , output_hidden_states=A_) def UpperCAmelCase__ ( self : Union[str, Any]): lowerCAmelCase_ , lowerCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ : Union[str, Any] = model_class(A_).to(A_) lowerCAmelCase_ : List[str] = model(**A_ , output_attentions=A_) self.assertTrue(outputs.attentions is not None) def UpperCAmelCase__ ( self : List[Any]): if not self.model_tester.is_training: return lowerCAmelCase_ : Dict = self.all_model_classes[1] lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() lowerCAmelCase_ : Optional[Any] = model_class(A_) model.to(A_) model.train() lowerCAmelCase_ : List[Any] = model(A_ , mask_labels=A_ , class_labels=A_).loss loss.backward() def UpperCAmelCase__ ( self : str): lowerCAmelCase_ : str = self.all_model_classes[1] lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() lowerCAmelCase_ : Optional[Any] = True lowerCAmelCase_ : Dict = True lowerCAmelCase_ : Any = model_class(A_).to(A_) model.train() lowerCAmelCase_ : List[str] = model(A_ , mask_labels=A_ , class_labels=A_) lowerCAmelCase_ : int = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() lowerCAmelCase_ : str = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() lowerCAmelCase_ : Dict = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() lowerCAmelCase_ : str = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=A_) self.assertIsNotNone(encoder_hidden_states.grad) self.assertIsNotNone(pixel_decoder_hidden_states.grad) self.assertIsNotNone(transformer_decoder_hidden_states.grad) self.assertIsNotNone(attentions.grad) A__ : int = 1E-4 def UpperCamelCase( ): lowerCAmelCase_ : Optional[int] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_vision @slow class __snake_case ( unittest.TestCase ): @cached_property def UpperCAmelCase__ ( self : Tuple): return "facebook/mask2former-swin-small-coco-instance" @cached_property def UpperCAmelCase__ ( self : Optional[Any]): return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints) if is_vision_available() else None def UpperCAmelCase__ ( self : int): lowerCAmelCase_ : Any = MaskaFormerModel.from_pretrained(self.model_checkpoints).to(A_) lowerCAmelCase_ : str = self.default_image_processor lowerCAmelCase_ : Tuple = prepare_img() lowerCAmelCase_ : Any = image_processor(A_ , return_tensors='''pt''').to(A_) lowerCAmelCase_ : str = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 3_2) == 0 and (inputs_shape[-2] % 3_2) == 0) # check size self.assertEqual(A_ , (1, 3, 3_8_4, 3_8_4)) with torch.no_grad(): lowerCAmelCase_ : Optional[Any] = model(**A_) lowerCAmelCase_ : List[str] = torch.tensor( [[-0.2790, -1.0717, -1.1668], [-0.5128, -0.3128, -0.4987], [-0.5832, 0.1971, -0.0197]]).to(A_) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , A_ , atol=A_)) lowerCAmelCase_ : Union[str, Any] = torch.tensor( [[0.8973, 1.1847, 1.1776], [1.1934, 1.5040, 1.5128], [1.1153, 1.4486, 1.4951]]).to(A_) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , A_ , atol=A_)) lowerCAmelCase_ : Optional[int] = torch.tensor( [[2.1152, 1.7000, -0.8603], [1.5808, 1.8004, -0.9353], [1.6043, 1.7495, -0.5999]]).to(A_) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , A_ , atol=A_)) def UpperCAmelCase__ ( self : List[Any]): lowerCAmelCase_ : List[str] = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints).to(A_).eval() lowerCAmelCase_ : Optional[int] = self.default_image_processor lowerCAmelCase_ : List[Any] = prepare_img() lowerCAmelCase_ : Tuple = image_processor(A_ , return_tensors='''pt''').to(A_) lowerCAmelCase_ : Union[str, Any] = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 3_2) == 0 and (inputs_shape[-2] % 3_2) == 0) # check size self.assertEqual(A_ , (1, 3, 3_8_4, 3_8_4)) with torch.no_grad(): lowerCAmelCase_ : Tuple = model(**A_) # masks_queries_logits lowerCAmelCase_ : int = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4)) lowerCAmelCase_ : Tuple = [ [-8.7839, -9.0056, -8.8121], [-7.4104, -7.0313, -6.5401], [-6.6105, -6.3427, -6.4675], ] lowerCAmelCase_ : Optional[Any] = torch.tensor(A_).to(A_) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , A_ , atol=A_)) # class_queries_logits lowerCAmelCase_ : Dict = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1)) lowerCAmelCase_ : Any = torch.tensor( [ [1.8324, -8.0835, -4.1922], [0.8450, -9.0050, -3.6053], [0.3045, -7.7293, -3.0275], ]).to(A_) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , A_ , atol=A_)) def UpperCAmelCase__ ( self : Any): lowerCAmelCase_ : List[str] = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints).to(A_).eval() lowerCAmelCase_ : Optional[Any] = self.default_image_processor lowerCAmelCase_ : Optional[Any] = image_processor( [np.zeros((3, 8_0_0, 1_3_3_3)), np.zeros((3, 8_0_0, 1_3_3_3))] , segmentation_maps=[np.zeros((3_8_4, 3_8_4)).astype(np.floataa), np.zeros((3_8_4, 3_8_4)).astype(np.floataa)] , return_tensors='''pt''' , ) lowerCAmelCase_ : Dict = inputs['''pixel_values'''].to(A_) lowerCAmelCase_ : Tuple = [el.to(A_) for el in inputs['''mask_labels''']] lowerCAmelCase_ : str = [el.to(A_) for el in inputs['''class_labels''']] with torch.no_grad(): lowerCAmelCase_ : int = model(**A_) self.assertTrue(outputs.loss is not None)
103
'''simple docstring''' def a_ ( lowerCamelCase : Optional[Any] ): return [ { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], }, { 0: [6], 1: [9], 2: [4, 5], 3: [4], 4: [2, 3], 5: [2], 6: [0, 7], 7: [6], 8: [], 9: [1], }, { 0: [4], 1: [6], 2: [], 3: [5, 6, 7], 4: [0, 6], 5: [3, 8, 9], 6: [1, 3, 4, 7], 7: [3, 6, 8, 9], 8: [5, 7], 9: [5, 7], }, { 0: [1, 3], 1: [0, 2, 4], 2: [1, 3, 4], 3: [0, 2, 4], 4: [1, 2, 3], }, ][index] def a_ ( lowerCamelCase : dict[int, list[int]] ): lowerCAmelCase = 0 lowerCAmelCase = len(lowerCamelCase ) # No of vertices in graph lowerCAmelCase = [0] * n lowerCAmelCase = [False] * n def dfs(lowerCamelCase : Tuple , lowerCamelCase : str , lowerCamelCase : Dict , lowerCamelCase : str ): lowerCAmelCase = True lowerCAmelCase = id_ id_ += 1 for to in graph[at]: if to == parent: pass elif not visited[to]: dfs(lowerCamelCase , lowerCamelCase , lowerCamelCase , id_ ) lowerCAmelCase = min(low[at] , low[to] ) if id_ <= low[to]: bridges.append((at, to) if at < to else (to, at) ) else: # This edge is a back edge and cannot be a bridge lowerCAmelCase = min(low[at] , low[to] ) lowerCAmelCase = [] for i in range(lowerCamelCase ): if not visited[i]: dfs(lowerCamelCase , -1 , lowerCamelCase , id_ ) return bridges if __name__ == "__main__": import doctest doctest.testmod()
4
0
'''simple docstring''' import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging lowerCAmelCase__ = logging.get_logger(__name__) def _A ( A__ ): """simple docstring""" __lowercase = R'''\w+[.]\d+''' __lowercase = re.findall(A__ , A__ ) for pat in pats: __lowercase = key.replace(A__ , '''_'''.join(pat.split('''.''' ) ) ) return key def _A ( A__ , A__ , A__ ): """simple docstring""" __lowercase = pt_tuple_key[:-1] + ('''scale''',) if ( any('''norm''' in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): __lowercase = pt_tuple_key[:-1] + ('''scale''',) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: __lowercase = pt_tuple_key[:-1] + ('''scale''',) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: __lowercase = pt_tuple_key[:-1] + ('''embedding''',) return renamed_pt_tuple_key, pt_tensor # conv layer __lowercase = pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: __lowercase = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer __lowercase = pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight": __lowercase = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight __lowercase = pt_tuple_key[:-1] + ('''weight''',) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias __lowercase = pt_tuple_key[:-1] + ('''bias''',) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def _A ( A__ , A__ , A__=42 ): """simple docstring""" __lowercase = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params __lowercase = flax_model.init_weights(PRNGKey(A__ ) ) __lowercase = flatten_dict(A__ ) __lowercase = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): __lowercase = rename_key(A__ ) __lowercase = tuple(renamed_pt_key.split('''.''' ) ) # Correctly rename weight parameters __lowercase , __lowercase = rename_key_and_reshape_tensor(A__ , A__ , A__ ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F"PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape " F"{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}." ) # also add unexpected weight so that warning is thrown __lowercase = jnp.asarray(A__ ) return unflatten_dict(A__ )
104
'''simple docstring''' import argparse from collections import OrderedDict from pathlib import Path import requests import torch from PIL import Image from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor from transformers.utils import logging logging.set_verbosity_info() __snake_case =logging.get_logger(__name__) def a_ ( lowerCamelCase : Any ): lowerCAmelCase = OrderedDict() for key, value in state_dict.items(): if key.startswith('module.encoder' ): lowerCAmelCase = key.replace('module.encoder' , 'glpn.encoder' ) if key.startswith('module.decoder' ): lowerCAmelCase = key.replace('module.decoder' , 'decoder.stages' ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 lowerCAmelCase = key[key.find('patch_embed' ) + len('patch_embed' )] lowerCAmelCase = key.replace(f'''patch_embed{idx}''' , f'''patch_embeddings.{int(lowerCamelCase )-1}''' ) if "norm" in key: lowerCAmelCase = key.replace('norm' , 'layer_norm' ) if "glpn.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 lowerCAmelCase = key[key.find('glpn.encoder.layer_norm' ) + len('glpn.encoder.layer_norm' )] lowerCAmelCase = key.replace(f'''layer_norm{idx}''' , f'''layer_norm.{int(lowerCamelCase )-1}''' ) if "layer_norm1" in key: lowerCAmelCase = key.replace('layer_norm1' , 'layer_norm_1' ) if "layer_norm2" in key: lowerCAmelCase = key.replace('layer_norm2' , 'layer_norm_2' ) if "block" in key: # replace for example block1 by block.0 lowerCAmelCase = key[key.find('block' ) + len('block' )] lowerCAmelCase = key.replace(f'''block{idx}''' , f'''block.{int(lowerCamelCase )-1}''' ) if "attn.q" in key: lowerCAmelCase = key.replace('attn.q' , 'attention.self.query' ) if "attn.proj" in key: lowerCAmelCase = key.replace('attn.proj' , 'attention.output.dense' ) if "attn" in key: lowerCAmelCase = key.replace('attn' , 'attention.self' ) if "fc1" in key: lowerCAmelCase = key.replace('fc1' , 'dense1' ) if "fc2" in key: lowerCAmelCase = key.replace('fc2' , 'dense2' ) if "linear_pred" in key: lowerCAmelCase = key.replace('linear_pred' , 'classifier' ) if "linear_fuse" in key: lowerCAmelCase = key.replace('linear_fuse.conv' , 'linear_fuse' ) lowerCAmelCase = key.replace('linear_fuse.bn' , 'batch_norm' ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 lowerCAmelCase = key[key.find('linear_c' ) + len('linear_c' )] lowerCAmelCase = key.replace(f'''linear_c{idx}''' , f'''linear_c.{int(lowerCamelCase )-1}''' ) if "bot_conv" in key: lowerCAmelCase = key.replace('bot_conv' , '0.convolution' ) if "skip_conv1" in key: lowerCAmelCase = key.replace('skip_conv1' , '1.convolution' ) if "skip_conv2" in key: lowerCAmelCase = key.replace('skip_conv2' , '2.convolution' ) if "fusion1" in key: lowerCAmelCase = key.replace('fusion1' , '1.fusion' ) if "fusion2" in key: lowerCAmelCase = key.replace('fusion2' , '2.fusion' ) if "fusion3" in key: lowerCAmelCase = key.replace('fusion3' , '3.fusion' ) if "fusion" in key and "conv" in key: lowerCAmelCase = key.replace('conv' , 'convolutional_layer' ) if key.startswith('module.last_layer_depth' ): lowerCAmelCase = key.replace('module.last_layer_depth' , 'head.head' ) lowerCAmelCase = value return new_state_dict def a_ ( lowerCamelCase : List[str] , lowerCamelCase : str ): # for each of the encoder blocks: for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) lowerCAmelCase = state_dict.pop(f'''glpn.encoder.block.{i}.{j}.attention.self.kv.weight''' ) lowerCAmelCase = state_dict.pop(f'''glpn.encoder.block.{i}.{j}.attention.self.kv.bias''' ) # next, add keys and values (in that order) to the state dict lowerCAmelCase = kv_weight[ : config.hidden_sizes[i], : ] lowerCAmelCase = kv_bias[: config.hidden_sizes[i]] lowerCAmelCase = kv_weight[ config.hidden_sizes[i] :, : ] lowerCAmelCase = kv_bias[config.hidden_sizes[i] :] def a_ ( ): lowerCAmelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowerCAmelCase = Image.open(requests.get(lowerCamelCase , stream=lowerCamelCase ).raw ) return image @torch.no_grad() def a_ ( lowerCamelCase : List[Any] , lowerCamelCase : Tuple , lowerCamelCase : Optional[Any]=False , lowerCamelCase : List[str]=None ): lowerCAmelCase = GLPNConfig(hidden_sizes=[64, 128, 320, 512] , decoder_hidden_size=64 , depths=[3, 8, 27, 3] ) # load image processor (only resize + rescale) lowerCAmelCase = GLPNImageProcessor() # prepare image lowerCAmelCase = prepare_img() lowerCAmelCase = image_processor(images=lowerCamelCase , return_tensors='pt' ).pixel_values logger.info('Converting model...' ) # load original state dict lowerCAmelCase = torch.load(lowerCamelCase , map_location=torch.device('cpu' ) ) # rename keys lowerCAmelCase = rename_keys(lowerCamelCase ) # key and value matrices need special treatment read_in_k_v(lowerCamelCase , lowerCamelCase ) # create HuggingFace model and load state dict lowerCAmelCase = GLPNForDepthEstimation(lowerCamelCase ) model.load_state_dict(lowerCamelCase ) model.eval() # forward pass lowerCAmelCase = model(lowerCamelCase ) lowerCAmelCase = outputs.predicted_depth # verify output if model_name is not None: if "nyu" in model_name: lowerCAmelCase = torch.tensor( [[4.4_147, 4.0_873, 4.0_673], [3.7_890, 3.2_881, 3.1_525], [3.7_674, 3.5_423, 3.4_913]] ) elif "kitti" in model_name: lowerCAmelCase = torch.tensor( [[3.4_291, 2.7_865, 2.5_151], [3.2_841, 2.7_021, 2.3_502], [3.1_147, 2.4_625, 2.2_481]] ) else: raise ValueError(f'''Unknown model name: {model_name}''' ) lowerCAmelCase = torch.Size([1, 480, 640] ) assert predicted_depth.shape == expected_shape assert torch.allclose(predicted_depth[0, :3, :3] , lowerCamelCase , atol=1e-4 ) print('Looks ok!' ) # finally, push to hub if required if push_to_hub: logger.info('Pushing model and image processor to the hub...' ) model.push_to_hub( repo_path_or_name=Path(lowerCamelCase , lowerCamelCase ) , organization='nielsr' , commit_message='Add model' , use_temp_dir=lowerCamelCase , ) image_processor.push_to_hub( repo_path_or_name=Path(lowerCamelCase , lowerCamelCase ) , organization='nielsr' , commit_message='Add image processor' , use_temp_dir=lowerCamelCase , ) if __name__ == "__main__": __snake_case =argparse.ArgumentParser() parser.add_argument( """--checkpoint_path""", default=None, type=str, help="""Path to the original PyTorch checkpoint (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to upload the model to the HuggingFace hub.""" ) parser.add_argument( """--model_name""", default="""glpn-kitti""", type=str, help="""Name of the model in case you're pushing to the hub.""", ) __snake_case =parser.parse_args() convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
4
0
"""simple docstring""" from transformers import DistilBertTokenizer, DistilBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class __UpperCamelCase ( a__ ): lowerCamelCase : List[str] =DistilBertTokenizer lowerCamelCase : Optional[Any] =DistilBertTokenizerFast lowerCamelCase : List[Any] =True @slow def __a ( self ) -> Any: a : Dict = DistilBertTokenizer.from_pretrained("distilbert-base-uncased" ) a : List[str] = tokenizer.encode("sequence builders" , add_special_tokens=lowerCAmelCase__ ) a : Optional[Any] = tokenizer.encode("multi-sequence build" , add_special_tokens=lowerCAmelCase__ ) a : Optional[Any] = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase__ ) a : Tuple = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase__ , lowerCAmelCase__ ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ]
105
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class UpperCAmelCase_ ( unittest.TestCase ): @slow def __UpperCAmelCase ( self : str ) -> List[str]: lowerCAmelCase = XLMRobertaModel.from_pretrained('xlm-roberta-base' ) lowerCAmelCase = torch.tensor([[0, 5_8_1, 1_0_2_6_9, 8_3, 9_9_9_4_2, 1_3_6, 6_0_7_4_2, 2_3, 7_0, 8_0_5_8_3, 1_8_2_7_6, 2]] ) # The dog is cute and lives in the garden house lowerCAmelCase = torch.Size((1, 1_2, 7_6_8) ) # batch_size, sequence_length, embedding_vector_dim lowerCAmelCase = torch.tensor( [[-0.0_101, 0.1_218, -0.0_803, 0.0_801, 0.1_327, 0.0_776, -0.1_215, 0.2_383, 0.3_338, 0.3_106, 0.0_300, 0.0_252]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): lowerCAmelCase = model(UpperCAmelCase__ )['last_hidden_state'].detach() self.assertEqual(output.shape , UpperCAmelCase__ ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , UpperCAmelCase__ , atol=1E-3 ) ) @slow def __UpperCAmelCase ( self : List[Any] ) -> Tuple: lowerCAmelCase = XLMRobertaModel.from_pretrained('xlm-roberta-large' ) lowerCAmelCase = torch.tensor([[0, 5_8_1, 1_0_2_6_9, 8_3, 9_9_9_4_2, 1_3_6, 6_0_7_4_2, 2_3, 7_0, 8_0_5_8_3, 1_8_2_7_6, 2]] ) # The dog is cute and lives in the garden house lowerCAmelCase = torch.Size((1, 1_2, 1_0_2_4) ) # batch_size, sequence_length, embedding_vector_dim lowerCAmelCase = torch.tensor( [[-0.0_699, -0.0_318, 0.0_705, -0.1_241, 0.0_999, -0.0_520, 0.1_004, -0.1_838, -0.4_704, 0.1_437, 0.0_821, 0.0_126]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): lowerCAmelCase = model(UpperCAmelCase__ )['last_hidden_state'].detach() self.assertEqual(output.shape , UpperCAmelCase__ ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , UpperCAmelCase__ , atol=1E-3 ) )
4
0
"""simple docstring""" import gc import unittest from transformers import CTRLConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, ) class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : str ,lowercase_ : List[str] ,lowercase_ : Optional[int]=1_4 ,lowercase_ : Any=7 ,lowercase_ : List[Any]=True ,lowercase_ : Union[str, Any]=True ,lowercase_ : Any=True ,lowercase_ : Optional[int]=True ,lowercase_ : Union[str, Any]=True ,lowercase_ : Union[str, Any]=9_9 ,lowercase_ : Any=3_2 ,lowercase_ : str=5 ,lowercase_ : int=4 ,lowercase_ : str=3_7 ,lowercase_ : Optional[Any]="gelu" ,lowercase_ : Any=0.1 ,lowercase_ : Any=0.1 ,lowercase_ : Tuple=5_1_2 ,lowercase_ : str=1_6 ,lowercase_ : str=2 ,lowercase_ : List[Any]=0.02 ,lowercase_ : int=3 ,lowercase_ : List[str]=4 ,lowercase_ : int=None ,): lowerCAmelCase__ : Union[str, Any] = parent lowerCAmelCase__ : Union[str, Any] = batch_size lowerCAmelCase__ : Optional[Any] = seq_length lowerCAmelCase__ : Any = is_training lowerCAmelCase__ : int = use_token_type_ids lowerCAmelCase__ : Optional[int] = use_input_mask lowerCAmelCase__ : List[str] = use_labels lowerCAmelCase__ : Optional[Any] = use_mc_token_ids lowerCAmelCase__ : List[str] = vocab_size lowerCAmelCase__ : int = hidden_size lowerCAmelCase__ : Optional[int] = num_hidden_layers lowerCAmelCase__ : Tuple = num_attention_heads lowerCAmelCase__ : Tuple = intermediate_size lowerCAmelCase__ : List[str] = hidden_act lowerCAmelCase__ : Optional[Any] = hidden_dropout_prob lowerCAmelCase__ : int = attention_probs_dropout_prob lowerCAmelCase__ : List[Any] = max_position_embeddings lowerCAmelCase__ : Optional[int] = type_vocab_size lowerCAmelCase__ : int = type_sequence_label_size lowerCAmelCase__ : List[str] = initializer_range lowerCAmelCase__ : Optional[Any] = num_labels lowerCAmelCase__ : Optional[int] = num_choices lowerCAmelCase__ : Dict = scope lowerCAmelCase__ : List[Any] = self.vocab_size - 1 def __lowerCAmelCase ( self : Optional[Any] ): lowerCAmelCase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) lowerCAmelCase__ : str = None if self.use_input_mask: lowerCAmelCase__ : str = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase__ : int = None if self.use_token_type_ids: lowerCAmelCase__ : int = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) lowerCAmelCase__ : Optional[int] = None if self.use_mc_token_ids: lowerCAmelCase__ : int = ids_tensor([self.batch_size, self.num_choices] ,self.seq_length ) lowerCAmelCase__ : Tuple = None lowerCAmelCase__ : Optional[Any] = None lowerCAmelCase__ : int = None if self.use_labels: lowerCAmelCase__ : List[str] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) lowerCAmelCase__ : Tuple = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) lowerCAmelCase__ : Tuple = ids_tensor([self.batch_size] ,self.num_choices ) lowerCAmelCase__ : Optional[int] = self.get_config() lowerCAmelCase__ : Dict = ids_tensor([self.num_hidden_layers, self.num_attention_heads] ,2 ) return ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) def __lowerCAmelCase ( self : int ): return CTRLConfig( vocab_size=self.vocab_size ,n_embd=self.hidden_size ,n_layer=self.num_hidden_layers ,n_head=self.num_attention_heads ,n_positions=self.max_position_embeddings ,pad_token_id=self.pad_token_id ,) def __lowerCAmelCase ( self : Any ,lowercase_ : Optional[int] ,lowercase_ : Dict ,lowercase_ : List[Any] ,lowercase_ : Any ,lowercase_ : str ,*lowercase_ : str ): lowerCAmelCase__ : Tuple = CTRLModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() model(lowercase_ ,token_type_ids=lowercase_ ,head_mask=lowercase_ ) model(lowercase_ ,token_type_ids=lowercase_ ) lowerCAmelCase__ : Tuple = model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(len(result.past_key_values ) ,config.n_layer ) def __lowerCAmelCase ( self : Optional[int] ,lowercase_ : Dict ,lowercase_ : Tuple ,lowercase_ : Dict ,lowercase_ : List[str] ,lowercase_ : Any ,*lowercase_ : Optional[Any] ): lowerCAmelCase__ : List[str] = CTRLLMHeadModel(lowercase_ ) model.to(lowercase_ ) model.eval() lowerCAmelCase__ : Optional[Any] = model(lowercase_ ,token_type_ids=lowercase_ ,labels=lowercase_ ) self.parent.assertEqual(result.loss.shape ,() ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCAmelCase ( self : Optional[Any] ): lowerCAmelCase__ : int = self.prepare_config_and_inputs() ( ( lowerCAmelCase__ ) ,( lowerCAmelCase__ ) ,( lowerCAmelCase__ ) ,( lowerCAmelCase__ ) ,( lowerCAmelCase__ ) ,( lowerCAmelCase__ ) ,( lowerCAmelCase__ ) ,( lowerCAmelCase__ ) ,( lowerCAmelCase__ ) , ) : Tuple = config_and_inputs lowerCAmelCase__ : Tuple = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''head_mask''': head_mask} return config, inputs_dict def __lowerCAmelCase ( self : Any ,lowercase_ : str ,lowercase_ : str ,lowercase_ : str ,lowercase_ : Optional[int] ,*lowercase_ : Optional[Any] ): lowerCAmelCase__ : List[str] = self.num_labels lowerCAmelCase__ : Optional[Any] = CTRLForSequenceClassification(lowercase_ ) model.to(lowercase_ ) model.eval() lowerCAmelCase__ : Dict = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) lowerCAmelCase__ : Dict = model(lowercase_ ,token_type_ids=lowercase_ ,labels=lowercase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) @require_torch class SCREAMING_SNAKE_CASE ( a_ , a_ , a_ , unittest.TestCase ): """simple docstring""" lowercase__ = (CTRLModel, CTRLLMHeadModel, CTRLForSequenceClassification) if is_torch_available() else () lowercase__ = (CTRLLMHeadModel,) if is_torch_available() else () lowercase__ = ( { "feature-extraction": CTRLModel, "text-classification": CTRLForSequenceClassification, "text-generation": CTRLLMHeadModel, "zero-shot": CTRLForSequenceClassification, } if is_torch_available() else {} ) lowercase__ = True lowercase__ = False lowercase__ = False def __lowerCAmelCase ( self : Dict ,lowercase_ : Dict ,lowercase_ : Any ,lowercase_ : List[str] ,lowercase_ : str ,lowercase_ : Optional[Any] ): if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `CTRLConfig` was never used in pipeline tests, either because of a missing checkpoint or because a tiny # config could not be created. return True return False def __lowerCAmelCase ( self : Optional[Any] ): lowerCAmelCase__ : Optional[Any] = CTRLModelTester(self ) lowerCAmelCase__ : Any = ConfigTester(self ,config_class=lowercase_ ,n_embd=3_7 ) def __lowerCAmelCase ( self : Optional[int] ): super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self : Dict ): self.config_tester.run_common_tests() def __lowerCAmelCase ( self : int ): lowerCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_ctrl_model(*lowercase_ ) def __lowerCAmelCase ( self : Any ): lowerCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*lowercase_ ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __lowerCAmelCase ( self : List[str] ): pass @slow def __lowerCAmelCase ( self : Any ): for model_name in CTRL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ : int = CTRLModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) @unittest.skip('''The model doesn\'t support left padding''' ) # and it's not used enough to be worth fixing :) def __lowerCAmelCase ( self : Any ): pass @require_torch class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self : str ): super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() @slow def __lowerCAmelCase ( self : Optional[int] ): lowerCAmelCase__ : List[str] = CTRLLMHeadModel.from_pretrained('''ctrl''' ) model.to(lowercase_ ) lowerCAmelCase__ : str = torch.tensor( [[1_1_8_5_9, 0, 1_6_1_1, 8]] ,dtype=torch.long ,device=lowercase_ ) # Legal the president is lowerCAmelCase__ : List[str] = [ 1_1_8_5_9, 0, 1_6_1_1, 8, 5, 1_5_0, 2_6_4_4_9, 2, 1_9, 3_4_8, 4_6_9, 3, 2_5_9_5, 4_8, 2_0_7_4_0, 2_4_6_5_3_3, 2_4_6_5_3_3, 1_9, 3_0, 5, ] # Legal the president is a good guy and I don't want to lose my job. \n \n I have a lowerCAmelCase__ : List[Any] = model.generate(lowercase_ ,do_sample=lowercase_ ) self.assertListEqual(output_ids[0].tolist() ,lowercase_ )
106
'''simple docstring''' import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def a_ ( lowerCamelCase : Dict ): lowerCAmelCase = {} lowerCAmelCase = tokenizer(example['content'] , truncation=lowerCamelCase )['input_ids'] lowerCAmelCase = len(example['content'] ) / len(output['input_ids'] ) return output __snake_case =HfArgumentParser(PretokenizationArguments) __snake_case =parser.parse_args() if args.num_workers is None: __snake_case =multiprocessing.cpu_count() __snake_case =AutoTokenizer.from_pretrained(args.tokenizer_dir) __snake_case =time.time() __snake_case =load_dataset(args.dataset_name, split="""train""") print(F'''Dataset loaded in {time.time()-t_start:.2f}s''') __snake_case =time.time() __snake_case =ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ """repo_name""", """path""", """copies""", """size""", """content""", """license""", """hash""", """line_mean""", """line_max""", """alpha_frac""", """autogenerated""", ], ) print(F'''Dataset tokenized in {time.time()-t_start:.2f}s''') __snake_case =time.time() ds.push_to_hub(args.tokenized_data_repo) print(F'''Data pushed to the hub in {time.time()-t_start:.2f}s''')
4
0
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def __magic_name__ ( A : List[str] ): '''simple docstring''' a = filter(lambda A : p.requires_grad, model.parameters() ) a = sum([np.prod(p.size() ) for p in model_parameters] ) return params __lowerCAmelCase : int = logging.getLogger(__name__) def __magic_name__ ( A : List[Any], A : Dict ): '''simple docstring''' if metric == "rouge2": a = "{val_avg_rouge2:.4f}-{step_count}" elif metric == "bleu": a = "{val_avg_bleu:.4f}-{step_count}" elif metric == "em": a = "{val_avg_em:.4f}-{step_count}" else: raise NotImplementedError( F"""seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this""" " function." ) a = ModelCheckpoint( dirpath=A, filename=A, monitor=F"""val_{metric}""", mode="max", save_top_k=3, every_n_epochs=1, ) return checkpoint_callback def __magic_name__ ( A : str, A : int ): '''simple docstring''' return EarlyStopping( monitor=F"""val_{metric}""", mode="min" if "loss" in metric else "max", patience=A, verbose=A, ) class snake_case__ (pl.Callback ): """simple docstring""" def __UpperCAmelCase ( self : Optional[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Any ) -> Union[str, Any]: a = {f"""lr_group_{i}""": param["lr"] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(__lowerCamelCase ) @rank_zero_only def __UpperCAmelCase ( self : Any , __lowerCamelCase : pl.Trainer , __lowerCamelCase : pl.LightningModule , __lowerCamelCase : str , __lowerCamelCase : List[Any]=True ) -> None: logger.info(f"""***** {type_path} results at step {trainer.global_step:05d} *****""" ) a = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ["log", "progress_bar", "preds"]} ) # Log results a = Path(pl_module.hparams.output_dir ) if type_path == "test": a = od / "test_results.txt" a = od / "test_generations.txt" else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. a = od / f"""{type_path}_results/{trainer.global_step:05d}.txt""" a = od / f"""{type_path}_generations/{trainer.global_step:05d}.txt""" results_file.parent.mkdir(exist_ok=__lowerCamelCase ) generations_file.parent.mkdir(exist_ok=__lowerCamelCase ) with open(__lowerCamelCase , "a+" ) as writer: for key in sorted(__lowerCamelCase ): if key in ["log", "progress_bar", "preds"]: continue a = metrics[key] if isinstance(__lowerCamelCase , torch.Tensor ): a = val.item() a = f"""{key}: {val:.6f}\n""" writer.write(__lowerCamelCase ) if not save_generations: return if "preds" in metrics: a = "\n".join(metrics["preds"] ) generations_file.open("w+" ).write(__lowerCamelCase ) @rank_zero_only def __UpperCAmelCase ( self : Any , __lowerCamelCase : int , __lowerCamelCase : Tuple ) -> Any: try: a = pl_module.model.model.num_parameters() except AttributeError: a = pl_module.model.num_parameters() a = count_trainable_parameters(__lowerCamelCase ) # mp stands for million parameters trainer.logger.log_metrics({"n_params": npars, "mp": npars / 1e6, "grad_mp": n_trainable_pars / 1e6} ) @rank_zero_only def __UpperCAmelCase ( self : List[Any] , __lowerCamelCase : pl.Trainer , __lowerCamelCase : pl.LightningModule ) -> Optional[Any]: save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(__lowerCamelCase , __lowerCamelCase , "test" ) @rank_zero_only def __UpperCAmelCase ( self : List[Any] , __lowerCamelCase : pl.Trainer , __lowerCamelCase : Any ) -> Tuple: save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
107
'''simple docstring''' import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings __snake_case =logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class UpperCAmelCase_ ( __lowercase ): lowerCamelCase : bool = field(default=__lowercase , metadata={'''help''': '''Whether to use SortishSampler or not.'''} ) lowerCamelCase : bool = field( default=__lowercase , metadata={'''help''': '''Whether to use generate to calculate generative metrics (ROUGE, BLEU).'''} ) lowerCamelCase : Optional[int] = field( default=__lowercase , metadata={ '''help''': ( '''The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default ''' '''to the `max_length` value of the model configuration.''' ) } , ) lowerCamelCase : Optional[int] = field( default=__lowercase , metadata={ '''help''': ( '''The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default ''' '''to the `num_beams` value of the model configuration.''' ) } , ) lowerCamelCase : Optional[Union[str, Path, GenerationConfig]] = field( default=__lowercase , metadata={ '''help''': '''Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.''' } , ) def __UpperCAmelCase ( self : Dict ) -> List[str]: lowerCAmelCase = super().to_dict() for k, v in d.items(): if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): lowerCAmelCase = v.to_dict() return d
4
0
"""simple docstring""" import requests from bsa import BeautifulSoup def a__ ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : dict ): '''simple docstring''' lowerCAmelCase : Optional[int] = BeautifulSoup(requests.get(SCREAMING_SNAKE_CASE , params=SCREAMING_SNAKE_CASE ).content , "html.parser" ) lowerCAmelCase : int = soup.find("div" , attrs={"class": "gs_ri"} ) lowerCAmelCase : Optional[Any] = div.find("div" , attrs={"class": "gs_fl"} ).find_all("a" ) return anchors[2].get_text() if __name__ == "__main__": lowerCAmelCase__ = { '''title''': ( '''Precisely geometry controlled microsupercapacitors for ultrahigh areal ''' '''capacitance, volumetric capacitance, and energy density''' ), '''journal''': '''Chem. Mater.''', '''volume''': 30, '''pages''': '''3979-3990''', '''year''': 2_018, '''hl''': '''en''', } print(get_citation('''https://scholar.google.com/scholar_lookup''', params=params))
108
'''simple docstring''' import argparse import torch from transformers import ( EncodecConfig, EncodecFeatureExtractor, EncodecModel, logging, ) # checkpoints downloaded from: # https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th # https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin # https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th logging.set_verbosity_info() __snake_case =logging.get_logger("""transformers.models.encodec""") __snake_case ={ """quantizer.vq.layers.*._codebook.inited""": """quantizer.layers.*.codebook.inited""", """quantizer.vq.layers.*._codebook.cluster_size""": """quantizer.layers.*.codebook.cluster_size""", """quantizer.vq.layers.*._codebook.embed""": """quantizer.layers.*.codebook.embed""", """quantizer.vq.layers.*._codebook.embed_avg""": """quantizer.layers.*.codebook.embed_avg""", } __snake_case ={ """encoder.model.0.conv.conv""": """encoder.layers.0.conv""", """encoder.model.1.block.1.conv.conv""": """encoder.layers.1.block.1.conv""", """encoder.model.1.block.3.conv.conv""": """encoder.layers.1.block.3.conv""", """encoder.model.1.shortcut.conv.conv""": """encoder.layers.1.shortcut.conv""", """encoder.model.3.conv.conv""": """encoder.layers.3.conv""", """encoder.model.4.block.1.conv.conv""": """encoder.layers.4.block.1.conv""", """encoder.model.4.block.3.conv.conv""": """encoder.layers.4.block.3.conv""", """encoder.model.4.shortcut.conv.conv""": """encoder.layers.4.shortcut.conv""", """encoder.model.6.conv.conv""": """encoder.layers.6.conv""", """encoder.model.7.block.1.conv.conv""": """encoder.layers.7.block.1.conv""", """encoder.model.7.block.3.conv.conv""": """encoder.layers.7.block.3.conv""", """encoder.model.7.shortcut.conv.conv""": """encoder.layers.7.shortcut.conv""", """encoder.model.9.conv.conv""": """encoder.layers.9.conv""", """encoder.model.10.block.1.conv.conv""": """encoder.layers.10.block.1.conv""", """encoder.model.10.block.3.conv.conv""": """encoder.layers.10.block.3.conv""", """encoder.model.10.shortcut.conv.conv""": """encoder.layers.10.shortcut.conv""", """encoder.model.12.conv.conv""": """encoder.layers.12.conv""", """encoder.model.13.lstm""": """encoder.layers.13.lstm""", """encoder.model.15.conv.conv""": """encoder.layers.15.conv""", } __snake_case ={ """encoder.model.0.conv.norm""": """encoder.layers.0.norm""", """encoder.model.1.block.1.conv.norm""": """encoder.layers.1.block.1.norm""", """encoder.model.1.block.3.conv.norm""": """encoder.layers.1.block.3.norm""", """encoder.model.1.shortcut.conv.norm""": """encoder.layers.1.shortcut.norm""", """encoder.model.3.conv.norm""": """encoder.layers.3.norm""", """encoder.model.4.block.1.conv.norm""": """encoder.layers.4.block.1.norm""", """encoder.model.4.block.3.conv.norm""": """encoder.layers.4.block.3.norm""", """encoder.model.4.shortcut.conv.norm""": """encoder.layers.4.shortcut.norm""", """encoder.model.6.conv.norm""": """encoder.layers.6.norm""", """encoder.model.7.block.1.conv.norm""": """encoder.layers.7.block.1.norm""", """encoder.model.7.block.3.conv.norm""": """encoder.layers.7.block.3.norm""", """encoder.model.7.shortcut.conv.norm""": """encoder.layers.7.shortcut.norm""", """encoder.model.9.conv.norm""": """encoder.layers.9.norm""", """encoder.model.10.block.1.conv.norm""": """encoder.layers.10.block.1.norm""", """encoder.model.10.block.3.conv.norm""": """encoder.layers.10.block.3.norm""", """encoder.model.10.shortcut.conv.norm""": """encoder.layers.10.shortcut.norm""", """encoder.model.12.conv.norm""": """encoder.layers.12.norm""", """encoder.model.15.conv.norm""": """encoder.layers.15.norm""", } __snake_case ={ """decoder.model.0.conv.conv""": """decoder.layers.0.conv""", """decoder.model.1.lstm""": """decoder.layers.1.lstm""", """decoder.model.3.convtr.convtr""": """decoder.layers.3.conv""", """decoder.model.4.block.1.conv.conv""": """decoder.layers.4.block.1.conv""", """decoder.model.4.block.3.conv.conv""": """decoder.layers.4.block.3.conv""", """decoder.model.4.shortcut.conv.conv""": """decoder.layers.4.shortcut.conv""", """decoder.model.6.convtr.convtr""": """decoder.layers.6.conv""", """decoder.model.7.block.1.conv.conv""": """decoder.layers.7.block.1.conv""", """decoder.model.7.block.3.conv.conv""": """decoder.layers.7.block.3.conv""", """decoder.model.7.shortcut.conv.conv""": """decoder.layers.7.shortcut.conv""", """decoder.model.9.convtr.convtr""": """decoder.layers.9.conv""", """decoder.model.10.block.1.conv.conv""": """decoder.layers.10.block.1.conv""", """decoder.model.10.block.3.conv.conv""": """decoder.layers.10.block.3.conv""", """decoder.model.10.shortcut.conv.conv""": """decoder.layers.10.shortcut.conv""", """decoder.model.12.convtr.convtr""": """decoder.layers.12.conv""", """decoder.model.13.block.1.conv.conv""": """decoder.layers.13.block.1.conv""", """decoder.model.13.block.3.conv.conv""": """decoder.layers.13.block.3.conv""", """decoder.model.13.shortcut.conv.conv""": """decoder.layers.13.shortcut.conv""", """decoder.model.15.conv.conv""": """decoder.layers.15.conv""", } __snake_case ={ """decoder.model.0.conv.norm""": """decoder.layers.0.norm""", """decoder.model.3.convtr.norm""": """decoder.layers.3.norm""", """decoder.model.4.block.1.conv.norm""": """decoder.layers.4.block.1.norm""", """decoder.model.4.block.3.conv.norm""": """decoder.layers.4.block.3.norm""", """decoder.model.4.shortcut.conv.norm""": """decoder.layers.4.shortcut.norm""", """decoder.model.6.convtr.norm""": """decoder.layers.6.norm""", """decoder.model.7.block.1.conv.norm""": """decoder.layers.7.block.1.norm""", """decoder.model.7.block.3.conv.norm""": """decoder.layers.7.block.3.norm""", """decoder.model.7.shortcut.conv.norm""": """decoder.layers.7.shortcut.norm""", """decoder.model.9.convtr.norm""": """decoder.layers.9.norm""", """decoder.model.10.block.1.conv.norm""": """decoder.layers.10.block.1.norm""", """decoder.model.10.block.3.conv.norm""": """decoder.layers.10.block.3.norm""", """decoder.model.10.shortcut.conv.norm""": """decoder.layers.10.shortcut.norm""", """decoder.model.12.convtr.norm""": """decoder.layers.12.norm""", """decoder.model.13.block.1.conv.norm""": """decoder.layers.13.block.1.norm""", """decoder.model.13.block.3.conv.norm""": """decoder.layers.13.block.3.norm""", """decoder.model.13.shortcut.conv.norm""": """decoder.layers.13.shortcut.norm""", """decoder.model.15.conv.norm""": """decoder.layers.15.norm""", } __snake_case ={ **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_DECODER, } __snake_case ={ **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_ENCODER_48K, **MAPPING_DECODER, **MAPPING_DECODER_48K, } __snake_case =[] __snake_case =[] def a_ ( lowerCamelCase : Optional[Any] , lowerCamelCase : Union[str, Any] , lowerCamelCase : int , lowerCamelCase : Any , lowerCamelCase : List[str] ): for attribute in key.split('.' ): lowerCAmelCase = getattr(lowerCamelCase , lowerCamelCase ) if weight_type is not None: lowerCAmelCase = getattr(lowerCamelCase , lowerCamelCase ).shape else: lowerCAmelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": lowerCAmelCase = value elif weight_type == "weight_g": lowerCAmelCase = value elif weight_type == "weight_v": lowerCAmelCase = value elif weight_type == "bias": lowerCAmelCase = value elif weight_type == "running_mean": lowerCAmelCase = value elif weight_type == "running_var": lowerCAmelCase = value elif weight_type == "num_batches_tracked": lowerCAmelCase = value elif weight_type == "weight_ih_l0": lowerCAmelCase = value elif weight_type == "weight_hh_l0": lowerCAmelCase = value elif weight_type == "bias_ih_l0": lowerCAmelCase = value elif weight_type == "bias_hh_l0": lowerCAmelCase = value elif weight_type == "weight_ih_l1": lowerCAmelCase = value elif weight_type == "weight_hh_l1": lowerCAmelCase = value elif weight_type == "bias_ih_l1": lowerCAmelCase = value elif weight_type == "bias_hh_l1": lowerCAmelCase = value else: lowerCAmelCase = value logger.info(f'''{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}.''' ) def a_ ( lowerCamelCase : Optional[Any] , lowerCamelCase : Optional[Any] ): for key in ignore_keys: if key.endswith('.*' ): if name.startswith(key[:-1] ): return True elif ".*." in key: lowerCAmelCase , lowerCAmelCase = key.split('.*.' ) if prefix in name and suffix in name: return True elif key in name: return True return False def a_ ( lowerCamelCase : List[Any] , lowerCamelCase : Any , lowerCamelCase : str ): lowerCAmelCase = [] if model_name == "encodec_24khz" or "encodec_32khz": lowerCAmelCase = MAPPING_24K elif model_name == "encodec_48khz": lowerCAmelCase = MAPPING_48K else: raise ValueError(f'''Unsupported model: {model_name}''' ) for name, value in orig_dict.items(): if should_ignore(lowerCamelCase , lowerCamelCase ): logger.info(f'''{name} was ignored''' ) continue lowerCAmelCase = False for key, mapped_key in MAPPING.items(): if "*" in key: lowerCAmelCase , lowerCAmelCase = key.split('.*.' ) if prefix in name and suffix in name: lowerCAmelCase = suffix if key in name: # HACK otherwise .embed gets initialized with .embed_avg too if key.endswith('embed' ) and name.endswith('embed_avg' ): continue lowerCAmelCase = True if "*" in mapped_key: lowerCAmelCase = name.split(lowerCamelCase )[0].split('.' )[-2] lowerCAmelCase = mapped_key.replace('*' , lowerCamelCase ) if "weight_g" in name: lowerCAmelCase = 'weight_g' elif "weight_v" in name: lowerCAmelCase = 'weight_v' elif "weight_ih_l0" in name: lowerCAmelCase = 'weight_ih_l0' elif "weight_hh_l0" in name: lowerCAmelCase = 'weight_hh_l0' elif "bias_ih_l0" in name: lowerCAmelCase = 'bias_ih_l0' elif "bias_hh_l0" in name: lowerCAmelCase = 'bias_hh_l0' elif "weight_ih_l1" in name: lowerCAmelCase = 'weight_ih_l1' elif "weight_hh_l1" in name: lowerCAmelCase = 'weight_hh_l1' elif "bias_ih_l1" in name: lowerCAmelCase = 'bias_ih_l1' elif "bias_hh_l1" in name: lowerCAmelCase = 'bias_hh_l1' elif "bias" in name: lowerCAmelCase = 'bias' elif "weight" in name: lowerCAmelCase = 'weight' elif "running_mean" in name: lowerCAmelCase = 'running_mean' elif "running_var" in name: lowerCAmelCase = 'running_var' elif "num_batches_tracked" in name: lowerCAmelCase = 'num_batches_tracked' else: lowerCAmelCase = None set_recursively(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) continue if not is_used: unused_weights.append(lowerCamelCase ) logger.warning(f'''Unused weights: {unused_weights}''' ) @torch.no_grad() def a_ ( lowerCamelCase : Optional[int] , lowerCamelCase : Union[str, Any] , lowerCamelCase : str , lowerCamelCase : Dict=None , lowerCamelCase : Union[str, Any]=None , ): if config_path is not None: lowerCAmelCase = EncodecConfig.from_pretrained(lowerCamelCase ) else: lowerCAmelCase = EncodecConfig() if model_name == "encodec_24khz": pass # config is already correct elif model_name == "encodec_32khz": lowerCAmelCase = [8, 5, 4, 4] lowerCAmelCase = [2.2] lowerCAmelCase = 64 lowerCAmelCase = 32000 lowerCAmelCase = 2048 lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False elif model_name == "encodec_48khz": lowerCAmelCase = [8, 5, 4, 2] lowerCAmelCase = [3.0, 6.0, 12.0, 24.0] lowerCAmelCase = 48000 lowerCAmelCase = 2 lowerCAmelCase = False lowerCAmelCase = 'time_group_norm' lowerCAmelCase = True lowerCAmelCase = 1.0 lowerCAmelCase = 0.01 else: raise ValueError(f'''Unknown model name: {model_name}''' ) lowerCAmelCase = EncodecModel(lowerCamelCase ) lowerCAmelCase = EncodecFeatureExtractor( feature_size=config.audio_channels , sampling_rate=config.sampling_rate , chunk_length_s=config.chunk_length_s , overlap=config.overlap , ) feature_extractor.save_pretrained(lowerCamelCase ) lowerCAmelCase = torch.load(lowerCamelCase ) if "best_state" in original_checkpoint: # we might have a training state saved, in which case discard the yaml results and just retain the weights lowerCAmelCase = original_checkpoint['best_state'] recursively_load_weights(lowerCamelCase , lowerCamelCase , lowerCamelCase ) model.save_pretrained(lowerCamelCase ) if repo_id: print('Pushing to the hub...' ) feature_extractor.push_to_hub(lowerCamelCase ) model.push_to_hub(lowerCamelCase ) if __name__ == "__main__": __snake_case =argparse.ArgumentParser() parser.add_argument( """--model""", default="""encodec_24khz""", type=str, help="""The model to convert. Should be one of 'encodec_24khz', 'encodec_32khz', 'encodec_48khz'.""", ) parser.add_argument("""--checkpoint_path""", required=True, default=None, type=str, help="""Path to original checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--pytorch_dump_folder_path""", required=True, default=None, type=str, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) __snake_case =parser.parse_args() convert_checkpoint( args.model, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
4
0
"""simple docstring""" import re def _snake_case ( UpperCamelCase : str ): UpperCAmelCase : Dict = re.compile(R"""^(\+91[\-\s]?)?[0]?(91)?[789]\d{9}$""" ) if match := re.search(UpperCamelCase , UpperCamelCase ): return match.string == phone return False if __name__ == "__main__": print(indian_phone_validator("+918827897895"))
109
'''simple docstring''' import warnings from ...utils import logging from .image_processing_flava import FlavaImageProcessor __snake_case =logging.get_logger(__name__) class UpperCAmelCase_ ( __lowercase ): def __init__( self : Dict , *UpperCAmelCase__ : Dict , **UpperCAmelCase__ : List[str] ) -> None: warnings.warn( 'The class FlavaFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use FlavaImageProcessor instead.' , UpperCAmelCase__ , ) super().__init__(*UpperCAmelCase__ , **UpperCAmelCase__ )
4
0
from typing import List, Optional, Tuple, Union import torch from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class _a ( UpperCamelCase__ ): def __init__( self: str , UpperCamelCase_: str , UpperCamelCase_: int ) -> Optional[int]: """simple docstring""" super().__init__() # make sure scheduler can always be converted to DDIM lowercase__ = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=UpperCamelCase_ , scheduler=UpperCamelCase_ ) @torch.no_grad() def __call__( self: int , UpperCamelCase_: int = 1 , UpperCamelCase_: Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCamelCase_: float = 0.0 , UpperCamelCase_: int = 50 , UpperCamelCase_: Optional[bool] = None , UpperCamelCase_: Optional[str] = "pil" , UpperCamelCase_: bool = True , ) -> Union[ImagePipelineOutput, Tuple]: """simple docstring""" if isinstance(self.unet.config.sample_size , UpperCamelCase_ ): lowercase__ = ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size, ) else: lowercase__ = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and len(UpperCamelCase_ ) != batch_size: raise ValueError( f'You have passed a list of generators of length {len(UpperCamelCase_ )}, but requested an effective batch' f' size of {batch_size}. Make sure the batch size matches the length of the generators.' ) lowercase__ = randn_tensor(UpperCamelCase_ , generator=UpperCamelCase_ , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(UpperCamelCase_ ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output lowercase__ = self.unet(UpperCamelCase_ , UpperCamelCase_ ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 lowercase__ = self.scheduler.step( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , eta=UpperCamelCase_ , use_clipped_model_output=UpperCamelCase_ , generator=UpperCamelCase_ ).prev_sample lowercase__ = (image / 2 + 0.5).clamp(0 , 1 ) lowercase__ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowercase__ = self.numpy_to_pil(UpperCamelCase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCamelCase_ )
110
'''simple docstring''' from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer __snake_case =logging.get_logger(__name__) __snake_case ={ """vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_config_file""": """tokenizer_config.json""", } __snake_case ={ """vocab_file""": { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json""" }, """merges_file""": { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt""" }, """tokenizer_config_file""": { """facebook/blenderbot_small-90M""": ( """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json""" ) }, } __snake_case ={ """facebook/blenderbot_small-90M""": 512, } class UpperCAmelCase_ ( __lowercase ): lowerCamelCase : Tuple = VOCAB_FILES_NAMES lowerCamelCase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : Optional[Any] = BlenderbotSmallTokenizer def __init__( self : Any , UpperCAmelCase__ : Union[str, Any]=None , UpperCAmelCase__ : Dict=None , UpperCAmelCase__ : int="<|endoftext|>" , UpperCAmelCase__ : Dict="<|endoftext|>" , UpperCAmelCase__ : str="<|endoftext|>" , UpperCAmelCase__ : str=False , UpperCAmelCase__ : Tuple=True , **UpperCAmelCase__ : Optional[Any] , ) -> Any: super().__init__( ByteLevelBPETokenizer( vocab=UpperCAmelCase__ , merges=UpperCAmelCase__ , add_prefix_space=UpperCAmelCase__ , trim_offsets=UpperCAmelCase__ , ) , bos_token=UpperCAmelCase__ , eos_token=UpperCAmelCase__ , unk_token=UpperCAmelCase__ , **UpperCAmelCase__ , ) lowerCAmelCase = add_prefix_space def __UpperCAmelCase ( self : List[Any] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Dict=None ) -> Any: lowerCAmelCase = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def __UpperCAmelCase ( self : Any , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None ) -> List[int]: lowerCAmelCase = [self.sep_token_id] lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
4
0
def _a ( UpperCamelCase_ : int , UpperCamelCase_ : int , UpperCamelCase_ : int ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ = (num_of_terms / 2) * (2 * first_term + (num_of_terms - 1) * common_diff) # formula for sum of series return total def _a ( ) -> Dict: """simple docstring""" print(sum_of_series(1 , 1 , 10 ) ) if __name__ == "__main__": import doctest doctest.testmod()
340
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case =logging.get_logger(__name__) __snake_case ={ """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json""" ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class UpperCAmelCase_ ( __lowercase ): lowerCamelCase : Union[str, Any] = '''speech_to_text_2''' lowerCamelCase : Any = ['''past_key_values'''] lowerCamelCase : Optional[Any] = {'''num_attention_heads''': '''decoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self : Optional[int] , UpperCAmelCase__ : Optional[Any]=1_0_0_0_0 , UpperCAmelCase__ : int=6 , UpperCAmelCase__ : Optional[Any]=2_0_4_8 , UpperCAmelCase__ : Union[str, Any]=4 , UpperCAmelCase__ : List[Any]=0.0 , UpperCAmelCase__ : str=True , UpperCAmelCase__ : str="relu" , UpperCAmelCase__ : Any=2_5_6 , UpperCAmelCase__ : Optional[Any]=0.1 , UpperCAmelCase__ : Any=0.0 , UpperCAmelCase__ : Tuple=0.0 , UpperCAmelCase__ : List[Any]=0.02 , UpperCAmelCase__ : List[Any]=2 , UpperCAmelCase__ : str=True , UpperCAmelCase__ : List[str]=1 , UpperCAmelCase__ : Any=0 , UpperCAmelCase__ : Dict=2 , UpperCAmelCase__ : int=1_0_2_4 , **UpperCAmelCase__ : Optional[Any] , ) -> Dict: lowerCAmelCase = vocab_size lowerCAmelCase = d_model lowerCAmelCase = decoder_ffn_dim lowerCAmelCase = decoder_layers lowerCAmelCase = decoder_attention_heads lowerCAmelCase = dropout lowerCAmelCase = attention_dropout lowerCAmelCase = activation_dropout lowerCAmelCase = activation_function lowerCAmelCase = init_std lowerCAmelCase = decoder_layerdrop lowerCAmelCase = use_cache lowerCAmelCase = decoder_layers lowerCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True lowerCAmelCase = max_target_positions super().__init__( pad_token_id=UpperCAmelCase__ , bos_token_id=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ , decoder_start_token_id=UpperCAmelCase__ , **UpperCAmelCase__ , )
4
0
from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake __lowerCAmelCase : Union[str, Any] = numpy.array([0, 0]) __lowerCAmelCase : Dict = numpy.array([0.5, 0.866_0254]) __lowerCAmelCase : Tuple = numpy.array([1, 0]) __lowerCAmelCase : str = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def a__ ( A_, A_ ): '''simple docstring''' __magic_name__ = initial_vectors for _ in range(A_ ): __magic_name__ = iteration_step(A_ ) return vectors def a__ ( A_ ): '''simple docstring''' __magic_name__ = [] for i, start_vector in enumerate(vectors[:-1] ): __magic_name__ = vectors[i + 1] new_vectors.append(A_ ) __magic_name__ = end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3, 60 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def a__ ( A_, A_ ): '''simple docstring''' __magic_name__ = numpy.radians(A_ ) __magic_name__ , __magic_name__ = numpy.cos(A_ ), numpy.sin(A_ ) __magic_name__ = numpy.array(((c, -s), (s, c)) ) return numpy.dot(A_, A_ ) def a__ ( A_ ): '''simple docstring''' __magic_name__ = plt.gca() axes.set_aspect("""equal""" ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() __magic_name__ , __magic_name__ = zip(*A_ ) plt.plot(A_, A_ ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() __lowerCAmelCase : int = iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
88
'''simple docstring''' from __future__ import annotations from bisect import bisect_left from functools import total_ordering from heapq import merge @total_ordering class UpperCAmelCase_ ( __lowercase ): def __lt__( self : Optional[int] , UpperCAmelCase__ : List[str] ) -> List[Any]: return self[-1] < other[-1] def __eq__( self : str , UpperCAmelCase__ : List[str] ) -> Tuple: return self[-1] == other[-1] def a_ ( lowerCamelCase : list ): lowerCAmelCase = [] # sort into stacks for element in collection: lowerCAmelCase = Stack([element] ) lowerCAmelCase = bisect_left(lowerCamelCase , lowerCamelCase ) if i != len(lowerCamelCase ): stacks[i].append(lowerCamelCase ) else: stacks.append(lowerCamelCase ) # use a heap-based merge to merge stack efficiently lowerCAmelCase = merge(*(reversed(lowerCamelCase ) for stack in stacks) ) return collection if __name__ == "__main__": __snake_case =input("""Enter numbers separated by a comma:\n""").strip() __snake_case =[int(item) for item in user_input.split(""",""")] print(patience_sort(unsorted))
4
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { 'facebook/levit-128S': 'https://huggingface.co/facebook/levit-128S/resolve/main/config.json', # See all LeViT models at https://huggingface.co/models?filter=levit } class lowercase__ ( __lowercase ): '''simple docstring''' a : Tuple = '''levit''' def __init__( self, __magic_name__=224, __magic_name__=3, __magic_name__=3, __magic_name__=2, __magic_name__=1, __magic_name__=16, __magic_name__=[128, 256, 384], __magic_name__=[4, 8, 12], __magic_name__=[4, 4, 4], __magic_name__=[16, 16, 16], __magic_name__=0, __magic_name__=[2, 2, 2], __magic_name__=[2, 2, 2], __magic_name__=0.02, **__magic_name__, ) -> Optional[Any]: """simple docstring""" super().__init__(**UpperCAmelCase__ ) UpperCamelCase__ : int = image_size UpperCamelCase__ : Union[str, Any] = num_channels UpperCamelCase__ : Optional[Any] = kernel_size UpperCamelCase__ : Any = stride UpperCamelCase__ : List[Any] = padding UpperCamelCase__ : int = hidden_sizes UpperCamelCase__ : List[Any] = num_attention_heads UpperCamelCase__ : List[Any] = depths UpperCamelCase__ : int = key_dim UpperCamelCase__ : Union[str, Any] = drop_path_rate UpperCamelCase__ : List[str] = patch_size UpperCamelCase__ : List[Any] = attention_ratio UpperCamelCase__ : int = mlp_ratio UpperCamelCase__ : Optional[int] = initializer_range UpperCamelCase__ : List[str] = [ ['''Subsample''', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['''Subsample''', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class lowercase__ ( __lowercase ): '''simple docstring''' a : int = version.parse("1.11" ) @property def UpperCamelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def UpperCamelCase__ ( self ) -> float: """simple docstring""" return 1E-4
201
'''simple docstring''' import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py __snake_case ="""\ @INPROCEEDINGS{Papineni02bleu:a, author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu}, title = {BLEU: a Method for Automatic Evaluation of Machine Translation}, booktitle = {}, year = {2002}, pages = {311--318} } @inproceedings{lin-och-2004-orange, title = \"{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation\", author = \"Lin, Chin-Yew and Och, Franz Josef\", booktitle = \"{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics\", month = \"aug 23{--}aug 27\", year = \"2004\", address = \"Geneva, Switzerland\", publisher = \"COLING\", url = \"https://www.aclweb.org/anthology/C04-1072\", pages = \"501--507\", } """ __snake_case ="""\ BLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another. Quality is considered to be the correspondence between a machine's output and that of a human: \"the closer a machine translation is to a professional human translation, the better it is\" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and remains one of the most popular automated and inexpensive metrics. Scores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations. Those scores are then averaged over the whole corpus to reach an estimate of the translation's overall quality. Intelligibility or grammatical correctness are not taken into account[citation needed]. BLEU's output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1 representing more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the reference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional reference translations will increase the BLEU score. """ __snake_case =""" Computes BLEU score of translated segments against one or more references. Args: predictions: list of translations to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. max_order: Maximum n-gram order to use when computing BLEU score. smooth: Whether or not to apply Lin et al. 2004 smoothing. Returns: 'bleu': bleu score, 'precisions': geometric mean of n-gram precisions, 'brevity_penalty': brevity penalty, 'length_ratio': ratio of lengths, 'translation_length': translation_length, 'reference_length': reference_length Examples: >>> predictions = [ ... [\"hello\", \"there\", \"general\", \"kenobi\"], # tokenized prediction of the first sample ... [\"foo\", \"bar\", \"foobar\"] # tokenized prediction of the second sample ... ] >>> references = [ ... [[\"hello\", \"there\", \"general\", \"kenobi\"], [\"hello\", \"there\", \"!\"]], # tokenized references for the first sample (2 references) ... [[\"foo\", \"bar\", \"foobar\"]] # tokenized references for the second sample (1 reference) ... ] >>> bleu = datasets.load_metric(\"bleu\") >>> results = bleu.compute(predictions=predictions, references=references) >>> print(results[\"bleu\"]) 1.0 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): def __UpperCAmelCase ( self : Tuple ) -> int: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ), 'references': datasets.Sequence( datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ) , id='references' ), } ) , codebase_urls=['https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py'] , reference_urls=[ 'https://en.wikipedia.org/wiki/BLEU', 'https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213', ] , ) def __UpperCAmelCase ( self : Optional[int] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Any , UpperCAmelCase__ : Union[str, Any]=4 , UpperCAmelCase__ : Optional[int]=False ) -> int: lowerCAmelCase = compute_bleu( reference_corpus=UpperCAmelCase__ , translation_corpus=UpperCAmelCase__ , max_order=UpperCAmelCase__ , smooth=UpperCAmelCase__ ) ((lowerCAmelCase) , (lowerCAmelCase) , (lowerCAmelCase) , (lowerCAmelCase) , (lowerCAmelCase) , (lowerCAmelCase)) = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
4
0
"""simple docstring""" from __future__ import annotations from PIL import Image # Define glider example __A = [ [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], ] # Define blinker example __A = [[0, 1, 0], [0, 1, 0], [0, 1, 0]] def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> Any: lowercase__: Dict = [] for i in range(len(__UpperCAmelCase ) ): lowercase__: Optional[Any] = [] for j in range(len(cells[i] ) ): # Get the number of live neighbours lowercase__: Union[str, Any] = 0 if i > 0 and j > 0: neighbour_count += cells[i - 1][j - 1] if i > 0: neighbour_count += cells[i - 1][j] if i > 0 and j < len(cells[i] ) - 1: neighbour_count += cells[i - 1][j + 1] if j > 0: neighbour_count += cells[i][j - 1] if j < len(cells[i] ) - 1: neighbour_count += cells[i][j + 1] if i < len(__UpperCAmelCase ) - 1 and j > 0: neighbour_count += cells[i + 1][j - 1] if i < len(__UpperCAmelCase ) - 1: neighbour_count += cells[i + 1][j] if i < len(__UpperCAmelCase ) - 1 and j < len(cells[i] ) - 1: neighbour_count += cells[i + 1][j + 1] # Rules of the game of life (excerpt from Wikipedia): # 1. Any live cell with two or three live neighbours survives. # 2. Any dead cell with three live neighbours becomes a live cell. # 3. All other live cells die in the next generation. # Similarly, all other dead cells stay dead. lowercase__: List[str] = cells[i][j] == 1 if ( (alive and 2 <= neighbour_count <= 3) or not alive and neighbour_count == 3 ): next_generation_row.append(1 ) else: next_generation_row.append(0 ) next_generation.append(__UpperCAmelCase ) return next_generation def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: lowercase__: int = [] for _ in range(__UpperCAmelCase ): # Create output image lowercase__: Dict = Image.new('''RGB''' , (len(cells[0] ), len(__UpperCAmelCase )) ) lowercase__: List[str] = img.load() # Save cells to image for x in range(len(__UpperCAmelCase ) ): for y in range(len(cells[0] ) ): lowercase__: List[Any] = 2_5_5 - cells[y][x] * 2_5_5 lowercase__: Dict = (colour, colour, colour) # Save image images.append(__UpperCAmelCase ) lowercase__: List[str] = new_generation(__UpperCAmelCase ) return images if __name__ == "__main__": __A = generate_images(GLIDER, 1_6) images[0].save("out.gif", save_all=True, append_images=images[1:])
177
'''simple docstring''' from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record __snake_case ="""\ @article{wang2019superglue, title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems}, author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R}, journal={arXiv preprint arXiv:1905.00537}, year={2019} } """ __snake_case ="""\ SuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after GLUE with a new set of more difficult language understanding tasks, improved resources, and a new public leaderboard. """ __snake_case =""" Compute SuperGLUE evaluation metric associated to each SuperGLUE dataset. Args: predictions: list of predictions to score. Depending on the SuperGlUE subset: - for 'record': list of question-answer dictionaries with the following keys: - 'idx': index of the question as specified by the dataset - 'prediction_text': the predicted answer text - for 'multirc': list of question-answer dictionaries with the following keys: - 'idx': index of the question-answer pair as specified by the dataset - 'prediction': the predicted answer label - otherwise: list of predicted labels references: list of reference labels. Depending on the SuperGLUE subset: - for 'record': list of question-answers dictionaries with the following keys: - 'idx': index of the question as specified by the dataset - 'answers': list of possible answers - otherwise: list of reference labels Returns: depending on the SuperGLUE subset: - for 'record': - 'exact_match': Exact match between answer and gold answer - 'f1': F1 score - for 'multirc': - 'exact_match': Exact match between answer and gold answer - 'f1_m': Per-question macro-F1 score - 'f1_a': Average F1 score over all answers - for 'axb': 'matthews_correlation': Matthew Correlation - for 'cb': - 'accuracy': Accuracy - 'f1': F1 score - for all others: - 'accuracy': Accuracy Examples: >>> super_glue_metric = datasets.load_metric('super_glue', 'copa') # any of [\"copa\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"boolq\", \"axg\"] >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'cb') >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0, 'f1': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'record') >>> predictions = [{'idx': {'passage': 0, 'query': 0}, 'prediction_text': 'answer'}] >>> references = [{'idx': {'passage': 0, 'query': 0}, 'answers': ['answer', 'another_answer']}] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'exact_match': 1.0, 'f1': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'multirc') >>> predictions = [{'idx': {'answer': 0, 'paragraph': 0, 'question': 0}, 'prediction': 0}, {'idx': {'answer': 1, 'paragraph': 2, 'question': 3}, 'prediction': 1}] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'exact_match': 1.0, 'f1_m': 1.0, 'f1_a': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'axb') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'matthews_correlation': 1.0} """ def a_ ( lowerCamelCase : str , lowerCamelCase : Union[str, Any] ): return float((preds == labels).mean() ) def a_ ( lowerCamelCase : Union[str, Any] , lowerCamelCase : Dict , lowerCamelCase : str="binary" ): lowerCAmelCase = simple_accuracy(lowerCamelCase , lowerCamelCase ) lowerCAmelCase = float(fa_score(y_true=lowerCamelCase , y_pred=lowerCamelCase , average=lowerCamelCase ) ) return { "accuracy": acc, "f1": fa, } def a_ ( lowerCamelCase : List[Any] , lowerCamelCase : List[Any] ): lowerCAmelCase = {} for id_pred, label in zip(lowerCamelCase , lowerCamelCase ): lowerCAmelCase = f'''{id_pred['idx']['paragraph']}-{id_pred['idx']['question']}''' lowerCAmelCase = id_pred['prediction'] if question_id in question_map: question_map[question_id].append((pred, label) ) else: lowerCAmelCase = [(pred, label)] lowerCAmelCase , lowerCAmelCase = [], [] for question, preds_labels in question_map.items(): lowerCAmelCase , lowerCAmelCase = zip(*lowerCamelCase ) lowerCAmelCase = fa_score(y_true=lowerCamelCase , y_pred=lowerCamelCase , average='macro' ) fas.append(lowerCamelCase ) lowerCAmelCase = int(sum(pred == label for pred, label in preds_labels ) == len(lowerCamelCase ) ) ems.append(lowerCamelCase ) lowerCAmelCase = float(sum(lowerCamelCase ) / len(lowerCamelCase ) ) lowerCAmelCase = sum(lowerCamelCase ) / len(lowerCamelCase ) lowerCAmelCase = float(fa_score(y_true=lowerCamelCase , y_pred=[id_pred['prediction'] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): def __UpperCAmelCase ( self : List[str] ) -> List[Any]: if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( 'You should supply a configuration name selected in ' '["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format='numpy' if not self.config_name == 'record' and not self.config_name == 'multirc' else None , ) def __UpperCAmelCase ( self : Union[str, Any] ) -> str: if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value('int64' ), "query": datasets.Value('int64' ), }, "prediction_text": datasets.Value('string' ), }, "references": { "idx": { "passage": datasets.Value('int64' ), "query": datasets.Value('int64' ), }, "answers": datasets.Sequence(datasets.Value('string' ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value('int64' ), "paragraph": datasets.Value('int64' ), "question": datasets.Value('int64' ), }, "prediction": datasets.Value('int64' ), }, "references": datasets.Value('int64' ), } else: return { "predictions": datasets.Value('int64' ), "references": datasets.Value('int64' ), } def __UpperCAmelCase ( self : List[str] , UpperCAmelCase__ : Any , UpperCAmelCase__ : Optional[Any] ) -> Any: if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(UpperCAmelCase__ , UpperCAmelCase__ )} elif self.config_name == "cb": return acc_and_fa(UpperCAmelCase__ , UpperCAmelCase__ , fa_avg='macro' ) elif self.config_name == "record": lowerCAmelCase = [ { 'qas': [ {'id': ref['idx']['query'], 'answers': [{'text': ans} for ans in ref['answers']]} for ref in references ] } ] lowerCAmelCase = {pred['idx']['query']: pred['prediction_text'] for pred in predictions} return evaluate_record(UpperCAmelCase__ , UpperCAmelCase__ )[0] elif self.config_name == "multirc": return evaluate_multirc(UpperCAmelCase__ , UpperCAmelCase__ ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(UpperCAmelCase__ , UpperCAmelCase__ )} else: raise KeyError( 'You should supply a configuration name selected in ' '["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]' )
4
0
"""simple docstring""" class snake_case : def __init__( self : List[str] , UpperCamelCase__ : list[int])-> None: '''simple docstring''' __lowerCAmelCase: List[Any] = len(UpperCAmelCase__) __lowerCAmelCase: Tuple = [0] * len_array if len_array > 0: __lowerCAmelCase: Tuple = array[0] for i in range(1 , UpperCAmelCase__): __lowerCAmelCase: Dict = self.prefix_sum[i - 1] + array[i] def lowercase_ ( self : Optional[Any] , UpperCamelCase__ : int , UpperCamelCase__ : int)-> int: '''simple docstring''' if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def lowercase_ ( self : int , UpperCamelCase__ : int)-> bool: '''simple docstring''' __lowerCAmelCase: Union[str, Any] = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(UpperCAmelCase__) return False if __name__ == "__main__": import doctest doctest.testmod()
217
'''simple docstring''' print((lambda quine: quine % quine)("""print((lambda quine: quine %% quine)(%r))"""))
4
0
"""simple docstring""" import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) _lowercase : List[str] = [ 'cross_validation.py', 'gradient_accumulation.py', 'local_sgd.py', 'multi_process_metrics.py', 'memory.py', 'automatic_gradient_accumulation.py', 'fsdp_with_peak_mem_tracking.py', 'deepspeed_with_config_support.py', 'megatron_lm_gpt_pretraining.py', ] class _UpperCAmelCase ( unittest.TestCase ): def a ( self : List[Any] , _lowercase : str , _lowercase : bool , _lowercase : str = None , _lowercase : list = None ): __UpperCAmelCase = None __UpperCAmelCase = os.path.abspath(os.path.join('''examples''' , '''by_feature''' ) ) __UpperCAmelCase = os.path.abspath('''examples''' ) for item in os.listdir(UpperCAmelCase__ ): if item not in EXCLUDE_EXAMPLES: __UpperCAmelCase = os.path.join(UpperCAmelCase__ , UpperCAmelCase__ ) if os.path.isfile(UpperCAmelCase__ ) and ".py" in item_path: with self.subTest( tested_script=UpperCAmelCase__ , feature_script=UpperCAmelCase__ , tested_section='''main()''' if parser_only else '''training_function()''' , ): __UpperCAmelCase = compare_against_test( os.path.join(UpperCAmelCase__ , UpperCAmelCase__ ) , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) __UpperCAmelCase = '''\n'''.join(UpperCAmelCase__ ) if special_strings is not None: for string in special_strings: __UpperCAmelCase = diff.replace(UpperCAmelCase__ , '''''' ) self.assertEqual(UpperCAmelCase__ , '''''' ) def a ( self : Tuple ): self.one_complete_example('''complete_nlp_example.py''' , UpperCAmelCase__ ) self.one_complete_example('''complete_nlp_example.py''' , UpperCAmelCase__ ) def a ( self : Union[str, Any] ): __UpperCAmelCase = os.path.abspath(os.path.join('''examples''' , '''cv_example.py''' ) ) __UpperCAmelCase = [ ''' ''' * 16 + '''{\n\n''', ''' ''' * 20 + '''"accuracy": eval_metric["accuracy"],\n\n''', ''' ''' * 20 + '''"f1": eval_metric["f1"],\n\n''', ''' ''' * 20 + '''"train_loss": total_loss.item() / len(train_dataloader),\n\n''', ''' ''' * 20 + '''"epoch": epoch,\n\n''', ''' ''' * 16 + '''},\n\n''', ''' ''' * 16 + '''step=epoch,\n''', ''' ''' * 12, ''' ''' * 8 + '''for step, batch in enumerate(active_dataloader):\n''', ] self.one_complete_example('''complete_cv_example.py''' , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) self.one_complete_example('''complete_cv_example.py''' , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) @mock.patch.dict(os.environ , {"TESTING_MOCKED_DATALOADERS": "1"} ) class _UpperCAmelCase ( __lowercase ): a__ : Union[str, Any] = False @classmethod def a ( cls : str ): super().setUpClass() __UpperCAmelCase = tempfile.mkdtemp() __UpperCAmelCase = os.path.join(cls._tmpdir , '''default_config.yml''' ) write_basic_config(save_location=cls.configPath ) __UpperCAmelCase = ['''accelerate''', '''launch''', '''--config_file''', cls.configPath] @classmethod def a ( cls : Tuple ): super().tearDownClass() shutil.rmtree(cls._tmpdir ) def a ( self : Any ): __UpperCAmelCase = F''' examples/by_feature/checkpointing.py --checkpointing_steps epoch --output_dir {self.tmpdir} '''.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , '''epoch_0''' ) ) ) def a ( self : Dict ): __UpperCAmelCase = F''' examples/by_feature/checkpointing.py --checkpointing_steps 1 --output_dir {self.tmpdir} '''.split() __UpperCAmelCase = run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , '''step_2''' ) ) ) def a ( self : Union[str, Any] ): __UpperCAmelCase = F''' examples/by_feature/checkpointing.py --resume_from_checkpoint {os.path.join(self.tmpdir , "epoch_0" )} '''.split() __UpperCAmelCase = run_command(self._launch_args + testargs , return_stdout=UpperCAmelCase__ ) self.assertNotIn('''epoch 0:''' , UpperCAmelCase__ ) self.assertIn('''epoch 1:''' , UpperCAmelCase__ ) def a ( self : int ): __UpperCAmelCase = F''' examples/by_feature/checkpointing.py --resume_from_checkpoint {os.path.join(self.tmpdir , "step_2" )} '''.split() __UpperCAmelCase = run_command(self._launch_args + testargs , return_stdout=UpperCAmelCase__ ) if torch.cuda.is_available(): __UpperCAmelCase = torch.cuda.device_count() else: __UpperCAmelCase = 1 if num_processes > 1: self.assertNotIn('''epoch 0:''' , UpperCAmelCase__ ) self.assertIn('''epoch 1:''' , UpperCAmelCase__ ) else: self.assertIn('''epoch 0:''' , UpperCAmelCase__ ) self.assertIn('''epoch 1:''' , UpperCAmelCase__ ) @slow def a ( self : Dict ): __UpperCAmelCase = '''\n examples/by_feature/cross_validation.py\n --num_folds 2\n '''.split() with mock.patch.dict(os.environ , {'''TESTING_MOCKED_DATALOADERS''': '''0'''} ): __UpperCAmelCase = run_command(self._launch_args + testargs , return_stdout=UpperCAmelCase__ ) __UpperCAmelCase = re.findall('''({.+})''' , UpperCAmelCase__ ) __UpperCAmelCase = [r for r in results if '''accuracy''' in r][-1] __UpperCAmelCase = ast.literal_eval(UpperCAmelCase__ ) self.assertGreaterEqual(results['''accuracy'''] , 0.75 ) def a ( self : Optional[Any] ): __UpperCAmelCase = ['''examples/by_feature/multi_process_metrics.py'''] run_command(self._launch_args + testargs ) @require_trackers @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def a ( self : Union[str, Any] ): with tempfile.TemporaryDirectory() as tmpdir: __UpperCAmelCase = F''' examples/by_feature/tracking.py --with_tracking --project_dir {tmpdir} '''.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(UpperCAmelCase__ , '''tracking''' ) ) ) def a ( self : Any ): __UpperCAmelCase = ['''examples/by_feature/gradient_accumulation.py'''] run_command(self._launch_args + testargs ) def a ( self : Union[str, Any] ): __UpperCAmelCase = ['''examples/by_feature/local_sgd.py'''] run_command(self._launch_args + testargs )
332
'''simple docstring''' import os __snake_case ={"""I""": 1, """V""": 5, """X""": 10, """L""": 50, """C""": 100, """D""": 500, """M""": 1_000} def a_ ( lowerCamelCase : str ): lowerCAmelCase = 0 lowerCAmelCase = 0 while index < len(lowerCamelCase ) - 1: lowerCAmelCase = SYMBOLS[numerals[index]] lowerCAmelCase = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def a_ ( lowerCamelCase : int ): lowerCAmelCase = '' lowerCAmelCase = num // 1000 numerals += m_count * "M" num %= 1000 lowerCAmelCase = num // 100 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 100 lowerCAmelCase = num // 10 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 10 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def a_ ( lowerCamelCase : str = "/p089_roman.txt" ): lowerCAmelCase = 0 with open(os.path.dirname(lowerCamelCase ) + roman_numerals_filename ) as filea: lowerCAmelCase = filea.readlines() for line in lines: lowerCAmelCase = line.strip() lowerCAmelCase = parse_roman_numerals(lowerCamelCase ) lowerCAmelCase = generate_roman_numerals(lowerCamelCase ) savings += len(lowerCamelCase ) - len(lowerCamelCase ) return savings if __name__ == "__main__": print(F'''{solution() = }''')
4
0
"""simple docstring""" import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoImageProcessor, ViTImageProcessor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_image_processing import CustomImageProcessor # noqa E402 __A : List[Any] = get_tests_dir("fixtures") class _a ( unittest.TestCase): """simple docstring""" def lowercase__ ( self : List[Any] )->Optional[int]: # A mock response for an HTTP head request to emulate server down _UpperCAmelCase = mock.Mock() _UpperCAmelCase = 5_0_0 _UpperCAmelCase = {} _UpperCAmelCase = HTTPError _UpperCAmelCase = {} # Download this model to make sure it's in the cache. _UpperCAmelCase = ViTImageProcessor.from_pretrained('''hf-internal-testing/tiny-random-vit''' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('''requests.Session.request''' , return_value=UpperCAmelCase__ ) as mock_head: _UpperCAmelCase = ViTImageProcessor.from_pretrained('''hf-internal-testing/tiny-random-vit''' ) # This check we did call the fake head request mock_head.assert_called() def lowercase__ ( self : Dict )->List[str]: # This test is for deprecated behavior and can be removed in v5 _UpperCAmelCase = ViTImageProcessor.from_pretrained( '''https://huggingface.co/hf-internal-testing/tiny-random-vit/resolve/main/preprocessor_config.json''' ) def lowercase__ ( self : Optional[Any] )->List[Any]: with self.assertRaises(UpperCAmelCase__ ): # config is in subfolder, the following should not work without specifying the subfolder _UpperCAmelCase = AutoImageProcessor.from_pretrained('''hf-internal-testing/stable-diffusion-all-variants''' ) _UpperCAmelCase = AutoImageProcessor.from_pretrained( '''hf-internal-testing/stable-diffusion-all-variants''' , subfolder='''feature_extractor''' ) self.assertIsNotNone(UpperCAmelCase__ ) @is_staging_test class _a ( unittest.TestCase): """simple docstring""" @classmethod def lowercase__ ( cls : List[str] )->Union[str, Any]: _UpperCAmelCase = TOKEN HfFolder.save_token(UpperCAmelCase__ ) @classmethod def lowercase__ ( cls : Union[str, Any] )->Any: try: delete_repo(token=cls._token , repo_id='''test-image-processor''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-image-processor-org''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-image-processor''' ) except HTTPError: pass def lowercase__ ( self : Optional[Any] )->str: _UpperCAmelCase = ViTImageProcessor.from_pretrained(UpperCAmelCase__ ) image_processor.push_to_hub('''test-image-processor''' , use_auth_token=self._token ) _UpperCAmelCase = ViTImageProcessor.from_pretrained(F'{USER}/test-image-processor' ) for k, v in image_processor.__dict__.items(): self.assertEqual(UpperCAmelCase__ , getattr(UpperCAmelCase__ , UpperCAmelCase__ ) ) # Reset repo delete_repo(token=self._token , repo_id='''test-image-processor''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( UpperCAmelCase__ , repo_id='''test-image-processor''' , push_to_hub=UpperCAmelCase__ , use_auth_token=self._token ) _UpperCAmelCase = ViTImageProcessor.from_pretrained(F'{USER}/test-image-processor' ) for k, v in image_processor.__dict__.items(): self.assertEqual(UpperCAmelCase__ , getattr(UpperCAmelCase__ , UpperCAmelCase__ ) ) def lowercase__ ( self : int )->str: _UpperCAmelCase = ViTImageProcessor.from_pretrained(UpperCAmelCase__ ) image_processor.push_to_hub('''valid_org/test-image-processor''' , use_auth_token=self._token ) _UpperCAmelCase = ViTImageProcessor.from_pretrained('''valid_org/test-image-processor''' ) for k, v in image_processor.__dict__.items(): self.assertEqual(UpperCAmelCase__ , getattr(UpperCAmelCase__ , UpperCAmelCase__ ) ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-image-processor''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( UpperCAmelCase__ , repo_id='''valid_org/test-image-processor-org''' , push_to_hub=UpperCAmelCase__ , use_auth_token=self._token ) _UpperCAmelCase = ViTImageProcessor.from_pretrained('''valid_org/test-image-processor-org''' ) for k, v in image_processor.__dict__.items(): self.assertEqual(UpperCAmelCase__ , getattr(UpperCAmelCase__ , UpperCAmelCase__ ) ) def lowercase__ ( self : Union[str, Any] )->Dict: CustomImageProcessor.register_for_auto_class() _UpperCAmelCase = CustomImageProcessor.from_pretrained(UpperCAmelCase__ ) image_processor.push_to_hub('''test-dynamic-image-processor''' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( image_processor.auto_map , {'''AutoImageProcessor''': '''custom_image_processing.CustomImageProcessor'''} , ) _UpperCAmelCase = AutoImageProcessor.from_pretrained( F'{USER}/test-dynamic-image-processor' , trust_remote_code=UpperCAmelCase__ ) # Can't make an isinstance check because the new_image_processor is from the CustomImageProcessor class of a dynamic module self.assertEqual(new_image_processor.__class__.__name__ , '''CustomImageProcessor''' )
260
'''simple docstring''' import itertools import random import unittest import numpy as np from transformers import ASTFeatureExtractor from transformers.testing_utils import require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin __snake_case =random.Random() if is_torch_available(): import torch def a_ ( lowerCamelCase : Dict , lowerCamelCase : Dict=1.0 , lowerCamelCase : List[Any]=None , lowerCamelCase : Union[str, Any]=None ): if rng is None: lowerCAmelCase = global_rng lowerCAmelCase = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class UpperCAmelCase_ ( unittest.TestCase ): def __init__( self : List[Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : List[str]=7 , UpperCAmelCase__ : int=4_0_0 , UpperCAmelCase__ : int=2_0_0_0 , UpperCAmelCase__ : List[str]=1 , UpperCAmelCase__ : Tuple=0.0 , UpperCAmelCase__ : Tuple=1_6_0_0_0 , UpperCAmelCase__ : Tuple=True , UpperCAmelCase__ : Union[str, Any]=True , ) -> Any: lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = min_seq_length lowerCAmelCase = max_seq_length lowerCAmelCase = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) lowerCAmelCase = feature_size lowerCAmelCase = padding_value lowerCAmelCase = sampling_rate lowerCAmelCase = return_attention_mask lowerCAmelCase = do_normalize def __UpperCAmelCase ( self : Optional[Any] ) -> List[str]: return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def __UpperCAmelCase ( self : str , UpperCAmelCase__ : Union[str, Any]=False , UpperCAmelCase__ : Union[str, Any]=False ) -> Optional[Any]: def _flatten(UpperCAmelCase__ : int ): return list(itertools.chain(*UpperCAmelCase__ ) ) if equal_length: lowerCAmelCase = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size lowerCAmelCase = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: lowerCAmelCase = [np.asarray(UpperCAmelCase__ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): lowerCamelCase : Dict = ASTFeatureExtractor def __UpperCAmelCase ( self : str ) -> Optional[int]: lowerCAmelCase = ASTFeatureExtractionTester(self ) def __UpperCAmelCase ( self : Optional[int] ) -> Optional[int]: # Tests that all call wrap to encode_plus and batch_encode_plus lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 lowerCAmelCase = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] lowerCAmelCase = [np.asarray(UpperCAmelCase__ ) for speech_input in speech_inputs] # Test not batched input lowerCAmelCase = feat_extract(speech_inputs[0] , return_tensors='np' ).input_values lowerCAmelCase = feat_extract(np_speech_inputs[0] , return_tensors='np' ).input_values self.assertTrue(np.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1E-3 ) ) # Test batched lowerCAmelCase = feat_extract(UpperCAmelCase__ , padding=UpperCAmelCase__ , return_tensors='np' ).input_values lowerCAmelCase = feat_extract(UpperCAmelCase__ , padding=UpperCAmelCase__ , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(UpperCAmelCase__ , UpperCAmelCase__ ): self.assertTrue(np.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. lowerCAmelCase = [floats_list((1, x) )[0] for x in (8_0_0, 8_0_0, 8_0_0)] lowerCAmelCase = np.asarray(UpperCAmelCase__ ) lowerCAmelCase = feat_extract(UpperCAmelCase__ , return_tensors='np' ).input_values lowerCAmelCase = feat_extract(UpperCAmelCase__ , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(UpperCAmelCase__ , UpperCAmelCase__ ): self.assertTrue(np.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1E-3 ) ) @require_torch def __UpperCAmelCase ( self : Union[str, Any] ) -> Optional[int]: import torch lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCAmelCase = np.random.rand(1_0_0 ).astype(np.floataa ) lowerCAmelCase = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: lowerCAmelCase = feature_extractor.pad([{'input_values': inputs}] , return_tensors='np' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) lowerCAmelCase = feature_extractor.pad([{'input_values': inputs}] , return_tensors='pt' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def __UpperCAmelCase ( self : int , UpperCAmelCase__ : str ) -> Tuple: from datasets import load_dataset lowerCAmelCase = load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' ) # automatic decoding with librispeech lowerCAmelCase = ds.sort('id' ).select(range(UpperCAmelCase__ ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] @require_torch def __UpperCAmelCase ( self : str ) -> Optional[Any]: # fmt: off lowerCAmelCase = torch.tensor( [-0.9_894, -1.2_776, -0.9_066, -1.2_776, -0.9_349, -1.2_609, -1.0_386, -1.2_776, -1.1_561, -1.2_776, -1.2_052, -1.2_723, -1.2_190, -1.2_132, -1.2_776, -1.1_133, -1.1_953, -1.1_343, -1.1_584, -1.2_203, -1.1_770, -1.2_474, -1.2_381, -1.1_936, -0.9_270, -0.8_317, -0.8_049, -0.7_706, -0.7_565, -0.7_869] ) # fmt: on lowerCAmelCase = self._load_datasamples(1 ) lowerCAmelCase = ASTFeatureExtractor() lowerCAmelCase = feature_extractor(UpperCAmelCase__ , return_tensors='pt' ).input_values self.assertEquals(input_values.shape , (1, 1_0_2_4, 1_2_8) ) self.assertTrue(torch.allclose(input_values[0, 0, :3_0] , UpperCAmelCase__ , atol=1E-4 ) )
4
0
import secrets from random import shuffle from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ = 8 ) -> Tuple: __lowerCamelCase : Dict = ascii_letters + digits + punctuation return "".join(secrets.choice(lowerCamelCase__ ) for _ in range(lowerCamelCase__ ) ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> List[Any]: # Password Generator = full boot with random_number, random_letters, and # random_character FUNCTIONS # Put your code here... i -= len(lowerCamelCase__ ) __lowerCamelCase : str = i // 3 __lowerCamelCase : Union[str, Any] = i % 3 # chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) + # random_number(digits, i / 3) + random_characters(punctuation, i / 3) __lowerCamelCase : List[str] = ( chars_incl + random(lowerCamelCase__ , quotient + remainder ) + random(lowerCamelCase__ , lowerCamelCase__ ) + random(lowerCamelCase__ , lowerCamelCase__ ) ) __lowerCamelCase : Union[str, Any] = list(lowerCamelCase__ ) shuffle(lowerCamelCase__ ) return "".join(lowerCamelCase__ ) # random is a generalised function for letters, characters and numbers def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> List[Any]: return "".join(secrets.choice(lowerCamelCase__ ) for _ in range(lowerCamelCase__ ) ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> int: pass # Put your code here... def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> Optional[int]: pass # Put your code here... def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> Tuple: pass # Put your code here... def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ = 8 ) -> int: if len(lowerCamelCase__ ) < min_length: # Your Password must be at least 8 characters long return False __lowerCamelCase : Dict = any(char in ascii_uppercase for char in password ) __lowerCamelCase : List[Any] = any(char in ascii_lowercase for char in password ) __lowerCamelCase : List[Any] = any(char in digits for char in password ) __lowerCamelCase : Tuple = any(char in punctuation for char in password ) return upper and lower and num and spec_char # Passwords should contain UPPERCASE, lowerase # numbers, and special characters def SCREAMING_SNAKE_CASE__ ( ) -> Optional[int]: __lowerCamelCase : int = int(input('Please indicate the max length of your password: ' ).strip() ) __lowerCamelCase : Tuple = input( 'Please indicate the characters that must be in your password: ' ).strip() print('Password generated:' , password_generator(lowerCamelCase__ ) ) print( 'Alternative Password generated:' , alternative_password_generator(lowerCamelCase__ , lowerCamelCase__ ) , ) print('[If you are thinking of using this passsword, You better save it.]' ) if __name__ == "__main__": main()
73
'''simple docstring''' import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class UpperCAmelCase_ ( unittest.TestCase ): def __UpperCAmelCase ( self : str ) -> List[Any]: lowerCAmelCase = torch.nn.Linear(1_0 , 1_0 ) lowerCAmelCase = torch.optim.SGD(model.parameters() , 0.1 ) lowerCAmelCase = Accelerator() lowerCAmelCase = accelerator.prepare(UpperCAmelCase__ ) try: pickle.loads(pickle.dumps(UpperCAmelCase__ ) ) except Exception as e: self.fail(F'''Accelerated optimizer pickling failed with {e}''' ) AcceleratorState._reset_state()
4
0
from __future__ import annotations class __lowercase : """simple docstring""" def __init__( self , A ) -> None: '''simple docstring''' lowerCamelCase = order # a_{0} ... a_{k} lowerCamelCase = [1.0] + [0.0] * order # b_{0} ... b_{k} lowerCamelCase = [1.0] + [0.0] * order # x[n-1] ... x[n-k] lowerCamelCase = [0.0] * self.order # y[n-1] ... y[n-k] lowerCamelCase = [0.0] * self.order def __A ( self , A , A ) -> None: '''simple docstring''' if len(UpperCAmelCase__ ) < self.order: lowerCamelCase = [1.0, *a_coeffs] if len(UpperCAmelCase__ ) != self.order + 1: lowerCamelCase = ( F'Expected a_coeffs to have {self.order + 1} elements ' F'for {self.order}-order filter, got {len(UpperCAmelCase__ )}' ) raise ValueError(UpperCAmelCase__ ) if len(UpperCAmelCase__ ) != self.order + 1: lowerCamelCase = ( F'Expected b_coeffs to have {self.order + 1} elements ' F'for {self.order}-order filter, got {len(UpperCAmelCase__ )}' ) raise ValueError(UpperCAmelCase__ ) lowerCamelCase = a_coeffs lowerCamelCase = b_coeffs def __A ( self , A ) -> float: '''simple docstring''' lowerCamelCase = 0.0 # Start at index 1 and do index 0 at the end. for i in range(1 , self.order + 1 ): result += ( self.b_coeffs[i] * self.input_history[i - 1] - self.a_coeffs[i] * self.output_history[i - 1] ) lowerCamelCase = (result + self.b_coeffs[0] * sample) / self.a_coeffs[0] lowerCamelCase = self.input_history[:-1] lowerCamelCase = self.output_history[:-1] lowerCamelCase = sample lowerCamelCase = result return result
252
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot import BlenderbotTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __snake_case =logging.get_logger(__name__) __snake_case ={ """vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_config_file""": """tokenizer_config.json""", } __snake_case ={ """vocab_file""": {"""facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"""}, """merges_file""": {"""facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"""}, """tokenizer_config_file""": { """facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json""" }, } __snake_case ={"""facebook/blenderbot-3B""": 128} class UpperCAmelCase_ ( __lowercase ): lowerCamelCase : List[Any] = VOCAB_FILES_NAMES lowerCamelCase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : Optional[Any] = ['''input_ids''', '''attention_mask'''] lowerCamelCase : List[Any] = BlenderbotTokenizer def __init__( self : Union[str, Any] , UpperCAmelCase__ : Tuple=None , UpperCAmelCase__ : Tuple=None , UpperCAmelCase__ : List[Any]=None , UpperCAmelCase__ : str="replace" , UpperCAmelCase__ : Dict="<s>" , UpperCAmelCase__ : Tuple="</s>" , UpperCAmelCase__ : Optional[Any]="</s>" , UpperCAmelCase__ : Any="<s>" , UpperCAmelCase__ : List[str]="<unk>" , UpperCAmelCase__ : int="<pad>" , UpperCAmelCase__ : Union[str, Any]="<mask>" , UpperCAmelCase__ : str=False , UpperCAmelCase__ : Union[str, Any]=True , **UpperCAmelCase__ : Optional[int] , ) -> int: super().__init__( UpperCAmelCase__ , UpperCAmelCase__ , tokenizer_file=UpperCAmelCase__ , errors=UpperCAmelCase__ , bos_token=UpperCAmelCase__ , eos_token=UpperCAmelCase__ , sep_token=UpperCAmelCase__ , cls_token=UpperCAmelCase__ , unk_token=UpperCAmelCase__ , pad_token=UpperCAmelCase__ , mask_token=UpperCAmelCase__ , add_prefix_space=UpperCAmelCase__ , trim_offsets=UpperCAmelCase__ , **UpperCAmelCase__ , ) lowerCAmelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , UpperCAmelCase__ ) != add_prefix_space: lowerCAmelCase = getattr(UpperCAmelCase__ , pre_tok_state.pop('type' ) ) lowerCAmelCase = add_prefix_space lowerCAmelCase = pre_tok_class(**UpperCAmelCase__ ) lowerCAmelCase = add_prefix_space lowerCAmelCase = 'post_processor' lowerCAmelCase = getattr(self.backend_tokenizer , UpperCAmelCase__ , UpperCAmelCase__ ) if tokenizer_component_instance: lowerCAmelCase = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: lowerCAmelCase = tuple(state['sep'] ) if "cls" in state: lowerCAmelCase = tuple(state['cls'] ) lowerCAmelCase = False if state.get('add_prefix_space' , UpperCAmelCase__ ) != add_prefix_space: lowerCAmelCase = add_prefix_space lowerCAmelCase = True if state.get('trim_offsets' , UpperCAmelCase__ ) != trim_offsets: lowerCAmelCase = trim_offsets lowerCAmelCase = True if changes_to_apply: lowerCAmelCase = getattr(UpperCAmelCase__ , state.pop('type' ) ) lowerCAmelCase = component_class(**UpperCAmelCase__ ) setattr(self.backend_tokenizer , UpperCAmelCase__ , UpperCAmelCase__ ) @property # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot def __UpperCAmelCase ( self : Union[str, Any] ) -> str: if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def __UpperCAmelCase ( self : int , UpperCAmelCase__ : Optional[Any] ) -> Tuple: lowerCAmelCase = AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else value lowerCAmelCase = value def __UpperCAmelCase ( self : Optional[Any] , *UpperCAmelCase__ : Union[str, Any] , **UpperCAmelCase__ : List[str] ) -> BatchEncoding: lowerCAmelCase = kwargs.get('is_split_into_words' , UpperCAmelCase__ ) assert self.add_prefix_space or not is_split_into_words, ( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*UpperCAmelCase__ , **UpperCAmelCase__ ) def __UpperCAmelCase ( self : List[str] , *UpperCAmelCase__ : str , **UpperCAmelCase__ : List[str] ) -> BatchEncoding: lowerCAmelCase = kwargs.get('is_split_into_words' , UpperCAmelCase__ ) assert self.add_prefix_space or not is_split_into_words, ( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*UpperCAmelCase__ , **UpperCAmelCase__ ) def __UpperCAmelCase ( self : str , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[str] = None ) -> Tuple[str]: lowerCAmelCase = self._tokenizer.model.save(UpperCAmelCase__ , name=UpperCAmelCase__ ) return tuple(UpperCAmelCase__ ) def __UpperCAmelCase ( self : Optional[int] , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None ) -> List[int]: lowerCAmelCase = [self.sep_token_id] lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __UpperCAmelCase ( self : List[str] , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None ) -> Any: return token_ids_a + [self.eos_token_id] def __UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase__ : "Conversation" ) -> List[int]: lowerCAmelCase = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(' ' + text ) else: # Generated responses should contain them already. inputs.append(UpperCAmelCase__ ) lowerCAmelCase = ' '.join(UpperCAmelCase__ ) lowerCAmelCase = self.encode(UpperCAmelCase__ ) if len(UpperCAmelCase__ ) > self.model_max_length: lowerCAmelCase = input_ids[-self.model_max_length :] logger.warning(F'''Trimmed input from conversation as it was longer than {self.model_max_length} tokens.''' ) return input_ids
4
0
"""simple docstring""" import os __A = {"I": 1, "V": 5, "X": 10, "L": 50, "C": 100, "D": 500, "M": 1_000} def UpperCamelCase__ ( lowercase__ : str ): snake_case : int = 0 snake_case : str = 0 while index < len(lowercase__ ) - 1: snake_case : Dict = SYMBOLS[numerals[index]] snake_case : Tuple = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def UpperCamelCase__ ( lowercase__ : int ): snake_case : Union[str, Any] = "" snake_case : Optional[int] = num // 1000 numerals += m_count * "M" num %= 1000 snake_case : Union[str, Any] = num // 100 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 100 snake_case : List[str] = num // 10 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 10 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def UpperCamelCase__ ( lowercase__ : str = "/p089_roman.txt" ): snake_case : int = 0 with open(os.path.dirname(lowercase__ ) + roman_numerals_filename ) as filea: snake_case : str = filea.readlines() for line in lines: snake_case : List[Any] = line.strip() snake_case : Any = parse_roman_numerals(lowercase__ ) snake_case : Tuple = generate_roman_numerals(lowercase__ ) savings += len(lowercase__ ) - len(lowercase__ ) return savings if __name__ == "__main__": print(f'{solution() = }')
148
'''simple docstring''' from __future__ import annotations from statistics import mean def a_ ( lowerCamelCase : list[int] , lowerCamelCase : list[int] , lowerCamelCase : int ): lowerCAmelCase = [0] * no_of_processes lowerCAmelCase = [0] * no_of_processes # Initialize remaining_time to waiting_time. for i in range(lowerCamelCase ): lowerCAmelCase = burst_time[i] lowerCAmelCase = [] lowerCAmelCase = 0 lowerCAmelCase = 0 # When processes are not completed, # A process whose arrival time has passed \ # and has remaining execution time is put into the ready_process. # The shortest process in the ready_process, target_process is executed. while completed != no_of_processes: lowerCAmelCase = [] lowerCAmelCase = -1 for i in range(lowerCamelCase ): if (arrival_time[i] <= total_time) and (remaining_time[i] > 0): ready_process.append(lowerCamelCase ) if len(lowerCamelCase ) > 0: lowerCAmelCase = ready_process[0] for i in ready_process: if remaining_time[i] < remaining_time[target_process]: lowerCAmelCase = i total_time += burst_time[target_process] completed += 1 lowerCAmelCase = 0 lowerCAmelCase = ( total_time - arrival_time[target_process] - burst_time[target_process] ) else: total_time += 1 return waiting_time def a_ ( lowerCamelCase : list[int] , lowerCamelCase : int , lowerCamelCase : list[int] ): lowerCAmelCase = [0] * no_of_processes for i in range(lowerCamelCase ): lowerCAmelCase = burst_time[i] + waiting_time[i] return turn_around_time if __name__ == "__main__": print("""[TEST CASE 01]""") __snake_case =4 __snake_case =[2, 5, 3, 7] __snake_case =[0, 0, 0, 0] __snake_case =calculate_waitingtime(arrival_time, burst_time, no_of_processes) __snake_case =calculate_turnaroundtime( burst_time, no_of_processes, waiting_time ) # Printing the Result print("""PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time""") for i, process_id in enumerate(list(range(1, 5))): print( F'''{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t''' F'''{waiting_time[i]}\t\t\t\t{turn_around_time[i]}''' ) print(F'''\nAverage waiting time = {mean(waiting_time):.5f}''') print(F'''Average turnaround time = {mean(turn_around_time):.5f}''')
4
0