code
stringlengths 87
55.2k
| code_codestyle
int64 0
349
| style_context
stringlengths 135
49.1k
| style_context_codestyle
int64 0
349
| label
int64 0
1
|
---|---|---|---|---|
import unittest
import numpy as np
import torch
from torch import nn
from transformers import (
CLIPImageProcessor,
CLIPTextConfig,
CLIPTextModelWithProjection,
CLIPTokenizer,
CLIPVisionConfig,
CLIPVisionModelWithProjection,
)
from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler
from diffusers.utils import torch_device
from diffusers.utils.testing_utils import enable_full_determinism, skip_mps
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class lowercase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ):
lowercase_ : Any =KandinskyVaaPriorPipeline
lowercase_ : str =['''prompt''']
lowercase_ : Union[str, Any] =['''prompt''', '''negative_prompt''']
lowercase_ : Dict =[
'''num_images_per_prompt''',
'''generator''',
'''num_inference_steps''',
'''latents''',
'''negative_prompt''',
'''guidance_scale''',
'''output_type''',
'''return_dict''',
]
lowercase_ : List[str] =False
@property
def A__ ( self):
return 3_2
@property
def A__ ( self):
return 3_2
@property
def A__ ( self):
return self.time_input_dim
@property
def A__ ( self):
return self.time_input_dim * 4
@property
def A__ ( self):
return 1_0_0
@property
def A__ ( self):
lowercase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''')
return tokenizer
@property
def A__ ( self):
torch.manual_seed(0)
lowercase = CLIPTextConfig(
bos_token_id=0 ,eos_token_id=2 ,hidden_size=self.text_embedder_hidden_size ,projection_dim=self.text_embedder_hidden_size ,intermediate_size=3_7 ,layer_norm_eps=1E-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1_0_0_0 ,)
return CLIPTextModelWithProjection(A__)
@property
def A__ ( self):
torch.manual_seed(0)
lowercase = {
'''num_attention_heads''': 2,
'''attention_head_dim''': 1_2,
'''embedding_dim''': self.text_embedder_hidden_size,
'''num_layers''': 1,
}
lowercase = PriorTransformer(**A__)
# clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0
lowercase = nn.Parameter(torch.ones(model.clip_std.shape))
return model
@property
def A__ ( self):
torch.manual_seed(0)
lowercase = CLIPVisionConfig(
hidden_size=self.text_embedder_hidden_size ,image_size=2_2_4 ,projection_dim=self.text_embedder_hidden_size ,intermediate_size=3_7 ,num_attention_heads=4 ,num_channels=3 ,num_hidden_layers=5 ,patch_size=1_4 ,)
lowercase = CLIPVisionModelWithProjection(A__)
return model
@property
def A__ ( self):
lowercase = CLIPImageProcessor(
crop_size=2_2_4 ,do_center_crop=A__ ,do_normalize=A__ ,do_resize=A__ ,image_mean=[0.48145466, 0.4578275, 0.40821073] ,image_std=[0.26862954, 0.26130258, 0.27577711] ,resample=3 ,size=2_2_4 ,)
return image_processor
def A__ ( self):
lowercase = self.dummy_prior
lowercase = self.dummy_image_encoder
lowercase = self.dummy_text_encoder
lowercase = self.dummy_tokenizer
lowercase = self.dummy_image_processor
lowercase = UnCLIPScheduler(
variance_type='''fixed_small_log''' ,prediction_type='''sample''' ,num_train_timesteps=1_0_0_0 ,clip_sample=A__ ,clip_sample_range=10.0 ,)
lowercase = {
'''prior''': prior,
'''image_encoder''': image_encoder,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
'''scheduler''': scheduler,
'''image_processor''': image_processor,
}
return components
def A__ ( self ,A__ ,A__=0):
if str(A__).startswith('''mps'''):
lowercase = torch.manual_seed(A__)
else:
lowercase = torch.Generator(device=A__).manual_seed(A__)
lowercase = {
'''prompt''': '''horse''',
'''generator''': generator,
'''guidance_scale''': 4.0,
'''num_inference_steps''': 2,
'''output_type''': '''np''',
}
return inputs
def A__ ( self):
lowercase = '''cpu'''
lowercase = self.get_dummy_components()
lowercase = self.pipeline_class(**A__)
lowercase = pipe.to(A__)
pipe.set_progress_bar_config(disable=A__)
lowercase = pipe(**self.get_dummy_inputs(A__))
lowercase = output.image_embeds
lowercase = pipe(
**self.get_dummy_inputs(A__) ,return_dict=A__ ,)[0]
lowercase = image[0, -1_0:]
lowercase = image_from_tuple[0, -1_0:]
assert image.shape == (1, 3_2)
lowercase = np.array(
[-0.0532, 1.7120, 0.3656, -1.0852, -0.8946, -1.1756, 0.4348, 0.2482, 0.5146, -0.1156])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1E-2
@skip_mps
def A__ ( self):
lowercase = torch_device == '''cpu'''
lowercase = True
lowercase = False
self._test_inference_batch_single_identical(
test_max_difference=A__ ,relax_max_difference=A__ ,test_mean_pixel_difference=A__ ,)
@skip_mps
def A__ ( self):
lowercase = torch_device == '''cpu'''
lowercase = False
self._test_attention_slicing_forward_pass(
test_max_difference=A__ ,test_mean_pixel_difference=A__ ,)
| 101 |
'''simple docstring'''
import argparse
import torch
from transformers import BertForMaskedLM
if __name__ == "__main__":
lowerCamelCase : List[str] = argparse.ArgumentParser(
description=(
'Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned'
' Distillation'
)
)
parser.add_argument('--model_type', default='bert', choices=['bert'])
parser.add_argument('--model_name', default='bert-base-uncased', type=str)
parser.add_argument('--dump_checkpoint', default='serialization_dir/tf_bert-base-uncased_0247911.pth', type=str)
parser.add_argument('--vocab_transform', action='store_true')
lowerCamelCase : str = parser.parse_args()
if args.model_type == "bert":
lowerCamelCase : List[Any] = BertForMaskedLM.from_pretrained(args.model_name)
lowerCamelCase : Any = 'bert'
else:
raise ValueError('args.model_type should be "bert".')
lowerCamelCase : int = model.state_dict()
lowerCamelCase : int = {}
for w in ["word_embeddings", "position_embeddings"]:
lowerCamelCase : Any = state_dict[f"""{prefix}.embeddings.{w}.weight"""]
for w in ["weight", "bias"]:
lowerCamelCase : Any = state_dict[f"""{prefix}.embeddings.LayerNorm.{w}"""]
lowerCamelCase : Tuple = 0
for teacher_idx in [0, 2, 4, 7, 9, 11]:
for w in ["weight", "bias"]:
lowerCamelCase : Dict = state_dict[
f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}"""
]
lowerCamelCase : Dict = state_dict[
f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}"""
]
lowerCamelCase : List[Any] = state_dict[
f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}"""
]
lowerCamelCase : Tuple = state_dict[
f"""{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}"""
]
lowerCamelCase : Optional[int] = state_dict[
f"""{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}"""
]
lowerCamelCase : Optional[Any] = state_dict[
f"""{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}"""
]
lowerCamelCase : Dict = state_dict[
f"""{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}"""
]
lowerCamelCase : Any = state_dict[
f"""{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}"""
]
std_idx += 1
lowerCamelCase : Optional[int] = state_dict['cls.predictions.decoder.weight']
lowerCamelCase : str = state_dict['cls.predictions.bias']
if args.vocab_transform:
for w in ["weight", "bias"]:
lowerCamelCase : str = state_dict[f"""cls.predictions.transform.dense.{w}"""]
lowerCamelCase : Any = state_dict[f"""cls.predictions.transform.LayerNorm.{w}"""]
print(f"""N layers selected for distillation: {std_idx}""")
print(f"""Number of params transferred for distillation: {len(compressed_sd.keys())}""")
print(f"""Save transferred checkpoint to {args.dump_checkpoint}.""")
torch.save(compressed_sd, args.dump_checkpoint)
| 2 | 0 |
"""simple docstring"""
def lowercase ( ) ->Optional[Any]:
"""simple docstring"""
__snake_case : Dict = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31]
__snake_case : Optional[Any] = 6
__snake_case : Tuple = 1
__snake_case : Tuple = 1_901
__snake_case : Tuple = 0
while year < 2_001:
day += 7
if (year % 4 == 0 and year % 100 != 0) or (year % 400 == 0):
if day > days_per_month[month - 1] and month != 2:
month += 1
__snake_case : str = day - days_per_month[month - 2]
elif day > 29 and month == 2:
month += 1
__snake_case : Optional[Any] = day - 29
else:
if day > days_per_month[month - 1]:
month += 1
__snake_case : Tuple = day - days_per_month[month - 2]
if month > 12:
year += 1
__snake_case : Tuple = 1
if year < 2_001 and day == 1:
sundays += 1
return sundays
if __name__ == "__main__":
print(solution())
| 102 |
'''simple docstring'''
from ....utils import logging
lowerCamelCase : Optional[Any] = logging.get_logger(__name__)
class __lowerCAmelCase (lowercase_ ):
'''simple docstring'''
def __init__(self : Optional[int] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Optional[Any]=None , UpperCamelCase : int=2048 ):
'''simple docstring'''
lowercase__ = config.__dict__
lowercase__ = modal_hidden_size
if num_labels:
lowercase__ = num_labels
| 2 | 0 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
A__ : Any = {
'''configuration_owlvit''': [
'''OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''OwlViTConfig''',
'''OwlViTOnnxConfig''',
'''OwlViTTextConfig''',
'''OwlViTVisionConfig''',
],
'''processing_owlvit''': ['''OwlViTProcessor'''],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A__ : Union[str, Any] = ['''OwlViTFeatureExtractor''']
A__ : Optional[int] = ['''OwlViTImageProcessor''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A__ : Any = [
'''OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''OwlViTModel''',
'''OwlViTPreTrainedModel''',
'''OwlViTTextModel''',
'''OwlViTVisionModel''',
'''OwlViTForObjectDetection''',
]
if TYPE_CHECKING:
from .configuration_owlvit import (
OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP,
OwlViTConfig,
OwlViTOnnxConfig,
OwlViTTextConfig,
OwlViTVisionConfig,
)
from .processing_owlvit import OwlViTProcessor
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_owlvit import OwlViTFeatureExtractor
from .image_processing_owlvit import OwlViTImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_owlvit import (
OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
OwlViTForObjectDetection,
OwlViTModel,
OwlViTPreTrainedModel,
OwlViTTextModel,
OwlViTVisionModel,
)
else:
import sys
A__ : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 103 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCamelCase : Tuple = logging.get_logger(__name__)
lowerCamelCase : Dict = {
'microsoft/cvt-13': 'https://huggingface.co/microsoft/cvt-13/resolve/main/config.json',
# See all Cvt models at https://huggingface.co/models?filter=cvt
}
class __lowerCAmelCase (lowercase_ ):
'''simple docstring'''
lowerCAmelCase__ : Tuple = """cvt"""
def __init__(self : int , UpperCamelCase : List[Any]=3 , UpperCamelCase : int=[7, 3, 3] , UpperCamelCase : str=[4, 2, 2] , UpperCamelCase : Dict=[2, 1, 1] , UpperCamelCase : Dict=[64, 192, 384] , UpperCamelCase : Dict=[1, 3, 6] , UpperCamelCase : Dict=[1, 2, 10] , UpperCamelCase : Any=[4.0, 4.0, 4.0] , UpperCamelCase : Optional[int]=[0.0, 0.0, 0.0] , UpperCamelCase : Optional[int]=[0.0, 0.0, 0.0] , UpperCamelCase : int=[0.0, 0.0, 0.1] , UpperCamelCase : Any=[True, True, True] , UpperCamelCase : int=[False, False, True] , UpperCamelCase : Union[str, Any]=["dw_bn", "dw_bn", "dw_bn"] , UpperCamelCase : Optional[int]=[3, 3, 3] , UpperCamelCase : Tuple=[1, 1, 1] , UpperCamelCase : Any=[2, 2, 2] , UpperCamelCase : Dict=[1, 1, 1] , UpperCamelCase : List[str]=[1, 1, 1] , UpperCamelCase : str=0.02 , UpperCamelCase : int=1E-12 , **UpperCamelCase : Union[str, Any] , ):
'''simple docstring'''
super().__init__(**UpperCamelCase )
lowercase__ = num_channels
lowercase__ = patch_sizes
lowercase__ = patch_stride
lowercase__ = patch_padding
lowercase__ = embed_dim
lowercase__ = num_heads
lowercase__ = depth
lowercase__ = mlp_ratio
lowercase__ = attention_drop_rate
lowercase__ = drop_rate
lowercase__ = drop_path_rate
lowercase__ = qkv_bias
lowercase__ = cls_token
lowercase__ = qkv_projection_method
lowercase__ = kernel_qkv
lowercase__ = padding_kv
lowercase__ = stride_kv
lowercase__ = padding_q
lowercase__ = stride_q
lowercase__ = initializer_range
lowercase__ = layer_norm_eps
| 2 | 0 |
'''simple docstring'''
import copy
import inspect
import unittest
import numpy as np
from huggingface_hub import hf_hub_download
from transformers import VideoMAEConfig
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import (
MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING,
VideoMAEForPreTraining,
VideoMAEForVideoClassification,
VideoMAEModel,
)
from transformers.models.videomae.modeling_videomae import VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from transformers import VideoMAEImageProcessor
class lowercase_ :
"""simple docstring"""
def __init__( self : str ,lowercase__ : int ,lowercase__ : List[str]=1_3 ,lowercase__ : List[str]=1_0 ,lowercase__ : int=3 ,lowercase__ : Tuple=2 ,lowercase__ : Union[str, Any]=2 ,lowercase__ : List[str]=2 ,lowercase__ : List[Any]=True ,lowercase__ : Any=True ,lowercase__ : Optional[int]=3_2 ,lowercase__ : List[str]=5 ,lowercase__ : Tuple=4 ,lowercase__ : str=3_7 ,lowercase__ : List[Any]="gelu" ,lowercase__ : Dict=0.1 ,lowercase__ : Any=0.1 ,lowercase__ : str=1_0 ,lowercase__ : Any=0.0_2 ,lowercase__ : Tuple=0.9 ,lowercase__ : Tuple=None ,):
__lowercase = parent
__lowercase = batch_size
__lowercase = image_size
__lowercase = num_channels
__lowercase = patch_size
__lowercase = tubelet_size
__lowercase = num_frames
__lowercase = is_training
__lowercase = use_labels
__lowercase = hidden_size
__lowercase = num_hidden_layers
__lowercase = num_attention_heads
__lowercase = intermediate_size
__lowercase = hidden_act
__lowercase = hidden_dropout_prob
__lowercase = attention_probs_dropout_prob
__lowercase = type_sequence_label_size
__lowercase = initializer_range
__lowercase = mask_ratio
__lowercase = scope
# in VideoMAE, the number of tokens equals num_frames/tubelet_size * num_patches per frame
__lowercase = (image_size // patch_size) ** 2
__lowercase = (num_frames // tubelet_size) * self.num_patches_per_frame
# use this variable to define bool_masked_pos
__lowercase = int(mask_ratio * self.seq_length )
def SCREAMING_SNAKE_CASE ( self : Any ):
__lowercase = floats_tensor(
[self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] )
__lowercase = None
if self.use_labels:
__lowercase = ids_tensor([self.batch_size] ,self.type_sequence_label_size )
__lowercase = self.get_config()
return config, pixel_values, labels
def SCREAMING_SNAKE_CASE ( self : List[str] ):
return VideoMAEConfig(
image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,num_frames=self.num_frames ,tubelet_size=self.tubelet_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=lowercase__ ,initializer_range=self.initializer_range ,)
def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : int ,lowercase__ : Any ,lowercase__ : Optional[Any] ):
__lowercase = VideoMAEModel(config=lowercase__ )
model.to(lowercase__ )
model.eval()
__lowercase = model(lowercase__ )
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) )
def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : Optional[Any] ,lowercase__ : Any ,lowercase__ : Any ):
__lowercase = VideoMAEForPreTraining(lowercase__ )
model.to(lowercase__ )
model.eval()
# important: each video needs to have the same number of masked patches
# hence we define a single mask, which we then repeat for each example in the batch
__lowercase = torch.ones((self.num_masks,) )
__lowercase = torch.cat([mask, torch.zeros(self.seq_length - mask.size(0 ) )] )
__lowercase = mask.expand(self.batch_size ,-1 ).bool()
__lowercase = model(lowercase__ ,lowercase__ )
# model only returns predictions for masked patches
__lowercase = mask.sum().item()
__lowercase = 3 * self.tubelet_size * self.patch_size**2
self.parent.assertEqual(result.logits.shape ,(self.batch_size, num_masked_patches, decoder_num_labels) )
def SCREAMING_SNAKE_CASE ( self : Tuple ):
__lowercase = self.prepare_config_and_inputs()
__lowercase , __lowercase , __lowercase = config_and_inputs
__lowercase = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_torch
class lowercase_ (lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Optional[Any] = (
(VideoMAEModel, VideoMAEForPreTraining, VideoMAEForVideoClassification) if is_torch_available() else ()
)
SCREAMING_SNAKE_CASE : int = (
{'feature-extraction': VideoMAEModel, 'video-classification': VideoMAEForVideoClassification}
if is_torch_available()
else {}
)
SCREAMING_SNAKE_CASE : str = False
SCREAMING_SNAKE_CASE : Any = False
SCREAMING_SNAKE_CASE : str = False
SCREAMING_SNAKE_CASE : Union[str, Any] = False
def SCREAMING_SNAKE_CASE ( self : Any ):
__lowercase = VideoMAEModelTester(self )
__lowercase = ConfigTester(self ,config_class=lowercase__ ,has_text_modality=lowercase__ ,hidden_size=3_7 )
def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : Tuple ,lowercase__ : List[str] ,lowercase__ : List[str]=False ):
__lowercase = copy.deepcopy(lowercase__ )
if model_class == VideoMAEForPreTraining:
# important: each video needs to have the same number of masked patches
# hence we define a single mask, which we then repeat for each example in the batch
__lowercase = torch.ones((self.model_tester.num_masks,) )
__lowercase = torch.cat([mask, torch.zeros(self.model_tester.seq_length - mask.size(0 ) )] )
__lowercase = mask.expand(self.model_tester.batch_size ,-1 ).bool()
__lowercase = bool_masked_pos.to(lowercase__ )
if return_labels:
if model_class in [
*get_values(lowercase__ ),
]:
__lowercase = torch.zeros(
self.model_tester.batch_size ,dtype=torch.long ,device=lowercase__ )
return inputs_dict
def SCREAMING_SNAKE_CASE ( self : str ):
self.config_tester.run_common_tests()
@unittest.skip(reason='''VideoMAE does not use inputs_embeds''' )
def SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
pass
def SCREAMING_SNAKE_CASE ( self : str ):
__lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__lowercase = model_class(lowercase__ )
self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) )
__lowercase = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(lowercase__ ,nn.Linear ) )
def SCREAMING_SNAKE_CASE ( self : Optional[int] ):
__lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__lowercase = model_class(lowercase__ )
__lowercase = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__lowercase = [*signature.parameters.keys()]
__lowercase = ['''pixel_values''']
self.assertListEqual(arg_names[:1] ,lowercase__ )
def SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowercase__ )
def SCREAMING_SNAKE_CASE ( self : str ):
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*lowercase__ )
@slow
def SCREAMING_SNAKE_CASE ( self : Any ):
for model_name in VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__lowercase = VideoMAEModel.from_pretrained(lowercase__ )
self.assertIsNotNone(lowercase__ )
def SCREAMING_SNAKE_CASE ( self : Optional[int] ):
if not self.has_attentions:
pass
else:
__lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common()
__lowercase = True
for model_class in self.all_model_classes:
__lowercase = self.model_tester.seq_length - self.model_tester.num_masks
__lowercase = (
num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length
)
__lowercase = True
__lowercase = False
__lowercase = True
__lowercase = model_class(lowercase__ )
model.to(lowercase__ )
model.eval()
with torch.no_grad():
__lowercase = model(**self._prepare_for_class(lowercase__ ,lowercase__ ) )
__lowercase = outputs.attentions
self.assertEqual(len(lowercase__ ) ,self.model_tester.num_hidden_layers )
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
__lowercase = True
__lowercase = model_class(lowercase__ )
model.to(lowercase__ )
model.eval()
with torch.no_grad():
__lowercase = model(**self._prepare_for_class(lowercase__ ,lowercase__ ) )
__lowercase = outputs.attentions
self.assertEqual(len(lowercase__ ) ,self.model_tester.num_hidden_layers )
self.assertListEqual(
list(attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads, seq_len, seq_len] ,)
__lowercase = len(lowercase__ )
# Check attention is always last and order is fine
__lowercase = True
__lowercase = True
__lowercase = model_class(lowercase__ )
model.to(lowercase__ )
model.eval()
with torch.no_grad():
__lowercase = model(**self._prepare_for_class(lowercase__ ,lowercase__ ) )
self.assertEqual(out_len + 1 ,len(lowercase__ ) )
__lowercase = outputs.attentions
self.assertEqual(len(lowercase__ ) ,self.model_tester.num_hidden_layers )
self.assertListEqual(
list(self_attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads, seq_len, seq_len] ,)
def SCREAMING_SNAKE_CASE ( self : Dict ):
def check_hidden_states_output(lowercase__ : List[str] ,lowercase__ : int ,lowercase__ : int ):
__lowercase = model_class(lowercase__ )
model.to(lowercase__ )
model.eval()
with torch.no_grad():
__lowercase = model(**self._prepare_for_class(lowercase__ ,lowercase__ ) )
__lowercase = outputs.hidden_states
__lowercase = self.model_tester.num_hidden_layers + 1
self.assertEqual(len(lowercase__ ) ,lowercase__ )
__lowercase = self.model_tester.seq_length - self.model_tester.num_masks
__lowercase = num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) ,[seq_length, self.model_tester.hidden_size] ,)
__lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__lowercase = True
check_hidden_states_output(lowercase__ ,lowercase__ ,lowercase__ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__lowercase = True
check_hidden_states_output(lowercase__ ,lowercase__ ,lowercase__ )
@unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' )
def SCREAMING_SNAKE_CASE ( self : Tuple ):
pass
def _A ( ):
"""simple docstring"""
__lowercase = hf_hub_download(
repo_id='''hf-internal-testing/spaghetti-video''' , filename='''eating_spaghetti.npy''' , repo_type='''dataset''' )
__lowercase = np.load(A__ )
return list(A__ )
@require_torch
@require_vision
class lowercase_ (unittest.TestCase ):
"""simple docstring"""
@cached_property
def SCREAMING_SNAKE_CASE ( self : List[str] ):
# logits were tested with a different mean and std, so we use the same here
return (
VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] ,image_std=[0.5, 0.5, 0.5] )
if is_vision_available()
else None
)
@slow
def SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
__lowercase = VideoMAEForVideoClassification.from_pretrained('''MCG-NJU/videomae-base-finetuned-kinetics''' ).to(
lowercase__ )
__lowercase = self.default_image_processor
__lowercase = prepare_video()
__lowercase = image_processor(lowercase__ ,return_tensors='''pt''' ).to(lowercase__ )
# forward pass
with torch.no_grad():
__lowercase = model(**lowercase__ )
# verify the logits
__lowercase = torch.Size((1, 4_0_0) )
self.assertEqual(outputs.logits.shape ,lowercase__ )
__lowercase = torch.tensor([0.3_6_6_9, -0.0_6_8_8, -0.2_4_2_1] ).to(lowercase__ )
self.assertTrue(torch.allclose(outputs.logits[0, :3] ,lowercase__ ,atol=1e-4 ) )
@slow
def SCREAMING_SNAKE_CASE ( self : Tuple ):
__lowercase = VideoMAEForPreTraining.from_pretrained('''MCG-NJU/videomae-base-short''' ).to(lowercase__ )
__lowercase = self.default_image_processor
__lowercase = prepare_video()
__lowercase = image_processor(lowercase__ ,return_tensors='''pt''' ).to(lowercase__ )
# add boolean mask, indicating which patches to mask
__lowercase = hf_hub_download(repo_id='''hf-internal-testing/bool-masked-pos''' ,filename='''bool_masked_pos.pt''' )
__lowercase = torch.load(lowercase__ )
# forward pass
with torch.no_grad():
__lowercase = model(**lowercase__ )
# verify the logits
__lowercase = torch.Size([1, 1_4_0_8, 1_5_3_6] )
__lowercase = torch.tensor(
[[0.7_9_9_4, 0.9_6_1_2, 0.8_5_0_8], [0.7_4_0_1, 0.8_9_5_8, 0.8_3_0_2], [0.5_8_6_2, 0.7_4_6_8, 0.7_3_2_5]] ,device=lowercase__ )
self.assertEqual(outputs.logits.shape ,lowercase__ )
self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] ,lowercase__ ,atol=1e-4 ) )
# verify the loss (`config.norm_pix_loss` = `True`)
__lowercase = torch.tensor([0.5_1_4_2] ,device=lowercase__ )
self.assertTrue(torch.allclose(outputs.loss ,lowercase__ ,atol=1e-4 ) )
# verify the loss (`config.norm_pix_loss` = `False`)
__lowercase = VideoMAEForPreTraining.from_pretrained('''MCG-NJU/videomae-base-short''' ,norm_pix_loss=lowercase__ ).to(
lowercase__ )
with torch.no_grad():
__lowercase = model(**lowercase__ )
__lowercase = torch.tensor(torch.tensor([0.6_4_6_9] ) ,device=lowercase__ )
self.assertTrue(torch.allclose(outputs.loss ,lowercase__ ,atol=1e-4 ) )
| 104 |
'''simple docstring'''
import numpy as np
# Importing the Keras libraries and packages
import tensorflow as tf
from tensorflow.keras import layers, models
if __name__ == "__main__":
# Initialising the CNN
# (Sequential- Building the model layer by layer)
lowerCamelCase : Any = models.Sequential()
# Step 1 - Convolution
# Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel
# (3,3) is the kernel size (filter matrix)
classifier.add(
layers.ConvaD(32, (3, 3), input_shape=(64, 64, 3), activation='relu')
)
# Step 2 - Pooling
classifier.add(layers.MaxPoolingaD(pool_size=(2, 2)))
# Adding a second convolutional layer
classifier.add(layers.ConvaD(32, (3, 3), activation='relu'))
classifier.add(layers.MaxPoolingaD(pool_size=(2, 2)))
# Step 3 - Flattening
classifier.add(layers.Flatten())
# Step 4 - Full connection
classifier.add(layers.Dense(units=128, activation='relu'))
classifier.add(layers.Dense(units=1, activation='sigmoid'))
# Compiling the CNN
classifier.compile(
optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']
)
# Part 2 - Fitting the CNN to the images
# Load Trained model weights
# from keras.models import load_model
# regressor=load_model('cnn.h5')
lowerCamelCase : Optional[Any] = tf.keras.preprocessing.image.ImageDataGenerator(
rescale=1.0 / 255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True
)
lowerCamelCase : Any = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 255)
lowerCamelCase : List[Any] = train_datagen.flow_from_directory(
'dataset/training_set', target_size=(64, 64), batch_size=32, class_mode='binary'
)
lowerCamelCase : List[str] = test_datagen.flow_from_directory(
'dataset/test_set', target_size=(64, 64), batch_size=32, class_mode='binary'
)
classifier.fit_generator(
training_set, steps_per_epoch=5, epochs=30, validation_data=test_set
)
classifier.save('cnn.h5')
# Part 3 - Making new predictions
lowerCamelCase : List[str] = tf.keras.preprocessing.image.load_img(
'dataset/single_prediction/image.png', target_size=(64, 64)
)
lowerCamelCase : Optional[int] = tf.keras.preprocessing.image.img_to_array(test_image)
lowerCamelCase : str = np.expand_dims(test_image, axis=0)
lowerCamelCase : List[str] = classifier.predict(test_image)
# training_set.class_indices
if result[0][0] == 0:
lowerCamelCase : Any = 'Normal'
if result[0][0] == 1:
lowerCamelCase : Any = 'Abnormality detected'
| 2 | 0 |
"""simple docstring"""
import unittest
import numpy as np
from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline
from diffusers.utils.testing_utils import (
is_onnx_available,
load_image,
nightly,
require_onnxruntime,
require_torch_gpu,
)
from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin
if is_onnx_available():
import onnxruntime as ort
class __UpperCamelCase ( a__ , unittest.TestCase ):
# FIXME: add fast tests
pass
@nightly
@require_onnxruntime
@require_torch_gpu
class __UpperCamelCase ( unittest.TestCase ):
@property
def __a ( self ) -> Optional[int]:
return (
"CUDAExecutionProvider",
{
"gpu_mem_limit": "15000000000", # 15GB
"arena_extend_strategy": "kSameAsRequested",
},
)
@property
def __a ( self ) -> Any:
a : Union[str, Any] = ort.SessionOptions()
a : Any = False
return options
def __a ( self ) -> Dict:
a : List[str] = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/in_paint/overture-creations-5sI6fQgYIuo.png" )
a : List[Any] = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/in_paint/overture-creations-5sI6fQgYIuo_mask.png" )
a : int = OnnxStableDiffusionInpaintPipeline.from_pretrained(
"runwayml/stable-diffusion-inpainting" , revision="onnx" , safety_checker=lowerCAmelCase__ , feature_extractor=lowerCAmelCase__ , provider=self.gpu_provider , sess_options=self.gpu_options , )
pipe.set_progress_bar_config(disable=lowerCAmelCase__ )
a : Optional[int] = "A red cat sitting on a park bench"
a : Dict = np.random.RandomState(0 )
a : str = pipe(
prompt=lowerCAmelCase__ , image=lowerCAmelCase__ , mask_image=lowerCAmelCase__ , guidance_scale=7.5 , num_inference_steps=10 , generator=lowerCAmelCase__ , output_type="np" , )
a : Union[str, Any] = output.images
a : str = images[0, 255:258, 255:258, -1]
assert images.shape == (1, 512, 512, 3)
a : int = np.array([0.2_514, 0.3_007, 0.3_517, 0.1_790, 0.2_382, 0.3_167, 0.1_944, 0.2_273, 0.2_464] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
def __a ( self ) -> Tuple:
a : Union[str, Any] = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/in_paint/overture-creations-5sI6fQgYIuo.png" )
a : Union[str, Any] = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/in_paint/overture-creations-5sI6fQgYIuo_mask.png" )
a : Dict = LMSDiscreteScheduler.from_pretrained(
"runwayml/stable-diffusion-inpainting" , subfolder="scheduler" , revision="onnx" )
a : Union[str, Any] = OnnxStableDiffusionInpaintPipeline.from_pretrained(
"runwayml/stable-diffusion-inpainting" , revision="onnx" , scheduler=lowerCAmelCase__ , safety_checker=lowerCAmelCase__ , feature_extractor=lowerCAmelCase__ , provider=self.gpu_provider , sess_options=self.gpu_options , )
pipe.set_progress_bar_config(disable=lowerCAmelCase__ )
a : List[Any] = "A red cat sitting on a park bench"
a : List[Any] = np.random.RandomState(0 )
a : List[Any] = pipe(
prompt=lowerCAmelCase__ , image=lowerCAmelCase__ , mask_image=lowerCAmelCase__ , guidance_scale=7.5 , num_inference_steps=20 , generator=lowerCAmelCase__ , output_type="np" , )
a : Any = output.images
a : List[Any] = images[0, 255:258, 255:258, -1]
assert images.shape == (1, 512, 512, 3)
a : Any = np.array([0.0_086, 0.0_077, 0.0_083, 0.0_093, 0.0_107, 0.0_139, 0.0_094, 0.0_097, 0.0_125] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
| 105 |
'''simple docstring'''
class __lowerCAmelCase : # Public class to implement a graph
'''simple docstring'''
def __init__(self : int , UpperCamelCase : int , UpperCamelCase : int , UpperCamelCase : list[list[bool]] ):
'''simple docstring'''
lowercase__ = row
lowercase__ = col
lowercase__ = graph
def UpperCamelCase__ (self : Optional[int] , UpperCamelCase : int , UpperCamelCase : int , UpperCamelCase : list[list[bool]] ):
'''simple docstring'''
return (
0 <= i < self.ROW
and 0 <= j < self.COL
and not visited[i][j]
and self.graph[i][j]
)
def UpperCamelCase__ (self : int , UpperCamelCase : int , UpperCamelCase : int , UpperCamelCase : list[list[bool]] ):
'''simple docstring'''
lowercase__ = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order
lowercase__ = [-1, 0, 1, -1, 1, -1, 0, 1]
lowercase__ = True # Make those cells visited
for k in range(8 ):
if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , UpperCamelCase ):
self.diffs(i + row_nbr[k] , j + col_nbr[k] , UpperCamelCase )
def UpperCamelCase__ (self : Dict ): # And finally, count all islands.
'''simple docstring'''
lowercase__ = [[False for j in range(self.COL )] for i in range(self.ROW )]
lowercase__ = 0
for i in range(self.ROW ):
for j in range(self.COL ):
if visited[i][j] is False and self.graph[i][j] == 1:
self.diffs(UpperCamelCase , UpperCamelCase , UpperCamelCase )
count += 1
return count
| 2 | 0 |
"""simple docstring"""
def __SCREAMING_SNAKE_CASE ( A_ ):
lowerCAmelCase__ : Union[str, Any] = len(A_ )
for i in range(length - 1 ):
lowerCAmelCase__ : Tuple = i
for k in range(i + 1 , A_ ):
if collection[k] < collection[least]:
lowerCAmelCase__ : Optional[int] = k
if least != i:
lowerCAmelCase__ ,lowerCAmelCase__ : List[str] = (collection[i], collection[least])
return collection
if __name__ == "__main__":
__UpperCamelCase : Dict = input('''Enter numbers separated by a comma:\n''').strip()
__UpperCamelCase : List[Any] = [int(item) for item in user_input.split(''',''')]
print(selection_sort(unsorted))
| 106 |
'''simple docstring'''
import unittest
from transformers import DonutProcessor
lowerCamelCase : Tuple = 'naver-clova-ix/donut-base'
class __lowerCAmelCase (unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase__ (self : int ):
'''simple docstring'''
lowercase__ = DonutProcessor.from_pretrained(UpperCamelCase )
def UpperCamelCase__ (self : Tuple ):
'''simple docstring'''
lowercase__ = {
'''name''': '''John Doe''',
'''age''': '''99''',
'''city''': '''Atlanta''',
'''state''': '''GA''',
'''zip''': '''30301''',
'''phone''': '''123-4567''',
'''nicknames''': [{'''nickname''': '''Johnny'''}, {'''nickname''': '''JD'''}],
}
lowercase__ = (
'''<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>'''
'''<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>'''
'''<s_nicknames><s_nickname>Johnny</s_nickname>'''
'''<sep/><s_nickname>JD</s_nickname></s_nicknames>'''
)
lowercase__ = self.processor.tokenajson(UpperCamelCase )
self.assertDictEqual(UpperCamelCase , UpperCamelCase )
| 2 | 0 |
import unittest
from transformers import is_tf_available
from transformers.testing_utils import require_tf
if is_tf_available():
import tensorflow as tf
from tensorflow.python.eager import context
from tensorflow.python.framework import ops
from transformers import GradientAccumulator, create_optimizer
@require_tf
class snake_case__ (unittest.TestCase ):
"""simple docstring"""
def __UpperCAmelCase ( self : Optional[int] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[Any] ) -> Dict:
self.assertEqual(len(__lowerCamelCase ) , len(__lowerCamelCase ) )
for a, b in zip(__lowerCamelCase , __lowerCamelCase ):
self.assertAlmostEqual(__lowerCamelCase , __lowerCamelCase , delta=__lowerCamelCase )
def __UpperCAmelCase ( self : Optional[Any] ) -> Union[str, Any]:
a = GradientAccumulator()
accumulator([tf.constant([1.0, 2.0] )] )
accumulator([tf.constant([-2.0, 1.0] )] )
accumulator([tf.constant([-1.0, 2.0] )] )
with self.assertRaises(__lowerCamelCase ):
accumulator([tf.constant([1.0, 1.0] ), tf.constant([2.0, 2.0] )] )
self.assertEqual(accumulator.step , 3 )
self.assertEqual(len(accumulator.gradients ) , 1 )
self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [-2.0, 5.0] , tol=1e-2 )
accumulator.reset()
self.assertEqual(accumulator.step , 0 )
self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [0.0, 0.0] , tol=1e-2 )
def __UpperCAmelCase ( self : Dict ) -> int:
a = None
ops.enable_eager_execution_internal()
a = tf.config.list_physical_devices("CPU" )
if len(__lowerCamelCase ) == 1:
tf.config.set_logical_device_configuration(
physical_devices[0] , [tf.config.LogicalDeviceConfiguration(), tf.config.LogicalDeviceConfiguration()] )
a = tf.config.list_logical_devices(device_type="CPU" )
a = tf.distribute.MirroredStrategy(devices=devices[:2] )
with strategy.scope():
a = GradientAccumulator()
a = tf.Variable([4.0, 3.0] )
a , a = create_optimizer(5e-5 , 10 , 5 )
a = tf.Variable([0.0, 0.0] , trainable=__lowerCamelCase )
def accumulate_on_replica(__lowerCamelCase : Dict ):
accumulator([gradient] )
def apply_on_replica():
optimizer.apply_gradients(list(zip(accumulator.gradients , [variable] ) ) )
@tf.function
def accumulate(__lowerCamelCase : Dict , __lowerCamelCase : Dict ):
with strategy.scope():
a = strategy.experimental_local_results(__lowerCamelCase )
local_variables[0].assign(__lowerCamelCase )
local_variables[1].assign(__lowerCamelCase )
strategy.run(__lowerCamelCase , args=(gradient_placeholder,) )
@tf.function
def apply_grad():
with strategy.scope():
strategy.run(__lowerCamelCase )
def _check_local_values(__lowerCamelCase : Union[str, Any] , __lowerCamelCase : Dict ):
a = strategy.experimental_local_results(accumulator._gradients[0] )
self.assertListAlmostEqual(values[0].value() , __lowerCamelCase , tol=1e-2 )
self.assertListAlmostEqual(values[1].value() , __lowerCamelCase , tol=1e-2 )
accumulate([1.0, 2.0] , [-1.0, 1.0] )
accumulate([3.0, -1.0] , [-1.0, -1.0] )
accumulate([-2.0, 2.0] , [3.0, -2.0] )
self.assertEqual(accumulator.step , 3 )
_check_local_values([2.0, 3.0] , [1.0, -2.0] )
apply_grad()
self.assertListAlmostEqual(variable.value() , [4.0, 3.0] , tol=1e-2 )
accumulator.reset()
self.assertEqual(accumulator.step , 0 )
_check_local_values([0.0, 0.0] , [0.0, 0.0] )
| 107 |
'''simple docstring'''
from __future__ import annotations
def _SCREAMING_SNAKE_CASE (A ) -> bool:
"""simple docstring"""
return len(set(A ) ) == len(A )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 2 | 0 |
"""simple docstring"""
from math import sqrt
def a__ ( SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and (
number >= 0
), "'number' must been an int and positive"
lowerCAmelCase : Any = True
# 0 and 1 are none primes.
if number <= 1:
lowerCAmelCase : Any = False
for divisor in range(2 , int(round(sqrt(SCREAMING_SNAKE_CASE ) ) ) + 1 ):
# if 'number' divisible by 'divisor' then sets 'status'
# of false and break up the loop.
if number % divisor == 0:
lowerCAmelCase : Optional[Any] = False
break
# precondition
assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ), "'status' must been from type bool"
return status
def a__ ( SCREAMING_SNAKE_CASE : str ):
'''simple docstring'''
assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and (n > 2), "'N' must been an int and > 2"
# beginList: contains all natural numbers from 2 up to N
lowerCAmelCase : Tuple = list(range(2 , n + 1 ) )
lowerCAmelCase : List[Any] = [] # this list will be returns.
# actual sieve of erathostenes
for i in range(len(SCREAMING_SNAKE_CASE ) ):
for j in range(i + 1 , len(SCREAMING_SNAKE_CASE ) ):
if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0):
lowerCAmelCase : Tuple = 0
# filters actual prime numbers.
lowerCAmelCase : str = [x for x in begin_list if x != 0]
# precondition
assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ), "'ans' must been from type list"
return ans
def a__ ( SCREAMING_SNAKE_CASE : Any ):
'''simple docstring'''
assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and (n > 2), "'N' must been an int and > 2"
lowerCAmelCase : str = []
# iterates over all numbers between 2 up to N+1
# if a number is prime then appends to list 'ans'
for number in range(2 , n + 1 ):
if is_prime(SCREAMING_SNAKE_CASE ):
ans.append(SCREAMING_SNAKE_CASE )
# precondition
assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ), "'ans' must been from type list"
return ans
def a__ ( SCREAMING_SNAKE_CASE : Optional[Any] ):
'''simple docstring'''
assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and number >= 0, "'number' must been an int and >= 0"
lowerCAmelCase : Optional[Any] = [] # this list will be returns of the function.
# potential prime number factors.
lowerCAmelCase : Optional[Any] = 2
lowerCAmelCase : Optional[Any] = number
if number == 0 or number == 1:
ans.append(SCREAMING_SNAKE_CASE )
# if 'number' not prime then builds the prime factorization of 'number'
elif not is_prime(SCREAMING_SNAKE_CASE ):
while quotient != 1:
if is_prime(SCREAMING_SNAKE_CASE ) and (quotient % factor == 0):
ans.append(SCREAMING_SNAKE_CASE )
quotient /= factor
else:
factor += 1
else:
ans.append(SCREAMING_SNAKE_CASE )
# precondition
assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ), "'ans' must been from type list"
return ans
def a__ ( SCREAMING_SNAKE_CASE : str ):
'''simple docstring'''
assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and (
number >= 0
), "'number' bust been an int and >= 0"
lowerCAmelCase : List[Any] = 0
# prime factorization of 'number'
lowerCAmelCase : Union[str, Any] = prime_factorization(SCREAMING_SNAKE_CASE )
lowerCAmelCase : Any = max(SCREAMING_SNAKE_CASE )
# precondition
assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ), "'ans' must been from type int"
return ans
def a__ ( SCREAMING_SNAKE_CASE : List[Any] ):
'''simple docstring'''
assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and (
number >= 0
), "'number' bust been an int and >= 0"
lowerCAmelCase : Any = 0
# prime factorization of 'number'
lowerCAmelCase : str = prime_factorization(SCREAMING_SNAKE_CASE )
lowerCAmelCase : List[Any] = min(SCREAMING_SNAKE_CASE )
# precondition
assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ), "'ans' must been from type int"
return ans
def a__ ( SCREAMING_SNAKE_CASE : Dict ):
'''simple docstring'''
assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ), "'number' must been an int"
assert isinstance(number % 2 == 0 , SCREAMING_SNAKE_CASE ), "compare bust been from type bool"
return number % 2 == 0
def a__ ( SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ), "'number' must been an int"
assert isinstance(number % 2 != 0 , SCREAMING_SNAKE_CASE ), "compare bust been from type bool"
return number % 2 != 0
def a__ ( SCREAMING_SNAKE_CASE : Optional[int] ):
'''simple docstring'''
assert (
isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and (number > 2) and is_even(SCREAMING_SNAKE_CASE )
), "'number' must been an int, even and > 2"
lowerCAmelCase : str = [] # this list will returned
# creates a list of prime numbers between 2 up to 'number'
lowerCAmelCase : Any = get_prime_numbers(SCREAMING_SNAKE_CASE )
lowerCAmelCase : Optional[int] = len(SCREAMING_SNAKE_CASE )
# run variable for while-loops.
lowerCAmelCase : Dict = 0
lowerCAmelCase : Optional[int] = None
# exit variable. for break up the loops
lowerCAmelCase : Optional[int] = True
while i < len_pn and loop:
lowerCAmelCase : int = i + 1
while j < len_pn and loop:
if prime_numbers[i] + prime_numbers[j] == number:
lowerCAmelCase : Dict = False
ans.append(prime_numbers[i] )
ans.append(prime_numbers[j] )
j += 1
i += 1
# precondition
assert (
isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
and (len(SCREAMING_SNAKE_CASE ) == 2)
and (ans[0] + ans[1] == number)
and is_prime(ans[0] )
and is_prime(ans[1] )
), "'ans' must contains two primes. And sum of elements must been eq 'number'"
return ans
def a__ ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Any ):
'''simple docstring'''
assert (
isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
and isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
and (numbera >= 0)
and (numbera >= 0)
), "'number1' and 'number2' must been positive integer."
lowerCAmelCase : int = 0
while numbera != 0:
lowerCAmelCase : Dict = numbera % numbera
lowerCAmelCase : int = numbera
lowerCAmelCase : Optional[Any] = rest
# precondition
assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and (
numbera >= 0
), "'number' must been from type int and positive"
return numbera
def a__ ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[str] ):
'''simple docstring'''
assert (
isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
and isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
and (numbera >= 1)
and (numbera >= 1)
), "'number1' and 'number2' must been positive integer."
lowerCAmelCase : List[str] = 1 # actual answer that will be return.
# for kgV (x,1)
if numbera > 1 and numbera > 1:
# builds the prime factorization of 'number1' and 'number2'
lowerCAmelCase : Dict = prime_factorization(SCREAMING_SNAKE_CASE )
lowerCAmelCase : Optional[int] = prime_factorization(SCREAMING_SNAKE_CASE )
elif numbera == 1 or numbera == 1:
lowerCAmelCase : Any = []
lowerCAmelCase : Tuple = []
lowerCAmelCase : List[str] = max(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
lowerCAmelCase : Optional[int] = 0
lowerCAmelCase : Optional[Any] = 0
lowerCAmelCase : Union[str, Any] = [] # captured numbers int both 'primeFac1' and 'primeFac2'
# iterates through primeFac1
for n in prime_fac_a:
if n not in done:
if n in prime_fac_a:
lowerCAmelCase : Any = prime_fac_a.count(SCREAMING_SNAKE_CASE )
lowerCAmelCase : int = prime_fac_a.count(SCREAMING_SNAKE_CASE )
for _ in range(max(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ):
ans *= n
else:
lowerCAmelCase : List[str] = prime_fac_a.count(SCREAMING_SNAKE_CASE )
for _ in range(SCREAMING_SNAKE_CASE ):
ans *= n
done.append(SCREAMING_SNAKE_CASE )
# iterates through primeFac2
for n in prime_fac_a:
if n not in done:
lowerCAmelCase : Any = prime_fac_a.count(SCREAMING_SNAKE_CASE )
for _ in range(SCREAMING_SNAKE_CASE ):
ans *= n
done.append(SCREAMING_SNAKE_CASE )
# precondition
assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and (
ans >= 0
), "'ans' must been from type int and positive"
return ans
def a__ ( SCREAMING_SNAKE_CASE : Any ):
'''simple docstring'''
assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and (n >= 0), "'number' must been a positive int"
lowerCAmelCase : int = 0
lowerCAmelCase : Tuple = 2 # this variable holds the answer
while index < n:
index += 1
ans += 1 # counts to the next number
# if ans not prime then
# runs to the next prime number.
while not is_prime(SCREAMING_SNAKE_CASE ):
ans += 1
# precondition
assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and is_prime(
SCREAMING_SNAKE_CASE ), "'ans' must been a prime number and from type int"
return ans
def a__ ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Optional[Any] ):
'''simple docstring'''
assert (
is_prime(SCREAMING_SNAKE_CASE ) and is_prime(SCREAMING_SNAKE_CASE ) and (p_number_a < p_number_a)
), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'"
lowerCAmelCase : List[Any] = p_number_a + 1 # jump to the next number
lowerCAmelCase : Tuple = [] # this list will be returns.
# if number is not prime then
# fetch the next prime number.
while not is_prime(SCREAMING_SNAKE_CASE ):
number += 1
while number < p_number_a:
ans.append(SCREAMING_SNAKE_CASE )
number += 1
# fetch the next prime number.
while not is_prime(SCREAMING_SNAKE_CASE ):
number += 1
# precondition
assert (
isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
and ans[0] != p_number_a
and ans[len(SCREAMING_SNAKE_CASE ) - 1] != p_number_a
), "'ans' must been a list without the arguments"
# 'ans' contains not 'pNumber1' and 'pNumber2' !
return ans
def a__ ( SCREAMING_SNAKE_CASE : Optional[int] ):
'''simple docstring'''
assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and (n >= 1), "'n' must been int and >= 1"
lowerCAmelCase : Any = [] # will be returned.
for divisor in range(1 , n + 1 ):
if n % divisor == 0:
ans.append(SCREAMING_SNAKE_CASE )
# precondition
assert ans[0] == 1 and ans[len(SCREAMING_SNAKE_CASE ) - 1] == n, "Error in function getDivisiors(...)"
return ans
def a__ ( SCREAMING_SNAKE_CASE : List[Any] ):
'''simple docstring'''
assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and (
number > 1
), "'number' must been an int and >= 1"
lowerCAmelCase : Any = get_divisors(SCREAMING_SNAKE_CASE )
# precondition
assert (
isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
and (divisors[0] == 1)
and (divisors[len(SCREAMING_SNAKE_CASE ) - 1] == number)
), "Error in help-function getDivisiors(...)"
# summed all divisors up to 'number' (exclusive), hence [:-1]
return sum(divisors[:-1] ) == number
def a__ ( SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Tuple ):
'''simple docstring'''
assert (
isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
and isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
and (denominator != 0)
), "The arguments must been from type int and 'denominator' != 0"
# build the greatest common divisor of numerator and denominator.
lowerCAmelCase : Any = gcd(abs(SCREAMING_SNAKE_CASE ) , abs(SCREAMING_SNAKE_CASE ) )
# precondition
assert (
isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
and (numerator % gcd_of_fraction == 0)
and (denominator % gcd_of_fraction == 0)
), "Error in function gcd(...,...)"
return (numerator // gcd_of_fraction, denominator // gcd_of_fraction)
def a__ ( SCREAMING_SNAKE_CASE : Any ):
'''simple docstring'''
assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and (n >= 0), "'n' must been a int and >= 0"
lowerCAmelCase : Any = 1 # this will be return.
for factor in range(1 , n + 1 ):
ans *= factor
return ans
def a__ ( SCREAMING_SNAKE_CASE : str ):
'''simple docstring'''
assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and (n >= 0), "'n' must been an int and >= 0"
lowerCAmelCase : Union[str, Any] = 0
lowerCAmelCase : Tuple = 1
lowerCAmelCase : Any = 1 # this will be return
for _ in range(n - 1 ):
lowerCAmelCase : List[str] = ans
ans += fiba
lowerCAmelCase : Optional[Any] = tmp
return ans
| 108 |
'''simple docstring'''
import os
import re
import warnings
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_ta import TaTokenizer
else:
lowerCamelCase : Any = None
lowerCamelCase : Dict = logging.get_logger(__name__)
lowerCamelCase : Optional[int] = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'}
lowerCamelCase : List[str] = {
'vocab_file': {
't5-small': 'https://huggingface.co/t5-small/resolve/main/spiece.model',
't5-base': 'https://huggingface.co/t5-base/resolve/main/spiece.model',
't5-large': 'https://huggingface.co/t5-large/resolve/main/spiece.model',
't5-3b': 'https://huggingface.co/t5-3b/resolve/main/spiece.model',
't5-11b': 'https://huggingface.co/t5-11b/resolve/main/spiece.model',
},
'tokenizer_file': {
't5-small': 'https://huggingface.co/t5-small/resolve/main/tokenizer.json',
't5-base': 'https://huggingface.co/t5-base/resolve/main/tokenizer.json',
't5-large': 'https://huggingface.co/t5-large/resolve/main/tokenizer.json',
't5-3b': 'https://huggingface.co/t5-3b/resolve/main/tokenizer.json',
't5-11b': 'https://huggingface.co/t5-11b/resolve/main/tokenizer.json',
},
}
# TODO(PVP) - this should be removed in Transformers v5
lowerCamelCase : Any = {
't5-small': 512,
't5-base': 512,
't5-large': 512,
't5-3b': 512,
't5-11b': 512,
}
class __lowerCAmelCase (lowercase_ ):
'''simple docstring'''
lowerCAmelCase__ : List[str] = VOCAB_FILES_NAMES
lowerCAmelCase__ : str = PRETRAINED_VOCAB_FILES_MAP
lowerCAmelCase__ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCAmelCase__ : int = ["""input_ids""", """attention_mask"""]
lowerCAmelCase__ : Optional[int] = TaTokenizer
lowerCAmelCase__ : List[int] = []
def __init__(self : Dict , UpperCamelCase : str=None , UpperCamelCase : Optional[Any]=None , UpperCamelCase : Any="</s>" , UpperCamelCase : str="<unk>" , UpperCamelCase : List[str]="<pad>" , UpperCamelCase : List[str]=100 , UpperCamelCase : Tuple=None , **UpperCamelCase : List[str] , ):
'''simple docstring'''
if extra_ids > 0 and additional_special_tokens is None:
lowercase__ = [f"<extra_id_{i}>" for i in range(UpperCamelCase )]
elif extra_ids > 0 and additional_special_tokens is not None:
# Check that we have the right number of extra special tokens
lowercase__ = len(set(filter(lambda UpperCamelCase : bool('''extra_id_''' in str(UpperCamelCase ) ) , UpperCamelCase ) ) )
if extra_tokens != extra_ids:
raise ValueError(
f"Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are"
''' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids'''
''' tokens''' )
super().__init__(
UpperCamelCase , tokenizer_file=UpperCamelCase , eos_token=UpperCamelCase , unk_token=UpperCamelCase , pad_token=UpperCamelCase , extra_ids=UpperCamelCase , additional_special_tokens=UpperCamelCase , **UpperCamelCase , )
lowercase__ = vocab_file
lowercase__ = False if not self.vocab_file else True
lowercase__ = extra_ids
@staticmethod
def UpperCamelCase__ (UpperCamelCase : List[Any] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Optional[Any] ):
'''simple docstring'''
if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes:
lowercase__ = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path]
if init_max_model_length is not None and init_max_model_length != max_model_length:
return init_max_model_length
elif init_max_model_length is None:
warnings.warn(
'''This tokenizer was incorrectly instantiated with a model max length of'''
f" {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this"
''' behavior is kept to avoid breaking backwards compatibility when padding/encoding with'''
''' `truncation is True`.\n- Be aware that you SHOULD NOT rely on'''
f" {pretrained_model_name_or_path} automatically truncating your input to"
f" {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences"
f" longer than {deprecated_max_model_length} you can either instantiate this tokenizer with"
''' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please'''
''' instantiate this tokenizer with `model_max_length` set to your preferred value.''' , UpperCamelCase , )
return max_model_length
def UpperCamelCase__ (self : Any , UpperCamelCase : str , UpperCamelCase : Optional[str] = None ):
'''simple docstring'''
if not self.can_save_slow_tokenizer:
raise ValueError(
'''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow '''
'''tokenizer.''' )
if not os.path.isdir(UpperCamelCase ):
logger.error(f"Vocabulary path ({save_directory}) should be a directory" )
return
lowercase__ = os.path.join(
UpperCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase ):
copyfile(self.vocab_file , UpperCamelCase )
logger.info(f"Copy vocab file to {out_vocab_file}" )
return (out_vocab_file,)
def UpperCamelCase__ (self : Any , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None ):
'''simple docstring'''
lowercase__ = token_ids_a + [self.eos_token_id]
if token_ids_a is None:
return self.prefix_tokens + token_ids_a
else:
lowercase__ = token_ids_a + [self.eos_token_id]
return self.prefix_tokens + token_ids_a + token_ids_a
def UpperCamelCase__ (self : Optional[Any] , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None ):
'''simple docstring'''
lowercase__ = [self.eos_token_id]
if token_ids_a is None:
return len(token_ids_a + eos ) * [0]
return len(token_ids_a + eos + token_ids_a + eos ) * [0]
def UpperCamelCase__ (self : List[Any] ):
'''simple docstring'''
return list(
set(filter(lambda UpperCamelCase : bool(re.search(R'''<extra_id_\d+>''' , UpperCamelCase ) ) is not None , self.additional_special_tokens ) ) )
def UpperCamelCase__ (self : Union[str, Any] ):
'''simple docstring'''
return [self.convert_tokens_to_ids(UpperCamelCase ) for token in self.get_sentinel_tokens()]
| 2 | 0 |
"""simple docstring"""
import numpy as np
def _snake_case ( UpperCamelCase : np.array ):
return 1 / (1 + np.exp(-vector ))
def _snake_case ( UpperCamelCase : np.array ):
return vector * sigmoid(1.702 * vector )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 109 |
'''simple docstring'''
import gc
import random
import unittest
import numpy as np
import torch
from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel
from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline
from diffusers.pipelines.shap_e import ShapERenderer
from diffusers.utils import floats_tensor, load_image, load_numpy, slow
from diffusers.utils.testing_utils import require_torch_gpu, torch_device
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
class __lowerCAmelCase (lowercase_ , unittest.TestCase ):
'''simple docstring'''
lowerCAmelCase__ : Dict = ShapEImgaImgPipeline
lowerCAmelCase__ : List[str] = ["""image"""]
lowerCAmelCase__ : Any = ["""image"""]
lowerCAmelCase__ : Any = [
"""num_images_per_prompt""",
"""num_inference_steps""",
"""generator""",
"""latents""",
"""guidance_scale""",
"""frame_size""",
"""output_type""",
"""return_dict""",
]
lowerCAmelCase__ : Tuple = False
@property
def UpperCamelCase__ (self : List[Any] ):
'''simple docstring'''
return 32
@property
def UpperCamelCase__ (self : str ):
'''simple docstring'''
return 32
@property
def UpperCamelCase__ (self : Union[str, Any] ):
'''simple docstring'''
return self.time_input_dim * 4
@property
def UpperCamelCase__ (self : int ):
'''simple docstring'''
return 8
@property
def UpperCamelCase__ (self : Any ):
'''simple docstring'''
torch.manual_seed(0 )
lowercase__ = CLIPVisionConfig(
hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , )
lowercase__ = CLIPVisionModel(UpperCamelCase )
return model
@property
def UpperCamelCase__ (self : List[Any] ):
'''simple docstring'''
lowercase__ = CLIPImageProcessor(
crop_size=224 , do_center_crop=UpperCamelCase , do_normalize=UpperCamelCase , do_resize=UpperCamelCase , image_mean=[0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73] , image_std=[0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11] , resample=3 , size=224 , )
return image_processor
@property
def UpperCamelCase__ (self : str ):
'''simple docstring'''
torch.manual_seed(0 )
lowercase__ = {
'''num_attention_heads''': 2,
'''attention_head_dim''': 16,
'''embedding_dim''': self.time_input_dim,
'''num_embeddings''': 32,
'''embedding_proj_dim''': self.text_embedder_hidden_size,
'''time_embed_dim''': self.time_embed_dim,
'''num_layers''': 1,
'''clip_embed_dim''': self.time_input_dim * 2,
'''additional_embeddings''': 0,
'''time_embed_act_fn''': '''gelu''',
'''norm_in_type''': '''layer''',
'''embedding_proj_norm_type''': '''layer''',
'''encoder_hid_proj_type''': None,
'''added_emb_type''': None,
}
lowercase__ = PriorTransformer(**UpperCamelCase )
return model
@property
def UpperCamelCase__ (self : int ):
'''simple docstring'''
torch.manual_seed(0 )
lowercase__ = {
'''param_shapes''': (
(self.renderer_dim, 93),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
),
'''d_latent''': self.time_input_dim,
'''d_hidden''': self.renderer_dim,
'''n_output''': 12,
'''background''': (
0.1,
0.1,
0.1,
),
}
lowercase__ = ShapERenderer(**UpperCamelCase )
return model
def UpperCamelCase__ (self : Union[str, Any] ):
'''simple docstring'''
lowercase__ = self.dummy_prior
lowercase__ = self.dummy_image_encoder
lowercase__ = self.dummy_image_processor
lowercase__ = self.dummy_renderer
lowercase__ = HeunDiscreteScheduler(
beta_schedule='''exp''' , num_train_timesteps=1024 , prediction_type='''sample''' , use_karras_sigmas=UpperCamelCase , clip_sample=UpperCamelCase , clip_sample_range=1.0 , )
lowercase__ = {
'''prior''': prior,
'''image_encoder''': image_encoder,
'''image_processor''': image_processor,
'''renderer''': renderer,
'''scheduler''': scheduler,
}
return components
def UpperCamelCase__ (self : Optional[int] , UpperCamelCase : Optional[int] , UpperCamelCase : str=0 ):
'''simple docstring'''
lowercase__ = floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCamelCase ) ).to(UpperCamelCase )
if str(UpperCamelCase ).startswith('''mps''' ):
lowercase__ = torch.manual_seed(UpperCamelCase )
else:
lowercase__ = torch.Generator(device=UpperCamelCase ).manual_seed(UpperCamelCase )
lowercase__ = {
'''image''': input_image,
'''generator''': generator,
'''num_inference_steps''': 1,
'''frame_size''': 32,
'''output_type''': '''np''',
}
return inputs
def UpperCamelCase__ (self : Tuple ):
'''simple docstring'''
lowercase__ = '''cpu'''
lowercase__ = self.get_dummy_components()
lowercase__ = self.pipeline_class(**UpperCamelCase )
lowercase__ = pipe.to(UpperCamelCase )
pipe.set_progress_bar_config(disable=UpperCamelCase )
lowercase__ = pipe(**self.get_dummy_inputs(UpperCamelCase ) )
lowercase__ = output.images[0]
lowercase__ = image[0, -3:, -3:, -1]
assert image.shape == (20, 32, 32, 3)
lowercase__ = np.array(
[
0.00_03_92_16,
0.00_03_92_16,
0.00_03_92_16,
0.00_03_92_16,
0.00_03_92_16,
0.00_03_92_16,
0.00_03_92_16,
0.00_03_92_16,
0.00_03_92_16,
] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def UpperCamelCase__ (self : Optional[Any] ):
'''simple docstring'''
self._test_inference_batch_consistent(batch_sizes=[1, 2] )
def UpperCamelCase__ (self : int ):
'''simple docstring'''
lowercase__ = torch_device == '''cpu'''
lowercase__ = True
self._test_inference_batch_single_identical(
batch_size=2 , test_max_difference=UpperCamelCase , relax_max_difference=UpperCamelCase , )
def UpperCamelCase__ (self : int ):
'''simple docstring'''
lowercase__ = self.get_dummy_components()
lowercase__ = self.pipeline_class(**UpperCamelCase )
lowercase__ = pipe.to(UpperCamelCase )
pipe.set_progress_bar_config(disable=UpperCamelCase )
lowercase__ = 1
lowercase__ = 2
lowercase__ = self.get_dummy_inputs(UpperCamelCase )
for key in inputs.keys():
if key in self.batch_params:
lowercase__ = batch_size * [inputs[key]]
lowercase__ = pipe(**UpperCamelCase , num_images_per_prompt=UpperCamelCase )[0]
assert images.shape[0] == batch_size * num_images_per_prompt
@slow
@require_torch_gpu
class __lowerCAmelCase (unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase__ (self : Optional[Any] ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCamelCase__ (self : Union[str, Any] ):
'''simple docstring'''
lowercase__ = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/corgi.png''' )
lowercase__ = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/shap_e/test_shap_e_img2img_out.npy''' )
lowercase__ = ShapEImgaImgPipeline.from_pretrained('''openai/shap-e-img2img''' )
lowercase__ = pipe.to(UpperCamelCase )
pipe.set_progress_bar_config(disable=UpperCamelCase )
lowercase__ = torch.Generator(device=UpperCamelCase ).manual_seed(0 )
lowercase__ = pipe(
UpperCamelCase , generator=UpperCamelCase , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type='''np''' , ).images[0]
assert images.shape == (20, 64, 64, 3)
assert_mean_pixel_difference(UpperCamelCase , UpperCamelCase )
| 2 | 0 |
from dataclasses import dataclass, field
from typing import Optional
@dataclass
class _a :
_lowercase : Optional[str] = field(
default='''codeparrot/codeparrot''' , metadata={'''help''': '''Model name or path of model to be trained.'''} )
_lowercase : Optional[str] = field(
default='''./''' , metadata={'''help''': '''Save dir where model repo is cloned and models updates are saved to.'''} )
_lowercase : Optional[str] = field(
default='''codeparrot/codeparrot-clean-train''' , metadata={'''help''': '''Name or path of training dataset.'''} )
_lowercase : Optional[str] = field(
default='''codeparrot/codeparrot-clean-valid''' , metadata={'''help''': '''Name or path of validation dataset.'''} )
_lowercase : Optional[int] = field(default=2 , metadata={'''help''': '''Batch size for training.'''} )
_lowercase : Optional[int] = field(default=2 , metadata={'''help''': '''Batch size for evaluation.'''} )
_lowercase : Optional[float] = field(default=0.1 , metadata={'''help''': '''Value of weight decay.'''} )
_lowercase : Optional[int] = field(
default=10000 , metadata={'''help''': '''Size of buffer used to shuffle streaming dataset.'''} )
_lowercase : Optional[float] = field(default=2e-4 , metadata={'''help''': '''Learning rate fo training.'''} )
_lowercase : Optional[str] = field(default='''cosine''' , metadata={'''help''': '''Learning rate.'''} )
_lowercase : Optional[int] = field(
default=750 , metadata={'''help''': '''Number of warmup steps in the learning rate schedule.'''} )
_lowercase : Optional[int] = field(
default=16 , metadata={'''help''': '''Number of gradient accumulation steps.'''} )
_lowercase : Optional[bool] = field(
default=UpperCamelCase__ , metadata={'''help''': '''Use gradient checkpointing to reduce memory footprint.'''} )
_lowercase : Optional[int] = field(default=50000 , metadata={'''help''': '''Maximum number of training steps.'''} )
_lowercase : Optional[int] = field(
default=-1 , metadata={'''help''': '''Maximum number of evaluation steps. If -1 the full dataset is evaluated.'''} )
_lowercase : Optional[int] = field(default=1024 , metadata={'''help''': '''Sequence lengths used for training.'''} )
_lowercase : Optional[int] = field(default=1 , metadata={'''help''': '''Training seed.'''} )
_lowercase : Optional[int] = field(
default=1024 , metadata={'''help''': '''Interval to save checkpoints. Measured as number of forward passes not training steps.'''} , )
_lowercase : Optional[str] = field(
default=UpperCamelCase__ , metadata={'''help''': '''States path if the training should continue from a checkpoint folder.'''} )
_lowercase : Optional[bool] = field(default=UpperCamelCase__ , metadata={'''help''': '''If True the data is pretokenized.'''} )
@dataclass
class _a :
_lowercase : Optional[str] = field(
default='''codeparrot/codeparrot''' , metadata={'''help''': '''Model name or path of model to be evaluated.'''} )
_lowercase : Optional[str] = field(
default='''codeparrot/codeparrot-clean-valid''' , metadata={'''help''': '''Name or path of validation dataset.'''} )
_lowercase : Optional[int] = field(default=2 , metadata={'''help''': '''Batch size used for evaluation.'''} )
_lowercase : Optional[int] = field(
default=-1 , metadata={'''help''': '''Maximum number of evaluation steps. If -1 the full dataset is evaluated.'''} )
_lowercase : Optional[int] = field(default=1024 , metadata={'''help''': '''Length of sequences to be evaluated.'''} )
_lowercase : Optional[int] = field(default=1 , metadata={'''help''': '''Random seed used for evaluation.'''} )
@dataclass
class _a :
_lowercase : Optional[str] = field(
default='''codeparrot/codeparrot''' , metadata={'''help''': '''Model name or path of model to be evaluated.'''} )
_lowercase : Optional[int] = field(default=UpperCamelCase__ , metadata={'''help''': '''Number of workers used for code evaluation.'''} )
_lowercase : Optional[int] = field(
default=UpperCamelCase__ , metadata={'''help''': '''The number of human-eval tasks to run. If not included all tasks are evaluated.'''} , )
_lowercase : Optional[bool] = field(
default=UpperCamelCase__ , metadata={'''help''': '''Sample from the language model\'s output distribution.'''} )
_lowercase : Optional[float] = field(default=0.2 , metadata={'''help''': '''Sampling temperature used for generation.'''} )
_lowercase : Optional[int] = field(default=256 , metadata={'''help''': '''Maximum number of newly generated tokens.'''} )
_lowercase : Optional[int] = field(default=0 , metadata={'''help''': '''Top-k parameter used for generation.'''} )
_lowercase : Optional[float] = field(default=0.95 , metadata={'''help''': '''Top-p parameter used for nucleus sampling.'''} )
_lowercase : Optional[int] = field(default=10 , metadata={'''help''': '''Number of generations to run in parallel.'''} )
_lowercase : Optional[int] = field(
default=200 , metadata={'''help''': '''Number of completions to generate for each sample.'''} )
_lowercase : Optional[int] = field(default=1 , metadata={'''help''': '''Random seed used for evaluation.'''} )
_lowercase : Optional[str] = field(
default='''eval_results.json''' , metadata={'''help''': '''Random seed used for evaluation.'''} )
_lowercase : Optional[str] = field(
default='''0''' , metadata={'''help''': '''Allow `code_eval` to execute Python code on machine'''} )
_lowercase : Optional[int] = field(
default=-1 , metadata={
'''help''': (
'''Determine which device to run the `text-generation` Pipeline on. -1 is CPU and any zero or positive'''
''' number corresponds to which GPU device id to run on.'''
)
} , )
@dataclass
class _a :
_lowercase : Optional[int] = field(
default=UpperCamelCase__ , metadata={
'''help''': '''The number of CPU cores to use for parallel preprocessing. Default uses the maximum available.'''
} , )
_lowercase : Optional[str] = field(
default='''transformersbook/codeparrot''' , metadata={'''help''': '''Folder or name of dataset to process.'''} )
_lowercase : Optional[str] = field(
default='''codeparrot-clean''' , metadata={'''help''': '''Folder to save processed processed dataset.'''} )
_lowercase : Optional[int] = field(
default=100000 , metadata={'''help''': '''Number of files to save per JSON output file.'''} )
_lowercase : Optional[str] = field(default='''content''' , metadata={'''help''': '''Column containing text data to process.'''} )
_lowercase : Optional[float] = field(
default=1000 , metadata={'''help''': '''Maximum line length in file, otherwise file is filtered.'''} )
_lowercase : Optional[float] = field(
default=100 , metadata={'''help''': '''Maximum mean line length in file, otherwise file is filtered.'''} )
_lowercase : Optional[float] = field(
default=0.25 , metadata={'''help''': '''Maximum fraction of non-alphanumeric characters, otherwise file is filtered.'''} )
_lowercase : Optional[float] = field(
default=1.5 , metadata={'''help''': '''Minimum character token ratio for the file, otherwise file is filtered.'''} )
_lowercase : Optional[float] = field(
default=0.7 , metadata={'''help''': '''Probability for filtering config, test and uncommon files.'''} )
_lowercase : Optional[str] = field(
default='''codeparrot/codeparrot''' , metadata={'''help''': '''Name or path to the tokenizer.'''} , )
_lowercase : Optional[bool] = field(
default=UpperCamelCase__ , metadata={'''help''': '''If True, near-duplicate samples are removed.'''} )
_lowercase : Optional[float] = field(
default=0.85 , metadata={'''help''': '''Jaccard threshold for near-duplicate samples.'''} )
@dataclass
class _a :
_lowercase : Optional[str] = field(
default='''gpt2''' , metadata={'''help''': '''Base tokenizer to build new tokenizer from.'''} )
_lowercase : Optional[str] = field(
default='''transformersbook/codeparrot-train''' , metadata={'''help''': '''Dataset to train tokenizer on.'''} )
_lowercase : Optional[str] = field(default='''content''' , metadata={'''help''': '''Column containing text data to process.'''} )
_lowercase : Optional[int] = field(default=200000 , metadata={'''help''': '''Number of examples to train tokenizer on.'''} )
_lowercase : Optional[int] = field(
default=32768 , metadata={'''help''': '''Number of examples to train the tokenizer on.'''} )
_lowercase : Optional[str] = field(default='''codeparrot''' , metadata={'''help''': '''Name of new tokenizer.'''} )
_lowercase : Optional[bool] = field(default=UpperCamelCase__ , metadata={'''help''': '''Push saved tokenizer to the hub.'''} )
@dataclass
class _a :
_lowercase : Optional[str] = field(
default='''codeparrot/codeparrot''' , metadata={'''help''': '''Name or path to the tokenizer.'''} )
_lowercase : Optional[str] = field(
default='''codeparrot/codeparrot-clean-train''' , metadata={'''help''': '''Name or path to the dataset to pretokenize.'''} )
_lowercase : Optional[str] = field(
default='''tokenized-codeparrot-train''' , metadata={'''help''': '''Repo name of the pretokenized data.'''} )
_lowercase : Optional[int] = field(default=UpperCamelCase__ , metadata={'''help''': '''Number of workers used for code evaluation.'''} )
@dataclass
class _a :
_lowercase : Optional[str] = field(
default='''gpt2-large''' , metadata={'''help''': '''Configuration to use for model initialization.'''} )
_lowercase : Optional[str] = field(
default='''codeparrot/codeparrot''' , metadata={'''help''': '''Tokenizer attached to model.'''} )
_lowercase : Optional[str] = field(default='''codeparrot''' , metadata={'''help''': '''Name of the created model.'''} )
_lowercase : Optional[bool] = field(default=UpperCamelCase__ , metadata={'''help''': '''Push saved tokenizer to the hub.'''} )
| 110 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
lowerCamelCase : str = {
'configuration_rag': ['RagConfig'],
'retrieval_rag': ['RagRetriever'],
'tokenization_rag': ['RagTokenizer'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase : Dict = [
'RagModel',
'RagPreTrainedModel',
'RagSequenceForGeneration',
'RagTokenForGeneration',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase : Optional[int] = [
'TFRagModel',
'TFRagPreTrainedModel',
'TFRagSequenceForGeneration',
'TFRagTokenForGeneration',
]
if TYPE_CHECKING:
from .configuration_rag import RagConfig
from .retrieval_rag import RagRetriever
from .tokenization_rag import RagTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_rag import RagModel, RagPreTrainedModel, RagSequenceForGeneration, RagTokenForGeneration
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_rag import (
TFRagModel,
TFRagPreTrainedModel,
TFRagSequenceForGeneration,
TFRagTokenForGeneration,
)
else:
import sys
lowerCamelCase : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 2 | 0 |
import warnings
from diffusers import StableDiffusionImgaImgPipeline # noqa F401
warnings.warn(
"""The `image_to_image.py` script is outdated. Please use directly `from diffusers import"""
""" StableDiffusionImg2ImgPipeline` instead."""
)
| 330 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCamelCase : int = logging.get_logger(__name__)
lowerCamelCase : List[Any] = {
'google/realm-cc-news-pretrained-embedder': (
'https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json'
),
'google/realm-cc-news-pretrained-encoder': (
'https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json'
),
'google/realm-cc-news-pretrained-scorer': (
'https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json'
),
'google/realm-cc-news-pretrained-openqa': (
'https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json'
),
'google/realm-orqa-nq-openqa': 'https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json',
'google/realm-orqa-nq-reader': 'https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json',
'google/realm-orqa-wq-openqa': 'https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json',
'google/realm-orqa-wq-reader': 'https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json',
# See all REALM models at https://huggingface.co/models?filter=realm
}
class __lowerCAmelCase (lowercase_ ):
'''simple docstring'''
lowerCAmelCase__ : Optional[int] = """realm"""
def __init__(self : str , UpperCamelCase : List[Any]=30522 , UpperCamelCase : List[Any]=768 , UpperCamelCase : int=128 , UpperCamelCase : Any=12 , UpperCamelCase : Tuple=12 , UpperCamelCase : List[Any]=8 , UpperCamelCase : Union[str, Any]=3072 , UpperCamelCase : List[str]="gelu_new" , UpperCamelCase : Any=0.1 , UpperCamelCase : List[str]=0.1 , UpperCamelCase : Dict=512 , UpperCamelCase : Dict=2 , UpperCamelCase : List[Any]=0.02 , UpperCamelCase : List[Any]=1E-12 , UpperCamelCase : Dict=256 , UpperCamelCase : Union[str, Any]=10 , UpperCamelCase : Optional[int]=1E-3 , UpperCamelCase : Tuple=5 , UpperCamelCase : Optional[int]=320 , UpperCamelCase : List[str]=13353718 , UpperCamelCase : Optional[Any]=5000 , UpperCamelCase : str=1 , UpperCamelCase : Union[str, Any]=0 , UpperCamelCase : List[Any]=2 , **UpperCamelCase : int , ):
'''simple docstring'''
super().__init__(pad_token_id=UpperCamelCase , bos_token_id=UpperCamelCase , eos_token_id=UpperCamelCase , **UpperCamelCase )
# Common config
lowercase__ = vocab_size
lowercase__ = max_position_embeddings
lowercase__ = hidden_size
lowercase__ = retriever_proj_size
lowercase__ = num_hidden_layers
lowercase__ = num_attention_heads
lowercase__ = num_candidates
lowercase__ = intermediate_size
lowercase__ = hidden_act
lowercase__ = hidden_dropout_prob
lowercase__ = attention_probs_dropout_prob
lowercase__ = initializer_range
lowercase__ = type_vocab_size
lowercase__ = layer_norm_eps
# Reader config
lowercase__ = span_hidden_size
lowercase__ = max_span_width
lowercase__ = reader_layer_norm_eps
lowercase__ = reader_beam_size
lowercase__ = reader_seq_len
# Retrieval config
lowercase__ = num_block_records
lowercase__ = searcher_beam_size
| 2 | 0 |
from collections import OrderedDict
from typing import Any, List, Mapping, Optional
from ... import PreTrainedTokenizer, TensorType, is_torch_available
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfigWithPast, PatchingSpec
from ...utils import logging
__A = logging.get_logger(__name__)
__A = {
'Salesforce/codegen-350M-nl': 'https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json',
'Salesforce/codegen-350M-multi': 'https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json',
'Salesforce/codegen-350M-mono': 'https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json',
'Salesforce/codegen-2B-nl': 'https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json',
'Salesforce/codegen-2B-multi': 'https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json',
'Salesforce/codegen-2B-mono': 'https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json',
'Salesforce/codegen-6B-nl': 'https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json',
'Salesforce/codegen-6B-multi': 'https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json',
'Salesforce/codegen-6B-mono': 'https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json',
'Salesforce/codegen-16B-nl': 'https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json',
'Salesforce/codegen-16B-multi': 'https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json',
'Salesforce/codegen-16B-mono': 'https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json',
}
class __lowerCAmelCase ( lowercase_ ):
"""simple docstring"""
snake_case_ = """codegen"""
snake_case_ = {
"""max_position_embeddings""": """n_positions""",
"""hidden_size""": """n_embd""",
"""num_attention_heads""": """n_head""",
"""num_hidden_layers""": """n_layer""",
}
def __init__( self , lowerCamelCase__=50_400 , lowerCamelCase__=2_048 , lowerCamelCase__=2_048 , lowerCamelCase__=4_096 , lowerCamelCase__=28 , lowerCamelCase__=16 , lowerCamelCase__=64 , lowerCamelCase__=None , lowerCamelCase__="gelu_new" , lowerCamelCase__=0.0 , lowerCamelCase__=0.0 , lowerCamelCase__=0.0 , lowerCamelCase__=1e-5 , lowerCamelCase__=0.02 , lowerCamelCase__=True , lowerCamelCase__=50_256 , lowerCamelCase__=50_256 , lowerCamelCase__=False , **lowerCamelCase__ , ) -> Optional[Any]:
'''simple docstring'''
__lowerCamelCase = vocab_size
__lowerCamelCase = n_ctx
__lowerCamelCase = n_positions
__lowerCamelCase = n_embd
__lowerCamelCase = n_layer
__lowerCamelCase = n_head
__lowerCamelCase = n_inner
__lowerCamelCase = rotary_dim
__lowerCamelCase = activation_function
__lowerCamelCase = resid_pdrop
__lowerCamelCase = embd_pdrop
__lowerCamelCase = attn_pdrop
__lowerCamelCase = layer_norm_epsilon
__lowerCamelCase = initializer_range
__lowerCamelCase = use_cache
__lowerCamelCase = bos_token_id
__lowerCamelCase = eos_token_id
super().__init__(
bos_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ , tie_word_embeddings=lowerCamelCase__ , **lowerCamelCase__ )
class __lowerCAmelCase ( lowercase_ ):
"""simple docstring"""
def __init__( self , lowerCamelCase__ , lowerCamelCase__ = "default" , lowerCamelCase__ = None , lowerCamelCase__ = False , ) -> List[str]:
'''simple docstring'''
super().__init__(lowerCamelCase__ , task=lowerCamelCase__ , patching_specs=lowerCamelCase__ , use_past=lowerCamelCase__ )
if not getattr(self._config , 'pad_token_id' , lowerCamelCase__ ):
# TODO: how to do that better?
__lowerCamelCase = 0
@property
def lowercase_ ( self ) -> Any:
'''simple docstring'''
__lowerCamelCase = OrderedDict({'input_ids': {0: 'batch', 1: 'sequence'}} )
if self.use_past:
self.fill_with_past_key_values_(lowerCamelCase__ , direction='inputs' )
__lowerCamelCase = {0: 'batch', 1: 'past_sequence + sequence'}
else:
__lowerCamelCase = {0: 'batch', 1: 'sequence'}
return common_inputs
@property
def lowercase_ ( self ) -> Optional[Any]:
'''simple docstring'''
return self._config.n_layer
@property
def lowercase_ ( self ) -> Dict:
'''simple docstring'''
return self._config.n_head
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = -1 , lowerCamelCase__ = -1 , lowerCamelCase__ = False , lowerCamelCase__ = None , ) -> Dict:
'''simple docstring'''
__lowerCamelCase = super(lowerCamelCase__ , self ).generate_dummy_inputs(
lowerCamelCase__ , batch_size=lowerCamelCase__ , seq_length=lowerCamelCase__ , is_pair=lowerCamelCase__ , framework=lowerCamelCase__ )
# We need to order the input in the way they appears in the forward()
__lowerCamelCase = OrderedDict({'input_ids': common_inputs['input_ids']} )
# Need to add the past_keys
if self.use_past:
if not is_torch_available():
raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' )
else:
import torch
__lowerCamelCase , __lowerCamelCase = common_inputs['input_ids'].shape
# Not using the same length for past_key_values
__lowerCamelCase = seqlen + 2
__lowerCamelCase = (
batch,
self.num_attention_heads,
past_key_values_length,
self._config.hidden_size // self.num_attention_heads,
)
__lowerCamelCase = [
(torch.zeros(lowerCamelCase__ ), torch.zeros(lowerCamelCase__ )) for _ in range(self.num_layers )
]
__lowerCamelCase = common_inputs['attention_mask']
if self.use_past:
__lowerCamelCase = ordered_inputs['attention_mask'].dtype
__lowerCamelCase = torch.cat(
[ordered_inputs['attention_mask'], torch.ones(lowerCamelCase__ , lowerCamelCase__ , dtype=lowerCamelCase__ )] , dim=1 )
return ordered_inputs
@property
def lowercase_ ( self ) -> Optional[Any]:
'''simple docstring'''
return 13
| 90 |
'''simple docstring'''
import warnings
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCamelCase : str = logging.get_logger(__name__)
lowerCamelCase : int = {
'RUCAIBox/mvp': 'https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json',
}
class __lowerCAmelCase (lowercase_ ):
'''simple docstring'''
lowerCAmelCase__ : Union[str, Any] = """mvp"""
lowerCAmelCase__ : Optional[Any] = ["""past_key_values"""]
lowerCAmelCase__ : List[str] = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""}
def __init__(self : Any , UpperCamelCase : Optional[int]=50267 , UpperCamelCase : Tuple=1024 , UpperCamelCase : int=12 , UpperCamelCase : Tuple=4096 , UpperCamelCase : Dict=16 , UpperCamelCase : int=12 , UpperCamelCase : Optional[int]=4096 , UpperCamelCase : Optional[int]=16 , UpperCamelCase : Tuple=0.0 , UpperCamelCase : Tuple=0.0 , UpperCamelCase : List[Any]="gelu" , UpperCamelCase : Union[str, Any]=1024 , UpperCamelCase : Optional[Any]=0.1 , UpperCamelCase : str=0.0 , UpperCamelCase : str=0.0 , UpperCamelCase : Optional[Any]=0.02 , UpperCamelCase : List[str]=0.0 , UpperCamelCase : List[str]=False , UpperCamelCase : Optional[int]=True , UpperCamelCase : Any=1 , UpperCamelCase : int=0 , UpperCamelCase : int=2 , UpperCamelCase : Any=True , UpperCamelCase : Optional[Any]=2 , UpperCamelCase : Optional[Any]=2 , UpperCamelCase : Tuple=False , UpperCamelCase : int=100 , UpperCamelCase : Optional[Any]=800 , **UpperCamelCase : str , ):
'''simple docstring'''
lowercase__ = vocab_size
lowercase__ = max_position_embeddings
lowercase__ = d_model
lowercase__ = encoder_ffn_dim
lowercase__ = encoder_layers
lowercase__ = encoder_attention_heads
lowercase__ = decoder_ffn_dim
lowercase__ = decoder_layers
lowercase__ = decoder_attention_heads
lowercase__ = dropout
lowercase__ = attention_dropout
lowercase__ = activation_dropout
lowercase__ = activation_function
lowercase__ = init_std
lowercase__ = encoder_layerdrop
lowercase__ = decoder_layerdrop
lowercase__ = classifier_dropout
lowercase__ = use_cache
lowercase__ = encoder_layers
lowercase__ = scale_embedding # scale factor will be sqrt(d_model) if True
lowercase__ = use_prompt
lowercase__ = prompt_length
lowercase__ = prompt_mid_dim
super().__init__(
pad_token_id=UpperCamelCase , bos_token_id=UpperCamelCase , eos_token_id=UpperCamelCase , is_encoder_decoder=UpperCamelCase , decoder_start_token_id=UpperCamelCase , forced_eos_token_id=UpperCamelCase , **UpperCamelCase , )
if self.forced_bos_token_id is None and kwargs.get('''force_bos_token_to_be_generated''' , UpperCamelCase ):
lowercase__ = self.bos_token_id
warnings.warn(
f"Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. "
'''The config can simply be saved and uploaded again to be fixed.''' )
| 2 | 0 |
from dataclasses import dataclass, field
from typing import Optional
from transformers import AutoConfig, AutoImageProcessor, AutoTokenizer, FlaxVisionEncoderDecoderModel, HfArgumentParser
@dataclass
class __lowerCAmelCase :
lowerCamelCase_ : str = field(
metadata={'''help''': '''The output directory where the model will be written.'''}, )
lowerCamelCase_ : str = field(
metadata={
'''help''': (
'''The encoder model checkpoint for weights initialization.'''
'''Don\'t set if you want to train an encoder model from scratch.'''
)
}, )
lowerCamelCase_ : str = field(
metadata={
'''help''': (
'''The decoder model checkpoint for weights initialization.'''
'''Don\'t set if you want to train a decoder model from scratch.'''
)
}, )
lowerCamelCase_ : Optional[str] = field(
default=lowercase_, metadata={'''help''': '''Pretrained encoder config name or path if not the same as encoder_model_name'''} )
lowerCamelCase_ : Optional[str] = field(
default=lowercase_, metadata={'''help''': '''Pretrained decoder config name or path if not the same as decoder_model_name'''} )
def lowerCamelCase_ ( ) -> Union[str, Any]:
"""simple docstring"""
snake_case_ : List[str] = HfArgumentParser((ModelArguments,) )
((snake_case_) , ) : int = parser.parse_args_into_dataclasses()
# Load pretrained model and tokenizer
# Use explicit specified encoder config
if model_args.encoder_config_name:
snake_case_ : str = AutoConfig.from_pretrained(model_args.encoder_config_name )
# Use pretrained encoder model's config
else:
snake_case_ : Tuple = AutoConfig.from_pretrained(model_args.encoder_model_name_or_path )
# Use explicit specified decoder config
if model_args.decoder_config_name:
snake_case_ : Optional[int] = AutoConfig.from_pretrained(model_args.decoder_config_name )
# Use pretrained decoder model's config
else:
snake_case_ : List[Any] = AutoConfig.from_pretrained(model_args.decoder_model_name_or_path )
# necessary for `from_encoder_decoder_pretrained` when `decoder_config` is passed
snake_case_ : Optional[Any] = True
snake_case_ : Any = True
snake_case_ : Dict = FlaxVisionEncoderDecoderModel.from_encoder_decoder_pretrained(
encoder_pretrained_model_name_or_path=model_args.encoder_model_name_or_path , decoder_pretrained_model_name_or_path=model_args.decoder_model_name_or_path , encoder_config=_UpperCamelCase , decoder_config=_UpperCamelCase , )
# GPT2 only has bos/eos tokens but not decoder_start/pad tokens
snake_case_ : Tuple = decoder_config.decoder_start_token_id
snake_case_ : Dict = decoder_config.pad_token_id
if decoder_start_token_id is None:
snake_case_ : Tuple = decoder_config.bos_token_id
if pad_token_id is None:
snake_case_ : Union[str, Any] = decoder_config.eos_token_id
# This is necessary to make Flax's generate() work
snake_case_ : int = decoder_config.eos_token_id
snake_case_ : Tuple = decoder_start_token_id
snake_case_ : Union[str, Any] = pad_token_id
snake_case_ : Union[str, Any] = AutoImageProcessor.from_pretrained(model_args.encoder_model_name_or_path )
snake_case_ : int = AutoTokenizer.from_pretrained(model_args.decoder_model_name_or_path )
snake_case_ : Optional[Any] = tokenizer.convert_ids_to_tokens(model.config.pad_token_id )
model.save_pretrained(model_args.output_dir )
image_processor.save_pretrained(model_args.output_dir )
tokenizer.save_pretrained(model_args.output_dir )
if __name__ == "__main__":
main()
| 279 |
'''simple docstring'''
import unittest
from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
lowerCamelCase : List[str] = get_tests_dir('fixtures/spiece.model')
@require_sentencepiece
@require_tokenizers
class __lowerCAmelCase (lowercase_ , unittest.TestCase ):
'''simple docstring'''
lowerCAmelCase__ : int = DebertaVaTokenizer
lowerCAmelCase__ : List[Any] = DebertaVaTokenizerFast
lowerCAmelCase__ : str = True
lowerCAmelCase__ : Tuple = True
def UpperCamelCase__ (self : Tuple ):
'''simple docstring'''
super().setUp()
# We have a SentencePiece fixture for testing
lowercase__ = DebertaVaTokenizer(UpperCamelCase , unk_token='''<unk>''' )
tokenizer.save_pretrained(self.tmpdirname )
def UpperCamelCase__ (self : Union[str, Any] , UpperCamelCase : str ):
'''simple docstring'''
lowercase__ = '''this is a test'''
lowercase__ = '''this is a test'''
return input_text, output_text
def UpperCamelCase__ (self : Optional[int] ):
'''simple docstring'''
lowercase__ = '''<pad>'''
lowercase__ = 0
self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCamelCase ) , UpperCamelCase )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCamelCase ) , UpperCamelCase )
def UpperCamelCase__ (self : Dict ):
'''simple docstring'''
lowercase__ = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '''<pad>''' )
self.assertEqual(vocab_keys[1] , '''<unk>''' )
self.assertEqual(vocab_keys[-1] , '''[PAD]''' )
self.assertEqual(len(UpperCamelCase ) , 30001 )
def UpperCamelCase__ (self : int ):
'''simple docstring'''
self.assertEqual(self.get_tokenizer().vocab_size , 30000 )
def UpperCamelCase__ (self : Optional[Any] ):
'''simple docstring'''
lowercase__ = ''' \tHeLLo!how \n Are yoU? '''
lowercase__ = ['''▁hello''', '''!''', '''how''', '''▁are''', '''▁you''', '''?''']
# fmt: on
lowercase__ = DebertaVaTokenizer(UpperCamelCase , do_lower_case=UpperCamelCase )
lowercase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) )
self.assertListEqual(UpperCamelCase , UpperCamelCase )
lowercase__ = DebertaVaTokenizerFast(UpperCamelCase , do_lower_case=UpperCamelCase )
lowercase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) )
self.assertListEqual(UpperCamelCase , UpperCamelCase )
@unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' )
def UpperCamelCase__ (self : List[Any] ):
'''simple docstring'''
pass
@unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' )
def UpperCamelCase__ (self : List[str] ):
'''simple docstring'''
pass
def UpperCamelCase__ (self : Optional[int] ):
'''simple docstring'''
lowercase__ = '''I was born in 92000, and this is falsé.'''
lowercase__ = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ]
# fmt: on
lowercase__ = DebertaVaTokenizer(UpperCamelCase , split_by_punct=UpperCamelCase )
lowercase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) )
self.assertListEqual(UpperCamelCase , UpperCamelCase )
lowercase__ = DebertaVaTokenizerFast(UpperCamelCase , split_by_punct=UpperCamelCase )
lowercase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) )
self.assertListEqual(UpperCamelCase , UpperCamelCase )
def UpperCamelCase__ (self : int ):
'''simple docstring'''
lowercase__ = '''I was born in 92000, and this is falsé.'''
lowercase__ = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ]
# fmt: on
lowercase__ = DebertaVaTokenizer(UpperCamelCase , do_lower_case=UpperCamelCase , split_by_punct=UpperCamelCase )
lowercase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) )
self.assertListEqual(UpperCamelCase , UpperCamelCase )
lowercase__ = DebertaVaTokenizerFast(UpperCamelCase , do_lower_case=UpperCamelCase , split_by_punct=UpperCamelCase )
lowercase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) )
self.assertListEqual(UpperCamelCase , UpperCamelCase )
def UpperCamelCase__ (self : Optional[Any] ):
'''simple docstring'''
lowercase__ = '''I was born in 92000, and this is falsé.'''
lowercase__ = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ]
# fmt: on
lowercase__ = DebertaVaTokenizer(UpperCamelCase , do_lower_case=UpperCamelCase , split_by_punct=UpperCamelCase )
lowercase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) )
self.assertListEqual(UpperCamelCase , UpperCamelCase )
lowercase__ = DebertaVaTokenizerFast(UpperCamelCase , do_lower_case=UpperCamelCase , split_by_punct=UpperCamelCase )
lowercase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) )
self.assertListEqual(UpperCamelCase , UpperCamelCase )
def UpperCamelCase__ (self : Union[str, Any] ):
'''simple docstring'''
lowercase__ = '''I was born in 92000, and this is falsé.'''
lowercase__ = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ]
# fmt: on
lowercase__ = DebertaVaTokenizer(UpperCamelCase , do_lower_case=UpperCamelCase , split_by_punct=UpperCamelCase )
lowercase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) )
self.assertListEqual(UpperCamelCase , UpperCamelCase )
lowercase__ = DebertaVaTokenizerFast(UpperCamelCase , do_lower_case=UpperCamelCase , split_by_punct=UpperCamelCase )
lowercase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) )
self.assertListEqual(UpperCamelCase , UpperCamelCase )
def UpperCamelCase__ (self : Union[str, Any] ):
'''simple docstring'''
lowercase__ = ''' \tHeLLo!how \n Are yoU? '''
lowercase__ = ['''▁''', '''<unk>''', '''e''', '''<unk>''', '''o''', '''!''', '''how''', '''▁''', '''<unk>''', '''re''', '''▁yo''', '''<unk>''', '''?''']
# fmt: on
lowercase__ = DebertaVaTokenizer(UpperCamelCase , do_lower_case=UpperCamelCase , split_by_punct=UpperCamelCase )
lowercase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) )
self.assertListEqual(UpperCamelCase , UpperCamelCase )
lowercase__ = DebertaVaTokenizerFast(UpperCamelCase , do_lower_case=UpperCamelCase , split_by_punct=UpperCamelCase )
lowercase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) )
self.assertListEqual(UpperCamelCase , UpperCamelCase )
def UpperCamelCase__ (self : Union[str, Any] ):
'''simple docstring'''
lowercase__ = self.get_tokenizer()
lowercase__ = self.get_rust_tokenizer()
lowercase__ = '''I was born in 92000, and this is falsé.'''
lowercase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) )
lowercase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) )
self.assertListEqual(UpperCamelCase , UpperCamelCase )
lowercase__ = tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase )
lowercase__ = rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase )
self.assertListEqual(UpperCamelCase , UpperCamelCase )
lowercase__ = self.get_rust_tokenizer()
lowercase__ = tokenizer.encode(UpperCamelCase )
lowercase__ = rust_tokenizer.encode(UpperCamelCase )
self.assertListEqual(UpperCamelCase , UpperCamelCase )
def UpperCamelCase__ (self : int ):
'''simple docstring'''
lowercase__ = '''This is a test'''
lowercase__ = [13, 1, 4398, 25, 21, 1289]
lowercase__ = ['''▁''', '''T''', '''his''', '''▁is''', '''▁a''', '''▁test''']
lowercase__ = ['''▁''', '''<unk>''', '''his''', '''▁is''', '''▁a''', '''▁test''']
lowercase__ = DebertaVaTokenizer(UpperCamelCase , keep_accents=UpperCamelCase )
lowercase__ = DebertaVaTokenizerFast(UpperCamelCase , keep_accents=UpperCamelCase )
lowercase__ = tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase )
self.assertListEqual(UpperCamelCase , UpperCamelCase )
lowercase__ = tokenizer.tokenize(UpperCamelCase )
self.assertListEqual(UpperCamelCase , UpperCamelCase )
lowercase__ = tokenizer.convert_ids_to_tokens(UpperCamelCase )
self.assertListEqual(UpperCamelCase , UpperCamelCase )
lowercase__ = rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase )
self.assertListEqual(UpperCamelCase , UpperCamelCase )
lowercase__ = rust_tokenizer.tokenize(UpperCamelCase )
self.assertListEqual(UpperCamelCase , UpperCamelCase )
lowercase__ = rust_tokenizer.convert_ids_to_tokens(UpperCamelCase )
self.assertListEqual(UpperCamelCase , UpperCamelCase )
# fmt: off
lowercase__ = '''I was born in 92000, and this is falsé.'''
lowercase__ = [13, 1, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9]
lowercase__ = ['''▁''', '''I''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''é''', '''.''', ]
lowercase__ = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ]
# fmt: on
lowercase__ = tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase )
self.assertListEqual(UpperCamelCase , UpperCamelCase )
lowercase__ = tokenizer.tokenize(UpperCamelCase )
self.assertListEqual(UpperCamelCase , UpperCamelCase )
lowercase__ = tokenizer.convert_ids_to_tokens(UpperCamelCase )
self.assertListEqual(UpperCamelCase , UpperCamelCase )
lowercase__ = rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase )
self.assertListEqual(UpperCamelCase , UpperCamelCase )
lowercase__ = rust_tokenizer.tokenize(UpperCamelCase )
self.assertListEqual(UpperCamelCase , UpperCamelCase )
lowercase__ = rust_tokenizer.convert_ids_to_tokens(UpperCamelCase )
self.assertListEqual(UpperCamelCase , UpperCamelCase )
def UpperCamelCase__ (self : int ):
'''simple docstring'''
lowercase__ = DebertaVaTokenizer(UpperCamelCase )
lowercase__ = tokenizer.encode('''sequence builders''' )
lowercase__ = tokenizer.encode('''multi-sequence build''' )
lowercase__ = tokenizer.build_inputs_with_special_tokens(UpperCamelCase )
lowercase__ = tokenizer.build_inputs_with_special_tokens(UpperCamelCase , UpperCamelCase )
self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , UpperCamelCase )
self.assertEqual(
[tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , UpperCamelCase , )
@slow
def UpperCamelCase__ (self : int ):
'''simple docstring'''
lowercase__ = {'''input_ids''': [[1, 39867, 36, 19390, 486, 27, 35052, 81436, 18, 60685, 1225, 7, 35052, 81436, 18, 9367, 16899, 18, 15937, 53, 594, 773, 18, 16287, 30465, 36, 15937, 6, 41139, 38, 36979, 60763, 191, 6, 34132, 99, 6, 50538, 390, 43230, 6, 34132, 2779, 20850, 14, 699, 1072, 1194, 36, 382, 10901, 53, 7, 699, 1072, 2084, 36, 20422, 630, 53, 19, 105, 3049, 1896, 1053, 16899, 1506, 11, 37978, 4243, 7, 1237, 31869, 200, 16566, 654, 6, 35052, 81436, 7, 55630, 13593, 4, 2], [1, 26, 15011, 13, 667, 8, 1053, 18, 23611, 1237, 72356, 12820, 34, 104134, 1209, 35, 13313, 6627, 21, 202, 347, 7, 164, 2399, 11, 46, 4485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1232, 2864, 15785, 14951, 105, 5, 8581, 1250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=UpperCamelCase , model_name='''microsoft/deberta-v2-xlarge''' , revision='''ad6e42c1532ddf3a15c39246b63f5559d558b670''' , )
| 2 | 0 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_A : List[Any] =logging.get_logger(__name__)
_A : int ={'ctrl': 'https://huggingface.co/ctrl/resolve/main/config.json'}
class _lowercase ( lowercase_ ):
a = """ctrl"""
a = ["""past_key_values"""]
a = {
"""max_position_embeddings""": """n_positions""",
"""hidden_size""": """n_embd""",
"""num_attention_heads""": """n_head""",
"""num_hidden_layers""": """n_layer""",
}
def __init__( self: Tuple , UpperCamelCase__: Optional[Any]=246_534 , UpperCamelCase__: Union[str, Any]=256 , UpperCamelCase__: Optional[int]=1_280 , UpperCamelCase__: Any=8_192 , UpperCamelCase__: List[str]=48 , UpperCamelCase__: List[Any]=16 , UpperCamelCase__: Any=0.1 , UpperCamelCase__: List[str]=0.1 , UpperCamelCase__: str=1e-6 , UpperCamelCase__: Optional[int]=0.02 , UpperCamelCase__: Dict=True , **UpperCamelCase__: Dict , ):
lowerCamelCase__ : Optional[Any] = vocab_size
lowerCamelCase__ : List[Any] = n_positions
lowerCamelCase__ : Optional[Any] = n_embd
lowerCamelCase__ : Any = n_layer
lowerCamelCase__ : List[str] = n_head
lowerCamelCase__ : str = dff
lowerCamelCase__ : List[str] = resid_pdrop
lowerCamelCase__ : Dict = embd_pdrop
lowerCamelCase__ : Optional[int] = layer_norm_epsilon
lowerCamelCase__ : List[str] = initializer_range
lowerCamelCase__ : List[Any] = use_cache
super().__init__(**UpperCamelCase__ )
| 41 |
'''simple docstring'''
import argparse
import torch
from torch import nn
from transformers import MBartConfig, MBartForConditionalGeneration
def _SCREAMING_SNAKE_CASE (A ) -> Optional[Any]:
"""simple docstring"""
lowercase__ = [
'''encoder.version''',
'''decoder.version''',
'''model.encoder.version''',
'''model.decoder.version''',
'''_float_tensor''',
'''decoder.output_projection.weight''',
]
for k in ignore_keys:
state_dict.pop(A , A )
def _SCREAMING_SNAKE_CASE (A ) -> List[str]:
"""simple docstring"""
lowercase__ ,lowercase__ = emb.weight.shape
lowercase__ = nn.Linear(A , A , bias=A )
lowercase__ = emb.weight.data
return lin_layer
def _SCREAMING_SNAKE_CASE (A , A="facebook/mbart-large-en-ro" , A=False , A=False ) -> Union[str, Any]:
"""simple docstring"""
lowercase__ = torch.load(A , map_location='''cpu''' )['''model''']
remove_ignore_keys_(A )
lowercase__ = state_dict['''encoder.embed_tokens.weight'''].shape[0]
lowercase__ = MBartConfig.from_pretrained(A , vocab_size=A )
if mbart_aa and finetuned:
lowercase__ = '''relu'''
lowercase__ = state_dict['''decoder.embed_tokens.weight''']
lowercase__ = MBartForConditionalGeneration(A )
model.model.load_state_dict(A )
if finetuned:
lowercase__ = make_linear_from_emb(model.model.shared )
return model
if __name__ == "__main__":
lowerCamelCase : Any = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'fairseq_path', type=str, help='bart.large, bart.large.cnn or a path to a model.pt on local filesystem.'
)
parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
parser.add_argument(
'--hf_config',
default='facebook/mbart-large-cc25',
type=str,
help='Which huggingface architecture to use: mbart-large',
)
parser.add_argument('--mbart_50', action='store_true', help='whether the model is mMART-50 checkpoint')
parser.add_argument('--finetuned', action='store_true', help='whether the model is a fine-tuned checkpoint')
lowerCamelCase : Any = parser.parse_args()
lowerCamelCase : List[str] = convert_fairseq_mbart_checkpoint_from_disk(
args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa
)
model.save_pretrained(args.pytorch_dump_folder_path)
| 2 | 0 |
'''simple docstring'''
def lowerCAmelCase_ ( snake_case__ = 50 ):
'''simple docstring'''
A : Tuple = [[0] * 3 for _ in range(length + 1 )]
for row_length in range(length + 1 ):
for tile_length in range(2 , 5 ):
for tile_start in range(row_length - tile_length + 1 ):
different_colour_ways_number[row_length][tile_length - 2] += (
different_colour_ways_number[row_length - tile_start - tile_length][
tile_length - 2
]
+ 1
)
return sum(different_colour_ways_number[length] )
if __name__ == "__main__":
print(f'''{solution() = }''')
| 3 |
'''simple docstring'''
import logging
import os
from typing import List, TextIO, Union
from conllu import parse_incr
from utils_ner import InputExample, Split, TokenClassificationTask
lowerCamelCase : List[Any] = logging.getLogger(__name__)
class __lowerCAmelCase (lowercase_ ):
'''simple docstring'''
def __init__(self : Optional[Any] , UpperCamelCase : Any=-1 ):
'''simple docstring'''
lowercase__ = label_idx
def UpperCamelCase__ (self : Union[str, Any] , UpperCamelCase : Optional[Any] , UpperCamelCase : Union[Split, str] ):
'''simple docstring'''
if isinstance(UpperCamelCase , UpperCamelCase ):
lowercase__ = mode.value
lowercase__ = os.path.join(UpperCamelCase , f"{mode}.txt" )
lowercase__ = 1
lowercase__ = []
with open(UpperCamelCase , encoding='''utf-8''' ) as f:
lowercase__ = []
lowercase__ = []
for line in f:
if line.startswith('''-DOCSTART-''' ) or line == "" or line == "\n":
if words:
examples.append(InputExample(guid=f"{mode}-{guid_index}" , words=UpperCamelCase , labels=UpperCamelCase ) )
guid_index += 1
lowercase__ = []
lowercase__ = []
else:
lowercase__ = line.split(''' ''' )
words.append(splits[0] )
if len(UpperCamelCase ) > 1:
labels.append(splits[self.label_idx].replace('''\n''' , '''''' ) )
else:
# Examples could have no label for mode = "test"
labels.append('''O''' )
if words:
examples.append(InputExample(guid=f"{mode}-{guid_index}" , words=UpperCamelCase , labels=UpperCamelCase ) )
return examples
def UpperCamelCase__ (self : Optional[int] , UpperCamelCase : TextIO , UpperCamelCase : TextIO , UpperCamelCase : List ):
'''simple docstring'''
lowercase__ = 0
for line in test_input_reader:
if line.startswith('''-DOCSTART-''' ) or line == "" or line == "\n":
writer.write(UpperCamelCase )
if not preds_list[example_id]:
example_id += 1
elif preds_list[example_id]:
lowercase__ = line.split()[0] + ''' ''' + preds_list[example_id].pop(0 ) + '''\n'''
writer.write(UpperCamelCase )
else:
logger.warning('''Maximum sequence length exceeded: No prediction for \'%s\'.''' , line.split()[0] )
def UpperCamelCase__ (self : Union[str, Any] , UpperCamelCase : str ):
'''simple docstring'''
if path:
with open(UpperCamelCase , '''r''' ) as f:
lowercase__ = f.read().splitlines()
if "O" not in labels:
lowercase__ = ['''O'''] + labels
return labels
else:
return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"]
class __lowerCAmelCase (lowercase_ ):
'''simple docstring'''
def __init__(self : List[Any] ):
'''simple docstring'''
super().__init__(label_idx=-2 )
def UpperCamelCase__ (self : List[Any] , UpperCamelCase : str ):
'''simple docstring'''
if path:
with open(UpperCamelCase , '''r''' ) as f:
lowercase__ = f.read().splitlines()
if "O" not in labels:
lowercase__ = ['''O'''] + labels
return labels
else:
return [
"O",
"B-ADVP",
"B-INTJ",
"B-LST",
"B-PRT",
"B-NP",
"B-SBAR",
"B-VP",
"B-ADJP",
"B-CONJP",
"B-PP",
"I-ADVP",
"I-INTJ",
"I-LST",
"I-PRT",
"I-NP",
"I-SBAR",
"I-VP",
"I-ADJP",
"I-CONJP",
"I-PP",
]
class __lowerCAmelCase (lowercase_ ):
'''simple docstring'''
def UpperCamelCase__ (self : Tuple , UpperCamelCase : int , UpperCamelCase : Union[Split, str] ):
'''simple docstring'''
if isinstance(UpperCamelCase , UpperCamelCase ):
lowercase__ = mode.value
lowercase__ = os.path.join(UpperCamelCase , f"{mode}.txt" )
lowercase__ = 1
lowercase__ = []
with open(UpperCamelCase , encoding='''utf-8''' ) as f:
for sentence in parse_incr(UpperCamelCase ):
lowercase__ = []
lowercase__ = []
for token in sentence:
words.append(token['''form'''] )
labels.append(token['''upos'''] )
assert len(UpperCamelCase ) == len(UpperCamelCase )
if words:
examples.append(InputExample(guid=f"{mode}-{guid_index}" , words=UpperCamelCase , labels=UpperCamelCase ) )
guid_index += 1
return examples
def UpperCamelCase__ (self : Tuple , UpperCamelCase : TextIO , UpperCamelCase : TextIO , UpperCamelCase : List ):
'''simple docstring'''
lowercase__ = 0
for sentence in parse_incr(UpperCamelCase ):
lowercase__ = preds_list[example_id]
lowercase__ = ''''''
for token in sentence:
out += f"{token['form']} ({token['upos']}|{s_p.pop(0 )}) "
out += "\n"
writer.write(UpperCamelCase )
example_id += 1
def UpperCamelCase__ (self : Union[str, Any] , UpperCamelCase : str ):
'''simple docstring'''
if path:
with open(UpperCamelCase , '''r''' ) as f:
return f.read().splitlines()
else:
return [
"ADJ",
"ADP",
"ADV",
"AUX",
"CCONJ",
"DET",
"INTJ",
"NOUN",
"NUM",
"PART",
"PRON",
"PROPN",
"PUNCT",
"SCONJ",
"SYM",
"VERB",
"X",
]
| 2 | 0 |
'''simple docstring'''
import pickle
import numpy as np
from matplotlib import pyplot as plt
class _a :
def __init__( self : Optional[int] , lowercase : List[Any] , lowercase : Any , lowercase : Optional[Any] , lowercase : Optional[int] , lowercase : Union[str, Any] , lowercase : int=0.2 , lowercase : Optional[int]=0.2 ):
'''simple docstring'''
UpperCAmelCase = bp_numa
UpperCAmelCase = bp_numa
UpperCAmelCase = bp_numa
UpperCAmelCase = conva_get[:2]
UpperCAmelCase = conva_get[2]
UpperCAmelCase = size_pa
UpperCAmelCase = rate_w
UpperCAmelCase = rate_t
UpperCAmelCase = [
np.mat(-1 * np.random.rand(self.conva[0] , self.conva[0] ) + 0.5 )
for i in range(self.conva[1] )
]
UpperCAmelCase = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 )
UpperCAmelCase = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 )
UpperCAmelCase = -2 * np.random.rand(self.conva[1] ) + 1
UpperCAmelCase = -2 * np.random.rand(self.num_bpa ) + 1
UpperCAmelCase = -2 * np.random.rand(self.num_bpa ) + 1
def A ( self : List[str] , lowercase : List[str] ):
'''simple docstring'''
UpperCAmelCase = {
'''num_bp1''': self.num_bpa,
'''num_bp2''': self.num_bpa,
'''num_bp3''': self.num_bpa,
'''conv1''': self.conva,
'''step_conv1''': self.step_conva,
'''size_pooling1''': self.size_poolinga,
'''rate_weight''': self.rate_weight,
'''rate_thre''': self.rate_thre,
'''w_conv1''': self.w_conva,
'''wkj''': self.wkj,
'''vji''': self.vji,
'''thre_conv1''': self.thre_conva,
'''thre_bp2''': self.thre_bpa,
'''thre_bp3''': self.thre_bpa,
}
with open(lowercase , '''wb''' ) as f:
pickle.dump(lowercase , lowercase )
print(f"Model saved: {save_path}" )
@classmethod
def A ( cls : Union[str, Any] , lowercase : Union[str, Any] ):
'''simple docstring'''
with open(lowercase , '''rb''' ) as f:
UpperCAmelCase = pickle.load(lowercase ) # noqa: S301
UpperCAmelCase = model_dic.get('''conv1''' )
conv_get.append(model_dic.get('''step_conv1''' ) )
UpperCAmelCase = model_dic.get('''size_pooling1''' )
UpperCAmelCase = model_dic.get('''num_bp1''' )
UpperCAmelCase = model_dic.get('''num_bp2''' )
UpperCAmelCase = model_dic.get('''num_bp3''' )
UpperCAmelCase = model_dic.get('''rate_weight''' )
UpperCAmelCase = model_dic.get('''rate_thre''' )
# create model instance
UpperCAmelCase = CNN(lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase )
# modify model parameter
UpperCAmelCase = model_dic.get('''w_conv1''' )
UpperCAmelCase = model_dic.get('''wkj''' )
UpperCAmelCase = model_dic.get('''vji''' )
UpperCAmelCase = model_dic.get('''thre_conv1''' )
UpperCAmelCase = model_dic.get('''thre_bp2''' )
UpperCAmelCase = model_dic.get('''thre_bp3''' )
return conv_ins
def A ( self : Dict , lowercase : Union[str, Any] ):
'''simple docstring'''
return 1 / (1 + np.exp(-1 * x ))
def A ( self : List[str] , lowercase : str ):
'''simple docstring'''
return round(lowercase , 3 )
def A ( self : Tuple , lowercase : Dict , lowercase : Any , lowercase : Tuple , lowercase : Dict , lowercase : Tuple ):
'''simple docstring'''
UpperCAmelCase = convs[0]
UpperCAmelCase = convs[1]
UpperCAmelCase = np.shape(lowercase )[0]
# get the data slice of original image data, data_focus
UpperCAmelCase = []
for i_focus in range(0 , size_data - size_conv + 1 , lowercase ):
for j_focus in range(0 , size_data - size_conv + 1 , lowercase ):
UpperCAmelCase = data[
i_focus : i_focus + size_conv, j_focus : j_focus + size_conv
]
data_focus.append(lowercase )
# calculate the feature map of every single kernel, and saved as list of matrix
UpperCAmelCase = []
UpperCAmelCase = int((size_data - size_conv) / conv_step + 1 )
for i_map in range(lowercase ):
UpperCAmelCase = []
for i_focus in range(len(lowercase ) ):
UpperCAmelCase = (
np.sum(np.multiply(data_focus[i_focus] , w_convs[i_map] ) )
- thre_convs[i_map]
)
featuremap.append(self.sig(lowercase ) )
UpperCAmelCase = np.asmatrix(lowercase ).reshape(
lowercase , lowercase )
data_featuremap.append(lowercase )
# expanding the data slice to One dimenssion
UpperCAmelCase = []
for each_focus in data_focus:
focusa_list.extend(self.Expand_Mat(lowercase ) )
UpperCAmelCase = np.asarray(lowercase )
return focus_list, data_featuremap
def A ( self : Any , lowercase : str , lowercase : Optional[int] , lowercase : List[Any]="average_pool" ):
'''simple docstring'''
UpperCAmelCase = len(featuremaps[0] )
UpperCAmelCase = int(size_map / size_pooling )
UpperCAmelCase = []
for i_map in range(len(lowercase ) ):
UpperCAmelCase = featuremaps[i_map]
UpperCAmelCase = []
for i_focus in range(0 , lowercase , lowercase ):
for j_focus in range(0 , lowercase , lowercase ):
UpperCAmelCase = feature_map[
i_focus : i_focus + size_pooling,
j_focus : j_focus + size_pooling,
]
if pooling_type == "average_pool":
# average pooling
map_pooled.append(np.average(lowercase ) )
elif pooling_type == "max_pooling":
# max pooling
map_pooled.append(np.max(lowercase ) )
UpperCAmelCase = np.asmatrix(lowercase ).reshape(lowercase , lowercase )
featuremap_pooled.append(lowercase )
return featuremap_pooled
def A ( self : Union[str, Any] , lowercase : List[str] ):
'''simple docstring'''
UpperCAmelCase = []
for i in range(len(lowercase ) ):
UpperCAmelCase = np.shape(data[i] )
UpperCAmelCase = data[i].reshape(1 , shapes[0] * shapes[1] )
UpperCAmelCase = data_listed.getA().tolist()[0]
data_expanded.extend(lowercase )
UpperCAmelCase = np.asarray(lowercase )
return data_expanded
def A ( self : int , lowercase : Dict ):
'''simple docstring'''
UpperCAmelCase = np.asarray(lowercase )
UpperCAmelCase = np.shape(lowercase )
UpperCAmelCase = data_mat.reshape(1 , shapes[0] * shapes[1] )
return data_expanded
def A ( self : Any , lowercase : int , lowercase : List[Any] , lowercase : int , lowercase : Any , lowercase : str ):
'''simple docstring'''
UpperCAmelCase = []
UpperCAmelCase = 0
for i_map in range(lowercase ):
UpperCAmelCase = np.ones((size_map, size_map) )
for i in range(0 , lowercase , lowercase ):
for j in range(0 , lowercase , lowercase ):
UpperCAmelCase = pd_pool[
i_pool
]
UpperCAmelCase = i_pool + 1
UpperCAmelCase = np.multiply(
lowercase , np.multiply(out_map[i_map] , (1 - out_map[i_map]) ) )
pd_all.append(lowercase )
return pd_all
def A ( self : Optional[Any] , lowercase : str , lowercase : Union[str, Any] , lowercase : Optional[int] , lowercase : Optional[int] , lowercase : List[Any] , lowercase : str=bool ):
'''simple docstring'''
print('''----------------------Start Training-------------------------''' )
print((''' - - Shape: Train_Data ''', np.shape(lowercase )) )
print((''' - - Shape: Teach_Data ''', np.shape(lowercase )) )
UpperCAmelCase = 0
UpperCAmelCase = []
UpperCAmelCase = 10_000
while rp < n_repeat and mse >= error_accuracy:
UpperCAmelCase = 0
print(f"-------------Learning Time {rp}--------------" )
for p in range(len(lowercase ) ):
# print('------------Learning Image: %d--------------'%p)
UpperCAmelCase = np.asmatrix(datas_train[p] )
UpperCAmelCase = np.asarray(datas_teach[p] )
UpperCAmelCase , UpperCAmelCase = self.convolute(
lowercase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , )
UpperCAmelCase = self.pooling(lowercase , self.size_poolinga )
UpperCAmelCase = np.shape(lowercase )
UpperCAmelCase = self._expand(lowercase )
UpperCAmelCase = data_bp_input
UpperCAmelCase = np.dot(lowercase , self.vji.T ) - self.thre_bpa
UpperCAmelCase = self.sig(lowercase )
UpperCAmelCase = np.dot(lowercase , self.wkj.T ) - self.thre_bpa
UpperCAmelCase = self.sig(lowercase )
# --------------Model Leaning ------------------------
# calculate error and gradient---------------
UpperCAmelCase = np.multiply(
(data_teach - bp_outa) , np.multiply(lowercase , (1 - bp_outa) ) )
UpperCAmelCase = np.multiply(
np.dot(lowercase , self.wkj ) , np.multiply(lowercase , (1 - bp_outa) ) )
UpperCAmelCase = np.dot(lowercase , self.vji )
UpperCAmelCase = pd_i_all / (self.size_poolinga * self.size_poolinga)
UpperCAmelCase = pd_conva_pooled.T.getA().tolist()
UpperCAmelCase = self._calculate_gradient_from_pool(
lowercase , lowercase , shape_featuremapa[0] , shape_featuremapa[1] , self.size_poolinga , )
# weight and threshold learning process---------
# convolution layer
for k_conv in range(self.conva[1] ):
UpperCAmelCase = self._expand_mat(pd_conva_all[k_conv] )
UpperCAmelCase = self.rate_weight * np.dot(lowercase , lowercase )
UpperCAmelCase = self.w_conva[k_conv] + delta_w.reshape(
(self.conva[0], self.conva[0]) )
UpperCAmelCase = (
self.thre_conva[k_conv]
- np.sum(pd_conva_all[k_conv] ) * self.rate_thre
)
# all connected layer
UpperCAmelCase = self.wkj + pd_k_all.T * bp_outa * self.rate_weight
UpperCAmelCase = self.vji + pd_j_all.T * bp_outa * self.rate_weight
UpperCAmelCase = self.thre_bpa - pd_k_all * self.rate_thre
UpperCAmelCase = self.thre_bpa - pd_j_all * self.rate_thre
# calculate the sum error of all single image
UpperCAmelCase = np.sum(abs(data_teach - bp_outa ) )
error_count += errors
# print(' ----Teach ',data_teach)
# print(' ----BP_output ',bp_out3)
UpperCAmelCase = rp + 1
UpperCAmelCase = error_count / patterns
all_mse.append(lowercase )
def draw_error():
UpperCAmelCase = [error_accuracy for i in range(int(n_repeat * 1.2 ) )]
plt.plot(lowercase , '''+-''' )
plt.plot(lowercase , '''r--''' )
plt.xlabel('''Learning Times''' )
plt.ylabel('''All_mse''' )
plt.grid(lowercase , alpha=0.5 )
plt.show()
print('''------------------Training Complished---------------------''' )
print((''' - - Training epoch: ''', rp, f" - - Mse: {mse:.6f}") )
if draw_e:
draw_error()
return mse
def A ( self : List[str] , lowercase : Optional[Any] ):
'''simple docstring'''
UpperCAmelCase = []
print('''-------------------Start Testing-------------------------''' )
print((''' - - Shape: Test_Data ''', np.shape(lowercase )) )
for p in range(len(lowercase ) ):
UpperCAmelCase = np.asmatrix(datas_test[p] )
UpperCAmelCase , UpperCAmelCase = self.convolute(
lowercase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , )
UpperCAmelCase = self.pooling(lowercase , self.size_poolinga )
UpperCAmelCase = self._expand(lowercase )
UpperCAmelCase = data_bp_input
UpperCAmelCase = bp_outa * self.vji.T - self.thre_bpa
UpperCAmelCase = self.sig(lowercase )
UpperCAmelCase = bp_outa * self.wkj.T - self.thre_bpa
UpperCAmelCase = self.sig(lowercase )
produce_out.extend(bp_outa.getA().tolist() )
UpperCAmelCase = [list(map(self.do_round , lowercase ) ) for each in produce_out]
return np.asarray(lowercase )
def A ( self : Tuple , lowercase : Dict ):
'''simple docstring'''
UpperCAmelCase = np.asmatrix(lowercase )
UpperCAmelCase , UpperCAmelCase = self.convolute(
lowercase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , )
UpperCAmelCase = self.pooling(lowercase , self.size_poolinga )
return data_conveda, data_pooleda
if __name__ == "__main__":
pass
| 34 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCamelCase : Dict = logging.get_logger(__name__)
lowerCamelCase : Union[str, Any] = {
# See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert
}
class __lowerCAmelCase (lowercase_ ):
'''simple docstring'''
lowerCAmelCase__ : List[str] = """megatron-bert"""
def __init__(self : Tuple , UpperCamelCase : Optional[int]=29056 , UpperCamelCase : Optional[Any]=1024 , UpperCamelCase : Any=24 , UpperCamelCase : int=16 , UpperCamelCase : Optional[int]=4096 , UpperCamelCase : int="gelu" , UpperCamelCase : int=0.1 , UpperCamelCase : Tuple=0.1 , UpperCamelCase : Any=512 , UpperCamelCase : int=2 , UpperCamelCase : Dict=0.02 , UpperCamelCase : Dict=1E-12 , UpperCamelCase : List[Any]=0 , UpperCamelCase : Optional[int]="absolute" , UpperCamelCase : List[Any]=True , **UpperCamelCase : str , ):
'''simple docstring'''
super().__init__(pad_token_id=UpperCamelCase , **UpperCamelCase )
lowercase__ = vocab_size
lowercase__ = hidden_size
lowercase__ = num_hidden_layers
lowercase__ = num_attention_heads
lowercase__ = hidden_act
lowercase__ = intermediate_size
lowercase__ = hidden_dropout_prob
lowercase__ = attention_probs_dropout_prob
lowercase__ = max_position_embeddings
lowercase__ = type_vocab_size
lowercase__ = initializer_range
lowercase__ = layer_norm_eps
lowercase__ = position_embedding_type
lowercase__ = use_cache
| 2 | 0 |
'''simple docstring'''
import json
import os
import unittest
from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer
from ...test_tokenization_common import TokenizerTesterMixin
class lowerCAmelCase ( lowercase_ , unittest.TestCase ):
lowerCAmelCase_ = CTRLTokenizer
lowerCAmelCase_ = False
lowerCAmelCase_ = False
def snake_case ( self : Optional[Any] ):
"""simple docstring"""
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
__lowercase =['adapt', 're@@', 'a@@', 'apt', 'c@@', 't', '<unk>']
__lowercase =dict(zip(__lowercase , range(len(__lowercase ) ) ) )
__lowercase =['#version: 0.2', 'a p', 'ap t</w>', 'r e', 'a d', 'ad apt</w>', '']
__lowercase ={'unk_token': '<unk>'}
__lowercase =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] )
__lowercase =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] )
with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp:
fp.write(json.dumps(__lowercase ) + '\n' )
with open(self.merges_file , 'w' , encoding='utf-8' ) as fp:
fp.write('\n'.join(__lowercase ) )
def snake_case ( self : int , **__lowercase : List[Any] ):
"""simple docstring"""
kwargs.update(self.special_tokens_map )
return CTRLTokenizer.from_pretrained(self.tmpdirname , **__lowercase )
def snake_case ( self : List[str] , __lowercase : List[str] ):
"""simple docstring"""
__lowercase ='adapt react readapt apt'
__lowercase ='adapt react readapt apt'
return input_text, output_text
def snake_case ( self : Union[str, Any] ):
"""simple docstring"""
__lowercase =CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map )
__lowercase ='adapt react readapt apt'
__lowercase ='adapt re@@ a@@ c@@ t re@@ adapt apt'.split()
__lowercase =tokenizer.tokenize(__lowercase )
self.assertListEqual(__lowercase , __lowercase )
__lowercase =tokens + [tokenizer.unk_token]
__lowercase =[0, 1, 2, 4, 5, 1, 0, 3, 6]
self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowercase ) , __lowercase )
| 141 |
'''simple docstring'''
# Lint as: python3
import itertools
import os
import re
lowerCamelCase : Any = re.compile(R'([A-Z]+)([A-Z][a-z])')
lowerCamelCase : str = re.compile(R'([a-z\d])([A-Z])')
lowerCamelCase : Optional[int] = re.compile(R'(?<!_)_(?!_)')
lowerCamelCase : List[Any] = re.compile(R'(_{2,})')
lowerCamelCase : str = R'^\w+(\.\w+)*$'
lowerCamelCase : Dict = R'<>:/\|?*'
def _SCREAMING_SNAKE_CASE (A ) -> Any:
"""simple docstring"""
lowercase__ = _uppercase_uppercase_re.sub(R'''\1_\2''' , A )
lowercase__ = _lowercase_uppercase_re.sub(R'''\1_\2''' , A )
return name.lower()
def _SCREAMING_SNAKE_CASE (A ) -> Tuple:
"""simple docstring"""
lowercase__ = _single_underscore_re.split(A )
lowercase__ = [_multiple_underscores_re.split(A ) for n in name]
return "".join(n.capitalize() for n in itertools.chain.from_iterable(A ) if n != '''''' )
def _SCREAMING_SNAKE_CASE (A ) -> Tuple:
"""simple docstring"""
if os.path.basename(A ) != name:
raise ValueError(f"Should be a dataset name, not a path: {name}" )
return camelcase_to_snakecase(A )
def _SCREAMING_SNAKE_CASE (A , A ) -> Optional[Any]:
"""simple docstring"""
if os.path.basename(A ) != name:
raise ValueError(f"Should be a dataset name, not a path: {name}" )
if not re.match(_split_re , A ):
raise ValueError(f"Split name should match '{_split_re}'' but got '{split}'." )
return f"{filename_prefix_for_name(A )}-{split}"
def _SCREAMING_SNAKE_CASE (A , A , A , A=None ) -> List[str]:
"""simple docstring"""
lowercase__ = filename_prefix_for_split(A , A )
if filetype_suffix:
prefix += f".{filetype_suffix}"
lowercase__ = os.path.join(A , A )
return f"{filepath}*"
def _SCREAMING_SNAKE_CASE (A , A , A , A=None , A=None ) -> Optional[Any]:
"""simple docstring"""
lowercase__ = filename_prefix_for_split(A , A )
lowercase__ = os.path.join(A , A )
if shard_lengths:
lowercase__ = len(A )
lowercase__ = [f"{prefix}-{shard_id:05d}-of-{num_shards:05d}" for shard_id in range(A )]
if filetype_suffix:
lowercase__ = [filename + f".{filetype_suffix}" for filename in filenames]
return filenames
else:
lowercase__ = prefix
if filetype_suffix:
filename += f".{filetype_suffix}"
return [filename]
| 2 | 0 |
import os
import re
import shutil
from argparse import ArgumentParser, Namespace
from datasets.commands import BaseDatasetsCLICommand
from datasets.utils.logging import get_logger
__snake_case : List[Any] ='<<<<<<< This should probably be modified because it mentions: '
__snake_case : Union[str, Any] ='=======\n>>>>>>>\n'
__snake_case : Tuple =[
'TextEncoderConfig',
'ByteTextEncoder',
'SubwordTextEncoder',
'encoder_config',
'maybe_build_from_corpus',
'manual_dir',
]
__snake_case : List[Any] =[
# (pattern, replacement)
# Order is important here for some replacements
(R'tfds\.core', R'datasets'),
(R'tf\.io\.gfile\.GFile', R'open'),
(R'tf\.([\w\d]+)', R'datasets.Value(\'\1\')'),
(R'tfds\.features\.Text\(\)', R'datasets.Value(\'string\')'),
(R'tfds\.features\.Text\(', R'datasets.Value(\'string\'),'),
(R'features\s*=\s*tfds.features.FeaturesDict\(', R'features=datasets.Features('),
(R'tfds\.features\.FeaturesDict\(', R'dict('),
(R'The TensorFlow Datasets Authors', R'The TensorFlow Datasets Authors and the HuggingFace Datasets Authors'),
(R'tfds\.', R'datasets.'),
(R'dl_manager\.manual_dir', R'self.config.data_dir'),
(R'self\.builder_config', R'self.config'),
]
def lowerCAmelCase__ ( lowerCamelCase_ : List[Any]):
'''simple docstring'''
return ConvertCommand(args.tfds_path ,args.datasets_directory)
class lowerCamelCase__ ( lowercase_):
'''simple docstring'''
@staticmethod
def lowerCAmelCase__ (__lowerCamelCase ) -> Tuple:
"""simple docstring"""
lowerCAmelCase__ : Tuple = parser.add_parser(
'''convert''' ,help='''Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset.''' ,)
train_parser.add_argument(
'''--tfds_path''' ,type=__lowerCamelCase ,required=__lowerCamelCase ,help='''Path to a TensorFlow Datasets folder to convert or a single tfds file to convert.''' ,)
train_parser.add_argument(
'''--datasets_directory''' ,type=__lowerCamelCase ,required=__lowerCamelCase ,help='''Path to the HuggingFace Datasets folder.''' )
train_parser.set_defaults(func=__lowerCamelCase )
def __init__(self ,__lowerCamelCase ,__lowerCamelCase ,*__lowerCamelCase ) -> Tuple:
"""simple docstring"""
lowerCAmelCase__ : Union[str, Any] = get_logger('''datasets-cli/converting''' )
lowerCAmelCase__ : Optional[int] = tfds_path
lowerCAmelCase__ : str = datasets_directory
def lowerCAmelCase__ (self ) -> Any:
"""simple docstring"""
if os.path.isdir(self._tfds_path ):
lowerCAmelCase__ : Tuple = os.path.abspath(self._tfds_path )
elif os.path.isfile(self._tfds_path ):
lowerCAmelCase__ : Optional[Any] = os.path.dirname(self._tfds_path )
else:
raise ValueError('''--tfds_path is neither a directory nor a file. Please check path.''' )
lowerCAmelCase__ : List[Any] = os.path.abspath(self._datasets_directory )
self._logger.info(f"""Converting datasets from {abs_tfds_path} to {abs_datasets_path}""" )
lowerCAmelCase__ : str = []
lowerCAmelCase__ : Union[str, Any] = []
lowerCAmelCase__ : List[Any] = {}
if os.path.isdir(self._tfds_path ):
lowerCAmelCase__ : Tuple = os.listdir(__lowerCamelCase )
else:
lowerCAmelCase__ : Dict = [os.path.basename(self._tfds_path )]
for f_name in file_names:
self._logger.info(f"""Looking at file {f_name}""" )
lowerCAmelCase__ : str = os.path.join(__lowerCamelCase ,__lowerCamelCase )
lowerCAmelCase__ : List[Any] = os.path.join(__lowerCamelCase ,__lowerCamelCase )
if not os.path.isfile(__lowerCamelCase ) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name:
self._logger.info('''Skipping file''' )
continue
with open(__lowerCamelCase ,encoding='''utf-8''' ) as f:
lowerCAmelCase__ : List[str] = f.readlines()
lowerCAmelCase__ : Tuple = []
lowerCAmelCase__ : Optional[int] = False
lowerCAmelCase__ : List[Any] = False
lowerCAmelCase__ : Optional[int] = []
for line in lines:
lowerCAmelCase__ : List[Any] = line
# Convert imports
if "import tensorflow.compat.v2 as tf" in out_line:
continue
elif "@tfds.core" in out_line:
continue
elif "builder=self" in out_line:
continue
elif "import tensorflow_datasets.public_api as tfds" in out_line:
lowerCAmelCase__ : Optional[Any] = '''import datasets\n'''
elif "import tensorflow" in out_line:
# order is important here
lowerCAmelCase__ : int = ''''''
continue
elif "from absl import logging" in out_line:
lowerCAmelCase__ : Any = '''from datasets import logging\n'''
elif "getLogger" in out_line:
lowerCAmelCase__ : str = out_line.replace('''getLogger''' ,'''get_logger''' )
elif any(expression in out_line for expression in TO_HIGHLIGHT ):
lowerCAmelCase__ : int = True
lowerCAmelCase__ : str = list(filter(lambda __lowerCamelCase : e in out_line ,__lowerCamelCase ) )
out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(__lowerCamelCase ) + '''\n''' )
out_lines.append(__lowerCamelCase )
out_lines.append(__lowerCamelCase )
continue
else:
for pattern, replacement in TO_CONVERT:
lowerCAmelCase__ : Union[str, Any] = re.sub(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase )
# Take care of saving utilities (to later move them together with main script)
if "tensorflow_datasets" in out_line:
lowerCAmelCase__ : Optional[Any] = re.match(R'''from\stensorflow_datasets.*import\s([^\.\r\n]+)''' ,__lowerCamelCase )
tfds_imports.extend(imp.strip() for imp in match.group(1 ).split(''',''' ) )
lowerCAmelCase__ : Tuple = '''from . import ''' + match.group(1 )
# Check we have not forget anything
if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line:
raise ValueError(f"""Error converting {out_line.strip()}""" )
if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line:
lowerCAmelCase__ : Union[str, Any] = True
out_lines.append(__lowerCamelCase )
if is_builder or "wmt" in f_name:
# We create a new directory for each dataset
lowerCAmelCase__ : List[str] = f_name.replace('''.py''' ,'''''' )
lowerCAmelCase__ : Optional[int] = os.path.join(__lowerCamelCase ,__lowerCamelCase )
lowerCAmelCase__ : Optional[int] = os.path.join(__lowerCamelCase ,__lowerCamelCase )
os.makedirs(__lowerCamelCase ,exist_ok=__lowerCamelCase )
self._logger.info(f"""Adding directory {output_dir}""" )
imports_to_builder_map.update({imp: output_dir for imp in tfds_imports} )
else:
# Utilities will be moved at the end
utils_files.append(__lowerCamelCase )
if needs_manual_update:
with_manual_update.append(__lowerCamelCase )
with open(__lowerCamelCase ,'''w''' ,encoding='''utf-8''' ) as f:
f.writelines(__lowerCamelCase )
self._logger.info(f"""Converted in {output_file}""" )
for utils_file in utils_files:
try:
lowerCAmelCase__ : List[Any] = os.path.basename(__lowerCamelCase )
lowerCAmelCase__ : Union[str, Any] = imports_to_builder_map[f_name.replace('''.py''' ,'''''' )]
self._logger.info(f"""Moving {dest_folder} to {utils_file}""" )
shutil.copy(__lowerCamelCase ,__lowerCamelCase )
except KeyError:
self._logger.error(f"""Cannot find destination folder for {utils_file}. Please copy manually.""" )
if with_manual_update:
for file_path in with_manual_update:
self._logger.warning(
f"""You need to manually update file {file_path} to remove configurations using 'TextEncoderConfig'.""" )
| 129 |
'''simple docstring'''
import unittest
from transformers import TrOCRConfig
from transformers.testing_utils import is_torch_available, require_torch, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM
@require_torch
class __lowerCAmelCase :
'''simple docstring'''
def __init__(self : str , UpperCamelCase : Tuple , UpperCamelCase : Optional[int]=99 , UpperCamelCase : Optional[int]=13 , UpperCamelCase : Tuple=16 , UpperCamelCase : Union[str, Any]=7 , UpperCamelCase : List[Any]=True , UpperCamelCase : List[str]=True , UpperCamelCase : str=True , UpperCamelCase : Tuple=False , UpperCamelCase : str=True , UpperCamelCase : Tuple=2 , UpperCamelCase : Optional[int]=32 , UpperCamelCase : Any=4 , UpperCamelCase : Optional[int]=4 , UpperCamelCase : Tuple=30 , UpperCamelCase : str=0 , UpperCamelCase : Tuple=1 , UpperCamelCase : List[Any]=2 , UpperCamelCase : str=None , ):
'''simple docstring'''
lowercase__ = parent
lowercase__ = batch_size
lowercase__ = decoder_seq_length
# For common tests
lowercase__ = self.decoder_seq_length
lowercase__ = is_training
lowercase__ = use_attention_mask
lowercase__ = use_labels
lowercase__ = vocab_size
lowercase__ = d_model
lowercase__ = d_model
lowercase__ = decoder_layers
lowercase__ = decoder_layers
lowercase__ = decoder_ffn_dim
lowercase__ = decoder_attention_heads
lowercase__ = decoder_attention_heads
lowercase__ = eos_token_id
lowercase__ = bos_token_id
lowercase__ = pad_token_id
lowercase__ = decoder_start_token_id
lowercase__ = use_cache
lowercase__ = max_position_embeddings
lowercase__ = None
lowercase__ = decoder_seq_length
lowercase__ = 2
lowercase__ = 1
def UpperCamelCase__ (self : str ):
'''simple docstring'''
lowercase__ = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size )
lowercase__ = None
if self.use_attention_mask:
lowercase__ = ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 )
lowercase__ = None
if self.use_labels:
lowercase__ = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size )
lowercase__ = TrOCRConfig(
vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , )
return (config, input_ids, attention_mask, lm_labels)
def UpperCamelCase__ (self : Tuple , UpperCamelCase : List[Any] , UpperCamelCase : Optional[Any] , UpperCamelCase : Tuple , UpperCamelCase : List[str] , ):
'''simple docstring'''
lowercase__ = True
lowercase__ = TrOCRDecoder(config=UpperCamelCase ).to(UpperCamelCase ).eval()
lowercase__ = input_ids[:2]
input_ids[input_ids == 0] += 1
# first forward pass
lowercase__ = model(UpperCamelCase , use_cache=UpperCamelCase )
lowercase__ = model(UpperCamelCase )
lowercase__ = model(UpperCamelCase , use_cache=UpperCamelCase )
self.parent.assertTrue(len(UpperCamelCase ) == len(UpperCamelCase ) )
self.parent.assertTrue(len(UpperCamelCase ) == len(UpperCamelCase ) + 1 )
lowercase__ = outputs['''past_key_values''']
# create hypothetical next token and extent to next_input_ids
lowercase__ = ids_tensor((2, 1) , config.vocab_size - 1 ) + 1
# append to next input_ids and
lowercase__ = torch.cat([input_ids, next_tokens] , dim=-1 )
lowercase__ = model(UpperCamelCase )['''last_hidden_state''']
lowercase__ = model(UpperCamelCase , past_key_values=UpperCamelCase )['''last_hidden_state''']
# select random slice
lowercase__ = ids_tensor((1,) , output_from_past.shape[-1] ).item()
lowercase__ = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach()
lowercase__ = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
assert torch.allclose(UpperCamelCase , UpperCamelCase , atol=1E-3 )
def UpperCamelCase__ (self : Optional[Any] ):
'''simple docstring'''
lowercase__ = self.prepare_config_and_inputs()
lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ = config_and_inputs
lowercase__ = {'''input_ids''': input_ids, '''attention_mask''': attention_mask}
return config, inputs_dict
@require_torch
class __lowerCAmelCase (lowercase_ , lowercase_ , lowercase_ , unittest.TestCase ):
'''simple docstring'''
lowerCAmelCase__ : List[str] = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else ()
lowerCAmelCase__ : List[Any] = (TrOCRForCausalLM,) if is_torch_available() else ()
lowerCAmelCase__ : Optional[Any] = {"""text-generation""": TrOCRForCausalLM} if is_torch_available() else {}
lowerCAmelCase__ : Optional[Any] = True
lowerCAmelCase__ : List[str] = False
def UpperCamelCase__ (self : Any ):
'''simple docstring'''
lowercase__ = TrOCRStandaloneDecoderModelTester(self , is_training=UpperCamelCase )
lowercase__ = ConfigTester(self , config_class=UpperCamelCase )
def UpperCamelCase__ (self : List[str] ):
'''simple docstring'''
pass
def UpperCamelCase__ (self : Optional[int] ):
'''simple docstring'''
pass
def UpperCamelCase__ (self : Any ):
'''simple docstring'''
pass
def UpperCamelCase__ (self : Any ):
'''simple docstring'''
self.config_tester.run_common_tests()
def UpperCamelCase__ (self : Union[str, Any] ):
'''simple docstring'''
lowercase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_decoder_model_past(*UpperCamelCase )
def UpperCamelCase__ (self : Optional[int] ):
'''simple docstring'''
return
@unittest.skip('''The model doesn\'t support left padding''' ) # and it's not used enough to be worth fixing :)
def UpperCamelCase__ (self : List[str] ):
'''simple docstring'''
pass
| 2 | 0 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
SCREAMING_SNAKE_CASE : Tuple = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE : Dict = {
'microsoft/cvt-13': 'https://huggingface.co/microsoft/cvt-13/resolve/main/config.json',
# See all Cvt models at https://huggingface.co/models?filter=cvt
}
class _UpperCAmelCase ( lowercase_ ):
'''simple docstring'''
lowerCamelCase__ ="""cvt"""
def __init__(self , a_=3 , a_=[7, 3, 3] , a_=[4, 2, 2] , a_=[2, 1, 1] , a_=[64, 1_92, 3_84] , a_=[1, 3, 6] , a_=[1, 2, 10] , a_=[4.0, 4.0, 4.0] , a_=[0.0, 0.0, 0.0] , a_=[0.0, 0.0, 0.0] , a_=[0.0, 0.0, 0.1] , a_=[True, True, True] , a_=[False, False, True] , a_=["dw_bn", "dw_bn", "dw_bn"] , a_=[3, 3, 3] , a_=[1, 1, 1] , a_=[2, 2, 2] , a_=[1, 1, 1] , a_=[1, 1, 1] , a_=0.02 , a_=1E-12 , **a_ , ):
'''simple docstring'''
super().__init__(**a_ )
__snake_case : Optional[Any] = num_channels
__snake_case : Dict = patch_sizes
__snake_case : List[Any] = patch_stride
__snake_case : Optional[int] = patch_padding
__snake_case : Any = embed_dim
__snake_case : List[Any] = num_heads
__snake_case : Tuple = depth
__snake_case : Any = mlp_ratio
__snake_case : str = attention_drop_rate
__snake_case : Dict = drop_rate
__snake_case : Optional[Any] = drop_path_rate
__snake_case : Tuple = qkv_bias
__snake_case : Dict = cls_token
__snake_case : int = qkv_projection_method
__snake_case : Optional[int] = kernel_qkv
__snake_case : Any = padding_kv
__snake_case : int = stride_kv
__snake_case : List[Any] = padding_q
__snake_case : List[Any] = stride_q
__snake_case : List[Any] = initializer_range
__snake_case : Optional[int] = layer_norm_eps
| 102 |
'''simple docstring'''
def _SCREAMING_SNAKE_CASE (A ) -> int:
"""simple docstring"""
if not isinstance(A , A ):
raise TypeError('''only integers accepted as input''' )
else:
lowercase__ = str(abs(A ) )
lowercase__ = [list(A ) for char in range(len(A ) )]
for index in range(len(A ) ):
num_transpositions[index].pop(A )
return max(
int(''''''.join(list(A ) ) ) for transposition in num_transpositions )
if __name__ == "__main__":
__import__('doctest').testmod()
| 2 | 0 |
import copy
from ...configuration_utils import PretrainedConfig
from ...utils import add_start_docstrings
A_ :Tuple = R'\n [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and\n can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information.\n\n Args:\n title_sep (`str`, *optional*, defaults to `" / "`):\n Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`].\n doc_sep (`str`, *optional*, defaults to `" // "`):\n Separator inserted between the text of the retrieved document and the original input when calling\n [`RagRetriever`].\n n_docs (`int`, *optional*, defaults to 5):\n Number of documents to retrieve.\n max_combined_length (`int`, *optional*, defaults to 300):\n Max length of contextualized input returned by [`~RagRetriever.__call__`].\n retrieval_vector_size (`int`, *optional*, defaults to 768):\n Dimensionality of the document embeddings indexed by [`RagRetriever`].\n retrieval_batch_size (`int`, *optional*, defaults to 8):\n Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated\n [`RagRetriever`].\n dataset (`str`, *optional*, defaults to `"wiki_dpr"`):\n A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids\n using `datasets.list_datasets()`).\n dataset_split (`str`, *optional*, defaults to `"train"`)\n Which split of the `dataset` to load.\n index_name (`str`, *optional*, defaults to `"compressed"`)\n The index name of the index associated with the `dataset`. One can choose between `"legacy"`, `"exact"` and\n `"compressed"`.\n index_path (`str`, *optional*)\n The path to the serialized faiss index on disk.\n passages_path (`str`, *optional*):\n A path to text passages compatible with the faiss index. Required if using\n [`~models.rag.retrieval_rag.LegacyIndex`]\n use_dummy_dataset (`bool`, *optional*, defaults to `False`)\n Whether to load a "dummy" variant of the dataset specified by `dataset`.\n label_smoothing (`float`, *optional*, defaults to 0.0):\n Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing\n in the loss calculation. If set to 0, no label smoothing is performed.\n do_marginalize (`bool`, *optional*, defaults to `False`):\n If `True`, the logits are marginalized over all documents by making use of\n `torch.nn.functional.log_softmax`.\n reduce_loss (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation.\n do_deduplication (`bool`, *optional*, defaults to `True`):\n Whether or not to deduplicate the generations from different context documents for a given input. Has to be\n set to `False` if used while training with distributed backend.\n exclude_bos_score (`bool`, *optional*, defaults to `False`):\n Whether or not to disregard the BOS token when computing the loss.\n output_retrieved(`bool`, *optional*, defaults to `False`):\n If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and\n `context_attention_mask` are returned. See returned tensors for more detail.\n use_cache (`bool`, *optional*, defaults to `True`):\n Whether or not the model should return the last key/values attentions (not used by all models).\n forced_eos_token_id (`int`, *optional*):\n The id of the token to force as the last generated token when `max_length` is reached. Usually set to\n `eos_token_id`.\n'
@add_start_docstrings(lowercase_ )
class __A ( lowercase_ ):
"""simple docstring"""
UpperCamelCase__ : Any ="""rag"""
UpperCamelCase__ : List[Any] =True
def __init__( self , lowerCamelCase__=None , lowerCamelCase__=True , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=" / " , lowerCamelCase__=" // " , lowerCamelCase__=5 , lowerCamelCase__=300 , lowerCamelCase__=768 , lowerCamelCase__=8 , lowerCamelCase__="wiki_dpr" , lowerCamelCase__="train" , lowerCamelCase__="compressed" , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=False , lowerCamelCase__=False , lowerCamelCase__=0.0 , lowerCamelCase__=True , lowerCamelCase__=False , lowerCamelCase__=False , lowerCamelCase__=False , lowerCamelCase__=True , lowerCamelCase__=None , **lowerCamelCase__ , ):
"""simple docstring"""
super().__init__(
bos_token_id=lowerCamelCase__ , pad_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ , decoder_start_token_id=lowerCamelCase__ , forced_eos_token_id=lowerCamelCase__ , is_encoder_decoder=lowerCamelCase__ , prefix=lowerCamelCase__ , vocab_size=lowerCamelCase__ , **lowerCamelCase__ , )
assert (
"question_encoder" in kwargs and "generator" in kwargs
), "Config has to be initialized with question_encoder and generator config"
__UpperCamelCase : Dict =kwargs.pop('question_encoder' )
__UpperCamelCase : Any =question_encoder_config.pop('model_type' )
__UpperCamelCase : Optional[Any] =kwargs.pop('generator' )
__UpperCamelCase : Union[str, Any] =decoder_config.pop('model_type' )
from ..auto.configuration_auto import AutoConfig
__UpperCamelCase : List[str] =AutoConfig.for_model(lowerCamelCase__ , **lowerCamelCase__ )
__UpperCamelCase : Tuple =AutoConfig.for_model(lowerCamelCase__ , **lowerCamelCase__ )
__UpperCamelCase : Optional[Any] =reduce_loss
__UpperCamelCase : Optional[int] =label_smoothing
__UpperCamelCase : Optional[int] =exclude_bos_score
__UpperCamelCase : int =do_marginalize
__UpperCamelCase : str =title_sep
__UpperCamelCase : Tuple =doc_sep
__UpperCamelCase : List[str] =n_docs
__UpperCamelCase : List[str] =max_combined_length
__UpperCamelCase : Any =dataset
__UpperCamelCase : Union[str, Any] =dataset_split
__UpperCamelCase : List[str] =index_name
__UpperCamelCase : List[Any] =retrieval_vector_size
__UpperCamelCase : str =retrieval_batch_size
__UpperCamelCase : List[str] =passages_path
__UpperCamelCase : Union[str, Any] =index_path
__UpperCamelCase : List[str] =use_dummy_dataset
__UpperCamelCase : Union[str, Any] =output_retrieved
__UpperCamelCase : List[str] =do_deduplication
__UpperCamelCase : Tuple =use_cache
if self.forced_eos_token_id is None:
__UpperCamelCase : int =getattr(self.generator , 'forced_eos_token_id' , lowerCamelCase__ )
@classmethod
def __lowercase ( cls , lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ):
"""simple docstring"""
return cls(question_encoder=question_encoder_config.to_dict() , generator=generator_config.to_dict() , **lowerCamelCase__ )
def __lowercase ( self ):
"""simple docstring"""
__UpperCamelCase : List[Any] =copy.deepcopy(self.__dict__ )
__UpperCamelCase : Any =self.question_encoder.to_dict()
__UpperCamelCase : Optional[Any] =self.generator.to_dict()
__UpperCamelCase : Optional[int] =self.__class__.model_type
return output
| 71 |
'''simple docstring'''
import dataclasses
import re
import string
from typing import Any, Dict, Iterator, List, Mapping, Optional, Sequence, Tuple
import numpy as np
from . import residue_constants
lowerCamelCase : str = Mapping[str, np.ndarray]
lowerCamelCase : List[Any] = Mapping[str, Any] # Is a nested dict.
lowerCamelCase : Any = 0.0_1
@dataclasses.dataclass(frozen=lowercase_ )
class __lowerCAmelCase :
'''simple docstring'''
lowerCAmelCase__ : np.ndarray # [num_res, num_atom_type, 3]
# Amino-acid type for each residue represented as an integer between 0 and
# 20, where 20 is 'X'.
lowerCAmelCase__ : np.ndarray # [num_res]
# Binary float mask to indicate presence of a particular atom. 1.0 if an atom
# is present and 0.0 if not. This should be used for loss masking.
lowerCAmelCase__ : np.ndarray # [num_res, num_atom_type]
# Residue index as used in PDB. It is not necessarily continuous or 0-indexed.
lowerCAmelCase__ : np.ndarray # [num_res]
# B-factors, or temperature factors, of each residue (in sq. angstroms units),
# representing the displacement of the residue from its ground truth mean
# value.
lowerCAmelCase__ : np.ndarray # [num_res, num_atom_type]
# Chain indices for multi-chain predictions
lowerCAmelCase__ : Optional[np.ndarray] = None
# Optional remark about the protein. Included as a comment in output PDB
# files
lowerCAmelCase__ : Optional[str] = None
# Templates used to generate this protein (prediction-only)
lowerCAmelCase__ : Optional[Sequence[str]] = None
# Chain corresponding to each parent
lowerCAmelCase__ : Optional[Sequence[int]] = None
def _SCREAMING_SNAKE_CASE (A ) -> Protein:
"""simple docstring"""
lowercase__ = R'''(\[[A-Z]+\]\n)'''
lowercase__ = [tag.strip() for tag in re.split(A , A ) if len(A ) > 0]
lowercase__ = zip(tags[0::2] , [l.split('''\n''' ) for l in tags[1::2]] )
lowercase__ = ["N", "CA", "C"]
lowercase__ = None
lowercase__ = None
lowercase__ = None
for g in groups:
if "[PRIMARY]" == g[0]:
lowercase__ = g[1][0].strip()
for i in range(len(A ) ):
if seq[i] not in residue_constants.restypes:
lowercase__ = '''X''' # FIXME: strings are immutable
lowercase__ = np.array(
[residue_constants.restype_order.get(A , residue_constants.restype_num ) for res_symbol in seq] )
elif "[TERTIARY]" == g[0]:
lowercase__ = []
for axis in range(3 ):
tertiary.append(list(map(A , g[1][axis].split() ) ) )
lowercase__ = np.array(A )
lowercase__ = np.zeros((len(tertiary[0] ) // 3, residue_constants.atom_type_num, 3) ).astype(np.floataa )
for i, atom in enumerate(A ):
lowercase__ = np.transpose(tertiary_np[:, i::3] )
atom_positions *= PICO_TO_ANGSTROM
elif "[MASK]" == g[0]:
lowercase__ = np.array(list(map({'''-''': 0, '''+''': 1}.get , g[1][0].strip() ) ) )
lowercase__ = np.zeros(
(
len(A ),
residue_constants.atom_type_num,
) ).astype(np.floataa )
for i, atom in enumerate(A ):
lowercase__ = 1
atom_mask *= mask[..., None]
assert aatype is not None
return Protein(
atom_positions=A , atom_mask=A , aatype=A , residue_index=np.arange(len(A ) ) , b_factors=A , )
def _SCREAMING_SNAKE_CASE (A , A = 0 ) -> List[str]:
"""simple docstring"""
lowercase__ = []
lowercase__ = prot.remark
if remark is not None:
pdb_headers.append(f"REMARK {remark}" )
lowercase__ = prot.parents
lowercase__ = prot.parents_chain_index
if parents is not None and parents_chain_index is not None:
lowercase__ = [p for i, p in zip(A , A ) if i == chain_id]
if parents is None or len(A ) == 0:
lowercase__ = ['''N/A''']
pdb_headers.append(f"PARENT {' '.join(A )}" )
return pdb_headers
def _SCREAMING_SNAKE_CASE (A , A ) -> str:
"""simple docstring"""
lowercase__ = []
lowercase__ = pdb_str.split('''\n''' )
lowercase__ = prot.remark
if remark is not None:
out_pdb_lines.append(f"REMARK {remark}" )
lowercase__ = 42
if prot.parents is not None and len(prot.parents ) > 0:
lowercase__ = []
if prot.parents_chain_index is not None:
lowercase__ = {}
for p, i in zip(prot.parents , prot.parents_chain_index ):
parent_dict.setdefault(str(A ) , [] )
parent_dict[str(A )].append(A )
lowercase__ = max([int(A ) for chain_idx in parent_dict] )
for i in range(max_idx + 1 ):
lowercase__ = parent_dict.get(str(A ) , ['''N/A'''] )
parents_per_chain.append(A )
else:
parents_per_chain.append(list(prot.parents ) )
else:
lowercase__ = [['''N/A''']]
def make_parent_line(A ) -> str:
return f"PARENT {' '.join(A )}"
out_pdb_lines.append(make_parent_line(parents_per_chain[0] ) )
lowercase__ = 0
for i, l in enumerate(A ):
if "PARENT" not in l and "REMARK" not in l:
out_pdb_lines.append(A )
if "TER" in l and "END" not in lines[i + 1]:
chain_counter += 1
if not chain_counter >= len(A ):
lowercase__ = parents_per_chain[chain_counter]
else:
lowercase__ = ['''N/A''']
out_pdb_lines.append(make_parent_line(A ) )
return "\n".join(A )
def _SCREAMING_SNAKE_CASE (A ) -> str:
"""simple docstring"""
lowercase__ = residue_constants.restypes + ['''X''']
def res_atoa(A ) -> str:
return residue_constants.restype_atoa.get(restypes[r] , '''UNK''' )
lowercase__ = residue_constants.atom_types
lowercase__ = []
lowercase__ = prot.atom_mask
lowercase__ = prot.aatype
lowercase__ = prot.atom_positions
lowercase__ = prot.residue_index.astype(np.intaa )
lowercase__ = prot.b_factors
lowercase__ = prot.chain_index
if np.any(aatype > residue_constants.restype_num ):
raise ValueError('''Invalid aatypes.''' )
lowercase__ = get_pdb_headers(A )
if len(A ) > 0:
pdb_lines.extend(A )
lowercase__ = aatype.shape[0]
lowercase__ = 1
lowercase__ = 0
lowercase__ = string.ascii_uppercase
lowercase__ = None
# Add all atom sites.
for i in range(A ):
lowercase__ = res_atoa(aatype[i] )
for atom_name, pos, mask, b_factor in zip(A , atom_positions[i] , atom_mask[i] , b_factors[i] ):
if mask < 0.5:
continue
lowercase__ = '''ATOM'''
lowercase__ = atom_name if len(A ) == 4 else f" {atom_name}"
lowercase__ = ''''''
lowercase__ = ''''''
lowercase__ = 1.00
lowercase__ = atom_name[0] # Protein supports only C, N, O, S, this works.
lowercase__ = ''''''
lowercase__ = '''A'''
if chain_index is not None:
lowercase__ = chain_tags[chain_index[i]]
# PDB is a columnar format, every space matters here!
lowercase__ = (
f"{record_type:<6}{atom_index:>5} {name:<4}{alt_loc:>1}"
f"{res_name_a:>3} {chain_tag:>1}"
f"{residue_index[i]:>4}{insertion_code:>1} "
f"{pos[0]:>8.3f}{pos[1]:>8.3f}{pos[2]:>8.3f}"
f"{occupancy:>6.2f}{b_factor:>6.2f} "
f"{element:>2}{charge:>2}"
)
pdb_lines.append(A )
atom_index += 1
lowercase__ = i == n - 1
if chain_index is not None:
if i != n - 1 and chain_index[i + 1] != prev_chain_index:
lowercase__ = True
lowercase__ = chain_index[i + 1]
if should_terminate:
# Close the chain.
lowercase__ = '''TER'''
lowercase__ = (
f"{chain_end:<6}{atom_index:>5} {res_atoa(aatype[i] ):>3} {chain_tag:>1}{residue_index[i]:>4}"
)
pdb_lines.append(A )
atom_index += 1
if i != n - 1:
# "prev" is a misnomer here. This happens at the beginning of
# each new chain.
pdb_lines.extend(get_pdb_headers(A , A ) )
pdb_lines.append('''END''' )
pdb_lines.append('''''' )
return "\n".join(A )
def _SCREAMING_SNAKE_CASE (A ) -> np.ndarray:
"""simple docstring"""
return residue_constants.STANDARD_ATOM_MASK[prot.aatype]
def _SCREAMING_SNAKE_CASE (A , A , A = None , A = None , A = None , A = None , A = None , ) -> Protein:
"""simple docstring"""
return Protein(
aatype=features['''aatype'''] , atom_positions=result['''final_atom_positions'''] , atom_mask=result['''final_atom_mask'''] , residue_index=features['''residue_index'''] + 1 , b_factors=b_factors if b_factors is not None else np.zeros_like(result['''final_atom_mask'''] ) , chain_index=A , remark=A , parents=A , parents_chain_index=A , )
| 2 | 0 |
'''simple docstring'''
import json
import os
import tempfile
import unittest
import unittest.mock as mock
from pathlib import Path
from requests.exceptions import HTTPError
from transformers.utils import (
CONFIG_NAME,
FLAX_WEIGHTS_NAME,
TF2_WEIGHTS_NAME,
TRANSFORMERS_CACHE,
WEIGHTS_NAME,
cached_file,
get_file_from_repo,
has_file,
)
_SCREAMING_SNAKE_CASE : Optional[Any] = 'hf-internal-testing/tiny-random-bert'
_SCREAMING_SNAKE_CASE : Optional[int] = os.path.join(TRANSFORMERS_CACHE, "models--hf-internal-testing--tiny-random-bert")
_SCREAMING_SNAKE_CASE : Optional[Any] = '9b8c223d42b2188cb49d29af482996f9d0f3e5a6'
class _snake_case ( unittest.TestCase ):
def lowerCAmelCase__ ( self ) -> Optional[int]:
'''simple docstring'''
snake_case_ = cached_file(a__ , a__ )
# Should have downloaded the file in here
self.assertTrue(os.path.isdir(a__ ) )
# Cache should contain at least those three subfolders:
for subfolder in ["blobs", "refs", "snapshots"]:
self.assertTrue(os.path.isdir(os.path.join(a__ , a__ ) ) )
with open(os.path.join(a__ , "refs" , "main" ) ) as f:
snake_case_ = f.read()
self.assertEqual(a__ , os.path.join(a__ , "snapshots" , a__ , a__ ) )
self.assertTrue(os.path.isfile(a__ ) )
# File is cached at the same place the second time.
snake_case_ = cached_file(a__ , a__ )
self.assertEqual(a__ , a__ )
# Using a specific revision to test the full commit hash.
snake_case_ = cached_file(a__ , a__ , revision="9b8c223" )
self.assertEqual(a__ , os.path.join(a__ , "snapshots" , a__ , a__ ) )
def lowerCAmelCase__ ( self ) -> Optional[Any]:
'''simple docstring'''
with self.assertRaisesRegex(a__ , "is not a valid model identifier" ):
snake_case_ = cached_file("tiny-random-bert" , a__ )
with self.assertRaisesRegex(a__ , "is not a valid git identifier" ):
snake_case_ = cached_file(a__ , a__ , revision="aaaa" )
with self.assertRaisesRegex(a__ , "does not appear to have a file named" ):
snake_case_ = cached_file(a__ , "conf" )
def lowerCAmelCase__ ( self ) -> List[Any]:
'''simple docstring'''
with self.assertRaisesRegex(a__ , "does not appear to have a file named" ):
snake_case_ = cached_file(a__ , "conf" )
with open(os.path.join(a__ , "refs" , "main" ) ) as f:
snake_case_ = f.read()
self.assertTrue(os.path.isfile(os.path.join(a__ , ".no_exist" , a__ , "conf" ) ) )
snake_case_ = cached_file(a__ , "conf" , _raise_exceptions_for_missing_entries=a__ )
self.assertIsNone(a__ )
snake_case_ = cached_file(a__ , "conf" , local_files_only=a__ , _raise_exceptions_for_missing_entries=a__ )
self.assertIsNone(a__ )
snake_case_ = mock.Mock()
snake_case_ = 500
snake_case_ = {}
snake_case_ = HTTPError
snake_case_ = {}
# Under the mock environment we get a 500 error when trying to reach the tokenizer.
with mock.patch("requests.Session.request" , return_value=a__ ) as mock_head:
snake_case_ = cached_file(a__ , "conf" , _raise_exceptions_for_connection_errors=a__ )
self.assertIsNone(a__ )
# This check we did call the fake head request
mock_head.assert_called()
def lowerCAmelCase__ ( self ) -> Dict:
'''simple docstring'''
self.assertTrue(has_file("hf-internal-testing/tiny-bert-pt-only" , a__ ) )
self.assertFalse(has_file("hf-internal-testing/tiny-bert-pt-only" , a__ ) )
self.assertFalse(has_file("hf-internal-testing/tiny-bert-pt-only" , a__ ) )
def lowerCAmelCase__ ( self ) -> Tuple:
'''simple docstring'''
self.assertIsNone(get_file_from_repo("bert-base-cased" , "ahah.txt" ) )
# The function raises if the repository does not exist.
with self.assertRaisesRegex(a__ , "is not a valid model identifier" ):
get_file_from_repo("bert-base-case" , a__ )
# The function raises if the revision does not exist.
with self.assertRaisesRegex(a__ , "is not a valid git identifier" ):
get_file_from_repo("bert-base-cased" , a__ , revision="ahaha" )
snake_case_ = get_file_from_repo("bert-base-cased" , a__ )
# The name is the cached name which is not very easy to test, so instead we load the content.
snake_case_ = json.loads(open(a__ , "r" ).read() )
self.assertEqual(config["hidden_size"] , 768 )
def lowerCAmelCase__ ( self ) -> Tuple:
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmp_dir:
snake_case_ = Path(a__ ) / "a.txt"
filename.touch()
self.assertEqual(get_file_from_repo(a__ , "a.txt" ) , str(a__ ) )
self.assertIsNone(get_file_from_repo(a__ , "b.txt" ) )
| 85 |
'''simple docstring'''
from __future__ import annotations
def _SCREAMING_SNAKE_CASE (A , A ) -> list[list[int]]:
"""simple docstring"""
lowercase__ = []
create_all_state(1 , A , A , [] , A )
return result
def _SCREAMING_SNAKE_CASE (A , A , A , A , A , ) -> None:
"""simple docstring"""
if level == 0:
total_list.append(current_list[:] )
return
for i in range(A , total_number - level + 2 ):
current_list.append(A )
create_all_state(i + 1 , A , level - 1 , A , A )
current_list.pop()
def _SCREAMING_SNAKE_CASE (A ) -> None:
"""simple docstring"""
for i in total_list:
print(*A )
if __name__ == "__main__":
lowerCamelCase : Tuple = 4
lowerCamelCase : Union[str, Any] = 2
lowerCamelCase : Dict = generate_all_combinations(n, k)
print_all_state(total_list)
| 2 | 0 |
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
a_ = logging.get_logger(__name__)
a_ = {
'microsoft/beit-base-patch16-224-pt22k': (
'https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json'
),
# See all BEiT models at https://huggingface.co/models?filter=beit
}
class __lowerCAmelCase ( lowercase_ ):
lowerCAmelCase__ = """beit"""
def __init__( self , __UpperCAmelCase=8192 , __UpperCAmelCase=768 , __UpperCAmelCase=12 , __UpperCAmelCase=12 , __UpperCAmelCase=3072 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-1_2 , __UpperCAmelCase=224 , __UpperCAmelCase=16 , __UpperCAmelCase=3 , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=True , __UpperCAmelCase=[3, 5, 7, 11] , __UpperCAmelCase=[1, 2, 3, 6] , __UpperCAmelCase=True , __UpperCAmelCase=0.4 , __UpperCAmelCase=256 , __UpperCAmelCase=1 , __UpperCAmelCase=False , __UpperCAmelCase=255 , **__UpperCAmelCase , ):
'''simple docstring'''
super().__init__(**__UpperCAmelCase )
__lowerCamelCase = vocab_size
__lowerCamelCase = hidden_size
__lowerCamelCase = num_hidden_layers
__lowerCamelCase = num_attention_heads
__lowerCamelCase = intermediate_size
__lowerCamelCase = hidden_act
__lowerCamelCase = hidden_dropout_prob
__lowerCamelCase = attention_probs_dropout_prob
__lowerCamelCase = initializer_range
__lowerCamelCase = layer_norm_eps
__lowerCamelCase = image_size
__lowerCamelCase = patch_size
__lowerCamelCase = num_channels
__lowerCamelCase = use_mask_token
__lowerCamelCase = use_absolute_position_embeddings
__lowerCamelCase = use_relative_position_bias
__lowerCamelCase = use_shared_relative_position_bias
__lowerCamelCase = layer_scale_init_value
__lowerCamelCase = drop_path_rate
__lowerCamelCase = use_mean_pooling
# decode head attributes (semantic segmentation)
__lowerCamelCase = out_indices
__lowerCamelCase = pool_scales
# auxiliary head attributes (semantic segmentation)
__lowerCamelCase = use_auxiliary_head
__lowerCamelCase = auxiliary_loss_weight
__lowerCamelCase = auxiliary_channels
__lowerCamelCase = auxiliary_num_convs
__lowerCamelCase = auxiliary_concat_input
__lowerCamelCase = semantic_loss_ignore_index
class __lowerCAmelCase ( lowercase_ ):
lowerCAmelCase__ = version.parse("""1.11""" )
@property
def lowerCamelCase ( self ):
'''simple docstring'''
return OrderedDict(
[
('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}),
] )
@property
def lowerCamelCase ( self ):
'''simple docstring'''
return 1E-4
| 330 |
'''simple docstring'''
import os
from itertools import chain
from random import randrange, shuffle
import pytest
from .sola import PokerHand
lowerCamelCase : Optional[Any] = (
'4S 3H 2C 7S 5H',
'9D 8H 2C 6S 7H',
'2D 6D 9D TH 7D',
'TC 8C 2S JH 6C',
'JH 8S TH AH QH',
'TS KS 5S 9S AC',
'KD 6S 9D TH AD',
'KS 8D 4D 9S 4S', # pair
'8C 4S KH JS 4D', # pair
'QH 8H KD JH 8S', # pair
'KC 4H KS 2H 8D', # pair
'KD 4S KC 3H 8S', # pair
'AH 8S AS KC JH', # pair
'3H 4C 4H 3S 2H', # 2 pairs
'5S 5D 2C KH KH', # 2 pairs
'3C KH 5D 5S KH', # 2 pairs
'AS 3C KH AD KH', # 2 pairs
'7C 7S 3S 7H 5S', # 3 of a kind
'7C 7S KH 2H 7H', # 3 of a kind
'AC KH QH AH AS', # 3 of a kind
'2H 4D 3C AS 5S', # straight (low ace)
'3C 5C 4C 2C 6H', # straight
'6S 8S 7S 5H 9H', # straight
'JS QS 9H TS KH', # straight
'QC KH TS JS AH', # straight (high ace)
'8C 9C 5C 3C TC', # flush
'3S 8S 9S 5S KS', # flush
'4C 5C 9C 8C KC', # flush
'JH 8H AH KH QH', # flush
'3D 2H 3H 2C 2D', # full house
'2H 2C 3S 3H 3D', # full house
'KH KC 3S 3H 3D', # full house
'JC 6H JS JD JH', # 4 of a kind
'JC 7H JS JD JH', # 4 of a kind
'JC KH JS JD JH', # 4 of a kind
'2S AS 4S 5S 3S', # straight flush (low ace)
'2D 6D 3D 4D 5D', # straight flush
'5C 6C 3C 7C 4C', # straight flush
'JH 9H TH KH QH', # straight flush
'JH AH TH KH QH', # royal flush (high ace straight flush)
)
lowerCamelCase : Tuple = (
('2H 3H 4H 5H 6H', 'KS AS TS QS JS', 'Loss'),
('2H 3H 4H 5H 6H', 'AS AD AC AH JD', 'Win'),
('AS AH 2H AD AC', 'JS JD JC JH 3D', 'Win'),
('2S AH 2H AS AC', 'JS JD JC JH AD', 'Loss'),
('2S AH 2H AS AC', '2H 3H 5H 6H 7H', 'Win'),
('AS 3S 4S 8S 2S', '2H 3H 5H 6H 7H', 'Win'),
('2H 3H 5H 6H 7H', '2S 3H 4H 5S 6C', 'Win'),
('2S 3H 4H 5S 6C', '3D 4C 5H 6H 2S', 'Tie'),
('2S 3H 4H 5S 6C', 'AH AC 5H 6H AS', 'Win'),
('2S 2H 4H 5S 4C', 'AH AC 5H 6H AS', 'Loss'),
('2S 2H 4H 5S 4C', 'AH AC 5H 6H 7S', 'Win'),
('6S AD 7H 4S AS', 'AH AC 5H 6H 7S', 'Loss'),
('2S AH 4H 5S KC', 'AH AC 5H 6H 7S', 'Loss'),
('2S 3H 6H 7S 9C', '7H 3C TH 6H 9S', 'Loss'),
('4S 5H 6H TS AC', '3S 5H 6H TS AC', 'Win'),
('2S AH 4H 5S 6C', 'AD 4C 5H 6H 2C', 'Tie'),
('AS AH 3H AD AC', 'AS AH 2H AD AC', 'Win'),
('AH AC 5H 5C QS', 'AH AC 5H 5C KS', 'Loss'),
('AH AC 5H 5C QS', 'KH KC 5H 5C QS', 'Win'),
('7C 7S KH 2H 7H', '3C 3S AH 2H 3H', 'Win'),
('3C 3S AH 2H 3H', '7C 7S KH 2H 7H', 'Loss'),
('6H 5H 4H 3H 2H', '5H 4H 3H 2H AH', 'Win'),
('5H 4H 3H 2H AH', '5H 4H 3H 2H AH', 'Tie'),
('5H 4H 3H 2H AH', '6H 5H 4H 3H 2H', 'Loss'),
('AH AD KS KC AC', 'AH KD KH AC KC', 'Win'),
('2H 4D 3C AS 5S', '2H 4D 3C 6S 5S', 'Loss'),
('2H 3S 3C 3H 2S', '3S 3C 2S 2H 2D', 'Win'),
('4D 6D 5D 2D JH', '3S 8S 3H TC KH', 'Loss'),
('4S 6C 8S 3S 7S', 'AD KS 2D 7D 7C', 'Loss'),
('6S 4C 7H 8C 3H', '5H JC AH 9D 9C', 'Loss'),
('9D 9H JH TC QH', '3C 2S JS 5C 7H', 'Win'),
('2H TC 8S AD 9S', '4H TS 7H 2C 5C', 'Win'),
('9D 3S 2C 7S 7C', 'JC TD 3C TC 9H', 'Loss'),
)
lowerCamelCase : Dict = (
('2H 3H 4H 5H 6H', True),
('AS AH 2H AD AC', False),
('2H 3H 5H 6H 7H', True),
('KS AS TS QS JS', True),
('8H 9H QS JS TH', False),
('AS 3S 4S 8S 2S', True),
)
lowerCamelCase : Any = (
('2H 3H 4H 5H 6H', True),
('AS AH 2H AD AC', False),
('2H 3H 5H 6H 7H', False),
('KS AS TS QS JS', True),
('8H 9H QS JS TH', True),
)
lowerCamelCase : Tuple = (
('2H 4D 3C AS 5S', True, [5, 4, 3, 2, 14]),
('2H 5D 3C AS 5S', False, [14, 5, 5, 3, 2]),
('JH QD KC AS TS', False, [14, 13, 12, 11, 10]),
('9D 3S 2C 7S 7C', False, [9, 7, 7, 3, 2]),
)
lowerCamelCase : Optional[int] = (
('JH AH TH KH QH', 0),
('JH 9H TH KH QH', 0),
('JC KH JS JD JH', 7),
('KH KC 3S 3H 3D', 6),
('8C 9C 5C 3C TC', 0),
('JS QS 9H TS KH', 0),
('7C 7S KH 2H 7H', 3),
('3C KH 5D 5S KH', 2),
('QH 8H KD JH 8S', 1),
('2D 6D 9D TH 7D', 0),
)
lowerCamelCase : Dict = (
('JH AH TH KH QH', 23),
('JH 9H TH KH QH', 22),
('JC KH JS JD JH', 21),
('KH KC 3S 3H 3D', 20),
('8C 9C 5C 3C TC', 19),
('JS QS 9H TS KH', 18),
('7C 7S KH 2H 7H', 17),
('3C KH 5D 5S KH', 16),
('QH 8H KD JH 8S', 15),
('2D 6D 9D TH 7D', 14),
)
def _SCREAMING_SNAKE_CASE () -> Union[str, Any]:
"""simple docstring"""
lowercase__ ,lowercase__ = randrange(len(A ) ), randrange(len(A ) )
lowercase__ = ['''Loss''', '''Tie''', '''Win'''][(play >= oppo) + (play > oppo)]
lowercase__ ,lowercase__ = SORTED_HANDS[play], SORTED_HANDS[oppo]
return hand, other, expected
def _SCREAMING_SNAKE_CASE (A = 100 ) -> str:
"""simple docstring"""
return (generate_random_hand() for _ in range(A ))
@pytest.mark.parametrize('''hand, expected''' , A )
def _SCREAMING_SNAKE_CASE (A , A ) -> List[str]:
"""simple docstring"""
assert PokerHand(A )._is_flush() == expected
@pytest.mark.parametrize('''hand, expected''' , A )
def _SCREAMING_SNAKE_CASE (A , A ) -> Union[str, Any]:
"""simple docstring"""
assert PokerHand(A )._is_straight() == expected
@pytest.mark.parametrize('''hand, expected, card_values''' , A )
def _SCREAMING_SNAKE_CASE (A , A , A ) -> Any:
"""simple docstring"""
lowercase__ = PokerHand(A )
assert player._is_five_high_straight() == expected
assert player._card_values == card_values
@pytest.mark.parametrize('''hand, expected''' , A )
def _SCREAMING_SNAKE_CASE (A , A ) -> Tuple:
"""simple docstring"""
assert PokerHand(A )._is_same_kind() == expected
@pytest.mark.parametrize('''hand, expected''' , A )
def _SCREAMING_SNAKE_CASE (A , A ) -> Optional[Any]:
"""simple docstring"""
assert PokerHand(A )._hand_type == expected
@pytest.mark.parametrize('''hand, other, expected''' , A )
def _SCREAMING_SNAKE_CASE (A , A , A ) -> Union[str, Any]:
"""simple docstring"""
assert PokerHand(A ).compare_with(PokerHand(A ) ) == expected
@pytest.mark.parametrize('''hand, other, expected''' , generate_random_hands() )
def _SCREAMING_SNAKE_CASE (A , A , A ) -> Optional[Any]:
"""simple docstring"""
assert PokerHand(A ).compare_with(PokerHand(A ) ) == expected
def _SCREAMING_SNAKE_CASE () -> Tuple:
"""simple docstring"""
lowercase__ = [PokerHand(A ) for hand in SORTED_HANDS]
lowercase__ = poker_hands.copy()
shuffle(A )
lowercase__ = chain(sorted(A ) )
for index, hand in enumerate(A ):
assert hand == poker_hands[index]
def _SCREAMING_SNAKE_CASE () -> List[Any]:
"""simple docstring"""
lowercase__ = [PokerHand('''2D AC 3H 4H 5S''' ), PokerHand('''2S 3H 4H 5S 6C''' )]
pokerhands.sort(reverse=A )
assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C"
def _SCREAMING_SNAKE_CASE () -> int:
"""simple docstring"""
lowercase__ = PokerHand('''2C 4S AS 3D 5C''' )
lowercase__ = True
lowercase__ = [5, 4, 3, 2, 14]
for _ in range(10 ):
assert pokerhand._is_five_high_straight() == expected
assert pokerhand._card_values == expected_card_values
def _SCREAMING_SNAKE_CASE () -> Union[str, Any]:
"""simple docstring"""
lowercase__ = 0
lowercase__ = os.path.abspath(os.path.dirname(A ) )
lowercase__ = os.path.join(A , '''poker_hands.txt''' )
with open(A ) as file_hand:
for line in file_hand:
lowercase__ = line[:14].strip()
lowercase__ = line[15:].strip()
lowercase__ ,lowercase__ = PokerHand(A ), PokerHand(A )
lowercase__ = player.compare_with(A )
if output == "Win":
answer += 1
assert answer == 376
| 2 | 0 |
def lowerCamelCase_ ( UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[Any] ) -> str:
"""simple docstring"""
__lowerCamelCase = ''
for word_or_phrase in separated:
if not isinstance(UpperCamelCase__ , UpperCamelCase__ ):
raise Exception('join() accepts only strings to be joined' )
joined += word_or_phrase + separator
return joined.strip(UpperCamelCase__ )
if __name__ == "__main__":
from doctest import testmod
testmod()
| 90 |
'''simple docstring'''
import argparse
import torch
from transformers import BertForMaskedLM
if __name__ == "__main__":
lowerCamelCase : List[str] = argparse.ArgumentParser(
description=(
'Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned'
' Distillation'
)
)
parser.add_argument('--model_type', default='bert', choices=['bert'])
parser.add_argument('--model_name', default='bert-base-uncased', type=str)
parser.add_argument('--dump_checkpoint', default='serialization_dir/tf_bert-base-uncased_0247911.pth', type=str)
parser.add_argument('--vocab_transform', action='store_true')
lowerCamelCase : str = parser.parse_args()
if args.model_type == "bert":
lowerCamelCase : List[Any] = BertForMaskedLM.from_pretrained(args.model_name)
lowerCamelCase : Any = 'bert'
else:
raise ValueError('args.model_type should be "bert".')
lowerCamelCase : int = model.state_dict()
lowerCamelCase : int = {}
for w in ["word_embeddings", "position_embeddings"]:
lowerCamelCase : Any = state_dict[f"""{prefix}.embeddings.{w}.weight"""]
for w in ["weight", "bias"]:
lowerCamelCase : Any = state_dict[f"""{prefix}.embeddings.LayerNorm.{w}"""]
lowerCamelCase : Tuple = 0
for teacher_idx in [0, 2, 4, 7, 9, 11]:
for w in ["weight", "bias"]:
lowerCamelCase : Dict = state_dict[
f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}"""
]
lowerCamelCase : Dict = state_dict[
f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}"""
]
lowerCamelCase : List[Any] = state_dict[
f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}"""
]
lowerCamelCase : Tuple = state_dict[
f"""{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}"""
]
lowerCamelCase : Optional[int] = state_dict[
f"""{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}"""
]
lowerCamelCase : Optional[Any] = state_dict[
f"""{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}"""
]
lowerCamelCase : Dict = state_dict[
f"""{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}"""
]
lowerCamelCase : Any = state_dict[
f"""{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}"""
]
std_idx += 1
lowerCamelCase : Optional[int] = state_dict['cls.predictions.decoder.weight']
lowerCamelCase : str = state_dict['cls.predictions.bias']
if args.vocab_transform:
for w in ["weight", "bias"]:
lowerCamelCase : str = state_dict[f"""cls.predictions.transform.dense.{w}"""]
lowerCamelCase : Any = state_dict[f"""cls.predictions.transform.LayerNorm.{w}"""]
print(f"""N layers selected for distillation: {std_idx}""")
print(f"""Number of params transferred for distillation: {len(compressed_sd.keys())}""")
print(f"""Save transferred checkpoint to {args.dump_checkpoint}.""")
torch.save(compressed_sd, args.dump_checkpoint)
| 2 | 0 |
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
EulerAncestralDiscreteScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
StableDiffusionPanoramaPipeline,
UNetaDConditionModel,
)
from diffusers.utils import slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
@skip_mps
class __lowerCAmelCase ( lowercase_, lowercase_, unittest.TestCase ):
lowerCamelCase_ : Optional[int] = StableDiffusionPanoramaPipeline
lowerCamelCase_ : Optional[int] = TEXT_TO_IMAGE_PARAMS
lowerCamelCase_ : Union[str, Any] = TEXT_TO_IMAGE_BATCH_PARAMS
lowerCamelCase_ : Optional[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS
lowerCamelCase_ : List[str] = TEXT_TO_IMAGE_IMAGE_PARAMS
def lowerCamelCase (self ) -> Any:
'''simple docstring'''
torch.manual_seed(0 )
snake_case_ : Tuple = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , )
snake_case_ : List[Any] = DDIMScheduler()
torch.manual_seed(0 )
snake_case_ : Any = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , )
torch.manual_seed(0 )
snake_case_ : str = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , )
snake_case_ : Tuple = CLIPTextModel(__magic_name__ )
snake_case_ : int = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
snake_case_ : Optional[int] = {
'''unet''': unet,
'''scheduler''': scheduler,
'''vae''': vae,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
'''safety_checker''': None,
'''feature_extractor''': None,
}
return components
def lowerCamelCase (self , __magic_name__ , __magic_name__=0 ) -> List[str]:
'''simple docstring'''
snake_case_ : str = torch.manual_seed(__magic_name__ )
snake_case_ : Tuple = {
'''prompt''': '''a photo of the dolomites''',
'''generator''': generator,
# Setting height and width to None to prevent OOMs on CPU.
'''height''': None,
'''width''': None,
'''num_inference_steps''': 1,
'''guidance_scale''': 6.0,
'''output_type''': '''numpy''',
}
return inputs
def lowerCamelCase (self ) -> int:
'''simple docstring'''
snake_case_ : Optional[Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator
snake_case_ : List[str] = self.get_dummy_components()
snake_case_ : Optional[Any] = StableDiffusionPanoramaPipeline(**__magic_name__ )
snake_case_ : Optional[Any] = sd_pipe.to(__magic_name__ )
sd_pipe.set_progress_bar_config(disable=__magic_name__ )
snake_case_ : List[str] = self.get_dummy_inputs(__magic_name__ )
snake_case_ : Dict = sd_pipe(**__magic_name__ ).images
snake_case_ : Any = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
snake_case_ : List[Any] = np.array([0.6_186, 0.5_374, 0.4_915, 0.4_135, 0.4_114, 0.4_563, 0.5_128, 0.4_977, 0.4_757] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def lowerCamelCase (self ) -> List[str]:
'''simple docstring'''
super().test_inference_batch_consistent(batch_sizes=[1, 2] )
def lowerCamelCase (self ) -> Union[str, Any]:
'''simple docstring'''
super().test_inference_batch_single_identical(batch_size=2 , expected_max_diff=3.25e-3 )
def lowerCamelCase (self ) -> List[Any]:
'''simple docstring'''
snake_case_ : Any = '''cpu''' # ensure determinism for the device-dependent torch.Generator
snake_case_ : Optional[Any] = self.get_dummy_components()
snake_case_ : List[Any] = StableDiffusionPanoramaPipeline(**__magic_name__ )
snake_case_ : int = sd_pipe.to(__magic_name__ )
sd_pipe.set_progress_bar_config(disable=__magic_name__ )
snake_case_ : int = self.get_dummy_inputs(__magic_name__ )
snake_case_ : Dict = '''french fries'''
snake_case_ : Tuple = sd_pipe(**__magic_name__ , negative_prompt=__magic_name__ )
snake_case_ : Union[str, Any] = output.images
snake_case_ : Tuple = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
snake_case_ : Union[str, Any] = np.array([0.6_187, 0.5_375, 0.4_915, 0.4_136, 0.4_114, 0.4_563, 0.5_128, 0.4_976, 0.4_757] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def lowerCamelCase (self ) -> Tuple:
'''simple docstring'''
snake_case_ : List[str] = '''cpu''' # ensure determinism for the device-dependent torch.Generator
snake_case_ : Optional[Any] = self.get_dummy_components()
snake_case_ : Tuple = StableDiffusionPanoramaPipeline(**__magic_name__ )
snake_case_ : Dict = sd_pipe.to(__magic_name__ )
sd_pipe.set_progress_bar_config(disable=__magic_name__ )
snake_case_ : List[str] = self.get_dummy_inputs(__magic_name__ )
snake_case_ : int = sd_pipe(**__magic_name__ , view_batch_size=2 )
snake_case_ : Optional[Any] = output.images
snake_case_ : Tuple = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
snake_case_ : Union[str, Any] = np.array([0.6_187, 0.5_375, 0.4_915, 0.4_136, 0.4_114, 0.4_563, 0.5_128, 0.4_976, 0.4_757] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def lowerCamelCase (self ) -> Tuple:
'''simple docstring'''
snake_case_ : Any = '''cpu''' # ensure determinism for the device-dependent torch.Generator
snake_case_ : Union[str, Any] = self.get_dummy_components()
snake_case_ : List[Any] = EulerAncestralDiscreteScheduler(
beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' )
snake_case_ : Dict = StableDiffusionPanoramaPipeline(**__magic_name__ )
snake_case_ : str = sd_pipe.to(__magic_name__ )
sd_pipe.set_progress_bar_config(disable=__magic_name__ )
snake_case_ : int = self.get_dummy_inputs(__magic_name__ )
snake_case_ : str = sd_pipe(**__magic_name__ ).images
snake_case_ : Union[str, Any] = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
snake_case_ : List[Any] = np.array([0.4_024, 0.6_510, 0.4_901, 0.5_378, 0.5_813, 0.5_622, 0.4_795, 0.4_467, 0.4_952] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def lowerCamelCase (self ) -> Tuple:
'''simple docstring'''
snake_case_ : int = '''cpu''' # ensure determinism for the device-dependent torch.Generator
snake_case_ : Union[str, Any] = self.get_dummy_components()
snake_case_ : Optional[int] = PNDMScheduler(
beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , skip_prk_steps=__magic_name__ )
snake_case_ : List[Any] = StableDiffusionPanoramaPipeline(**__magic_name__ )
snake_case_ : str = sd_pipe.to(__magic_name__ )
sd_pipe.set_progress_bar_config(disable=__magic_name__ )
snake_case_ : Optional[Any] = self.get_dummy_inputs(__magic_name__ )
snake_case_ : Dict = sd_pipe(**__magic_name__ ).images
snake_case_ : List[str] = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
snake_case_ : List[Any] = np.array([0.6_391, 0.6_291, 0.4_861, 0.5_134, 0.5_552, 0.4_578, 0.5_032, 0.5_023, 0.4_539] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
@slow
@require_torch_gpu
class __lowerCAmelCase ( unittest.TestCase ):
def lowerCamelCase (self ) -> Union[str, Any]:
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowerCamelCase (self , __magic_name__=0 ) -> Union[str, Any]:
'''simple docstring'''
snake_case_ : Union[str, Any] = torch.manual_seed(__magic_name__ )
snake_case_ : Union[str, Any] = {
'''prompt''': '''a photo of the dolomites''',
'''generator''': generator,
'''num_inference_steps''': 3,
'''guidance_scale''': 7.5,
'''output_type''': '''numpy''',
}
return inputs
def lowerCamelCase (self ) -> Optional[int]:
'''simple docstring'''
snake_case_ : Tuple = '''stabilityai/stable-diffusion-2-base'''
snake_case_ : Any = DDIMScheduler.from_pretrained(__magic_name__ , subfolder='''scheduler''' )
snake_case_ : List[Any] = StableDiffusionPanoramaPipeline.from_pretrained(__magic_name__ , scheduler=__magic_name__ , safety_checker=__magic_name__ )
pipe.to(__magic_name__ )
pipe.set_progress_bar_config(disable=__magic_name__ )
pipe.enable_attention_slicing()
snake_case_ : Dict = self.get_inputs()
snake_case_ : Any = pipe(**__magic_name__ ).images
snake_case_ : Any = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 512, 2048, 3)
snake_case_ : List[Any] = np.array(
[
0.36_968_392,
0.27_025_372,
0.32_446_766,
0.28_379_387,
0.36_363_274,
0.30_733_347,
0.27_100_027,
0.27_054_125,
0.25_536_096,
] )
assert np.abs(expected_slice - image_slice ).max() < 1e-2
def lowerCamelCase (self ) -> int:
'''simple docstring'''
snake_case_ : Any = StableDiffusionPanoramaPipeline.from_pretrained(
'''stabilityai/stable-diffusion-2-base''' , safety_checker=__magic_name__ )
snake_case_ : List[str] = LMSDiscreteScheduler.from_config(pipe.scheduler.config )
pipe.to(__magic_name__ )
pipe.set_progress_bar_config(disable=__magic_name__ )
pipe.enable_attention_slicing()
snake_case_ : int = self.get_inputs()
snake_case_ : str = pipe(**__magic_name__ ).images
snake_case_ : List[Any] = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 512, 2048, 3)
snake_case_ : Optional[int] = np.array(
[
[
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
]
] )
assert np.abs(expected_slice - image_slice ).max() < 1e-3
def lowerCamelCase (self ) -> int:
'''simple docstring'''
snake_case_ : List[str] = 0
def callback_fn(__magic_name__ , __magic_name__ , __magic_name__ ) -> None:
snake_case_ : Optional[int] = True
nonlocal number_of_steps
number_of_steps += 1
if step == 1:
snake_case_ : List[Any] = latents.detach().cpu().numpy()
assert latents.shape == (1, 4, 64, 256)
snake_case_ : Optional[int] = latents[0, -3:, -3:, -1]
snake_case_ : List[str] = np.array(
[
0.18_681_869,
0.33_907_816,
0.5_361_276,
0.14_432_865,
-0.02_856_611,
-0.73_941_123,
0.23_397_987,
0.47_322_682,
-0.37_823_164,
] )
assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2
elif step == 2:
snake_case_ : int = latents.detach().cpu().numpy()
assert latents.shape == (1, 4, 64, 256)
snake_case_ : str = latents[0, -3:, -3:, -1]
snake_case_ : Any = np.array(
[
0.18_539_645,
0.33_987_248,
0.5_378_559,
0.14_437_142,
-0.02_455_261,
-0.7_338_317,
0.23_990_755,
0.47_356_272,
-0.3_786_505,
] )
assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2
snake_case_ : str = False
snake_case_ : Tuple = '''stabilityai/stable-diffusion-2-base'''
snake_case_ : Union[str, Any] = DDIMScheduler.from_pretrained(__magic_name__ , subfolder='''scheduler''' )
snake_case_ : Any = StableDiffusionPanoramaPipeline.from_pretrained(__magic_name__ , scheduler=__magic_name__ , safety_checker=__magic_name__ )
snake_case_ : Tuple = pipe.to(__magic_name__ )
pipe.set_progress_bar_config(disable=__magic_name__ )
pipe.enable_attention_slicing()
snake_case_ : int = self.get_inputs()
pipe(**__magic_name__ , callback=__magic_name__ , callback_steps=1 )
assert callback_fn.has_been_called
assert number_of_steps == 3
def lowerCamelCase (self ) -> str:
'''simple docstring'''
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
snake_case_ : List[Any] = '''stabilityai/stable-diffusion-2-base'''
snake_case_ : Tuple = DDIMScheduler.from_pretrained(__magic_name__ , subfolder='''scheduler''' )
snake_case_ : Optional[Any] = StableDiffusionPanoramaPipeline.from_pretrained(__magic_name__ , scheduler=__magic_name__ , safety_checker=__magic_name__ )
snake_case_ : Optional[Any] = pipe.to(__magic_name__ )
pipe.set_progress_bar_config(disable=__magic_name__ )
pipe.enable_attention_slicing(1 )
pipe.enable_sequential_cpu_offload()
snake_case_ : int = self.get_inputs()
snake_case_ : Optional[int] = pipe(**__magic_name__ )
snake_case_ : Optional[Any] = torch.cuda.max_memory_allocated()
# make sure that less than 5.2 GB is allocated
assert mem_bytes < 5.5 * 10**9
| 279 |
'''simple docstring'''
from ....utils import logging
lowerCamelCase : Optional[Any] = logging.get_logger(__name__)
class __lowerCAmelCase (lowercase_ ):
'''simple docstring'''
def __init__(self : Optional[int] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Optional[Any]=None , UpperCamelCase : int=2048 ):
'''simple docstring'''
lowercase__ = config.__dict__
lowercase__ = modal_hidden_size
if num_labels:
lowercase__ = num_labels
| 2 | 0 |
'''simple docstring'''
import unittest
from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
_A : List[str] =get_tests_dir('''fixtures/spiece.model''')
@require_sentencepiece
@require_tokenizers
class _lowercase ( lowercase_ , unittest.TestCase ):
a = DebertaVaTokenizer
a = DebertaVaTokenizerFast
a = True
a = True
def lowerCamelCase_ ( self: Tuple ):
super().setUp()
# We have a SentencePiece fixture for testing
lowerCamelCase__ : List[Any] = DebertaVaTokenizer(UpperCamelCase__ , unk_token="""<unk>""" )
tokenizer.save_pretrained(self.tmpdirname )
def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase__: str ):
lowerCamelCase__ : str = """this is a test"""
lowerCamelCase__ : Tuple = """this is a test"""
return input_text, output_text
def lowerCamelCase_ ( self: Optional[int] ):
lowerCamelCase__ : str = """<pad>"""
lowerCamelCase__ : Dict = 0
self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCamelCase__ ) , UpperCamelCase__ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCamelCase__ ) , UpperCamelCase__ )
def lowerCamelCase_ ( self: Dict ):
lowerCamelCase__ : Any = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , """<pad>""" )
self.assertEqual(vocab_keys[1] , """<unk>""" )
self.assertEqual(vocab_keys[-1] , """[PAD]""" )
self.assertEqual(len(UpperCamelCase__ ) , 30_001 )
def lowerCamelCase_ ( self: int ):
self.assertEqual(self.get_tokenizer().vocab_size , 30_000 )
def lowerCamelCase_ ( self: Optional[Any] ):
lowerCamelCase__ : List[str] = """ \tHeLLo!how \n Are yoU? """
lowerCamelCase__ : List[str] = ["""▁hello""", """!""", """how""", """▁are""", """▁you""", """?"""]
# fmt: on
lowerCamelCase__ : Union[str, Any] = DebertaVaTokenizer(UpperCamelCase__ , do_lower_case=UpperCamelCase__ )
lowerCamelCase__ : Tuple = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) )
self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ )
lowerCamelCase__ : Dict = DebertaVaTokenizerFast(UpperCamelCase__ , do_lower_case=UpperCamelCase__ )
lowerCamelCase__ : List[str] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) )
self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ )
@unittest.skip("""There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.""" )
def lowerCamelCase_ ( self: List[Any] ):
pass
@unittest.skip("""There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.""" )
def lowerCamelCase_ ( self: List[str] ):
pass
def lowerCamelCase_ ( self: Optional[int] ):
lowerCamelCase__ : Optional[int] = """I was born in 92000, and this is falsé."""
lowerCamelCase__ : str = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ]
# fmt: on
lowerCamelCase__ : Any = DebertaVaTokenizer(UpperCamelCase__ , split_by_punct=UpperCamelCase__ )
lowerCamelCase__ : str = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) )
self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ )
lowerCamelCase__ : List[Any] = DebertaVaTokenizerFast(UpperCamelCase__ , split_by_punct=UpperCamelCase__ )
lowerCamelCase__ : Dict = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) )
self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ )
def lowerCamelCase_ ( self: int ):
lowerCamelCase__ : Dict = """I was born in 92000, and this is falsé."""
lowerCamelCase__ : Union[str, Any] = ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ]
# fmt: on
lowerCamelCase__ : str = DebertaVaTokenizer(UpperCamelCase__ , do_lower_case=UpperCamelCase__ , split_by_punct=UpperCamelCase__ )
lowerCamelCase__ : Optional[int] = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) )
self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ )
lowerCamelCase__ : Any = DebertaVaTokenizerFast(UpperCamelCase__ , do_lower_case=UpperCamelCase__ , split_by_punct=UpperCamelCase__ )
lowerCamelCase__ : int = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) )
self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ )
def lowerCamelCase_ ( self: Optional[Any] ):
lowerCamelCase__ : Optional[Any] = """I was born in 92000, and this is falsé."""
lowerCamelCase__ : Any = ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """.""", ]
# fmt: on
lowerCamelCase__ : List[str] = DebertaVaTokenizer(UpperCamelCase__ , do_lower_case=UpperCamelCase__ , split_by_punct=UpperCamelCase__ )
lowerCamelCase__ : Any = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) )
self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ )
lowerCamelCase__ : List[Any] = DebertaVaTokenizerFast(UpperCamelCase__ , do_lower_case=UpperCamelCase__ , split_by_punct=UpperCamelCase__ )
lowerCamelCase__ : Dict = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) )
self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ )
def lowerCamelCase_ ( self: Union[str, Any] ):
lowerCamelCase__ : Optional[Any] = """I was born in 92000, and this is falsé."""
lowerCamelCase__ : Dict = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ]
# fmt: on
lowerCamelCase__ : Dict = DebertaVaTokenizer(UpperCamelCase__ , do_lower_case=UpperCamelCase__ , split_by_punct=UpperCamelCase__ )
lowerCamelCase__ : int = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) )
self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ )
lowerCamelCase__ : str = DebertaVaTokenizerFast(UpperCamelCase__ , do_lower_case=UpperCamelCase__ , split_by_punct=UpperCamelCase__ )
lowerCamelCase__ : str = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) )
self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ )
def lowerCamelCase_ ( self: Union[str, Any] ):
lowerCamelCase__ : Any = """ \tHeLLo!how \n Are yoU? """
lowerCamelCase__ : List[str] = ["""▁""", """<unk>""", """e""", """<unk>""", """o""", """!""", """how""", """▁""", """<unk>""", """re""", """▁yo""", """<unk>""", """?"""]
# fmt: on
lowerCamelCase__ : Any = DebertaVaTokenizer(UpperCamelCase__ , do_lower_case=UpperCamelCase__ , split_by_punct=UpperCamelCase__ )
lowerCamelCase__ : int = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) )
self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ )
lowerCamelCase__ : str = DebertaVaTokenizerFast(UpperCamelCase__ , do_lower_case=UpperCamelCase__ , split_by_punct=UpperCamelCase__ )
lowerCamelCase__ : int = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) )
self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ )
def lowerCamelCase_ ( self: Union[str, Any] ):
lowerCamelCase__ : Any = self.get_tokenizer()
lowerCamelCase__ : List[str] = self.get_rust_tokenizer()
lowerCamelCase__ : List[str] = """I was born in 92000, and this is falsé."""
lowerCamelCase__ : Tuple = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) )
lowerCamelCase__ : Optional[int] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) )
self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ )
lowerCamelCase__ : Union[str, Any] = tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ )
lowerCamelCase__ : Dict = rust_tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ )
self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ )
lowerCamelCase__ : Optional[Any] = self.get_rust_tokenizer()
lowerCamelCase__ : str = tokenizer.encode(UpperCamelCase__ )
lowerCamelCase__ : int = rust_tokenizer.encode(UpperCamelCase__ )
self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ )
def lowerCamelCase_ ( self: int ):
lowerCamelCase__ : Any = """This is a test"""
lowerCamelCase__ : Optional[int] = [13, 1, 4_398, 25, 21, 1_289]
lowerCamelCase__ : Tuple = ["""▁""", """T""", """his""", """▁is""", """▁a""", """▁test"""]
lowerCamelCase__ : Tuple = ["""▁""", """<unk>""", """his""", """▁is""", """▁a""", """▁test"""]
lowerCamelCase__ : Tuple = DebertaVaTokenizer(UpperCamelCase__ , keep_accents=UpperCamelCase__ )
lowerCamelCase__ : int = DebertaVaTokenizerFast(UpperCamelCase__ , keep_accents=UpperCamelCase__ )
lowerCamelCase__ : Tuple = tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ )
self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ )
lowerCamelCase__ : List[Any] = tokenizer.tokenize(UpperCamelCase__ )
self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ )
lowerCamelCase__ : Dict = tokenizer.convert_ids_to_tokens(UpperCamelCase__ )
self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ )
lowerCamelCase__ : Any = rust_tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ )
self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ )
lowerCamelCase__ : Optional[Any] = rust_tokenizer.tokenize(UpperCamelCase__ )
self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ )
lowerCamelCase__ : str = rust_tokenizer.convert_ids_to_tokens(UpperCamelCase__ )
self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ )
# fmt: off
lowerCamelCase__ : Tuple = """I was born in 92000, and this is falsé."""
lowerCamelCase__ : List[str] = [13, 1, 23, 386, 19, 561, 3_050, 15, 17, 48, 25, 8_256, 18, 1, 9]
lowerCamelCase__ : Tuple = ["""▁""", """I""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """é""", """.""", ]
lowerCamelCase__ : Optional[Any] = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """.""", ]
# fmt: on
lowerCamelCase__ : List[str] = tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ )
self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ )
lowerCamelCase__ : Any = tokenizer.tokenize(UpperCamelCase__ )
self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ )
lowerCamelCase__ : Any = tokenizer.convert_ids_to_tokens(UpperCamelCase__ )
self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ )
lowerCamelCase__ : Optional[Any] = rust_tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ )
self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ )
lowerCamelCase__ : List[Any] = rust_tokenizer.tokenize(UpperCamelCase__ )
self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ )
lowerCamelCase__ : Optional[Any] = rust_tokenizer.convert_ids_to_tokens(UpperCamelCase__ )
self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ )
def lowerCamelCase_ ( self: int ):
lowerCamelCase__ : Tuple = DebertaVaTokenizer(UpperCamelCase__ )
lowerCamelCase__ : List[Any] = tokenizer.encode("""sequence builders""" )
lowerCamelCase__ : Tuple = tokenizer.encode("""multi-sequence build""" )
lowerCamelCase__ : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(UpperCamelCase__ )
lowerCamelCase__ : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(UpperCamelCase__ , UpperCamelCase__ )
self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , UpperCamelCase__ )
self.assertEqual(
[tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , UpperCamelCase__ , )
@slow
def lowerCamelCase_ ( self: int ):
lowerCamelCase__ : Dict = {"""input_ids""": [[1, 39_867, 36, 19_390, 486, 27, 35_052, 81_436, 18, 60_685, 1_225, 7, 35_052, 81_436, 18, 9_367, 16_899, 18, 15_937, 53, 594, 773, 18, 16_287, 30_465, 36, 15_937, 6, 41_139, 38, 36_979, 60_763, 191, 6, 34_132, 99, 6, 50_538, 390, 43_230, 6, 34_132, 2_779, 20_850, 14, 699, 1_072, 1_194, 36, 382, 10_901, 53, 7, 699, 1_072, 2_084, 36, 20_422, 630, 53, 19, 105, 3_049, 1_896, 1_053, 16_899, 1_506, 11, 37_978, 4_243, 7, 1_237, 31_869, 200, 16_566, 654, 6, 35_052, 81_436, 7, 55_630, 13_593, 4, 2], [1, 26, 15_011, 13, 667, 8, 1_053, 18, 23_611, 1_237, 72_356, 12_820, 34, 104_134, 1_209, 35, 13_313, 6_627, 21, 202, 347, 7, 164, 2_399, 11, 46, 4_485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1_232, 2_864, 15_785, 14_951, 105, 5, 8_581, 1_250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=UpperCamelCase__ , model_name="""microsoft/deberta-v2-xlarge""" , revision="""ad6e42c1532ddf3a15c39246b63f5559d558b670""" , )
| 41 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCamelCase : Tuple = logging.get_logger(__name__)
lowerCamelCase : Dict = {
'microsoft/cvt-13': 'https://huggingface.co/microsoft/cvt-13/resolve/main/config.json',
# See all Cvt models at https://huggingface.co/models?filter=cvt
}
class __lowerCAmelCase (lowercase_ ):
'''simple docstring'''
lowerCAmelCase__ : Tuple = """cvt"""
def __init__(self : int , UpperCamelCase : List[Any]=3 , UpperCamelCase : int=[7, 3, 3] , UpperCamelCase : str=[4, 2, 2] , UpperCamelCase : Dict=[2, 1, 1] , UpperCamelCase : Dict=[64, 192, 384] , UpperCamelCase : Dict=[1, 3, 6] , UpperCamelCase : Dict=[1, 2, 10] , UpperCamelCase : Any=[4.0, 4.0, 4.0] , UpperCamelCase : Optional[int]=[0.0, 0.0, 0.0] , UpperCamelCase : Optional[int]=[0.0, 0.0, 0.0] , UpperCamelCase : int=[0.0, 0.0, 0.1] , UpperCamelCase : Any=[True, True, True] , UpperCamelCase : int=[False, False, True] , UpperCamelCase : Union[str, Any]=["dw_bn", "dw_bn", "dw_bn"] , UpperCamelCase : Optional[int]=[3, 3, 3] , UpperCamelCase : Tuple=[1, 1, 1] , UpperCamelCase : Any=[2, 2, 2] , UpperCamelCase : Dict=[1, 1, 1] , UpperCamelCase : List[str]=[1, 1, 1] , UpperCamelCase : str=0.02 , UpperCamelCase : int=1E-12 , **UpperCamelCase : Union[str, Any] , ):
'''simple docstring'''
super().__init__(**UpperCamelCase )
lowercase__ = num_channels
lowercase__ = patch_sizes
lowercase__ = patch_stride
lowercase__ = patch_padding
lowercase__ = embed_dim
lowercase__ = num_heads
lowercase__ = depth
lowercase__ = mlp_ratio
lowercase__ = attention_drop_rate
lowercase__ = drop_rate
lowercase__ = drop_path_rate
lowercase__ = qkv_bias
lowercase__ = cls_token
lowercase__ = qkv_projection_method
lowercase__ = kernel_qkv
lowercase__ = padding_kv
lowercase__ = stride_kv
lowercase__ = padding_q
lowercase__ = stride_q
lowercase__ = initializer_range
lowercase__ = layer_norm_eps
| 2 | 0 |
'''simple docstring'''
import unittest
from transformers import DonutProcessor
lowercase : Tuple = 'naver-clova-ix/donut-base'
class A ( unittest.TestCase ):
def __lowerCAmelCase ( self ) -> Any:
"""simple docstring"""
A : Dict = DonutProcessor.from_pretrained(SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> Union[str, Any]:
"""simple docstring"""
A : Any = {
'''name''': '''John Doe''',
'''age''': '''99''',
'''city''': '''Atlanta''',
'''state''': '''GA''',
'''zip''': '''30301''',
'''phone''': '''123-4567''',
'''nicknames''': [{'''nickname''': '''Johnny'''}, {'''nickname''': '''JD'''}],
}
A : Optional[Any] = (
'''<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>'''
'''<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>'''
'''<s_nicknames><s_nickname>Johnny</s_nickname>'''
'''<sep/><s_nickname>JD</s_nickname></s_nicknames>'''
)
A : str = self.processor.tokenajson(SCREAMING_SNAKE_CASE )
self.assertDictEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
| 3 |
'''simple docstring'''
import numpy as np
# Importing the Keras libraries and packages
import tensorflow as tf
from tensorflow.keras import layers, models
if __name__ == "__main__":
# Initialising the CNN
# (Sequential- Building the model layer by layer)
lowerCamelCase : Any = models.Sequential()
# Step 1 - Convolution
# Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel
# (3,3) is the kernel size (filter matrix)
classifier.add(
layers.ConvaD(32, (3, 3), input_shape=(64, 64, 3), activation='relu')
)
# Step 2 - Pooling
classifier.add(layers.MaxPoolingaD(pool_size=(2, 2)))
# Adding a second convolutional layer
classifier.add(layers.ConvaD(32, (3, 3), activation='relu'))
classifier.add(layers.MaxPoolingaD(pool_size=(2, 2)))
# Step 3 - Flattening
classifier.add(layers.Flatten())
# Step 4 - Full connection
classifier.add(layers.Dense(units=128, activation='relu'))
classifier.add(layers.Dense(units=1, activation='sigmoid'))
# Compiling the CNN
classifier.compile(
optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']
)
# Part 2 - Fitting the CNN to the images
# Load Trained model weights
# from keras.models import load_model
# regressor=load_model('cnn.h5')
lowerCamelCase : Optional[Any] = tf.keras.preprocessing.image.ImageDataGenerator(
rescale=1.0 / 255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True
)
lowerCamelCase : Any = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 255)
lowerCamelCase : List[Any] = train_datagen.flow_from_directory(
'dataset/training_set', target_size=(64, 64), batch_size=32, class_mode='binary'
)
lowerCamelCase : List[str] = test_datagen.flow_from_directory(
'dataset/test_set', target_size=(64, 64), batch_size=32, class_mode='binary'
)
classifier.fit_generator(
training_set, steps_per_epoch=5, epochs=30, validation_data=test_set
)
classifier.save('cnn.h5')
# Part 3 - Making new predictions
lowerCamelCase : List[str] = tf.keras.preprocessing.image.load_img(
'dataset/single_prediction/image.png', target_size=(64, 64)
)
lowerCamelCase : Optional[int] = tf.keras.preprocessing.image.img_to_array(test_image)
lowerCamelCase : str = np.expand_dims(test_image, axis=0)
lowerCamelCase : List[str] = classifier.predict(test_image)
# training_set.class_indices
if result[0][0] == 0:
lowerCamelCase : Any = 'Normal'
if result[0][0] == 1:
lowerCamelCase : Any = 'Abnormality detected'
| 2 | 0 |
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_videomae import VideoMAEImageProcessor
A =logging.get_logger(__name__)
class _a ( lowercase_ ):
def __init__( self : str , *lowercase : List[str] , **lowercase : Union[str, Any] ):
'''simple docstring'''
warnings.warn(
'''The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers.'''
''' Please use VideoMAEImageProcessor instead.''' , lowercase , )
super().__init__(*lowercase , **lowercase )
| 34 |
'''simple docstring'''
class __lowerCAmelCase : # Public class to implement a graph
'''simple docstring'''
def __init__(self : int , UpperCamelCase : int , UpperCamelCase : int , UpperCamelCase : list[list[bool]] ):
'''simple docstring'''
lowercase__ = row
lowercase__ = col
lowercase__ = graph
def UpperCamelCase__ (self : Optional[int] , UpperCamelCase : int , UpperCamelCase : int , UpperCamelCase : list[list[bool]] ):
'''simple docstring'''
return (
0 <= i < self.ROW
and 0 <= j < self.COL
and not visited[i][j]
and self.graph[i][j]
)
def UpperCamelCase__ (self : int , UpperCamelCase : int , UpperCamelCase : int , UpperCamelCase : list[list[bool]] ):
'''simple docstring'''
lowercase__ = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order
lowercase__ = [-1, 0, 1, -1, 1, -1, 0, 1]
lowercase__ = True # Make those cells visited
for k in range(8 ):
if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , UpperCamelCase ):
self.diffs(i + row_nbr[k] , j + col_nbr[k] , UpperCamelCase )
def UpperCamelCase__ (self : Dict ): # And finally, count all islands.
'''simple docstring'''
lowercase__ = [[False for j in range(self.COL )] for i in range(self.ROW )]
lowercase__ = 0
for i in range(self.ROW ):
for j in range(self.COL ):
if visited[i][j] is False and self.graph[i][j] == 1:
self.diffs(UpperCamelCase , UpperCamelCase , UpperCamelCase )
count += 1
return count
| 2 | 0 |
'''simple docstring'''
import math
from typing import Any, Callable, List, Optional, Tuple, Union
import numpy as np
import torch
from ...models import TaFilmDecoder
from ...schedulers import DDPMScheduler
from ...utils import is_onnx_available, logging, randn_tensor
if is_onnx_available():
from ..onnx_utils import OnnxRuntimeModel
from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline
from .continous_encoder import SpectrogramContEncoder
from .notes_encoder import SpectrogramNotesEncoder
UpperCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name
UpperCAmelCase = 256
class lowerCAmelCase ( lowercase_ ):
lowerCAmelCase_ = ["""melgan"""]
def __init__( self : Tuple , __lowercase : SpectrogramNotesEncoder , __lowercase : SpectrogramContEncoder , __lowercase : TaFilmDecoder , __lowercase : DDPMScheduler , __lowercase : OnnxRuntimeModel if is_onnx_available() else Any , ):
"""simple docstring"""
super().__init__()
# From MELGAN
__lowercase =math.log(1E-5 ) # Matches MelGAN training.
__lowercase =4.0 # Largest value for most examples
__lowercase =128
self.register_modules(
notes_encoder=__lowercase , continuous_encoder=__lowercase , decoder=__lowercase , scheduler=__lowercase , melgan=__lowercase , )
def snake_case ( self : str , __lowercase : Dict , __lowercase : Tuple=(-1.0, 1.0) , __lowercase : int=False ):
"""simple docstring"""
__lowercase , __lowercase =output_range
if clip:
__lowercase =torch.clip(__lowercase , self.min_value , self.max_value )
# Scale to [0, 1].
__lowercase =(features - self.min_value) / (self.max_value - self.min_value)
# Scale to [min_out, max_out].
return zero_one * (max_out - min_out) + min_out
def snake_case ( self : Union[str, Any] , __lowercase : List[str] , __lowercase : Union[str, Any]=(-1.0, 1.0) , __lowercase : Dict=False ):
"""simple docstring"""
__lowercase , __lowercase =input_range
__lowercase =torch.clip(__lowercase , __lowercase , __lowercase ) if clip else outputs
# Scale to [0, 1].
__lowercase =(outputs - min_out) / (max_out - min_out)
# Scale to [self.min_value, self.max_value].
return zero_one * (self.max_value - self.min_value) + self.min_value
def snake_case ( self : Dict , __lowercase : List[Any] , __lowercase : List[str] , __lowercase : Union[str, Any] ):
"""simple docstring"""
__lowercase =input_tokens > 0
__lowercase , __lowercase =self.notes_encoder(
encoder_input_tokens=__lowercase , encoder_inputs_mask=__lowercase )
__lowercase , __lowercase =self.continuous_encoder(
encoder_inputs=__lowercase , encoder_inputs_mask=__lowercase )
return [(tokens_encoded, tokens_mask), (continuous_encoded, continuous_mask)]
def snake_case ( self : Dict , __lowercase : Union[str, Any] , __lowercase : Optional[int] , __lowercase : Any ):
"""simple docstring"""
__lowercase =noise_time
if not torch.is_tensor(__lowercase ):
__lowercase =torch.tensor([timesteps] , dtype=torch.long , device=input_tokens.device )
elif torch.is_tensor(__lowercase ) and len(timesteps.shape ) == 0:
__lowercase =timesteps[None].to(input_tokens.device )
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
__lowercase =timesteps * torch.ones(input_tokens.shape[0] , dtype=timesteps.dtype , device=timesteps.device )
__lowercase =self.decoder(
encodings_and_masks=__lowercase , decoder_input_tokens=__lowercase , decoder_noise_time=__lowercase )
return logits
@torch.no_grad()
def __call__( self : List[Any] , __lowercase : List[List[int]] , __lowercase : Optional[torch.Generator] = None , __lowercase : int = 100 , __lowercase : bool = True , __lowercase : str = "numpy" , __lowercase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __lowercase : int = 1 , ):
"""simple docstring"""
if (callback_steps is None) or (
callback_steps is not None and (not isinstance(__lowercase , __lowercase ) or callback_steps <= 0)
):
raise ValueError(
f'''`callback_steps` has to be a positive integer but is {callback_steps} of type'''
f''' {type(__lowercase )}.''' )
__lowercase =np.zeros([1, TARGET_FEATURE_LENGTH, self.n_dims] , dtype=np.floataa )
__lowercase =np.zeros([1, 0, self.n_dims] , np.floataa )
__lowercase =torch.ones((1, TARGET_FEATURE_LENGTH) , dtype=__lowercase , device=self.device )
for i, encoder_input_tokens in enumerate(__lowercase ):
if i == 0:
__lowercase =torch.from_numpy(pred_mel[:1].copy() ).to(
device=self.device , dtype=self.decoder.dtype )
# The first chunk has no previous context.
__lowercase =torch.zeros((1, TARGET_FEATURE_LENGTH) , dtype=__lowercase , device=self.device )
else:
# The full song pipeline does not feed in a context feature, so the mask
# will be all 0s after the feature converter. Because we know we're
# feeding in a full context chunk from the previous prediction, set it
# to all 1s.
__lowercase =ones
__lowercase =self.scale_features(
__lowercase , output_range=[-1.0, 1.0] , clip=__lowercase )
__lowercase =self.encode(
input_tokens=torch.IntTensor([encoder_input_tokens] ).to(device=self.device ) , continuous_inputs=__lowercase , continuous_mask=__lowercase , )
# Sample encoder_continuous_inputs shaped gaussian noise to begin loop
__lowercase =randn_tensor(
shape=encoder_continuous_inputs.shape , generator=__lowercase , device=self.device , dtype=self.decoder.dtype , )
# set step values
self.scheduler.set_timesteps(__lowercase )
# Denoising diffusion loop
for j, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ):
__lowercase =self.decode(
encodings_and_masks=__lowercase , input_tokens=__lowercase , noise_time=t / self.scheduler.config.num_train_timesteps , )
# Compute previous output: x_t -> x_t-1
__lowercase =self.scheduler.step(__lowercase , __lowercase , __lowercase , generator=__lowercase ).prev_sample
__lowercase =self.scale_to_features(__lowercase , input_range=[-1.0, 1.0] )
__lowercase =mel[:1]
__lowercase =mel.cpu().float().numpy()
__lowercase =np.concatenate([full_pred_mel, pred_mel[:1]] , axis=1 )
# call the callback, if provided
if callback is not None and i % callback_steps == 0:
callback(__lowercase , __lowercase )
logger.info('Generated segment' , __lowercase )
if output_type == "numpy" and not is_onnx_available():
raise ValueError(
'Cannot return output in \'np\' format if ONNX is not available. Make sure to have ONNX installed or set \'output_type\' to \'mel\'.' )
elif output_type == "numpy" and self.melgan is None:
raise ValueError(
'Cannot return output in \'np\' format if melgan component is not defined. Make sure to define `self.melgan` or set \'output_type\' to \'mel\'.' )
if output_type == "numpy":
__lowercase =self.melgan(input_features=full_pred_mel.astype(np.floataa ) )
else:
__lowercase =full_pred_mel
if not return_dict:
return (output,)
return AudioPipelineOutput(audios=__lowercase )
| 141 |
'''simple docstring'''
import unittest
from transformers import DonutProcessor
lowerCamelCase : Tuple = 'naver-clova-ix/donut-base'
class __lowerCAmelCase (unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase__ (self : int ):
'''simple docstring'''
lowercase__ = DonutProcessor.from_pretrained(UpperCamelCase )
def UpperCamelCase__ (self : Tuple ):
'''simple docstring'''
lowercase__ = {
'''name''': '''John Doe''',
'''age''': '''99''',
'''city''': '''Atlanta''',
'''state''': '''GA''',
'''zip''': '''30301''',
'''phone''': '''123-4567''',
'''nicknames''': [{'''nickname''': '''Johnny'''}, {'''nickname''': '''JD'''}],
}
lowercase__ = (
'''<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>'''
'''<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>'''
'''<s_nicknames><s_nickname>Johnny</s_nickname>'''
'''<sep/><s_nickname>JD</s_nickname></s_nicknames>'''
)
lowercase__ = self.processor.tokenajson(UpperCamelCase )
self.assertDictEqual(UpperCamelCase , UpperCamelCase )
| 2 | 0 |
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, List, Mapping, Optional
from packaging import version
if TYPE_CHECKING:
from ... import PreTrainedTokenizer, TensorType
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfigWithPast, PatchingSpec
from ...utils import is_torch_available, logging
__snake_case : Optional[int] =logging.get_logger(__name__)
__snake_case : int ={
'bigscience/bloom': 'https://huggingface.co/bigscience/bloom/resolve/main/config.json',
'bigscience/bloom-560m': 'https://huggingface.co/bigscience/bloom-560m/blob/main/config.json',
'bigscience/bloom-1b1': 'https://huggingface.co/bigscience/bloom-1b1/blob/main/config.json',
'bigscience/bloom-1b7': 'https://huggingface.co/bigscience/bloom-1b7/blob/main/config.json',
'bigscience/bloom-3b': 'https://huggingface.co/bigscience/bloom-3b/blob/main/config.json',
'bigscience/bloom-7b1': 'https://huggingface.co/bigscience/bloom-7b1/blob/main/config.json',
}
class lowerCamelCase__ ( lowercase_):
'''simple docstring'''
snake_case_ ="""bloom"""
snake_case_ =["""past_key_values"""]
snake_case_ ={
"""num_hidden_layers""": """n_layer""",
"""num_attention_heads""": """n_head""",
}
def __init__(self ,__lowerCamelCase=25_08_80 ,__lowerCamelCase=64 ,__lowerCamelCase=2 ,__lowerCamelCase=8 ,__lowerCamelCase=1e-5 ,__lowerCamelCase=0.02 ,__lowerCamelCase=True ,__lowerCamelCase=1 ,__lowerCamelCase=2 ,__lowerCamelCase=False ,__lowerCamelCase=0.0 ,__lowerCamelCase=0.0 ,__lowerCamelCase=1 ,__lowerCamelCase=False ,**__lowerCamelCase ,) -> str:
"""simple docstring"""
lowerCAmelCase__ : Union[str, Any] = vocab_size
# Backward compatibility with n_embed kwarg
lowerCAmelCase__ : str = kwargs.pop('''n_embed''' ,__lowerCamelCase )
lowerCAmelCase__ : Any = hidden_size if n_embed is None else n_embed
lowerCAmelCase__ : Optional[Any] = n_layer
lowerCAmelCase__ : int = n_head
lowerCAmelCase__ : Dict = layer_norm_epsilon
lowerCAmelCase__ : str = initializer_range
lowerCAmelCase__ : Union[str, Any] = use_cache
lowerCAmelCase__ : int = pretraining_tp
lowerCAmelCase__ : str = apply_residual_connection_post_layernorm
lowerCAmelCase__ : List[str] = hidden_dropout
lowerCAmelCase__ : int = attention_dropout
lowerCAmelCase__ : Dict = bos_token_id
lowerCAmelCase__ : Union[str, Any] = eos_token_id
lowerCAmelCase__ : Dict = slow_but_exact
super().__init__(bos_token_id=__lowerCamelCase ,eos_token_id=__lowerCamelCase ,**__lowerCamelCase )
class lowerCamelCase__ ( lowercase_):
'''simple docstring'''
snake_case_ =version.parse("""1.12""")
def __init__(self ,__lowerCamelCase ,__lowerCamelCase = "default" ,__lowerCamelCase = None ,__lowerCamelCase = False ,) -> Any:
"""simple docstring"""
super().__init__(__lowerCamelCase ,task=__lowerCamelCase ,patching_specs=__lowerCamelCase ,use_past=__lowerCamelCase )
if not getattr(self._config ,'''pad_token_id''' ,__lowerCamelCase ):
# TODO: how to do that better?
lowerCAmelCase__ : Tuple = 0
@property
def lowerCAmelCase__ (self ) -> Tuple:
"""simple docstring"""
lowerCAmelCase__ : str = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} )
if self.use_past:
# BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344
self.fill_with_past_key_values_(__lowerCamelCase ,direction='''inputs''' ,inverted_values_shape=__lowerCamelCase )
lowerCAmelCase__ : Any = {0: '''batch''', 1: '''past_sequence + sequence'''}
else:
lowerCAmelCase__ : Union[str, Any] = {0: '''batch''', 1: '''sequence'''}
return common_inputs
@property
def lowerCAmelCase__ (self ) -> Tuple:
"""simple docstring"""
return self._config.n_layer
@property
def lowerCAmelCase__ (self ) -> List[str]:
"""simple docstring"""
return self._config.n_head
@property
def lowerCAmelCase__ (self ) -> Any:
"""simple docstring"""
return 1e-3
def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase = -1 ,__lowerCamelCase = -1 ,__lowerCamelCase = False ,__lowerCamelCase = None ,) -> List[str]:
"""simple docstring"""
lowerCAmelCase__ : int = super(__lowerCamelCase ,self ).generate_dummy_inputs(
__lowerCamelCase ,batch_size=__lowerCamelCase ,seq_length=__lowerCamelCase ,is_pair=__lowerCamelCase ,framework=__lowerCamelCase )
# We need to order the input in the way they appears in the forward()
lowerCAmelCase__ : List[str] = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} )
# Need to add the past_keys
if self.use_past:
if not is_torch_available():
raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' )
else:
import torch
lowerCAmelCase__ , lowerCAmelCase__ : Tuple = common_inputs['''input_ids'''].shape
# Not using the same length for past_key_values
lowerCAmelCase__ : List[Any] = seqlen + 2
lowerCAmelCase__ : List[Any] = self._config.hidden_size // self.num_attention_heads
lowerCAmelCase__ : List[Any] = (
batch * self.num_attention_heads,
head_dim,
past_key_values_length,
)
lowerCAmelCase__ : List[Any] = (
batch * self.num_attention_heads,
past_key_values_length,
head_dim,
)
lowerCAmelCase__ : Optional[Any] = [
(torch.zeros(__lowerCamelCase ), torch.zeros(__lowerCamelCase )) for _ in range(self.num_layers )
]
lowerCAmelCase__ : Any = common_inputs['''attention_mask''']
if self.use_past:
lowerCAmelCase__ : Optional[Any] = ordered_inputs['''attention_mask'''].dtype
lowerCAmelCase__ : Optional[int] = torch.cat(
[ordered_inputs['''attention_mask'''], torch.ones(__lowerCamelCase ,__lowerCamelCase ,dtype=__lowerCamelCase )] ,dim=1 )
return ordered_inputs
@property
def lowerCAmelCase__ (self ) -> int:
"""simple docstring"""
return 13
| 129 |
'''simple docstring'''
from __future__ import annotations
def _SCREAMING_SNAKE_CASE (A ) -> bool:
"""simple docstring"""
return len(set(A ) ) == len(A )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 2 | 0 |
"""simple docstring"""
import unittest
from transformers import MobileBertConfig, is_torch_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_PRETRAINING_MAPPING,
MobileBertForMaskedLM,
MobileBertForMultipleChoice,
MobileBertForNextSentencePrediction,
MobileBertForPreTraining,
MobileBertForQuestionAnswering,
MobileBertForSequenceClassification,
MobileBertForTokenClassification,
MobileBertModel,
)
class _UpperCAmelCase :
'''simple docstring'''
def __init__(self , a_ , a_=13 , a_=7 , a_=True , a_=True , a_=True , a_=True , a_=99 , a_=64 , a_=32 , a_=5 , a_=4 , a_=37 , a_="gelu" , a_=0.1 , a_=0.1 , a_=5_12 , a_=16 , a_=2 , a_=0.02 , a_=3 , a_=4 , a_=None , ):
'''simple docstring'''
__snake_case : int = parent
__snake_case : Optional[Any] = batch_size
__snake_case : Dict = seq_length
__snake_case : Any = is_training
__snake_case : int = use_input_mask
__snake_case : Union[str, Any] = use_token_type_ids
__snake_case : List[Any] = use_labels
__snake_case : List[Any] = vocab_size
__snake_case : int = hidden_size
__snake_case : str = embedding_size
__snake_case : Dict = num_hidden_layers
__snake_case : Dict = num_attention_heads
__snake_case : Union[str, Any] = intermediate_size
__snake_case : Optional[Any] = hidden_act
__snake_case : Tuple = hidden_dropout_prob
__snake_case : Union[str, Any] = attention_probs_dropout_prob
__snake_case : Optional[Any] = max_position_embeddings
__snake_case : List[str] = type_vocab_size
__snake_case : Optional[int] = type_sequence_label_size
__snake_case : Optional[Any] = initializer_range
__snake_case : Any = num_labels
__snake_case : Tuple = num_choices
__snake_case : Optional[Any] = scope
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__snake_case : str = None
if self.use_input_mask:
__snake_case : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] )
__snake_case : Tuple = None
if self.use_token_type_ids:
__snake_case : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__snake_case : Tuple = None
__snake_case : Optional[int] = None
__snake_case : Union[str, Any] = None
if self.use_labels:
__snake_case : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__snake_case : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__snake_case : Optional[int] = ids_tensor([self.batch_size] , self.num_choices )
__snake_case : int = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
return MobileBertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=a_ , initializer_range=self.initializer_range , )
def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ , a_ ):
'''simple docstring'''
__snake_case : List[str] = MobileBertModel(config=a_ )
model.to(a_ )
model.eval()
__snake_case : str = model(a_ , attention_mask=a_ , token_type_ids=a_ )
__snake_case : Any = model(a_ , token_type_ids=a_ )
__snake_case : Dict = model(a_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ , a_ ):
'''simple docstring'''
__snake_case : Tuple = MobileBertForMaskedLM(config=a_ )
model.to(a_ )
model.eval()
__snake_case : Optional[int] = model(a_ , attention_mask=a_ , token_type_ids=a_ , labels=a_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ , a_ ):
'''simple docstring'''
__snake_case : str = MobileBertForNextSentencePrediction(config=a_ )
model.to(a_ )
model.eval()
__snake_case : Tuple = model(
a_ , attention_mask=a_ , token_type_ids=a_ , labels=a_ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) )
def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ , a_ ):
'''simple docstring'''
__snake_case : List[Any] = MobileBertForPreTraining(config=a_ )
model.to(a_ )
model.eval()
__snake_case : Optional[Any] = model(
a_ , attention_mask=a_ , token_type_ids=a_ , labels=a_ , next_sentence_label=a_ , )
self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) )
def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ , a_ ):
'''simple docstring'''
__snake_case : Tuple = MobileBertForQuestionAnswering(config=a_ )
model.to(a_ )
model.eval()
__snake_case : str = model(
a_ , attention_mask=a_ , token_type_ids=a_ , start_positions=a_ , end_positions=a_ , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ , a_ ):
'''simple docstring'''
__snake_case : Optional[Any] = self.num_labels
__snake_case : Tuple = MobileBertForSequenceClassification(a_ )
model.to(a_ )
model.eval()
__snake_case : str = model(a_ , attention_mask=a_ , token_type_ids=a_ , labels=a_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ , a_ ):
'''simple docstring'''
__snake_case : str = self.num_labels
__snake_case : str = MobileBertForTokenClassification(config=a_ )
model.to(a_ )
model.eval()
__snake_case : List[str] = model(a_ , attention_mask=a_ , token_type_ids=a_ , labels=a_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ , a_ ):
'''simple docstring'''
__snake_case : Optional[Any] = self.num_choices
__snake_case : Union[str, Any] = MobileBertForMultipleChoice(config=a_ )
model.to(a_ )
model.eval()
__snake_case : Union[str, Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__snake_case : List[str] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__snake_case : Any = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__snake_case : int = model(
a_ , attention_mask=a_ , token_type_ids=a_ , labels=a_ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Dict = self.prepare_config_and_inputs()
(
(
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) ,
) : int = config_and_inputs
__snake_case : Union[str, Any] = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_torch
class _UpperCAmelCase ( lowercase_, lowercase_, unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ =(
(
MobileBertModel,
MobileBertForMaskedLM,
MobileBertForMultipleChoice,
MobileBertForNextSentencePrediction,
MobileBertForPreTraining,
MobileBertForQuestionAnswering,
MobileBertForSequenceClassification,
MobileBertForTokenClassification,
)
if is_torch_available()
else ()
)
lowerCamelCase__ =(
{
"""feature-extraction""": MobileBertModel,
"""fill-mask""": MobileBertForMaskedLM,
"""question-answering""": MobileBertForQuestionAnswering,
"""text-classification""": MobileBertForSequenceClassification,
"""token-classification""": MobileBertForTokenClassification,
"""zero-shot""": MobileBertForSequenceClassification,
}
if is_torch_available()
else {}
)
lowerCamelCase__ =True
def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_=False ):
'''simple docstring'''
__snake_case : Any = super()._prepare_for_class(a_ , a_ , return_labels=a_ )
if return_labels:
if model_class in get_values(a_ ):
__snake_case : List[str] = torch.zeros(
(self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=a_ )
__snake_case : Tuple = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=a_ )
return inputs_dict
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : str = MobileBertModelTester(self )
__snake_case : str = ConfigTester(self , config_class=a_ , hidden_size=37 )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
self.config_tester.run_common_tests()
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_model(*a_ )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_masked_lm(*a_ )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_multiple_choice(*a_ )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*a_ )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_pretraining(*a_ )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_question_answering(*a_ )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_sequence_classification(*a_ )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_token_classification(*a_ )
def lowercase ( _snake_case : Optional[Any] ) ->Optional[int]:
"""simple docstring"""
return torch.tensor(
_snake_case , dtype=torch.long , device=_snake_case , )
SCREAMING_SNAKE_CASE : str = 1E-3
@require_torch
@require_sentencepiece
@require_tokenizers
class _UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
@slow
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Optional[int] = MobileBertModel.from_pretrained('''google/mobilebert-uncased''' ).to(a_ )
__snake_case : Union[str, Any] = _long_tensor([[1_01, 71_10, 10_05, 10_56, 20_23, 1_13_33, 1_74_13, 10_29, 1_02]] )
with torch.no_grad():
__snake_case : int = model(a_ )[0]
__snake_case : Union[str, Any] = torch.Size((1, 9, 5_12) )
self.assertEqual(output.shape , a_ )
__snake_case : Optional[Any] = torch.tensor(
[
[
[-2.4736526E07, 8.2691656E04, 1.6521838E05],
[-5.7541704E-01, 3.9056022E00, 4.4011507E00],
[2.6047359E00, 1.5677652E00, -1.7324188E-01],
]
] , device=a_ , )
# MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a
# ~1 difference, it's therefore not a good idea to measure using addition.
# Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the
# result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE
__snake_case : int = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE )
__snake_case : Optional[int] = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE )
self.assertTrue(lower_bound and upper_bound )
| 102 |
'''simple docstring'''
import os
import re
import warnings
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_ta import TaTokenizer
else:
lowerCamelCase : Any = None
lowerCamelCase : Dict = logging.get_logger(__name__)
lowerCamelCase : Optional[int] = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'}
lowerCamelCase : List[str] = {
'vocab_file': {
't5-small': 'https://huggingface.co/t5-small/resolve/main/spiece.model',
't5-base': 'https://huggingface.co/t5-base/resolve/main/spiece.model',
't5-large': 'https://huggingface.co/t5-large/resolve/main/spiece.model',
't5-3b': 'https://huggingface.co/t5-3b/resolve/main/spiece.model',
't5-11b': 'https://huggingface.co/t5-11b/resolve/main/spiece.model',
},
'tokenizer_file': {
't5-small': 'https://huggingface.co/t5-small/resolve/main/tokenizer.json',
't5-base': 'https://huggingface.co/t5-base/resolve/main/tokenizer.json',
't5-large': 'https://huggingface.co/t5-large/resolve/main/tokenizer.json',
't5-3b': 'https://huggingface.co/t5-3b/resolve/main/tokenizer.json',
't5-11b': 'https://huggingface.co/t5-11b/resolve/main/tokenizer.json',
},
}
# TODO(PVP) - this should be removed in Transformers v5
lowerCamelCase : Any = {
't5-small': 512,
't5-base': 512,
't5-large': 512,
't5-3b': 512,
't5-11b': 512,
}
class __lowerCAmelCase (lowercase_ ):
'''simple docstring'''
lowerCAmelCase__ : List[str] = VOCAB_FILES_NAMES
lowerCAmelCase__ : str = PRETRAINED_VOCAB_FILES_MAP
lowerCAmelCase__ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCAmelCase__ : int = ["""input_ids""", """attention_mask"""]
lowerCAmelCase__ : Optional[int] = TaTokenizer
lowerCAmelCase__ : List[int] = []
def __init__(self : Dict , UpperCamelCase : str=None , UpperCamelCase : Optional[Any]=None , UpperCamelCase : Any="</s>" , UpperCamelCase : str="<unk>" , UpperCamelCase : List[str]="<pad>" , UpperCamelCase : List[str]=100 , UpperCamelCase : Tuple=None , **UpperCamelCase : List[str] , ):
'''simple docstring'''
if extra_ids > 0 and additional_special_tokens is None:
lowercase__ = [f"<extra_id_{i}>" for i in range(UpperCamelCase )]
elif extra_ids > 0 and additional_special_tokens is not None:
# Check that we have the right number of extra special tokens
lowercase__ = len(set(filter(lambda UpperCamelCase : bool('''extra_id_''' in str(UpperCamelCase ) ) , UpperCamelCase ) ) )
if extra_tokens != extra_ids:
raise ValueError(
f"Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are"
''' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids'''
''' tokens''' )
super().__init__(
UpperCamelCase , tokenizer_file=UpperCamelCase , eos_token=UpperCamelCase , unk_token=UpperCamelCase , pad_token=UpperCamelCase , extra_ids=UpperCamelCase , additional_special_tokens=UpperCamelCase , **UpperCamelCase , )
lowercase__ = vocab_file
lowercase__ = False if not self.vocab_file else True
lowercase__ = extra_ids
@staticmethod
def UpperCamelCase__ (UpperCamelCase : List[Any] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Optional[Any] ):
'''simple docstring'''
if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes:
lowercase__ = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path]
if init_max_model_length is not None and init_max_model_length != max_model_length:
return init_max_model_length
elif init_max_model_length is None:
warnings.warn(
'''This tokenizer was incorrectly instantiated with a model max length of'''
f" {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this"
''' behavior is kept to avoid breaking backwards compatibility when padding/encoding with'''
''' `truncation is True`.\n- Be aware that you SHOULD NOT rely on'''
f" {pretrained_model_name_or_path} automatically truncating your input to"
f" {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences"
f" longer than {deprecated_max_model_length} you can either instantiate this tokenizer with"
''' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please'''
''' instantiate this tokenizer with `model_max_length` set to your preferred value.''' , UpperCamelCase , )
return max_model_length
def UpperCamelCase__ (self : Any , UpperCamelCase : str , UpperCamelCase : Optional[str] = None ):
'''simple docstring'''
if not self.can_save_slow_tokenizer:
raise ValueError(
'''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow '''
'''tokenizer.''' )
if not os.path.isdir(UpperCamelCase ):
logger.error(f"Vocabulary path ({save_directory}) should be a directory" )
return
lowercase__ = os.path.join(
UpperCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase ):
copyfile(self.vocab_file , UpperCamelCase )
logger.info(f"Copy vocab file to {out_vocab_file}" )
return (out_vocab_file,)
def UpperCamelCase__ (self : Any , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None ):
'''simple docstring'''
lowercase__ = token_ids_a + [self.eos_token_id]
if token_ids_a is None:
return self.prefix_tokens + token_ids_a
else:
lowercase__ = token_ids_a + [self.eos_token_id]
return self.prefix_tokens + token_ids_a + token_ids_a
def UpperCamelCase__ (self : Optional[Any] , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None ):
'''simple docstring'''
lowercase__ = [self.eos_token_id]
if token_ids_a is None:
return len(token_ids_a + eos ) * [0]
return len(token_ids_a + eos + token_ids_a + eos ) * [0]
def UpperCamelCase__ (self : List[Any] ):
'''simple docstring'''
return list(
set(filter(lambda UpperCamelCase : bool(re.search(R'''<extra_id_\d+>''' , UpperCamelCase ) ) is not None , self.additional_special_tokens ) ) )
def UpperCamelCase__ (self : Union[str, Any] ):
'''simple docstring'''
return [self.convert_tokens_to_ids(UpperCamelCase ) for token in self.get_sentinel_tokens()]
| 2 | 0 |
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
A_ :Dict = logging.get_logger(__name__)
A_ :List[str] = {
'microsoft/unispeech-sat-base-100h-libri-ft': (
'https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json'
),
# See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat
}
class __A ( lowercase_ ):
"""simple docstring"""
UpperCamelCase__ : Optional[int] ="""unispeech-sat"""
def __init__( self , lowerCamelCase__=32 , lowerCamelCase__=768 , lowerCamelCase__=12 , lowerCamelCase__=12 , lowerCamelCase__=3072 , lowerCamelCase__="gelu" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=0.0 , lowerCamelCase__=0.0 , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=0.02 , lowerCamelCase__=1E-5 , lowerCamelCase__="group" , lowerCamelCase__="gelu" , lowerCamelCase__=(512, 512, 512, 512, 512, 512, 512) , lowerCamelCase__=(5, 2, 2, 2, 2, 2, 2) , lowerCamelCase__=(10, 3, 3, 3, 3, 2, 2) , lowerCamelCase__=False , lowerCamelCase__=128 , lowerCamelCase__=16 , lowerCamelCase__=False , lowerCamelCase__=True , lowerCamelCase__=0.05 , lowerCamelCase__=10 , lowerCamelCase__=2 , lowerCamelCase__=0.0 , lowerCamelCase__=10 , lowerCamelCase__=0 , lowerCamelCase__=320 , lowerCamelCase__=2 , lowerCamelCase__=0.1 , lowerCamelCase__=100 , lowerCamelCase__=256 , lowerCamelCase__=256 , lowerCamelCase__=0.1 , lowerCamelCase__="mean" , lowerCamelCase__=False , lowerCamelCase__=False , lowerCamelCase__=256 , lowerCamelCase__=(512, 512, 512, 512, 1500) , lowerCamelCase__=(5, 3, 3, 1, 1) , lowerCamelCase__=(1, 2, 3, 1, 1) , lowerCamelCase__=512 , lowerCamelCase__=0 , lowerCamelCase__=1 , lowerCamelCase__=2 , lowerCamelCase__=504 , **lowerCamelCase__ , ):
"""simple docstring"""
super().__init__(**lowerCamelCase__ , pad_token_id=lowerCamelCase__ , bos_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ )
__UpperCamelCase : str =hidden_size
__UpperCamelCase : List[Any] =feat_extract_norm
__UpperCamelCase : str =feat_extract_activation
__UpperCamelCase : int =list(lowerCamelCase__ )
__UpperCamelCase : Optional[int] =list(lowerCamelCase__ )
__UpperCamelCase : Any =list(lowerCamelCase__ )
__UpperCamelCase : Tuple =conv_bias
__UpperCamelCase : List[str] =num_conv_pos_embeddings
__UpperCamelCase : Optional[int] =num_conv_pos_embedding_groups
__UpperCamelCase : Union[str, Any] =len(self.conv_dim )
__UpperCamelCase : Optional[Any] =num_hidden_layers
__UpperCamelCase : Optional[Any] =intermediate_size
__UpperCamelCase : Tuple =hidden_act
__UpperCamelCase : List[str] =num_attention_heads
__UpperCamelCase : Union[str, Any] =hidden_dropout
__UpperCamelCase : Tuple =attention_dropout
__UpperCamelCase : str =activation_dropout
__UpperCamelCase : List[str] =feat_proj_dropout
__UpperCamelCase : str =final_dropout
__UpperCamelCase : Optional[Any] =layerdrop
__UpperCamelCase : Union[str, Any] =layer_norm_eps
__UpperCamelCase : int =initializer_range
__UpperCamelCase : Any =vocab_size
__UpperCamelCase : Optional[int] =num_clusters
__UpperCamelCase : List[str] =do_stable_layer_norm
__UpperCamelCase : Union[str, Any] =use_weighted_layer_sum
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` =='
' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) ='
f' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,'
f' `len(config.conv_kernel) = {len(self.conv_kernel )}`.' )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
__UpperCamelCase : List[str] =apply_spec_augment
__UpperCamelCase : Dict =mask_time_prob
__UpperCamelCase : List[Any] =mask_time_length
__UpperCamelCase : str =mask_time_min_masks
__UpperCamelCase : List[str] =mask_feature_prob
__UpperCamelCase : int =mask_feature_length
__UpperCamelCase : Union[str, Any] =mask_feature_min_masks
# parameters for pretraining with codevector quantized representations
__UpperCamelCase : Optional[Any] =num_codevectors_per_group
__UpperCamelCase : int =num_codevector_groups
__UpperCamelCase : List[str] =contrastive_logits_temperature
__UpperCamelCase : Union[str, Any] =feat_quantizer_dropout
__UpperCamelCase : Optional[int] =num_negatives
__UpperCamelCase : List[str] =codevector_dim
__UpperCamelCase : Optional[Any] =proj_codevector_dim
__UpperCamelCase : List[str] =diversity_loss_weight
# ctc loss
__UpperCamelCase : str =ctc_loss_reduction
__UpperCamelCase : int =ctc_zero_infinity
# SequenceClassification-specific parameter. Feel free to ignore for other classes.
__UpperCamelCase : Optional[Any] =classifier_proj_size
# XVector-specific parameters. Feel free to ignore for other classes.
__UpperCamelCase : int =list(lowerCamelCase__ )
__UpperCamelCase : List[Any] =list(lowerCamelCase__ )
__UpperCamelCase : Optional[Any] =list(lowerCamelCase__ )
__UpperCamelCase : Dict =xvector_output_dim
@property
def __lowercase ( self ):
"""simple docstring"""
return functools.reduce(operator.mul , self.conv_stride , 1 )
| 71 |
'''simple docstring'''
import gc
import random
import unittest
import numpy as np
import torch
from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel
from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline
from diffusers.pipelines.shap_e import ShapERenderer
from diffusers.utils import floats_tensor, load_image, load_numpy, slow
from diffusers.utils.testing_utils import require_torch_gpu, torch_device
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
class __lowerCAmelCase (lowercase_ , unittest.TestCase ):
'''simple docstring'''
lowerCAmelCase__ : Dict = ShapEImgaImgPipeline
lowerCAmelCase__ : List[str] = ["""image"""]
lowerCAmelCase__ : Any = ["""image"""]
lowerCAmelCase__ : Any = [
"""num_images_per_prompt""",
"""num_inference_steps""",
"""generator""",
"""latents""",
"""guidance_scale""",
"""frame_size""",
"""output_type""",
"""return_dict""",
]
lowerCAmelCase__ : Tuple = False
@property
def UpperCamelCase__ (self : List[Any] ):
'''simple docstring'''
return 32
@property
def UpperCamelCase__ (self : str ):
'''simple docstring'''
return 32
@property
def UpperCamelCase__ (self : Union[str, Any] ):
'''simple docstring'''
return self.time_input_dim * 4
@property
def UpperCamelCase__ (self : int ):
'''simple docstring'''
return 8
@property
def UpperCamelCase__ (self : Any ):
'''simple docstring'''
torch.manual_seed(0 )
lowercase__ = CLIPVisionConfig(
hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , )
lowercase__ = CLIPVisionModel(UpperCamelCase )
return model
@property
def UpperCamelCase__ (self : List[Any] ):
'''simple docstring'''
lowercase__ = CLIPImageProcessor(
crop_size=224 , do_center_crop=UpperCamelCase , do_normalize=UpperCamelCase , do_resize=UpperCamelCase , image_mean=[0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73] , image_std=[0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11] , resample=3 , size=224 , )
return image_processor
@property
def UpperCamelCase__ (self : str ):
'''simple docstring'''
torch.manual_seed(0 )
lowercase__ = {
'''num_attention_heads''': 2,
'''attention_head_dim''': 16,
'''embedding_dim''': self.time_input_dim,
'''num_embeddings''': 32,
'''embedding_proj_dim''': self.text_embedder_hidden_size,
'''time_embed_dim''': self.time_embed_dim,
'''num_layers''': 1,
'''clip_embed_dim''': self.time_input_dim * 2,
'''additional_embeddings''': 0,
'''time_embed_act_fn''': '''gelu''',
'''norm_in_type''': '''layer''',
'''embedding_proj_norm_type''': '''layer''',
'''encoder_hid_proj_type''': None,
'''added_emb_type''': None,
}
lowercase__ = PriorTransformer(**UpperCamelCase )
return model
@property
def UpperCamelCase__ (self : int ):
'''simple docstring'''
torch.manual_seed(0 )
lowercase__ = {
'''param_shapes''': (
(self.renderer_dim, 93),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
),
'''d_latent''': self.time_input_dim,
'''d_hidden''': self.renderer_dim,
'''n_output''': 12,
'''background''': (
0.1,
0.1,
0.1,
),
}
lowercase__ = ShapERenderer(**UpperCamelCase )
return model
def UpperCamelCase__ (self : Union[str, Any] ):
'''simple docstring'''
lowercase__ = self.dummy_prior
lowercase__ = self.dummy_image_encoder
lowercase__ = self.dummy_image_processor
lowercase__ = self.dummy_renderer
lowercase__ = HeunDiscreteScheduler(
beta_schedule='''exp''' , num_train_timesteps=1024 , prediction_type='''sample''' , use_karras_sigmas=UpperCamelCase , clip_sample=UpperCamelCase , clip_sample_range=1.0 , )
lowercase__ = {
'''prior''': prior,
'''image_encoder''': image_encoder,
'''image_processor''': image_processor,
'''renderer''': renderer,
'''scheduler''': scheduler,
}
return components
def UpperCamelCase__ (self : Optional[int] , UpperCamelCase : Optional[int] , UpperCamelCase : str=0 ):
'''simple docstring'''
lowercase__ = floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCamelCase ) ).to(UpperCamelCase )
if str(UpperCamelCase ).startswith('''mps''' ):
lowercase__ = torch.manual_seed(UpperCamelCase )
else:
lowercase__ = torch.Generator(device=UpperCamelCase ).manual_seed(UpperCamelCase )
lowercase__ = {
'''image''': input_image,
'''generator''': generator,
'''num_inference_steps''': 1,
'''frame_size''': 32,
'''output_type''': '''np''',
}
return inputs
def UpperCamelCase__ (self : Tuple ):
'''simple docstring'''
lowercase__ = '''cpu'''
lowercase__ = self.get_dummy_components()
lowercase__ = self.pipeline_class(**UpperCamelCase )
lowercase__ = pipe.to(UpperCamelCase )
pipe.set_progress_bar_config(disable=UpperCamelCase )
lowercase__ = pipe(**self.get_dummy_inputs(UpperCamelCase ) )
lowercase__ = output.images[0]
lowercase__ = image[0, -3:, -3:, -1]
assert image.shape == (20, 32, 32, 3)
lowercase__ = np.array(
[
0.00_03_92_16,
0.00_03_92_16,
0.00_03_92_16,
0.00_03_92_16,
0.00_03_92_16,
0.00_03_92_16,
0.00_03_92_16,
0.00_03_92_16,
0.00_03_92_16,
] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def UpperCamelCase__ (self : Optional[Any] ):
'''simple docstring'''
self._test_inference_batch_consistent(batch_sizes=[1, 2] )
def UpperCamelCase__ (self : int ):
'''simple docstring'''
lowercase__ = torch_device == '''cpu'''
lowercase__ = True
self._test_inference_batch_single_identical(
batch_size=2 , test_max_difference=UpperCamelCase , relax_max_difference=UpperCamelCase , )
def UpperCamelCase__ (self : int ):
'''simple docstring'''
lowercase__ = self.get_dummy_components()
lowercase__ = self.pipeline_class(**UpperCamelCase )
lowercase__ = pipe.to(UpperCamelCase )
pipe.set_progress_bar_config(disable=UpperCamelCase )
lowercase__ = 1
lowercase__ = 2
lowercase__ = self.get_dummy_inputs(UpperCamelCase )
for key in inputs.keys():
if key in self.batch_params:
lowercase__ = batch_size * [inputs[key]]
lowercase__ = pipe(**UpperCamelCase , num_images_per_prompt=UpperCamelCase )[0]
assert images.shape[0] == batch_size * num_images_per_prompt
@slow
@require_torch_gpu
class __lowerCAmelCase (unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase__ (self : Optional[Any] ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCamelCase__ (self : Union[str, Any] ):
'''simple docstring'''
lowercase__ = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/corgi.png''' )
lowercase__ = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/shap_e/test_shap_e_img2img_out.npy''' )
lowercase__ = ShapEImgaImgPipeline.from_pretrained('''openai/shap-e-img2img''' )
lowercase__ = pipe.to(UpperCamelCase )
pipe.set_progress_bar_config(disable=UpperCamelCase )
lowercase__ = torch.Generator(device=UpperCamelCase ).manual_seed(0 )
lowercase__ = pipe(
UpperCamelCase , generator=UpperCamelCase , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type='''np''' , ).images[0]
assert images.shape == (20, 64, 64, 3)
assert_mean_pixel_difference(UpperCamelCase , UpperCamelCase )
| 2 | 0 |
'''simple docstring'''
import argparse
import torch
from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt
if __name__ == "__main__":
_SCREAMING_SNAKE_CASE : Tuple = argparse.ArgumentParser()
parser.add_argument(
"--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert."
)
# !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml
parser.add_argument(
"--original_config_file",
default=None,
type=str,
help="The YAML config file corresponding to the original architecture.",
)
parser.add_argument(
"--num_in_channels",
default=None,
type=int,
help="The number of input channels. If `None` number of input channels will be automatically inferred.",
)
parser.add_argument(
"--scheduler_type",
default="pndm",
type=str,
help="Type of scheduler to use. Should be one of [\'pndm\', \'lms\', \'ddim\', \'euler\', \'euler-ancestral\', \'dpm\']",
)
parser.add_argument(
"--pipeline_type",
default=None,
type=str,
help=(
"The pipeline type. One of \'FrozenOpenCLIPEmbedder\', \'FrozenCLIPEmbedder\', \'PaintByExample\'"
". If `None` pipeline will be automatically inferred."
),
)
parser.add_argument(
"--image_size",
default=None,
type=int,
help=(
"The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2"
" Base. Use 768 for Stable Diffusion v2."
),
)
parser.add_argument(
"--prediction_type",
default=None,
type=str,
help=(
"The prediction type that the model was trained on. Use \'epsilon\' for Stable Diffusion v1.X and Stable"
" Diffusion v2 Base. Use \'v_prediction\' for Stable Diffusion v2."
),
)
parser.add_argument(
"--extract_ema",
action="store_true",
help=(
"Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights"
" or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield"
" higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning."
),
)
parser.add_argument(
"--upcast_attention",
action="store_true",
help=(
"Whether the attention computation should always be upcasted. This is necessary when running stable"
" diffusion 2.1."
),
)
parser.add_argument(
"--from_safetensors",
action="store_true",
help="If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.",
)
parser.add_argument(
"--to_safetensors",
action="store_true",
help="Whether to store pipeline in safetensors format or not.",
)
parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.")
parser.add_argument("--device", type=str, help="Device to use (e.g. cpu, cuda:0, cuda:1, etc.)")
parser.add_argument(
"--stable_unclip",
type=str,
default=None,
required=False,
help="Set if this is a stable unCLIP model. One of \'txt2img\' or \'img2img\'.",
)
parser.add_argument(
"--stable_unclip_prior",
type=str,
default=None,
required=False,
help="Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.",
)
parser.add_argument(
"--clip_stats_path",
type=str,
help="Path to the clip stats file. Only required if the stable unclip model\'s config specifies `model.params.noise_aug_config.params.clip_stats_path`.",
required=False,
)
parser.add_argument(
"--controlnet", action="store_true", default=None, help="Set flag if this is a controlnet checkpoint."
)
parser.add_argument("--half", action="store_true", help="Save weights in half precision.")
parser.add_argument(
"--vae_path",
type=str,
default=None,
required=False,
help="Set to a path, hub id to an already converted vae to not convert it again.",
)
_SCREAMING_SNAKE_CASE : Dict = parser.parse_args()
_SCREAMING_SNAKE_CASE : List[str] = download_from_original_stable_diffusion_ckpt(
checkpoint_path=args.checkpoint_path,
original_config_file=args.original_config_file,
image_size=args.image_size,
prediction_type=args.prediction_type,
model_type=args.pipeline_type,
extract_ema=args.extract_ema,
scheduler_type=args.scheduler_type,
num_in_channels=args.num_in_channels,
upcast_attention=args.upcast_attention,
from_safetensors=args.from_safetensors,
device=args.device,
stable_unclip=args.stable_unclip,
stable_unclip_prior=args.stable_unclip_prior,
clip_stats_path=args.clip_stats_path,
controlnet=args.controlnet,
vae_path=args.vae_path,
)
if args.half:
pipe.to(torch_dtype=torch.floataa)
if args.controlnet:
# only save the controlnet model
pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
else:
pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
| 85 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
lowerCamelCase : str = {
'configuration_rag': ['RagConfig'],
'retrieval_rag': ['RagRetriever'],
'tokenization_rag': ['RagTokenizer'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase : Dict = [
'RagModel',
'RagPreTrainedModel',
'RagSequenceForGeneration',
'RagTokenForGeneration',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase : Optional[int] = [
'TFRagModel',
'TFRagPreTrainedModel',
'TFRagSequenceForGeneration',
'TFRagTokenForGeneration',
]
if TYPE_CHECKING:
from .configuration_rag import RagConfig
from .retrieval_rag import RagRetriever
from .tokenization_rag import RagTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_rag import RagModel, RagPreTrainedModel, RagSequenceForGeneration, RagTokenForGeneration
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_rag import (
TFRagModel,
TFRagPreTrainedModel,
TFRagSequenceForGeneration,
TFRagTokenForGeneration,
)
else:
import sys
lowerCamelCase : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 2 | 0 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
a_ = logging.get_logger(__name__)
a_ = {
'xlm-mlm-en-2048': 'https://huggingface.co/xlm-mlm-en-2048/resolve/main/config.json',
'xlm-mlm-ende-1024': 'https://huggingface.co/xlm-mlm-ende-1024/resolve/main/config.json',
'xlm-mlm-enfr-1024': 'https://huggingface.co/xlm-mlm-enfr-1024/resolve/main/config.json',
'xlm-mlm-enro-1024': 'https://huggingface.co/xlm-mlm-enro-1024/resolve/main/config.json',
'xlm-mlm-tlm-xnli15-1024': 'https://huggingface.co/xlm-mlm-tlm-xnli15-1024/resolve/main/config.json',
'xlm-mlm-xnli15-1024': 'https://huggingface.co/xlm-mlm-xnli15-1024/resolve/main/config.json',
'xlm-clm-enfr-1024': 'https://huggingface.co/xlm-clm-enfr-1024/resolve/main/config.json',
'xlm-clm-ende-1024': 'https://huggingface.co/xlm-clm-ende-1024/resolve/main/config.json',
'xlm-mlm-17-1280': 'https://huggingface.co/xlm-mlm-17-1280/resolve/main/config.json',
'xlm-mlm-100-1280': 'https://huggingface.co/xlm-mlm-100-1280/resolve/main/config.json',
}
class __lowerCAmelCase ( lowercase_ ):
lowerCAmelCase__ = """xlm"""
lowerCAmelCase__ = {
"""hidden_size""": """emb_dim""",
"""num_attention_heads""": """n_heads""",
"""num_hidden_layers""": """n_layers""",
"""n_words""": """vocab_size""", # For backward compatibility
}
def __init__( self , __UpperCAmelCase=30145 , __UpperCAmelCase=2048 , __UpperCAmelCase=12 , __UpperCAmelCase=16 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=1 , __UpperCAmelCase=True , __UpperCAmelCase=512 , __UpperCAmelCase=2048**-0.5 , __UpperCAmelCase=1E-1_2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=0 , __UpperCAmelCase=1 , __UpperCAmelCase=2 , __UpperCAmelCase=3 , __UpperCAmelCase=5 , __UpperCAmelCase=True , __UpperCAmelCase="first" , __UpperCAmelCase=True , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase=0.1 , __UpperCAmelCase=5 , __UpperCAmelCase=5 , __UpperCAmelCase=0 , __UpperCAmelCase=0 , __UpperCAmelCase=2 , __UpperCAmelCase=0 , **__UpperCAmelCase , ):
'''simple docstring'''
__lowerCamelCase = vocab_size
__lowerCamelCase = emb_dim
__lowerCamelCase = n_layers
__lowerCamelCase = n_heads
__lowerCamelCase = dropout
__lowerCamelCase = attention_dropout
__lowerCamelCase = gelu_activation
__lowerCamelCase = sinusoidal_embeddings
__lowerCamelCase = causal
__lowerCamelCase = asm
__lowerCamelCase = n_langs
__lowerCamelCase = use_lang_emb
__lowerCamelCase = layer_norm_eps
__lowerCamelCase = bos_index
__lowerCamelCase = eos_index
__lowerCamelCase = pad_index
__lowerCamelCase = unk_index
__lowerCamelCase = mask_index
__lowerCamelCase = is_encoder
__lowerCamelCase = max_position_embeddings
__lowerCamelCase = embed_init_std
__lowerCamelCase = init_std
__lowerCamelCase = summary_type
__lowerCamelCase = summary_use_proj
__lowerCamelCase = summary_activation
__lowerCamelCase = summary_proj_to_labels
__lowerCamelCase = summary_first_dropout
__lowerCamelCase = start_n_top
__lowerCamelCase = end_n_top
__lowerCamelCase = mask_token_id
__lowerCamelCase = lang_id
if "n_words" in kwargs:
__lowerCamelCase = kwargs['''n_words''']
super().__init__(pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , **__UpperCAmelCase )
class __lowerCAmelCase ( lowercase_ ):
@property
def lowerCamelCase ( self ):
'''simple docstring'''
if self.task == "multiple-choice":
__lowerCamelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''}
else:
__lowerCamelCase = {0: '''batch''', 1: '''sequence'''}
return OrderedDict(
[
('''input_ids''', dynamic_axis),
('''attention_mask''', dynamic_axis),
('''token_type_ids''', dynamic_axis),
] )
| 330 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCamelCase : int = logging.get_logger(__name__)
lowerCamelCase : List[Any] = {
'google/realm-cc-news-pretrained-embedder': (
'https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json'
),
'google/realm-cc-news-pretrained-encoder': (
'https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json'
),
'google/realm-cc-news-pretrained-scorer': (
'https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json'
),
'google/realm-cc-news-pretrained-openqa': (
'https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json'
),
'google/realm-orqa-nq-openqa': 'https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json',
'google/realm-orqa-nq-reader': 'https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json',
'google/realm-orqa-wq-openqa': 'https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json',
'google/realm-orqa-wq-reader': 'https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json',
# See all REALM models at https://huggingface.co/models?filter=realm
}
class __lowerCAmelCase (lowercase_ ):
'''simple docstring'''
lowerCAmelCase__ : Optional[int] = """realm"""
def __init__(self : str , UpperCamelCase : List[Any]=30522 , UpperCamelCase : List[Any]=768 , UpperCamelCase : int=128 , UpperCamelCase : Any=12 , UpperCamelCase : Tuple=12 , UpperCamelCase : List[Any]=8 , UpperCamelCase : Union[str, Any]=3072 , UpperCamelCase : List[str]="gelu_new" , UpperCamelCase : Any=0.1 , UpperCamelCase : List[str]=0.1 , UpperCamelCase : Dict=512 , UpperCamelCase : Dict=2 , UpperCamelCase : List[Any]=0.02 , UpperCamelCase : List[Any]=1E-12 , UpperCamelCase : Dict=256 , UpperCamelCase : Union[str, Any]=10 , UpperCamelCase : Optional[int]=1E-3 , UpperCamelCase : Tuple=5 , UpperCamelCase : Optional[int]=320 , UpperCamelCase : List[str]=13353718 , UpperCamelCase : Optional[Any]=5000 , UpperCamelCase : str=1 , UpperCamelCase : Union[str, Any]=0 , UpperCamelCase : List[Any]=2 , **UpperCamelCase : int , ):
'''simple docstring'''
super().__init__(pad_token_id=UpperCamelCase , bos_token_id=UpperCamelCase , eos_token_id=UpperCamelCase , **UpperCamelCase )
# Common config
lowercase__ = vocab_size
lowercase__ = max_position_embeddings
lowercase__ = hidden_size
lowercase__ = retriever_proj_size
lowercase__ = num_hidden_layers
lowercase__ = num_attention_heads
lowercase__ = num_candidates
lowercase__ = intermediate_size
lowercase__ = hidden_act
lowercase__ = hidden_dropout_prob
lowercase__ = attention_probs_dropout_prob
lowercase__ = initializer_range
lowercase__ = type_vocab_size
lowercase__ = layer_norm_eps
# Reader config
lowercase__ = span_hidden_size
lowercase__ = max_span_width
lowercase__ = reader_layer_norm_eps
lowercase__ = reader_beam_size
lowercase__ = reader_seq_len
# Retrieval config
lowercase__ = num_block_records
lowercase__ = searcher_beam_size
| 2 | 0 |
import operator as op
__A = 'scaler.pt'
__A = 'pytorch_model'
__A = 'random_states'
__A = 'optimizer'
__A = 'scheduler'
__A = 'pytorch_model.bin'
__A = 'pytorch_model.bin.index.json'
__A = 'model.safetensors'
__A = 'model.safetensors.index.json'
__A = '1.10.2'
__A = 'py38'
__A = '4.17.0'
__A = ['ml.p3.16xlarge', 'ml.p3dn.24xlarge', 'ml.p4dn.24xlarge']
__A = ['FULL_SHARD', 'SHARD_GRAD_OP', 'NO_SHARD', 'HYBRID_SHARD', 'HYBRID_SHARD_ZERO2']
__A = ['TRANSFORMER_BASED_WRAP', 'SIZE_BASED_WRAP', 'NO_WRAP']
__A = ['BACKWARD_PRE', 'BACKWARD_POST', 'NO_PREFETCH']
__A = ['FULL_STATE_DICT', 'LOCAL_STATE_DICT', 'SHARDED_STATE_DICT']
__A = '2.0.1'
__A = ['pdsh', 'standard', 'openmpi', 'mvapich']
__A = ['default', 'reduce-overhead', 'max-autotune']
__A = {'>': op.gt, '>=': op.ge, '==': op.eq, '!=': op.ne, '<=': op.le, '<': op.lt}
# These are the args for `torch.distributed.launch` for pytorch < 1.9
__A = [
'nnodes',
'nproc_per_node',
'rdzv_backend',
'rdzv_endpoint',
'rdzv_id',
'rdzv_conf',
'standalone',
'max_restarts',
'monitor_interval',
'start_method',
'role',
'module',
'm',
'no_python',
'run_path',
'log_dir',
'r',
'redirects',
't',
'tee',
'node_rank',
'master_addr',
'master_port',
]
__A = ['DEEPSPEED', 'MULTI_GPU', 'FSDP', 'MEGATRON_LM']
__A = ['DEEPSPEED', 'MULTI_XPU', 'FSDP']
| 90 |
'''simple docstring'''
import warnings
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCamelCase : str = logging.get_logger(__name__)
lowerCamelCase : int = {
'RUCAIBox/mvp': 'https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json',
}
class __lowerCAmelCase (lowercase_ ):
'''simple docstring'''
lowerCAmelCase__ : Union[str, Any] = """mvp"""
lowerCAmelCase__ : Optional[Any] = ["""past_key_values"""]
lowerCAmelCase__ : List[str] = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""}
def __init__(self : Any , UpperCamelCase : Optional[int]=50267 , UpperCamelCase : Tuple=1024 , UpperCamelCase : int=12 , UpperCamelCase : Tuple=4096 , UpperCamelCase : Dict=16 , UpperCamelCase : int=12 , UpperCamelCase : Optional[int]=4096 , UpperCamelCase : Optional[int]=16 , UpperCamelCase : Tuple=0.0 , UpperCamelCase : Tuple=0.0 , UpperCamelCase : List[Any]="gelu" , UpperCamelCase : Union[str, Any]=1024 , UpperCamelCase : Optional[Any]=0.1 , UpperCamelCase : str=0.0 , UpperCamelCase : str=0.0 , UpperCamelCase : Optional[Any]=0.02 , UpperCamelCase : List[str]=0.0 , UpperCamelCase : List[str]=False , UpperCamelCase : Optional[int]=True , UpperCamelCase : Any=1 , UpperCamelCase : int=0 , UpperCamelCase : int=2 , UpperCamelCase : Any=True , UpperCamelCase : Optional[Any]=2 , UpperCamelCase : Optional[Any]=2 , UpperCamelCase : Tuple=False , UpperCamelCase : int=100 , UpperCamelCase : Optional[Any]=800 , **UpperCamelCase : str , ):
'''simple docstring'''
lowercase__ = vocab_size
lowercase__ = max_position_embeddings
lowercase__ = d_model
lowercase__ = encoder_ffn_dim
lowercase__ = encoder_layers
lowercase__ = encoder_attention_heads
lowercase__ = decoder_ffn_dim
lowercase__ = decoder_layers
lowercase__ = decoder_attention_heads
lowercase__ = dropout
lowercase__ = attention_dropout
lowercase__ = activation_dropout
lowercase__ = activation_function
lowercase__ = init_std
lowercase__ = encoder_layerdrop
lowercase__ = decoder_layerdrop
lowercase__ = classifier_dropout
lowercase__ = use_cache
lowercase__ = encoder_layers
lowercase__ = scale_embedding # scale factor will be sqrt(d_model) if True
lowercase__ = use_prompt
lowercase__ = prompt_length
lowercase__ = prompt_mid_dim
super().__init__(
pad_token_id=UpperCamelCase , bos_token_id=UpperCamelCase , eos_token_id=UpperCamelCase , is_encoder_decoder=UpperCamelCase , decoder_start_token_id=UpperCamelCase , forced_eos_token_id=UpperCamelCase , **UpperCamelCase , )
if self.forced_bos_token_id is None and kwargs.get('''force_bos_token_to_be_generated''' , UpperCamelCase ):
lowercase__ = self.bos_token_id
warnings.warn(
f"Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. "
'''The config can simply be saved and uploaded again to be fixed.''' )
| 2 | 0 |
import io
import json
import fsspec
import pytest
from datasets import Dataset, DatasetDict, Features, NamedSplit, Value
from datasets.io.json import JsonDatasetReader, JsonDatasetWriter
from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases
def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> str:
"""simple docstring"""
assert isinstance(_UpperCamelCase , _UpperCamelCase )
assert dataset.num_rows == 4
assert dataset.num_columns == 3
assert dataset.column_names == ["col_1", "col_2", "col_3"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize('''keep_in_memory''' , [False, True] )
def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Tuple:
"""simple docstring"""
snake_case_ : Optional[int] = tmp_path / '''cache'''
snake_case_ : List[Any] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
snake_case_ : Tuple = JsonDatasetReader(_UpperCamelCase , cache_dir=_UpperCamelCase , keep_in_memory=_UpperCamelCase ).read()
_check_json_dataset(_UpperCamelCase , _UpperCamelCase )
@pytest.mark.parametrize(
'''features''' , [
None,
{'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''},
{'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''},
{'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''},
{'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''},
] , )
def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Any:
"""simple docstring"""
snake_case_ : int = tmp_path / '''cache'''
snake_case_ : Dict = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}
snake_case_ : Optional[Any] = features.copy() if features else default_expected_features
snake_case_ : Optional[int] = (
Features({feature: Value(_UpperCamelCase ) for feature, dtype in features.items()} ) if features is not None else None
)
snake_case_ : Optional[Any] = JsonDatasetReader(_UpperCamelCase , features=_UpperCamelCase , cache_dir=_UpperCamelCase ).read()
_check_json_dataset(_UpperCamelCase , _UpperCamelCase )
@pytest.mark.parametrize(
'''features''' , [
None,
{'''col_3''': '''float64''', '''col_1''': '''string''', '''col_2''': '''int64'''},
] , )
def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> List[str]:
"""simple docstring"""
snake_case_ : List[str] = tmp_path / '''cache'''
snake_case_ : Dict = {'''col_3''': '''float64''', '''col_1''': '''string''', '''col_2''': '''int64'''}
snake_case_ : Union[str, Any] = features.copy() if features else default_expected_features
snake_case_ : str = (
Features({feature: Value(_UpperCamelCase ) for feature, dtype in features.items()} ) if features is not None else None
)
snake_case_ : Dict = JsonDatasetReader(_UpperCamelCase , features=_UpperCamelCase , cache_dir=_UpperCamelCase ).read()
assert isinstance(_UpperCamelCase , _UpperCamelCase )
assert dataset.num_rows == 2
assert dataset.num_columns == 3
assert dataset.column_names == ["col_3", "col_1", "col_2"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> Union[str, Any]:
"""simple docstring"""
snake_case_ : Optional[Any] = {'''col_2''': '''int64''', '''col_3''': '''float64''', '''col_1''': '''string'''}
snake_case_ : str = features.copy()
snake_case_ : str = (
Features({feature: Value(_UpperCamelCase ) for feature, dtype in features.items()} ) if features is not None else None
)
snake_case_ : Dict = tmp_path / '''cache'''
snake_case_ : int = JsonDatasetReader(_UpperCamelCase , features=_UpperCamelCase , cache_dir=_UpperCamelCase ).read()
assert isinstance(_UpperCamelCase , _UpperCamelCase )
assert dataset.num_rows == 2
assert dataset.num_columns == 3
assert dataset.column_names == ["col_2", "col_3", "col_1"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] )
def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Union[str, Any]:
"""simple docstring"""
snake_case_ : Tuple = tmp_path / '''cache'''
snake_case_ : Optional[int] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}
snake_case_ : Tuple = JsonDatasetReader(_UpperCamelCase , cache_dir=_UpperCamelCase , split=_UpperCamelCase ).read()
_check_json_dataset(_UpperCamelCase , _UpperCamelCase )
assert dataset.split == split if split else "train"
@pytest.mark.parametrize('''path_type''' , [str, list] )
def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Tuple:
"""simple docstring"""
if issubclass(_UpperCamelCase , _UpperCamelCase ):
snake_case_ : Optional[Any] = jsonl_path
elif issubclass(_UpperCamelCase , _UpperCamelCase ):
snake_case_ : Tuple = [jsonl_path]
snake_case_ : Any = tmp_path / '''cache'''
snake_case_ : Any = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}
snake_case_ : str = JsonDatasetReader(_UpperCamelCase , cache_dir=_UpperCamelCase ).read()
_check_json_dataset(_UpperCamelCase , _UpperCamelCase )
def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=("train",) ) -> Tuple:
"""simple docstring"""
assert isinstance(_UpperCamelCase , _UpperCamelCase )
for split in splits:
snake_case_ : int = dataset_dict[split]
assert dataset.num_rows == 4
assert dataset.num_columns == 3
assert dataset.column_names == ["col_1", "col_2", "col_3"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize('''keep_in_memory''' , [False, True] )
def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> str:
"""simple docstring"""
snake_case_ : List[str] = tmp_path / '''cache'''
snake_case_ : Optional[int] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
snake_case_ : List[str] = JsonDatasetReader({'''train''': jsonl_path} , cache_dir=_UpperCamelCase , keep_in_memory=_UpperCamelCase ).read()
_check_json_datasetdict(_UpperCamelCase , _UpperCamelCase )
@pytest.mark.parametrize(
'''features''' , [
None,
{'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''},
{'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''},
{'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''},
{'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''},
] , )
def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> List[Any]:
"""simple docstring"""
snake_case_ : Any = tmp_path / '''cache'''
snake_case_ : Any = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}
snake_case_ : List[str] = features.copy() if features else default_expected_features
snake_case_ : Any = (
Features({feature: Value(_UpperCamelCase ) for feature, dtype in features.items()} ) if features is not None else None
)
snake_case_ : Optional[Any] = JsonDatasetReader({'''train''': jsonl_path} , features=_UpperCamelCase , cache_dir=_UpperCamelCase ).read()
_check_json_datasetdict(_UpperCamelCase , _UpperCamelCase )
@pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] )
def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Union[str, Any]:
"""simple docstring"""
if split:
snake_case_ : Optional[Any] = {split: jsonl_path}
else:
snake_case_ : Optional[Any] = '''train'''
snake_case_ : Any = {'''train''': jsonl_path, '''test''': jsonl_path}
snake_case_ : Union[str, Any] = tmp_path / '''cache'''
snake_case_ : Any = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}
snake_case_ : Any = JsonDatasetReader(_UpperCamelCase , cache_dir=_UpperCamelCase ).read()
_check_json_datasetdict(_UpperCamelCase , _UpperCamelCase , splits=list(path.keys() ) )
assert all(dataset[split].split == split for split in path.keys() )
def lowerCamelCase_ ( _UpperCamelCase ) -> Dict:
"""simple docstring"""
return json.load(_UpperCamelCase )
def lowerCamelCase_ ( _UpperCamelCase ) -> int:
"""simple docstring"""
return [json.loads(_UpperCamelCase ) for line in buffer]
class __lowerCAmelCase :
@pytest.mark.parametrize('''lines, load_json_function''' , [(True, load_json_lines), (False, load_json)] )
def lowerCamelCase (self , __magic_name__ , __magic_name__ , __magic_name__ ) -> Tuple:
'''simple docstring'''
with io.BytesIO() as buffer:
JsonDatasetWriter(__magic_name__ , __magic_name__ , lines=__magic_name__ ).write()
buffer.seek(0 )
snake_case_ : List[str] = load_json_function(__magic_name__ )
assert isinstance(__magic_name__ , __magic_name__ )
assert isinstance(exported_content[0] , __magic_name__ )
assert len(__magic_name__ ) == 10
@pytest.mark.parametrize(
'''orient, container, keys, len_at''' , [
('''records''', list, {'''tokens''', '''labels''', '''answers''', '''id'''}, None),
('''split''', dict, {'''columns''', '''data'''}, '''data'''),
('''index''', dict, set('''0123456789''' ), None),
('''columns''', dict, {'''tokens''', '''labels''', '''answers''', '''id'''}, '''tokens'''),
('''values''', list, None, None),
('''table''', dict, {'''schema''', '''data'''}, '''data'''),
] , )
def lowerCamelCase (self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> List[str]:
'''simple docstring'''
with io.BytesIO() as buffer:
JsonDatasetWriter(__magic_name__ , __magic_name__ , lines=__magic_name__ , orient=__magic_name__ ).write()
buffer.seek(0 )
snake_case_ : Optional[Any] = load_json(__magic_name__ )
assert isinstance(__magic_name__ , __magic_name__ )
if keys:
if container is dict:
assert exported_content.keys() == keys
else:
assert exported_content[0].keys() == keys
else:
assert not hasattr(__magic_name__ , '''keys''' ) and not hasattr(exported_content[0] , '''keys''' )
if len_at:
assert len(exported_content[len_at] ) == 10
else:
assert len(__magic_name__ ) == 10
@pytest.mark.parametrize('''lines, load_json_function''' , [(True, load_json_lines), (False, load_json)] )
def lowerCamelCase (self , __magic_name__ , __magic_name__ , __magic_name__ ) -> Optional[int]:
'''simple docstring'''
with io.BytesIO() as buffer:
JsonDatasetWriter(__magic_name__ , __magic_name__ , lines=__magic_name__ , num_proc=2 ).write()
buffer.seek(0 )
snake_case_ : Union[str, Any] = load_json_function(__magic_name__ )
assert isinstance(__magic_name__ , __magic_name__ )
assert isinstance(exported_content[0] , __magic_name__ )
assert len(__magic_name__ ) == 10
@pytest.mark.parametrize(
'''orient, container, keys, len_at''' , [
('''records''', list, {'''tokens''', '''labels''', '''answers''', '''id'''}, None),
('''split''', dict, {'''columns''', '''data'''}, '''data'''),
('''index''', dict, set('''0123456789''' ), None),
('''columns''', dict, {'''tokens''', '''labels''', '''answers''', '''id'''}, '''tokens'''),
('''values''', list, None, None),
('''table''', dict, {'''schema''', '''data'''}, '''data'''),
] , )
def lowerCamelCase (self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> Union[str, Any]:
'''simple docstring'''
with io.BytesIO() as buffer:
JsonDatasetWriter(__magic_name__ , __magic_name__ , lines=__magic_name__ , orient=__magic_name__ , num_proc=2 ).write()
buffer.seek(0 )
snake_case_ : List[str] = load_json(__magic_name__ )
assert isinstance(__magic_name__ , __magic_name__ )
if keys:
if container is dict:
assert exported_content.keys() == keys
else:
assert exported_content[0].keys() == keys
else:
assert not hasattr(__magic_name__ , '''keys''' ) and not hasattr(exported_content[0] , '''keys''' )
if len_at:
assert len(exported_content[len_at] ) == 10
else:
assert len(__magic_name__ ) == 10
def lowerCamelCase (self , __magic_name__ ) -> str:
'''simple docstring'''
with pytest.raises(__magic_name__ ):
with io.BytesIO() as buffer:
JsonDatasetWriter(__magic_name__ , __magic_name__ , num_proc=0 )
@pytest.mark.parametrize('''compression, extension''' , [('''gzip''', '''gz'''), ('''bz2''', '''bz2'''), ('''xz''', '''xz''')] )
def lowerCamelCase (self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> List[Any]:
'''simple docstring'''
snake_case_ : Optional[Any] = tmp_path_factory.mktemp('''data''' ) / F'''test.json.{extension}'''
snake_case_ : Any = str(shared_datadir / F'''test_file.json.{extension}''' )
JsonDatasetWriter(__magic_name__ , __magic_name__ , compression=__magic_name__ ).write()
with fsspec.open(__magic_name__ , '''rb''' , compression='''infer''' ) as f:
snake_case_ : Optional[int] = f.read()
with fsspec.open(__magic_name__ , '''rb''' , compression='''infer''' ) as f:
snake_case_ : List[Any] = f.read()
assert exported_content == original_content
| 279 |
'''simple docstring'''
import unittest
from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
lowerCamelCase : List[str] = get_tests_dir('fixtures/spiece.model')
@require_sentencepiece
@require_tokenizers
class __lowerCAmelCase (lowercase_ , unittest.TestCase ):
'''simple docstring'''
lowerCAmelCase__ : int = DebertaVaTokenizer
lowerCAmelCase__ : List[Any] = DebertaVaTokenizerFast
lowerCAmelCase__ : str = True
lowerCAmelCase__ : Tuple = True
def UpperCamelCase__ (self : Tuple ):
'''simple docstring'''
super().setUp()
# We have a SentencePiece fixture for testing
lowercase__ = DebertaVaTokenizer(UpperCamelCase , unk_token='''<unk>''' )
tokenizer.save_pretrained(self.tmpdirname )
def UpperCamelCase__ (self : Union[str, Any] , UpperCamelCase : str ):
'''simple docstring'''
lowercase__ = '''this is a test'''
lowercase__ = '''this is a test'''
return input_text, output_text
def UpperCamelCase__ (self : Optional[int] ):
'''simple docstring'''
lowercase__ = '''<pad>'''
lowercase__ = 0
self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCamelCase ) , UpperCamelCase )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCamelCase ) , UpperCamelCase )
def UpperCamelCase__ (self : Dict ):
'''simple docstring'''
lowercase__ = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '''<pad>''' )
self.assertEqual(vocab_keys[1] , '''<unk>''' )
self.assertEqual(vocab_keys[-1] , '''[PAD]''' )
self.assertEqual(len(UpperCamelCase ) , 30001 )
def UpperCamelCase__ (self : int ):
'''simple docstring'''
self.assertEqual(self.get_tokenizer().vocab_size , 30000 )
def UpperCamelCase__ (self : Optional[Any] ):
'''simple docstring'''
lowercase__ = ''' \tHeLLo!how \n Are yoU? '''
lowercase__ = ['''▁hello''', '''!''', '''how''', '''▁are''', '''▁you''', '''?''']
# fmt: on
lowercase__ = DebertaVaTokenizer(UpperCamelCase , do_lower_case=UpperCamelCase )
lowercase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) )
self.assertListEqual(UpperCamelCase , UpperCamelCase )
lowercase__ = DebertaVaTokenizerFast(UpperCamelCase , do_lower_case=UpperCamelCase )
lowercase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) )
self.assertListEqual(UpperCamelCase , UpperCamelCase )
@unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' )
def UpperCamelCase__ (self : List[Any] ):
'''simple docstring'''
pass
@unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' )
def UpperCamelCase__ (self : List[str] ):
'''simple docstring'''
pass
def UpperCamelCase__ (self : Optional[int] ):
'''simple docstring'''
lowercase__ = '''I was born in 92000, and this is falsé.'''
lowercase__ = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ]
# fmt: on
lowercase__ = DebertaVaTokenizer(UpperCamelCase , split_by_punct=UpperCamelCase )
lowercase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) )
self.assertListEqual(UpperCamelCase , UpperCamelCase )
lowercase__ = DebertaVaTokenizerFast(UpperCamelCase , split_by_punct=UpperCamelCase )
lowercase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) )
self.assertListEqual(UpperCamelCase , UpperCamelCase )
def UpperCamelCase__ (self : int ):
'''simple docstring'''
lowercase__ = '''I was born in 92000, and this is falsé.'''
lowercase__ = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ]
# fmt: on
lowercase__ = DebertaVaTokenizer(UpperCamelCase , do_lower_case=UpperCamelCase , split_by_punct=UpperCamelCase )
lowercase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) )
self.assertListEqual(UpperCamelCase , UpperCamelCase )
lowercase__ = DebertaVaTokenizerFast(UpperCamelCase , do_lower_case=UpperCamelCase , split_by_punct=UpperCamelCase )
lowercase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) )
self.assertListEqual(UpperCamelCase , UpperCamelCase )
def UpperCamelCase__ (self : Optional[Any] ):
'''simple docstring'''
lowercase__ = '''I was born in 92000, and this is falsé.'''
lowercase__ = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ]
# fmt: on
lowercase__ = DebertaVaTokenizer(UpperCamelCase , do_lower_case=UpperCamelCase , split_by_punct=UpperCamelCase )
lowercase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) )
self.assertListEqual(UpperCamelCase , UpperCamelCase )
lowercase__ = DebertaVaTokenizerFast(UpperCamelCase , do_lower_case=UpperCamelCase , split_by_punct=UpperCamelCase )
lowercase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) )
self.assertListEqual(UpperCamelCase , UpperCamelCase )
def UpperCamelCase__ (self : Union[str, Any] ):
'''simple docstring'''
lowercase__ = '''I was born in 92000, and this is falsé.'''
lowercase__ = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ]
# fmt: on
lowercase__ = DebertaVaTokenizer(UpperCamelCase , do_lower_case=UpperCamelCase , split_by_punct=UpperCamelCase )
lowercase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) )
self.assertListEqual(UpperCamelCase , UpperCamelCase )
lowercase__ = DebertaVaTokenizerFast(UpperCamelCase , do_lower_case=UpperCamelCase , split_by_punct=UpperCamelCase )
lowercase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) )
self.assertListEqual(UpperCamelCase , UpperCamelCase )
def UpperCamelCase__ (self : Union[str, Any] ):
'''simple docstring'''
lowercase__ = ''' \tHeLLo!how \n Are yoU? '''
lowercase__ = ['''▁''', '''<unk>''', '''e''', '''<unk>''', '''o''', '''!''', '''how''', '''▁''', '''<unk>''', '''re''', '''▁yo''', '''<unk>''', '''?''']
# fmt: on
lowercase__ = DebertaVaTokenizer(UpperCamelCase , do_lower_case=UpperCamelCase , split_by_punct=UpperCamelCase )
lowercase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) )
self.assertListEqual(UpperCamelCase , UpperCamelCase )
lowercase__ = DebertaVaTokenizerFast(UpperCamelCase , do_lower_case=UpperCamelCase , split_by_punct=UpperCamelCase )
lowercase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) )
self.assertListEqual(UpperCamelCase , UpperCamelCase )
def UpperCamelCase__ (self : Union[str, Any] ):
'''simple docstring'''
lowercase__ = self.get_tokenizer()
lowercase__ = self.get_rust_tokenizer()
lowercase__ = '''I was born in 92000, and this is falsé.'''
lowercase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) )
lowercase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) )
self.assertListEqual(UpperCamelCase , UpperCamelCase )
lowercase__ = tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase )
lowercase__ = rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase )
self.assertListEqual(UpperCamelCase , UpperCamelCase )
lowercase__ = self.get_rust_tokenizer()
lowercase__ = tokenizer.encode(UpperCamelCase )
lowercase__ = rust_tokenizer.encode(UpperCamelCase )
self.assertListEqual(UpperCamelCase , UpperCamelCase )
def UpperCamelCase__ (self : int ):
'''simple docstring'''
lowercase__ = '''This is a test'''
lowercase__ = [13, 1, 4398, 25, 21, 1289]
lowercase__ = ['''▁''', '''T''', '''his''', '''▁is''', '''▁a''', '''▁test''']
lowercase__ = ['''▁''', '''<unk>''', '''his''', '''▁is''', '''▁a''', '''▁test''']
lowercase__ = DebertaVaTokenizer(UpperCamelCase , keep_accents=UpperCamelCase )
lowercase__ = DebertaVaTokenizerFast(UpperCamelCase , keep_accents=UpperCamelCase )
lowercase__ = tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase )
self.assertListEqual(UpperCamelCase , UpperCamelCase )
lowercase__ = tokenizer.tokenize(UpperCamelCase )
self.assertListEqual(UpperCamelCase , UpperCamelCase )
lowercase__ = tokenizer.convert_ids_to_tokens(UpperCamelCase )
self.assertListEqual(UpperCamelCase , UpperCamelCase )
lowercase__ = rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase )
self.assertListEqual(UpperCamelCase , UpperCamelCase )
lowercase__ = rust_tokenizer.tokenize(UpperCamelCase )
self.assertListEqual(UpperCamelCase , UpperCamelCase )
lowercase__ = rust_tokenizer.convert_ids_to_tokens(UpperCamelCase )
self.assertListEqual(UpperCamelCase , UpperCamelCase )
# fmt: off
lowercase__ = '''I was born in 92000, and this is falsé.'''
lowercase__ = [13, 1, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9]
lowercase__ = ['''▁''', '''I''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''é''', '''.''', ]
lowercase__ = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ]
# fmt: on
lowercase__ = tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase )
self.assertListEqual(UpperCamelCase , UpperCamelCase )
lowercase__ = tokenizer.tokenize(UpperCamelCase )
self.assertListEqual(UpperCamelCase , UpperCamelCase )
lowercase__ = tokenizer.convert_ids_to_tokens(UpperCamelCase )
self.assertListEqual(UpperCamelCase , UpperCamelCase )
lowercase__ = rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase )
self.assertListEqual(UpperCamelCase , UpperCamelCase )
lowercase__ = rust_tokenizer.tokenize(UpperCamelCase )
self.assertListEqual(UpperCamelCase , UpperCamelCase )
lowercase__ = rust_tokenizer.convert_ids_to_tokens(UpperCamelCase )
self.assertListEqual(UpperCamelCase , UpperCamelCase )
def UpperCamelCase__ (self : int ):
'''simple docstring'''
lowercase__ = DebertaVaTokenizer(UpperCamelCase )
lowercase__ = tokenizer.encode('''sequence builders''' )
lowercase__ = tokenizer.encode('''multi-sequence build''' )
lowercase__ = tokenizer.build_inputs_with_special_tokens(UpperCamelCase )
lowercase__ = tokenizer.build_inputs_with_special_tokens(UpperCamelCase , UpperCamelCase )
self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , UpperCamelCase )
self.assertEqual(
[tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , UpperCamelCase , )
@slow
def UpperCamelCase__ (self : int ):
'''simple docstring'''
lowercase__ = {'''input_ids''': [[1, 39867, 36, 19390, 486, 27, 35052, 81436, 18, 60685, 1225, 7, 35052, 81436, 18, 9367, 16899, 18, 15937, 53, 594, 773, 18, 16287, 30465, 36, 15937, 6, 41139, 38, 36979, 60763, 191, 6, 34132, 99, 6, 50538, 390, 43230, 6, 34132, 2779, 20850, 14, 699, 1072, 1194, 36, 382, 10901, 53, 7, 699, 1072, 2084, 36, 20422, 630, 53, 19, 105, 3049, 1896, 1053, 16899, 1506, 11, 37978, 4243, 7, 1237, 31869, 200, 16566, 654, 6, 35052, 81436, 7, 55630, 13593, 4, 2], [1, 26, 15011, 13, 667, 8, 1053, 18, 23611, 1237, 72356, 12820, 34, 104134, 1209, 35, 13313, 6627, 21, 202, 347, 7, 164, 2399, 11, 46, 4485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1232, 2864, 15785, 14951, 105, 5, 8581, 1250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=UpperCamelCase , model_name='''microsoft/deberta-v2-xlarge''' , revision='''ad6e42c1532ddf3a15c39246b63f5559d558b670''' , )
| 2 | 0 |
'''simple docstring'''
import warnings
from contextlib import contextmanager
from ...processing_utils import ProcessorMixin
class _lowercase ( lowercase_ ):
a = """Speech2TextFeatureExtractor"""
a = """Speech2TextTokenizer"""
def __init__( self: Dict , UpperCamelCase__: Dict , UpperCamelCase__: Optional[Any] ):
super().__init__(UpperCamelCase__ , UpperCamelCase__ )
lowerCamelCase__ : Optional[int] = self.feature_extractor
lowerCamelCase__ : str = False
def __call__( self: Dict , *UpperCamelCase__: Optional[Any] , **UpperCamelCase__: List[Any] ):
if self._in_target_context_manager:
return self.current_processor(*UpperCamelCase__ , **UpperCamelCase__ )
if "raw_speech" in kwargs:
warnings.warn("""Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.""" )
lowerCamelCase__ : int = kwargs.pop("""raw_speech""" )
else:
lowerCamelCase__ : Dict = kwargs.pop("""audio""" , UpperCamelCase__ )
lowerCamelCase__ : str = kwargs.pop("""sampling_rate""" , UpperCamelCase__ )
lowerCamelCase__ : List[str] = kwargs.pop("""text""" , UpperCamelCase__ )
if len(UpperCamelCase__ ) > 0:
lowerCamelCase__ : int = args[0]
lowerCamelCase__ : int = args[1:]
if audio is None and text is None:
raise ValueError("""You need to specify either an `audio` or `text` input to process.""" )
if audio is not None:
lowerCamelCase__ : Any = self.feature_extractor(UpperCamelCase__ , *UpperCamelCase__ , sampling_rate=UpperCamelCase__ , **UpperCamelCase__ )
if text is not None:
lowerCamelCase__ : int = self.tokenizer(UpperCamelCase__ , **UpperCamelCase__ )
if text is None:
return inputs
elif audio is None:
return encodings
else:
lowerCamelCase__ : Union[str, Any] = encodings["""input_ids"""]
return inputs
def lowerCamelCase_ ( self: str , *UpperCamelCase__: List[Any] , **UpperCamelCase__: Dict ):
return self.tokenizer.batch_decode(*UpperCamelCase__ , **UpperCamelCase__ )
def lowerCamelCase_ ( self: Union[str, Any] , *UpperCamelCase__: Dict , **UpperCamelCase__: List[Any] ):
return self.tokenizer.decode(*UpperCamelCase__ , **UpperCamelCase__ )
@contextmanager
def lowerCamelCase_ ( self: Union[str, Any] ):
warnings.warn(
"""`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your """
"""labels by using the argument `text` of the regular `__call__` method (either in the same call as """
"""your audio inputs, or in a separate call.""" )
lowerCamelCase__ : List[str] = True
lowerCamelCase__ : Optional[int] = self.tokenizer
yield
lowerCamelCase__ : List[str] = self.feature_extractor
lowerCamelCase__ : Optional[int] = False
| 41 |
'''simple docstring'''
import argparse
import torch
from torch import nn
from transformers import MBartConfig, MBartForConditionalGeneration
def _SCREAMING_SNAKE_CASE (A ) -> Optional[Any]:
"""simple docstring"""
lowercase__ = [
'''encoder.version''',
'''decoder.version''',
'''model.encoder.version''',
'''model.decoder.version''',
'''_float_tensor''',
'''decoder.output_projection.weight''',
]
for k in ignore_keys:
state_dict.pop(A , A )
def _SCREAMING_SNAKE_CASE (A ) -> List[str]:
"""simple docstring"""
lowercase__ ,lowercase__ = emb.weight.shape
lowercase__ = nn.Linear(A , A , bias=A )
lowercase__ = emb.weight.data
return lin_layer
def _SCREAMING_SNAKE_CASE (A , A="facebook/mbart-large-en-ro" , A=False , A=False ) -> Union[str, Any]:
"""simple docstring"""
lowercase__ = torch.load(A , map_location='''cpu''' )['''model''']
remove_ignore_keys_(A )
lowercase__ = state_dict['''encoder.embed_tokens.weight'''].shape[0]
lowercase__ = MBartConfig.from_pretrained(A , vocab_size=A )
if mbart_aa and finetuned:
lowercase__ = '''relu'''
lowercase__ = state_dict['''decoder.embed_tokens.weight''']
lowercase__ = MBartForConditionalGeneration(A )
model.model.load_state_dict(A )
if finetuned:
lowercase__ = make_linear_from_emb(model.model.shared )
return model
if __name__ == "__main__":
lowerCamelCase : Any = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'fairseq_path', type=str, help='bart.large, bart.large.cnn or a path to a model.pt on local filesystem.'
)
parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
parser.add_argument(
'--hf_config',
default='facebook/mbart-large-cc25',
type=str,
help='Which huggingface architecture to use: mbart-large',
)
parser.add_argument('--mbart_50', action='store_true', help='whether the model is mMART-50 checkpoint')
parser.add_argument('--finetuned', action='store_true', help='whether the model is a fine-tuned checkpoint')
lowerCamelCase : Any = parser.parse_args()
lowerCamelCase : List[str] = convert_fairseq_mbart_checkpoint_from_disk(
args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa
)
model.save_pretrained(args.pytorch_dump_folder_path)
| 2 | 0 |
'''simple docstring'''
import importlib
import os
import fsspec
import pytest
from fsspec import register_implementation
from fsspec.registry import _registry as _fsspec_registry
from datasets.filesystems import COMPRESSION_FILESYSTEMS, HfFileSystem, extract_path_from_uri, is_remote_filesystem
from .utils import require_lza, require_zstandard
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
assert "mock" in _fsspec_registry
assert "bz2" in _fsspec_registry
def lowerCAmelCase_ ( ):
'''simple docstring'''
assert "mock" not in _fsspec_registry
assert "bz2" in _fsspec_registry
def lowerCAmelCase_ ( ):
'''simple docstring'''
A : str = '''mock-s3-bucket'''
A : str = F's3://{mock_bucket}'
A : Dict = extract_path_from_uri(snake_case__ )
assert dataset_path.startswith('''s3://''' ) is False
A : Tuple = '''./local/path'''
A : Dict = extract_path_from_uri(snake_case__ )
assert dataset_path == new_dataset_path
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
A : int = is_remote_filesystem(snake_case__ )
assert is_remote is True
A : Union[str, Any] = fsspec.filesystem('''file''' )
A : Optional[int] = is_remote_filesystem(snake_case__ )
assert is_remote is False
@pytest.mark.parametrize('''compression_fs_class''' , snake_case__ )
def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ):
'''simple docstring'''
A : Any = {'''gzip''': gz_file, '''xz''': xz_file, '''zstd''': zstd_file, '''bz2''': bza_file, '''lz4''': lza_file}
A : Union[str, Any] = input_paths[compression_fs_class.protocol]
if input_path is None:
A : Any = F'for \'{compression_fs_class.protocol}\' compression protocol, '
if compression_fs_class.protocol == "lz4":
reason += require_lza.kwargs["reason"]
elif compression_fs_class.protocol == "zstd":
reason += require_zstandard.kwargs["reason"]
pytest.skip(snake_case__ )
A : Tuple = fsspec.filesystem(compression_fs_class.protocol , fo=snake_case__ )
assert isinstance(snake_case__ , snake_case__ )
A : Dict = os.path.basename(snake_case__ )
A : str = expected_filename[: expected_filename.rindex('''.''' )]
assert fs.glob('''*''' ) == [expected_filename]
with fs.open(snake_case__ , '''r''' , encoding='''utf-8''' ) as f, open(snake_case__ , encoding='''utf-8''' ) as expected_file:
assert f.read() == expected_file.read()
@pytest.mark.parametrize('''protocol''' , ['''zip''', '''gzip'''] )
def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ ):
'''simple docstring'''
A : List[Any] = {'''zip''': zip_jsonl_path, '''gzip''': jsonl_gz_path}
A : Optional[Any] = compressed_file_paths[protocol]
A : List[Any] = '''dataset.jsonl'''
A : List[str] = F'{protocol}://{member_file_path}::{compressed_file_path}'
A, *A : Optional[int] = fsspec.get_fs_token_paths(snake_case__ )
assert fs.isfile(snake_case__ )
assert not fs.isfile('''non_existing_''' + member_file_path )
@pytest.mark.integration
def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ ):
'''simple docstring'''
A : int = hf_api.dataset_info(snake_case__ , token=snake_case__ )
A : Any = HfFileSystem(repo_info=snake_case__ , token=snake_case__ )
assert sorted(hffs.glob('''*''' ) ) == [".gitattributes", "data"]
assert hffs.isdir('''data''' )
assert hffs.isfile('''.gitattributes''' ) and hffs.isfile('''data/text_data.txt''' )
with open(snake_case__ ) as f:
assert hffs.open('''data/text_data.txt''' , '''r''' ).read() == f.read()
def lowerCAmelCase_ ( ):
'''simple docstring'''
A : List[Any] = '''bz2'''
# Import module
import datasets.filesystems
# Overwrite protocol and reload
register_implementation(snake_case__ , snake_case__ , clobber=snake_case__ )
with pytest.warns(snake_case__ ) as warning_info:
importlib.reload(datasets.filesystems )
assert len(snake_case__ ) == 1
assert (
str(warning_info[0].message )
== F'A filesystem protocol was already set for {protocol} and will be overwritten.'
)
| 3 |
'''simple docstring'''
import logging
import os
from typing import List, TextIO, Union
from conllu import parse_incr
from utils_ner import InputExample, Split, TokenClassificationTask
lowerCamelCase : List[Any] = logging.getLogger(__name__)
class __lowerCAmelCase (lowercase_ ):
'''simple docstring'''
def __init__(self : Optional[Any] , UpperCamelCase : Any=-1 ):
'''simple docstring'''
lowercase__ = label_idx
def UpperCamelCase__ (self : Union[str, Any] , UpperCamelCase : Optional[Any] , UpperCamelCase : Union[Split, str] ):
'''simple docstring'''
if isinstance(UpperCamelCase , UpperCamelCase ):
lowercase__ = mode.value
lowercase__ = os.path.join(UpperCamelCase , f"{mode}.txt" )
lowercase__ = 1
lowercase__ = []
with open(UpperCamelCase , encoding='''utf-8''' ) as f:
lowercase__ = []
lowercase__ = []
for line in f:
if line.startswith('''-DOCSTART-''' ) or line == "" or line == "\n":
if words:
examples.append(InputExample(guid=f"{mode}-{guid_index}" , words=UpperCamelCase , labels=UpperCamelCase ) )
guid_index += 1
lowercase__ = []
lowercase__ = []
else:
lowercase__ = line.split(''' ''' )
words.append(splits[0] )
if len(UpperCamelCase ) > 1:
labels.append(splits[self.label_idx].replace('''\n''' , '''''' ) )
else:
# Examples could have no label for mode = "test"
labels.append('''O''' )
if words:
examples.append(InputExample(guid=f"{mode}-{guid_index}" , words=UpperCamelCase , labels=UpperCamelCase ) )
return examples
def UpperCamelCase__ (self : Optional[int] , UpperCamelCase : TextIO , UpperCamelCase : TextIO , UpperCamelCase : List ):
'''simple docstring'''
lowercase__ = 0
for line in test_input_reader:
if line.startswith('''-DOCSTART-''' ) or line == "" or line == "\n":
writer.write(UpperCamelCase )
if not preds_list[example_id]:
example_id += 1
elif preds_list[example_id]:
lowercase__ = line.split()[0] + ''' ''' + preds_list[example_id].pop(0 ) + '''\n'''
writer.write(UpperCamelCase )
else:
logger.warning('''Maximum sequence length exceeded: No prediction for \'%s\'.''' , line.split()[0] )
def UpperCamelCase__ (self : Union[str, Any] , UpperCamelCase : str ):
'''simple docstring'''
if path:
with open(UpperCamelCase , '''r''' ) as f:
lowercase__ = f.read().splitlines()
if "O" not in labels:
lowercase__ = ['''O'''] + labels
return labels
else:
return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"]
class __lowerCAmelCase (lowercase_ ):
'''simple docstring'''
def __init__(self : List[Any] ):
'''simple docstring'''
super().__init__(label_idx=-2 )
def UpperCamelCase__ (self : List[Any] , UpperCamelCase : str ):
'''simple docstring'''
if path:
with open(UpperCamelCase , '''r''' ) as f:
lowercase__ = f.read().splitlines()
if "O" not in labels:
lowercase__ = ['''O'''] + labels
return labels
else:
return [
"O",
"B-ADVP",
"B-INTJ",
"B-LST",
"B-PRT",
"B-NP",
"B-SBAR",
"B-VP",
"B-ADJP",
"B-CONJP",
"B-PP",
"I-ADVP",
"I-INTJ",
"I-LST",
"I-PRT",
"I-NP",
"I-SBAR",
"I-VP",
"I-ADJP",
"I-CONJP",
"I-PP",
]
class __lowerCAmelCase (lowercase_ ):
'''simple docstring'''
def UpperCamelCase__ (self : Tuple , UpperCamelCase : int , UpperCamelCase : Union[Split, str] ):
'''simple docstring'''
if isinstance(UpperCamelCase , UpperCamelCase ):
lowercase__ = mode.value
lowercase__ = os.path.join(UpperCamelCase , f"{mode}.txt" )
lowercase__ = 1
lowercase__ = []
with open(UpperCamelCase , encoding='''utf-8''' ) as f:
for sentence in parse_incr(UpperCamelCase ):
lowercase__ = []
lowercase__ = []
for token in sentence:
words.append(token['''form'''] )
labels.append(token['''upos'''] )
assert len(UpperCamelCase ) == len(UpperCamelCase )
if words:
examples.append(InputExample(guid=f"{mode}-{guid_index}" , words=UpperCamelCase , labels=UpperCamelCase ) )
guid_index += 1
return examples
def UpperCamelCase__ (self : Tuple , UpperCamelCase : TextIO , UpperCamelCase : TextIO , UpperCamelCase : List ):
'''simple docstring'''
lowercase__ = 0
for sentence in parse_incr(UpperCamelCase ):
lowercase__ = preds_list[example_id]
lowercase__ = ''''''
for token in sentence:
out += f"{token['form']} ({token['upos']}|{s_p.pop(0 )}) "
out += "\n"
writer.write(UpperCamelCase )
example_id += 1
def UpperCamelCase__ (self : Union[str, Any] , UpperCamelCase : str ):
'''simple docstring'''
if path:
with open(UpperCamelCase , '''r''' ) as f:
return f.read().splitlines()
else:
return [
"ADJ",
"ADP",
"ADV",
"AUX",
"CCONJ",
"DET",
"INTJ",
"NOUN",
"NUM",
"PART",
"PRON",
"PROPN",
"PUNCT",
"SCONJ",
"SYM",
"VERB",
"X",
]
| 2 | 0 |
'''simple docstring'''
import copy
import inspect
import unittest
from transformers import PretrainedConfig, SwiftFormerConfig
from transformers.testing_utils import (
require_torch,
require_vision,
slow,
torch_device,
)
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import SwiftFormerForImageClassification, SwiftFormerModel
from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class _a :
def __init__( self : Optional[int] , lowercase : Union[str, Any] , lowercase : int=13 , lowercase : List[Any]=3 , lowercase : Union[str, Any]=True , lowercase : Any=True , lowercase : Optional[int]=0.1 , lowercase : List[Any]=0.1 , lowercase : Optional[Any]=224 , lowercase : int=1_000 , lowercase : Dict=[3, 3, 6, 4] , lowercase : str=[48, 56, 112, 220] , ):
'''simple docstring'''
UpperCAmelCase = parent
UpperCAmelCase = batch_size
UpperCAmelCase = num_channels
UpperCAmelCase = is_training
UpperCAmelCase = use_labels
UpperCAmelCase = hidden_dropout_prob
UpperCAmelCase = attention_probs_dropout_prob
UpperCAmelCase = num_labels
UpperCAmelCase = image_size
UpperCAmelCase = layer_depths
UpperCAmelCase = embed_dims
def A ( self : str ):
'''simple docstring'''
UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCAmelCase = None
if self.use_labels:
UpperCAmelCase = ids_tensor([self.batch_size] , self.num_labels )
UpperCAmelCase = self.get_config()
return config, pixel_values, labels
def A ( self : Optional[Any] ):
'''simple docstring'''
return SwiftFormerConfig(
depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act='''gelu''' , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=lowercase , layer_scale_init_value=1E-5 , )
def A ( self : Tuple , lowercase : Any , lowercase : Optional[int] , lowercase : Optional[int] ):
'''simple docstring'''
UpperCAmelCase = SwiftFormerModel(config=lowercase )
model.to(lowercase )
model.eval()
UpperCAmelCase = model(lowercase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) )
def A ( self : str , lowercase : Optional[Any] , lowercase : List[Any] , lowercase : Union[str, Any] ):
'''simple docstring'''
UpperCAmelCase = self.num_labels
UpperCAmelCase = SwiftFormerForImageClassification(lowercase )
model.to(lowercase )
model.eval()
UpperCAmelCase = model(lowercase , labels=lowercase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
UpperCAmelCase = SwiftFormerForImageClassification(lowercase )
model.to(lowercase )
model.eval()
UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCAmelCase = model(lowercase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def A ( self : List[Any] ):
'''simple docstring'''
((UpperCAmelCase) , (UpperCAmelCase) , (UpperCAmelCase)) = self.prepare_config_and_inputs()
UpperCAmelCase = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_torch
class _a ( lowercase_ , lowercase_ , unittest.TestCase ):
__a : int = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else ()
__a : int = (
{"""feature-extraction""": SwiftFormerModel, """image-classification""": SwiftFormerForImageClassification}
if is_torch_available()
else {}
)
__a : str = False
__a : Dict = False
__a : str = False
__a : Tuple = False
__a : List[str] = False
def A ( self : Any ):
'''simple docstring'''
UpperCAmelCase = SwiftFormerModelTester(self )
UpperCAmelCase = ConfigTester(
self , config_class=lowercase , has_text_modality=lowercase , hidden_size=37 , num_attention_heads=12 , num_hidden_layers=12 , )
def A ( self : List[str] ):
'''simple docstring'''
self.config_tester.run_common_tests()
@unittest.skip(reason='''SwiftFormer does not use inputs_embeds''' )
def A ( self : List[Any] ):
'''simple docstring'''
pass
def A ( self : Optional[Any] ):
'''simple docstring'''
UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase = model_class(lowercase )
UpperCAmelCase = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(lowercase , nn.Linear ) )
def A ( self : Union[str, Any] ):
'''simple docstring'''
UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase = model_class(lowercase )
UpperCAmelCase = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCAmelCase = [*signature.parameters.keys()]
UpperCAmelCase = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , lowercase )
def A ( self : Dict ):
'''simple docstring'''
UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowercase )
def A ( self : Any ):
'''simple docstring'''
UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*lowercase )
@slow
def A ( self : Dict ):
'''simple docstring'''
for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase = SwiftFormerModel.from_pretrained(lowercase )
self.assertIsNotNone(lowercase )
@unittest.skip(reason='''SwiftFormer does not output attentions''' )
def A ( self : Dict ):
'''simple docstring'''
pass
def A ( self : int ):
'''simple docstring'''
def check_hidden_states_output(lowercase : str , lowercase : Optional[Any] , lowercase : str ):
UpperCAmelCase = model_class(lowercase )
model.to(lowercase )
model.eval()
with torch.no_grad():
UpperCAmelCase = model(**self._prepare_for_class(lowercase , lowercase ) )
UpperCAmelCase = outputs.hidden_states
UpperCAmelCase = 8
self.assertEqual(len(lowercase ) , lowercase ) # TODO
# SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width)
# with the width and height being successively divided by 2, after every 2 blocks
for i in range(len(lowercase ) ):
self.assertEqual(
hidden_states[i].shape , torch.Size(
[
self.model_tester.batch_size,
self.model_tester.embed_dims[i // 2],
(self.model_tester.image_size // 4) // 2 ** (i // 2),
(self.model_tester.image_size // 4) // 2 ** (i // 2),
] ) , )
UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase = True
check_hidden_states_output(lowercase , lowercase , lowercase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
UpperCAmelCase = True
check_hidden_states_output(lowercase , lowercase , lowercase )
def A ( self : Optional[int] ):
'''simple docstring'''
def _config_zero_init(lowercase : int ):
UpperCAmelCase = copy.deepcopy(lowercase )
for key in configs_no_init.__dict__.keys():
if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key:
setattr(lowercase , lowercase , 1E-10 )
if isinstance(getattr(lowercase , lowercase , lowercase ) , lowercase ):
UpperCAmelCase = _config_zero_init(getattr(lowercase , lowercase ) )
setattr(lowercase , lowercase , lowercase )
return configs_no_init
UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase = _config_zero_init(lowercase )
for model_class in self.all_model_classes:
UpperCAmelCase = model_class(config=lowercase )
for name, param in model.named_parameters():
if param.requires_grad:
self.assertIn(
((param.data.mean() * 1E9) / 1E9).round().item() , [0.0, 1.0] , msg=f"Parameter {name} of model {model_class} seems not properly initialized" , )
@unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' )
def A ( self : Dict ):
'''simple docstring'''
pass
def snake_case_ ():
UpperCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_torch
@require_vision
class _a ( unittest.TestCase ):
@cached_property
def A ( self : Dict ):
'''simple docstring'''
return ViTImageProcessor.from_pretrained('''MBZUAI/swiftformer-xs''' ) if is_vision_available() else None
@slow
def A ( self : Any ):
'''simple docstring'''
UpperCAmelCase = SwiftFormerForImageClassification.from_pretrained('''MBZUAI/swiftformer-xs''' ).to(lowercase )
UpperCAmelCase = self.default_image_processor
UpperCAmelCase = prepare_img()
UpperCAmelCase = image_processor(images=lowercase , return_tensors='''pt''' ).to(lowercase )
# forward pass
with torch.no_grad():
UpperCAmelCase = model(**lowercase )
# verify the logits
UpperCAmelCase = torch.Size((1, 1_000) )
self.assertEqual(outputs.logits.shape , lowercase )
UpperCAmelCase = torch.tensor([[-2.1_703E00, 2.1_107E00, -2.0_811E00]] ).to(lowercase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase , atol=1E-4 ) )
| 34 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCamelCase : Dict = logging.get_logger(__name__)
lowerCamelCase : Union[str, Any] = {
# See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert
}
class __lowerCAmelCase (lowercase_ ):
'''simple docstring'''
lowerCAmelCase__ : List[str] = """megatron-bert"""
def __init__(self : Tuple , UpperCamelCase : Optional[int]=29056 , UpperCamelCase : Optional[Any]=1024 , UpperCamelCase : Any=24 , UpperCamelCase : int=16 , UpperCamelCase : Optional[int]=4096 , UpperCamelCase : int="gelu" , UpperCamelCase : int=0.1 , UpperCamelCase : Tuple=0.1 , UpperCamelCase : Any=512 , UpperCamelCase : int=2 , UpperCamelCase : Dict=0.02 , UpperCamelCase : Dict=1E-12 , UpperCamelCase : List[Any]=0 , UpperCamelCase : Optional[int]="absolute" , UpperCamelCase : List[Any]=True , **UpperCamelCase : str , ):
'''simple docstring'''
super().__init__(pad_token_id=UpperCamelCase , **UpperCamelCase )
lowercase__ = vocab_size
lowercase__ = hidden_size
lowercase__ = num_hidden_layers
lowercase__ = num_attention_heads
lowercase__ = hidden_act
lowercase__ = intermediate_size
lowercase__ = hidden_dropout_prob
lowercase__ = attention_probs_dropout_prob
lowercase__ = max_position_embeddings
lowercase__ = type_vocab_size
lowercase__ = initializer_range
lowercase__ = layer_norm_eps
lowercase__ = position_embedding_type
lowercase__ = use_cache
| 2 | 0 |
'''simple docstring'''
import argparse
import os
import torch
from transformers import FlavaConfig, FlavaForPreTraining
from transformers.models.flava.convert_dalle_to_flava_codebook import convert_dalle_checkpoint
def __UpperCamelCase ( lowercase__ : Optional[int] ):
'''simple docstring'''
return sum(param.float().sum() if 'encoder.embeddings' not in key else 0 for key, param in state_dict.items() )
def __UpperCamelCase ( lowercase__ : Optional[Any], lowercase__ : List[str] ):
'''simple docstring'''
__lowercase ={}
for key, value in state_dict.items():
if "text_encoder.embeddings" in key or "image_encoder.embeddings" in key:
continue
__lowercase =key.replace('heads.cmd.mim_head.cls.predictions', 'mmm_image_head' )
__lowercase =key.replace('heads.cmd.mlm_head.cls.predictions', 'mmm_text_head' )
__lowercase =key.replace('heads.cmd.itm_head.cls', 'itm_head' )
__lowercase =key.replace('heads.cmd.itm_head.pooler', 'itm_head.pooler' )
__lowercase =key.replace('heads.cmd.clip_head.logit_scale', 'flava.logit_scale' )
__lowercase =key.replace('heads.fairseq_mlm.cls.predictions', 'mlm_head' )
__lowercase =key.replace('heads.imagenet.mim_head.cls.predictions', 'mim_head' )
__lowercase =key.replace('mm_text_projection', 'flava.text_to_mm_projection' )
__lowercase =key.replace('mm_image_projection', 'flava.image_to_mm_projection' )
__lowercase =key.replace('image_encoder.module', 'flava.image_model' )
__lowercase =key.replace('text_encoder.module', 'flava.text_model' )
__lowercase =key.replace('mm_encoder.module.encoder.cls_token', 'flava.multimodal_model.cls_token' )
__lowercase =key.replace('mm_encoder.module', 'flava.multimodal_model' )
__lowercase =key.replace('text_projection', 'flava.text_projection' )
__lowercase =key.replace('image_projection', 'flava.image_projection' )
__lowercase =value.float()
for key, value in codebook_state_dict.items():
__lowercase =value
return upgrade
@torch.no_grad()
def __UpperCamelCase ( lowercase__ : Optional[int], lowercase__ : Union[str, Any], lowercase__ : List[str], lowercase__ : Union[str, Any]=None ):
'''simple docstring'''
if config_path is not None:
__lowercase =FlavaConfig.from_pretrained(lowercase__ )
else:
__lowercase =FlavaConfig()
__lowercase =FlavaForPreTraining(lowercase__ ).eval()
__lowercase =convert_dalle_checkpoint(lowercase__, lowercase__, save_checkpoint=lowercase__ )
if os.path.exists(lowercase__ ):
__lowercase =torch.load(lowercase__, map_location='cpu' )
else:
__lowercase =torch.hub.load_state_dict_from_url(lowercase__, map_location='cpu' )
__lowercase =upgrade_state_dict(lowercase__, lowercase__ )
hf_model.load_state_dict(lowercase__ )
__lowercase =hf_model.state_dict()
__lowercase =count_parameters(lowercase__ )
__lowercase =count_parameters(lowercase__ ) + count_parameters(lowercase__ )
assert torch.allclose(lowercase__, lowercase__, atol=1E-3 )
hf_model.save_pretrained(lowercase__ )
if __name__ == "__main__":
UpperCAmelCase = argparse.ArgumentParser()
parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''')
parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to flava checkpoint''')
parser.add_argument('''--codebook_path''', default=None, type=str, help='''Path to flava codebook checkpoint''')
parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''')
UpperCAmelCase = parser.parse_args()
convert_flava_checkpoint(args.checkpoint_path, args.codebook_path, args.pytorch_dump_folder_path, args.config_path)
| 141 |
'''simple docstring'''
# Lint as: python3
import itertools
import os
import re
lowerCamelCase : Any = re.compile(R'([A-Z]+)([A-Z][a-z])')
lowerCamelCase : str = re.compile(R'([a-z\d])([A-Z])')
lowerCamelCase : Optional[int] = re.compile(R'(?<!_)_(?!_)')
lowerCamelCase : List[Any] = re.compile(R'(_{2,})')
lowerCamelCase : str = R'^\w+(\.\w+)*$'
lowerCamelCase : Dict = R'<>:/\|?*'
def _SCREAMING_SNAKE_CASE (A ) -> Any:
"""simple docstring"""
lowercase__ = _uppercase_uppercase_re.sub(R'''\1_\2''' , A )
lowercase__ = _lowercase_uppercase_re.sub(R'''\1_\2''' , A )
return name.lower()
def _SCREAMING_SNAKE_CASE (A ) -> Tuple:
"""simple docstring"""
lowercase__ = _single_underscore_re.split(A )
lowercase__ = [_multiple_underscores_re.split(A ) for n in name]
return "".join(n.capitalize() for n in itertools.chain.from_iterable(A ) if n != '''''' )
def _SCREAMING_SNAKE_CASE (A ) -> Tuple:
"""simple docstring"""
if os.path.basename(A ) != name:
raise ValueError(f"Should be a dataset name, not a path: {name}" )
return camelcase_to_snakecase(A )
def _SCREAMING_SNAKE_CASE (A , A ) -> Optional[Any]:
"""simple docstring"""
if os.path.basename(A ) != name:
raise ValueError(f"Should be a dataset name, not a path: {name}" )
if not re.match(_split_re , A ):
raise ValueError(f"Split name should match '{_split_re}'' but got '{split}'." )
return f"{filename_prefix_for_name(A )}-{split}"
def _SCREAMING_SNAKE_CASE (A , A , A , A=None ) -> List[str]:
"""simple docstring"""
lowercase__ = filename_prefix_for_split(A , A )
if filetype_suffix:
prefix += f".{filetype_suffix}"
lowercase__ = os.path.join(A , A )
return f"{filepath}*"
def _SCREAMING_SNAKE_CASE (A , A , A , A=None , A=None ) -> Optional[Any]:
"""simple docstring"""
lowercase__ = filename_prefix_for_split(A , A )
lowercase__ = os.path.join(A , A )
if shard_lengths:
lowercase__ = len(A )
lowercase__ = [f"{prefix}-{shard_id:05d}-of-{num_shards:05d}" for shard_id in range(A )]
if filetype_suffix:
lowercase__ = [filename + f".{filetype_suffix}" for filename in filenames]
return filenames
else:
lowercase__ = prefix
if filetype_suffix:
filename += f".{filetype_suffix}"
return [filename]
| 2 | 0 |
from copy import deepcopy
import torch
import torch.nn.functional as F
from torch.optim import AdamW
from torch.optim.lr_scheduler import LambdaLR
from torch.utils.data import DataLoader
from accelerate.accelerator import Accelerator
from accelerate.state import GradientState
from accelerate.test_utils import RegressionDataset, RegressionModel
from accelerate.utils import DistributedType, is_torch_version, set_seed
def lowerCAmelCase__ ( lowerCamelCase_ : int ,lowerCamelCase_ : Union[str, Any] ,lowerCamelCase_ : Union[str, Any] ,lowerCamelCase_ : Tuple):
'''simple docstring'''
for param, grad_param in zip(model_a.parameters() ,model_b.parameters()):
if not param.requires_grad:
continue
if not did_step:
# Grads should not be in sync
assert (
torch.allclose(param.grad ,grad_param.grad) is False
), f"""Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})"""
else:
# Grads should be in sync
assert (
torch.allclose(param.grad ,grad_param.grad) is True
), f"""Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})"""
def lowerCAmelCase__ ( lowerCamelCase_ : Dict ,lowerCamelCase_ : List[Any] ,lowerCamelCase_ : int ,lowerCamelCase_ : Tuple ,lowerCamelCase_ : int=True):
'''simple docstring'''
model.train()
lowerCAmelCase__ : Tuple = model(lowerCamelCase_)
lowerCAmelCase__ : Optional[int] = F.mse_loss(lowerCamelCase_ ,target.to(output.device))
if not do_backward:
loss /= accelerator.gradient_accumulation_steps
loss.backward()
else:
accelerator.backward(lowerCamelCase_)
def lowerCAmelCase__ ( lowerCamelCase_ : int ,lowerCamelCase_ : Optional[Any]=False):
'''simple docstring'''
set_seed(42)
lowerCAmelCase__ : List[Any] = RegressionModel()
lowerCAmelCase__ : Dict = deepcopy(lowerCamelCase_)
lowerCAmelCase__ : Optional[int] = RegressionDataset(length=80)
lowerCAmelCase__ : Optional[int] = DataLoader(lowerCamelCase_ ,batch_size=16)
model.to(accelerator.device)
if sched:
lowerCAmelCase__ : Tuple = AdamW(params=model.parameters() ,lr=1E-3)
lowerCAmelCase__ : Tuple = AdamW(params=ddp_model.parameters() ,lr=1E-3)
lowerCAmelCase__ : Any = LambdaLR(lowerCamelCase_ ,lr_lambda=lambda lowerCamelCase_: epoch**0.65)
lowerCAmelCase__ : Any = LambdaLR(lowerCamelCase_ ,lr_lambda=lambda lowerCamelCase_: epoch**0.65)
# Make a copy of `model`
if sched:
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Any = accelerator.prepare(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_)
else:
lowerCAmelCase__ , lowerCAmelCase__ : Tuple = accelerator.prepare(lowerCamelCase_ ,lowerCamelCase_)
if sched:
return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched)
return model, ddp_model, dataloader
def lowerCAmelCase__ ( lowerCamelCase_ : Dict):
'''simple docstring'''
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Tuple = get_training_setup(lowerCamelCase_)
# Use a single batch
lowerCAmelCase__ , lowerCAmelCase__ : Any = next(iter(lowerCamelCase_)).values()
for iteration in range(3):
# Gather the distributed inputs and targs for the base model
lowerCAmelCase__ , lowerCAmelCase__ : Any = accelerator.gather((ddp_input, ddp_target))
lowerCAmelCase__ , lowerCAmelCase__ : Dict = input.to(accelerator.device), target.to(accelerator.device)
# Perform our initial ground truth step in non "DDP"
step_model(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_)
# Do "gradient accumulation" (noop)
if iteration % 2 == 0:
# Accumulate grads locally
with accelerator.no_sync(lowerCamelCase_):
step_model(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_)
else:
# Sync grads
step_model(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_)
# Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync
check_model_parameters(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_)
for param, ddp_param in zip(model.parameters() ,ddp_model.parameters()):
if not param.requires_grad:
continue
assert torch.allclose(
param.grad ,ddp_param.grad), f"""Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})"""
# Shuffle ddp_input on each iteration
torch.manual_seed(1337 + iteration)
lowerCAmelCase__ : Tuple = ddp_input[torch.randperm(len(lowerCamelCase_))]
def lowerCAmelCase__ ( lowerCamelCase_ : Union[str, Any]):
'''simple docstring'''
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Dict = get_training_setup(lowerCamelCase_)
# Use a single batch
lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = next(iter(lowerCamelCase_)).values()
for iteration in range(3):
# Gather the distributed inputs and targs for the base model
lowerCAmelCase__ , lowerCAmelCase__ : str = accelerator.gather((ddp_input, ddp_target))
lowerCAmelCase__ , lowerCAmelCase__ : List[str] = input.to(accelerator.device), target.to(accelerator.device)
# Perform our initial ground truth step in non "DDP"
step_model(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_)
# Do "gradient accumulation" (noop)
if iteration % 2 == 0:
# Accumulate grads locally
with accelerator.no_sync(lowerCamelCase_):
step_model(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_)
else:
# Sync grads
step_model(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_)
# DDP model and model should only be in sync when not (iteration % 2 == 0)
for param, ddp_param in zip(model.parameters() ,ddp_model.parameters()):
if not param.requires_grad:
continue
if iteration % 2 == 0:
# Grads should not be in sync
assert (
torch.allclose(param.grad ,ddp_param.grad) is False
), f"""Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})"""
else:
# Grads should be in sync
assert (
torch.allclose(param.grad ,ddp_param.grad) is True
), f"""Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})"""
# Shuffle ddp_input on each iteration
torch.manual_seed(1337 + iteration)
lowerCAmelCase__ : Tuple = ddp_input[torch.randperm(len(lowerCamelCase_))]
def lowerCAmelCase__ ( lowerCamelCase_ : Tuple=False ,lowerCamelCase_ : Optional[int]=False):
'''simple docstring'''
lowerCAmelCase__ : Dict = Accelerator(
split_batches=lowerCamelCase_ ,dispatch_batches=lowerCamelCase_ ,gradient_accumulation_steps=2)
# Test that context manager behaves properly
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = get_training_setup(lowerCamelCase_)
for iteration, batch in enumerate(lowerCamelCase_):
lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = batch.values()
# Gather the distributed inputs and targs for the base model
lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = accelerator.gather((ddp_input, ddp_target))
lowerCAmelCase__ , lowerCAmelCase__ : Dict = input.to(accelerator.device), target.to(accelerator.device)
# Perform our initial ground truth step in non "DDP"
step_model(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_)
# Do "gradient accumulation" (noop)
with accelerator.accumulate(lowerCamelCase_):
step_model(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_)
# DDP model and model should only be in sync when not (iteration % 2 == 0)
for param, ddp_param in zip(model.parameters() ,ddp_model.parameters()):
if not param.requires_grad:
continue
if ((iteration + 1) % 2 == 0) or (iteration == len(lowerCamelCase_) - 1):
# Grads should be in sync
assert (
torch.allclose(param.grad ,ddp_param.grad) is True
), f"""Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})"""
else:
# Grads should not be in sync
assert (
torch.allclose(param.grad ,ddp_param.grad) is False
), f"""Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})"""
# Shuffle ddp_input on each iteration
torch.manual_seed(1337 + iteration)
lowerCAmelCase__ : Dict = ddp_input[torch.randperm(len(lowerCamelCase_))]
GradientState._reset_state()
def lowerCAmelCase__ ( lowerCamelCase_ : Tuple=False ,lowerCamelCase_ : List[str]=False):
'''simple docstring'''
lowerCAmelCase__ : Any = Accelerator(
split_batches=lowerCamelCase_ ,dispatch_batches=lowerCamelCase_ ,gradient_accumulation_steps=2)
# Test that context manager behaves properly
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : List[Any] = get_training_setup(lowerCamelCase_ ,lowerCamelCase_)
for iteration, batch in enumerate(lowerCamelCase_):
lowerCAmelCase__ , lowerCAmelCase__ : str = batch.values()
# Gather the distributed inputs and targs for the base model
lowerCAmelCase__ , lowerCAmelCase__ : Any = accelerator.gather((ddp_input, ddp_target))
lowerCAmelCase__ , lowerCAmelCase__ : List[Any] = input.to(accelerator.device), target.to(accelerator.device)
# Perform our initial ground truth step in non "DDP"
model.train()
ddp_model.train()
step_model(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_)
opt.step()
if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(lowerCamelCase_)):
if split_batches:
sched.step()
else:
for _ in range(accelerator.num_processes):
sched.step()
opt.zero_grad()
# Perform gradient accumulation under wrapper
with accelerator.accumulate(lowerCamelCase_):
step_model(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_)
ddp_opt.step()
ddp_sched.step()
ddp_opt.zero_grad()
# Learning rates should be the same
assert (
opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"]
), f"""Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]['lr']}\nDDP opt: {ddp_opt.param_groups[0]['lr']}\n"""
lowerCAmelCase__ : List[Any] = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(lowerCamelCase_))
if accelerator.num_processes > 1:
check_model_parameters(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_)
# Shuffle ddp_input on each iteration
torch.manual_seed(1337 + iteration)
GradientState._reset_state()
def lowerCAmelCase__ ( ):
'''simple docstring'''
lowerCAmelCase__ : int = Accelerator()
lowerCAmelCase__ : Any = RegressionDataset(length=80)
lowerCAmelCase__ : List[str] = DataLoader(lowerCamelCase_ ,batch_size=16)
lowerCAmelCase__ : int = RegressionDataset(length=96)
lowerCAmelCase__ : Any = DataLoader(lowerCamelCase_ ,batch_size=16)
lowerCAmelCase__ , lowerCAmelCase__ : int = accelerator.prepare(lowerCamelCase_ ,lowerCamelCase_)
assert accelerator.gradient_state.active_dataloader is None
for iteration, _ in enumerate(lowerCamelCase_):
assert id(accelerator.gradient_state.active_dataloader) == id(lowerCamelCase_)
if iteration < len(lowerCamelCase_) - 1:
assert not accelerator.gradient_state.end_of_dataloader
if iteration == 1:
for batch_num, _ in enumerate(lowerCamelCase_):
assert id(accelerator.gradient_state.active_dataloader) == id(lowerCamelCase_)
if batch_num < len(lowerCamelCase_) - 1:
assert not accelerator.gradient_state.end_of_dataloader
else:
assert accelerator.gradient_state.end_of_dataloader
else:
assert accelerator.gradient_state.end_of_dataloader
assert accelerator.gradient_state.active_dataloader is None
def lowerCAmelCase__ ( ):
'''simple docstring'''
lowerCAmelCase__ : Any = Accelerator()
lowerCAmelCase__ : Optional[int] = accelerator.state
if state.local_process_index == 0:
print('''**Test `accumulate` gradient accumulation with dataloader break**''')
test_dataloader_break()
if state.distributed_type == DistributedType.NO:
if state.local_process_index == 0:
print('''**Test NOOP `no_sync` context manager**''')
test_noop_sync(lowerCamelCase_)
if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU):
if state.local_process_index == 0:
print('''**Test Distributed `no_sync` context manager**''')
test_distributed_sync(lowerCamelCase_)
if state.distributed_type == DistributedType.MULTI_GPU:
for split_batch in [True, False]:
for dispatch_batches in [True, False]:
if state.local_process_index == 0:
print(
'''**Test `accumulate` gradient accumulation, ''' ,f"""`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**""" ,)
test_gradient_accumulation(lowerCamelCase_ ,lowerCamelCase_)
# Currently will break on torch 2.0 +, need to investigate why
if is_torch_version('''<''' ,'''2.0''') or state.distributed_type == DistributedType.NO:
if state.local_process_index == 0:
print(
'''**Test `accumulate` gradient accumulation with optimizer and scheduler, ''' ,'''`split_batches=False`, `dispatch_batches=False`**''' ,)
test_gradient_accumulation_with_opt_and_scheduler()
if state.distributed_type == DistributedType.MULTI_GPU:
for split_batch in [True, False]:
for dispatch_batches in [True, False]:
if not split_batch and not dispatch_batches:
continue
if state.local_process_index == 0:
print(
'''**Test `accumulate` gradient accumulation with optimizer and scheduler, ''' ,f"""`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**""" ,)
test_gradient_accumulation_with_opt_and_scheduler(lowerCamelCase_ ,lowerCamelCase_)
def lowerCAmelCase__ ( lowerCamelCase_ : Optional[Any]):
'''simple docstring'''
main()
if __name__ == "__main__":
main()
| 129 |
'''simple docstring'''
import unittest
from transformers import TrOCRConfig
from transformers.testing_utils import is_torch_available, require_torch, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM
@require_torch
class __lowerCAmelCase :
'''simple docstring'''
def __init__(self : str , UpperCamelCase : Tuple , UpperCamelCase : Optional[int]=99 , UpperCamelCase : Optional[int]=13 , UpperCamelCase : Tuple=16 , UpperCamelCase : Union[str, Any]=7 , UpperCamelCase : List[Any]=True , UpperCamelCase : List[str]=True , UpperCamelCase : str=True , UpperCamelCase : Tuple=False , UpperCamelCase : str=True , UpperCamelCase : Tuple=2 , UpperCamelCase : Optional[int]=32 , UpperCamelCase : Any=4 , UpperCamelCase : Optional[int]=4 , UpperCamelCase : Tuple=30 , UpperCamelCase : str=0 , UpperCamelCase : Tuple=1 , UpperCamelCase : List[Any]=2 , UpperCamelCase : str=None , ):
'''simple docstring'''
lowercase__ = parent
lowercase__ = batch_size
lowercase__ = decoder_seq_length
# For common tests
lowercase__ = self.decoder_seq_length
lowercase__ = is_training
lowercase__ = use_attention_mask
lowercase__ = use_labels
lowercase__ = vocab_size
lowercase__ = d_model
lowercase__ = d_model
lowercase__ = decoder_layers
lowercase__ = decoder_layers
lowercase__ = decoder_ffn_dim
lowercase__ = decoder_attention_heads
lowercase__ = decoder_attention_heads
lowercase__ = eos_token_id
lowercase__ = bos_token_id
lowercase__ = pad_token_id
lowercase__ = decoder_start_token_id
lowercase__ = use_cache
lowercase__ = max_position_embeddings
lowercase__ = None
lowercase__ = decoder_seq_length
lowercase__ = 2
lowercase__ = 1
def UpperCamelCase__ (self : str ):
'''simple docstring'''
lowercase__ = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size )
lowercase__ = None
if self.use_attention_mask:
lowercase__ = ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 )
lowercase__ = None
if self.use_labels:
lowercase__ = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size )
lowercase__ = TrOCRConfig(
vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , )
return (config, input_ids, attention_mask, lm_labels)
def UpperCamelCase__ (self : Tuple , UpperCamelCase : List[Any] , UpperCamelCase : Optional[Any] , UpperCamelCase : Tuple , UpperCamelCase : List[str] , ):
'''simple docstring'''
lowercase__ = True
lowercase__ = TrOCRDecoder(config=UpperCamelCase ).to(UpperCamelCase ).eval()
lowercase__ = input_ids[:2]
input_ids[input_ids == 0] += 1
# first forward pass
lowercase__ = model(UpperCamelCase , use_cache=UpperCamelCase )
lowercase__ = model(UpperCamelCase )
lowercase__ = model(UpperCamelCase , use_cache=UpperCamelCase )
self.parent.assertTrue(len(UpperCamelCase ) == len(UpperCamelCase ) )
self.parent.assertTrue(len(UpperCamelCase ) == len(UpperCamelCase ) + 1 )
lowercase__ = outputs['''past_key_values''']
# create hypothetical next token and extent to next_input_ids
lowercase__ = ids_tensor((2, 1) , config.vocab_size - 1 ) + 1
# append to next input_ids and
lowercase__ = torch.cat([input_ids, next_tokens] , dim=-1 )
lowercase__ = model(UpperCamelCase )['''last_hidden_state''']
lowercase__ = model(UpperCamelCase , past_key_values=UpperCamelCase )['''last_hidden_state''']
# select random slice
lowercase__ = ids_tensor((1,) , output_from_past.shape[-1] ).item()
lowercase__ = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach()
lowercase__ = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
assert torch.allclose(UpperCamelCase , UpperCamelCase , atol=1E-3 )
def UpperCamelCase__ (self : Optional[Any] ):
'''simple docstring'''
lowercase__ = self.prepare_config_and_inputs()
lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ = config_and_inputs
lowercase__ = {'''input_ids''': input_ids, '''attention_mask''': attention_mask}
return config, inputs_dict
@require_torch
class __lowerCAmelCase (lowercase_ , lowercase_ , lowercase_ , unittest.TestCase ):
'''simple docstring'''
lowerCAmelCase__ : List[str] = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else ()
lowerCAmelCase__ : List[Any] = (TrOCRForCausalLM,) if is_torch_available() else ()
lowerCAmelCase__ : Optional[Any] = {"""text-generation""": TrOCRForCausalLM} if is_torch_available() else {}
lowerCAmelCase__ : Optional[Any] = True
lowerCAmelCase__ : List[str] = False
def UpperCamelCase__ (self : Any ):
'''simple docstring'''
lowercase__ = TrOCRStandaloneDecoderModelTester(self , is_training=UpperCamelCase )
lowercase__ = ConfigTester(self , config_class=UpperCamelCase )
def UpperCamelCase__ (self : List[str] ):
'''simple docstring'''
pass
def UpperCamelCase__ (self : Optional[int] ):
'''simple docstring'''
pass
def UpperCamelCase__ (self : Any ):
'''simple docstring'''
pass
def UpperCamelCase__ (self : Any ):
'''simple docstring'''
self.config_tester.run_common_tests()
def UpperCamelCase__ (self : Union[str, Any] ):
'''simple docstring'''
lowercase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_decoder_model_past(*UpperCamelCase )
def UpperCamelCase__ (self : Optional[int] ):
'''simple docstring'''
return
@unittest.skip('''The model doesn\'t support left padding''' ) # and it's not used enough to be worth fixing :)
def UpperCamelCase__ (self : List[str] ):
'''simple docstring'''
pass
| 2 | 0 |
"""simple docstring"""
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
convert_to_rgb,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
OPENAI_CLIP_MEAN,
OPENAI_CLIP_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__)
if is_vision_available():
import PIL
class _UpperCAmelCase ( lowercase_ ):
'''simple docstring'''
lowerCamelCase__ =["""pixel_values"""]
def __init__(self , a_ = True , a_ = None , a_ = PILImageResampling.BICUBIC , a_ = True , a_ = None , a_ = True , a_ = 1 / 2_55 , a_ = True , a_ = None , a_ = None , a_ = True , **a_ , ):
'''simple docstring'''
super().__init__(**a_ )
__snake_case : str = size if size is not None else {'''shortest_edge''': 2_24}
__snake_case : int = get_size_dict(a_ , default_to_square=a_ )
__snake_case : Optional[Any] = crop_size if crop_size is not None else {'''height''': 2_24, '''width''': 2_24}
__snake_case : Union[str, Any] = get_size_dict(a_ , default_to_square=a_ , param_name='''crop_size''' )
__snake_case : Optional[int] = do_resize
__snake_case : List[str] = size
__snake_case : Optional[int] = resample
__snake_case : Dict = do_center_crop
__snake_case : Union[str, Any] = crop_size
__snake_case : str = do_rescale
__snake_case : Union[str, Any] = rescale_factor
__snake_case : List[Any] = do_normalize
__snake_case : Any = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
__snake_case : Optional[int] = image_std if image_std is not None else OPENAI_CLIP_STD
__snake_case : Optional[int] = do_convert_rgb
def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ = PILImageResampling.BICUBIC , a_ = None , **a_ , ):
'''simple docstring'''
__snake_case : Dict = get_size_dict(a_ , default_to_square=a_ )
if "shortest_edge" not in size:
raise ValueError(f"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" )
__snake_case : Dict = get_resize_output_image_size(a_ , size=size['''shortest_edge'''] , default_to_square=a_ )
return resize(a_ , size=a_ , resample=a_ , data_format=a_ , **a_ )
def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ = None , **a_ , ):
'''simple docstring'''
__snake_case : str = get_size_dict(a_ )
if "height" not in size or "width" not in size:
raise ValueError(f"""The `size` parameter must contain the keys (height, width). Got {size.keys()}""" )
return center_crop(a_ , size=(size['''height'''], size['''width''']) , data_format=a_ , **a_ )
def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ = None , **a_ , ):
'''simple docstring'''
return rescale(a_ , scale=a_ , data_format=a_ , **a_ )
def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ = None , **a_ , ):
'''simple docstring'''
return normalize(a_ , mean=a_ , std=a_ , data_format=a_ , **a_ )
def SCREAMING_SNAKE_CASE (self , a_ , a_ = None , a_ = None , a_ = None , a_ = None , a_ = None , a_ = None , a_ = None , a_ = None , a_ = None , a_ = None , a_ = None , a_ = None , a_ = ChannelDimension.FIRST , **a_ , ):
'''simple docstring'''
__snake_case : List[Any] = do_resize if do_resize is not None else self.do_resize
__snake_case : Optional[int] = size if size is not None else self.size
__snake_case : Optional[int] = get_size_dict(a_ , param_name='''size''' , default_to_square=a_ )
__snake_case : List[str] = resample if resample is not None else self.resample
__snake_case : int = do_center_crop if do_center_crop is not None else self.do_center_crop
__snake_case : Any = crop_size if crop_size is not None else self.crop_size
__snake_case : Tuple = get_size_dict(a_ , param_name='''crop_size''' , default_to_square=a_ )
__snake_case : int = do_rescale if do_rescale is not None else self.do_rescale
__snake_case : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor
__snake_case : Optional[Any] = do_normalize if do_normalize is not None else self.do_normalize
__snake_case : Union[str, Any] = image_mean if image_mean is not None else self.image_mean
__snake_case : Union[str, Any] = image_std if image_std is not None else self.image_std
__snake_case : Any = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
__snake_case : Dict = make_list_of_images(a_ )
if not valid_images(a_ ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
if do_resize and size is None:
raise ValueError('''Size must be specified if do_resize is True.''' )
if do_center_crop and crop_size is None:
raise ValueError('''Crop size must be specified if do_center_crop is True.''' )
if do_rescale and rescale_factor is None:
raise ValueError('''Rescale factor must be specified if do_rescale is True.''' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('''Image mean and std must be specified if do_normalize is True.''' )
# PIL RGBA images are converted to RGB
if do_convert_rgb:
__snake_case : Any = [convert_to_rgb(a_ ) for image in images]
# All transformations expect numpy arrays.
__snake_case : str = [to_numpy_array(a_ ) for image in images]
if do_resize:
__snake_case : Dict = [self.resize(image=a_ , size=a_ , resample=a_ ) for image in images]
if do_center_crop:
__snake_case : Tuple = [self.center_crop(image=a_ , size=a_ ) for image in images]
if do_rescale:
__snake_case : Any = [self.rescale(image=a_ , scale=a_ ) for image in images]
if do_normalize:
__snake_case : int = [self.normalize(image=a_ , mean=a_ , std=a_ ) for image in images]
__snake_case : List[Any] = [to_channel_dimension_format(a_ , a_ ) for image in images]
__snake_case : str = {'''pixel_values''': images}
return BatchFeature(data=a_ , tensor_type=a_ )
| 102 |
'''simple docstring'''
def _SCREAMING_SNAKE_CASE (A ) -> int:
"""simple docstring"""
if not isinstance(A , A ):
raise TypeError('''only integers accepted as input''' )
else:
lowercase__ = str(abs(A ) )
lowercase__ = [list(A ) for char in range(len(A ) )]
for index in range(len(A ) ):
num_transpositions[index].pop(A )
return max(
int(''''''.join(list(A ) ) ) for transposition in num_transpositions )
if __name__ == "__main__":
__import__('doctest').testmod()
| 2 | 0 |
from dataclasses import dataclass
from typing import List, Optional, Union
import numpy as np
import PIL
import torch
from transformers import CLIPImageProcessor, CLIPVisionModel
from ...models import PriorTransformer
from ...pipelines import DiffusionPipeline
from ...schedulers import HeunDiscreteScheduler
from ...utils import (
BaseOutput,
is_accelerate_available,
logging,
randn_tensor,
replace_example_docstring,
)
from .renderer import ShapERenderer
A_ :int = logging.get_logger(__name__) # pylint: disable=invalid-name
A_ :Dict = '\n Examples:\n ```py\n >>> from PIL import Image\n >>> import torch\n >>> from diffusers import DiffusionPipeline\n >>> from diffusers.utils import export_to_gif, load_image\n\n >>> device = torch.device("cuda" if torch.cuda.is_available() else "cpu")\n\n >>> repo = "openai/shap-e-img2img"\n >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16)\n >>> pipe = pipe.to(device)\n\n >>> guidance_scale = 3.0\n >>> image_url = "https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png"\n >>> image = load_image(image_url).convert("RGB")\n\n >>> images = pipe(\n ... image,\n ... guidance_scale=guidance_scale,\n ... num_inference_steps=64,\n ... frame_size=256,\n ... ).images\n\n >>> gif_path = export_to_gif(images[0], "corgi_3d.gif")\n ```\n'
@dataclass
class __A ( lowercase_ ):
"""simple docstring"""
UpperCamelCase__ : Union[PIL.Image.Image, np.ndarray]
class __A ( lowercase_ ):
"""simple docstring"""
def __init__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , ):
"""simple docstring"""
super().__init__()
self.register_modules(
prior=lowerCamelCase__ , image_encoder=lowerCamelCase__ , image_processor=lowerCamelCase__ , scheduler=lowerCamelCase__ , renderer=lowerCamelCase__ , )
def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
if latents is None:
__UpperCamelCase : Tuple =randn_tensor(lowerCamelCase__ , generator=lowerCamelCase__ , device=lowerCamelCase__ , dtype=lowerCamelCase__ )
else:
if latents.shape != shape:
raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {shape}' )
__UpperCamelCase : List[str] =latents.to(lowerCamelCase__ )
__UpperCamelCase : Dict =latents * scheduler.init_noise_sigma
return latents
def __lowercase ( self , lowerCamelCase__=0 ):
"""simple docstring"""
if is_accelerate_available():
from accelerate import cpu_offload
else:
raise ImportError('Please install accelerate via `pip install accelerate`' )
__UpperCamelCase : Dict =torch.device(f'cuda:{gpu_id}' )
__UpperCamelCase : int =[self.image_encoder, self.prior]
for cpu_offloaded_model in models:
if cpu_offloaded_model is not None:
cpu_offload(lowerCamelCase__ , lowerCamelCase__ )
@property
def __lowercase ( self ):
"""simple docstring"""
if self.device != torch.device('meta' ) or not hasattr(self.image_encoder , '_hf_hook' ):
return self.device
for module in self.image_encoder.modules():
if (
hasattr(lowerCamelCase__ , '_hf_hook' )
and hasattr(module._hf_hook , 'execution_device' )
and module._hf_hook.execution_device is not None
):
return torch.device(module._hf_hook.execution_device )
return self.device
def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , ):
"""simple docstring"""
if isinstance(lowerCamelCase__ , lowerCamelCase__ ) and isinstance(image[0] , torch.Tensor ):
__UpperCamelCase : Optional[Any] =torch.cat(lowerCamelCase__ , axis=0 ) if image[0].ndim == 4 else torch.stack(lowerCamelCase__ , axis=0 )
if not isinstance(lowerCamelCase__ , torch.Tensor ):
__UpperCamelCase : List[Any] =self.image_processor(lowerCamelCase__ , return_tensors='pt' ).pixel_values[0].unsqueeze(0 )
__UpperCamelCase : Any =image.to(dtype=self.image_encoder.dtype , device=lowerCamelCase__ )
__UpperCamelCase : List[str] =self.image_encoder(lowerCamelCase__ )['last_hidden_state']
__UpperCamelCase : Any =image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256
__UpperCamelCase : Dict =image_embeds.repeat_interleave(lowerCamelCase__ , dim=0 )
if do_classifier_free_guidance:
__UpperCamelCase : Union[str, Any] =torch.zeros_like(lowerCamelCase__ )
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
__UpperCamelCase : List[Any] =torch.cat([negative_image_embeds, image_embeds] )
return image_embeds
@torch.no_grad()
@replace_example_docstring(lowerCamelCase__ )
def __call__( self , lowerCamelCase__ , lowerCamelCase__ = 1 , lowerCamelCase__ = 25 , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = 4.0 , lowerCamelCase__ = 64 , lowerCamelCase__ = "pil" , lowerCamelCase__ = True , ):
"""simple docstring"""
if isinstance(lowerCamelCase__ , PIL.Image.Image ):
__UpperCamelCase : Any =1
elif isinstance(lowerCamelCase__ , torch.Tensor ):
__UpperCamelCase : str =image.shape[0]
elif isinstance(lowerCamelCase__ , lowerCamelCase__ ) and isinstance(image[0] , (torch.Tensor, PIL.Image.Image) ):
__UpperCamelCase : Union[str, Any] =len(lowerCamelCase__ )
else:
raise ValueError(
f'`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(lowerCamelCase__ )}' )
__UpperCamelCase : Tuple =self._execution_device
__UpperCamelCase : List[str] =batch_size * num_images_per_prompt
__UpperCamelCase : Optional[Any] =guidance_scale > 1.0
__UpperCamelCase : List[Any] =self._encode_image(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
# prior
self.scheduler.set_timesteps(lowerCamelCase__ , device=lowerCamelCase__ )
__UpperCamelCase : List[str] =self.scheduler.timesteps
__UpperCamelCase : Optional[int] =self.prior.config.num_embeddings
__UpperCamelCase : Tuple =self.prior.config.embedding_dim
__UpperCamelCase : Optional[Any] =self.prepare_latents(
(batch_size, num_embeddings * embedding_dim) , image_embeds.dtype , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , self.scheduler , )
# YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim
__UpperCamelCase : Tuple =latents.reshape(latents.shape[0] , lowerCamelCase__ , lowerCamelCase__ )
for i, t in enumerate(self.progress_bar(lowerCamelCase__ ) ):
# expand the latents if we are doing classifier free guidance
__UpperCamelCase : List[str] =torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents
__UpperCamelCase : List[str] =self.scheduler.scale_model_input(lowerCamelCase__ , lowerCamelCase__ )
__UpperCamelCase : int =self.prior(
lowerCamelCase__ , timestep=lowerCamelCase__ , proj_embedding=lowerCamelCase__ , ).predicted_image_embedding
# remove the variance
__UpperCamelCase , __UpperCamelCase : Tuple =noise_pred.split(
scaled_model_input.shape[2] , dim=2 ) # batch_size, num_embeddings, embedding_dim
if do_classifier_free_guidance is not None:
__UpperCamelCase , __UpperCamelCase : List[str] =noise_pred.chunk(2 )
__UpperCamelCase : Optional[Any] =noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond)
__UpperCamelCase : Tuple =self.scheduler.step(
lowerCamelCase__ , timestep=lowerCamelCase__ , sample=lowerCamelCase__ , ).prev_sample
if output_type == "latent":
return ShapEPipelineOutput(images=lowerCamelCase__ )
__UpperCamelCase : List[Any] =[]
for i, latent in enumerate(lowerCamelCase__ ):
print()
__UpperCamelCase : int =self.renderer.decode(
latent[None, :] , lowerCamelCase__ , size=lowerCamelCase__ , ray_batch_size=4096 , n_coarse_samples=64 , n_fine_samples=128 , )
images.append(lowerCamelCase__ )
__UpperCamelCase : Tuple =torch.stack(lowerCamelCase__ )
if output_type not in ["np", "pil"]:
raise ValueError(f'Only the output types `pil` and `np` are supported not output_type={output_type}' )
__UpperCamelCase : str =images.cpu().numpy()
if output_type == "pil":
__UpperCamelCase : Optional[int] =[self.numpy_to_pil(lowerCamelCase__ ) for image in images]
# Offload last model to CPU
if hasattr(self , 'final_offload_hook' ) and self.final_offload_hook is not None:
self.final_offload_hook.offload()
if not return_dict:
return (images,)
return ShapEPipelineOutput(images=lowerCamelCase__ )
| 71 |
'''simple docstring'''
import dataclasses
import re
import string
from typing import Any, Dict, Iterator, List, Mapping, Optional, Sequence, Tuple
import numpy as np
from . import residue_constants
lowerCamelCase : str = Mapping[str, np.ndarray]
lowerCamelCase : List[Any] = Mapping[str, Any] # Is a nested dict.
lowerCamelCase : Any = 0.0_1
@dataclasses.dataclass(frozen=lowercase_ )
class __lowerCAmelCase :
'''simple docstring'''
lowerCAmelCase__ : np.ndarray # [num_res, num_atom_type, 3]
# Amino-acid type for each residue represented as an integer between 0 and
# 20, where 20 is 'X'.
lowerCAmelCase__ : np.ndarray # [num_res]
# Binary float mask to indicate presence of a particular atom. 1.0 if an atom
# is present and 0.0 if not. This should be used for loss masking.
lowerCAmelCase__ : np.ndarray # [num_res, num_atom_type]
# Residue index as used in PDB. It is not necessarily continuous or 0-indexed.
lowerCAmelCase__ : np.ndarray # [num_res]
# B-factors, or temperature factors, of each residue (in sq. angstroms units),
# representing the displacement of the residue from its ground truth mean
# value.
lowerCAmelCase__ : np.ndarray # [num_res, num_atom_type]
# Chain indices for multi-chain predictions
lowerCAmelCase__ : Optional[np.ndarray] = None
# Optional remark about the protein. Included as a comment in output PDB
# files
lowerCAmelCase__ : Optional[str] = None
# Templates used to generate this protein (prediction-only)
lowerCAmelCase__ : Optional[Sequence[str]] = None
# Chain corresponding to each parent
lowerCAmelCase__ : Optional[Sequence[int]] = None
def _SCREAMING_SNAKE_CASE (A ) -> Protein:
"""simple docstring"""
lowercase__ = R'''(\[[A-Z]+\]\n)'''
lowercase__ = [tag.strip() for tag in re.split(A , A ) if len(A ) > 0]
lowercase__ = zip(tags[0::2] , [l.split('''\n''' ) for l in tags[1::2]] )
lowercase__ = ["N", "CA", "C"]
lowercase__ = None
lowercase__ = None
lowercase__ = None
for g in groups:
if "[PRIMARY]" == g[0]:
lowercase__ = g[1][0].strip()
for i in range(len(A ) ):
if seq[i] not in residue_constants.restypes:
lowercase__ = '''X''' # FIXME: strings are immutable
lowercase__ = np.array(
[residue_constants.restype_order.get(A , residue_constants.restype_num ) for res_symbol in seq] )
elif "[TERTIARY]" == g[0]:
lowercase__ = []
for axis in range(3 ):
tertiary.append(list(map(A , g[1][axis].split() ) ) )
lowercase__ = np.array(A )
lowercase__ = np.zeros((len(tertiary[0] ) // 3, residue_constants.atom_type_num, 3) ).astype(np.floataa )
for i, atom in enumerate(A ):
lowercase__ = np.transpose(tertiary_np[:, i::3] )
atom_positions *= PICO_TO_ANGSTROM
elif "[MASK]" == g[0]:
lowercase__ = np.array(list(map({'''-''': 0, '''+''': 1}.get , g[1][0].strip() ) ) )
lowercase__ = np.zeros(
(
len(A ),
residue_constants.atom_type_num,
) ).astype(np.floataa )
for i, atom in enumerate(A ):
lowercase__ = 1
atom_mask *= mask[..., None]
assert aatype is not None
return Protein(
atom_positions=A , atom_mask=A , aatype=A , residue_index=np.arange(len(A ) ) , b_factors=A , )
def _SCREAMING_SNAKE_CASE (A , A = 0 ) -> List[str]:
"""simple docstring"""
lowercase__ = []
lowercase__ = prot.remark
if remark is not None:
pdb_headers.append(f"REMARK {remark}" )
lowercase__ = prot.parents
lowercase__ = prot.parents_chain_index
if parents is not None and parents_chain_index is not None:
lowercase__ = [p for i, p in zip(A , A ) if i == chain_id]
if parents is None or len(A ) == 0:
lowercase__ = ['''N/A''']
pdb_headers.append(f"PARENT {' '.join(A )}" )
return pdb_headers
def _SCREAMING_SNAKE_CASE (A , A ) -> str:
"""simple docstring"""
lowercase__ = []
lowercase__ = pdb_str.split('''\n''' )
lowercase__ = prot.remark
if remark is not None:
out_pdb_lines.append(f"REMARK {remark}" )
lowercase__ = 42
if prot.parents is not None and len(prot.parents ) > 0:
lowercase__ = []
if prot.parents_chain_index is not None:
lowercase__ = {}
for p, i in zip(prot.parents , prot.parents_chain_index ):
parent_dict.setdefault(str(A ) , [] )
parent_dict[str(A )].append(A )
lowercase__ = max([int(A ) for chain_idx in parent_dict] )
for i in range(max_idx + 1 ):
lowercase__ = parent_dict.get(str(A ) , ['''N/A'''] )
parents_per_chain.append(A )
else:
parents_per_chain.append(list(prot.parents ) )
else:
lowercase__ = [['''N/A''']]
def make_parent_line(A ) -> str:
return f"PARENT {' '.join(A )}"
out_pdb_lines.append(make_parent_line(parents_per_chain[0] ) )
lowercase__ = 0
for i, l in enumerate(A ):
if "PARENT" not in l and "REMARK" not in l:
out_pdb_lines.append(A )
if "TER" in l and "END" not in lines[i + 1]:
chain_counter += 1
if not chain_counter >= len(A ):
lowercase__ = parents_per_chain[chain_counter]
else:
lowercase__ = ['''N/A''']
out_pdb_lines.append(make_parent_line(A ) )
return "\n".join(A )
def _SCREAMING_SNAKE_CASE (A ) -> str:
"""simple docstring"""
lowercase__ = residue_constants.restypes + ['''X''']
def res_atoa(A ) -> str:
return residue_constants.restype_atoa.get(restypes[r] , '''UNK''' )
lowercase__ = residue_constants.atom_types
lowercase__ = []
lowercase__ = prot.atom_mask
lowercase__ = prot.aatype
lowercase__ = prot.atom_positions
lowercase__ = prot.residue_index.astype(np.intaa )
lowercase__ = prot.b_factors
lowercase__ = prot.chain_index
if np.any(aatype > residue_constants.restype_num ):
raise ValueError('''Invalid aatypes.''' )
lowercase__ = get_pdb_headers(A )
if len(A ) > 0:
pdb_lines.extend(A )
lowercase__ = aatype.shape[0]
lowercase__ = 1
lowercase__ = 0
lowercase__ = string.ascii_uppercase
lowercase__ = None
# Add all atom sites.
for i in range(A ):
lowercase__ = res_atoa(aatype[i] )
for atom_name, pos, mask, b_factor in zip(A , atom_positions[i] , atom_mask[i] , b_factors[i] ):
if mask < 0.5:
continue
lowercase__ = '''ATOM'''
lowercase__ = atom_name if len(A ) == 4 else f" {atom_name}"
lowercase__ = ''''''
lowercase__ = ''''''
lowercase__ = 1.00
lowercase__ = atom_name[0] # Protein supports only C, N, O, S, this works.
lowercase__ = ''''''
lowercase__ = '''A'''
if chain_index is not None:
lowercase__ = chain_tags[chain_index[i]]
# PDB is a columnar format, every space matters here!
lowercase__ = (
f"{record_type:<6}{atom_index:>5} {name:<4}{alt_loc:>1}"
f"{res_name_a:>3} {chain_tag:>1}"
f"{residue_index[i]:>4}{insertion_code:>1} "
f"{pos[0]:>8.3f}{pos[1]:>8.3f}{pos[2]:>8.3f}"
f"{occupancy:>6.2f}{b_factor:>6.2f} "
f"{element:>2}{charge:>2}"
)
pdb_lines.append(A )
atom_index += 1
lowercase__ = i == n - 1
if chain_index is not None:
if i != n - 1 and chain_index[i + 1] != prev_chain_index:
lowercase__ = True
lowercase__ = chain_index[i + 1]
if should_terminate:
# Close the chain.
lowercase__ = '''TER'''
lowercase__ = (
f"{chain_end:<6}{atom_index:>5} {res_atoa(aatype[i] ):>3} {chain_tag:>1}{residue_index[i]:>4}"
)
pdb_lines.append(A )
atom_index += 1
if i != n - 1:
# "prev" is a misnomer here. This happens at the beginning of
# each new chain.
pdb_lines.extend(get_pdb_headers(A , A ) )
pdb_lines.append('''END''' )
pdb_lines.append('''''' )
return "\n".join(A )
def _SCREAMING_SNAKE_CASE (A ) -> np.ndarray:
"""simple docstring"""
return residue_constants.STANDARD_ATOM_MASK[prot.aatype]
def _SCREAMING_SNAKE_CASE (A , A , A = None , A = None , A = None , A = None , A = None , ) -> Protein:
"""simple docstring"""
return Protein(
aatype=features['''aatype'''] , atom_positions=result['''final_atom_positions'''] , atom_mask=result['''final_atom_mask'''] , residue_index=features['''residue_index'''] + 1 , b_factors=b_factors if b_factors is not None else np.zeros_like(result['''final_atom_mask'''] ) , chain_index=A , remark=A , parents=A , parents_chain_index=A , )
| 2 | 0 |
'''simple docstring'''
import argparse
from pathlib import Path
from typing import Dict, OrderedDict, Tuple
import torch
from audiocraft.models import MusicGen
from transformers import (
AutoFeatureExtractor,
AutoTokenizer,
EncodecModel,
MusicgenDecoderConfig,
MusicgenForConditionalGeneration,
MusicgenProcessor,
TaEncoderModel,
)
from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM
from transformers.utils import logging
logging.set_verbosity_info()
_SCREAMING_SNAKE_CASE : Tuple = logging.get_logger(__name__)
_SCREAMING_SNAKE_CASE : List[Any] = ['model.decoder.embed_positions.weights']
def UpperCamelCase_( snake_case : List[str] ):
'''simple docstring'''
if "emb" in name:
snake_case_ = name.replace("emb" , "model.decoder.embed_tokens" )
if "transformer" in name:
snake_case_ = name.replace("transformer" , "model.decoder" )
if "cross_attention" in name:
snake_case_ = name.replace("cross_attention" , "encoder_attn" )
if "linear1" in name:
snake_case_ = name.replace("linear1" , "fc1" )
if "linear2" in name:
snake_case_ = name.replace("linear2" , "fc2" )
if "norm1" in name:
snake_case_ = name.replace("norm1" , "self_attn_layer_norm" )
if "norm_cross" in name:
snake_case_ = name.replace("norm_cross" , "encoder_attn_layer_norm" )
if "norm2" in name:
snake_case_ = name.replace("norm2" , "final_layer_norm" )
if "out_norm" in name:
snake_case_ = name.replace("out_norm" , "model.decoder.layer_norm" )
if "linears" in name:
snake_case_ = name.replace("linears" , "lm_heads" )
if "condition_provider.conditioners.description.output_proj" in name:
snake_case_ = name.replace("condition_provider.conditioners.description.output_proj" , "enc_to_dec_proj" )
return name
def UpperCamelCase_( snake_case : Union[str, Any] , snake_case : Union[str, Any] ):
'''simple docstring'''
snake_case_ = list(state_dict.keys() )
snake_case_ = {}
for key in keys:
snake_case_ = state_dict.pop(snake_case )
snake_case_ = rename_keys(snake_case )
if "in_proj_weight" in key:
# split fused qkv proj
snake_case_ = val[:hidden_size, :]
snake_case_ = val[hidden_size : 2 * hidden_size, :]
snake_case_ = val[-hidden_size:, :]
elif "enc_to_dec_proj" in key:
snake_case_ = val
else:
snake_case_ = val
return state_dict, enc_dec_proj_state_dict
def UpperCamelCase_( snake_case : List[Any] ):
'''simple docstring'''
if checkpoint == "small":
# default config values
snake_case_ = 1_0_2_4
snake_case_ = 2_4
snake_case_ = 1_6
elif checkpoint == "medium":
snake_case_ = 1_5_3_6
snake_case_ = 4_8
snake_case_ = 2_4
elif checkpoint == "large":
snake_case_ = 2_0_4_8
snake_case_ = 4_8
snake_case_ = 3_2
else:
raise ValueError(f'Checkpoint should be one of `[\'small\', \'medium\', \'large\']`, got {checkpoint}.' )
snake_case_ = MusicgenDecoderConfig(
hidden_size=snake_case , ffn_dim=hidden_size * 4 , num_hidden_layers=snake_case , num_attention_heads=snake_case , )
return config
@torch.no_grad()
def UpperCamelCase_( snake_case : List[Any] , snake_case : int=None , snake_case : str=None , snake_case : Optional[Any]="cpu" ):
'''simple docstring'''
snake_case_ = MusicGen.get_pretrained(snake_case , device=snake_case )
snake_case_ = decoder_config_from_checkpoint(snake_case )
snake_case_ = fairseq_model.lm.state_dict()
snake_case_ , snake_case_ = rename_state_dict(
snake_case , hidden_size=decoder_config.hidden_size )
snake_case_ = TaEncoderModel.from_pretrained("t5-base" )
snake_case_ = EncodecModel.from_pretrained("facebook/encodec_32khz" )
snake_case_ = MusicgenForCausalLM(snake_case ).eval()
# load all decoder weights - expect that we'll be missing embeddings and enc-dec projection
snake_case_ , snake_case_ = decoder.load_state_dict(snake_case , strict=snake_case )
for key in missing_keys.copy():
if key.startswith(("text_encoder", "audio_encoder") ) or key in EXPECTED_MISSING_KEYS:
missing_keys.remove(snake_case )
if len(snake_case ) > 0:
raise ValueError(f'Missing key(s) in state_dict: {missing_keys}' )
if len(snake_case ) > 0:
raise ValueError(f'Unexpected key(s) in state_dict: {unexpected_keys}' )
# init the composite model
snake_case_ = MusicgenForConditionalGeneration(text_encoder=snake_case , audio_encoder=snake_case , decoder=snake_case )
# load the pre-trained enc-dec projection (from the decoder state dict)
model.enc_to_dec_proj.load_state_dict(snake_case )
# check we can do a forward pass
snake_case_ = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 )
snake_case_ = input_ids.reshape(2 * 4 , -1 )
with torch.no_grad():
snake_case_ = model(input_ids=snake_case , decoder_input_ids=snake_case ).logits
if logits.shape != (8, 1, 2_0_4_8):
raise ValueError("Incorrect shape for logits" )
# now construct the processor
snake_case_ = AutoTokenizer.from_pretrained("t5-base" )
snake_case_ = AutoFeatureExtractor.from_pretrained("facebook/encodec_32khz" , padding_side="left" )
snake_case_ = MusicgenProcessor(feature_extractor=snake_case , tokenizer=snake_case )
# set the appropriate bos/pad token ids
snake_case_ = 2_0_4_8
snake_case_ = 2_0_4_8
# set other default generation config params
snake_case_ = int(3_0 * audio_encoder.config.frame_rate )
snake_case_ = True
snake_case_ = 3.0
if pytorch_dump_folder is not None:
Path(snake_case ).mkdir(exist_ok=snake_case )
logger.info(f'Saving model {checkpoint} to {pytorch_dump_folder}' )
model.save_pretrained(snake_case )
processor.save_pretrained(snake_case )
if repo_id:
logger.info(f'Pushing model {checkpoint} to {repo_id}' )
model.push_to_hub(snake_case )
processor.push_to_hub(snake_case )
if __name__ == "__main__":
_SCREAMING_SNAKE_CASE : Union[str, Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--checkpoint",
default="small",
type=str,
help="Checkpoint size of the MusicGen model you\'d like to convert. Can be one of: `[\'small\', \'medium\', \'large\']`.",
)
parser.add_argument(
"--pytorch_dump_folder",
required=True,
default=None,
type=str,
help="Path to the output PyTorch model directory.",
)
parser.add_argument(
"--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub."
)
parser.add_argument(
"--device", default="cpu", type=str, help="Torch device to run the conversion, either cpu or cuda."
)
_SCREAMING_SNAKE_CASE : List[str] = parser.parse_args()
convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
| 85 |
'''simple docstring'''
from __future__ import annotations
def _SCREAMING_SNAKE_CASE (A , A ) -> list[list[int]]:
"""simple docstring"""
lowercase__ = []
create_all_state(1 , A , A , [] , A )
return result
def _SCREAMING_SNAKE_CASE (A , A , A , A , A , ) -> None:
"""simple docstring"""
if level == 0:
total_list.append(current_list[:] )
return
for i in range(A , total_number - level + 2 ):
current_list.append(A )
create_all_state(i + 1 , A , level - 1 , A , A )
current_list.pop()
def _SCREAMING_SNAKE_CASE (A ) -> None:
"""simple docstring"""
for i in total_list:
print(*A )
if __name__ == "__main__":
lowerCamelCase : Tuple = 4
lowerCamelCase : Union[str, Any] = 2
lowerCamelCase : Dict = generate_all_combinations(n, k)
print_all_state(total_list)
| 2 | 0 |
import unittest
from datasets import load_dataset
from transformers import BloomTokenizerFast
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class __lowerCAmelCase ( lowercase_ , unittest.TestCase ):
lowerCAmelCase__ = None
lowerCAmelCase__ = BloomTokenizerFast
lowerCAmelCase__ = BloomTokenizerFast
lowerCAmelCase__ = True
lowerCAmelCase__ = False
lowerCAmelCase__ = """tokenizer_file"""
lowerCAmelCase__ = {"""bos_token""": """<s>""", """eos_token""": """</s>""", """unk_token""": """<unk>""", """pad_token""": """<pad>"""}
def lowerCamelCase ( self ):
'''simple docstring'''
super().setUp()
__lowerCamelCase = BloomTokenizerFast.from_pretrained('''bigscience/tokenizer''' )
tokenizer.save_pretrained(self.tmpdirname )
def lowerCamelCase ( self , **__UpperCAmelCase ):
'''simple docstring'''
kwargs.update(self.special_tokens_map )
return BloomTokenizerFast.from_pretrained(self.tmpdirname , **__UpperCAmelCase )
def lowerCamelCase ( self ):
'''simple docstring'''
__lowerCamelCase = self.get_rust_tokenizer()
__lowerCamelCase = ['''The quick brown fox</s>''', '''jumps over the lazy dog</s>''']
__lowerCamelCase = [[2175, 23714, 73173, 144252, 2], [77, 132619, 3478, 368, 109586, 35433, 2]]
__lowerCamelCase = tokenizer.batch_encode_plus(__UpperCAmelCase )['''input_ids''']
self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase )
__lowerCamelCase = tokenizer.batch_decode(__UpperCAmelCase )
self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase )
def lowerCamelCase ( self , __UpperCAmelCase=6 ):
'''simple docstring'''
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ):
__lowerCamelCase = self.rust_tokenizer_class.from_pretrained(__UpperCAmelCase , **__UpperCAmelCase )
# tokenizer_r.pad_token = None # Hotfixing padding = None
# Simple input
__lowerCamelCase = '''This is a simple input'''
__lowerCamelCase = ['''This is a simple input 1''', '''This is a simple input 2''']
__lowerCamelCase = ('''This is a simple input''', '''This is a pair''')
__lowerCamelCase = [
('''This is a simple input 1''', '''This is a simple input 2'''),
('''This is a simple pair 1''', '''This is a simple pair 2'''),
]
# Simple input tests
try:
tokenizer_r.encode(__UpperCAmelCase , max_length=__UpperCAmelCase )
tokenizer_r.encode_plus(__UpperCAmelCase , max_length=__UpperCAmelCase )
tokenizer_r.batch_encode_plus(__UpperCAmelCase , max_length=__UpperCAmelCase )
tokenizer_r.encode(__UpperCAmelCase , max_length=__UpperCAmelCase )
tokenizer_r.batch_encode_plus(__UpperCAmelCase , max_length=__UpperCAmelCase )
except ValueError:
self.fail('''Bloom Tokenizer should be able to deal with padding''' )
__lowerCamelCase = None # Hotfixing padding = None
self.assertRaises(__UpperCAmelCase , tokenizer_r.encode , __UpperCAmelCase , max_length=__UpperCAmelCase , padding='''max_length''' )
# Simple input
self.assertRaises(__UpperCAmelCase , tokenizer_r.encode_plus , __UpperCAmelCase , max_length=__UpperCAmelCase , padding='''max_length''' )
# Simple input
self.assertRaises(
__UpperCAmelCase , tokenizer_r.batch_encode_plus , __UpperCAmelCase , max_length=__UpperCAmelCase , padding='''max_length''' , )
# Pair input
self.assertRaises(__UpperCAmelCase , tokenizer_r.encode , __UpperCAmelCase , max_length=__UpperCAmelCase , padding='''max_length''' )
# Pair input
self.assertRaises(__UpperCAmelCase , tokenizer_r.encode_plus , __UpperCAmelCase , max_length=__UpperCAmelCase , padding='''max_length''' )
# Pair input
self.assertRaises(
__UpperCAmelCase , tokenizer_r.batch_encode_plus , __UpperCAmelCase , max_length=__UpperCAmelCase , padding='''max_length''' , )
def lowerCamelCase ( self ):
'''simple docstring'''
__lowerCamelCase = self.get_rust_tokenizer()
__lowerCamelCase = load_dataset('''xnli''' , '''all_languages''' , split='''test''' , streaming=__UpperCAmelCase )
__lowerCamelCase = next(iter(__UpperCAmelCase ) )['''premise'''] # pick up one data
__lowerCamelCase = list(sample_data.values() )
__lowerCamelCase = list(map(tokenizer.encode , __UpperCAmelCase ) )
__lowerCamelCase = [tokenizer.decode(__UpperCAmelCase , clean_up_tokenization_spaces=__UpperCAmelCase ) for x in output_tokens]
self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase )
def lowerCamelCase ( self ):
'''simple docstring'''
self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map ) , 1 )
self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values() )[0] ) , 1 )
| 330 |
'''simple docstring'''
import os
from itertools import chain
from random import randrange, shuffle
import pytest
from .sola import PokerHand
lowerCamelCase : Optional[Any] = (
'4S 3H 2C 7S 5H',
'9D 8H 2C 6S 7H',
'2D 6D 9D TH 7D',
'TC 8C 2S JH 6C',
'JH 8S TH AH QH',
'TS KS 5S 9S AC',
'KD 6S 9D TH AD',
'KS 8D 4D 9S 4S', # pair
'8C 4S KH JS 4D', # pair
'QH 8H KD JH 8S', # pair
'KC 4H KS 2H 8D', # pair
'KD 4S KC 3H 8S', # pair
'AH 8S AS KC JH', # pair
'3H 4C 4H 3S 2H', # 2 pairs
'5S 5D 2C KH KH', # 2 pairs
'3C KH 5D 5S KH', # 2 pairs
'AS 3C KH AD KH', # 2 pairs
'7C 7S 3S 7H 5S', # 3 of a kind
'7C 7S KH 2H 7H', # 3 of a kind
'AC KH QH AH AS', # 3 of a kind
'2H 4D 3C AS 5S', # straight (low ace)
'3C 5C 4C 2C 6H', # straight
'6S 8S 7S 5H 9H', # straight
'JS QS 9H TS KH', # straight
'QC KH TS JS AH', # straight (high ace)
'8C 9C 5C 3C TC', # flush
'3S 8S 9S 5S KS', # flush
'4C 5C 9C 8C KC', # flush
'JH 8H AH KH QH', # flush
'3D 2H 3H 2C 2D', # full house
'2H 2C 3S 3H 3D', # full house
'KH KC 3S 3H 3D', # full house
'JC 6H JS JD JH', # 4 of a kind
'JC 7H JS JD JH', # 4 of a kind
'JC KH JS JD JH', # 4 of a kind
'2S AS 4S 5S 3S', # straight flush (low ace)
'2D 6D 3D 4D 5D', # straight flush
'5C 6C 3C 7C 4C', # straight flush
'JH 9H TH KH QH', # straight flush
'JH AH TH KH QH', # royal flush (high ace straight flush)
)
lowerCamelCase : Tuple = (
('2H 3H 4H 5H 6H', 'KS AS TS QS JS', 'Loss'),
('2H 3H 4H 5H 6H', 'AS AD AC AH JD', 'Win'),
('AS AH 2H AD AC', 'JS JD JC JH 3D', 'Win'),
('2S AH 2H AS AC', 'JS JD JC JH AD', 'Loss'),
('2S AH 2H AS AC', '2H 3H 5H 6H 7H', 'Win'),
('AS 3S 4S 8S 2S', '2H 3H 5H 6H 7H', 'Win'),
('2H 3H 5H 6H 7H', '2S 3H 4H 5S 6C', 'Win'),
('2S 3H 4H 5S 6C', '3D 4C 5H 6H 2S', 'Tie'),
('2S 3H 4H 5S 6C', 'AH AC 5H 6H AS', 'Win'),
('2S 2H 4H 5S 4C', 'AH AC 5H 6H AS', 'Loss'),
('2S 2H 4H 5S 4C', 'AH AC 5H 6H 7S', 'Win'),
('6S AD 7H 4S AS', 'AH AC 5H 6H 7S', 'Loss'),
('2S AH 4H 5S KC', 'AH AC 5H 6H 7S', 'Loss'),
('2S 3H 6H 7S 9C', '7H 3C TH 6H 9S', 'Loss'),
('4S 5H 6H TS AC', '3S 5H 6H TS AC', 'Win'),
('2S AH 4H 5S 6C', 'AD 4C 5H 6H 2C', 'Tie'),
('AS AH 3H AD AC', 'AS AH 2H AD AC', 'Win'),
('AH AC 5H 5C QS', 'AH AC 5H 5C KS', 'Loss'),
('AH AC 5H 5C QS', 'KH KC 5H 5C QS', 'Win'),
('7C 7S KH 2H 7H', '3C 3S AH 2H 3H', 'Win'),
('3C 3S AH 2H 3H', '7C 7S KH 2H 7H', 'Loss'),
('6H 5H 4H 3H 2H', '5H 4H 3H 2H AH', 'Win'),
('5H 4H 3H 2H AH', '5H 4H 3H 2H AH', 'Tie'),
('5H 4H 3H 2H AH', '6H 5H 4H 3H 2H', 'Loss'),
('AH AD KS KC AC', 'AH KD KH AC KC', 'Win'),
('2H 4D 3C AS 5S', '2H 4D 3C 6S 5S', 'Loss'),
('2H 3S 3C 3H 2S', '3S 3C 2S 2H 2D', 'Win'),
('4D 6D 5D 2D JH', '3S 8S 3H TC KH', 'Loss'),
('4S 6C 8S 3S 7S', 'AD KS 2D 7D 7C', 'Loss'),
('6S 4C 7H 8C 3H', '5H JC AH 9D 9C', 'Loss'),
('9D 9H JH TC QH', '3C 2S JS 5C 7H', 'Win'),
('2H TC 8S AD 9S', '4H TS 7H 2C 5C', 'Win'),
('9D 3S 2C 7S 7C', 'JC TD 3C TC 9H', 'Loss'),
)
lowerCamelCase : Dict = (
('2H 3H 4H 5H 6H', True),
('AS AH 2H AD AC', False),
('2H 3H 5H 6H 7H', True),
('KS AS TS QS JS', True),
('8H 9H QS JS TH', False),
('AS 3S 4S 8S 2S', True),
)
lowerCamelCase : Any = (
('2H 3H 4H 5H 6H', True),
('AS AH 2H AD AC', False),
('2H 3H 5H 6H 7H', False),
('KS AS TS QS JS', True),
('8H 9H QS JS TH', True),
)
lowerCamelCase : Tuple = (
('2H 4D 3C AS 5S', True, [5, 4, 3, 2, 14]),
('2H 5D 3C AS 5S', False, [14, 5, 5, 3, 2]),
('JH QD KC AS TS', False, [14, 13, 12, 11, 10]),
('9D 3S 2C 7S 7C', False, [9, 7, 7, 3, 2]),
)
lowerCamelCase : Optional[int] = (
('JH AH TH KH QH', 0),
('JH 9H TH KH QH', 0),
('JC KH JS JD JH', 7),
('KH KC 3S 3H 3D', 6),
('8C 9C 5C 3C TC', 0),
('JS QS 9H TS KH', 0),
('7C 7S KH 2H 7H', 3),
('3C KH 5D 5S KH', 2),
('QH 8H KD JH 8S', 1),
('2D 6D 9D TH 7D', 0),
)
lowerCamelCase : Dict = (
('JH AH TH KH QH', 23),
('JH 9H TH KH QH', 22),
('JC KH JS JD JH', 21),
('KH KC 3S 3H 3D', 20),
('8C 9C 5C 3C TC', 19),
('JS QS 9H TS KH', 18),
('7C 7S KH 2H 7H', 17),
('3C KH 5D 5S KH', 16),
('QH 8H KD JH 8S', 15),
('2D 6D 9D TH 7D', 14),
)
def _SCREAMING_SNAKE_CASE () -> Union[str, Any]:
"""simple docstring"""
lowercase__ ,lowercase__ = randrange(len(A ) ), randrange(len(A ) )
lowercase__ = ['''Loss''', '''Tie''', '''Win'''][(play >= oppo) + (play > oppo)]
lowercase__ ,lowercase__ = SORTED_HANDS[play], SORTED_HANDS[oppo]
return hand, other, expected
def _SCREAMING_SNAKE_CASE (A = 100 ) -> str:
"""simple docstring"""
return (generate_random_hand() for _ in range(A ))
@pytest.mark.parametrize('''hand, expected''' , A )
def _SCREAMING_SNAKE_CASE (A , A ) -> List[str]:
"""simple docstring"""
assert PokerHand(A )._is_flush() == expected
@pytest.mark.parametrize('''hand, expected''' , A )
def _SCREAMING_SNAKE_CASE (A , A ) -> Union[str, Any]:
"""simple docstring"""
assert PokerHand(A )._is_straight() == expected
@pytest.mark.parametrize('''hand, expected, card_values''' , A )
def _SCREAMING_SNAKE_CASE (A , A , A ) -> Any:
"""simple docstring"""
lowercase__ = PokerHand(A )
assert player._is_five_high_straight() == expected
assert player._card_values == card_values
@pytest.mark.parametrize('''hand, expected''' , A )
def _SCREAMING_SNAKE_CASE (A , A ) -> Tuple:
"""simple docstring"""
assert PokerHand(A )._is_same_kind() == expected
@pytest.mark.parametrize('''hand, expected''' , A )
def _SCREAMING_SNAKE_CASE (A , A ) -> Optional[Any]:
"""simple docstring"""
assert PokerHand(A )._hand_type == expected
@pytest.mark.parametrize('''hand, other, expected''' , A )
def _SCREAMING_SNAKE_CASE (A , A , A ) -> Union[str, Any]:
"""simple docstring"""
assert PokerHand(A ).compare_with(PokerHand(A ) ) == expected
@pytest.mark.parametrize('''hand, other, expected''' , generate_random_hands() )
def _SCREAMING_SNAKE_CASE (A , A , A ) -> Optional[Any]:
"""simple docstring"""
assert PokerHand(A ).compare_with(PokerHand(A ) ) == expected
def _SCREAMING_SNAKE_CASE () -> Tuple:
"""simple docstring"""
lowercase__ = [PokerHand(A ) for hand in SORTED_HANDS]
lowercase__ = poker_hands.copy()
shuffle(A )
lowercase__ = chain(sorted(A ) )
for index, hand in enumerate(A ):
assert hand == poker_hands[index]
def _SCREAMING_SNAKE_CASE () -> List[Any]:
"""simple docstring"""
lowercase__ = [PokerHand('''2D AC 3H 4H 5S''' ), PokerHand('''2S 3H 4H 5S 6C''' )]
pokerhands.sort(reverse=A )
assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C"
def _SCREAMING_SNAKE_CASE () -> int:
"""simple docstring"""
lowercase__ = PokerHand('''2C 4S AS 3D 5C''' )
lowercase__ = True
lowercase__ = [5, 4, 3, 2, 14]
for _ in range(10 ):
assert pokerhand._is_five_high_straight() == expected
assert pokerhand._card_values == expected_card_values
def _SCREAMING_SNAKE_CASE () -> Union[str, Any]:
"""simple docstring"""
lowercase__ = 0
lowercase__ = os.path.abspath(os.path.dirname(A ) )
lowercase__ = os.path.join(A , '''poker_hands.txt''' )
with open(A ) as file_hand:
for line in file_hand:
lowercase__ = line[:14].strip()
lowercase__ = line[15:].strip()
lowercase__ ,lowercase__ = PokerHand(A ), PokerHand(A )
lowercase__ = player.compare_with(A )
if output == "Win":
answer += 1
assert answer == 376
| 2 | 0 |
import numpy as np
from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey
def lowerCamelCase_ ( UpperCamelCase__ : Dict , UpperCamelCase__ : str , UpperCamelCase__ : List[str] , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : Tuple ) -> np.ndarray:
"""simple docstring"""
if (ksize % 2) == 0:
__lowerCamelCase = ksize + 1
__lowerCamelCase = np.zeros((ksize, ksize) , dtype=np.floataa )
# each value
for y in range(UpperCamelCase__ ):
for x in range(UpperCamelCase__ ):
# distance from center
__lowerCamelCase = x - ksize // 2
__lowerCamelCase = y - ksize // 2
# degree to radiant
__lowerCamelCase = theta / 180 * np.pi
__lowerCamelCase = np.cos(_theta )
__lowerCamelCase = np.sin(_theta )
# get kernel x
__lowerCamelCase = cos_theta * px + sin_theta * py
# get kernel y
__lowerCamelCase = -sin_theta * px + cos_theta * py
# fill kernel
__lowerCamelCase = np.exp(
-(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi )
return gabor
if __name__ == "__main__":
import doctest
doctest.testmod()
# read original image
__A = imread("../image_data/lena.jpg")
# turn image in gray scale value
__A = cvtColor(img, COLOR_BGR2GRAY)
# Apply multiple Kernel to detect edges
__A = np.zeros(gray.shape[:2])
for theta in [0, 30, 60, 90, 1_20, 1_50]:
__A = gabor_filter_kernel(10, 8, theta, 10, 0, 0)
out += filteraD(gray, CV_8UC3, kernel_aa)
__A = out / out.max() * 2_55
__A = out.astype(np.uinta)
imshow("Original", gray)
imshow("Gabor filter with 20x20 mask and 6 directions", out)
waitKey(0)
| 90 |
'''simple docstring'''
import argparse
import torch
from transformers import BertForMaskedLM
if __name__ == "__main__":
lowerCamelCase : List[str] = argparse.ArgumentParser(
description=(
'Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned'
' Distillation'
)
)
parser.add_argument('--model_type', default='bert', choices=['bert'])
parser.add_argument('--model_name', default='bert-base-uncased', type=str)
parser.add_argument('--dump_checkpoint', default='serialization_dir/tf_bert-base-uncased_0247911.pth', type=str)
parser.add_argument('--vocab_transform', action='store_true')
lowerCamelCase : str = parser.parse_args()
if args.model_type == "bert":
lowerCamelCase : List[Any] = BertForMaskedLM.from_pretrained(args.model_name)
lowerCamelCase : Any = 'bert'
else:
raise ValueError('args.model_type should be "bert".')
lowerCamelCase : int = model.state_dict()
lowerCamelCase : int = {}
for w in ["word_embeddings", "position_embeddings"]:
lowerCamelCase : Any = state_dict[f"""{prefix}.embeddings.{w}.weight"""]
for w in ["weight", "bias"]:
lowerCamelCase : Any = state_dict[f"""{prefix}.embeddings.LayerNorm.{w}"""]
lowerCamelCase : Tuple = 0
for teacher_idx in [0, 2, 4, 7, 9, 11]:
for w in ["weight", "bias"]:
lowerCamelCase : Dict = state_dict[
f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}"""
]
lowerCamelCase : Dict = state_dict[
f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}"""
]
lowerCamelCase : List[Any] = state_dict[
f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}"""
]
lowerCamelCase : Tuple = state_dict[
f"""{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}"""
]
lowerCamelCase : Optional[int] = state_dict[
f"""{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}"""
]
lowerCamelCase : Optional[Any] = state_dict[
f"""{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}"""
]
lowerCamelCase : Dict = state_dict[
f"""{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}"""
]
lowerCamelCase : Any = state_dict[
f"""{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}"""
]
std_idx += 1
lowerCamelCase : Optional[int] = state_dict['cls.predictions.decoder.weight']
lowerCamelCase : str = state_dict['cls.predictions.bias']
if args.vocab_transform:
for w in ["weight", "bias"]:
lowerCamelCase : str = state_dict[f"""cls.predictions.transform.dense.{w}"""]
lowerCamelCase : Any = state_dict[f"""cls.predictions.transform.LayerNorm.{w}"""]
print(f"""N layers selected for distillation: {std_idx}""")
print(f"""Number of params transferred for distillation: {len(compressed_sd.keys())}""")
print(f"""Save transferred checkpoint to {args.dump_checkpoint}.""")
torch.save(compressed_sd, args.dump_checkpoint)
| 2 | 0 |
import logging
import os
from dataclasses import dataclass
from enum import Enum
from typing import List, Optional, Union
from filelock import FileLock
from transformers import PreTrainedTokenizer, is_tf_available, is_torch_available
lowerCAmelCase_ = logging.getLogger(__name__)
@dataclass
class __lowerCAmelCase :
lowerCamelCase_ : str
lowerCamelCase_ : List[str]
lowerCamelCase_ : Optional[List[str]]
@dataclass
class __lowerCAmelCase :
lowerCamelCase_ : List[int]
lowerCamelCase_ : List[int]
lowerCamelCase_ : Optional[List[int]] = None
lowerCamelCase_ : Optional[List[int]] = None
class __lowerCAmelCase ( lowercase_ ):
lowerCamelCase_ : Dict = """train"""
lowerCamelCase_ : Any = """dev"""
lowerCamelCase_ : List[str] = """test"""
class __lowerCAmelCase :
@staticmethod
def lowerCamelCase (__magic_name__ , __magic_name__ ) -> Tuple:
'''simple docstring'''
raise NotImplementedError
@staticmethod
def lowerCamelCase (__magic_name__ ) -> Any:
'''simple docstring'''
raise NotImplementedError
@staticmethod
def lowerCamelCase (__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__=False , __magic_name__="[CLS]" , __magic_name__=1 , __magic_name__="[SEP]" , __magic_name__=False , __magic_name__=False , __magic_name__=0 , __magic_name__=0 , __magic_name__=-100 , __magic_name__=0 , __magic_name__=True , ) -> Optional[int]:
'''simple docstring'''
snake_case_ : int = {label: i for i, label in enumerate(__magic_name__ )}
snake_case_ : str = []
for ex_index, example in enumerate(__magic_name__ ):
if ex_index % 1_0000 == 0:
logger.info('''Writing example %d of %d''' , __magic_name__ , len(__magic_name__ ) )
snake_case_ : Optional[int] = []
snake_case_ : List[str] = []
for word, label in zip(example.words , example.labels ):
snake_case_ : Optional[int] = tokenizer.tokenize(__magic_name__ )
# bert-base-multilingual-cased sometimes output "nothing ([]) when calling tokenize with just a space.
if len(__magic_name__ ) > 0:
tokens.extend(__magic_name__ )
# Use the real label id for the first token of the word, and padding ids for the remaining tokens
label_ids.extend([label_map[label]] + [pad_token_label_id] * (len(__magic_name__ ) - 1) )
# Account for [CLS] and [SEP] with "- 2" and with "- 3" for RoBERTa.
snake_case_ : Dict = tokenizer.num_special_tokens_to_add()
if len(__magic_name__ ) > max_seq_length - special_tokens_count:
snake_case_ : Optional[Any] = tokens[: (max_seq_length - special_tokens_count)]
snake_case_ : List[Any] = label_ids[: (max_seq_length - special_tokens_count)]
# The convention in BERT is:
# (a) For sequence pairs:
# tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]
# type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1
# (b) For single sequences:
# tokens: [CLS] the dog is hairy . [SEP]
# type_ids: 0 0 0 0 0 0 0
#
# Where "type_ids" are used to indicate whether this is the first
# sequence or the second sequence. The embedding vectors for `type=0` and
# `type=1` were learned during pre-training and are added to the wordpiece
# embedding vector (and position vector). This is not *strictly* necessary
# since the [SEP] token unambiguously separates the sequences, but it makes
# it easier for the model to learn the concept of sequences.
#
# For classification tasks, the first vector (corresponding to [CLS]) is
# used as the "sentence vector". Note that this only makes sense because
# the entire model is fine-tuned.
tokens += [sep_token]
label_ids += [pad_token_label_id]
if sep_token_extra:
# roberta uses an extra separator b/w pairs of sentences
tokens += [sep_token]
label_ids += [pad_token_label_id]
snake_case_ : str = [sequence_a_segment_id] * len(__magic_name__ )
if cls_token_at_end:
tokens += [cls_token]
label_ids += [pad_token_label_id]
segment_ids += [cls_token_segment_id]
else:
snake_case_ : Tuple = [cls_token] + tokens
snake_case_ : int = [pad_token_label_id] + label_ids
snake_case_ : List[Any] = [cls_token_segment_id] + segment_ids
snake_case_ : Optional[Any] = tokenizer.convert_tokens_to_ids(__magic_name__ )
# The mask has 1 for real tokens and 0 for padding tokens. Only real
# tokens are attended to.
snake_case_ : Optional[Any] = [1 if mask_padding_with_zero else 0] * len(__magic_name__ )
# Zero-pad up to the sequence length.
snake_case_ : Union[str, Any] = max_seq_length - len(__magic_name__ )
if pad_on_left:
snake_case_ : int = ([pad_token] * padding_length) + input_ids
snake_case_ : Any = ([0 if mask_padding_with_zero else 1] * padding_length) + input_mask
snake_case_ : Optional[Any] = ([pad_token_segment_id] * padding_length) + segment_ids
snake_case_ : Optional[Any] = ([pad_token_label_id] * padding_length) + label_ids
else:
input_ids += [pad_token] * padding_length
input_mask += [0 if mask_padding_with_zero else 1] * padding_length
segment_ids += [pad_token_segment_id] * padding_length
label_ids += [pad_token_label_id] * padding_length
assert len(__magic_name__ ) == max_seq_length
assert len(__magic_name__ ) == max_seq_length
assert len(__magic_name__ ) == max_seq_length
assert len(__magic_name__ ) == max_seq_length
if ex_index < 5:
logger.info('''*** Example ***''' )
logger.info('''guid: %s''' , example.guid )
logger.info('''tokens: %s''' , ''' '''.join([str(__magic_name__ ) for x in tokens] ) )
logger.info('''input_ids: %s''' , ''' '''.join([str(__magic_name__ ) for x in input_ids] ) )
logger.info('''input_mask: %s''' , ''' '''.join([str(__magic_name__ ) for x in input_mask] ) )
logger.info('''segment_ids: %s''' , ''' '''.join([str(__magic_name__ ) for x in segment_ids] ) )
logger.info('''label_ids: %s''' , ''' '''.join([str(__magic_name__ ) for x in label_ids] ) )
if "token_type_ids" not in tokenizer.model_input_names:
snake_case_ : str = None
features.append(
InputFeatures(
input_ids=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , label_ids=__magic_name__ ) )
return features
if is_torch_available():
import torch
from torch import nn
from torch.utils.data import Dataset
class __lowerCAmelCase ( lowercase_ ):
lowerCamelCase_ : List[InputFeatures]
lowerCamelCase_ : int = nn.CrossEntropyLoss().ignore_index
def __init__(self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ = None , __magic_name__=False , __magic_name__ = Split.train , ) -> str:
'''simple docstring'''
snake_case_ : List[str] = os.path.join(
__magic_name__ , '''cached_{}_{}_{}'''.format(mode.value , tokenizer.__class__.__name__ , str(__magic_name__ ) ) , )
# Make sure only the first process in distributed training processes the dataset,
# and the others will use the cache.
snake_case_ : Any = cached_features_file + '''.lock'''
with FileLock(__magic_name__ ):
if os.path.exists(__magic_name__ ) and not overwrite_cache:
logger.info(F'''Loading features from cached file {cached_features_file}''' )
snake_case_ : Optional[int] = torch.load(__magic_name__ )
else:
logger.info(F'''Creating features from dataset file at {data_dir}''' )
snake_case_ : Dict = token_classification_task.read_examples_from_file(__magic_name__ , __magic_name__ )
# TODO clean up all this to leverage built-in features of tokenizers
snake_case_ : Optional[Any] = token_classification_task.convert_examples_to_features(
__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , cls_token_at_end=bool(model_type in ['''xlnet'''] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ['''xlnet'''] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=__magic_name__ , pad_on_left=bool(tokenizer.padding_side == '''left''' ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , )
logger.info(F'''Saving features into cached file {cached_features_file}''' )
torch.save(self.features , __magic_name__ )
def __len__(self ) -> Tuple:
'''simple docstring'''
return len(self.features )
def __getitem__(self , __magic_name__ ) -> Union[str, Any]:
'''simple docstring'''
return self.features[i]
if is_tf_available():
import tensorflow as tf
class __lowerCAmelCase :
lowerCamelCase_ : List[InputFeatures]
lowerCamelCase_ : int = -100
def __init__(self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ = None , __magic_name__=False , __magic_name__ = Split.train , ) -> List[str]:
'''simple docstring'''
snake_case_ : Optional[Any] = token_classification_task.read_examples_from_file(__magic_name__ , __magic_name__ )
# TODO clean up all this to leverage built-in features of tokenizers
snake_case_ : List[Any] = token_classification_task.convert_examples_to_features(
__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , cls_token_at_end=bool(model_type in ['''xlnet'''] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ['''xlnet'''] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=__magic_name__ , pad_on_left=bool(tokenizer.padding_side == '''left''' ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , )
def gen():
for ex in self.features:
if ex.token_type_ids is None:
yield (
{"input_ids": ex.input_ids, "attention_mask": ex.attention_mask},
ex.label_ids,
)
else:
yield (
{
"input_ids": ex.input_ids,
"attention_mask": ex.attention_mask,
"token_type_ids": ex.token_type_ids,
},
ex.label_ids,
)
if "token_type_ids" not in tokenizer.model_input_names:
snake_case_ : Optional[int] = tf.data.Dataset.from_generator(
__magic_name__ , ({'''input_ids''': tf.intaa, '''attention_mask''': tf.intaa}, tf.intaa) , (
{'''input_ids''': tf.TensorShape([None] ), '''attention_mask''': tf.TensorShape([None] )},
tf.TensorShape([None] ),
) , )
else:
snake_case_ : Dict = tf.data.Dataset.from_generator(
__magic_name__ , ({'''input_ids''': tf.intaa, '''attention_mask''': tf.intaa, '''token_type_ids''': tf.intaa}, tf.intaa) , (
{
'''input_ids''': tf.TensorShape([None] ),
'''attention_mask''': tf.TensorShape([None] ),
'''token_type_ids''': tf.TensorShape([None] ),
},
tf.TensorShape([None] ),
) , )
def lowerCamelCase (self ) -> Optional[int]:
'''simple docstring'''
snake_case_ : Dict = self.dataset.apply(tf.data.experimental.assert_cardinality(len(self.features ) ) )
return self.dataset
def __len__(self ) -> Any:
'''simple docstring'''
return len(self.features )
def __getitem__(self , __magic_name__ ) -> List[str]:
'''simple docstring'''
return self.features[i]
| 279 |
'''simple docstring'''
from ....utils import logging
lowerCamelCase : Optional[Any] = logging.get_logger(__name__)
class __lowerCAmelCase (lowercase_ ):
'''simple docstring'''
def __init__(self : Optional[int] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Optional[Any]=None , UpperCamelCase : int=2048 ):
'''simple docstring'''
lowercase__ = config.__dict__
lowercase__ = modal_hidden_size
if num_labels:
lowercase__ = num_labels
| 2 | 0 |
'''simple docstring'''
import argparse
import logging
import os
import datasets
import tensorflow as tf
from transformers import AutoTokenizer
_A : int =logging.getLogger(__name__)
def SCREAMING_SNAKE_CASE_ () -> List[Any]:
lowerCamelCase__ : str = argparse.ArgumentParser(
description="""Prepare TFRecord shards from pre-tokenized samples of the wikitext dataset.""" )
parser.add_argument(
"""--dataset_name""" , type=UpperCamelCase , default="""wikitext""" , help="""Name of the training. Explore datasets at: hf.co/datasets.""" , )
parser.add_argument(
"""--dataset_config""" , type=UpperCamelCase , default="""wikitext-103-raw-v1""" , help="""Configuration name of the dataset.""" )
parser.add_argument(
"""--tokenizer_name_or_path""" , type=UpperCamelCase , default="""sayakpaul/unigram-tokenizer-wikitext""" , help="""Tokenizer identifier. Can be a local filepath or a Hub identifier.""" , )
parser.add_argument(
"""--shard_size""" , type=UpperCamelCase , default=1000 , help="""Number of entries to go in a single shard.""" , )
parser.add_argument("""--split""" , type=UpperCamelCase , default="""train""" , choices=["""train""", """test""", """validation"""] )
parser.add_argument(
"""--limit""" , default=UpperCamelCase , type=UpperCamelCase , help="""Limit the number of shards (used for debugging).""" , )
parser.add_argument(
"""--max_length""" , type=UpperCamelCase , default=512 , help="""Maximum sequence length. For training on TPUs, it helps to have a maximum"""
""" sequence length that is a multiple of 8.""" , )
parser.add_argument(
"""--output_dir""" , default="""tf-tpu""" , type=UpperCamelCase , help="""Output directory where the TFRecord shards will be saved. If the"""
""" path is appended with `gs://` (\'gs://tf-tpu\', for example) then the TFRecord"""
""" shards will be directly saved to a Google Cloud Storage bucket.""" , )
lowerCamelCase__ : str = parser.parse_args()
return args
def SCREAMING_SNAKE_CASE_ (UpperCamelCase ) -> str:
def fn(UpperCamelCase ):
return tokenizer(examples["""text"""] )
return fn
def SCREAMING_SNAKE_CASE_ (UpperCamelCase ) -> Union[str, Any]:
lowerCamelCase__ : Any = []
for i in range(len(tokenized_data["""input_ids"""] ) ):
lowerCamelCase__ : List[str] = {
"""input_ids""": tf.train.Feature(intaa_list=tf.train.IntaaList(value=tokenized_data["""input_ids"""][i] ) ),
"""attention_mask""": tf.train.Feature(
intaa_list=tf.train.IntaaList(value=tokenized_data["""attention_mask"""][i] ) ),
}
lowerCamelCase__ : str = tf.train.Features(feature=UpperCamelCase )
lowerCamelCase__ : List[Any] = tf.train.Example(features=UpperCamelCase )
lowerCamelCase__ : Union[str, Any] = example.SerializeToString()
records.append(UpperCamelCase )
return records
def SCREAMING_SNAKE_CASE_ (UpperCamelCase ) -> Tuple:
lowerCamelCase__ : Any = datasets.load_dataset(args.dataset_name , args.dataset_config , split=args.split )
if args.limit is not None:
lowerCamelCase__ : Tuple = min(len(UpperCamelCase ) , args.limit )
lowerCamelCase__ : Union[str, Any] = dataset.select(range(UpperCamelCase ) )
print(f'''Limiting the dataset to {args.limit} entries.''' )
lowerCamelCase__ : List[str] = AutoTokenizer.from_pretrained(args.tokenizer_name_or_path )
# Handle output directory creation.
# For serializing into a Google Cloud Storage Bucket, one needs to first
# create a bucket.
if "gs" not in args.output_dir:
if not os.path.exists(args.output_dir ):
os.makedirs(args.output_dir )
lowerCamelCase__ : Optional[Any] = os.path.join(args.output_dir , args.split )
if not os.path.exists(UpperCamelCase ):
os.makedirs(UpperCamelCase )
else:
lowerCamelCase__ : Optional[Any] = os.path.join(args.output_dir , args.split )
# Tokenize the whole dataset at once.
lowerCamelCase__ : Tuple = tokenize_function(UpperCamelCase )
lowerCamelCase__ : Optional[Any] = dataset.map(UpperCamelCase , batched=UpperCamelCase , num_proc=4 , remove_columns=["""text"""] )
# We need to concatenate all our texts together, and then split the result
# into chunks of a fixed size, which we will call block_size. To do this, we
# will use the map method again, with the option batched=True. When we use batched=True,
# the function we pass to map() will be passed multiple inputs at once, allowing us
# to group them into more or fewer examples than we had in the input.
# This allows us to create our new fixed-length samples. The advantage of this
# method is that we don't lose a whole lot of content from the dataset compared to the
# case where we simply tokenize with a pre-defined max_length.
def group_texts(UpperCamelCase ):
# Concatenate all texts.
lowerCamelCase__ : List[Any] = {k: sum(examples[k] , [] ) for k in examples.keys()}
lowerCamelCase__ : List[str] = len(concatenated_examples[list(examples.keys() )[0]] )
# We drop the small remainder, though you could add padding instead if the model supports it
# In this, as in all things, we advise you to follow your heart 🫀
lowerCamelCase__ : Union[str, Any] = (total_length // args.max_length) * args.max_length
# Split by chunks of max_len.
lowerCamelCase__ : Any = {
k: [t[i : i + args.max_length] for i in range(0 , UpperCamelCase , args.max_length )]
for k, t in concatenated_examples.items()
}
return result
lowerCamelCase__ : Tuple = dataset_tokenized.map(UpperCamelCase , batched=UpperCamelCase , batch_size=1000 , num_proc=4 )
lowerCamelCase__ : Optional[Any] = 0
lowerCamelCase__ : Union[str, Any] = 0
for shard in range(0 , len(UpperCamelCase ) , args.shard_size ):
lowerCamelCase__ : str = grouped_dataset[shard : shard + args.shard_size]
lowerCamelCase__ : Union[str, Any] = len(dataset_snapshot["""input_ids"""] )
lowerCamelCase__ : Dict = os.path.join(UpperCamelCase , f'''dataset-{shard_count}-{records_containing}.tfrecord''' )
lowerCamelCase__ : str = get_serialized_examples(UpperCamelCase )
with tf.io.TFRecordWriter(UpperCamelCase ) as out_file:
for i in range(len(UpperCamelCase ) ):
lowerCamelCase__ : List[Any] = serialized_examples[i]
out_file.write(UpperCamelCase )
print("""Wrote file {} containing {} records""".format(UpperCamelCase , UpperCamelCase ) )
shard_count += 1
total_records += records_containing
with open(f'''split-{args.split}-records-count.txt''' , """w""" ) as f:
print(f'''Total {args.split} records: {total_records}''' , file=UpperCamelCase )
if __name__ == "__main__":
_A : List[Any] =parse_args()
main(args)
| 41 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCamelCase : Tuple = logging.get_logger(__name__)
lowerCamelCase : Dict = {
'microsoft/cvt-13': 'https://huggingface.co/microsoft/cvt-13/resolve/main/config.json',
# See all Cvt models at https://huggingface.co/models?filter=cvt
}
class __lowerCAmelCase (lowercase_ ):
'''simple docstring'''
lowerCAmelCase__ : Tuple = """cvt"""
def __init__(self : int , UpperCamelCase : List[Any]=3 , UpperCamelCase : int=[7, 3, 3] , UpperCamelCase : str=[4, 2, 2] , UpperCamelCase : Dict=[2, 1, 1] , UpperCamelCase : Dict=[64, 192, 384] , UpperCamelCase : Dict=[1, 3, 6] , UpperCamelCase : Dict=[1, 2, 10] , UpperCamelCase : Any=[4.0, 4.0, 4.0] , UpperCamelCase : Optional[int]=[0.0, 0.0, 0.0] , UpperCamelCase : Optional[int]=[0.0, 0.0, 0.0] , UpperCamelCase : int=[0.0, 0.0, 0.1] , UpperCamelCase : Any=[True, True, True] , UpperCamelCase : int=[False, False, True] , UpperCamelCase : Union[str, Any]=["dw_bn", "dw_bn", "dw_bn"] , UpperCamelCase : Optional[int]=[3, 3, 3] , UpperCamelCase : Tuple=[1, 1, 1] , UpperCamelCase : Any=[2, 2, 2] , UpperCamelCase : Dict=[1, 1, 1] , UpperCamelCase : List[str]=[1, 1, 1] , UpperCamelCase : str=0.02 , UpperCamelCase : int=1E-12 , **UpperCamelCase : Union[str, Any] , ):
'''simple docstring'''
super().__init__(**UpperCamelCase )
lowercase__ = num_channels
lowercase__ = patch_sizes
lowercase__ = patch_stride
lowercase__ = patch_padding
lowercase__ = embed_dim
lowercase__ = num_heads
lowercase__ = depth
lowercase__ = mlp_ratio
lowercase__ = attention_drop_rate
lowercase__ = drop_rate
lowercase__ = drop_path_rate
lowercase__ = qkv_bias
lowercase__ = cls_token
lowercase__ = qkv_projection_method
lowercase__ = kernel_qkv
lowercase__ = padding_kv
lowercase__ = stride_kv
lowercase__ = padding_q
lowercase__ = stride_q
lowercase__ = initializer_range
lowercase__ = layer_norm_eps
| 2 | 0 |
'''simple docstring'''
import copy
import os
import cva
import numpy as np
from matplotlib import pyplot as plt
class A :
def __init__( self ) -> List[Any]:
"""simple docstring"""
A : str = ''''''
A : str = ''''''
A : Tuple = []
A : int = 0
A : Any = 256
A : Union[str, Any] = 0
A : Optional[Any] = 0
A : Optional[int] = 0
A : Optional[int] = 0
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> List[str]:
"""simple docstring"""
A : List[str] = cva.imread(SCREAMING_SNAKE_CASE , 0 )
A : Optional[int] = copy.deepcopy(self.img )
A, A, A : List[str] = plt.hist(self.img.ravel() , 256 , [0, 256] , label='''x''' )
A : Union[str, Any] = np.sum(SCREAMING_SNAKE_CASE )
for i in range(len(SCREAMING_SNAKE_CASE ) ):
A : str = x[i] / self.k
self.sk += prk
A : List[str] = (self.L - 1) * self.sk
if self.rem != 0:
A : Optional[Any] = int(last % last )
A : Any = int(last + 1 if self.rem >= 0.5 else last )
self.last_list.append(SCREAMING_SNAKE_CASE )
A : Union[str, Any] = int(np.ma.count(self.img ) / self.img[1].size )
A : Union[str, Any] = self.img[1].size
for i in range(self.number_of_cols ):
for j in range(self.number_of_rows ):
A : int = self.img[j][i]
if num != self.last_list[num]:
A : List[Any] = self.last_list[num]
cva.imwrite('''output_data/output.jpg''' , self.img )
def __lowerCAmelCase ( self ) -> Union[str, Any]:
"""simple docstring"""
plt.hist(self.img.ravel() , 256 , [0, 256] )
def __lowerCAmelCase ( self ) -> Any:
"""simple docstring"""
cva.imshow('''Output-Image''' , self.img )
cva.imshow('''Input-Image''' , self.original_image )
cva.waitKey(5000 )
cva.destroyAllWindows()
if __name__ == "__main__":
lowercase : Union[str, Any] = os.path.join(os.path.basename(__file__), 'image_data/input.jpg')
lowercase : int = ConstantStretch()
stretcher.stretch(file_path)
stretcher.plot_histogram()
stretcher.show_image()
| 3 |
'''simple docstring'''
import numpy as np
# Importing the Keras libraries and packages
import tensorflow as tf
from tensorflow.keras import layers, models
if __name__ == "__main__":
# Initialising the CNN
# (Sequential- Building the model layer by layer)
lowerCamelCase : Any = models.Sequential()
# Step 1 - Convolution
# Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel
# (3,3) is the kernel size (filter matrix)
classifier.add(
layers.ConvaD(32, (3, 3), input_shape=(64, 64, 3), activation='relu')
)
# Step 2 - Pooling
classifier.add(layers.MaxPoolingaD(pool_size=(2, 2)))
# Adding a second convolutional layer
classifier.add(layers.ConvaD(32, (3, 3), activation='relu'))
classifier.add(layers.MaxPoolingaD(pool_size=(2, 2)))
# Step 3 - Flattening
classifier.add(layers.Flatten())
# Step 4 - Full connection
classifier.add(layers.Dense(units=128, activation='relu'))
classifier.add(layers.Dense(units=1, activation='sigmoid'))
# Compiling the CNN
classifier.compile(
optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']
)
# Part 2 - Fitting the CNN to the images
# Load Trained model weights
# from keras.models import load_model
# regressor=load_model('cnn.h5')
lowerCamelCase : Optional[Any] = tf.keras.preprocessing.image.ImageDataGenerator(
rescale=1.0 / 255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True
)
lowerCamelCase : Any = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 255)
lowerCamelCase : List[Any] = train_datagen.flow_from_directory(
'dataset/training_set', target_size=(64, 64), batch_size=32, class_mode='binary'
)
lowerCamelCase : List[str] = test_datagen.flow_from_directory(
'dataset/test_set', target_size=(64, 64), batch_size=32, class_mode='binary'
)
classifier.fit_generator(
training_set, steps_per_epoch=5, epochs=30, validation_data=test_set
)
classifier.save('cnn.h5')
# Part 3 - Making new predictions
lowerCamelCase : List[str] = tf.keras.preprocessing.image.load_img(
'dataset/single_prediction/image.png', target_size=(64, 64)
)
lowerCamelCase : Optional[int] = tf.keras.preprocessing.image.img_to_array(test_image)
lowerCamelCase : str = np.expand_dims(test_image, axis=0)
lowerCamelCase : List[str] = classifier.predict(test_image)
# training_set.class_indices
if result[0][0] == 0:
lowerCamelCase : Any = 'Normal'
if result[0][0] == 1:
lowerCamelCase : Any = 'Abnormality detected'
| 2 | 0 |
'''simple docstring'''
import unittest
from transformers import AlbertConfig, is_torch_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_PRETRAINING_MAPPING,
AlbertForMaskedLM,
AlbertForMultipleChoice,
AlbertForPreTraining,
AlbertForQuestionAnswering,
AlbertForSequenceClassification,
AlbertForTokenClassification,
AlbertModel,
)
from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST
class _a :
def __init__( self : str , lowercase : Optional[int] , lowercase : List[str]=13 , lowercase : List[str]=7 , lowercase : Dict=True , lowercase : Optional[Any]=True , lowercase : List[str]=True , lowercase : Union[str, Any]=True , lowercase : List[str]=99 , lowercase : Optional[int]=16 , lowercase : Optional[int]=36 , lowercase : Union[str, Any]=6 , lowercase : Dict=6 , lowercase : Dict=6 , lowercase : Any=37 , lowercase : Tuple="gelu" , lowercase : Tuple=0.1 , lowercase : Tuple=0.1 , lowercase : Any=512 , lowercase : Dict=16 , lowercase : Union[str, Any]=2 , lowercase : List[str]=0.02 , lowercase : Any=3 , lowercase : Dict=4 , lowercase : Tuple=None , ):
'''simple docstring'''
UpperCAmelCase = parent
UpperCAmelCase = batch_size
UpperCAmelCase = seq_length
UpperCAmelCase = is_training
UpperCAmelCase = use_input_mask
UpperCAmelCase = use_token_type_ids
UpperCAmelCase = use_labels
UpperCAmelCase = vocab_size
UpperCAmelCase = embedding_size
UpperCAmelCase = hidden_size
UpperCAmelCase = num_hidden_layers
UpperCAmelCase = num_hidden_groups
UpperCAmelCase = num_attention_heads
UpperCAmelCase = intermediate_size
UpperCAmelCase = hidden_act
UpperCAmelCase = hidden_dropout_prob
UpperCAmelCase = attention_probs_dropout_prob
UpperCAmelCase = max_position_embeddings
UpperCAmelCase = type_vocab_size
UpperCAmelCase = type_sequence_label_size
UpperCAmelCase = initializer_range
UpperCAmelCase = num_labels
UpperCAmelCase = num_choices
UpperCAmelCase = scope
def A ( self : Any ):
'''simple docstring'''
UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase = None
if self.use_input_mask:
UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] )
UpperCAmelCase = None
if self.use_token_type_ids:
UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
UpperCAmelCase = None
UpperCAmelCase = None
UpperCAmelCase = None
if self.use_labels:
UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices )
UpperCAmelCase = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def A ( self : List[Any] ):
'''simple docstring'''
return AlbertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , )
def A ( self : List[str] , lowercase : str , lowercase : Union[str, Any] , lowercase : Any , lowercase : List[str] , lowercase : List[str] , lowercase : Optional[Any] , lowercase : str ):
'''simple docstring'''
UpperCAmelCase = AlbertModel(config=lowercase )
model.to(lowercase )
model.eval()
UpperCAmelCase = model(lowercase , attention_mask=lowercase , token_type_ids=lowercase )
UpperCAmelCase = model(lowercase , token_type_ids=lowercase )
UpperCAmelCase = model(lowercase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def A ( self : List[Any] , lowercase : Any , lowercase : Any , lowercase : int , lowercase : Dict , lowercase : int , lowercase : Optional[int] , lowercase : List[str] ):
'''simple docstring'''
UpperCAmelCase = AlbertForPreTraining(config=lowercase )
model.to(lowercase )
model.eval()
UpperCAmelCase = model(
lowercase , attention_mask=lowercase , token_type_ids=lowercase , labels=lowercase , sentence_order_label=lowercase , )
self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) )
def A ( self : str , lowercase : Union[str, Any] , lowercase : Dict , lowercase : Union[str, Any] , lowercase : List[Any] , lowercase : int , lowercase : Dict , lowercase : Tuple ):
'''simple docstring'''
UpperCAmelCase = AlbertForMaskedLM(config=lowercase )
model.to(lowercase )
model.eval()
UpperCAmelCase = model(lowercase , attention_mask=lowercase , token_type_ids=lowercase , labels=lowercase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def A ( self : Tuple , lowercase : Any , lowercase : List[Any] , lowercase : Union[str, Any] , lowercase : Tuple , lowercase : int , lowercase : List[str] , lowercase : Tuple ):
'''simple docstring'''
UpperCAmelCase = AlbertForQuestionAnswering(config=lowercase )
model.to(lowercase )
model.eval()
UpperCAmelCase = model(
lowercase , attention_mask=lowercase , token_type_ids=lowercase , start_positions=lowercase , end_positions=lowercase , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def A ( self : str , lowercase : Optional[Any] , lowercase : Union[str, Any] , lowercase : Dict , lowercase : Union[str, Any] , lowercase : int , lowercase : List[Any] , lowercase : Dict ):
'''simple docstring'''
UpperCAmelCase = self.num_labels
UpperCAmelCase = AlbertForSequenceClassification(lowercase )
model.to(lowercase )
model.eval()
UpperCAmelCase = model(lowercase , attention_mask=lowercase , token_type_ids=lowercase , labels=lowercase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def A ( self : str , lowercase : List[Any] , lowercase : str , lowercase : int , lowercase : List[Any] , lowercase : Union[str, Any] , lowercase : Dict , lowercase : Union[str, Any] ):
'''simple docstring'''
UpperCAmelCase = self.num_labels
UpperCAmelCase = AlbertForTokenClassification(config=lowercase )
model.to(lowercase )
model.eval()
UpperCAmelCase = model(lowercase , attention_mask=lowercase , token_type_ids=lowercase , labels=lowercase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def A ( self : Optional[Any] , lowercase : Optional[Any] , lowercase : Optional[int] , lowercase : List[Any] , lowercase : List[str] , lowercase : List[Any] , lowercase : List[Any] , lowercase : Optional[Any] ):
'''simple docstring'''
UpperCAmelCase = self.num_choices
UpperCAmelCase = AlbertForMultipleChoice(config=lowercase )
model.to(lowercase )
model.eval()
UpperCAmelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
UpperCAmelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
UpperCAmelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
UpperCAmelCase = model(
lowercase , attention_mask=lowercase , token_type_ids=lowercase , labels=lowercase , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def A ( self : Union[str, Any] ):
'''simple docstring'''
UpperCAmelCase = self.prepare_config_and_inputs()
(
(
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) ,
) = config_and_inputs
UpperCAmelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_torch
class _a ( lowercase_ , lowercase_ , unittest.TestCase ):
__a : Union[str, Any] = (
(
AlbertModel,
AlbertForPreTraining,
AlbertForMaskedLM,
AlbertForMultipleChoice,
AlbertForSequenceClassification,
AlbertForTokenClassification,
AlbertForQuestionAnswering,
)
if is_torch_available()
else ()
)
__a : Dict = (
{
"""feature-extraction""": AlbertModel,
"""fill-mask""": AlbertForMaskedLM,
"""question-answering""": AlbertForQuestionAnswering,
"""text-classification""": AlbertForSequenceClassification,
"""token-classification""": AlbertForTokenClassification,
"""zero-shot""": AlbertForSequenceClassification,
}
if is_torch_available()
else {}
)
__a : int = True
def A ( self : Union[str, Any] , lowercase : Dict , lowercase : Any , lowercase : Any=False ):
'''simple docstring'''
UpperCAmelCase = super()._prepare_for_class(lowercase , lowercase , return_labels=lowercase )
if return_labels:
if model_class in get_values(lowercase ):
UpperCAmelCase = torch.zeros(
(self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=lowercase )
UpperCAmelCase = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=lowercase )
return inputs_dict
def A ( self : int ):
'''simple docstring'''
UpperCAmelCase = AlbertModelTester(self )
UpperCAmelCase = ConfigTester(self , config_class=lowercase , hidden_size=37 )
def A ( self : List[Any] ):
'''simple docstring'''
self.config_tester.run_common_tests()
def A ( self : Tuple ):
'''simple docstring'''
UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowercase )
def A ( self : Optional[int] ):
'''simple docstring'''
UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*lowercase )
def A ( self : Union[str, Any] ):
'''simple docstring'''
UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*lowercase )
def A ( self : Dict ):
'''simple docstring'''
UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*lowercase )
def A ( self : Dict ):
'''simple docstring'''
UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*lowercase )
def A ( self : Optional[int] ):
'''simple docstring'''
UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*lowercase )
def A ( self : Optional[Any] ):
'''simple docstring'''
UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
UpperCAmelCase = type
self.model_tester.create_and_check_model(*lowercase )
@slow
def A ( self : Tuple ):
'''simple docstring'''
for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase = AlbertModel.from_pretrained(lowercase )
self.assertIsNotNone(lowercase )
@require_torch
class _a ( unittest.TestCase ):
@slow
def A ( self : List[Any] ):
'''simple docstring'''
UpperCAmelCase = AlbertModel.from_pretrained('''albert-base-v2''' )
UpperCAmelCase = torch.tensor([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] )
UpperCAmelCase = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] )
with torch.no_grad():
UpperCAmelCase = model(lowercase , attention_mask=lowercase )[0]
UpperCAmelCase = torch.Size((1, 11, 768) )
self.assertEqual(output.shape , lowercase )
UpperCAmelCase = torch.tensor(
[[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] )
self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , lowercase , atol=1E-4 ) )
| 34 |
'''simple docstring'''
class __lowerCAmelCase : # Public class to implement a graph
'''simple docstring'''
def __init__(self : int , UpperCamelCase : int , UpperCamelCase : int , UpperCamelCase : list[list[bool]] ):
'''simple docstring'''
lowercase__ = row
lowercase__ = col
lowercase__ = graph
def UpperCamelCase__ (self : Optional[int] , UpperCamelCase : int , UpperCamelCase : int , UpperCamelCase : list[list[bool]] ):
'''simple docstring'''
return (
0 <= i < self.ROW
and 0 <= j < self.COL
and not visited[i][j]
and self.graph[i][j]
)
def UpperCamelCase__ (self : int , UpperCamelCase : int , UpperCamelCase : int , UpperCamelCase : list[list[bool]] ):
'''simple docstring'''
lowercase__ = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order
lowercase__ = [-1, 0, 1, -1, 1, -1, 0, 1]
lowercase__ = True # Make those cells visited
for k in range(8 ):
if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , UpperCamelCase ):
self.diffs(i + row_nbr[k] , j + col_nbr[k] , UpperCamelCase )
def UpperCamelCase__ (self : Dict ): # And finally, count all islands.
'''simple docstring'''
lowercase__ = [[False for j in range(self.COL )] for i in range(self.ROW )]
lowercase__ = 0
for i in range(self.ROW ):
for j in range(self.COL ):
if visited[i][j] is False and self.graph[i][j] == 1:
self.diffs(UpperCamelCase , UpperCamelCase , UpperCamelCase )
count += 1
return count
| 2 | 0 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
class lowerCAmelCase ( lowercase_ ):
lowerCAmelCase_ = """bert-generation"""
def __init__( self : List[str] , __lowercase : Tuple=50358 , __lowercase : Dict=1024 , __lowercase : List[Any]=24 , __lowercase : int=16 , __lowercase : List[str]=4096 , __lowercase : Union[str, Any]="gelu" , __lowercase : int=0.1 , __lowercase : int=0.1 , __lowercase : int=512 , __lowercase : Optional[int]=0.0_2 , __lowercase : str=1E-12 , __lowercase : Optional[int]=0 , __lowercase : Tuple=2 , __lowercase : List[str]=1 , __lowercase : Dict="absolute" , __lowercase : Tuple=True , **__lowercase : Optional[Any] , ):
"""simple docstring"""
super().__init__(pad_token_id=__lowercase , bos_token_id=__lowercase , eos_token_id=__lowercase , **__lowercase )
__lowercase =vocab_size
__lowercase =hidden_size
__lowercase =num_hidden_layers
__lowercase =num_attention_heads
__lowercase =hidden_act
__lowercase =intermediate_size
__lowercase =hidden_dropout_prob
__lowercase =attention_probs_dropout_prob
__lowercase =max_position_embeddings
__lowercase =initializer_range
__lowercase =layer_norm_eps
__lowercase =position_embedding_type
__lowercase =use_cache
| 141 |
'''simple docstring'''
import unittest
from transformers import DonutProcessor
lowerCamelCase : Tuple = 'naver-clova-ix/donut-base'
class __lowerCAmelCase (unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase__ (self : int ):
'''simple docstring'''
lowercase__ = DonutProcessor.from_pretrained(UpperCamelCase )
def UpperCamelCase__ (self : Tuple ):
'''simple docstring'''
lowercase__ = {
'''name''': '''John Doe''',
'''age''': '''99''',
'''city''': '''Atlanta''',
'''state''': '''GA''',
'''zip''': '''30301''',
'''phone''': '''123-4567''',
'''nicknames''': [{'''nickname''': '''Johnny'''}, {'''nickname''': '''JD'''}],
}
lowercase__ = (
'''<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>'''
'''<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>'''
'''<s_nicknames><s_nickname>Johnny</s_nickname>'''
'''<sep/><s_nickname>JD</s_nickname></s_nicknames>'''
)
lowercase__ = self.processor.tokenajson(UpperCamelCase )
self.assertDictEqual(UpperCamelCase , UpperCamelCase )
| 2 | 0 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__snake_case : List[str] ={
'configuration_nllb_moe': [
'NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP',
'NllbMoeConfig',
]
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case : List[Any] =[
'NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST',
'NllbMoeForConditionalGeneration',
'NllbMoeModel',
'NllbMoePreTrainedModel',
'NllbMoeTop2Router',
'NllbMoeSparseMLP',
]
if TYPE_CHECKING:
from .configuration_nllb_moe import (
NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP,
NllbMoeConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_nllb_moe import (
NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST,
NllbMoeForConditionalGeneration,
NllbMoeModel,
NllbMoePreTrainedModel,
NllbMoeSparseMLP,
NllbMoeTopaRouter,
)
else:
import sys
__snake_case : str =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 129 |
'''simple docstring'''
from __future__ import annotations
def _SCREAMING_SNAKE_CASE (A ) -> bool:
"""simple docstring"""
return len(set(A ) ) == len(A )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 2 | 0 |
"""simple docstring"""
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import is_speech_available, is_vision_available
from transformers.testing_utils import require_torch
if is_vision_available():
from transformers import TvltImageProcessor
if is_speech_available():
from transformers import TvltFeatureExtractor
from transformers import TvltProcessor
@require_torch
class _UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Union[str, Any] = '''ZinengTang/tvlt-base'''
__snake_case : str = tempfile.mkdtemp()
def SCREAMING_SNAKE_CASE (self , **a_ ):
'''simple docstring'''
return TvltImageProcessor.from_pretrained(self.checkpoint , **a_ )
def SCREAMING_SNAKE_CASE (self , **a_ ):
'''simple docstring'''
return TvltFeatureExtractor.from_pretrained(self.checkpoint , **a_ )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
shutil.rmtree(self.tmpdirname )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : List[str] = self.get_image_processor()
__snake_case : Tuple = self.get_feature_extractor()
__snake_case : List[str] = TvltProcessor(image_processor=a_ , feature_extractor=a_ )
processor.save_pretrained(self.tmpdirname )
__snake_case : Union[str, Any] = TvltProcessor.from_pretrained(self.tmpdirname )
self.assertIsInstance(processor.feature_extractor , a_ )
self.assertIsInstance(processor.image_processor , a_ )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Tuple = self.get_image_processor()
__snake_case : Dict = self.get_feature_extractor()
__snake_case : Optional[int] = TvltProcessor(image_processor=a_ , feature_extractor=a_ )
__snake_case : str = np.ones([1_20_00] )
__snake_case : List[str] = feature_extractor(a_ , return_tensors='''np''' )
__snake_case : Any = processor(audio=a_ , return_tensors='''np''' )
for key in audio_dict.keys():
self.assertAlmostEqual(audio_dict[key].sum() , input_processor[key].sum() , delta=1E-2 )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Union[str, Any] = self.get_image_processor()
__snake_case : Dict = self.get_feature_extractor()
__snake_case : Tuple = TvltProcessor(image_processor=a_ , feature_extractor=a_ )
__snake_case : List[str] = np.ones([3, 2_24, 2_24] )
__snake_case : List[str] = image_processor(a_ , return_tensors='''np''' )
__snake_case : Any = processor(images=a_ , return_tensors='''np''' )
for key in image_dict.keys():
self.assertAlmostEqual(image_dict[key].sum() , input_processor[key].sum() , delta=1E-2 )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Dict = self.get_image_processor()
__snake_case : Dict = self.get_feature_extractor()
__snake_case : Dict = TvltProcessor(image_processor=a_ , feature_extractor=a_ )
__snake_case : List[str] = np.ones([1_20_00] )
__snake_case : int = np.ones([3, 2_24, 2_24] )
__snake_case : Optional[Any] = processor(audio=a_ , images=a_ )
self.assertListEqual(list(inputs.keys() ) , ['''audio_values''', '''audio_mask''', '''pixel_values''', '''pixel_mask'''] )
# test if it raises when no input is passed
with pytest.raises(a_ ):
processor()
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Optional[Any] = self.get_image_processor()
__snake_case : int = self.get_feature_extractor()
__snake_case : List[str] = TvltProcessor(image_processor=a_ , feature_extractor=a_ )
self.assertListEqual(
processor.model_input_names , image_processor.model_input_names + feature_extractor.model_input_names , msg='''`processor` and `image_processor`+`feature_extractor` model input names do not match''' , )
| 102 |
'''simple docstring'''
import os
import re
import warnings
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_ta import TaTokenizer
else:
lowerCamelCase : Any = None
lowerCamelCase : Dict = logging.get_logger(__name__)
lowerCamelCase : Optional[int] = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'}
lowerCamelCase : List[str] = {
'vocab_file': {
't5-small': 'https://huggingface.co/t5-small/resolve/main/spiece.model',
't5-base': 'https://huggingface.co/t5-base/resolve/main/spiece.model',
't5-large': 'https://huggingface.co/t5-large/resolve/main/spiece.model',
't5-3b': 'https://huggingface.co/t5-3b/resolve/main/spiece.model',
't5-11b': 'https://huggingface.co/t5-11b/resolve/main/spiece.model',
},
'tokenizer_file': {
't5-small': 'https://huggingface.co/t5-small/resolve/main/tokenizer.json',
't5-base': 'https://huggingface.co/t5-base/resolve/main/tokenizer.json',
't5-large': 'https://huggingface.co/t5-large/resolve/main/tokenizer.json',
't5-3b': 'https://huggingface.co/t5-3b/resolve/main/tokenizer.json',
't5-11b': 'https://huggingface.co/t5-11b/resolve/main/tokenizer.json',
},
}
# TODO(PVP) - this should be removed in Transformers v5
lowerCamelCase : Any = {
't5-small': 512,
't5-base': 512,
't5-large': 512,
't5-3b': 512,
't5-11b': 512,
}
class __lowerCAmelCase (lowercase_ ):
'''simple docstring'''
lowerCAmelCase__ : List[str] = VOCAB_FILES_NAMES
lowerCAmelCase__ : str = PRETRAINED_VOCAB_FILES_MAP
lowerCAmelCase__ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCAmelCase__ : int = ["""input_ids""", """attention_mask"""]
lowerCAmelCase__ : Optional[int] = TaTokenizer
lowerCAmelCase__ : List[int] = []
def __init__(self : Dict , UpperCamelCase : str=None , UpperCamelCase : Optional[Any]=None , UpperCamelCase : Any="</s>" , UpperCamelCase : str="<unk>" , UpperCamelCase : List[str]="<pad>" , UpperCamelCase : List[str]=100 , UpperCamelCase : Tuple=None , **UpperCamelCase : List[str] , ):
'''simple docstring'''
if extra_ids > 0 and additional_special_tokens is None:
lowercase__ = [f"<extra_id_{i}>" for i in range(UpperCamelCase )]
elif extra_ids > 0 and additional_special_tokens is not None:
# Check that we have the right number of extra special tokens
lowercase__ = len(set(filter(lambda UpperCamelCase : bool('''extra_id_''' in str(UpperCamelCase ) ) , UpperCamelCase ) ) )
if extra_tokens != extra_ids:
raise ValueError(
f"Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are"
''' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids'''
''' tokens''' )
super().__init__(
UpperCamelCase , tokenizer_file=UpperCamelCase , eos_token=UpperCamelCase , unk_token=UpperCamelCase , pad_token=UpperCamelCase , extra_ids=UpperCamelCase , additional_special_tokens=UpperCamelCase , **UpperCamelCase , )
lowercase__ = vocab_file
lowercase__ = False if not self.vocab_file else True
lowercase__ = extra_ids
@staticmethod
def UpperCamelCase__ (UpperCamelCase : List[Any] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Optional[Any] ):
'''simple docstring'''
if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes:
lowercase__ = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path]
if init_max_model_length is not None and init_max_model_length != max_model_length:
return init_max_model_length
elif init_max_model_length is None:
warnings.warn(
'''This tokenizer was incorrectly instantiated with a model max length of'''
f" {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this"
''' behavior is kept to avoid breaking backwards compatibility when padding/encoding with'''
''' `truncation is True`.\n- Be aware that you SHOULD NOT rely on'''
f" {pretrained_model_name_or_path} automatically truncating your input to"
f" {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences"
f" longer than {deprecated_max_model_length} you can either instantiate this tokenizer with"
''' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please'''
''' instantiate this tokenizer with `model_max_length` set to your preferred value.''' , UpperCamelCase , )
return max_model_length
def UpperCamelCase__ (self : Any , UpperCamelCase : str , UpperCamelCase : Optional[str] = None ):
'''simple docstring'''
if not self.can_save_slow_tokenizer:
raise ValueError(
'''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow '''
'''tokenizer.''' )
if not os.path.isdir(UpperCamelCase ):
logger.error(f"Vocabulary path ({save_directory}) should be a directory" )
return
lowercase__ = os.path.join(
UpperCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase ):
copyfile(self.vocab_file , UpperCamelCase )
logger.info(f"Copy vocab file to {out_vocab_file}" )
return (out_vocab_file,)
def UpperCamelCase__ (self : Any , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None ):
'''simple docstring'''
lowercase__ = token_ids_a + [self.eos_token_id]
if token_ids_a is None:
return self.prefix_tokens + token_ids_a
else:
lowercase__ = token_ids_a + [self.eos_token_id]
return self.prefix_tokens + token_ids_a + token_ids_a
def UpperCamelCase__ (self : Optional[Any] , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None ):
'''simple docstring'''
lowercase__ = [self.eos_token_id]
if token_ids_a is None:
return len(token_ids_a + eos ) * [0]
return len(token_ids_a + eos + token_ids_a + eos ) * [0]
def UpperCamelCase__ (self : List[Any] ):
'''simple docstring'''
return list(
set(filter(lambda UpperCamelCase : bool(re.search(R'''<extra_id_\d+>''' , UpperCamelCase ) ) is not None , self.additional_special_tokens ) ) )
def UpperCamelCase__ (self : Union[str, Any] ):
'''simple docstring'''
return [self.convert_tokens_to_ids(UpperCamelCase ) for token in self.get_sentinel_tokens()]
| 2 | 0 |
import argparse
import json
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from torchvision import transforms
from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification
from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling
def A ( a_ ) -> int:
__UpperCamelCase : Union[str, Any] =[2, 2, 6, 2] if 'tiny' in model_name else [2, 2, 18, 2]
__UpperCamelCase : str =True if 'large' in model_name or 'huge' in model_name else False
__UpperCamelCase : List[Any] =True if 'large' in model_name or 'huge' in model_name else False
__UpperCamelCase : List[str] =True if 'large' in model_name or 'huge' in model_name else False
if "large" in model_name or "xlarge" in model_name or "huge" in model_name:
if "fl3" in model_name:
__UpperCamelCase : Tuple =[3, 3, 3, 3]
__UpperCamelCase : int =[5, 5, 5, 5]
elif "fl4" in model_name:
__UpperCamelCase : Dict =[4, 4, 4, 4]
__UpperCamelCase : int =[3, 3, 3, 3]
if "tiny" in model_name or "small" in model_name or "base" in model_name:
__UpperCamelCase : Dict =[3, 3, 3, 3]
if "lrf" in model_name:
__UpperCamelCase : Tuple =[3, 3, 3, 3]
else:
__UpperCamelCase : Dict =[2, 2, 2, 2]
if "tiny" in model_name:
__UpperCamelCase : List[Any] =96
elif "small" in model_name:
__UpperCamelCase : int =96
elif "base" in model_name:
__UpperCamelCase : str =128
elif "large" in model_name:
__UpperCamelCase : Optional[int] =192
elif "xlarge" in model_name:
__UpperCamelCase : List[str] =256
elif "huge" in model_name:
__UpperCamelCase : List[Any] =352
# set label information
__UpperCamelCase : Union[str, Any] ='huggingface/label-files'
if "large" in model_name or "huge" in model_name:
__UpperCamelCase : str ='imagenet-22k-id2label.json'
else:
__UpperCamelCase : Optional[Any] ='imagenet-1k-id2label.json'
__UpperCamelCase : int =json.load(open(hf_hub_download(a_ ,a_ ,repo_type='dataset' ) ,'r' ) )
__UpperCamelCase : str ={int(a_ ): v for k, v in idalabel.items()}
__UpperCamelCase : str ={v: k for k, v in idalabel.items()}
__UpperCamelCase : List[Any] =FocalNetConfig(
embed_dim=a_ ,depths=a_ ,focal_levels=a_ ,focal_windows=a_ ,use_conv_embed=a_ ,idalabel=a_ ,labelaid=a_ ,use_post_layernorm=a_ ,use_layerscale=a_ ,)
return config
def A ( a_ ) -> Dict:
if "patch_embed.proj" in name:
__UpperCamelCase : Tuple =name.replace('patch_embed.proj' ,'embeddings.patch_embeddings.projection' )
if "patch_embed.norm" in name:
__UpperCamelCase : Optional[Any] =name.replace('patch_embed.norm' ,'embeddings.norm' )
if "layers" in name:
__UpperCamelCase : int ='encoder.' + name
if "encoder.layers" in name:
__UpperCamelCase : Dict =name.replace('encoder.layers' ,'encoder.stages' )
if "downsample.proj" in name:
__UpperCamelCase : str =name.replace('downsample.proj' ,'downsample.projection' )
if "blocks" in name:
__UpperCamelCase : Optional[int] =name.replace('blocks' ,'layers' )
if "modulation.f.weight" in name or "modulation.f.bias" in name:
__UpperCamelCase : str =name.replace('modulation.f' ,'modulation.projection_in' )
if "modulation.h.weight" in name or "modulation.h.bias" in name:
__UpperCamelCase : Dict =name.replace('modulation.h' ,'modulation.projection_context' )
if "modulation.proj.weight" in name or "modulation.proj.bias" in name:
__UpperCamelCase : Optional[Any] =name.replace('modulation.proj' ,'modulation.projection_out' )
if name == "norm.weight":
__UpperCamelCase : Optional[Any] ='layernorm.weight'
if name == "norm.bias":
__UpperCamelCase : Any ='layernorm.bias'
if "head" in name:
__UpperCamelCase : Optional[int] =name.replace('head' ,'classifier' )
else:
__UpperCamelCase : int ='focalnet.' + name
return name
def A ( a_ ,a_ ,a_=False ) -> Any:
__UpperCamelCase : List[str] ={
'focalnet-tiny': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth',
'focalnet-tiny-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth',
'focalnet-small': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth',
'focalnet-small-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth',
'focalnet-base': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth',
'focalnet-base-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth',
'focalnet-large-lrf-fl3': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth',
'focalnet-large-lrf-fl4': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth',
'focalnet-xlarge-lrf-fl3': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth',
'focalnet-xlarge-lrf-fl4': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth',
}
# fmt: on
__UpperCamelCase : Any =model_name_to_url[model_name]
print('Checkpoint URL: ' ,a_ )
__UpperCamelCase : Any =torch.hub.load_state_dict_from_url(a_ ,map_location='cpu' )['model']
# rename keys
for key in state_dict.copy().keys():
__UpperCamelCase : int =state_dict.pop(a_ )
__UpperCamelCase : Optional[int] =val
__UpperCamelCase : List[str] =get_focalnet_config(a_ )
__UpperCamelCase : Tuple =FocalNetForImageClassification(a_ )
model.eval()
# load state dict
model.load_state_dict(a_ )
# verify conversion
__UpperCamelCase : int ='http://images.cocodataset.org/val2017/000000039769.jpg'
__UpperCamelCase : Optional[int] =BitImageProcessor(
do_resize=a_ ,size={'shortest_edge': 256} ,resample=PILImageResampling.BILINEAR ,do_center_crop=a_ ,crop_size=224 ,do_normalize=a_ ,image_mean=a_ ,image_std=a_ ,)
__UpperCamelCase : Union[str, Any] =Image.open(requests.get(a_ ,stream=a_ ).raw )
__UpperCamelCase : Tuple =processor(images=a_ ,return_tensors='pt' )
__UpperCamelCase : Any =transforms.Compose(
[
transforms.Resize(256 ),
transforms.CenterCrop(224 ),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406] ,std=[0.229, 0.224, 0.225] ),
] )
__UpperCamelCase : int =image_transforms(a_ ).unsqueeze(0 )
# verify pixel_values
assert torch.allclose(inputs.pixel_values ,a_ ,atol=1e-4 )
__UpperCamelCase : Tuple =model(**a_ )
__UpperCamelCase : List[Any] =outputs.logits.argmax(-1 ).item()
print('Predicted class:' ,model.config.idalabel[predicted_class_idx] )
print('First values of logits:' ,outputs.logits[0, :3] )
if model_name == "focalnet-tiny":
__UpperCamelCase : Union[str, Any] =torch.tensor([0.2_166, -0.4_368, 0.2_191] )
elif model_name == "focalnet-tiny-lrf":
__UpperCamelCase : Tuple =torch.tensor([1.1_669, 0.0_125, -0.1_695] )
elif model_name == "focalnet-small":
__UpperCamelCase : List[Any] =torch.tensor([0.4_917, -0.0_430, 0.1_341] )
elif model_name == "focalnet-small-lrf":
__UpperCamelCase : Dict =torch.tensor([-0.2_588, -0.5_342, -0.2_331] )
elif model_name == "focalnet-base":
__UpperCamelCase : str =torch.tensor([-0.1_655, -0.4_090, -0.1_730] )
elif model_name == "focalnet-base-lrf":
__UpperCamelCase : str =torch.tensor([0.5_306, -0.0_483, -0.3_928] )
assert torch.allclose(outputs.logits[0, :3] ,a_ ,atol=1e-4 )
print('Looks ok!' )
if pytorch_dump_folder_path is not None:
print(F'Saving model and processor of {model_name} to {pytorch_dump_folder_path}' )
model.save_pretrained(a_ )
processor.save_pretrained(a_ )
if push_to_hub:
print(F'Pushing model and processor of {model_name} to the hub...' )
model.push_to_hub(F'{model_name}' )
processor.push_to_hub(F'{model_name}' )
if __name__ == "__main__":
A_ :str = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--model_name''',
default='''focalnet-tiny''',
type=str,
help='''Name of the FocalNet model you\'d like to convert.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.'''
)
parser.add_argument(
'''--push_to_hub''',
action='''store_true''',
help='''Whether to push the model and processor to the hub.''',
)
A_ :Union[str, Any] = parser.parse_args()
convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 71 |
'''simple docstring'''
import gc
import random
import unittest
import numpy as np
import torch
from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel
from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline
from diffusers.pipelines.shap_e import ShapERenderer
from diffusers.utils import floats_tensor, load_image, load_numpy, slow
from diffusers.utils.testing_utils import require_torch_gpu, torch_device
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
class __lowerCAmelCase (lowercase_ , unittest.TestCase ):
'''simple docstring'''
lowerCAmelCase__ : Dict = ShapEImgaImgPipeline
lowerCAmelCase__ : List[str] = ["""image"""]
lowerCAmelCase__ : Any = ["""image"""]
lowerCAmelCase__ : Any = [
"""num_images_per_prompt""",
"""num_inference_steps""",
"""generator""",
"""latents""",
"""guidance_scale""",
"""frame_size""",
"""output_type""",
"""return_dict""",
]
lowerCAmelCase__ : Tuple = False
@property
def UpperCamelCase__ (self : List[Any] ):
'''simple docstring'''
return 32
@property
def UpperCamelCase__ (self : str ):
'''simple docstring'''
return 32
@property
def UpperCamelCase__ (self : Union[str, Any] ):
'''simple docstring'''
return self.time_input_dim * 4
@property
def UpperCamelCase__ (self : int ):
'''simple docstring'''
return 8
@property
def UpperCamelCase__ (self : Any ):
'''simple docstring'''
torch.manual_seed(0 )
lowercase__ = CLIPVisionConfig(
hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , )
lowercase__ = CLIPVisionModel(UpperCamelCase )
return model
@property
def UpperCamelCase__ (self : List[Any] ):
'''simple docstring'''
lowercase__ = CLIPImageProcessor(
crop_size=224 , do_center_crop=UpperCamelCase , do_normalize=UpperCamelCase , do_resize=UpperCamelCase , image_mean=[0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73] , image_std=[0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11] , resample=3 , size=224 , )
return image_processor
@property
def UpperCamelCase__ (self : str ):
'''simple docstring'''
torch.manual_seed(0 )
lowercase__ = {
'''num_attention_heads''': 2,
'''attention_head_dim''': 16,
'''embedding_dim''': self.time_input_dim,
'''num_embeddings''': 32,
'''embedding_proj_dim''': self.text_embedder_hidden_size,
'''time_embed_dim''': self.time_embed_dim,
'''num_layers''': 1,
'''clip_embed_dim''': self.time_input_dim * 2,
'''additional_embeddings''': 0,
'''time_embed_act_fn''': '''gelu''',
'''norm_in_type''': '''layer''',
'''embedding_proj_norm_type''': '''layer''',
'''encoder_hid_proj_type''': None,
'''added_emb_type''': None,
}
lowercase__ = PriorTransformer(**UpperCamelCase )
return model
@property
def UpperCamelCase__ (self : int ):
'''simple docstring'''
torch.manual_seed(0 )
lowercase__ = {
'''param_shapes''': (
(self.renderer_dim, 93),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
),
'''d_latent''': self.time_input_dim,
'''d_hidden''': self.renderer_dim,
'''n_output''': 12,
'''background''': (
0.1,
0.1,
0.1,
),
}
lowercase__ = ShapERenderer(**UpperCamelCase )
return model
def UpperCamelCase__ (self : Union[str, Any] ):
'''simple docstring'''
lowercase__ = self.dummy_prior
lowercase__ = self.dummy_image_encoder
lowercase__ = self.dummy_image_processor
lowercase__ = self.dummy_renderer
lowercase__ = HeunDiscreteScheduler(
beta_schedule='''exp''' , num_train_timesteps=1024 , prediction_type='''sample''' , use_karras_sigmas=UpperCamelCase , clip_sample=UpperCamelCase , clip_sample_range=1.0 , )
lowercase__ = {
'''prior''': prior,
'''image_encoder''': image_encoder,
'''image_processor''': image_processor,
'''renderer''': renderer,
'''scheduler''': scheduler,
}
return components
def UpperCamelCase__ (self : Optional[int] , UpperCamelCase : Optional[int] , UpperCamelCase : str=0 ):
'''simple docstring'''
lowercase__ = floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCamelCase ) ).to(UpperCamelCase )
if str(UpperCamelCase ).startswith('''mps''' ):
lowercase__ = torch.manual_seed(UpperCamelCase )
else:
lowercase__ = torch.Generator(device=UpperCamelCase ).manual_seed(UpperCamelCase )
lowercase__ = {
'''image''': input_image,
'''generator''': generator,
'''num_inference_steps''': 1,
'''frame_size''': 32,
'''output_type''': '''np''',
}
return inputs
def UpperCamelCase__ (self : Tuple ):
'''simple docstring'''
lowercase__ = '''cpu'''
lowercase__ = self.get_dummy_components()
lowercase__ = self.pipeline_class(**UpperCamelCase )
lowercase__ = pipe.to(UpperCamelCase )
pipe.set_progress_bar_config(disable=UpperCamelCase )
lowercase__ = pipe(**self.get_dummy_inputs(UpperCamelCase ) )
lowercase__ = output.images[0]
lowercase__ = image[0, -3:, -3:, -1]
assert image.shape == (20, 32, 32, 3)
lowercase__ = np.array(
[
0.00_03_92_16,
0.00_03_92_16,
0.00_03_92_16,
0.00_03_92_16,
0.00_03_92_16,
0.00_03_92_16,
0.00_03_92_16,
0.00_03_92_16,
0.00_03_92_16,
] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def UpperCamelCase__ (self : Optional[Any] ):
'''simple docstring'''
self._test_inference_batch_consistent(batch_sizes=[1, 2] )
def UpperCamelCase__ (self : int ):
'''simple docstring'''
lowercase__ = torch_device == '''cpu'''
lowercase__ = True
self._test_inference_batch_single_identical(
batch_size=2 , test_max_difference=UpperCamelCase , relax_max_difference=UpperCamelCase , )
def UpperCamelCase__ (self : int ):
'''simple docstring'''
lowercase__ = self.get_dummy_components()
lowercase__ = self.pipeline_class(**UpperCamelCase )
lowercase__ = pipe.to(UpperCamelCase )
pipe.set_progress_bar_config(disable=UpperCamelCase )
lowercase__ = 1
lowercase__ = 2
lowercase__ = self.get_dummy_inputs(UpperCamelCase )
for key in inputs.keys():
if key in self.batch_params:
lowercase__ = batch_size * [inputs[key]]
lowercase__ = pipe(**UpperCamelCase , num_images_per_prompt=UpperCamelCase )[0]
assert images.shape[0] == batch_size * num_images_per_prompt
@slow
@require_torch_gpu
class __lowerCAmelCase (unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase__ (self : Optional[Any] ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCamelCase__ (self : Union[str, Any] ):
'''simple docstring'''
lowercase__ = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/corgi.png''' )
lowercase__ = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/shap_e/test_shap_e_img2img_out.npy''' )
lowercase__ = ShapEImgaImgPipeline.from_pretrained('''openai/shap-e-img2img''' )
lowercase__ = pipe.to(UpperCamelCase )
pipe.set_progress_bar_config(disable=UpperCamelCase )
lowercase__ = torch.Generator(device=UpperCamelCase ).manual_seed(0 )
lowercase__ = pipe(
UpperCamelCase , generator=UpperCamelCase , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type='''np''' , ).images[0]
assert images.shape == (20, 64, 64, 3)
assert_mean_pixel_difference(UpperCamelCase , UpperCamelCase )
| 2 | 0 |
'''simple docstring'''
from sklearn.metrics import mean_squared_error
import datasets
_SCREAMING_SNAKE_CASE : Dict = '\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n'
_SCREAMING_SNAKE_CASE : Tuple = '\\nMean Squared Error(MSE) is the average of the square of difference between the predicted\nand actual values.\n'
_SCREAMING_SNAKE_CASE : List[str] = '\nArgs:\n predictions: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Estimated target values.\n references: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Ground truth (correct) target values.\n sample_weight: array-like of shape (n_samples,), default=None\n Sample weights.\n multioutput: {"raw_values", "uniform_average"} or array-like of shape (n_outputs,), default="uniform_average"\n Defines aggregating of multiple output values. Array-like value defines weights used to average errors.\n\n "raw_values" : Returns a full set of errors in case of multioutput input.\n\n "uniform_average" : Errors of all outputs are averaged with uniform weight.\n\n squared : bool, default=True\n If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value.\n\nReturns:\n mse : mean squared error.\nExamples:\n\n >>> mse_metric = datasets.load_metric("mse")\n >>> predictions = [2.5, 0.0, 2, 8]\n >>> references = [3, -0.5, 2, 7]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'mse\': 0.375}\n >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False)\n >>> print(rmse_result)\n {\'mse\': 0.6123724356957945}\n\n If you\'re using multi-dimensional lists, then set the config as follows :\n\n >>> mse_metric = datasets.load_metric("mse", "multilist")\n >>> predictions = [[0.5, 1], [-1, 1], [7, -6]]\n >>> references = [[0, 2], [-1, 2], [8, -5]]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'mse\': 0.7083333333333334}\n >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput=\'raw_values\')\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {\'mse\': array([0.41666667, 1. ])}\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class _snake_case ( datasets.Metric ):
def lowerCAmelCase__ ( self ) -> str:
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[
"https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html"
] , )
def lowerCAmelCase__ ( self ) -> List[str]:
'''simple docstring'''
if self.config_name == "multilist":
return {
"predictions": datasets.Sequence(datasets.Value("float" ) ),
"references": datasets.Sequence(datasets.Value("float" ) ),
}
else:
return {
"predictions": datasets.Value("float" ),
"references": datasets.Value("float" ),
}
def lowerCAmelCase__ ( self , a__ , a__ , a__=None , a__="uniform_average" , a__=True ) -> Union[str, Any]:
'''simple docstring'''
snake_case_ = mean_squared_error(
a__ , a__ , sample_weight=a__ , multioutput=a__ , squared=a__ )
return {"mse": mse}
| 85 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
lowerCamelCase : str = {
'configuration_rag': ['RagConfig'],
'retrieval_rag': ['RagRetriever'],
'tokenization_rag': ['RagTokenizer'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase : Dict = [
'RagModel',
'RagPreTrainedModel',
'RagSequenceForGeneration',
'RagTokenForGeneration',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase : Optional[int] = [
'TFRagModel',
'TFRagPreTrainedModel',
'TFRagSequenceForGeneration',
'TFRagTokenForGeneration',
]
if TYPE_CHECKING:
from .configuration_rag import RagConfig
from .retrieval_rag import RagRetriever
from .tokenization_rag import RagTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_rag import RagModel, RagPreTrainedModel, RagSequenceForGeneration, RagTokenForGeneration
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_rag import (
TFRagModel,
TFRagPreTrainedModel,
TFRagSequenceForGeneration,
TFRagTokenForGeneration,
)
else:
import sys
lowerCamelCase : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 2 | 0 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
a_ = logging.get_logger(__name__)
a_ = {
'facebook/vit-mae-base': 'https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json',
# See all ViT MAE models at https://huggingface.co/models?filter=vit-mae
}
class __lowerCAmelCase ( lowercase_ ):
lowerCAmelCase__ = """vit_mae"""
def __init__( self , __UpperCAmelCase=768 , __UpperCAmelCase=12 , __UpperCAmelCase=12 , __UpperCAmelCase=3072 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-1_2 , __UpperCAmelCase=224 , __UpperCAmelCase=16 , __UpperCAmelCase=3 , __UpperCAmelCase=True , __UpperCAmelCase=16 , __UpperCAmelCase=512 , __UpperCAmelCase=8 , __UpperCAmelCase=2048 , __UpperCAmelCase=0.75 , __UpperCAmelCase=False , **__UpperCAmelCase , ):
'''simple docstring'''
super().__init__(**__UpperCAmelCase )
__lowerCamelCase = hidden_size
__lowerCamelCase = num_hidden_layers
__lowerCamelCase = num_attention_heads
__lowerCamelCase = intermediate_size
__lowerCamelCase = hidden_act
__lowerCamelCase = hidden_dropout_prob
__lowerCamelCase = attention_probs_dropout_prob
__lowerCamelCase = initializer_range
__lowerCamelCase = layer_norm_eps
__lowerCamelCase = image_size
__lowerCamelCase = patch_size
__lowerCamelCase = num_channels
__lowerCamelCase = qkv_bias
__lowerCamelCase = decoder_num_attention_heads
__lowerCamelCase = decoder_hidden_size
__lowerCamelCase = decoder_num_hidden_layers
__lowerCamelCase = decoder_intermediate_size
__lowerCamelCase = mask_ratio
__lowerCamelCase = norm_pix_loss
| 330 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCamelCase : int = logging.get_logger(__name__)
lowerCamelCase : List[Any] = {
'google/realm-cc-news-pretrained-embedder': (
'https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json'
),
'google/realm-cc-news-pretrained-encoder': (
'https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json'
),
'google/realm-cc-news-pretrained-scorer': (
'https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json'
),
'google/realm-cc-news-pretrained-openqa': (
'https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json'
),
'google/realm-orqa-nq-openqa': 'https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json',
'google/realm-orqa-nq-reader': 'https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json',
'google/realm-orqa-wq-openqa': 'https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json',
'google/realm-orqa-wq-reader': 'https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json',
# See all REALM models at https://huggingface.co/models?filter=realm
}
class __lowerCAmelCase (lowercase_ ):
'''simple docstring'''
lowerCAmelCase__ : Optional[int] = """realm"""
def __init__(self : str , UpperCamelCase : List[Any]=30522 , UpperCamelCase : List[Any]=768 , UpperCamelCase : int=128 , UpperCamelCase : Any=12 , UpperCamelCase : Tuple=12 , UpperCamelCase : List[Any]=8 , UpperCamelCase : Union[str, Any]=3072 , UpperCamelCase : List[str]="gelu_new" , UpperCamelCase : Any=0.1 , UpperCamelCase : List[str]=0.1 , UpperCamelCase : Dict=512 , UpperCamelCase : Dict=2 , UpperCamelCase : List[Any]=0.02 , UpperCamelCase : List[Any]=1E-12 , UpperCamelCase : Dict=256 , UpperCamelCase : Union[str, Any]=10 , UpperCamelCase : Optional[int]=1E-3 , UpperCamelCase : Tuple=5 , UpperCamelCase : Optional[int]=320 , UpperCamelCase : List[str]=13353718 , UpperCamelCase : Optional[Any]=5000 , UpperCamelCase : str=1 , UpperCamelCase : Union[str, Any]=0 , UpperCamelCase : List[Any]=2 , **UpperCamelCase : int , ):
'''simple docstring'''
super().__init__(pad_token_id=UpperCamelCase , bos_token_id=UpperCamelCase , eos_token_id=UpperCamelCase , **UpperCamelCase )
# Common config
lowercase__ = vocab_size
lowercase__ = max_position_embeddings
lowercase__ = hidden_size
lowercase__ = retriever_proj_size
lowercase__ = num_hidden_layers
lowercase__ = num_attention_heads
lowercase__ = num_candidates
lowercase__ = intermediate_size
lowercase__ = hidden_act
lowercase__ = hidden_dropout_prob
lowercase__ = attention_probs_dropout_prob
lowercase__ = initializer_range
lowercase__ = type_vocab_size
lowercase__ = layer_norm_eps
# Reader config
lowercase__ = span_hidden_size
lowercase__ = max_span_width
lowercase__ = reader_layer_norm_eps
lowercase__ = reader_beam_size
lowercase__ = reader_seq_len
# Retrieval config
lowercase__ = num_block_records
lowercase__ = searcher_beam_size
| 2 | 0 |
import unittest
import numpy as np
import timeout_decorator # noqa
from transformers import BlenderbotConfig, is_flax_available
from transformers.testing_utils import jax_device, require_flax, slow
from ...generation.test_flax_utils import FlaxGenerationTesterMixin
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor
if is_flax_available():
import os
# The slow tests are often failing with OOM error on GPU
# This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed
# but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html
__A = 'platform'
import jax
import jax.numpy as jnp
from transformers import BlenderbotTokenizer
from transformers.models.blenderbot.modeling_flax_blenderbot import (
FlaxBlenderbotForConditionalGeneration,
FlaxBlenderbotModel,
shift_tokens_right,
)
def lowerCamelCase_ ( UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[int]=None , UpperCamelCase__ : Dict=None , UpperCamelCase__ : int=None , UpperCamelCase__ : Optional[int]=None , UpperCamelCase__ : Any=None , UpperCamelCase__ : List[Any]=None , ) -> Union[str, Any]:
"""simple docstring"""
if attention_mask is None:
__lowerCamelCase = np.where(input_ids != config.pad_token_id , 1 , 0 )
if decoder_attention_mask is None:
__lowerCamelCase = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 )
if head_mask is None:
__lowerCamelCase = np.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
__lowerCamelCase = np.ones((config.decoder_layers, config.decoder_attention_heads) )
if cross_attn_head_mask is None:
__lowerCamelCase = np.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": attention_mask,
}
class __lowerCAmelCase :
"""simple docstring"""
def __init__( self , lowerCamelCase__ , lowerCamelCase__=13 , lowerCamelCase__=7 , lowerCamelCase__=True , lowerCamelCase__=False , lowerCamelCase__=99 , lowerCamelCase__=16 , lowerCamelCase__=2 , lowerCamelCase__=4 , lowerCamelCase__=4 , lowerCamelCase__="gelu" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=32 , lowerCamelCase__=2 , lowerCamelCase__=1 , lowerCamelCase__=0 , lowerCamelCase__=0.02 , ) -> Any:
'''simple docstring'''
__lowerCamelCase = parent
__lowerCamelCase = batch_size
__lowerCamelCase = seq_length
__lowerCamelCase = is_training
__lowerCamelCase = use_labels
__lowerCamelCase = vocab_size
__lowerCamelCase = hidden_size
__lowerCamelCase = num_hidden_layers
__lowerCamelCase = num_attention_heads
__lowerCamelCase = intermediate_size
__lowerCamelCase = hidden_act
__lowerCamelCase = hidden_dropout_prob
__lowerCamelCase = attention_probs_dropout_prob
__lowerCamelCase = max_position_embeddings
__lowerCamelCase = eos_token_id
__lowerCamelCase = pad_token_id
__lowerCamelCase = bos_token_id
__lowerCamelCase = initializer_range
def lowercase_ ( self ) -> Dict:
'''simple docstring'''
__lowerCamelCase = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size )
__lowerCamelCase = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 )
__lowerCamelCase = shift_tokens_right(lowerCamelCase__ , 1 , 2 )
__lowerCamelCase = BlenderbotConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=lowerCamelCase__ , )
__lowerCamelCase = prepare_blenderbot_inputs_dict(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
return config, inputs_dict
def lowercase_ ( self ) -> Optional[Any]:
'''simple docstring'''
__lowerCamelCase , __lowerCamelCase = self.prepare_config_and_inputs()
return config, inputs_dict
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> str:
'''simple docstring'''
__lowerCamelCase = 20
__lowerCamelCase = model_class_name(lowerCamelCase__ )
__lowerCamelCase = model.encode(inputs_dict['input_ids'] )
__lowerCamelCase , __lowerCamelCase = (
inputs_dict['decoder_input_ids'],
inputs_dict['decoder_attention_mask'],
)
__lowerCamelCase = model.init_cache(decoder_input_ids.shape[0] , lowerCamelCase__ , lowerCamelCase__ )
__lowerCamelCase = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='i4' )
__lowerCamelCase = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
__lowerCamelCase = model.decode(
decoder_input_ids[:, :-1] , lowerCamelCase__ , decoder_attention_mask=lowerCamelCase__ , past_key_values=lowerCamelCase__ , decoder_position_ids=lowerCamelCase__ , )
__lowerCamelCase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' )
__lowerCamelCase = model.decode(
decoder_input_ids[:, -1:] , lowerCamelCase__ , decoder_attention_mask=lowerCamelCase__ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=lowerCamelCase__ , )
__lowerCamelCase = model.decode(lowerCamelCase__ , lowerCamelCase__ )
__lowerCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" )
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Optional[int]:
'''simple docstring'''
__lowerCamelCase = 20
__lowerCamelCase = model_class_name(lowerCamelCase__ )
__lowerCamelCase = model.encode(inputs_dict['input_ids'] )
__lowerCamelCase , __lowerCamelCase = (
inputs_dict['decoder_input_ids'],
inputs_dict['decoder_attention_mask'],
)
__lowerCamelCase = jnp.concatenate(
[
decoder_attention_mask,
jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ),
] , axis=-1 , )
__lowerCamelCase = model.init_cache(decoder_input_ids.shape[0] , lowerCamelCase__ , lowerCamelCase__ )
__lowerCamelCase = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
__lowerCamelCase = model.decode(
decoder_input_ids[:, :-1] , lowerCamelCase__ , decoder_attention_mask=lowerCamelCase__ , past_key_values=lowerCamelCase__ , decoder_position_ids=lowerCamelCase__ , )
__lowerCamelCase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' )
__lowerCamelCase = model.decode(
decoder_input_ids[:, -1:] , lowerCamelCase__ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=lowerCamelCase__ , decoder_position_ids=lowerCamelCase__ , )
__lowerCamelCase = model.decode(lowerCamelCase__ , lowerCamelCase__ , decoder_attention_mask=lowerCamelCase__ )
__lowerCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" )
@require_flax
class __lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
snake_case_ = 99
def lowercase_ ( self ) -> Dict:
'''simple docstring'''
__lowerCamelCase = np.array(
[
[71, 82, 18, 33, 46, 91, 2],
[68, 34, 26, 58, 30, 82, 2],
[5, 97, 17, 39, 94, 40, 2],
[76, 83, 94, 25, 70, 78, 2],
[87, 59, 41, 35, 48, 66, 2],
[55, 13, 16, 58, 5, 2, 1], # note padding
[64, 27, 31, 51, 12, 75, 2],
[52, 64, 86, 17, 83, 39, 2],
[48, 61, 9, 24, 71, 82, 2],
[26, 1, 60, 48, 22, 13, 2],
[21, 5, 62, 28, 14, 76, 2],
[45, 98, 37, 86, 59, 48, 2],
[70, 70, 50, 9, 28, 0, 2],
] , dtype=np.intaa , )
__lowerCamelCase = input_ids.shape[0]
__lowerCamelCase = BlenderbotConfig(
vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , )
return config, input_ids, batch_size
def lowercase_ ( self ) -> int:
'''simple docstring'''
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase = self._get_config_and_data()
__lowerCamelCase = FlaxBlenderbotForConditionalGeneration(lowerCamelCase__ )
__lowerCamelCase = lm_model(input_ids=lowerCamelCase__ )
__lowerCamelCase = (batch_size, input_ids.shape[1], config.vocab_size)
self.assertEqual(outputs['logits'].shape , lowerCamelCase__ )
def lowercase_ ( self ) -> List[str]:
'''simple docstring'''
__lowerCamelCase = BlenderbotConfig(
vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , )
__lowerCamelCase = FlaxBlenderbotForConditionalGeneration(lowerCamelCase__ )
__lowerCamelCase = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa )
__lowerCamelCase = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa )
__lowerCamelCase = lm_model(input_ids=lowerCamelCase__ , decoder_input_ids=lowerCamelCase__ )
__lowerCamelCase = (*summary.shape, config.vocab_size)
self.assertEqual(outputs['logits'].shape , lowerCamelCase__ )
def lowercase_ ( self ) -> int:
'''simple docstring'''
__lowerCamelCase = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa )
__lowerCamelCase = shift_tokens_right(lowerCamelCase__ , 1 , 2 )
__lowerCamelCase = np.equal(lowerCamelCase__ , 1 ).astype(np.floataa ).sum()
__lowerCamelCase = np.equal(lowerCamelCase__ , 1 ).astype(np.floataa ).sum()
self.assertEqual(shifted.shape , input_ids.shape )
self.assertEqual(lowerCamelCase__ , n_pad_before - 1 )
self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() )
@require_flax
class __lowerCAmelCase ( lowercase_ , unittest.TestCase , lowercase_ ):
"""simple docstring"""
snake_case_ = True
snake_case_ = (
(
FlaxBlenderbotModel,
FlaxBlenderbotForConditionalGeneration,
)
if is_flax_available()
else ()
)
snake_case_ = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else ()
def lowercase_ ( self ) -> int:
'''simple docstring'''
__lowerCamelCase = FlaxBlenderbotModelTester(self )
def lowercase_ ( self ) -> str:
'''simple docstring'''
__lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
def lowercase_ ( self ) -> Union[str, Any]:
'''simple docstring'''
__lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward_with_attn_mask(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
def lowercase_ ( self ) -> Dict:
'''simple docstring'''
__lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
__lowerCamelCase = self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ )
__lowerCamelCase = model_class(lowerCamelCase__ )
@jax.jit
def encode_jitted(lowerCamelCase__ , lowerCamelCase__=None , **lowerCamelCase__ ):
return model.encode(input_ids=lowerCamelCase__ , attention_mask=lowerCamelCase__ )
with self.subTest('JIT Enabled' ):
__lowerCamelCase = encode_jitted(**lowerCamelCase__ ).to_tuple()
with self.subTest('JIT Disabled' ):
with jax.disable_jit():
__lowerCamelCase = encode_jitted(**lowerCamelCase__ ).to_tuple()
self.assertEqual(len(lowerCamelCase__ ) , len(lowerCamelCase__ ) )
for jitted_output, output in zip(lowerCamelCase__ , lowerCamelCase__ ):
self.assertEqual(jitted_output.shape , output.shape )
def lowercase_ ( self ) -> List[Any]:
'''simple docstring'''
__lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
__lowerCamelCase = model_class(lowerCamelCase__ )
__lowerCamelCase = model.encode(inputs_dict['input_ids'] , inputs_dict['attention_mask'] )
__lowerCamelCase = {
'decoder_input_ids': inputs_dict['decoder_input_ids'],
'decoder_attention_mask': inputs_dict['decoder_attention_mask'],
'encoder_outputs': encoder_outputs,
}
@jax.jit
def decode_jitted(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ):
return model.decode(
decoder_input_ids=lowerCamelCase__ , decoder_attention_mask=lowerCamelCase__ , encoder_outputs=lowerCamelCase__ , )
with self.subTest('JIT Enabled' ):
__lowerCamelCase = decode_jitted(**lowerCamelCase__ ).to_tuple()
with self.subTest('JIT Disabled' ):
with jax.disable_jit():
__lowerCamelCase = decode_jitted(**lowerCamelCase__ ).to_tuple()
self.assertEqual(len(lowerCamelCase__ ) , len(lowerCamelCase__ ) )
for jitted_output, output in zip(lowerCamelCase__ , lowerCamelCase__ ):
self.assertEqual(jitted_output.shape , output.shape )
@slow
def lowercase_ ( self ) -> List[str]:
'''simple docstring'''
for model_class_name in self.all_model_classes:
__lowerCamelCase = model_class_name.from_pretrained('facebook/blenderbot-400M-distill' )
# FlaxBlenderbotForSequenceClassification expects eos token in input_ids
__lowerCamelCase = np.ones((1, 1) ) * model.config.eos_token_id
__lowerCamelCase = model(lowerCamelCase__ )
self.assertIsNotNone(lowerCamelCase__ )
@unittest.skipUnless(jax_device != 'cpu' , '3B test too slow on CPU.' )
@slow
def lowercase_ ( self ) -> Dict:
'''simple docstring'''
__lowerCamelCase = {'num_beams': 1, 'early_stopping': True, 'min_length': 15, 'max_length': 25}
__lowerCamelCase = {'skip_special_tokens': True, 'clean_up_tokenization_spaces': True}
__lowerCamelCase = FlaxBlenderbotForConditionalGeneration.from_pretrained('facebook/blenderbot-3B' , from_pt=lowerCamelCase__ )
__lowerCamelCase = BlenderbotTokenizer.from_pretrained('facebook/blenderbot-3B' )
__lowerCamelCase = ['Sam']
__lowerCamelCase = tokenizer(lowerCamelCase__ , return_tensors='jax' )
__lowerCamelCase = model.generate(**lowerCamelCase__ , **lowerCamelCase__ )
__lowerCamelCase = 'Sam is a great name. It means "sun" in Gaelic.'
__lowerCamelCase = tokenizer.batch_decode(lowerCamelCase__ , **lowerCamelCase__ )
assert generated_txt[0].strip() == tgt_text
| 90 |
'''simple docstring'''
import warnings
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCamelCase : str = logging.get_logger(__name__)
lowerCamelCase : int = {
'RUCAIBox/mvp': 'https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json',
}
class __lowerCAmelCase (lowercase_ ):
'''simple docstring'''
lowerCAmelCase__ : Union[str, Any] = """mvp"""
lowerCAmelCase__ : Optional[Any] = ["""past_key_values"""]
lowerCAmelCase__ : List[str] = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""}
def __init__(self : Any , UpperCamelCase : Optional[int]=50267 , UpperCamelCase : Tuple=1024 , UpperCamelCase : int=12 , UpperCamelCase : Tuple=4096 , UpperCamelCase : Dict=16 , UpperCamelCase : int=12 , UpperCamelCase : Optional[int]=4096 , UpperCamelCase : Optional[int]=16 , UpperCamelCase : Tuple=0.0 , UpperCamelCase : Tuple=0.0 , UpperCamelCase : List[Any]="gelu" , UpperCamelCase : Union[str, Any]=1024 , UpperCamelCase : Optional[Any]=0.1 , UpperCamelCase : str=0.0 , UpperCamelCase : str=0.0 , UpperCamelCase : Optional[Any]=0.02 , UpperCamelCase : List[str]=0.0 , UpperCamelCase : List[str]=False , UpperCamelCase : Optional[int]=True , UpperCamelCase : Any=1 , UpperCamelCase : int=0 , UpperCamelCase : int=2 , UpperCamelCase : Any=True , UpperCamelCase : Optional[Any]=2 , UpperCamelCase : Optional[Any]=2 , UpperCamelCase : Tuple=False , UpperCamelCase : int=100 , UpperCamelCase : Optional[Any]=800 , **UpperCamelCase : str , ):
'''simple docstring'''
lowercase__ = vocab_size
lowercase__ = max_position_embeddings
lowercase__ = d_model
lowercase__ = encoder_ffn_dim
lowercase__ = encoder_layers
lowercase__ = encoder_attention_heads
lowercase__ = decoder_ffn_dim
lowercase__ = decoder_layers
lowercase__ = decoder_attention_heads
lowercase__ = dropout
lowercase__ = attention_dropout
lowercase__ = activation_dropout
lowercase__ = activation_function
lowercase__ = init_std
lowercase__ = encoder_layerdrop
lowercase__ = decoder_layerdrop
lowercase__ = classifier_dropout
lowercase__ = use_cache
lowercase__ = encoder_layers
lowercase__ = scale_embedding # scale factor will be sqrt(d_model) if True
lowercase__ = use_prompt
lowercase__ = prompt_length
lowercase__ = prompt_mid_dim
super().__init__(
pad_token_id=UpperCamelCase , bos_token_id=UpperCamelCase , eos_token_id=UpperCamelCase , is_encoder_decoder=UpperCamelCase , decoder_start_token_id=UpperCamelCase , forced_eos_token_id=UpperCamelCase , **UpperCamelCase , )
if self.forced_bos_token_id is None and kwargs.get('''force_bos_token_to_be_generated''' , UpperCamelCase ):
lowercase__ = self.bos_token_id
warnings.warn(
f"Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. "
'''The config can simply be saved and uploaded again to be fixed.''' )
| 2 | 0 |
import secrets
from random import shuffle
from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation
def lowerCamelCase_ ( _UpperCamelCase = 8 ) -> str:
"""simple docstring"""
snake_case_ : List[str] = ascii_letters + digits + punctuation
return "".join(secrets.choice(_UpperCamelCase ) for _ in range(_UpperCamelCase ) )
def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> str:
"""simple docstring"""
i -= len(_UpperCamelCase )
snake_case_ : Dict = i // 3
snake_case_ : str = i % 3
# chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) +
# random_number(digits, i / 3) + random_characters(punctuation, i / 3)
snake_case_ : Dict = (
chars_incl
+ random(_UpperCamelCase , quotient + remainder )
+ random(_UpperCamelCase , _UpperCamelCase )
+ random(_UpperCamelCase , _UpperCamelCase )
)
snake_case_ : int = list(_UpperCamelCase )
shuffle(_UpperCamelCase )
return "".join(_UpperCamelCase )
# random is a generalised function for letters, characters and numbers
def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> str:
"""simple docstring"""
return "".join(secrets.choice(_UpperCamelCase ) for _ in range(_UpperCamelCase ) )
def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> List[Any]:
"""simple docstring"""
pass # Put your code here...
def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> Dict:
"""simple docstring"""
pass # Put your code here...
def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> Optional[Any]:
"""simple docstring"""
pass # Put your code here...
def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase = 8 ) -> bool:
"""simple docstring"""
if len(_UpperCamelCase ) < min_length:
# Your Password must be at least 8 characters long
return False
snake_case_ : Tuple = any(char in ascii_uppercase for char in password )
snake_case_ : Optional[Any] = any(char in ascii_lowercase for char in password )
snake_case_ : Optional[Any] = any(char in digits for char in password )
snake_case_ : Union[str, Any] = any(char in punctuation for char in password )
return upper and lower and num and spec_char
# Passwords should contain UPPERCASE, lowerase
# numbers, and special characters
def lowerCamelCase_ ( ) -> Any:
"""simple docstring"""
snake_case_ : Any = int(input('''Please indicate the max length of your password: ''' ).strip() )
snake_case_ : List[Any] = input(
'''Please indicate the characters that must be in your password: ''' ).strip()
print('''Password generated:''' , password_generator(_UpperCamelCase ) )
print(
'''Alternative Password generated:''' , alternative_password_generator(_UpperCamelCase , _UpperCamelCase ) , )
print('''[If you are thinking of using this passsword, You better save it.]''' )
if __name__ == "__main__":
main()
| 279 |
'''simple docstring'''
import unittest
from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
lowerCamelCase : List[str] = get_tests_dir('fixtures/spiece.model')
@require_sentencepiece
@require_tokenizers
class __lowerCAmelCase (lowercase_ , unittest.TestCase ):
'''simple docstring'''
lowerCAmelCase__ : int = DebertaVaTokenizer
lowerCAmelCase__ : List[Any] = DebertaVaTokenizerFast
lowerCAmelCase__ : str = True
lowerCAmelCase__ : Tuple = True
def UpperCamelCase__ (self : Tuple ):
'''simple docstring'''
super().setUp()
# We have a SentencePiece fixture for testing
lowercase__ = DebertaVaTokenizer(UpperCamelCase , unk_token='''<unk>''' )
tokenizer.save_pretrained(self.tmpdirname )
def UpperCamelCase__ (self : Union[str, Any] , UpperCamelCase : str ):
'''simple docstring'''
lowercase__ = '''this is a test'''
lowercase__ = '''this is a test'''
return input_text, output_text
def UpperCamelCase__ (self : Optional[int] ):
'''simple docstring'''
lowercase__ = '''<pad>'''
lowercase__ = 0
self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCamelCase ) , UpperCamelCase )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCamelCase ) , UpperCamelCase )
def UpperCamelCase__ (self : Dict ):
'''simple docstring'''
lowercase__ = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '''<pad>''' )
self.assertEqual(vocab_keys[1] , '''<unk>''' )
self.assertEqual(vocab_keys[-1] , '''[PAD]''' )
self.assertEqual(len(UpperCamelCase ) , 30001 )
def UpperCamelCase__ (self : int ):
'''simple docstring'''
self.assertEqual(self.get_tokenizer().vocab_size , 30000 )
def UpperCamelCase__ (self : Optional[Any] ):
'''simple docstring'''
lowercase__ = ''' \tHeLLo!how \n Are yoU? '''
lowercase__ = ['''▁hello''', '''!''', '''how''', '''▁are''', '''▁you''', '''?''']
# fmt: on
lowercase__ = DebertaVaTokenizer(UpperCamelCase , do_lower_case=UpperCamelCase )
lowercase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) )
self.assertListEqual(UpperCamelCase , UpperCamelCase )
lowercase__ = DebertaVaTokenizerFast(UpperCamelCase , do_lower_case=UpperCamelCase )
lowercase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) )
self.assertListEqual(UpperCamelCase , UpperCamelCase )
@unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' )
def UpperCamelCase__ (self : List[Any] ):
'''simple docstring'''
pass
@unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' )
def UpperCamelCase__ (self : List[str] ):
'''simple docstring'''
pass
def UpperCamelCase__ (self : Optional[int] ):
'''simple docstring'''
lowercase__ = '''I was born in 92000, and this is falsé.'''
lowercase__ = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ]
# fmt: on
lowercase__ = DebertaVaTokenizer(UpperCamelCase , split_by_punct=UpperCamelCase )
lowercase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) )
self.assertListEqual(UpperCamelCase , UpperCamelCase )
lowercase__ = DebertaVaTokenizerFast(UpperCamelCase , split_by_punct=UpperCamelCase )
lowercase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) )
self.assertListEqual(UpperCamelCase , UpperCamelCase )
def UpperCamelCase__ (self : int ):
'''simple docstring'''
lowercase__ = '''I was born in 92000, and this is falsé.'''
lowercase__ = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ]
# fmt: on
lowercase__ = DebertaVaTokenizer(UpperCamelCase , do_lower_case=UpperCamelCase , split_by_punct=UpperCamelCase )
lowercase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) )
self.assertListEqual(UpperCamelCase , UpperCamelCase )
lowercase__ = DebertaVaTokenizerFast(UpperCamelCase , do_lower_case=UpperCamelCase , split_by_punct=UpperCamelCase )
lowercase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) )
self.assertListEqual(UpperCamelCase , UpperCamelCase )
def UpperCamelCase__ (self : Optional[Any] ):
'''simple docstring'''
lowercase__ = '''I was born in 92000, and this is falsé.'''
lowercase__ = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ]
# fmt: on
lowercase__ = DebertaVaTokenizer(UpperCamelCase , do_lower_case=UpperCamelCase , split_by_punct=UpperCamelCase )
lowercase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) )
self.assertListEqual(UpperCamelCase , UpperCamelCase )
lowercase__ = DebertaVaTokenizerFast(UpperCamelCase , do_lower_case=UpperCamelCase , split_by_punct=UpperCamelCase )
lowercase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) )
self.assertListEqual(UpperCamelCase , UpperCamelCase )
def UpperCamelCase__ (self : Union[str, Any] ):
'''simple docstring'''
lowercase__ = '''I was born in 92000, and this is falsé.'''
lowercase__ = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ]
# fmt: on
lowercase__ = DebertaVaTokenizer(UpperCamelCase , do_lower_case=UpperCamelCase , split_by_punct=UpperCamelCase )
lowercase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) )
self.assertListEqual(UpperCamelCase , UpperCamelCase )
lowercase__ = DebertaVaTokenizerFast(UpperCamelCase , do_lower_case=UpperCamelCase , split_by_punct=UpperCamelCase )
lowercase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) )
self.assertListEqual(UpperCamelCase , UpperCamelCase )
def UpperCamelCase__ (self : Union[str, Any] ):
'''simple docstring'''
lowercase__ = ''' \tHeLLo!how \n Are yoU? '''
lowercase__ = ['''▁''', '''<unk>''', '''e''', '''<unk>''', '''o''', '''!''', '''how''', '''▁''', '''<unk>''', '''re''', '''▁yo''', '''<unk>''', '''?''']
# fmt: on
lowercase__ = DebertaVaTokenizer(UpperCamelCase , do_lower_case=UpperCamelCase , split_by_punct=UpperCamelCase )
lowercase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) )
self.assertListEqual(UpperCamelCase , UpperCamelCase )
lowercase__ = DebertaVaTokenizerFast(UpperCamelCase , do_lower_case=UpperCamelCase , split_by_punct=UpperCamelCase )
lowercase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) )
self.assertListEqual(UpperCamelCase , UpperCamelCase )
def UpperCamelCase__ (self : Union[str, Any] ):
'''simple docstring'''
lowercase__ = self.get_tokenizer()
lowercase__ = self.get_rust_tokenizer()
lowercase__ = '''I was born in 92000, and this is falsé.'''
lowercase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) )
lowercase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) )
self.assertListEqual(UpperCamelCase , UpperCamelCase )
lowercase__ = tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase )
lowercase__ = rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase )
self.assertListEqual(UpperCamelCase , UpperCamelCase )
lowercase__ = self.get_rust_tokenizer()
lowercase__ = tokenizer.encode(UpperCamelCase )
lowercase__ = rust_tokenizer.encode(UpperCamelCase )
self.assertListEqual(UpperCamelCase , UpperCamelCase )
def UpperCamelCase__ (self : int ):
'''simple docstring'''
lowercase__ = '''This is a test'''
lowercase__ = [13, 1, 4398, 25, 21, 1289]
lowercase__ = ['''▁''', '''T''', '''his''', '''▁is''', '''▁a''', '''▁test''']
lowercase__ = ['''▁''', '''<unk>''', '''his''', '''▁is''', '''▁a''', '''▁test''']
lowercase__ = DebertaVaTokenizer(UpperCamelCase , keep_accents=UpperCamelCase )
lowercase__ = DebertaVaTokenizerFast(UpperCamelCase , keep_accents=UpperCamelCase )
lowercase__ = tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase )
self.assertListEqual(UpperCamelCase , UpperCamelCase )
lowercase__ = tokenizer.tokenize(UpperCamelCase )
self.assertListEqual(UpperCamelCase , UpperCamelCase )
lowercase__ = tokenizer.convert_ids_to_tokens(UpperCamelCase )
self.assertListEqual(UpperCamelCase , UpperCamelCase )
lowercase__ = rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase )
self.assertListEqual(UpperCamelCase , UpperCamelCase )
lowercase__ = rust_tokenizer.tokenize(UpperCamelCase )
self.assertListEqual(UpperCamelCase , UpperCamelCase )
lowercase__ = rust_tokenizer.convert_ids_to_tokens(UpperCamelCase )
self.assertListEqual(UpperCamelCase , UpperCamelCase )
# fmt: off
lowercase__ = '''I was born in 92000, and this is falsé.'''
lowercase__ = [13, 1, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9]
lowercase__ = ['''▁''', '''I''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''é''', '''.''', ]
lowercase__ = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ]
# fmt: on
lowercase__ = tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase )
self.assertListEqual(UpperCamelCase , UpperCamelCase )
lowercase__ = tokenizer.tokenize(UpperCamelCase )
self.assertListEqual(UpperCamelCase , UpperCamelCase )
lowercase__ = tokenizer.convert_ids_to_tokens(UpperCamelCase )
self.assertListEqual(UpperCamelCase , UpperCamelCase )
lowercase__ = rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase )
self.assertListEqual(UpperCamelCase , UpperCamelCase )
lowercase__ = rust_tokenizer.tokenize(UpperCamelCase )
self.assertListEqual(UpperCamelCase , UpperCamelCase )
lowercase__ = rust_tokenizer.convert_ids_to_tokens(UpperCamelCase )
self.assertListEqual(UpperCamelCase , UpperCamelCase )
def UpperCamelCase__ (self : int ):
'''simple docstring'''
lowercase__ = DebertaVaTokenizer(UpperCamelCase )
lowercase__ = tokenizer.encode('''sequence builders''' )
lowercase__ = tokenizer.encode('''multi-sequence build''' )
lowercase__ = tokenizer.build_inputs_with_special_tokens(UpperCamelCase )
lowercase__ = tokenizer.build_inputs_with_special_tokens(UpperCamelCase , UpperCamelCase )
self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , UpperCamelCase )
self.assertEqual(
[tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , UpperCamelCase , )
@slow
def UpperCamelCase__ (self : int ):
'''simple docstring'''
lowercase__ = {'''input_ids''': [[1, 39867, 36, 19390, 486, 27, 35052, 81436, 18, 60685, 1225, 7, 35052, 81436, 18, 9367, 16899, 18, 15937, 53, 594, 773, 18, 16287, 30465, 36, 15937, 6, 41139, 38, 36979, 60763, 191, 6, 34132, 99, 6, 50538, 390, 43230, 6, 34132, 2779, 20850, 14, 699, 1072, 1194, 36, 382, 10901, 53, 7, 699, 1072, 2084, 36, 20422, 630, 53, 19, 105, 3049, 1896, 1053, 16899, 1506, 11, 37978, 4243, 7, 1237, 31869, 200, 16566, 654, 6, 35052, 81436, 7, 55630, 13593, 4, 2], [1, 26, 15011, 13, 667, 8, 1053, 18, 23611, 1237, 72356, 12820, 34, 104134, 1209, 35, 13313, 6627, 21, 202, 347, 7, 164, 2399, 11, 46, 4485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1232, 2864, 15785, 14951, 105, 5, 8581, 1250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=UpperCamelCase , model_name='''microsoft/deberta-v2-xlarge''' , revision='''ad6e42c1532ddf3a15c39246b63f5559d558b670''' , )
| 2 | 0 |
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import XGLMConfig, XGLMTokenizer, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers.models.xglm.modeling_tf_xglm import (
TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXGLMForCausalLM,
TFXGLMModel,
)
@require_tf
class _lowercase :
a = XGLMConfig
a = {}
a = """gelu"""
def __init__( self: str , UpperCamelCase__: Dict , UpperCamelCase__: List[Any]=14 , UpperCamelCase__: List[str]=7 , UpperCamelCase__: int=True , UpperCamelCase__: int=True , UpperCamelCase__: Any=True , UpperCamelCase__: int=99 , UpperCamelCase__: str=32 , UpperCamelCase__: Optional[int]=2 , UpperCamelCase__: str=4 , UpperCamelCase__: Union[str, Any]=37 , UpperCamelCase__: Optional[int]="gelu" , UpperCamelCase__: List[Any]=0.1 , UpperCamelCase__: int=0.1 , UpperCamelCase__: Union[str, Any]=512 , UpperCamelCase__: Optional[Any]=0.02 , ):
lowerCamelCase__ : Any = parent
lowerCamelCase__ : Union[str, Any] = batch_size
lowerCamelCase__ : Optional[int] = seq_length
lowerCamelCase__ : int = is_training
lowerCamelCase__ : str = use_input_mask
lowerCamelCase__ : Union[str, Any] = use_labels
lowerCamelCase__ : List[Any] = vocab_size
lowerCamelCase__ : List[str] = d_model
lowerCamelCase__ : Optional[Any] = num_hidden_layers
lowerCamelCase__ : Union[str, Any] = num_attention_heads
lowerCamelCase__ : str = ffn_dim
lowerCamelCase__ : Dict = activation_function
lowerCamelCase__ : Any = activation_dropout
lowerCamelCase__ : Union[str, Any] = attention_dropout
lowerCamelCase__ : Optional[int] = max_position_embeddings
lowerCamelCase__ : Any = initializer_range
lowerCamelCase__ : List[Any] = None
lowerCamelCase__ : Union[str, Any] = 0
lowerCamelCase__ : Any = 2
lowerCamelCase__ : Union[str, Any] = 1
def lowerCamelCase_ ( self: List[str] ):
return XGLMConfig.from_pretrained("""facebook/xglm-564M""" )
def lowerCamelCase_ ( self: int ):
lowerCamelCase__ : List[str] = tf.clip_by_value(
ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 )
lowerCamelCase__ : str = None
if self.use_input_mask:
lowerCamelCase__ : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] )
lowerCamelCase__ : List[str] = self.get_config()
lowerCamelCase__ : Optional[int] = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 )
return (
config,
input_ids,
input_mask,
head_mask,
)
def lowerCamelCase_ ( self: Union[str, Any] ):
return XGLMConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=UpperCamelCase__ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=UpperCamelCase__ , )
def lowerCamelCase_ ( self: Dict ):
lowerCamelCase__ : Any = self.prepare_config_and_inputs()
(
(
lowerCamelCase__
) , (
lowerCamelCase__
) , (
lowerCamelCase__
) , (
lowerCamelCase__
) ,
) : int = config_and_inputs
lowerCamelCase__ : Optional[int] = {
"""input_ids""": input_ids,
"""head_mask""": head_mask,
}
return config, inputs_dict
@require_tf
class _lowercase ( lowercase_ , lowercase_ , unittest.TestCase ):
a = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else ()
a = (TFXGLMForCausalLM,) if is_tf_available() else ()
a = (
{"""feature-extraction""": TFXGLMModel, """text-generation""": TFXGLMForCausalLM} if is_tf_available() else {}
)
a = False
a = False
a = False
def lowerCamelCase_ ( self: int ):
lowerCamelCase__ : List[str] = TFXGLMModelTester(self )
lowerCamelCase__ : Dict = ConfigTester(self , config_class=UpperCamelCase__ , n_embd=37 )
def lowerCamelCase_ ( self: Tuple ):
self.config_tester.run_common_tests()
@slow
def lowerCamelCase_ ( self: Optional[Any] ):
for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCamelCase__ : Any = TFXGLMModel.from_pretrained(UpperCamelCase__ )
self.assertIsNotNone(UpperCamelCase__ )
@unittest.skip(reason="""Currently, model embeddings are going to undergo a major refactor.""" )
def lowerCamelCase_ ( self: Any ):
super().test_resize_token_embeddings()
@require_tf
class _lowercase ( unittest.TestCase ):
@slow
def lowerCamelCase_ ( self: Dict , UpperCamelCase__: Optional[Any]=True ):
lowerCamelCase__ : Union[str, Any] = TFXGLMForCausalLM.from_pretrained("""facebook/xglm-564M""" )
lowerCamelCase__ : Dict = tf.convert_to_tensor([[2, 268, 9_865]] , dtype=tf.intaa ) # The dog
# </s> The dog is a very friendly dog. He is very affectionate and loves to play with other
# fmt: off
lowerCamelCase__ : int = [2, 268, 9_865, 67, 11, 1_988, 57_252, 9_865, 5, 984, 67, 1_988, 213_838, 1_658, 53, 70_446, 33, 6_657, 278, 1_581]
# fmt: on
lowerCamelCase__ : int = model.generate(UpperCamelCase__ , do_sample=UpperCamelCase__ , num_beams=1 )
if verify_outputs:
self.assertListEqual(output_ids[0].numpy().tolist() , UpperCamelCase__ )
@slow
def lowerCamelCase_ ( self: List[Any] ):
lowerCamelCase__ : List[Any] = XGLMTokenizer.from_pretrained("""facebook/xglm-564M""" )
lowerCamelCase__ : Tuple = TFXGLMForCausalLM.from_pretrained("""facebook/xglm-564M""" )
tf.random.set_seed(0 )
lowerCamelCase__ : str = tokenizer("""Today is a nice day and""" , return_tensors="""tf""" )
lowerCamelCase__ : Dict = tokenized.input_ids
# forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices)
with tf.device(""":/CPU:0""" ):
lowerCamelCase__ : Optional[int] = model.generate(UpperCamelCase__ , do_sample=UpperCamelCase__ , seed=[7, 0] )
lowerCamelCase__ : Tuple = tokenizer.decode(output_ids[0] , skip_special_tokens=UpperCamelCase__ )
lowerCamelCase__ : Optional[Any] = (
"""Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due"""
)
self.assertEqual(UpperCamelCase__ , UpperCamelCase__ )
@slow
def lowerCamelCase_ ( self: Dict ):
lowerCamelCase__ : Dict = TFXGLMForCausalLM.from_pretrained("""facebook/xglm-564M""" )
lowerCamelCase__ : Dict = XGLMTokenizer.from_pretrained("""facebook/xglm-564M""" )
lowerCamelCase__ : Union[str, Any] = """left"""
# use different length sentences to test batching
lowerCamelCase__ : int = [
"""This is an extremelly long sentence that only exists to test the ability of the model to cope with """
"""left-padding, such as in batched generation. The output for the sequence below should be the same """
"""regardless of whether left padding is applied or not. When""",
"""Hello, my dog is a little""",
]
lowerCamelCase__ : int = tokenizer(UpperCamelCase__ , return_tensors="""tf""" , padding=UpperCamelCase__ )
lowerCamelCase__ : Optional[int] = inputs["""input_ids"""]
lowerCamelCase__ : List[Any] = model.generate(input_ids=UpperCamelCase__ , attention_mask=inputs["""attention_mask"""] , max_new_tokens=12 )
lowerCamelCase__ : Dict = tokenizer(sentences[0] , return_tensors="""tf""" ).input_ids
lowerCamelCase__ : Dict = model.generate(input_ids=UpperCamelCase__ , max_new_tokens=12 )
lowerCamelCase__ : Dict = tokenizer(sentences[1] , return_tensors="""tf""" ).input_ids
lowerCamelCase__ : Union[str, Any] = model.generate(input_ids=UpperCamelCase__ , max_new_tokens=12 )
lowerCamelCase__ : Optional[Any] = tokenizer.batch_decode(UpperCamelCase__ , skip_special_tokens=UpperCamelCase__ )
lowerCamelCase__ : Any = tokenizer.decode(output_non_padded[0] , skip_special_tokens=UpperCamelCase__ )
lowerCamelCase__ : Any = tokenizer.decode(output_padded[0] , skip_special_tokens=UpperCamelCase__ )
lowerCamelCase__ : Optional[int] = [
"""This is an extremelly long sentence that only exists to test the ability of the model to cope with """
"""left-padding, such as in batched generation. The output for the sequence below should be the same """
"""regardless of whether left padding is applied or not. When left padding is applied, the sequence will be """
"""a single""",
"""Hello, my dog is a little bit of a shy one, but he is very friendly""",
]
self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ )
self.assertListEqual(UpperCamelCase__ , [non_padded_sentence, padded_sentence] )
| 41 |
'''simple docstring'''
import argparse
import torch
from torch import nn
from transformers import MBartConfig, MBartForConditionalGeneration
def _SCREAMING_SNAKE_CASE (A ) -> Optional[Any]:
"""simple docstring"""
lowercase__ = [
'''encoder.version''',
'''decoder.version''',
'''model.encoder.version''',
'''model.decoder.version''',
'''_float_tensor''',
'''decoder.output_projection.weight''',
]
for k in ignore_keys:
state_dict.pop(A , A )
def _SCREAMING_SNAKE_CASE (A ) -> List[str]:
"""simple docstring"""
lowercase__ ,lowercase__ = emb.weight.shape
lowercase__ = nn.Linear(A , A , bias=A )
lowercase__ = emb.weight.data
return lin_layer
def _SCREAMING_SNAKE_CASE (A , A="facebook/mbart-large-en-ro" , A=False , A=False ) -> Union[str, Any]:
"""simple docstring"""
lowercase__ = torch.load(A , map_location='''cpu''' )['''model''']
remove_ignore_keys_(A )
lowercase__ = state_dict['''encoder.embed_tokens.weight'''].shape[0]
lowercase__ = MBartConfig.from_pretrained(A , vocab_size=A )
if mbart_aa and finetuned:
lowercase__ = '''relu'''
lowercase__ = state_dict['''decoder.embed_tokens.weight''']
lowercase__ = MBartForConditionalGeneration(A )
model.model.load_state_dict(A )
if finetuned:
lowercase__ = make_linear_from_emb(model.model.shared )
return model
if __name__ == "__main__":
lowerCamelCase : Any = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'fairseq_path', type=str, help='bart.large, bart.large.cnn or a path to a model.pt on local filesystem.'
)
parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
parser.add_argument(
'--hf_config',
default='facebook/mbart-large-cc25',
type=str,
help='Which huggingface architecture to use: mbart-large',
)
parser.add_argument('--mbart_50', action='store_true', help='whether the model is mMART-50 checkpoint')
parser.add_argument('--finetuned', action='store_true', help='whether the model is a fine-tuned checkpoint')
lowerCamelCase : Any = parser.parse_args()
lowerCamelCase : List[str] = convert_fairseq_mbart_checkpoint_from_disk(
args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa
)
model.save_pretrained(args.pytorch_dump_folder_path)
| 2 | 0 |
'''simple docstring'''
from ...processing_utils import ProcessorMixin
class A ( lowercase_ ):
__magic_name__ = """SpeechT5FeatureExtractor"""
__magic_name__ = """SpeechT5Tokenizer"""
def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str:
"""simple docstring"""
super().__init__(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
def __call__( self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> Dict:
"""simple docstring"""
A : int = kwargs.pop('''audio''' , SCREAMING_SNAKE_CASE )
A : List[str] = kwargs.pop('''text''' , SCREAMING_SNAKE_CASE )
A : Dict = kwargs.pop('''text_target''' , SCREAMING_SNAKE_CASE )
A : List[str] = kwargs.pop('''audio_target''' , SCREAMING_SNAKE_CASE )
A : List[str] = kwargs.pop('''sampling_rate''' , SCREAMING_SNAKE_CASE )
if audio is not None and text is not None:
raise ValueError(
'''Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?''' )
if audio_target is not None and text_target is not None:
raise ValueError(
'''Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?''' )
if audio is None and audio_target is None and text is None and text_target is None:
raise ValueError(
'''You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process.''' )
if audio is not None:
A : str = self.feature_extractor(SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE , sampling_rate=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
elif text is not None:
A : Any = self.tokenizer(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
else:
A : Optional[Any] = None
if audio_target is not None:
A : Optional[Any] = self.feature_extractor(audio_target=SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE , sampling_rate=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
A : Optional[int] = targets['''input_values''']
elif text_target is not None:
A : Dict = self.tokenizer(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
A : Any = targets['''input_ids''']
else:
A : Union[str, Any] = None
if inputs is None:
return targets
if targets is not None:
A : List[Any] = labels
A : Optional[int] = targets.get('''attention_mask''' )
if decoder_attention_mask is not None:
A : str = decoder_attention_mask
return inputs
def __lowerCAmelCase ( self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> Any:
"""simple docstring"""
A : List[str] = kwargs.pop('''input_values''' , SCREAMING_SNAKE_CASE )
A : Any = kwargs.pop('''input_ids''' , SCREAMING_SNAKE_CASE )
A : int = kwargs.pop('''labels''' , SCREAMING_SNAKE_CASE )
if input_values is not None and input_ids is not None:
raise ValueError('''Cannot process both `input_values` and `input_ids` inputs.''' )
if input_values is None and input_ids is None and labels is None:
raise ValueError(
'''You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded.''' )
if input_values is not None:
A : Tuple = self.feature_extractor.pad(SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
elif input_ids is not None:
A : Optional[Any] = self.tokenizer.pad(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
else:
A : List[Any] = None
if labels is not None:
if "input_ids" in labels or (isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and "input_ids" in labels[0]):
A : List[str] = self.tokenizer.pad(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
A : Optional[int] = targets['''input_ids''']
else:
A : List[Any] = self.feature_extractor.feature_size
A : Any = self.feature_extractor.num_mel_bins
A : int = self.feature_extractor.pad(SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
A : Optional[int] = feature_size_hack
A : Dict = targets['''input_values''']
else:
A : List[Any] = None
if inputs is None:
return targets
if targets is not None:
A : int = labels
A : Tuple = targets.get('''attention_mask''' )
if decoder_attention_mask is not None:
A : Dict = decoder_attention_mask
return inputs
def __lowerCAmelCase ( self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> int:
"""simple docstring"""
return self.tokenizer.batch_decode(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> int:
"""simple docstring"""
return self.tokenizer.decode(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
| 3 |
'''simple docstring'''
import logging
import os
from typing import List, TextIO, Union
from conllu import parse_incr
from utils_ner import InputExample, Split, TokenClassificationTask
lowerCamelCase : List[Any] = logging.getLogger(__name__)
class __lowerCAmelCase (lowercase_ ):
'''simple docstring'''
def __init__(self : Optional[Any] , UpperCamelCase : Any=-1 ):
'''simple docstring'''
lowercase__ = label_idx
def UpperCamelCase__ (self : Union[str, Any] , UpperCamelCase : Optional[Any] , UpperCamelCase : Union[Split, str] ):
'''simple docstring'''
if isinstance(UpperCamelCase , UpperCamelCase ):
lowercase__ = mode.value
lowercase__ = os.path.join(UpperCamelCase , f"{mode}.txt" )
lowercase__ = 1
lowercase__ = []
with open(UpperCamelCase , encoding='''utf-8''' ) as f:
lowercase__ = []
lowercase__ = []
for line in f:
if line.startswith('''-DOCSTART-''' ) or line == "" or line == "\n":
if words:
examples.append(InputExample(guid=f"{mode}-{guid_index}" , words=UpperCamelCase , labels=UpperCamelCase ) )
guid_index += 1
lowercase__ = []
lowercase__ = []
else:
lowercase__ = line.split(''' ''' )
words.append(splits[0] )
if len(UpperCamelCase ) > 1:
labels.append(splits[self.label_idx].replace('''\n''' , '''''' ) )
else:
# Examples could have no label for mode = "test"
labels.append('''O''' )
if words:
examples.append(InputExample(guid=f"{mode}-{guid_index}" , words=UpperCamelCase , labels=UpperCamelCase ) )
return examples
def UpperCamelCase__ (self : Optional[int] , UpperCamelCase : TextIO , UpperCamelCase : TextIO , UpperCamelCase : List ):
'''simple docstring'''
lowercase__ = 0
for line in test_input_reader:
if line.startswith('''-DOCSTART-''' ) or line == "" or line == "\n":
writer.write(UpperCamelCase )
if not preds_list[example_id]:
example_id += 1
elif preds_list[example_id]:
lowercase__ = line.split()[0] + ''' ''' + preds_list[example_id].pop(0 ) + '''\n'''
writer.write(UpperCamelCase )
else:
logger.warning('''Maximum sequence length exceeded: No prediction for \'%s\'.''' , line.split()[0] )
def UpperCamelCase__ (self : Union[str, Any] , UpperCamelCase : str ):
'''simple docstring'''
if path:
with open(UpperCamelCase , '''r''' ) as f:
lowercase__ = f.read().splitlines()
if "O" not in labels:
lowercase__ = ['''O'''] + labels
return labels
else:
return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"]
class __lowerCAmelCase (lowercase_ ):
'''simple docstring'''
def __init__(self : List[Any] ):
'''simple docstring'''
super().__init__(label_idx=-2 )
def UpperCamelCase__ (self : List[Any] , UpperCamelCase : str ):
'''simple docstring'''
if path:
with open(UpperCamelCase , '''r''' ) as f:
lowercase__ = f.read().splitlines()
if "O" not in labels:
lowercase__ = ['''O'''] + labels
return labels
else:
return [
"O",
"B-ADVP",
"B-INTJ",
"B-LST",
"B-PRT",
"B-NP",
"B-SBAR",
"B-VP",
"B-ADJP",
"B-CONJP",
"B-PP",
"I-ADVP",
"I-INTJ",
"I-LST",
"I-PRT",
"I-NP",
"I-SBAR",
"I-VP",
"I-ADJP",
"I-CONJP",
"I-PP",
]
class __lowerCAmelCase (lowercase_ ):
'''simple docstring'''
def UpperCamelCase__ (self : Tuple , UpperCamelCase : int , UpperCamelCase : Union[Split, str] ):
'''simple docstring'''
if isinstance(UpperCamelCase , UpperCamelCase ):
lowercase__ = mode.value
lowercase__ = os.path.join(UpperCamelCase , f"{mode}.txt" )
lowercase__ = 1
lowercase__ = []
with open(UpperCamelCase , encoding='''utf-8''' ) as f:
for sentence in parse_incr(UpperCamelCase ):
lowercase__ = []
lowercase__ = []
for token in sentence:
words.append(token['''form'''] )
labels.append(token['''upos'''] )
assert len(UpperCamelCase ) == len(UpperCamelCase )
if words:
examples.append(InputExample(guid=f"{mode}-{guid_index}" , words=UpperCamelCase , labels=UpperCamelCase ) )
guid_index += 1
return examples
def UpperCamelCase__ (self : Tuple , UpperCamelCase : TextIO , UpperCamelCase : TextIO , UpperCamelCase : List ):
'''simple docstring'''
lowercase__ = 0
for sentence in parse_incr(UpperCamelCase ):
lowercase__ = preds_list[example_id]
lowercase__ = ''''''
for token in sentence:
out += f"{token['form']} ({token['upos']}|{s_p.pop(0 )}) "
out += "\n"
writer.write(UpperCamelCase )
example_id += 1
def UpperCamelCase__ (self : Union[str, Any] , UpperCamelCase : str ):
'''simple docstring'''
if path:
with open(UpperCamelCase , '''r''' ) as f:
return f.read().splitlines()
else:
return [
"ADJ",
"ADP",
"ADV",
"AUX",
"CCONJ",
"DET",
"INTJ",
"NOUN",
"NUM",
"PART",
"PRON",
"PROPN",
"PUNCT",
"SCONJ",
"SYM",
"VERB",
"X",
]
| 2 | 0 |
'''simple docstring'''
import argparse
import torch
from torch import nn
from transformers import MBartConfig, MBartForConditionalGeneration
def snake_case_ (_a : List[Any] ):
UpperCAmelCase = [
'''encoder.version''',
'''decoder.version''',
'''model.encoder.version''',
'''model.decoder.version''',
'''_float_tensor''',
'''decoder.output_projection.weight''',
]
for k in ignore_keys:
state_dict.pop(_a , _a )
def snake_case_ (_a : Tuple ):
UpperCAmelCase , UpperCAmelCase = emb.weight.shape
UpperCAmelCase = nn.Linear(_a , _a , bias=_a )
UpperCAmelCase = emb.weight.data
return lin_layer
def snake_case_ (_a : Optional[int] , _a : Optional[int]="facebook/mbart-large-en-ro" , _a : Optional[Any]=False , _a : Any=False ):
UpperCAmelCase = torch.load(_a , map_location='''cpu''' )['''model''']
remove_ignore_keys_(_a )
UpperCAmelCase = state_dict['''encoder.embed_tokens.weight'''].shape[0]
UpperCAmelCase = MBartConfig.from_pretrained(_a , vocab_size=_a )
if mbart_aa and finetuned:
UpperCAmelCase = '''relu'''
UpperCAmelCase = state_dict['''decoder.embed_tokens.weight''']
UpperCAmelCase = MBartForConditionalGeneration(_a )
model.model.load_state_dict(_a )
if finetuned:
UpperCAmelCase = make_linear_from_emb(model.model.shared )
return model
if __name__ == "__main__":
A =argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'fairseq_path', type=str, help='bart.large, bart.large.cnn or a path to a model.pt on local filesystem.'
)
parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
parser.add_argument(
'--hf_config',
default='facebook/mbart-large-cc25',
type=str,
help='Which huggingface architecture to use: mbart-large',
)
parser.add_argument('--mbart_50', action='store_true', help='whether the model is mMART-50 checkpoint')
parser.add_argument('--finetuned', action='store_true', help='whether the model is a fine-tuned checkpoint')
A =parser.parse_args()
A =convert_fairseq_mbart_checkpoint_from_disk(
args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa
)
model.save_pretrained(args.pytorch_dump_folder_path)
| 34 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCamelCase : Dict = logging.get_logger(__name__)
lowerCamelCase : Union[str, Any] = {
# See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert
}
class __lowerCAmelCase (lowercase_ ):
'''simple docstring'''
lowerCAmelCase__ : List[str] = """megatron-bert"""
def __init__(self : Tuple , UpperCamelCase : Optional[int]=29056 , UpperCamelCase : Optional[Any]=1024 , UpperCamelCase : Any=24 , UpperCamelCase : int=16 , UpperCamelCase : Optional[int]=4096 , UpperCamelCase : int="gelu" , UpperCamelCase : int=0.1 , UpperCamelCase : Tuple=0.1 , UpperCamelCase : Any=512 , UpperCamelCase : int=2 , UpperCamelCase : Dict=0.02 , UpperCamelCase : Dict=1E-12 , UpperCamelCase : List[Any]=0 , UpperCamelCase : Optional[int]="absolute" , UpperCamelCase : List[Any]=True , **UpperCamelCase : str , ):
'''simple docstring'''
super().__init__(pad_token_id=UpperCamelCase , **UpperCamelCase )
lowercase__ = vocab_size
lowercase__ = hidden_size
lowercase__ = num_hidden_layers
lowercase__ = num_attention_heads
lowercase__ = hidden_act
lowercase__ = intermediate_size
lowercase__ = hidden_dropout_prob
lowercase__ = attention_probs_dropout_prob
lowercase__ = max_position_embeddings
lowercase__ = type_vocab_size
lowercase__ = initializer_range
lowercase__ = layer_norm_eps
lowercase__ = position_embedding_type
lowercase__ = use_cache
| 2 | 0 |
'''simple docstring'''
import warnings
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCAmelCase = logging.get_logger(__name__)
UpperCAmelCase = {
'RUCAIBox/mvp': 'https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json',
}
class lowerCAmelCase ( lowercase_ ):
lowerCAmelCase_ = """mvp"""
lowerCAmelCase_ = ["""past_key_values"""]
lowerCAmelCase_ = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""}
def __init__( self : Any , __lowercase : Optional[int]=50267 , __lowercase : Tuple=1024 , __lowercase : int=12 , __lowercase : Tuple=4096 , __lowercase : Dict=16 , __lowercase : int=12 , __lowercase : Optional[int]=4096 , __lowercase : Optional[int]=16 , __lowercase : Tuple=0.0 , __lowercase : Tuple=0.0 , __lowercase : List[Any]="gelu" , __lowercase : Union[str, Any]=1024 , __lowercase : Optional[Any]=0.1 , __lowercase : str=0.0 , __lowercase : str=0.0 , __lowercase : Optional[Any]=0.0_2 , __lowercase : List[str]=0.0 , __lowercase : List[str]=False , __lowercase : Optional[int]=True , __lowercase : Any=1 , __lowercase : int=0 , __lowercase : int=2 , __lowercase : Any=True , __lowercase : Optional[Any]=2 , __lowercase : Optional[Any]=2 , __lowercase : Tuple=False , __lowercase : int=100 , __lowercase : Optional[Any]=800 , **__lowercase : str , ):
"""simple docstring"""
__lowercase =vocab_size
__lowercase =max_position_embeddings
__lowercase =d_model
__lowercase =encoder_ffn_dim
__lowercase =encoder_layers
__lowercase =encoder_attention_heads
__lowercase =decoder_ffn_dim
__lowercase =decoder_layers
__lowercase =decoder_attention_heads
__lowercase =dropout
__lowercase =attention_dropout
__lowercase =activation_dropout
__lowercase =activation_function
__lowercase =init_std
__lowercase =encoder_layerdrop
__lowercase =decoder_layerdrop
__lowercase =classifier_dropout
__lowercase =use_cache
__lowercase =encoder_layers
__lowercase =scale_embedding # scale factor will be sqrt(d_model) if True
__lowercase =use_prompt
__lowercase =prompt_length
__lowercase =prompt_mid_dim
super().__init__(
pad_token_id=__lowercase , bos_token_id=__lowercase , eos_token_id=__lowercase , is_encoder_decoder=__lowercase , decoder_start_token_id=__lowercase , forced_eos_token_id=__lowercase , **__lowercase , )
if self.forced_bos_token_id is None and kwargs.get('force_bos_token_to_be_generated' , __lowercase ):
__lowercase =self.bos_token_id
warnings.warn(
f'''Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. '''
'The config can simply be saved and uploaded again to be fixed.' )
| 141 |
'''simple docstring'''
# Lint as: python3
import itertools
import os
import re
lowerCamelCase : Any = re.compile(R'([A-Z]+)([A-Z][a-z])')
lowerCamelCase : str = re.compile(R'([a-z\d])([A-Z])')
lowerCamelCase : Optional[int] = re.compile(R'(?<!_)_(?!_)')
lowerCamelCase : List[Any] = re.compile(R'(_{2,})')
lowerCamelCase : str = R'^\w+(\.\w+)*$'
lowerCamelCase : Dict = R'<>:/\|?*'
def _SCREAMING_SNAKE_CASE (A ) -> Any:
"""simple docstring"""
lowercase__ = _uppercase_uppercase_re.sub(R'''\1_\2''' , A )
lowercase__ = _lowercase_uppercase_re.sub(R'''\1_\2''' , A )
return name.lower()
def _SCREAMING_SNAKE_CASE (A ) -> Tuple:
"""simple docstring"""
lowercase__ = _single_underscore_re.split(A )
lowercase__ = [_multiple_underscores_re.split(A ) for n in name]
return "".join(n.capitalize() for n in itertools.chain.from_iterable(A ) if n != '''''' )
def _SCREAMING_SNAKE_CASE (A ) -> Tuple:
"""simple docstring"""
if os.path.basename(A ) != name:
raise ValueError(f"Should be a dataset name, not a path: {name}" )
return camelcase_to_snakecase(A )
def _SCREAMING_SNAKE_CASE (A , A ) -> Optional[Any]:
"""simple docstring"""
if os.path.basename(A ) != name:
raise ValueError(f"Should be a dataset name, not a path: {name}" )
if not re.match(_split_re , A ):
raise ValueError(f"Split name should match '{_split_re}'' but got '{split}'." )
return f"{filename_prefix_for_name(A )}-{split}"
def _SCREAMING_SNAKE_CASE (A , A , A , A=None ) -> List[str]:
"""simple docstring"""
lowercase__ = filename_prefix_for_split(A , A )
if filetype_suffix:
prefix += f".{filetype_suffix}"
lowercase__ = os.path.join(A , A )
return f"{filepath}*"
def _SCREAMING_SNAKE_CASE (A , A , A , A=None , A=None ) -> Optional[Any]:
"""simple docstring"""
lowercase__ = filename_prefix_for_split(A , A )
lowercase__ = os.path.join(A , A )
if shard_lengths:
lowercase__ = len(A )
lowercase__ = [f"{prefix}-{shard_id:05d}-of-{num_shards:05d}" for shard_id in range(A )]
if filetype_suffix:
lowercase__ = [filename + f".{filetype_suffix}" for filename in filenames]
return filenames
else:
lowercase__ = prefix
if filetype_suffix:
filename += f".{filetype_suffix}"
return [filename]
| 2 | 0 |
import os
from datetime import datetime as dt
from github import Github
__snake_case : Optional[Any] =[
'good first issue',
'feature request',
'wip',
]
def lowerCAmelCase__ ( ):
'''simple docstring'''
lowerCAmelCase__ : Dict = Github(os.environ['''GITHUB_TOKEN'''])
lowerCAmelCase__ : int = g.get_repo('''huggingface/accelerate''')
lowerCAmelCase__ : Tuple = repo.get_issues(state='''open''')
for issue in open_issues:
lowerCAmelCase__ : Dict = sorted([comment for comment in issue.get_comments()] ,key=lambda lowerCamelCase_: i.created_at ,reverse=lowerCamelCase_)
lowerCAmelCase__ : int = comments[0] if len(lowerCamelCase_) > 0 else None
lowerCAmelCase__ : str = dt.utcnow()
lowerCAmelCase__ : Tuple = (current_time - issue.updated_at).days
lowerCAmelCase__ : Union[str, Any] = (current_time - issue.created_at).days
if (
last_comment is not None
and last_comment.user.login == "github-actions[bot]"
and days_since_updated > 7
and days_since_creation >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels())
):
# Close issue since it has been 7 days of inactivity since bot mention.
issue.edit(state='''closed''')
elif (
days_since_updated > 23
and days_since_creation >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels())
):
# Add stale comment
issue.create_comment(
'''This issue has been automatically marked as stale because it has not had '''
'''recent activity. If you think this still needs to be addressed '''
'''please comment on this thread.\n\nPlease note that issues that do not follow the '''
'''[contributing guidelines](https://github.com/huggingface/accelerate/blob/main/CONTRIBUTING.md) '''
'''are likely to be ignored.''')
if __name__ == "__main__":
main()
| 129 |
'''simple docstring'''
import unittest
from transformers import TrOCRConfig
from transformers.testing_utils import is_torch_available, require_torch, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM
@require_torch
class __lowerCAmelCase :
'''simple docstring'''
def __init__(self : str , UpperCamelCase : Tuple , UpperCamelCase : Optional[int]=99 , UpperCamelCase : Optional[int]=13 , UpperCamelCase : Tuple=16 , UpperCamelCase : Union[str, Any]=7 , UpperCamelCase : List[Any]=True , UpperCamelCase : List[str]=True , UpperCamelCase : str=True , UpperCamelCase : Tuple=False , UpperCamelCase : str=True , UpperCamelCase : Tuple=2 , UpperCamelCase : Optional[int]=32 , UpperCamelCase : Any=4 , UpperCamelCase : Optional[int]=4 , UpperCamelCase : Tuple=30 , UpperCamelCase : str=0 , UpperCamelCase : Tuple=1 , UpperCamelCase : List[Any]=2 , UpperCamelCase : str=None , ):
'''simple docstring'''
lowercase__ = parent
lowercase__ = batch_size
lowercase__ = decoder_seq_length
# For common tests
lowercase__ = self.decoder_seq_length
lowercase__ = is_training
lowercase__ = use_attention_mask
lowercase__ = use_labels
lowercase__ = vocab_size
lowercase__ = d_model
lowercase__ = d_model
lowercase__ = decoder_layers
lowercase__ = decoder_layers
lowercase__ = decoder_ffn_dim
lowercase__ = decoder_attention_heads
lowercase__ = decoder_attention_heads
lowercase__ = eos_token_id
lowercase__ = bos_token_id
lowercase__ = pad_token_id
lowercase__ = decoder_start_token_id
lowercase__ = use_cache
lowercase__ = max_position_embeddings
lowercase__ = None
lowercase__ = decoder_seq_length
lowercase__ = 2
lowercase__ = 1
def UpperCamelCase__ (self : str ):
'''simple docstring'''
lowercase__ = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size )
lowercase__ = None
if self.use_attention_mask:
lowercase__ = ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 )
lowercase__ = None
if self.use_labels:
lowercase__ = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size )
lowercase__ = TrOCRConfig(
vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , )
return (config, input_ids, attention_mask, lm_labels)
def UpperCamelCase__ (self : Tuple , UpperCamelCase : List[Any] , UpperCamelCase : Optional[Any] , UpperCamelCase : Tuple , UpperCamelCase : List[str] , ):
'''simple docstring'''
lowercase__ = True
lowercase__ = TrOCRDecoder(config=UpperCamelCase ).to(UpperCamelCase ).eval()
lowercase__ = input_ids[:2]
input_ids[input_ids == 0] += 1
# first forward pass
lowercase__ = model(UpperCamelCase , use_cache=UpperCamelCase )
lowercase__ = model(UpperCamelCase )
lowercase__ = model(UpperCamelCase , use_cache=UpperCamelCase )
self.parent.assertTrue(len(UpperCamelCase ) == len(UpperCamelCase ) )
self.parent.assertTrue(len(UpperCamelCase ) == len(UpperCamelCase ) + 1 )
lowercase__ = outputs['''past_key_values''']
# create hypothetical next token and extent to next_input_ids
lowercase__ = ids_tensor((2, 1) , config.vocab_size - 1 ) + 1
# append to next input_ids and
lowercase__ = torch.cat([input_ids, next_tokens] , dim=-1 )
lowercase__ = model(UpperCamelCase )['''last_hidden_state''']
lowercase__ = model(UpperCamelCase , past_key_values=UpperCamelCase )['''last_hidden_state''']
# select random slice
lowercase__ = ids_tensor((1,) , output_from_past.shape[-1] ).item()
lowercase__ = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach()
lowercase__ = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
assert torch.allclose(UpperCamelCase , UpperCamelCase , atol=1E-3 )
def UpperCamelCase__ (self : Optional[Any] ):
'''simple docstring'''
lowercase__ = self.prepare_config_and_inputs()
lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ = config_and_inputs
lowercase__ = {'''input_ids''': input_ids, '''attention_mask''': attention_mask}
return config, inputs_dict
@require_torch
class __lowerCAmelCase (lowercase_ , lowercase_ , lowercase_ , unittest.TestCase ):
'''simple docstring'''
lowerCAmelCase__ : List[str] = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else ()
lowerCAmelCase__ : List[Any] = (TrOCRForCausalLM,) if is_torch_available() else ()
lowerCAmelCase__ : Optional[Any] = {"""text-generation""": TrOCRForCausalLM} if is_torch_available() else {}
lowerCAmelCase__ : Optional[Any] = True
lowerCAmelCase__ : List[str] = False
def UpperCamelCase__ (self : Any ):
'''simple docstring'''
lowercase__ = TrOCRStandaloneDecoderModelTester(self , is_training=UpperCamelCase )
lowercase__ = ConfigTester(self , config_class=UpperCamelCase )
def UpperCamelCase__ (self : List[str] ):
'''simple docstring'''
pass
def UpperCamelCase__ (self : Optional[int] ):
'''simple docstring'''
pass
def UpperCamelCase__ (self : Any ):
'''simple docstring'''
pass
def UpperCamelCase__ (self : Any ):
'''simple docstring'''
self.config_tester.run_common_tests()
def UpperCamelCase__ (self : Union[str, Any] ):
'''simple docstring'''
lowercase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_decoder_model_past(*UpperCamelCase )
def UpperCamelCase__ (self : Optional[int] ):
'''simple docstring'''
return
@unittest.skip('''The model doesn\'t support left padding''' ) # and it's not used enough to be worth fixing :)
def UpperCamelCase__ (self : List[str] ):
'''simple docstring'''
pass
| 2 | 0 |
"""simple docstring"""
import bza
import gzip
import lzma
import os
import shutil
import struct
import tarfile
import warnings
import zipfile
from abc import ABC, abstractmethod
from pathlib import Path
from typing import Dict, List, Optional, Type, Union
from .. import config
from .filelock import FileLock
from .logging import get_logger
SCREAMING_SNAKE_CASE : Tuple = get_logger(__name__)
class _UpperCAmelCase :
'''simple docstring'''
def __init__(self , a_ = None ):
'''simple docstring'''
__snake_case : Optional[int] = (
os.path.join(a_ , config.EXTRACTED_DATASETS_DIR ) if cache_dir else config.EXTRACTED_DATASETS_PATH
)
__snake_case : List[Any] = Extractor
def SCREAMING_SNAKE_CASE (self , a_ ):
'''simple docstring'''
from .file_utils import hash_url_to_filename
# Path where we extract compressed archives
# We extract in the cache dir, and get the extracted path name by hashing the original path"
__snake_case : Union[str, Any] = os.path.abspath(a_ )
return os.path.join(self.extract_dir , hash_url_to_filename(a_ ) )
def SCREAMING_SNAKE_CASE (self , a_ , a_ ):
'''simple docstring'''
return force_extract or (
not os.path.isfile(a_ ) and not (os.path.isdir(a_ ) and os.listdir(a_ ))
)
def SCREAMING_SNAKE_CASE (self , a_ , a_ = False ):
'''simple docstring'''
__snake_case : Tuple = self.extractor.infer_extractor_format(a_ )
if not extractor_format:
return input_path
__snake_case : Union[str, Any] = self._get_output_path(a_ )
if self._do_extract(a_ , a_ ):
self.extractor.extract(a_ , a_ , a_ )
return output_path
class _UpperCAmelCase ( lowercase_ ):
'''simple docstring'''
@classmethod
@abstractmethod
def SCREAMING_SNAKE_CASE (cls , a_ , **a_ ):
'''simple docstring'''
...
@staticmethod
@abstractmethod
def SCREAMING_SNAKE_CASE (a_ , a_ ):
'''simple docstring'''
...
class _UpperCAmelCase ( lowercase_, lowercase_ ):
'''simple docstring'''
lowerCamelCase__ =[]
@staticmethod
def SCREAMING_SNAKE_CASE (a_ , a_ ):
'''simple docstring'''
with open(a_ , '''rb''' ) as f:
return f.read(a_ )
@classmethod
def SCREAMING_SNAKE_CASE (cls , a_ , a_ = b"" ):
'''simple docstring'''
if not magic_number:
__snake_case : Optional[Any] = max(len(a_ ) for cls_magic_number in cls.magic_numbers )
try:
__snake_case : int = cls.read_magic_number(a_ , a_ )
except OSError:
return False
return any(magic_number.startswith(a_ ) for cls_magic_number in cls.magic_numbers )
class _UpperCAmelCase ( lowercase_ ):
'''simple docstring'''
@classmethod
def SCREAMING_SNAKE_CASE (cls , a_ , **a_ ):
'''simple docstring'''
return tarfile.is_tarfile(a_ )
@staticmethod
def SCREAMING_SNAKE_CASE (a_ , a_ ):
'''simple docstring'''
def resolved(a_ ) -> str:
return os.path.realpath(os.path.abspath(a_ ) )
def badpath(a_ , a_ ) -> bool:
# joinpath will ignore base if path is absolute
return not resolved(os.path.join(a_ , a_ ) ).startswith(a_ )
def badlink(a_ , a_ ) -> bool:
# Links are interpreted relative to the directory containing the link
__snake_case : List[str] = resolved(os.path.join(a_ , os.path.dirname(info.name ) ) )
return badpath(info.linkname , base=a_ )
__snake_case : List[Any] = resolved(a_ )
for finfo in members:
if badpath(finfo.name , a_ ):
logger.error(f"""Extraction of {finfo.name} is blocked (illegal path)""" )
elif finfo.issym() and badlink(a_ , a_ ):
logger.error(f"""Extraction of {finfo.name} is blocked: Symlink to {finfo.linkname}""" )
elif finfo.islnk() and badlink(a_ , a_ ):
logger.error(f"""Extraction of {finfo.name} is blocked: Hard link to {finfo.linkname}""" )
else:
yield finfo
@staticmethod
def SCREAMING_SNAKE_CASE (a_ , a_ ):
'''simple docstring'''
os.makedirs(a_ , exist_ok=a_ )
__snake_case : int = tarfile.open(a_ )
tar_file.extractall(a_ , members=TarExtractor.safemembers(a_ , a_ ) )
tar_file.close()
class _UpperCAmelCase ( lowercase_ ):
'''simple docstring'''
lowerCamelCase__ =[B"""\x1F\x8B"""]
@staticmethod
def SCREAMING_SNAKE_CASE (a_ , a_ ):
'''simple docstring'''
with gzip.open(a_ , '''rb''' ) as gzip_file:
with open(a_ , '''wb''' ) as extracted_file:
shutil.copyfileobj(a_ , a_ )
class _UpperCAmelCase ( lowercase_ ):
'''simple docstring'''
lowerCamelCase__ =[
B"""PK\x03\x04""",
B"""PK\x05\x06""", # empty archive
B"""PK\x07\x08""", # spanned archive
]
@classmethod
def SCREAMING_SNAKE_CASE (cls , a_ , a_ = b"" ):
'''simple docstring'''
if super().is_extractable(a_ , magic_number=a_ ):
return True
try:
# Alternative version of zipfile.is_zipfile that has less false positives, but misses executable zip archives.
# From: https://github.com/python/cpython/pull/5053
from zipfile import (
_CD_SIGNATURE,
_ECD_DISK_NUMBER,
_ECD_DISK_START,
_ECD_ENTRIES_TOTAL,
_ECD_OFFSET,
_ECD_SIZE,
_EndRecData,
sizeCentralDir,
stringCentralDir,
structCentralDir,
)
with open(a_ , '''rb''' ) as fp:
__snake_case : Optional[Any] = _EndRecData(a_ )
if endrec:
if endrec[_ECD_ENTRIES_TOTAL] == 0 and endrec[_ECD_SIZE] == 0 and endrec[_ECD_OFFSET] == 0:
return True # Empty zipfiles are still zipfiles
elif endrec[_ECD_DISK_NUMBER] == endrec[_ECD_DISK_START]:
fp.seek(endrec[_ECD_OFFSET] ) # Central directory is on the same disk
if fp.tell() == endrec[_ECD_OFFSET] and endrec[_ECD_SIZE] >= sizeCentralDir:
__snake_case : Union[str, Any] = fp.read(a_ ) # CD is where we expect it to be
if len(a_ ) == sizeCentralDir:
__snake_case : List[Any] = struct.unpack(a_ , a_ ) # CD is the right size
if centdir[_CD_SIGNATURE] == stringCentralDir:
return True # First central directory entry has correct magic number
return False
except Exception: # catch all errors in case future python versions change the zipfile internals
return False
@staticmethod
def SCREAMING_SNAKE_CASE (a_ , a_ ):
'''simple docstring'''
os.makedirs(a_ , exist_ok=a_ )
with zipfile.ZipFile(a_ , '''r''' ) as zip_file:
zip_file.extractall(a_ )
zip_file.close()
class _UpperCAmelCase ( lowercase_ ):
'''simple docstring'''
lowerCamelCase__ =[B"""\xFD\x37\x7A\x58\x5A\x00"""]
@staticmethod
def SCREAMING_SNAKE_CASE (a_ , a_ ):
'''simple docstring'''
with lzma.open(a_ ) as compressed_file:
with open(a_ , '''wb''' ) as extracted_file:
shutil.copyfileobj(a_ , a_ )
class _UpperCAmelCase ( lowercase_ ):
'''simple docstring'''
lowerCamelCase__ =[B"""Rar!\x1a\x07\x00""", B"""Rar!\x1a\x07\x01\x00"""] # RAR_ID # RAR5_ID
@staticmethod
def SCREAMING_SNAKE_CASE (a_ , a_ ):
'''simple docstring'''
if not config.RARFILE_AVAILABLE:
raise ImportError('''Please pip install rarfile''' )
import rarfile
os.makedirs(a_ , exist_ok=a_ )
__snake_case : Optional[int] = rarfile.RarFile(a_ )
rf.extractall(a_ )
rf.close()
class _UpperCAmelCase ( lowercase_ ):
'''simple docstring'''
lowerCamelCase__ =[B"""\x28\xb5\x2F\xFD"""]
@staticmethod
def SCREAMING_SNAKE_CASE (a_ , a_ ):
'''simple docstring'''
if not config.ZSTANDARD_AVAILABLE:
raise ImportError('''Please pip install zstandard''' )
import zstandard as zstd
__snake_case : Optional[int] = zstd.ZstdDecompressor()
with open(a_ , '''rb''' ) as ifh, open(a_ , '''wb''' ) as ofh:
dctx.copy_stream(a_ , a_ )
class _UpperCAmelCase ( lowercase_ ):
'''simple docstring'''
lowerCamelCase__ =[B"""\x42\x5A\x68"""]
@staticmethod
def SCREAMING_SNAKE_CASE (a_ , a_ ):
'''simple docstring'''
with bza.open(a_ , '''rb''' ) as compressed_file:
with open(a_ , '''wb''' ) as extracted_file:
shutil.copyfileobj(a_ , a_ )
class _UpperCAmelCase ( lowercase_ ):
'''simple docstring'''
lowerCamelCase__ =[B"""\x37\x7A\xBC\xAF\x27\x1C"""]
@staticmethod
def SCREAMING_SNAKE_CASE (a_ , a_ ):
'''simple docstring'''
if not config.PY7ZR_AVAILABLE:
raise ImportError('''Please pip install py7zr''' )
import pyazr
os.makedirs(a_ , exist_ok=a_ )
with pyazr.SevenZipFile(a_ , '''r''' ) as archive:
archive.extractall(a_ )
class _UpperCAmelCase ( lowercase_ ):
'''simple docstring'''
lowerCamelCase__ =[B"""\x04\x22\x4D\x18"""]
@staticmethod
def SCREAMING_SNAKE_CASE (a_ , a_ ):
'''simple docstring'''
if not config.LZ4_AVAILABLE:
raise ImportError('''Please pip install lz4''' )
import lza.frame
with lza.frame.open(a_ , '''rb''' ) as compressed_file:
with open(a_ , '''wb''' ) as extracted_file:
shutil.copyfileobj(a_ , a_ )
class _UpperCAmelCase :
'''simple docstring'''
lowerCamelCase__ ={
"tar": TarExtractor,
"gzip": GzipExtractor,
"zip": ZipExtractor,
"xz": XzExtractor,
"rar": RarExtractor,
"zstd": ZstdExtractor,
"bz2": BzipaExtractor,
"7z": SevenZipExtractor, # <Added version="2.4.0"/>
"lz4": LzaExtractor, # <Added version="2.4.0"/>
}
@classmethod
def SCREAMING_SNAKE_CASE (cls ):
'''simple docstring'''
return max(
len(a_ )
for extractor in cls.extractors.values()
if issubclass(a_ , a_ )
for extractor_magic_number in extractor.magic_numbers )
@staticmethod
def SCREAMING_SNAKE_CASE (a_ , a_ ):
'''simple docstring'''
try:
return MagicNumberBaseExtractor.read_magic_number(a_ , magic_number_length=a_ )
except OSError:
return b""
@classmethod
def SCREAMING_SNAKE_CASE (cls , a_ , a_ = False ):
'''simple docstring'''
warnings.warn(
'''Method \'is_extractable\' was deprecated in version 2.4.0 and will be removed in 3.0.0. '''
'''Use \'infer_extractor_format\' instead.''' , category=a_ , )
__snake_case : str = cls.infer_extractor_format(a_ )
if extractor_format:
return True if not return_extractor else (True, cls.extractors[extractor_format])
return False if not return_extractor else (False, None)
@classmethod
def SCREAMING_SNAKE_CASE (cls , a_ ): # <Added version="2.4.0"/>
'''simple docstring'''
__snake_case : Any = cls._get_magic_number_max_length()
__snake_case : Optional[Any] = cls._read_magic_number(a_ , a_ )
for extractor_format, extractor in cls.extractors.items():
if extractor.is_extractable(a_ , magic_number=a_ ):
return extractor_format
@classmethod
def SCREAMING_SNAKE_CASE (cls , a_ , a_ , a_ = None , a_ = "deprecated" , ):
'''simple docstring'''
os.makedirs(os.path.dirname(a_ ) , exist_ok=a_ )
# Prevent parallel extractions
__snake_case : List[Any] = str(Path(a_ ).with_suffix('''.lock''' ) )
with FileLock(a_ ):
shutil.rmtree(a_ , ignore_errors=a_ )
if extractor_format or extractor != "deprecated":
if extractor != "deprecated" or not isinstance(a_ , a_ ): # passed as positional arg
warnings.warn(
'''Parameter \'extractor\' was deprecated in version 2.4.0 and will be removed in 3.0.0. '''
'''Use \'extractor_format\' instead.''' , category=a_ , )
__snake_case : Any = extractor if extractor != '''deprecated''' else extractor_format
else:
__snake_case : Dict = cls.extractors[extractor_format]
return extractor.extract(a_ , a_ )
else:
warnings.warn(
'''Parameter \'extractor_format\' was made required in version 2.4.0 and not passing it will raise an '''
'''exception in 3.0.0.''' , category=a_ , )
for extractor in cls.extractors.values():
if extractor.is_extractable(a_ ):
return extractor.extract(a_ , a_ )
| 102 |
'''simple docstring'''
def _SCREAMING_SNAKE_CASE (A ) -> int:
"""simple docstring"""
if not isinstance(A , A ):
raise TypeError('''only integers accepted as input''' )
else:
lowercase__ = str(abs(A ) )
lowercase__ = [list(A ) for char in range(len(A ) )]
for index in range(len(A ) ):
num_transpositions[index].pop(A )
return max(
int(''''''.join(list(A ) ) ) for transposition in num_transpositions )
if __name__ == "__main__":
__import__('doctest').testmod()
| 2 | 0 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
A_ :Union[str, Any] = {
'configuration_xlm_roberta_xl': [
'XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP',
'XLMRobertaXLConfig',
'XLMRobertaXLOnnxConfig',
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ :int = [
'XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST',
'XLMRobertaXLForCausalLM',
'XLMRobertaXLForMaskedLM',
'XLMRobertaXLForMultipleChoice',
'XLMRobertaXLForQuestionAnswering',
'XLMRobertaXLForSequenceClassification',
'XLMRobertaXLForTokenClassification',
'XLMRobertaXLModel',
'XLMRobertaXLPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_xlm_roberta_xl import (
XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP,
XLMRobertaXLConfig,
XLMRobertaXLOnnxConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_xlm_roberta_xl import (
XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST,
XLMRobertaXLForCausalLM,
XLMRobertaXLForMaskedLM,
XLMRobertaXLForMultipleChoice,
XLMRobertaXLForQuestionAnswering,
XLMRobertaXLForSequenceClassification,
XLMRobertaXLForTokenClassification,
XLMRobertaXLModel,
XLMRobertaXLPreTrainedModel,
)
else:
import sys
A_ :Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
| 71 |
'''simple docstring'''
import dataclasses
import re
import string
from typing import Any, Dict, Iterator, List, Mapping, Optional, Sequence, Tuple
import numpy as np
from . import residue_constants
lowerCamelCase : str = Mapping[str, np.ndarray]
lowerCamelCase : List[Any] = Mapping[str, Any] # Is a nested dict.
lowerCamelCase : Any = 0.0_1
@dataclasses.dataclass(frozen=lowercase_ )
class __lowerCAmelCase :
'''simple docstring'''
lowerCAmelCase__ : np.ndarray # [num_res, num_atom_type, 3]
# Amino-acid type for each residue represented as an integer between 0 and
# 20, where 20 is 'X'.
lowerCAmelCase__ : np.ndarray # [num_res]
# Binary float mask to indicate presence of a particular atom. 1.0 if an atom
# is present and 0.0 if not. This should be used for loss masking.
lowerCAmelCase__ : np.ndarray # [num_res, num_atom_type]
# Residue index as used in PDB. It is not necessarily continuous or 0-indexed.
lowerCAmelCase__ : np.ndarray # [num_res]
# B-factors, or temperature factors, of each residue (in sq. angstroms units),
# representing the displacement of the residue from its ground truth mean
# value.
lowerCAmelCase__ : np.ndarray # [num_res, num_atom_type]
# Chain indices for multi-chain predictions
lowerCAmelCase__ : Optional[np.ndarray] = None
# Optional remark about the protein. Included as a comment in output PDB
# files
lowerCAmelCase__ : Optional[str] = None
# Templates used to generate this protein (prediction-only)
lowerCAmelCase__ : Optional[Sequence[str]] = None
# Chain corresponding to each parent
lowerCAmelCase__ : Optional[Sequence[int]] = None
def _SCREAMING_SNAKE_CASE (A ) -> Protein:
"""simple docstring"""
lowercase__ = R'''(\[[A-Z]+\]\n)'''
lowercase__ = [tag.strip() for tag in re.split(A , A ) if len(A ) > 0]
lowercase__ = zip(tags[0::2] , [l.split('''\n''' ) for l in tags[1::2]] )
lowercase__ = ["N", "CA", "C"]
lowercase__ = None
lowercase__ = None
lowercase__ = None
for g in groups:
if "[PRIMARY]" == g[0]:
lowercase__ = g[1][0].strip()
for i in range(len(A ) ):
if seq[i] not in residue_constants.restypes:
lowercase__ = '''X''' # FIXME: strings are immutable
lowercase__ = np.array(
[residue_constants.restype_order.get(A , residue_constants.restype_num ) for res_symbol in seq] )
elif "[TERTIARY]" == g[0]:
lowercase__ = []
for axis in range(3 ):
tertiary.append(list(map(A , g[1][axis].split() ) ) )
lowercase__ = np.array(A )
lowercase__ = np.zeros((len(tertiary[0] ) // 3, residue_constants.atom_type_num, 3) ).astype(np.floataa )
for i, atom in enumerate(A ):
lowercase__ = np.transpose(tertiary_np[:, i::3] )
atom_positions *= PICO_TO_ANGSTROM
elif "[MASK]" == g[0]:
lowercase__ = np.array(list(map({'''-''': 0, '''+''': 1}.get , g[1][0].strip() ) ) )
lowercase__ = np.zeros(
(
len(A ),
residue_constants.atom_type_num,
) ).astype(np.floataa )
for i, atom in enumerate(A ):
lowercase__ = 1
atom_mask *= mask[..., None]
assert aatype is not None
return Protein(
atom_positions=A , atom_mask=A , aatype=A , residue_index=np.arange(len(A ) ) , b_factors=A , )
def _SCREAMING_SNAKE_CASE (A , A = 0 ) -> List[str]:
"""simple docstring"""
lowercase__ = []
lowercase__ = prot.remark
if remark is not None:
pdb_headers.append(f"REMARK {remark}" )
lowercase__ = prot.parents
lowercase__ = prot.parents_chain_index
if parents is not None and parents_chain_index is not None:
lowercase__ = [p for i, p in zip(A , A ) if i == chain_id]
if parents is None or len(A ) == 0:
lowercase__ = ['''N/A''']
pdb_headers.append(f"PARENT {' '.join(A )}" )
return pdb_headers
def _SCREAMING_SNAKE_CASE (A , A ) -> str:
"""simple docstring"""
lowercase__ = []
lowercase__ = pdb_str.split('''\n''' )
lowercase__ = prot.remark
if remark is not None:
out_pdb_lines.append(f"REMARK {remark}" )
lowercase__ = 42
if prot.parents is not None and len(prot.parents ) > 0:
lowercase__ = []
if prot.parents_chain_index is not None:
lowercase__ = {}
for p, i in zip(prot.parents , prot.parents_chain_index ):
parent_dict.setdefault(str(A ) , [] )
parent_dict[str(A )].append(A )
lowercase__ = max([int(A ) for chain_idx in parent_dict] )
for i in range(max_idx + 1 ):
lowercase__ = parent_dict.get(str(A ) , ['''N/A'''] )
parents_per_chain.append(A )
else:
parents_per_chain.append(list(prot.parents ) )
else:
lowercase__ = [['''N/A''']]
def make_parent_line(A ) -> str:
return f"PARENT {' '.join(A )}"
out_pdb_lines.append(make_parent_line(parents_per_chain[0] ) )
lowercase__ = 0
for i, l in enumerate(A ):
if "PARENT" not in l and "REMARK" not in l:
out_pdb_lines.append(A )
if "TER" in l and "END" not in lines[i + 1]:
chain_counter += 1
if not chain_counter >= len(A ):
lowercase__ = parents_per_chain[chain_counter]
else:
lowercase__ = ['''N/A''']
out_pdb_lines.append(make_parent_line(A ) )
return "\n".join(A )
def _SCREAMING_SNAKE_CASE (A ) -> str:
"""simple docstring"""
lowercase__ = residue_constants.restypes + ['''X''']
def res_atoa(A ) -> str:
return residue_constants.restype_atoa.get(restypes[r] , '''UNK''' )
lowercase__ = residue_constants.atom_types
lowercase__ = []
lowercase__ = prot.atom_mask
lowercase__ = prot.aatype
lowercase__ = prot.atom_positions
lowercase__ = prot.residue_index.astype(np.intaa )
lowercase__ = prot.b_factors
lowercase__ = prot.chain_index
if np.any(aatype > residue_constants.restype_num ):
raise ValueError('''Invalid aatypes.''' )
lowercase__ = get_pdb_headers(A )
if len(A ) > 0:
pdb_lines.extend(A )
lowercase__ = aatype.shape[0]
lowercase__ = 1
lowercase__ = 0
lowercase__ = string.ascii_uppercase
lowercase__ = None
# Add all atom sites.
for i in range(A ):
lowercase__ = res_atoa(aatype[i] )
for atom_name, pos, mask, b_factor in zip(A , atom_positions[i] , atom_mask[i] , b_factors[i] ):
if mask < 0.5:
continue
lowercase__ = '''ATOM'''
lowercase__ = atom_name if len(A ) == 4 else f" {atom_name}"
lowercase__ = ''''''
lowercase__ = ''''''
lowercase__ = 1.00
lowercase__ = atom_name[0] # Protein supports only C, N, O, S, this works.
lowercase__ = ''''''
lowercase__ = '''A'''
if chain_index is not None:
lowercase__ = chain_tags[chain_index[i]]
# PDB is a columnar format, every space matters here!
lowercase__ = (
f"{record_type:<6}{atom_index:>5} {name:<4}{alt_loc:>1}"
f"{res_name_a:>3} {chain_tag:>1}"
f"{residue_index[i]:>4}{insertion_code:>1} "
f"{pos[0]:>8.3f}{pos[1]:>8.3f}{pos[2]:>8.3f}"
f"{occupancy:>6.2f}{b_factor:>6.2f} "
f"{element:>2}{charge:>2}"
)
pdb_lines.append(A )
atom_index += 1
lowercase__ = i == n - 1
if chain_index is not None:
if i != n - 1 and chain_index[i + 1] != prev_chain_index:
lowercase__ = True
lowercase__ = chain_index[i + 1]
if should_terminate:
# Close the chain.
lowercase__ = '''TER'''
lowercase__ = (
f"{chain_end:<6}{atom_index:>5} {res_atoa(aatype[i] ):>3} {chain_tag:>1}{residue_index[i]:>4}"
)
pdb_lines.append(A )
atom_index += 1
if i != n - 1:
# "prev" is a misnomer here. This happens at the beginning of
# each new chain.
pdb_lines.extend(get_pdb_headers(A , A ) )
pdb_lines.append('''END''' )
pdb_lines.append('''''' )
return "\n".join(A )
def _SCREAMING_SNAKE_CASE (A ) -> np.ndarray:
"""simple docstring"""
return residue_constants.STANDARD_ATOM_MASK[prot.aatype]
def _SCREAMING_SNAKE_CASE (A , A , A = None , A = None , A = None , A = None , A = None , ) -> Protein:
"""simple docstring"""
return Protein(
aatype=features['''aatype'''] , atom_positions=result['''final_atom_positions'''] , atom_mask=result['''final_atom_mask'''] , residue_index=features['''residue_index'''] + 1 , b_factors=b_factors if b_factors is not None else np.zeros_like(result['''final_atom_mask'''] ) , chain_index=A , remark=A , parents=A , parents_chain_index=A , )
| 2 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
_SCREAMING_SNAKE_CASE : Union[str, Any] = {'configuration_timm_backbone': ['TimmBackboneConfig']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_SCREAMING_SNAKE_CASE : List[str] = ['TimmBackbone']
if TYPE_CHECKING:
from .configuration_timm_backbone import TimmBackboneConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_timm_backbone import TimmBackbone
else:
import sys
_SCREAMING_SNAKE_CASE : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 85 |
'''simple docstring'''
from __future__ import annotations
def _SCREAMING_SNAKE_CASE (A , A ) -> list[list[int]]:
"""simple docstring"""
lowercase__ = []
create_all_state(1 , A , A , [] , A )
return result
def _SCREAMING_SNAKE_CASE (A , A , A , A , A , ) -> None:
"""simple docstring"""
if level == 0:
total_list.append(current_list[:] )
return
for i in range(A , total_number - level + 2 ):
current_list.append(A )
create_all_state(i + 1 , A , level - 1 , A , A )
current_list.pop()
def _SCREAMING_SNAKE_CASE (A ) -> None:
"""simple docstring"""
for i in total_list:
print(*A )
if __name__ == "__main__":
lowerCamelCase : Tuple = 4
lowerCamelCase : Union[str, Any] = 2
lowerCamelCase : Dict = generate_all_combinations(n, k)
print_all_state(total_list)
| 2 | 0 |
from ....configuration_utils import PretrainedConfig
from ....utils import logging
a_ = logging.get_logger(__name__)
a_ = {
'speechbrain/m-ctc-t-large': 'https://huggingface.co/speechbrain/m-ctc-t-large/resolve/main/config.json',
# See all M-CTC-T models at https://huggingface.co/models?filter=mctct
}
class __lowerCAmelCase ( lowercase_ ):
lowerCAmelCase__ = """mctct"""
def __init__( self , __UpperCAmelCase=8065 , __UpperCAmelCase=1536 , __UpperCAmelCase=36 , __UpperCAmelCase=6144 , __UpperCAmelCase=4 , __UpperCAmelCase=384 , __UpperCAmelCase=920 , __UpperCAmelCase=1E-5 , __UpperCAmelCase=0.3 , __UpperCAmelCase="relu" , __UpperCAmelCase=0.02 , __UpperCAmelCase=0.3 , __UpperCAmelCase=0.3 , __UpperCAmelCase=1 , __UpperCAmelCase=0 , __UpperCAmelCase=2 , __UpperCAmelCase=1 , __UpperCAmelCase=0.3 , __UpperCAmelCase=1 , __UpperCAmelCase=(7,) , __UpperCAmelCase=(3,) , __UpperCAmelCase=80 , __UpperCAmelCase=1 , __UpperCAmelCase=None , __UpperCAmelCase="sum" , __UpperCAmelCase=False , **__UpperCAmelCase , ):
'''simple docstring'''
super().__init__(**__UpperCAmelCase , pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase )
__lowerCamelCase = vocab_size
__lowerCamelCase = hidden_size
__lowerCamelCase = num_hidden_layers
__lowerCamelCase = intermediate_size
__lowerCamelCase = num_attention_heads
__lowerCamelCase = attention_head_dim
__lowerCamelCase = max_position_embeddings
__lowerCamelCase = layer_norm_eps
__lowerCamelCase = layerdrop
__lowerCamelCase = hidden_act
__lowerCamelCase = initializer_range
__lowerCamelCase = hidden_dropout_prob
__lowerCamelCase = attention_probs_dropout_prob
__lowerCamelCase = pad_token_id
__lowerCamelCase = bos_token_id
__lowerCamelCase = eos_token_id
__lowerCamelCase = conv_glu_dim
__lowerCamelCase = conv_dropout
__lowerCamelCase = num_conv_layers
__lowerCamelCase = input_feat_per_channel
__lowerCamelCase = input_channels
__lowerCamelCase = conv_channels
__lowerCamelCase = ctc_loss_reduction
__lowerCamelCase = ctc_zero_infinity
# prevents config testing fail with exporting to json
__lowerCamelCase = list(__UpperCAmelCase )
__lowerCamelCase = list(__UpperCAmelCase )
if len(self.conv_kernel ) != self.num_conv_layers:
raise ValueError(
'''Configuration for convolutional module is incorrect. '''
'''It is required that `len(config.conv_kernel)` == `config.num_conv_layers` '''
F"""but is `len(config.conv_kernel) = {len(self.conv_kernel )}`, """
F"""`config.num_conv_layers = {self.num_conv_layers}`.""" )
| 330 |
'''simple docstring'''
import os
from itertools import chain
from random import randrange, shuffle
import pytest
from .sola import PokerHand
lowerCamelCase : Optional[Any] = (
'4S 3H 2C 7S 5H',
'9D 8H 2C 6S 7H',
'2D 6D 9D TH 7D',
'TC 8C 2S JH 6C',
'JH 8S TH AH QH',
'TS KS 5S 9S AC',
'KD 6S 9D TH AD',
'KS 8D 4D 9S 4S', # pair
'8C 4S KH JS 4D', # pair
'QH 8H KD JH 8S', # pair
'KC 4H KS 2H 8D', # pair
'KD 4S KC 3H 8S', # pair
'AH 8S AS KC JH', # pair
'3H 4C 4H 3S 2H', # 2 pairs
'5S 5D 2C KH KH', # 2 pairs
'3C KH 5D 5S KH', # 2 pairs
'AS 3C KH AD KH', # 2 pairs
'7C 7S 3S 7H 5S', # 3 of a kind
'7C 7S KH 2H 7H', # 3 of a kind
'AC KH QH AH AS', # 3 of a kind
'2H 4D 3C AS 5S', # straight (low ace)
'3C 5C 4C 2C 6H', # straight
'6S 8S 7S 5H 9H', # straight
'JS QS 9H TS KH', # straight
'QC KH TS JS AH', # straight (high ace)
'8C 9C 5C 3C TC', # flush
'3S 8S 9S 5S KS', # flush
'4C 5C 9C 8C KC', # flush
'JH 8H AH KH QH', # flush
'3D 2H 3H 2C 2D', # full house
'2H 2C 3S 3H 3D', # full house
'KH KC 3S 3H 3D', # full house
'JC 6H JS JD JH', # 4 of a kind
'JC 7H JS JD JH', # 4 of a kind
'JC KH JS JD JH', # 4 of a kind
'2S AS 4S 5S 3S', # straight flush (low ace)
'2D 6D 3D 4D 5D', # straight flush
'5C 6C 3C 7C 4C', # straight flush
'JH 9H TH KH QH', # straight flush
'JH AH TH KH QH', # royal flush (high ace straight flush)
)
lowerCamelCase : Tuple = (
('2H 3H 4H 5H 6H', 'KS AS TS QS JS', 'Loss'),
('2H 3H 4H 5H 6H', 'AS AD AC AH JD', 'Win'),
('AS AH 2H AD AC', 'JS JD JC JH 3D', 'Win'),
('2S AH 2H AS AC', 'JS JD JC JH AD', 'Loss'),
('2S AH 2H AS AC', '2H 3H 5H 6H 7H', 'Win'),
('AS 3S 4S 8S 2S', '2H 3H 5H 6H 7H', 'Win'),
('2H 3H 5H 6H 7H', '2S 3H 4H 5S 6C', 'Win'),
('2S 3H 4H 5S 6C', '3D 4C 5H 6H 2S', 'Tie'),
('2S 3H 4H 5S 6C', 'AH AC 5H 6H AS', 'Win'),
('2S 2H 4H 5S 4C', 'AH AC 5H 6H AS', 'Loss'),
('2S 2H 4H 5S 4C', 'AH AC 5H 6H 7S', 'Win'),
('6S AD 7H 4S AS', 'AH AC 5H 6H 7S', 'Loss'),
('2S AH 4H 5S KC', 'AH AC 5H 6H 7S', 'Loss'),
('2S 3H 6H 7S 9C', '7H 3C TH 6H 9S', 'Loss'),
('4S 5H 6H TS AC', '3S 5H 6H TS AC', 'Win'),
('2S AH 4H 5S 6C', 'AD 4C 5H 6H 2C', 'Tie'),
('AS AH 3H AD AC', 'AS AH 2H AD AC', 'Win'),
('AH AC 5H 5C QS', 'AH AC 5H 5C KS', 'Loss'),
('AH AC 5H 5C QS', 'KH KC 5H 5C QS', 'Win'),
('7C 7S KH 2H 7H', '3C 3S AH 2H 3H', 'Win'),
('3C 3S AH 2H 3H', '7C 7S KH 2H 7H', 'Loss'),
('6H 5H 4H 3H 2H', '5H 4H 3H 2H AH', 'Win'),
('5H 4H 3H 2H AH', '5H 4H 3H 2H AH', 'Tie'),
('5H 4H 3H 2H AH', '6H 5H 4H 3H 2H', 'Loss'),
('AH AD KS KC AC', 'AH KD KH AC KC', 'Win'),
('2H 4D 3C AS 5S', '2H 4D 3C 6S 5S', 'Loss'),
('2H 3S 3C 3H 2S', '3S 3C 2S 2H 2D', 'Win'),
('4D 6D 5D 2D JH', '3S 8S 3H TC KH', 'Loss'),
('4S 6C 8S 3S 7S', 'AD KS 2D 7D 7C', 'Loss'),
('6S 4C 7H 8C 3H', '5H JC AH 9D 9C', 'Loss'),
('9D 9H JH TC QH', '3C 2S JS 5C 7H', 'Win'),
('2H TC 8S AD 9S', '4H TS 7H 2C 5C', 'Win'),
('9D 3S 2C 7S 7C', 'JC TD 3C TC 9H', 'Loss'),
)
lowerCamelCase : Dict = (
('2H 3H 4H 5H 6H', True),
('AS AH 2H AD AC', False),
('2H 3H 5H 6H 7H', True),
('KS AS TS QS JS', True),
('8H 9H QS JS TH', False),
('AS 3S 4S 8S 2S', True),
)
lowerCamelCase : Any = (
('2H 3H 4H 5H 6H', True),
('AS AH 2H AD AC', False),
('2H 3H 5H 6H 7H', False),
('KS AS TS QS JS', True),
('8H 9H QS JS TH', True),
)
lowerCamelCase : Tuple = (
('2H 4D 3C AS 5S', True, [5, 4, 3, 2, 14]),
('2H 5D 3C AS 5S', False, [14, 5, 5, 3, 2]),
('JH QD KC AS TS', False, [14, 13, 12, 11, 10]),
('9D 3S 2C 7S 7C', False, [9, 7, 7, 3, 2]),
)
lowerCamelCase : Optional[int] = (
('JH AH TH KH QH', 0),
('JH 9H TH KH QH', 0),
('JC KH JS JD JH', 7),
('KH KC 3S 3H 3D', 6),
('8C 9C 5C 3C TC', 0),
('JS QS 9H TS KH', 0),
('7C 7S KH 2H 7H', 3),
('3C KH 5D 5S KH', 2),
('QH 8H KD JH 8S', 1),
('2D 6D 9D TH 7D', 0),
)
lowerCamelCase : Dict = (
('JH AH TH KH QH', 23),
('JH 9H TH KH QH', 22),
('JC KH JS JD JH', 21),
('KH KC 3S 3H 3D', 20),
('8C 9C 5C 3C TC', 19),
('JS QS 9H TS KH', 18),
('7C 7S KH 2H 7H', 17),
('3C KH 5D 5S KH', 16),
('QH 8H KD JH 8S', 15),
('2D 6D 9D TH 7D', 14),
)
def _SCREAMING_SNAKE_CASE () -> Union[str, Any]:
"""simple docstring"""
lowercase__ ,lowercase__ = randrange(len(A ) ), randrange(len(A ) )
lowercase__ = ['''Loss''', '''Tie''', '''Win'''][(play >= oppo) + (play > oppo)]
lowercase__ ,lowercase__ = SORTED_HANDS[play], SORTED_HANDS[oppo]
return hand, other, expected
def _SCREAMING_SNAKE_CASE (A = 100 ) -> str:
"""simple docstring"""
return (generate_random_hand() for _ in range(A ))
@pytest.mark.parametrize('''hand, expected''' , A )
def _SCREAMING_SNAKE_CASE (A , A ) -> List[str]:
"""simple docstring"""
assert PokerHand(A )._is_flush() == expected
@pytest.mark.parametrize('''hand, expected''' , A )
def _SCREAMING_SNAKE_CASE (A , A ) -> Union[str, Any]:
"""simple docstring"""
assert PokerHand(A )._is_straight() == expected
@pytest.mark.parametrize('''hand, expected, card_values''' , A )
def _SCREAMING_SNAKE_CASE (A , A , A ) -> Any:
"""simple docstring"""
lowercase__ = PokerHand(A )
assert player._is_five_high_straight() == expected
assert player._card_values == card_values
@pytest.mark.parametrize('''hand, expected''' , A )
def _SCREAMING_SNAKE_CASE (A , A ) -> Tuple:
"""simple docstring"""
assert PokerHand(A )._is_same_kind() == expected
@pytest.mark.parametrize('''hand, expected''' , A )
def _SCREAMING_SNAKE_CASE (A , A ) -> Optional[Any]:
"""simple docstring"""
assert PokerHand(A )._hand_type == expected
@pytest.mark.parametrize('''hand, other, expected''' , A )
def _SCREAMING_SNAKE_CASE (A , A , A ) -> Union[str, Any]:
"""simple docstring"""
assert PokerHand(A ).compare_with(PokerHand(A ) ) == expected
@pytest.mark.parametrize('''hand, other, expected''' , generate_random_hands() )
def _SCREAMING_SNAKE_CASE (A , A , A ) -> Optional[Any]:
"""simple docstring"""
assert PokerHand(A ).compare_with(PokerHand(A ) ) == expected
def _SCREAMING_SNAKE_CASE () -> Tuple:
"""simple docstring"""
lowercase__ = [PokerHand(A ) for hand in SORTED_HANDS]
lowercase__ = poker_hands.copy()
shuffle(A )
lowercase__ = chain(sorted(A ) )
for index, hand in enumerate(A ):
assert hand == poker_hands[index]
def _SCREAMING_SNAKE_CASE () -> List[Any]:
"""simple docstring"""
lowercase__ = [PokerHand('''2D AC 3H 4H 5S''' ), PokerHand('''2S 3H 4H 5S 6C''' )]
pokerhands.sort(reverse=A )
assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C"
def _SCREAMING_SNAKE_CASE () -> int:
"""simple docstring"""
lowercase__ = PokerHand('''2C 4S AS 3D 5C''' )
lowercase__ = True
lowercase__ = [5, 4, 3, 2, 14]
for _ in range(10 ):
assert pokerhand._is_five_high_straight() == expected
assert pokerhand._card_values == expected_card_values
def _SCREAMING_SNAKE_CASE () -> Union[str, Any]:
"""simple docstring"""
lowercase__ = 0
lowercase__ = os.path.abspath(os.path.dirname(A ) )
lowercase__ = os.path.join(A , '''poker_hands.txt''' )
with open(A ) as file_hand:
for line in file_hand:
lowercase__ = line[:14].strip()
lowercase__ = line[15:].strip()
lowercase__ ,lowercase__ = PokerHand(A ), PokerHand(A )
lowercase__ = player.compare_with(A )
if output == "Win":
answer += 1
assert answer == 376
| 2 | 0 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
)
__A = {'configuration_plbart': ['PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PLBartConfig']}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = ['PLBartTokenizer']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = [
'PLBART_PRETRAINED_MODEL_ARCHIVE_LIST',
'PLBartForCausalLM',
'PLBartForConditionalGeneration',
'PLBartForSequenceClassification',
'PLBartModel',
'PLBartPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_plbart import PLBartTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_plbart import (
PLBART_PRETRAINED_MODEL_ARCHIVE_LIST,
PLBartForCausalLM,
PLBartForConditionalGeneration,
PLBartForSequenceClassification,
PLBartModel,
PLBartPreTrainedModel,
)
else:
import sys
__A = _LazyModule(__name__, globals()["__file__"], _import_structure)
| 90 |
'''simple docstring'''
import argparse
import torch
from transformers import BertForMaskedLM
if __name__ == "__main__":
lowerCamelCase : List[str] = argparse.ArgumentParser(
description=(
'Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned'
' Distillation'
)
)
parser.add_argument('--model_type', default='bert', choices=['bert'])
parser.add_argument('--model_name', default='bert-base-uncased', type=str)
parser.add_argument('--dump_checkpoint', default='serialization_dir/tf_bert-base-uncased_0247911.pth', type=str)
parser.add_argument('--vocab_transform', action='store_true')
lowerCamelCase : str = parser.parse_args()
if args.model_type == "bert":
lowerCamelCase : List[Any] = BertForMaskedLM.from_pretrained(args.model_name)
lowerCamelCase : Any = 'bert'
else:
raise ValueError('args.model_type should be "bert".')
lowerCamelCase : int = model.state_dict()
lowerCamelCase : int = {}
for w in ["word_embeddings", "position_embeddings"]:
lowerCamelCase : Any = state_dict[f"""{prefix}.embeddings.{w}.weight"""]
for w in ["weight", "bias"]:
lowerCamelCase : Any = state_dict[f"""{prefix}.embeddings.LayerNorm.{w}"""]
lowerCamelCase : Tuple = 0
for teacher_idx in [0, 2, 4, 7, 9, 11]:
for w in ["weight", "bias"]:
lowerCamelCase : Dict = state_dict[
f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}"""
]
lowerCamelCase : Dict = state_dict[
f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}"""
]
lowerCamelCase : List[Any] = state_dict[
f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}"""
]
lowerCamelCase : Tuple = state_dict[
f"""{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}"""
]
lowerCamelCase : Optional[int] = state_dict[
f"""{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}"""
]
lowerCamelCase : Optional[Any] = state_dict[
f"""{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}"""
]
lowerCamelCase : Dict = state_dict[
f"""{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}"""
]
lowerCamelCase : Any = state_dict[
f"""{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}"""
]
std_idx += 1
lowerCamelCase : Optional[int] = state_dict['cls.predictions.decoder.weight']
lowerCamelCase : str = state_dict['cls.predictions.bias']
if args.vocab_transform:
for w in ["weight", "bias"]:
lowerCamelCase : str = state_dict[f"""cls.predictions.transform.dense.{w}"""]
lowerCamelCase : Any = state_dict[f"""cls.predictions.transform.LayerNorm.{w}"""]
print(f"""N layers selected for distillation: {std_idx}""")
print(f"""Number of params transferred for distillation: {len(compressed_sd.keys())}""")
print(f"""Save transferred checkpoint to {args.dump_checkpoint}.""")
torch.save(compressed_sd, args.dump_checkpoint)
| 2 | 0 |
from __future__ import annotations
import inspect
import unittest
from transformers import ViTConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFViTForImageClassification, TFViTModel
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class __lowerCAmelCase :
def __init__(self , __magic_name__ , __magic_name__=13 , __magic_name__=30 , __magic_name__=2 , __magic_name__=3 , __magic_name__=True , __magic_name__=True , __magic_name__=32 , __magic_name__=2 , __magic_name__=4 , __magic_name__=37 , __magic_name__="gelu" , __magic_name__=0.1 , __magic_name__=0.1 , __magic_name__=10 , __magic_name__=0.02 , __magic_name__=3 , __magic_name__=None , ) -> Any:
'''simple docstring'''
snake_case_ : Optional[int] = parent
snake_case_ : List[str] = batch_size
snake_case_ : List[Any] = image_size
snake_case_ : Union[str, Any] = patch_size
snake_case_ : Tuple = num_channels
snake_case_ : List[str] = is_training
snake_case_ : Any = use_labels
snake_case_ : Union[str, Any] = hidden_size
snake_case_ : Tuple = num_hidden_layers
snake_case_ : Tuple = num_attention_heads
snake_case_ : List[str] = intermediate_size
snake_case_ : Dict = hidden_act
snake_case_ : int = hidden_dropout_prob
snake_case_ : str = attention_probs_dropout_prob
snake_case_ : Union[str, Any] = type_sequence_label_size
snake_case_ : str = initializer_range
snake_case_ : Union[str, Any] = scope
# in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
snake_case_ : List[str] = (image_size // patch_size) ** 2
snake_case_ : List[str] = num_patches + 1
def lowerCamelCase (self ) -> Optional[int]:
'''simple docstring'''
snake_case_ : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
snake_case_ : List[Any] = None
if self.use_labels:
snake_case_ : int = ids_tensor([self.batch_size] , self.type_sequence_label_size )
snake_case_ : Optional[Any] = self.get_config()
return config, pixel_values, labels
def lowerCamelCase (self ) -> Any:
'''simple docstring'''
return ViTConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__magic_name__ , initializer_range=self.initializer_range , )
def lowerCamelCase (self , __magic_name__ , __magic_name__ , __magic_name__ ) -> Dict:
'''simple docstring'''
snake_case_ : Any = TFViTModel(config=__magic_name__ )
snake_case_ : List[Any] = model(__magic_name__ , training=__magic_name__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
# Test with an image with different size than the one specified in config.
snake_case_ : List[Any] = self.image_size // 2
snake_case_ : Union[str, Any] = pixel_values[:, :, :image_size, :image_size]
snake_case_ : Tuple = model(__magic_name__ , interpolate_pos_encoding=__magic_name__ , training=__magic_name__ )
snake_case_ : Optional[int] = (image_size // self.patch_size) ** 2 + 1
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, seq_length, self.hidden_size) )
def lowerCamelCase (self , __magic_name__ , __magic_name__ , __magic_name__ ) -> str:
'''simple docstring'''
snake_case_ : List[Any] = self.type_sequence_label_size
snake_case_ : int = TFViTForImageClassification(__magic_name__ )
snake_case_ : Any = model(__magic_name__ , labels=__magic_name__ , training=__magic_name__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# Test with an image with different size than the one specified in config.
snake_case_ : List[str] = self.image_size // 2
snake_case_ : str = pixel_values[:, :, :image_size, :image_size]
snake_case_ : Optional[Any] = model(__magic_name__ , interpolate_pos_encoding=__magic_name__ , training=__magic_name__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
snake_case_ : int = 1
snake_case_ : Union[str, Any] = TFViTForImageClassification(__magic_name__ )
snake_case_ : Tuple = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
snake_case_ : Dict = model(__magic_name__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def lowerCamelCase (self ) -> Dict:
'''simple docstring'''
snake_case_ : List[str] = self.prepare_config_and_inputs()
snake_case_ , snake_case_ , snake_case_ : str = config_and_inputs
snake_case_ : int = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_tf
class __lowerCAmelCase ( lowercase_, lowercase_, unittest.TestCase ):
lowerCamelCase_ : Optional[Any] = (TFViTModel, TFViTForImageClassification) if is_tf_available() else ()
lowerCamelCase_ : Tuple = (
{"""feature-extraction""": TFViTModel, """image-classification""": TFViTForImageClassification}
if is_tf_available()
else {}
)
lowerCamelCase_ : Optional[int] = False
lowerCamelCase_ : Any = False
lowerCamelCase_ : List[str] = False
def lowerCamelCase (self ) -> Optional[Any]:
'''simple docstring'''
snake_case_ : List[Any] = TFViTModelTester(self )
snake_case_ : List[Any] = ConfigTester(self , config_class=__magic_name__ , has_text_modality=__magic_name__ , hidden_size=37 )
def lowerCamelCase (self ) -> Union[str, Any]:
'''simple docstring'''
self.config_tester.run_common_tests()
@unittest.skip(reason='''ViT does not use inputs_embeds''' )
def lowerCamelCase (self ) -> List[str]:
'''simple docstring'''
pass
@unittest.skip(reason='''ViT does not use inputs_embeds''' )
def lowerCamelCase (self ) -> List[str]:
'''simple docstring'''
pass
def lowerCamelCase (self ) -> Dict:
'''simple docstring'''
snake_case_ , snake_case_ : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
snake_case_ : str = model_class(__magic_name__ )
self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) )
snake_case_ : int = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(__magic_name__ , tf.keras.layers.Layer ) )
def lowerCamelCase (self ) -> Optional[Any]:
'''simple docstring'''
snake_case_ , snake_case_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
snake_case_ : int = model_class(__magic_name__ )
snake_case_ : Dict = inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
snake_case_ : Tuple = [*signature.parameters.keys()]
snake_case_ : List[str] = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , __magic_name__ )
def lowerCamelCase (self ) -> List[str]:
'''simple docstring'''
snake_case_ : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__magic_name__ )
def lowerCamelCase (self ) -> Any:
'''simple docstring'''
snake_case_ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__magic_name__ )
@slow
def lowerCamelCase (self ) -> Any:
'''simple docstring'''
snake_case_ : int = TFViTModel.from_pretrained('''google/vit-base-patch16-224''' )
self.assertIsNotNone(__magic_name__ )
def lowerCamelCase_ ( ) -> List[Any]:
"""simple docstring"""
snake_case_ : Any = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_tf
@require_vision
class __lowerCAmelCase ( unittest.TestCase ):
@cached_property
def lowerCamelCase (self ) -> Optional[int]:
'''simple docstring'''
return ViTImageProcessor.from_pretrained('''google/vit-base-patch16-224''' ) if is_vision_available() else None
@slow
def lowerCamelCase (self ) -> Any:
'''simple docstring'''
snake_case_ : str = TFViTForImageClassification.from_pretrained('''google/vit-base-patch16-224''' )
snake_case_ : int = self.default_image_processor
snake_case_ : str = prepare_img()
snake_case_ : str = image_processor(images=__magic_name__ , return_tensors='''tf''' )
# forward pass
snake_case_ : Tuple = model(**__magic_name__ )
# verify the logits
snake_case_ : Optional[Any] = tf.TensorShape((1, 1000) )
self.assertEqual(outputs.logits.shape , __magic_name__ )
snake_case_ : List[Any] = tf.constant([-0.2_744, 0.8_215, -0.0_836] )
tf.debugging.assert_near(outputs.logits[0, :3] , __magic_name__ , atol=1e-4 )
| 279 |
'''simple docstring'''
from ....utils import logging
lowerCamelCase : Optional[Any] = logging.get_logger(__name__)
class __lowerCAmelCase (lowercase_ ):
'''simple docstring'''
def __init__(self : Optional[int] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Optional[Any]=None , UpperCamelCase : int=2048 ):
'''simple docstring'''
lowercase__ = config.__dict__
lowercase__ = modal_hidden_size
if num_labels:
lowercase__ = num_labels
| 2 | 0 |
'''simple docstring'''
import torch
from torch import nn
class _lowercase ( nn.Module ):
def __init__( self: Optional[Any] , UpperCamelCase__: str , UpperCamelCase__: Union[str, Any] , UpperCamelCase__: Tuple , UpperCamelCase__: Any , UpperCamelCase__: int=1 , UpperCamelCase__: List[str]=False ):
super().__init__()
lowerCamelCase__ : Union[str, Any] = n_token
lowerCamelCase__ : List[str] = d_embed
lowerCamelCase__ : Dict = d_proj
lowerCamelCase__ : Optional[Any] = cutoffs + [n_token]
lowerCamelCase__ : List[Any] = [0] + self.cutoffs
lowerCamelCase__ : Tuple = div_val
lowerCamelCase__ : str = self.cutoffs[0]
lowerCamelCase__ : int = len(self.cutoffs ) - 1
lowerCamelCase__ : List[str] = self.shortlist_size + self.n_clusters
if self.n_clusters > 0:
lowerCamelCase__ : Optional[Any] = nn.Parameter(torch.zeros(self.n_clusters , self.d_embed ) )
lowerCamelCase__ : Dict = nn.Parameter(torch.zeros(self.n_clusters ) )
lowerCamelCase__ : Dict = nn.ModuleList()
lowerCamelCase__ : Optional[Any] = nn.ParameterList()
if div_val == 1:
for i in range(len(self.cutoffs ) ):
if d_proj != d_embed:
self.out_projs.append(nn.Parameter(torch.FloatTensor(UpperCamelCase__ , UpperCamelCase__ ) ) )
else:
self.out_projs.append(UpperCamelCase__ )
self.out_layers.append(nn.Linear(UpperCamelCase__ , UpperCamelCase__ ) )
else:
for i in range(len(self.cutoffs ) ):
lowerCamelCase__ , lowerCamelCase__ : str = self.cutoff_ends[i], self.cutoff_ends[i + 1]
lowerCamelCase__ : int = d_embed // (div_val**i)
self.out_projs.append(nn.Parameter(torch.FloatTensor(UpperCamelCase__ , UpperCamelCase__ ) ) )
self.out_layers.append(nn.Linear(UpperCamelCase__ , r_idx - l_idx ) )
lowerCamelCase__ : Tuple = keep_order
def lowerCamelCase_ ( self: str , UpperCamelCase__: str , UpperCamelCase__: Dict , UpperCamelCase__: Union[str, Any] , UpperCamelCase__: Union[str, Any] ):
if proj is None:
lowerCamelCase__ : List[Any] = nn.functional.linear(UpperCamelCase__ , UpperCamelCase__ , bias=UpperCamelCase__ )
else:
# if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1:
lowerCamelCase__ : int = nn.functional.linear(UpperCamelCase__ , proj.t().contiguous() )
lowerCamelCase__ : Dict = nn.functional.linear(UpperCamelCase__ , UpperCamelCase__ , bias=UpperCamelCase__ )
# else:
# logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t()))
# if bias is not None:
# logit = logit + bias
return logit
def lowerCamelCase_ ( self: Optional[Any] , UpperCamelCase__: List[Any] , UpperCamelCase__: List[str]=None , UpperCamelCase__: Tuple=False ):
if labels is not None:
# Shift so that tokens < n predict n
lowerCamelCase__ : Dict = hidden[..., :-1, :].contiguous()
lowerCamelCase__ : List[Any] = labels[..., 1:].contiguous()
lowerCamelCase__ : List[Any] = hidden.view(-1 , hidden.size(-1 ) )
lowerCamelCase__ : int = labels.view(-1 )
if hidden.size(0 ) != labels.size(0 ):
raise RuntimeError("""Input and labels should have the same size in the batch dimension.""" )
else:
lowerCamelCase__ : Optional[Any] = hidden.view(-1 , hidden.size(-1 ) )
if self.n_clusters == 0:
lowerCamelCase__ : str = self._compute_logit(UpperCamelCase__ , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] )
if labels is not None:
lowerCamelCase__ : Optional[Any] = labels != -100
lowerCamelCase__ : Tuple = torch.zeros_like(UpperCamelCase__ , dtype=hidden.dtype , device=hidden.device )
lowerCamelCase__ : Union[str, Any] = (
-nn.functional.log_softmax(UpperCamelCase__ , dim=-1 )[mask].gather(1 , labels[mask].unsqueeze(1 ) ).squeeze(1 )
)
else:
lowerCamelCase__ : Union[str, Any] = nn.functional.log_softmax(UpperCamelCase__ , dim=-1 )
else:
# construct weights and biases
lowerCamelCase__ , lowerCamelCase__ : Tuple = [], []
for i in range(len(self.cutoffs ) ):
if self.div_val == 1:
lowerCamelCase__ , lowerCamelCase__ : str = self.cutoff_ends[i], self.cutoff_ends[i + 1]
lowerCamelCase__ : List[Any] = self.out_layers[0].weight[l_idx:r_idx]
lowerCamelCase__ : str = self.out_layers[0].bias[l_idx:r_idx]
else:
lowerCamelCase__ : Union[str, Any] = self.out_layers[i].weight
lowerCamelCase__ : Tuple = self.out_layers[i].bias
if i == 0:
lowerCamelCase__ : int = torch.cat([weight_i, self.cluster_weight] , dim=0 )
lowerCamelCase__ : Union[str, Any] = torch.cat([bias_i, self.cluster_bias] , dim=0 )
weights.append(UpperCamelCase__ )
biases.append(UpperCamelCase__ )
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : List[Any] = weights[0], biases[0], self.out_projs[0]
lowerCamelCase__ : int = self._compute_logit(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
lowerCamelCase__ : Any = nn.functional.log_softmax(UpperCamelCase__ , dim=1 )
if labels is None:
lowerCamelCase__ : Optional[int] = hidden.new_empty((head_logit.size(0 ), self.n_token) )
else:
lowerCamelCase__ : str = torch.zeros_like(UpperCamelCase__ , dtype=hidden.dtype , device=hidden.device )
lowerCamelCase__ : Union[str, Any] = 0
lowerCamelCase__ : Union[str, Any] = [0] + self.cutoffs
for i in range(len(UpperCamelCase__ ) - 1 ):
lowerCamelCase__ , lowerCamelCase__ : Tuple = cutoff_values[i], cutoff_values[i + 1]
if labels is not None:
lowerCamelCase__ : int = (labels >= l_idx) & (labels < r_idx)
lowerCamelCase__ : Union[str, Any] = mask_i.nonzero().squeeze()
if indices_i.numel() == 0:
continue
lowerCamelCase__ : Optional[int] = labels.index_select(0 , UpperCamelCase__ ) - l_idx
lowerCamelCase__ : Optional[int] = head_logprob.index_select(0 , UpperCamelCase__ )
lowerCamelCase__ : str = hidden.index_select(0 , UpperCamelCase__ )
else:
lowerCamelCase__ : str = hidden
if i == 0:
if labels is not None:
lowerCamelCase__ : List[Any] = head_logprob_i.gather(1 , target_i[:, None] ).squeeze(1 )
else:
lowerCamelCase__ : Tuple = head_logprob[:, : self.cutoffs[0]]
else:
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : int = weights[i], biases[i], self.out_projs[i]
lowerCamelCase__ : Any = self._compute_logit(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
lowerCamelCase__ : Union[str, Any] = nn.functional.log_softmax(UpperCamelCase__ , dim=1 )
lowerCamelCase__ : Optional[Any] = self.cutoffs[0] + i - 1 # No probability for the head cluster
if labels is not None:
lowerCamelCase__ : Union[str, Any] = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather(
1 , target_i[:, None] ).squeeze(1 )
else:
lowerCamelCase__ : Optional[Any] = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i
lowerCamelCase__ : Dict = logprob_i
if labels is not None:
if (hasattr(self , """keep_order""" ) and self.keep_order) or keep_order:
out.index_copy_(0 , UpperCamelCase__ , -logprob_i )
else:
out[offset : offset + logprob_i.size(0 )].copy_(-logprob_i )
offset += logprob_i.size(0 )
return out
def lowerCamelCase_ ( self: List[str] , UpperCamelCase__: Tuple ):
if self.n_clusters == 0:
lowerCamelCase__ : Tuple = self._compute_logit(UpperCamelCase__ , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] )
return nn.functional.log_softmax(UpperCamelCase__ , dim=-1 )
else:
# construct weights and biases
lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = [], []
for i in range(len(self.cutoffs ) ):
if self.div_val == 1:
lowerCamelCase__ , lowerCamelCase__ : Dict = self.cutoff_ends[i], self.cutoff_ends[i + 1]
lowerCamelCase__ : int = self.out_layers[0].weight[l_idx:r_idx]
lowerCamelCase__ : List[Any] = self.out_layers[0].bias[l_idx:r_idx]
else:
lowerCamelCase__ : List[str] = self.out_layers[i].weight
lowerCamelCase__ : Optional[Any] = self.out_layers[i].bias
if i == 0:
lowerCamelCase__ : Union[str, Any] = torch.cat([weight_i, self.cluster_weight] , dim=0 )
lowerCamelCase__ : str = torch.cat([bias_i, self.cluster_bias] , dim=0 )
weights.append(UpperCamelCase__ )
biases.append(UpperCamelCase__ )
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Tuple = weights[0], biases[0], self.out_projs[0]
lowerCamelCase__ : Tuple = self._compute_logit(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
lowerCamelCase__ : int = hidden.new_empty((head_logit.size(0 ), self.n_token) )
lowerCamelCase__ : Optional[Any] = nn.functional.log_softmax(UpperCamelCase__ , dim=1 )
lowerCamelCase__ : List[str] = [0] + self.cutoffs
for i in range(len(UpperCamelCase__ ) - 1 ):
lowerCamelCase__ , lowerCamelCase__ : Tuple = cutoff_values[i], cutoff_values[i + 1]
if i == 0:
lowerCamelCase__ : Union[str, Any] = head_logprob[:, : self.cutoffs[0]]
else:
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : List[Any] = weights[i], biases[i], self.out_projs[i]
lowerCamelCase__ : List[Any] = self._compute_logit(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
lowerCamelCase__ : Optional[int] = nn.functional.log_softmax(UpperCamelCase__ , dim=1 )
lowerCamelCase__ : List[str] = head_logprob[:, -i] + tail_logprob_i
lowerCamelCase__ : int = logprob_i
return out
| 41 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCamelCase : Tuple = logging.get_logger(__name__)
lowerCamelCase : Dict = {
'microsoft/cvt-13': 'https://huggingface.co/microsoft/cvt-13/resolve/main/config.json',
# See all Cvt models at https://huggingface.co/models?filter=cvt
}
class __lowerCAmelCase (lowercase_ ):
'''simple docstring'''
lowerCAmelCase__ : Tuple = """cvt"""
def __init__(self : int , UpperCamelCase : List[Any]=3 , UpperCamelCase : int=[7, 3, 3] , UpperCamelCase : str=[4, 2, 2] , UpperCamelCase : Dict=[2, 1, 1] , UpperCamelCase : Dict=[64, 192, 384] , UpperCamelCase : Dict=[1, 3, 6] , UpperCamelCase : Dict=[1, 2, 10] , UpperCamelCase : Any=[4.0, 4.0, 4.0] , UpperCamelCase : Optional[int]=[0.0, 0.0, 0.0] , UpperCamelCase : Optional[int]=[0.0, 0.0, 0.0] , UpperCamelCase : int=[0.0, 0.0, 0.1] , UpperCamelCase : Any=[True, True, True] , UpperCamelCase : int=[False, False, True] , UpperCamelCase : Union[str, Any]=["dw_bn", "dw_bn", "dw_bn"] , UpperCamelCase : Optional[int]=[3, 3, 3] , UpperCamelCase : Tuple=[1, 1, 1] , UpperCamelCase : Any=[2, 2, 2] , UpperCamelCase : Dict=[1, 1, 1] , UpperCamelCase : List[str]=[1, 1, 1] , UpperCamelCase : str=0.02 , UpperCamelCase : int=1E-12 , **UpperCamelCase : Union[str, Any] , ):
'''simple docstring'''
super().__init__(**UpperCamelCase )
lowercase__ = num_channels
lowercase__ = patch_sizes
lowercase__ = patch_stride
lowercase__ = patch_padding
lowercase__ = embed_dim
lowercase__ = num_heads
lowercase__ = depth
lowercase__ = mlp_ratio
lowercase__ = attention_drop_rate
lowercase__ = drop_rate
lowercase__ = drop_path_rate
lowercase__ = qkv_bias
lowercase__ = cls_token
lowercase__ = qkv_projection_method
lowercase__ = kernel_qkv
lowercase__ = padding_kv
lowercase__ = stride_kv
lowercase__ = padding_q
lowercase__ = stride_q
lowercase__ = initializer_range
lowercase__ = layer_norm_eps
| 2 | 0 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowercase : Tuple = logging.get_logger(__name__)
lowercase : Any = {
'microsoft/markuplm-base': 'https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json',
'microsoft/markuplm-large': 'https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json',
}
class A ( lowercase_ ):
__magic_name__ = """markuplm"""
def __init__( self , SCREAMING_SNAKE_CASE=30522 , SCREAMING_SNAKE_CASE=768 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE=3072 , SCREAMING_SNAKE_CASE="gelu" , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=512 , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE=0.02 , SCREAMING_SNAKE_CASE=1e-12 , SCREAMING_SNAKE_CASE=0 , SCREAMING_SNAKE_CASE=0 , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE=256 , SCREAMING_SNAKE_CASE=1024 , SCREAMING_SNAKE_CASE=216 , SCREAMING_SNAKE_CASE=1001 , SCREAMING_SNAKE_CASE=32 , SCREAMING_SNAKE_CASE=50 , SCREAMING_SNAKE_CASE="absolute" , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=None , **SCREAMING_SNAKE_CASE , ) -> Any:
"""simple docstring"""
super().__init__(
pad_token_id=SCREAMING_SNAKE_CASE , bos_token_id=SCREAMING_SNAKE_CASE , eos_token_id=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , )
A : Optional[Any] = vocab_size
A : List[str] = hidden_size
A : Dict = num_hidden_layers
A : Tuple = num_attention_heads
A : int = hidden_act
A : Tuple = intermediate_size
A : str = hidden_dropout_prob
A : Union[str, Any] = attention_probs_dropout_prob
A : Optional[int] = max_position_embeddings
A : str = type_vocab_size
A : int = initializer_range
A : Dict = layer_norm_eps
A : Dict = position_embedding_type
A : Optional[int] = use_cache
A : Optional[int] = classifier_dropout
# additional properties
A : Any = max_depth
A : Union[str, Any] = max_xpath_tag_unit_embeddings
A : str = max_xpath_subs_unit_embeddings
A : int = tag_pad_id
A : Union[str, Any] = subs_pad_id
A : Union[str, Any] = xpath_unit_hidden_size
| 3 |
'''simple docstring'''
import numpy as np
# Importing the Keras libraries and packages
import tensorflow as tf
from tensorflow.keras import layers, models
if __name__ == "__main__":
# Initialising the CNN
# (Sequential- Building the model layer by layer)
lowerCamelCase : Any = models.Sequential()
# Step 1 - Convolution
# Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel
# (3,3) is the kernel size (filter matrix)
classifier.add(
layers.ConvaD(32, (3, 3), input_shape=(64, 64, 3), activation='relu')
)
# Step 2 - Pooling
classifier.add(layers.MaxPoolingaD(pool_size=(2, 2)))
# Adding a second convolutional layer
classifier.add(layers.ConvaD(32, (3, 3), activation='relu'))
classifier.add(layers.MaxPoolingaD(pool_size=(2, 2)))
# Step 3 - Flattening
classifier.add(layers.Flatten())
# Step 4 - Full connection
classifier.add(layers.Dense(units=128, activation='relu'))
classifier.add(layers.Dense(units=1, activation='sigmoid'))
# Compiling the CNN
classifier.compile(
optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']
)
# Part 2 - Fitting the CNN to the images
# Load Trained model weights
# from keras.models import load_model
# regressor=load_model('cnn.h5')
lowerCamelCase : Optional[Any] = tf.keras.preprocessing.image.ImageDataGenerator(
rescale=1.0 / 255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True
)
lowerCamelCase : Any = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 255)
lowerCamelCase : List[Any] = train_datagen.flow_from_directory(
'dataset/training_set', target_size=(64, 64), batch_size=32, class_mode='binary'
)
lowerCamelCase : List[str] = test_datagen.flow_from_directory(
'dataset/test_set', target_size=(64, 64), batch_size=32, class_mode='binary'
)
classifier.fit_generator(
training_set, steps_per_epoch=5, epochs=30, validation_data=test_set
)
classifier.save('cnn.h5')
# Part 3 - Making new predictions
lowerCamelCase : List[str] = tf.keras.preprocessing.image.load_img(
'dataset/single_prediction/image.png', target_size=(64, 64)
)
lowerCamelCase : Optional[int] = tf.keras.preprocessing.image.img_to_array(test_image)
lowerCamelCase : str = np.expand_dims(test_image, axis=0)
lowerCamelCase : List[str] = classifier.predict(test_image)
# training_set.class_indices
if result[0][0] == 0:
lowerCamelCase : Any = 'Normal'
if result[0][0] == 1:
lowerCamelCase : Any = 'Abnormality detected'
| 2 | 0 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
A =logging.get_logger(__name__)
A ={
'google/realm-cc-news-pretrained-embedder': (
'https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json'
),
'google/realm-cc-news-pretrained-encoder': (
'https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json'
),
'google/realm-cc-news-pretrained-scorer': (
'https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json'
),
'google/realm-cc-news-pretrained-openqa': (
'https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json'
),
'google/realm-orqa-nq-openqa': 'https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json',
'google/realm-orqa-nq-reader': 'https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json',
'google/realm-orqa-wq-openqa': 'https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json',
'google/realm-orqa-wq-reader': 'https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json',
# See all REALM models at https://huggingface.co/models?filter=realm
}
class _a ( lowercase_ ):
__a : Optional[int] = """realm"""
def __init__( self : str , lowercase : List[Any]=30_522 , lowercase : List[Any]=768 , lowercase : int=128 , lowercase : Any=12 , lowercase : Tuple=12 , lowercase : List[Any]=8 , lowercase : Union[str, Any]=3_072 , lowercase : List[str]="gelu_new" , lowercase : Any=0.1 , lowercase : List[str]=0.1 , lowercase : Dict=512 , lowercase : Dict=2 , lowercase : List[Any]=0.02 , lowercase : List[Any]=1E-12 , lowercase : Dict=256 , lowercase : Union[str, Any]=10 , lowercase : Optional[int]=1E-3 , lowercase : Tuple=5 , lowercase : Optional[int]=320 , lowercase : List[str]=13_353_718 , lowercase : Optional[Any]=5_000 , lowercase : str=1 , lowercase : Union[str, Any]=0 , lowercase : List[Any]=2 , **lowercase : int , ):
'''simple docstring'''
super().__init__(pad_token_id=lowercase , bos_token_id=lowercase , eos_token_id=lowercase , **lowercase )
# Common config
UpperCAmelCase = vocab_size
UpperCAmelCase = max_position_embeddings
UpperCAmelCase = hidden_size
UpperCAmelCase = retriever_proj_size
UpperCAmelCase = num_hidden_layers
UpperCAmelCase = num_attention_heads
UpperCAmelCase = num_candidates
UpperCAmelCase = intermediate_size
UpperCAmelCase = hidden_act
UpperCAmelCase = hidden_dropout_prob
UpperCAmelCase = attention_probs_dropout_prob
UpperCAmelCase = initializer_range
UpperCAmelCase = type_vocab_size
UpperCAmelCase = layer_norm_eps
# Reader config
UpperCAmelCase = span_hidden_size
UpperCAmelCase = max_span_width
UpperCAmelCase = reader_layer_norm_eps
UpperCAmelCase = reader_beam_size
UpperCAmelCase = reader_seq_len
# Retrieval config
UpperCAmelCase = num_block_records
UpperCAmelCase = searcher_beam_size
| 34 |
'''simple docstring'''
class __lowerCAmelCase : # Public class to implement a graph
'''simple docstring'''
def __init__(self : int , UpperCamelCase : int , UpperCamelCase : int , UpperCamelCase : list[list[bool]] ):
'''simple docstring'''
lowercase__ = row
lowercase__ = col
lowercase__ = graph
def UpperCamelCase__ (self : Optional[int] , UpperCamelCase : int , UpperCamelCase : int , UpperCamelCase : list[list[bool]] ):
'''simple docstring'''
return (
0 <= i < self.ROW
and 0 <= j < self.COL
and not visited[i][j]
and self.graph[i][j]
)
def UpperCamelCase__ (self : int , UpperCamelCase : int , UpperCamelCase : int , UpperCamelCase : list[list[bool]] ):
'''simple docstring'''
lowercase__ = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order
lowercase__ = [-1, 0, 1, -1, 1, -1, 0, 1]
lowercase__ = True # Make those cells visited
for k in range(8 ):
if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , UpperCamelCase ):
self.diffs(i + row_nbr[k] , j + col_nbr[k] , UpperCamelCase )
def UpperCamelCase__ (self : Dict ): # And finally, count all islands.
'''simple docstring'''
lowercase__ = [[False for j in range(self.COL )] for i in range(self.ROW )]
lowercase__ = 0
for i in range(self.ROW ):
for j in range(self.COL ):
if visited[i][j] is False and self.graph[i][j] == 1:
self.diffs(UpperCamelCase , UpperCamelCase , UpperCamelCase )
count += 1
return count
| 2 | 0 |
'''simple docstring'''
import argparse
import json
from collections import OrderedDict
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
ConditionalDetrConfig,
ConditionalDetrForObjectDetection,
ConditionalDetrForSegmentation,
ConditionalDetrImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
UpperCAmelCase = logging.get_logger(__name__)
# here we list all keys to be renamed (original name on the left, our name on the right)
UpperCAmelCase = []
for i in range(6):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append(
(F'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', F'''encoder.layers.{i}.self_attn.out_proj.weight''')
)
rename_keys.append(
(F'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', F'''encoder.layers.{i}.self_attn.out_proj.bias''')
)
rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.weight''', F'''encoder.layers.{i}.fc1.weight'''))
rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.bias''', F'''encoder.layers.{i}.fc1.bias'''))
rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.weight''', F'''encoder.layers.{i}.fc2.weight'''))
rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.bias''', F'''encoder.layers.{i}.fc2.bias'''))
rename_keys.append(
(F'''transformer.encoder.layers.{i}.norm1.weight''', F'''encoder.layers.{i}.self_attn_layer_norm.weight''')
)
rename_keys.append((F'''transformer.encoder.layers.{i}.norm1.bias''', F'''encoder.layers.{i}.self_attn_layer_norm.bias'''))
rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.weight''', F'''encoder.layers.{i}.final_layer_norm.weight'''))
rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.bias''', F'''encoder.layers.{i}.final_layer_norm.bias'''))
# decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms
rename_keys.append(
(F'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', F'''decoder.layers.{i}.self_attn.out_proj.weight''')
)
rename_keys.append(
(F'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', F'''decoder.layers.{i}.self_attn.out_proj.bias''')
)
rename_keys.append(
(
F'''transformer.decoder.layers.{i}.cross_attn.out_proj.weight''',
F'''decoder.layers.{i}.encoder_attn.out_proj.weight''',
)
)
rename_keys.append(
(
F'''transformer.decoder.layers.{i}.cross_attn.out_proj.bias''',
F'''decoder.layers.{i}.encoder_attn.out_proj.bias''',
)
)
rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.weight''', F'''decoder.layers.{i}.fc1.weight'''))
rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.bias''', F'''decoder.layers.{i}.fc1.bias'''))
rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.weight''', F'''decoder.layers.{i}.fc2.weight'''))
rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.bias''', F'''decoder.layers.{i}.fc2.bias'''))
rename_keys.append(
(F'''transformer.decoder.layers.{i}.norm1.weight''', F'''decoder.layers.{i}.self_attn_layer_norm.weight''')
)
rename_keys.append((F'''transformer.decoder.layers.{i}.norm1.bias''', F'''decoder.layers.{i}.self_attn_layer_norm.bias'''))
rename_keys.append(
(F'''transformer.decoder.layers.{i}.norm2.weight''', F'''decoder.layers.{i}.encoder_attn_layer_norm.weight''')
)
rename_keys.append(
(F'''transformer.decoder.layers.{i}.norm2.bias''', F'''decoder.layers.{i}.encoder_attn_layer_norm.bias''')
)
rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.weight''', F'''decoder.layers.{i}.final_layer_norm.weight'''))
rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.bias''', F'''decoder.layers.{i}.final_layer_norm.bias'''))
# q, k, v projections in self/cross-attention in decoder for conditional DETR
rename_keys.append(
(F'''transformer.decoder.layers.{i}.sa_qcontent_proj.weight''', F'''decoder.layers.{i}.sa_qcontent_proj.weight''')
)
rename_keys.append(
(F'''transformer.decoder.layers.{i}.sa_kcontent_proj.weight''', F'''decoder.layers.{i}.sa_kcontent_proj.weight''')
)
rename_keys.append(
(F'''transformer.decoder.layers.{i}.sa_qpos_proj.weight''', F'''decoder.layers.{i}.sa_qpos_proj.weight''')
)
rename_keys.append(
(F'''transformer.decoder.layers.{i}.sa_kpos_proj.weight''', F'''decoder.layers.{i}.sa_kpos_proj.weight''')
)
rename_keys.append((F'''transformer.decoder.layers.{i}.sa_v_proj.weight''', F'''decoder.layers.{i}.sa_v_proj.weight'''))
rename_keys.append(
(F'''transformer.decoder.layers.{i}.ca_qcontent_proj.weight''', F'''decoder.layers.{i}.ca_qcontent_proj.weight''')
)
# rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight"))
rename_keys.append(
(F'''transformer.decoder.layers.{i}.ca_kcontent_proj.weight''', F'''decoder.layers.{i}.ca_kcontent_proj.weight''')
)
rename_keys.append(
(F'''transformer.decoder.layers.{i}.ca_kpos_proj.weight''', F'''decoder.layers.{i}.ca_kpos_proj.weight''')
)
rename_keys.append((F'''transformer.decoder.layers.{i}.ca_v_proj.weight''', F'''decoder.layers.{i}.ca_v_proj.weight'''))
rename_keys.append(
(F'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight''', F'''decoder.layers.{i}.ca_qpos_sine_proj.weight''')
)
rename_keys.append(
(F'''transformer.decoder.layers.{i}.sa_qcontent_proj.bias''', F'''decoder.layers.{i}.sa_qcontent_proj.bias''')
)
rename_keys.append(
(F'''transformer.decoder.layers.{i}.sa_kcontent_proj.bias''', F'''decoder.layers.{i}.sa_kcontent_proj.bias''')
)
rename_keys.append((F'''transformer.decoder.layers.{i}.sa_qpos_proj.bias''', F'''decoder.layers.{i}.sa_qpos_proj.bias'''))
rename_keys.append((F'''transformer.decoder.layers.{i}.sa_kpos_proj.bias''', F'''decoder.layers.{i}.sa_kpos_proj.bias'''))
rename_keys.append((F'''transformer.decoder.layers.{i}.sa_v_proj.bias''', F'''decoder.layers.{i}.sa_v_proj.bias'''))
rename_keys.append(
(F'''transformer.decoder.layers.{i}.ca_qcontent_proj.bias''', F'''decoder.layers.{i}.ca_qcontent_proj.bias''')
)
# rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias"))
rename_keys.append(
(F'''transformer.decoder.layers.{i}.ca_kcontent_proj.bias''', F'''decoder.layers.{i}.ca_kcontent_proj.bias''')
)
rename_keys.append((F'''transformer.decoder.layers.{i}.ca_kpos_proj.bias''', F'''decoder.layers.{i}.ca_kpos_proj.bias'''))
rename_keys.append((F'''transformer.decoder.layers.{i}.ca_v_proj.bias''', F'''decoder.layers.{i}.ca_v_proj.bias'''))
rename_keys.append(
(F'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias''', F'''decoder.layers.{i}.ca_qpos_sine_proj.bias''')
)
# convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads
# for conditional DETR, also convert reference point head and query scale MLP
rename_keys.extend(
[
('''input_proj.weight''', '''input_projection.weight'''),
('''input_proj.bias''', '''input_projection.bias'''),
('''query_embed.weight''', '''query_position_embeddings.weight'''),
('''transformer.decoder.norm.weight''', '''decoder.layernorm.weight'''),
('''transformer.decoder.norm.bias''', '''decoder.layernorm.bias'''),
('''class_embed.weight''', '''class_labels_classifier.weight'''),
('''class_embed.bias''', '''class_labels_classifier.bias'''),
('''bbox_embed.layers.0.weight''', '''bbox_predictor.layers.0.weight'''),
('''bbox_embed.layers.0.bias''', '''bbox_predictor.layers.0.bias'''),
('''bbox_embed.layers.1.weight''', '''bbox_predictor.layers.1.weight'''),
('''bbox_embed.layers.1.bias''', '''bbox_predictor.layers.1.bias'''),
('''bbox_embed.layers.2.weight''', '''bbox_predictor.layers.2.weight'''),
('''bbox_embed.layers.2.bias''', '''bbox_predictor.layers.2.bias'''),
('''transformer.decoder.ref_point_head.layers.0.weight''', '''decoder.ref_point_head.layers.0.weight'''),
('''transformer.decoder.ref_point_head.layers.0.bias''', '''decoder.ref_point_head.layers.0.bias'''),
('''transformer.decoder.ref_point_head.layers.1.weight''', '''decoder.ref_point_head.layers.1.weight'''),
('''transformer.decoder.ref_point_head.layers.1.bias''', '''decoder.ref_point_head.layers.1.bias'''),
('''transformer.decoder.query_scale.layers.0.weight''', '''decoder.query_scale.layers.0.weight'''),
('''transformer.decoder.query_scale.layers.0.bias''', '''decoder.query_scale.layers.0.bias'''),
('''transformer.decoder.query_scale.layers.1.weight''', '''decoder.query_scale.layers.1.weight'''),
('''transformer.decoder.query_scale.layers.1.bias''', '''decoder.query_scale.layers.1.bias'''),
('''transformer.decoder.layers.0.ca_qpos_proj.weight''', '''decoder.layers.0.ca_qpos_proj.weight'''),
('''transformer.decoder.layers.0.ca_qpos_proj.bias''', '''decoder.layers.0.ca_qpos_proj.bias'''),
]
)
def __UpperCamelCase ( lowercase__ : Union[str, Any], lowercase__ : Dict, lowercase__ : Any ):
'''simple docstring'''
__lowercase =state_dict.pop(lowercase__ )
__lowercase =val
def __UpperCamelCase ( lowercase__ : int ):
'''simple docstring'''
__lowercase =OrderedDict()
for key, value in state_dict.items():
if "backbone.0.body" in key:
__lowercase =key.replace('backbone.0.body', 'backbone.conv_encoder.model' )
__lowercase =value
else:
__lowercase =value
return new_state_dict
def __UpperCamelCase ( lowercase__ : Any, lowercase__ : Dict=False ):
'''simple docstring'''
__lowercase =''
if is_panoptic:
__lowercase ='conditional_detr.'
# first: transformer encoder
for i in range(6 ):
# read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias)
__lowercase =state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' )
__lowercase =state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' )
# next, add query, keys and values (in that order) to the state dict
__lowercase =in_proj_weight[:2_56, :]
__lowercase =in_proj_bias[:2_56]
__lowercase =in_proj_weight[2_56:5_12, :]
__lowercase =in_proj_bias[2_56:5_12]
__lowercase =in_proj_weight[-2_56:, :]
__lowercase =in_proj_bias[-2_56:]
def __UpperCamelCase ( ):
'''simple docstring'''
__lowercase ='http://images.cocodataset.org/val2017/000000039769.jpg'
__lowercase =Image.open(requests.get(lowercase__, stream=lowercase__ ).raw )
return im
@torch.no_grad()
def __UpperCamelCase ( lowercase__ : List[Any], lowercase__ : Tuple ):
'''simple docstring'''
__lowercase =ConditionalDetrConfig()
# set backbone and dilation attributes
if "resnet101" in model_name:
__lowercase ='resnet101'
if "dc5" in model_name:
__lowercase =True
__lowercase ='panoptic' in model_name
if is_panoptic:
__lowercase =2_50
else:
__lowercase =91
__lowercase ='huggingface/label-files'
__lowercase ='coco-detection-id2label.json'
__lowercase =json.load(open(hf_hub_download(lowercase__, lowercase__, repo_type='dataset' ), 'r' ) )
__lowercase ={int(lowercase__ ): v for k, v in idalabel.items()}
__lowercase =idalabel
__lowercase ={v: k for k, v in idalabel.items()}
# load image processor
__lowercase ='coco_panoptic' if is_panoptic else 'coco_detection'
__lowercase =ConditionalDetrImageProcessor(format=lowercase__ )
# prepare image
__lowercase =prepare_img()
__lowercase =image_processor(images=lowercase__, return_tensors='pt' )
__lowercase =encoding['pixel_values']
logger.info(F'''Converting model {model_name}...''' )
# load original model from torch hub
__lowercase =torch.hub.load('DeppMeng/ConditionalDETR', lowercase__, pretrained=lowercase__ ).eval()
__lowercase =conditional_detr.state_dict()
# rename keys
for src, dest in rename_keys:
if is_panoptic:
__lowercase ='conditional_detr.' + src
rename_key(lowercase__, lowercase__, lowercase__ )
__lowercase =rename_backbone_keys(lowercase__ )
# query, key and value matrices need special treatment
read_in_q_k_v(lowercase__, is_panoptic=lowercase__ )
# important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them
__lowercase ='conditional_detr.model.' if is_panoptic else 'model.'
for key in state_dict.copy().keys():
if is_panoptic:
if (
key.startswith('conditional_detr' )
and not key.startswith('class_labels_classifier' )
and not key.startswith('bbox_predictor' )
):
__lowercase =state_dict.pop(lowercase__ )
__lowercase =val
elif "class_labels_classifier" in key or "bbox_predictor" in key:
__lowercase =state_dict.pop(lowercase__ )
__lowercase =val
elif key.startswith('bbox_attention' ) or key.startswith('mask_head' ):
continue
else:
__lowercase =state_dict.pop(lowercase__ )
__lowercase =val
else:
if not key.startswith('class_labels_classifier' ) and not key.startswith('bbox_predictor' ):
__lowercase =state_dict.pop(lowercase__ )
__lowercase =val
# finally, create HuggingFace model and load state dict
__lowercase =ConditionalDetrForSegmentation(lowercase__ ) if is_panoptic else ConditionalDetrForObjectDetection(lowercase__ )
model.load_state_dict(lowercase__ )
model.eval()
model.push_to_hub(repo_id=lowercase__, organization='DepuMeng', commit_message='Add model' )
# verify our conversion
__lowercase =conditional_detr(lowercase__ )
__lowercase =model(lowercase__ )
assert torch.allclose(outputs.logits, original_outputs['pred_logits'], atol=1E-4 )
assert torch.allclose(outputs.pred_boxes, original_outputs['pred_boxes'], atol=1E-4 )
if is_panoptic:
assert torch.allclose(outputs.pred_masks, original_outputs['pred_masks'], atol=1E-4 )
# Save model and image processor
logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' )
Path(lowercase__ ).mkdir(exist_ok=lowercase__ )
model.save_pretrained(lowercase__ )
image_processor.save_pretrained(lowercase__ )
if __name__ == "__main__":
UpperCAmelCase = argparse.ArgumentParser()
parser.add_argument(
'''--model_name''',
default='''conditional_detr_resnet50''',
type=str,
help='''Name of the CONDITIONAL_DETR model you\'d like to convert.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.'''
)
UpperCAmelCase = parser.parse_args()
convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
| 141 |
'''simple docstring'''
import unittest
from transformers import DonutProcessor
lowerCamelCase : Tuple = 'naver-clova-ix/donut-base'
class __lowerCAmelCase (unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase__ (self : int ):
'''simple docstring'''
lowercase__ = DonutProcessor.from_pretrained(UpperCamelCase )
def UpperCamelCase__ (self : Tuple ):
'''simple docstring'''
lowercase__ = {
'''name''': '''John Doe''',
'''age''': '''99''',
'''city''': '''Atlanta''',
'''state''': '''GA''',
'''zip''': '''30301''',
'''phone''': '''123-4567''',
'''nicknames''': [{'''nickname''': '''Johnny'''}, {'''nickname''': '''JD'''}],
}
lowercase__ = (
'''<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>'''
'''<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>'''
'''<s_nicknames><s_nickname>Johnny</s_nickname>'''
'''<sep/><s_nickname>JD</s_nickname></s_nicknames>'''
)
lowercase__ = self.processor.tokenajson(UpperCamelCase )
self.assertDictEqual(UpperCamelCase , UpperCamelCase )
| 2 | 0 |
import requests
from bsa import BeautifulSoup
def lowerCAmelCase__ ( lowerCamelCase_ : List[str] = "https://www.worldometers.info/coronavirus"):
'''simple docstring'''
lowerCAmelCase__ : Tuple = BeautifulSoup(requests.get(lowerCamelCase_).text ,'''html.parser''')
lowerCAmelCase__ : Optional[int] = soup.findAll('''h1''')
lowerCAmelCase__ : str = soup.findAll('''div''' ,{'''class''': '''maincounter-number'''})
keys += soup.findAll('''span''' ,{'''class''': '''panel-title'''})
values += soup.findAll('''div''' ,{'''class''': '''number-table-main'''})
return {key.text.strip(): value.text.strip() for key, value in zip(lowerCamelCase_ ,lowerCamelCase_)}
if __name__ == "__main__":
print('\033[1m' + 'COVID-19 Status of the World' + '\033[0m\n')
for key, value in world_covidaa_stats().items():
print(f"""{key}\n{value}\n""")
| 129 |
'''simple docstring'''
from __future__ import annotations
def _SCREAMING_SNAKE_CASE (A ) -> bool:
"""simple docstring"""
return len(set(A ) ) == len(A )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 2 | 0 |
"""simple docstring"""
def lowercase ( _snake_case : int , _snake_case : Dict ) ->int:
"""simple docstring"""
while second != 0:
__snake_case : Any = first & second
first ^= second
__snake_case : str = c << 1
return first
if __name__ == "__main__":
import doctest
doctest.testmod()
SCREAMING_SNAKE_CASE : Tuple = int(input("""Enter the first number: """).strip())
SCREAMING_SNAKE_CASE : List[str] = int(input("""Enter the second number: """).strip())
print(F'{add(first, second) = }')
| 102 |
'''simple docstring'''
import os
import re
import warnings
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_ta import TaTokenizer
else:
lowerCamelCase : Any = None
lowerCamelCase : Dict = logging.get_logger(__name__)
lowerCamelCase : Optional[int] = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'}
lowerCamelCase : List[str] = {
'vocab_file': {
't5-small': 'https://huggingface.co/t5-small/resolve/main/spiece.model',
't5-base': 'https://huggingface.co/t5-base/resolve/main/spiece.model',
't5-large': 'https://huggingface.co/t5-large/resolve/main/spiece.model',
't5-3b': 'https://huggingface.co/t5-3b/resolve/main/spiece.model',
't5-11b': 'https://huggingface.co/t5-11b/resolve/main/spiece.model',
},
'tokenizer_file': {
't5-small': 'https://huggingface.co/t5-small/resolve/main/tokenizer.json',
't5-base': 'https://huggingface.co/t5-base/resolve/main/tokenizer.json',
't5-large': 'https://huggingface.co/t5-large/resolve/main/tokenizer.json',
't5-3b': 'https://huggingface.co/t5-3b/resolve/main/tokenizer.json',
't5-11b': 'https://huggingface.co/t5-11b/resolve/main/tokenizer.json',
},
}
# TODO(PVP) - this should be removed in Transformers v5
lowerCamelCase : Any = {
't5-small': 512,
't5-base': 512,
't5-large': 512,
't5-3b': 512,
't5-11b': 512,
}
class __lowerCAmelCase (lowercase_ ):
'''simple docstring'''
lowerCAmelCase__ : List[str] = VOCAB_FILES_NAMES
lowerCAmelCase__ : str = PRETRAINED_VOCAB_FILES_MAP
lowerCAmelCase__ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCAmelCase__ : int = ["""input_ids""", """attention_mask"""]
lowerCAmelCase__ : Optional[int] = TaTokenizer
lowerCAmelCase__ : List[int] = []
def __init__(self : Dict , UpperCamelCase : str=None , UpperCamelCase : Optional[Any]=None , UpperCamelCase : Any="</s>" , UpperCamelCase : str="<unk>" , UpperCamelCase : List[str]="<pad>" , UpperCamelCase : List[str]=100 , UpperCamelCase : Tuple=None , **UpperCamelCase : List[str] , ):
'''simple docstring'''
if extra_ids > 0 and additional_special_tokens is None:
lowercase__ = [f"<extra_id_{i}>" for i in range(UpperCamelCase )]
elif extra_ids > 0 and additional_special_tokens is not None:
# Check that we have the right number of extra special tokens
lowercase__ = len(set(filter(lambda UpperCamelCase : bool('''extra_id_''' in str(UpperCamelCase ) ) , UpperCamelCase ) ) )
if extra_tokens != extra_ids:
raise ValueError(
f"Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are"
''' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids'''
''' tokens''' )
super().__init__(
UpperCamelCase , tokenizer_file=UpperCamelCase , eos_token=UpperCamelCase , unk_token=UpperCamelCase , pad_token=UpperCamelCase , extra_ids=UpperCamelCase , additional_special_tokens=UpperCamelCase , **UpperCamelCase , )
lowercase__ = vocab_file
lowercase__ = False if not self.vocab_file else True
lowercase__ = extra_ids
@staticmethod
def UpperCamelCase__ (UpperCamelCase : List[Any] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Optional[Any] ):
'''simple docstring'''
if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes:
lowercase__ = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path]
if init_max_model_length is not None and init_max_model_length != max_model_length:
return init_max_model_length
elif init_max_model_length is None:
warnings.warn(
'''This tokenizer was incorrectly instantiated with a model max length of'''
f" {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this"
''' behavior is kept to avoid breaking backwards compatibility when padding/encoding with'''
''' `truncation is True`.\n- Be aware that you SHOULD NOT rely on'''
f" {pretrained_model_name_or_path} automatically truncating your input to"
f" {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences"
f" longer than {deprecated_max_model_length} you can either instantiate this tokenizer with"
''' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please'''
''' instantiate this tokenizer with `model_max_length` set to your preferred value.''' , UpperCamelCase , )
return max_model_length
def UpperCamelCase__ (self : Any , UpperCamelCase : str , UpperCamelCase : Optional[str] = None ):
'''simple docstring'''
if not self.can_save_slow_tokenizer:
raise ValueError(
'''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow '''
'''tokenizer.''' )
if not os.path.isdir(UpperCamelCase ):
logger.error(f"Vocabulary path ({save_directory}) should be a directory" )
return
lowercase__ = os.path.join(
UpperCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase ):
copyfile(self.vocab_file , UpperCamelCase )
logger.info(f"Copy vocab file to {out_vocab_file}" )
return (out_vocab_file,)
def UpperCamelCase__ (self : Any , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None ):
'''simple docstring'''
lowercase__ = token_ids_a + [self.eos_token_id]
if token_ids_a is None:
return self.prefix_tokens + token_ids_a
else:
lowercase__ = token_ids_a + [self.eos_token_id]
return self.prefix_tokens + token_ids_a + token_ids_a
def UpperCamelCase__ (self : Optional[Any] , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None ):
'''simple docstring'''
lowercase__ = [self.eos_token_id]
if token_ids_a is None:
return len(token_ids_a + eos ) * [0]
return len(token_ids_a + eos + token_ids_a + eos ) * [0]
def UpperCamelCase__ (self : List[Any] ):
'''simple docstring'''
return list(
set(filter(lambda UpperCamelCase : bool(re.search(R'''<extra_id_\d+>''' , UpperCamelCase ) ) is not None , self.additional_special_tokens ) ) )
def UpperCamelCase__ (self : Union[str, Any] ):
'''simple docstring'''
return [self.convert_tokens_to_ids(UpperCamelCase ) for token in self.get_sentinel_tokens()]
| 2 | 0 |
import doctest
import sys
import warnings
from os.path import abspath, dirname, join
import _pytest
from transformers.testing_utils import HfDoctestModule, HfDocTestParser
# allow having multiple repository checkouts and not needing to remember to rerun
# 'pip install -e .[dev]' when switching between checkouts and running tests.
A_ :Any = abspath(join(dirname(__file__), '''src'''))
sys.path.insert(1, git_repo_path)
# silence FutureWarning warnings in tests since often we can't act on them until
# they become normal warnings - i.e. the tests still need to test the current functionality
warnings.simplefilter(action='''ignore''', category=FutureWarning)
def A ( a_ ) -> Optional[Any]:
config.addinivalue_line(
'markers' ,'is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested' )
config.addinivalue_line(
'markers' ,'is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested' )
config.addinivalue_line('markers' ,'is_pipeline_test: mark test to run only when pipelines are tested' )
config.addinivalue_line('markers' ,'is_staging_test: mark test to run only in the staging environment' )
config.addinivalue_line('markers' ,'accelerate_tests: mark test that require accelerate' )
config.addinivalue_line('markers' ,'tool_tests: mark the tool tests that are run on their specific schedule' )
def A ( a_ ) -> Optional[Any]:
from transformers.testing_utils import pytest_addoption_shared
pytest_addoption_shared(a_ )
def A ( a_ ) -> List[Any]:
from transformers.testing_utils import pytest_terminal_summary_main
__UpperCamelCase : Optional[int] =terminalreporter.config.getoption('--make-reports' )
if make_reports:
pytest_terminal_summary_main(a_ ,id=a_ )
def A ( a_ ,a_ ) -> Optional[Any]:
if exitstatus == 5:
__UpperCamelCase : Optional[int] =0
# Doctest custom flag to ignore output.
A_ :Optional[Any] = doctest.register_optionflag('''IGNORE_RESULT''')
A_ :Optional[Any] = doctest.OutputChecker
class __A ( lowercase_ ):
"""simple docstring"""
def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
if IGNORE_RESULT & optionflags:
return True
return OutputChecker.check_output(self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
A_ :int = CustomOutputChecker
A_ :List[Any] = HfDoctestModule
A_ :Any = HfDocTestParser
| 71 |
'''simple docstring'''
import gc
import random
import unittest
import numpy as np
import torch
from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel
from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline
from diffusers.pipelines.shap_e import ShapERenderer
from diffusers.utils import floats_tensor, load_image, load_numpy, slow
from diffusers.utils.testing_utils import require_torch_gpu, torch_device
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
class __lowerCAmelCase (lowercase_ , unittest.TestCase ):
'''simple docstring'''
lowerCAmelCase__ : Dict = ShapEImgaImgPipeline
lowerCAmelCase__ : List[str] = ["""image"""]
lowerCAmelCase__ : Any = ["""image"""]
lowerCAmelCase__ : Any = [
"""num_images_per_prompt""",
"""num_inference_steps""",
"""generator""",
"""latents""",
"""guidance_scale""",
"""frame_size""",
"""output_type""",
"""return_dict""",
]
lowerCAmelCase__ : Tuple = False
@property
def UpperCamelCase__ (self : List[Any] ):
'''simple docstring'''
return 32
@property
def UpperCamelCase__ (self : str ):
'''simple docstring'''
return 32
@property
def UpperCamelCase__ (self : Union[str, Any] ):
'''simple docstring'''
return self.time_input_dim * 4
@property
def UpperCamelCase__ (self : int ):
'''simple docstring'''
return 8
@property
def UpperCamelCase__ (self : Any ):
'''simple docstring'''
torch.manual_seed(0 )
lowercase__ = CLIPVisionConfig(
hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , )
lowercase__ = CLIPVisionModel(UpperCamelCase )
return model
@property
def UpperCamelCase__ (self : List[Any] ):
'''simple docstring'''
lowercase__ = CLIPImageProcessor(
crop_size=224 , do_center_crop=UpperCamelCase , do_normalize=UpperCamelCase , do_resize=UpperCamelCase , image_mean=[0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73] , image_std=[0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11] , resample=3 , size=224 , )
return image_processor
@property
def UpperCamelCase__ (self : str ):
'''simple docstring'''
torch.manual_seed(0 )
lowercase__ = {
'''num_attention_heads''': 2,
'''attention_head_dim''': 16,
'''embedding_dim''': self.time_input_dim,
'''num_embeddings''': 32,
'''embedding_proj_dim''': self.text_embedder_hidden_size,
'''time_embed_dim''': self.time_embed_dim,
'''num_layers''': 1,
'''clip_embed_dim''': self.time_input_dim * 2,
'''additional_embeddings''': 0,
'''time_embed_act_fn''': '''gelu''',
'''norm_in_type''': '''layer''',
'''embedding_proj_norm_type''': '''layer''',
'''encoder_hid_proj_type''': None,
'''added_emb_type''': None,
}
lowercase__ = PriorTransformer(**UpperCamelCase )
return model
@property
def UpperCamelCase__ (self : int ):
'''simple docstring'''
torch.manual_seed(0 )
lowercase__ = {
'''param_shapes''': (
(self.renderer_dim, 93),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
),
'''d_latent''': self.time_input_dim,
'''d_hidden''': self.renderer_dim,
'''n_output''': 12,
'''background''': (
0.1,
0.1,
0.1,
),
}
lowercase__ = ShapERenderer(**UpperCamelCase )
return model
def UpperCamelCase__ (self : Union[str, Any] ):
'''simple docstring'''
lowercase__ = self.dummy_prior
lowercase__ = self.dummy_image_encoder
lowercase__ = self.dummy_image_processor
lowercase__ = self.dummy_renderer
lowercase__ = HeunDiscreteScheduler(
beta_schedule='''exp''' , num_train_timesteps=1024 , prediction_type='''sample''' , use_karras_sigmas=UpperCamelCase , clip_sample=UpperCamelCase , clip_sample_range=1.0 , )
lowercase__ = {
'''prior''': prior,
'''image_encoder''': image_encoder,
'''image_processor''': image_processor,
'''renderer''': renderer,
'''scheduler''': scheduler,
}
return components
def UpperCamelCase__ (self : Optional[int] , UpperCamelCase : Optional[int] , UpperCamelCase : str=0 ):
'''simple docstring'''
lowercase__ = floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCamelCase ) ).to(UpperCamelCase )
if str(UpperCamelCase ).startswith('''mps''' ):
lowercase__ = torch.manual_seed(UpperCamelCase )
else:
lowercase__ = torch.Generator(device=UpperCamelCase ).manual_seed(UpperCamelCase )
lowercase__ = {
'''image''': input_image,
'''generator''': generator,
'''num_inference_steps''': 1,
'''frame_size''': 32,
'''output_type''': '''np''',
}
return inputs
def UpperCamelCase__ (self : Tuple ):
'''simple docstring'''
lowercase__ = '''cpu'''
lowercase__ = self.get_dummy_components()
lowercase__ = self.pipeline_class(**UpperCamelCase )
lowercase__ = pipe.to(UpperCamelCase )
pipe.set_progress_bar_config(disable=UpperCamelCase )
lowercase__ = pipe(**self.get_dummy_inputs(UpperCamelCase ) )
lowercase__ = output.images[0]
lowercase__ = image[0, -3:, -3:, -1]
assert image.shape == (20, 32, 32, 3)
lowercase__ = np.array(
[
0.00_03_92_16,
0.00_03_92_16,
0.00_03_92_16,
0.00_03_92_16,
0.00_03_92_16,
0.00_03_92_16,
0.00_03_92_16,
0.00_03_92_16,
0.00_03_92_16,
] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def UpperCamelCase__ (self : Optional[Any] ):
'''simple docstring'''
self._test_inference_batch_consistent(batch_sizes=[1, 2] )
def UpperCamelCase__ (self : int ):
'''simple docstring'''
lowercase__ = torch_device == '''cpu'''
lowercase__ = True
self._test_inference_batch_single_identical(
batch_size=2 , test_max_difference=UpperCamelCase , relax_max_difference=UpperCamelCase , )
def UpperCamelCase__ (self : int ):
'''simple docstring'''
lowercase__ = self.get_dummy_components()
lowercase__ = self.pipeline_class(**UpperCamelCase )
lowercase__ = pipe.to(UpperCamelCase )
pipe.set_progress_bar_config(disable=UpperCamelCase )
lowercase__ = 1
lowercase__ = 2
lowercase__ = self.get_dummy_inputs(UpperCamelCase )
for key in inputs.keys():
if key in self.batch_params:
lowercase__ = batch_size * [inputs[key]]
lowercase__ = pipe(**UpperCamelCase , num_images_per_prompt=UpperCamelCase )[0]
assert images.shape[0] == batch_size * num_images_per_prompt
@slow
@require_torch_gpu
class __lowerCAmelCase (unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase__ (self : Optional[Any] ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCamelCase__ (self : Union[str, Any] ):
'''simple docstring'''
lowercase__ = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/corgi.png''' )
lowercase__ = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/shap_e/test_shap_e_img2img_out.npy''' )
lowercase__ = ShapEImgaImgPipeline.from_pretrained('''openai/shap-e-img2img''' )
lowercase__ = pipe.to(UpperCamelCase )
pipe.set_progress_bar_config(disable=UpperCamelCase )
lowercase__ = torch.Generator(device=UpperCamelCase ).manual_seed(0 )
lowercase__ = pipe(
UpperCamelCase , generator=UpperCamelCase , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type='''np''' , ).images[0]
assert images.shape == (20, 64, 64, 3)
assert_mean_pixel_difference(UpperCamelCase , UpperCamelCase )
| 2 | 0 |
'''simple docstring'''
def UpperCamelCase_( snake_case : Dict ):
'''simple docstring'''
snake_case_ = 0
snake_case_ = len(snake_case )
for i in range(n - 1 ):
for j in range(i + 1 , snake_case ):
if arr[i] > arr[j]:
num_inversions += 1
return num_inversions
def UpperCamelCase_( snake_case : List[Any] ):
'''simple docstring'''
if len(snake_case ) <= 1:
return arr, 0
snake_case_ = len(snake_case ) // 2
snake_case_ = arr[0:mid]
snake_case_ = arr[mid:]
snake_case_ , snake_case_ = count_inversions_recursive(snake_case )
snake_case_ , snake_case_ = count_inversions_recursive(snake_case )
snake_case_ , snake_case_ = _count_cross_inversions(snake_case , snake_case )
snake_case_ = inversion_p + inversions_q + cross_inversions
return c, num_inversions
def UpperCamelCase_( snake_case : Optional[Any] , snake_case : int ):
'''simple docstring'''
snake_case_ = []
snake_case_ = snake_case_ = snake_case_ = 0
while i < len(snake_case ) and j < len(snake_case ):
if p[i] > q[j]:
# if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P)
# These are all inversions. The claim emerges from the
# property that P is sorted.
num_inversion += len(snake_case ) - i
r.append(q[j] )
j += 1
else:
r.append(p[i] )
i += 1
if i < len(snake_case ):
r.extend(p[i:] )
else:
r.extend(q[j:] )
return r, num_inversion
def UpperCamelCase_( ):
'''simple docstring'''
snake_case_ = [1_0, 2, 1, 5, 5, 2, 1_1]
# this arr has 8 inversions:
# (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2)
snake_case_ = count_inversions_bf(snake_case )
snake_case_ , snake_case_ = count_inversions_recursive(snake_case )
assert num_inversions_bf == num_inversions_recursive == 8
print("number of inversions = " , snake_case )
# testing an array with zero inversion (a sorted arr_1)
arr_a.sort()
snake_case_ = count_inversions_bf(snake_case )
snake_case_ , snake_case_ = count_inversions_recursive(snake_case )
assert num_inversions_bf == num_inversions_recursive == 0
print("number of inversions = " , snake_case )
# an empty list should also have zero inversions
snake_case_ = []
snake_case_ = count_inversions_bf(snake_case )
snake_case_ , snake_case_ = count_inversions_recursive(snake_case )
assert num_inversions_bf == num_inversions_recursive == 0
print("number of inversions = " , snake_case )
if __name__ == "__main__":
main()
| 85 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
lowerCamelCase : str = {
'configuration_rag': ['RagConfig'],
'retrieval_rag': ['RagRetriever'],
'tokenization_rag': ['RagTokenizer'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase : Dict = [
'RagModel',
'RagPreTrainedModel',
'RagSequenceForGeneration',
'RagTokenForGeneration',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase : Optional[int] = [
'TFRagModel',
'TFRagPreTrainedModel',
'TFRagSequenceForGeneration',
'TFRagTokenForGeneration',
]
if TYPE_CHECKING:
from .configuration_rag import RagConfig
from .retrieval_rag import RagRetriever
from .tokenization_rag import RagTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_rag import RagModel, RagPreTrainedModel, RagSequenceForGeneration, RagTokenForGeneration
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_rag import (
TFRagModel,
TFRagPreTrainedModel,
TFRagSequenceForGeneration,
TFRagTokenForGeneration,
)
else:
import sys
lowerCamelCase : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 2 | 0 |
import torch
import torch.nn as nn
from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel
from ...utils import logging
a_ = logging.get_logger(__name__)
def a__ ( _UpperCamelCase : int ,_UpperCamelCase : List[Any] ):
__lowerCamelCase = nn.functional.normalize(_UpperCamelCase )
__lowerCamelCase = nn.functional.normalize(_UpperCamelCase )
return torch.mm(_UpperCamelCase ,normalized_text_embeds.t() )
class __lowerCAmelCase ( lowercase_ ):
lowerCAmelCase__ = CLIPConfig
lowerCAmelCase__ = ["""CLIPEncoderLayer"""]
def __init__( self , __UpperCAmelCase ):
'''simple docstring'''
super().__init__(__UpperCAmelCase )
__lowerCamelCase = CLIPVisionModel(config.vision_config )
__lowerCamelCase = nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=__UpperCAmelCase )
__lowerCamelCase = nn.Parameter(torch.ones(17 , config.projection_dim ) , requires_grad=__UpperCAmelCase )
__lowerCamelCase = nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=__UpperCAmelCase )
__lowerCamelCase = nn.Parameter(torch.ones(17 ) , requires_grad=__UpperCAmelCase )
__lowerCamelCase = nn.Parameter(torch.ones(3 ) , requires_grad=__UpperCAmelCase )
@torch.no_grad()
def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase ):
'''simple docstring'''
__lowerCamelCase = self.vision_model(__UpperCAmelCase )[1] # pooled_output
__lowerCamelCase = self.visual_projection(__UpperCAmelCase )
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
__lowerCamelCase = cosine_distance(__UpperCAmelCase , self.special_care_embeds ).cpu().float().numpy()
__lowerCamelCase = cosine_distance(__UpperCAmelCase , self.concept_embeds ).cpu().float().numpy()
__lowerCamelCase = []
__lowerCamelCase = image_embeds.shape[0]
for i in range(__UpperCAmelCase ):
__lowerCamelCase = {'''special_scores''': {}, '''special_care''': [], '''concept_scores''': {}, '''bad_concepts''': []}
# increase this value to create a stronger `nfsw` filter
# at the cost of increasing the possibility of filtering benign images
__lowerCamelCase = 0.0
for concept_idx in range(len(special_cos_dist[0] ) ):
__lowerCamelCase = special_cos_dist[i][concept_idx]
__lowerCamelCase = self.special_care_embeds_weights[concept_idx].item()
__lowerCamelCase = round(concept_cos - concept_threshold + adjustment , 3 )
if result_img["special_scores"][concept_idx] > 0:
result_img["special_care"].append({concept_idx, result_img['''special_scores'''][concept_idx]} )
__lowerCamelCase = 0.01
for concept_idx in range(len(cos_dist[0] ) ):
__lowerCamelCase = cos_dist[i][concept_idx]
__lowerCamelCase = self.concept_embeds_weights[concept_idx].item()
__lowerCamelCase = round(concept_cos - concept_threshold + adjustment , 3 )
if result_img["concept_scores"][concept_idx] > 0:
result_img["bad_concepts"].append(__UpperCAmelCase )
result.append(__UpperCAmelCase )
__lowerCamelCase = [len(res['''bad_concepts'''] ) > 0 for res in result]
return images, has_nsfw_concepts
@torch.no_grad()
def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase ):
'''simple docstring'''
__lowerCamelCase = self.vision_model(__UpperCAmelCase )[1] # pooled_output
__lowerCamelCase = self.visual_projection(__UpperCAmelCase )
__lowerCamelCase = cosine_distance(__UpperCAmelCase , self.special_care_embeds )
__lowerCamelCase = cosine_distance(__UpperCAmelCase , self.concept_embeds )
# increase this value to create a stronger `nsfw` filter
# at the cost of increasing the possibility of filtering benign images
__lowerCamelCase = 0.0
__lowerCamelCase = special_cos_dist - self.special_care_embeds_weights + adjustment
# special_scores = special_scores.round(decimals=3)
__lowerCamelCase = torch.any(special_scores > 0 , dim=1 )
__lowerCamelCase = special_care * 0.01
__lowerCamelCase = special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] )
__lowerCamelCase = (cos_dist - self.concept_embeds_weights) + special_adjustment
# concept_scores = concept_scores.round(decimals=3)
__lowerCamelCase = torch.any(concept_scores > 0 , dim=1 )
return images, has_nsfw_concepts
| 330 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCamelCase : int = logging.get_logger(__name__)
lowerCamelCase : List[Any] = {
'google/realm-cc-news-pretrained-embedder': (
'https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json'
),
'google/realm-cc-news-pretrained-encoder': (
'https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json'
),
'google/realm-cc-news-pretrained-scorer': (
'https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json'
),
'google/realm-cc-news-pretrained-openqa': (
'https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json'
),
'google/realm-orqa-nq-openqa': 'https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json',
'google/realm-orqa-nq-reader': 'https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json',
'google/realm-orqa-wq-openqa': 'https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json',
'google/realm-orqa-wq-reader': 'https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json',
# See all REALM models at https://huggingface.co/models?filter=realm
}
class __lowerCAmelCase (lowercase_ ):
'''simple docstring'''
lowerCAmelCase__ : Optional[int] = """realm"""
def __init__(self : str , UpperCamelCase : List[Any]=30522 , UpperCamelCase : List[Any]=768 , UpperCamelCase : int=128 , UpperCamelCase : Any=12 , UpperCamelCase : Tuple=12 , UpperCamelCase : List[Any]=8 , UpperCamelCase : Union[str, Any]=3072 , UpperCamelCase : List[str]="gelu_new" , UpperCamelCase : Any=0.1 , UpperCamelCase : List[str]=0.1 , UpperCamelCase : Dict=512 , UpperCamelCase : Dict=2 , UpperCamelCase : List[Any]=0.02 , UpperCamelCase : List[Any]=1E-12 , UpperCamelCase : Dict=256 , UpperCamelCase : Union[str, Any]=10 , UpperCamelCase : Optional[int]=1E-3 , UpperCamelCase : Tuple=5 , UpperCamelCase : Optional[int]=320 , UpperCamelCase : List[str]=13353718 , UpperCamelCase : Optional[Any]=5000 , UpperCamelCase : str=1 , UpperCamelCase : Union[str, Any]=0 , UpperCamelCase : List[Any]=2 , **UpperCamelCase : int , ):
'''simple docstring'''
super().__init__(pad_token_id=UpperCamelCase , bos_token_id=UpperCamelCase , eos_token_id=UpperCamelCase , **UpperCamelCase )
# Common config
lowercase__ = vocab_size
lowercase__ = max_position_embeddings
lowercase__ = hidden_size
lowercase__ = retriever_proj_size
lowercase__ = num_hidden_layers
lowercase__ = num_attention_heads
lowercase__ = num_candidates
lowercase__ = intermediate_size
lowercase__ = hidden_act
lowercase__ = hidden_dropout_prob
lowercase__ = attention_probs_dropout_prob
lowercase__ = initializer_range
lowercase__ = type_vocab_size
lowercase__ = layer_norm_eps
# Reader config
lowercase__ = span_hidden_size
lowercase__ = max_span_width
lowercase__ = reader_layer_norm_eps
lowercase__ = reader_beam_size
lowercase__ = reader_seq_len
# Retrieval config
lowercase__ = num_block_records
lowercase__ = searcher_beam_size
| 2 | 0 |
import inspect
import unittest
from transformers import BitConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_backbone_common import BackboneTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel
from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
class __lowerCAmelCase :
"""simple docstring"""
def __init__( self , lowerCamelCase__ , lowerCamelCase__=3 , lowerCamelCase__=32 , lowerCamelCase__=3 , lowerCamelCase__=10 , lowerCamelCase__=[8, 16, 32, 64] , lowerCamelCase__=[1, 1, 2, 1] , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__="relu" , lowerCamelCase__=3 , lowerCamelCase__=None , lowerCamelCase__=["stage2", "stage3", "stage4"] , lowerCamelCase__=[2, 3, 4] , lowerCamelCase__=1 , ) -> Tuple:
'''simple docstring'''
__lowerCamelCase = parent
__lowerCamelCase = batch_size
__lowerCamelCase = image_size
__lowerCamelCase = num_channels
__lowerCamelCase = embeddings_size
__lowerCamelCase = hidden_sizes
__lowerCamelCase = depths
__lowerCamelCase = is_training
__lowerCamelCase = use_labels
__lowerCamelCase = hidden_act
__lowerCamelCase = num_labels
__lowerCamelCase = scope
__lowerCamelCase = len(lowerCamelCase__ )
__lowerCamelCase = out_features
__lowerCamelCase = out_indices
__lowerCamelCase = num_groups
def lowercase_ ( self ) -> Any:
'''simple docstring'''
__lowerCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__lowerCamelCase = None
if self.use_labels:
__lowerCamelCase = ids_tensor([self.batch_size] , self.num_labels )
__lowerCamelCase = self.get_config()
return config, pixel_values, labels
def lowercase_ ( self ) -> str:
'''simple docstring'''
return BitConfig(
num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , )
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> str:
'''simple docstring'''
__lowerCamelCase = BitModel(config=lowerCamelCase__ )
model.to(lowerCamelCase__ )
model.eval()
__lowerCamelCase = model(lowerCamelCase__ )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Optional[Any]:
'''simple docstring'''
__lowerCamelCase = self.num_labels
__lowerCamelCase = BitForImageClassification(lowerCamelCase__ )
model.to(lowerCamelCase__ )
model.eval()
__lowerCamelCase = model(lowerCamelCase__ , labels=lowerCamelCase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Tuple:
'''simple docstring'''
__lowerCamelCase = BitBackbone(config=lowerCamelCase__ )
model.to(lowerCamelCase__ )
model.eval()
__lowerCamelCase = model(lowerCamelCase__ )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] )
# verify channels
self.parent.assertEqual(len(model.channels ) , len(config.out_features ) )
self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] )
# verify backbone works with out_features=None
__lowerCamelCase = None
__lowerCamelCase = BitBackbone(config=lowerCamelCase__ )
model.to(lowerCamelCase__ )
model.eval()
__lowerCamelCase = model(lowerCamelCase__ )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , 1 )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] )
# verify channels
self.parent.assertEqual(len(model.channels ) , 1 )
self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] )
def lowercase_ ( self ) -> List[str]:
'''simple docstring'''
__lowerCamelCase = self.prepare_config_and_inputs()
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase = config_and_inputs
__lowerCamelCase = {'pixel_values': pixel_values}
return config, inputs_dict
@require_torch
class __lowerCAmelCase ( lowercase_ , lowercase_ , unittest.TestCase ):
"""simple docstring"""
snake_case_ = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else ()
snake_case_ = (
{"""feature-extraction""": BitModel, """image-classification""": BitForImageClassification}
if is_torch_available()
else {}
)
snake_case_ = False
snake_case_ = False
snake_case_ = False
snake_case_ = False
snake_case_ = False
def lowercase_ ( self ) -> List[Any]:
'''simple docstring'''
__lowerCamelCase = BitModelTester(self )
__lowerCamelCase = ConfigTester(self , config_class=lowerCamelCase__ , has_text_modality=lowerCamelCase__ )
def lowercase_ ( self ) -> str:
'''simple docstring'''
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def lowercase_ ( self ) -> Any:
'''simple docstring'''
return
@unittest.skip(reason='Bit does not output attentions' )
def lowercase_ ( self ) -> Dict:
'''simple docstring'''
pass
@unittest.skip(reason='Bit does not use inputs_embeds' )
def lowercase_ ( self ) -> Tuple:
'''simple docstring'''
pass
@unittest.skip(reason='Bit does not support input and output embeddings' )
def lowercase_ ( self ) -> Optional[int]:
'''simple docstring'''
pass
def lowercase_ ( self ) -> List[Any]:
'''simple docstring'''
__lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__lowerCamelCase = model_class(lowerCamelCase__ )
__lowerCamelCase = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__lowerCamelCase = [*signature.parameters.keys()]
__lowerCamelCase = ['pixel_values']
self.assertListEqual(arg_names[:1] , lowerCamelCase__ )
def lowercase_ ( self ) -> Any:
'''simple docstring'''
__lowerCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowerCamelCase__ )
def lowercase_ ( self ) -> Tuple:
'''simple docstring'''
__lowerCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_backbone(*lowerCamelCase__ )
def lowercase_ ( self ) -> Optional[int]:
'''simple docstring'''
__lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__lowerCamelCase = model_class(config=lowerCamelCase__ )
for name, module in model.named_modules():
if isinstance(lowerCamelCase__ , (nn.BatchNormad, nn.GroupNorm) ):
self.assertTrue(
torch.all(module.weight == 1 ) , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , )
self.assertTrue(
torch.all(module.bias == 0 ) , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , )
def lowercase_ ( self ) -> Union[str, Any]:
'''simple docstring'''
def check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ):
__lowerCamelCase = model_class(lowerCamelCase__ )
model.to(lowerCamelCase__ )
model.eval()
with torch.no_grad():
__lowerCamelCase = model(**self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) )
__lowerCamelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
__lowerCamelCase = self.model_tester.num_stages
self.assertEqual(len(lowerCamelCase__ ) , expected_num_stages + 1 )
# Bit's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
__lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
__lowerCamelCase = ['preactivation', 'bottleneck']
for model_class in self.all_model_classes:
for layer_type in layers_type:
__lowerCamelCase = layer_type
__lowerCamelCase = True
check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__lowerCamelCase = True
check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
@unittest.skip(reason='Bit does not use feedforward chunking' )
def lowercase_ ( self ) -> List[str]:
'''simple docstring'''
pass
def lowercase_ ( self ) -> List[Any]:
'''simple docstring'''
__lowerCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*lowerCamelCase__ )
@slow
def lowercase_ ( self ) -> Optional[Any]:
'''simple docstring'''
for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__lowerCamelCase = BitModel.from_pretrained(lowerCamelCase__ )
self.assertIsNotNone(lowerCamelCase__ )
def lowerCamelCase_ ( ) -> List[str]:
"""simple docstring"""
__lowerCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_torch
@require_vision
class __lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
@cached_property
def lowercase_ ( self ) -> List[str]:
'''simple docstring'''
return (
BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None
)
@slow
def lowercase_ ( self ) -> Union[str, Any]:
'''simple docstring'''
__lowerCamelCase = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(lowerCamelCase__ )
__lowerCamelCase = self.default_image_processor
__lowerCamelCase = prepare_img()
__lowerCamelCase = image_processor(images=lowerCamelCase__ , return_tensors='pt' ).to(lowerCamelCase__ )
# forward pass
with torch.no_grad():
__lowerCamelCase = model(**lowerCamelCase__ )
# verify the logits
__lowerCamelCase = torch.Size((1, 1_000) )
self.assertEqual(outputs.logits.shape , lowerCamelCase__ )
__lowerCamelCase = torch.tensor([[-0.65_26, -0.52_63, -1.43_98]] ).to(lowerCamelCase__ )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCamelCase__ , atol=1e-4 ) )
@require_torch
class __lowerCAmelCase ( lowercase_ , unittest.TestCase ):
"""simple docstring"""
snake_case_ = (BitBackbone,) if is_torch_available() else ()
snake_case_ = BitConfig
snake_case_ = False
def lowercase_ ( self ) -> Optional[int]:
'''simple docstring'''
__lowerCamelCase = BitModelTester(self )
| 90 |
'''simple docstring'''
import warnings
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCamelCase : str = logging.get_logger(__name__)
lowerCamelCase : int = {
'RUCAIBox/mvp': 'https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json',
}
class __lowerCAmelCase (lowercase_ ):
'''simple docstring'''
lowerCAmelCase__ : Union[str, Any] = """mvp"""
lowerCAmelCase__ : Optional[Any] = ["""past_key_values"""]
lowerCAmelCase__ : List[str] = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""}
def __init__(self : Any , UpperCamelCase : Optional[int]=50267 , UpperCamelCase : Tuple=1024 , UpperCamelCase : int=12 , UpperCamelCase : Tuple=4096 , UpperCamelCase : Dict=16 , UpperCamelCase : int=12 , UpperCamelCase : Optional[int]=4096 , UpperCamelCase : Optional[int]=16 , UpperCamelCase : Tuple=0.0 , UpperCamelCase : Tuple=0.0 , UpperCamelCase : List[Any]="gelu" , UpperCamelCase : Union[str, Any]=1024 , UpperCamelCase : Optional[Any]=0.1 , UpperCamelCase : str=0.0 , UpperCamelCase : str=0.0 , UpperCamelCase : Optional[Any]=0.02 , UpperCamelCase : List[str]=0.0 , UpperCamelCase : List[str]=False , UpperCamelCase : Optional[int]=True , UpperCamelCase : Any=1 , UpperCamelCase : int=0 , UpperCamelCase : int=2 , UpperCamelCase : Any=True , UpperCamelCase : Optional[Any]=2 , UpperCamelCase : Optional[Any]=2 , UpperCamelCase : Tuple=False , UpperCamelCase : int=100 , UpperCamelCase : Optional[Any]=800 , **UpperCamelCase : str , ):
'''simple docstring'''
lowercase__ = vocab_size
lowercase__ = max_position_embeddings
lowercase__ = d_model
lowercase__ = encoder_ffn_dim
lowercase__ = encoder_layers
lowercase__ = encoder_attention_heads
lowercase__ = decoder_ffn_dim
lowercase__ = decoder_layers
lowercase__ = decoder_attention_heads
lowercase__ = dropout
lowercase__ = attention_dropout
lowercase__ = activation_dropout
lowercase__ = activation_function
lowercase__ = init_std
lowercase__ = encoder_layerdrop
lowercase__ = decoder_layerdrop
lowercase__ = classifier_dropout
lowercase__ = use_cache
lowercase__ = encoder_layers
lowercase__ = scale_embedding # scale factor will be sqrt(d_model) if True
lowercase__ = use_prompt
lowercase__ = prompt_length
lowercase__ = prompt_mid_dim
super().__init__(
pad_token_id=UpperCamelCase , bos_token_id=UpperCamelCase , eos_token_id=UpperCamelCase , is_encoder_decoder=UpperCamelCase , decoder_start_token_id=UpperCamelCase , forced_eos_token_id=UpperCamelCase , **UpperCamelCase , )
if self.forced_bos_token_id is None and kwargs.get('''force_bos_token_to_be_generated''' , UpperCamelCase ):
lowercase__ = self.bos_token_id
warnings.warn(
f"Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. "
'''The config can simply be saved and uploaded again to be fixed.''' )
| 2 | 0 |
import unittest
import numpy as np
from transformers import DistilBertConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax.numpy as jnp
from transformers.models.distilbert.modeling_flax_distilbert import (
FlaxDistilBertForMaskedLM,
FlaxDistilBertForMultipleChoice,
FlaxDistilBertForQuestionAnswering,
FlaxDistilBertForSequenceClassification,
FlaxDistilBertForTokenClassification,
FlaxDistilBertModel,
)
class __lowerCAmelCase ( unittest.TestCase ):
def __init__(self , __magic_name__ , __magic_name__=13 , __magic_name__=7 , __magic_name__=True , __magic_name__=True , __magic_name__=True , __magic_name__=True , __magic_name__=99 , __magic_name__=32 , __magic_name__=5 , __magic_name__=4 , __magic_name__=37 , __magic_name__="gelu" , __magic_name__=0.1 , __magic_name__=0.1 , __magic_name__=512 , __magic_name__=16 , __magic_name__=2 , __magic_name__=0.02 , __magic_name__=4 , ) -> int:
'''simple docstring'''
snake_case_ : Union[str, Any] = parent
snake_case_ : Optional[int] = batch_size
snake_case_ : Optional[Any] = seq_length
snake_case_ : Union[str, Any] = is_training
snake_case_ : List[str] = use_attention_mask
snake_case_ : Optional[Any] = use_token_type_ids
snake_case_ : int = use_labels
snake_case_ : List[Any] = vocab_size
snake_case_ : Union[str, Any] = hidden_size
snake_case_ : str = num_hidden_layers
snake_case_ : Dict = num_attention_heads
snake_case_ : Union[str, Any] = intermediate_size
snake_case_ : Tuple = hidden_act
snake_case_ : str = hidden_dropout_prob
snake_case_ : List[Any] = attention_probs_dropout_prob
snake_case_ : Tuple = max_position_embeddings
snake_case_ : List[Any] = type_vocab_size
snake_case_ : Tuple = type_sequence_label_size
snake_case_ : Optional[Any] = initializer_range
snake_case_ : Union[str, Any] = num_choices
def lowerCamelCase (self ) -> List[str]:
'''simple docstring'''
snake_case_ : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
snake_case_ : Union[str, Any] = None
if self.use_attention_mask:
snake_case_ : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] )
snake_case_ : Dict = DistilBertConfig(
vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , tie_weights_=__magic_name__ , )
return config, input_ids, attention_mask
def lowerCamelCase (self ) -> Optional[int]:
'''simple docstring'''
snake_case_ : List[str] = self.prepare_config_and_inputs()
snake_case_ , snake_case_ , snake_case_ : Optional[Any] = config_and_inputs
snake_case_ : int = {'''input_ids''': input_ids, '''attention_mask''': attention_mask}
return config, inputs_dict
@require_flax
class __lowerCAmelCase ( lowercase_, unittest.TestCase ):
lowerCamelCase_ : List[str] = (
(
FlaxDistilBertModel,
FlaxDistilBertForMaskedLM,
FlaxDistilBertForMultipleChoice,
FlaxDistilBertForQuestionAnswering,
FlaxDistilBertForSequenceClassification,
FlaxDistilBertForTokenClassification,
FlaxDistilBertForQuestionAnswering,
)
if is_flax_available()
else ()
)
def lowerCamelCase (self ) -> Tuple:
'''simple docstring'''
snake_case_ : Union[str, Any] = FlaxDistilBertModelTester(self )
@slow
def lowerCamelCase (self ) -> Union[str, Any]:
'''simple docstring'''
for model_class_name in self.all_model_classes:
snake_case_ : str = model_class_name.from_pretrained('''distilbert-base-uncased''' )
snake_case_ : Any = model(np.ones((1, 1) ) )
self.assertIsNotNone(__magic_name__ )
@require_flax
class __lowerCAmelCase ( unittest.TestCase ):
@slow
def lowerCamelCase (self ) -> int:
'''simple docstring'''
snake_case_ : List[Any] = FlaxDistilBertModel.from_pretrained('''distilbert-base-uncased''' )
snake_case_ : Dict = np.array([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] )
snake_case_ : Optional[Any] = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] )
snake_case_ : Dict = model(__magic_name__ , attention_mask=__magic_name__ )[0]
snake_case_ : Optional[int] = (1, 11, 768)
self.assertEqual(output.shape , __magic_name__ )
snake_case_ : Any = np.array([[[-0.1_639, 0.3_299, 0.1_648], [-0.1_746, 0.3_289, 0.1_710], [-0.1_884, 0.3_357, 0.1_810]]] )
self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , __magic_name__ , atol=1e-4 ) )
| 279 |
'''simple docstring'''
import unittest
from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
lowerCamelCase : List[str] = get_tests_dir('fixtures/spiece.model')
@require_sentencepiece
@require_tokenizers
class __lowerCAmelCase (lowercase_ , unittest.TestCase ):
'''simple docstring'''
lowerCAmelCase__ : int = DebertaVaTokenizer
lowerCAmelCase__ : List[Any] = DebertaVaTokenizerFast
lowerCAmelCase__ : str = True
lowerCAmelCase__ : Tuple = True
def UpperCamelCase__ (self : Tuple ):
'''simple docstring'''
super().setUp()
# We have a SentencePiece fixture for testing
lowercase__ = DebertaVaTokenizer(UpperCamelCase , unk_token='''<unk>''' )
tokenizer.save_pretrained(self.tmpdirname )
def UpperCamelCase__ (self : Union[str, Any] , UpperCamelCase : str ):
'''simple docstring'''
lowercase__ = '''this is a test'''
lowercase__ = '''this is a test'''
return input_text, output_text
def UpperCamelCase__ (self : Optional[int] ):
'''simple docstring'''
lowercase__ = '''<pad>'''
lowercase__ = 0
self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCamelCase ) , UpperCamelCase )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCamelCase ) , UpperCamelCase )
def UpperCamelCase__ (self : Dict ):
'''simple docstring'''
lowercase__ = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '''<pad>''' )
self.assertEqual(vocab_keys[1] , '''<unk>''' )
self.assertEqual(vocab_keys[-1] , '''[PAD]''' )
self.assertEqual(len(UpperCamelCase ) , 30001 )
def UpperCamelCase__ (self : int ):
'''simple docstring'''
self.assertEqual(self.get_tokenizer().vocab_size , 30000 )
def UpperCamelCase__ (self : Optional[Any] ):
'''simple docstring'''
lowercase__ = ''' \tHeLLo!how \n Are yoU? '''
lowercase__ = ['''▁hello''', '''!''', '''how''', '''▁are''', '''▁you''', '''?''']
# fmt: on
lowercase__ = DebertaVaTokenizer(UpperCamelCase , do_lower_case=UpperCamelCase )
lowercase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) )
self.assertListEqual(UpperCamelCase , UpperCamelCase )
lowercase__ = DebertaVaTokenizerFast(UpperCamelCase , do_lower_case=UpperCamelCase )
lowercase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) )
self.assertListEqual(UpperCamelCase , UpperCamelCase )
@unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' )
def UpperCamelCase__ (self : List[Any] ):
'''simple docstring'''
pass
@unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' )
def UpperCamelCase__ (self : List[str] ):
'''simple docstring'''
pass
def UpperCamelCase__ (self : Optional[int] ):
'''simple docstring'''
lowercase__ = '''I was born in 92000, and this is falsé.'''
lowercase__ = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ]
# fmt: on
lowercase__ = DebertaVaTokenizer(UpperCamelCase , split_by_punct=UpperCamelCase )
lowercase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) )
self.assertListEqual(UpperCamelCase , UpperCamelCase )
lowercase__ = DebertaVaTokenizerFast(UpperCamelCase , split_by_punct=UpperCamelCase )
lowercase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) )
self.assertListEqual(UpperCamelCase , UpperCamelCase )
def UpperCamelCase__ (self : int ):
'''simple docstring'''
lowercase__ = '''I was born in 92000, and this is falsé.'''
lowercase__ = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ]
# fmt: on
lowercase__ = DebertaVaTokenizer(UpperCamelCase , do_lower_case=UpperCamelCase , split_by_punct=UpperCamelCase )
lowercase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) )
self.assertListEqual(UpperCamelCase , UpperCamelCase )
lowercase__ = DebertaVaTokenizerFast(UpperCamelCase , do_lower_case=UpperCamelCase , split_by_punct=UpperCamelCase )
lowercase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) )
self.assertListEqual(UpperCamelCase , UpperCamelCase )
def UpperCamelCase__ (self : Optional[Any] ):
'''simple docstring'''
lowercase__ = '''I was born in 92000, and this is falsé.'''
lowercase__ = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ]
# fmt: on
lowercase__ = DebertaVaTokenizer(UpperCamelCase , do_lower_case=UpperCamelCase , split_by_punct=UpperCamelCase )
lowercase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) )
self.assertListEqual(UpperCamelCase , UpperCamelCase )
lowercase__ = DebertaVaTokenizerFast(UpperCamelCase , do_lower_case=UpperCamelCase , split_by_punct=UpperCamelCase )
lowercase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) )
self.assertListEqual(UpperCamelCase , UpperCamelCase )
def UpperCamelCase__ (self : Union[str, Any] ):
'''simple docstring'''
lowercase__ = '''I was born in 92000, and this is falsé.'''
lowercase__ = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ]
# fmt: on
lowercase__ = DebertaVaTokenizer(UpperCamelCase , do_lower_case=UpperCamelCase , split_by_punct=UpperCamelCase )
lowercase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) )
self.assertListEqual(UpperCamelCase , UpperCamelCase )
lowercase__ = DebertaVaTokenizerFast(UpperCamelCase , do_lower_case=UpperCamelCase , split_by_punct=UpperCamelCase )
lowercase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) )
self.assertListEqual(UpperCamelCase , UpperCamelCase )
def UpperCamelCase__ (self : Union[str, Any] ):
'''simple docstring'''
lowercase__ = ''' \tHeLLo!how \n Are yoU? '''
lowercase__ = ['''▁''', '''<unk>''', '''e''', '''<unk>''', '''o''', '''!''', '''how''', '''▁''', '''<unk>''', '''re''', '''▁yo''', '''<unk>''', '''?''']
# fmt: on
lowercase__ = DebertaVaTokenizer(UpperCamelCase , do_lower_case=UpperCamelCase , split_by_punct=UpperCamelCase )
lowercase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) )
self.assertListEqual(UpperCamelCase , UpperCamelCase )
lowercase__ = DebertaVaTokenizerFast(UpperCamelCase , do_lower_case=UpperCamelCase , split_by_punct=UpperCamelCase )
lowercase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) )
self.assertListEqual(UpperCamelCase , UpperCamelCase )
def UpperCamelCase__ (self : Union[str, Any] ):
'''simple docstring'''
lowercase__ = self.get_tokenizer()
lowercase__ = self.get_rust_tokenizer()
lowercase__ = '''I was born in 92000, and this is falsé.'''
lowercase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) )
lowercase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) )
self.assertListEqual(UpperCamelCase , UpperCamelCase )
lowercase__ = tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase )
lowercase__ = rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase )
self.assertListEqual(UpperCamelCase , UpperCamelCase )
lowercase__ = self.get_rust_tokenizer()
lowercase__ = tokenizer.encode(UpperCamelCase )
lowercase__ = rust_tokenizer.encode(UpperCamelCase )
self.assertListEqual(UpperCamelCase , UpperCamelCase )
def UpperCamelCase__ (self : int ):
'''simple docstring'''
lowercase__ = '''This is a test'''
lowercase__ = [13, 1, 4398, 25, 21, 1289]
lowercase__ = ['''▁''', '''T''', '''his''', '''▁is''', '''▁a''', '''▁test''']
lowercase__ = ['''▁''', '''<unk>''', '''his''', '''▁is''', '''▁a''', '''▁test''']
lowercase__ = DebertaVaTokenizer(UpperCamelCase , keep_accents=UpperCamelCase )
lowercase__ = DebertaVaTokenizerFast(UpperCamelCase , keep_accents=UpperCamelCase )
lowercase__ = tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase )
self.assertListEqual(UpperCamelCase , UpperCamelCase )
lowercase__ = tokenizer.tokenize(UpperCamelCase )
self.assertListEqual(UpperCamelCase , UpperCamelCase )
lowercase__ = tokenizer.convert_ids_to_tokens(UpperCamelCase )
self.assertListEqual(UpperCamelCase , UpperCamelCase )
lowercase__ = rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase )
self.assertListEqual(UpperCamelCase , UpperCamelCase )
lowercase__ = rust_tokenizer.tokenize(UpperCamelCase )
self.assertListEqual(UpperCamelCase , UpperCamelCase )
lowercase__ = rust_tokenizer.convert_ids_to_tokens(UpperCamelCase )
self.assertListEqual(UpperCamelCase , UpperCamelCase )
# fmt: off
lowercase__ = '''I was born in 92000, and this is falsé.'''
lowercase__ = [13, 1, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9]
lowercase__ = ['''▁''', '''I''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''é''', '''.''', ]
lowercase__ = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ]
# fmt: on
lowercase__ = tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase )
self.assertListEqual(UpperCamelCase , UpperCamelCase )
lowercase__ = tokenizer.tokenize(UpperCamelCase )
self.assertListEqual(UpperCamelCase , UpperCamelCase )
lowercase__ = tokenizer.convert_ids_to_tokens(UpperCamelCase )
self.assertListEqual(UpperCamelCase , UpperCamelCase )
lowercase__ = rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase )
self.assertListEqual(UpperCamelCase , UpperCamelCase )
lowercase__ = rust_tokenizer.tokenize(UpperCamelCase )
self.assertListEqual(UpperCamelCase , UpperCamelCase )
lowercase__ = rust_tokenizer.convert_ids_to_tokens(UpperCamelCase )
self.assertListEqual(UpperCamelCase , UpperCamelCase )
def UpperCamelCase__ (self : int ):
'''simple docstring'''
lowercase__ = DebertaVaTokenizer(UpperCamelCase )
lowercase__ = tokenizer.encode('''sequence builders''' )
lowercase__ = tokenizer.encode('''multi-sequence build''' )
lowercase__ = tokenizer.build_inputs_with_special_tokens(UpperCamelCase )
lowercase__ = tokenizer.build_inputs_with_special_tokens(UpperCamelCase , UpperCamelCase )
self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , UpperCamelCase )
self.assertEqual(
[tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , UpperCamelCase , )
@slow
def UpperCamelCase__ (self : int ):
'''simple docstring'''
lowercase__ = {'''input_ids''': [[1, 39867, 36, 19390, 486, 27, 35052, 81436, 18, 60685, 1225, 7, 35052, 81436, 18, 9367, 16899, 18, 15937, 53, 594, 773, 18, 16287, 30465, 36, 15937, 6, 41139, 38, 36979, 60763, 191, 6, 34132, 99, 6, 50538, 390, 43230, 6, 34132, 2779, 20850, 14, 699, 1072, 1194, 36, 382, 10901, 53, 7, 699, 1072, 2084, 36, 20422, 630, 53, 19, 105, 3049, 1896, 1053, 16899, 1506, 11, 37978, 4243, 7, 1237, 31869, 200, 16566, 654, 6, 35052, 81436, 7, 55630, 13593, 4, 2], [1, 26, 15011, 13, 667, 8, 1053, 18, 23611, 1237, 72356, 12820, 34, 104134, 1209, 35, 13313, 6627, 21, 202, 347, 7, 164, 2399, 11, 46, 4485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1232, 2864, 15785, 14951, 105, 5, 8581, 1250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=UpperCamelCase , model_name='''microsoft/deberta-v2-xlarge''' , revision='''ad6e42c1532ddf3a15c39246b63f5559d558b670''' , )
| 2 | 0 |
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import BlenderbotConfig, BlenderbotTokenizer, is_tf_available
from transformers.testing_utils import require_tf, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotForConditionalGeneration, TFBlenderbotModel
@require_tf
class _lowercase :
a = BlenderbotConfig
a = {}
a = """gelu"""
def __init__( self: str , UpperCamelCase__: Dict , UpperCamelCase__: Any=13 , UpperCamelCase__: List[Any]=7 , UpperCamelCase__: str=True , UpperCamelCase__: Dict=False , UpperCamelCase__: Optional[Any]=99 , UpperCamelCase__: Dict=32 , UpperCamelCase__: int=2 , UpperCamelCase__: str=4 , UpperCamelCase__: Any=37 , UpperCamelCase__: str=0.1 , UpperCamelCase__: int=0.1 , UpperCamelCase__: Dict=20 , UpperCamelCase__: Union[str, Any]=2 , UpperCamelCase__: Optional[int]=1 , UpperCamelCase__: Optional[int]=0 , ):
lowerCamelCase__ : str = parent
lowerCamelCase__ : Tuple = batch_size
lowerCamelCase__ : Dict = seq_length
lowerCamelCase__ : Tuple = is_training
lowerCamelCase__ : int = use_labels
lowerCamelCase__ : Any = vocab_size
lowerCamelCase__ : List[str] = hidden_size
lowerCamelCase__ : Tuple = num_hidden_layers
lowerCamelCase__ : Dict = num_attention_heads
lowerCamelCase__ : Any = intermediate_size
lowerCamelCase__ : str = hidden_dropout_prob
lowerCamelCase__ : Optional[int] = attention_probs_dropout_prob
lowerCamelCase__ : int = max_position_embeddings
lowerCamelCase__ : Union[str, Any] = eos_token_id
lowerCamelCase__ : List[Any] = pad_token_id
lowerCamelCase__ : int = bos_token_id
def lowerCamelCase_ ( self: Optional[int] ):
lowerCamelCase__ : Any = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size )
lowerCamelCase__ : Optional[int] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 )
lowerCamelCase__ : Tuple = tf.concat([input_ids, eos_tensor] , axis=1 )
lowerCamelCase__ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowerCamelCase__ : Dict = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , )
lowerCamelCase__ : int = prepare_blenderbot_inputs_dict(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
return config, inputs_dict
def lowerCamelCase_ ( self: List[Any] , UpperCamelCase__: List[str] , UpperCamelCase__: Dict ):
lowerCamelCase__ : Optional[int] = TFBlenderbotModel(config=UpperCamelCase__ ).get_decoder()
lowerCamelCase__ : Optional[int] = inputs_dict["""input_ids"""]
lowerCamelCase__ : Any = input_ids[:1, :]
lowerCamelCase__ : Optional[Any] = inputs_dict["""attention_mask"""][:1, :]
lowerCamelCase__ : str = inputs_dict["""head_mask"""]
lowerCamelCase__ : List[str] = 1
# first forward pass
lowerCamelCase__ : Optional[Any] = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , head_mask=UpperCamelCase__ , use_cache=UpperCamelCase__ )
lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
lowerCamelCase__ : int = ids_tensor((self.batch_size, 3) , config.vocab_size )
lowerCamelCase__ : Any = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta )
# append to next input_ids and
lowerCamelCase__ : Tuple = tf.concat([input_ids, next_tokens] , axis=-1 )
lowerCamelCase__ : List[Any] = tf.concat([attention_mask, next_attn_mask] , axis=-1 )
lowerCamelCase__ : str = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ )[0]
lowerCamelCase__ : Tuple = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , past_key_values=UpperCamelCase__ )[0]
self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] )
# select random slice
lowerCamelCase__ : Any = int(ids_tensor((1,) , output_from_past.shape[-1] ) )
lowerCamelCase__ : Union[str, Any] = output_from_no_past[:, -3:, random_slice_idx]
lowerCamelCase__ : Union[str, Any] = output_from_past[:, :, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(UpperCamelCase__ , UpperCamelCase__ , rtol=1e-3 )
def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase=None , UpperCamelCase=None , UpperCamelCase=None , UpperCamelCase=None , UpperCamelCase=None , ) -> Any:
if attention_mask is None:
lowerCamelCase__ : Dict = tf.cast(tf.math.not_equal(UpperCamelCase , config.pad_token_id ) , tf.inta )
if decoder_attention_mask is None:
lowerCamelCase__ : Optional[int] = tf.concat(
[
tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ),
tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ),
] , axis=-1 , )
if head_mask is None:
lowerCamelCase__ : Optional[int] = tf.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
lowerCamelCase__ : Dict = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
if cross_attn_head_mask is None:
lowerCamelCase__ : Dict = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
@require_tf
class _lowercase ( lowercase_ , lowercase_ , unittest.TestCase ):
a = (TFBlenderbotForConditionalGeneration, TFBlenderbotModel) if is_tf_available() else ()
a = (TFBlenderbotForConditionalGeneration,) if is_tf_available() else ()
a = (
{
"""conversational""": TFBlenderbotForConditionalGeneration,
"""feature-extraction""": TFBlenderbotModel,
"""summarization""": TFBlenderbotForConditionalGeneration,
"""text2text-generation""": TFBlenderbotForConditionalGeneration,
"""translation""": TFBlenderbotForConditionalGeneration,
}
if is_tf_available()
else {}
)
a = True
a = False
a = False
def lowerCamelCase_ ( self: Tuple ):
lowerCamelCase__ : Any = TFBlenderbotModelTester(self )
lowerCamelCase__ : Tuple = ConfigTester(self , config_class=UpperCamelCase__ )
def lowerCamelCase_ ( self: Union[str, Any] ):
self.config_tester.run_common_tests()
def lowerCamelCase_ ( self: List[Any] ):
lowerCamelCase__ : Any = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*UpperCamelCase__ )
@require_tokenizers
@require_tf
class _lowercase ( unittest.TestCase ):
a = ["""My friends are cool but they eat too many carbs."""]
a = """facebook/blenderbot-400M-distill"""
@cached_property
def lowerCamelCase_ ( self: List[str] ):
return BlenderbotTokenizer.from_pretrained(self.model_name )
@cached_property
def lowerCamelCase_ ( self: int ):
lowerCamelCase__ : Optional[int] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name )
return model
@slow
def lowerCamelCase_ ( self: str ):
lowerCamelCase__ : Union[str, Any] = self.tokenizer(self.src_text , return_tensors="""tf""" )
lowerCamelCase__ : Tuple = self.model.generate(
model_inputs.input_ids , )
lowerCamelCase__ : Any = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=UpperCamelCase__ )[0]
assert (
generated_words
== " That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?"
)
| 41 |
'''simple docstring'''
import argparse
import torch
from torch import nn
from transformers import MBartConfig, MBartForConditionalGeneration
def _SCREAMING_SNAKE_CASE (A ) -> Optional[Any]:
"""simple docstring"""
lowercase__ = [
'''encoder.version''',
'''decoder.version''',
'''model.encoder.version''',
'''model.decoder.version''',
'''_float_tensor''',
'''decoder.output_projection.weight''',
]
for k in ignore_keys:
state_dict.pop(A , A )
def _SCREAMING_SNAKE_CASE (A ) -> List[str]:
"""simple docstring"""
lowercase__ ,lowercase__ = emb.weight.shape
lowercase__ = nn.Linear(A , A , bias=A )
lowercase__ = emb.weight.data
return lin_layer
def _SCREAMING_SNAKE_CASE (A , A="facebook/mbart-large-en-ro" , A=False , A=False ) -> Union[str, Any]:
"""simple docstring"""
lowercase__ = torch.load(A , map_location='''cpu''' )['''model''']
remove_ignore_keys_(A )
lowercase__ = state_dict['''encoder.embed_tokens.weight'''].shape[0]
lowercase__ = MBartConfig.from_pretrained(A , vocab_size=A )
if mbart_aa and finetuned:
lowercase__ = '''relu'''
lowercase__ = state_dict['''decoder.embed_tokens.weight''']
lowercase__ = MBartForConditionalGeneration(A )
model.model.load_state_dict(A )
if finetuned:
lowercase__ = make_linear_from_emb(model.model.shared )
return model
if __name__ == "__main__":
lowerCamelCase : Any = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'fairseq_path', type=str, help='bart.large, bart.large.cnn or a path to a model.pt on local filesystem.'
)
parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
parser.add_argument(
'--hf_config',
default='facebook/mbart-large-cc25',
type=str,
help='Which huggingface architecture to use: mbart-large',
)
parser.add_argument('--mbart_50', action='store_true', help='whether the model is mMART-50 checkpoint')
parser.add_argument('--finetuned', action='store_true', help='whether the model is a fine-tuned checkpoint')
lowerCamelCase : Any = parser.parse_args()
lowerCamelCase : List[str] = convert_fairseq_mbart_checkpoint_from_disk(
args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa
)
model.save_pretrained(args.pytorch_dump_folder_path)
| 2 | 0 |
'''simple docstring'''
import argparse
import json
from pathlib import Path
import requests
import timm
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from timm.data import resolve_data_config
from timm.data.transforms_factory import create_transform
from transformers import (
BitConfig,
ViTHybridConfig,
ViTHybridForImageClassification,
ViTHybridImageProcessor,
ViTHybridModel,
)
from transformers.image_utils import PILImageResampling
from transformers.utils import logging
logging.set_verbosity_info()
lowercase : str = logging.get_logger(__name__)
def lowerCAmelCase_ ( snake_case__ , snake_case__=False ):
'''simple docstring'''
A : Dict = []
# fmt: off
# stem:
rename_keys.append(('''cls_token''', '''vit.embeddings.cls_token''') )
rename_keys.append(('''pos_embed''', '''vit.embeddings.position_embeddings''') )
rename_keys.append(('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight''') )
rename_keys.append(('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias''') )
# backbone
rename_keys.append(('''patch_embed.backbone.stem.conv.weight''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.convolution.weight''') )
rename_keys.append(('''patch_embed.backbone.stem.norm.weight''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.weight''') )
rename_keys.append(('''patch_embed.backbone.stem.norm.bias''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.bias''') )
for stage_idx in range(len(config.backbone_config.depths ) ):
for layer_idx in range(config.backbone_config.depths[stage_idx] ):
rename_keys.append((F'patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv1.weight', F'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv1.weight') )
rename_keys.append((F'patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.weight', F'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.weight') )
rename_keys.append((F'patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.bias', F'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.bias') )
rename_keys.append((F'patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv2.weight', F'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv2.weight') )
rename_keys.append((F'patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.weight', F'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.weight') )
rename_keys.append((F'patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.bias', F'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.bias') )
rename_keys.append((F'patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv3.weight', F'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv3.weight') )
rename_keys.append((F'patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.weight', F'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.weight') )
rename_keys.append((F'patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.bias', F'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.bias') )
rename_keys.append((F'patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.conv.weight', F'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.conv.weight') )
rename_keys.append((F'patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.weight', F'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.weight') )
rename_keys.append((F'patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.bias', F'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.bias') )
# transformer encoder
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((F'blocks.{i}.norm1.weight', F'vit.encoder.layer.{i}.layernorm_before.weight') )
rename_keys.append((F'blocks.{i}.norm1.bias', F'vit.encoder.layer.{i}.layernorm_before.bias') )
rename_keys.append((F'blocks.{i}.attn.proj.weight', F'vit.encoder.layer.{i}.attention.output.dense.weight') )
rename_keys.append((F'blocks.{i}.attn.proj.bias', F'vit.encoder.layer.{i}.attention.output.dense.bias') )
rename_keys.append((F'blocks.{i}.norm2.weight', F'vit.encoder.layer.{i}.layernorm_after.weight') )
rename_keys.append((F'blocks.{i}.norm2.bias', F'vit.encoder.layer.{i}.layernorm_after.bias') )
rename_keys.append((F'blocks.{i}.mlp.fc1.weight', F'vit.encoder.layer.{i}.intermediate.dense.weight') )
rename_keys.append((F'blocks.{i}.mlp.fc1.bias', F'vit.encoder.layer.{i}.intermediate.dense.bias') )
rename_keys.append((F'blocks.{i}.mlp.fc2.weight', F'vit.encoder.layer.{i}.output.dense.weight') )
rename_keys.append((F'blocks.{i}.mlp.fc2.bias', F'vit.encoder.layer.{i}.output.dense.bias') )
if base_model:
# layernorm + pooler
rename_keys.extend(
[
('''norm.weight''', '''layernorm.weight'''),
('''norm.bias''', '''layernorm.bias'''),
('''pre_logits.fc.weight''', '''pooler.dense.weight'''),
('''pre_logits.fc.bias''', '''pooler.dense.bias'''),
] )
# if just the base model, we should remove "vit" from all keys that start with "vit"
A : Dict = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys]
else:
# layernorm + classification head
rename_keys.extend(
[
('''norm.weight''', '''vit.layernorm.weight'''),
('''norm.bias''', '''vit.layernorm.bias'''),
('''head.weight''', '''classifier.weight'''),
('''head.bias''', '''classifier.bias'''),
] )
# fmt: on
return rename_keys
def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__=False ):
'''simple docstring'''
for i in range(config.num_hidden_layers ):
if base_model:
A : Tuple = ''''''
else:
A : Union[str, Any] = '''vit.'''
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
A : int = state_dict.pop(F'blocks.{i}.attn.qkv.weight' )
A : Optional[Any] = state_dict.pop(F'blocks.{i}.attn.qkv.bias' )
# next, add query, keys and values (in that order) to the state dict
A : Tuple = in_proj_weight[
: config.hidden_size, :
]
A : Union[str, Any] = in_proj_bias[: config.hidden_size]
A : int = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
A : str = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
A : Any = in_proj_weight[
-config.hidden_size :, :
]
A : Optional[Any] = in_proj_bias[-config.hidden_size :]
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
A : List[str] = ['''head.weight''', '''head.bias''']
for k in ignore_keys:
state_dict.pop(snake_case__ , snake_case__ )
def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ ):
'''simple docstring'''
A : Union[str, Any] = dct.pop(snake_case__ )
A : Tuple = val
def lowerCAmelCase_ ( ):
'''simple docstring'''
A : str = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
A : int = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw )
return im
@torch.no_grad()
def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__=False ):
'''simple docstring'''
A : List[str] = BitConfig(
global_padding='''same''' , layer_type='''bottleneck''' , depths=(3, 4, 9) , out_features=['''stage3'''] , embedding_dynamic_padding=snake_case__ , )
A : Tuple = ViTHybridConfig(backbone_config=snake_case__ , image_size=384 , num_labels=1000 )
A : int = False
# load original model from timm
A : Optional[Any] = timm.create_model(snake_case__ , pretrained=snake_case__ )
timm_model.eval()
# load state_dict of original model, remove and rename some keys
A : Dict = timm_model.state_dict()
if base_model:
remove_classification_head_(snake_case__ )
A : List[str] = create_rename_keys(snake_case__ , snake_case__ )
for src, dest in rename_keys:
rename_key(snake_case__ , snake_case__ , snake_case__ )
read_in_q_k_v(snake_case__ , snake_case__ , snake_case__ )
A : List[Any] = '''huggingface/label-files'''
A : int = '''imagenet-1k-id2label.json'''
A : Dict = json.load(open(hf_hub_download(snake_case__ , snake_case__ , repo_type='''dataset''' ) , '''r''' ) )
A : Union[str, Any] = {int(snake_case__ ): v for k, v in idalabel.items()}
A : Optional[int] = idalabel
A : List[Any] = {v: k for k, v in idalabel.items()}
# load HuggingFace model
if vit_name[-5:] == "in21k":
A : Optional[Any] = ViTHybridModel(snake_case__ ).eval()
else:
A : List[Any] = ViTHybridForImageClassification(snake_case__ ).eval()
model.load_state_dict(snake_case__ )
# create image processor
A : int = create_transform(**resolve_data_config({} , model=snake_case__ ) )
A : List[str] = transform.transforms
A : Tuple = {
'''bilinear''': PILImageResampling.BILINEAR,
'''bicubic''': PILImageResampling.BICUBIC,
'''nearest''': PILImageResampling.NEAREST,
}
A : Dict = ViTHybridImageProcessor(
do_resize=snake_case__ , size={'''shortest_edge''': timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=snake_case__ , crop_size={'''height''': timm_transforms[1].size[0], '''width''': timm_transforms[1].size[1]} , do_normalize=snake_case__ , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , )
A : Dict = prepare_img()
A : Optional[int] = transform(snake_case__ ).unsqueeze(0 )
A : int = processor(snake_case__ , return_tensors='''pt''' ).pixel_values
# verify pixel values
assert torch.allclose(snake_case__ , snake_case__ )
# verify logits
with torch.no_grad():
A : List[Any] = model(snake_case__ )
A : Optional[int] = outputs.logits
print('''Predicted class:''' , logits.argmax(-1 ).item() )
if base_model:
A : Optional[Any] = timm_model.forward_features(snake_case__ )
assert timm_pooled_output.shape == outputs.pooler_output.shape
assert torch.allclose(snake_case__ , outputs.pooler_output , atol=1E-3 )
else:
A : int = timm_model(snake_case__ )
assert timm_logits.shape == outputs.logits.shape
assert torch.allclose(snake_case__ , outputs.logits , atol=1E-3 )
print('''Looks ok!''' )
if pytorch_dump_folder_path is not None:
Path(snake_case__ ).mkdir(exist_ok=snake_case__ )
print(F'Saving model {vit_name} to {pytorch_dump_folder_path}' )
model.save_pretrained(snake_case__ )
print(F'Saving processor to {pytorch_dump_folder_path}' )
processor.save_pretrained(snake_case__ )
if push_to_hub:
print(F'Pushing model and processor to the hub {vit_name}' )
model.push_to_hub(F'ybelkada/{vit_name}' )
processor.push_to_hub(F'ybelkada/{vit_name}' )
if __name__ == "__main__":
lowercase : int = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--vit_name',
default='vit_base_r50_s16_384',
type=str,
help='Name of the hybrid ViT timm model you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.'
)
parser.add_argument(
'--push_to_hub', action='store_true', help='Whether to upload the model to the HuggingFace hub.'
)
lowercase : Optional[Any] = parser.parse_args()
convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 3 |
'''simple docstring'''
import logging
import os
from typing import List, TextIO, Union
from conllu import parse_incr
from utils_ner import InputExample, Split, TokenClassificationTask
lowerCamelCase : List[Any] = logging.getLogger(__name__)
class __lowerCAmelCase (lowercase_ ):
'''simple docstring'''
def __init__(self : Optional[Any] , UpperCamelCase : Any=-1 ):
'''simple docstring'''
lowercase__ = label_idx
def UpperCamelCase__ (self : Union[str, Any] , UpperCamelCase : Optional[Any] , UpperCamelCase : Union[Split, str] ):
'''simple docstring'''
if isinstance(UpperCamelCase , UpperCamelCase ):
lowercase__ = mode.value
lowercase__ = os.path.join(UpperCamelCase , f"{mode}.txt" )
lowercase__ = 1
lowercase__ = []
with open(UpperCamelCase , encoding='''utf-8''' ) as f:
lowercase__ = []
lowercase__ = []
for line in f:
if line.startswith('''-DOCSTART-''' ) or line == "" or line == "\n":
if words:
examples.append(InputExample(guid=f"{mode}-{guid_index}" , words=UpperCamelCase , labels=UpperCamelCase ) )
guid_index += 1
lowercase__ = []
lowercase__ = []
else:
lowercase__ = line.split(''' ''' )
words.append(splits[0] )
if len(UpperCamelCase ) > 1:
labels.append(splits[self.label_idx].replace('''\n''' , '''''' ) )
else:
# Examples could have no label for mode = "test"
labels.append('''O''' )
if words:
examples.append(InputExample(guid=f"{mode}-{guid_index}" , words=UpperCamelCase , labels=UpperCamelCase ) )
return examples
def UpperCamelCase__ (self : Optional[int] , UpperCamelCase : TextIO , UpperCamelCase : TextIO , UpperCamelCase : List ):
'''simple docstring'''
lowercase__ = 0
for line in test_input_reader:
if line.startswith('''-DOCSTART-''' ) or line == "" or line == "\n":
writer.write(UpperCamelCase )
if not preds_list[example_id]:
example_id += 1
elif preds_list[example_id]:
lowercase__ = line.split()[0] + ''' ''' + preds_list[example_id].pop(0 ) + '''\n'''
writer.write(UpperCamelCase )
else:
logger.warning('''Maximum sequence length exceeded: No prediction for \'%s\'.''' , line.split()[0] )
def UpperCamelCase__ (self : Union[str, Any] , UpperCamelCase : str ):
'''simple docstring'''
if path:
with open(UpperCamelCase , '''r''' ) as f:
lowercase__ = f.read().splitlines()
if "O" not in labels:
lowercase__ = ['''O'''] + labels
return labels
else:
return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"]
class __lowerCAmelCase (lowercase_ ):
'''simple docstring'''
def __init__(self : List[Any] ):
'''simple docstring'''
super().__init__(label_idx=-2 )
def UpperCamelCase__ (self : List[Any] , UpperCamelCase : str ):
'''simple docstring'''
if path:
with open(UpperCamelCase , '''r''' ) as f:
lowercase__ = f.read().splitlines()
if "O" not in labels:
lowercase__ = ['''O'''] + labels
return labels
else:
return [
"O",
"B-ADVP",
"B-INTJ",
"B-LST",
"B-PRT",
"B-NP",
"B-SBAR",
"B-VP",
"B-ADJP",
"B-CONJP",
"B-PP",
"I-ADVP",
"I-INTJ",
"I-LST",
"I-PRT",
"I-NP",
"I-SBAR",
"I-VP",
"I-ADJP",
"I-CONJP",
"I-PP",
]
class __lowerCAmelCase (lowercase_ ):
'''simple docstring'''
def UpperCamelCase__ (self : Tuple , UpperCamelCase : int , UpperCamelCase : Union[Split, str] ):
'''simple docstring'''
if isinstance(UpperCamelCase , UpperCamelCase ):
lowercase__ = mode.value
lowercase__ = os.path.join(UpperCamelCase , f"{mode}.txt" )
lowercase__ = 1
lowercase__ = []
with open(UpperCamelCase , encoding='''utf-8''' ) as f:
for sentence in parse_incr(UpperCamelCase ):
lowercase__ = []
lowercase__ = []
for token in sentence:
words.append(token['''form'''] )
labels.append(token['''upos'''] )
assert len(UpperCamelCase ) == len(UpperCamelCase )
if words:
examples.append(InputExample(guid=f"{mode}-{guid_index}" , words=UpperCamelCase , labels=UpperCamelCase ) )
guid_index += 1
return examples
def UpperCamelCase__ (self : Tuple , UpperCamelCase : TextIO , UpperCamelCase : TextIO , UpperCamelCase : List ):
'''simple docstring'''
lowercase__ = 0
for sentence in parse_incr(UpperCamelCase ):
lowercase__ = preds_list[example_id]
lowercase__ = ''''''
for token in sentence:
out += f"{token['form']} ({token['upos']}|{s_p.pop(0 )}) "
out += "\n"
writer.write(UpperCamelCase )
example_id += 1
def UpperCamelCase__ (self : Union[str, Any] , UpperCamelCase : str ):
'''simple docstring'''
if path:
with open(UpperCamelCase , '''r''' ) as f:
return f.read().splitlines()
else:
return [
"ADJ",
"ADP",
"ADV",
"AUX",
"CCONJ",
"DET",
"INTJ",
"NOUN",
"NUM",
"PART",
"PRON",
"PROPN",
"PUNCT",
"SCONJ",
"SYM",
"VERB",
"X",
]
| 2 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
A ={
'configuration_mgp_str': ['MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MgpstrConfig'],
'processing_mgp_str': ['MgpstrProcessor'],
'tokenization_mgp_str': ['MgpstrTokenizer'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A =[
'MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST',
'MgpstrModel',
'MgpstrPreTrainedModel',
'MgpstrForSceneTextRecognition',
]
if TYPE_CHECKING:
from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig
from .processing_mgp_str import MgpstrProcessor
from .tokenization_mgp_str import MgpstrTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mgp_str import (
MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST,
MgpstrForSceneTextRecognition,
MgpstrModel,
MgpstrPreTrainedModel,
)
else:
import sys
A =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 34 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCamelCase : Dict = logging.get_logger(__name__)
lowerCamelCase : Union[str, Any] = {
# See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert
}
class __lowerCAmelCase (lowercase_ ):
'''simple docstring'''
lowerCAmelCase__ : List[str] = """megatron-bert"""
def __init__(self : Tuple , UpperCamelCase : Optional[int]=29056 , UpperCamelCase : Optional[Any]=1024 , UpperCamelCase : Any=24 , UpperCamelCase : int=16 , UpperCamelCase : Optional[int]=4096 , UpperCamelCase : int="gelu" , UpperCamelCase : int=0.1 , UpperCamelCase : Tuple=0.1 , UpperCamelCase : Any=512 , UpperCamelCase : int=2 , UpperCamelCase : Dict=0.02 , UpperCamelCase : Dict=1E-12 , UpperCamelCase : List[Any]=0 , UpperCamelCase : Optional[int]="absolute" , UpperCamelCase : List[Any]=True , **UpperCamelCase : str , ):
'''simple docstring'''
super().__init__(pad_token_id=UpperCamelCase , **UpperCamelCase )
lowercase__ = vocab_size
lowercase__ = hidden_size
lowercase__ = num_hidden_layers
lowercase__ = num_attention_heads
lowercase__ = hidden_act
lowercase__ = intermediate_size
lowercase__ = hidden_dropout_prob
lowercase__ = attention_probs_dropout_prob
lowercase__ = max_position_embeddings
lowercase__ = type_vocab_size
lowercase__ = initializer_range
lowercase__ = layer_norm_eps
lowercase__ = position_embedding_type
lowercase__ = use_cache
| 2 | 0 |
'''simple docstring'''
import string
def __UpperCamelCase ( lowercase__ : List[Any] ):
'''simple docstring'''
__lowercase =''
for i in sequence:
__lowercase =ord(lowercase__ )
if 65 <= extract <= 90:
output += chr(1_55 - extract )
elif 97 <= extract <= 1_22:
output += chr(2_19 - extract )
else:
output += i
return output
def __UpperCamelCase ( lowercase__ : List[str] ):
'''simple docstring'''
__lowercase =string.ascii_letters
__lowercase =string.ascii_lowercase[::-1] + string.ascii_uppercase[::-1]
return "".join(
letters_reversed[letters.index(lowercase__ )] if c in letters else c for c in sequence )
def __UpperCamelCase ( ):
'''simple docstring'''
from timeit import timeit
print('Running performance benchmarks...' )
__lowercase ='from string import printable ; from __main__ import atbash, atbash_slow'
print(F'''> atbash_slow(): {timeit("atbash_slow(printable)", setup=lowercase__ )} seconds''' )
print(F'''> atbash(): {timeit("atbash(printable)", setup=lowercase__ )} seconds''' )
if __name__ == "__main__":
for example in ("ABCDEFGH", "123GGjj", "testStringtest", "with space"):
print(F'''{example} encrypted in atbash: {atbash(example)}''')
benchmark()
| 141 |
'''simple docstring'''
# Lint as: python3
import itertools
import os
import re
lowerCamelCase : Any = re.compile(R'([A-Z]+)([A-Z][a-z])')
lowerCamelCase : str = re.compile(R'([a-z\d])([A-Z])')
lowerCamelCase : Optional[int] = re.compile(R'(?<!_)_(?!_)')
lowerCamelCase : List[Any] = re.compile(R'(_{2,})')
lowerCamelCase : str = R'^\w+(\.\w+)*$'
lowerCamelCase : Dict = R'<>:/\|?*'
def _SCREAMING_SNAKE_CASE (A ) -> Any:
"""simple docstring"""
lowercase__ = _uppercase_uppercase_re.sub(R'''\1_\2''' , A )
lowercase__ = _lowercase_uppercase_re.sub(R'''\1_\2''' , A )
return name.lower()
def _SCREAMING_SNAKE_CASE (A ) -> Tuple:
"""simple docstring"""
lowercase__ = _single_underscore_re.split(A )
lowercase__ = [_multiple_underscores_re.split(A ) for n in name]
return "".join(n.capitalize() for n in itertools.chain.from_iterable(A ) if n != '''''' )
def _SCREAMING_SNAKE_CASE (A ) -> Tuple:
"""simple docstring"""
if os.path.basename(A ) != name:
raise ValueError(f"Should be a dataset name, not a path: {name}" )
return camelcase_to_snakecase(A )
def _SCREAMING_SNAKE_CASE (A , A ) -> Optional[Any]:
"""simple docstring"""
if os.path.basename(A ) != name:
raise ValueError(f"Should be a dataset name, not a path: {name}" )
if not re.match(_split_re , A ):
raise ValueError(f"Split name should match '{_split_re}'' but got '{split}'." )
return f"{filename_prefix_for_name(A )}-{split}"
def _SCREAMING_SNAKE_CASE (A , A , A , A=None ) -> List[str]:
"""simple docstring"""
lowercase__ = filename_prefix_for_split(A , A )
if filetype_suffix:
prefix += f".{filetype_suffix}"
lowercase__ = os.path.join(A , A )
return f"{filepath}*"
def _SCREAMING_SNAKE_CASE (A , A , A , A=None , A=None ) -> Optional[Any]:
"""simple docstring"""
lowercase__ = filename_prefix_for_split(A , A )
lowercase__ = os.path.join(A , A )
if shard_lengths:
lowercase__ = len(A )
lowercase__ = [f"{prefix}-{shard_id:05d}-of-{num_shards:05d}" for shard_id in range(A )]
if filetype_suffix:
lowercase__ = [filename + f".{filetype_suffix}" for filename in filenames]
return filenames
else:
lowercase__ = prefix
if filetype_suffix:
filename += f".{filetype_suffix}"
return [filename]
| 2 | 0 |
class lowerCamelCase__ :
'''simple docstring'''
def __init__(self ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) -> Any:
"""simple docstring"""
lowerCAmelCase__ : List[Any] = name
lowerCAmelCase__ : Tuple = value
lowerCAmelCase__ : Optional[Any] = weight
def __repr__(self ) -> Optional[Any]:
"""simple docstring"""
return f"""{self.__class__.__name__}({self.name}, {self.value}, {self.weight})"""
def lowerCAmelCase__ (self ) -> Optional[int]:
"""simple docstring"""
return self.value
def lowerCAmelCase__ (self ) -> str:
"""simple docstring"""
return self.name
def lowerCAmelCase__ (self ) -> List[str]:
"""simple docstring"""
return self.weight
def lowerCAmelCase__ (self ) -> List[str]:
"""simple docstring"""
return self.value / self.weight
def lowerCAmelCase__ ( lowerCamelCase_ : int ,lowerCamelCase_ : Tuple ,lowerCamelCase_ : Tuple):
'''simple docstring'''
lowerCAmelCase__ : Optional[Any] = []
for i in range(len(lowerCamelCase_)):
menu.append(Things(name[i] ,value[i] ,weight[i]))
return menu
def lowerCAmelCase__ ( lowerCamelCase_ : List[Any] ,lowerCamelCase_ : List[str] ,lowerCamelCase_ : Optional[int]):
'''simple docstring'''
lowerCAmelCase__ : List[str] = sorted(lowerCamelCase_ ,key=lowerCamelCase_ ,reverse=lowerCamelCase_)
lowerCAmelCase__ : Union[str, Any] = []
lowerCAmelCase__ , lowerCAmelCase__ : int = 0.0, 0.0
for i in range(len(lowerCamelCase_)):
if (total_cost + items_copy[i].get_weight()) <= max_cost:
result.append(items_copy[i])
total_cost += items_copy[i].get_weight()
total_value += items_copy[i].get_value()
return (result, total_value)
def lowerCAmelCase__ ( ):
'''simple docstring'''
if __name__ == "__main__":
import doctest
doctest.testmod()
| 129 |
'''simple docstring'''
import unittest
from transformers import TrOCRConfig
from transformers.testing_utils import is_torch_available, require_torch, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM
@require_torch
class __lowerCAmelCase :
'''simple docstring'''
def __init__(self : str , UpperCamelCase : Tuple , UpperCamelCase : Optional[int]=99 , UpperCamelCase : Optional[int]=13 , UpperCamelCase : Tuple=16 , UpperCamelCase : Union[str, Any]=7 , UpperCamelCase : List[Any]=True , UpperCamelCase : List[str]=True , UpperCamelCase : str=True , UpperCamelCase : Tuple=False , UpperCamelCase : str=True , UpperCamelCase : Tuple=2 , UpperCamelCase : Optional[int]=32 , UpperCamelCase : Any=4 , UpperCamelCase : Optional[int]=4 , UpperCamelCase : Tuple=30 , UpperCamelCase : str=0 , UpperCamelCase : Tuple=1 , UpperCamelCase : List[Any]=2 , UpperCamelCase : str=None , ):
'''simple docstring'''
lowercase__ = parent
lowercase__ = batch_size
lowercase__ = decoder_seq_length
# For common tests
lowercase__ = self.decoder_seq_length
lowercase__ = is_training
lowercase__ = use_attention_mask
lowercase__ = use_labels
lowercase__ = vocab_size
lowercase__ = d_model
lowercase__ = d_model
lowercase__ = decoder_layers
lowercase__ = decoder_layers
lowercase__ = decoder_ffn_dim
lowercase__ = decoder_attention_heads
lowercase__ = decoder_attention_heads
lowercase__ = eos_token_id
lowercase__ = bos_token_id
lowercase__ = pad_token_id
lowercase__ = decoder_start_token_id
lowercase__ = use_cache
lowercase__ = max_position_embeddings
lowercase__ = None
lowercase__ = decoder_seq_length
lowercase__ = 2
lowercase__ = 1
def UpperCamelCase__ (self : str ):
'''simple docstring'''
lowercase__ = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size )
lowercase__ = None
if self.use_attention_mask:
lowercase__ = ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 )
lowercase__ = None
if self.use_labels:
lowercase__ = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size )
lowercase__ = TrOCRConfig(
vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , )
return (config, input_ids, attention_mask, lm_labels)
def UpperCamelCase__ (self : Tuple , UpperCamelCase : List[Any] , UpperCamelCase : Optional[Any] , UpperCamelCase : Tuple , UpperCamelCase : List[str] , ):
'''simple docstring'''
lowercase__ = True
lowercase__ = TrOCRDecoder(config=UpperCamelCase ).to(UpperCamelCase ).eval()
lowercase__ = input_ids[:2]
input_ids[input_ids == 0] += 1
# first forward pass
lowercase__ = model(UpperCamelCase , use_cache=UpperCamelCase )
lowercase__ = model(UpperCamelCase )
lowercase__ = model(UpperCamelCase , use_cache=UpperCamelCase )
self.parent.assertTrue(len(UpperCamelCase ) == len(UpperCamelCase ) )
self.parent.assertTrue(len(UpperCamelCase ) == len(UpperCamelCase ) + 1 )
lowercase__ = outputs['''past_key_values''']
# create hypothetical next token and extent to next_input_ids
lowercase__ = ids_tensor((2, 1) , config.vocab_size - 1 ) + 1
# append to next input_ids and
lowercase__ = torch.cat([input_ids, next_tokens] , dim=-1 )
lowercase__ = model(UpperCamelCase )['''last_hidden_state''']
lowercase__ = model(UpperCamelCase , past_key_values=UpperCamelCase )['''last_hidden_state''']
# select random slice
lowercase__ = ids_tensor((1,) , output_from_past.shape[-1] ).item()
lowercase__ = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach()
lowercase__ = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
assert torch.allclose(UpperCamelCase , UpperCamelCase , atol=1E-3 )
def UpperCamelCase__ (self : Optional[Any] ):
'''simple docstring'''
lowercase__ = self.prepare_config_and_inputs()
lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ = config_and_inputs
lowercase__ = {'''input_ids''': input_ids, '''attention_mask''': attention_mask}
return config, inputs_dict
@require_torch
class __lowerCAmelCase (lowercase_ , lowercase_ , lowercase_ , unittest.TestCase ):
'''simple docstring'''
lowerCAmelCase__ : List[str] = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else ()
lowerCAmelCase__ : List[Any] = (TrOCRForCausalLM,) if is_torch_available() else ()
lowerCAmelCase__ : Optional[Any] = {"""text-generation""": TrOCRForCausalLM} if is_torch_available() else {}
lowerCAmelCase__ : Optional[Any] = True
lowerCAmelCase__ : List[str] = False
def UpperCamelCase__ (self : Any ):
'''simple docstring'''
lowercase__ = TrOCRStandaloneDecoderModelTester(self , is_training=UpperCamelCase )
lowercase__ = ConfigTester(self , config_class=UpperCamelCase )
def UpperCamelCase__ (self : List[str] ):
'''simple docstring'''
pass
def UpperCamelCase__ (self : Optional[int] ):
'''simple docstring'''
pass
def UpperCamelCase__ (self : Any ):
'''simple docstring'''
pass
def UpperCamelCase__ (self : Any ):
'''simple docstring'''
self.config_tester.run_common_tests()
def UpperCamelCase__ (self : Union[str, Any] ):
'''simple docstring'''
lowercase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_decoder_model_past(*UpperCamelCase )
def UpperCamelCase__ (self : Optional[int] ):
'''simple docstring'''
return
@unittest.skip('''The model doesn\'t support left padding''' ) # and it's not used enough to be worth fixing :)
def UpperCamelCase__ (self : List[str] ):
'''simple docstring'''
pass
| 2 | 0 |
"""simple docstring"""
from typing import List, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
SCREAMING_SNAKE_CASE : Any = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE : Dict = {
'huggingface/time-series-transformer-tourism-monthly': (
'https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json'
),
# See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer
}
class _UpperCAmelCase ( lowercase_ ):
'''simple docstring'''
lowerCamelCase__ ="""time_series_transformer"""
lowerCamelCase__ ={
"""hidden_size""": """d_model""",
"""num_attention_heads""": """encoder_attention_heads""",
"""num_hidden_layers""": """encoder_layers""",
}
def __init__(self , a_ = None , a_ = None , a_ = "student_t" , a_ = "nll" , a_ = 1 , a_ = [1, 2, 3, 4, 5, 6, 7] , a_ = "mean" , a_ = 0 , a_ = 0 , a_ = 0 , a_ = 0 , a_ = None , a_ = None , a_ = 32 , a_ = 32 , a_ = 2 , a_ = 2 , a_ = 2 , a_ = 2 , a_ = True , a_ = "gelu" , a_ = 64 , a_ = 0.1 , a_ = 0.1 , a_ = 0.1 , a_ = 0.1 , a_ = 0.1 , a_ = 1_00 , a_ = 0.02 , a_=True , **a_ , ):
'''simple docstring'''
__snake_case : Dict = prediction_length
__snake_case : Dict = context_length or prediction_length
__snake_case : int = distribution_output
__snake_case : Union[str, Any] = loss
__snake_case : Optional[Any] = input_size
__snake_case : Optional[Any] = num_time_features
__snake_case : Any = lags_sequence
__snake_case : Any = scaling
__snake_case : int = num_dynamic_real_features
__snake_case : Optional[Any] = num_static_real_features
__snake_case : Any = num_static_categorical_features
if cardinality and num_static_categorical_features > 0:
if len(a_ ) != num_static_categorical_features:
raise ValueError(
'''The cardinality should be a list of the same length as `num_static_categorical_features`''' )
__snake_case : List[Any] = cardinality
else:
__snake_case : List[Any] = [0]
if embedding_dimension and num_static_categorical_features > 0:
if len(a_ ) != num_static_categorical_features:
raise ValueError(
'''The embedding dimension should be a list of the same length as `num_static_categorical_features`''' )
__snake_case : Dict = embedding_dimension
else:
__snake_case : int = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality]
__snake_case : Optional[int] = num_parallel_samples
# Transformer architecture configuration
__snake_case : List[Any] = input_size * len(a_ ) + self._number_of_features
__snake_case : int = d_model
__snake_case : str = encoder_attention_heads
__snake_case : str = decoder_attention_heads
__snake_case : Any = encoder_ffn_dim
__snake_case : Union[str, Any] = decoder_ffn_dim
__snake_case : Optional[int] = encoder_layers
__snake_case : Union[str, Any] = decoder_layers
__snake_case : Tuple = dropout
__snake_case : Tuple = attention_dropout
__snake_case : Dict = activation_dropout
__snake_case : Dict = encoder_layerdrop
__snake_case : Dict = decoder_layerdrop
__snake_case : str = activation_function
__snake_case : List[str] = init_std
__snake_case : Optional[Any] = use_cache
super().__init__(is_encoder_decoder=a_ , **a_ )
@property
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
return (
sum(self.embedding_dimension )
+ self.num_dynamic_real_features
+ self.num_time_features
+ self.num_static_real_features
+ self.input_size * 2 # the log1p(abs(loc)) and log(scale) features
)
| 102 |
'''simple docstring'''
def _SCREAMING_SNAKE_CASE (A ) -> int:
"""simple docstring"""
if not isinstance(A , A ):
raise TypeError('''only integers accepted as input''' )
else:
lowercase__ = str(abs(A ) )
lowercase__ = [list(A ) for char in range(len(A ) )]
for index in range(len(A ) ):
num_transpositions[index].pop(A )
return max(
int(''''''.join(list(A ) ) ) for transposition in num_transpositions )
if __name__ == "__main__":
__import__('doctest').testmod()
| 2 | 0 |
from __future__ import annotations
import os
import tempfile
import unittest
import numpy as np
from huggingface_hub import hf_hub_download
from transformers import is_tensorflow_text_available, is_tf_available
from transformers.testing_utils import require_tensorflow_text, require_tf, slow
from ..test_modeling_tf_common import floats_tensor
from .test_framework_agnostic import GenerationIntegrationTestsMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
AutoTokenizer,
TFAutoModelForCausalLM,
TFAutoModelForSeqaSeqLM,
TFAutoModelForSpeechSeqaSeq,
TFAutoModelForVisionaSeq,
TFBartForConditionalGeneration,
TFLogitsProcessorList,
TFMinLengthLogitsProcessor,
tf_top_k_top_p_filtering,
)
if is_tensorflow_text_available():
import tensorflow_text as text
@require_tf
class __A ( unittest.TestCase ):
"""simple docstring"""
def __lowercase ( self ):
"""simple docstring"""
__UpperCamelCase : Optional[int] =tf.convert_to_tensor(
[
[
8.2_220_991, # 3rd highest value; idx. 0
-0.5_620_044,
5.23_229_752,
4.0_386_393,
-6.8_798_378,
-0.54_785_802,
-3.2_012_153,
2.92_777_176,
1.88_171_953,
7.35_341_276, # 5th highest value; idx. 9
8.43_207_833, # 2nd highest value; idx. 10
-9.85_711_836,
-5.96_209_236,
-1.13_039_161,
-7.1_115_294,
-0.8_369_633,
-5.3_186_408,
7.06_427_407,
0.81_369_344,
-0.82_023_817,
-5.9_179_796,
0.58_813_443,
-6.99_778_438,
4.71_551_189,
-0.18_771_637,
7.44_020_759, # 4th highest value; idx. 25
9.38_450_987, # 1st highest value; idx. 26
2.12_662_941,
-9.32_562_038,
2.35_652_522,
], # cummulative prob of 5 highest values <= 0.6
[
0.58_425_518,
4.53_139_238,
-5.57_510_464,
-6.28_030_699,
-7.19_529_503,
-4.02_122_551,
1.39_337_037,
-6.06_707_057,
1.59_480_517,
-9.643_119,
0.03_907_799,
0.67_231_762,
-8.88_206_726,
6.27_115_922, # 4th highest value; idx. 13
2.28_520_723,
4.82_767_506,
4.30_421_368,
8.8_275_313, # 2nd highest value; idx. 17
5.44_029_958, # 5th highest value; idx. 18
-4.4_735_794,
7.38_579_536, # 3rd highest value; idx. 20
-2.91_051_663,
2.61_946_077,
-2.5_674_762,
-9.48_959_302,
-4.02_922_645,
-1.35_416_918,
9.67_702_323, # 1st highest value; idx. 27
-5.89_478_553,
1.85_370_467,
], # cummulative prob of 5 highest values <= 0.6
] , dtype=tf.floataa , )
__UpperCamelCase : List[str] =tf.convert_to_tensor(
[[0, 0], [0, 9], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 18], [1, 20], [1, 27]] , dtype=tf.intaa , ) # expected non filtered idx as noted above
__UpperCamelCase : List[Any] =tf.convert_to_tensor(
[8.222_099, 7.3_534_126, 8.432_078, 7.4_402_075, 9.38_451, 6.271_159, 8.827_531, 5.4_402_995, 7.3_857_956, 9.677_023] , dtype=tf.floataa , ) # expected non filtered values as noted above
__UpperCamelCase : List[str] =tf_top_k_top_p_filtering(lowerCamelCase__ , top_k=10 , top_p=0.6 , min_tokens_to_keep=4 )
__UpperCamelCase : List[str] =output[output != -float('inf' )]
__UpperCamelCase : Optional[Any] =tf.cast(
tf.where(tf.not_equal(lowerCamelCase__ , tf.constant(-float('inf' ) , dtype=tf.floataa ) ) ) , dtype=tf.intaa , )
tf.debugging.assert_near(lowerCamelCase__ , lowerCamelCase__ , rtol=1E-12 )
tf.debugging.assert_equal(lowerCamelCase__ , lowerCamelCase__ )
@require_tf
class __A ( unittest.TestCase , lowercase_ ):
"""simple docstring"""
if is_tf_available():
UpperCamelCase__ : Optional[int] ={
"""AutoModelForCausalLM""": TFAutoModelForCausalLM,
"""AutoModelForSpeechSeq2Seq""": TFAutoModelForSpeechSeqaSeq,
"""AutoModelForSeq2SeqLM""": TFAutoModelForSeqaSeqLM,
"""AutoModelForVision2Seq""": TFAutoModelForVisionaSeq,
"""LogitsProcessorList""": TFLogitsProcessorList,
"""MinLengthLogitsProcessor""": TFMinLengthLogitsProcessor,
"""create_tensor_fn""": tf.convert_to_tensor,
"""floats_tensor""": floats_tensor,
"""return_tensors""": """tf""",
}
@slow
def __lowercase ( self ):
"""simple docstring"""
__UpperCamelCase : Optional[int] =TFAutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' )
__UpperCamelCase : List[Any] =2
__UpperCamelCase : int =2
class __A ( tf.Module ):
"""simple docstring"""
def __init__( self , lowerCamelCase__ ):
"""simple docstring"""
super(lowerCamelCase__ , self ).__init__()
__UpperCamelCase : Any =model
@tf.function(
input_signature=(
tf.TensorSpec((None, input_length) , tf.intaa , name='input_ids' ),
tf.TensorSpec((None, input_length) , tf.intaa , name='attention_mask' ),
) , jit_compile=lowerCamelCase__ , )
def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
__UpperCamelCase : Optional[int] =self.model.generate(
input_ids=lowerCamelCase__ , attention_mask=lowerCamelCase__ , max_new_tokens=lowerCamelCase__ , return_dict_in_generate=lowerCamelCase__ , )
return {"sequences": outputs["sequences"]}
__UpperCamelCase : str =[[2, 0], [102, 103]]
__UpperCamelCase : Optional[Any] =[[1, 0], [1, 1]]
__UpperCamelCase : str =DummyModel(model=lowerCamelCase__ )
with tempfile.TemporaryDirectory() as tmp_dir:
tf.saved_model.save(lowerCamelCase__ , lowerCamelCase__ , signatures={'serving_default': dummy_model.serving} )
__UpperCamelCase : Optional[int] =tf.saved_model.load(lowerCamelCase__ ).signatures['serving_default']
for batch_size in range(1 , len(lowerCamelCase__ ) + 1 ):
__UpperCamelCase : str ={
'input_ids': tf.constant(dummy_input_ids[:batch_size] ),
'attention_mask': tf.constant(dummy_attention_masks[:batch_size] ),
}
__UpperCamelCase : Optional[Any] =serving_func(**lowerCamelCase__ )['sequences']
__UpperCamelCase : List[Any] =test_model.generate(**lowerCamelCase__ , max_new_tokens=lowerCamelCase__ )
tf.debugging.assert_equal(lowerCamelCase__ , lowerCamelCase__ )
@slow
def __lowercase ( self ):
"""simple docstring"""
__UpperCamelCase : List[Any] =TFAutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' )
__UpperCamelCase : List[str] =1
__UpperCamelCase : Tuple =2
class __A ( tf.Module ):
"""simple docstring"""
def __init__( self , lowerCamelCase__ ):
"""simple docstring"""
super(lowerCamelCase__ , self ).__init__()
__UpperCamelCase : Any =model
@tf.function(
input_signature=(
tf.TensorSpec((batch_size, None) , tf.intaa , name='input_ids' ),
tf.TensorSpec((batch_size, None) , tf.intaa , name='attention_mask' ),
) , jit_compile=lowerCamelCase__ , )
def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
__UpperCamelCase : Optional[int] =self.model.generate(
input_ids=lowerCamelCase__ , attention_mask=lowerCamelCase__ , max_new_tokens=lowerCamelCase__ , return_dict_in_generate=lowerCamelCase__ , )
return {"sequences": outputs["sequences"]}
__UpperCamelCase : Tuple =[[2], [102, 103]]
__UpperCamelCase : int =[[1], [1, 1]]
__UpperCamelCase : Dict =DummyModel(model=lowerCamelCase__ )
with tempfile.TemporaryDirectory() as tmp_dir:
tf.saved_model.save(lowerCamelCase__ , lowerCamelCase__ , signatures={'serving_default': dummy_model.serving} )
__UpperCamelCase : List[str] =tf.saved_model.load(lowerCamelCase__ ).signatures['serving_default']
for input_row in range(len(lowerCamelCase__ ) ):
__UpperCamelCase : List[Any] ={
'input_ids': tf.constant([dummy_input_ids[input_row]] ),
'attention_mask': tf.constant([dummy_attention_masks[input_row]] ),
}
__UpperCamelCase : List[Any] =serving_func(**lowerCamelCase__ )['sequences']
__UpperCamelCase : List[Any] =test_model.generate(**lowerCamelCase__ , max_new_tokens=lowerCamelCase__ )
tf.debugging.assert_equal(lowerCamelCase__ , lowerCamelCase__ )
@slow
@require_tensorflow_text
def __lowercase ( self ):
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmp_dir:
# file needed to load the TF tokenizer
hf_hub_download(repo_id='google/flan-t5-small' , filename='spiece.model' , local_dir=lowerCamelCase__ )
class __A ( tf.keras.layers.Layer ):
"""simple docstring"""
def __init__( self ):
"""simple docstring"""
super().__init__()
__UpperCamelCase : List[Any] =text.SentencepieceTokenizer(
model=tf.io.gfile.GFile(os.path.join(lowerCamelCase__ , 'spiece.model' ) , 'rb' ).read() )
__UpperCamelCase : Dict =TFAutoModelForSeqaSeqLM.from_pretrained('hf-internal-testing/tiny-random-t5' )
def __lowercase ( self , lowerCamelCase__ , *lowerCamelCase__ , **lowerCamelCase__ ):
"""simple docstring"""
__UpperCamelCase : List[str] =self.tokenizer.tokenize(lowerCamelCase__ )
__UpperCamelCase , __UpperCamelCase : Dict =text.pad_model_inputs(
lowerCamelCase__ , max_seq_length=64 , pad_value=self.model.config.pad_token_id )
__UpperCamelCase : List[Any] =self.model.generate(input_ids=lowerCamelCase__ , attention_mask=lowerCamelCase__ )
return self.tokenizer.detokenize(lowerCamelCase__ )
__UpperCamelCase : Union[str, Any] =CompleteSentenceTransformer()
__UpperCamelCase : List[Any] =tf.keras.layers.Input(shape=(1,) , dtype=tf.string , name='inputs' )
__UpperCamelCase : List[str] =complete_model(lowerCamelCase__ )
__UpperCamelCase : int =tf.keras.Model(lowerCamelCase__ , lowerCamelCase__ )
keras_model.save(lowerCamelCase__ )
def __lowercase ( self ):
"""simple docstring"""
__UpperCamelCase : Tuple ={
'do_sample': True,
'num_beams': 1,
'top_p': 0.7,
'top_k': 10,
'temperature': 0.7,
}
__UpperCamelCase : Optional[int] =14
__UpperCamelCase : Optional[Any] =AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' )
__UpperCamelCase : Tuple ='Hello, my dog is cute and'
__UpperCamelCase : str =tokenizer(lowerCamelCase__ , return_tensors='tf' )
__UpperCamelCase : str =TFAutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' )
__UpperCamelCase : Union[str, Any] =638
# forces the generation to happen on CPU, to avoid GPU-related quirks
with tf.device(':/CPU:0' ):
tf.random.set_seed(0 )
__UpperCamelCase : Tuple =model.generate(**lowerCamelCase__ , eos_token_id=lowerCamelCase__ , **lowerCamelCase__ )
self.assertTrue(expectation == len(generated_tokens[0] ) )
__UpperCamelCase : Union[str, Any] =[638, 198]
with tf.device(':/CPU:0' ):
tf.random.set_seed(0 )
__UpperCamelCase : Optional[int] =model.generate(**lowerCamelCase__ , eos_token_id=lowerCamelCase__ , **lowerCamelCase__ )
self.assertTrue(expectation == len(generated_tokens[0] ) )
def __lowercase ( self ):
"""simple docstring"""
__UpperCamelCase : str =AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-bart' )
__UpperCamelCase : Union[str, Any] ='Hugging Face is a technology company based in New York and Paris.'
__UpperCamelCase : List[Any] =bart_tokenizer(lowerCamelCase__ , return_tensors='tf' ).input_ids
__UpperCamelCase : Dict =TFBartForConditionalGeneration.from_pretrained('hf-internal-testing/tiny-random-bart' )
__UpperCamelCase : Optional[int] =bart_model.generate(lowerCamelCase__ ).numpy()
class __A ( lowercase_ ):
"""simple docstring"""
def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__=None , **lowerCamelCase__ ):
"""simple docstring"""
return super().call(lowerCamelCase__ , **lowerCamelCase__ )
__UpperCamelCase : Optional[Any] =FakeBart.from_pretrained('hf-internal-testing/tiny-random-bart' )
__UpperCamelCase : Dict =bart_model.generate(lowerCamelCase__ , foo='bar' ).numpy()
self.assertTrue(np.array_equal(lowerCamelCase__ , lowerCamelCase__ ) )
class __A ( bart_model.model.encoder.__class__ ):
"""simple docstring"""
def __lowercase ( self , lowerCamelCase__ , **lowerCamelCase__ ):
"""simple docstring"""
return super().call(lowerCamelCase__ , **lowerCamelCase__ )
__UpperCamelCase : Optional[Any] =FakeEncoder(bart_model.config , bart_model.model.shared )
__UpperCamelCase : List[Any] =fake_encoder
# Normal generation still works (the output will be different because the encoder weights are different)
__UpperCamelCase : Union[str, Any] =bart_model.generate(lowerCamelCase__ ).numpy()
with self.assertRaises(lowerCamelCase__ ):
# FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo"
bart_model.generate(lowerCamelCase__ , foo='bar' )
| 71 |
'''simple docstring'''
import dataclasses
import re
import string
from typing import Any, Dict, Iterator, List, Mapping, Optional, Sequence, Tuple
import numpy as np
from . import residue_constants
lowerCamelCase : str = Mapping[str, np.ndarray]
lowerCamelCase : List[Any] = Mapping[str, Any] # Is a nested dict.
lowerCamelCase : Any = 0.0_1
@dataclasses.dataclass(frozen=lowercase_ )
class __lowerCAmelCase :
'''simple docstring'''
lowerCAmelCase__ : np.ndarray # [num_res, num_atom_type, 3]
# Amino-acid type for each residue represented as an integer between 0 and
# 20, where 20 is 'X'.
lowerCAmelCase__ : np.ndarray # [num_res]
# Binary float mask to indicate presence of a particular atom. 1.0 if an atom
# is present and 0.0 if not. This should be used for loss masking.
lowerCAmelCase__ : np.ndarray # [num_res, num_atom_type]
# Residue index as used in PDB. It is not necessarily continuous or 0-indexed.
lowerCAmelCase__ : np.ndarray # [num_res]
# B-factors, or temperature factors, of each residue (in sq. angstroms units),
# representing the displacement of the residue from its ground truth mean
# value.
lowerCAmelCase__ : np.ndarray # [num_res, num_atom_type]
# Chain indices for multi-chain predictions
lowerCAmelCase__ : Optional[np.ndarray] = None
# Optional remark about the protein. Included as a comment in output PDB
# files
lowerCAmelCase__ : Optional[str] = None
# Templates used to generate this protein (prediction-only)
lowerCAmelCase__ : Optional[Sequence[str]] = None
# Chain corresponding to each parent
lowerCAmelCase__ : Optional[Sequence[int]] = None
def _SCREAMING_SNAKE_CASE (A ) -> Protein:
"""simple docstring"""
lowercase__ = R'''(\[[A-Z]+\]\n)'''
lowercase__ = [tag.strip() for tag in re.split(A , A ) if len(A ) > 0]
lowercase__ = zip(tags[0::2] , [l.split('''\n''' ) for l in tags[1::2]] )
lowercase__ = ["N", "CA", "C"]
lowercase__ = None
lowercase__ = None
lowercase__ = None
for g in groups:
if "[PRIMARY]" == g[0]:
lowercase__ = g[1][0].strip()
for i in range(len(A ) ):
if seq[i] not in residue_constants.restypes:
lowercase__ = '''X''' # FIXME: strings are immutable
lowercase__ = np.array(
[residue_constants.restype_order.get(A , residue_constants.restype_num ) for res_symbol in seq] )
elif "[TERTIARY]" == g[0]:
lowercase__ = []
for axis in range(3 ):
tertiary.append(list(map(A , g[1][axis].split() ) ) )
lowercase__ = np.array(A )
lowercase__ = np.zeros((len(tertiary[0] ) // 3, residue_constants.atom_type_num, 3) ).astype(np.floataa )
for i, atom in enumerate(A ):
lowercase__ = np.transpose(tertiary_np[:, i::3] )
atom_positions *= PICO_TO_ANGSTROM
elif "[MASK]" == g[0]:
lowercase__ = np.array(list(map({'''-''': 0, '''+''': 1}.get , g[1][0].strip() ) ) )
lowercase__ = np.zeros(
(
len(A ),
residue_constants.atom_type_num,
) ).astype(np.floataa )
for i, atom in enumerate(A ):
lowercase__ = 1
atom_mask *= mask[..., None]
assert aatype is not None
return Protein(
atom_positions=A , atom_mask=A , aatype=A , residue_index=np.arange(len(A ) ) , b_factors=A , )
def _SCREAMING_SNAKE_CASE (A , A = 0 ) -> List[str]:
"""simple docstring"""
lowercase__ = []
lowercase__ = prot.remark
if remark is not None:
pdb_headers.append(f"REMARK {remark}" )
lowercase__ = prot.parents
lowercase__ = prot.parents_chain_index
if parents is not None and parents_chain_index is not None:
lowercase__ = [p for i, p in zip(A , A ) if i == chain_id]
if parents is None or len(A ) == 0:
lowercase__ = ['''N/A''']
pdb_headers.append(f"PARENT {' '.join(A )}" )
return pdb_headers
def _SCREAMING_SNAKE_CASE (A , A ) -> str:
"""simple docstring"""
lowercase__ = []
lowercase__ = pdb_str.split('''\n''' )
lowercase__ = prot.remark
if remark is not None:
out_pdb_lines.append(f"REMARK {remark}" )
lowercase__ = 42
if prot.parents is not None and len(prot.parents ) > 0:
lowercase__ = []
if prot.parents_chain_index is not None:
lowercase__ = {}
for p, i in zip(prot.parents , prot.parents_chain_index ):
parent_dict.setdefault(str(A ) , [] )
parent_dict[str(A )].append(A )
lowercase__ = max([int(A ) for chain_idx in parent_dict] )
for i in range(max_idx + 1 ):
lowercase__ = parent_dict.get(str(A ) , ['''N/A'''] )
parents_per_chain.append(A )
else:
parents_per_chain.append(list(prot.parents ) )
else:
lowercase__ = [['''N/A''']]
def make_parent_line(A ) -> str:
return f"PARENT {' '.join(A )}"
out_pdb_lines.append(make_parent_line(parents_per_chain[0] ) )
lowercase__ = 0
for i, l in enumerate(A ):
if "PARENT" not in l and "REMARK" not in l:
out_pdb_lines.append(A )
if "TER" in l and "END" not in lines[i + 1]:
chain_counter += 1
if not chain_counter >= len(A ):
lowercase__ = parents_per_chain[chain_counter]
else:
lowercase__ = ['''N/A''']
out_pdb_lines.append(make_parent_line(A ) )
return "\n".join(A )
def _SCREAMING_SNAKE_CASE (A ) -> str:
"""simple docstring"""
lowercase__ = residue_constants.restypes + ['''X''']
def res_atoa(A ) -> str:
return residue_constants.restype_atoa.get(restypes[r] , '''UNK''' )
lowercase__ = residue_constants.atom_types
lowercase__ = []
lowercase__ = prot.atom_mask
lowercase__ = prot.aatype
lowercase__ = prot.atom_positions
lowercase__ = prot.residue_index.astype(np.intaa )
lowercase__ = prot.b_factors
lowercase__ = prot.chain_index
if np.any(aatype > residue_constants.restype_num ):
raise ValueError('''Invalid aatypes.''' )
lowercase__ = get_pdb_headers(A )
if len(A ) > 0:
pdb_lines.extend(A )
lowercase__ = aatype.shape[0]
lowercase__ = 1
lowercase__ = 0
lowercase__ = string.ascii_uppercase
lowercase__ = None
# Add all atom sites.
for i in range(A ):
lowercase__ = res_atoa(aatype[i] )
for atom_name, pos, mask, b_factor in zip(A , atom_positions[i] , atom_mask[i] , b_factors[i] ):
if mask < 0.5:
continue
lowercase__ = '''ATOM'''
lowercase__ = atom_name if len(A ) == 4 else f" {atom_name}"
lowercase__ = ''''''
lowercase__ = ''''''
lowercase__ = 1.00
lowercase__ = atom_name[0] # Protein supports only C, N, O, S, this works.
lowercase__ = ''''''
lowercase__ = '''A'''
if chain_index is not None:
lowercase__ = chain_tags[chain_index[i]]
# PDB is a columnar format, every space matters here!
lowercase__ = (
f"{record_type:<6}{atom_index:>5} {name:<4}{alt_loc:>1}"
f"{res_name_a:>3} {chain_tag:>1}"
f"{residue_index[i]:>4}{insertion_code:>1} "
f"{pos[0]:>8.3f}{pos[1]:>8.3f}{pos[2]:>8.3f}"
f"{occupancy:>6.2f}{b_factor:>6.2f} "
f"{element:>2}{charge:>2}"
)
pdb_lines.append(A )
atom_index += 1
lowercase__ = i == n - 1
if chain_index is not None:
if i != n - 1 and chain_index[i + 1] != prev_chain_index:
lowercase__ = True
lowercase__ = chain_index[i + 1]
if should_terminate:
# Close the chain.
lowercase__ = '''TER'''
lowercase__ = (
f"{chain_end:<6}{atom_index:>5} {res_atoa(aatype[i] ):>3} {chain_tag:>1}{residue_index[i]:>4}"
)
pdb_lines.append(A )
atom_index += 1
if i != n - 1:
# "prev" is a misnomer here. This happens at the beginning of
# each new chain.
pdb_lines.extend(get_pdb_headers(A , A ) )
pdb_lines.append('''END''' )
pdb_lines.append('''''' )
return "\n".join(A )
def _SCREAMING_SNAKE_CASE (A ) -> np.ndarray:
"""simple docstring"""
return residue_constants.STANDARD_ATOM_MASK[prot.aatype]
def _SCREAMING_SNAKE_CASE (A , A , A = None , A = None , A = None , A = None , A = None , ) -> Protein:
"""simple docstring"""
return Protein(
aatype=features['''aatype'''] , atom_positions=result['''final_atom_positions'''] , atom_mask=result['''final_atom_mask'''] , residue_index=features['''residue_index'''] + 1 , b_factors=b_factors if b_factors is not None else np.zeros_like(result['''final_atom_mask'''] ) , chain_index=A , remark=A , parents=A , parents_chain_index=A , )
| 2 | 0 |
'''simple docstring'''
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import ChineseCLIPImageProcessor
class _snake_case ( unittest.TestCase ):
def __init__( self , a__ , a__=7 , a__=3 , a__=18 , a__=30 , a__=400 , a__=True , a__=None , a__=True , a__=None , a__=True , a__=[0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] , a__=[0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] , a__=True , ) -> int:
'''simple docstring'''
snake_case_ = size if size is not None else {"height": 224, "width": 224}
snake_case_ = crop_size if crop_size is not None else {"height": 18, "width": 18}
snake_case_ = parent
snake_case_ = batch_size
snake_case_ = num_channels
snake_case_ = image_size
snake_case_ = min_resolution
snake_case_ = max_resolution
snake_case_ = do_resize
snake_case_ = size
snake_case_ = do_center_crop
snake_case_ = crop_size
snake_case_ = do_normalize
snake_case_ = image_mean
snake_case_ = image_std
snake_case_ = do_convert_rgb
def lowerCAmelCase__ ( self ) -> Tuple:
'''simple docstring'''
return {
"do_resize": self.do_resize,
"size": self.size,
"do_center_crop": self.do_center_crop,
"crop_size": self.crop_size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_convert_rgb": self.do_convert_rgb,
}
def lowerCAmelCase__ ( self , a__=False , a__=False , a__=False ) -> List[str]:
'''simple docstring'''
assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time"
if equal_resolution:
snake_case_ = []
for i in range(self.batch_size ):
image_inputs.append(
np.random.randint(
255 , size=(self.num_channels, self.max_resolution, self.max_resolution) , dtype=np.uinta ) )
else:
snake_case_ = []
for i in range(self.batch_size ):
snake_case_ , snake_case_ = np.random.choice(np.arange(self.min_resolution , self.max_resolution ) , 2 )
image_inputs.append(np.random.randint(255 , size=(self.num_channels, width, height) , dtype=np.uinta ) )
if not numpify and not torchify:
# PIL expects the channel dimension as last dimension
snake_case_ = [Image.fromarray(np.moveaxis(a__ , 0 , -1 ) ) for x in image_inputs]
if torchify:
snake_case_ = [torch.from_numpy(a__ ) for x in image_inputs]
return image_inputs
@require_torch
@require_vision
class _snake_case ( lowercase_ , unittest.TestCase ):
lowerCAmelCase_ : str = ChineseCLIPImageProcessor if is_vision_available() else None
def lowerCAmelCase__ ( self ) -> Optional[Any]:
'''simple docstring'''
snake_case_ = ChineseCLIPImageProcessingTester(self , do_center_crop=a__ )
@property
def lowerCAmelCase__ ( self ) -> Any:
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def lowerCAmelCase__ ( self ) -> str:
'''simple docstring'''
snake_case_ = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(a__ , "do_resize" ) )
self.assertTrue(hasattr(a__ , "size" ) )
self.assertTrue(hasattr(a__ , "do_center_crop" ) )
self.assertTrue(hasattr(a__ , "center_crop" ) )
self.assertTrue(hasattr(a__ , "do_normalize" ) )
self.assertTrue(hasattr(a__ , "image_mean" ) )
self.assertTrue(hasattr(a__ , "image_std" ) )
self.assertTrue(hasattr(a__ , "do_convert_rgb" ) )
def lowerCAmelCase__ ( self ) -> List[str]:
'''simple docstring'''
snake_case_ = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"height": 224, "width": 224} )
self.assertEqual(image_processor.crop_size , {"height": 18, "width": 18} )
snake_case_ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 )
self.assertEqual(image_processor.size , {"shortest_edge": 42} )
self.assertEqual(image_processor.crop_size , {"height": 84, "width": 84} )
def lowerCAmelCase__ ( self ) -> List[Any]:
'''simple docstring'''
pass
def lowerCAmelCase__ ( self ) -> Optional[Any]:
'''simple docstring'''
snake_case_ = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
snake_case_ = self.image_processor_tester.prepare_inputs(equal_resolution=a__ )
for image in image_inputs:
self.assertIsInstance(a__ , Image.Image )
# Test not batched input
snake_case_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
# Test batched
snake_case_ = image_processing(a__ , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
def lowerCAmelCase__ ( self ) -> List[Any]:
'''simple docstring'''
snake_case_ = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
snake_case_ = self.image_processor_tester.prepare_inputs(equal_resolution=a__ , numpify=a__ )
for image in image_inputs:
self.assertIsInstance(a__ , np.ndarray )
# Test not batched input
snake_case_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
# Test batched
snake_case_ = image_processing(a__ , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
def lowerCAmelCase__ ( self ) -> str:
'''simple docstring'''
snake_case_ = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
snake_case_ = self.image_processor_tester.prepare_inputs(equal_resolution=a__ , torchify=a__ )
for image in image_inputs:
self.assertIsInstance(a__ , torch.Tensor )
# Test not batched input
snake_case_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
# Test batched
snake_case_ = image_processing(a__ , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
@require_torch
@require_vision
class _snake_case ( lowercase_ , unittest.TestCase ):
lowerCAmelCase_ : List[Any] = ChineseCLIPImageProcessor if is_vision_available() else None
def lowerCAmelCase__ ( self ) -> List[Any]:
'''simple docstring'''
snake_case_ = ChineseCLIPImageProcessingTester(self , num_channels=4 , do_center_crop=a__ )
snake_case_ = 3
@property
def lowerCAmelCase__ ( self ) -> Union[str, Any]:
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def lowerCAmelCase__ ( self ) -> Dict:
'''simple docstring'''
snake_case_ = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(a__ , "do_resize" ) )
self.assertTrue(hasattr(a__ , "size" ) )
self.assertTrue(hasattr(a__ , "do_center_crop" ) )
self.assertTrue(hasattr(a__ , "center_crop" ) )
self.assertTrue(hasattr(a__ , "do_normalize" ) )
self.assertTrue(hasattr(a__ , "image_mean" ) )
self.assertTrue(hasattr(a__ , "image_std" ) )
self.assertTrue(hasattr(a__ , "do_convert_rgb" ) )
def lowerCAmelCase__ ( self ) -> int:
'''simple docstring'''
pass
def lowerCAmelCase__ ( self ) -> int:
'''simple docstring'''
snake_case_ = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
snake_case_ = self.image_processor_tester.prepare_inputs(equal_resolution=a__ )
for image in image_inputs:
self.assertIsInstance(a__ , Image.Image )
# Test not batched input
snake_case_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.expected_encoded_image_num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
# Test batched
snake_case_ = image_processing(a__ , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.expected_encoded_image_num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
| 85 |
'''simple docstring'''
from __future__ import annotations
def _SCREAMING_SNAKE_CASE (A , A ) -> list[list[int]]:
"""simple docstring"""
lowercase__ = []
create_all_state(1 , A , A , [] , A )
return result
def _SCREAMING_SNAKE_CASE (A , A , A , A , A , ) -> None:
"""simple docstring"""
if level == 0:
total_list.append(current_list[:] )
return
for i in range(A , total_number - level + 2 ):
current_list.append(A )
create_all_state(i + 1 , A , level - 1 , A , A )
current_list.pop()
def _SCREAMING_SNAKE_CASE (A ) -> None:
"""simple docstring"""
for i in total_list:
print(*A )
if __name__ == "__main__":
lowerCamelCase : Tuple = 4
lowerCamelCase : Union[str, Any] = 2
lowerCamelCase : Dict = generate_all_combinations(n, k)
print_all_state(total_list)
| 2 | 0 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
a_ = {
'configuration_rag': ['RagConfig'],
'retrieval_rag': ['RagRetriever'],
'tokenization_rag': ['RagTokenizer'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a_ = [
'RagModel',
'RagPreTrainedModel',
'RagSequenceForGeneration',
'RagTokenForGeneration',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a_ = [
'TFRagModel',
'TFRagPreTrainedModel',
'TFRagSequenceForGeneration',
'TFRagTokenForGeneration',
]
if TYPE_CHECKING:
from .configuration_rag import RagConfig
from .retrieval_rag import RagRetriever
from .tokenization_rag import RagTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_rag import RagModel, RagPreTrainedModel, RagSequenceForGeneration, RagTokenForGeneration
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_rag import (
TFRagModel,
TFRagPreTrainedModel,
TFRagSequenceForGeneration,
TFRagTokenForGeneration,
)
else:
import sys
a_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 330 |
'''simple docstring'''
import os
from itertools import chain
from random import randrange, shuffle
import pytest
from .sola import PokerHand
lowerCamelCase : Optional[Any] = (
'4S 3H 2C 7S 5H',
'9D 8H 2C 6S 7H',
'2D 6D 9D TH 7D',
'TC 8C 2S JH 6C',
'JH 8S TH AH QH',
'TS KS 5S 9S AC',
'KD 6S 9D TH AD',
'KS 8D 4D 9S 4S', # pair
'8C 4S KH JS 4D', # pair
'QH 8H KD JH 8S', # pair
'KC 4H KS 2H 8D', # pair
'KD 4S KC 3H 8S', # pair
'AH 8S AS KC JH', # pair
'3H 4C 4H 3S 2H', # 2 pairs
'5S 5D 2C KH KH', # 2 pairs
'3C KH 5D 5S KH', # 2 pairs
'AS 3C KH AD KH', # 2 pairs
'7C 7S 3S 7H 5S', # 3 of a kind
'7C 7S KH 2H 7H', # 3 of a kind
'AC KH QH AH AS', # 3 of a kind
'2H 4D 3C AS 5S', # straight (low ace)
'3C 5C 4C 2C 6H', # straight
'6S 8S 7S 5H 9H', # straight
'JS QS 9H TS KH', # straight
'QC KH TS JS AH', # straight (high ace)
'8C 9C 5C 3C TC', # flush
'3S 8S 9S 5S KS', # flush
'4C 5C 9C 8C KC', # flush
'JH 8H AH KH QH', # flush
'3D 2H 3H 2C 2D', # full house
'2H 2C 3S 3H 3D', # full house
'KH KC 3S 3H 3D', # full house
'JC 6H JS JD JH', # 4 of a kind
'JC 7H JS JD JH', # 4 of a kind
'JC KH JS JD JH', # 4 of a kind
'2S AS 4S 5S 3S', # straight flush (low ace)
'2D 6D 3D 4D 5D', # straight flush
'5C 6C 3C 7C 4C', # straight flush
'JH 9H TH KH QH', # straight flush
'JH AH TH KH QH', # royal flush (high ace straight flush)
)
lowerCamelCase : Tuple = (
('2H 3H 4H 5H 6H', 'KS AS TS QS JS', 'Loss'),
('2H 3H 4H 5H 6H', 'AS AD AC AH JD', 'Win'),
('AS AH 2H AD AC', 'JS JD JC JH 3D', 'Win'),
('2S AH 2H AS AC', 'JS JD JC JH AD', 'Loss'),
('2S AH 2H AS AC', '2H 3H 5H 6H 7H', 'Win'),
('AS 3S 4S 8S 2S', '2H 3H 5H 6H 7H', 'Win'),
('2H 3H 5H 6H 7H', '2S 3H 4H 5S 6C', 'Win'),
('2S 3H 4H 5S 6C', '3D 4C 5H 6H 2S', 'Tie'),
('2S 3H 4H 5S 6C', 'AH AC 5H 6H AS', 'Win'),
('2S 2H 4H 5S 4C', 'AH AC 5H 6H AS', 'Loss'),
('2S 2H 4H 5S 4C', 'AH AC 5H 6H 7S', 'Win'),
('6S AD 7H 4S AS', 'AH AC 5H 6H 7S', 'Loss'),
('2S AH 4H 5S KC', 'AH AC 5H 6H 7S', 'Loss'),
('2S 3H 6H 7S 9C', '7H 3C TH 6H 9S', 'Loss'),
('4S 5H 6H TS AC', '3S 5H 6H TS AC', 'Win'),
('2S AH 4H 5S 6C', 'AD 4C 5H 6H 2C', 'Tie'),
('AS AH 3H AD AC', 'AS AH 2H AD AC', 'Win'),
('AH AC 5H 5C QS', 'AH AC 5H 5C KS', 'Loss'),
('AH AC 5H 5C QS', 'KH KC 5H 5C QS', 'Win'),
('7C 7S KH 2H 7H', '3C 3S AH 2H 3H', 'Win'),
('3C 3S AH 2H 3H', '7C 7S KH 2H 7H', 'Loss'),
('6H 5H 4H 3H 2H', '5H 4H 3H 2H AH', 'Win'),
('5H 4H 3H 2H AH', '5H 4H 3H 2H AH', 'Tie'),
('5H 4H 3H 2H AH', '6H 5H 4H 3H 2H', 'Loss'),
('AH AD KS KC AC', 'AH KD KH AC KC', 'Win'),
('2H 4D 3C AS 5S', '2H 4D 3C 6S 5S', 'Loss'),
('2H 3S 3C 3H 2S', '3S 3C 2S 2H 2D', 'Win'),
('4D 6D 5D 2D JH', '3S 8S 3H TC KH', 'Loss'),
('4S 6C 8S 3S 7S', 'AD KS 2D 7D 7C', 'Loss'),
('6S 4C 7H 8C 3H', '5H JC AH 9D 9C', 'Loss'),
('9D 9H JH TC QH', '3C 2S JS 5C 7H', 'Win'),
('2H TC 8S AD 9S', '4H TS 7H 2C 5C', 'Win'),
('9D 3S 2C 7S 7C', 'JC TD 3C TC 9H', 'Loss'),
)
lowerCamelCase : Dict = (
('2H 3H 4H 5H 6H', True),
('AS AH 2H AD AC', False),
('2H 3H 5H 6H 7H', True),
('KS AS TS QS JS', True),
('8H 9H QS JS TH', False),
('AS 3S 4S 8S 2S', True),
)
lowerCamelCase : Any = (
('2H 3H 4H 5H 6H', True),
('AS AH 2H AD AC', False),
('2H 3H 5H 6H 7H', False),
('KS AS TS QS JS', True),
('8H 9H QS JS TH', True),
)
lowerCamelCase : Tuple = (
('2H 4D 3C AS 5S', True, [5, 4, 3, 2, 14]),
('2H 5D 3C AS 5S', False, [14, 5, 5, 3, 2]),
('JH QD KC AS TS', False, [14, 13, 12, 11, 10]),
('9D 3S 2C 7S 7C', False, [9, 7, 7, 3, 2]),
)
lowerCamelCase : Optional[int] = (
('JH AH TH KH QH', 0),
('JH 9H TH KH QH', 0),
('JC KH JS JD JH', 7),
('KH KC 3S 3H 3D', 6),
('8C 9C 5C 3C TC', 0),
('JS QS 9H TS KH', 0),
('7C 7S KH 2H 7H', 3),
('3C KH 5D 5S KH', 2),
('QH 8H KD JH 8S', 1),
('2D 6D 9D TH 7D', 0),
)
lowerCamelCase : Dict = (
('JH AH TH KH QH', 23),
('JH 9H TH KH QH', 22),
('JC KH JS JD JH', 21),
('KH KC 3S 3H 3D', 20),
('8C 9C 5C 3C TC', 19),
('JS QS 9H TS KH', 18),
('7C 7S KH 2H 7H', 17),
('3C KH 5D 5S KH', 16),
('QH 8H KD JH 8S', 15),
('2D 6D 9D TH 7D', 14),
)
def _SCREAMING_SNAKE_CASE () -> Union[str, Any]:
"""simple docstring"""
lowercase__ ,lowercase__ = randrange(len(A ) ), randrange(len(A ) )
lowercase__ = ['''Loss''', '''Tie''', '''Win'''][(play >= oppo) + (play > oppo)]
lowercase__ ,lowercase__ = SORTED_HANDS[play], SORTED_HANDS[oppo]
return hand, other, expected
def _SCREAMING_SNAKE_CASE (A = 100 ) -> str:
"""simple docstring"""
return (generate_random_hand() for _ in range(A ))
@pytest.mark.parametrize('''hand, expected''' , A )
def _SCREAMING_SNAKE_CASE (A , A ) -> List[str]:
"""simple docstring"""
assert PokerHand(A )._is_flush() == expected
@pytest.mark.parametrize('''hand, expected''' , A )
def _SCREAMING_SNAKE_CASE (A , A ) -> Union[str, Any]:
"""simple docstring"""
assert PokerHand(A )._is_straight() == expected
@pytest.mark.parametrize('''hand, expected, card_values''' , A )
def _SCREAMING_SNAKE_CASE (A , A , A ) -> Any:
"""simple docstring"""
lowercase__ = PokerHand(A )
assert player._is_five_high_straight() == expected
assert player._card_values == card_values
@pytest.mark.parametrize('''hand, expected''' , A )
def _SCREAMING_SNAKE_CASE (A , A ) -> Tuple:
"""simple docstring"""
assert PokerHand(A )._is_same_kind() == expected
@pytest.mark.parametrize('''hand, expected''' , A )
def _SCREAMING_SNAKE_CASE (A , A ) -> Optional[Any]:
"""simple docstring"""
assert PokerHand(A )._hand_type == expected
@pytest.mark.parametrize('''hand, other, expected''' , A )
def _SCREAMING_SNAKE_CASE (A , A , A ) -> Union[str, Any]:
"""simple docstring"""
assert PokerHand(A ).compare_with(PokerHand(A ) ) == expected
@pytest.mark.parametrize('''hand, other, expected''' , generate_random_hands() )
def _SCREAMING_SNAKE_CASE (A , A , A ) -> Optional[Any]:
"""simple docstring"""
assert PokerHand(A ).compare_with(PokerHand(A ) ) == expected
def _SCREAMING_SNAKE_CASE () -> Tuple:
"""simple docstring"""
lowercase__ = [PokerHand(A ) for hand in SORTED_HANDS]
lowercase__ = poker_hands.copy()
shuffle(A )
lowercase__ = chain(sorted(A ) )
for index, hand in enumerate(A ):
assert hand == poker_hands[index]
def _SCREAMING_SNAKE_CASE () -> List[Any]:
"""simple docstring"""
lowercase__ = [PokerHand('''2D AC 3H 4H 5S''' ), PokerHand('''2S 3H 4H 5S 6C''' )]
pokerhands.sort(reverse=A )
assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C"
def _SCREAMING_SNAKE_CASE () -> int:
"""simple docstring"""
lowercase__ = PokerHand('''2C 4S AS 3D 5C''' )
lowercase__ = True
lowercase__ = [5, 4, 3, 2, 14]
for _ in range(10 ):
assert pokerhand._is_five_high_straight() == expected
assert pokerhand._card_values == expected_card_values
def _SCREAMING_SNAKE_CASE () -> Union[str, Any]:
"""simple docstring"""
lowercase__ = 0
lowercase__ = os.path.abspath(os.path.dirname(A ) )
lowercase__ = os.path.join(A , '''poker_hands.txt''' )
with open(A ) as file_hand:
for line in file_hand:
lowercase__ = line[:14].strip()
lowercase__ = line[15:].strip()
lowercase__ ,lowercase__ = PokerHand(A ), PokerHand(A )
lowercase__ = player.compare_with(A )
if output == "Win":
answer += 1
assert answer == 376
| 2 | 0 |
import argparse
import json
import os
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
from accelerate.utils.deepspeed import DummyOptim, DummyScheduler
__A = 16
__A = 32
def lowerCamelCase_ ( UpperCamelCase__ : Tuple , UpperCamelCase__ : str = 16 , UpperCamelCase__ : Optional[Any] = "bert-base-cased" ) -> Union[str, Any]:
"""simple docstring"""
__lowerCamelCase = AutoTokenizer.from_pretrained(UpperCamelCase__ )
__lowerCamelCase = load_dataset('glue' , 'mrpc' )
def tokenize_function(UpperCamelCase__ : Union[str, Any] ):
# max_length=None => use the model max length (it's actually the default)
__lowerCamelCase = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
__lowerCamelCase = datasets.map(
UpperCamelCase__ , batched=UpperCamelCase__ , remove_columns=['idx', 'sentence1', 'sentence2'] , load_from_cache_file=UpperCamelCase__ )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
__lowerCamelCase = tokenized_datasets.rename_column('label' , 'labels' )
def collate_fn(UpperCamelCase__ : Optional[Any] ):
# On TPU it's best to pad everything to the same length or training will be very slow.
if accelerator.distributed_type == DistributedType.TPU:
return tokenizer.pad(UpperCamelCase__ , padding='max_length' , max_length=128 , return_tensors='pt' )
return tokenizer.pad(UpperCamelCase__ , padding='longest' , return_tensors='pt' )
# Instantiate dataloaders.
__lowerCamelCase = DataLoader(
tokenized_datasets['train'] , shuffle=UpperCamelCase__ , collate_fn=UpperCamelCase__ , batch_size=UpperCamelCase__ )
__lowerCamelCase = DataLoader(
tokenized_datasets['validation'] , shuffle=UpperCamelCase__ , collate_fn=UpperCamelCase__ , batch_size=UpperCamelCase__ )
return train_dataloader, eval_dataloader
def lowerCamelCase_ ( UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Dict , UpperCamelCase__ : Dict , UpperCamelCase__ : List[str] ) -> List[str]:
"""simple docstring"""
model.eval()
__lowerCamelCase = 0
for step, batch in enumerate(UpperCamelCase__ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
__lowerCamelCase = model(**UpperCamelCase__ )
__lowerCamelCase = outputs.logits.argmax(dim=-1 )
# It is slightly faster to call this once, than multiple times
__lowerCamelCase , __lowerCamelCase = accelerator.gather(
(predictions, batch['labels']) ) # If we are in a multiprocess environment, the last batch has duplicates
if accelerator.use_distributed:
if step == len(UpperCamelCase__ ) - 1:
__lowerCamelCase = predictions[: len(eval_dataloader.dataset ) - samples_seen]
__lowerCamelCase = references[: len(eval_dataloader.dataset ) - samples_seen]
else:
samples_seen += references.shape[0]
metric.add_batch(
predictions=UpperCamelCase__ , references=UpperCamelCase__ , )
__lowerCamelCase = metric.compute()
return eval_metric["accuracy"]
def lowerCamelCase_ ( UpperCamelCase__ : Optional[int] , UpperCamelCase__ : int ) -> int:
"""simple docstring"""
__lowerCamelCase = Accelerator()
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
__lowerCamelCase = config['lr']
__lowerCamelCase = int(config['num_epochs'] )
__lowerCamelCase = int(config['seed'] )
__lowerCamelCase = int(config['batch_size'] )
__lowerCamelCase = args.model_name_or_path
set_seed(UpperCamelCase__ )
__lowerCamelCase , __lowerCamelCase = get_dataloaders(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
__lowerCamelCase = AutoModelForSequenceClassification.from_pretrained(UpperCamelCase__ , return_dict=UpperCamelCase__ )
# Instantiate optimizer
__lowerCamelCase = (
AdamW
if accelerator.state.deepspeed_plugin is None
or 'optimizer' not in accelerator.state.deepspeed_plugin.deepspeed_config
else DummyOptim
)
__lowerCamelCase = optimizer_cls(params=model.parameters() , lr=UpperCamelCase__ )
if accelerator.state.deepspeed_plugin is not None:
__lowerCamelCase = accelerator.state.deepspeed_plugin.deepspeed_config[
'gradient_accumulation_steps'
]
else:
__lowerCamelCase = 1
__lowerCamelCase = (len(UpperCamelCase__ ) * num_epochs) // gradient_accumulation_steps
# Instantiate scheduler
if (
accelerator.state.deepspeed_plugin is None
or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config
):
__lowerCamelCase = get_linear_schedule_with_warmup(
optimizer=UpperCamelCase__ , num_warmup_steps=0 , num_training_steps=UpperCamelCase__ , )
else:
__lowerCamelCase = DummyScheduler(UpperCamelCase__ , total_num_steps=UpperCamelCase__ , warmup_num_steps=0 )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = accelerator.prepare(
UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
# We need to keep track of how many total steps we have iterated over
__lowerCamelCase = 0
# We also need to keep track of the stating epoch so files are named properly
__lowerCamelCase = 0
__lowerCamelCase = evaluate.load('glue' , 'mrpc' )
__lowerCamelCase = num_epochs
if args.partial_train_epoch is not None:
__lowerCamelCase = args.partial_train_epoch
if args.resume_from_checkpoint:
accelerator.load_state(args.resume_from_checkpoint )
__lowerCamelCase = args.resume_from_checkpoint.split('epoch_' )[1]
__lowerCamelCase = ''
for char in epoch_string:
if char.isdigit():
state_epoch_num += char
else:
break
__lowerCamelCase = int(UpperCamelCase__ ) + 1
__lowerCamelCase = evaluation_loop(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
accelerator.print('resumed checkpoint performance:' , UpperCamelCase__ )
accelerator.print('resumed checkpoint\'s scheduler\'s lr:' , lr_scheduler.get_lr()[0] )
accelerator.print('resumed optimizers\'s lr:' , optimizer.param_groups[0]['lr'] )
with open(os.path.join(args.output_dir , F"""state_{starting_epoch-1}.json""" ) , 'r' ) as f:
__lowerCamelCase = json.load(UpperCamelCase__ )
assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed"
assert (
resumed_state["lr"] == lr_scheduler.get_lr()[0]
), "Scheduler learning rate mismatch, loading from checkpoint failed"
assert (
resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"]
), "Optimizer learning rate mismatch, loading from checkpoint failed"
assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed"
return
# Now we train the model
__lowerCamelCase = {}
for epoch in range(UpperCamelCase__ , UpperCamelCase__ ):
model.train()
for step, batch in enumerate(UpperCamelCase__ ):
__lowerCamelCase = model(**UpperCamelCase__ )
__lowerCamelCase = outputs.loss
__lowerCamelCase = loss / gradient_accumulation_steps
accelerator.backward(UpperCamelCase__ )
if step % gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
overall_step += 1
__lowerCamelCase = F"""epoch_{epoch}"""
__lowerCamelCase = os.path.join(args.output_dir , UpperCamelCase__ )
accelerator.save_state(UpperCamelCase__ )
__lowerCamelCase = evaluation_loop(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
__lowerCamelCase = accuracy
__lowerCamelCase = lr_scheduler.get_lr()[0]
__lowerCamelCase = optimizer.param_groups[0]['lr']
__lowerCamelCase = epoch
__lowerCamelCase = overall_step
accelerator.print(F"""epoch {epoch}:""" , UpperCamelCase__ )
accelerator.wait_for_everyone()
if accelerator.is_main_process:
with open(os.path.join(args.output_dir , F"""state_{epoch}.json""" ) , 'w' ) as f:
json.dump(UpperCamelCase__ , UpperCamelCase__ )
def lowerCamelCase_ ( ) -> List[str]:
"""simple docstring"""
__lowerCamelCase = argparse.ArgumentParser(description='Simple example of training script tracking peak GPU memory usage.' )
parser.add_argument(
'--model_name_or_path' , type=UpperCamelCase__ , default='bert-base-cased' , help='Path to pretrained model or model identifier from huggingface.co/models.' , required=UpperCamelCase__ , )
parser.add_argument(
'--output_dir' , type=UpperCamelCase__ , default='.' , help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.' , )
parser.add_argument(
'--resume_from_checkpoint' , type=UpperCamelCase__ , default=UpperCamelCase__ , help='If the training should continue from a checkpoint folder.' , )
parser.add_argument(
'--partial_train_epoch' , type=UpperCamelCase__ , default=UpperCamelCase__ , help='If passed, the training will stop after this number of epochs.' , )
parser.add_argument(
'--num_epochs' , type=UpperCamelCase__ , default=2 , help='Number of train epochs.' , )
__lowerCamelCase = parser.parse_args()
__lowerCamelCase = {'lr': 2E-5, 'num_epochs': args.num_epochs, 'seed': 42, 'batch_size': 16}
training_function(UpperCamelCase__ , UpperCamelCase__ )
if __name__ == "__main__":
main()
| 90 |
'''simple docstring'''
import argparse
import torch
from transformers import BertForMaskedLM
if __name__ == "__main__":
lowerCamelCase : List[str] = argparse.ArgumentParser(
description=(
'Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned'
' Distillation'
)
)
parser.add_argument('--model_type', default='bert', choices=['bert'])
parser.add_argument('--model_name', default='bert-base-uncased', type=str)
parser.add_argument('--dump_checkpoint', default='serialization_dir/tf_bert-base-uncased_0247911.pth', type=str)
parser.add_argument('--vocab_transform', action='store_true')
lowerCamelCase : str = parser.parse_args()
if args.model_type == "bert":
lowerCamelCase : List[Any] = BertForMaskedLM.from_pretrained(args.model_name)
lowerCamelCase : Any = 'bert'
else:
raise ValueError('args.model_type should be "bert".')
lowerCamelCase : int = model.state_dict()
lowerCamelCase : int = {}
for w in ["word_embeddings", "position_embeddings"]:
lowerCamelCase : Any = state_dict[f"""{prefix}.embeddings.{w}.weight"""]
for w in ["weight", "bias"]:
lowerCamelCase : Any = state_dict[f"""{prefix}.embeddings.LayerNorm.{w}"""]
lowerCamelCase : Tuple = 0
for teacher_idx in [0, 2, 4, 7, 9, 11]:
for w in ["weight", "bias"]:
lowerCamelCase : Dict = state_dict[
f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}"""
]
lowerCamelCase : Dict = state_dict[
f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}"""
]
lowerCamelCase : List[Any] = state_dict[
f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}"""
]
lowerCamelCase : Tuple = state_dict[
f"""{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}"""
]
lowerCamelCase : Optional[int] = state_dict[
f"""{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}"""
]
lowerCamelCase : Optional[Any] = state_dict[
f"""{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}"""
]
lowerCamelCase : Dict = state_dict[
f"""{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}"""
]
lowerCamelCase : Any = state_dict[
f"""{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}"""
]
std_idx += 1
lowerCamelCase : Optional[int] = state_dict['cls.predictions.decoder.weight']
lowerCamelCase : str = state_dict['cls.predictions.bias']
if args.vocab_transform:
for w in ["weight", "bias"]:
lowerCamelCase : str = state_dict[f"""cls.predictions.transform.dense.{w}"""]
lowerCamelCase : Any = state_dict[f"""cls.predictions.transform.LayerNorm.{w}"""]
print(f"""N layers selected for distillation: {std_idx}""")
print(f"""Number of params transferred for distillation: {len(compressed_sd.keys())}""")
print(f"""Save transferred checkpoint to {args.dump_checkpoint}.""")
torch.save(compressed_sd, args.dump_checkpoint)
| 2 | 0 |
def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> int:
"""simple docstring"""
return number | (1 << position)
def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> int:
"""simple docstring"""
return number & ~(1 << position)
def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> int:
"""simple docstring"""
return number ^ (1 << position)
def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> bool:
"""simple docstring"""
return ((number >> position) & 1) == 1
def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> int:
"""simple docstring"""
return int((number & (1 << position)) != 0 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 279 |
'''simple docstring'''
from ....utils import logging
lowerCamelCase : Optional[Any] = logging.get_logger(__name__)
class __lowerCAmelCase (lowercase_ ):
'''simple docstring'''
def __init__(self : Optional[int] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Optional[Any]=None , UpperCamelCase : int=2048 ):
'''simple docstring'''
lowercase__ = config.__dict__
lowercase__ = modal_hidden_size
if num_labels:
lowercase__ = num_labels
| 2 | 0 |
'''simple docstring'''
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_mobilebert import MobileBertTokenizer
_A : Any =logging.get_logger(__name__)
_A : Any ={'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'}
_A : Union[str, Any] ={
'vocab_file': {'mobilebert-uncased': 'https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt'},
'tokenizer_file': {
'mobilebert-uncased': 'https://huggingface.co/google/mobilebert-uncased/resolve/main/tokenizer.json'
},
}
_A : Tuple ={'mobilebert-uncased': 512}
_A : int ={}
class _lowercase ( lowercase_ ):
a = VOCAB_FILES_NAMES
a = PRETRAINED_VOCAB_FILES_MAP
a = PRETRAINED_INIT_CONFIGURATION
a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
a = MobileBertTokenizer
def __init__( self: Optional[int] , UpperCamelCase__: Dict=None , UpperCamelCase__: Tuple=None , UpperCamelCase__: Tuple=True , UpperCamelCase__: Union[str, Any]="[UNK]" , UpperCamelCase__: Any="[SEP]" , UpperCamelCase__: str="[PAD]" , UpperCamelCase__: Optional[int]="[CLS]" , UpperCamelCase__: str="[MASK]" , UpperCamelCase__: Tuple=True , UpperCamelCase__: List[str]=None , **UpperCamelCase__: List[str] , ):
super().__init__(
UpperCamelCase__ , tokenizer_file=UpperCamelCase__ , do_lower_case=UpperCamelCase__ , unk_token=UpperCamelCase__ , sep_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , cls_token=UpperCamelCase__ , mask_token=UpperCamelCase__ , tokenize_chinese_chars=UpperCamelCase__ , strip_accents=UpperCamelCase__ , **UpperCamelCase__ , )
lowerCamelCase__ : str = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get("""lowercase""" , UpperCamelCase__ ) != do_lower_case
or normalizer_state.get("""strip_accents""" , UpperCamelCase__ ) != strip_accents
or normalizer_state.get("""handle_chinese_chars""" , UpperCamelCase__ ) != tokenize_chinese_chars
):
lowerCamelCase__ : str = getattr(UpperCamelCase__ , normalizer_state.pop("""type""" ) )
lowerCamelCase__ : Dict = do_lower_case
lowerCamelCase__ : List[Any] = strip_accents
lowerCamelCase__ : int = tokenize_chinese_chars
lowerCamelCase__ : Optional[int] = normalizer_class(**UpperCamelCase__ )
lowerCamelCase__ : Dict = do_lower_case
def lowerCamelCase_ ( self: str , UpperCamelCase__: Tuple , UpperCamelCase__: Any=None ):
lowerCamelCase__ : Optional[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def lowerCamelCase_ ( self: Any , UpperCamelCase__: List[int] , UpperCamelCase__: Optional[List[int]] = None ):
lowerCamelCase__ : str = [self.sep_token_id]
lowerCamelCase__ : Union[str, Any] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def lowerCamelCase_ ( self: int , UpperCamelCase__: str , UpperCamelCase__: Optional[str] = None ):
lowerCamelCase__ : Dict = self._tokenizer.model.save(UpperCamelCase__ , name=UpperCamelCase__ )
return tuple(UpperCamelCase__ )
| 41 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCamelCase : Tuple = logging.get_logger(__name__)
lowerCamelCase : Dict = {
'microsoft/cvt-13': 'https://huggingface.co/microsoft/cvt-13/resolve/main/config.json',
# See all Cvt models at https://huggingface.co/models?filter=cvt
}
class __lowerCAmelCase (lowercase_ ):
'''simple docstring'''
lowerCAmelCase__ : Tuple = """cvt"""
def __init__(self : int , UpperCamelCase : List[Any]=3 , UpperCamelCase : int=[7, 3, 3] , UpperCamelCase : str=[4, 2, 2] , UpperCamelCase : Dict=[2, 1, 1] , UpperCamelCase : Dict=[64, 192, 384] , UpperCamelCase : Dict=[1, 3, 6] , UpperCamelCase : Dict=[1, 2, 10] , UpperCamelCase : Any=[4.0, 4.0, 4.0] , UpperCamelCase : Optional[int]=[0.0, 0.0, 0.0] , UpperCamelCase : Optional[int]=[0.0, 0.0, 0.0] , UpperCamelCase : int=[0.0, 0.0, 0.1] , UpperCamelCase : Any=[True, True, True] , UpperCamelCase : int=[False, False, True] , UpperCamelCase : Union[str, Any]=["dw_bn", "dw_bn", "dw_bn"] , UpperCamelCase : Optional[int]=[3, 3, 3] , UpperCamelCase : Tuple=[1, 1, 1] , UpperCamelCase : Any=[2, 2, 2] , UpperCamelCase : Dict=[1, 1, 1] , UpperCamelCase : List[str]=[1, 1, 1] , UpperCamelCase : str=0.02 , UpperCamelCase : int=1E-12 , **UpperCamelCase : Union[str, Any] , ):
'''simple docstring'''
super().__init__(**UpperCamelCase )
lowercase__ = num_channels
lowercase__ = patch_sizes
lowercase__ = patch_stride
lowercase__ = patch_padding
lowercase__ = embed_dim
lowercase__ = num_heads
lowercase__ = depth
lowercase__ = mlp_ratio
lowercase__ = attention_drop_rate
lowercase__ = drop_rate
lowercase__ = drop_path_rate
lowercase__ = qkv_bias
lowercase__ = cls_token
lowercase__ = qkv_projection_method
lowercase__ = kernel_qkv
lowercase__ = padding_kv
lowercase__ = stride_kv
lowercase__ = padding_q
lowercase__ = stride_q
lowercase__ = initializer_range
lowercase__ = layer_norm_eps
| 2 | 0 |
'''simple docstring'''
import argparse
import requests
import torch
# pip3 install salesforce-lavis
# I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis_float32 (there's also the fix_lavis branch)
# also note: to convert Vicuna checkpoints, we had to include /home/niels/python_projects/checkpoints/FastChat/vicuna-7b in lavis/configs/models/blip2/blip2_instruct_vicuna7b.yaml
# same for Vicuna-13b
from lavis.models import load_model_and_preprocess
from PIL import Image
from transformers import (
AutoTokenizer,
BlipImageProcessor,
InstructBlipConfig,
InstructBlipForConditionalGeneration,
InstructBlipProcessor,
InstructBlipQFormerConfig,
InstructBlipVisionConfig,
LlamaConfig,
LlamaTokenizerFast,
TaConfig,
TaTokenizerFast,
)
from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD
def lowerCAmelCase_ ( ):
'''simple docstring'''
A : Dict = '''https://raw.githubusercontent.com/salesforce/LAVIS/main/docs/_static/Confusing-Pictures.jpg'''
A : str = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ).convert('''RGB''' )
return image
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
A : List[Any] = []
# fmt: off
# vision encoder
rename_keys.append(('''visual_encoder.cls_token''', '''vision_model.embeddings.class_embedding''') )
rename_keys.append(('''visual_encoder.pos_embed''', '''vision_model.embeddings.position_embedding''') )
rename_keys.append(('''visual_encoder.patch_embed.proj.weight''', '''vision_model.embeddings.patch_embedding.weight''') )
rename_keys.append(('''visual_encoder.patch_embed.proj.bias''', '''vision_model.embeddings.patch_embedding.bias''') )
rename_keys.append(('''ln_vision.weight''', '''vision_model.post_layernorm.weight''') )
rename_keys.append(('''ln_vision.bias''', '''vision_model.post_layernorm.bias''') )
for i in range(config.vision_config.num_hidden_layers ):
rename_keys.append((F'visual_encoder.blocks.{i}.norm1.weight', F'vision_model.encoder.layers.{i}.layer_norm1.weight') )
rename_keys.append((F'visual_encoder.blocks.{i}.norm1.bias', F'vision_model.encoder.layers.{i}.layer_norm1.bias') )
rename_keys.append((F'visual_encoder.blocks.{i}.norm2.weight', F'vision_model.encoder.layers.{i}.layer_norm2.weight') )
rename_keys.append((F'visual_encoder.blocks.{i}.norm2.bias', F'vision_model.encoder.layers.{i}.layer_norm2.bias') )
rename_keys.append((F'visual_encoder.blocks.{i}.attn.qkv.weight', F'vision_model.encoder.layers.{i}.self_attn.qkv.weight') )
rename_keys.append((F'visual_encoder.blocks.{i}.attn.proj.weight', F'vision_model.encoder.layers.{i}.self_attn.projection.weight',) )
rename_keys.append((F'visual_encoder.blocks.{i}.attn.proj.bias', F'vision_model.encoder.layers.{i}.self_attn.projection.bias') )
rename_keys.append((F'visual_encoder.blocks.{i}.mlp.fc1.weight', F'vision_model.encoder.layers.{i}.mlp.fc1.weight') )
rename_keys.append((F'visual_encoder.blocks.{i}.mlp.fc1.bias', F'vision_model.encoder.layers.{i}.mlp.fc1.bias') )
rename_keys.append((F'visual_encoder.blocks.{i}.mlp.fc2.weight', F'vision_model.encoder.layers.{i}.mlp.fc2.weight') )
rename_keys.append((F'visual_encoder.blocks.{i}.mlp.fc2.bias', F'vision_model.encoder.layers.{i}.mlp.fc2.bias') )
# QFormer
rename_keys.append(('''Qformer.bert.embeddings.LayerNorm.weight''', '''qformer.embeddings.layernorm.weight''') )
rename_keys.append(('''Qformer.bert.embeddings.LayerNorm.bias''', '''qformer.embeddings.layernorm.bias''') )
# fmt: on
return rename_keys
def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ ):
'''simple docstring'''
A : Dict = dct.pop(snake_case__ )
A : Union[str, Any] = val
def lowerCAmelCase_ ( snake_case__ , snake_case__ ):
'''simple docstring'''
for i in range(config.vision_config.num_hidden_layers ):
# read in original q and v biases
A : Optional[Any] = state_dict.pop(F'visual_encoder.blocks.{i}.attn.q_bias' )
A : Union[str, Any] = state_dict.pop(F'visual_encoder.blocks.{i}.attn.v_bias' )
# next, set bias in the state dict
A : Dict = torch.cat((q_bias, torch.zeros_like(snake_case__ , requires_grad=snake_case__ ), v_bias) )
A : str = qkv_bias
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
A : int = 364 if '''coco''' in model_name else 224
A : List[str] = InstructBlipVisionConfig(image_size=snake_case__ ).to_dict()
# make sure the models have proper bos_token_id and eos_token_id set (important for generation)
# seems like flan-T5 models don't have bos_token_id properly set?
if "t5-xl" in model_name:
A : int = TaConfig.from_pretrained('''google/flan-t5-xl''' , dense_act_fn='''gelu''' , bos_token_id=1 ).to_dict()
elif "t5-xxl" in model_name:
A : Optional[Any] = TaConfig.from_pretrained('''google/flan-t5-xxl''' , dense_act_fn='''gelu''' , bos_token_id=1 ).to_dict()
elif "vicuna-7b" in model_name:
A : str = LlamaConfig.from_pretrained('''decapoda-research/llama-7b-hf''' , vocab_size=3_2001 ).to_dict()
elif "vicuna-13b" in model_name:
A : Tuple = LlamaConfig.from_pretrained('''decapoda-research/llama-13b-hf''' , vocab_size=3_2001 ).to_dict()
else:
raise ValueError('''Model name not supported''' )
# the authors add one special "[DEC]" token to the vocab of Q-Former, hence vocab size = 30522 + 1
A : int = InstructBlipQFormerConfig(vocab_size=3_0523 ).to_dict()
A : Optional[int] = InstructBlipConfig(vision_config=snake_case__ , text_config=snake_case__ , qformer_config=snake_case__ )
return config, image_size
@torch.no_grad()
def lowerCAmelCase_ ( snake_case__ , snake_case__=None , snake_case__=False ):
'''simple docstring'''
A : Optional[int] = AutoTokenizer.from_pretrained('''bert-base-uncased''' , truncation_side='''left''' )
qformer_tokenizer.add_special_tokens({'''bos_token''': '''[DEC]'''} )
if "t5" in model_name:
A : Dict = TaTokenizerFast.from_pretrained('''google/flan-t5-xl''' , truncation_side='''left''' )
elif "vicuna" in model_name:
# the following was used in the original implementation:
# tokenizer = LlamaTokenizer.from_pretrained("huggyllama/llama-7b", use_fast=False, truncation_side="left")
# tokenizer.add_special_tokens({"pad_token": "[PAD]"})
# tokenizer.add_special_tokens({"bos_token": "</s>"})
# tokenizer.add_special_tokens({"eos_token": "</s>"})
# tokenizer.add_special_tokens({"unk_token": "</s>"})
A : Optional[int] = LlamaTokenizerFast.from_pretrained(
'''huggyllama/llama-7b''' , truncation_side='''left''' , bos_token='''</s>''' , unk_token='''</s>''' )
tokenizer.add_special_tokens({'''pad_token''': '''[PAD]'''} )
A, A : Optional[Any] = get_blipa_config(snake_case__ )
A : List[str] = InstructBlipForConditionalGeneration(snake_case__ ).eval()
A : str = {
'''instructblip-vicuna-7b''': ('''blip2_vicuna_instruct''', '''vicuna7b'''),
'''instructblip-vicuna-13b''': ('''blip2_vicuna_instruct''', '''vicuna13b'''),
'''instructblip-flan-t5-xl''': ('''blip2_t5_instruct''', '''flant5xl'''),
'''instructblip-flan-t5-xxl''': ('''blip2_t5_instruct''', '''flant5xxl'''),
}
A, A : List[str] = model_name_to_original[model_name]
# load original model
print('''Loading original model...''' )
A : List[Any] = '''cuda:1''' if torch.cuda.is_available() else '''cpu'''
A : int = '''cuda:2''' if torch.cuda.is_available() else '''cpu'''
A, A, A : List[str] = load_model_and_preprocess(
name=snake_case__ , model_type=snake_case__ , is_eval=snake_case__ , device=snake_case__ )
original_model.eval()
print('''Done!''' )
# update state dict keys
A : Tuple = original_model.state_dict()
A : Tuple = create_rename_keys(snake_case__ )
for src, dest in rename_keys:
rename_key(snake_case__ , snake_case__ , snake_case__ )
# some keys can be renamed efficiently
for key, val in state_dict.copy().items():
A : int = state_dict.pop(snake_case__ )
if key.startswith('''Qformer.bert''' ):
A : List[Any] = key.replace('''Qformer.bert''' , '''qformer''' )
if "attention.self" in key:
A : Optional[Any] = key.replace('''self''' , '''attention''' )
if "llm_proj" in key:
A : Union[str, Any] = key.replace('''llm_proj''' , '''language_projection''' )
if "t5_proj" in key:
A : int = key.replace('''t5_proj''' , '''language_projection''' )
if key.startswith('''llm_model''' ):
A : Any = key.replace('''llm_model''' , '''language_model''' )
if key.startswith('''t5''' ):
A : int = key.replace('''t5''' , '''language''' )
A : Any = val
# read in qv biases
read_in_q_v_bias(snake_case__ , snake_case__ )
# note: weights get loaded in torch.float32 by default
hf_model.load_state_dict(snake_case__ , strict=snake_case__ )
A : Optional[Any] = load_demo_image()
A : int = '''What is unusual about this image?'''
# create processor
A : Dict = BlipImageProcessor(
size={'''height''': image_size, '''width''': image_size} , image_mean=snake_case__ , image_std=snake_case__ )
A : Union[str, Any] = InstructBlipProcessor(
image_processor=snake_case__ , tokenizer=snake_case__ , qformer_tokenizer=snake_case__ , )
A : str = processor(images=snake_case__ , text=snake_case__ , return_tensors='''pt''' ).to(snake_case__ )
# make sure processor creates exact same pixel values
A : List[str] = vis_processors['''eval'''](snake_case__ ).unsqueeze(0 ).to(snake_case__ )
A : List[str] = inputs.pixel_values
assert torch.allclose(original_pixel_values.to(pixel_values.device ) , snake_case__ )
original_model.to(snake_case__ )
hf_model.to(snake_case__ )
with torch.no_grad():
if "vicuna" in model_name:
A : Tuple = original_model({'''image''': original_pixel_values, '''text_input''': [prompt]} ).logits
A : List[Any] = hf_model(**snake_case__ ).logits
else:
A : List[Any] = original_model(
{'''image''': original_pixel_values, '''text_input''': [prompt], '''text_output''': ['''\n''']} ).logits
A : Tuple = tokenizer('''\n''' , return_tensors='''pt''' ).input_ids.to(snake_case__ )
A : Union[str, Any] = label_input_ids.masked_fill(label_input_ids == tokenizer.pad_token_id , -100 )
A : List[str] = hf_model(**snake_case__ , labels=snake_case__ ).logits
print('''First values of original logits:''' , original_logits[0, :3, :3] )
print('''First values of HF logits:''' , logits[0, :3, :3] )
# assert values
assert original_logits.shape == logits.shape
A : Optional[Any] = 1E-4 if '''vicuna''' in model_name else 1E-5
assert torch.allclose(original_logits.to(logits.device ) , snake_case__ , atol=snake_case__ )
print('''Looks ok!''' )
print('''Generating with original model...''' )
A : Any = original_model.generate({'''image''': original_pixel_values, '''prompt''': prompt} , num_beams=5 )
# important: we need to cast the weights of the HF model to the appropriate type
print('''Generating with HF model...''' )
A : str = hf_model.generate(
**snake_case__ , do_sample=snake_case__ , num_beams=5 , max_length=256 , min_length=1 , top_p=0.9 , repetition_penalty=1.5 , length_penalty=1.0 , temperature=1 , )
if "vicuna" in model_name:
# convert output id 0 to 2 (eos_token_id)
# TODO add this in the generate method?
A : Optional[int] = 2
print('''Original generation:''' , snake_case__ )
A : int = processor.batch_decode(snake_case__ , skip_special_tokens=snake_case__ )
A : Optional[Any] = [text.strip() for text in output_text]
print('''HF generation:''' , snake_case__ )
if pytorch_dump_folder_path is not None:
processor.save_pretrained(snake_case__ )
hf_model.save_pretrained(snake_case__ )
if push_to_hub:
processor.push_to_hub(F'Salesforce/{model_name}' )
hf_model.push_to_hub(F'Salesforce/{model_name}' )
if __name__ == "__main__":
lowercase : List[Any] = argparse.ArgumentParser()
lowercase : Dict = [
'instructblip-vicuna-7b',
'instructblip-vicuna-13b',
'instructblip-flan-t5-xl',
'instructblip-flan-t5-xxl',
]
parser.add_argument(
'--model_name',
default='instructblip-flan-t5-xl',
choices=choices,
type=str,
help='Path to hf config.json of model to convert',
)
parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
parser.add_argument(
'--push_to_hub',
action='store_true',
help='Whether to push the model and processor to the hub after converting',
)
lowercase : Union[str, Any] = parser.parse_args()
convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 3 |
'''simple docstring'''
import numpy as np
# Importing the Keras libraries and packages
import tensorflow as tf
from tensorflow.keras import layers, models
if __name__ == "__main__":
# Initialising the CNN
# (Sequential- Building the model layer by layer)
lowerCamelCase : Any = models.Sequential()
# Step 1 - Convolution
# Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel
# (3,3) is the kernel size (filter matrix)
classifier.add(
layers.ConvaD(32, (3, 3), input_shape=(64, 64, 3), activation='relu')
)
# Step 2 - Pooling
classifier.add(layers.MaxPoolingaD(pool_size=(2, 2)))
# Adding a second convolutional layer
classifier.add(layers.ConvaD(32, (3, 3), activation='relu'))
classifier.add(layers.MaxPoolingaD(pool_size=(2, 2)))
# Step 3 - Flattening
classifier.add(layers.Flatten())
# Step 4 - Full connection
classifier.add(layers.Dense(units=128, activation='relu'))
classifier.add(layers.Dense(units=1, activation='sigmoid'))
# Compiling the CNN
classifier.compile(
optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']
)
# Part 2 - Fitting the CNN to the images
# Load Trained model weights
# from keras.models import load_model
# regressor=load_model('cnn.h5')
lowerCamelCase : Optional[Any] = tf.keras.preprocessing.image.ImageDataGenerator(
rescale=1.0 / 255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True
)
lowerCamelCase : Any = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 255)
lowerCamelCase : List[Any] = train_datagen.flow_from_directory(
'dataset/training_set', target_size=(64, 64), batch_size=32, class_mode='binary'
)
lowerCamelCase : List[str] = test_datagen.flow_from_directory(
'dataset/test_set', target_size=(64, 64), batch_size=32, class_mode='binary'
)
classifier.fit_generator(
training_set, steps_per_epoch=5, epochs=30, validation_data=test_set
)
classifier.save('cnn.h5')
# Part 3 - Making new predictions
lowerCamelCase : List[str] = tf.keras.preprocessing.image.load_img(
'dataset/single_prediction/image.png', target_size=(64, 64)
)
lowerCamelCase : Optional[int] = tf.keras.preprocessing.image.img_to_array(test_image)
lowerCamelCase : str = np.expand_dims(test_image, axis=0)
lowerCamelCase : List[str] = classifier.predict(test_image)
# training_set.class_indices
if result[0][0] == 0:
lowerCamelCase : Any = 'Normal'
if result[0][0] == 1:
lowerCamelCase : Any = 'Abnormality detected'
| 2 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
A ={
'configuration_longformer': [
'LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP',
'LongformerConfig',
'LongformerOnnxConfig',
],
'tokenization_longformer': ['LongformerTokenizer'],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A =['LongformerTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A =[
'LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST',
'LongformerForMaskedLM',
'LongformerForMultipleChoice',
'LongformerForQuestionAnswering',
'LongformerForSequenceClassification',
'LongformerForTokenClassification',
'LongformerModel',
'LongformerPreTrainedModel',
'LongformerSelfAttention',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A =[
'TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFLongformerForMaskedLM',
'TFLongformerForMultipleChoice',
'TFLongformerForQuestionAnswering',
'TFLongformerForSequenceClassification',
'TFLongformerForTokenClassification',
'TFLongformerModel',
'TFLongformerPreTrainedModel',
'TFLongformerSelfAttention',
]
if TYPE_CHECKING:
from .configuration_longformer import (
LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
LongformerConfig,
LongformerOnnxConfig,
)
from .tokenization_longformer import LongformerTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_longformer_fast import LongformerTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_longformer import (
LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
LongformerForMaskedLM,
LongformerForMultipleChoice,
LongformerForQuestionAnswering,
LongformerForSequenceClassification,
LongformerForTokenClassification,
LongformerModel,
LongformerPreTrainedModel,
LongformerSelfAttention,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_longformer import (
TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
TFLongformerForMaskedLM,
TFLongformerForMultipleChoice,
TFLongformerForQuestionAnswering,
TFLongformerForSequenceClassification,
TFLongformerForTokenClassification,
TFLongformerModel,
TFLongformerPreTrainedModel,
TFLongformerSelfAttention,
)
else:
import sys
A =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 34 |
'''simple docstring'''
class __lowerCAmelCase : # Public class to implement a graph
'''simple docstring'''
def __init__(self : int , UpperCamelCase : int , UpperCamelCase : int , UpperCamelCase : list[list[bool]] ):
'''simple docstring'''
lowercase__ = row
lowercase__ = col
lowercase__ = graph
def UpperCamelCase__ (self : Optional[int] , UpperCamelCase : int , UpperCamelCase : int , UpperCamelCase : list[list[bool]] ):
'''simple docstring'''
return (
0 <= i < self.ROW
and 0 <= j < self.COL
and not visited[i][j]
and self.graph[i][j]
)
def UpperCamelCase__ (self : int , UpperCamelCase : int , UpperCamelCase : int , UpperCamelCase : list[list[bool]] ):
'''simple docstring'''
lowercase__ = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order
lowercase__ = [-1, 0, 1, -1, 1, -1, 0, 1]
lowercase__ = True # Make those cells visited
for k in range(8 ):
if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , UpperCamelCase ):
self.diffs(i + row_nbr[k] , j + col_nbr[k] , UpperCamelCase )
def UpperCamelCase__ (self : Dict ): # And finally, count all islands.
'''simple docstring'''
lowercase__ = [[False for j in range(self.COL )] for i in range(self.ROW )]
lowercase__ = 0
for i in range(self.ROW ):
for j in range(self.COL ):
if visited[i][j] is False and self.graph[i][j] == 1:
self.diffs(UpperCamelCase , UpperCamelCase , UpperCamelCase )
count += 1
return count
| 2 | 0 |
'''simple docstring'''
import warnings
from collections import OrderedDict
from typing import Any, Mapping, Optional
from ... import PreTrainedTokenizer
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast
from ...onnx.utils import compute_effective_axis_dimension
from ...utils import TensorType, is_torch_available, logging
UpperCAmelCase = logging.get_logger(__name__)
UpperCAmelCase = {
'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/config.json',
# See all BART models at https://huggingface.co/models?filter=bart
}
class lowerCAmelCase ( lowercase_ ):
lowerCAmelCase_ = """bart"""
lowerCAmelCase_ = ["""past_key_values"""]
lowerCAmelCase_ = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""}
def __init__( self : Any , __lowercase : List[str]=50265 , __lowercase : Optional[Any]=1024 , __lowercase : Any=12 , __lowercase : Dict=4096 , __lowercase : Any=16 , __lowercase : Tuple=12 , __lowercase : Dict=4096 , __lowercase : int=16 , __lowercase : Union[str, Any]=0.0 , __lowercase : Optional[int]=0.0 , __lowercase : str="gelu" , __lowercase : Tuple=1024 , __lowercase : int=0.1 , __lowercase : Optional[int]=0.0 , __lowercase : Optional[int]=0.0 , __lowercase : Dict=0.0_2 , __lowercase : List[str]=0.0 , __lowercase : int=False , __lowercase : List[str]=True , __lowercase : Dict=3 , __lowercase : Optional[Any]=1 , __lowercase : str=0 , __lowercase : List[Any]=2 , __lowercase : int=True , __lowercase : Any=2 , __lowercase : Optional[int]=2 , **__lowercase : Union[str, Any] , ):
"""simple docstring"""
__lowercase =vocab_size
__lowercase =max_position_embeddings
__lowercase =d_model
__lowercase =encoder_ffn_dim
__lowercase =encoder_layers
__lowercase =encoder_attention_heads
__lowercase =decoder_ffn_dim
__lowercase =decoder_layers
__lowercase =decoder_attention_heads
__lowercase =dropout
__lowercase =attention_dropout
__lowercase =activation_dropout
__lowercase =activation_function
__lowercase =init_std
__lowercase =encoder_layerdrop
__lowercase =decoder_layerdrop
__lowercase =classifier_dropout
__lowercase =use_cache
__lowercase =encoder_layers
__lowercase =scale_embedding # scale factor will be sqrt(d_model) if True
super().__init__(
num_labels=__lowercase , pad_token_id=__lowercase , bos_token_id=__lowercase , eos_token_id=__lowercase , is_encoder_decoder=__lowercase , decoder_start_token_id=__lowercase , forced_eos_token_id=__lowercase , **__lowercase , )
# ensure backward compatibility for BART CNN models
if self.forced_bos_token_id is None and kwargs.get('force_bos_token_to_be_generated' , __lowercase ):
__lowercase =self.bos_token_id
warnings.warn(
f'''Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. '''
'The config can simply be saved and uploaded again to be fixed.' )
class lowerCAmelCase ( lowercase_ ):
@property
def snake_case ( self : Union[str, Any] ):
"""simple docstring"""
if self.task in ["default", "seq2seq-lm"]:
__lowercase =OrderedDict(
[
('input_ids', {0: 'batch', 1: 'encoder_sequence'}),
('attention_mask', {0: 'batch', 1: 'encoder_sequence'}),
] )
if self.use_past:
__lowercase ={0: 'batch'}
__lowercase ={0: 'batch', 1: 'past_decoder_sequence + sequence'}
else:
__lowercase ={0: 'batch', 1: 'decoder_sequence'}
__lowercase ={0: 'batch', 1: 'decoder_sequence'}
if self.use_past:
self.fill_with_past_key_values_(__lowercase , direction='inputs' )
elif self.task == "causal-lm":
# TODO: figure this case out.
__lowercase =OrderedDict(
[
('input_ids', {0: 'batch', 1: 'encoder_sequence'}),
('attention_mask', {0: 'batch', 1: 'encoder_sequence'}),
] )
if self.use_past:
__lowercase , __lowercase =self.num_layers
for i in range(__lowercase ):
__lowercase ={0: 'batch', 2: 'past_sequence + sequence'}
__lowercase ={0: 'batch', 2: 'past_sequence + sequence'}
else:
__lowercase =OrderedDict(
[
('input_ids', {0: 'batch', 1: 'encoder_sequence'}),
('attention_mask', {0: 'batch', 1: 'encoder_sequence'}),
('decoder_input_ids', {0: 'batch', 1: 'decoder_sequence'}),
('decoder_attention_mask', {0: 'batch', 1: 'decoder_sequence'}),
] )
return common_inputs
@property
def snake_case ( self : Any ):
"""simple docstring"""
if self.task in ["default", "seq2seq-lm"]:
__lowercase =super().outputs
else:
__lowercase =super(__lowercase , self ).outputs
if self.use_past:
__lowercase , __lowercase =self.num_layers
for i in range(__lowercase ):
__lowercase ={0: 'batch', 2: 'past_sequence + sequence'}
__lowercase ={0: 'batch', 2: 'past_sequence + sequence'}
return common_outputs
def snake_case ( self : int , __lowercase : PreTrainedTokenizer , __lowercase : int = -1 , __lowercase : int = -1 , __lowercase : bool = False , __lowercase : Optional[TensorType] = None , ):
"""simple docstring"""
__lowercase =self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
__lowercase , __lowercase , __lowercase , __lowercase , __lowercase )
# Generate decoder inputs
__lowercase =seq_length if not self.use_past else 1
__lowercase =self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
__lowercase , __lowercase , __lowercase , __lowercase , __lowercase )
__lowercase ={f'''decoder_{name}''': tensor for name, tensor in decoder_inputs.items()}
__lowercase =dict(**__lowercase , **__lowercase )
if self.use_past:
if not is_torch_available():
raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' )
else:
import torch
__lowercase , __lowercase =common_inputs['input_ids'].shape
__lowercase =common_inputs['decoder_input_ids'].shape[1]
__lowercase , __lowercase =self.num_attention_heads
__lowercase =(
batch,
num_encoder_attention_heads,
encoder_seq_length,
self._config.hidden_size // num_encoder_attention_heads,
)
__lowercase =decoder_seq_length + 3
__lowercase =(
batch,
num_decoder_attention_heads,
decoder_past_length,
self._config.hidden_size // num_decoder_attention_heads,
)
__lowercase =torch.cat(
[common_inputs['decoder_attention_mask'], torch.ones(__lowercase , __lowercase )] , dim=1 )
__lowercase =[]
# If the number of encoder and decoder layers are present in the model configuration, both are considered
__lowercase , __lowercase =self.num_layers
__lowercase =min(__lowercase , __lowercase )
__lowercase =max(__lowercase , __lowercase ) - min_num_layers
__lowercase ='encoder' if num_encoder_layers > num_decoder_layers else 'decoder'
for _ in range(__lowercase ):
common_inputs["past_key_values"].append(
(
torch.zeros(__lowercase ),
torch.zeros(__lowercase ),
torch.zeros(__lowercase ),
torch.zeros(__lowercase ),
) )
# TODO: test this.
__lowercase =encoder_shape if remaining_side_name == 'encoder' else decoder_shape
for _ in range(__lowercase , __lowercase ):
common_inputs["past_key_values"].append((torch.zeros(__lowercase ), torch.zeros(__lowercase )) )
return common_inputs
def snake_case ( self : int , __lowercase : PreTrainedTokenizer , __lowercase : int = -1 , __lowercase : int = -1 , __lowercase : bool = False , __lowercase : Optional[TensorType] = None , ):
"""simple docstring"""
__lowercase =self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
__lowercase , __lowercase , __lowercase , __lowercase , __lowercase )
if self.use_past:
if not is_torch_available():
raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' )
else:
import torch
__lowercase , __lowercase =common_inputs['input_ids'].shape
# Not using the same length for past_key_values
__lowercase =seqlen + 2
__lowercase , __lowercase =self.num_layers
__lowercase , __lowercase =self.num_attention_heads
__lowercase =(
batch,
num_encoder_attention_heads,
past_key_values_length,
self._config.hidden_size // num_encoder_attention_heads,
)
__lowercase =common_inputs['attention_mask'].dtype
__lowercase =torch.cat(
[common_inputs['attention_mask'], torch.ones(__lowercase , __lowercase , dtype=__lowercase )] , dim=1 )
__lowercase =[
(torch.zeros(__lowercase ), torch.zeros(__lowercase )) for _ in range(__lowercase )
]
return common_inputs
def snake_case ( self : Union[str, Any] , __lowercase : PreTrainedTokenizer , __lowercase : int = -1 , __lowercase : int = -1 , __lowercase : bool = False , __lowercase : Optional[TensorType] = None , ):
"""simple docstring"""
__lowercase =compute_effective_axis_dimension(
__lowercase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 )
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
__lowercase =tokenizer.num_special_tokens_to_add(__lowercase )
__lowercase =compute_effective_axis_dimension(
__lowercase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__lowercase )
# Generate dummy inputs according to compute batch and sequence
__lowercase =[' '.join([tokenizer.unk_token] ) * seq_length] * batch_size
__lowercase =dict(tokenizer(__lowercase , return_tensors=__lowercase ) )
return common_inputs
def snake_case ( self : int , __lowercase : PreTrainedTokenizer , __lowercase : int = -1 , __lowercase : int = -1 , __lowercase : bool = False , __lowercase : Optional[TensorType] = None , ):
"""simple docstring"""
if self.task in ["default", "seq2seq-lm"]:
__lowercase =self._generate_dummy_inputs_for_default_and_seqaseq_lm(
__lowercase , batch_size=__lowercase , seq_length=__lowercase , is_pair=__lowercase , framework=__lowercase )
elif self.task == "causal-lm":
__lowercase =self._generate_dummy_inputs_for_causal_lm(
__lowercase , batch_size=__lowercase , seq_length=__lowercase , is_pair=__lowercase , framework=__lowercase )
else:
__lowercase =self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
__lowercase , batch_size=__lowercase , seq_length=__lowercase , is_pair=__lowercase , framework=__lowercase )
return common_inputs
def snake_case ( self : Tuple , __lowercase : Tuple , __lowercase : Tuple , __lowercase : int , __lowercase : str ):
"""simple docstring"""
if self.task in ["default", "seq2seq-lm"]:
__lowercase =super()._flatten_past_key_values_(__lowercase , __lowercase , __lowercase , __lowercase )
else:
__lowercase =super(__lowercase , self )._flatten_past_key_values_(
__lowercase , __lowercase , __lowercase , __lowercase )
| 141 |
'''simple docstring'''
import unittest
from transformers import DonutProcessor
lowerCamelCase : Tuple = 'naver-clova-ix/donut-base'
class __lowerCAmelCase (unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase__ (self : int ):
'''simple docstring'''
lowercase__ = DonutProcessor.from_pretrained(UpperCamelCase )
def UpperCamelCase__ (self : Tuple ):
'''simple docstring'''
lowercase__ = {
'''name''': '''John Doe''',
'''age''': '''99''',
'''city''': '''Atlanta''',
'''state''': '''GA''',
'''zip''': '''30301''',
'''phone''': '''123-4567''',
'''nicknames''': [{'''nickname''': '''Johnny'''}, {'''nickname''': '''JD'''}],
}
lowercase__ = (
'''<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>'''
'''<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>'''
'''<s_nicknames><s_nickname>Johnny</s_nickname>'''
'''<sep/><s_nickname>JD</s_nickname></s_nicknames>'''
)
lowercase__ = self.processor.tokenajson(UpperCamelCase )
self.assertDictEqual(UpperCamelCase , UpperCamelCase )
| 2 | 0 |
import gc
import random
import unittest
import numpy as np
import torch
from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel
from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline
from diffusers.pipelines.shap_e import ShapERenderer
from diffusers.utils import floats_tensor, load_image, load_numpy, slow
from diffusers.utils.testing_utils import require_torch_gpu, torch_device
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
class lowerCamelCase__ ( lowercase_ , unittest.TestCase):
'''simple docstring'''
snake_case_ =ShapEImgaImgPipeline
snake_case_ =["""image"""]
snake_case_ =["""image"""]
snake_case_ =[
"""num_images_per_prompt""",
"""num_inference_steps""",
"""generator""",
"""latents""",
"""guidance_scale""",
"""frame_size""",
"""output_type""",
"""return_dict""",
]
snake_case_ =False
@property
def lowerCAmelCase__ (self ) -> Optional[int]:
"""simple docstring"""
return 32
@property
def lowerCAmelCase__ (self ) -> Any:
"""simple docstring"""
return 32
@property
def lowerCAmelCase__ (self ) -> Dict:
"""simple docstring"""
return self.time_input_dim * 4
@property
def lowerCAmelCase__ (self ) -> Optional[Any]:
"""simple docstring"""
return 8
@property
def lowerCAmelCase__ (self ) -> int:
"""simple docstring"""
torch.manual_seed(0 )
lowerCAmelCase__ : Union[str, Any] = CLIPVisionConfig(
hidden_size=self.text_embedder_hidden_size ,image_size=64 ,projection_dim=self.text_embedder_hidden_size ,intermediate_size=37 ,num_attention_heads=4 ,num_channels=3 ,num_hidden_layers=5 ,patch_size=1 ,)
lowerCAmelCase__ : List[Any] = CLIPVisionModel(__lowerCamelCase )
return model
@property
def lowerCAmelCase__ (self ) -> Dict:
"""simple docstring"""
lowerCAmelCase__ : Dict = CLIPImageProcessor(
crop_size=2_24 ,do_center_crop=__lowerCamelCase ,do_normalize=__lowerCamelCase ,do_resize=__lowerCamelCase ,image_mean=[0.4814_5466, 0.457_8275, 0.4082_1073] ,image_std=[0.2686_2954, 0.2613_0258, 0.2757_7711] ,resample=3 ,size=2_24 ,)
return image_processor
@property
def lowerCAmelCase__ (self ) -> Optional[int]:
"""simple docstring"""
torch.manual_seed(0 )
lowerCAmelCase__ : Any = {
'''num_attention_heads''': 2,
'''attention_head_dim''': 16,
'''embedding_dim''': self.time_input_dim,
'''num_embeddings''': 32,
'''embedding_proj_dim''': self.text_embedder_hidden_size,
'''time_embed_dim''': self.time_embed_dim,
'''num_layers''': 1,
'''clip_embed_dim''': self.time_input_dim * 2,
'''additional_embeddings''': 0,
'''time_embed_act_fn''': '''gelu''',
'''norm_in_type''': '''layer''',
'''embedding_proj_norm_type''': '''layer''',
'''encoder_hid_proj_type''': None,
'''added_emb_type''': None,
}
lowerCAmelCase__ : str = PriorTransformer(**__lowerCamelCase )
return model
@property
def lowerCAmelCase__ (self ) -> int:
"""simple docstring"""
torch.manual_seed(0 )
lowerCAmelCase__ : int = {
'''param_shapes''': (
(self.renderer_dim, 93),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
),
'''d_latent''': self.time_input_dim,
'''d_hidden''': self.renderer_dim,
'''n_output''': 12,
'''background''': (
0.1,
0.1,
0.1,
),
}
lowerCAmelCase__ : List[Any] = ShapERenderer(**__lowerCamelCase )
return model
def lowerCAmelCase__ (self ) -> Any:
"""simple docstring"""
lowerCAmelCase__ : List[str] = self.dummy_prior
lowerCAmelCase__ : List[str] = self.dummy_image_encoder
lowerCAmelCase__ : str = self.dummy_image_processor
lowerCAmelCase__ : Tuple = self.dummy_renderer
lowerCAmelCase__ : Any = HeunDiscreteScheduler(
beta_schedule='''exp''' ,num_train_timesteps=10_24 ,prediction_type='''sample''' ,use_karras_sigmas=__lowerCamelCase ,clip_sample=__lowerCamelCase ,clip_sample_range=1.0 ,)
lowerCAmelCase__ : List[Any] = {
'''prior''': prior,
'''image_encoder''': image_encoder,
'''image_processor''': image_processor,
'''renderer''': renderer,
'''scheduler''': scheduler,
}
return components
def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase=0 ) -> Union[str, Any]:
"""simple docstring"""
lowerCAmelCase__ : List[str] = floats_tensor((1, 3, 64, 64) ,rng=random.Random(__lowerCamelCase ) ).to(__lowerCamelCase )
if str(__lowerCamelCase ).startswith('''mps''' ):
lowerCAmelCase__ : List[Any] = torch.manual_seed(__lowerCamelCase )
else:
lowerCAmelCase__ : Union[str, Any] = torch.Generator(device=__lowerCamelCase ).manual_seed(__lowerCamelCase )
lowerCAmelCase__ : Optional[Any] = {
'''image''': input_image,
'''generator''': generator,
'''num_inference_steps''': 1,
'''frame_size''': 32,
'''output_type''': '''np''',
}
return inputs
def lowerCAmelCase__ (self ) -> Dict:
"""simple docstring"""
lowerCAmelCase__ : int = '''cpu'''
lowerCAmelCase__ : Optional[Any] = self.get_dummy_components()
lowerCAmelCase__ : Any = self.pipeline_class(**__lowerCamelCase )
lowerCAmelCase__ : Tuple = pipe.to(__lowerCamelCase )
pipe.set_progress_bar_config(disable=__lowerCamelCase )
lowerCAmelCase__ : str = pipe(**self.get_dummy_inputs(__lowerCamelCase ) )
lowerCAmelCase__ : Union[str, Any] = output.images[0]
lowerCAmelCase__ : Optional[int] = image[0, -3:, -3:, -1]
assert image.shape == (20, 32, 32, 3)
lowerCAmelCase__ : str = np.array(
[
0.0003_9216,
0.0003_9216,
0.0003_9216,
0.0003_9216,
0.0003_9216,
0.0003_9216,
0.0003_9216,
0.0003_9216,
0.0003_9216,
] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def lowerCAmelCase__ (self ) -> Any:
"""simple docstring"""
self._test_inference_batch_consistent(batch_sizes=[1, 2] )
def lowerCAmelCase__ (self ) -> List[Any]:
"""simple docstring"""
lowerCAmelCase__ : Optional[int] = torch_device == '''cpu'''
lowerCAmelCase__ : Dict = True
self._test_inference_batch_single_identical(
batch_size=2 ,test_max_difference=__lowerCamelCase ,relax_max_difference=__lowerCamelCase ,)
def lowerCAmelCase__ (self ) -> int:
"""simple docstring"""
lowerCAmelCase__ : str = self.get_dummy_components()
lowerCAmelCase__ : Optional[Any] = self.pipeline_class(**__lowerCamelCase )
lowerCAmelCase__ : Tuple = pipe.to(__lowerCamelCase )
pipe.set_progress_bar_config(disable=__lowerCamelCase )
lowerCAmelCase__ : Any = 1
lowerCAmelCase__ : Any = 2
lowerCAmelCase__ : List[Any] = self.get_dummy_inputs(__lowerCamelCase )
for key in inputs.keys():
if key in self.batch_params:
lowerCAmelCase__ : int = batch_size * [inputs[key]]
lowerCAmelCase__ : str = pipe(**__lowerCamelCase ,num_images_per_prompt=__lowerCamelCase )[0]
assert images.shape[0] == batch_size * num_images_per_prompt
@slow
@require_torch_gpu
class lowerCamelCase__ ( unittest.TestCase):
'''simple docstring'''
def lowerCAmelCase__ (self ) -> str:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowerCAmelCase__ (self ) -> List[Any]:
"""simple docstring"""
lowerCAmelCase__ : Tuple = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/corgi.png''' )
lowerCAmelCase__ : List[str] = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/shap_e/test_shap_e_img2img_out.npy''' )
lowerCAmelCase__ : str = ShapEImgaImgPipeline.from_pretrained('''openai/shap-e-img2img''' )
lowerCAmelCase__ : List[Any] = pipe.to(__lowerCamelCase )
pipe.set_progress_bar_config(disable=__lowerCamelCase )
lowerCAmelCase__ : Tuple = torch.Generator(device=__lowerCamelCase ).manual_seed(0 )
lowerCAmelCase__ : Dict = pipe(
__lowerCamelCase ,generator=__lowerCamelCase ,guidance_scale=3.0 ,num_inference_steps=64 ,frame_size=64 ,output_type='''np''' ,).images[0]
assert images.shape == (20, 64, 64, 3)
assert_mean_pixel_difference(__lowerCamelCase ,__lowerCamelCase )
| 129 |
'''simple docstring'''
from __future__ import annotations
def _SCREAMING_SNAKE_CASE (A ) -> bool:
"""simple docstring"""
return len(set(A ) ) == len(A )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 2 | 0 |
"""simple docstring"""
import os
import re
import warnings
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_ta import TaTokenizer
else:
SCREAMING_SNAKE_CASE : Any = None
SCREAMING_SNAKE_CASE : Dict = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE : Optional[int] = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'}
SCREAMING_SNAKE_CASE : List[str] = {
'vocab_file': {
't5-small': 'https://huggingface.co/t5-small/resolve/main/spiece.model',
't5-base': 'https://huggingface.co/t5-base/resolve/main/spiece.model',
't5-large': 'https://huggingface.co/t5-large/resolve/main/spiece.model',
't5-3b': 'https://huggingface.co/t5-3b/resolve/main/spiece.model',
't5-11b': 'https://huggingface.co/t5-11b/resolve/main/spiece.model',
},
'tokenizer_file': {
't5-small': 'https://huggingface.co/t5-small/resolve/main/tokenizer.json',
't5-base': 'https://huggingface.co/t5-base/resolve/main/tokenizer.json',
't5-large': 'https://huggingface.co/t5-large/resolve/main/tokenizer.json',
't5-3b': 'https://huggingface.co/t5-3b/resolve/main/tokenizer.json',
't5-11b': 'https://huggingface.co/t5-11b/resolve/main/tokenizer.json',
},
}
# TODO(PVP) - this should be removed in Transformers v5
SCREAMING_SNAKE_CASE : Any = {
't5-small': 512,
't5-base': 512,
't5-large': 512,
't5-3b': 512,
't5-11b': 512,
}
class _UpperCAmelCase ( lowercase_ ):
'''simple docstring'''
lowerCamelCase__ =VOCAB_FILES_NAMES
lowerCamelCase__ =PRETRAINED_VOCAB_FILES_MAP
lowerCamelCase__ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCamelCase__ =["""input_ids""", """attention_mask"""]
lowerCamelCase__ =TaTokenizer
lowerCamelCase__ =[]
def __init__(self , a_=None , a_=None , a_="</s>" , a_="<unk>" , a_="<pad>" , a_=1_00 , a_=None , **a_ , ):
'''simple docstring'''
if extra_ids > 0 and additional_special_tokens is None:
__snake_case : Optional[Any] = [f"""<extra_id_{i}>""" for i in range(a_ )]
elif extra_ids > 0 and additional_special_tokens is not None:
# Check that we have the right number of extra special tokens
__snake_case : Dict = len(set(filter(lambda a_ : bool('''extra_id_''' in str(a_ ) ) , a_ ) ) )
if extra_tokens != extra_ids:
raise ValueError(
f"""Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are"""
''' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids'''
''' tokens''' )
super().__init__(
a_ , tokenizer_file=a_ , eos_token=a_ , unk_token=a_ , pad_token=a_ , extra_ids=a_ , additional_special_tokens=a_ , **a_ , )
__snake_case : List[str] = vocab_file
__snake_case : Optional[Any] = False if not self.vocab_file else True
__snake_case : List[str] = extra_ids
@staticmethod
def SCREAMING_SNAKE_CASE (a_ , a_ , a_ ):
'''simple docstring'''
if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes:
__snake_case : Optional[Any] = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path]
if init_max_model_length is not None and init_max_model_length != max_model_length:
return init_max_model_length
elif init_max_model_length is None:
warnings.warn(
'''This tokenizer was incorrectly instantiated with a model max length of'''
f""" {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this"""
''' behavior is kept to avoid breaking backwards compatibility when padding/encoding with'''
''' `truncation is True`.\n- Be aware that you SHOULD NOT rely on'''
f""" {pretrained_model_name_or_path} automatically truncating your input to"""
f""" {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences"""
f""" longer than {deprecated_max_model_length} you can either instantiate this tokenizer with"""
''' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please'''
''' instantiate this tokenizer with `model_max_length` set to your preferred value.''' , a_ , )
return max_model_length
def SCREAMING_SNAKE_CASE (self , a_ , a_ = None ):
'''simple docstring'''
if not self.can_save_slow_tokenizer:
raise ValueError(
'''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow '''
'''tokenizer.''' )
if not os.path.isdir(a_ ):
logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" )
return
__snake_case : Optional[Any] = os.path.join(
a_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(a_ ):
copyfile(self.vocab_file , a_ )
logger.info(f"""Copy vocab file to {out_vocab_file}""" )
return (out_vocab_file,)
def SCREAMING_SNAKE_CASE (self , a_ , a_ = None ):
'''simple docstring'''
__snake_case : Dict = token_ids_a + [self.eos_token_id]
if token_ids_a is None:
return self.prefix_tokens + token_ids_a
else:
__snake_case : str = token_ids_a + [self.eos_token_id]
return self.prefix_tokens + token_ids_a + token_ids_a
def SCREAMING_SNAKE_CASE (self , a_ , a_ = None ):
'''simple docstring'''
__snake_case : List[str] = [self.eos_token_id]
if token_ids_a is None:
return len(token_ids_a + eos ) * [0]
return len(token_ids_a + eos + token_ids_a + eos ) * [0]
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
return list(
set(filter(lambda a_ : bool(re.search(R'''<extra_id_\d+>''' , a_ ) ) is not None , self.additional_special_tokens ) ) )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
return [self.convert_tokens_to_ids(a_ ) for token in self.get_sentinel_tokens()]
| 102 |
'''simple docstring'''
import os
import re
import warnings
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_ta import TaTokenizer
else:
lowerCamelCase : Any = None
lowerCamelCase : Dict = logging.get_logger(__name__)
lowerCamelCase : Optional[int] = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'}
lowerCamelCase : List[str] = {
'vocab_file': {
't5-small': 'https://huggingface.co/t5-small/resolve/main/spiece.model',
't5-base': 'https://huggingface.co/t5-base/resolve/main/spiece.model',
't5-large': 'https://huggingface.co/t5-large/resolve/main/spiece.model',
't5-3b': 'https://huggingface.co/t5-3b/resolve/main/spiece.model',
't5-11b': 'https://huggingface.co/t5-11b/resolve/main/spiece.model',
},
'tokenizer_file': {
't5-small': 'https://huggingface.co/t5-small/resolve/main/tokenizer.json',
't5-base': 'https://huggingface.co/t5-base/resolve/main/tokenizer.json',
't5-large': 'https://huggingface.co/t5-large/resolve/main/tokenizer.json',
't5-3b': 'https://huggingface.co/t5-3b/resolve/main/tokenizer.json',
't5-11b': 'https://huggingface.co/t5-11b/resolve/main/tokenizer.json',
},
}
# TODO(PVP) - this should be removed in Transformers v5
lowerCamelCase : Any = {
't5-small': 512,
't5-base': 512,
't5-large': 512,
't5-3b': 512,
't5-11b': 512,
}
class __lowerCAmelCase (lowercase_ ):
'''simple docstring'''
lowerCAmelCase__ : List[str] = VOCAB_FILES_NAMES
lowerCAmelCase__ : str = PRETRAINED_VOCAB_FILES_MAP
lowerCAmelCase__ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCAmelCase__ : int = ["""input_ids""", """attention_mask"""]
lowerCAmelCase__ : Optional[int] = TaTokenizer
lowerCAmelCase__ : List[int] = []
def __init__(self : Dict , UpperCamelCase : str=None , UpperCamelCase : Optional[Any]=None , UpperCamelCase : Any="</s>" , UpperCamelCase : str="<unk>" , UpperCamelCase : List[str]="<pad>" , UpperCamelCase : List[str]=100 , UpperCamelCase : Tuple=None , **UpperCamelCase : List[str] , ):
'''simple docstring'''
if extra_ids > 0 and additional_special_tokens is None:
lowercase__ = [f"<extra_id_{i}>" for i in range(UpperCamelCase )]
elif extra_ids > 0 and additional_special_tokens is not None:
# Check that we have the right number of extra special tokens
lowercase__ = len(set(filter(lambda UpperCamelCase : bool('''extra_id_''' in str(UpperCamelCase ) ) , UpperCamelCase ) ) )
if extra_tokens != extra_ids:
raise ValueError(
f"Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are"
''' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids'''
''' tokens''' )
super().__init__(
UpperCamelCase , tokenizer_file=UpperCamelCase , eos_token=UpperCamelCase , unk_token=UpperCamelCase , pad_token=UpperCamelCase , extra_ids=UpperCamelCase , additional_special_tokens=UpperCamelCase , **UpperCamelCase , )
lowercase__ = vocab_file
lowercase__ = False if not self.vocab_file else True
lowercase__ = extra_ids
@staticmethod
def UpperCamelCase__ (UpperCamelCase : List[Any] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Optional[Any] ):
'''simple docstring'''
if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes:
lowercase__ = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path]
if init_max_model_length is not None and init_max_model_length != max_model_length:
return init_max_model_length
elif init_max_model_length is None:
warnings.warn(
'''This tokenizer was incorrectly instantiated with a model max length of'''
f" {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this"
''' behavior is kept to avoid breaking backwards compatibility when padding/encoding with'''
''' `truncation is True`.\n- Be aware that you SHOULD NOT rely on'''
f" {pretrained_model_name_or_path} automatically truncating your input to"
f" {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences"
f" longer than {deprecated_max_model_length} you can either instantiate this tokenizer with"
''' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please'''
''' instantiate this tokenizer with `model_max_length` set to your preferred value.''' , UpperCamelCase , )
return max_model_length
def UpperCamelCase__ (self : Any , UpperCamelCase : str , UpperCamelCase : Optional[str] = None ):
'''simple docstring'''
if not self.can_save_slow_tokenizer:
raise ValueError(
'''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow '''
'''tokenizer.''' )
if not os.path.isdir(UpperCamelCase ):
logger.error(f"Vocabulary path ({save_directory}) should be a directory" )
return
lowercase__ = os.path.join(
UpperCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase ):
copyfile(self.vocab_file , UpperCamelCase )
logger.info(f"Copy vocab file to {out_vocab_file}" )
return (out_vocab_file,)
def UpperCamelCase__ (self : Any , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None ):
'''simple docstring'''
lowercase__ = token_ids_a + [self.eos_token_id]
if token_ids_a is None:
return self.prefix_tokens + token_ids_a
else:
lowercase__ = token_ids_a + [self.eos_token_id]
return self.prefix_tokens + token_ids_a + token_ids_a
def UpperCamelCase__ (self : Optional[Any] , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None ):
'''simple docstring'''
lowercase__ = [self.eos_token_id]
if token_ids_a is None:
return len(token_ids_a + eos ) * [0]
return len(token_ids_a + eos + token_ids_a + eos ) * [0]
def UpperCamelCase__ (self : List[Any] ):
'''simple docstring'''
return list(
set(filter(lambda UpperCamelCase : bool(re.search(R'''<extra_id_\d+>''' , UpperCamelCase ) ) is not None , self.additional_special_tokens ) ) )
def UpperCamelCase__ (self : Union[str, Any] ):
'''simple docstring'''
return [self.convert_tokens_to_ids(UpperCamelCase ) for token in self.get_sentinel_tokens()]
| 2 | 0 |
import unittest
from transformers import (
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
Pipeline,
ZeroShotClassificationPipeline,
pipeline,
)
from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow
from .test_pipelines_common import ANY
# These 2 model types require different inputs than those of the usual text models.
A_ :Dict = {'LayoutLMv2Config', 'LayoutLMv3Config'}
@is_pipeline_test
class __A ( unittest.TestCase ):
"""simple docstring"""
UpperCamelCase__ : str =MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
UpperCamelCase__ : Dict =TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
if model_mapping is not None:
UpperCamelCase__ : List[str] ={config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP}
if tf_model_mapping is not None:
UpperCamelCase__ : Union[str, Any] ={
config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP
}
def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
__UpperCamelCase : Optional[int] =ZeroShotClassificationPipeline(
model=lowerCamelCase__ , tokenizer=lowerCamelCase__ , candidate_labels=['polics', 'health'] )
return classifier, ["Who are you voting for in 2020?", "My stomach hurts."]
def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
__UpperCamelCase : Tuple =classifier('Who are you voting for in 2020?' , candidate_labels='politics' )
self.assertEqual(lowerCamelCase__ , {'sequence': ANY(lowerCamelCase__ ), 'labels': [ANY(lowerCamelCase__ )], 'scores': [ANY(lowerCamelCase__ )]} )
# No kwarg
__UpperCamelCase : Tuple =classifier('Who are you voting for in 2020?' , ['politics'] )
self.assertEqual(lowerCamelCase__ , {'sequence': ANY(lowerCamelCase__ ), 'labels': [ANY(lowerCamelCase__ )], 'scores': [ANY(lowerCamelCase__ )]} )
__UpperCamelCase : str =classifier('Who are you voting for in 2020?' , candidate_labels=['politics'] )
self.assertEqual(lowerCamelCase__ , {'sequence': ANY(lowerCamelCase__ ), 'labels': [ANY(lowerCamelCase__ )], 'scores': [ANY(lowerCamelCase__ )]} )
__UpperCamelCase : Any =classifier('Who are you voting for in 2020?' , candidate_labels='politics, public health' )
self.assertEqual(
lowerCamelCase__ , {'sequence': ANY(lowerCamelCase__ ), 'labels': [ANY(lowerCamelCase__ ), ANY(lowerCamelCase__ )], 'scores': [ANY(lowerCamelCase__ ), ANY(lowerCamelCase__ )]} )
self.assertAlmostEqual(sum(nested_simplify(outputs['scores'] ) ) , 1.0 )
__UpperCamelCase : int =classifier('Who are you voting for in 2020?' , candidate_labels=['politics', 'public health'] )
self.assertEqual(
lowerCamelCase__ , {'sequence': ANY(lowerCamelCase__ ), 'labels': [ANY(lowerCamelCase__ ), ANY(lowerCamelCase__ )], 'scores': [ANY(lowerCamelCase__ ), ANY(lowerCamelCase__ )]} )
self.assertAlmostEqual(sum(nested_simplify(outputs['scores'] ) ) , 1.0 )
__UpperCamelCase : Union[str, Any] =classifier(
'Who are you voting for in 2020?' , candidate_labels='politics' , hypothesis_template='This text is about {}' )
self.assertEqual(lowerCamelCase__ , {'sequence': ANY(lowerCamelCase__ ), 'labels': [ANY(lowerCamelCase__ )], 'scores': [ANY(lowerCamelCase__ )]} )
# https://github.com/huggingface/transformers/issues/13846
__UpperCamelCase : str =classifier(['I am happy'] , ['positive', 'negative'] )
self.assertEqual(
lowerCamelCase__ , [
{'sequence': ANY(lowerCamelCase__ ), 'labels': [ANY(lowerCamelCase__ ), ANY(lowerCamelCase__ )], 'scores': [ANY(lowerCamelCase__ ), ANY(lowerCamelCase__ )]}
for i in range(1 )
] , )
__UpperCamelCase : Dict =classifier(['I am happy', 'I am sad'] , ['positive', 'negative'] )
self.assertEqual(
lowerCamelCase__ , [
{'sequence': ANY(lowerCamelCase__ ), 'labels': [ANY(lowerCamelCase__ ), ANY(lowerCamelCase__ )], 'scores': [ANY(lowerCamelCase__ ), ANY(lowerCamelCase__ )]}
for i in range(2 )
] , )
with self.assertRaises(lowerCamelCase__ ):
classifier('' , candidate_labels='politics' )
with self.assertRaises(lowerCamelCase__ ):
classifier(lowerCamelCase__ , candidate_labels='politics' )
with self.assertRaises(lowerCamelCase__ ):
classifier('Who are you voting for in 2020?' , candidate_labels='' )
with self.assertRaises(lowerCamelCase__ ):
classifier('Who are you voting for in 2020?' , candidate_labels=lowerCamelCase__ )
with self.assertRaises(lowerCamelCase__ ):
classifier(
'Who are you voting for in 2020?' , candidate_labels='politics' , hypothesis_template='Not formatting template' , )
with self.assertRaises(lowerCamelCase__ ):
classifier(
'Who are you voting for in 2020?' , candidate_labels='politics' , hypothesis_template=lowerCamelCase__ , )
self.run_entailment_id(lowerCamelCase__ )
def __lowercase ( self , lowerCamelCase__ ):
"""simple docstring"""
__UpperCamelCase : Dict =zero_shot_classifier.model.config
__UpperCamelCase : List[str] =config.labelaid
__UpperCamelCase : List[Any] =zero_shot_classifier.entailment_id
__UpperCamelCase : Tuple ={'LABEL_0': 0, 'LABEL_1': 1, 'LABEL_2': 2}
self.assertEqual(zero_shot_classifier.entailment_id , -1 )
__UpperCamelCase : Union[str, Any] ={'entailment': 0, 'neutral': 1, 'contradiction': 2}
self.assertEqual(zero_shot_classifier.entailment_id , 0 )
__UpperCamelCase : int ={'ENTAIL': 0, 'NON-ENTAIL': 1}
self.assertEqual(zero_shot_classifier.entailment_id , 0 )
__UpperCamelCase : Tuple ={'ENTAIL': 2, 'NEUTRAL': 1, 'CONTR': 0}
self.assertEqual(zero_shot_classifier.entailment_id , 2 )
__UpperCamelCase : List[Any] =original_labelaid
self.assertEqual(lowerCamelCase__ , zero_shot_classifier.entailment_id )
@require_torch
def __lowercase ( self ):
"""simple docstring"""
__UpperCamelCase : Optional[int] =pipeline(
'zero-shot-classification' , model='sshleifer/tiny-distilbert-base-cased-distilled-squad' , framework='pt' , )
# There was a regression in 4.10 for this
# Adding a test so we don't make the mistake again.
# https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499
zero_shot_classifier(
'Who are you voting for in 2020?' * 100 , candidate_labels=['politics', 'public health', 'science'] )
@require_torch
def __lowercase ( self ):
"""simple docstring"""
__UpperCamelCase : str =pipeline(
'zero-shot-classification' , model='sshleifer/tiny-distilbert-base-cased-distilled-squad' , framework='pt' , )
__UpperCamelCase : Optional[int] =zero_shot_classifier(
'Who are you voting for in 2020?' , candidate_labels=['politics', 'public health', 'science'] )
self.assertEqual(
nested_simplify(lowerCamelCase__ ) , {
'sequence': 'Who are you voting for in 2020?',
'labels': ['science', 'public health', 'politics'],
'scores': [0.333, 0.333, 0.333],
} , )
@require_tf
def __lowercase ( self ):
"""simple docstring"""
__UpperCamelCase : Dict =pipeline(
'zero-shot-classification' , model='sshleifer/tiny-distilbert-base-cased-distilled-squad' , framework='tf' , )
__UpperCamelCase : str =zero_shot_classifier(
'Who are you voting for in 2020?' , candidate_labels=['politics', 'public health', 'science'] )
self.assertEqual(
nested_simplify(lowerCamelCase__ ) , {
'sequence': 'Who are you voting for in 2020?',
'labels': ['science', 'public health', 'politics'],
'scores': [0.333, 0.333, 0.333],
} , )
@slow
@require_torch
def __lowercase ( self ):
"""simple docstring"""
__UpperCamelCase : Optional[Any] =pipeline('zero-shot-classification' , model='roberta-large-mnli' , framework='pt' )
__UpperCamelCase : List[Any] =zero_shot_classifier(
'Who are you voting for in 2020?' , candidate_labels=['politics', 'public health', 'science'] )
self.assertEqual(
nested_simplify(lowerCamelCase__ ) , {
'sequence': 'Who are you voting for in 2020?',
'labels': ['politics', 'public health', 'science'],
'scores': [0.976, 0.015, 0.009],
} , )
__UpperCamelCase : Optional[Any] =zero_shot_classifier(
'The dominant sequence transduction models are based on complex recurrent or convolutional neural networks'
' in an encoder-decoder configuration. The best performing models also connect the encoder and decoder'
' through an attention mechanism. We propose a new simple network architecture, the Transformer, based'
' solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two'
' machine translation tasks show these models to be superior in quality while being more parallelizable'
' and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014'
' English-to-German translation task, improving over the existing best results, including ensembles by'
' over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new'
' single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small'
' fraction of the training costs of the best models from the literature. We show that the Transformer'
' generalizes well to other tasks by applying it successfully to English constituency parsing both with'
' large and limited training data.' , candidate_labels=['machine learning', 'statistics', 'translation', 'vision'] , multi_label=lowerCamelCase__ , )
self.assertEqual(
nested_simplify(lowerCamelCase__ ) , {
'sequence': (
'The dominant sequence transduction models are based on complex recurrent or convolutional neural'
' networks in an encoder-decoder configuration. The best performing models also connect the'
' encoder and decoder through an attention mechanism. We propose a new simple network'
' architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence'
' and convolutions entirely. Experiments on two machine translation tasks show these models to be'
' superior in quality while being more parallelizable and requiring significantly less time to'
' train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,'
' improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014'
' English-to-French translation task, our model establishes a new single-model state-of-the-art'
' BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training'
' costs of the best models from the literature. We show that the Transformer generalizes well to'
' other tasks by applying it successfully to English constituency parsing both with large and'
' limited training data.'
),
'labels': ['translation', 'machine learning', 'vision', 'statistics'],
'scores': [0.817, 0.713, 0.018, 0.018],
} , )
@slow
@require_tf
def __lowercase ( self ):
"""simple docstring"""
__UpperCamelCase : int =pipeline('zero-shot-classification' , model='roberta-large-mnli' , framework='tf' )
__UpperCamelCase : Union[str, Any] =zero_shot_classifier(
'Who are you voting for in 2020?' , candidate_labels=['politics', 'public health', 'science'] )
self.assertEqual(
nested_simplify(lowerCamelCase__ ) , {
'sequence': 'Who are you voting for in 2020?',
'labels': ['politics', 'public health', 'science'],
'scores': [0.976, 0.015, 0.009],
} , )
__UpperCamelCase : str =zero_shot_classifier(
'The dominant sequence transduction models are based on complex recurrent or convolutional neural networks'
' in an encoder-decoder configuration. The best performing models also connect the encoder and decoder'
' through an attention mechanism. We propose a new simple network architecture, the Transformer, based'
' solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two'
' machine translation tasks show these models to be superior in quality while being more parallelizable'
' and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014'
' English-to-German translation task, improving over the existing best results, including ensembles by'
' over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new'
' single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small'
' fraction of the training costs of the best models from the literature. We show that the Transformer'
' generalizes well to other tasks by applying it successfully to English constituency parsing both with'
' large and limited training data.' , candidate_labels=['machine learning', 'statistics', 'translation', 'vision'] , multi_label=lowerCamelCase__ , )
self.assertEqual(
nested_simplify(lowerCamelCase__ ) , {
'sequence': (
'The dominant sequence transduction models are based on complex recurrent or convolutional neural'
' networks in an encoder-decoder configuration. The best performing models also connect the'
' encoder and decoder through an attention mechanism. We propose a new simple network'
' architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence'
' and convolutions entirely. Experiments on two machine translation tasks show these models to be'
' superior in quality while being more parallelizable and requiring significantly less time to'
' train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,'
' improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014'
' English-to-French translation task, our model establishes a new single-model state-of-the-art'
' BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training'
' costs of the best models from the literature. We show that the Transformer generalizes well to'
' other tasks by applying it successfully to English constituency parsing both with large and'
' limited training data.'
),
'labels': ['translation', 'machine learning', 'vision', 'statistics'],
'scores': [0.817, 0.713, 0.018, 0.018],
} , )
| 71 |
'''simple docstring'''
import gc
import random
import unittest
import numpy as np
import torch
from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel
from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline
from diffusers.pipelines.shap_e import ShapERenderer
from diffusers.utils import floats_tensor, load_image, load_numpy, slow
from diffusers.utils.testing_utils import require_torch_gpu, torch_device
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
class __lowerCAmelCase (lowercase_ , unittest.TestCase ):
'''simple docstring'''
lowerCAmelCase__ : Dict = ShapEImgaImgPipeline
lowerCAmelCase__ : List[str] = ["""image"""]
lowerCAmelCase__ : Any = ["""image"""]
lowerCAmelCase__ : Any = [
"""num_images_per_prompt""",
"""num_inference_steps""",
"""generator""",
"""latents""",
"""guidance_scale""",
"""frame_size""",
"""output_type""",
"""return_dict""",
]
lowerCAmelCase__ : Tuple = False
@property
def UpperCamelCase__ (self : List[Any] ):
'''simple docstring'''
return 32
@property
def UpperCamelCase__ (self : str ):
'''simple docstring'''
return 32
@property
def UpperCamelCase__ (self : Union[str, Any] ):
'''simple docstring'''
return self.time_input_dim * 4
@property
def UpperCamelCase__ (self : int ):
'''simple docstring'''
return 8
@property
def UpperCamelCase__ (self : Any ):
'''simple docstring'''
torch.manual_seed(0 )
lowercase__ = CLIPVisionConfig(
hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , )
lowercase__ = CLIPVisionModel(UpperCamelCase )
return model
@property
def UpperCamelCase__ (self : List[Any] ):
'''simple docstring'''
lowercase__ = CLIPImageProcessor(
crop_size=224 , do_center_crop=UpperCamelCase , do_normalize=UpperCamelCase , do_resize=UpperCamelCase , image_mean=[0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73] , image_std=[0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11] , resample=3 , size=224 , )
return image_processor
@property
def UpperCamelCase__ (self : str ):
'''simple docstring'''
torch.manual_seed(0 )
lowercase__ = {
'''num_attention_heads''': 2,
'''attention_head_dim''': 16,
'''embedding_dim''': self.time_input_dim,
'''num_embeddings''': 32,
'''embedding_proj_dim''': self.text_embedder_hidden_size,
'''time_embed_dim''': self.time_embed_dim,
'''num_layers''': 1,
'''clip_embed_dim''': self.time_input_dim * 2,
'''additional_embeddings''': 0,
'''time_embed_act_fn''': '''gelu''',
'''norm_in_type''': '''layer''',
'''embedding_proj_norm_type''': '''layer''',
'''encoder_hid_proj_type''': None,
'''added_emb_type''': None,
}
lowercase__ = PriorTransformer(**UpperCamelCase )
return model
@property
def UpperCamelCase__ (self : int ):
'''simple docstring'''
torch.manual_seed(0 )
lowercase__ = {
'''param_shapes''': (
(self.renderer_dim, 93),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
),
'''d_latent''': self.time_input_dim,
'''d_hidden''': self.renderer_dim,
'''n_output''': 12,
'''background''': (
0.1,
0.1,
0.1,
),
}
lowercase__ = ShapERenderer(**UpperCamelCase )
return model
def UpperCamelCase__ (self : Union[str, Any] ):
'''simple docstring'''
lowercase__ = self.dummy_prior
lowercase__ = self.dummy_image_encoder
lowercase__ = self.dummy_image_processor
lowercase__ = self.dummy_renderer
lowercase__ = HeunDiscreteScheduler(
beta_schedule='''exp''' , num_train_timesteps=1024 , prediction_type='''sample''' , use_karras_sigmas=UpperCamelCase , clip_sample=UpperCamelCase , clip_sample_range=1.0 , )
lowercase__ = {
'''prior''': prior,
'''image_encoder''': image_encoder,
'''image_processor''': image_processor,
'''renderer''': renderer,
'''scheduler''': scheduler,
}
return components
def UpperCamelCase__ (self : Optional[int] , UpperCamelCase : Optional[int] , UpperCamelCase : str=0 ):
'''simple docstring'''
lowercase__ = floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCamelCase ) ).to(UpperCamelCase )
if str(UpperCamelCase ).startswith('''mps''' ):
lowercase__ = torch.manual_seed(UpperCamelCase )
else:
lowercase__ = torch.Generator(device=UpperCamelCase ).manual_seed(UpperCamelCase )
lowercase__ = {
'''image''': input_image,
'''generator''': generator,
'''num_inference_steps''': 1,
'''frame_size''': 32,
'''output_type''': '''np''',
}
return inputs
def UpperCamelCase__ (self : Tuple ):
'''simple docstring'''
lowercase__ = '''cpu'''
lowercase__ = self.get_dummy_components()
lowercase__ = self.pipeline_class(**UpperCamelCase )
lowercase__ = pipe.to(UpperCamelCase )
pipe.set_progress_bar_config(disable=UpperCamelCase )
lowercase__ = pipe(**self.get_dummy_inputs(UpperCamelCase ) )
lowercase__ = output.images[0]
lowercase__ = image[0, -3:, -3:, -1]
assert image.shape == (20, 32, 32, 3)
lowercase__ = np.array(
[
0.00_03_92_16,
0.00_03_92_16,
0.00_03_92_16,
0.00_03_92_16,
0.00_03_92_16,
0.00_03_92_16,
0.00_03_92_16,
0.00_03_92_16,
0.00_03_92_16,
] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def UpperCamelCase__ (self : Optional[Any] ):
'''simple docstring'''
self._test_inference_batch_consistent(batch_sizes=[1, 2] )
def UpperCamelCase__ (self : int ):
'''simple docstring'''
lowercase__ = torch_device == '''cpu'''
lowercase__ = True
self._test_inference_batch_single_identical(
batch_size=2 , test_max_difference=UpperCamelCase , relax_max_difference=UpperCamelCase , )
def UpperCamelCase__ (self : int ):
'''simple docstring'''
lowercase__ = self.get_dummy_components()
lowercase__ = self.pipeline_class(**UpperCamelCase )
lowercase__ = pipe.to(UpperCamelCase )
pipe.set_progress_bar_config(disable=UpperCamelCase )
lowercase__ = 1
lowercase__ = 2
lowercase__ = self.get_dummy_inputs(UpperCamelCase )
for key in inputs.keys():
if key in self.batch_params:
lowercase__ = batch_size * [inputs[key]]
lowercase__ = pipe(**UpperCamelCase , num_images_per_prompt=UpperCamelCase )[0]
assert images.shape[0] == batch_size * num_images_per_prompt
@slow
@require_torch_gpu
class __lowerCAmelCase (unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase__ (self : Optional[Any] ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCamelCase__ (self : Union[str, Any] ):
'''simple docstring'''
lowercase__ = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/corgi.png''' )
lowercase__ = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/shap_e/test_shap_e_img2img_out.npy''' )
lowercase__ = ShapEImgaImgPipeline.from_pretrained('''openai/shap-e-img2img''' )
lowercase__ = pipe.to(UpperCamelCase )
pipe.set_progress_bar_config(disable=UpperCamelCase )
lowercase__ = torch.Generator(device=UpperCamelCase ).manual_seed(0 )
lowercase__ = pipe(
UpperCamelCase , generator=UpperCamelCase , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type='''np''' , ).images[0]
assert images.shape == (20, 64, 64, 3)
assert_mean_pixel_difference(UpperCamelCase , UpperCamelCase )
| 2 | 0 |
'''simple docstring'''
import unittest
from dataclasses import dataclass
import pytest
from accelerate.commands.config.config_args import SageMakerConfig
from accelerate.utils import ComputeEnvironment
from accelerate.utils.launch import _convert_nargs_to_dict
@dataclass
class _snake_case ( lowercase_ ):
lowerCAmelCase_ : Optional[int] = ComputeEnvironment.AMAZON_SAGEMAKER
lowerCAmelCase_ : List[str] = True
lowerCAmelCase_ : str = """ml.p3.2xlarge"""
lowerCAmelCase_ : Optional[Any] = """accelerate_sagemaker_execution_role"""
lowerCAmelCase_ : Optional[int] = """hf-sm"""
lowerCAmelCase_ : List[Any] = """us-east-1"""
lowerCAmelCase_ : Tuple = 1
lowerCAmelCase_ : List[str] = """accelerate-sagemaker-1"""
lowerCAmelCase_ : Any = """1.6"""
lowerCAmelCase_ : Optional[Any] = """4.4"""
lowerCAmelCase_ : Union[str, Any] = """train.py"""
lowerCAmelCase_ : str = [
"""--model_name_or_path""",
"""bert""",
"""--do_train""",
"""False""",
"""--epochs""",
"""3""",
"""--learning_rate""",
"""5e-5""",
"""--max_steps""",
"""50.5""",
]
lowerCAmelCase_ : Tuple = [
"""--model_name_or_path""",
"""bert""",
"""--do_train""",
"""--do_test""",
"""False""",
"""--do_predict""",
"""--epochs""",
"""3""",
"""--learning_rate""",
"""5e-5""",
"""--max_steps""",
"""50.5""",
]
class _snake_case ( unittest.TestCase ):
def lowerCAmelCase__ ( self ) -> Optional[int]:
'''simple docstring'''
snake_case_ = _convert_nargs_to_dict(MockLaunchConfig.success_training_script_args )
assert isinstance(converted_args["model_name_or_path"] , a__ )
assert isinstance(converted_args["do_train"] , a__ )
assert isinstance(converted_args["epochs"] , a__ )
assert isinstance(converted_args["learning_rate"] , a__ )
assert isinstance(converted_args["max_steps"] , a__ )
with pytest.raises(a__ ):
_convert_nargs_to_dict(MockLaunchConfig.fail_training_script_args )
| 85 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
lowerCamelCase : str = {
'configuration_rag': ['RagConfig'],
'retrieval_rag': ['RagRetriever'],
'tokenization_rag': ['RagTokenizer'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase : Dict = [
'RagModel',
'RagPreTrainedModel',
'RagSequenceForGeneration',
'RagTokenForGeneration',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase : Optional[int] = [
'TFRagModel',
'TFRagPreTrainedModel',
'TFRagSequenceForGeneration',
'TFRagTokenForGeneration',
]
if TYPE_CHECKING:
from .configuration_rag import RagConfig
from .retrieval_rag import RagRetriever
from .tokenization_rag import RagTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_rag import RagModel, RagPreTrainedModel, RagSequenceForGeneration, RagTokenForGeneration
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_rag import (
TFRagModel,
TFRagPreTrainedModel,
TFRagSequenceForGeneration,
TFRagTokenForGeneration,
)
else:
import sys
lowerCamelCase : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 2 | 0 |
import random
import unittest
import torch
from diffusers import IFInpaintingPipeline
from diffusers.utils import floats_tensor
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import skip_mps, torch_device
from ..pipeline_params import (
TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_INPAINTING_PARAMS,
)
from ..test_pipelines_common import PipelineTesterMixin
from . import IFPipelineTesterMixin
@skip_mps
class __lowerCAmelCase ( lowercase_ , lowercase_ , unittest.TestCase ):
lowerCAmelCase__ = IFInpaintingPipeline
lowerCAmelCase__ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"""width""", """height"""}
lowerCAmelCase__ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS
lowerCAmelCase__ = PipelineTesterMixin.required_optional_params - {"""latents"""}
def lowerCamelCase ( self ):
'''simple docstring'''
return self._get_dummy_components()
def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase=0 ):
'''simple docstring'''
if str(__UpperCAmelCase ).startswith('''mps''' ):
__lowerCamelCase = torch.manual_seed(__UpperCAmelCase )
else:
__lowerCamelCase = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase )
__lowerCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase )
__lowerCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase )
__lowerCamelCase = {
'''prompt''': '''A painting of a squirrel eating a burger''',
'''image''': image,
'''mask_image''': mask_image,
'''generator''': generator,
'''num_inference_steps''': 2,
'''output_type''': '''numpy''',
}
return inputs
@unittest.skipIf(
torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , )
def lowerCamelCase ( self ):
'''simple docstring'''
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 )
def lowerCamelCase ( self ):
'''simple docstring'''
self._test_save_load_optional_components()
@unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''' )
def lowerCamelCase ( self ):
'''simple docstring'''
super().test_save_load_floataa(expected_max_diff=1E-1 )
def lowerCamelCase ( self ):
'''simple docstring'''
self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 )
def lowerCamelCase ( self ):
'''simple docstring'''
self._test_save_load_local()
def lowerCamelCase ( self ):
'''simple docstring'''
self._test_inference_batch_single_identical(
expected_max_diff=1E-2 , )
| 330 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCamelCase : int = logging.get_logger(__name__)
lowerCamelCase : List[Any] = {
'google/realm-cc-news-pretrained-embedder': (
'https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json'
),
'google/realm-cc-news-pretrained-encoder': (
'https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json'
),
'google/realm-cc-news-pretrained-scorer': (
'https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json'
),
'google/realm-cc-news-pretrained-openqa': (
'https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json'
),
'google/realm-orqa-nq-openqa': 'https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json',
'google/realm-orqa-nq-reader': 'https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json',
'google/realm-orqa-wq-openqa': 'https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json',
'google/realm-orqa-wq-reader': 'https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json',
# See all REALM models at https://huggingface.co/models?filter=realm
}
class __lowerCAmelCase (lowercase_ ):
'''simple docstring'''
lowerCAmelCase__ : Optional[int] = """realm"""
def __init__(self : str , UpperCamelCase : List[Any]=30522 , UpperCamelCase : List[Any]=768 , UpperCamelCase : int=128 , UpperCamelCase : Any=12 , UpperCamelCase : Tuple=12 , UpperCamelCase : List[Any]=8 , UpperCamelCase : Union[str, Any]=3072 , UpperCamelCase : List[str]="gelu_new" , UpperCamelCase : Any=0.1 , UpperCamelCase : List[str]=0.1 , UpperCamelCase : Dict=512 , UpperCamelCase : Dict=2 , UpperCamelCase : List[Any]=0.02 , UpperCamelCase : List[Any]=1E-12 , UpperCamelCase : Dict=256 , UpperCamelCase : Union[str, Any]=10 , UpperCamelCase : Optional[int]=1E-3 , UpperCamelCase : Tuple=5 , UpperCamelCase : Optional[int]=320 , UpperCamelCase : List[str]=13353718 , UpperCamelCase : Optional[Any]=5000 , UpperCamelCase : str=1 , UpperCamelCase : Union[str, Any]=0 , UpperCamelCase : List[Any]=2 , **UpperCamelCase : int , ):
'''simple docstring'''
super().__init__(pad_token_id=UpperCamelCase , bos_token_id=UpperCamelCase , eos_token_id=UpperCamelCase , **UpperCamelCase )
# Common config
lowercase__ = vocab_size
lowercase__ = max_position_embeddings
lowercase__ = hidden_size
lowercase__ = retriever_proj_size
lowercase__ = num_hidden_layers
lowercase__ = num_attention_heads
lowercase__ = num_candidates
lowercase__ = intermediate_size
lowercase__ = hidden_act
lowercase__ = hidden_dropout_prob
lowercase__ = attention_probs_dropout_prob
lowercase__ = initializer_range
lowercase__ = type_vocab_size
lowercase__ = layer_norm_eps
# Reader config
lowercase__ = span_hidden_size
lowercase__ = max_span_width
lowercase__ = reader_layer_norm_eps
lowercase__ = reader_beam_size
lowercase__ = reader_seq_len
# Retrieval config
lowercase__ = num_block_records
lowercase__ = searcher_beam_size
| 2 | 0 |
def lowerCamelCase_ ( UpperCamelCase__ : Optional[int] , UpperCamelCase__ : List[Any] ) -> tuple[float, float]:
"""simple docstring"""
if not len(UpperCamelCase__ ) == len(UpperCamelCase__ ) == 3:
raise ValueError('Please enter a valid equation.' )
if equationa[0] == equationa[1] == equationa[0] == equationa[1] == 0:
raise ValueError('Both a & b of two equations can\'t be zero.' )
# Extract the coefficients
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase = equationa
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase = equationa
# Calculate the determinants of the matrices
__lowerCamelCase = aa * ba - aa * ba
__lowerCamelCase = ca * ba - ca * ba
__lowerCamelCase = aa * ca - aa * ca
# Check if the system of linear equations has a solution (using Cramer's rule)
if determinant == 0:
if determinant_x == determinant_y == 0:
raise ValueError('Infinite solutions. (Consistent system)' )
else:
raise ValueError('No solution. (Inconsistent system)' )
else:
if determinant_x == determinant_y == 0:
# Trivial solution (Inconsistent system)
return (0.0, 0.0)
else:
__lowerCamelCase = determinant_x / determinant
__lowerCamelCase = determinant_y / determinant
# Non-Trivial Solution (Consistent system)
return (x, y)
| 90 |
'''simple docstring'''
import warnings
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCamelCase : str = logging.get_logger(__name__)
lowerCamelCase : int = {
'RUCAIBox/mvp': 'https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json',
}
class __lowerCAmelCase (lowercase_ ):
'''simple docstring'''
lowerCAmelCase__ : Union[str, Any] = """mvp"""
lowerCAmelCase__ : Optional[Any] = ["""past_key_values"""]
lowerCAmelCase__ : List[str] = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""}
def __init__(self : Any , UpperCamelCase : Optional[int]=50267 , UpperCamelCase : Tuple=1024 , UpperCamelCase : int=12 , UpperCamelCase : Tuple=4096 , UpperCamelCase : Dict=16 , UpperCamelCase : int=12 , UpperCamelCase : Optional[int]=4096 , UpperCamelCase : Optional[int]=16 , UpperCamelCase : Tuple=0.0 , UpperCamelCase : Tuple=0.0 , UpperCamelCase : List[Any]="gelu" , UpperCamelCase : Union[str, Any]=1024 , UpperCamelCase : Optional[Any]=0.1 , UpperCamelCase : str=0.0 , UpperCamelCase : str=0.0 , UpperCamelCase : Optional[Any]=0.02 , UpperCamelCase : List[str]=0.0 , UpperCamelCase : List[str]=False , UpperCamelCase : Optional[int]=True , UpperCamelCase : Any=1 , UpperCamelCase : int=0 , UpperCamelCase : int=2 , UpperCamelCase : Any=True , UpperCamelCase : Optional[Any]=2 , UpperCamelCase : Optional[Any]=2 , UpperCamelCase : Tuple=False , UpperCamelCase : int=100 , UpperCamelCase : Optional[Any]=800 , **UpperCamelCase : str , ):
'''simple docstring'''
lowercase__ = vocab_size
lowercase__ = max_position_embeddings
lowercase__ = d_model
lowercase__ = encoder_ffn_dim
lowercase__ = encoder_layers
lowercase__ = encoder_attention_heads
lowercase__ = decoder_ffn_dim
lowercase__ = decoder_layers
lowercase__ = decoder_attention_heads
lowercase__ = dropout
lowercase__ = attention_dropout
lowercase__ = activation_dropout
lowercase__ = activation_function
lowercase__ = init_std
lowercase__ = encoder_layerdrop
lowercase__ = decoder_layerdrop
lowercase__ = classifier_dropout
lowercase__ = use_cache
lowercase__ = encoder_layers
lowercase__ = scale_embedding # scale factor will be sqrt(d_model) if True
lowercase__ = use_prompt
lowercase__ = prompt_length
lowercase__ = prompt_mid_dim
super().__init__(
pad_token_id=UpperCamelCase , bos_token_id=UpperCamelCase , eos_token_id=UpperCamelCase , is_encoder_decoder=UpperCamelCase , decoder_start_token_id=UpperCamelCase , forced_eos_token_id=UpperCamelCase , **UpperCamelCase , )
if self.forced_bos_token_id is None and kwargs.get('''force_bos_token_to_be_generated''' , UpperCamelCase ):
lowercase__ = self.bos_token_id
warnings.warn(
f"Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. "
'''The config can simply be saved and uploaded again to be fixed.''' )
| 2 | 0 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.