code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
"""simple docstring""" import unittest from transformers import GPTSwaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin lowercase_ = get_tests_dir("fixtures/test_sentencepiece_with_bytefallback.model") @require_sentencepiece @require_tokenizers class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = GPTSwaTokenizer __UpperCAmelCase : Tuple = False __UpperCAmelCase : List[Any] = True __UpperCAmelCase : Optional[Any] = False def __UpperCAmelCase ( self ): super().setUp() # We have a SentencePiece fixture for testing __a = GPTSwaTokenizer(_a , eos_token='''<unk>''' , bos_token='''<unk>''' , pad_token='''<unk>''' ) tokenizer.save_pretrained(self.tmpdirname ) def __UpperCAmelCase ( self , _a ): __a = '''This is a test''' __a = '''This is a test''' return input_text, output_text def __UpperCAmelCase ( self ): __a = '''<s>''' __a = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_a ) , _a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_a ) , _a ) def __UpperCAmelCase ( self ): __a = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<unk>''' ) self.assertEqual(vocab_keys[1] , '''<s>''' ) self.assertEqual(vocab_keys[-1] , '''j''' ) self.assertEqual(len(_a ) , 2_000 ) def __UpperCAmelCase ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 2_000 ) def __UpperCAmelCase ( self ): __a = GPTSwaTokenizer(_a ) __a = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_a , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , [465, 287, 265, 631, 842] ) __a = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) # fmt: off self.assertListEqual( _a , ['''▁I''', '''▁was''', '''▁bor''', '''n''', '''▁in''', '''▁''', '''<0x39>''', '''2''', '''0''', '''0''', '''0''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁f''', '''al''', '''s''', '''<0xC3>''', '''<0xA9>''', '''.'''] , ) # fmt: on __a = tokenizer.convert_tokens_to_ids(_a ) self.assertListEqual( _a , [262, 272, 1_525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260] , ) __a = tokenizer.convert_ids_to_tokens(_a ) # fmt: off self.assertListEqual( _a , ['''▁I''', '''▁was''', '''▁bor''', '''n''', '''▁in''', '''▁''', '''<0x39>''', '''2''', '''0''', '''0''', '''0''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁f''', '''al''', '''s''', '''<0xC3>''', '''<0xA9>''', '''.'''] ) # fmt: on def __UpperCAmelCase ( self ): __a = GPTSwaTokenizer(_a ) __a = ['''This is a test''', '''I was born in 92000, and this is falsé.'''] __a = [ [465, 287, 265, 631, 842], [262, 272, 1_525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260], ] # Test that encode_fast returns the same as tokenize + convert_tokens_to_ids for text, expected_ids in zip(_a , _a ): self.assertListEqual(tokenizer.encode_fast(_a ) , _a ) # Test that decode_fast returns the input text for text, token_ids in zip(_a , _a ): self.assertEqual(tokenizer.decode_fast(_a ) , _a ) @slow def __UpperCAmelCase ( self ): __a = [ '''<|python|>def fibonacci(n)\n if n < 0:\n print(\'Incorrect input\')''', '''Hey there, how are you doing this fine day?''', '''This is a text with a trailing spaces followed by a dot .''', '''Häj sväjs lillebrör! =)''', '''Det är inget fel på Mr. Cool''', ] # fmt: off __a = {'''input_ids''': [[63_423, 5, 6_811, 14_954, 282, 816, 3_821, 63_466, 63_425, 63_462, 18, 63_978, 678, 301, 1_320, 63_423, 63_455, 63_458, 18, 63_982, 4_246, 3_940, 1_901, 47_789, 5_547, 18_994], [19_630, 1_100, 63_446, 1_342, 633, 544, 4_488, 593, 5_102, 2_416, 63_495, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1_652, 428, 268, 1_936, 515, 268, 58_593, 22_413, 9_106, 546, 268, 33_213, 63_979, 698, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [55_130, 63_450, 924, 63_449, 2_249, 4_062, 1_558, 318, 63_504, 21_498, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [509, 377, 2_827, 2_559, 332, 6_575, 63_443, 26_801, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # fmt: on self.tokenizer_integration_test_util( expected_encoding=_a , model_name='''AI-Sweden/gpt-sw3-126m''' , sequences=_a , )
695
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING lowercase_ = logging.get_logger(__name__) lowercase_ = { "salesforce/blip2-opt-2.7b": "https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json", } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = 'blip_2_vision_model' def __init__( self , _a=1_408 , _a=6_144 , _a=39 , _a=16 , _a=224 , _a=14 , _a="gelu" , _a=0.0_0001 , _a=0.0 , _a=1E-10 , _a=True , **_a , ): super().__init__(**_a ) __a = hidden_size __a = intermediate_size __a = num_hidden_layers __a = num_attention_heads __a = patch_size __a = image_size __a = initializer_range __a = attention_dropout __a = layer_norm_eps __a = hidden_act __a = qkv_bias @classmethod def __UpperCAmelCase ( cls , _a , **_a ): cls._set_token_in_kwargs(_a ) __a , __a = cls.get_config_dict(_a , **_a ) # get the vision config dict if we are loading from Blip2Config if config_dict.get('''model_type''' ) == "blip-2": __a = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_a , **_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : str = 'blip_2_qformer' def __init__( self , _a=30_522 , _a=768 , _a=12 , _a=12 , _a=3_072 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=0.02 , _a=1E-12 , _a=0 , _a="absolute" , _a=2 , _a=1_408 , **_a , ): super().__init__(pad_token_id=_a , **_a ) __a = vocab_size __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = hidden_act __a = intermediate_size __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = initializer_range __a = layer_norm_eps __a = position_embedding_type __a = cross_attention_frequency __a = encoder_hidden_size @classmethod def __UpperCAmelCase ( cls , _a , **_a ): cls._set_token_in_kwargs(_a ) __a , __a = cls.get_config_dict(_a , **_a ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get('''model_type''' ) == "blip-2": __a = config_dict['''qformer_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_a , **_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Any = 'blip-2' __UpperCAmelCase : List[str] = True def __init__( self , _a=None , _a=None , _a=None , _a=32 , **_a ): super().__init__(**_a ) if vision_config is None: __a = {} logger.info('''vision_config is None. initializing the Blip2VisionConfig with default values.''' ) if qformer_config is None: __a = {} logger.info('''qformer_config is None. Initializing the Blip2QFormerConfig with default values.''' ) if text_config is None: __a = {} logger.info('''text_config is None. Initializing the text config with default values (`OPTConfig`).''' ) __a = BlipaVisionConfig(**_a ) __a = BlipaQFormerConfig(**_a ) __a = text_config['''model_type'''] if '''model_type''' in text_config else '''opt''' __a = CONFIG_MAPPING[text_model_type](**_a ) __a = self.text_config.tie_word_embeddings __a = self.text_config.is_encoder_decoder __a = num_query_tokens __a = self.vision_config.hidden_size __a = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES __a = 1.0 __a = 0.02 @classmethod def __UpperCAmelCase ( cls , _a , _a , _a , **_a , ): return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **_a , ) def __UpperCAmelCase ( self ): __a = copy.deepcopy(self.__dict__ ) __a = self.vision_config.to_dict() __a = self.qformer_config.to_dict() __a = self.text_config.to_dict() __a = self.__class__.model_type return output
695
1
"""simple docstring""" from __future__ import annotations import unittest from transformers import AutoTokenizer, PegasusConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFPegasusForConditionalGeneration, TFPegasusModel @require_tf class __lowerCAmelCase : '''simple docstring''' __UpperCAmelCase : List[str] = PegasusConfig __UpperCAmelCase : List[str] = {} __UpperCAmelCase : Dict = 'gelu' def __init__( self , _a , _a=13 , _a=7 , _a=True , _a=False , _a=99 , _a=32 , _a=2 , _a=4 , _a=37 , _a=0.1 , _a=0.1 , _a=40 , _a=2 , _a=1 , _a=0 , ): __a = parent __a = batch_size __a = seq_length __a = is_training __a = use_labels __a = vocab_size __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = intermediate_size __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = eos_token_id __a = pad_token_id __a = bos_token_id def __UpperCAmelCase ( self ): __a = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) __a = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) __a = tf.concat([input_ids, eos_tensor] , axis=1 ) __a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __a = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) __a = prepare_pegasus_inputs_dict(_a , _a , _a ) return config, inputs_dict def __UpperCAmelCase ( self , _a , _a ): __a = TFPegasusModel(config=_a ).get_decoder() __a = inputs_dict['''input_ids'''] __a = input_ids[:1, :] __a = inputs_dict['''attention_mask'''][:1, :] __a = inputs_dict['''head_mask'''] __a = 1 # first forward pass __a = model(_a , attention_mask=_a , head_mask=_a , use_cache=_a ) __a , __a = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids __a = ids_tensor((self.batch_size, 3) , config.vocab_size ) __a = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and __a = tf.concat([input_ids, next_tokens] , axis=-1 ) __a = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) __a = model(_a , attention_mask=_a )[0] __a = model(_a , attention_mask=_a , past_key_values=_a )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice __a = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) __a = output_from_no_past[:, -3:, random_slice_idx] __a = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(_a , _a , rtol=1E-3 ) def lowercase ( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[Any]=None , lowerCAmelCase__ : Union[str, Any]=None , lowerCAmelCase__ : Tuple=None , lowerCAmelCase__ : Tuple=None , lowerCAmelCase__ : Union[str, Any]=None , ) -> Union[str, Any]: if attention_mask is None: __a = tf.cast(tf.math.not_equal(lowerCAmelCase__ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: __a = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: __a = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: __a = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: __a = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : List[str] = (TFPegasusForConditionalGeneration, TFPegasusModel) if is_tf_available() else () __UpperCAmelCase : str = (TFPegasusForConditionalGeneration,) if is_tf_available() else () __UpperCAmelCase : Dict = ( { 'conversational': TFPegasusForConditionalGeneration, 'feature-extraction': TFPegasusModel, 'summarization': TFPegasusForConditionalGeneration, 'text2text-generation': TFPegasusForConditionalGeneration, 'translation': TFPegasusForConditionalGeneration, } if is_tf_available() else {} ) __UpperCAmelCase : Tuple = True __UpperCAmelCase : int = False __UpperCAmelCase : Any = False def __UpperCAmelCase ( self ): __a = TFPegasusModelTester(self ) __a = ConfigTester(self , config_class=_a ) def __UpperCAmelCase ( self ): self.config_tester.run_common_tests() def __UpperCAmelCase ( self ): __a = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_a ) @require_sentencepiece @require_tokenizers @require_tf class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : List[Any] = [ ' PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.', ' The London trio are up for best UK act and best album, as well as getting two nominations in the best song category."We got told like this morning \'Oh I think you\'re nominated\'", said Dappy."And I was like \'Oh yeah, which one?\' And now we\'ve got nominated for four awards. I mean, wow!"Bandmate Fazer added: "We thought it\'s best of us to come down and mingle with everyone and say hello to the cameras. And now we find we\'ve got four nominations."The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn\'t be too disappointed if they didn\'t win this time around."At the end of the day we\'re grateful to be where we are in our careers."If it don\'t happen then it don\'t happen - live to fight another day and keep on making albums and hits for the fans."Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers\' All These Things That I\'ve Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year\'s Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border."We just done Edinburgh the other day," said Dappy."We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!" ', ] __UpperCAmelCase : int = [ 'California\'s largest electricity provider has cut power to hundreds of thousands of customers in an effort to' ' reduce the risk of wildfires.', 'N-Dubz have revealed they\'re "grateful" to have been nominated for four Mobo Awards.', ] # differs slightly from pytorch, likely due to numerical differences in linear layers __UpperCAmelCase : Any = 'google/pegasus-xsum' @cached_property def __UpperCAmelCase ( self ): return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def __UpperCAmelCase ( self ): __a = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def __UpperCAmelCase ( self , **_a ): __a = self.translate_src_text(**_a ) assert self.expected_text == generated_words def __UpperCAmelCase ( self , **_a ): __a = self.tokenizer(self.src_text , **_a , padding=_a , return_tensors='''tf''' ) __a = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=_a , ) __a = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=_a ) return generated_words @slow def __UpperCAmelCase ( self ): self._assert_generated_batch_equal_expected()
695
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType lowercase_ = logging.get_logger(__name__) lowercase_ = { "microsoft/deberta-v2-xlarge": "https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json", "microsoft/deberta-v2-xxlarge": "https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json", "microsoft/deberta-v2-xlarge-mnli": ( "https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json" ), "microsoft/deberta-v2-xxlarge-mnli": ( "https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json" ), } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Dict = 'deberta-v2' def __init__( self , _a=128_100 , _a=1_536 , _a=24 , _a=24 , _a=6_144 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=0 , _a=0.02 , _a=1E-7 , _a=False , _a=-1 , _a=0 , _a=True , _a=None , _a=0 , _a="gelu" , **_a , ): super().__init__(**_a ) __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = intermediate_size __a = hidden_act __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = type_vocab_size __a = initializer_range __a = relative_attention __a = max_relative_positions __a = pad_token_id __a = position_biased_input # Backwards compatibility if type(_a ) == str: __a = [x.strip() for x in pos_att_type.lower().split('''|''' )] __a = pos_att_type __a = vocab_size __a = layer_norm_eps __a = kwargs.get('''pooler_hidden_size''' , _a ) __a = pooler_dropout __a = pooler_hidden_act class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def __UpperCAmelCase ( self ): if self.task == "multiple-choice": __a = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __a = {0: '''batch''', 1: '''sequence'''} if self._config.type_vocab_size > 0: return OrderedDict( [('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis)] ) else: return OrderedDict([('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis)] ) @property def __UpperCAmelCase ( self ): return 12 def __UpperCAmelCase ( self , _a , _a = -1 , _a = -1 , _a = -1 , _a = False , _a = None , _a = 3 , _a = 40 , _a = 40 , _a = None , ): __a = super().generate_dummy_inputs(preprocessor=_a , framework=_a ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
695
1
"""simple docstring""" from __future__ import annotations import math lowercase_ = "2020.9.26" lowercase_ = "xcodz-dot, cclaus, dhruvmanila" def lowercase ( lowerCAmelCase__ : float , lowerCAmelCase__ : float , lowerCAmelCase__ : float , lowerCAmelCase__ : float , lowerCAmelCase__ : float ) -> tuple[float, float]: if not all(isinstance(lowerCAmelCase__ , (float, int) ) for val in locals().values() ): __a = f'''Input values must either be float or int: {list(locals().values() )}''' raise TypeError(lowerCAmelCase__ ) __a = ((x * distance) / (z + distance)) * scale __a = ((y * distance) / (z + distance)) * scale return projected_x, projected_y def lowercase ( lowerCAmelCase__ : float , lowerCAmelCase__ : float , lowerCAmelCase__ : float , lowerCAmelCase__ : str , lowerCAmelCase__ : float ) -> tuple[float, float, float]: if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise TypeError('''Axis must be a str''' ) __a = locals() del input_variables["axis"] if not all(isinstance(lowerCAmelCase__ , (float, int) ) for val in input_variables.values() ): __a = ( '''Input values except axis must either be float or int: ''' f'''{list(input_variables.values() )}''' ) raise TypeError(lowerCAmelCase__ ) __a = (angle % 360) / 450 * 180 / math.pi if axis == "z": __a = x * math.cos(lowerCAmelCase__ ) - y * math.sin(lowerCAmelCase__ ) __a = y * math.cos(lowerCAmelCase__ ) + x * math.sin(lowerCAmelCase__ ) __a = z elif axis == "x": __a = y * math.cos(lowerCAmelCase__ ) - z * math.sin(lowerCAmelCase__ ) __a = z * math.cos(lowerCAmelCase__ ) + y * math.sin(lowerCAmelCase__ ) __a = x elif axis == "y": __a = x * math.cos(lowerCAmelCase__ ) - z * math.sin(lowerCAmelCase__ ) __a = z * math.cos(lowerCAmelCase__ ) + x * math.sin(lowerCAmelCase__ ) __a = y else: raise ValueError('''not a valid axis, choose one of \'x\', \'y\', \'z\'''' ) return new_x, new_y, new_z if __name__ == "__main__": import doctest doctest.testmod() print(F'''{convert_to_ad(1.0, 2.0, 3.0, 10.0, 10.0) = }''') print(F'''{rotate(1.0, 2.0, 3.0, 'y', 90.0) = }''')
695
"""simple docstring""" import importlib.metadata import operator import re import sys from typing import Optional from packaging import version lowercase_ = { "<": operator.lt, "<=": operator.le, "==": operator.eq, "!=": operator.ne, ">=": operator.ge, ">": operator.gt, } def lowercase ( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : int , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[Any] ) -> Dict: if got_ver is None or want_ver is None: raise ValueError( f'''Unable to compare versions for {requirement}: need={want_ver} found={got_ver}. This is unusual. Consider''' f''' reinstalling {pkg}.''' ) if not ops[op](version.parse(lowerCAmelCase__ ) , version.parse(lowerCAmelCase__ ) ): raise ImportError( f'''{requirement} is required for a normal functioning of this module, but found {pkg}=={got_ver}.{hint}''' ) def lowercase ( lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None ) -> None: __a = f'''\n{hint}''' if hint is not None else '''''' # non-versioned check if re.match(r'''^[\w_\-\d]+$''' , lowerCAmelCase__ ): __a , __a , __a = requirement, None, None else: __a = re.findall(r'''^([^!=<>\s]+)([\s!=<>]{1,2}.+)''' , lowerCAmelCase__ ) if not match: raise ValueError( '''requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23, but''' f''' got {requirement}''' ) __a , __a = match[0] __a = want_full.split(''',''' ) # there could be multiple requirements __a = {} for w in want_range: __a = re.findall(r'''^([\s!=<>]{1,2})(.+)''' , lowerCAmelCase__ ) if not match: raise ValueError( '''requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23,''' f''' but got {requirement}''' ) __a , __a = match[0] __a = want_ver if op not in ops: raise ValueError(f'''{requirement}: need one of {list(ops.keys() )}, but got {op}''' ) # special case if pkg == "python": __a = '''.'''.join([str(lowerCAmelCase__ ) for x in sys.version_info[:3]] ) for op, want_ver in wanted.items(): _compare_versions(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) return # check if any version is installed try: __a = importlib.metadata.version(lowerCAmelCase__ ) except importlib.metadata.PackageNotFoundError: raise importlib.metadata.PackageNotFoundError( f'''The \'{requirement}\' distribution was not found and is required by this application. {hint}''' ) # check that the right version is installed if version number or a range was provided if want_ver is not None: for op, want_ver in wanted.items(): _compare_versions(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ : Tuple ) -> Optional[Any]: __a = '''Try: pip install transformers -U or pip install -e \'.[dev]\' if you\'re working with git main''' return require_version(lowerCAmelCase__ , lowerCAmelCase__ )
695
1
"""simple docstring""" import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) lowercase_ = logging.getLogger(__name__) @dataclass(frozen=__SCREAMING_SNAKE_CASE ) class __lowerCAmelCase : '''simple docstring''' __UpperCAmelCase : str __UpperCAmelCase : str __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : Optional[str] = None @dataclass(frozen=__SCREAMING_SNAKE_CASE ) class __lowerCAmelCase : '''simple docstring''' __UpperCAmelCase : List[int] __UpperCAmelCase : Optional[List[int]] = None __UpperCAmelCase : Optional[List[int]] = None __UpperCAmelCase : Optional[Union[int, float]] = None __UpperCAmelCase : Optional[int] = None if is_torch_available(): import torch from torch.utils.data import Dataset class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : List[InputFeatures] def __init__( self , _a , _a , _a , _a = None , _a=False , _a = False , ): __a = hans_processors[task]() __a = os.path.join( _a , '''cached_{}_{}_{}_{}'''.format( '''dev''' if evaluate else '''train''' , tokenizer.__class__.__name__ , str(_a ) , _a , ) , ) __a = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) __a , __a = label_list[2], label_list[1] __a = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. __a = cached_features_file + '''.lock''' with FileLock(_a ): if os.path.exists(_a ) and not overwrite_cache: logger.info(f'''Loading features from cached file {cached_features_file}''' ) __a = torch.load(_a ) else: logger.info(f'''Creating features from dataset file at {data_dir}''' ) __a = ( processor.get_dev_examples(_a ) if evaluate else processor.get_train_examples(_a ) ) logger.info('''Training examples: %s''' , len(_a ) ) __a = hans_convert_examples_to_features(_a , _a , _a , _a ) logger.info('''Saving features into cached file %s''' , _a ) torch.save(self.features , _a ) def __len__( self ): return len(self.features ) def __getitem__( self , _a ): return self.features[i] def __UpperCAmelCase ( self ): return self.label_list if is_tf_available(): import tensorflow as tf class __lowerCAmelCase : '''simple docstring''' __UpperCAmelCase : List[InputFeatures] def __init__( self , _a , _a , _a , _a = 128 , _a=False , _a = False , ): __a = hans_processors[task]() __a = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) __a , __a = label_list[2], label_list[1] __a = label_list __a = processor.get_dev_examples(_a ) if evaluate else processor.get_train_examples(_a ) __a = hans_convert_examples_to_features(_a , _a , _a , _a ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc='''convert examples to features''' ): if ex_index % 10_000 == 0: logger.info('''Writing example %d of %d''' % (ex_index, len(_a )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) __a = tf.data.Dataset.from_generator( _a , ( { '''example_id''': tf.intaa, '''input_ids''': tf.intaa, '''attention_mask''': tf.intaa, '''token_type_ids''': tf.intaa, }, tf.intaa, ) , ( { '''example_id''': tf.TensorShape([] ), '''input_ids''': tf.TensorShape([None, None] ), '''attention_mask''': tf.TensorShape([None, None] ), '''token_type_ids''': tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def __UpperCAmelCase ( self ): return self.dataset def __len__( self ): return len(self.features ) def __getitem__( self , _a ): return self.features[i] def __UpperCAmelCase ( self ): return self.label_list class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __UpperCAmelCase ( self , _a ): return self._create_examples(self._read_tsv(os.path.join(_a , '''heuristics_train_set.txt''' ) ) , '''train''' ) def __UpperCAmelCase ( self , _a ): return self._create_examples(self._read_tsv(os.path.join(_a , '''heuristics_evaluation_set.txt''' ) ) , '''dev''' ) def __UpperCAmelCase ( self ): return ["contradiction", "entailment", "neutral"] def __UpperCAmelCase ( self , _a , _a ): __a = [] for i, line in enumerate(_a ): if i == 0: continue __a = '''%s-%s''' % (set_type, line[0]) __a = line[5] __a = line[6] __a = line[7][2:] if line[7].startswith('''ex''' ) else line[7] __a = line[0] examples.append(InputExample(guid=_a , text_a=_a , text_b=_a , label=_a , pairID=_a ) ) return examples def lowercase ( lowerCAmelCase__ : List[InputExample] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : int , lowerCAmelCase__ : PreTrainedTokenizer , ) -> List[str]: __a = {label: i for i, label in enumerate(lowerCAmelCase__ )} __a = [] for ex_index, example in tqdm.tqdm(enumerate(lowerCAmelCase__ ) , desc='''convert examples to features''' ): if ex_index % 10000 == 0: logger.info('''Writing example %d''' % (ex_index) ) __a = tokenizer( example.text_a , example.text_b , add_special_tokens=lowerCAmelCase__ , max_length=lowerCAmelCase__ , padding='''max_length''' , truncation=lowerCAmelCase__ , return_overflowing_tokens=lowerCAmelCase__ , ) __a = label_map[example.label] if example.label in label_map else 0 __a = int(example.pairID ) features.append(InputFeatures(**lowerCAmelCase__ , label=lowerCAmelCase__ , pairID=lowerCAmelCase__ ) ) for i, example in enumerate(examples[:5] ): logger.info('''*** Example ***''' ) logger.info(f'''guid: {example}''' ) logger.info(f'''features: {features[i]}''' ) return features lowercase_ = { "hans": 3, } lowercase_ = { "hans": HansProcessor, }
695
"""simple docstring""" from __future__ import annotations lowercase_ = list[tuple[int, int]] lowercase_ = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] lowercase_ = ([-1, 0], [0, -1], [1, 0], [0, 1]) # up, left, down, right class __lowerCAmelCase : '''simple docstring''' def __init__( self , _a , _a , _a , _a , _a , _a , ): __a = pos_x __a = pos_y __a = (pos_y, pos_x) __a = goal_x __a = goal_y __a = g_cost __a = parent __a = self.calculate_heuristic() def __UpperCAmelCase ( self ): __a = abs(self.pos_x - self.goal_x ) __a = abs(self.pos_y - self.goal_y ) return dx + dy def __lt__( self , _a ): return self.f_cost < other.f_cost class __lowerCAmelCase : '''simple docstring''' def __init__( self , _a , _a ): __a = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , _a ) __a = Node(goal[1] , goal[0] , goal[1] , goal[0] , 99_999 , _a ) __a = [self.start] __a = [] __a = False def __UpperCAmelCase ( self ): while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() __a = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: __a = True return self.retrace_path(_a ) self.closed_nodes.append(_a ) __a = self.get_successors(_a ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(_a ) else: # retrieve the best current path __a = self.open_nodes.pop(self.open_nodes.index(_a ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(_a ) else: self.open_nodes.append(_a ) if not self.reached: return [self.start.pos] return None def __UpperCAmelCase ( self , _a ): __a = [] for action in delta: __a = parent.pos_x + action[1] __a = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(_a ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( _a , _a , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , _a , ) ) return successors def __UpperCAmelCase ( self , _a ): __a = node __a = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) __a = current_node.parent path.reverse() return path if __name__ == "__main__": lowercase_ = (0, 0) lowercase_ = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) print("------") lowercase_ = GreedyBestFirst(init, goal) lowercase_ = greedy_bf.search() if path: for pos_x, pos_y in path: lowercase_ = 2 for elem in grid: print(elem)
695
1
"""simple docstring""" import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor lowercase_ = logging.get_logger(__name__) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , *_a , **_a ): warnings.warn( '''The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use LayoutLMv2ImageProcessor instead.''' , _a , ) super().__init__(*_a , **_a )
695
"""simple docstring""" import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : str ) -> List[Any]: # Initialise PyTorch model __a = RemBertConfig.from_json_file(lowerCAmelCase__ ) print('''Building PyTorch model from configuration: {}'''.format(str(lowerCAmelCase__ ) ) ) __a = RemBertModel(lowerCAmelCase__ ) # Load weights from tf checkpoint load_tf_weights_in_rembert(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Save pytorch-model print('''Save PyTorch model to {}'''.format(lowerCAmelCase__ ) ) torch.save(model.state_dict() , lowerCAmelCase__ ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--rembert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained RemBERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) lowercase_ = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
695
1
"""simple docstring""" import math import time from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , *_a , _a=None , _a=None , **_a ): super().__init__(*_a , **_a ) __a = eval_examples __a = post_process_function def __UpperCAmelCase ( self , _a=None , _a=None , _a=None , _a = "eval" ): __a = self.eval_dataset if eval_dataset is None else eval_dataset __a = self.get_eval_dataloader(_a ) __a = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. __a = self.compute_metrics __a = None __a = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop __a = time.time() try: __a = eval_loop( _a , description='''Evaluation''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_a , metric_key_prefix=_a , ) finally: __a = compute_metrics __a = self.args.eval_batch_size * self.args.world_size if f'''{metric_key_prefix}_jit_compilation_time''' in output.metrics: start_time += output.metrics[f'''{metric_key_prefix}_jit_compilation_time'''] output.metrics.update( speed_metrics( _a , _a , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default __a = self.post_process_function(_a , _a , output.predictions ) __a = self.compute_metrics(_a ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'''{metric_key_prefix}_''' ): __a = metrics.pop(_a ) metrics.update(output.metrics ) else: __a = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(_a ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) __a = self.callback_handler.on_evaluate(self.args , self.state , self.control , _a ) return metrics def __UpperCAmelCase ( self , _a , _a , _a=None , _a = "test" ): __a = self.get_test_dataloader(_a ) # Temporarily disable metric computation, we will do it in the loop here. __a = self.compute_metrics __a = None __a = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop __a = time.time() try: __a = eval_loop( _a , description='''Prediction''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_a , metric_key_prefix=_a , ) finally: __a = compute_metrics __a = self.args.eval_batch_size * self.args.world_size if f'''{metric_key_prefix}_jit_compilation_time''' in output.metrics: start_time += output.metrics[f'''{metric_key_prefix}_jit_compilation_time'''] output.metrics.update( speed_metrics( _a , _a , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output __a = self.post_process_function(_a , _a , output.predictions , '''predict''' ) __a = self.compute_metrics(_a ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'''{metric_key_prefix}_''' ): __a = metrics.pop(_a ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=_a )
695
"""simple docstring""" import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel lowercase_ = "0.12" # assumed parallelism: 8 @require_flax @is_staging_test class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @classmethod def __UpperCAmelCase ( cls ): __a = TOKEN HfFolder.save_token(_a ) @classmethod def __UpperCAmelCase ( cls ): try: delete_repo(token=cls._token , repo_id='''test-model-flax''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-model-flax-org''' ) except HTTPError: pass def __UpperCAmelCase ( self ): __a = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) __a = FlaxBertModel(_a ) model.push_to_hub('''test-model-flax''' , use_auth_token=self._token ) __a = FlaxBertModel.from_pretrained(f'''{USER}/test-model-flax''' ) __a = flatten_dict(unfreeze(model.params ) ) __a = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): __a = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_a , 1E-3 , msg=f'''{key} not identical''' ) # Reset repo delete_repo(token=self._token , repo_id='''test-model-flax''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(_a , repo_id='''test-model-flax''' , push_to_hub=_a , use_auth_token=self._token ) __a = FlaxBertModel.from_pretrained(f'''{USER}/test-model-flax''' ) __a = flatten_dict(unfreeze(model.params ) ) __a = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): __a = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_a , 1E-3 , msg=f'''{key} not identical''' ) def __UpperCAmelCase ( self ): __a = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) __a = FlaxBertModel(_a ) model.push_to_hub('''valid_org/test-model-flax-org''' , use_auth_token=self._token ) __a = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) __a = flatten_dict(unfreeze(model.params ) ) __a = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): __a = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_a , 1E-3 , msg=f'''{key} not identical''' ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-model-flax-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( _a , repo_id='''valid_org/test-model-flax-org''' , push_to_hub=_a , use_auth_token=self._token ) __a = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) __a = flatten_dict(unfreeze(model.params ) ) __a = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): __a = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_a , 1E-3 , msg=f'''{key} not identical''' ) def lowercase ( lowerCAmelCase__ : str , lowerCAmelCase__ : Dict ) -> Optional[int]: __a = True __a = flatten_dict(modela.params ) __a = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1e-4: __a = False return models_are_equal @require_flax class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self ): __a = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) __a = FlaxBertModel(_a ) __a = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(_a , _a ) ) with self.assertRaises(_a ): __a = FlaxBertModel.from_pretrained(_a ) __a = FlaxBertModel.from_pretrained(_a , subfolder=_a ) self.assertTrue(check_models_equal(_a , _a ) ) def __UpperCAmelCase ( self ): __a = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) __a = FlaxBertModel(_a ) __a = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(_a , _a ) , max_shard_size='''10KB''' ) with self.assertRaises(_a ): __a = FlaxBertModel.from_pretrained(_a ) __a = FlaxBertModel.from_pretrained(_a , subfolder=_a ) self.assertTrue(check_models_equal(_a , _a ) ) def __UpperCAmelCase ( self ): __a = '''bert''' __a = '''hf-internal-testing/tiny-random-bert-subfolder''' with self.assertRaises(_a ): __a = FlaxBertModel.from_pretrained(_a ) __a = FlaxBertModel.from_pretrained(_a , subfolder=_a ) self.assertIsNotNone(_a ) def __UpperCAmelCase ( self ): __a = '''bert''' __a = '''hf-internal-testing/tiny-random-bert-sharded-subfolder''' with self.assertRaises(_a ): __a = FlaxBertModel.from_pretrained(_a ) __a = FlaxBertModel.from_pretrained(_a , subfolder=_a ) self.assertIsNotNone(_a )
695
1
"""simple docstring""" def lowercase ( lowerCAmelCase__ : Tuple ) -> Optional[int]: stooge(lowerCAmelCase__ , 0 , len(lowerCAmelCase__ ) - 1 ) return arr def lowercase ( lowerCAmelCase__ : str , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : List[str] ) -> Optional[int]: if i >= h: return # If first element is smaller than the last then swap them if arr[i] > arr[h]: __a , __a = arr[h], arr[i] # If there are more than 2 elements in the array if h - i + 1 > 2: __a = (int)((h - i + 1) / 3 ) # Recursively sort first 2/3 elements stooge(lowerCAmelCase__ , lowerCAmelCase__ , (h - t) ) # Recursively sort last 2/3 elements stooge(lowerCAmelCase__ , i + t , (lowerCAmelCase__) ) # Recursively sort first 2/3 elements stooge(lowerCAmelCase__ , lowerCAmelCase__ , (h - t) ) if __name__ == "__main__": lowercase_ = input("Enter numbers separated by a comma:\n").strip() lowercase_ = [int(item) for item in user_input.split(",")] print(stooge_sort(unsorted))
695
"""simple docstring""" import unittest from diffusers.models.unet_ad_blocks import * # noqa F403 from diffusers.utils import torch_device from .test_unet_blocks_common import UNetBlockTesterMixin class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = DownBlockaD # noqa F405 __UpperCAmelCase : Any = 'down' def __UpperCAmelCase ( self ): __a = [-0.0232, -0.9869, 0.8054, -0.0637, -0.1688, -1.4264, 0.4470, -1.3394, 0.0904] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : str = ResnetDownsampleBlockaD # noqa F405 __UpperCAmelCase : List[str] = 'down' def __UpperCAmelCase ( self ): __a = [0.0710, 0.2410, -0.7320, -1.0757, -1.1343, 0.3540, -0.0133, -0.2576, 0.0948] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Optional[int] = AttnDownBlockaD # noqa F405 __UpperCAmelCase : Optional[Any] = 'down' def __UpperCAmelCase ( self ): __a = [0.0636, 0.8964, -0.6234, -1.0131, 0.0844, 0.4935, 0.3437, 0.0911, -0.2957] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : List[Any] = CrossAttnDownBlockaD # noqa F405 __UpperCAmelCase : Optional[Any] = 'down' def __UpperCAmelCase ( self ): __a , __a = super().prepare_init_args_and_inputs_for_common() __a = 32 return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [0.2238, -0.7396, -0.2255, -0.3829, 0.1925, 1.1665, 0.0603, -0.7295, 0.1983] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : int = SimpleCrossAttnDownBlockaD # noqa F405 __UpperCAmelCase : Any = 'down' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_encoder_hidden_states=_a ) def __UpperCAmelCase ( self ): __a , __a = super().prepare_init_args_and_inputs_for_common() __a = 32 return init_dict, inputs_dict @unittest.skipIf(torch_device == '''mps''' , '''MPS result is not consistent''' ) def __UpperCAmelCase ( self ): __a = [0.7921, -0.0992, -0.1962, -0.7695, -0.4242, 0.7804, 0.4737, 0.2765, 0.3338] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : int = SkipDownBlockaD # noqa F405 __UpperCAmelCase : Tuple = 'down' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_skip_sample=_a ) def __UpperCAmelCase ( self ): __a = [-0.0845, -0.2087, -0.2465, 0.0971, 0.1900, -0.0484, 0.2664, 0.4179, 0.5069] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : List[Any] = AttnSkipDownBlockaD # noqa F405 __UpperCAmelCase : Optional[int] = 'down' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_skip_sample=_a ) def __UpperCAmelCase ( self ): __a = [0.5539, 0.1609, 0.4924, 0.0537, -0.1995, 0.4050, 0.0979, -0.2721, -0.0642] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : int = DownEncoderBlockaD # noqa F405 __UpperCAmelCase : Optional[int] = 'down' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_temb=_a ) def __UpperCAmelCase ( self ): __a = { '''in_channels''': 32, '''out_channels''': 32, } __a = self.dummy_input return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [1.1102, 0.5302, 0.4872, -0.0023, -0.8042, 0.0483, -0.3489, -0.5632, 0.7626] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = AttnDownEncoderBlockaD # noqa F405 __UpperCAmelCase : Any = 'down' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_temb=_a ) def __UpperCAmelCase ( self ): __a = { '''in_channels''': 32, '''out_channels''': 32, } __a = self.dummy_input return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [0.8966, -0.1486, 0.8568, 0.8141, -0.9046, -0.1342, -0.0972, -0.7417, 0.1538] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : str = UNetMidBlockaD # noqa F405 __UpperCAmelCase : Any = 'mid' def __UpperCAmelCase ( self ): __a = { '''in_channels''': 32, '''temb_channels''': 128, } __a = self.dummy_input return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [-0.1062, 1.7248, 0.3494, 1.4569, -0.0910, -1.2421, -0.9984, 0.6736, 1.0028] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : str = UNetMidBlockaDCrossAttn # noqa F405 __UpperCAmelCase : str = 'mid' def __UpperCAmelCase ( self ): __a , __a = super().prepare_init_args_and_inputs_for_common() __a = 32 return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [0.0187, 2.4220, 0.4484, 1.1203, -0.6121, -1.5122, -0.8270, 0.7851, 1.8335] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Any = UNetMidBlockaDSimpleCrossAttn # noqa F405 __UpperCAmelCase : List[Any] = 'mid' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_encoder_hidden_states=_a ) def __UpperCAmelCase ( self ): __a , __a = super().prepare_init_args_and_inputs_for_common() __a = 32 return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [0.7143, 1.9974, 0.5448, 1.3977, 0.1282, -1.1237, -1.4238, 0.5530, 0.8880] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = UpBlockaD # noqa F405 __UpperCAmelCase : Union[str, Any] = 'up' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=_a ) def __UpperCAmelCase ( self ): __a = [-0.2041, -0.4165, -0.3022, 0.0041, -0.6628, -0.7053, 0.1928, -0.0325, 0.0523] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : str = ResnetUpsampleBlockaD # noqa F405 __UpperCAmelCase : int = 'up' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=_a ) def __UpperCAmelCase ( self ): __a = [0.2287, 0.3549, -0.1346, 0.4797, -0.1715, -0.9649, 0.7305, -0.5864, -0.6244] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Dict = CrossAttnUpBlockaD # noqa F405 __UpperCAmelCase : List[Any] = 'up' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=_a ) def __UpperCAmelCase ( self ): __a , __a = super().prepare_init_args_and_inputs_for_common() __a = 32 return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [-0.1403, -0.3515, -0.0420, -0.1425, 0.3167, 0.5094, -0.2181, 0.5931, 0.5582] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = SimpleCrossAttnUpBlockaD # noqa F405 __UpperCAmelCase : Optional[int] = 'up' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=_a , include_encoder_hidden_states=_a ) def __UpperCAmelCase ( self ): __a , __a = super().prepare_init_args_and_inputs_for_common() __a = 32 return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [0.2645, 0.1480, 0.0909, 0.8044, -0.9758, -0.9083, 0.0994, -1.1453, -0.7402] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Any = AttnUpBlockaD # noqa F405 __UpperCAmelCase : List[Any] = 'up' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=_a ) @unittest.skipIf(torch_device == '''mps''' , '''MPS result is not consistent''' ) def __UpperCAmelCase ( self ): __a = [0.0979, 0.1326, 0.0021, 0.0659, 0.2249, 0.0059, 0.1132, 0.5952, 0.1033] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Any = SkipUpBlockaD # noqa F405 __UpperCAmelCase : str = 'up' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=_a ) def __UpperCAmelCase ( self ): __a = [-0.0893, -0.1234, -0.1506, -0.0332, 0.0123, -0.0211, 0.0566, 0.0143, 0.0362] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = AttnSkipUpBlockaD # noqa F405 __UpperCAmelCase : int = 'up' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=_a ) def __UpperCAmelCase ( self ): __a = [0.0361, 0.0617, 0.2787, -0.0350, 0.0342, 0.3421, -0.0843, 0.0913, 0.3015] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = UpDecoderBlockaD # noqa F405 __UpperCAmelCase : List[str] = 'up' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_temb=_a ) def __UpperCAmelCase ( self ): __a = {'''in_channels''': 32, '''out_channels''': 32} __a = self.dummy_input return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [0.4404, 0.1998, -0.9886, -0.3320, -0.3128, -0.7034, -0.6955, -0.2338, -0.3137] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Optional[int] = AttnUpDecoderBlockaD # noqa F405 __UpperCAmelCase : Any = 'up' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_temb=_a ) def __UpperCAmelCase ( self ): __a = {'''in_channels''': 32, '''out_channels''': 32} __a = self.dummy_input return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [0.6738, 0.4491, 0.1055, 1.0710, 0.7316, 0.3339, 0.3352, 0.1023, 0.3568] super().test_output(_a )
695
1
"""simple docstring""" import math def lowercase ( lowerCAmelCase__ : int ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowerCAmelCase__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowercase ( lowerCAmelCase__ : int = 10001 ) -> int: try: __a = int(lowerCAmelCase__ ) except (TypeError, ValueError): raise TypeError('''Parameter nth must be int or castable to int.''' ) from None if nth <= 0: raise ValueError('''Parameter nth must be greater than or equal to one.''' ) __a = [] __a = 2 while len(lowerCAmelCase__ ) < nth: if is_prime(lowerCAmelCase__ ): primes.append(lowerCAmelCase__ ) num += 1 else: num += 1 return primes[len(lowerCAmelCase__ ) - 1] if __name__ == "__main__": print(F'''{solution() = }''')
695
"""simple docstring""" import copy from typing import Dict, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING from ..detr import DetrConfig from ..swin import SwinConfig lowercase_ = { "facebook/maskformer-swin-base-ade": ( "https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json" ) # See all MaskFormer models at https://huggingface.co/models?filter=maskformer } lowercase_ = logging.get_logger(__name__) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : str = 'maskformer' __UpperCAmelCase : Optional[int] = {'hidden_size': 'mask_feature_size'} __UpperCAmelCase : Any = ['resnet', 'swin'] __UpperCAmelCase : Dict = ['detr'] def __init__( self , _a = 256 , _a = 256 , _a = 0.1 , _a = False , _a = None , _a = None , _a = 0.02 , _a = 1.0 , _a = 1.0 , _a = 1.0 , _a = 20.0 , _a = None , **_a , ): if backbone_config is None: # fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k __a = SwinConfig( image_size=384 , in_channels=3 , patch_size=4 , embed_dim=128 , depths=[2, 2, 18, 2] , num_heads=[4, 8, 16, 32] , window_size=12 , drop_path_rate=0.3 , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] , ) if isinstance(_a , _a ): __a = backbone_config.pop('''model_type''' ) __a = CONFIG_MAPPING[backbone_model_type] __a = config_class.from_dict(_a ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f'''Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. ''' f'''Supported model types: {','.join(self.backbones_supported )}''' ) if decoder_config is None: # fall back to https://huggingface.co/facebook/detr-resnet-50 __a = DetrConfig() else: # verify that the decoder is supported __a = ( decoder_config.pop('''model_type''' ) if isinstance(_a , _a ) else decoder_config.model_type ) if decoder_type not in self.decoders_supported: raise ValueError( f'''Transformer Decoder {decoder_type} not supported, please use one of''' f''' {','.join(self.decoders_supported )}''' ) if isinstance(_a , _a ): __a = CONFIG_MAPPING[decoder_type] __a = config_class.from_dict(_a ) __a = backbone_config __a = decoder_config # main feature dimension for the model __a = fpn_feature_size __a = mask_feature_size # initializer __a = init_std __a = init_xavier_std # Hungarian matcher && loss __a = cross_entropy_weight __a = dice_weight __a = mask_weight __a = use_auxiliary_loss __a = no_object_weight __a = output_auxiliary_logits __a = self.decoder_config.encoder_attention_heads __a = self.decoder_config.num_hidden_layers super().__init__(**_a ) @classmethod def __UpperCAmelCase ( cls , _a , _a , **_a ): return cls( backbone_config=_a , decoder_config=_a , **_a , ) def __UpperCAmelCase ( self ): __a = copy.deepcopy(self.__dict__ ) __a = self.backbone_config.to_dict() __a = self.decoder_config.to_dict() __a = self.__class__.model_type return output
695
1
"""simple docstring""" import argparse import json import os import fairseq import torch from torch import nn from transformers import ( SpeechaTextaConfig, SpeechaTextaForCausalLM, SpeechaTextaTokenizer, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() lowercase_ = logging.get_logger(__name__) lowercase_ = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } lowercase_ = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def lowercase ( lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Any , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : int ) -> Tuple: for attribute in key.split('''.''' ): __a = getattr(lowerCAmelCase__ , lowerCAmelCase__ ) if weight_type is not None: __a = getattr(lowerCAmelCase__ , lowerCAmelCase__ ).shape else: __a = hf_pointer.shape assert hf_shape == value.shape, ( f'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": __a = value elif weight_type == "weight_g": __a = value elif weight_type == "weight_v": __a = value elif weight_type == "bias": __a = value else: __a = value logger.info(f'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def lowercase ( lowerCAmelCase__ : Dict , lowerCAmelCase__ : List[Any] ) -> Optional[Any]: __a = [] __a = fairseq_model.state_dict() __a = hf_model.feature_extractor # if encoder has different dim to decoder -> use proj_weight __a = None for name, value in fairseq_dict.items(): __a = False if "conv_layers" in name: load_conv_layer( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , hf_model.config.feat_extract_norm == '''group''' , ) __a = True elif name.split('''.''' )[0] == "proj": __a = fairseq_model.proj __a = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: __a = True if "*" in mapped_key: __a = name.split(lowerCAmelCase__ )[0].split('''.''' )[-2] __a = mapped_key.replace('''*''' , lowerCAmelCase__ ) if "weight_g" in name: __a = '''weight_g''' elif "weight_v" in name: __a = '''weight_v''' elif "bias" in name: __a = '''bias''' elif "weight" in name: __a = '''weight''' else: __a = None set_recursively(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) continue if not is_used: unused_weights.append(lowerCAmelCase__ ) logger.warning(f'''Unused weights: {unused_weights}''' ) return proj_weight def lowercase ( lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : List[str] ) -> int: __a = full_name.split('''conv_layers.''' )[-1] __a = name.split('''.''' ) __a = int(items[0] ) __a = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) __a = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) __a = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) __a = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) __a = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ : List[str] ) -> str: __a , __a = emb.weight.shape __a = nn.Linear(lowerCAmelCase__ , lowerCAmelCase__ , bias=lowerCAmelCase__ ) __a = emb.weight.data return lin_layer def lowercase ( lowerCAmelCase__ : Union[str, Any] ) -> Optional[int]: with open(lowerCAmelCase__ , '''r''' , encoding='''utf-8''' ) as f: __a = f.readlines() __a = [line.split(''' ''' )[0] for line in lines] __a = len(lowerCAmelCase__ ) __a = { '''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3, } vocab_dict.update(dict(zip(lowerCAmelCase__ , range(4 , num_words + 4 ) ) ) ) return vocab_dict @torch.no_grad() def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : int , lowerCAmelCase__ : Any , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , ) -> str: __a = WavaVecaConfig.from_pretrained(lowerCAmelCase__ ) __a = SpeechaTextaConfig.from_pretrained( lowerCAmelCase__ , vocab_size=lowerCAmelCase__ , decoder_layers=lowerCAmelCase__ , do_stable_layer_norm=lowerCAmelCase__ ) __a = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , ) __a , __a , __a = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) __a = model[0].eval() # set weights for wav2vec2 encoder __a = WavaVecaModel(lowerCAmelCase__ ) __a = recursively_load_weights_wavaveca(model.encoder , lowerCAmelCase__ ) __a = SpeechaTextaForCausalLM(lowerCAmelCase__ ) __a , __a = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=lowerCAmelCase__ ) # set output linear layer unexpected_keys.remove('''embed_out''' ) __a = nn.Parameter(model.decoder.embed_out.detach() ) # layer norm is init to identity matrix so leaving it is fine logger.warning(f'''The following keys are missing when loading the decoder weights: {missing_keys}''' ) logger.warning(f'''The following keys are unexpected when loading the decoder weights: {unexpected_keys}''' ) __a = SpeechEncoderDecoderModel(encoder=lowerCAmelCase__ , decoder=lowerCAmelCase__ ) __a = False # add projection layer __a = nn.Parameter(projection_layer.weight ) __a = nn.Parameter(projection_layer.bias ) __a = create_vocab_dict(lowerCAmelCase__ ) with open(os.path.join(lowerCAmelCase__ , '''vocab.json''' ) , '''w''' ) as fp: json.dump(lowerCAmelCase__ , lowerCAmelCase__ ) __a = SpeechaTextaTokenizer(os.path.join(lowerCAmelCase__ , '''vocab.json''' ) ) tokenizer.save_pretrained(lowerCAmelCase__ ) __a = hf_wavavec.config.to_dict() __a = tokenizer.pad_token_id __a = tokenizer.bos_token_id __a = tokenizer.eos_token_id __a = '''speech_to_text_2''' __a = '''wav2vec2''' __a = SpeechEncoderDecoderConfig.from_dict(lowerCAmelCase__ ) hf_wavavec.save_pretrained(lowerCAmelCase__ ) feature_extractor.save_pretrained(lowerCAmelCase__ ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument( "--encoder_config_path", default="facebook/wav2vec2-large-lv60", type=str, help="Path to hf encoder wav2vec2 checkpoint config", ) parser.add_argument( "--decoder_config_path", default="facebook/s2t-small-mustc-en-fr-st", type=str, help="Path to hf decoder s2t checkpoint config", ) parser.add_argument("--vocab_size", default=1_0_2_2_4, type=int, help="Vocab size of decoder") parser.add_argument("--num_decoder_layers", default=7, type=int, help="Number of decoder layers") lowercase_ = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, vocab_size=args.vocab_size, num_decoder_layers=args.num_decoder_layers, )
695
"""simple docstring""" from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup lowercase_ = "https://www.indeed.co.in/jobs?q=mobile+app+development&l=" def lowercase ( lowerCAmelCase__ : str = "mumbai" ) -> Generator[tuple[str, str], None, None]: __a = BeautifulSoup(requests.get(url + location ).content , '''html.parser''' ) # This attribute finds out all the specifics listed in a job for job in soup.find_all('''div''' , attrs={'''data-tn-component''': '''organicJob'''} ): __a = job.find('''a''' , attrs={'''data-tn-element''': '''jobTitle'''} ).text.strip() __a = job.find('''span''' , {'''class''': '''company'''} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs("Bangalore"), 1): print(F'''Job {i:>2} is {job[0]} at {job[1]}''')
695
1
"""simple docstring""" import importlib.metadata import operator import re import sys from typing import Optional from packaging import version lowercase_ = { "<": operator.lt, "<=": operator.le, "==": operator.eq, "!=": operator.ne, ">=": operator.ge, ">": operator.gt, } def lowercase ( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : int , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[Any] ) -> Dict: if got_ver is None or want_ver is None: raise ValueError( f'''Unable to compare versions for {requirement}: need={want_ver} found={got_ver}. This is unusual. Consider''' f''' reinstalling {pkg}.''' ) if not ops[op](version.parse(lowerCAmelCase__ ) , version.parse(lowerCAmelCase__ ) ): raise ImportError( f'''{requirement} is required for a normal functioning of this module, but found {pkg}=={got_ver}.{hint}''' ) def lowercase ( lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None ) -> None: __a = f'''\n{hint}''' if hint is not None else '''''' # non-versioned check if re.match(r'''^[\w_\-\d]+$''' , lowerCAmelCase__ ): __a , __a , __a = requirement, None, None else: __a = re.findall(r'''^([^!=<>\s]+)([\s!=<>]{1,2}.+)''' , lowerCAmelCase__ ) if not match: raise ValueError( '''requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23, but''' f''' got {requirement}''' ) __a , __a = match[0] __a = want_full.split(''',''' ) # there could be multiple requirements __a = {} for w in want_range: __a = re.findall(r'''^([\s!=<>]{1,2})(.+)''' , lowerCAmelCase__ ) if not match: raise ValueError( '''requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23,''' f''' but got {requirement}''' ) __a , __a = match[0] __a = want_ver if op not in ops: raise ValueError(f'''{requirement}: need one of {list(ops.keys() )}, but got {op}''' ) # special case if pkg == "python": __a = '''.'''.join([str(lowerCAmelCase__ ) for x in sys.version_info[:3]] ) for op, want_ver in wanted.items(): _compare_versions(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) return # check if any version is installed try: __a = importlib.metadata.version(lowerCAmelCase__ ) except importlib.metadata.PackageNotFoundError: raise importlib.metadata.PackageNotFoundError( f'''The \'{requirement}\' distribution was not found and is required by this application. {hint}''' ) # check that the right version is installed if version number or a range was provided if want_ver is not None: for op, want_ver in wanted.items(): _compare_versions(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ : Tuple ) -> Optional[Any]: __a = '''Try: pip install transformers -U or pip install -e \'.[dev]\' if you\'re working with git main''' return require_version(lowerCAmelCase__ , lowerCAmelCase__ )
695
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "bigcode/gpt_bigcode-santacoder": "https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json", } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : List[str] = 'gpt_bigcode' __UpperCAmelCase : Tuple = ['past_key_values'] __UpperCAmelCase : Dict = { 'hidden_size': 'n_embd', 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , _a=50_257 , _a=1_024 , _a=768 , _a=12 , _a=12 , _a=None , _a="gelu_pytorch_tanh" , _a=0.1 , _a=0.1 , _a=0.1 , _a=1E-5 , _a=0.02 , _a=True , _a=True , _a=50_256 , _a=50_256 , _a=True , _a=True , _a=True , **_a , ): __a = vocab_size __a = n_positions __a = n_embd __a = n_layer __a = n_head __a = n_inner __a = activation_function __a = resid_pdrop __a = embd_pdrop __a = attn_pdrop __a = layer_norm_epsilon __a = initializer_range __a = scale_attn_weights __a = use_cache __a = attention_softmax_in_fpaa __a = scale_attention_softmax_in_fpaa __a = multi_query __a = bos_token_id __a = eos_token_id super().__init__(bos_token_id=_a , eos_token_id=_a , **_a )
695
1
"""simple docstring""" import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss lowercase_ = pytest.mark.integration @require_faiss class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __UpperCAmelCase ( self ): __a = Dataset.from_dict({'''filename''': ['''my_name-train''' + '''_''' + str(_a ) for x in np.arange(30 ).tolist()]} ) return dset def __UpperCAmelCase ( self ): import faiss __a = self._create_dummy_dataset() __a = dset.map( lambda _a , _a : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=_a , keep_in_memory=_a ) __a = dset.add_faiss_index('''vecs''' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT ) __a , __a = dset.get_nearest_examples('''vecs''' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['''filename'''][0] , '''my_name-train_29''' ) dset.drop_index('''vecs''' ) def __UpperCAmelCase ( self ): import faiss __a = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='''vecs''' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT , ) __a , __a = dset.get_nearest_examples('''vecs''' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['''filename'''][0] , '''my_name-train_29''' ) def __UpperCAmelCase ( self ): import faiss __a = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='''vecs''' , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=_a ) as tmp_file: dset.save_faiss_index('''vecs''' , tmp_file.name ) dset.load_faiss_index('''vecs2''' , tmp_file.name ) os.unlink(tmp_file.name ) __a , __a = dset.get_nearest_examples('''vecs2''' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['''filename'''][0] , '''my_name-train_29''' ) def __UpperCAmelCase ( self ): __a = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='''vecs''' ) dset.drop_index('''vecs''' ) self.assertRaises(_a , partial(dset.get_nearest_examples , '''vecs2''' , np.ones(5 , dtype=np.floataa ) ) ) def __UpperCAmelCase ( self ): from elasticsearch import Elasticsearch __a = self._create_dummy_dataset() with patch('''elasticsearch.Elasticsearch.search''' ) as mocked_search, patch( '''elasticsearch.client.IndicesClient.create''' ) as mocked_index_create, patch('''elasticsearch.helpers.streaming_bulk''' ) as mocked_bulk: __a = {'''acknowledged''': True} mocked_bulk.return_value([(True, None)] * 30 ) __a = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 29}]}} __a = Elasticsearch() dset.add_elasticsearch_index('''filename''' , es_client=_a ) __a , __a = dset.get_nearest_examples('''filename''' , '''my_name-train_29''' ) self.assertEqual(examples['''filename'''][0] , '''my_name-train_29''' ) @require_faiss class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __UpperCAmelCase ( self ): import faiss __a = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal , 5 ) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal , 10 ) # single query __a = np.zeros(5 , dtype=np.floataa ) __a = 1 __a , __a = index.search(_a ) self.assertRaises(_a , index.search , query.reshape(-1 , 1 ) ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) # batched queries __a = np.eye(5 , dtype=np.floataa )[::-1] __a , __a = index.search_batch(_a ) self.assertRaises(_a , index.search_batch , queries[0] ) __a = [scores[0] for scores in total_scores] __a = [indices[0] for indices in total_indices] self.assertGreater(np.min(_a ) , 0 ) self.assertListEqual([4, 3, 2, 1, 0] , _a ) def __UpperCAmelCase ( self ): import faiss __a = FaissIndex(string_factory='''Flat''' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) __a = FaissIndex(string_factory='''LSH''' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexLSH ) with self.assertRaises(_a ): __a = FaissIndex(string_factory='''Flat''' , custom_index=faiss.IndexFlat(5 ) ) def __UpperCAmelCase ( self ): import faiss __a = faiss.IndexFlat(5 ) __a = FaissIndex(custom_index=_a ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) def __UpperCAmelCase ( self ): import faiss __a = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=_a ) as tmp_file: index.save(tmp_file.name ) __a = FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) __a = np.zeros(5 , dtype=np.floataa ) __a = 1 __a , __a = index.search(_a ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) @require_faiss def lowercase ( lowerCAmelCase__ : Dict ) -> str: import faiss __a = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) __a = '''index.faiss''' __a = f'''mock://{index_name}''' index.save(lowerCAmelCase__ , storage_options=mockfs.storage_options ) __a = FaissIndex.load(lowerCAmelCase__ , storage_options=mockfs.storage_options ) __a = np.zeros(5 , dtype=np.floataa ) __a = 1 __a , __a = index.search(lowerCAmelCase__ ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __UpperCAmelCase ( self ): from elasticsearch import Elasticsearch with patch('''elasticsearch.Elasticsearch.search''' ) as mocked_search, patch( '''elasticsearch.client.IndicesClient.create''' ) as mocked_index_create, patch('''elasticsearch.helpers.streaming_bulk''' ) as mocked_bulk: __a = Elasticsearch() __a = {'''acknowledged''': True} __a = ElasticSearchIndex(es_client=_a ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(['''foo''', '''bar''', '''foobar'''] ) # single query __a = '''foo''' __a = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 0}]}} __a , __a = index.search(_a ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # single query with timeout __a = '''foo''' __a = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 0}]}} __a , __a = index.search(_a , request_timeout=30 ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # batched queries __a = ['''foo''', '''bar''', '''foobar'''] __a = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 1}]}} __a , __a = index.search_batch(_a ) __a = [scores[0] for scores in total_scores] __a = [indices[0] for indices in total_indices] self.assertGreater(np.min(_a ) , 0 ) self.assertListEqual([1, 1, 1] , _a ) # batched queries with timeout __a = ['''foo''', '''bar''', '''foobar'''] __a = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 1}]}} __a , __a = index.search_batch(_a , request_timeout=30 ) __a = [scores[0] for scores in total_scores] __a = [indices[0] for indices in total_indices] self.assertGreater(np.min(_a ) , 0 ) self.assertListEqual([1, 1, 1] , _a )
695
"""simple docstring""" import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler lowercase_ = 1_6 lowercase_ = 3_2 def lowercase ( lowerCAmelCase__ : Accelerator , lowerCAmelCase__ : int = 16 , lowerCAmelCase__ : str = "bert-base-cased" ) -> Optional[int]: __a = AutoTokenizer.from_pretrained(lowerCAmelCase__ ) __a = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(lowerCAmelCase__ : Optional[Any] ): # max_length=None => use the model max length (it's actually the default) __a = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset __a = datasets.map( lowerCAmelCase__ , batched=lowerCAmelCase__ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , load_from_cache_file=lowerCAmelCase__ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __a = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(lowerCAmelCase__ : int ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(lowerCAmelCase__ , padding='''max_length''' , max_length=128 , return_tensors='''pt''' ) return tokenizer.pad(lowerCAmelCase__ , padding='''longest''' , return_tensors='''pt''' ) # Instantiate dataloaders. __a = DataLoader( tokenized_datasets['''train'''] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ ) __a = DataLoader( tokenized_datasets['''validation'''] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ ) return train_dataloader, eval_dataloader def lowercase ( lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Union[str, Any] ) -> Optional[int]: # Initialize accelerator __a = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __a = config['''lr'''] __a = int(config['''num_epochs'''] ) __a = int(config['''seed'''] ) __a = int(config['''batch_size'''] ) __a = args.model_name_or_path set_seed(lowerCAmelCase__ ) __a , __a = get_dataloaders(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __a = AutoModelForSequenceClassification.from_pretrained(lowerCAmelCase__ , return_dict=lowerCAmelCase__ ) # Instantiate optimizer __a = ( AdamW if accelerator.state.deepspeed_plugin is None or '''optimizer''' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) __a = optimizer_cls(params=model.parameters() , lr=lowerCAmelCase__ ) if accelerator.state.deepspeed_plugin is not None: __a = accelerator.state.deepspeed_plugin.deepspeed_config[ '''gradient_accumulation_steps''' ] else: __a = 1 __a = (len(lowerCAmelCase__ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): __a = get_linear_schedule_with_warmup( optimizer=lowerCAmelCase__ , num_warmup_steps=0 , num_training_steps=lowerCAmelCase__ , ) else: __a = DummyScheduler(lowerCAmelCase__ , total_num_steps=lowerCAmelCase__ , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __a , __a , __a , __a , __a = accelerator.prepare( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # We need to keep track of how many total steps we have iterated over __a = 0 # We also need to keep track of the stating epoch so files are named properly __a = 0 # Now we train the model __a = evaluate.load('''glue''' , '''mrpc''' ) __a = 0 __a = {} for epoch in range(lowerCAmelCase__ , lowerCAmelCase__ ): model.train() for step, batch in enumerate(lowerCAmelCase__ ): __a = model(**lowerCAmelCase__ ) __a = outputs.loss __a = loss / gradient_accumulation_steps accelerator.backward(lowerCAmelCase__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 model.eval() __a = 0 for step, batch in enumerate(lowerCAmelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __a = model(**lowerCAmelCase__ ) __a = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times __a , __a = accelerator.gather( (predictions, batch['''labels''']) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(lowerCAmelCase__ ) - 1: __a = predictions[: len(eval_dataloader.dataset ) - samples_seen] __a = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=lowerCAmelCase__ , references=lowerCAmelCase__ , ) __a = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}:''' , lowerCAmelCase__ ) __a = eval_metric['''accuracy'''] if best_performance < eval_metric["accuracy"]: __a = eval_metric['''accuracy'''] if args.performance_lower_bound is not None: assert ( args.performance_lower_bound <= best_performance ), f'''Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}''' accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , '''all_results.json''' ) , '''w''' ) as f: json.dump(lowerCAmelCase__ , lowerCAmelCase__ ) def lowercase ( ) -> List[str]: __a = argparse.ArgumentParser(description='''Simple example of training script tracking peak GPU memory usage.''' ) parser.add_argument( '''--model_name_or_path''' , type=lowerCAmelCase__ , default='''bert-base-cased''' , help='''Path to pretrained model or model identifier from huggingface.co/models.''' , required=lowerCAmelCase__ , ) parser.add_argument( '''--output_dir''' , type=lowerCAmelCase__ , default='''.''' , help='''Optional save directory where all checkpoint folders will be stored. Default is the current working directory.''' , ) parser.add_argument( '''--performance_lower_bound''' , type=lowerCAmelCase__ , default=lowerCAmelCase__ , help='''Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value.''' , ) parser.add_argument( '''--num_epochs''' , type=lowerCAmelCase__ , default=3 , help='''Number of train epochs.''' , ) __a = parser.parse_args() __a = {'''lr''': 2e-5, '''num_epochs''': args.num_epochs, '''seed''': 42, '''batch_size''': 16} training_function(lowerCAmelCase__ , lowerCAmelCase__ ) if __name__ == "__main__": main()
695
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "roberta-base": "https://huggingface.co/roberta-base/resolve/main/config.json", "roberta-large": "https://huggingface.co/roberta-large/resolve/main/config.json", "roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/config.json", "distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/config.json", "roberta-base-openai-detector": "https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json", "roberta-large-openai-detector": "https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json", } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : List[Any] = 'roberta' def __init__( self , _a=50_265 , _a=768 , _a=12 , _a=12 , _a=3_072 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=2 , _a=0.02 , _a=1E-12 , _a=1 , _a=0 , _a=2 , _a="absolute" , _a=True , _a=None , **_a , ): super().__init__(pad_token_id=_a , bos_token_id=_a , eos_token_id=_a , **_a ) __a = vocab_size __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = hidden_act __a = intermediate_size __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = type_vocab_size __a = initializer_range __a = layer_norm_eps __a = position_embedding_type __a = use_cache __a = classifier_dropout class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def __UpperCAmelCase ( self ): if self.task == "multiple-choice": __a = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __a = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
695
"""simple docstring""" from typing import Any def lowercase ( lowerCAmelCase__ : list , lowerCAmelCase__ : list , lowerCAmelCase__ : dict , lowerCAmelCase__ : dict , lowerCAmelCase__ : dict , ) -> list: _validation( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ) # Creates data structures and fill initial step __a = {} __a = {} for state in states_space: __a = observations_space[0] __a = ( initial_probabilities[state] * emission_probabilities[state][observation] ) __a = None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(lowerCAmelCase__ ) ): __a = observations_space[o] __a = observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function __a = '''''' __a = -1 for k_state in states_space: __a = ( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: __a = probability __a = k_state # Update probabilities and pointers dicts __a = ( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) __a = arg_max # The final observation __a = observations_space[len(lowerCAmelCase__ ) - 1] # argmax for given final observation __a = '''''' __a = -1 for k_state in states_space: __a = probabilities[(k_state, final_observation)] if probability > max_probability: __a = probability __a = k_state __a = arg_max # Process pointers backwards __a = last_state __a = [] for o in range(len(lowerCAmelCase__ ) - 1 , -1 , -1 ): result.append(lowerCAmelCase__ ) __a = pointers[previous, observations_space[o]] result.reverse() return result def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , ) -> None: _validate_not_empty( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ) _validate_lists(lowerCAmelCase__ , lowerCAmelCase__ ) _validate_dicts( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , ) -> None: if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError('''There\'s an empty parameter''' ) def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Any ) -> None: _validate_list(lowerCAmelCase__ , '''observations_space''' ) _validate_list(lowerCAmelCase__ , '''states_space''' ) def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : str ) -> None: if not isinstance(_object , lowerCAmelCase__ ): __a = f'''{var_name} must be a list''' raise ValueError(lowerCAmelCase__ ) else: for x in _object: if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): __a = f'''{var_name} must be a list of strings''' raise ValueError(lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , ) -> None: _validate_dict(lowerCAmelCase__ , '''initial_probabilities''' , lowerCAmelCase__ ) _validate_nested_dict(lowerCAmelCase__ , '''transition_probabilities''' ) _validate_nested_dict(lowerCAmelCase__ , '''emission_probabilities''' ) def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : str ) -> None: _validate_dict(_object , lowerCAmelCase__ , lowerCAmelCase__ ) for x in _object.values(): _validate_dict(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : str , lowerCAmelCase__ : type , lowerCAmelCase__ : bool = False ) -> None: if not isinstance(_object , lowerCAmelCase__ ): __a = f'''{var_name} must be a dict''' raise ValueError(lowerCAmelCase__ ) if not all(isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) for x in _object ): __a = f'''{var_name} all keys must be strings''' raise ValueError(lowerCAmelCase__ ) if not all(isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) for x in _object.values() ): __a = '''nested dictionary ''' if nested else '''''' __a = f'''{var_name} {nested_text}all values must be {value_type.__name__}''' raise ValueError(lowerCAmelCase__ ) if __name__ == "__main__": from doctest import testmod testmod()
695
1
"""simple docstring""" from .imports import is_rich_available if is_rich_available(): from rich.traceback import install install(show_locals=False) else: raise ModuleNotFoundError("To use the rich extension, install rich with `pip install rich`")
695
"""simple docstring""" import math def lowercase ( lowerCAmelCase__ : int ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowerCAmelCase__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowercase ( lowerCAmelCase__ : float = 0.1 ) -> int: __a = 3 __a = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(lowerCAmelCase__ ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
695
1
"""simple docstring""" import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu lowercase_ = get_tests_dir() + "/test_data/fsmt/fsmt_val_data.json" with io.open(filename, "r", encoding="utf-8") as f: lowercase_ = json.load(f) @require_torch class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self , _a ): return FSMTTokenizer.from_pretrained(_a ) def __UpperCAmelCase ( self , _a ): __a = FSMTForConditionalGeneration.from_pretrained(_a ).to(_a ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ['''en-ru''', 26.0], ['''ru-en''', 22.0], ['''en-de''', 22.0], ['''de-en''', 29.0], ] ) @slow def __UpperCAmelCase ( self , _a , _a ): # note: this test is not testing the best performance since it only evals a small batch # but it should be enough to detect a regression in the output quality __a = f'''facebook/wmt19-{pair}''' __a = self.get_tokenizer(_a ) __a = self.get_model(_a ) __a = bleu_data[pair]['''src'''] __a = bleu_data[pair]['''tgt'''] __a = tokenizer(_a , return_tensors='''pt''' , truncation=_a , padding='''longest''' ).to(_a ) __a = model.generate( input_ids=batch.input_ids , num_beams=8 , ) __a = tokenizer.batch_decode( _a , skip_special_tokens=_a , clean_up_tokenization_spaces=_a ) __a = calculate_bleu(_a , _a ) print(_a ) self.assertGreaterEqual(scores['''bleu'''] , _a )
695
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase_ = { "configuration_mctct": ["MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MCTCTConfig"], "feature_extraction_mctct": ["MCTCTFeatureExtractor"], "processing_mctct": ["MCTCTProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST", "MCTCTForCTC", "MCTCTModel", "MCTCTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
695
1
"""simple docstring""" import math from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : torch.FloatTensor __UpperCAmelCase : Optional[torch.FloatTensor] = None def lowercase ( lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[Any]=0.9_99 , lowerCAmelCase__ : List[Any]="cosine" , ) -> List[str]: if alpha_transform_type == "cosine": def alpha_bar_fn(lowerCAmelCase__ : Union[str, Any] ): return math.cos((t + 0.0_08) / 1.0_08 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(lowerCAmelCase__ : Any ): return math.exp(t * -12.0 ) else: raise ValueError(f'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) __a = [] for i in range(lowerCAmelCase__ ): __a = i / num_diffusion_timesteps __a = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(lowerCAmelCase__ ) / alpha_bar_fn(lowerCAmelCase__ ) , lowerCAmelCase__ ) ) return torch.tensor(lowerCAmelCase__ , dtype=torch.floataa ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): '''simple docstring''' @register_to_config def __init__( self , _a = 1_000 , _a = "fixed_small_log" , _a = True , _a = 1.0 , _a = "epsilon" , _a = "squaredcos_cap_v2" , ): if beta_schedule != "squaredcos_cap_v2": raise ValueError('''UnCLIPScheduler only supports `beta_schedule`: \'squaredcos_cap_v2\'''' ) __a = betas_for_alpha_bar(_a ) __a = 1.0 - self.betas __a = torch.cumprod(self.alphas , dim=0 ) __a = torch.tensor(1.0 ) # standard deviation of the initial noise distribution __a = 1.0 # setable values __a = None __a = torch.from_numpy(np.arange(0 , _a )[::-1].copy() ) __a = variance_type def __UpperCAmelCase ( self , _a , _a = None ): return sample def __UpperCAmelCase ( self , _a , _a = None ): __a = num_inference_steps __a = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1) __a = (np.arange(0 , _a ) * step_ratio).round()[::-1].copy().astype(np.intaa ) __a = torch.from_numpy(_a ).to(_a ) def __UpperCAmelCase ( self , _a , _a=None , _a=None , _a=None ): if prev_timestep is None: __a = t - 1 __a = self.alphas_cumprod[t] __a = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one __a = 1 - alpha_prod_t __a = 1 - alpha_prod_t_prev if prev_timestep == t - 1: __a = self.betas[t] else: __a = 1 - alpha_prod_t / alpha_prod_t_prev # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample __a = beta_prod_t_prev / beta_prod_t * beta if variance_type is None: __a = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small_log": __a = torch.log(torch.clamp(_a , min=1E-20 ) ) __a = torch.exp(0.5 * variance ) elif variance_type == "learned_range": # NOTE difference with DDPM scheduler __a = variance.log() __a = beta.log() __a = (predicted_variance + 1) / 2 __a = frac * max_log + (1 - frac) * min_log return variance def __UpperCAmelCase ( self , _a , _a , _a , _a = None , _a=None , _a = True , ): __a = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range": __a , __a = torch.split(_a , sample.shape[1] , dim=1 ) else: __a = None # 1. compute alphas, betas if prev_timestep is None: __a = t - 1 __a = self.alphas_cumprod[t] __a = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one __a = 1 - alpha_prod_t __a = 1 - alpha_prod_t_prev if prev_timestep == t - 1: __a = self.betas[t] __a = self.alphas[t] else: __a = 1 - alpha_prod_t / alpha_prod_t_prev __a = 1 - beta # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": __a = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": __a = model_output else: raise ValueError( f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`''' ''' for the UnCLIPScheduler.''' ) # 3. Clip "predicted x_0" if self.config.clip_sample: __a = torch.clamp( _a , -self.config.clip_sample_range , self.config.clip_sample_range ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __a = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t __a = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __a = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise __a = 0 if t > 0: __a = randn_tensor( model_output.shape , dtype=model_output.dtype , generator=_a , device=model_output.device ) __a = self._get_variance( _a , predicted_variance=_a , prev_timestep=_a , ) if self.variance_type == "fixed_small_log": __a = variance elif self.variance_type == "learned_range": __a = (0.5 * variance).exp() else: raise ValueError( f'''variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`''' ''' for the UnCLIPScheduler.''' ) __a = variance * variance_noise __a = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return UnCLIPSchedulerOutput(prev_sample=_a , pred_original_sample=_a ) def __UpperCAmelCase ( self , _a , _a , _a , ): # Make sure alphas_cumprod and timestep have same device and dtype as original_samples __a = self.alphas_cumprod.to(device=original_samples.device , dtype=original_samples.dtype ) __a = timesteps.to(original_samples.device ) __a = alphas_cumprod[timesteps] ** 0.5 __a = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ): __a = sqrt_alpha_prod.unsqueeze(-1 ) __a = (1 - alphas_cumprod[timesteps]) ** 0.5 __a = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ): __a = sqrt_one_minus_alpha_prod.unsqueeze(-1 ) __a = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples
695
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json" ), "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json" ), "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json" ), } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : List[Any] = 'dpr' def __init__( self , _a=30_522 , _a=768 , _a=12 , _a=12 , _a=3_072 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=2 , _a=0.02 , _a=1E-12 , _a=0 , _a="absolute" , _a = 0 , **_a , ): super().__init__(pad_token_id=_a , **_a ) __a = vocab_size __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = hidden_act __a = intermediate_size __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = type_vocab_size __a = initializer_range __a = layer_norm_eps __a = projection_dim __a = position_embedding_type
695
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import _LazyModule lowercase_ = {"tokenization_byt5": ["ByT5Tokenizer"]} if TYPE_CHECKING: from .tokenization_byta import ByTaTokenizer else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
695
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = StableDiffusionInpaintPipeline __UpperCAmelCase : int = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS __UpperCAmelCase : str = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS __UpperCAmelCase : int = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess __UpperCAmelCase : Tuple = frozenset([] ) def __UpperCAmelCase ( self ): torch.manual_seed(0 ) __a = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=9 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=_a , ) __a = PNDMScheduler(skip_prk_steps=_a ) torch.manual_seed(0 ) __a = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) __a = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act='''gelu''' , projection_dim=512 , ) __a = CLIPTextModel(_a ) __a = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) __a = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def __UpperCAmelCase ( self , _a , _a=0 ): # TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched __a = floats_tensor((1, 3, 32, 32) , rng=random.Random(_a ) ).to(_a ) __a = image.cpu().permute(0 , 2 , 3 , 1 )[0] __a = Image.fromarray(np.uinta(_a ) ).convert('''RGB''' ).resize((64, 64) ) __a = Image.fromarray(np.uinta(image + 4 ) ).convert('''RGB''' ).resize((64, 64) ) if str(_a ).startswith('''mps''' ): __a = torch.manual_seed(_a ) else: __a = torch.Generator(device=_a ).manual_seed(_a ) __a = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': init_image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def __UpperCAmelCase ( self ): __a = '''cpu''' # ensure determinism for the device-dependent torch.Generator __a = self.get_dummy_components() __a = StableDiffusionInpaintPipeline(**_a ) __a = sd_pipe.to(_a ) sd_pipe.set_progress_bar_config(disable=_a ) __a = self.get_dummy_inputs(_a ) __a = sd_pipe(**_a ).images __a = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __a = np.array([0.4727, 0.5735, 0.3941, 0.5446, 0.5926, 0.4394, 0.5062, 0.4654, 0.4476] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __UpperCAmelCase ( self ): super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCAmelCase ( self ): __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) __a = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint''' '''/yellow_cat_sitting_on_a_park_bench.npy''' ) __a = '''stabilityai/stable-diffusion-2-inpainting''' __a = StableDiffusionInpaintPipeline.from_pretrained(_a , safety_checker=_a ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) pipe.enable_attention_slicing() __a = '''Face of a yellow cat, high resolution, sitting on a park bench''' __a = torch.manual_seed(0 ) __a = pipe( prompt=_a , image=_a , mask_image=_a , generator=_a , output_type='''np''' , ) __a = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 9E-3 def __UpperCAmelCase ( self ): __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) __a = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint''' '''/yellow_cat_sitting_on_a_park_bench_fp16.npy''' ) __a = '''stabilityai/stable-diffusion-2-inpainting''' __a = StableDiffusionInpaintPipeline.from_pretrained( _a , torch_dtype=torch.floataa , safety_checker=_a , ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) pipe.enable_attention_slicing() __a = '''Face of a yellow cat, high resolution, sitting on a park bench''' __a = torch.manual_seed(0 ) __a = pipe( prompt=_a , image=_a , mask_image=_a , generator=_a , output_type='''np''' , ) __a = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 5E-1 def __UpperCAmelCase ( self ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) __a = '''stabilityai/stable-diffusion-2-inpainting''' __a = PNDMScheduler.from_pretrained(_a , subfolder='''scheduler''' ) __a = StableDiffusionInpaintPipeline.from_pretrained( _a , safety_checker=_a , scheduler=_a , torch_dtype=torch.floataa , ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() __a = '''Face of a yellow cat, high resolution, sitting on a park bench''' __a = torch.manual_seed(0 ) __a = pipe( prompt=_a , image=_a , mask_image=_a , generator=_a , num_inference_steps=2 , output_type='''np''' , ) __a = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 10**9
695
1
"""simple docstring""" from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class __lowerCAmelCase : '''simple docstring''' __UpperCAmelCase : int __UpperCAmelCase : Node | None = None __UpperCAmelCase : Node | None = None def lowercase ( ) -> Node | None: __a = Node(1 ) __a = Node(2 ) __a = Node(3 ) __a = Node(4 ) __a = Node(5 ) return tree def lowercase ( lowerCAmelCase__ : Node | None ) -> list[int]: return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def lowercase ( lowerCAmelCase__ : Node | None ) -> list[int]: return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def lowercase ( lowerCAmelCase__ : Node | None ) -> list[int]: return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def lowercase ( lowerCAmelCase__ : Node | None ) -> int: return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0 def lowercase ( lowerCAmelCase__ : Node | None ) -> Sequence[Node | None]: __a = [] if root is None: return output __a = deque([root] ) while process_queue: __a = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def lowercase ( lowerCAmelCase__ : Node | None , lowerCAmelCase__ : int ) -> Sequence[Node | None]: __a = [] def populate_output(lowerCAmelCase__ : Node | None , lowerCAmelCase__ : int ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left , level - 1 ) populate_output(root.right , level - 1 ) populate_output(lowerCAmelCase__ , lowerCAmelCase__ ) return output def lowercase ( lowerCAmelCase__ : Node | None , lowerCAmelCase__ : int ) -> Sequence[Node | None]: __a = [] def populate_output(lowerCAmelCase__ : Node | None , lowerCAmelCase__ : int ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right , level - 1 ) populate_output(root.left , level - 1 ) populate_output(lowerCAmelCase__ , lowerCAmelCase__ ) return output def lowercase ( lowerCAmelCase__ : Node | None ) -> Sequence[Node | None] | list[Any]: if root is None: return [] __a = [] __a = 0 __a = height(lowerCAmelCase__ ) for h in range(1 , height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(lowerCAmelCase__ , lowerCAmelCase__ ) ) __a = 1 else: output.append(get_nodes_from_right_to_left(lowerCAmelCase__ , lowerCAmelCase__ ) ) __a = 0 return output def lowercase ( ) -> None: # Main function for testing. __a = make_tree() print(f'''In-order Traversal: {inorder(lowerCAmelCase__ )}''' ) print(f'''Pre-order Traversal: {preorder(lowerCAmelCase__ )}''' ) print(f'''Post-order Traversal: {postorder(lowerCAmelCase__ )}''' , '''\n''' ) print(f'''Height of Tree: {height(lowerCAmelCase__ )}''' , '''\n''' ) print('''Complete Level Order Traversal: ''' ) print(level_order(lowerCAmelCase__ ) , '''\n''' ) print('''Level-wise order Traversal: ''' ) for level in range(1 , height(lowerCAmelCase__ ) + 1 ): print(f'''Level {level}:''' , get_nodes_from_left_to_right(lowerCAmelCase__ , level=lowerCAmelCase__ ) ) print('''\nZigZag order Traversal: ''' ) print(zigzag(lowerCAmelCase__ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
695
"""simple docstring""" import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : int = 0 __UpperCAmelCase : bool = False __UpperCAmelCase : float = 3.0 class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self ): # If no defaults are changed, `to_kwargs` returns an empty dict. self.assertDictEqual(MockClass().to_kwargs() , {} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {'''a''': 2} ) self.assertDictEqual(MockClass(a=2 , b=_a ).to_kwargs() , {'''a''': 2, '''b''': True} ) self.assertDictEqual(MockClass(a=2 , c=2.25 ).to_kwargs() , {'''a''': 2, '''c''': 2.25} ) @require_cuda def __UpperCAmelCase ( self ): # If no defaults are changed, `to_kwargs` returns an empty dict. __a = GradScalerKwargs(init_scale=1_024 , growth_factor=2 ) AcceleratorState._reset_state() __a = Accelerator(mixed_precision='''fp16''' , kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) __a = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale , 1024.0 ) self.assertEqual(scaler._growth_factor , 2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor , 0.5 ) self.assertEqual(scaler._growth_interval , 2_000 ) self.assertEqual(scaler._enabled , _a ) @require_multi_gpu def __UpperCAmelCase ( self ): __a = ['''torchrun''', f'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )] execute_subprocess_async(_a , env=os.environ.copy() ) if __name__ == "__main__": lowercase_ = DistributedDataParallelKwargs(bucket_cap_mb=1_5, find_unused_parameters=True) lowercase_ = Accelerator(kwargs_handlers=[ddp_scaler]) lowercase_ = torch.nn.Linear(1_0_0, 2_0_0) lowercase_ = accelerator.prepare(model) # Check the values changed in kwargs lowercase_ = "" lowercase_ = model.bucket_bytes_cap // (1_0_2_4 * 1_0_2_4) if observed_bucket_cap_map != 1_5: error_msg += F"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += F"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += F"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += F"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += F"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
695
1
"""simple docstring""" import baseaa def lowercase ( lowerCAmelCase__ : str ) -> bytes: return baseaa.baaencode(string.encode('''utf-8''' ) ) def lowercase ( lowerCAmelCase__ : bytes ) -> str: return baseaa.baadecode(lowerCAmelCase__ ).decode('''utf-8''' ) if __name__ == "__main__": lowercase_ = "Hello World!" lowercase_ = baseaa_encode(test) print(encoded) lowercase_ = baseaa_decode(encoded) print(decoded)
695
"""simple docstring""" import inspect import os import sys import unittest import accelerate from accelerate.test_utils import execute_subprocess_async, require_tpu class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self ): __a = inspect.getfile(accelerate.test_utils ) __a = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_script.py'''] ) __a = os.path.sep.join(inspect.getfile(self.__class__ ).split(os.path.sep )[:-1] ) @require_tpu def __UpperCAmelCase ( self ): __a = f''' {self.test_dir}/xla_spawn.py --num_cores 8 {self.test_file_path} '''.split() __a = [sys.executable] + distributed_args execute_subprocess_async(_a , env=os.environ.copy() )
695
1
"""simple docstring""" import itertools import os from collections import Counter, defaultdict from concurrent.futures import ThreadPoolExecutor, as_completed import numpy as np import datasets from .execute import check_correctness lowercase_ = "\\n@misc{chen2021evaluating,\n title={Evaluating Large Language Models Trained on Code},\n author={Mark Chen and Jerry Tworek and Heewoo Jun and Qiming Yuan \\nand Henrique Ponde de Oliveira Pinto and Jared Kaplan and Harri Edwards \\nand Yuri Burda and Nicholas Joseph and Greg Brockman and Alex Ray \\nand Raul Puri and Gretchen Krueger and Michael Petrov and Heidy Khlaaf \\nand Girish Sastry and Pamela Mishkin and Brooke Chan and Scott Gray \\nand Nick Ryder and Mikhail Pavlov and Alethea Power and Lukasz Kaiser \\nand Mohammad Bavarian and Clemens Winter and Philippe Tillet \\nand Felipe Petroski Such and Dave Cummings and Matthias Plappert \\nand Fotios Chantzis and Elizabeth Barnes and Ariel Herbert-Voss \\nand William Hebgen Guss and Alex Nichol and Alex Paino and Nikolas Tezak \\nand Jie Tang and Igor Babuschkin and Suchir Balaji and Shantanu Jain \\nand William Saunders and Christopher Hesse and Andrew N. Carr \\nand Jan Leike and Josh Achiam and Vedant Misra and Evan Morikawa \\nand Alec Radford and Matthew Knight and Miles Brundage and Mira Murati \\nand Katie Mayer and Peter Welinder and Bob McGrew and Dario Amodei \\nand Sam McCandlish and Ilya Sutskever and Wojciech Zaremba},\n year={2021},\n eprint={2107.03374},\n archivePrefix={arXiv},\n primaryClass={cs.LG}\n}\n" lowercase_ = "\\nThis metric implements the evaluation harness for the HumanEval problem solving dataset\ndescribed in the paper \"Evaluating Large Language Models Trained on Code\"\n(https://arxiv.org/abs/2107.03374).\n" lowercase_ = "\nCalculates how good are predictions given some references, using certain scores\nArgs:\n predictions: list of candidates to evaluate. Each candidates should be a list\n of strings with several code candidates to solve the problem.\n references: a list with a test for each prediction. Each test should evaluate the\n correctness of a code candidate.\n k: number of code candidates to consider in the evaluation (Default: [1, 10, 100])\n num_workers: number of workers used to evaluate the canidate programs (Default: 4).\n timeout:\nReturns:\n pass_at_k: dict with pass rates for each k\n results: dict with granular results of each unittest\nExamples:\n >>> code_eval = datasets.load_metric(\"code_eval\")\n >>> test_cases = [\"assert add(2,3)==5\"]\n >>> candidates = [[\"def add(a,b): return a*b\", \"def add(a, b): return a+b\"]]\n >>> pass_at_k, results = code_eval.compute(references=test_cases, predictions=candidates, k=[1, 2])\n >>> print(pass_at_k)\n {'pass@1': 0.5, 'pass@2': 1.0}\n" lowercase_ = "\n################################################################################\n !!!WARNING!!!\n################################################################################\nThe \"code_eval\" metric executes untrusted model-generated code in Python.\nAlthough it is highly unlikely that model-generated code will do something\novertly malicious in response to this test suite, model-generated code may act\ndestructively due to a lack of model capability or alignment.\nUsers are strongly encouraged to sandbox this evaluation suite so that it\ndoes not perform destructive actions on their host or network. For more\ninformation on how OpenAI sandboxes its code, see the paper \"Evaluating Large\nLanguage Models Trained on Code\" (https://arxiv.org/abs/2107.03374).\n\nOnce you have read this disclaimer and taken appropriate precautions,\nset the environment variable HF_ALLOW_CODE_EVAL=\"1\". Within Python you can to this\nwith:\n\n>>> import os\n>>> os.environ[\"HF_ALLOW_CODE_EVAL\"] = \"1\"\n\n################################################################################\\n" lowercase_ = "The MIT License\n\nCopyright (c) OpenAI (https://openai.com)\n\nPermission is hereby granted, free of charge, to any person obtaining a copy\nof this software and associated documentation files (the \"Software\"), to deal\nin the Software without restriction, including without limitation the rights\nto use, copy, modify, merge, publish, distribute, sublicense, and/or sell\ncopies of the Software, and to permit persons to whom the Software is\nfurnished to do so, subject to the following conditions:\n\nThe above copyright notice and this permission notice shall be included in\nall copies or substantial portions of the Software.\n\nTHE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR\nIMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,\nFITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE\nAUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER\nLIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,\nOUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN\nTHE SOFTWARE." @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCAmelCase ( datasets.Metric ): '''simple docstring''' def __UpperCAmelCase ( self ): return datasets.MetricInfo( # This is the description that will appear on the metrics page. description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''string''' ) ), '''references''': datasets.Value('''string''' ), } ) , homepage='''https://github.com/openai/human-eval''' , codebase_urls=['''https://github.com/openai/human-eval'''] , reference_urls=['''https://github.com/openai/human-eval'''] , license=_LICENSE , ) def __UpperCAmelCase ( self , _a , _a , _a=[1, 10, 100] , _a=4 , _a=3.0 ): if os.getenv('''HF_ALLOW_CODE_EVAL''' , 0 ) != "1": raise ValueError(_WARNING ) if os.name == "nt": raise NotImplementedError('''This metric is currently not supported on Windows.''' ) with ThreadPoolExecutor(max_workers=_a ) as executor: __a = [] __a = Counter() __a = 0 __a = defaultdict(_a ) for task_id, (candidates, test_case) in enumerate(zip(_a , _a ) ): for candidate in candidates: __a = candidate + '''\n''' + test_case __a = (test_program, timeout, task_id, completion_id[task_id]) __a = executor.submit(_a , *_a ) futures.append(_a ) completion_id[task_id] += 1 n_samples += 1 for future in as_completed(_a ): __a = future.result() results[result["task_id"]].append((result['''completion_id'''], result) ) __a , __a = [], [] for result in results.values(): result.sort() __a = [r[1]['''passed'''] for r in result] total.append(len(_a ) ) correct.append(sum(_a ) ) __a = np.array(_a ) __a = np.array(_a ) __a = k __a = {f'''pass@{k}''': estimate_pass_at_k(_a , _a , _a ).mean() for k in ks if (total >= k).all()} return pass_at_k, results def lowercase ( lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : int ) -> Any: def estimator(lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int ) -> float: if n - c < k: return 1.0 return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1 , n + 1 ) ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): __a = itertools.repeat(lowerCAmelCase__ , len(lowerCAmelCase__ ) ) else: assert len(lowerCAmelCase__ ) == len(lowerCAmelCase__ ) __a = iter(lowerCAmelCase__ ) return np.array([estimator(int(lowerCAmelCase__ ) , int(lowerCAmelCase__ ) , lowerCAmelCase__ ) for n, c in zip(lowerCAmelCase__ , lowerCAmelCase__ )] )
695
"""simple docstring""" import os import unittest from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, BertTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : str = BertTokenizer __UpperCAmelCase : Optional[Any] = BertTokenizerFast __UpperCAmelCase : str = True __UpperCAmelCase : Tuple = True __UpperCAmelCase : Any = filter_non_english def __UpperCAmelCase ( self ): super().setUp() __a = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] __a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def __UpperCAmelCase ( self , _a ): __a = '''UNwant\u00E9d,running''' __a = '''unwanted, running''' return input_text, output_text def __UpperCAmelCase ( self ): __a = self.tokenizer_class(self.vocab_file ) __a = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(_a , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , [9, 6, 7, 12, 10, 11] ) def __UpperCAmelCase ( self ): if not self.test_rust_tokenizer: return __a = self.get_tokenizer() __a = self.get_rust_tokenizer() __a = '''UNwant\u00E9d,running''' __a = tokenizer.tokenize(_a ) __a = rust_tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) __a = tokenizer.encode(_a , add_special_tokens=_a ) __a = rust_tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) __a = self.get_rust_tokenizer() __a = tokenizer.encode(_a ) __a = rust_tokenizer.encode(_a ) self.assertListEqual(_a , _a ) # With lower casing __a = self.get_tokenizer(do_lower_case=_a ) __a = self.get_rust_tokenizer(do_lower_case=_a ) __a = '''UNwant\u00E9d,running''' __a = tokenizer.tokenize(_a ) __a = rust_tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) __a = tokenizer.encode(_a , add_special_tokens=_a ) __a = rust_tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) __a = self.get_rust_tokenizer() __a = tokenizer.encode(_a ) __a = rust_tokenizer.encode(_a ) self.assertListEqual(_a , _a ) def __UpperCAmelCase ( self ): __a = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''' ) , ['''ah''', '''\u535A''', '''\u63A8''', '''zz'''] ) def __UpperCAmelCase ( self ): __a = BasicTokenizer(do_lower_case=_a ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def __UpperCAmelCase ( self ): __a = BasicTokenizer(do_lower_case=_a , strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''h\u00E9llo'''] ) def __UpperCAmelCase ( self ): __a = BasicTokenizer(do_lower_case=_a , strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def __UpperCAmelCase ( self ): __a = BasicTokenizer(do_lower_case=_a ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def __UpperCAmelCase ( self ): __a = BasicTokenizer(do_lower_case=_a ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def __UpperCAmelCase ( self ): __a = BasicTokenizer(do_lower_case=_a , strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def __UpperCAmelCase ( self ): __a = BasicTokenizer(do_lower_case=_a , strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def __UpperCAmelCase ( self ): __a = BasicTokenizer(do_lower_case=_a , never_split=['''[UNK]'''] ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]'''] ) def __UpperCAmelCase ( self ): __a = BasicTokenizer() __a = '''a\n\'ll !!to?\'d of, can\'t.''' __a = ['''a''', '''\'''', '''ll''', '''!''', '''!''', '''to''', '''?''', '''\'''', '''d''', '''of''', ''',''', '''can''', '''\'''', '''t''', '''.'''] self.assertListEqual(tokenizer.tokenize(_a ) , _a ) def __UpperCAmelCase ( self ): __a = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing'''] __a = {} for i, token in enumerate(_a ): __a = i __a = WordpieceTokenizer(vocab=_a , unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) , [] ) self.assertListEqual(tokenizer.tokenize('''unwanted running''' ) , ['''un''', '''##want''', '''##ed''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.tokenize('''unwantedX running''' ) , ['''[UNK]''', '''runn''', '''##ing'''] ) def __UpperCAmelCase ( self ): self.assertTrue(_is_whitespace(''' ''' ) ) self.assertTrue(_is_whitespace('''\t''' ) ) self.assertTrue(_is_whitespace('''\r''' ) ) self.assertTrue(_is_whitespace('''\n''' ) ) self.assertTrue(_is_whitespace('''\u00A0''' ) ) self.assertFalse(_is_whitespace('''A''' ) ) self.assertFalse(_is_whitespace('''-''' ) ) def __UpperCAmelCase ( self ): self.assertTrue(_is_control('''\u0005''' ) ) self.assertFalse(_is_control('''A''' ) ) self.assertFalse(_is_control(''' ''' ) ) self.assertFalse(_is_control('''\t''' ) ) self.assertFalse(_is_control('''\r''' ) ) def __UpperCAmelCase ( self ): self.assertTrue(_is_punctuation('''-''' ) ) self.assertTrue(_is_punctuation('''$''' ) ) self.assertTrue(_is_punctuation('''`''' ) ) self.assertTrue(_is_punctuation('''.''' ) ) self.assertFalse(_is_punctuation('''A''' ) ) self.assertFalse(_is_punctuation(''' ''' ) ) def __UpperCAmelCase ( self ): __a = self.get_tokenizer() __a = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(_a ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) self.assertListEqual( [rust_tokenizer.tokenize(_a ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) @slow def __UpperCAmelCase ( self ): __a = self.tokenizer_class.from_pretrained('''bert-base-uncased''' ) __a = tokenizer.encode('''sequence builders''' , add_special_tokens=_a ) __a = tokenizer.encode('''multi-sequence build''' , add_special_tokens=_a ) __a = tokenizer.build_inputs_with_special_tokens(_a ) __a = tokenizer.build_inputs_with_special_tokens(_a , _a ) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_a + [102] def __UpperCAmelCase ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __a = self.rust_tokenizer_class.from_pretrained(_a , **_a ) __a = f'''A, naïve {tokenizer_r.mask_token} AllenNLP sentence.''' __a = tokenizer_r.encode_plus( _a , return_attention_mask=_a , return_token_type_ids=_a , return_offsets_mapping=_a , add_special_tokens=_a , ) __a = tokenizer_r.do_lower_case if hasattr(_a , '''do_lower_case''' ) else False __a = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''A'''), ((1, 2), ''','''), ((3, 5), '''na'''), ((5, 6), '''##ï'''), ((6, 8), '''##ve'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''Allen'''), ((21, 23), '''##NL'''), ((23, 24), '''##P'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''a'''), ((1, 2), ''','''), ((3, 8), '''naive'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''allen'''), ((21, 23), '''##nl'''), ((23, 24), '''##p'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['''input_ids'''] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['''offset_mapping'''] ) def __UpperCAmelCase ( self ): __a = ['''的''', '''人''', '''有'''] __a = ''''''.join(_a ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __a = True __a = self.tokenizer_class.from_pretrained(_a , **_a ) __a = self.rust_tokenizer_class.from_pretrained(_a , **_a ) __a = tokenizer_p.encode(_a , add_special_tokens=_a ) __a = tokenizer_r.encode(_a , add_special_tokens=_a ) __a = tokenizer_r.convert_ids_to_tokens(_a ) __a = tokenizer_p.convert_ids_to_tokens(_a ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(_a , _a ) self.assertListEqual(_a , _a ) __a = False __a = self.rust_tokenizer_class.from_pretrained(_a , **_a ) __a = self.tokenizer_class.from_pretrained(_a , **_a ) __a = tokenizer_r.encode(_a , add_special_tokens=_a ) __a = tokenizer_p.encode(_a , add_special_tokens=_a ) __a = tokenizer_r.convert_ids_to_tokens(_a ) __a = tokenizer_p.convert_ids_to_tokens(_a ) # it is expected that only the first Chinese character is not preceded by "##". __a = [ f'''##{token}''' if idx != 0 else token for idx, token in enumerate(_a ) ] self.assertListEqual(_a , _a ) self.assertListEqual(_a , _a )
695
1
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os from ...utils.constants import SAGEMAKER_PARALLEL_EC2_INSTANCES, TORCH_DYNAMO_MODES from ...utils.dataclasses import ComputeEnvironment, SageMakerDistributedType from ...utils.imports import is_botoa_available from .config_args import SageMakerConfig from .config_utils import ( DYNAMO_BACKENDS, _ask_field, _ask_options, _convert_dynamo_backend, _convert_mixed_precision, _convert_sagemaker_distributed_mode, _convert_yes_no_to_bool, ) if is_botoa_available(): import botoa # noqa: F401 def lowercase ( lowerCAmelCase__ : str ) -> List[str]: __a = botoa.client('''iam''' ) __a = { '''Version''': '''2012-10-17''', '''Statement''': [ {'''Effect''': '''Allow''', '''Principal''': {'''Service''': '''sagemaker.amazonaws.com'''}, '''Action''': '''sts:AssumeRole'''} ], } try: # create the role, associated with the chosen trust policy iam_client.create_role( RoleName=lowerCAmelCase__ , AssumeRolePolicyDocument=json.dumps(lowerCAmelCase__ , indent=2 ) ) __a = { '''Version''': '''2012-10-17''', '''Statement''': [ { '''Effect''': '''Allow''', '''Action''': [ '''sagemaker:*''', '''ecr:GetDownloadUrlForLayer''', '''ecr:BatchGetImage''', '''ecr:BatchCheckLayerAvailability''', '''ecr:GetAuthorizationToken''', '''cloudwatch:PutMetricData''', '''cloudwatch:GetMetricData''', '''cloudwatch:GetMetricStatistics''', '''cloudwatch:ListMetrics''', '''logs:CreateLogGroup''', '''logs:CreateLogStream''', '''logs:DescribeLogStreams''', '''logs:PutLogEvents''', '''logs:GetLogEvents''', '''s3:CreateBucket''', '''s3:ListBucket''', '''s3:GetBucketLocation''', '''s3:GetObject''', '''s3:PutObject''', ], '''Resource''': '''*''', } ], } # attach policy to role iam_client.put_role_policy( RoleName=lowerCAmelCase__ , PolicyName=f'''{role_name}_policy_permission''' , PolicyDocument=json.dumps(lowerCAmelCase__ , indent=2 ) , ) except iam_client.exceptions.EntityAlreadyExistsException: print(f'''role {role_name} already exists. Using existing one''' ) def lowercase ( lowerCAmelCase__ : List[Any] ) -> Any: __a = botoa.client('''iam''' ) return iam_client.get_role(RoleName=lowerCAmelCase__ )["Role"]["Arn"] def lowercase ( ) -> Dict: __a = _ask_options( '''How do you want to authorize?''' , ['''AWS Profile''', '''Credentials (AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY) '''] , lowerCAmelCase__ , ) __a = None if credentials_configuration == 0: __a = _ask_field('''Enter your AWS Profile name: [default] ''' , default='''default''' ) __a = aws_profile else: print( '''Note you will need to provide AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY when you launch you training script with,''' '''`accelerate launch --aws_access_key_id XXX --aws_secret_access_key YYY`''' ) __a = _ask_field('''AWS Access Key ID: ''' ) __a = aws_access_key_id __a = _ask_field('''AWS Secret Access Key: ''' ) __a = aws_secret_access_key __a = _ask_field('''Enter your AWS Region: [us-east-1]''' , default='''us-east-1''' ) __a = aws_region __a = _ask_options( '''Do you already have an IAM Role for executing Amazon SageMaker Training Jobs?''' , ['''Provide IAM Role name''', '''Create new IAM role using credentials'''] , lowerCAmelCase__ , ) if role_management == 0: __a = _ask_field('''Enter your IAM role name: ''' ) else: __a = '''accelerate_sagemaker_execution_role''' print(f'''Accelerate will create an iam role "{iam_role_name}" using the provided credentials''' ) _create_iam_role_for_sagemaker(lowerCAmelCase__ ) __a = _ask_field( '''Do you want to use custom Docker image? [yes/NO]: ''' , _convert_yes_no_to_bool , default=lowerCAmelCase__ , error_message='''Please enter yes or no.''' , ) __a = None if is_custom_docker_image: __a = _ask_field('''Enter your Docker image: ''' , lambda lowerCAmelCase__ : str(lowerCAmelCase__ ).lower() ) __a = _ask_field( '''Do you want to provide SageMaker input channels with data locations? [yes/NO]: ''' , _convert_yes_no_to_bool , default=lowerCAmelCase__ , error_message='''Please enter yes or no.''' , ) __a = None if is_sagemaker_inputs_enabled: __a = _ask_field( '''Enter the path to the SageMaker inputs TSV file with columns (channel_name, data_location): ''' , lambda lowerCAmelCase__ : str(lowerCAmelCase__ ).lower() , ) __a = _ask_field( '''Do you want to enable SageMaker metrics? [yes/NO]: ''' , _convert_yes_no_to_bool , default=lowerCAmelCase__ , error_message='''Please enter yes or no.''' , ) __a = None if is_sagemaker_metrics_enabled: __a = _ask_field( '''Enter the path to the SageMaker metrics TSV file with columns (metric_name, metric_regex): ''' , lambda lowerCAmelCase__ : str(lowerCAmelCase__ ).lower() , ) __a = _ask_options( '''What is the distributed mode?''' , ['''No distributed training''', '''Data parallelism'''] , _convert_sagemaker_distributed_mode , ) __a = {} __a = _ask_field( '''Do you wish to optimize your script with torch dynamo?[yes/NO]:''' , _convert_yes_no_to_bool , default=lowerCAmelCase__ , error_message='''Please enter yes or no.''' , ) if use_dynamo: __a = '''dynamo_''' __a = _ask_options( '''Which dynamo backend would you like to use?''' , [x.lower() for x in DYNAMO_BACKENDS] , _convert_dynamo_backend , default=2 , ) __a = _ask_field( '''Do you want to customize the defaults sent to torch.compile? [yes/NO]: ''' , _convert_yes_no_to_bool , default=lowerCAmelCase__ , error_message='''Please enter yes or no.''' , ) if use_custom_options: __a = _ask_options( '''Which mode do you want to use?''' , lowerCAmelCase__ , lambda lowerCAmelCase__ : TORCH_DYNAMO_MODES[int(lowerCAmelCase__ )] , default='''default''' , ) __a = _ask_field( '''Do you want the fullgraph mode or it is ok to break model into several subgraphs? [yes/NO]: ''' , _convert_yes_no_to_bool , default=lowerCAmelCase__ , error_message='''Please enter yes or no.''' , ) __a = _ask_field( '''Do you want to enable dynamic shape tracing? [yes/NO]: ''' , _convert_yes_no_to_bool , default=lowerCAmelCase__ , error_message='''Please enter yes or no.''' , ) __a = '''Which EC2 instance type you want to use for your training?''' if distributed_type != SageMakerDistributedType.NO: __a = _ask_options( lowerCAmelCase__ , lowerCAmelCase__ , lambda lowerCAmelCase__ : SAGEMAKER_PARALLEL_EC2_INSTANCES[int(lowerCAmelCase__ )] ) else: eca_instance_query += "? [ml.p3.2xlarge]:" __a = _ask_field(lowerCAmelCase__ , lambda lowerCAmelCase__ : str(lowerCAmelCase__ ).lower() , default='''ml.p3.2xlarge''' ) __a = 1 if distributed_type in (SageMakerDistributedType.DATA_PARALLEL, SageMakerDistributedType.MODEL_PARALLEL): __a = _ask_field( '''How many machines do you want use? [1]: ''' , lowerCAmelCase__ , default=1 , ) __a = _ask_options( '''Do you wish to use FP16 or BF16 (mixed precision)?''' , ['''no''', '''fp16''', '''bf16''', '''fp8'''] , _convert_mixed_precision , ) if use_dynamo and mixed_precision == "no": print( '''Torch dynamo used without mixed precision requires TF32 to be efficient. Accelerate will enable it by default when launching your scripts.''' ) return SageMakerConfig( image_uri=lowerCAmelCase__ , compute_environment=ComputeEnvironment.AMAZON_SAGEMAKER , distributed_type=lowerCAmelCase__ , use_cpu=lowerCAmelCase__ , dynamo_config=lowerCAmelCase__ , eca_instance_type=lowerCAmelCase__ , profile=lowerCAmelCase__ , region=lowerCAmelCase__ , iam_role_name=lowerCAmelCase__ , mixed_precision=lowerCAmelCase__ , num_machines=lowerCAmelCase__ , sagemaker_inputs_file=lowerCAmelCase__ , sagemaker_metrics_file=lowerCAmelCase__ , )
695
"""simple docstring""" from __future__ import annotations def lowercase ( lowerCAmelCase__ : float , lowerCAmelCase__ : float , lowerCAmelCase__ : float ) -> float: if days_between_payments <= 0: raise ValueError('''days_between_payments must be > 0''' ) if daily_interest_rate < 0: raise ValueError('''daily_interest_rate must be >= 0''' ) if principal <= 0: raise ValueError('''principal must be > 0''' ) return principal * daily_interest_rate * days_between_payments def lowercase ( lowerCAmelCase__ : float , lowerCAmelCase__ : float , lowerCAmelCase__ : float , ) -> float: if number_of_compounding_periods <= 0: raise ValueError('''number_of_compounding_periods must be > 0''' ) if nominal_annual_interest_rate_percentage < 0: raise ValueError('''nominal_annual_interest_rate_percentage must be >= 0''' ) if principal <= 0: raise ValueError('''principal must be > 0''' ) return principal * ( (1 + nominal_annual_interest_rate_percentage) ** number_of_compounding_periods - 1 ) def lowercase ( lowerCAmelCase__ : float , lowerCAmelCase__ : float , lowerCAmelCase__ : float , ) -> float: if number_of_years <= 0: raise ValueError('''number_of_years must be > 0''' ) if nominal_annual_percentage_rate < 0: raise ValueError('''nominal_annual_percentage_rate must be >= 0''' ) if principal <= 0: raise ValueError('''principal must be > 0''' ) return compound_interest( lowerCAmelCase__ , nominal_annual_percentage_rate / 365 , number_of_years * 365 ) if __name__ == "__main__": import doctest doctest.testmod()
695
1
"""simple docstring""" def lowercase ( lowerCAmelCase__ : int , lowerCAmelCase__ : int ) -> int: return int((input_a, input_a).count(0 ) != 0 ) def lowercase ( ) -> None: assert nand_gate(0 , 0 ) == 1 assert nand_gate(0 , 1 ) == 1 assert nand_gate(1 , 0 ) == 1 assert nand_gate(1 , 1 ) == 0 if __name__ == "__main__": print(nand_gate(0, 0)) print(nand_gate(0, 1)) print(nand_gate(1, 0)) print(nand_gate(1, 1))
695
"""simple docstring""" def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Any=False ) -> Any: if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): __a = len(set_a.intersection(lowerCAmelCase__ ) ) if alternative_union: __a = len(lowerCAmelCase__ ) + len(lowerCAmelCase__ ) else: __a = len(set_a.union(lowerCAmelCase__ ) ) return intersection / union if isinstance(lowerCAmelCase__ , (list, tuple) ) and isinstance(lowerCAmelCase__ , (list, tuple) ): __a = [element for element in set_a if element in set_b] if alternative_union: __a = len(lowerCAmelCase__ ) + len(lowerCAmelCase__ ) return len(lowerCAmelCase__ ) / union else: __a = set_a + [element for element in set_b if element not in set_a] return len(lowerCAmelCase__ ) / len(lowerCAmelCase__ ) return len(lowerCAmelCase__ ) / len(lowerCAmelCase__ ) return None if __name__ == "__main__": lowercase_ = {"a", "b", "c", "d", "e"} lowercase_ = {"c", "d", "e", "f", "h", "i"} print(jaccard_similarity(set_a, set_b))
695
1
"""simple docstring""" from math import factorial def lowercase ( lowerCAmelCase__ : int , lowerCAmelCase__ : int ) -> int: # If either of the conditions are true, the function is being asked # to calculate a factorial of a negative number, which is not possible if n < k or k < 0: raise ValueError('''Please enter positive integers for n and k where n >= k''' ) return factorial(lowerCAmelCase__ ) // (factorial(lowerCAmelCase__ ) * factorial(n - k )) if __name__ == "__main__": print( "The number of five-card hands possible from a standard", F'''fifty-two card deck is: {combinations(5_2, 5)}\n''', ) print( "If a class of 40 students must be arranged into groups of", F'''4 for group projects, there are {combinations(4_0, 4)} ways''', "to arrange them.\n", ) print( "If 10 teams are competing in a Formula One race, there", F'''are {combinations(1_0, 3)} ways that first, second and''', "third place can be awarded.", )
695
"""simple docstring""" from __future__ import annotations import requests def lowercase ( lowerCAmelCase__ : str ) -> dict: __a = f'''https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty''' return requests.get(lowerCAmelCase__ ).json() def lowercase ( lowerCAmelCase__ : int = 10 ) -> list[dict]: __a = '''https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty''' __a = requests.get(lowerCAmelCase__ ).json()[:max_stories] return [get_hackernews_story(lowerCAmelCase__ ) for story_id in story_ids] def lowercase ( lowerCAmelCase__ : int = 10 ) -> str: __a = hackernews_top_stories(lowerCAmelCase__ ) return "\n".join('''* [{title}]({url})'''.format(**lowerCAmelCase__ ) for story in stories ) if __name__ == "__main__": print(hackernews_top_stories_as_markdown())
695
1
"""simple docstring""" import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def lowercase ( lowerCAmelCase__ : Any ) -> List[Any]: __a = FileLock(str(tmpdir / '''foo.lock''' ) ) __a = FileLock(str(tmpdir / '''foo.lock''' ) ) __a = 0.01 with locka.acquire(): with pytest.raises(lowerCAmelCase__ ): __a = time.time() locka.acquire(lowerCAmelCase__ ) assert time.time() - _start > timeout def lowercase ( lowerCAmelCase__ : Optional[Any] ) -> List[str]: __a = '''a''' * 1000 + '''.lock''' __a = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith('''.lock''' ) assert not locka._lock_file.endswith(lowerCAmelCase__ ) assert len(os.path.basename(locka._lock_file ) ) <= 255 __a = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(lowerCAmelCase__ ): locka.acquire(0 )
695
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING lowercase_ = logging.get_logger(__name__) lowercase_ = { "salesforce/blip2-opt-2.7b": "https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json", } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = 'blip_2_vision_model' def __init__( self , _a=1_408 , _a=6_144 , _a=39 , _a=16 , _a=224 , _a=14 , _a="gelu" , _a=0.0_0001 , _a=0.0 , _a=1E-10 , _a=True , **_a , ): super().__init__(**_a ) __a = hidden_size __a = intermediate_size __a = num_hidden_layers __a = num_attention_heads __a = patch_size __a = image_size __a = initializer_range __a = attention_dropout __a = layer_norm_eps __a = hidden_act __a = qkv_bias @classmethod def __UpperCAmelCase ( cls , _a , **_a ): cls._set_token_in_kwargs(_a ) __a , __a = cls.get_config_dict(_a , **_a ) # get the vision config dict if we are loading from Blip2Config if config_dict.get('''model_type''' ) == "blip-2": __a = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_a , **_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : str = 'blip_2_qformer' def __init__( self , _a=30_522 , _a=768 , _a=12 , _a=12 , _a=3_072 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=0.02 , _a=1E-12 , _a=0 , _a="absolute" , _a=2 , _a=1_408 , **_a , ): super().__init__(pad_token_id=_a , **_a ) __a = vocab_size __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = hidden_act __a = intermediate_size __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = initializer_range __a = layer_norm_eps __a = position_embedding_type __a = cross_attention_frequency __a = encoder_hidden_size @classmethod def __UpperCAmelCase ( cls , _a , **_a ): cls._set_token_in_kwargs(_a ) __a , __a = cls.get_config_dict(_a , **_a ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get('''model_type''' ) == "blip-2": __a = config_dict['''qformer_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_a , **_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Any = 'blip-2' __UpperCAmelCase : List[str] = True def __init__( self , _a=None , _a=None , _a=None , _a=32 , **_a ): super().__init__(**_a ) if vision_config is None: __a = {} logger.info('''vision_config is None. initializing the Blip2VisionConfig with default values.''' ) if qformer_config is None: __a = {} logger.info('''qformer_config is None. Initializing the Blip2QFormerConfig with default values.''' ) if text_config is None: __a = {} logger.info('''text_config is None. Initializing the text config with default values (`OPTConfig`).''' ) __a = BlipaVisionConfig(**_a ) __a = BlipaQFormerConfig(**_a ) __a = text_config['''model_type'''] if '''model_type''' in text_config else '''opt''' __a = CONFIG_MAPPING[text_model_type](**_a ) __a = self.text_config.tie_word_embeddings __a = self.text_config.is_encoder_decoder __a = num_query_tokens __a = self.vision_config.hidden_size __a = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES __a = 1.0 __a = 0.02 @classmethod def __UpperCAmelCase ( cls , _a , _a , _a , **_a , ): return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **_a , ) def __UpperCAmelCase ( self ): __a = copy.deepcopy(self.__dict__ ) __a = self.vision_config.to_dict() __a = self.qformer_config.to_dict() __a = self.text_config.to_dict() __a = self.__class__.model_type return output
695
1
"""simple docstring""" from typing import List, Optional, Union import torch from transformers import ( XLMRobertaTokenizer, ) from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) from .text_encoder import MultilingualCLIP lowercase_ = logging.get_logger(__name__) # pylint: disable=invalid-name lowercase_ = "\n Examples:\n ```py\n >>> from diffusers import KandinskyPipeline, KandinskyPriorPipeline\n >>> import torch\n\n >>> pipe_prior = KandinskyPriorPipeline.from_pretrained(\"kandinsky-community/Kandinsky-2-1-prior\")\n >>> pipe_prior.to(\"cuda\")\n\n >>> prompt = \"red cat, 4k photo\"\n >>> out = pipe_prior(prompt)\n >>> image_emb = out.image_embeds\n >>> negative_image_emb = out.negative_image_embeds\n\n >>> pipe = KandinskyPipeline.from_pretrained(\"kandinsky-community/kandinsky-2-1\")\n >>> pipe.to(\"cuda\")\n\n >>> image = pipe(\n ... prompt,\n ... image_embeds=image_emb,\n ... negative_image_embeds=negative_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... ).images\n\n >>> image[0].save(\"cat.png\")\n ```\n" def lowercase ( lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Any=8 ) -> Optional[int]: __a = h // scale_factor**2 if h % scale_factor**2 != 0: new_h += 1 __a = w // scale_factor**2 if w % scale_factor**2 != 0: new_w += 1 return new_h * scale_factor, new_w * scale_factor class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , _a , _a , _a , _a , _a , ): super().__init__() self.register_modules( text_encoder=_a , tokenizer=_a , unet=_a , scheduler=_a , movq=_a , ) __a = 2 ** (len(self.movq.config.block_out_channels ) - 1) def __UpperCAmelCase ( self , _a , _a , _a , _a , _a , _a ): if latents is None: __a = randn_tensor(_a , generator=_a , device=_a , dtype=_a ) else: if latents.shape != shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {shape}''' ) __a = latents.to(_a ) __a = latents * scheduler.init_noise_sigma return latents def __UpperCAmelCase ( self , _a , _a , _a , _a , _a=None , ): __a = len(_a ) if isinstance(_a , _a ) else 1 # get prompt text embeddings __a = self.tokenizer( _a , padding='''max_length''' , truncation=_a , max_length=77 , return_attention_mask=_a , add_special_tokens=_a , return_tensors='''pt''' , ) __a = text_inputs.input_ids __a = self.tokenizer(_a , padding='''longest''' , return_tensors='''pt''' ).input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(_a , _a ): __a = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] ) logger.warning( '''The following part of your input was truncated because CLIP can only handle sequences up to''' f''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) __a = text_input_ids.to(_a ) __a = text_inputs.attention_mask.to(_a ) __a , __a = self.text_encoder( input_ids=_a , attention_mask=_a ) __a = prompt_embeds.repeat_interleave(_a , dim=0 ) __a = text_encoder_hidden_states.repeat_interleave(_a , dim=0 ) __a = text_mask.repeat_interleave(_a , dim=0 ) if do_classifier_free_guidance: __a = 42 if negative_prompt is None: __a = [''''''] * batch_size elif type(_a ) is not type(_a ): raise TypeError( f'''`negative_prompt` should be the same type to `prompt`, but got {type(_a )} !=''' f''' {type(_a )}.''' ) elif isinstance(_a , _a ): __a = [negative_prompt] elif batch_size != len(_a ): raise ValueError( f'''`negative_prompt`: {negative_prompt} has batch size {len(_a )}, but `prompt`:''' f''' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches''' ''' the batch size of `prompt`.''' ) else: __a = negative_prompt __a = self.tokenizer( _a , padding='''max_length''' , max_length=77 , truncation=_a , return_attention_mask=_a , add_special_tokens=_a , return_tensors='''pt''' , ) __a = uncond_input.input_ids.to(_a ) __a = uncond_input.attention_mask.to(_a ) __a , __a = self.text_encoder( input_ids=_a , attention_mask=_a ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method __a = negative_prompt_embeds.shape[1] __a = negative_prompt_embeds.repeat(1 , _a ) __a = negative_prompt_embeds.view(batch_size * num_images_per_prompt , _a ) __a = uncond_text_encoder_hidden_states.shape[1] __a = uncond_text_encoder_hidden_states.repeat(1 , _a , 1 ) __a = uncond_text_encoder_hidden_states.view( batch_size * num_images_per_prompt , _a , -1 ) __a = uncond_text_mask.repeat_interleave(_a , dim=0 ) # done duplicates # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __a = torch.cat([negative_prompt_embeds, prompt_embeds] ) __a = torch.cat([uncond_text_encoder_hidden_states, text_encoder_hidden_states] ) __a = torch.cat([uncond_text_mask, text_mask] ) return prompt_embeds, text_encoder_hidden_states, text_mask def __UpperCAmelCase ( self , _a=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) __a = torch.device(f'''cuda:{gpu_id}''' ) __a = [ self.unet, self.text_encoder, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(_a , _a ) def __UpperCAmelCase ( self , _a=0 ): if is_accelerate_available() and is_accelerate_version('''>=''' , '''0.17.0.dev0''' ): from accelerate import cpu_offload_with_hook else: raise ImportError('''`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.''' ) __a = torch.device(f'''cuda:{gpu_id}''' ) if self.device.type != "cpu": self.to('''cpu''' , silence_dtype_warnings=_a ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) __a = None for cpu_offloaded_model in [self.text_encoder, self.unet, self.movq]: __a , __a = cpu_offload_with_hook(_a , _a , prev_module_hook=_a ) if self.safety_checker is not None: __a , __a = cpu_offload_with_hook(self.safety_checker , _a , prev_module_hook=_a ) # We'll offload the last model manually. __a = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def __UpperCAmelCase ( self ): if not hasattr(self.unet , '''_hf_hook''' ): return self.device for module in self.unet.modules(): if ( hasattr(_a , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(_a ) def __call__( self , _a , _a , _a , _a = None , _a = 512 , _a = 512 , _a = 100 , _a = 4.0 , _a = 1 , _a = None , _a = None , _a = "pil" , _a = True , ): if isinstance(_a , _a ): __a = 1 elif isinstance(_a , _a ): __a = len(_a ) else: raise ValueError(f'''`prompt` has to be of type `str` or `list` but is {type(_a )}''' ) __a = self._execution_device __a = batch_size * num_images_per_prompt __a = guidance_scale > 1.0 __a , __a , __a = self._encode_prompt( _a , _a , _a , _a , _a ) if isinstance(_a , _a ): __a = torch.cat(_a , dim=0 ) if isinstance(_a , _a ): __a = torch.cat(_a , dim=0 ) if do_classifier_free_guidance: __a = image_embeds.repeat_interleave(_a , dim=0 ) __a = negative_image_embeds.repeat_interleave(_a , dim=0 ) __a = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to( dtype=prompt_embeds.dtype , device=_a ) self.scheduler.set_timesteps(_a , device=_a ) __a = self.scheduler.timesteps __a = self.unet.config.in_channels __a , __a = get_new_h_w(_a , _a , self.movq_scale_factor ) # create initial latent __a = self.prepare_latents( (batch_size, num_channels_latents, height, width) , text_encoder_hidden_states.dtype , _a , _a , _a , self.scheduler , ) for i, t in enumerate(self.progress_bar(_a ) ): # expand the latents if we are doing classifier free guidance __a = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __a = {'''text_embeds''': prompt_embeds, '''image_embeds''': image_embeds} __a = self.unet( sample=_a , timestep=_a , encoder_hidden_states=_a , added_cond_kwargs=_a , return_dict=_a , )[0] if do_classifier_free_guidance: __a , __a = noise_pred.split(latents.shape[1] , dim=1 ) __a , __a = noise_pred.chunk(2 ) __a , __a = variance_pred.chunk(2 ) __a = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) __a = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , '''variance_type''' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): __a , __a = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 __a = self.scheduler.step( _a , _a , _a , generator=_a , ).prev_sample # post-processing __a = self.movq.decode(_a , force_not_quantize=_a )['''sample'''] if output_type not in ["pt", "np", "pil"]: raise ValueError(f'''Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}''' ) if output_type in ["np", "pil"]: __a = image * 0.5 + 0.5 __a = image.clamp(0 , 1 ) __a = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": __a = self.numpy_to_pil(_a ) if not return_dict: return (image,) return ImagePipelineOutput(images=_a )
695
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType lowercase_ = logging.get_logger(__name__) lowercase_ = { "microsoft/deberta-v2-xlarge": "https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json", "microsoft/deberta-v2-xxlarge": "https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json", "microsoft/deberta-v2-xlarge-mnli": ( "https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json" ), "microsoft/deberta-v2-xxlarge-mnli": ( "https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json" ), } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Dict = 'deberta-v2' def __init__( self , _a=128_100 , _a=1_536 , _a=24 , _a=24 , _a=6_144 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=0 , _a=0.02 , _a=1E-7 , _a=False , _a=-1 , _a=0 , _a=True , _a=None , _a=0 , _a="gelu" , **_a , ): super().__init__(**_a ) __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = intermediate_size __a = hidden_act __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = type_vocab_size __a = initializer_range __a = relative_attention __a = max_relative_positions __a = pad_token_id __a = position_biased_input # Backwards compatibility if type(_a ) == str: __a = [x.strip() for x in pos_att_type.lower().split('''|''' )] __a = pos_att_type __a = vocab_size __a = layer_norm_eps __a = kwargs.get('''pooler_hidden_size''' , _a ) __a = pooler_dropout __a = pooler_hidden_act class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def __UpperCAmelCase ( self ): if self.task == "multiple-choice": __a = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __a = {0: '''batch''', 1: '''sequence'''} if self._config.type_vocab_size > 0: return OrderedDict( [('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis)] ) else: return OrderedDict([('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis)] ) @property def __UpperCAmelCase ( self ): return 12 def __UpperCAmelCase ( self , _a , _a = -1 , _a = -1 , _a = -1 , _a = False , _a = None , _a = 3 , _a = 40 , _a = 40 , _a = None , ): __a = super().generate_dummy_inputs(preprocessor=_a , framework=_a ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
695
1
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Any = 'openai/whisper-base' __UpperCAmelCase : Optional[int] = ( 'This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the ' 'transcribed text.' ) __UpperCAmelCase : Any = 'transcriber' __UpperCAmelCase : str = WhisperProcessor __UpperCAmelCase : List[Any] = WhisperForConditionalGeneration __UpperCAmelCase : Dict = ['audio'] __UpperCAmelCase : Union[str, Any] = ['text'] def __UpperCAmelCase ( self , _a ): return self.pre_processor(_a , return_tensors='''pt''' ).input_features def __UpperCAmelCase ( self , _a ): return self.model.generate(inputs=_a ) def __UpperCAmelCase ( self , _a ): return self.pre_processor.batch_decode(_a , skip_special_tokens=_a )[0]
695
"""simple docstring""" import importlib.metadata import operator import re import sys from typing import Optional from packaging import version lowercase_ = { "<": operator.lt, "<=": operator.le, "==": operator.eq, "!=": operator.ne, ">=": operator.ge, ">": operator.gt, } def lowercase ( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : int , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[Any] ) -> Dict: if got_ver is None or want_ver is None: raise ValueError( f'''Unable to compare versions for {requirement}: need={want_ver} found={got_ver}. This is unusual. Consider''' f''' reinstalling {pkg}.''' ) if not ops[op](version.parse(lowerCAmelCase__ ) , version.parse(lowerCAmelCase__ ) ): raise ImportError( f'''{requirement} is required for a normal functioning of this module, but found {pkg}=={got_ver}.{hint}''' ) def lowercase ( lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None ) -> None: __a = f'''\n{hint}''' if hint is not None else '''''' # non-versioned check if re.match(r'''^[\w_\-\d]+$''' , lowerCAmelCase__ ): __a , __a , __a = requirement, None, None else: __a = re.findall(r'''^([^!=<>\s]+)([\s!=<>]{1,2}.+)''' , lowerCAmelCase__ ) if not match: raise ValueError( '''requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23, but''' f''' got {requirement}''' ) __a , __a = match[0] __a = want_full.split(''',''' ) # there could be multiple requirements __a = {} for w in want_range: __a = re.findall(r'''^([\s!=<>]{1,2})(.+)''' , lowerCAmelCase__ ) if not match: raise ValueError( '''requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23,''' f''' but got {requirement}''' ) __a , __a = match[0] __a = want_ver if op not in ops: raise ValueError(f'''{requirement}: need one of {list(ops.keys() )}, but got {op}''' ) # special case if pkg == "python": __a = '''.'''.join([str(lowerCAmelCase__ ) for x in sys.version_info[:3]] ) for op, want_ver in wanted.items(): _compare_versions(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) return # check if any version is installed try: __a = importlib.metadata.version(lowerCAmelCase__ ) except importlib.metadata.PackageNotFoundError: raise importlib.metadata.PackageNotFoundError( f'''The \'{requirement}\' distribution was not found and is required by this application. {hint}''' ) # check that the right version is installed if version number or a range was provided if want_ver is not None: for op, want_ver in wanted.items(): _compare_versions(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ : Tuple ) -> Optional[Any]: __a = '''Try: pip install transformers -U or pip install -e \'.[dev]\' if you\'re working with git main''' return require_version(lowerCAmelCase__ , lowerCAmelCase__ )
695
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowercase_ = { "configuration_transfo_xl": ["TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP", "TransfoXLConfig"], "tokenization_transfo_xl": ["TransfoXLCorpus", "TransfoXLTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST", "AdaptiveEmbedding", "TransfoXLForSequenceClassification", "TransfoXLLMHeadModel", "TransfoXLModel", "TransfoXLPreTrainedModel", "load_tf_weights_in_transfo_xl", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST", "TFAdaptiveEmbedding", "TFTransfoXLForSequenceClassification", "TFTransfoXLLMHeadModel", "TFTransfoXLMainLayer", "TFTransfoXLModel", "TFTransfoXLPreTrainedModel", ] if TYPE_CHECKING: from .configuration_transfo_xl import TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, TransfoXLConfig from .tokenization_transfo_xl import TransfoXLCorpus, TransfoXLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_transfo_xl import ( TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, AdaptiveEmbedding, TransfoXLForSequenceClassification, TransfoXLLMHeadModel, TransfoXLModel, TransfoXLPreTrainedModel, load_tf_weights_in_transfo_xl, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_transfo_xl import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFAdaptiveEmbedding, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLMainLayer, TFTransfoXLModel, TFTransfoXLPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
695
"""simple docstring""" from __future__ import annotations lowercase_ = list[tuple[int, int]] lowercase_ = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] lowercase_ = ([-1, 0], [0, -1], [1, 0], [0, 1]) # up, left, down, right class __lowerCAmelCase : '''simple docstring''' def __init__( self , _a , _a , _a , _a , _a , _a , ): __a = pos_x __a = pos_y __a = (pos_y, pos_x) __a = goal_x __a = goal_y __a = g_cost __a = parent __a = self.calculate_heuristic() def __UpperCAmelCase ( self ): __a = abs(self.pos_x - self.goal_x ) __a = abs(self.pos_y - self.goal_y ) return dx + dy def __lt__( self , _a ): return self.f_cost < other.f_cost class __lowerCAmelCase : '''simple docstring''' def __init__( self , _a , _a ): __a = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , _a ) __a = Node(goal[1] , goal[0] , goal[1] , goal[0] , 99_999 , _a ) __a = [self.start] __a = [] __a = False def __UpperCAmelCase ( self ): while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() __a = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: __a = True return self.retrace_path(_a ) self.closed_nodes.append(_a ) __a = self.get_successors(_a ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(_a ) else: # retrieve the best current path __a = self.open_nodes.pop(self.open_nodes.index(_a ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(_a ) else: self.open_nodes.append(_a ) if not self.reached: return [self.start.pos] return None def __UpperCAmelCase ( self , _a ): __a = [] for action in delta: __a = parent.pos_x + action[1] __a = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(_a ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( _a , _a , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , _a , ) ) return successors def __UpperCAmelCase ( self , _a ): __a = node __a = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) __a = current_node.parent path.reverse() return path if __name__ == "__main__": lowercase_ = (0, 0) lowercase_ = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) print("------") lowercase_ = GreedyBestFirst(init, goal) lowercase_ = greedy_bf.search() if path: for pos_x, pos_y in path: lowercase_ = 2 for elem in grid: print(elem)
695
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = {"openai-gpt": "https://huggingface.co/openai-gpt/resolve/main/config.json"} class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Any = 'openai-gpt' __UpperCAmelCase : Any = { 'max_position_embeddings': 'n_positions', 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , _a=40_478 , _a=512 , _a=768 , _a=12 , _a=12 , _a="gelu" , _a=0.1 , _a=0.1 , _a=0.1 , _a=1E-5 , _a=0.02 , _a="cls_index" , _a=True , _a=None , _a=True , _a=0.1 , **_a , ): __a = vocab_size __a = n_positions __a = n_embd __a = n_layer __a = n_head __a = afn __a = resid_pdrop __a = embd_pdrop __a = attn_pdrop __a = layer_norm_epsilon __a = initializer_range __a = summary_type __a = summary_use_proj __a = summary_activation __a = summary_first_dropout __a = summary_proj_to_labels super().__init__(**_a )
695
"""simple docstring""" import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : str ) -> List[Any]: # Initialise PyTorch model __a = RemBertConfig.from_json_file(lowerCAmelCase__ ) print('''Building PyTorch model from configuration: {}'''.format(str(lowerCAmelCase__ ) ) ) __a = RemBertModel(lowerCAmelCase__ ) # Load weights from tf checkpoint load_tf_weights_in_rembert(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Save pytorch-model print('''Save PyTorch model to {}'''.format(lowerCAmelCase__ ) ) torch.save(model.state_dict() , lowerCAmelCase__ ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--rembert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained RemBERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) lowercase_ = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
695
1
"""simple docstring""" import os import unittest from transformers import FunnelTokenizer, FunnelTokenizerFast from transformers.models.funnel.tokenization_funnel import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Dict = FunnelTokenizer __UpperCAmelCase : List[str] = FunnelTokenizerFast __UpperCAmelCase : str = True __UpperCAmelCase : Optional[int] = True def __UpperCAmelCase ( self ): super().setUp() __a = [ '''<unk>''', '''<cls>''', '''<sep>''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] __a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def __UpperCAmelCase ( self , **_a ): return FunnelTokenizer.from_pretrained(self.tmpdirname , **_a ) def __UpperCAmelCase ( self , **_a ): return FunnelTokenizerFast.from_pretrained(self.tmpdirname , **_a ) def __UpperCAmelCase ( self , _a ): __a = '''UNwant\u00E9d,running''' __a = '''unwanted, running''' return input_text, output_text def __UpperCAmelCase ( self ): __a = self.tokenizer_class(self.vocab_file ) __a = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(_a , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , [7, 4, 5, 10, 8, 9] ) def __UpperCAmelCase ( self ): __a = self.get_tokenizers(do_lower_case=_a ) for tokenizer in tokenizers: __a = tokenizer('''UNwant\u00E9d,running''' ) __a = len(inputs['''input_ids'''] ) - 1 self.assertListEqual(inputs['''token_type_ids'''] , [2] + [0] * sentence_len ) __a = tokenizer('''UNwant\u00E9d,running''' , '''UNwant\u00E9d,running''' ) self.assertListEqual(inputs['''token_type_ids'''] , [2] + [0] * sentence_len + [1] * sentence_len )
695
"""simple docstring""" import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel lowercase_ = "0.12" # assumed parallelism: 8 @require_flax @is_staging_test class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @classmethod def __UpperCAmelCase ( cls ): __a = TOKEN HfFolder.save_token(_a ) @classmethod def __UpperCAmelCase ( cls ): try: delete_repo(token=cls._token , repo_id='''test-model-flax''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-model-flax-org''' ) except HTTPError: pass def __UpperCAmelCase ( self ): __a = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) __a = FlaxBertModel(_a ) model.push_to_hub('''test-model-flax''' , use_auth_token=self._token ) __a = FlaxBertModel.from_pretrained(f'''{USER}/test-model-flax''' ) __a = flatten_dict(unfreeze(model.params ) ) __a = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): __a = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_a , 1E-3 , msg=f'''{key} not identical''' ) # Reset repo delete_repo(token=self._token , repo_id='''test-model-flax''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(_a , repo_id='''test-model-flax''' , push_to_hub=_a , use_auth_token=self._token ) __a = FlaxBertModel.from_pretrained(f'''{USER}/test-model-flax''' ) __a = flatten_dict(unfreeze(model.params ) ) __a = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): __a = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_a , 1E-3 , msg=f'''{key} not identical''' ) def __UpperCAmelCase ( self ): __a = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) __a = FlaxBertModel(_a ) model.push_to_hub('''valid_org/test-model-flax-org''' , use_auth_token=self._token ) __a = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) __a = flatten_dict(unfreeze(model.params ) ) __a = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): __a = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_a , 1E-3 , msg=f'''{key} not identical''' ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-model-flax-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( _a , repo_id='''valid_org/test-model-flax-org''' , push_to_hub=_a , use_auth_token=self._token ) __a = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) __a = flatten_dict(unfreeze(model.params ) ) __a = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): __a = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_a , 1E-3 , msg=f'''{key} not identical''' ) def lowercase ( lowerCAmelCase__ : str , lowerCAmelCase__ : Dict ) -> Optional[int]: __a = True __a = flatten_dict(modela.params ) __a = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1e-4: __a = False return models_are_equal @require_flax class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self ): __a = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) __a = FlaxBertModel(_a ) __a = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(_a , _a ) ) with self.assertRaises(_a ): __a = FlaxBertModel.from_pretrained(_a ) __a = FlaxBertModel.from_pretrained(_a , subfolder=_a ) self.assertTrue(check_models_equal(_a , _a ) ) def __UpperCAmelCase ( self ): __a = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) __a = FlaxBertModel(_a ) __a = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(_a , _a ) , max_shard_size='''10KB''' ) with self.assertRaises(_a ): __a = FlaxBertModel.from_pretrained(_a ) __a = FlaxBertModel.from_pretrained(_a , subfolder=_a ) self.assertTrue(check_models_equal(_a , _a ) ) def __UpperCAmelCase ( self ): __a = '''bert''' __a = '''hf-internal-testing/tiny-random-bert-subfolder''' with self.assertRaises(_a ): __a = FlaxBertModel.from_pretrained(_a ) __a = FlaxBertModel.from_pretrained(_a , subfolder=_a ) self.assertIsNotNone(_a ) def __UpperCAmelCase ( self ): __a = '''bert''' __a = '''hf-internal-testing/tiny-random-bert-sharded-subfolder''' with self.assertRaises(_a ): __a = FlaxBertModel.from_pretrained(_a ) __a = FlaxBertModel.from_pretrained(_a , subfolder=_a ) self.assertIsNotNone(_a )
695
1
"""simple docstring""" import json import os import shutil import warnings from argparse import ArgumentParser, Namespace from pathlib import Path from typing import List from ..utils import logging from . import BaseTransformersCLICommand try: from cookiecutter.main import cookiecutter lowercase_ = True except ImportError: lowercase_ = False lowercase_ = logging.get_logger(__name__) # pylint: disable=invalid-name def lowercase ( lowerCAmelCase__ : Namespace ) -> Optional[int]: return AddNewModelCommand(args.testing , args.testing_file , path=args.path ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' @staticmethod def __UpperCAmelCase ( _a ): __a = parser.add_parser('''add-new-model''' ) add_new_model_parser.add_argument('''--testing''' , action='''store_true''' , help='''If in testing mode.''' ) add_new_model_parser.add_argument('''--testing_file''' , type=_a , help='''Configuration file on which to run.''' ) add_new_model_parser.add_argument( '''--path''' , type=_a , help='''Path to cookiecutter. Should only be used for testing purposes.''' ) add_new_model_parser.set_defaults(func=_a ) def __init__( self , _a , _a , _a=None , *_a ): __a = testing __a = testing_file __a = path def __UpperCAmelCase ( self ): warnings.warn( '''The command `transformers-cli add-new-model` is deprecated and will be removed in v5 of Transformers. ''' '''It is not actively maintained anymore, so might give a result that won\'t pass all tests and quality ''' '''checks, you should use `transformers-cli add-new-model-like` instead.''' ) if not _has_cookiecutter: raise ImportError( '''Model creation dependencies are required to use the `add_new_model` command. Install them by running ''' '''the following at the root of your `transformers` clone:\n\n\t$ pip install -e .[modelcreation]\n''' ) # Ensure that there is no other `cookiecutter-template-xxx` directory in the current working directory __a = [directory for directory in os.listdir() if '''cookiecutter-template-''' == directory[:22]] if len(_a ) > 0: raise ValueError( '''Several directories starting with `cookiecutter-template-` in current working directory. ''' '''Please clean your directory by removing all folders starting with `cookiecutter-template-` or ''' '''change your working directory.''' ) __a = ( Path(_a ).parent.parent.parent.parent if self._path is None else Path(self._path ).parent.parent ) __a = path_to_transformer_root / '''templates''' / '''adding_a_new_model''' # Execute cookiecutter if not self._testing: cookiecutter(str(_a ) ) else: with open(self._testing_file , '''r''' ) as configuration_file: __a = json.load(_a ) cookiecutter( str(path_to_cookiecutter if self._path is None else self._path ) , no_input=_a , extra_context=_a , ) __a = [directory for directory in os.listdir() if '''cookiecutter-template-''' in directory[:22]][0] # Retrieve configuration with open(directory + '''/configuration.json''' , '''r''' ) as configuration_file: __a = json.load(_a ) __a = configuration['''lowercase_modelname'''] __a = configuration['''generate_tensorflow_pytorch_and_flax'''] os.remove(f'''{directory}/configuration.json''' ) __a = '''PyTorch''' in generate_tensorflow_pytorch_and_flax __a = '''TensorFlow''' in generate_tensorflow_pytorch_and_flax __a = '''Flax''' in generate_tensorflow_pytorch_and_flax __a = f'''{path_to_transformer_root}/src/transformers/models/{lowercase_model_name}''' os.makedirs(_a , exist_ok=_a ) os.makedirs(f'''{path_to_transformer_root}/tests/models/{lowercase_model_name}''' , exist_ok=_a ) # Tests require submodules as they have parent imports with open(f'''{path_to_transformer_root}/tests/models/{lowercase_model_name}/__init__.py''' , '''w''' ): pass shutil.move( f'''{directory}/__init__.py''' , f'''{model_dir}/__init__.py''' , ) shutil.move( f'''{directory}/configuration_{lowercase_model_name}.py''' , f'''{model_dir}/configuration_{lowercase_model_name}.py''' , ) def remove_copy_lines(_a ): with open(_a , '''r''' ) as f: __a = f.readlines() with open(_a , '''w''' ) as f: for line in lines: if "# Copied from transformers." not in line: f.write(_a ) if output_pytorch: if not self._testing: remove_copy_lines(f'''{directory}/modeling_{lowercase_model_name}.py''' ) shutil.move( f'''{directory}/modeling_{lowercase_model_name}.py''' , f'''{model_dir}/modeling_{lowercase_model_name}.py''' , ) shutil.move( f'''{directory}/test_modeling_{lowercase_model_name}.py''' , f'''{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_{lowercase_model_name}.py''' , ) else: os.remove(f'''{directory}/modeling_{lowercase_model_name}.py''' ) os.remove(f'''{directory}/test_modeling_{lowercase_model_name}.py''' ) if output_tensorflow: if not self._testing: remove_copy_lines(f'''{directory}/modeling_tf_{lowercase_model_name}.py''' ) shutil.move( f'''{directory}/modeling_tf_{lowercase_model_name}.py''' , f'''{model_dir}/modeling_tf_{lowercase_model_name}.py''' , ) shutil.move( f'''{directory}/test_modeling_tf_{lowercase_model_name}.py''' , f'''{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_tf_{lowercase_model_name}.py''' , ) else: os.remove(f'''{directory}/modeling_tf_{lowercase_model_name}.py''' ) os.remove(f'''{directory}/test_modeling_tf_{lowercase_model_name}.py''' ) if output_flax: if not self._testing: remove_copy_lines(f'''{directory}/modeling_flax_{lowercase_model_name}.py''' ) shutil.move( f'''{directory}/modeling_flax_{lowercase_model_name}.py''' , f'''{model_dir}/modeling_flax_{lowercase_model_name}.py''' , ) shutil.move( f'''{directory}/test_modeling_flax_{lowercase_model_name}.py''' , f'''{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_flax_{lowercase_model_name}.py''' , ) else: os.remove(f'''{directory}/modeling_flax_{lowercase_model_name}.py''' ) os.remove(f'''{directory}/test_modeling_flax_{lowercase_model_name}.py''' ) shutil.move( f'''{directory}/{lowercase_model_name}.md''' , f'''{path_to_transformer_root}/docs/source/en/model_doc/{lowercase_model_name}.md''' , ) shutil.move( f'''{directory}/tokenization_{lowercase_model_name}.py''' , f'''{model_dir}/tokenization_{lowercase_model_name}.py''' , ) shutil.move( f'''{directory}/tokenization_fast_{lowercase_model_name}.py''' , f'''{model_dir}/tokenization_{lowercase_model_name}_fast.py''' , ) from os import fdopen, remove from shutil import copymode, move from tempfile import mkstemp def replace(_a , _a , _a ): # Create temp file __a , __a = mkstemp() __a = False with fdopen(_a , '''w''' ) as new_file: with open(_a ) as old_file: for line in old_file: new_file.write(_a ) if line_to_copy_below in line: __a = True for line_to_copy in lines_to_copy: new_file.write(_a ) if not line_found: raise ValueError(f'''Line {line_to_copy_below} was not found in file.''' ) # Copy the file permissions from the old file to the new file copymode(_a , _a ) # Remove original file remove(_a ) # Move new file move(_a , _a ) def skip_units(_a ): return ( ("generating PyTorch" in line and not output_pytorch) or ("generating TensorFlow" in line and not output_tensorflow) or ("generating Flax" in line and not output_flax) ) def replace_in_files(_a ): with open(_a ) as datafile: __a = [] __a = False __a = False for line in datafile: if "# To replace in: " in line and "##" not in line: __a = line.split('''"''' )[1] __a = skip_units(_a ) elif "# Below: " in line and "##" not in line: __a = line.split('''"''' )[1] __a = skip_units(_a ) elif "# End." in line and "##" not in line: if not skip_file and not skip_snippet: replace(_a , _a , _a ) __a = [] elif "# Replace with" in line and "##" not in line: __a = [] elif "##" not in line: lines_to_copy.append(_a ) remove(_a ) replace_in_files(f'''{directory}/to_replace_{lowercase_model_name}.py''' ) os.rmdir(_a )
695
"""simple docstring""" import unittest from diffusers.models.unet_ad_blocks import * # noqa F403 from diffusers.utils import torch_device from .test_unet_blocks_common import UNetBlockTesterMixin class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = DownBlockaD # noqa F405 __UpperCAmelCase : Any = 'down' def __UpperCAmelCase ( self ): __a = [-0.0232, -0.9869, 0.8054, -0.0637, -0.1688, -1.4264, 0.4470, -1.3394, 0.0904] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : str = ResnetDownsampleBlockaD # noqa F405 __UpperCAmelCase : List[str] = 'down' def __UpperCAmelCase ( self ): __a = [0.0710, 0.2410, -0.7320, -1.0757, -1.1343, 0.3540, -0.0133, -0.2576, 0.0948] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Optional[int] = AttnDownBlockaD # noqa F405 __UpperCAmelCase : Optional[Any] = 'down' def __UpperCAmelCase ( self ): __a = [0.0636, 0.8964, -0.6234, -1.0131, 0.0844, 0.4935, 0.3437, 0.0911, -0.2957] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : List[Any] = CrossAttnDownBlockaD # noqa F405 __UpperCAmelCase : Optional[Any] = 'down' def __UpperCAmelCase ( self ): __a , __a = super().prepare_init_args_and_inputs_for_common() __a = 32 return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [0.2238, -0.7396, -0.2255, -0.3829, 0.1925, 1.1665, 0.0603, -0.7295, 0.1983] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : int = SimpleCrossAttnDownBlockaD # noqa F405 __UpperCAmelCase : Any = 'down' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_encoder_hidden_states=_a ) def __UpperCAmelCase ( self ): __a , __a = super().prepare_init_args_and_inputs_for_common() __a = 32 return init_dict, inputs_dict @unittest.skipIf(torch_device == '''mps''' , '''MPS result is not consistent''' ) def __UpperCAmelCase ( self ): __a = [0.7921, -0.0992, -0.1962, -0.7695, -0.4242, 0.7804, 0.4737, 0.2765, 0.3338] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : int = SkipDownBlockaD # noqa F405 __UpperCAmelCase : Tuple = 'down' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_skip_sample=_a ) def __UpperCAmelCase ( self ): __a = [-0.0845, -0.2087, -0.2465, 0.0971, 0.1900, -0.0484, 0.2664, 0.4179, 0.5069] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : List[Any] = AttnSkipDownBlockaD # noqa F405 __UpperCAmelCase : Optional[int] = 'down' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_skip_sample=_a ) def __UpperCAmelCase ( self ): __a = [0.5539, 0.1609, 0.4924, 0.0537, -0.1995, 0.4050, 0.0979, -0.2721, -0.0642] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : int = DownEncoderBlockaD # noqa F405 __UpperCAmelCase : Optional[int] = 'down' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_temb=_a ) def __UpperCAmelCase ( self ): __a = { '''in_channels''': 32, '''out_channels''': 32, } __a = self.dummy_input return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [1.1102, 0.5302, 0.4872, -0.0023, -0.8042, 0.0483, -0.3489, -0.5632, 0.7626] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = AttnDownEncoderBlockaD # noqa F405 __UpperCAmelCase : Any = 'down' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_temb=_a ) def __UpperCAmelCase ( self ): __a = { '''in_channels''': 32, '''out_channels''': 32, } __a = self.dummy_input return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [0.8966, -0.1486, 0.8568, 0.8141, -0.9046, -0.1342, -0.0972, -0.7417, 0.1538] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : str = UNetMidBlockaD # noqa F405 __UpperCAmelCase : Any = 'mid' def __UpperCAmelCase ( self ): __a = { '''in_channels''': 32, '''temb_channels''': 128, } __a = self.dummy_input return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [-0.1062, 1.7248, 0.3494, 1.4569, -0.0910, -1.2421, -0.9984, 0.6736, 1.0028] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : str = UNetMidBlockaDCrossAttn # noqa F405 __UpperCAmelCase : str = 'mid' def __UpperCAmelCase ( self ): __a , __a = super().prepare_init_args_and_inputs_for_common() __a = 32 return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [0.0187, 2.4220, 0.4484, 1.1203, -0.6121, -1.5122, -0.8270, 0.7851, 1.8335] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Any = UNetMidBlockaDSimpleCrossAttn # noqa F405 __UpperCAmelCase : List[Any] = 'mid' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_encoder_hidden_states=_a ) def __UpperCAmelCase ( self ): __a , __a = super().prepare_init_args_and_inputs_for_common() __a = 32 return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [0.7143, 1.9974, 0.5448, 1.3977, 0.1282, -1.1237, -1.4238, 0.5530, 0.8880] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = UpBlockaD # noqa F405 __UpperCAmelCase : Union[str, Any] = 'up' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=_a ) def __UpperCAmelCase ( self ): __a = [-0.2041, -0.4165, -0.3022, 0.0041, -0.6628, -0.7053, 0.1928, -0.0325, 0.0523] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : str = ResnetUpsampleBlockaD # noqa F405 __UpperCAmelCase : int = 'up' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=_a ) def __UpperCAmelCase ( self ): __a = [0.2287, 0.3549, -0.1346, 0.4797, -0.1715, -0.9649, 0.7305, -0.5864, -0.6244] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Dict = CrossAttnUpBlockaD # noqa F405 __UpperCAmelCase : List[Any] = 'up' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=_a ) def __UpperCAmelCase ( self ): __a , __a = super().prepare_init_args_and_inputs_for_common() __a = 32 return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [-0.1403, -0.3515, -0.0420, -0.1425, 0.3167, 0.5094, -0.2181, 0.5931, 0.5582] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = SimpleCrossAttnUpBlockaD # noqa F405 __UpperCAmelCase : Optional[int] = 'up' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=_a , include_encoder_hidden_states=_a ) def __UpperCAmelCase ( self ): __a , __a = super().prepare_init_args_and_inputs_for_common() __a = 32 return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [0.2645, 0.1480, 0.0909, 0.8044, -0.9758, -0.9083, 0.0994, -1.1453, -0.7402] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Any = AttnUpBlockaD # noqa F405 __UpperCAmelCase : List[Any] = 'up' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=_a ) @unittest.skipIf(torch_device == '''mps''' , '''MPS result is not consistent''' ) def __UpperCAmelCase ( self ): __a = [0.0979, 0.1326, 0.0021, 0.0659, 0.2249, 0.0059, 0.1132, 0.5952, 0.1033] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Any = SkipUpBlockaD # noqa F405 __UpperCAmelCase : str = 'up' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=_a ) def __UpperCAmelCase ( self ): __a = [-0.0893, -0.1234, -0.1506, -0.0332, 0.0123, -0.0211, 0.0566, 0.0143, 0.0362] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = AttnSkipUpBlockaD # noqa F405 __UpperCAmelCase : int = 'up' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=_a ) def __UpperCAmelCase ( self ): __a = [0.0361, 0.0617, 0.2787, -0.0350, 0.0342, 0.3421, -0.0843, 0.0913, 0.3015] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = UpDecoderBlockaD # noqa F405 __UpperCAmelCase : List[str] = 'up' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_temb=_a ) def __UpperCAmelCase ( self ): __a = {'''in_channels''': 32, '''out_channels''': 32} __a = self.dummy_input return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [0.4404, 0.1998, -0.9886, -0.3320, -0.3128, -0.7034, -0.6955, -0.2338, -0.3137] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Optional[int] = AttnUpDecoderBlockaD # noqa F405 __UpperCAmelCase : Any = 'up' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_temb=_a ) def __UpperCAmelCase ( self ): __a = {'''in_channels''': 32, '''out_channels''': 32} __a = self.dummy_input return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [0.6738, 0.4491, 0.1055, 1.0710, 0.7316, 0.3339, 0.3352, 0.1023, 0.3568] super().test_output(_a )
695
1
"""simple docstring""" import argparse import os import sys from unittest.mock import patch import pytorch_lightning as pl import timeout_decorator import torch from distillation import SummarizationDistiller, distill_main from finetune import SummarizationModule, main from transformers import MarianMTModel from transformers.file_utils import cached_path from transformers.testing_utils import TestCasePlus, require_torch_gpu, slow from utils import load_json lowercase_ = "sshleifer/mar_enro_6_3_student" class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __UpperCAmelCase ( self ): super().setUp() __a = cached_path( '''https://cdn-datasets.huggingface.co/translation/wmt_en_ro-tr40k-va0.5k-te0.5k.tar.gz''' , extract_compressed_file=_a , ) __a = f'''{data_cached}/wmt_en_ro-tr40k-va0.5k-te0.5k''' @slow @require_torch_gpu def __UpperCAmelCase ( self ): MarianMTModel.from_pretrained(_a ) @slow @require_torch_gpu def __UpperCAmelCase ( self ): __a = { '''$MAX_LEN''': 64, '''$BS''': 64, '''$GAS''': 1, '''$ENRO_DIR''': self.data_dir, '''facebook/mbart-large-cc25''': MARIAN_MODEL, # "val_check_interval=0.25": "val_check_interval=1.0", '''--learning_rate=3e-5''': '''--learning_rate 3e-4''', '''--num_train_epochs 6''': '''--num_train_epochs 1''', } # Clean up bash script __a = (self.test_file_dir / '''train_mbart_cc25_enro.sh''').open().read().split('''finetune.py''' )[1].strip() __a = bash_script.replace('''\\\n''' , '''''' ).strip().replace('''"$@"''' , '''''' ) for k, v in env_vars_to_replace.items(): __a = bash_script.replace(_a , str(_a ) ) __a = self.get_auto_remove_tmp_dir() # bash_script = bash_script.replace("--fp16 ", "") __a = f''' --output_dir {output_dir} --tokenizer_name Helsinki-NLP/opus-mt-en-ro --sortish_sampler --do_predict --gpus 1 --freeze_encoder --n_train 40000 --n_val 500 --n_test 500 --fp16_opt_level O1 --num_sanity_val_steps 0 --eval_beams 2 '''.split() # XXX: args.gpus > 1 : handle multi_gpu in the future __a = ['''finetune.py'''] + bash_script.split() + args with patch.object(_a , '''argv''' , _a ): __a = argparse.ArgumentParser() __a = pl.Trainer.add_argparse_args(_a ) __a = SummarizationModule.add_model_specific_args(_a , os.getcwd() ) __a = parser.parse_args() __a = main(_a ) # Check metrics __a = load_json(model.metrics_save_path ) __a = metrics['''val'''][0] __a = metrics['''val'''][-1] self.assertEqual(len(metrics['''val'''] ) , (args.max_epochs / args.val_check_interval) ) assert isinstance(last_step_stats[f'''val_avg_{model.val_metric}'''] , _a ) self.assertGreater(last_step_stats['''val_avg_gen_time'''] , 0.01 ) # model hanging on generate. Maybe bad config was saved. (XXX: old comment/assert?) self.assertLessEqual(last_step_stats['''val_avg_gen_time'''] , 1.0 ) # test learning requirements: # 1. BLEU improves over the course of training by more than 2 pts self.assertGreater(last_step_stats['''val_avg_bleu'''] - first_step_stats['''val_avg_bleu'''] , 2 ) # 2. BLEU finishes above 17 self.assertGreater(last_step_stats['''val_avg_bleu'''] , 17 ) # 3. test BLEU and val BLEU within ~1.1 pt. self.assertLess(abs(metrics['''val'''][-1]['''val_avg_bleu'''] - metrics['''test'''][-1]['''test_avg_bleu'''] ) , 1.1 ) # check lightning ckpt can be loaded and has a reasonable statedict __a = os.listdir(_a ) __a = [x for x in contents if x.endswith('''.ckpt''' )][0] __a = os.path.join(args.output_dir , _a ) __a = torch.load(_a , map_location='''cpu''' ) __a = '''model.model.decoder.layers.0.encoder_attn_layer_norm.weight''' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: __a = {os.path.basename(_a ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['''test'''] ) == 1 class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' @timeout_decorator.timeout(600 ) @slow @require_torch_gpu def __UpperCAmelCase ( self ): __a = f'''{self.test_file_dir_str}/test_data/wmt_en_ro''' __a = { '''--fp16_opt_level=O1''': '''''', '''$MAX_LEN''': 128, '''$BS''': 16, '''$GAS''': 1, '''$ENRO_DIR''': data_dir, '''$m''': '''sshleifer/student_marian_en_ro_6_1''', '''val_check_interval=0.25''': '''val_check_interval=1.0''', } # Clean up bash script __a = ( (self.test_file_dir / '''distil_marian_no_teacher.sh''').open().read().split('''distillation.py''' )[1].strip() ) __a = bash_script.replace('''\\\n''' , '''''' ).strip().replace('''"$@"''' , '''''' ) __a = bash_script.replace('''--fp16 ''' , ''' ''' ) for k, v in env_vars_to_replace.items(): __a = bash_script.replace(_a , str(_a ) ) __a = self.get_auto_remove_tmp_dir() __a = bash_script.replace('''--fp16''' , '''''' ) __a = 6 __a = ( ['''distillation.py'''] + bash_script.split() + [ f'''--output_dir={output_dir}''', '''--gpus=1''', '''--learning_rate=1e-3''', f'''--num_train_epochs={epochs}''', '''--warmup_steps=10''', '''--val_check_interval=1.0''', '''--do_predict''', ] ) with patch.object(_a , '''argv''' , _a ): __a = argparse.ArgumentParser() __a = pl.Trainer.add_argparse_args(_a ) __a = SummarizationDistiller.add_model_specific_args(_a , os.getcwd() ) __a = parser.parse_args() # assert args.gpus == gpus THIS BREAKS for multi_gpu __a = distill_main(_a ) # Check metrics __a = load_json(model.metrics_save_path ) __a = metrics['''val'''][0] __a = metrics['''val'''][-1] assert len(metrics['''val'''] ) >= (args.max_epochs / args.val_check_interval) # +1 accounts for val_sanity_check assert last_step_stats["val_avg_gen_time"] >= 0.01 assert first_step_stats["val_avg_bleu"] < last_step_stats["val_avg_bleu"] # model learned nothing assert 1.0 >= last_step_stats["val_avg_gen_time"] # model hanging on generate. Maybe bad config was saved. assert isinstance(last_step_stats[f'''val_avg_{model.val_metric}'''] , _a ) # check lightning ckpt can be loaded and has a reasonable statedict __a = os.listdir(_a ) __a = [x for x in contents if x.endswith('''.ckpt''' )][0] __a = os.path.join(args.output_dir , _a ) __a = torch.load(_a , map_location='''cpu''' ) __a = '''model.model.decoder.layers.0.encoder_attn_layer_norm.weight''' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: __a = {os.path.basename(_a ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['''test'''] ) == 1
695
"""simple docstring""" import copy from typing import Dict, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING from ..detr import DetrConfig from ..swin import SwinConfig lowercase_ = { "facebook/maskformer-swin-base-ade": ( "https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json" ) # See all MaskFormer models at https://huggingface.co/models?filter=maskformer } lowercase_ = logging.get_logger(__name__) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : str = 'maskformer' __UpperCAmelCase : Optional[int] = {'hidden_size': 'mask_feature_size'} __UpperCAmelCase : Any = ['resnet', 'swin'] __UpperCAmelCase : Dict = ['detr'] def __init__( self , _a = 256 , _a = 256 , _a = 0.1 , _a = False , _a = None , _a = None , _a = 0.02 , _a = 1.0 , _a = 1.0 , _a = 1.0 , _a = 20.0 , _a = None , **_a , ): if backbone_config is None: # fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k __a = SwinConfig( image_size=384 , in_channels=3 , patch_size=4 , embed_dim=128 , depths=[2, 2, 18, 2] , num_heads=[4, 8, 16, 32] , window_size=12 , drop_path_rate=0.3 , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] , ) if isinstance(_a , _a ): __a = backbone_config.pop('''model_type''' ) __a = CONFIG_MAPPING[backbone_model_type] __a = config_class.from_dict(_a ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f'''Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. ''' f'''Supported model types: {','.join(self.backbones_supported )}''' ) if decoder_config is None: # fall back to https://huggingface.co/facebook/detr-resnet-50 __a = DetrConfig() else: # verify that the decoder is supported __a = ( decoder_config.pop('''model_type''' ) if isinstance(_a , _a ) else decoder_config.model_type ) if decoder_type not in self.decoders_supported: raise ValueError( f'''Transformer Decoder {decoder_type} not supported, please use one of''' f''' {','.join(self.decoders_supported )}''' ) if isinstance(_a , _a ): __a = CONFIG_MAPPING[decoder_type] __a = config_class.from_dict(_a ) __a = backbone_config __a = decoder_config # main feature dimension for the model __a = fpn_feature_size __a = mask_feature_size # initializer __a = init_std __a = init_xavier_std # Hungarian matcher && loss __a = cross_entropy_weight __a = dice_weight __a = mask_weight __a = use_auxiliary_loss __a = no_object_weight __a = output_auxiliary_logits __a = self.decoder_config.encoder_attention_heads __a = self.decoder_config.num_hidden_layers super().__init__(**_a ) @classmethod def __UpperCAmelCase ( cls , _a , _a , **_a ): return cls( backbone_config=_a , decoder_config=_a , **_a , ) def __UpperCAmelCase ( self ): __a = copy.deepcopy(self.__dict__ ) __a = self.backbone_config.to_dict() __a = self.decoder_config.to_dict() __a = self.__class__.model_type return output
695
1
"""simple docstring""" from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer lowercase_ = logging.get_logger(__name__) lowercase_ = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} lowercase_ = { "vocab_file": { "allegro/herbert-base-cased": "https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json" }, "merges_file": { "allegro/herbert-base-cased": "https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt" }, } lowercase_ = {"allegro/herbert-base-cased": 5_1_4} lowercase_ = {} class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Dict = VOCAB_FILES_NAMES __UpperCAmelCase : List[str] = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase : Union[str, Any] = PRETRAINED_INIT_CONFIGURATION __UpperCAmelCase : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase : List[Any] = HerbertTokenizer def __init__( self , _a=None , _a=None , _a=None , _a="<s>" , _a="<unk>" , _a="<pad>" , _a="<mask>" , _a="</s>" , **_a , ): super().__init__( _a , _a , tokenizer_file=_a , cls_token=_a , unk_token=_a , pad_token=_a , mask_token=_a , sep_token=_a , **_a , ) def __UpperCAmelCase ( self , _a , _a = None ): __a = [self.cls_token_id] __a = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __UpperCAmelCase ( self , _a , _a = None , _a = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_a , token_ids_a=_a , already_has_special_tokens=_a ) if token_ids_a is None: return [1] + ([0] * len(_a )) + [1] return [1] + ([0] * len(_a )) + [1] + ([0] * len(_a )) + [1] def __UpperCAmelCase ( self , _a , _a = None ): __a = [self.sep_token_id] __a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __UpperCAmelCase ( self , _a , _a = None ): __a = self._tokenizer.model.save(_a , name=_a ) return tuple(_a )
695
"""simple docstring""" from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup lowercase_ = "https://www.indeed.co.in/jobs?q=mobile+app+development&l=" def lowercase ( lowerCAmelCase__ : str = "mumbai" ) -> Generator[tuple[str, str], None, None]: __a = BeautifulSoup(requests.get(url + location ).content , '''html.parser''' ) # This attribute finds out all the specifics listed in a job for job in soup.find_all('''div''' , attrs={'''data-tn-component''': '''organicJob'''} ): __a = job.find('''a''' , attrs={'''data-tn-element''': '''jobTitle'''} ).text.strip() __a = job.find('''span''' , {'''class''': '''company'''} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs("Bangalore"), 1): print(F'''Job {i:>2} is {job[0]} at {job[1]}''')
695
1
"""simple docstring""" import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @property def __UpperCAmelCase ( self ): torch.manual_seed(0 ) __a = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) return model @property def __UpperCAmelCase ( self ): torch.manual_seed(0 ) __a = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=3 , ) return model @property def __UpperCAmelCase ( self ): torch.manual_seed(0 ) __a = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModel(_a ) def __UpperCAmelCase ( self ): __a = self.dummy_uncond_unet __a = DDIMScheduler() __a = self.dummy_vq_model __a = LDMPipeline(unet=_a , vqvae=_a , scheduler=_a ) ldm.to(_a ) ldm.set_progress_bar_config(disable=_a ) __a = torch.manual_seed(0 ) __a = ldm(generator=_a , num_inference_steps=2 , output_type='''numpy''' ).images __a = torch.manual_seed(0 ) __a = ldm(generator=_a , num_inference_steps=2 , output_type='''numpy''' , return_dict=_a )[0] __a = image[0, -3:, -3:, -1] __a = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __a = np.array([0.8512, 0.818, 0.6411, 0.6808, 0.4465, 0.5618, 0.46, 0.6231, 0.5172] ) __a = 1E-2 if torch_device != '''mps''' else 3E-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance @slow @require_torch class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self ): __a = LDMPipeline.from_pretrained('''CompVis/ldm-celebahq-256''' ) ldm.to(_a ) ldm.set_progress_bar_config(disable=_a ) __a = torch.manual_seed(0 ) __a = ldm(generator=_a , num_inference_steps=5 , output_type='''numpy''' ).images __a = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) __a = np.array([0.4399, 0.4_4975, 0.4_6825, 0.474, 0.4359, 0.4581, 0.4_5095, 0.4341, 0.4447] ) __a = 1E-2 if torch_device != '''mps''' else 3E-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
695
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "bigcode/gpt_bigcode-santacoder": "https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json", } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : List[str] = 'gpt_bigcode' __UpperCAmelCase : Tuple = ['past_key_values'] __UpperCAmelCase : Dict = { 'hidden_size': 'n_embd', 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , _a=50_257 , _a=1_024 , _a=768 , _a=12 , _a=12 , _a=None , _a="gelu_pytorch_tanh" , _a=0.1 , _a=0.1 , _a=0.1 , _a=1E-5 , _a=0.02 , _a=True , _a=True , _a=50_256 , _a=50_256 , _a=True , _a=True , _a=True , **_a , ): __a = vocab_size __a = n_positions __a = n_embd __a = n_layer __a = n_head __a = n_inner __a = activation_function __a = resid_pdrop __a = embd_pdrop __a = attn_pdrop __a = layer_norm_epsilon __a = initializer_range __a = scale_attn_weights __a = use_cache __a = attention_softmax_in_fpaa __a = scale_attention_softmax_in_fpaa __a = multi_query __a = bos_token_id __a = eos_token_id super().__init__(bos_token_id=_a , eos_token_id=_a , **_a )
695
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "caidas/swin2sr-classicalsr-x2-64": ( "https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json" ), } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Dict = 'swin2sr' __UpperCAmelCase : List[Any] = { 'hidden_size': 'embed_dim', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self , _a=64 , _a=1 , _a=3 , _a=180 , _a=[6, 6, 6, 6, 6, 6] , _a=[6, 6, 6, 6, 6, 6] , _a=8 , _a=2.0 , _a=True , _a=0.0 , _a=0.0 , _a=0.1 , _a="gelu" , _a=False , _a=0.02 , _a=1E-5 , _a=2 , _a=1.0 , _a="1conv" , _a="pixelshuffle" , **_a , ): super().__init__(**_a ) __a = image_size __a = patch_size __a = num_channels __a = embed_dim __a = depths __a = len(_a ) __a = num_heads __a = window_size __a = mlp_ratio __a = qkv_bias __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = drop_path_rate __a = hidden_act __a = use_absolute_embeddings __a = layer_norm_eps __a = initializer_range __a = upscale __a = img_range __a = resi_connection __a = upsampler
695
"""simple docstring""" import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler lowercase_ = 1_6 lowercase_ = 3_2 def lowercase ( lowerCAmelCase__ : Accelerator , lowerCAmelCase__ : int = 16 , lowerCAmelCase__ : str = "bert-base-cased" ) -> Optional[int]: __a = AutoTokenizer.from_pretrained(lowerCAmelCase__ ) __a = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(lowerCAmelCase__ : Optional[Any] ): # max_length=None => use the model max length (it's actually the default) __a = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset __a = datasets.map( lowerCAmelCase__ , batched=lowerCAmelCase__ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , load_from_cache_file=lowerCAmelCase__ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __a = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(lowerCAmelCase__ : int ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(lowerCAmelCase__ , padding='''max_length''' , max_length=128 , return_tensors='''pt''' ) return tokenizer.pad(lowerCAmelCase__ , padding='''longest''' , return_tensors='''pt''' ) # Instantiate dataloaders. __a = DataLoader( tokenized_datasets['''train'''] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ ) __a = DataLoader( tokenized_datasets['''validation'''] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ ) return train_dataloader, eval_dataloader def lowercase ( lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Union[str, Any] ) -> Optional[int]: # Initialize accelerator __a = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __a = config['''lr'''] __a = int(config['''num_epochs'''] ) __a = int(config['''seed'''] ) __a = int(config['''batch_size'''] ) __a = args.model_name_or_path set_seed(lowerCAmelCase__ ) __a , __a = get_dataloaders(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __a = AutoModelForSequenceClassification.from_pretrained(lowerCAmelCase__ , return_dict=lowerCAmelCase__ ) # Instantiate optimizer __a = ( AdamW if accelerator.state.deepspeed_plugin is None or '''optimizer''' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) __a = optimizer_cls(params=model.parameters() , lr=lowerCAmelCase__ ) if accelerator.state.deepspeed_plugin is not None: __a = accelerator.state.deepspeed_plugin.deepspeed_config[ '''gradient_accumulation_steps''' ] else: __a = 1 __a = (len(lowerCAmelCase__ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): __a = get_linear_schedule_with_warmup( optimizer=lowerCAmelCase__ , num_warmup_steps=0 , num_training_steps=lowerCAmelCase__ , ) else: __a = DummyScheduler(lowerCAmelCase__ , total_num_steps=lowerCAmelCase__ , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __a , __a , __a , __a , __a = accelerator.prepare( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # We need to keep track of how many total steps we have iterated over __a = 0 # We also need to keep track of the stating epoch so files are named properly __a = 0 # Now we train the model __a = evaluate.load('''glue''' , '''mrpc''' ) __a = 0 __a = {} for epoch in range(lowerCAmelCase__ , lowerCAmelCase__ ): model.train() for step, batch in enumerate(lowerCAmelCase__ ): __a = model(**lowerCAmelCase__ ) __a = outputs.loss __a = loss / gradient_accumulation_steps accelerator.backward(lowerCAmelCase__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 model.eval() __a = 0 for step, batch in enumerate(lowerCAmelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __a = model(**lowerCAmelCase__ ) __a = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times __a , __a = accelerator.gather( (predictions, batch['''labels''']) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(lowerCAmelCase__ ) - 1: __a = predictions[: len(eval_dataloader.dataset ) - samples_seen] __a = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=lowerCAmelCase__ , references=lowerCAmelCase__ , ) __a = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}:''' , lowerCAmelCase__ ) __a = eval_metric['''accuracy'''] if best_performance < eval_metric["accuracy"]: __a = eval_metric['''accuracy'''] if args.performance_lower_bound is not None: assert ( args.performance_lower_bound <= best_performance ), f'''Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}''' accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , '''all_results.json''' ) , '''w''' ) as f: json.dump(lowerCAmelCase__ , lowerCAmelCase__ ) def lowercase ( ) -> List[str]: __a = argparse.ArgumentParser(description='''Simple example of training script tracking peak GPU memory usage.''' ) parser.add_argument( '''--model_name_or_path''' , type=lowerCAmelCase__ , default='''bert-base-cased''' , help='''Path to pretrained model or model identifier from huggingface.co/models.''' , required=lowerCAmelCase__ , ) parser.add_argument( '''--output_dir''' , type=lowerCAmelCase__ , default='''.''' , help='''Optional save directory where all checkpoint folders will be stored. Default is the current working directory.''' , ) parser.add_argument( '''--performance_lower_bound''' , type=lowerCAmelCase__ , default=lowerCAmelCase__ , help='''Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value.''' , ) parser.add_argument( '''--num_epochs''' , type=lowerCAmelCase__ , default=3 , help='''Number of train epochs.''' , ) __a = parser.parse_args() __a = {'''lr''': 2e-5, '''num_epochs''': args.num_epochs, '''seed''': 42, '''batch_size''': 16} training_function(lowerCAmelCase__ , lowerCAmelCase__ ) if __name__ == "__main__": main()
695
1
"""simple docstring""" import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowercase_ = get_tests_dir("fixtures/test_sentencepiece_no_bos.model") @require_sentencepiece @require_tokenizers class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : List[str] = PegasusTokenizer __UpperCAmelCase : Any = PegasusTokenizerFast __UpperCAmelCase : Union[str, Any] = True __UpperCAmelCase : List[str] = True def __UpperCAmelCase ( self ): super().setUp() # We have a SentencePiece fixture for testing __a = PegasusTokenizer(_a ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def __UpperCAmelCase ( self ): return PegasusTokenizer.from_pretrained('''google/pegasus-large''' ) def __UpperCAmelCase ( self , **_a ): return PegasusTokenizer.from_pretrained(self.tmpdirname , **_a ) def __UpperCAmelCase ( self , _a ): return ("This is a test", "This is a test") def __UpperCAmelCase ( self ): __a = '''</s>''' __a = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_a ) , _a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_a ) , _a ) def __UpperCAmelCase ( self ): __a = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<pad>''' ) self.assertEqual(vocab_keys[1] , '''</s>''' ) self.assertEqual(vocab_keys[-1] , '''v''' ) self.assertEqual(len(_a ) , 1_103 ) def __UpperCAmelCase ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 1_103 ) def __UpperCAmelCase ( self ): __a = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) __a = self.tokenizer_class.from_pretrained(self.tmpdirname ) __a = ( '''Let\'s see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important''' ''' </s> <pad> <pad> <pad>''' ) __a = rust_tokenizer([raw_input_str] , return_tensors=_a , add_special_tokens=_a ).input_ids[0] __a = py_tokenizer([raw_input_str] , return_tensors=_a , add_special_tokens=_a ).input_ids[0] self.assertListEqual(_a , _a ) def __UpperCAmelCase ( self ): __a = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word __a = '''<mask_1> To ensure a <mask_2> flow of bank resolutions.''' __a = [2, 413, 615, 114, 3, 1_971, 113, 1_679, 10_710, 107, 1] __a = tokenizer([raw_input_str] , return_tensors=_a ).input_ids[0] self.assertListEqual(_a , _a ) def __UpperCAmelCase ( self ): __a = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 96_103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1_024 __a = '''To ensure a smooth flow of bank resolutions.''' __a = [413, 615, 114, 2_291, 1_971, 113, 1_679, 10_710, 107, 1] __a = tokenizer([raw_input_str] , return_tensors=_a ).input_ids[0] self.assertListEqual(_a , _a ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def __UpperCAmelCase ( self ): __a = ['''This is going to be way too long.''' * 150, '''short example'''] __a = ['''not super long but more than 5 tokens''', '''tiny'''] __a = self._large_tokenizer(_a , padding=_a , truncation=_a , return_tensors='''pt''' ) __a = self._large_tokenizer( text_target=_a , max_length=5 , padding=_a , truncation=_a , return_tensors='''pt''' ) assert batch.input_ids.shape == (2, 1_024) assert batch.attention_mask.shape == (2, 1_024) assert targets["input_ids"].shape == (2, 5) assert len(_a ) == 2 # input_ids, attention_mask. @slow def __UpperCAmelCase ( self ): # fmt: off __a = {'''input_ids''': [[38_979, 143, 18_485, 606, 130, 26_669, 87_686, 121, 54_189, 1_129, 111, 26_669, 87_686, 121, 9_114, 14_787, 121, 13_249, 158, 592, 956, 121, 14_621, 31_576, 143, 62_613, 108, 9_688, 930, 43_430, 11_562, 62_613, 304, 108, 11_443, 897, 108, 9_314, 17_415, 63_399, 108, 11_443, 7_614, 18_316, 118, 4_284, 7_148, 12_430, 143, 1_400, 25_703, 158, 111, 4_284, 7_148, 11_772, 143, 21_297, 1_064, 158, 122, 204, 3_506, 1_754, 1_133, 14_787, 1_581, 115, 33_224, 4_482, 111, 1_355, 110, 29_173, 317, 50_833, 108, 20_147, 94_665, 111, 77_198, 107, 1], [110, 62_613, 117, 638, 112, 1_133, 121, 20_098, 1_355, 79_050, 13_872, 135, 1_596, 53_541, 1_352, 141, 13_039, 5_542, 124, 302, 518, 111, 268, 2_956, 115, 149, 4_427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1_235, 2_799, 18_289, 17_780, 204, 109, 9_474, 1_296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_a , model_name='''google/bigbird-pegasus-large-arxiv''' , revision='''ba85d0851d708441f91440d509690f1ab6353415''' , ) @require_sentencepiece @require_tokenizers class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : int = PegasusTokenizer __UpperCAmelCase : Any = PegasusTokenizerFast __UpperCAmelCase : List[str] = True __UpperCAmelCase : List[Any] = True def __UpperCAmelCase ( self ): super().setUp() # We have a SentencePiece fixture for testing __a = PegasusTokenizer(_a , offset=0 , mask_token_sent=_a , mask_token='''[MASK]''' ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def __UpperCAmelCase ( self ): return PegasusTokenizer.from_pretrained('''google/bigbird-pegasus-large-arxiv''' ) def __UpperCAmelCase ( self , **_a ): return PegasusTokenizer.from_pretrained(self.tmpdirname , **_a ) def __UpperCAmelCase ( self , _a ): return ("This is a test", "This is a test") def __UpperCAmelCase ( self ): __a = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) __a = self.tokenizer_class.from_pretrained(self.tmpdirname ) __a = ( '''Let\'s see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>''' ''' <pad> <pad> <pad>''' ) __a = rust_tokenizer([raw_input_str] , return_tensors=_a , add_special_tokens=_a ).input_ids[0] __a = py_tokenizer([raw_input_str] , return_tensors=_a , add_special_tokens=_a ).input_ids[0] self.assertListEqual(_a , _a ) @require_torch def __UpperCAmelCase ( self ): __a = ['''This is going to be way too long.''' * 1_000, '''short example'''] __a = ['''not super long but more than 5 tokens''', '''tiny'''] __a = self._large_tokenizer(_a , padding=_a , truncation=_a , return_tensors='''pt''' ) __a = self._large_tokenizer( text_target=_a , max_length=5 , padding=_a , truncation=_a , return_tensors='''pt''' ) assert batch.input_ids.shape == (2, 4_096) assert batch.attention_mask.shape == (2, 4_096) assert targets["input_ids"].shape == (2, 5) assert len(_a ) == 2 # input_ids, attention_mask. def __UpperCAmelCase ( self ): __a = ( '''This is an example string that is used to test the original TF implementation against the HF''' ''' implementation''' ) __a = self._large_tokenizer(_a ).input_ids self.assertListEqual( _a , [182, 117, 142, 587, 4_211, 120, 117, 263, 112, 804, 109, 856, 25_016, 3_137, 464, 109, 26_955, 3_137, 1] , )
695
"""simple docstring""" from typing import Any def lowercase ( lowerCAmelCase__ : list , lowerCAmelCase__ : list , lowerCAmelCase__ : dict , lowerCAmelCase__ : dict , lowerCAmelCase__ : dict , ) -> list: _validation( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ) # Creates data structures and fill initial step __a = {} __a = {} for state in states_space: __a = observations_space[0] __a = ( initial_probabilities[state] * emission_probabilities[state][observation] ) __a = None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(lowerCAmelCase__ ) ): __a = observations_space[o] __a = observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function __a = '''''' __a = -1 for k_state in states_space: __a = ( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: __a = probability __a = k_state # Update probabilities and pointers dicts __a = ( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) __a = arg_max # The final observation __a = observations_space[len(lowerCAmelCase__ ) - 1] # argmax for given final observation __a = '''''' __a = -1 for k_state in states_space: __a = probabilities[(k_state, final_observation)] if probability > max_probability: __a = probability __a = k_state __a = arg_max # Process pointers backwards __a = last_state __a = [] for o in range(len(lowerCAmelCase__ ) - 1 , -1 , -1 ): result.append(lowerCAmelCase__ ) __a = pointers[previous, observations_space[o]] result.reverse() return result def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , ) -> None: _validate_not_empty( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ) _validate_lists(lowerCAmelCase__ , lowerCAmelCase__ ) _validate_dicts( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , ) -> None: if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError('''There\'s an empty parameter''' ) def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Any ) -> None: _validate_list(lowerCAmelCase__ , '''observations_space''' ) _validate_list(lowerCAmelCase__ , '''states_space''' ) def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : str ) -> None: if not isinstance(_object , lowerCAmelCase__ ): __a = f'''{var_name} must be a list''' raise ValueError(lowerCAmelCase__ ) else: for x in _object: if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): __a = f'''{var_name} must be a list of strings''' raise ValueError(lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , ) -> None: _validate_dict(lowerCAmelCase__ , '''initial_probabilities''' , lowerCAmelCase__ ) _validate_nested_dict(lowerCAmelCase__ , '''transition_probabilities''' ) _validate_nested_dict(lowerCAmelCase__ , '''emission_probabilities''' ) def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : str ) -> None: _validate_dict(_object , lowerCAmelCase__ , lowerCAmelCase__ ) for x in _object.values(): _validate_dict(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : str , lowerCAmelCase__ : type , lowerCAmelCase__ : bool = False ) -> None: if not isinstance(_object , lowerCAmelCase__ ): __a = f'''{var_name} must be a dict''' raise ValueError(lowerCAmelCase__ ) if not all(isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) for x in _object ): __a = f'''{var_name} all keys must be strings''' raise ValueError(lowerCAmelCase__ ) if not all(isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) for x in _object.values() ): __a = '''nested dictionary ''' if nested else '''''' __a = f'''{var_name} {nested_text}all values must be {value_type.__name__}''' raise ValueError(lowerCAmelCase__ ) if __name__ == "__main__": from doctest import testmod testmod()
695
1
"""simple docstring""" from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __lowerCAmelCase : '''simple docstring''' def __init__( self , _a , _a=3 , _a=32 , _a=3 , _a=10 , _a=[10, 20, 30, 40] , _a=[1, 1, 2, 1] , _a=True , _a=True , _a="relu" , _a=3 , _a=None , ): __a = parent __a = batch_size __a = image_size __a = num_channels __a = embeddings_size __a = hidden_sizes __a = depths __a = is_training __a = use_labels __a = hidden_act __a = num_labels __a = scope __a = len(_a ) def __UpperCAmelCase ( self ): __a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __a = None if self.use_labels: __a = ids_tensor([self.batch_size] , self.num_labels ) __a = self.get_config() return config, pixel_values, labels def __UpperCAmelCase ( self ): return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def __UpperCAmelCase ( self , _a , _a , _a ): __a = TFResNetModel(config=_a ) __a = model(_a ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def __UpperCAmelCase ( self , _a , _a , _a ): __a = self.num_labels __a = TFResNetForImageClassification(_a ) __a = model(_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCAmelCase ( self ): __a = self.prepare_config_and_inputs() __a , __a , __a = config_and_inputs __a = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () __UpperCAmelCase : int = ( {'feature-extraction': TFResNetModel, 'image-classification': TFResNetForImageClassification} if is_tf_available() else {} ) __UpperCAmelCase : List[Any] = False __UpperCAmelCase : Any = False __UpperCAmelCase : List[Any] = False __UpperCAmelCase : Dict = False __UpperCAmelCase : Optional[int] = False def __UpperCAmelCase ( self ): __a = TFResNetModelTester(self ) __a = ConfigTester(self , config_class=_a , has_text_modality=_a ) def __UpperCAmelCase ( self ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __UpperCAmelCase ( self ): return @unittest.skip(reason='''ResNet does not use inputs_embeds''' ) def __UpperCAmelCase ( self ): pass @unittest.skip(reason='''ResNet does not support input and output embeddings''' ) def __UpperCAmelCase ( self ): pass def __UpperCAmelCase ( self ): __a , __a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a = model_class(_a ) __a = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __a = [*signature.parameters.keys()] __a = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _a ) def __UpperCAmelCase ( self ): __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def __UpperCAmelCase ( self ): def check_hidden_states_output(_a , _a , _a ): __a = model_class(_a ) __a = model(**self._prepare_for_class(_a , _a ) ) __a = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __a = self.model_tester.num_stages self.assertEqual(len(_a ) , expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) __a , __a = self.model_tester.prepare_config_and_inputs_for_common() __a = ['''basic''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: __a = layer_type __a = True check_hidden_states_output(_a , _a , _a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __a = True check_hidden_states_output(_a , _a , _a ) def __UpperCAmelCase ( self ): __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_a ) @slow def __UpperCAmelCase ( self ): for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a = TFResNetModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def lowercase ( ) -> str: __a = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def __UpperCAmelCase ( self ): return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def __UpperCAmelCase ( self ): __a = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) __a = self.default_image_processor __a = prepare_img() __a = image_processor(images=_a , return_tensors='''tf''' ) # forward pass __a = model(**_a ) # verify the logits __a = tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape , _a ) __a = tf.constant([-11.1069, -9.7877, -8.3777] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , _a , atol=1E-4 ) )
695
"""simple docstring""" import math def lowercase ( lowerCAmelCase__ : int ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowerCAmelCase__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowercase ( lowerCAmelCase__ : float = 0.1 ) -> int: __a = 3 __a = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(lowerCAmelCase__ ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
695
1
"""simple docstring""" from __future__ import annotations import requests def lowercase ( lowerCAmelCase__ : str ) -> dict: __a = f'''https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty''' return requests.get(lowerCAmelCase__ ).json() def lowercase ( lowerCAmelCase__ : int = 10 ) -> list[dict]: __a = '''https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty''' __a = requests.get(lowerCAmelCase__ ).json()[:max_stories] return [get_hackernews_story(lowerCAmelCase__ ) for story_id in story_ids] def lowercase ( lowerCAmelCase__ : int = 10 ) -> str: __a = hackernews_top_stories(lowerCAmelCase__ ) return "\n".join('''* [{title}]({url})'''.format(**lowerCAmelCase__ ) for story in stories ) if __name__ == "__main__": print(hackernews_top_stories_as_markdown())
695
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase_ = { "configuration_mctct": ["MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MCTCTConfig"], "feature_extraction_mctct": ["MCTCTFeatureExtractor"], "processing_mctct": ["MCTCTProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST", "MCTCTForCTC", "MCTCTModel", "MCTCTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
695
1
"""simple docstring""" from __future__ import annotations import copy import tempfile import unittest from transformers import CONFIG_MAPPING, AutoConfig, BertConfig, GPTaConfig, TaConfig, TapasConfig, is_tf_available from transformers.testing_utils import ( DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tensorflow_probability, require_tf, slow, ) from ..bert.test_modeling_bert import BertModelTester if is_tf_available(): from transformers import ( TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelForTableQuestionAnswering, TFAutoModelForTokenClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFFunnelBaseModel, TFFunnelModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, TFTapasForQuestionAnswering, ) from transformers.models.auto.modeling_tf_auto import ( TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_MAPPING, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.tapas.modeling_tf_tapas import TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : List[str] = 'new-model' if is_tf_available(): class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = NewModelConfig @require_tf class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def __UpperCAmelCase ( self ): __a = '''bert-base-cased''' __a = AutoConfig.from_pretrained(_a ) self.assertIsNotNone(_a ) self.assertIsInstance(_a , _a ) __a = TFAutoModel.from_pretrained(_a ) self.assertIsNotNone(_a ) self.assertIsInstance(_a , _a ) @slow def __UpperCAmelCase ( self ): __a = '''bert-base-cased''' __a = AutoConfig.from_pretrained(_a ) self.assertIsNotNone(_a ) self.assertIsInstance(_a , _a ) __a = TFAutoModelForPreTraining.from_pretrained(_a ) self.assertIsNotNone(_a ) self.assertIsInstance(_a , _a ) @slow def __UpperCAmelCase ( self ): for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a = AutoConfig.from_pretrained(_a ) self.assertIsNotNone(_a ) self.assertIsInstance(_a , _a ) __a = TFAutoModelForCausalLM.from_pretrained(_a ) __a , __a = TFAutoModelForCausalLM.from_pretrained(_a , output_loading_info=_a ) self.assertIsNotNone(_a ) self.assertIsInstance(_a , _a ) @slow def __UpperCAmelCase ( self ): for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a = AutoConfig.from_pretrained(_a ) self.assertIsNotNone(_a ) self.assertIsInstance(_a , _a ) __a = TFAutoModelWithLMHead.from_pretrained(_a ) self.assertIsNotNone(_a ) self.assertIsInstance(_a , _a ) @slow def __UpperCAmelCase ( self ): for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a = AutoConfig.from_pretrained(_a ) self.assertIsNotNone(_a ) self.assertIsInstance(_a , _a ) __a = TFAutoModelForMaskedLM.from_pretrained(_a ) __a , __a = TFAutoModelForMaskedLM.from_pretrained(_a , output_loading_info=_a ) self.assertIsNotNone(_a ) self.assertIsInstance(_a , _a ) @slow def __UpperCAmelCase ( self ): for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a = AutoConfig.from_pretrained(_a ) self.assertIsNotNone(_a ) self.assertIsInstance(_a , _a ) __a = TFAutoModelForSeqaSeqLM.from_pretrained(_a ) __a , __a = TFAutoModelForSeqaSeqLM.from_pretrained(_a , output_loading_info=_a ) self.assertIsNotNone(_a ) self.assertIsInstance(_a , _a ) @slow def __UpperCAmelCase ( self ): # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: __a = AutoConfig.from_pretrained(_a ) self.assertIsNotNone(_a ) self.assertIsInstance(_a , _a ) __a = TFAutoModelForSequenceClassification.from_pretrained(_a ) self.assertIsNotNone(_a ) self.assertIsInstance(_a , _a ) @slow def __UpperCAmelCase ( self ): # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: __a = AutoConfig.from_pretrained(_a ) self.assertIsNotNone(_a ) self.assertIsInstance(_a , _a ) __a = TFAutoModelForQuestionAnswering.from_pretrained(_a ) self.assertIsNotNone(_a ) self.assertIsInstance(_a , _a ) @slow @require_tensorflow_probability def __UpperCAmelCase ( self ): for model_name in TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]: __a = AutoConfig.from_pretrained(_a ) self.assertIsNotNone(_a ) self.assertIsInstance(_a , _a ) __a = TFAutoModelForTableQuestionAnswering.from_pretrained(_a ) __a , __a = TFAutoModelForTableQuestionAnswering.from_pretrained( _a , output_loading_info=_a ) self.assertIsNotNone(_a ) self.assertIsInstance(_a , _a ) def __UpperCAmelCase ( self ): __a = TFAutoModelWithLMHead.from_pretrained(_a ) self.assertIsInstance(_a , _a ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=_a ) , 14_410 ) def __UpperCAmelCase ( self ): __a = TFAutoModelWithLMHead.from_pretrained(_a ) self.assertIsInstance(_a , _a ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=_a ) , 14_410 ) def __UpperCAmelCase ( self ): # For the auto model mapping, FunnelConfig has two models: FunnelModel and FunnelBaseModel __a = TFAutoModel.from_pretrained('''sgugger/funnel-random-tiny''' ) self.assertIsInstance(_a , _a ) __a = copy.deepcopy(model.config ) __a = ['''FunnelBaseModel'''] __a = TFAutoModel.from_config(_a ) self.assertIsInstance(_a , _a ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(_a ) __a = TFAutoModel.from_pretrained(_a ) self.assertIsInstance(_a , _a ) def __UpperCAmelCase ( self ): try: AutoConfig.register('''new-model''' , _a ) __a = [ TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSequenceClassification, TFAutoModelForTokenClassification, ] for auto_class in auto_classes: with self.subTest(auto_class.__name__ ): # Wrong config class will raise an error with self.assertRaises(_a ): auto_class.register(_a , _a ) auto_class.register(_a , _a ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_a ): auto_class.register(_a , _a ) # Now that the config is registered, it can be used as any other config with the auto-API __a = BertModelTester(self ).get_config() __a = NewModelConfig(**tiny_config.to_dict() ) __a = auto_class.from_config(_a ) self.assertIsInstance(_a , _a ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(_a ) __a = auto_class.from_pretrained(_a ) self.assertIsInstance(_a , _a ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"] for mapping in ( TF_MODEL_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, ): if NewModelConfig in mapping._extra_content: del mapping._extra_content[NewModelConfig] def __UpperCAmelCase ( self ): with self.assertRaisesRegex( _a , '''bert-base is not a local folder and is not a valid model identifier''' ): __a = TFAutoModel.from_pretrained('''bert-base''' ) def __UpperCAmelCase ( self ): with self.assertRaisesRegex( _a , R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): __a = TFAutoModel.from_pretrained(_a , revision='''aaaaaa''' ) def __UpperCAmelCase ( self ): with self.assertRaisesRegex( _a , '''hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin''' , ): __a = TFAutoModel.from_pretrained('''hf-internal-testing/config-no-model''' ) def __UpperCAmelCase ( self ): with self.assertRaisesRegex(_a , '''Use `from_pt=True` to load this model''' ): __a = TFAutoModel.from_pretrained('''hf-internal-testing/tiny-bert-pt-only''' ) def __UpperCAmelCase ( self ): # Make sure we have cached the model. __a = TFAutoModel.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) with RequestCounter() as counter: __a = TFAutoModel.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 ) # With a sharded checkpoint __a = TFAutoModel.from_pretrained('''ArthurZ/tiny-random-bert-sharded''' ) with RequestCounter() as counter: __a = TFAutoModel.from_pretrained('''ArthurZ/tiny-random-bert-sharded''' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
695
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json" ), "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json" ), "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json" ), } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : List[Any] = 'dpr' def __init__( self , _a=30_522 , _a=768 , _a=12 , _a=12 , _a=3_072 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=2 , _a=0.02 , _a=1E-12 , _a=0 , _a="absolute" , _a = 0 , **_a , ): super().__init__(pad_token_id=_a , **_a ) __a = vocab_size __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = hidden_act __a = intermediate_size __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = type_vocab_size __a = initializer_range __a = layer_norm_eps __a = projection_dim __a = position_embedding_type
695
1
"""simple docstring""" import numpy # List of input, output pairs lowercase_ = ( ((5, 2, 3), 1_5), ((6, 5, 9), 2_5), ((1_1, 1_2, 1_3), 4_1), ((1, 1, 1), 8), ((1_1, 1_2, 1_3), 4_1), ) lowercase_ = (((5_1_5, 2_2, 1_3), 5_5_5), ((6_1, 3_5, 4_9), 1_5_0)) lowercase_ = [2, 4, 1, 5] lowercase_ = len(train_data) lowercase_ = 0.009 def lowercase ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[str]="train" ) -> Any: return calculate_hypothesis_value(lowerCAmelCase__ , lowerCAmelCase__ ) - output( lowerCAmelCase__ , lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ : int ) -> Union[str, Any]: __a = 0 for i in range(len(lowerCAmelCase__ ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def lowercase ( lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[Any] ) -> List[str]: if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def lowercase ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[int] ) -> List[Any]: if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def lowercase ( lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[int]=m ) -> Dict: __a = 0 for i in range(lowerCAmelCase__ ): if index == -1: summation_value += _error(lowerCAmelCase__ ) else: summation_value += _error(lowerCAmelCase__ ) * train_data[i][0][index] return summation_value def lowercase ( lowerCAmelCase__ : Union[str, Any] ) -> List[Any]: __a = summation_of_cost_derivative(lowerCAmelCase__ , lowerCAmelCase__ ) / m return cost_derivative_value def lowercase ( ) -> Any: global parameter_vector # Tune these values to set a tolerance value for predicted output __a = 0.00_00_02 __a = 0 __a = 0 while True: j += 1 __a = [0, 0, 0, 0] for i in range(0 , len(lowerCAmelCase__ ) ): __a = get_cost_derivative(i - 1 ) __a = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( lowerCAmelCase__ , lowerCAmelCase__ , atol=lowerCAmelCase__ , rtol=lowerCAmelCase__ , ): break __a = temp_parameter_vector print(('''Number of iterations:''', j) ) def lowercase ( ) -> str: for i in range(len(lowerCAmelCase__ ) ): print(('''Actual output value:''', output(lowerCAmelCase__ , '''test''' )) ) print(('''Hypothesis output:''', calculate_hypothesis_value(lowerCAmelCase__ , '''test''' )) ) if __name__ == "__main__": run_gradient_descent() print("\nTesting gradient descent for a linear hypothesis function.\n") test_gradient_descent()
695
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = StableDiffusionInpaintPipeline __UpperCAmelCase : int = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS __UpperCAmelCase : str = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS __UpperCAmelCase : int = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess __UpperCAmelCase : Tuple = frozenset([] ) def __UpperCAmelCase ( self ): torch.manual_seed(0 ) __a = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=9 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=_a , ) __a = PNDMScheduler(skip_prk_steps=_a ) torch.manual_seed(0 ) __a = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) __a = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act='''gelu''' , projection_dim=512 , ) __a = CLIPTextModel(_a ) __a = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) __a = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def __UpperCAmelCase ( self , _a , _a=0 ): # TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched __a = floats_tensor((1, 3, 32, 32) , rng=random.Random(_a ) ).to(_a ) __a = image.cpu().permute(0 , 2 , 3 , 1 )[0] __a = Image.fromarray(np.uinta(_a ) ).convert('''RGB''' ).resize((64, 64) ) __a = Image.fromarray(np.uinta(image + 4 ) ).convert('''RGB''' ).resize((64, 64) ) if str(_a ).startswith('''mps''' ): __a = torch.manual_seed(_a ) else: __a = torch.Generator(device=_a ).manual_seed(_a ) __a = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': init_image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def __UpperCAmelCase ( self ): __a = '''cpu''' # ensure determinism for the device-dependent torch.Generator __a = self.get_dummy_components() __a = StableDiffusionInpaintPipeline(**_a ) __a = sd_pipe.to(_a ) sd_pipe.set_progress_bar_config(disable=_a ) __a = self.get_dummy_inputs(_a ) __a = sd_pipe(**_a ).images __a = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __a = np.array([0.4727, 0.5735, 0.3941, 0.5446, 0.5926, 0.4394, 0.5062, 0.4654, 0.4476] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __UpperCAmelCase ( self ): super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCAmelCase ( self ): __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) __a = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint''' '''/yellow_cat_sitting_on_a_park_bench.npy''' ) __a = '''stabilityai/stable-diffusion-2-inpainting''' __a = StableDiffusionInpaintPipeline.from_pretrained(_a , safety_checker=_a ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) pipe.enable_attention_slicing() __a = '''Face of a yellow cat, high resolution, sitting on a park bench''' __a = torch.manual_seed(0 ) __a = pipe( prompt=_a , image=_a , mask_image=_a , generator=_a , output_type='''np''' , ) __a = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 9E-3 def __UpperCAmelCase ( self ): __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) __a = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint''' '''/yellow_cat_sitting_on_a_park_bench_fp16.npy''' ) __a = '''stabilityai/stable-diffusion-2-inpainting''' __a = StableDiffusionInpaintPipeline.from_pretrained( _a , torch_dtype=torch.floataa , safety_checker=_a , ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) pipe.enable_attention_slicing() __a = '''Face of a yellow cat, high resolution, sitting on a park bench''' __a = torch.manual_seed(0 ) __a = pipe( prompt=_a , image=_a , mask_image=_a , generator=_a , output_type='''np''' , ) __a = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 5E-1 def __UpperCAmelCase ( self ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) __a = '''stabilityai/stable-diffusion-2-inpainting''' __a = PNDMScheduler.from_pretrained(_a , subfolder='''scheduler''' ) __a = StableDiffusionInpaintPipeline.from_pretrained( _a , safety_checker=_a , scheduler=_a , torch_dtype=torch.floataa , ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() __a = '''Face of a yellow cat, high resolution, sitting on a park bench''' __a = torch.manual_seed(0 ) __a = pipe( prompt=_a , image=_a , mask_image=_a , generator=_a , num_inference_steps=2 , output_type='''np''' , ) __a = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 10**9
695
1
"""simple docstring""" import string def lowercase ( lowerCAmelCase__ : str ) -> str: __a = '''''' for i in sequence: __a = ord(lowerCAmelCase__ ) if 65 <= extract <= 90: output += chr(155 - extract ) elif 97 <= extract <= 122: output += chr(219 - extract ) else: output += i return output def lowercase ( lowerCAmelCase__ : str ) -> str: __a = string.ascii_letters __a = string.ascii_lowercase[::-1] + string.ascii_uppercase[::-1] return "".join( letters_reversed[letters.index(lowerCAmelCase__ )] if c in letters else c for c in sequence ) def lowercase ( ) -> None: from timeit import timeit print('''Running performance benchmarks...''' ) __a = '''from string import printable ; from __main__ import atbash, atbash_slow''' print(f'''> atbash_slow(): {timeit('atbash_slow(printable)' , setup=lowerCAmelCase__ )} seconds''' ) print(f'''> atbash(): {timeit('atbash(printable)' , setup=lowerCAmelCase__ )} seconds''' ) if __name__ == "__main__": for example in ("ABCDEFGH", "123GGjj", "testStringtest", "with space"): print(F'''{example} encrypted in atbash: {atbash(example)}''') benchmark()
695
"""simple docstring""" import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : int = 0 __UpperCAmelCase : bool = False __UpperCAmelCase : float = 3.0 class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self ): # If no defaults are changed, `to_kwargs` returns an empty dict. self.assertDictEqual(MockClass().to_kwargs() , {} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {'''a''': 2} ) self.assertDictEqual(MockClass(a=2 , b=_a ).to_kwargs() , {'''a''': 2, '''b''': True} ) self.assertDictEqual(MockClass(a=2 , c=2.25 ).to_kwargs() , {'''a''': 2, '''c''': 2.25} ) @require_cuda def __UpperCAmelCase ( self ): # If no defaults are changed, `to_kwargs` returns an empty dict. __a = GradScalerKwargs(init_scale=1_024 , growth_factor=2 ) AcceleratorState._reset_state() __a = Accelerator(mixed_precision='''fp16''' , kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) __a = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale , 1024.0 ) self.assertEqual(scaler._growth_factor , 2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor , 0.5 ) self.assertEqual(scaler._growth_interval , 2_000 ) self.assertEqual(scaler._enabled , _a ) @require_multi_gpu def __UpperCAmelCase ( self ): __a = ['''torchrun''', f'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )] execute_subprocess_async(_a , env=os.environ.copy() ) if __name__ == "__main__": lowercase_ = DistributedDataParallelKwargs(bucket_cap_mb=1_5, find_unused_parameters=True) lowercase_ = Accelerator(kwargs_handlers=[ddp_scaler]) lowercase_ = torch.nn.Linear(1_0_0, 2_0_0) lowercase_ = accelerator.prepare(model) # Check the values changed in kwargs lowercase_ = "" lowercase_ = model.bucket_bytes_cap // (1_0_2_4 * 1_0_2_4) if observed_bucket_cap_map != 1_5: error_msg += F"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += F"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += F"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += F"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += F"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
695
1
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase_ = { "configuration_mctct": ["MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MCTCTConfig"], "feature_extraction_mctct": ["MCTCTFeatureExtractor"], "processing_mctct": ["MCTCTProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST", "MCTCTForCTC", "MCTCTModel", "MCTCTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
695
"""simple docstring""" import inspect import os import sys import unittest import accelerate from accelerate.test_utils import execute_subprocess_async, require_tpu class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self ): __a = inspect.getfile(accelerate.test_utils ) __a = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_script.py'''] ) __a = os.path.sep.join(inspect.getfile(self.__class__ ).split(os.path.sep )[:-1] ) @require_tpu def __UpperCAmelCase ( self ): __a = f''' {self.test_dir}/xla_spawn.py --num_cores 8 {self.test_file_path} '''.split() __a = [sys.executable] + distributed_args execute_subprocess_async(_a , env=os.environ.copy() )
695
1
"""simple docstring""" import logging import os from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional from tqdm import auto as tqdm_lib lowercase_ = { "debug": logging.DEBUG, "info": logging.INFO, "warning": logging.WARNING, "error": logging.ERROR, "critical": logging.CRITICAL, } lowercase_ = logging.WARNING def lowercase ( ) -> Any: __a = os.getenv('''DATASETS_VERBOSITY''' , lowerCAmelCase__ ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( f'''Unknown option DATASETS_VERBOSITY={env_level_str}, ''' f'''has to be one of: { ', '.join(log_levels.keys() ) }''' ) return _default_log_level def lowercase ( ) -> str: return __name__.split('''.''' )[0] def lowercase ( ) -> logging.Logger: return logging.getLogger(_get_library_name() ) def lowercase ( ) -> None: # Apply our default configuration to the library root logger. __a = _get_library_root_logger() library_root_logger.setLevel(_get_default_logging_level() ) def lowercase ( ) -> None: __a = _get_library_root_logger() library_root_logger.setLevel(logging.NOTSET ) def lowercase ( lowerCAmelCase__ : Optional[str] = None ) -> logging.Logger: if name is None: __a = _get_library_name() return logging.getLogger(lowerCAmelCase__ ) def lowercase ( ) -> int: return _get_library_root_logger().getEffectiveLevel() def lowercase ( lowerCAmelCase__ : int ) -> None: _get_library_root_logger().setLevel(lowerCAmelCase__ ) def lowercase ( ) -> Tuple: return set_verbosity(lowerCAmelCase__ ) def lowercase ( ) -> Union[str, Any]: return set_verbosity(lowerCAmelCase__ ) def lowercase ( ) -> Optional[int]: return set_verbosity(lowerCAmelCase__ ) def lowercase ( ) -> Optional[int]: return set_verbosity(lowerCAmelCase__ ) def lowercase ( ) -> None: __a = False def lowercase ( ) -> None: __a = True # Configure the library root logger at the module level (singleton-like) _configure_library_root_logger() class __lowerCAmelCase : '''simple docstring''' def __init__( self , *_a , **_a ): # pylint: disable=unused-argument __a = args[0] if args else None def __iter__( self ): return iter(self._iterator ) def __getattr__( self , _a ): def empty_fn(*_a , **_a ): # pylint: disable=unused-argument return return empty_fn def __enter__( self ): return self def __exit__( self , _a , _a , _a ): return lowercase_ = True class __lowerCAmelCase : '''simple docstring''' def __call__( self , *_a , _a=False , **_a ): if _tqdm_active and not disable: return tqdm_lib.tqdm(*_a , **_a ) else: return EmptyTqdm(*_a , **_a ) def __UpperCAmelCase ( self , *_a , **_a ): __a = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*_a , **_a ) def __UpperCAmelCase ( self ): if _tqdm_active: return tqdm_lib.tqdm.get_lock() lowercase_ = _tqdm_cls() def lowercase ( ) -> bool: global _tqdm_active return bool(_tqdm_active ) def lowercase ( ) -> Dict: global _tqdm_active __a = True def lowercase ( ) -> Optional[int]: global _tqdm_active __a = False
695
"""simple docstring""" import os import unittest from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, BertTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : str = BertTokenizer __UpperCAmelCase : Optional[Any] = BertTokenizerFast __UpperCAmelCase : str = True __UpperCAmelCase : Tuple = True __UpperCAmelCase : Any = filter_non_english def __UpperCAmelCase ( self ): super().setUp() __a = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] __a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def __UpperCAmelCase ( self , _a ): __a = '''UNwant\u00E9d,running''' __a = '''unwanted, running''' return input_text, output_text def __UpperCAmelCase ( self ): __a = self.tokenizer_class(self.vocab_file ) __a = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(_a , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , [9, 6, 7, 12, 10, 11] ) def __UpperCAmelCase ( self ): if not self.test_rust_tokenizer: return __a = self.get_tokenizer() __a = self.get_rust_tokenizer() __a = '''UNwant\u00E9d,running''' __a = tokenizer.tokenize(_a ) __a = rust_tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) __a = tokenizer.encode(_a , add_special_tokens=_a ) __a = rust_tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) __a = self.get_rust_tokenizer() __a = tokenizer.encode(_a ) __a = rust_tokenizer.encode(_a ) self.assertListEqual(_a , _a ) # With lower casing __a = self.get_tokenizer(do_lower_case=_a ) __a = self.get_rust_tokenizer(do_lower_case=_a ) __a = '''UNwant\u00E9d,running''' __a = tokenizer.tokenize(_a ) __a = rust_tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) __a = tokenizer.encode(_a , add_special_tokens=_a ) __a = rust_tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) __a = self.get_rust_tokenizer() __a = tokenizer.encode(_a ) __a = rust_tokenizer.encode(_a ) self.assertListEqual(_a , _a ) def __UpperCAmelCase ( self ): __a = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''' ) , ['''ah''', '''\u535A''', '''\u63A8''', '''zz'''] ) def __UpperCAmelCase ( self ): __a = BasicTokenizer(do_lower_case=_a ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def __UpperCAmelCase ( self ): __a = BasicTokenizer(do_lower_case=_a , strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''h\u00E9llo'''] ) def __UpperCAmelCase ( self ): __a = BasicTokenizer(do_lower_case=_a , strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def __UpperCAmelCase ( self ): __a = BasicTokenizer(do_lower_case=_a ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def __UpperCAmelCase ( self ): __a = BasicTokenizer(do_lower_case=_a ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def __UpperCAmelCase ( self ): __a = BasicTokenizer(do_lower_case=_a , strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def __UpperCAmelCase ( self ): __a = BasicTokenizer(do_lower_case=_a , strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def __UpperCAmelCase ( self ): __a = BasicTokenizer(do_lower_case=_a , never_split=['''[UNK]'''] ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]'''] ) def __UpperCAmelCase ( self ): __a = BasicTokenizer() __a = '''a\n\'ll !!to?\'d of, can\'t.''' __a = ['''a''', '''\'''', '''ll''', '''!''', '''!''', '''to''', '''?''', '''\'''', '''d''', '''of''', ''',''', '''can''', '''\'''', '''t''', '''.'''] self.assertListEqual(tokenizer.tokenize(_a ) , _a ) def __UpperCAmelCase ( self ): __a = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing'''] __a = {} for i, token in enumerate(_a ): __a = i __a = WordpieceTokenizer(vocab=_a , unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) , [] ) self.assertListEqual(tokenizer.tokenize('''unwanted running''' ) , ['''un''', '''##want''', '''##ed''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.tokenize('''unwantedX running''' ) , ['''[UNK]''', '''runn''', '''##ing'''] ) def __UpperCAmelCase ( self ): self.assertTrue(_is_whitespace(''' ''' ) ) self.assertTrue(_is_whitespace('''\t''' ) ) self.assertTrue(_is_whitespace('''\r''' ) ) self.assertTrue(_is_whitespace('''\n''' ) ) self.assertTrue(_is_whitespace('''\u00A0''' ) ) self.assertFalse(_is_whitespace('''A''' ) ) self.assertFalse(_is_whitespace('''-''' ) ) def __UpperCAmelCase ( self ): self.assertTrue(_is_control('''\u0005''' ) ) self.assertFalse(_is_control('''A''' ) ) self.assertFalse(_is_control(''' ''' ) ) self.assertFalse(_is_control('''\t''' ) ) self.assertFalse(_is_control('''\r''' ) ) def __UpperCAmelCase ( self ): self.assertTrue(_is_punctuation('''-''' ) ) self.assertTrue(_is_punctuation('''$''' ) ) self.assertTrue(_is_punctuation('''`''' ) ) self.assertTrue(_is_punctuation('''.''' ) ) self.assertFalse(_is_punctuation('''A''' ) ) self.assertFalse(_is_punctuation(''' ''' ) ) def __UpperCAmelCase ( self ): __a = self.get_tokenizer() __a = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(_a ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) self.assertListEqual( [rust_tokenizer.tokenize(_a ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) @slow def __UpperCAmelCase ( self ): __a = self.tokenizer_class.from_pretrained('''bert-base-uncased''' ) __a = tokenizer.encode('''sequence builders''' , add_special_tokens=_a ) __a = tokenizer.encode('''multi-sequence build''' , add_special_tokens=_a ) __a = tokenizer.build_inputs_with_special_tokens(_a ) __a = tokenizer.build_inputs_with_special_tokens(_a , _a ) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_a + [102] def __UpperCAmelCase ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __a = self.rust_tokenizer_class.from_pretrained(_a , **_a ) __a = f'''A, naïve {tokenizer_r.mask_token} AllenNLP sentence.''' __a = tokenizer_r.encode_plus( _a , return_attention_mask=_a , return_token_type_ids=_a , return_offsets_mapping=_a , add_special_tokens=_a , ) __a = tokenizer_r.do_lower_case if hasattr(_a , '''do_lower_case''' ) else False __a = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''A'''), ((1, 2), ''','''), ((3, 5), '''na'''), ((5, 6), '''##ï'''), ((6, 8), '''##ve'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''Allen'''), ((21, 23), '''##NL'''), ((23, 24), '''##P'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''a'''), ((1, 2), ''','''), ((3, 8), '''naive'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''allen'''), ((21, 23), '''##nl'''), ((23, 24), '''##p'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['''input_ids'''] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['''offset_mapping'''] ) def __UpperCAmelCase ( self ): __a = ['''的''', '''人''', '''有'''] __a = ''''''.join(_a ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __a = True __a = self.tokenizer_class.from_pretrained(_a , **_a ) __a = self.rust_tokenizer_class.from_pretrained(_a , **_a ) __a = tokenizer_p.encode(_a , add_special_tokens=_a ) __a = tokenizer_r.encode(_a , add_special_tokens=_a ) __a = tokenizer_r.convert_ids_to_tokens(_a ) __a = tokenizer_p.convert_ids_to_tokens(_a ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(_a , _a ) self.assertListEqual(_a , _a ) __a = False __a = self.rust_tokenizer_class.from_pretrained(_a , **_a ) __a = self.tokenizer_class.from_pretrained(_a , **_a ) __a = tokenizer_r.encode(_a , add_special_tokens=_a ) __a = tokenizer_p.encode(_a , add_special_tokens=_a ) __a = tokenizer_r.convert_ids_to_tokens(_a ) __a = tokenizer_p.convert_ids_to_tokens(_a ) # it is expected that only the first Chinese character is not preceded by "##". __a = [ f'''##{token}''' if idx != 0 else token for idx, token in enumerate(_a ) ] self.assertListEqual(_a , _a ) self.assertListEqual(_a , _a )
695
1
"""simple docstring""" import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument lowercase_ = { "/attention/": "/0/SelfAttention/", "/self_attention/": "/0/SelfAttention/", "/encoder_decoder_attention/": "/1/EncDecAttention/", "value": "v", "query": "q", "key": "k", "out": "o", "pre_self_attention_layer_norm": "0/layer_norm", "pre_cross_attention_layer_norm": "1/layer_norm", "pre_attention_layer_norm": "0/layer_norm", # previously 1, but seems wrong "token_embedder": "shared", "encoder_norm": "final_layer_norm", "decoder_norm": "final_layer_norm", "relpos_bias/rel_embedding": "block/0/layer/0/SelfAttention/relative_attention_bias/weight", "router/router_weights/w/": "router/classifier/", "roer/roer_weights/w/": "router/classifier/", "logits_dense": "lm_head", } def lowercase ( lowerCAmelCase__ : int ) -> Optional[int]: # 1. in HF T5, we have block.{x}.layer.{y}. which corresponds to layer.{x} in # the original model __a = list(s_dict.keys() ) for key in keys: __a = r'''.*/layers_(\d+)''' __a = key if re.match(lowerCAmelCase__ , lowerCAmelCase__ ): __a = re.sub(r'''layers_(\d+)''' , r'''block/\1/layer''' , lowerCAmelCase__ ) __a = r'''(encoder|decoder)\/''' if re.match(lowerCAmelCase__ , lowerCAmelCase__ ): __a = re.match(lowerCAmelCase__ , lowerCAmelCase__ ).groups() if groups[0] == "encoder": __a = re.sub(r'''/mlp/''' , r'''/1/mlp/''' , lowerCAmelCase__ ) __a = re.sub(r'''/pre_mlp_layer_norm/''' , r'''/1/layer_norm/''' , lowerCAmelCase__ ) elif groups[0] == "decoder": __a = re.sub(r'''/mlp/''' , r'''/2/mlp/''' , lowerCAmelCase__ ) __a = re.sub(r'''/pre_mlp_layer_norm/''' , r'''/2/layer_norm/''' , lowerCAmelCase__ ) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: __a = new_key.replace(lowerCAmelCase__ , lowerCAmelCase__ ) print(f'''{key} -> {new_key}''' ) __a = s_dict.pop(lowerCAmelCase__ ) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: __a = s_dict[ '''encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight''' ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: __a = s_dict[ '''decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight''' ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys() ): if "expert" in key: __a = s_dict[key].shape[0] __a = s_dict[key] for idx in range(lowerCAmelCase__ ): __a = expert_weihts[idx] print(f'''{key} -> {key.replace('expert/' , 'nested fstring' )}''' ) s_dict.pop(lowerCAmelCase__ ) return s_dict lowercase_ = { "NUM_ENCODER_LAYERS": "num_layers", "NUM_DECODER_LAYERS": "num_decoder_layers", "NUM_HEADS": "num_heads", "HEAD_DIM": "d_kv", "EMBED_DIM": "d_model", "MLP_DIM": "d_ff", "NUM_SELECTED_EXPERTS": "num_selected_experts", "NUM_ENCODER_SPARSE_LAYERS": "num_sparse_encoder_layers", "NUM_DECODER_SPARSE_LAYERS": "num_sparse_decoder_layers", "dense.MlpBlock.activations": "feed_forward_proj", } def lowercase ( lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Tuple ) -> int: # Convert a google style config to the hugging face fromat import regex as re with open(lowerCAmelCase__ , '''r''' ) as f: __a = f.read() __a = re.findall(r'''(.*) = ([0-9.]*)''' , lowerCAmelCase__ ) __a = {} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": __a = float(lowerCAmelCase__ ) if '''.''' in value else int(lowerCAmelCase__ ) __a = re.findall(r'''(.*activations) = \(\'(.*)\',\)''' , lowerCAmelCase__ )[0] __a = str(activation[1] ) __a = num_experts __a = SwitchTransformersConfig(**lowerCAmelCase__ ) return config def lowercase ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : int=None , lowerCAmelCase__ : Optional[int]="./" , lowerCAmelCase__ : Union[str, Any]=8 ) -> Optional[int]: # Initialise PyTorch model print(f'''Loading flax weights from : {flax_checkpoint_path}''' ) __a = checkpoints.load_tax_checkpoint(lowerCAmelCase__ ) if gin_file is not None: __a = convert_gin_to_config(lowerCAmelCase__ , lowerCAmelCase__ ) else: __a = SwitchTransformersConfig.from_pretrained(lowerCAmelCase__ ) __a = SwitchTransformersForConditionalGeneration(lowerCAmelCase__ ) __a = flax_params['''target'''] __a = flatten_dict(lowerCAmelCase__ , sep='''/''' ) __a = rename_keys(lowerCAmelCase__ ) __a = unflatten_dict(lowerCAmelCase__ , sep='''/''' ) # Load the flax params in the PT model load_flax_weights_in_pytorch_model(lowerCAmelCase__ , lowerCAmelCase__ ) print(f'''Save PyTorch model to {pytorch_dump_path}''' ) pt_model.save_pretrained(lowerCAmelCase__ ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--switch_t5x_checkpoint_path", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the" " model architecture. If not provided, a `gin_file` has to be provided." ), ) parser.add_argument( "--gin_file", default=None, type=str, required=False, help="Path to the gin config file. If not provided, a `config_file` has to be passed ", ) parser.add_argument( "--config_name", default=None, type=str, required=False, help="Config name of SwitchTransformers model." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output pytorch model." ) parser.add_argument("--num_experts", default=8, type=int, required=False, help="Number of experts") lowercase_ = parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
695
"""simple docstring""" from __future__ import annotations def lowercase ( lowerCAmelCase__ : float , lowerCAmelCase__ : float , lowerCAmelCase__ : float ) -> float: if days_between_payments <= 0: raise ValueError('''days_between_payments must be > 0''' ) if daily_interest_rate < 0: raise ValueError('''daily_interest_rate must be >= 0''' ) if principal <= 0: raise ValueError('''principal must be > 0''' ) return principal * daily_interest_rate * days_between_payments def lowercase ( lowerCAmelCase__ : float , lowerCAmelCase__ : float , lowerCAmelCase__ : float , ) -> float: if number_of_compounding_periods <= 0: raise ValueError('''number_of_compounding_periods must be > 0''' ) if nominal_annual_interest_rate_percentage < 0: raise ValueError('''nominal_annual_interest_rate_percentage must be >= 0''' ) if principal <= 0: raise ValueError('''principal must be > 0''' ) return principal * ( (1 + nominal_annual_interest_rate_percentage) ** number_of_compounding_periods - 1 ) def lowercase ( lowerCAmelCase__ : float , lowerCAmelCase__ : float , lowerCAmelCase__ : float , ) -> float: if number_of_years <= 0: raise ValueError('''number_of_years must be > 0''' ) if nominal_annual_percentage_rate < 0: raise ValueError('''nominal_annual_percentage_rate must be >= 0''' ) if principal <= 0: raise ValueError('''principal must be > 0''' ) return compound_interest( lowerCAmelCase__ , nominal_annual_percentage_rate / 365 , number_of_years * 365 ) if __name__ == "__main__": import doctest doctest.testmod()
695
1
"""simple docstring""" # coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import sys import transformers lowercase_ = "3" print("Python version:", sys.version) print("transformers version:", transformers.__version__) try: import torch print("Torch version:", torch.__version__) print("Cuda available:", torch.cuda.is_available()) print("Cuda version:", torch.version.cuda) print("CuDNN version:", torch.backends.cudnn.version()) print("Number of GPUs available:", torch.cuda.device_count()) print("NCCL version:", torch.cuda.nccl.version()) except ImportError: print("Torch version:", None) try: import deepspeed print("DeepSpeed version:", deepspeed.__version__) except ImportError: print("DeepSpeed version:", None) try: import tensorflow as tf print("TensorFlow version:", tf.__version__) print("TF GPUs available:", bool(tf.config.list_physical_devices("GPU"))) print("Number of TF GPUs available:", len(tf.config.list_physical_devices("GPU"))) except ImportError: print("TensorFlow version:", None)
695
"""simple docstring""" def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Any=False ) -> Any: if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): __a = len(set_a.intersection(lowerCAmelCase__ ) ) if alternative_union: __a = len(lowerCAmelCase__ ) + len(lowerCAmelCase__ ) else: __a = len(set_a.union(lowerCAmelCase__ ) ) return intersection / union if isinstance(lowerCAmelCase__ , (list, tuple) ) and isinstance(lowerCAmelCase__ , (list, tuple) ): __a = [element for element in set_a if element in set_b] if alternative_union: __a = len(lowerCAmelCase__ ) + len(lowerCAmelCase__ ) return len(lowerCAmelCase__ ) / union else: __a = set_a + [element for element in set_b if element not in set_a] return len(lowerCAmelCase__ ) / len(lowerCAmelCase__ ) return len(lowerCAmelCase__ ) / len(lowerCAmelCase__ ) return None if __name__ == "__main__": lowercase_ = {"a", "b", "c", "d", "e"} lowercase_ = {"c", "d", "e", "f", "h", "i"} print(jaccard_similarity(set_a, set_b))
695
1
"""simple docstring""" from ..utils import DummyObject, requires_backends class __lowerCAmelCase ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : List[Any] = ['sentencepiece'] def __init__( self , *_a , **_a ): requires_backends(self , ['''sentencepiece'''] ) class __lowerCAmelCase ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : List[str] = ['sentencepiece'] def __init__( self , *_a , **_a ): requires_backends(self , ['''sentencepiece'''] ) class __lowerCAmelCase ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Dict = ['sentencepiece'] def __init__( self , *_a , **_a ): requires_backends(self , ['''sentencepiece'''] ) class __lowerCAmelCase ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : List[Any] = ['sentencepiece'] def __init__( self , *_a , **_a ): requires_backends(self , ['''sentencepiece'''] ) class __lowerCAmelCase ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Optional[int] = ['sentencepiece'] def __init__( self , *_a , **_a ): requires_backends(self , ['''sentencepiece'''] ) class __lowerCAmelCase ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Dict = ['sentencepiece'] def __init__( self , *_a , **_a ): requires_backends(self , ['''sentencepiece'''] ) class __lowerCAmelCase ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Any = ['sentencepiece'] def __init__( self , *_a , **_a ): requires_backends(self , ['''sentencepiece'''] ) class __lowerCAmelCase ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Dict = ['sentencepiece'] def __init__( self , *_a , **_a ): requires_backends(self , ['''sentencepiece'''] ) class __lowerCAmelCase ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : List[Any] = ['sentencepiece'] def __init__( self , *_a , **_a ): requires_backends(self , ['''sentencepiece'''] ) class __lowerCAmelCase ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = ['sentencepiece'] def __init__( self , *_a , **_a ): requires_backends(self , ['''sentencepiece'''] ) class __lowerCAmelCase ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = ['sentencepiece'] def __init__( self , *_a , **_a ): requires_backends(self , ['''sentencepiece'''] ) class __lowerCAmelCase ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : List[Any] = ['sentencepiece'] def __init__( self , *_a , **_a ): requires_backends(self , ['''sentencepiece'''] ) class __lowerCAmelCase ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Dict = ['sentencepiece'] def __init__( self , *_a , **_a ): requires_backends(self , ['''sentencepiece'''] ) class __lowerCAmelCase ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : List[Any] = ['sentencepiece'] def __init__( self , *_a , **_a ): requires_backends(self , ['''sentencepiece'''] ) class __lowerCAmelCase ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Tuple = ['sentencepiece'] def __init__( self , *_a , **_a ): requires_backends(self , ['''sentencepiece'''] ) class __lowerCAmelCase ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : List[str] = ['sentencepiece'] def __init__( self , *_a , **_a ): requires_backends(self , ['''sentencepiece'''] ) class __lowerCAmelCase ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Tuple = ['sentencepiece'] def __init__( self , *_a , **_a ): requires_backends(self , ['''sentencepiece'''] ) class __lowerCAmelCase ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : int = ['sentencepiece'] def __init__( self , *_a , **_a ): requires_backends(self , ['''sentencepiece'''] ) class __lowerCAmelCase ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Optional[int] = ['sentencepiece'] def __init__( self , *_a , **_a ): requires_backends(self , ['''sentencepiece'''] ) class __lowerCAmelCase ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : List[Any] = ['sentencepiece'] def __init__( self , *_a , **_a ): requires_backends(self , ['''sentencepiece'''] ) class __lowerCAmelCase ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : int = ['sentencepiece'] def __init__( self , *_a , **_a ): requires_backends(self , ['''sentencepiece'''] ) class __lowerCAmelCase ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = ['sentencepiece'] def __init__( self , *_a , **_a ): requires_backends(self , ['''sentencepiece'''] ) class __lowerCAmelCase ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = ['sentencepiece'] def __init__( self , *_a , **_a ): requires_backends(self , ['''sentencepiece'''] ) class __lowerCAmelCase ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : List[str] = ['sentencepiece'] def __init__( self , *_a , **_a ): requires_backends(self , ['''sentencepiece'''] ) class __lowerCAmelCase ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = ['sentencepiece'] def __init__( self , *_a , **_a ): requires_backends(self , ['''sentencepiece'''] ) class __lowerCAmelCase ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = ['sentencepiece'] def __init__( self , *_a , **_a ): requires_backends(self , ['''sentencepiece'''] ) class __lowerCAmelCase ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Tuple = ['sentencepiece'] def __init__( self , *_a , **_a ): requires_backends(self , ['''sentencepiece'''] ) class __lowerCAmelCase ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = ['sentencepiece'] def __init__( self , *_a , **_a ): requires_backends(self , ['''sentencepiece'''] ) class __lowerCAmelCase ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Optional[int] = ['sentencepiece'] def __init__( self , *_a , **_a ): requires_backends(self , ['''sentencepiece'''] ) class __lowerCAmelCase ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = ['sentencepiece'] def __init__( self , *_a , **_a ): requires_backends(self , ['''sentencepiece'''] ) class __lowerCAmelCase ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : List[str] = ['sentencepiece'] def __init__( self , *_a , **_a ): requires_backends(self , ['''sentencepiece'''] )
695
"""simple docstring""" from __future__ import annotations import requests def lowercase ( lowerCAmelCase__ : str ) -> dict: __a = f'''https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty''' return requests.get(lowerCAmelCase__ ).json() def lowercase ( lowerCAmelCase__ : int = 10 ) -> list[dict]: __a = '''https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty''' __a = requests.get(lowerCAmelCase__ ).json()[:max_stories] return [get_hackernews_story(lowerCAmelCase__ ) for story_id in story_ids] def lowercase ( lowerCAmelCase__ : int = 10 ) -> str: __a = hackernews_top_stories(lowerCAmelCase__ ) return "\n".join('''* [{title}]({url})'''.format(**lowerCAmelCase__ ) for story in stories ) if __name__ == "__main__": print(hackernews_top_stories_as_markdown())
695
1
"""simple docstring""" lowercase_ = [ [0, 1_6, 1_3, 0, 0, 0], [0, 0, 1_0, 1_2, 0, 0], [0, 4, 0, 0, 1_4, 0], [0, 0, 9, 0, 0, 2_0], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] def lowercase ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : str ) -> Optional[Any]: # Return True if there is node that has not iterated. __a = [False] * len(lowerCAmelCase__ ) __a = [s] __a = True while queue: __a = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(lowerCAmelCase__ ) __a = True __a = u return visited[t] def lowercase ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Dict ) -> Union[str, Any]: __a = [-1] * (len(lowerCAmelCase__ )) __a = 0 __a = [] __a = [i[:] for i in graph] # Record original cut, copy. while bfs(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): __a = float('''Inf''' ) __a = sink while s != source: # Find the minimum value in select path __a = min(lowerCAmelCase__ , graph[parent[s]][s] ) __a = parent[s] max_flow += path_flow __a = sink while v != source: __a = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow __a = parent[v] for i in range(len(lowerCAmelCase__ ) ): for j in range(len(graph[0] ) ): if graph[i][j] == 0 and temp[i][j] > 0: res.append((i, j) ) return res if __name__ == "__main__": print(mincut(test_graph, source=0, sink=5))
695
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING lowercase_ = logging.get_logger(__name__) lowercase_ = { "salesforce/blip2-opt-2.7b": "https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json", } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = 'blip_2_vision_model' def __init__( self , _a=1_408 , _a=6_144 , _a=39 , _a=16 , _a=224 , _a=14 , _a="gelu" , _a=0.0_0001 , _a=0.0 , _a=1E-10 , _a=True , **_a , ): super().__init__(**_a ) __a = hidden_size __a = intermediate_size __a = num_hidden_layers __a = num_attention_heads __a = patch_size __a = image_size __a = initializer_range __a = attention_dropout __a = layer_norm_eps __a = hidden_act __a = qkv_bias @classmethod def __UpperCAmelCase ( cls , _a , **_a ): cls._set_token_in_kwargs(_a ) __a , __a = cls.get_config_dict(_a , **_a ) # get the vision config dict if we are loading from Blip2Config if config_dict.get('''model_type''' ) == "blip-2": __a = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_a , **_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : str = 'blip_2_qformer' def __init__( self , _a=30_522 , _a=768 , _a=12 , _a=12 , _a=3_072 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=0.02 , _a=1E-12 , _a=0 , _a="absolute" , _a=2 , _a=1_408 , **_a , ): super().__init__(pad_token_id=_a , **_a ) __a = vocab_size __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = hidden_act __a = intermediate_size __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = initializer_range __a = layer_norm_eps __a = position_embedding_type __a = cross_attention_frequency __a = encoder_hidden_size @classmethod def __UpperCAmelCase ( cls , _a , **_a ): cls._set_token_in_kwargs(_a ) __a , __a = cls.get_config_dict(_a , **_a ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get('''model_type''' ) == "blip-2": __a = config_dict['''qformer_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_a , **_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Any = 'blip-2' __UpperCAmelCase : List[str] = True def __init__( self , _a=None , _a=None , _a=None , _a=32 , **_a ): super().__init__(**_a ) if vision_config is None: __a = {} logger.info('''vision_config is None. initializing the Blip2VisionConfig with default values.''' ) if qformer_config is None: __a = {} logger.info('''qformer_config is None. Initializing the Blip2QFormerConfig with default values.''' ) if text_config is None: __a = {} logger.info('''text_config is None. Initializing the text config with default values (`OPTConfig`).''' ) __a = BlipaVisionConfig(**_a ) __a = BlipaQFormerConfig(**_a ) __a = text_config['''model_type'''] if '''model_type''' in text_config else '''opt''' __a = CONFIG_MAPPING[text_model_type](**_a ) __a = self.text_config.tie_word_embeddings __a = self.text_config.is_encoder_decoder __a = num_query_tokens __a = self.vision_config.hidden_size __a = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES __a = 1.0 __a = 0.02 @classmethod def __UpperCAmelCase ( cls , _a , _a , _a , **_a , ): return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **_a , ) def __UpperCAmelCase ( self ): __a = copy.deepcopy(self.__dict__ ) __a = self.vision_config.to_dict() __a = self.qformer_config.to_dict() __a = self.text_config.to_dict() __a = self.__class__.model_type return output
695
1
"""simple docstring""" import os import unittest from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, BertTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : str = BertTokenizer __UpperCAmelCase : Optional[Any] = BertTokenizerFast __UpperCAmelCase : str = True __UpperCAmelCase : Tuple = True __UpperCAmelCase : Any = filter_non_english def __UpperCAmelCase ( self ): super().setUp() __a = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] __a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def __UpperCAmelCase ( self , _a ): __a = '''UNwant\u00E9d,running''' __a = '''unwanted, running''' return input_text, output_text def __UpperCAmelCase ( self ): __a = self.tokenizer_class(self.vocab_file ) __a = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(_a , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , [9, 6, 7, 12, 10, 11] ) def __UpperCAmelCase ( self ): if not self.test_rust_tokenizer: return __a = self.get_tokenizer() __a = self.get_rust_tokenizer() __a = '''UNwant\u00E9d,running''' __a = tokenizer.tokenize(_a ) __a = rust_tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) __a = tokenizer.encode(_a , add_special_tokens=_a ) __a = rust_tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) __a = self.get_rust_tokenizer() __a = tokenizer.encode(_a ) __a = rust_tokenizer.encode(_a ) self.assertListEqual(_a , _a ) # With lower casing __a = self.get_tokenizer(do_lower_case=_a ) __a = self.get_rust_tokenizer(do_lower_case=_a ) __a = '''UNwant\u00E9d,running''' __a = tokenizer.tokenize(_a ) __a = rust_tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) __a = tokenizer.encode(_a , add_special_tokens=_a ) __a = rust_tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) __a = self.get_rust_tokenizer() __a = tokenizer.encode(_a ) __a = rust_tokenizer.encode(_a ) self.assertListEqual(_a , _a ) def __UpperCAmelCase ( self ): __a = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''' ) , ['''ah''', '''\u535A''', '''\u63A8''', '''zz'''] ) def __UpperCAmelCase ( self ): __a = BasicTokenizer(do_lower_case=_a ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def __UpperCAmelCase ( self ): __a = BasicTokenizer(do_lower_case=_a , strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''h\u00E9llo'''] ) def __UpperCAmelCase ( self ): __a = BasicTokenizer(do_lower_case=_a , strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def __UpperCAmelCase ( self ): __a = BasicTokenizer(do_lower_case=_a ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def __UpperCAmelCase ( self ): __a = BasicTokenizer(do_lower_case=_a ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def __UpperCAmelCase ( self ): __a = BasicTokenizer(do_lower_case=_a , strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def __UpperCAmelCase ( self ): __a = BasicTokenizer(do_lower_case=_a , strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def __UpperCAmelCase ( self ): __a = BasicTokenizer(do_lower_case=_a , never_split=['''[UNK]'''] ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]'''] ) def __UpperCAmelCase ( self ): __a = BasicTokenizer() __a = '''a\n\'ll !!to?\'d of, can\'t.''' __a = ['''a''', '''\'''', '''ll''', '''!''', '''!''', '''to''', '''?''', '''\'''', '''d''', '''of''', ''',''', '''can''', '''\'''', '''t''', '''.'''] self.assertListEqual(tokenizer.tokenize(_a ) , _a ) def __UpperCAmelCase ( self ): __a = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing'''] __a = {} for i, token in enumerate(_a ): __a = i __a = WordpieceTokenizer(vocab=_a , unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) , [] ) self.assertListEqual(tokenizer.tokenize('''unwanted running''' ) , ['''un''', '''##want''', '''##ed''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.tokenize('''unwantedX running''' ) , ['''[UNK]''', '''runn''', '''##ing'''] ) def __UpperCAmelCase ( self ): self.assertTrue(_is_whitespace(''' ''' ) ) self.assertTrue(_is_whitespace('''\t''' ) ) self.assertTrue(_is_whitespace('''\r''' ) ) self.assertTrue(_is_whitespace('''\n''' ) ) self.assertTrue(_is_whitespace('''\u00A0''' ) ) self.assertFalse(_is_whitespace('''A''' ) ) self.assertFalse(_is_whitespace('''-''' ) ) def __UpperCAmelCase ( self ): self.assertTrue(_is_control('''\u0005''' ) ) self.assertFalse(_is_control('''A''' ) ) self.assertFalse(_is_control(''' ''' ) ) self.assertFalse(_is_control('''\t''' ) ) self.assertFalse(_is_control('''\r''' ) ) def __UpperCAmelCase ( self ): self.assertTrue(_is_punctuation('''-''' ) ) self.assertTrue(_is_punctuation('''$''' ) ) self.assertTrue(_is_punctuation('''`''' ) ) self.assertTrue(_is_punctuation('''.''' ) ) self.assertFalse(_is_punctuation('''A''' ) ) self.assertFalse(_is_punctuation(''' ''' ) ) def __UpperCAmelCase ( self ): __a = self.get_tokenizer() __a = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(_a ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) self.assertListEqual( [rust_tokenizer.tokenize(_a ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) @slow def __UpperCAmelCase ( self ): __a = self.tokenizer_class.from_pretrained('''bert-base-uncased''' ) __a = tokenizer.encode('''sequence builders''' , add_special_tokens=_a ) __a = tokenizer.encode('''multi-sequence build''' , add_special_tokens=_a ) __a = tokenizer.build_inputs_with_special_tokens(_a ) __a = tokenizer.build_inputs_with_special_tokens(_a , _a ) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_a + [102] def __UpperCAmelCase ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __a = self.rust_tokenizer_class.from_pretrained(_a , **_a ) __a = f'''A, naïve {tokenizer_r.mask_token} AllenNLP sentence.''' __a = tokenizer_r.encode_plus( _a , return_attention_mask=_a , return_token_type_ids=_a , return_offsets_mapping=_a , add_special_tokens=_a , ) __a = tokenizer_r.do_lower_case if hasattr(_a , '''do_lower_case''' ) else False __a = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''A'''), ((1, 2), ''','''), ((3, 5), '''na'''), ((5, 6), '''##ï'''), ((6, 8), '''##ve'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''Allen'''), ((21, 23), '''##NL'''), ((23, 24), '''##P'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''a'''), ((1, 2), ''','''), ((3, 8), '''naive'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''allen'''), ((21, 23), '''##nl'''), ((23, 24), '''##p'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['''input_ids'''] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['''offset_mapping'''] ) def __UpperCAmelCase ( self ): __a = ['''的''', '''人''', '''有'''] __a = ''''''.join(_a ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __a = True __a = self.tokenizer_class.from_pretrained(_a , **_a ) __a = self.rust_tokenizer_class.from_pretrained(_a , **_a ) __a = tokenizer_p.encode(_a , add_special_tokens=_a ) __a = tokenizer_r.encode(_a , add_special_tokens=_a ) __a = tokenizer_r.convert_ids_to_tokens(_a ) __a = tokenizer_p.convert_ids_to_tokens(_a ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(_a , _a ) self.assertListEqual(_a , _a ) __a = False __a = self.rust_tokenizer_class.from_pretrained(_a , **_a ) __a = self.tokenizer_class.from_pretrained(_a , **_a ) __a = tokenizer_r.encode(_a , add_special_tokens=_a ) __a = tokenizer_p.encode(_a , add_special_tokens=_a ) __a = tokenizer_r.convert_ids_to_tokens(_a ) __a = tokenizer_p.convert_ids_to_tokens(_a ) # it is expected that only the first Chinese character is not preceded by "##". __a = [ f'''##{token}''' if idx != 0 else token for idx, token in enumerate(_a ) ] self.assertListEqual(_a , _a ) self.assertListEqual(_a , _a )
695
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType lowercase_ = logging.get_logger(__name__) lowercase_ = { "microsoft/deberta-v2-xlarge": "https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json", "microsoft/deberta-v2-xxlarge": "https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json", "microsoft/deberta-v2-xlarge-mnli": ( "https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json" ), "microsoft/deberta-v2-xxlarge-mnli": ( "https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json" ), } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Dict = 'deberta-v2' def __init__( self , _a=128_100 , _a=1_536 , _a=24 , _a=24 , _a=6_144 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=0 , _a=0.02 , _a=1E-7 , _a=False , _a=-1 , _a=0 , _a=True , _a=None , _a=0 , _a="gelu" , **_a , ): super().__init__(**_a ) __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = intermediate_size __a = hidden_act __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = type_vocab_size __a = initializer_range __a = relative_attention __a = max_relative_positions __a = pad_token_id __a = position_biased_input # Backwards compatibility if type(_a ) == str: __a = [x.strip() for x in pos_att_type.lower().split('''|''' )] __a = pos_att_type __a = vocab_size __a = layer_norm_eps __a = kwargs.get('''pooler_hidden_size''' , _a ) __a = pooler_dropout __a = pooler_hidden_act class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def __UpperCAmelCase ( self ): if self.task == "multiple-choice": __a = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __a = {0: '''batch''', 1: '''sequence'''} if self._config.type_vocab_size > 0: return OrderedDict( [('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis)] ) else: return OrderedDict([('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis)] ) @property def __UpperCAmelCase ( self ): return 12 def __UpperCAmelCase ( self , _a , _a = -1 , _a = -1 , _a = -1 , _a = False , _a = None , _a = 3 , _a = 40 , _a = 40 , _a = None , ): __a = super().generate_dummy_inputs(preprocessor=_a , framework=_a ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
695
1
"""simple docstring""" import math def lowercase ( lowerCAmelCase__ : int ) -> int: if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): __a = f'''Input value of [number={number}] must be an integer''' raise TypeError(lowerCAmelCase__ ) if number < 1: __a = f'''Input value of [number={number}] must be > 0''' raise ValueError(lowerCAmelCase__ ) elif number == 1: return 3 elif number == 2: return 5 else: __a = int(math.log(number // 3 , 2 ) ) + 2 __a = [3, 5] __a = 2 __a = 3 for block in range(1 , lowerCAmelCase__ ): for _ in range(lowerCAmelCase__ ): proth_list.append(2 ** (block + 1) + proth_list[proth_index - 1] ) proth_index += 1 increment *= 2 return proth_list[number - 1] if __name__ == "__main__": import doctest doctest.testmod() for number in range(1_1): lowercase_ = 0 try: lowercase_ = proth(number) except ValueError: print(F'''ValueError: there is no {number}th Proth number''') continue print(F'''The {number}th Proth number: {value}''')
695
"""simple docstring""" import importlib.metadata import operator import re import sys from typing import Optional from packaging import version lowercase_ = { "<": operator.lt, "<=": operator.le, "==": operator.eq, "!=": operator.ne, ">=": operator.ge, ">": operator.gt, } def lowercase ( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : int , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[Any] ) -> Dict: if got_ver is None or want_ver is None: raise ValueError( f'''Unable to compare versions for {requirement}: need={want_ver} found={got_ver}. This is unusual. Consider''' f''' reinstalling {pkg}.''' ) if not ops[op](version.parse(lowerCAmelCase__ ) , version.parse(lowerCAmelCase__ ) ): raise ImportError( f'''{requirement} is required for a normal functioning of this module, but found {pkg}=={got_ver}.{hint}''' ) def lowercase ( lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None ) -> None: __a = f'''\n{hint}''' if hint is not None else '''''' # non-versioned check if re.match(r'''^[\w_\-\d]+$''' , lowerCAmelCase__ ): __a , __a , __a = requirement, None, None else: __a = re.findall(r'''^([^!=<>\s]+)([\s!=<>]{1,2}.+)''' , lowerCAmelCase__ ) if not match: raise ValueError( '''requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23, but''' f''' got {requirement}''' ) __a , __a = match[0] __a = want_full.split(''',''' ) # there could be multiple requirements __a = {} for w in want_range: __a = re.findall(r'''^([\s!=<>]{1,2})(.+)''' , lowerCAmelCase__ ) if not match: raise ValueError( '''requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23,''' f''' but got {requirement}''' ) __a , __a = match[0] __a = want_ver if op not in ops: raise ValueError(f'''{requirement}: need one of {list(ops.keys() )}, but got {op}''' ) # special case if pkg == "python": __a = '''.'''.join([str(lowerCAmelCase__ ) for x in sys.version_info[:3]] ) for op, want_ver in wanted.items(): _compare_versions(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) return # check if any version is installed try: __a = importlib.metadata.version(lowerCAmelCase__ ) except importlib.metadata.PackageNotFoundError: raise importlib.metadata.PackageNotFoundError( f'''The \'{requirement}\' distribution was not found and is required by this application. {hint}''' ) # check that the right version is installed if version number or a range was provided if want_ver is not None: for op, want_ver in wanted.items(): _compare_versions(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ : Tuple ) -> Optional[Any]: __a = '''Try: pip install transformers -U or pip install -e \'.[dev]\' if you\'re working with git main''' return require_version(lowerCAmelCase__ , lowerCAmelCase__ )
695
1
"""simple docstring""" from __future__ import annotations def lowercase ( lowerCAmelCase__ : float , lowerCAmelCase__ : float , lowerCAmelCase__ : float ) -> float: if days_between_payments <= 0: raise ValueError('''days_between_payments must be > 0''' ) if daily_interest_rate < 0: raise ValueError('''daily_interest_rate must be >= 0''' ) if principal <= 0: raise ValueError('''principal must be > 0''' ) return principal * daily_interest_rate * days_between_payments def lowercase ( lowerCAmelCase__ : float , lowerCAmelCase__ : float , lowerCAmelCase__ : float , ) -> float: if number_of_compounding_periods <= 0: raise ValueError('''number_of_compounding_periods must be > 0''' ) if nominal_annual_interest_rate_percentage < 0: raise ValueError('''nominal_annual_interest_rate_percentage must be >= 0''' ) if principal <= 0: raise ValueError('''principal must be > 0''' ) return principal * ( (1 + nominal_annual_interest_rate_percentage) ** number_of_compounding_periods - 1 ) def lowercase ( lowerCAmelCase__ : float , lowerCAmelCase__ : float , lowerCAmelCase__ : float , ) -> float: if number_of_years <= 0: raise ValueError('''number_of_years must be > 0''' ) if nominal_annual_percentage_rate < 0: raise ValueError('''nominal_annual_percentage_rate must be >= 0''' ) if principal <= 0: raise ValueError('''principal must be > 0''' ) return compound_interest( lowerCAmelCase__ , nominal_annual_percentage_rate / 365 , number_of_years * 365 ) if __name__ == "__main__": import doctest doctest.testmod()
695
"""simple docstring""" from __future__ import annotations lowercase_ = list[tuple[int, int]] lowercase_ = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] lowercase_ = ([-1, 0], [0, -1], [1, 0], [0, 1]) # up, left, down, right class __lowerCAmelCase : '''simple docstring''' def __init__( self , _a , _a , _a , _a , _a , _a , ): __a = pos_x __a = pos_y __a = (pos_y, pos_x) __a = goal_x __a = goal_y __a = g_cost __a = parent __a = self.calculate_heuristic() def __UpperCAmelCase ( self ): __a = abs(self.pos_x - self.goal_x ) __a = abs(self.pos_y - self.goal_y ) return dx + dy def __lt__( self , _a ): return self.f_cost < other.f_cost class __lowerCAmelCase : '''simple docstring''' def __init__( self , _a , _a ): __a = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , _a ) __a = Node(goal[1] , goal[0] , goal[1] , goal[0] , 99_999 , _a ) __a = [self.start] __a = [] __a = False def __UpperCAmelCase ( self ): while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() __a = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: __a = True return self.retrace_path(_a ) self.closed_nodes.append(_a ) __a = self.get_successors(_a ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(_a ) else: # retrieve the best current path __a = self.open_nodes.pop(self.open_nodes.index(_a ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(_a ) else: self.open_nodes.append(_a ) if not self.reached: return [self.start.pos] return None def __UpperCAmelCase ( self , _a ): __a = [] for action in delta: __a = parent.pos_x + action[1] __a = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(_a ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( _a , _a , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , _a , ) ) return successors def __UpperCAmelCase ( self , _a ): __a = node __a = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) __a = current_node.parent path.reverse() return path if __name__ == "__main__": lowercase_ = (0, 0) lowercase_ = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) print("------") lowercase_ = GreedyBestFirst(init, goal) lowercase_ = greedy_bf.search() if path: for pos_x, pos_y in path: lowercase_ = 2 for elem in grid: print(elem)
695
1
"""simple docstring""" from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class __lowerCAmelCase : '''simple docstring''' __UpperCAmelCase : Optional[int] = XGLMConfig __UpperCAmelCase : str = {} __UpperCAmelCase : Optional[Any] = 'gelu' def __init__( self , _a , _a=14 , _a=7 , _a=True , _a=True , _a=True , _a=99 , _a=32 , _a=2 , _a=4 , _a=37 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=0.02 , ): __a = parent __a = batch_size __a = seq_length __a = is_training __a = use_input_mask __a = use_labels __a = vocab_size __a = d_model __a = num_hidden_layers __a = num_attention_heads __a = ffn_dim __a = activation_function __a = activation_dropout __a = attention_dropout __a = max_position_embeddings __a = initializer_range __a = None __a = 0 __a = 2 __a = 1 def __UpperCAmelCase ( self ): return XGLMConfig.from_pretrained('''facebook/xglm-564M''' ) def __UpperCAmelCase ( self ): __a = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 ) __a = None if self.use_input_mask: __a = random_attention_mask([self.batch_size, self.seq_length] ) __a = self.get_config() __a = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, ) def __UpperCAmelCase ( self ): return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=_a , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=_a , ) def __UpperCAmelCase ( self ): __a = self.prepare_config_and_inputs() ( ( __a ) , ( __a ) , ( __a ) , ( __a ) , ) = config_and_inputs __a = { '''input_ids''': input_ids, '''head_mask''': head_mask, } return config, inputs_dict @require_tf class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Dict = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () __UpperCAmelCase : List[str] = (TFXGLMForCausalLM,) if is_tf_available() else () __UpperCAmelCase : str = ( {'feature-extraction': TFXGLMModel, 'text-generation': TFXGLMForCausalLM} if is_tf_available() else {} ) __UpperCAmelCase : Any = False __UpperCAmelCase : Dict = False __UpperCAmelCase : List[Any] = False def __UpperCAmelCase ( self ): __a = TFXGLMModelTester(self ) __a = ConfigTester(self , config_class=_a , n_embd=37 ) def __UpperCAmelCase ( self ): self.config_tester.run_common_tests() @slow def __UpperCAmelCase ( self ): for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a = TFXGLMModel.from_pretrained(_a ) self.assertIsNotNone(_a ) @unittest.skip(reason='''Currently, model embeddings are going to undergo a major refactor.''' ) def __UpperCAmelCase ( self ): super().test_resize_token_embeddings() @require_tf class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def __UpperCAmelCase ( self , _a=True ): __a = TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''' ) __a = tf.convert_to_tensor([[2, 268, 9_865]] , dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off __a = [2, 268, 9_865, 67, 11, 1_988, 57_252, 9_865, 5, 984, 67, 1_988, 213_838, 1_658, 53, 70_446, 33, 6_657, 278, 1_581] # fmt: on __a = model.generate(_a , do_sample=_a , num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , _a ) @slow def __UpperCAmelCase ( self ): __a = XGLMTokenizer.from_pretrained('''facebook/xglm-564M''' ) __a = TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''' ) tf.random.set_seed(0 ) __a = tokenizer('''Today is a nice day and''' , return_tensors='''tf''' ) __a = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(''':/CPU:0''' ): __a = model.generate(_a , do_sample=_a , seed=[7, 0] ) __a = tokenizer.decode(output_ids[0] , skip_special_tokens=_a ) __a = ( '''Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due''' ) self.assertEqual(_a , _a ) @slow def __UpperCAmelCase ( self ): __a = TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''' ) __a = XGLMTokenizer.from_pretrained('''facebook/xglm-564M''' ) __a = '''left''' # use different length sentences to test batching __a = [ '''This is an extremelly long sentence that only exists to test the ability of the model to cope with ''' '''left-padding, such as in batched generation. The output for the sequence below should be the same ''' '''regardless of whether left padding is applied or not. When''', '''Hello, my dog is a little''', ] __a = tokenizer(_a , return_tensors='''tf''' , padding=_a ) __a = inputs['''input_ids'''] __a = model.generate(input_ids=_a , attention_mask=inputs['''attention_mask'''] , max_new_tokens=12 ) __a = tokenizer(sentences[0] , return_tensors='''tf''' ).input_ids __a = model.generate(input_ids=_a , max_new_tokens=12 ) __a = tokenizer(sentences[1] , return_tensors='''tf''' ).input_ids __a = model.generate(input_ids=_a , max_new_tokens=12 ) __a = tokenizer.batch_decode(_a , skip_special_tokens=_a ) __a = tokenizer.decode(output_non_padded[0] , skip_special_tokens=_a ) __a = tokenizer.decode(output_padded[0] , skip_special_tokens=_a ) __a = [ '''This is an extremelly long sentence that only exists to test the ability of the model to cope with ''' '''left-padding, such as in batched generation. The output for the sequence below should be the same ''' '''regardless of whether left padding is applied or not. When left padding is applied, the sequence will be ''' '''a single''', '''Hello, my dog is a little bit of a shy one, but he is very friendly''', ] self.assertListEqual(_a , _a ) self.assertListEqual(_a , [non_padded_sentence, padded_sentence] )
695
"""simple docstring""" import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : str ) -> List[Any]: # Initialise PyTorch model __a = RemBertConfig.from_json_file(lowerCAmelCase__ ) print('''Building PyTorch model from configuration: {}'''.format(str(lowerCAmelCase__ ) ) ) __a = RemBertModel(lowerCAmelCase__ ) # Load weights from tf checkpoint load_tf_weights_in_rembert(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Save pytorch-model print('''Save PyTorch model to {}'''.format(lowerCAmelCase__ ) ) torch.save(model.state_dict() , lowerCAmelCase__ ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--rembert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained RemBERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) lowercase_ = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
695
1
"""simple docstring""" import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from ...test_tokenization_common import TokenizerTesterMixin lowercase_ = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right lowercase_ = 2_5_0_0_0_4 lowercase_ = 2_5_0_0_2_0 @require_sentencepiece @require_tokenizers class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = MBartaaTokenizer __UpperCAmelCase : str = MBartaaTokenizerFast __UpperCAmelCase : Tuple = True __UpperCAmelCase : List[Any] = True def __UpperCAmelCase ( self ): super().setUp() # We have a SentencePiece fixture for testing __a = MBartaaTokenizer(_a , src_lang='''en_XX''' , tgt_lang='''ro_RO''' , keep_accents=_a ) tokenizer.save_pretrained(self.tmpdirname ) def __UpperCAmelCase ( self ): __a = '''<s>''' __a = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_a ) , _a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_a ) , _a ) def __UpperCAmelCase ( self ): __a = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(vocab_keys[-1] , '''<mask>''' ) self.assertEqual(len(_a ) , 1_054 ) def __UpperCAmelCase ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 1_054 ) def __UpperCAmelCase ( self ): __a = MBartaaTokenizer(_a , src_lang='''en_XX''' , tgt_lang='''ro_RO''' , keep_accents=_a ) __a = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_a , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_a ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) __a = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _a , [SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.'''] , ) __a = tokenizer.convert_tokens_to_ids(_a ) self.assertListEqual( _a , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) __a = tokenizer.convert_ids_to_tokens(_a ) self.assertListEqual( _a , [SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.'''] , ) @slow def __UpperCAmelCase ( self ): # fmt: off __a = {'''input_ids''': [[250_004, 11_062, 82_772, 7, 15, 82_772, 538, 51_529, 237, 17_198, 1_290, 206, 9, 215_175, 1_314, 136, 17_198, 1_290, 206, 9, 56_359, 42, 122_009, 9, 16_466, 16, 87_344, 4_537, 9, 4_717, 78_381, 6, 159_958, 7, 15, 24_480, 618, 4, 527, 22_693, 5_428, 4, 2_777, 24_480, 9_874, 4, 43_523, 594, 4, 803, 18_392, 33_189, 18, 4, 43_523, 24_447, 12_399, 100, 24_955, 83_658, 9_626, 144_057, 15, 839, 22_335, 16, 136, 24_955, 83_658, 83_479, 15, 39_102, 724, 16, 678, 645, 2_789, 1_328, 4_589, 42, 122_009, 115_774, 23, 805, 1_328, 46_876, 7, 136, 53_894, 1_940, 42_227, 41_159, 17_721, 823, 425, 4, 27_512, 98_722, 206, 136, 5_531, 4_970, 919, 17_336, 5, 2], [250_004, 20_080, 618, 83, 82_775, 47, 479, 9, 1_517, 73, 53_894, 333, 80_581, 110_117, 18_811, 5_256, 1_295, 51, 152_526, 297, 7_986, 390, 124_416, 538, 35_431, 214, 98, 15_044, 25_737, 136, 7_108, 43_701, 23, 756, 135_355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [250_004, 581, 63_773, 119_455, 6, 147_797, 88_203, 7, 645, 70, 21, 3_285, 10_269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_a , model_name='''facebook/mbart-large-50''' , revision='''d3913889c59cd5c9e456b269c376325eabad57e2''' , ) def __UpperCAmelCase ( self ): if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return __a = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-random-mbart50''', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __a = self.rust_tokenizer_class.from_pretrained(_a , **_a ) __a = self.tokenizer_class.from_pretrained(_a , **_a ) __a = tempfile.mkdtemp() __a = tokenizer_r.save_pretrained(_a ) __a = tokenizer_p.save_pretrained(_a ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) __a = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f ) self.assertSequenceEqual(_a , _a ) # Checks everything loads correctly in the same way __a = tokenizer_r.from_pretrained(_a ) __a = tokenizer_p.from_pretrained(_a ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_a , _a ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(_a ) # Save tokenizer rust, legacy_format=True __a = tempfile.mkdtemp() __a = tokenizer_r.save_pretrained(_a , legacy_format=_a ) __a = tokenizer_p.save_pretrained(_a ) # Checks it save with the same files self.assertSequenceEqual(_a , _a ) # Checks everything loads correctly in the same way __a = tokenizer_r.from_pretrained(_a ) __a = tokenizer_p.from_pretrained(_a ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_a , _a ) ) shutil.rmtree(_a ) # Save tokenizer rust, legacy_format=False __a = tempfile.mkdtemp() __a = tokenizer_r.save_pretrained(_a , legacy_format=_a ) __a = tokenizer_p.save_pretrained(_a ) # Checks it saved the tokenizer.json file self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way __a = tokenizer_r.from_pretrained(_a ) __a = tokenizer_p.from_pretrained(_a ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_a , _a ) ) shutil.rmtree(_a ) @require_torch @require_sentencepiece @require_tokenizers class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : int = 'facebook/mbart-large-50-one-to-many-mmt' __UpperCAmelCase : Dict = [ ' UN Chief Says There Is No Military Solution in Syria', ' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.', ] __UpperCAmelCase : Optional[int] = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', 'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei' ' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor' ' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.', ] __UpperCAmelCase : Any = [EN_CODE, 8_2_7_4, 1_2_7_8_7_3, 2_5_9_1_6, 7, 8_6_2_2, 2_0_7_1, 4_3_8, 6_7_4_8_5, 5_3, 1_8_7_8_9_5, 2_3, 5_1_7_1_2, 2] @classmethod def __UpperCAmelCase ( cls ): __a = MBartaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang='''en_XX''' , tgt_lang='''ro_RO''' ) __a = 1 return cls def __UpperCAmelCase ( self ): self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ar_AR'''] , 250_001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''en_EN'''] , 250_004 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ro_RO'''] , 250_020 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''mr_IN'''] , 250_038 ) def __UpperCAmelCase ( self ): __a = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , _a ) def __UpperCAmelCase ( self ): self.assertIn(_a , self.tokenizer.all_special_ids ) __a = [RO_CODE, 884, 9_019, 96, 9, 916, 86_792, 36, 18_743, 15_596, 5, 2] __a = self.tokenizer.decode(_a , skip_special_tokens=_a ) __a = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_a ) self.assertEqual(_a , _a ) self.assertNotIn(self.tokenizer.eos_token , _a ) def __UpperCAmelCase ( self ): __a = ['''this is gunna be a long sentence ''' * 20] assert isinstance(src_text[0] , _a ) __a = 10 __a = self.tokenizer(_a , max_length=_a , truncation=_a ).input_ids[0] self.assertEqual(ids[0] , _a ) self.assertEqual(ids[-1] , 2 ) self.assertEqual(len(_a ) , _a ) def __UpperCAmelCase ( self ): self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''ar_AR'''] ) , [250_053, 250_001] ) def __UpperCAmelCase ( self ): __a = tempfile.mkdtemp() __a = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(_a ) __a = MBartaaTokenizer.from_pretrained(_a ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , _a ) @require_torch def __UpperCAmelCase ( self ): __a = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=_a , return_tensors='''pt''' ) __a = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == RO_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE] @require_torch def __UpperCAmelCase ( self ): __a = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=_a , truncation=_a , max_length=len(self.expected_src_tokens ) , return_tensors='''pt''' , ) __a = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) self.assertIsInstance(_a , _a ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) __a = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , _a ) self.assertEqual(2 , batch.decoder_input_ids[0, 0] ) # decoder_start_token_id # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def __UpperCAmelCase ( self ): __a = self.tokenizer(self.src_text , padding=_a , truncation=_a , max_length=3 , return_tensors='''pt''' ) __a = self.tokenizer( text_target=self.tgt_text , padding=_a , truncation=_a , max_length=10 , return_tensors='''pt''' ) __a = targets['''input_ids'''] __a = shift_tokens_right(_a , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def __UpperCAmelCase ( self ): __a = self.tokenizer._build_translation_inputs( '''A test''' , return_tensors='''pt''' , src_lang='''en_XX''' , tgt_lang='''ar_AR''' ) self.assertEqual( nested_simplify(_a ) , { # en_XX, A, test, EOS '''input_ids''': [[250_004, 62, 3_034, 2]], '''attention_mask''': [[1, 1, 1, 1]], # ar_AR '''forced_bos_token_id''': 250_001, } , )
695
"""simple docstring""" import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel lowercase_ = "0.12" # assumed parallelism: 8 @require_flax @is_staging_test class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @classmethod def __UpperCAmelCase ( cls ): __a = TOKEN HfFolder.save_token(_a ) @classmethod def __UpperCAmelCase ( cls ): try: delete_repo(token=cls._token , repo_id='''test-model-flax''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-model-flax-org''' ) except HTTPError: pass def __UpperCAmelCase ( self ): __a = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) __a = FlaxBertModel(_a ) model.push_to_hub('''test-model-flax''' , use_auth_token=self._token ) __a = FlaxBertModel.from_pretrained(f'''{USER}/test-model-flax''' ) __a = flatten_dict(unfreeze(model.params ) ) __a = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): __a = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_a , 1E-3 , msg=f'''{key} not identical''' ) # Reset repo delete_repo(token=self._token , repo_id='''test-model-flax''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(_a , repo_id='''test-model-flax''' , push_to_hub=_a , use_auth_token=self._token ) __a = FlaxBertModel.from_pretrained(f'''{USER}/test-model-flax''' ) __a = flatten_dict(unfreeze(model.params ) ) __a = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): __a = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_a , 1E-3 , msg=f'''{key} not identical''' ) def __UpperCAmelCase ( self ): __a = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) __a = FlaxBertModel(_a ) model.push_to_hub('''valid_org/test-model-flax-org''' , use_auth_token=self._token ) __a = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) __a = flatten_dict(unfreeze(model.params ) ) __a = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): __a = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_a , 1E-3 , msg=f'''{key} not identical''' ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-model-flax-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( _a , repo_id='''valid_org/test-model-flax-org''' , push_to_hub=_a , use_auth_token=self._token ) __a = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) __a = flatten_dict(unfreeze(model.params ) ) __a = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): __a = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_a , 1E-3 , msg=f'''{key} not identical''' ) def lowercase ( lowerCAmelCase__ : str , lowerCAmelCase__ : Dict ) -> Optional[int]: __a = True __a = flatten_dict(modela.params ) __a = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1e-4: __a = False return models_are_equal @require_flax class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self ): __a = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) __a = FlaxBertModel(_a ) __a = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(_a , _a ) ) with self.assertRaises(_a ): __a = FlaxBertModel.from_pretrained(_a ) __a = FlaxBertModel.from_pretrained(_a , subfolder=_a ) self.assertTrue(check_models_equal(_a , _a ) ) def __UpperCAmelCase ( self ): __a = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) __a = FlaxBertModel(_a ) __a = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(_a , _a ) , max_shard_size='''10KB''' ) with self.assertRaises(_a ): __a = FlaxBertModel.from_pretrained(_a ) __a = FlaxBertModel.from_pretrained(_a , subfolder=_a ) self.assertTrue(check_models_equal(_a , _a ) ) def __UpperCAmelCase ( self ): __a = '''bert''' __a = '''hf-internal-testing/tiny-random-bert-subfolder''' with self.assertRaises(_a ): __a = FlaxBertModel.from_pretrained(_a ) __a = FlaxBertModel.from_pretrained(_a , subfolder=_a ) self.assertIsNotNone(_a ) def __UpperCAmelCase ( self ): __a = '''bert''' __a = '''hf-internal-testing/tiny-random-bert-sharded-subfolder''' with self.assertRaises(_a ): __a = FlaxBertModel.from_pretrained(_a ) __a = FlaxBertModel.from_pretrained(_a , subfolder=_a ) self.assertIsNotNone(_a )
695
1
"""simple docstring""" import os from pathlib import Path import numpy as np import pytest from pack_dataset import pack_data_dir from parameterized import parameterized from save_len_file import save_len_file from torch.utils.data import DataLoader from transformers import AutoTokenizer from transformers.models.mbart.modeling_mbart import shift_tokens_right from transformers.testing_utils import TestCasePlus, slow from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeqaSeqDataset, SeqaSeqDataset lowercase_ = "bert-base-cased" lowercase_ = "google/pegasus-xsum" lowercase_ = [" Sam ate lunch today.", "Sams lunch ingredients."] lowercase_ = ["A very interesting story about what I ate for lunch.", "Avocado, celery, turkey, coffee"] lowercase_ = "patrickvonplaten/t5-tiny-random" lowercase_ = "sshleifer/bart-tiny-random" lowercase_ = "sshleifer/tiny-mbart" lowercase_ = "sshleifer/tiny-marian-en-de" def lowercase ( lowerCAmelCase__ : Path , lowerCAmelCase__ : list ) -> Dict: __a = '''\n'''.join(lowerCAmelCase__ ) Path(lowerCAmelCase__ ).open('''w''' ).writelines(lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ : List[str] ) -> List[str]: for split in ["train", "val", "test"]: _dump_articles(os.path.join(lowerCAmelCase__ , f'''{split}.source''' ) , lowerCAmelCase__ ) _dump_articles(os.path.join(lowerCAmelCase__ , f'''{split}.target''' ) , lowerCAmelCase__ ) return tmp_dir class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) @slow def __UpperCAmelCase ( self , _a ): __a = AutoTokenizer.from_pretrained(_a ) __a = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) __a = max(len(tokenizer.encode(_a ) ) for a in ARTICLES ) __a = max(len(tokenizer.encode(_a ) ) for a in SUMMARIES ) __a = 4 __a = 8 assert max_len_target > max_src_len # Will be truncated assert max_len_source > max_src_len # Will be truncated __a , __a = '''ro_RO''', '''de_DE''' # ignored for all but mbart, but never causes error. __a = SeqaSeqDataset( _a , data_dir=_a , type_path='''train''' , max_source_length=_a , max_target_length=_a , src_lang=_a , tgt_lang=_a , ) __a = DataLoader(_a , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert isinstance(_a , _a ) assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_src_len # show that targets are the same len assert batch["labels"].shape[1] == max_tgt_len if tok_name != MBART_TINY: continue # check language codes in correct place __a = shift_tokens_right(batch['''labels'''] , tokenizer.pad_token_id ) assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang] assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang] break # No need to test every batch @parameterized.expand([BART_TINY, BERT_BASE_CASED] ) def __UpperCAmelCase ( self , _a ): __a = AutoTokenizer.from_pretrained(_a ) __a = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) __a = max(len(tokenizer.encode(_a ) ) for a in ARTICLES ) __a = max(len(tokenizer.encode(_a ) ) for a in SUMMARIES ) __a = 4 __a = LegacySeqaSeqDataset( _a , data_dir=_a , type_path='''train''' , max_source_length=20 , max_target_length=_a , ) __a = DataLoader(_a , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_len_source assert 20 >= batch["input_ids"].shape[1] # trimmed significantly # show that targets were truncated assert batch["labels"].shape[1] == trunc_target # Truncated assert max_len_target > trunc_target # Truncated break # No need to test every batch def __UpperCAmelCase ( self ): __a = AutoTokenizer.from_pretrained('''facebook/mbart-large-cc25''' ) __a = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) __a = tmp_dir.joinpath('''train.source''' ).open().readlines() __a = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) pack_data_dir(_a , _a , 128 , _a ) __a = {x.name for x in tmp_dir.iterdir()} __a = {x.name for x in save_dir.iterdir()} __a = save_dir.joinpath('''train.source''' ).open().readlines() # orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.'] # desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.'] assert len(_a ) < len(_a ) assert len(_a ) == 1 assert len(packed_examples[0] ) == sum(len(_a ) for x in orig_examples ) assert orig_paths == new_paths @pytest.mark.skipif(not FAIRSEQ_AVAILABLE , reason='''This test requires fairseq''' ) def __UpperCAmelCase ( self ): if not FAIRSEQ_AVAILABLE: return __a , __a , __a = self._get_dataset(max_len=64 ) __a = 64 __a = ds.make_dynamic_sampler(_a , required_batch_size_multiple=_a ) __a = [len(_a ) for x in batch_sampler] assert len(set(_a ) ) > 1 # it's not dynamic batch size if every batch is the same length assert sum(_a ) == len(_a ) # no dropped or added examples __a = DataLoader(_a , batch_sampler=_a , collate_fn=ds.collate_fn , num_workers=2 ) __a = [] __a = [] for batch in data_loader: __a = batch['''input_ids'''].shape __a = src_shape[0] assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple __a = np.product(batch['''input_ids'''].shape ) num_src_per_batch.append(_a ) if num_src_tokens > (max_tokens * 1.1): failures.append(_a ) assert num_src_per_batch[0] == max(_a ) if failures: raise AssertionError(f'''too many tokens in {len(_a )} batches''' ) def __UpperCAmelCase ( self ): __a , __a , __a = self._get_dataset(max_len=512 ) __a = 2 __a = ds.make_sortish_sampler(_a , shuffle=_a ) __a = DataLoader(_a , batch_size=_a , collate_fn=ds.collate_fn , num_workers=2 ) __a = DataLoader(_a , batch_size=_a , collate_fn=ds.collate_fn , num_workers=2 , sampler=_a ) __a = tokenizer.pad_token_id def count_pad_tokens(_a , _a="input_ids" ): return [batch[k].eq(_a ).sum().item() for batch in data_loader] assert sum(count_pad_tokens(_a , k='''labels''' ) ) < sum(count_pad_tokens(_a , k='''labels''' ) ) assert sum(count_pad_tokens(_a ) ) < sum(count_pad_tokens(_a ) ) assert len(_a ) == len(_a ) def __UpperCAmelCase ( self , _a=1_000 , _a=128 ): if os.getenv('''USE_REAL_DATA''' , _a ): __a = '''examples/seq2seq/wmt_en_ro''' __a = max_len * 2 * 64 if not Path(_a ).joinpath('''train.len''' ).exists(): save_len_file(_a , _a ) else: __a = '''examples/seq2seq/test_data/wmt_en_ro''' __a = max_len * 4 save_len_file(_a , _a ) __a = AutoTokenizer.from_pretrained(_a ) __a = SeqaSeqDataset( _a , data_dir=_a , type_path='''train''' , max_source_length=_a , max_target_length=_a , n_obs=_a , ) return ds, max_tokens, tokenizer def __UpperCAmelCase ( self ): __a , __a , __a = self._get_dataset() __a = set(DistributedSortishSampler(_a , 256 , num_replicas=2 , rank=0 , add_extra_examples=_a ) ) __a = set(DistributedSortishSampler(_a , 256 , num_replicas=2 , rank=1 , add_extra_examples=_a ) ) assert idsa.intersection(_a ) == set() @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) def __UpperCAmelCase ( self , _a ): __a = AutoTokenizer.from_pretrained(_a , use_fast=_a ) if tok_name == MBART_TINY: __a = SeqaSeqDataset( _a , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path='''train''' , max_source_length=4 , max_target_length=8 , src_lang='''EN''' , tgt_lang='''FR''' , ) __a = train_dataset.dataset_kwargs assert "src_lang" in kwargs and "tgt_lang" in kwargs else: __a = SeqaSeqDataset( _a , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path='''train''' , max_source_length=4 , max_target_length=8 , ) __a = train_dataset.dataset_kwargs assert "add_prefix_space" not in kwargs if tok_name != BART_TINY else "add_prefix_space" in kwargs assert len(_a ) == 1 if tok_name == BART_TINY else len(_a ) == 0
695
"""simple docstring""" import unittest from diffusers.models.unet_ad_blocks import * # noqa F403 from diffusers.utils import torch_device from .test_unet_blocks_common import UNetBlockTesterMixin class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = DownBlockaD # noqa F405 __UpperCAmelCase : Any = 'down' def __UpperCAmelCase ( self ): __a = [-0.0232, -0.9869, 0.8054, -0.0637, -0.1688, -1.4264, 0.4470, -1.3394, 0.0904] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : str = ResnetDownsampleBlockaD # noqa F405 __UpperCAmelCase : List[str] = 'down' def __UpperCAmelCase ( self ): __a = [0.0710, 0.2410, -0.7320, -1.0757, -1.1343, 0.3540, -0.0133, -0.2576, 0.0948] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Optional[int] = AttnDownBlockaD # noqa F405 __UpperCAmelCase : Optional[Any] = 'down' def __UpperCAmelCase ( self ): __a = [0.0636, 0.8964, -0.6234, -1.0131, 0.0844, 0.4935, 0.3437, 0.0911, -0.2957] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : List[Any] = CrossAttnDownBlockaD # noqa F405 __UpperCAmelCase : Optional[Any] = 'down' def __UpperCAmelCase ( self ): __a , __a = super().prepare_init_args_and_inputs_for_common() __a = 32 return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [0.2238, -0.7396, -0.2255, -0.3829, 0.1925, 1.1665, 0.0603, -0.7295, 0.1983] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : int = SimpleCrossAttnDownBlockaD # noqa F405 __UpperCAmelCase : Any = 'down' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_encoder_hidden_states=_a ) def __UpperCAmelCase ( self ): __a , __a = super().prepare_init_args_and_inputs_for_common() __a = 32 return init_dict, inputs_dict @unittest.skipIf(torch_device == '''mps''' , '''MPS result is not consistent''' ) def __UpperCAmelCase ( self ): __a = [0.7921, -0.0992, -0.1962, -0.7695, -0.4242, 0.7804, 0.4737, 0.2765, 0.3338] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : int = SkipDownBlockaD # noqa F405 __UpperCAmelCase : Tuple = 'down' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_skip_sample=_a ) def __UpperCAmelCase ( self ): __a = [-0.0845, -0.2087, -0.2465, 0.0971, 0.1900, -0.0484, 0.2664, 0.4179, 0.5069] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : List[Any] = AttnSkipDownBlockaD # noqa F405 __UpperCAmelCase : Optional[int] = 'down' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_skip_sample=_a ) def __UpperCAmelCase ( self ): __a = [0.5539, 0.1609, 0.4924, 0.0537, -0.1995, 0.4050, 0.0979, -0.2721, -0.0642] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : int = DownEncoderBlockaD # noqa F405 __UpperCAmelCase : Optional[int] = 'down' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_temb=_a ) def __UpperCAmelCase ( self ): __a = { '''in_channels''': 32, '''out_channels''': 32, } __a = self.dummy_input return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [1.1102, 0.5302, 0.4872, -0.0023, -0.8042, 0.0483, -0.3489, -0.5632, 0.7626] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = AttnDownEncoderBlockaD # noqa F405 __UpperCAmelCase : Any = 'down' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_temb=_a ) def __UpperCAmelCase ( self ): __a = { '''in_channels''': 32, '''out_channels''': 32, } __a = self.dummy_input return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [0.8966, -0.1486, 0.8568, 0.8141, -0.9046, -0.1342, -0.0972, -0.7417, 0.1538] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : str = UNetMidBlockaD # noqa F405 __UpperCAmelCase : Any = 'mid' def __UpperCAmelCase ( self ): __a = { '''in_channels''': 32, '''temb_channels''': 128, } __a = self.dummy_input return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [-0.1062, 1.7248, 0.3494, 1.4569, -0.0910, -1.2421, -0.9984, 0.6736, 1.0028] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : str = UNetMidBlockaDCrossAttn # noqa F405 __UpperCAmelCase : str = 'mid' def __UpperCAmelCase ( self ): __a , __a = super().prepare_init_args_and_inputs_for_common() __a = 32 return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [0.0187, 2.4220, 0.4484, 1.1203, -0.6121, -1.5122, -0.8270, 0.7851, 1.8335] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Any = UNetMidBlockaDSimpleCrossAttn # noqa F405 __UpperCAmelCase : List[Any] = 'mid' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_encoder_hidden_states=_a ) def __UpperCAmelCase ( self ): __a , __a = super().prepare_init_args_and_inputs_for_common() __a = 32 return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [0.7143, 1.9974, 0.5448, 1.3977, 0.1282, -1.1237, -1.4238, 0.5530, 0.8880] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = UpBlockaD # noqa F405 __UpperCAmelCase : Union[str, Any] = 'up' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=_a ) def __UpperCAmelCase ( self ): __a = [-0.2041, -0.4165, -0.3022, 0.0041, -0.6628, -0.7053, 0.1928, -0.0325, 0.0523] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : str = ResnetUpsampleBlockaD # noqa F405 __UpperCAmelCase : int = 'up' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=_a ) def __UpperCAmelCase ( self ): __a = [0.2287, 0.3549, -0.1346, 0.4797, -0.1715, -0.9649, 0.7305, -0.5864, -0.6244] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Dict = CrossAttnUpBlockaD # noqa F405 __UpperCAmelCase : List[Any] = 'up' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=_a ) def __UpperCAmelCase ( self ): __a , __a = super().prepare_init_args_and_inputs_for_common() __a = 32 return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [-0.1403, -0.3515, -0.0420, -0.1425, 0.3167, 0.5094, -0.2181, 0.5931, 0.5582] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = SimpleCrossAttnUpBlockaD # noqa F405 __UpperCAmelCase : Optional[int] = 'up' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=_a , include_encoder_hidden_states=_a ) def __UpperCAmelCase ( self ): __a , __a = super().prepare_init_args_and_inputs_for_common() __a = 32 return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [0.2645, 0.1480, 0.0909, 0.8044, -0.9758, -0.9083, 0.0994, -1.1453, -0.7402] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Any = AttnUpBlockaD # noqa F405 __UpperCAmelCase : List[Any] = 'up' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=_a ) @unittest.skipIf(torch_device == '''mps''' , '''MPS result is not consistent''' ) def __UpperCAmelCase ( self ): __a = [0.0979, 0.1326, 0.0021, 0.0659, 0.2249, 0.0059, 0.1132, 0.5952, 0.1033] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Any = SkipUpBlockaD # noqa F405 __UpperCAmelCase : str = 'up' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=_a ) def __UpperCAmelCase ( self ): __a = [-0.0893, -0.1234, -0.1506, -0.0332, 0.0123, -0.0211, 0.0566, 0.0143, 0.0362] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = AttnSkipUpBlockaD # noqa F405 __UpperCAmelCase : int = 'up' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=_a ) def __UpperCAmelCase ( self ): __a = [0.0361, 0.0617, 0.2787, -0.0350, 0.0342, 0.3421, -0.0843, 0.0913, 0.3015] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = UpDecoderBlockaD # noqa F405 __UpperCAmelCase : List[str] = 'up' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_temb=_a ) def __UpperCAmelCase ( self ): __a = {'''in_channels''': 32, '''out_channels''': 32} __a = self.dummy_input return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [0.4404, 0.1998, -0.9886, -0.3320, -0.3128, -0.7034, -0.6955, -0.2338, -0.3137] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Optional[int] = AttnUpDecoderBlockaD # noqa F405 __UpperCAmelCase : Any = 'up' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_temb=_a ) def __UpperCAmelCase ( self ): __a = {'''in_channels''': 32, '''out_channels''': 32} __a = self.dummy_input return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [0.6738, 0.4491, 0.1055, 1.0710, 0.7316, 0.3339, 0.3352, 0.1023, 0.3568] super().test_output(_a )
695
1
"""simple docstring""" def lowercase ( ) -> list[list[int]]: return [list(range(1000 - i , -1000 - i , -1 ) ) for i in range(1000 )] lowercase_ = generate_large_matrix() lowercase_ = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def lowercase ( lowerCAmelCase__ : list[list[int]] ) -> None: assert all(row == sorted(lowerCAmelCase__ , reverse=lowerCAmelCase__ ) for row in grid ) assert all(list(lowerCAmelCase__ ) == sorted(lowerCAmelCase__ , reverse=lowerCAmelCase__ ) for col in zip(*lowerCAmelCase__ ) ) def lowercase ( lowerCAmelCase__ : list[int] ) -> int: __a = 0 __a = len(lowerCAmelCase__ ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: __a = (left + right) // 2 __a = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: __a = mid + 1 else: __a = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ : list[list[int]] ) -> int: __a = 0 __a = len(grid[0] ) for i in range(len(lowerCAmelCase__ ) ): __a = find_negative_index(grid[i][:bound] ) total += bound return (len(lowerCAmelCase__ ) * len(grid[0] )) - total def lowercase ( lowerCAmelCase__ : list[list[int]] ) -> int: return len([number for row in grid for number in row if number < 0] ) def lowercase ( lowerCAmelCase__ : list[list[int]] ) -> int: __a = 0 for row in grid: for i, number in enumerate(lowerCAmelCase__ ): if number < 0: total += len(lowerCAmelCase__ ) - i break return total def lowercase ( ) -> None: from timeit import timeit print('''Running benchmarks''' ) __a = ( '''from __main__ import count_negatives_binary_search, ''' '''count_negatives_brute_force, count_negatives_brute_force_with_break, grid''' ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): __a = timeit(f'''{func}(grid=grid)''' , setup=lowerCAmelCase__ , number=500 ) print(f'''{func}() took {time:0.4f} seconds''' ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
695
"""simple docstring""" import copy from typing import Dict, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING from ..detr import DetrConfig from ..swin import SwinConfig lowercase_ = { "facebook/maskformer-swin-base-ade": ( "https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json" ) # See all MaskFormer models at https://huggingface.co/models?filter=maskformer } lowercase_ = logging.get_logger(__name__) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : str = 'maskformer' __UpperCAmelCase : Optional[int] = {'hidden_size': 'mask_feature_size'} __UpperCAmelCase : Any = ['resnet', 'swin'] __UpperCAmelCase : Dict = ['detr'] def __init__( self , _a = 256 , _a = 256 , _a = 0.1 , _a = False , _a = None , _a = None , _a = 0.02 , _a = 1.0 , _a = 1.0 , _a = 1.0 , _a = 20.0 , _a = None , **_a , ): if backbone_config is None: # fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k __a = SwinConfig( image_size=384 , in_channels=3 , patch_size=4 , embed_dim=128 , depths=[2, 2, 18, 2] , num_heads=[4, 8, 16, 32] , window_size=12 , drop_path_rate=0.3 , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] , ) if isinstance(_a , _a ): __a = backbone_config.pop('''model_type''' ) __a = CONFIG_MAPPING[backbone_model_type] __a = config_class.from_dict(_a ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f'''Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. ''' f'''Supported model types: {','.join(self.backbones_supported )}''' ) if decoder_config is None: # fall back to https://huggingface.co/facebook/detr-resnet-50 __a = DetrConfig() else: # verify that the decoder is supported __a = ( decoder_config.pop('''model_type''' ) if isinstance(_a , _a ) else decoder_config.model_type ) if decoder_type not in self.decoders_supported: raise ValueError( f'''Transformer Decoder {decoder_type} not supported, please use one of''' f''' {','.join(self.decoders_supported )}''' ) if isinstance(_a , _a ): __a = CONFIG_MAPPING[decoder_type] __a = config_class.from_dict(_a ) __a = backbone_config __a = decoder_config # main feature dimension for the model __a = fpn_feature_size __a = mask_feature_size # initializer __a = init_std __a = init_xavier_std # Hungarian matcher && loss __a = cross_entropy_weight __a = dice_weight __a = mask_weight __a = use_auxiliary_loss __a = no_object_weight __a = output_auxiliary_logits __a = self.decoder_config.encoder_attention_heads __a = self.decoder_config.num_hidden_layers super().__init__(**_a ) @classmethod def __UpperCAmelCase ( cls , _a , _a , **_a ): return cls( backbone_config=_a , decoder_config=_a , **_a , ) def __UpperCAmelCase ( self ): __a = copy.deepcopy(self.__dict__ ) __a = self.backbone_config.to_dict() __a = self.decoder_config.to_dict() __a = self.__class__.model_type return output
695
1
"""simple docstring""" import argparse from collections import defaultdict def lowercase ( lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : str ) -> Union[str, Any]: __a = f'''{file}_{class_name}_{test_name}''' done_test[_id] += 1 with open(lowerCAmelCase__ , '''r''' ) as f: __a = f.readlines() __a = f'''class {class_name}(''' __a = f'''{4 * ' '}def {test_name}(''' __a = f'''{8 * ' '}{correct_line.split()[0]}''' __a = f'''{16 * ' '}{correct_line.split()[0]}''' __a = False __a = False __a = False __a = False __a = 0 __a = 0 __a = [] for line in lines: if line.startswith(lowerCAmelCase__ ): __a = True elif in_class and line.startswith(lowerCAmelCase__ ): __a = True elif in_class and in_func and (line.startswith(lowerCAmelCase__ ) or line.startswith(lowerCAmelCase__ )): __a = len(line.split(correct_line.split()[0] )[0] ) count += 1 if count == done_test[_id]: __a = True if in_class and in_func and in_line: if ")" not in line: continue else: __a = True if in_class and in_func and in_line and insert_line: new_lines.append(f'''{spaces * ' '}{correct_line}''' ) __a = __a = __a = __a = False else: new_lines.append(lowerCAmelCase__ ) with open(lowerCAmelCase__ , '''w''' ) as f: for line in new_lines: f.write(lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ : Dict , lowerCAmelCase__ : Dict=None ) -> Optional[int]: if fail is not None: with open(lowerCAmelCase__ , '''r''' ) as f: __a = {l.strip() for l in f.readlines()} else: __a = None with open(lowerCAmelCase__ , '''r''' ) as f: __a = f.readlines() __a = defaultdict(lowerCAmelCase__ ) for line in correct_lines: __a , __a , __a , __a = line.split(''';''' ) if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures: overwrite_file(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument("--correct_filename", help="filename of tests with expected result") parser.add_argument("--fail_filename", help="filename of test failures", type=str, default=None) lowercase_ = parser.parse_args() main(args.correct_filename, args.fail_filename)
695
"""simple docstring""" from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup lowercase_ = "https://www.indeed.co.in/jobs?q=mobile+app+development&l=" def lowercase ( lowerCAmelCase__ : str = "mumbai" ) -> Generator[tuple[str, str], None, None]: __a = BeautifulSoup(requests.get(url + location ).content , '''html.parser''' ) # This attribute finds out all the specifics listed in a job for job in soup.find_all('''div''' , attrs={'''data-tn-component''': '''organicJob'''} ): __a = job.find('''a''' , attrs={'''data-tn-element''': '''jobTitle'''} ).text.strip() __a = job.find('''span''' , {'''class''': '''company'''} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs("Bangalore"), 1): print(F'''Job {i:>2} is {job[0]} at {job[1]}''')
695
1
"""simple docstring""" from argparse import ArgumentParser from .add_new_model import AddNewModelCommand from .add_new_model_like import AddNewModelLikeCommand from .convert import ConvertCommand from .download import DownloadCommand from .env import EnvironmentCommand from .lfs import LfsCommands from .pt_to_tf import PTtoTFCommand from .run import RunCommand from .serving import ServeCommand from .user import UserCommands def lowercase ( ) -> List[Any]: __a = ArgumentParser('''Transformers CLI tool''' , usage='''transformers-cli <command> [<args>]''' ) __a = parser.add_subparsers(help='''transformers-cli command helpers''' ) # Register commands ConvertCommand.register_subcommand(lowerCAmelCase__ ) DownloadCommand.register_subcommand(lowerCAmelCase__ ) EnvironmentCommand.register_subcommand(lowerCAmelCase__ ) RunCommand.register_subcommand(lowerCAmelCase__ ) ServeCommand.register_subcommand(lowerCAmelCase__ ) UserCommands.register_subcommand(lowerCAmelCase__ ) AddNewModelCommand.register_subcommand(lowerCAmelCase__ ) AddNewModelLikeCommand.register_subcommand(lowerCAmelCase__ ) LfsCommands.register_subcommand(lowerCAmelCase__ ) PTtoTFCommand.register_subcommand(lowerCAmelCase__ ) # Let's go __a = parser.parse_args() if not hasattr(lowerCAmelCase__ , '''func''' ): parser.print_help() exit(1 ) # Run __a = args.func(lowerCAmelCase__ ) service.run() if __name__ == "__main__": main()
695
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "bigcode/gpt_bigcode-santacoder": "https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json", } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : List[str] = 'gpt_bigcode' __UpperCAmelCase : Tuple = ['past_key_values'] __UpperCAmelCase : Dict = { 'hidden_size': 'n_embd', 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , _a=50_257 , _a=1_024 , _a=768 , _a=12 , _a=12 , _a=None , _a="gelu_pytorch_tanh" , _a=0.1 , _a=0.1 , _a=0.1 , _a=1E-5 , _a=0.02 , _a=True , _a=True , _a=50_256 , _a=50_256 , _a=True , _a=True , _a=True , **_a , ): __a = vocab_size __a = n_positions __a = n_embd __a = n_layer __a = n_head __a = n_inner __a = activation_function __a = resid_pdrop __a = embd_pdrop __a = attn_pdrop __a = layer_norm_epsilon __a = initializer_range __a = scale_attn_weights __a = use_cache __a = attention_softmax_in_fpaa __a = scale_attention_softmax_in_fpaa __a = multi_query __a = bos_token_id __a = eos_token_id super().__init__(bos_token_id=_a , eos_token_id=_a , **_a )
695
1
"""simple docstring""" from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def lowercase ( lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : float = 1 / sqrt(2 ) ) -> IIRFilter: __a = tau * frequency / samplerate __a = sin(lowerCAmelCase__ ) __a = cos(lowerCAmelCase__ ) __a = _sin / (2 * q_factor) __a = (1 - _cos) / 2 __a = 1 - _cos __a = 1 + alpha __a = -2 * _cos __a = 1 - alpha __a = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def lowercase ( lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : float = 1 / sqrt(2 ) ) -> IIRFilter: __a = tau * frequency / samplerate __a = sin(lowerCAmelCase__ ) __a = cos(lowerCAmelCase__ ) __a = _sin / (2 * q_factor) __a = (1 + _cos) / 2 __a = -1 - _cos __a = 1 + alpha __a = -2 * _cos __a = 1 - alpha __a = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def lowercase ( lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : float = 1 / sqrt(2 ) ) -> IIRFilter: __a = tau * frequency / samplerate __a = sin(lowerCAmelCase__ ) __a = cos(lowerCAmelCase__ ) __a = _sin / (2 * q_factor) __a = _sin / 2 __a = 0 __a = -ba __a = 1 + alpha __a = -2 * _cos __a = 1 - alpha __a = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def lowercase ( lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : float = 1 / sqrt(2 ) ) -> IIRFilter: __a = tau * frequency / samplerate __a = sin(lowerCAmelCase__ ) __a = cos(lowerCAmelCase__ ) __a = _sin / (2 * q_factor) __a = 1 - alpha __a = -2 * _cos __a = 1 + alpha __a = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] ) return filt def lowercase ( lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : float , lowerCAmelCase__ : float = 1 / sqrt(2 ) , ) -> IIRFilter: __a = tau * frequency / samplerate __a = sin(lowerCAmelCase__ ) __a = cos(lowerCAmelCase__ ) __a = _sin / (2 * q_factor) __a = 10 ** (gain_db / 40) __a = 1 + alpha * big_a __a = -2 * _cos __a = 1 - alpha * big_a __a = 1 + alpha / big_a __a = -2 * _cos __a = 1 - alpha / big_a __a = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def lowercase ( lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : float , lowerCAmelCase__ : float = 1 / sqrt(2 ) , ) -> IIRFilter: __a = tau * frequency / samplerate __a = sin(lowerCAmelCase__ ) __a = cos(lowerCAmelCase__ ) __a = _sin / (2 * q_factor) __a = 10 ** (gain_db / 40) __a = (big_a + 1) - (big_a - 1) * _cos __a = (big_a + 1) + (big_a - 1) * _cos __a = (big_a - 1) - (big_a + 1) * _cos __a = (big_a - 1) + (big_a + 1) * _cos __a = 2 * sqrt(lowerCAmelCase__ ) * alpha __a = big_a * (pmc + aaa) __a = 2 * big_a * mpc __a = big_a * (pmc - aaa) __a = ppmc + aaa __a = -2 * pmpc __a = ppmc - aaa __a = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def lowercase ( lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : float , lowerCAmelCase__ : float = 1 / sqrt(2 ) , ) -> IIRFilter: __a = tau * frequency / samplerate __a = sin(lowerCAmelCase__ ) __a = cos(lowerCAmelCase__ ) __a = _sin / (2 * q_factor) __a = 10 ** (gain_db / 40) __a = (big_a + 1) - (big_a - 1) * _cos __a = (big_a + 1) + (big_a - 1) * _cos __a = (big_a - 1) - (big_a + 1) * _cos __a = (big_a - 1) + (big_a + 1) * _cos __a = 2 * sqrt(lowerCAmelCase__ ) * alpha __a = big_a * (ppmc + aaa) __a = -2 * big_a * pmpc __a = big_a * (ppmc - aaa) __a = pmc + aaa __a = 2 * mpc __a = pmc - aaa __a = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt
695
"""simple docstring""" import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler lowercase_ = 1_6 lowercase_ = 3_2 def lowercase ( lowerCAmelCase__ : Accelerator , lowerCAmelCase__ : int = 16 , lowerCAmelCase__ : str = "bert-base-cased" ) -> Optional[int]: __a = AutoTokenizer.from_pretrained(lowerCAmelCase__ ) __a = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(lowerCAmelCase__ : Optional[Any] ): # max_length=None => use the model max length (it's actually the default) __a = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset __a = datasets.map( lowerCAmelCase__ , batched=lowerCAmelCase__ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , load_from_cache_file=lowerCAmelCase__ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __a = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(lowerCAmelCase__ : int ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(lowerCAmelCase__ , padding='''max_length''' , max_length=128 , return_tensors='''pt''' ) return tokenizer.pad(lowerCAmelCase__ , padding='''longest''' , return_tensors='''pt''' ) # Instantiate dataloaders. __a = DataLoader( tokenized_datasets['''train'''] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ ) __a = DataLoader( tokenized_datasets['''validation'''] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ ) return train_dataloader, eval_dataloader def lowercase ( lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Union[str, Any] ) -> Optional[int]: # Initialize accelerator __a = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __a = config['''lr'''] __a = int(config['''num_epochs'''] ) __a = int(config['''seed'''] ) __a = int(config['''batch_size'''] ) __a = args.model_name_or_path set_seed(lowerCAmelCase__ ) __a , __a = get_dataloaders(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __a = AutoModelForSequenceClassification.from_pretrained(lowerCAmelCase__ , return_dict=lowerCAmelCase__ ) # Instantiate optimizer __a = ( AdamW if accelerator.state.deepspeed_plugin is None or '''optimizer''' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) __a = optimizer_cls(params=model.parameters() , lr=lowerCAmelCase__ ) if accelerator.state.deepspeed_plugin is not None: __a = accelerator.state.deepspeed_plugin.deepspeed_config[ '''gradient_accumulation_steps''' ] else: __a = 1 __a = (len(lowerCAmelCase__ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): __a = get_linear_schedule_with_warmup( optimizer=lowerCAmelCase__ , num_warmup_steps=0 , num_training_steps=lowerCAmelCase__ , ) else: __a = DummyScheduler(lowerCAmelCase__ , total_num_steps=lowerCAmelCase__ , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __a , __a , __a , __a , __a = accelerator.prepare( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # We need to keep track of how many total steps we have iterated over __a = 0 # We also need to keep track of the stating epoch so files are named properly __a = 0 # Now we train the model __a = evaluate.load('''glue''' , '''mrpc''' ) __a = 0 __a = {} for epoch in range(lowerCAmelCase__ , lowerCAmelCase__ ): model.train() for step, batch in enumerate(lowerCAmelCase__ ): __a = model(**lowerCAmelCase__ ) __a = outputs.loss __a = loss / gradient_accumulation_steps accelerator.backward(lowerCAmelCase__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 model.eval() __a = 0 for step, batch in enumerate(lowerCAmelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __a = model(**lowerCAmelCase__ ) __a = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times __a , __a = accelerator.gather( (predictions, batch['''labels''']) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(lowerCAmelCase__ ) - 1: __a = predictions[: len(eval_dataloader.dataset ) - samples_seen] __a = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=lowerCAmelCase__ , references=lowerCAmelCase__ , ) __a = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}:''' , lowerCAmelCase__ ) __a = eval_metric['''accuracy'''] if best_performance < eval_metric["accuracy"]: __a = eval_metric['''accuracy'''] if args.performance_lower_bound is not None: assert ( args.performance_lower_bound <= best_performance ), f'''Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}''' accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , '''all_results.json''' ) , '''w''' ) as f: json.dump(lowerCAmelCase__ , lowerCAmelCase__ ) def lowercase ( ) -> List[str]: __a = argparse.ArgumentParser(description='''Simple example of training script tracking peak GPU memory usage.''' ) parser.add_argument( '''--model_name_or_path''' , type=lowerCAmelCase__ , default='''bert-base-cased''' , help='''Path to pretrained model or model identifier from huggingface.co/models.''' , required=lowerCAmelCase__ , ) parser.add_argument( '''--output_dir''' , type=lowerCAmelCase__ , default='''.''' , help='''Optional save directory where all checkpoint folders will be stored. Default is the current working directory.''' , ) parser.add_argument( '''--performance_lower_bound''' , type=lowerCAmelCase__ , default=lowerCAmelCase__ , help='''Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value.''' , ) parser.add_argument( '''--num_epochs''' , type=lowerCAmelCase__ , default=3 , help='''Number of train epochs.''' , ) __a = parser.parse_args() __a = {'''lr''': 2e-5, '''num_epochs''': args.num_epochs, '''seed''': 42, '''batch_size''': 16} training_function(lowerCAmelCase__ , lowerCAmelCase__ ) if __name__ == "__main__": main()
695
1
"""simple docstring""" import math class __lowerCAmelCase : '''simple docstring''' def __UpperCAmelCase ( self , _a , _a ): __a = 0.0 __a = 0.0 for i in range(len(_a ) ): da += math.pow((sample[i] - weights[0][i]) , 2 ) da += math.pow((sample[i] - weights[1][i]) , 2 ) return 0 if da > da else 1 return 0 def __UpperCAmelCase ( self , _a , _a , _a , _a ): for i in range(len(_a ) ): weights[j][i] += alpha * (sample[i] - weights[j][i]) return weights def lowercase ( ) -> None: # Training Examples ( m, n ) __a = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]] # weight initialization ( n, C ) __a = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]] # training __a = SelfOrganizingMap() __a = 3 __a = 0.5 for _ in range(lowerCAmelCase__ ): for j in range(len(lowerCAmelCase__ ) ): # training sample __a = training_samples[j] # Compute the winning vector __a = self_organizing_map.get_winner(lowerCAmelCase__ , lowerCAmelCase__ ) # Update the winning vector __a = self_organizing_map.update(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # classify test sample __a = [0, 0, 0, 1] __a = self_organizing_map.get_winner(lowerCAmelCase__ , lowerCAmelCase__ ) # results print(f'''Clusters that the test sample belongs to : {winner}''' ) print(f'''Weights that have been trained : {weights}''' ) # running the main() function if __name__ == "__main__": main()
695
"""simple docstring""" from typing import Any def lowercase ( lowerCAmelCase__ : list , lowerCAmelCase__ : list , lowerCAmelCase__ : dict , lowerCAmelCase__ : dict , lowerCAmelCase__ : dict , ) -> list: _validation( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ) # Creates data structures and fill initial step __a = {} __a = {} for state in states_space: __a = observations_space[0] __a = ( initial_probabilities[state] * emission_probabilities[state][observation] ) __a = None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(lowerCAmelCase__ ) ): __a = observations_space[o] __a = observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function __a = '''''' __a = -1 for k_state in states_space: __a = ( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: __a = probability __a = k_state # Update probabilities and pointers dicts __a = ( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) __a = arg_max # The final observation __a = observations_space[len(lowerCAmelCase__ ) - 1] # argmax for given final observation __a = '''''' __a = -1 for k_state in states_space: __a = probabilities[(k_state, final_observation)] if probability > max_probability: __a = probability __a = k_state __a = arg_max # Process pointers backwards __a = last_state __a = [] for o in range(len(lowerCAmelCase__ ) - 1 , -1 , -1 ): result.append(lowerCAmelCase__ ) __a = pointers[previous, observations_space[o]] result.reverse() return result def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , ) -> None: _validate_not_empty( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ) _validate_lists(lowerCAmelCase__ , lowerCAmelCase__ ) _validate_dicts( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , ) -> None: if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError('''There\'s an empty parameter''' ) def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Any ) -> None: _validate_list(lowerCAmelCase__ , '''observations_space''' ) _validate_list(lowerCAmelCase__ , '''states_space''' ) def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : str ) -> None: if not isinstance(_object , lowerCAmelCase__ ): __a = f'''{var_name} must be a list''' raise ValueError(lowerCAmelCase__ ) else: for x in _object: if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): __a = f'''{var_name} must be a list of strings''' raise ValueError(lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , ) -> None: _validate_dict(lowerCAmelCase__ , '''initial_probabilities''' , lowerCAmelCase__ ) _validate_nested_dict(lowerCAmelCase__ , '''transition_probabilities''' ) _validate_nested_dict(lowerCAmelCase__ , '''emission_probabilities''' ) def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : str ) -> None: _validate_dict(_object , lowerCAmelCase__ , lowerCAmelCase__ ) for x in _object.values(): _validate_dict(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : str , lowerCAmelCase__ : type , lowerCAmelCase__ : bool = False ) -> None: if not isinstance(_object , lowerCAmelCase__ ): __a = f'''{var_name} must be a dict''' raise ValueError(lowerCAmelCase__ ) if not all(isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) for x in _object ): __a = f'''{var_name} all keys must be strings''' raise ValueError(lowerCAmelCase__ ) if not all(isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) for x in _object.values() ): __a = '''nested dictionary ''' if nested else '''''' __a = f'''{var_name} {nested_text}all values must be {value_type.__name__}''' raise ValueError(lowerCAmelCase__ ) if __name__ == "__main__": from doctest import testmod testmod()
695
1
"""simple docstring""" import numpy as np def lowercase ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Any ) -> int: __a = int(np.ceil((x_end - xa) / h ) ) __a = np.zeros((n + 1,) ) __a = ya __a = xa for k in range(lowerCAmelCase__ ): __a = f(lowerCAmelCase__ , y[k] ) __a = f(x + 0.5 * h , y[k] + 0.5 * h * ka ) __a = f(x + 0.5 * h , y[k] + 0.5 * h * ka ) __a = f(x + h , y[k] + h * ka ) __a = y[k] + (1 / 6) * h * (ka + 2 * ka + 2 * ka + ka) x += h return y if __name__ == "__main__": import doctest doctest.testmod()
695
"""simple docstring""" import math def lowercase ( lowerCAmelCase__ : int ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowerCAmelCase__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowercase ( lowerCAmelCase__ : float = 0.1 ) -> int: __a = 3 __a = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(lowerCAmelCase__ ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
695
1
"""simple docstring""" from transformers import DistilBertTokenizer, DistilBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Any = DistilBertTokenizer __UpperCAmelCase : Optional[int] = DistilBertTokenizerFast __UpperCAmelCase : Union[str, Any] = True @slow def __UpperCAmelCase ( self ): __a = DistilBertTokenizer.from_pretrained('''distilbert-base-uncased''' ) __a = tokenizer.encode('''sequence builders''' , add_special_tokens=_a ) __a = tokenizer.encode('''multi-sequence build''' , add_special_tokens=_a ) __a = tokenizer.build_inputs_with_special_tokens(_a ) __a = tokenizer.build_inputs_with_special_tokens(_a , _a ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ]
695
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase_ = { "configuration_mctct": ["MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MCTCTConfig"], "feature_extraction_mctct": ["MCTCTFeatureExtractor"], "processing_mctct": ["MCTCTProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST", "MCTCTForCTC", "MCTCTModel", "MCTCTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
695
1
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import ( DiffusionPipeline, UnCLIPImageVariationPipeline, UnCLIPScheduler, UNetaDConditionModel, UNetaDModel, ) from diffusers.pipelines.unclip.text_proj import UnCLIPTextProjModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, load_image, require_torch_gpu, skip_mps from ..pipeline_params import IMAGE_VARIATION_BATCH_PARAMS, IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Tuple = UnCLIPImageVariationPipeline __UpperCAmelCase : Any = IMAGE_VARIATION_PARAMS - {'height', 'width', 'guidance_scale'} __UpperCAmelCase : Any = IMAGE_VARIATION_BATCH_PARAMS __UpperCAmelCase : Optional[int] = [ 'generator', 'return_dict', 'decoder_num_inference_steps', 'super_res_num_inference_steps', ] __UpperCAmelCase : List[str] = False @property def __UpperCAmelCase ( self ): return 32 @property def __UpperCAmelCase ( self ): return 32 @property def __UpperCAmelCase ( self ): return self.time_input_dim @property def __UpperCAmelCase ( self ): return self.time_input_dim * 4 @property def __UpperCAmelCase ( self ): return 100 @property def __UpperCAmelCase ( self ): __a = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def __UpperCAmelCase ( self ): torch.manual_seed(0 ) __a = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModelWithProjection(_a ) @property def __UpperCAmelCase ( self ): torch.manual_seed(0 ) __a = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) return CLIPVisionModelWithProjection(_a ) @property def __UpperCAmelCase ( self ): torch.manual_seed(0 ) __a = { '''clip_embeddings_dim''': self.text_embedder_hidden_size, '''time_embed_dim''': self.time_embed_dim, '''cross_attention_dim''': self.cross_attention_dim, } __a = UnCLIPTextProjModel(**_a ) return model @property def __UpperCAmelCase ( self ): torch.manual_seed(0 ) __a = { '''sample_size''': 32, # RGB in channels '''in_channels''': 3, # Out channels is double in channels because predicts mean and variance '''out_channels''': 6, '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': '''identity''', } __a = UNetaDConditionModel(**_a ) return model @property def __UpperCAmelCase ( self ): return { "sample_size": 64, "layers_per_block": 1, "down_block_types": ("ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D"), "up_block_types": ("ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D"), "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "in_channels": 6, "out_channels": 3, } @property def __UpperCAmelCase ( self ): torch.manual_seed(0 ) __a = UNetaDModel(**self.dummy_super_res_kwargs ) return model @property def __UpperCAmelCase ( self ): # seeded differently to get different unet than `self.dummy_super_res_first` torch.manual_seed(1 ) __a = UNetaDModel(**self.dummy_super_res_kwargs ) return model def __UpperCAmelCase ( self ): __a = self.dummy_decoder __a = self.dummy_text_proj __a = self.dummy_text_encoder __a = self.dummy_tokenizer __a = self.dummy_super_res_first __a = self.dummy_super_res_last __a = UnCLIPScheduler( variance_type='''learned_range''' , prediction_type='''epsilon''' , num_train_timesteps=1_000 , ) __a = UnCLIPScheduler( variance_type='''fixed_small_log''' , prediction_type='''epsilon''' , num_train_timesteps=1_000 , ) __a = CLIPImageProcessor(crop_size=32 , size=32 ) __a = self.dummy_image_encoder return { "decoder": decoder, "text_encoder": text_encoder, "tokenizer": tokenizer, "text_proj": text_proj, "feature_extractor": feature_extractor, "image_encoder": image_encoder, "super_res_first": super_res_first, "super_res_last": super_res_last, "decoder_scheduler": decoder_scheduler, "super_res_scheduler": super_res_scheduler, } def __UpperCAmelCase ( self , _a , _a=0 , _a=True ): __a = floats_tensor((1, 3, 32, 32) , rng=random.Random(_a ) ).to(_a ) if str(_a ).startswith('''mps''' ): __a = torch.manual_seed(_a ) else: __a = torch.Generator(device=_a ).manual_seed(_a ) if pil_image: __a = input_image * 0.5 + 0.5 __a = input_image.clamp(0 , 1 ) __a = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() __a = DiffusionPipeline.numpy_to_pil(_a )[0] return { "image": input_image, "generator": generator, "decoder_num_inference_steps": 2, "super_res_num_inference_steps": 2, "output_type": "np", } def __UpperCAmelCase ( self ): __a = '''cpu''' __a = self.get_dummy_components() __a = self.pipeline_class(**_a ) __a = pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) __a = self.get_dummy_inputs(_a , pil_image=_a ) __a = pipe(**_a ) __a = output.images __a = self.get_dummy_inputs(_a , pil_image=_a ) __a = pipe( **_a , return_dict=_a , )[0] __a = image[0, -3:, -3:, -1] __a = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __a = np.array( [ 0.9997, 0.0002, 0.9997, 0.9997, 0.9969, 0.0023, 0.9997, 0.9969, 0.9970, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def __UpperCAmelCase ( self ): __a = '''cpu''' __a = self.get_dummy_components() __a = self.pipeline_class(**_a ) __a = pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) __a = self.get_dummy_inputs(_a , pil_image=_a ) __a = pipe(**_a ) __a = output.images __a = self.get_dummy_inputs(_a , pil_image=_a ) __a = pipe( **_a , return_dict=_a , )[0] __a = image[0, -3:, -3:, -1] __a = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __a = np.array([0.9997, 0.0003, 0.9997, 0.9997, 0.9970, 0.0024, 0.9997, 0.9971, 0.9971] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def __UpperCAmelCase ( self ): __a = '''cpu''' __a = self.get_dummy_components() __a = self.pipeline_class(**_a ) __a = pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) __a = self.get_dummy_inputs(_a , pil_image=_a ) __a = [ pipeline_inputs['''image'''], pipeline_inputs['''image'''], ] __a = pipe(**_a ) __a = output.images __a = self.get_dummy_inputs(_a , pil_image=_a ) __a = [ tuple_pipeline_inputs['''image'''], tuple_pipeline_inputs['''image'''], ] __a = pipe( **_a , return_dict=_a , )[0] __a = image[0, -3:, -3:, -1] __a = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (2, 64, 64, 3) __a = np.array( [ 0.9997, 0.9989, 0.0008, 0.0021, 0.9960, 0.0018, 0.0014, 0.0002, 0.9933, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def __UpperCAmelCase ( self ): __a = torch.device('''cpu''' ) class __lowerCAmelCase : '''simple docstring''' __UpperCAmelCase : Optional[Any] = 1 __a = self.get_dummy_components() __a = self.pipeline_class(**_a ) __a = pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) __a = torch.Generator(device=_a ).manual_seed(0 ) __a = pipe.decoder.dtype __a = 1 __a = ( batch_size, pipe.decoder.config.in_channels, pipe.decoder.config.sample_size, pipe.decoder.config.sample_size, ) __a = pipe.prepare_latents( _a , dtype=_a , device=_a , generator=_a , latents=_a , scheduler=DummyScheduler() ) __a = ( batch_size, pipe.super_res_first.config.in_channels // 2, pipe.super_res_first.config.sample_size, pipe.super_res_first.config.sample_size, ) __a = pipe.prepare_latents( _a , dtype=_a , device=_a , generator=_a , latents=_a , scheduler=DummyScheduler() ) __a = self.get_dummy_inputs(_a , pil_image=_a ) __a = pipe( **_a , decoder_latents=_a , super_res_latents=_a ).images __a = self.get_dummy_inputs(_a , pil_image=_a ) # Don't pass image, instead pass embedding __a = pipeline_inputs.pop('''image''' ) __a = pipe.image_encoder(_a ).image_embeds __a = pipe( **_a , decoder_latents=_a , super_res_latents=_a , image_embeddings=_a , ).images # make sure passing text embeddings manually is identical assert np.abs(img_out_a - img_out_a ).max() < 1E-4 @skip_mps def __UpperCAmelCase ( self ): __a = torch_device == '''cpu''' # Check is relaxed because there is not a torch 2.0 sliced attention added kv processor __a = 1E-2 self._test_attention_slicing_forward_pass( test_max_difference=_a , expected_max_diff=_a ) @skip_mps def __UpperCAmelCase ( self ): __a = torch_device == '''cpu''' __a = True __a = [ '''decoder_num_inference_steps''', '''super_res_num_inference_steps''', ] self._test_inference_batch_single_identical( test_max_difference=_a , relax_max_difference=_a , additional_params_copy_to_batched_inputs=_a , ) def __UpperCAmelCase ( self ): __a = [ '''decoder_num_inference_steps''', '''super_res_num_inference_steps''', ] if torch_device == "mps": # TODO: MPS errors with larger batch sizes __a = [2, 3] self._test_inference_batch_consistent( batch_sizes=_a , additional_params_copy_to_batched_inputs=_a , ) else: self._test_inference_batch_consistent( additional_params_copy_to_batched_inputs=_a ) @skip_mps def __UpperCAmelCase ( self ): return super().test_dict_tuple_outputs_equivalent() @skip_mps def __UpperCAmelCase ( self ): return super().test_save_load_local() @skip_mps def __UpperCAmelCase ( self ): return super().test_save_load_optional_components() @slow @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCAmelCase ( self ): __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/unclip/cat.png''' ) __a = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/unclip/karlo_v1_alpha_cat_variation_fp16.npy''' ) __a = UnCLIPImageVariationPipeline.from_pretrained( '''kakaobrain/karlo-v1-alpha-image-variations''' , torch_dtype=torch.floataa ) __a = pipeline.to(_a ) pipeline.set_progress_bar_config(disable=_a ) __a = torch.Generator(device='''cpu''' ).manual_seed(0 ) __a = pipeline( _a , generator=_a , output_type='''np''' , ) __a = output.images[0] assert image.shape == (256, 256, 3) assert_mean_pixel_difference(_a , _a , 15 )
695
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json" ), "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json" ), "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json" ), } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : List[Any] = 'dpr' def __init__( self , _a=30_522 , _a=768 , _a=12 , _a=12 , _a=3_072 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=2 , _a=0.02 , _a=1E-12 , _a=0 , _a="absolute" , _a = 0 , **_a , ): super().__init__(pad_token_id=_a , **_a ) __a = vocab_size __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = hidden_act __a = intermediate_size __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = type_vocab_size __a = initializer_range __a = layer_norm_eps __a = projection_dim __a = position_embedding_type
695
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "bigcode/gpt_bigcode-santacoder": "https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json", } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : List[str] = 'gpt_bigcode' __UpperCAmelCase : Tuple = ['past_key_values'] __UpperCAmelCase : Dict = { 'hidden_size': 'n_embd', 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , _a=50_257 , _a=1_024 , _a=768 , _a=12 , _a=12 , _a=None , _a="gelu_pytorch_tanh" , _a=0.1 , _a=0.1 , _a=0.1 , _a=1E-5 , _a=0.02 , _a=True , _a=True , _a=50_256 , _a=50_256 , _a=True , _a=True , _a=True , **_a , ): __a = vocab_size __a = n_positions __a = n_embd __a = n_layer __a = n_head __a = n_inner __a = activation_function __a = resid_pdrop __a = embd_pdrop __a = attn_pdrop __a = layer_norm_epsilon __a = initializer_range __a = scale_attn_weights __a = use_cache __a = attention_softmax_in_fpaa __a = scale_attention_softmax_in_fpaa __a = multi_query __a = bos_token_id __a = eos_token_id super().__init__(bos_token_id=_a , eos_token_id=_a , **_a )
695
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = StableDiffusionInpaintPipeline __UpperCAmelCase : int = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS __UpperCAmelCase : str = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS __UpperCAmelCase : int = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess __UpperCAmelCase : Tuple = frozenset([] ) def __UpperCAmelCase ( self ): torch.manual_seed(0 ) __a = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=9 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=_a , ) __a = PNDMScheduler(skip_prk_steps=_a ) torch.manual_seed(0 ) __a = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) __a = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act='''gelu''' , projection_dim=512 , ) __a = CLIPTextModel(_a ) __a = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) __a = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def __UpperCAmelCase ( self , _a , _a=0 ): # TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched __a = floats_tensor((1, 3, 32, 32) , rng=random.Random(_a ) ).to(_a ) __a = image.cpu().permute(0 , 2 , 3 , 1 )[0] __a = Image.fromarray(np.uinta(_a ) ).convert('''RGB''' ).resize((64, 64) ) __a = Image.fromarray(np.uinta(image + 4 ) ).convert('''RGB''' ).resize((64, 64) ) if str(_a ).startswith('''mps''' ): __a = torch.manual_seed(_a ) else: __a = torch.Generator(device=_a ).manual_seed(_a ) __a = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': init_image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def __UpperCAmelCase ( self ): __a = '''cpu''' # ensure determinism for the device-dependent torch.Generator __a = self.get_dummy_components() __a = StableDiffusionInpaintPipeline(**_a ) __a = sd_pipe.to(_a ) sd_pipe.set_progress_bar_config(disable=_a ) __a = self.get_dummy_inputs(_a ) __a = sd_pipe(**_a ).images __a = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __a = np.array([0.4727, 0.5735, 0.3941, 0.5446, 0.5926, 0.4394, 0.5062, 0.4654, 0.4476] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __UpperCAmelCase ( self ): super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCAmelCase ( self ): __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) __a = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint''' '''/yellow_cat_sitting_on_a_park_bench.npy''' ) __a = '''stabilityai/stable-diffusion-2-inpainting''' __a = StableDiffusionInpaintPipeline.from_pretrained(_a , safety_checker=_a ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) pipe.enable_attention_slicing() __a = '''Face of a yellow cat, high resolution, sitting on a park bench''' __a = torch.manual_seed(0 ) __a = pipe( prompt=_a , image=_a , mask_image=_a , generator=_a , output_type='''np''' , ) __a = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 9E-3 def __UpperCAmelCase ( self ): __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) __a = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint''' '''/yellow_cat_sitting_on_a_park_bench_fp16.npy''' ) __a = '''stabilityai/stable-diffusion-2-inpainting''' __a = StableDiffusionInpaintPipeline.from_pretrained( _a , torch_dtype=torch.floataa , safety_checker=_a , ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) pipe.enable_attention_slicing() __a = '''Face of a yellow cat, high resolution, sitting on a park bench''' __a = torch.manual_seed(0 ) __a = pipe( prompt=_a , image=_a , mask_image=_a , generator=_a , output_type='''np''' , ) __a = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 5E-1 def __UpperCAmelCase ( self ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) __a = '''stabilityai/stable-diffusion-2-inpainting''' __a = PNDMScheduler.from_pretrained(_a , subfolder='''scheduler''' ) __a = StableDiffusionInpaintPipeline.from_pretrained( _a , safety_checker=_a , scheduler=_a , torch_dtype=torch.floataa , ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() __a = '''Face of a yellow cat, high resolution, sitting on a park bench''' __a = torch.manual_seed(0 ) __a = pipe( prompt=_a , image=_a , mask_image=_a , generator=_a , num_inference_steps=2 , output_type='''np''' , ) __a = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 10**9
695
1
"""simple docstring""" from __future__ import annotations import time lowercase_ = list[tuple[int, int]] lowercase_ = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] lowercase_ = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class __lowerCAmelCase : '''simple docstring''' def __init__( self , _a , _a , _a , _a , _a ): __a = pos_x __a = pos_y __a = (pos_y, pos_x) __a = goal_x __a = goal_y __a = parent class __lowerCAmelCase : '''simple docstring''' def __init__( self , _a , _a ): __a = Node(start[1] , start[0] , goal[1] , goal[0] , _a ) __a = Node(goal[1] , goal[0] , goal[1] , goal[0] , _a ) __a = [self.start] __a = False def __UpperCAmelCase ( self ): while self.node_queue: __a = self.node_queue.pop(0 ) if current_node.pos == self.target.pos: __a = True return self.retrace_path(_a ) __a = self.get_successors(_a ) for node in successors: self.node_queue.append(_a ) if not self.reached: return [self.start.pos] return None def __UpperCAmelCase ( self , _a ): __a = [] for action in delta: __a = parent.pos_x + action[1] __a = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(_a ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(_a , _a , self.target.pos_y , self.target.pos_x , _a ) ) return successors def __UpperCAmelCase ( self , _a ): __a = node __a = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) __a = current_node.parent path.reverse() return path class __lowerCAmelCase : '''simple docstring''' def __init__( self , _a , _a ): __a = BreadthFirstSearch(_a , _a ) __a = BreadthFirstSearch(_a , _a ) __a = False def __UpperCAmelCase ( self ): while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: __a = self.fwd_bfs.node_queue.pop(0 ) __a = self.bwd_bfs.node_queue.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: __a = True return self.retrace_bidirectional_path( _a , _a ) __a = current_bwd_node __a = current_fwd_node __a = { self.fwd_bfs: self.fwd_bfs.get_successors(_a ), self.bwd_bfs: self.bwd_bfs.get_successors(_a ), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(_a ) if not self.reached: return [self.fwd_bfs.start.pos] return None def __UpperCAmelCase ( self , _a , _a ): __a = self.fwd_bfs.retrace_path(_a ) __a = self.bwd_bfs.retrace_path(_a ) bwd_path.pop() bwd_path.reverse() __a = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() lowercase_ = (0, 0) lowercase_ = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) lowercase_ = time.time() lowercase_ = BreadthFirstSearch(init, goal) lowercase_ = bfs.search() lowercase_ = time.time() - start_bfs_time print("Unidirectional BFS computation time : ", bfs_time) lowercase_ = time.time() lowercase_ = BidirectionalBreadthFirstSearch(init, goal) lowercase_ = bd_bfs.search() lowercase_ = time.time() - start_bd_bfs_time print("Bidirectional BFS computation time : ", bd_bfs_time)
695
"""simple docstring""" import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : int = 0 __UpperCAmelCase : bool = False __UpperCAmelCase : float = 3.0 class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self ): # If no defaults are changed, `to_kwargs` returns an empty dict. self.assertDictEqual(MockClass().to_kwargs() , {} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {'''a''': 2} ) self.assertDictEqual(MockClass(a=2 , b=_a ).to_kwargs() , {'''a''': 2, '''b''': True} ) self.assertDictEqual(MockClass(a=2 , c=2.25 ).to_kwargs() , {'''a''': 2, '''c''': 2.25} ) @require_cuda def __UpperCAmelCase ( self ): # If no defaults are changed, `to_kwargs` returns an empty dict. __a = GradScalerKwargs(init_scale=1_024 , growth_factor=2 ) AcceleratorState._reset_state() __a = Accelerator(mixed_precision='''fp16''' , kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) __a = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale , 1024.0 ) self.assertEqual(scaler._growth_factor , 2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor , 0.5 ) self.assertEqual(scaler._growth_interval , 2_000 ) self.assertEqual(scaler._enabled , _a ) @require_multi_gpu def __UpperCAmelCase ( self ): __a = ['''torchrun''', f'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )] execute_subprocess_async(_a , env=os.environ.copy() ) if __name__ == "__main__": lowercase_ = DistributedDataParallelKwargs(bucket_cap_mb=1_5, find_unused_parameters=True) lowercase_ = Accelerator(kwargs_handlers=[ddp_scaler]) lowercase_ = torch.nn.Linear(1_0_0, 2_0_0) lowercase_ = accelerator.prepare(model) # Check the values changed in kwargs lowercase_ = "" lowercase_ = model.bucket_bytes_cap // (1_0_2_4 * 1_0_2_4) if observed_bucket_cap_map != 1_5: error_msg += F"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += F"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += F"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += F"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += F"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
695
1
"""simple docstring""" import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self , _a ): __a = 3 __a = 250 __a = ids_tensor((batch_size, length) , _a ) __a = torch.ones((batch_size, length) , device=_a , dtype=torch.float ) / length return input_ids, scores def __UpperCAmelCase ( self ): __a , __a = self._get_tensors(5 ) __a = StoppingCriteriaList( [ MaxLengthCriteria(max_length=10 ), MaxTimeCriteria(max_time=0.1 ), ] ) self.assertFalse(criteria(_a , _a ) ) __a , __a = self._get_tensors(9 ) self.assertFalse(criteria(_a , _a ) ) __a , __a = self._get_tensors(10 ) self.assertTrue(criteria(_a , _a ) ) def __UpperCAmelCase ( self ): __a = MaxLengthCriteria(max_length=10 ) __a , __a = self._get_tensors(5 ) self.assertFalse(criteria(_a , _a ) ) __a , __a = self._get_tensors(9 ) self.assertFalse(criteria(_a , _a ) ) __a , __a = self._get_tensors(10 ) self.assertTrue(criteria(_a , _a ) ) def __UpperCAmelCase ( self ): __a = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 ) __a , __a = self._get_tensors(5 ) self.assertFalse(criteria(_a , _a ) ) __a , __a = self._get_tensors(9 ) self.assertFalse(criteria(_a , _a ) ) __a , __a = self._get_tensors(10 ) self.assertTrue(criteria(_a , _a ) ) __a = StoppingCriteriaList([criteria] ) self.assertEqual(criteria_list.max_length , 10 ) def __UpperCAmelCase ( self ): __a , __a = self._get_tensors(5 ) __a = MaxTimeCriteria(max_time=0.1 ) self.assertFalse(criteria(_a , _a ) ) __a = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 ) self.assertTrue(criteria(_a , _a ) ) def __UpperCAmelCase ( self ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 10 ) with self.assertWarns(_a ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 11 ) __a = validate_stopping_criteria(StoppingCriteriaList() , 11 ) self.assertEqual(len(_a ) , 1 )
695
"""simple docstring""" import inspect import os import sys import unittest import accelerate from accelerate.test_utils import execute_subprocess_async, require_tpu class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self ): __a = inspect.getfile(accelerate.test_utils ) __a = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_script.py'''] ) __a = os.path.sep.join(inspect.getfile(self.__class__ ).split(os.path.sep )[:-1] ) @require_tpu def __UpperCAmelCase ( self ): __a = f''' {self.test_dir}/xla_spawn.py --num_cores 8 {self.test_file_path} '''.split() __a = [sys.executable] + distributed_args execute_subprocess_async(_a , env=os.environ.copy() )
695
1
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "BridgeTower/bridgetower-base": "https://huggingface.co/BridgeTower/bridgetower-base/blob/main/config.json", "BridgeTower/bridgetower-base-itm-mlm": ( "https://huggingface.co/BridgeTower/bridgetower-base-itm-mlm/blob/main/config.json" ), } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = 'bridgetower_vision_model' def __init__( self , _a=768 , _a=12 , _a=3 , _a=16 , _a=288 , _a=1 , _a=1E-05 , _a=False , _a=True , _a=False , **_a , ): super().__init__(**_a ) __a = hidden_size __a = num_hidden_layers __a = num_channels __a = patch_size __a = image_size __a = initializer_factor __a = layer_norm_eps __a = stop_gradient __a = share_layernorm __a = remove_last_layer @classmethod def __UpperCAmelCase ( cls , _a , **_a ): __a , __a = cls.get_config_dict(_a , **_a ) if config_dict.get('''model_type''' ) == "bridgetower": __a = config_dict['''text_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_a , **_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Tuple = 'bridgetower_text_model' def __init__( self , _a=50_265 , _a=768 , _a=12 , _a=12 , _a=1 , _a=3_072 , _a="gelu" , _a=0.1 , _a=0.1 , _a=514 , _a=1 , _a=1E-05 , _a=1 , _a=0 , _a=2 , _a="absolute" , _a=True , **_a , ): super().__init__(**_a ) __a = vocab_size __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = hidden_act __a = initializer_factor __a = intermediate_size __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = type_vocab_size __a = layer_norm_eps __a = position_embedding_type __a = use_cache __a = pad_token_id __a = bos_token_id __a = eos_token_id @classmethod def __UpperCAmelCase ( cls , _a , **_a ): __a , __a = cls.get_config_dict(_a , **_a ) if config_dict.get('''model_type''' ) == "bridgetower": __a = config_dict['''text_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_a , **_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : int = 'bridgetower' def __init__( self , _a=True , _a="gelu" , _a=768 , _a=1 , _a=1E-05 , _a=False , _a="add" , _a=12 , _a=6 , _a=False , _a=False , _a=None , _a=None , **_a , ): # TODO: remove this once the Hub files are updated. __a = kwargs.pop('''text_config_dict''' , _a ) __a = kwargs.pop('''vision_config_dict''' , _a ) super().__init__(**_a ) __a = share_cross_modal_transformer_layers __a = hidden_act __a = hidden_size __a = initializer_factor __a = layer_norm_eps __a = share_link_tower_layers __a = link_tower_type __a = num_attention_heads __a = num_hidden_layers __a = tie_word_embeddings __a = init_layernorm_from_vision_encoder if text_config is None: __a = {} logger.info('''`text_config` is `None`. Initializing the `BridgeTowerTextConfig` with default values.''' ) if vision_config is None: __a = {} logger.info('''`vision_config` is `None`. Initializing the `BridgeTowerVisionConfig` with default values.''' ) __a = BridgeTowerTextConfig(**_a ) __a = BridgeTowerVisionConfig(**_a ) @classmethod def __UpperCAmelCase ( cls , _a , _a , **_a ): return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **_a ) def __UpperCAmelCase ( self ): __a = copy.deepcopy(self.__dict__ ) __a = self.text_config.to_dict() __a = self.vision_config.to_dict() __a = self.__class__.model_type return output
695
"""simple docstring""" import os import unittest from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, BertTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : str = BertTokenizer __UpperCAmelCase : Optional[Any] = BertTokenizerFast __UpperCAmelCase : str = True __UpperCAmelCase : Tuple = True __UpperCAmelCase : Any = filter_non_english def __UpperCAmelCase ( self ): super().setUp() __a = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] __a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def __UpperCAmelCase ( self , _a ): __a = '''UNwant\u00E9d,running''' __a = '''unwanted, running''' return input_text, output_text def __UpperCAmelCase ( self ): __a = self.tokenizer_class(self.vocab_file ) __a = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(_a , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , [9, 6, 7, 12, 10, 11] ) def __UpperCAmelCase ( self ): if not self.test_rust_tokenizer: return __a = self.get_tokenizer() __a = self.get_rust_tokenizer() __a = '''UNwant\u00E9d,running''' __a = tokenizer.tokenize(_a ) __a = rust_tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) __a = tokenizer.encode(_a , add_special_tokens=_a ) __a = rust_tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) __a = self.get_rust_tokenizer() __a = tokenizer.encode(_a ) __a = rust_tokenizer.encode(_a ) self.assertListEqual(_a , _a ) # With lower casing __a = self.get_tokenizer(do_lower_case=_a ) __a = self.get_rust_tokenizer(do_lower_case=_a ) __a = '''UNwant\u00E9d,running''' __a = tokenizer.tokenize(_a ) __a = rust_tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) __a = tokenizer.encode(_a , add_special_tokens=_a ) __a = rust_tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) __a = self.get_rust_tokenizer() __a = tokenizer.encode(_a ) __a = rust_tokenizer.encode(_a ) self.assertListEqual(_a , _a ) def __UpperCAmelCase ( self ): __a = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''' ) , ['''ah''', '''\u535A''', '''\u63A8''', '''zz'''] ) def __UpperCAmelCase ( self ): __a = BasicTokenizer(do_lower_case=_a ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def __UpperCAmelCase ( self ): __a = BasicTokenizer(do_lower_case=_a , strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''h\u00E9llo'''] ) def __UpperCAmelCase ( self ): __a = BasicTokenizer(do_lower_case=_a , strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def __UpperCAmelCase ( self ): __a = BasicTokenizer(do_lower_case=_a ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def __UpperCAmelCase ( self ): __a = BasicTokenizer(do_lower_case=_a ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def __UpperCAmelCase ( self ): __a = BasicTokenizer(do_lower_case=_a , strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def __UpperCAmelCase ( self ): __a = BasicTokenizer(do_lower_case=_a , strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def __UpperCAmelCase ( self ): __a = BasicTokenizer(do_lower_case=_a , never_split=['''[UNK]'''] ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]'''] ) def __UpperCAmelCase ( self ): __a = BasicTokenizer() __a = '''a\n\'ll !!to?\'d of, can\'t.''' __a = ['''a''', '''\'''', '''ll''', '''!''', '''!''', '''to''', '''?''', '''\'''', '''d''', '''of''', ''',''', '''can''', '''\'''', '''t''', '''.'''] self.assertListEqual(tokenizer.tokenize(_a ) , _a ) def __UpperCAmelCase ( self ): __a = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing'''] __a = {} for i, token in enumerate(_a ): __a = i __a = WordpieceTokenizer(vocab=_a , unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) , [] ) self.assertListEqual(tokenizer.tokenize('''unwanted running''' ) , ['''un''', '''##want''', '''##ed''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.tokenize('''unwantedX running''' ) , ['''[UNK]''', '''runn''', '''##ing'''] ) def __UpperCAmelCase ( self ): self.assertTrue(_is_whitespace(''' ''' ) ) self.assertTrue(_is_whitespace('''\t''' ) ) self.assertTrue(_is_whitespace('''\r''' ) ) self.assertTrue(_is_whitespace('''\n''' ) ) self.assertTrue(_is_whitespace('''\u00A0''' ) ) self.assertFalse(_is_whitespace('''A''' ) ) self.assertFalse(_is_whitespace('''-''' ) ) def __UpperCAmelCase ( self ): self.assertTrue(_is_control('''\u0005''' ) ) self.assertFalse(_is_control('''A''' ) ) self.assertFalse(_is_control(''' ''' ) ) self.assertFalse(_is_control('''\t''' ) ) self.assertFalse(_is_control('''\r''' ) ) def __UpperCAmelCase ( self ): self.assertTrue(_is_punctuation('''-''' ) ) self.assertTrue(_is_punctuation('''$''' ) ) self.assertTrue(_is_punctuation('''`''' ) ) self.assertTrue(_is_punctuation('''.''' ) ) self.assertFalse(_is_punctuation('''A''' ) ) self.assertFalse(_is_punctuation(''' ''' ) ) def __UpperCAmelCase ( self ): __a = self.get_tokenizer() __a = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(_a ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) self.assertListEqual( [rust_tokenizer.tokenize(_a ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) @slow def __UpperCAmelCase ( self ): __a = self.tokenizer_class.from_pretrained('''bert-base-uncased''' ) __a = tokenizer.encode('''sequence builders''' , add_special_tokens=_a ) __a = tokenizer.encode('''multi-sequence build''' , add_special_tokens=_a ) __a = tokenizer.build_inputs_with_special_tokens(_a ) __a = tokenizer.build_inputs_with_special_tokens(_a , _a ) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_a + [102] def __UpperCAmelCase ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __a = self.rust_tokenizer_class.from_pretrained(_a , **_a ) __a = f'''A, naïve {tokenizer_r.mask_token} AllenNLP sentence.''' __a = tokenizer_r.encode_plus( _a , return_attention_mask=_a , return_token_type_ids=_a , return_offsets_mapping=_a , add_special_tokens=_a , ) __a = tokenizer_r.do_lower_case if hasattr(_a , '''do_lower_case''' ) else False __a = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''A'''), ((1, 2), ''','''), ((3, 5), '''na'''), ((5, 6), '''##ï'''), ((6, 8), '''##ve'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''Allen'''), ((21, 23), '''##NL'''), ((23, 24), '''##P'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''a'''), ((1, 2), ''','''), ((3, 8), '''naive'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''allen'''), ((21, 23), '''##nl'''), ((23, 24), '''##p'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['''input_ids'''] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['''offset_mapping'''] ) def __UpperCAmelCase ( self ): __a = ['''的''', '''人''', '''有'''] __a = ''''''.join(_a ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __a = True __a = self.tokenizer_class.from_pretrained(_a , **_a ) __a = self.rust_tokenizer_class.from_pretrained(_a , **_a ) __a = tokenizer_p.encode(_a , add_special_tokens=_a ) __a = tokenizer_r.encode(_a , add_special_tokens=_a ) __a = tokenizer_r.convert_ids_to_tokens(_a ) __a = tokenizer_p.convert_ids_to_tokens(_a ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(_a , _a ) self.assertListEqual(_a , _a ) __a = False __a = self.rust_tokenizer_class.from_pretrained(_a , **_a ) __a = self.tokenizer_class.from_pretrained(_a , **_a ) __a = tokenizer_r.encode(_a , add_special_tokens=_a ) __a = tokenizer_p.encode(_a , add_special_tokens=_a ) __a = tokenizer_r.convert_ids_to_tokens(_a ) __a = tokenizer_p.convert_ids_to_tokens(_a ) # it is expected that only the first Chinese character is not preceded by "##". __a = [ f'''##{token}''' if idx != 0 else token for idx, token in enumerate(_a ) ] self.assertListEqual(_a , _a ) self.assertListEqual(_a , _a )
695
1
"""simple docstring""" import unittest from diffusers import FlaxAutoencoderKL from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax from .test_modeling_common_flax import FlaxModelTesterMixin if is_flax_available(): import jax @require_flax class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Dict = FlaxAutoencoderKL @property def __UpperCAmelCase ( self ): __a = 4 __a = 3 __a = (32, 32) __a = jax.random.PRNGKey(0 ) __a = jax.random.uniform(_a , ((batch_size, num_channels) + sizes) ) return {"sample": image, "prng_key": prng_key} def __UpperCAmelCase ( self ): __a = { '''block_out_channels''': [32, 64], '''in_channels''': 3, '''out_channels''': 3, '''down_block_types''': ['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''], '''up_block_types''': ['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''], '''latent_channels''': 4, } __a = self.dummy_input return init_dict, inputs_dict
695
"""simple docstring""" from __future__ import annotations def lowercase ( lowerCAmelCase__ : float , lowerCAmelCase__ : float , lowerCAmelCase__ : float ) -> float: if days_between_payments <= 0: raise ValueError('''days_between_payments must be > 0''' ) if daily_interest_rate < 0: raise ValueError('''daily_interest_rate must be >= 0''' ) if principal <= 0: raise ValueError('''principal must be > 0''' ) return principal * daily_interest_rate * days_between_payments def lowercase ( lowerCAmelCase__ : float , lowerCAmelCase__ : float , lowerCAmelCase__ : float , ) -> float: if number_of_compounding_periods <= 0: raise ValueError('''number_of_compounding_periods must be > 0''' ) if nominal_annual_interest_rate_percentage < 0: raise ValueError('''nominal_annual_interest_rate_percentage must be >= 0''' ) if principal <= 0: raise ValueError('''principal must be > 0''' ) return principal * ( (1 + nominal_annual_interest_rate_percentage) ** number_of_compounding_periods - 1 ) def lowercase ( lowerCAmelCase__ : float , lowerCAmelCase__ : float , lowerCAmelCase__ : float , ) -> float: if number_of_years <= 0: raise ValueError('''number_of_years must be > 0''' ) if nominal_annual_percentage_rate < 0: raise ValueError('''nominal_annual_percentage_rate must be >= 0''' ) if principal <= 0: raise ValueError('''principal must be > 0''' ) return compound_interest( lowerCAmelCase__ , nominal_annual_percentage_rate / 365 , number_of_years * 365 ) if __name__ == "__main__": import doctest doctest.testmod()
695
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowercase_ = { "configuration_xlm": ["XLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLMConfig", "XLMOnnxConfig"], "tokenization_xlm": ["XLMTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "XLM_PRETRAINED_MODEL_ARCHIVE_LIST", "XLMForMultipleChoice", "XLMForQuestionAnswering", "XLMForQuestionAnsweringSimple", "XLMForSequenceClassification", "XLMForTokenClassification", "XLMModel", "XLMPreTrainedModel", "XLMWithLMHeadModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXLMForMultipleChoice", "TFXLMForQuestionAnsweringSimple", "TFXLMForSequenceClassification", "TFXLMForTokenClassification", "TFXLMMainLayer", "TFXLMModel", "TFXLMPreTrainedModel", "TFXLMWithLMHeadModel", ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
695
"""simple docstring""" def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Any=False ) -> Any: if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): __a = len(set_a.intersection(lowerCAmelCase__ ) ) if alternative_union: __a = len(lowerCAmelCase__ ) + len(lowerCAmelCase__ ) else: __a = len(set_a.union(lowerCAmelCase__ ) ) return intersection / union if isinstance(lowerCAmelCase__ , (list, tuple) ) and isinstance(lowerCAmelCase__ , (list, tuple) ): __a = [element for element in set_a if element in set_b] if alternative_union: __a = len(lowerCAmelCase__ ) + len(lowerCAmelCase__ ) return len(lowerCAmelCase__ ) / union else: __a = set_a + [element for element in set_b if element not in set_a] return len(lowerCAmelCase__ ) / len(lowerCAmelCase__ ) return len(lowerCAmelCase__ ) / len(lowerCAmelCase__ ) return None if __name__ == "__main__": lowercase_ = {"a", "b", "c", "d", "e"} lowercase_ = {"c", "d", "e", "f", "h", "i"} print(jaccard_similarity(set_a, set_b))
695
1
"""simple docstring""" import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() lowercase_ = 2 class __lowerCAmelCase : '''simple docstring''' def __init__( self , *, # begin keyword-only arguments _a="<s>" , _a="<pad>" , _a="</s>" , _a="<unk>" , _a=None , ): __a , __a , __a , __a = bos, unk, pad, eos __a = [] __a = [] __a = {} __a = self.add_symbol(_a ) __a = self.add_symbol(_a ) __a = self.add_symbol(_a ) __a = self.add_symbol(_a ) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(_a ) __a = len(self.symbols ) def __eq__( self , _a ): return self.indices == other.indices def __getitem__( self , _a ): if idx < len(self.symbols ): return self.symbols[idx] return self.unk_word def __len__( self ): return len(self.symbols ) def __contains__( self , _a ): return sym in self.indices @classmethod def __UpperCAmelCase ( cls , _a ): __a = cls() d.add_from_file(_a ) return d def __UpperCAmelCase ( self , _a , _a=1 , _a=False ): if word in self.indices and not overwrite: __a = self.indices[word] __a = self.count[idx] + n return idx else: __a = len(self.symbols ) __a = idx self.symbols.append(_a ) self.count.append(_a ) return idx def __UpperCAmelCase ( self , _a ): return 0 def __UpperCAmelCase ( self , _a ): if isinstance(_a , _a ): try: with open(_a , '''r''' , encoding='''utf-8''' ) as fd: self.add_from_file(_a ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception('''Incorrect encoding detected in {}, please rebuild the dataset'''.format(_a ) ) return __a = f.readlines() __a = self._load_meta(_a ) for line in lines[indices_start_line:]: try: __a , __a = line.rstrip().rsplit(''' ''' , 1 ) if field == "#fairseq:overwrite": __a = True __a , __a = line.rsplit(''' ''' , 1 ) else: __a = False __a = int(_a ) __a = line if word in self and not overwrite: raise RuntimeError( '''Duplicate word found when loading Dictionary: \'{}\'. ''' '''Duplicate words can overwrite earlier ones by adding the ''' '''#fairseq:overwrite flag at the end of the corresponding row ''' '''in the dictionary file. If using the Camembert model, please ''' '''download an updated copy of the model file.'''.format(_a ) ) self.add_symbol(_a , n=_a , overwrite=_a ) except ValueError: raise ValueError('''Incorrect dictionary format, expected \'<token> <cnt> [flags]\'''' ) def lowercase ( lowerCAmelCase__ : Optional[Any] ) -> str: # (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up, # e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7} __a = dict((re.sub(r'''@@$''' , '''''' , lowerCAmelCase__ ), v) if k.endswith('''@@''' ) else (re.sub(r'''$''' , '''</w>''' , lowerCAmelCase__ ), v) for k, v in d.items() ) __a = '''<s> <pad> </s> <unk>'''.split() # restore the special tokens for k in keep_keys: del da[f'''{k}</w>'''] __a = d[k] # restore return da def lowercase ( lowerCAmelCase__ : str , lowerCAmelCase__ : str ) -> Optional[int]: # prep if not os.path.exists(lowerCAmelCase__ ): raise ValueError(f'''path {biogpt_checkpoint_path} does not exist!''' ) os.makedirs(lowerCAmelCase__ , exist_ok=lowerCAmelCase__ ) print(f'''Writing results to {pytorch_dump_folder_path}''' ) # handle various types of models __a = os.path.join(lowerCAmelCase__ , '''checkpoint.pt''' ) if not os.path.isfile(lowerCAmelCase__ ): raise ValueError(f'''path to the file {checkpoint_file} does not exist!''' ) __a = torch.load(lowerCAmelCase__ , map_location='''cpu''' ) __a = chkpt['''cfg''']['''model'''] # dicts __a = os.path.join(lowerCAmelCase__ , '''dict.txt''' ) if not os.path.isfile(lowerCAmelCase__ ): raise ValueError(f'''path to the file {dict_file} does not exist!''' ) __a = Dictionary.load(lowerCAmelCase__ ) __a = rewrite_dict_keys(src_dict.indices ) __a = len(lowerCAmelCase__ ) __a = os.path.join(lowerCAmelCase__ , VOCAB_FILES_NAMES['''vocab_file'''] ) print(f'''Generating {src_vocab_file} of {src_vocab_size} records''' ) with open(lowerCAmelCase__ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(lowerCAmelCase__ , ensure_ascii=lowerCAmelCase__ , indent=lowerCAmelCase__ ) ) # merges_file (bpecodes) __a = os.path.join(lowerCAmelCase__ , '''bpecodes''' ) if not os.path.isfile(lowerCAmelCase__ ): raise ValueError(f'''path to the file {bpecodes_file} does not exist!''' ) __a = os.path.join(lowerCAmelCase__ , VOCAB_FILES_NAMES['''merges_file'''] ) shutil.copyfile(lowerCAmelCase__ , lowerCAmelCase__ ) # model config __a = os.path.join(lowerCAmelCase__ , '''config.json''' ) __a = { '''activation_dropout''': args['''activation_dropout'''], '''architectures''': ['''BioGptForCausalLM'''], '''attention_probs_dropout_prob''': args['''attention_dropout'''], '''bos_token_id''': 0, '''eos_token_id''': 2, '''hidden_act''': args['''activation_fn'''], '''hidden_dropout_prob''': args['''dropout'''], '''hidden_size''': args['''decoder_embed_dim'''], '''initializer_range''': 0.02, '''intermediate_size''': args['''decoder_ffn_embed_dim'''], '''layer_norm_eps''': 1e-1_2, '''layerdrop''': args['''decoder_layerdrop'''], '''max_position_embeddings''': args['''max_target_positions'''], '''model_type''': '''biogpt''', '''num_attention_heads''': args['''decoder_attention_heads'''], '''num_hidden_layers''': args['''decoder_layers'''], '''pad_token_id''': 1, '''scale_embedding''': not args['''no_scale_embedding'''], '''tie_word_embeddings''': args['''share_decoder_input_output_embed'''], '''vocab_size''': src_vocab_size, } # good hparam defaults to start with print(f'''Generating {biogpt_model_config_file}''' ) with open(lowerCAmelCase__ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(lowerCAmelCase__ , ensure_ascii=lowerCAmelCase__ , indent=lowerCAmelCase__ ) ) # tokenizer config __a = os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) __a = { '''bos_token''': '''<s>''', '''eos_token''': '''</s>''', '''model_max_length''': 1024, '''pad_token''': '''<pad>''', '''special_tokens_map_file''': None, '''tokenizer_class''': '''BioGptTokenizer''', '''unk_token''': '''<unk>''', } print(f'''Generating {biogpt_tokenizer_config_file}''' ) with open(lowerCAmelCase__ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(lowerCAmelCase__ , ensure_ascii=lowerCAmelCase__ , indent=lowerCAmelCase__ ) ) # model __a = chkpt['''model'''] # remove unneeded keys __a = [ '''decoder.version''', ] for k in ignore_keys: model_state_dict.pop(lowerCAmelCase__ , lowerCAmelCase__ ) __a = list(model_state_dict.keys() ) for layer_name in layer_names: if layer_name.endswith('''output_projection.weight''' ): __a = model_state_dict.pop(lowerCAmelCase__ ) else: __a = model_state_dict.pop(lowerCAmelCase__ ) __a = BioGptConfig.from_pretrained(lowerCAmelCase__ ) __a = BioGptForCausalLM(lowerCAmelCase__ ) # check that it loads ok model_new.load_state_dict(lowerCAmelCase__ ) # save __a = os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) print(f'''Generating {pytorch_weights_dump_path}''' ) torch.save(lowerCAmelCase__ , lowerCAmelCase__ ) print('''Conversion is done!''' ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--biogpt_checkpoint_path", default=None, type=str, required=True, help=( "Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts," " bpecodes, etc." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) lowercase_ = parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
695
"""simple docstring""" from __future__ import annotations import requests def lowercase ( lowerCAmelCase__ : str ) -> dict: __a = f'''https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty''' return requests.get(lowerCAmelCase__ ).json() def lowercase ( lowerCAmelCase__ : int = 10 ) -> list[dict]: __a = '''https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty''' __a = requests.get(lowerCAmelCase__ ).json()[:max_stories] return [get_hackernews_story(lowerCAmelCase__ ) for story_id in story_ids] def lowercase ( lowerCAmelCase__ : int = 10 ) -> str: __a = hackernews_top_stories(lowerCAmelCase__ ) return "\n".join('''* [{title}]({url})'''.format(**lowerCAmelCase__ ) for story in stories ) if __name__ == "__main__": print(hackernews_top_stories_as_markdown())
695
1
"""simple docstring""" import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowercase_ = logging.get_logger(__name__) lowercase_ = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} lowercase_ = { "tokenizer_file": { "EleutherAI/gpt-neox-20b": "https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json", }, } lowercase_ = { "gpt-neox-20b": 2_0_4_8, } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Dict = VOCAB_FILES_NAMES __UpperCAmelCase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase : Optional[Any] = ['input_ids', 'attention_mask'] def __init__( self , _a=None , _a=None , _a=None , _a="<|endoftext|>" , _a="<|endoftext|>" , _a="<|endoftext|>" , _a=False , **_a , ): super().__init__( _a , _a , tokenizer_file=_a , unk_token=_a , bos_token=_a , eos_token=_a , add_prefix_space=_a , **_a , ) __a = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , _a ) != add_prefix_space: __a = getattr(_a , pre_tok_state.pop('''type''' ) ) __a = add_prefix_space __a = pre_tok_class(**_a ) __a = add_prefix_space def __UpperCAmelCase ( self , _a , _a = None ): __a = self._tokenizer.model.save(_a , name=_a ) return tuple(_a ) def __UpperCAmelCase ( self , _a ): __a = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(_a , add_special_tokens=_a ) + [self.eos_token_id] ) if len(_a ) > self.model_max_length: __a = input_ids[-self.model_max_length :] return input_ids
695
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING lowercase_ = logging.get_logger(__name__) lowercase_ = { "salesforce/blip2-opt-2.7b": "https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json", } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = 'blip_2_vision_model' def __init__( self , _a=1_408 , _a=6_144 , _a=39 , _a=16 , _a=224 , _a=14 , _a="gelu" , _a=0.0_0001 , _a=0.0 , _a=1E-10 , _a=True , **_a , ): super().__init__(**_a ) __a = hidden_size __a = intermediate_size __a = num_hidden_layers __a = num_attention_heads __a = patch_size __a = image_size __a = initializer_range __a = attention_dropout __a = layer_norm_eps __a = hidden_act __a = qkv_bias @classmethod def __UpperCAmelCase ( cls , _a , **_a ): cls._set_token_in_kwargs(_a ) __a , __a = cls.get_config_dict(_a , **_a ) # get the vision config dict if we are loading from Blip2Config if config_dict.get('''model_type''' ) == "blip-2": __a = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_a , **_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : str = 'blip_2_qformer' def __init__( self , _a=30_522 , _a=768 , _a=12 , _a=12 , _a=3_072 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=0.02 , _a=1E-12 , _a=0 , _a="absolute" , _a=2 , _a=1_408 , **_a , ): super().__init__(pad_token_id=_a , **_a ) __a = vocab_size __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = hidden_act __a = intermediate_size __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = initializer_range __a = layer_norm_eps __a = position_embedding_type __a = cross_attention_frequency __a = encoder_hidden_size @classmethod def __UpperCAmelCase ( cls , _a , **_a ): cls._set_token_in_kwargs(_a ) __a , __a = cls.get_config_dict(_a , **_a ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get('''model_type''' ) == "blip-2": __a = config_dict['''qformer_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_a , **_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Any = 'blip-2' __UpperCAmelCase : List[str] = True def __init__( self , _a=None , _a=None , _a=None , _a=32 , **_a ): super().__init__(**_a ) if vision_config is None: __a = {} logger.info('''vision_config is None. initializing the Blip2VisionConfig with default values.''' ) if qformer_config is None: __a = {} logger.info('''qformer_config is None. Initializing the Blip2QFormerConfig with default values.''' ) if text_config is None: __a = {} logger.info('''text_config is None. Initializing the text config with default values (`OPTConfig`).''' ) __a = BlipaVisionConfig(**_a ) __a = BlipaQFormerConfig(**_a ) __a = text_config['''model_type'''] if '''model_type''' in text_config else '''opt''' __a = CONFIG_MAPPING[text_model_type](**_a ) __a = self.text_config.tie_word_embeddings __a = self.text_config.is_encoder_decoder __a = num_query_tokens __a = self.vision_config.hidden_size __a = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES __a = 1.0 __a = 0.02 @classmethod def __UpperCAmelCase ( cls , _a , _a , _a , **_a , ): return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **_a , ) def __UpperCAmelCase ( self ): __a = copy.deepcopy(self.__dict__ ) __a = self.vision_config.to_dict() __a = self.qformer_config.to_dict() __a = self.text_config.to_dict() __a = self.__class__.model_type return output
695
1
"""simple docstring""" import unittest from diffusers.models.unet_ad_blocks import * # noqa F403 from diffusers.utils import torch_device from .test_unet_blocks_common import UNetBlockTesterMixin class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = DownBlockaD # noqa F405 __UpperCAmelCase : Any = 'down' def __UpperCAmelCase ( self ): __a = [-0.0232, -0.9869, 0.8054, -0.0637, -0.1688, -1.4264, 0.4470, -1.3394, 0.0904] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : str = ResnetDownsampleBlockaD # noqa F405 __UpperCAmelCase : List[str] = 'down' def __UpperCAmelCase ( self ): __a = [0.0710, 0.2410, -0.7320, -1.0757, -1.1343, 0.3540, -0.0133, -0.2576, 0.0948] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Optional[int] = AttnDownBlockaD # noqa F405 __UpperCAmelCase : Optional[Any] = 'down' def __UpperCAmelCase ( self ): __a = [0.0636, 0.8964, -0.6234, -1.0131, 0.0844, 0.4935, 0.3437, 0.0911, -0.2957] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : List[Any] = CrossAttnDownBlockaD # noqa F405 __UpperCAmelCase : Optional[Any] = 'down' def __UpperCAmelCase ( self ): __a , __a = super().prepare_init_args_and_inputs_for_common() __a = 32 return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [0.2238, -0.7396, -0.2255, -0.3829, 0.1925, 1.1665, 0.0603, -0.7295, 0.1983] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : int = SimpleCrossAttnDownBlockaD # noqa F405 __UpperCAmelCase : Any = 'down' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_encoder_hidden_states=_a ) def __UpperCAmelCase ( self ): __a , __a = super().prepare_init_args_and_inputs_for_common() __a = 32 return init_dict, inputs_dict @unittest.skipIf(torch_device == '''mps''' , '''MPS result is not consistent''' ) def __UpperCAmelCase ( self ): __a = [0.7921, -0.0992, -0.1962, -0.7695, -0.4242, 0.7804, 0.4737, 0.2765, 0.3338] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : int = SkipDownBlockaD # noqa F405 __UpperCAmelCase : Tuple = 'down' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_skip_sample=_a ) def __UpperCAmelCase ( self ): __a = [-0.0845, -0.2087, -0.2465, 0.0971, 0.1900, -0.0484, 0.2664, 0.4179, 0.5069] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : List[Any] = AttnSkipDownBlockaD # noqa F405 __UpperCAmelCase : Optional[int] = 'down' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_skip_sample=_a ) def __UpperCAmelCase ( self ): __a = [0.5539, 0.1609, 0.4924, 0.0537, -0.1995, 0.4050, 0.0979, -0.2721, -0.0642] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : int = DownEncoderBlockaD # noqa F405 __UpperCAmelCase : Optional[int] = 'down' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_temb=_a ) def __UpperCAmelCase ( self ): __a = { '''in_channels''': 32, '''out_channels''': 32, } __a = self.dummy_input return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [1.1102, 0.5302, 0.4872, -0.0023, -0.8042, 0.0483, -0.3489, -0.5632, 0.7626] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = AttnDownEncoderBlockaD # noqa F405 __UpperCAmelCase : Any = 'down' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_temb=_a ) def __UpperCAmelCase ( self ): __a = { '''in_channels''': 32, '''out_channels''': 32, } __a = self.dummy_input return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [0.8966, -0.1486, 0.8568, 0.8141, -0.9046, -0.1342, -0.0972, -0.7417, 0.1538] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : str = UNetMidBlockaD # noqa F405 __UpperCAmelCase : Any = 'mid' def __UpperCAmelCase ( self ): __a = { '''in_channels''': 32, '''temb_channels''': 128, } __a = self.dummy_input return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [-0.1062, 1.7248, 0.3494, 1.4569, -0.0910, -1.2421, -0.9984, 0.6736, 1.0028] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : str = UNetMidBlockaDCrossAttn # noqa F405 __UpperCAmelCase : str = 'mid' def __UpperCAmelCase ( self ): __a , __a = super().prepare_init_args_and_inputs_for_common() __a = 32 return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [0.0187, 2.4220, 0.4484, 1.1203, -0.6121, -1.5122, -0.8270, 0.7851, 1.8335] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Any = UNetMidBlockaDSimpleCrossAttn # noqa F405 __UpperCAmelCase : List[Any] = 'mid' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_encoder_hidden_states=_a ) def __UpperCAmelCase ( self ): __a , __a = super().prepare_init_args_and_inputs_for_common() __a = 32 return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [0.7143, 1.9974, 0.5448, 1.3977, 0.1282, -1.1237, -1.4238, 0.5530, 0.8880] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = UpBlockaD # noqa F405 __UpperCAmelCase : Union[str, Any] = 'up' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=_a ) def __UpperCAmelCase ( self ): __a = [-0.2041, -0.4165, -0.3022, 0.0041, -0.6628, -0.7053, 0.1928, -0.0325, 0.0523] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : str = ResnetUpsampleBlockaD # noqa F405 __UpperCAmelCase : int = 'up' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=_a ) def __UpperCAmelCase ( self ): __a = [0.2287, 0.3549, -0.1346, 0.4797, -0.1715, -0.9649, 0.7305, -0.5864, -0.6244] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Dict = CrossAttnUpBlockaD # noqa F405 __UpperCAmelCase : List[Any] = 'up' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=_a ) def __UpperCAmelCase ( self ): __a , __a = super().prepare_init_args_and_inputs_for_common() __a = 32 return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [-0.1403, -0.3515, -0.0420, -0.1425, 0.3167, 0.5094, -0.2181, 0.5931, 0.5582] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = SimpleCrossAttnUpBlockaD # noqa F405 __UpperCAmelCase : Optional[int] = 'up' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=_a , include_encoder_hidden_states=_a ) def __UpperCAmelCase ( self ): __a , __a = super().prepare_init_args_and_inputs_for_common() __a = 32 return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [0.2645, 0.1480, 0.0909, 0.8044, -0.9758, -0.9083, 0.0994, -1.1453, -0.7402] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Any = AttnUpBlockaD # noqa F405 __UpperCAmelCase : List[Any] = 'up' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=_a ) @unittest.skipIf(torch_device == '''mps''' , '''MPS result is not consistent''' ) def __UpperCAmelCase ( self ): __a = [0.0979, 0.1326, 0.0021, 0.0659, 0.2249, 0.0059, 0.1132, 0.5952, 0.1033] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Any = SkipUpBlockaD # noqa F405 __UpperCAmelCase : str = 'up' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=_a ) def __UpperCAmelCase ( self ): __a = [-0.0893, -0.1234, -0.1506, -0.0332, 0.0123, -0.0211, 0.0566, 0.0143, 0.0362] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = AttnSkipUpBlockaD # noqa F405 __UpperCAmelCase : int = 'up' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=_a ) def __UpperCAmelCase ( self ): __a = [0.0361, 0.0617, 0.2787, -0.0350, 0.0342, 0.3421, -0.0843, 0.0913, 0.3015] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = UpDecoderBlockaD # noqa F405 __UpperCAmelCase : List[str] = 'up' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_temb=_a ) def __UpperCAmelCase ( self ): __a = {'''in_channels''': 32, '''out_channels''': 32} __a = self.dummy_input return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [0.4404, 0.1998, -0.9886, -0.3320, -0.3128, -0.7034, -0.6955, -0.2338, -0.3137] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Optional[int] = AttnUpDecoderBlockaD # noqa F405 __UpperCAmelCase : Any = 'up' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_temb=_a ) def __UpperCAmelCase ( self ): __a = {'''in_channels''': 32, '''out_channels''': 32} __a = self.dummy_input return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [0.6738, 0.4491, 0.1055, 1.0710, 0.7316, 0.3339, 0.3352, 0.1023, 0.3568] super().test_output(_a )
695
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType lowercase_ = logging.get_logger(__name__) lowercase_ = { "microsoft/deberta-v2-xlarge": "https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json", "microsoft/deberta-v2-xxlarge": "https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json", "microsoft/deberta-v2-xlarge-mnli": ( "https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json" ), "microsoft/deberta-v2-xxlarge-mnli": ( "https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json" ), } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Dict = 'deberta-v2' def __init__( self , _a=128_100 , _a=1_536 , _a=24 , _a=24 , _a=6_144 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=0 , _a=0.02 , _a=1E-7 , _a=False , _a=-1 , _a=0 , _a=True , _a=None , _a=0 , _a="gelu" , **_a , ): super().__init__(**_a ) __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = intermediate_size __a = hidden_act __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = type_vocab_size __a = initializer_range __a = relative_attention __a = max_relative_positions __a = pad_token_id __a = position_biased_input # Backwards compatibility if type(_a ) == str: __a = [x.strip() for x in pos_att_type.lower().split('''|''' )] __a = pos_att_type __a = vocab_size __a = layer_norm_eps __a = kwargs.get('''pooler_hidden_size''' , _a ) __a = pooler_dropout __a = pooler_hidden_act class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def __UpperCAmelCase ( self ): if self.task == "multiple-choice": __a = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __a = {0: '''batch''', 1: '''sequence'''} if self._config.type_vocab_size > 0: return OrderedDict( [('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis)] ) else: return OrderedDict([('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis)] ) @property def __UpperCAmelCase ( self ): return 12 def __UpperCAmelCase ( self , _a , _a = -1 , _a = -1 , _a = -1 , _a = False , _a = None , _a = 3 , _a = 40 , _a = 40 , _a = None , ): __a = super().generate_dummy_inputs(preprocessor=_a , framework=_a ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
695
1
"""simple docstring""" def lowercase ( lowerCAmelCase__ : float , lowerCAmelCase__ : float ) -> float: if density <= 0: raise ValueError('''Impossible fluid density''' ) if bulk_modulus <= 0: raise ValueError('''Impossible bulk modulus''' ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
695
"""simple docstring""" import importlib.metadata import operator import re import sys from typing import Optional from packaging import version lowercase_ = { "<": operator.lt, "<=": operator.le, "==": operator.eq, "!=": operator.ne, ">=": operator.ge, ">": operator.gt, } def lowercase ( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : int , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[Any] ) -> Dict: if got_ver is None or want_ver is None: raise ValueError( f'''Unable to compare versions for {requirement}: need={want_ver} found={got_ver}. This is unusual. Consider''' f''' reinstalling {pkg}.''' ) if not ops[op](version.parse(lowerCAmelCase__ ) , version.parse(lowerCAmelCase__ ) ): raise ImportError( f'''{requirement} is required for a normal functioning of this module, but found {pkg}=={got_ver}.{hint}''' ) def lowercase ( lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None ) -> None: __a = f'''\n{hint}''' if hint is not None else '''''' # non-versioned check if re.match(r'''^[\w_\-\d]+$''' , lowerCAmelCase__ ): __a , __a , __a = requirement, None, None else: __a = re.findall(r'''^([^!=<>\s]+)([\s!=<>]{1,2}.+)''' , lowerCAmelCase__ ) if not match: raise ValueError( '''requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23, but''' f''' got {requirement}''' ) __a , __a = match[0] __a = want_full.split(''',''' ) # there could be multiple requirements __a = {} for w in want_range: __a = re.findall(r'''^([\s!=<>]{1,2})(.+)''' , lowerCAmelCase__ ) if not match: raise ValueError( '''requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23,''' f''' but got {requirement}''' ) __a , __a = match[0] __a = want_ver if op not in ops: raise ValueError(f'''{requirement}: need one of {list(ops.keys() )}, but got {op}''' ) # special case if pkg == "python": __a = '''.'''.join([str(lowerCAmelCase__ ) for x in sys.version_info[:3]] ) for op, want_ver in wanted.items(): _compare_versions(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) return # check if any version is installed try: __a = importlib.metadata.version(lowerCAmelCase__ ) except importlib.metadata.PackageNotFoundError: raise importlib.metadata.PackageNotFoundError( f'''The \'{requirement}\' distribution was not found and is required by this application. {hint}''' ) # check that the right version is installed if version number or a range was provided if want_ver is not None: for op, want_ver in wanted.items(): _compare_versions(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ : Tuple ) -> Optional[Any]: __a = '''Try: pip install transformers -U or pip install -e \'.[dev]\' if you\'re working with git main''' return require_version(lowerCAmelCase__ , lowerCAmelCase__ )
695
1
"""simple docstring""" from datetime import datetime import requests def lowercase ( lowerCAmelCase__ : str ) -> bytes: __a = '''https://downloadgram.net/wp-json/wppress/video-downloader/video?url=''' __a = requests.get(base_url + url ).json()[0]['''urls'''][0]['''src'''] return requests.get(lowerCAmelCase__ ).content if __name__ == "__main__": lowercase_ = input("Enter Video/IGTV url: ").strip() lowercase_ = F'''{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4''' with open(file_name, "wb") as fp: fp.write(download_video(url)) print(F'''Done. Video saved to disk as {file_name}.''')
695
"""simple docstring""" from __future__ import annotations lowercase_ = list[tuple[int, int]] lowercase_ = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] lowercase_ = ([-1, 0], [0, -1], [1, 0], [0, 1]) # up, left, down, right class __lowerCAmelCase : '''simple docstring''' def __init__( self , _a , _a , _a , _a , _a , _a , ): __a = pos_x __a = pos_y __a = (pos_y, pos_x) __a = goal_x __a = goal_y __a = g_cost __a = parent __a = self.calculate_heuristic() def __UpperCAmelCase ( self ): __a = abs(self.pos_x - self.goal_x ) __a = abs(self.pos_y - self.goal_y ) return dx + dy def __lt__( self , _a ): return self.f_cost < other.f_cost class __lowerCAmelCase : '''simple docstring''' def __init__( self , _a , _a ): __a = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , _a ) __a = Node(goal[1] , goal[0] , goal[1] , goal[0] , 99_999 , _a ) __a = [self.start] __a = [] __a = False def __UpperCAmelCase ( self ): while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() __a = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: __a = True return self.retrace_path(_a ) self.closed_nodes.append(_a ) __a = self.get_successors(_a ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(_a ) else: # retrieve the best current path __a = self.open_nodes.pop(self.open_nodes.index(_a ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(_a ) else: self.open_nodes.append(_a ) if not self.reached: return [self.start.pos] return None def __UpperCAmelCase ( self , _a ): __a = [] for action in delta: __a = parent.pos_x + action[1] __a = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(_a ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( _a , _a , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , _a , ) ) return successors def __UpperCAmelCase ( self , _a ): __a = node __a = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) __a = current_node.parent path.reverse() return path if __name__ == "__main__": lowercase_ = (0, 0) lowercase_ = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) print("------") lowercase_ = GreedyBestFirst(init, goal) lowercase_ = greedy_bf.search() if path: for pos_x, pos_y in path: lowercase_ = 2 for elem in grid: print(elem)
695
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Optional[int] = 'megatron-bert' def __init__( self , _a=29_056 , _a=1_024 , _a=24 , _a=16 , _a=4_096 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=2 , _a=0.02 , _a=1E-12 , _a=0 , _a="absolute" , _a=True , **_a , ): super().__init__(pad_token_id=_a , **_a ) __a = vocab_size __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = hidden_act __a = intermediate_size __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = type_vocab_size __a = initializer_range __a = layer_norm_eps __a = position_embedding_type __a = use_cache
695
"""simple docstring""" import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : str ) -> List[Any]: # Initialise PyTorch model __a = RemBertConfig.from_json_file(lowerCAmelCase__ ) print('''Building PyTorch model from configuration: {}'''.format(str(lowerCAmelCase__ ) ) ) __a = RemBertModel(lowerCAmelCase__ ) # Load weights from tf checkpoint load_tf_weights_in_rembert(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Save pytorch-model print('''Save PyTorch model to {}'''.format(lowerCAmelCase__ ) ) torch.save(model.state_dict() , lowerCAmelCase__ ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--rembert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained RemBERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) lowercase_ = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
695
1
"""simple docstring""" import math def lowercase ( lowerCAmelCase__ : float , lowerCAmelCase__ : float ) -> float: return math.pow(lowerCAmelCase__ , 2 ) - a def lowercase ( lowerCAmelCase__ : float ) -> float: return 2 * x def lowercase ( lowerCAmelCase__ : float ) -> float: __a = 2.0 while start <= a: __a = math.pow(lowerCAmelCase__ , 2 ) return start def lowercase ( lowerCAmelCase__ : float , lowerCAmelCase__ : int = 9999 , lowerCAmelCase__ : float = 0.00_00_00_00_00_00_01 ) -> float: if a < 0: raise ValueError('''math domain error''' ) __a = get_initial_point(lowerCAmelCase__ ) for _ in range(lowerCAmelCase__ ): __a = value __a = value - fx(lowerCAmelCase__ , lowerCAmelCase__ ) / fx_derivative(lowerCAmelCase__ ) if abs(prev_value - value ) < tolerance: return value return value if __name__ == "__main__": from doctest import testmod testmod()
695
"""simple docstring""" import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel lowercase_ = "0.12" # assumed parallelism: 8 @require_flax @is_staging_test class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @classmethod def __UpperCAmelCase ( cls ): __a = TOKEN HfFolder.save_token(_a ) @classmethod def __UpperCAmelCase ( cls ): try: delete_repo(token=cls._token , repo_id='''test-model-flax''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-model-flax-org''' ) except HTTPError: pass def __UpperCAmelCase ( self ): __a = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) __a = FlaxBertModel(_a ) model.push_to_hub('''test-model-flax''' , use_auth_token=self._token ) __a = FlaxBertModel.from_pretrained(f'''{USER}/test-model-flax''' ) __a = flatten_dict(unfreeze(model.params ) ) __a = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): __a = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_a , 1E-3 , msg=f'''{key} not identical''' ) # Reset repo delete_repo(token=self._token , repo_id='''test-model-flax''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(_a , repo_id='''test-model-flax''' , push_to_hub=_a , use_auth_token=self._token ) __a = FlaxBertModel.from_pretrained(f'''{USER}/test-model-flax''' ) __a = flatten_dict(unfreeze(model.params ) ) __a = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): __a = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_a , 1E-3 , msg=f'''{key} not identical''' ) def __UpperCAmelCase ( self ): __a = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) __a = FlaxBertModel(_a ) model.push_to_hub('''valid_org/test-model-flax-org''' , use_auth_token=self._token ) __a = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) __a = flatten_dict(unfreeze(model.params ) ) __a = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): __a = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_a , 1E-3 , msg=f'''{key} not identical''' ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-model-flax-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( _a , repo_id='''valid_org/test-model-flax-org''' , push_to_hub=_a , use_auth_token=self._token ) __a = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) __a = flatten_dict(unfreeze(model.params ) ) __a = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): __a = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_a , 1E-3 , msg=f'''{key} not identical''' ) def lowercase ( lowerCAmelCase__ : str , lowerCAmelCase__ : Dict ) -> Optional[int]: __a = True __a = flatten_dict(modela.params ) __a = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1e-4: __a = False return models_are_equal @require_flax class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self ): __a = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) __a = FlaxBertModel(_a ) __a = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(_a , _a ) ) with self.assertRaises(_a ): __a = FlaxBertModel.from_pretrained(_a ) __a = FlaxBertModel.from_pretrained(_a , subfolder=_a ) self.assertTrue(check_models_equal(_a , _a ) ) def __UpperCAmelCase ( self ): __a = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) __a = FlaxBertModel(_a ) __a = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(_a , _a ) , max_shard_size='''10KB''' ) with self.assertRaises(_a ): __a = FlaxBertModel.from_pretrained(_a ) __a = FlaxBertModel.from_pretrained(_a , subfolder=_a ) self.assertTrue(check_models_equal(_a , _a ) ) def __UpperCAmelCase ( self ): __a = '''bert''' __a = '''hf-internal-testing/tiny-random-bert-subfolder''' with self.assertRaises(_a ): __a = FlaxBertModel.from_pretrained(_a ) __a = FlaxBertModel.from_pretrained(_a , subfolder=_a ) self.assertIsNotNone(_a ) def __UpperCAmelCase ( self ): __a = '''bert''' __a = '''hf-internal-testing/tiny-random-bert-sharded-subfolder''' with self.assertRaises(_a ): __a = FlaxBertModel.from_pretrained(_a ) __a = FlaxBertModel.from_pretrained(_a , subfolder=_a ) self.assertIsNotNone(_a )
695
1
"""simple docstring""" from __future__ import annotations def lowercase ( lowerCAmelCase__ : list[int] , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int ) -> None: if (direction == 1 and array[indexa] > array[indexa]) or ( direction == 0 and array[indexa] < array[indexa] ): __a , __a = array[indexa], array[indexa] def lowercase ( lowerCAmelCase__ : list[int] , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int ) -> None: if length > 1: __a = int(length / 2 ) for i in range(lowerCAmelCase__ , low + middle ): comp_and_swap(lowerCAmelCase__ , lowerCAmelCase__ , i + middle , lowerCAmelCase__ ) bitonic_merge(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) bitonic_merge(lowerCAmelCase__ , low + middle , lowerCAmelCase__ , lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ : list[int] , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int ) -> None: if length > 1: __a = int(length / 2 ) bitonic_sort(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , 1 ) bitonic_sort(lowerCAmelCase__ , low + middle , lowerCAmelCase__ , 0 ) bitonic_merge(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) if __name__ == "__main__": lowercase_ = input("Enter numbers separated by a comma:\n").strip() lowercase_ = [int(item.strip()) for item in user_input.split(",")] bitonic_sort(unsorted, 0, len(unsorted), 1) print("\nSorted array in ascending order is: ", end="") print(*unsorted, sep=", ") bitonic_merge(unsorted, 0, len(unsorted), 0) print("Sorted array in descending order is: ", end="") print(*unsorted, sep=", ")
695
"""simple docstring""" import unittest from diffusers.models.unet_ad_blocks import * # noqa F403 from diffusers.utils import torch_device from .test_unet_blocks_common import UNetBlockTesterMixin class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = DownBlockaD # noqa F405 __UpperCAmelCase : Any = 'down' def __UpperCAmelCase ( self ): __a = [-0.0232, -0.9869, 0.8054, -0.0637, -0.1688, -1.4264, 0.4470, -1.3394, 0.0904] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : str = ResnetDownsampleBlockaD # noqa F405 __UpperCAmelCase : List[str] = 'down' def __UpperCAmelCase ( self ): __a = [0.0710, 0.2410, -0.7320, -1.0757, -1.1343, 0.3540, -0.0133, -0.2576, 0.0948] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Optional[int] = AttnDownBlockaD # noqa F405 __UpperCAmelCase : Optional[Any] = 'down' def __UpperCAmelCase ( self ): __a = [0.0636, 0.8964, -0.6234, -1.0131, 0.0844, 0.4935, 0.3437, 0.0911, -0.2957] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : List[Any] = CrossAttnDownBlockaD # noqa F405 __UpperCAmelCase : Optional[Any] = 'down' def __UpperCAmelCase ( self ): __a , __a = super().prepare_init_args_and_inputs_for_common() __a = 32 return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [0.2238, -0.7396, -0.2255, -0.3829, 0.1925, 1.1665, 0.0603, -0.7295, 0.1983] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : int = SimpleCrossAttnDownBlockaD # noqa F405 __UpperCAmelCase : Any = 'down' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_encoder_hidden_states=_a ) def __UpperCAmelCase ( self ): __a , __a = super().prepare_init_args_and_inputs_for_common() __a = 32 return init_dict, inputs_dict @unittest.skipIf(torch_device == '''mps''' , '''MPS result is not consistent''' ) def __UpperCAmelCase ( self ): __a = [0.7921, -0.0992, -0.1962, -0.7695, -0.4242, 0.7804, 0.4737, 0.2765, 0.3338] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : int = SkipDownBlockaD # noqa F405 __UpperCAmelCase : Tuple = 'down' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_skip_sample=_a ) def __UpperCAmelCase ( self ): __a = [-0.0845, -0.2087, -0.2465, 0.0971, 0.1900, -0.0484, 0.2664, 0.4179, 0.5069] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : List[Any] = AttnSkipDownBlockaD # noqa F405 __UpperCAmelCase : Optional[int] = 'down' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_skip_sample=_a ) def __UpperCAmelCase ( self ): __a = [0.5539, 0.1609, 0.4924, 0.0537, -0.1995, 0.4050, 0.0979, -0.2721, -0.0642] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : int = DownEncoderBlockaD # noqa F405 __UpperCAmelCase : Optional[int] = 'down' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_temb=_a ) def __UpperCAmelCase ( self ): __a = { '''in_channels''': 32, '''out_channels''': 32, } __a = self.dummy_input return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [1.1102, 0.5302, 0.4872, -0.0023, -0.8042, 0.0483, -0.3489, -0.5632, 0.7626] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = AttnDownEncoderBlockaD # noqa F405 __UpperCAmelCase : Any = 'down' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_temb=_a ) def __UpperCAmelCase ( self ): __a = { '''in_channels''': 32, '''out_channels''': 32, } __a = self.dummy_input return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [0.8966, -0.1486, 0.8568, 0.8141, -0.9046, -0.1342, -0.0972, -0.7417, 0.1538] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : str = UNetMidBlockaD # noqa F405 __UpperCAmelCase : Any = 'mid' def __UpperCAmelCase ( self ): __a = { '''in_channels''': 32, '''temb_channels''': 128, } __a = self.dummy_input return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [-0.1062, 1.7248, 0.3494, 1.4569, -0.0910, -1.2421, -0.9984, 0.6736, 1.0028] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : str = UNetMidBlockaDCrossAttn # noqa F405 __UpperCAmelCase : str = 'mid' def __UpperCAmelCase ( self ): __a , __a = super().prepare_init_args_and_inputs_for_common() __a = 32 return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [0.0187, 2.4220, 0.4484, 1.1203, -0.6121, -1.5122, -0.8270, 0.7851, 1.8335] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Any = UNetMidBlockaDSimpleCrossAttn # noqa F405 __UpperCAmelCase : List[Any] = 'mid' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_encoder_hidden_states=_a ) def __UpperCAmelCase ( self ): __a , __a = super().prepare_init_args_and_inputs_for_common() __a = 32 return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [0.7143, 1.9974, 0.5448, 1.3977, 0.1282, -1.1237, -1.4238, 0.5530, 0.8880] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = UpBlockaD # noqa F405 __UpperCAmelCase : Union[str, Any] = 'up' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=_a ) def __UpperCAmelCase ( self ): __a = [-0.2041, -0.4165, -0.3022, 0.0041, -0.6628, -0.7053, 0.1928, -0.0325, 0.0523] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : str = ResnetUpsampleBlockaD # noqa F405 __UpperCAmelCase : int = 'up' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=_a ) def __UpperCAmelCase ( self ): __a = [0.2287, 0.3549, -0.1346, 0.4797, -0.1715, -0.9649, 0.7305, -0.5864, -0.6244] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Dict = CrossAttnUpBlockaD # noqa F405 __UpperCAmelCase : List[Any] = 'up' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=_a ) def __UpperCAmelCase ( self ): __a , __a = super().prepare_init_args_and_inputs_for_common() __a = 32 return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [-0.1403, -0.3515, -0.0420, -0.1425, 0.3167, 0.5094, -0.2181, 0.5931, 0.5582] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = SimpleCrossAttnUpBlockaD # noqa F405 __UpperCAmelCase : Optional[int] = 'up' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=_a , include_encoder_hidden_states=_a ) def __UpperCAmelCase ( self ): __a , __a = super().prepare_init_args_and_inputs_for_common() __a = 32 return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [0.2645, 0.1480, 0.0909, 0.8044, -0.9758, -0.9083, 0.0994, -1.1453, -0.7402] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Any = AttnUpBlockaD # noqa F405 __UpperCAmelCase : List[Any] = 'up' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=_a ) @unittest.skipIf(torch_device == '''mps''' , '''MPS result is not consistent''' ) def __UpperCAmelCase ( self ): __a = [0.0979, 0.1326, 0.0021, 0.0659, 0.2249, 0.0059, 0.1132, 0.5952, 0.1033] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Any = SkipUpBlockaD # noqa F405 __UpperCAmelCase : str = 'up' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=_a ) def __UpperCAmelCase ( self ): __a = [-0.0893, -0.1234, -0.1506, -0.0332, 0.0123, -0.0211, 0.0566, 0.0143, 0.0362] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = AttnSkipUpBlockaD # noqa F405 __UpperCAmelCase : int = 'up' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=_a ) def __UpperCAmelCase ( self ): __a = [0.0361, 0.0617, 0.2787, -0.0350, 0.0342, 0.3421, -0.0843, 0.0913, 0.3015] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = UpDecoderBlockaD # noqa F405 __UpperCAmelCase : List[str] = 'up' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_temb=_a ) def __UpperCAmelCase ( self ): __a = {'''in_channels''': 32, '''out_channels''': 32} __a = self.dummy_input return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [0.4404, 0.1998, -0.9886, -0.3320, -0.3128, -0.7034, -0.6955, -0.2338, -0.3137] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Optional[int] = AttnUpDecoderBlockaD # noqa F405 __UpperCAmelCase : Any = 'up' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_temb=_a ) def __UpperCAmelCase ( self ): __a = {'''in_channels''': 32, '''out_channels''': 32} __a = self.dummy_input return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [0.6738, 0.4491, 0.1055, 1.0710, 0.7316, 0.3339, 0.3352, 0.1023, 0.3568] super().test_output(_a )
695
1
"""simple docstring""" import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def lowercase ( ) -> Optional[int]: raise RuntimeError('''CUDA out of memory.''' ) class __lowerCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self ): super().__init__() __a = nn.Linear(3 , 4 ) __a = nn.BatchNormad(4 ) __a = nn.Linear(4 , 5 ) def __UpperCAmelCase ( self , _a ): return self.lineara(self.batchnorm(self.lineara(_a ) ) ) class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self ): __a = [] @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(_a ): nonlocal batch_sizes batch_sizes.append(_a ) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(_a , [128, 64, 32, 16, 8] ) def __UpperCAmelCase ( self ): __a = [] @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(_a , _a ): nonlocal batch_sizes batch_sizes.append(_a ) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga __a , __a = mock_training_loop_function('''hello''' ) self.assertListEqual(_a , [128, 64, 32, 16, 8] ) self.assertListEqual([bs, arga] , [8, '''hello'''] ) def __UpperCAmelCase ( self ): @find_executable_batch_size(starting_batch_size=0 ) def mock_training_loop_function(_a ): pass with self.assertRaises(_a ) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0] ) def __UpperCAmelCase ( self ): @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(_a ): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(_a ) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0] ) def __UpperCAmelCase ( self ): @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(_a , _a , _a ): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(_a ) as cm: mock_training_loop_function(128 , '''hello''' , '''world''' ) self.assertIn('''Batch size was passed into `f`''' , cm.exception.args[0] ) self.assertIn('''`f(arg1=\'hello\', arg2=\'world\')''' , cm.exception.args[0] ) def __UpperCAmelCase ( self ): @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(_a ): raise ValueError('''Oops, we had an error!''' ) with self.assertRaises(_a ) as cm: mock_training_loop_function() self.assertIn('''Oops, we had an error!''' , cm.exception.args[0] ) @require_cuda def __UpperCAmelCase ( self ): __a = torch.cuda.memory_allocated() __a = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , _a ) __a = release_memory(_a ) self.assertEqual(torch.cuda.memory_allocated() , _a )
695
"""simple docstring""" import copy from typing import Dict, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING from ..detr import DetrConfig from ..swin import SwinConfig lowercase_ = { "facebook/maskformer-swin-base-ade": ( "https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json" ) # See all MaskFormer models at https://huggingface.co/models?filter=maskformer } lowercase_ = logging.get_logger(__name__) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : str = 'maskformer' __UpperCAmelCase : Optional[int] = {'hidden_size': 'mask_feature_size'} __UpperCAmelCase : Any = ['resnet', 'swin'] __UpperCAmelCase : Dict = ['detr'] def __init__( self , _a = 256 , _a = 256 , _a = 0.1 , _a = False , _a = None , _a = None , _a = 0.02 , _a = 1.0 , _a = 1.0 , _a = 1.0 , _a = 20.0 , _a = None , **_a , ): if backbone_config is None: # fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k __a = SwinConfig( image_size=384 , in_channels=3 , patch_size=4 , embed_dim=128 , depths=[2, 2, 18, 2] , num_heads=[4, 8, 16, 32] , window_size=12 , drop_path_rate=0.3 , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] , ) if isinstance(_a , _a ): __a = backbone_config.pop('''model_type''' ) __a = CONFIG_MAPPING[backbone_model_type] __a = config_class.from_dict(_a ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f'''Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. ''' f'''Supported model types: {','.join(self.backbones_supported )}''' ) if decoder_config is None: # fall back to https://huggingface.co/facebook/detr-resnet-50 __a = DetrConfig() else: # verify that the decoder is supported __a = ( decoder_config.pop('''model_type''' ) if isinstance(_a , _a ) else decoder_config.model_type ) if decoder_type not in self.decoders_supported: raise ValueError( f'''Transformer Decoder {decoder_type} not supported, please use one of''' f''' {','.join(self.decoders_supported )}''' ) if isinstance(_a , _a ): __a = CONFIG_MAPPING[decoder_type] __a = config_class.from_dict(_a ) __a = backbone_config __a = decoder_config # main feature dimension for the model __a = fpn_feature_size __a = mask_feature_size # initializer __a = init_std __a = init_xavier_std # Hungarian matcher && loss __a = cross_entropy_weight __a = dice_weight __a = mask_weight __a = use_auxiliary_loss __a = no_object_weight __a = output_auxiliary_logits __a = self.decoder_config.encoder_attention_heads __a = self.decoder_config.num_hidden_layers super().__init__(**_a ) @classmethod def __UpperCAmelCase ( cls , _a , _a , **_a ): return cls( backbone_config=_a , decoder_config=_a , **_a , ) def __UpperCAmelCase ( self ): __a = copy.deepcopy(self.__dict__ ) __a = self.backbone_config.to_dict() __a = self.decoder_config.to_dict() __a = self.__class__.model_type return output
695
1
"""simple docstring""" import logging import math from functools import partial from typing import Any, Callable, Dict, Iterable, List, Optional, Sequence, Tuple, Union import torch from .tensor_utils import tensor_tree_map, tree_map def lowercase ( lowerCAmelCase__ : Union[dict, list, tuple, torch.Tensor] ) -> List[Tuple[int, ...]]: __a = [] if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): for v in tree.values(): shapes.extend(_fetch_dims(lowerCAmelCase__ ) ) elif isinstance(lowerCAmelCase__ , (list, tuple) ): for t in tree: shapes.extend(_fetch_dims(lowerCAmelCase__ ) ) elif isinstance(lowerCAmelCase__ , torch.Tensor ): shapes.append(tree.shape ) else: raise ValueError('''Not supported''' ) return shapes @torch.jit.ignore def lowercase ( lowerCAmelCase__ : int , lowerCAmelCase__ : Tuple[int, ...] ) -> Tuple[int, ...]: __a = [] for d in reversed(lowerCAmelCase__ ): idx.append(flat_idx % d ) __a = flat_idx // d return tuple(reversed(lowerCAmelCase__ ) ) @torch.jit.ignore def lowercase ( lowerCAmelCase__ : Sequence[int] , lowerCAmelCase__ : Sequence[int] , lowerCAmelCase__ : Sequence[int] , lowerCAmelCase__ : Optional[Sequence[bool]] = None , lowerCAmelCase__ : Optional[Sequence[bool]] = None , ) -> List[Tuple[slice, ...]]: # start_edges and end_edges both indicate whether, starting from any given # dimension, the start/end index is at the top/bottom edge of the # corresponding tensor, modeled as a tree def reduce_edge_list(lowerCAmelCase__ : List[bool] ) -> None: __a = True for i in range(len(lowerCAmelCase__ ) ): __a = -1 * (i + 1) l[reversed_idx] &= tally __a = l[reversed_idx] if start_edges is None: __a = [s == 0 for s in start] reduce_edge_list(lowerCAmelCase__ ) if end_edges is None: __a = [e == (d - 1) for e, d in zip(lowerCAmelCase__ , lowerCAmelCase__ )] reduce_edge_list(lowerCAmelCase__ ) # Base cases. Either start/end are empty and we're done, or the final, # one-dimensional tensor can be simply sliced if len(lowerCAmelCase__ ) == 0: return [()] elif len(lowerCAmelCase__ ) == 1: return [(slice(start[0] , end[0] + 1 ),)] __a = [] __a = [] # Dimensions common to start and end can be selected directly for s, e in zip(lowerCAmelCase__ , lowerCAmelCase__ ): if s == e: path_list.append(slice(lowerCAmelCase__ , s + 1 ) ) else: break __a = tuple(lowerCAmelCase__ ) __a = len(lowerCAmelCase__ ) # start == end, and we're done if divergence_idx == len(lowerCAmelCase__ ): return [path] def upper() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None __a = start[divergence_idx] return tuple( path + (slice(lowerCAmelCase__ , sdi + 1 ),) + s for s in _get_minimal_slice_set( start[divergence_idx + 1 :] , [d - 1 for d in dims[divergence_idx + 1 :]] , dims[divergence_idx + 1 :] , start_edges=start_edges[divergence_idx + 1 :] , end_edges=[True for _ in end_edges[divergence_idx + 1 :]] , ) ) def lower() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None __a = end[divergence_idx] return tuple( path + (slice(lowerCAmelCase__ , edi + 1 ),) + s for s in _get_minimal_slice_set( [0 for _ in start[divergence_idx + 1 :]] , end[divergence_idx + 1 :] , dims[divergence_idx + 1 :] , start_edges=[True for _ in start_edges[divergence_idx + 1 :]] , end_edges=end_edges[divergence_idx + 1 :] , ) ) # If both start and end are at the edges of the subtree rooted at # divergence_idx, we can just select the whole subtree at once if start_edges[divergence_idx] and end_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] + 1 ),) ) # If just start is at the edge, we can grab almost all of the subtree, # treating only the ragged bottom edge as an edge case elif start_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] ),) ) slices.extend(lower() ) # Analogous to the previous case, but the top is ragged this time elif end_edges[divergence_idx]: slices.extend(upper() ) slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] + 1 ),) ) # If both sides of the range are ragged, we need to handle both sides # separately. If there's contiguous meat in between them, we can index it # in one big chunk else: slices.extend(upper() ) __a = end[divergence_idx] - start[divergence_idx] if middle_ground > 1: slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] ),) ) slices.extend(lower() ) return slices @torch.jit.ignore def lowercase ( lowerCAmelCase__ : torch.Tensor , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int ) -> torch.Tensor: __a = t.shape[:no_batch_dims] __a = list(_flat_idx_to_idx(lowerCAmelCase__ , lowerCAmelCase__ ) ) # _get_minimal_slice_set is inclusive __a = list(_flat_idx_to_idx(flat_end - 1 , lowerCAmelCase__ ) ) # Get an ordered list of slices to perform __a = _get_minimal_slice_set( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ) __a = [t[s] for s in slices] return torch.cat([s.view((-1,) + t.shape[no_batch_dims:] ) for s in sliced_tensors] ) def lowercase ( lowerCAmelCase__ : Callable , lowerCAmelCase__ : Dict[str, Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : Any = None , lowerCAmelCase__ : bool = False , ) -> Any: if not (len(lowerCAmelCase__ ) > 0): raise ValueError('''Must provide at least one input''' ) __a = [shape[:no_batch_dims] for shape in _fetch_dims(lowerCAmelCase__ )] __a = tuple([max(lowerCAmelCase__ ) for s in zip(*lowerCAmelCase__ )] ) def _prep_inputs(lowerCAmelCase__ : torch.Tensor ) -> torch.Tensor: if not low_mem: if not sum(t.shape[:no_batch_dims] ) == no_batch_dims: __a = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) __a = t.reshape(-1 , *t.shape[no_batch_dims:] ) else: __a = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) return t __a = tensor_tree_map(_prep_inputs , lowerCAmelCase__ ) __a = None if _out is not None: __a = tensor_tree_map(lambda lowerCAmelCase__ : t.view([-1] + list(t.shape[no_batch_dims:] ) ) , _out ) __a = 1 for d in orig_batch_dims: flat_batch_dim *= d __a = flat_batch_dim // chunk_size + (flat_batch_dim % chunk_size != 0) def _select_chunk(lowerCAmelCase__ : torch.Tensor ) -> torch.Tensor: return t[i : i + chunk_size] if t.shape[0] != 1 else t __a = 0 __a = prepped_outputs for _ in range(lowerCAmelCase__ ): # Chunk the input if not low_mem: __a = _select_chunk else: __a = partial( _chunk_slice , flat_start=lowerCAmelCase__ , flat_end=min(lowerCAmelCase__ , i + chunk_size ) , no_batch_dims=len(lowerCAmelCase__ ) , ) __a = tensor_tree_map(lowerCAmelCase__ , lowerCAmelCase__ ) # Run the layer on the chunk __a = layer(**lowerCAmelCase__ ) # Allocate space for the output if out is None: __a = tensor_tree_map(lambda lowerCAmelCase__ : t.new_zeros((flat_batch_dim,) + t.shape[1:] ) , lowerCAmelCase__ ) # Put the chunk in its pre-allocated space if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): def assign(lowerCAmelCase__ : dict , lowerCAmelCase__ : dict ) -> None: for k, v in da.items(): if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): assign(lowerCAmelCase__ , da[k] ) else: if _add_into_out: v[i : i + chunk_size] += da[k] else: __a = da[k] assign(lowerCAmelCase__ , lowerCAmelCase__ ) elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): for xa, xa in zip(lowerCAmelCase__ , lowerCAmelCase__ ): if _add_into_out: xa[i : i + chunk_size] += xa else: __a = xa elif isinstance(lowerCAmelCase__ , torch.Tensor ): if _add_into_out: out[i : i + chunk_size] += output_chunk else: __a = output_chunk else: raise ValueError('''Not supported''' ) i += chunk_size __a = tensor_tree_map(lambda lowerCAmelCase__ : t.view(orig_batch_dims + t.shape[1:] ) , lowerCAmelCase__ ) return out class __lowerCAmelCase : '''simple docstring''' def __init__( self , _a = 512 , ): __a = max_chunk_size __a = None __a = None def __UpperCAmelCase ( self , _a , _a , _a ): logging.info('''Tuning chunk size...''' ) if min_chunk_size >= self.max_chunk_size: return min_chunk_size __a = [2**l for l in range(int(math.log(self.max_chunk_size , 2 ) ) + 1 )] __a = [c for c in candidates if c > min_chunk_size] __a = [min_chunk_size] + candidates candidates[-1] += 4 def test_chunk_size(_a ) -> bool: try: with torch.no_grad(): fn(*_a , chunk_size=_a ) return True except RuntimeError: return False __a = 0 __a = len(_a ) - 1 while i > min_viable_chunk_size_index: __a = test_chunk_size(candidates[i] ) if not viable: __a = (min_viable_chunk_size_index + i) // 2 else: __a = i __a = (i + len(_a ) - 1) // 2 return candidates[min_viable_chunk_size_index] def __UpperCAmelCase ( self , _a , _a ): __a = True for aa, aa in zip(_a , _a ): assert type(_a ) == type(_a ) if isinstance(_a , (list, tuple) ): consistent &= self._compare_arg_caches(_a , _a ) elif isinstance(_a , _a ): __a = [v for _, v in sorted(aa.items() , key=lambda _a : x[0] )] __a = [v for _, v in sorted(aa.items() , key=lambda _a : x[0] )] consistent &= self._compare_arg_caches(_a , _a ) else: consistent &= aa == aa return consistent def __UpperCAmelCase ( self , _a , _a , _a , ): __a = True __a = tree_map(lambda _a : a.shape if isinstance(_a , torch.Tensor ) else a , _a , _a ) if self.cached_arg_data is not None: # If args have changed shape/value, we need to re-tune assert len(self.cached_arg_data ) == len(_a ) __a = self._compare_arg_caches(self.cached_arg_data , _a ) else: # Otherwise, we can reuse the precomputed value __a = False if not consistent: __a = self._determine_favorable_chunk_size( _a , _a , _a , ) __a = arg_data assert self.cached_chunk_size is not None return self.cached_chunk_size
695
"""simple docstring""" from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup lowercase_ = "https://www.indeed.co.in/jobs?q=mobile+app+development&l=" def lowercase ( lowerCAmelCase__ : str = "mumbai" ) -> Generator[tuple[str, str], None, None]: __a = BeautifulSoup(requests.get(url + location ).content , '''html.parser''' ) # This attribute finds out all the specifics listed in a job for job in soup.find_all('''div''' , attrs={'''data-tn-component''': '''organicJob'''} ): __a = job.find('''a''' , attrs={'''data-tn-element''': '''jobTitle'''} ).text.strip() __a = job.find('''span''' , {'''class''': '''company'''} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs("Bangalore"), 1): print(F'''Job {i:>2} is {job[0]} at {job[1]}''')
695
1
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType lowercase_ = logging.get_logger(__name__) lowercase_ = { "openai/whisper-base": "https://huggingface.co/openai/whisper-base/resolve/main/config.json", } # fmt: off lowercase_ = [ 1, 2, 7, 8, 9, 1_0, 1_4, 2_5, 2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2, 6_3, 9_0, 9_1, 9_2, 9_3, 3_5_7, 3_6_6, 4_3_8, 5_3_2, 6_8_5, 7_0_5, 7_9_6, 9_3_0, 1_0_5_8, 1_2_2_0, 1_2_6_7, 1_2_7_9, 1_3_0_3, 1_3_4_3, 1_3_7_7, 1_3_9_1, 1_6_3_5, 1_7_8_2, 1_8_7_5, 2_1_6_2, 2_3_6_1, 2_4_8_8, 3_4_6_7, 4_0_0_8, 4_2_1_1, 4_6_0_0, 4_8_0_8, 5_2_9_9, 5_8_5_5, 6_3_2_9, 7_2_0_3, 9_6_0_9, 9_9_5_9, 1_0_5_6_3, 1_0_7_8_6, 1_1_4_2_0, 1_1_7_0_9, 1_1_9_0_7, 1_3_1_6_3, 1_3_6_9_7, 1_3_7_0_0, 1_4_8_0_8, 1_5_3_0_6, 1_6_4_1_0, 1_6_7_9_1, 1_7_9_9_2, 1_9_2_0_3, 1_9_5_1_0, 2_0_7_2_4, 2_2_3_0_5, 2_2_9_3_5, 2_7_0_0_7, 3_0_1_0_9, 3_0_4_2_0, 3_3_4_0_9, 3_4_9_4_9, 4_0_2_8_3, 4_0_4_9_3, 4_0_5_4_9, 4_7_2_8_2, 4_9_1_4_6, 5_0_2_5_7, 5_0_3_5_9, 5_0_3_6_0, 5_0_3_6_1 ] lowercase_ = [ 1, 2, 7, 8, 9, 1_0, 1_4, 2_5, 2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2, 6_3, 9_0, 9_1, 9_2, 9_3, 3_5_9, 5_0_3, 5_2_2, 5_4_2, 8_7_3, 8_9_3, 9_0_2, 9_1_8, 9_2_2, 9_3_1, 1_3_5_0, 1_8_5_3, 1_9_8_2, 2_4_6_0, 2_6_2_7, 3_2_4_6, 3_2_5_3, 3_2_6_8, 3_5_3_6, 3_8_4_6, 3_9_6_1, 4_1_8_3, 4_6_6_7, 6_5_8_5, 6_6_4_7, 7_2_7_3, 9_0_6_1, 9_3_8_3, 1_0_4_2_8, 1_0_9_2_9, 1_1_9_3_8, 1_2_0_3_3, 1_2_3_3_1, 1_2_5_6_2, 1_3_7_9_3, 1_4_1_5_7, 1_4_6_3_5, 1_5_2_6_5, 1_5_6_1_8, 1_6_5_5_3, 1_6_6_0_4, 1_8_3_6_2, 1_8_9_5_6, 2_0_0_7_5, 2_1_6_7_5, 2_2_5_2_0, 2_6_1_3_0, 2_6_1_6_1, 2_6_4_3_5, 2_8_2_7_9, 2_9_4_6_4, 3_1_6_5_0, 3_2_3_0_2, 3_2_4_7_0, 3_6_8_6_5, 4_2_8_6_3, 4_7_4_2_5, 4_9_8_7_0, 5_0_2_5_4, 5_0_2_5_8, 5_0_3_6_0, 5_0_3_6_1, 5_0_3_6_2 ] class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Dict = 'whisper' __UpperCAmelCase : List[Any] = ['past_key_values'] __UpperCAmelCase : str = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self , _a=51_865 , _a=80 , _a=6 , _a=4 , _a=6 , _a=4 , _a=1_536 , _a=1_536 , _a=0.0 , _a=0.0 , _a=50_257 , _a=True , _a=True , _a="gelu" , _a=256 , _a=0.0 , _a=0.0 , _a=0.0 , _a=0.02 , _a=False , _a=1_500 , _a=448 , _a=50_256 , _a=50_256 , _a=50_256 , _a=None , _a=[220, 50_256] , _a=False , _a=256 , _a=False , _a=0.05 , _a=10 , _a=2 , _a=0.0 , _a=10 , _a=0 , _a=7 , **_a , ): __a = vocab_size __a = num_mel_bins __a = d_model __a = encoder_layers __a = encoder_attention_heads __a = decoder_layers __a = decoder_attention_heads __a = decoder_ffn_dim __a = encoder_ffn_dim __a = dropout __a = attention_dropout __a = activation_dropout __a = activation_function __a = init_std __a = encoder_layerdrop __a = decoder_layerdrop __a = use_cache __a = encoder_layers __a = scale_embedding # scale factor will be sqrt(d_model) if True __a = max_source_positions __a = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. __a = classifier_proj_size __a = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __a = apply_spec_augment __a = mask_time_prob __a = mask_time_length __a = mask_time_min_masks __a = mask_feature_prob __a = mask_feature_length __a = mask_feature_min_masks __a = median_filter_width super().__init__( pad_token_id=_a , bos_token_id=_a , eos_token_id=_a , is_encoder_decoder=_a , decoder_start_token_id=_a , suppress_tokens=_a , begin_suppress_tokens=_a , **_a , ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def __UpperCAmelCase ( self ): __a = OrderedDict( [ ('''input_features''', {0: '''batch''', 1: '''feature_size''', 2: '''encoder_sequence'''}), ] ) if self.use_past: __a = {0: '''batch'''} else: __a = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(_a , direction='''inputs''' ) return common_inputs def __UpperCAmelCase ( self , _a , _a = -1 , _a = -1 , _a = False , _a = None , _a = 22_050 , _a = 5.0 , _a = 220 , ): __a = OrderedDict() __a = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=_a , framework=_a , sampling_rate=_a , time_duration=_a , frequency=_a , ) __a = encoder_inputs['''input_features'''].shape[2] __a = encoder_sequence_length // 2 if self.use_past else seq_length __a = super().generate_dummy_inputs( preprocessor.tokenizer , _a , _a , _a , _a ) __a = encoder_inputs.pop('''input_features''' ) __a = decoder_inputs.pop('''decoder_input_ids''' ) if "past_key_values" in decoder_inputs: __a = decoder_inputs.pop('''past_key_values''' ) return dummy_inputs @property def __UpperCAmelCase ( self ): return 1E-3
695
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "bigcode/gpt_bigcode-santacoder": "https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json", } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : List[str] = 'gpt_bigcode' __UpperCAmelCase : Tuple = ['past_key_values'] __UpperCAmelCase : Dict = { 'hidden_size': 'n_embd', 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , _a=50_257 , _a=1_024 , _a=768 , _a=12 , _a=12 , _a=None , _a="gelu_pytorch_tanh" , _a=0.1 , _a=0.1 , _a=0.1 , _a=1E-5 , _a=0.02 , _a=True , _a=True , _a=50_256 , _a=50_256 , _a=True , _a=True , _a=True , **_a , ): __a = vocab_size __a = n_positions __a = n_embd __a = n_layer __a = n_head __a = n_inner __a = activation_function __a = resid_pdrop __a = embd_pdrop __a = attn_pdrop __a = layer_norm_epsilon __a = initializer_range __a = scale_attn_weights __a = use_cache __a = attention_softmax_in_fpaa __a = scale_attention_softmax_in_fpaa __a = multi_query __a = bos_token_id __a = eos_token_id super().__init__(bos_token_id=_a , eos_token_id=_a , **_a )
695
1
"""simple docstring""" from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup lowercase_ = "https://www.indeed.co.in/jobs?q=mobile+app+development&l=" def lowercase ( lowerCAmelCase__ : str = "mumbai" ) -> Generator[tuple[str, str], None, None]: __a = BeautifulSoup(requests.get(url + location ).content , '''html.parser''' ) # This attribute finds out all the specifics listed in a job for job in soup.find_all('''div''' , attrs={'''data-tn-component''': '''organicJob'''} ): __a = job.find('''a''' , attrs={'''data-tn-element''': '''jobTitle'''} ).text.strip() __a = job.find('''span''' , {'''class''': '''company'''} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs("Bangalore"), 1): print(F'''Job {i:>2} is {job[0]} at {job[1]}''')
695
"""simple docstring""" import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler lowercase_ = 1_6 lowercase_ = 3_2 def lowercase ( lowerCAmelCase__ : Accelerator , lowerCAmelCase__ : int = 16 , lowerCAmelCase__ : str = "bert-base-cased" ) -> Optional[int]: __a = AutoTokenizer.from_pretrained(lowerCAmelCase__ ) __a = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(lowerCAmelCase__ : Optional[Any] ): # max_length=None => use the model max length (it's actually the default) __a = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset __a = datasets.map( lowerCAmelCase__ , batched=lowerCAmelCase__ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , load_from_cache_file=lowerCAmelCase__ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __a = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(lowerCAmelCase__ : int ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(lowerCAmelCase__ , padding='''max_length''' , max_length=128 , return_tensors='''pt''' ) return tokenizer.pad(lowerCAmelCase__ , padding='''longest''' , return_tensors='''pt''' ) # Instantiate dataloaders. __a = DataLoader( tokenized_datasets['''train'''] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ ) __a = DataLoader( tokenized_datasets['''validation'''] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ ) return train_dataloader, eval_dataloader def lowercase ( lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Union[str, Any] ) -> Optional[int]: # Initialize accelerator __a = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __a = config['''lr'''] __a = int(config['''num_epochs'''] ) __a = int(config['''seed'''] ) __a = int(config['''batch_size'''] ) __a = args.model_name_or_path set_seed(lowerCAmelCase__ ) __a , __a = get_dataloaders(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __a = AutoModelForSequenceClassification.from_pretrained(lowerCAmelCase__ , return_dict=lowerCAmelCase__ ) # Instantiate optimizer __a = ( AdamW if accelerator.state.deepspeed_plugin is None or '''optimizer''' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) __a = optimizer_cls(params=model.parameters() , lr=lowerCAmelCase__ ) if accelerator.state.deepspeed_plugin is not None: __a = accelerator.state.deepspeed_plugin.deepspeed_config[ '''gradient_accumulation_steps''' ] else: __a = 1 __a = (len(lowerCAmelCase__ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): __a = get_linear_schedule_with_warmup( optimizer=lowerCAmelCase__ , num_warmup_steps=0 , num_training_steps=lowerCAmelCase__ , ) else: __a = DummyScheduler(lowerCAmelCase__ , total_num_steps=lowerCAmelCase__ , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __a , __a , __a , __a , __a = accelerator.prepare( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # We need to keep track of how many total steps we have iterated over __a = 0 # We also need to keep track of the stating epoch so files are named properly __a = 0 # Now we train the model __a = evaluate.load('''glue''' , '''mrpc''' ) __a = 0 __a = {} for epoch in range(lowerCAmelCase__ , lowerCAmelCase__ ): model.train() for step, batch in enumerate(lowerCAmelCase__ ): __a = model(**lowerCAmelCase__ ) __a = outputs.loss __a = loss / gradient_accumulation_steps accelerator.backward(lowerCAmelCase__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 model.eval() __a = 0 for step, batch in enumerate(lowerCAmelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __a = model(**lowerCAmelCase__ ) __a = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times __a , __a = accelerator.gather( (predictions, batch['''labels''']) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(lowerCAmelCase__ ) - 1: __a = predictions[: len(eval_dataloader.dataset ) - samples_seen] __a = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=lowerCAmelCase__ , references=lowerCAmelCase__ , ) __a = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}:''' , lowerCAmelCase__ ) __a = eval_metric['''accuracy'''] if best_performance < eval_metric["accuracy"]: __a = eval_metric['''accuracy'''] if args.performance_lower_bound is not None: assert ( args.performance_lower_bound <= best_performance ), f'''Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}''' accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , '''all_results.json''' ) , '''w''' ) as f: json.dump(lowerCAmelCase__ , lowerCAmelCase__ ) def lowercase ( ) -> List[str]: __a = argparse.ArgumentParser(description='''Simple example of training script tracking peak GPU memory usage.''' ) parser.add_argument( '''--model_name_or_path''' , type=lowerCAmelCase__ , default='''bert-base-cased''' , help='''Path to pretrained model or model identifier from huggingface.co/models.''' , required=lowerCAmelCase__ , ) parser.add_argument( '''--output_dir''' , type=lowerCAmelCase__ , default='''.''' , help='''Optional save directory where all checkpoint folders will be stored. Default is the current working directory.''' , ) parser.add_argument( '''--performance_lower_bound''' , type=lowerCAmelCase__ , default=lowerCAmelCase__ , help='''Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value.''' , ) parser.add_argument( '''--num_epochs''' , type=lowerCAmelCase__ , default=3 , help='''Number of train epochs.''' , ) __a = parser.parse_args() __a = {'''lr''': 2e-5, '''num_epochs''': args.num_epochs, '''seed''': 42, '''batch_size''': 16} training_function(lowerCAmelCase__ , lowerCAmelCase__ ) if __name__ == "__main__": main()
695
1
"""simple docstring""" def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Any=False ) -> Any: if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): __a = len(set_a.intersection(lowerCAmelCase__ ) ) if alternative_union: __a = len(lowerCAmelCase__ ) + len(lowerCAmelCase__ ) else: __a = len(set_a.union(lowerCAmelCase__ ) ) return intersection / union if isinstance(lowerCAmelCase__ , (list, tuple) ) and isinstance(lowerCAmelCase__ , (list, tuple) ): __a = [element for element in set_a if element in set_b] if alternative_union: __a = len(lowerCAmelCase__ ) + len(lowerCAmelCase__ ) return len(lowerCAmelCase__ ) / union else: __a = set_a + [element for element in set_b if element not in set_a] return len(lowerCAmelCase__ ) / len(lowerCAmelCase__ ) return len(lowerCAmelCase__ ) / len(lowerCAmelCase__ ) return None if __name__ == "__main__": lowercase_ = {"a", "b", "c", "d", "e"} lowercase_ = {"c", "d", "e", "f", "h", "i"} print(jaccard_similarity(set_a, set_b))
695
"""simple docstring""" from typing import Any def lowercase ( lowerCAmelCase__ : list , lowerCAmelCase__ : list , lowerCAmelCase__ : dict , lowerCAmelCase__ : dict , lowerCAmelCase__ : dict , ) -> list: _validation( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ) # Creates data structures and fill initial step __a = {} __a = {} for state in states_space: __a = observations_space[0] __a = ( initial_probabilities[state] * emission_probabilities[state][observation] ) __a = None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(lowerCAmelCase__ ) ): __a = observations_space[o] __a = observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function __a = '''''' __a = -1 for k_state in states_space: __a = ( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: __a = probability __a = k_state # Update probabilities and pointers dicts __a = ( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) __a = arg_max # The final observation __a = observations_space[len(lowerCAmelCase__ ) - 1] # argmax for given final observation __a = '''''' __a = -1 for k_state in states_space: __a = probabilities[(k_state, final_observation)] if probability > max_probability: __a = probability __a = k_state __a = arg_max # Process pointers backwards __a = last_state __a = [] for o in range(len(lowerCAmelCase__ ) - 1 , -1 , -1 ): result.append(lowerCAmelCase__ ) __a = pointers[previous, observations_space[o]] result.reverse() return result def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , ) -> None: _validate_not_empty( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ) _validate_lists(lowerCAmelCase__ , lowerCAmelCase__ ) _validate_dicts( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , ) -> None: if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError('''There\'s an empty parameter''' ) def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Any ) -> None: _validate_list(lowerCAmelCase__ , '''observations_space''' ) _validate_list(lowerCAmelCase__ , '''states_space''' ) def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : str ) -> None: if not isinstance(_object , lowerCAmelCase__ ): __a = f'''{var_name} must be a list''' raise ValueError(lowerCAmelCase__ ) else: for x in _object: if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): __a = f'''{var_name} must be a list of strings''' raise ValueError(lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , ) -> None: _validate_dict(lowerCAmelCase__ , '''initial_probabilities''' , lowerCAmelCase__ ) _validate_nested_dict(lowerCAmelCase__ , '''transition_probabilities''' ) _validate_nested_dict(lowerCAmelCase__ , '''emission_probabilities''' ) def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : str ) -> None: _validate_dict(_object , lowerCAmelCase__ , lowerCAmelCase__ ) for x in _object.values(): _validate_dict(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : str , lowerCAmelCase__ : type , lowerCAmelCase__ : bool = False ) -> None: if not isinstance(_object , lowerCAmelCase__ ): __a = f'''{var_name} must be a dict''' raise ValueError(lowerCAmelCase__ ) if not all(isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) for x in _object ): __a = f'''{var_name} all keys must be strings''' raise ValueError(lowerCAmelCase__ ) if not all(isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) for x in _object.values() ): __a = '''nested dictionary ''' if nested else '''''' __a = f'''{var_name} {nested_text}all values must be {value_type.__name__}''' raise ValueError(lowerCAmelCase__ ) if __name__ == "__main__": from doctest import testmod testmod()
695
1
"""simple docstring""" import argparse import os import re import packaging.version lowercase_ = "examples/" lowercase_ = { "examples": (re.compile(r"^check_min_version\(\"[^\"]+\"\)\s*$", re.MULTILINE), "check_min_version(\"VERSION\")\n"), "init": (re.compile(r"^__version__\s+=\s+\"([^\"]+)\"\s*$", re.MULTILINE), "__version__ = \"VERSION\"\n"), "setup": (re.compile(r"^(\s*)version\s*=\s*\"[^\"]+\",", re.MULTILINE), r"\1version=\"VERSION\","), "doc": (re.compile(r"^(\s*)release\s*=\s*\"[^\"]+\"$", re.MULTILINE), "release = \"VERSION\"\n"), } lowercase_ = { "init": "src/diffusers/__init__.py", "setup": "setup.py", } lowercase_ = "README.md" def lowercase ( lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Union[str, Any] ) -> str: with open(lowerCAmelCase__ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: __a = f.read() __a , __a = REPLACE_PATTERNS[pattern] __a = replace.replace('''VERSION''' , lowerCAmelCase__ ) __a = re_pattern.sub(lowerCAmelCase__ , lowerCAmelCase__ ) with open(lowerCAmelCase__ , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.write(lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ : Union[str, Any] ) -> Dict: for folder, directories, fnames in os.walk(lowerCAmelCase__ ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('''research_projects''' ) if "legacy" in directories: directories.remove('''legacy''' ) for fname in fnames: if fname.endswith('''.py''' ): update_version_in_file(os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) , lowerCAmelCase__ , pattern='''examples''' ) def lowercase ( lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[int]=False ) -> Dict: for pattern, fname in REPLACE_FILES.items(): update_version_in_file(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) if not patch: update_version_in_examples(lowerCAmelCase__ ) def lowercase ( ) -> Optional[Any]: __a = '''🤗 Transformers currently provides the following architectures''' __a = '''1. Want to contribute a new model?''' with open(lowerCAmelCase__ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: __a = f.readlines() # Find the start of the list. __a = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 __a = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('''1.''' ): __a = lines[index].replace( '''https://huggingface.co/docs/diffusers/main/model_doc''' , '''https://huggingface.co/docs/diffusers/model_doc''' , ) index += 1 with open(lowerCAmelCase__ , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(lowerCAmelCase__ ) def lowercase ( ) -> str: with open(REPLACE_FILES['''init'''] , '''r''' ) as f: __a = f.read() __a = REPLACE_PATTERNS['''init'''][0].search(lowerCAmelCase__ ).groups()[0] return packaging.version.parse(lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ : Any=False ) -> Union[str, Any]: __a = get_version() if patch and default_version.is_devrelease: raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''' ) if default_version.is_devrelease: __a = default_version.base_version elif patch: __a = f'''{default_version.major}.{default_version.minor}.{default_version.micro + 1}''' else: __a = f'''{default_version.major}.{default_version.minor + 1}.0''' # Now let's ask nicely if that's the right one. __a = input(f'''Which version are you releasing? [{default_version}]''' ) if len(lowerCAmelCase__ ) == 0: __a = default_version print(f'''Updating version to {version}.''' ) global_version_update(lowerCAmelCase__ , patch=lowerCAmelCase__ ) def lowercase ( ) -> Union[str, Any]: __a = get_version() __a = f'''{current_version.major}.{current_version.minor + 1}.0.dev0''' __a = current_version.base_version # Check with the user we got that right. __a = input(f'''Which version are we developing now? [{dev_version}]''' ) if len(lowerCAmelCase__ ) == 0: __a = dev_version print(f'''Updating version to {version}.''' ) global_version_update(lowerCAmelCase__ ) # print("Cleaning main README, don't forget to run `make fix-copies`.") # clean_main_ref_in_model_list() if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument("--post_release", action="store_true", help="Whether this is pre or post release.") parser.add_argument("--patch", action="store_true", help="Whether or not this is a patch release.") lowercase_ = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("Nothing to do after a patch :-)") else: post_release_work()
695
"""simple docstring""" import math def lowercase ( lowerCAmelCase__ : int ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowerCAmelCase__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowercase ( lowerCAmelCase__ : float = 0.1 ) -> int: __a = 3 __a = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(lowerCAmelCase__ ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
695
1
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..bit import BitConfig lowercase_ = logging.get_logger(__name__) lowercase_ = { "Intel/dpt-large": "https://huggingface.co/Intel/dpt-large/resolve/main/config.json", # See all DPT models at https://huggingface.co/models?filter=dpt } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : str = 'dpt' def __init__( self , _a=768 , _a=12 , _a=12 , _a=3_072 , _a="gelu" , _a=0.0 , _a=0.0 , _a=0.02 , _a=1E-12 , _a=384 , _a=16 , _a=3 , _a=False , _a=True , _a=[2, 5, 8, 11] , _a="project" , _a=[4, 2, 1, 0.5] , _a=[96, 192, 384, 768] , _a=256 , _a=-1 , _a=False , _a=True , _a=0.4 , _a=255 , _a=0.1 , _a=[1, 1_024, 24, 24] , _a=[0, 1] , _a=None , **_a , ): super().__init__(**_a ) __a = hidden_size __a = is_hybrid if self.is_hybrid: if backbone_config is None: logger.info('''Initializing the config with a `BiT` backbone.''' ) __a = { '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, } __a = BitConfig(**_a ) elif isinstance(_a , _a ): logger.info('''Initializing the config with a `BiT` backbone.''' ) __a = BitConfig(**_a ) elif isinstance(_a , _a ): __a = backbone_config else: raise ValueError( f'''backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.''' ) __a = backbone_featmap_shape __a = neck_ignore_stages if readout_type != "project": raise ValueError('''Readout type must be \'project\' when using `DPT-hybrid` mode.''' ) else: __a = None __a = None __a = [] __a = num_hidden_layers __a = num_attention_heads __a = intermediate_size __a = hidden_act __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = initializer_range __a = layer_norm_eps __a = image_size __a = patch_size __a = num_channels __a = qkv_bias __a = backbone_out_indices if readout_type not in ["ignore", "add", "project"]: raise ValueError('''Readout_type must be one of [\'ignore\', \'add\', \'project\']''' ) __a = readout_type __a = reassemble_factors __a = neck_hidden_sizes __a = fusion_hidden_size __a = head_in_index __a = use_batch_norm_in_fusion_residual # auxiliary head attributes (semantic segmentation) __a = use_auxiliary_head __a = auxiliary_loss_weight __a = semantic_loss_ignore_index __a = semantic_classifier_dropout def __UpperCAmelCase ( self ): __a = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: __a = self.backbone_config.to_dict() __a = self.__class__.model_type return output
695
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase_ = { "configuration_mctct": ["MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MCTCTConfig"], "feature_extraction_mctct": ["MCTCTFeatureExtractor"], "processing_mctct": ["MCTCTProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST", "MCTCTForCTC", "MCTCTModel", "MCTCTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
695
1
"""simple docstring""" import math from datetime import datetime, timedelta def lowercase ( lowerCAmelCase__ : int ) -> datetime: __a = year % 19 __a = year % 4 __a = year % 7 __a = math.floor(year / 100 ) __a = math.floor((13 + 8 * leap_day_inhibits) / 25 ) __a = leap_day_inhibits / 4 __a = ( 15 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number ) % 30 __a = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7 # days to be added to March 21 __a = (19 * metonic_cycle + secular_moon_shift) % 30 # PHM -> Paschal Full Moon __a = ( 2 * julian_leap_year + 4 * non_leap_year + 6 * days_to_add + century_starting_point ) % 7 if days_to_add == 29 and days_from_phm_to_sunday == 6: return datetime(lowerCAmelCase__ , 4 , 19 ) elif days_to_add == 28 and days_from_phm_to_sunday == 6: return datetime(lowerCAmelCase__ , 4 , 18 ) else: return datetime(lowerCAmelCase__ , 3 , 22 ) + timedelta( days=int(days_to_add + days_from_phm_to_sunday ) ) if __name__ == "__main__": for year in (1_9_9_4, 2_0_0_0, 2_0_1_0, 2_0_2_1, 2_0_2_3): lowercase_ = "will be" if year > datetime.now().year else "was" print(F'''Easter in {year} {tense} {gauss_easter(year)}''')
695
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json" ), "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json" ), "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json" ), } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : List[Any] = 'dpr' def __init__( self , _a=30_522 , _a=768 , _a=12 , _a=12 , _a=3_072 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=2 , _a=0.02 , _a=1E-12 , _a=0 , _a="absolute" , _a = 0 , **_a , ): super().__init__(pad_token_id=_a , **_a ) __a = vocab_size __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = hidden_act __a = intermediate_size __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = type_vocab_size __a = initializer_range __a = layer_norm_eps __a = projection_dim __a = position_embedding_type
695
1
"""simple docstring""" class __lowerCAmelCase : # Public class to implement a graph '''simple docstring''' def __init__( self , _a , _a , _a ): __a = row __a = col __a = graph def __UpperCAmelCase ( self , _a , _a , _a ): return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def __UpperCAmelCase ( self , _a , _a , _a ): # Checking all 8 elements surrounding nth element __a = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order __a = [-1, 0, 1, -1, 1, -1, 0, 1] __a = True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , _a ): self.diffs(i + row_nbr[k] , j + col_nbr[k] , _a ) def __UpperCAmelCase ( self ): # And finally, count all islands. __a = [[False for j in range(self.COL )] for i in range(self.ROW )] __a = 0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(_a , _a , _a ) count += 1 return count
695
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = StableDiffusionInpaintPipeline __UpperCAmelCase : int = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS __UpperCAmelCase : str = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS __UpperCAmelCase : int = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess __UpperCAmelCase : Tuple = frozenset([] ) def __UpperCAmelCase ( self ): torch.manual_seed(0 ) __a = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=9 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=_a , ) __a = PNDMScheduler(skip_prk_steps=_a ) torch.manual_seed(0 ) __a = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) __a = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act='''gelu''' , projection_dim=512 , ) __a = CLIPTextModel(_a ) __a = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) __a = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def __UpperCAmelCase ( self , _a , _a=0 ): # TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched __a = floats_tensor((1, 3, 32, 32) , rng=random.Random(_a ) ).to(_a ) __a = image.cpu().permute(0 , 2 , 3 , 1 )[0] __a = Image.fromarray(np.uinta(_a ) ).convert('''RGB''' ).resize((64, 64) ) __a = Image.fromarray(np.uinta(image + 4 ) ).convert('''RGB''' ).resize((64, 64) ) if str(_a ).startswith('''mps''' ): __a = torch.manual_seed(_a ) else: __a = torch.Generator(device=_a ).manual_seed(_a ) __a = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': init_image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def __UpperCAmelCase ( self ): __a = '''cpu''' # ensure determinism for the device-dependent torch.Generator __a = self.get_dummy_components() __a = StableDiffusionInpaintPipeline(**_a ) __a = sd_pipe.to(_a ) sd_pipe.set_progress_bar_config(disable=_a ) __a = self.get_dummy_inputs(_a ) __a = sd_pipe(**_a ).images __a = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __a = np.array([0.4727, 0.5735, 0.3941, 0.5446, 0.5926, 0.4394, 0.5062, 0.4654, 0.4476] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __UpperCAmelCase ( self ): super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCAmelCase ( self ): __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) __a = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint''' '''/yellow_cat_sitting_on_a_park_bench.npy''' ) __a = '''stabilityai/stable-diffusion-2-inpainting''' __a = StableDiffusionInpaintPipeline.from_pretrained(_a , safety_checker=_a ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) pipe.enable_attention_slicing() __a = '''Face of a yellow cat, high resolution, sitting on a park bench''' __a = torch.manual_seed(0 ) __a = pipe( prompt=_a , image=_a , mask_image=_a , generator=_a , output_type='''np''' , ) __a = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 9E-3 def __UpperCAmelCase ( self ): __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) __a = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint''' '''/yellow_cat_sitting_on_a_park_bench_fp16.npy''' ) __a = '''stabilityai/stable-diffusion-2-inpainting''' __a = StableDiffusionInpaintPipeline.from_pretrained( _a , torch_dtype=torch.floataa , safety_checker=_a , ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) pipe.enable_attention_slicing() __a = '''Face of a yellow cat, high resolution, sitting on a park bench''' __a = torch.manual_seed(0 ) __a = pipe( prompt=_a , image=_a , mask_image=_a , generator=_a , output_type='''np''' , ) __a = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 5E-1 def __UpperCAmelCase ( self ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) __a = '''stabilityai/stable-diffusion-2-inpainting''' __a = PNDMScheduler.from_pretrained(_a , subfolder='''scheduler''' ) __a = StableDiffusionInpaintPipeline.from_pretrained( _a , safety_checker=_a , scheduler=_a , torch_dtype=torch.floataa , ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() __a = '''Face of a yellow cat, high resolution, sitting on a park bench''' __a = torch.manual_seed(0 ) __a = pipe( prompt=_a , image=_a , mask_image=_a , generator=_a , num_inference_steps=2 , output_type='''np''' , ) __a = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 10**9
695
1
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = StableDiffusionInpaintPipeline __UpperCAmelCase : int = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS __UpperCAmelCase : str = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS __UpperCAmelCase : int = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess __UpperCAmelCase : Tuple = frozenset([] ) def __UpperCAmelCase ( self ): torch.manual_seed(0 ) __a = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=9 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=_a , ) __a = PNDMScheduler(skip_prk_steps=_a ) torch.manual_seed(0 ) __a = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) __a = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act='''gelu''' , projection_dim=512 , ) __a = CLIPTextModel(_a ) __a = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) __a = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def __UpperCAmelCase ( self , _a , _a=0 ): # TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched __a = floats_tensor((1, 3, 32, 32) , rng=random.Random(_a ) ).to(_a ) __a = image.cpu().permute(0 , 2 , 3 , 1 )[0] __a = Image.fromarray(np.uinta(_a ) ).convert('''RGB''' ).resize((64, 64) ) __a = Image.fromarray(np.uinta(image + 4 ) ).convert('''RGB''' ).resize((64, 64) ) if str(_a ).startswith('''mps''' ): __a = torch.manual_seed(_a ) else: __a = torch.Generator(device=_a ).manual_seed(_a ) __a = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': init_image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def __UpperCAmelCase ( self ): __a = '''cpu''' # ensure determinism for the device-dependent torch.Generator __a = self.get_dummy_components() __a = StableDiffusionInpaintPipeline(**_a ) __a = sd_pipe.to(_a ) sd_pipe.set_progress_bar_config(disable=_a ) __a = self.get_dummy_inputs(_a ) __a = sd_pipe(**_a ).images __a = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __a = np.array([0.4727, 0.5735, 0.3941, 0.5446, 0.5926, 0.4394, 0.5062, 0.4654, 0.4476] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __UpperCAmelCase ( self ): super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCAmelCase ( self ): __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) __a = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint''' '''/yellow_cat_sitting_on_a_park_bench.npy''' ) __a = '''stabilityai/stable-diffusion-2-inpainting''' __a = StableDiffusionInpaintPipeline.from_pretrained(_a , safety_checker=_a ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) pipe.enable_attention_slicing() __a = '''Face of a yellow cat, high resolution, sitting on a park bench''' __a = torch.manual_seed(0 ) __a = pipe( prompt=_a , image=_a , mask_image=_a , generator=_a , output_type='''np''' , ) __a = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 9E-3 def __UpperCAmelCase ( self ): __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) __a = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint''' '''/yellow_cat_sitting_on_a_park_bench_fp16.npy''' ) __a = '''stabilityai/stable-diffusion-2-inpainting''' __a = StableDiffusionInpaintPipeline.from_pretrained( _a , torch_dtype=torch.floataa , safety_checker=_a , ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) pipe.enable_attention_slicing() __a = '''Face of a yellow cat, high resolution, sitting on a park bench''' __a = torch.manual_seed(0 ) __a = pipe( prompt=_a , image=_a , mask_image=_a , generator=_a , output_type='''np''' , ) __a = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 5E-1 def __UpperCAmelCase ( self ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) __a = '''stabilityai/stable-diffusion-2-inpainting''' __a = PNDMScheduler.from_pretrained(_a , subfolder='''scheduler''' ) __a = StableDiffusionInpaintPipeline.from_pretrained( _a , safety_checker=_a , scheduler=_a , torch_dtype=torch.floataa , ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() __a = '''Face of a yellow cat, high resolution, sitting on a park bench''' __a = torch.manual_seed(0 ) __a = pipe( prompt=_a , image=_a , mask_image=_a , generator=_a , num_inference_steps=2 , output_type='''np''' , ) __a = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 10**9
695
"""simple docstring""" import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : int = 0 __UpperCAmelCase : bool = False __UpperCAmelCase : float = 3.0 class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self ): # If no defaults are changed, `to_kwargs` returns an empty dict. self.assertDictEqual(MockClass().to_kwargs() , {} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {'''a''': 2} ) self.assertDictEqual(MockClass(a=2 , b=_a ).to_kwargs() , {'''a''': 2, '''b''': True} ) self.assertDictEqual(MockClass(a=2 , c=2.25 ).to_kwargs() , {'''a''': 2, '''c''': 2.25} ) @require_cuda def __UpperCAmelCase ( self ): # If no defaults are changed, `to_kwargs` returns an empty dict. __a = GradScalerKwargs(init_scale=1_024 , growth_factor=2 ) AcceleratorState._reset_state() __a = Accelerator(mixed_precision='''fp16''' , kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) __a = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale , 1024.0 ) self.assertEqual(scaler._growth_factor , 2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor , 0.5 ) self.assertEqual(scaler._growth_interval , 2_000 ) self.assertEqual(scaler._enabled , _a ) @require_multi_gpu def __UpperCAmelCase ( self ): __a = ['''torchrun''', f'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )] execute_subprocess_async(_a , env=os.environ.copy() ) if __name__ == "__main__": lowercase_ = DistributedDataParallelKwargs(bucket_cap_mb=1_5, find_unused_parameters=True) lowercase_ = Accelerator(kwargs_handlers=[ddp_scaler]) lowercase_ = torch.nn.Linear(1_0_0, 2_0_0) lowercase_ = accelerator.prepare(model) # Check the values changed in kwargs lowercase_ = "" lowercase_ = model.bucket_bytes_cap // (1_0_2_4 * 1_0_2_4) if observed_bucket_cap_map != 1_5: error_msg += F"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += F"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += F"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += F"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += F"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
695
1
"""simple docstring""" def lowercase ( lowerCAmelCase__ : int , lowerCAmelCase__ : bool = False ) -> bool: if n == 2: return True if not n % 2 or n < 2: return False if n > 5 and n % 10 not in (1, 3, 7, 9): # can quickly check last digit return False if n > 3317044064679887385961981 and not allow_probable: raise ValueError( '''Warning: upper bound of deterministic test is exceeded. ''' '''Pass allow_probable=True to allow probabilistic test. ''' '''A return value of True indicates a probable prime.''' ) # array bounds provided by analysis __a = [ 2047, 1373653, 25326001, 3215031751, 2152302898747, 3474749660383, 341550071728321, 1, 3825123056546413051, 1, 1, 318665857834031151167461, 3317044064679887385961981, ] __a = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41] for idx, _p in enumerate(lowerCAmelCase__ , 1 ): if n < _p: # then we have our last prime to check __a = primes[:idx] break __a , __a = n - 1, 0 # break up n -1 into a power of 2 (s) and # remaining odd component # essentially, solve for d * 2 ** s == n - 1 while d % 2 == 0: d //= 2 s += 1 for prime in plist: __a = False for r in range(lowerCAmelCase__ ): __a = pow(lowerCAmelCase__ , d * 2**r , lowerCAmelCase__ ) # see article for analysis explanation for m if (r == 0 and m == 1) or ((m + 1) % n == 0): __a = True # this loop will not determine compositeness break if pr: continue # if pr is False, then the above loop never evaluated to true, # and the n MUST be composite return False return True def lowercase ( ) -> None: assert not miller_rabin(561 ) assert miller_rabin(563 ) # 2047 assert not miller_rabin(838201 ) assert miller_rabin(838207 ) # 1_373_653 assert not miller_rabin(17316001 ) assert miller_rabin(17316017 ) # 25_326_001 assert not miller_rabin(3078386641 ) assert miller_rabin(3078386653 ) # 3_215_031_751 assert not miller_rabin(1713045574801 ) assert miller_rabin(1713045574819 ) # 2_152_302_898_747 assert not miller_rabin(2779799728307 ) assert miller_rabin(2779799728327 ) # 3_474_749_660_383 assert not miller_rabin(113850023909441 ) assert miller_rabin(113850023909527 ) # 341_550_071_728_321 assert not miller_rabin(1275041018848804351 ) assert miller_rabin(1275041018848804391 ) # 3_825_123_056_546_413_051 assert not miller_rabin(79666464458507787791867 ) assert miller_rabin(79666464458507787791951 ) # 318_665_857_834_031_151_167_461 assert not miller_rabin(552840677446647897660333 ) assert miller_rabin(552840677446647897660359 ) # 3_317_044_064_679_887_385_961_981 # upper limit for probabilistic test if __name__ == "__main__": test_miller_rabin()
695
"""simple docstring""" import inspect import os import sys import unittest import accelerate from accelerate.test_utils import execute_subprocess_async, require_tpu class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self ): __a = inspect.getfile(accelerate.test_utils ) __a = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_script.py'''] ) __a = os.path.sep.join(inspect.getfile(self.__class__ ).split(os.path.sep )[:-1] ) @require_tpu def __UpperCAmelCase ( self ): __a = f''' {self.test_dir}/xla_spawn.py --num_cores 8 {self.test_file_path} '''.split() __a = [sys.executable] + distributed_args execute_subprocess_async(_a , env=os.environ.copy() )
695
1
"""simple docstring""" from collections import namedtuple lowercase_ = namedtuple("from_to", "from_ to") lowercase_ = { "cubicmeter": from_to(1, 1), "litre": from_to(0.001, 1_0_0_0), "kilolitre": from_to(1, 1), "gallon": from_to(0.00454, 264.172), "cubicyard": from_to(0.76455, 1.30795), "cubicfoot": from_to(0.028, 35.3147), "cup": from_to(0.000236588, 4226.75), } def lowercase ( lowerCAmelCase__ : float , lowerCAmelCase__ : str , lowerCAmelCase__ : str ) -> float: if from_type not in METRIC_CONVERSION: raise ValueError( f'''Invalid \'from_type\' value: {from_type!r} Supported values are:\n''' + ''', '''.join(lowerCAmelCase__ ) ) if to_type not in METRIC_CONVERSION: raise ValueError( f'''Invalid \'to_type\' value: {to_type!r}. Supported values are:\n''' + ''', '''.join(lowerCAmelCase__ ) ) return value * METRIC_CONVERSION[from_type].from_ * METRIC_CONVERSION[to_type].to if __name__ == "__main__": import doctest doctest.testmod()
695
"""simple docstring""" import os import unittest from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, BertTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : str = BertTokenizer __UpperCAmelCase : Optional[Any] = BertTokenizerFast __UpperCAmelCase : str = True __UpperCAmelCase : Tuple = True __UpperCAmelCase : Any = filter_non_english def __UpperCAmelCase ( self ): super().setUp() __a = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] __a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def __UpperCAmelCase ( self , _a ): __a = '''UNwant\u00E9d,running''' __a = '''unwanted, running''' return input_text, output_text def __UpperCAmelCase ( self ): __a = self.tokenizer_class(self.vocab_file ) __a = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(_a , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , [9, 6, 7, 12, 10, 11] ) def __UpperCAmelCase ( self ): if not self.test_rust_tokenizer: return __a = self.get_tokenizer() __a = self.get_rust_tokenizer() __a = '''UNwant\u00E9d,running''' __a = tokenizer.tokenize(_a ) __a = rust_tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) __a = tokenizer.encode(_a , add_special_tokens=_a ) __a = rust_tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) __a = self.get_rust_tokenizer() __a = tokenizer.encode(_a ) __a = rust_tokenizer.encode(_a ) self.assertListEqual(_a , _a ) # With lower casing __a = self.get_tokenizer(do_lower_case=_a ) __a = self.get_rust_tokenizer(do_lower_case=_a ) __a = '''UNwant\u00E9d,running''' __a = tokenizer.tokenize(_a ) __a = rust_tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) __a = tokenizer.encode(_a , add_special_tokens=_a ) __a = rust_tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) __a = self.get_rust_tokenizer() __a = tokenizer.encode(_a ) __a = rust_tokenizer.encode(_a ) self.assertListEqual(_a , _a ) def __UpperCAmelCase ( self ): __a = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''' ) , ['''ah''', '''\u535A''', '''\u63A8''', '''zz'''] ) def __UpperCAmelCase ( self ): __a = BasicTokenizer(do_lower_case=_a ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def __UpperCAmelCase ( self ): __a = BasicTokenizer(do_lower_case=_a , strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''h\u00E9llo'''] ) def __UpperCAmelCase ( self ): __a = BasicTokenizer(do_lower_case=_a , strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def __UpperCAmelCase ( self ): __a = BasicTokenizer(do_lower_case=_a ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def __UpperCAmelCase ( self ): __a = BasicTokenizer(do_lower_case=_a ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def __UpperCAmelCase ( self ): __a = BasicTokenizer(do_lower_case=_a , strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def __UpperCAmelCase ( self ): __a = BasicTokenizer(do_lower_case=_a , strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def __UpperCAmelCase ( self ): __a = BasicTokenizer(do_lower_case=_a , never_split=['''[UNK]'''] ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]'''] ) def __UpperCAmelCase ( self ): __a = BasicTokenizer() __a = '''a\n\'ll !!to?\'d of, can\'t.''' __a = ['''a''', '''\'''', '''ll''', '''!''', '''!''', '''to''', '''?''', '''\'''', '''d''', '''of''', ''',''', '''can''', '''\'''', '''t''', '''.'''] self.assertListEqual(tokenizer.tokenize(_a ) , _a ) def __UpperCAmelCase ( self ): __a = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing'''] __a = {} for i, token in enumerate(_a ): __a = i __a = WordpieceTokenizer(vocab=_a , unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) , [] ) self.assertListEqual(tokenizer.tokenize('''unwanted running''' ) , ['''un''', '''##want''', '''##ed''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.tokenize('''unwantedX running''' ) , ['''[UNK]''', '''runn''', '''##ing'''] ) def __UpperCAmelCase ( self ): self.assertTrue(_is_whitespace(''' ''' ) ) self.assertTrue(_is_whitespace('''\t''' ) ) self.assertTrue(_is_whitespace('''\r''' ) ) self.assertTrue(_is_whitespace('''\n''' ) ) self.assertTrue(_is_whitespace('''\u00A0''' ) ) self.assertFalse(_is_whitespace('''A''' ) ) self.assertFalse(_is_whitespace('''-''' ) ) def __UpperCAmelCase ( self ): self.assertTrue(_is_control('''\u0005''' ) ) self.assertFalse(_is_control('''A''' ) ) self.assertFalse(_is_control(''' ''' ) ) self.assertFalse(_is_control('''\t''' ) ) self.assertFalse(_is_control('''\r''' ) ) def __UpperCAmelCase ( self ): self.assertTrue(_is_punctuation('''-''' ) ) self.assertTrue(_is_punctuation('''$''' ) ) self.assertTrue(_is_punctuation('''`''' ) ) self.assertTrue(_is_punctuation('''.''' ) ) self.assertFalse(_is_punctuation('''A''' ) ) self.assertFalse(_is_punctuation(''' ''' ) ) def __UpperCAmelCase ( self ): __a = self.get_tokenizer() __a = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(_a ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) self.assertListEqual( [rust_tokenizer.tokenize(_a ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) @slow def __UpperCAmelCase ( self ): __a = self.tokenizer_class.from_pretrained('''bert-base-uncased''' ) __a = tokenizer.encode('''sequence builders''' , add_special_tokens=_a ) __a = tokenizer.encode('''multi-sequence build''' , add_special_tokens=_a ) __a = tokenizer.build_inputs_with_special_tokens(_a ) __a = tokenizer.build_inputs_with_special_tokens(_a , _a ) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_a + [102] def __UpperCAmelCase ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __a = self.rust_tokenizer_class.from_pretrained(_a , **_a ) __a = f'''A, naïve {tokenizer_r.mask_token} AllenNLP sentence.''' __a = tokenizer_r.encode_plus( _a , return_attention_mask=_a , return_token_type_ids=_a , return_offsets_mapping=_a , add_special_tokens=_a , ) __a = tokenizer_r.do_lower_case if hasattr(_a , '''do_lower_case''' ) else False __a = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''A'''), ((1, 2), ''','''), ((3, 5), '''na'''), ((5, 6), '''##ï'''), ((6, 8), '''##ve'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''Allen'''), ((21, 23), '''##NL'''), ((23, 24), '''##P'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''a'''), ((1, 2), ''','''), ((3, 8), '''naive'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''allen'''), ((21, 23), '''##nl'''), ((23, 24), '''##p'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['''input_ids'''] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['''offset_mapping'''] ) def __UpperCAmelCase ( self ): __a = ['''的''', '''人''', '''有'''] __a = ''''''.join(_a ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __a = True __a = self.tokenizer_class.from_pretrained(_a , **_a ) __a = self.rust_tokenizer_class.from_pretrained(_a , **_a ) __a = tokenizer_p.encode(_a , add_special_tokens=_a ) __a = tokenizer_r.encode(_a , add_special_tokens=_a ) __a = tokenizer_r.convert_ids_to_tokens(_a ) __a = tokenizer_p.convert_ids_to_tokens(_a ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(_a , _a ) self.assertListEqual(_a , _a ) __a = False __a = self.rust_tokenizer_class.from_pretrained(_a , **_a ) __a = self.tokenizer_class.from_pretrained(_a , **_a ) __a = tokenizer_r.encode(_a , add_special_tokens=_a ) __a = tokenizer_p.encode(_a , add_special_tokens=_a ) __a = tokenizer_r.convert_ids_to_tokens(_a ) __a = tokenizer_p.convert_ids_to_tokens(_a ) # it is expected that only the first Chinese character is not preceded by "##". __a = [ f'''##{token}''' if idx != 0 else token for idx, token in enumerate(_a ) ] self.assertListEqual(_a , _a ) self.assertListEqual(_a , _a )
695
1
"""simple docstring""" from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = ( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) __UpperCAmelCase : Optional[Any] = ( { 'feature-extraction': TFMobileBertModel, 'fill-mask': TFMobileBertForMaskedLM, 'question-answering': TFMobileBertForQuestionAnswering, 'text-classification': TFMobileBertForSequenceClassification, 'token-classification': TFMobileBertForTokenClassification, 'zero-shot': TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) __UpperCAmelCase : Any = False __UpperCAmelCase : str = False def __UpperCAmelCase ( self , _a , _a , _a=False ): __a = super()._prepare_for_class(_a , _a , return_labels=_a ) if return_labels: if model_class in get_values(_a ): __a = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) return inputs_dict class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , _a , _a=13 , _a=7 , _a=True , _a=True , _a=True , _a=True , _a=99 , _a=32 , _a=32 , _a=2 , _a=4 , _a=37 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=16 , _a=2 , _a=0.02 , _a=3 , _a=4 , _a=None , ): __a = parent __a = batch_size __a = seq_length __a = is_training __a = use_input_mask __a = use_token_type_ids __a = use_labels __a = vocab_size __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = intermediate_size __a = hidden_act __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = type_vocab_size __a = type_sequence_label_size __a = initializer_range __a = num_labels __a = num_choices __a = scope __a = embedding_size def __UpperCAmelCase ( self ): __a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __a = None if self.use_input_mask: __a = random_attention_mask([self.batch_size, self.seq_length] ) __a = None if self.use_token_type_ids: __a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __a = None __a = None __a = None if self.use_labels: __a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __a = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __a = ids_tensor([self.batch_size] , self.num_choices ) __a = MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , embedding_size=self.embedding_size , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __UpperCAmelCase ( self , _a , _a , _a , _a , _a , _a , _a ): __a = TFMobileBertModel(config=_a ) __a = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} __a = model(_a ) __a = [input_ids, input_mask] __a = model(_a ) __a = model(_a ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __UpperCAmelCase ( self , _a , _a , _a , _a , _a , _a , _a ): __a = TFMobileBertForMaskedLM(config=_a ) __a = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} __a = model(_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCAmelCase ( self , _a , _a , _a , _a , _a , _a , _a ): __a = TFMobileBertForNextSentencePrediction(config=_a ) __a = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} __a = model(_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def __UpperCAmelCase ( self , _a , _a , _a , _a , _a , _a , _a ): __a = TFMobileBertForPreTraining(config=_a ) __a = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} __a = model(_a ) self.parent.assertEqual( result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def __UpperCAmelCase ( self , _a , _a , _a , _a , _a , _a , _a ): __a = self.num_labels __a = TFMobileBertForSequenceClassification(config=_a ) __a = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} __a = model(_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCAmelCase ( self , _a , _a , _a , _a , _a , _a , _a ): __a = self.num_choices __a = TFMobileBertForMultipleChoice(config=_a ) __a = tf.tile(tf.expand_dims(_a , 1 ) , (1, self.num_choices, 1) ) __a = tf.tile(tf.expand_dims(_a , 1 ) , (1, self.num_choices, 1) ) __a = tf.tile(tf.expand_dims(_a , 1 ) , (1, self.num_choices, 1) ) __a = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } __a = model(_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __UpperCAmelCase ( self , _a , _a , _a , _a , _a , _a , _a ): __a = self.num_labels __a = TFMobileBertForTokenClassification(config=_a ) __a = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} __a = model(_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __UpperCAmelCase ( self , _a , _a , _a , _a , _a , _a , _a ): __a = TFMobileBertForQuestionAnswering(config=_a ) __a = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} __a = model(_a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __UpperCAmelCase ( self ): __a = self.prepare_config_and_inputs() ( ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ) = config_and_inputs __a = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict def __UpperCAmelCase ( self ): __a = TFMobileBertModelTest.TFMobileBertModelTester(self ) __a = ConfigTester(self , config_class=_a , hidden_size=37 ) def __UpperCAmelCase ( self ): self.config_tester.run_common_tests() def __UpperCAmelCase ( self ): __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*_a ) def __UpperCAmelCase ( self ): __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*_a ) def __UpperCAmelCase ( self ): __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*_a ) def __UpperCAmelCase ( self ): __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*_a ) def __UpperCAmelCase ( self ): __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*_a ) def __UpperCAmelCase ( self ): __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*_a ) def __UpperCAmelCase ( self ): __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*_a ) def __UpperCAmelCase ( self ): __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*_a ) @slow def __UpperCAmelCase ( self ): # for model_name in TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["google/mobilebert-uncased"]: __a = TFMobileBertModel.from_pretrained(_a ) self.assertIsNotNone(_a ) @require_tf class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def __UpperCAmelCase ( self ): __a = TFMobileBertForPreTraining.from_pretrained('''google/mobilebert-uncased''' ) __a = tf.constant([[0, 1, 2, 3, 4, 5]] ) __a = model(_a )[0] __a = [1, 6, 30_522] self.assertEqual(output.shape , _a ) __a = tf.constant( [ [ [-4.591_9547, -9.24_8295, -9.64_5256], [-6.730_6175, -6.44_0284, -6.605_2837], [-7.274_3506, -6.784_7915, -6.02_4673], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , _a , atol=1E-4 )
695
"""simple docstring""" from __future__ import annotations def lowercase ( lowerCAmelCase__ : float , lowerCAmelCase__ : float , lowerCAmelCase__ : float ) -> float: if days_between_payments <= 0: raise ValueError('''days_between_payments must be > 0''' ) if daily_interest_rate < 0: raise ValueError('''daily_interest_rate must be >= 0''' ) if principal <= 0: raise ValueError('''principal must be > 0''' ) return principal * daily_interest_rate * days_between_payments def lowercase ( lowerCAmelCase__ : float , lowerCAmelCase__ : float , lowerCAmelCase__ : float , ) -> float: if number_of_compounding_periods <= 0: raise ValueError('''number_of_compounding_periods must be > 0''' ) if nominal_annual_interest_rate_percentage < 0: raise ValueError('''nominal_annual_interest_rate_percentage must be >= 0''' ) if principal <= 0: raise ValueError('''principal must be > 0''' ) return principal * ( (1 + nominal_annual_interest_rate_percentage) ** number_of_compounding_periods - 1 ) def lowercase ( lowerCAmelCase__ : float , lowerCAmelCase__ : float , lowerCAmelCase__ : float , ) -> float: if number_of_years <= 0: raise ValueError('''number_of_years must be > 0''' ) if nominal_annual_percentage_rate < 0: raise ValueError('''nominal_annual_percentage_rate must be >= 0''' ) if principal <= 0: raise ValueError('''principal must be > 0''' ) return compound_interest( lowerCAmelCase__ , nominal_annual_percentage_rate / 365 , number_of_years * 365 ) if __name__ == "__main__": import doctest doctest.testmod()
695
1
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self , _a , _a=13 , _a=3 , _a=224 , _a=30 , _a=400 , _a=True , _a=None , _a=True , _a=[0.5, 0.5, 0.5] , _a=[0.5, 0.5, 0.5] , ): __a = size if size is not None else {'''height''': 18, '''width''': 18} __a = parent __a = batch_size __a = num_channels __a = image_size __a = min_resolution __a = max_resolution __a = do_resize __a = size __a = do_normalize __a = image_mean __a = image_std def __UpperCAmelCase ( self ): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : List[str] = ViTImageProcessor if is_vision_available() else None def __UpperCAmelCase ( self ): __a = EfficientFormerImageProcessorTester(self ) @property def __UpperCAmelCase ( self ): return self.image_proc_tester.prepare_image_processor_dict() def __UpperCAmelCase ( self ): __a = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_a , '''image_mean''' ) ) self.assertTrue(hasattr(_a , '''image_std''' ) ) self.assertTrue(hasattr(_a , '''do_normalize''' ) ) self.assertTrue(hasattr(_a , '''do_resize''' ) ) self.assertTrue(hasattr(_a , '''size''' ) ) def __UpperCAmelCase ( self ): pass def __UpperCAmelCase ( self ): # Initialize image_processor __a = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __a = prepare_image_inputs(self.image_proc_tester , equal_resolution=_a ) for image in image_inputs: self.assertIsInstance(_a , Image.Image ) # Test not batched input __a = image_processor(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , ) # Test batched __a = image_processor(_a , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , ) def __UpperCAmelCase ( self ): # Initialize image_processor __a = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __a = prepare_image_inputs(self.image_proc_tester , equal_resolution=_a , numpify=_a ) for image in image_inputs: self.assertIsInstance(_a , np.ndarray ) # Test not batched input __a = image_processor(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , ) # Test batched __a = image_processor(_a , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , ) def __UpperCAmelCase ( self ): # Initialize image_processor __a = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __a = prepare_image_inputs(self.image_proc_tester , equal_resolution=_a , torchify=_a ) for image in image_inputs: self.assertIsInstance(_a , torch.Tensor ) # Test not batched input __a = image_processor(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , ) # Test batched __a = image_processor(_a , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , )
695
"""simple docstring""" def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Any=False ) -> Any: if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): __a = len(set_a.intersection(lowerCAmelCase__ ) ) if alternative_union: __a = len(lowerCAmelCase__ ) + len(lowerCAmelCase__ ) else: __a = len(set_a.union(lowerCAmelCase__ ) ) return intersection / union if isinstance(lowerCAmelCase__ , (list, tuple) ) and isinstance(lowerCAmelCase__ , (list, tuple) ): __a = [element for element in set_a if element in set_b] if alternative_union: __a = len(lowerCAmelCase__ ) + len(lowerCAmelCase__ ) return len(lowerCAmelCase__ ) / union else: __a = set_a + [element for element in set_b if element not in set_a] return len(lowerCAmelCase__ ) / len(lowerCAmelCase__ ) return len(lowerCAmelCase__ ) / len(lowerCAmelCase__ ) return None if __name__ == "__main__": lowercase_ = {"a", "b", "c", "d", "e"} lowercase_ = {"c", "d", "e", "f", "h", "i"} print(jaccard_similarity(set_a, set_b))
695
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowercase_ = { "configuration_roberta_prelayernorm": [ "ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP", "RobertaPreLayerNormConfig", "RobertaPreLayerNormOnnxConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST", "RobertaPreLayerNormForCausalLM", "RobertaPreLayerNormForMaskedLM", "RobertaPreLayerNormForMultipleChoice", "RobertaPreLayerNormForQuestionAnswering", "RobertaPreLayerNormForSequenceClassification", "RobertaPreLayerNormForTokenClassification", "RobertaPreLayerNormModel", "RobertaPreLayerNormPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST", "TFRobertaPreLayerNormForCausalLM", "TFRobertaPreLayerNormForMaskedLM", "TFRobertaPreLayerNormForMultipleChoice", "TFRobertaPreLayerNormForQuestionAnswering", "TFRobertaPreLayerNormForSequenceClassification", "TFRobertaPreLayerNormForTokenClassification", "TFRobertaPreLayerNormMainLayer", "TFRobertaPreLayerNormModel", "TFRobertaPreLayerNormPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "FlaxRobertaPreLayerNormForCausalLM", "FlaxRobertaPreLayerNormForMaskedLM", "FlaxRobertaPreLayerNormForMultipleChoice", "FlaxRobertaPreLayerNormForQuestionAnswering", "FlaxRobertaPreLayerNormForSequenceClassification", "FlaxRobertaPreLayerNormForTokenClassification", "FlaxRobertaPreLayerNormModel", "FlaxRobertaPreLayerNormPreTrainedModel", ] if TYPE_CHECKING: from .configuration_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaPreLayerNormConfig, RobertaPreLayerNormOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaPreLayerNormForCausalLM, RobertaPreLayerNormForMaskedLM, RobertaPreLayerNormForMultipleChoice, RobertaPreLayerNormForQuestionAnswering, RobertaPreLayerNormForSequenceClassification, RobertaPreLayerNormForTokenClassification, RobertaPreLayerNormModel, RobertaPreLayerNormPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta_prelayernorm import ( TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaPreLayerNormForCausalLM, TFRobertaPreLayerNormForMaskedLM, TFRobertaPreLayerNormForMultipleChoice, TFRobertaPreLayerNormForQuestionAnswering, TFRobertaPreLayerNormForSequenceClassification, TFRobertaPreLayerNormForTokenClassification, TFRobertaPreLayerNormMainLayer, TFRobertaPreLayerNormModel, TFRobertaPreLayerNormPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
695
"""simple docstring""" from __future__ import annotations import requests def lowercase ( lowerCAmelCase__ : str ) -> dict: __a = f'''https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty''' return requests.get(lowerCAmelCase__ ).json() def lowercase ( lowerCAmelCase__ : int = 10 ) -> list[dict]: __a = '''https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty''' __a = requests.get(lowerCAmelCase__ ).json()[:max_stories] return [get_hackernews_story(lowerCAmelCase__ ) for story_id in story_ids] def lowercase ( lowerCAmelCase__ : int = 10 ) -> str: __a = hackernews_top_stories(lowerCAmelCase__ ) return "\n".join('''* [{title}]({url})'''.format(**lowerCAmelCase__ ) for story in stories ) if __name__ == "__main__": print(hackernews_top_stories_as_markdown())
695
1
"""simple docstring""" from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def lowercase ( ) -> Union[str, Any]: __a = HfArgumentParser(lowerCAmelCase__ ) __a = parser.parse_args_into_dataclasses()[0] __a = TensorFlowBenchmark(args=lowerCAmelCase__ ) try: __a = parser.parse_args_into_dataclasses()[0] except ValueError as e: __a = '''Arg --no_{0} is no longer used, please use --no-{0} instead.''' __a = ''' '''.join(str(lowerCAmelCase__ ).split(''' ''' )[:-1] ) __a = '''''' __a = eval(str(lowerCAmelCase__ ).split(''' ''' )[-1] ) __a = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(lowerCAmelCase__ ) if len(lowerCAmelCase__ ) > 0: __a = full_error_msg + begin_error_msg + str(lowerCAmelCase__ ) raise ValueError(lowerCAmelCase__ ) benchmark.run() if __name__ == "__main__": main()
695
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING lowercase_ = logging.get_logger(__name__) lowercase_ = { "salesforce/blip2-opt-2.7b": "https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json", } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = 'blip_2_vision_model' def __init__( self , _a=1_408 , _a=6_144 , _a=39 , _a=16 , _a=224 , _a=14 , _a="gelu" , _a=0.0_0001 , _a=0.0 , _a=1E-10 , _a=True , **_a , ): super().__init__(**_a ) __a = hidden_size __a = intermediate_size __a = num_hidden_layers __a = num_attention_heads __a = patch_size __a = image_size __a = initializer_range __a = attention_dropout __a = layer_norm_eps __a = hidden_act __a = qkv_bias @classmethod def __UpperCAmelCase ( cls , _a , **_a ): cls._set_token_in_kwargs(_a ) __a , __a = cls.get_config_dict(_a , **_a ) # get the vision config dict if we are loading from Blip2Config if config_dict.get('''model_type''' ) == "blip-2": __a = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_a , **_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : str = 'blip_2_qformer' def __init__( self , _a=30_522 , _a=768 , _a=12 , _a=12 , _a=3_072 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=0.02 , _a=1E-12 , _a=0 , _a="absolute" , _a=2 , _a=1_408 , **_a , ): super().__init__(pad_token_id=_a , **_a ) __a = vocab_size __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = hidden_act __a = intermediate_size __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = initializer_range __a = layer_norm_eps __a = position_embedding_type __a = cross_attention_frequency __a = encoder_hidden_size @classmethod def __UpperCAmelCase ( cls , _a , **_a ): cls._set_token_in_kwargs(_a ) __a , __a = cls.get_config_dict(_a , **_a ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get('''model_type''' ) == "blip-2": __a = config_dict['''qformer_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_a , **_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Any = 'blip-2' __UpperCAmelCase : List[str] = True def __init__( self , _a=None , _a=None , _a=None , _a=32 , **_a ): super().__init__(**_a ) if vision_config is None: __a = {} logger.info('''vision_config is None. initializing the Blip2VisionConfig with default values.''' ) if qformer_config is None: __a = {} logger.info('''qformer_config is None. Initializing the Blip2QFormerConfig with default values.''' ) if text_config is None: __a = {} logger.info('''text_config is None. Initializing the text config with default values (`OPTConfig`).''' ) __a = BlipaVisionConfig(**_a ) __a = BlipaQFormerConfig(**_a ) __a = text_config['''model_type'''] if '''model_type''' in text_config else '''opt''' __a = CONFIG_MAPPING[text_model_type](**_a ) __a = self.text_config.tie_word_embeddings __a = self.text_config.is_encoder_decoder __a = num_query_tokens __a = self.vision_config.hidden_size __a = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES __a = 1.0 __a = 0.02 @classmethod def __UpperCAmelCase ( cls , _a , _a , _a , **_a , ): return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **_a , ) def __UpperCAmelCase ( self ): __a = copy.deepcopy(self.__dict__ ) __a = self.vision_config.to_dict() __a = self.qformer_config.to_dict() __a = self.text_config.to_dict() __a = self.__class__.model_type return output
695
1
"""simple docstring""" from __future__ import annotations def lowercase ( lowerCAmelCase__ : list[int] ) -> int: if not nums: return 0 __a = nums[0] __a = 0 for num in nums[1:]: __a , __a = ( max_excluding + num, max(lowerCAmelCase__ , lowerCAmelCase__ ), ) return max(lowerCAmelCase__ , lowerCAmelCase__ ) if __name__ == "__main__": import doctest doctest.testmod()
695
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType lowercase_ = logging.get_logger(__name__) lowercase_ = { "microsoft/deberta-v2-xlarge": "https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json", "microsoft/deberta-v2-xxlarge": "https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json", "microsoft/deberta-v2-xlarge-mnli": ( "https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json" ), "microsoft/deberta-v2-xxlarge-mnli": ( "https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json" ), } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Dict = 'deberta-v2' def __init__( self , _a=128_100 , _a=1_536 , _a=24 , _a=24 , _a=6_144 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=0 , _a=0.02 , _a=1E-7 , _a=False , _a=-1 , _a=0 , _a=True , _a=None , _a=0 , _a="gelu" , **_a , ): super().__init__(**_a ) __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = intermediate_size __a = hidden_act __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = type_vocab_size __a = initializer_range __a = relative_attention __a = max_relative_positions __a = pad_token_id __a = position_biased_input # Backwards compatibility if type(_a ) == str: __a = [x.strip() for x in pos_att_type.lower().split('''|''' )] __a = pos_att_type __a = vocab_size __a = layer_norm_eps __a = kwargs.get('''pooler_hidden_size''' , _a ) __a = pooler_dropout __a = pooler_hidden_act class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def __UpperCAmelCase ( self ): if self.task == "multiple-choice": __a = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __a = {0: '''batch''', 1: '''sequence'''} if self._config.type_vocab_size > 0: return OrderedDict( [('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis)] ) else: return OrderedDict([('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis)] ) @property def __UpperCAmelCase ( self ): return 12 def __UpperCAmelCase ( self , _a , _a = -1 , _a = -1 , _a = -1 , _a = False , _a = None , _a = 3 , _a = 40 , _a = 40 , _a = None , ): __a = super().generate_dummy_inputs(preprocessor=_a , framework=_a ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
695
1
"""simple docstring""" lowercase_ = {str(digit): digit**5 for digit in range(1_0)} def lowercase ( lowerCAmelCase__ : int ) -> int: return sum(DIGITS_FIFTH_POWER[digit] for digit in str(lowerCAmelCase__ ) ) def lowercase ( ) -> int: return sum( number for number in range(1000 , 1000000 ) if number == digits_fifth_powers_sum(lowerCAmelCase__ ) ) if __name__ == "__main__": print(solution())
695
"""simple docstring""" import importlib.metadata import operator import re import sys from typing import Optional from packaging import version lowercase_ = { "<": operator.lt, "<=": operator.le, "==": operator.eq, "!=": operator.ne, ">=": operator.ge, ">": operator.gt, } def lowercase ( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : int , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[Any] ) -> Dict: if got_ver is None or want_ver is None: raise ValueError( f'''Unable to compare versions for {requirement}: need={want_ver} found={got_ver}. This is unusual. Consider''' f''' reinstalling {pkg}.''' ) if not ops[op](version.parse(lowerCAmelCase__ ) , version.parse(lowerCAmelCase__ ) ): raise ImportError( f'''{requirement} is required for a normal functioning of this module, but found {pkg}=={got_ver}.{hint}''' ) def lowercase ( lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None ) -> None: __a = f'''\n{hint}''' if hint is not None else '''''' # non-versioned check if re.match(r'''^[\w_\-\d]+$''' , lowerCAmelCase__ ): __a , __a , __a = requirement, None, None else: __a = re.findall(r'''^([^!=<>\s]+)([\s!=<>]{1,2}.+)''' , lowerCAmelCase__ ) if not match: raise ValueError( '''requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23, but''' f''' got {requirement}''' ) __a , __a = match[0] __a = want_full.split(''',''' ) # there could be multiple requirements __a = {} for w in want_range: __a = re.findall(r'''^([\s!=<>]{1,2})(.+)''' , lowerCAmelCase__ ) if not match: raise ValueError( '''requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23,''' f''' but got {requirement}''' ) __a , __a = match[0] __a = want_ver if op not in ops: raise ValueError(f'''{requirement}: need one of {list(ops.keys() )}, but got {op}''' ) # special case if pkg == "python": __a = '''.'''.join([str(lowerCAmelCase__ ) for x in sys.version_info[:3]] ) for op, want_ver in wanted.items(): _compare_versions(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) return # check if any version is installed try: __a = importlib.metadata.version(lowerCAmelCase__ ) except importlib.metadata.PackageNotFoundError: raise importlib.metadata.PackageNotFoundError( f'''The \'{requirement}\' distribution was not found and is required by this application. {hint}''' ) # check that the right version is installed if version number or a range was provided if want_ver is not None: for op, want_ver in wanted.items(): _compare_versions(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ : Tuple ) -> Optional[Any]: __a = '''Try: pip install transformers -U or pip install -e \'.[dev]\' if you\'re working with git main''' return require_version(lowerCAmelCase__ , lowerCAmelCase__ )
695
1
"""simple docstring""" from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging lowercase_ = logging.get_logger(__name__) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = ['pixel_values'] def __init__( self , _a = True , _a = 32 , _a=PILImageResampling.BILINEAR , _a = True , **_a , ): __a = do_resize __a = do_rescale __a = size_divisor __a = resample super().__init__(**_a ) def __UpperCAmelCase ( self , _a , _a , _a , _a = None , **_a ): __a , __a = get_image_size(_a ) # Rounds the height and width down to the closest multiple of size_divisor __a = height // size_divisor * size_divisor __a = width // size_divisor * size_divisor __a = resize(_a , (new_h, new_w) , resample=_a , data_format=_a , **_a ) return image def __UpperCAmelCase ( self , _a , _a , _a = None , **_a ): return rescale(image=_a , scale=_a , data_format=_a , **_a ) def __UpperCAmelCase ( self , _a , _a = None , _a = None , _a=None , _a = None , _a = None , _a = ChannelDimension.FIRST , **_a , ): __a = do_resize if do_resize is not None else self.do_resize __a = do_rescale if do_rescale is not None else self.do_rescale __a = size_divisor if size_divisor is not None else self.size_divisor __a = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError('''size_divisor is required for resizing''' ) __a = make_list_of_images(_a ) if not valid_images(_a ): raise ValueError('''Invalid image(s)''' ) # All transformations expect numpy arrays. __a = [to_numpy_array(_a ) for img in images] if do_resize: __a = [self.resize(_a , size_divisor=_a , resample=_a ) for image in images] if do_rescale: __a = [self.rescale(_a , scale=1 / 255 ) for image in images] __a = [to_channel_dimension_format(_a , _a ) for image in images] __a = {'''pixel_values''': images} return BatchFeature(data=_a , tensor_type=_a )
695
"""simple docstring""" from __future__ import annotations lowercase_ = list[tuple[int, int]] lowercase_ = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] lowercase_ = ([-1, 0], [0, -1], [1, 0], [0, 1]) # up, left, down, right class __lowerCAmelCase : '''simple docstring''' def __init__( self , _a , _a , _a , _a , _a , _a , ): __a = pos_x __a = pos_y __a = (pos_y, pos_x) __a = goal_x __a = goal_y __a = g_cost __a = parent __a = self.calculate_heuristic() def __UpperCAmelCase ( self ): __a = abs(self.pos_x - self.goal_x ) __a = abs(self.pos_y - self.goal_y ) return dx + dy def __lt__( self , _a ): return self.f_cost < other.f_cost class __lowerCAmelCase : '''simple docstring''' def __init__( self , _a , _a ): __a = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , _a ) __a = Node(goal[1] , goal[0] , goal[1] , goal[0] , 99_999 , _a ) __a = [self.start] __a = [] __a = False def __UpperCAmelCase ( self ): while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() __a = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: __a = True return self.retrace_path(_a ) self.closed_nodes.append(_a ) __a = self.get_successors(_a ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(_a ) else: # retrieve the best current path __a = self.open_nodes.pop(self.open_nodes.index(_a ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(_a ) else: self.open_nodes.append(_a ) if not self.reached: return [self.start.pos] return None def __UpperCAmelCase ( self , _a ): __a = [] for action in delta: __a = parent.pos_x + action[1] __a = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(_a ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( _a , _a , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , _a , ) ) return successors def __UpperCAmelCase ( self , _a ): __a = node __a = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) __a = current_node.parent path.reverse() return path if __name__ == "__main__": lowercase_ = (0, 0) lowercase_ = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) print("------") lowercase_ = GreedyBestFirst(init, goal) lowercase_ = greedy_bf.search() if path: for pos_x, pos_y in path: lowercase_ = 2 for elem in grid: print(elem)
695
1
"""simple docstring""" from __future__ import annotations class __lowerCAmelCase : '''simple docstring''' def __init__( self , _a ): __a = data __a = None __a = None def lowercase ( lowerCAmelCase__ : Node | None ) -> None: # In Order traversal of the tree if tree: display(tree.left ) print(tree.data ) display(tree.right ) def lowercase ( lowerCAmelCase__ : Node | None ) -> int: return 1 + max(depth_of_tree(tree.left ) , depth_of_tree(tree.right ) ) if tree else 0 def lowercase ( lowerCAmelCase__ : Node ) -> bool: if not tree: return True if tree.left and tree.right: return is_full_binary_tree(tree.left ) and is_full_binary_tree(tree.right ) else: return not tree.left and not tree.right def lowercase ( ) -> None: # Main function for testing. __a = Node(1 ) __a = Node(2 ) __a = Node(3 ) __a = Node(4 ) __a = Node(5 ) __a = Node(6 ) __a = Node(7 ) __a = Node(8 ) __a = Node(9 ) print(is_full_binary_tree(lowerCAmelCase__ ) ) print(depth_of_tree(lowerCAmelCase__ ) ) print('''Tree is: ''' ) display(lowerCAmelCase__ ) if __name__ == "__main__": main()
695
"""simple docstring""" import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : str ) -> List[Any]: # Initialise PyTorch model __a = RemBertConfig.from_json_file(lowerCAmelCase__ ) print('''Building PyTorch model from configuration: {}'''.format(str(lowerCAmelCase__ ) ) ) __a = RemBertModel(lowerCAmelCase__ ) # Load weights from tf checkpoint load_tf_weights_in_rembert(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Save pytorch-model print('''Save PyTorch model to {}'''.format(lowerCAmelCase__ ) ) torch.save(model.state_dict() , lowerCAmelCase__ ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--rembert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained RemBERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) lowercase_ = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
695
1
"""simple docstring""" from jiwer import compute_measures import datasets lowercase_ = "\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n" lowercase_ = "\\nWord error rate (WER) is a common metric of the performance of an automatic speech recognition system.\n\nThe general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort.\n\nThis problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate.\n\nWord error rate can then be computed as:\n\nWER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct words,\nN is the number of words in the reference (N=S+D+C).\n\nThis value indicates the average number of errors per reference word. The lower the value, the better the\nperformance of the ASR system with a WER of 0 being a perfect score.\n" lowercase_ = "\nCompute WER score of transcribed segments against references.\n\nArgs:\n references: List of references for each speech input.\n predictions: List of transcriptions to score.\n concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively.\n\nReturns:\n (float): the word error rate\n\nExamples:\n\n >>> predictions = [\"this is the prediction\", \"there is an other sample\"]\n >>> references = [\"this is the reference\", \"there is another one\"]\n >>> wer = datasets.load_metric(\"wer\")\n >>> wer_score = wer.compute(predictions=predictions, references=references)\n >>> print(wer_score)\n 0.5\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCAmelCase ( datasets.Metric ): '''simple docstring''' def __UpperCAmelCase ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/jitsi/jiwer/'''] , reference_urls=[ '''https://en.wikipedia.org/wiki/Word_error_rate''', ] , ) def __UpperCAmelCase ( self , _a=None , _a=None , _a=False ): if concatenate_texts: return compute_measures(_a , _a )["wer"] else: __a = 0 __a = 0 for prediction, reference in zip(_a , _a ): __a = compute_measures(_a , _a ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
695
"""simple docstring""" import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel lowercase_ = "0.12" # assumed parallelism: 8 @require_flax @is_staging_test class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @classmethod def __UpperCAmelCase ( cls ): __a = TOKEN HfFolder.save_token(_a ) @classmethod def __UpperCAmelCase ( cls ): try: delete_repo(token=cls._token , repo_id='''test-model-flax''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-model-flax-org''' ) except HTTPError: pass def __UpperCAmelCase ( self ): __a = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) __a = FlaxBertModel(_a ) model.push_to_hub('''test-model-flax''' , use_auth_token=self._token ) __a = FlaxBertModel.from_pretrained(f'''{USER}/test-model-flax''' ) __a = flatten_dict(unfreeze(model.params ) ) __a = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): __a = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_a , 1E-3 , msg=f'''{key} not identical''' ) # Reset repo delete_repo(token=self._token , repo_id='''test-model-flax''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(_a , repo_id='''test-model-flax''' , push_to_hub=_a , use_auth_token=self._token ) __a = FlaxBertModel.from_pretrained(f'''{USER}/test-model-flax''' ) __a = flatten_dict(unfreeze(model.params ) ) __a = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): __a = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_a , 1E-3 , msg=f'''{key} not identical''' ) def __UpperCAmelCase ( self ): __a = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) __a = FlaxBertModel(_a ) model.push_to_hub('''valid_org/test-model-flax-org''' , use_auth_token=self._token ) __a = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) __a = flatten_dict(unfreeze(model.params ) ) __a = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): __a = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_a , 1E-3 , msg=f'''{key} not identical''' ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-model-flax-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( _a , repo_id='''valid_org/test-model-flax-org''' , push_to_hub=_a , use_auth_token=self._token ) __a = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) __a = flatten_dict(unfreeze(model.params ) ) __a = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): __a = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_a , 1E-3 , msg=f'''{key} not identical''' ) def lowercase ( lowerCAmelCase__ : str , lowerCAmelCase__ : Dict ) -> Optional[int]: __a = True __a = flatten_dict(modela.params ) __a = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1e-4: __a = False return models_are_equal @require_flax class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self ): __a = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) __a = FlaxBertModel(_a ) __a = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(_a , _a ) ) with self.assertRaises(_a ): __a = FlaxBertModel.from_pretrained(_a ) __a = FlaxBertModel.from_pretrained(_a , subfolder=_a ) self.assertTrue(check_models_equal(_a , _a ) ) def __UpperCAmelCase ( self ): __a = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) __a = FlaxBertModel(_a ) __a = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(_a , _a ) , max_shard_size='''10KB''' ) with self.assertRaises(_a ): __a = FlaxBertModel.from_pretrained(_a ) __a = FlaxBertModel.from_pretrained(_a , subfolder=_a ) self.assertTrue(check_models_equal(_a , _a ) ) def __UpperCAmelCase ( self ): __a = '''bert''' __a = '''hf-internal-testing/tiny-random-bert-subfolder''' with self.assertRaises(_a ): __a = FlaxBertModel.from_pretrained(_a ) __a = FlaxBertModel.from_pretrained(_a , subfolder=_a ) self.assertIsNotNone(_a ) def __UpperCAmelCase ( self ): __a = '''bert''' __a = '''hf-internal-testing/tiny-random-bert-sharded-subfolder''' with self.assertRaises(_a ): __a = FlaxBertModel.from_pretrained(_a ) __a = FlaxBertModel.from_pretrained(_a , subfolder=_a ) self.assertIsNotNone(_a )
695
1
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowercase_ = "▁" lowercase_ = {"vocab_file": "spiece.model"} lowercase_ = { "vocab_file": {"google/pegasus-xsum": "https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model"} } lowercase_ = { "google/pegasus-xsum": 5_1_2, } lowercase_ = logging.get_logger(__name__) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : List[str] = VOCAB_FILES_NAMES __UpperCAmelCase : Optional[Any] = VOCAB_FILES_NAMES __UpperCAmelCase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase : int = ['input_ids', 'attention_mask'] def __init__( self , _a , _a="<pad>" , _a="</s>" , _a="<unk>" , _a="<mask_2>" , _a="<mask_1>" , _a=None , _a=103 , _a = None , **_a , ): __a = offset if additional_special_tokens is not None: if not isinstance(_a , _a ): raise TypeError( f'''additional_special_tokens should be of type {type(_a )}, but is''' f''' {type(_a )}''' ) __a = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f'''<unk_{i}>''' for i in range(len(_a ) , self.offset - 1 ) ] if len(set(_a ) ) != len(_a ): raise ValueError( '''Please make sure that the provided additional_special_tokens do not contain an incorrectly''' f''' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.''' ) __a = additional_special_tokens_extended else: __a = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f'''<unk_{i}>''' for i in range(2 , self.offset )] __a = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=_a , unk_token=_a , mask_token=_a , pad_token=_a , mask_token_sent=_a , offset=_a , additional_special_tokens=_a , sp_model_kwargs=self.sp_model_kwargs , **_a , ) __a = mask_token_sent __a = vocab_file __a = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_a ) # add special tokens to encoder dict __a = { 0: self.pad_token, 1: self.eos_token, } if self.mask_token_sent is not None: self.encoder.update( { 2: self.mask_token_sent, 3: self.mask_token, } ) if self.offset > 0: # entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102 # mask_token_sent is already added to list -> so start at 1 self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1 , self.offset - 1 )} ) __a = {v: k for k, v in self.encoder.items()} @property def __UpperCAmelCase ( self ): return len(self.sp_model ) + self.offset def __UpperCAmelCase ( self ): __a = {self.convert_ids_to_tokens(_a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): __a = self.__dict__.copy() __a = None return state def __setstate__( self , _a ): __a = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): __a = {} __a = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __UpperCAmelCase ( self , _a ): return self.sp_model.encode(_a , out_type=_a ) def __UpperCAmelCase ( self , _a ): if token in self.decoder: return self.decoder[token] elif token in self.added_tokens_decoder: return self.added_tokens_decoder[token] __a = self.sp_model.piece_to_id(_a ) return sp_id + self.offset def __UpperCAmelCase ( self , _a ): if index in self.encoder: return self.encoder[index] elif index in self.added_tokens_encoder: return self.added_tokens_encoder[index] else: __a = self.sp_model.IdToPiece(index - self.offset ) return token def __UpperCAmelCase ( self , _a ): __a = [] __a = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(_a ) + token __a = [] else: current_sub_tokens.append(_a ) out_string += self.sp_model.decode(_a ) return out_string.strip() def __UpperCAmelCase ( self , _a=False ): return 1 def __UpperCAmelCase ( self , _a ): __a = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special return [1 if x in all_special_ids else 0 for x in seq] def __UpperCAmelCase ( self , _a , _a = None , _a = False ): if already_has_special_tokens: return self._special_token_mask(_a ) elif token_ids_a is None: return self._special_token_mask(_a ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def __UpperCAmelCase ( self , _a , _a=None ): if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def __UpperCAmelCase ( self , _a , _a = None ): if not os.path.isdir(_a ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __a = os.path.join( _a , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_a ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _a ) elif not os.path.isfile(self.vocab_file ): with open(_a , '''wb''' ) as fi: __a = self.sp_model.serialized_model_proto() fi.write(_a ) return (out_vocab_file,)
695
"""simple docstring""" import unittest from diffusers.models.unet_ad_blocks import * # noqa F403 from diffusers.utils import torch_device from .test_unet_blocks_common import UNetBlockTesterMixin class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = DownBlockaD # noqa F405 __UpperCAmelCase : Any = 'down' def __UpperCAmelCase ( self ): __a = [-0.0232, -0.9869, 0.8054, -0.0637, -0.1688, -1.4264, 0.4470, -1.3394, 0.0904] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : str = ResnetDownsampleBlockaD # noqa F405 __UpperCAmelCase : List[str] = 'down' def __UpperCAmelCase ( self ): __a = [0.0710, 0.2410, -0.7320, -1.0757, -1.1343, 0.3540, -0.0133, -0.2576, 0.0948] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Optional[int] = AttnDownBlockaD # noqa F405 __UpperCAmelCase : Optional[Any] = 'down' def __UpperCAmelCase ( self ): __a = [0.0636, 0.8964, -0.6234, -1.0131, 0.0844, 0.4935, 0.3437, 0.0911, -0.2957] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : List[Any] = CrossAttnDownBlockaD # noqa F405 __UpperCAmelCase : Optional[Any] = 'down' def __UpperCAmelCase ( self ): __a , __a = super().prepare_init_args_and_inputs_for_common() __a = 32 return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [0.2238, -0.7396, -0.2255, -0.3829, 0.1925, 1.1665, 0.0603, -0.7295, 0.1983] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : int = SimpleCrossAttnDownBlockaD # noqa F405 __UpperCAmelCase : Any = 'down' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_encoder_hidden_states=_a ) def __UpperCAmelCase ( self ): __a , __a = super().prepare_init_args_and_inputs_for_common() __a = 32 return init_dict, inputs_dict @unittest.skipIf(torch_device == '''mps''' , '''MPS result is not consistent''' ) def __UpperCAmelCase ( self ): __a = [0.7921, -0.0992, -0.1962, -0.7695, -0.4242, 0.7804, 0.4737, 0.2765, 0.3338] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : int = SkipDownBlockaD # noqa F405 __UpperCAmelCase : Tuple = 'down' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_skip_sample=_a ) def __UpperCAmelCase ( self ): __a = [-0.0845, -0.2087, -0.2465, 0.0971, 0.1900, -0.0484, 0.2664, 0.4179, 0.5069] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : List[Any] = AttnSkipDownBlockaD # noqa F405 __UpperCAmelCase : Optional[int] = 'down' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_skip_sample=_a ) def __UpperCAmelCase ( self ): __a = [0.5539, 0.1609, 0.4924, 0.0537, -0.1995, 0.4050, 0.0979, -0.2721, -0.0642] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : int = DownEncoderBlockaD # noqa F405 __UpperCAmelCase : Optional[int] = 'down' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_temb=_a ) def __UpperCAmelCase ( self ): __a = { '''in_channels''': 32, '''out_channels''': 32, } __a = self.dummy_input return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [1.1102, 0.5302, 0.4872, -0.0023, -0.8042, 0.0483, -0.3489, -0.5632, 0.7626] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = AttnDownEncoderBlockaD # noqa F405 __UpperCAmelCase : Any = 'down' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_temb=_a ) def __UpperCAmelCase ( self ): __a = { '''in_channels''': 32, '''out_channels''': 32, } __a = self.dummy_input return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [0.8966, -0.1486, 0.8568, 0.8141, -0.9046, -0.1342, -0.0972, -0.7417, 0.1538] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : str = UNetMidBlockaD # noqa F405 __UpperCAmelCase : Any = 'mid' def __UpperCAmelCase ( self ): __a = { '''in_channels''': 32, '''temb_channels''': 128, } __a = self.dummy_input return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [-0.1062, 1.7248, 0.3494, 1.4569, -0.0910, -1.2421, -0.9984, 0.6736, 1.0028] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : str = UNetMidBlockaDCrossAttn # noqa F405 __UpperCAmelCase : str = 'mid' def __UpperCAmelCase ( self ): __a , __a = super().prepare_init_args_and_inputs_for_common() __a = 32 return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [0.0187, 2.4220, 0.4484, 1.1203, -0.6121, -1.5122, -0.8270, 0.7851, 1.8335] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Any = UNetMidBlockaDSimpleCrossAttn # noqa F405 __UpperCAmelCase : List[Any] = 'mid' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_encoder_hidden_states=_a ) def __UpperCAmelCase ( self ): __a , __a = super().prepare_init_args_and_inputs_for_common() __a = 32 return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [0.7143, 1.9974, 0.5448, 1.3977, 0.1282, -1.1237, -1.4238, 0.5530, 0.8880] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = UpBlockaD # noqa F405 __UpperCAmelCase : Union[str, Any] = 'up' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=_a ) def __UpperCAmelCase ( self ): __a = [-0.2041, -0.4165, -0.3022, 0.0041, -0.6628, -0.7053, 0.1928, -0.0325, 0.0523] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : str = ResnetUpsampleBlockaD # noqa F405 __UpperCAmelCase : int = 'up' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=_a ) def __UpperCAmelCase ( self ): __a = [0.2287, 0.3549, -0.1346, 0.4797, -0.1715, -0.9649, 0.7305, -0.5864, -0.6244] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Dict = CrossAttnUpBlockaD # noqa F405 __UpperCAmelCase : List[Any] = 'up' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=_a ) def __UpperCAmelCase ( self ): __a , __a = super().prepare_init_args_and_inputs_for_common() __a = 32 return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [-0.1403, -0.3515, -0.0420, -0.1425, 0.3167, 0.5094, -0.2181, 0.5931, 0.5582] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = SimpleCrossAttnUpBlockaD # noqa F405 __UpperCAmelCase : Optional[int] = 'up' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=_a , include_encoder_hidden_states=_a ) def __UpperCAmelCase ( self ): __a , __a = super().prepare_init_args_and_inputs_for_common() __a = 32 return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [0.2645, 0.1480, 0.0909, 0.8044, -0.9758, -0.9083, 0.0994, -1.1453, -0.7402] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Any = AttnUpBlockaD # noqa F405 __UpperCAmelCase : List[Any] = 'up' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=_a ) @unittest.skipIf(torch_device == '''mps''' , '''MPS result is not consistent''' ) def __UpperCAmelCase ( self ): __a = [0.0979, 0.1326, 0.0021, 0.0659, 0.2249, 0.0059, 0.1132, 0.5952, 0.1033] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Any = SkipUpBlockaD # noqa F405 __UpperCAmelCase : str = 'up' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=_a ) def __UpperCAmelCase ( self ): __a = [-0.0893, -0.1234, -0.1506, -0.0332, 0.0123, -0.0211, 0.0566, 0.0143, 0.0362] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = AttnSkipUpBlockaD # noqa F405 __UpperCAmelCase : int = 'up' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=_a ) def __UpperCAmelCase ( self ): __a = [0.0361, 0.0617, 0.2787, -0.0350, 0.0342, 0.3421, -0.0843, 0.0913, 0.3015] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = UpDecoderBlockaD # noqa F405 __UpperCAmelCase : List[str] = 'up' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_temb=_a ) def __UpperCAmelCase ( self ): __a = {'''in_channels''': 32, '''out_channels''': 32} __a = self.dummy_input return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [0.4404, 0.1998, -0.9886, -0.3320, -0.3128, -0.7034, -0.6955, -0.2338, -0.3137] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Optional[int] = AttnUpDecoderBlockaD # noqa F405 __UpperCAmelCase : Any = 'up' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_temb=_a ) def __UpperCAmelCase ( self ): __a = {'''in_channels''': 32, '''out_channels''': 32} __a = self.dummy_input return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [0.6738, 0.4491, 0.1055, 1.0710, 0.7316, 0.3339, 0.3352, 0.1023, 0.3568] super().test_output(_a )
695
1
"""simple docstring""" lowercase_ = 8.3144598 def lowercase ( lowerCAmelCase__ : float , lowerCAmelCase__ : float ) -> float: if temperature < 0: raise Exception('''Temperature cannot be less than 0 K''' ) if molar_mass <= 0: raise Exception('''Molar mass cannot be less than or equal to 0 kg/mol''' ) else: return (3 * UNIVERSAL_GAS_CONSTANT * temperature / molar_mass) ** 0.5 if __name__ == "__main__": import doctest # run doctest doctest.testmod() # example lowercase_ = 3_0_0 lowercase_ = 2_8 lowercase_ = rms_speed_of_molecule(temperature, molar_mass) print(F'''Vrms of Nitrogen gas at 300 K is {vrms} m/s''')
695
"""simple docstring""" import copy from typing import Dict, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING from ..detr import DetrConfig from ..swin import SwinConfig lowercase_ = { "facebook/maskformer-swin-base-ade": ( "https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json" ) # See all MaskFormer models at https://huggingface.co/models?filter=maskformer } lowercase_ = logging.get_logger(__name__) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : str = 'maskformer' __UpperCAmelCase : Optional[int] = {'hidden_size': 'mask_feature_size'} __UpperCAmelCase : Any = ['resnet', 'swin'] __UpperCAmelCase : Dict = ['detr'] def __init__( self , _a = 256 , _a = 256 , _a = 0.1 , _a = False , _a = None , _a = None , _a = 0.02 , _a = 1.0 , _a = 1.0 , _a = 1.0 , _a = 20.0 , _a = None , **_a , ): if backbone_config is None: # fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k __a = SwinConfig( image_size=384 , in_channels=3 , patch_size=4 , embed_dim=128 , depths=[2, 2, 18, 2] , num_heads=[4, 8, 16, 32] , window_size=12 , drop_path_rate=0.3 , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] , ) if isinstance(_a , _a ): __a = backbone_config.pop('''model_type''' ) __a = CONFIG_MAPPING[backbone_model_type] __a = config_class.from_dict(_a ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f'''Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. ''' f'''Supported model types: {','.join(self.backbones_supported )}''' ) if decoder_config is None: # fall back to https://huggingface.co/facebook/detr-resnet-50 __a = DetrConfig() else: # verify that the decoder is supported __a = ( decoder_config.pop('''model_type''' ) if isinstance(_a , _a ) else decoder_config.model_type ) if decoder_type not in self.decoders_supported: raise ValueError( f'''Transformer Decoder {decoder_type} not supported, please use one of''' f''' {','.join(self.decoders_supported )}''' ) if isinstance(_a , _a ): __a = CONFIG_MAPPING[decoder_type] __a = config_class.from_dict(_a ) __a = backbone_config __a = decoder_config # main feature dimension for the model __a = fpn_feature_size __a = mask_feature_size # initializer __a = init_std __a = init_xavier_std # Hungarian matcher && loss __a = cross_entropy_weight __a = dice_weight __a = mask_weight __a = use_auxiliary_loss __a = no_object_weight __a = output_auxiliary_logits __a = self.decoder_config.encoder_attention_heads __a = self.decoder_config.num_hidden_layers super().__init__(**_a ) @classmethod def __UpperCAmelCase ( cls , _a , _a , **_a ): return cls( backbone_config=_a , decoder_config=_a , **_a , ) def __UpperCAmelCase ( self ): __a = copy.deepcopy(self.__dict__ ) __a = self.backbone_config.to_dict() __a = self.decoder_config.to_dict() __a = self.__class__.model_type return output
695
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json" ), "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json" ), "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json" ), } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : List[Any] = 'dpr' def __init__( self , _a=30_522 , _a=768 , _a=12 , _a=12 , _a=3_072 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=2 , _a=0.02 , _a=1E-12 , _a=0 , _a="absolute" , _a = 0 , **_a , ): super().__init__(pad_token_id=_a , **_a ) __a = vocab_size __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = hidden_act __a = intermediate_size __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = type_vocab_size __a = initializer_range __a = layer_norm_eps __a = projection_dim __a = position_embedding_type
695
"""simple docstring""" from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup lowercase_ = "https://www.indeed.co.in/jobs?q=mobile+app+development&l=" def lowercase ( lowerCAmelCase__ : str = "mumbai" ) -> Generator[tuple[str, str], None, None]: __a = BeautifulSoup(requests.get(url + location ).content , '''html.parser''' ) # This attribute finds out all the specifics listed in a job for job in soup.find_all('''div''' , attrs={'''data-tn-component''': '''organicJob'''} ): __a = job.find('''a''' , attrs={'''data-tn-element''': '''jobTitle'''} ).text.strip() __a = job.find('''span''' , {'''class''': '''company'''} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs("Bangalore"), 1): print(F'''Job {i:>2} is {job[0]} at {job[1]}''')
695
1
"""simple docstring""" def lowercase ( lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : List[str] ) -> Any: if index == r: for j in range(lowerCAmelCase__ ): print(data[j] , end=''' ''' ) print(''' ''' ) return # When no more elements are there to put in data[] if i >= n: return # current is included, put next at next location __a = arr[i] combination_util(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , index + 1 , lowerCAmelCase__ , i + 1 ) # current is excluded, replace it with # next (Note that i+1 is passed, but # index is not changed) combination_util(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , i + 1 ) # The main function that prints all combinations # of size r in arr[] of size n. This function # mainly uses combinationUtil() def lowercase ( lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : int ) -> Optional[Any]: # A temporary array to store all combination one by one __a = [0] * r # Print all combination using temporary array 'data[]' combination_util(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , 0 , lowerCAmelCase__ , 0 ) if __name__ == "__main__": # Driver code to check the function above lowercase_ = [1_0, 2_0, 3_0, 4_0, 5_0] print_combination(arr, len(arr), 3) # This code is contributed by Ambuj sahu
695
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "bigcode/gpt_bigcode-santacoder": "https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json", } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : List[str] = 'gpt_bigcode' __UpperCAmelCase : Tuple = ['past_key_values'] __UpperCAmelCase : Dict = { 'hidden_size': 'n_embd', 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , _a=50_257 , _a=1_024 , _a=768 , _a=12 , _a=12 , _a=None , _a="gelu_pytorch_tanh" , _a=0.1 , _a=0.1 , _a=0.1 , _a=1E-5 , _a=0.02 , _a=True , _a=True , _a=50_256 , _a=50_256 , _a=True , _a=True , _a=True , **_a , ): __a = vocab_size __a = n_positions __a = n_embd __a = n_layer __a = n_head __a = n_inner __a = activation_function __a = resid_pdrop __a = embd_pdrop __a = attn_pdrop __a = layer_norm_epsilon __a = initializer_range __a = scale_attn_weights __a = use_cache __a = attention_softmax_in_fpaa __a = scale_attention_softmax_in_fpaa __a = multi_query __a = bos_token_id __a = eos_token_id super().__init__(bos_token_id=_a , eos_token_id=_a , **_a )
695
1
"""simple docstring""" import json import sys def lowercase ( lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : List[str] ) -> Any: with open(lowerCAmelCase__ , encoding='''utf-8''' ) as f: __a = json.load(lowerCAmelCase__ ) __a = ['''<details>''', '''<summary>Show updated benchmarks!</summary>''', ''' '''] for benchmark_name in sorted(lowerCAmelCase__ ): __a = results[benchmark_name] __a = benchmark_name.split('''/''' )[-1] output_md.append(f'''### Benchmark: {benchmark_file_name}''' ) __a = '''| metric |''' __a = '''|--------|''' __a = '''| new / old (diff) |''' for metric_name in sorted(lowerCAmelCase__ ): __a = benchmark_res[metric_name] __a = metric_vals['''new'''] __a = metric_vals.get('''old''' , lowerCAmelCase__ ) __a = metric_vals.get('''diff''' , lowerCAmelCase__ ) __a = f''' {new_val:f}''' if isinstance(lowerCAmelCase__ , (int, float) ) else '''None''' if old_val is not None: val_str += f''' / {old_val:f}''' if isinstance(lowerCAmelCase__ , (int, float) ) else "None" if dif_val is not None: val_str += f''' ({dif_val:f})''' if isinstance(lowerCAmelCase__ , (int, float) ) else "None" title += " " + metric_name + " |" lines += "---|" value += val_str + " |" output_md += [title, lines, value, " "] output_md.append('''</details>''' ) with open(lowerCAmelCase__ , '''w''' , encoding='''utf-8''' ) as f: f.writelines('''\n'''.join(lowerCAmelCase__ ) ) if __name__ == "__main__": lowercase_ = sys.argv[1] lowercase_ = sys.argv[2] format_json_to_md(input_json_file, output_md_file)
695
"""simple docstring""" import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler lowercase_ = 1_6 lowercase_ = 3_2 def lowercase ( lowerCAmelCase__ : Accelerator , lowerCAmelCase__ : int = 16 , lowerCAmelCase__ : str = "bert-base-cased" ) -> Optional[int]: __a = AutoTokenizer.from_pretrained(lowerCAmelCase__ ) __a = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(lowerCAmelCase__ : Optional[Any] ): # max_length=None => use the model max length (it's actually the default) __a = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset __a = datasets.map( lowerCAmelCase__ , batched=lowerCAmelCase__ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , load_from_cache_file=lowerCAmelCase__ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __a = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(lowerCAmelCase__ : int ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(lowerCAmelCase__ , padding='''max_length''' , max_length=128 , return_tensors='''pt''' ) return tokenizer.pad(lowerCAmelCase__ , padding='''longest''' , return_tensors='''pt''' ) # Instantiate dataloaders. __a = DataLoader( tokenized_datasets['''train'''] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ ) __a = DataLoader( tokenized_datasets['''validation'''] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ ) return train_dataloader, eval_dataloader def lowercase ( lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Union[str, Any] ) -> Optional[int]: # Initialize accelerator __a = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __a = config['''lr'''] __a = int(config['''num_epochs'''] ) __a = int(config['''seed'''] ) __a = int(config['''batch_size'''] ) __a = args.model_name_or_path set_seed(lowerCAmelCase__ ) __a , __a = get_dataloaders(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __a = AutoModelForSequenceClassification.from_pretrained(lowerCAmelCase__ , return_dict=lowerCAmelCase__ ) # Instantiate optimizer __a = ( AdamW if accelerator.state.deepspeed_plugin is None or '''optimizer''' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) __a = optimizer_cls(params=model.parameters() , lr=lowerCAmelCase__ ) if accelerator.state.deepspeed_plugin is not None: __a = accelerator.state.deepspeed_plugin.deepspeed_config[ '''gradient_accumulation_steps''' ] else: __a = 1 __a = (len(lowerCAmelCase__ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): __a = get_linear_schedule_with_warmup( optimizer=lowerCAmelCase__ , num_warmup_steps=0 , num_training_steps=lowerCAmelCase__ , ) else: __a = DummyScheduler(lowerCAmelCase__ , total_num_steps=lowerCAmelCase__ , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __a , __a , __a , __a , __a = accelerator.prepare( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # We need to keep track of how many total steps we have iterated over __a = 0 # We also need to keep track of the stating epoch so files are named properly __a = 0 # Now we train the model __a = evaluate.load('''glue''' , '''mrpc''' ) __a = 0 __a = {} for epoch in range(lowerCAmelCase__ , lowerCAmelCase__ ): model.train() for step, batch in enumerate(lowerCAmelCase__ ): __a = model(**lowerCAmelCase__ ) __a = outputs.loss __a = loss / gradient_accumulation_steps accelerator.backward(lowerCAmelCase__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 model.eval() __a = 0 for step, batch in enumerate(lowerCAmelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __a = model(**lowerCAmelCase__ ) __a = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times __a , __a = accelerator.gather( (predictions, batch['''labels''']) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(lowerCAmelCase__ ) - 1: __a = predictions[: len(eval_dataloader.dataset ) - samples_seen] __a = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=lowerCAmelCase__ , references=lowerCAmelCase__ , ) __a = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}:''' , lowerCAmelCase__ ) __a = eval_metric['''accuracy'''] if best_performance < eval_metric["accuracy"]: __a = eval_metric['''accuracy'''] if args.performance_lower_bound is not None: assert ( args.performance_lower_bound <= best_performance ), f'''Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}''' accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , '''all_results.json''' ) , '''w''' ) as f: json.dump(lowerCAmelCase__ , lowerCAmelCase__ ) def lowercase ( ) -> List[str]: __a = argparse.ArgumentParser(description='''Simple example of training script tracking peak GPU memory usage.''' ) parser.add_argument( '''--model_name_or_path''' , type=lowerCAmelCase__ , default='''bert-base-cased''' , help='''Path to pretrained model or model identifier from huggingface.co/models.''' , required=lowerCAmelCase__ , ) parser.add_argument( '''--output_dir''' , type=lowerCAmelCase__ , default='''.''' , help='''Optional save directory where all checkpoint folders will be stored. Default is the current working directory.''' , ) parser.add_argument( '''--performance_lower_bound''' , type=lowerCAmelCase__ , default=lowerCAmelCase__ , help='''Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value.''' , ) parser.add_argument( '''--num_epochs''' , type=lowerCAmelCase__ , default=3 , help='''Number of train epochs.''' , ) __a = parser.parse_args() __a = {'''lr''': 2e-5, '''num_epochs''': args.num_epochs, '''seed''': 42, '''batch_size''': 16} training_function(lowerCAmelCase__ , lowerCAmelCase__ ) if __name__ == "__main__": main()
695
1
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING lowercase_ = logging.get_logger(__name__) lowercase_ = { "salesforce/blip2-opt-2.7b": "https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json", } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = 'blip_2_vision_model' def __init__( self , _a=1_408 , _a=6_144 , _a=39 , _a=16 , _a=224 , _a=14 , _a="gelu" , _a=0.0_0001 , _a=0.0 , _a=1E-10 , _a=True , **_a , ): super().__init__(**_a ) __a = hidden_size __a = intermediate_size __a = num_hidden_layers __a = num_attention_heads __a = patch_size __a = image_size __a = initializer_range __a = attention_dropout __a = layer_norm_eps __a = hidden_act __a = qkv_bias @classmethod def __UpperCAmelCase ( cls , _a , **_a ): cls._set_token_in_kwargs(_a ) __a , __a = cls.get_config_dict(_a , **_a ) # get the vision config dict if we are loading from Blip2Config if config_dict.get('''model_type''' ) == "blip-2": __a = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_a , **_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : str = 'blip_2_qformer' def __init__( self , _a=30_522 , _a=768 , _a=12 , _a=12 , _a=3_072 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=0.02 , _a=1E-12 , _a=0 , _a="absolute" , _a=2 , _a=1_408 , **_a , ): super().__init__(pad_token_id=_a , **_a ) __a = vocab_size __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = hidden_act __a = intermediate_size __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = initializer_range __a = layer_norm_eps __a = position_embedding_type __a = cross_attention_frequency __a = encoder_hidden_size @classmethod def __UpperCAmelCase ( cls , _a , **_a ): cls._set_token_in_kwargs(_a ) __a , __a = cls.get_config_dict(_a , **_a ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get('''model_type''' ) == "blip-2": __a = config_dict['''qformer_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_a , **_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Any = 'blip-2' __UpperCAmelCase : List[str] = True def __init__( self , _a=None , _a=None , _a=None , _a=32 , **_a ): super().__init__(**_a ) if vision_config is None: __a = {} logger.info('''vision_config is None. initializing the Blip2VisionConfig with default values.''' ) if qformer_config is None: __a = {} logger.info('''qformer_config is None. Initializing the Blip2QFormerConfig with default values.''' ) if text_config is None: __a = {} logger.info('''text_config is None. Initializing the text config with default values (`OPTConfig`).''' ) __a = BlipaVisionConfig(**_a ) __a = BlipaQFormerConfig(**_a ) __a = text_config['''model_type'''] if '''model_type''' in text_config else '''opt''' __a = CONFIG_MAPPING[text_model_type](**_a ) __a = self.text_config.tie_word_embeddings __a = self.text_config.is_encoder_decoder __a = num_query_tokens __a = self.vision_config.hidden_size __a = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES __a = 1.0 __a = 0.02 @classmethod def __UpperCAmelCase ( cls , _a , _a , _a , **_a , ): return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **_a , ) def __UpperCAmelCase ( self ): __a = copy.deepcopy(self.__dict__ ) __a = self.vision_config.to_dict() __a = self.qformer_config.to_dict() __a = self.text_config.to_dict() __a = self.__class__.model_type return output
695
"""simple docstring""" from typing import Any def lowercase ( lowerCAmelCase__ : list , lowerCAmelCase__ : list , lowerCAmelCase__ : dict , lowerCAmelCase__ : dict , lowerCAmelCase__ : dict , ) -> list: _validation( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ) # Creates data structures and fill initial step __a = {} __a = {} for state in states_space: __a = observations_space[0] __a = ( initial_probabilities[state] * emission_probabilities[state][observation] ) __a = None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(lowerCAmelCase__ ) ): __a = observations_space[o] __a = observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function __a = '''''' __a = -1 for k_state in states_space: __a = ( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: __a = probability __a = k_state # Update probabilities and pointers dicts __a = ( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) __a = arg_max # The final observation __a = observations_space[len(lowerCAmelCase__ ) - 1] # argmax for given final observation __a = '''''' __a = -1 for k_state in states_space: __a = probabilities[(k_state, final_observation)] if probability > max_probability: __a = probability __a = k_state __a = arg_max # Process pointers backwards __a = last_state __a = [] for o in range(len(lowerCAmelCase__ ) - 1 , -1 , -1 ): result.append(lowerCAmelCase__ ) __a = pointers[previous, observations_space[o]] result.reverse() return result def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , ) -> None: _validate_not_empty( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ) _validate_lists(lowerCAmelCase__ , lowerCAmelCase__ ) _validate_dicts( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , ) -> None: if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError('''There\'s an empty parameter''' ) def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Any ) -> None: _validate_list(lowerCAmelCase__ , '''observations_space''' ) _validate_list(lowerCAmelCase__ , '''states_space''' ) def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : str ) -> None: if not isinstance(_object , lowerCAmelCase__ ): __a = f'''{var_name} must be a list''' raise ValueError(lowerCAmelCase__ ) else: for x in _object: if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): __a = f'''{var_name} must be a list of strings''' raise ValueError(lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , ) -> None: _validate_dict(lowerCAmelCase__ , '''initial_probabilities''' , lowerCAmelCase__ ) _validate_nested_dict(lowerCAmelCase__ , '''transition_probabilities''' ) _validate_nested_dict(lowerCAmelCase__ , '''emission_probabilities''' ) def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : str ) -> None: _validate_dict(_object , lowerCAmelCase__ , lowerCAmelCase__ ) for x in _object.values(): _validate_dict(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : str , lowerCAmelCase__ : type , lowerCAmelCase__ : bool = False ) -> None: if not isinstance(_object , lowerCAmelCase__ ): __a = f'''{var_name} must be a dict''' raise ValueError(lowerCAmelCase__ ) if not all(isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) for x in _object ): __a = f'''{var_name} all keys must be strings''' raise ValueError(lowerCAmelCase__ ) if not all(isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) for x in _object.values() ): __a = '''nested dictionary ''' if nested else '''''' __a = f'''{var_name} {nested_text}all values must be {value_type.__name__}''' raise ValueError(lowerCAmelCase__ ) if __name__ == "__main__": from doctest import testmod testmod()
695
1