code
stringlengths
87
55.2k
code_codestyle
int64
0
349
style_context
stringlengths
135
49.1k
style_context_codestyle
int64
0
349
label
int64
0
1
import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowercase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): lowercase_ : Any =KandinskyVaaPriorPipeline lowercase_ : str =['''prompt'''] lowercase_ : Union[str, Any] =['''prompt''', '''negative_prompt'''] lowercase_ : Dict =[ '''num_images_per_prompt''', '''generator''', '''num_inference_steps''', '''latents''', '''negative_prompt''', '''guidance_scale''', '''output_type''', '''return_dict''', ] lowercase_ : List[str] =False @property def A__ ( self): return 3_2 @property def A__ ( self): return 3_2 @property def A__ ( self): return self.time_input_dim @property def A__ ( self): return self.time_input_dim * 4 @property def A__ ( self): return 1_0_0 @property def A__ ( self): lowercase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''') return tokenizer @property def A__ ( self): torch.manual_seed(0) lowercase = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=self.text_embedder_hidden_size ,projection_dim=self.text_embedder_hidden_size ,intermediate_size=3_7 ,layer_norm_eps=1E-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1_0_0_0 ,) return CLIPTextModelWithProjection(A__) @property def A__ ( self): torch.manual_seed(0) lowercase = { '''num_attention_heads''': 2, '''attention_head_dim''': 1_2, '''embedding_dim''': self.text_embedder_hidden_size, '''num_layers''': 1, } lowercase = PriorTransformer(**A__) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 lowercase = nn.Parameter(torch.ones(model.clip_std.shape)) return model @property def A__ ( self): torch.manual_seed(0) lowercase = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size ,image_size=2_2_4 ,projection_dim=self.text_embedder_hidden_size ,intermediate_size=3_7 ,num_attention_heads=4 ,num_channels=3 ,num_hidden_layers=5 ,patch_size=1_4 ,) lowercase = CLIPVisionModelWithProjection(A__) return model @property def A__ ( self): lowercase = CLIPImageProcessor( crop_size=2_2_4 ,do_center_crop=A__ ,do_normalize=A__ ,do_resize=A__ ,image_mean=[0.48145466, 0.4578275, 0.40821073] ,image_std=[0.26862954, 0.26130258, 0.27577711] ,resample=3 ,size=2_2_4 ,) return image_processor def A__ ( self): lowercase = self.dummy_prior lowercase = self.dummy_image_encoder lowercase = self.dummy_text_encoder lowercase = self.dummy_tokenizer lowercase = self.dummy_image_processor lowercase = UnCLIPScheduler( variance_type='''fixed_small_log''' ,prediction_type='''sample''' ,num_train_timesteps=1_0_0_0 ,clip_sample=A__ ,clip_sample_range=10.0 ,) lowercase = { '''prior''': prior, '''image_encoder''': image_encoder, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''scheduler''': scheduler, '''image_processor''': image_processor, } return components def A__ ( self ,A__ ,A__=0): if str(A__).startswith('''mps'''): lowercase = torch.manual_seed(A__) else: lowercase = torch.Generator(device=A__).manual_seed(A__) lowercase = { '''prompt''': '''horse''', '''generator''': generator, '''guidance_scale''': 4.0, '''num_inference_steps''': 2, '''output_type''': '''np''', } return inputs def A__ ( self): lowercase = '''cpu''' lowercase = self.get_dummy_components() lowercase = self.pipeline_class(**A__) lowercase = pipe.to(A__) pipe.set_progress_bar_config(disable=A__) lowercase = pipe(**self.get_dummy_inputs(A__)) lowercase = output.image_embeds lowercase = pipe( **self.get_dummy_inputs(A__) ,return_dict=A__ ,)[0] lowercase = image[0, -1_0:] lowercase = image_from_tuple[0, -1_0:] assert image.shape == (1, 3_2) lowercase = np.array( [-0.0532, 1.7120, 0.3656, -1.0852, -0.8946, -1.1756, 0.4348, 0.2482, 0.5146, -0.1156]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1E-2 @skip_mps def A__ ( self): lowercase = torch_device == '''cpu''' lowercase = True lowercase = False self._test_inference_batch_single_identical( test_max_difference=A__ ,relax_max_difference=A__ ,test_mean_pixel_difference=A__ ,) @skip_mps def A__ ( self): lowercase = torch_device == '''cpu''' lowercase = False self._test_attention_slicing_forward_pass( test_max_difference=A__ ,test_mean_pixel_difference=A__ ,)
101
'''simple docstring''' import argparse import torch from transformers import BertForMaskedLM if __name__ == "__main__": lowerCamelCase : List[str] = argparse.ArgumentParser( description=( 'Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned' ' Distillation' ) ) parser.add_argument('--model_type', default='bert', choices=['bert']) parser.add_argument('--model_name', default='bert-base-uncased', type=str) parser.add_argument('--dump_checkpoint', default='serialization_dir/tf_bert-base-uncased_0247911.pth', type=str) parser.add_argument('--vocab_transform', action='store_true') lowerCamelCase : str = parser.parse_args() if args.model_type == "bert": lowerCamelCase : List[Any] = BertForMaskedLM.from_pretrained(args.model_name) lowerCamelCase : Any = 'bert' else: raise ValueError('args.model_type should be "bert".') lowerCamelCase : int = model.state_dict() lowerCamelCase : int = {} for w in ["word_embeddings", "position_embeddings"]: lowerCamelCase : Any = state_dict[f"""{prefix}.embeddings.{w}.weight"""] for w in ["weight", "bias"]: lowerCamelCase : Any = state_dict[f"""{prefix}.embeddings.LayerNorm.{w}"""] lowerCamelCase : Tuple = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: for w in ["weight", "bias"]: lowerCamelCase : Dict = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}""" ] lowerCamelCase : Dict = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}""" ] lowerCamelCase : List[Any] = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}""" ] lowerCamelCase : Tuple = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}""" ] lowerCamelCase : Optional[int] = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}""" ] lowerCamelCase : Optional[Any] = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}""" ] lowerCamelCase : Dict = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}""" ] lowerCamelCase : Any = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}""" ] std_idx += 1 lowerCamelCase : Optional[int] = state_dict['cls.predictions.decoder.weight'] lowerCamelCase : str = state_dict['cls.predictions.bias'] if args.vocab_transform: for w in ["weight", "bias"]: lowerCamelCase : str = state_dict[f"""cls.predictions.transform.dense.{w}"""] lowerCamelCase : Any = state_dict[f"""cls.predictions.transform.LayerNorm.{w}"""] print(f"""N layers selected for distillation: {std_idx}""") print(f"""Number of params transferred for distillation: {len(compressed_sd.keys())}""") print(f"""Save transferred checkpoint to {args.dump_checkpoint}.""") torch.save(compressed_sd, args.dump_checkpoint)
2
0
"""simple docstring""" def lowercase ( ) ->Optional[Any]: """simple docstring""" __snake_case : Dict = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31] __snake_case : Optional[Any] = 6 __snake_case : Tuple = 1 __snake_case : Tuple = 1_901 __snake_case : Tuple = 0 while year < 2_001: day += 7 if (year % 4 == 0 and year % 100 != 0) or (year % 400 == 0): if day > days_per_month[month - 1] and month != 2: month += 1 __snake_case : str = day - days_per_month[month - 2] elif day > 29 and month == 2: month += 1 __snake_case : Optional[Any] = day - 29 else: if day > days_per_month[month - 1]: month += 1 __snake_case : Tuple = day - days_per_month[month - 2] if month > 12: year += 1 __snake_case : Tuple = 1 if year < 2_001 and day == 1: sundays += 1 return sundays if __name__ == "__main__": print(solution())
102
'''simple docstring''' from ....utils import logging lowerCamelCase : Optional[Any] = logging.get_logger(__name__) class __lowerCAmelCase (lowercase_ ): '''simple docstring''' def __init__(self : Optional[int] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Optional[Any]=None , UpperCamelCase : int=2048 ): '''simple docstring''' lowercase__ = config.__dict__ lowercase__ = modal_hidden_size if num_labels: lowercase__ = num_labels
2
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) A__ : Any = { '''configuration_owlvit''': [ '''OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''OwlViTConfig''', '''OwlViTOnnxConfig''', '''OwlViTTextConfig''', '''OwlViTVisionConfig''', ], '''processing_owlvit''': ['''OwlViTProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Union[str, Any] = ['''OwlViTFeatureExtractor'''] A__ : Optional[int] = ['''OwlViTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Any = [ '''OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''OwlViTModel''', '''OwlViTPreTrainedModel''', '''OwlViTTextModel''', '''OwlViTVisionModel''', '''OwlViTForObjectDetection''', ] if TYPE_CHECKING: from .configuration_owlvit import ( OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, OwlViTConfig, OwlViTOnnxConfig, OwlViTTextConfig, OwlViTVisionConfig, ) from .processing_owlvit import OwlViTProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_owlvit import OwlViTFeatureExtractor from .image_processing_owlvit import OwlViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_owlvit import ( OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST, OwlViTForObjectDetection, OwlViTModel, OwlViTPreTrainedModel, OwlViTTextModel, OwlViTVisionModel, ) else: import sys A__ : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
103
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Tuple = logging.get_logger(__name__) lowerCamelCase : Dict = { 'microsoft/cvt-13': 'https://huggingface.co/microsoft/cvt-13/resolve/main/config.json', # See all Cvt models at https://huggingface.co/models?filter=cvt } class __lowerCAmelCase (lowercase_ ): '''simple docstring''' lowerCAmelCase__ : Tuple = """cvt""" def __init__(self : int , UpperCamelCase : List[Any]=3 , UpperCamelCase : int=[7, 3, 3] , UpperCamelCase : str=[4, 2, 2] , UpperCamelCase : Dict=[2, 1, 1] , UpperCamelCase : Dict=[64, 192, 384] , UpperCamelCase : Dict=[1, 3, 6] , UpperCamelCase : Dict=[1, 2, 10] , UpperCamelCase : Any=[4.0, 4.0, 4.0] , UpperCamelCase : Optional[int]=[0.0, 0.0, 0.0] , UpperCamelCase : Optional[int]=[0.0, 0.0, 0.0] , UpperCamelCase : int=[0.0, 0.0, 0.1] , UpperCamelCase : Any=[True, True, True] , UpperCamelCase : int=[False, False, True] , UpperCamelCase : Union[str, Any]=["dw_bn", "dw_bn", "dw_bn"] , UpperCamelCase : Optional[int]=[3, 3, 3] , UpperCamelCase : Tuple=[1, 1, 1] , UpperCamelCase : Any=[2, 2, 2] , UpperCamelCase : Dict=[1, 1, 1] , UpperCamelCase : List[str]=[1, 1, 1] , UpperCamelCase : str=0.02 , UpperCamelCase : int=1E-12 , **UpperCamelCase : Union[str, Any] , ): '''simple docstring''' super().__init__(**UpperCamelCase ) lowercase__ = num_channels lowercase__ = patch_sizes lowercase__ = patch_stride lowercase__ = patch_padding lowercase__ = embed_dim lowercase__ = num_heads lowercase__ = depth lowercase__ = mlp_ratio lowercase__ = attention_drop_rate lowercase__ = drop_rate lowercase__ = drop_path_rate lowercase__ = qkv_bias lowercase__ = cls_token lowercase__ = qkv_projection_method lowercase__ = kernel_qkv lowercase__ = padding_kv lowercase__ = stride_kv lowercase__ = padding_q lowercase__ = stride_q lowercase__ = initializer_range lowercase__ = layer_norm_eps
2
0
'''simple docstring''' import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import VideoMAEConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEModel, ) from transformers.models.videomae.modeling_videomae import VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class lowercase_ : """simple docstring""" def __init__( self : str ,lowercase__ : int ,lowercase__ : List[str]=1_3 ,lowercase__ : List[str]=1_0 ,lowercase__ : int=3 ,lowercase__ : Tuple=2 ,lowercase__ : Union[str, Any]=2 ,lowercase__ : List[str]=2 ,lowercase__ : List[Any]=True ,lowercase__ : Any=True ,lowercase__ : Optional[int]=3_2 ,lowercase__ : List[str]=5 ,lowercase__ : Tuple=4 ,lowercase__ : str=3_7 ,lowercase__ : List[Any]="gelu" ,lowercase__ : Dict=0.1 ,lowercase__ : Any=0.1 ,lowercase__ : str=1_0 ,lowercase__ : Any=0.0_2 ,lowercase__ : Tuple=0.9 ,lowercase__ : Tuple=None ,): __lowercase = parent __lowercase = batch_size __lowercase = image_size __lowercase = num_channels __lowercase = patch_size __lowercase = tubelet_size __lowercase = num_frames __lowercase = is_training __lowercase = use_labels __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = type_sequence_label_size __lowercase = initializer_range __lowercase = mask_ratio __lowercase = scope # in VideoMAE, the number of tokens equals num_frames/tubelet_size * num_patches per frame __lowercase = (image_size // patch_size) ** 2 __lowercase = (num_frames // tubelet_size) * self.num_patches_per_frame # use this variable to define bool_masked_pos __lowercase = int(mask_ratio * self.seq_length ) def SCREAMING_SNAKE_CASE ( self : Any ): __lowercase = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) __lowercase = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE ( self : List[str] ): return VideoMAEConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,num_frames=self.num_frames ,tubelet_size=self.tubelet_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=lowercase__ ,initializer_range=self.initializer_range ,) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : int ,lowercase__ : Any ,lowercase__ : Optional[Any] ): __lowercase = VideoMAEModel(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model(lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : Optional[Any] ,lowercase__ : Any ,lowercase__ : Any ): __lowercase = VideoMAEForPreTraining(lowercase__ ) model.to(lowercase__ ) model.eval() # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch __lowercase = torch.ones((self.num_masks,) ) __lowercase = torch.cat([mask, torch.zeros(self.seq_length - mask.size(0 ) )] ) __lowercase = mask.expand(self.batch_size ,-1 ).bool() __lowercase = model(lowercase__ ,lowercase__ ) # model only returns predictions for masked patches __lowercase = mask.sum().item() __lowercase = 3 * self.tubelet_size * self.patch_size**2 self.parent.assertEqual(result.logits.shape ,(self.batch_size, num_masked_patches, decoder_num_labels) ) def SCREAMING_SNAKE_CASE ( self : Tuple ): __lowercase = self.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase = config_and_inputs __lowercase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class lowercase_ (lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = ( (VideoMAEModel, VideoMAEForPreTraining, VideoMAEForVideoClassification) if is_torch_available() else () ) SCREAMING_SNAKE_CASE : int = ( {'feature-extraction': VideoMAEModel, 'video-classification': VideoMAEForVideoClassification} if is_torch_available() else {} ) SCREAMING_SNAKE_CASE : str = False SCREAMING_SNAKE_CASE : Any = False SCREAMING_SNAKE_CASE : str = False SCREAMING_SNAKE_CASE : Union[str, Any] = False def SCREAMING_SNAKE_CASE ( self : Any ): __lowercase = VideoMAEModelTester(self ) __lowercase = ConfigTester(self ,config_class=lowercase__ ,has_text_modality=lowercase__ ,hidden_size=3_7 ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : Tuple ,lowercase__ : List[str] ,lowercase__ : List[str]=False ): __lowercase = copy.deepcopy(lowercase__ ) if model_class == VideoMAEForPreTraining: # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch __lowercase = torch.ones((self.model_tester.num_masks,) ) __lowercase = torch.cat([mask, torch.zeros(self.model_tester.seq_length - mask.size(0 ) )] ) __lowercase = mask.expand(self.model_tester.batch_size ,-1 ).bool() __lowercase = bool_masked_pos.to(lowercase__ ) if return_labels: if model_class in [ *get_values(lowercase__ ), ]: __lowercase = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=lowercase__ ) return inputs_dict def SCREAMING_SNAKE_CASE ( self : str ): self.config_tester.run_common_tests() @unittest.skip(reason='''VideoMAE does not use inputs_embeds''' ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): pass def SCREAMING_SNAKE_CASE ( self : str ): __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(lowercase__ ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) __lowercase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowercase__ ,nn.Linear ) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(lowercase__ ) __lowercase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase = [*signature.parameters.keys()] __lowercase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : str ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowercase__ ) @slow def SCREAMING_SNAKE_CASE ( self : Any ): for model_name in VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = VideoMAEModel.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): if not self.has_attentions: pass else: __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() __lowercase = True for model_class in self.all_model_classes: __lowercase = self.model_tester.seq_length - self.model_tester.num_masks __lowercase = ( num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length ) __lowercase = True __lowercase = False __lowercase = True __lowercase = model_class(lowercase__ ) model.to(lowercase__ ) model.eval() with torch.no_grad(): __lowercase = model(**self._prepare_for_class(lowercase__ ,lowercase__ ) ) __lowercase = outputs.attentions self.assertEqual(len(lowercase__ ) ,self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __lowercase = True __lowercase = model_class(lowercase__ ) model.to(lowercase__ ) model.eval() with torch.no_grad(): __lowercase = model(**self._prepare_for_class(lowercase__ ,lowercase__ ) ) __lowercase = outputs.attentions self.assertEqual(len(lowercase__ ) ,self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads, seq_len, seq_len] ,) __lowercase = len(lowercase__ ) # Check attention is always last and order is fine __lowercase = True __lowercase = True __lowercase = model_class(lowercase__ ) model.to(lowercase__ ) model.eval() with torch.no_grad(): __lowercase = model(**self._prepare_for_class(lowercase__ ,lowercase__ ) ) self.assertEqual(out_len + 1 ,len(lowercase__ ) ) __lowercase = outputs.attentions self.assertEqual(len(lowercase__ ) ,self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads, seq_len, seq_len] ,) def SCREAMING_SNAKE_CASE ( self : Dict ): def check_hidden_states_output(lowercase__ : List[str] ,lowercase__ : int ,lowercase__ : int ): __lowercase = model_class(lowercase__ ) model.to(lowercase__ ) model.eval() with torch.no_grad(): __lowercase = model(**self._prepare_for_class(lowercase__ ,lowercase__ ) ) __lowercase = outputs.hidden_states __lowercase = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(lowercase__ ) ,lowercase__ ) __lowercase = self.model_tester.seq_length - self.model_tester.num_masks __lowercase = num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[seq_length, self.model_tester.hidden_size] ,) __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = True check_hidden_states_output(lowercase__ ,lowercase__ ,lowercase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowercase = True check_hidden_states_output(lowercase__ ,lowercase__ ,lowercase__ ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def SCREAMING_SNAKE_CASE ( self : Tuple ): pass def _A ( ): """simple docstring""" __lowercase = hf_hub_download( repo_id='''hf-internal-testing/spaghetti-video''' , filename='''eating_spaghetti.npy''' , repo_type='''dataset''' ) __lowercase = np.load(A__ ) return list(A__ ) @require_torch @require_vision class lowercase_ (unittest.TestCase ): """simple docstring""" @cached_property def SCREAMING_SNAKE_CASE ( self : List[str] ): # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] ,image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = VideoMAEForVideoClassification.from_pretrained('''MCG-NJU/videomae-base-finetuned-kinetics''' ).to( lowercase__ ) __lowercase = self.default_image_processor __lowercase = prepare_video() __lowercase = image_processor(lowercase__ ,return_tensors='''pt''' ).to(lowercase__ ) # forward pass with torch.no_grad(): __lowercase = model(**lowercase__ ) # verify the logits __lowercase = torch.Size((1, 4_0_0) ) self.assertEqual(outputs.logits.shape ,lowercase__ ) __lowercase = torch.tensor([0.3_6_6_9, -0.0_6_8_8, -0.2_4_2_1] ).to(lowercase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,lowercase__ ,atol=1e-4 ) ) @slow def SCREAMING_SNAKE_CASE ( self : Tuple ): __lowercase = VideoMAEForPreTraining.from_pretrained('''MCG-NJU/videomae-base-short''' ).to(lowercase__ ) __lowercase = self.default_image_processor __lowercase = prepare_video() __lowercase = image_processor(lowercase__ ,return_tensors='''pt''' ).to(lowercase__ ) # add boolean mask, indicating which patches to mask __lowercase = hf_hub_download(repo_id='''hf-internal-testing/bool-masked-pos''' ,filename='''bool_masked_pos.pt''' ) __lowercase = torch.load(lowercase__ ) # forward pass with torch.no_grad(): __lowercase = model(**lowercase__ ) # verify the logits __lowercase = torch.Size([1, 1_4_0_8, 1_5_3_6] ) __lowercase = torch.tensor( [[0.7_9_9_4, 0.9_6_1_2, 0.8_5_0_8], [0.7_4_0_1, 0.8_9_5_8, 0.8_3_0_2], [0.5_8_6_2, 0.7_4_6_8, 0.7_3_2_5]] ,device=lowercase__ ) self.assertEqual(outputs.logits.shape ,lowercase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] ,lowercase__ ,atol=1e-4 ) ) # verify the loss (`config.norm_pix_loss` = `True`) __lowercase = torch.tensor([0.5_1_4_2] ,device=lowercase__ ) self.assertTrue(torch.allclose(outputs.loss ,lowercase__ ,atol=1e-4 ) ) # verify the loss (`config.norm_pix_loss` = `False`) __lowercase = VideoMAEForPreTraining.from_pretrained('''MCG-NJU/videomae-base-short''' ,norm_pix_loss=lowercase__ ).to( lowercase__ ) with torch.no_grad(): __lowercase = model(**lowercase__ ) __lowercase = torch.tensor(torch.tensor([0.6_4_6_9] ) ,device=lowercase__ ) self.assertTrue(torch.allclose(outputs.loss ,lowercase__ ,atol=1e-4 ) )
104
'''simple docstring''' import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) lowerCamelCase : Any = models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(32, (3, 3), input_shape=(64, 64, 3), activation='relu') ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(32, (3, 3), activation='relu')) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=128, activation='relu')) classifier.add(layers.Dense(units=1, activation='sigmoid')) # Compiling the CNN classifier.compile( optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') lowerCamelCase : Optional[Any] = tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) lowerCamelCase : Any = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 255) lowerCamelCase : List[Any] = train_datagen.flow_from_directory( 'dataset/training_set', target_size=(64, 64), batch_size=32, class_mode='binary' ) lowerCamelCase : List[str] = test_datagen.flow_from_directory( 'dataset/test_set', target_size=(64, 64), batch_size=32, class_mode='binary' ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=30, validation_data=test_set ) classifier.save('cnn.h5') # Part 3 - Making new predictions lowerCamelCase : List[str] = tf.keras.preprocessing.image.load_img( 'dataset/single_prediction/image.png', target_size=(64, 64) ) lowerCamelCase : Optional[int] = tf.keras.preprocessing.image.img_to_array(test_image) lowerCamelCase : str = np.expand_dims(test_image, axis=0) lowerCamelCase : List[str] = classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: lowerCamelCase : Any = 'Normal' if result[0][0] == 1: lowerCamelCase : Any = 'Abnormality detected'
2
0
"""simple docstring""" import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class __UpperCamelCase ( a__ , unittest.TestCase ): # FIXME: add fast tests pass @nightly @require_onnxruntime @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): @property def __a ( self ) -> Optional[int]: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def __a ( self ) -> Any: a : Union[str, Any] = ort.SessionOptions() a : Any = False return options def __a ( self ) -> Dict: a : List[str] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo.png" ) a : List[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo_mask.png" ) a : int = OnnxStableDiffusionInpaintPipeline.from_pretrained( "runwayml/stable-diffusion-inpainting" , revision="onnx" , safety_checker=lowerCAmelCase__ , feature_extractor=lowerCAmelCase__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) a : Optional[int] = "A red cat sitting on a park bench" a : Dict = np.random.RandomState(0 ) a : str = pipe( prompt=lowerCAmelCase__ , image=lowerCAmelCase__ , mask_image=lowerCAmelCase__ , guidance_scale=7.5 , num_inference_steps=10 , generator=lowerCAmelCase__ , output_type="np" , ) a : Union[str, Any] = output.images a : str = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) a : int = np.array([0.2_514, 0.3_007, 0.3_517, 0.1_790, 0.2_382, 0.3_167, 0.1_944, 0.2_273, 0.2_464] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def __a ( self ) -> Tuple: a : Union[str, Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo.png" ) a : Union[str, Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo_mask.png" ) a : Dict = LMSDiscreteScheduler.from_pretrained( "runwayml/stable-diffusion-inpainting" , subfolder="scheduler" , revision="onnx" ) a : Union[str, Any] = OnnxStableDiffusionInpaintPipeline.from_pretrained( "runwayml/stable-diffusion-inpainting" , revision="onnx" , scheduler=lowerCAmelCase__ , safety_checker=lowerCAmelCase__ , feature_extractor=lowerCAmelCase__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) a : List[Any] = "A red cat sitting on a park bench" a : List[Any] = np.random.RandomState(0 ) a : List[Any] = pipe( prompt=lowerCAmelCase__ , image=lowerCAmelCase__ , mask_image=lowerCAmelCase__ , guidance_scale=7.5 , num_inference_steps=20 , generator=lowerCAmelCase__ , output_type="np" , ) a : Any = output.images a : List[Any] = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) a : Any = np.array([0.0_086, 0.0_077, 0.0_083, 0.0_093, 0.0_107, 0.0_139, 0.0_094, 0.0_097, 0.0_125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
105
'''simple docstring''' class __lowerCAmelCase : # Public class to implement a graph '''simple docstring''' def __init__(self : int , UpperCamelCase : int , UpperCamelCase : int , UpperCamelCase : list[list[bool]] ): '''simple docstring''' lowercase__ = row lowercase__ = col lowercase__ = graph def UpperCamelCase__ (self : Optional[int] , UpperCamelCase : int , UpperCamelCase : int , UpperCamelCase : list[list[bool]] ): '''simple docstring''' return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def UpperCamelCase__ (self : int , UpperCamelCase : int , UpperCamelCase : int , UpperCamelCase : list[list[bool]] ): '''simple docstring''' lowercase__ = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order lowercase__ = [-1, 0, 1, -1, 1, -1, 0, 1] lowercase__ = True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , UpperCamelCase ): self.diffs(i + row_nbr[k] , j + col_nbr[k] , UpperCamelCase ) def UpperCamelCase__ (self : Dict ): # And finally, count all islands. '''simple docstring''' lowercase__ = [[False for j in range(self.COL )] for i in range(self.ROW )] lowercase__ = 0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(UpperCamelCase , UpperCamelCase , UpperCamelCase ) count += 1 return count
2
0
"""simple docstring""" def __SCREAMING_SNAKE_CASE ( A_ ): lowerCAmelCase__ : Union[str, Any] = len(A_ ) for i in range(length - 1 ): lowerCAmelCase__ : Tuple = i for k in range(i + 1 , A_ ): if collection[k] < collection[least]: lowerCAmelCase__ : Optional[int] = k if least != i: lowerCAmelCase__ ,lowerCAmelCase__ : List[str] = (collection[i], collection[least]) return collection if __name__ == "__main__": __UpperCamelCase : Dict = input('''Enter numbers separated by a comma:\n''').strip() __UpperCamelCase : List[Any] = [int(item) for item in user_input.split(''',''')] print(selection_sort(unsorted))
106
'''simple docstring''' import unittest from transformers import DonutProcessor lowerCamelCase : Tuple = 'naver-clova-ix/donut-base' class __lowerCAmelCase (unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ (self : int ): '''simple docstring''' lowercase__ = DonutProcessor.from_pretrained(UpperCamelCase ) def UpperCamelCase__ (self : Tuple ): '''simple docstring''' lowercase__ = { '''name''': '''John Doe''', '''age''': '''99''', '''city''': '''Atlanta''', '''state''': '''GA''', '''zip''': '''30301''', '''phone''': '''123-4567''', '''nicknames''': [{'''nickname''': '''Johnny'''}, {'''nickname''': '''JD'''}], } lowercase__ = ( '''<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>''' '''<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>''' '''<s_nicknames><s_nickname>Johnny</s_nickname>''' '''<sep/><s_nickname>JD</s_nickname></s_nicknames>''' ) lowercase__ = self.processor.tokenajson(UpperCamelCase ) self.assertDictEqual(UpperCamelCase , UpperCamelCase )
2
0
import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from tensorflow.python.eager import context from tensorflow.python.framework import ops from transformers import GradientAccumulator, create_optimizer @require_tf class snake_case__ (unittest.TestCase ): """simple docstring""" def __UpperCAmelCase ( self : Optional[int] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[Any] ) -> Dict: self.assertEqual(len(__lowerCamelCase ) , len(__lowerCamelCase ) ) for a, b in zip(__lowerCamelCase , __lowerCamelCase ): self.assertAlmostEqual(__lowerCamelCase , __lowerCamelCase , delta=__lowerCamelCase ) def __UpperCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: a = GradientAccumulator() accumulator([tf.constant([1.0, 2.0] )] ) accumulator([tf.constant([-2.0, 1.0] )] ) accumulator([tf.constant([-1.0, 2.0] )] ) with self.assertRaises(__lowerCamelCase ): accumulator([tf.constant([1.0, 1.0] ), tf.constant([2.0, 2.0] )] ) self.assertEqual(accumulator.step , 3 ) self.assertEqual(len(accumulator.gradients ) , 1 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [-2.0, 5.0] , tol=1e-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [0.0, 0.0] , tol=1e-2 ) def __UpperCAmelCase ( self : Dict ) -> int: a = None ops.enable_eager_execution_internal() a = tf.config.list_physical_devices("CPU" ) if len(__lowerCamelCase ) == 1: tf.config.set_logical_device_configuration( physical_devices[0] , [tf.config.LogicalDeviceConfiguration(), tf.config.LogicalDeviceConfiguration()] ) a = tf.config.list_logical_devices(device_type="CPU" ) a = tf.distribute.MirroredStrategy(devices=devices[:2] ) with strategy.scope(): a = GradientAccumulator() a = tf.Variable([4.0, 3.0] ) a , a = create_optimizer(5e-5 , 10 , 5 ) a = tf.Variable([0.0, 0.0] , trainable=__lowerCamelCase ) def accumulate_on_replica(__lowerCamelCase : Dict ): accumulator([gradient] ) def apply_on_replica(): optimizer.apply_gradients(list(zip(accumulator.gradients , [variable] ) ) ) @tf.function def accumulate(__lowerCamelCase : Dict , __lowerCamelCase : Dict ): with strategy.scope(): a = strategy.experimental_local_results(__lowerCamelCase ) local_variables[0].assign(__lowerCamelCase ) local_variables[1].assign(__lowerCamelCase ) strategy.run(__lowerCamelCase , args=(gradient_placeholder,) ) @tf.function def apply_grad(): with strategy.scope(): strategy.run(__lowerCamelCase ) def _check_local_values(__lowerCamelCase : Union[str, Any] , __lowerCamelCase : Dict ): a = strategy.experimental_local_results(accumulator._gradients[0] ) self.assertListAlmostEqual(values[0].value() , __lowerCamelCase , tol=1e-2 ) self.assertListAlmostEqual(values[1].value() , __lowerCamelCase , tol=1e-2 ) accumulate([1.0, 2.0] , [-1.0, 1.0] ) accumulate([3.0, -1.0] , [-1.0, -1.0] ) accumulate([-2.0, 2.0] , [3.0, -2.0] ) self.assertEqual(accumulator.step , 3 ) _check_local_values([2.0, 3.0] , [1.0, -2.0] ) apply_grad() self.assertListAlmostEqual(variable.value() , [4.0, 3.0] , tol=1e-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) _check_local_values([0.0, 0.0] , [0.0, 0.0] )
107
'''simple docstring''' from __future__ import annotations def _SCREAMING_SNAKE_CASE (A ) -> bool: """simple docstring""" return len(set(A ) ) == len(A ) if __name__ == "__main__": import doctest doctest.testmod()
2
0
"""simple docstring""" from math import sqrt def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and ( number >= 0 ), "'number' must been an int and positive" lowerCAmelCase : Any = True # 0 and 1 are none primes. if number <= 1: lowerCAmelCase : Any = False for divisor in range(2 , int(round(sqrt(SCREAMING_SNAKE_CASE ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: lowerCAmelCase : Optional[Any] = False break # precondition assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ), "'status' must been from type bool" return status def a__ ( SCREAMING_SNAKE_CASE : str ): '''simple docstring''' assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N lowerCAmelCase : Tuple = list(range(2 , n + 1 ) ) lowerCAmelCase : List[Any] = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(SCREAMING_SNAKE_CASE ) ): for j in range(i + 1 , len(SCREAMING_SNAKE_CASE ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): lowerCAmelCase : Tuple = 0 # filters actual prime numbers. lowerCAmelCase : str = [x for x in begin_list if x != 0] # precondition assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ), "'ans' must been from type list" return ans def a__ ( SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and (n > 2), "'N' must been an int and > 2" lowerCAmelCase : str = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(SCREAMING_SNAKE_CASE ): ans.append(SCREAMING_SNAKE_CASE ) # precondition assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ), "'ans' must been from type list" return ans def a__ ( SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and number >= 0, "'number' must been an int and >= 0" lowerCAmelCase : Optional[Any] = [] # this list will be returns of the function. # potential prime number factors. lowerCAmelCase : Optional[Any] = 2 lowerCAmelCase : Optional[Any] = number if number == 0 or number == 1: ans.append(SCREAMING_SNAKE_CASE ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(SCREAMING_SNAKE_CASE ): while quotient != 1: if is_prime(SCREAMING_SNAKE_CASE ) and (quotient % factor == 0): ans.append(SCREAMING_SNAKE_CASE ) quotient /= factor else: factor += 1 else: ans.append(SCREAMING_SNAKE_CASE ) # precondition assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ), "'ans' must been from type list" return ans def a__ ( SCREAMING_SNAKE_CASE : str ): '''simple docstring''' assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and ( number >= 0 ), "'number' bust been an int and >= 0" lowerCAmelCase : List[Any] = 0 # prime factorization of 'number' lowerCAmelCase : Union[str, Any] = prime_factorization(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Any = max(SCREAMING_SNAKE_CASE ) # precondition assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ), "'ans' must been from type int" return ans def a__ ( SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and ( number >= 0 ), "'number' bust been an int and >= 0" lowerCAmelCase : Any = 0 # prime factorization of 'number' lowerCAmelCase : str = prime_factorization(SCREAMING_SNAKE_CASE ) lowerCAmelCase : List[Any] = min(SCREAMING_SNAKE_CASE ) # precondition assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ), "'ans' must been from type int" return ans def a__ ( SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ), "'number' must been an int" assert isinstance(number % 2 == 0 , SCREAMING_SNAKE_CASE ), "compare bust been from type bool" return number % 2 == 0 def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ), "'number' must been an int" assert isinstance(number % 2 != 0 , SCREAMING_SNAKE_CASE ), "compare bust been from type bool" return number % 2 != 0 def a__ ( SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' assert ( isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and (number > 2) and is_even(SCREAMING_SNAKE_CASE ) ), "'number' must been an int, even and > 2" lowerCAmelCase : str = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' lowerCAmelCase : Any = get_prime_numbers(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Optional[int] = len(SCREAMING_SNAKE_CASE ) # run variable for while-loops. lowerCAmelCase : Dict = 0 lowerCAmelCase : Optional[int] = None # exit variable. for break up the loops lowerCAmelCase : Optional[int] = True while i < len_pn and loop: lowerCAmelCase : int = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: lowerCAmelCase : Dict = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and (len(SCREAMING_SNAKE_CASE ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def a__ ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' assert ( isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." lowerCAmelCase : int = 0 while numbera != 0: lowerCAmelCase : Dict = numbera % numbera lowerCAmelCase : int = numbera lowerCAmelCase : Optional[Any] = rest # precondition assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def a__ ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' assert ( isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." lowerCAmelCase : List[str] = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' lowerCAmelCase : Dict = prime_factorization(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Optional[int] = prime_factorization(SCREAMING_SNAKE_CASE ) elif numbera == 1 or numbera == 1: lowerCAmelCase : Any = [] lowerCAmelCase : Tuple = [] lowerCAmelCase : List[str] = max(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowerCAmelCase : Optional[int] = 0 lowerCAmelCase : Optional[Any] = 0 lowerCAmelCase : Union[str, Any] = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: lowerCAmelCase : Any = prime_fac_a.count(SCREAMING_SNAKE_CASE ) lowerCAmelCase : int = prime_fac_a.count(SCREAMING_SNAKE_CASE ) for _ in range(max(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ): ans *= n else: lowerCAmelCase : List[str] = prime_fac_a.count(SCREAMING_SNAKE_CASE ) for _ in range(SCREAMING_SNAKE_CASE ): ans *= n done.append(SCREAMING_SNAKE_CASE ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: lowerCAmelCase : Any = prime_fac_a.count(SCREAMING_SNAKE_CASE ) for _ in range(SCREAMING_SNAKE_CASE ): ans *= n done.append(SCREAMING_SNAKE_CASE ) # precondition assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def a__ ( SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and (n >= 0), "'number' must been a positive int" lowerCAmelCase : int = 0 lowerCAmelCase : Tuple = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(SCREAMING_SNAKE_CASE ): ans += 1 # precondition assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and is_prime( SCREAMING_SNAKE_CASE ), "'ans' must been a prime number and from type int" return ans def a__ ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' assert ( is_prime(SCREAMING_SNAKE_CASE ) and is_prime(SCREAMING_SNAKE_CASE ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" lowerCAmelCase : List[Any] = p_number_a + 1 # jump to the next number lowerCAmelCase : Tuple = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(SCREAMING_SNAKE_CASE ): number += 1 while number < p_number_a: ans.append(SCREAMING_SNAKE_CASE ) number += 1 # fetch the next prime number. while not is_prime(SCREAMING_SNAKE_CASE ): number += 1 # precondition assert ( isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and ans[0] != p_number_a and ans[len(SCREAMING_SNAKE_CASE ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def a__ ( SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and (n >= 1), "'n' must been int and >= 1" lowerCAmelCase : Any = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(SCREAMING_SNAKE_CASE ) # precondition assert ans[0] == 1 and ans[len(SCREAMING_SNAKE_CASE ) - 1] == n, "Error in function getDivisiors(...)" return ans def a__ ( SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and ( number > 1 ), "'number' must been an int and >= 1" lowerCAmelCase : Any = get_divisors(SCREAMING_SNAKE_CASE ) # precondition assert ( isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and (divisors[0] == 1) and (divisors[len(SCREAMING_SNAKE_CASE ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def a__ ( SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' assert ( isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. lowerCAmelCase : Any = gcd(abs(SCREAMING_SNAKE_CASE ) , abs(SCREAMING_SNAKE_CASE ) ) # precondition assert ( isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def a__ ( SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and (n >= 0), "'n' must been a int and >= 0" lowerCAmelCase : Any = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def a__ ( SCREAMING_SNAKE_CASE : str ): '''simple docstring''' assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and (n >= 0), "'n' must been an int and >= 0" lowerCAmelCase : Union[str, Any] = 0 lowerCAmelCase : Tuple = 1 lowerCAmelCase : Any = 1 # this will be return for _ in range(n - 1 ): lowerCAmelCase : List[str] = ans ans += fiba lowerCAmelCase : Optional[Any] = tmp return ans
108
'''simple docstring''' import os import re import warnings from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_ta import TaTokenizer else: lowerCamelCase : Any = None lowerCamelCase : Dict = logging.get_logger(__name__) lowerCamelCase : Optional[int] = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} lowerCamelCase : List[str] = { 'vocab_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/spiece.model', 't5-base': 'https://huggingface.co/t5-base/resolve/main/spiece.model', 't5-large': 'https://huggingface.co/t5-large/resolve/main/spiece.model', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/spiece.model', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/spiece.model', }, 'tokenizer_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/tokenizer.json', 't5-base': 'https://huggingface.co/t5-base/resolve/main/tokenizer.json', 't5-large': 'https://huggingface.co/t5-large/resolve/main/tokenizer.json', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/tokenizer.json', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/tokenizer.json', }, } # TODO(PVP) - this should be removed in Transformers v5 lowerCamelCase : Any = { 't5-small': 512, 't5-base': 512, 't5-large': 512, 't5-3b': 512, 't5-11b': 512, } class __lowerCAmelCase (lowercase_ ): '''simple docstring''' lowerCAmelCase__ : List[str] = VOCAB_FILES_NAMES lowerCAmelCase__ : str = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ : int = ["""input_ids""", """attention_mask"""] lowerCAmelCase__ : Optional[int] = TaTokenizer lowerCAmelCase__ : List[int] = [] def __init__(self : Dict , UpperCamelCase : str=None , UpperCamelCase : Optional[Any]=None , UpperCamelCase : Any="</s>" , UpperCamelCase : str="<unk>" , UpperCamelCase : List[str]="<pad>" , UpperCamelCase : List[str]=100 , UpperCamelCase : Tuple=None , **UpperCamelCase : List[str] , ): '''simple docstring''' if extra_ids > 0 and additional_special_tokens is None: lowercase__ = [f"<extra_id_{i}>" for i in range(UpperCamelCase )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra special tokens lowercase__ = len(set(filter(lambda UpperCamelCase : bool('''extra_id_''' in str(UpperCamelCase ) ) , UpperCamelCase ) ) ) if extra_tokens != extra_ids: raise ValueError( f"Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are" ''' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids''' ''' tokens''' ) super().__init__( UpperCamelCase , tokenizer_file=UpperCamelCase , eos_token=UpperCamelCase , unk_token=UpperCamelCase , pad_token=UpperCamelCase , extra_ids=UpperCamelCase , additional_special_tokens=UpperCamelCase , **UpperCamelCase , ) lowercase__ = vocab_file lowercase__ = False if not self.vocab_file else True lowercase__ = extra_ids @staticmethod def UpperCamelCase__ (UpperCamelCase : List[Any] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Optional[Any] ): '''simple docstring''' if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes: lowercase__ = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( '''This tokenizer was incorrectly instantiated with a model max length of''' f" {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this" ''' behavior is kept to avoid breaking backwards compatibility when padding/encoding with''' ''' `truncation is True`.\n- Be aware that you SHOULD NOT rely on''' f" {pretrained_model_name_or_path} automatically truncating your input to" f" {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences" f" longer than {deprecated_max_model_length} you can either instantiate this tokenizer with" ''' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please''' ''' instantiate this tokenizer with `model_max_length` set to your preferred value.''' , UpperCamelCase , ) return max_model_length def UpperCamelCase__ (self : Any , UpperCamelCase : str , UpperCamelCase : Optional[str] = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(UpperCamelCase ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return lowercase__ = os.path.join( UpperCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase ): copyfile(self.vocab_file , UpperCamelCase ) logger.info(f"Copy vocab file to {out_vocab_file}" ) return (out_vocab_file,) def UpperCamelCase__ (self : Any , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None ): '''simple docstring''' lowercase__ = token_ids_a + [self.eos_token_id] if token_ids_a is None: return self.prefix_tokens + token_ids_a else: lowercase__ = token_ids_a + [self.eos_token_id] return self.prefix_tokens + token_ids_a + token_ids_a def UpperCamelCase__ (self : Optional[Any] , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None ): '''simple docstring''' lowercase__ = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def UpperCamelCase__ (self : List[Any] ): '''simple docstring''' return list( set(filter(lambda UpperCamelCase : bool(re.search(R'''<extra_id_\d+>''' , UpperCamelCase ) ) is not None , self.additional_special_tokens ) ) ) def UpperCamelCase__ (self : Union[str, Any] ): '''simple docstring''' return [self.convert_tokens_to_ids(UpperCamelCase ) for token in self.get_sentinel_tokens()]
2
0
"""simple docstring""" import numpy as np def _snake_case ( UpperCamelCase : np.array ): return 1 / (1 + np.exp(-vector )) def _snake_case ( UpperCamelCase : np.array ): return vector * sigmoid(1.702 * vector ) if __name__ == "__main__": import doctest doctest.testmod()
109
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class __lowerCAmelCase (lowercase_ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ : Dict = ShapEImgaImgPipeline lowerCAmelCase__ : List[str] = ["""image"""] lowerCAmelCase__ : Any = ["""image"""] lowerCAmelCase__ : Any = [ """num_images_per_prompt""", """num_inference_steps""", """generator""", """latents""", """guidance_scale""", """frame_size""", """output_type""", """return_dict""", ] lowerCAmelCase__ : Tuple = False @property def UpperCamelCase__ (self : List[Any] ): '''simple docstring''' return 32 @property def UpperCamelCase__ (self : str ): '''simple docstring''' return 32 @property def UpperCamelCase__ (self : Union[str, Any] ): '''simple docstring''' return self.time_input_dim * 4 @property def UpperCamelCase__ (self : int ): '''simple docstring''' return 8 @property def UpperCamelCase__ (self : Any ): '''simple docstring''' torch.manual_seed(0 ) lowercase__ = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) lowercase__ = CLIPVisionModel(UpperCamelCase ) return model @property def UpperCamelCase__ (self : List[Any] ): '''simple docstring''' lowercase__ = CLIPImageProcessor( crop_size=224 , do_center_crop=UpperCamelCase , do_normalize=UpperCamelCase , do_resize=UpperCamelCase , image_mean=[0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73] , image_std=[0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11] , resample=3 , size=224 , ) return image_processor @property def UpperCamelCase__ (self : str ): '''simple docstring''' torch.manual_seed(0 ) lowercase__ = { '''num_attention_heads''': 2, '''attention_head_dim''': 16, '''embedding_dim''': self.time_input_dim, '''num_embeddings''': 32, '''embedding_proj_dim''': self.text_embedder_hidden_size, '''time_embed_dim''': self.time_embed_dim, '''num_layers''': 1, '''clip_embed_dim''': self.time_input_dim * 2, '''additional_embeddings''': 0, '''time_embed_act_fn''': '''gelu''', '''norm_in_type''': '''layer''', '''embedding_proj_norm_type''': '''layer''', '''encoder_hid_proj_type''': None, '''added_emb_type''': None, } lowercase__ = PriorTransformer(**UpperCamelCase ) return model @property def UpperCamelCase__ (self : int ): '''simple docstring''' torch.manual_seed(0 ) lowercase__ = { '''param_shapes''': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), '''d_latent''': self.time_input_dim, '''d_hidden''': self.renderer_dim, '''n_output''': 12, '''background''': ( 0.1, 0.1, 0.1, ), } lowercase__ = ShapERenderer(**UpperCamelCase ) return model def UpperCamelCase__ (self : Union[str, Any] ): '''simple docstring''' lowercase__ = self.dummy_prior lowercase__ = self.dummy_image_encoder lowercase__ = self.dummy_image_processor lowercase__ = self.dummy_renderer lowercase__ = HeunDiscreteScheduler( beta_schedule='''exp''' , num_train_timesteps=1024 , prediction_type='''sample''' , use_karras_sigmas=UpperCamelCase , clip_sample=UpperCamelCase , clip_sample_range=1.0 , ) lowercase__ = { '''prior''': prior, '''image_encoder''': image_encoder, '''image_processor''': image_processor, '''renderer''': renderer, '''scheduler''': scheduler, } return components def UpperCamelCase__ (self : Optional[int] , UpperCamelCase : Optional[int] , UpperCamelCase : str=0 ): '''simple docstring''' lowercase__ = floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCamelCase ) ).to(UpperCamelCase ) if str(UpperCamelCase ).startswith('''mps''' ): lowercase__ = torch.manual_seed(UpperCamelCase ) else: lowercase__ = torch.Generator(device=UpperCamelCase ).manual_seed(UpperCamelCase ) lowercase__ = { '''image''': input_image, '''generator''': generator, '''num_inference_steps''': 1, '''frame_size''': 32, '''output_type''': '''np''', } return inputs def UpperCamelCase__ (self : Tuple ): '''simple docstring''' lowercase__ = '''cpu''' lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**UpperCamelCase ) lowercase__ = pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) lowercase__ = pipe(**self.get_dummy_inputs(UpperCamelCase ) ) lowercase__ = output.images[0] lowercase__ = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) lowercase__ = np.array( [ 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase__ (self : Optional[Any] ): '''simple docstring''' self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def UpperCamelCase__ (self : int ): '''simple docstring''' lowercase__ = torch_device == '''cpu''' lowercase__ = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=UpperCamelCase , relax_max_difference=UpperCamelCase , ) def UpperCamelCase__ (self : int ): '''simple docstring''' lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**UpperCamelCase ) lowercase__ = pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) lowercase__ = 1 lowercase__ = 2 lowercase__ = self.get_dummy_inputs(UpperCamelCase ) for key in inputs.keys(): if key in self.batch_params: lowercase__ = batch_size * [inputs[key]] lowercase__ = pipe(**UpperCamelCase , num_images_per_prompt=UpperCamelCase )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class __lowerCAmelCase (unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ (self : Optional[Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ (self : Union[str, Any] ): '''simple docstring''' lowercase__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/corgi.png''' ) lowercase__ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/test_shap_e_img2img_out.npy''' ) lowercase__ = ShapEImgaImgPipeline.from_pretrained('''openai/shap-e-img2img''' ) lowercase__ = pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) lowercase__ = torch.Generator(device=UpperCamelCase ).manual_seed(0 ) lowercase__ = pipe( UpperCamelCase , generator=UpperCamelCase , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type='''np''' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(UpperCamelCase , UpperCamelCase )
2
0
from dataclasses import dataclass, field from typing import Optional @dataclass class _a : _lowercase : Optional[str] = field( default='''codeparrot/codeparrot''' , metadata={'''help''': '''Model name or path of model to be trained.'''} ) _lowercase : Optional[str] = field( default='''./''' , metadata={'''help''': '''Save dir where model repo is cloned and models updates are saved to.'''} ) _lowercase : Optional[str] = field( default='''codeparrot/codeparrot-clean-train''' , metadata={'''help''': '''Name or path of training dataset.'''} ) _lowercase : Optional[str] = field( default='''codeparrot/codeparrot-clean-valid''' , metadata={'''help''': '''Name or path of validation dataset.'''} ) _lowercase : Optional[int] = field(default=2 , metadata={'''help''': '''Batch size for training.'''} ) _lowercase : Optional[int] = field(default=2 , metadata={'''help''': '''Batch size for evaluation.'''} ) _lowercase : Optional[float] = field(default=0.1 , metadata={'''help''': '''Value of weight decay.'''} ) _lowercase : Optional[int] = field( default=10000 , metadata={'''help''': '''Size of buffer used to shuffle streaming dataset.'''} ) _lowercase : Optional[float] = field(default=2e-4 , metadata={'''help''': '''Learning rate fo training.'''} ) _lowercase : Optional[str] = field(default='''cosine''' , metadata={'''help''': '''Learning rate.'''} ) _lowercase : Optional[int] = field( default=750 , metadata={'''help''': '''Number of warmup steps in the learning rate schedule.'''} ) _lowercase : Optional[int] = field( default=16 , metadata={'''help''': '''Number of gradient accumulation steps.'''} ) _lowercase : Optional[bool] = field( default=UpperCamelCase__ , metadata={'''help''': '''Use gradient checkpointing to reduce memory footprint.'''} ) _lowercase : Optional[int] = field(default=50000 , metadata={'''help''': '''Maximum number of training steps.'''} ) _lowercase : Optional[int] = field( default=-1 , metadata={'''help''': '''Maximum number of evaluation steps. If -1 the full dataset is evaluated.'''} ) _lowercase : Optional[int] = field(default=1024 , metadata={'''help''': '''Sequence lengths used for training.'''} ) _lowercase : Optional[int] = field(default=1 , metadata={'''help''': '''Training seed.'''} ) _lowercase : Optional[int] = field( default=1024 , metadata={'''help''': '''Interval to save checkpoints. Measured as number of forward passes not training steps.'''} , ) _lowercase : Optional[str] = field( default=UpperCamelCase__ , metadata={'''help''': '''States path if the training should continue from a checkpoint folder.'''} ) _lowercase : Optional[bool] = field(default=UpperCamelCase__ , metadata={'''help''': '''If True the data is pretokenized.'''} ) @dataclass class _a : _lowercase : Optional[str] = field( default='''codeparrot/codeparrot''' , metadata={'''help''': '''Model name or path of model to be evaluated.'''} ) _lowercase : Optional[str] = field( default='''codeparrot/codeparrot-clean-valid''' , metadata={'''help''': '''Name or path of validation dataset.'''} ) _lowercase : Optional[int] = field(default=2 , metadata={'''help''': '''Batch size used for evaluation.'''} ) _lowercase : Optional[int] = field( default=-1 , metadata={'''help''': '''Maximum number of evaluation steps. If -1 the full dataset is evaluated.'''} ) _lowercase : Optional[int] = field(default=1024 , metadata={'''help''': '''Length of sequences to be evaluated.'''} ) _lowercase : Optional[int] = field(default=1 , metadata={'''help''': '''Random seed used for evaluation.'''} ) @dataclass class _a : _lowercase : Optional[str] = field( default='''codeparrot/codeparrot''' , metadata={'''help''': '''Model name or path of model to be evaluated.'''} ) _lowercase : Optional[int] = field(default=UpperCamelCase__ , metadata={'''help''': '''Number of workers used for code evaluation.'''} ) _lowercase : Optional[int] = field( default=UpperCamelCase__ , metadata={'''help''': '''The number of human-eval tasks to run. If not included all tasks are evaluated.'''} , ) _lowercase : Optional[bool] = field( default=UpperCamelCase__ , metadata={'''help''': '''Sample from the language model\'s output distribution.'''} ) _lowercase : Optional[float] = field(default=0.2 , metadata={'''help''': '''Sampling temperature used for generation.'''} ) _lowercase : Optional[int] = field(default=256 , metadata={'''help''': '''Maximum number of newly generated tokens.'''} ) _lowercase : Optional[int] = field(default=0 , metadata={'''help''': '''Top-k parameter used for generation.'''} ) _lowercase : Optional[float] = field(default=0.95 , metadata={'''help''': '''Top-p parameter used for nucleus sampling.'''} ) _lowercase : Optional[int] = field(default=10 , metadata={'''help''': '''Number of generations to run in parallel.'''} ) _lowercase : Optional[int] = field( default=200 , metadata={'''help''': '''Number of completions to generate for each sample.'''} ) _lowercase : Optional[int] = field(default=1 , metadata={'''help''': '''Random seed used for evaluation.'''} ) _lowercase : Optional[str] = field( default='''eval_results.json''' , metadata={'''help''': '''Random seed used for evaluation.'''} ) _lowercase : Optional[str] = field( default='''0''' , metadata={'''help''': '''Allow `code_eval` to execute Python code on machine'''} ) _lowercase : Optional[int] = field( default=-1 , metadata={ '''help''': ( '''Determine which device to run the `text-generation` Pipeline on. -1 is CPU and any zero or positive''' ''' number corresponds to which GPU device id to run on.''' ) } , ) @dataclass class _a : _lowercase : Optional[int] = field( default=UpperCamelCase__ , metadata={ '''help''': '''The number of CPU cores to use for parallel preprocessing. Default uses the maximum available.''' } , ) _lowercase : Optional[str] = field( default='''transformersbook/codeparrot''' , metadata={'''help''': '''Folder or name of dataset to process.'''} ) _lowercase : Optional[str] = field( default='''codeparrot-clean''' , metadata={'''help''': '''Folder to save processed processed dataset.'''} ) _lowercase : Optional[int] = field( default=100000 , metadata={'''help''': '''Number of files to save per JSON output file.'''} ) _lowercase : Optional[str] = field(default='''content''' , metadata={'''help''': '''Column containing text data to process.'''} ) _lowercase : Optional[float] = field( default=1000 , metadata={'''help''': '''Maximum line length in file, otherwise file is filtered.'''} ) _lowercase : Optional[float] = field( default=100 , metadata={'''help''': '''Maximum mean line length in file, otherwise file is filtered.'''} ) _lowercase : Optional[float] = field( default=0.25 , metadata={'''help''': '''Maximum fraction of non-alphanumeric characters, otherwise file is filtered.'''} ) _lowercase : Optional[float] = field( default=1.5 , metadata={'''help''': '''Minimum character token ratio for the file, otherwise file is filtered.'''} ) _lowercase : Optional[float] = field( default=0.7 , metadata={'''help''': '''Probability for filtering config, test and uncommon files.'''} ) _lowercase : Optional[str] = field( default='''codeparrot/codeparrot''' , metadata={'''help''': '''Name or path to the tokenizer.'''} , ) _lowercase : Optional[bool] = field( default=UpperCamelCase__ , metadata={'''help''': '''If True, near-duplicate samples are removed.'''} ) _lowercase : Optional[float] = field( default=0.85 , metadata={'''help''': '''Jaccard threshold for near-duplicate samples.'''} ) @dataclass class _a : _lowercase : Optional[str] = field( default='''gpt2''' , metadata={'''help''': '''Base tokenizer to build new tokenizer from.'''} ) _lowercase : Optional[str] = field( default='''transformersbook/codeparrot-train''' , metadata={'''help''': '''Dataset to train tokenizer on.'''} ) _lowercase : Optional[str] = field(default='''content''' , metadata={'''help''': '''Column containing text data to process.'''} ) _lowercase : Optional[int] = field(default=200000 , metadata={'''help''': '''Number of examples to train tokenizer on.'''} ) _lowercase : Optional[int] = field( default=32768 , metadata={'''help''': '''Number of examples to train the tokenizer on.'''} ) _lowercase : Optional[str] = field(default='''codeparrot''' , metadata={'''help''': '''Name of new tokenizer.'''} ) _lowercase : Optional[bool] = field(default=UpperCamelCase__ , metadata={'''help''': '''Push saved tokenizer to the hub.'''} ) @dataclass class _a : _lowercase : Optional[str] = field( default='''codeparrot/codeparrot''' , metadata={'''help''': '''Name or path to the tokenizer.'''} ) _lowercase : Optional[str] = field( default='''codeparrot/codeparrot-clean-train''' , metadata={'''help''': '''Name or path to the dataset to pretokenize.'''} ) _lowercase : Optional[str] = field( default='''tokenized-codeparrot-train''' , metadata={'''help''': '''Repo name of the pretokenized data.'''} ) _lowercase : Optional[int] = field(default=UpperCamelCase__ , metadata={'''help''': '''Number of workers used for code evaluation.'''} ) @dataclass class _a : _lowercase : Optional[str] = field( default='''gpt2-large''' , metadata={'''help''': '''Configuration to use for model initialization.'''} ) _lowercase : Optional[str] = field( default='''codeparrot/codeparrot''' , metadata={'''help''': '''Tokenizer attached to model.'''} ) _lowercase : Optional[str] = field(default='''codeparrot''' , metadata={'''help''': '''Name of the created model.'''} ) _lowercase : Optional[bool] = field(default=UpperCamelCase__ , metadata={'''help''': '''Push saved tokenizer to the hub.'''} )
110
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowerCamelCase : str = { 'configuration_rag': ['RagConfig'], 'retrieval_rag': ['RagRetriever'], 'tokenization_rag': ['RagTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Dict = [ 'RagModel', 'RagPreTrainedModel', 'RagSequenceForGeneration', 'RagTokenForGeneration', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Optional[int] = [ 'TFRagModel', 'TFRagPreTrainedModel', 'TFRagSequenceForGeneration', 'TFRagTokenForGeneration', ] if TYPE_CHECKING: from .configuration_rag import RagConfig from .retrieval_rag import RagRetriever from .tokenization_rag import RagTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rag import RagModel, RagPreTrainedModel, RagSequenceForGeneration, RagTokenForGeneration try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rag import ( TFRagModel, TFRagPreTrainedModel, TFRagSequenceForGeneration, TFRagTokenForGeneration, ) else: import sys lowerCamelCase : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
2
0
import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( """The `image_to_image.py` script is outdated. Please use directly `from diffusers import""" """ StableDiffusionImg2ImgPipeline` instead.""" )
330
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : int = logging.get_logger(__name__) lowerCamelCase : List[Any] = { 'google/realm-cc-news-pretrained-embedder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-encoder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-scorer': ( 'https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-openqa': ( 'https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json' ), 'google/realm-orqa-nq-openqa': 'https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json', 'google/realm-orqa-nq-reader': 'https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json', 'google/realm-orqa-wq-openqa': 'https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json', 'google/realm-orqa-wq-reader': 'https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json', # See all REALM models at https://huggingface.co/models?filter=realm } class __lowerCAmelCase (lowercase_ ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = """realm""" def __init__(self : str , UpperCamelCase : List[Any]=30522 , UpperCamelCase : List[Any]=768 , UpperCamelCase : int=128 , UpperCamelCase : Any=12 , UpperCamelCase : Tuple=12 , UpperCamelCase : List[Any]=8 , UpperCamelCase : Union[str, Any]=3072 , UpperCamelCase : List[str]="gelu_new" , UpperCamelCase : Any=0.1 , UpperCamelCase : List[str]=0.1 , UpperCamelCase : Dict=512 , UpperCamelCase : Dict=2 , UpperCamelCase : List[Any]=0.02 , UpperCamelCase : List[Any]=1E-12 , UpperCamelCase : Dict=256 , UpperCamelCase : Union[str, Any]=10 , UpperCamelCase : Optional[int]=1E-3 , UpperCamelCase : Tuple=5 , UpperCamelCase : Optional[int]=320 , UpperCamelCase : List[str]=13353718 , UpperCamelCase : Optional[Any]=5000 , UpperCamelCase : str=1 , UpperCamelCase : Union[str, Any]=0 , UpperCamelCase : List[Any]=2 , **UpperCamelCase : int , ): '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase , bos_token_id=UpperCamelCase , eos_token_id=UpperCamelCase , **UpperCamelCase ) # Common config lowercase__ = vocab_size lowercase__ = max_position_embeddings lowercase__ = hidden_size lowercase__ = retriever_proj_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = num_candidates lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = initializer_range lowercase__ = type_vocab_size lowercase__ = layer_norm_eps # Reader config lowercase__ = span_hidden_size lowercase__ = max_span_width lowercase__ = reader_layer_norm_eps lowercase__ = reader_beam_size lowercase__ = reader_seq_len # Retrieval config lowercase__ = num_block_records lowercase__ = searcher_beam_size
2
0
from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging __A = logging.get_logger(__name__) __A = { 'Salesforce/codegen-350M-nl': 'https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json', 'Salesforce/codegen-350M-multi': 'https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json', 'Salesforce/codegen-350M-mono': 'https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json', 'Salesforce/codegen-2B-nl': 'https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json', 'Salesforce/codegen-2B-multi': 'https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json', 'Salesforce/codegen-2B-mono': 'https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json', 'Salesforce/codegen-6B-nl': 'https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json', 'Salesforce/codegen-6B-multi': 'https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json', 'Salesforce/codegen-6B-mono': 'https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json', 'Salesforce/codegen-16B-nl': 'https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json', 'Salesforce/codegen-16B-multi': 'https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json', 'Salesforce/codegen-16B-mono': 'https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json', } class __lowerCAmelCase ( lowercase_ ): """simple docstring""" snake_case_ = """codegen""" snake_case_ = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , lowerCamelCase__=50_400 , lowerCamelCase__=2_048 , lowerCamelCase__=2_048 , lowerCamelCase__=4_096 , lowerCamelCase__=28 , lowerCamelCase__=16 , lowerCamelCase__=64 , lowerCamelCase__=None , lowerCamelCase__="gelu_new" , lowerCamelCase__=0.0 , lowerCamelCase__=0.0 , lowerCamelCase__=0.0 , lowerCamelCase__=1e-5 , lowerCamelCase__=0.02 , lowerCamelCase__=True , lowerCamelCase__=50_256 , lowerCamelCase__=50_256 , lowerCamelCase__=False , **lowerCamelCase__ , ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = vocab_size __lowerCamelCase = n_ctx __lowerCamelCase = n_positions __lowerCamelCase = n_embd __lowerCamelCase = n_layer __lowerCamelCase = n_head __lowerCamelCase = n_inner __lowerCamelCase = rotary_dim __lowerCamelCase = activation_function __lowerCamelCase = resid_pdrop __lowerCamelCase = embd_pdrop __lowerCamelCase = attn_pdrop __lowerCamelCase = layer_norm_epsilon __lowerCamelCase = initializer_range __lowerCamelCase = use_cache __lowerCamelCase = bos_token_id __lowerCamelCase = eos_token_id super().__init__( bos_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ , tie_word_embeddings=lowerCamelCase__ , **lowerCamelCase__ ) class __lowerCAmelCase ( lowercase_ ): """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__ = "default" , lowerCamelCase__ = None , lowerCamelCase__ = False , ) -> List[str]: '''simple docstring''' super().__init__(lowerCamelCase__ , task=lowerCamelCase__ , patching_specs=lowerCamelCase__ , use_past=lowerCamelCase__ ) if not getattr(self._config , 'pad_token_id' , lowerCamelCase__ ): # TODO: how to do that better? __lowerCamelCase = 0 @property def lowercase_ ( self ) -> Any: '''simple docstring''' __lowerCamelCase = OrderedDict({'input_ids': {0: 'batch', 1: 'sequence'}} ) if self.use_past: self.fill_with_past_key_values_(lowerCamelCase__ , direction='inputs' ) __lowerCamelCase = {0: 'batch', 1: 'past_sequence + sequence'} else: __lowerCamelCase = {0: 'batch', 1: 'sequence'} return common_inputs @property def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' return self._config.n_layer @property def lowercase_ ( self ) -> Dict: '''simple docstring''' return self._config.n_head def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = -1 , lowerCamelCase__ = -1 , lowerCamelCase__ = False , lowerCamelCase__ = None , ) -> Dict: '''simple docstring''' __lowerCamelCase = super(lowerCamelCase__ , self ).generate_dummy_inputs( lowerCamelCase__ , batch_size=lowerCamelCase__ , seq_length=lowerCamelCase__ , is_pair=lowerCamelCase__ , framework=lowerCamelCase__ ) # We need to order the input in the way they appears in the forward() __lowerCamelCase = OrderedDict({'input_ids': common_inputs['input_ids']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch __lowerCamelCase , __lowerCamelCase = common_inputs['input_ids'].shape # Not using the same length for past_key_values __lowerCamelCase = seqlen + 2 __lowerCamelCase = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) __lowerCamelCase = [ (torch.zeros(lowerCamelCase__ ), torch.zeros(lowerCamelCase__ )) for _ in range(self.num_layers ) ] __lowerCamelCase = common_inputs['attention_mask'] if self.use_past: __lowerCamelCase = ordered_inputs['attention_mask'].dtype __lowerCamelCase = torch.cat( [ordered_inputs['attention_mask'], torch.ones(lowerCamelCase__ , lowerCamelCase__ , dtype=lowerCamelCase__ )] , dim=1 ) return ordered_inputs @property def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' return 13
90
'''simple docstring''' import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : str = logging.get_logger(__name__) lowerCamelCase : int = { 'RUCAIBox/mvp': 'https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json', } class __lowerCAmelCase (lowercase_ ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = """mvp""" lowerCAmelCase__ : Optional[Any] = ["""past_key_values"""] lowerCAmelCase__ : List[str] = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__(self : Any , UpperCamelCase : Optional[int]=50267 , UpperCamelCase : Tuple=1024 , UpperCamelCase : int=12 , UpperCamelCase : Tuple=4096 , UpperCamelCase : Dict=16 , UpperCamelCase : int=12 , UpperCamelCase : Optional[int]=4096 , UpperCamelCase : Optional[int]=16 , UpperCamelCase : Tuple=0.0 , UpperCamelCase : Tuple=0.0 , UpperCamelCase : List[Any]="gelu" , UpperCamelCase : Union[str, Any]=1024 , UpperCamelCase : Optional[Any]=0.1 , UpperCamelCase : str=0.0 , UpperCamelCase : str=0.0 , UpperCamelCase : Optional[Any]=0.02 , UpperCamelCase : List[str]=0.0 , UpperCamelCase : List[str]=False , UpperCamelCase : Optional[int]=True , UpperCamelCase : Any=1 , UpperCamelCase : int=0 , UpperCamelCase : int=2 , UpperCamelCase : Any=True , UpperCamelCase : Optional[Any]=2 , UpperCamelCase : Optional[Any]=2 , UpperCamelCase : Tuple=False , UpperCamelCase : int=100 , UpperCamelCase : Optional[Any]=800 , **UpperCamelCase : str , ): '''simple docstring''' lowercase__ = vocab_size lowercase__ = max_position_embeddings lowercase__ = d_model lowercase__ = encoder_ffn_dim lowercase__ = encoder_layers lowercase__ = encoder_attention_heads lowercase__ = decoder_ffn_dim lowercase__ = decoder_layers lowercase__ = decoder_attention_heads lowercase__ = dropout lowercase__ = attention_dropout lowercase__ = activation_dropout lowercase__ = activation_function lowercase__ = init_std lowercase__ = encoder_layerdrop lowercase__ = decoder_layerdrop lowercase__ = classifier_dropout lowercase__ = use_cache lowercase__ = encoder_layers lowercase__ = scale_embedding # scale factor will be sqrt(d_model) if True lowercase__ = use_prompt lowercase__ = prompt_length lowercase__ = prompt_mid_dim super().__init__( pad_token_id=UpperCamelCase , bos_token_id=UpperCamelCase , eos_token_id=UpperCamelCase , is_encoder_decoder=UpperCamelCase , decoder_start_token_id=UpperCamelCase , forced_eos_token_id=UpperCamelCase , **UpperCamelCase , ) if self.forced_bos_token_id is None and kwargs.get('''force_bos_token_to_be_generated''' , UpperCamelCase ): lowercase__ = self.bos_token_id warnings.warn( f"Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. " '''The config can simply be saved and uploaded again to be fixed.''' )
2
0
from dataclasses import dataclass, field from typing import Optional from transformers import AutoConfig, AutoImageProcessor, AutoTokenizer, FlaxVisionEncoderDecoderModel, HfArgumentParser @dataclass class __lowerCAmelCase : lowerCamelCase_ : str = field( metadata={'''help''': '''The output directory where the model will be written.'''}, ) lowerCamelCase_ : str = field( metadata={ '''help''': ( '''The encoder model checkpoint for weights initialization.''' '''Don\'t set if you want to train an encoder model from scratch.''' ) }, ) lowerCamelCase_ : str = field( metadata={ '''help''': ( '''The decoder model checkpoint for weights initialization.''' '''Don\'t set if you want to train a decoder model from scratch.''' ) }, ) lowerCamelCase_ : Optional[str] = field( default=lowercase_, metadata={'''help''': '''Pretrained encoder config name or path if not the same as encoder_model_name'''} ) lowerCamelCase_ : Optional[str] = field( default=lowercase_, metadata={'''help''': '''Pretrained decoder config name or path if not the same as decoder_model_name'''} ) def lowerCamelCase_ ( ) -> Union[str, Any]: """simple docstring""" snake_case_ : List[str] = HfArgumentParser((ModelArguments,) ) ((snake_case_) , ) : int = parser.parse_args_into_dataclasses() # Load pretrained model and tokenizer # Use explicit specified encoder config if model_args.encoder_config_name: snake_case_ : str = AutoConfig.from_pretrained(model_args.encoder_config_name ) # Use pretrained encoder model's config else: snake_case_ : Tuple = AutoConfig.from_pretrained(model_args.encoder_model_name_or_path ) # Use explicit specified decoder config if model_args.decoder_config_name: snake_case_ : Optional[int] = AutoConfig.from_pretrained(model_args.decoder_config_name ) # Use pretrained decoder model's config else: snake_case_ : List[Any] = AutoConfig.from_pretrained(model_args.decoder_model_name_or_path ) # necessary for `from_encoder_decoder_pretrained` when `decoder_config` is passed snake_case_ : Optional[Any] = True snake_case_ : Any = True snake_case_ : Dict = FlaxVisionEncoderDecoderModel.from_encoder_decoder_pretrained( encoder_pretrained_model_name_or_path=model_args.encoder_model_name_or_path , decoder_pretrained_model_name_or_path=model_args.decoder_model_name_or_path , encoder_config=_UpperCamelCase , decoder_config=_UpperCamelCase , ) # GPT2 only has bos/eos tokens but not decoder_start/pad tokens snake_case_ : Tuple = decoder_config.decoder_start_token_id snake_case_ : Dict = decoder_config.pad_token_id if decoder_start_token_id is None: snake_case_ : Tuple = decoder_config.bos_token_id if pad_token_id is None: snake_case_ : Union[str, Any] = decoder_config.eos_token_id # This is necessary to make Flax's generate() work snake_case_ : int = decoder_config.eos_token_id snake_case_ : Tuple = decoder_start_token_id snake_case_ : Union[str, Any] = pad_token_id snake_case_ : Union[str, Any] = AutoImageProcessor.from_pretrained(model_args.encoder_model_name_or_path ) snake_case_ : int = AutoTokenizer.from_pretrained(model_args.decoder_model_name_or_path ) snake_case_ : Optional[Any] = tokenizer.convert_ids_to_tokens(model.config.pad_token_id ) model.save_pretrained(model_args.output_dir ) image_processor.save_pretrained(model_args.output_dir ) tokenizer.save_pretrained(model_args.output_dir ) if __name__ == "__main__": main()
279
'''simple docstring''' import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase : List[str] = get_tests_dir('fixtures/spiece.model') @require_sentencepiece @require_tokenizers class __lowerCAmelCase (lowercase_ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ : int = DebertaVaTokenizer lowerCAmelCase__ : List[Any] = DebertaVaTokenizerFast lowerCAmelCase__ : str = True lowerCAmelCase__ : Tuple = True def UpperCamelCase__ (self : Tuple ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing lowercase__ = DebertaVaTokenizer(UpperCamelCase , unk_token='''<unk>''' ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase__ (self : Union[str, Any] , UpperCamelCase : str ): '''simple docstring''' lowercase__ = '''this is a test''' lowercase__ = '''this is a test''' return input_text, output_text def UpperCamelCase__ (self : Optional[int] ): '''simple docstring''' lowercase__ = '''<pad>''' lowercase__ = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCamelCase ) , UpperCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCamelCase ) , UpperCamelCase ) def UpperCamelCase__ (self : Dict ): '''simple docstring''' lowercase__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<pad>''' ) self.assertEqual(vocab_keys[1] , '''<unk>''' ) self.assertEqual(vocab_keys[-1] , '''[PAD]''' ) self.assertEqual(len(UpperCamelCase ) , 30001 ) def UpperCamelCase__ (self : int ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 30000 ) def UpperCamelCase__ (self : Optional[Any] ): '''simple docstring''' lowercase__ = ''' \tHeLLo!how \n Are yoU? ''' lowercase__ = ['''▁hello''', '''!''', '''how''', '''▁are''', '''▁you''', '''?'''] # fmt: on lowercase__ = DebertaVaTokenizer(UpperCamelCase , do_lower_case=UpperCamelCase ) lowercase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = DebertaVaTokenizerFast(UpperCamelCase , do_lower_case=UpperCamelCase ) lowercase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) @unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' ) def UpperCamelCase__ (self : List[Any] ): '''simple docstring''' pass @unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' ) def UpperCamelCase__ (self : List[str] ): '''simple docstring''' pass def UpperCamelCase__ (self : Optional[int] ): '''simple docstring''' lowercase__ = '''I was born in 92000, and this is falsé.''' lowercase__ = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on lowercase__ = DebertaVaTokenizer(UpperCamelCase , split_by_punct=UpperCamelCase ) lowercase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = DebertaVaTokenizerFast(UpperCamelCase , split_by_punct=UpperCamelCase ) lowercase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) def UpperCamelCase__ (self : int ): '''simple docstring''' lowercase__ = '''I was born in 92000, and this is falsé.''' lowercase__ = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on lowercase__ = DebertaVaTokenizer(UpperCamelCase , do_lower_case=UpperCamelCase , split_by_punct=UpperCamelCase ) lowercase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = DebertaVaTokenizerFast(UpperCamelCase , do_lower_case=UpperCamelCase , split_by_punct=UpperCamelCase ) lowercase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) def UpperCamelCase__ (self : Optional[Any] ): '''simple docstring''' lowercase__ = '''I was born in 92000, and this is falsé.''' lowercase__ = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ] # fmt: on lowercase__ = DebertaVaTokenizer(UpperCamelCase , do_lower_case=UpperCamelCase , split_by_punct=UpperCamelCase ) lowercase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = DebertaVaTokenizerFast(UpperCamelCase , do_lower_case=UpperCamelCase , split_by_punct=UpperCamelCase ) lowercase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) def UpperCamelCase__ (self : Union[str, Any] ): '''simple docstring''' lowercase__ = '''I was born in 92000, and this is falsé.''' lowercase__ = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on lowercase__ = DebertaVaTokenizer(UpperCamelCase , do_lower_case=UpperCamelCase , split_by_punct=UpperCamelCase ) lowercase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = DebertaVaTokenizerFast(UpperCamelCase , do_lower_case=UpperCamelCase , split_by_punct=UpperCamelCase ) lowercase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) def UpperCamelCase__ (self : Union[str, Any] ): '''simple docstring''' lowercase__ = ''' \tHeLLo!how \n Are yoU? ''' lowercase__ = ['''▁''', '''<unk>''', '''e''', '''<unk>''', '''o''', '''!''', '''how''', '''▁''', '''<unk>''', '''re''', '''▁yo''', '''<unk>''', '''?'''] # fmt: on lowercase__ = DebertaVaTokenizer(UpperCamelCase , do_lower_case=UpperCamelCase , split_by_punct=UpperCamelCase ) lowercase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = DebertaVaTokenizerFast(UpperCamelCase , do_lower_case=UpperCamelCase , split_by_punct=UpperCamelCase ) lowercase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) def UpperCamelCase__ (self : Union[str, Any] ): '''simple docstring''' lowercase__ = self.get_tokenizer() lowercase__ = self.get_rust_tokenizer() lowercase__ = '''I was born in 92000, and this is falsé.''' lowercase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) lowercase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) lowercase__ = rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = self.get_rust_tokenizer() lowercase__ = tokenizer.encode(UpperCamelCase ) lowercase__ = rust_tokenizer.encode(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) def UpperCamelCase__ (self : int ): '''simple docstring''' lowercase__ = '''This is a test''' lowercase__ = [13, 1, 4398, 25, 21, 1289] lowercase__ = ['''▁''', '''T''', '''his''', '''▁is''', '''▁a''', '''▁test'''] lowercase__ = ['''▁''', '''<unk>''', '''his''', '''▁is''', '''▁a''', '''▁test'''] lowercase__ = DebertaVaTokenizer(UpperCamelCase , keep_accents=UpperCamelCase ) lowercase__ = DebertaVaTokenizerFast(UpperCamelCase , keep_accents=UpperCamelCase ) lowercase__ = tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = tokenizer.tokenize(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = tokenizer.convert_ids_to_tokens(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = rust_tokenizer.tokenize(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = rust_tokenizer.convert_ids_to_tokens(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) # fmt: off lowercase__ = '''I was born in 92000, and this is falsé.''' lowercase__ = [13, 1, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] lowercase__ = ['''▁''', '''I''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''é''', '''.''', ] lowercase__ = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ] # fmt: on lowercase__ = tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = tokenizer.tokenize(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = tokenizer.convert_ids_to_tokens(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = rust_tokenizer.tokenize(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = rust_tokenizer.convert_ids_to_tokens(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) def UpperCamelCase__ (self : int ): '''simple docstring''' lowercase__ = DebertaVaTokenizer(UpperCamelCase ) lowercase__ = tokenizer.encode('''sequence builders''' ) lowercase__ = tokenizer.encode('''multi-sequence build''' ) lowercase__ = tokenizer.build_inputs_with_special_tokens(UpperCamelCase ) lowercase__ = tokenizer.build_inputs_with_special_tokens(UpperCamelCase , UpperCamelCase ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , UpperCamelCase ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , UpperCamelCase , ) @slow def UpperCamelCase__ (self : int ): '''simple docstring''' lowercase__ = {'''input_ids''': [[1, 39867, 36, 19390, 486, 27, 35052, 81436, 18, 60685, 1225, 7, 35052, 81436, 18, 9367, 16899, 18, 15937, 53, 594, 773, 18, 16287, 30465, 36, 15937, 6, 41139, 38, 36979, 60763, 191, 6, 34132, 99, 6, 50538, 390, 43230, 6, 34132, 2779, 20850, 14, 699, 1072, 1194, 36, 382, 10901, 53, 7, 699, 1072, 2084, 36, 20422, 630, 53, 19, 105, 3049, 1896, 1053, 16899, 1506, 11, 37978, 4243, 7, 1237, 31869, 200, 16566, 654, 6, 35052, 81436, 7, 55630, 13593, 4, 2], [1, 26, 15011, 13, 667, 8, 1053, 18, 23611, 1237, 72356, 12820, 34, 104134, 1209, 35, 13313, 6627, 21, 202, 347, 7, 164, 2399, 11, 46, 4485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1232, 2864, 15785, 14951, 105, 5, 8581, 1250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCamelCase , model_name='''microsoft/deberta-v2-xlarge''' , revision='''ad6e42c1532ddf3a15c39246b63f5559d558b670''' , )
2
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _A : List[Any] =logging.get_logger(__name__) _A : int ={'ctrl': 'https://huggingface.co/ctrl/resolve/main/config.json'} class _lowercase ( lowercase_ ): a = """ctrl""" a = ["""past_key_values"""] a = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self: Tuple , UpperCamelCase__: Optional[Any]=246_534 , UpperCamelCase__: Union[str, Any]=256 , UpperCamelCase__: Optional[int]=1_280 , UpperCamelCase__: Any=8_192 , UpperCamelCase__: List[str]=48 , UpperCamelCase__: List[Any]=16 , UpperCamelCase__: Any=0.1 , UpperCamelCase__: List[str]=0.1 , UpperCamelCase__: str=1e-6 , UpperCamelCase__: Optional[int]=0.02 , UpperCamelCase__: Dict=True , **UpperCamelCase__: Dict , ): lowerCamelCase__ : Optional[Any] = vocab_size lowerCamelCase__ : List[Any] = n_positions lowerCamelCase__ : Optional[Any] = n_embd lowerCamelCase__ : Any = n_layer lowerCamelCase__ : List[str] = n_head lowerCamelCase__ : str = dff lowerCamelCase__ : List[str] = resid_pdrop lowerCamelCase__ : Dict = embd_pdrop lowerCamelCase__ : Optional[int] = layer_norm_epsilon lowerCamelCase__ : List[str] = initializer_range lowerCamelCase__ : List[Any] = use_cache super().__init__(**UpperCamelCase__ )
41
'''simple docstring''' import argparse import torch from torch import nn from transformers import MBartConfig, MBartForConditionalGeneration def _SCREAMING_SNAKE_CASE (A ) -> Optional[Any]: """simple docstring""" lowercase__ = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''_float_tensor''', '''decoder.output_projection.weight''', ] for k in ignore_keys: state_dict.pop(A , A ) def _SCREAMING_SNAKE_CASE (A ) -> List[str]: """simple docstring""" lowercase__ ,lowercase__ = emb.weight.shape lowercase__ = nn.Linear(A , A , bias=A ) lowercase__ = emb.weight.data return lin_layer def _SCREAMING_SNAKE_CASE (A , A="facebook/mbart-large-en-ro" , A=False , A=False ) -> Union[str, Any]: """simple docstring""" lowercase__ = torch.load(A , map_location='''cpu''' )['''model'''] remove_ignore_keys_(A ) lowercase__ = state_dict['''encoder.embed_tokens.weight'''].shape[0] lowercase__ = MBartConfig.from_pretrained(A , vocab_size=A ) if mbart_aa and finetuned: lowercase__ = '''relu''' lowercase__ = state_dict['''decoder.embed_tokens.weight'''] lowercase__ = MBartForConditionalGeneration(A ) model.model.load_state_dict(A ) if finetuned: lowercase__ = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": lowerCamelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( 'fairseq_path', type=str, help='bart.large, bart.large.cnn or a path to a model.pt on local filesystem.' ) parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--hf_config', default='facebook/mbart-large-cc25', type=str, help='Which huggingface architecture to use: mbart-large', ) parser.add_argument('--mbart_50', action='store_true', help='whether the model is mMART-50 checkpoint') parser.add_argument('--finetuned', action='store_true', help='whether the model is a fine-tuned checkpoint') lowerCamelCase : Any = parser.parse_args() lowerCamelCase : List[str] = convert_fairseq_mbart_checkpoint_from_disk( args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa ) model.save_pretrained(args.pytorch_dump_folder_path)
2
0
'''simple docstring''' def lowerCAmelCase_ ( snake_case__ = 50 ): '''simple docstring''' A : Tuple = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(f'''{solution() = }''')
3
'''simple docstring''' import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask lowerCamelCase : List[Any] = logging.getLogger(__name__) class __lowerCAmelCase (lowercase_ ): '''simple docstring''' def __init__(self : Optional[Any] , UpperCamelCase : Any=-1 ): '''simple docstring''' lowercase__ = label_idx def UpperCamelCase__ (self : Union[str, Any] , UpperCamelCase : Optional[Any] , UpperCamelCase : Union[Split, str] ): '''simple docstring''' if isinstance(UpperCamelCase , UpperCamelCase ): lowercase__ = mode.value lowercase__ = os.path.join(UpperCamelCase , f"{mode}.txt" ) lowercase__ = 1 lowercase__ = [] with open(UpperCamelCase , encoding='''utf-8''' ) as f: lowercase__ = [] lowercase__ = [] for line in f: if line.startswith('''-DOCSTART-''' ) or line == "" or line == "\n": if words: examples.append(InputExample(guid=f"{mode}-{guid_index}" , words=UpperCamelCase , labels=UpperCamelCase ) ) guid_index += 1 lowercase__ = [] lowercase__ = [] else: lowercase__ = line.split(''' ''' ) words.append(splits[0] ) if len(UpperCamelCase ) > 1: labels.append(splits[self.label_idx].replace('''\n''' , '''''' ) ) else: # Examples could have no label for mode = "test" labels.append('''O''' ) if words: examples.append(InputExample(guid=f"{mode}-{guid_index}" , words=UpperCamelCase , labels=UpperCamelCase ) ) return examples def UpperCamelCase__ (self : Optional[int] , UpperCamelCase : TextIO , UpperCamelCase : TextIO , UpperCamelCase : List ): '''simple docstring''' lowercase__ = 0 for line in test_input_reader: if line.startswith('''-DOCSTART-''' ) or line == "" or line == "\n": writer.write(UpperCamelCase ) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: lowercase__ = line.split()[0] + ''' ''' + preds_list[example_id].pop(0 ) + '''\n''' writer.write(UpperCamelCase ) else: logger.warning('''Maximum sequence length exceeded: No prediction for \'%s\'.''' , line.split()[0] ) def UpperCamelCase__ (self : Union[str, Any] , UpperCamelCase : str ): '''simple docstring''' if path: with open(UpperCamelCase , '''r''' ) as f: lowercase__ = f.read().splitlines() if "O" not in labels: lowercase__ = ['''O'''] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class __lowerCAmelCase (lowercase_ ): '''simple docstring''' def __init__(self : List[Any] ): '''simple docstring''' super().__init__(label_idx=-2 ) def UpperCamelCase__ (self : List[Any] , UpperCamelCase : str ): '''simple docstring''' if path: with open(UpperCamelCase , '''r''' ) as f: lowercase__ = f.read().splitlines() if "O" not in labels: lowercase__ = ['''O'''] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class __lowerCAmelCase (lowercase_ ): '''simple docstring''' def UpperCamelCase__ (self : Tuple , UpperCamelCase : int , UpperCamelCase : Union[Split, str] ): '''simple docstring''' if isinstance(UpperCamelCase , UpperCamelCase ): lowercase__ = mode.value lowercase__ = os.path.join(UpperCamelCase , f"{mode}.txt" ) lowercase__ = 1 lowercase__ = [] with open(UpperCamelCase , encoding='''utf-8''' ) as f: for sentence in parse_incr(UpperCamelCase ): lowercase__ = [] lowercase__ = [] for token in sentence: words.append(token['''form'''] ) labels.append(token['''upos'''] ) assert len(UpperCamelCase ) == len(UpperCamelCase ) if words: examples.append(InputExample(guid=f"{mode}-{guid_index}" , words=UpperCamelCase , labels=UpperCamelCase ) ) guid_index += 1 return examples def UpperCamelCase__ (self : Tuple , UpperCamelCase : TextIO , UpperCamelCase : TextIO , UpperCamelCase : List ): '''simple docstring''' lowercase__ = 0 for sentence in parse_incr(UpperCamelCase ): lowercase__ = preds_list[example_id] lowercase__ = '''''' for token in sentence: out += f"{token['form']} ({token['upos']}|{s_p.pop(0 )}) " out += "\n" writer.write(UpperCamelCase ) example_id += 1 def UpperCamelCase__ (self : Union[str, Any] , UpperCamelCase : str ): '''simple docstring''' if path: with open(UpperCamelCase , '''r''' ) as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
2
0
'''simple docstring''' import pickle import numpy as np from matplotlib import pyplot as plt class _a : def __init__( self : Optional[int] , lowercase : List[Any] , lowercase : Any , lowercase : Optional[Any] , lowercase : Optional[int] , lowercase : Union[str, Any] , lowercase : int=0.2 , lowercase : Optional[int]=0.2 ): '''simple docstring''' UpperCAmelCase = bp_numa UpperCAmelCase = bp_numa UpperCAmelCase = bp_numa UpperCAmelCase = conva_get[:2] UpperCAmelCase = conva_get[2] UpperCAmelCase = size_pa UpperCAmelCase = rate_w UpperCAmelCase = rate_t UpperCAmelCase = [ np.mat(-1 * np.random.rand(self.conva[0] , self.conva[0] ) + 0.5 ) for i in range(self.conva[1] ) ] UpperCAmelCase = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) UpperCAmelCase = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) UpperCAmelCase = -2 * np.random.rand(self.conva[1] ) + 1 UpperCAmelCase = -2 * np.random.rand(self.num_bpa ) + 1 UpperCAmelCase = -2 * np.random.rand(self.num_bpa ) + 1 def A ( self : List[str] , lowercase : List[str] ): '''simple docstring''' UpperCAmelCase = { '''num_bp1''': self.num_bpa, '''num_bp2''': self.num_bpa, '''num_bp3''': self.num_bpa, '''conv1''': self.conva, '''step_conv1''': self.step_conva, '''size_pooling1''': self.size_poolinga, '''rate_weight''': self.rate_weight, '''rate_thre''': self.rate_thre, '''w_conv1''': self.w_conva, '''wkj''': self.wkj, '''vji''': self.vji, '''thre_conv1''': self.thre_conva, '''thre_bp2''': self.thre_bpa, '''thre_bp3''': self.thre_bpa, } with open(lowercase , '''wb''' ) as f: pickle.dump(lowercase , lowercase ) print(f"Model saved: {save_path}" ) @classmethod def A ( cls : Union[str, Any] , lowercase : Union[str, Any] ): '''simple docstring''' with open(lowercase , '''rb''' ) as f: UpperCAmelCase = pickle.load(lowercase ) # noqa: S301 UpperCAmelCase = model_dic.get('''conv1''' ) conv_get.append(model_dic.get('''step_conv1''' ) ) UpperCAmelCase = model_dic.get('''size_pooling1''' ) UpperCAmelCase = model_dic.get('''num_bp1''' ) UpperCAmelCase = model_dic.get('''num_bp2''' ) UpperCAmelCase = model_dic.get('''num_bp3''' ) UpperCAmelCase = model_dic.get('''rate_weight''' ) UpperCAmelCase = model_dic.get('''rate_thre''' ) # create model instance UpperCAmelCase = CNN(lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) # modify model parameter UpperCAmelCase = model_dic.get('''w_conv1''' ) UpperCAmelCase = model_dic.get('''wkj''' ) UpperCAmelCase = model_dic.get('''vji''' ) UpperCAmelCase = model_dic.get('''thre_conv1''' ) UpperCAmelCase = model_dic.get('''thre_bp2''' ) UpperCAmelCase = model_dic.get('''thre_bp3''' ) return conv_ins def A ( self : Dict , lowercase : Union[str, Any] ): '''simple docstring''' return 1 / (1 + np.exp(-1 * x )) def A ( self : List[str] , lowercase : str ): '''simple docstring''' return round(lowercase , 3 ) def A ( self : Tuple , lowercase : Dict , lowercase : Any , lowercase : Tuple , lowercase : Dict , lowercase : Tuple ): '''simple docstring''' UpperCAmelCase = convs[0] UpperCAmelCase = convs[1] UpperCAmelCase = np.shape(lowercase )[0] # get the data slice of original image data, data_focus UpperCAmelCase = [] for i_focus in range(0 , size_data - size_conv + 1 , lowercase ): for j_focus in range(0 , size_data - size_conv + 1 , lowercase ): UpperCAmelCase = data[ i_focus : i_focus + size_conv, j_focus : j_focus + size_conv ] data_focus.append(lowercase ) # calculate the feature map of every single kernel, and saved as list of matrix UpperCAmelCase = [] UpperCAmelCase = int((size_data - size_conv) / conv_step + 1 ) for i_map in range(lowercase ): UpperCAmelCase = [] for i_focus in range(len(lowercase ) ): UpperCAmelCase = ( np.sum(np.multiply(data_focus[i_focus] , w_convs[i_map] ) ) - thre_convs[i_map] ) featuremap.append(self.sig(lowercase ) ) UpperCAmelCase = np.asmatrix(lowercase ).reshape( lowercase , lowercase ) data_featuremap.append(lowercase ) # expanding the data slice to One dimenssion UpperCAmelCase = [] for each_focus in data_focus: focusa_list.extend(self.Expand_Mat(lowercase ) ) UpperCAmelCase = np.asarray(lowercase ) return focus_list, data_featuremap def A ( self : Any , lowercase : str , lowercase : Optional[int] , lowercase : List[Any]="average_pool" ): '''simple docstring''' UpperCAmelCase = len(featuremaps[0] ) UpperCAmelCase = int(size_map / size_pooling ) UpperCAmelCase = [] for i_map in range(len(lowercase ) ): UpperCAmelCase = featuremaps[i_map] UpperCAmelCase = [] for i_focus in range(0 , lowercase , lowercase ): for j_focus in range(0 , lowercase , lowercase ): UpperCAmelCase = feature_map[ i_focus : i_focus + size_pooling, j_focus : j_focus + size_pooling, ] if pooling_type == "average_pool": # average pooling map_pooled.append(np.average(lowercase ) ) elif pooling_type == "max_pooling": # max pooling map_pooled.append(np.max(lowercase ) ) UpperCAmelCase = np.asmatrix(lowercase ).reshape(lowercase , lowercase ) featuremap_pooled.append(lowercase ) return featuremap_pooled def A ( self : Union[str, Any] , lowercase : List[str] ): '''simple docstring''' UpperCAmelCase = [] for i in range(len(lowercase ) ): UpperCAmelCase = np.shape(data[i] ) UpperCAmelCase = data[i].reshape(1 , shapes[0] * shapes[1] ) UpperCAmelCase = data_listed.getA().tolist()[0] data_expanded.extend(lowercase ) UpperCAmelCase = np.asarray(lowercase ) return data_expanded def A ( self : int , lowercase : Dict ): '''simple docstring''' UpperCAmelCase = np.asarray(lowercase ) UpperCAmelCase = np.shape(lowercase ) UpperCAmelCase = data_mat.reshape(1 , shapes[0] * shapes[1] ) return data_expanded def A ( self : Any , lowercase : int , lowercase : List[Any] , lowercase : int , lowercase : Any , lowercase : str ): '''simple docstring''' UpperCAmelCase = [] UpperCAmelCase = 0 for i_map in range(lowercase ): UpperCAmelCase = np.ones((size_map, size_map) ) for i in range(0 , lowercase , lowercase ): for j in range(0 , lowercase , lowercase ): UpperCAmelCase = pd_pool[ i_pool ] UpperCAmelCase = i_pool + 1 UpperCAmelCase = np.multiply( lowercase , np.multiply(out_map[i_map] , (1 - out_map[i_map]) ) ) pd_all.append(lowercase ) return pd_all def A ( self : Optional[Any] , lowercase : str , lowercase : Union[str, Any] , lowercase : Optional[int] , lowercase : Optional[int] , lowercase : List[Any] , lowercase : str=bool ): '''simple docstring''' print('''----------------------Start Training-------------------------''' ) print((''' - - Shape: Train_Data ''', np.shape(lowercase )) ) print((''' - - Shape: Teach_Data ''', np.shape(lowercase )) ) UpperCAmelCase = 0 UpperCAmelCase = [] UpperCAmelCase = 10_000 while rp < n_repeat and mse >= error_accuracy: UpperCAmelCase = 0 print(f"-------------Learning Time {rp}--------------" ) for p in range(len(lowercase ) ): # print('------------Learning Image: %d--------------'%p) UpperCAmelCase = np.asmatrix(datas_train[p] ) UpperCAmelCase = np.asarray(datas_teach[p] ) UpperCAmelCase , UpperCAmelCase = self.convolute( lowercase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) UpperCAmelCase = self.pooling(lowercase , self.size_poolinga ) UpperCAmelCase = np.shape(lowercase ) UpperCAmelCase = self._expand(lowercase ) UpperCAmelCase = data_bp_input UpperCAmelCase = np.dot(lowercase , self.vji.T ) - self.thre_bpa UpperCAmelCase = self.sig(lowercase ) UpperCAmelCase = np.dot(lowercase , self.wkj.T ) - self.thre_bpa UpperCAmelCase = self.sig(lowercase ) # --------------Model Leaning ------------------------ # calculate error and gradient--------------- UpperCAmelCase = np.multiply( (data_teach - bp_outa) , np.multiply(lowercase , (1 - bp_outa) ) ) UpperCAmelCase = np.multiply( np.dot(lowercase , self.wkj ) , np.multiply(lowercase , (1 - bp_outa) ) ) UpperCAmelCase = np.dot(lowercase , self.vji ) UpperCAmelCase = pd_i_all / (self.size_poolinga * self.size_poolinga) UpperCAmelCase = pd_conva_pooled.T.getA().tolist() UpperCAmelCase = self._calculate_gradient_from_pool( lowercase , lowercase , shape_featuremapa[0] , shape_featuremapa[1] , self.size_poolinga , ) # weight and threshold learning process--------- # convolution layer for k_conv in range(self.conva[1] ): UpperCAmelCase = self._expand_mat(pd_conva_all[k_conv] ) UpperCAmelCase = self.rate_weight * np.dot(lowercase , lowercase ) UpperCAmelCase = self.w_conva[k_conv] + delta_w.reshape( (self.conva[0], self.conva[0]) ) UpperCAmelCase = ( self.thre_conva[k_conv] - np.sum(pd_conva_all[k_conv] ) * self.rate_thre ) # all connected layer UpperCAmelCase = self.wkj + pd_k_all.T * bp_outa * self.rate_weight UpperCAmelCase = self.vji + pd_j_all.T * bp_outa * self.rate_weight UpperCAmelCase = self.thre_bpa - pd_k_all * self.rate_thre UpperCAmelCase = self.thre_bpa - pd_j_all * self.rate_thre # calculate the sum error of all single image UpperCAmelCase = np.sum(abs(data_teach - bp_outa ) ) error_count += errors # print(' ----Teach ',data_teach) # print(' ----BP_output ',bp_out3) UpperCAmelCase = rp + 1 UpperCAmelCase = error_count / patterns all_mse.append(lowercase ) def draw_error(): UpperCAmelCase = [error_accuracy for i in range(int(n_repeat * 1.2 ) )] plt.plot(lowercase , '''+-''' ) plt.plot(lowercase , '''r--''' ) plt.xlabel('''Learning Times''' ) plt.ylabel('''All_mse''' ) plt.grid(lowercase , alpha=0.5 ) plt.show() print('''------------------Training Complished---------------------''' ) print((''' - - Training epoch: ''', rp, f" - - Mse: {mse:.6f}") ) if draw_e: draw_error() return mse def A ( self : List[str] , lowercase : Optional[Any] ): '''simple docstring''' UpperCAmelCase = [] print('''-------------------Start Testing-------------------------''' ) print((''' - - Shape: Test_Data ''', np.shape(lowercase )) ) for p in range(len(lowercase ) ): UpperCAmelCase = np.asmatrix(datas_test[p] ) UpperCAmelCase , UpperCAmelCase = self.convolute( lowercase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) UpperCAmelCase = self.pooling(lowercase , self.size_poolinga ) UpperCAmelCase = self._expand(lowercase ) UpperCAmelCase = data_bp_input UpperCAmelCase = bp_outa * self.vji.T - self.thre_bpa UpperCAmelCase = self.sig(lowercase ) UpperCAmelCase = bp_outa * self.wkj.T - self.thre_bpa UpperCAmelCase = self.sig(lowercase ) produce_out.extend(bp_outa.getA().tolist() ) UpperCAmelCase = [list(map(self.do_round , lowercase ) ) for each in produce_out] return np.asarray(lowercase ) def A ( self : Tuple , lowercase : Dict ): '''simple docstring''' UpperCAmelCase = np.asmatrix(lowercase ) UpperCAmelCase , UpperCAmelCase = self.convolute( lowercase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) UpperCAmelCase = self.pooling(lowercase , self.size_poolinga ) return data_conveda, data_pooleda if __name__ == "__main__": pass
34
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Dict = logging.get_logger(__name__) lowerCamelCase : Union[str, Any] = { # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class __lowerCAmelCase (lowercase_ ): '''simple docstring''' lowerCAmelCase__ : List[str] = """megatron-bert""" def __init__(self : Tuple , UpperCamelCase : Optional[int]=29056 , UpperCamelCase : Optional[Any]=1024 , UpperCamelCase : Any=24 , UpperCamelCase : int=16 , UpperCamelCase : Optional[int]=4096 , UpperCamelCase : int="gelu" , UpperCamelCase : int=0.1 , UpperCamelCase : Tuple=0.1 , UpperCamelCase : Any=512 , UpperCamelCase : int=2 , UpperCamelCase : Dict=0.02 , UpperCamelCase : Dict=1E-12 , UpperCamelCase : List[Any]=0 , UpperCamelCase : Optional[int]="absolute" , UpperCamelCase : List[Any]=True , **UpperCamelCase : str , ): '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase , **UpperCamelCase ) lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = hidden_act lowercase__ = intermediate_size lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = position_embedding_type lowercase__ = use_cache
2
0
'''simple docstring''' import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class lowerCAmelCase ( lowercase_ , unittest.TestCase ): lowerCAmelCase_ = CTRLTokenizer lowerCAmelCase_ = False lowerCAmelCase_ = False def snake_case ( self : Optional[Any] ): """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __lowercase =['adapt', 're@@', 'a@@', 'apt', 'c@@', 't', '<unk>'] __lowercase =dict(zip(__lowercase , range(len(__lowercase ) ) ) ) __lowercase =['#version: 0.2', 'a p', 'ap t</w>', 'r e', 'a d', 'ad apt</w>', ''] __lowercase ={'unk_token': '<unk>'} __lowercase =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __lowercase =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(__lowercase ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(__lowercase ) ) def snake_case ( self : int , **__lowercase : List[Any] ): """simple docstring""" kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname , **__lowercase ) def snake_case ( self : List[str] , __lowercase : List[str] ): """simple docstring""" __lowercase ='adapt react readapt apt' __lowercase ='adapt react readapt apt' return input_text, output_text def snake_case ( self : Union[str, Any] ): """simple docstring""" __lowercase =CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) __lowercase ='adapt react readapt apt' __lowercase ='adapt re@@ a@@ c@@ t re@@ adapt apt'.split() __lowercase =tokenizer.tokenize(__lowercase ) self.assertListEqual(__lowercase , __lowercase ) __lowercase =tokens + [tokenizer.unk_token] __lowercase =[0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowercase ) , __lowercase )
141
'''simple docstring''' # Lint as: python3 import itertools import os import re lowerCamelCase : Any = re.compile(R'([A-Z]+)([A-Z][a-z])') lowerCamelCase : str = re.compile(R'([a-z\d])([A-Z])') lowerCamelCase : Optional[int] = re.compile(R'(?<!_)_(?!_)') lowerCamelCase : List[Any] = re.compile(R'(_{2,})') lowerCamelCase : str = R'^\w+(\.\w+)*$' lowerCamelCase : Dict = R'<>:/\|?*' def _SCREAMING_SNAKE_CASE (A ) -> Any: """simple docstring""" lowercase__ = _uppercase_uppercase_re.sub(R'''\1_\2''' , A ) lowercase__ = _lowercase_uppercase_re.sub(R'''\1_\2''' , A ) return name.lower() def _SCREAMING_SNAKE_CASE (A ) -> Tuple: """simple docstring""" lowercase__ = _single_underscore_re.split(A ) lowercase__ = [_multiple_underscores_re.split(A ) for n in name] return "".join(n.capitalize() for n in itertools.chain.from_iterable(A ) if n != '''''' ) def _SCREAMING_SNAKE_CASE (A ) -> Tuple: """simple docstring""" if os.path.basename(A ) != name: raise ValueError(f"Should be a dataset name, not a path: {name}" ) return camelcase_to_snakecase(A ) def _SCREAMING_SNAKE_CASE (A , A ) -> Optional[Any]: """simple docstring""" if os.path.basename(A ) != name: raise ValueError(f"Should be a dataset name, not a path: {name}" ) if not re.match(_split_re , A ): raise ValueError(f"Split name should match '{_split_re}'' but got '{split}'." ) return f"{filename_prefix_for_name(A )}-{split}" def _SCREAMING_SNAKE_CASE (A , A , A , A=None ) -> List[str]: """simple docstring""" lowercase__ = filename_prefix_for_split(A , A ) if filetype_suffix: prefix += f".{filetype_suffix}" lowercase__ = os.path.join(A , A ) return f"{filepath}*" def _SCREAMING_SNAKE_CASE (A , A , A , A=None , A=None ) -> Optional[Any]: """simple docstring""" lowercase__ = filename_prefix_for_split(A , A ) lowercase__ = os.path.join(A , A ) if shard_lengths: lowercase__ = len(A ) lowercase__ = [f"{prefix}-{shard_id:05d}-of-{num_shards:05d}" for shard_id in range(A )] if filetype_suffix: lowercase__ = [filename + f".{filetype_suffix}" for filename in filenames] return filenames else: lowercase__ = prefix if filetype_suffix: filename += f".{filetype_suffix}" return [filename]
2
0
import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger __snake_case : List[Any] ='<<<<<<< This should probably be modified because it mentions: ' __snake_case : Union[str, Any] ='=======\n>>>>>>>\n' __snake_case : Tuple =[ 'TextEncoderConfig', 'ByteTextEncoder', 'SubwordTextEncoder', 'encoder_config', 'maybe_build_from_corpus', 'manual_dir', ] __snake_case : List[Any] =[ # (pattern, replacement) # Order is important here for some replacements (R'tfds\.core', R'datasets'), (R'tf\.io\.gfile\.GFile', R'open'), (R'tf\.([\w\d]+)', R'datasets.Value(\'\1\')'), (R'tfds\.features\.Text\(\)', R'datasets.Value(\'string\')'), (R'tfds\.features\.Text\(', R'datasets.Value(\'string\'),'), (R'features\s*=\s*tfds.features.FeaturesDict\(', R'features=datasets.Features('), (R'tfds\.features\.FeaturesDict\(', R'dict('), (R'The TensorFlow Datasets Authors', R'The TensorFlow Datasets Authors and the HuggingFace Datasets Authors'), (R'tfds\.', R'datasets.'), (R'dl_manager\.manual_dir', R'self.config.data_dir'), (R'self\.builder_config', R'self.config'), ] def lowerCAmelCase__ ( lowerCamelCase_ : List[Any]): '''simple docstring''' return ConvertCommand(args.tfds_path ,args.datasets_directory) class lowerCamelCase__ ( lowercase_): '''simple docstring''' @staticmethod def lowerCAmelCase__ (__lowerCamelCase ) -> Tuple: """simple docstring""" lowerCAmelCase__ : Tuple = parser.add_parser( '''convert''' ,help='''Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset.''' ,) train_parser.add_argument( '''--tfds_path''' ,type=__lowerCamelCase ,required=__lowerCamelCase ,help='''Path to a TensorFlow Datasets folder to convert or a single tfds file to convert.''' ,) train_parser.add_argument( '''--datasets_directory''' ,type=__lowerCamelCase ,required=__lowerCamelCase ,help='''Path to the HuggingFace Datasets folder.''' ) train_parser.set_defaults(func=__lowerCamelCase ) def __init__(self ,__lowerCamelCase ,__lowerCamelCase ,*__lowerCamelCase ) -> Tuple: """simple docstring""" lowerCAmelCase__ : Union[str, Any] = get_logger('''datasets-cli/converting''' ) lowerCAmelCase__ : Optional[int] = tfds_path lowerCAmelCase__ : str = datasets_directory def lowerCAmelCase__ (self ) -> Any: """simple docstring""" if os.path.isdir(self._tfds_path ): lowerCAmelCase__ : Tuple = os.path.abspath(self._tfds_path ) elif os.path.isfile(self._tfds_path ): lowerCAmelCase__ : Optional[Any] = os.path.dirname(self._tfds_path ) else: raise ValueError('''--tfds_path is neither a directory nor a file. Please check path.''' ) lowerCAmelCase__ : List[Any] = os.path.abspath(self._datasets_directory ) self._logger.info(f"""Converting datasets from {abs_tfds_path} to {abs_datasets_path}""" ) lowerCAmelCase__ : str = [] lowerCAmelCase__ : Union[str, Any] = [] lowerCAmelCase__ : List[Any] = {} if os.path.isdir(self._tfds_path ): lowerCAmelCase__ : Tuple = os.listdir(__lowerCamelCase ) else: lowerCAmelCase__ : Dict = [os.path.basename(self._tfds_path )] for f_name in file_names: self._logger.info(f"""Looking at file {f_name}""" ) lowerCAmelCase__ : str = os.path.join(__lowerCamelCase ,__lowerCamelCase ) lowerCAmelCase__ : List[Any] = os.path.join(__lowerCamelCase ,__lowerCamelCase ) if not os.path.isfile(__lowerCamelCase ) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info('''Skipping file''' ) continue with open(__lowerCamelCase ,encoding='''utf-8''' ) as f: lowerCAmelCase__ : List[str] = f.readlines() lowerCAmelCase__ : Tuple = [] lowerCAmelCase__ : Optional[int] = False lowerCAmelCase__ : List[Any] = False lowerCAmelCase__ : Optional[int] = [] for line in lines: lowerCAmelCase__ : List[Any] = line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: lowerCAmelCase__ : Optional[Any] = '''import datasets\n''' elif "import tensorflow" in out_line: # order is important here lowerCAmelCase__ : int = '''''' continue elif "from absl import logging" in out_line: lowerCAmelCase__ : Any = '''from datasets import logging\n''' elif "getLogger" in out_line: lowerCAmelCase__ : str = out_line.replace('''getLogger''' ,'''get_logger''' ) elif any(expression in out_line for expression in TO_HIGHLIGHT ): lowerCAmelCase__ : int = True lowerCAmelCase__ : str = list(filter(lambda __lowerCamelCase : e in out_line ,__lowerCamelCase ) ) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(__lowerCamelCase ) + '''\n''' ) out_lines.append(__lowerCamelCase ) out_lines.append(__lowerCamelCase ) continue else: for pattern, replacement in TO_CONVERT: lowerCAmelCase__ : Union[str, Any] = re.sub(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: lowerCAmelCase__ : Optional[Any] = re.match(R'''from\stensorflow_datasets.*import\s([^\.\r\n]+)''' ,__lowerCamelCase ) tfds_imports.extend(imp.strip() for imp in match.group(1 ).split(''',''' ) ) lowerCAmelCase__ : Tuple = '''from . import ''' + match.group(1 ) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(f"""Error converting {out_line.strip()}""" ) if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: lowerCAmelCase__ : Union[str, Any] = True out_lines.append(__lowerCamelCase ) if is_builder or "wmt" in f_name: # We create a new directory for each dataset lowerCAmelCase__ : List[str] = f_name.replace('''.py''' ,'''''' ) lowerCAmelCase__ : Optional[int] = os.path.join(__lowerCamelCase ,__lowerCamelCase ) lowerCAmelCase__ : Optional[int] = os.path.join(__lowerCamelCase ,__lowerCamelCase ) os.makedirs(__lowerCamelCase ,exist_ok=__lowerCamelCase ) self._logger.info(f"""Adding directory {output_dir}""" ) imports_to_builder_map.update({imp: output_dir for imp in tfds_imports} ) else: # Utilities will be moved at the end utils_files.append(__lowerCamelCase ) if needs_manual_update: with_manual_update.append(__lowerCamelCase ) with open(__lowerCamelCase ,'''w''' ,encoding='''utf-8''' ) as f: f.writelines(__lowerCamelCase ) self._logger.info(f"""Converted in {output_file}""" ) for utils_file in utils_files: try: lowerCAmelCase__ : List[Any] = os.path.basename(__lowerCamelCase ) lowerCAmelCase__ : Union[str, Any] = imports_to_builder_map[f_name.replace('''.py''' ,'''''' )] self._logger.info(f"""Moving {dest_folder} to {utils_file}""" ) shutil.copy(__lowerCamelCase ,__lowerCamelCase ) except KeyError: self._logger.error(f"""Cannot find destination folder for {utils_file}. Please copy manually.""" ) if with_manual_update: for file_path in with_manual_update: self._logger.warning( f"""You need to manually update file {file_path} to remove configurations using 'TextEncoderConfig'.""" )
129
'''simple docstring''' import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class __lowerCAmelCase : '''simple docstring''' def __init__(self : str , UpperCamelCase : Tuple , UpperCamelCase : Optional[int]=99 , UpperCamelCase : Optional[int]=13 , UpperCamelCase : Tuple=16 , UpperCamelCase : Union[str, Any]=7 , UpperCamelCase : List[Any]=True , UpperCamelCase : List[str]=True , UpperCamelCase : str=True , UpperCamelCase : Tuple=False , UpperCamelCase : str=True , UpperCamelCase : Tuple=2 , UpperCamelCase : Optional[int]=32 , UpperCamelCase : Any=4 , UpperCamelCase : Optional[int]=4 , UpperCamelCase : Tuple=30 , UpperCamelCase : str=0 , UpperCamelCase : Tuple=1 , UpperCamelCase : List[Any]=2 , UpperCamelCase : str=None , ): '''simple docstring''' lowercase__ = parent lowercase__ = batch_size lowercase__ = decoder_seq_length # For common tests lowercase__ = self.decoder_seq_length lowercase__ = is_training lowercase__ = use_attention_mask lowercase__ = use_labels lowercase__ = vocab_size lowercase__ = d_model lowercase__ = d_model lowercase__ = decoder_layers lowercase__ = decoder_layers lowercase__ = decoder_ffn_dim lowercase__ = decoder_attention_heads lowercase__ = decoder_attention_heads lowercase__ = eos_token_id lowercase__ = bos_token_id lowercase__ = pad_token_id lowercase__ = decoder_start_token_id lowercase__ = use_cache lowercase__ = max_position_embeddings lowercase__ = None lowercase__ = decoder_seq_length lowercase__ = 2 lowercase__ = 1 def UpperCamelCase__ (self : str ): '''simple docstring''' lowercase__ = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) lowercase__ = None if self.use_attention_mask: lowercase__ = ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 ) lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) lowercase__ = TrOCRConfig( vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , ) return (config, input_ids, attention_mask, lm_labels) def UpperCamelCase__ (self : Tuple , UpperCamelCase : List[Any] , UpperCamelCase : Optional[Any] , UpperCamelCase : Tuple , UpperCamelCase : List[str] , ): '''simple docstring''' lowercase__ = True lowercase__ = TrOCRDecoder(config=UpperCamelCase ).to(UpperCamelCase ).eval() lowercase__ = input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass lowercase__ = model(UpperCamelCase , use_cache=UpperCamelCase ) lowercase__ = model(UpperCamelCase ) lowercase__ = model(UpperCamelCase , use_cache=UpperCamelCase ) self.parent.assertTrue(len(UpperCamelCase ) == len(UpperCamelCase ) ) self.parent.assertTrue(len(UpperCamelCase ) == len(UpperCamelCase ) + 1 ) lowercase__ = outputs['''past_key_values'''] # create hypothetical next token and extent to next_input_ids lowercase__ = ids_tensor((2, 1) , config.vocab_size - 1 ) + 1 # append to next input_ids and lowercase__ = torch.cat([input_ids, next_tokens] , dim=-1 ) lowercase__ = model(UpperCamelCase )['''last_hidden_state'''] lowercase__ = model(UpperCamelCase , past_key_values=UpperCamelCase )['''last_hidden_state'''] # select random slice lowercase__ = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowercase__ = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() lowercase__ = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(UpperCamelCase , UpperCamelCase , atol=1E-3 ) def UpperCamelCase__ (self : Optional[Any] ): '''simple docstring''' lowercase__ = self.prepare_config_and_inputs() lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ = config_and_inputs lowercase__ = {'''input_ids''': input_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_torch class __lowerCAmelCase (lowercase_ , lowercase_ , lowercase_ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ : List[str] = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () lowerCAmelCase__ : List[Any] = (TrOCRForCausalLM,) if is_torch_available() else () lowerCAmelCase__ : Optional[Any] = {"""text-generation""": TrOCRForCausalLM} if is_torch_available() else {} lowerCAmelCase__ : Optional[Any] = True lowerCAmelCase__ : List[str] = False def UpperCamelCase__ (self : Any ): '''simple docstring''' lowercase__ = TrOCRStandaloneDecoderModelTester(self , is_training=UpperCamelCase ) lowercase__ = ConfigTester(self , config_class=UpperCamelCase ) def UpperCamelCase__ (self : List[str] ): '''simple docstring''' pass def UpperCamelCase__ (self : Optional[int] ): '''simple docstring''' pass def UpperCamelCase__ (self : Any ): '''simple docstring''' pass def UpperCamelCase__ (self : Any ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCamelCase__ (self : Union[str, Any] ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*UpperCamelCase ) def UpperCamelCase__ (self : Optional[int] ): '''simple docstring''' return @unittest.skip('''The model doesn\'t support left padding''' ) # and it's not used enough to be worth fixing :) def UpperCamelCase__ (self : List[str] ): '''simple docstring''' pass
2
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE : Tuple = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Dict = { 'microsoft/cvt-13': 'https://huggingface.co/microsoft/cvt-13/resolve/main/config.json', # See all Cvt models at https://huggingface.co/models?filter=cvt } class _UpperCAmelCase ( lowercase_ ): '''simple docstring''' lowerCamelCase__ ="""cvt""" def __init__(self , a_=3 , a_=[7, 3, 3] , a_=[4, 2, 2] , a_=[2, 1, 1] , a_=[64, 1_92, 3_84] , a_=[1, 3, 6] , a_=[1, 2, 10] , a_=[4.0, 4.0, 4.0] , a_=[0.0, 0.0, 0.0] , a_=[0.0, 0.0, 0.0] , a_=[0.0, 0.0, 0.1] , a_=[True, True, True] , a_=[False, False, True] , a_=["dw_bn", "dw_bn", "dw_bn"] , a_=[3, 3, 3] , a_=[1, 1, 1] , a_=[2, 2, 2] , a_=[1, 1, 1] , a_=[1, 1, 1] , a_=0.02 , a_=1E-12 , **a_ , ): '''simple docstring''' super().__init__(**a_ ) __snake_case : Optional[Any] = num_channels __snake_case : Dict = patch_sizes __snake_case : List[Any] = patch_stride __snake_case : Optional[int] = patch_padding __snake_case : Any = embed_dim __snake_case : List[Any] = num_heads __snake_case : Tuple = depth __snake_case : Any = mlp_ratio __snake_case : str = attention_drop_rate __snake_case : Dict = drop_rate __snake_case : Optional[Any] = drop_path_rate __snake_case : Tuple = qkv_bias __snake_case : Dict = cls_token __snake_case : int = qkv_projection_method __snake_case : Optional[int] = kernel_qkv __snake_case : Any = padding_kv __snake_case : int = stride_kv __snake_case : List[Any] = padding_q __snake_case : List[Any] = stride_q __snake_case : List[Any] = initializer_range __snake_case : Optional[int] = layer_norm_eps
102
'''simple docstring''' def _SCREAMING_SNAKE_CASE (A ) -> int: """simple docstring""" if not isinstance(A , A ): raise TypeError('''only integers accepted as input''' ) else: lowercase__ = str(abs(A ) ) lowercase__ = [list(A ) for char in range(len(A ) )] for index in range(len(A ) ): num_transpositions[index].pop(A ) return max( int(''''''.join(list(A ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__('doctest').testmod()
2
0
import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings A_ :Tuple = R'\n [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and\n can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information.\n\n Args:\n title_sep (`str`, *optional*, defaults to `" / "`):\n Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`].\n doc_sep (`str`, *optional*, defaults to `" // "`):\n Separator inserted between the text of the retrieved document and the original input when calling\n [`RagRetriever`].\n n_docs (`int`, *optional*, defaults to 5):\n Number of documents to retrieve.\n max_combined_length (`int`, *optional*, defaults to 300):\n Max length of contextualized input returned by [`~RagRetriever.__call__`].\n retrieval_vector_size (`int`, *optional*, defaults to 768):\n Dimensionality of the document embeddings indexed by [`RagRetriever`].\n retrieval_batch_size (`int`, *optional*, defaults to 8):\n Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated\n [`RagRetriever`].\n dataset (`str`, *optional*, defaults to `"wiki_dpr"`):\n A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids\n using `datasets.list_datasets()`).\n dataset_split (`str`, *optional*, defaults to `"train"`)\n Which split of the `dataset` to load.\n index_name (`str`, *optional*, defaults to `"compressed"`)\n The index name of the index associated with the `dataset`. One can choose between `"legacy"`, `"exact"` and\n `"compressed"`.\n index_path (`str`, *optional*)\n The path to the serialized faiss index on disk.\n passages_path (`str`, *optional*):\n A path to text passages compatible with the faiss index. Required if using\n [`~models.rag.retrieval_rag.LegacyIndex`]\n use_dummy_dataset (`bool`, *optional*, defaults to `False`)\n Whether to load a "dummy" variant of the dataset specified by `dataset`.\n label_smoothing (`float`, *optional*, defaults to 0.0):\n Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing\n in the loss calculation. If set to 0, no label smoothing is performed.\n do_marginalize (`bool`, *optional*, defaults to `False`):\n If `True`, the logits are marginalized over all documents by making use of\n `torch.nn.functional.log_softmax`.\n reduce_loss (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation.\n do_deduplication (`bool`, *optional*, defaults to `True`):\n Whether or not to deduplicate the generations from different context documents for a given input. Has to be\n set to `False` if used while training with distributed backend.\n exclude_bos_score (`bool`, *optional*, defaults to `False`):\n Whether or not to disregard the BOS token when computing the loss.\n output_retrieved(`bool`, *optional*, defaults to `False`):\n If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and\n `context_attention_mask` are returned. See returned tensors for more detail.\n use_cache (`bool`, *optional*, defaults to `True`):\n Whether or not the model should return the last key/values attentions (not used by all models).\n forced_eos_token_id (`int`, *optional*):\n The id of the token to force as the last generated token when `max_length` is reached. Usually set to\n `eos_token_id`.\n' @add_start_docstrings(lowercase_ ) class __A ( lowercase_ ): """simple docstring""" UpperCamelCase__ : Any ="""rag""" UpperCamelCase__ : List[Any] =True def __init__( self , lowerCamelCase__=None , lowerCamelCase__=True , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=" / " , lowerCamelCase__=" // " , lowerCamelCase__=5 , lowerCamelCase__=300 , lowerCamelCase__=768 , lowerCamelCase__=8 , lowerCamelCase__="wiki_dpr" , lowerCamelCase__="train" , lowerCamelCase__="compressed" , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=False , lowerCamelCase__=False , lowerCamelCase__=0.0 , lowerCamelCase__=True , lowerCamelCase__=False , lowerCamelCase__=False , lowerCamelCase__=False , lowerCamelCase__=True , lowerCamelCase__=None , **lowerCamelCase__ , ): """simple docstring""" super().__init__( bos_token_id=lowerCamelCase__ , pad_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ , decoder_start_token_id=lowerCamelCase__ , forced_eos_token_id=lowerCamelCase__ , is_encoder_decoder=lowerCamelCase__ , prefix=lowerCamelCase__ , vocab_size=lowerCamelCase__ , **lowerCamelCase__ , ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" __UpperCamelCase : Dict =kwargs.pop('question_encoder' ) __UpperCamelCase : Any =question_encoder_config.pop('model_type' ) __UpperCamelCase : Optional[Any] =kwargs.pop('generator' ) __UpperCamelCase : Union[str, Any] =decoder_config.pop('model_type' ) from ..auto.configuration_auto import AutoConfig __UpperCamelCase : List[str] =AutoConfig.for_model(lowerCamelCase__ , **lowerCamelCase__ ) __UpperCamelCase : Tuple =AutoConfig.for_model(lowerCamelCase__ , **lowerCamelCase__ ) __UpperCamelCase : Optional[Any] =reduce_loss __UpperCamelCase : Optional[int] =label_smoothing __UpperCamelCase : Optional[int] =exclude_bos_score __UpperCamelCase : int =do_marginalize __UpperCamelCase : str =title_sep __UpperCamelCase : Tuple =doc_sep __UpperCamelCase : List[str] =n_docs __UpperCamelCase : List[str] =max_combined_length __UpperCamelCase : Any =dataset __UpperCamelCase : Union[str, Any] =dataset_split __UpperCamelCase : List[str] =index_name __UpperCamelCase : List[Any] =retrieval_vector_size __UpperCamelCase : str =retrieval_batch_size __UpperCamelCase : List[str] =passages_path __UpperCamelCase : Union[str, Any] =index_path __UpperCamelCase : List[str] =use_dummy_dataset __UpperCamelCase : Union[str, Any] =output_retrieved __UpperCamelCase : List[str] =do_deduplication __UpperCamelCase : Tuple =use_cache if self.forced_eos_token_id is None: __UpperCamelCase : int =getattr(self.generator , 'forced_eos_token_id' , lowerCamelCase__ ) @classmethod def __lowercase ( cls , lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ): """simple docstring""" return cls(question_encoder=question_encoder_config.to_dict() , generator=generator_config.to_dict() , **lowerCamelCase__ ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : List[Any] =copy.deepcopy(self.__dict__ ) __UpperCamelCase : Any =self.question_encoder.to_dict() __UpperCamelCase : Optional[Any] =self.generator.to_dict() __UpperCamelCase : Optional[int] =self.__class__.model_type return output
71
'''simple docstring''' import dataclasses import re import string from typing import Any, Dict, Iterator, List, Mapping, Optional, Sequence, Tuple import numpy as np from . import residue_constants lowerCamelCase : str = Mapping[str, np.ndarray] lowerCamelCase : List[Any] = Mapping[str, Any] # Is a nested dict. lowerCamelCase : Any = 0.0_1 @dataclasses.dataclass(frozen=lowercase_ ) class __lowerCAmelCase : '''simple docstring''' lowerCAmelCase__ : np.ndarray # [num_res, num_atom_type, 3] # Amino-acid type for each residue represented as an integer between 0 and # 20, where 20 is 'X'. lowerCAmelCase__ : np.ndarray # [num_res] # Binary float mask to indicate presence of a particular atom. 1.0 if an atom # is present and 0.0 if not. This should be used for loss masking. lowerCAmelCase__ : np.ndarray # [num_res, num_atom_type] # Residue index as used in PDB. It is not necessarily continuous or 0-indexed. lowerCAmelCase__ : np.ndarray # [num_res] # B-factors, or temperature factors, of each residue (in sq. angstroms units), # representing the displacement of the residue from its ground truth mean # value. lowerCAmelCase__ : np.ndarray # [num_res, num_atom_type] # Chain indices for multi-chain predictions lowerCAmelCase__ : Optional[np.ndarray] = None # Optional remark about the protein. Included as a comment in output PDB # files lowerCAmelCase__ : Optional[str] = None # Templates used to generate this protein (prediction-only) lowerCAmelCase__ : Optional[Sequence[str]] = None # Chain corresponding to each parent lowerCAmelCase__ : Optional[Sequence[int]] = None def _SCREAMING_SNAKE_CASE (A ) -> Protein: """simple docstring""" lowercase__ = R'''(\[[A-Z]+\]\n)''' lowercase__ = [tag.strip() for tag in re.split(A , A ) if len(A ) > 0] lowercase__ = zip(tags[0::2] , [l.split('''\n''' ) for l in tags[1::2]] ) lowercase__ = ["N", "CA", "C"] lowercase__ = None lowercase__ = None lowercase__ = None for g in groups: if "[PRIMARY]" == g[0]: lowercase__ = g[1][0].strip() for i in range(len(A ) ): if seq[i] not in residue_constants.restypes: lowercase__ = '''X''' # FIXME: strings are immutable lowercase__ = np.array( [residue_constants.restype_order.get(A , residue_constants.restype_num ) for res_symbol in seq] ) elif "[TERTIARY]" == g[0]: lowercase__ = [] for axis in range(3 ): tertiary.append(list(map(A , g[1][axis].split() ) ) ) lowercase__ = np.array(A ) lowercase__ = np.zeros((len(tertiary[0] ) // 3, residue_constants.atom_type_num, 3) ).astype(np.floataa ) for i, atom in enumerate(A ): lowercase__ = np.transpose(tertiary_np[:, i::3] ) atom_positions *= PICO_TO_ANGSTROM elif "[MASK]" == g[0]: lowercase__ = np.array(list(map({'''-''': 0, '''+''': 1}.get , g[1][0].strip() ) ) ) lowercase__ = np.zeros( ( len(A ), residue_constants.atom_type_num, ) ).astype(np.floataa ) for i, atom in enumerate(A ): lowercase__ = 1 atom_mask *= mask[..., None] assert aatype is not None return Protein( atom_positions=A , atom_mask=A , aatype=A , residue_index=np.arange(len(A ) ) , b_factors=A , ) def _SCREAMING_SNAKE_CASE (A , A = 0 ) -> List[str]: """simple docstring""" lowercase__ = [] lowercase__ = prot.remark if remark is not None: pdb_headers.append(f"REMARK {remark}" ) lowercase__ = prot.parents lowercase__ = prot.parents_chain_index if parents is not None and parents_chain_index is not None: lowercase__ = [p for i, p in zip(A , A ) if i == chain_id] if parents is None or len(A ) == 0: lowercase__ = ['''N/A'''] pdb_headers.append(f"PARENT {' '.join(A )}" ) return pdb_headers def _SCREAMING_SNAKE_CASE (A , A ) -> str: """simple docstring""" lowercase__ = [] lowercase__ = pdb_str.split('''\n''' ) lowercase__ = prot.remark if remark is not None: out_pdb_lines.append(f"REMARK {remark}" ) lowercase__ = 42 if prot.parents is not None and len(prot.parents ) > 0: lowercase__ = [] if prot.parents_chain_index is not None: lowercase__ = {} for p, i in zip(prot.parents , prot.parents_chain_index ): parent_dict.setdefault(str(A ) , [] ) parent_dict[str(A )].append(A ) lowercase__ = max([int(A ) for chain_idx in parent_dict] ) for i in range(max_idx + 1 ): lowercase__ = parent_dict.get(str(A ) , ['''N/A'''] ) parents_per_chain.append(A ) else: parents_per_chain.append(list(prot.parents ) ) else: lowercase__ = [['''N/A''']] def make_parent_line(A ) -> str: return f"PARENT {' '.join(A )}" out_pdb_lines.append(make_parent_line(parents_per_chain[0] ) ) lowercase__ = 0 for i, l in enumerate(A ): if "PARENT" not in l and "REMARK" not in l: out_pdb_lines.append(A ) if "TER" in l and "END" not in lines[i + 1]: chain_counter += 1 if not chain_counter >= len(A ): lowercase__ = parents_per_chain[chain_counter] else: lowercase__ = ['''N/A'''] out_pdb_lines.append(make_parent_line(A ) ) return "\n".join(A ) def _SCREAMING_SNAKE_CASE (A ) -> str: """simple docstring""" lowercase__ = residue_constants.restypes + ['''X'''] def res_atoa(A ) -> str: return residue_constants.restype_atoa.get(restypes[r] , '''UNK''' ) lowercase__ = residue_constants.atom_types lowercase__ = [] lowercase__ = prot.atom_mask lowercase__ = prot.aatype lowercase__ = prot.atom_positions lowercase__ = prot.residue_index.astype(np.intaa ) lowercase__ = prot.b_factors lowercase__ = prot.chain_index if np.any(aatype > residue_constants.restype_num ): raise ValueError('''Invalid aatypes.''' ) lowercase__ = get_pdb_headers(A ) if len(A ) > 0: pdb_lines.extend(A ) lowercase__ = aatype.shape[0] lowercase__ = 1 lowercase__ = 0 lowercase__ = string.ascii_uppercase lowercase__ = None # Add all atom sites. for i in range(A ): lowercase__ = res_atoa(aatype[i] ) for atom_name, pos, mask, b_factor in zip(A , atom_positions[i] , atom_mask[i] , b_factors[i] ): if mask < 0.5: continue lowercase__ = '''ATOM''' lowercase__ = atom_name if len(A ) == 4 else f" {atom_name}" lowercase__ = '''''' lowercase__ = '''''' lowercase__ = 1.00 lowercase__ = atom_name[0] # Protein supports only C, N, O, S, this works. lowercase__ = '''''' lowercase__ = '''A''' if chain_index is not None: lowercase__ = chain_tags[chain_index[i]] # PDB is a columnar format, every space matters here! lowercase__ = ( f"{record_type:<6}{atom_index:>5} {name:<4}{alt_loc:>1}" f"{res_name_a:>3} {chain_tag:>1}" f"{residue_index[i]:>4}{insertion_code:>1} " f"{pos[0]:>8.3f}{pos[1]:>8.3f}{pos[2]:>8.3f}" f"{occupancy:>6.2f}{b_factor:>6.2f} " f"{element:>2}{charge:>2}" ) pdb_lines.append(A ) atom_index += 1 lowercase__ = i == n - 1 if chain_index is not None: if i != n - 1 and chain_index[i + 1] != prev_chain_index: lowercase__ = True lowercase__ = chain_index[i + 1] if should_terminate: # Close the chain. lowercase__ = '''TER''' lowercase__ = ( f"{chain_end:<6}{atom_index:>5} {res_atoa(aatype[i] ):>3} {chain_tag:>1}{residue_index[i]:>4}" ) pdb_lines.append(A ) atom_index += 1 if i != n - 1: # "prev" is a misnomer here. This happens at the beginning of # each new chain. pdb_lines.extend(get_pdb_headers(A , A ) ) pdb_lines.append('''END''' ) pdb_lines.append('''''' ) return "\n".join(A ) def _SCREAMING_SNAKE_CASE (A ) -> np.ndarray: """simple docstring""" return residue_constants.STANDARD_ATOM_MASK[prot.aatype] def _SCREAMING_SNAKE_CASE (A , A , A = None , A = None , A = None , A = None , A = None , ) -> Protein: """simple docstring""" return Protein( aatype=features['''aatype'''] , atom_positions=result['''final_atom_positions'''] , atom_mask=result['''final_atom_mask'''] , residue_index=features['''residue_index'''] + 1 , b_factors=b_factors if b_factors is not None else np.zeros_like(result['''final_atom_mask'''] ) , chain_index=A , remark=A , parents=A , parents_chain_index=A , )
2
0
'''simple docstring''' import json import os import tempfile import unittest import unittest.mock as mock from pathlib import Path from requests.exceptions import HTTPError from transformers.utils import ( CONFIG_NAME, FLAX_WEIGHTS_NAME, TF2_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, cached_file, get_file_from_repo, has_file, ) _SCREAMING_SNAKE_CASE : Optional[Any] = 'hf-internal-testing/tiny-random-bert' _SCREAMING_SNAKE_CASE : Optional[int] = os.path.join(TRANSFORMERS_CACHE, "models--hf-internal-testing--tiny-random-bert") _SCREAMING_SNAKE_CASE : Optional[Any] = '9b8c223d42b2188cb49d29af482996f9d0f3e5a6' class _snake_case ( unittest.TestCase ): def lowerCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' snake_case_ = cached_file(a__ , a__ ) # Should have downloaded the file in here self.assertTrue(os.path.isdir(a__ ) ) # Cache should contain at least those three subfolders: for subfolder in ["blobs", "refs", "snapshots"]: self.assertTrue(os.path.isdir(os.path.join(a__ , a__ ) ) ) with open(os.path.join(a__ , "refs" , "main" ) ) as f: snake_case_ = f.read() self.assertEqual(a__ , os.path.join(a__ , "snapshots" , a__ , a__ ) ) self.assertTrue(os.path.isfile(a__ ) ) # File is cached at the same place the second time. snake_case_ = cached_file(a__ , a__ ) self.assertEqual(a__ , a__ ) # Using a specific revision to test the full commit hash. snake_case_ = cached_file(a__ , a__ , revision="9b8c223" ) self.assertEqual(a__ , os.path.join(a__ , "snapshots" , a__ , a__ ) ) def lowerCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' with self.assertRaisesRegex(a__ , "is not a valid model identifier" ): snake_case_ = cached_file("tiny-random-bert" , a__ ) with self.assertRaisesRegex(a__ , "is not a valid git identifier" ): snake_case_ = cached_file(a__ , a__ , revision="aaaa" ) with self.assertRaisesRegex(a__ , "does not appear to have a file named" ): snake_case_ = cached_file(a__ , "conf" ) def lowerCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' with self.assertRaisesRegex(a__ , "does not appear to have a file named" ): snake_case_ = cached_file(a__ , "conf" ) with open(os.path.join(a__ , "refs" , "main" ) ) as f: snake_case_ = f.read() self.assertTrue(os.path.isfile(os.path.join(a__ , ".no_exist" , a__ , "conf" ) ) ) snake_case_ = cached_file(a__ , "conf" , _raise_exceptions_for_missing_entries=a__ ) self.assertIsNone(a__ ) snake_case_ = cached_file(a__ , "conf" , local_files_only=a__ , _raise_exceptions_for_missing_entries=a__ ) self.assertIsNone(a__ ) snake_case_ = mock.Mock() snake_case_ = 500 snake_case_ = {} snake_case_ = HTTPError snake_case_ = {} # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("requests.Session.request" , return_value=a__ ) as mock_head: snake_case_ = cached_file(a__ , "conf" , _raise_exceptions_for_connection_errors=a__ ) self.assertIsNone(a__ ) # This check we did call the fake head request mock_head.assert_called() def lowerCAmelCase__ ( self ) -> Dict: '''simple docstring''' self.assertTrue(has_file("hf-internal-testing/tiny-bert-pt-only" , a__ ) ) self.assertFalse(has_file("hf-internal-testing/tiny-bert-pt-only" , a__ ) ) self.assertFalse(has_file("hf-internal-testing/tiny-bert-pt-only" , a__ ) ) def lowerCAmelCase__ ( self ) -> Tuple: '''simple docstring''' self.assertIsNone(get_file_from_repo("bert-base-cased" , "ahah.txt" ) ) # The function raises if the repository does not exist. with self.assertRaisesRegex(a__ , "is not a valid model identifier" ): get_file_from_repo("bert-base-case" , a__ ) # The function raises if the revision does not exist. with self.assertRaisesRegex(a__ , "is not a valid git identifier" ): get_file_from_repo("bert-base-cased" , a__ , revision="ahaha" ) snake_case_ = get_file_from_repo("bert-base-cased" , a__ ) # The name is the cached name which is not very easy to test, so instead we load the content. snake_case_ = json.loads(open(a__ , "r" ).read() ) self.assertEqual(config["hidden_size"] , 768 ) def lowerCAmelCase__ ( self ) -> Tuple: '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: snake_case_ = Path(a__ ) / "a.txt" filename.touch() self.assertEqual(get_file_from_repo(a__ , "a.txt" ) , str(a__ ) ) self.assertIsNone(get_file_from_repo(a__ , "b.txt" ) )
85
'''simple docstring''' from __future__ import annotations def _SCREAMING_SNAKE_CASE (A , A ) -> list[list[int]]: """simple docstring""" lowercase__ = [] create_all_state(1 , A , A , [] , A ) return result def _SCREAMING_SNAKE_CASE (A , A , A , A , A , ) -> None: """simple docstring""" if level == 0: total_list.append(current_list[:] ) return for i in range(A , total_number - level + 2 ): current_list.append(A ) create_all_state(i + 1 , A , level - 1 , A , A ) current_list.pop() def _SCREAMING_SNAKE_CASE (A ) -> None: """simple docstring""" for i in total_list: print(*A ) if __name__ == "__main__": lowerCamelCase : Tuple = 4 lowerCamelCase : Union[str, Any] = 2 lowerCamelCase : Dict = generate_all_combinations(n, k) print_all_state(total_list)
2
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { 'microsoft/beit-base-patch16-224-pt22k': ( 'https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json' ), # See all BEiT models at https://huggingface.co/models?filter=beit } class __lowerCAmelCase ( lowercase_ ): lowerCAmelCase__ = """beit""" def __init__( self , __UpperCAmelCase=8192 , __UpperCAmelCase=768 , __UpperCAmelCase=12 , __UpperCAmelCase=12 , __UpperCAmelCase=3072 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-1_2 , __UpperCAmelCase=224 , __UpperCAmelCase=16 , __UpperCAmelCase=3 , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=True , __UpperCAmelCase=[3, 5, 7, 11] , __UpperCAmelCase=[1, 2, 3, 6] , __UpperCAmelCase=True , __UpperCAmelCase=0.4 , __UpperCAmelCase=256 , __UpperCAmelCase=1 , __UpperCAmelCase=False , __UpperCAmelCase=255 , **__UpperCAmelCase , ): '''simple docstring''' super().__init__(**__UpperCAmelCase ) __lowerCamelCase = vocab_size __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_act __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = initializer_range __lowerCamelCase = layer_norm_eps __lowerCamelCase = image_size __lowerCamelCase = patch_size __lowerCamelCase = num_channels __lowerCamelCase = use_mask_token __lowerCamelCase = use_absolute_position_embeddings __lowerCamelCase = use_relative_position_bias __lowerCamelCase = use_shared_relative_position_bias __lowerCamelCase = layer_scale_init_value __lowerCamelCase = drop_path_rate __lowerCamelCase = use_mean_pooling # decode head attributes (semantic segmentation) __lowerCamelCase = out_indices __lowerCamelCase = pool_scales # auxiliary head attributes (semantic segmentation) __lowerCamelCase = use_auxiliary_head __lowerCamelCase = auxiliary_loss_weight __lowerCamelCase = auxiliary_channels __lowerCamelCase = auxiliary_num_convs __lowerCamelCase = auxiliary_concat_input __lowerCamelCase = semantic_loss_ignore_index class __lowerCAmelCase ( lowercase_ ): lowerCAmelCase__ = version.parse("""1.11""" ) @property def lowerCamelCase ( self ): '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def lowerCamelCase ( self ): '''simple docstring''' return 1E-4
330
'''simple docstring''' import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand lowerCamelCase : Optional[Any] = ( '4S 3H 2C 7S 5H', '9D 8H 2C 6S 7H', '2D 6D 9D TH 7D', 'TC 8C 2S JH 6C', 'JH 8S TH AH QH', 'TS KS 5S 9S AC', 'KD 6S 9D TH AD', 'KS 8D 4D 9S 4S', # pair '8C 4S KH JS 4D', # pair 'QH 8H KD JH 8S', # pair 'KC 4H KS 2H 8D', # pair 'KD 4S KC 3H 8S', # pair 'AH 8S AS KC JH', # pair '3H 4C 4H 3S 2H', # 2 pairs '5S 5D 2C KH KH', # 2 pairs '3C KH 5D 5S KH', # 2 pairs 'AS 3C KH AD KH', # 2 pairs '7C 7S 3S 7H 5S', # 3 of a kind '7C 7S KH 2H 7H', # 3 of a kind 'AC KH QH AH AS', # 3 of a kind '2H 4D 3C AS 5S', # straight (low ace) '3C 5C 4C 2C 6H', # straight '6S 8S 7S 5H 9H', # straight 'JS QS 9H TS KH', # straight 'QC KH TS JS AH', # straight (high ace) '8C 9C 5C 3C TC', # flush '3S 8S 9S 5S KS', # flush '4C 5C 9C 8C KC', # flush 'JH 8H AH KH QH', # flush '3D 2H 3H 2C 2D', # full house '2H 2C 3S 3H 3D', # full house 'KH KC 3S 3H 3D', # full house 'JC 6H JS JD JH', # 4 of a kind 'JC 7H JS JD JH', # 4 of a kind 'JC KH JS JD JH', # 4 of a kind '2S AS 4S 5S 3S', # straight flush (low ace) '2D 6D 3D 4D 5D', # straight flush '5C 6C 3C 7C 4C', # straight flush 'JH 9H TH KH QH', # straight flush 'JH AH TH KH QH', # royal flush (high ace straight flush) ) lowerCamelCase : Tuple = ( ('2H 3H 4H 5H 6H', 'KS AS TS QS JS', 'Loss'), ('2H 3H 4H 5H 6H', 'AS AD AC AH JD', 'Win'), ('AS AH 2H AD AC', 'JS JD JC JH 3D', 'Win'), ('2S AH 2H AS AC', 'JS JD JC JH AD', 'Loss'), ('2S AH 2H AS AC', '2H 3H 5H 6H 7H', 'Win'), ('AS 3S 4S 8S 2S', '2H 3H 5H 6H 7H', 'Win'), ('2H 3H 5H 6H 7H', '2S 3H 4H 5S 6C', 'Win'), ('2S 3H 4H 5S 6C', '3D 4C 5H 6H 2S', 'Tie'), ('2S 3H 4H 5S 6C', 'AH AC 5H 6H AS', 'Win'), ('2S 2H 4H 5S 4C', 'AH AC 5H 6H AS', 'Loss'), ('2S 2H 4H 5S 4C', 'AH AC 5H 6H 7S', 'Win'), ('6S AD 7H 4S AS', 'AH AC 5H 6H 7S', 'Loss'), ('2S AH 4H 5S KC', 'AH AC 5H 6H 7S', 'Loss'), ('2S 3H 6H 7S 9C', '7H 3C TH 6H 9S', 'Loss'), ('4S 5H 6H TS AC', '3S 5H 6H TS AC', 'Win'), ('2S AH 4H 5S 6C', 'AD 4C 5H 6H 2C', 'Tie'), ('AS AH 3H AD AC', 'AS AH 2H AD AC', 'Win'), ('AH AC 5H 5C QS', 'AH AC 5H 5C KS', 'Loss'), ('AH AC 5H 5C QS', 'KH KC 5H 5C QS', 'Win'), ('7C 7S KH 2H 7H', '3C 3S AH 2H 3H', 'Win'), ('3C 3S AH 2H 3H', '7C 7S KH 2H 7H', 'Loss'), ('6H 5H 4H 3H 2H', '5H 4H 3H 2H AH', 'Win'), ('5H 4H 3H 2H AH', '5H 4H 3H 2H AH', 'Tie'), ('5H 4H 3H 2H AH', '6H 5H 4H 3H 2H', 'Loss'), ('AH AD KS KC AC', 'AH KD KH AC KC', 'Win'), ('2H 4D 3C AS 5S', '2H 4D 3C 6S 5S', 'Loss'), ('2H 3S 3C 3H 2S', '3S 3C 2S 2H 2D', 'Win'), ('4D 6D 5D 2D JH', '3S 8S 3H TC KH', 'Loss'), ('4S 6C 8S 3S 7S', 'AD KS 2D 7D 7C', 'Loss'), ('6S 4C 7H 8C 3H', '5H JC AH 9D 9C', 'Loss'), ('9D 9H JH TC QH', '3C 2S JS 5C 7H', 'Win'), ('2H TC 8S AD 9S', '4H TS 7H 2C 5C', 'Win'), ('9D 3S 2C 7S 7C', 'JC TD 3C TC 9H', 'Loss'), ) lowerCamelCase : Dict = ( ('2H 3H 4H 5H 6H', True), ('AS AH 2H AD AC', False), ('2H 3H 5H 6H 7H', True), ('KS AS TS QS JS', True), ('8H 9H QS JS TH', False), ('AS 3S 4S 8S 2S', True), ) lowerCamelCase : Any = ( ('2H 3H 4H 5H 6H', True), ('AS AH 2H AD AC', False), ('2H 3H 5H 6H 7H', False), ('KS AS TS QS JS', True), ('8H 9H QS JS TH', True), ) lowerCamelCase : Tuple = ( ('2H 4D 3C AS 5S', True, [5, 4, 3, 2, 14]), ('2H 5D 3C AS 5S', False, [14, 5, 5, 3, 2]), ('JH QD KC AS TS', False, [14, 13, 12, 11, 10]), ('9D 3S 2C 7S 7C', False, [9, 7, 7, 3, 2]), ) lowerCamelCase : Optional[int] = ( ('JH AH TH KH QH', 0), ('JH 9H TH KH QH', 0), ('JC KH JS JD JH', 7), ('KH KC 3S 3H 3D', 6), ('8C 9C 5C 3C TC', 0), ('JS QS 9H TS KH', 0), ('7C 7S KH 2H 7H', 3), ('3C KH 5D 5S KH', 2), ('QH 8H KD JH 8S', 1), ('2D 6D 9D TH 7D', 0), ) lowerCamelCase : Dict = ( ('JH AH TH KH QH', 23), ('JH 9H TH KH QH', 22), ('JC KH JS JD JH', 21), ('KH KC 3S 3H 3D', 20), ('8C 9C 5C 3C TC', 19), ('JS QS 9H TS KH', 18), ('7C 7S KH 2H 7H', 17), ('3C KH 5D 5S KH', 16), ('QH 8H KD JH 8S', 15), ('2D 6D 9D TH 7D', 14), ) def _SCREAMING_SNAKE_CASE () -> Union[str, Any]: """simple docstring""" lowercase__ ,lowercase__ = randrange(len(A ) ), randrange(len(A ) ) lowercase__ = ['''Loss''', '''Tie''', '''Win'''][(play >= oppo) + (play > oppo)] lowercase__ ,lowercase__ = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def _SCREAMING_SNAKE_CASE (A = 100 ) -> str: """simple docstring""" return (generate_random_hand() for _ in range(A )) @pytest.mark.parametrize('''hand, expected''' , A ) def _SCREAMING_SNAKE_CASE (A , A ) -> List[str]: """simple docstring""" assert PokerHand(A )._is_flush() == expected @pytest.mark.parametrize('''hand, expected''' , A ) def _SCREAMING_SNAKE_CASE (A , A ) -> Union[str, Any]: """simple docstring""" assert PokerHand(A )._is_straight() == expected @pytest.mark.parametrize('''hand, expected, card_values''' , A ) def _SCREAMING_SNAKE_CASE (A , A , A ) -> Any: """simple docstring""" lowercase__ = PokerHand(A ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize('''hand, expected''' , A ) def _SCREAMING_SNAKE_CASE (A , A ) -> Tuple: """simple docstring""" assert PokerHand(A )._is_same_kind() == expected @pytest.mark.parametrize('''hand, expected''' , A ) def _SCREAMING_SNAKE_CASE (A , A ) -> Optional[Any]: """simple docstring""" assert PokerHand(A )._hand_type == expected @pytest.mark.parametrize('''hand, other, expected''' , A ) def _SCREAMING_SNAKE_CASE (A , A , A ) -> Union[str, Any]: """simple docstring""" assert PokerHand(A ).compare_with(PokerHand(A ) ) == expected @pytest.mark.parametrize('''hand, other, expected''' , generate_random_hands() ) def _SCREAMING_SNAKE_CASE (A , A , A ) -> Optional[Any]: """simple docstring""" assert PokerHand(A ).compare_with(PokerHand(A ) ) == expected def _SCREAMING_SNAKE_CASE () -> Tuple: """simple docstring""" lowercase__ = [PokerHand(A ) for hand in SORTED_HANDS] lowercase__ = poker_hands.copy() shuffle(A ) lowercase__ = chain(sorted(A ) ) for index, hand in enumerate(A ): assert hand == poker_hands[index] def _SCREAMING_SNAKE_CASE () -> List[Any]: """simple docstring""" lowercase__ = [PokerHand('''2D AC 3H 4H 5S''' ), PokerHand('''2S 3H 4H 5S 6C''' )] pokerhands.sort(reverse=A ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def _SCREAMING_SNAKE_CASE () -> int: """simple docstring""" lowercase__ = PokerHand('''2C 4S AS 3D 5C''' ) lowercase__ = True lowercase__ = [5, 4, 3, 2, 14] for _ in range(10 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def _SCREAMING_SNAKE_CASE () -> Union[str, Any]: """simple docstring""" lowercase__ = 0 lowercase__ = os.path.abspath(os.path.dirname(A ) ) lowercase__ = os.path.join(A , '''poker_hands.txt''' ) with open(A ) as file_hand: for line in file_hand: lowercase__ = line[:14].strip() lowercase__ = line[15:].strip() lowercase__ ,lowercase__ = PokerHand(A ), PokerHand(A ) lowercase__ = player.compare_with(A ) if output == "Win": answer += 1 assert answer == 376
2
0
def lowerCamelCase_ ( UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[Any] ) -> str: """simple docstring""" __lowerCamelCase = '' for word_or_phrase in separated: if not isinstance(UpperCamelCase__ , UpperCamelCase__ ): raise Exception('join() accepts only strings to be joined' ) joined += word_or_phrase + separator return joined.strip(UpperCamelCase__ ) if __name__ == "__main__": from doctest import testmod testmod()
90
'''simple docstring''' import argparse import torch from transformers import BertForMaskedLM if __name__ == "__main__": lowerCamelCase : List[str] = argparse.ArgumentParser( description=( 'Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned' ' Distillation' ) ) parser.add_argument('--model_type', default='bert', choices=['bert']) parser.add_argument('--model_name', default='bert-base-uncased', type=str) parser.add_argument('--dump_checkpoint', default='serialization_dir/tf_bert-base-uncased_0247911.pth', type=str) parser.add_argument('--vocab_transform', action='store_true') lowerCamelCase : str = parser.parse_args() if args.model_type == "bert": lowerCamelCase : List[Any] = BertForMaskedLM.from_pretrained(args.model_name) lowerCamelCase : Any = 'bert' else: raise ValueError('args.model_type should be "bert".') lowerCamelCase : int = model.state_dict() lowerCamelCase : int = {} for w in ["word_embeddings", "position_embeddings"]: lowerCamelCase : Any = state_dict[f"""{prefix}.embeddings.{w}.weight"""] for w in ["weight", "bias"]: lowerCamelCase : Any = state_dict[f"""{prefix}.embeddings.LayerNorm.{w}"""] lowerCamelCase : Tuple = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: for w in ["weight", "bias"]: lowerCamelCase : Dict = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}""" ] lowerCamelCase : Dict = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}""" ] lowerCamelCase : List[Any] = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}""" ] lowerCamelCase : Tuple = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}""" ] lowerCamelCase : Optional[int] = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}""" ] lowerCamelCase : Optional[Any] = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}""" ] lowerCamelCase : Dict = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}""" ] lowerCamelCase : Any = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}""" ] std_idx += 1 lowerCamelCase : Optional[int] = state_dict['cls.predictions.decoder.weight'] lowerCamelCase : str = state_dict['cls.predictions.bias'] if args.vocab_transform: for w in ["weight", "bias"]: lowerCamelCase : str = state_dict[f"""cls.predictions.transform.dense.{w}"""] lowerCamelCase : Any = state_dict[f"""cls.predictions.transform.LayerNorm.{w}"""] print(f"""N layers selected for distillation: {std_idx}""") print(f"""Number of params transferred for distillation: {len(compressed_sd.keys())}""") print(f"""Save transferred checkpoint to {args.dump_checkpoint}.""") torch.save(compressed_sd, args.dump_checkpoint)
2
0
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPanoramaPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() @skip_mps class __lowerCAmelCase ( lowercase_, lowercase_, unittest.TestCase ): lowerCamelCase_ : Optional[int] = StableDiffusionPanoramaPipeline lowerCamelCase_ : Optional[int] = TEXT_TO_IMAGE_PARAMS lowerCamelCase_ : Union[str, Any] = TEXT_TO_IMAGE_BATCH_PARAMS lowerCamelCase_ : Optional[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS lowerCamelCase_ : List[str] = TEXT_TO_IMAGE_IMAGE_PARAMS def lowerCamelCase (self ) -> Any: '''simple docstring''' torch.manual_seed(0 ) snake_case_ : Tuple = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) snake_case_ : List[Any] = DDIMScheduler() torch.manual_seed(0 ) snake_case_ : Any = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) snake_case_ : str = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) snake_case_ : Tuple = CLIPTextModel(__magic_name__ ) snake_case_ : int = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) snake_case_ : Optional[int] = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def lowerCamelCase (self , __magic_name__ , __magic_name__=0 ) -> List[str]: '''simple docstring''' snake_case_ : str = torch.manual_seed(__magic_name__ ) snake_case_ : Tuple = { '''prompt''': '''a photo of the dolomites''', '''generator''': generator, # Setting height and width to None to prevent OOMs on CPU. '''height''': None, '''width''': None, '''num_inference_steps''': 1, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def lowerCamelCase (self ) -> int: '''simple docstring''' snake_case_ : Optional[Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator snake_case_ : List[str] = self.get_dummy_components() snake_case_ : Optional[Any] = StableDiffusionPanoramaPipeline(**__magic_name__ ) snake_case_ : Optional[Any] = sd_pipe.to(__magic_name__ ) sd_pipe.set_progress_bar_config(disable=__magic_name__ ) snake_case_ : List[str] = self.get_dummy_inputs(__magic_name__ ) snake_case_ : Dict = sd_pipe(**__magic_name__ ).images snake_case_ : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case_ : List[Any] = np.array([0.6_186, 0.5_374, 0.4_915, 0.4_135, 0.4_114, 0.4_563, 0.5_128, 0.4_977, 0.4_757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowerCamelCase (self ) -> List[str]: '''simple docstring''' super().test_inference_batch_consistent(batch_sizes=[1, 2] ) def lowerCamelCase (self ) -> Union[str, Any]: '''simple docstring''' super().test_inference_batch_single_identical(batch_size=2 , expected_max_diff=3.25e-3 ) def lowerCamelCase (self ) -> List[Any]: '''simple docstring''' snake_case_ : Any = '''cpu''' # ensure determinism for the device-dependent torch.Generator snake_case_ : Optional[Any] = self.get_dummy_components() snake_case_ : List[Any] = StableDiffusionPanoramaPipeline(**__magic_name__ ) snake_case_ : int = sd_pipe.to(__magic_name__ ) sd_pipe.set_progress_bar_config(disable=__magic_name__ ) snake_case_ : int = self.get_dummy_inputs(__magic_name__ ) snake_case_ : Dict = '''french fries''' snake_case_ : Tuple = sd_pipe(**__magic_name__ , negative_prompt=__magic_name__ ) snake_case_ : Union[str, Any] = output.images snake_case_ : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case_ : Union[str, Any] = np.array([0.6_187, 0.5_375, 0.4_915, 0.4_136, 0.4_114, 0.4_563, 0.5_128, 0.4_976, 0.4_757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowerCamelCase (self ) -> Tuple: '''simple docstring''' snake_case_ : List[str] = '''cpu''' # ensure determinism for the device-dependent torch.Generator snake_case_ : Optional[Any] = self.get_dummy_components() snake_case_ : Tuple = StableDiffusionPanoramaPipeline(**__magic_name__ ) snake_case_ : Dict = sd_pipe.to(__magic_name__ ) sd_pipe.set_progress_bar_config(disable=__magic_name__ ) snake_case_ : List[str] = self.get_dummy_inputs(__magic_name__ ) snake_case_ : int = sd_pipe(**__magic_name__ , view_batch_size=2 ) snake_case_ : Optional[Any] = output.images snake_case_ : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case_ : Union[str, Any] = np.array([0.6_187, 0.5_375, 0.4_915, 0.4_136, 0.4_114, 0.4_563, 0.5_128, 0.4_976, 0.4_757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowerCamelCase (self ) -> Tuple: '''simple docstring''' snake_case_ : Any = '''cpu''' # ensure determinism for the device-dependent torch.Generator snake_case_ : Union[str, Any] = self.get_dummy_components() snake_case_ : List[Any] = EulerAncestralDiscreteScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' ) snake_case_ : Dict = StableDiffusionPanoramaPipeline(**__magic_name__ ) snake_case_ : str = sd_pipe.to(__magic_name__ ) sd_pipe.set_progress_bar_config(disable=__magic_name__ ) snake_case_ : int = self.get_dummy_inputs(__magic_name__ ) snake_case_ : str = sd_pipe(**__magic_name__ ).images snake_case_ : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case_ : List[Any] = np.array([0.4_024, 0.6_510, 0.4_901, 0.5_378, 0.5_813, 0.5_622, 0.4_795, 0.4_467, 0.4_952] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowerCamelCase (self ) -> Tuple: '''simple docstring''' snake_case_ : int = '''cpu''' # ensure determinism for the device-dependent torch.Generator snake_case_ : Union[str, Any] = self.get_dummy_components() snake_case_ : Optional[int] = PNDMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , skip_prk_steps=__magic_name__ ) snake_case_ : List[Any] = StableDiffusionPanoramaPipeline(**__magic_name__ ) snake_case_ : str = sd_pipe.to(__magic_name__ ) sd_pipe.set_progress_bar_config(disable=__magic_name__ ) snake_case_ : Optional[Any] = self.get_dummy_inputs(__magic_name__ ) snake_case_ : Dict = sd_pipe(**__magic_name__ ).images snake_case_ : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case_ : List[Any] = np.array([0.6_391, 0.6_291, 0.4_861, 0.5_134, 0.5_552, 0.4_578, 0.5_032, 0.5_023, 0.4_539] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase ): def lowerCamelCase (self ) -> Union[str, Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase (self , __magic_name__=0 ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Union[str, Any] = torch.manual_seed(__magic_name__ ) snake_case_ : Union[str, Any] = { '''prompt''': '''a photo of the dolomites''', '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def lowerCamelCase (self ) -> Optional[int]: '''simple docstring''' snake_case_ : Tuple = '''stabilityai/stable-diffusion-2-base''' snake_case_ : Any = DDIMScheduler.from_pretrained(__magic_name__ , subfolder='''scheduler''' ) snake_case_ : List[Any] = StableDiffusionPanoramaPipeline.from_pretrained(__magic_name__ , scheduler=__magic_name__ , safety_checker=__magic_name__ ) pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) pipe.enable_attention_slicing() snake_case_ : Dict = self.get_inputs() snake_case_ : Any = pipe(**__magic_name__ ).images snake_case_ : Any = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2048, 3) snake_case_ : List[Any] = np.array( [ 0.36_968_392, 0.27_025_372, 0.32_446_766, 0.28_379_387, 0.36_363_274, 0.30_733_347, 0.27_100_027, 0.27_054_125, 0.25_536_096, ] ) assert np.abs(expected_slice - image_slice ).max() < 1e-2 def lowerCamelCase (self ) -> int: '''simple docstring''' snake_case_ : Any = StableDiffusionPanoramaPipeline.from_pretrained( '''stabilityai/stable-diffusion-2-base''' , safety_checker=__magic_name__ ) snake_case_ : List[str] = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) pipe.enable_attention_slicing() snake_case_ : int = self.get_inputs() snake_case_ : str = pipe(**__magic_name__ ).images snake_case_ : List[Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2048, 3) snake_case_ : Optional[int] = np.array( [ [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ] ] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def lowerCamelCase (self ) -> int: '''simple docstring''' snake_case_ : List[str] = 0 def callback_fn(__magic_name__ , __magic_name__ , __magic_name__ ) -> None: snake_case_ : Optional[int] = True nonlocal number_of_steps number_of_steps += 1 if step == 1: snake_case_ : List[Any] = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) snake_case_ : Optional[int] = latents[0, -3:, -3:, -1] snake_case_ : List[str] = np.array( [ 0.18_681_869, 0.33_907_816, 0.5_361_276, 0.14_432_865, -0.02_856_611, -0.73_941_123, 0.23_397_987, 0.47_322_682, -0.37_823_164, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 elif step == 2: snake_case_ : int = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) snake_case_ : str = latents[0, -3:, -3:, -1] snake_case_ : Any = np.array( [ 0.18_539_645, 0.33_987_248, 0.5_378_559, 0.14_437_142, -0.02_455_261, -0.7_338_317, 0.23_990_755, 0.47_356_272, -0.3_786_505, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 snake_case_ : str = False snake_case_ : Tuple = '''stabilityai/stable-diffusion-2-base''' snake_case_ : Union[str, Any] = DDIMScheduler.from_pretrained(__magic_name__ , subfolder='''scheduler''' ) snake_case_ : Any = StableDiffusionPanoramaPipeline.from_pretrained(__magic_name__ , scheduler=__magic_name__ , safety_checker=__magic_name__ ) snake_case_ : Tuple = pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) pipe.enable_attention_slicing() snake_case_ : int = self.get_inputs() pipe(**__magic_name__ , callback=__magic_name__ , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def lowerCamelCase (self ) -> str: '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() snake_case_ : List[Any] = '''stabilityai/stable-diffusion-2-base''' snake_case_ : Tuple = DDIMScheduler.from_pretrained(__magic_name__ , subfolder='''scheduler''' ) snake_case_ : Optional[Any] = StableDiffusionPanoramaPipeline.from_pretrained(__magic_name__ , scheduler=__magic_name__ , safety_checker=__magic_name__ ) snake_case_ : Optional[Any] = pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() snake_case_ : int = self.get_inputs() snake_case_ : Optional[int] = pipe(**__magic_name__ ) snake_case_ : Optional[Any] = torch.cuda.max_memory_allocated() # make sure that less than 5.2 GB is allocated assert mem_bytes < 5.5 * 10**9
279
'''simple docstring''' from ....utils import logging lowerCamelCase : Optional[Any] = logging.get_logger(__name__) class __lowerCAmelCase (lowercase_ ): '''simple docstring''' def __init__(self : Optional[int] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Optional[Any]=None , UpperCamelCase : int=2048 ): '''simple docstring''' lowercase__ = config.__dict__ lowercase__ = modal_hidden_size if num_labels: lowercase__ = num_labels
2
0
'''simple docstring''' import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin _A : List[str] =get_tests_dir('''fixtures/spiece.model''') @require_sentencepiece @require_tokenizers class _lowercase ( lowercase_ , unittest.TestCase ): a = DebertaVaTokenizer a = DebertaVaTokenizerFast a = True a = True def lowerCamelCase_ ( self: Tuple ): super().setUp() # We have a SentencePiece fixture for testing lowerCamelCase__ : List[Any] = DebertaVaTokenizer(UpperCamelCase__ , unk_token="""<unk>""" ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase__: str ): lowerCamelCase__ : str = """this is a test""" lowerCamelCase__ : Tuple = """this is a test""" return input_text, output_text def lowerCamelCase_ ( self: Optional[int] ): lowerCamelCase__ : str = """<pad>""" lowerCamelCase__ : Dict = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCamelCase__ ) , UpperCamelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCamelCase__ ) , UpperCamelCase__ ) def lowerCamelCase_ ( self: Dict ): lowerCamelCase__ : Any = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """<unk>""" ) self.assertEqual(vocab_keys[-1] , """[PAD]""" ) self.assertEqual(len(UpperCamelCase__ ) , 30_001 ) def lowerCamelCase_ ( self: int ): self.assertEqual(self.get_tokenizer().vocab_size , 30_000 ) def lowerCamelCase_ ( self: Optional[Any] ): lowerCamelCase__ : List[str] = """ \tHeLLo!how \n Are yoU? """ lowerCamelCase__ : List[str] = ["""▁hello""", """!""", """how""", """▁are""", """▁you""", """?"""] # fmt: on lowerCamelCase__ : Union[str, Any] = DebertaVaTokenizer(UpperCamelCase__ , do_lower_case=UpperCamelCase__ ) lowerCamelCase__ : Tuple = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase__ : Dict = DebertaVaTokenizerFast(UpperCamelCase__ , do_lower_case=UpperCamelCase__ ) lowerCamelCase__ : List[str] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) @unittest.skip("""There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.""" ) def lowerCamelCase_ ( self: List[Any] ): pass @unittest.skip("""There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.""" ) def lowerCamelCase_ ( self: List[str] ): pass def lowerCamelCase_ ( self: Optional[int] ): lowerCamelCase__ : Optional[int] = """I was born in 92000, and this is falsé.""" lowerCamelCase__ : str = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ] # fmt: on lowerCamelCase__ : Any = DebertaVaTokenizer(UpperCamelCase__ , split_by_punct=UpperCamelCase__ ) lowerCamelCase__ : str = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase__ : List[Any] = DebertaVaTokenizerFast(UpperCamelCase__ , split_by_punct=UpperCamelCase__ ) lowerCamelCase__ : Dict = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) def lowerCamelCase_ ( self: int ): lowerCamelCase__ : Dict = """I was born in 92000, and this is falsé.""" lowerCamelCase__ : Union[str, Any] = ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ] # fmt: on lowerCamelCase__ : str = DebertaVaTokenizer(UpperCamelCase__ , do_lower_case=UpperCamelCase__ , split_by_punct=UpperCamelCase__ ) lowerCamelCase__ : Optional[int] = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase__ : Any = DebertaVaTokenizerFast(UpperCamelCase__ , do_lower_case=UpperCamelCase__ , split_by_punct=UpperCamelCase__ ) lowerCamelCase__ : int = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) def lowerCamelCase_ ( self: Optional[Any] ): lowerCamelCase__ : Optional[Any] = """I was born in 92000, and this is falsé.""" lowerCamelCase__ : Any = ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """.""", ] # fmt: on lowerCamelCase__ : List[str] = DebertaVaTokenizer(UpperCamelCase__ , do_lower_case=UpperCamelCase__ , split_by_punct=UpperCamelCase__ ) lowerCamelCase__ : Any = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase__ : List[Any] = DebertaVaTokenizerFast(UpperCamelCase__ , do_lower_case=UpperCamelCase__ , split_by_punct=UpperCamelCase__ ) lowerCamelCase__ : Dict = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) def lowerCamelCase_ ( self: Union[str, Any] ): lowerCamelCase__ : Optional[Any] = """I was born in 92000, and this is falsé.""" lowerCamelCase__ : Dict = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ] # fmt: on lowerCamelCase__ : Dict = DebertaVaTokenizer(UpperCamelCase__ , do_lower_case=UpperCamelCase__ , split_by_punct=UpperCamelCase__ ) lowerCamelCase__ : int = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase__ : str = DebertaVaTokenizerFast(UpperCamelCase__ , do_lower_case=UpperCamelCase__ , split_by_punct=UpperCamelCase__ ) lowerCamelCase__ : str = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) def lowerCamelCase_ ( self: Union[str, Any] ): lowerCamelCase__ : Any = """ \tHeLLo!how \n Are yoU? """ lowerCamelCase__ : List[str] = ["""▁""", """<unk>""", """e""", """<unk>""", """o""", """!""", """how""", """▁""", """<unk>""", """re""", """▁yo""", """<unk>""", """?"""] # fmt: on lowerCamelCase__ : Any = DebertaVaTokenizer(UpperCamelCase__ , do_lower_case=UpperCamelCase__ , split_by_punct=UpperCamelCase__ ) lowerCamelCase__ : int = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase__ : str = DebertaVaTokenizerFast(UpperCamelCase__ , do_lower_case=UpperCamelCase__ , split_by_punct=UpperCamelCase__ ) lowerCamelCase__ : int = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) def lowerCamelCase_ ( self: Union[str, Any] ): lowerCamelCase__ : Any = self.get_tokenizer() lowerCamelCase__ : List[str] = self.get_rust_tokenizer() lowerCamelCase__ : List[str] = """I was born in 92000, and this is falsé.""" lowerCamelCase__ : Tuple = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) ) lowerCamelCase__ : Optional[int] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase__ : Union[str, Any] = tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) lowerCamelCase__ : Dict = rust_tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase__ : Optional[Any] = self.get_rust_tokenizer() lowerCamelCase__ : str = tokenizer.encode(UpperCamelCase__ ) lowerCamelCase__ : int = rust_tokenizer.encode(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) def lowerCamelCase_ ( self: int ): lowerCamelCase__ : Any = """This is a test""" lowerCamelCase__ : Optional[int] = [13, 1, 4_398, 25, 21, 1_289] lowerCamelCase__ : Tuple = ["""▁""", """T""", """his""", """▁is""", """▁a""", """▁test"""] lowerCamelCase__ : Tuple = ["""▁""", """<unk>""", """his""", """▁is""", """▁a""", """▁test"""] lowerCamelCase__ : Tuple = DebertaVaTokenizer(UpperCamelCase__ , keep_accents=UpperCamelCase__ ) lowerCamelCase__ : int = DebertaVaTokenizerFast(UpperCamelCase__ , keep_accents=UpperCamelCase__ ) lowerCamelCase__ : Tuple = tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase__ : List[Any] = tokenizer.tokenize(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase__ : Dict = tokenizer.convert_ids_to_tokens(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase__ : Any = rust_tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase__ : Optional[Any] = rust_tokenizer.tokenize(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase__ : str = rust_tokenizer.convert_ids_to_tokens(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) # fmt: off lowerCamelCase__ : Tuple = """I was born in 92000, and this is falsé.""" lowerCamelCase__ : List[str] = [13, 1, 23, 386, 19, 561, 3_050, 15, 17, 48, 25, 8_256, 18, 1, 9] lowerCamelCase__ : Tuple = ["""▁""", """I""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """é""", """.""", ] lowerCamelCase__ : Optional[Any] = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """.""", ] # fmt: on lowerCamelCase__ : List[str] = tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase__ : Any = tokenizer.tokenize(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase__ : Any = tokenizer.convert_ids_to_tokens(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase__ : Optional[Any] = rust_tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase__ : List[Any] = rust_tokenizer.tokenize(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase__ : Optional[Any] = rust_tokenizer.convert_ids_to_tokens(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) def lowerCamelCase_ ( self: int ): lowerCamelCase__ : Tuple = DebertaVaTokenizer(UpperCamelCase__ ) lowerCamelCase__ : List[Any] = tokenizer.encode("""sequence builders""" ) lowerCamelCase__ : Tuple = tokenizer.encode("""multi-sequence build""" ) lowerCamelCase__ : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(UpperCamelCase__ ) lowerCamelCase__ : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(UpperCamelCase__ , UpperCamelCase__ ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , UpperCamelCase__ ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , UpperCamelCase__ , ) @slow def lowerCamelCase_ ( self: int ): lowerCamelCase__ : Dict = {"""input_ids""": [[1, 39_867, 36, 19_390, 486, 27, 35_052, 81_436, 18, 60_685, 1_225, 7, 35_052, 81_436, 18, 9_367, 16_899, 18, 15_937, 53, 594, 773, 18, 16_287, 30_465, 36, 15_937, 6, 41_139, 38, 36_979, 60_763, 191, 6, 34_132, 99, 6, 50_538, 390, 43_230, 6, 34_132, 2_779, 20_850, 14, 699, 1_072, 1_194, 36, 382, 10_901, 53, 7, 699, 1_072, 2_084, 36, 20_422, 630, 53, 19, 105, 3_049, 1_896, 1_053, 16_899, 1_506, 11, 37_978, 4_243, 7, 1_237, 31_869, 200, 16_566, 654, 6, 35_052, 81_436, 7, 55_630, 13_593, 4, 2], [1, 26, 15_011, 13, 667, 8, 1_053, 18, 23_611, 1_237, 72_356, 12_820, 34, 104_134, 1_209, 35, 13_313, 6_627, 21, 202, 347, 7, 164, 2_399, 11, 46, 4_485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1_232, 2_864, 15_785, 14_951, 105, 5, 8_581, 1_250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCamelCase__ , model_name="""microsoft/deberta-v2-xlarge""" , revision="""ad6e42c1532ddf3a15c39246b63f5559d558b670""" , )
41
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Tuple = logging.get_logger(__name__) lowerCamelCase : Dict = { 'microsoft/cvt-13': 'https://huggingface.co/microsoft/cvt-13/resolve/main/config.json', # See all Cvt models at https://huggingface.co/models?filter=cvt } class __lowerCAmelCase (lowercase_ ): '''simple docstring''' lowerCAmelCase__ : Tuple = """cvt""" def __init__(self : int , UpperCamelCase : List[Any]=3 , UpperCamelCase : int=[7, 3, 3] , UpperCamelCase : str=[4, 2, 2] , UpperCamelCase : Dict=[2, 1, 1] , UpperCamelCase : Dict=[64, 192, 384] , UpperCamelCase : Dict=[1, 3, 6] , UpperCamelCase : Dict=[1, 2, 10] , UpperCamelCase : Any=[4.0, 4.0, 4.0] , UpperCamelCase : Optional[int]=[0.0, 0.0, 0.0] , UpperCamelCase : Optional[int]=[0.0, 0.0, 0.0] , UpperCamelCase : int=[0.0, 0.0, 0.1] , UpperCamelCase : Any=[True, True, True] , UpperCamelCase : int=[False, False, True] , UpperCamelCase : Union[str, Any]=["dw_bn", "dw_bn", "dw_bn"] , UpperCamelCase : Optional[int]=[3, 3, 3] , UpperCamelCase : Tuple=[1, 1, 1] , UpperCamelCase : Any=[2, 2, 2] , UpperCamelCase : Dict=[1, 1, 1] , UpperCamelCase : List[str]=[1, 1, 1] , UpperCamelCase : str=0.02 , UpperCamelCase : int=1E-12 , **UpperCamelCase : Union[str, Any] , ): '''simple docstring''' super().__init__(**UpperCamelCase ) lowercase__ = num_channels lowercase__ = patch_sizes lowercase__ = patch_stride lowercase__ = patch_padding lowercase__ = embed_dim lowercase__ = num_heads lowercase__ = depth lowercase__ = mlp_ratio lowercase__ = attention_drop_rate lowercase__ = drop_rate lowercase__ = drop_path_rate lowercase__ = qkv_bias lowercase__ = cls_token lowercase__ = qkv_projection_method lowercase__ = kernel_qkv lowercase__ = padding_kv lowercase__ = stride_kv lowercase__ = padding_q lowercase__ = stride_q lowercase__ = initializer_range lowercase__ = layer_norm_eps
2
0
'''simple docstring''' import unittest from transformers import DonutProcessor lowercase : Tuple = 'naver-clova-ix/donut-base' class A ( unittest.TestCase ): def __lowerCAmelCase ( self ) -> Any: """simple docstring""" A : Dict = DonutProcessor.from_pretrained(SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" A : Any = { '''name''': '''John Doe''', '''age''': '''99''', '''city''': '''Atlanta''', '''state''': '''GA''', '''zip''': '''30301''', '''phone''': '''123-4567''', '''nicknames''': [{'''nickname''': '''Johnny'''}, {'''nickname''': '''JD'''}], } A : Optional[Any] = ( '''<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>''' '''<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>''' '''<s_nicknames><s_nickname>Johnny</s_nickname>''' '''<sep/><s_nickname>JD</s_nickname></s_nicknames>''' ) A : str = self.processor.tokenajson(SCREAMING_SNAKE_CASE ) self.assertDictEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
3
'''simple docstring''' import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) lowerCamelCase : Any = models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(32, (3, 3), input_shape=(64, 64, 3), activation='relu') ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(32, (3, 3), activation='relu')) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=128, activation='relu')) classifier.add(layers.Dense(units=1, activation='sigmoid')) # Compiling the CNN classifier.compile( optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') lowerCamelCase : Optional[Any] = tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) lowerCamelCase : Any = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 255) lowerCamelCase : List[Any] = train_datagen.flow_from_directory( 'dataset/training_set', target_size=(64, 64), batch_size=32, class_mode='binary' ) lowerCamelCase : List[str] = test_datagen.flow_from_directory( 'dataset/test_set', target_size=(64, 64), batch_size=32, class_mode='binary' ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=30, validation_data=test_set ) classifier.save('cnn.h5') # Part 3 - Making new predictions lowerCamelCase : List[str] = tf.keras.preprocessing.image.load_img( 'dataset/single_prediction/image.png', target_size=(64, 64) ) lowerCamelCase : Optional[int] = tf.keras.preprocessing.image.img_to_array(test_image) lowerCamelCase : str = np.expand_dims(test_image, axis=0) lowerCamelCase : List[str] = classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: lowerCamelCase : Any = 'Normal' if result[0][0] == 1: lowerCamelCase : Any = 'Abnormality detected'
2
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_videomae import VideoMAEImageProcessor A =logging.get_logger(__name__) class _a ( lowercase_ ): def __init__( self : str , *lowercase : List[str] , **lowercase : Union[str, Any] ): '''simple docstring''' warnings.warn( '''The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use VideoMAEImageProcessor instead.''' , lowercase , ) super().__init__(*lowercase , **lowercase )
34
'''simple docstring''' class __lowerCAmelCase : # Public class to implement a graph '''simple docstring''' def __init__(self : int , UpperCamelCase : int , UpperCamelCase : int , UpperCamelCase : list[list[bool]] ): '''simple docstring''' lowercase__ = row lowercase__ = col lowercase__ = graph def UpperCamelCase__ (self : Optional[int] , UpperCamelCase : int , UpperCamelCase : int , UpperCamelCase : list[list[bool]] ): '''simple docstring''' return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def UpperCamelCase__ (self : int , UpperCamelCase : int , UpperCamelCase : int , UpperCamelCase : list[list[bool]] ): '''simple docstring''' lowercase__ = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order lowercase__ = [-1, 0, 1, -1, 1, -1, 0, 1] lowercase__ = True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , UpperCamelCase ): self.diffs(i + row_nbr[k] , j + col_nbr[k] , UpperCamelCase ) def UpperCamelCase__ (self : Dict ): # And finally, count all islands. '''simple docstring''' lowercase__ = [[False for j in range(self.COL )] for i in range(self.ROW )] lowercase__ = 0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(UpperCamelCase , UpperCamelCase , UpperCamelCase ) count += 1 return count
2
0
'''simple docstring''' import math from typing import Any, Callable, List, Optional, Tuple, Union import numpy as np import torch from ...models import TaFilmDecoder from ...schedulers import DDPMScheduler from ...utils import is_onnx_available, logging, randn_tensor if is_onnx_available(): from ..onnx_utils import OnnxRuntimeModel from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline from .continous_encoder import SpectrogramContEncoder from .notes_encoder import SpectrogramNotesEncoder UpperCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name UpperCAmelCase = 256 class lowerCAmelCase ( lowercase_ ): lowerCAmelCase_ = ["""melgan"""] def __init__( self : Tuple , __lowercase : SpectrogramNotesEncoder , __lowercase : SpectrogramContEncoder , __lowercase : TaFilmDecoder , __lowercase : DDPMScheduler , __lowercase : OnnxRuntimeModel if is_onnx_available() else Any , ): """simple docstring""" super().__init__() # From MELGAN __lowercase =math.log(1E-5 ) # Matches MelGAN training. __lowercase =4.0 # Largest value for most examples __lowercase =128 self.register_modules( notes_encoder=__lowercase , continuous_encoder=__lowercase , decoder=__lowercase , scheduler=__lowercase , melgan=__lowercase , ) def snake_case ( self : str , __lowercase : Dict , __lowercase : Tuple=(-1.0, 1.0) , __lowercase : int=False ): """simple docstring""" __lowercase , __lowercase =output_range if clip: __lowercase =torch.clip(__lowercase , self.min_value , self.max_value ) # Scale to [0, 1]. __lowercase =(features - self.min_value) / (self.max_value - self.min_value) # Scale to [min_out, max_out]. return zero_one * (max_out - min_out) + min_out def snake_case ( self : Union[str, Any] , __lowercase : List[str] , __lowercase : Union[str, Any]=(-1.0, 1.0) , __lowercase : Dict=False ): """simple docstring""" __lowercase , __lowercase =input_range __lowercase =torch.clip(__lowercase , __lowercase , __lowercase ) if clip else outputs # Scale to [0, 1]. __lowercase =(outputs - min_out) / (max_out - min_out) # Scale to [self.min_value, self.max_value]. return zero_one * (self.max_value - self.min_value) + self.min_value def snake_case ( self : Dict , __lowercase : List[Any] , __lowercase : List[str] , __lowercase : Union[str, Any] ): """simple docstring""" __lowercase =input_tokens > 0 __lowercase , __lowercase =self.notes_encoder( encoder_input_tokens=__lowercase , encoder_inputs_mask=__lowercase ) __lowercase , __lowercase =self.continuous_encoder( encoder_inputs=__lowercase , encoder_inputs_mask=__lowercase ) return [(tokens_encoded, tokens_mask), (continuous_encoded, continuous_mask)] def snake_case ( self : Dict , __lowercase : Union[str, Any] , __lowercase : Optional[int] , __lowercase : Any ): """simple docstring""" __lowercase =noise_time if not torch.is_tensor(__lowercase ): __lowercase =torch.tensor([timesteps] , dtype=torch.long , device=input_tokens.device ) elif torch.is_tensor(__lowercase ) and len(timesteps.shape ) == 0: __lowercase =timesteps[None].to(input_tokens.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML __lowercase =timesteps * torch.ones(input_tokens.shape[0] , dtype=timesteps.dtype , device=timesteps.device ) __lowercase =self.decoder( encodings_and_masks=__lowercase , decoder_input_tokens=__lowercase , decoder_noise_time=__lowercase ) return logits @torch.no_grad() def __call__( self : List[Any] , __lowercase : List[List[int]] , __lowercase : Optional[torch.Generator] = None , __lowercase : int = 100 , __lowercase : bool = True , __lowercase : str = "numpy" , __lowercase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __lowercase : int = 1 , ): """simple docstring""" if (callback_steps is None) or ( callback_steps is not None and (not isinstance(__lowercase , __lowercase ) or callback_steps <= 0) ): raise ValueError( f'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' f''' {type(__lowercase )}.''' ) __lowercase =np.zeros([1, TARGET_FEATURE_LENGTH, self.n_dims] , dtype=np.floataa ) __lowercase =np.zeros([1, 0, self.n_dims] , np.floataa ) __lowercase =torch.ones((1, TARGET_FEATURE_LENGTH) , dtype=__lowercase , device=self.device ) for i, encoder_input_tokens in enumerate(__lowercase ): if i == 0: __lowercase =torch.from_numpy(pred_mel[:1].copy() ).to( device=self.device , dtype=self.decoder.dtype ) # The first chunk has no previous context. __lowercase =torch.zeros((1, TARGET_FEATURE_LENGTH) , dtype=__lowercase , device=self.device ) else: # The full song pipeline does not feed in a context feature, so the mask # will be all 0s after the feature converter. Because we know we're # feeding in a full context chunk from the previous prediction, set it # to all 1s. __lowercase =ones __lowercase =self.scale_features( __lowercase , output_range=[-1.0, 1.0] , clip=__lowercase ) __lowercase =self.encode( input_tokens=torch.IntTensor([encoder_input_tokens] ).to(device=self.device ) , continuous_inputs=__lowercase , continuous_mask=__lowercase , ) # Sample encoder_continuous_inputs shaped gaussian noise to begin loop __lowercase =randn_tensor( shape=encoder_continuous_inputs.shape , generator=__lowercase , device=self.device , dtype=self.decoder.dtype , ) # set step values self.scheduler.set_timesteps(__lowercase ) # Denoising diffusion loop for j, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): __lowercase =self.decode( encodings_and_masks=__lowercase , input_tokens=__lowercase , noise_time=t / self.scheduler.config.num_train_timesteps , ) # Compute previous output: x_t -> x_t-1 __lowercase =self.scheduler.step(__lowercase , __lowercase , __lowercase , generator=__lowercase ).prev_sample __lowercase =self.scale_to_features(__lowercase , input_range=[-1.0, 1.0] ) __lowercase =mel[:1] __lowercase =mel.cpu().float().numpy() __lowercase =np.concatenate([full_pred_mel, pred_mel[:1]] , axis=1 ) # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(__lowercase , __lowercase ) logger.info('Generated segment' , __lowercase ) if output_type == "numpy" and not is_onnx_available(): raise ValueError( 'Cannot return output in \'np\' format if ONNX is not available. Make sure to have ONNX installed or set \'output_type\' to \'mel\'.' ) elif output_type == "numpy" and self.melgan is None: raise ValueError( 'Cannot return output in \'np\' format if melgan component is not defined. Make sure to define `self.melgan` or set \'output_type\' to \'mel\'.' ) if output_type == "numpy": __lowercase =self.melgan(input_features=full_pred_mel.astype(np.floataa ) ) else: __lowercase =full_pred_mel if not return_dict: return (output,) return AudioPipelineOutput(audios=__lowercase )
141
'''simple docstring''' import unittest from transformers import DonutProcessor lowerCamelCase : Tuple = 'naver-clova-ix/donut-base' class __lowerCAmelCase (unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ (self : int ): '''simple docstring''' lowercase__ = DonutProcessor.from_pretrained(UpperCamelCase ) def UpperCamelCase__ (self : Tuple ): '''simple docstring''' lowercase__ = { '''name''': '''John Doe''', '''age''': '''99''', '''city''': '''Atlanta''', '''state''': '''GA''', '''zip''': '''30301''', '''phone''': '''123-4567''', '''nicknames''': [{'''nickname''': '''Johnny'''}, {'''nickname''': '''JD'''}], } lowercase__ = ( '''<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>''' '''<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>''' '''<s_nicknames><s_nickname>Johnny</s_nickname>''' '''<sep/><s_nickname>JD</s_nickname></s_nicknames>''' ) lowercase__ = self.processor.tokenajson(UpperCamelCase ) self.assertDictEqual(UpperCamelCase , UpperCamelCase )
2
0
from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional from packaging import version if TYPE_CHECKING: from ... import PreTrainedTokenizer, TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import is_torch_available, logging __snake_case : Optional[int] =logging.get_logger(__name__) __snake_case : int ={ 'bigscience/bloom': 'https://huggingface.co/bigscience/bloom/resolve/main/config.json', 'bigscience/bloom-560m': 'https://huggingface.co/bigscience/bloom-560m/blob/main/config.json', 'bigscience/bloom-1b1': 'https://huggingface.co/bigscience/bloom-1b1/blob/main/config.json', 'bigscience/bloom-1b7': 'https://huggingface.co/bigscience/bloom-1b7/blob/main/config.json', 'bigscience/bloom-3b': 'https://huggingface.co/bigscience/bloom-3b/blob/main/config.json', 'bigscience/bloom-7b1': 'https://huggingface.co/bigscience/bloom-7b1/blob/main/config.json', } class lowerCamelCase__ ( lowercase_): '''simple docstring''' snake_case_ ="""bloom""" snake_case_ =["""past_key_values"""] snake_case_ ={ """num_hidden_layers""": """n_layer""", """num_attention_heads""": """n_head""", } def __init__(self ,__lowerCamelCase=25_08_80 ,__lowerCamelCase=64 ,__lowerCamelCase=2 ,__lowerCamelCase=8 ,__lowerCamelCase=1e-5 ,__lowerCamelCase=0.02 ,__lowerCamelCase=True ,__lowerCamelCase=1 ,__lowerCamelCase=2 ,__lowerCamelCase=False ,__lowerCamelCase=0.0 ,__lowerCamelCase=0.0 ,__lowerCamelCase=1 ,__lowerCamelCase=False ,**__lowerCamelCase ,) -> str: """simple docstring""" lowerCAmelCase__ : Union[str, Any] = vocab_size # Backward compatibility with n_embed kwarg lowerCAmelCase__ : str = kwargs.pop('''n_embed''' ,__lowerCamelCase ) lowerCAmelCase__ : Any = hidden_size if n_embed is None else n_embed lowerCAmelCase__ : Optional[Any] = n_layer lowerCAmelCase__ : int = n_head lowerCAmelCase__ : Dict = layer_norm_epsilon lowerCAmelCase__ : str = initializer_range lowerCAmelCase__ : Union[str, Any] = use_cache lowerCAmelCase__ : int = pretraining_tp lowerCAmelCase__ : str = apply_residual_connection_post_layernorm lowerCAmelCase__ : List[str] = hidden_dropout lowerCAmelCase__ : int = attention_dropout lowerCAmelCase__ : Dict = bos_token_id lowerCAmelCase__ : Union[str, Any] = eos_token_id lowerCAmelCase__ : Dict = slow_but_exact super().__init__(bos_token_id=__lowerCamelCase ,eos_token_id=__lowerCamelCase ,**__lowerCamelCase ) class lowerCamelCase__ ( lowercase_): '''simple docstring''' snake_case_ =version.parse("""1.12""") def __init__(self ,__lowerCamelCase ,__lowerCamelCase = "default" ,__lowerCamelCase = None ,__lowerCamelCase = False ,) -> Any: """simple docstring""" super().__init__(__lowerCamelCase ,task=__lowerCamelCase ,patching_specs=__lowerCamelCase ,use_past=__lowerCamelCase ) if not getattr(self._config ,'''pad_token_id''' ,__lowerCamelCase ): # TODO: how to do that better? lowerCAmelCase__ : Tuple = 0 @property def lowerCAmelCase__ (self ) -> Tuple: """simple docstring""" lowerCAmelCase__ : str = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: # BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344 self.fill_with_past_key_values_(__lowerCamelCase ,direction='''inputs''' ,inverted_values_shape=__lowerCamelCase ) lowerCAmelCase__ : Any = {0: '''batch''', 1: '''past_sequence + sequence'''} else: lowerCAmelCase__ : Union[str, Any] = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def lowerCAmelCase__ (self ) -> Tuple: """simple docstring""" return self._config.n_layer @property def lowerCAmelCase__ (self ) -> List[str]: """simple docstring""" return self._config.n_head @property def lowerCAmelCase__ (self ) -> Any: """simple docstring""" return 1e-3 def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase = -1 ,__lowerCamelCase = -1 ,__lowerCamelCase = False ,__lowerCamelCase = None ,) -> List[str]: """simple docstring""" lowerCAmelCase__ : int = super(__lowerCamelCase ,self ).generate_dummy_inputs( __lowerCamelCase ,batch_size=__lowerCamelCase ,seq_length=__lowerCamelCase ,is_pair=__lowerCamelCase ,framework=__lowerCamelCase ) # We need to order the input in the way they appears in the forward() lowerCAmelCase__ : List[str] = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch lowerCAmelCase__ , lowerCAmelCase__ : Tuple = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values lowerCAmelCase__ : List[Any] = seqlen + 2 lowerCAmelCase__ : List[Any] = self._config.hidden_size // self.num_attention_heads lowerCAmelCase__ : List[Any] = ( batch * self.num_attention_heads, head_dim, past_key_values_length, ) lowerCAmelCase__ : List[Any] = ( batch * self.num_attention_heads, past_key_values_length, head_dim, ) lowerCAmelCase__ : Optional[Any] = [ (torch.zeros(__lowerCamelCase ), torch.zeros(__lowerCamelCase )) for _ in range(self.num_layers ) ] lowerCAmelCase__ : Any = common_inputs['''attention_mask'''] if self.use_past: lowerCAmelCase__ : Optional[Any] = ordered_inputs['''attention_mask'''].dtype lowerCAmelCase__ : Optional[int] = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(__lowerCamelCase ,__lowerCamelCase ,dtype=__lowerCamelCase )] ,dim=1 ) return ordered_inputs @property def lowerCAmelCase__ (self ) -> int: """simple docstring""" return 13
129
'''simple docstring''' from __future__ import annotations def _SCREAMING_SNAKE_CASE (A ) -> bool: """simple docstring""" return len(set(A ) ) == len(A ) if __name__ == "__main__": import doctest doctest.testmod()
2
0
"""simple docstring""" import unittest from transformers import MobileBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertModel, ) class _UpperCAmelCase : '''simple docstring''' def __init__(self , a_ , a_=13 , a_=7 , a_=True , a_=True , a_=True , a_=True , a_=99 , a_=64 , a_=32 , a_=5 , a_=4 , a_=37 , a_="gelu" , a_=0.1 , a_=0.1 , a_=5_12 , a_=16 , a_=2 , a_=0.02 , a_=3 , a_=4 , a_=None , ): '''simple docstring''' __snake_case : int = parent __snake_case : Optional[Any] = batch_size __snake_case : Dict = seq_length __snake_case : Any = is_training __snake_case : int = use_input_mask __snake_case : Union[str, Any] = use_token_type_ids __snake_case : List[Any] = use_labels __snake_case : List[Any] = vocab_size __snake_case : int = hidden_size __snake_case : str = embedding_size __snake_case : Dict = num_hidden_layers __snake_case : Dict = num_attention_heads __snake_case : Union[str, Any] = intermediate_size __snake_case : Optional[Any] = hidden_act __snake_case : Tuple = hidden_dropout_prob __snake_case : Union[str, Any] = attention_probs_dropout_prob __snake_case : Optional[Any] = max_position_embeddings __snake_case : List[str] = type_vocab_size __snake_case : Optional[int] = type_sequence_label_size __snake_case : Optional[Any] = initializer_range __snake_case : Any = num_labels __snake_case : Tuple = num_choices __snake_case : Optional[Any] = scope def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case : str = None if self.use_input_mask: __snake_case : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) __snake_case : Tuple = None if self.use_token_type_ids: __snake_case : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __snake_case : Tuple = None __snake_case : Optional[int] = None __snake_case : Union[str, Any] = None if self.use_labels: __snake_case : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __snake_case : Optional[int] = ids_tensor([self.batch_size] , self.num_choices ) __snake_case : int = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=a_ , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ , a_ ): '''simple docstring''' __snake_case : List[str] = MobileBertModel(config=a_ ) model.to(a_ ) model.eval() __snake_case : str = model(a_ , attention_mask=a_ , token_type_ids=a_ ) __snake_case : Any = model(a_ , token_type_ids=a_ ) __snake_case : Dict = model(a_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ , a_ ): '''simple docstring''' __snake_case : Tuple = MobileBertForMaskedLM(config=a_ ) model.to(a_ ) model.eval() __snake_case : Optional[int] = model(a_ , attention_mask=a_ , token_type_ids=a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ , a_ ): '''simple docstring''' __snake_case : str = MobileBertForNextSentencePrediction(config=a_ ) model.to(a_ ) model.eval() __snake_case : Tuple = model( a_ , attention_mask=a_ , token_type_ids=a_ , labels=a_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ , a_ ): '''simple docstring''' __snake_case : List[Any] = MobileBertForPreTraining(config=a_ ) model.to(a_ ) model.eval() __snake_case : Optional[Any] = model( a_ , attention_mask=a_ , token_type_ids=a_ , labels=a_ , next_sentence_label=a_ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ , a_ ): '''simple docstring''' __snake_case : Tuple = MobileBertForQuestionAnswering(config=a_ ) model.to(a_ ) model.eval() __snake_case : str = model( a_ , attention_mask=a_ , token_type_ids=a_ , start_positions=a_ , end_positions=a_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ , a_ ): '''simple docstring''' __snake_case : Optional[Any] = self.num_labels __snake_case : Tuple = MobileBertForSequenceClassification(a_ ) model.to(a_ ) model.eval() __snake_case : str = model(a_ , attention_mask=a_ , token_type_ids=a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ , a_ ): '''simple docstring''' __snake_case : str = self.num_labels __snake_case : str = MobileBertForTokenClassification(config=a_ ) model.to(a_ ) model.eval() __snake_case : List[str] = model(a_ , attention_mask=a_ , token_type_ids=a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ , a_ ): '''simple docstring''' __snake_case : Optional[Any] = self.num_choices __snake_case : Union[str, Any] = MobileBertForMultipleChoice(config=a_ ) model.to(a_ ) model.eval() __snake_case : Union[str, Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __snake_case : List[str] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __snake_case : Any = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __snake_case : int = model( a_ , attention_mask=a_ , token_type_ids=a_ , labels=a_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Dict = self.prepare_config_and_inputs() ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : int = config_and_inputs __snake_case : Union[str, Any] = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class _UpperCAmelCase ( lowercase_, lowercase_, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =( ( MobileBertModel, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, ) if is_torch_available() else () ) lowerCamelCase__ =( { """feature-extraction""": MobileBertModel, """fill-mask""": MobileBertForMaskedLM, """question-answering""": MobileBertForQuestionAnswering, """text-classification""": MobileBertForSequenceClassification, """token-classification""": MobileBertForTokenClassification, """zero-shot""": MobileBertForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ =True def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_=False ): '''simple docstring''' __snake_case : Any = super()._prepare_for_class(a_ , a_ , return_labels=a_ ) if return_labels: if model_class in get_values(a_ ): __snake_case : List[str] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=a_ ) __snake_case : Tuple = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=a_ ) return inputs_dict def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : str = MobileBertModelTester(self ) __snake_case : str = ConfigTester(self , config_class=a_ , hidden_size=37 ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*a_ ) def lowercase ( _snake_case : Optional[Any] ) ->Optional[int]: """simple docstring""" return torch.tensor( _snake_case , dtype=torch.long , device=_snake_case , ) SCREAMING_SNAKE_CASE : str = 1E-3 @require_torch @require_sentencepiece @require_tokenizers class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = MobileBertModel.from_pretrained('''google/mobilebert-uncased''' ).to(a_ ) __snake_case : Union[str, Any] = _long_tensor([[1_01, 71_10, 10_05, 10_56, 20_23, 1_13_33, 1_74_13, 10_29, 1_02]] ) with torch.no_grad(): __snake_case : int = model(a_ )[0] __snake_case : Union[str, Any] = torch.Size((1, 9, 5_12) ) self.assertEqual(output.shape , a_ ) __snake_case : Optional[Any] = torch.tensor( [ [ [-2.4736526E07, 8.2691656E04, 1.6521838E05], [-5.7541704E-01, 3.9056022E00, 4.4011507E00], [2.6047359E00, 1.5677652E00, -1.7324188E-01], ] ] , device=a_ , ) # MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a # ~1 difference, it's therefore not a good idea to measure using addition. # Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the # result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE __snake_case : int = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE ) __snake_case : Optional[int] = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE ) self.assertTrue(lower_bound and upper_bound )
102
'''simple docstring''' import os import re import warnings from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_ta import TaTokenizer else: lowerCamelCase : Any = None lowerCamelCase : Dict = logging.get_logger(__name__) lowerCamelCase : Optional[int] = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} lowerCamelCase : List[str] = { 'vocab_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/spiece.model', 't5-base': 'https://huggingface.co/t5-base/resolve/main/spiece.model', 't5-large': 'https://huggingface.co/t5-large/resolve/main/spiece.model', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/spiece.model', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/spiece.model', }, 'tokenizer_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/tokenizer.json', 't5-base': 'https://huggingface.co/t5-base/resolve/main/tokenizer.json', 't5-large': 'https://huggingface.co/t5-large/resolve/main/tokenizer.json', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/tokenizer.json', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/tokenizer.json', }, } # TODO(PVP) - this should be removed in Transformers v5 lowerCamelCase : Any = { 't5-small': 512, 't5-base': 512, 't5-large': 512, 't5-3b': 512, 't5-11b': 512, } class __lowerCAmelCase (lowercase_ ): '''simple docstring''' lowerCAmelCase__ : List[str] = VOCAB_FILES_NAMES lowerCAmelCase__ : str = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ : int = ["""input_ids""", """attention_mask"""] lowerCAmelCase__ : Optional[int] = TaTokenizer lowerCAmelCase__ : List[int] = [] def __init__(self : Dict , UpperCamelCase : str=None , UpperCamelCase : Optional[Any]=None , UpperCamelCase : Any="</s>" , UpperCamelCase : str="<unk>" , UpperCamelCase : List[str]="<pad>" , UpperCamelCase : List[str]=100 , UpperCamelCase : Tuple=None , **UpperCamelCase : List[str] , ): '''simple docstring''' if extra_ids > 0 and additional_special_tokens is None: lowercase__ = [f"<extra_id_{i}>" for i in range(UpperCamelCase )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra special tokens lowercase__ = len(set(filter(lambda UpperCamelCase : bool('''extra_id_''' in str(UpperCamelCase ) ) , UpperCamelCase ) ) ) if extra_tokens != extra_ids: raise ValueError( f"Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are" ''' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids''' ''' tokens''' ) super().__init__( UpperCamelCase , tokenizer_file=UpperCamelCase , eos_token=UpperCamelCase , unk_token=UpperCamelCase , pad_token=UpperCamelCase , extra_ids=UpperCamelCase , additional_special_tokens=UpperCamelCase , **UpperCamelCase , ) lowercase__ = vocab_file lowercase__ = False if not self.vocab_file else True lowercase__ = extra_ids @staticmethod def UpperCamelCase__ (UpperCamelCase : List[Any] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Optional[Any] ): '''simple docstring''' if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes: lowercase__ = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( '''This tokenizer was incorrectly instantiated with a model max length of''' f" {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this" ''' behavior is kept to avoid breaking backwards compatibility when padding/encoding with''' ''' `truncation is True`.\n- Be aware that you SHOULD NOT rely on''' f" {pretrained_model_name_or_path} automatically truncating your input to" f" {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences" f" longer than {deprecated_max_model_length} you can either instantiate this tokenizer with" ''' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please''' ''' instantiate this tokenizer with `model_max_length` set to your preferred value.''' , UpperCamelCase , ) return max_model_length def UpperCamelCase__ (self : Any , UpperCamelCase : str , UpperCamelCase : Optional[str] = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(UpperCamelCase ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return lowercase__ = os.path.join( UpperCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase ): copyfile(self.vocab_file , UpperCamelCase ) logger.info(f"Copy vocab file to {out_vocab_file}" ) return (out_vocab_file,) def UpperCamelCase__ (self : Any , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None ): '''simple docstring''' lowercase__ = token_ids_a + [self.eos_token_id] if token_ids_a is None: return self.prefix_tokens + token_ids_a else: lowercase__ = token_ids_a + [self.eos_token_id] return self.prefix_tokens + token_ids_a + token_ids_a def UpperCamelCase__ (self : Optional[Any] , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None ): '''simple docstring''' lowercase__ = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def UpperCamelCase__ (self : List[Any] ): '''simple docstring''' return list( set(filter(lambda UpperCamelCase : bool(re.search(R'''<extra_id_\d+>''' , UpperCamelCase ) ) is not None , self.additional_special_tokens ) ) ) def UpperCamelCase__ (self : Union[str, Any] ): '''simple docstring''' return [self.convert_tokens_to_ids(UpperCamelCase ) for token in self.get_sentinel_tokens()]
2
0
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging A_ :Dict = logging.get_logger(__name__) A_ :List[str] = { 'microsoft/unispeech-sat-base-100h-libri-ft': ( 'https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json' ), # See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat } class __A ( lowercase_ ): """simple docstring""" UpperCamelCase__ : Optional[int] ="""unispeech-sat""" def __init__( self , lowerCamelCase__=32 , lowerCamelCase__=768 , lowerCamelCase__=12 , lowerCamelCase__=12 , lowerCamelCase__=3072 , lowerCamelCase__="gelu" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=0.0 , lowerCamelCase__=0.0 , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=0.02 , lowerCamelCase__=1E-5 , lowerCamelCase__="group" , lowerCamelCase__="gelu" , lowerCamelCase__=(512, 512, 512, 512, 512, 512, 512) , lowerCamelCase__=(5, 2, 2, 2, 2, 2, 2) , lowerCamelCase__=(10, 3, 3, 3, 3, 2, 2) , lowerCamelCase__=False , lowerCamelCase__=128 , lowerCamelCase__=16 , lowerCamelCase__=False , lowerCamelCase__=True , lowerCamelCase__=0.05 , lowerCamelCase__=10 , lowerCamelCase__=2 , lowerCamelCase__=0.0 , lowerCamelCase__=10 , lowerCamelCase__=0 , lowerCamelCase__=320 , lowerCamelCase__=2 , lowerCamelCase__=0.1 , lowerCamelCase__=100 , lowerCamelCase__=256 , lowerCamelCase__=256 , lowerCamelCase__=0.1 , lowerCamelCase__="mean" , lowerCamelCase__=False , lowerCamelCase__=False , lowerCamelCase__=256 , lowerCamelCase__=(512, 512, 512, 512, 1500) , lowerCamelCase__=(5, 3, 3, 1, 1) , lowerCamelCase__=(1, 2, 3, 1, 1) , lowerCamelCase__=512 , lowerCamelCase__=0 , lowerCamelCase__=1 , lowerCamelCase__=2 , lowerCamelCase__=504 , **lowerCamelCase__ , ): """simple docstring""" super().__init__(**lowerCamelCase__ , pad_token_id=lowerCamelCase__ , bos_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ ) __UpperCamelCase : str =hidden_size __UpperCamelCase : List[Any] =feat_extract_norm __UpperCamelCase : str =feat_extract_activation __UpperCamelCase : int =list(lowerCamelCase__ ) __UpperCamelCase : Optional[int] =list(lowerCamelCase__ ) __UpperCamelCase : Any =list(lowerCamelCase__ ) __UpperCamelCase : Tuple =conv_bias __UpperCamelCase : List[str] =num_conv_pos_embeddings __UpperCamelCase : Optional[int] =num_conv_pos_embedding_groups __UpperCamelCase : Union[str, Any] =len(self.conv_dim ) __UpperCamelCase : Optional[Any] =num_hidden_layers __UpperCamelCase : Optional[Any] =intermediate_size __UpperCamelCase : Tuple =hidden_act __UpperCamelCase : List[str] =num_attention_heads __UpperCamelCase : Union[str, Any] =hidden_dropout __UpperCamelCase : Tuple =attention_dropout __UpperCamelCase : str =activation_dropout __UpperCamelCase : List[str] =feat_proj_dropout __UpperCamelCase : str =final_dropout __UpperCamelCase : Optional[Any] =layerdrop __UpperCamelCase : Union[str, Any] =layer_norm_eps __UpperCamelCase : int =initializer_range __UpperCamelCase : Any =vocab_size __UpperCamelCase : Optional[int] =num_clusters __UpperCamelCase : List[str] =do_stable_layer_norm __UpperCamelCase : Union[str, Any] =use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' f' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,' f' `len(config.conv_kernel) = {len(self.conv_kernel )}`.' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __UpperCamelCase : List[str] =apply_spec_augment __UpperCamelCase : Dict =mask_time_prob __UpperCamelCase : List[Any] =mask_time_length __UpperCamelCase : str =mask_time_min_masks __UpperCamelCase : List[str] =mask_feature_prob __UpperCamelCase : int =mask_feature_length __UpperCamelCase : Union[str, Any] =mask_feature_min_masks # parameters for pretraining with codevector quantized representations __UpperCamelCase : Optional[Any] =num_codevectors_per_group __UpperCamelCase : int =num_codevector_groups __UpperCamelCase : List[str] =contrastive_logits_temperature __UpperCamelCase : Union[str, Any] =feat_quantizer_dropout __UpperCamelCase : Optional[int] =num_negatives __UpperCamelCase : List[str] =codevector_dim __UpperCamelCase : Optional[Any] =proj_codevector_dim __UpperCamelCase : List[str] =diversity_loss_weight # ctc loss __UpperCamelCase : str =ctc_loss_reduction __UpperCamelCase : int =ctc_zero_infinity # SequenceClassification-specific parameter. Feel free to ignore for other classes. __UpperCamelCase : Optional[Any] =classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. __UpperCamelCase : int =list(lowerCamelCase__ ) __UpperCamelCase : List[Any] =list(lowerCamelCase__ ) __UpperCamelCase : Optional[Any] =list(lowerCamelCase__ ) __UpperCamelCase : Dict =xvector_output_dim @property def __lowercase ( self ): """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1 )
71
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class __lowerCAmelCase (lowercase_ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ : Dict = ShapEImgaImgPipeline lowerCAmelCase__ : List[str] = ["""image"""] lowerCAmelCase__ : Any = ["""image"""] lowerCAmelCase__ : Any = [ """num_images_per_prompt""", """num_inference_steps""", """generator""", """latents""", """guidance_scale""", """frame_size""", """output_type""", """return_dict""", ] lowerCAmelCase__ : Tuple = False @property def UpperCamelCase__ (self : List[Any] ): '''simple docstring''' return 32 @property def UpperCamelCase__ (self : str ): '''simple docstring''' return 32 @property def UpperCamelCase__ (self : Union[str, Any] ): '''simple docstring''' return self.time_input_dim * 4 @property def UpperCamelCase__ (self : int ): '''simple docstring''' return 8 @property def UpperCamelCase__ (self : Any ): '''simple docstring''' torch.manual_seed(0 ) lowercase__ = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) lowercase__ = CLIPVisionModel(UpperCamelCase ) return model @property def UpperCamelCase__ (self : List[Any] ): '''simple docstring''' lowercase__ = CLIPImageProcessor( crop_size=224 , do_center_crop=UpperCamelCase , do_normalize=UpperCamelCase , do_resize=UpperCamelCase , image_mean=[0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73] , image_std=[0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11] , resample=3 , size=224 , ) return image_processor @property def UpperCamelCase__ (self : str ): '''simple docstring''' torch.manual_seed(0 ) lowercase__ = { '''num_attention_heads''': 2, '''attention_head_dim''': 16, '''embedding_dim''': self.time_input_dim, '''num_embeddings''': 32, '''embedding_proj_dim''': self.text_embedder_hidden_size, '''time_embed_dim''': self.time_embed_dim, '''num_layers''': 1, '''clip_embed_dim''': self.time_input_dim * 2, '''additional_embeddings''': 0, '''time_embed_act_fn''': '''gelu''', '''norm_in_type''': '''layer''', '''embedding_proj_norm_type''': '''layer''', '''encoder_hid_proj_type''': None, '''added_emb_type''': None, } lowercase__ = PriorTransformer(**UpperCamelCase ) return model @property def UpperCamelCase__ (self : int ): '''simple docstring''' torch.manual_seed(0 ) lowercase__ = { '''param_shapes''': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), '''d_latent''': self.time_input_dim, '''d_hidden''': self.renderer_dim, '''n_output''': 12, '''background''': ( 0.1, 0.1, 0.1, ), } lowercase__ = ShapERenderer(**UpperCamelCase ) return model def UpperCamelCase__ (self : Union[str, Any] ): '''simple docstring''' lowercase__ = self.dummy_prior lowercase__ = self.dummy_image_encoder lowercase__ = self.dummy_image_processor lowercase__ = self.dummy_renderer lowercase__ = HeunDiscreteScheduler( beta_schedule='''exp''' , num_train_timesteps=1024 , prediction_type='''sample''' , use_karras_sigmas=UpperCamelCase , clip_sample=UpperCamelCase , clip_sample_range=1.0 , ) lowercase__ = { '''prior''': prior, '''image_encoder''': image_encoder, '''image_processor''': image_processor, '''renderer''': renderer, '''scheduler''': scheduler, } return components def UpperCamelCase__ (self : Optional[int] , UpperCamelCase : Optional[int] , UpperCamelCase : str=0 ): '''simple docstring''' lowercase__ = floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCamelCase ) ).to(UpperCamelCase ) if str(UpperCamelCase ).startswith('''mps''' ): lowercase__ = torch.manual_seed(UpperCamelCase ) else: lowercase__ = torch.Generator(device=UpperCamelCase ).manual_seed(UpperCamelCase ) lowercase__ = { '''image''': input_image, '''generator''': generator, '''num_inference_steps''': 1, '''frame_size''': 32, '''output_type''': '''np''', } return inputs def UpperCamelCase__ (self : Tuple ): '''simple docstring''' lowercase__ = '''cpu''' lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**UpperCamelCase ) lowercase__ = pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) lowercase__ = pipe(**self.get_dummy_inputs(UpperCamelCase ) ) lowercase__ = output.images[0] lowercase__ = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) lowercase__ = np.array( [ 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase__ (self : Optional[Any] ): '''simple docstring''' self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def UpperCamelCase__ (self : int ): '''simple docstring''' lowercase__ = torch_device == '''cpu''' lowercase__ = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=UpperCamelCase , relax_max_difference=UpperCamelCase , ) def UpperCamelCase__ (self : int ): '''simple docstring''' lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**UpperCamelCase ) lowercase__ = pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) lowercase__ = 1 lowercase__ = 2 lowercase__ = self.get_dummy_inputs(UpperCamelCase ) for key in inputs.keys(): if key in self.batch_params: lowercase__ = batch_size * [inputs[key]] lowercase__ = pipe(**UpperCamelCase , num_images_per_prompt=UpperCamelCase )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class __lowerCAmelCase (unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ (self : Optional[Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ (self : Union[str, Any] ): '''simple docstring''' lowercase__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/corgi.png''' ) lowercase__ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/test_shap_e_img2img_out.npy''' ) lowercase__ = ShapEImgaImgPipeline.from_pretrained('''openai/shap-e-img2img''' ) lowercase__ = pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) lowercase__ = torch.Generator(device=UpperCamelCase ).manual_seed(0 ) lowercase__ = pipe( UpperCamelCase , generator=UpperCamelCase , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type='''np''' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(UpperCamelCase , UpperCamelCase )
2
0
'''simple docstring''' import argparse import torch from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt if __name__ == "__main__": _SCREAMING_SNAKE_CASE : Tuple = argparse.ArgumentParser() parser.add_argument( "--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert." ) # !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml parser.add_argument( "--original_config_file", default=None, type=str, help="The YAML config file corresponding to the original architecture.", ) parser.add_argument( "--num_in_channels", default=None, type=int, help="The number of input channels. If `None` number of input channels will be automatically inferred.", ) parser.add_argument( "--scheduler_type", default="pndm", type=str, help="Type of scheduler to use. Should be one of [\'pndm\', \'lms\', \'ddim\', \'euler\', \'euler-ancestral\', \'dpm\']", ) parser.add_argument( "--pipeline_type", default=None, type=str, help=( "The pipeline type. One of \'FrozenOpenCLIPEmbedder\', \'FrozenCLIPEmbedder\', \'PaintByExample\'" ". If `None` pipeline will be automatically inferred." ), ) parser.add_argument( "--image_size", default=None, type=int, help=( "The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2" " Base. Use 768 for Stable Diffusion v2." ), ) parser.add_argument( "--prediction_type", default=None, type=str, help=( "The prediction type that the model was trained on. Use \'epsilon\' for Stable Diffusion v1.X and Stable" " Diffusion v2 Base. Use \'v_prediction\' for Stable Diffusion v2." ), ) parser.add_argument( "--extract_ema", action="store_true", help=( "Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights" " or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield" " higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning." ), ) parser.add_argument( "--upcast_attention", action="store_true", help=( "Whether the attention computation should always be upcasted. This is necessary when running stable" " diffusion 2.1." ), ) parser.add_argument( "--from_safetensors", action="store_true", help="If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.", ) parser.add_argument( "--to_safetensors", action="store_true", help="Whether to store pipeline in safetensors format or not.", ) parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") parser.add_argument("--device", type=str, help="Device to use (e.g. cpu, cuda:0, cuda:1, etc.)") parser.add_argument( "--stable_unclip", type=str, default=None, required=False, help="Set if this is a stable unCLIP model. One of \'txt2img\' or \'img2img\'.", ) parser.add_argument( "--stable_unclip_prior", type=str, default=None, required=False, help="Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.", ) parser.add_argument( "--clip_stats_path", type=str, help="Path to the clip stats file. Only required if the stable unclip model\'s config specifies `model.params.noise_aug_config.params.clip_stats_path`.", required=False, ) parser.add_argument( "--controlnet", action="store_true", default=None, help="Set flag if this is a controlnet checkpoint." ) parser.add_argument("--half", action="store_true", help="Save weights in half precision.") parser.add_argument( "--vae_path", type=str, default=None, required=False, help="Set to a path, hub id to an already converted vae to not convert it again.", ) _SCREAMING_SNAKE_CASE : Dict = parser.parse_args() _SCREAMING_SNAKE_CASE : List[str] = download_from_original_stable_diffusion_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, prediction_type=args.prediction_type, model_type=args.pipeline_type, extract_ema=args.extract_ema, scheduler_type=args.scheduler_type, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, stable_unclip=args.stable_unclip, stable_unclip_prior=args.stable_unclip_prior, clip_stats_path=args.clip_stats_path, controlnet=args.controlnet, vae_path=args.vae_path, ) if args.half: pipe.to(torch_dtype=torch.floataa) if args.controlnet: # only save the controlnet model pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) else: pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
85
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowerCamelCase : str = { 'configuration_rag': ['RagConfig'], 'retrieval_rag': ['RagRetriever'], 'tokenization_rag': ['RagTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Dict = [ 'RagModel', 'RagPreTrainedModel', 'RagSequenceForGeneration', 'RagTokenForGeneration', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Optional[int] = [ 'TFRagModel', 'TFRagPreTrainedModel', 'TFRagSequenceForGeneration', 'TFRagTokenForGeneration', ] if TYPE_CHECKING: from .configuration_rag import RagConfig from .retrieval_rag import RagRetriever from .tokenization_rag import RagTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rag import RagModel, RagPreTrainedModel, RagSequenceForGeneration, RagTokenForGeneration try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rag import ( TFRagModel, TFRagPreTrainedModel, TFRagSequenceForGeneration, TFRagTokenForGeneration, ) else: import sys lowerCamelCase : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
2
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { 'xlm-mlm-en-2048': 'https://huggingface.co/xlm-mlm-en-2048/resolve/main/config.json', 'xlm-mlm-ende-1024': 'https://huggingface.co/xlm-mlm-ende-1024/resolve/main/config.json', 'xlm-mlm-enfr-1024': 'https://huggingface.co/xlm-mlm-enfr-1024/resolve/main/config.json', 'xlm-mlm-enro-1024': 'https://huggingface.co/xlm-mlm-enro-1024/resolve/main/config.json', 'xlm-mlm-tlm-xnli15-1024': 'https://huggingface.co/xlm-mlm-tlm-xnli15-1024/resolve/main/config.json', 'xlm-mlm-xnli15-1024': 'https://huggingface.co/xlm-mlm-xnli15-1024/resolve/main/config.json', 'xlm-clm-enfr-1024': 'https://huggingface.co/xlm-clm-enfr-1024/resolve/main/config.json', 'xlm-clm-ende-1024': 'https://huggingface.co/xlm-clm-ende-1024/resolve/main/config.json', 'xlm-mlm-17-1280': 'https://huggingface.co/xlm-mlm-17-1280/resolve/main/config.json', 'xlm-mlm-100-1280': 'https://huggingface.co/xlm-mlm-100-1280/resolve/main/config.json', } class __lowerCAmelCase ( lowercase_ ): lowerCAmelCase__ = """xlm""" lowerCAmelCase__ = { """hidden_size""": """emb_dim""", """num_attention_heads""": """n_heads""", """num_hidden_layers""": """n_layers""", """n_words""": """vocab_size""", # For backward compatibility } def __init__( self , __UpperCAmelCase=30145 , __UpperCAmelCase=2048 , __UpperCAmelCase=12 , __UpperCAmelCase=16 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=1 , __UpperCAmelCase=True , __UpperCAmelCase=512 , __UpperCAmelCase=2048**-0.5 , __UpperCAmelCase=1E-1_2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=0 , __UpperCAmelCase=1 , __UpperCAmelCase=2 , __UpperCAmelCase=3 , __UpperCAmelCase=5 , __UpperCAmelCase=True , __UpperCAmelCase="first" , __UpperCAmelCase=True , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase=0.1 , __UpperCAmelCase=5 , __UpperCAmelCase=5 , __UpperCAmelCase=0 , __UpperCAmelCase=0 , __UpperCAmelCase=2 , __UpperCAmelCase=0 , **__UpperCAmelCase , ): '''simple docstring''' __lowerCamelCase = vocab_size __lowerCamelCase = emb_dim __lowerCamelCase = n_layers __lowerCamelCase = n_heads __lowerCamelCase = dropout __lowerCamelCase = attention_dropout __lowerCamelCase = gelu_activation __lowerCamelCase = sinusoidal_embeddings __lowerCamelCase = causal __lowerCamelCase = asm __lowerCamelCase = n_langs __lowerCamelCase = use_lang_emb __lowerCamelCase = layer_norm_eps __lowerCamelCase = bos_index __lowerCamelCase = eos_index __lowerCamelCase = pad_index __lowerCamelCase = unk_index __lowerCamelCase = mask_index __lowerCamelCase = is_encoder __lowerCamelCase = max_position_embeddings __lowerCamelCase = embed_init_std __lowerCamelCase = init_std __lowerCamelCase = summary_type __lowerCamelCase = summary_use_proj __lowerCamelCase = summary_activation __lowerCamelCase = summary_proj_to_labels __lowerCamelCase = summary_first_dropout __lowerCamelCase = start_n_top __lowerCamelCase = end_n_top __lowerCamelCase = mask_token_id __lowerCamelCase = lang_id if "n_words" in kwargs: __lowerCamelCase = kwargs['''n_words'''] super().__init__(pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , **__UpperCAmelCase ) class __lowerCAmelCase ( lowercase_ ): @property def lowerCamelCase ( self ): '''simple docstring''' if self.task == "multiple-choice": __lowerCamelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __lowerCamelCase = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
330
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : int = logging.get_logger(__name__) lowerCamelCase : List[Any] = { 'google/realm-cc-news-pretrained-embedder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-encoder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-scorer': ( 'https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-openqa': ( 'https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json' ), 'google/realm-orqa-nq-openqa': 'https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json', 'google/realm-orqa-nq-reader': 'https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json', 'google/realm-orqa-wq-openqa': 'https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json', 'google/realm-orqa-wq-reader': 'https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json', # See all REALM models at https://huggingface.co/models?filter=realm } class __lowerCAmelCase (lowercase_ ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = """realm""" def __init__(self : str , UpperCamelCase : List[Any]=30522 , UpperCamelCase : List[Any]=768 , UpperCamelCase : int=128 , UpperCamelCase : Any=12 , UpperCamelCase : Tuple=12 , UpperCamelCase : List[Any]=8 , UpperCamelCase : Union[str, Any]=3072 , UpperCamelCase : List[str]="gelu_new" , UpperCamelCase : Any=0.1 , UpperCamelCase : List[str]=0.1 , UpperCamelCase : Dict=512 , UpperCamelCase : Dict=2 , UpperCamelCase : List[Any]=0.02 , UpperCamelCase : List[Any]=1E-12 , UpperCamelCase : Dict=256 , UpperCamelCase : Union[str, Any]=10 , UpperCamelCase : Optional[int]=1E-3 , UpperCamelCase : Tuple=5 , UpperCamelCase : Optional[int]=320 , UpperCamelCase : List[str]=13353718 , UpperCamelCase : Optional[Any]=5000 , UpperCamelCase : str=1 , UpperCamelCase : Union[str, Any]=0 , UpperCamelCase : List[Any]=2 , **UpperCamelCase : int , ): '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase , bos_token_id=UpperCamelCase , eos_token_id=UpperCamelCase , **UpperCamelCase ) # Common config lowercase__ = vocab_size lowercase__ = max_position_embeddings lowercase__ = hidden_size lowercase__ = retriever_proj_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = num_candidates lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = initializer_range lowercase__ = type_vocab_size lowercase__ = layer_norm_eps # Reader config lowercase__ = span_hidden_size lowercase__ = max_span_width lowercase__ = reader_layer_norm_eps lowercase__ = reader_beam_size lowercase__ = reader_seq_len # Retrieval config lowercase__ = num_block_records lowercase__ = searcher_beam_size
2
0
import operator as op __A = 'scaler.pt' __A = 'pytorch_model' __A = 'random_states' __A = 'optimizer' __A = 'scheduler' __A = 'pytorch_model.bin' __A = 'pytorch_model.bin.index.json' __A = 'model.safetensors' __A = 'model.safetensors.index.json' __A = '1.10.2' __A = 'py38' __A = '4.17.0' __A = ['ml.p3.16xlarge', 'ml.p3dn.24xlarge', 'ml.p4dn.24xlarge'] __A = ['FULL_SHARD', 'SHARD_GRAD_OP', 'NO_SHARD', 'HYBRID_SHARD', 'HYBRID_SHARD_ZERO2'] __A = ['TRANSFORMER_BASED_WRAP', 'SIZE_BASED_WRAP', 'NO_WRAP'] __A = ['BACKWARD_PRE', 'BACKWARD_POST', 'NO_PREFETCH'] __A = ['FULL_STATE_DICT', 'LOCAL_STATE_DICT', 'SHARDED_STATE_DICT'] __A = '2.0.1' __A = ['pdsh', 'standard', 'openmpi', 'mvapich'] __A = ['default', 'reduce-overhead', 'max-autotune'] __A = {'>': op.gt, '>=': op.ge, '==': op.eq, '!=': op.ne, '<=': op.le, '<': op.lt} # These are the args for `torch.distributed.launch` for pytorch < 1.9 __A = [ 'nnodes', 'nproc_per_node', 'rdzv_backend', 'rdzv_endpoint', 'rdzv_id', 'rdzv_conf', 'standalone', 'max_restarts', 'monitor_interval', 'start_method', 'role', 'module', 'm', 'no_python', 'run_path', 'log_dir', 'r', 'redirects', 't', 'tee', 'node_rank', 'master_addr', 'master_port', ] __A = ['DEEPSPEED', 'MULTI_GPU', 'FSDP', 'MEGATRON_LM'] __A = ['DEEPSPEED', 'MULTI_XPU', 'FSDP']
90
'''simple docstring''' import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : str = logging.get_logger(__name__) lowerCamelCase : int = { 'RUCAIBox/mvp': 'https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json', } class __lowerCAmelCase (lowercase_ ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = """mvp""" lowerCAmelCase__ : Optional[Any] = ["""past_key_values"""] lowerCAmelCase__ : List[str] = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__(self : Any , UpperCamelCase : Optional[int]=50267 , UpperCamelCase : Tuple=1024 , UpperCamelCase : int=12 , UpperCamelCase : Tuple=4096 , UpperCamelCase : Dict=16 , UpperCamelCase : int=12 , UpperCamelCase : Optional[int]=4096 , UpperCamelCase : Optional[int]=16 , UpperCamelCase : Tuple=0.0 , UpperCamelCase : Tuple=0.0 , UpperCamelCase : List[Any]="gelu" , UpperCamelCase : Union[str, Any]=1024 , UpperCamelCase : Optional[Any]=0.1 , UpperCamelCase : str=0.0 , UpperCamelCase : str=0.0 , UpperCamelCase : Optional[Any]=0.02 , UpperCamelCase : List[str]=0.0 , UpperCamelCase : List[str]=False , UpperCamelCase : Optional[int]=True , UpperCamelCase : Any=1 , UpperCamelCase : int=0 , UpperCamelCase : int=2 , UpperCamelCase : Any=True , UpperCamelCase : Optional[Any]=2 , UpperCamelCase : Optional[Any]=2 , UpperCamelCase : Tuple=False , UpperCamelCase : int=100 , UpperCamelCase : Optional[Any]=800 , **UpperCamelCase : str , ): '''simple docstring''' lowercase__ = vocab_size lowercase__ = max_position_embeddings lowercase__ = d_model lowercase__ = encoder_ffn_dim lowercase__ = encoder_layers lowercase__ = encoder_attention_heads lowercase__ = decoder_ffn_dim lowercase__ = decoder_layers lowercase__ = decoder_attention_heads lowercase__ = dropout lowercase__ = attention_dropout lowercase__ = activation_dropout lowercase__ = activation_function lowercase__ = init_std lowercase__ = encoder_layerdrop lowercase__ = decoder_layerdrop lowercase__ = classifier_dropout lowercase__ = use_cache lowercase__ = encoder_layers lowercase__ = scale_embedding # scale factor will be sqrt(d_model) if True lowercase__ = use_prompt lowercase__ = prompt_length lowercase__ = prompt_mid_dim super().__init__( pad_token_id=UpperCamelCase , bos_token_id=UpperCamelCase , eos_token_id=UpperCamelCase , is_encoder_decoder=UpperCamelCase , decoder_start_token_id=UpperCamelCase , forced_eos_token_id=UpperCamelCase , **UpperCamelCase , ) if self.forced_bos_token_id is None and kwargs.get('''force_bos_token_to_be_generated''' , UpperCamelCase ): lowercase__ = self.bos_token_id warnings.warn( f"Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. " '''The config can simply be saved and uploaded again to be fixed.''' )
2
0
import io import json import fsspec import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.json import JsonDatasetReader, JsonDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> str: """simple docstring""" assert isinstance(_UpperCamelCase , _UpperCamelCase ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Tuple: """simple docstring""" snake_case_ : Optional[int] = tmp_path / '''cache''' snake_case_ : List[Any] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): snake_case_ : Tuple = JsonDatasetReader(_UpperCamelCase , cache_dir=_UpperCamelCase , keep_in_memory=_UpperCamelCase ).read() _check_json_dataset(_UpperCamelCase , _UpperCamelCase ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Any: """simple docstring""" snake_case_ : int = tmp_path / '''cache''' snake_case_ : Dict = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} snake_case_ : Optional[Any] = features.copy() if features else default_expected_features snake_case_ : Optional[int] = ( Features({feature: Value(_UpperCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) snake_case_ : Optional[Any] = JsonDatasetReader(_UpperCamelCase , features=_UpperCamelCase , cache_dir=_UpperCamelCase ).read() _check_json_dataset(_UpperCamelCase , _UpperCamelCase ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_3''': '''float64''', '''col_1''': '''string''', '''col_2''': '''int64'''}, ] , ) def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> List[str]: """simple docstring""" snake_case_ : List[str] = tmp_path / '''cache''' snake_case_ : Dict = {'''col_3''': '''float64''', '''col_1''': '''string''', '''col_2''': '''int64'''} snake_case_ : Union[str, Any] = features.copy() if features else default_expected_features snake_case_ : str = ( Features({feature: Value(_UpperCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) snake_case_ : Dict = JsonDatasetReader(_UpperCamelCase , features=_UpperCamelCase , cache_dir=_UpperCamelCase ).read() assert isinstance(_UpperCamelCase , _UpperCamelCase ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_3", "col_1", "col_2"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> Union[str, Any]: """simple docstring""" snake_case_ : Optional[Any] = {'''col_2''': '''int64''', '''col_3''': '''float64''', '''col_1''': '''string'''} snake_case_ : str = features.copy() snake_case_ : str = ( Features({feature: Value(_UpperCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) snake_case_ : Dict = tmp_path / '''cache''' snake_case_ : int = JsonDatasetReader(_UpperCamelCase , features=_UpperCamelCase , cache_dir=_UpperCamelCase ).read() assert isinstance(_UpperCamelCase , _UpperCamelCase ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_2", "col_3", "col_1"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Union[str, Any]: """simple docstring""" snake_case_ : Tuple = tmp_path / '''cache''' snake_case_ : Optional[int] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} snake_case_ : Tuple = JsonDatasetReader(_UpperCamelCase , cache_dir=_UpperCamelCase , split=_UpperCamelCase ).read() _check_json_dataset(_UpperCamelCase , _UpperCamelCase ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('''path_type''' , [str, list] ) def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Tuple: """simple docstring""" if issubclass(_UpperCamelCase , _UpperCamelCase ): snake_case_ : Optional[Any] = jsonl_path elif issubclass(_UpperCamelCase , _UpperCamelCase ): snake_case_ : Tuple = [jsonl_path] snake_case_ : Any = tmp_path / '''cache''' snake_case_ : Any = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} snake_case_ : str = JsonDatasetReader(_UpperCamelCase , cache_dir=_UpperCamelCase ).read() _check_json_dataset(_UpperCamelCase , _UpperCamelCase ) def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=("train",) ) -> Tuple: """simple docstring""" assert isinstance(_UpperCamelCase , _UpperCamelCase ) for split in splits: snake_case_ : int = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> str: """simple docstring""" snake_case_ : List[str] = tmp_path / '''cache''' snake_case_ : Optional[int] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): snake_case_ : List[str] = JsonDatasetReader({'''train''': jsonl_path} , cache_dir=_UpperCamelCase , keep_in_memory=_UpperCamelCase ).read() _check_json_datasetdict(_UpperCamelCase , _UpperCamelCase ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> List[Any]: """simple docstring""" snake_case_ : Any = tmp_path / '''cache''' snake_case_ : Any = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} snake_case_ : List[str] = features.copy() if features else default_expected_features snake_case_ : Any = ( Features({feature: Value(_UpperCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) snake_case_ : Optional[Any] = JsonDatasetReader({'''train''': jsonl_path} , features=_UpperCamelCase , cache_dir=_UpperCamelCase ).read() _check_json_datasetdict(_UpperCamelCase , _UpperCamelCase ) @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Union[str, Any]: """simple docstring""" if split: snake_case_ : Optional[Any] = {split: jsonl_path} else: snake_case_ : Optional[Any] = '''train''' snake_case_ : Any = {'''train''': jsonl_path, '''test''': jsonl_path} snake_case_ : Union[str, Any] = tmp_path / '''cache''' snake_case_ : Any = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} snake_case_ : Any = JsonDatasetReader(_UpperCamelCase , cache_dir=_UpperCamelCase ).read() _check_json_datasetdict(_UpperCamelCase , _UpperCamelCase , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def lowerCamelCase_ ( _UpperCamelCase ) -> Dict: """simple docstring""" return json.load(_UpperCamelCase ) def lowerCamelCase_ ( _UpperCamelCase ) -> int: """simple docstring""" return [json.loads(_UpperCamelCase ) for line in buffer] class __lowerCAmelCase : @pytest.mark.parametrize('''lines, load_json_function''' , [(True, load_json_lines), (False, load_json)] ) def lowerCamelCase (self , __magic_name__ , __magic_name__ , __magic_name__ ) -> Tuple: '''simple docstring''' with io.BytesIO() as buffer: JsonDatasetWriter(__magic_name__ , __magic_name__ , lines=__magic_name__ ).write() buffer.seek(0 ) snake_case_ : List[str] = load_json_function(__magic_name__ ) assert isinstance(__magic_name__ , __magic_name__ ) assert isinstance(exported_content[0] , __magic_name__ ) assert len(__magic_name__ ) == 10 @pytest.mark.parametrize( '''orient, container, keys, len_at''' , [ ('''records''', list, {'''tokens''', '''labels''', '''answers''', '''id'''}, None), ('''split''', dict, {'''columns''', '''data'''}, '''data'''), ('''index''', dict, set('''0123456789''' ), None), ('''columns''', dict, {'''tokens''', '''labels''', '''answers''', '''id'''}, '''tokens'''), ('''values''', list, None, None), ('''table''', dict, {'''schema''', '''data'''}, '''data'''), ] , ) def lowerCamelCase (self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> List[str]: '''simple docstring''' with io.BytesIO() as buffer: JsonDatasetWriter(__magic_name__ , __magic_name__ , lines=__magic_name__ , orient=__magic_name__ ).write() buffer.seek(0 ) snake_case_ : Optional[Any] = load_json(__magic_name__ ) assert isinstance(__magic_name__ , __magic_name__ ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(__magic_name__ , '''keys''' ) and not hasattr(exported_content[0] , '''keys''' ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(__magic_name__ ) == 10 @pytest.mark.parametrize('''lines, load_json_function''' , [(True, load_json_lines), (False, load_json)] ) def lowerCamelCase (self , __magic_name__ , __magic_name__ , __magic_name__ ) -> Optional[int]: '''simple docstring''' with io.BytesIO() as buffer: JsonDatasetWriter(__magic_name__ , __magic_name__ , lines=__magic_name__ , num_proc=2 ).write() buffer.seek(0 ) snake_case_ : Union[str, Any] = load_json_function(__magic_name__ ) assert isinstance(__magic_name__ , __magic_name__ ) assert isinstance(exported_content[0] , __magic_name__ ) assert len(__magic_name__ ) == 10 @pytest.mark.parametrize( '''orient, container, keys, len_at''' , [ ('''records''', list, {'''tokens''', '''labels''', '''answers''', '''id'''}, None), ('''split''', dict, {'''columns''', '''data'''}, '''data'''), ('''index''', dict, set('''0123456789''' ), None), ('''columns''', dict, {'''tokens''', '''labels''', '''answers''', '''id'''}, '''tokens'''), ('''values''', list, None, None), ('''table''', dict, {'''schema''', '''data'''}, '''data'''), ] , ) def lowerCamelCase (self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> Union[str, Any]: '''simple docstring''' with io.BytesIO() as buffer: JsonDatasetWriter(__magic_name__ , __magic_name__ , lines=__magic_name__ , orient=__magic_name__ , num_proc=2 ).write() buffer.seek(0 ) snake_case_ : List[str] = load_json(__magic_name__ ) assert isinstance(__magic_name__ , __magic_name__ ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(__magic_name__ , '''keys''' ) and not hasattr(exported_content[0] , '''keys''' ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(__magic_name__ ) == 10 def lowerCamelCase (self , __magic_name__ ) -> str: '''simple docstring''' with pytest.raises(__magic_name__ ): with io.BytesIO() as buffer: JsonDatasetWriter(__magic_name__ , __magic_name__ , num_proc=0 ) @pytest.mark.parametrize('''compression, extension''' , [('''gzip''', '''gz'''), ('''bz2''', '''bz2'''), ('''xz''', '''xz''')] ) def lowerCamelCase (self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> List[Any]: '''simple docstring''' snake_case_ : Optional[Any] = tmp_path_factory.mktemp('''data''' ) / F'''test.json.{extension}''' snake_case_ : Any = str(shared_datadir / F'''test_file.json.{extension}''' ) JsonDatasetWriter(__magic_name__ , __magic_name__ , compression=__magic_name__ ).write() with fsspec.open(__magic_name__ , '''rb''' , compression='''infer''' ) as f: snake_case_ : Optional[int] = f.read() with fsspec.open(__magic_name__ , '''rb''' , compression='''infer''' ) as f: snake_case_ : List[Any] = f.read() assert exported_content == original_content
279
'''simple docstring''' import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase : List[str] = get_tests_dir('fixtures/spiece.model') @require_sentencepiece @require_tokenizers class __lowerCAmelCase (lowercase_ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ : int = DebertaVaTokenizer lowerCAmelCase__ : List[Any] = DebertaVaTokenizerFast lowerCAmelCase__ : str = True lowerCAmelCase__ : Tuple = True def UpperCamelCase__ (self : Tuple ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing lowercase__ = DebertaVaTokenizer(UpperCamelCase , unk_token='''<unk>''' ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase__ (self : Union[str, Any] , UpperCamelCase : str ): '''simple docstring''' lowercase__ = '''this is a test''' lowercase__ = '''this is a test''' return input_text, output_text def UpperCamelCase__ (self : Optional[int] ): '''simple docstring''' lowercase__ = '''<pad>''' lowercase__ = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCamelCase ) , UpperCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCamelCase ) , UpperCamelCase ) def UpperCamelCase__ (self : Dict ): '''simple docstring''' lowercase__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<pad>''' ) self.assertEqual(vocab_keys[1] , '''<unk>''' ) self.assertEqual(vocab_keys[-1] , '''[PAD]''' ) self.assertEqual(len(UpperCamelCase ) , 30001 ) def UpperCamelCase__ (self : int ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 30000 ) def UpperCamelCase__ (self : Optional[Any] ): '''simple docstring''' lowercase__ = ''' \tHeLLo!how \n Are yoU? ''' lowercase__ = ['''▁hello''', '''!''', '''how''', '''▁are''', '''▁you''', '''?'''] # fmt: on lowercase__ = DebertaVaTokenizer(UpperCamelCase , do_lower_case=UpperCamelCase ) lowercase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = DebertaVaTokenizerFast(UpperCamelCase , do_lower_case=UpperCamelCase ) lowercase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) @unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' ) def UpperCamelCase__ (self : List[Any] ): '''simple docstring''' pass @unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' ) def UpperCamelCase__ (self : List[str] ): '''simple docstring''' pass def UpperCamelCase__ (self : Optional[int] ): '''simple docstring''' lowercase__ = '''I was born in 92000, and this is falsé.''' lowercase__ = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on lowercase__ = DebertaVaTokenizer(UpperCamelCase , split_by_punct=UpperCamelCase ) lowercase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = DebertaVaTokenizerFast(UpperCamelCase , split_by_punct=UpperCamelCase ) lowercase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) def UpperCamelCase__ (self : int ): '''simple docstring''' lowercase__ = '''I was born in 92000, and this is falsé.''' lowercase__ = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on lowercase__ = DebertaVaTokenizer(UpperCamelCase , do_lower_case=UpperCamelCase , split_by_punct=UpperCamelCase ) lowercase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = DebertaVaTokenizerFast(UpperCamelCase , do_lower_case=UpperCamelCase , split_by_punct=UpperCamelCase ) lowercase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) def UpperCamelCase__ (self : Optional[Any] ): '''simple docstring''' lowercase__ = '''I was born in 92000, and this is falsé.''' lowercase__ = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ] # fmt: on lowercase__ = DebertaVaTokenizer(UpperCamelCase , do_lower_case=UpperCamelCase , split_by_punct=UpperCamelCase ) lowercase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = DebertaVaTokenizerFast(UpperCamelCase , do_lower_case=UpperCamelCase , split_by_punct=UpperCamelCase ) lowercase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) def UpperCamelCase__ (self : Union[str, Any] ): '''simple docstring''' lowercase__ = '''I was born in 92000, and this is falsé.''' lowercase__ = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on lowercase__ = DebertaVaTokenizer(UpperCamelCase , do_lower_case=UpperCamelCase , split_by_punct=UpperCamelCase ) lowercase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = DebertaVaTokenizerFast(UpperCamelCase , do_lower_case=UpperCamelCase , split_by_punct=UpperCamelCase ) lowercase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) def UpperCamelCase__ (self : Union[str, Any] ): '''simple docstring''' lowercase__ = ''' \tHeLLo!how \n Are yoU? ''' lowercase__ = ['''▁''', '''<unk>''', '''e''', '''<unk>''', '''o''', '''!''', '''how''', '''▁''', '''<unk>''', '''re''', '''▁yo''', '''<unk>''', '''?'''] # fmt: on lowercase__ = DebertaVaTokenizer(UpperCamelCase , do_lower_case=UpperCamelCase , split_by_punct=UpperCamelCase ) lowercase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = DebertaVaTokenizerFast(UpperCamelCase , do_lower_case=UpperCamelCase , split_by_punct=UpperCamelCase ) lowercase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) def UpperCamelCase__ (self : Union[str, Any] ): '''simple docstring''' lowercase__ = self.get_tokenizer() lowercase__ = self.get_rust_tokenizer() lowercase__ = '''I was born in 92000, and this is falsé.''' lowercase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) lowercase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) lowercase__ = rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = self.get_rust_tokenizer() lowercase__ = tokenizer.encode(UpperCamelCase ) lowercase__ = rust_tokenizer.encode(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) def UpperCamelCase__ (self : int ): '''simple docstring''' lowercase__ = '''This is a test''' lowercase__ = [13, 1, 4398, 25, 21, 1289] lowercase__ = ['''▁''', '''T''', '''his''', '''▁is''', '''▁a''', '''▁test'''] lowercase__ = ['''▁''', '''<unk>''', '''his''', '''▁is''', '''▁a''', '''▁test'''] lowercase__ = DebertaVaTokenizer(UpperCamelCase , keep_accents=UpperCamelCase ) lowercase__ = DebertaVaTokenizerFast(UpperCamelCase , keep_accents=UpperCamelCase ) lowercase__ = tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = tokenizer.tokenize(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = tokenizer.convert_ids_to_tokens(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = rust_tokenizer.tokenize(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = rust_tokenizer.convert_ids_to_tokens(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) # fmt: off lowercase__ = '''I was born in 92000, and this is falsé.''' lowercase__ = [13, 1, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] lowercase__ = ['''▁''', '''I''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''é''', '''.''', ] lowercase__ = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ] # fmt: on lowercase__ = tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = tokenizer.tokenize(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = tokenizer.convert_ids_to_tokens(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = rust_tokenizer.tokenize(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = rust_tokenizer.convert_ids_to_tokens(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) def UpperCamelCase__ (self : int ): '''simple docstring''' lowercase__ = DebertaVaTokenizer(UpperCamelCase ) lowercase__ = tokenizer.encode('''sequence builders''' ) lowercase__ = tokenizer.encode('''multi-sequence build''' ) lowercase__ = tokenizer.build_inputs_with_special_tokens(UpperCamelCase ) lowercase__ = tokenizer.build_inputs_with_special_tokens(UpperCamelCase , UpperCamelCase ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , UpperCamelCase ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , UpperCamelCase , ) @slow def UpperCamelCase__ (self : int ): '''simple docstring''' lowercase__ = {'''input_ids''': [[1, 39867, 36, 19390, 486, 27, 35052, 81436, 18, 60685, 1225, 7, 35052, 81436, 18, 9367, 16899, 18, 15937, 53, 594, 773, 18, 16287, 30465, 36, 15937, 6, 41139, 38, 36979, 60763, 191, 6, 34132, 99, 6, 50538, 390, 43230, 6, 34132, 2779, 20850, 14, 699, 1072, 1194, 36, 382, 10901, 53, 7, 699, 1072, 2084, 36, 20422, 630, 53, 19, 105, 3049, 1896, 1053, 16899, 1506, 11, 37978, 4243, 7, 1237, 31869, 200, 16566, 654, 6, 35052, 81436, 7, 55630, 13593, 4, 2], [1, 26, 15011, 13, 667, 8, 1053, 18, 23611, 1237, 72356, 12820, 34, 104134, 1209, 35, 13313, 6627, 21, 202, 347, 7, 164, 2399, 11, 46, 4485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1232, 2864, 15785, 14951, 105, 5, 8581, 1250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCamelCase , model_name='''microsoft/deberta-v2-xlarge''' , revision='''ad6e42c1532ddf3a15c39246b63f5559d558b670''' , )
2
0
'''simple docstring''' import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class _lowercase ( lowercase_ ): a = """Speech2TextFeatureExtractor""" a = """Speech2TextTokenizer""" def __init__( self: Dict , UpperCamelCase__: Dict , UpperCamelCase__: Optional[Any] ): super().__init__(UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase__ : Optional[int] = self.feature_extractor lowerCamelCase__ : str = False def __call__( self: Dict , *UpperCamelCase__: Optional[Any] , **UpperCamelCase__: List[Any] ): if self._in_target_context_manager: return self.current_processor(*UpperCamelCase__ , **UpperCamelCase__ ) if "raw_speech" in kwargs: warnings.warn("""Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.""" ) lowerCamelCase__ : int = kwargs.pop("""raw_speech""" ) else: lowerCamelCase__ : Dict = kwargs.pop("""audio""" , UpperCamelCase__ ) lowerCamelCase__ : str = kwargs.pop("""sampling_rate""" , UpperCamelCase__ ) lowerCamelCase__ : List[str] = kwargs.pop("""text""" , UpperCamelCase__ ) if len(UpperCamelCase__ ) > 0: lowerCamelCase__ : int = args[0] lowerCamelCase__ : int = args[1:] if audio is None and text is None: raise ValueError("""You need to specify either an `audio` or `text` input to process.""" ) if audio is not None: lowerCamelCase__ : Any = self.feature_extractor(UpperCamelCase__ , *UpperCamelCase__ , sampling_rate=UpperCamelCase__ , **UpperCamelCase__ ) if text is not None: lowerCamelCase__ : int = self.tokenizer(UpperCamelCase__ , **UpperCamelCase__ ) if text is None: return inputs elif audio is None: return encodings else: lowerCamelCase__ : Union[str, Any] = encodings["""input_ids"""] return inputs def lowerCamelCase_ ( self: str , *UpperCamelCase__: List[Any] , **UpperCamelCase__: Dict ): return self.tokenizer.batch_decode(*UpperCamelCase__ , **UpperCamelCase__ ) def lowerCamelCase_ ( self: Union[str, Any] , *UpperCamelCase__: Dict , **UpperCamelCase__: List[Any] ): return self.tokenizer.decode(*UpperCamelCase__ , **UpperCamelCase__ ) @contextmanager def lowerCamelCase_ ( self: Union[str, Any] ): warnings.warn( """`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your """ """labels by using the argument `text` of the regular `__call__` method (either in the same call as """ """your audio inputs, or in a separate call.""" ) lowerCamelCase__ : List[str] = True lowerCamelCase__ : Optional[int] = self.tokenizer yield lowerCamelCase__ : List[str] = self.feature_extractor lowerCamelCase__ : Optional[int] = False
41
'''simple docstring''' import argparse import torch from torch import nn from transformers import MBartConfig, MBartForConditionalGeneration def _SCREAMING_SNAKE_CASE (A ) -> Optional[Any]: """simple docstring""" lowercase__ = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''_float_tensor''', '''decoder.output_projection.weight''', ] for k in ignore_keys: state_dict.pop(A , A ) def _SCREAMING_SNAKE_CASE (A ) -> List[str]: """simple docstring""" lowercase__ ,lowercase__ = emb.weight.shape lowercase__ = nn.Linear(A , A , bias=A ) lowercase__ = emb.weight.data return lin_layer def _SCREAMING_SNAKE_CASE (A , A="facebook/mbart-large-en-ro" , A=False , A=False ) -> Union[str, Any]: """simple docstring""" lowercase__ = torch.load(A , map_location='''cpu''' )['''model'''] remove_ignore_keys_(A ) lowercase__ = state_dict['''encoder.embed_tokens.weight'''].shape[0] lowercase__ = MBartConfig.from_pretrained(A , vocab_size=A ) if mbart_aa and finetuned: lowercase__ = '''relu''' lowercase__ = state_dict['''decoder.embed_tokens.weight'''] lowercase__ = MBartForConditionalGeneration(A ) model.model.load_state_dict(A ) if finetuned: lowercase__ = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": lowerCamelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( 'fairseq_path', type=str, help='bart.large, bart.large.cnn or a path to a model.pt on local filesystem.' ) parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--hf_config', default='facebook/mbart-large-cc25', type=str, help='Which huggingface architecture to use: mbart-large', ) parser.add_argument('--mbart_50', action='store_true', help='whether the model is mMART-50 checkpoint') parser.add_argument('--finetuned', action='store_true', help='whether the model is a fine-tuned checkpoint') lowerCamelCase : Any = parser.parse_args() lowerCamelCase : List[str] = convert_fairseq_mbart_checkpoint_from_disk( args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa ) model.save_pretrained(args.pytorch_dump_folder_path)
2
0
'''simple docstring''' import importlib import os import fsspec import pytest from fsspec import register_implementation from fsspec.registry import _registry as _fsspec_registry from datasets.filesystems import COMPRESSION_FILESYSTEMS, HfFileSystem, extract_path_from_uri, is_remote_filesystem from .utils import require_lza, require_zstandard def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' assert "mock" in _fsspec_registry assert "bz2" in _fsspec_registry def lowerCAmelCase_ ( ): '''simple docstring''' assert "mock" not in _fsspec_registry assert "bz2" in _fsspec_registry def lowerCAmelCase_ ( ): '''simple docstring''' A : str = '''mock-s3-bucket''' A : str = F's3://{mock_bucket}' A : Dict = extract_path_from_uri(snake_case__ ) assert dataset_path.startswith('''s3://''' ) is False A : Tuple = '''./local/path''' A : Dict = extract_path_from_uri(snake_case__ ) assert dataset_path == new_dataset_path def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' A : int = is_remote_filesystem(snake_case__ ) assert is_remote is True A : Union[str, Any] = fsspec.filesystem('''file''' ) A : Optional[int] = is_remote_filesystem(snake_case__ ) assert is_remote is False @pytest.mark.parametrize('''compression_fs_class''' , snake_case__ ) def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' A : Any = {'''gzip''': gz_file, '''xz''': xz_file, '''zstd''': zstd_file, '''bz2''': bza_file, '''lz4''': lza_file} A : Union[str, Any] = input_paths[compression_fs_class.protocol] if input_path is None: A : Any = F'for \'{compression_fs_class.protocol}\' compression protocol, ' if compression_fs_class.protocol == "lz4": reason += require_lza.kwargs["reason"] elif compression_fs_class.protocol == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(snake_case__ ) A : Tuple = fsspec.filesystem(compression_fs_class.protocol , fo=snake_case__ ) assert isinstance(snake_case__ , snake_case__ ) A : Dict = os.path.basename(snake_case__ ) A : str = expected_filename[: expected_filename.rindex('''.''' )] assert fs.glob('''*''' ) == [expected_filename] with fs.open(snake_case__ , '''r''' , encoding='''utf-8''' ) as f, open(snake_case__ , encoding='''utf-8''' ) as expected_file: assert f.read() == expected_file.read() @pytest.mark.parametrize('''protocol''' , ['''zip''', '''gzip'''] ) def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' A : List[Any] = {'''zip''': zip_jsonl_path, '''gzip''': jsonl_gz_path} A : Optional[Any] = compressed_file_paths[protocol] A : List[Any] = '''dataset.jsonl''' A : List[str] = F'{protocol}://{member_file_path}::{compressed_file_path}' A, *A : Optional[int] = fsspec.get_fs_token_paths(snake_case__ ) assert fs.isfile(snake_case__ ) assert not fs.isfile('''non_existing_''' + member_file_path ) @pytest.mark.integration def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' A : int = hf_api.dataset_info(snake_case__ , token=snake_case__ ) A : Any = HfFileSystem(repo_info=snake_case__ , token=snake_case__ ) assert sorted(hffs.glob('''*''' ) ) == [".gitattributes", "data"] assert hffs.isdir('''data''' ) assert hffs.isfile('''.gitattributes''' ) and hffs.isfile('''data/text_data.txt''' ) with open(snake_case__ ) as f: assert hffs.open('''data/text_data.txt''' , '''r''' ).read() == f.read() def lowerCAmelCase_ ( ): '''simple docstring''' A : List[Any] = '''bz2''' # Import module import datasets.filesystems # Overwrite protocol and reload register_implementation(snake_case__ , snake_case__ , clobber=snake_case__ ) with pytest.warns(snake_case__ ) as warning_info: importlib.reload(datasets.filesystems ) assert len(snake_case__ ) == 1 assert ( str(warning_info[0].message ) == F'A filesystem protocol was already set for {protocol} and will be overwritten.' )
3
'''simple docstring''' import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask lowerCamelCase : List[Any] = logging.getLogger(__name__) class __lowerCAmelCase (lowercase_ ): '''simple docstring''' def __init__(self : Optional[Any] , UpperCamelCase : Any=-1 ): '''simple docstring''' lowercase__ = label_idx def UpperCamelCase__ (self : Union[str, Any] , UpperCamelCase : Optional[Any] , UpperCamelCase : Union[Split, str] ): '''simple docstring''' if isinstance(UpperCamelCase , UpperCamelCase ): lowercase__ = mode.value lowercase__ = os.path.join(UpperCamelCase , f"{mode}.txt" ) lowercase__ = 1 lowercase__ = [] with open(UpperCamelCase , encoding='''utf-8''' ) as f: lowercase__ = [] lowercase__ = [] for line in f: if line.startswith('''-DOCSTART-''' ) or line == "" or line == "\n": if words: examples.append(InputExample(guid=f"{mode}-{guid_index}" , words=UpperCamelCase , labels=UpperCamelCase ) ) guid_index += 1 lowercase__ = [] lowercase__ = [] else: lowercase__ = line.split(''' ''' ) words.append(splits[0] ) if len(UpperCamelCase ) > 1: labels.append(splits[self.label_idx].replace('''\n''' , '''''' ) ) else: # Examples could have no label for mode = "test" labels.append('''O''' ) if words: examples.append(InputExample(guid=f"{mode}-{guid_index}" , words=UpperCamelCase , labels=UpperCamelCase ) ) return examples def UpperCamelCase__ (self : Optional[int] , UpperCamelCase : TextIO , UpperCamelCase : TextIO , UpperCamelCase : List ): '''simple docstring''' lowercase__ = 0 for line in test_input_reader: if line.startswith('''-DOCSTART-''' ) or line == "" or line == "\n": writer.write(UpperCamelCase ) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: lowercase__ = line.split()[0] + ''' ''' + preds_list[example_id].pop(0 ) + '''\n''' writer.write(UpperCamelCase ) else: logger.warning('''Maximum sequence length exceeded: No prediction for \'%s\'.''' , line.split()[0] ) def UpperCamelCase__ (self : Union[str, Any] , UpperCamelCase : str ): '''simple docstring''' if path: with open(UpperCamelCase , '''r''' ) as f: lowercase__ = f.read().splitlines() if "O" not in labels: lowercase__ = ['''O'''] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class __lowerCAmelCase (lowercase_ ): '''simple docstring''' def __init__(self : List[Any] ): '''simple docstring''' super().__init__(label_idx=-2 ) def UpperCamelCase__ (self : List[Any] , UpperCamelCase : str ): '''simple docstring''' if path: with open(UpperCamelCase , '''r''' ) as f: lowercase__ = f.read().splitlines() if "O" not in labels: lowercase__ = ['''O'''] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class __lowerCAmelCase (lowercase_ ): '''simple docstring''' def UpperCamelCase__ (self : Tuple , UpperCamelCase : int , UpperCamelCase : Union[Split, str] ): '''simple docstring''' if isinstance(UpperCamelCase , UpperCamelCase ): lowercase__ = mode.value lowercase__ = os.path.join(UpperCamelCase , f"{mode}.txt" ) lowercase__ = 1 lowercase__ = [] with open(UpperCamelCase , encoding='''utf-8''' ) as f: for sentence in parse_incr(UpperCamelCase ): lowercase__ = [] lowercase__ = [] for token in sentence: words.append(token['''form'''] ) labels.append(token['''upos'''] ) assert len(UpperCamelCase ) == len(UpperCamelCase ) if words: examples.append(InputExample(guid=f"{mode}-{guid_index}" , words=UpperCamelCase , labels=UpperCamelCase ) ) guid_index += 1 return examples def UpperCamelCase__ (self : Tuple , UpperCamelCase : TextIO , UpperCamelCase : TextIO , UpperCamelCase : List ): '''simple docstring''' lowercase__ = 0 for sentence in parse_incr(UpperCamelCase ): lowercase__ = preds_list[example_id] lowercase__ = '''''' for token in sentence: out += f"{token['form']} ({token['upos']}|{s_p.pop(0 )}) " out += "\n" writer.write(UpperCamelCase ) example_id += 1 def UpperCamelCase__ (self : Union[str, Any] , UpperCamelCase : str ): '''simple docstring''' if path: with open(UpperCamelCase , '''r''' ) as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
2
0
'''simple docstring''' import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _a : def __init__( self : Optional[int] , lowercase : Union[str, Any] , lowercase : int=13 , lowercase : List[Any]=3 , lowercase : Union[str, Any]=True , lowercase : Any=True , lowercase : Optional[int]=0.1 , lowercase : List[Any]=0.1 , lowercase : Optional[Any]=224 , lowercase : int=1_000 , lowercase : Dict=[3, 3, 6, 4] , lowercase : str=[48, 56, 112, 220] , ): '''simple docstring''' UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = num_channels UpperCAmelCase = is_training UpperCAmelCase = use_labels UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = num_labels UpperCAmelCase = image_size UpperCAmelCase = layer_depths UpperCAmelCase = embed_dims def A ( self : str ): '''simple docstring''' UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase = None if self.use_labels: UpperCAmelCase = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase = self.get_config() return config, pixel_values, labels def A ( self : Optional[Any] ): '''simple docstring''' return SwiftFormerConfig( depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act='''gelu''' , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=lowercase , layer_scale_init_value=1E-5 , ) def A ( self : Tuple , lowercase : Any , lowercase : Optional[int] , lowercase : Optional[int] ): '''simple docstring''' UpperCAmelCase = SwiftFormerModel(config=lowercase ) model.to(lowercase ) model.eval() UpperCAmelCase = model(lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) ) def A ( self : str , lowercase : Optional[Any] , lowercase : List[Any] , lowercase : Union[str, Any] ): '''simple docstring''' UpperCAmelCase = self.num_labels UpperCAmelCase = SwiftFormerForImageClassification(lowercase ) model.to(lowercase ) model.eval() UpperCAmelCase = model(lowercase , labels=lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) UpperCAmelCase = SwiftFormerForImageClassification(lowercase ) model.to(lowercase ) model.eval() UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase = model(lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A ( self : List[Any] ): '''simple docstring''' ((UpperCAmelCase) , (UpperCAmelCase) , (UpperCAmelCase)) = self.prepare_config_and_inputs() UpperCAmelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _a ( lowercase_ , lowercase_ , unittest.TestCase ): __a : int = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () __a : int = ( {"""feature-extraction""": SwiftFormerModel, """image-classification""": SwiftFormerForImageClassification} if is_torch_available() else {} ) __a : str = False __a : Dict = False __a : str = False __a : Tuple = False __a : List[str] = False def A ( self : Any ): '''simple docstring''' UpperCAmelCase = SwiftFormerModelTester(self ) UpperCAmelCase = ConfigTester( self , config_class=lowercase , has_text_modality=lowercase , hidden_size=37 , num_attention_heads=12 , num_hidden_layers=12 , ) def A ( self : List[str] ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='''SwiftFormer does not use inputs_embeds''' ) def A ( self : List[Any] ): '''simple docstring''' pass def A ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = model_class(lowercase ) UpperCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowercase , nn.Linear ) ) def A ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = model_class(lowercase ) UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase = [*signature.parameters.keys()] UpperCAmelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowercase ) def A ( self : Dict ): '''simple docstring''' UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase ) def A ( self : Any ): '''simple docstring''' UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase ) @slow def A ( self : Dict ): '''simple docstring''' for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase = SwiftFormerModel.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) @unittest.skip(reason='''SwiftFormer does not output attentions''' ) def A ( self : Dict ): '''simple docstring''' pass def A ( self : int ): '''simple docstring''' def check_hidden_states_output(lowercase : str , lowercase : Optional[Any] , lowercase : str ): UpperCAmelCase = model_class(lowercase ) model.to(lowercase ) model.eval() with torch.no_grad(): UpperCAmelCase = model(**self._prepare_for_class(lowercase , lowercase ) ) UpperCAmelCase = outputs.hidden_states UpperCAmelCase = 8 self.assertEqual(len(lowercase ) , lowercase ) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(lowercase ) ): self.assertEqual( hidden_states[i].shape , torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ] ) , ) UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = True check_hidden_states_output(lowercase , lowercase , lowercase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase = True check_hidden_states_output(lowercase , lowercase , lowercase ) def A ( self : Optional[int] ): '''simple docstring''' def _config_zero_init(lowercase : int ): UpperCAmelCase = copy.deepcopy(lowercase ) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(lowercase , lowercase , 1E-10 ) if isinstance(getattr(lowercase , lowercase , lowercase ) , lowercase ): UpperCAmelCase = _config_zero_init(getattr(lowercase , lowercase ) ) setattr(lowercase , lowercase , lowercase ) return configs_no_init UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase = _config_zero_init(lowercase ) for model_class in self.all_model_classes: UpperCAmelCase = model_class(config=lowercase ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9) / 1E9).round().item() , [0.0, 1.0] , msg=f"Parameter {name} of model {model_class} seems not properly initialized" , ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def A ( self : Dict ): '''simple docstring''' pass def snake_case_ (): UpperCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class _a ( unittest.TestCase ): @cached_property def A ( self : Dict ): '''simple docstring''' return ViTImageProcessor.from_pretrained('''MBZUAI/swiftformer-xs''' ) if is_vision_available() else None @slow def A ( self : Any ): '''simple docstring''' UpperCAmelCase = SwiftFormerForImageClassification.from_pretrained('''MBZUAI/swiftformer-xs''' ).to(lowercase ) UpperCAmelCase = self.default_image_processor UpperCAmelCase = prepare_img() UpperCAmelCase = image_processor(images=lowercase , return_tensors='''pt''' ).to(lowercase ) # forward pass with torch.no_grad(): UpperCAmelCase = model(**lowercase ) # verify the logits UpperCAmelCase = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , lowercase ) UpperCAmelCase = torch.tensor([[-2.1_703E00, 2.1_107E00, -2.0_811E00]] ).to(lowercase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase , atol=1E-4 ) )
34
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Dict = logging.get_logger(__name__) lowerCamelCase : Union[str, Any] = { # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class __lowerCAmelCase (lowercase_ ): '''simple docstring''' lowerCAmelCase__ : List[str] = """megatron-bert""" def __init__(self : Tuple , UpperCamelCase : Optional[int]=29056 , UpperCamelCase : Optional[Any]=1024 , UpperCamelCase : Any=24 , UpperCamelCase : int=16 , UpperCamelCase : Optional[int]=4096 , UpperCamelCase : int="gelu" , UpperCamelCase : int=0.1 , UpperCamelCase : Tuple=0.1 , UpperCamelCase : Any=512 , UpperCamelCase : int=2 , UpperCamelCase : Dict=0.02 , UpperCamelCase : Dict=1E-12 , UpperCamelCase : List[Any]=0 , UpperCamelCase : Optional[int]="absolute" , UpperCamelCase : List[Any]=True , **UpperCamelCase : str , ): '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase , **UpperCamelCase ) lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = hidden_act lowercase__ = intermediate_size lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = position_embedding_type lowercase__ = use_cache
2
0
'''simple docstring''' import argparse import os import torch from transformers import FlavaConfig, FlavaForPreTraining from transformers.models.flava.convert_dalle_to_flava_codebook import convert_dalle_checkpoint def __UpperCamelCase ( lowercase__ : Optional[int] ): '''simple docstring''' return sum(param.float().sum() if 'encoder.embeddings' not in key else 0 for key, param in state_dict.items() ) def __UpperCamelCase ( lowercase__ : Optional[Any], lowercase__ : List[str] ): '''simple docstring''' __lowercase ={} for key, value in state_dict.items(): if "text_encoder.embeddings" in key or "image_encoder.embeddings" in key: continue __lowercase =key.replace('heads.cmd.mim_head.cls.predictions', 'mmm_image_head' ) __lowercase =key.replace('heads.cmd.mlm_head.cls.predictions', 'mmm_text_head' ) __lowercase =key.replace('heads.cmd.itm_head.cls', 'itm_head' ) __lowercase =key.replace('heads.cmd.itm_head.pooler', 'itm_head.pooler' ) __lowercase =key.replace('heads.cmd.clip_head.logit_scale', 'flava.logit_scale' ) __lowercase =key.replace('heads.fairseq_mlm.cls.predictions', 'mlm_head' ) __lowercase =key.replace('heads.imagenet.mim_head.cls.predictions', 'mim_head' ) __lowercase =key.replace('mm_text_projection', 'flava.text_to_mm_projection' ) __lowercase =key.replace('mm_image_projection', 'flava.image_to_mm_projection' ) __lowercase =key.replace('image_encoder.module', 'flava.image_model' ) __lowercase =key.replace('text_encoder.module', 'flava.text_model' ) __lowercase =key.replace('mm_encoder.module.encoder.cls_token', 'flava.multimodal_model.cls_token' ) __lowercase =key.replace('mm_encoder.module', 'flava.multimodal_model' ) __lowercase =key.replace('text_projection', 'flava.text_projection' ) __lowercase =key.replace('image_projection', 'flava.image_projection' ) __lowercase =value.float() for key, value in codebook_state_dict.items(): __lowercase =value return upgrade @torch.no_grad() def __UpperCamelCase ( lowercase__ : Optional[int], lowercase__ : Union[str, Any], lowercase__ : List[str], lowercase__ : Union[str, Any]=None ): '''simple docstring''' if config_path is not None: __lowercase =FlavaConfig.from_pretrained(lowercase__ ) else: __lowercase =FlavaConfig() __lowercase =FlavaForPreTraining(lowercase__ ).eval() __lowercase =convert_dalle_checkpoint(lowercase__, lowercase__, save_checkpoint=lowercase__ ) if os.path.exists(lowercase__ ): __lowercase =torch.load(lowercase__, map_location='cpu' ) else: __lowercase =torch.hub.load_state_dict_from_url(lowercase__, map_location='cpu' ) __lowercase =upgrade_state_dict(lowercase__, lowercase__ ) hf_model.load_state_dict(lowercase__ ) __lowercase =hf_model.state_dict() __lowercase =count_parameters(lowercase__ ) __lowercase =count_parameters(lowercase__ ) + count_parameters(lowercase__ ) assert torch.allclose(lowercase__, lowercase__, atol=1E-3 ) hf_model.save_pretrained(lowercase__ ) if __name__ == "__main__": UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to flava checkpoint''') parser.add_argument('''--codebook_path''', default=None, type=str, help='''Path to flava codebook checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') UpperCAmelCase = parser.parse_args() convert_flava_checkpoint(args.checkpoint_path, args.codebook_path, args.pytorch_dump_folder_path, args.config_path)
141
'''simple docstring''' # Lint as: python3 import itertools import os import re lowerCamelCase : Any = re.compile(R'([A-Z]+)([A-Z][a-z])') lowerCamelCase : str = re.compile(R'([a-z\d])([A-Z])') lowerCamelCase : Optional[int] = re.compile(R'(?<!_)_(?!_)') lowerCamelCase : List[Any] = re.compile(R'(_{2,})') lowerCamelCase : str = R'^\w+(\.\w+)*$' lowerCamelCase : Dict = R'<>:/\|?*' def _SCREAMING_SNAKE_CASE (A ) -> Any: """simple docstring""" lowercase__ = _uppercase_uppercase_re.sub(R'''\1_\2''' , A ) lowercase__ = _lowercase_uppercase_re.sub(R'''\1_\2''' , A ) return name.lower() def _SCREAMING_SNAKE_CASE (A ) -> Tuple: """simple docstring""" lowercase__ = _single_underscore_re.split(A ) lowercase__ = [_multiple_underscores_re.split(A ) for n in name] return "".join(n.capitalize() for n in itertools.chain.from_iterable(A ) if n != '''''' ) def _SCREAMING_SNAKE_CASE (A ) -> Tuple: """simple docstring""" if os.path.basename(A ) != name: raise ValueError(f"Should be a dataset name, not a path: {name}" ) return camelcase_to_snakecase(A ) def _SCREAMING_SNAKE_CASE (A , A ) -> Optional[Any]: """simple docstring""" if os.path.basename(A ) != name: raise ValueError(f"Should be a dataset name, not a path: {name}" ) if not re.match(_split_re , A ): raise ValueError(f"Split name should match '{_split_re}'' but got '{split}'." ) return f"{filename_prefix_for_name(A )}-{split}" def _SCREAMING_SNAKE_CASE (A , A , A , A=None ) -> List[str]: """simple docstring""" lowercase__ = filename_prefix_for_split(A , A ) if filetype_suffix: prefix += f".{filetype_suffix}" lowercase__ = os.path.join(A , A ) return f"{filepath}*" def _SCREAMING_SNAKE_CASE (A , A , A , A=None , A=None ) -> Optional[Any]: """simple docstring""" lowercase__ = filename_prefix_for_split(A , A ) lowercase__ = os.path.join(A , A ) if shard_lengths: lowercase__ = len(A ) lowercase__ = [f"{prefix}-{shard_id:05d}-of-{num_shards:05d}" for shard_id in range(A )] if filetype_suffix: lowercase__ = [filename + f".{filetype_suffix}" for filename in filenames] return filenames else: lowercase__ = prefix if filetype_suffix: filename += f".{filetype_suffix}" return [filename]
2
0
from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def lowerCAmelCase__ ( lowerCamelCase_ : int ,lowerCamelCase_ : Union[str, Any] ,lowerCamelCase_ : Union[str, Any] ,lowerCamelCase_ : Tuple): '''simple docstring''' for param, grad_param in zip(model_a.parameters() ,model_b.parameters()): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad ,grad_param.grad) is False ), f"""Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})""" else: # Grads should be in sync assert ( torch.allclose(param.grad ,grad_param.grad) is True ), f"""Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})""" def lowerCAmelCase__ ( lowerCamelCase_ : Dict ,lowerCamelCase_ : List[Any] ,lowerCamelCase_ : int ,lowerCamelCase_ : Tuple ,lowerCamelCase_ : int=True): '''simple docstring''' model.train() lowerCAmelCase__ : Tuple = model(lowerCamelCase_) lowerCAmelCase__ : Optional[int] = F.mse_loss(lowerCamelCase_ ,target.to(output.device)) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(lowerCamelCase_) def lowerCAmelCase__ ( lowerCamelCase_ : int ,lowerCamelCase_ : Optional[Any]=False): '''simple docstring''' set_seed(42) lowerCAmelCase__ : List[Any] = RegressionModel() lowerCAmelCase__ : Dict = deepcopy(lowerCamelCase_) lowerCAmelCase__ : Optional[int] = RegressionDataset(length=80) lowerCAmelCase__ : Optional[int] = DataLoader(lowerCamelCase_ ,batch_size=16) model.to(accelerator.device) if sched: lowerCAmelCase__ : Tuple = AdamW(params=model.parameters() ,lr=1E-3) lowerCAmelCase__ : Tuple = AdamW(params=ddp_model.parameters() ,lr=1E-3) lowerCAmelCase__ : Any = LambdaLR(lowerCamelCase_ ,lr_lambda=lambda lowerCamelCase_: epoch**0.65) lowerCAmelCase__ : Any = LambdaLR(lowerCamelCase_ ,lr_lambda=lambda lowerCamelCase_: epoch**0.65) # Make a copy of `model` if sched: lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Any = accelerator.prepare(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_) else: lowerCAmelCase__ , lowerCAmelCase__ : Tuple = accelerator.prepare(lowerCamelCase_ ,lowerCamelCase_) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def lowerCAmelCase__ ( lowerCamelCase_ : Dict): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Tuple = get_training_setup(lowerCamelCase_) # Use a single batch lowerCAmelCase__ , lowerCAmelCase__ : Any = next(iter(lowerCamelCase_)).values() for iteration in range(3): # Gather the distributed inputs and targs for the base model lowerCAmelCase__ , lowerCAmelCase__ : Any = accelerator.gather((ddp_input, ddp_target)) lowerCAmelCase__ , lowerCAmelCase__ : Dict = input.to(accelerator.device), target.to(accelerator.device) # Perform our initial ground truth step in non "DDP" step_model(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(lowerCamelCase_): step_model(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_) else: # Sync grads step_model(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_) for param, ddp_param in zip(model.parameters() ,ddp_model.parameters()): if not param.requires_grad: continue assert torch.allclose( param.grad ,ddp_param.grad), f"""Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration) lowerCAmelCase__ : Tuple = ddp_input[torch.randperm(len(lowerCamelCase_))] def lowerCAmelCase__ ( lowerCamelCase_ : Union[str, Any]): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Dict = get_training_setup(lowerCamelCase_) # Use a single batch lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = next(iter(lowerCamelCase_)).values() for iteration in range(3): # Gather the distributed inputs and targs for the base model lowerCAmelCase__ , lowerCAmelCase__ : str = accelerator.gather((ddp_input, ddp_target)) lowerCAmelCase__ , lowerCAmelCase__ : List[str] = input.to(accelerator.device), target.to(accelerator.device) # Perform our initial ground truth step in non "DDP" step_model(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(lowerCamelCase_): step_model(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_) else: # Sync grads step_model(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() ,ddp_model.parameters()): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad ,ddp_param.grad) is False ), f"""Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})""" else: # Grads should be in sync assert ( torch.allclose(param.grad ,ddp_param.grad) is True ), f"""Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration) lowerCAmelCase__ : Tuple = ddp_input[torch.randperm(len(lowerCamelCase_))] def lowerCAmelCase__ ( lowerCamelCase_ : Tuple=False ,lowerCamelCase_ : Optional[int]=False): '''simple docstring''' lowerCAmelCase__ : Dict = Accelerator( split_batches=lowerCamelCase_ ,dispatch_batches=lowerCamelCase_ ,gradient_accumulation_steps=2) # Test that context manager behaves properly lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = get_training_setup(lowerCamelCase_) for iteration, batch in enumerate(lowerCamelCase_): lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = batch.values() # Gather the distributed inputs and targs for the base model lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = accelerator.gather((ddp_input, ddp_target)) lowerCAmelCase__ , lowerCAmelCase__ : Dict = input.to(accelerator.device), target.to(accelerator.device) # Perform our initial ground truth step in non "DDP" step_model(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_) # Do "gradient accumulation" (noop) with accelerator.accumulate(lowerCamelCase_): step_model(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() ,ddp_model.parameters()): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(lowerCamelCase_) - 1): # Grads should be in sync assert ( torch.allclose(param.grad ,ddp_param.grad) is True ), f"""Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" else: # Grads should not be in sync assert ( torch.allclose(param.grad ,ddp_param.grad) is False ), f"""Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration) lowerCAmelCase__ : Dict = ddp_input[torch.randperm(len(lowerCamelCase_))] GradientState._reset_state() def lowerCAmelCase__ ( lowerCamelCase_ : Tuple=False ,lowerCamelCase_ : List[str]=False): '''simple docstring''' lowerCAmelCase__ : Any = Accelerator( split_batches=lowerCamelCase_ ,dispatch_batches=lowerCamelCase_ ,gradient_accumulation_steps=2) # Test that context manager behaves properly lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : List[Any] = get_training_setup(lowerCamelCase_ ,lowerCamelCase_) for iteration, batch in enumerate(lowerCamelCase_): lowerCAmelCase__ , lowerCAmelCase__ : str = batch.values() # Gather the distributed inputs and targs for the base model lowerCAmelCase__ , lowerCAmelCase__ : Any = accelerator.gather((ddp_input, ddp_target)) lowerCAmelCase__ , lowerCAmelCase__ : List[Any] = input.to(accelerator.device), target.to(accelerator.device) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(lowerCamelCase_)): if split_batches: sched.step() else: for _ in range(accelerator.num_processes): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(lowerCamelCase_): step_model(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), f"""Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]['lr']}\nDDP opt: {ddp_opt.param_groups[0]['lr']}\n""" lowerCAmelCase__ : List[Any] = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(lowerCamelCase_)) if accelerator.num_processes > 1: check_model_parameters(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_) # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration) GradientState._reset_state() def lowerCAmelCase__ ( ): '''simple docstring''' lowerCAmelCase__ : int = Accelerator() lowerCAmelCase__ : Any = RegressionDataset(length=80) lowerCAmelCase__ : List[str] = DataLoader(lowerCamelCase_ ,batch_size=16) lowerCAmelCase__ : int = RegressionDataset(length=96) lowerCAmelCase__ : Any = DataLoader(lowerCamelCase_ ,batch_size=16) lowerCAmelCase__ , lowerCAmelCase__ : int = accelerator.prepare(lowerCamelCase_ ,lowerCamelCase_) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(lowerCamelCase_): assert id(accelerator.gradient_state.active_dataloader) == id(lowerCamelCase_) if iteration < len(lowerCamelCase_) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(lowerCamelCase_): assert id(accelerator.gradient_state.active_dataloader) == id(lowerCamelCase_) if batch_num < len(lowerCamelCase_) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def lowerCAmelCase__ ( ): '''simple docstring''' lowerCAmelCase__ : Any = Accelerator() lowerCAmelCase__ : Optional[int] = accelerator.state if state.local_process_index == 0: print('''**Test `accumulate` gradient accumulation with dataloader break**''') test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print('''**Test NOOP `no_sync` context manager**''') test_noop_sync(lowerCamelCase_) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print('''**Test Distributed `no_sync` context manager**''') test_distributed_sync(lowerCamelCase_) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( '''**Test `accumulate` gradient accumulation, ''' ,f"""`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**""" ,) test_gradient_accumulation(lowerCamelCase_ ,lowerCamelCase_) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version('''<''' ,'''2.0''') or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( '''**Test `accumulate` gradient accumulation with optimizer and scheduler, ''' ,'''`split_batches=False`, `dispatch_batches=False`**''' ,) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( '''**Test `accumulate` gradient accumulation with optimizer and scheduler, ''' ,f"""`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**""" ,) test_gradient_accumulation_with_opt_and_scheduler(lowerCamelCase_ ,lowerCamelCase_) def lowerCAmelCase__ ( lowerCamelCase_ : Optional[Any]): '''simple docstring''' main() if __name__ == "__main__": main()
129
'''simple docstring''' import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class __lowerCAmelCase : '''simple docstring''' def __init__(self : str , UpperCamelCase : Tuple , UpperCamelCase : Optional[int]=99 , UpperCamelCase : Optional[int]=13 , UpperCamelCase : Tuple=16 , UpperCamelCase : Union[str, Any]=7 , UpperCamelCase : List[Any]=True , UpperCamelCase : List[str]=True , UpperCamelCase : str=True , UpperCamelCase : Tuple=False , UpperCamelCase : str=True , UpperCamelCase : Tuple=2 , UpperCamelCase : Optional[int]=32 , UpperCamelCase : Any=4 , UpperCamelCase : Optional[int]=4 , UpperCamelCase : Tuple=30 , UpperCamelCase : str=0 , UpperCamelCase : Tuple=1 , UpperCamelCase : List[Any]=2 , UpperCamelCase : str=None , ): '''simple docstring''' lowercase__ = parent lowercase__ = batch_size lowercase__ = decoder_seq_length # For common tests lowercase__ = self.decoder_seq_length lowercase__ = is_training lowercase__ = use_attention_mask lowercase__ = use_labels lowercase__ = vocab_size lowercase__ = d_model lowercase__ = d_model lowercase__ = decoder_layers lowercase__ = decoder_layers lowercase__ = decoder_ffn_dim lowercase__ = decoder_attention_heads lowercase__ = decoder_attention_heads lowercase__ = eos_token_id lowercase__ = bos_token_id lowercase__ = pad_token_id lowercase__ = decoder_start_token_id lowercase__ = use_cache lowercase__ = max_position_embeddings lowercase__ = None lowercase__ = decoder_seq_length lowercase__ = 2 lowercase__ = 1 def UpperCamelCase__ (self : str ): '''simple docstring''' lowercase__ = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) lowercase__ = None if self.use_attention_mask: lowercase__ = ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 ) lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) lowercase__ = TrOCRConfig( vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , ) return (config, input_ids, attention_mask, lm_labels) def UpperCamelCase__ (self : Tuple , UpperCamelCase : List[Any] , UpperCamelCase : Optional[Any] , UpperCamelCase : Tuple , UpperCamelCase : List[str] , ): '''simple docstring''' lowercase__ = True lowercase__ = TrOCRDecoder(config=UpperCamelCase ).to(UpperCamelCase ).eval() lowercase__ = input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass lowercase__ = model(UpperCamelCase , use_cache=UpperCamelCase ) lowercase__ = model(UpperCamelCase ) lowercase__ = model(UpperCamelCase , use_cache=UpperCamelCase ) self.parent.assertTrue(len(UpperCamelCase ) == len(UpperCamelCase ) ) self.parent.assertTrue(len(UpperCamelCase ) == len(UpperCamelCase ) + 1 ) lowercase__ = outputs['''past_key_values'''] # create hypothetical next token and extent to next_input_ids lowercase__ = ids_tensor((2, 1) , config.vocab_size - 1 ) + 1 # append to next input_ids and lowercase__ = torch.cat([input_ids, next_tokens] , dim=-1 ) lowercase__ = model(UpperCamelCase )['''last_hidden_state'''] lowercase__ = model(UpperCamelCase , past_key_values=UpperCamelCase )['''last_hidden_state'''] # select random slice lowercase__ = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowercase__ = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() lowercase__ = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(UpperCamelCase , UpperCamelCase , atol=1E-3 ) def UpperCamelCase__ (self : Optional[Any] ): '''simple docstring''' lowercase__ = self.prepare_config_and_inputs() lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ = config_and_inputs lowercase__ = {'''input_ids''': input_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_torch class __lowerCAmelCase (lowercase_ , lowercase_ , lowercase_ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ : List[str] = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () lowerCAmelCase__ : List[Any] = (TrOCRForCausalLM,) if is_torch_available() else () lowerCAmelCase__ : Optional[Any] = {"""text-generation""": TrOCRForCausalLM} if is_torch_available() else {} lowerCAmelCase__ : Optional[Any] = True lowerCAmelCase__ : List[str] = False def UpperCamelCase__ (self : Any ): '''simple docstring''' lowercase__ = TrOCRStandaloneDecoderModelTester(self , is_training=UpperCamelCase ) lowercase__ = ConfigTester(self , config_class=UpperCamelCase ) def UpperCamelCase__ (self : List[str] ): '''simple docstring''' pass def UpperCamelCase__ (self : Optional[int] ): '''simple docstring''' pass def UpperCamelCase__ (self : Any ): '''simple docstring''' pass def UpperCamelCase__ (self : Any ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCamelCase__ (self : Union[str, Any] ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*UpperCamelCase ) def UpperCamelCase__ (self : Optional[int] ): '''simple docstring''' return @unittest.skip('''The model doesn\'t support left padding''' ) # and it's not used enough to be worth fixing :) def UpperCamelCase__ (self : List[str] ): '''simple docstring''' pass
2
0
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__) if is_vision_available(): import PIL class _UpperCAmelCase ( lowercase_ ): '''simple docstring''' lowerCamelCase__ =["""pixel_values"""] def __init__(self , a_ = True , a_ = None , a_ = PILImageResampling.BICUBIC , a_ = True , a_ = None , a_ = True , a_ = 1 / 2_55 , a_ = True , a_ = None , a_ = None , a_ = True , **a_ , ): '''simple docstring''' super().__init__(**a_ ) __snake_case : str = size if size is not None else {'''shortest_edge''': 2_24} __snake_case : int = get_size_dict(a_ , default_to_square=a_ ) __snake_case : Optional[Any] = crop_size if crop_size is not None else {'''height''': 2_24, '''width''': 2_24} __snake_case : Union[str, Any] = get_size_dict(a_ , default_to_square=a_ , param_name='''crop_size''' ) __snake_case : Optional[int] = do_resize __snake_case : List[str] = size __snake_case : Optional[int] = resample __snake_case : Dict = do_center_crop __snake_case : Union[str, Any] = crop_size __snake_case : str = do_rescale __snake_case : Union[str, Any] = rescale_factor __snake_case : List[Any] = do_normalize __snake_case : Any = image_mean if image_mean is not None else OPENAI_CLIP_MEAN __snake_case : Optional[int] = image_std if image_std is not None else OPENAI_CLIP_STD __snake_case : Optional[int] = do_convert_rgb def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ = PILImageResampling.BICUBIC , a_ = None , **a_ , ): '''simple docstring''' __snake_case : Dict = get_size_dict(a_ , default_to_square=a_ ) if "shortest_edge" not in size: raise ValueError(f"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) __snake_case : Dict = get_resize_output_image_size(a_ , size=size['''shortest_edge'''] , default_to_square=a_ ) return resize(a_ , size=a_ , resample=a_ , data_format=a_ , **a_ ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ = None , **a_ , ): '''simple docstring''' __snake_case : str = get_size_dict(a_ ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` parameter must contain the keys (height, width). Got {size.keys()}""" ) return center_crop(a_ , size=(size['''height'''], size['''width''']) , data_format=a_ , **a_ ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ = None , **a_ , ): '''simple docstring''' return rescale(a_ , scale=a_ , data_format=a_ , **a_ ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ = None , **a_ , ): '''simple docstring''' return normalize(a_ , mean=a_ , std=a_ , data_format=a_ , **a_ ) def SCREAMING_SNAKE_CASE (self , a_ , a_ = None , a_ = None , a_ = None , a_ = None , a_ = None , a_ = None , a_ = None , a_ = None , a_ = None , a_ = None , a_ = None , a_ = None , a_ = ChannelDimension.FIRST , **a_ , ): '''simple docstring''' __snake_case : List[Any] = do_resize if do_resize is not None else self.do_resize __snake_case : Optional[int] = size if size is not None else self.size __snake_case : Optional[int] = get_size_dict(a_ , param_name='''size''' , default_to_square=a_ ) __snake_case : List[str] = resample if resample is not None else self.resample __snake_case : int = do_center_crop if do_center_crop is not None else self.do_center_crop __snake_case : Any = crop_size if crop_size is not None else self.crop_size __snake_case : Tuple = get_size_dict(a_ , param_name='''crop_size''' , default_to_square=a_ ) __snake_case : int = do_rescale if do_rescale is not None else self.do_rescale __snake_case : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor __snake_case : Optional[Any] = do_normalize if do_normalize is not None else self.do_normalize __snake_case : Union[str, Any] = image_mean if image_mean is not None else self.image_mean __snake_case : Union[str, Any] = image_std if image_std is not None else self.image_std __snake_case : Any = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __snake_case : Dict = make_list_of_images(a_ ) if not valid_images(a_ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: __snake_case : Any = [convert_to_rgb(a_ ) for image in images] # All transformations expect numpy arrays. __snake_case : str = [to_numpy_array(a_ ) for image in images] if do_resize: __snake_case : Dict = [self.resize(image=a_ , size=a_ , resample=a_ ) for image in images] if do_center_crop: __snake_case : Tuple = [self.center_crop(image=a_ , size=a_ ) for image in images] if do_rescale: __snake_case : Any = [self.rescale(image=a_ , scale=a_ ) for image in images] if do_normalize: __snake_case : int = [self.normalize(image=a_ , mean=a_ , std=a_ ) for image in images] __snake_case : List[Any] = [to_channel_dimension_format(a_ , a_ ) for image in images] __snake_case : str = {'''pixel_values''': images} return BatchFeature(data=a_ , tensor_type=a_ )
102
'''simple docstring''' def _SCREAMING_SNAKE_CASE (A ) -> int: """simple docstring""" if not isinstance(A , A ): raise TypeError('''only integers accepted as input''' ) else: lowercase__ = str(abs(A ) ) lowercase__ = [list(A ) for char in range(len(A ) )] for index in range(len(A ) ): num_transpositions[index].pop(A ) return max( int(''''''.join(list(A ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__('doctest').testmod()
2
0
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer A_ :int = logging.get_logger(__name__) # pylint: disable=invalid-name A_ :Dict = '\n Examples:\n ```py\n >>> from PIL import Image\n >>> import torch\n >>> from diffusers import DiffusionPipeline\n >>> from diffusers.utils import export_to_gif, load_image\n\n >>> device = torch.device("cuda" if torch.cuda.is_available() else "cpu")\n\n >>> repo = "openai/shap-e-img2img"\n >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16)\n >>> pipe = pipe.to(device)\n\n >>> guidance_scale = 3.0\n >>> image_url = "https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png"\n >>> image = load_image(image_url).convert("RGB")\n\n >>> images = pipe(\n ... image,\n ... guidance_scale=guidance_scale,\n ... num_inference_steps=64,\n ... frame_size=256,\n ... ).images\n\n >>> gif_path = export_to_gif(images[0], "corgi_3d.gif")\n ```\n' @dataclass class __A ( lowercase_ ): """simple docstring""" UpperCamelCase__ : Union[PIL.Image.Image, np.ndarray] class __A ( lowercase_ ): """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , ): """simple docstring""" super().__init__() self.register_modules( prior=lowerCamelCase__ , image_encoder=lowerCamelCase__ , image_processor=lowerCamelCase__ , scheduler=lowerCamelCase__ , renderer=lowerCamelCase__ , ) def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" if latents is None: __UpperCamelCase : Tuple =randn_tensor(lowerCamelCase__ , generator=lowerCamelCase__ , device=lowerCamelCase__ , dtype=lowerCamelCase__ ) else: if latents.shape != shape: raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {shape}' ) __UpperCamelCase : List[str] =latents.to(lowerCamelCase__ ) __UpperCamelCase : Dict =latents * scheduler.init_noise_sigma return latents def __lowercase ( self , lowerCamelCase__=0 ): """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) __UpperCamelCase : Dict =torch.device(f'cuda:{gpu_id}' ) __UpperCamelCase : int =[self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(lowerCamelCase__ , lowerCamelCase__ ) @property def __lowercase ( self ): """simple docstring""" if self.device != torch.device('meta' ) or not hasattr(self.image_encoder , '_hf_hook' ): return self.device for module in self.image_encoder.modules(): if ( hasattr(lowerCamelCase__ , '_hf_hook' ) and hasattr(module._hf_hook , 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , ): """simple docstring""" if isinstance(lowerCamelCase__ , lowerCamelCase__ ) and isinstance(image[0] , torch.Tensor ): __UpperCamelCase : Optional[Any] =torch.cat(lowerCamelCase__ , axis=0 ) if image[0].ndim == 4 else torch.stack(lowerCamelCase__ , axis=0 ) if not isinstance(lowerCamelCase__ , torch.Tensor ): __UpperCamelCase : List[Any] =self.image_processor(lowerCamelCase__ , return_tensors='pt' ).pixel_values[0].unsqueeze(0 ) __UpperCamelCase : Any =image.to(dtype=self.image_encoder.dtype , device=lowerCamelCase__ ) __UpperCamelCase : List[str] =self.image_encoder(lowerCamelCase__ )['last_hidden_state'] __UpperCamelCase : Any =image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 __UpperCamelCase : Dict =image_embeds.repeat_interleave(lowerCamelCase__ , dim=0 ) if do_classifier_free_guidance: __UpperCamelCase : Union[str, Any] =torch.zeros_like(lowerCamelCase__ ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __UpperCamelCase : List[Any] =torch.cat([negative_image_embeds, image_embeds] ) return image_embeds @torch.no_grad() @replace_example_docstring(lowerCamelCase__ ) def __call__( self , lowerCamelCase__ , lowerCamelCase__ = 1 , lowerCamelCase__ = 25 , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = 4.0 , lowerCamelCase__ = 64 , lowerCamelCase__ = "pil" , lowerCamelCase__ = True , ): """simple docstring""" if isinstance(lowerCamelCase__ , PIL.Image.Image ): __UpperCamelCase : Any =1 elif isinstance(lowerCamelCase__ , torch.Tensor ): __UpperCamelCase : str =image.shape[0] elif isinstance(lowerCamelCase__ , lowerCamelCase__ ) and isinstance(image[0] , (torch.Tensor, PIL.Image.Image) ): __UpperCamelCase : Union[str, Any] =len(lowerCamelCase__ ) else: raise ValueError( f'`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(lowerCamelCase__ )}' ) __UpperCamelCase : Tuple =self._execution_device __UpperCamelCase : List[str] =batch_size * num_images_per_prompt __UpperCamelCase : Optional[Any] =guidance_scale > 1.0 __UpperCamelCase : List[Any] =self._encode_image(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # prior self.scheduler.set_timesteps(lowerCamelCase__ , device=lowerCamelCase__ ) __UpperCamelCase : List[str] =self.scheduler.timesteps __UpperCamelCase : Optional[int] =self.prior.config.num_embeddings __UpperCamelCase : Tuple =self.prior.config.embedding_dim __UpperCamelCase : Optional[Any] =self.prepare_latents( (batch_size, num_embeddings * embedding_dim) , image_embeds.dtype , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , self.scheduler , ) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim __UpperCamelCase : Tuple =latents.reshape(latents.shape[0] , lowerCamelCase__ , lowerCamelCase__ ) for i, t in enumerate(self.progress_bar(lowerCamelCase__ ) ): # expand the latents if we are doing classifier free guidance __UpperCamelCase : List[str] =torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __UpperCamelCase : List[str] =self.scheduler.scale_model_input(lowerCamelCase__ , lowerCamelCase__ ) __UpperCamelCase : int =self.prior( lowerCamelCase__ , timestep=lowerCamelCase__ , proj_embedding=lowerCamelCase__ , ).predicted_image_embedding # remove the variance __UpperCamelCase , __UpperCamelCase : Tuple =noise_pred.split( scaled_model_input.shape[2] , dim=2 ) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: __UpperCamelCase , __UpperCamelCase : List[str] =noise_pred.chunk(2 ) __UpperCamelCase : Optional[Any] =noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) __UpperCamelCase : Tuple =self.scheduler.step( lowerCamelCase__ , timestep=lowerCamelCase__ , sample=lowerCamelCase__ , ).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=lowerCamelCase__ ) __UpperCamelCase : List[Any] =[] for i, latent in enumerate(lowerCamelCase__ ): print() __UpperCamelCase : int =self.renderer.decode( latent[None, :] , lowerCamelCase__ , size=lowerCamelCase__ , ray_batch_size=4096 , n_coarse_samples=64 , n_fine_samples=128 , ) images.append(lowerCamelCase__ ) __UpperCamelCase : Tuple =torch.stack(lowerCamelCase__ ) if output_type not in ["np", "pil"]: raise ValueError(f'Only the output types `pil` and `np` are supported not output_type={output_type}' ) __UpperCamelCase : str =images.cpu().numpy() if output_type == "pil": __UpperCamelCase : Optional[int] =[self.numpy_to_pil(lowerCamelCase__ ) for image in images] # Offload last model to CPU if hasattr(self , 'final_offload_hook' ) and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=lowerCamelCase__ )
71
'''simple docstring''' import dataclasses import re import string from typing import Any, Dict, Iterator, List, Mapping, Optional, Sequence, Tuple import numpy as np from . import residue_constants lowerCamelCase : str = Mapping[str, np.ndarray] lowerCamelCase : List[Any] = Mapping[str, Any] # Is a nested dict. lowerCamelCase : Any = 0.0_1 @dataclasses.dataclass(frozen=lowercase_ ) class __lowerCAmelCase : '''simple docstring''' lowerCAmelCase__ : np.ndarray # [num_res, num_atom_type, 3] # Amino-acid type for each residue represented as an integer between 0 and # 20, where 20 is 'X'. lowerCAmelCase__ : np.ndarray # [num_res] # Binary float mask to indicate presence of a particular atom. 1.0 if an atom # is present and 0.0 if not. This should be used for loss masking. lowerCAmelCase__ : np.ndarray # [num_res, num_atom_type] # Residue index as used in PDB. It is not necessarily continuous or 0-indexed. lowerCAmelCase__ : np.ndarray # [num_res] # B-factors, or temperature factors, of each residue (in sq. angstroms units), # representing the displacement of the residue from its ground truth mean # value. lowerCAmelCase__ : np.ndarray # [num_res, num_atom_type] # Chain indices for multi-chain predictions lowerCAmelCase__ : Optional[np.ndarray] = None # Optional remark about the protein. Included as a comment in output PDB # files lowerCAmelCase__ : Optional[str] = None # Templates used to generate this protein (prediction-only) lowerCAmelCase__ : Optional[Sequence[str]] = None # Chain corresponding to each parent lowerCAmelCase__ : Optional[Sequence[int]] = None def _SCREAMING_SNAKE_CASE (A ) -> Protein: """simple docstring""" lowercase__ = R'''(\[[A-Z]+\]\n)''' lowercase__ = [tag.strip() for tag in re.split(A , A ) if len(A ) > 0] lowercase__ = zip(tags[0::2] , [l.split('''\n''' ) for l in tags[1::2]] ) lowercase__ = ["N", "CA", "C"] lowercase__ = None lowercase__ = None lowercase__ = None for g in groups: if "[PRIMARY]" == g[0]: lowercase__ = g[1][0].strip() for i in range(len(A ) ): if seq[i] not in residue_constants.restypes: lowercase__ = '''X''' # FIXME: strings are immutable lowercase__ = np.array( [residue_constants.restype_order.get(A , residue_constants.restype_num ) for res_symbol in seq] ) elif "[TERTIARY]" == g[0]: lowercase__ = [] for axis in range(3 ): tertiary.append(list(map(A , g[1][axis].split() ) ) ) lowercase__ = np.array(A ) lowercase__ = np.zeros((len(tertiary[0] ) // 3, residue_constants.atom_type_num, 3) ).astype(np.floataa ) for i, atom in enumerate(A ): lowercase__ = np.transpose(tertiary_np[:, i::3] ) atom_positions *= PICO_TO_ANGSTROM elif "[MASK]" == g[0]: lowercase__ = np.array(list(map({'''-''': 0, '''+''': 1}.get , g[1][0].strip() ) ) ) lowercase__ = np.zeros( ( len(A ), residue_constants.atom_type_num, ) ).astype(np.floataa ) for i, atom in enumerate(A ): lowercase__ = 1 atom_mask *= mask[..., None] assert aatype is not None return Protein( atom_positions=A , atom_mask=A , aatype=A , residue_index=np.arange(len(A ) ) , b_factors=A , ) def _SCREAMING_SNAKE_CASE (A , A = 0 ) -> List[str]: """simple docstring""" lowercase__ = [] lowercase__ = prot.remark if remark is not None: pdb_headers.append(f"REMARK {remark}" ) lowercase__ = prot.parents lowercase__ = prot.parents_chain_index if parents is not None and parents_chain_index is not None: lowercase__ = [p for i, p in zip(A , A ) if i == chain_id] if parents is None or len(A ) == 0: lowercase__ = ['''N/A'''] pdb_headers.append(f"PARENT {' '.join(A )}" ) return pdb_headers def _SCREAMING_SNAKE_CASE (A , A ) -> str: """simple docstring""" lowercase__ = [] lowercase__ = pdb_str.split('''\n''' ) lowercase__ = prot.remark if remark is not None: out_pdb_lines.append(f"REMARK {remark}" ) lowercase__ = 42 if prot.parents is not None and len(prot.parents ) > 0: lowercase__ = [] if prot.parents_chain_index is not None: lowercase__ = {} for p, i in zip(prot.parents , prot.parents_chain_index ): parent_dict.setdefault(str(A ) , [] ) parent_dict[str(A )].append(A ) lowercase__ = max([int(A ) for chain_idx in parent_dict] ) for i in range(max_idx + 1 ): lowercase__ = parent_dict.get(str(A ) , ['''N/A'''] ) parents_per_chain.append(A ) else: parents_per_chain.append(list(prot.parents ) ) else: lowercase__ = [['''N/A''']] def make_parent_line(A ) -> str: return f"PARENT {' '.join(A )}" out_pdb_lines.append(make_parent_line(parents_per_chain[0] ) ) lowercase__ = 0 for i, l in enumerate(A ): if "PARENT" not in l and "REMARK" not in l: out_pdb_lines.append(A ) if "TER" in l and "END" not in lines[i + 1]: chain_counter += 1 if not chain_counter >= len(A ): lowercase__ = parents_per_chain[chain_counter] else: lowercase__ = ['''N/A'''] out_pdb_lines.append(make_parent_line(A ) ) return "\n".join(A ) def _SCREAMING_SNAKE_CASE (A ) -> str: """simple docstring""" lowercase__ = residue_constants.restypes + ['''X'''] def res_atoa(A ) -> str: return residue_constants.restype_atoa.get(restypes[r] , '''UNK''' ) lowercase__ = residue_constants.atom_types lowercase__ = [] lowercase__ = prot.atom_mask lowercase__ = prot.aatype lowercase__ = prot.atom_positions lowercase__ = prot.residue_index.astype(np.intaa ) lowercase__ = prot.b_factors lowercase__ = prot.chain_index if np.any(aatype > residue_constants.restype_num ): raise ValueError('''Invalid aatypes.''' ) lowercase__ = get_pdb_headers(A ) if len(A ) > 0: pdb_lines.extend(A ) lowercase__ = aatype.shape[0] lowercase__ = 1 lowercase__ = 0 lowercase__ = string.ascii_uppercase lowercase__ = None # Add all atom sites. for i in range(A ): lowercase__ = res_atoa(aatype[i] ) for atom_name, pos, mask, b_factor in zip(A , atom_positions[i] , atom_mask[i] , b_factors[i] ): if mask < 0.5: continue lowercase__ = '''ATOM''' lowercase__ = atom_name if len(A ) == 4 else f" {atom_name}" lowercase__ = '''''' lowercase__ = '''''' lowercase__ = 1.00 lowercase__ = atom_name[0] # Protein supports only C, N, O, S, this works. lowercase__ = '''''' lowercase__ = '''A''' if chain_index is not None: lowercase__ = chain_tags[chain_index[i]] # PDB is a columnar format, every space matters here! lowercase__ = ( f"{record_type:<6}{atom_index:>5} {name:<4}{alt_loc:>1}" f"{res_name_a:>3} {chain_tag:>1}" f"{residue_index[i]:>4}{insertion_code:>1} " f"{pos[0]:>8.3f}{pos[1]:>8.3f}{pos[2]:>8.3f}" f"{occupancy:>6.2f}{b_factor:>6.2f} " f"{element:>2}{charge:>2}" ) pdb_lines.append(A ) atom_index += 1 lowercase__ = i == n - 1 if chain_index is not None: if i != n - 1 and chain_index[i + 1] != prev_chain_index: lowercase__ = True lowercase__ = chain_index[i + 1] if should_terminate: # Close the chain. lowercase__ = '''TER''' lowercase__ = ( f"{chain_end:<6}{atom_index:>5} {res_atoa(aatype[i] ):>3} {chain_tag:>1}{residue_index[i]:>4}" ) pdb_lines.append(A ) atom_index += 1 if i != n - 1: # "prev" is a misnomer here. This happens at the beginning of # each new chain. pdb_lines.extend(get_pdb_headers(A , A ) ) pdb_lines.append('''END''' ) pdb_lines.append('''''' ) return "\n".join(A ) def _SCREAMING_SNAKE_CASE (A ) -> np.ndarray: """simple docstring""" return residue_constants.STANDARD_ATOM_MASK[prot.aatype] def _SCREAMING_SNAKE_CASE (A , A , A = None , A = None , A = None , A = None , A = None , ) -> Protein: """simple docstring""" return Protein( aatype=features['''aatype'''] , atom_positions=result['''final_atom_positions'''] , atom_mask=result['''final_atom_mask'''] , residue_index=features['''residue_index'''] + 1 , b_factors=b_factors if b_factors is not None else np.zeros_like(result['''final_atom_mask'''] ) , chain_index=A , remark=A , parents=A , parents_chain_index=A , )
2
0
'''simple docstring''' import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() _SCREAMING_SNAKE_CASE : Tuple = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : List[Any] = ['model.decoder.embed_positions.weights'] def UpperCamelCase_( snake_case : List[str] ): '''simple docstring''' if "emb" in name: snake_case_ = name.replace("emb" , "model.decoder.embed_tokens" ) if "transformer" in name: snake_case_ = name.replace("transformer" , "model.decoder" ) if "cross_attention" in name: snake_case_ = name.replace("cross_attention" , "encoder_attn" ) if "linear1" in name: snake_case_ = name.replace("linear1" , "fc1" ) if "linear2" in name: snake_case_ = name.replace("linear2" , "fc2" ) if "norm1" in name: snake_case_ = name.replace("norm1" , "self_attn_layer_norm" ) if "norm_cross" in name: snake_case_ = name.replace("norm_cross" , "encoder_attn_layer_norm" ) if "norm2" in name: snake_case_ = name.replace("norm2" , "final_layer_norm" ) if "out_norm" in name: snake_case_ = name.replace("out_norm" , "model.decoder.layer_norm" ) if "linears" in name: snake_case_ = name.replace("linears" , "lm_heads" ) if "condition_provider.conditioners.description.output_proj" in name: snake_case_ = name.replace("condition_provider.conditioners.description.output_proj" , "enc_to_dec_proj" ) return name def UpperCamelCase_( snake_case : Union[str, Any] , snake_case : Union[str, Any] ): '''simple docstring''' snake_case_ = list(state_dict.keys() ) snake_case_ = {} for key in keys: snake_case_ = state_dict.pop(snake_case ) snake_case_ = rename_keys(snake_case ) if "in_proj_weight" in key: # split fused qkv proj snake_case_ = val[:hidden_size, :] snake_case_ = val[hidden_size : 2 * hidden_size, :] snake_case_ = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: snake_case_ = val else: snake_case_ = val return state_dict, enc_dec_proj_state_dict def UpperCamelCase_( snake_case : List[Any] ): '''simple docstring''' if checkpoint == "small": # default config values snake_case_ = 1_0_2_4 snake_case_ = 2_4 snake_case_ = 1_6 elif checkpoint == "medium": snake_case_ = 1_5_3_6 snake_case_ = 4_8 snake_case_ = 2_4 elif checkpoint == "large": snake_case_ = 2_0_4_8 snake_case_ = 4_8 snake_case_ = 3_2 else: raise ValueError(f'Checkpoint should be one of `[\'small\', \'medium\', \'large\']`, got {checkpoint}.' ) snake_case_ = MusicgenDecoderConfig( hidden_size=snake_case , ffn_dim=hidden_size * 4 , num_hidden_layers=snake_case , num_attention_heads=snake_case , ) return config @torch.no_grad() def UpperCamelCase_( snake_case : List[Any] , snake_case : int=None , snake_case : str=None , snake_case : Optional[Any]="cpu" ): '''simple docstring''' snake_case_ = MusicGen.get_pretrained(snake_case , device=snake_case ) snake_case_ = decoder_config_from_checkpoint(snake_case ) snake_case_ = fairseq_model.lm.state_dict() snake_case_ , snake_case_ = rename_state_dict( snake_case , hidden_size=decoder_config.hidden_size ) snake_case_ = TaEncoderModel.from_pretrained("t5-base" ) snake_case_ = EncodecModel.from_pretrained("facebook/encodec_32khz" ) snake_case_ = MusicgenForCausalLM(snake_case ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection snake_case_ , snake_case_ = decoder.load_state_dict(snake_case , strict=snake_case ) for key in missing_keys.copy(): if key.startswith(("text_encoder", "audio_encoder") ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(snake_case ) if len(snake_case ) > 0: raise ValueError(f'Missing key(s) in state_dict: {missing_keys}' ) if len(snake_case ) > 0: raise ValueError(f'Unexpected key(s) in state_dict: {unexpected_keys}' ) # init the composite model snake_case_ = MusicgenForConditionalGeneration(text_encoder=snake_case , audio_encoder=snake_case , decoder=snake_case ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(snake_case ) # check we can do a forward pass snake_case_ = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 ) snake_case_ = input_ids.reshape(2 * 4 , -1 ) with torch.no_grad(): snake_case_ = model(input_ids=snake_case , decoder_input_ids=snake_case ).logits if logits.shape != (8, 1, 2_0_4_8): raise ValueError("Incorrect shape for logits" ) # now construct the processor snake_case_ = AutoTokenizer.from_pretrained("t5-base" ) snake_case_ = AutoFeatureExtractor.from_pretrained("facebook/encodec_32khz" , padding_side="left" ) snake_case_ = MusicgenProcessor(feature_extractor=snake_case , tokenizer=snake_case ) # set the appropriate bos/pad token ids snake_case_ = 2_0_4_8 snake_case_ = 2_0_4_8 # set other default generation config params snake_case_ = int(3_0 * audio_encoder.config.frame_rate ) snake_case_ = True snake_case_ = 3.0 if pytorch_dump_folder is not None: Path(snake_case ).mkdir(exist_ok=snake_case ) logger.info(f'Saving model {checkpoint} to {pytorch_dump_folder}' ) model.save_pretrained(snake_case ) processor.save_pretrained(snake_case ) if repo_id: logger.info(f'Pushing model {checkpoint} to {repo_id}' ) model.push_to_hub(snake_case ) processor.push_to_hub(snake_case ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint", default="small", type=str, help="Checkpoint size of the MusicGen model you\'d like to convert. Can be one of: `[\'small\', \'medium\', \'large\']`.", ) parser.add_argument( "--pytorch_dump_folder", required=True, default=None, type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) parser.add_argument( "--device", default="cpu", type=str, help="Torch device to run the conversion, either cpu or cuda." ) _SCREAMING_SNAKE_CASE : List[str] = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
85
'''simple docstring''' from __future__ import annotations def _SCREAMING_SNAKE_CASE (A , A ) -> list[list[int]]: """simple docstring""" lowercase__ = [] create_all_state(1 , A , A , [] , A ) return result def _SCREAMING_SNAKE_CASE (A , A , A , A , A , ) -> None: """simple docstring""" if level == 0: total_list.append(current_list[:] ) return for i in range(A , total_number - level + 2 ): current_list.append(A ) create_all_state(i + 1 , A , level - 1 , A , A ) current_list.pop() def _SCREAMING_SNAKE_CASE (A ) -> None: """simple docstring""" for i in total_list: print(*A ) if __name__ == "__main__": lowerCamelCase : Tuple = 4 lowerCamelCase : Union[str, Any] = 2 lowerCamelCase : Dict = generate_all_combinations(n, k) print_all_state(total_list)
2
0
import unittest from datasets import load_dataset from transformers import BloomTokenizerFast from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowerCAmelCase ( lowercase_ , unittest.TestCase ): lowerCAmelCase__ = None lowerCAmelCase__ = BloomTokenizerFast lowerCAmelCase__ = BloomTokenizerFast lowerCAmelCase__ = True lowerCAmelCase__ = False lowerCAmelCase__ = """tokenizer_file""" lowerCAmelCase__ = {"""bos_token""": """<s>""", """eos_token""": """</s>""", """unk_token""": """<unk>""", """pad_token""": """<pad>"""} def lowerCamelCase ( self ): '''simple docstring''' super().setUp() __lowerCamelCase = BloomTokenizerFast.from_pretrained('''bigscience/tokenizer''' ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCamelCase ( self , **__UpperCAmelCase ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return BloomTokenizerFast.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.get_rust_tokenizer() __lowerCamelCase = ['''The quick brown fox</s>''', '''jumps over the lazy dog</s>'''] __lowerCamelCase = [[2175, 23714, 73173, 144252, 2], [77, 132619, 3478, 368, 109586, 35433, 2]] __lowerCamelCase = tokenizer.batch_encode_plus(__UpperCAmelCase )['''input_ids'''] self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) __lowerCamelCase = tokenizer.batch_decode(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) def lowerCamelCase ( self , __UpperCAmelCase=6 ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __lowerCamelCase = self.rust_tokenizer_class.from_pretrained(__UpperCAmelCase , **__UpperCAmelCase ) # tokenizer_r.pad_token = None # Hotfixing padding = None # Simple input __lowerCamelCase = '''This is a simple input''' __lowerCamelCase = ['''This is a simple input 1''', '''This is a simple input 2'''] __lowerCamelCase = ('''This is a simple input''', '''This is a pair''') __lowerCamelCase = [ ('''This is a simple input 1''', '''This is a simple input 2'''), ('''This is a simple pair 1''', '''This is a simple pair 2'''), ] # Simple input tests try: tokenizer_r.encode(__UpperCAmelCase , max_length=__UpperCAmelCase ) tokenizer_r.encode_plus(__UpperCAmelCase , max_length=__UpperCAmelCase ) tokenizer_r.batch_encode_plus(__UpperCAmelCase , max_length=__UpperCAmelCase ) tokenizer_r.encode(__UpperCAmelCase , max_length=__UpperCAmelCase ) tokenizer_r.batch_encode_plus(__UpperCAmelCase , max_length=__UpperCAmelCase ) except ValueError: self.fail('''Bloom Tokenizer should be able to deal with padding''' ) __lowerCamelCase = None # Hotfixing padding = None self.assertRaises(__UpperCAmelCase , tokenizer_r.encode , __UpperCAmelCase , max_length=__UpperCAmelCase , padding='''max_length''' ) # Simple input self.assertRaises(__UpperCAmelCase , tokenizer_r.encode_plus , __UpperCAmelCase , max_length=__UpperCAmelCase , padding='''max_length''' ) # Simple input self.assertRaises( __UpperCAmelCase , tokenizer_r.batch_encode_plus , __UpperCAmelCase , max_length=__UpperCAmelCase , padding='''max_length''' , ) # Pair input self.assertRaises(__UpperCAmelCase , tokenizer_r.encode , __UpperCAmelCase , max_length=__UpperCAmelCase , padding='''max_length''' ) # Pair input self.assertRaises(__UpperCAmelCase , tokenizer_r.encode_plus , __UpperCAmelCase , max_length=__UpperCAmelCase , padding='''max_length''' ) # Pair input self.assertRaises( __UpperCAmelCase , tokenizer_r.batch_encode_plus , __UpperCAmelCase , max_length=__UpperCAmelCase , padding='''max_length''' , ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.get_rust_tokenizer() __lowerCamelCase = load_dataset('''xnli''' , '''all_languages''' , split='''test''' , streaming=__UpperCAmelCase ) __lowerCamelCase = next(iter(__UpperCAmelCase ) )['''premise'''] # pick up one data __lowerCamelCase = list(sample_data.values() ) __lowerCamelCase = list(map(tokenizer.encode , __UpperCAmelCase ) ) __lowerCamelCase = [tokenizer.decode(__UpperCAmelCase , clean_up_tokenization_spaces=__UpperCAmelCase ) for x in output_tokens] self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map ) , 1 ) self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values() )[0] ) , 1 )
330
'''simple docstring''' import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand lowerCamelCase : Optional[Any] = ( '4S 3H 2C 7S 5H', '9D 8H 2C 6S 7H', '2D 6D 9D TH 7D', 'TC 8C 2S JH 6C', 'JH 8S TH AH QH', 'TS KS 5S 9S AC', 'KD 6S 9D TH AD', 'KS 8D 4D 9S 4S', # pair '8C 4S KH JS 4D', # pair 'QH 8H KD JH 8S', # pair 'KC 4H KS 2H 8D', # pair 'KD 4S KC 3H 8S', # pair 'AH 8S AS KC JH', # pair '3H 4C 4H 3S 2H', # 2 pairs '5S 5D 2C KH KH', # 2 pairs '3C KH 5D 5S KH', # 2 pairs 'AS 3C KH AD KH', # 2 pairs '7C 7S 3S 7H 5S', # 3 of a kind '7C 7S KH 2H 7H', # 3 of a kind 'AC KH QH AH AS', # 3 of a kind '2H 4D 3C AS 5S', # straight (low ace) '3C 5C 4C 2C 6H', # straight '6S 8S 7S 5H 9H', # straight 'JS QS 9H TS KH', # straight 'QC KH TS JS AH', # straight (high ace) '8C 9C 5C 3C TC', # flush '3S 8S 9S 5S KS', # flush '4C 5C 9C 8C KC', # flush 'JH 8H AH KH QH', # flush '3D 2H 3H 2C 2D', # full house '2H 2C 3S 3H 3D', # full house 'KH KC 3S 3H 3D', # full house 'JC 6H JS JD JH', # 4 of a kind 'JC 7H JS JD JH', # 4 of a kind 'JC KH JS JD JH', # 4 of a kind '2S AS 4S 5S 3S', # straight flush (low ace) '2D 6D 3D 4D 5D', # straight flush '5C 6C 3C 7C 4C', # straight flush 'JH 9H TH KH QH', # straight flush 'JH AH TH KH QH', # royal flush (high ace straight flush) ) lowerCamelCase : Tuple = ( ('2H 3H 4H 5H 6H', 'KS AS TS QS JS', 'Loss'), ('2H 3H 4H 5H 6H', 'AS AD AC AH JD', 'Win'), ('AS AH 2H AD AC', 'JS JD JC JH 3D', 'Win'), ('2S AH 2H AS AC', 'JS JD JC JH AD', 'Loss'), ('2S AH 2H AS AC', '2H 3H 5H 6H 7H', 'Win'), ('AS 3S 4S 8S 2S', '2H 3H 5H 6H 7H', 'Win'), ('2H 3H 5H 6H 7H', '2S 3H 4H 5S 6C', 'Win'), ('2S 3H 4H 5S 6C', '3D 4C 5H 6H 2S', 'Tie'), ('2S 3H 4H 5S 6C', 'AH AC 5H 6H AS', 'Win'), ('2S 2H 4H 5S 4C', 'AH AC 5H 6H AS', 'Loss'), ('2S 2H 4H 5S 4C', 'AH AC 5H 6H 7S', 'Win'), ('6S AD 7H 4S AS', 'AH AC 5H 6H 7S', 'Loss'), ('2S AH 4H 5S KC', 'AH AC 5H 6H 7S', 'Loss'), ('2S 3H 6H 7S 9C', '7H 3C TH 6H 9S', 'Loss'), ('4S 5H 6H TS AC', '3S 5H 6H TS AC', 'Win'), ('2S AH 4H 5S 6C', 'AD 4C 5H 6H 2C', 'Tie'), ('AS AH 3H AD AC', 'AS AH 2H AD AC', 'Win'), ('AH AC 5H 5C QS', 'AH AC 5H 5C KS', 'Loss'), ('AH AC 5H 5C QS', 'KH KC 5H 5C QS', 'Win'), ('7C 7S KH 2H 7H', '3C 3S AH 2H 3H', 'Win'), ('3C 3S AH 2H 3H', '7C 7S KH 2H 7H', 'Loss'), ('6H 5H 4H 3H 2H', '5H 4H 3H 2H AH', 'Win'), ('5H 4H 3H 2H AH', '5H 4H 3H 2H AH', 'Tie'), ('5H 4H 3H 2H AH', '6H 5H 4H 3H 2H', 'Loss'), ('AH AD KS KC AC', 'AH KD KH AC KC', 'Win'), ('2H 4D 3C AS 5S', '2H 4D 3C 6S 5S', 'Loss'), ('2H 3S 3C 3H 2S', '3S 3C 2S 2H 2D', 'Win'), ('4D 6D 5D 2D JH', '3S 8S 3H TC KH', 'Loss'), ('4S 6C 8S 3S 7S', 'AD KS 2D 7D 7C', 'Loss'), ('6S 4C 7H 8C 3H', '5H JC AH 9D 9C', 'Loss'), ('9D 9H JH TC QH', '3C 2S JS 5C 7H', 'Win'), ('2H TC 8S AD 9S', '4H TS 7H 2C 5C', 'Win'), ('9D 3S 2C 7S 7C', 'JC TD 3C TC 9H', 'Loss'), ) lowerCamelCase : Dict = ( ('2H 3H 4H 5H 6H', True), ('AS AH 2H AD AC', False), ('2H 3H 5H 6H 7H', True), ('KS AS TS QS JS', True), ('8H 9H QS JS TH', False), ('AS 3S 4S 8S 2S', True), ) lowerCamelCase : Any = ( ('2H 3H 4H 5H 6H', True), ('AS AH 2H AD AC', False), ('2H 3H 5H 6H 7H', False), ('KS AS TS QS JS', True), ('8H 9H QS JS TH', True), ) lowerCamelCase : Tuple = ( ('2H 4D 3C AS 5S', True, [5, 4, 3, 2, 14]), ('2H 5D 3C AS 5S', False, [14, 5, 5, 3, 2]), ('JH QD KC AS TS', False, [14, 13, 12, 11, 10]), ('9D 3S 2C 7S 7C', False, [9, 7, 7, 3, 2]), ) lowerCamelCase : Optional[int] = ( ('JH AH TH KH QH', 0), ('JH 9H TH KH QH', 0), ('JC KH JS JD JH', 7), ('KH KC 3S 3H 3D', 6), ('8C 9C 5C 3C TC', 0), ('JS QS 9H TS KH', 0), ('7C 7S KH 2H 7H', 3), ('3C KH 5D 5S KH', 2), ('QH 8H KD JH 8S', 1), ('2D 6D 9D TH 7D', 0), ) lowerCamelCase : Dict = ( ('JH AH TH KH QH', 23), ('JH 9H TH KH QH', 22), ('JC KH JS JD JH', 21), ('KH KC 3S 3H 3D', 20), ('8C 9C 5C 3C TC', 19), ('JS QS 9H TS KH', 18), ('7C 7S KH 2H 7H', 17), ('3C KH 5D 5S KH', 16), ('QH 8H KD JH 8S', 15), ('2D 6D 9D TH 7D', 14), ) def _SCREAMING_SNAKE_CASE () -> Union[str, Any]: """simple docstring""" lowercase__ ,lowercase__ = randrange(len(A ) ), randrange(len(A ) ) lowercase__ = ['''Loss''', '''Tie''', '''Win'''][(play >= oppo) + (play > oppo)] lowercase__ ,lowercase__ = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def _SCREAMING_SNAKE_CASE (A = 100 ) -> str: """simple docstring""" return (generate_random_hand() for _ in range(A )) @pytest.mark.parametrize('''hand, expected''' , A ) def _SCREAMING_SNAKE_CASE (A , A ) -> List[str]: """simple docstring""" assert PokerHand(A )._is_flush() == expected @pytest.mark.parametrize('''hand, expected''' , A ) def _SCREAMING_SNAKE_CASE (A , A ) -> Union[str, Any]: """simple docstring""" assert PokerHand(A )._is_straight() == expected @pytest.mark.parametrize('''hand, expected, card_values''' , A ) def _SCREAMING_SNAKE_CASE (A , A , A ) -> Any: """simple docstring""" lowercase__ = PokerHand(A ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize('''hand, expected''' , A ) def _SCREAMING_SNAKE_CASE (A , A ) -> Tuple: """simple docstring""" assert PokerHand(A )._is_same_kind() == expected @pytest.mark.parametrize('''hand, expected''' , A ) def _SCREAMING_SNAKE_CASE (A , A ) -> Optional[Any]: """simple docstring""" assert PokerHand(A )._hand_type == expected @pytest.mark.parametrize('''hand, other, expected''' , A ) def _SCREAMING_SNAKE_CASE (A , A , A ) -> Union[str, Any]: """simple docstring""" assert PokerHand(A ).compare_with(PokerHand(A ) ) == expected @pytest.mark.parametrize('''hand, other, expected''' , generate_random_hands() ) def _SCREAMING_SNAKE_CASE (A , A , A ) -> Optional[Any]: """simple docstring""" assert PokerHand(A ).compare_with(PokerHand(A ) ) == expected def _SCREAMING_SNAKE_CASE () -> Tuple: """simple docstring""" lowercase__ = [PokerHand(A ) for hand in SORTED_HANDS] lowercase__ = poker_hands.copy() shuffle(A ) lowercase__ = chain(sorted(A ) ) for index, hand in enumerate(A ): assert hand == poker_hands[index] def _SCREAMING_SNAKE_CASE () -> List[Any]: """simple docstring""" lowercase__ = [PokerHand('''2D AC 3H 4H 5S''' ), PokerHand('''2S 3H 4H 5S 6C''' )] pokerhands.sort(reverse=A ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def _SCREAMING_SNAKE_CASE () -> int: """simple docstring""" lowercase__ = PokerHand('''2C 4S AS 3D 5C''' ) lowercase__ = True lowercase__ = [5, 4, 3, 2, 14] for _ in range(10 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def _SCREAMING_SNAKE_CASE () -> Union[str, Any]: """simple docstring""" lowercase__ = 0 lowercase__ = os.path.abspath(os.path.dirname(A ) ) lowercase__ = os.path.join(A , '''poker_hands.txt''' ) with open(A ) as file_hand: for line in file_hand: lowercase__ = line[:14].strip() lowercase__ = line[15:].strip() lowercase__ ,lowercase__ = PokerHand(A ), PokerHand(A ) lowercase__ = player.compare_with(A ) if output == "Win": answer += 1 assert answer == 376
2
0
import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def lowerCamelCase_ ( UpperCamelCase__ : Dict , UpperCamelCase__ : str , UpperCamelCase__ : List[str] , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : Tuple ) -> np.ndarray: """simple docstring""" if (ksize % 2) == 0: __lowerCamelCase = ksize + 1 __lowerCamelCase = np.zeros((ksize, ksize) , dtype=np.floataa ) # each value for y in range(UpperCamelCase__ ): for x in range(UpperCamelCase__ ): # distance from center __lowerCamelCase = x - ksize // 2 __lowerCamelCase = y - ksize // 2 # degree to radiant __lowerCamelCase = theta / 180 * np.pi __lowerCamelCase = np.cos(_theta ) __lowerCamelCase = np.sin(_theta ) # get kernel x __lowerCamelCase = cos_theta * px + sin_theta * py # get kernel y __lowerCamelCase = -sin_theta * px + cos_theta * py # fill kernel __lowerCamelCase = np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image __A = imread("../image_data/lena.jpg") # turn image in gray scale value __A = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges __A = np.zeros(gray.shape[:2]) for theta in [0, 30, 60, 90, 1_20, 1_50]: __A = gabor_filter_kernel(10, 8, theta, 10, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) __A = out / out.max() * 2_55 __A = out.astype(np.uinta) imshow("Original", gray) imshow("Gabor filter with 20x20 mask and 6 directions", out) waitKey(0)
90
'''simple docstring''' import argparse import torch from transformers import BertForMaskedLM if __name__ == "__main__": lowerCamelCase : List[str] = argparse.ArgumentParser( description=( 'Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned' ' Distillation' ) ) parser.add_argument('--model_type', default='bert', choices=['bert']) parser.add_argument('--model_name', default='bert-base-uncased', type=str) parser.add_argument('--dump_checkpoint', default='serialization_dir/tf_bert-base-uncased_0247911.pth', type=str) parser.add_argument('--vocab_transform', action='store_true') lowerCamelCase : str = parser.parse_args() if args.model_type == "bert": lowerCamelCase : List[Any] = BertForMaskedLM.from_pretrained(args.model_name) lowerCamelCase : Any = 'bert' else: raise ValueError('args.model_type should be "bert".') lowerCamelCase : int = model.state_dict() lowerCamelCase : int = {} for w in ["word_embeddings", "position_embeddings"]: lowerCamelCase : Any = state_dict[f"""{prefix}.embeddings.{w}.weight"""] for w in ["weight", "bias"]: lowerCamelCase : Any = state_dict[f"""{prefix}.embeddings.LayerNorm.{w}"""] lowerCamelCase : Tuple = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: for w in ["weight", "bias"]: lowerCamelCase : Dict = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}""" ] lowerCamelCase : Dict = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}""" ] lowerCamelCase : List[Any] = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}""" ] lowerCamelCase : Tuple = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}""" ] lowerCamelCase : Optional[int] = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}""" ] lowerCamelCase : Optional[Any] = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}""" ] lowerCamelCase : Dict = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}""" ] lowerCamelCase : Any = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}""" ] std_idx += 1 lowerCamelCase : Optional[int] = state_dict['cls.predictions.decoder.weight'] lowerCamelCase : str = state_dict['cls.predictions.bias'] if args.vocab_transform: for w in ["weight", "bias"]: lowerCamelCase : str = state_dict[f"""cls.predictions.transform.dense.{w}"""] lowerCamelCase : Any = state_dict[f"""cls.predictions.transform.LayerNorm.{w}"""] print(f"""N layers selected for distillation: {std_idx}""") print(f"""Number of params transferred for distillation: {len(compressed_sd.keys())}""") print(f"""Save transferred checkpoint to {args.dump_checkpoint}.""") torch.save(compressed_sd, args.dump_checkpoint)
2
0
import logging import os from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union from filelock import FileLock from transformers import PreTrainedTokenizer, is_tf_available, is_torch_available lowerCAmelCase_ = logging.getLogger(__name__) @dataclass class __lowerCAmelCase : lowerCamelCase_ : str lowerCamelCase_ : List[str] lowerCamelCase_ : Optional[List[str]] @dataclass class __lowerCAmelCase : lowerCamelCase_ : List[int] lowerCamelCase_ : List[int] lowerCamelCase_ : Optional[List[int]] = None lowerCamelCase_ : Optional[List[int]] = None class __lowerCAmelCase ( lowercase_ ): lowerCamelCase_ : Dict = """train""" lowerCamelCase_ : Any = """dev""" lowerCamelCase_ : List[str] = """test""" class __lowerCAmelCase : @staticmethod def lowerCamelCase (__magic_name__ , __magic_name__ ) -> Tuple: '''simple docstring''' raise NotImplementedError @staticmethod def lowerCamelCase (__magic_name__ ) -> Any: '''simple docstring''' raise NotImplementedError @staticmethod def lowerCamelCase (__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__=False , __magic_name__="[CLS]" , __magic_name__=1 , __magic_name__="[SEP]" , __magic_name__=False , __magic_name__=False , __magic_name__=0 , __magic_name__=0 , __magic_name__=-100 , __magic_name__=0 , __magic_name__=True , ) -> Optional[int]: '''simple docstring''' snake_case_ : int = {label: i for i, label in enumerate(__magic_name__ )} snake_case_ : str = [] for ex_index, example in enumerate(__magic_name__ ): if ex_index % 1_0000 == 0: logger.info('''Writing example %d of %d''' , __magic_name__ , len(__magic_name__ ) ) snake_case_ : Optional[int] = [] snake_case_ : List[str] = [] for word, label in zip(example.words , example.labels ): snake_case_ : Optional[int] = tokenizer.tokenize(__magic_name__ ) # bert-base-multilingual-cased sometimes output "nothing ([]) when calling tokenize with just a space. if len(__magic_name__ ) > 0: tokens.extend(__magic_name__ ) # Use the real label id for the first token of the word, and padding ids for the remaining tokens label_ids.extend([label_map[label]] + [pad_token_label_id] * (len(__magic_name__ ) - 1) ) # Account for [CLS] and [SEP] with "- 2" and with "- 3" for RoBERTa. snake_case_ : Dict = tokenizer.num_special_tokens_to_add() if len(__magic_name__ ) > max_seq_length - special_tokens_count: snake_case_ : Optional[Any] = tokens[: (max_seq_length - special_tokens_count)] snake_case_ : List[Any] = label_ids[: (max_seq_length - special_tokens_count)] # The convention in BERT is: # (a) For sequence pairs: # tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] # type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 # (b) For single sequences: # tokens: [CLS] the dog is hairy . [SEP] # type_ids: 0 0 0 0 0 0 0 # # Where "type_ids" are used to indicate whether this is the first # sequence or the second sequence. The embedding vectors for `type=0` and # `type=1` were learned during pre-training and are added to the wordpiece # embedding vector (and position vector). This is not *strictly* necessary # since the [SEP] token unambiguously separates the sequences, but it makes # it easier for the model to learn the concept of sequences. # # For classification tasks, the first vector (corresponding to [CLS]) is # used as the "sentence vector". Note that this only makes sense because # the entire model is fine-tuned. tokens += [sep_token] label_ids += [pad_token_label_id] if sep_token_extra: # roberta uses an extra separator b/w pairs of sentences tokens += [sep_token] label_ids += [pad_token_label_id] snake_case_ : str = [sequence_a_segment_id] * len(__magic_name__ ) if cls_token_at_end: tokens += [cls_token] label_ids += [pad_token_label_id] segment_ids += [cls_token_segment_id] else: snake_case_ : Tuple = [cls_token] + tokens snake_case_ : int = [pad_token_label_id] + label_ids snake_case_ : List[Any] = [cls_token_segment_id] + segment_ids snake_case_ : Optional[Any] = tokenizer.convert_tokens_to_ids(__magic_name__ ) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. snake_case_ : Optional[Any] = [1 if mask_padding_with_zero else 0] * len(__magic_name__ ) # Zero-pad up to the sequence length. snake_case_ : Union[str, Any] = max_seq_length - len(__magic_name__ ) if pad_on_left: snake_case_ : int = ([pad_token] * padding_length) + input_ids snake_case_ : Any = ([0 if mask_padding_with_zero else 1] * padding_length) + input_mask snake_case_ : Optional[Any] = ([pad_token_segment_id] * padding_length) + segment_ids snake_case_ : Optional[Any] = ([pad_token_label_id] * padding_length) + label_ids else: input_ids += [pad_token] * padding_length input_mask += [0 if mask_padding_with_zero else 1] * padding_length segment_ids += [pad_token_segment_id] * padding_length label_ids += [pad_token_label_id] * padding_length assert len(__magic_name__ ) == max_seq_length assert len(__magic_name__ ) == max_seq_length assert len(__magic_name__ ) == max_seq_length assert len(__magic_name__ ) == max_seq_length if ex_index < 5: logger.info('''*** Example ***''' ) logger.info('''guid: %s''' , example.guid ) logger.info('''tokens: %s''' , ''' '''.join([str(__magic_name__ ) for x in tokens] ) ) logger.info('''input_ids: %s''' , ''' '''.join([str(__magic_name__ ) for x in input_ids] ) ) logger.info('''input_mask: %s''' , ''' '''.join([str(__magic_name__ ) for x in input_mask] ) ) logger.info('''segment_ids: %s''' , ''' '''.join([str(__magic_name__ ) for x in segment_ids] ) ) logger.info('''label_ids: %s''' , ''' '''.join([str(__magic_name__ ) for x in label_ids] ) ) if "token_type_ids" not in tokenizer.model_input_names: snake_case_ : str = None features.append( InputFeatures( input_ids=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , label_ids=__magic_name__ ) ) return features if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset class __lowerCAmelCase ( lowercase_ ): lowerCamelCase_ : List[InputFeatures] lowerCamelCase_ : int = nn.CrossEntropyLoss().ignore_index def __init__(self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ = None , __magic_name__=False , __magic_name__ = Split.train , ) -> str: '''simple docstring''' snake_case_ : List[str] = os.path.join( __magic_name__ , '''cached_{}_{}_{}'''.format(mode.value , tokenizer.__class__.__name__ , str(__magic_name__ ) ) , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. snake_case_ : Any = cached_features_file + '''.lock''' with FileLock(__magic_name__ ): if os.path.exists(__magic_name__ ) and not overwrite_cache: logger.info(F'''Loading features from cached file {cached_features_file}''' ) snake_case_ : Optional[int] = torch.load(__magic_name__ ) else: logger.info(F'''Creating features from dataset file at {data_dir}''' ) snake_case_ : Dict = token_classification_task.read_examples_from_file(__magic_name__ , __magic_name__ ) # TODO clean up all this to leverage built-in features of tokenizers snake_case_ : Optional[Any] = token_classification_task.convert_examples_to_features( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , cls_token_at_end=bool(model_type in ['''xlnet'''] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ['''xlnet'''] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=__magic_name__ , pad_on_left=bool(tokenizer.padding_side == '''left''' ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info(F'''Saving features into cached file {cached_features_file}''' ) torch.save(self.features , __magic_name__ ) def __len__(self ) -> Tuple: '''simple docstring''' return len(self.features ) def __getitem__(self , __magic_name__ ) -> Union[str, Any]: '''simple docstring''' return self.features[i] if is_tf_available(): import tensorflow as tf class __lowerCAmelCase : lowerCamelCase_ : List[InputFeatures] lowerCamelCase_ : int = -100 def __init__(self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ = None , __magic_name__=False , __magic_name__ = Split.train , ) -> List[str]: '''simple docstring''' snake_case_ : Optional[Any] = token_classification_task.read_examples_from_file(__magic_name__ , __magic_name__ ) # TODO clean up all this to leverage built-in features of tokenizers snake_case_ : List[Any] = token_classification_task.convert_examples_to_features( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , cls_token_at_end=bool(model_type in ['''xlnet'''] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ['''xlnet'''] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=__magic_name__ , pad_on_left=bool(tokenizer.padding_side == '''left''' ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) def gen(): for ex in self.features: if ex.token_type_ids is None: yield ( {"input_ids": ex.input_ids, "attention_mask": ex.attention_mask}, ex.label_ids, ) else: yield ( { "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label_ids, ) if "token_type_ids" not in tokenizer.model_input_names: snake_case_ : Optional[int] = tf.data.Dataset.from_generator( __magic_name__ , ({'''input_ids''': tf.intaa, '''attention_mask''': tf.intaa}, tf.intaa) , ( {'''input_ids''': tf.TensorShape([None] ), '''attention_mask''': tf.TensorShape([None] )}, tf.TensorShape([None] ), ) , ) else: snake_case_ : Dict = tf.data.Dataset.from_generator( __magic_name__ , ({'''input_ids''': tf.intaa, '''attention_mask''': tf.intaa, '''token_type_ids''': tf.intaa}, tf.intaa) , ( { '''input_ids''': tf.TensorShape([None] ), '''attention_mask''': tf.TensorShape([None] ), '''token_type_ids''': tf.TensorShape([None] ), }, tf.TensorShape([None] ), ) , ) def lowerCamelCase (self ) -> Optional[int]: '''simple docstring''' snake_case_ : Dict = self.dataset.apply(tf.data.experimental.assert_cardinality(len(self.features ) ) ) return self.dataset def __len__(self ) -> Any: '''simple docstring''' return len(self.features ) def __getitem__(self , __magic_name__ ) -> List[str]: '''simple docstring''' return self.features[i]
279
'''simple docstring''' from ....utils import logging lowerCamelCase : Optional[Any] = logging.get_logger(__name__) class __lowerCAmelCase (lowercase_ ): '''simple docstring''' def __init__(self : Optional[int] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Optional[Any]=None , UpperCamelCase : int=2048 ): '''simple docstring''' lowercase__ = config.__dict__ lowercase__ = modal_hidden_size if num_labels: lowercase__ = num_labels
2
0
'''simple docstring''' import argparse import logging import os import datasets import tensorflow as tf from transformers import AutoTokenizer _A : int =logging.getLogger(__name__) def SCREAMING_SNAKE_CASE_ () -> List[Any]: lowerCamelCase__ : str = argparse.ArgumentParser( description="""Prepare TFRecord shards from pre-tokenized samples of the wikitext dataset.""" ) parser.add_argument( """--dataset_name""" , type=UpperCamelCase , default="""wikitext""" , help="""Name of the training. Explore datasets at: hf.co/datasets.""" , ) parser.add_argument( """--dataset_config""" , type=UpperCamelCase , default="""wikitext-103-raw-v1""" , help="""Configuration name of the dataset.""" ) parser.add_argument( """--tokenizer_name_or_path""" , type=UpperCamelCase , default="""sayakpaul/unigram-tokenizer-wikitext""" , help="""Tokenizer identifier. Can be a local filepath or a Hub identifier.""" , ) parser.add_argument( """--shard_size""" , type=UpperCamelCase , default=1000 , help="""Number of entries to go in a single shard.""" , ) parser.add_argument("""--split""" , type=UpperCamelCase , default="""train""" , choices=["""train""", """test""", """validation"""] ) parser.add_argument( """--limit""" , default=UpperCamelCase , type=UpperCamelCase , help="""Limit the number of shards (used for debugging).""" , ) parser.add_argument( """--max_length""" , type=UpperCamelCase , default=512 , help="""Maximum sequence length. For training on TPUs, it helps to have a maximum""" """ sequence length that is a multiple of 8.""" , ) parser.add_argument( """--output_dir""" , default="""tf-tpu""" , type=UpperCamelCase , help="""Output directory where the TFRecord shards will be saved. If the""" """ path is appended with `gs://` (\'gs://tf-tpu\', for example) then the TFRecord""" """ shards will be directly saved to a Google Cloud Storage bucket.""" , ) lowerCamelCase__ : str = parser.parse_args() return args def SCREAMING_SNAKE_CASE_ (UpperCamelCase ) -> str: def fn(UpperCamelCase ): return tokenizer(examples["""text"""] ) return fn def SCREAMING_SNAKE_CASE_ (UpperCamelCase ) -> Union[str, Any]: lowerCamelCase__ : Any = [] for i in range(len(tokenized_data["""input_ids"""] ) ): lowerCamelCase__ : List[str] = { """input_ids""": tf.train.Feature(intaa_list=tf.train.IntaaList(value=tokenized_data["""input_ids"""][i] ) ), """attention_mask""": tf.train.Feature( intaa_list=tf.train.IntaaList(value=tokenized_data["""attention_mask"""][i] ) ), } lowerCamelCase__ : str = tf.train.Features(feature=UpperCamelCase ) lowerCamelCase__ : List[Any] = tf.train.Example(features=UpperCamelCase ) lowerCamelCase__ : Union[str, Any] = example.SerializeToString() records.append(UpperCamelCase ) return records def SCREAMING_SNAKE_CASE_ (UpperCamelCase ) -> Tuple: lowerCamelCase__ : Any = datasets.load_dataset(args.dataset_name , args.dataset_config , split=args.split ) if args.limit is not None: lowerCamelCase__ : Tuple = min(len(UpperCamelCase ) , args.limit ) lowerCamelCase__ : Union[str, Any] = dataset.select(range(UpperCamelCase ) ) print(f'''Limiting the dataset to {args.limit} entries.''' ) lowerCamelCase__ : List[str] = AutoTokenizer.from_pretrained(args.tokenizer_name_or_path ) # Handle output directory creation. # For serializing into a Google Cloud Storage Bucket, one needs to first # create a bucket. if "gs" not in args.output_dir: if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) lowerCamelCase__ : Optional[Any] = os.path.join(args.output_dir , args.split ) if not os.path.exists(UpperCamelCase ): os.makedirs(UpperCamelCase ) else: lowerCamelCase__ : Optional[Any] = os.path.join(args.output_dir , args.split ) # Tokenize the whole dataset at once. lowerCamelCase__ : Tuple = tokenize_function(UpperCamelCase ) lowerCamelCase__ : Optional[Any] = dataset.map(UpperCamelCase , batched=UpperCamelCase , num_proc=4 , remove_columns=["""text"""] ) # We need to concatenate all our texts together, and then split the result # into chunks of a fixed size, which we will call block_size. To do this, we # will use the map method again, with the option batched=True. When we use batched=True, # the function we pass to map() will be passed multiple inputs at once, allowing us # to group them into more or fewer examples than we had in the input. # This allows us to create our new fixed-length samples. The advantage of this # method is that we don't lose a whole lot of content from the dataset compared to the # case where we simply tokenize with a pre-defined max_length. def group_texts(UpperCamelCase ): # Concatenate all texts. lowerCamelCase__ : List[Any] = {k: sum(examples[k] , [] ) for k in examples.keys()} lowerCamelCase__ : List[str] = len(concatenated_examples[list(examples.keys() )[0]] ) # We drop the small remainder, though you could add padding instead if the model supports it # In this, as in all things, we advise you to follow your heart 🫀 lowerCamelCase__ : Union[str, Any] = (total_length // args.max_length) * args.max_length # Split by chunks of max_len. lowerCamelCase__ : Any = { k: [t[i : i + args.max_length] for i in range(0 , UpperCamelCase , args.max_length )] for k, t in concatenated_examples.items() } return result lowerCamelCase__ : Tuple = dataset_tokenized.map(UpperCamelCase , batched=UpperCamelCase , batch_size=1000 , num_proc=4 ) lowerCamelCase__ : Optional[Any] = 0 lowerCamelCase__ : Union[str, Any] = 0 for shard in range(0 , len(UpperCamelCase ) , args.shard_size ): lowerCamelCase__ : str = grouped_dataset[shard : shard + args.shard_size] lowerCamelCase__ : Union[str, Any] = len(dataset_snapshot["""input_ids"""] ) lowerCamelCase__ : Dict = os.path.join(UpperCamelCase , f'''dataset-{shard_count}-{records_containing}.tfrecord''' ) lowerCamelCase__ : str = get_serialized_examples(UpperCamelCase ) with tf.io.TFRecordWriter(UpperCamelCase ) as out_file: for i in range(len(UpperCamelCase ) ): lowerCamelCase__ : List[Any] = serialized_examples[i] out_file.write(UpperCamelCase ) print("""Wrote file {} containing {} records""".format(UpperCamelCase , UpperCamelCase ) ) shard_count += 1 total_records += records_containing with open(f'''split-{args.split}-records-count.txt''' , """w""" ) as f: print(f'''Total {args.split} records: {total_records}''' , file=UpperCamelCase ) if __name__ == "__main__": _A : List[Any] =parse_args() main(args)
41
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Tuple = logging.get_logger(__name__) lowerCamelCase : Dict = { 'microsoft/cvt-13': 'https://huggingface.co/microsoft/cvt-13/resolve/main/config.json', # See all Cvt models at https://huggingface.co/models?filter=cvt } class __lowerCAmelCase (lowercase_ ): '''simple docstring''' lowerCAmelCase__ : Tuple = """cvt""" def __init__(self : int , UpperCamelCase : List[Any]=3 , UpperCamelCase : int=[7, 3, 3] , UpperCamelCase : str=[4, 2, 2] , UpperCamelCase : Dict=[2, 1, 1] , UpperCamelCase : Dict=[64, 192, 384] , UpperCamelCase : Dict=[1, 3, 6] , UpperCamelCase : Dict=[1, 2, 10] , UpperCamelCase : Any=[4.0, 4.0, 4.0] , UpperCamelCase : Optional[int]=[0.0, 0.0, 0.0] , UpperCamelCase : Optional[int]=[0.0, 0.0, 0.0] , UpperCamelCase : int=[0.0, 0.0, 0.1] , UpperCamelCase : Any=[True, True, True] , UpperCamelCase : int=[False, False, True] , UpperCamelCase : Union[str, Any]=["dw_bn", "dw_bn", "dw_bn"] , UpperCamelCase : Optional[int]=[3, 3, 3] , UpperCamelCase : Tuple=[1, 1, 1] , UpperCamelCase : Any=[2, 2, 2] , UpperCamelCase : Dict=[1, 1, 1] , UpperCamelCase : List[str]=[1, 1, 1] , UpperCamelCase : str=0.02 , UpperCamelCase : int=1E-12 , **UpperCamelCase : Union[str, Any] , ): '''simple docstring''' super().__init__(**UpperCamelCase ) lowercase__ = num_channels lowercase__ = patch_sizes lowercase__ = patch_stride lowercase__ = patch_padding lowercase__ = embed_dim lowercase__ = num_heads lowercase__ = depth lowercase__ = mlp_ratio lowercase__ = attention_drop_rate lowercase__ = drop_rate lowercase__ = drop_path_rate lowercase__ = qkv_bias lowercase__ = cls_token lowercase__ = qkv_projection_method lowercase__ = kernel_qkv lowercase__ = padding_kv lowercase__ = stride_kv lowercase__ = padding_q lowercase__ = stride_q lowercase__ = initializer_range lowercase__ = layer_norm_eps
2
0
'''simple docstring''' import copy import os import cva import numpy as np from matplotlib import pyplot as plt class A : def __init__( self ) -> List[Any]: """simple docstring""" A : str = '''''' A : str = '''''' A : Tuple = [] A : int = 0 A : Any = 256 A : Union[str, Any] = 0 A : Optional[Any] = 0 A : Optional[int] = 0 A : Optional[int] = 0 def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" A : List[str] = cva.imread(SCREAMING_SNAKE_CASE , 0 ) A : Optional[int] = copy.deepcopy(self.img ) A, A, A : List[str] = plt.hist(self.img.ravel() , 256 , [0, 256] , label='''x''' ) A : Union[str, Any] = np.sum(SCREAMING_SNAKE_CASE ) for i in range(len(SCREAMING_SNAKE_CASE ) ): A : str = x[i] / self.k self.sk += prk A : List[str] = (self.L - 1) * self.sk if self.rem != 0: A : Optional[Any] = int(last % last ) A : Any = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(SCREAMING_SNAKE_CASE ) A : Union[str, Any] = int(np.ma.count(self.img ) / self.img[1].size ) A : Union[str, Any] = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): A : int = self.img[j][i] if num != self.last_list[num]: A : List[Any] = self.last_list[num] cva.imwrite('''output_data/output.jpg''' , self.img ) def __lowerCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" plt.hist(self.img.ravel() , 256 , [0, 256] ) def __lowerCAmelCase ( self ) -> Any: """simple docstring""" cva.imshow('''Output-Image''' , self.img ) cva.imshow('''Input-Image''' , self.original_image ) cva.waitKey(5000 ) cva.destroyAllWindows() if __name__ == "__main__": lowercase : Union[str, Any] = os.path.join(os.path.basename(__file__), 'image_data/input.jpg') lowercase : int = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
3
'''simple docstring''' import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) lowerCamelCase : Any = models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(32, (3, 3), input_shape=(64, 64, 3), activation='relu') ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(32, (3, 3), activation='relu')) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=128, activation='relu')) classifier.add(layers.Dense(units=1, activation='sigmoid')) # Compiling the CNN classifier.compile( optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') lowerCamelCase : Optional[Any] = tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) lowerCamelCase : Any = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 255) lowerCamelCase : List[Any] = train_datagen.flow_from_directory( 'dataset/training_set', target_size=(64, 64), batch_size=32, class_mode='binary' ) lowerCamelCase : List[str] = test_datagen.flow_from_directory( 'dataset/test_set', target_size=(64, 64), batch_size=32, class_mode='binary' ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=30, validation_data=test_set ) classifier.save('cnn.h5') # Part 3 - Making new predictions lowerCamelCase : List[str] = tf.keras.preprocessing.image.load_img( 'dataset/single_prediction/image.png', target_size=(64, 64) ) lowerCamelCase : Optional[int] = tf.keras.preprocessing.image.img_to_array(test_image) lowerCamelCase : str = np.expand_dims(test_image, axis=0) lowerCamelCase : List[str] = classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: lowerCamelCase : Any = 'Normal' if result[0][0] == 1: lowerCamelCase : Any = 'Abnormality detected'
2
0
'''simple docstring''' import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class _a : def __init__( self : str , lowercase : Optional[int] , lowercase : List[str]=13 , lowercase : List[str]=7 , lowercase : Dict=True , lowercase : Optional[Any]=True , lowercase : List[str]=True , lowercase : Union[str, Any]=True , lowercase : List[str]=99 , lowercase : Optional[int]=16 , lowercase : Optional[int]=36 , lowercase : Union[str, Any]=6 , lowercase : Dict=6 , lowercase : Dict=6 , lowercase : Any=37 , lowercase : Tuple="gelu" , lowercase : Tuple=0.1 , lowercase : Tuple=0.1 , lowercase : Any=512 , lowercase : Dict=16 , lowercase : Union[str, Any]=2 , lowercase : List[str]=0.02 , lowercase : Any=3 , lowercase : Dict=4 , lowercase : Tuple=None , ): '''simple docstring''' UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = seq_length UpperCAmelCase = is_training UpperCAmelCase = use_input_mask UpperCAmelCase = use_token_type_ids UpperCAmelCase = use_labels UpperCAmelCase = vocab_size UpperCAmelCase = embedding_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_hidden_groups UpperCAmelCase = num_attention_heads UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_act UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = type_vocab_size UpperCAmelCase = type_sequence_label_size UpperCAmelCase = initializer_range UpperCAmelCase = num_labels UpperCAmelCase = num_choices UpperCAmelCase = scope def A ( self : Any ): '''simple docstring''' UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase = None if self.use_input_mask: UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase = None if self.use_token_type_ids: UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None if self.use_labels: UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A ( self : List[Any] ): '''simple docstring''' return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def A ( self : List[str] , lowercase : str , lowercase : Union[str, Any] , lowercase : Any , lowercase : List[str] , lowercase : List[str] , lowercase : Optional[Any] , lowercase : str ): '''simple docstring''' UpperCAmelCase = AlbertModel(config=lowercase ) model.to(lowercase ) model.eval() UpperCAmelCase = model(lowercase , attention_mask=lowercase , token_type_ids=lowercase ) UpperCAmelCase = model(lowercase , token_type_ids=lowercase ) UpperCAmelCase = model(lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def A ( self : List[Any] , lowercase : Any , lowercase : Any , lowercase : int , lowercase : Dict , lowercase : int , lowercase : Optional[int] , lowercase : List[str] ): '''simple docstring''' UpperCAmelCase = AlbertForPreTraining(config=lowercase ) model.to(lowercase ) model.eval() UpperCAmelCase = model( lowercase , attention_mask=lowercase , token_type_ids=lowercase , labels=lowercase , sentence_order_label=lowercase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def A ( self : str , lowercase : Union[str, Any] , lowercase : Dict , lowercase : Union[str, Any] , lowercase : List[Any] , lowercase : int , lowercase : Dict , lowercase : Tuple ): '''simple docstring''' UpperCAmelCase = AlbertForMaskedLM(config=lowercase ) model.to(lowercase ) model.eval() UpperCAmelCase = model(lowercase , attention_mask=lowercase , token_type_ids=lowercase , labels=lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A ( self : Tuple , lowercase : Any , lowercase : List[Any] , lowercase : Union[str, Any] , lowercase : Tuple , lowercase : int , lowercase : List[str] , lowercase : Tuple ): '''simple docstring''' UpperCAmelCase = AlbertForQuestionAnswering(config=lowercase ) model.to(lowercase ) model.eval() UpperCAmelCase = model( lowercase , attention_mask=lowercase , token_type_ids=lowercase , start_positions=lowercase , end_positions=lowercase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A ( self : str , lowercase : Optional[Any] , lowercase : Union[str, Any] , lowercase : Dict , lowercase : Union[str, Any] , lowercase : int , lowercase : List[Any] , lowercase : Dict ): '''simple docstring''' UpperCAmelCase = self.num_labels UpperCAmelCase = AlbertForSequenceClassification(lowercase ) model.to(lowercase ) model.eval() UpperCAmelCase = model(lowercase , attention_mask=lowercase , token_type_ids=lowercase , labels=lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A ( self : str , lowercase : List[Any] , lowercase : str , lowercase : int , lowercase : List[Any] , lowercase : Union[str, Any] , lowercase : Dict , lowercase : Union[str, Any] ): '''simple docstring''' UpperCAmelCase = self.num_labels UpperCAmelCase = AlbertForTokenClassification(config=lowercase ) model.to(lowercase ) model.eval() UpperCAmelCase = model(lowercase , attention_mask=lowercase , token_type_ids=lowercase , labels=lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A ( self : Optional[Any] , lowercase : Optional[Any] , lowercase : Optional[int] , lowercase : List[Any] , lowercase : List[str] , lowercase : List[Any] , lowercase : List[Any] , lowercase : Optional[Any] ): '''simple docstring''' UpperCAmelCase = self.num_choices UpperCAmelCase = AlbertForMultipleChoice(config=lowercase ) model.to(lowercase ) model.eval() UpperCAmelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase = model( lowercase , attention_mask=lowercase , token_type_ids=lowercase , labels=lowercase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase = self.prepare_config_and_inputs() ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) = config_and_inputs UpperCAmelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class _a ( lowercase_ , lowercase_ , unittest.TestCase ): __a : Union[str, Any] = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) __a : Dict = ( { """feature-extraction""": AlbertModel, """fill-mask""": AlbertForMaskedLM, """question-answering""": AlbertForQuestionAnswering, """text-classification""": AlbertForSequenceClassification, """token-classification""": AlbertForTokenClassification, """zero-shot""": AlbertForSequenceClassification, } if is_torch_available() else {} ) __a : int = True def A ( self : Union[str, Any] , lowercase : Dict , lowercase : Any , lowercase : Any=False ): '''simple docstring''' UpperCAmelCase = super()._prepare_for_class(lowercase , lowercase , return_labels=lowercase ) if return_labels: if model_class in get_values(lowercase ): UpperCAmelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=lowercase ) UpperCAmelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowercase ) return inputs_dict def A ( self : int ): '''simple docstring''' UpperCAmelCase = AlbertModelTester(self ) UpperCAmelCase = ConfigTester(self , config_class=lowercase , hidden_size=37 ) def A ( self : List[Any] ): '''simple docstring''' self.config_tester.run_common_tests() def A ( self : Tuple ): '''simple docstring''' UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase ) def A ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowercase ) def A ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowercase ) def A ( self : Dict ): '''simple docstring''' UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowercase ) def A ( self : Dict ): '''simple docstring''' UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowercase ) def A ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowercase ) def A ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCAmelCase = type self.model_tester.create_and_check_model(*lowercase ) @slow def A ( self : Tuple ): '''simple docstring''' for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase = AlbertModel.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) @require_torch class _a ( unittest.TestCase ): @slow def A ( self : List[Any] ): '''simple docstring''' UpperCAmelCase = AlbertModel.from_pretrained('''albert-base-v2''' ) UpperCAmelCase = torch.tensor([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] ) UpperCAmelCase = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): UpperCAmelCase = model(lowercase , attention_mask=lowercase )[0] UpperCAmelCase = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , lowercase ) UpperCAmelCase = torch.tensor( [[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , lowercase , atol=1E-4 ) )
34
'''simple docstring''' class __lowerCAmelCase : # Public class to implement a graph '''simple docstring''' def __init__(self : int , UpperCamelCase : int , UpperCamelCase : int , UpperCamelCase : list[list[bool]] ): '''simple docstring''' lowercase__ = row lowercase__ = col lowercase__ = graph def UpperCamelCase__ (self : Optional[int] , UpperCamelCase : int , UpperCamelCase : int , UpperCamelCase : list[list[bool]] ): '''simple docstring''' return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def UpperCamelCase__ (self : int , UpperCamelCase : int , UpperCamelCase : int , UpperCamelCase : list[list[bool]] ): '''simple docstring''' lowercase__ = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order lowercase__ = [-1, 0, 1, -1, 1, -1, 0, 1] lowercase__ = True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , UpperCamelCase ): self.diffs(i + row_nbr[k] , j + col_nbr[k] , UpperCamelCase ) def UpperCamelCase__ (self : Dict ): # And finally, count all islands. '''simple docstring''' lowercase__ = [[False for j in range(self.COL )] for i in range(self.ROW )] lowercase__ = 0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(UpperCamelCase , UpperCamelCase , UpperCamelCase ) count += 1 return count
2
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig class lowerCAmelCase ( lowercase_ ): lowerCAmelCase_ = """bert-generation""" def __init__( self : List[str] , __lowercase : Tuple=50358 , __lowercase : Dict=1024 , __lowercase : List[Any]=24 , __lowercase : int=16 , __lowercase : List[str]=4096 , __lowercase : Union[str, Any]="gelu" , __lowercase : int=0.1 , __lowercase : int=0.1 , __lowercase : int=512 , __lowercase : Optional[int]=0.0_2 , __lowercase : str=1E-12 , __lowercase : Optional[int]=0 , __lowercase : Tuple=2 , __lowercase : List[str]=1 , __lowercase : Dict="absolute" , __lowercase : Tuple=True , **__lowercase : Optional[Any] , ): """simple docstring""" super().__init__(pad_token_id=__lowercase , bos_token_id=__lowercase , eos_token_id=__lowercase , **__lowercase ) __lowercase =vocab_size __lowercase =hidden_size __lowercase =num_hidden_layers __lowercase =num_attention_heads __lowercase =hidden_act __lowercase =intermediate_size __lowercase =hidden_dropout_prob __lowercase =attention_probs_dropout_prob __lowercase =max_position_embeddings __lowercase =initializer_range __lowercase =layer_norm_eps __lowercase =position_embedding_type __lowercase =use_cache
141
'''simple docstring''' import unittest from transformers import DonutProcessor lowerCamelCase : Tuple = 'naver-clova-ix/donut-base' class __lowerCAmelCase (unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ (self : int ): '''simple docstring''' lowercase__ = DonutProcessor.from_pretrained(UpperCamelCase ) def UpperCamelCase__ (self : Tuple ): '''simple docstring''' lowercase__ = { '''name''': '''John Doe''', '''age''': '''99''', '''city''': '''Atlanta''', '''state''': '''GA''', '''zip''': '''30301''', '''phone''': '''123-4567''', '''nicknames''': [{'''nickname''': '''Johnny'''}, {'''nickname''': '''JD'''}], } lowercase__ = ( '''<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>''' '''<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>''' '''<s_nicknames><s_nickname>Johnny</s_nickname>''' '''<sep/><s_nickname>JD</s_nickname></s_nicknames>''' ) lowercase__ = self.processor.tokenajson(UpperCamelCase ) self.assertDictEqual(UpperCamelCase , UpperCamelCase )
2
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __snake_case : List[str] ={ 'configuration_nllb_moe': [ 'NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'NllbMoeConfig', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : List[Any] =[ 'NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST', 'NllbMoeForConditionalGeneration', 'NllbMoeModel', 'NllbMoePreTrainedModel', 'NllbMoeTop2Router', 'NllbMoeSparseMLP', ] if TYPE_CHECKING: from .configuration_nllb_moe import ( NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP, NllbMoeConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nllb_moe import ( NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST, NllbMoeForConditionalGeneration, NllbMoeModel, NllbMoePreTrainedModel, NllbMoeSparseMLP, NllbMoeTopaRouter, ) else: import sys __snake_case : str =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
129
'''simple docstring''' from __future__ import annotations def _SCREAMING_SNAKE_CASE (A ) -> bool: """simple docstring""" return len(set(A ) ) == len(A ) if __name__ == "__main__": import doctest doctest.testmod()
2
0
"""simple docstring""" import shutil import tempfile import unittest import numpy as np import pytest from transformers import is_speech_available, is_vision_available from transformers.testing_utils import require_torch if is_vision_available(): from transformers import TvltImageProcessor if is_speech_available(): from transformers import TvltFeatureExtractor from transformers import TvltProcessor @require_torch class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Union[str, Any] = '''ZinengTang/tvlt-base''' __snake_case : str = tempfile.mkdtemp() def SCREAMING_SNAKE_CASE (self , **a_ ): '''simple docstring''' return TvltImageProcessor.from_pretrained(self.checkpoint , **a_ ) def SCREAMING_SNAKE_CASE (self , **a_ ): '''simple docstring''' return TvltFeatureExtractor.from_pretrained(self.checkpoint , **a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[str] = self.get_image_processor() __snake_case : Tuple = self.get_feature_extractor() __snake_case : List[str] = TvltProcessor(image_processor=a_ , feature_extractor=a_ ) processor.save_pretrained(self.tmpdirname ) __snake_case : Union[str, Any] = TvltProcessor.from_pretrained(self.tmpdirname ) self.assertIsInstance(processor.feature_extractor , a_ ) self.assertIsInstance(processor.image_processor , a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Tuple = self.get_image_processor() __snake_case : Dict = self.get_feature_extractor() __snake_case : Optional[int] = TvltProcessor(image_processor=a_ , feature_extractor=a_ ) __snake_case : str = np.ones([1_20_00] ) __snake_case : List[str] = feature_extractor(a_ , return_tensors='''np''' ) __snake_case : Any = processor(audio=a_ , return_tensors='''np''' ) for key in audio_dict.keys(): self.assertAlmostEqual(audio_dict[key].sum() , input_processor[key].sum() , delta=1E-2 ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Union[str, Any] = self.get_image_processor() __snake_case : Dict = self.get_feature_extractor() __snake_case : Tuple = TvltProcessor(image_processor=a_ , feature_extractor=a_ ) __snake_case : List[str] = np.ones([3, 2_24, 2_24] ) __snake_case : List[str] = image_processor(a_ , return_tensors='''np''' ) __snake_case : Any = processor(images=a_ , return_tensors='''np''' ) for key in image_dict.keys(): self.assertAlmostEqual(image_dict[key].sum() , input_processor[key].sum() , delta=1E-2 ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Dict = self.get_image_processor() __snake_case : Dict = self.get_feature_extractor() __snake_case : Dict = TvltProcessor(image_processor=a_ , feature_extractor=a_ ) __snake_case : List[str] = np.ones([1_20_00] ) __snake_case : int = np.ones([3, 2_24, 2_24] ) __snake_case : Optional[Any] = processor(audio=a_ , images=a_ ) self.assertListEqual(list(inputs.keys() ) , ['''audio_values''', '''audio_mask''', '''pixel_values''', '''pixel_mask'''] ) # test if it raises when no input is passed with pytest.raises(a_ ): processor() def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = self.get_image_processor() __snake_case : int = self.get_feature_extractor() __snake_case : List[str] = TvltProcessor(image_processor=a_ , feature_extractor=a_ ) self.assertListEqual( processor.model_input_names , image_processor.model_input_names + feature_extractor.model_input_names , msg='''`processor` and `image_processor`+`feature_extractor` model input names do not match''' , )
102
'''simple docstring''' import os import re import warnings from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_ta import TaTokenizer else: lowerCamelCase : Any = None lowerCamelCase : Dict = logging.get_logger(__name__) lowerCamelCase : Optional[int] = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} lowerCamelCase : List[str] = { 'vocab_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/spiece.model', 't5-base': 'https://huggingface.co/t5-base/resolve/main/spiece.model', 't5-large': 'https://huggingface.co/t5-large/resolve/main/spiece.model', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/spiece.model', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/spiece.model', }, 'tokenizer_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/tokenizer.json', 't5-base': 'https://huggingface.co/t5-base/resolve/main/tokenizer.json', 't5-large': 'https://huggingface.co/t5-large/resolve/main/tokenizer.json', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/tokenizer.json', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/tokenizer.json', }, } # TODO(PVP) - this should be removed in Transformers v5 lowerCamelCase : Any = { 't5-small': 512, 't5-base': 512, 't5-large': 512, 't5-3b': 512, 't5-11b': 512, } class __lowerCAmelCase (lowercase_ ): '''simple docstring''' lowerCAmelCase__ : List[str] = VOCAB_FILES_NAMES lowerCAmelCase__ : str = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ : int = ["""input_ids""", """attention_mask"""] lowerCAmelCase__ : Optional[int] = TaTokenizer lowerCAmelCase__ : List[int] = [] def __init__(self : Dict , UpperCamelCase : str=None , UpperCamelCase : Optional[Any]=None , UpperCamelCase : Any="</s>" , UpperCamelCase : str="<unk>" , UpperCamelCase : List[str]="<pad>" , UpperCamelCase : List[str]=100 , UpperCamelCase : Tuple=None , **UpperCamelCase : List[str] , ): '''simple docstring''' if extra_ids > 0 and additional_special_tokens is None: lowercase__ = [f"<extra_id_{i}>" for i in range(UpperCamelCase )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra special tokens lowercase__ = len(set(filter(lambda UpperCamelCase : bool('''extra_id_''' in str(UpperCamelCase ) ) , UpperCamelCase ) ) ) if extra_tokens != extra_ids: raise ValueError( f"Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are" ''' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids''' ''' tokens''' ) super().__init__( UpperCamelCase , tokenizer_file=UpperCamelCase , eos_token=UpperCamelCase , unk_token=UpperCamelCase , pad_token=UpperCamelCase , extra_ids=UpperCamelCase , additional_special_tokens=UpperCamelCase , **UpperCamelCase , ) lowercase__ = vocab_file lowercase__ = False if not self.vocab_file else True lowercase__ = extra_ids @staticmethod def UpperCamelCase__ (UpperCamelCase : List[Any] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Optional[Any] ): '''simple docstring''' if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes: lowercase__ = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( '''This tokenizer was incorrectly instantiated with a model max length of''' f" {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this" ''' behavior is kept to avoid breaking backwards compatibility when padding/encoding with''' ''' `truncation is True`.\n- Be aware that you SHOULD NOT rely on''' f" {pretrained_model_name_or_path} automatically truncating your input to" f" {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences" f" longer than {deprecated_max_model_length} you can either instantiate this tokenizer with" ''' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please''' ''' instantiate this tokenizer with `model_max_length` set to your preferred value.''' , UpperCamelCase , ) return max_model_length def UpperCamelCase__ (self : Any , UpperCamelCase : str , UpperCamelCase : Optional[str] = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(UpperCamelCase ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return lowercase__ = os.path.join( UpperCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase ): copyfile(self.vocab_file , UpperCamelCase ) logger.info(f"Copy vocab file to {out_vocab_file}" ) return (out_vocab_file,) def UpperCamelCase__ (self : Any , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None ): '''simple docstring''' lowercase__ = token_ids_a + [self.eos_token_id] if token_ids_a is None: return self.prefix_tokens + token_ids_a else: lowercase__ = token_ids_a + [self.eos_token_id] return self.prefix_tokens + token_ids_a + token_ids_a def UpperCamelCase__ (self : Optional[Any] , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None ): '''simple docstring''' lowercase__ = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def UpperCamelCase__ (self : List[Any] ): '''simple docstring''' return list( set(filter(lambda UpperCamelCase : bool(re.search(R'''<extra_id_\d+>''' , UpperCamelCase ) ) is not None , self.additional_special_tokens ) ) ) def UpperCamelCase__ (self : Union[str, Any] ): '''simple docstring''' return [self.convert_tokens_to_ids(UpperCamelCase ) for token in self.get_sentinel_tokens()]
2
0
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def A ( a_ ) -> int: __UpperCamelCase : Union[str, Any] =[2, 2, 6, 2] if 'tiny' in model_name else [2, 2, 18, 2] __UpperCamelCase : str =True if 'large' in model_name or 'huge' in model_name else False __UpperCamelCase : List[Any] =True if 'large' in model_name or 'huge' in model_name else False __UpperCamelCase : List[str] =True if 'large' in model_name or 'huge' in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: __UpperCamelCase : Tuple =[3, 3, 3, 3] __UpperCamelCase : int =[5, 5, 5, 5] elif "fl4" in model_name: __UpperCamelCase : Dict =[4, 4, 4, 4] __UpperCamelCase : int =[3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: __UpperCamelCase : Dict =[3, 3, 3, 3] if "lrf" in model_name: __UpperCamelCase : Tuple =[3, 3, 3, 3] else: __UpperCamelCase : Dict =[2, 2, 2, 2] if "tiny" in model_name: __UpperCamelCase : List[Any] =96 elif "small" in model_name: __UpperCamelCase : int =96 elif "base" in model_name: __UpperCamelCase : str =128 elif "large" in model_name: __UpperCamelCase : Optional[int] =192 elif "xlarge" in model_name: __UpperCamelCase : List[str] =256 elif "huge" in model_name: __UpperCamelCase : List[Any] =352 # set label information __UpperCamelCase : Union[str, Any] ='huggingface/label-files' if "large" in model_name or "huge" in model_name: __UpperCamelCase : str ='imagenet-22k-id2label.json' else: __UpperCamelCase : Optional[Any] ='imagenet-1k-id2label.json' __UpperCamelCase : int =json.load(open(hf_hub_download(a_ ,a_ ,repo_type='dataset' ) ,'r' ) ) __UpperCamelCase : str ={int(a_ ): v for k, v in idalabel.items()} __UpperCamelCase : str ={v: k for k, v in idalabel.items()} __UpperCamelCase : List[Any] =FocalNetConfig( embed_dim=a_ ,depths=a_ ,focal_levels=a_ ,focal_windows=a_ ,use_conv_embed=a_ ,idalabel=a_ ,labelaid=a_ ,use_post_layernorm=a_ ,use_layerscale=a_ ,) return config def A ( a_ ) -> Dict: if "patch_embed.proj" in name: __UpperCamelCase : Tuple =name.replace('patch_embed.proj' ,'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: __UpperCamelCase : Optional[Any] =name.replace('patch_embed.norm' ,'embeddings.norm' ) if "layers" in name: __UpperCamelCase : int ='encoder.' + name if "encoder.layers" in name: __UpperCamelCase : Dict =name.replace('encoder.layers' ,'encoder.stages' ) if "downsample.proj" in name: __UpperCamelCase : str =name.replace('downsample.proj' ,'downsample.projection' ) if "blocks" in name: __UpperCamelCase : Optional[int] =name.replace('blocks' ,'layers' ) if "modulation.f.weight" in name or "modulation.f.bias" in name: __UpperCamelCase : str =name.replace('modulation.f' ,'modulation.projection_in' ) if "modulation.h.weight" in name or "modulation.h.bias" in name: __UpperCamelCase : Dict =name.replace('modulation.h' ,'modulation.projection_context' ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: __UpperCamelCase : Optional[Any] =name.replace('modulation.proj' ,'modulation.projection_out' ) if name == "norm.weight": __UpperCamelCase : Optional[Any] ='layernorm.weight' if name == "norm.bias": __UpperCamelCase : Any ='layernorm.bias' if "head" in name: __UpperCamelCase : Optional[int] =name.replace('head' ,'classifier' ) else: __UpperCamelCase : int ='focalnet.' + name return name def A ( a_ ,a_ ,a_=False ) -> Any: __UpperCamelCase : List[str] ={ 'focalnet-tiny': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth', 'focalnet-tiny-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth', 'focalnet-small': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth', 'focalnet-small-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth', 'focalnet-base': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth', 'focalnet-base-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth', 'focalnet-large-lrf-fl3': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth', 'focalnet-large-lrf-fl4': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth', 'focalnet-xlarge-lrf-fl3': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth', 'focalnet-xlarge-lrf-fl4': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth', } # fmt: on __UpperCamelCase : Any =model_name_to_url[model_name] print('Checkpoint URL: ' ,a_ ) __UpperCamelCase : Any =torch.hub.load_state_dict_from_url(a_ ,map_location='cpu' )['model'] # rename keys for key in state_dict.copy().keys(): __UpperCamelCase : int =state_dict.pop(a_ ) __UpperCamelCase : Optional[int] =val __UpperCamelCase : List[str] =get_focalnet_config(a_ ) __UpperCamelCase : Tuple =FocalNetForImageClassification(a_ ) model.eval() # load state dict model.load_state_dict(a_ ) # verify conversion __UpperCamelCase : int ='http://images.cocodataset.org/val2017/000000039769.jpg' __UpperCamelCase : Optional[int] =BitImageProcessor( do_resize=a_ ,size={'shortest_edge': 256} ,resample=PILImageResampling.BILINEAR ,do_center_crop=a_ ,crop_size=224 ,do_normalize=a_ ,image_mean=a_ ,image_std=a_ ,) __UpperCamelCase : Union[str, Any] =Image.open(requests.get(a_ ,stream=a_ ).raw ) __UpperCamelCase : Tuple =processor(images=a_ ,return_tensors='pt' ) __UpperCamelCase : Any =transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406] ,std=[0.229, 0.224, 0.225] ), ] ) __UpperCamelCase : int =image_transforms(a_ ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values ,a_ ,atol=1e-4 ) __UpperCamelCase : Tuple =model(**a_ ) __UpperCamelCase : List[Any] =outputs.logits.argmax(-1 ).item() print('Predicted class:' ,model.config.idalabel[predicted_class_idx] ) print('First values of logits:' ,outputs.logits[0, :3] ) if model_name == "focalnet-tiny": __UpperCamelCase : Union[str, Any] =torch.tensor([0.2_166, -0.4_368, 0.2_191] ) elif model_name == "focalnet-tiny-lrf": __UpperCamelCase : Tuple =torch.tensor([1.1_669, 0.0_125, -0.1_695] ) elif model_name == "focalnet-small": __UpperCamelCase : List[Any] =torch.tensor([0.4_917, -0.0_430, 0.1_341] ) elif model_name == "focalnet-small-lrf": __UpperCamelCase : Dict =torch.tensor([-0.2_588, -0.5_342, -0.2_331] ) elif model_name == "focalnet-base": __UpperCamelCase : str =torch.tensor([-0.1_655, -0.4_090, -0.1_730] ) elif model_name == "focalnet-base-lrf": __UpperCamelCase : str =torch.tensor([0.5_306, -0.0_483, -0.3_928] ) assert torch.allclose(outputs.logits[0, :3] ,a_ ,atol=1e-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(F'Saving model and processor of {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(a_ ) processor.save_pretrained(a_ ) if push_to_hub: print(F'Pushing model and processor of {model_name} to the hub...' ) model.push_to_hub(F'{model_name}' ) processor.push_to_hub(F'{model_name}' ) if __name__ == "__main__": A_ :str = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''focalnet-tiny''', type=str, help='''Name of the FocalNet model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to push the model and processor to the hub.''', ) A_ :Union[str, Any] = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
71
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class __lowerCAmelCase (lowercase_ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ : Dict = ShapEImgaImgPipeline lowerCAmelCase__ : List[str] = ["""image"""] lowerCAmelCase__ : Any = ["""image"""] lowerCAmelCase__ : Any = [ """num_images_per_prompt""", """num_inference_steps""", """generator""", """latents""", """guidance_scale""", """frame_size""", """output_type""", """return_dict""", ] lowerCAmelCase__ : Tuple = False @property def UpperCamelCase__ (self : List[Any] ): '''simple docstring''' return 32 @property def UpperCamelCase__ (self : str ): '''simple docstring''' return 32 @property def UpperCamelCase__ (self : Union[str, Any] ): '''simple docstring''' return self.time_input_dim * 4 @property def UpperCamelCase__ (self : int ): '''simple docstring''' return 8 @property def UpperCamelCase__ (self : Any ): '''simple docstring''' torch.manual_seed(0 ) lowercase__ = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) lowercase__ = CLIPVisionModel(UpperCamelCase ) return model @property def UpperCamelCase__ (self : List[Any] ): '''simple docstring''' lowercase__ = CLIPImageProcessor( crop_size=224 , do_center_crop=UpperCamelCase , do_normalize=UpperCamelCase , do_resize=UpperCamelCase , image_mean=[0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73] , image_std=[0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11] , resample=3 , size=224 , ) return image_processor @property def UpperCamelCase__ (self : str ): '''simple docstring''' torch.manual_seed(0 ) lowercase__ = { '''num_attention_heads''': 2, '''attention_head_dim''': 16, '''embedding_dim''': self.time_input_dim, '''num_embeddings''': 32, '''embedding_proj_dim''': self.text_embedder_hidden_size, '''time_embed_dim''': self.time_embed_dim, '''num_layers''': 1, '''clip_embed_dim''': self.time_input_dim * 2, '''additional_embeddings''': 0, '''time_embed_act_fn''': '''gelu''', '''norm_in_type''': '''layer''', '''embedding_proj_norm_type''': '''layer''', '''encoder_hid_proj_type''': None, '''added_emb_type''': None, } lowercase__ = PriorTransformer(**UpperCamelCase ) return model @property def UpperCamelCase__ (self : int ): '''simple docstring''' torch.manual_seed(0 ) lowercase__ = { '''param_shapes''': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), '''d_latent''': self.time_input_dim, '''d_hidden''': self.renderer_dim, '''n_output''': 12, '''background''': ( 0.1, 0.1, 0.1, ), } lowercase__ = ShapERenderer(**UpperCamelCase ) return model def UpperCamelCase__ (self : Union[str, Any] ): '''simple docstring''' lowercase__ = self.dummy_prior lowercase__ = self.dummy_image_encoder lowercase__ = self.dummy_image_processor lowercase__ = self.dummy_renderer lowercase__ = HeunDiscreteScheduler( beta_schedule='''exp''' , num_train_timesteps=1024 , prediction_type='''sample''' , use_karras_sigmas=UpperCamelCase , clip_sample=UpperCamelCase , clip_sample_range=1.0 , ) lowercase__ = { '''prior''': prior, '''image_encoder''': image_encoder, '''image_processor''': image_processor, '''renderer''': renderer, '''scheduler''': scheduler, } return components def UpperCamelCase__ (self : Optional[int] , UpperCamelCase : Optional[int] , UpperCamelCase : str=0 ): '''simple docstring''' lowercase__ = floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCamelCase ) ).to(UpperCamelCase ) if str(UpperCamelCase ).startswith('''mps''' ): lowercase__ = torch.manual_seed(UpperCamelCase ) else: lowercase__ = torch.Generator(device=UpperCamelCase ).manual_seed(UpperCamelCase ) lowercase__ = { '''image''': input_image, '''generator''': generator, '''num_inference_steps''': 1, '''frame_size''': 32, '''output_type''': '''np''', } return inputs def UpperCamelCase__ (self : Tuple ): '''simple docstring''' lowercase__ = '''cpu''' lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**UpperCamelCase ) lowercase__ = pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) lowercase__ = pipe(**self.get_dummy_inputs(UpperCamelCase ) ) lowercase__ = output.images[0] lowercase__ = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) lowercase__ = np.array( [ 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase__ (self : Optional[Any] ): '''simple docstring''' self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def UpperCamelCase__ (self : int ): '''simple docstring''' lowercase__ = torch_device == '''cpu''' lowercase__ = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=UpperCamelCase , relax_max_difference=UpperCamelCase , ) def UpperCamelCase__ (self : int ): '''simple docstring''' lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**UpperCamelCase ) lowercase__ = pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) lowercase__ = 1 lowercase__ = 2 lowercase__ = self.get_dummy_inputs(UpperCamelCase ) for key in inputs.keys(): if key in self.batch_params: lowercase__ = batch_size * [inputs[key]] lowercase__ = pipe(**UpperCamelCase , num_images_per_prompt=UpperCamelCase )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class __lowerCAmelCase (unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ (self : Optional[Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ (self : Union[str, Any] ): '''simple docstring''' lowercase__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/corgi.png''' ) lowercase__ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/test_shap_e_img2img_out.npy''' ) lowercase__ = ShapEImgaImgPipeline.from_pretrained('''openai/shap-e-img2img''' ) lowercase__ = pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) lowercase__ = torch.Generator(device=UpperCamelCase ).manual_seed(0 ) lowercase__ = pipe( UpperCamelCase , generator=UpperCamelCase , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type='''np''' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(UpperCamelCase , UpperCamelCase )
2
0
'''simple docstring''' from sklearn.metrics import mean_squared_error import datasets _SCREAMING_SNAKE_CASE : Dict = '\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n' _SCREAMING_SNAKE_CASE : Tuple = '\\nMean Squared Error(MSE) is the average of the square of difference between the predicted\nand actual values.\n' _SCREAMING_SNAKE_CASE : List[str] = '\nArgs:\n predictions: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Estimated target values.\n references: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Ground truth (correct) target values.\n sample_weight: array-like of shape (n_samples,), default=None\n Sample weights.\n multioutput: {"raw_values", "uniform_average"} or array-like of shape (n_outputs,), default="uniform_average"\n Defines aggregating of multiple output values. Array-like value defines weights used to average errors.\n\n "raw_values" : Returns a full set of errors in case of multioutput input.\n\n "uniform_average" : Errors of all outputs are averaged with uniform weight.\n\n squared : bool, default=True\n If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value.\n\nReturns:\n mse : mean squared error.\nExamples:\n\n >>> mse_metric = datasets.load_metric("mse")\n >>> predictions = [2.5, 0.0, 2, 8]\n >>> references = [3, -0.5, 2, 7]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'mse\': 0.375}\n >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False)\n >>> print(rmse_result)\n {\'mse\': 0.6123724356957945}\n\n If you\'re using multi-dimensional lists, then set the config as follows :\n\n >>> mse_metric = datasets.load_metric("mse", "multilist")\n >>> predictions = [[0.5, 1], [-1, 1], [7, -6]]\n >>> references = [[0, 2], [-1, 2], [8, -5]]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'mse\': 0.7083333333333334}\n >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput=\'raw_values\')\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {\'mse\': array([0.41666667, 1. ])}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _snake_case ( datasets.Metric ): def lowerCAmelCase__ ( self ) -> str: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ "https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html" ] , ) def lowerCAmelCase__ ( self ) -> List[str]: '''simple docstring''' if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value("float" ) ), "references": datasets.Sequence(datasets.Value("float" ) ), } else: return { "predictions": datasets.Value("float" ), "references": datasets.Value("float" ), } def lowerCAmelCase__ ( self , a__ , a__ , a__=None , a__="uniform_average" , a__=True ) -> Union[str, Any]: '''simple docstring''' snake_case_ = mean_squared_error( a__ , a__ , sample_weight=a__ , multioutput=a__ , squared=a__ ) return {"mse": mse}
85
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowerCamelCase : str = { 'configuration_rag': ['RagConfig'], 'retrieval_rag': ['RagRetriever'], 'tokenization_rag': ['RagTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Dict = [ 'RagModel', 'RagPreTrainedModel', 'RagSequenceForGeneration', 'RagTokenForGeneration', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Optional[int] = [ 'TFRagModel', 'TFRagPreTrainedModel', 'TFRagSequenceForGeneration', 'TFRagTokenForGeneration', ] if TYPE_CHECKING: from .configuration_rag import RagConfig from .retrieval_rag import RagRetriever from .tokenization_rag import RagTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rag import RagModel, RagPreTrainedModel, RagSequenceForGeneration, RagTokenForGeneration try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rag import ( TFRagModel, TFRagPreTrainedModel, TFRagSequenceForGeneration, TFRagTokenForGeneration, ) else: import sys lowerCamelCase : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
2
0
from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { 'facebook/vit-mae-base': 'https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json', # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class __lowerCAmelCase ( lowercase_ ): lowerCAmelCase__ = """vit_mae""" def __init__( self , __UpperCAmelCase=768 , __UpperCAmelCase=12 , __UpperCAmelCase=12 , __UpperCAmelCase=3072 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-1_2 , __UpperCAmelCase=224 , __UpperCAmelCase=16 , __UpperCAmelCase=3 , __UpperCAmelCase=True , __UpperCAmelCase=16 , __UpperCAmelCase=512 , __UpperCAmelCase=8 , __UpperCAmelCase=2048 , __UpperCAmelCase=0.75 , __UpperCAmelCase=False , **__UpperCAmelCase , ): '''simple docstring''' super().__init__(**__UpperCAmelCase ) __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_act __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = initializer_range __lowerCamelCase = layer_norm_eps __lowerCamelCase = image_size __lowerCamelCase = patch_size __lowerCamelCase = num_channels __lowerCamelCase = qkv_bias __lowerCamelCase = decoder_num_attention_heads __lowerCamelCase = decoder_hidden_size __lowerCamelCase = decoder_num_hidden_layers __lowerCamelCase = decoder_intermediate_size __lowerCamelCase = mask_ratio __lowerCamelCase = norm_pix_loss
330
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : int = logging.get_logger(__name__) lowerCamelCase : List[Any] = { 'google/realm-cc-news-pretrained-embedder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-encoder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-scorer': ( 'https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-openqa': ( 'https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json' ), 'google/realm-orqa-nq-openqa': 'https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json', 'google/realm-orqa-nq-reader': 'https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json', 'google/realm-orqa-wq-openqa': 'https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json', 'google/realm-orqa-wq-reader': 'https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json', # See all REALM models at https://huggingface.co/models?filter=realm } class __lowerCAmelCase (lowercase_ ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = """realm""" def __init__(self : str , UpperCamelCase : List[Any]=30522 , UpperCamelCase : List[Any]=768 , UpperCamelCase : int=128 , UpperCamelCase : Any=12 , UpperCamelCase : Tuple=12 , UpperCamelCase : List[Any]=8 , UpperCamelCase : Union[str, Any]=3072 , UpperCamelCase : List[str]="gelu_new" , UpperCamelCase : Any=0.1 , UpperCamelCase : List[str]=0.1 , UpperCamelCase : Dict=512 , UpperCamelCase : Dict=2 , UpperCamelCase : List[Any]=0.02 , UpperCamelCase : List[Any]=1E-12 , UpperCamelCase : Dict=256 , UpperCamelCase : Union[str, Any]=10 , UpperCamelCase : Optional[int]=1E-3 , UpperCamelCase : Tuple=5 , UpperCamelCase : Optional[int]=320 , UpperCamelCase : List[str]=13353718 , UpperCamelCase : Optional[Any]=5000 , UpperCamelCase : str=1 , UpperCamelCase : Union[str, Any]=0 , UpperCamelCase : List[Any]=2 , **UpperCamelCase : int , ): '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase , bos_token_id=UpperCamelCase , eos_token_id=UpperCamelCase , **UpperCamelCase ) # Common config lowercase__ = vocab_size lowercase__ = max_position_embeddings lowercase__ = hidden_size lowercase__ = retriever_proj_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = num_candidates lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = initializer_range lowercase__ = type_vocab_size lowercase__ = layer_norm_eps # Reader config lowercase__ = span_hidden_size lowercase__ = max_span_width lowercase__ = reader_layer_norm_eps lowercase__ = reader_beam_size lowercase__ = reader_seq_len # Retrieval config lowercase__ = num_block_records lowercase__ = searcher_beam_size
2
0
import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotConfig, is_flax_available from transformers.testing_utils import jax_device, require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html __A = 'platform' import jax import jax.numpy as jnp from transformers import BlenderbotTokenizer from transformers.models.blenderbot.modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, shift_tokens_right, ) def lowerCamelCase_ ( UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[int]=None , UpperCamelCase__ : Dict=None , UpperCamelCase__ : int=None , UpperCamelCase__ : Optional[int]=None , UpperCamelCase__ : Any=None , UpperCamelCase__ : List[Any]=None , ) -> Union[str, Any]: """simple docstring""" if attention_mask is None: __lowerCamelCase = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: __lowerCamelCase = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: __lowerCamelCase = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: __lowerCamelCase = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: __lowerCamelCase = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class __lowerCAmelCase : """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__=13 , lowerCamelCase__=7 , lowerCamelCase__=True , lowerCamelCase__=False , lowerCamelCase__=99 , lowerCamelCase__=16 , lowerCamelCase__=2 , lowerCamelCase__=4 , lowerCamelCase__=4 , lowerCamelCase__="gelu" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=32 , lowerCamelCase__=2 , lowerCamelCase__=1 , lowerCamelCase__=0 , lowerCamelCase__=0.02 , ) -> Any: '''simple docstring''' __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = seq_length __lowerCamelCase = is_training __lowerCamelCase = use_labels __lowerCamelCase = vocab_size __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_act __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = max_position_embeddings __lowerCamelCase = eos_token_id __lowerCamelCase = pad_token_id __lowerCamelCase = bos_token_id __lowerCamelCase = initializer_range def lowercase_ ( self ) -> Dict: '''simple docstring''' __lowerCamelCase = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) __lowerCamelCase = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) __lowerCamelCase = shift_tokens_right(lowerCamelCase__ , 1 , 2 ) __lowerCamelCase = BlenderbotConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=lowerCamelCase__ , ) __lowerCamelCase = prepare_blenderbot_inputs_dict(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) return config, inputs_dict def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = self.prepare_config_and_inputs() return config, inputs_dict def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> str: '''simple docstring''' __lowerCamelCase = 20 __lowerCamelCase = model_class_name(lowerCamelCase__ ) __lowerCamelCase = model.encode(inputs_dict['input_ids'] ) __lowerCamelCase , __lowerCamelCase = ( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) __lowerCamelCase = model.init_cache(decoder_input_ids.shape[0] , lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='i4' ) __lowerCamelCase = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) __lowerCamelCase = model.decode( decoder_input_ids[:, :-1] , lowerCamelCase__ , decoder_attention_mask=lowerCamelCase__ , past_key_values=lowerCamelCase__ , decoder_position_ids=lowerCamelCase__ , ) __lowerCamelCase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' ) __lowerCamelCase = model.decode( decoder_input_ids[:, -1:] , lowerCamelCase__ , decoder_attention_mask=lowerCamelCase__ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=lowerCamelCase__ , ) __lowerCamelCase = model.decode(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Optional[int]: '''simple docstring''' __lowerCamelCase = 20 __lowerCamelCase = model_class_name(lowerCamelCase__ ) __lowerCamelCase = model.encode(inputs_dict['input_ids'] ) __lowerCamelCase , __lowerCamelCase = ( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) __lowerCamelCase = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) __lowerCamelCase = model.init_cache(decoder_input_ids.shape[0] , lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) __lowerCamelCase = model.decode( decoder_input_ids[:, :-1] , lowerCamelCase__ , decoder_attention_mask=lowerCamelCase__ , past_key_values=lowerCamelCase__ , decoder_position_ids=lowerCamelCase__ , ) __lowerCamelCase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' ) __lowerCamelCase = model.decode( decoder_input_ids[:, -1:] , lowerCamelCase__ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=lowerCamelCase__ , decoder_position_ids=lowerCamelCase__ , ) __lowerCamelCase = model.decode(lowerCamelCase__ , lowerCamelCase__ , decoder_attention_mask=lowerCamelCase__ ) __lowerCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" ) @require_flax class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" snake_case_ = 99 def lowercase_ ( self ) -> Dict: '''simple docstring''' __lowerCamelCase = np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) __lowerCamelCase = input_ids.shape[0] __lowerCamelCase = BlenderbotConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def lowercase_ ( self ) -> int: '''simple docstring''' __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = self._get_config_and_data() __lowerCamelCase = FlaxBlenderbotForConditionalGeneration(lowerCamelCase__ ) __lowerCamelCase = lm_model(input_ids=lowerCamelCase__ ) __lowerCamelCase = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs['logits'].shape , lowerCamelCase__ ) def lowercase_ ( self ) -> List[str]: '''simple docstring''' __lowerCamelCase = BlenderbotConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) __lowerCamelCase = FlaxBlenderbotForConditionalGeneration(lowerCamelCase__ ) __lowerCamelCase = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa ) __lowerCamelCase = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa ) __lowerCamelCase = lm_model(input_ids=lowerCamelCase__ , decoder_input_ids=lowerCamelCase__ ) __lowerCamelCase = (*summary.shape, config.vocab_size) self.assertEqual(outputs['logits'].shape , lowerCamelCase__ ) def lowercase_ ( self ) -> int: '''simple docstring''' __lowerCamelCase = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa ) __lowerCamelCase = shift_tokens_right(lowerCamelCase__ , 1 , 2 ) __lowerCamelCase = np.equal(lowerCamelCase__ , 1 ).astype(np.floataa ).sum() __lowerCamelCase = np.equal(lowerCamelCase__ , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(lowerCamelCase__ , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class __lowerCAmelCase ( lowercase_ , unittest.TestCase , lowercase_ ): """simple docstring""" snake_case_ = True snake_case_ = ( ( FlaxBlenderbotModel, FlaxBlenderbotForConditionalGeneration, ) if is_flax_available() else () ) snake_case_ = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else () def lowercase_ ( self ) -> int: '''simple docstring''' __lowerCamelCase = FlaxBlenderbotModelTester(self ) def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def lowercase_ ( self ) -> Dict: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __lowerCamelCase = self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = model_class(lowerCamelCase__ ) @jax.jit def encode_jitted(lowerCamelCase__ , lowerCamelCase__=None , **lowerCamelCase__ ): return model.encode(input_ids=lowerCamelCase__ , attention_mask=lowerCamelCase__ ) with self.subTest('JIT Enabled' ): __lowerCamelCase = encode_jitted(**lowerCamelCase__ ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): __lowerCamelCase = encode_jitted(**lowerCamelCase__ ).to_tuple() self.assertEqual(len(lowerCamelCase__ ) , len(lowerCamelCase__ ) ) for jitted_output, output in zip(lowerCamelCase__ , lowerCamelCase__ ): self.assertEqual(jitted_output.shape , output.shape ) def lowercase_ ( self ) -> List[Any]: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __lowerCamelCase = model_class(lowerCamelCase__ ) __lowerCamelCase = model.encode(inputs_dict['input_ids'] , inputs_dict['attention_mask'] ) __lowerCamelCase = { 'decoder_input_ids': inputs_dict['decoder_input_ids'], 'decoder_attention_mask': inputs_dict['decoder_attention_mask'], 'encoder_outputs': encoder_outputs, } @jax.jit def decode_jitted(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): return model.decode( decoder_input_ids=lowerCamelCase__ , decoder_attention_mask=lowerCamelCase__ , encoder_outputs=lowerCamelCase__ , ) with self.subTest('JIT Enabled' ): __lowerCamelCase = decode_jitted(**lowerCamelCase__ ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): __lowerCamelCase = decode_jitted(**lowerCamelCase__ ).to_tuple() self.assertEqual(len(lowerCamelCase__ ) , len(lowerCamelCase__ ) ) for jitted_output, output in zip(lowerCamelCase__ , lowerCamelCase__ ): self.assertEqual(jitted_output.shape , output.shape ) @slow def lowercase_ ( self ) -> List[str]: '''simple docstring''' for model_class_name in self.all_model_classes: __lowerCamelCase = model_class_name.from_pretrained('facebook/blenderbot-400M-distill' ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids __lowerCamelCase = np.ones((1, 1) ) * model.config.eos_token_id __lowerCamelCase = model(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) @unittest.skipUnless(jax_device != 'cpu' , '3B test too slow on CPU.' ) @slow def lowercase_ ( self ) -> Dict: '''simple docstring''' __lowerCamelCase = {'num_beams': 1, 'early_stopping': True, 'min_length': 15, 'max_length': 25} __lowerCamelCase = {'skip_special_tokens': True, 'clean_up_tokenization_spaces': True} __lowerCamelCase = FlaxBlenderbotForConditionalGeneration.from_pretrained('facebook/blenderbot-3B' , from_pt=lowerCamelCase__ ) __lowerCamelCase = BlenderbotTokenizer.from_pretrained('facebook/blenderbot-3B' ) __lowerCamelCase = ['Sam'] __lowerCamelCase = tokenizer(lowerCamelCase__ , return_tensors='jax' ) __lowerCamelCase = model.generate(**lowerCamelCase__ , **lowerCamelCase__ ) __lowerCamelCase = 'Sam is a great name. It means "sun" in Gaelic.' __lowerCamelCase = tokenizer.batch_decode(lowerCamelCase__ , **lowerCamelCase__ ) assert generated_txt[0].strip() == tgt_text
90
'''simple docstring''' import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : str = logging.get_logger(__name__) lowerCamelCase : int = { 'RUCAIBox/mvp': 'https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json', } class __lowerCAmelCase (lowercase_ ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = """mvp""" lowerCAmelCase__ : Optional[Any] = ["""past_key_values"""] lowerCAmelCase__ : List[str] = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__(self : Any , UpperCamelCase : Optional[int]=50267 , UpperCamelCase : Tuple=1024 , UpperCamelCase : int=12 , UpperCamelCase : Tuple=4096 , UpperCamelCase : Dict=16 , UpperCamelCase : int=12 , UpperCamelCase : Optional[int]=4096 , UpperCamelCase : Optional[int]=16 , UpperCamelCase : Tuple=0.0 , UpperCamelCase : Tuple=0.0 , UpperCamelCase : List[Any]="gelu" , UpperCamelCase : Union[str, Any]=1024 , UpperCamelCase : Optional[Any]=0.1 , UpperCamelCase : str=0.0 , UpperCamelCase : str=0.0 , UpperCamelCase : Optional[Any]=0.02 , UpperCamelCase : List[str]=0.0 , UpperCamelCase : List[str]=False , UpperCamelCase : Optional[int]=True , UpperCamelCase : Any=1 , UpperCamelCase : int=0 , UpperCamelCase : int=2 , UpperCamelCase : Any=True , UpperCamelCase : Optional[Any]=2 , UpperCamelCase : Optional[Any]=2 , UpperCamelCase : Tuple=False , UpperCamelCase : int=100 , UpperCamelCase : Optional[Any]=800 , **UpperCamelCase : str , ): '''simple docstring''' lowercase__ = vocab_size lowercase__ = max_position_embeddings lowercase__ = d_model lowercase__ = encoder_ffn_dim lowercase__ = encoder_layers lowercase__ = encoder_attention_heads lowercase__ = decoder_ffn_dim lowercase__ = decoder_layers lowercase__ = decoder_attention_heads lowercase__ = dropout lowercase__ = attention_dropout lowercase__ = activation_dropout lowercase__ = activation_function lowercase__ = init_std lowercase__ = encoder_layerdrop lowercase__ = decoder_layerdrop lowercase__ = classifier_dropout lowercase__ = use_cache lowercase__ = encoder_layers lowercase__ = scale_embedding # scale factor will be sqrt(d_model) if True lowercase__ = use_prompt lowercase__ = prompt_length lowercase__ = prompt_mid_dim super().__init__( pad_token_id=UpperCamelCase , bos_token_id=UpperCamelCase , eos_token_id=UpperCamelCase , is_encoder_decoder=UpperCamelCase , decoder_start_token_id=UpperCamelCase , forced_eos_token_id=UpperCamelCase , **UpperCamelCase , ) if self.forced_bos_token_id is None and kwargs.get('''force_bos_token_to_be_generated''' , UpperCamelCase ): lowercase__ = self.bos_token_id warnings.warn( f"Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. " '''The config can simply be saved and uploaded again to be fixed.''' )
2
0
import secrets from random import shuffle from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation def lowerCamelCase_ ( _UpperCamelCase = 8 ) -> str: """simple docstring""" snake_case_ : List[str] = ascii_letters + digits + punctuation return "".join(secrets.choice(_UpperCamelCase ) for _ in range(_UpperCamelCase ) ) def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> str: """simple docstring""" i -= len(_UpperCamelCase ) snake_case_ : Dict = i // 3 snake_case_ : str = i % 3 # chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) + # random_number(digits, i / 3) + random_characters(punctuation, i / 3) snake_case_ : Dict = ( chars_incl + random(_UpperCamelCase , quotient + remainder ) + random(_UpperCamelCase , _UpperCamelCase ) + random(_UpperCamelCase , _UpperCamelCase ) ) snake_case_ : int = list(_UpperCamelCase ) shuffle(_UpperCamelCase ) return "".join(_UpperCamelCase ) # random is a generalised function for letters, characters and numbers def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> str: """simple docstring""" return "".join(secrets.choice(_UpperCamelCase ) for _ in range(_UpperCamelCase ) ) def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> List[Any]: """simple docstring""" pass # Put your code here... def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> Dict: """simple docstring""" pass # Put your code here... def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> Optional[Any]: """simple docstring""" pass # Put your code here... def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase = 8 ) -> bool: """simple docstring""" if len(_UpperCamelCase ) < min_length: # Your Password must be at least 8 characters long return False snake_case_ : Tuple = any(char in ascii_uppercase for char in password ) snake_case_ : Optional[Any] = any(char in ascii_lowercase for char in password ) snake_case_ : Optional[Any] = any(char in digits for char in password ) snake_case_ : Union[str, Any] = any(char in punctuation for char in password ) return upper and lower and num and spec_char # Passwords should contain UPPERCASE, lowerase # numbers, and special characters def lowerCamelCase_ ( ) -> Any: """simple docstring""" snake_case_ : Any = int(input('''Please indicate the max length of your password: ''' ).strip() ) snake_case_ : List[Any] = input( '''Please indicate the characters that must be in your password: ''' ).strip() print('''Password generated:''' , password_generator(_UpperCamelCase ) ) print( '''Alternative Password generated:''' , alternative_password_generator(_UpperCamelCase , _UpperCamelCase ) , ) print('''[If you are thinking of using this passsword, You better save it.]''' ) if __name__ == "__main__": main()
279
'''simple docstring''' import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase : List[str] = get_tests_dir('fixtures/spiece.model') @require_sentencepiece @require_tokenizers class __lowerCAmelCase (lowercase_ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ : int = DebertaVaTokenizer lowerCAmelCase__ : List[Any] = DebertaVaTokenizerFast lowerCAmelCase__ : str = True lowerCAmelCase__ : Tuple = True def UpperCamelCase__ (self : Tuple ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing lowercase__ = DebertaVaTokenizer(UpperCamelCase , unk_token='''<unk>''' ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase__ (self : Union[str, Any] , UpperCamelCase : str ): '''simple docstring''' lowercase__ = '''this is a test''' lowercase__ = '''this is a test''' return input_text, output_text def UpperCamelCase__ (self : Optional[int] ): '''simple docstring''' lowercase__ = '''<pad>''' lowercase__ = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCamelCase ) , UpperCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCamelCase ) , UpperCamelCase ) def UpperCamelCase__ (self : Dict ): '''simple docstring''' lowercase__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<pad>''' ) self.assertEqual(vocab_keys[1] , '''<unk>''' ) self.assertEqual(vocab_keys[-1] , '''[PAD]''' ) self.assertEqual(len(UpperCamelCase ) , 30001 ) def UpperCamelCase__ (self : int ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 30000 ) def UpperCamelCase__ (self : Optional[Any] ): '''simple docstring''' lowercase__ = ''' \tHeLLo!how \n Are yoU? ''' lowercase__ = ['''▁hello''', '''!''', '''how''', '''▁are''', '''▁you''', '''?'''] # fmt: on lowercase__ = DebertaVaTokenizer(UpperCamelCase , do_lower_case=UpperCamelCase ) lowercase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = DebertaVaTokenizerFast(UpperCamelCase , do_lower_case=UpperCamelCase ) lowercase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) @unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' ) def UpperCamelCase__ (self : List[Any] ): '''simple docstring''' pass @unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' ) def UpperCamelCase__ (self : List[str] ): '''simple docstring''' pass def UpperCamelCase__ (self : Optional[int] ): '''simple docstring''' lowercase__ = '''I was born in 92000, and this is falsé.''' lowercase__ = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on lowercase__ = DebertaVaTokenizer(UpperCamelCase , split_by_punct=UpperCamelCase ) lowercase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = DebertaVaTokenizerFast(UpperCamelCase , split_by_punct=UpperCamelCase ) lowercase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) def UpperCamelCase__ (self : int ): '''simple docstring''' lowercase__ = '''I was born in 92000, and this is falsé.''' lowercase__ = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on lowercase__ = DebertaVaTokenizer(UpperCamelCase , do_lower_case=UpperCamelCase , split_by_punct=UpperCamelCase ) lowercase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = DebertaVaTokenizerFast(UpperCamelCase , do_lower_case=UpperCamelCase , split_by_punct=UpperCamelCase ) lowercase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) def UpperCamelCase__ (self : Optional[Any] ): '''simple docstring''' lowercase__ = '''I was born in 92000, and this is falsé.''' lowercase__ = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ] # fmt: on lowercase__ = DebertaVaTokenizer(UpperCamelCase , do_lower_case=UpperCamelCase , split_by_punct=UpperCamelCase ) lowercase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = DebertaVaTokenizerFast(UpperCamelCase , do_lower_case=UpperCamelCase , split_by_punct=UpperCamelCase ) lowercase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) def UpperCamelCase__ (self : Union[str, Any] ): '''simple docstring''' lowercase__ = '''I was born in 92000, and this is falsé.''' lowercase__ = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on lowercase__ = DebertaVaTokenizer(UpperCamelCase , do_lower_case=UpperCamelCase , split_by_punct=UpperCamelCase ) lowercase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = DebertaVaTokenizerFast(UpperCamelCase , do_lower_case=UpperCamelCase , split_by_punct=UpperCamelCase ) lowercase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) def UpperCamelCase__ (self : Union[str, Any] ): '''simple docstring''' lowercase__ = ''' \tHeLLo!how \n Are yoU? ''' lowercase__ = ['''▁''', '''<unk>''', '''e''', '''<unk>''', '''o''', '''!''', '''how''', '''▁''', '''<unk>''', '''re''', '''▁yo''', '''<unk>''', '''?'''] # fmt: on lowercase__ = DebertaVaTokenizer(UpperCamelCase , do_lower_case=UpperCamelCase , split_by_punct=UpperCamelCase ) lowercase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = DebertaVaTokenizerFast(UpperCamelCase , do_lower_case=UpperCamelCase , split_by_punct=UpperCamelCase ) lowercase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) def UpperCamelCase__ (self : Union[str, Any] ): '''simple docstring''' lowercase__ = self.get_tokenizer() lowercase__ = self.get_rust_tokenizer() lowercase__ = '''I was born in 92000, and this is falsé.''' lowercase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) lowercase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) lowercase__ = rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = self.get_rust_tokenizer() lowercase__ = tokenizer.encode(UpperCamelCase ) lowercase__ = rust_tokenizer.encode(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) def UpperCamelCase__ (self : int ): '''simple docstring''' lowercase__ = '''This is a test''' lowercase__ = [13, 1, 4398, 25, 21, 1289] lowercase__ = ['''▁''', '''T''', '''his''', '''▁is''', '''▁a''', '''▁test'''] lowercase__ = ['''▁''', '''<unk>''', '''his''', '''▁is''', '''▁a''', '''▁test'''] lowercase__ = DebertaVaTokenizer(UpperCamelCase , keep_accents=UpperCamelCase ) lowercase__ = DebertaVaTokenizerFast(UpperCamelCase , keep_accents=UpperCamelCase ) lowercase__ = tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = tokenizer.tokenize(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = tokenizer.convert_ids_to_tokens(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = rust_tokenizer.tokenize(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = rust_tokenizer.convert_ids_to_tokens(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) # fmt: off lowercase__ = '''I was born in 92000, and this is falsé.''' lowercase__ = [13, 1, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] lowercase__ = ['''▁''', '''I''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''é''', '''.''', ] lowercase__ = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ] # fmt: on lowercase__ = tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = tokenizer.tokenize(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = tokenizer.convert_ids_to_tokens(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = rust_tokenizer.tokenize(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = rust_tokenizer.convert_ids_to_tokens(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) def UpperCamelCase__ (self : int ): '''simple docstring''' lowercase__ = DebertaVaTokenizer(UpperCamelCase ) lowercase__ = tokenizer.encode('''sequence builders''' ) lowercase__ = tokenizer.encode('''multi-sequence build''' ) lowercase__ = tokenizer.build_inputs_with_special_tokens(UpperCamelCase ) lowercase__ = tokenizer.build_inputs_with_special_tokens(UpperCamelCase , UpperCamelCase ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , UpperCamelCase ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , UpperCamelCase , ) @slow def UpperCamelCase__ (self : int ): '''simple docstring''' lowercase__ = {'''input_ids''': [[1, 39867, 36, 19390, 486, 27, 35052, 81436, 18, 60685, 1225, 7, 35052, 81436, 18, 9367, 16899, 18, 15937, 53, 594, 773, 18, 16287, 30465, 36, 15937, 6, 41139, 38, 36979, 60763, 191, 6, 34132, 99, 6, 50538, 390, 43230, 6, 34132, 2779, 20850, 14, 699, 1072, 1194, 36, 382, 10901, 53, 7, 699, 1072, 2084, 36, 20422, 630, 53, 19, 105, 3049, 1896, 1053, 16899, 1506, 11, 37978, 4243, 7, 1237, 31869, 200, 16566, 654, 6, 35052, 81436, 7, 55630, 13593, 4, 2], [1, 26, 15011, 13, 667, 8, 1053, 18, 23611, 1237, 72356, 12820, 34, 104134, 1209, 35, 13313, 6627, 21, 202, 347, 7, 164, 2399, 11, 46, 4485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1232, 2864, 15785, 14951, 105, 5, 8581, 1250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCamelCase , model_name='''microsoft/deberta-v2-xlarge''' , revision='''ad6e42c1532ddf3a15c39246b63f5559d558b670''' , )
2
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class _lowercase : a = XGLMConfig a = {} a = """gelu""" def __init__( self: str , UpperCamelCase__: Dict , UpperCamelCase__: List[Any]=14 , UpperCamelCase__: List[str]=7 , UpperCamelCase__: int=True , UpperCamelCase__: int=True , UpperCamelCase__: Any=True , UpperCamelCase__: int=99 , UpperCamelCase__: str=32 , UpperCamelCase__: Optional[int]=2 , UpperCamelCase__: str=4 , UpperCamelCase__: Union[str, Any]=37 , UpperCamelCase__: Optional[int]="gelu" , UpperCamelCase__: List[Any]=0.1 , UpperCamelCase__: int=0.1 , UpperCamelCase__: Union[str, Any]=512 , UpperCamelCase__: Optional[Any]=0.02 , ): lowerCamelCase__ : Any = parent lowerCamelCase__ : Union[str, Any] = batch_size lowerCamelCase__ : Optional[int] = seq_length lowerCamelCase__ : int = is_training lowerCamelCase__ : str = use_input_mask lowerCamelCase__ : Union[str, Any] = use_labels lowerCamelCase__ : List[Any] = vocab_size lowerCamelCase__ : List[str] = d_model lowerCamelCase__ : Optional[Any] = num_hidden_layers lowerCamelCase__ : Union[str, Any] = num_attention_heads lowerCamelCase__ : str = ffn_dim lowerCamelCase__ : Dict = activation_function lowerCamelCase__ : Any = activation_dropout lowerCamelCase__ : Union[str, Any] = attention_dropout lowerCamelCase__ : Optional[int] = max_position_embeddings lowerCamelCase__ : Any = initializer_range lowerCamelCase__ : List[Any] = None lowerCamelCase__ : Union[str, Any] = 0 lowerCamelCase__ : Any = 2 lowerCamelCase__ : Union[str, Any] = 1 def lowerCamelCase_ ( self: List[str] ): return XGLMConfig.from_pretrained("""facebook/xglm-564M""" ) def lowerCamelCase_ ( self: int ): lowerCamelCase__ : List[str] = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 ) lowerCamelCase__ : str = None if self.use_input_mask: lowerCamelCase__ : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase__ : List[str] = self.get_config() lowerCamelCase__ : Optional[int] = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, ) def lowerCamelCase_ ( self: Union[str, Any] ): return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=UpperCamelCase__ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=UpperCamelCase__ , ) def lowerCamelCase_ ( self: Dict ): lowerCamelCase__ : Any = self.prepare_config_and_inputs() ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ) : int = config_and_inputs lowerCamelCase__ : Optional[int] = { """input_ids""": input_ids, """head_mask""": head_mask, } return config, inputs_dict @require_tf class _lowercase ( lowercase_ , lowercase_ , unittest.TestCase ): a = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () a = (TFXGLMForCausalLM,) if is_tf_available() else () a = ( {"""feature-extraction""": TFXGLMModel, """text-generation""": TFXGLMForCausalLM} if is_tf_available() else {} ) a = False a = False a = False def lowerCamelCase_ ( self: int ): lowerCamelCase__ : List[str] = TFXGLMModelTester(self ) lowerCamelCase__ : Dict = ConfigTester(self , config_class=UpperCamelCase__ , n_embd=37 ) def lowerCamelCase_ ( self: Tuple ): self.config_tester.run_common_tests() @slow def lowerCamelCase_ ( self: Optional[Any] ): for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ : Any = TFXGLMModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) @unittest.skip(reason="""Currently, model embeddings are going to undergo a major refactor.""" ) def lowerCamelCase_ ( self: Any ): super().test_resize_token_embeddings() @require_tf class _lowercase ( unittest.TestCase ): @slow def lowerCamelCase_ ( self: Dict , UpperCamelCase__: Optional[Any]=True ): lowerCamelCase__ : Union[str, Any] = TFXGLMForCausalLM.from_pretrained("""facebook/xglm-564M""" ) lowerCamelCase__ : Dict = tf.convert_to_tensor([[2, 268, 9_865]] , dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off lowerCamelCase__ : int = [2, 268, 9_865, 67, 11, 1_988, 57_252, 9_865, 5, 984, 67, 1_988, 213_838, 1_658, 53, 70_446, 33, 6_657, 278, 1_581] # fmt: on lowerCamelCase__ : int = model.generate(UpperCamelCase__ , do_sample=UpperCamelCase__ , num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , UpperCamelCase__ ) @slow def lowerCamelCase_ ( self: List[Any] ): lowerCamelCase__ : List[Any] = XGLMTokenizer.from_pretrained("""facebook/xglm-564M""" ) lowerCamelCase__ : Tuple = TFXGLMForCausalLM.from_pretrained("""facebook/xglm-564M""" ) tf.random.set_seed(0 ) lowerCamelCase__ : str = tokenizer("""Today is a nice day and""" , return_tensors="""tf""" ) lowerCamelCase__ : Dict = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(""":/CPU:0""" ): lowerCamelCase__ : Optional[int] = model.generate(UpperCamelCase__ , do_sample=UpperCamelCase__ , seed=[7, 0] ) lowerCamelCase__ : Tuple = tokenizer.decode(output_ids[0] , skip_special_tokens=UpperCamelCase__ ) lowerCamelCase__ : Optional[Any] = ( """Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due""" ) self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) @slow def lowerCamelCase_ ( self: Dict ): lowerCamelCase__ : Dict = TFXGLMForCausalLM.from_pretrained("""facebook/xglm-564M""" ) lowerCamelCase__ : Dict = XGLMTokenizer.from_pretrained("""facebook/xglm-564M""" ) lowerCamelCase__ : Union[str, Any] = """left""" # use different length sentences to test batching lowerCamelCase__ : int = [ """This is an extremelly long sentence that only exists to test the ability of the model to cope with """ """left-padding, such as in batched generation. The output for the sequence below should be the same """ """regardless of whether left padding is applied or not. When""", """Hello, my dog is a little""", ] lowerCamelCase__ : int = tokenizer(UpperCamelCase__ , return_tensors="""tf""" , padding=UpperCamelCase__ ) lowerCamelCase__ : Optional[int] = inputs["""input_ids"""] lowerCamelCase__ : List[Any] = model.generate(input_ids=UpperCamelCase__ , attention_mask=inputs["""attention_mask"""] , max_new_tokens=12 ) lowerCamelCase__ : Dict = tokenizer(sentences[0] , return_tensors="""tf""" ).input_ids lowerCamelCase__ : Dict = model.generate(input_ids=UpperCamelCase__ , max_new_tokens=12 ) lowerCamelCase__ : Dict = tokenizer(sentences[1] , return_tensors="""tf""" ).input_ids lowerCamelCase__ : Union[str, Any] = model.generate(input_ids=UpperCamelCase__ , max_new_tokens=12 ) lowerCamelCase__ : Optional[Any] = tokenizer.batch_decode(UpperCamelCase__ , skip_special_tokens=UpperCamelCase__ ) lowerCamelCase__ : Any = tokenizer.decode(output_non_padded[0] , skip_special_tokens=UpperCamelCase__ ) lowerCamelCase__ : Any = tokenizer.decode(output_padded[0] , skip_special_tokens=UpperCamelCase__ ) lowerCamelCase__ : Optional[int] = [ """This is an extremelly long sentence that only exists to test the ability of the model to cope with """ """left-padding, such as in batched generation. The output for the sequence below should be the same """ """regardless of whether left padding is applied or not. When left padding is applied, the sequence will be """ """a single""", """Hello, my dog is a little bit of a shy one, but he is very friendly""", ] self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , [non_padded_sentence, padded_sentence] )
41
'''simple docstring''' import argparse import torch from torch import nn from transformers import MBartConfig, MBartForConditionalGeneration def _SCREAMING_SNAKE_CASE (A ) -> Optional[Any]: """simple docstring""" lowercase__ = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''_float_tensor''', '''decoder.output_projection.weight''', ] for k in ignore_keys: state_dict.pop(A , A ) def _SCREAMING_SNAKE_CASE (A ) -> List[str]: """simple docstring""" lowercase__ ,lowercase__ = emb.weight.shape lowercase__ = nn.Linear(A , A , bias=A ) lowercase__ = emb.weight.data return lin_layer def _SCREAMING_SNAKE_CASE (A , A="facebook/mbart-large-en-ro" , A=False , A=False ) -> Union[str, Any]: """simple docstring""" lowercase__ = torch.load(A , map_location='''cpu''' )['''model'''] remove_ignore_keys_(A ) lowercase__ = state_dict['''encoder.embed_tokens.weight'''].shape[0] lowercase__ = MBartConfig.from_pretrained(A , vocab_size=A ) if mbart_aa and finetuned: lowercase__ = '''relu''' lowercase__ = state_dict['''decoder.embed_tokens.weight'''] lowercase__ = MBartForConditionalGeneration(A ) model.model.load_state_dict(A ) if finetuned: lowercase__ = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": lowerCamelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( 'fairseq_path', type=str, help='bart.large, bart.large.cnn or a path to a model.pt on local filesystem.' ) parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--hf_config', default='facebook/mbart-large-cc25', type=str, help='Which huggingface architecture to use: mbart-large', ) parser.add_argument('--mbart_50', action='store_true', help='whether the model is mMART-50 checkpoint') parser.add_argument('--finetuned', action='store_true', help='whether the model is a fine-tuned checkpoint') lowerCamelCase : Any = parser.parse_args() lowerCamelCase : List[str] = convert_fairseq_mbart_checkpoint_from_disk( args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa ) model.save_pretrained(args.pytorch_dump_folder_path)
2
0
'''simple docstring''' from ...processing_utils import ProcessorMixin class A ( lowercase_ ): __magic_name__ = """SpeechT5FeatureExtractor""" __magic_name__ = """SpeechT5Tokenizer""" def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" super().__init__(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __call__( self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" A : int = kwargs.pop('''audio''' , SCREAMING_SNAKE_CASE ) A : List[str] = kwargs.pop('''text''' , SCREAMING_SNAKE_CASE ) A : Dict = kwargs.pop('''text_target''' , SCREAMING_SNAKE_CASE ) A : List[str] = kwargs.pop('''audio_target''' , SCREAMING_SNAKE_CASE ) A : List[str] = kwargs.pop('''sampling_rate''' , SCREAMING_SNAKE_CASE ) if audio is not None and text is not None: raise ValueError( '''Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?''' ) if audio_target is not None and text_target is not None: raise ValueError( '''Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?''' ) if audio is None and audio_target is None and text is None and text_target is None: raise ValueError( '''You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process.''' ) if audio is not None: A : str = self.feature_extractor(SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE , sampling_rate=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) elif text is not None: A : Any = self.tokenizer(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) else: A : Optional[Any] = None if audio_target is not None: A : Optional[Any] = self.feature_extractor(audio_target=SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE , sampling_rate=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) A : Optional[int] = targets['''input_values'''] elif text_target is not None: A : Dict = self.tokenizer(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) A : Any = targets['''input_ids'''] else: A : Union[str, Any] = None if inputs is None: return targets if targets is not None: A : List[Any] = labels A : Optional[int] = targets.get('''attention_mask''' ) if decoder_attention_mask is not None: A : str = decoder_attention_mask return inputs def __lowerCAmelCase ( self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" A : List[str] = kwargs.pop('''input_values''' , SCREAMING_SNAKE_CASE ) A : Any = kwargs.pop('''input_ids''' , SCREAMING_SNAKE_CASE ) A : int = kwargs.pop('''labels''' , SCREAMING_SNAKE_CASE ) if input_values is not None and input_ids is not None: raise ValueError('''Cannot process both `input_values` and `input_ids` inputs.''' ) if input_values is None and input_ids is None and labels is None: raise ValueError( '''You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded.''' ) if input_values is not None: A : Tuple = self.feature_extractor.pad(SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) elif input_ids is not None: A : Optional[Any] = self.tokenizer.pad(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) else: A : List[Any] = None if labels is not None: if "input_ids" in labels or (isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and "input_ids" in labels[0]): A : List[str] = self.tokenizer.pad(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) A : Optional[int] = targets['''input_ids'''] else: A : List[Any] = self.feature_extractor.feature_size A : Any = self.feature_extractor.num_mel_bins A : int = self.feature_extractor.pad(SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) A : Optional[int] = feature_size_hack A : Dict = targets['''input_values'''] else: A : List[Any] = None if inputs is None: return targets if targets is not None: A : int = labels A : Tuple = targets.get('''attention_mask''' ) if decoder_attention_mask is not None: A : Dict = decoder_attention_mask return inputs def __lowerCAmelCase ( self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" return self.tokenizer.batch_decode(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" return self.tokenizer.decode(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
3
'''simple docstring''' import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask lowerCamelCase : List[Any] = logging.getLogger(__name__) class __lowerCAmelCase (lowercase_ ): '''simple docstring''' def __init__(self : Optional[Any] , UpperCamelCase : Any=-1 ): '''simple docstring''' lowercase__ = label_idx def UpperCamelCase__ (self : Union[str, Any] , UpperCamelCase : Optional[Any] , UpperCamelCase : Union[Split, str] ): '''simple docstring''' if isinstance(UpperCamelCase , UpperCamelCase ): lowercase__ = mode.value lowercase__ = os.path.join(UpperCamelCase , f"{mode}.txt" ) lowercase__ = 1 lowercase__ = [] with open(UpperCamelCase , encoding='''utf-8''' ) as f: lowercase__ = [] lowercase__ = [] for line in f: if line.startswith('''-DOCSTART-''' ) or line == "" or line == "\n": if words: examples.append(InputExample(guid=f"{mode}-{guid_index}" , words=UpperCamelCase , labels=UpperCamelCase ) ) guid_index += 1 lowercase__ = [] lowercase__ = [] else: lowercase__ = line.split(''' ''' ) words.append(splits[0] ) if len(UpperCamelCase ) > 1: labels.append(splits[self.label_idx].replace('''\n''' , '''''' ) ) else: # Examples could have no label for mode = "test" labels.append('''O''' ) if words: examples.append(InputExample(guid=f"{mode}-{guid_index}" , words=UpperCamelCase , labels=UpperCamelCase ) ) return examples def UpperCamelCase__ (self : Optional[int] , UpperCamelCase : TextIO , UpperCamelCase : TextIO , UpperCamelCase : List ): '''simple docstring''' lowercase__ = 0 for line in test_input_reader: if line.startswith('''-DOCSTART-''' ) or line == "" or line == "\n": writer.write(UpperCamelCase ) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: lowercase__ = line.split()[0] + ''' ''' + preds_list[example_id].pop(0 ) + '''\n''' writer.write(UpperCamelCase ) else: logger.warning('''Maximum sequence length exceeded: No prediction for \'%s\'.''' , line.split()[0] ) def UpperCamelCase__ (self : Union[str, Any] , UpperCamelCase : str ): '''simple docstring''' if path: with open(UpperCamelCase , '''r''' ) as f: lowercase__ = f.read().splitlines() if "O" not in labels: lowercase__ = ['''O'''] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class __lowerCAmelCase (lowercase_ ): '''simple docstring''' def __init__(self : List[Any] ): '''simple docstring''' super().__init__(label_idx=-2 ) def UpperCamelCase__ (self : List[Any] , UpperCamelCase : str ): '''simple docstring''' if path: with open(UpperCamelCase , '''r''' ) as f: lowercase__ = f.read().splitlines() if "O" not in labels: lowercase__ = ['''O'''] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class __lowerCAmelCase (lowercase_ ): '''simple docstring''' def UpperCamelCase__ (self : Tuple , UpperCamelCase : int , UpperCamelCase : Union[Split, str] ): '''simple docstring''' if isinstance(UpperCamelCase , UpperCamelCase ): lowercase__ = mode.value lowercase__ = os.path.join(UpperCamelCase , f"{mode}.txt" ) lowercase__ = 1 lowercase__ = [] with open(UpperCamelCase , encoding='''utf-8''' ) as f: for sentence in parse_incr(UpperCamelCase ): lowercase__ = [] lowercase__ = [] for token in sentence: words.append(token['''form'''] ) labels.append(token['''upos'''] ) assert len(UpperCamelCase ) == len(UpperCamelCase ) if words: examples.append(InputExample(guid=f"{mode}-{guid_index}" , words=UpperCamelCase , labels=UpperCamelCase ) ) guid_index += 1 return examples def UpperCamelCase__ (self : Tuple , UpperCamelCase : TextIO , UpperCamelCase : TextIO , UpperCamelCase : List ): '''simple docstring''' lowercase__ = 0 for sentence in parse_incr(UpperCamelCase ): lowercase__ = preds_list[example_id] lowercase__ = '''''' for token in sentence: out += f"{token['form']} ({token['upos']}|{s_p.pop(0 )}) " out += "\n" writer.write(UpperCamelCase ) example_id += 1 def UpperCamelCase__ (self : Union[str, Any] , UpperCamelCase : str ): '''simple docstring''' if path: with open(UpperCamelCase , '''r''' ) as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
2
0
'''simple docstring''' import argparse import torch from torch import nn from transformers import MBartConfig, MBartForConditionalGeneration def snake_case_ (_a : List[Any] ): UpperCAmelCase = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''_float_tensor''', '''decoder.output_projection.weight''', ] for k in ignore_keys: state_dict.pop(_a , _a ) def snake_case_ (_a : Tuple ): UpperCAmelCase , UpperCAmelCase = emb.weight.shape UpperCAmelCase = nn.Linear(_a , _a , bias=_a ) UpperCAmelCase = emb.weight.data return lin_layer def snake_case_ (_a : Optional[int] , _a : Optional[int]="facebook/mbart-large-en-ro" , _a : Optional[Any]=False , _a : Any=False ): UpperCAmelCase = torch.load(_a , map_location='''cpu''' )['''model'''] remove_ignore_keys_(_a ) UpperCAmelCase = state_dict['''encoder.embed_tokens.weight'''].shape[0] UpperCAmelCase = MBartConfig.from_pretrained(_a , vocab_size=_a ) if mbart_aa and finetuned: UpperCAmelCase = '''relu''' UpperCAmelCase = state_dict['''decoder.embed_tokens.weight'''] UpperCAmelCase = MBartForConditionalGeneration(_a ) model.model.load_state_dict(_a ) if finetuned: UpperCAmelCase = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": A =argparse.ArgumentParser() # Required parameters parser.add_argument( 'fairseq_path', type=str, help='bart.large, bart.large.cnn or a path to a model.pt on local filesystem.' ) parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--hf_config', default='facebook/mbart-large-cc25', type=str, help='Which huggingface architecture to use: mbart-large', ) parser.add_argument('--mbart_50', action='store_true', help='whether the model is mMART-50 checkpoint') parser.add_argument('--finetuned', action='store_true', help='whether the model is a fine-tuned checkpoint') A =parser.parse_args() A =convert_fairseq_mbart_checkpoint_from_disk( args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa ) model.save_pretrained(args.pytorch_dump_folder_path)
34
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Dict = logging.get_logger(__name__) lowerCamelCase : Union[str, Any] = { # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class __lowerCAmelCase (lowercase_ ): '''simple docstring''' lowerCAmelCase__ : List[str] = """megatron-bert""" def __init__(self : Tuple , UpperCamelCase : Optional[int]=29056 , UpperCamelCase : Optional[Any]=1024 , UpperCamelCase : Any=24 , UpperCamelCase : int=16 , UpperCamelCase : Optional[int]=4096 , UpperCamelCase : int="gelu" , UpperCamelCase : int=0.1 , UpperCamelCase : Tuple=0.1 , UpperCamelCase : Any=512 , UpperCamelCase : int=2 , UpperCamelCase : Dict=0.02 , UpperCamelCase : Dict=1E-12 , UpperCamelCase : List[Any]=0 , UpperCamelCase : Optional[int]="absolute" , UpperCamelCase : List[Any]=True , **UpperCamelCase : str , ): '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase , **UpperCamelCase ) lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = hidden_act lowercase__ = intermediate_size lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = position_embedding_type lowercase__ = use_cache
2
0
'''simple docstring''' import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = { 'RUCAIBox/mvp': 'https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json', } class lowerCAmelCase ( lowercase_ ): lowerCAmelCase_ = """mvp""" lowerCAmelCase_ = ["""past_key_values"""] lowerCAmelCase_ = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self : Any , __lowercase : Optional[int]=50267 , __lowercase : Tuple=1024 , __lowercase : int=12 , __lowercase : Tuple=4096 , __lowercase : Dict=16 , __lowercase : int=12 , __lowercase : Optional[int]=4096 , __lowercase : Optional[int]=16 , __lowercase : Tuple=0.0 , __lowercase : Tuple=0.0 , __lowercase : List[Any]="gelu" , __lowercase : Union[str, Any]=1024 , __lowercase : Optional[Any]=0.1 , __lowercase : str=0.0 , __lowercase : str=0.0 , __lowercase : Optional[Any]=0.0_2 , __lowercase : List[str]=0.0 , __lowercase : List[str]=False , __lowercase : Optional[int]=True , __lowercase : Any=1 , __lowercase : int=0 , __lowercase : int=2 , __lowercase : Any=True , __lowercase : Optional[Any]=2 , __lowercase : Optional[Any]=2 , __lowercase : Tuple=False , __lowercase : int=100 , __lowercase : Optional[Any]=800 , **__lowercase : str , ): """simple docstring""" __lowercase =vocab_size __lowercase =max_position_embeddings __lowercase =d_model __lowercase =encoder_ffn_dim __lowercase =encoder_layers __lowercase =encoder_attention_heads __lowercase =decoder_ffn_dim __lowercase =decoder_layers __lowercase =decoder_attention_heads __lowercase =dropout __lowercase =attention_dropout __lowercase =activation_dropout __lowercase =activation_function __lowercase =init_std __lowercase =encoder_layerdrop __lowercase =decoder_layerdrop __lowercase =classifier_dropout __lowercase =use_cache __lowercase =encoder_layers __lowercase =scale_embedding # scale factor will be sqrt(d_model) if True __lowercase =use_prompt __lowercase =prompt_length __lowercase =prompt_mid_dim super().__init__( pad_token_id=__lowercase , bos_token_id=__lowercase , eos_token_id=__lowercase , is_encoder_decoder=__lowercase , decoder_start_token_id=__lowercase , forced_eos_token_id=__lowercase , **__lowercase , ) if self.forced_bos_token_id is None and kwargs.get('force_bos_token_to_be_generated' , __lowercase ): __lowercase =self.bos_token_id warnings.warn( f'''Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. ''' 'The config can simply be saved and uploaded again to be fixed.' )
141
'''simple docstring''' # Lint as: python3 import itertools import os import re lowerCamelCase : Any = re.compile(R'([A-Z]+)([A-Z][a-z])') lowerCamelCase : str = re.compile(R'([a-z\d])([A-Z])') lowerCamelCase : Optional[int] = re.compile(R'(?<!_)_(?!_)') lowerCamelCase : List[Any] = re.compile(R'(_{2,})') lowerCamelCase : str = R'^\w+(\.\w+)*$' lowerCamelCase : Dict = R'<>:/\|?*' def _SCREAMING_SNAKE_CASE (A ) -> Any: """simple docstring""" lowercase__ = _uppercase_uppercase_re.sub(R'''\1_\2''' , A ) lowercase__ = _lowercase_uppercase_re.sub(R'''\1_\2''' , A ) return name.lower() def _SCREAMING_SNAKE_CASE (A ) -> Tuple: """simple docstring""" lowercase__ = _single_underscore_re.split(A ) lowercase__ = [_multiple_underscores_re.split(A ) for n in name] return "".join(n.capitalize() for n in itertools.chain.from_iterable(A ) if n != '''''' ) def _SCREAMING_SNAKE_CASE (A ) -> Tuple: """simple docstring""" if os.path.basename(A ) != name: raise ValueError(f"Should be a dataset name, not a path: {name}" ) return camelcase_to_snakecase(A ) def _SCREAMING_SNAKE_CASE (A , A ) -> Optional[Any]: """simple docstring""" if os.path.basename(A ) != name: raise ValueError(f"Should be a dataset name, not a path: {name}" ) if not re.match(_split_re , A ): raise ValueError(f"Split name should match '{_split_re}'' but got '{split}'." ) return f"{filename_prefix_for_name(A )}-{split}" def _SCREAMING_SNAKE_CASE (A , A , A , A=None ) -> List[str]: """simple docstring""" lowercase__ = filename_prefix_for_split(A , A ) if filetype_suffix: prefix += f".{filetype_suffix}" lowercase__ = os.path.join(A , A ) return f"{filepath}*" def _SCREAMING_SNAKE_CASE (A , A , A , A=None , A=None ) -> Optional[Any]: """simple docstring""" lowercase__ = filename_prefix_for_split(A , A ) lowercase__ = os.path.join(A , A ) if shard_lengths: lowercase__ = len(A ) lowercase__ = [f"{prefix}-{shard_id:05d}-of-{num_shards:05d}" for shard_id in range(A )] if filetype_suffix: lowercase__ = [filename + f".{filetype_suffix}" for filename in filenames] return filenames else: lowercase__ = prefix if filetype_suffix: filename += f".{filetype_suffix}" return [filename]
2
0
import os from datetime import datetime as dt from github import Github __snake_case : Optional[Any] =[ 'good first issue', 'feature request', 'wip', ] def lowerCAmelCase__ ( ): '''simple docstring''' lowerCAmelCase__ : Dict = Github(os.environ['''GITHUB_TOKEN''']) lowerCAmelCase__ : int = g.get_repo('''huggingface/accelerate''') lowerCAmelCase__ : Tuple = repo.get_issues(state='''open''') for issue in open_issues: lowerCAmelCase__ : Dict = sorted([comment for comment in issue.get_comments()] ,key=lambda lowerCamelCase_: i.created_at ,reverse=lowerCamelCase_) lowerCAmelCase__ : int = comments[0] if len(lowerCamelCase_) > 0 else None lowerCAmelCase__ : str = dt.utcnow() lowerCAmelCase__ : Tuple = (current_time - issue.updated_at).days lowerCAmelCase__ : Union[str, Any] = (current_time - issue.created_at).days if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and days_since_updated > 7 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels()) ): # Close issue since it has been 7 days of inactivity since bot mention. issue.edit(state='''closed''') elif ( days_since_updated > 23 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels()) ): # Add stale comment issue.create_comment( '''This issue has been automatically marked as stale because it has not had ''' '''recent activity. If you think this still needs to be addressed ''' '''please comment on this thread.\n\nPlease note that issues that do not follow the ''' '''[contributing guidelines](https://github.com/huggingface/accelerate/blob/main/CONTRIBUTING.md) ''' '''are likely to be ignored.''') if __name__ == "__main__": main()
129
'''simple docstring''' import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class __lowerCAmelCase : '''simple docstring''' def __init__(self : str , UpperCamelCase : Tuple , UpperCamelCase : Optional[int]=99 , UpperCamelCase : Optional[int]=13 , UpperCamelCase : Tuple=16 , UpperCamelCase : Union[str, Any]=7 , UpperCamelCase : List[Any]=True , UpperCamelCase : List[str]=True , UpperCamelCase : str=True , UpperCamelCase : Tuple=False , UpperCamelCase : str=True , UpperCamelCase : Tuple=2 , UpperCamelCase : Optional[int]=32 , UpperCamelCase : Any=4 , UpperCamelCase : Optional[int]=4 , UpperCamelCase : Tuple=30 , UpperCamelCase : str=0 , UpperCamelCase : Tuple=1 , UpperCamelCase : List[Any]=2 , UpperCamelCase : str=None , ): '''simple docstring''' lowercase__ = parent lowercase__ = batch_size lowercase__ = decoder_seq_length # For common tests lowercase__ = self.decoder_seq_length lowercase__ = is_training lowercase__ = use_attention_mask lowercase__ = use_labels lowercase__ = vocab_size lowercase__ = d_model lowercase__ = d_model lowercase__ = decoder_layers lowercase__ = decoder_layers lowercase__ = decoder_ffn_dim lowercase__ = decoder_attention_heads lowercase__ = decoder_attention_heads lowercase__ = eos_token_id lowercase__ = bos_token_id lowercase__ = pad_token_id lowercase__ = decoder_start_token_id lowercase__ = use_cache lowercase__ = max_position_embeddings lowercase__ = None lowercase__ = decoder_seq_length lowercase__ = 2 lowercase__ = 1 def UpperCamelCase__ (self : str ): '''simple docstring''' lowercase__ = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) lowercase__ = None if self.use_attention_mask: lowercase__ = ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 ) lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) lowercase__ = TrOCRConfig( vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , ) return (config, input_ids, attention_mask, lm_labels) def UpperCamelCase__ (self : Tuple , UpperCamelCase : List[Any] , UpperCamelCase : Optional[Any] , UpperCamelCase : Tuple , UpperCamelCase : List[str] , ): '''simple docstring''' lowercase__ = True lowercase__ = TrOCRDecoder(config=UpperCamelCase ).to(UpperCamelCase ).eval() lowercase__ = input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass lowercase__ = model(UpperCamelCase , use_cache=UpperCamelCase ) lowercase__ = model(UpperCamelCase ) lowercase__ = model(UpperCamelCase , use_cache=UpperCamelCase ) self.parent.assertTrue(len(UpperCamelCase ) == len(UpperCamelCase ) ) self.parent.assertTrue(len(UpperCamelCase ) == len(UpperCamelCase ) + 1 ) lowercase__ = outputs['''past_key_values'''] # create hypothetical next token and extent to next_input_ids lowercase__ = ids_tensor((2, 1) , config.vocab_size - 1 ) + 1 # append to next input_ids and lowercase__ = torch.cat([input_ids, next_tokens] , dim=-1 ) lowercase__ = model(UpperCamelCase )['''last_hidden_state'''] lowercase__ = model(UpperCamelCase , past_key_values=UpperCamelCase )['''last_hidden_state'''] # select random slice lowercase__ = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowercase__ = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() lowercase__ = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(UpperCamelCase , UpperCamelCase , atol=1E-3 ) def UpperCamelCase__ (self : Optional[Any] ): '''simple docstring''' lowercase__ = self.prepare_config_and_inputs() lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ = config_and_inputs lowercase__ = {'''input_ids''': input_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_torch class __lowerCAmelCase (lowercase_ , lowercase_ , lowercase_ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ : List[str] = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () lowerCAmelCase__ : List[Any] = (TrOCRForCausalLM,) if is_torch_available() else () lowerCAmelCase__ : Optional[Any] = {"""text-generation""": TrOCRForCausalLM} if is_torch_available() else {} lowerCAmelCase__ : Optional[Any] = True lowerCAmelCase__ : List[str] = False def UpperCamelCase__ (self : Any ): '''simple docstring''' lowercase__ = TrOCRStandaloneDecoderModelTester(self , is_training=UpperCamelCase ) lowercase__ = ConfigTester(self , config_class=UpperCamelCase ) def UpperCamelCase__ (self : List[str] ): '''simple docstring''' pass def UpperCamelCase__ (self : Optional[int] ): '''simple docstring''' pass def UpperCamelCase__ (self : Any ): '''simple docstring''' pass def UpperCamelCase__ (self : Any ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCamelCase__ (self : Union[str, Any] ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*UpperCamelCase ) def UpperCamelCase__ (self : Optional[int] ): '''simple docstring''' return @unittest.skip('''The model doesn\'t support left padding''' ) # and it's not used enough to be worth fixing :) def UpperCamelCase__ (self : List[str] ): '''simple docstring''' pass
2
0
"""simple docstring""" import bza import gzip import lzma import os import shutil import struct import tarfile import warnings import zipfile from abc import ABC, abstractmethod from pathlib import Path from typing import Dict, List, Optional, Type, Union from .. import config from .filelock import FileLock from .logging import get_logger SCREAMING_SNAKE_CASE : Tuple = get_logger(__name__) class _UpperCAmelCase : '''simple docstring''' def __init__(self , a_ = None ): '''simple docstring''' __snake_case : Optional[int] = ( os.path.join(a_ , config.EXTRACTED_DATASETS_DIR ) if cache_dir else config.EXTRACTED_DATASETS_PATH ) __snake_case : List[Any] = Extractor def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' from .file_utils import hash_url_to_filename # Path where we extract compressed archives # We extract in the cache dir, and get the extracted path name by hashing the original path" __snake_case : Union[str, Any] = os.path.abspath(a_ ) return os.path.join(self.extract_dir , hash_url_to_filename(a_ ) ) def SCREAMING_SNAKE_CASE (self , a_ , a_ ): '''simple docstring''' return force_extract or ( not os.path.isfile(a_ ) and not (os.path.isdir(a_ ) and os.listdir(a_ )) ) def SCREAMING_SNAKE_CASE (self , a_ , a_ = False ): '''simple docstring''' __snake_case : Tuple = self.extractor.infer_extractor_format(a_ ) if not extractor_format: return input_path __snake_case : Union[str, Any] = self._get_output_path(a_ ) if self._do_extract(a_ , a_ ): self.extractor.extract(a_ , a_ , a_ ) return output_path class _UpperCAmelCase ( lowercase_ ): '''simple docstring''' @classmethod @abstractmethod def SCREAMING_SNAKE_CASE (cls , a_ , **a_ ): '''simple docstring''' ... @staticmethod @abstractmethod def SCREAMING_SNAKE_CASE (a_ , a_ ): '''simple docstring''' ... class _UpperCAmelCase ( lowercase_, lowercase_ ): '''simple docstring''' lowerCamelCase__ =[] @staticmethod def SCREAMING_SNAKE_CASE (a_ , a_ ): '''simple docstring''' with open(a_ , '''rb''' ) as f: return f.read(a_ ) @classmethod def SCREAMING_SNAKE_CASE (cls , a_ , a_ = b"" ): '''simple docstring''' if not magic_number: __snake_case : Optional[Any] = max(len(a_ ) for cls_magic_number in cls.magic_numbers ) try: __snake_case : int = cls.read_magic_number(a_ , a_ ) except OSError: return False return any(magic_number.startswith(a_ ) for cls_magic_number in cls.magic_numbers ) class _UpperCAmelCase ( lowercase_ ): '''simple docstring''' @classmethod def SCREAMING_SNAKE_CASE (cls , a_ , **a_ ): '''simple docstring''' return tarfile.is_tarfile(a_ ) @staticmethod def SCREAMING_SNAKE_CASE (a_ , a_ ): '''simple docstring''' def resolved(a_ ) -> str: return os.path.realpath(os.path.abspath(a_ ) ) def badpath(a_ , a_ ) -> bool: # joinpath will ignore base if path is absolute return not resolved(os.path.join(a_ , a_ ) ).startswith(a_ ) def badlink(a_ , a_ ) -> bool: # Links are interpreted relative to the directory containing the link __snake_case : List[str] = resolved(os.path.join(a_ , os.path.dirname(info.name ) ) ) return badpath(info.linkname , base=a_ ) __snake_case : List[Any] = resolved(a_ ) for finfo in members: if badpath(finfo.name , a_ ): logger.error(f"""Extraction of {finfo.name} is blocked (illegal path)""" ) elif finfo.issym() and badlink(a_ , a_ ): logger.error(f"""Extraction of {finfo.name} is blocked: Symlink to {finfo.linkname}""" ) elif finfo.islnk() and badlink(a_ , a_ ): logger.error(f"""Extraction of {finfo.name} is blocked: Hard link to {finfo.linkname}""" ) else: yield finfo @staticmethod def SCREAMING_SNAKE_CASE (a_ , a_ ): '''simple docstring''' os.makedirs(a_ , exist_ok=a_ ) __snake_case : int = tarfile.open(a_ ) tar_file.extractall(a_ , members=TarExtractor.safemembers(a_ , a_ ) ) tar_file.close() class _UpperCAmelCase ( lowercase_ ): '''simple docstring''' lowerCamelCase__ =[B"""\x1F\x8B"""] @staticmethod def SCREAMING_SNAKE_CASE (a_ , a_ ): '''simple docstring''' with gzip.open(a_ , '''rb''' ) as gzip_file: with open(a_ , '''wb''' ) as extracted_file: shutil.copyfileobj(a_ , a_ ) class _UpperCAmelCase ( lowercase_ ): '''simple docstring''' lowerCamelCase__ =[ B"""PK\x03\x04""", B"""PK\x05\x06""", # empty archive B"""PK\x07\x08""", # spanned archive ] @classmethod def SCREAMING_SNAKE_CASE (cls , a_ , a_ = b"" ): '''simple docstring''' if super().is_extractable(a_ , magic_number=a_ ): return True try: # Alternative version of zipfile.is_zipfile that has less false positives, but misses executable zip archives. # From: https://github.com/python/cpython/pull/5053 from zipfile import ( _CD_SIGNATURE, _ECD_DISK_NUMBER, _ECD_DISK_START, _ECD_ENTRIES_TOTAL, _ECD_OFFSET, _ECD_SIZE, _EndRecData, sizeCentralDir, stringCentralDir, structCentralDir, ) with open(a_ , '''rb''' ) as fp: __snake_case : Optional[Any] = _EndRecData(a_ ) if endrec: if endrec[_ECD_ENTRIES_TOTAL] == 0 and endrec[_ECD_SIZE] == 0 and endrec[_ECD_OFFSET] == 0: return True # Empty zipfiles are still zipfiles elif endrec[_ECD_DISK_NUMBER] == endrec[_ECD_DISK_START]: fp.seek(endrec[_ECD_OFFSET] ) # Central directory is on the same disk if fp.tell() == endrec[_ECD_OFFSET] and endrec[_ECD_SIZE] >= sizeCentralDir: __snake_case : Union[str, Any] = fp.read(a_ ) # CD is where we expect it to be if len(a_ ) == sizeCentralDir: __snake_case : List[Any] = struct.unpack(a_ , a_ ) # CD is the right size if centdir[_CD_SIGNATURE] == stringCentralDir: return True # First central directory entry has correct magic number return False except Exception: # catch all errors in case future python versions change the zipfile internals return False @staticmethod def SCREAMING_SNAKE_CASE (a_ , a_ ): '''simple docstring''' os.makedirs(a_ , exist_ok=a_ ) with zipfile.ZipFile(a_ , '''r''' ) as zip_file: zip_file.extractall(a_ ) zip_file.close() class _UpperCAmelCase ( lowercase_ ): '''simple docstring''' lowerCamelCase__ =[B"""\xFD\x37\x7A\x58\x5A\x00"""] @staticmethod def SCREAMING_SNAKE_CASE (a_ , a_ ): '''simple docstring''' with lzma.open(a_ ) as compressed_file: with open(a_ , '''wb''' ) as extracted_file: shutil.copyfileobj(a_ , a_ ) class _UpperCAmelCase ( lowercase_ ): '''simple docstring''' lowerCamelCase__ =[B"""Rar!\x1a\x07\x00""", B"""Rar!\x1a\x07\x01\x00"""] # RAR_ID # RAR5_ID @staticmethod def SCREAMING_SNAKE_CASE (a_ , a_ ): '''simple docstring''' if not config.RARFILE_AVAILABLE: raise ImportError('''Please pip install rarfile''' ) import rarfile os.makedirs(a_ , exist_ok=a_ ) __snake_case : Optional[int] = rarfile.RarFile(a_ ) rf.extractall(a_ ) rf.close() class _UpperCAmelCase ( lowercase_ ): '''simple docstring''' lowerCamelCase__ =[B"""\x28\xb5\x2F\xFD"""] @staticmethod def SCREAMING_SNAKE_CASE (a_ , a_ ): '''simple docstring''' if not config.ZSTANDARD_AVAILABLE: raise ImportError('''Please pip install zstandard''' ) import zstandard as zstd __snake_case : Optional[int] = zstd.ZstdDecompressor() with open(a_ , '''rb''' ) as ifh, open(a_ , '''wb''' ) as ofh: dctx.copy_stream(a_ , a_ ) class _UpperCAmelCase ( lowercase_ ): '''simple docstring''' lowerCamelCase__ =[B"""\x42\x5A\x68"""] @staticmethod def SCREAMING_SNAKE_CASE (a_ , a_ ): '''simple docstring''' with bza.open(a_ , '''rb''' ) as compressed_file: with open(a_ , '''wb''' ) as extracted_file: shutil.copyfileobj(a_ , a_ ) class _UpperCAmelCase ( lowercase_ ): '''simple docstring''' lowerCamelCase__ =[B"""\x37\x7A\xBC\xAF\x27\x1C"""] @staticmethod def SCREAMING_SNAKE_CASE (a_ , a_ ): '''simple docstring''' if not config.PY7ZR_AVAILABLE: raise ImportError('''Please pip install py7zr''' ) import pyazr os.makedirs(a_ , exist_ok=a_ ) with pyazr.SevenZipFile(a_ , '''r''' ) as archive: archive.extractall(a_ ) class _UpperCAmelCase ( lowercase_ ): '''simple docstring''' lowerCamelCase__ =[B"""\x04\x22\x4D\x18"""] @staticmethod def SCREAMING_SNAKE_CASE (a_ , a_ ): '''simple docstring''' if not config.LZ4_AVAILABLE: raise ImportError('''Please pip install lz4''' ) import lza.frame with lza.frame.open(a_ , '''rb''' ) as compressed_file: with open(a_ , '''wb''' ) as extracted_file: shutil.copyfileobj(a_ , a_ ) class _UpperCAmelCase : '''simple docstring''' lowerCamelCase__ ={ "tar": TarExtractor, "gzip": GzipExtractor, "zip": ZipExtractor, "xz": XzExtractor, "rar": RarExtractor, "zstd": ZstdExtractor, "bz2": BzipaExtractor, "7z": SevenZipExtractor, # <Added version="2.4.0"/> "lz4": LzaExtractor, # <Added version="2.4.0"/> } @classmethod def SCREAMING_SNAKE_CASE (cls ): '''simple docstring''' return max( len(a_ ) for extractor in cls.extractors.values() if issubclass(a_ , a_ ) for extractor_magic_number in extractor.magic_numbers ) @staticmethod def SCREAMING_SNAKE_CASE (a_ , a_ ): '''simple docstring''' try: return MagicNumberBaseExtractor.read_magic_number(a_ , magic_number_length=a_ ) except OSError: return b"" @classmethod def SCREAMING_SNAKE_CASE (cls , a_ , a_ = False ): '''simple docstring''' warnings.warn( '''Method \'is_extractable\' was deprecated in version 2.4.0 and will be removed in 3.0.0. ''' '''Use \'infer_extractor_format\' instead.''' , category=a_ , ) __snake_case : str = cls.infer_extractor_format(a_ ) if extractor_format: return True if not return_extractor else (True, cls.extractors[extractor_format]) return False if not return_extractor else (False, None) @classmethod def SCREAMING_SNAKE_CASE (cls , a_ ): # <Added version="2.4.0"/> '''simple docstring''' __snake_case : Any = cls._get_magic_number_max_length() __snake_case : Optional[Any] = cls._read_magic_number(a_ , a_ ) for extractor_format, extractor in cls.extractors.items(): if extractor.is_extractable(a_ , magic_number=a_ ): return extractor_format @classmethod def SCREAMING_SNAKE_CASE (cls , a_ , a_ , a_ = None , a_ = "deprecated" , ): '''simple docstring''' os.makedirs(os.path.dirname(a_ ) , exist_ok=a_ ) # Prevent parallel extractions __snake_case : List[Any] = str(Path(a_ ).with_suffix('''.lock''' ) ) with FileLock(a_ ): shutil.rmtree(a_ , ignore_errors=a_ ) if extractor_format or extractor != "deprecated": if extractor != "deprecated" or not isinstance(a_ , a_ ): # passed as positional arg warnings.warn( '''Parameter \'extractor\' was deprecated in version 2.4.0 and will be removed in 3.0.0. ''' '''Use \'extractor_format\' instead.''' , category=a_ , ) __snake_case : Any = extractor if extractor != '''deprecated''' else extractor_format else: __snake_case : Dict = cls.extractors[extractor_format] return extractor.extract(a_ , a_ ) else: warnings.warn( '''Parameter \'extractor_format\' was made required in version 2.4.0 and not passing it will raise an ''' '''exception in 3.0.0.''' , category=a_ , ) for extractor in cls.extractors.values(): if extractor.is_extractable(a_ ): return extractor.extract(a_ , a_ )
102
'''simple docstring''' def _SCREAMING_SNAKE_CASE (A ) -> int: """simple docstring""" if not isinstance(A , A ): raise TypeError('''only integers accepted as input''' ) else: lowercase__ = str(abs(A ) ) lowercase__ = [list(A ) for char in range(len(A ) )] for index in range(len(A ) ): num_transpositions[index].pop(A ) return max( int(''''''.join(list(A ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__('doctest').testmod()
2
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A_ :Union[str, Any] = { 'configuration_xlm_roberta_xl': [ 'XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLMRobertaXLConfig', 'XLMRobertaXLOnnxConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ :int = [ 'XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST', 'XLMRobertaXLForCausalLM', 'XLMRobertaXLForMaskedLM', 'XLMRobertaXLForMultipleChoice', 'XLMRobertaXLForQuestionAnswering', 'XLMRobertaXLForSequenceClassification', 'XLMRobertaXLForTokenClassification', 'XLMRobertaXLModel', 'XLMRobertaXLPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaXLConfig, XLMRobertaXLOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaXLForCausalLM, XLMRobertaXLForMaskedLM, XLMRobertaXLForMultipleChoice, XLMRobertaXLForQuestionAnswering, XLMRobertaXLForSequenceClassification, XLMRobertaXLForTokenClassification, XLMRobertaXLModel, XLMRobertaXLPreTrainedModel, ) else: import sys A_ :Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
71
'''simple docstring''' import dataclasses import re import string from typing import Any, Dict, Iterator, List, Mapping, Optional, Sequence, Tuple import numpy as np from . import residue_constants lowerCamelCase : str = Mapping[str, np.ndarray] lowerCamelCase : List[Any] = Mapping[str, Any] # Is a nested dict. lowerCamelCase : Any = 0.0_1 @dataclasses.dataclass(frozen=lowercase_ ) class __lowerCAmelCase : '''simple docstring''' lowerCAmelCase__ : np.ndarray # [num_res, num_atom_type, 3] # Amino-acid type for each residue represented as an integer between 0 and # 20, where 20 is 'X'. lowerCAmelCase__ : np.ndarray # [num_res] # Binary float mask to indicate presence of a particular atom. 1.0 if an atom # is present and 0.0 if not. This should be used for loss masking. lowerCAmelCase__ : np.ndarray # [num_res, num_atom_type] # Residue index as used in PDB. It is not necessarily continuous or 0-indexed. lowerCAmelCase__ : np.ndarray # [num_res] # B-factors, or temperature factors, of each residue (in sq. angstroms units), # representing the displacement of the residue from its ground truth mean # value. lowerCAmelCase__ : np.ndarray # [num_res, num_atom_type] # Chain indices for multi-chain predictions lowerCAmelCase__ : Optional[np.ndarray] = None # Optional remark about the protein. Included as a comment in output PDB # files lowerCAmelCase__ : Optional[str] = None # Templates used to generate this protein (prediction-only) lowerCAmelCase__ : Optional[Sequence[str]] = None # Chain corresponding to each parent lowerCAmelCase__ : Optional[Sequence[int]] = None def _SCREAMING_SNAKE_CASE (A ) -> Protein: """simple docstring""" lowercase__ = R'''(\[[A-Z]+\]\n)''' lowercase__ = [tag.strip() for tag in re.split(A , A ) if len(A ) > 0] lowercase__ = zip(tags[0::2] , [l.split('''\n''' ) for l in tags[1::2]] ) lowercase__ = ["N", "CA", "C"] lowercase__ = None lowercase__ = None lowercase__ = None for g in groups: if "[PRIMARY]" == g[0]: lowercase__ = g[1][0].strip() for i in range(len(A ) ): if seq[i] not in residue_constants.restypes: lowercase__ = '''X''' # FIXME: strings are immutable lowercase__ = np.array( [residue_constants.restype_order.get(A , residue_constants.restype_num ) for res_symbol in seq] ) elif "[TERTIARY]" == g[0]: lowercase__ = [] for axis in range(3 ): tertiary.append(list(map(A , g[1][axis].split() ) ) ) lowercase__ = np.array(A ) lowercase__ = np.zeros((len(tertiary[0] ) // 3, residue_constants.atom_type_num, 3) ).astype(np.floataa ) for i, atom in enumerate(A ): lowercase__ = np.transpose(tertiary_np[:, i::3] ) atom_positions *= PICO_TO_ANGSTROM elif "[MASK]" == g[0]: lowercase__ = np.array(list(map({'''-''': 0, '''+''': 1}.get , g[1][0].strip() ) ) ) lowercase__ = np.zeros( ( len(A ), residue_constants.atom_type_num, ) ).astype(np.floataa ) for i, atom in enumerate(A ): lowercase__ = 1 atom_mask *= mask[..., None] assert aatype is not None return Protein( atom_positions=A , atom_mask=A , aatype=A , residue_index=np.arange(len(A ) ) , b_factors=A , ) def _SCREAMING_SNAKE_CASE (A , A = 0 ) -> List[str]: """simple docstring""" lowercase__ = [] lowercase__ = prot.remark if remark is not None: pdb_headers.append(f"REMARK {remark}" ) lowercase__ = prot.parents lowercase__ = prot.parents_chain_index if parents is not None and parents_chain_index is not None: lowercase__ = [p for i, p in zip(A , A ) if i == chain_id] if parents is None or len(A ) == 0: lowercase__ = ['''N/A'''] pdb_headers.append(f"PARENT {' '.join(A )}" ) return pdb_headers def _SCREAMING_SNAKE_CASE (A , A ) -> str: """simple docstring""" lowercase__ = [] lowercase__ = pdb_str.split('''\n''' ) lowercase__ = prot.remark if remark is not None: out_pdb_lines.append(f"REMARK {remark}" ) lowercase__ = 42 if prot.parents is not None and len(prot.parents ) > 0: lowercase__ = [] if prot.parents_chain_index is not None: lowercase__ = {} for p, i in zip(prot.parents , prot.parents_chain_index ): parent_dict.setdefault(str(A ) , [] ) parent_dict[str(A )].append(A ) lowercase__ = max([int(A ) for chain_idx in parent_dict] ) for i in range(max_idx + 1 ): lowercase__ = parent_dict.get(str(A ) , ['''N/A'''] ) parents_per_chain.append(A ) else: parents_per_chain.append(list(prot.parents ) ) else: lowercase__ = [['''N/A''']] def make_parent_line(A ) -> str: return f"PARENT {' '.join(A )}" out_pdb_lines.append(make_parent_line(parents_per_chain[0] ) ) lowercase__ = 0 for i, l in enumerate(A ): if "PARENT" not in l and "REMARK" not in l: out_pdb_lines.append(A ) if "TER" in l and "END" not in lines[i + 1]: chain_counter += 1 if not chain_counter >= len(A ): lowercase__ = parents_per_chain[chain_counter] else: lowercase__ = ['''N/A'''] out_pdb_lines.append(make_parent_line(A ) ) return "\n".join(A ) def _SCREAMING_SNAKE_CASE (A ) -> str: """simple docstring""" lowercase__ = residue_constants.restypes + ['''X'''] def res_atoa(A ) -> str: return residue_constants.restype_atoa.get(restypes[r] , '''UNK''' ) lowercase__ = residue_constants.atom_types lowercase__ = [] lowercase__ = prot.atom_mask lowercase__ = prot.aatype lowercase__ = prot.atom_positions lowercase__ = prot.residue_index.astype(np.intaa ) lowercase__ = prot.b_factors lowercase__ = prot.chain_index if np.any(aatype > residue_constants.restype_num ): raise ValueError('''Invalid aatypes.''' ) lowercase__ = get_pdb_headers(A ) if len(A ) > 0: pdb_lines.extend(A ) lowercase__ = aatype.shape[0] lowercase__ = 1 lowercase__ = 0 lowercase__ = string.ascii_uppercase lowercase__ = None # Add all atom sites. for i in range(A ): lowercase__ = res_atoa(aatype[i] ) for atom_name, pos, mask, b_factor in zip(A , atom_positions[i] , atom_mask[i] , b_factors[i] ): if mask < 0.5: continue lowercase__ = '''ATOM''' lowercase__ = atom_name if len(A ) == 4 else f" {atom_name}" lowercase__ = '''''' lowercase__ = '''''' lowercase__ = 1.00 lowercase__ = atom_name[0] # Protein supports only C, N, O, S, this works. lowercase__ = '''''' lowercase__ = '''A''' if chain_index is not None: lowercase__ = chain_tags[chain_index[i]] # PDB is a columnar format, every space matters here! lowercase__ = ( f"{record_type:<6}{atom_index:>5} {name:<4}{alt_loc:>1}" f"{res_name_a:>3} {chain_tag:>1}" f"{residue_index[i]:>4}{insertion_code:>1} " f"{pos[0]:>8.3f}{pos[1]:>8.3f}{pos[2]:>8.3f}" f"{occupancy:>6.2f}{b_factor:>6.2f} " f"{element:>2}{charge:>2}" ) pdb_lines.append(A ) atom_index += 1 lowercase__ = i == n - 1 if chain_index is not None: if i != n - 1 and chain_index[i + 1] != prev_chain_index: lowercase__ = True lowercase__ = chain_index[i + 1] if should_terminate: # Close the chain. lowercase__ = '''TER''' lowercase__ = ( f"{chain_end:<6}{atom_index:>5} {res_atoa(aatype[i] ):>3} {chain_tag:>1}{residue_index[i]:>4}" ) pdb_lines.append(A ) atom_index += 1 if i != n - 1: # "prev" is a misnomer here. This happens at the beginning of # each new chain. pdb_lines.extend(get_pdb_headers(A , A ) ) pdb_lines.append('''END''' ) pdb_lines.append('''''' ) return "\n".join(A ) def _SCREAMING_SNAKE_CASE (A ) -> np.ndarray: """simple docstring""" return residue_constants.STANDARD_ATOM_MASK[prot.aatype] def _SCREAMING_SNAKE_CASE (A , A , A = None , A = None , A = None , A = None , A = None , ) -> Protein: """simple docstring""" return Protein( aatype=features['''aatype'''] , atom_positions=result['''final_atom_positions'''] , atom_mask=result['''final_atom_mask'''] , residue_index=features['''residue_index'''] + 1 , b_factors=b_factors if b_factors is not None else np.zeros_like(result['''final_atom_mask'''] ) , chain_index=A , remark=A , parents=A , parents_chain_index=A , )
2
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _SCREAMING_SNAKE_CASE : Union[str, Any] = {'configuration_timm_backbone': ['TimmBackboneConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : List[str] = ['TimmBackbone'] if TYPE_CHECKING: from .configuration_timm_backbone import TimmBackboneConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timm_backbone import TimmBackbone else: import sys _SCREAMING_SNAKE_CASE : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
85
'''simple docstring''' from __future__ import annotations def _SCREAMING_SNAKE_CASE (A , A ) -> list[list[int]]: """simple docstring""" lowercase__ = [] create_all_state(1 , A , A , [] , A ) return result def _SCREAMING_SNAKE_CASE (A , A , A , A , A , ) -> None: """simple docstring""" if level == 0: total_list.append(current_list[:] ) return for i in range(A , total_number - level + 2 ): current_list.append(A ) create_all_state(i + 1 , A , level - 1 , A , A ) current_list.pop() def _SCREAMING_SNAKE_CASE (A ) -> None: """simple docstring""" for i in total_list: print(*A ) if __name__ == "__main__": lowerCamelCase : Tuple = 4 lowerCamelCase : Union[str, Any] = 2 lowerCamelCase : Dict = generate_all_combinations(n, k) print_all_state(total_list)
2
0
from ....configuration_utils import PretrainedConfig from ....utils import logging a_ = logging.get_logger(__name__) a_ = { 'speechbrain/m-ctc-t-large': 'https://huggingface.co/speechbrain/m-ctc-t-large/resolve/main/config.json', # See all M-CTC-T models at https://huggingface.co/models?filter=mctct } class __lowerCAmelCase ( lowercase_ ): lowerCAmelCase__ = """mctct""" def __init__( self , __UpperCAmelCase=8065 , __UpperCAmelCase=1536 , __UpperCAmelCase=36 , __UpperCAmelCase=6144 , __UpperCAmelCase=4 , __UpperCAmelCase=384 , __UpperCAmelCase=920 , __UpperCAmelCase=1E-5 , __UpperCAmelCase=0.3 , __UpperCAmelCase="relu" , __UpperCAmelCase=0.02 , __UpperCAmelCase=0.3 , __UpperCAmelCase=0.3 , __UpperCAmelCase=1 , __UpperCAmelCase=0 , __UpperCAmelCase=2 , __UpperCAmelCase=1 , __UpperCAmelCase=0.3 , __UpperCAmelCase=1 , __UpperCAmelCase=(7,) , __UpperCAmelCase=(3,) , __UpperCAmelCase=80 , __UpperCAmelCase=1 , __UpperCAmelCase=None , __UpperCAmelCase="sum" , __UpperCAmelCase=False , **__UpperCAmelCase , ): '''simple docstring''' super().__init__(**__UpperCAmelCase , pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase ) __lowerCamelCase = vocab_size __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = intermediate_size __lowerCamelCase = num_attention_heads __lowerCamelCase = attention_head_dim __lowerCamelCase = max_position_embeddings __lowerCamelCase = layer_norm_eps __lowerCamelCase = layerdrop __lowerCamelCase = hidden_act __lowerCamelCase = initializer_range __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = pad_token_id __lowerCamelCase = bos_token_id __lowerCamelCase = eos_token_id __lowerCamelCase = conv_glu_dim __lowerCamelCase = conv_dropout __lowerCamelCase = num_conv_layers __lowerCamelCase = input_feat_per_channel __lowerCamelCase = input_channels __lowerCamelCase = conv_channels __lowerCamelCase = ctc_loss_reduction __lowerCamelCase = ctc_zero_infinity # prevents config testing fail with exporting to json __lowerCamelCase = list(__UpperCAmelCase ) __lowerCamelCase = list(__UpperCAmelCase ) if len(self.conv_kernel ) != self.num_conv_layers: raise ValueError( '''Configuration for convolutional module is incorrect. ''' '''It is required that `len(config.conv_kernel)` == `config.num_conv_layers` ''' F"""but is `len(config.conv_kernel) = {len(self.conv_kernel )}`, """ F"""`config.num_conv_layers = {self.num_conv_layers}`.""" )
330
'''simple docstring''' import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand lowerCamelCase : Optional[Any] = ( '4S 3H 2C 7S 5H', '9D 8H 2C 6S 7H', '2D 6D 9D TH 7D', 'TC 8C 2S JH 6C', 'JH 8S TH AH QH', 'TS KS 5S 9S AC', 'KD 6S 9D TH AD', 'KS 8D 4D 9S 4S', # pair '8C 4S KH JS 4D', # pair 'QH 8H KD JH 8S', # pair 'KC 4H KS 2H 8D', # pair 'KD 4S KC 3H 8S', # pair 'AH 8S AS KC JH', # pair '3H 4C 4H 3S 2H', # 2 pairs '5S 5D 2C KH KH', # 2 pairs '3C KH 5D 5S KH', # 2 pairs 'AS 3C KH AD KH', # 2 pairs '7C 7S 3S 7H 5S', # 3 of a kind '7C 7S KH 2H 7H', # 3 of a kind 'AC KH QH AH AS', # 3 of a kind '2H 4D 3C AS 5S', # straight (low ace) '3C 5C 4C 2C 6H', # straight '6S 8S 7S 5H 9H', # straight 'JS QS 9H TS KH', # straight 'QC KH TS JS AH', # straight (high ace) '8C 9C 5C 3C TC', # flush '3S 8S 9S 5S KS', # flush '4C 5C 9C 8C KC', # flush 'JH 8H AH KH QH', # flush '3D 2H 3H 2C 2D', # full house '2H 2C 3S 3H 3D', # full house 'KH KC 3S 3H 3D', # full house 'JC 6H JS JD JH', # 4 of a kind 'JC 7H JS JD JH', # 4 of a kind 'JC KH JS JD JH', # 4 of a kind '2S AS 4S 5S 3S', # straight flush (low ace) '2D 6D 3D 4D 5D', # straight flush '5C 6C 3C 7C 4C', # straight flush 'JH 9H TH KH QH', # straight flush 'JH AH TH KH QH', # royal flush (high ace straight flush) ) lowerCamelCase : Tuple = ( ('2H 3H 4H 5H 6H', 'KS AS TS QS JS', 'Loss'), ('2H 3H 4H 5H 6H', 'AS AD AC AH JD', 'Win'), ('AS AH 2H AD AC', 'JS JD JC JH 3D', 'Win'), ('2S AH 2H AS AC', 'JS JD JC JH AD', 'Loss'), ('2S AH 2H AS AC', '2H 3H 5H 6H 7H', 'Win'), ('AS 3S 4S 8S 2S', '2H 3H 5H 6H 7H', 'Win'), ('2H 3H 5H 6H 7H', '2S 3H 4H 5S 6C', 'Win'), ('2S 3H 4H 5S 6C', '3D 4C 5H 6H 2S', 'Tie'), ('2S 3H 4H 5S 6C', 'AH AC 5H 6H AS', 'Win'), ('2S 2H 4H 5S 4C', 'AH AC 5H 6H AS', 'Loss'), ('2S 2H 4H 5S 4C', 'AH AC 5H 6H 7S', 'Win'), ('6S AD 7H 4S AS', 'AH AC 5H 6H 7S', 'Loss'), ('2S AH 4H 5S KC', 'AH AC 5H 6H 7S', 'Loss'), ('2S 3H 6H 7S 9C', '7H 3C TH 6H 9S', 'Loss'), ('4S 5H 6H TS AC', '3S 5H 6H TS AC', 'Win'), ('2S AH 4H 5S 6C', 'AD 4C 5H 6H 2C', 'Tie'), ('AS AH 3H AD AC', 'AS AH 2H AD AC', 'Win'), ('AH AC 5H 5C QS', 'AH AC 5H 5C KS', 'Loss'), ('AH AC 5H 5C QS', 'KH KC 5H 5C QS', 'Win'), ('7C 7S KH 2H 7H', '3C 3S AH 2H 3H', 'Win'), ('3C 3S AH 2H 3H', '7C 7S KH 2H 7H', 'Loss'), ('6H 5H 4H 3H 2H', '5H 4H 3H 2H AH', 'Win'), ('5H 4H 3H 2H AH', '5H 4H 3H 2H AH', 'Tie'), ('5H 4H 3H 2H AH', '6H 5H 4H 3H 2H', 'Loss'), ('AH AD KS KC AC', 'AH KD KH AC KC', 'Win'), ('2H 4D 3C AS 5S', '2H 4D 3C 6S 5S', 'Loss'), ('2H 3S 3C 3H 2S', '3S 3C 2S 2H 2D', 'Win'), ('4D 6D 5D 2D JH', '3S 8S 3H TC KH', 'Loss'), ('4S 6C 8S 3S 7S', 'AD KS 2D 7D 7C', 'Loss'), ('6S 4C 7H 8C 3H', '5H JC AH 9D 9C', 'Loss'), ('9D 9H JH TC QH', '3C 2S JS 5C 7H', 'Win'), ('2H TC 8S AD 9S', '4H TS 7H 2C 5C', 'Win'), ('9D 3S 2C 7S 7C', 'JC TD 3C TC 9H', 'Loss'), ) lowerCamelCase : Dict = ( ('2H 3H 4H 5H 6H', True), ('AS AH 2H AD AC', False), ('2H 3H 5H 6H 7H', True), ('KS AS TS QS JS', True), ('8H 9H QS JS TH', False), ('AS 3S 4S 8S 2S', True), ) lowerCamelCase : Any = ( ('2H 3H 4H 5H 6H', True), ('AS AH 2H AD AC', False), ('2H 3H 5H 6H 7H', False), ('KS AS TS QS JS', True), ('8H 9H QS JS TH', True), ) lowerCamelCase : Tuple = ( ('2H 4D 3C AS 5S', True, [5, 4, 3, 2, 14]), ('2H 5D 3C AS 5S', False, [14, 5, 5, 3, 2]), ('JH QD KC AS TS', False, [14, 13, 12, 11, 10]), ('9D 3S 2C 7S 7C', False, [9, 7, 7, 3, 2]), ) lowerCamelCase : Optional[int] = ( ('JH AH TH KH QH', 0), ('JH 9H TH KH QH', 0), ('JC KH JS JD JH', 7), ('KH KC 3S 3H 3D', 6), ('8C 9C 5C 3C TC', 0), ('JS QS 9H TS KH', 0), ('7C 7S KH 2H 7H', 3), ('3C KH 5D 5S KH', 2), ('QH 8H KD JH 8S', 1), ('2D 6D 9D TH 7D', 0), ) lowerCamelCase : Dict = ( ('JH AH TH KH QH', 23), ('JH 9H TH KH QH', 22), ('JC KH JS JD JH', 21), ('KH KC 3S 3H 3D', 20), ('8C 9C 5C 3C TC', 19), ('JS QS 9H TS KH', 18), ('7C 7S KH 2H 7H', 17), ('3C KH 5D 5S KH', 16), ('QH 8H KD JH 8S', 15), ('2D 6D 9D TH 7D', 14), ) def _SCREAMING_SNAKE_CASE () -> Union[str, Any]: """simple docstring""" lowercase__ ,lowercase__ = randrange(len(A ) ), randrange(len(A ) ) lowercase__ = ['''Loss''', '''Tie''', '''Win'''][(play >= oppo) + (play > oppo)] lowercase__ ,lowercase__ = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def _SCREAMING_SNAKE_CASE (A = 100 ) -> str: """simple docstring""" return (generate_random_hand() for _ in range(A )) @pytest.mark.parametrize('''hand, expected''' , A ) def _SCREAMING_SNAKE_CASE (A , A ) -> List[str]: """simple docstring""" assert PokerHand(A )._is_flush() == expected @pytest.mark.parametrize('''hand, expected''' , A ) def _SCREAMING_SNAKE_CASE (A , A ) -> Union[str, Any]: """simple docstring""" assert PokerHand(A )._is_straight() == expected @pytest.mark.parametrize('''hand, expected, card_values''' , A ) def _SCREAMING_SNAKE_CASE (A , A , A ) -> Any: """simple docstring""" lowercase__ = PokerHand(A ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize('''hand, expected''' , A ) def _SCREAMING_SNAKE_CASE (A , A ) -> Tuple: """simple docstring""" assert PokerHand(A )._is_same_kind() == expected @pytest.mark.parametrize('''hand, expected''' , A ) def _SCREAMING_SNAKE_CASE (A , A ) -> Optional[Any]: """simple docstring""" assert PokerHand(A )._hand_type == expected @pytest.mark.parametrize('''hand, other, expected''' , A ) def _SCREAMING_SNAKE_CASE (A , A , A ) -> Union[str, Any]: """simple docstring""" assert PokerHand(A ).compare_with(PokerHand(A ) ) == expected @pytest.mark.parametrize('''hand, other, expected''' , generate_random_hands() ) def _SCREAMING_SNAKE_CASE (A , A , A ) -> Optional[Any]: """simple docstring""" assert PokerHand(A ).compare_with(PokerHand(A ) ) == expected def _SCREAMING_SNAKE_CASE () -> Tuple: """simple docstring""" lowercase__ = [PokerHand(A ) for hand in SORTED_HANDS] lowercase__ = poker_hands.copy() shuffle(A ) lowercase__ = chain(sorted(A ) ) for index, hand in enumerate(A ): assert hand == poker_hands[index] def _SCREAMING_SNAKE_CASE () -> List[Any]: """simple docstring""" lowercase__ = [PokerHand('''2D AC 3H 4H 5S''' ), PokerHand('''2S 3H 4H 5S 6C''' )] pokerhands.sort(reverse=A ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def _SCREAMING_SNAKE_CASE () -> int: """simple docstring""" lowercase__ = PokerHand('''2C 4S AS 3D 5C''' ) lowercase__ = True lowercase__ = [5, 4, 3, 2, 14] for _ in range(10 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def _SCREAMING_SNAKE_CASE () -> Union[str, Any]: """simple docstring""" lowercase__ = 0 lowercase__ = os.path.abspath(os.path.dirname(A ) ) lowercase__ = os.path.join(A , '''poker_hands.txt''' ) with open(A ) as file_hand: for line in file_hand: lowercase__ = line[:14].strip() lowercase__ = line[15:].strip() lowercase__ ,lowercase__ = PokerHand(A ), PokerHand(A ) lowercase__ = player.compare_with(A ) if output == "Win": answer += 1 assert answer == 376
2
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __A = {'configuration_plbart': ['PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PLBartConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ['PLBartTokenizer'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ 'PLBART_PRETRAINED_MODEL_ARCHIVE_LIST', 'PLBartForCausalLM', 'PLBartForConditionalGeneration', 'PLBartForSequenceClassification', 'PLBartModel', 'PLBartPreTrainedModel', ] if TYPE_CHECKING: from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_plbart import PLBartTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_plbart import ( PLBART_PRETRAINED_MODEL_ARCHIVE_LIST, PLBartForCausalLM, PLBartForConditionalGeneration, PLBartForSequenceClassification, PLBartModel, PLBartPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure)
90
'''simple docstring''' import argparse import torch from transformers import BertForMaskedLM if __name__ == "__main__": lowerCamelCase : List[str] = argparse.ArgumentParser( description=( 'Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned' ' Distillation' ) ) parser.add_argument('--model_type', default='bert', choices=['bert']) parser.add_argument('--model_name', default='bert-base-uncased', type=str) parser.add_argument('--dump_checkpoint', default='serialization_dir/tf_bert-base-uncased_0247911.pth', type=str) parser.add_argument('--vocab_transform', action='store_true') lowerCamelCase : str = parser.parse_args() if args.model_type == "bert": lowerCamelCase : List[Any] = BertForMaskedLM.from_pretrained(args.model_name) lowerCamelCase : Any = 'bert' else: raise ValueError('args.model_type should be "bert".') lowerCamelCase : int = model.state_dict() lowerCamelCase : int = {} for w in ["word_embeddings", "position_embeddings"]: lowerCamelCase : Any = state_dict[f"""{prefix}.embeddings.{w}.weight"""] for w in ["weight", "bias"]: lowerCamelCase : Any = state_dict[f"""{prefix}.embeddings.LayerNorm.{w}"""] lowerCamelCase : Tuple = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: for w in ["weight", "bias"]: lowerCamelCase : Dict = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}""" ] lowerCamelCase : Dict = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}""" ] lowerCamelCase : List[Any] = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}""" ] lowerCamelCase : Tuple = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}""" ] lowerCamelCase : Optional[int] = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}""" ] lowerCamelCase : Optional[Any] = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}""" ] lowerCamelCase : Dict = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}""" ] lowerCamelCase : Any = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}""" ] std_idx += 1 lowerCamelCase : Optional[int] = state_dict['cls.predictions.decoder.weight'] lowerCamelCase : str = state_dict['cls.predictions.bias'] if args.vocab_transform: for w in ["weight", "bias"]: lowerCamelCase : str = state_dict[f"""cls.predictions.transform.dense.{w}"""] lowerCamelCase : Any = state_dict[f"""cls.predictions.transform.LayerNorm.{w}"""] print(f"""N layers selected for distillation: {std_idx}""") print(f"""Number of params transferred for distillation: {len(compressed_sd.keys())}""") print(f"""Save transferred checkpoint to {args.dump_checkpoint}.""") torch.save(compressed_sd, args.dump_checkpoint)
2
0
from __future__ import annotations import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTForImageClassification, TFViTModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __lowerCAmelCase : def __init__(self , __magic_name__ , __magic_name__=13 , __magic_name__=30 , __magic_name__=2 , __magic_name__=3 , __magic_name__=True , __magic_name__=True , __magic_name__=32 , __magic_name__=2 , __magic_name__=4 , __magic_name__=37 , __magic_name__="gelu" , __magic_name__=0.1 , __magic_name__=0.1 , __magic_name__=10 , __magic_name__=0.02 , __magic_name__=3 , __magic_name__=None , ) -> Any: '''simple docstring''' snake_case_ : Optional[int] = parent snake_case_ : List[str] = batch_size snake_case_ : List[Any] = image_size snake_case_ : Union[str, Any] = patch_size snake_case_ : Tuple = num_channels snake_case_ : List[str] = is_training snake_case_ : Any = use_labels snake_case_ : Union[str, Any] = hidden_size snake_case_ : Tuple = num_hidden_layers snake_case_ : Tuple = num_attention_heads snake_case_ : List[str] = intermediate_size snake_case_ : Dict = hidden_act snake_case_ : int = hidden_dropout_prob snake_case_ : str = attention_probs_dropout_prob snake_case_ : Union[str, Any] = type_sequence_label_size snake_case_ : str = initializer_range snake_case_ : Union[str, Any] = scope # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) snake_case_ : List[str] = (image_size // patch_size) ** 2 snake_case_ : List[str] = num_patches + 1 def lowerCamelCase (self ) -> Optional[int]: '''simple docstring''' snake_case_ : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case_ : List[Any] = None if self.use_labels: snake_case_ : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ : Optional[Any] = self.get_config() return config, pixel_values, labels def lowerCamelCase (self ) -> Any: '''simple docstring''' return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__magic_name__ , initializer_range=self.initializer_range , ) def lowerCamelCase (self , __magic_name__ , __magic_name__ , __magic_name__ ) -> Dict: '''simple docstring''' snake_case_ : Any = TFViTModel(config=__magic_name__ ) snake_case_ : List[Any] = model(__magic_name__ , training=__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # Test with an image with different size than the one specified in config. snake_case_ : List[Any] = self.image_size // 2 snake_case_ : Union[str, Any] = pixel_values[:, :, :image_size, :image_size] snake_case_ : Tuple = model(__magic_name__ , interpolate_pos_encoding=__magic_name__ , training=__magic_name__ ) snake_case_ : Optional[int] = (image_size // self.patch_size) ** 2 + 1 self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, seq_length, self.hidden_size) ) def lowerCamelCase (self , __magic_name__ , __magic_name__ , __magic_name__ ) -> str: '''simple docstring''' snake_case_ : List[Any] = self.type_sequence_label_size snake_case_ : int = TFViTForImageClassification(__magic_name__ ) snake_case_ : Any = model(__magic_name__ , labels=__magic_name__ , training=__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # Test with an image with different size than the one specified in config. snake_case_ : List[str] = self.image_size // 2 snake_case_ : str = pixel_values[:, :, :image_size, :image_size] snake_case_ : Optional[Any] = model(__magic_name__ , interpolate_pos_encoding=__magic_name__ , training=__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images snake_case_ : int = 1 snake_case_ : Union[str, Any] = TFViTForImageClassification(__magic_name__ ) snake_case_ : Tuple = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) snake_case_ : Dict = model(__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCamelCase (self ) -> Dict: '''simple docstring''' snake_case_ : List[str] = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ : str = config_and_inputs snake_case_ : int = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class __lowerCAmelCase ( lowercase_, lowercase_, unittest.TestCase ): lowerCamelCase_ : Optional[Any] = (TFViTModel, TFViTForImageClassification) if is_tf_available() else () lowerCamelCase_ : Tuple = ( {"""feature-extraction""": TFViTModel, """image-classification""": TFViTForImageClassification} if is_tf_available() else {} ) lowerCamelCase_ : Optional[int] = False lowerCamelCase_ : Any = False lowerCamelCase_ : List[str] = False def lowerCamelCase (self ) -> Optional[Any]: '''simple docstring''' snake_case_ : List[Any] = TFViTModelTester(self ) snake_case_ : List[Any] = ConfigTester(self , config_class=__magic_name__ , has_text_modality=__magic_name__ , hidden_size=37 ) def lowerCamelCase (self ) -> Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='''ViT does not use inputs_embeds''' ) def lowerCamelCase (self ) -> List[str]: '''simple docstring''' pass @unittest.skip(reason='''ViT does not use inputs_embeds''' ) def lowerCamelCase (self ) -> List[str]: '''simple docstring''' pass def lowerCamelCase (self ) -> Dict: '''simple docstring''' snake_case_ , snake_case_ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ : str = model_class(__magic_name__ ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) snake_case_ : int = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__magic_name__ , tf.keras.layers.Layer ) ) def lowerCamelCase (self ) -> Optional[Any]: '''simple docstring''' snake_case_ , snake_case_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ : int = model_class(__magic_name__ ) snake_case_ : Dict = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case_ : Tuple = [*signature.parameters.keys()] snake_case_ : List[str] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __magic_name__ ) def lowerCamelCase (self ) -> List[str]: '''simple docstring''' snake_case_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__magic_name__ ) def lowerCamelCase (self ) -> Any: '''simple docstring''' snake_case_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__magic_name__ ) @slow def lowerCamelCase (self ) -> Any: '''simple docstring''' snake_case_ : int = TFViTModel.from_pretrained('''google/vit-base-patch16-224''' ) self.assertIsNotNone(__magic_name__ ) def lowerCamelCase_ ( ) -> List[Any]: """simple docstring""" snake_case_ : Any = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class __lowerCAmelCase ( unittest.TestCase ): @cached_property def lowerCamelCase (self ) -> Optional[int]: '''simple docstring''' return ViTImageProcessor.from_pretrained('''google/vit-base-patch16-224''' ) if is_vision_available() else None @slow def lowerCamelCase (self ) -> Any: '''simple docstring''' snake_case_ : str = TFViTForImageClassification.from_pretrained('''google/vit-base-patch16-224''' ) snake_case_ : int = self.default_image_processor snake_case_ : str = prepare_img() snake_case_ : str = image_processor(images=__magic_name__ , return_tensors='''tf''' ) # forward pass snake_case_ : Tuple = model(**__magic_name__ ) # verify the logits snake_case_ : Optional[Any] = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , __magic_name__ ) snake_case_ : List[Any] = tf.constant([-0.2_744, 0.8_215, -0.0_836] ) tf.debugging.assert_near(outputs.logits[0, :3] , __magic_name__ , atol=1e-4 )
279
'''simple docstring''' from ....utils import logging lowerCamelCase : Optional[Any] = logging.get_logger(__name__) class __lowerCAmelCase (lowercase_ ): '''simple docstring''' def __init__(self : Optional[int] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Optional[Any]=None , UpperCamelCase : int=2048 ): '''simple docstring''' lowercase__ = config.__dict__ lowercase__ = modal_hidden_size if num_labels: lowercase__ = num_labels
2
0
'''simple docstring''' import torch from torch import nn class _lowercase ( nn.Module ): def __init__( self: Optional[Any] , UpperCamelCase__: str , UpperCamelCase__: Union[str, Any] , UpperCamelCase__: Tuple , UpperCamelCase__: Any , UpperCamelCase__: int=1 , UpperCamelCase__: List[str]=False ): super().__init__() lowerCamelCase__ : Union[str, Any] = n_token lowerCamelCase__ : List[str] = d_embed lowerCamelCase__ : Dict = d_proj lowerCamelCase__ : Optional[Any] = cutoffs + [n_token] lowerCamelCase__ : List[Any] = [0] + self.cutoffs lowerCamelCase__ : Tuple = div_val lowerCamelCase__ : str = self.cutoffs[0] lowerCamelCase__ : int = len(self.cutoffs ) - 1 lowerCamelCase__ : List[str] = self.shortlist_size + self.n_clusters if self.n_clusters > 0: lowerCamelCase__ : Optional[Any] = nn.Parameter(torch.zeros(self.n_clusters , self.d_embed ) ) lowerCamelCase__ : Dict = nn.Parameter(torch.zeros(self.n_clusters ) ) lowerCamelCase__ : Dict = nn.ModuleList() lowerCamelCase__ : Optional[Any] = nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs ) ): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(UpperCamelCase__ , UpperCamelCase__ ) ) ) else: self.out_projs.append(UpperCamelCase__ ) self.out_layers.append(nn.Linear(UpperCamelCase__ , UpperCamelCase__ ) ) else: for i in range(len(self.cutoffs ) ): lowerCamelCase__ , lowerCamelCase__ : str = self.cutoff_ends[i], self.cutoff_ends[i + 1] lowerCamelCase__ : int = d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(UpperCamelCase__ , UpperCamelCase__ ) ) ) self.out_layers.append(nn.Linear(UpperCamelCase__ , r_idx - l_idx ) ) lowerCamelCase__ : Tuple = keep_order def lowerCamelCase_ ( self: str , UpperCamelCase__: str , UpperCamelCase__: Dict , UpperCamelCase__: Union[str, Any] , UpperCamelCase__: Union[str, Any] ): if proj is None: lowerCamelCase__ : List[Any] = nn.functional.linear(UpperCamelCase__ , UpperCamelCase__ , bias=UpperCamelCase__ ) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: lowerCamelCase__ : int = nn.functional.linear(UpperCamelCase__ , proj.t().contiguous() ) lowerCamelCase__ : Dict = nn.functional.linear(UpperCamelCase__ , UpperCamelCase__ , bias=UpperCamelCase__ ) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def lowerCamelCase_ ( self: Optional[Any] , UpperCamelCase__: List[Any] , UpperCamelCase__: List[str]=None , UpperCamelCase__: Tuple=False ): if labels is not None: # Shift so that tokens < n predict n lowerCamelCase__ : Dict = hidden[..., :-1, :].contiguous() lowerCamelCase__ : List[Any] = labels[..., 1:].contiguous() lowerCamelCase__ : List[Any] = hidden.view(-1 , hidden.size(-1 ) ) lowerCamelCase__ : int = labels.view(-1 ) if hidden.size(0 ) != labels.size(0 ): raise RuntimeError("""Input and labels should have the same size in the batch dimension.""" ) else: lowerCamelCase__ : Optional[Any] = hidden.view(-1 , hidden.size(-1 ) ) if self.n_clusters == 0: lowerCamelCase__ : str = self._compute_logit(UpperCamelCase__ , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) if labels is not None: lowerCamelCase__ : Optional[Any] = labels != -100 lowerCamelCase__ : Tuple = torch.zeros_like(UpperCamelCase__ , dtype=hidden.dtype , device=hidden.device ) lowerCamelCase__ : Union[str, Any] = ( -nn.functional.log_softmax(UpperCamelCase__ , dim=-1 )[mask].gather(1 , labels[mask].unsqueeze(1 ) ).squeeze(1 ) ) else: lowerCamelCase__ : Union[str, Any] = nn.functional.log_softmax(UpperCamelCase__ , dim=-1 ) else: # construct weights and biases lowerCamelCase__ , lowerCamelCase__ : Tuple = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: lowerCamelCase__ , lowerCamelCase__ : str = self.cutoff_ends[i], self.cutoff_ends[i + 1] lowerCamelCase__ : List[Any] = self.out_layers[0].weight[l_idx:r_idx] lowerCamelCase__ : str = self.out_layers[0].bias[l_idx:r_idx] else: lowerCamelCase__ : Union[str, Any] = self.out_layers[i].weight lowerCamelCase__ : Tuple = self.out_layers[i].bias if i == 0: lowerCamelCase__ : int = torch.cat([weight_i, self.cluster_weight] , dim=0 ) lowerCamelCase__ : Union[str, Any] = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(UpperCamelCase__ ) biases.append(UpperCamelCase__ ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : List[Any] = weights[0], biases[0], self.out_projs[0] lowerCamelCase__ : int = self._compute_logit(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase__ : Any = nn.functional.log_softmax(UpperCamelCase__ , dim=1 ) if labels is None: lowerCamelCase__ : Optional[int] = hidden.new_empty((head_logit.size(0 ), self.n_token) ) else: lowerCamelCase__ : str = torch.zeros_like(UpperCamelCase__ , dtype=hidden.dtype , device=hidden.device ) lowerCamelCase__ : Union[str, Any] = 0 lowerCamelCase__ : Union[str, Any] = [0] + self.cutoffs for i in range(len(UpperCamelCase__ ) - 1 ): lowerCamelCase__ , lowerCamelCase__ : Tuple = cutoff_values[i], cutoff_values[i + 1] if labels is not None: lowerCamelCase__ : int = (labels >= l_idx) & (labels < r_idx) lowerCamelCase__ : Union[str, Any] = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue lowerCamelCase__ : Optional[int] = labels.index_select(0 , UpperCamelCase__ ) - l_idx lowerCamelCase__ : Optional[int] = head_logprob.index_select(0 , UpperCamelCase__ ) lowerCamelCase__ : str = hidden.index_select(0 , UpperCamelCase__ ) else: lowerCamelCase__ : str = hidden if i == 0: if labels is not None: lowerCamelCase__ : List[Any] = head_logprob_i.gather(1 , target_i[:, None] ).squeeze(1 ) else: lowerCamelCase__ : Tuple = head_logprob[:, : self.cutoffs[0]] else: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : int = weights[i], biases[i], self.out_projs[i] lowerCamelCase__ : Any = self._compute_logit(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase__ : Union[str, Any] = nn.functional.log_softmax(UpperCamelCase__ , dim=1 ) lowerCamelCase__ : Optional[Any] = self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: lowerCamelCase__ : Union[str, Any] = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1 , target_i[:, None] ).squeeze(1 ) else: lowerCamelCase__ : Optional[Any] = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i lowerCamelCase__ : Dict = logprob_i if labels is not None: if (hasattr(self , """keep_order""" ) and self.keep_order) or keep_order: out.index_copy_(0 , UpperCamelCase__ , -logprob_i ) else: out[offset : offset + logprob_i.size(0 )].copy_(-logprob_i ) offset += logprob_i.size(0 ) return out def lowerCamelCase_ ( self: List[str] , UpperCamelCase__: Tuple ): if self.n_clusters == 0: lowerCamelCase__ : Tuple = self._compute_logit(UpperCamelCase__ , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) return nn.functional.log_softmax(UpperCamelCase__ , dim=-1 ) else: # construct weights and biases lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: lowerCamelCase__ , lowerCamelCase__ : Dict = self.cutoff_ends[i], self.cutoff_ends[i + 1] lowerCamelCase__ : int = self.out_layers[0].weight[l_idx:r_idx] lowerCamelCase__ : List[Any] = self.out_layers[0].bias[l_idx:r_idx] else: lowerCamelCase__ : List[str] = self.out_layers[i].weight lowerCamelCase__ : Optional[Any] = self.out_layers[i].bias if i == 0: lowerCamelCase__ : Union[str, Any] = torch.cat([weight_i, self.cluster_weight] , dim=0 ) lowerCamelCase__ : str = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(UpperCamelCase__ ) biases.append(UpperCamelCase__ ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Tuple = weights[0], biases[0], self.out_projs[0] lowerCamelCase__ : Tuple = self._compute_logit(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase__ : int = hidden.new_empty((head_logit.size(0 ), self.n_token) ) lowerCamelCase__ : Optional[Any] = nn.functional.log_softmax(UpperCamelCase__ , dim=1 ) lowerCamelCase__ : List[str] = [0] + self.cutoffs for i in range(len(UpperCamelCase__ ) - 1 ): lowerCamelCase__ , lowerCamelCase__ : Tuple = cutoff_values[i], cutoff_values[i + 1] if i == 0: lowerCamelCase__ : Union[str, Any] = head_logprob[:, : self.cutoffs[0]] else: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : List[Any] = weights[i], biases[i], self.out_projs[i] lowerCamelCase__ : List[Any] = self._compute_logit(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase__ : Optional[int] = nn.functional.log_softmax(UpperCamelCase__ , dim=1 ) lowerCamelCase__ : List[str] = head_logprob[:, -i] + tail_logprob_i lowerCamelCase__ : int = logprob_i return out
41
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Tuple = logging.get_logger(__name__) lowerCamelCase : Dict = { 'microsoft/cvt-13': 'https://huggingface.co/microsoft/cvt-13/resolve/main/config.json', # See all Cvt models at https://huggingface.co/models?filter=cvt } class __lowerCAmelCase (lowercase_ ): '''simple docstring''' lowerCAmelCase__ : Tuple = """cvt""" def __init__(self : int , UpperCamelCase : List[Any]=3 , UpperCamelCase : int=[7, 3, 3] , UpperCamelCase : str=[4, 2, 2] , UpperCamelCase : Dict=[2, 1, 1] , UpperCamelCase : Dict=[64, 192, 384] , UpperCamelCase : Dict=[1, 3, 6] , UpperCamelCase : Dict=[1, 2, 10] , UpperCamelCase : Any=[4.0, 4.0, 4.0] , UpperCamelCase : Optional[int]=[0.0, 0.0, 0.0] , UpperCamelCase : Optional[int]=[0.0, 0.0, 0.0] , UpperCamelCase : int=[0.0, 0.0, 0.1] , UpperCamelCase : Any=[True, True, True] , UpperCamelCase : int=[False, False, True] , UpperCamelCase : Union[str, Any]=["dw_bn", "dw_bn", "dw_bn"] , UpperCamelCase : Optional[int]=[3, 3, 3] , UpperCamelCase : Tuple=[1, 1, 1] , UpperCamelCase : Any=[2, 2, 2] , UpperCamelCase : Dict=[1, 1, 1] , UpperCamelCase : List[str]=[1, 1, 1] , UpperCamelCase : str=0.02 , UpperCamelCase : int=1E-12 , **UpperCamelCase : Union[str, Any] , ): '''simple docstring''' super().__init__(**UpperCamelCase ) lowercase__ = num_channels lowercase__ = patch_sizes lowercase__ = patch_stride lowercase__ = patch_padding lowercase__ = embed_dim lowercase__ = num_heads lowercase__ = depth lowercase__ = mlp_ratio lowercase__ = attention_drop_rate lowercase__ = drop_rate lowercase__ = drop_path_rate lowercase__ = qkv_bias lowercase__ = cls_token lowercase__ = qkv_projection_method lowercase__ = kernel_qkv lowercase__ = padding_kv lowercase__ = stride_kv lowercase__ = padding_q lowercase__ = stride_q lowercase__ = initializer_range lowercase__ = layer_norm_eps
2
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase : Tuple = logging.get_logger(__name__) lowercase : Any = { 'microsoft/markuplm-base': 'https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json', 'microsoft/markuplm-large': 'https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json', } class A ( lowercase_ ): __magic_name__ = """markuplm""" def __init__( self , SCREAMING_SNAKE_CASE=30522 , SCREAMING_SNAKE_CASE=768 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE=3072 , SCREAMING_SNAKE_CASE="gelu" , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=512 , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE=0.02 , SCREAMING_SNAKE_CASE=1e-12 , SCREAMING_SNAKE_CASE=0 , SCREAMING_SNAKE_CASE=0 , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE=256 , SCREAMING_SNAKE_CASE=1024 , SCREAMING_SNAKE_CASE=216 , SCREAMING_SNAKE_CASE=1001 , SCREAMING_SNAKE_CASE=32 , SCREAMING_SNAKE_CASE=50 , SCREAMING_SNAKE_CASE="absolute" , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=None , **SCREAMING_SNAKE_CASE , ) -> Any: """simple docstring""" super().__init__( pad_token_id=SCREAMING_SNAKE_CASE , bos_token_id=SCREAMING_SNAKE_CASE , eos_token_id=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) A : Optional[Any] = vocab_size A : List[str] = hidden_size A : Dict = num_hidden_layers A : Tuple = num_attention_heads A : int = hidden_act A : Tuple = intermediate_size A : str = hidden_dropout_prob A : Union[str, Any] = attention_probs_dropout_prob A : Optional[int] = max_position_embeddings A : str = type_vocab_size A : int = initializer_range A : Dict = layer_norm_eps A : Dict = position_embedding_type A : Optional[int] = use_cache A : Optional[int] = classifier_dropout # additional properties A : Any = max_depth A : Union[str, Any] = max_xpath_tag_unit_embeddings A : str = max_xpath_subs_unit_embeddings A : int = tag_pad_id A : Union[str, Any] = subs_pad_id A : Union[str, Any] = xpath_unit_hidden_size
3
'''simple docstring''' import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) lowerCamelCase : Any = models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(32, (3, 3), input_shape=(64, 64, 3), activation='relu') ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(32, (3, 3), activation='relu')) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=128, activation='relu')) classifier.add(layers.Dense(units=1, activation='sigmoid')) # Compiling the CNN classifier.compile( optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') lowerCamelCase : Optional[Any] = tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) lowerCamelCase : Any = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 255) lowerCamelCase : List[Any] = train_datagen.flow_from_directory( 'dataset/training_set', target_size=(64, 64), batch_size=32, class_mode='binary' ) lowerCamelCase : List[str] = test_datagen.flow_from_directory( 'dataset/test_set', target_size=(64, 64), batch_size=32, class_mode='binary' ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=30, validation_data=test_set ) classifier.save('cnn.h5') # Part 3 - Making new predictions lowerCamelCase : List[str] = tf.keras.preprocessing.image.load_img( 'dataset/single_prediction/image.png', target_size=(64, 64) ) lowerCamelCase : Optional[int] = tf.keras.preprocessing.image.img_to_array(test_image) lowerCamelCase : str = np.expand_dims(test_image, axis=0) lowerCamelCase : List[str] = classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: lowerCamelCase : Any = 'Normal' if result[0][0] == 1: lowerCamelCase : Any = 'Abnormality detected'
2
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging A =logging.get_logger(__name__) A ={ 'google/realm-cc-news-pretrained-embedder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-encoder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-scorer': ( 'https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-openqa': ( 'https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json' ), 'google/realm-orqa-nq-openqa': 'https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json', 'google/realm-orqa-nq-reader': 'https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json', 'google/realm-orqa-wq-openqa': 'https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json', 'google/realm-orqa-wq-reader': 'https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json', # See all REALM models at https://huggingface.co/models?filter=realm } class _a ( lowercase_ ): __a : Optional[int] = """realm""" def __init__( self : str , lowercase : List[Any]=30_522 , lowercase : List[Any]=768 , lowercase : int=128 , lowercase : Any=12 , lowercase : Tuple=12 , lowercase : List[Any]=8 , lowercase : Union[str, Any]=3_072 , lowercase : List[str]="gelu_new" , lowercase : Any=0.1 , lowercase : List[str]=0.1 , lowercase : Dict=512 , lowercase : Dict=2 , lowercase : List[Any]=0.02 , lowercase : List[Any]=1E-12 , lowercase : Dict=256 , lowercase : Union[str, Any]=10 , lowercase : Optional[int]=1E-3 , lowercase : Tuple=5 , lowercase : Optional[int]=320 , lowercase : List[str]=13_353_718 , lowercase : Optional[Any]=5_000 , lowercase : str=1 , lowercase : Union[str, Any]=0 , lowercase : List[Any]=2 , **lowercase : int , ): '''simple docstring''' super().__init__(pad_token_id=lowercase , bos_token_id=lowercase , eos_token_id=lowercase , **lowercase ) # Common config UpperCAmelCase = vocab_size UpperCAmelCase = max_position_embeddings UpperCAmelCase = hidden_size UpperCAmelCase = retriever_proj_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = num_candidates UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_act UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = initializer_range UpperCAmelCase = type_vocab_size UpperCAmelCase = layer_norm_eps # Reader config UpperCAmelCase = span_hidden_size UpperCAmelCase = max_span_width UpperCAmelCase = reader_layer_norm_eps UpperCAmelCase = reader_beam_size UpperCAmelCase = reader_seq_len # Retrieval config UpperCAmelCase = num_block_records UpperCAmelCase = searcher_beam_size
34
'''simple docstring''' class __lowerCAmelCase : # Public class to implement a graph '''simple docstring''' def __init__(self : int , UpperCamelCase : int , UpperCamelCase : int , UpperCamelCase : list[list[bool]] ): '''simple docstring''' lowercase__ = row lowercase__ = col lowercase__ = graph def UpperCamelCase__ (self : Optional[int] , UpperCamelCase : int , UpperCamelCase : int , UpperCamelCase : list[list[bool]] ): '''simple docstring''' return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def UpperCamelCase__ (self : int , UpperCamelCase : int , UpperCamelCase : int , UpperCamelCase : list[list[bool]] ): '''simple docstring''' lowercase__ = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order lowercase__ = [-1, 0, 1, -1, 1, -1, 0, 1] lowercase__ = True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , UpperCamelCase ): self.diffs(i + row_nbr[k] , j + col_nbr[k] , UpperCamelCase ) def UpperCamelCase__ (self : Dict ): # And finally, count all islands. '''simple docstring''' lowercase__ = [[False for j in range(self.COL )] for i in range(self.ROW )] lowercase__ = 0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(UpperCamelCase , UpperCamelCase , UpperCamelCase ) count += 1 return count
2
0
'''simple docstring''' import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) UpperCAmelCase = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', F'''encoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', F'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.weight''', F'''encoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.bias''', F'''encoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.weight''', F'''encoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.bias''', F'''encoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm1.weight''', F'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm1.bias''', F'''encoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.weight''', F'''encoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.bias''', F'''encoder.layers.{i}.final_layer_norm.bias''')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', F'''decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', F'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.cross_attn.out_proj.weight''', F'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.cross_attn.out_proj.bias''', F'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.weight''', F'''decoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.bias''', F'''decoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.weight''', F'''decoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.bias''', F'''decoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm1.weight''', F'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm1.bias''', F'''decoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.weight''', F'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.bias''', F'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.weight''', F'''decoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.bias''', F'''decoder.layers.{i}.final_layer_norm.bias''')) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qcontent_proj.weight''', F'''decoder.layers.{i}.sa_qcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kcontent_proj.weight''', F'''decoder.layers.{i}.sa_kcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qpos_proj.weight''', F'''decoder.layers.{i}.sa_qpos_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kpos_proj.weight''', F'''decoder.layers.{i}.sa_kpos_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_v_proj.weight''', F'''decoder.layers.{i}.sa_v_proj.weight''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qcontent_proj.weight''', F'''decoder.layers.{i}.ca_qcontent_proj.weight''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kcontent_proj.weight''', F'''decoder.layers.{i}.ca_kcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kpos_proj.weight''', F'''decoder.layers.{i}.ca_kpos_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_v_proj.weight''', F'''decoder.layers.{i}.ca_v_proj.weight''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight''', F'''decoder.layers.{i}.ca_qpos_sine_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qcontent_proj.bias''', F'''decoder.layers.{i}.sa_qcontent_proj.bias''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kcontent_proj.bias''', F'''decoder.layers.{i}.sa_kcontent_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_qpos_proj.bias''', F'''decoder.layers.{i}.sa_qpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_kpos_proj.bias''', F'''decoder.layers.{i}.sa_kpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_v_proj.bias''', F'''decoder.layers.{i}.sa_v_proj.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qcontent_proj.bias''', F'''decoder.layers.{i}.ca_qcontent_proj.bias''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kcontent_proj.bias''', F'''decoder.layers.{i}.ca_kcontent_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_kpos_proj.bias''', F'''decoder.layers.{i}.ca_kpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_v_proj.bias''', F'''decoder.layers.{i}.ca_v_proj.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias''', F'''decoder.layers.{i}.ca_qpos_sine_proj.bias''') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ('''input_proj.weight''', '''input_projection.weight'''), ('''input_proj.bias''', '''input_projection.bias'''), ('''query_embed.weight''', '''query_position_embeddings.weight'''), ('''transformer.decoder.norm.weight''', '''decoder.layernorm.weight'''), ('''transformer.decoder.norm.bias''', '''decoder.layernorm.bias'''), ('''class_embed.weight''', '''class_labels_classifier.weight'''), ('''class_embed.bias''', '''class_labels_classifier.bias'''), ('''bbox_embed.layers.0.weight''', '''bbox_predictor.layers.0.weight'''), ('''bbox_embed.layers.0.bias''', '''bbox_predictor.layers.0.bias'''), ('''bbox_embed.layers.1.weight''', '''bbox_predictor.layers.1.weight'''), ('''bbox_embed.layers.1.bias''', '''bbox_predictor.layers.1.bias'''), ('''bbox_embed.layers.2.weight''', '''bbox_predictor.layers.2.weight'''), ('''bbox_embed.layers.2.bias''', '''bbox_predictor.layers.2.bias'''), ('''transformer.decoder.ref_point_head.layers.0.weight''', '''decoder.ref_point_head.layers.0.weight'''), ('''transformer.decoder.ref_point_head.layers.0.bias''', '''decoder.ref_point_head.layers.0.bias'''), ('''transformer.decoder.ref_point_head.layers.1.weight''', '''decoder.ref_point_head.layers.1.weight'''), ('''transformer.decoder.ref_point_head.layers.1.bias''', '''decoder.ref_point_head.layers.1.bias'''), ('''transformer.decoder.query_scale.layers.0.weight''', '''decoder.query_scale.layers.0.weight'''), ('''transformer.decoder.query_scale.layers.0.bias''', '''decoder.query_scale.layers.0.bias'''), ('''transformer.decoder.query_scale.layers.1.weight''', '''decoder.query_scale.layers.1.weight'''), ('''transformer.decoder.query_scale.layers.1.bias''', '''decoder.query_scale.layers.1.bias'''), ('''transformer.decoder.layers.0.ca_qpos_proj.weight''', '''decoder.layers.0.ca_qpos_proj.weight'''), ('''transformer.decoder.layers.0.ca_qpos_proj.bias''', '''decoder.layers.0.ca_qpos_proj.bias'''), ] ) def __UpperCamelCase ( lowercase__ : Union[str, Any], lowercase__ : Dict, lowercase__ : Any ): '''simple docstring''' __lowercase =state_dict.pop(lowercase__ ) __lowercase =val def __UpperCamelCase ( lowercase__ : int ): '''simple docstring''' __lowercase =OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: __lowercase =key.replace('backbone.0.body', 'backbone.conv_encoder.model' ) __lowercase =value else: __lowercase =value return new_state_dict def __UpperCamelCase ( lowercase__ : Any, lowercase__ : Dict=False ): '''simple docstring''' __lowercase ='' if is_panoptic: __lowercase ='conditional_detr.' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) __lowercase =state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' ) __lowercase =state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict __lowercase =in_proj_weight[:2_56, :] __lowercase =in_proj_bias[:2_56] __lowercase =in_proj_weight[2_56:5_12, :] __lowercase =in_proj_bias[2_56:5_12] __lowercase =in_proj_weight[-2_56:, :] __lowercase =in_proj_bias[-2_56:] def __UpperCamelCase ( ): '''simple docstring''' __lowercase ='http://images.cocodataset.org/val2017/000000039769.jpg' __lowercase =Image.open(requests.get(lowercase__, stream=lowercase__ ).raw ) return im @torch.no_grad() def __UpperCamelCase ( lowercase__ : List[Any], lowercase__ : Tuple ): '''simple docstring''' __lowercase =ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: __lowercase ='resnet101' if "dc5" in model_name: __lowercase =True __lowercase ='panoptic' in model_name if is_panoptic: __lowercase =2_50 else: __lowercase =91 __lowercase ='huggingface/label-files' __lowercase ='coco-detection-id2label.json' __lowercase =json.load(open(hf_hub_download(lowercase__, lowercase__, repo_type='dataset' ), 'r' ) ) __lowercase ={int(lowercase__ ): v for k, v in idalabel.items()} __lowercase =idalabel __lowercase ={v: k for k, v in idalabel.items()} # load image processor __lowercase ='coco_panoptic' if is_panoptic else 'coco_detection' __lowercase =ConditionalDetrImageProcessor(format=lowercase__ ) # prepare image __lowercase =prepare_img() __lowercase =image_processor(images=lowercase__, return_tensors='pt' ) __lowercase =encoding['pixel_values'] logger.info(F'''Converting model {model_name}...''' ) # load original model from torch hub __lowercase =torch.hub.load('DeppMeng/ConditionalDETR', lowercase__, pretrained=lowercase__ ).eval() __lowercase =conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: __lowercase ='conditional_detr.' + src rename_key(lowercase__, lowercase__, lowercase__ ) __lowercase =rename_backbone_keys(lowercase__ ) # query, key and value matrices need special treatment read_in_q_k_v(lowercase__, is_panoptic=lowercase__ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them __lowercase ='conditional_detr.model.' if is_panoptic else 'model.' for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith('conditional_detr' ) and not key.startswith('class_labels_classifier' ) and not key.startswith('bbox_predictor' ) ): __lowercase =state_dict.pop(lowercase__ ) __lowercase =val elif "class_labels_classifier" in key or "bbox_predictor" in key: __lowercase =state_dict.pop(lowercase__ ) __lowercase =val elif key.startswith('bbox_attention' ) or key.startswith('mask_head' ): continue else: __lowercase =state_dict.pop(lowercase__ ) __lowercase =val else: if not key.startswith('class_labels_classifier' ) and not key.startswith('bbox_predictor' ): __lowercase =state_dict.pop(lowercase__ ) __lowercase =val # finally, create HuggingFace model and load state dict __lowercase =ConditionalDetrForSegmentation(lowercase__ ) if is_panoptic else ConditionalDetrForObjectDetection(lowercase__ ) model.load_state_dict(lowercase__ ) model.eval() model.push_to_hub(repo_id=lowercase__, organization='DepuMeng', commit_message='Add model' ) # verify our conversion __lowercase =conditional_detr(lowercase__ ) __lowercase =model(lowercase__ ) assert torch.allclose(outputs.logits, original_outputs['pred_logits'], atol=1E-4 ) assert torch.allclose(outputs.pred_boxes, original_outputs['pred_boxes'], atol=1E-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks, original_outputs['pred_masks'], atol=1E-4 ) # Save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(lowercase__ ).mkdir(exist_ok=lowercase__ ) model.save_pretrained(lowercase__ ) image_processor.save_pretrained(lowercase__ ) if __name__ == "__main__": UpperCAmelCase = argparse.ArgumentParser() parser.add_argument( '''--model_name''', default='''conditional_detr_resnet50''', type=str, help='''Name of the CONDITIONAL_DETR model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) UpperCAmelCase = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
141
'''simple docstring''' import unittest from transformers import DonutProcessor lowerCamelCase : Tuple = 'naver-clova-ix/donut-base' class __lowerCAmelCase (unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ (self : int ): '''simple docstring''' lowercase__ = DonutProcessor.from_pretrained(UpperCamelCase ) def UpperCamelCase__ (self : Tuple ): '''simple docstring''' lowercase__ = { '''name''': '''John Doe''', '''age''': '''99''', '''city''': '''Atlanta''', '''state''': '''GA''', '''zip''': '''30301''', '''phone''': '''123-4567''', '''nicknames''': [{'''nickname''': '''Johnny'''}, {'''nickname''': '''JD'''}], } lowercase__ = ( '''<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>''' '''<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>''' '''<s_nicknames><s_nickname>Johnny</s_nickname>''' '''<sep/><s_nickname>JD</s_nickname></s_nicknames>''' ) lowercase__ = self.processor.tokenajson(UpperCamelCase ) self.assertDictEqual(UpperCamelCase , UpperCamelCase )
2
0
import requests from bsa import BeautifulSoup def lowerCAmelCase__ ( lowerCamelCase_ : List[str] = "https://www.worldometers.info/coronavirus"): '''simple docstring''' lowerCAmelCase__ : Tuple = BeautifulSoup(requests.get(lowerCamelCase_).text ,'''html.parser''') lowerCAmelCase__ : Optional[int] = soup.findAll('''h1''') lowerCAmelCase__ : str = soup.findAll('''div''' ,{'''class''': '''maincounter-number'''}) keys += soup.findAll('''span''' ,{'''class''': '''panel-title'''}) values += soup.findAll('''div''' ,{'''class''': '''number-table-main'''}) return {key.text.strip(): value.text.strip() for key, value in zip(lowerCamelCase_ ,lowerCamelCase_)} if __name__ == "__main__": print('\033[1m' + 'COVID-19 Status of the World' + '\033[0m\n') for key, value in world_covidaa_stats().items(): print(f"""{key}\n{value}\n""")
129
'''simple docstring''' from __future__ import annotations def _SCREAMING_SNAKE_CASE (A ) -> bool: """simple docstring""" return len(set(A ) ) == len(A ) if __name__ == "__main__": import doctest doctest.testmod()
2
0
"""simple docstring""" def lowercase ( _snake_case : int , _snake_case : Dict ) ->int: """simple docstring""" while second != 0: __snake_case : Any = first & second first ^= second __snake_case : str = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() SCREAMING_SNAKE_CASE : Tuple = int(input("""Enter the first number: """).strip()) SCREAMING_SNAKE_CASE : List[str] = int(input("""Enter the second number: """).strip()) print(F'{add(first, second) = }')
102
'''simple docstring''' import os import re import warnings from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_ta import TaTokenizer else: lowerCamelCase : Any = None lowerCamelCase : Dict = logging.get_logger(__name__) lowerCamelCase : Optional[int] = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} lowerCamelCase : List[str] = { 'vocab_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/spiece.model', 't5-base': 'https://huggingface.co/t5-base/resolve/main/spiece.model', 't5-large': 'https://huggingface.co/t5-large/resolve/main/spiece.model', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/spiece.model', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/spiece.model', }, 'tokenizer_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/tokenizer.json', 't5-base': 'https://huggingface.co/t5-base/resolve/main/tokenizer.json', 't5-large': 'https://huggingface.co/t5-large/resolve/main/tokenizer.json', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/tokenizer.json', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/tokenizer.json', }, } # TODO(PVP) - this should be removed in Transformers v5 lowerCamelCase : Any = { 't5-small': 512, 't5-base': 512, 't5-large': 512, 't5-3b': 512, 't5-11b': 512, } class __lowerCAmelCase (lowercase_ ): '''simple docstring''' lowerCAmelCase__ : List[str] = VOCAB_FILES_NAMES lowerCAmelCase__ : str = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ : int = ["""input_ids""", """attention_mask"""] lowerCAmelCase__ : Optional[int] = TaTokenizer lowerCAmelCase__ : List[int] = [] def __init__(self : Dict , UpperCamelCase : str=None , UpperCamelCase : Optional[Any]=None , UpperCamelCase : Any="</s>" , UpperCamelCase : str="<unk>" , UpperCamelCase : List[str]="<pad>" , UpperCamelCase : List[str]=100 , UpperCamelCase : Tuple=None , **UpperCamelCase : List[str] , ): '''simple docstring''' if extra_ids > 0 and additional_special_tokens is None: lowercase__ = [f"<extra_id_{i}>" for i in range(UpperCamelCase )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra special tokens lowercase__ = len(set(filter(lambda UpperCamelCase : bool('''extra_id_''' in str(UpperCamelCase ) ) , UpperCamelCase ) ) ) if extra_tokens != extra_ids: raise ValueError( f"Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are" ''' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids''' ''' tokens''' ) super().__init__( UpperCamelCase , tokenizer_file=UpperCamelCase , eos_token=UpperCamelCase , unk_token=UpperCamelCase , pad_token=UpperCamelCase , extra_ids=UpperCamelCase , additional_special_tokens=UpperCamelCase , **UpperCamelCase , ) lowercase__ = vocab_file lowercase__ = False if not self.vocab_file else True lowercase__ = extra_ids @staticmethod def UpperCamelCase__ (UpperCamelCase : List[Any] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Optional[Any] ): '''simple docstring''' if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes: lowercase__ = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( '''This tokenizer was incorrectly instantiated with a model max length of''' f" {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this" ''' behavior is kept to avoid breaking backwards compatibility when padding/encoding with''' ''' `truncation is True`.\n- Be aware that you SHOULD NOT rely on''' f" {pretrained_model_name_or_path} automatically truncating your input to" f" {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences" f" longer than {deprecated_max_model_length} you can either instantiate this tokenizer with" ''' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please''' ''' instantiate this tokenizer with `model_max_length` set to your preferred value.''' , UpperCamelCase , ) return max_model_length def UpperCamelCase__ (self : Any , UpperCamelCase : str , UpperCamelCase : Optional[str] = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(UpperCamelCase ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return lowercase__ = os.path.join( UpperCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase ): copyfile(self.vocab_file , UpperCamelCase ) logger.info(f"Copy vocab file to {out_vocab_file}" ) return (out_vocab_file,) def UpperCamelCase__ (self : Any , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None ): '''simple docstring''' lowercase__ = token_ids_a + [self.eos_token_id] if token_ids_a is None: return self.prefix_tokens + token_ids_a else: lowercase__ = token_ids_a + [self.eos_token_id] return self.prefix_tokens + token_ids_a + token_ids_a def UpperCamelCase__ (self : Optional[Any] , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None ): '''simple docstring''' lowercase__ = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def UpperCamelCase__ (self : List[Any] ): '''simple docstring''' return list( set(filter(lambda UpperCamelCase : bool(re.search(R'''<extra_id_\d+>''' , UpperCamelCase ) ) is not None , self.additional_special_tokens ) ) ) def UpperCamelCase__ (self : Union[str, Any] ): '''simple docstring''' return [self.convert_tokens_to_ids(UpperCamelCase ) for token in self.get_sentinel_tokens()]
2
0
import doctest import sys import warnings from os.path import abspath, dirname, join import _pytest from transformers.testing_utils import HfDoctestModule, HfDocTestParser # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. A_ :Any = abspath(join(dirname(__file__), '''src''')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='''ignore''', category=FutureWarning) def A ( a_ ) -> Optional[Any]: config.addinivalue_line( 'markers' ,'is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested' ) config.addinivalue_line( 'markers' ,'is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested' ) config.addinivalue_line('markers' ,'is_pipeline_test: mark test to run only when pipelines are tested' ) config.addinivalue_line('markers' ,'is_staging_test: mark test to run only in the staging environment' ) config.addinivalue_line('markers' ,'accelerate_tests: mark test that require accelerate' ) config.addinivalue_line('markers' ,'tool_tests: mark the tool tests that are run on their specific schedule' ) def A ( a_ ) -> Optional[Any]: from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(a_ ) def A ( a_ ) -> List[Any]: from transformers.testing_utils import pytest_terminal_summary_main __UpperCamelCase : Optional[int] =terminalreporter.config.getoption('--make-reports' ) if make_reports: pytest_terminal_summary_main(a_ ,id=a_ ) def A ( a_ ,a_ ) -> Optional[Any]: if exitstatus == 5: __UpperCamelCase : Optional[int] =0 # Doctest custom flag to ignore output. A_ :Optional[Any] = doctest.register_optionflag('''IGNORE_RESULT''') A_ :Optional[Any] = doctest.OutputChecker class __A ( lowercase_ ): """simple docstring""" def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" if IGNORE_RESULT & optionflags: return True return OutputChecker.check_output(self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) A_ :int = CustomOutputChecker A_ :List[Any] = HfDoctestModule A_ :Any = HfDocTestParser
71
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class __lowerCAmelCase (lowercase_ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ : Dict = ShapEImgaImgPipeline lowerCAmelCase__ : List[str] = ["""image"""] lowerCAmelCase__ : Any = ["""image"""] lowerCAmelCase__ : Any = [ """num_images_per_prompt""", """num_inference_steps""", """generator""", """latents""", """guidance_scale""", """frame_size""", """output_type""", """return_dict""", ] lowerCAmelCase__ : Tuple = False @property def UpperCamelCase__ (self : List[Any] ): '''simple docstring''' return 32 @property def UpperCamelCase__ (self : str ): '''simple docstring''' return 32 @property def UpperCamelCase__ (self : Union[str, Any] ): '''simple docstring''' return self.time_input_dim * 4 @property def UpperCamelCase__ (self : int ): '''simple docstring''' return 8 @property def UpperCamelCase__ (self : Any ): '''simple docstring''' torch.manual_seed(0 ) lowercase__ = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) lowercase__ = CLIPVisionModel(UpperCamelCase ) return model @property def UpperCamelCase__ (self : List[Any] ): '''simple docstring''' lowercase__ = CLIPImageProcessor( crop_size=224 , do_center_crop=UpperCamelCase , do_normalize=UpperCamelCase , do_resize=UpperCamelCase , image_mean=[0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73] , image_std=[0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11] , resample=3 , size=224 , ) return image_processor @property def UpperCamelCase__ (self : str ): '''simple docstring''' torch.manual_seed(0 ) lowercase__ = { '''num_attention_heads''': 2, '''attention_head_dim''': 16, '''embedding_dim''': self.time_input_dim, '''num_embeddings''': 32, '''embedding_proj_dim''': self.text_embedder_hidden_size, '''time_embed_dim''': self.time_embed_dim, '''num_layers''': 1, '''clip_embed_dim''': self.time_input_dim * 2, '''additional_embeddings''': 0, '''time_embed_act_fn''': '''gelu''', '''norm_in_type''': '''layer''', '''embedding_proj_norm_type''': '''layer''', '''encoder_hid_proj_type''': None, '''added_emb_type''': None, } lowercase__ = PriorTransformer(**UpperCamelCase ) return model @property def UpperCamelCase__ (self : int ): '''simple docstring''' torch.manual_seed(0 ) lowercase__ = { '''param_shapes''': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), '''d_latent''': self.time_input_dim, '''d_hidden''': self.renderer_dim, '''n_output''': 12, '''background''': ( 0.1, 0.1, 0.1, ), } lowercase__ = ShapERenderer(**UpperCamelCase ) return model def UpperCamelCase__ (self : Union[str, Any] ): '''simple docstring''' lowercase__ = self.dummy_prior lowercase__ = self.dummy_image_encoder lowercase__ = self.dummy_image_processor lowercase__ = self.dummy_renderer lowercase__ = HeunDiscreteScheduler( beta_schedule='''exp''' , num_train_timesteps=1024 , prediction_type='''sample''' , use_karras_sigmas=UpperCamelCase , clip_sample=UpperCamelCase , clip_sample_range=1.0 , ) lowercase__ = { '''prior''': prior, '''image_encoder''': image_encoder, '''image_processor''': image_processor, '''renderer''': renderer, '''scheduler''': scheduler, } return components def UpperCamelCase__ (self : Optional[int] , UpperCamelCase : Optional[int] , UpperCamelCase : str=0 ): '''simple docstring''' lowercase__ = floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCamelCase ) ).to(UpperCamelCase ) if str(UpperCamelCase ).startswith('''mps''' ): lowercase__ = torch.manual_seed(UpperCamelCase ) else: lowercase__ = torch.Generator(device=UpperCamelCase ).manual_seed(UpperCamelCase ) lowercase__ = { '''image''': input_image, '''generator''': generator, '''num_inference_steps''': 1, '''frame_size''': 32, '''output_type''': '''np''', } return inputs def UpperCamelCase__ (self : Tuple ): '''simple docstring''' lowercase__ = '''cpu''' lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**UpperCamelCase ) lowercase__ = pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) lowercase__ = pipe(**self.get_dummy_inputs(UpperCamelCase ) ) lowercase__ = output.images[0] lowercase__ = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) lowercase__ = np.array( [ 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase__ (self : Optional[Any] ): '''simple docstring''' self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def UpperCamelCase__ (self : int ): '''simple docstring''' lowercase__ = torch_device == '''cpu''' lowercase__ = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=UpperCamelCase , relax_max_difference=UpperCamelCase , ) def UpperCamelCase__ (self : int ): '''simple docstring''' lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**UpperCamelCase ) lowercase__ = pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) lowercase__ = 1 lowercase__ = 2 lowercase__ = self.get_dummy_inputs(UpperCamelCase ) for key in inputs.keys(): if key in self.batch_params: lowercase__ = batch_size * [inputs[key]] lowercase__ = pipe(**UpperCamelCase , num_images_per_prompt=UpperCamelCase )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class __lowerCAmelCase (unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ (self : Optional[Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ (self : Union[str, Any] ): '''simple docstring''' lowercase__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/corgi.png''' ) lowercase__ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/test_shap_e_img2img_out.npy''' ) lowercase__ = ShapEImgaImgPipeline.from_pretrained('''openai/shap-e-img2img''' ) lowercase__ = pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) lowercase__ = torch.Generator(device=UpperCamelCase ).manual_seed(0 ) lowercase__ = pipe( UpperCamelCase , generator=UpperCamelCase , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type='''np''' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(UpperCamelCase , UpperCamelCase )
2
0
'''simple docstring''' def UpperCamelCase_( snake_case : Dict ): '''simple docstring''' snake_case_ = 0 snake_case_ = len(snake_case ) for i in range(n - 1 ): for j in range(i + 1 , snake_case ): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def UpperCamelCase_( snake_case : List[Any] ): '''simple docstring''' if len(snake_case ) <= 1: return arr, 0 snake_case_ = len(snake_case ) // 2 snake_case_ = arr[0:mid] snake_case_ = arr[mid:] snake_case_ , snake_case_ = count_inversions_recursive(snake_case ) snake_case_ , snake_case_ = count_inversions_recursive(snake_case ) snake_case_ , snake_case_ = _count_cross_inversions(snake_case , snake_case ) snake_case_ = inversion_p + inversions_q + cross_inversions return c, num_inversions def UpperCamelCase_( snake_case : Optional[Any] , snake_case : int ): '''simple docstring''' snake_case_ = [] snake_case_ = snake_case_ = snake_case_ = 0 while i < len(snake_case ) and j < len(snake_case ): if p[i] > q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(snake_case ) - i r.append(q[j] ) j += 1 else: r.append(p[i] ) i += 1 if i < len(snake_case ): r.extend(p[i:] ) else: r.extend(q[j:] ) return r, num_inversion def UpperCamelCase_( ): '''simple docstring''' snake_case_ = [1_0, 2, 1, 5, 5, 2, 1_1] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) snake_case_ = count_inversions_bf(snake_case ) snake_case_ , snake_case_ = count_inversions_recursive(snake_case ) assert num_inversions_bf == num_inversions_recursive == 8 print("number of inversions = " , snake_case ) # testing an array with zero inversion (a sorted arr_1) arr_a.sort() snake_case_ = count_inversions_bf(snake_case ) snake_case_ , snake_case_ = count_inversions_recursive(snake_case ) assert num_inversions_bf == num_inversions_recursive == 0 print("number of inversions = " , snake_case ) # an empty list should also have zero inversions snake_case_ = [] snake_case_ = count_inversions_bf(snake_case ) snake_case_ , snake_case_ = count_inversions_recursive(snake_case ) assert num_inversions_bf == num_inversions_recursive == 0 print("number of inversions = " , snake_case ) if __name__ == "__main__": main()
85
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowerCamelCase : str = { 'configuration_rag': ['RagConfig'], 'retrieval_rag': ['RagRetriever'], 'tokenization_rag': ['RagTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Dict = [ 'RagModel', 'RagPreTrainedModel', 'RagSequenceForGeneration', 'RagTokenForGeneration', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Optional[int] = [ 'TFRagModel', 'TFRagPreTrainedModel', 'TFRagSequenceForGeneration', 'TFRagTokenForGeneration', ] if TYPE_CHECKING: from .configuration_rag import RagConfig from .retrieval_rag import RagRetriever from .tokenization_rag import RagTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rag import RagModel, RagPreTrainedModel, RagSequenceForGeneration, RagTokenForGeneration try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rag import ( TFRagModel, TFRagPreTrainedModel, TFRagSequenceForGeneration, TFRagTokenForGeneration, ) else: import sys lowerCamelCase : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
2
0
import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging a_ = logging.get_logger(__name__) def a__ ( _UpperCamelCase : int ,_UpperCamelCase : List[Any] ): __lowerCamelCase = nn.functional.normalize(_UpperCamelCase ) __lowerCamelCase = nn.functional.normalize(_UpperCamelCase ) return torch.mm(_UpperCamelCase ,normalized_text_embeds.t() ) class __lowerCAmelCase ( lowercase_ ): lowerCAmelCase__ = CLIPConfig lowerCAmelCase__ = ["""CLIPEncoderLayer"""] def __init__( self , __UpperCAmelCase ): '''simple docstring''' super().__init__(__UpperCAmelCase ) __lowerCamelCase = CLIPVisionModel(config.vision_config ) __lowerCamelCase = nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=__UpperCAmelCase ) __lowerCamelCase = nn.Parameter(torch.ones(17 , config.projection_dim ) , requires_grad=__UpperCAmelCase ) __lowerCamelCase = nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=__UpperCAmelCase ) __lowerCamelCase = nn.Parameter(torch.ones(17 ) , requires_grad=__UpperCAmelCase ) __lowerCamelCase = nn.Parameter(torch.ones(3 ) , requires_grad=__UpperCAmelCase ) @torch.no_grad() def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = self.vision_model(__UpperCAmelCase )[1] # pooled_output __lowerCamelCase = self.visual_projection(__UpperCAmelCase ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __lowerCamelCase = cosine_distance(__UpperCAmelCase , self.special_care_embeds ).cpu().float().numpy() __lowerCamelCase = cosine_distance(__UpperCAmelCase , self.concept_embeds ).cpu().float().numpy() __lowerCamelCase = [] __lowerCamelCase = image_embeds.shape[0] for i in range(__UpperCAmelCase ): __lowerCamelCase = {'''special_scores''': {}, '''special_care''': [], '''concept_scores''': {}, '''bad_concepts''': []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images __lowerCamelCase = 0.0 for concept_idx in range(len(special_cos_dist[0] ) ): __lowerCamelCase = special_cos_dist[i][concept_idx] __lowerCamelCase = self.special_care_embeds_weights[concept_idx].item() __lowerCamelCase = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img['''special_scores'''][concept_idx]} ) __lowerCamelCase = 0.01 for concept_idx in range(len(cos_dist[0] ) ): __lowerCamelCase = cos_dist[i][concept_idx] __lowerCamelCase = self.concept_embeds_weights[concept_idx].item() __lowerCamelCase = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(__UpperCAmelCase ) result.append(__UpperCAmelCase ) __lowerCamelCase = [len(res['''bad_concepts'''] ) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = self.vision_model(__UpperCAmelCase )[1] # pooled_output __lowerCamelCase = self.visual_projection(__UpperCAmelCase ) __lowerCamelCase = cosine_distance(__UpperCAmelCase , self.special_care_embeds ) __lowerCamelCase = cosine_distance(__UpperCAmelCase , self.concept_embeds ) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images __lowerCamelCase = 0.0 __lowerCamelCase = special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) __lowerCamelCase = torch.any(special_scores > 0 , dim=1 ) __lowerCamelCase = special_care * 0.01 __lowerCamelCase = special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] ) __lowerCamelCase = (cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) __lowerCamelCase = torch.any(concept_scores > 0 , dim=1 ) return images, has_nsfw_concepts
330
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : int = logging.get_logger(__name__) lowerCamelCase : List[Any] = { 'google/realm-cc-news-pretrained-embedder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-encoder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-scorer': ( 'https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-openqa': ( 'https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json' ), 'google/realm-orqa-nq-openqa': 'https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json', 'google/realm-orqa-nq-reader': 'https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json', 'google/realm-orqa-wq-openqa': 'https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json', 'google/realm-orqa-wq-reader': 'https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json', # See all REALM models at https://huggingface.co/models?filter=realm } class __lowerCAmelCase (lowercase_ ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = """realm""" def __init__(self : str , UpperCamelCase : List[Any]=30522 , UpperCamelCase : List[Any]=768 , UpperCamelCase : int=128 , UpperCamelCase : Any=12 , UpperCamelCase : Tuple=12 , UpperCamelCase : List[Any]=8 , UpperCamelCase : Union[str, Any]=3072 , UpperCamelCase : List[str]="gelu_new" , UpperCamelCase : Any=0.1 , UpperCamelCase : List[str]=0.1 , UpperCamelCase : Dict=512 , UpperCamelCase : Dict=2 , UpperCamelCase : List[Any]=0.02 , UpperCamelCase : List[Any]=1E-12 , UpperCamelCase : Dict=256 , UpperCamelCase : Union[str, Any]=10 , UpperCamelCase : Optional[int]=1E-3 , UpperCamelCase : Tuple=5 , UpperCamelCase : Optional[int]=320 , UpperCamelCase : List[str]=13353718 , UpperCamelCase : Optional[Any]=5000 , UpperCamelCase : str=1 , UpperCamelCase : Union[str, Any]=0 , UpperCamelCase : List[Any]=2 , **UpperCamelCase : int , ): '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase , bos_token_id=UpperCamelCase , eos_token_id=UpperCamelCase , **UpperCamelCase ) # Common config lowercase__ = vocab_size lowercase__ = max_position_embeddings lowercase__ = hidden_size lowercase__ = retriever_proj_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = num_candidates lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = initializer_range lowercase__ = type_vocab_size lowercase__ = layer_norm_eps # Reader config lowercase__ = span_hidden_size lowercase__ = max_span_width lowercase__ = reader_layer_norm_eps lowercase__ = reader_beam_size lowercase__ = reader_seq_len # Retrieval config lowercase__ = num_block_records lowercase__ = searcher_beam_size
2
0
import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class __lowerCAmelCase : """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__=3 , lowerCamelCase__=32 , lowerCamelCase__=3 , lowerCamelCase__=10 , lowerCamelCase__=[8, 16, 32, 64] , lowerCamelCase__=[1, 1, 2, 1] , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__="relu" , lowerCamelCase__=3 , lowerCamelCase__=None , lowerCamelCase__=["stage2", "stage3", "stage4"] , lowerCamelCase__=[2, 3, 4] , lowerCamelCase__=1 , ) -> Tuple: '''simple docstring''' __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = image_size __lowerCamelCase = num_channels __lowerCamelCase = embeddings_size __lowerCamelCase = hidden_sizes __lowerCamelCase = depths __lowerCamelCase = is_training __lowerCamelCase = use_labels __lowerCamelCase = hidden_act __lowerCamelCase = num_labels __lowerCamelCase = scope __lowerCamelCase = len(lowerCamelCase__ ) __lowerCamelCase = out_features __lowerCamelCase = out_indices __lowerCamelCase = num_groups def lowercase_ ( self ) -> Any: '''simple docstring''' __lowerCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCamelCase = None if self.use_labels: __lowerCamelCase = ids_tensor([self.batch_size] , self.num_labels ) __lowerCamelCase = self.get_config() return config, pixel_values, labels def lowercase_ ( self ) -> str: '''simple docstring''' return BitConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> str: '''simple docstring''' __lowerCamelCase = BitModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __lowerCamelCase = model(lowerCamelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = self.num_labels __lowerCamelCase = BitForImageClassification(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __lowerCamelCase = model(lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Tuple: '''simple docstring''' __lowerCamelCase = BitBackbone(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __lowerCamelCase = model(lowerCamelCase__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None __lowerCamelCase = None __lowerCamelCase = BitBackbone(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __lowerCamelCase = model(lowerCamelCase__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def lowercase_ ( self ) -> List[str]: '''simple docstring''' __lowerCamelCase = self.prepare_config_and_inputs() __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = config_and_inputs __lowerCamelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __lowerCAmelCase ( lowercase_ , lowercase_ , unittest.TestCase ): """simple docstring""" snake_case_ = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () snake_case_ = ( {"""feature-extraction""": BitModel, """image-classification""": BitForImageClassification} if is_torch_available() else {} ) snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False def lowercase_ ( self ) -> List[Any]: '''simple docstring''' __lowerCamelCase = BitModelTester(self ) __lowerCamelCase = ConfigTester(self , config_class=lowerCamelCase__ , has_text_modality=lowerCamelCase__ ) def lowercase_ ( self ) -> str: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase_ ( self ) -> Any: '''simple docstring''' return @unittest.skip(reason='Bit does not output attentions' ) def lowercase_ ( self ) -> Dict: '''simple docstring''' pass @unittest.skip(reason='Bit does not use inputs_embeds' ) def lowercase_ ( self ) -> Tuple: '''simple docstring''' pass @unittest.skip(reason='Bit does not support input and output embeddings' ) def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' pass def lowercase_ ( self ) -> List[Any]: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase = model_class(lowerCamelCase__ ) __lowerCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCamelCase = [*signature.parameters.keys()] __lowerCamelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCamelCase__ ) def lowercase_ ( self ) -> Any: '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase__ ) def lowercase_ ( self ) -> Tuple: '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*lowerCamelCase__ ) def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase = model_class(config=lowerCamelCase__ ) for name, module in model.named_modules(): if isinstance(lowerCamelCase__ , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' def check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): __lowerCamelCase = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() with torch.no_grad(): __lowerCamelCase = model(**self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) ) __lowerCamelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __lowerCamelCase = self.model_tester.num_stages self.assertEqual(len(lowerCamelCase__ ) , expected_num_stages + 1 ) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCamelCase = ['preactivation', 'bottleneck'] for model_class in self.all_model_classes: for layer_type in layers_type: __lowerCamelCase = layer_type __lowerCamelCase = True check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCamelCase = True check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) @unittest.skip(reason='Bit does not use feedforward chunking' ) def lowercase_ ( self ) -> List[str]: '''simple docstring''' pass def lowercase_ ( self ) -> List[Any]: '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase__ ) @slow def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCamelCase = BitModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def lowerCamelCase_ ( ) -> List[str]: """simple docstring""" __lowerCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def lowercase_ ( self ) -> List[str]: '''simple docstring''' return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(lowerCamelCase__ ) __lowerCamelCase = self.default_image_processor __lowerCamelCase = prepare_img() __lowerCamelCase = image_processor(images=lowerCamelCase__ , return_tensors='pt' ).to(lowerCamelCase__ ) # forward pass with torch.no_grad(): __lowerCamelCase = model(**lowerCamelCase__ ) # verify the logits __lowerCamelCase = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , lowerCamelCase__ ) __lowerCamelCase = torch.tensor([[-0.65_26, -0.52_63, -1.43_98]] ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCamelCase__ , atol=1e-4 ) ) @require_torch class __lowerCAmelCase ( lowercase_ , unittest.TestCase ): """simple docstring""" snake_case_ = (BitBackbone,) if is_torch_available() else () snake_case_ = BitConfig snake_case_ = False def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' __lowerCamelCase = BitModelTester(self )
90
'''simple docstring''' import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : str = logging.get_logger(__name__) lowerCamelCase : int = { 'RUCAIBox/mvp': 'https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json', } class __lowerCAmelCase (lowercase_ ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = """mvp""" lowerCAmelCase__ : Optional[Any] = ["""past_key_values"""] lowerCAmelCase__ : List[str] = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__(self : Any , UpperCamelCase : Optional[int]=50267 , UpperCamelCase : Tuple=1024 , UpperCamelCase : int=12 , UpperCamelCase : Tuple=4096 , UpperCamelCase : Dict=16 , UpperCamelCase : int=12 , UpperCamelCase : Optional[int]=4096 , UpperCamelCase : Optional[int]=16 , UpperCamelCase : Tuple=0.0 , UpperCamelCase : Tuple=0.0 , UpperCamelCase : List[Any]="gelu" , UpperCamelCase : Union[str, Any]=1024 , UpperCamelCase : Optional[Any]=0.1 , UpperCamelCase : str=0.0 , UpperCamelCase : str=0.0 , UpperCamelCase : Optional[Any]=0.02 , UpperCamelCase : List[str]=0.0 , UpperCamelCase : List[str]=False , UpperCamelCase : Optional[int]=True , UpperCamelCase : Any=1 , UpperCamelCase : int=0 , UpperCamelCase : int=2 , UpperCamelCase : Any=True , UpperCamelCase : Optional[Any]=2 , UpperCamelCase : Optional[Any]=2 , UpperCamelCase : Tuple=False , UpperCamelCase : int=100 , UpperCamelCase : Optional[Any]=800 , **UpperCamelCase : str , ): '''simple docstring''' lowercase__ = vocab_size lowercase__ = max_position_embeddings lowercase__ = d_model lowercase__ = encoder_ffn_dim lowercase__ = encoder_layers lowercase__ = encoder_attention_heads lowercase__ = decoder_ffn_dim lowercase__ = decoder_layers lowercase__ = decoder_attention_heads lowercase__ = dropout lowercase__ = attention_dropout lowercase__ = activation_dropout lowercase__ = activation_function lowercase__ = init_std lowercase__ = encoder_layerdrop lowercase__ = decoder_layerdrop lowercase__ = classifier_dropout lowercase__ = use_cache lowercase__ = encoder_layers lowercase__ = scale_embedding # scale factor will be sqrt(d_model) if True lowercase__ = use_prompt lowercase__ = prompt_length lowercase__ = prompt_mid_dim super().__init__( pad_token_id=UpperCamelCase , bos_token_id=UpperCamelCase , eos_token_id=UpperCamelCase , is_encoder_decoder=UpperCamelCase , decoder_start_token_id=UpperCamelCase , forced_eos_token_id=UpperCamelCase , **UpperCamelCase , ) if self.forced_bos_token_id is None and kwargs.get('''force_bos_token_to_be_generated''' , UpperCamelCase ): lowercase__ = self.bos_token_id warnings.warn( f"Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. " '''The config can simply be saved and uploaded again to be fixed.''' )
2
0
import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class __lowerCAmelCase ( unittest.TestCase ): def __init__(self , __magic_name__ , __magic_name__=13 , __magic_name__=7 , __magic_name__=True , __magic_name__=True , __magic_name__=True , __magic_name__=True , __magic_name__=99 , __magic_name__=32 , __magic_name__=5 , __magic_name__=4 , __magic_name__=37 , __magic_name__="gelu" , __magic_name__=0.1 , __magic_name__=0.1 , __magic_name__=512 , __magic_name__=16 , __magic_name__=2 , __magic_name__=0.02 , __magic_name__=4 , ) -> int: '''simple docstring''' snake_case_ : Union[str, Any] = parent snake_case_ : Optional[int] = batch_size snake_case_ : Optional[Any] = seq_length snake_case_ : Union[str, Any] = is_training snake_case_ : List[str] = use_attention_mask snake_case_ : Optional[Any] = use_token_type_ids snake_case_ : int = use_labels snake_case_ : List[Any] = vocab_size snake_case_ : Union[str, Any] = hidden_size snake_case_ : str = num_hidden_layers snake_case_ : Dict = num_attention_heads snake_case_ : Union[str, Any] = intermediate_size snake_case_ : Tuple = hidden_act snake_case_ : str = hidden_dropout_prob snake_case_ : List[Any] = attention_probs_dropout_prob snake_case_ : Tuple = max_position_embeddings snake_case_ : List[Any] = type_vocab_size snake_case_ : Tuple = type_sequence_label_size snake_case_ : Optional[Any] = initializer_range snake_case_ : Union[str, Any] = num_choices def lowerCamelCase (self ) -> List[str]: '''simple docstring''' snake_case_ : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ : Union[str, Any] = None if self.use_attention_mask: snake_case_ : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ : Dict = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , tie_weights_=__magic_name__ , ) return config, input_ids, attention_mask def lowerCamelCase (self ) -> Optional[int]: '''simple docstring''' snake_case_ : List[str] = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ : Optional[Any] = config_and_inputs snake_case_ : int = {'''input_ids''': input_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_flax class __lowerCAmelCase ( lowercase_, unittest.TestCase ): lowerCamelCase_ : List[str] = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def lowerCamelCase (self ) -> Tuple: '''simple docstring''' snake_case_ : Union[str, Any] = FlaxDistilBertModelTester(self ) @slow def lowerCamelCase (self ) -> Union[str, Any]: '''simple docstring''' for model_class_name in self.all_model_classes: snake_case_ : str = model_class_name.from_pretrained('''distilbert-base-uncased''' ) snake_case_ : Any = model(np.ones((1, 1) ) ) self.assertIsNotNone(__magic_name__ ) @require_flax class __lowerCAmelCase ( unittest.TestCase ): @slow def lowerCamelCase (self ) -> int: '''simple docstring''' snake_case_ : List[Any] = FlaxDistilBertModel.from_pretrained('''distilbert-base-uncased''' ) snake_case_ : Dict = np.array([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) snake_case_ : Optional[Any] = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) snake_case_ : Dict = model(__magic_name__ , attention_mask=__magic_name__ )[0] snake_case_ : Optional[int] = (1, 11, 768) self.assertEqual(output.shape , __magic_name__ ) snake_case_ : Any = np.array([[[-0.1_639, 0.3_299, 0.1_648], [-0.1_746, 0.3_289, 0.1_710], [-0.1_884, 0.3_357, 0.1_810]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , __magic_name__ , atol=1e-4 ) )
279
'''simple docstring''' import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase : List[str] = get_tests_dir('fixtures/spiece.model') @require_sentencepiece @require_tokenizers class __lowerCAmelCase (lowercase_ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ : int = DebertaVaTokenizer lowerCAmelCase__ : List[Any] = DebertaVaTokenizerFast lowerCAmelCase__ : str = True lowerCAmelCase__ : Tuple = True def UpperCamelCase__ (self : Tuple ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing lowercase__ = DebertaVaTokenizer(UpperCamelCase , unk_token='''<unk>''' ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase__ (self : Union[str, Any] , UpperCamelCase : str ): '''simple docstring''' lowercase__ = '''this is a test''' lowercase__ = '''this is a test''' return input_text, output_text def UpperCamelCase__ (self : Optional[int] ): '''simple docstring''' lowercase__ = '''<pad>''' lowercase__ = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCamelCase ) , UpperCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCamelCase ) , UpperCamelCase ) def UpperCamelCase__ (self : Dict ): '''simple docstring''' lowercase__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<pad>''' ) self.assertEqual(vocab_keys[1] , '''<unk>''' ) self.assertEqual(vocab_keys[-1] , '''[PAD]''' ) self.assertEqual(len(UpperCamelCase ) , 30001 ) def UpperCamelCase__ (self : int ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 30000 ) def UpperCamelCase__ (self : Optional[Any] ): '''simple docstring''' lowercase__ = ''' \tHeLLo!how \n Are yoU? ''' lowercase__ = ['''▁hello''', '''!''', '''how''', '''▁are''', '''▁you''', '''?'''] # fmt: on lowercase__ = DebertaVaTokenizer(UpperCamelCase , do_lower_case=UpperCamelCase ) lowercase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = DebertaVaTokenizerFast(UpperCamelCase , do_lower_case=UpperCamelCase ) lowercase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) @unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' ) def UpperCamelCase__ (self : List[Any] ): '''simple docstring''' pass @unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' ) def UpperCamelCase__ (self : List[str] ): '''simple docstring''' pass def UpperCamelCase__ (self : Optional[int] ): '''simple docstring''' lowercase__ = '''I was born in 92000, and this is falsé.''' lowercase__ = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on lowercase__ = DebertaVaTokenizer(UpperCamelCase , split_by_punct=UpperCamelCase ) lowercase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = DebertaVaTokenizerFast(UpperCamelCase , split_by_punct=UpperCamelCase ) lowercase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) def UpperCamelCase__ (self : int ): '''simple docstring''' lowercase__ = '''I was born in 92000, and this is falsé.''' lowercase__ = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on lowercase__ = DebertaVaTokenizer(UpperCamelCase , do_lower_case=UpperCamelCase , split_by_punct=UpperCamelCase ) lowercase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = DebertaVaTokenizerFast(UpperCamelCase , do_lower_case=UpperCamelCase , split_by_punct=UpperCamelCase ) lowercase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) def UpperCamelCase__ (self : Optional[Any] ): '''simple docstring''' lowercase__ = '''I was born in 92000, and this is falsé.''' lowercase__ = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ] # fmt: on lowercase__ = DebertaVaTokenizer(UpperCamelCase , do_lower_case=UpperCamelCase , split_by_punct=UpperCamelCase ) lowercase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = DebertaVaTokenizerFast(UpperCamelCase , do_lower_case=UpperCamelCase , split_by_punct=UpperCamelCase ) lowercase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) def UpperCamelCase__ (self : Union[str, Any] ): '''simple docstring''' lowercase__ = '''I was born in 92000, and this is falsé.''' lowercase__ = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on lowercase__ = DebertaVaTokenizer(UpperCamelCase , do_lower_case=UpperCamelCase , split_by_punct=UpperCamelCase ) lowercase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = DebertaVaTokenizerFast(UpperCamelCase , do_lower_case=UpperCamelCase , split_by_punct=UpperCamelCase ) lowercase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) def UpperCamelCase__ (self : Union[str, Any] ): '''simple docstring''' lowercase__ = ''' \tHeLLo!how \n Are yoU? ''' lowercase__ = ['''▁''', '''<unk>''', '''e''', '''<unk>''', '''o''', '''!''', '''how''', '''▁''', '''<unk>''', '''re''', '''▁yo''', '''<unk>''', '''?'''] # fmt: on lowercase__ = DebertaVaTokenizer(UpperCamelCase , do_lower_case=UpperCamelCase , split_by_punct=UpperCamelCase ) lowercase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = DebertaVaTokenizerFast(UpperCamelCase , do_lower_case=UpperCamelCase , split_by_punct=UpperCamelCase ) lowercase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) def UpperCamelCase__ (self : Union[str, Any] ): '''simple docstring''' lowercase__ = self.get_tokenizer() lowercase__ = self.get_rust_tokenizer() lowercase__ = '''I was born in 92000, and this is falsé.''' lowercase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) lowercase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) lowercase__ = rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = self.get_rust_tokenizer() lowercase__ = tokenizer.encode(UpperCamelCase ) lowercase__ = rust_tokenizer.encode(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) def UpperCamelCase__ (self : int ): '''simple docstring''' lowercase__ = '''This is a test''' lowercase__ = [13, 1, 4398, 25, 21, 1289] lowercase__ = ['''▁''', '''T''', '''his''', '''▁is''', '''▁a''', '''▁test'''] lowercase__ = ['''▁''', '''<unk>''', '''his''', '''▁is''', '''▁a''', '''▁test'''] lowercase__ = DebertaVaTokenizer(UpperCamelCase , keep_accents=UpperCamelCase ) lowercase__ = DebertaVaTokenizerFast(UpperCamelCase , keep_accents=UpperCamelCase ) lowercase__ = tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = tokenizer.tokenize(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = tokenizer.convert_ids_to_tokens(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = rust_tokenizer.tokenize(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = rust_tokenizer.convert_ids_to_tokens(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) # fmt: off lowercase__ = '''I was born in 92000, and this is falsé.''' lowercase__ = [13, 1, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] lowercase__ = ['''▁''', '''I''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''é''', '''.''', ] lowercase__ = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ] # fmt: on lowercase__ = tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = tokenizer.tokenize(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = tokenizer.convert_ids_to_tokens(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = rust_tokenizer.tokenize(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = rust_tokenizer.convert_ids_to_tokens(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) def UpperCamelCase__ (self : int ): '''simple docstring''' lowercase__ = DebertaVaTokenizer(UpperCamelCase ) lowercase__ = tokenizer.encode('''sequence builders''' ) lowercase__ = tokenizer.encode('''multi-sequence build''' ) lowercase__ = tokenizer.build_inputs_with_special_tokens(UpperCamelCase ) lowercase__ = tokenizer.build_inputs_with_special_tokens(UpperCamelCase , UpperCamelCase ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , UpperCamelCase ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , UpperCamelCase , ) @slow def UpperCamelCase__ (self : int ): '''simple docstring''' lowercase__ = {'''input_ids''': [[1, 39867, 36, 19390, 486, 27, 35052, 81436, 18, 60685, 1225, 7, 35052, 81436, 18, 9367, 16899, 18, 15937, 53, 594, 773, 18, 16287, 30465, 36, 15937, 6, 41139, 38, 36979, 60763, 191, 6, 34132, 99, 6, 50538, 390, 43230, 6, 34132, 2779, 20850, 14, 699, 1072, 1194, 36, 382, 10901, 53, 7, 699, 1072, 2084, 36, 20422, 630, 53, 19, 105, 3049, 1896, 1053, 16899, 1506, 11, 37978, 4243, 7, 1237, 31869, 200, 16566, 654, 6, 35052, 81436, 7, 55630, 13593, 4, 2], [1, 26, 15011, 13, 667, 8, 1053, 18, 23611, 1237, 72356, 12820, 34, 104134, 1209, 35, 13313, 6627, 21, 202, 347, 7, 164, 2399, 11, 46, 4485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1232, 2864, 15785, 14951, 105, 5, 8581, 1250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCamelCase , model_name='''microsoft/deberta-v2-xlarge''' , revision='''ad6e42c1532ddf3a15c39246b63f5559d558b670''' , )
2
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import BlenderbotConfig, BlenderbotTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotForConditionalGeneration, TFBlenderbotModel @require_tf class _lowercase : a = BlenderbotConfig a = {} a = """gelu""" def __init__( self: str , UpperCamelCase__: Dict , UpperCamelCase__: Any=13 , UpperCamelCase__: List[Any]=7 , UpperCamelCase__: str=True , UpperCamelCase__: Dict=False , UpperCamelCase__: Optional[Any]=99 , UpperCamelCase__: Dict=32 , UpperCamelCase__: int=2 , UpperCamelCase__: str=4 , UpperCamelCase__: Any=37 , UpperCamelCase__: str=0.1 , UpperCamelCase__: int=0.1 , UpperCamelCase__: Dict=20 , UpperCamelCase__: Union[str, Any]=2 , UpperCamelCase__: Optional[int]=1 , UpperCamelCase__: Optional[int]=0 , ): lowerCamelCase__ : str = parent lowerCamelCase__ : Tuple = batch_size lowerCamelCase__ : Dict = seq_length lowerCamelCase__ : Tuple = is_training lowerCamelCase__ : int = use_labels lowerCamelCase__ : Any = vocab_size lowerCamelCase__ : List[str] = hidden_size lowerCamelCase__ : Tuple = num_hidden_layers lowerCamelCase__ : Dict = num_attention_heads lowerCamelCase__ : Any = intermediate_size lowerCamelCase__ : str = hidden_dropout_prob lowerCamelCase__ : Optional[int] = attention_probs_dropout_prob lowerCamelCase__ : int = max_position_embeddings lowerCamelCase__ : Union[str, Any] = eos_token_id lowerCamelCase__ : List[Any] = pad_token_id lowerCamelCase__ : int = bos_token_id def lowerCamelCase_ ( self: Optional[int] ): lowerCamelCase__ : Any = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) lowerCamelCase__ : Optional[int] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) lowerCamelCase__ : Tuple = tf.concat([input_ids, eos_tensor] , axis=1 ) lowerCamelCase__ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase__ : Dict = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) lowerCamelCase__ : int = prepare_blenderbot_inputs_dict(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) return config, inputs_dict def lowerCamelCase_ ( self: List[Any] , UpperCamelCase__: List[str] , UpperCamelCase__: Dict ): lowerCamelCase__ : Optional[int] = TFBlenderbotModel(config=UpperCamelCase__ ).get_decoder() lowerCamelCase__ : Optional[int] = inputs_dict["""input_ids"""] lowerCamelCase__ : Any = input_ids[:1, :] lowerCamelCase__ : Optional[Any] = inputs_dict["""attention_mask"""][:1, :] lowerCamelCase__ : str = inputs_dict["""head_mask"""] lowerCamelCase__ : List[str] = 1 # first forward pass lowerCamelCase__ : Optional[Any] = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , head_mask=UpperCamelCase__ , use_cache=UpperCamelCase__ ) lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids lowerCamelCase__ : int = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCamelCase__ : Any = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and lowerCamelCase__ : Tuple = tf.concat([input_ids, next_tokens] , axis=-1 ) lowerCamelCase__ : List[Any] = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) lowerCamelCase__ : str = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ )[0] lowerCamelCase__ : Tuple = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , past_key_values=UpperCamelCase__ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice lowerCamelCase__ : Any = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) lowerCamelCase__ : Union[str, Any] = output_from_no_past[:, -3:, random_slice_idx] lowerCamelCase__ : Union[str, Any] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(UpperCamelCase__ , UpperCamelCase__ , rtol=1e-3 ) def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase=None , UpperCamelCase=None , UpperCamelCase=None , UpperCamelCase=None , UpperCamelCase=None , ) -> Any: if attention_mask is None: lowerCamelCase__ : Dict = tf.cast(tf.math.not_equal(UpperCamelCase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: lowerCamelCase__ : Optional[int] = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: lowerCamelCase__ : Optional[int] = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: lowerCamelCase__ : Dict = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: lowerCamelCase__ : Dict = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class _lowercase ( lowercase_ , lowercase_ , unittest.TestCase ): a = (TFBlenderbotForConditionalGeneration, TFBlenderbotModel) if is_tf_available() else () a = (TFBlenderbotForConditionalGeneration,) if is_tf_available() else () a = ( { """conversational""": TFBlenderbotForConditionalGeneration, """feature-extraction""": TFBlenderbotModel, """summarization""": TFBlenderbotForConditionalGeneration, """text2text-generation""": TFBlenderbotForConditionalGeneration, """translation""": TFBlenderbotForConditionalGeneration, } if is_tf_available() else {} ) a = True a = False a = False def lowerCamelCase_ ( self: Tuple ): lowerCamelCase__ : Any = TFBlenderbotModelTester(self ) lowerCamelCase__ : Tuple = ConfigTester(self , config_class=UpperCamelCase__ ) def lowerCamelCase_ ( self: Union[str, Any] ): self.config_tester.run_common_tests() def lowerCamelCase_ ( self: List[Any] ): lowerCamelCase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*UpperCamelCase__ ) @require_tokenizers @require_tf class _lowercase ( unittest.TestCase ): a = ["""My friends are cool but they eat too many carbs."""] a = """facebook/blenderbot-400M-distill""" @cached_property def lowerCamelCase_ ( self: List[str] ): return BlenderbotTokenizer.from_pretrained(self.model_name ) @cached_property def lowerCamelCase_ ( self: int ): lowerCamelCase__ : Optional[int] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def lowerCamelCase_ ( self: str ): lowerCamelCase__ : Union[str, Any] = self.tokenizer(self.src_text , return_tensors="""tf""" ) lowerCamelCase__ : Tuple = self.model.generate( model_inputs.input_ids , ) lowerCamelCase__ : Any = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=UpperCamelCase__ )[0] assert ( generated_words == " That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?" )
41
'''simple docstring''' import argparse import torch from torch import nn from transformers import MBartConfig, MBartForConditionalGeneration def _SCREAMING_SNAKE_CASE (A ) -> Optional[Any]: """simple docstring""" lowercase__ = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''_float_tensor''', '''decoder.output_projection.weight''', ] for k in ignore_keys: state_dict.pop(A , A ) def _SCREAMING_SNAKE_CASE (A ) -> List[str]: """simple docstring""" lowercase__ ,lowercase__ = emb.weight.shape lowercase__ = nn.Linear(A , A , bias=A ) lowercase__ = emb.weight.data return lin_layer def _SCREAMING_SNAKE_CASE (A , A="facebook/mbart-large-en-ro" , A=False , A=False ) -> Union[str, Any]: """simple docstring""" lowercase__ = torch.load(A , map_location='''cpu''' )['''model'''] remove_ignore_keys_(A ) lowercase__ = state_dict['''encoder.embed_tokens.weight'''].shape[0] lowercase__ = MBartConfig.from_pretrained(A , vocab_size=A ) if mbart_aa and finetuned: lowercase__ = '''relu''' lowercase__ = state_dict['''decoder.embed_tokens.weight'''] lowercase__ = MBartForConditionalGeneration(A ) model.model.load_state_dict(A ) if finetuned: lowercase__ = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": lowerCamelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( 'fairseq_path', type=str, help='bart.large, bart.large.cnn or a path to a model.pt on local filesystem.' ) parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--hf_config', default='facebook/mbart-large-cc25', type=str, help='Which huggingface architecture to use: mbart-large', ) parser.add_argument('--mbart_50', action='store_true', help='whether the model is mMART-50 checkpoint') parser.add_argument('--finetuned', action='store_true', help='whether the model is a fine-tuned checkpoint') lowerCamelCase : Any = parser.parse_args() lowerCamelCase : List[str] = convert_fairseq_mbart_checkpoint_from_disk( args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa ) model.save_pretrained(args.pytorch_dump_folder_path)
2
0
'''simple docstring''' import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import ( BitConfig, ViTHybridConfig, ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel, ) from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() lowercase : str = logging.get_logger(__name__) def lowerCAmelCase_ ( snake_case__ , snake_case__=False ): '''simple docstring''' A : Dict = [] # fmt: off # stem: rename_keys.append(('''cls_token''', '''vit.embeddings.cls_token''') ) rename_keys.append(('''pos_embed''', '''vit.embeddings.position_embeddings''') ) rename_keys.append(('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight''') ) rename_keys.append(('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias''') ) # backbone rename_keys.append(('''patch_embed.backbone.stem.conv.weight''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.convolution.weight''') ) rename_keys.append(('''patch_embed.backbone.stem.norm.weight''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.weight''') ) rename_keys.append(('''patch_embed.backbone.stem.norm.bias''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.bias''') ) for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): rename_keys.append((F'patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv1.weight', F'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv1.weight') ) rename_keys.append((F'patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.weight', F'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.weight') ) rename_keys.append((F'patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.bias', F'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.bias') ) rename_keys.append((F'patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv2.weight', F'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv2.weight') ) rename_keys.append((F'patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.weight', F'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.weight') ) rename_keys.append((F'patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.bias', F'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.bias') ) rename_keys.append((F'patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv3.weight', F'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv3.weight') ) rename_keys.append((F'patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.weight', F'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.weight') ) rename_keys.append((F'patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.bias', F'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.bias') ) rename_keys.append((F'patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.conv.weight', F'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.conv.weight') ) rename_keys.append((F'patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.weight', F'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.weight') ) rename_keys.append((F'patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.bias', F'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.bias') ) # transformer encoder for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'blocks.{i}.norm1.weight', F'vit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((F'blocks.{i}.norm1.bias', F'vit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append((F'blocks.{i}.attn.proj.weight', F'vit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((F'blocks.{i}.attn.proj.bias', F'vit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((F'blocks.{i}.norm2.weight', F'vit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((F'blocks.{i}.norm2.bias', F'vit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((F'blocks.{i}.mlp.fc1.weight', F'vit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((F'blocks.{i}.mlp.fc1.bias', F'vit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((F'blocks.{i}.mlp.fc2.weight', F'vit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((F'blocks.{i}.mlp.fc2.bias', F'vit.encoder.layer.{i}.output.dense.bias') ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ('''pre_logits.fc.weight''', '''pooler.dense.weight'''), ('''pre_logits.fc.bias''', '''pooler.dense.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" A : Dict = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) # fmt: on return rename_keys def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__=False ): '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: A : Tuple = '''''' else: A : Union[str, Any] = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) A : int = state_dict.pop(F'blocks.{i}.attn.qkv.weight' ) A : Optional[Any] = state_dict.pop(F'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict A : Tuple = in_proj_weight[ : config.hidden_size, : ] A : Union[str, Any] = in_proj_bias[: config.hidden_size] A : int = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] A : str = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] A : Any = in_proj_weight[ -config.hidden_size :, : ] A : Optional[Any] = in_proj_bias[-config.hidden_size :] def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' A : List[str] = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(snake_case__ , snake_case__ ) def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' A : Union[str, Any] = dct.pop(snake_case__ ) A : Tuple = val def lowerCAmelCase_ ( ): '''simple docstring''' A : str = '''http://images.cocodataset.org/val2017/000000039769.jpg''' A : int = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ) return im @torch.no_grad() def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__=False ): '''simple docstring''' A : List[str] = BitConfig( global_padding='''same''' , layer_type='''bottleneck''' , depths=(3, 4, 9) , out_features=['''stage3'''] , embedding_dynamic_padding=snake_case__ , ) A : Tuple = ViTHybridConfig(backbone_config=snake_case__ , image_size=384 , num_labels=1000 ) A : int = False # load original model from timm A : Optional[Any] = timm.create_model(snake_case__ , pretrained=snake_case__ ) timm_model.eval() # load state_dict of original model, remove and rename some keys A : Dict = timm_model.state_dict() if base_model: remove_classification_head_(snake_case__ ) A : List[str] = create_rename_keys(snake_case__ , snake_case__ ) for src, dest in rename_keys: rename_key(snake_case__ , snake_case__ , snake_case__ ) read_in_q_k_v(snake_case__ , snake_case__ , snake_case__ ) A : List[Any] = '''huggingface/label-files''' A : int = '''imagenet-1k-id2label.json''' A : Dict = json.load(open(hf_hub_download(snake_case__ , snake_case__ , repo_type='''dataset''' ) , '''r''' ) ) A : Union[str, Any] = {int(snake_case__ ): v for k, v in idalabel.items()} A : Optional[int] = idalabel A : List[Any] = {v: k for k, v in idalabel.items()} # load HuggingFace model if vit_name[-5:] == "in21k": A : Optional[Any] = ViTHybridModel(snake_case__ ).eval() else: A : List[Any] = ViTHybridForImageClassification(snake_case__ ).eval() model.load_state_dict(snake_case__ ) # create image processor A : int = create_transform(**resolve_data_config({} , model=snake_case__ ) ) A : List[str] = transform.transforms A : Tuple = { '''bilinear''': PILImageResampling.BILINEAR, '''bicubic''': PILImageResampling.BICUBIC, '''nearest''': PILImageResampling.NEAREST, } A : Dict = ViTHybridImageProcessor( do_resize=snake_case__ , size={'''shortest_edge''': timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=snake_case__ , crop_size={'''height''': timm_transforms[1].size[0], '''width''': timm_transforms[1].size[1]} , do_normalize=snake_case__ , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) A : Dict = prepare_img() A : Optional[int] = transform(snake_case__ ).unsqueeze(0 ) A : int = processor(snake_case__ , return_tensors='''pt''' ).pixel_values # verify pixel values assert torch.allclose(snake_case__ , snake_case__ ) # verify logits with torch.no_grad(): A : List[Any] = model(snake_case__ ) A : Optional[int] = outputs.logits print('''Predicted class:''' , logits.argmax(-1 ).item() ) if base_model: A : Optional[Any] = timm_model.forward_features(snake_case__ ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(snake_case__ , outputs.pooler_output , atol=1E-3 ) else: A : int = timm_model(snake_case__ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(snake_case__ , outputs.logits , atol=1E-3 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: Path(snake_case__ ).mkdir(exist_ok=snake_case__ ) print(F'Saving model {vit_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(snake_case__ ) print(F'Saving processor to {pytorch_dump_folder_path}' ) processor.save_pretrained(snake_case__ ) if push_to_hub: print(F'Pushing model and processor to the hub {vit_name}' ) model.push_to_hub(F'ybelkada/{vit_name}' ) processor.push_to_hub(F'ybelkada/{vit_name}' ) if __name__ == "__main__": lowercase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--vit_name', default='vit_base_r50_s16_384', type=str, help='Name of the hybrid ViT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to upload the model to the HuggingFace hub.' ) lowercase : Optional[Any] = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path, args.push_to_hub)
3
'''simple docstring''' import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask lowerCamelCase : List[Any] = logging.getLogger(__name__) class __lowerCAmelCase (lowercase_ ): '''simple docstring''' def __init__(self : Optional[Any] , UpperCamelCase : Any=-1 ): '''simple docstring''' lowercase__ = label_idx def UpperCamelCase__ (self : Union[str, Any] , UpperCamelCase : Optional[Any] , UpperCamelCase : Union[Split, str] ): '''simple docstring''' if isinstance(UpperCamelCase , UpperCamelCase ): lowercase__ = mode.value lowercase__ = os.path.join(UpperCamelCase , f"{mode}.txt" ) lowercase__ = 1 lowercase__ = [] with open(UpperCamelCase , encoding='''utf-8''' ) as f: lowercase__ = [] lowercase__ = [] for line in f: if line.startswith('''-DOCSTART-''' ) or line == "" or line == "\n": if words: examples.append(InputExample(guid=f"{mode}-{guid_index}" , words=UpperCamelCase , labels=UpperCamelCase ) ) guid_index += 1 lowercase__ = [] lowercase__ = [] else: lowercase__ = line.split(''' ''' ) words.append(splits[0] ) if len(UpperCamelCase ) > 1: labels.append(splits[self.label_idx].replace('''\n''' , '''''' ) ) else: # Examples could have no label for mode = "test" labels.append('''O''' ) if words: examples.append(InputExample(guid=f"{mode}-{guid_index}" , words=UpperCamelCase , labels=UpperCamelCase ) ) return examples def UpperCamelCase__ (self : Optional[int] , UpperCamelCase : TextIO , UpperCamelCase : TextIO , UpperCamelCase : List ): '''simple docstring''' lowercase__ = 0 for line in test_input_reader: if line.startswith('''-DOCSTART-''' ) or line == "" or line == "\n": writer.write(UpperCamelCase ) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: lowercase__ = line.split()[0] + ''' ''' + preds_list[example_id].pop(0 ) + '''\n''' writer.write(UpperCamelCase ) else: logger.warning('''Maximum sequence length exceeded: No prediction for \'%s\'.''' , line.split()[0] ) def UpperCamelCase__ (self : Union[str, Any] , UpperCamelCase : str ): '''simple docstring''' if path: with open(UpperCamelCase , '''r''' ) as f: lowercase__ = f.read().splitlines() if "O" not in labels: lowercase__ = ['''O'''] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class __lowerCAmelCase (lowercase_ ): '''simple docstring''' def __init__(self : List[Any] ): '''simple docstring''' super().__init__(label_idx=-2 ) def UpperCamelCase__ (self : List[Any] , UpperCamelCase : str ): '''simple docstring''' if path: with open(UpperCamelCase , '''r''' ) as f: lowercase__ = f.read().splitlines() if "O" not in labels: lowercase__ = ['''O'''] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class __lowerCAmelCase (lowercase_ ): '''simple docstring''' def UpperCamelCase__ (self : Tuple , UpperCamelCase : int , UpperCamelCase : Union[Split, str] ): '''simple docstring''' if isinstance(UpperCamelCase , UpperCamelCase ): lowercase__ = mode.value lowercase__ = os.path.join(UpperCamelCase , f"{mode}.txt" ) lowercase__ = 1 lowercase__ = [] with open(UpperCamelCase , encoding='''utf-8''' ) as f: for sentence in parse_incr(UpperCamelCase ): lowercase__ = [] lowercase__ = [] for token in sentence: words.append(token['''form'''] ) labels.append(token['''upos'''] ) assert len(UpperCamelCase ) == len(UpperCamelCase ) if words: examples.append(InputExample(guid=f"{mode}-{guid_index}" , words=UpperCamelCase , labels=UpperCamelCase ) ) guid_index += 1 return examples def UpperCamelCase__ (self : Tuple , UpperCamelCase : TextIO , UpperCamelCase : TextIO , UpperCamelCase : List ): '''simple docstring''' lowercase__ = 0 for sentence in parse_incr(UpperCamelCase ): lowercase__ = preds_list[example_id] lowercase__ = '''''' for token in sentence: out += f"{token['form']} ({token['upos']}|{s_p.pop(0 )}) " out += "\n" writer.write(UpperCamelCase ) example_id += 1 def UpperCamelCase__ (self : Union[str, Any] , UpperCamelCase : str ): '''simple docstring''' if path: with open(UpperCamelCase , '''r''' ) as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
2
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A ={ 'configuration_mgp_str': ['MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MgpstrConfig'], 'processing_mgp_str': ['MgpstrProcessor'], 'tokenization_mgp_str': ['MgpstrTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A =[ 'MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST', 'MgpstrModel', 'MgpstrPreTrainedModel', 'MgpstrForSceneTextRecognition', ] if TYPE_CHECKING: from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig from .processing_mgp_str import MgpstrProcessor from .tokenization_mgp_str import MgpstrTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mgp_str import ( MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST, MgpstrForSceneTextRecognition, MgpstrModel, MgpstrPreTrainedModel, ) else: import sys A =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
34
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Dict = logging.get_logger(__name__) lowerCamelCase : Union[str, Any] = { # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class __lowerCAmelCase (lowercase_ ): '''simple docstring''' lowerCAmelCase__ : List[str] = """megatron-bert""" def __init__(self : Tuple , UpperCamelCase : Optional[int]=29056 , UpperCamelCase : Optional[Any]=1024 , UpperCamelCase : Any=24 , UpperCamelCase : int=16 , UpperCamelCase : Optional[int]=4096 , UpperCamelCase : int="gelu" , UpperCamelCase : int=0.1 , UpperCamelCase : Tuple=0.1 , UpperCamelCase : Any=512 , UpperCamelCase : int=2 , UpperCamelCase : Dict=0.02 , UpperCamelCase : Dict=1E-12 , UpperCamelCase : List[Any]=0 , UpperCamelCase : Optional[int]="absolute" , UpperCamelCase : List[Any]=True , **UpperCamelCase : str , ): '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase , **UpperCamelCase ) lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = hidden_act lowercase__ = intermediate_size lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = position_embedding_type lowercase__ = use_cache
2
0
'''simple docstring''' import string def __UpperCamelCase ( lowercase__ : List[Any] ): '''simple docstring''' __lowercase ='' for i in sequence: __lowercase =ord(lowercase__ ) if 65 <= extract <= 90: output += chr(1_55 - extract ) elif 97 <= extract <= 1_22: output += chr(2_19 - extract ) else: output += i return output def __UpperCamelCase ( lowercase__ : List[str] ): '''simple docstring''' __lowercase =string.ascii_letters __lowercase =string.ascii_lowercase[::-1] + string.ascii_uppercase[::-1] return "".join( letters_reversed[letters.index(lowercase__ )] if c in letters else c for c in sequence ) def __UpperCamelCase ( ): '''simple docstring''' from timeit import timeit print('Running performance benchmarks...' ) __lowercase ='from string import printable ; from __main__ import atbash, atbash_slow' print(F'''> atbash_slow(): {timeit("atbash_slow(printable)", setup=lowercase__ )} seconds''' ) print(F'''> atbash(): {timeit("atbash(printable)", setup=lowercase__ )} seconds''' ) if __name__ == "__main__": for example in ("ABCDEFGH", "123GGjj", "testStringtest", "with space"): print(F'''{example} encrypted in atbash: {atbash(example)}''') benchmark()
141
'''simple docstring''' # Lint as: python3 import itertools import os import re lowerCamelCase : Any = re.compile(R'([A-Z]+)([A-Z][a-z])') lowerCamelCase : str = re.compile(R'([a-z\d])([A-Z])') lowerCamelCase : Optional[int] = re.compile(R'(?<!_)_(?!_)') lowerCamelCase : List[Any] = re.compile(R'(_{2,})') lowerCamelCase : str = R'^\w+(\.\w+)*$' lowerCamelCase : Dict = R'<>:/\|?*' def _SCREAMING_SNAKE_CASE (A ) -> Any: """simple docstring""" lowercase__ = _uppercase_uppercase_re.sub(R'''\1_\2''' , A ) lowercase__ = _lowercase_uppercase_re.sub(R'''\1_\2''' , A ) return name.lower() def _SCREAMING_SNAKE_CASE (A ) -> Tuple: """simple docstring""" lowercase__ = _single_underscore_re.split(A ) lowercase__ = [_multiple_underscores_re.split(A ) for n in name] return "".join(n.capitalize() for n in itertools.chain.from_iterable(A ) if n != '''''' ) def _SCREAMING_SNAKE_CASE (A ) -> Tuple: """simple docstring""" if os.path.basename(A ) != name: raise ValueError(f"Should be a dataset name, not a path: {name}" ) return camelcase_to_snakecase(A ) def _SCREAMING_SNAKE_CASE (A , A ) -> Optional[Any]: """simple docstring""" if os.path.basename(A ) != name: raise ValueError(f"Should be a dataset name, not a path: {name}" ) if not re.match(_split_re , A ): raise ValueError(f"Split name should match '{_split_re}'' but got '{split}'." ) return f"{filename_prefix_for_name(A )}-{split}" def _SCREAMING_SNAKE_CASE (A , A , A , A=None ) -> List[str]: """simple docstring""" lowercase__ = filename_prefix_for_split(A , A ) if filetype_suffix: prefix += f".{filetype_suffix}" lowercase__ = os.path.join(A , A ) return f"{filepath}*" def _SCREAMING_SNAKE_CASE (A , A , A , A=None , A=None ) -> Optional[Any]: """simple docstring""" lowercase__ = filename_prefix_for_split(A , A ) lowercase__ = os.path.join(A , A ) if shard_lengths: lowercase__ = len(A ) lowercase__ = [f"{prefix}-{shard_id:05d}-of-{num_shards:05d}" for shard_id in range(A )] if filetype_suffix: lowercase__ = [filename + f".{filetype_suffix}" for filename in filenames] return filenames else: lowercase__ = prefix if filetype_suffix: filename += f".{filetype_suffix}" return [filename]
2
0
class lowerCamelCase__ : '''simple docstring''' def __init__(self ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) -> Any: """simple docstring""" lowerCAmelCase__ : List[Any] = name lowerCAmelCase__ : Tuple = value lowerCAmelCase__ : Optional[Any] = weight def __repr__(self ) -> Optional[Any]: """simple docstring""" return f"""{self.__class__.__name__}({self.name}, {self.value}, {self.weight})""" def lowerCAmelCase__ (self ) -> Optional[int]: """simple docstring""" return self.value def lowerCAmelCase__ (self ) -> str: """simple docstring""" return self.name def lowerCAmelCase__ (self ) -> List[str]: """simple docstring""" return self.weight def lowerCAmelCase__ (self ) -> List[str]: """simple docstring""" return self.value / self.weight def lowerCAmelCase__ ( lowerCamelCase_ : int ,lowerCamelCase_ : Tuple ,lowerCamelCase_ : Tuple): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = [] for i in range(len(lowerCamelCase_)): menu.append(Things(name[i] ,value[i] ,weight[i])) return menu def lowerCAmelCase__ ( lowerCamelCase_ : List[Any] ,lowerCamelCase_ : List[str] ,lowerCamelCase_ : Optional[int]): '''simple docstring''' lowerCAmelCase__ : List[str] = sorted(lowerCamelCase_ ,key=lowerCamelCase_ ,reverse=lowerCamelCase_) lowerCAmelCase__ : Union[str, Any] = [] lowerCAmelCase__ , lowerCAmelCase__ : int = 0.0, 0.0 for i in range(len(lowerCamelCase_)): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i]) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def lowerCAmelCase__ ( ): '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
129
'''simple docstring''' import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class __lowerCAmelCase : '''simple docstring''' def __init__(self : str , UpperCamelCase : Tuple , UpperCamelCase : Optional[int]=99 , UpperCamelCase : Optional[int]=13 , UpperCamelCase : Tuple=16 , UpperCamelCase : Union[str, Any]=7 , UpperCamelCase : List[Any]=True , UpperCamelCase : List[str]=True , UpperCamelCase : str=True , UpperCamelCase : Tuple=False , UpperCamelCase : str=True , UpperCamelCase : Tuple=2 , UpperCamelCase : Optional[int]=32 , UpperCamelCase : Any=4 , UpperCamelCase : Optional[int]=4 , UpperCamelCase : Tuple=30 , UpperCamelCase : str=0 , UpperCamelCase : Tuple=1 , UpperCamelCase : List[Any]=2 , UpperCamelCase : str=None , ): '''simple docstring''' lowercase__ = parent lowercase__ = batch_size lowercase__ = decoder_seq_length # For common tests lowercase__ = self.decoder_seq_length lowercase__ = is_training lowercase__ = use_attention_mask lowercase__ = use_labels lowercase__ = vocab_size lowercase__ = d_model lowercase__ = d_model lowercase__ = decoder_layers lowercase__ = decoder_layers lowercase__ = decoder_ffn_dim lowercase__ = decoder_attention_heads lowercase__ = decoder_attention_heads lowercase__ = eos_token_id lowercase__ = bos_token_id lowercase__ = pad_token_id lowercase__ = decoder_start_token_id lowercase__ = use_cache lowercase__ = max_position_embeddings lowercase__ = None lowercase__ = decoder_seq_length lowercase__ = 2 lowercase__ = 1 def UpperCamelCase__ (self : str ): '''simple docstring''' lowercase__ = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) lowercase__ = None if self.use_attention_mask: lowercase__ = ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 ) lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) lowercase__ = TrOCRConfig( vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , ) return (config, input_ids, attention_mask, lm_labels) def UpperCamelCase__ (self : Tuple , UpperCamelCase : List[Any] , UpperCamelCase : Optional[Any] , UpperCamelCase : Tuple , UpperCamelCase : List[str] , ): '''simple docstring''' lowercase__ = True lowercase__ = TrOCRDecoder(config=UpperCamelCase ).to(UpperCamelCase ).eval() lowercase__ = input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass lowercase__ = model(UpperCamelCase , use_cache=UpperCamelCase ) lowercase__ = model(UpperCamelCase ) lowercase__ = model(UpperCamelCase , use_cache=UpperCamelCase ) self.parent.assertTrue(len(UpperCamelCase ) == len(UpperCamelCase ) ) self.parent.assertTrue(len(UpperCamelCase ) == len(UpperCamelCase ) + 1 ) lowercase__ = outputs['''past_key_values'''] # create hypothetical next token and extent to next_input_ids lowercase__ = ids_tensor((2, 1) , config.vocab_size - 1 ) + 1 # append to next input_ids and lowercase__ = torch.cat([input_ids, next_tokens] , dim=-1 ) lowercase__ = model(UpperCamelCase )['''last_hidden_state'''] lowercase__ = model(UpperCamelCase , past_key_values=UpperCamelCase )['''last_hidden_state'''] # select random slice lowercase__ = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowercase__ = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() lowercase__ = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(UpperCamelCase , UpperCamelCase , atol=1E-3 ) def UpperCamelCase__ (self : Optional[Any] ): '''simple docstring''' lowercase__ = self.prepare_config_and_inputs() lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ = config_and_inputs lowercase__ = {'''input_ids''': input_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_torch class __lowerCAmelCase (lowercase_ , lowercase_ , lowercase_ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ : List[str] = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () lowerCAmelCase__ : List[Any] = (TrOCRForCausalLM,) if is_torch_available() else () lowerCAmelCase__ : Optional[Any] = {"""text-generation""": TrOCRForCausalLM} if is_torch_available() else {} lowerCAmelCase__ : Optional[Any] = True lowerCAmelCase__ : List[str] = False def UpperCamelCase__ (self : Any ): '''simple docstring''' lowercase__ = TrOCRStandaloneDecoderModelTester(self , is_training=UpperCamelCase ) lowercase__ = ConfigTester(self , config_class=UpperCamelCase ) def UpperCamelCase__ (self : List[str] ): '''simple docstring''' pass def UpperCamelCase__ (self : Optional[int] ): '''simple docstring''' pass def UpperCamelCase__ (self : Any ): '''simple docstring''' pass def UpperCamelCase__ (self : Any ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCamelCase__ (self : Union[str, Any] ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*UpperCamelCase ) def UpperCamelCase__ (self : Optional[int] ): '''simple docstring''' return @unittest.skip('''The model doesn\'t support left padding''' ) # and it's not used enough to be worth fixing :) def UpperCamelCase__ (self : List[str] ): '''simple docstring''' pass
2
0
"""simple docstring""" from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE : Any = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Dict = { 'huggingface/time-series-transformer-tourism-monthly': ( 'https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json' ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class _UpperCAmelCase ( lowercase_ ): '''simple docstring''' lowerCamelCase__ ="""time_series_transformer""" lowerCamelCase__ ={ """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", """num_hidden_layers""": """encoder_layers""", } def __init__(self , a_ = None , a_ = None , a_ = "student_t" , a_ = "nll" , a_ = 1 , a_ = [1, 2, 3, 4, 5, 6, 7] , a_ = "mean" , a_ = 0 , a_ = 0 , a_ = 0 , a_ = 0 , a_ = None , a_ = None , a_ = 32 , a_ = 32 , a_ = 2 , a_ = 2 , a_ = 2 , a_ = 2 , a_ = True , a_ = "gelu" , a_ = 64 , a_ = 0.1 , a_ = 0.1 , a_ = 0.1 , a_ = 0.1 , a_ = 0.1 , a_ = 1_00 , a_ = 0.02 , a_=True , **a_ , ): '''simple docstring''' __snake_case : Dict = prediction_length __snake_case : Dict = context_length or prediction_length __snake_case : int = distribution_output __snake_case : Union[str, Any] = loss __snake_case : Optional[Any] = input_size __snake_case : Optional[Any] = num_time_features __snake_case : Any = lags_sequence __snake_case : Any = scaling __snake_case : int = num_dynamic_real_features __snake_case : Optional[Any] = num_static_real_features __snake_case : Any = num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(a_ ) != num_static_categorical_features: raise ValueError( '''The cardinality should be a list of the same length as `num_static_categorical_features`''' ) __snake_case : List[Any] = cardinality else: __snake_case : List[Any] = [0] if embedding_dimension and num_static_categorical_features > 0: if len(a_ ) != num_static_categorical_features: raise ValueError( '''The embedding dimension should be a list of the same length as `num_static_categorical_features`''' ) __snake_case : Dict = embedding_dimension else: __snake_case : int = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] __snake_case : Optional[int] = num_parallel_samples # Transformer architecture configuration __snake_case : List[Any] = input_size * len(a_ ) + self._number_of_features __snake_case : int = d_model __snake_case : str = encoder_attention_heads __snake_case : str = decoder_attention_heads __snake_case : Any = encoder_ffn_dim __snake_case : Union[str, Any] = decoder_ffn_dim __snake_case : Optional[int] = encoder_layers __snake_case : Union[str, Any] = decoder_layers __snake_case : Tuple = dropout __snake_case : Tuple = attention_dropout __snake_case : Dict = activation_dropout __snake_case : Dict = encoder_layerdrop __snake_case : Dict = decoder_layerdrop __snake_case : str = activation_function __snake_case : List[str] = init_std __snake_case : Optional[Any] = use_cache super().__init__(is_encoder_decoder=a_ , **a_ ) @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
102
'''simple docstring''' def _SCREAMING_SNAKE_CASE (A ) -> int: """simple docstring""" if not isinstance(A , A ): raise TypeError('''only integers accepted as input''' ) else: lowercase__ = str(abs(A ) ) lowercase__ = [list(A ) for char in range(len(A ) )] for index in range(len(A ) ): num_transpositions[index].pop(A ) return max( int(''''''.join(list(A ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__('doctest').testmod()
2
0
from __future__ import annotations import os import tempfile import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import is_tensorflow_text_available, is_tf_available from transformers.testing_utils import require_tensorflow_text, require_tf, slow from ..test_modeling_tf_common import floats_tensor from .test_framework_agnostic import GenerationIntegrationTestsMixin if is_tf_available(): import tensorflow as tf from transformers import ( AutoTokenizer, TFAutoModelForCausalLM, TFAutoModelForSeqaSeqLM, TFAutoModelForSpeechSeqaSeq, TFAutoModelForVisionaSeq, TFBartForConditionalGeneration, TFLogitsProcessorList, TFMinLengthLogitsProcessor, tf_top_k_top_p_filtering, ) if is_tensorflow_text_available(): import tensorflow_text as text @require_tf class __A ( unittest.TestCase ): """simple docstring""" def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Optional[int] =tf.convert_to_tensor( [ [ 8.2_220_991, # 3rd highest value; idx. 0 -0.5_620_044, 5.23_229_752, 4.0_386_393, -6.8_798_378, -0.54_785_802, -3.2_012_153, 2.92_777_176, 1.88_171_953, 7.35_341_276, # 5th highest value; idx. 9 8.43_207_833, # 2nd highest value; idx. 10 -9.85_711_836, -5.96_209_236, -1.13_039_161, -7.1_115_294, -0.8_369_633, -5.3_186_408, 7.06_427_407, 0.81_369_344, -0.82_023_817, -5.9_179_796, 0.58_813_443, -6.99_778_438, 4.71_551_189, -0.18_771_637, 7.44_020_759, # 4th highest value; idx. 25 9.38_450_987, # 1st highest value; idx. 26 2.12_662_941, -9.32_562_038, 2.35_652_522, ], # cummulative prob of 5 highest values <= 0.6 [ 0.58_425_518, 4.53_139_238, -5.57_510_464, -6.28_030_699, -7.19_529_503, -4.02_122_551, 1.39_337_037, -6.06_707_057, 1.59_480_517, -9.643_119, 0.03_907_799, 0.67_231_762, -8.88_206_726, 6.27_115_922, # 4th highest value; idx. 13 2.28_520_723, 4.82_767_506, 4.30_421_368, 8.8_275_313, # 2nd highest value; idx. 17 5.44_029_958, # 5th highest value; idx. 18 -4.4_735_794, 7.38_579_536, # 3rd highest value; idx. 20 -2.91_051_663, 2.61_946_077, -2.5_674_762, -9.48_959_302, -4.02_922_645, -1.35_416_918, 9.67_702_323, # 1st highest value; idx. 27 -5.89_478_553, 1.85_370_467, ], # cummulative prob of 5 highest values <= 0.6 ] , dtype=tf.floataa , ) __UpperCamelCase : List[str] =tf.convert_to_tensor( [[0, 0], [0, 9], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 18], [1, 20], [1, 27]] , dtype=tf.intaa , ) # expected non filtered idx as noted above __UpperCamelCase : List[Any] =tf.convert_to_tensor( [8.222_099, 7.3_534_126, 8.432_078, 7.4_402_075, 9.38_451, 6.271_159, 8.827_531, 5.4_402_995, 7.3_857_956, 9.677_023] , dtype=tf.floataa , ) # expected non filtered values as noted above __UpperCamelCase : List[str] =tf_top_k_top_p_filtering(lowerCamelCase__ , top_k=10 , top_p=0.6 , min_tokens_to_keep=4 ) __UpperCamelCase : List[str] =output[output != -float('inf' )] __UpperCamelCase : Optional[Any] =tf.cast( tf.where(tf.not_equal(lowerCamelCase__ , tf.constant(-float('inf' ) , dtype=tf.floataa ) ) ) , dtype=tf.intaa , ) tf.debugging.assert_near(lowerCamelCase__ , lowerCamelCase__ , rtol=1E-12 ) tf.debugging.assert_equal(lowerCamelCase__ , lowerCamelCase__ ) @require_tf class __A ( unittest.TestCase , lowercase_ ): """simple docstring""" if is_tf_available(): UpperCamelCase__ : Optional[int] ={ """AutoModelForCausalLM""": TFAutoModelForCausalLM, """AutoModelForSpeechSeq2Seq""": TFAutoModelForSpeechSeqaSeq, """AutoModelForSeq2SeqLM""": TFAutoModelForSeqaSeqLM, """AutoModelForVision2Seq""": TFAutoModelForVisionaSeq, """LogitsProcessorList""": TFLogitsProcessorList, """MinLengthLogitsProcessor""": TFMinLengthLogitsProcessor, """create_tensor_fn""": tf.convert_to_tensor, """floats_tensor""": floats_tensor, """return_tensors""": """tf""", } @slow def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Optional[int] =TFAutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) __UpperCamelCase : List[Any] =2 __UpperCamelCase : int =2 class __A ( tf.Module ): """simple docstring""" def __init__( self , lowerCamelCase__ ): """simple docstring""" super(lowerCamelCase__ , self ).__init__() __UpperCamelCase : Any =model @tf.function( input_signature=( tf.TensorSpec((None, input_length) , tf.intaa , name='input_ids' ), tf.TensorSpec((None, input_length) , tf.intaa , name='attention_mask' ), ) , jit_compile=lowerCamelCase__ , ) def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : Optional[int] =self.model.generate( input_ids=lowerCamelCase__ , attention_mask=lowerCamelCase__ , max_new_tokens=lowerCamelCase__ , return_dict_in_generate=lowerCamelCase__ , ) return {"sequences": outputs["sequences"]} __UpperCamelCase : str =[[2, 0], [102, 103]] __UpperCamelCase : Optional[Any] =[[1, 0], [1, 1]] __UpperCamelCase : str =DummyModel(model=lowerCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(lowerCamelCase__ , lowerCamelCase__ , signatures={'serving_default': dummy_model.serving} ) __UpperCamelCase : Optional[int] =tf.saved_model.load(lowerCamelCase__ ).signatures['serving_default'] for batch_size in range(1 , len(lowerCamelCase__ ) + 1 ): __UpperCamelCase : str ={ 'input_ids': tf.constant(dummy_input_ids[:batch_size] ), 'attention_mask': tf.constant(dummy_attention_masks[:batch_size] ), } __UpperCamelCase : Optional[Any] =serving_func(**lowerCamelCase__ )['sequences'] __UpperCamelCase : List[Any] =test_model.generate(**lowerCamelCase__ , max_new_tokens=lowerCamelCase__ ) tf.debugging.assert_equal(lowerCamelCase__ , lowerCamelCase__ ) @slow def __lowercase ( self ): """simple docstring""" __UpperCamelCase : List[Any] =TFAutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) __UpperCamelCase : List[str] =1 __UpperCamelCase : Tuple =2 class __A ( tf.Module ): """simple docstring""" def __init__( self , lowerCamelCase__ ): """simple docstring""" super(lowerCamelCase__ , self ).__init__() __UpperCamelCase : Any =model @tf.function( input_signature=( tf.TensorSpec((batch_size, None) , tf.intaa , name='input_ids' ), tf.TensorSpec((batch_size, None) , tf.intaa , name='attention_mask' ), ) , jit_compile=lowerCamelCase__ , ) def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : Optional[int] =self.model.generate( input_ids=lowerCamelCase__ , attention_mask=lowerCamelCase__ , max_new_tokens=lowerCamelCase__ , return_dict_in_generate=lowerCamelCase__ , ) return {"sequences": outputs["sequences"]} __UpperCamelCase : Tuple =[[2], [102, 103]] __UpperCamelCase : int =[[1], [1, 1]] __UpperCamelCase : Dict =DummyModel(model=lowerCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(lowerCamelCase__ , lowerCamelCase__ , signatures={'serving_default': dummy_model.serving} ) __UpperCamelCase : List[str] =tf.saved_model.load(lowerCamelCase__ ).signatures['serving_default'] for input_row in range(len(lowerCamelCase__ ) ): __UpperCamelCase : List[Any] ={ 'input_ids': tf.constant([dummy_input_ids[input_row]] ), 'attention_mask': tf.constant([dummy_attention_masks[input_row]] ), } __UpperCamelCase : List[Any] =serving_func(**lowerCamelCase__ )['sequences'] __UpperCamelCase : List[Any] =test_model.generate(**lowerCamelCase__ , max_new_tokens=lowerCamelCase__ ) tf.debugging.assert_equal(lowerCamelCase__ , lowerCamelCase__ ) @slow @require_tensorflow_text def __lowercase ( self ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: # file needed to load the TF tokenizer hf_hub_download(repo_id='google/flan-t5-small' , filename='spiece.model' , local_dir=lowerCamelCase__ ) class __A ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self ): """simple docstring""" super().__init__() __UpperCamelCase : List[Any] =text.SentencepieceTokenizer( model=tf.io.gfile.GFile(os.path.join(lowerCamelCase__ , 'spiece.model' ) , 'rb' ).read() ) __UpperCamelCase : Dict =TFAutoModelForSeqaSeqLM.from_pretrained('hf-internal-testing/tiny-random-t5' ) def __lowercase ( self , lowerCamelCase__ , *lowerCamelCase__ , **lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : List[str] =self.tokenizer.tokenize(lowerCamelCase__ ) __UpperCamelCase , __UpperCamelCase : Dict =text.pad_model_inputs( lowerCamelCase__ , max_seq_length=64 , pad_value=self.model.config.pad_token_id ) __UpperCamelCase : List[Any] =self.model.generate(input_ids=lowerCamelCase__ , attention_mask=lowerCamelCase__ ) return self.tokenizer.detokenize(lowerCamelCase__ ) __UpperCamelCase : Union[str, Any] =CompleteSentenceTransformer() __UpperCamelCase : List[Any] =tf.keras.layers.Input(shape=(1,) , dtype=tf.string , name='inputs' ) __UpperCamelCase : List[str] =complete_model(lowerCamelCase__ ) __UpperCamelCase : int =tf.keras.Model(lowerCamelCase__ , lowerCamelCase__ ) keras_model.save(lowerCamelCase__ ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Tuple ={ 'do_sample': True, 'num_beams': 1, 'top_p': 0.7, 'top_k': 10, 'temperature': 0.7, } __UpperCamelCase : Optional[int] =14 __UpperCamelCase : Optional[Any] =AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) __UpperCamelCase : Tuple ='Hello, my dog is cute and' __UpperCamelCase : str =tokenizer(lowerCamelCase__ , return_tensors='tf' ) __UpperCamelCase : str =TFAutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) __UpperCamelCase : Union[str, Any] =638 # forces the generation to happen on CPU, to avoid GPU-related quirks with tf.device(':/CPU:0' ): tf.random.set_seed(0 ) __UpperCamelCase : Tuple =model.generate(**lowerCamelCase__ , eos_token_id=lowerCamelCase__ , **lowerCamelCase__ ) self.assertTrue(expectation == len(generated_tokens[0] ) ) __UpperCamelCase : Union[str, Any] =[638, 198] with tf.device(':/CPU:0' ): tf.random.set_seed(0 ) __UpperCamelCase : Optional[int] =model.generate(**lowerCamelCase__ , eos_token_id=lowerCamelCase__ , **lowerCamelCase__ ) self.assertTrue(expectation == len(generated_tokens[0] ) ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : str =AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-bart' ) __UpperCamelCase : Union[str, Any] ='Hugging Face is a technology company based in New York and Paris.' __UpperCamelCase : List[Any] =bart_tokenizer(lowerCamelCase__ , return_tensors='tf' ).input_ids __UpperCamelCase : Dict =TFBartForConditionalGeneration.from_pretrained('hf-internal-testing/tiny-random-bart' ) __UpperCamelCase : Optional[int] =bart_model.generate(lowerCamelCase__ ).numpy() class __A ( lowercase_ ): """simple docstring""" def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__=None , **lowerCamelCase__ ): """simple docstring""" return super().call(lowerCamelCase__ , **lowerCamelCase__ ) __UpperCamelCase : Optional[Any] =FakeBart.from_pretrained('hf-internal-testing/tiny-random-bart' ) __UpperCamelCase : Dict =bart_model.generate(lowerCamelCase__ , foo='bar' ).numpy() self.assertTrue(np.array_equal(lowerCamelCase__ , lowerCamelCase__ ) ) class __A ( bart_model.model.encoder.__class__ ): """simple docstring""" def __lowercase ( self , lowerCamelCase__ , **lowerCamelCase__ ): """simple docstring""" return super().call(lowerCamelCase__ , **lowerCamelCase__ ) __UpperCamelCase : Optional[Any] =FakeEncoder(bart_model.config , bart_model.model.shared ) __UpperCamelCase : List[Any] =fake_encoder # Normal generation still works (the output will be different because the encoder weights are different) __UpperCamelCase : Union[str, Any] =bart_model.generate(lowerCamelCase__ ).numpy() with self.assertRaises(lowerCamelCase__ ): # FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo" bart_model.generate(lowerCamelCase__ , foo='bar' )
71
'''simple docstring''' import dataclasses import re import string from typing import Any, Dict, Iterator, List, Mapping, Optional, Sequence, Tuple import numpy as np from . import residue_constants lowerCamelCase : str = Mapping[str, np.ndarray] lowerCamelCase : List[Any] = Mapping[str, Any] # Is a nested dict. lowerCamelCase : Any = 0.0_1 @dataclasses.dataclass(frozen=lowercase_ ) class __lowerCAmelCase : '''simple docstring''' lowerCAmelCase__ : np.ndarray # [num_res, num_atom_type, 3] # Amino-acid type for each residue represented as an integer between 0 and # 20, where 20 is 'X'. lowerCAmelCase__ : np.ndarray # [num_res] # Binary float mask to indicate presence of a particular atom. 1.0 if an atom # is present and 0.0 if not. This should be used for loss masking. lowerCAmelCase__ : np.ndarray # [num_res, num_atom_type] # Residue index as used in PDB. It is not necessarily continuous or 0-indexed. lowerCAmelCase__ : np.ndarray # [num_res] # B-factors, or temperature factors, of each residue (in sq. angstroms units), # representing the displacement of the residue from its ground truth mean # value. lowerCAmelCase__ : np.ndarray # [num_res, num_atom_type] # Chain indices for multi-chain predictions lowerCAmelCase__ : Optional[np.ndarray] = None # Optional remark about the protein. Included as a comment in output PDB # files lowerCAmelCase__ : Optional[str] = None # Templates used to generate this protein (prediction-only) lowerCAmelCase__ : Optional[Sequence[str]] = None # Chain corresponding to each parent lowerCAmelCase__ : Optional[Sequence[int]] = None def _SCREAMING_SNAKE_CASE (A ) -> Protein: """simple docstring""" lowercase__ = R'''(\[[A-Z]+\]\n)''' lowercase__ = [tag.strip() for tag in re.split(A , A ) if len(A ) > 0] lowercase__ = zip(tags[0::2] , [l.split('''\n''' ) for l in tags[1::2]] ) lowercase__ = ["N", "CA", "C"] lowercase__ = None lowercase__ = None lowercase__ = None for g in groups: if "[PRIMARY]" == g[0]: lowercase__ = g[1][0].strip() for i in range(len(A ) ): if seq[i] not in residue_constants.restypes: lowercase__ = '''X''' # FIXME: strings are immutable lowercase__ = np.array( [residue_constants.restype_order.get(A , residue_constants.restype_num ) for res_symbol in seq] ) elif "[TERTIARY]" == g[0]: lowercase__ = [] for axis in range(3 ): tertiary.append(list(map(A , g[1][axis].split() ) ) ) lowercase__ = np.array(A ) lowercase__ = np.zeros((len(tertiary[0] ) // 3, residue_constants.atom_type_num, 3) ).astype(np.floataa ) for i, atom in enumerate(A ): lowercase__ = np.transpose(tertiary_np[:, i::3] ) atom_positions *= PICO_TO_ANGSTROM elif "[MASK]" == g[0]: lowercase__ = np.array(list(map({'''-''': 0, '''+''': 1}.get , g[1][0].strip() ) ) ) lowercase__ = np.zeros( ( len(A ), residue_constants.atom_type_num, ) ).astype(np.floataa ) for i, atom in enumerate(A ): lowercase__ = 1 atom_mask *= mask[..., None] assert aatype is not None return Protein( atom_positions=A , atom_mask=A , aatype=A , residue_index=np.arange(len(A ) ) , b_factors=A , ) def _SCREAMING_SNAKE_CASE (A , A = 0 ) -> List[str]: """simple docstring""" lowercase__ = [] lowercase__ = prot.remark if remark is not None: pdb_headers.append(f"REMARK {remark}" ) lowercase__ = prot.parents lowercase__ = prot.parents_chain_index if parents is not None and parents_chain_index is not None: lowercase__ = [p for i, p in zip(A , A ) if i == chain_id] if parents is None or len(A ) == 0: lowercase__ = ['''N/A'''] pdb_headers.append(f"PARENT {' '.join(A )}" ) return pdb_headers def _SCREAMING_SNAKE_CASE (A , A ) -> str: """simple docstring""" lowercase__ = [] lowercase__ = pdb_str.split('''\n''' ) lowercase__ = prot.remark if remark is not None: out_pdb_lines.append(f"REMARK {remark}" ) lowercase__ = 42 if prot.parents is not None and len(prot.parents ) > 0: lowercase__ = [] if prot.parents_chain_index is not None: lowercase__ = {} for p, i in zip(prot.parents , prot.parents_chain_index ): parent_dict.setdefault(str(A ) , [] ) parent_dict[str(A )].append(A ) lowercase__ = max([int(A ) for chain_idx in parent_dict] ) for i in range(max_idx + 1 ): lowercase__ = parent_dict.get(str(A ) , ['''N/A'''] ) parents_per_chain.append(A ) else: parents_per_chain.append(list(prot.parents ) ) else: lowercase__ = [['''N/A''']] def make_parent_line(A ) -> str: return f"PARENT {' '.join(A )}" out_pdb_lines.append(make_parent_line(parents_per_chain[0] ) ) lowercase__ = 0 for i, l in enumerate(A ): if "PARENT" not in l and "REMARK" not in l: out_pdb_lines.append(A ) if "TER" in l and "END" not in lines[i + 1]: chain_counter += 1 if not chain_counter >= len(A ): lowercase__ = parents_per_chain[chain_counter] else: lowercase__ = ['''N/A'''] out_pdb_lines.append(make_parent_line(A ) ) return "\n".join(A ) def _SCREAMING_SNAKE_CASE (A ) -> str: """simple docstring""" lowercase__ = residue_constants.restypes + ['''X'''] def res_atoa(A ) -> str: return residue_constants.restype_atoa.get(restypes[r] , '''UNK''' ) lowercase__ = residue_constants.atom_types lowercase__ = [] lowercase__ = prot.atom_mask lowercase__ = prot.aatype lowercase__ = prot.atom_positions lowercase__ = prot.residue_index.astype(np.intaa ) lowercase__ = prot.b_factors lowercase__ = prot.chain_index if np.any(aatype > residue_constants.restype_num ): raise ValueError('''Invalid aatypes.''' ) lowercase__ = get_pdb_headers(A ) if len(A ) > 0: pdb_lines.extend(A ) lowercase__ = aatype.shape[0] lowercase__ = 1 lowercase__ = 0 lowercase__ = string.ascii_uppercase lowercase__ = None # Add all atom sites. for i in range(A ): lowercase__ = res_atoa(aatype[i] ) for atom_name, pos, mask, b_factor in zip(A , atom_positions[i] , atom_mask[i] , b_factors[i] ): if mask < 0.5: continue lowercase__ = '''ATOM''' lowercase__ = atom_name if len(A ) == 4 else f" {atom_name}" lowercase__ = '''''' lowercase__ = '''''' lowercase__ = 1.00 lowercase__ = atom_name[0] # Protein supports only C, N, O, S, this works. lowercase__ = '''''' lowercase__ = '''A''' if chain_index is not None: lowercase__ = chain_tags[chain_index[i]] # PDB is a columnar format, every space matters here! lowercase__ = ( f"{record_type:<6}{atom_index:>5} {name:<4}{alt_loc:>1}" f"{res_name_a:>3} {chain_tag:>1}" f"{residue_index[i]:>4}{insertion_code:>1} " f"{pos[0]:>8.3f}{pos[1]:>8.3f}{pos[2]:>8.3f}" f"{occupancy:>6.2f}{b_factor:>6.2f} " f"{element:>2}{charge:>2}" ) pdb_lines.append(A ) atom_index += 1 lowercase__ = i == n - 1 if chain_index is not None: if i != n - 1 and chain_index[i + 1] != prev_chain_index: lowercase__ = True lowercase__ = chain_index[i + 1] if should_terminate: # Close the chain. lowercase__ = '''TER''' lowercase__ = ( f"{chain_end:<6}{atom_index:>5} {res_atoa(aatype[i] ):>3} {chain_tag:>1}{residue_index[i]:>4}" ) pdb_lines.append(A ) atom_index += 1 if i != n - 1: # "prev" is a misnomer here. This happens at the beginning of # each new chain. pdb_lines.extend(get_pdb_headers(A , A ) ) pdb_lines.append('''END''' ) pdb_lines.append('''''' ) return "\n".join(A ) def _SCREAMING_SNAKE_CASE (A ) -> np.ndarray: """simple docstring""" return residue_constants.STANDARD_ATOM_MASK[prot.aatype] def _SCREAMING_SNAKE_CASE (A , A , A = None , A = None , A = None , A = None , A = None , ) -> Protein: """simple docstring""" return Protein( aatype=features['''aatype'''] , atom_positions=result['''final_atom_positions'''] , atom_mask=result['''final_atom_mask'''] , residue_index=features['''residue_index'''] + 1 , b_factors=b_factors if b_factors is not None else np.zeros_like(result['''final_atom_mask'''] ) , chain_index=A , remark=A , parents=A , parents_chain_index=A , )
2
0
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor class _snake_case ( unittest.TestCase ): def __init__( self , a__ , a__=7 , a__=3 , a__=18 , a__=30 , a__=400 , a__=True , a__=None , a__=True , a__=None , a__=True , a__=[0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] , a__=[0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] , a__=True , ) -> int: '''simple docstring''' snake_case_ = size if size is not None else {"height": 224, "width": 224} snake_case_ = crop_size if crop_size is not None else {"height": 18, "width": 18} snake_case_ = parent snake_case_ = batch_size snake_case_ = num_channels snake_case_ = image_size snake_case_ = min_resolution snake_case_ = max_resolution snake_case_ = do_resize snake_case_ = size snake_case_ = do_center_crop snake_case_ = crop_size snake_case_ = do_normalize snake_case_ = image_mean snake_case_ = image_std snake_case_ = do_convert_rgb def lowerCAmelCase__ ( self ) -> Tuple: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_convert_rgb": self.do_convert_rgb, } def lowerCAmelCase__ ( self , a__=False , a__=False , a__=False ) -> List[str]: '''simple docstring''' assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time" if equal_resolution: snake_case_ = [] for i in range(self.batch_size ): image_inputs.append( np.random.randint( 255 , size=(self.num_channels, self.max_resolution, self.max_resolution) , dtype=np.uinta ) ) else: snake_case_ = [] for i in range(self.batch_size ): snake_case_ , snake_case_ = np.random.choice(np.arange(self.min_resolution , self.max_resolution ) , 2 ) image_inputs.append(np.random.randint(255 , size=(self.num_channels, width, height) , dtype=np.uinta ) ) if not numpify and not torchify: # PIL expects the channel dimension as last dimension snake_case_ = [Image.fromarray(np.moveaxis(a__ , 0 , -1 ) ) for x in image_inputs] if torchify: snake_case_ = [torch.from_numpy(a__ ) for x in image_inputs] return image_inputs @require_torch @require_vision class _snake_case ( lowercase_ , unittest.TestCase ): lowerCAmelCase_ : str = ChineseCLIPImageProcessor if is_vision_available() else None def lowerCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' snake_case_ = ChineseCLIPImageProcessingTester(self , do_center_crop=a__ ) @property def lowerCAmelCase__ ( self ) -> Any: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(a__ , "do_resize" ) ) self.assertTrue(hasattr(a__ , "size" ) ) self.assertTrue(hasattr(a__ , "do_center_crop" ) ) self.assertTrue(hasattr(a__ , "center_crop" ) ) self.assertTrue(hasattr(a__ , "do_normalize" ) ) self.assertTrue(hasattr(a__ , "image_mean" ) ) self.assertTrue(hasattr(a__ , "image_std" ) ) self.assertTrue(hasattr(a__ , "do_convert_rgb" ) ) def lowerCAmelCase__ ( self ) -> List[str]: '''simple docstring''' snake_case_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"height": 224, "width": 224} ) self.assertEqual(image_processor.crop_size , {"height": 18, "width": 18} ) snake_case_ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"shortest_edge": 42} ) self.assertEqual(image_processor.crop_size , {"height": 84, "width": 84} ) def lowerCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' pass def lowerCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' snake_case_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case_ = self.image_processor_tester.prepare_inputs(equal_resolution=a__ ) for image in image_inputs: self.assertIsInstance(a__ , Image.Image ) # Test not batched input snake_case_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched snake_case_ = image_processing(a__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def lowerCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' snake_case_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case_ = self.image_processor_tester.prepare_inputs(equal_resolution=a__ , numpify=a__ ) for image in image_inputs: self.assertIsInstance(a__ , np.ndarray ) # Test not batched input snake_case_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched snake_case_ = image_processing(a__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def lowerCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case_ = self.image_processor_tester.prepare_inputs(equal_resolution=a__ , torchify=a__ ) for image in image_inputs: self.assertIsInstance(a__ , torch.Tensor ) # Test not batched input snake_case_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched snake_case_ = image_processing(a__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) @require_torch @require_vision class _snake_case ( lowercase_ , unittest.TestCase ): lowerCAmelCase_ : List[Any] = ChineseCLIPImageProcessor if is_vision_available() else None def lowerCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' snake_case_ = ChineseCLIPImageProcessingTester(self , num_channels=4 , do_center_crop=a__ ) snake_case_ = 3 @property def lowerCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase__ ( self ) -> Dict: '''simple docstring''' snake_case_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(a__ , "do_resize" ) ) self.assertTrue(hasattr(a__ , "size" ) ) self.assertTrue(hasattr(a__ , "do_center_crop" ) ) self.assertTrue(hasattr(a__ , "center_crop" ) ) self.assertTrue(hasattr(a__ , "do_normalize" ) ) self.assertTrue(hasattr(a__ , "image_mean" ) ) self.assertTrue(hasattr(a__ , "image_std" ) ) self.assertTrue(hasattr(a__ , "do_convert_rgb" ) ) def lowerCAmelCase__ ( self ) -> int: '''simple docstring''' pass def lowerCAmelCase__ ( self ) -> int: '''simple docstring''' snake_case_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case_ = self.image_processor_tester.prepare_inputs(equal_resolution=a__ ) for image in image_inputs: self.assertIsInstance(a__ , Image.Image ) # Test not batched input snake_case_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched snake_case_ = image_processing(a__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , )
85
'''simple docstring''' from __future__ import annotations def _SCREAMING_SNAKE_CASE (A , A ) -> list[list[int]]: """simple docstring""" lowercase__ = [] create_all_state(1 , A , A , [] , A ) return result def _SCREAMING_SNAKE_CASE (A , A , A , A , A , ) -> None: """simple docstring""" if level == 0: total_list.append(current_list[:] ) return for i in range(A , total_number - level + 2 ): current_list.append(A ) create_all_state(i + 1 , A , level - 1 , A , A ) current_list.pop() def _SCREAMING_SNAKE_CASE (A ) -> None: """simple docstring""" for i in total_list: print(*A ) if __name__ == "__main__": lowerCamelCase : Tuple = 4 lowerCamelCase : Union[str, Any] = 2 lowerCamelCase : Dict = generate_all_combinations(n, k) print_all_state(total_list)
2
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available a_ = { 'configuration_rag': ['RagConfig'], 'retrieval_rag': ['RagRetriever'], 'tokenization_rag': ['RagTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'RagModel', 'RagPreTrainedModel', 'RagSequenceForGeneration', 'RagTokenForGeneration', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'TFRagModel', 'TFRagPreTrainedModel', 'TFRagSequenceForGeneration', 'TFRagTokenForGeneration', ] if TYPE_CHECKING: from .configuration_rag import RagConfig from .retrieval_rag import RagRetriever from .tokenization_rag import RagTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rag import RagModel, RagPreTrainedModel, RagSequenceForGeneration, RagTokenForGeneration try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rag import ( TFRagModel, TFRagPreTrainedModel, TFRagSequenceForGeneration, TFRagTokenForGeneration, ) else: import sys a_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
330
'''simple docstring''' import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand lowerCamelCase : Optional[Any] = ( '4S 3H 2C 7S 5H', '9D 8H 2C 6S 7H', '2D 6D 9D TH 7D', 'TC 8C 2S JH 6C', 'JH 8S TH AH QH', 'TS KS 5S 9S AC', 'KD 6S 9D TH AD', 'KS 8D 4D 9S 4S', # pair '8C 4S KH JS 4D', # pair 'QH 8H KD JH 8S', # pair 'KC 4H KS 2H 8D', # pair 'KD 4S KC 3H 8S', # pair 'AH 8S AS KC JH', # pair '3H 4C 4H 3S 2H', # 2 pairs '5S 5D 2C KH KH', # 2 pairs '3C KH 5D 5S KH', # 2 pairs 'AS 3C KH AD KH', # 2 pairs '7C 7S 3S 7H 5S', # 3 of a kind '7C 7S KH 2H 7H', # 3 of a kind 'AC KH QH AH AS', # 3 of a kind '2H 4D 3C AS 5S', # straight (low ace) '3C 5C 4C 2C 6H', # straight '6S 8S 7S 5H 9H', # straight 'JS QS 9H TS KH', # straight 'QC KH TS JS AH', # straight (high ace) '8C 9C 5C 3C TC', # flush '3S 8S 9S 5S KS', # flush '4C 5C 9C 8C KC', # flush 'JH 8H AH KH QH', # flush '3D 2H 3H 2C 2D', # full house '2H 2C 3S 3H 3D', # full house 'KH KC 3S 3H 3D', # full house 'JC 6H JS JD JH', # 4 of a kind 'JC 7H JS JD JH', # 4 of a kind 'JC KH JS JD JH', # 4 of a kind '2S AS 4S 5S 3S', # straight flush (low ace) '2D 6D 3D 4D 5D', # straight flush '5C 6C 3C 7C 4C', # straight flush 'JH 9H TH KH QH', # straight flush 'JH AH TH KH QH', # royal flush (high ace straight flush) ) lowerCamelCase : Tuple = ( ('2H 3H 4H 5H 6H', 'KS AS TS QS JS', 'Loss'), ('2H 3H 4H 5H 6H', 'AS AD AC AH JD', 'Win'), ('AS AH 2H AD AC', 'JS JD JC JH 3D', 'Win'), ('2S AH 2H AS AC', 'JS JD JC JH AD', 'Loss'), ('2S AH 2H AS AC', '2H 3H 5H 6H 7H', 'Win'), ('AS 3S 4S 8S 2S', '2H 3H 5H 6H 7H', 'Win'), ('2H 3H 5H 6H 7H', '2S 3H 4H 5S 6C', 'Win'), ('2S 3H 4H 5S 6C', '3D 4C 5H 6H 2S', 'Tie'), ('2S 3H 4H 5S 6C', 'AH AC 5H 6H AS', 'Win'), ('2S 2H 4H 5S 4C', 'AH AC 5H 6H AS', 'Loss'), ('2S 2H 4H 5S 4C', 'AH AC 5H 6H 7S', 'Win'), ('6S AD 7H 4S AS', 'AH AC 5H 6H 7S', 'Loss'), ('2S AH 4H 5S KC', 'AH AC 5H 6H 7S', 'Loss'), ('2S 3H 6H 7S 9C', '7H 3C TH 6H 9S', 'Loss'), ('4S 5H 6H TS AC', '3S 5H 6H TS AC', 'Win'), ('2S AH 4H 5S 6C', 'AD 4C 5H 6H 2C', 'Tie'), ('AS AH 3H AD AC', 'AS AH 2H AD AC', 'Win'), ('AH AC 5H 5C QS', 'AH AC 5H 5C KS', 'Loss'), ('AH AC 5H 5C QS', 'KH KC 5H 5C QS', 'Win'), ('7C 7S KH 2H 7H', '3C 3S AH 2H 3H', 'Win'), ('3C 3S AH 2H 3H', '7C 7S KH 2H 7H', 'Loss'), ('6H 5H 4H 3H 2H', '5H 4H 3H 2H AH', 'Win'), ('5H 4H 3H 2H AH', '5H 4H 3H 2H AH', 'Tie'), ('5H 4H 3H 2H AH', '6H 5H 4H 3H 2H', 'Loss'), ('AH AD KS KC AC', 'AH KD KH AC KC', 'Win'), ('2H 4D 3C AS 5S', '2H 4D 3C 6S 5S', 'Loss'), ('2H 3S 3C 3H 2S', '3S 3C 2S 2H 2D', 'Win'), ('4D 6D 5D 2D JH', '3S 8S 3H TC KH', 'Loss'), ('4S 6C 8S 3S 7S', 'AD KS 2D 7D 7C', 'Loss'), ('6S 4C 7H 8C 3H', '5H JC AH 9D 9C', 'Loss'), ('9D 9H JH TC QH', '3C 2S JS 5C 7H', 'Win'), ('2H TC 8S AD 9S', '4H TS 7H 2C 5C', 'Win'), ('9D 3S 2C 7S 7C', 'JC TD 3C TC 9H', 'Loss'), ) lowerCamelCase : Dict = ( ('2H 3H 4H 5H 6H', True), ('AS AH 2H AD AC', False), ('2H 3H 5H 6H 7H', True), ('KS AS TS QS JS', True), ('8H 9H QS JS TH', False), ('AS 3S 4S 8S 2S', True), ) lowerCamelCase : Any = ( ('2H 3H 4H 5H 6H', True), ('AS AH 2H AD AC', False), ('2H 3H 5H 6H 7H', False), ('KS AS TS QS JS', True), ('8H 9H QS JS TH', True), ) lowerCamelCase : Tuple = ( ('2H 4D 3C AS 5S', True, [5, 4, 3, 2, 14]), ('2H 5D 3C AS 5S', False, [14, 5, 5, 3, 2]), ('JH QD KC AS TS', False, [14, 13, 12, 11, 10]), ('9D 3S 2C 7S 7C', False, [9, 7, 7, 3, 2]), ) lowerCamelCase : Optional[int] = ( ('JH AH TH KH QH', 0), ('JH 9H TH KH QH', 0), ('JC KH JS JD JH', 7), ('KH KC 3S 3H 3D', 6), ('8C 9C 5C 3C TC', 0), ('JS QS 9H TS KH', 0), ('7C 7S KH 2H 7H', 3), ('3C KH 5D 5S KH', 2), ('QH 8H KD JH 8S', 1), ('2D 6D 9D TH 7D', 0), ) lowerCamelCase : Dict = ( ('JH AH TH KH QH', 23), ('JH 9H TH KH QH', 22), ('JC KH JS JD JH', 21), ('KH KC 3S 3H 3D', 20), ('8C 9C 5C 3C TC', 19), ('JS QS 9H TS KH', 18), ('7C 7S KH 2H 7H', 17), ('3C KH 5D 5S KH', 16), ('QH 8H KD JH 8S', 15), ('2D 6D 9D TH 7D', 14), ) def _SCREAMING_SNAKE_CASE () -> Union[str, Any]: """simple docstring""" lowercase__ ,lowercase__ = randrange(len(A ) ), randrange(len(A ) ) lowercase__ = ['''Loss''', '''Tie''', '''Win'''][(play >= oppo) + (play > oppo)] lowercase__ ,lowercase__ = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def _SCREAMING_SNAKE_CASE (A = 100 ) -> str: """simple docstring""" return (generate_random_hand() for _ in range(A )) @pytest.mark.parametrize('''hand, expected''' , A ) def _SCREAMING_SNAKE_CASE (A , A ) -> List[str]: """simple docstring""" assert PokerHand(A )._is_flush() == expected @pytest.mark.parametrize('''hand, expected''' , A ) def _SCREAMING_SNAKE_CASE (A , A ) -> Union[str, Any]: """simple docstring""" assert PokerHand(A )._is_straight() == expected @pytest.mark.parametrize('''hand, expected, card_values''' , A ) def _SCREAMING_SNAKE_CASE (A , A , A ) -> Any: """simple docstring""" lowercase__ = PokerHand(A ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize('''hand, expected''' , A ) def _SCREAMING_SNAKE_CASE (A , A ) -> Tuple: """simple docstring""" assert PokerHand(A )._is_same_kind() == expected @pytest.mark.parametrize('''hand, expected''' , A ) def _SCREAMING_SNAKE_CASE (A , A ) -> Optional[Any]: """simple docstring""" assert PokerHand(A )._hand_type == expected @pytest.mark.parametrize('''hand, other, expected''' , A ) def _SCREAMING_SNAKE_CASE (A , A , A ) -> Union[str, Any]: """simple docstring""" assert PokerHand(A ).compare_with(PokerHand(A ) ) == expected @pytest.mark.parametrize('''hand, other, expected''' , generate_random_hands() ) def _SCREAMING_SNAKE_CASE (A , A , A ) -> Optional[Any]: """simple docstring""" assert PokerHand(A ).compare_with(PokerHand(A ) ) == expected def _SCREAMING_SNAKE_CASE () -> Tuple: """simple docstring""" lowercase__ = [PokerHand(A ) for hand in SORTED_HANDS] lowercase__ = poker_hands.copy() shuffle(A ) lowercase__ = chain(sorted(A ) ) for index, hand in enumerate(A ): assert hand == poker_hands[index] def _SCREAMING_SNAKE_CASE () -> List[Any]: """simple docstring""" lowercase__ = [PokerHand('''2D AC 3H 4H 5S''' ), PokerHand('''2S 3H 4H 5S 6C''' )] pokerhands.sort(reverse=A ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def _SCREAMING_SNAKE_CASE () -> int: """simple docstring""" lowercase__ = PokerHand('''2C 4S AS 3D 5C''' ) lowercase__ = True lowercase__ = [5, 4, 3, 2, 14] for _ in range(10 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def _SCREAMING_SNAKE_CASE () -> Union[str, Any]: """simple docstring""" lowercase__ = 0 lowercase__ = os.path.abspath(os.path.dirname(A ) ) lowercase__ = os.path.join(A , '''poker_hands.txt''' ) with open(A ) as file_hand: for line in file_hand: lowercase__ = line[:14].strip() lowercase__ = line[15:].strip() lowercase__ ,lowercase__ = PokerHand(A ), PokerHand(A ) lowercase__ = player.compare_with(A ) if output == "Win": answer += 1 assert answer == 376
2
0
import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler __A = 16 __A = 32 def lowerCamelCase_ ( UpperCamelCase__ : Tuple , UpperCamelCase__ : str = 16 , UpperCamelCase__ : Optional[Any] = "bert-base-cased" ) -> Union[str, Any]: """simple docstring""" __lowerCamelCase = AutoTokenizer.from_pretrained(UpperCamelCase__ ) __lowerCamelCase = load_dataset('glue' , 'mrpc' ) def tokenize_function(UpperCamelCase__ : Union[str, Any] ): # max_length=None => use the model max length (it's actually the default) __lowerCamelCase = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset __lowerCamelCase = datasets.map( UpperCamelCase__ , batched=UpperCamelCase__ , remove_columns=['idx', 'sentence1', 'sentence2'] , load_from_cache_file=UpperCamelCase__ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __lowerCamelCase = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(UpperCamelCase__ : Optional[Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(UpperCamelCase__ , padding='max_length' , max_length=128 , return_tensors='pt' ) return tokenizer.pad(UpperCamelCase__ , padding='longest' , return_tensors='pt' ) # Instantiate dataloaders. __lowerCamelCase = DataLoader( tokenized_datasets['train'] , shuffle=UpperCamelCase__ , collate_fn=UpperCamelCase__ , batch_size=UpperCamelCase__ ) __lowerCamelCase = DataLoader( tokenized_datasets['validation'] , shuffle=UpperCamelCase__ , collate_fn=UpperCamelCase__ , batch_size=UpperCamelCase__ ) return train_dataloader, eval_dataloader def lowerCamelCase_ ( UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Dict , UpperCamelCase__ : Dict , UpperCamelCase__ : List[str] ) -> List[str]: """simple docstring""" model.eval() __lowerCamelCase = 0 for step, batch in enumerate(UpperCamelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __lowerCamelCase = model(**UpperCamelCase__ ) __lowerCamelCase = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times __lowerCamelCase , __lowerCamelCase = accelerator.gather( (predictions, batch['labels']) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(UpperCamelCase__ ) - 1: __lowerCamelCase = predictions[: len(eval_dataloader.dataset ) - samples_seen] __lowerCamelCase = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=UpperCamelCase__ , references=UpperCamelCase__ , ) __lowerCamelCase = metric.compute() return eval_metric["accuracy"] def lowerCamelCase_ ( UpperCamelCase__ : Optional[int] , UpperCamelCase__ : int ) -> int: """simple docstring""" __lowerCamelCase = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __lowerCamelCase = config['lr'] __lowerCamelCase = int(config['num_epochs'] ) __lowerCamelCase = int(config['seed'] ) __lowerCamelCase = int(config['batch_size'] ) __lowerCamelCase = args.model_name_or_path set_seed(UpperCamelCase__ ) __lowerCamelCase , __lowerCamelCase = get_dataloaders(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __lowerCamelCase = AutoModelForSequenceClassification.from_pretrained(UpperCamelCase__ , return_dict=UpperCamelCase__ ) # Instantiate optimizer __lowerCamelCase = ( AdamW if accelerator.state.deepspeed_plugin is None or 'optimizer' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) __lowerCamelCase = optimizer_cls(params=model.parameters() , lr=UpperCamelCase__ ) if accelerator.state.deepspeed_plugin is not None: __lowerCamelCase = accelerator.state.deepspeed_plugin.deepspeed_config[ 'gradient_accumulation_steps' ] else: __lowerCamelCase = 1 __lowerCamelCase = (len(UpperCamelCase__ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): __lowerCamelCase = get_linear_schedule_with_warmup( optimizer=UpperCamelCase__ , num_warmup_steps=0 , num_training_steps=UpperCamelCase__ , ) else: __lowerCamelCase = DummyScheduler(UpperCamelCase__ , total_num_steps=UpperCamelCase__ , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = accelerator.prepare( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # We need to keep track of how many total steps we have iterated over __lowerCamelCase = 0 # We also need to keep track of the stating epoch so files are named properly __lowerCamelCase = 0 __lowerCamelCase = evaluate.load('glue' , 'mrpc' ) __lowerCamelCase = num_epochs if args.partial_train_epoch is not None: __lowerCamelCase = args.partial_train_epoch if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint ) __lowerCamelCase = args.resume_from_checkpoint.split('epoch_' )[1] __lowerCamelCase = '' for char in epoch_string: if char.isdigit(): state_epoch_num += char else: break __lowerCamelCase = int(UpperCamelCase__ ) + 1 __lowerCamelCase = evaluation_loop(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) accelerator.print('resumed checkpoint performance:' , UpperCamelCase__ ) accelerator.print('resumed checkpoint\'s scheduler\'s lr:' , lr_scheduler.get_lr()[0] ) accelerator.print('resumed optimizers\'s lr:' , optimizer.param_groups[0]['lr'] ) with open(os.path.join(args.output_dir , F"""state_{starting_epoch-1}.json""" ) , 'r' ) as f: __lowerCamelCase = json.load(UpperCamelCase__ ) assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed" assert ( resumed_state["lr"] == lr_scheduler.get_lr()[0] ), "Scheduler learning rate mismatch, loading from checkpoint failed" assert ( resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"] ), "Optimizer learning rate mismatch, loading from checkpoint failed" assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed" return # Now we train the model __lowerCamelCase = {} for epoch in range(UpperCamelCase__ , UpperCamelCase__ ): model.train() for step, batch in enumerate(UpperCamelCase__ ): __lowerCamelCase = model(**UpperCamelCase__ ) __lowerCamelCase = outputs.loss __lowerCamelCase = loss / gradient_accumulation_steps accelerator.backward(UpperCamelCase__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 __lowerCamelCase = F"""epoch_{epoch}""" __lowerCamelCase = os.path.join(args.output_dir , UpperCamelCase__ ) accelerator.save_state(UpperCamelCase__ ) __lowerCamelCase = evaluation_loop(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) __lowerCamelCase = accuracy __lowerCamelCase = lr_scheduler.get_lr()[0] __lowerCamelCase = optimizer.param_groups[0]['lr'] __lowerCamelCase = epoch __lowerCamelCase = overall_step accelerator.print(F"""epoch {epoch}:""" , UpperCamelCase__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , F"""state_{epoch}.json""" ) , 'w' ) as f: json.dump(UpperCamelCase__ , UpperCamelCase__ ) def lowerCamelCase_ ( ) -> List[str]: """simple docstring""" __lowerCamelCase = argparse.ArgumentParser(description='Simple example of training script tracking peak GPU memory usage.' ) parser.add_argument( '--model_name_or_path' , type=UpperCamelCase__ , default='bert-base-cased' , help='Path to pretrained model or model identifier from huggingface.co/models.' , required=UpperCamelCase__ , ) parser.add_argument( '--output_dir' , type=UpperCamelCase__ , default='.' , help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.' , ) parser.add_argument( '--resume_from_checkpoint' , type=UpperCamelCase__ , default=UpperCamelCase__ , help='If the training should continue from a checkpoint folder.' , ) parser.add_argument( '--partial_train_epoch' , type=UpperCamelCase__ , default=UpperCamelCase__ , help='If passed, the training will stop after this number of epochs.' , ) parser.add_argument( '--num_epochs' , type=UpperCamelCase__ , default=2 , help='Number of train epochs.' , ) __lowerCamelCase = parser.parse_args() __lowerCamelCase = {'lr': 2E-5, 'num_epochs': args.num_epochs, 'seed': 42, 'batch_size': 16} training_function(UpperCamelCase__ , UpperCamelCase__ ) if __name__ == "__main__": main()
90
'''simple docstring''' import argparse import torch from transformers import BertForMaskedLM if __name__ == "__main__": lowerCamelCase : List[str] = argparse.ArgumentParser( description=( 'Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned' ' Distillation' ) ) parser.add_argument('--model_type', default='bert', choices=['bert']) parser.add_argument('--model_name', default='bert-base-uncased', type=str) parser.add_argument('--dump_checkpoint', default='serialization_dir/tf_bert-base-uncased_0247911.pth', type=str) parser.add_argument('--vocab_transform', action='store_true') lowerCamelCase : str = parser.parse_args() if args.model_type == "bert": lowerCamelCase : List[Any] = BertForMaskedLM.from_pretrained(args.model_name) lowerCamelCase : Any = 'bert' else: raise ValueError('args.model_type should be "bert".') lowerCamelCase : int = model.state_dict() lowerCamelCase : int = {} for w in ["word_embeddings", "position_embeddings"]: lowerCamelCase : Any = state_dict[f"""{prefix}.embeddings.{w}.weight"""] for w in ["weight", "bias"]: lowerCamelCase : Any = state_dict[f"""{prefix}.embeddings.LayerNorm.{w}"""] lowerCamelCase : Tuple = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: for w in ["weight", "bias"]: lowerCamelCase : Dict = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}""" ] lowerCamelCase : Dict = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}""" ] lowerCamelCase : List[Any] = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}""" ] lowerCamelCase : Tuple = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}""" ] lowerCamelCase : Optional[int] = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}""" ] lowerCamelCase : Optional[Any] = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}""" ] lowerCamelCase : Dict = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}""" ] lowerCamelCase : Any = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}""" ] std_idx += 1 lowerCamelCase : Optional[int] = state_dict['cls.predictions.decoder.weight'] lowerCamelCase : str = state_dict['cls.predictions.bias'] if args.vocab_transform: for w in ["weight", "bias"]: lowerCamelCase : str = state_dict[f"""cls.predictions.transform.dense.{w}"""] lowerCamelCase : Any = state_dict[f"""cls.predictions.transform.LayerNorm.{w}"""] print(f"""N layers selected for distillation: {std_idx}""") print(f"""Number of params transferred for distillation: {len(compressed_sd.keys())}""") print(f"""Save transferred checkpoint to {args.dump_checkpoint}.""") torch.save(compressed_sd, args.dump_checkpoint)
2
0
def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> int: """simple docstring""" return number | (1 << position) def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> int: """simple docstring""" return number & ~(1 << position) def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> int: """simple docstring""" return number ^ (1 << position) def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> bool: """simple docstring""" return ((number >> position) & 1) == 1 def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> int: """simple docstring""" return int((number & (1 << position)) != 0 ) if __name__ == "__main__": import doctest doctest.testmod()
279
'''simple docstring''' from ....utils import logging lowerCamelCase : Optional[Any] = logging.get_logger(__name__) class __lowerCAmelCase (lowercase_ ): '''simple docstring''' def __init__(self : Optional[int] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Optional[Any]=None , UpperCamelCase : int=2048 ): '''simple docstring''' lowercase__ = config.__dict__ lowercase__ = modal_hidden_size if num_labels: lowercase__ = num_labels
2
0
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mobilebert import MobileBertTokenizer _A : Any =logging.get_logger(__name__) _A : Any ={'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} _A : Union[str, Any] ={ 'vocab_file': {'mobilebert-uncased': 'https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt'}, 'tokenizer_file': { 'mobilebert-uncased': 'https://huggingface.co/google/mobilebert-uncased/resolve/main/tokenizer.json' }, } _A : Tuple ={'mobilebert-uncased': 512} _A : int ={} class _lowercase ( lowercase_ ): a = VOCAB_FILES_NAMES a = PRETRAINED_VOCAB_FILES_MAP a = PRETRAINED_INIT_CONFIGURATION a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a = MobileBertTokenizer def __init__( self: Optional[int] , UpperCamelCase__: Dict=None , UpperCamelCase__: Tuple=None , UpperCamelCase__: Tuple=True , UpperCamelCase__: Union[str, Any]="[UNK]" , UpperCamelCase__: Any="[SEP]" , UpperCamelCase__: str="[PAD]" , UpperCamelCase__: Optional[int]="[CLS]" , UpperCamelCase__: str="[MASK]" , UpperCamelCase__: Tuple=True , UpperCamelCase__: List[str]=None , **UpperCamelCase__: List[str] , ): super().__init__( UpperCamelCase__ , tokenizer_file=UpperCamelCase__ , do_lower_case=UpperCamelCase__ , unk_token=UpperCamelCase__ , sep_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , cls_token=UpperCamelCase__ , mask_token=UpperCamelCase__ , tokenize_chinese_chars=UpperCamelCase__ , strip_accents=UpperCamelCase__ , **UpperCamelCase__ , ) lowerCamelCase__ : str = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , UpperCamelCase__ ) != do_lower_case or normalizer_state.get("""strip_accents""" , UpperCamelCase__ ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , UpperCamelCase__ ) != tokenize_chinese_chars ): lowerCamelCase__ : str = getattr(UpperCamelCase__ , normalizer_state.pop("""type""" ) ) lowerCamelCase__ : Dict = do_lower_case lowerCamelCase__ : List[Any] = strip_accents lowerCamelCase__ : int = tokenize_chinese_chars lowerCamelCase__ : Optional[int] = normalizer_class(**UpperCamelCase__ ) lowerCamelCase__ : Dict = do_lower_case def lowerCamelCase_ ( self: str , UpperCamelCase__: Tuple , UpperCamelCase__: Any=None ): lowerCamelCase__ : Optional[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCamelCase_ ( self: Any , UpperCamelCase__: List[int] , UpperCamelCase__: Optional[List[int]] = None ): lowerCamelCase__ : str = [self.sep_token_id] lowerCamelCase__ : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCamelCase_ ( self: int , UpperCamelCase__: str , UpperCamelCase__: Optional[str] = None ): lowerCamelCase__ : Dict = self._tokenizer.model.save(UpperCamelCase__ , name=UpperCamelCase__ ) return tuple(UpperCamelCase__ )
41
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Tuple = logging.get_logger(__name__) lowerCamelCase : Dict = { 'microsoft/cvt-13': 'https://huggingface.co/microsoft/cvt-13/resolve/main/config.json', # See all Cvt models at https://huggingface.co/models?filter=cvt } class __lowerCAmelCase (lowercase_ ): '''simple docstring''' lowerCAmelCase__ : Tuple = """cvt""" def __init__(self : int , UpperCamelCase : List[Any]=3 , UpperCamelCase : int=[7, 3, 3] , UpperCamelCase : str=[4, 2, 2] , UpperCamelCase : Dict=[2, 1, 1] , UpperCamelCase : Dict=[64, 192, 384] , UpperCamelCase : Dict=[1, 3, 6] , UpperCamelCase : Dict=[1, 2, 10] , UpperCamelCase : Any=[4.0, 4.0, 4.0] , UpperCamelCase : Optional[int]=[0.0, 0.0, 0.0] , UpperCamelCase : Optional[int]=[0.0, 0.0, 0.0] , UpperCamelCase : int=[0.0, 0.0, 0.1] , UpperCamelCase : Any=[True, True, True] , UpperCamelCase : int=[False, False, True] , UpperCamelCase : Union[str, Any]=["dw_bn", "dw_bn", "dw_bn"] , UpperCamelCase : Optional[int]=[3, 3, 3] , UpperCamelCase : Tuple=[1, 1, 1] , UpperCamelCase : Any=[2, 2, 2] , UpperCamelCase : Dict=[1, 1, 1] , UpperCamelCase : List[str]=[1, 1, 1] , UpperCamelCase : str=0.02 , UpperCamelCase : int=1E-12 , **UpperCamelCase : Union[str, Any] , ): '''simple docstring''' super().__init__(**UpperCamelCase ) lowercase__ = num_channels lowercase__ = patch_sizes lowercase__ = patch_stride lowercase__ = patch_padding lowercase__ = embed_dim lowercase__ = num_heads lowercase__ = depth lowercase__ = mlp_ratio lowercase__ = attention_drop_rate lowercase__ = drop_rate lowercase__ = drop_path_rate lowercase__ = qkv_bias lowercase__ = cls_token lowercase__ = qkv_projection_method lowercase__ = kernel_qkv lowercase__ = padding_kv lowercase__ = stride_kv lowercase__ = padding_q lowercase__ = stride_q lowercase__ = initializer_range lowercase__ = layer_norm_eps
2
0
'''simple docstring''' import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis_float32 (there's also the fix_lavis branch) # also note: to convert Vicuna checkpoints, we had to include /home/niels/python_projects/checkpoints/FastChat/vicuna-7b in lavis/configs/models/blip2/blip2_instruct_vicuna7b.yaml # same for Vicuna-13b from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipImageProcessor, InstructBlipConfig, InstructBlipForConditionalGeneration, InstructBlipProcessor, InstructBlipQFormerConfig, InstructBlipVisionConfig, LlamaConfig, LlamaTokenizerFast, TaConfig, TaTokenizerFast, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def lowerCAmelCase_ ( ): '''simple docstring''' A : Dict = '''https://raw.githubusercontent.com/salesforce/LAVIS/main/docs/_static/Confusing-Pictures.jpg''' A : str = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ).convert('''RGB''' ) return image def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' A : List[Any] = [] # fmt: off # vision encoder rename_keys.append(('''visual_encoder.cls_token''', '''vision_model.embeddings.class_embedding''') ) rename_keys.append(('''visual_encoder.pos_embed''', '''vision_model.embeddings.position_embedding''') ) rename_keys.append(('''visual_encoder.patch_embed.proj.weight''', '''vision_model.embeddings.patch_embedding.weight''') ) rename_keys.append(('''visual_encoder.patch_embed.proj.bias''', '''vision_model.embeddings.patch_embedding.bias''') ) rename_keys.append(('''ln_vision.weight''', '''vision_model.post_layernorm.weight''') ) rename_keys.append(('''ln_vision.bias''', '''vision_model.post_layernorm.bias''') ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((F'visual_encoder.blocks.{i}.norm1.weight', F'vision_model.encoder.layers.{i}.layer_norm1.weight') ) rename_keys.append((F'visual_encoder.blocks.{i}.norm1.bias', F'vision_model.encoder.layers.{i}.layer_norm1.bias') ) rename_keys.append((F'visual_encoder.blocks.{i}.norm2.weight', F'vision_model.encoder.layers.{i}.layer_norm2.weight') ) rename_keys.append((F'visual_encoder.blocks.{i}.norm2.bias', F'vision_model.encoder.layers.{i}.layer_norm2.bias') ) rename_keys.append((F'visual_encoder.blocks.{i}.attn.qkv.weight', F'vision_model.encoder.layers.{i}.self_attn.qkv.weight') ) rename_keys.append((F'visual_encoder.blocks.{i}.attn.proj.weight', F'vision_model.encoder.layers.{i}.self_attn.projection.weight',) ) rename_keys.append((F'visual_encoder.blocks.{i}.attn.proj.bias', F'vision_model.encoder.layers.{i}.self_attn.projection.bias') ) rename_keys.append((F'visual_encoder.blocks.{i}.mlp.fc1.weight', F'vision_model.encoder.layers.{i}.mlp.fc1.weight') ) rename_keys.append((F'visual_encoder.blocks.{i}.mlp.fc1.bias', F'vision_model.encoder.layers.{i}.mlp.fc1.bias') ) rename_keys.append((F'visual_encoder.blocks.{i}.mlp.fc2.weight', F'vision_model.encoder.layers.{i}.mlp.fc2.weight') ) rename_keys.append((F'visual_encoder.blocks.{i}.mlp.fc2.bias', F'vision_model.encoder.layers.{i}.mlp.fc2.bias') ) # QFormer rename_keys.append(('''Qformer.bert.embeddings.LayerNorm.weight''', '''qformer.embeddings.layernorm.weight''') ) rename_keys.append(('''Qformer.bert.embeddings.LayerNorm.bias''', '''qformer.embeddings.layernorm.bias''') ) # fmt: on return rename_keys def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' A : Dict = dct.pop(snake_case__ ) A : Union[str, Any] = val def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases A : Optional[Any] = state_dict.pop(F'visual_encoder.blocks.{i}.attn.q_bias' ) A : Union[str, Any] = state_dict.pop(F'visual_encoder.blocks.{i}.attn.v_bias' ) # next, set bias in the state dict A : Dict = torch.cat((q_bias, torch.zeros_like(snake_case__ , requires_grad=snake_case__ ), v_bias) ) A : str = qkv_bias def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' A : int = 364 if '''coco''' in model_name else 224 A : List[str] = InstructBlipVisionConfig(image_size=snake_case__ ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "t5-xl" in model_name: A : int = TaConfig.from_pretrained('''google/flan-t5-xl''' , dense_act_fn='''gelu''' , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: A : Optional[Any] = TaConfig.from_pretrained('''google/flan-t5-xxl''' , dense_act_fn='''gelu''' , bos_token_id=1 ).to_dict() elif "vicuna-7b" in model_name: A : str = LlamaConfig.from_pretrained('''decapoda-research/llama-7b-hf''' , vocab_size=3_2001 ).to_dict() elif "vicuna-13b" in model_name: A : Tuple = LlamaConfig.from_pretrained('''decapoda-research/llama-13b-hf''' , vocab_size=3_2001 ).to_dict() else: raise ValueError('''Model name not supported''' ) # the authors add one special "[DEC]" token to the vocab of Q-Former, hence vocab size = 30522 + 1 A : int = InstructBlipQFormerConfig(vocab_size=3_0523 ).to_dict() A : Optional[int] = InstructBlipConfig(vision_config=snake_case__ , text_config=snake_case__ , qformer_config=snake_case__ ) return config, image_size @torch.no_grad() def lowerCAmelCase_ ( snake_case__ , snake_case__=None , snake_case__=False ): '''simple docstring''' A : Optional[int] = AutoTokenizer.from_pretrained('''bert-base-uncased''' , truncation_side='''left''' ) qformer_tokenizer.add_special_tokens({'''bos_token''': '''[DEC]'''} ) if "t5" in model_name: A : Dict = TaTokenizerFast.from_pretrained('''google/flan-t5-xl''' , truncation_side='''left''' ) elif "vicuna" in model_name: # the following was used in the original implementation: # tokenizer = LlamaTokenizer.from_pretrained("huggyllama/llama-7b", use_fast=False, truncation_side="left") # tokenizer.add_special_tokens({"pad_token": "[PAD]"}) # tokenizer.add_special_tokens({"bos_token": "</s>"}) # tokenizer.add_special_tokens({"eos_token": "</s>"}) # tokenizer.add_special_tokens({"unk_token": "</s>"}) A : Optional[int] = LlamaTokenizerFast.from_pretrained( '''huggyllama/llama-7b''' , truncation_side='''left''' , bos_token='''</s>''' , unk_token='''</s>''' ) tokenizer.add_special_tokens({'''pad_token''': '''[PAD]'''} ) A, A : Optional[Any] = get_blipa_config(snake_case__ ) A : List[str] = InstructBlipForConditionalGeneration(snake_case__ ).eval() A : str = { '''instructblip-vicuna-7b''': ('''blip2_vicuna_instruct''', '''vicuna7b'''), '''instructblip-vicuna-13b''': ('''blip2_vicuna_instruct''', '''vicuna13b'''), '''instructblip-flan-t5-xl''': ('''blip2_t5_instruct''', '''flant5xl'''), '''instructblip-flan-t5-xxl''': ('''blip2_t5_instruct''', '''flant5xxl'''), } A, A : List[str] = model_name_to_original[model_name] # load original model print('''Loading original model...''' ) A : List[Any] = '''cuda:1''' if torch.cuda.is_available() else '''cpu''' A : int = '''cuda:2''' if torch.cuda.is_available() else '''cpu''' A, A, A : List[str] = load_model_and_preprocess( name=snake_case__ , model_type=snake_case__ , is_eval=snake_case__ , device=snake_case__ ) original_model.eval() print('''Done!''' ) # update state dict keys A : Tuple = original_model.state_dict() A : Tuple = create_rename_keys(snake_case__ ) for src, dest in rename_keys: rename_key(snake_case__ , snake_case__ , snake_case__ ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): A : int = state_dict.pop(snake_case__ ) if key.startswith('''Qformer.bert''' ): A : List[Any] = key.replace('''Qformer.bert''' , '''qformer''' ) if "attention.self" in key: A : Optional[Any] = key.replace('''self''' , '''attention''' ) if "llm_proj" in key: A : Union[str, Any] = key.replace('''llm_proj''' , '''language_projection''' ) if "t5_proj" in key: A : int = key.replace('''t5_proj''' , '''language_projection''' ) if key.startswith('''llm_model''' ): A : Any = key.replace('''llm_model''' , '''language_model''' ) if key.startswith('''t5''' ): A : int = key.replace('''t5''' , '''language''' ) A : Any = val # read in qv biases read_in_q_v_bias(snake_case__ , snake_case__ ) # note: weights get loaded in torch.float32 by default hf_model.load_state_dict(snake_case__ , strict=snake_case__ ) A : Optional[Any] = load_demo_image() A : int = '''What is unusual about this image?''' # create processor A : Dict = BlipImageProcessor( size={'''height''': image_size, '''width''': image_size} , image_mean=snake_case__ , image_std=snake_case__ ) A : Union[str, Any] = InstructBlipProcessor( image_processor=snake_case__ , tokenizer=snake_case__ , qformer_tokenizer=snake_case__ , ) A : str = processor(images=snake_case__ , text=snake_case__ , return_tensors='''pt''' ).to(snake_case__ ) # make sure processor creates exact same pixel values A : List[str] = vis_processors['''eval'''](snake_case__ ).unsqueeze(0 ).to(snake_case__ ) A : List[str] = inputs.pixel_values assert torch.allclose(original_pixel_values.to(pixel_values.device ) , snake_case__ ) original_model.to(snake_case__ ) hf_model.to(snake_case__ ) with torch.no_grad(): if "vicuna" in model_name: A : Tuple = original_model({'''image''': original_pixel_values, '''text_input''': [prompt]} ).logits A : List[Any] = hf_model(**snake_case__ ).logits else: A : List[Any] = original_model( {'''image''': original_pixel_values, '''text_input''': [prompt], '''text_output''': ['''\n''']} ).logits A : Tuple = tokenizer('''\n''' , return_tensors='''pt''' ).input_ids.to(snake_case__ ) A : Union[str, Any] = label_input_ids.masked_fill(label_input_ids == tokenizer.pad_token_id , -100 ) A : List[str] = hf_model(**snake_case__ , labels=snake_case__ ).logits print('''First values of original logits:''' , original_logits[0, :3, :3] ) print('''First values of HF logits:''' , logits[0, :3, :3] ) # assert values assert original_logits.shape == logits.shape A : Optional[Any] = 1E-4 if '''vicuna''' in model_name else 1E-5 assert torch.allclose(original_logits.to(logits.device ) , snake_case__ , atol=snake_case__ ) print('''Looks ok!''' ) print('''Generating with original model...''' ) A : Any = original_model.generate({'''image''': original_pixel_values, '''prompt''': prompt} , num_beams=5 ) # important: we need to cast the weights of the HF model to the appropriate type print('''Generating with HF model...''' ) A : str = hf_model.generate( **snake_case__ , do_sample=snake_case__ , num_beams=5 , max_length=256 , min_length=1 , top_p=0.9 , repetition_penalty=1.5 , length_penalty=1.0 , temperature=1 , ) if "vicuna" in model_name: # convert output id 0 to 2 (eos_token_id) # TODO add this in the generate method? A : Optional[int] = 2 print('''Original generation:''' , snake_case__ ) A : int = processor.batch_decode(snake_case__ , skip_special_tokens=snake_case__ ) A : Optional[Any] = [text.strip() for text in output_text] print('''HF generation:''' , snake_case__ ) if pytorch_dump_folder_path is not None: processor.save_pretrained(snake_case__ ) hf_model.save_pretrained(snake_case__ ) if push_to_hub: processor.push_to_hub(F'Salesforce/{model_name}' ) hf_model.push_to_hub(F'Salesforce/{model_name}' ) if __name__ == "__main__": lowercase : List[Any] = argparse.ArgumentParser() lowercase : Dict = [ 'instructblip-vicuna-7b', 'instructblip-vicuna-13b', 'instructblip-flan-t5-xl', 'instructblip-flan-t5-xxl', ] parser.add_argument( '--model_name', default='instructblip-flan-t5-xl', choices=choices, type=str, help='Path to hf config.json of model to convert', ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub after converting', ) lowercase : Union[str, Any] = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
3
'''simple docstring''' import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) lowerCamelCase : Any = models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(32, (3, 3), input_shape=(64, 64, 3), activation='relu') ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(32, (3, 3), activation='relu')) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=128, activation='relu')) classifier.add(layers.Dense(units=1, activation='sigmoid')) # Compiling the CNN classifier.compile( optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') lowerCamelCase : Optional[Any] = tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) lowerCamelCase : Any = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 255) lowerCamelCase : List[Any] = train_datagen.flow_from_directory( 'dataset/training_set', target_size=(64, 64), batch_size=32, class_mode='binary' ) lowerCamelCase : List[str] = test_datagen.flow_from_directory( 'dataset/test_set', target_size=(64, 64), batch_size=32, class_mode='binary' ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=30, validation_data=test_set ) classifier.save('cnn.h5') # Part 3 - Making new predictions lowerCamelCase : List[str] = tf.keras.preprocessing.image.load_img( 'dataset/single_prediction/image.png', target_size=(64, 64) ) lowerCamelCase : Optional[int] = tf.keras.preprocessing.image.img_to_array(test_image) lowerCamelCase : str = np.expand_dims(test_image, axis=0) lowerCamelCase : List[str] = classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: lowerCamelCase : Any = 'Normal' if result[0][0] == 1: lowerCamelCase : Any = 'Abnormality detected'
2
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) A ={ 'configuration_longformer': [ 'LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LongformerConfig', 'LongformerOnnxConfig', ], 'tokenization_longformer': ['LongformerTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A =['LongformerTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A =[ 'LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'LongformerForMaskedLM', 'LongformerForMultipleChoice', 'LongformerForQuestionAnswering', 'LongformerForSequenceClassification', 'LongformerForTokenClassification', 'LongformerModel', 'LongformerPreTrainedModel', 'LongformerSelfAttention', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A =[ 'TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFLongformerForMaskedLM', 'TFLongformerForMultipleChoice', 'TFLongformerForQuestionAnswering', 'TFLongformerForSequenceClassification', 'TFLongformerForTokenClassification', 'TFLongformerModel', 'TFLongformerPreTrainedModel', 'TFLongformerSelfAttention', ] if TYPE_CHECKING: from .configuration_longformer import ( LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, LongformerConfig, LongformerOnnxConfig, ) from .tokenization_longformer import LongformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_longformer_fast import LongformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longformer import ( LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, LongformerForMaskedLM, LongformerForMultipleChoice, LongformerForQuestionAnswering, LongformerForSequenceClassification, LongformerForTokenClassification, LongformerModel, LongformerPreTrainedModel, LongformerSelfAttention, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_longformer import ( TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFLongformerForMaskedLM, TFLongformerForMultipleChoice, TFLongformerForQuestionAnswering, TFLongformerForSequenceClassification, TFLongformerForTokenClassification, TFLongformerModel, TFLongformerPreTrainedModel, TFLongformerSelfAttention, ) else: import sys A =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
34
'''simple docstring''' class __lowerCAmelCase : # Public class to implement a graph '''simple docstring''' def __init__(self : int , UpperCamelCase : int , UpperCamelCase : int , UpperCamelCase : list[list[bool]] ): '''simple docstring''' lowercase__ = row lowercase__ = col lowercase__ = graph def UpperCamelCase__ (self : Optional[int] , UpperCamelCase : int , UpperCamelCase : int , UpperCamelCase : list[list[bool]] ): '''simple docstring''' return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def UpperCamelCase__ (self : int , UpperCamelCase : int , UpperCamelCase : int , UpperCamelCase : list[list[bool]] ): '''simple docstring''' lowercase__ = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order lowercase__ = [-1, 0, 1, -1, 1, -1, 0, 1] lowercase__ = True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , UpperCamelCase ): self.diffs(i + row_nbr[k] , j + col_nbr[k] , UpperCamelCase ) def UpperCamelCase__ (self : Dict ): # And finally, count all islands. '''simple docstring''' lowercase__ = [[False for j in range(self.COL )] for i in range(self.ROW )] lowercase__ = 0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(UpperCamelCase , UpperCamelCase , UpperCamelCase ) count += 1 return count
2
0
'''simple docstring''' import warnings from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = { 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/config.json', # See all BART models at https://huggingface.co/models?filter=bart } class lowerCAmelCase ( lowercase_ ): lowerCAmelCase_ = """bart""" lowerCAmelCase_ = ["""past_key_values"""] lowerCAmelCase_ = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self : Any , __lowercase : List[str]=50265 , __lowercase : Optional[Any]=1024 , __lowercase : Any=12 , __lowercase : Dict=4096 , __lowercase : Any=16 , __lowercase : Tuple=12 , __lowercase : Dict=4096 , __lowercase : int=16 , __lowercase : Union[str, Any]=0.0 , __lowercase : Optional[int]=0.0 , __lowercase : str="gelu" , __lowercase : Tuple=1024 , __lowercase : int=0.1 , __lowercase : Optional[int]=0.0 , __lowercase : Optional[int]=0.0 , __lowercase : Dict=0.0_2 , __lowercase : List[str]=0.0 , __lowercase : int=False , __lowercase : List[str]=True , __lowercase : Dict=3 , __lowercase : Optional[Any]=1 , __lowercase : str=0 , __lowercase : List[Any]=2 , __lowercase : int=True , __lowercase : Any=2 , __lowercase : Optional[int]=2 , **__lowercase : Union[str, Any] , ): """simple docstring""" __lowercase =vocab_size __lowercase =max_position_embeddings __lowercase =d_model __lowercase =encoder_ffn_dim __lowercase =encoder_layers __lowercase =encoder_attention_heads __lowercase =decoder_ffn_dim __lowercase =decoder_layers __lowercase =decoder_attention_heads __lowercase =dropout __lowercase =attention_dropout __lowercase =activation_dropout __lowercase =activation_function __lowercase =init_std __lowercase =encoder_layerdrop __lowercase =decoder_layerdrop __lowercase =classifier_dropout __lowercase =use_cache __lowercase =encoder_layers __lowercase =scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( num_labels=__lowercase , pad_token_id=__lowercase , bos_token_id=__lowercase , eos_token_id=__lowercase , is_encoder_decoder=__lowercase , decoder_start_token_id=__lowercase , forced_eos_token_id=__lowercase , **__lowercase , ) # ensure backward compatibility for BART CNN models if self.forced_bos_token_id is None and kwargs.get('force_bos_token_to_be_generated' , __lowercase ): __lowercase =self.bos_token_id warnings.warn( f'''Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. ''' 'The config can simply be saved and uploaded again to be fixed.' ) class lowerCAmelCase ( lowercase_ ): @property def snake_case ( self : Union[str, Any] ): """simple docstring""" if self.task in ["default", "seq2seq-lm"]: __lowercase =OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ] ) if self.use_past: __lowercase ={0: 'batch'} __lowercase ={0: 'batch', 1: 'past_decoder_sequence + sequence'} else: __lowercase ={0: 'batch', 1: 'decoder_sequence'} __lowercase ={0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(__lowercase , direction='inputs' ) elif self.task == "causal-lm": # TODO: figure this case out. __lowercase =OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ] ) if self.use_past: __lowercase , __lowercase =self.num_layers for i in range(__lowercase ): __lowercase ={0: 'batch', 2: 'past_sequence + sequence'} __lowercase ={0: 'batch', 2: 'past_sequence + sequence'} else: __lowercase =OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ('decoder_input_ids', {0: 'batch', 1: 'decoder_sequence'}), ('decoder_attention_mask', {0: 'batch', 1: 'decoder_sequence'}), ] ) return common_inputs @property def snake_case ( self : Any ): """simple docstring""" if self.task in ["default", "seq2seq-lm"]: __lowercase =super().outputs else: __lowercase =super(__lowercase , self ).outputs if self.use_past: __lowercase , __lowercase =self.num_layers for i in range(__lowercase ): __lowercase ={0: 'batch', 2: 'past_sequence + sequence'} __lowercase ={0: 'batch', 2: 'past_sequence + sequence'} return common_outputs def snake_case ( self : int , __lowercase : PreTrainedTokenizer , __lowercase : int = -1 , __lowercase : int = -1 , __lowercase : bool = False , __lowercase : Optional[TensorType] = None , ): """simple docstring""" __lowercase =self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) # Generate decoder inputs __lowercase =seq_length if not self.use_past else 1 __lowercase =self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) __lowercase ={f'''decoder_{name}''': tensor for name, tensor in decoder_inputs.items()} __lowercase =dict(**__lowercase , **__lowercase ) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch __lowercase , __lowercase =common_inputs['input_ids'].shape __lowercase =common_inputs['decoder_input_ids'].shape[1] __lowercase , __lowercase =self.num_attention_heads __lowercase =( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) __lowercase =decoder_seq_length + 3 __lowercase =( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) __lowercase =torch.cat( [common_inputs['decoder_attention_mask'], torch.ones(__lowercase , __lowercase )] , dim=1 ) __lowercase =[] # If the number of encoder and decoder layers are present in the model configuration, both are considered __lowercase , __lowercase =self.num_layers __lowercase =min(__lowercase , __lowercase ) __lowercase =max(__lowercase , __lowercase ) - min_num_layers __lowercase ='encoder' if num_encoder_layers > num_decoder_layers else 'decoder' for _ in range(__lowercase ): common_inputs["past_key_values"].append( ( torch.zeros(__lowercase ), torch.zeros(__lowercase ), torch.zeros(__lowercase ), torch.zeros(__lowercase ), ) ) # TODO: test this. __lowercase =encoder_shape if remaining_side_name == 'encoder' else decoder_shape for _ in range(__lowercase , __lowercase ): common_inputs["past_key_values"].append((torch.zeros(__lowercase ), torch.zeros(__lowercase )) ) return common_inputs def snake_case ( self : int , __lowercase : PreTrainedTokenizer , __lowercase : int = -1 , __lowercase : int = -1 , __lowercase : bool = False , __lowercase : Optional[TensorType] = None , ): """simple docstring""" __lowercase =self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch __lowercase , __lowercase =common_inputs['input_ids'].shape # Not using the same length for past_key_values __lowercase =seqlen + 2 __lowercase , __lowercase =self.num_layers __lowercase , __lowercase =self.num_attention_heads __lowercase =( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) __lowercase =common_inputs['attention_mask'].dtype __lowercase =torch.cat( [common_inputs['attention_mask'], torch.ones(__lowercase , __lowercase , dtype=__lowercase )] , dim=1 ) __lowercase =[ (torch.zeros(__lowercase ), torch.zeros(__lowercase )) for _ in range(__lowercase ) ] return common_inputs def snake_case ( self : Union[str, Any] , __lowercase : PreTrainedTokenizer , __lowercase : int = -1 , __lowercase : int = -1 , __lowercase : bool = False , __lowercase : Optional[TensorType] = None , ): """simple docstring""" __lowercase =compute_effective_axis_dimension( __lowercase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __lowercase =tokenizer.num_special_tokens_to_add(__lowercase ) __lowercase =compute_effective_axis_dimension( __lowercase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__lowercase ) # Generate dummy inputs according to compute batch and sequence __lowercase =[' '.join([tokenizer.unk_token] ) * seq_length] * batch_size __lowercase =dict(tokenizer(__lowercase , return_tensors=__lowercase ) ) return common_inputs def snake_case ( self : int , __lowercase : PreTrainedTokenizer , __lowercase : int = -1 , __lowercase : int = -1 , __lowercase : bool = False , __lowercase : Optional[TensorType] = None , ): """simple docstring""" if self.task in ["default", "seq2seq-lm"]: __lowercase =self._generate_dummy_inputs_for_default_and_seqaseq_lm( __lowercase , batch_size=__lowercase , seq_length=__lowercase , is_pair=__lowercase , framework=__lowercase ) elif self.task == "causal-lm": __lowercase =self._generate_dummy_inputs_for_causal_lm( __lowercase , batch_size=__lowercase , seq_length=__lowercase , is_pair=__lowercase , framework=__lowercase ) else: __lowercase =self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __lowercase , batch_size=__lowercase , seq_length=__lowercase , is_pair=__lowercase , framework=__lowercase ) return common_inputs def snake_case ( self : Tuple , __lowercase : Tuple , __lowercase : Tuple , __lowercase : int , __lowercase : str ): """simple docstring""" if self.task in ["default", "seq2seq-lm"]: __lowercase =super()._flatten_past_key_values_(__lowercase , __lowercase , __lowercase , __lowercase ) else: __lowercase =super(__lowercase , self )._flatten_past_key_values_( __lowercase , __lowercase , __lowercase , __lowercase )
141
'''simple docstring''' import unittest from transformers import DonutProcessor lowerCamelCase : Tuple = 'naver-clova-ix/donut-base' class __lowerCAmelCase (unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ (self : int ): '''simple docstring''' lowercase__ = DonutProcessor.from_pretrained(UpperCamelCase ) def UpperCamelCase__ (self : Tuple ): '''simple docstring''' lowercase__ = { '''name''': '''John Doe''', '''age''': '''99''', '''city''': '''Atlanta''', '''state''': '''GA''', '''zip''': '''30301''', '''phone''': '''123-4567''', '''nicknames''': [{'''nickname''': '''Johnny'''}, {'''nickname''': '''JD'''}], } lowercase__ = ( '''<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>''' '''<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>''' '''<s_nicknames><s_nickname>Johnny</s_nickname>''' '''<sep/><s_nickname>JD</s_nickname></s_nicknames>''' ) lowercase__ = self.processor.tokenajson(UpperCamelCase ) self.assertDictEqual(UpperCamelCase , UpperCamelCase )
2
0
import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class lowerCamelCase__ ( lowercase_ , unittest.TestCase): '''simple docstring''' snake_case_ =ShapEImgaImgPipeline snake_case_ =["""image"""] snake_case_ =["""image"""] snake_case_ =[ """num_images_per_prompt""", """num_inference_steps""", """generator""", """latents""", """guidance_scale""", """frame_size""", """output_type""", """return_dict""", ] snake_case_ =False @property def lowerCAmelCase__ (self ) -> Optional[int]: """simple docstring""" return 32 @property def lowerCAmelCase__ (self ) -> Any: """simple docstring""" return 32 @property def lowerCAmelCase__ (self ) -> Dict: """simple docstring""" return self.time_input_dim * 4 @property def lowerCAmelCase__ (self ) -> Optional[Any]: """simple docstring""" return 8 @property def lowerCAmelCase__ (self ) -> int: """simple docstring""" torch.manual_seed(0 ) lowerCAmelCase__ : Union[str, Any] = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size ,image_size=64 ,projection_dim=self.text_embedder_hidden_size ,intermediate_size=37 ,num_attention_heads=4 ,num_channels=3 ,num_hidden_layers=5 ,patch_size=1 ,) lowerCAmelCase__ : List[Any] = CLIPVisionModel(__lowerCamelCase ) return model @property def lowerCAmelCase__ (self ) -> Dict: """simple docstring""" lowerCAmelCase__ : Dict = CLIPImageProcessor( crop_size=2_24 ,do_center_crop=__lowerCamelCase ,do_normalize=__lowerCamelCase ,do_resize=__lowerCamelCase ,image_mean=[0.4814_5466, 0.457_8275, 0.4082_1073] ,image_std=[0.2686_2954, 0.2613_0258, 0.2757_7711] ,resample=3 ,size=2_24 ,) return image_processor @property def lowerCAmelCase__ (self ) -> Optional[int]: """simple docstring""" torch.manual_seed(0 ) lowerCAmelCase__ : Any = { '''num_attention_heads''': 2, '''attention_head_dim''': 16, '''embedding_dim''': self.time_input_dim, '''num_embeddings''': 32, '''embedding_proj_dim''': self.text_embedder_hidden_size, '''time_embed_dim''': self.time_embed_dim, '''num_layers''': 1, '''clip_embed_dim''': self.time_input_dim * 2, '''additional_embeddings''': 0, '''time_embed_act_fn''': '''gelu''', '''norm_in_type''': '''layer''', '''embedding_proj_norm_type''': '''layer''', '''encoder_hid_proj_type''': None, '''added_emb_type''': None, } lowerCAmelCase__ : str = PriorTransformer(**__lowerCamelCase ) return model @property def lowerCAmelCase__ (self ) -> int: """simple docstring""" torch.manual_seed(0 ) lowerCAmelCase__ : int = { '''param_shapes''': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), '''d_latent''': self.time_input_dim, '''d_hidden''': self.renderer_dim, '''n_output''': 12, '''background''': ( 0.1, 0.1, 0.1, ), } lowerCAmelCase__ : List[Any] = ShapERenderer(**__lowerCamelCase ) return model def lowerCAmelCase__ (self ) -> Any: """simple docstring""" lowerCAmelCase__ : List[str] = self.dummy_prior lowerCAmelCase__ : List[str] = self.dummy_image_encoder lowerCAmelCase__ : str = self.dummy_image_processor lowerCAmelCase__ : Tuple = self.dummy_renderer lowerCAmelCase__ : Any = HeunDiscreteScheduler( beta_schedule='''exp''' ,num_train_timesteps=10_24 ,prediction_type='''sample''' ,use_karras_sigmas=__lowerCamelCase ,clip_sample=__lowerCamelCase ,clip_sample_range=1.0 ,) lowerCAmelCase__ : List[Any] = { '''prior''': prior, '''image_encoder''': image_encoder, '''image_processor''': image_processor, '''renderer''': renderer, '''scheduler''': scheduler, } return components def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase=0 ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase__ : List[str] = floats_tensor((1, 3, 64, 64) ,rng=random.Random(__lowerCamelCase ) ).to(__lowerCamelCase ) if str(__lowerCamelCase ).startswith('''mps''' ): lowerCAmelCase__ : List[Any] = torch.manual_seed(__lowerCamelCase ) else: lowerCAmelCase__ : Union[str, Any] = torch.Generator(device=__lowerCamelCase ).manual_seed(__lowerCamelCase ) lowerCAmelCase__ : Optional[Any] = { '''image''': input_image, '''generator''': generator, '''num_inference_steps''': 1, '''frame_size''': 32, '''output_type''': '''np''', } return inputs def lowerCAmelCase__ (self ) -> Dict: """simple docstring""" lowerCAmelCase__ : int = '''cpu''' lowerCAmelCase__ : Optional[Any] = self.get_dummy_components() lowerCAmelCase__ : Any = self.pipeline_class(**__lowerCamelCase ) lowerCAmelCase__ : Tuple = pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) lowerCAmelCase__ : str = pipe(**self.get_dummy_inputs(__lowerCamelCase ) ) lowerCAmelCase__ : Union[str, Any] = output.images[0] lowerCAmelCase__ : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) lowerCAmelCase__ : str = np.array( [ 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowerCAmelCase__ (self ) -> Any: """simple docstring""" self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def lowerCAmelCase__ (self ) -> List[Any]: """simple docstring""" lowerCAmelCase__ : Optional[int] = torch_device == '''cpu''' lowerCAmelCase__ : Dict = True self._test_inference_batch_single_identical( batch_size=2 ,test_max_difference=__lowerCamelCase ,relax_max_difference=__lowerCamelCase ,) def lowerCAmelCase__ (self ) -> int: """simple docstring""" lowerCAmelCase__ : str = self.get_dummy_components() lowerCAmelCase__ : Optional[Any] = self.pipeline_class(**__lowerCamelCase ) lowerCAmelCase__ : Tuple = pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) lowerCAmelCase__ : Any = 1 lowerCAmelCase__ : Any = 2 lowerCAmelCase__ : List[Any] = self.get_dummy_inputs(__lowerCamelCase ) for key in inputs.keys(): if key in self.batch_params: lowerCAmelCase__ : int = batch_size * [inputs[key]] lowerCAmelCase__ : str = pipe(**__lowerCamelCase ,num_images_per_prompt=__lowerCamelCase )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class lowerCamelCase__ ( unittest.TestCase): '''simple docstring''' def lowerCAmelCase__ (self ) -> str: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase__ (self ) -> List[Any]: """simple docstring""" lowerCAmelCase__ : Tuple = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/corgi.png''' ) lowerCAmelCase__ : List[str] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/test_shap_e_img2img_out.npy''' ) lowerCAmelCase__ : str = ShapEImgaImgPipeline.from_pretrained('''openai/shap-e-img2img''' ) lowerCAmelCase__ : List[Any] = pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) lowerCAmelCase__ : Tuple = torch.Generator(device=__lowerCamelCase ).manual_seed(0 ) lowerCAmelCase__ : Dict = pipe( __lowerCamelCase ,generator=__lowerCamelCase ,guidance_scale=3.0 ,num_inference_steps=64 ,frame_size=64 ,output_type='''np''' ,).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(__lowerCamelCase ,__lowerCamelCase )
129
'''simple docstring''' from __future__ import annotations def _SCREAMING_SNAKE_CASE (A ) -> bool: """simple docstring""" return len(set(A ) ) == len(A ) if __name__ == "__main__": import doctest doctest.testmod()
2
0
"""simple docstring""" import os import re import warnings from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_ta import TaTokenizer else: SCREAMING_SNAKE_CASE : Any = None SCREAMING_SNAKE_CASE : Dict = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Optional[int] = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} SCREAMING_SNAKE_CASE : List[str] = { 'vocab_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/spiece.model', 't5-base': 'https://huggingface.co/t5-base/resolve/main/spiece.model', 't5-large': 'https://huggingface.co/t5-large/resolve/main/spiece.model', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/spiece.model', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/spiece.model', }, 'tokenizer_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/tokenizer.json', 't5-base': 'https://huggingface.co/t5-base/resolve/main/tokenizer.json', 't5-large': 'https://huggingface.co/t5-large/resolve/main/tokenizer.json', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/tokenizer.json', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/tokenizer.json', }, } # TODO(PVP) - this should be removed in Transformers v5 SCREAMING_SNAKE_CASE : Any = { 't5-small': 512, 't5-base': 512, 't5-large': 512, 't5-3b': 512, 't5-11b': 512, } class _UpperCAmelCase ( lowercase_ ): '''simple docstring''' lowerCamelCase__ =VOCAB_FILES_NAMES lowerCamelCase__ =PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ =["""input_ids""", """attention_mask"""] lowerCamelCase__ =TaTokenizer lowerCamelCase__ =[] def __init__(self , a_=None , a_=None , a_="</s>" , a_="<unk>" , a_="<pad>" , a_=1_00 , a_=None , **a_ , ): '''simple docstring''' if extra_ids > 0 and additional_special_tokens is None: __snake_case : Optional[Any] = [f"""<extra_id_{i}>""" for i in range(a_ )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra special tokens __snake_case : Dict = len(set(filter(lambda a_ : bool('''extra_id_''' in str(a_ ) ) , a_ ) ) ) if extra_tokens != extra_ids: raise ValueError( f"""Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are""" ''' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids''' ''' tokens''' ) super().__init__( a_ , tokenizer_file=a_ , eos_token=a_ , unk_token=a_ , pad_token=a_ , extra_ids=a_ , additional_special_tokens=a_ , **a_ , ) __snake_case : List[str] = vocab_file __snake_case : Optional[Any] = False if not self.vocab_file else True __snake_case : List[str] = extra_ids @staticmethod def SCREAMING_SNAKE_CASE (a_ , a_ , a_ ): '''simple docstring''' if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes: __snake_case : Optional[Any] = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( '''This tokenizer was incorrectly instantiated with a model max length of''' f""" {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this""" ''' behavior is kept to avoid breaking backwards compatibility when padding/encoding with''' ''' `truncation is True`.\n- Be aware that you SHOULD NOT rely on''' f""" {pretrained_model_name_or_path} automatically truncating your input to""" f""" {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences""" f""" longer than {deprecated_max_model_length} you can either instantiate this tokenizer with""" ''' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please''' ''' instantiate this tokenizer with `model_max_length` set to your preferred value.''' , a_ , ) return max_model_length def SCREAMING_SNAKE_CASE (self , a_ , a_ = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(a_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __snake_case : Optional[Any] = os.path.join( a_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a_ ): copyfile(self.vocab_file , a_ ) logger.info(f"""Copy vocab file to {out_vocab_file}""" ) return (out_vocab_file,) def SCREAMING_SNAKE_CASE (self , a_ , a_ = None ): '''simple docstring''' __snake_case : Dict = token_ids_a + [self.eos_token_id] if token_ids_a is None: return self.prefix_tokens + token_ids_a else: __snake_case : str = token_ids_a + [self.eos_token_id] return self.prefix_tokens + token_ids_a + token_ids_a def SCREAMING_SNAKE_CASE (self , a_ , a_ = None ): '''simple docstring''' __snake_case : List[str] = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return list( set(filter(lambda a_ : bool(re.search(R'''<extra_id_\d+>''' , a_ ) ) is not None , self.additional_special_tokens ) ) ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return [self.convert_tokens_to_ids(a_ ) for token in self.get_sentinel_tokens()]
102
'''simple docstring''' import os import re import warnings from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_ta import TaTokenizer else: lowerCamelCase : Any = None lowerCamelCase : Dict = logging.get_logger(__name__) lowerCamelCase : Optional[int] = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} lowerCamelCase : List[str] = { 'vocab_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/spiece.model', 't5-base': 'https://huggingface.co/t5-base/resolve/main/spiece.model', 't5-large': 'https://huggingface.co/t5-large/resolve/main/spiece.model', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/spiece.model', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/spiece.model', }, 'tokenizer_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/tokenizer.json', 't5-base': 'https://huggingface.co/t5-base/resolve/main/tokenizer.json', 't5-large': 'https://huggingface.co/t5-large/resolve/main/tokenizer.json', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/tokenizer.json', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/tokenizer.json', }, } # TODO(PVP) - this should be removed in Transformers v5 lowerCamelCase : Any = { 't5-small': 512, 't5-base': 512, 't5-large': 512, 't5-3b': 512, 't5-11b': 512, } class __lowerCAmelCase (lowercase_ ): '''simple docstring''' lowerCAmelCase__ : List[str] = VOCAB_FILES_NAMES lowerCAmelCase__ : str = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ : int = ["""input_ids""", """attention_mask"""] lowerCAmelCase__ : Optional[int] = TaTokenizer lowerCAmelCase__ : List[int] = [] def __init__(self : Dict , UpperCamelCase : str=None , UpperCamelCase : Optional[Any]=None , UpperCamelCase : Any="</s>" , UpperCamelCase : str="<unk>" , UpperCamelCase : List[str]="<pad>" , UpperCamelCase : List[str]=100 , UpperCamelCase : Tuple=None , **UpperCamelCase : List[str] , ): '''simple docstring''' if extra_ids > 0 and additional_special_tokens is None: lowercase__ = [f"<extra_id_{i}>" for i in range(UpperCamelCase )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra special tokens lowercase__ = len(set(filter(lambda UpperCamelCase : bool('''extra_id_''' in str(UpperCamelCase ) ) , UpperCamelCase ) ) ) if extra_tokens != extra_ids: raise ValueError( f"Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are" ''' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids''' ''' tokens''' ) super().__init__( UpperCamelCase , tokenizer_file=UpperCamelCase , eos_token=UpperCamelCase , unk_token=UpperCamelCase , pad_token=UpperCamelCase , extra_ids=UpperCamelCase , additional_special_tokens=UpperCamelCase , **UpperCamelCase , ) lowercase__ = vocab_file lowercase__ = False if not self.vocab_file else True lowercase__ = extra_ids @staticmethod def UpperCamelCase__ (UpperCamelCase : List[Any] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Optional[Any] ): '''simple docstring''' if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes: lowercase__ = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( '''This tokenizer was incorrectly instantiated with a model max length of''' f" {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this" ''' behavior is kept to avoid breaking backwards compatibility when padding/encoding with''' ''' `truncation is True`.\n- Be aware that you SHOULD NOT rely on''' f" {pretrained_model_name_or_path} automatically truncating your input to" f" {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences" f" longer than {deprecated_max_model_length} you can either instantiate this tokenizer with" ''' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please''' ''' instantiate this tokenizer with `model_max_length` set to your preferred value.''' , UpperCamelCase , ) return max_model_length def UpperCamelCase__ (self : Any , UpperCamelCase : str , UpperCamelCase : Optional[str] = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(UpperCamelCase ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return lowercase__ = os.path.join( UpperCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase ): copyfile(self.vocab_file , UpperCamelCase ) logger.info(f"Copy vocab file to {out_vocab_file}" ) return (out_vocab_file,) def UpperCamelCase__ (self : Any , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None ): '''simple docstring''' lowercase__ = token_ids_a + [self.eos_token_id] if token_ids_a is None: return self.prefix_tokens + token_ids_a else: lowercase__ = token_ids_a + [self.eos_token_id] return self.prefix_tokens + token_ids_a + token_ids_a def UpperCamelCase__ (self : Optional[Any] , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None ): '''simple docstring''' lowercase__ = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def UpperCamelCase__ (self : List[Any] ): '''simple docstring''' return list( set(filter(lambda UpperCamelCase : bool(re.search(R'''<extra_id_\d+>''' , UpperCamelCase ) ) is not None , self.additional_special_tokens ) ) ) def UpperCamelCase__ (self : Union[str, Any] ): '''simple docstring''' return [self.convert_tokens_to_ids(UpperCamelCase ) for token in self.get_sentinel_tokens()]
2
0
import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, Pipeline, ZeroShotClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. A_ :Dict = {'LayoutLMv2Config', 'LayoutLMv3Config'} @is_pipeline_test class __A ( unittest.TestCase ): """simple docstring""" UpperCamelCase__ : str =MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING UpperCamelCase__ : Dict =TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: UpperCamelCase__ : List[str] ={config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: UpperCamelCase__ : Union[str, Any] ={ config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : Optional[int] =ZeroShotClassificationPipeline( model=lowerCamelCase__ , tokenizer=lowerCamelCase__ , candidate_labels=['polics', 'health'] ) return classifier, ["Who are you voting for in 2020?", "My stomach hurts."] def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : Tuple =classifier('Who are you voting for in 2020?' , candidate_labels='politics' ) self.assertEqual(lowerCamelCase__ , {'sequence': ANY(lowerCamelCase__ ), 'labels': [ANY(lowerCamelCase__ )], 'scores': [ANY(lowerCamelCase__ )]} ) # No kwarg __UpperCamelCase : Tuple =classifier('Who are you voting for in 2020?' , ['politics'] ) self.assertEqual(lowerCamelCase__ , {'sequence': ANY(lowerCamelCase__ ), 'labels': [ANY(lowerCamelCase__ )], 'scores': [ANY(lowerCamelCase__ )]} ) __UpperCamelCase : str =classifier('Who are you voting for in 2020?' , candidate_labels=['politics'] ) self.assertEqual(lowerCamelCase__ , {'sequence': ANY(lowerCamelCase__ ), 'labels': [ANY(lowerCamelCase__ )], 'scores': [ANY(lowerCamelCase__ )]} ) __UpperCamelCase : Any =classifier('Who are you voting for in 2020?' , candidate_labels='politics, public health' ) self.assertEqual( lowerCamelCase__ , {'sequence': ANY(lowerCamelCase__ ), 'labels': [ANY(lowerCamelCase__ ), ANY(lowerCamelCase__ )], 'scores': [ANY(lowerCamelCase__ ), ANY(lowerCamelCase__ )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs['scores'] ) ) , 1.0 ) __UpperCamelCase : int =classifier('Who are you voting for in 2020?' , candidate_labels=['politics', 'public health'] ) self.assertEqual( lowerCamelCase__ , {'sequence': ANY(lowerCamelCase__ ), 'labels': [ANY(lowerCamelCase__ ), ANY(lowerCamelCase__ )], 'scores': [ANY(lowerCamelCase__ ), ANY(lowerCamelCase__ )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs['scores'] ) ) , 1.0 ) __UpperCamelCase : Union[str, Any] =classifier( 'Who are you voting for in 2020?' , candidate_labels='politics' , hypothesis_template='This text is about {}' ) self.assertEqual(lowerCamelCase__ , {'sequence': ANY(lowerCamelCase__ ), 'labels': [ANY(lowerCamelCase__ )], 'scores': [ANY(lowerCamelCase__ )]} ) # https://github.com/huggingface/transformers/issues/13846 __UpperCamelCase : str =classifier(['I am happy'] , ['positive', 'negative'] ) self.assertEqual( lowerCamelCase__ , [ {'sequence': ANY(lowerCamelCase__ ), 'labels': [ANY(lowerCamelCase__ ), ANY(lowerCamelCase__ )], 'scores': [ANY(lowerCamelCase__ ), ANY(lowerCamelCase__ )]} for i in range(1 ) ] , ) __UpperCamelCase : Dict =classifier(['I am happy', 'I am sad'] , ['positive', 'negative'] ) self.assertEqual( lowerCamelCase__ , [ {'sequence': ANY(lowerCamelCase__ ), 'labels': [ANY(lowerCamelCase__ ), ANY(lowerCamelCase__ )], 'scores': [ANY(lowerCamelCase__ ), ANY(lowerCamelCase__ )]} for i in range(2 ) ] , ) with self.assertRaises(lowerCamelCase__ ): classifier('' , candidate_labels='politics' ) with self.assertRaises(lowerCamelCase__ ): classifier(lowerCamelCase__ , candidate_labels='politics' ) with self.assertRaises(lowerCamelCase__ ): classifier('Who are you voting for in 2020?' , candidate_labels='' ) with self.assertRaises(lowerCamelCase__ ): classifier('Who are you voting for in 2020?' , candidate_labels=lowerCamelCase__ ) with self.assertRaises(lowerCamelCase__ ): classifier( 'Who are you voting for in 2020?' , candidate_labels='politics' , hypothesis_template='Not formatting template' , ) with self.assertRaises(lowerCamelCase__ ): classifier( 'Who are you voting for in 2020?' , candidate_labels='politics' , hypothesis_template=lowerCamelCase__ , ) self.run_entailment_id(lowerCamelCase__ ) def __lowercase ( self , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : Dict =zero_shot_classifier.model.config __UpperCamelCase : List[str] =config.labelaid __UpperCamelCase : List[Any] =zero_shot_classifier.entailment_id __UpperCamelCase : Tuple ={'LABEL_0': 0, 'LABEL_1': 1, 'LABEL_2': 2} self.assertEqual(zero_shot_classifier.entailment_id , -1 ) __UpperCamelCase : Union[str, Any] ={'entailment': 0, 'neutral': 1, 'contradiction': 2} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) __UpperCamelCase : int ={'ENTAIL': 0, 'NON-ENTAIL': 1} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) __UpperCamelCase : Tuple ={'ENTAIL': 2, 'NEUTRAL': 1, 'CONTR': 0} self.assertEqual(zero_shot_classifier.entailment_id , 2 ) __UpperCamelCase : List[Any] =original_labelaid self.assertEqual(lowerCamelCase__ , zero_shot_classifier.entailment_id ) @require_torch def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Optional[int] =pipeline( 'zero-shot-classification' , model='sshleifer/tiny-distilbert-base-cased-distilled-squad' , framework='pt' , ) # There was a regression in 4.10 for this # Adding a test so we don't make the mistake again. # https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499 zero_shot_classifier( 'Who are you voting for in 2020?' * 100 , candidate_labels=['politics', 'public health', 'science'] ) @require_torch def __lowercase ( self ): """simple docstring""" __UpperCamelCase : str =pipeline( 'zero-shot-classification' , model='sshleifer/tiny-distilbert-base-cased-distilled-squad' , framework='pt' , ) __UpperCamelCase : Optional[int] =zero_shot_classifier( 'Who are you voting for in 2020?' , candidate_labels=['politics', 'public health', 'science'] ) self.assertEqual( nested_simplify(lowerCamelCase__ ) , { 'sequence': 'Who are you voting for in 2020?', 'labels': ['science', 'public health', 'politics'], 'scores': [0.333, 0.333, 0.333], } , ) @require_tf def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Dict =pipeline( 'zero-shot-classification' , model='sshleifer/tiny-distilbert-base-cased-distilled-squad' , framework='tf' , ) __UpperCamelCase : str =zero_shot_classifier( 'Who are you voting for in 2020?' , candidate_labels=['politics', 'public health', 'science'] ) self.assertEqual( nested_simplify(lowerCamelCase__ ) , { 'sequence': 'Who are you voting for in 2020?', 'labels': ['science', 'public health', 'politics'], 'scores': [0.333, 0.333, 0.333], } , ) @slow @require_torch def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Optional[Any] =pipeline('zero-shot-classification' , model='roberta-large-mnli' , framework='pt' ) __UpperCamelCase : List[Any] =zero_shot_classifier( 'Who are you voting for in 2020?' , candidate_labels=['politics', 'public health', 'science'] ) self.assertEqual( nested_simplify(lowerCamelCase__ ) , { 'sequence': 'Who are you voting for in 2020?', 'labels': ['politics', 'public health', 'science'], 'scores': [0.976, 0.015, 0.009], } , ) __UpperCamelCase : Optional[Any] =zero_shot_classifier( 'The dominant sequence transduction models are based on complex recurrent or convolutional neural networks' ' in an encoder-decoder configuration. The best performing models also connect the encoder and decoder' ' through an attention mechanism. We propose a new simple network architecture, the Transformer, based' ' solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two' ' machine translation tasks show these models to be superior in quality while being more parallelizable' ' and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014' ' English-to-German translation task, improving over the existing best results, including ensembles by' ' over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new' ' single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small' ' fraction of the training costs of the best models from the literature. We show that the Transformer' ' generalizes well to other tasks by applying it successfully to English constituency parsing both with' ' large and limited training data.' , candidate_labels=['machine learning', 'statistics', 'translation', 'vision'] , multi_label=lowerCamelCase__ , ) self.assertEqual( nested_simplify(lowerCamelCase__ ) , { 'sequence': ( 'The dominant sequence transduction models are based on complex recurrent or convolutional neural' ' networks in an encoder-decoder configuration. The best performing models also connect the' ' encoder and decoder through an attention mechanism. We propose a new simple network' ' architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence' ' and convolutions entirely. Experiments on two machine translation tasks show these models to be' ' superior in quality while being more parallelizable and requiring significantly less time to' ' train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,' ' improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014' ' English-to-French translation task, our model establishes a new single-model state-of-the-art' ' BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training' ' costs of the best models from the literature. We show that the Transformer generalizes well to' ' other tasks by applying it successfully to English constituency parsing both with large and' ' limited training data.' ), 'labels': ['translation', 'machine learning', 'vision', 'statistics'], 'scores': [0.817, 0.713, 0.018, 0.018], } , ) @slow @require_tf def __lowercase ( self ): """simple docstring""" __UpperCamelCase : int =pipeline('zero-shot-classification' , model='roberta-large-mnli' , framework='tf' ) __UpperCamelCase : Union[str, Any] =zero_shot_classifier( 'Who are you voting for in 2020?' , candidate_labels=['politics', 'public health', 'science'] ) self.assertEqual( nested_simplify(lowerCamelCase__ ) , { 'sequence': 'Who are you voting for in 2020?', 'labels': ['politics', 'public health', 'science'], 'scores': [0.976, 0.015, 0.009], } , ) __UpperCamelCase : str =zero_shot_classifier( 'The dominant sequence transduction models are based on complex recurrent or convolutional neural networks' ' in an encoder-decoder configuration. The best performing models also connect the encoder and decoder' ' through an attention mechanism. We propose a new simple network architecture, the Transformer, based' ' solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two' ' machine translation tasks show these models to be superior in quality while being more parallelizable' ' and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014' ' English-to-German translation task, improving over the existing best results, including ensembles by' ' over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new' ' single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small' ' fraction of the training costs of the best models from the literature. We show that the Transformer' ' generalizes well to other tasks by applying it successfully to English constituency parsing both with' ' large and limited training data.' , candidate_labels=['machine learning', 'statistics', 'translation', 'vision'] , multi_label=lowerCamelCase__ , ) self.assertEqual( nested_simplify(lowerCamelCase__ ) , { 'sequence': ( 'The dominant sequence transduction models are based on complex recurrent or convolutional neural' ' networks in an encoder-decoder configuration. The best performing models also connect the' ' encoder and decoder through an attention mechanism. We propose a new simple network' ' architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence' ' and convolutions entirely. Experiments on two machine translation tasks show these models to be' ' superior in quality while being more parallelizable and requiring significantly less time to' ' train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,' ' improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014' ' English-to-French translation task, our model establishes a new single-model state-of-the-art' ' BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training' ' costs of the best models from the literature. We show that the Transformer generalizes well to' ' other tasks by applying it successfully to English constituency parsing both with large and' ' limited training data.' ), 'labels': ['translation', 'machine learning', 'vision', 'statistics'], 'scores': [0.817, 0.713, 0.018, 0.018], } , )
71
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class __lowerCAmelCase (lowercase_ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ : Dict = ShapEImgaImgPipeline lowerCAmelCase__ : List[str] = ["""image"""] lowerCAmelCase__ : Any = ["""image"""] lowerCAmelCase__ : Any = [ """num_images_per_prompt""", """num_inference_steps""", """generator""", """latents""", """guidance_scale""", """frame_size""", """output_type""", """return_dict""", ] lowerCAmelCase__ : Tuple = False @property def UpperCamelCase__ (self : List[Any] ): '''simple docstring''' return 32 @property def UpperCamelCase__ (self : str ): '''simple docstring''' return 32 @property def UpperCamelCase__ (self : Union[str, Any] ): '''simple docstring''' return self.time_input_dim * 4 @property def UpperCamelCase__ (self : int ): '''simple docstring''' return 8 @property def UpperCamelCase__ (self : Any ): '''simple docstring''' torch.manual_seed(0 ) lowercase__ = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) lowercase__ = CLIPVisionModel(UpperCamelCase ) return model @property def UpperCamelCase__ (self : List[Any] ): '''simple docstring''' lowercase__ = CLIPImageProcessor( crop_size=224 , do_center_crop=UpperCamelCase , do_normalize=UpperCamelCase , do_resize=UpperCamelCase , image_mean=[0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73] , image_std=[0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11] , resample=3 , size=224 , ) return image_processor @property def UpperCamelCase__ (self : str ): '''simple docstring''' torch.manual_seed(0 ) lowercase__ = { '''num_attention_heads''': 2, '''attention_head_dim''': 16, '''embedding_dim''': self.time_input_dim, '''num_embeddings''': 32, '''embedding_proj_dim''': self.text_embedder_hidden_size, '''time_embed_dim''': self.time_embed_dim, '''num_layers''': 1, '''clip_embed_dim''': self.time_input_dim * 2, '''additional_embeddings''': 0, '''time_embed_act_fn''': '''gelu''', '''norm_in_type''': '''layer''', '''embedding_proj_norm_type''': '''layer''', '''encoder_hid_proj_type''': None, '''added_emb_type''': None, } lowercase__ = PriorTransformer(**UpperCamelCase ) return model @property def UpperCamelCase__ (self : int ): '''simple docstring''' torch.manual_seed(0 ) lowercase__ = { '''param_shapes''': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), '''d_latent''': self.time_input_dim, '''d_hidden''': self.renderer_dim, '''n_output''': 12, '''background''': ( 0.1, 0.1, 0.1, ), } lowercase__ = ShapERenderer(**UpperCamelCase ) return model def UpperCamelCase__ (self : Union[str, Any] ): '''simple docstring''' lowercase__ = self.dummy_prior lowercase__ = self.dummy_image_encoder lowercase__ = self.dummy_image_processor lowercase__ = self.dummy_renderer lowercase__ = HeunDiscreteScheduler( beta_schedule='''exp''' , num_train_timesteps=1024 , prediction_type='''sample''' , use_karras_sigmas=UpperCamelCase , clip_sample=UpperCamelCase , clip_sample_range=1.0 , ) lowercase__ = { '''prior''': prior, '''image_encoder''': image_encoder, '''image_processor''': image_processor, '''renderer''': renderer, '''scheduler''': scheduler, } return components def UpperCamelCase__ (self : Optional[int] , UpperCamelCase : Optional[int] , UpperCamelCase : str=0 ): '''simple docstring''' lowercase__ = floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCamelCase ) ).to(UpperCamelCase ) if str(UpperCamelCase ).startswith('''mps''' ): lowercase__ = torch.manual_seed(UpperCamelCase ) else: lowercase__ = torch.Generator(device=UpperCamelCase ).manual_seed(UpperCamelCase ) lowercase__ = { '''image''': input_image, '''generator''': generator, '''num_inference_steps''': 1, '''frame_size''': 32, '''output_type''': '''np''', } return inputs def UpperCamelCase__ (self : Tuple ): '''simple docstring''' lowercase__ = '''cpu''' lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**UpperCamelCase ) lowercase__ = pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) lowercase__ = pipe(**self.get_dummy_inputs(UpperCamelCase ) ) lowercase__ = output.images[0] lowercase__ = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) lowercase__ = np.array( [ 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase__ (self : Optional[Any] ): '''simple docstring''' self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def UpperCamelCase__ (self : int ): '''simple docstring''' lowercase__ = torch_device == '''cpu''' lowercase__ = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=UpperCamelCase , relax_max_difference=UpperCamelCase , ) def UpperCamelCase__ (self : int ): '''simple docstring''' lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**UpperCamelCase ) lowercase__ = pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) lowercase__ = 1 lowercase__ = 2 lowercase__ = self.get_dummy_inputs(UpperCamelCase ) for key in inputs.keys(): if key in self.batch_params: lowercase__ = batch_size * [inputs[key]] lowercase__ = pipe(**UpperCamelCase , num_images_per_prompt=UpperCamelCase )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class __lowerCAmelCase (unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ (self : Optional[Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ (self : Union[str, Any] ): '''simple docstring''' lowercase__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/corgi.png''' ) lowercase__ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/test_shap_e_img2img_out.npy''' ) lowercase__ = ShapEImgaImgPipeline.from_pretrained('''openai/shap-e-img2img''' ) lowercase__ = pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) lowercase__ = torch.Generator(device=UpperCamelCase ).manual_seed(0 ) lowercase__ = pipe( UpperCamelCase , generator=UpperCamelCase , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type='''np''' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(UpperCamelCase , UpperCamelCase )
2
0
'''simple docstring''' import unittest from dataclasses import dataclass import pytest from accelerate.commands.config.config_args import SageMakerConfig from accelerate.utils import ComputeEnvironment from accelerate.utils.launch import _convert_nargs_to_dict @dataclass class _snake_case ( lowercase_ ): lowerCAmelCase_ : Optional[int] = ComputeEnvironment.AMAZON_SAGEMAKER lowerCAmelCase_ : List[str] = True lowerCAmelCase_ : str = """ml.p3.2xlarge""" lowerCAmelCase_ : Optional[Any] = """accelerate_sagemaker_execution_role""" lowerCAmelCase_ : Optional[int] = """hf-sm""" lowerCAmelCase_ : List[Any] = """us-east-1""" lowerCAmelCase_ : Tuple = 1 lowerCAmelCase_ : List[str] = """accelerate-sagemaker-1""" lowerCAmelCase_ : Any = """1.6""" lowerCAmelCase_ : Optional[Any] = """4.4""" lowerCAmelCase_ : Union[str, Any] = """train.py""" lowerCAmelCase_ : str = [ """--model_name_or_path""", """bert""", """--do_train""", """False""", """--epochs""", """3""", """--learning_rate""", """5e-5""", """--max_steps""", """50.5""", ] lowerCAmelCase_ : Tuple = [ """--model_name_or_path""", """bert""", """--do_train""", """--do_test""", """False""", """--do_predict""", """--epochs""", """3""", """--learning_rate""", """5e-5""", """--max_steps""", """50.5""", ] class _snake_case ( unittest.TestCase ): def lowerCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' snake_case_ = _convert_nargs_to_dict(MockLaunchConfig.success_training_script_args ) assert isinstance(converted_args["model_name_or_path"] , a__ ) assert isinstance(converted_args["do_train"] , a__ ) assert isinstance(converted_args["epochs"] , a__ ) assert isinstance(converted_args["learning_rate"] , a__ ) assert isinstance(converted_args["max_steps"] , a__ ) with pytest.raises(a__ ): _convert_nargs_to_dict(MockLaunchConfig.fail_training_script_args )
85
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowerCamelCase : str = { 'configuration_rag': ['RagConfig'], 'retrieval_rag': ['RagRetriever'], 'tokenization_rag': ['RagTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Dict = [ 'RagModel', 'RagPreTrainedModel', 'RagSequenceForGeneration', 'RagTokenForGeneration', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Optional[int] = [ 'TFRagModel', 'TFRagPreTrainedModel', 'TFRagSequenceForGeneration', 'TFRagTokenForGeneration', ] if TYPE_CHECKING: from .configuration_rag import RagConfig from .retrieval_rag import RagRetriever from .tokenization_rag import RagTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rag import RagModel, RagPreTrainedModel, RagSequenceForGeneration, RagTokenForGeneration try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rag import ( TFRagModel, TFRagPreTrainedModel, TFRagSequenceForGeneration, TFRagTokenForGeneration, ) else: import sys lowerCamelCase : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
2
0
import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __lowerCAmelCase ( lowercase_ , lowercase_ , unittest.TestCase ): lowerCAmelCase__ = IFInpaintingPipeline lowerCAmelCase__ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"""width""", """height"""} lowerCAmelCase__ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS lowerCAmelCase__ = PipelineTesterMixin.required_optional_params - {"""latents"""} def lowerCamelCase ( self ): '''simple docstring''' return self._get_dummy_components() def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase=0 ): '''simple docstring''' if str(__UpperCAmelCase ).startswith('''mps''' ): __lowerCamelCase = torch.manual_seed(__UpperCAmelCase ) else: __lowerCamelCase = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase ) __lowerCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase ) __lowerCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase ) __lowerCamelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def lowerCamelCase ( self ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def lowerCamelCase ( self ): '''simple docstring''' self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''' ) def lowerCamelCase ( self ): '''simple docstring''' super().test_save_load_floataa(expected_max_diff=1E-1 ) def lowerCamelCase ( self ): '''simple docstring''' self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def lowerCamelCase ( self ): '''simple docstring''' self._test_save_load_local() def lowerCamelCase ( self ): '''simple docstring''' self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
330
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : int = logging.get_logger(__name__) lowerCamelCase : List[Any] = { 'google/realm-cc-news-pretrained-embedder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-encoder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-scorer': ( 'https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-openqa': ( 'https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json' ), 'google/realm-orqa-nq-openqa': 'https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json', 'google/realm-orqa-nq-reader': 'https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json', 'google/realm-orqa-wq-openqa': 'https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json', 'google/realm-orqa-wq-reader': 'https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json', # See all REALM models at https://huggingface.co/models?filter=realm } class __lowerCAmelCase (lowercase_ ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = """realm""" def __init__(self : str , UpperCamelCase : List[Any]=30522 , UpperCamelCase : List[Any]=768 , UpperCamelCase : int=128 , UpperCamelCase : Any=12 , UpperCamelCase : Tuple=12 , UpperCamelCase : List[Any]=8 , UpperCamelCase : Union[str, Any]=3072 , UpperCamelCase : List[str]="gelu_new" , UpperCamelCase : Any=0.1 , UpperCamelCase : List[str]=0.1 , UpperCamelCase : Dict=512 , UpperCamelCase : Dict=2 , UpperCamelCase : List[Any]=0.02 , UpperCamelCase : List[Any]=1E-12 , UpperCamelCase : Dict=256 , UpperCamelCase : Union[str, Any]=10 , UpperCamelCase : Optional[int]=1E-3 , UpperCamelCase : Tuple=5 , UpperCamelCase : Optional[int]=320 , UpperCamelCase : List[str]=13353718 , UpperCamelCase : Optional[Any]=5000 , UpperCamelCase : str=1 , UpperCamelCase : Union[str, Any]=0 , UpperCamelCase : List[Any]=2 , **UpperCamelCase : int , ): '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase , bos_token_id=UpperCamelCase , eos_token_id=UpperCamelCase , **UpperCamelCase ) # Common config lowercase__ = vocab_size lowercase__ = max_position_embeddings lowercase__ = hidden_size lowercase__ = retriever_proj_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = num_candidates lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = initializer_range lowercase__ = type_vocab_size lowercase__ = layer_norm_eps # Reader config lowercase__ = span_hidden_size lowercase__ = max_span_width lowercase__ = reader_layer_norm_eps lowercase__ = reader_beam_size lowercase__ = reader_seq_len # Retrieval config lowercase__ = num_block_records lowercase__ = searcher_beam_size
2
0
def lowerCamelCase_ ( UpperCamelCase__ : Optional[int] , UpperCamelCase__ : List[Any] ) -> tuple[float, float]: """simple docstring""" if not len(UpperCamelCase__ ) == len(UpperCamelCase__ ) == 3: raise ValueError('Please enter a valid equation.' ) if equationa[0] == equationa[1] == equationa[0] == equationa[1] == 0: raise ValueError('Both a & b of two equations can\'t be zero.' ) # Extract the coefficients __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = equationa __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = equationa # Calculate the determinants of the matrices __lowerCamelCase = aa * ba - aa * ba __lowerCamelCase = ca * ba - ca * ba __lowerCamelCase = aa * ca - aa * ca # Check if the system of linear equations has a solution (using Cramer's rule) if determinant == 0: if determinant_x == determinant_y == 0: raise ValueError('Infinite solutions. (Consistent system)' ) else: raise ValueError('No solution. (Inconsistent system)' ) else: if determinant_x == determinant_y == 0: # Trivial solution (Inconsistent system) return (0.0, 0.0) else: __lowerCamelCase = determinant_x / determinant __lowerCamelCase = determinant_y / determinant # Non-Trivial Solution (Consistent system) return (x, y)
90
'''simple docstring''' import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : str = logging.get_logger(__name__) lowerCamelCase : int = { 'RUCAIBox/mvp': 'https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json', } class __lowerCAmelCase (lowercase_ ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = """mvp""" lowerCAmelCase__ : Optional[Any] = ["""past_key_values"""] lowerCAmelCase__ : List[str] = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__(self : Any , UpperCamelCase : Optional[int]=50267 , UpperCamelCase : Tuple=1024 , UpperCamelCase : int=12 , UpperCamelCase : Tuple=4096 , UpperCamelCase : Dict=16 , UpperCamelCase : int=12 , UpperCamelCase : Optional[int]=4096 , UpperCamelCase : Optional[int]=16 , UpperCamelCase : Tuple=0.0 , UpperCamelCase : Tuple=0.0 , UpperCamelCase : List[Any]="gelu" , UpperCamelCase : Union[str, Any]=1024 , UpperCamelCase : Optional[Any]=0.1 , UpperCamelCase : str=0.0 , UpperCamelCase : str=0.0 , UpperCamelCase : Optional[Any]=0.02 , UpperCamelCase : List[str]=0.0 , UpperCamelCase : List[str]=False , UpperCamelCase : Optional[int]=True , UpperCamelCase : Any=1 , UpperCamelCase : int=0 , UpperCamelCase : int=2 , UpperCamelCase : Any=True , UpperCamelCase : Optional[Any]=2 , UpperCamelCase : Optional[Any]=2 , UpperCamelCase : Tuple=False , UpperCamelCase : int=100 , UpperCamelCase : Optional[Any]=800 , **UpperCamelCase : str , ): '''simple docstring''' lowercase__ = vocab_size lowercase__ = max_position_embeddings lowercase__ = d_model lowercase__ = encoder_ffn_dim lowercase__ = encoder_layers lowercase__ = encoder_attention_heads lowercase__ = decoder_ffn_dim lowercase__ = decoder_layers lowercase__ = decoder_attention_heads lowercase__ = dropout lowercase__ = attention_dropout lowercase__ = activation_dropout lowercase__ = activation_function lowercase__ = init_std lowercase__ = encoder_layerdrop lowercase__ = decoder_layerdrop lowercase__ = classifier_dropout lowercase__ = use_cache lowercase__ = encoder_layers lowercase__ = scale_embedding # scale factor will be sqrt(d_model) if True lowercase__ = use_prompt lowercase__ = prompt_length lowercase__ = prompt_mid_dim super().__init__( pad_token_id=UpperCamelCase , bos_token_id=UpperCamelCase , eos_token_id=UpperCamelCase , is_encoder_decoder=UpperCamelCase , decoder_start_token_id=UpperCamelCase , forced_eos_token_id=UpperCamelCase , **UpperCamelCase , ) if self.forced_bos_token_id is None and kwargs.get('''force_bos_token_to_be_generated''' , UpperCamelCase ): lowercase__ = self.bos_token_id warnings.warn( f"Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. " '''The config can simply be saved and uploaded again to be fixed.''' )
2
0